Files
wscience/src/math/matrix/LUDecomposition.java

283 lines
6.5 KiB
Java

package math.matrix;
import java.io.Serializable;
/**
* LU Decomposition.
* <P>
* For an m-by-n matrix A with m &ge; n, the LU decomposition is an m-by-n
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
* and a permutation vector piv of length m so that A(piv,:) = L*U.
* If m < n, then L is m-by-m and U is m-by-n.
* <P>
* The LU decompostion with pivoting always exists, even if the matrix is
* singular, so the constructor will never fail. The primary use of the
* LU decomposition is in the solution of square systems of simultaneous
* linear equations. This will fail if isNonsingular() returns false.
*/
public class LUDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = -3852210156107961377L;
/**
* Array for internal storage of decomposition.
* @serial internal array storage
*/
private double[][] LU;
/**
* @serial row dimension
*/
private int m;
/**
* @serial column dimension
*/
private int n;
/**
* @serial pivot sign
*/
private int pivsign;
/**
* Internal storage of pivot vector.
* @serial pivot vector.
*/
private int[] piv;
/**
* LU Decomposition
* Structure to access L, U and piv.
* @param A Rectangular matrix
*/
public LUDecomposition(Matrix A){
int i, j, k;
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
LU = A.getCopy();
m = A.getM();
n = A.getN();
piv = new int[m];
for(i=0; i<m; i++)
piv[i] = i;
pivsign = 1;
double[] LUrowi;
double[] LUcolj = new double[m];
// Outer loop.
for(j=0; j<n; j++){
// Make a copy of the j-th column to localize references.
for(i=0; i<m; i++)
LUcolj[i] = LU[i][j];
// Apply previous transformations.
for(i=0; i<m; i++){
LUrowi = LU[i];
// Most of the time is spent in the following dot product.
int kmax = Math.min(i,j);
double s = 0.0;
for(k=0; k<kmax; k++)
s += LUrowi[k]*LUcolj[k];
LUrowi[j] = LUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
int p = j;
for(i=j+1; i<m; i++)
if(Math.abs(LUcolj[i]) > Math.abs(LUcolj[p]))
p = i;
if(p!=j){
for(k=0; k<n; k++) {
double t = LU[p][k];
LU[p][k] = LU[j][k];
LU[j][k] = t;
}
k = piv[p];
piv[p] = piv[j];
piv[j] = k;
pivsign = -pivsign;
}
// Compute multipliers.
if(j<m & LU[j][j] != 0.0)
for(i=j+1; i<m; i++)
LU[i][j] /= LU[j][j];
}
}
/* ------------------------
Temporary, experimental code.
------------------------ */
/** LU Decomposition, computed by Gaussian elimination.
<P>
This constructor computes L and U with the "daxpy"-based elimination
algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
Crout algorithm will be faster. We have temporarily included this
constructor until timing experiments confirm this suspicion.
<P>
Structure to access L, U and piv.
@param A Rectangular matrix
@param linpackflag Use Gaussian elimination. Actual value ignored.
*/
public LUDecomposition(Matrix A, int linpackflag){
int i, j, k;
// Initialize.
LU = A.getCopy();
m = A.getM();
n = A.getN();
piv = new int[m];
for(i=0; i<m; i++)
piv[i] = i;
pivsign = 1;
// Main loop.
for(k=0; k<n; k++){
// Find pivot.
int p = k;
for(i=k+1; i<m; i++)
if(Math.abs(LU[i][k]) > Math.abs(LU[p][k]))
p = i;
// Exchange if necessary.
if(p != k) {
for(j=0; j<n; j++){
double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
}
int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
pivsign = -pivsign;
}
// Compute multipliers and eliminate k-th column.
if(LU[k][k] != 0.0)
for(i=k+1; i<m; i++){
LU[i][k] /= LU[k][k];
for(j=k+1; j<n; j++)
LU[i][j] -= LU[i][k]*LU[k][j];
}
}
}
/* ------------------------
End of temporary code.
* ------------------------ */
/**
* Is the matrix nonsingular?
* @return true if U, and hence A, is nonsingular.
*/
public boolean isNonsingular (){
int j;
for(j=0; j<n; j++)
if(LU[j][j] == 0)
return false;
return true;
}
/**
* Return lower triangular factor
* @return L
*/
public Matrix getL(){
int i, j;
Matrix X = new Matrix(m,n);
double[][] L = X.getD();
for(i=0; i<m; i++){
for(j=0; j<n; j++){
if(i>j)
L[i][j] = LU[i][j];
else if(i==j)
L[i][j] = 1.0;
else
L[i][j] = 0.0;
}
}
return X;
}
/**
* Return upper triangular factor
* @return U
*/
public Matrix getU(){
int i, j;
Matrix X = new Matrix(n,n);
double[][] U = X.getD();
for(i=0; i<n; i++){
for(j=0; j<n; j++){
if(i<=j)
U[i][j] = LU[i][j];
else
U[i][j] = 0.0;
}
}
return X;
}
/**
* Return pivot permutation vector
* @return piv
*/
public int[] getPivot(){
int i;
int[] p = new int[m];
for(i=0; i<m; i++)
p[i] = piv[i];
return p;
}
/**
* Return pivot permutation vector as a one-dimensional double array
* @return piv
*/
public double[] getDoublePivot(){
int i;
double[] vals = new double[m];
for(i=0; i<m; i++)
vals[i] = (double) piv[i];
return vals;
}
/**
* Determinant
* @return det(A)
* @exception IllegalArgumentException Matrix must be square
*/
public double det(){
int j;
if(m != n) throw new IllegalArgumentException("Matrix must be square.");
double d = (double) pivsign;
for(j=0; j<n; j++)
d *= LU[j][j];
return d;
}
/**
* Solve A*X = B
* @param B A Matrix with as many rows as A and any number of columns.
* @return X so that L*U*X = B(piv,:)
* @exception IllegalArgumentException Matrix row dimensions must agree.
* @exception RuntimeException Matrix is singular.
*/
public Matrix solve (Matrix B) {
if(B.getM() != m) throw new IllegalArgumentException("Matrix row dimensions must agree.");
if(!this.isNonsingular()) throw new RuntimeException("Matrix is singular.");
int i, j, k;
// Copy right hand side with pivoting
int nx = B.getN();
double[][] X = B.get(piv,0,nx-1).getD();
// Solve L*Y = B(piv,:)
for(k=0; k<n; k++)
for(i=k+1; i<n; i++)
for(j=0; j<nx; j++)
X[i][j] -= X[k][j]*LU[i][k];
// Solve U*X = Y;
for(k=n-1; k>=0; k--)
for(j=0; j<nx; j++)
X[k][j] /= LU[k][k];
for(i=0; i<k; i++)
for(j=0; j<nx; j++)
X[i][j] -= X[k][j]*LU[i][k];
return new Matrix(X);
}
}