From e95a0b2eccbde95fe38d5934edc8a42dc924d94d Mon Sep 17 00:00:00 2001 From: Marcel Weschke Date: Wed, 3 Dec 2025 14:39:45 +0100 Subject: [PATCH] major upload of (python) course material & solutions --- .../01_Auto_data.ipynb | 681 +++ .../01_Auto_data.pdf | Bin 0 -> 145441 bytes .../01_Auto_data_1.ipynb | 267 ++ .../01_Auto_data_1.pdf | Bin 0 -> 29710 bytes .../01_Auto_data_2.ipynb | 562 +++ .../01_Auto_data_2.pdf | Bin 0 -> 107640 bytes .../01_Auto_data_2_solution.ipynb | 940 +++++ .../01_Auto_data_2_solution.pdf | Bin 0 -> 159942 bytes .../Plot_Ver2.png | Bin 0 -> 48722 bytes .../02_Default_data.ipynb | 184 + .../02_Default_data.pdf | Bin 0 -> 26394 bytes .../02_Default_data_solution.ipynb | 902 ++++ .../02_Default_data_solution.pdf | Bin 0 -> 162240 bytes .../default_data.parquet | Bin 0 -> 196715 bytes .../03_Cross Validation/03_Auto_data_CV.ipynb | 487 +++ .../03_Cross Validation/03_Auto_data_CV.pdf | Bin 0 -> 71802 bytes .../03_Auto_data_val_set.ipynb | 511 +++ .../03_Auto_data_val_set.pdf | Bin 0 -> 76769 bytes .../03_Cross Validation/03_Default_data.ipynb | 465 +++ .../03_Cross Validation/03_Default_data.pdf | Bin 0 -> 42107 bytes .../04_ForwardSelection.ipynb | 324 ++ .../04_RidgeRegression.ipynb | 196 + .../04_RidgeRegression_solved.ipynb | 550 +++ .../04_RidgeRegression_solved.pdf | Bin 0 -> 97641 bytes .../Script04_codes_FSS.py | 164 + .../Script04_codes_RR_LR_01.04.2025.py | 50 + .../05 Trees Carseats.py | 101 + .../05_Trees_Hitters_Task.ipynb | 293 ++ .../05_Trees_Hitters_Task.pdf | Bin 0 -> 31760 bytes .../05_Trees_Hitters_Task_solved.ipynb | 725 ++++ .../05_Trees_Hitters_Task_solved.pdf | Bin 0 -> 284892 bytes .../09-Deep learning-Hitters.py | 62 + .../06_Deep Learning/Model_Accuracy.png | Bin 0 -> 33846 bytes .../Problem Set 1/ProblemSet1_solution.ipynb | 3688 +++++++++++++++++ .../Problem Set 1/ProblemSet1_solution.pdf | Bin 0 -> 285455 bytes .../Problem Set 2/ProblemSet2.ipynb | 354 ++ .../Problem Set 2/ProblemSet2.pdf | Bin 0 -> 39716 bytes .../Problem Set 2/ProblemSet2_solution.ipynb | 2092 ++++++++++ .../Problem Set 2/ProblemSet2_solution.pdf | Bin 0 -> 657946 bytes 39 files changed, 13598 insertions(+) create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.ipynb create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.pdf create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.ipynb create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.pdf create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.ipynb create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.pdf create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.ipynb create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.pdf create mode 100755 Machine Learning for Economics and Finance/01_Supervised Learning - Regression/Plot_Ver2.png create mode 100755 Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data.ipynb create mode 100755 Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data.pdf create mode 100755 Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.ipynb create mode 100755 Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.pdf create mode 100755 Machine Learning for Economics and Finance/02_Supervised Learning - Classification/default_data.parquet create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_CV.ipynb create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_CV.pdf create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_val_set.ipynb create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_val_set.pdf create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.ipynb create mode 100755 Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.pdf create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_ForwardSelection.ipynb create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression.ipynb create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.ipynb create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.pdf create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/Script04_codes_FSS.py create mode 100755 Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/Script04_codes_RR_LR_01.04.2025.py create mode 100755 Machine Learning for Economics and Finance/05_Tree Based Methods/05 Trees Carseats.py create mode 100755 Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task.ipynb create mode 100755 Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task.pdf create mode 100755 Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.ipynb create mode 100755 Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.pdf create mode 100755 Machine Learning for Economics and Finance/06_Deep Learning/09-Deep learning-Hitters.py create mode 100644 Machine Learning for Economics and Finance/06_Deep Learning/Model_Accuracy.png create mode 100755 Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.ipynb create mode 100755 Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.pdf create mode 100755 Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2.ipynb create mode 100755 Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2.pdf create mode 100755 Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2_solution.ipynb create mode 100644 Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2_solution.pdf diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.ipynb b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.ipynb new file mode 100755 index 0000000..d1335d4 --- /dev/null +++ b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.ipynb @@ -0,0 +1,681 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "6cbef61b-0897-42bf-b456-c0a409b87c41", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{01\\_Auto\\_data}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "13be77f3-44f0-4983-b4cb-bd3e4b5dba8b", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "d10dc1b2-182b-4fc1-bfb0-bb0d5295643b", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "**Get and Set working directory**:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f1cf1749-9e5b-434a-8f45-5d63db20ee2a", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/01_SupLearn_Regression\n" + ] + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4c658a6a-1c6a-4350-9c4f-6afdd4dbaa7c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
018.08307.0130350412.0701chevrolet chevelle malibu
115.08350.0165369311.5701buick skylark 320
218.08318.0150343611.0701plymouth satellite
316.08304.0150343312.0701amc rebel sst
417.08302.0140344910.5701ford torino
\n", + "
" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ISLP import load_data # Package which contains the data\n", + "Auto = load_data('Auto') # Loading the data\n", + "Auto.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d37dfd0a-c477-412f-a2df-8a180d402980", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "n = int(len(Auto)) # Number of observations in the dataset\n", + "nT = int(n/2) # training sample size\n", + "nV = int(n/2) # validation sample size\n", + "\n", + "#nT = int(0.7 * n) # or any other value for training sample size\n", + "#nV = int(0.3 * n) # validation " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d1a5c04e-4b81-431d-b5a2-897c15a489e3", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "# set seed\n", + "np.random.seed(2)\n", + "\n", + "# Define training and test sets\n", + "train_sample = np.random.choice(n, nT, replace=False) # indices for training data\n", + "train_data = Auto.iloc[train_sample] # training dataset\n", + "test_data = Auto.drop(train_sample) # test dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "f84b8183-9122-488c-8318-437775bafc6c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import statsmodels.formula.api as smf\n", + "\n", + "# fit model on training data and calculate training MSE\n", + "fit_lm = smf.ols(formula='mpg ~ horsepower', data = train_data).fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "983b58f5-50e1-4b2e-a092-f0c7bbd99ca3", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 40.3338 1.023 39.416 0.000 38.316 42.352\n", + "horsepower -0.1596 0.009 -17.788 0.000 -0.177 -0.142\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "print(fit_lm.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "19f13816-ad3c-460f-8378-3a7195477200", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "# Predictions for training data\n", + "y_head_train = fit_lm.predict(sm.add_constant(train_data))\n", + "\n", + "# OR Alternatively\n", + "#y_head_train = fit_lm.predict(train_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "68a714f4-3a75-4f80-b623-41ef94e32336", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 24.623\n" + ] + } + ], + "source": [ + "# Function to compute the mean squared error (MSE)\n", + "# Takes realized values y and corresponding predictions y_head\n", + "# as inputs and returns MSE as output\n", + "def MSE(y, y_head):\n", + " return((y - y_head)**2).mean()\n", + "\n", + "# Compute the mean squared error\n", + "MSE_train = MSE(train_data['mpg'], y_head_train)\n", + "print(f\"Mean Squared Error: {MSE_train:.3f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "833cddff-8502-434f-8ac5-772980f7e975", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for test data\n", + "y_head_test = fit_lm.predict(sm.add_constant(test_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "75364f58-9706-4e0f-8a63-19154d5906c0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 23.362\n" + ] + } + ], + "source": [ + "# MSE in the test data\n", + "MSE_test = MSE(test_data['mpg'], y_head_test)\n", + "print(f\"Mean Squared Error: {MSE_test:.3f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "13abd0fa-7cc4-4fa3-9e21-2692c112d45a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "===========================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "-------------------------------------------------------------------------------------------\n", + "Intercept 2.267e-12 1.17e-13 19.397 0.000 2.04e-12 2.5e-12\n", + "poly(horsepower, 10)[0] -1.047e-09 5.4e-11 -19.397 0.000 -1.15e-09 -9.4e-10\n", + "poly(horsepower, 10)[1] 5.523e-09 2.85e-10 19.398 0.000 4.96e-09 6.08e-09\n", + "poly(horsepower, 10)[2] 3.23e-07 1.67e-08 19.398 0.000 2.9e-07 3.56e-07\n", + "poly(horsepower, 10)[3] 8.839e-06 4.56e-07 19.399 0.000 7.94e-06 9.74e-06\n", + "poly(horsepower, 10)[4] -2.061e-07 1.21e-08 -17.074 0.000 -2.3e-07 -1.82e-07\n", + "poly(horsepower, 10)[5] 1.789e-09 1.16e-10 15.420 0.000 1.56e-09 2.02e-09\n", + "poly(horsepower, 10)[6] -6.836e-12 4.82e-13 -14.175 0.000 -7.79e-12 -5.88e-12\n", + "poly(horsepower, 10)[7] 9.682e-15 7.34e-16 13.197 0.000 8.23e-15 1.11e-14\n", + "poly(horsepower, 10)[8] -8.958e-20 2.41e-19 -0.372 0.711 -5.65e-19 3.86e-19\n", + "poly(horsepower, 10)[9] 2.196e-20 1.28e-19 0.172 0.864 -2.3e-19 2.74e-19\n", + "===========================================================================================\n" + ] + } + ], + "source": [ + "def poly(x, degree):\n", + " return np.vander(x, degree + 1, increasing=True)[:, 1:]\n", + "\n", + "fit_lm2 = smf.ols(formula='mpg ~ poly(horsepower, 10)', data = train_data).fit()\n", + "print(fit_lm2.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "dbdedc62-0489-4d69-b767-88012ae07fe1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 73.668\n" + ] + } + ], + "source": [ + "# Predictions for test data\n", + "y_head_test2 = fit_lm2.predict(sm.add_constant(test_data))\n", + "\n", + "# MSE in the test data\n", + "MSE_test2 = MSE(test_data['mpg'], y_head_test2)\n", + "print(f\"Mean Squared Error: {MSE_test2:.3f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "551285b4-ef00-4be0-8000-ceac1ca7742e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "46\n", + "230\n" + ] + } + ], + "source": [ + "# Find the minimum value of the 'horsepower' column\n", + "hp_min = Auto['horsepower'].min()\n", + "print(hp_min)\n", + "\n", + "# Find the maximum value of the 'horsepower' column\n", + "hp_max = Auto['horsepower'].max()\n", + "print(hp_max)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "294183df-ab11-4578-b7da-c4756c3819f1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " horsepower mpg_pred\n", + "0 46.000000 2.133755\n", + "1 47.858586 2.561017\n", + "2 49.717172 3.043722\n", + "3 51.575758 3.584271\n", + "4 53.434343 4.184536\n", + ".. ... ...\n", + "95 222.565657 7.456441\n", + "96 224.424242 19.414182\n", + "97 226.282828 36.696028\n", + "98 228.141414 60.525143\n", + "99 230.000000 92.310918\n", + "\n", + "[100 rows x 2 columns]\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "import statsmodels.api as sm\n", + "\n", + "# Create a grid of horsepower values\n", + "hp_grid = np.linspace(hp_min, hp_max, 100)\n", + "\n", + "# Create a DataFrame for the grid\n", + "hp_grid_df = pd.DataFrame(hp_grid, columns=['horsepower'])\n", + "\n", + "# Create polynomial features up to degree 10 for the grid\n", + "poly = PolynomialFeatures(degree=10)\n", + "hp_poly_grid = poly.fit_transform(hp_grid_df)\n", + "\n", + "# Fit the polynomial regression model using statsmodels\n", + "train_data = Auto.iloc[train_sample] # Use the train_sample index to get training data\n", + "X_train_poly = poly.fit_transform(train_data[['horsepower']])\n", + "y_train = train_data['mpg']\n", + "fit2 = sm.OLS(y_train, X_train_poly).fit()\n", + "\n", + "# Predict using the fitted model on the