diff --git a/src/math/matrix/CholeskyDecomposition.java b/src/math/matrix/CholeskyDecomposition.java new file mode 100644 index 0000000..367e911 --- /dev/null +++ b/src/math/matrix/CholeskyDecomposition.java @@ -0,0 +1,201 @@ +package math.matrix; + +import java.io.Serializable; + + /** Cholesky Decomposition. +
+ For a symmetric, positive definite matrix A, the Cholesky decomposition + is an lower triangular matrix L so that A = L*L'. +
+ If the matrix is not symmetric or positive definite, the constructor + returns a partial decomposition and sets an internal flag that may + be queried by the isSPD() method. + */ + +public class CholeskyDecomposition implements Serializable { + +/* ------------------------ + Class variables + * ------------------------ */ + + /** Array for internal storage of decomposition. + @serial internal array storage. + */ + private double[][] L; + + /** Row and column dimension (square matrix). + @serial matrix dimension. + */ + private int n; + + /** Symmetric and positive definite flag. + @serial is symmetric and positive definite flag. + */ + private boolean isspd; + +/* ------------------------ + Constructor + * ------------------------ */ + + /** Cholesky algorithm for symmetric and positive definite matrix. + Structure to access L and isspd flag. + @param Arg Square, symmetric matrix. + */ + + public CholeskyDecomposition (Matrix Arg) { + // Initialize. + double[][] A = Arg.getD(); + n = Arg.getM(); + L = new double[n][n]; + isspd = (Arg.getN() == n); + // Main loop. + for (int j = 0; j < n; j++) { + double[] Lrowj = L[j]; + double d = 0.0; + for (int k = 0; k < j; k++) { + double[] Lrowk = L[k]; + double s = 0.0; + for (int i = 0; i < k; i++) { + s += Lrowk[i]*Lrowj[i]; + } + Lrowj[k] = s = (A[j][k] - s)/L[k][k]; + d = d + s*s; + isspd = isspd & (A[k][j] == A[j][k]); + } + d = A[j][j] - d; + isspd = isspd & (d > 0.0); + L[j][j] = Math.sqrt(Math.max(d,0.0)); + for (int k = j+1; k < n; k++) { + L[j][k] = 0.0; + } + } + } + +/* ------------------------ + Temporary, experimental code. + * ------------------------ *\ + + \** Right Triangular Cholesky Decomposition. +
+ For a symmetric, positive definite matrix A, the Right Cholesky
+ decomposition is an upper triangular matrix R so that A = R'*R.
+ This constructor computes R with the Fortran inspired column oriented
+ algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
+ lower triangular decomposition is faster. We have temporarily included
+ this constructor here until timing experiments confirm this suspicion.
+ *\
+
+ \** Array for internal storage of right triangular decomposition. **\
+ private transient double[][] R;
+
+ \** Cholesky algorithm for symmetric and positive definite matrix.
+ @param A Square, symmetric matrix.
+ @param rightflag Actual value ignored.
+ @return Structure to access R and isspd flag.
+ *\
+
+ public CholeskyDecomposition (Matrix Arg, int rightflag) {
+ // Initialize.
+ double[][] A = Arg.getArray();
+ n = Arg.getColumnDimension();
+ R = new double[n][n];
+ isspd = (Arg.getColumnDimension() == n);
+ // Main loop.
+ for (int j = 0; j < n; j++) {
+ double d = 0.0;
+ for (int k = 0; k < j; k++) {
+ double s = A[k][j];
+ for (int i = 0; i < k; i++) {
+ s = s - R[i][k]*R[i][j];
+ }
+ R[k][j] = s = s/R[k][k];
+ d = d + s*s;
+ isspd = isspd & (A[k][j] == A[j][k]);
+ }
+ d = A[j][j] - d;
+ isspd = isspd & (d > 0.0);
+ R[j][j] = Math.sqrt(Math.max(d,0.0));
+ for (int k = j+1; k < n; k++) {
+ R[k][j] = 0.0;
+ }
+ }
+ }
+
+ \** Return upper triangular factor.
+ @return R
+ *\
+
+ public Matrix getR () {
+ return new Matrix(R,n,n);
+ }
+
+\* ------------------------
+ End of temporary code.
+ * ------------------------ */
+
+/* ------------------------
+ Public Methods
+ * ------------------------ */
+
+ /** Is the matrix symmetric and positive definite?
+ @return true if A is symmetric and positive definite.
+ */
+
+ public boolean isSPD () {
+ return isspd;
+ }
+
+ /** Return triangular factor.
+ @return L
+ */
+
+ public Matrix getL () {
+ return new Matrix(L);
+ }
+
+ /** Solve A*X = B
+ @param B A Matrix with as many rows as A and any number of columns.
+ @return X so that L*L'*X = B
+ @exception IllegalArgumentException Matrix row dimensions must agree.
+ @exception RuntimeException Matrix is not symmetric positive definite.
+ */
+
+ public Matrix solve (Matrix B) {
+ if (B.getM() != n) {
+ throw new IllegalArgumentException("Matrix row dimensions must agree.");
+ }
+ if (!isspd) {
+ throw new RuntimeException("Matrix is not symmetric positive definite.");
+ }
+
+ // Copy right hand side.
+ double[][] X = B.getCopy();
+ int nx = B.getN();
+
+ // Solve L*Y = B;
+ for (int k = 0; k < n; k++) {
+ for (int j = 0; j < nx; j++) {
+ for (int i = 0; i < k ; i++) {
+ X[k][j] -= X[i][j]*L[k][i];
+ }
+ X[k][j] /= L[k][k];
+ }
+ }
+
+ // Solve L'*X = Y;
+ for (int k = n-1; k >= 0; k--) {
+ for (int j = 0; j < nx; j++) {
+ for (int i = k+1; i < n ; i++) {
+ X[k][j] -= X[i][j]*L[i][k];
+ }
+ X[k][j] /= L[k][k];
+ }
+ }
+
+
+ return new Matrix(X);
+ }
+ private static final long serialVersionUID = 1;
+
+}
+
diff --git a/src/math/matrix/Diagonal.java b/src/math/matrix/Diagonal.java
new file mode 100644
index 0000000..68fc447
--- /dev/null
+++ b/src/math/matrix/Diagonal.java
@@ -0,0 +1,175 @@
+package math.matrix;
+
+import exception.IllegalDimensionException;
+
+public class Diagonal extends Matrix{
+
+ /**
+ * UID
+ */
+ private static final long serialVersionUID = 3206696282474150081L;
+
+ public Diagonal(int n){
+ this(n,n);
+ }
+
+ public Diagonal(int m, int n){
+ this.m = m;
+ this.n = n;
+ data = new double[m>n?m:n];
+ }
+
+ public Diagonal(double... d){
+ this(d.length);
+ int i;
+ for(i=0; i
+ If A is not symmetric, then the eigenvalue matrix D is block diagonal
+ with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
+ lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
+ columns of V represent the eigenvectors in the sense that A*V = V*D,
+ i.e. A.times(V) equals V.times(D). The matrix V may be badly
+ conditioned, or even singular, so the validity of the equation
+ A = V*D*inverse(V) depends upon V.cond().
