Generelle Überarbeitung

This commit is contained in:
2015-06-21 02:04:24 +02:00
parent 69085bfe43
commit 5c2889b2bf
4 changed files with 38 additions and 24 deletions

View File

@@ -49,10 +49,10 @@ Mit dem Kräftegleichgewicht am infinitesimalen Element ergibt sich für ein bel
Die Summe der
%partiell abgeleiteten
%inneren Spannungen
gleichgerichteten, in Dickenrichtung dividierten, differentiellen Spannungen%
~\(\sigma_{ji,j}(\tensorI{x})\) stehen mit der ortsabhängigen Volumenkraft~\(f_i(\tensorI{x})\) der jeweiligen Richtung im Gleichgewicht.
Dabei beschreiben die Randbedingungen zum einen Verschiebungen~\(\tensorI{u}_0(\tensorI{x})\) auf einem Teil der Körperoberfläche~\(\partial V_1\) und zum anderen Belastungen in Form eines Spannungsvektors~\(\tensorI{t}(\tensorI{x})\) auf den restlichen Teil der Körperoberfläche~\(\partial V_2\).
Zur näherungsweisen Verarbeitung der Differentialgleichung wird hier das Variationsprinzip -- das sogenannte \emph{Prinzip der virtuellen Verrückung} -- herangezogen, mit der ein Ersatzgleichgewichtsgleichung formuliert wird.
gleichgerichteten, auf das Volumen bezogenen, differentiellen Spannungen%
~\(\sigma_{ji,j}(\tensorI{x})\) stehen mit der ortsabhängigen Volumenkraft~\(f_i(\tensorI{x})\) der jeweiligen Richtung im Gleichgewicht, siehe dazu auch Abbildung~\ref{pgfplots:Kraeftegleichgewicht} rechts mit Darstellung der in \(x\) gerichteten Kräften.
Die Randbedingungen beschreiben dabei zum einen Verschiebungen~\(\tensorI{u}_0(\tensorI{x})\) auf einem Teil der Körperoberfläche~\(\partial V_1\) und zum anderen Belastungen in Form eines Spannungsvektors~\(\tensorI{t}(\tensorI{x})\) auf den restlichen Teil der Körperoberfläche~\(\partial V_2\).
Zur näherungsweisen Verarbeitung der Differentialgleichung wird hier das Variationsprinzip mit dem sogenannte \emph{Prinzip der virtuellen Verrückung} herangezogen, mit der ein Ersatzgleichgewichtsgleichung formuliert wird.
%\begin{tikzpicture}
@@ -184,7 +184,7 @@ Zur näherungsweisen Verarbeitung der Differentialgleichung wird hier das Variat
\end{figure} \vspace{-1.5em}
\paragraph{Globales Gleichgewicht über schwache Formulierung des Randwertproblems}~\\
Auf Grundlage der Differentialgleichung (starke Formulierung) erfolgt die schwache Formulierung durch Multiplikation einer Testfunktion beziehungsweise virtuellen Verrückung \(\delta\tensorI{u}\), welche die kinematischen beziehungsweise wesentlichen Randbedingungen erfüllen muss (\(\forall \delta\tensorI{u}\in C^1(V)\cap C(\overline{V}),~ \delta\tensorI{u} = \tensorI{u}_0 \text{ auf } \partial V_1\)), mit anschließender Integration über das Berechnungsgebiet \(V\).
Auf Grundlage der Differentialgleichung (starke Formulierung) erfolgt die schwache Formulierung durch Multiplikation einer Testfunktion beziehungsweise hier mit einer virtuellen Verrückung \(\delta\tensorI{u}\), welche die kinematischen beziehungsweise wesentlichen Randbedingungen erfüllen muss (\(\forall \delta\tensorI{u}\in C^1(V)\cap C(\overline{V}) \text{ mit } \overline{V}=V \cup \partial V,~ \delta\tensorI{u} = \tensorI{u}_0 \text{ auf } \partial V_1\)), mit anschließender Integration über das Berechnungsgebiet \(V\)
\[
\underbrace{\int\limits_{V\vphantom{V_1}}\!\!\!(\tensorII{\sigma} : \nabla\delta\tensorI{u})\dif V }_{\delta W\ti{i}} = \underbrace{\!\!\int\limits_V\!\!\!(\tensorI{f}\cdot\delta\tensorI{u})\dif V + \!\!\int\limits_{\partial V_2}\!\!\!(\tensorI{t}\cdot\delta\tensorI{u})\dif A
% + \sum\tensorI{F}_i\cdot\delta\tensor{u}_i
@@ -198,7 +198,7 @@ wobei
\( \int_V \nabla\cdot\tensorII{\sigma}\cdot\delta\tensorI{u}\dif V = \int_A(\tensorII{\sigma}\cdot\tensorI{n})\cdot\delta\tensorI{u}\dif A - \int_V\tensorII{\sigma}:(\nabla\delta\tensorI{u})\dif V \)
