Add some matrix classes in math\matrix package and standard libraries

This commit is contained in:
2014-03-15 10:11:53 +01:00
parent 246354dbd8
commit a3762a99e6
17 changed files with 4723 additions and 0 deletions

View File

@@ -0,0 +1,201 @@
package math.matrix;
import java.io.Serializable;
/** Cholesky Decomposition.
<P>
For a symmetric, positive definite matrix A, the Cholesky decomposition
is an lower triangular matrix L so that A = L*L'.
<P>
If the matrix is not symmetric or positive definite, the constructor
returns a partial decomposition and sets an internal flag that may
be queried by the isSPD() method.
*/
public class CholeskyDecomposition implements Serializable {
/* ------------------------
Class variables
* ------------------------ */
/** Array for internal storage of decomposition.
@serial internal array storage.
*/
private double[][] L;
/** Row and column dimension (square matrix).
@serial matrix dimension.
*/
private int n;
/** Symmetric and positive definite flag.
@serial is symmetric and positive definite flag.
*/
private boolean isspd;
/* ------------------------
Constructor
* ------------------------ */
/** Cholesky algorithm for symmetric and positive definite matrix.
Structure to access L and isspd flag.
@param Arg Square, symmetric matrix.
*/
public CholeskyDecomposition (Matrix Arg) {
// Initialize.
double[][] A = Arg.getD();
n = Arg.getM();
L = new double[n][n];
isspd = (Arg.getN() == n);
// Main loop.
for (int j = 0; j < n; j++) {
double[] Lrowj = L[j];
double d = 0.0;
for (int k = 0; k < j; k++) {
double[] Lrowk = L[k];
double s = 0.0;
for (int i = 0; i < k; i++) {
s += Lrowk[i]*Lrowj[i];
}
Lrowj[k] = s = (A[j][k] - s)/L[k][k];
d = d + s*s;
isspd = isspd & (A[k][j] == A[j][k]);
}
d = A[j][j] - d;
isspd = isspd & (d > 0.0);
L[j][j] = Math.sqrt(Math.max(d,0.0));
for (int k = j+1; k < n; k++) {
L[j][k] = 0.0;
}
}
}
/* ------------------------
Temporary, experimental code.
* ------------------------ *\
\** Right Triangular Cholesky Decomposition.
<P>
For a symmetric, positive definite matrix A, the Right Cholesky
decomposition is an upper triangular matrix R so that A = R'*R.
This constructor computes R with the Fortran inspired column oriented
algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
lower triangular decomposition is faster. We have temporarily included
this constructor here until timing experiments confirm this suspicion.
*\
\** Array for internal storage of right triangular decomposition. **\
private transient double[][] R;
\** Cholesky algorithm for symmetric and positive definite matrix.
@param A Square, symmetric matrix.
@param rightflag Actual value ignored.
@return Structure to access R and isspd flag.
*\
public CholeskyDecomposition (Matrix Arg, int rightflag) {
// Initialize.
double[][] A = Arg.getArray();
n = Arg.getColumnDimension();
R = new double[n][n];
isspd = (Arg.getColumnDimension() == n);
// Main loop.
for (int j = 0; j < n; j++) {
double d = 0.0;
for (int k = 0; k < j; k++) {
double s = A[k][j];
for (int i = 0; i < k; i++) {
s = s - R[i][k]*R[i][j];
}
R[k][j] = s = s/R[k][k];
d = d + s*s;
isspd = isspd & (A[k][j] == A[j][k]);
}
d = A[j][j] - d;
isspd = isspd & (d > 0.0);
R[j][j] = Math.sqrt(Math.max(d,0.0));
for (int k = j+1; k < n; k++) {
R[k][j] = 0.0;
}
}
}
\** Return upper triangular factor.
@return R
*\
public Matrix getR () {
return new Matrix(R,n,n);
}
\* ------------------------
End of temporary code.
* ------------------------ */
/* ------------------------
Public Methods
* ------------------------ */
/** Is the matrix symmetric and positive definite?
@return true if A is symmetric and positive definite.
*/
public boolean isSPD () {
return isspd;
}
/** Return triangular factor.
@return L
*/
public Matrix getL () {
return new Matrix(L);
}
/** Solve A*X = B
@param B A Matrix with as many rows as A and any number of columns.
@return X so that L*L'*X = B
@exception IllegalArgumentException Matrix row dimensions must agree.
@exception RuntimeException Matrix is not symmetric positive definite.
*/
public Matrix solve (Matrix B) {
if (B.getM() != n) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
}
if (!isspd) {
throw new RuntimeException("Matrix is not symmetric positive definite.");
}
// Copy right hand side.
double[][] X = B.getCopy();
int nx = B.getN();
// Solve L*Y = B;
for (int k = 0; k < n; k++) {
for (int j = 0; j < nx; j++) {
for (int i = 0; i < k ; i++) {
X[k][j] -= X[i][j]*L[k][i];
}
X[k][j] /= L[k][k];
}
}
// Solve L'*X = Y;
for (int k = n-1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
for (int i = k+1; i < n ; i++) {
X[k][j] -= X[i][j]*L[i][k];
}
X[k][j] /= L[k][k];
}
}
return new Matrix(X);
}
private static final long serialVersionUID = 1;
}

View File

@@ -0,0 +1,175 @@
package math.matrix;
import exception.IllegalDimensionException;
public class Diagonal extends Matrix{
/**
* UID
*/
private static final long serialVersionUID = 3206696282474150081L;
public Diagonal(int n){
this(n,n);
}
public Diagonal(int m, int n){
this.m = m;
this.n = n;
data = new double[m>n?m:n];
}
public Diagonal(double... d){
this(d.length);
int i;
for(i=0; i<n; i++)
set(i, d[i]);
}
public Diagonal(Vector d){
this(d.n());
int i;
for(i=0; i<n; i++)
set(i, d.get(i));
}
/**
* Create diagonal matrix with given main diagonal entries
* @param d matrix
*/
public Diagonal(Matrix d){
this(d.getM(), d.getN());
int i;
for(i=0; i<(m>n?m:n); i++)
set(i, d.get(i, i));
}
/**
* Generate an n-by-n identity matrix.
* An n-by-n matrix with ones on the diagonal and zeros elsewhere.
* @param n rows/columns
* @return n-by-n identity matrix
*/
public static Diagonal identity(int n){
int i;
Diagonal c = new Diagonal(n);
for(i=0; i<n; i++)
c.set(i, 1);
return c;
}
/**
* Generate an m-by-n identity matrix.
* An m-by-n matrix with ones on the diagonal and zeros elsewhere.
* @param n rows/columns
* @return n-by-n identity matrix
*/
public static Diagonal identity(int m, int n){
int i;
Diagonal c = new Diagonal(m, n);
for(i=0; i<(m<n?m:n); i++)
c.set(i, 1);
return c;
}
public void set(int i, double d){
data[i] = d;
}
public Matrix set(int i, int j, double d){
if(i==j) set(i,d);
return this;
}
public double get(int i){
return data[i];
}
public double get(int i, int j){
if(i==j) return get(i);
else return 0;
}
/**
* Unary minus
* @return -D
*/
public Diagonal uminus(){
Diagonal X = new Diagonal(m,n);
int i;
for(i=0; i<n; i++)
X.set(i, -get(i));
return X;
}
/**
* Scalar multiplication. Multiply a matrix element-wise by a scalar.
* @param s scalar
* @return <b>C</b> = s <b>A</b>
*/
public Diagonal times(double s){
int i;
Diagonal c = new Diagonal(m,n);
for(i=0; i<m; i++)
c.set(i, s * get(i));
return c;
}
/**
* Scalar multiplication. Multiply a matrix element-wise by a scalar.
* @param s scalar
* @return <b>D</b> = s <b>D</b>
*/
public Diagonal timesEquals(double s){
int i;
for(i=0; i<m; i++)
set(i, s * get(i));
return this;
}
/**
* Multiply by a vector right. matrix-vector multiplication
* @param b vector
* @return <b>C</b> = <b>A</b> • <b>b</b> = <b>A</b> <b>b</b>
* @throws IllegalDimensionException Illegal vector dimensions.
*/
public Vector times(Vector b) throws IllegalDimensionException{
int i;
if(n != b.n()) throw new IllegalDimensionException("Illegal vector dimensions.");
Vector c = new Vector(m);
for(i=0; i<m; i++)
c.set(i, get(i) * b.get(i));
return c;
}
/**
* @param e exponent
* @return the matrix to the power of e
*/
public Diagonal pow(double e){
int i;
Diagonal C = new Diagonal(m,n);
for(i=0; i<(m<n?m:n); i++)
C.set(i, Math.pow(get(i), e));
return C;
}
public double det(){
int i;
double det = 1;
for(i=0; i<m; i++)
det *= get(i);
return det;
}
public String toString(){
return Matrix.diag(data).toString();
}
public static void main(String[] args){
Diagonal d1 = new Diagonal(1.);
System.out.println(d1);
Diagonal d2 = new Diagonal(1., 2.);
System.out.println(d2);
}
}

View File

@@ -0,0 +1,47 @@
package math.matrix;
public class Diagonal2D extends Matrix2D {
/**
* UID
*/
private static final long serialVersionUID = 553077525134866149L;
public Diagonal2D(int n){
this(n,n);
}
public Diagonal2D(int m, int n){
this.m = m;
this.n = n;
data = new double[m>n?m:n];
}
/**
* Generate an n-by-n identity matrix.
* An m-by-n matrix with ones on the diagonal and zeros elsewhere.
* @param n rows/columns
* @return n-by-n identity matrix
*/
public static Diagonal2D identity(int n){
int i;
Diagonal2D c = new Diagonal2D(n);
for(i=0; i<n; i++)
c.set(i, 1);
return c;
}
public void set(int i, double d){
data[i] = d;
}
public String toString(){
return Matrix2D.diag(data).toString();
}
public static void main(String[] args) {
}
}