+**/
+
+public class EigenvalueDecomposition implements Serializable {
+
+ /**
+ * UID
+ */
+ private static final long serialVersionUID = -4489049767346210616L;
+
+/* ------------------------
+ Class variables
+ * ------------------------ */
+
+ /** Row and column dimension (square matrix).
+ @serial matrix dimension.
+ */
+ private int n;
+
+ /** Symmetry flag.
+ @serial internal symmetry flag.
+ */
+ private boolean issymmetric;
+
+ /** Arrays for internal storage of eigenvalues.
+ @serial internal storage of eigenvalues.
+ */
+ private double[] d, e;
+
+ /** Array for internal storage of eigenvectors.
+ @serial internal storage of eigenvectors.
+ */
+ private double[][] V;
+
+ /** Array for internal storage of nonsymmetric Hessenberg form.
+ @serial internal storage of nonsymmetric Hessenberg form.
+ */
+ private double[][] H;
+
+ /** Working storage for nonsymmetric algorithm.
+ @serial working storage for nonsymmetric algorithm.
+ */
+ private double[] ort;
+
+/* ------------------------
+ Private Methods
+ * ------------------------ */
+
+ // Symmetric Householder reduction to tridiagonal form.
+
+ private void tred2 () {
+
+ // This is derived from the Algol procedures tred2 by
+ // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+ // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ for (int j = 0; j < n; j++) {
+ d[j] = V[n-1][j];
+ }
+
+ // Householder reduction to tridiagonal form.
+
+ for (int i = n-1; i > 0; i--) {
+
+ // Scale to avoid under/overflow.
+
+ double scale = 0.0;
+ double h = 0.0;
+ for (int k = 0; k < i; k++) {
+ scale = scale + Math.abs(d[k]);
+ }
+ if (scale == 0.0) {
+ e[i] = d[i-1];
+ for (int j = 0; j < i; j++) {
+ d[j] = V[i-1][j];
+ V[i][j] = 0.0;
+ V[j][i] = 0.0;
+ }
+ } else {
+
+ // Generate Householder vector.
+
+ for (int k = 0; k < i; k++) {
+ d[k] /= scale;
+ h += d[k] * d[k];
+ }
+ double f = d[i-1];
+ double g = Math.sqrt(h);
+ if (f > 0) {
+ g = -g;
+ }
+ e[i] = scale * g;
+ h = h - f * g;
+ d[i-1] = f - g;
+ for (int j = 0; j < i; j++) {
+ e[j] = 0.0;
+ }
+
+ // Apply similarity transformation to remaining columns.
+
+ for (int j = 0; j < i; j++) {
+ f = d[j];
+ V[j][i] = f;
+ g = e[j] + V[j][j] * f;
+ for (int k = j+1; k <= i-1; k++) {
+ g += V[k][j] * d[k];
+ e[k] += V[k][j] * f;
+ }
+ e[j] = g;
+ }
+ f = 0.0;
+ for (int j = 0; j < i; j++) {
+ e[j] /= h;
+ f += e[j] * d[j];
+ }
+ double hh = f / (h + h);
+ for (int j = 0; j < i; j++) {
+ e[j] -= hh * d[j];
+ }
+ for (int j = 0; j < i; j++) {
+ f = d[j];
+ g = e[j];
+ for (int k = j; k <= i-1; k++) {
+ V[k][j] -= (f * e[k] + g * d[k]);
+ }
+ d[j] = V[i-1][j];
+ V[i][j] = 0.0;
+ }
+ }
+ d[i] = h;
+ }
+
+ // Accumulate transformations.
+
+ for (int i = 0; i < n-1; i++) {
+ V[n-1][i] = V[i][i];
+ V[i][i] = 1.0;
+ double h = d[i+1];
+ if (h != 0.0) {
+ for (int k = 0; k <= i; k++) {
+ d[k] = V[k][i+1] / h;
+ }
+ for (int j = 0; j <= i; j++) {
+ double g = 0.0;
+ for (int k = 0; k <= i; k++) {
+ g += V[k][i+1] * V[k][j];
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][j] -= g * d[k];
+ }
+ }
+ }
+ for (int k = 0; k <= i; k++) {
+ V[k][i+1] = 0.0;
+ }
+ }
+ for (int j = 0; j < n; j++) {
+ d[j] = V[n-1][j];
+ V[n-1][j] = 0.0;
+ }
+ V[n-1][n-1] = 1.0;
+ e[0] = 0.0;
+ }
+
+ // Symmetric tridiagonal QL algorithm.
+
+ private void tql2 () {
+
+ // This is derived from the Algol procedures tql2, by
+ // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+ // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ for (int i = 1; i < n; i++) {
+ e[i-1] = e[i];
+ }
+ e[n-1] = 0.0;
+
+ double f = 0.0;
+ double tst1 = 0.0;
+ double eps = Math.pow(2.0,-52.0);
+ for (int l = 0; l < n; l++) {
+
+ // Find small subdiagonal element
+
+ tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
+ int m = l;
+ while (m < n) {
+ if (Math.abs(e[m]) <= eps*tst1) {
+ break;
+ }
+ m++;
+ }
+
+ // If m == l, d[l] is an eigenvalue,
+ // otherwise, iterate.
+
+ if (m > l) {
+ int iter = 0;
+ do {
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Compute implicit shift
+
+ double g = d[l];
+ double p = (d[l+1] - g) / (2.0 * e[l]);
+ double r = Maths.hypot(p,1.0);
+ if (p < 0) {
+ r = -r;
+ }
+ d[l] = e[l] / (p + r);
+ d[l+1] = e[l] * (p + r);
+ double dl1 = d[l+1];
+ double h = g - d[l];
+ for (int i = l+2; i < n; i++) {
+ d[i] -= h;
+ }
+ f = f + h;
+
+ // Implicit QL transformation.