grid\n", + "hp_grid_df['mpg_pred'] = fit2.predict(hp_poly_grid)\n", + "\n", + "print(hp_grid_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "6b7da3bd-a75d-4ba9-8afb-61f9e13dc053", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5JElEQVR4nOzdeXhT1dYG8PecDG06UjrQMhRQuIATKsNlEkQQldERFLCgiAgOFcUBrwPOoCKiFxARkQoiKHMRRURUQISiePVTQBGZS1ugLR0znP39cUiatJnaJk3Svr/n4WlJTk72yU6hK2vttSUhhAARERERERER+Zwc6AEQERERERER1VcMuomIiIiIiIj8hEE3ERERERERkZ8w6CYiIiIiIiLyEwbdRERERERERH7CoJuIiIiIiIjITxh0ExEREREREfkJg24iIiIiIiIiP2HQTUREREREROQnDLqJiIiIiIiI/IRBNxER+cy0adMgSRIkSfJ47D///GM79sMPP/T/4IjqkPW9LUkSOnTo4PH43bt3Ozxm7NixVY758MMPHY6x/tHr9UhOTsaAAQPw/vvvw2QyeXy+Xbt24ZFHHkGXLl2QnJwMvV6P6OhoXHDBBbjxxhvx1ltv4ejRozW5dCIiqoRBNxEREZEf7du3Dz/88IPbYz744INqnTMhIQFNmjRBkyZNoNfrcerUKXz11VcYP348evTogbNnzzp9XHZ2Nm644Qb8+9//xqxZs5CVlYWcnBxERERACIFDhw5h7dq1mDx5Mlq3bo20tDRYLJZqjY2IiBwx6CYiIiLyk1atWgEAFi1a5PKYsrIyfPLJJ5AkCampqV6dd/fu3cjOzkZ2djaKiorw999/Y+TIkQCArKws3HvvvVUec/DgQVx55ZX44osvoNPpcO+992Lbtm0oKytDfn4+ioqKUFRUhK+++gr3338/DAYDPvroI68y50RE5BqDbiIiIiI/SUtLgyRJWL58OUpKSpwes2rVKuTn56NPnz5o3bp1jZ6ndevWWLJkCa666ioAwMqVK5GdnW27v6ysDMOGDcPJkyfRqFEjbNmyBfPnz0fPnj2h1+ttx0VGRqJ///7473//i3/++cc2fiIiqjkG3UREFNRWrVqFwYMH28pomzRpgsGDB2P16tUuHzN27FjbulghBN5//3306tUL8fHxVdaQHzt2DJMnT8bFF1+MyMhIhIWFoWnTpujUqRMmT56M3bt3u3yerVu34o477kBqairCw8MRGxuLrl274rXXXkNxcbFXY3v33XfRtWtXxMbGIiYmBr169cLSpUs9vi5bt27FbbfdhmbNmiEsLAwJCQno168fFi1a5LQc+IEHHoAkSbj11lur3GcymRAVFQVJkpCYmAghRJVjrrvuOkiShGeffdbpeH7++WfcfffduPDCCxEREYGoqCh07NgRTz/9NPLy8pw+xtoD4OqrrwagBooDBgxAUlISZFnGtGnTPL4Ob775JiRJQpMmTWA2m10eJ4RAy5YtIUkSXnrpJYf79u3bh3vvvRf/+te/EBERAYPBgBYtWqBbt2546qmnsG/fPo/jcKV169bo06cPCgsLsXLlSqfHWEvL77rrrho/D6CuIx89ejQA9XqzsrJs973//vv4v//7PwDA/Pnz0atXL4/ni4+Px+LFixEWFlarcRERNXiCiIjIR5577jkBQHjz38uhQ4dsxy5atKjK/eXl5WLEiBG2Y2RZFnFxcUKWZdttd9xxhzAajVUeO2bMGAFApKWliVtvvbXK463Pt3fvXhEXF2c7n0ajEXFxcUKSJNttY8aMqXJ+k8kk7rnnHtsxAERUVJTQaDS2v7dr1078888/Lsc2ZswY2/VZx2b/vHfddZdQFMXpazd58mTbcZIkiUaNGjk89zXXXCMKCwsdHrNy5UoBQMTHx1c577Zt2xyu5ZdffnG432g0isjISAFAbNmypcp4nn32WYexR0RECL1eb/t7SkqK+Omnn6o8zvp+6dOnj3jkkUds1xMXFyc0Go147rnnnF6/vezsbNu1Z2Zmujxu69attvMfOnTIdvumTZtEWFiYbaw6nU40atTI4fXwZhyV2b+3Fy9eLACIvn37Vjnu8OHDQpIkER0dLYqLi0WfPn1cvu8WLVpkO6/9NdjbsGGD7ZilS5fabm/fvr0AIDp06FDtayEiotphppuIiILSU089heXLl0OSJDzzzDM4ffo0zpw5g7y8PDz11FMAgGXLluGZZ55xeY5Vq1ZhzZo1eOONN3D27FmcOXMGBQUFuO666wAAjz76KM6ePYsrr7wSP/zwA0wmE86cOYOysjIcOHAAb7zxBi6++OIq550yZQref/99NGnSBHPnzsXp06dx7tw5lJaW4ptvvsEVV1yB/fv34+abb4aiKE7HtmbNGqxYsQIvvviibWynTp3CAw88AEBdA/zOO+9Uedx///tfzJo1CwBw77334sSJEzh79iwKCgowa9YsaLVabNmyBePHj3d43NVXXw1JknD69Gn88ssvDvd98803AICYmBgAwJYtWxzu//HHH1FcXIywsDB0797d4b633noLL7zwAqKiovDqq6/i5MmTKC4uRklJCbKysnDNNdfg5MmTGDp0KIqKipy+Fnv27MGbb76Jxx9/HKdOncKZM2dQXFzsVea3SZMmGDBgAADgo48+cnmc9b6rrrrKts4aACZNmoTy8nIMGDAAv/76K4xGI86ePYvS0lL8+uuvmDZtGlq2bOlxHO7ceuutiImJwdatW3Ho0CGH+xYtWgQhBEaMGIGIiIhaPQ+g7gpg1bhxYwDAiRMnbNn6IUOG1Po5iIiomgId9RMRUf1hn+lu0qSJ2z8JCQkuM93Hjh0TWq1WABBTp051+lzWzKhOpxMnTpxwuM+aTQYg3n77bZfjNRgMAoDYsWOH19f466+/CkmSREREhPjf//7n9JjCwkLRvHlzAUCsXr3a5dieeeYZp48fPXq0ACAaN24sSktLbbeXlJSIxo0b27L8zrz99tu28+/evdvhvssvv1wAEDNnznS4vW/fvgKAePbZZwUAMWTIEIf7n3/+eQFAXH311Q635+bmioiICCFJkti8ebPT8ZhMJtGpUycBQMyaNcvhPvv3yyOPPOL08d5YtmyZACDCw8NFfn5+lftLS0tFbGysACDef/992+2nTp2yPX/l91BtVX5vWysjnn32WdsxiqKI1q1bCwBi+/btQghRq0y3yWQSHTt2tFVP5OXlCSGE+Oqrr2yP+/jjj316nURE5Bkz3URE5BenTp1y+8fVOl9AXdtrNpsRHh6OJ5980ukxTz/9NMLCwmAymfDZZ585PSYuLg4TJkxw+TyNGjUCAJw8edLr61q4cCGEEBg0aBAuvfRSp8dER0fjxhtvBAB8+eWXTo8xGAyYMmWK0/us66bPnDmDr776ynb7V199hTNnzgCAy/XOkyZNQkpKCgC1EsBe3759AThmssvLy/HDDz8gMjISjzzyCPR6Pb777juHdeHWTLj18VZLly5FSUkJOnfujH79+jkdj1arxR133AHA9WshyzKeeOIJp/d5Y9iwYYiJiUFZWZnT98K6detQUFCA8PBwhzXt0dHRkGX1V6HqvAdq4u677wYALF682LZm/ptvvsGhQ4fQrl079OjRo8bnLioqws6dOzFw4EBbFcOYMWMQHx8PADh9+rTtWGv225nLLrsMycnJVf688cYbNR4bERGxkRoREfmJEMLtn8pltvasDaC6dOliK3muLC4uDp07d3Y4vrIuXbo4dGaubPDgwQDUAOXRRx/Ft99+67LDtNW2bdsAABs3bnQaoFj/WLeIOnz4sNPzdO7c2eW1tW3bFs2bN69ybdbvW7RogX/9619OH6vRaHDNNddUeSwA2+3fffedrenYjh07UFZWhl69eiE2Nhb//ve/UVBQgD179gBQu15b95iuHHRbX4vffvvN7WvxwgsvuH0t2rRpg6SkJKf3ecNgMNiCaWcl5tbbhg0bhtjYWIfHWT8suP766/Hss8/ixx9/hNForPFYXOnevTvat2+Pw4cP4+uvvwZQuwZqrVu3hiRJkCQJ0dHR6N69u+0Dmv79+ztdmuBJTk6O0w/IXC0LICIi7zDoJiKioJOTkwMAaNasmdvjrIGp9fjKPAVyr732Gvr27YuioiK8+eabuPrqqxETE4POnTvjueeew/Hjx6s85sSJEwDU7KK7TL61e7mrIN7TtVnvt7+22r4uvXv3hkajwblz52wBuTWLbQ3IrV+t2fAdO3agvLwcERER+Pe//+1wPutrUVpa6va1KCwsBOD6tahNwG2VlpYGQP1AwT64z83NxRdffOFwjL33338fHTt2RG5uLl588UV069YN0dHR6NWrF15//XVbZYEvWIPrRYsWobCwEKtWrYJGo3E6Lk8SEhLQpEkTNGnSBM2bN8dll12G0aNHY82aNdi0aRMiIyNtx1oz3gDcXk92drbDB2O1XctOREQqBt1ERBS0vN0f2NVxGo3G7eOs+xV///33ePzxx9GzZ09otVrs2bMHL7zwAtq2bVulRNtadj19+nSP2XwhBLZu3Vqra6vNYysfFxMTgyuvvBJARVBt/eoq6LZ+rbyfM1DxWtx3331evRb2Tb7seZonb/Tu3RstW7aEEAJLliyx3f7JJ5/AbDY7NFyzl5qaip9++glffPEFHnroIXTq1AmKomD79u14/PHH0aZNmyqN5WrqzjvvhEajwerVq/Huu++itLQU119/vW05QHXs3r0b2dnZyM7OxtGjR/HLL7/go48+wrBhw6rM+0UXXWT7fu/evbW9DCIiqiYG3UREFHSsmc+jR4+6Pe7YsWMAgMTExFo9X69evTBjxgxs27YN+fn5WLt2LS699FKUlpbi7rvvxqlTp2zHJicnAwB+/fXXWj2ndeyuWLPs9llgX7wu9kF1cXExdu3ahUaNGtmC8W7dusFgMGD79u0wGo22gLNyaTngu9fCF+z3qLYvMbd+f8cdd0Cr1Tp9rCzLuO666zB79mxkZWXhzJkzWLp0KVJTU3H27FmMHDnSJyXnKSkpuP7661FaWmrrul/bvbm90bRpU7Rv3x4AsH79er8/HxEROWLQTUREQcd+rXZBQYHTY/Lz8x3WfvtKeHg4hg4dilWrVgFQ1zRb1y4DasYXADZs2FCrta5ZWVk4d+6c0/v++usvW+BsfS3svz927BgOHDjg9LEWi8VWMu7sdbEGzzt27MDXX38Nk8mEPn362BqK6fV69OzZEyUlJdi8eTN2797t8Dh71tdi586dLtdr1yVrmfb+/fuxe/du21f7+7wRHR2NkSNHYuHChQDUpoC++mDB2lDNaDQiISGhzrbwuv/++wEAf/zxB1asWFEnz0lERCoG3UREFHRuueUWaLValJWVYcaMGU6PeeWVV1BeXg6dTodbbrml2s9hNptd7qENqE22rOzLn8ePHw9JkpCfn4/HHnvM7XOYTCaXgXlpaSlmzpzp9L6XXnoJgNpp+tprr7Xdfu2119rW57rqXj5//nzbWmtr13B7V111FXQ6HUpLS/HKK68AqMh+W1kD7BdeeAFmsxlRUVEOwb/VnXfeCYPBAIvFgvvvv9+h43lliqIgPz/f5f2+8K9//cu27jwjI8OW5b7kkktwxRVXVDneU/ba1XugNoYMGYLHH38cjz76KN566y23jf586Z577rHtOT9hwgRs3769Tp6XiIgYdBMRURBq1qwZ0tPTAahrp5977jlbwJafn49nnnkGr7/+OgDgkUceqdGa2GPHjqFt27Z46aWX8PPPP9u6eQPA//73P1upcmRkJHr37m277/LLL8fDDz8MAHj33Xdx2223Ye/evbZtoCwWC3755Re8+OKLuPDCC12uoY2NjcWLL76IV1991ZbxzsvLQ3p6OhYvXgwAeOaZZxAeHm57jMFgsAXby5Ytw3333WcrfS8pKcE777xjG9uIESPQqVOnKs8bERGBrl27AgB+/PFHAFWDbuvfrfdfddVVTkuzk5OTMX36dABq5v/aa6/F9u3bbcG3EAL79u3Dm2++iUsuuQSZmZlOXwtfuvPOOwGoa7mta7utt1W2Y8cOXHbZZZg1axb++OMP24cwQgjs2LEDEydOBKA2pnO1PVx16XQ6zJgxA2+88QZGjRrlk3N6Izw8HGvXrkVKSgry8/PRt29fW/Bt/+FDeXk5du3ahfT0dNuHN0REVEt+3geciIgakOeee04AEN7893Lo0CHbsYsWLapyf3l5uRg+fLjtGFmWRVxcnJBl2XbbHXfcIYxGY5XHjhkzRgAQY8aM8er5AQiNRiMaN24s9Hq97Ta9Xi8+/fTTKo81m83i4Ycfdnh8eHi4iI+PF1qt1uH2bdu2uRzbiBEjbM8dFxcnJEmyPS4tLU1YLBanY588ebLtOEmSRFxcnMPz9u3bVxQWFrq89meeecZ2bFJSUpX7TSaTiI6Oth3z2muvuTyXEEK89tprQqPROLxu8fHxQqfTObwWS5YscXic9f3Sp08ft+evjry8PIc5lGVZHDt2zOmx33zzjcP4dDpdlTmMiYkR3333XbXH4e697U6fPn1cvncXLVpkO++hQ4eqPSYhhDh58qS4/vrrHa5bkiTRqFGjKj9fGo1GjB07Vhw/frxGz0VERCpmuomIKCjp9XosX74cK1euxA033ID4+HicO3cO8fHxuOGGG7Bq1Sp8/PHH0Ol0NTp/s2bNsG7dOkyePBndunVDSkoKioqKoNVqcdFFF+H+++/Hb7/9Ztv/2Z5Go8GsWbPw008/4d5770W7du2g0WhQUFCAuLg49OzZE9OmTcPevXtt656dWbZsGebNm4crrrgCZrMZkZGR6N69OzIyMrB48WLbOuvK3nzzTWzZsgW33HILmjRpgqKiIkRHR6Nv37744IMP8NVXXyE6Otrl89qvz3a2Vlur1eKqq65ye4y9xx57DPv27cPkyZNx2WWXITw8HPn5+YiKikKXLl3w+OOPY8eOHRg5cqTb8/hCfHw8Bg4caPt7v379XG6x1qVLF6xYsQITJ05Ep06dkJCQgIKCAoSHh+Pyyy/H448/jj/++MPhtQh1ycnJ2LhxI3bu3ImHH37Ydt1FRUUwmUxITU3F0KFD8cYbb+DIkSNYtGgRmjZtGuhhExGFNEmI8/VwRERE5Hdjx47F4sWLMWbMGHz44YeBHg4RERH5GTPdRERERERERH7CoJuIiIiIiIjITxh0ExEREREREfkJg24iIiIiIiIiP2EjNSIiIiIiIiI/YaabiIiIiIiIyE8YdBMRERERERH5CYNuIiIiIiIiIj/RBnoAoers2bMwm82BHoZfJSYmIjc3N9DDoBri/IU2zl/o4tyFNs5f6OLchTbOX2hrqPOn1WoRFxfn+bg6GEu9ZDabYTKZAj0Mv5EkCYB6ney1F3o4f6GN8xe6OHehjfMXujh3oY3zF9o4f56xvJyIiIiIiIjITxh0ExEREREREfkJg24iIiIiIiIiP2HQTUREREREROQnDLqJiIiIiIiI/IRBNxEREREREZGfMOgmIiIiIiIi8hMG3URERERERER+wqCbiIiIiIiIyE8YdBMRERERERH5CYNuIiIiIiIiIj9h0E1ERERERETkJwy6iYiIiIiIiPyEQTcRERERERGRnzDoJiIiIiIiIvITBt1EREREREREfsKgm4iIiIiIiMhPtIEeABEREREREZGVnJMDzYkTUKKjoaSkQEREBHpItcJMNxEREREREQWN8M8/R+KgQWjSuzfCN2wI9HBqjUE3ERERERERBQ25sND2vYiJCeBIfINBNxEREREREQUN6dw52/dKdHQAR+IbDLqJiIiIiIgoaNhnuhVmuomIiIiIiIh8x6G8nJluIiIiIiIiIt9heTkRERERERGRnzDTTUREREREROQn1ky3YjAAOl2AR1N7DLqJiIiIiIgoaFgz3fVhuzCAQTcREREREREFEVumux6UlgMMuomIiIiIiChYWCyQi4sB1I/13ACDbiIiIiIiIgoSDp3LY2MDOBLfYdBNREREREREQUG2C7qZ6SYiIiIiIiLyIcluuzCFjdSIiIiIiIiIfIeZbiIiIiIiIiI/cch0M+gmIiIiIiIi8h2HTDfLy4mIiIiIiIh8x6F7OTPdRERERERERL4j25WXM9NNRERERERE5EPMdBMRERERERH5icwtw4iIiIiIiIj8w6G8nJluIiIiIiIiIt9heTkRERERERGRnzDTTUREREREROQn1ky3YjAAOl2AR+MbDLqJiIiIiIgoKFgz3fVluzCAQTcREREREREFCVumu56UlgMMuomIiIiIiCgYWCyQi4sB1J/13ACDbiIiIiIiIgoCDp3LWV5ORERERERE5DuyXdDNNd1EREREREREPiTZbRfGTDcRERERERGRDzlkurmmm4iIiIiIiMh3HDLdDLqJiIiIiIiIfIdruomIiIiIiIj8xKF7OTPdRERERERERL4j25WXM9NNRERERERE5EPMdBMRERERERH5icwtw4iIiIiIiIj8w6G8nJluIiIiIiIiIt9heTkRERERERGRnzDTTUREREREROQn1ky3YjAAOl2AR+M7DLqJiIiIiIgo4KyZ7vq0XRjAoJuIiIiIiIiCgC3TXY9KywEG3URERERERBRoFgvk4mIA9Ws9N8Cgm4iIiIiIiALMoXM5y8uJiIiIiIiIfEe2C7qZ6SYiIiIiIiLyIcluuzAlNjaAI/E9baAH4K2CggKsXbsWe/fuRU5ODoQQaNy4MS655BIMGzYMycnJTh934MABrFmzBvv370dZWRmSkpLQs2dPDB06FHq9vo6vgoiIiIiIiCqrz5nukAi6T5w4geeeew4FBQXQaDRo0qQJNBoNsrOz8fXXX2Pbtm2YOnUqLrroIofHff/995gzZw4URUHjxo2RkJCAI0eOYMWKFdizZw+mTZuGsLCwAF0VERERERERAZUy3Qy6697ChQtRUFCAdu3a4eGHH0Z8fDwA4Ny5c5g3bx6ysrIwd+5cvPPOO5AkCQCQk5ODd999F4qiYPTo0RgyZAgkSUJubi5efvllHDx4EEuWLMG4ceMCeWlEREREREQNnkOmm43U6lZ5eTl+++03AMD48eNtATcAREdHY9KkSZAkCTk5OTh+/LjtvnXr1sFkMqFjx44YOnSoLRhPTEzExIkTAQCbN29Gfn5+3V0MERERERERVeHQvbyeZbqDPug2m80QQgAAkpKSqtwfFRWFqKgoAICiKAAAIQR2794NAOjbt2+Vx7Rr1w7NmjWDxWJBVlaWv4ZOREREREREXpDtysuZ6a5jkZGRtuz2gQMHqtx/4sQJnDt3DpGRkbZmanl5eTh79iwAoH379k7P265dOwDAn3/+6Y9hExERERERkZeY6Q6w22+/HQAwb9487Ny5E+fOnUNJSQn27t2L119/HZIkYdSoUbZu5CdPngQA6HQ6xMXFOT2nNWuenZ1dB1dARERERERErthnupV6lukOiUZqffr0QXh4OFauXIk333zT4b6WLVti6tSpuPzyy223FRcXAwAiIiJsa7krs5akFxUVuX1uk8kEk8lk+7skSTAYDLbv6yvrtdXna6zPOH+hjfMXujh3oY3zF7o4d6GN8xfafDV/9kE3YmLq1fshJIJuIQROnTqFc+fOQZZlJCUlQavVIjs7G0eOHMHmzZvRpk0bWyBtDZK1WteXZ73PaDS6fe7Vq1fjs88+s/29devWmDFjBhITE2t7WSHB1f7nFBo4f6GN8xe6OHehjfMXujh3oY3zF9pqPX92cVlS27aAXQPtUBcSQfeCBQuwefNmtGvXDs8//7ytNLygoADz5s3Drl27cOrUKcyYMQOyLEOn0wFQm7C5Yr3PWpLuyk033YTBgwfb/m79xCU3N9ft+UOdJElITk5Gdna2rZEdhQ7OX2jj/IUuzl1o4/yFLs5daOP8hTZfzV98bi6skdnJ4mKHIDxYabVar5KxQR90//PPP/j666+h0WiQnp6OhIQE232xsbF46KGH8OCDD+Lw4cPYsWMHevXqhcjISABASUkJhBBOSxOsZeXW7LgrOp3OFsRX1hD+URBCNIjrrK84f6GN8xe6OHehjfMXujh3oY3zF9pqO3/WRmqKwQCh1QL16L0Q9I3U9u/fDyEEmjZt6hBwW0VERKBNmzYAgL///hsAkJKSAkAtM7d2Ma8sJycHAMtYiIiIiIiIAs26pru+bRcGhEDQXVpa6vWx1vXZCQkJaNSoEQBg3759To/dv38/AKBt27a1GyARERERERHVii3TXc+2CwNCIOi2Zq1PnDiBvLy8KveXlJTgr7/+AgA0bdoUgLquoGvXrgCAb775pspj9u/fj+PHj0Oj0aBz587+GjoRERERERF5YrFAPr8DlWDQXfc6duyI6OhoWCwWzJ4921YWDqiN1N5++22cO3cOOp0O3bp1s903dOhQaLVa/PLLL1i3bp1tfUFubi7mzZsHAOjXr58tI05ERERERER1z5rlBurfHt1ACDRSCw8PxwMPPIA33ngD+/fvx0MPPYQmTZpAo9EgOzsbZrMZGo0G48ePR+PGjW2PS0pKwoQJEzB37lwsWbIEn3/+OWJjY3HkyBFYLBZccMEFGD16dACvjIiIiIiIiGS7oLs+ZrqDPugGgCuuuAKvv/46MjMz8dtvvyEvLw9CCMTFxaFDhw4YOHAgLrjggiqP69OnD5KTk7F69WocOHAAx44dQ5MmTdCzZ08MGzbM43ZhRERERERE5F/S+SZqADPdAdW0aVPce++91X5cu3bt8OSTT/phRERERERERFRbDpnuehh0B/2abiIiIiIiIqq/HDLd9bC8nEE3ERERERERBQwz3URERERERER+4tC9nJluIiIiIiIiIt+R7crLmekmIiIiIiIi8iFmuomIiIiIiIj8RK7nW4Yx6CYiIiIiIqKAcSgvZ6abiIiIiIiIyHdYXk5ERERERETkJ8x0ExEREREREfmJNdOtGAyAThfg0fgeg24iIiIiIiIKGGumuz5uFwYw6CYiIiIiIqIAsmW662FpOcCgm4iIiIiIiALFYoFcXAygfq7nBhh0ExERERERUYA4dC5neTkRERERERGR78h2QTcz3UREREREREQ+JNltF8ZMNxEREREREZEPMdNNRERERERE5CfMdBMRERERERH5iUOmm0E3ERERERERke84dC9neTkRERERERGR78h25eXMdBMRERERERH5EDPdRERERERERH4is5EaERERERERkX84lJcz001ERERERETkOywvJyIiIiIiIvITZrqJiIiIiIiI/MSa6VYMBkCnC/Bo/INBNxEREREREQWENdNdX7cLAxh0ExERERERUYDYMt31tLQcYNBNREREREREgWCxQC4uBlB/13MDDLqJiIiIiIgoABw6l7O8nIiIiIiIiMh3ZLugm5luIiIiIiIiIh+S7LYLY6abiIiIiIiIyIeY6SYiIiIiIiLyE2a6iYiIiIiIiPzEIdPNoJuIiIiIiIjIdxy6l7O8nIiIiIiIiMh3ZLvycma6iYiIiIiIiHyImW4iIiIiIiIiP5HZSI2IiIiIiIjIPxzKy5npJiIiIiIiIvIdlpcTERERERER+Qkz3URERERERER+Ys10KwYDoNMFeDT+w6CbiIiIiIiI6pw1012ftwsDGHQTERERERFRANgy3fW4tBxg0E1ERERERER1zWKBXFwMoH6v5wYYdBMREREREVEdc+hczvJyIiIiIiIiIt+R7YJuZrqJiIiIiIiIfEiy2y6MmW4iIiIiIiIiH2Kmm4iIiIiIiMhPHDLdDLqJiIiIiIiIfMch0x0bG8CR+B+DbiIiIiIiIqpTDt3LmekmIiIiIiIi8h3ZrrxcsJEaERERERERke8w001ERERERETkJzK3DCMiIiIiIiLyD4fycma6iYiIiIiIiHyH5eVEREREREREfsJMNxEREREREZGfWDPdisEA6HQBHo1/MegmIiIiIiKiOmXNdNf37cIABt1ERERERERUx2yZ7npeWg4w6CYiIiIiIqK6ZLFALi4GUP/XcwMMuomIiIiIiKgOOXQuZ3k5ERERERERke/IdkE3M91EREREREREPiTZbRfGTDcRERERERGRDzHTTUREREREROQnDpluBt1EREREREREvuOQ6WZ5OREREREREZHvNLTu5dpAD6A6FEXBli1b8P333+PYsWMoKytDbGwsWrVqhb59+6JLly5VHnPgwAGsWbMG+/fvR1lZGZKSktCzZ08MHToUer0+AFdBRERERETUcMl25eUNIdMdMkF3UVERXn31Vfz555+QJAkpKSlITEzE2bNnkZWVBY1GUyXo/v777zFnzhwoioLGjRsjISEBR44cwYoVK7Bnzx5MmzYNYWFhAboiIiIiIiKihsch090A1nSHRNCtKApee+01/Pnnn+jatSvuuusuxMfH2+4/ffo0Tp065fCYnJwcvPvuu1AUBaNHj8aQIUMgSRJyc3Px8ssv4+DBg1iyZAnGjRtX15dDRERERETUYMncMiz4bN68Gfv27cPFF1+MRx55xCHgBoD4+HhcdNFFDretW7cOJpMJHTt2xNChQyFJEgAgMTEREydOtJ03Pz+/Tq6BiIiIiIiIKpWXN4BMd0gE3Rs3bgQAjBgxArLsechCCOzevRsA0Ldv3yr3t2vXDs2aNYPFYkFWVpZvB0tEREREREQusbw8yJw8eRLHjx9HVFQU2rVrh927d+OHH35Afn4+YmJicOmll6J3797Q6XS2x+Tl5eHs2bMAgPbt2zs9b7t27XD8+HH8+eef6N+/f51cCxERERERUUMnFxTYvm8Ime6gD7r//vtvAECzZs3wzjvvYNu2bQ7379ixA5mZmXjqqaeQmJgIQA3UAUCn0yEuLs7peZOSkgAA2dnZ/ho6ERERERERVSKfOQMAUGJjAbvkaX0V9EG3NWP9119/Yf/+/bjmmmtwyy23oFGjRti3bx/ee+89HD9+HDNnzsQrr7wCWZZRXFwMAIiIiLCt5a4sKioKgNoV3R2TyQSTyWT7uyRJMBgMtu/rK+u11edrrM84f6GN8xe6OHehjfMXujh3oY3zF9pqMn/y+RhPady4Qcx70Afd5eXlAACLxYIOHTrgvvvus9136aWX4tFHH8UTTzyBv//+Gz/99BM6d+5sC5K1WteXZ73PaDS6ff7Vq1fjs88+s/29devWmDFjhi2rXt8lJycHeghUC5y/0Mb5C12cu9DG+QtdnLvQxvkLbV7Pn8kEnC8v1zZpgpSUFD+OKjgEfdBtv1b7hhtuqHJ/q1atcPHFF+O3337D3r170blzZ9tjzGazy/Na79Pr9W6f/6abbsLgwYNtf7d+EpObm+v2/KFOkiQkJycjOzsbQohAD4eqifMX2jh/oYtzF9o4f6GLcxfaOH+hrbrzJ+fmosn578uionD2/NLgUKTVar1KxgZ90G0tAwfUdd3ONGvWDL/99htyc3MBAJGRkQCAkpISCCGclixYy8rtz++MTqdzCPztNYR/FIQQDeI66yvOX2jj/IUuzl1o4/yFLs5daOP8hTZv5086fdr2vdK4cYOY86DfMqxp06a2710Fv9bbFUUBAFuJgslksq0JrywnJwcAy1iIiIiIiIjqirWJGqAG3Q1B0AfdrVq1sgXVp06dcnqM9fbG5yctISEBjRo1AgDs27fP6WP2798PAGjbtq0vh0tEREREREQuMOgOQuHh4bjiiisAAN9++22V+/Pz8/HLL78AAC655BIA6rqCrl27AgC++eabKo/Zv38/jh8/Do1Gg86dO/tr6ERERERERGTHPui2xMcHcCR1J+iDbgC49dZbIcsytm/fjq1bt9puLy4uxpw5c2A0GtGkSRN0797ddt/QoUOh1Wrxyy+/YN26dba1Arm5uZg3bx4AoF+/fraMOBEREREREflXQ8x0B30jNUAtMb/77ruxcOFCzJ07FytWrEBsbCyOHTuG8vJyREdH49FHH3XYIiwpKQkTJkzA3LlzsWTJEnz++eeIjY3FkSNHYLFYcMEFF2D06NEBvCoiIiIiIqKGRbZvpBYXF8CR1J2QCLoBYMCAAWjRogXWrVuHAwcO4PDhw4iLi8OVV16Jm266ybae216fPn2QnJyM1atX48CBAzh27BiaNGmCnj17YtiwYR63CyMiIiIiIiLfke0aXTPTHYQ6dOiADh06VOsx7dq1w5NPPumnEREREREREZG3GmJ5eUis6SYiIiIiIqLQZw26hSxDxMYGeDR1g0E3ERERERER1Qlr0K3ExQFywwhHG8ZVEhERERERUcDZgu4GUloOMOgmIiIiIiKiulBaCrmkBACDbiIiIiIiIiKfaoidywEG3URERERERFQHGmLncoBBNxEREREREdUBBt1EREREREREfsLyciIiIiIiIiI/YaabiIiIiIiIyE80p0/bvmfQTURERERERORDzHQTERERERER+QmDbiIiIiIiIiI/YdBNRERERERE5CfWoFvo9RCRkQEeTd1h0E1ERERERER+Z90yTGncGJCkAI+m7jDoJiIiIiIiIv8SwpbpVuLiAjyYusWgm4iIiIiIiPxKKi6GZDQCaFjruQEG3URERERERORnDbWJGsCgm4iIiIiIiPzMIeiOjw/gSOoeg24iIiIiIiLyK2a6iYiIiIiIiPzEPui2MOgmIiIiIiIi8h1muomIiIiIiIj8RD592vY9twwjIiIiIiIi8iH57Fnb98x0ExEREREREfkQy8uJiIiIiIiI/MQh6GZ5OREREREREZHvWINuJSICMBgCPJq6xaCbiIiIiIiI/MoWdDew0nKAQTcRERERERH5k6LYGqkx6CYiIiIiIiLyIamgAJKiAACU+PgAj6buMegmIiIiIiIiv2nITdQABt1ERERERETkRw15uzCAQTcRERERERH5kXU9N8Cgm4iIiIiIiMinmOkmIiIiIiIi8hPN6dO27xl0ExEREREREfkQM91EREREREREfsKgm4iIiIiIiMhPGHQTERERERER+YlD0N2oUeAGEiAMuomIiIiIiMhvrEG3EhsL6HQBHk3dY9BNREREREREfmPdp1uJiwvwSAKDQTcRERERERH5h8kEuaAAAKDExwd4MIHBoJuIiIiIiIj8Qs7Pt33fEJuoAQy6iYiIiIiIyE8aeudyANAGegBEwUynM6C8PBKyLENRFISFFcNkKg30sIiIiIiIQgKDbma6iZzSaDSQ5SRkZMSiRw89mjfXokcPPTIyYiHLSdBoNIEeIhERERFR0GPQXcNM9z///IMTJ04gLi4OHTp0cLjv+eefd/m4G264AV27dq3JUxLVKSHiMWiQFj/9VHHb0aPAlCkyli2TsX59PICcgI2PiIiIiCgUyKdP2763MOj2jslkwowZM5Cfn49nn322yv2///67y8dmZ2fjyiuvhFbLqnYKXjqdARkZskPAbW/PHmDZMhlpaeEwGsvqdnBERERERCGEme4aBN1ZWVk4c+YMunfvXiXLbdW0aVPcfPPNDrft3LkTWVlZyMrKQrdu3Wo2WqI6UF4eidmz3a+8mD1bxvDhUZBlBt1ERERERK44BN0NdJ/uGgXdADBw4ECXx8TExOCqq65yuK1ly5bIysrC7t27GXRTUJNlGUePuj/m6FFAo5EhRN2MiYiIiIgoFMlnz9q+b6iZ7mo3Uvv7778RERGBtm3bVutxqampiI6Oxt9//13dpySqU4qioEUL98e0aAFYLErdDIiIiIiIKESxvLwGQfeZM2eQkJAASZKc3q/Val2u2Y6Li8NZu086iIJRWFgx0tPdB9Tp6QrCw4vqaERERERERKHJGnQLjQYiNjbAowmMGjVS0+l0Lu9funSp6yfTamEymar7lER1ymQqxahR0Vi2TMaePVXv79QJGDlSYRM1IiIiIiIPrEG3EhcHyA1zx+pqX3V0dDTy8/Nr9GT5+fmIjIys0WOJ6pIkncb69WbMnKkgNRWQJCA1FZg5U0FmphmSVLH1gU5ngKIkAEiCoiRApzMEbuBEREREREHEFnQ30NJyoAZBd9OmTXH69Gnk5uZW63E5OTk4c+YMmjVrVt2nJB9jkOiZxWKBEDlIS8vH9u1GHD9uxvbtRqSl5UNRcmCxWKDRaCDLScjIiEWPHno0b65Fjx56ZGTEQpaToNFoAn0ZRERERESBU1oKuaQEAIPuaunYsSMAIDMzs1qPW79+vcPjqe4xSKw+o7EMspwHIXIgy3kOJeVCxGPQIC2mTFG7nQuhdjWfMkXG4MFaKEp8AEdORERERBRY7FyuqnbQ3b9/f4SHh+PLL7/E1q1bvXrMN998g02bNiE8PBz9+/ev7lOSj/gySGzo2XKdzoClS2X89JPz+/fsAZYtk6HXh9ftwIiIiIiIggT36FZVO+iOiorC3XffDSEE5s2bh9deew179+5FaWmpw3GlpaX4+eefMWPGDLz77rsAgLvuugtRUVG+GTlVi6+CRGbLVeXlkZg92/2Pz+zZMsrK+H4nIiIiooaJ24Wpqt29HAD69OmD8vJyLF68GHv27MGePXsgSRIiIyMRFhaG8vJyFBcXQwgBQA3U0tLScPXVV/ty7FQN1iBRrwduvhkYPRpISADy8oAlS4CVK9UgcfjwKMiy667c1my5ffBuzZYvWyZj/fp4ADn+v6AAk2W1WsCdo0cBjUbG+R8DIiIiIqIGheXlqhr3bB8wYABmzJiBnj17Qq/XQwiBoqIinD59GkVFRRBCQK/Xo2fPnpg+fTquv/56X46bqkmWZUgS8P33QPv2wMSJQPfu6tf27YFt29QO3RqN67cES6orKIqCFi3cH9OiBWCxuN/vm4iIiIiovtKcrtjxpyEH3TXKdFs1b94cDz30ECwWCw4fPowzZ86gtLQUBoMBjRs3RsuWLRtMuXGwUxQFq1cD48ejSpZ62jRg/Xo1222xKC63z/O2pNpTtrw+CAsrRnq6uj7elfR0BeHhRTAa63BgRERERERBguXlqloF3VYajQYXXHABLrjgAl+cjvwgMtKITZt0+Oknyen9e/YAmzcLTJhgxPmu/lWwpLqCyVSKUaOisWyZjD17qt7fqRMwcqTi0O2ciIiIiKghYdCtqnHQnZeXh127duHkyZMAgOTkZHTt2hWJiYk+Gxz5TnGxHnPnOg+4rebOlTBqlN5lpttaUu0u8LaWVLs6R30iSaexfn08li2TMXu2+oFEixZqhnvkSAWSdNrzSYiIiIiI6ikG3aoaBd2bN2/GokWLYDabHW5funQp0tLSuH47CGk0Gi+z1BqXWWqWVDuyWCwAcpCWFo7hw6Og0ciwWKzXzww3ERERETVsDLpV1c5HHjhwAO+//z7MZjMaNWqEK6+8EldccQUaNWoEi8WCDz/8EPv27fPHWKkWzGbJq8ZfZrPrbLhaUq2gUyfn9zfUkmqjsQyynAchciDLeQ3u+omIiIiInLEG3SIsDCIyMsCjCZxqZ7o///xzCCHQq1cvTJgwAXq9HgBgNBrx7rvvYvv27fj888/Rvn17nw+Wai48XGDcOLVpmivjxgEGg3CbpWZJNRERERERecO6ZZgSF6duldRAVTvo3r9/P/R6PcaPH28LuAFAr9fj3nvvxe7du3HgwAGfDpJqr7zcgiFDNFi/Hi4bfw0eDJSVWdyux2ZJNREREREReSSELdPdkEvLgRqUlxcWFqJp06YID6+6F3N4eDhSUlJQWFjok8GR74SFFSMrS8GcOcDzzwOpqeqHTamp6t/nzgX27FGDZ2+wpDq06HQGKEoCgCQoSgJ0OkOgh0RERERE9ZhUXAzpfAltQw+6q53pNpvNTgNuq/Dw8PPZUAomJlMphg6Nxo03ymjVCpgzB0hMBHJzgSVLgM8/B9asaXjrses7jUYDRWmMjAx1OcCxY0Dz5kB6uhajRkVDkk7z55WIiIiIfI5N1Co0gI2dyEqSTmP1ajO6dlVw//1A9+7A/fcDXbsqWLPGzPXY9ZCiNMagQWrH+aNHASHULvVTpsgYPFgLRYkP9BCJiIiIqB5i0F2hRluG5eXl4bPPPnN5HwCX9wPArbfeWpOndfDJJ59g1apVAIARI0bglltucXrcgQMHsGbNGuzfvx9lZWVISkpCz549MXToUIc16Q0B12NXn05nQHl5JGRZhqIoCAsrhslUGuhhecVsBpYulfHTT87v37MHWLZMRlpaOOefiIiIiHyKQXeFGgfdn376qdtj3N1f26D72LFjWLduncfjvv/+e8yZMweKoqBx48ZISEjAkSNHsGLFCuzZswfTpk1DWFhYrcYSitT12GUQApBlNIg9tatL3a88PqTLsk+fBmbPdl/MMnu2jOHDoyDLDLqJiIiIyHfk0xVVtBYG3dXToUMHSAFs9y6EwIIFC6DRaNC+fXv89ttvTo/LycnBu+++C0VRMHr0aAwZMgSSJCE3Nxcvv/wyDh48iCVLlmDcuHF1fAUUCoSIx6BBWocssbUse9kyGevXxwPICdj4vCFJ6pjdOXoU0GhkCFE3YyIiIiKihoGZ7grVDrqnudvouQ5s2bIFf/zxB0aNGoVjx465PG7dunUwmUzo2LEjhg4dars9MTEREydOxDPPPIPNmzfjlltuQaNGjepg5BQqdDoDMjJCvyxbCHUPdXeBd4sWgMWiuN0mjoiIiIiouhyC7ri4AI4k8ELqV+3CwkIsXboUzZs3x6BBg1weJ4TA7t27AQB9+/atcn+7du3QrFkzWCwWZGVl+W28FJrKyyO9KssuK4uqoxHVTHw8kJ6uuD0mPd37beKIiIiIiLwlnz1r+76hZ7pDKuj+8MMPUVRUhHvuuQdareskfV5eHs6en+T27ds7PaZdu3YAgD///NP3A6WQJsuy12XZwUyrBUaNUtCpk/P7O3UCRo7kNnFERERE5HssL69Q7fLyESNG1OoJJUnCJ598Uu3H/frrr9i2bRuuuuoqXHTRRW6PPXnyJABAp9MhzkUpQ1JSEgAgOzu72mOh+k1RlDopy66LzuiyfAbr1zfGsmVqQ7ijR9Wxp6crGDlS4TZxREREROQXDLor1Kh7eW2IGnRsMhqNWLBgASIiInDnnXd6PL64uBgAEBER4bLpW1SUWhpcVOS+tNZkMsFkMtn+LkkSDAaD7fv6ynptwXCNOl04ysoi7bY4K4bJ5L/sbHh4MdLT1b2tXVHLsothMlX/9dFoNFCUxi47o8vymVp3RrfOm6IoAHLPbxNX9TUUIjjmmBwF088fVQ/nLrRx/kIX5y60cf5Cm6v5swbdSmQkpPPxU0NV46C7adOm6N27N/79738jPDzcl2OqYtWqVcjOzsbdd9/tVdMza5DsrgTdep/Rw35Zq1evdthzvHXr1pgxYwYSExO9GHnoS05ODujz5+YCGRnAW2/BFpw+/LAed94J+GMKzGZ1q62RI4ErrwTeew9YuRKw+9wFnToBaWkyEhJq1hAiNxcYNAguO6Nv3JiElJRaXsh5ruevYe1RH6oC/fNHNce5C22cv9DFuQttnL/QVmX+8vMBAHJiIlJ89cttiKp20D1mzBh8//33+Pvvv/HJJ59g1apV6Nq1K3r37o1LL70Uso/bIFv35G7dujUGDBjg1WN0Oh0AwGw2uzzGep9e7z74uOmmmzB48GDb362f4OTm5ro9f6iTJAnJycnIzs6uUXWCb8aQ6HTbrkcfBT7+GMjMNEOIXJ88lzX7vHSpY/Z50iSBxx6TcPPNajdwa1m2opzByZPVz0brdOHIyIjFTz85/znZswf46CMFaWkFtcrmB8P8Uc1x/kIX5y60cf5CF+cutHH+QpvT+VMUJJ8+DQmAMTYWp88v/61vtFqtV8nYagfdAwcOxMCBA3HixAl899132LZtm+1PbGwsevXqhV69euGCCy6o0cArW7hwISwWC8aPH+91QB8ZGQkAKCkpgRDCaamKtazcWmbuik6nswXxlTWEfxSEEAG5Tm+27fr4YxlpaWE+aQSmKI2dBvhTp0r47DNg504Bs9mE8PAiGI1lUNw3BXeprMy7zujDh0dClmu/vjtQ80e+wfkLXZy70Mb5C12cu9DG+Qtt9vMn5edDOv8Ls9K4cYOf11qVl99+++24/fbbsW/fPnz77bfYuXMnNmzYgA0bNqBZs2bo3bs3evXqhYSEhBoP8NChQ5AkCTNmzKhyX0lJCQBg7dq1+OKLL5CQkIBXX33VVr5gMplw9uxZNHaycD8nJwcAy1iClbfbdg0fHgVZrl3Q7V2AL5CWVlTrAL86ndEb+L9NRERERBSiuEe3I5/Ugrdv3x4TJkzAggULMHnyZHTq1AmnTp3CsmXL8MADD2DhwoW1Or+iKCgoKKjyx7p2u6ysDAUFBSgsLAQAJCQk2NZ+79u3z+k59+/fDwBo27ZtrcZG/lHdbbt0OgMUJQFAEhQlATqd52YN1seYTI1w2WUybr8dcFHU4HZfboMhBhZLMoAUWCzJMBhiXD6ntTO6O9bO6A1JTeaPiIiIiIITO5c78mn3cq1Wi27duqFbt274448/8N///hd5eXm2Lbxq4sMPP3R535w5c/Dtt99ixIgRuOWWW2y3S5KErl27YtOmTfjmm2/Qo0cPh8ft378fx48fh0ajQefOnWs8NvKf6mzbpdUmuewELkmnq3QC12g0ECK+ymPGjQO2bQNuuw04csTxuZxln3U6HSyWBMyfD8ydK50/j4RJkyIxdmwkNJo8h873ABAW5m1n9CJ46PFXL7iaC3fzR0RERETBTT571vY9g24fZbqt8vPzsWHDBjzxxBOYNm0a8vLyEB4ejvbt2/vyabwydOhQaLVa/PLLL1i3bp1tHUFubi7mzZsHAOjXr59X3dCp7qnBqftsb3q6AoNBg0GD1CD26FG12Zm1E/jgwVooSrzteGs2VYgkp4+ZNg2YNAlYsaJqxttZ9tliScCgQRKmTpUczjN1qoTBgyVYLFWXVZhMpRg1SkGnTs6vqVMnYORIxSfr1EOBEPFezx8RERERhQbN6dO27xl0+yDTbTQasWvXLnz33Xf49ddfoSgKZFlGx44d0bt3b3Tt2tVjh3B/SEpKwoQJEzB37lwsWbIEn3/+OWJjY3HkyBFYLBZccMEFGD16dJ2Pi7yjBqfRWLZMxp49Ve/v1AkYNUogI0NyuxZ72TIZY8dGwGiMQkaGjEOHZCQmwu1jvvwSuPlmYPnyitsrZ58NhhjMn+/+PIsXAxMmxKCkpBA6nQHl5ZGQZRlms8AXX1iwZImEWbPUYLNFi4rO6JJ02vlJ6xlv1tIvWyYjLS28wXwIQURERFQfsLzcUY2CbiEEfv31V3z33XfYvXs3ysrUX4hbtWqF3r17o2fPnkGRQe7Tpw+Sk5OxevVqHDhwAMeOHUOTJk3Qs2dPDBs2LCAfBpD3JOk01q+Px7Jlaulx5eBUURTMmuV+DufNkzFyZCwGDVKD88xMYOJE98+7cCEwZ05F0K1mnyWUlUUhLEyCyVSKoqIIzJ1btSu+vblzJYwcGXF+m7DK5dMKRo8WGDHCCECGxaLYOqM3FHXZLI+IiIiI6g6DbkfVDro/+ugjbNu2DfnnNzuPj4/Hddddh969e6N58+a+Hp9b999/P+6//363x7Rr1w5PPvlkHY2IfEldy5uDtLRwDB8eBY2mcnCa5LHZWufOwNKlFRnphAT368QB9f7ERKBNG+D11wU6dpRw/LiEM2f0KCvTokuXaEiS5NV5tFoJf/yhRVYWkJ3tWD69bBmwfr2AEDmQZTSINdz2gqWTu30VgqIoCAsrhslU++3aiIiIiBoqh6A7nssFqx10Z2ZmAlC3DLvqqqtw0UUXQZIkFBcX2zqCe9KuXbvqPi01YEZjGWS5DELAITj1ptna3XcD48ZVZKTz8uBVg7bmzQW+/lrCRx9JeOgh2DVbk9GihYyEBOHVeQoLJYwZ47xJW0Mvn65OszzZp90nVGziRkREROQfzHQ7qvGa7hMnTmC5/aJXL0mShE8++aSmT0tk400n8FatBI4erQi6lyxRA+Bp01yfNz1dTavedJPjmm1rs7X164GNG4FJkwSmTnVdYj5pknqc/eNWrACuugqwNjVvyOXTge7kbm3iVnmO1SoEGevXxwPI8f0TExEREdVzDkF3ECw7DrRqB90JCVU7MhMFgjfN1gwGx8z2ypVqxnn9erhp0AYsWOC+QdvChRLGjhX47DP357Ev6nDWpK0uyqeDlTfz569O7mziRkREROQ/1qBbadQI0Pp0l+qQVO1XYM6cOf4YB5FL7tbcVjRb02D2bMmu2ZrAyJEW6HTFSE+PtmVTTSa1xHvFCjUAXrgQThq0afDee+7HNG+eWrq+dq2aPZ87t+I8kyapAffw4UBJiePjrE3aVq9Wg++77waE0EBREmq8lrjy6xMZaURxsR45OYDFEh90a5R91cm9Nmux2cSNiIiIyH+s+3QrcXEBHklw8MNKSSLf0Gg0kOUkZGTEokcPPZo316JHDz0yMmIhy0nQaDQAAEkC2rQRWLAA+OEHYMEC9e8AYDaXVdkX+8gRtcT799+BDz8Ejh8X2L7diLS0fChKjq3ZmTtHjwIFBRL+9S8gLAzYtEld971pk/r3du3UsTh7XLNmwPffA+3bq6XuzZtLTq+ruq9Pjx5a5OToMX9+JHr00CM5GTU6ryvWfc6BJChKAnQ6Q7Ue73w+dVi8WMIddwjs3GnE8eNmh7lwtqba2/eFO9Vp4kZERERE1WAyQS4oAMD13FbM9VPQ8mbNrSShyjEqGZ06qcfIctWtx1JSgK5dFXTooGZThbDY1g0LYUGLFlqPDb4OHVIz2ZMnq3+s25G5e9yFFwKNG6tZ7tquJbZ/ffR6NZAfPx746aeKdea+WKPsq4Zj7ufT+07uvliLHegmbkRERET1lZyba/vewqXJAJjppiCl0xmwdKn7NbdZWTKWLtV4XJer0eggRA7S0vKxfbvnbKpef87WTM2Vhx4CPvjA8TZrkzZ3XnnFcQszV2PW68Pdnqfy63PzzWrTttqe1xlrkDtlivqBhf22Z4MHa6EonreB8GY+a3LdNT2P2sRNcXuMtYkbEREREXlPc/Kk7XslJSWAIwkeDLopKHmz5jY8XMbs2RL0euD229VM886d6tfbbwd0OnVdbllZFADr1mN557OpeS4bZKkNviwOJen2OnVS14Xv3u14+8qVwA03wO3juncXePddt5flMGZXKr8+o0er68Vre97KfBXkeruGurrXXdPzqHOsuJ0rfzVxIyIiIqrPNNnZtu8tDLoBMOimIOXNmtuYGHU9t3V99MSJQPfu6tf27dUu5ZJUs3W5aoM2M2bOFEhNVc+Tmgq8/LLaRO3114G0NMfHWJu0zZkDPP88HB43c6ZAZqaARuPdenFPY678+iQk+Oa8lfkqyPXVGmpfrsWumGOl0lwpyMw0u23iRkRERETO2We6LcnJARxJ8GDQTUHJuubWnXPn1C7gEyeq+2Dblz5Pm6Z2EV+5Ul2X64y7xmAWi+V8SfpZbN9uxLFjaqO2//0P6NkTmD/feVbb2qSttBTYvl3g+HELtm8XaNNGoGdPCT/9JHm8Luta4uq8Pnl58Ml5K/NVkOvNfNbkumt6HsB+jr1bdkBEREREnjkE3cx0A2DQTUHKmzW3sbEKNm0SbkufN28WiIpy7MpVne7XQqhNySRJQXKygHS+R5m7rPb06QrS083Q6XIgSQLDhkkYNkzG3397t+7bm7XElV8fX523Ml8Fub5aQ62ex/16+/R0Ua3r9HbZARERERF5JrO8vAoG3RSUvFlzm5IiYe5cyfkB582dK6GoSO9wmzeNwSoH5s2aaTB4sISLL1bL1lNTPW89Jsv6KuuhV64Ehgxxv+7bm7XElV8fb9aTuzuvq6y/r4JlX66hHjbM/XUOHerxFERERETkJ2ykVhWDbgpantbcajRKtUufvWkMtmKFDCDBaWD+zDNq2fqqVeo2XRVbj5khyxWZUp3OgLKyWFx9tezQ2E2S1MctXAisWKHu671zp/p1xQq1I7q3W1TZvz4pKcDw4WrZ+/Tpwus1yp6y/opi9Fmw7Is11OXlkbjzTglz56rr652tt09Lk6rdMI6IiIiIfMMadCuNGkEYDB6Obhi4TzcFLXVNbQ7S0sIxfHgUNBoZFouaVTUay6AoCWjRQlOtvZa9aQz2558yPvrIfdn6t98KHD+uoKzMgshII4qL9ZDleEiSAlnWICNDctjTetw4NUP+8cfA9u3AlVcCBw6oQbL1mAkTgFatgLVrNbjppnCPgayr12fiRAUjR+qh1cowmxVERZWgtLTQ6Tm82fPa2T7nLVqoGe6RIxWvG455mk9vyLKMEyfUQLtNG2DBAiA2FigoAPLz1WNOnFA/aBHuq9CJiIiIyNeEsHUvZ2l5BQbdFPTUNbdlEELNAhvPL9FWS5/VbLQr1tJn62O8aQx2ww3AxInuy9Znz5YwfLgFWq2MDz6IwOzZMnJygB07gPHjUSWInTYNWL9ebfyWm+v8mKefVu+fP19CeXkMJMm7QNT6+siyBpIUjwULtHYBv4z09AiMGhUOSTrt0BxMpzMgI8PzdmBpaTpYLDUPlnU6A8rLIyHLMhRFgRDF59dQO86nNxRFwerVVV8/q06dKprnyXLV5w4LK4bJVOr9ExIRERGR1+QzZyCd/+WOQXcFlpdTyKrJOmFvGoMlJ3u7/ZbOoQT9ppvUwNpdELt3L7Bxo/tjNmwAwsI0zg9ww5u16vaqux1YdRuOVadhnbciI41eNc+Ljjb5/LmJiIiIyD2Z24U5xaCbfMZgiIHFkgwgBRZLMgyGGL8/Z3XXCXvTGEynE1517M7JcQyeR49W12q7Ex6ulpS7s3ChuuWYt3Q6A7TaJCxdqvGYtdbrw223+XLPa2eq+yGAN4qL9V41zzt3LsLnz01ERERE7nG7MOcYdFON2He7FiIRYWEpWLAgEj17ymjeXELPnjLmz4+ELKdAp9P5bRzV3WvZm+x4s2aet9964AHgvfccg7+EBM8Z8pgY77LoWi8Wfthnkn/5RYvZsz2VxMsODcZ8ued1Zd40rKv8IYA3vP2goLTUfTVBTZ67ruh0Blgs8cjJASyWeIf944mIiIiCGTuXO8egm6rFWclw9+46zJsn4eqrJUhSRVZx6lQJgwdLsFgS/D6u6pQ+e8qOG40mL7b1Upt42cvLg8cgtrDQ8zEtWgCKF3GufSbZ22DePmvtq+3AnKlu6bq3vP2g4NCh6n0AEQwq/2wlJ4Ml8eQ1V9v+ERER1SUNy8udYtBN1eKqZNi6ldaKFerWWFZ79gCLFwMREf4vNfeWp+y4VluMrCwFc+YAzz/vuC3V888Dc+cChYUClf8dWbLEc4a8rEzgoYfcH/Pgg0BYmBoMu/pFunIm2Rrw6/Xq9mSZmepWZPbblVXOWvty7+zK/FW67t0HBQIffOD75/Y3f5TjU/3nj94JRERENWXtXA6wvNxecP3WSUHNm5LhL78Ebr7Z8XbrGttg4yo7bjKVYuhQBenpwO+/A3PmAD/8oH79/XfgoYeApCQF6emKQ5A7eTIwdqz7DHmXLsCAAe6PufZawGSyuP1Furw8yiGTvGQJ8MgjwPffA+3bAxMnAt27q1/bt1e3K3v66apZa1/sne2Mv0rXvfugANi92/fP7U/+Ksen+o8f1hARUTDhmm7nGHST17wpGV64UG0oZk9do+y+3NcfalNuKUmnsXq1GV27Ctx/vxrA3n8/0LWrwJo1ZpjNebjzTgW7dqkfMuj16i+7hw6p237NnAmnQaxOV4jfflOwZg0wfbrjMdOnq93PGzcWkCSd21+kNRqtQyZ5/Xrg1lvVIHvaNDg8Zto0tQphyBCpSta6umviveUqI23/IcXmzQKSJFe7DNbTBwU6XSEmTfJP2bw7tXm/+ascn+o3flhDRETBxtq9XDEYIGKCp9I10Bh0k9e8LRlOTHS8rUULwGwW/htYJb4qt5QkoFcvgc2bgcOHgc2b1b/bE0LNfo8bpwbmaWnABx8AgwYBO3eKKkFseXkxrrlGwi23AD//7JhF//lndduxkhIJCxZIbn+Rzs11XBs+ZAiwaJH75mEffwyXv3xXdzswT5xlpFNTHTPx7dpJ6N5dW+158fRBQXl5sd/K5p3xxfvN353kqX7ihzVERBRsrJluJSVF/WWaADDopmrwtmQ4N9fxtkmTBKKjS/w3sEp8UW4pSfHIztZi40YZ/foBLVsC/foBGzfKyM7WQqdLQGGhBuPGOc8sjxoFFBcDOp10fkzqVzUzBezaBSxfrgbL3bqpX5cvB378ESgpqdqkrbL33pPw0EPCljl+/nlg4EDHNdyVzZ4toby87j5xtM9It2kDfPqp80x8Tctg3X1Q4K+yeWd88X7zZyd5qr/4YQ0REQUT6dw5yMXFAFhaXhn/JyavedPEatw4dX2xVadOwJgxQElJoZ9Hp/JFuaVOZ3AbUN9zD2Ayyfj4Y/fZ6E8+kfDPPxqHrKfRGO1xay9F8dyJfMECNav+449q5rh/f3W9uP0a7tRUx8ccPQpIUt01VXLMSJvx/feizspg/VU2X5mvynv92Ume6i9+WENERMGEnctdY9BNXvOmidXgweqaZnWNskBmpoBGk1dnY/RFuaUQ0R4D6rIyCe+/734sCxYATZoA8+YBWVkybrxRC1nWeAyos7M9byuWmqoG564+GHDWSd7brchqw9m6ZqOxDEaj4uU+4nE+3e7I12XzlfmqvNefneSp/uKHNUREFEzkEyds3zPT7YhBN1WLRnMWmZkC06eLSk3ABDZsEEhOVvDPPwLbtimYMKEYinISJpOpzsbni3JLo1HjMaC2nsfT/SdOVGSf334byM/3HFBv3Ag88ID7Y958U8HSpe7XcFfuJD9+PBAW5psMb2We1jXrdN7Ny/HjUkhtd+TL8t66LImn+oEf1hARUTDhdmGuMeimarFY4jBsmISff5YqNQGTMGyYBElSIMRJaDTZdVZSbs8X5Zay7DmgPnHCc/BsXd9un30GJI/7dCcnq43Y3P0ifcUVksfMsbWTvF4PTJ0KpKUJWCyyTzPJVp7XNWtwwQXuz2H/eoXKdke+LO+tXBKfnQ2/lMRT/cIPa4iIKFg4lJc3bRrAkQQfBt3kNev6VXdNwAK9PU11yi1db/HkOZBavhxIT3ffkb3y+vY9e9RmYmPHCrcB9YABwLBh6ocZzz/vfOsxjUbxKsPasiXw229A48ZAr14SmjaVnWaSa7PdlXfrmoFZs6rXDyAUtjvyR3mv0VgGjeY0kpIAjeY0s5TkVl31LyAiIvJEtgu6Fa7pdsCgm7wWCtvTeFNuOXq0ArM5xmUptF4v8OCD7p+nZUt132t3z3P99cCqVY63L1wIlJUB779fNaB+/nlg7lzgttuAgweBq64CSkuBrVuBY8dElV+kPX0wcOGFQHy82s38scecdwwXIr7W2115976QcOWV1X+9Av1+8oTlvRQs/N2/gIiIyBOWl7vGoJu8Firb03gqt1QUuC2FNpk06NdPzeLffru6DdfOnRXbcf3738Add6hbdM2bB7z2muvgufJy9qNHAa1WQZMmZlxxhcCnnwIHDgDffAN06ACMHKkek5oKPP20um/35s0K9PqzDr9Ie5NhnTkTHtd9f/yxBm+95d12V66y4d6/L5Tz8yKq9XoF+v3kCct7iYiIiADN+UZqQqeDEh/cSwTrWnD/NktBJVS2p3FVbnnXXSWwWIBz5zR44QXn+1mrgSiwZYtaCt6xo9oIrXt39WvHjsBnn6nB4aWXAikpakZ5wQLg77/Vr7//DvTqBRw5UnVsLVoAZrMFkgQIIVBQAISHq8H2ypXAW29VrJP//XfgoYeAIUOqZkq9ybBecgnwzjvuX6vZsyX06uX8Pmt5d3h4hNtsuKIIL98X6nW3aSOq9XrV5v1Um7J5b7G8l4iIiKhiTbelSRO1SRLZaAM9AAodanZVzYq6Yl2/ajTW4cBcUMstyyDLGkhSPD74IAKzZ8s4dgxo3lxdQ7xtm5phtQ/43n1XwtatAkOHOm4bdvSo2pDss8+ANWsE5sxRS8ytx9x+u9qlfPly12NKTxcwGDQYMEBje1xqqhrgb94M3H+/+jwtWqjHvvWWxWWmVM2wxmPZMhmzZ8u2x40bp5Zqnz3rXYf1xETX98+eLWP48FgMG1b1tZgyRcayZTK++MKC9HTF4/ui8nV793rV7P2k0WggRDwyMmSHOU9P12LUqGhI0mmfB8PW95sQ6v8zwfAz4KC8HJpjx6A9cgSaI0egycuDVFAA+dw5SOfOQS4shFRYqP69sBBSSYl6IVotIMsQWi2g0Th8rzRqBCUhAZaEBCgJCVDi46EkJsISH6/e3rQpRKNGgb5yIiIi8reyMshnzwJgabkzDLrJa2p2NRrLlsnYs6fq/cG6ftXaWbty0DhtGrB+vbqf9VVXVZQ2d+4MfPKJ+7LsFSuA1q0dj1m5Ug3i16+Hy9fnxhuBHTuq7gGuZoDVzG9sLFBQAJSVuW/UpgaNOUhLC8eIETEoK9NAkiTs2aNmzmfPVoNwd4G3tWO4K0ePquvK3b0WS5ZIGD1aYNky19c9apRARoZU7derpu8nV3Nu/aBg/fp4ADnVPm/Qs1igPXgQut9+g+aff6A9fBiao0ehPXIEcnY2JOH+PeWXISUmwty2Lcxt28LUti3MbdrA3LYtlCZN1Dc+ERERhb7jx23fKgy6q2DQTdDpDCgvj4Qsy1AUBWFhxTCbnQc61uxqVpaM8HAZMTFAYSFQVqagSxcl6Nav6nQGZGS476xt3c/amnG9+25g3Dj3wcDs2RIWLHC8zWRSs+YrVqjnXLgQDtnnYcOA4mIJ4eESoqKAl15S14VHR6tbhFUdo4xOnTwHiEZjGSSpDJGRSbjxRi1atVLL1Nu0Uff7fuIJ19dxzz2OHcMra9ECOHTI/Wsxa5aMESOMWL9eVMm6p6crGDVKwGKRMGuWDL1efa1HjwYSEtQPF5YuVTP9CxbA4XEjR9bs/eTNnC9bJiMtLTzoPiCqFrMZ2r/+gu5//4Pu11/VP//3f5BLSmp8SiHLEDExUKKjISIj1UX+ZjMkiwVQFPV7RQEsFkgmE6SCAo+BvCY3F5rcXITt2OFwuxITA/O//gVj584wdu0KY+fOXP9FREQUqo4ds31rYefyKhh0N2CeSnBdkSTgwAEJs2fD7jESunSpw8F7yZvO2gsXqmuorUF3q1YCR4+6DzSPHlUz0pUdOaJmzW++WT1nx47AL7+oge1LL6nN0UaNAv74A/joIzUbnZjoPpPsbYCo0ZzFmjUJWLwYuP9+CdnZ6vrwTp1cZ5Jvvx24+GLX50xPF/jgA8+vBSCfX9ccjuHDo6DRyLBY1JLyjAwJvXvLkCTg+++BjRvV9fH2Zf633qqum7/oIgGLxXS+pLxmAbG3XfaHD4+CLIdQ0F1aCv3u3Qjbtg1hP/4I7W+/QS7zbvyWxo1hadkSlhYtYE5NhaVFC1hSUqDExFQE2bGxEBER1cs+WyyQz56FnJcHOTcXmtOnbd/LeXnQHj4M7Z9/QpOXV+WhcmEh9FlZ0GdlAe++CwAwXXihGoB36QJj166Q23ZAuTHK4QNBk6nU+/ERERFR3bDLdLO8vCoG3Q2YpxLcjRur8xgJy5Zpg65s19vO2tZ1zZ06AQaDd2XZBQXO7zOZ1ADe2hBtyJCK+xYuBO66S816//ST2hF94kT34/M2QLRY4jBsmITWrdXnTUxU13V/+CGwdi3w3nuOmfcbblCz7Jdd5q68W32cO9ZmZ+o65op1zVptkm0N9+efA6tXA+PHw2WZ//z5gMViOt+l3f1zulOdLvsBqLb2nsUC3c8/Q//ddwjbtg36rCxI5eVuH2Ju0QKmSy+F6bLLYP7Xv2wBtojy07ZrGo26ljshQV2g74J05gx0f/0F7Z9/qn/++gvaAwegtfsPGgB0Bw9Cd/AgIpctAwAURSfjW8sAfFIyFL81uw7jJ8f6bU0+ERER1YJ9pptBdxUMuhsob0pwlywB7rwzHEZjqdePCbayXWvHdW8C6Jkz1ZJmna4Y6enRHhqDCRQXA4DrrOC4cVVLt48eBcxmgZ9+Uh+XkOBdszNPAaJ1bnbtAnbtcmxOptOpmfc1a9Tv//lHHdeBA0CPHgJz5khOy+Gvv14Nhl97TcGwYdVrnlf5vXLgALB3r/uM/ubNAhMmGFGL6mgA3s+59YOCYCLn5iL8iy8QvnUr8MMPSHD1yQ4Ac8uWtgDbeOmlMF16KURcXN0NthpE48ZqBrtrV4fb5dOn1Wz3rl3Q79oF3a+/QrLbNy7qXDZuRQZuRQbKj+vx9ZR+WPT2UNy9+gYgWVf5aYiIiChQWF7uFoPuBsqbEty33gJuuy0Sslzq9WOCrWzXu47rAldcYcGVVxbCaCxDeTkwalSkh4ZxFgAat6Xb11+vlpTba9EC+OuvikA9L8+7rLqnANHd3LjKvG/ZAowZo5ahW8vhExPVxmrWcviUFAnbt6t7lrdqVbEWOy9PPebQIefNziqPp21b4L77XI8fAObOlTBqlL7WgXCoddmXT5yAYeNGhH/+OfQ//uhyjbS5eXOUX3UVyq+6CsaePdXscohT4uNRdt11KLvuOgCAVFoKw29/4Ld39+LcF9vRC9sQjSIAQBiMGIiNGHhkI9AJMF1+OUr790fZoEEw/+tfgbwMIiIism+k1rRpAAcSnCQhgrrAMmjl5ubCZJeRCT1JaNbM/WcukgQcP26GEDm1eEzgyXISBg/WugyOMzPNUBTH8Wo0GihK1e247Bt8ybIMi0VdQz13rlQlS1x5KzIAmDlTYNcuyZaJtm6bNW2a6/HPnKkgLS3fQ/WAOjeVG5VZg+OVKwGzWQ28hw9Xr+OOOyQ0beo8U29/niuvFLBYgN271WUEhw6pa7EnTRIYOxbQaPKc/Cw4vld27lQDd3fs3zvOmvtVXsvr7hhZTsHgwZKbORdQlJMez+MvmiNHEP755zBs2AC9q/R/fDxKe/RAea9eKO/VC5aWLWvV7TsQ11kTipKAHj30OHoU0KMcV2MrhmIdhmIdWuCY08cYL78cJbfdhtJhwwKe7ZckCSkpKTh58iT432vo4fyFLs5daOP8hTZJkpBy443Arl0QkoSThw6p5ZUNgE6nQ6K7/XfPC7LiSqor1hJcd6wZ1to8JhioHdfNmDlTQWqqGrekpqrBbGam2WmHbIvFcr4xWD62bzfi+HEztm83Ii0tH4qSA4vFApPJBEU5iQkTirFtm4LjxwW2bxcoLQV69aoacFvXSO/eXXHbypXq2upOnZyP3dttsxRFQbduaqOy9u3VdeLdu6tf27dXt+bq1g1o1kzYrsNiMTmdz9RUx/M0ayahRw8J//ufhGXLKjLzU6dKGDxYgsVSNcip/F6xZvTdqcjoJyEjIxY9eujRvLkWPXrokZERC1lOgkajgUajcXtMWFgktmwRWLMGePVVOMz5q6+qZfbffCMQHh7h8bl8STpzBpEffICEG25Ak+7dEfvii1UCbtOFF+Lcgw8i94svgJwc5M+fj5LRo2Fp1arGAben18vX11lb9mvyjQjDJlyHBzAHqTiCK7EH0/AcfsIVDo/R792LRv/5D5KvvBJxEyYg7Ouv1U+ZiIiIqG6cLy9XEhMbTMBdHcx011CoZ7rVNbexbktw33wTuPPOs5XWdLt/jHdZ2cDQ68NRVlbRWbs2HbJd8ZQhNxjKMW9eBKZOrQigUlOdbzNmn1X31DRKpzOgoKARRoyougc4oAbvn3wi0KjRWds1O5tPvV4NuCdOdL7+ulMntQzdfl/zmTMF0tLOOryWlc/tbUZ/zBhha77m7LnXrzdDklClmZ/jMQLZ2RLuu0/dS330aMey+X/+Ua+hSROBYcNcv17r17uu2PA6a2yxIOy77xDxyScI37QJkpN6dlOHDigdNAhlAweqZdKS5NNP/GU5ycPrFVyVKfaZbldSU4GdK/5CxJcfw/DZZ9D/+muVYyxJSSi95RaUDB9ep+XnzNaENs5f6OLchTbOX2iTLBaktGoFKAqMHTsi7/PPAz2kOuNtpptBdw2FetANeC67/uILwGRy/MevJqXaDZG7AN9Z6XNkJPDyy+p+3ZGRAmazQFRUCUpLC716PoMhBgsXRuKxx1xnQ994Q2DcuGKUlFScs/J8ehMcP/888PvvFc3aUlOBHTvMkCTHebc/t06nZtsnTXK9Bn7DBgs+/ljCI4+4/lBn3ToFBw5ImDLF9XXOnCnQvLmEESPcX8O4cepxrs9T9QMk6zZ7S5dW3mZPwahRFR+QaA4dQtRnqxD2yXJos49XObfxsstQNmgQSgcOhOWCC6rc76tfPkLxg7KajFn7+++I+PRTGFatcro9WXnPnigaPx7l/frB393z+ItjaOP8hS7OXWjj/IU2zcmTaNK5MwCg9PrrcXbhwgCPqO6wvJw88lR27axPU01KteuCTmeAoiQASIKiJECnMwRkHFbq1ll5ECLn/BZY9oFbHjIzBaZPF0hNBVq2BL77DigtFbjmGrWcu2dPGR98EOF1+W9RUQTeftt9+fHbb0s4dy7C4bbK8zl6tJptd2fhQvU4q6NHAUmqOkbrudetU7BhAxARoXZDt1639b0zfbpAZqaAJFkwa5YMvV4N/jMz1bXgmZnq33U6IDxcxuzZkttjZs+W0KgREBWlNgPcv18t9d+/X/17RIR6DcXF7l+v2bNllJU5brVl3TJvyhS1ikGIim32hg0S0K/8Cgm33IImvXoh8q03HQLukshEFN83GXlbtyJv40YUPfCA04Dbl7xtflj5OgPJZCrFqFFKtZZcmC+6CIXPPYdTWVk4vWgRSgcOhLArbQvbvh3xY8ciqU8fRHz4IaTatsgnIiIiG83Jk7bvFXYud4rdyxswtWQ5B2lp4Rg+3DErazKVA6i6x567xwQiU2bNPGZkVM48aoN2P1+1QuIkJkyIwciREdDpJAwaJNm2EQMc90v3Zu9zjUbyausxrVZy2Hqs6nzqcPSo+2DUfl9zQC2FF8L5kmNJAg4ckDBvHvDxx2qTudatpUqd0iWsXg2sXq2zlbdv3