Major update. New Version using Strava .fit files with additional heart rate data usage/plot

This commit is contained in:
2025-09-14 14:33:51 +02:00
parent 9861aea0d9
commit 3b2ded1313
5 changed files with 957 additions and 33 deletions

2
.gitignore vendored
View File

@@ -1,2 +1,4 @@
gpx_files/* gpx_files/*
!gpx_files/.keep !gpx_files/.keep
fit_files/*
!fit_files/.keep

827
fit_app.py Normal file
View File

@@ -0,0 +1,827 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 30th 2025
@author: Marcel Weschke
@email: marcel.weschke@directbox.de
"""
# %% Load libraries
import os
import base64
import io
import datetime
from math import radians, sin, cos, sqrt, asin
import dash
from dash import dcc, html, Input, Output, Dash
import dash_bootstrap_components as dbc
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.interpolate import interp1d
import gpxpy
from fitparse import FitFile
# === Helper Functions ===
def list_fit_files():
folder = './fit_files' # Ordnerpfad anpassen
if not os.path.exists(folder):
os.makedirs(folder)
files = [f for f in os.listdir(folder) if f.lower().endswith('.fit')]
# Datum extrahieren für Sortierung
def extract_date(filename):
try:
return datetime.datetime.strptime(filename[:10], '%d.%m.%Y') # Format DD.MM.YYYY
except ValueError:
try:
return datetime.datetime.strptime(filename[:10], '%Y-%m-%d') # Format YYYY-MM-DD
except ValueError:
return datetime.datetime.min # Ungültige -> ans Ende
files.sort(key=extract_date, reverse=True)
# Dropdown-Einträge bauen
if files:
return [{'label': f, 'value': os.path.join(folder, f)} for f in files]
else:
# Dummy-Eintrag, damit es nie crasht
return [{
'label': 'Keine FIT-Datei gefunden',
'value': 'NO_FILE'
}]
def haversine(lon1, lat1, lon2, lat2):
R = 6371
dlon = radians(lon2 - lon1)
dlat = radians(lat2 - lat1)
a = sin(dlat/2)**2 + cos(radians(lat1)) * cos(radians(lat2)) * sin(dlon/2)**2
return 2 * R * asin(sqrt(a))
def process_fit(file_path):
fit_file = FitFile(file_path)
# Sammle alle record-Daten
records = []
for record in fit_file.get_messages("record"):
record_data = {}
for data in record:
# Sammle alle verfügbaren Datenfelder
record_data[data.name] = data.value
records.append(record_data)
# Erstelle DataFrame
df = pd.DataFrame(records)
# Debugging: Schaue welche Spalten verfügbar sind
print(f"Verfügbare Spalten: {df.columns.tolist()}")
# Suche nach Heart Rate in verschiedenen Formaten
possible_hr_cols = [col for col in df.columns if 'heart' in col.lower() or 'hr' in col.lower()]
print(f"Mögliche Heart Rate Spalten: {possible_hr_cols}")
# Standard-Spaltennamen für verschiedene FIT-Formate
lat_cols = ['position_lat', 'lat', 'latitude']
lon_cols = ['position_long', 'lon', 'longitude']
elev_cols = ['altitude', 'elev', 'elevation', 'enhanced_altitude']
time_cols = ['timestamp', 'time']
hr_cols = ['heart_rate', 'hr'] + possible_hr_cols
speed_cols = ['speed', 'enhanced_speed']
dist_cols = ['distance', 'total_distance']
# Finde die richtigen Spaltennamen
lat_col = next((col for col in lat_cols if col in df.columns), None)
lon_col = next((col for col in lon_cols if col in df.columns), None)
elev_col = next((col for col in elev_cols if col in df.columns), None)