+
+ p = d[m];
+ double c = 1.0;
+ double c2 = c;
+ double c3 = c;
+ double el1 = e[l+1];
+ double s = 0.0;
+ double s2 = 0.0;
+ for (int i = m-1; i >= l; i--) {
+ c3 = c2;
+ c2 = c;
+ s2 = s;
+ g = c * e[i];
+ h = c * p;
+ r = Maths.hypot(p,e[i]);
+ e[i+1] = s * r;
+ s = e[i] / r;
+ c = p / r;
+ p = c * d[i] - s * g;
+ d[i+1] = h + s * (c * g + s * d[i]);
+
+ // Accumulate transformation.
+
+ for (int k = 0; k < n; k++) {
+ h = V[k][i+1];
+ V[k][i+1] = s * V[k][i] + c * h;
+ V[k][i] = c * V[k][i] - s * h;
+ }
+ }
+ p = -s * s2 * c3 * el1 * e[l] / dl1;
+ e[l] = s * p;
+ d[l] = c * p;
+
+ // Check for convergence.
+
+ } while (Math.abs(e[l]) > eps*tst1);
+ }
+ d[l] = d[l] + f;
+ e[l] = 0.0;
+ }
+
+ // Sort eigenvalues and corresponding vectors.
+
+ for (int i = 0; i < n-1; i++) {
+ int k = i;
+ double p = d[i];
+ for (int j = i+1; j < n; j++) {
+ if (d[j] < p) {
+ k = j;
+ p = d[j];
+ }
+ }
+ if (k != i) {
+ d[k] = d[i];
+ d[i] = p;
+ for (int j = 0; j < n; j++) {
+ p = V[j][i];
+ V[j][i] = V[j][k];
+ V[j][k] = p;
+ }
+ }
+ }
+ }
+
+ // Nonsymmetric reduction to Hessenberg form.
+
+ private void orthes () {
+
+ // This is derived from the Algol procedures orthes and ortran,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutines in EISPACK.
+
+ int low = 0;
+ int high = n-1;
+
+ for (int m = low+1; m <= high-1; m++) {
+
+ // Scale column.
+
+ double scale = 0.0;
+ for (int i = m; i <= high; i++) {
+ scale = scale + Math.abs(H[i][m-1]);
+ }
+ if (scale != 0.0) {
+
+ // Compute Householder transformation.
+
+ double h = 0.0;
+ for (int i = high; i >= m; i--) {
+ ort[i] = H[i][m-1]/scale;
+ h += ort[i] * ort[i];
+ }
+ double g = Math.sqrt(h);
+ if (ort[m] > 0) {
+ g = -g;
+ }
+ h = h - ort[m] * g;
+ ort[m] = ort[m] - g;
+
+ // Apply Householder similarity transformation
+ // H = (I-u*u'/h)*H*(I-u*u')/h)
+
+ for (int j = m; j < n; j++) {
+ double f = 0.0;
+ for (int i = high; i >= m; i--) {
+ f += ort[i]*H[i][j];
+ }
+ f = f/h;
+ for (int i = m; i <= high; i++) {
+ H[i][j] -= f*ort[i];
+ }
+ }
+
+ for (int i = 0; i <= high; i++) {
+ double f = 0.0;
+ for (int j = high; j >= m; j--) {
+ f += ort[j]*H[i][j];
+ }
+ f = f/h;
+ for (int j = m; j <= high; j++) {
+ H[i][j] -= f*ort[j];
+ }
+ }
+ ort[m] = scale*ort[m];
+ H[m][m-1] = scale*g;
+ }
+ }
+
+ // Accumulate transformations (Algol's ortran).
+
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ V[i][j] = (i == j ? 1.0 : 0.0);
+ }
+ }
+
+ for (int m = high-1; m >= low+1; m--) {
+ if (H[m][m-1] != 0.0) {
+ for (int i = m+1; i <= high; i++) {
+ ort[i] = H[i][m-1];
+ }
+ for (int j = m; j <= high; j++) {
+ double g = 0.0;
+ for (int i = m; i <= high; i++) {
+ g += ort[i] * V[i][j];
+ }
+ // Double division avoids possible underflow
+ g = (g / ort[m]) / H[m][m-1];
+ for (int i = m; i <= high; i++) {
+ V[i][j] += g * ort[i];
+ }
+ }
+ }
+ }
+ }
+
+
+ // Complex scalar division.
+
+ private transient double cdivr, cdivi;
+ private void cdiv(double xr, double xi, double yr, double yi) {
+ double r,d;
+ if (Math.abs(yr) > Math.abs(yi)) {
+ r = yi/yr;
+ d = yr + r*yi;
+ cdivr = (xr + r*xi)/d;
+ cdivi = (xi - r*xr)/d;
+ } else {
+ r = yr/yi;
+ d = yi + r*yr;
+ cdivr = (r*xr + xi)/d;
+ cdivi = (r*xi - xr)/d;
+ }
+ }
+
+
+ // Nonsymmetric reduction from Hessenberg to real Schur form.