View File

@@ -0,0 +1,961 @@
package math.matrix;
import java.io.Serializable;
import math.Maths;
/** Eigenvalues and eigenvectors of a real matrix.
<P>
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
diagonal and the eigenvector matrix V is orthogonal.
I.e. A = V.times(D.times(V.transpose())) and
V.times(V.transpose()) equals the identity matrix.
<P>
If A is not symmetric, then the eigenvalue matrix D is block diagonal
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
columns of V represent the eigenvectors in the sense that A*V = V*D,
i.e. A.times(V) equals V.times(D). The matrix V may be badly
conditioned, or even singular, so the validity of the equation
A = V*D*inverse(V) depends upon V.cond().
**/
public class EigenvalueDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = -4489049767346210616L;
/* ------------------------
Class variables
* ------------------------ */
/** Row and column dimension (square matrix).
@serial matrix dimension.
*/
private int n;
/** Symmetry flag.
@serial internal symmetry flag.
*/
private boolean issymmetric;
/** Arrays for internal storage of eigenvalues.
@serial internal storage of eigenvalues.
*/
private double[] d, e;
/** Array for internal storage of eigenvectors.
@serial internal storage of eigenvectors.
*/
private double[][] V;
/** Array for internal storage of nonsymmetric Hessenberg form.
@serial internal storage of nonsymmetric Hessenberg form.
*/
private double[][] H;
/** Working storage for nonsymmetric algorithm.
@serial working storage for nonsymmetric algorithm.
*/
private double[] ort;
/* ------------------------
Private Methods
* ------------------------ */
// Symmetric Householder reduction to tridiagonal form.
private void tred2 () {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int j = 0; j < n; j++) {
d[j] = V[n-1][j];
}
// Householder reduction to tridiagonal form.
for (int i = n-1; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i-1];
for (int j = 0; j < i; j++) {
d[j] = V[i-1][j];
V[i][j] = 0.0;
V[j][i] = 0.0;
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i-1];
double g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i-1] = f - g;
for (int j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d[j];
V[j][i] = f;
g = e[j] + V[j][j] * f;
for (int k = j+1; k <= i-1; k++) {
g += V[k][j] * d[k];
e[k] += V[k][j] * f;
}
e[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (int j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (int k = j; k <= i-1; k++) {
V[k][j] -= (f * e[k] + g * d[k]);
}
d[j] = V[i-1][j];
V[i][j] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
for (int i = 0; i < n-1; i++) {
V[n-1][i] = V[i][i];
V[i][i] = 1.0;
double h = d[i+1];
if (h != 0.0) {
for (int k = 0; k <= i; k++) {
d[k] = V[k][i+1] / h;
}
for (int j = 0; j <= i; j++) {
double g = 0.0;
for (int k = 0; k <= i; k++) {
g += V[k][i+1] * V[k][j];
}
for (int k = 0; k <= i; k++) {
V[k][j] -= g * d[k];
}
}
}
for (int k = 0; k <= i; k++) {
V[k][i+1] = 0.0;
}
}
for (int j = 0; j < n; j++) {
d[j] = V[n-1][j];
V[n-1][j] = 0.0;
}
V[n-1][n-1] = 1.0;
e[0] = 0.0;
}
// Symmetric tridiagonal QL algorithm.
private void tql2 () {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int i = 1; i < n; i++) {
e[i-1] = e[i];
}
e[n-1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
double eps = Math.pow(2.0,-52.0);
for (int l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
int m = l;
while (m < n) {
if (Math.abs(e[m]) <= eps*tst1) {
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
double g = d[l];
double p = (d[l+1] - g) / (2.0 * e[l]);
double r = Maths.hypot(p,1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l+1] = e[l] * (p + r);
double dl1 = d[l+1];
double h = g - d[l];
for (int i = l+2; i < n; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l+1];
double s = 0.0;
double s2 = 0.0;
for (int i = m-1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = Maths.hypot(p,e[i]);
e[i+1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i+1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
for (int k = 0; k < n; k++) {
h = V[k][i+1];
V[k][i+1] = s * V[k][i] + c * h;
V[k][i] = c * V[k][i] - s * h;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (Math.abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n-1; i++) {
int k = i;
double p = d[i];
for (int j = i+1; j < n; j++) {
if (d[j] < p) {
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i];
d[i] = p;
for (int j = 0; j < n; j++) {
p = V[j][i];
V[j][i] = V[j][k];
V[j][k] = p;
}
}
}
}
// Nonsymmetric reduction to Hessenberg form.
private void orthes () {
// This is derived from the Algol procedures orthes and ortran,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
int low = 0;
int high = n-1;
for (int m = low+1; m <= high-1; m++) {
// Scale column.
double scale = 0.0;
for (int i = m; i <= high; i++) {
scale = scale + Math.abs(H[i][m-1]);
}
if (scale != 0.0) {
// Compute Householder transformation.
double h = 0.0;
for (int i = high; i >= m; i--) {
ort[i] = H[i][m-1]/scale;
h += ort[i] * ort[i];
}
double g = Math.sqrt(h);
if (ort[m] > 0) {
g = -g;
}
h = h - ort[m] * g;
ort[m] = ort[m] - g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (int j = m; j < n; j++) {
double f = 0.0;
for (int i = high; i >= m; i--) {
f += ort[i]*H[i][j];
}
f = f/h;
for (int i = m; i <= high; i++) {
H[i][j] -= f*ort[i];
}
}
for (int i = 0; i <= high; i++) {
double f = 0.0;
for (int j = high; j >= m; j--) {
f += ort[j]*H[i][j];
}
f = f/h;
for (int j = m; j <= high; j++) {
H[i][j] -= f*ort[j];
}
}
ort[m] = scale*ort[m];
H[m][m-1] = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
V[i][j] = (i == j ? 1.0 : 0.0);
}
}
for (int m = high-1; m >= low+1; m--) {
if (H[m][m-1] != 0.0) {
for (int i = m+1; i <= high; i++) {
ort[i] = H[i][m-1];
}
for (int j = m; j <= high; j++) {
double g = 0.0;
for (int i = m; i <= high; i++) {
g += ort[i] * V[i][j];
}
// Double division avoids possible underflow
g = (g / ort[m]) / H[m][m-1];
for (int i = m; i <= high; i++) {
V[i][j] += g * ort[i];
}
}
}
}
}
// Complex scalar division.
private transient double cdivr, cdivi;
private void cdiv(double xr, double xi, double yr, double yi) {
double r,d;
if (Math.abs(yr) > Math.abs(yi)) {
r = yi/yr;
d = yr + r*yi;
cdivr = (xr + r*xi)/d;
cdivi = (xi - r*xr)/d;
} else {
r = yr/yi;
d = yi + r*yr;
cdivr = (r*xr + xi)/d;
cdivi = (r*xi - xr)/d;
}
}
// Nonsymmetric reduction from Hessenberg to real Schur form.
private void hqr2 () {
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
int nn = this.n;
int n = nn-1;
int low = 0;
int high = nn-1;
double eps = Math.pow(2.0,-52.0);
double exshift = 0.0;
double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
// Store roots isolated by balanc and compute matrix norm
double norm = 0.0;
for (int i = 0; i < nn; i++) {
if (i < low | i > high) {
d[i] = H[i][i];
e[i] = 0.0;
}
for (int j = Math.max(i-1,0); j < nn; j++) {
norm = norm + Math.abs(H[i][j]);
}
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low) {
// Look for single small sub-diagonal element
int l = n;
while (l > low) {
s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
if (s == 0.0) {
s = norm;
}
if (Math.abs(H[l][l-1]) < eps * s) {
break;
}
l--;
}
// Check for convergence
// One root found
if (l == n) {
H[n][n] = H[n][n] + exshift;
d[n] = H[n][n];
e[n] = 0.0;
n--;
iter = 0;
// Two roots found
} else if (l == n-1) {
w = H[n][n-1] * H[n-1][n];
p = (H[n-1][n-1] - H[n][n]) / 2.0;
q = p * p + w;
z = Math.sqrt(Math.abs(q));
H[n][n] = H[n][n] + exshift;
H[n-1][n-1] = H[n-1][n-1] + exshift;
x = H[n][n];
// Real pair
if (q >= 0) {
if (p >= 0) {
z = p + z;
} else {
z = p - z;
}
d[n-1] = x + z;
d[n] = d[n-1];
if (z != 0.0) {
d[n] = x - w / z;
}
e[n-1] = 0.0;
e[n] = 0.0;
x = H[n][n-1];
s = Math.abs(x) + Math.abs(z);
p = x / s;
q = z / s;
r = Math.sqrt(p * p+q * q);
p = p / r;
q = q / r;
// Row modification
for (int j = n-1; j < nn; j++) {
z = H[n-1][j];
H[n-1][j] = q * z + p * H[n][j];
H[n][j] = q * H[n][j] - p * z;
}
// Column modification
for (int i = 0; i <= n; i++) {
z = H[i][n-1];
H[i][n-1] = q * z + p * H[i][n];
H[i][n] = q * H[i][n] - p * z;
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
z = V[i][n-1];
V[i][n-1] = q * z + p * V[i][n];
V[i][n] = q * V[i][n] - p * z;
}
// Complex pair
} else {
d[n-1] = x + p;
d[n] = x + p;
e[n-1] = z;
e[n] = -z;
}
n = n - 2;
iter = 0;
// No convergence yet
} else {
// Form shift
x = H[n][n];
y = 0.0;
w = 0.0;
if (l < n) {
y = H[n-1][n-1];
w = H[n][n-1] * H[n-1][n];
}
// Wilkinson's original ad hoc shift
if (iter == 10) {
exshift += x;
for (int i = low; i <= n; i++) {
H[i][i] -= x;
}
s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
x = y = 0.75 * s;
w = -0.4375 * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30) {
s = (y - x) / 2.0;
s = s * s + w;
if (s > 0) {
s = Math.sqrt(s);
if (y < x) {
s = -s;
}
s = x - w / ((y - x) / 2.0 + s);
for (int i = low; i <= n; i++) {
H[i][i] -= s;
}
exshift += s;
x = y = w = 0.964;
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n-2;
while (m >= l) {
z = H[m][m];
r = x - z;
s = y - z;
p = (r * s - w) / H[m+1][m] + H[m][m+1];
q = H[m+1][m+1] - z - r - s;
r = H[m+2][m+1];
s = Math.abs(p) + Math.abs(q) + Math.abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
break;
}
if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
Math.abs(H[m+1][m+1])))) {
break;
}
m--;
}
for (int i = m+2; i <= n; i++) {
H[i][i-2] = 0.0;
if (i > m+2) {
H[i][i-3] = 0.0;
}
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n-1; k++) {
boolean notlast = (k != n-1);
if (k != m) {
p = H[k][k-1];
q = H[k+1][k-1];
r = (notlast ? H[k+2][k-1] : 0.0);
x = Math.abs(p) + Math.abs(q) + Math.abs(r);
if (x == 0.0) {
continue;
}
p = p / x;
q = q / x;
r = r / x;
}
s = Math.sqrt(p * p + q * q + r * r);
if (p < 0) {
s = -s;
}
if (s != 0) {
if (k != m) {
H[k][k-1] = -s * x;
} else if (l != m) {
H[k][k-1] = -H[k][k-1];
}
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
// Row modification
for (int j = k; j < nn; j++) {
p = H[k][j] + q * H[k+1][j];
if (notlast) {
p = p + r * H[k+2][j];
H[k+2][j] = H[k+2][j] - p * z;
}
H[k][j] = H[k][j] - p * x;
H[k+1][j] = H[k+1][j] - p * y;
}
// Column modification
for (int i = 0; i <= Math.min(n,k+3); i++) {
p = x * H[i][k] + y * H[i][k+1];
if (notlast) {
p = p + z * H[i][k+2];
H[i][k+2] = H[i][k+2] - p * r;
}
H[i][k] = H[i][k] - p;
H[i][k+1] = H[i][k+1] - p * q;
}
// Accumulate transformations
for (int i = low; i <= high; i++) {
p = x * V[i][k] + y * V[i][k+1];
if (notlast) {
p = p + z * V[i][k+2];
V[i][k+2] = V[i][k+2] - p * r;
}
V[i][k] = V[i][k] - p;
V[i][k+1] = V[i][k+1] - p * q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0) {
return;
}
for (n = nn-1; n >= 0; n--) {
p = d[n];
q = e[n];
// Real vector
if (q == 0) {
int l = n;
H[n][n] = 1.0;
for (int i = n-1; i >= 0; i--) {
w = H[i][i] - p;
r = 0.0;
for (int j = l; j <= n; j++) {
r = r + H[i][j] * H[j][n];
}
if (e[i] < 0.0) {
z = w;
s = r;
} else {
l = i;
if (e[i] == 0.0) {
if (w != 0.0) {
H[i][n] = -r / w;
} else {
H[i][n] = -r / (eps * norm);
}
// Solve real equations
} else {
x = H[i][i+1];
y = H[i+1][i];
q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
t = (x * s - z * r) / q;
H[i][n] = t;
if (Math.abs(x) > Math.abs(z)) {
H[i+1][n] = (-r - w * t) / x;
} else {
H[i+1][n] = (-s - y * t) / z;
}
}
// Overflow control
t = Math.abs(H[i][n]);
if ((eps * t) * t > 1) {
for (int j = i; j <= n; j++) {
H[j][n] = H[j][n] / t;
}
}
}
}
// Complex vector
} else if (q < 0) {
int l = n-1;
// Last vector component imaginary so matrix is triangular
if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
H[n-1][n-1] = q / H[n][n-1];
H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
} else {
cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
H[n-1][n-1] = cdivr;
H[n-1][n] = cdivi;
}
H[n][n-1] = 0.0;
H[n][n] = 1.0;
for (int i = n-2; i >= 0; i--) {
double ra,sa,vr,vi;
ra = 0.0;
sa = 0.0;
for (int j = l; j <= n; j++) {
ra = ra + H[i][j] * H[j][n-1];
sa = sa + H[i][j] * H[j][n];
}
w = H[i][i] - p;
if (e[i] < 0.0) {
z = w;
r = ra;
s = sa;
} else {
l = i;
if (e[i] == 0) {
cdiv(-ra,-sa,w,q);
H[i][n-1] = cdivr;
H[i][n] = cdivi;
} else {
// Solve complex equations
x = H[i][i+1];
y = H[i+1][i];
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
vi = (d[i] - p) * 2.0 * q;
if (vr == 0.0 & vi == 0.0) {
vr = eps * norm * (Math.abs(w) + Math.abs(q) +
Math.abs(x) + Math.abs(y) + Math.abs(z));
}
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
H[i][n-1] = cdivr;
H[i][n] = cdivi;
if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
} else {
cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
H[i+1][n-1] = cdivr;
H[i+1][n] = cdivi;
}
}
// Overflow control
t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
if ((eps * t) * t > 1) {
for (int j = i; j <= n; j++) {
H[j][n-1] = H[j][n-1] / t;
H[j][n] = H[j][n] / t;
}
}
}
}
}
}
// Vectors of isolated roots
for (int i = 0; i < nn; i++) {
if (i < low | i > high) {
for (int j = i; j < nn; j++) {
V[i][j] = H[i][j];
}
}
}
// Back transformation to get eigenvectors of original matrix
for (int j = nn-1; j >= low; j--) {
for (int i = low; i <= high; i++) {
z = 0.0;
for (int k = low; k <= Math.min(j,high); k++) {
z = z + V[i][k] * H[k][j];
}
V[i][j] = z;
}
}
}
/* ------------------------
Constructor
* ------------------------ */
/** Check for symmetry, then construct the eigenvalue decomposition
Structure to access D and V.
@param Arg Square matrix
*/
public EigenvalueDecomposition (Matrix Arg) {
double[][] A = Arg.getD();
n = Arg.getN();
V = new double[n][n];
d = new double[n];
e = new double[n];
issymmetric = true;
for (int j = 0; (j < n) & issymmetric; j++) {
for (int i = 0; (i < n) & issymmetric; i++) {
issymmetric = (A[i][j] == A[j][i]);
}
}
if (issymmetric) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
V[i][j] = A[i][j];
}
}
// Tridiagonalize.
tred2();
// Diagonalize.
tql2();
} else {
H = new double[n][n];
ort = new double[n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
H[i][j] = A[i][j];
}
}
// Reduce to Hessenberg form.
orthes();
// Reduce Hessenberg to real Schur form.
hqr2();
}
}
/* ------------------------
Public Methods
* ------------------------ */
/**
* Return the eigenvector matrix
* @return V
*/
public Matrix getV () {
return new Matrix(V);
}
/**
* Return the real parts of the eigenvalues
* @return real(diag(D))
*/
public double[] getRealEigenvalues(){
return d;
}
/**
* Return the imaginary parts of the eigenvalues
* @return imag(diag(D))
*/
public double[] getImagEigenvalues(){
return e;
}
/**
* Return the block diagonal eigenvalue matrix
* @return D
*/
public Matrix getD(){
int i, j;
Matrix D = new Matrix(n,n);
for(i=0; i<n; i++) {
for(j=0; j<n; j++)
D.set(i, j, 0.0);
D.set(i, i, d[i]);
if(e[i] > 0)
D.set(i, i+1, e[i]);
else if (e[i] < 0)
D.set(i, i-1, e[i]);
}
return D;
}
}