time_col = next((col for col in time_cols if col in df.columns), None)
hr_col = next((col for col in hr_cols if col in df.columns), None)
speed_col = next((col for col in speed_cols if col in df.columns), None)
# Prüfe ob wichtige Daten vorhanden sind
if not lat_col or not lon_col or not time_col:
raise ValueError(f"Wichtige Daten fehlen! Lat: {lat_col}, Lon: {lon_col}, Time: {time_col}")
# Benenne Spalten einheitlich um
df = df.rename(columns={
lat_col: 'lat',
lon_col: 'lon',
elev_col: 'elev' if elev_col else None,
time_col: 'time',
hr_col: 'heart_rate' if hr_col else None,
speed_col: 'speed_ms' if speed_col else None
})
# FIT lat/lon sind oft in semicircles - konvertiere zu Grad
if df['lat'].max() > 180: # Semicircles detection
df['lat'] = df['lat'] * (180 / 2**31)
df['lon'] = df['lon'] * (180 / 2**31)
# Entferne Zeilen ohne GPS-Daten
df = df.dropna(subset=['lat', 'lon', 'time']).reset_index(drop=True)
# Basic cleanup
df['time'] = pd.to_datetime(df['time'])
df['time_loc'] = df['time'].dt.tz_localize(None)
df['time_diff'] = df['time'] - df['time'].iloc[0]
df['time_diff_sec'] = df['time_diff'].dt.total_seconds()
df['duration_hms'] = df['time_diff'].apply(lambda td: str(td).split('.')[0])
# Cumulative distance (km)
distances = [0]
for i in range(1, len(df)):
d = haversine(df.loc[i-1, 'lon'], df.loc[i-1, 'lat'], df.loc[i, 'lon'], df.loc[i, 'lat'])
distances.append(distances[-1] + d)
df['cum_dist_km'] = distances
# Elevation handling
if 'elev' in df.columns:
df['elev'] = df['elev'].bfill()
df['delta_elev'] = df['elev'].diff().fillna(0)
df['rel_elev'] = df['elev'] - df['elev'].iloc[0]
else:
# Fallback wenn keine Elevation vorhanden
df['elev'] = 0
df['delta_elev'] = 0
df['rel_elev'] = 0
# Speed calculation
if 'speed_ms' in df.columns:
# Konvertiere m/s zu km/h
df['speed_kmh'] = df['speed_ms'] * 3.6
else:
# Fallback: Berechne Speed aus GPS-Daten
df['delta_t'] = df['time'].diff().dt.total_seconds()
df['delta_d'] = df['cum_dist_km'].diff()
df['speed_kmh'] = (df['delta_d'] / df['delta_t']) * 3600
df['speed_kmh'] = df['speed_kmh'].replace([np.inf, -np.inf], np.nan)
# Velocity (used in pace calculations)
df['vel_kmps'] = np.gradient(df['cum_dist_km'], df['time_diff_sec'])
# Smoothed speed (Gaussian rolling)
df['speed_kmh_smooth'] = df['speed_kmh'].rolling(window=10, win_type="gaussian", center=True).mean(std=2)
# Heart rate handling (NEU!)
# ##############
# UPDATE: Da NaN-Problem mit heart_rate, manuell nochmal neu einlesen und überschreiben:
# save heart rate data into variable
heart_rate = []
for record in fit_file.get_messages("record"):
# Records can contain multiple pieces of data (ex: timestamp, latitude, longitude, etc)
for data in record:
# Print the name and value of the data (and the units if it has any)
if data.name == 'heart_rate':
heart_rate.append(data.value)
# hier variable neu überschrieben:
df['heart_rate'] = heart_rate[:len(df)]
# ##############
# MY DEBUG:
#print(heart_rate)
if 'heart_rate' in df.columns:
df['heart_rate'] = pd.to_numeric(df['heart_rate'], errors='coerce')
df['hr_smooth'] = df['heart_rate'].rolling(window=5, center=True).mean()
print(f"Heart rate range: {df['heart_rate'].min():.0f} - {df['heart_rate'].max():.0f} bpm")
else:
print("Keine Heart Rate Daten gefunden!")