+
+ private void hqr2 () {
+
+ // This is derived from the Algol procedure hqr2,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ // Initialize
+
+ int nn = this.n;
+ int n = nn-1;
+ int low = 0;
+ int high = nn-1;
+ double eps = Math.pow(2.0,-52.0);
+ double exshift = 0.0;
+ double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
+
+ // Store roots isolated by balanc and compute matrix norm
+
+ double norm = 0.0;
+ for (int i = 0; i < nn; i++) {
+ if (i < low | i > high) {
+ d[i] = H[i][i];
+ e[i] = 0.0;
+ }
+ for (int j = Math.max(i-1,0); j < nn; j++) {
+ norm = norm + Math.abs(H[i][j]);
+ }
+ }
+
+ // Outer loop over eigenvalue index
+
+ int iter = 0;
+ while (n >= low) {
+
+ // Look for single small sub-diagonal element
+
+ int l = n;
+ while (l > low) {
+ s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
+ if (s == 0.0) {
+ s = norm;
+ }
+ if (Math.abs(H[l][l-1]) < eps * s) {
+ break;
+ }
+ l--;
+ }
+
+ // Check for convergence
+ // One root found
+
+ if (l == n) {
+ H[n][n] = H[n][n] + exshift;
+ d[n] = H[n][n];
+ e[n] = 0.0;
+ n--;
+ iter = 0;
+
+ // Two roots found
+
+ } else if (l == n-1) {
+ w = H[n][n-1] * H[n-1][n];
+ p = (H[n-1][n-1] - H[n][n]) / 2.0;
+ q = p * p + w;
+ z = Math.sqrt(Math.abs(q));
+ H[n][n] = H[n][n] + exshift;
+ H[n-1][n-1] = H[n-1][n-1] + exshift;
+ x = H[n][n];
+
+ // Real pair
+
+ if (q >= 0) {
+ if (p >= 0) {
+ z = p + z;
+ } else {
+ z = p - z;
+ }
+ d[n-1] = x + z;
+ d[n] = d[n-1];
+ if (z != 0.0) {
+ d[n] = x - w / z;
+ }
+ e[n-1] = 0.0;
+ e[n] = 0.0;
+ x = H[n][n-1];
+ s = Math.abs(x) + Math.abs(z);
+ p = x / s;
+ q = z / s;
+ r = Math.sqrt(p * p+q * q);
+ p = p / r;
+ q = q / r;
+
+ // Row modification
+
+ for (int j = n-1; j < nn; j++) {
+ z = H[n-1][j];
+ H[n-1][j] = q * z + p * H[n][j];
+ H[n][j] = q * H[n][j] - p * z;
+ }
+
+ // Column modification
+
+ for (int i = 0; i <= n; i++) {
+ z = H[i][n-1];
+ H[i][n-1] = q * z + p * H[i][n];
+ H[i][n] = q * H[i][n] - p * z;
+ }
+
+ // Accumulate transformations
+
+ for (int i = low; i <= high; i++) {
+ z = V[i][n-1];
+ V[i][n-1] = q * z + p * V[i][n];
+ V[i][n] = q * V[i][n] - p * z;
+ }
+
+ // Complex pair
+
+ } else {
+ d[n-1] = x + p;
+ d[n] = x + p;
+ e[n-1] = z;
+ e[n] = -z;
+ }
+ n = n - 2;
+ iter = 0;
+
+ // No convergence yet
+
+ } else {
+
+ // Form shift
+
+ x = H[n][n];
+ y = 0.0;
+ w = 0.0;
+ if (l < n) {
+ y = H[n-1][n-1];
+ w = H[n][n-1] * H[n-1][n];
+ }
+
+ // Wilkinson's original ad hoc shift
+
+ if (iter == 10) {
+ exshift += x;
+ for (int i = low; i <= n; i++) {
+ H[i][i] -= x;
+ }
+ s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
+ x = y = 0.75 * s;
+ w = -0.4375 * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+
+ if (iter == 30) {
+ s = (y - x) / 2.0;
+ s = s * s + w;
+ if (s > 0) {
+ s = Math.sqrt(s);
+ if (y < x) {
+ s = -s;
+ }
+ s = x - w / ((y - x) / 2.0 + s);
+ for (int i = low; i <= n; i++) {
+ H[i][i] -= s;
+ }
+ exshift += s;
+ x = y = w = 0.964;
+ }
+ }
+
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Look for two consecutive small sub-diagonal elements
+
+ int m = n-2;
+ while (m >= l) {
+ z = H[m][m];
+ r = x - z;
+ s = y - z;
+ p = (r * s - w) / H[m+1][m] + H[m][m+1];
+ q = H[m+1][m+1] - z - r - s;
+ r = H[m+2][m+1];
+ s = Math.abs(p) + Math.abs(q) + Math.abs(r);
+ p = p / s;
+ q = q / s;
+ r = r / s;
+ if (m == l) {
+ break;
+ }
+ if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
+ eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
+ Math.abs(H[m+1][m+1])))) {
+ break;
+ }
+ m--;
+ }
+
+ for (int i = m+2; i <= n; i++) {
+ H[i][i-2] = 0.0;
+ if (i > m+2) {
+ H[i][i-3] = 0.0;
+ }
+ }
+
+ // Double QR step involving rows l:n and columns m:n
+
+
+ for (int k = m; k <= n-1; k++) {
+ boolean notlast = (k != n-1);
+ if (k != m) {
+ p = H[k][k-1];
+ q = H[k+1][k-1];
+ r = (notlast ? H[k+2][k-1] : 0.0);
+ x = Math.abs(p) + Math.abs(q) + Math.abs(r);
+ if (x == 0.0) {
+ continue;
+ }
+ p = p / x;
+ q = q / x;
+ r = r / x;
+ }
+
+ s = Math.sqrt(p * p + q * q + r * r);
+ if (p < 0) {
+ s = -s;
+ }
+ if (s != 0) {
+ if (k != m) {
+ H[k][k-1] = -s * x;
+ } else if (l != m) {
+ H[k][k-1] = -H[k][k-1];
+ }
+ p = p + s;
+ x = p / s;
+ y = q / s;
+ z = r / s;
+ q = q / p;
+ r = r / p;
+
+ // Row modification
+
+ for (int j = k; j < nn; j++) {
+ p = H[k][j] + q * H[k+1][j];
+ if (notlast) {
+ p = p + r * H[k+2][j];
+ H[k+2][j] = H[k+2][j] - p * z;
+ }
+ H[k][j] = H[k][j] - p * x;
+ H[k+1][j] = H[k+1][j] - p * y;
+ }
+
+ // Column modification
+
+ for (int i = 0; i <= Math.min(n,k+3); i++) {
+ p = x * H[i][k] + y * H[i][k+1];
+ if (notlast) {
+ p = p + z * H[i][k+2];
+ H[i][k+2] = H[i][k+2] - p * r;
+ }
+ H[i][k] = H[i][k] - p;
+ H[i][k+1] = H[i][k+1] - p * q;
+ }
+
+ // Accumulate transformations
+
+ for (int i = low; i <= high; i++) {
+ p = x * V[i][k] + y * V[i][k+1];
+ if (notlast) {
+ p = p + z * V[i][k+2];
+ V[i][k+2] = V[i][k+2] - p * r;
+ }
+ V[i][k] = V[i][k] - p;
+ V[i][k+1] = V[i][k+1] - p * q;
+ }
+ } // (s != 0)
+ } // k loop
+ } // check convergence
+ } // while (n >= low)
+
+ // Backsubstitute to find vectors of upper triangular form
+
+ if (norm == 0.0) {
+ return;
+ }
+
+ for (n = nn-1; n >= 0; n--) {
+ p = d[n];
+ q = e[n];
+
+ // Real vector
+
+ if (q == 0) {
+ int l = n;
+ H[n][n] = 1.0;
+ for (int i = n-1; i >= 0; i--) {
+ w = H[i][i] - p;
+ r = 0.0;
+ for (int j = l; j <= n; j++) {
+ r = r + H[i][j] * H[j][n];
+ }
+ if (e[i] < 0.0) {
+ z = w;
+ s = r;
+ } else {
+ l = i;
+ if (e[i] == 0.0) {
+ if (w != 0.0) {
+ H[i][n] = -r / w;
+ } else {
+ H[i][n] = -r / (eps * norm);
+ }
+
+ // Solve real equations
+
+ } else {
