Files
wscience/src/math/matrix/SingularValueDecomposition.java

468 lines
14 KiB
Java

package math.matrix;
import java.io.Serializable;
import math.Maths;
/** Singular Value Decomposition.
* <p>
* For an m-by-n matrix A with m &ge; n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <p>
* The singular values, &sigma;<sub>k</sub> = S<sub>kk</sub>, are ordered so that
* &sigma;<sub>1</sub> &ge; &sigma;<sub>2</sub> &ge; ... &ge; &sigma;<sub>n</sub>.
* <p>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
public class SingularValueDecomposition implements Serializable {
/**
* UID
*/
private static final long serialVersionUID = -4816488865370991490L;
/**
* Array for internal storage of U.
* @serial internal storage of U.
*/
private double[][] U;
/**
* Array for internal storage of V.
* @serial internal storage of V.
*/
private double[][] V;
/**
* Array for internal storage of singular values.
* @serial internal storage of singular values.
*/
private double[] s;
/**
* Row dimensions.
* @serial row dimension.
*/
private int m;
/**
* Column dimensions.
* @serial column dimension.
*/
private int n;
/* ------------------------
Constructor
* ------------------------ */
/**
* Construct the singular value decomposition Structure to access U, S and V.
* @param Arg rectangular matrix
*/
public SingularValueDecomposition(Matrix Arg){
int i, j, k;
// Derived from LINPACK code.
// Initialize.
double[][] A = Arg.getCopy();
m = Arg.getM();
n = Arg.getN();
/* TODO: Apparently the failing cases are only a proper subset of (m<n),
* so let's not throw error. Correct fix to come later?
* if (m<n) {
* throw new IllegalArgumentException("SVD only works for m >= n"); }
*/
int nu = Math.min(m,n);
s = new double [Math.min(m+1,n)];
U = new double [m][nu];
V = new double [n][n];
double[] e = new double [n];
double[] work = new double [m];
boolean wantu = true;
boolean wantv = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = Math.min(m-1,n);
int nrt = Math.max(0,Math.min(n-2,m));
for(k=0; k<Math.max(nct,nrt); k++){
if(k<nct){
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for(i=k; i<m; i++)
s[k] = Maths.hypot(s[k],A[i][k]);
if(s[k] != 0.0){
if(A[k][k] < 0.0)
s[k] = -s[k];
for(i=k; i<m; i++)
A[i][k] /= s[k];
A[k][k] += 1.0;
}
s[k] = -s[k];
}
for(j=k+1; j<n; j++){
if((k < nct) & (s[k] != 0.0)){
// Apply the transformation.
double t = 0;
for(i=k; i<m; i++)
t += A[i][k]*A[i][j];
t = -t/A[k][k];
for(i=k; i<m; i++)
A[i][j] += t*A[i][k];
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A[k][j];
}
if(wantu & (k < nct)){
// Place the transformation in U for subsequent back
// multiplication.
for(i=k; i<m; i++)
U[i][k] = A[i][k];
}
if(k < nrt){
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for(i=k+1; i<n; i++)
e[k] = Maths.hypot(e[k],e[i]);
if(e[k] != 0.0){
if(e[k+1] < 0.0)
e[k] = -e[k];
for(i=k+1; i<n; i++)
e[i] /= e[k];
e[k+1] += 1.0;
}
e[k] = -e[k];
if((k+1 < m) & (e[k] != 0.0)){
// Apply the transformation.
for(i=k+1; i<m; i++)
work[i] = 0.0;
for(j=k+1; j<n; j++)
for(i=k+1; i<m; i++)
work[i] += e[j]*A[i][j];
for(j=k+1; j<n; j++){
double t = -e[j]/e[k+1];
for(i=k+1; i<m; i++)
A[i][j] += t*work[i];
}
}
if(wantv){
// Place the transformation in V for subsequent
// back multiplication.
for(i=k+1; i<n; i++)
V[i][k] = e[i];
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = Math.min(n,m+1);
if(nct < n) s[nct] = A[nct][nct];
if(m < p) s[p-1] = 0.0;
if(nrt+1 < p) e[nrt] = A[nrt][p-1];
e[p-1] = 0.0;
// If required, generate U.
if(wantu){
for(j=nct; j<nu; j++){
for(i=0; i<m; i++)
U[i][j] = 0.0;
U[j][j] = 1.0;
}
for(k=nct-1; k>=0; k--){
if(s[k] != 0.0) {
for(j=k+1; j<nu; j++){
double t = 0;
for(i=k; i < m; i++)
t += U[i][k]*U[i][j];
t = -t/U[k][k];
for(i=k; i<m; i++)
U[i][j] += t*U[i][k];
}
for(i=k; i < m; i++)
U[i][k] = -U[i][k];
U[k][k] = 1.0 + U[k][k];
for(i=0; i<k-1; i++)
U[i][k] = 0.0;
} else {
for(i=0; i < m; i++)
U[i][k] = 0.0;
U[k][k] = 1.0;
}
}
}
// If required, generate V.