df['heart_rate'] = np.nan
df['hr_smooth'] = np.nan
print(f"Verarbeitete FIT-Datei: {len(df)} Datenpunkte")
print(f"Distanz: {df['cum_dist_km'].iloc[-1]:.2f} km")
print(f"Dauer: {df['duration_hms'].iloc[-1]}")
return df
# =============================================================================
# INFO BANNER
# =============================================================================
def create_info_banner(df):
# Total distance in km
total_distance_km = df['cum_dist_km'].iloc[-1]
# Total time as timedelta
total_seconds = df['time_diff_sec'].iloc[-1]
hours, remainder = divmod(int(total_seconds), 3600)
minutes, seconds = divmod(remainder, 60)
formatted_total_time = f"{hours:02d}:{minutes:02d}:{seconds:02d}"
# Average pace (min/km)
if total_distance_km > 0:
pace_sec_per_km = total_seconds / total_distance_km
pace_min = int(pace_sec_per_km // 60)
pace_sec = int(pace_sec_per_km % 60)
formatted_pace = f"{pace_min}:{pace_sec:02d} min/km"
else:
formatted_pace = "N/A"
# Build the info banner layout
info_banner = html.Div([
html.Div([
html.H4("Total Distance", style={'margin-bottom': '5px'}),
html.H2(f"{total_distance_km:.2f} km")
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
html.Div([
html.H4("Total Time", style={'margin-bottom': '5px'}),
html.H2(formatted_total_time)
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
html.Div([
html.H4("Average Pace", style={'margin-bottom': '5px'}),
html.H2(formatted_pace)
], style={'width': '30%', 'display': 'inline-block', 'textAlign': 'center'}),
], style={
'display': 'flex',
'justifyContent': 'space-around',
'backgroundColor': '#1e1e1e',
'color': 'white',
'padding': '20px',
'marginBottom': '5px',
'borderRadius': '10px',
'width': '100%',
#'maxWidth': '1200px',
'margin': 'auto'
})
return info_banner
# =============================================================================
# START OF THE PLOTS
# =============================================================================
def create_map_plot(df):
# fig = px.line_map(
# df,
# lat='lat',
# lon='lon',
# hover_name='time',
# hover_data={
# 'cum_dist_km': ':.2f',
# 'duration_hms': True,
# 'lat': False,
# 'lon': False,
# 'time': False
# },
# labels={
# 'cum_dist_km': 'Distance (km) ',
# 'duration_hms': 'Elapsed Time '
# },
# zoom=13,
# height=800
# )
fig = px.line_map(
df,
lat='lat',
lon='lon',
zoom=13,
height=800
)
fig.update_traces(
hovertemplate=(
#"Time: %{customdata[0]}<br>" +
"Distance (Km): %{customdata[0]:.2f}<br>" +
"Speed (Km/h): %{customdata[1]:.2f}<br>" +
"Heart Rate (bpm): %{customdata[2]}<br>" +
"Elapsed Time: %{customdata[3]}<extra></extra>"
),
#customdata=df[['time', 'cum_dist_km', 'duration_hms']]
customdata=df[['cum_dist_km', 'speed_kmh', 'heart_rate', 'duration_hms']]
)
# Define map style and the line ontop
fig.update_layout(map_style="open-street-map")
# The built-in plotly.js styles are: carto-darkmatter, carto-positron, open-street-map, stamen-terrain, stamen-toner, stamen-watercolor, white-bg
# The built-in Mapbox styles are: basic, streets, outdoors, light, dark, satellite, satellite-streets
fig.update_traces(line=dict(color="#f54269", width=3))
# Start / Stop marker
start = df.iloc[0]
end = df.iloc[-1]
fig.add_trace(go.Scattermap(
lat=[start['lat']], lon=[start['lon']], mode='markers+text',
marker=dict(size=12, color='#fca062'), text=['Start'], name='Start', textposition='bottom left'
))
fig.add_trace(go.Scattermap(
lat=[end['lat']], lon=[end['lon']], mode='markers+text',
marker=dict(size=12, color='#b9fc62'), text=['Stop'], name='Stop', textposition='bottom left'
))
fig.update_layout(paper_bgcolor='#1e1e1e', font=dict(color='white'))
fig.update_layout(
legend=dict(
orientation='h', # horizontal layout
yanchor='top',
y=-0.01, # move legend below the map
xanchor='center',
x=0.5,
font=dict(color='white')
)
)
return fig
######################
# NEUE VERSION:
def create_elevation_plot(df, smooth_points=500):
# Originale Daten
x = df['time']
y = df['rel_elev']
# Einfache Glättung: nur Y-Werte glätten, X-Werte beibehalten
if len(y) >= 4: # Genug Punkte für cubic interpolation
y_numeric = y.to_numpy()
# Nur gültige Y-Punkte für Interpolation
mask = ~np.isnan(y_numeric)
if np.sum(mask) >= 4: # Genug gültige Punkte
# Index-basierte Interpolation für Y-Werte
valid_indices = np.where(mask)[0]
valid_y = y_numeric[mask]
# Interpolation über die Indizes
f = interp1d(valid_indices, valid_y, kind='cubic',
bounds_error=False, fill_value='extrapolate')
# Neue Y-Werte für alle ursprünglichen X-Positionen
all_indices = np.arange(len(y))
y_smooth = f(all_indices)
# Originale X-Werte beibehalten
x_smooth = x
else:
# Fallback: originale Daten
x_smooth, y_smooth = x, y
else:
# Zu wenige Punkte: originale Daten verwenden
x_smooth, y_smooth = x, y
fig = go.Figure()
# Fläche unter der Kurve (mit geglätteten Daten)
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth,
mode='lines',
line=dict(color='#1CAF50'), # Fill between color!
