Files
jogging-dashboard/gpx_app.py

575 lines
18 KiB
Python
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 30th 2025
@author: Marcel Weschke
@email: marcel.weschke@directbox.de
"""
# %% Load libraries
import os
import base64
import io
import datetime
from math import radians, sin, cos, sqrt, asin
import dash
from dash import dcc, html, Input, Output, Dash
import dash_bootstrap_components as dbc
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.interpolate import interp1d
import gpxpy
# === Helper Functions ===
def list_gpx_files():
folder = './gpx_files'
#return [{'label': f, 'value': os.path.join(folder, f)} for f in os.listdir(folder) if f.endswith('.gpx')]
files = [f for f in os.listdir(folder) if f.endswith('.gpx')]
# Extract date from the start of the filename and sort descending
def extract_date(filename):
try:
return datetime.datetime.strptime(filename[:10], '%Y-%m-%d')
except ValueError:
return datetime.datetime.min # Put files without a valid date at the end
files.sort(key=extract_date, reverse=True)
return [{'label': f, 'value': os.path.join(folder, f)} for f in files]
def haversine(lon1, lat1, lon2, lat2):
R = 6371
dlon = radians(lon2 - lon1)
dlat = radians(lat2 - lat1)
a = sin(dlat/2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlon/2)**2
return 2 * R * asin(sqrt(a))
def process_gpx(file_path):
with open(file_path, 'r') as gpx_file:
gpx = gpxpy.parse(gpx_file)
points = gpx.tracks[0].segments[0].points
df = pd.DataFrame([{
'lat': p.latitude,
'lon': p.longitude,
'elev': p.elevation,
'time': p.time
} for p in points])
# Basic cleanup
df['time'] = pd.to_datetime(df['time'])
df['time_loc'] = df['time'].dt.tz_localize(None)
df['time_diff'] = df['time'] - df['time'][0]
df['time_diff_sec'] = df['time_diff'].dt.total_seconds()
df['duration_hms'] = df['time_diff'].apply(lambda td: str(td).split('.')[0])
# Cumulative distance (km)
distances = [0]
for i in range(1, len(df)):
d = haversine(df.loc[i-1, 'lon'], df.loc[i-1, 'lat'], df.loc[i, 'lon'], df.loc[i, 'lat'])
distances.append(distances[-1] + d)
df['cum_dist_km'] = distances
# Elevation and elevation change
df['elev'] = df['elev'].bfill()
df['delta_elev'] = df['elev'].diff().fillna(0)
df['rel_elev'] = df['elev'] - df['elev'].iloc[0]
# Velocity (used in pace and speed)
df['vel_kmps'] = np.gradient(df['cum_dist_km'], df['time_diff_sec'])
# Speed calculation (km/h) via distance and time diffs
df['delta_t'] = df['time'].diff().dt.total_seconds()
df['delta_d'] = df['cum_dist_km'].diff()
df['speed_kmh'] = (df['delta_d'] / df['delta_t']) * 3600
df['speed_kmh'] = df['speed_kmh'].replace([np.inf, -np.inf], np.nan)
# Smoothed speed (Gaussian rolling)
df['speed_kmh_smooth'] = df['speed_kmh'].rolling(window=10, win_type="gaussian", center=True).mean(std=2)
return df
# =============================================================================
# INFO BANNER
# =============================================================================
def create_info_banner(df):
# Total distance in km
total_distance_km = df['cum_dist_km'].iloc[-1]
# Total time as timedelta
total_seconds = df['time_diff_sec'].iloc[-1]
hours, remainder = divmod(int(total_seconds), 3600)
minutes, seconds = divmod(remainder, 60)
formatted_total_time = f"{hours:02d}:{minutes:02d}:{seconds:02d}"
# Average pace (min/km)
if total_distance_km > 0:
pace_sec_per_km = total_seconds / total_distance_km
pace_min = int(pace_sec_per_km // 60)
pace_sec = int(pace_sec_per_km % 60)
formatted_pace = f"{pace_min}:{pace_sec:02d} min/km"
else:
formatted_pace = "N/A"
# Build the info banner layout
info_banner = html.Div([
html.Div([
html.H4("Total Distance", style={'margin-bottom': '5px'}),
html.H2(f"{total_distance_km:.2f} km")
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
html.Div([