View File

@@ -0,0 +1,282 @@
package math.matrix;
import java.io.Serializable;
/**
* LU Decomposition.
* <P>
* For an m-by-n matrix A with m &ge; n, the LU decomposition is an m-by-n
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
* and a permutation vector piv of length m so that A(piv,:) = L*U.
* If m < n, then L is m-by-m and U is m-by-n.
* <P>
* The LU decompostion with pivoting always exists, even if the matrix is
* singular, so the constructor will never fail. The primary use of the
* LU decomposition is in the solution of square systems of simultaneous
* linear equations. This will fail if isNonsingular() returns false.
*/
public class LUDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = -3852210156107961377L;
/**
* Array for internal storage of decomposition.
* @serial internal array storage
*/
private double[][] LU;
/**
* @serial row dimension
*/
private int m;
/**
* @serial column dimension
*/
private int n;
/**
* @serial pivot sign
*/
private int pivsign;
/**
* Internal storage of pivot vector.
* @serial pivot vector.
*/
private int[] piv;
/**
* LU Decomposition
* Structure to access L, U and piv.
* @param A Rectangular matrix
*/
public LUDecomposition(Matrix A){
int i, j, k;
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
LU = A.getCopy();
m = A.getM();
n = A.getN();
piv = new int[m];
for(i=0; i<m; i++)
piv[i] = i;
pivsign = 1;
double[] LUrowi;
double[] LUcolj = new double[m];
// Outer loop.
for(j=0; j<n; j++){
// Make a copy of the j-th column to localize references.
for(i=0; i<m; i++)
LUcolj[i] = LU[i][j];
// Apply previous transformations.
for(i=0; i<m; i++){
LUrowi = LU[i];
// Most of the time is spent in the following dot product.
int kmax = Math.min(i,j);
double s = 0.0;
for(k=0; k<kmax; k++)
s += LUrowi[k]*LUcolj[k];
LUrowi[j] = LUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
int p = j;
for(i=j+1; i<m; i++)
if(Math.abs(LUcolj[i]) > Math.abs(LUcolj[p]))
p = i;
if(p!=j){
for(k=0; k<n; k++) {
double t = LU[p][k];
LU[p][k] = LU[j][k];
LU[j][k] = t;
}
k = piv[p];
piv[p] = piv[j];
piv[j] = k;
pivsign = -pivsign;
}
// Compute multipliers.
if(j<m & LU[j][j] != 0.0)
for(i=j+1; i<m; i++)
LU[i][j] /= LU[j][j];
}
}
/* ------------------------
Temporary, experimental code.
------------------------ */
/** LU Decomposition, computed by Gaussian elimination.
<P>
This constructor computes L and U with the "daxpy"-based elimination
algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
Crout algorithm will be faster. We have temporarily included this
constructor until timing experiments confirm this suspicion.
<P>
Structure to access L, U and piv.
@param A Rectangular matrix
@param linpackflag Use Gaussian elimination. Actual value ignored.
*/
public LUDecomposition(Matrix A, int linpackflag){
int i, j, k;
// Initialize.
LU = A.getCopy();
m = A.getM();
n = A.getN();
piv = new int[m];
for(i=0; i<m; i++)
piv[i] = i;
pivsign = 1;
// Main loop.
for(k=0; k<n; k++){
// Find pivot.
int p = k;
for(i=k+1; i<m; i++)
if(Math.abs(LU[i][k]) > Math.abs(LU[p][k]))
p = i;
// Exchange if necessary.
if(p != k) {
for(j=0; j<n; j++){
double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
}
int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
pivsign = -pivsign;
}
// Compute multipliers and eliminate k-th column.
if(LU[k][k] != 0.0)
for(i=k+1; i<m; i++){
LU[i][k] /= LU[k][k];
for(j=k+1; j<n; j++)
LU[i][j] -= LU[i][k]*LU[k][j];
}
}
}
/* ------------------------
End of temporary code.
* ------------------------ */
/**
* Is the matrix nonsingular?
* @return true if U, and hence A, is nonsingular.
*/
public boolean isNonsingular (){
int j;
for(j=0; j<n; j++)
if(LU[j][j] == 0)
return false;
return true;
}
/**
* Return lower triangular factor
* @return L
*/
public Matrix getL(){
int i, j;
Matrix X = new Matrix(m,n);
double[][] L = X.getD();
for(i=0; i<m; i++){
for(j=0; j<n; j++){
if(i>j)
L[i][j] = LU[i][j];
else if(i==j)
L[i][j] = 1.0;
else
L[i][j] = 0.0;
}
}
return X;
}
/**
* Return upper triangular factor
* @return U
*/
public Matrix getU(){
int i, j;
Matrix X = new Matrix(n,n);
double[][] U = X.getD();
for(i=0; i<n; i++){
for(j=0; j<n; j++){
if(i<=j)
U[i][j] = LU[i][j];
else
U[i][j] = 0.0;
}
}
return X;
}
/**
* Return pivot permutation vector
* @return piv
*/
public int[] getPivot(){
int i;
int[] p = new int[m];
for(i=0; i<m; i++)
p[i] = piv[i];
return p;
}
/**
* Return pivot permutation vector as a one-dimensional double array
* @return piv
*/
public double[] getDoublePivot(){
int i;
double[] vals = new double[m];
for(i=0; i<m; i++)
vals[i] = (double) piv[i];
return vals;
}
/**
* Determinant
* @return det(A)
* @exception IllegalArgumentException Matrix must be square
*/
public double det(){
int j;
if(m != n) throw new IllegalArgumentException("Matrix must be square.");
double d = (double) pivsign;
for(j=0; j<n; j++)
d *= LU[j][j];
return d;
}
/**
* Solve A*X = B
* @param B A Matrix with as many rows as A and any number of columns.
* @return X so that L*U*X = B(piv,:)
* @exception IllegalArgumentException Matrix row dimensions must agree.
* @exception RuntimeException Matrix is singular.
*/
public Matrix solve (Matrix B) {
if(B.getM() != m) throw new IllegalArgumentException("Matrix row dimensions must agree.");
if(!this.isNonsingular()) throw new RuntimeException("Matrix is singular.");
int i, j, k;
// Copy right hand side with pivoting
int nx = B.getN();
double[][] X = B.get(piv,0,nx-1).getD();
// Solve L*Y = B(piv,:)
for(k=0; k<n; k++)
for(i=k+1; i<n; i++)
for(j=0; j<nx; j++)
X[i][j] -= X[k][j]*LU[i][k];
// Solve U*X = Y;
for(k=n-1; k>=0; k--)
for(j=0; j<nx; j++)
X[k][j] /= LU[k][k];
for(i=0; i<k; i++)
for(j=0; j<nx; j++)
X[i][j] -= X[k][j]*LU[i][k];
return new Matrix(X);
}
}