fill='tozeroy',
#fillcolor='rgba(226, 241, 248)',
hoverinfo='skip',
showlegend=False
))
# Hauptlinie (geglättet)
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth,
mode='lines',
line=dict(color='#084C20', width=2), # Line color!
name='Elevation',
showlegend=False
))
# SUPDER IDEE, ABER GEHT NICHT WEGE NEUEN smoothed POINTS! GEHT NUR BEI X
#fig.update_traces(
# hovertemplate=(
# #"Time: %{customdata[0]}<br>" +
# "Distance (km): %{customdata[0]:.2f}<br>" +
# "Elevation: %{customdata[1]}<extra></extra>" +
# "Elapsed Time: %{customdata[2]}<extra></extra>"
# ),
# customdata=df[['cum_dist_km','elev', 'time']]
#
# Layout im Dark Theme
fig.update_layout(
title=dict(text='Höhenprofil relativ zum Startwert', font=dict(size=16, color='white')),
xaxis_title='Zeit',
yaxis_title='Höhe relativ zum Start (m)',
template='plotly_dark',
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white'),
margin=dict(l=40, r=40, t=50, b=40),
height=400
)
return fig
def create_deviation_plot(df): #Distanz-Zeit-Diagramm
# Compute mean velocity in km/s
vel_kmps_mean = df['cum_dist_km'].iloc[-1] / df['time_diff_sec'].iloc[-1]
# Expected cumulative distance assuming constant mean velocity
df['cum_dist_km_qmean'] = df['time_diff_sec'] * vel_kmps_mean
# Deviation from mean velocity distance
df['del_dist_km_qmean'] = df['cum_dist_km'] - df['cum_dist_km_qmean']
# Plot the deviation
fig = px.line(
df,
x='time_loc',
y='del_dist_km_qmean',
labels={
'time_loc': 'Zeit',
'del_dist_km_qmean': 'Δ Strecke (km)'
},
template='plotly_dark',
)
fig.update_layout(
title=dict(text='Abweichung von integriertem Durchschnittstempo', font=dict(size=16)),
yaxis_title='Abweichung (km)',
xaxis_title='Zeit',
height=400,
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white', size=14),
margin=dict(l=40, r=40, t=50, b=40)
)
# Add horizontal reference line at y=0
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=0,
y1=0,
line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittstempo'
)
return fig
def create_speed_plot(df):
mask = df['speed_kmh_smooth'].isna()
mean_speed_kmh = df['speed_kmh'].mean()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df['time'][~mask],
y=df['speed_kmh_smooth'][~mask],
mode='lines',
name='Geglättete Geschwindigkeit',
line=dict(color='royalblue')
))
fig.update_layout(
title=dict(text=f'Tempo über die Zeit (geglättet) - Durchschnittstempo: {mean_speed_kmh:.2f} km/h', font=dict(size=16)),
xaxis=dict(title='Zeit', tickformat='%H:%M', type='date'),
yaxis=dict(title='Geschwindigkeit (km/h)', rangemode='tozero'),
template='plotly_dark',
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white'),
margin=dict(l=40, r=40, t=40, b=40)
)
# Add horizontal reference line at y=mean_speed_kmh
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=mean_speed_kmh,
y1=mean_speed_kmh,
line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittstempo'
)