html.H4("Total Time", style={'margin-bottom': '5px'}),
html.H2(formatted_total_time)
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
html.Div([
html.H4("Average Pace", style={'margin-bottom': '5px'}),
html.H2(formatted_pace)
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
], style={
'display': 'flex',
'justifyContent': 'space-around',
'backgroundColor': '#1e1e1e',
'color': 'white',
'padding': '20px',
'marginBottom': '5px',
'borderRadius': '10px',
'width': '100%',
#'maxWidth': '1200px',
'margin': 'auto'
})
return info_banner
# =============================================================================
# START OF THE PLOTS
# =============================================================================
def create_map_plot(df):
# fig = px.line_map(
# df,
# lat='lat',
# lon='lon',
# hover_name='time',
# hover_data={
# 'cum_dist_km': ':.2f',
# 'duration_hms': True,
# 'lat': False,
# 'lon': False,
# 'time': False
# },
# labels={
# 'cum_dist_km': 'Distance (km) ',
# 'duration_hms': 'Elapsed Time '
# },
# zoom=13,
# height=800
# )
fig = px.line_map(
df,
lat='lat',
lon='lon',
zoom=13,
height=800
)
fig.update_traces(
hovertemplate=(
#"Time: %{customdata[0]}<br>" +
"Distance (km): %{customdata[1]:.2f}<br>" +
"Elapsed Time: %{customdata[2]}<extra></extra>"
),
customdata=df[['time', 'cum_dist_km', 'duration_hms']]
)
# Define map style and the line ontop
fig.update_layout(map_style="open-street-map")
# The built-in plotly.js styles are: carto-darkmatter, carto-positron, open-street-map, stamen-terrain, stamen-toner, stamen-watercolor, white-bg
# The built-in Mapbox styles are: basic, streets, outdoors, light, dark, satellite, satellite-streets
fig.update_traces(line=dict(color="#f54269", width=3))
# Start / Stop marker
start = df.iloc[0]
end = df.iloc[-1]
fig.add_trace(go.Scattermap(
lat=[start['lat']], lon=[start['lon']], mode='markers+text',
marker=dict(size=12, color='#fca062'), text=['Start'], name='Start', textposition='bottom left'
))
fig.add_trace(go.Scattermap(
lat=[end['lat']], lon=[end['lon']], mode='markers+text',
marker=dict(size=12, color='#b9fc62'), text=['Stop'], name='Stop', textposition='bottom left'
))
fig.update_layout(paper_bgcolor='#1e1e1e', font=dict(color='white'))
fig.update_layout(
legend=dict(
orientation='h', # horizontal layout
yanchor='top',
y=-0.01, # move legend below the map
xanchor='center',
x=0.5,
font=dict(color='white')
)
)
return fig
######################
# NEUE VERSION:
def create_elevation_plot(df, smooth_points=500):
# Originale Daten
x = df['time']
y = df['rel_elev']
# Einfache Glättung: nur Y-Werte glätten, X-Werte beibehalten
if len(y) >= 4: # Genug Punkte für cubic interpolation
y_numeric = y.to_numpy()
# Nur gültige Y-Punkte für Interpolation
mask = ~np.isnan(y_numeric)
if np.sum(mask) >= 4: # Genug gültige Punkte
# Index-basierte Interpolation für Y-Werte
valid_indices = np.where(mask)[0]
valid_y = y_numeric[mask]
# Interpolation über die Indizes
f = interp1d(valid_indices, valid_y, kind='cubic',
bounds_error=False, fill_value='extrapolate')
# Neue Y-Werte für alle ursprünglichen X-Positionen
all_indices = np.arange(len(y))
y_smooth = f(all_indices)
# Originale X-Werte beibehalten
x_smooth = x
else:
# Fallback: originale Daten
x_smooth, y_smooth = x, y
else:
# Zu wenige Punkte: originale Daten verwenden
x_smooth, y_smooth = x, y
fig = go.Figure()
# Fläche unter der Kurve (mit geglätteten Daten)
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth,
mode='lines',
line=dict(color='#1CAF50'), # Fill between color!
fill='tozeroy',
#fillcolor='rgba(226, 241, 248)',
hoverinfo='skip',
showlegend=False
))
# Hauptlinie (geglättet)
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth,
mode='lines',
line=dict(color='#084C20', width=2), # Line color!