(Green'sche Integralsatz)
sowie
\( \nabla\delta\tensorI{u} = \tensorII{\varepsilon}(\delta\tensorI{u}) = \delta\tensorII{\varepsilon} \) im linearen Fall. Die Integration erfolgt im linearen Fall über das unverformte und bei dem nichtlinearen Fall über das verformte Volumen.
\( \nabla\delta\tensorI{u} = \tensorII{\varepsilon}(\delta\tensorI{u}) = \delta\tensorII{\varepsilon} \) im linearen Fall. Die Integration erfolgt für kleine Verformungen über das unverformte und bei dem nichtlinearen Fall über das verformte Volumen.
\paragraph{Materialgesetz}~\\
Im linear elastischen Fall besteht zwischen der Spannung und der Dehnung das folgende Materialgesetz
@@ -208,7 +208,7 @@ Im linear elastischen Fall besteht zwischen der Spannung und der Dehnung das fol
\text{bzw. in Ingeniersnotation}~~~~~ & \tensor{\sigma}_{6\times1} &=& \tensor{C}_{6\times6} \tensor{\varepsilon}_{6\times1} & \quad\text{da } \tensorII{\sigma}^\T = \tensorII{\sigma} ~\wedge~ \tensorII{\varepsilon}^\T = \tensorII{\varepsilon}
\end{Array}
\]
Im allgemeinem Fall entsprechen die enthaltene Richtungen der Dehnung nicht die enthaltene Richtung der Kraftkomponente. Es kann somit jede Spannungskomponente von jeder Dehnungskomponente abhängen, weshalb entgegen dem vergleichsweise eindimensionalen Fall \(\sigma(x) = E\varepsilon(x)\) keine direkte Proportionalität vorherrscht.
Im allgemeinem Fall entsprechen die enthaltene Richtungen der Dehnung nicht die enthaltene Richtung der Kraftkomponente. Es kann somit jede Spannungskomponente von jeder Dehnungskomponente abhängen, weshalb entgegen dem bekannteren eindimensionalen Fall \(\sigma(x) = E\varepsilon(x)\) das Verhalten nicht mit einer einzigen Größe beschrieben wird.
Damit ist die Elastizitätsbeziehung beziehungsweise der Elastizitätstensor \(\tensorIV{C}\), der das Materialverhalten beschreibt, kein Skalar sondern ein Tensor vierter Stufe.
Für den physikalisch nichtlinearen Fall sind die Spannungen allgemein von dem Verlauf der Verformung abhängig \(\tensorII{\sigma} = \tensorII{\sigma}(\tensorI{u})\).
@@ -243,18 +243,18 @@ Für den geometrisch nichtlinearen Fall sind die Dehnungen allgemein von dem Ver
Für eine genauere Darstellung wird auf \cite{becker02} verwiesen.
\paragraph{Das FE"=Gleichungssystem}~\\
Das Aufstellen des FE"=Gleichungssystems startet mit der \emph{Vernetzung} beziehungsweise \emph{Partitionierung}
Das Aufstellen des FE"=Gleichungssystems beginnt mit der \emph{Vernetzung} beziehungsweise der \emph{Partitionierung}
\[
V \approx \bigcup V^{(e)}
\]
Hiermit ist das Gesamtvolumen die Vereinigung der diskreten Einzelvolumen beziehungsweise Elemente.
Hiermit ist das Gesamtvolumen die Vereinigung der diskreten Einzelvolumen oder Elemente.
Die \emph{Approximation} als Überlagerung aller Formfunktionen mit den jeweiligen Knotenverformungen lautet
Die \emph{Approximation} mittels Ansatzfunktionen als Linearkombination von Formfunktionen mit Knotenverformungen als Koeffizienten lautet
\[
\tensor{u}\big|_{V^{(e)}} \approx \tensor{u}\ti{fe}\big|_{V^{(e)}} = \tensor{N}\big|_{V^{(e)}} \tensor{\hat{u}} \quad \text{mit } \forall \tensor{u}\ti{fe} \in C^0(V)
\]
worin \( \tensor{u}\ti{fe} \) die FE"=Verformung, \(\tensor{N}\) die Formfunktionen und \(\tensor{\hat{u}}\) die Knotenverformung sind.
Werden für die Volumenvernetzung acht Knoten Hexaeder-Elemente (Würfel) mit trilinearen Formfunktionen verwendet nimmt die Matrixnotation folgende Darstellung an
Werden für die Volumenvernetzung Hexaeder-Elemente (Würfel) mit trilinearen Formfunktionen verwendet (acht Knoten) nimmt die Matrixnotation folgende Darstellung an
\[
\tensor{u}_{3\times1} = \tensor{N}_{\!3\times24}\, \tensor{\hat{u}}_{24\times1}
\]