+ x = H[i][i+1];
+ y = H[i+1][i];
+ q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
+ t = (x * s - z * r) / q;
+ H[i][n] = t;
+ if (Math.abs(x) > Math.abs(z)) {
+ H[i+1][n] = (-r - w * t) / x;
+ } else {
+ H[i+1][n] = (-s - y * t) / z;
+ }
+ }
+
+ // Overflow control
+
+ t = Math.abs(H[i][n]);
+ if ((eps * t) * t > 1) {
+ for (int j = i; j <= n; j++) {
+ H[j][n] = H[j][n] / t;
+ }
+ }
+ }
+ }
+
+ // Complex vector
+
+ } else if (q < 0) {
+ int l = n-1;
+
+ // Last vector component imaginary so matrix is triangular
+
+ if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
+ H[n-1][n-1] = q / H[n][n-1];
+ H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
+ } else {
+ cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
+ H[n-1][n-1] = cdivr;
+ H[n-1][n] = cdivi;
+ }
+ H[n][n-1] = 0.0;
+ H[n][n] = 1.0;
+ for (int i = n-2; i >= 0; i--) {
+ double ra,sa,vr,vi;
+ ra = 0.0;
+ sa = 0.0;
+ for (int j = l; j <= n; j++) {
+ ra = ra + H[i][j] * H[j][n-1];
+ sa = sa + H[i][j] * H[j][n];
+ }
+ w = H[i][i] - p;
+
+ if (e[i] < 0.0) {
+ z = w;
+ r = ra;
+ s = sa;
+ } else {
+ l = i;
+ if (e[i] == 0) {
+ cdiv(-ra,-sa,w,q);
+ H[i][n-1] = cdivr;
+ H[i][n] = cdivi;
+ } else {
+
+ // Solve complex equations
+
+ x = H[i][i+1];
+ y = H[i+1][i];
+ vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
+ vi = (d[i] - p) * 2.0 * q;
+ if (vr == 0.0 & vi == 0.0) {
+ vr = eps * norm * (Math.abs(w) + Math.abs(q) +
+ Math.abs(x) + Math.abs(y) + Math.abs(z));
+ }
+ cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+ H[i][n-1] = cdivr;
+ H[i][n] = cdivi;
+ if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
+ H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
+ H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
+ } else {
+ cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
+ H[i+1][n-1] = cdivr;
+ H[i+1][n] = cdivi;
+ }
+ }
+
+ // Overflow control
+
+ t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
+ if ((eps * t) * t > 1) {
+ for (int j = i; j <= n; j++) {
+ H[j][n-1] = H[j][n-1] / t;
+ H[j][n] = H[j][n] / t;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Vectors of isolated roots
+
+ for (int i = 0; i < nn; i++) {
+ if (i < low | i > high) {
+ for (int j = i; j < nn; j++) {
+ V[i][j] = H[i][j];
+ }
+ }
+ }
+
+ // Back transformation to get eigenvectors of original matrix
+
+ for (int j = nn-1; j >= low; j--) {
+ for (int i = low; i <= high; i++) {
+ z = 0.0;
+ for (int k = low; k <= Math.min(j,high); k++) {
+ z = z + V[i][k] * H[k][j];
+ }
+ V[i][j] = z;
+ }
+ }
+ }
+
+
+/* ------------------------
+ Constructor
+ * ------------------------ */
+
+ /** Check for symmetry, then construct the eigenvalue decomposition
+ Structure to access D and V.
+ @param Arg Square matrix
+ */
+
+ public EigenvalueDecomposition (Matrix Arg) {
+ double[][] A = Arg.getD();
+ n = Arg.getN();
+ V = new double[n][n];
+ d = new double[n];
+ e = new double[n];
+
+ issymmetric = true;
+ for (int j = 0; (j < n) & issymmetric; j++) {
+ for (int i = 0; (i < n) & issymmetric; i++) {
+ issymmetric = (A[i][j] == A[j][i]);
+ }
+ }
+
+ if (issymmetric) {
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ V[i][j] = A[i][j];
+ }
+ }
+
+ // Tridiagonalize.
+ tred2();
+
+ // Diagonalize.
+ tql2();
+
+ } else {
+ H = new double[n][n];
+ ort = new double[n];
+
+ for (int j = 0; j < n; j++) {
+ for (int i = 0; i < n; i++) {
+ H[i][j] = A[i][j];
+ }
+ }
+
+ // Reduce to Hessenberg form.
+ orthes();
+
+ // Reduce Hessenberg to real Schur form.
+ hqr2();
+ }
+ }
+
+/* ------------------------
+ Public Methods
+ * ------------------------ */
+
+ /**
+ * Return the eigenvector matrix
+ * @return V
+ */
+ public Matrix getV () {
+ return new Matrix(V);
+ }
+
+ /**
+ * Return the real parts of the eigenvalues
+ * @return real(diag(D))
+ */
+ public double[] getRealEigenvalues(){
+ return d;
+ }
+
+ /**
+ * Return the imaginary parts of the eigenvalues
+ * @return imag(diag(D))
+ */
+ public double[] getImagEigenvalues(){
+ return e;
+ }
+
+ /**
+ * Return the block diagonal eigenvalue matrix
+ * @return D
+ */
+ public Matrix getD(){
+ int i, j;
+ Matrix D = new Matrix(n,n);
+ for(i=0; i
+ * For an m-by-n matrix A with m ≥ n, the LU decomposition is an m-by-n
+ * unit lower triangular matrix L, an n-by-n upper triangular matrix U,
+ * and a permutation vector piv of length m so that A(piv,:) = L*U.
+ * If m < n, then L is m-by-m and U is m-by-n.
+ *
+ * The LU decompostion with pivoting always exists, even if the matrix is
+ * singular, so the constructor will never fail. The primary use of the
+ * LU decomposition is in the solution of square systems of simultaneous
+ * linear equations. This will fail if isNonsingular() returns false.
+ */
+public class LUDecomposition implements Serializable {
+
+ /**
+ * UID
+ */
+ private static final long serialVersionUID = -3852210156107961377L;
+
+ /**
+ * Array for internal storage of decomposition.
+ * @serial internal array storage
+ */
+ private double[][] LU;
+
+ /**
+ * @serial row dimension
+ */
+ private int m;
+
+ /**
+ * @serial column dimension
+ */
+ private int n;
+
+ /**
+ * @serial pivot sign
+ */
+ private int pivsign;
+
+ /**
+ * Internal storage of pivot vector.
+ * @serial pivot vector.
+ */
+ private int[] piv;
+
+ /**
+ * LU Decomposition
+ * Structure to access L, U and piv.
+ * @param A Rectangular matrix
+ */
+ public LUDecomposition(Matrix A){
+ int i, j, k;
+
+ // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
+ LU = A.getCopy();
+ m = A.getM();
+ n = A.getN();
+ piv = new int[m];
+ for(i=0; i
+ Structure to access L, U and piv.
+ @param A Rectangular matrix
+ @param linpackflag Use Gaussian elimination. Actual value ignored.
+ */
+ public LUDecomposition(Matrix A, int linpackflag){
+ int i, j, k;
+ // Initialize.
+ LU = A.getCopy();
+ m = A.getM();
+ n = A.getN();
+ piv = new int[m];
+ for(i=0; i
+ * For an m-by-n matrix A with m ≥ n, the QR decomposition is an m-by-n
+ * orthogonal matrix Q and an n-by-n upper triangular matrix R so that
+ * A = Q*R.
+ *
+ * The QR decompostion always exists, even if the matrix does not have
+ * full rank, so the constructor will never fail. The primary use of the
+ * QR decomposition is in the least squares solution of nonsquare systems
+ * of simultaneous linear equations. This will fail if isFullRank()
+ * returns false.
+ */
+public class QRDecomposition implements Serializable {
+
+ /**
+ * UID
+ */
+ private static final long serialVersionUID = 6913030878857169502L;
+
+/**
+ * Array for internal storage of decomposition.
+ * @serial internal array storage.
+ */
+ private double[][] QR;
+
+ /**
+ * Row dimensions.
+ * @serial row dimension.
+ */
+ private int m;
+
+ /**
+ * Column dimensions.
+ * @serial column dimension.
+ */
+ private int n;
+
+ /**
+ * Array for internal storage of diagonal of R.
+ * @serial diagonal of R.
+ */
+ private double[] Rdiag;
+
+ /**
+ * QR Decomposition, computed by Householder reflections.
+ * Structure to access R and the Householder vectors and compute Q.
+ * @param A rectangular matrix
+ */
+ public QRDecomposition(Matrix A){
+ int i, j, k;
+ // Initialize.
+ QR = A.getCopy();
+ m = A.getM();
+ n = A.getN();
+ Rdiag = new double[n];
+ // Main loop.
+ for(k=0; k
+ * The singular values, σk = Skk, are ordered so that
+ * σ1 ≥ σ2 ≥ ... ≥ σn.
+ *
+ * The singular value decompostion always exists, so the constructor will
+ * never fail. The matrix condition number and the effective numerical
+ * rank can be computed from this decomposition.
+ */
+public class SingularValueDecomposition implements Serializable {
+
+ /**
+ * UID
+ */
+ private static final long serialVersionUID = -4816488865370991490L;
+
+/**
+ * Array for internal storage of U.
+ * @serial internal storage of U.
+ */
+ private double[][] U;
+
+ /**
+ * Array for internal storage of V.
+ * @serial internal storage of V.
+ */
+ private double[][] V;
+
+ /**
+ * Array for internal storage of singular values.
+ * @serial internal storage of singular values.
+ */
+ private double[] s;
+
+ /**
+ * Row dimensions.
+ * @serial row dimension.
+ */
+ private int m;
+
+ /**
+ * Column dimensions.
+ * @serial column dimension.
+ */
+ private int n;
+
+/* ------------------------
+ Constructor
+ * ------------------------ */
+
+ /**
+ * Construct the singular value decomposition Structure to access U, S and V.
+ * @param Arg rectangular matrix
+ */
+ public SingularValueDecomposition(Matrix Arg){
+ int i, j, k;
+ // Derived from LINPACK code.
+ // Initialize.
+ double[][] A = Arg.getCopy();
+ m = Arg.getM();
+ n = Arg.getN();
+ /* TODO: Apparently the failing cases are only a proper subset of (m =-1; k--){
+ if(k == -1) break;
+ if(Math.abs(e[k]) <=
+ tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))){
+ e[k] = 0.0;
+ break;
+ }
+ }
+ if(k == p-2)
+ kase = 4;
+ else {
+ int ks;
+ for(ks=p-1; ks>=k; ks--){
+ if (ks == k) break;
+ double t = (ks != p ? Math.abs(e[ks]) : 0.) +
+ (ks != k+1 ? Math.abs(e[ks-1]) : 0.);
+ if(Math.abs(s[ks]) <= tiny + eps*t){
+ s[ks] = 0.0;
+ break;
+ }
+ }
+ if(ks == k)
+ kase = 3;
+ else if(ks == p-1)
+ kase = 1;
+ else {
+ kase = 2;
+ k = ks;
+ }
+ }
+ k++;
+ // Perform the task indicated by kase.
+ switch (kase) {
+ // Deflate negligible s(p).
+ case 1: {
+ double f = e[p-2];
+ e[p-2] = 0.0;
+ for(j=p-2; j>=k; j--){
+ double t = Maths.hypot(s[j],f);
+ double cs = s[j]/t;
+ double sn = f/t;
+ s[j] = t;
+ if(j != k){
+ f = -sn*e[j-1];
+ e[j-1] = cs*e[j-1];
+ }
+ if(wantv)
+ for(i=0; i
+ * For additional documentation, see
+ * Section 2.2 of
+ * Introduction to Programming in Java: An Interdisciplinary Approach
+ * by Robert Sedgewick and Kevin Wayne.
+ *
+ * @author Robert Sedgewick
+ * @author Kevin Wayne
+ */
+public class StdArrayIO {
+
+ // it doesn't make sense to instantiate this class
+ private StdArrayIO() { }
+
+ /**
+ * Read in and return an array of doubles from standard input.
+ */
+ public static double[] readDouble1D() {
+ int N = StdIn.readInt();
+ double[] a = new double[N];
+ for (int i = 0; i < N; i++) {
+ a[i] = StdIn.readDouble();
+ }
+ return a;
+ }
+
+ /**
+ * Print an array of doubles to standard output.
+ */
+ public static void print(double[] a) {
+ int N = a.length;
+ StdOut.println(N);
+ for (int i = 0; i < N; i++) {
+ StdOut.printf("%9.5f ", a[i]);
+ }
+ StdOut.println();
+ }
+
+
+ /**
+ * Read in and return an M-by-N array of doubles from standard input.
+ */
+ public static double[][] readDouble2D() {
+ int M = StdIn.readInt();
+ int N = StdIn.readInt();
+ double[][] a = new double[M][N];
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ a[i][j] = StdIn.readDouble();
+ }
+ }
+ return a;
+ }
+
+ /**
+ * Print the M-by-N array of doubles to standard output.
+ */
+ public static void print(double[][] a) {
+ int M = a.length;
+ int N = a[0].length;
+ StdOut.println(M + " " + N);
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ StdOut.printf("%9.5f ", a[i][j]);
+ }
+ StdOut.println();
+ }
+ }
+
+
+ /**
+ * Read in and return an array of ints from standard input.