name='Elevation',
showlegend=False
))
# SUPDER IDEE, ABER GEHT NICHT WEGE NEUEN smoothed POINTS! GEHT NUR BEI X
#fig.update_traces(
# hovertemplate=(
# #"Time: %{customdata[0]}<br>" +
# "Distance (km): %{customdata[0]:.2f}<br>" +
# "Elevation: %{customdata[1]}<extra></extra>" +
# "Elapsed Time: %{customdata[2]}<extra></extra>"
# ),
# customdata=df[['cum_dist_km','elev', 'time']]
#
# Layout im Dark Theme
fig.update_layout(
title=dict(text='Höhenprofil relativ zum Startwert', font=dict(size=16, color='white')),
xaxis_title='Zeit',
yaxis_title='Höhe relativ zum Start (m)',
template='plotly_dark',
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white'),
margin=dict(l=40, r=40, t=50, b=40),
height=400
)
return fig
def create_deviation_plot(df): #Distanz-Zeit-Diagramm
# Compute mean velocity in km/s
vel_kmps_mean = df['cum_dist_km'].iloc[-1] / df['time_diff_sec'].iloc[-1]
# Expected cumulative distance assuming constant mean velocity
df['cum_dist_km_qmean'] = df['time_diff_sec'] * vel_kmps_mean
# Deviation from mean velocity distance
df['del_dist_km_qmean'] = df['cum_dist_km'] - df['cum_dist_km_qmean']
# Plot the deviation
fig = px.line(
df,
x='time_loc',
y='del_dist_km_qmean',
labels={
'time_loc': 'Zeit',
'del_dist_km_qmean': 'Δ Strecke (km)'
},
template='plotly_dark',
)
fig.update_layout(
title=dict(text='Abweichung von integriertem Durchschnittstempo', font=dict(size=16)),
yaxis_title='Abweichung (km)',
xaxis_title='Zeit',
height=400,
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white', size=14),
margin=dict(l=40, r=40, t=50, b=40)
)
# Add horizontal reference line at y=0
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=0,
y1=0,
line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittstempo'
)
return fig
def create_speed_plot(df):
mask = df['speed_kmh_smooth'].isna()
mean_speed_kmh = df['speed_kmh'].mean()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df['time'][~mask],
y=df['speed_kmh_smooth'][~mask],
mode='lines',
name='Geglättete Geschwindigkeit',
line=dict(color='royalblue')
))
fig.update_layout(
title=dict(text=f'Tempo über die Zeit (geglättet) - Durchschnittstempo: {mean_speed_kmh:.2f} km/h', font=dict(size=16)),
xaxis=dict(title='Zeit', tickformat='%H:%M', type='date'),
yaxis=dict(title='Geschwindigkeit (km/h)', rangemode='tozero'),
template='plotly_dark',
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white'),
margin=dict(l=40, r=40, t=40, b=40)
)
# Add horizontal reference line at y=mean_speed_kmh
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=mean_speed_kmh,
y1=mean_speed_kmh,
line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittstempo'
)
return fig
def create_pace_bars_plot(df):
# Ensure time column is datetime
if not pd.api.types.is_datetime64_any_dtype(df['time']):
df['time'] = pd.to_datetime(df['time'], errors='coerce')
# Assign km segments
df['km'] = df['cum_dist_km'].astype(int)
# Time in seconds from start
df['time_sec'] = (df['time'] - df['time'].iloc[0]).dt.total_seconds()
# Step 3: Compute pace manually per km group
df['km_start'] = np.nan
df['segment_len'] = np.nan
df['pace_min_per_km'] = np.nan
for km_val, group in df.groupby('km'):
dist_start = group['cum_dist_km'].iloc[0]
dist_end = group['cum_dist_km'].iloc[-1]
segment_len = dist_end - dist_start
time_start = group['time_sec'].iloc[0]
time_end = group['time_sec'].iloc[-1]
elapsed_time_sec = time_end - time_start
if segment_len > 0:
pace_min_per_km = (elapsed_time_sec / 60) / segment_len
else:
pace_min_per_km = np.nan
df.loc[group.index, 'km_start'] = km_val
df.loc[group.index, 'segment_len'] = segment_len
df.loc[group.index, 'pace_min_per_km'] = pace_min_per_km