View File

@@ -0,0 +1,334 @@
package math.matrix;
import math.Maths;
import math.equation.Polynomial;
import stdlib.StdDraw;
import exception.ComplexException;
import exception.IllegalDimensionException;
import exception.NoSquareException;
import exception.SingularException;
/**
* Matrix 2xn, m is always 2
* @author Daniel
*
*/
public class Matrix2D extends Matrix{
/**
* UID
*/
private static final long serialVersionUID = 2228035464656481002L;
/**
* Create an null matrix.
*/
public Matrix2D(){
super();
}
/**
* Create an 2-by-n matrix with zeros.
* @param n number of columns
*/
public Matrix2D(int n){
super(2,n);
}
/**
* Create an 2-by-n matrix based on a 2d array.
* @param a 2d double array
*/
public Matrix2D(double[][] a){
super(a);
}
/**
* Create an 2-by-2 matrix based on a 2d array.
* @param a11
* @param a12
* @param a21
* @param a22
*/
public Matrix2D(double a11, double a12, double a21, double a22){
super(2,2);
set(0,0,a11);
set(0,1,a12);
set(1,0,a21);
set(1,1,a22);
}
public Matrix2D(Matrix B){
super(B);
}
/**
* Set the matrix with given vector at given row
* @param i row
* @param x value
* @param y value
* @return filled matrix
*/
public Matrix set(int i, double x, double y){
set(0, i, x);
set(1, i, y);
return this;
}
/**
* Rotation by ϑ degrees counterclockwise or -ϑ degrees clockwise.
* @param ϑ in degrees
* @return 2d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix2D rotate(double ϑ) throws IllegalDimensionException{
if(!isM2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) TensorII2D.rotation(ϑ).times(this);
}
/**
* Rotation by 45 degrees counterclockwise
* @return 2d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix2D rotate45() throws IllegalDimensionException{
if(!isM2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{1,-1},{1,1}}).times(Math.sqrt(2)/2,this);
}
/**
* Rotation by 90 degrees counterclockwise
* @return 2d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix2D rotate90() throws IllegalDimensionException{
if(!isM2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{0,-1},{1,0}}).times(this);
}
/**
* Rotation by 180 degrees counterclockwise
* @return 2d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix2D rotate180() throws IllegalDimensionException{
if(!isM2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{-1,0},{0,-1}}).times(this);
}
/**
* Rotation by 270 degrees counterclockwise or 90 degrees clockwise.
* @return 2d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix2D rotate270() throws IllegalDimensionException{
if(!isM2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{-1,0},{0,-1}}).times(this);
}
/**
* Reflection against the x axis
* @return matrix reflected against the x axis
* @throws IllegalDimensionException
*/
public Matrix2D flipVertical() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{1,0},{0,-1}}).times(this);
}
/**
* Reflection against the y axis.
* @return matrix reflected against the y axis
* @throws IllegalDimensionException
*/
public Matrix2D flipHoriontal() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{-1,0},{0,1}}).times(this);
}
/**
* Reflection against the x and y axis.
* @return matrix reflected against the x and y axis
* @throws IllegalDimensionException
*/
public Matrix2D flipBoth() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return rotate180();
}
/**
* Horizontal shear.
* @param s shear factor
* @return horizontal sheared matrix
* @throws IllegalDimensionException
*/
public Matrix2D shearHorizontal(double s) throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{1,s},{0,1}}).times(this);
}
/**
* Vertical shear
* @param s shear factor
* @return vertical sheared matrix
* @throws IllegalDimensionException
*/
public Matrix2D shearVertical(double s) throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{1,0},{s,1}}).times(this);
}
/**
* @param s scalar
* @return squeezed matrix
* @throws IllegalDimensionException
*/
public Matrix2D squeezeMapping(double s) throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{s,0},{0,1/s}}).times(this);
}
/**
* Projection onto the x axis
* @return matrix projected onto the x axis
* @throws IllegalDimensionException
*/
public Matrix2D projectionToX() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{1,0},{0,0}}).times(this);
}
/**
* Projection onto the y axis
* @return matrix projected onto the y
* @throws IllegalDimensionException
*/
public Matrix2D projectionToY() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix2D) new Matrix2D(new double[][]{{0,0},{0,1}}).times(this);
}
/**
* @return Mirror matrix (orthogonal). Mirrored vector due to a plane defined through a vector v.
* @throws IllegalDimensionException
*/
public static Matrix2D mirror(Vector v) throws IllegalDimensionException{
// P = I - alpha v v'; alpha = 2 / (v'v)
return (Matrix2D) Diagonal2D.identity(v.n()).minus(v.tensorProduct(v).times(2/v.dot(v)));
}
/**
* Real eigenvalue calculated with the root formula of second and third degree.
* @return eigenvalues λ<sub>i</sub>
* @throws NoSquareException
* @throws IllegalDimensionException
* @throws ComplexException
*/
public Vector2D eigenvaluesRe(int analytic) throws NoSquareException, IllegalDimensionException, ComplexException{
// TODO: also Imaginary
if(m!=n && m!=2) throw new IllegalDimensionException("Illegal matrix dimensions.");
// A = [ a, b; c, d]
// det| a-l, b; c, d-l| = l^2 - tr(A)*l + det (A)
Polynomial p = new Polynomial(1,-trace(),det(analytic));
return new Vector2D(p.rootsRe());
}
/**
* @return eigenvectors x<sub>i</sub> in matrix Λ
* @throws IllegalDimensionException
* @throws NoSquareException
* @throws ComplexException
*/
public Matrix2D eigenvectors(int analytic) throws NoSquareException, IllegalDimensionException, ComplexException{
Vector lambda = eigenvaluesRe(analytic);
Matrix2D S = new Matrix2D();
if(isR2()){
Matrix2D Al;
Vector2D x = new Vector2D();
int i;
double a1, a2;
for(i=0;i<2;i++){
Al = (Matrix2D) this.minus(Matrix.identity(2).times(lambda.get(i)));
a2 = Al.get(1, 0);
a1 = -Al.get(1, 1); // to the other side: a1*x1 = -a2*x2
if(a1 == 0 && a2 == 0){
a2 = Al.get(0, 0);
a1 = -Al.get(0, 1); // to the other side: a1*x1 = -a2*x2
if(a2 > 0){
x.set(0, a1);
x.set(1, a2);
} else {
x.set(0, -a1);
x.set(1, -a2);
}
} else
if(a2 > 0){
x.set(0, a1);
x.set(1, a2);
} else {
x.set(0, -a1);
x.set(1, -a2);
}
S.setN(i, x.normalize());
}
}
return S;
}
public void plot() throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException();
StdDraw sd = new StdDraw();
double maxM0 = Maths.sumAbs(getM(0).getArray());
double maxM1 = Maths.sumAbs(getM(1).getArray());
double maxN0 = Maths.sumAbs(getN(0).getArray());
double maxN1 = Maths.sumAbs(getN(1).getArray());
double max = Maths.max(maxM0,maxM1,maxN0,maxN1);
sd.setScale(-max, max);
StdDraw.polygon(
new double[]{0,get(0,0),get(0,0)+get(0,1),get(0,1)},
new double[]{0,get(1,0),get(1,0)+get(1,1),get(1,1)});
StdDraw.filledPolygon(
new double[]{0,get(0,0),get(0,0)+get(0,1),get(0,1)},
new double[]{0,get(1,0),get(1,0)+get(1,1),get(1,1)});
}
public static void main(String[] args) {
Matrix2D a = new Matrix2D(0,1,1,0);
try {
Matrix b = new Matrix2D(new double[][]{{0,-1},{1,0}}).times(a);
System.out.println(b);
// System.out.println((Matrix2D) b);
Matrix2D P = new Matrix2D(new double[][]{ { 1 }, { 1 } });
System.out.println(P.setName("P"));
System.out.println("rot(P,45°) = \n" + P.rotate(45));
Vector2D v = new Vector2D(1,1);
Vector2D w = new Vector2D(0,1);
System.out.println(Diagonal2D.identity(v.n()));
P = (Matrix2D) Matrix2D.mirror(v);
System.out.println("Pw = ");
P.times(w).println();
Matrix A = new Matrix2D(new double[][]{ { 2, 1 }, { 0, 1 } });
System.out.println(A.setName("A"));
Matrix B = A.transpose().times(A);
System.out.println("A'A = \n" + B);
Matrix X = B.eigenvectors();
System.out.println("X = \n" + X);
System.out.println("X'A'A = \n" + X.transpose().times(B));
Matrix L2 = X.transpose().times(B).times(X);
System.out.println("L^2 = X'A'AX = \n" + L2);
Matrix L = L2.times(new Matrix(new double[][]{ { 1/Math.sqrt(L2.get(0, 0)), 0 }, { 0, 1/Math.sqrt(L2.get(1, 1)) } }));
System.out.println("L = \n" + L);
Matrix S = X.times(L).times(X);
System.out.println("S = XLX' = \n" + S);
Matrix2D Q = (Matrix2D) A.times(S.inverse());
System.out.println("Q = AS^-1 = \n" + Q);
Q.plot();
} catch (IllegalDimensionException | SingularException e) {
e.printStackTrace();
}
}
}

View File

@@ -0,0 +1,193 @@
package math.matrix;
import math.Maths;
import math.equation.Polynomial;
import exception.ComplexException;
import exception.IllegalDimensionException;
import exception.NoSquareException;
public class Matrix3D extends Matrix{
/**
* UID
*/
private static final long serialVersionUID = 2505785127150028971L;
/**
* Create an null matrix.
*/
public Matrix3D(){
super();
}
/**
* Create an 3-by-n matrix with zeros.
* @param n number of columns
*/
public Matrix3D(int n){
super(3,n);
}
/**
* Create an 3-by-3 matrix based on components.
* @param a11
* @param a12
* @param a13
* @param a21
* @param a22
* @param a23
* @param a31
* @param a32
* @param a33
*/
public Matrix3D(double a11, double a12, double a13,
double a21, double a22, double a23,
double a31, double a32, double a33){
super(3,3);
set(0,0,a11);
set(0,1,a12);
set(0,2,a13);
set(1,0,a21);
set(1,1,a22);
set(1,2,a23);
set(2,0,a31);
set(2,1,a32);
set(2,2,a33);
}
/**
* Create an 3-by-3 matrix based on a 2d array.
* @param a 3d double array
*/
public Matrix3D(double[][] a){
super(a);
}
public Matrix3D(Matrix B){
super(B);
}
/**
* 3d rotation around unit vector u by ϑ degrees counterclockwise or
* clockwise with negative degrees for a right-hand system.
* @param ϑ in degrees
* @param u unit vector
* @return 3d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix3D rotate(double ϑ, double[] u) throws IllegalDimensionException{
if(!isR3() && u.length == 3) throw new IllegalDimensionException("Illegal matrix dimensions.");
// TODO: verify
double u1 = u[0], u2 = u[1], u3 = u[2];
return (Matrix3D) new Matrix3D(new double[][]{
{u1*u1*(1-Maths.cosd(ϑ))+Maths.cosd(ϑ),
u1*u2*(1-Maths.cosd(ϑ))-u3*Maths.sind(ϑ),
u1*u3*(1-Maths.cosd(ϑ))+u2*Maths.sind(ϑ)},
{u2*u1*(1-Maths.cosd(ϑ))+u3*Maths.sind(ϑ),
u2*u2*(1-Maths.cosd(ϑ))+Maths.cosd(ϑ),
u2*u3*(1-Maths.cosd(ϑ))-u1*Maths.sind(ϑ)},
{u3*u1*(1-Maths.cosd(ϑ))-u2*Maths.sind(ϑ),
u3*u2*(1-Maths.cosd(ϑ))+u1*Maths.sind(ϑ),
u3*u3*(1-Maths.cosd(ϑ))+Maths.cosd(ϑ)}}).times(this);
}
/**
* Rotation about the x axis by φ degrees counterclockwise for a right-hand system.
* @param φ in degrees
* @return 3d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix3D rotateX(double φ) throws IllegalDimensionException{
if(!isR3()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix3D) new Matrix3D(new double[][]{
{1,0,0},
{0,Maths.cosd(φ),Maths.sind(φ)},
{0,-Maths.sind(φ),Maths.cosd(φ)}}).times(this);
}
/**
* Rotation about the y axis by ϑ degrees counterclockwise for a right-hand system.
* @param ϑ in degrees
* @return 3d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix3D rotateY(double ϑ) throws IllegalDimensionException{
if(!isR3()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix3D) new Matrix3D(new double[][]{
{Maths.cosd(ϑ),0,-Maths.sind(ϑ)},
{0,1,0},
{Maths.sind(ϑ),0,Maths.cosd(ϑ)}}).times(this);
}
/**
* Rotation about the z axis by ψ degrees counterclockwise for a right-hand system.
* @param ψ in degrees
* @return 3d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix3D rotateZ(double ψ) throws IllegalDimensionException{
if(!isR3()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix3D) new Matrix3D(new double[][]{
{Maths.cosd(ψ),Maths.sind(ψ),0},
{-Maths.sind(ψ),Maths.cosd(ψ),0},
{0,0,1}}).times(this);
}
/**
* 3d rotation by φ around x axis, ϑ around y axis and ψ degrees around z axis counterclockwise or
* clockwise with negative degrees for a right-hand system.
* @param φ in degrees
* @param ϑ in degrees
* @param ψ in degrees
* @return 3d rotated matrix
* @throws IllegalDimensionException
*/
public Matrix3D rotateXYZ(double φ, double ϑ, double ψ) throws IllegalDimensionException{
if(!isR3()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix3D) rotateX(φ).times(rotateY(ϑ)).times(rotateZ(ψ)).times(this);
}
/**
* Projection onto the x-y plane
* @return matrix projected onto the x-y plane
* @throws IllegalDimensionException
*/
public Matrix3D projectionToXY() throws IllegalDimensionException{
if(!isR3()) throw new IllegalDimensionException("Illegal matrix dimensions.");
return (Matrix3D) new Matrix(new double[][]{{1,0,0},{0,1,0},{0,0,0}}).times(this);
}
/**
* Real eigenvalue calculated with the root formula of second and third degree.
* @return eigenvalues λ<sub>i</sub>
* @throws NoSquareException
* @throws IllegalDimensionException
* @throws ComplexException
*/
public Vector3D eigenvaluesRe(int analytic) throws NoSquareException, IllegalDimensionException, ComplexException{
if(m!=n && m!=3) throw new IllegalDimensionException("Illegal matrix dimensions.");
Vector3D lambda = new Vector3D(m);
// matrix diagonal?
double a12 = get(0, 1);
double a13 = get(0, 2);
double a23 = get(1, 2);
double d = a12*a12 + a13*a13 + a23*a23;
if (d == 0){ // A is diagonal.
lambda = new Vector3D(get(0,0),get(1,1),get(2,2));
lambda.sort(); // don't have to but ...
} else {
Polynomial p = new Polynomial(1,
-trace(),
-((this.times(this)).trace()-trace()*trace())/2,
-det(analytic));
lambda = new Vector3D(p.rootsRe());
}
return lambda;
}
public static void main(String[] args) {
Matrix3D a = new Matrix3D(0,0,1,0,1,0,1,0,0);
System.out.println(a);
}
}