+ */
+ public static int[] readInt1D() {
+ int N = StdIn.readInt();
+ int[] a = new int[N];
+ for (int i = 0; i < N; i++) {
+ a[i] = StdIn.readInt();
+ }
+ return a;
+ }
+
+ /**
+ * Print an array of ints to standard output.
+ */
+ public static void print(int[] a) {
+ int N = a.length;
+ StdOut.println(N);
+ for (int i = 0; i < N; i++) {
+ StdOut.printf("%9d ", a[i]);
+ }
+ StdOut.println();
+ }
+
+
+ /**
+ * Read in and return an M-by-N array of ints from standard input.
+ */
+ public static int[][] readInt2D() {
+ int M = StdIn.readInt();
+ int N = StdIn.readInt();
+ int[][] a = new int[M][N];
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ a[i][j] = StdIn.readInt();
+ }
+ }
+ return a;
+ }
+
+ /**
+ * Print the M-by-N array of ints to standard output.
+ */
+ public static void print(int[][] a) {
+ int M = a.length;
+ int N = a[0].length;
+ StdOut.println(M + " " + N);
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ StdOut.printf("%9d ", a[i][j]);
+ }
+ StdOut.println();
+ }
+ }
+
+
+ /**
+ * Read in and return an array of booleans from standard input.
+ */
+ public static boolean[] readBoolean1D() {
+ int N = StdIn.readInt();
+ boolean[] a = new boolean[N];
+ for (int i = 0; i < N; i++) {
+ a[i] = StdIn.readBoolean();
+ }
+ return a;
+ }
+
+ /**
+ * Print an array of booleans to standard output.
+ */
+ public static void print(boolean[] a) {
+ int N = a.length;
+ StdOut.println(N);
+ for (int i = 0; i < N; i++) {
+ if (a[i]) StdOut.print("1 ");
+ else StdOut.print("0 ");
+ }
+ StdOut.println();
+ }
+
+ /**
+ * Read in and return an M-by-N array of booleans from standard input.
+ */
+ public static boolean[][] readBoolean2D() {
+ int M = StdIn.readInt();
+ int N = StdIn.readInt();
+ boolean[][] a = new boolean[M][N];
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ a[i][j] = StdIn.readBoolean();
+ }
+ }
+ return a;
+ }
+
+ /**
+ * Print the M-by-N array of booleans to standard output.
+ */
+ public static void print(boolean[][] a) {
+ int M = a.length;
+ int N = a[0].length;
+ StdOut.println(M + " " + N);
+ for (int i = 0; i < M; i++) {
+ for (int j = 0; j < N; j++) {
+ if (a[i][j]) StdOut.print("1 ");
+ else StdOut.print("0 ");
+ }
+ StdOut.println();
+ }
+ }
+
+
+ /**
+ * Test client.
+ */
+ public static void main(String[] args) {
+
+ // read and print an array of doubles
+ double[] a = StdArrayIO.readDouble1D();
+ StdArrayIO.print(a);
+ StdOut.println();
+
+ // read and print a matrix of doubles
+ double[][] b = StdArrayIO.readDouble2D();
+ StdArrayIO.print(b);
+ StdOut.println();
+
+ // read and print a matrix of doubles
+ boolean[][] d = StdArrayIO.readBoolean2D();
+ StdArrayIO.print(d);
+ StdOut.println();
+ }
+
+}
\ No newline at end of file
diff --git a/src/stdlib/StdIn.java b/src/stdlib/StdIn.java
new file mode 100644
index 0000000..baa6026
--- /dev/null
+++ b/src/stdlib/StdIn.java
@@ -0,0 +1,210 @@
+package stdlib;
+
+/*************************************************************************
+ * Compilation: javac StdIn.java
+ * Execution: java StdIn
+ *
+ * Reads in data of various types from standard input.
+ *
+ *************************************************************************/
+
+import java.io.BufferedInputStream;
+import java.util.Locale;
+import java.util.Scanner;
+
+/**
+ * Standard input. This class provides methods for reading strings
+ * and numbers from standard input.
+ *
+ * The Locale used is: language = English, country = US. This is consistent
+ * with the formatting conventions with Java floating-point literals,
+ * command-line arguments (via Double.parseDouble())
+ * and standard output (via System.out.print()). It ensures that
+ * standard input works with the input files used in the textbook.
+ *
+ * For additional documentation, see Section 1.5 of
+ * Introduction to Programming in Java: An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne.
+ */
+public final class StdIn {
+
+ // assume Unicode UTF-8 encoding
+ private static String charsetName = "UTF-8";
+
+ // assume language = English, country = US for consistency with System.out.
+ private static Locale usLocale = new Locale("en", "US");
+
+ // the scanner object
+ private static Scanner scanner = new Scanner(new BufferedInputStream(System.in), charsetName);
+
+ // static initializer
+ static { scanner.useLocale(usLocale); }
+
+ // singleton pattern - can't instantiate
+ private StdIn() { }
+
+
+ /**
+ * Is there only whitespace left on standard input?
+ */
+ public static boolean isEmpty() {
+ return !scanner.hasNext();
+ }
+
+ /**
+ * Return next string from standard input
+ */
+ public static String readString() {
+ return scanner.next();
+ }
+
+ /**
+ * Return next int from standard input
+ */
+ public static int readInt() {
+ return scanner.nextInt();
+ }
+
+ /**
+ * Return next double from standard input
+ */
+ public static double readDouble() {
+ return scanner.nextDouble();
+ }
+
+ /**
+ * Return next float from standard input
+ */
+ public static float readFloat() {
+ return scanner.nextFloat();
+ }
+
+ /**
+ * Return next short from standard input
+ */
+ public static short readShort() {
+ return scanner.nextShort();
+ }
+
+ /**
+ * Return next long from standard input
+ */
+ public static long readLong() {
+ return scanner.nextLong();
+ }
+
+ /**
+ * Return next byte from standard input
+ */
+ public static byte readByte() {
+ return scanner.nextByte();
+ }
+
+ /**
+ * Return next boolean from standard input, allowing "true" or "1" for true,
+ * and "false" or "0" for false
+ */
+ public static boolean readBoolean() {
+ String s = readString();
+ if (s.equalsIgnoreCase("true")) return true;
+ if (s.equalsIgnoreCase("false")) return false;
+ if (s.equals("1")) return true;
+ if (s.equals("0")) return false;
+ throw new java.util.InputMismatchException();
+ }
+
+ /**
+ * Does standard input have a next line?