KiWuFvnc9w4NVOu06nndHfM8OFA06bAH38AH30E9O9fcczEiWrwPWIEPHYur7xVm6st8xKQi3vxHib9NBdxP51wuM8MDTZgED7A3fi8eCA67tZh/bNmoI7KuUN1z3L1A5t4ZGXJCA+XERMDFBYCZWUKunRRXH+4p9OhfMAAlA8YAPnMGRhWrULkokXQ/vMPAED7999o9J//IOb111E8ahSKx45lh1UiIqJasg+6uUe3c8x0k9usrC8f4w/uMo+DB2uhKPEBGZc3SkoKER5egKVLhdv9qz/+WAO9vonbDL7FIrxqVGY2O4+srPPpqrla5fPk5lb8ffx4QKeret6KuZHQpYsaJO/dqwbN1gDd+v1PP6nl6pmZamA8bRoc5nPaNLU0PT5ebYTm7pjVq9Xjhg0DnnrK8ZinngJuvFF9rlOnPF+nfVPAylnjS/E/vI9xOIoWeBlPoxkqAu4/0B6P4TU0xzHciLVYh2EwQ2fby16vD3f/5D5ibWjnrjIgGJsfAhUf2IwbpzYFHDdO/bu3lMaNUXzPPcj5/nucXrQI5T162O6T8/MRPWcOmnTvjkb33w/t//2fPy6BiIioQZCzs23fM+h2jkE3hSydzoClS6tmHq3qOsCpCW/Kf99+W8LOnRq3HaejokowaZL7VOWkSQLR0e7LatU9rt0HYOPGqQ3JALXUd8AANei3V3luRo9WewS4665++rSEzEz3H0CsWCHwzz/ujzEaBRYvdn/M0qUCzZu7f72se3lbybKM40ctGIq12IK++B86Yhw+QDjKAQAKJGR3G4YRiVtwEX7HG3gMp1C1xKouy7nDworx9NOK29f96acdrzMY2H9g4/hhmlT9D9NkGeUDBuD0p58i58svUXLbbbbSc8lsRsSaNUgaMABx48dD+/vvfroiIiKi+ktzoiLxwKDbOTZSq6H60EjNnVBoaOFtl+Pt242Q5arNlYKDd3uf//BDxT7XrjpOV2dvanc8NcubO1fd+iwtTd2P/OGHgRUrHF/jynPz44/qV3dd0VesAK6+Gh7nc8EC4LrrXB9z4ADQr5/n82zbJnDTTe5eL7umgEYjwj/7EgVT30Br818OxxYgBgsxDv/FA/g06wKc7yPikjd72fu2e3nK+eULVe+rzvuirtRF8zc5JweRixcjIiMDmjNnHO4rHTQI5yZPhrlDhxqdOxT+7STXOH+hi3MX2jh/oS1u0iQY1q4FAJz6/nu/96wJJmyk1kAZDDGwWJIBpMBiSYbBEBPoIflNddar+pM3TdycHaPTGWCxyNUu53aVwbc2aFuzRmDTJrWMeNMmYM0atVGZRuP6gwf78QmhIDPTgpkzHRuevfyyuq+4Tqc2JPv9d3U/8ltvrZoprTw3sqxmut1ln81m94EyoN4fG+v+mPBw786j1aofXuzapeDAAbXZ2oEDwP79CtasERBCglIcieiMJUjq2RONH7vPIeA+gLZ4AO+gOY7hUbyJQ7gAOp13Zf51Vc6tVhx4Wr4gAlIN4urnpi6avylJSTj32GM4tWsXCl54AZakJNt9hg0bkNS/P+ImTIB2374aPwcREVFDYV9erjDT7RSD7npCp9NBllMwf34kevaU0by52gF7/vxIyHIKdPVwk3rrelV3/BngaDQayHISMjJi0aOHHs2ba6uUgLs+phEKChrhvfdkjBvn/nnsy7mt3AUd+/fDYR3s/v3Vu4abb9ajqEhGmzbA++8Dhw8DH34I/O9/QNu2wJVXAkOGqOuiL7usaidpoOrcmEzqudw5fBhezWdBgftjysq8O4/FIiBJGnz9tYR+/dQu8v36AatWSZCLi7Cq+0zo27dD9NQnoLUrm9od3RcDsQHtsQ9z8ACKEA1AzRo3a6Z4LM+vXLbuT8HYvdybn5s6+zDNYEDxuHE4tWMHCqZNg8Xuk2pDZiYS+/dH3H33Qfvnn7V/LiIionrK2khNiYuDMAR2B6FgxaC7nrBYEjBokISpUx3XQE6dKmHwYAkWi5P9v0KcN+uP/RngeNPEzfUxEm6/XcKQIcDAgXC7PdL11wOrVjne7izosL4HnnjC8T3wxBNV3wPWLKOiJOGPP7TIypKRnW3dcgsYMULCsGESBgxQs9kREcBFFwEpKRWZ7+efV7fecrbtceW50Wg8Z58/+ABIT/e0zlp4DLrz8uDV+vaICKnKz0zR0TMom/o8Ii9uifsPP4EkpaLbWln/QTizYQOa79+E/jOvR4tU2WHLvA0bLDAaLRg1SqrWdlf+FCzVIPY8/dy4qv6wbwa3ezdgNsu+2xrQYEDx+PHI+eEHFDz3nC34loSAYf16JPbrh9gnn4RsX3JCREREgBDQnM90W7hdmEsMuusBgyEGH37ovnR38WIgIqJ+lZrXZD9fX/GuiZsGu3a5P+aLL9S5mTNHDWLty7mff15dP33bbWqm2F7lDL6374HIyFiHLGOzZhLGjKloqnXvvWqXcfvzHDkCXHWVWk4+Zw6wbx+wbJn69y5dgCVLqpa6V56b3FzP2efdu4FRo9x/ADFyJNCqlftjdDpg7Fj3ge+YMWrm3Xqd0SjEc5iGf9AK0/A8Yi1nAQBCkrAcw9ERezH3hnVQunaDEDlIS8vH9u1GHD9uxvbtRowZI/DxxxL+/W89unWTMH9+1f3IA7GXfaCrQSrz5ufm559FlQ9fUlMdm/B16QL07Cm7bCxYU8JgQPG996rB97PPwpKgflAlWSyI/OgjJPXqhai33wZKS33yfERERKFOPnMG0vl9WNlEzTUG3fVAUVEE5s51v5XO3LkSzp2LqKMR1R11P18zZs5U6jTA8a5sV0J4uPtjFi5UM9n9+qlrlb/6Ss36rVsnbGumjxyp+rjKGXxv3gPvvy+htDTCaZbRut3WlClARkbVx5pMajn5kCHAtdcCZ86oW3Pdcgtw6aUyjMa4KuvZ7edm40Z4LKOfNEmBXl/gcj43bLBAUQQeesj9hxQPPQQcPKiOb/p0x2OmT1e3HCsvl/Df/0owoART8DoOoTWm4XnE4Jx6vdBiReRYHNrwB27HcvwPHR3KsDUaPYTQQggNtFodBgzQ4JFH1Nf08GG1tP/nnyV8+CFw/LjA9u1GpKXlQ1Fy6nTf+LqoBvGmp4GVNz83kyfLDh++6PXAp5863ybOX1sDCoMBxRMmIOeHH1D45JNQotR5l4uKEDNjBpJ694Zh5UpACb6t1oiIiOqSbLdHN9dzu8agux7QaCQvG0d5v8dtqLBYLE4zj/4OcLwt2/XU9OvoUaBZM2DLFiA/H+jfH7jgAsBikfDXX1Uz3IDzDL4374HOnYGlS91nwz/9VM0iehpzSkpF5nHcOKB5c6nKulz7uXnySSMmTBAeqxLKykrcZpJfeUXGwIGOmfcfflC/Wj+kGDgQeOcddWxhYWozuaNH1dc4LAxo1w6QzUYMPjoXf6ENXsfjiIfawdoELd7FBLTBX7i9ZBF0l7RzuG51PXJF74RHH5Xw3ntVO4NbP6S45hpg2TKB8PCigOxl789qEG/WZlfmzc/N338DWq0FmZkC06cLjB9ftfrCnj+3BhQRESh68EHkbNuG4jvvhDi/lkJ74gTiHnoICYMHQ79zp8+fl4iIKFQ4bBfG8nKXGHTXAxaLdx2Tzeb6uwWDENL5r45/9xdvy3Y9rT++8EKgcWPHLJ7RCNx0kxpIvvQSvMrge/MeuPtuNfvuzjvvqMd5uq64OO8zj0ZjGWQ5D5KU43VVgvUxQuRAq5VtmeQPPwTuuktt4GbNvHfr5tjYbexYYP16oKQEmDxZDb579AD++AN4dLIFt5YsRvLV7TAX96Mpzjf+gIQM3Il22I+JeBdH0BItWjhWEatl2LLDOvDRoz03iKvrRmWV+asaxJueBpV583Nz4YWA2azBsGESfv5ZwkMPqRUh7vj7NVYSE1EwfTpyN29G2TXX2G7X//ILEm65BXHjxkHj6dMEIiKiekhj17mc5eWuMeiuB6KiSrxqHBUdXVJHI6o7Ncm2+YJ3ZbsCZWXuj3nlFbUzeeUsnnUd9a+/qqXmx49b3GbwY2KMHt8DLVsKr7LzLVu6P2bCBCArq/qZx5pUJVReAzxkiNpUzl15+cqV6nH2jbdWLBfofHwtDsdcisUYC92xf2zPsRI341L8ijHIwCFU7Cs5aZK6hZhVerrA7t2O152Q4N32ZHXZqKwyf1SDeNfToOp7wJufmzffVLB0KbBrl/pBytmzwfMam9u1w5mPPsLpZctgstvH2/DFF0i8+mp1vXd5ud/HQUREFCw0duXllqZNAziS4Magux4oLS3E2LHum0uNGQOUlBTW6bjqQk2ybb7gXdmuBV27uj+mUydg/nxXz6EGHUOHSrBYLJDlPJdlwOfOybjzTvfNwyIiJK+y8zqd+/fS6NHA1KmOQe3OnerX22+3dkB3nXm0z2K7uyag6hrgO+8E3njDfXn5m28C48dXlL/PHbcHpd37Ivm+G9G88A/bucr6XIc72+/GrViJ33Gx0+u0dma3NnGbMkVyuO7ERO+2JzObNTAYAtvIsDqvuyc13YrMm5+bK66QHCoy8vK83QLO+/XV1VmH7kx5797I/fJL5L/xhm2Pb7msDDEzZiCxXz9g8+ZqnY+IiChU2QfdCsvLXWLQXU9oNHm2NZCOjaMEMjMFNJq8QA/R52qabfMVb8p2XR8j8MknAoWFvsniybKMBx9Uy6qdNQ/LzFQDeE9bco0bByxaBHzyicDMmZXfS8B77wGnTwNms2M36e7d1a/WLuiSVL3Mo6sgqPIa4NRU9fWwb+xmX15uMgGnTqnrtqeNO4rW09Kw4VRnXI1vbef4JbIHTq/8BncmfoHXtnR2+Xo9+CDQpIn9fFa97v/8R+34Xpl9YL5pE5CdLWHr1kjIcgp0Op3Xr0uwqs1WZJ5+bjQaxeHcS5Z4bsLnbTM4n1bGaDQoueMO5Hz7LYrGjatY7/3338C116LRxImQ7UruiIiI6iOWl3tHEkLU34W+fpSbmwuTsy5XARYREYNz5yKg1Uowm9WS8ppkuCVJQkpKCk6ePIlgfYsoSgJ69NC7/eU/NRXYvt0IWfbfhw56fTjKyqKg0ciwWBSnTbOcHQMApaWN0LOn+wDGm2tQlATk5Ojx4IPqFmM33KDurV1Sojah+uwz4O23gaZNBQYPlrBnT9VzdOoEZGYKmM0mh/Hl5Kh7eP/5J9C2LdChg9r0bfx45yXm1ux9kyaeX3eNRgMh4rF0qYzZs2UcOwY0b64GUaNGKRBCwb//XTHH+/erzebcvV6PjD+HWw9Ox+Vb3oQBFfPwJ9rgCczAatyEt94CrrtO3S6tdWs1q52YqG5ttmQJ8M8/avY8KUmBwZAPo7EMFksycnNlh+uOjFS3ULvxRthe09RUtSHdxo3qWmTrNY0bBwwbps6B2Xyy8rBtdDoDyssjodfrYTQaERZWDJMpuLao8sXPnqufm8rn1unUD3ImTYKb960ZipLjcdyynIRBg7Qu37fr15shhOfzOKP97Tc0euop6O0GqURF4dxjj6F47FhAq63RealuhcL/feQc5y60cf5CV2KfPtD99RcQGYmTBw6goc2eTqdDYmKix+OY6a5nSkoKodFkQ4iT0Giy62VJuVVtsm2+5E3ZrrNjjMYyhIcX+GRLp+hoBZs2CezYUdE8LDVV/Tp5MrB9O/DVVwKRkeUesvNVx7d1q4LBg9XzDB6sZtO//NL9mu7NmwWiooweXztPywMkSYPJkxW7411nPTUw417Mx/SVbdB9yyu2gPsM4pCOt3Ax/g+rcTMACX/+KSEzU9jWDVfOmP/4o3oN0dEltvmMjTVj0ybhcN1DhqgfaFjXmLdp43p7q2nTgHvuUZvrRURULTWvnIVNTkad9CeoichIzz0EJk1y/x5w9XNTed23yaR+kORsHX91msH5uzLGfMklyFuzBvlvvAHEq8ta5KIixD73HBJvuAG6n3+u0XmJiIiClhAV3cubNVP/gyanGHRTyPK2g3h11nrWNV9t6VRYqPdqr/b8fH21mmo5G1/btsC8ee6va+5cCUVFerfHeBMEffyxhLS0iq3GDh5UA93Kr1cfbMVPuBLzcR90Z9RMpRE6zMQjuBAH8TbSYULFeG64AXj7bc+vl/01FBRoq7zGo0era8ita8y3bAG+/db9BxLLl0swGiOq3Ofv/gS1Xcdsr7hYjxtucN9D4PrrPb8HnHH2nrM2Fvz9d9R47/OarkOvFllG6ciRwP79KBk1ynaz7vffkTB0KGJeeAFSaXBVLRAREdWUdO4c5JLzjZqbNw/sYIIcg27yG1/+ku+Mdx3EvVvrGUi+2NKpunu1V84yCiG5nKvK44uPr946dFfvA2+DoJISCV98YcGsWQo+/xz47ruKrGe3pkfwCUZgK/riMvxqe9wGw63ogD8wBTORj7gq501Orv5aeutrHBUFvPWWWup+xRXqBxC33KJ2VTeZ1G3X3FmwADAaHYN3f2Zh/dHhX5ZlCKFul+asi/zChYCi1LzKxNnPREoK0LWrgg4dzJDl6jeDq4vKGJ3OAIslHjmWeJyZ/gHOfv4lTBerTfokRUHU/PlI7N8f+h07avwcREROlZcDZWXqvqNmM2CxVOyjSuQn9uu5GXS7x6CbfK6utvHyVZY40HyxpVNN92r3Zq4qj69ZM++ey2JRPJ7bmyAoJ0fG4sUS7rhD4D//MeL22wUee7AM7T59Cdvy2mMEVtiO/yOyE/Izv0fWE5/ib1zo8ryyXP2O2BaLwI03qvt9l5Soa8ubN3dsIKfReBfMy5X+5fVnFtYfGXStFli3Duja1XkX+S5dgA0bar6M2R/bnPmzMsbV0oAPfu+P019k4dx//gMRFgYA0P7zDxJuuw2xjz8OqbD+Lv8hIj+xWKD96y+Er12L6FdfReM770STTp3Q9IIL0PTCC9G0dWs0bdkSTVNT0bR5czRt1gwpzZsjpWVLJPbujUaTJyPio4+g/f13NTAnqgX7zuUMut1j0E0+V5fbePkiSxwsarOlU033aq/OXFnHFxaW71WFgcGgcXtui0X2Kgg6eVJ9zKBBGkBICP9yNb46cRFG/PYMNEa1VDdPTsS6oe/D+P0uFF/e02kJulWnTkB0tOdO7pWrJKKiSjBnjsCwYcBTT1Vdrz1pkvp3b64JcHz9/JWF9VcG3WRSs9ySVPEHcPxezehX67RV+HKbM39Wxrj9OboxHEX3T0POpk0o79rV9pjIpUuR1Lcvwri9GBG5IZ07B8OnnyL28ceRMHgwkv/1LyT16YPGkyYh+r//RfiWLY7ZRmfnEAKS2QzdwYOIWLECjZ58EknXXovkDh0QP3w4oqdPR9hXX0HKz6+bi6J6Q7YPups1C9xAQgCDbvKput7Gyx8ZsVBUk73aazpX3lQYjBolkJEhuT33zz8Lr7YwW7JE/b5ozz5oBg9Co7G3IOz4IQCA0Ghw7q6HkP/jARy6Zhx69JLx008CWVnCaeOt558H5s4Fvv1WYPTo6ldJZGS4X6+9ezfw0ENuLwnp6QIREY7rev2VhfVXBt0aXHvaNq5yRj+Q/FUZ4+3PkeaiS3B65Urkv/wylAh1Tb8mOxvxY8ag0YMPQj5zplrPS0T1WFkZwj//HHHjxyO5Y0fEPfwwIpcuhf7nnyGXVf03SomNhbFzZ5R3747ybt1Q3rUrjJ07w9ipE4xXXAHj5ZfD1KEDRKUtK+XiYoRt347od95B/NixSL7iCsQ+9hi0f/5ZV1dKIY6Zbu9xy7AaCtYtw3ylpls3BMs2XvWFdfsoWZahKIrb7aN0Oh0slgQsXqw2ATt6VA3UJk0SGDMGkGUTzOaK85SXR9Z4rjQaDRQlHsuWqVt9WZ8rPV3ByJFVt/py5sILgW3b3G9htmYN8NuuEpQ9/RIG/vEG9Kj4mTvUqi/Gl76NLTmX2LbkuuEGYOpUYOlSgRtvlNCqlfPtwNasEZCkHLfXIEmnbR/a6HQGlJU1Qs+e7tfOX3ih2kzt5ptdb2+1Zg0gywKKYrLNp05nQEZGLKZMcR2lzpypIC0tv5pBYRKaNXNf4y1JwPHj1dsqy7pFnbfbxlXnfexPnt639nPurZr8m6c5dgyxTzyB8K1bbcdYEhKQ//rrKB8woCaXRj7CbYtCV8jPndmMsB07YFi9GuEbN0I+d875Ya1awXTRReqfiy+G+eKLYWna1Luu0WVl0P36K/Q//QT9nj3Q79njMkte1r8/iu67D8Zu3eqkI3XIz18DFfv444hculT9y549OJmS0uDmz9stwxh01xCDblf880t+Q+Np/2p3wUHFXu3q/sdRUcDixcDMmY7nGTlSQtOm7v8j9TRXrvco9+59kJ1thsWCKkHQxInAgAHAnOvXY9qZB9HCctj2uPLkVDxjmInXD90CwHH8nTqp3a137hS49FIJX36pNvWynnfcOOD664FfflFw001qAOtun3X7ebj6ahmdO7u9JEgScOqU2sMmI0PNqld8+AHceSdw//3A2rVV51OIeAwerK31XtT2/PUhmMEQg/nzIzF1quv3z/TpAvfdV4LS0rAavY/9yd2cV18N/80TQi0Zff55yHYlnSUjRqDg+echoqNrOB6qDf7iH7pCde40hw8jcuFCGNauhSav6r/Dlvh4lA4dirKBA2G67DKIqFrssOCEfOKEGoTv3ImIzz6rEuwbO3ZE0YQJKBs0qOaNOrwQqvPX0DW+806Eb9mi/iU7GycVpcHNH4NuP2PQ7Rwz3b4hy0kYNEjrMou4fr37Dy2s85edbXZ5ni1b1JJzf8xVdd8Hen04SksbAZDx55/AyllHcN2GhzBUrLUdb5J0KHvocbwT9RT+83LVLbesXntNzWYvWKBmnCtnuletUjthe3Nd9vOQmal+GODumtq0UbcMu+kmoHVr51n22bPV7a+s/3xY51OjAU6c0GLduqofFAwbBqSkmGE2Vy/oVjPojTBliuvgeOZMgbS0s9UKOr2Z3zZtgO+/Fxg0yPkyA2/exwZDDIqKIqDRSLBYBKKiSlBaGlzNx2r7b56ck4NGjz+O8K++st1mbt4c+W++CWPPnv4YMrnBX/xDV6jNneavvxD93//CsGoVpEofPipRUSi74QaU3nQTynv29Guwa086dw4Ry5YhcsECaK17L59nbt4cxePHo3j0aCDcN0sEHZ47xOaPVInXXgvd779D6HSQyspw8tSpBjd/3gbdQbTijuqD+rKNVyD5al282Qy353nvPXhsvlbTuaru+8BoLENUVAmWZRjxRb/X8FpmB4eA+2tcg0vErzgx8UW8m+E64AaA//5XLTM3mYDly9V9vbt1U78uX67e7k1TssrzsGSJGgC78/rrAkuXCuza5fy5f/wR+PJL9cMAqz17gKwsGR99pHHbDXzJkpr1Qhg2zP1a/6FDq31Krxq/de4MLF3qfg28q/exTqeDLKdg/vxI9Owpo3lzCT17ypg/PxKynAJdpXWJgVTbf/OUpCScWbQIZ998E8r5DJb22DEkDB+OmOeeA7ivN1G9ot2/H40mTUJS376I+PRTW8AtwsJQOnAgzrz3HrL37kX+W2+hvE+fOgu4AUBER6P43nuRs2MHzs6ZA+Mll1SM+9gxxD73HBIHDoT2//6vzsZEwc3aSM2SnBxcjVyCEDPdNcRMt2uynOTzMtmGxBfVApIkQZZT0KWL68ysTgfs3Ance6/r9ce1mavqvg+0O/5A/h0P4V/m3223nUQyHsGb+AS3A5CQlQWvSrx373Z/nDcZ/MrzoNOpDcLS02FbK56QAOTlqQH5oUPAZ58BPXp4rh6YM0cNxK02bVIDel9XHShKAm67TY+33oLLUvuHHwZWrKj+eT29R2tzTbKc4jZDnpkpoCgnq94ZIL76N09z9CgaTZ6MsB9+sN1matMG+bNnw3T55T4cMbnCbFvoCva50/72G6Jnz4bh888dbldiY1F0zz0ovusuiLi4AI3OBSGg37EDUe++W1FCDEDodDj3+OMomjBB3SvTB4J9/siJ0lI0bdMGAGDs0gX6Xbsa5Pwx000BU5+28QoEaxZRrwduv10ta965U/16++1q8OdNplaS3Ac8JpOacc3MFH6ZK2/fB9LZs4h77HEk3dbfFnBbIONtPIj22IdPcAesa7ezs73bkkurrX0Gv3I212RSA9RPPwU6dnTs2N2xo9ograDAu326K//bHBPj3eOqu2WYLMvYuVMtZ3eWQe/VS31vWc+r0xmgKAkAkqAoCdDpDE7PGx2teKySaNlS1OiaDIYYfPih+wz54sVq74Jg4at/8ywtWuD0ihUomDYN4nz5pu6vv5AwdCii33ijYk0CEYUM7f/9HxqPGYOk665zCLgtjRujcOpUnPrxRxQ98kjwBdwAIEkw9uyJMx99hJwvv4TpoovUm00mxLz8MuKHD4fm2LEAD5ICRXPqlO17S0pKAEcSGuquZqWGhBDYv38/du/ejX379uH48eMoLy9HTEwM2rZti+uvvx6X2JW/VHbgwAGsWbMG+/fvR1lZGZKSktCzZ08MHToUer2+Dq+k4VAbI+UgLS0cw4f7qllRw6EoCrp1U9f+btyoBnXWBlTjxqnZ1ocfVrePclfJY90z2l3gIwRgNpuQllbk87ny+D4QApHr1iHqmeegOZ1re1x+2y54rfU8vPFNpyoxxsaNwAMPAE884fp509MVNG8u0KmTxmXm0ZutoazbeFlfP70eeOsttVzbPiA8elTtmP7ZZ+p68QsuAP7+2/V5W7RQ13jbKyz0PFfWLcOqU71lvYZTp1zvp209r1abhIyMyg3PtBg1KrpKw7PCQj0GDJDw2WeuqyR0OqlG11RUFIG5c903+Js7V8LIkRHQaIJjfXfl97per4fRaKzZz5Eso3j8eJRffTUapadD/8svkCwWRM+ahbCtW3H2nXdgad3aL9dBRL4jFRQg+vXXEbl4MSSlYgmKJSkJRffdh5I774SIcL9cKpiYL7kEuZmZiH7jDUTNmwdJCITt3InE/v1R8NJLKL3lljrpck7Bw367MAbdngV9pvu3337Ds88+i/Xr1+Ovv/5CbGwsUlNTUVpail27duGFF17AJ5984vSx33//PZ599llkZWVBp9OhefPmyM7OxooVK/Dcc8+hvLy8jq+mYTEayyDLeRAiB7Kcx4DbS2FhxfjoI4GJE4Fp09SgRQj167RpahfsjAzhMVMbHw+v15r6c66cnVtz+DAajxqF2EmTbAF3oRSD+zEHl5f+gLAenbBtm5ottJecDAwa5H6N8siRCiwWgfffd75P98KF3i07qrxW9+ab1aDfXQZ2+XKBWbO833vcqqxMQXq6cFvdUJP19WFhxXj6aQXbtgGXXOKYnb/kEmD7duDppxUYDBoMGqTFlCmyw/ttyhQZgwdroSjxDufVaCQ88ICa3X/1VcfX+NVX1dsXLYLHfdidXZNG435bNkAdm1YbfL/cGY1l0GhOIykJ0GhO1+rnyNy2LfLWrkXhlCkQ58s39T//jMQBA2BYvlydJCIKPooCw/LlSLrqKkQtWmQLuC0pKch/6SWc2rEDxRMmhFTAbRMWhnP/+Q9Of/opzM2aAQDkc+cQl56OuPvug3T2bIAHSHXJPuhWGHR7FPRBtxACycnJuOeee7Bw4ULMnj0bM2bMwAcffIAbb7wRALBq1SrsqZRuycnJwbvvvgtFUTB69GjMmzcPM2bMwNtvv42mTZvi4MGDWFL5N1+iILF2rfvgbt06z+fQaoFRoxSPAWqdfhhiMiFq7lwkXnMNwr/91nbzp7gV7cUfmItJOHxMY/twYcUKNeC0jnfAADXTPHeuet+mTWpwumkTsG6dWsqr0xXjo49k9OoFxMYCX30FHD6sfo2NVddce9OUzGQqdXj9Ro9WA3Z3/vtfCVde6f5DgeuvVzPi9rd16aLgzjst+PFHoH17x+C4fXtg1y5g9GjXc+WqLNxkKsXQoRLuuw94+mnHD3Ceflo9/5AhEpYscb5+GnDe8ExR1IZ1t9wC7N3rWLa+dy9w663AjTcCo0Z5/oCk8jVZLMKrJQRmcwMIOnU6FE2ejLy1a2Fu1QoAIJeUIO6RR4LuF1xvlyYQ1We6X39FwrBhiHvkEWhOq8tKFIMBhU8+iVPbt6PkrrsAQ+j/bBi7d0fu5s0oueUW222GzEwk9e8P/fbtARwZ1SX7Pd6Z6fYs6IPuNm3aYNasWRgwYACi7PYm1Gq1GDlyJK644goAwNdff+3wuHXr1sFkMqFjx44YOnQopPMlL4mJiZg4cSIAYPPmzci32x+VKBiUl0di9mz3WbzZsyWUlXneq1OWzwTN+nrd3r1IHDgQMS+/DLlMDbQKY5pjKNZiOD7FSTR1OH7PHjVQHj9ezVDPnQvcdpu6rFWSgIMH1axx9+7q1wMH1NfMaDTgs89kfPMNUFQE9O8PtGypfi0tVdcyX3utjNLSRh4DA/u1usnJ3q67Vly85gKffCLw8MNqZ/nK86Ao6nU4q2645x410LW9lucDHI0mCbKcgoyMRujRQ4/mzbXo0UOPjIxYyHISwsIiPXYQ//hj4OBB9/8VzJ4tO7zfoqMFNm2C2y7tX30FREaKar//oqJKPK4XnzRJIDq6xO0xtRVMQaTpiiuQu2kTim+/3XabITMTSddeG/BfcDUaDWQ5CRkZsU7fgxofNVkiCmbS2bOInToVCTfcAL3dP7ilgwYh99tvUfTgg0BYWABH6HsiJgb5b7+NM+++C6VRIwBqEBY/ahTCN2wI7OCoTsgsL6+WkO9enpmZiYyMDDRr1gyzZs0CoGbH77vvPpw9exYPP/wwevToUeVxkydPxvHjx3Hvvfeif//+1X5edi8n/0lCs2bu2y1IEnD8uOs9jivPn14fjrKywKyvl4qLET1jBiI/+ADS+feSkCQU3f0gun7xEv7Ojbbtp23fDXzlSnU/7a++Ap59Vs0OS5KaUR0/3nkgae1sffKkhHvucX3MnDnAyJHApEkKRo1SqqxZrkyvD0d5eRy6d3df+pyaCuzYYYYk5Th9zQE4nQd1P+1YTJniOvidOVPB2LGFMBqjsHSpjHnzZHz8sZqtdr0PtkCvXpLbNeapqcCyZYC7LaErv98UJQU9enh+LbZvF5Dlk9V+/8lyCgYPltx0A/df93KNRgMh4rF0aeX17d69V/z9b2d4ZiYaPfEE5PMfGAtJQtGkSTg3ZYraeKCO2e9lX5k3e7EHG/7fF7oCMndCwLBiBWJefBEau8oTU5s2KHjxRRh7966bcQSYnJ2NRpMnI/y77wAAQpaRP3MmSocP9/oc/NkLPXH33APDxo0AgFO7dqFJly4Ncv4aTPdya+Br3xQtLy8PZ8//49e+fXunj2vXrh0A4M8///TzCImqx9r8yh1rAypvBWp9fdg33yDxmmsQtXChLeA2XXQR8jIzUfTiWyjRROP7752XVG/bpgZ7FkvF/trDhwNff+05c3vkiPtjvvxS3fva1ZrlytTA2IJ77nF/vePHV8Q9zl5zV/OgVjd4zjaXlMTa1l536eJ5jfmyZep1unP0KHB+aZ5Lld9vsuxd1t+6dr667z+NJg+ZmQLTpwuHDPn06QKZmQIajffbm1WXEPHVWt9e18oGD0bOV1+h/PyHyZIQiJ4zBwlDh0Jz8GCdjqXyXvaVuduLnSjUySdPonFamlpKfv53TiUiAgVPP43cr75qMAE3ACjJyTizZAlKRowAAEiKgrjJkxHx4YeBHRj5lXVNt5AkKE2aBHg0wS+kg24hBHbu3AmgIogGgJPn3wQ6nQ5xLrZgSEpKAgBk261HIAoGlRt4OVOTplp1ST5zBo0efBDxo0dDe347ESU8XP1lZONGmC6/HBYLsHo13DaMW7kSCLf7fX3SJOCdd9w/9+zZksclcwsXqpl1wPvAwGKRcP317tcoDxgAmM3Vb/Cl1Wq9CmJLSyuCbG/WmM+eLeHuu90fo37AU92GZ959MAR4/8GQPZPJBEU5iQkTirFtm4LjxwW2bVMwYUIxFOWk36qMQiWIVJo2xenly1Hw9NMQ55se6H/9FYnXX1+nTda8/bDIm6UcRCFDCBhWrkRSv34Oe1eXDBuGnO++Q/HEiQGpOgk4jQb5b7yBIrv/dBr95z+Imjs3gIMif7Ku6VaSkioa8JBLQb9lmDtff/01Dh06BK1Wi4EDB9puLy4uBgBERETY1nJXZl0fXlTkPnAxmUwOv+BJkgTD+d/oXZ27PrBeW32+xmBlNpdh1KhoLFsmu93yymQqdzk/AZs/IRC+ejVinn0WmjNnbDeX9+qFgtdeg6VVK1hHFBkp8OWX7ht4bd6sZo87dVL/npLiXYY1Nlb9ncdV2XrlvbJnz5bPb2vmekcDs1lCerpamv7ll2rAe/SoGlyOG6c2SHv4YWD5cqnanbVNJu+21zp0qOK8CQnevRbn+2+5NH48EBFR8RpX5uz9FhamfgAydarr806apPYLKiur+XuwtPQctNpzANTGgKWl/n1PextEunqv6HRqGX1ODmCxJCA8vAgmk5+qSjQalEyaBGOvXoi7/35oDx60NVkL/+47FMyYAREd7Z/ntg1B9uo9mJMjY+vWWIwaFQ1ZPuO2PN8b6uscabdcodhnrzP/7wtddTF3cl4eYp94AuHnS2oBwNKkCQpefx3l55cqNuh3jkaDcy++CERFIerttwEAMS+/DKmoCEWPP+52SzH+7IUYkwny+X26LcnJnD9viBB18OBBMXLkSHHbbbeJtWvXOtz37bffittuu03cd999Lh//9ddfi9tuu0088MADbp9n+fLl4rbbbrP9efzxx30yfiJPcnKEePNNIVJThZAk9eubbwqRmxvokblw+LAQAwcKoebZ1D+NGgmxcKEQilLl8KNHhWjRwvHwyn9SU4X480/1z8yZQvz9t3eP+eYbIX78UYhp09TjJUn9Om2aenv37kJkZlY8RpKEOHXK/eWdPq0+XqcTYsQIIdavF2LnTvXriBHq7c8/rx4nhBAmkxDZ2ep5s7PVv7uSm6ue2911vf66+jzWv2dmevdaHD4sRKdOzu/v1EmIgweFMJurvt/atFGv7dixqtdw7JgQe/a4P++ePepx1X0tAunUKfevp7v3Sk6O+h61f7/NnKne7ndFRUKMG+c40Nat1TeoH2Vne/ceXL++4n1R29cjoK8zNWyffSZEQoLjG3zkyIp/9MnRK684vlYPPSSExRLoUZGvHDlSMbc33hjo0YSEkGyklpOTg2eeeQZnz55Fr1698OCDDzp8svLDDz9g1qxZiI2NxYIFC5yeY9OmTXj//ffRokULzJw50+Vzucp05+bmwmw2++6igowkSUhOTkZ2dnaDa4gQTGqa0anT+VMURCxejOhXXoF8vsoEAEoHD0bhSy+pZUdOJaFpU/edjdUGXgI6XT4AwGKJxYIFMp55xvVjXntNbZI2dKjrBmPLlqnrodPT1dvUpl9GaDSuu7lbLPE4fVqPceNcZ4QXLgQSEkzQaCSXjbicZfrM5iY4c0Z2e+7Vq4Grr4atKdrtt6tr36dNc/