return fig
# heart_rate Plot NEW !!!
def create_heart_rate_plot(df):
# Maske für gültige Heart Rate Daten
mask = df['hr_smooth'].isna()
# Durchschnittliche Heart Rate berechnen (nur gültige Werte)
valid_hr = df['heart_rate'].dropna()
if len(valid_hr) > 0:
mean_hr = valid_hr.mean()
min_hr = valid_hr.min()
max_hr = valid_hr.max()
else:
mean_hr = 0
min_hr = 0
max_hr = 0
fig = go.Figure()
# Heart Rate Linie (geglättet)
fig.add_trace(go.Scatter(
x=df['time'][~mask],
y=df['hr_smooth'][~mask],
mode='lines',
#name='Geglättete Herzfrequenz',
line=dict(color='#E43D70', width=2),
hovertemplate=(
"Zeit: %{x}<br>" +
"Herzfrequenz: %{y:.0f} bpm<br>" +
"<extra></extra>"
)
))
# Optional: Raw Heart Rate als dünnere, transparente Linie
if not df['heart_rate'].isna().all():
fig.add_trace(go.Scatter(
x=df['time'],
y=df['heart_rate'],
mode='lines',
name='Raw Herzfrequenz',
line=dict(color='#E43D70', width=1, dash='dot'),
opacity=0.3,
showlegend=False,
hoverinfo='skip'
))
# Durchschnittslinie
if mean_hr > 0:
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=mean_hr,
y1=mean_hr,
line=dict(color='gray', width=1, dash='dash'),
)
# Annotation für Durchschnittswert
fig.add_annotation(
x=df['time_loc'].iloc[int(len(df) * 0.8)], # Bei 80% der Zeit
y=mean_hr,
text=f"Ø {mean_hr:.0f} bpm",
showarrow=True,
arrowhead=2,
arrowcolor="gray",
bgcolor="rgba(128,128,128,0.1)",
bordercolor="gray",
font=dict(color="white", size=10)
)
# Heart Rate Zonen (optional)
if mean_hr > 0:
# Geschätzte maximale Herzfrequenz (220 - Alter, hier als Beispiel 190)
max_hr_estimated = 190 # Du kannst das anpassen
# Zone 1: Sehr leicht (50-60% HRmax)
zone1_lower = max_hr_estimated * 0.5
zone1_upper = max_hr_estimated * 0.6
# Zone 2: Leicht (60-70% HRmax)
zone2_upper = max_hr_estimated * 0.7
# Zone 3: Moderat (70-80% HRmax)
zone3_upper = max_hr_estimated * 0.8
# Zone 4: Hart (80-90% HRmax) #update: bis 100%
zone4_upper = max_hr_estimated * 1.0
# Füge Zonen-Bereiche als Hintergrundbereiche hinzu
fig.add_hrect(y0=zone1_lower, y1=zone1_upper,
fillcolor="green", opacity=0.1, line_width=0)
fig.add_hrect(y0=zone1_upper, y1=zone2_upper,
fillcolor="yellow", opacity=0.1, line_width=0)
fig.add_hrect(y0=zone2_upper, y1=zone3_upper,
fillcolor="orange", opacity=0.1, line_width=0)
fig.add_hrect(y0=zone3_upper, y1=zone4_upper,
fillcolor="red", opacity=0.1, line_width=0)
# Layout
title_text = f'Herzfrequenz über die Zeit (geglättete)'
if mean_hr > 0:
title_text += f' - Ø {mean_hr:.0f} bpm (Range: {min_hr:.0f}-{max_hr:.0f})'
fig.update_layout(
title=dict(text=title_text, font=dict(size=16, color='white')),
xaxis=dict(
title='Zeit',
tickformat='%H:%M',
type='date'
),
yaxis=dict(
title='Herzfrequenz (bpm)',
rangemode='tozero'
),
template='plotly_dark',
paper_bgcolor='#1e1e1e',
plot_bgcolor='#111111',
font=dict(color='white'),
margin=dict(l=40, r=40, t=50, b=40),
height=400
)
return fig
def create_pace_bars_plot(df):
# Ensure time column is datetime
if not pd.api.types.is_datetime64_any_dtype(df['time']):
df['time'] = pd.to_datetime(df['time'], errors='coerce')
# Assign km segments
df['km'] = df['cum_dist_km'].astype(int)
# Time in seconds from start
df['time_sec'] = (df['time'] - df['time'].iloc[0]).dt.total_seconds()
# Step 3: Compute pace manually per km group
df['km_start'] = np.nan
df['segment_len'] = np.nan
df['pace_min_per_km'] = np.nan
for km_val, group in df.groupby('km'):
dist_start = group['cum_dist_km'].iloc[0]
dist_end = group['cum_dist_km'].iloc[-1]
segment_len = dist_end - dist_start
time_start = group['time_sec'].iloc[0]
time_end = group['time_sec'].iloc[-1]
elapsed_time_sec = time_end - time_start
if segment_len > 0:
pace_min_per_km = (elapsed_time_sec / 60) / segment_len
else:
pace_min_per_km = np.nan
df.loc[group.index, 'km_start'] = km_val
df.loc[group.index, 'segment_len'] = segment_len
df.loc[group.index, 'pace_min_per_km'] = pace_min_per_km
# Clean types
df['km_start'] = df['km_start'].astype(int)
df['segment_len'] = df['segment_len'].astype(float)
df['pace_min_per_km'] = pd.to_numeric(df['pace_min_per_km'], errors='coerce')
# Step 4: Create Plotly bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=df['km_start'],
y=df['pace_min_per_km'],
width=df['segment_len'],
text=[f"{v:.1f} min/km" if pd.notnull(v) else "" for v in df['pace_min_per_km']],
textposition='outside',
marker_color='dodgerblue',
name='Pace pro km',
offset=0
))
# #########
# Add horizontal reference line - X-Werte für gesamte Breite
# Calculate average pace
total_distance_km = df['cum_dist_km'].iloc[-1]
total_seconds = df['time_diff_sec'].iloc[-1]
# Average pace (min/km) - KORRIGIERT
if total_distance_km > 0:
pace_sec_per_km = total_seconds / total_distance_km
pace_min_per_km = pace_sec_per_km / 60 # Konvertiere zu Minuten pro km
else:
pace_min_per_km = 0
fig.add_shape(
type='line',
x0=0, # Start bei 0
x1=total_distance_km, # Ende bei maximaler Distanz
y0=pace_min_per_km,
y1=pace_min_per_km,
line=dict(color='gray', width=1, dash='dash'),
)
## Optional: Text-Annotation für die durchschnittliche Pace
#fig.add_annotation(
# x=total_distance_km * 0.8, # Position bei 80% der Distanz
# y=pace_min_per_km,
# text=f"Ø {pace_min_per_km:.1f} min/km",
# showarrow=True,
# arrowhead=2,
# arrowcolor="gray",
# bgcolor="rgba(255,0,0,0.1)",
# bordercolor="gray",
# font=dict(color="white")
#)
fig.update_layout(
title=dict(text='Tempo (min/km) je Kilometer', font=dict(size=16)),
xaxis_title='Distanz (km)',
yaxis_title='Minuten pro km',
barmode='overlay',
bargap=0,
bargroupgap=0,
xaxis=dict(
type='linear',
range=[0, df['cum_dist_km'].iloc[-1]],
tickmode='linear',
dtick=1,
showgrid=True
),
template='plotly_dark',
height=400,
margin=dict(l=40, r=40, t=30, b=40),
plot_bgcolor='#111111',
paper_bgcolor='#1e1e1e',
font=dict(color='white')
)
return fig
# === App Setup ===
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.SLATE])
app.title = "FIT Dashboard"
app.layout = html.Div([
html.H1("Running Dashboard", style={'textAlign': 'center'}),
dcc.Store(id='stored-df'),
html.Div([
html.Label("FIT-Datei wählen:", style={'color': 'white'}),
dcc.Dropdown(
id='fit-file-dropdown',
options=list_fit_files(),
value=list_fit_files()[0]['value'], # immer gültig
clearable=False,
style={'width': '300px', 'color': 'black'}
)
], style={'padding': '20px', 'backgroundColor': '#1e1e1e'}),
html.Div(id='info-banner'),
dcc.Graph(id='fig-map'),
dcc.Graph(id='fig-elevation'),
dcc.Graph(id='fig_deviation'),
dcc.Graph(id='fig_speed'),
dcc.Graph(id='fig_hr'),
dcc.Graph(id='fig_pace_bars')
])
# === Callbacks ===
# Callback 1: Load GPX File and Store as JSON
@app.callback(
Output('stored-df', 'data'),
Input('fit-file-dropdown', 'value')
)
def load_fit_data(path):
df = process_fit(path)
return df.to_json(date_format='iso', orient='split')
# Callback 2: Update All Plots
@app.callback(
Output('info-banner', 'children'),
Output('fig-map', 'figure'),
Output('fig-elevation', 'figure'),
Output('fig_deviation', 'figure'),
Output('fig_speed', 'figure'),
Output('fig_hr', 'figure'),
Output('fig_pace_bars', 'figure'),
Input('stored-df', 'data')
)
def update_all_plots(json_data):
df = pd.read_json(io.StringIO(json_data), orient='split')
info = create_info_banner(df)
fig_map = create_map_plot(df)
fig_elev = create_elevation_plot(df)
fig_dev = create_deviation_plot(df)
fig_speed = create_speed_plot(df)
fig_hr = create_heart_rate_plot(df)
fig_pace = create_pace_bars_plot(df)
return info, fig_map, fig_elev, fig_dev, fig_speed, fig_hr, fig_pace