if(wantv)
for(k=n-1; k>=0; k--){
if((k < nrt) & (e[k] != 0.0))
for(j=k+1; j<nu; j++){
double t = 0;
for(i=k+1; i < n; i++)
t += V[i][k]*V[i][j];
t = -t/V[k+1][k];
for(i=k+1; i<n; i++)
V[i][j] += t*V[i][k];
}
for(i=0; i<n; i++)
V[i][k] = 0.0;
V[k][k] = 1.0;
}
// Main iteration loop for the singular values.
int pp = p-1;
int iter = 0;
double eps = Math.pow(2.0,-52.0);
double tiny = Math.pow(2.0,-966.0);
while(p > 0){
int kase;
// Here is where a test for too many iterations would go.
//
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for(k=p-2; k>=-1; k--){
if(k == -1) break;
if(Math.abs(e[k]) <=
tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))){
e[k] = 0.0;
break;
}
}
if(k == p-2)
kase = 4;
else {
int ks;
for(ks=p-1; ks>=k; ks--){
if (ks == k) break;
double t = (ks != p ? Math.abs(e[ks]) : 0.) +
(ks != k+1 ? Math.abs(e[ks-1]) : 0.);
if(Math.abs(s[ks]) <= tiny + eps*t){
s[ks] = 0.0;
break;
}
}
if(ks == k)
kase = 3;
else if(ks == p-1)
kase = 1;
else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for(j=p-2; j>=k; j--){
double t = Maths.hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if(j != k){
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if(wantv)
for(i=0; i<n; i++){
t = cs*V[i][j] + sn*V[i][p-1];
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
V[i][j] = t;
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for(j=k; j<p; j++){
double t = Maths.hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if(wantu)
for(i=0; i<m; i++){
t = cs*U[i][j] + sn*U[i][k-1];
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
U[i][j] = t;
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double scale = Math.max(Math.max(Math.max(Math.max(
Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])),
Math.abs(s[k])),Math.abs(e[k]));
double sp = s[p-1]/scale;
double spm1 = s[p-2]/scale;
double epm1 = e[p-2]/scale;
double sk = s[k]/scale;
double ek = e[k]/scale;
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
double c = (sp*epm1)*(sp*epm1);
double shift = 0.0;
if((b != 0.0) | (c != 0.0)){
shift = Math.sqrt(b*b + c);
if(b < 0.0)
shift = -shift;
shift = c/(b + shift);
}
double f = (sk + sp)*(sk - sp) + shift;
double g = sk*ek;
// Chase zeros.
for(j=k; j<p-1; j++){
double t = Maths.hypot(f,g);
double cs = f/t;
double sn = g/t;
if(j != k)
e[j-1] = t;
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if(wantv)
for(i=0; i<n; i++){
t = cs*V[i][j] + sn*V[i][j+1];
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
V[i][j] = t;
}
t = Maths.hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if(wantu && (j < m-1))
for(i=0; i<m; i++){
t = cs*U[i][j] + sn*U[i][j+1];
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
U[i][j] = t;
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if(s[k] <= 0.0){
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if(wantv)
for(i=0; i<=pp; i++)
V[i][k] = -V[i][k];
}
// Order the singular values.
while(k < pp){
if (s[k] >= s[k+1])
break;
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if(wantv && (k < n-1)){
for(i=0; i<n; i++){
t = V[i][k+1];
V[i][k+1] = V[i][k];
V[i][k] = t;
}
}
if(wantu && (k < m-1)){
for(i=0; i<m; i++){
t = U[i][k+1];
U[i][k+1] = U[i][k];
U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
/**
* @return the left singular vectors U
*/
public Matrix getU(){
return new Matrix(U);
}
/**
* @return the right singular vectors V
*/
public Matrix getV(){
return new Matrix(V);
}
/**
* @return the one-dimensional array of singular values, diagonal of S.
*/
public double[] getSingularValues(){
return s;
}
/**
* @return the diagonal matrix of singular values S
*/
public Matrix getS(){
int i, j;
Matrix S = new Matrix(n,n);
for(i=0; i<n; i++){
for(j=0; j<n; j++)
S.set(i,j, 0.0);
S.set(i,i, this.s[i]);
}
return S;
}
/**
* Two norm
* @return max(S)
*/
public double norm2(){
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
public double cond(){
return s[0]/s[Math.min(m,n)-1];
}
/**
* Effective numerical matrix rank
* @return number of nonnegligible singular values.
*/
public int rank(){
double eps = Math.pow(2.0,-52.0);
double tol = Math.max(m,n)*s[0]*eps;
int i, r = 0;
for(i=0; i<s.length; i++)
if(s[i] > tol)
r++;
return r;
}
}