1aqM3XJBw5ImHduqrZ+WHDgJQUAYtFLRGzvt/0ehmKosHSpWqJeuVrEEKDbt0kfPqpWo0wf37FeSdMAK69Vu00v2OHgCxbqvVaBJLFEo8ePfReNIhzfK9IUqLbZmKZmWYIkeuHETsKX7sWsY8/DvmcWh0gtFqce/xxFE+a5N3m9NWk04Vj8WL3DQCf///27ju+qap/4PjnZnXSQheUJShLxAcE5UFQEUFF9lBARHDhwMFPH9fjekRQEVHEAaIiDlQc7LoQEBkyBAQVmQqyaQt0N23G/f1xm9DQNE3SpGna7/v14kVzk3tzcs+9N/nec873TNBmDPj8c+3xK6/YGT0626+W6arYz/LdF76CVXfK6dPEP/UUUQsXOpfZEhLIeeklzH37Bux9aqLo998n/qmnnI8LRowg++WXwc2sBnLuhRfjli0k9e8PQP6tt5L7wgu1tv4MBoNXidTCrnt5VlYWEydO5PTp03Ts2JFx48aV6coQExMDQEFBAaqquu3q4OhWXnoaMneMRiPGcsYp1IaDSlXVWvE5q6vi4kJ0ukJUVfvNXFzs2/rBrj/9vn3UfeQRIjZtci6z1a9P9gsvYO7d21EIt+va7TaaNNFX2KXaZrOgqoWANmTottvqsmhR+Zmtb75Z5ZNPPHdbX7wYevQ4s8wxZrm4uPx9FRGRT3y8kffeKz+AjY9XiYzUcc01epf3P3QInnhCx8mTOsaNS0ans2G324mIyMdiKSQ2tgCbLcbjtkHlvvvgoYe069n8+VqyuaVLyw/Ub7pJ5cMP4bHHFIYM0brGJydDRobW1X7SJC052ejRESWJ3rTjzW5PoW9fpcxnePhhHZ99pmPRIpWGDbWbIi1awLvval36s7PBMQtjw4Za1Z8dJJXeztKlCdUqs7WWT8HgMYg8+1jRMs97Hgf+6ac65z4OpsIBAyju0IF6996LaetWFKuVuBdeIGLNGk5Pnx7wRDfFxYUVDoXp3Vs7zhy07vkx6HSFPr1XVexnozGKoqIY0tPBak1wnp8ivATye8+0ejX1/u//0Jd0owUovO46sidPxp6UVGX5E8JV/q23Yo+Opu7DD6PY7UTPm4dSUMDpN97Qxgy5Ib87w4PuyBHn37YGDZx1JvVXvrBKpJaXl8fEiRM5ceIEbdu25aGHHsLg5qRNLZkrzmKxOLOYny09Xfuh16BBg+AVWIiaymol9s03SbnmGpeAO/+mm0j/8cczAbcHMTHF3Huv5wvzvfeqxMaeudNgMBhJS9OCxwkTcMls7ZjL22aD6dM9v/cbb0BiSRJqx5hlb36oz58PnTtrLXdvvaVNX/bWW9rjSy7RpjX7+eeyAX/TprBmjTYWumtXpcxcxgaDqcJtf/kljBmjOhO5WSxaa7K7feGYB9tutzFtmg6Lxf182hZL2Tm4vUkmtn27yscfq9x9NwwfDtdeq2332mu1x/fcAx99pPLrr2q1T0pWmsVSyE032T0myzv7WPF2HHjpfRxMtqZNyVywgNz770d1jMFfs4bkq68molTSJ4fKzkdeei57d+fjDTdox5mDNpe97z89grmfz55rvEEDZK7x2s5ioc6LL5I4cqQz4LbHx3P6jTc4/e67WsAtvFI4fDinZ8xALfm9HrVkCXETJ4a4VKKyDKXmIrWec04ISxI+wiboNpvNvPjiixw6dIjzzjuPxx57zGWasNKSkpKoW7cuALt27XL7mt27dwPQsmXLoJRXiHDiyw9vwx9/kNSvH3EvvohSpCWTsjZrRuaXX5I9ZQpqfLxX75mfb+LqqxWPAU6vXgp5eWfO87y8aCZNUrj8cvfB6WWXaQnPvEnuZDSeCU4Vpfxu5Q7aj34FRcH5D1z/nj5dISJCh8mkdf9OS4ONG2H1avdZ2h3TUOXlGZkxQ6kgOFYoKFBcApxDh+Cmm+Cii+ysW6dy5IiNdeuKGT06C7s9HVX1LtFV6SDIm+Dmhx90LF7sebqyJUtgxYrqE4yW5ul4Ly+ILO9Y0el838eBLrObF5P7+OOcnDcPW0nrtv7kSRJvvpm4556D4uIygebZN4K8DTRtNhuqms6ttxawdq3KP//ADz9oPR969NCm7yvN1+kOHYK5n6v7NHGiaukPHSJpyBDqvPmmc6pLc/fupK9YQeGQIR6TgQn3zP37c2r2bGfgHfvee0TPnRviUonKMOzb5/zbKrGUV8Ii6LZYLEyZMoW9e/fSpEkTnnzySWcGcXcURaFz584A/Pjjj2We3717N0eOHEGv13PxxRcHrdxCVHc+/fA2m6nz0ksk9+2L6fffAVB1OvLuvpuM5cspLpk32Fs6nY7Bgz23Wg8Z4vojWq/XAmpPwenRo3g5nZXqDE69GVes0+lQFCqcVzw52fU106bBhx8GZj5tvR5UNZ3Ro7NYt66YI0esrFpVzKWXZqHTHUNVT7jMg+3PnO/eBDdXX63dBPBk+nSFG27w5jNV3deQN8e7I4gsvY9L38g4+1jxZx8HuszlKb7sMjKWL8dcklUZIHbWLJIGDUK3PysggaajfO+/H023bgrnnAO9emnDDH78UTufS/N3usNg7edwmSauqlW2B0S4ily6lORrrsFUckCoBgPZTz3FqblzsZf0ohT+KerVi+wXX3Q+jn/ySUzr1oWwRKIyDH/9BWi/A60VTZMigDAIuu12O6+99hp//PEH9evX56mnnqpwHDbAgAEDMBgMbN++nSVLljjHF2RkZDBz5kwAevbs6WwRF6I28raFx7h5M8nXXkud119HKUkgaGnThswlS8h5+mnUiibGdsNut6Oq0LOn1ir2ww+UaSVTVdcf0TabWuEP788/hwce8Pya++8Hk8nm09hPu93OwoXatnftgpkztVb2mTO1xw88oHUvT0x0bdUeNQree8/ztr2dT9uRu7G42IxOl4mqprsE2WfTxihXNAe36hIEeRPcNGjg3XRljRp5fk1lglF/+NKi6ds+9vwZfA00Swc8FksK06cb+O9//QuO7QkJnPrgA7InTDgzp/f27cRdeQktt85zu44vgaa7fXrihHZO5OdrN6O+/lrr+fHvf3s/lONswdjPUP2GB4RaoHpAhBulsJD4Rx8l4e670eXkAFqX2cxFi7R5t4OQiLA2Khg5kryxYwFQrFYS7rwTfaluyiJMqKqzpdvWtClE1q6bkv6q9leRn3/+mV9++QXQWmBeffVVnn766TL/Xn31VZf1UlJSuOuuu1AUhblz53LPPffw2GOP8cADD3D06FHOPfdcRo0aFYqPJES14E0Lz5cfFFJvwnMkDRqEseQCqxqN5PznP2R8+y2Wiy7y+/0jIvJ56ik7K1dqrWK9elGmleypp1x/RMfHWxk3znMQ2bSpyrBhqsdu60OGqBiNvv3wj4kpZsMGlddfd9/S/frrkJGh8vnnruOYvZ9P2/PnGjdOJTHRt+QkJlMUAwficV8MGAAmU7RzmTfBjdFY8c0PR28CT8aNcx2zH0zBatH0Zxx4edwHPAqRkVrwenarsddlVhTy77iDzCVLnC0SEUW5zONG3uUOoskvs4o3gaa7ferIX9CmDYwZo53Td98N7durLFqkYjRmV7gf3Ankfi5Nr/eczBEcPTJqZrB5ttrY1d6waxdJffsS88knzmUFAweS8d13lfqOE+7lPP005quuAkCXlUXimDEojgycIizojh93zlZjPe+8EJcmfFT7KcNWrVrFjBkzKnxdcnIyb731Vpnlu3fvZuHChezZs4eioiKSk5Pp1q0bAwcOLHdMuDcyMjJcphKraRRFITU1lWPHjkkWwjDkTf3Z7Ukep0e6ihXM0Y+lqW2/c1lxhw5kvfIK1jZtAlJOnS61TJZsB20KIBW7/Zhzmc3WgIwMHXfeWX7G7gULICdHaxX+5puy01n17at1065btxidLtPrstrtSaSnmxg7tvypyBYs0FroS9+4T0vTAvOKp6GCQYPK/1yLF4PdrqLXHyv7gnLYbKkMG6bw2mvw/fdls6L37g3/93/w+eeu29XpUujXz1BuWb7/XuX99xUefbT89375ZW28ef/+5X+md96BlBTf6sFfFR3vcGY6MF/Lo9frsdsT+ewzPdOnK859PH68ysiRNhTlpJdDGFI8Tok1f77WiuzIPj9/PqSm+lZmJS+P+P9OIHrBp85lf3I+w/mcP7jwzOsUOHLE6jG7/Nn71GTSAu577in/HDn7nPaFwZDC0aMGD9PfWbFafcuGb7M1oFs3z0MqmjaFtWvt6PXH/Sp3uNAyxHueAk6b8i0r6Jn4/eHz7xZVJfrTT4l/5hkUc8mQnKgosidNonD4cBm7HURKbq52M78k71LR5Zdzau5cUps2ld+dYcC0Zg1JI0YAkHfXXeQ880ytjhuMRqNXU4ZV+6C7upKgW1Rn3tVfCo0alc3+H08WL/MIYznTJ1qNjCTnkUfIHzvW7fya/vDvB14ql16q8MUX5QeRRqMWvH75pdZdPT7+zHRW2dnQrJmWUXn9es8BRdny1mfGDL3HebFffhk2bz4zJzF4O5+2yunTCnfeCZ9+qo1nd3yuceO04HX4cPjqKxVV9SVgSaVRIwWjURsfP2qU65RhCxZoNyeOHHHd7pkgUptf+0wQaWfkSDuRkToyM3WMGFF+QD1vnhaAtW1bfl0NG+Z7PfjP/fFemjeBpjt6vR5VTWTTJh2RkTrn8WY22+nc2e5V0O3N+fDcc7BjB/z8s7YPr7vOv31otyfxSvt5TDw1jtiSVm4zETzINN7mbkDx8gaE6z715lifPFnlrrvyKSjI8bq8cGb//Pe/unKP5cmTfQ8Ijcb6vP22nmeeKf81EyfC3XfbKC4+Uf6LKih7UVEMOp3OZarA6iaYN6aqgi+/W5SCAuIff5zo+fOdyyznn8/pmTMlKVQV0R86RFLfvuhPaskp88eMIeaDD+R3ZxiI/uAD6j75JABZL79MwciRtTpu8Dborvbdy4UQweFu7G4/lrKDC1wC7qIuV5C+fDn5d98dsIAb/BtLabOpqCoes5dnZmpdIi+7TGsJdMxtXlysPe7WrexYcW+YzQqzZ3t+zRtvUGZs9vz5WnDkuVusFmy3aaNNK7ZsmXbDYNky7XHr1nD48Jkx3d6y2bQg11PiudJjxc+s5zmZWG4u3Hyz5yR4o0drjz3VlT/14K9gJjxzdMkdOFDnMn3awIHed8n15nx47z0t2Dx0SAtsx43Tji9fyxwRkU/jJ0bRiS38SgcAIiliJuP4iuupxymvxkefvU9HjaLCc2TGDIXc3GjPL3LDsX98mf7Ou+3auO02z+fnrbeC2VxxT4Wzhdv46KrKxB9qhj17SOrb1yXgzh8zhoy0NAm4q5CtSRNOv/ceakmv05gPP9S+IES155K5vEWLEJYkvIT3lVMI4bfSY3eTyOATRrKUATTiKAA51GH50LfIXTwfW/PmAX9/f37gxcYWMG6c6vGHd36+yvjxnl/jT8Ilg0H1qrzNm7ve4fVmPu2YGAtjx6oUFMCDD2rBd9Om2v8PPggFBdr453r1fOtdExdXVOEY+HHjVOLji9w+V14yMaMRNmzwHFBv2ACtWgW+HvwVrERcgRor7u35UPpm+pYtsHy57+PiHeOj63RqzaWs53Xudz43lAX8aezAmPNWl9ti7Ej0ptfrSUtTGTFCOya8zV9gMPjebTdYAWFMTDGLF6sebyAtWeJf7oFwGx8d7Ez81UHU/Pkk9emDcc8eAOwxMZyaMYPsF14oNxlUbc3kXhWKO3cma8qUMwvGj8e0alXIyiO8Y5Sg2y8SdAtRS1kshdw00sYTzT/jT9oyks+cz33Dddx44Q7avXknxdbgJLry5wdeYWEOt9ziuVWqSxe46SZbwBMu2Ww2r8obFVW2fAcPagFqYSEl82m7thxnZ8Mtt3ies3zMGAVfc83k55+qcH+NGQN5ead82q7FonjVgu54j/Le299M1v4IViKuQGW/9vZ8yMhwXTZjhutc9qV5Mx/5C6+YeKXp6wxiEad1CQA0sBwiYUhPYqdN07pLlDi75bZRIz39+ilccIGW6C0/37vp+nztsQHBCwjz801Mnqx4vIE0eXL5+7g84TgVWbBuTFULJdnJ6z3wALpCrWu/5fzzyfj2W8wDB7pdJdx6KoSrwhtuIPe++7QHNhv17r4bfamgTlQ/zszl9ephT0gIcWnChwTdQtRSuqNHqTemL8/vH0ky2vi8U9Tj/xI/YtfUpcxeloqinAza+/v7A0+vzyQtTWXyZNWlVWryZJW0NBW9PtMZULzyit1ty7I/n8vb8sbE5Lot38SJWgt8RETZlmOdTse4cbB0KSxcqHUr37BB+3/hQi0Z27hx/nXrNBpPkZamsnChetZ2tf1lNPoWcIPWIHT77Z5fc/vt2g2IQNdDZeh0Whdtdy2as2f7NytQoFpgvTm+br9dG79c0bb9mY985tG+mDf8guXSrgAodjtxU6eSOHw4umPaeP/yWm6fflo7PlNToWQ2oHKNGwd16vg+3i/QAaHjhoROZ2TmTC1vQrdu0KoVNGyo/X/ppVoLvj8t6OE4FVmwbkyVFopWY/3+/SQPHOiSnTz/xhvJWLoUm4fMy6qayKBBBjZv1rlMEbl5s45Bg6pfT4VwlvvYY5h79wZAl5NDwrhxZ8aGiWpFyctDX/KdEOxW7prWy0SCbiFqG7ud6LlzSbnqKiJ++MG5uKDPYCzbfuPhbcMZPSYbuz3dq4zL/vL3B57FYsFuP8Zdd+Wzdq2dI0dU1q61c9dd+djtx7BYLBWOSfbnc3lb3sLCvArLdzbHnOV2O+zdqwVXl16q/b9375nGRn+6ddrt2jr79rlu19GQ4HjeF2azSv/+nlux+/WDwkI14PXgL6Mxio8/1tG5s/sWzUsugblzfW95DFQLrDfHV+/eWsKwirbt73zkaqNIMj6fR87DD6OW3IGIWL+elF69iFmxqsKW22++URk3zvNxMWoU5OX53tQdqICw7A0JhXvugQsu0PavY5qzXr20YR27d2uJGX0998J1fHQwblhC6FqNI7/+muTevTHu2AGAPTKS09OmkT11qnZXsBxGYxRLlug8ThGZlla9eiqENZ2OrDfe0DJvAsYdO6gzdWqICyXcMZSaniVYQXdN7WUi2cv9JNnLRXVWXv3p9++n7iOPELF+vXOZLSWF7Oefx9ynT5WXs6Is2d5OtVRVglVeozEKi6Uu/fuXP33akiUqJtNpn1uZfJ2WzRtRUXF89lkMnTop5WYm37JF5cYbfc9SHSzByswcyGmWyju+HPv0hhu0oQqeth2o8pg2bqTevfc6WzQA5sTezz15UyjCfaChTa2lotMpzJ1bNgv/qFHatHdRUdpx7GtWb8f+2bxZyxIfF6dND2g227nkEu/Ov4qmZXvrLW0oiOPr3d9zL9wzgZtMkZjNsej1Omw2rQdBZVq4dboUBg0y0Ly5dhwkJWlJL+fOhf37YeHCys9i4PK9V1RE3KRJxJbK7Gc57zxOv/OOV1NeejNF5KxZUL9+9au/cMmWfzZFUUg9cQK1c2cUiwVVUTj55ZcUX3ppqIsmSolasIB692t5QLKfflpLsktg44aKrtNLl1bVrCfekezlQogzrFZiZs4kpVcvl4C7YPhw0n/8MSQBN1ScJbs6BdwQvPIaDEY++sj9jzvQWhE//hgMBt/GlUZFxfHBB563++GHEB0d59N2rVYLgwbB+PHuW40feEBrHbQGKR+AP4LV8hjILrnujy+VwkJtbPHZAbe7bQeqW3Pxv/9N+g8/UFjS5RPg1rw32Mi/acsOt+scOgRms9Y1210W/lattKn8dDqd360YigJ79iguvTb27PEuMZs346y//16bXq/0so8/BpPJt4zr4T4+urwkiv6o6lZj3eHDJA0Z4hJwFwwaROa333oVcANEROhZutTztfPrryEysvq0uNWI1sEOHch97DEAFFWl7vjxKNnZIS6UKM0lc7mH4Rn+Csd8GN6Slm4/SUu3qApRUXHk5UWj1yvYbCqxsQUUFlbccli6/vQ7dlD34Ycxbd/ufN7apAnZU6ZQdMUVwSy+8JLN1oBu3TwHhVoroh29/njIt2u3J3H//SbeeAM++wzefPNMi+Z998GNN2qB9+uvV59WoGC2PAazx8aZbeuZPl0ptW2VkSNtbrYd4PnIVZXojz4ifsIElCIty30hkTzCy7zFvcCZgLdpU3j3XW26tPK0aAFr1qgee1+U14pR2dYPb4+Bt97SkgKWXrZ2rYpe71uPEJ0uhX79DOXOZZ+WZsVurz6tNaUFsrW0qlqNFUUh9ddfsY8ahe70aQBUk4nsCRMouPlm7cD3UrCuncFUXVsHvT2WnL9bDh8mYdgwZwNBwZAhWtdzUS3UGzuWqG++AeDE2rXO2W0CFTeEYy8haekWIowZjUZ0ulRmzYqhWzcdjRsrdOumY9asGHS6VIxGY8UbMZuJfeklkq+7zhlwq4pC3u23k7FihQTc1YherwRlqqVgbVen0+5CHz8O556rBVrr12v/n3uutnzr1uo1XjUmptir6dP8mRrq7Bbq48cJaI8NRYEWLVSX/dyihfvPEvAs34pCwZgxnP5+BRkN2gEQhZk3uZ8lDCCZMz/ix49Xef99z5u7+GL45BPPLYjuWjEC0frhz7RsjmUGz/cx3ArW+OhgCkZraZW0Glut1HnxRejb1xlwW5s2JXPxYgpGj/Yp4Abvp4g0GKpHo0R1bB30+1jS68maPh17nNYDK3rBAqIWLaqycgvPDH/9BWg3tGwVfdn4IVzzYXhDWrr9JC3dIpgqOw43YuNGEh9/HErmIgWwtGxJ1tSpWC6+OBhFFpUQji3d4Tbe0VHmO++k3JbHd96BlJQAtLYF8Nrpa+tVIMeYlylLUR1W/ftJRmScaXU6Tn3G8CEnO11LWppKt24KpfLslLFsmdYl3NdWjEC0flR1S7dDoMdHB1MwWkuD3WqsO3GCevfe6zJ0qvDaa8l69VXUunV93h6EX2tbdSyvr8fS2dfOqEWLqHfvvQDY4+LIWL4cW6NGVVJ2UQ6rldSWLVGKi7G0bk3GypXOp6SlW1q6hQg7lRmHq+TkEP/YYyQOGeIMuFWjkdwHHyTj++8l4K6m4uK8a4WNj/etFTY2tsCr7dapU+DTdmNiilm2TPV4jC5f7l+rcbDodDoGD9YCKndThs2YoY3lrU53z/1pvQrmtE9KdAHdt7/KwjuWkqFLAaABJ/ie3vzUcTxGWzrjxnluQW/WzLsWxLPrwWAweNnyWH6TtL/Tso0bp5KYqJ1H/kxhE8jx0cEUrNZSx7Rrnhw6pL3OV6affyb52mvPBNwGAzn/+x+nZ8/2O+CG8BuTr9frvTyvqmZcdyCOpcJBgygYPBjQphGrO368NsWHCBn9oUMoJVO5BWM8N4TfueeL6vPrQggBQF5eNDNmeO4KN2OGQm6ua2KfyO++I6VHD2JK/WIs7tiRjO++I/fhh7VMRqJays3Vcc01isdA6eqrFXJyfLtkFxbmcMstnqdwGjMGnzOM5+ebvDpG8/J8S/wWTI5p2S6/3H3yt8su06bW8mdatmDxNylasLo1O7rRX/5iVyybN2O+6kyStZh3Xyfu6h6M6fSbx+MtKgq/ur9bLIpX61ks5R+X/kzLpk1zppCVpYR/kqoKBGtucYvFuzr3qfOgzUbstGkkDh+OPiNDW5SaCqtWkX/XXT53Jz9bVcxZHkhWq3fnh9Vauf3irUAdS9nPP4+1YUNAm74w5p13AlZG4TuXJGpBmi4s3M49X0jQLUQ14+s4XF16OvXuvJOE229Hf1zrmmePjobXX+fk4sVeZ2sVoRPMVli9PpO0NJXJk1WX7U6erJKWpqLX+949KxzHXDnunlss8PnnWvfhLl20/z//XPvBX93unvu7nwOdZf/s1l1VVaC+nlMfvUf2xImoJTf0jDt3kti7Cyv7vsyShRaWLYMNG7Qu5UuWaAF/VFSOX60YkZFaK7Qnt99e/tTLjs+gKLB0qcorr7ieD1Onwrx58H//B1ar4xyBRYvgpptAp6OCuc9TsNkaEBXl20wAleFPq7snjuPNZIIRIyAtTau/tDTtsaPF2tfzOjJSZexYz68ZOxaiorzrkqo7cYLEESOImzoVpaTl09KjJ8e/+ZVj53bDaq0fkHoIpzH5kZGql+dH1QwXDNR3hBofT9b06aglN1HiJk/GsMP97Ak1RaDP60Bu1zGeG1yD7qioOKzW+hw7RkDOv3A693xRfX4RCSEAsNlU7+5YF9uInjuXlCuvJOrrr53Pma+6ioxVq+D++6EGtL7UBsFshbVYLNjtx7jrrnzWrrVz5IjK2rV27rorH7v9mF+5KQKerKsKhOPd88ru58p2a64wEZLBQP5tt5Hx9ddYSm7uKUVFxD33KB3+04v/jTlQZlovq9XsVz2YzSr9+3vutdGvHxQWugYVZ3+G1FQDl12m0KKFyrp1KkeOqHz6KYweDSdPwgcfaNOc/fADdO+ubaN/f63Luaeusu++qzB5so/JLv0UrKmh7HY7XbrAmjXup/Zau1a7UeXreV1UZKNvX89116cPmM0V3wyKWLWK5KuvJuLnnwFQdTpyH32OV3t9x6UD6tOoEb4nHS1HOE1pWVRk8+r88GYfB0IgvyOKu3Yl7557AFAsFm2O6MLqP++4r4J1Xgdyu2e3dJ+d9DdQ5184nXu+kERqfpJEaiJYoqLimDUrhv/+t/xuYO8+uINbfr4Dw8YNzmW2hARyJk6kcOBAFJ1O6i+MBDP5VTCEW3kdgjm1l0Mgr52h3s8+JUIym4l76SVi3n0XpeRz51CH/+M15nAroDjX0elO+lwPUVFxfPZZDJ06KXz/PcyefWaauttv17qFb9micuON+S7DJSr6DF9/rWKzQf/+5SeuXLRIpWtXzz2QSidg8ybZZWUEa2ooozGK7Oy6DB9e/r6YN0+lbt3TPh1vRmMUCxfG0769rty6277dzuDBHo5ji4U6U6dS5803nYtsDRqQNWMe10zq7nfS0ZoiIPs4wOXx9drl8dpZVERy//4YS1q58+64g5wJE4JW/lAI1nkdyO0mDhpExC+/AHBs926UuJaVSvpbU0giNSHClKdxuBGYebfB09z+5kUuAXfB9deT8dNPFA4aVOmxbKLqhVsrbLiV1yHc7p6Hcj/7nAgpMpLCSZP54q7lHOAcAOLI5X1uZxGDSOGEcx293uhzPRQW5jBkCIwf7743yAMPwODBrvkJvPkMn3wCGzd6bsUuKPAuEZjjN5enZJeVFeypoRYv9rwvlizxfZsWSyEDBtg91l3//uUfx/ojR0i6/nqXgNvcsye5a9bz7u4r/Eo6WtNUdh8HozwBvXZFRHD6zTdRI7XjOmb2bIwlU6HWBMFLYhjY7Tpaum0NGhCZ3NDvpL+1lbR0+0laukUwGY1GbLYkPvxQS0h16BAMT17JW7a7SDhZqntPs2ZkvfQSxZdd5rK+1F/4qYpW2EAKt/JWlUCce0ZjFEVFMeh0OhTFjqLo+fRTHdOnK6X2s8rIkbag7Wd/pm1xrJN1KIdpPMjtnJm0O51k7mIWW5sO9nuqF8d1ccMGiIlRiIuDnBzIz1fp0kXLX1D6e9nbz/DuuzB0KEyaBNddp40LLyyEb7+FJ57QxnV7M81Z6anGSk+BVbo+7XY7ERH5WCwVd491t15RUUzQptNx7K8TJ7QcEqNGQVISZGZq3evnz4fUVP+27bheHD6so25dHZGRYDZDVpadJk3Kv15ELFtGvQcfRJeVBYBqMJDz3/+Sf+ed2NSGdOum4/Tp8usuKcn/qcjCjWMfb96sIzJS5zw/zGY7l1xS9ddkX78jvLl2xsycSfykSQAUX3ghmWlp4GHGgnARrHMvkNNv6U6dosGFFwJQdNllpH/6U1CnAgwn0tItRBgrPQ735yXp5F0/hs/SezoDbtVoJHf8eNJXrCgTcIvwdHYr7PHjVOtW2HBrNQ4H7sbeDRliIi9PR4sWWnC4fr32f/PmAHp0uuB8jfuTCMmxTi5x3MFsBrCYE2hTi6WQwUKGMPHgaAw5WZUq2969WhDsGC++d2/lPkPDhrBzp9ai3asXnHOO9n9BAezerY1xHj/e8w2Us6caO3QIIiL8y3juaQymwWCssDOTv0kMtZs8nsd0K0pltq1nxQqFnj21fdyzJ6xYoeDuOFYKC4l/8kkSb73VGXBbmzQhc+FC8u++G3Q69HqFxo09113jxmeSjtYGiqLlTyh9fjjyKVS1YHxH5N9xB5bzzwfA9PvvxHz4YaCLHRLBOvcCmfT07PHcvib9FdLS7Tdp6RZBZ7cT9eWXxE2ciP70aefioksuIfull7C2bl3uqlJ/4U3qL3xVpu7OHntnMmk/wu65x30XvmCOmatMS3fpdZLI4B3uZDCLnMtsyfXJfn4i5r59fSqTTpfq0/hBbz5D27awfLmWZKr8Md1gMKj066ewZYv718yYoSU8dPwsaNEC1qxRPZa3vLGUFY3BnDVL+0Fe3k+QyrR0p6ebGDu2/H0xaxbUr+/7tn2pO+Pvv1P3vvswlvqRX9inD1lTp6LGxzuX2WwN0Ol0DBjgue5Utea3tEHwxgRXFW+vncZffiF50CAA7LGxpK9ahT01tYpKGRzBOvcC2dId/emn1H3kEQCyJk0id/R/paW7hLR0CxHGDDt3kjh0KPUeesgZcNvj4sh66SVOLljgMeAWQoQfd2PvhgzRusmGYsycY4o1T86e2ismpphx41x/LGeSzBAWMIYPyEILmPQZJ0i4807qjR2LLt27ICAqKs7n8YPefIYPPlD58EO1gnHfKvHxqtspbBxT+t1wg2sQ/PLLKp984rm87sZSejMGc/lylSFDyv9M/k59FxNTzLJlnvfF8uUqsbHFPm3X67qLiCH2jTdI6tfPGXCrkZFkPf88p995xyXgBqhb187HH1dcdwkJ1WcWhWAJ9lj/6sRyySXk33QTALq8POKffTa0BQqAYJ17/lzHy+PS0n3eecTGFpS53p9t3DiVOnUKvCtsLSAt3X6Slm4RDEp+PnVefVXLAFyq61XhgAFkT5iAPSXFu+1I/YU1qb/w5W/duWuRSEvTWrlD1ZKg06XQr5+h3NbdtDQrdvuZoNnRWnPnnbhd59oLjzIv4R7q/nQmG5e9bl2yn32Wwuuv95gE0mZr4FerSkWfYeFClW7dKs5Mvnatil5/DJMpErM5Fr3eyK5dCrNmwYIFrgG3LxnPz25h8rZl6oMP4Kqr3H+ms+vFW4FsFSvNm7rr2vAAKxvdTMQva53Lii+8kKw333SZD9h1u6k+1V1NFqy6q0q+XDuV06dJ6d4d/UltvuaTH39MkbsTIkwEs/58vY6XJ2H0aCJXrADg+C+/YG/YEJ0u1WMPIMle7kpauoWoDlSVyK+/JqV7d2LfftsZcFubN+fkZ59xeuZMrwNuIUT4cTf2LinJu6zZwRozpygn3bbuvvKKnbQ0K4py0uX1Op2OwYO1hGITJlCmRfi59xrSYf8iTs+Yiy0hQVsnK4t6//d/JNx8M/ojR8oti7/jByv6DAaDt/tY+9sx97nBkMn556tcdJFKauqZ7U6erJKWpqLX2/0aS+ntGMw2bVSWLLGzbBls2ADLlsGSJe7rxVu+jv80GqOw25OAFOz2JIzGKLfreK47lZv5iG+P/ssZcKs6Hbn330/mkiXlBtzadn2rO39FRcVhszUAUrHZGhAVVf2yMQdy7G6geXuc+EKtV4+cZ55xPo5/8kmUMJ67O5j15+t1vDyGv/4CwB4d7ezOr9dnkpamsnCh6nItWrjQcR2snjd4QkWCbiFCTP/PPySMHk3CnXeiP6bdEVQjIsh5+GHSly+n6IorQlxCIUSw2e12mjRxXZaZSZllZ2vSBKzW4PSG8DURkt1uR1Xh8svdT1t02WWgopDf/wYyVq2iYPBg57qRP/5Ico8eRH/wAbhJsGSzqX7ti4o+g9Xq7T52XVY62eXatXaOHFFZu9bOXXflY7cfw2azebVdm82166e748D9eoFPmOXte4PdpwRx5dVdPU7xOcP5iDHEkQtoydJOzp9P7uOPa0kNPLDZ/Ks7bxmNRnS6VGbNiqFbNx2NGyt066Zj1qwYdLpUjEajfxsOAu+Pm6rrau8pIaCnRILeKhw6lKKuXQEwHDxI7PTpgSh2SASz/gKS0M5sRn/wIKAlUXP0SrLb7YCNv/5yTW6pxee2kueFgwTdQoRKYSGx06aRctVVRK5c6Vxs7tGD9JUryXvwQYgM//FXQoiKuRt7N3eu9gPGk6oYM+do3VXVdHS6zHLn1nV8BosFPv9cmz6rSxft/88/17pgO8YP2hMTyXrzTU7OmYOtQQMAdPn51H3ySZIGDCgzB29lxw+W9xni4y1ebbdePffDyQoKctDrj6Oqx9DrjzvnCfd3LKV366m8+abCww9rLciqqrWCPfywQr9+Buz2RI/rl8eb937oITs6nZ6+fQ08/LDurPfXuX3/snWnMpSv+JO2DONL59LiG0eS8cMPFHfu7FV54+KKvKq7+Pgir7Z3Npstib59Ff77X9f9/N//KvTrp2CzJfm13WAI5NjdQFHVRJ+OE58pClkvvohacnMm9u23MezZE4CSV72qqD9vr+PuGA4cQCkJoEv3PjlTx4G9FtVUEnQLUdVUlcjvvyelRw/ipk5FMWsXPluDBpyaNYtTH3+MrVmz0JZRCFGlLJZCbrrJTqdOZ5bNn6/NPVx6WWmdOsGYMTgDvVBz9xlK69QJRo60u/zYK7rmGtJXrnQmRgIwbdtGUt++xD/+OEpJIsnCwhxuuSXw+yIvL9Or7ebk+NZN0p994e16AwbAq6+6f74yCbO8ee9Ro1TmznWfhby89y9dd6kcZQFD+IobaMAJALL19Tj97hdkTn0ZtU4dr8ubn3/Kq7rLyzvl9TYd/EncF0r+Hm/BUlWJ3WwtWpA3bhwAisVC/OOPa5FfmKlu9Xe2s5OoQe1K3hcoEnQLUYX0+/aRMGoUCbfdhqFkAI+q15M3dizpP/2EuV8/j8mEhBA119lj76xW+L//g3nzVKZOVV3G450ZO1y9xsz5M35QjY8ne8oUMr/6CkvJzAyKqhLz8cekXHEFUfPmgd3uHD84eXJg90VERJbH7UZEZFXZvqh4PZWbb1bKnS4MYPp0HWZzbFDKXFhoZ/p0zz8d3b2/XpfBihHv8HdkW5fp4/aeP4CiX37DOvBKv8prNJ7yWHdGo+8BN0BeXjQzZiiYTDBihJbUcMMG7f8RI8BohBkzFHJzo/3afjAEauxuIBQVxfh1nPgj9777sJY0VERs3EjUF19UepvejEMP9Fj16lR/Zzt7jm6o2jquKSR7uZ8ke7nwhZKXR+z06cS++y5KqeOmqGtXsidNCvgUYFJ/4U3qL3wFou7OZMjWYbNpXQoNBhO5udEYDApWq9aNurq0cLvj7jN41UpjsRAzezZ1Xn0VXX6+c3Fxp05kvfAC1nbtiI6OC+i+0Ov1qGoi2dl6IiMVjEatK7zZrBIfb0NRTno37