View File

@@ -0,0 +1,197 @@
package math.matrix;
import java.io.Serializable;
import math.Maths;
/** QR Decomposition.
* <p>
* For an m-by-n matrix A with m &ge; n, the QR decomposition is an m-by-n
* orthogonal matrix Q and an n-by-n upper triangular matrix R so that
* A = Q*R.
* <p>
* The QR decompostion always exists, even if the matrix does not have
* full rank, so the constructor will never fail. The primary use of the
* QR decomposition is in the least squares solution of nonsquare systems
* of simultaneous linear equations. This will fail if isFullRank()
* returns false.
*/
public class QRDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = 6913030878857169502L;
/**
* Array for internal storage of decomposition.
* @serial internal array storage.
*/
private double[][] QR;
/**
* Row dimensions.
* @serial row dimension.
*/
private int m;
/**
* Column dimensions.
* @serial column dimension.
*/
private int n;
/**
* Array for internal storage of diagonal of R.
* @serial diagonal of R.
*/
private double[] Rdiag;
/**
* QR Decomposition, computed by Householder reflections.
* Structure to access R and the Householder vectors and compute Q.
* @param A rectangular matrix
*/
public QRDecomposition(Matrix A){
int i, j, k;
// Initialize.
QR = A.getCopy();
m = A.getM();
n = A.getN();
Rdiag = new double[n];
// Main loop.
for(k=0; k<n; k++){
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for(i=k; i<m; i++)
nrm = Maths.hypot(nrm,QR[i][k]);
if(nrm != 0.0){
// Form k-th Householder vector.
if(QR[k][k] < 0)
nrm = -nrm;
for(i=k; i<m; i++)
QR[i][k] /= nrm;
QR[k][k] += 1.0;
// Apply transformation to remaining columns.
for(j=k+1; j<n; j++){
double s = 0.0;
for(i=k; i<m; i++)
s += QR[i][k]*QR[i][j];
s = -s/QR[k][k];
for(i=k; i<m; i++)
QR[i][j] += s*QR[i][k];
}
}
Rdiag[k] = -nrm;
}
}
/**
* Is the matrix full rank?
* @return true if R, and hence A, has full rank.
*/
public boolean isFullRank(){
int j;
for(j=0; j<n; j++)
if(Rdiag[j] == 0)
return false;
return true;
}
/**
* Return the Householder vectors
* @return lower trapezoidal matrix whose columns define the reflections
*/
public Matrix getH(){
int i, j;
Matrix H = new Matrix(m,n);
for(i=0; i<m; i++)
for(j=0; j<n; j++){
if(i >= j)
H.set(i,j, QR[i][j]);
else
H.set(i,j, 0.0);
}
return H;
}
/**
* Return the upper triangular factor
* @return R
*/
public Matrix getR(){
int i, j;
Matrix R = new Matrix(n,n);
for(i=0; i<n; i++)
for(j=0; j<n; j++){
if(i < j)
R.set(i,j, QR[i][j]);
else if(i == j)
R.set(i,j, Rdiag[i]);
else
R.set(i,j, 0.0);
}
return R;
}
/**
* Generate and return the (economy-sized) orthogonal factor
* @return Q
*/
public Matrix getQ(){
int i, j, k;
Matrix Q = new Matrix(m,n);
for(k=n-1; k>=0; k--) {
for(i=0; i<m; i++)
Q.set(i,k, 0.0);
Q.set(k,k, 1.0);
for(j=k; j<n; j++)
if(QR[k][k] != 0){
double s = 0.0;
for(i=k; i<m; i++)
s += QR[i][k]*Q.get(i, j);
s = -s/QR[k][k];
for(i=k; i<m; i++)
Q.plus(i,j, s*QR[i][k]);
}
}
return Q;
}
/**
* Least squares solution of A*X = B
* @param B a Matrix with as many rows as A and any number of columns.
* @return X that minimizes the two norm of Q*R*X-B.
* @exception IllegalArgumentException Matrix row dimensions must agree.
* @exception RuntimeException Matrix is rank deficient.
*/
public Matrix solve(Matrix B){
if(B.getM() != m)
throw new IllegalArgumentException("Matrix row dimensions must agree.");
if(!this.isFullRank())
throw new RuntimeException("Matrix is rank deficient.");
int i, j, k;
// Copy right hand side
int nx = B.getN();
double[][] X = B.getCopy();
// Compute Y = transpose(Q)*B
for(k=0; k<n; k++)
for(j=0; j<nx; j++){
double s = 0.0;
for(i=k; i<m; i++)
s += QR[i][k]*X[i][j];
s = -s/QR[k][k];
for(i=k; i<m; i++)
X[i][j] += s*QR[i][k];
}
// Solve R*X = Y;
for(k=n-1; k>=0; k--){
for(j=0; j<nx; j++)
X[k][j] /= Rdiag[k];
for(i=0; i<k; i++)
for(j=0; j<nx; j++)
X[i][j] -= X[k][j]*QR[i][k];
}
return (new Matrix(X).get(0,n-1,0,nx-1));
}
}

View File

@@ -0,0 +1,467 @@
package math.matrix;
import java.io.Serializable;
import math.Maths;
/** Singular Value Decomposition.
* <p>
* For an m-by-n matrix A with m &ge; n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <p>
* The singular values, &sigma;<sub>k</sub> = S<sub>kk</sub>, are ordered so that
* &sigma;<sub>1</sub> &ge; &sigma;<sub>2</sub> &ge; ... &ge; &sigma;<sub>n</sub>.
* <p>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
public class SingularValueDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = -4816488865370991490L;
/**
* Array for internal storage of U.
* @serial internal storage of U.
*/
private double[][] U;
/**
* Array for internal storage of V.
* @serial internal storage of V.
*/
private double[][] V;
/**
* Array for internal storage of singular values.
* @serial internal storage of singular values.
*/
private double[] s;
/**
* Row dimensions.
* @serial row dimension.
*/
private int m;
/**
* Column dimensions.
* @serial column dimension.
*/
private int n;
/* ------------------------
Constructor
* ------------------------ */
/**
* Construct the singular value decomposition Structure to access U, S and V.
* @param Arg rectangular matrix
*/
public SingularValueDecomposition(Matrix Arg){
int i, j, k;
// Derived from LINPACK code.
// Initialize.
double[][] A = Arg.getCopy();
m = Arg.getM();
n = Arg.getN();
/* TODO: Apparently the failing cases are only a proper subset of (m<n),
* so let's not throw error. Correct fix to come later?
* if (m<n) {
* throw new IllegalArgumentException("SVD only works for m >= n"); }
*/
int nu = Math.min(m,n);
s = new double [Math.min(m+1,n)];
U = new double [m][nu];
V = new double [n][n];
double[] e = new double [n];
double[] work = new double [m];
boolean wantu = true;
boolean wantv = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = Math.min(m-1,n);
int nrt = Math.max(0,Math.min(n-2,m));
for(k=0; k<Math.max(nct,nrt); k++){
if(k<nct){
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for(i=k; i<m; i++)
s[k] = Maths.hypot(s[k],A[i][k]);
if(s[k] != 0.0){
if(A[k][k] < 0.0)
s[k] = -s[k];
for(i=k; i<m; i++)
A[i][k] /= s[k];
A[k][k] += 1.0;
}
s[k] = -s[k];
}
for(j=k+1; j<n; j++){
if((k < nct) & (s[k] != 0.0)){
// Apply the transformation.
double t = 0;
for(i=k; i<m; i++)
t += A[i][k]*A[i][j];
t = -t/A[k][k];
for(i=k; i<m; i++)
A[i][j] += t*A[i][k];
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A[k][j];
}
if(wantu & (k < nct)){
// Place the transformation in U for subsequent back
// multiplication.
for(i=k; i<m; i++)
U[i][k] = A[i][k];
}
if(k < nrt){
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for(i=k+1; i<n; i++)
e[k] = Maths.hypot(e[k],e[i]);
if(e[k] != 0.0){
if(e[k+1] < 0.0)
e[k] = -e[k];
for(i=k+1; i<n; i++)
e[i] /= e[k];
e[k+1] += 1.0;
}
e[k] = -e[k];
if((k+1 < m) & (e[k] != 0.0)){
// Apply the transformation.
for(i=k+1; i<m; i++)
work[i] = 0.0;
for(j=k+1; j<n; j++)
for(i=k+1; i<m; i++)
work[i] += e[j]*A[i][j];
for(j=k+1; j<n; j++){
double t = -e[j]/e[k+1];
for(i=k+1; i<m; i++)
A[i][j] += t*work[i];
}
}
if(wantv){
// Place the transformation in V for subsequent
// back multiplication.
for(i=k+1; i<n; i++)
V[i][k] = e[i];
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = Math.min(n,m+1);
if(nct < n) s[nct] = A[nct][nct];
if(m < p) s[p-1] = 0.0;
if(nrt+1 < p) e[nrt] = A[nrt][p-1];
e[p-1] = 0.0;
// If required, generate U.
if(wantu){
for(j=nct; j<nu; j++){
for(i=0; i<m; i++)
U[i][j] = 0.0;
U[j][j] = 1.0;
}
for(k=nct-1; k>=0; k--){
if(s[k] != 0.0) {
for(j=k+1; j<nu; j++){
double t = 0;
for(i=k; i < m; i++)
t += U[i][k]*U[i][j];
t = -t/U[k][k];
for(i=k; i<m; i++)
U[i][j] += t*U[i][k];
}
for(i=k; i < m; i++)
U[i][k] = -U[i][k];
U[k][k] = 1.0 + U[k][k];
for(i=0; i<k-1; i++)
U[i][k] = 0.0;
} else {
for(i=0; i < m; i++)
U[i][k] = 0.0;
U[k][k] = 1.0;
}
}
}
// If required, generate V.
if(wantv)
for(k=n-1; k>=0; k--){
if((k < nrt) & (e[k] != 0.0))
for(j=k+1; j<nu; j++){
double t = 0;
for(i=k+1; i < n; i++)
t += V[i][k]*V[i][j];
t = -t/V[k+1][k];
for(i=k+1; i<n; i++)
V[i][j] += t*V[i][k];
}
for(i=0; i<n; i++)
V[i][k] = 0.0;
V[k][k] = 1.0;
}
// Main iteration loop for the singular values.
int pp = p-1;
int iter = 0;
double eps = Math.pow(2.0,-52.0);
double tiny = Math.pow(2.0,-966.0);
while(p > 0){
int kase;
// Here is where a test for too many iterations would go.
//
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for(k=p-2; k>=-1; k--){
if(k == -1) break;
if(Math.abs(e[k]) <=
tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))){
e[k] = 0.0;
break;
}
}
if(k == p-2)
kase = 4;
else {
int ks;
for(ks=p-1; ks>=k; ks--){
if (ks == k) break;
double t = (ks != p ? Math.abs(e[ks]) : 0.) +
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
if(Math.abs(s[ks]) <= tiny + eps*t){
s[ks] = 0.0;
break;
}
}
if(ks == k)
kase = 3;
else if(ks == p-1)
kase = 1;
else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for(j=p-2; j>=k; j--){
double t = Maths.hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if(j != k){
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if(wantv)
for(i=0; i<n; i++){
t = cs*V[i][j] + sn*V[i][p-1];
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
V[i][j] = t;
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for(j=k; j<p; j++){
double t = Maths.hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if(wantu)
for(i=0; i<m; i++){
t = cs*U[i][j] + sn*U[i][k-1];
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
U[i][j] = t;
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double scale = Math.max(Math.max(Math.max(Math.max(
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
Math.abs(s[k])),Math.abs(e[k]));
double sp = s[p-1]/scale;
double spm1 = s[p-2]/scale;
double epm1 = e[p-2]/scale;
double sk = s[k]/scale;
double ek = e[k]/scale;
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
double c = (sp*epm1)*(sp*epm1);
double shift = 0.0;
if((b != 0.0) | (c != 0.0)){
shift = Math.sqrt(b*b + c);
if(b < 0.0)
shift = -shift;
shift = c/(b + shift);
}
double f = (sk + sp)*(sk - sp) + shift;
double g = sk*ek;
// Chase zeros.
for(j=k; j<p-1; j++){
double t = Maths.hypot(f,g);
double cs = f/t;
double sn = g/t;
if(j != k)
e[j-1] = t;
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if(wantv)
for(i=0; i<n; i++){
t = cs*V[i][j] + sn*V[i][j+1];
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
V[i][j] = t;
}
t = Maths.hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if(wantu && (j < m-1))
for(i=0; i<m; i++){
t = cs*U[i][j] + sn*U[i][j+1];
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
U[i][j] = t;
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if(s[k] <= 0.0){
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if(wantv)
for(i=0; i<=pp; i++)
V[i][k] = -V[i][k];
}
// Order the singular values.
while(k < pp){
if (s[k] >= s[k+1])
break;
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if(wantv && (k < n-1)){
for(i=0; i<n; i++){
t = V[i][k+1];
V[i][k+1] = V[i][k];
V[i][k] = t;
}
}
if(wantu && (k < m-1)){
for(i=0; i<m; i++){
t = U[i][k+1];
U[i][k+1] = U[i][k];
U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
/**
* @return the left singular vectors U
*/
public Matrix getU(){
return new Matrix(U);
}
/**
* @return the right singular vectors V
*/
public Matrix getV(){
return new Matrix(V);
}
/**
* @return the one-dimensional array of singular values, diagonal of S.
*/
public double[] getSingularValues(){
return s;
}
/**
* @return the diagonal matrix of singular values S
*/
public Matrix getS(){
int i, j;
Matrix S = new Matrix(n,n);
for(i=0; i<n; i++){
for(j=0; j<n; j++)
S.set(i,j, 0.0);
S.set(i,i, this.s[i]);
}
return S;
}
/**
* Two norm
* @return max(S)
*/
public double norm2(){
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
public double cond(){
return s[0]/s[Math.min(m,n)-1];
}
/**
* Effective numerical matrix rank
* @return number of nonnegligible singular values.
*/
public int rank(){
double eps = Math.pow(2.0,-52.0);
double tol = Math.max(m,n)*s[0]*eps;
int i, r = 0;
for(i=0; i<s.length; i++)
if(s[i] > tol)
r++;
return r;
}
}