+ */
+ public static boolean hasNextLine() {
+ return scanner.hasNextLine();
+ }
+
+ /**
+ * Return rest of line from standard input
+ */
+ public static String readLine() {
+ return scanner.nextLine();
+ }
+
+ /**
+ * Return next char from standard input
+ */
+ // a complete hack and inefficient - email me if you have a better
+ public static char readChar() {
+ // (?s) for DOTALL mode so . matches a line termination character
+ // 1 says look only one character ahead
+ // consider precompiling the pattern
+ String s = scanner.findWithinHorizon("(?s).", 1);
+ return s.charAt(0);
+ }
+
+ /**
+ * Return rest of input from standard input
+ */
+ public static String readAll() {
+ if (!scanner.hasNextLine()) return null;
+
+ // reference: http://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner_1.html
+ return scanner.useDelimiter("\\A").next();
+ }
+
+ /**
+ * Read rest of input as array of ints
+ */
+ public static int[] readInts() {
+ String[] fields = readAll().trim().split("\\s+");
+ int[] vals = new int[fields.length];
+ for (int i = 0; i < fields.length; i++)
+ vals[i] = Integer.parseInt(fields[i]);
+ return vals;
+ }
+
+ /**
+ * Read rest of input as array of doubles
+ */
+ public static double[] readDoubles() {
+ String[] fields = readAll().trim().split("\\s+");
+ double[] vals = new double[fields.length];
+ for (int i = 0; i < fields.length; i++)
+ vals[i] = Double.parseDouble(fields[i]);
+ return vals;
+ }
+
+ /**
+ * Read rest of input as array of strings
+ */
+ public static String[] readStrings() {
+ String[] fields = readAll().trim().split("\\s+");
+ return fields;
+ }
+
+
+
+ /**
+ * Unit test
+ */
+ public static void main(String[] args) {
+
+ System.out.println("Type a string: ");
+ String s = StdIn.readString();
+ System.out.println("Your string was: " + s);
+ System.out.println();
+
+ System.out.println("Type an int: ");
+ int a = StdIn.readInt();
+ System.out.println("Your int was: " + a);
+ System.out.println();
+
+ System.out.println("Type a boolean: ");
+ boolean b = StdIn.readBoolean();
+ System.out.println("Your boolean was: " + b);
+ System.out.println();
+
+ System.out.println("Type a double: ");
+ double c = StdIn.readDouble();
+ System.out.println("Your double was: " + c);
+ System.out.println();
+
+ }
+
+}
diff --git a/src/stdlib/StdOut.java b/src/stdlib/StdOut.java
new file mode 100644
index 0000000..aa611b8
--- /dev/null
+++ b/src/stdlib/StdOut.java
@@ -0,0 +1,230 @@
+package stdlib;
+
+/*************************************************************************
+ * Compilation: javac StdOut.java
+ * Execution: java StdOut
+ *
+ * Writes data of various types to standard output.
+ *
+ *************************************************************************/
+
+import java.io.OutputStreamWriter;
+import java.io.PrintWriter;
+import java.io.UnsupportedEncodingException;
+import java.util.Locale;
+
+/**
+ * Standard output. This class provides methods for writing strings
+ * and numbers to standard output.
+ *
+ * For additional documentation, see Section 1.5 of
+ * Introduction to Programming in Java: An Interdisciplinary Approach by Robert Sedgewick and Kevin Wayne.
+ */
+public final class StdOut {
+
+ // force Unicode UTF-8 encoding; otherwise it's system dependent
+ private static final String UTF8 = "UTF-8";
+
+ // assume language = English, country = US for consistency with StdIn
+ private static final Locale US_LOCALE = new Locale("en", "US");
+
+ // send output here
+ private static PrintWriter out;
+
+ // this is called before invoking any methods
+ static {
+ try {
+ out = new PrintWriter(new OutputStreamWriter(System.out, UTF8), true);
+ }
+ catch (UnsupportedEncodingException e) { System.out.println(e); }
+ }
+
+ // singleton pattern - can't instantiate
+ private StdOut() { }
+
+ // close the output stream (not required)
+ /**
+ * Close standard output.
+ */
+ public static void close() {
+ out.close();
+ }
+
+ /**
+ * Terminate the current line by printing the line separator string.
+ */
+ public static void println() {
+ out.println();
+ }
+
+ /**
+ * Print an object to standard output and then terminate the line.
+ */
+ public static void println(Object x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a boolean to standard output and then terminate the line.
+ */
+ public static void println(boolean x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a char to standard output and then terminate the line.
+ */
+ public static void println(char x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a double to standard output and then terminate the line.
+ */
+ public static void println(double x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a float to standard output and then terminate the line.
+ */
+ public static void println(float x) {
+ out.println(x);
+ }
+
+ /**
+ * Print an int to standard output and then terminate the line.
+ */
+ public static void println(int x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a long to standard output and then terminate the line.
+ */
+ public static void println(long x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a short to standard output and then terminate the line.
+ */
+ public static void println(short x) {
+ out.println(x);
+ }
+
+ /**
+ * Print a byte to standard output and then terminate the line.
+ */
+ public static void println(byte x) {
+ out.println(x);
+ }
+
+ /**
+ * Flush standard output.
+ */
+ public static void print() {
+ out.flush();
+ }
+
+ /**
+ * Print an Object to standard output and flush standard output.
+ */
+ public static void print(Object x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a boolean to standard output and flush standard output.
+ */
+ public static void print(boolean x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a char to standard output and flush standard output.
+ */
+ public static void print(char x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a double to standard output and flush standard output.
+ */
+ public static void print(double x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a float to standard output and flush standard output.
+ */
+ public static void print(float x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print an int to standard output and flush standard output.
+ */
+ public static void print(int x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a long to standard output and flush standard output.
+ */
+ public static void print(long x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a short to standard output and flush standard output.
+ */
+ public static void print(short x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a byte to standard output and flush standard output.
+ */
+ public static void print(byte x) {
+ out.print(x);
+ out.flush();
+ }
+
+ /**
+ * Print a formatted string to standard output using the specified
+ * format string and arguments, and flush standard output.
+ */
+ public static void printf(String format, Object... args) {
+ out.printf(US_LOCALE, format, args);
+ out.flush();
+ }
+
+ /**
+ * Print a formatted string to standard output using the specified
+ * locale, format string, and arguments, and flush standard output.
+ */
+ public static void printf(Locale locale, String format, Object... args) {
+ out.printf(locale, format, args);
+ out.flush();
+ }
+
+ // This method is just here to test the class
+ public static void main(String[] args) {
+
+ // write to stdout
+ StdOut.println("Test");
+ StdOut.println(17);
+ StdOut.println(true);
+ StdOut.printf("%.6f\n", 1.0/7.0);
+ }
+
+}