rEc/u4L9+vF0aiR58xgigJHjlRuTubyy5zi8/vr9++n7iOPELF+vfM1tqQUTk+YjuHGvhQU5vpdTofY2ASysyOcx0R8fJFfLdxnpHLppQpffqlN2zd7Nhw+DI0ba0M+rrsOhg2D9etVVLV6ZWf2+9wLKN+Pk8pcOyN++onEkSMBsNWrR/rq1aglyRp94bgWfPKJjunTdc46Hz/ezk032Z2Bb0WvCcX1Ipjq3n8/0QsWAJC+YgXWNm3wp45rKm+zl0vQ7ScJuoVXVJWoRYuImzQJ/fEz09hYGzYk55lngtayLfUX3qT+wpfUXWDojh0j/rnniFpyZnoxVacj/5ZbyP3Pf1Dr1g3ce+lS6NvX4LabZKdOsHRp9fnRGOqpoXx6f/txYt95hzqvvOIcRgVQcMMNZD/zjF9BkSeBPPdstgZkZOgYO9Z9F/NOnWDWLEhJCc50feHOn+O0svVXd9w4ohcvBiB/xAiyX3nF5214cy1QFMLmehEoSdddh+m331B1Oo7t2wcRESG/FlUnMmWYECFm/O03EocOpd599zkDbtVkIveBB8j46SfM/ftLV3IhhHDDnprK6ZkzyfzsMywlYwgVu53Y99+nfteuxLz9Npgr3/oTbuMSQ50wy9v3j/31B5L69iXu+eedAbe1SRNOfvopWa+9FvCAO9Di4opZtkz1eFwsX64SH19ctQULE6E4TnP+9z/sJTkBYubNw+hu8mgPvLsW6Nm0KXyuFwGhqs7u5bamTSEiAgj9tSgcSdAtRIDpjh+n7oMPktSnDxEbNzqXm6++mvQffyT3scdQo6vPODAhhKiuiq+4gozly8l54gnsUdqYSV12NvETJ2rjvefPh0pMSxNu4xJDnXCpovfv1+4A96waTt0B/TD98QcAqqKQd8cdZKxYQVH37kEpV6Dl5uqYMcPzTfEZMxRycuRntDuhOE7t9euT++ijzsfxEyb4lFTNu2uBQmRk+FwvAkF37Bi6Am1WiNKZy0N9LQpHcrUQIlAKC4l97TVSLr+c6C++QCm52FubN+fkRx9x6oMPJCu5EEL4ymQi7957Sf/pJwqGDUMt6SFkOHKEeg88QHLv3kSsXu3XpnU6ncfukaBNgaPXV5+fS6FOuOTu/ds0zmN9rydZsrcNUUu/cr7Wcv75ZC5eTM6ECagxMUEtVyCF43FR3fhynBqNUdhsiaSng82W6HdSsvzRo7G0bAmAacsWIksNT6mIt3UeH1/xaypzXAQ6QVtluUui5hDqa1G4kauFEJVVMm47pXt34l5+2XlH0B4fT/azz5K+ciVFPXuGuJBCCBHe7I0akTVtGhnLlmG+6irncuOOHSTeeCMJI0diKGld9XqbdjtNmnh+TZMmYLP535oeaDabDVVNZ/ToLNatK+bIESvr1hUzenQWdnt6pZI4+fz+a8ycmvY+fxS3osvyF1CKtDmxbYmJZE2ZQsb332MprymsGgvH46K68eY41ev16HQpfPRRPF27mmjQALp2NfHRR/HodCno9Xrf3tRgIOeZZ5wP455/HgoLvVrV2zrPzq74Nf4cF2fvi8aNDZXbFwFi+Osv599nB91n1/Hx41TptSjcSNAtRCUYt24laeBA6t17L4YjR4CSKcBuvZX0tWvJHzsWTKYQl1IIIWoOa9u2nPr4YzLnzaP4wgudyyN/+onk3r2pO24chj//9Gpb4TwusbjYjE6Xiaqmo9NlVnk3TnXdGlIGXkrd/7sdfbqWwVs1Gsm75x7S166l4KabIESBQmWF83FR3Xg6TlU1kb59DTz8sNbKrKpaS/HDD+vo18+A3Z7o8/sVXXUV5h49AK03TOw773i1nnd1rmI2B+e4CMa+CASjh5Zuh+JiM3r9SVJSQK8/KV3KyyFBtxB+0O/fT7277ya5f39MpZJ1mK+6Sht/OGkS9mqeKEYIIcJZ8eWXk/nNN5x+802sJU1UiqoSvXgxKVdfTcItt1SYTEnGJfrOuGULCTffTPKgQZi2bXMuL7z2WtJ//JGcp55CjYsLXQEDQI6L4AtmEsOcZ55BLbnhE/vmm+hOnKhwHe/q3EbnzoE/LqpzQsfS3csdSS2FfyToFsIHusxM4p56ipQrryRq6VLnckvLlpycO5dTH3+MtVWrEJZQCCFqEZ2OwsGDSf/pJ7L/9z9siWdagyJ/+IHkAQNIvOEGTGvWlJtUScYlese0YQOJI0aQPGAAkStXOpdbzj+fzHnzOP3++9iaNw9hCQOrth0XVT2WOJhJDK2tWlEwahQAuoIC6kyZ4tV63tR5MI6L6pzQ0Zm5PCGh2s86UN3JPN1+knm6axclP5+Yd94hduZMdPn5zuW2pCRyH3xQu7gbDCEsoSupv/Am9Re+pO5CSyksJPqzz4iZORPD0aMuzxVfdBF599+P+eqrQVf2B67JFInZHIvJZKK4uJjIyDxpyVRVTGvXUmf6dCLWr3d5ytq4MXn330/BiBHV4vsvWOee47jQ63XYbPYad1zo9XpUNZFPPtExfbqOw4ehcWOtm/RNN9lRlJNBGpubQqNGno8bRYEjR/yb91p36hQp3bqhy8lBVRQyvvsOa7t2Xq3rTZ0H9rgI7r7wl5KXR2rr1gAUde7MyYULy39tLf7uk3m6hQgEi4XoDz8kpVs34qZOdQbc9uhoch96iPR16yi45ZZq8YNDCCFqOzUqivzbbiN93TpOv/oq1nPPdT5n+vVXEm67jeQePYh5912UU6dc1pVxiaWoKhE//kjSwIEkjRjhEnBbzzmH06+8oo3brmY3nIMh1GPngy1UY4mDnazOnpBA7vjxgDbsJP7ZZ72eQsybOg/kcVFdE/d5SqImfCdBtxDu2O1ELllCylVXUfeJJ9BnZABakrT80aNJX7eO3P/8BzW25szFKIQQNYbJROHw4aSvWsWpmTOxtG3rfMq4bx/xzz5Lg4svpu7992PasMGn+XxrMt2pU8TMmkXylVeSOGqUS84Sy3nncXr6dNJXr6ZwxAgwGkNYUhEIoRxLXBXJ6vJvuw1ryVStEevXE/ndd35vK5iqa+I+w969zr+tMp670iToFqI0VSXy++9JvuYaEu65B8PffzufKuzbl/QffyT7xRexp6SEsJBCCCG8otdjHjCAjGXLOPnRRxRdeqnzKaWoiOgFC0gaOpTkK68k5p13yrR+1wqqimndOuqOG0f9Tp2If+45l4zFltatOTVjBhk//kjh9dfX+Jbt2iSUY4mrJFmdyUTO0087H8ZNmgQl09pVJ9U1cZ+nObqF7yToFgLOdKXr25eE227DuHOn86miLl3IWLqU0++8g03u9AkhRPhRFIp69uTkV1+R/tNP5N15J/a6dZ1PG/ftI37CBOp37Ag33kjkN9+gFBSErrxVQJeRQeyMGaRcdhlJw4YRvXgxSnGx8/miLl049e67ZCxfjnngwLCd/kuUT6fTupR7cugQ6PXBCReqIlmd+dprnTfbDAcOEDNnTqW3GQzVMXGfdC8PLEmk5idJpFZzmH7+mTpTphDxyy8uy4s7dCD3kUco6t5du/qFkdpUfzWR1F/4kroLI2YzUd9+S/Qnn5RJEgagRkZivuIKzL17U9SrF/bE0MyTG0i6o0eJXLGCyB9+IOKnn1CsVpfnbQkJFN5wAwUjR4bdj2w593xntyfRtavJY+DdtCmsW1eMTpcZtHIEO4mh4Y8/SO7dG0VVscfFkb52bbU9n6tT4r7kHj0w7tmDajJxbN8+jzfeavP5520iNekjJGot0y+/UOfll4lYt85luaVtW3IeeYSiq68Ou2BbCCGElyIjKRw8mMLBgzHs20f0J58Q/eWX6E6fBkAxm4latoyoZctQdTqKO3fG3Ls35muvxda0aYgL7yW7HeO2bUQuX07k8uUYd+xw+7Kiyy4jf+RIzL17Q0REFRdShIo2llhLolYex1jiUp0gAk5LYlhESkoqx46dpLg4sEGbtV07CoYPJ2bePHQ5OdR55RWyX3ghoO8RKFqCNjOqqk2yEMz97pHVimH/fu3Pc8+Vni4BIC3dfpKW7jDlYfoTS8uW5P7nP5j79nU7nUw4qbH1V0tI/YUvqbvwphQXk7prF/mffkrk99+jT3c/PY+1cWOKO3XC0rGj9v8FF4DJVMWldcNuR79/P6bffyfip5+IWLkSfab7Fkpb/foU3HADBSNG1Ij5teXc849Ol0K/fgZK5cxz6tQJ0tKs2O3Bn6Yq2PWnO3GClMsvR5efj6rTkbF8OdaS6bBEWfq//6b+5ZcDWk6j0++84/H1tfn8k5ZuIUpTVSJWrKDO9OmYzkrTaW3WjNyHHqJw0CC5kyeEELVZRAT07k1O+/Zkv/ACxq1bifz+e6K+/dbZ6gNgOHwYw+HDsHgxAGpEBJYLL6S4Y0eKO3bE2qYNtsaNUaOigldWiwXDnj0Y//gD444dGH//HeOOHc6pLd0pbt8ec69eFPXqhaVdu7C/wSwqTxtLnMhnn2nzdB86pE1PNX68nZEj7SEZSxwM9vr1ybvvPuJeegnFbifuhRc49eGHoS5WtSVJ1AJPgm5Rs9ntRH77LXWmTy/Trc7avDm5999P4ZAhMvWJEEIIVzodlosvxnLxxeQ+8QSGffuI/O47IlatwrhtGzrzmXGWSlERps2bMW3e7LIJW0ICtsaNtX+NGp35OzERjEZUg0H7X68/89hgAFVFd/Ik+pMn0WVmosvI0B6X/K0/cQLD3r0uic/csUdHU3TFFRT16oX5qquw168flF0lwpfNZgPSGT06kmHDqsdY4mDJGzuWmI8+Qn/sGJHLl2Nav57iUjMaiDMkiVrgSdAtaiaLhaglS4h94w2MpeYZBLC0aUPuAw9g7tdPWraFEEJUTFGwtmxJXsuW5N1/v9bKvHu3Fmhv3Ypp61aXlnAH/alT6E+dgt9+q5JiWhs1wnLhhVjatcNy0UUUdekCkYGfY1nUPNVmLHEwRUWR88gj1HvoIQDinn+ezKVLJX+PG8Y9e5x/S9AdGBJ0ixpFyckh+tNPiX3vPfTHjrk8V9y+PXnjx2O++mrpUieEEMJ/RiPWdu20BE233AKA7tQpjFu3Yvr1V/QHD6I/fFj7d/w4it0e0LdXdTqszZufCbAvuABLu3aoCQkBfR8haprC668n9t13Me7cienXX4lMS8Pcv3+oi1XtmEpm9FGNRiwtW4a4NDWDBN2iRtAdOULs7NlEf/IJurw8l+eKOncmb/z4sJz6SwghRHiwJyRQVDJe2oXFgv748TNB+OHD6LKytOm6Sv4pFgvYbNr/JdN42RMTtX9JSdiSk51/25OTtTnGpaeWEL7T68l54gkSb74ZgLjJkzFfe231SIRYTehOnHD23Cnu0AGCmZuiFpGgW4Q14++/EzNrFlFLlqDYbC7Pma++mry776a4S5cQlU4IIUStZzRia9IEW5MmoS6JEAIo6tGDoq5difj5ZwwHDhD9yScU3HprqItVbZg2bHD+Lb+hA0eCbhF+bDYily8nZvbsMnNsqxERFFx/Pfl33iljUIQQQgghhCtFIeepp0ju0weAOq++SuH116PWqRPiglUPERs3Ov+WoDtwJOgWYUN38iTRn31G9Mcfa1O1lGJLSKDgllvIHzMGe1JSiEoohBBCCCGqO0v79hQMHEj04sXoT50iduZMch99NNTFqhZMJUG3qtNRfPHFIS5NzSFBt6j2jNu2ETNnDlFLl6IUFbk8Z23enLw776TwhhuCOx+qEEIIIYSoMXIfe4yob75BsViIeecd8kePxt6gQaiLFVLKqVMYd+0CwHLhhaixsSEuUc0hQbeonsxmopYuJeaDDzBt2+bylKooFPXoQf6tt1J05ZWSiVwIIYQQQvjEds455I8eTezs2egKC6nz6qtkT5kS6mKFVMSmTc6/i//97xCWpOaRoFtUK4Y//iB63jyiFy5El5Xl8py9bl0Khg8nf/RobM2ahaR8QgghhBCiZsj7v/8j+osv0OXmEv3ZZ+SPHYu1Fk+RVTqJWtGll4awJDWPBN0i5JTsbKIWLiR63jxMv/9e5vnidu3Iv/VWzAMHShdyIYQQQggREPaEBPLuvZe4yZNR7HbqvPACp+fMCXWxQsZUOonaJZeEsCQ1jwTdIjTsdkw//0z0vHlEffstitns+nRkJOa+fckfPRpLp04yv7YQQgghhAi4/DvuIOaDD9AfP07UsmXkb9pEcefOoS5WlVNyczH+8QcAlvPPR61XL8Qlqlkk6BZVyrBnD1ELFhC1aBGGQ4fKPF/cvj0FI0ZQOGgQalxcCEoohBBCCCFqCzUqityHH6buww8DEDdxIplLltS6Bh/T5s0odjsg47mDQYJuEXS6I0eIWrKE6AULMP75Z5nn7XXrUjB0KAUjRmBt2zYEJRRCCCGEELVVwQ03EPPuuxh378a0dSuR33yDuW/fUBerSrmM55b5uQNOgm4RFMrp00R98w1RCxdi2rABRVVdnld1Ooouv5yC4cMx9+4NEREhKqkQQgghhKjVDAZy/vtfEm+5BYC4F1/EfM01YDSGtlxVKKJU0C0t3YEnQbcIGF1mJpHff0/kt98SsXYtisVS5jXFF11E4eDBFPbvjz0lJQSlFEIIIYQQwlVRr14UXXopEevXY9i/n+i5cym49dZQF6tKKIWFGLdvB8B67rnyGz0IJOgWlaI7coSo774j8ttvMW3c6BwLUpr13HMpGDKEwkGDsDVvHoJSCiGEEEII4YGikPP00yT36QNAnVdfpXDo0FqRY8i4dauzsUy6lgeHBN3CN6qKYe9eIn/4gchvvsG0bZvbl1kbNsTcty+FQ4ZgufDCWpeMQgghhBBChBdL+/YUDBpE9KJF6E+dIvatt8j9739DXaygk67lwSdBt6iQUlCAad06IleuJGLlSgyHD7t9nfXccyns0wdznz5Y/vUvCbSFEEIIIURYyX38caK++QaluJjY994jf/Ro7I0ahbpYQVU6iVrxpZeGsCQ1lwTdwi39/v3w5ZfUW7iQiPXrUYqK3L7OcsEFFF53HeY+fbC2aiWBthBCCCGECFu2Jk3Iv/VWYmfNQjGbiZsyhazp00NdrOApLsa0dSsA1saNsdXwGwyhIkG3AECXkYHp55+JWLeOiLVrMfzzDwCRZ71ONZko6tKFoh49MF97LbZzzqn6wgohhBBCCBEkuQ88QPTnn6PLyiJq/nzyxo7F2q5dqIsVFMbt21HMZkC6lgeTBN21lJKVRcSGDZjWrSNi3TqMu3eX+1pbairmnj0x9+xJcbduqDExVVhSIYQQQgghqo5aty65DzxA/HPPoagq8ZMmcfKzz2pkj86IjRudfxdLErWgkaC7ltAdOYJp82bt3y+/YPzjjzJzZzuoJhPFnToRMXAgGZ07Y5Fu40IIIYQQohbJv+UWYj74AMPBg0SsWUPEqlUU9egR6mIFXOnx3JK5PHgk6K6JrFaMO3di+uUXLcDevBnD0aPlvlzV6bC0b09Rt24UdeuG5ZJLIDqa1NRUrMeOQTnBuRBCCCGEEDVSRAQ5jz9OwrhxAMRNmkTGFVeAXh/iggWQ1Yrpl18AsKWkyNS+QSRBd01is5F4000Yt2xBV1BQ7stURcHapo0zyC7u0qXMHITSri2EEEIIIWoz84ABFL/zDqZt2zDu2kXUl19SOGJEqIsVMMY//0SXlweUjOeWnq1BI0F3TaLXo8vMLBNw26OjsVx0EcUXX0zxJZdQ3LEjanx8iAophBBCCCFEGFAUcp5+mqShQwGImzIF84ABqNHRIS5YYEjX8qojQXcNU3zxxSjZ2VgcAfbFF2Np2xYMUtVCCCGEEEL4orhLFwqvuYaoZcvQnzhBzKxZ5D34YKiLFRAu83NL0B1UtSIS27p1K19//TV///03VquVhg0bcuWVV3Lttdei0+lCXbyAyp4wASZPDnUxhBBCCCGEqBFyn3ySyBUrUGw2YmfOpGDUKOzJyaEuVuXY7c7M5fa6dbG2ahXiAtVsNSvidGPRokVMnjyZ33//ndjYWBo0aMCBAweYM2cOU6dOxW63h7qIgRUREeoSCCGEEEIIUWNYW7Sg4KabANDl51PnlVdCXKLKM+zZgy4rC4Cif/8balhDZHVTo/funj17+Oyzz1AUhQceeIA33niDl19+mZdeeon4+Hg2b95MWlpaqIsphBBCCCGEqMZyH3oIe0wMANGffIJhx44Ql6hyXLqW//vfISxJ7VCjg+758+ejqio9e/bksssucy5v1qwZY8aMAWDx4sVYrdZQFVEIIYQQQghRzdmTk8m77z4AFLud+KeeCutpdR1dy0HGc1eFGht0FxQU8PvvvwNw1VVXlXm+S5cuREVFkZuby44wv1MlhBBCCCGECK68u+7C2qwZABGbNhE1f35oC+QvVXW2dNtjY7FccEGIC1Tz1dig+8CBA1itVoxGI83dTPRuMBho0aIFAHv37q3q4gkhhBBCCCHCSUQE2ZMmOR/GTZqEkpMTwgL5R79/P/r0dACKL7lEZjmqAjU26D527BgASUlJ6PV6t69JSUkB4Pjx41VWLiGEEEIIIUR4KurRg8LrrgNAn5FBnalTQ1wi37l0LZfx3FWixt7WyM/PByA2Nrbc18SUJEPIy8sr9zUWiwWLxeJ8rCgKUVFRzr9rKsdnq8mfsSaT+gtvUn/hS+ouvEn9hS+pu/AWbvWXO2ECkT/+iGI2EzNnDoUjRmANoy7aprPGc1d2v4db/YVCjQ26i4uLAa0beXmMRiOAS1B9toULF/LVV185Hzdv3pyXXnqJ5HCfm89LDRo0CHURRCVI/YU3qb/wJXUX3qT+wpfUXXgLm/pLTYWnnoKnnkKx20meMAFWr4ZwCDptNli/Xvs7MpKk664Dkykgmw6b+guBGht0m0oOHk+ZyR3BtiP4dmfw4MH069fP+dhxBycjI6NGZz1XFIUGDRpw/Phx1DDOzFhbSf2FN6m/8CV1F96k/sKX1F14C8v6u+kmkmfPxrB/P6xdS9abb1J4/fWhLlWFIr7/noTDhwEwd+vG6ZMnK73NsKy/ADEYDF41xtbYoNubruPedEE3Go3lBuW14aBSVbVWfM6aSuovvEn9hS+pu/Am9Re+pO7CW1jVn8lE9sSJJI4aBUCdiRMpvPpq1Li4EBfMs5j33nP+nT9mTED3d1jVXxWrsYnUUlNTAcjMzMRms7l9TXpJ1j7pCiGEEEIIIYTwRbglVTPs3EnEunUAWJs3p6hHjxCXqPaosUF3s2bN0Ov1WCwW9u/fX+Z5q9XKvn37AGjZsmVVF08IIYQQQggR5nKefRZ7ZCQAMXPmYNixI8QlKl/MnDnOv/Nvuw10NTYUrHZq7J6Ojo7mX//6FwArV64s8/yGDRsoLCykTp06XBBG2QaFEEIIIYQQ1YOtcWPyHngAAMVuJ/6pp6AadrFWTp0iev58AOyxsRQMGxbiEtUuNTboBi0JmqIorFixgrVr1zqXHzhwgA8//BCAAQMGeMxwLoQQQgghhBDlybv7bqzNmgEQsWkTUSXBbXUS89lnKGYzAAXDh6N6yGklAq9GR5tt2rRh+PDhzJs3j9dff53PP/+cyMhIDh48iKqqdOzYkf79+4e6mEIIIYQQQohwFRFB9qRJzqRqcZMmYb76atT4+BAXrITVSvQHHwCgKgr5t94a2vLUQjW6pRtgyJAhPPbYY7Rr147c3FyOHz9O06ZNueWWW3j00UfRyVgGIYQQQgghRCUU9ehBYe/egJZUre6jj1abbuaR336L4ehRAIp69sTWvHmIS1T71OiWbodOnTrRqVOnUBdDCCGEEEIIUUPlPPccEevXo8vOJiotjaJPP6XgpptCXSxi3n/f+Xfe7beHsCS1lzTzCiGEEEIIIUQl2Ro1IqvUtGHxzzyDYffuEJYIjL//TsSmTQBYWrWi+PLLQ1qe2kqCbiGEEEIIIYQIAHOfPuSPGQOAYjZT7+67UQoLQ1aemNmznX/n33YbKErIylKbSdAthBBCCCGEEAGS/cwzWM4/HwDjnj3E/e9/ISmHLiODqMWLAbDXrUvh9deHpBxCgm4hhBBCCCGECJzISE7PnIk9KgqAmE8+IbIk+K1K0XPnohQXA5A/ciRqSXlE1ZOgWwghhBBCCCECyNqyJdnPP+98XPexx9D/80/VFaC4mJiPPgJA1ekoKOnyLkJDgm4hhBBCCCGECLDCYcMoGDIEAF1uLvXuvRdKWp6DLSotDX16OgDm3r2xNW5cJe8r3JOgWwghhBBCCCECTVHIfvFFrM2aAWD69VfipkypkrcuPU1YvkwTFnISdAshhBBCCCFEEKixsZyeORPVaAQgduZMIn78MajvadyyBdOvvwJgueACiv/976C+n6iYBN1CCCGEEEIIESSWf/2LnCefdD6uO348uuPHg/Z+pacJy7v9dpkmrBqQoFsIIYQQQgghgij/jjsw9+oFgP7kSZKGDMGwb1/A38f0889Eff01ALbERAoHDgz4ewjfSdAthBBCCCGEEMGkKGRNm4a1USMADP/8Q9KAAZjWrQvYW0R+/z2Jo0ahWK0AWsbyyMiAbV/4T4JuIYQQQgghhAgye0ICmYsWYbngAgB02dkkjhxJ1OefV3rbUV98Qb2xY1GKigAw9+xJ7r33Vnq7IjAk6BZCCCGEEEKIKmBv2JDMhQsx9+wJgGK1Uu+hh6gzeTLY7X5tM+bdd6n34IMoNhsABUOGcGr2bGnlrkYk6BZCCCGEEEKIKqLGxHBqzhwtyVmJOm+8oc3jXVjow4ZU6kyZQvyzzzoX5d12G1nTp0NJtnRRPUjQLYQQQgghhBBVSa8n57nnyJ44EVWnhWRRS5aQNGwYuszMite324l/8knqTJ/uXJT70EPkPPcc6CTEq26kRoQQQgghhBAiBPJvu41Tc+Zgj44GwLR1K0n9+xP1xReY1q1D//ffKGe3flss1L3/fmI+/NC5KPu558j9z39kerBqyhDqAgghhBBCCCFEbVXUqxeZCxeSOGYM+uPHMRw8SL0HH3R5jb1uXWypqdhSU9GdPo3p118BUPV6sl59lcLrrw9F0YWXJOgWQgghhBBCiBCytmtHRloaCbfcgumPP8o8r8vKQpeVhXHnTucyNSKCU2+/TdE111RlUYUfJOgWQgghhBBCiBCzp6aSuXQpEatXYzh4EP3Ro+iOHUNf6p9isWivrVOHU++/T3HXriEutfCGBN1CCCGEEEIIUR2YTBT16kWRu+fsdnQnT6I7cQJbw4aoCQlVXTrhJwm6hRBCCCGEEKK60+mwJydjT04OdUmEjyR7uRBCCCGEEEIIESQSdAshhBBCCCGEEEEiQbcQQgghhBBCCBEkEnQLIYQQQgghhBBBIkG3EEIIIYQQQggRJBJ0CyGEEEIIIYQQQSJBtxBCCCGEEEIIESQSdAshhBBCCCGEEEEiQbcQQgghhBBCCBEkEnQLIYQQQgghhBBBIkG3EEIIIYQQQggRJBJ0CyGEEEIIIYQQQSJBtxBCCCGEEEIIESQSdAshhBBCCCGEEEEiQbcQQgghhBBCCBEkEnQLIYQQQgghhBBBIkG3EEIIIYQQQggRJBJ0CyGEEEIIIYQQQWIIdQHClcFQO3ZdbfmcNZXUX3iT+gtfUnfhTeovfEndhTepv/BWG+vP28+sqKqqBrksQgghhBBCCCFErSTdy4VbhYWFPPbYYxQWFoa6KMIPUn/hTeovfEndhTepv/AldRfepP7Cm9RfxSToFm6pqsr+/fuRjhDhSeovvEn9hS+pu/Am9Re+pO7Cm9RfeJP6q5gE3UIIIYQQQgghRJBI0C2EEEIIIYQQQgSJBN3CLaPRyPXXX4/RaAx1UYQfpP7Cm9Rf+JK6C29Sf+FL6i68Sf2FN6m/ikn2ciGEEEIIIYQQIkikpVsIIYQQQgghhAgSCbqFEEIIIYQQQoggkaBbCCGEEEIIIYQIEkOoCyCq1ltvvcVPP/3k8TVz587FZDKVWb5nzx4WLVrE7t27MZvNpKSk0K1bNwYMGOD29SKw0tPTue+++7x67bPPPkvbtm0B+OKLL/jqq688vn7atGk0atSo0mWs7dLT0/ntt9/Yt28ff/31F4cOHcJutzN8+HCGDh3qcV1/z6/Dhw+zYMEC/vjjD/Lz80lISOCSSy5h6NChxMTEBPoj1lj+1N3+/fvZtGkTf/75J4cPH6agoICYmBjOPfdcevXqRefOnd2ut2rVKmbMmOGxPE888QQdOnSo7MeqNfypv8peG+XcCxx/6m/YsGFebXvcuHFceeWVzsdy/gWOqqrs3r2bX375hV27dnHkyBGKioqIi4ujZcuW9O7dm3bt2pW7vnzvhZa/9Sffff6RoLuWSk1NJS4uzu1zOl3ZDhBr1qzhrbfewm63k5CQQFJSEgcPHuSLL75gy5YtPPvss0RERAS72LWayWSidevW5T6flZXFiRMnMBqNNGvWrMzziYmJJCUluV1X6i4wvvnmG7755huf1/P3/Prjjz+YPHkyxcXFxMXF0bhxY44ePUpaWhq//PILEydOpG7dugH4ZDWfr3V3/PhxHnvsMefjlJQUkpOTOXHiBNu2bWPbtm10796de+65x+01FSA+Pp4GDRq4fU5+OPrG33MP/Ls2yrkXWP7Un6fvw/z8fA4fPgxAq1at3L5Gzr/K++OPP5g4cSIAiqLQoEEDIiMjOXbsGJs2bWLTpk0MGTKEESNGlFlXvvdCz5/6k+8+/0nQXUsNHjzY5c6vJ+np6bz99tvY7XZGjRpF//79URSFjIwMnn/+ef766y/mzp3L7bffHtxC13J169Z1Xhzdef311zlx4gQXX3wx0dHRZZ7v0aOH1y0Dwj916tShY8eOtGjRghYtWrBixQo2btzocR1/z6/CwkJee+01iouLue6667j55psxGAzk5uYyZcoUdu/ezdtvv83jjz8ezI9cY/hTd/Xq1aNPnz5cccUV1KtXDwC73c6yZcuYM2cOP/30E+eddx69e/d2u36HDh249957A/5ZaiN/6s/B12ujnHuB50/9efo+nDdvHocPH6ZFixY0bNjQ7Wvk/Ks8VVVp0KAB/fr1o2vXrsTGxgJgtVr54osvWLRoEQsWLKBly5Z06tTJuZ5871UP/taffPf5R8Z0iwotWbIEi8VC+/btGTBgAIqiAJCcnMw999wDwPLly8nKygphKWs3s9nML7/8AsAVV1wR4tLUXkOHDuXxxx/n+uuvp0OHDkRGRla4jr/n1w8//EBOTg6NGjVizJgxGAzaPdQ6deowfvx49Ho9W7du5e+//w7sh6yhfK27hIQEXn/9dQYOHOj80QFaT6HevXvTq1cvAFasWBHUcguNP+eev+TcC7xA1p+qqqxZswaQ78Nga9GiBdOmTeOaa65xBmwABoOBkSNHctFFFwFlr4PyvVc9+FN/8t3nPwm6hUeqqjqDuR49epR5vnXr1jRq1AibzcbmzZuruniixMaNG53jcGrqWJiaqDLnl6MV6MorryzThSspKYkLL7wQgA0bNgSj6LWeyWTyOCyjffv2ABw9erSqiiSqiJx71dvOnTvJyMhAr9fTtWvXUBenRouOjkav15f7vONcOHbsmHOZfO9VH/7Un3z3+U+6l9dSGzZsYNOmTRQWFhIfH0/r1q3p3r17mW7JmZmZnD59GoA2bdq43Vbr1q05cuQIe/fudd7hElXLcVe/a9eu5V5Ad+zYwauvvkpubi6xsbG0aNGC7t27y9inEPL3/LLZbM47+eWNa2zdujXbtm1j3759QSi5qEhxcTGAx2RA//zzD9OnTycrK4uoqCiaN2/O5ZdfXu5YNxEcvlwb5dyr/hzfhx06dCg3dw3I+VcVLBYL4HodlO+98OGu/ioi333lk6C7ltq6davL459//pkvvviC8ePHu7SUOu5uGY1Gl24kpaWkpABacgVR9U6fPs3vv/8OeO5Kt3PnTpfHGzdu5Msvv+SOO+7weny/CCx/z6+MjAxsNhsA9evXd7ueY3npO9Si6qxfvx7wnOzpwIEDHDhwwPl48+bNzJ8/n2HDhjFkyJBgF1GU8OXaKOde9WaxWJytnBV1LZfzL7hUVXXWRenroHzvhYfy6q8i8t1XPgm6a5n69etz44030rFjR1JSUlAUhT179vD555+zd+9eXn75ZZ577jnOO+88QMsACloXFMeYm7M5xoHk5eVVzYcQLtasWYOqqjRs2JAWLVqUeb5evXoMHjyYzp07U79+fUwmE/v372fBggX8+uuvzJw5k9jYWC6++OIQlL528/f8Kv13eZk+Hcsd7yGqzvbt253dJwcMGFDm+ejoaHr37k23bt1o0KAB0dHRHDlyhLS0NFavXs28efOcrxHB48+1Uc696m3Lli3k5+cTHR3tkvipNDn/qsaKFSvYv38/BoOBPn36OJfL9154KK/+PJHvPs8k6K5lrr/++jLL/vWvf9G2bVueeeYZ9u3bxyeffMIzzzwDnOla4khW4Y7jOUeXElG1KkoYc/XVV5dZ1rp1ax5//HFeeeUVNm3axIcffkinTp3K/QIUweHv+eVYz9O6RqOxzHoi+DIzM3n99dcBuOaaa2jbtm2Z13Tu3LnMPKbNmjXjvvvuIzY2lm+++YZ58+bRvXt3oqKiqqTctZE/10Y596q31atXA9ClS5dyu7fK+Rd8f//9N3PmzAFgxIgRLt2G5Xuv+vNUf+WR776KSSI1AWgXsOHDhwPa+DbHHUXHBcxqtZa7ruM5X8Z8iMA4ePAg//zzD4qicPnll/u0rqIojBw5EoATJ07wzz//BKOIwgN/zy/Hep7W9WcslqicvLw8XnjhBXJzc7ngggsYM2aMz9sYNmwYRqORgoIC/vjjjyCUUlTE07VRzr3qKzc3l19//RWA7t27+7UNOf8qLz09nZdeegmLxcJll11G//79XZ6X773qraL6c0e++7wjQbdwatWqFaCN40hPTwfOdNUpKChAVVW36zkC9NLTDYiq4birf/7555OcnOzz+g0bNnTWm4zJr3r+nl+l/y6vG51jeXnd8ERgmc1mXnzxRQ4fPsy5557Lo48+6vIj0VvR0dE0btwYkHMylMq7Nsq5V339/PPP2Gw2kpOTy03QVRE5/yonKyuLiRMncvr0aTp27Mi4cePK9KCT773qy5v6O5t893lPgm7hVDrrtSNZRWpqKqDdPXRkmzybI0Cv6VkHqxu73c66deuAys1F6qh3u90ekHIJ7/l7fiUnJzvr7cSJE27Xcyx3vIcIHovFwpQpU9i7dy+NGzfmiSeeqFTXOEfXScd1WISGu2ujnHvVl2Oo1eWXX16poVJy/vknLy+PiRMncuLECdq2bctDDz3kthu4fO9VT97WX2ny3ecbCbqF0+HDh51/JyYmAtq8h45pU3bt2uV2vd27dwPQsmXL4BZQuNixYwcnT57EaDTSpUsXv7aRk5NDTk4OAAkJCYEsnvCCv+eXXq/n3HPPdXm+vPXcJdcTgWOz2Zg2bRp//PEH9evX56mnnvI4TVFF7Ha7c35Tx3VYVL3yro1y7lVPx48fZ8+ePUDlbkLL+ecfR2vnoUOHOO+883jsscfK7eIt33vVjy/15yDffb6ToFs4LV26FIBGjRo5f2QoiuJMevDjjz+WWWf37t0cOXIEvV4v2a+rmKNr+cUXX1xmfnVvpaWloaoq0dHR8iUVApU5vxzrrVq1qkwvhczMTOc0cv7ekBEVU1WVt956i82bN1OvXj2efvrpSt+8WrlyJfn5+eh0Oi644IIAlVT4ytO1Uc696sfxfdiiRQsaNmzo93bk/PNd6dbOJk2a8OSTT3ps7ZTvverF1/oD+e7zlwTdtchvv/3Gp59+6uy241BQUMD777/v7Ko8dOhQl+cHDBiAwWBg+/btLFmyxDkGJyMjg5kzZwLQs2dP551LEXzFxcVs2rQJ8HxX/9ChQ7z33nscOnSozPoLFixg8eLFAAwcOLDCbkQiOPw9v66++mrq1KnDkSNH+PDDD52JZXJzc5k+fTo2m42LLrrI2TIgAm/OnDmsXbuWOnXq8PTTTzvnlvWkoKCA1157jX379rkst9vtLF++3Jkx9qqrrpLeJ0FUmWujnHvVz9q1a4GKW7nl/Assu93Oa6+95tLa6U1+H/neqx78rT/57vOPopaXxUDUOJs2bWLq1KmA1l2uXr162Gw2Dh8+jNVqRVEUhg4dyrBhw8qs+9NPPzFjxgxUVSUhIYH4+HgOHjyIzWbj3HPP5dlnnyUyMrKqP1KttXbtWl5//XXi4uKYNWuWy3j80g4cOMCjjz4KQFxcHElJSQAcOXKEoqIiQLvA3XXXXTJdWADs2rWLl19+2fnYbDZjsViIiIhw6ar10ksvOesC/D+/fv/9dyZPnozFYnHWr6Nuk5OTef755+VmmJd8rbs9e/bw1FNPAVpXuNL1ebaJEyc6/87Pz+fWW28FtGQ/KSkp6HQ6jh8/7kwCdNFFF/Gf//xHMvD6wNf6q+y1Uc69wPL32gk4z0W9Xs+sWbM8dnGV8y+wHL9FQBtHXd6+r1evHg899JDLMvneCz1/6k+++/wnTVu1yLnnnsuQIUPYs2cPx48f59ChQ86LXZs2bbj22mvLHZfdvXt3GjRowMKFC9mzZw+HDx+mfv36dOvWjYEDB9bYE6S6ciSM6dq1a7kBN2iJR4YPH86ePXs4cuQIR48exWq1Eh8fz0UXXcRVV11Fhw4dqqjUNZ/NZiM3N7fM8qKiIucPeSibtM7f8+vCCy9k8uTJzJ8/nx07dnDw4EESEhLo3LkzQ4YMkRkFfOBr3ZWeM/bkyZOcPHnSq/eJiIhg1KhR7N69m0OHDnH8+HGKi4upU6cOHTt25IorruDSSy+Vm2A+8rX+KnttlHMvsPy9dsKZruUdOnSocEypnH+BVXrqrmPHjnHs2DG3r3M3u4p874WeP/Un333+k5ZuIYQQQgghhBAiSGRMtxBCCCGEEEIIESQSdAshhBBCCCGEEEEiQbcQQgghhBBCCBEkEnQLIYQQQgghhBBBIkG3EEIIIYQQQggRJBJ0CyGEEEIIIYQQQSJBtxBCCCGEEEIIESQSdAshhBBCCCGEEEEiQbcQQgghhBBCCBEkEnQLIYQQQgghhBBBIkG3EEIIIYQQQggRJBJ0CyGEEH649957GTZsGKtWrfL4umeffZZhw4bxxRdfVE3BhBBCCFGtSNAthBBCCCGEEEIEiQTdQgghhBBCCCFEkEjQLYQQQgghhBBCBIkh1AUQQgghaqvdu3ezdOlSdu/eTV5eHvHx8bRr145BgwbRuHHjMq9/9tln+fPPP/nf//5HTEwM8+fPZ9euXeTk5HDPPfdw5ZVXoqoqq1evZuXKlfzzzz8UFRURGxtLQkICF154Iddddx2JiYku21VVlZ9//pmVK1eyf/9+zGYzCQkJdOzYkSFDhlC3bl2X1+/YsYMJEybQtm1bnnrqKRYuXMjatWvJzMwkNjaWSy65hBEjRhAbG+v2c2dmZrJw4UK2bdvG6dOniYqK4rzzzuO6667joosucnltWloaH330EX379mXMmDEuzz3//PNs376dxMREZs6c6fLcqlWrmDFjBt27d+fee+91ee7kyZMsXryY7du3k5mZidFopHnz5lx77bV06dLFr/0uhBBClEeCbiGEECIEli1bxuzZs1FVlfj4eJo1a8bx48dZvXo169ev5z//+Q8dO3Z0u+7OnTtZuHAher2ehg0bEhkZ6Xzu448/Ji0tDYCkpCRSU1PJzc3l0KFD7N+/n1atWrkE3Varlddff50NGzYAUK9ePRITEzl+/DjfffcdGzdu5H//+x8NGzYsUw5VVZk6dSpbt24lNTWVRo0acejQIZYtW8Zvv/3GxIkTiY+Pd1ln7969vPDCC+Tn5xMREUHTpk3Jzs5m27ZtbNu2jaFDhzJ8+HDn69u2bQvAn3/+6bIdu93Onj17AC2IPnHiBPXr13c+73i9Y/3Sy6dMmUJBQQEmk4nU1FTy8/PZsWMHO3bsoF+/fowePdrn/S6EEEKUR4JuIYQQooodOHCAOXPmoKoqo0aNol+/fuh0OiwWCx9++CHLli3j9ddfZ9q0adSrV6/M+l999RVXXXUVY8aMISIiAoDi4mJycnL4+uuviY6O5vHHH6dNmzbOdYqLi/nll19cAlOAL774gg0bNtC8eXPuuecemjVr5nz9Rx99xLJly3jjjTd48cUXy5Rjz549mEwmnnnmGdq1awdordgvvfQS//zzD7Nnz+ahhx5yvr6oqIhp06aRn5/PpZdeyt13301UVBSgtUy//fbbzJ8/n1atWjlbvJs1a0ZUVBQHDhygoKCA6OhoAP7++28KCwtJSEjg1KlT/Pnnny6fbefOnYBr0H3q1CmmTp1KYWEhN954I/369cNoNAJar4Np06aRlpbGBRdcQKdOnbze70IIIYQnMqZbCCGEqIQZM2YwbNiwcv+d3UILsGTJEmw2GxdffDEDBgxAp9O+jo1GI7fffjtNmjShoKCAZcuWuX3PJk2acMcddzgDPwCTycTx48dRVZV27dq5BNyO57t168Y555zjXOYI0qOionj00UedAbfj9bfddhvnnXcef/31lzOILc1ms3HDDTc4A27QWtfvu+8+ADZu3MiJEyeczzm6oMfHx3Pvvfc6A26AK6+8kl69egGwaNEi53KdTkebNm1QVZVdu3Y5lzv264ABA1wegxZcnzhxgsTERJdAPC0tjby8PPr06cPgwYOdATdA69atGTt2LABff/11mc8K5e93IYQQwhMJuoUQQohKSE1NpXXr1uX+Kx1YOvz2228AXHfddWWeUxTFudzxurNdfvnlzkC9tKSkJEDrwp2ZmVlh2bdu3YrFYqF9+/ZlxnmDFvA6Wnzd3TwwGAz07NmzzPJzzjnHGShv377dudzxd8+ePd0Gq3369AG0Vmez2excfv7555cpw86dO1EUhSuuuIKkpCSX5xx/O9Zz2Lhxo/P93enQoQMGg4Hdu3djs9nKPF/efhdCCCE8ke7lQgghRCUMHjzYYyItRxIuh/z8fHJycgDcJksrvfzo0aMenz9bQkICXbp0YcOGDdx///20a9eOtm3bcv7559OyZUv0er3L6w8ePAhoQfrTTz/tdpvZ2dmA1np8tsTERLc3FQAaNWrErl27OHbsmHOZ4+/yyp+amorBYMBqtXLixAlnq7yji7ijtd1ut7Nr1y6aNm1KbGwsbdu2ZfXq1WRmZroE4KW7lpvNZjIyMgCYNWuW2/d3sFgs5ObmlkkgV165hRBCCE8k6BZCCCGqUOkW3LOTjDk4gr3Sry2tdPfms9133300btyYlStXsn37dmfrclxcHAMGDHCOHwcoKCgAtERkJ0+e9Fhud2OX4+Liyn2947MVFhY6lzk+T3mfW1EU4uLiOHXqlMt65557LhEREfz999+YzWaOHz9Ofn4+V1xxBaC1aK9evZo///yTK664wm3Q7fisoLWkV8Td5/W034UQQojySNAthBBCVKHSGa+zs7PdJkrLysoq81pvmUwm53jyI0eOsHPnTrZs2cLWrVuZO3cucGYctGP7Q4YMYcSIET6/l6PF3tNzpVvCHe/naD0/m6qqbtczGAy0atWK33//nd27d3PkyBHgTFBdOsP5v/71L44ePUp8fLxLxvXS+/LTTz/FYJCfQEIIIaqGDEwSQgghqlBMTIyzhfjw4cNuX+NY7m6aLl80atSIXr168dhjj3HHHXcAsGLFCufzju7Sjm7mvjp58mS5rfGOwDg1NdW5zPF3eZ/72LFjWK1WdDpdmSzrjvHZO3fu5M8//0RRFOey1NRU6tWrx44dO5xd0M8ezx0dHe28wVHe+wshhBDBIEG3EEIIUcXat28PwLffflvmOVVVncsdrwuEli1bAnD69Gnnso4dO2IwGPj1119dxl57y2q1snLlyjLLDx486Ex09q9//cu5vEOHDoAW+Lvrvu343K1bty7Tyu9ozd6xYwe7du2icePGLt3bzz//fE6cOMGaNWtcXl/av//9b6D87ORCCCFEMEjQLYQQQlSx/v37o9fr2bx5M0uXLsVutwNaEDtnzhwOHTpEdHQ011xzjU/b/f333/n444/LtOSazWaWLFkCQPPmzZ3LExIS6NOnDzabjeeff54dO3a4rKeqKvv27ePdd991mfrLQa/X88UXX7gkijt58iRvvfUWAJ07d6ZBgwbO57p160ZSUhLZ2dnMmDHDpZV89erVLF++HIBBgwaVea8WLVpgNBrZs2cPOTk5ZVqyHUH2li1bXB6XNnDgQGJjY/npp5/48MMPyc/Pd3k+Ly+PlStXMn/+/DLrCiGEEP6SAU1CCCFEFWvWrBm33nors2fP5uOPP2bJkiUkJSU5E4QZjUYeeOCBMtmzK1JYWMjSpUtZunQpcXFxJCcnY7VaOX78OEVFRURHRzNmzBiXdW688UZOnz7NmjVrmDBhAnXr1iUpKQmLxUJ6erozoZljOq/SWrVqRVRUFM8++yypqalERkZy8OBBbDYb9evX5/bbb3d5fUREBA8++CDPP/88P//8M1u2bKFx48ZkZWU5E7kNGTKEiy66qMx7mUwmWrRo4ew+fnZQ7Xisqip16tShSZMmZbaRmJjIo48+yssvv8zXX3/Nd999R6NGjYiIiCAnJ4f09HRUVaVr167e7nIhhBCiQhJ0CyGEECFwzTXX0LRpU5YuXcru3bs5cOAAcXFxdOzYkcGDB/s1PdX555/Prbfeym+//cahQ4c4fPgwer2eBg0a0L59e/r161cmkNfr9dx///1069aNFStWsHfvXvbv309sbCypqam0atWKLl26uIzNdlAUhYcffpiFCxeyZs0aDh8+TFxcHJdccgnDhg1zm928ZcuWvPzyyyxcuJDt27fzzz//EBERQfv27bnuuuvo2LGjx89XXtDt6G6ek5NDmzZtUBTF7TbatGnDtGnT+Oabb9iyZQsnTpzAbreTkJBAhw4d6NSpE507d65oVwshhBBeU1RVVUNdCCGEEEKEjx07djBhwgTatm3Ls88+G+riCCGEENWajOkWQgghhBBCCCGCRIJuIYQQQgghhBAiSCToFkIIIYQQQgghgkSCbiGEEEIIIYQQIkgkkZoQQgghhBBCCBEk0tIthBBCCCGEEEIEiQTdQgghhBBCCCFEkEjQLYQQQgghhBBCBIkE3UIIIYQQQgghRJBI0C2EEEIIIYQQQgSJBN1CCCGEEEIIIUSQSNAthBBCCCGEEEIEiQTdQgghhBBCCCFEkEjQLYQQQgghhBBCBMn/Azjh+AIMK3tXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10, 6), tight_layout=True)\n", + "plt.style.use('ggplot')\n", + "\n", + "# Scatter plot of the Auto data\n", + "sns.scatterplot(data=Auto, x='horsepower', y='mpg', color='blue', s=50)\n", + "\n", + "# Line plot of the predicted values\n", + "plt.plot(hp_grid_df['horsepower'], hp_grid_df['mpg_pred'], color='red', linewidth=2)\n", + "\n", + "# Adjust the text size\n", + "plt.xticks(fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xlabel('Horsepower', fontsize=16)\n", + "plt.ylabel('MPG', fontsize=16)\n", + "plt.title('Horsepower vs MPG', fontsize=18)\n", + "\n", + "# Show plot\n", + "plt.show()\n", + "\n", + "# Save the plot as EPS file\n", + "#plt.savefig(\"01_auto_poly10.eps\", format='eps')" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "c2196050-965a-498d-b59d-884059d64bfa", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " x testmse trainmse\n", + "0 1 23.361903 24.623010\n", + "1 2 20.252691 18.144194\n", + "2 3 20.325609 18.035030\n", + "3 4 20.343887 17.908378\n", + "4 5 20.036431 17.393915\n", + "5 6 19.966946 17.210659\n", + "6 7 20.186598 17.293690\n", + "7 8 20.357129 17.455614\n", + "8 9 20.267491 17.524121\n", + "9 10 20.105590 17.408553\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# Lists to store models and MSE values\n", + "models = []\n", + "test_mse = []\n", + "train_mse = []\n", + "\n", + "# Try 10 models\n", + "for i in range(1, 11):\n", + " # Polynomial features\n", + " poly = PolynomialFeatures(degree=i)\n", + " X_train_poly = poly.fit_transform(train_data[['horsepower']])\n", + " X_test_poly = poly.transform(test_data[['horsepower']])\n", + " \n", + " # Linear regression model\n", + " model = LinearRegression()\n", + " model.fit(X_train_poly, train_data['mpg'])\n", + " \n", + " # Store the model\n", + " models.append(model)\n", + " \n", + " # Predict on train and test data\n", + " y_train_pred = model.predict(X_train_poly)\n", + " y_test_pred = model.predict(X_test_poly)\n", + " \n", + " # Calculate MSE\n", + " train_mse.append(mean_squared_error(train_data['mpg'], y_train_pred))\n", + " test_mse.append(mean_squared_error(test_data['mpg'], y_test_pred))\n", + "\n", + "# Create a DataFrame for MSE values\n", + "mse = pd.DataFrame({'x': range(1, 11), 'testmse': test_mse, 'trainmse': train_mse})\n", + "print(mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "2e1588d2-ba82-4cda-8911-a2c1e7b4a97d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIcCAYAAAAAFrRlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZUUlEQVR4nOzdd1xUV94/8M+dAgwzVAEpdrGgRMGG0Rg1Gk1ibIma5qY90WR1Xd08iSabqtnk+Zm+66aoyfPorslasMeYGDUYjV3BgoAVUQQBkd6m3N8f44yMDDDAtDt83q8XL4Y7d+4c4IjzmXPO9wiiKIogIiIiIiIiu5K5ugFERERERESeiGGLiIiIiIjIARi2iIiIiIiIHIBhi4iIiIiIyAEYtoiIiIiIiByAYYuIiIiIiMgBGLaIiIiIiIgcgGGLiIiIiIjIARi2iIiIiIiIHIBhi4iIiIiIyAEUrm6AlNy8eRM6nc7VzaAWCA0NRX5+vqubQa0E+xs5G/scORP7Gzmbu/Q5hUKBoKAg2851cFs8ik6ng1ardXUzqJkEQQBg/D2Kouji1pCnY38jZ2OfI2difyNnk2qf4zRCIiIiIiIiB2DYIiIiIiIicgCGLSIiIiIiIgdg2CIiIiIiInIAFsggIiIiIkmqrq5GdXW1q5tBTlJZWYmamhqnPJe3tze8vb1bfB2GLSIiIiKSnPLycgiCAD8/P3OlOvJsSqXSKZXBRVFEZWUlysvLoVarW3QtTiMkIiIiIsnR6XTw9fVl0CK7EwQBvr6+dtlfl2GLiIiIiCSHIYsczR59jGGLiIiIiIjIARi2iIiIiIiIHIBhi4iIiIhIQqZMmYK3337b/HVCQgKWL1/e4GOioqLw008/tfi57XWd1oJhi4iIiIjICZ555hk89thjVu87evQooqKicOrUqSZf98cff8T06dNb2jwLn3zyCe6///46x5OTkzFy5Ei7Pted1qxZg6ioKAwfPrzOfVu2bEFUVBQSEhLMx/R6PZYsWYJ7770XXbt2Re/evfHwww9jzZo15nPmzZuHqKioOh9PPfWUQ78Xln4nIiIiInKCJ554Ai+88AKuXr2Kdu3aWdy3Zs0a9O7dG3fddVeTr9umTRt7NbFRYWFhTnkeX19fFBQU4OjRoxgwYID5uCmI1fbJJ5/gu+++w9/+9jf07dsXpaWlOHnyJIqKiizOGzlyJD799FOLY15eXg77HgCObEmSKLq6BURERERuRhQhVFS45MPWF2ejR49GSEgI1q5da3G8srISW7ZswRNPPIHCwkLMmjUL/fv3R9euXTFq1Chs2rSpweveOY3w4sWLeOSRR9ClSxeMGDECv/32W53HvP/++7jnnnvQtWtX3H333fjwww/Ne1itWbMGn376Kc6cOWMeATKNEt05jTAtLQ1Tp041jyjNnz8f5eXl5vvnzZuH559/Hl9//TXi4+PRu3dv/PWvf210vyyFQoHJkydbjE5du3YNBw4cwOTJky3O/eWXX/DMM89g/Pjx6NChA3r37o0nnngCL774osV5Xl5eCAsLs/gIDAxssB0txZEtiSgrE7B4sR927PCBTgcoFMCYMVVYsKAUGg3TFxEREbVuQmUlIrp1c8lz55w7B9HXt9HzFAoFpkyZgrVr1+Ivf/mLubT41q1bodVqMXnyZFRWVqJPnz6YNWsW/Pz8sGvXLvz5z39Ghw4d0K9fv0afw2AwYMaMGQgKCsKWLVtQVlaGd955p855arUan332GcLDw5GWlob58+dDo9Fg1qxZmDBhAjIyMpCUlITVq1cDAPz8/Opco7KyEtOnT0e/fv2wbds2FBQU4NVXX8Ubb7yBzz//3Hze/v37ERYWhnXr1uHSpUv44x//iN69ezc6he/xxx/Ho48+ikWLFkGlUmH16tUYMWIEQkJCLM4LCwvD77//jmeeecapo3y24MiWBJSVCRg/PgQrVqhx9aoCubkKXL2qwIoVaowfH4KyMu4zQURERCQFjz/+OK5cuYL9+/ebj61ZswYPPvggAgMDERERgZdeegmxsbHo2LEjnn/+eQwfPhw//PCDTdffu3cvzp07h3/84x+IjY3F4MGD8dprr9U5b968eRg4cCDat2+PMWPG4MUXX8TWrVsBACqVCmq1GnK53DwCpFKp6lxjw4YNqKqqwt///nf07NkT99xzD/72t79h/fr1yM/PN58XEBCA999/H9HR0bj//vsxatQo7Nu3r9HvxfQz+OGHHyCKIlavXo3HH3+8znnvvPMObty4gbi4OIwePRoLFizA7t2765y3c+dOdOvWzeLjs88+a7QdLcGRLQlYvNgP588rYDBYhiqDQcD58wp8+KEfFi0qcVHriIiIiFxPVKmQc+6cy57bVtHR0RgwYABWr16NoUOHIjMzE4cOHcL3338PwFjs4Z///Ce2bt2KnJwc1NTUoKamBr42jJwBwLlz5xAVFYXIyEjzsf79+9c574cffsA333yDzMxMlJeXQ6/XQ6PR2Px9mJ4rJibGom0DBw6EwWDAhQsXEBoaCgDo3r075HK5+Zy2bdsiLS3Npud4/PHHzeu0ysvLcd999+H//u//LM7p3r07du/ejZMnT+Lw4cM4dOgQnn32WUybNg0ff/yx+bwhQ4bgf/7nfywe6+hphBzZkoAdO3zqBC0Tg0HAjh0+Tm4RERERkZsRBIi+vi75gNC0WUZPPPEEfvzxR5SWlmLNmjVo164dhg0bBgBYunQpli9fjj/+8Y9Yu3YtduzYgeHDhze6xslEtLJ+TLijfceOHcOsWbMwcuRIrFy5Ej///DPmzJlj83PUfq47r23tOZVKpU3ttGby5MlITk7Gp59+imnTpkGhsD5WJJPJEBcXh5kzZ+Lbb7/FZ599hv/85z/Iysoyn+Pr64vOnTtbfAQFBdnUjuZi2HJzogjodA2fo9WyaAYRERGRVIwfPx5yuRwbN27EunXr8Nhjj5nDyaFDhzB27Fg8+uij6N27Nzp27IhLly7ZfO3u3bsjOzsbubm55mPHjh2zOOfIkSNo164d5s6di759+6JLly7Izs62OEepVMJgMDT6XGfOnEFFRYXFtWUyGbp06WJzmxsSFBSE+++/HwcOHMCTTz5p8+O6d+8OABZtcwWGLTcnCMZiGA1RKJr8hgoRERERuYharcaECROwePFiXL9+HdOmTTPf16lTJ/z22284cuQIzp07hwULFlisf2rMsGHD0LVrV8ydOxepqak4dOgQFi9ebHFO586dkZ2djc2bNyMzMxPffvsttm/fbnFO+/btkZWVhdOnT6OwsBDV1dV1nuuRRx6Bt7c35s6di/T0dPz+++9466238Oijj5qnENrDZ599hlOnTqFbPQVQZsyYgWXLluH48eO4evUq9u/fj7/+9a/o0qULoqOjzefV1NQgLy/P4qOwsNBu7bSGYUsCxoypgkxmfehKJhMxdmyVk1tERERERC3x+OOPo6ioCMOGDbPYN2revHm466678NRTT2HKlCkIDQ3F2LFjbb6uTCbDN998g5qaGjz88MN45ZVXsGDBAotzxo4dixkzZuCNN97AmDFjcPToUcybN8/inIceeggjRozAtGnTcNddd1ktP69SqfDdd9+hqKgI48aNw8yZM3HPPffg/fffb9LPojEqlQrBwcH13j9ixAj88ssvePbZZzFs2DDMmzcP0dHR+M9//mMx7fDXX39FfHy8xcekSZPs2tY7CaKtEyYJ+fn5TZ7Lag+maoR3FskQBBHdu+uwZUsBy7/bQBAEREREICcnx+Z5wkTNxf5GzsY+R87kDv2tpKQE/v7+Lnlucg2lUunU1+L19TGlUmnzyB1HtiRAoxGxdWsBnnuuHO3b66BQGP+ojRhRzaBFREREROSmGLYkQqMRsWhRCQ4ezMNTTxkX+nXrpmPQIiIiIiJyUwxbEhQfXwMASEmpW0aTiIiIiIjcA8OWBMXHG+eqnjyphAuWkBERERERkQ0YtiSoSxcd/P0NqKqSISOjkbrwRERERETkEgxbEiSTAXFxxqmEycleLm4NERERERFZw7AlUXFxxvmDDFtERERERO6JYUuiWCSDiIiIiMi9MWxJlKlIxtmzCpSWCo2cTURERESeasqUKXj77bdd3QyygmFLokJDDWjXTgdRFHDiBEe3iIiIiNxdVFRUgx/z5s1r1nWXL1+O+fPnt6ht8+bNQ1RUFBYsWFDnvtdff71O+woKCjB//nwMHDgQnTt3RlxcHJ588kkcPXrUfE5CQoLV7/Of//xni9oqJSxlJ2Hx8VpcvapASooX7rmnxtXNISIiIqIGJCcnm29v2bIFH3/8MX777TfzMR8fH4vztVotlMrG31QPCgqyS/siIyOxZcsWvPvuu1CpVACAqqoqbN68GVFRURbnzpgxA1qtFp9//jk6duyI/Px87Nu3D0VFRRbnvfLKK3jqqacsjmk0Gru0Vwo4siVhtysScmSLiIiIyN2FhYWZP/z8/CAIgvnr6upqxMTEYMuWLZgyZQq6dOmCDRs2oLCwELNmzUL//v3RtWtXjBo1Cps2bbK47p3TCBMSEvCPf/wDL7/8Mrp3746BAwdi1apVjbbvrrvuQlRUFLZv324+tn37dkRGRiI2NtZ8rLi4GIcPH8Ybb7yBoUOHol27doiPj8ecOXMwevRoi2tqNBqL7zssLAy+vr7N/AlKD8OWhPXrZ1y3lZLCioRERETUuokiUFEhuORDFO33fXzwwQd4/vnnkZSUhOHDh6O6uhp9+vTBypUrsXv3bjz11FP485//jOPHjzd4naVLl6JPnz74+eef8cwzz+D111/H+fPnG33+adOmYc2aNeavV69ejccee8ziHLVaDbVajZ9++gnV1dXN+0ZbCU4jlLC77tJCLheRmyvHtWsyREYaXN0kIiIiIpeorBTQrVuES5773Lkc+PraJ3G98MILeOihhyyOvfTSS+bbzz//PH799Vf88MMP6NevX73Xue+++/Dss88CAGbPno3ly5dj//79iI6ObvD5p0yZgv/3//4frly5AkEQcPToUXz11Vc4cOCA+RyFQoHPPvsM8+fPx6pVqxAbG4vBgwdj4sSJ6NWrl8X1PvjgA3z44YcWx1auXIkhQ4Y02A5PwbAlYSqViJ49dUhNVSIlxQuRkVWubhIRERERtUDfvn0tvtbr9fjnP/+JrVu3IicnBzU1NaipqWl0Kl7t0CMIAkJDQ3Hjxo1Gnz84OBijRo3CunXrIIoi7rvvPgQHB9c5b9y4cRg1ahQOHz6MY8eO4ddff8VXX32Fjz76yGIk7KWXXsK0adMsHhseHt5oOzwFw5bExcfXIDVVieRkJR56iGGLiIiIWieVSsS5czkue277XUtl8fXSpUuxfPlyLFy4ED179oSvry/eeecdaLXaBq+jUFi+zBcEAQaDbbOgHnvsMbz55psAgPfff7/e83x8fHDvvffi3nvvxV/+8he88sor+OSTTyzCVnBwMDp37mzT83oihi2Ji4+vwapVaiQnc90WERERtV6CALtN5XMnhw4dwtixY/Hoo48CAAwGAy5duoRu3bo57DlHjhxpDnMjRoyw+XHdunXDTz/95KBWSRPDlsSZNjc+cUIJvR6Qy13cICIiIiKym06dOuHHH3/EkSNHEBgYiGXLliE/P9+hYUsulyMpKcl8+06FhYV48cUX8fjjjyMmJgYajQYnTpzAV199hbFjx1qcW1ZWhry8PItjKpUKfn5+Dmu/O2HYkrjoaB3UagPKy2U4e1aBmBidq5tERERERHYyb948XLlyBU899RRUKhWeeuopjB07FqWlpQ593obCkFqtRr9+/bB8+XJcvnwZWq0WkZGRePLJJzFnzhyLcz/++GN8/PHHFsemT5+OxYsXO6Td7kYQRXsWq/Rs+fn5jc6PdYWpU9tg/35vfPxxEZ54osLVzXFbgiAgIiICOTk5YLcnR2N/I2djnyNncof+VlJSAn9/f5c8N7mGUql06mvx+vqYUqlEaGioTdfgPlseoF8/bm5MRERERORuGLY8QFycMeEfP84iGURERERE7oJhywPExxtHtjIyFKioEFzcGiIiIiIiAhi2PEJ4uAHh4XoYDAJOnuRUQiIiIiIid8Cw5SFM67ZSUhi2iIiIiIjcgSRKvxcWFuLAgQNITk5GdnY2ioqKoNFo0KNHD0ycOLHRfQby8vLw3//936iursbo0aMxc+ZMJ7XceeLitPjxR9WtdVvlrm4OEREREVGrJ4mwtX37dmzevBlt27ZFnz59EBAQgJycHBw5cgRHjhzB3LlzMWTIEKuPFUURX375pZNb7HymdVusSEhERESthcFggEzGiVpkfwaDwS7XkUTYio6OxsKFCxETE2NxPC0tDYsWLcI333yDgQMHQqmsGzS2b9+OjIwMPPXUU/jXv/7lrCY7Xd++WshkIq5dU+D6dRnatrVPByEiIiJyR76+vigtLYWfnx8DF9mVwWBAaWkp1Gp1i68libCVkJBg9XhMTAxiY2Nx4sQJZGVloWvXrhb35+bm4j//+Q8mTJiAzp07O6OpLqNWi+jeXYf0dCVSUrwwdmyVq5tERERE5DAKhQJqtRplZWWubgo5iZeXF2pqapzyXGq1GgpFy6OSJMJWQ+RyucVnE4PBgC+//BIhISGYMmUKzp4964rmOVV8fA3S05VITlYybBEREZHHUygU8Pf3d3UzyAkEQUBERARycnIgiqKrm2MzSYetgoICnDp1CoGBgejQoYPFfT/++CMyMjLw3nvvWZ1e2BCtVgutVmv+WhAEqFQq8213FR+vxX/+AyQne7l1O13F9DPhz4acgf2NnI19jpyJ/Y2cTap9TrJhS6fTYcmSJdBqtZg+fbrFXN1r165h9erVeOihh9C9e/cmX3vjxo1ITEw0f925c2csXrwYoaGhdmm7o4wZA8yfD5w86Y22bSPA6cvWhYeHu7oJ1Iqwv5Gzsc+RM7G/kbNJrc9JMmwZDAZ89dVXSEtLw6hRo3Dvvfda3Pfll18iKCgIjz/+eLOuP3nyZDz88MPmr00JOj8/HzqdrmWNd6DgYEClaouSEhn27ctHt27u21ZXEAQB4eHhyM3NldTwM0kT+xs5G/scORP7GzmbO/U5hUJh8yCM5MKWKIpYunQp9u7di2HDhmHGjBkW92/fvh3nzp3D22+/DW9v72Y9h1KprHfqoat/uQ2Ry4E+fbQ4dMgbx44pEB2tbfxBrZAoim79eyTPwv5GzsY+R87E/kbOJrU+J6mwZTAY8PXXXyMpKQlDhw7F7Nmz65T6zMzMhCiKWLhwodVr7Ny5Ezt37sSAAQMwf/58ZzTbqeLjjWErJcULjz1W6ermEBERERG1