# === Run Server ===
if __name__ == '__main__':
app.run(debug=True, port=8051)
# NOTE:
# Zusammenhang zwischen Pace und Geschwindigkeit
# - Pace = Minuten pro Kilometer (z.B. 5:40/km)
# - Geschwindigkeit = Kilometer pro Stunde (z.B. 10.71 km/h)
#

0
fit_files/.keep Normal file
View File

View File

@@ -21,6 +21,7 @@ import pandas as pd
import numpy as np import numpy as np
import plotly.express as px import plotly.express as px
import plotly.graph_objects as go import plotly.graph_objects as go
from scipy.interpolate import interp1d
import gpxpy import gpxpy
@@ -214,43 +215,82 @@ def create_map_plot(df):
) )
) )
return fig return fig
def create_elevation_plot(df):
######################
# NEUE VERSION:
def create_elevation_plot(df, smooth_points=500):
# Originale Daten
x = df['time'] x = df['time']
y = df['rel_elev'] y = df['rel_elev']
n_layers = 36
base_color = (5, 158, 5) # Greenish
max_alpha = 0.25
traces = []
# Main elevation line # Einfache Glättung: nur Y-Werte glätten, X-Werte beibehalten
traces.append(go.Scatter( if len(y) >= 4: # Genug Punkte für cubic interpolation
x=x, y=y, y_numeric = y.to_numpy()
# Nur gültige Y-Punkte für Interpolation
mask = ~np.isnan(y_numeric)
if np.sum(mask) >= 4: # Genug gültige Punkte
# Index-basierte Interpolation für Y-Werte
valid_indices = np.where(mask)[0]
valid_y = y_numeric[mask]
# Interpolation über die Indizes
f = interp1d(valid_indices, valid_y, kind='cubic',
bounds_error=False, fill_value='extrapolate')
# Neue Y-Werte für alle ursprünglichen X-Positionen
all_indices = np.arange(len(y))
y_smooth = f(all_indices)
# Originale X-Werte beibehalten
x_smooth = x
else:
# Fallback: originale Daten
x_smooth, y_smooth = x, y
else:
# Zu wenige Punkte: originale Daten verwenden
x_smooth, y_smooth = x, y
fig = go.Figure()
# Fläche unter der Kurve (mit geglätteten Daten)
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth,
mode='lines', mode='lines',
line=dict(color='lime', width=2), line=dict(color='#1CAF50'), # Fill between color!
fill='tozeroy',
#fillcolor='rgba(226, 241, 248)',
hoverinfo='skip',
showlegend=False showlegend=False
)) ))
# Single gradient fill (above and below 0) # Hauptlinie (geglättet)
for i in range(1, n_layers + 1): fig.add_trace(go.Scatter(
alpha = max_alpha * (1 - i / n_layers) x=x_smooth, y=y_smooth,
color = f'rgba({base_color[0]}, {base_color[1]}, {base_color[2]}, {alpha:.3f})' mode='lines',
y_layer = y * (i / n_layers) line=dict(color='#084C20', width=2), # Line color!
traces.append(go.Scatter( name='Elevation',
x=x, showlegend=False
y=y_layer, ))
mode='lines',
fill='tonexty',
line=dict(width=0),
fillcolor=color,
hoverinfo='skip',
showlegend=False
))
fig = go.Figure(data=traces) # SUPDER IDEE, ABER GEHT NICHT WEGE NEUEN smoothed POINTS! GEHT NUR BEI X
#fig.update_traces(
# hovertemplate=(
# #"Time: %{customdata[0]}<br>" +
# "Distance (km): %{customdata[0]:.2f}<br>" +
# "Elevation: %{customdata[1]}<extra></extra>" +
# "Elapsed Time: %{customdata[2]}<extra></extra>"
# ),
# customdata=df[['cum_dist_km','elev', 'time']]
#
# Layout im Dark Theme
fig.update_layout( fig.update_layout(
title=dict(text='Höhenprofil relativ zum Startwert', font=dict(size=16)), title=dict(text='Höhenprofil relativ zum Startwert', font=dict(size=16, color='white')),
xaxis_title='Zeit', xaxis_title='Zeit',
yaxis_title='Höhe relativ zum Start (m)', yaxis_title='Höhe relativ zum Start (m)',
template='plotly_dark', template='plotly_dark',
@@ -258,11 +298,13 @@ def create_elevation_plot(df):
plot_bgcolor='#111111', plot_bgcolor='#111111',
font=dict(color='white'), font=dict(color='white'),
margin=dict(l=40, r=40, t=50, b=40), margin=dict(l=40, r=40, t=50, b=40),