View File

@@ -0,0 +1,13 @@
package math.matrix;
public class TensorII extends Matrix3D {
/**
* UID
*/
private static final long serialVersionUID = -5664678448598889794L;
public static void main(String[] args) {
}
}

View File

@@ -0,0 +1,58 @@
package math.matrix;
import math.Maths;
import exception.IllegalDimensionException;
/**
* Tensor 2x2
* @author Daniel
*
*/
public class TensorII2D extends Matrix2D {
/**
* UID
*/
private static final long serialVersionUID = -3195354821730519791L;
public TensorII2D() {
super(2);
}
public TensorII2D(double a11, double a12, double a21, double a22) {
super(a11, a12, a21, a22);
}
public TensorII2D(double[][] a) {
super(a);
}
public TensorII2D(Matrix B) {
super(B);
}
/**
* @param ϑ in degrees
* @return 2d rotation matrix
*/
public static TensorII2D rotation(double ϑ){
return new TensorII2D(new double[][]{
{Maths.cosd(ϑ),-Maths.sind(ϑ)},
{Maths.sind(ϑ), Maths.cosd(ϑ)}});
}
public TensorII2D rotate(double ϑ){
try {
return (TensorII2D) rotation(ϑ).times(this).times(rotation(ϑ).transpose());
} catch (IllegalDimensionException e) {
e.printStackTrace();
return null;
}
}
public static void main(String[] args) {
TensorII2D tau = new TensorII2D(1, -1, -1, 1);
double ϑ = 45;
tau.rotate(ϑ).println();
}
}

899
src/math/matrix/Vector.java Normal file
View File

@@ -0,0 +1,899 @@
package math.matrix;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import math.Maths;
import math.geometry.Point;
import thisandthat.WObject;
import exception.IllegalDimensionException;
/**
* Vector of real numbers, v&isin;&#x211D;.
* @author Daniel Weschke
*/
public class Vector extends WObject implements Cloneable, Serializable{
/**
* UID
*/
private static final long serialVersionUID = 7909642082289701909L;
protected List<Double> vector;
// protected double[] vector;
public Vector(){
}
/**
* Create zero vector
* @param n
*/
public Vector(int n){
int i;
// vector = new double[n];
vector = new ArrayList<Double>();
for(i=0; i<n; i++)
add(0);
}
/**
* Create vector with given x value
* @param x
*/
public Vector(double x){
// vector = new double[]{x};
this(1);
set(0, x);
}
/**
* Create vector with given x and y value
* @param x
* @param y
*/
public Vector(double x, double y){
// vector = new double[]{x, y};
this(2);
set(0, x);
set(1, y);
}
/**
* Create vector with given x, y and z value
* @param x
* @param y
* @param z
*/
public Vector(double x, double y, double z){
// vector = new double[]{x, y, z};
this(3);
set(0, x);
set(1, y);
set(2, z);
}
private void add(double s){
vector.add(s);
}
/**
* Create vector with given array
* @param data array
*/
public Vector(double... data){
this(data.length);
int i;
int n = data.length;
// vector = new double[n];
for(i=0; i<n; i++)
set(i, data[i]);
}
/**
* Create vector with given array (integers)
* @param v array
*/
public Vector(int[] v){
this(v.length);
int i;
int n = v.length;
// vector = new double[n];
for(i=0; i<n; i++)
set(i, (v[i]));
}
/**
* Create vector with given array
* @param data array
*/
public Vector(List<Double> data){
this(data.size());
int i;
int n = data.size();
for(i=0; i<n; i++)
set(i, data.get(i));
}
public Vector(Point p){
this(p.get());
}
/**
* Copy vector
* @param v vector
*/
public Vector(Vector v){
this(v.vector);
}
private Vector create(int n){
if(this instanceof Vector2D) return new Vector2D();
if(this instanceof Vector3D) return new Vector3D();
else return new Vector(n);
}
private Vector create(double[] v){
if(this instanceof Vector2D) return new Vector2D(v);
if(this instanceof Vector3D) return new Vector3D(v);
else return new Vector(v);
}
private Matrix create(int m, int n){
if(this instanceof Vector2D) return new Matrix2D(n);
if(this instanceof Vector3D) return new Matrix3D(n);
else return new Matrix(m,n);
}
/**
* @return vector array
*/
public double[] getArray(){
int i, n = n();
double[] v = new double[n];
for(i=0; i<n; i++)
v[i] = get(i);
return v;
}
/**
* @return vector array
*/
public List<Double> get(){
return vector;
}
/**
* @param i index
* @return corresponding coordinate
*/
public double get(int i){
return vector.get(i);
}
/**
* @return vector array (integers)
*/
public int[] getInts(){
int i;
int[] result = new int[n()];
for(i=0; i<n(); i++)
result[i] = (int) get(i);
return result;
}
/**
* set value at index
* @param i index
* @param a value
*/
public Vector set(int i, double a){
vector.set(i, a);
return this;
}
/**
* get x (first element)
* @return x value
*/
public double x(){
return n()>0?get(0):Double.NaN;
}
/**
* get y (second element)
* @return y value
*/
public double y(){
return n()>1?get(1):Double.NaN;
}
/**
* get z (third element)
* @return z value
*/
public double z(){
return n()>2?get(2):Double.NaN;
}
/**
* length of vector
* @return dimension
*/
public int n(){
return length();
}
/**
* length of vector
* @return dimension
*/
public int length(){
// return vector.length;
return vector.size();
}
/**
* Create vector with zeros
* @param n size
* @return zero vector
*/
public static Vector zeros(int n){
return new Vector(n);
}
/**
* Create vector with ones
* @param n size
* @return one vector
*/
public static Vector ones(int n){
return fill(n, 1);
}
/**
* Create vector with given scalar
* @param n size
* @param s scalar
* @return filled vector
*/
public static Vector fill(int n, double s){
Vector a = new Vector(n);
int i;
for(i=0; i<n; i++)
a.set(i, s);
return a;
}
/**
* Create vector and fill it from a start value to an end value
* @param start
* @param end
* @return filled vector [start,start+1,...,end]
*/
public static Vector fill(double start, double end){
double delta = end-start;
int increment = delta>0 ? 1 : -1;
return fill(start, increment, end);
}
/**
* Create vector and fill it from a start value to an end value with n equidistant steps
* @param start
* @param end
* @param n steps
* @return filled vector [start,(end-start)*1/n,(end-start)*2/n,...,end]
*/
public static Vector fillN(double start, double end, int n){
double increment = (end-start)/n;
return fill(start, increment, end);
}
/**
* Create vector and fill it from a start value and increments it to an end value
* @param start
* @param increment
* @param end
* @return filled vector [start,start+increment,start+2*increment,...,end]
*/
public static Vector fill(double start, double increment, double end){
double delta = end-start;
int n = (int)(delta/increment)+1;
if((delta>=0&&increment<0)||(delta<0&&increment>=0)||increment==0) return new Vector();
Vector a = new Vector(n);
int i;
for(i=0; i<n; i++)
a.set(i, start + i*increment);
return a;
}
/**
* Create zero vector and fill it with given values at given positions (first position is 1)
* @param n
* @param position
* @param a value array
* @return filled vector
*/
public static Vector fill(int n, int[] position, double[] a){
Vector c = new Vector(n);
for(int i=0; i<position.length; i++)
c.set(position[i]-1, a[i]);
return c;
}
/**
* Create zero vector and fill it with given values at given positions (first position is 1)
* @param n
* @param position
* @param a value vector
* @return filled vector
*/
public static Vector fill(int n, int[] position, Vector a){
Vector c = new Vector(n);
for(int i=0; i<position.length; i++)
c.set(position[i]-1, a.get(i));
return c;
}
/**
* Create zero vector and fill it with given values at given positions (first position is 1)
* @param n
* @param position
* @param a value vector
* @return filled vector
*/
public static Vector fill(int n, Vector position, Vector a){
Vector c = new Vector(n);
for(int i=0; i<position.n(); i++)
c.set((int) position.get(i)-1, a.get(i));
return c;
}
/**
* Fill vector with given values at given indices (first index is 0)
* @param indices
* @param a value vector
*/
public void fill(int[] indices, Vector a){
for(int i=0; i<indices.length; i++)
set(indices[i], a.get(i));
}
/**
* Fill vector with given values at given positions (indices +1)
* @param positions
* @param a vector
*/
public void fillPos(int[] positions, Vector a){
fill(new Vector(positions).minus(1).getInts(),a);
}
/**
* Create vector and fill it with random values [0,1)
* @param n rows
* @return random number filled vector
*/
public static Vector rand(int n){
Vector a = new Vector(n);
int i;
for(i=0; i<n; i++)
a.set(i, Math.random());
return a;
}
/**
* Create vector and fill it with random values [0,s]
* @param n rows
* @param s scalar
* @return random number filled vector
*/
public static Vector rand(int n, double s){
Vector a = new Vector(n);
int i;
for(i=0; i<n; i++)
a.set(i, Math.random()*s);
return a;
}
/**
* add a Vector.
* @param a vector to add
* @return added Vector
*/
public Vector plus(Vector a){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i) + a.get(i));
return c;
}
/**
* add a Vector.
* @param s as vector to add
* @return added Vector
*/
public Vector plus(double s){
return plus(Vector.fill(n(), s));
}
public void plus(int i, double s){
set(i, get(i)+s);
}
/**
* subtract a Vector.
* @param a vector to subtract
* @return subtracted Vector
*/
public Vector minus(Vector a){
return plus(a.times(-1));
}
/**
* subtract a Vector.
* @param s as vector to subtract
* @return subtracted Vector
*/
public Vector minus(double s){
return plus(Vector.fill(n(), -s));
}
/**
* lengthen the vector due scalar multiplication
* @param s scalar
* @return C = s A
*/
public Vector times(double s){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i) * s);
return c;
}
/**
* Multiply a matrix right. Linear algebraic matrix multiplication.
* @param B matrix
* @return <b>C</b> = <b>A</b> • <b>B</b> = <b>A</b><sup>T</sup><b>B</b>
* @throws IllegalDimensionException Inner matrix dimensions must agree.
*/
public Vector times(Matrix B) throws IllegalDimensionException{
int i,j;
if(n() != B.getM()) throw new IllegalDimensionException("Inner matrix dimensions must agree.");
double[] c = new double[n()];
for(i=0; i<n(); i++)
for(j=0; j<B.getM(); j++)
c[i] += (get(j) * B.get(j,i));
return create(c);
}
/**
* Dot / inner / scalar product x<sup>T</sup>x.
* A • B = a<sub>1</sub>b<sub>1</sub> + a<sub>2</sub>b<sub>2</sub> +
* &hellip; + a<sub>n</sub>b<sub>n</sub>;
* a scalar quantity
* @return scalar
* @throws IllegalDimensionException
*/
public double dot() throws IllegalDimensionException{
return dot(this);
}
/**
* Dot / inner / scalar product x<sup>T</sup>y.
* A • B = a<sub>1</sub>b<sub>1</sub> + a<sub>2</sub>b<sub>2</sub> +
* &hellip; + a<sub>n</sub>b<sub>n</sub>;
* a scalar quantity
* @param a vector
* @return scalar
* @throws IllegalDimensionException
*/
public double dot(Vector a) throws IllegalDimensionException{
if(n() != a.n()) throw new IllegalDimensionException("Illegal vector dimension.");
int i;
double c = 0;
for(i=0; i<n(); i++)
c += get(i) * a.get(i);
return c;
}
/**
* Outer / tensor product vv'
* @param b vector
* @return matrix
*/
public Matrix tensorProduct(Vector b){
int i, j;
Matrix c = create(n(),b.n());
for(i=0; i<n(); i++)
for(j=0; j<b.n(); j++)
c.set(i, j, get(i) * b.get(j));
return c;
}
/**
* Multiplicate the vector a element wise with vector b.
* c<sub>i</sub> = a<sub>i</sub>b<sub>i</sub>
* @param b vector
* @return vector
*/
public Vector timesE(Vector b){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i) * b.get(i));
return c;
}
/**
* shorten the vector due scalar division
* @param s scalar
* @return C = A/s
*/
public Vector over(double s){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i) / s);
return c;
}
/**
* Divide the vector a element wise with vector b.
* c<sub>i</sub> = a<sub>i</sub>/b<sub>i</sub>
* @param b vector
* @return vector
*/
public Vector overE(Vector b){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i) / b.get(i));
return c;
}
/**
* @return length or magnitude or Euclidean norm
*/
public double norm(){
try {
return Math.sqrt(dot(this));
} catch (IllegalDimensionException e) {
e.printStackTrace();
return Double.NaN;
}
}
/**
* @param b
* @return Euclidean distance between both vectors
* @throws IllegalDimensionException
*/
public double distanceTo(Vector b) throws IllegalDimensionException {
if(n() != b.n()) throw new IllegalDimensionException("Illegal vector dimension.");
return b.minus(this).norm();
}
/**
* normalizing a vector.
* A vector of arbitrary length divided by its length.
* <b>a</b>/||<b>a</b>||
* @return unit vector
*/
public Vector normalize(){
Vector c = times(1.0/norm());
this.vector = c.vector;
return this;
}
/**
* @return the corresponding unit vector
*/
public Vector direction() {
if(norm() == 0.0) throw new RuntimeException("Zero-vector has no direction");
return times(1.0 / norm());
}
/**
* Element-wise cosine of argument in radians.
* @return the cosine for each element of the matrix
*/
public Vector cos() {
int i;
int n = n();
Vector c = new Vector(n);
for(i=0; i<n; i++)
c.set(i, Math.cos(get(i)));
return c;
}
/**
* Element-wise cosine of argument in radians.
* @return the cosine for each element of the matrix
*/
public Vector sin() {
int i;
int n = n();
Vector c = new Vector(n);
for(i=0; i<n; i++)
c.set(i, Math.sin(get(i)));
return c;
}
/**
* cosine between this and given vector
* @param v vector
* @return cos&theta;
* @throws IllegalDimensionException
*/
public double cos(Vector v) throws IllegalDimensionException{
return dot(v)/(norm()*v.norm());
}
// sine see in Vector3D
public double angleD(Vector v) throws IllegalDimensionException{
return Maths.acosd(cos(v));
}
/**
* swap index i and j
* @param i index
* @param j index
*/
public Vector swap(int i, int j) {
double temp = get(i);
set(i, get(j));
set(j, temp);
return this;
}
/**
* swap min value and max value
*/
public Vector swapMinMax() {
int imin = indexOfMin();
int imax = indexOfMax();
double temp = get(imin);
set(imin, get(imax));
set(imax, temp);
return this;
}
/**
* Creates a sub vector only with chosen rows
* @param indices rows
* @return the sub vector
*/
public Vector sub(int[] indices){
return sub(indices,false);
}
/**
* Creates a sub vector only with chosen rows
* @param indices rows
* @return the sub vector
*/
public Vector sub(int[] indices, boolean positions){
int n = indices.length;
int d = positions?1:0;
double[] red = new double[n];
for(int i=0; i<n; i++)
red[i] = get(indices[i]-d);
return new Vector(red);
}
/**
* element wise absolute value.
* v = { |v<sub>1</sub>|, |v<sub>2</sub>|, &hellip;, |v<sub>n</sub>| }
* @return vector with absolute values
*/
public Vector abs(){
int i;
Vector c = create(n());
for(i=0; i<n(); i++)
c.set(i, get(i)>=0 ? get(i) : -get(i));
return c;
}
/**
* Reflection against a plane due to a vector
* @return reflected vector
* @throws IllegalDimensionException
*/
public Vector flip(Vector v) throws IllegalDimensionException{
// P = I - alpha v v'; alpha = 2 / (v'v)
return Matrix.mirror(v).times(this);
}
/**
* Maximum value of the vector
* @return maximum value in vector, -∞ if no such value.
*/
public double max(){
return Maths.max(getArray());
}
/**
* Minimum value of the vector
* @return minimum value in vector, +∞ if no such value.
*/
public double min(){
return Maths.min(getArray());
}
/**
* Find value in vector.
* @param a value
* @return index
*/
public int indexOf(double a){
int i;
for(i=0; i<n(); i++)
if(a == get(i)) return i;
return -1;
}
/**
* Find max value in vector.
* @return index
*/
public int indexOfMax(){
return indexOf(max());
}
/**
* Find min value in vector.
* @return index
*/
public int indexOfMin(){
return indexOf(min());
}
/**
* Sort vector in ascending order.
* @return sorted vector
*/
public Vector sort(){
// Arrays.sort(vector);
Collections.sort(vector);
return this;
}
/**
* Sort vector in descending order.
* @return sorted vector
*/
public Vector sortR(){
sort();
int i,j;
Vector tmp = create(n());
for(i = length()-1, j=0; i >= 0; i--, j++)
tmp.set(j, get(i));
vector = tmp.vector;
return this;
}
/**
* Zero vector?
* @return boolean
*/
public boolean isZero(){
int i;
boolean result = true;
for(i=0; i<n(); i++){
if(get(i) > 0){
result = false;
break;
}
}
return result;
}
public boolean isNormalized(){
return Math.abs(norm()-1)<Maths.ε;
}
/**
* Vector in euclidean plane &#x211D;<sup>2</sup>.
* n=2
* @return true or false
*/
public boolean isR2(){
return (n()==2);
}
/**
* Vector in euclidean plane &#x211D;<sup>3</sup>.
* n=3
* @return true or false
*/
public boolean isR3(){
return (n()==3);
}
/**
*
* @param a int array
* @param b int array
* @return true if two integer arrays have same length and
* all corresponding pairs of integers are equal
*/
public static boolean equals(int[] a, int[] b){
if(a.length != b.length) return false; // same length?
int i;
for(i=0; i<a.length; i++) // check each corresponding pair
if(a[i] != b[i]) return false;
return true; // all elements must be equal
}
/**
* A string representation of the vector.
*/
@Override
public String toString(){
return new Matrix(this).setName(getName()).toString();
}
/**
* Transpose (horizontal)
* @return string of vector in transposed form
*/
public String toStringT(){
return new Matrix(this).transpose().toString();
}
public void println(){
System.out.println(toString());
}
/**
* Transpose (horizontal)
*/
public void toConsoleT(){
System.out.println(toStringT());
}
/**
* test client
* @param args
*/
public static void main(String[] args) {
Vector a = new Vector(5, 1, 1);
a.println();
Vector b = a.normalize();
a.println();
b.println();
Vector.fill(2., 2.5).println();
Vector.fill(2., 8).println();
Vector.fill(8., 2).toConsoleT();
Vector.fill(2., 2, 8).println();
Vector.fill(8., -2, 2).toConsoleT();
System.out.println("a isNull? : " + a.isZero());
System.out.println("a-a isNull? : " + a.minus(a).isZero());
a = new Vector(1, 1);
a.println();
try {
System.out.println(a.dot(a));
} catch (IllegalDimensionException e1) {
e1.printStackTrace();
}
a.tensorProduct(a).println();
b = new Vector(1, 2, 3);
a.tensorProduct(b).println();
Vector v = new Vector(1, 1);
Vector w = new Vector(0, 1);
try {
w.flip(v).println();
} catch (IllegalDimensionException e) {
e.printStackTrace();
}
Vector c = new Vector(4, -21.0, 3);
c.setName("c").println();
c.sort().println();
c.sortR().println();
}
}