# Clean types
df['km_start'] = df['km_start'].astype(int)
df['segment_len'] = df['segment_len'].astype(float)
df['pace_min_per_km'] = pd.to_numeric(df['pace_min_per_km'], errors='coerce')
# Step 4: Create Plotly bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=df['km_start'],
y=df['pace_min_per_km'],
width=df['segment_len'],
text=[f"{v:.1f} min/km" if pd.notnull(v) else "" for v in df['pace_min_per_km']],
textposition='outside',
marker_color='dodgerblue',
name='Pace pro km',
offset=0
))
# #########
# Add horizontal reference line - X-Werte für gesamte Breite
# Calculate average pace
total_distance_km = df['cum_dist_km'].iloc[-1]
total_seconds = df['time_diff_sec'].iloc[-1]
# Average pace (min/km) - KORRIGIERT
if total_distance_km > 0:
pace_sec_per_km = total_seconds / total_distance_km
pace_min_per_km = pace_sec_per_km / 60 # Konvertiere zu Minuten pro km
else:
pace_min_per_km = 0
fig.add_shape(
type='line',
x0=0, # Start bei 0
x1=total_distance_km, # Ende bei maximaler Distanz
y0=pace_min_per_km,
y1=pace_min_per_km,
line=dict(color='gray', width=1, dash='dash'),
)
## Optional: Text-Annotation für die durchschnittliche Pace
#fig.add_annotation(
# x=total_distance_km * 0.8, # Position bei 80% der Distanz
# y=pace_min_per_km,
# text=f"Ø {pace_min_per_km:.1f} min/km",
# showarrow=True,
# arrowhead=2,
# arrowcolor="gray",
# bgcolor="rgba(255,0,0,0.1)",
# bordercolor="gray",
# font=dict(color="white")
#)
fig.update_layout(
title=dict(text='Tempo (min/km) je Kilometer', font=dict(size=16)),
xaxis_title='Distanz (km)',
yaxis_title='Minuten pro km',
barmode='overlay',
bargap=0,
bargroupgap=0,
xaxis=dict(
type='linear',
range=[0, df['cum_dist_km'].iloc[-1]],
tickmode='linear',
dtick=1,
showgrid=True
),
template='plotly_dark',
height=400,
margin=dict(l=40, r=40, t=30, b=40),
plot_bgcolor='#111111',
paper_bgcolor='#1e1e1e',
font=dict(color='white')
)
return fig
# === App Setup ===
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.SLATE])
app.title = "GPX Dashboard"
app.layout = html.Div([
html.H1("Running Dashboard", style={'textAlign': 'center'}),
dcc.Store(id='stored-df'),
html.Div([
html.Label("GPX-Datei wählen:", style={'color': 'white'}),
dcc.Dropdown(
id='gpx-file-dropdown',
options=list_gpx_files(),
value=list_gpx_files()[0]['value'],
clearable=False,
style={'width': '300px', 'color': 'black'}
)
], style={'padding': '20px', 'backgroundColor': '#1e1e1e'}),
html.Div(id='info-banner'),
dcc.Graph(id='fig-map'),
dcc.Graph(id='fig-elevation'),
dcc.Graph(id='fig_deviation'),
dcc.Graph(id='fig_speed'),
dcc.Graph(id='fig_pace_bars')
])
# === Callbacks ===
# Callback 1: Load GPX File and Store as JSON
@app.callback(
Output('stored-df', 'data'),
Input('gpx-file-dropdown', 'value')
)
def load_gpx_data(path):
df = process_gpx(path)
return df.to_json(date_format='iso', orient='split')
# Callback 2: Update All Plots
@app.callback(
Output('info-banner', 'children'),
Output('fig-map', 'figure'),
Output('fig-elevation', 'figure'),
Output('fig_deviation', 'figure'),
Output('fig_speed', 'figure'),
Output('fig_pace_bars', 'figure'),
Input('stored-df', 'data')
)
def update_all_plots(json_data):
df = pd.read_json(io.StringIO(json_data), orient='split')
info = create_info_banner(df)
fig_map = create_map_plot(df)
fig_elev = create_elevation_plot(df)
fig_dev = create_deviation_plot(df)
fig_speed = create_speed_plot(df)
fig_pace = create_pace_bars_plot(df)
return info, fig_map, fig_elev, fig_dev, fig_speed, fig_pace
# === Run Server ===
if __name__ == '__main__':
app.run(debug=True, port=8051)
# NOTE:
# Zusammenhang zwischen Pace und Geschwindigkeit
# - Pace = Minuten pro Kilometer (z.B. 5:40/km)
# - Geschwindigkeit = Kilometer pro Stunde (z.B. 10.71 km/h)
#