height=500 height=400
) )
return fig return fig
def create_deviation_plot(df): #Distanz-Zeit-Diagramm def create_deviation_plot(df): #Distanz-Zeit-Diagramm
# Compute mean velocity in km/s # Compute mean velocity in km/s
vel_kmps_mean = df['cum_dist_km'].iloc[-1] / df['time_diff_sec'].iloc[-1] vel_kmps_mean = df['cum_dist_km'].iloc[-1] / df['time_diff_sec'].iloc[-1]
@@ -282,7 +324,7 @@ def create_deviation_plot(df): #Distanz-Zeit-Diagramm
template='plotly_dark', template='plotly_dark',
) )
fig.update_layout( fig.update_layout(
title=dict(text='Abweichung von integrierter Durchschnittsgeschwindigkeit', font=dict(size=16)), title=dict(text='Abweichung von integriertem Durchschnittstempo', font=dict(size=16)),
yaxis_title='Abweichung (km)', yaxis_title='Abweichung (km)',
xaxis_title='Zeit', xaxis_title='Zeit',
height=400, height=400,
@@ -299,7 +341,7 @@ def create_deviation_plot(df): #Distanz-Zeit-Diagramm
y0=0, y0=0,
y1=0, y1=0,
line=dict(color='gray', width=1, dash='dash'), line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittsgeschwindigkeit' name='Durchschnittstempo'
) )
return fig return fig
@@ -316,7 +358,7 @@ def create_speed_plot(df):
line=dict(color='royalblue') line=dict(color='royalblue')
)) ))
fig.update_layout( fig.update_layout(
title=dict(text=f'Durchschnittsgeschwindigkeit über die Zeit (geglättet): {mean_speed_kmh:.2f} km/h', font=dict(size=16)), title=dict(text=f'Tempo über die Zeit (geglättet) - Durchschnittstempo: {mean_speed_kmh:.2f} km/h', font=dict(size=16)),
xaxis=dict(title='Zeit', tickformat='%H:%M', type='date'), xaxis=dict(title='Zeit', tickformat='%H:%M', type='date'),
yaxis=dict(title='Geschwindigkeit (km/h)', rangemode='tozero'), yaxis=dict(title='Geschwindigkeit (km/h)', rangemode='tozero'),
template='plotly_dark', template='plotly_dark',
@@ -325,6 +367,16 @@ def create_speed_plot(df):
font=dict(color='white'), font=dict(color='white'),
margin=dict(l=40, r=40, t=40, b=40) margin=dict(l=40, r=40, t=40, b=40)
) )
# Add horizontal reference line at y=mean_speed_kmh
fig.add_shape(
type='line',
x0=df['time_loc'].iloc[0],
x1=df['time_loc'].iloc[-1],
y0=mean_speed_kmh,
y1=mean_speed_kmh,
line=dict(color='gray', width=1, dash='dash'),
name='Durchschnittstempo'
)
return fig return fig
@@ -381,8 +433,49 @@ def create_pace_bars_plot(df):
offset=0 offset=0
)) ))
# #########
# Add horizontal reference line - X-Werte für gesamte Breite
# Calculate average pace
total_distance_km = df['cum_dist_km'].iloc[-1]
total_seconds = df['time_diff_sec'].iloc[-1]
# Average pace (min/km) - KORRIGIERT
if total_distance_km > 0:
pace_sec_per_km = total_seconds / total_distance_km
pace_min_per_km = pace_sec_per_km / 60 # Konvertiere zu Minuten pro km
else:
pace_min_per_km = 0
fig.add_shape(
type='line',
x0=0, # Start bei 0
x1=total_distance_km, # Ende bei maximaler Distanz
y0=pace_min_per_km,
y1=pace_min_per_km,
line=dict(color='gray', width=1, dash='dash'),
)
## Optional: Text-Annotation für die durchschnittliche Pace
#fig.add_annotation(
# x=total_distance_km * 0.8, # Position bei 80% der Distanz
# y=pace_min_per_km,
# text=f"Ø {pace_min_per_km:.1f} min/km",
# showarrow=True,
# arrowhead=2,
# arrowcolor="gray",
# bgcolor="rgba(255,0,0,0.1)",
# bordercolor="gray",
# font=dict(color="white")
#)
fig.update_layout( fig.update_layout(
title=dict(text='Pace (min/km) je Kilometer', font=dict(size=16)), title=dict(text='Tempo (min/km) je Kilometer', font=dict(size=16)),
xaxis_title='Distanz (km)', xaxis_title='Distanz (km)',
yaxis_title='Minuten pro km', yaxis_title='Minuten pro km',
barmode='overlay', barmode='overlay',

View File

@@ -3,4 +3,6 @@ dash-bootstrap-components
plotly plotly
pandas pandas
numpy numpy
scipy
gpxpy gpxpy
fitparse