View File

@@ -0,0 +1,80 @@
package math.matrix;
import exception.IllegalDimensionException;
public class Vector2D extends Vector{
/**
* UID
*/
private static final long serialVersionUID = -4752129361019389194L;
public Vector2D(){
super(2);
}
/**
* Create vector with given x and y value
* @param x
* @param y
*/
public Vector2D(double x, double y){
super(x,y);
}
/**
* Create vector with given array
* @param data array
*/
public Vector2D(double... data){
super(data);
}
/**
* Copy vector
* @param v vector
*/
public Vector2D(Vector v){
super(v);
}
/**
* revolve vector 90°. max 2 dimension vector.
* @return 90° revolved vector
*/
public Vector2D orthogonal(){
return new Vector2D(get(1),get(0));
}
/**
* revolve normalized vector 90°.
* @return 90° revolved normalized vector
*/
public Vector2D orthonormalized(){
return (Vector2D) orthogonal().normalize();
}
/**
* lengthen the vector and revolve 90°.
* @param a lengthen factor
* @return 90° revolved lengthened vector
*/
public Vector2D orthogonalScalarMultiplication(Double a){
return (Vector2D) orthonormalized().times(a);
}
/**
* Rotation by ϑ degrees counterclockwise or -ϑ degrees clockwise.
* @param ϑ in degrees
* @return rotated vector
* @throws IllegalDimensionException
*/
public Vector2D rotate(double ϑ) throws IllegalDimensionException{
if(!isR2()) throw new IllegalDimensionException("Illegal vector dimensions.");
return (Vector2D) TensorII2D.rotation(ϑ).times(this);
}
public static void main(String[] args) {
}
}

View File

@@ -0,0 +1,120 @@
package math.matrix;
import exception.IllegalDimensionException;
public class Vector3D extends Vector{
/**
* UID
*/
private static final long serialVersionUID = 1904780583446397290L;
public Vector3D(){
super(3);
}
/**
* Create vector with given x, y and z value
* @param x
* @param y
* @param z
*/
public Vector3D(double x, double y, double z){
super(x, y, z);
}
/**
* Create vector with given array
* @param data array
*/
public Vector3D(double... data){
super(data);
}
/**
* Copy vector
* @param v vector
*/
public Vector3D(Vector v){
super(v);
}
/**
* Cross product v x v.
* A x B = (a<sub>2</sub>b<sub>3</sub> - a<sub>3</sub>b<sub>2</sub>,
* a<sub>3</sub>b<sub>1</sub> - a<sub>1</sub>b<sub>3</sub>,
* a<sub>1</sub>b<sub>2</sub> - a<sub>2</sub>b<sub>1</sub>)<sup>T</sup>;
* a vector quantity
* @param a vector
* @return vector
* @throws IllegalDimensionException
*/
public Vector3D cross(Vector3D a){
Vector3D c = new Vector3D();
c.set(0, get(1)*a.get(2) - get(2)*a.get(1));
c.set(1, get(2)*a.get(0) - get(0)*a.get(2));
c.set(2, get(0)*a.get(1) - get(1)*a.get(0));
return c;
}
/**
* Scalar triple product.
* A • (B x C); a scalar quantity
* @param b vector
* @param c vector
* @return scalar
* @throws IllegalDimensionException
*/
public double scalTrip(Vector3D b, Vector3D c){
try {
return dot(b.cross(c));
} catch (IllegalDimensionException e) {
e.printStackTrace();
return Double.NaN;
}
}
/**
* Vector triple product.
* A x (B x C); a vector quantity
* @param b vector
* @param c vector
* @return vector
* @throws IllegalDimensionException
*/
public Vector3D vecTrip(Vector3D b, Vector3D c) {
return this.cross(b.cross(c));
}
/**
* cosine between this and given vector
* @param a vector
* @return cos&theta;
*/
public double cos(Vector3D a){
try {
return dot(a)/(norm()*a.norm());
} catch (IllegalDimensionException e) {
e.printStackTrace();
return Double.NaN;
}
}
/**
* sine between this and given vector
* @param a vector
* @return sin&theta;
*/
public double sin(Vector3D a){
return cross(a).norm()/(norm()*a.norm());
}
public static void main(String[] args) {
Vector3D u = new Vector3D(3,3,0);
Vector3D v = new Vector3D(0,2,2);
System.out.println("cos = " + u.cos(v) + " : " + (u.cos(v)==0.5));
System.out.println("|w| = " + u.cross(v).norm() + " : " +
((u.cross(v).norm())==(6*Math.sqrt(3))));
}
}

256
src/stdlib/StdArrayIO.java Normal file
View File

@@ -0,0 +1,256 @@
package stdlib;
/*************************************************************************
* Compilation: javac StdArrayIO.java
* Execution: java StdArrayIO < input.txt
*
* A library for reading in 1D and 2D arrays of integers, doubles,
* and booleans from standard input and printing them out to
* standard output.
*
* % more tinyDouble1D.txt
* 4
* .000 .246 .222 -.032
*
* % more tinyDouble2D.txt
* 4 3
* .000 .270 .000
* .246 .224 -.036
* .222 .176 .0893
* -.032 .739 .270
*
* % more tinyBoolean2D.txt
* 4 3
* 1 1 0
* 0 0 0
* 0 1 1
* 1 1 1
*
* % cat tinyDouble1D.txt tinyDouble2D.txt tinyBoolean2D.txt | java StdArrayIO
* 4
* 0.00000 0.24600 0.22200 -0.03200
*
* 4 3
* 0.00000 0.27000 0.00000
* 0.24600 0.22400 -0.03600
* 0.22200 0.17600 0.08930
* 0.03200 0.73900 0.27000
*
* 4 3
* 1 1 0
* 0 0 0
* 0 1 1
* 1 1 1
*
*************************************************************************/
/**
* <i>Standard array IO</i>. This class provides methods for reading
* in 1D and 2D arrays from standard input and printing out to
* standard output.
* <p>
* For additional documentation, see
* <a href="http://introcs.cs.princeton.edu/22libary">Section 2.2</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i>
* by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class StdArrayIO {
// it doesn't make sense to instantiate this class
private StdArrayIO() { }
/**
* Read in and return an array of doubles from standard input.
*/
public static double[] readDouble1D() {
int N = StdIn.readInt();
double[] a = new double[N];
for (int i = 0; i < N; i++) {
a[i] = StdIn.readDouble();
}
return a;
}
/**
* Print an array of doubles to standard output.
*/
public static void print(double[] a) {
int N = a.length;
StdOut.println(N);
for (int i = 0; i < N; i++) {
StdOut.printf("%9.5f ", a[i]);
}
StdOut.println();
}
/**
* Read in and return an M-by-N array of doubles from standard input.
*/
public static double[][] readDouble2D() {
int M = StdIn.readInt();
int N = StdIn.readInt();
double[][] a = new double[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a[i][j] = StdIn.readDouble();
}
}
return a;
}
/**
* Print the M-by-N array of doubles to standard output.
*/
public static void print(double[][] a) {
int M = a.length;
int N = a[0].length;
StdOut.println(M + " " + N);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
StdOut.printf("%9.5f ", a[i][j]);
}
StdOut.println();
}
}
/**
* Read in and return an array of ints from standard input.
*/
public static int[] readInt1D() {
int N = StdIn.readInt();
int[] a = new int[N];
for (int i = 0; i < N; i++) {
a[i] = StdIn.readInt();
}
return a;
}
/**
* Print an array of ints to standard output.
*/
public static void print(int[] a) {
int N = a.length;
StdOut.println(N);
for (int i = 0; i < N; i++) {
StdOut.printf("%9d ", a[i]);
}
StdOut.println();
}
/**
* Read in and return an M-by-N array of ints from standard input.
*/
public static int[][] readInt2D() {
int M = StdIn.readInt();
int N = StdIn.readInt();
int[][] a = new int[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a[i][j] = StdIn.readInt();
}
}
return a;
}
/**
* Print the M-by-N array of ints to standard output.
*/
public static void print(int[][] a) {
int M = a.length;
int N = a[0].length;
StdOut.println(M + " " + N);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
StdOut.printf("%9d ", a[i][j]);
}
StdOut.println();
}
}
/**
* Read in and return an array of booleans from standard input.
*/
public static boolean[] readBoolean1D() {
int N = StdIn.readInt();
boolean[] a = new boolean[N];
for (int i = 0; i < N; i++) {
a[i] = StdIn.readBoolean();
}
return a;
}
/**
* Print an array of booleans to standard output.
*/
public static void print(boolean[] a) {
int N = a.length;
StdOut.println(N);
for (int i = 0; i < N; i++) {
if (a[i]) StdOut.print("1 ");
else StdOut.print("0 ");
}
StdOut.println();
}
/**
* Read in and return an M-by-N array of booleans from standard input.
*/
public static boolean[][] readBoolean2D() {
int M = StdIn.readInt();
int N = StdIn.readInt();
boolean[][] a = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a[i][j] = StdIn.readBoolean();
}
}
return a;
}
/**
* Print the M-by-N array of booleans to standard output.
*/
public static void print(boolean[][] a) {
int M = a.length;
int N = a[0].length;
StdOut.println(M + " " + N);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
if (a[i][j]) StdOut.print("1 ");
else StdOut.print("0 ");
}
StdOut.println();
}
}
/**
* Test client.
*/
public static void main(String[] args) {
// read and print an array of doubles
double[] a = StdArrayIO.readDouble1D();
StdArrayIO.print(a);
StdOut.println();
// read and print a matrix of doubles
double[][] b = StdArrayIO.readDouble2D();
StdArrayIO.print(b);
StdOut.println();
// read and print a matrix of doubles
boolean[][] d = StdArrayIO.readBoolean2D();
StdArrayIO.print(d);
StdOut.println();
}
}

210
src/stdlib/StdIn.java Normal file
View File

@@ -0,0 +1,210 @@
package stdlib;
/*************************************************************************
* Compilation: javac StdIn.java
* Execution: java StdIn
*
* Reads in data of various types from standard input.
*
*************************************************************************/
import java.io.BufferedInputStream;
import java.util.Locale;
import java.util.Scanner;
/**
* <i>Standard input</i>. This class provides methods for reading strings
* and numbers from standard input.
* <p>
* The Locale used is: language = English, country = US. This is consistent
* with the formatting conventions with Java floating-point literals,
* command-line arguments (via <tt>Double.parseDouble()</tt>)
* and standard output (via <tt>System.out.print()</tt>). It ensures that
* standard input works with the input files used in the textbook.
* <p>
* For additional documentation, see <a href="http://introcs.cs.princeton.edu/15inout">Section 1.5</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert Sedgewick and Kevin Wayne.
*/
public final class StdIn {
// assume Unicode UTF-8 encoding
private static String charsetName = "UTF-8";
// assume language = English, country = US for consistency with System.out.
private static Locale usLocale = new Locale("en", "US");
// the scanner object
private static Scanner scanner = new Scanner(new BufferedInputStream(System.in), charsetName);
// static initializer
static { scanner.useLocale(usLocale); }
// singleton pattern - can't instantiate
private StdIn() { }
/**
* Is there only whitespace left on standard input?
*/
public static boolean isEmpty() {
return !scanner.hasNext();
}
/**
* Return next string from standard input
*/
public static String readString() {
return scanner.next();
}
/**
* Return next int from standard input
*/
public static int readInt() {
return scanner.nextInt();
}
/**
* Return next double from standard input
*/
public static double readDouble() {
return scanner.nextDouble();
}
/**
* Return next float from standard input
*/
public static float readFloat() {
return scanner.nextFloat();
}
/**
* Return next short from standard input
*/
public static short readShort() {
return scanner.nextShort();
}
/**
* Return next long from standard input
*/
public static long readLong() {
return scanner.nextLong();
}
/**
* Return next byte from standard input
*/
public static byte readByte() {
return scanner.nextByte();
}
/**
* Return next boolean from standard input, allowing "true" or "1" for true,
* and "false" or "0" for false
*/
public static boolean readBoolean() {
String s = readString();
if (s.equalsIgnoreCase("true")) return true;
if (s.equalsIgnoreCase("false")) return false;
if (s.equals("1")) return true;
if (s.equals("0")) return false;
throw new java.util.InputMismatchException();
}
/**
* Does standard input have a next line?
*/
public static boolean hasNextLine() {
return scanner.hasNextLine();
}
/**
* Return rest of line from standard input
*/
public static String readLine() {
return scanner.nextLine();
}
/**
* Return next char from standard input
*/
// a complete hack and inefficient - email me if you have a better
public static char readChar() {
// (?s) for DOTALL mode so . matches a line termination character
// 1 says look only one character ahead
// consider precompiling the pattern
String s = scanner.findWithinHorizon("(?s).", 1);
return s.charAt(0);
}
/**
* Return rest of input from standard input
*/
public static String readAll() {
if (!scanner.hasNextLine()) return null;
// reference: http://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner_1.html
return scanner.useDelimiter("\\A").next();
}
/**
* Read rest of input as array of ints
*/
public static int[] readInts() {
String[] fields = readAll().trim().split("\\s+");
int[] vals = new int[fields.length];
for (int i = 0; i < fields.length; i++)
vals[i] = Integer.parseInt(fields[i]);
return vals;
}
/**
* Read rest of input as array of doubles
*/
public static double[] readDoubles() {
String[] fields = readAll().trim().split("\\s+");
double[] vals = new double[fields.length];
for (int i = 0; i < fields.length; i++)
vals[i] = Double.parseDouble(fields[i]);
return vals;
}
/**
* Read rest of input as array of strings
*/
public static String[] readStrings() {
String[] fields = readAll().trim().split("\\s+");
return fields;
}
/**
* Unit test
*/
public static void main(String[] args) {
System.out.println("Type a string: ");
String s = StdIn.readString();
System.out.println("Your string was: " + s);
System.out.println();
System.out.println("Type an int: ");
int a = StdIn.readInt();
System.out.println("Your int was: " + a);
System.out.println();
System.out.println("Type a boolean: ");
boolean b = StdIn.readBoolean();
System.out.println("Your boolean was: " + b);
System.out.println();
System.out.println("Type a double: ");
double c = StdIn.readDouble();
System.out.println("Your double was: " + c);
System.out.println();
}
}

230
src/stdlib/StdOut.java Normal file
View File

@@ -0,0 +1,230 @@
package stdlib;
/*************************************************************************
* Compilation: javac StdOut.java
* Execution: java StdOut
*
* Writes data of various types to standard output.
*
*************************************************************************/
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.util.Locale;
/**
* <i>Standard output</i>. This class provides methods for writing strings
* and numbers to standard output.
* <p>
* For additional documentation, see <a href="http://introcs.cs.princeton.edu/15inout">Section 1.5</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert Sedgewick and Kevin Wayne.
*/
public final class StdOut {
// force Unicode UTF-8 encoding; otherwise it's system dependent
private static final String UTF8 = "UTF-8";
// assume language = English, country = US for consistency with StdIn
private static final Locale US_LOCALE = new Locale("en", "US");
// send output here
private static PrintWriter out;
// this is called before invoking any methods
static {
try {
out = new PrintWriter(new OutputStreamWriter(System.out, UTF8), true);
}
catch (UnsupportedEncodingException e) { System.out.println(e); }
}
// singleton pattern - can't instantiate
private StdOut() { }
// close the output stream (not required)
/**
* Close standard output.
*/
public static void close() {
out.close();
}
/**
* Terminate the current line by printing the line separator string.
*/
public static void println() {
out.println();
}
/**
* Print an object to standard output and then terminate the line.
*/
public static void println(Object x) {
out.println(x);
}
/**
* Print a boolean to standard output and then terminate the line.
*/
public static void println(boolean x) {
out.println(x);
}
/**
* Print a char to standard output and then terminate the line.
*/
public static void println(char x) {
out.println(x);
}
/**
* Print a double to standard output and then terminate the line.
*/
public static void println(double x) {
out.println(x);
}
/**
* Print a float to standard output and then terminate the line.
*/
public static void println(float x) {
out.println(x);
}
/**
* Print an int to standard output and then terminate the line.
*/
public static void println(int x) {
out.println(x);
}
/**
* Print a long to standard output and then terminate the line.
*/
public static void println(long x) {
out.println(x);
}
/**
* Print a short to standard output and then terminate the line.
*/
public static void println(short x) {
out.println(x);
}
/**
* Print a byte to standard output and then terminate the line.
*/
public static void println(byte x) {
out.println(x);
}
/**
* Flush standard output.
*/
public static void print() {
out.flush();
}
/**
* Print an Object to standard output and flush standard output.
*/
public static void print(Object x) {
out.print(x);
out.flush();
}
/**
* Print a boolean to standard output and flush standard output.
*/
public static void print(boolean x) {
out.print(x);
out.flush();
}
/**
* Print a char to standard output and flush standard output.
*/
public static void print(char x) {
out.print(x);
out.flush();
}
/**
* Print a double to standard output and flush standard output.
*/
public static void print(double x) {
out.print(x);
out.flush();
}
/**
* Print a float to standard output and flush standard output.
*/
public static void print(float x) {
out.print(x);
out.flush();
}
/**
* Print an int to standard output and flush standard output.
*/
public static void print(int x) {
out.print(x);
out.flush();
}
/**
* Print a long to standard output and flush standard output.
*/
public static void print(long x) {
out.print(x);
out.flush();
}
/**
* Print a short to standard output and flush standard output.
*/
public static void print(short x) {
out.print(x);
out.flush();
}
/**
* Print a byte to standard output and flush standard output.
*/
public static void print(byte x) {
out.print(x);
out.flush();
}
/**
* Print a formatted string to standard output using the specified
* format string and arguments, and flush standard output.
*/
public static void printf(String format, Object... args) {
out.printf(US_LOCALE, format, args);
out.flush();
}
/**
* Print a formatted string to standard output using the specified
* locale, format string, and arguments, and flush standard output.
*/
public static void printf(Locale locale, String format, Object... args) {
out.printf(locale, format, args);
out.flush();
}
// This method is just here to test the class
public static void main(String[] args) {
// write to stdout
StdOut.println("Test");
StdOut.println(17);
StdOut.println(true);
StdOut.printf("%.6f\n", 1.0/7.0);
}
}