WpIJW7WD1pAhQzBnzhyreyr06tWrTmVCALh58yaSk5MRFRWFHj16oFOnTk5otfPFxXFzYyIiIiIidyCJsFU7aA0ePLjeoAUAI0eOxMiRI+scT01NRXJyMmJiYjBz5kxHN9ll+vUzTh1MS1OishK4VUSRiIiIiIicTBJhKzExEUlJSfDx8UFkZCTWr19f55xBgwZ57GhVU0RG6hEWpkdenhynTysxcCDXbRERERERuYIkwlZ+fj4AoKqqChs2bLB6TlhYGMMWAEEwTiXcsUOF5GQvhi0iIiIiIheRRNiaPXs2Zs+e3aJr9O7dG2vXrrVTi9xbfLwWO3aokJLCdVtERERERK7CbW890O0iGV4ubgkRERERUevFsOWB4uK0EAQRWVkK3LjBXzERERERkSvwlbgH8vcXER2tA8AS8ERERERErsKw5aHi4oyFMTiVkIiIiIjINRi2PFR8vHHdFotkEBERERG5BsOWh4qPN45spaR4QRRd3BgiIiIiolaIYctDxcRo4e0toqhIhkuX5K5uDhERERFRq8Ow5aGUSiA2luu2iIiIiIhchWHLg5nWbbEiIRERERGR8zFsebB+/UxFMjiyRURERETkbAxbHsxU/j01VYnqahc3hoiIiIiolWHY8mAdOugRHKxHTY2AM2c4lZCIiIiIyJkYtjyYIHBzYyIiIiIiV2HY8nCmdVsskkFERERE5FwMWx7OtLkxR7aIiIiIiJyLYcvD9e1rHNm6dEmBmzcFF7eGiIiIiKj1YNjycEFBIjp31gEATpzg6BYRERERkbMwbLUC3NyYiIiIiMj5GLZaAdO6rePHObJFREREROQsDFutgGlkKyVFCVF0cWOIiIiIiFoJhq1WoFcvLby8RBQWypGVJXd1c4iIiIiIWgWGrVbA2xvo3ds4lTAlheu2iIiIiIicgWFLipoxFzAuzjiVkOu2iIiIiIicg2FLIoSyMvi/9RbCEhIQNmAAwhIS4P/WWxDKymx6vKlIRkoKwxYRERERkTMoXN0AapxQVoaQ8eOhOH8egsFgPq5esQLe+/ahYOtWiBpNg9cwFck4fVoJrRZQcjYhEREREZFDcWRLAvwWL64TtABAMBigOH8efh9+2Og1OnfWIzDQgKoqAWlpTFpERERERI7GsCUBPjt21AlaJoLBAJ8dOxq9hiDcXrfFzY2JiIiIiByPYcvdiSKg0zV8jlZrU9GMuDjjuq3kZK7bIiIiIiJyNIYtdycIgKKRpXUKhfG8RtTe3JiIiIiIiByLYUsCqsaMgSiz/qsSZTJUjR1r03VMFQnPn1egpKTxcEZERERERM3HsCUBpQsWQBcdXSdwiQB00dEonT/fpuu0aWNAhw46iKLA0S0iIiIiIgdj2JIAUaNBwdatKH/uOejat4cuLAyiTAYBQOncuY2Wfa/t9lRCrtsiIiIiInIkhi2JEDUalCxahLyDB5F3/DjKZs0CAKj/9a8mXed2kQyObBERERERORLDlhQJAsqfew6iUgnvQ4egTEmx+aGmka3kZC9bChgSEREREVEzMWxJlCE8HJUTJgAA1MuX2/y42FgtFAoR+flyXLsmd1TziIiIiIhaPYYtCSubORMAoPrhB8iys216jEoFxMQYpxIeP86phEREREREjsKwJWG62FhU3303BJ0O6hUrbH6cqQQ8i2QQERERETkOw5bEmUa31KtWQSgvt+kxcXGmdVsc2SIiIiIichSGLYmrHj0aus6dISspge+aNTY9pl8/48jWyZNK6HSObB0RERERUevFsCV1MhnKXngBAKD+9ltAr2/0IV276uDnZ0BlpQwZGQpHt5CIiIiIqFVi2PIAldOmwRAYCEVmJnx++aXR82UyoG9f035bXLdFREREROQIkhjWKCwsxIEDB5CcnIzs7GwUFRVBo9GgR48emDhxIrp162Zx/s6dO3H06FFcuXIFJSUlkMlkCAsLw4ABAzBu3DhoNBoXfSeOIfr6onz6dPj9859QL1uGqgceaPQx8fE12LfPGykpSkyf7oRGEhERERG1MpIY2dq+fTtWrlyJ69evo0+fPhg/fjx69uyJo0eP4s0338T+/fstzt+7dy/y8/MRExODsWPHYuTIkfDy8sL69esxf/58FBUVueYbcSCLTY5PnGj0fFNFQo5sERERERE5hiRGtqKjo7Fw4ULExMRYHE9LS8OiRYvwzTffYODAgVAqjdX13njjDXh51Q0Rq1evxoYNG7B161b84Q9/cErbncUQHo7K8ePhu2ED1MuXo+if/2zwfFNFwowMBcrKBGg0ojOaSURERETUakhiZCshIaFO0AKAmJgYxMbGoqysDFlZWebj1oIWANx9990AgNzcXMc01MXKTZscb93a6CbHbdsaEBmpgygKOHmSJeCJiIiIiOxNEmGrIXK53OJzQ44fPw4AaN++vUPb5Crau+5q0ibH3NyYiIiIiMhxJDGNsD4FBQU4deoUAgMD0aFDhzr3JyUlIS8vD1VVVbh06RJSU1PRuXNnPPzwwy5orXOUzZwJ7wMHoF61CmXz5kFUq+s9t1+/GmzbpuLmxkREREREDiDZsKXT6bBkyRJotVpMnz4dMlndQbqkpCScOXPG/HXfvn3xpz/9qdFqhFqtFlqt1vy1IAhQqVTm2+6s5v77oevSBYqLF+G7di0qnn++3nPj4407Gicne7n992UPpu+xNXyv5Hrsb+Rs7HPkTOxv5GxS7XOCKIqSq4xgMBjwxRdfYO/evRg1ahRefPHFBs8vKSnB+fPnsWrVKlRUVOD1119Hx44d6z1/7dq1SExMNH/duXNnLF682G7td7gvvwRmzwa6dgUyMoB6pliWlwP+/oDBAFy9CkRFObmdREREREQeTHJhSxRFfP311/j1118xbNgwzJ492+qoljUFBQWYO3cuOnbsiA8++KDe8+ob2crPz4dOp2vx9+BoQkUFwgYMgKyoCIXffovqBx+s99zRo0Nw5owS335biAcfrHZiK51PEASEh4cjNzcXEuv2JEHsb+Rs7HPkTOxv5Gzu1OcUCgVCQ0NtO9fBbbErg8GAr7/+GklJSRg6dGiTghYAhISEICoqChcuXEB1dTW8vb2tnqdUKs1l5O/k6l+uLUSVyuZNjuPja3DmjBLJyUo88ECVE1vpOqIoSuL3SJ6B/Y2cjX2OnIn9jZxNan1OMtUIawetIUOGYM6cOU0KWiY3b94EgGY9VkrKn30WokLR6CbHcXHGEbzjx1mRkIiIiIjIniSROGoHrcGDBzcYtEpLS3HlypU6x0VRxNq1a1FcXIzY2Nh6R648hSEiApUTJgAA1MuX13tefLxxc+MTJ5TQ653SNCIiIiKiVkES0wgTExORlJQEHx8fREZGYv369XXOGTRoEDp16oQbN25g/vz5iI6ORrt27RAYGIiSkhKkp6fj2rVrCAwMxH/913+54LtwvvKZM+G7YQNUW7ei5PXXYbBSAaN7dx18fQ0oL5fh/HkFevRw/zVpRERERERSIImwlZ+fDwCoqqrChg0brJ4TFhaGTp06ISQkBJMmTcKZM2eQnJyMsrIyKJVKRERE4JFHHsG4cePg5+fnzOa7jGmTY+8DB6BesQKlb7xR5xy5HOjbV4sDB7yRnKxk2CIiIiIishNJhK3Zs2dj9uzZNp2r0Wjw5JNPOrhF0mHLJsfx8TW3wpYXHn+80gWtJCIiIiLyPJJYs0XNVz16NHSdOkFWUgLV2rVWzzEVyUhOZpEMIiIiIiJ7YdjydDIZymbMAABovvkG1qpgmIpkpKcrUFkprV25iYiIiIjcFcNWK1A5bRoMgYFQZGbC55df6twfGWlAeLgeer2AU6c8u0ojEREREZGzMGy1AqKvL8qnTwcAqJcts3pOXJxxdOv4cYYtIiIiIiJ7YNhqJRrb5Dg+3rhuKyWF67aIiIiIiOyBYauVaGyTY9PIVnIyR7aIiIiIiOyBYasVKZ85EwCg2roVsuxsi/v69tVCEERcvapAfj67BRERERFRS/FVdSti2uRY0OmgXrHC4j4/PxHduxs3NOboFhERERFRyzFstTJlt0a31N99B6G83OI+7rdFRERERGQ/DFutjHmT4+LiOpscm/bbSknhyBYRERERUUsxbLU2DWxyfDtsecFgcEnriIiIiIg8BsNWK1TfJsc9e+rg42NASYkMFy8qXNhCIiIiIiLpY9hqhSw2Oa5VBl6hAPr0Ma3b4lRCIiIiIqKWYNhqpcybHB88aLHJMYtkEBERERHZB8NWK1XfJscskkFEREREZB8MW62YxSbH164BAOLjjSNbZ84oUVXlsqYREREREUkew1YrZm2T43bt9AgJ0UOrFZCaytEtIiIiIqLmYthq5cybHK9aBaG8HILAdVtERERERPbAsNXKWdvk2LRuixUJiYiIiIiaj2GrtbOyyXG/fsaRrZQUjmwRERERETUXwxZZbnK8cyf69jWObGVmKlBYyC5CRERERNQcfCVNlpscL1uGgAARXbuaRrc4lZCIiIiIqDkYtghA3U2OWSSDiIiIiKhlGLYIQN1Njvv1Y5EMIiIiIqKWYNgis/JbhTJUW7eiXzvjJsfJyV4QRVe2ioiIiIhImhi2yEzbp495k+OBB5bC21tEUZEMmZlyVzeNiIiIiEhyGLbIgmmT46D/rERsTBUAloAnIiIiImoOhi2yUHuT4wGqUwC4bouIiIiIqDkYtshSrU2Oh577DgBw/DhHtoiIiIiImophi+owbXI8pOAHAEBqqhI1NS5uFBERERGRxDBsUR2mTY674CLaKIpQUyPgzBlOJSQiIiIiagqGLbKq/NlnAYUCg3T7AQApKQxbRERERERNwbBFVpk2OR6EwwC4bouIiIiIqKkYtqhe5TNmIAGHAAApR9hViIiIiIiagq+gqV7aPn3Qd4AIALiQ5YOiIsHFLSIiIiIikg6GLWqQz6zH0BXnAQAnDhlc3BoiIiIiIulg2KIGVY0ejYHq0wCA1O/Pu7g1RERERETSwbBFDZPL0XeEGgCQ8rsO0Otd3CAiIiIiImlg2KJGxT7TEwBwpDIW3r/sdHFriIiIiIikgWGLGtWrvxxKmQ55aIuCJVtc3RwiIiIiIklg2KJG+fgAvXpUAwBSUrygPHnSxS0iIiIiInJ/DFtkk/gE4+fDGAT18uWubQwRERERkQQoXN0AWxQWFuLAgQNITk5GdnY2ioqKoNFo0KNHD0ycOBHdunUzn6vT6XD06FEcO3YM58+fR0FBAQRBQLt27TB8+HDcf//9kMmYMZsqLq4GgBqHkADVltdQ8vrrMERGurpZRERERERuSxKpY/v27Vi5ciWuX7+OPn36YPz48ejZsyeOHj2KN998E/v37zefe/36dXz66ac4fPgwIiIiMHbsWNxzzz24ceMGvv32W3z00UcQRdGF3400xcfXAACOywZApwPUK1a4tkFERERERG5OEiNb0dHRWLhwIWJiYiyOp6WlYdGiRfjmm28wcOBAKJVKqFQqvPDCCxg+fDi8vb3N51ZVVWHhwoU4duwYDh48iLvvvtvZ34akdemih7+/ASUlPjiNWPRdtQplc+dCVKtd3TQiIiIiIrckiZGthISEOkELAGJiYhAbG4uysjJkZWUBAIKDgzFmzBiLoAUAPj4+GDduHADgzJkzjm+0h5HJTFMJgf3BD0FWXAzVunUubhURERERkfuSRNhqiFwut/jcEIVCYfO5VFd8vBYAcKDTNACAZvlybnJMRERERFQPSUwjrE9BQQFOnTqFwMBAdOjQodHzf/31VwBAnz59GjxPq9VCq9WavxYEASqVyny7tTKFrSMlPWEICIAiMxM+O3ei+oEHXNwy25h+d635d0jOw/5GzsY+R87E/kbOJtU+J9mwpdPpsGTJEmi1WkyfPr3RCoM7d+5EcnIyYmNj0a9fvwbP3bhxIxITE81fd+7cGYsXL0ZoaKhd2i5Vpkx17oI3yubOhf/nixC8ciXw3HOubVgThYeHu7oJ1Iqwv5Gzsc+RM7G/kbNJrc8JogRL8xkMBnzxxRfYu3cvRo0ahRdffLHB848fP46PPvoIwcHB+Nvf/oagoKAGz69vZCs/Px86nc4u34NUDRoUiqtXFUj86iwemdMbgk6H/J9+gq6R0UJ3IAgCwsPDkZuby4qU5HDsb+Rs7HPkTOxv5Gzu1OcUCoXNgzCSG9kSRRFLly7F3r17MWzYMMyYMaPB81NSUvDJJ58gMDAQb7/9dqNBCwCUSiWUSmW9z9+axcdrcfWqAkcvh+PBCRPgu2ED1MuWoWjJElc3zWaiKLb63yM5D/sbORv7HDkT+xs5m9T6nKQKZBgMBnz11Vf49ddfMXToUMyePbvB6YMpKSn46KOP4Ofnh3feeQdt27Z1Yms9k2m/rZQUJcpvBV3Vli2Q5eS4sllERERERG5HMmHLYDDg66+/RlJSEoYMGYI5c+bYFLQ0Gg3eeecdyc3vdFemIhnJyV6ouasPqgcPhqDTcZNjIiIiIqI7SCJs1Q5agwcPtjloqdVqvPPOO4iIiHBiaz3bXXdpIZeLuH5djpwcGcpnzgQAqP/9bwjl5S5uHRERERGR+5DEmq3ExEQkJSXBx8cHkZGRWL9+fZ1zBg0ahE6dOiE7OxsfffQRtFotevXqhX379tU5NywsDCNGjHBCyz2PSiWiZ08dUlOVSE72QuQDo6Hr1AmKzEyo1q1DxbPPurqJRERERERuQRJhKz8/HwBQVVWFDRs2WD0nLCwMnTp1QlFRkbmS4P79+62e26tXL4atFoiPrzGHrXHjqlA2YwYC33gDmuXLUfH000AjZfiJiIiIiFoDSYSt2bNnY/bs2Tad27t3b6xdu9bBLWrd+vWrwapVaqSkGCs2Vk6dCv8PP4QiMxPeO3eieswYF7eQiIiIiMj1OARBTRYXZxw5PHFCCb0eENVqlE+fDgDQLFvmyqYREREREbkNhi1qsuhoHTQaAyoqZDh71jg4Wv7ssxAVCngfOADlyZMubiERERERkesxbFGTyeVAnz63S8ADgCEyEpUTJgAA1MuXu6xtRERERETugmGLmqVfP+PmxsnJSvMxbnJMRERERHQbwxY1i2ndlmlkCwC0fbjJMRERERGRCcMWNUt8vHFkKyNDgfJywXycmxwTERERERkxbFGzhIcbEBGhh8Eg4NSp21MJq0YbNzmWFRdDtW6dC1tIRERERORaDFvUbKbRrdrrtiCXo+yFFwAAmuXLAYPBFU0jIiIiInI5hi1qtvj4uuu2AKBy2jQYAgLMmxwTEREREbVGDFvUbHFxVka2wE2OiYiIiIgAhi1qgb59tZDJRFy7psD165ZdyWKT41OnXNRCIiIiIiLXYdiiZlOrRfTooQMApKRYTiU0REaicvx443kc3SIiIiKiVohhi1rENJXw+HFlnfu4yTERERERtWYMW9QipiIZd45sAYC2b19uckxERERErRbDFrWIaWTrxAml1Srv5k2OV62CUFHhzKYREREREbkUwxa1SI8eOqhUBpSWynD+vKLO/eZNjouKoFq71gUtJCIiIiJyDYYtahGFwliVEKhbAh4ANzkmIiIiolaLYYtaLC7O+ubGJtzkmIiIiIhaI4YtarH4eOO6rZQUKyNb4CbHRERERNQ6MWxRi5kqEqalKVFZaf0cbnJMRERERK0Nwxa1WGSkHmFheuh0Ak6ftj6VkJscExEREVFrw7BFLSYIt6cSWi2ScQs3OSYiIiKi1oRhi+yisSIZADc5JiIiIqLWhWGL7KKxIhkmptEtbnJMRERERJ6OYYvsom9fLQRBRFaWAjdu1N+tqu6/n5scExEREVGrwLBFduHvLyI6WgcAOH68gdEtbnJMRERERK0EwxbZjWndVkpK/eu2AG5yTEREREStA8MW2Y0tFQmBW5scP/UUAG5yTERERESei2GL7KZfv9sjW6LY8Lnlzz3HTY6JiIiIyKMxbJHd9OyphY+PiOJiGS5elDd4Ljc5JiIiIiJPx7BFdqNUArGxtq3bArjJMRERERF5NoYtsqu4ONvWbQG3NjlOSOAmx0RERETkkZocthITE/HDDz9Yva+wsBAFBQUNPv7jjz/GokWLmvq0JBH9+pnCVuMjWwBQPnMmAG5yTERERESep8lha926ddi6davV+1577TX86U9/avDxZ8+eRWpqalOfliQiPt44jTA1VYnq6sbP5ybHREREROSp7D6NUGysDB15tPbt9QgO1kOrFZCa2vhUQotNjr/5hpscExEREZHH4JotsitBuD26ZUuRDKDWJseXLnGTYyIiIiLyGAxbZHe2bm5swk2OiYiIiMgTMWyR3ZlGto4ft21kC+Amx0RERETkeRi2yO769jWObGVmKnDzpmDTY7jJMRERERF5GoYtsrugIBGdO+sA2L5uC+Amx0RERETkWRi2yCFM67ZSUmxbtwVwk2MiIiIi8iyK5jyoqqoKiYmJVo8DsHrfneeQZ4uP12LDhqat2wKMmxx7HzoE9apVKJs7F6Kvr4NaSERERETkWM0OW+vWrav3/obua47CwkIcOHAAycnJyM7ORlFRETQaDXr06IGJEyeiW7duFudnZmZi//79uHTpEi5evIjS0lL06tUL7777rl3bRfWrXZFQFI0l4W1h2uRYkZkJ1dq1qHj2Wcc1koiIiIjIgSQxjXD79u1YuXIlrl+/jj59+mD8+PHo2bMnjh49ijfffBP79++3OP/w4cPYtGkTUlNTERgY6JpGt3K9emnh5SXi5k05srLktj9QLkf5f/0XAG5yTERERETS1uSRrTVr1jiiHQ2Kjo7GwoULERMTY3E8LS0NixYtwjfffIOBAwdCqTSuD7r77rsxYMAAdOjQAWVlZZg5c6bT29zaeXsDvXtrkZzsheRkL3TsWGnzYyseewx+H31k3uS4eswYB7aUiIiIiMgxJDGylZCQUCdoAUBMTAxiY2NRVlaGrKws8/H27dujS5cuUCiaNUuS7KSpmxubiGo1yqdPB8BNjomIiIhIuiQRthoil8stPpP7iIszbm6cnNy0IhmA5SbHitOn7d00IiIiIiKHc/jQT0lJCRQKBXwdUFWuoKAAp06dQmBgIDp06GC362q1Wmi1WvPXgiBApVKZb5Nt+vUz/gxPn1ZCqxXg1YTMJUZFoerhh6HatAma5ctR/I9/tLg9pt8df4fkDOxv5Gzsc+RM7G/kbFLtcw4JWzqdDqtXr8avv/6KsrIyAEBYWBjGjx+PMXZaf6PT6bBkyRJotVpMnz4dMpn9Buk2btxoUb6+c+fOWLx4MUJDQ+32HK1BeDgQFATcvCmgoCAC/fs38QJvvAFs2gTfTZvg+/nnQFSUndoVbpfrENmC/Y2cjX2OnIn9jZxNan2uyWHr7NmzeOutt6DRaPD111+bi1KYiKKIxYsX4+TJkxbH8/Ly8O2336KgoABPPvlkixptMBjw1VdfIS0tDaNGjcK9997bouvdafLkyXj44YfNX5sSdH5+PnQ6nV2fy9P17RuEpCQf7NhRjMjIiqY9OCoKwQkJ8D50CGWLF6P09ddb1BZBEBAeHo7c3FyIotiiaxE1hv2NnI19jpyJ/Y2czZ36nEKhsHkQpslhKy0tDQAwdOjQOkELAPbs2WMOWv7+/hg4cCB8fHxw6NAhFBQUYOvWrbjnnnuaPe1PFEUsXboUe/fuxbBhwzBjxoxmXachSqXS6vdmen6yXXy8FklJPkhOVuKZZ5r+szNtcuz773+j9M9/tssmx6Io8vdITsP+Rs7GPkfOxP5Gzia1PtfkuXfp6ekAgAEDBli9/+effwYAhIaG4uOPP8bMmTPx9NNP45NPPkGHDh1gMBiQlJTUrMaaRrR+/fVXDB06FLNnz7br9EGyv7i45lUkNKm6/37oOnaErKgIKjtvlk1ERERE5EhNTip5eXkAgG7dutW5r6SkBBcvXgQATJo0CQEBAeb7fHx8MHnyZABARkZGkxtqMBjw9ddfIykpCUOGDMGcOXMYtCQgPt5YJOP8eSWKi5uxoFEuR/kLLwAANMuXc5NjIiIiIpKMJqeVoqIi+Pr6mqvz1Xb27Fnz7YEDB9a5Pz4+HgCQm5vbpOesHbQGDx7MoCUhbdoY0KGDcZ3biRPNG92qeOwxGPz9zZscExERERFJQZPXbFVUVMCrnhreplGtkJAQi1EtE5VKBR8fH1RWVjbpORMTE5GUlAQfHx9ERkZi/fr1dc4ZNGgQOnXqBADIzs7Gpk2bAAA1NTXmY1988QUAwM/PD08//XST2kDNFx9fg6wsBZKTvXDvvTVNfrxpk2O/L7+EZtkyVNupoiURERERkSM1OWz5+vqirKwMFRUVdfbOunDhAgBjqfSGNHVUKj8/HwBQVVWFDRs2WD0nLCzMHLaKioqwZ88ei/uLi4vNx0JDQxm2nCg+XovNm4GUlOaNbAFA+bPPQrN0qXmTY11srB1bSERERERkf00OW1FRUcjIyMCRI0cwfPhw8/Hq6mpzpcLu3btbfWxlZSWqqqrQpk2bJj3n7NmzMXv2bJvP7927N9auXduk5yDHuV0kwwuiCDRnLzpDVBQqx4+H76ZN0CxbhiI7bHJMRERERORITV74FBcXB8A4ta+wsNB8fM2aNaiurgZQf6XC8+fPAwAiIyOb+rQkYbGxWigUIvLz5bh2Td7s65TPnAkAUG3eDFlOjr2aR0RERETkEE0e2Ro9ejS2bduGvLw8zJkzB506dcLNmzdx48YNAECfPn3qDVNHjhwBAERHR7egySQ1KhUQE6PFqVNeOH5ciagofbOuo+3bF9W3NjlWr1jR4k2OiYiIiIgcqckjW/7+/pg3bx58fHyg0+lw/vx5c9AKCgrCzFujD3eqqanB77//DsAYyKh1MZWAT062XlzFVuW3NrFWr1oFoaKixe0iIiIiInKUJo9sAcBdd92FTz75BDt37kRmZiYA42jV2LFj4efnZ/UxFy9eRO/evSGXy9GzZ89mN5ikKT6+Bv/6l7pFRTIAoGrMGOg6doTi8mWo1q1DxTPP2KmFRERERET21aywBRjLuz/++OM2n9+zZ0+GrFbMNLJ18qQSOh2gaG7Pu7XJccBbb0GzfDkq/vAHgHuuEREREZEb4qtUcoquXXXw8zOgslKGjIxmZ3wA3OSYiIiIiKShya96CwoK7PLEISEhdrkOSYNMBvTtq8W+fd5ITvZC7966Zl9LVKtR8dRT0Hz1FTTLl3OTYyIiIiJyS00OW03Z76o+giBg9erVLb4OSUt8fM2tsKXE9Oktu1bZc89BvWwZvPfv5ybHREREROSWXDKNUBRFVzwtuZhp3VZKSssqEgK3NzkGAM2yZS2+HhERERGRvTV78UxYWBiGDx+OXr162bM95MHi42sAABkZCpSVCdBoWha6y2fOhO+mTVBt3oySv/4VhvBwezSTiIiIiMgumhy24uLicPLkSeTl5WHdunVo27YtRowYgREjRiA4ONgRbSQPERZmQFSUDtnZCpw8qcSQITUtul6dTY5fe81OLSUiIiIiarkmTyN8/fXX8eWXX+KJJ55AREQErl+/jjVr1mD27Nn44IMPcODAAeh0zS9+QJ4tLs4+mxubmDc5/ve/uckxEREREbmVZk0jDAoKwqRJkzBp0iSkp6fj119/xcGDB3HixAmcOHECarUa99xzD0aMGIEuXbrYu80kYf361WDbNhWSk1u2ubEJNzkmIiIiInfV4gIZPXv2xB//+EcsW7YML730Enr27Iny8nL8/PPPeP311/Hqq6/ixx9/RGlpqT3aSxJn75Et0ybHAKBZvhwwGOxzXSIiIiKiFrJbNUJvb2+MHDkSCxcuxN///ndMmjQJwcHByMrKwsqVK7F582Z7PRVJWJ8+WsjlInJz5cjJsU/3s9jkeNcuu1yTiIiIiKilHFL6PTw8HCNHjsQ999wDhaLZBQ/JA/n6iujRw7imzx4l4IHbmxwDLANPRERERO7DrkmouroaBw4cwK+//or09HTz8Q4dOiCWm87SLfHxNThzRonkZCUefLDKLtfkJsdERERE5G7sErbS09Oxe/duHDp0CFVVxhfParUaQ4cOxciRI1kkgyzEx2vx3XfA8eN2WreF25sc+27aBM2yZSj6xz/sdm0iIiIiouZodtgqLCxEUlIS9uzZg9zcXACAIAjo06cPRo4ciUGDBnEKIVkVF2fcX+vkSSX0ekAut891zZscb9nCTY6JiIiIyOWanIb279+PpKQknDp1CoZbld9MGxsPHz4cbdq0sXsjybN0766DWm1AebkM584p0LOnffZl0/bti+pBg+B9+DA3OSYiIiIil2ty2Pr73/8OwFh9cPDgwRg5ciRiYmLs3jDyXHK5sSrhgQPeSElR2i1sAcbRLe/Dh6H+979R9uc/Q/T1tdu1iYiIiIiaotnz/Ly9vXHmzBmcOXOmyY8VBAFLlixp7lOTB4iPr8GBA944ftwLjz9eabfrcpNjIiIiInIXzQ5bJSUl9mwHtTLx8cbNje1V/t3s1ibHAW+9Bc0336DiD38AZA7Z4YCIiKh1E0VXt4DI7TU5bE2ZMsUR7aBWxlQkIz1dgcpKASqV/f5gVzz2GPw++giKixfhvWsXqu+/327XJmoSvhAhIg8jlJXBb/Fi+PzyC2AwIFQmQ9X996N0wQKIGo2rm0fkdpoctqZOneqIdlArExlpQHi4Hrm5cpw8qURCQo3drm3a5Fjz1VfQLFvGsGUPoggIgqtbIQl8IUJEnkooK0PI+PFQnD8P4VaRNAUA9YoV8N63DwVbt/LvHNEdOL+KXCY+3hiwkpOVdr922XPPQZTLzZscU9MJZWXwf+sthCUkIGzAAIQlJMD/rbcglJW5umluy/RCRL1iBRRXrgDZ2VBcuQL1ihUIGT+ePzsikjS/xYstgpaJYDBAcf48/D780EUtI3JfDFvkMnFxxnVbycl2XreF25scA4Bm+XK7X9/TWYSGq1ehyM2F4upVhoZG8IUIEXmsykr4bNtW5++biWAwQLVpE7x++w3KEycgz8yEUFgI6PVObiiRe+Guw+QyppGtlBT7j2wBQPmMGcZNjjdvRsnrr0OMiHDI83giW0JDyaJFDV9EFAGdDtDrjdcx3dbrjf/52nDbfEynM16jvtsNPY/BAOHWMYvbTWwL9HrjYw0G4zHT7VufoddDmZbW4AsRn59/bvznRkTkAkJ5OeRXr0J+5QrkV69CcfWq8WvTsYKCRq8hv3EDIU88Uee4wc8PBn9/iAEBMNz6EAMCYPD3v3279vFa90GlcsS3S+Q0DFvkMn36aCEIIq5eVSA/X4bQUOsvUptLGxdnsclx2euvt96CBVothLIyyMrLIZSWGm+XlVl8Nt8uLYVqw4YGQ4N6xQqofvjBGHZuhZg6Iai1/qwbIL92DUHPPw/tgAGo6d8fNX368IUEETmFUFJiDk+KW4HKIkzdvNnoNURBaPBvu+jlBV3XrhCKiyErLoasvBwAICsthay0FMjObnK7RW/v26HM3x+GwMDbt60FtMBA832in5/7ViTmWuhWQxBFviKyVX5+PrRaraub4VHuuy8UGRlK/N//3cCYMdV2v77P9u0IfuEFiN7e0IeEQAFAJ5WCBTpdvQGpdjAy319eDtmt8+qEqaoqV383FkSZDJDLIcrlxl2ua99WKMz3Wz1HoQBkMsvbCoXxHNNt0/VNtxUK4/n13TZd/9ax2rettrGe24Evv2zTu7/mn4NCAW3v3qjp3x/a/v1R078/9O3a8T9gahZBEBAREYGcnBzwv/ZWRhQhFBXdHo2qFaYUV65Anp0NWXFxo5cxBAZCHxUFXfv20EdFQd++PfTt20PXrh307drB7+OPoV650uqbcaJMhvLnnrMcvddqjf8vFRUZw1dJifF2SQlkxcW3Q9mtD6H28ZIS45t5LfmxCMLtUNbQyFpgoNVRNnjZd5mDuYDSjh3G2REKBarGjHH/1yNuwp3+ximVSoSGhtp0LsNWEzBs2d/LLwdizRpf/PnPpViwoNTu1xeKixHety+EO35vokwGXXS0/Ssn6fXWw86dAenOY6bbt0KTUFoKmQMCkujjA4NaDdHPD6JaDcMdn0U/Pxg0GqiXL4e8gf+YdWFhKPz3v+sEE1sCCeRyjw0T/m+9BfWKFdZfiAgCKh96CNr4eHgdOwavY8cgz8urc54+LMwYvvr14+gXNYk7vRAhOxNFyAoL64aoWqNTMhvW0uqDg6G/FZz07dtD366dOUjp27WD6O/f4OOtVSMEbv2f2q0bCrZssd//qaJo/H/RFNBMAax2OLMS1MzH7fB/qMHHp24Qu2P07M6RNdE08qZWW/xf1+DPzhGvRzyQO/2Na0rY4jRCcqn4+BqsWePrkCIZAOD38cfGd4/uYLH26J13jAHH2miRtbB0RzCyCEiVlXb/HkRv7/oDkkYDUaOxDEumczUaGEz33/oMpW3r42SFhfWHBpkMVePHQxcba+9vVfJKFyyA97599b4QKf70U4gaDcoBQBQhv3oVXseOQXkrfClTUyHPy4Nq+3aotm83PpajX0SeTxQhy8+3XC91a0TKdMyW/1/0oaHm4HTn6JQ+KsoYAFrSTI0GBVu3wu/DD+GzYwcUBoNxtsiYMSidP9++YUEQIPr5Qe/nB0RFNf3x1dWNjqaZRtBkRUUWYU1WUgIAxsCWmwt5bm6Tn16Uyy1G02T5+ZBfu4Y7/3ILBgMU587Bb/FilLz3XtO/T3J7HNlqAo5s2d/p0wqMHRsGf38DUlNz7T61OiwhAYqrV+u9v7H5580lenmZA07tsFM7GNkckOw8jcEWTn330sMIZWXNfyFSWQmvU6fM4aux0S9zALvrLo5+kVu96ys5jl4/o9dDdv06FLXCk2m6n+LqVcizsyFUNzyVXhQEGNq2tRyNqj06FRXl1L8DgiAgIjwcObm5ntff9HrjG6iNhTVTQLsjrN05m8YWoiBAFx1tDMhRUdBHRt6+HRUFfUSES14PuBN3+hvHaYQOwrBlfzod0KNHOKqqZNizJw/R0XVHoZpNFBE2YAAUNr4jJSqVdQNSA8HIapi6dT+8ve33fbhI7dAArRZQKh3z7qWHsssLkXpGv4Q7RmtFpdI8+mUKYPqoKI5+tTLu9EJECuy6fkangzw3t971UvLs7EZfgIsyGfTh4eYAZQpTOtPoVGSkW/3fwv5WD1GEUFVlGdCKihA4b16D0/MbvawgwBAWVjeE1fowBAV59N99d+pzDFsOwrDlGJMnt8Hhw9747LObmDbNvtPwGhvZ0oWHo2DHDhg0Grf6T8ztsGpSkznqPwWhshLKkyctApg8P7/Oefq2beuOfvn42K0d5H7c6YWIu2vy+pmaGshzcsxT+xR3jE7Jc3IaLeYgyuW3XxjXHpEyhauICJunersD9remafT1SNu2KPr8c8ivXTOOgNb+uHat0ZFPwLjGrE4Iqx3OIiIk/f+AO/U5rtkiSYmL0+LwYW+kpHjZPWxVjRnT8NqjceNgaNPGrs/pkRi03IaoUqEmIQE1CQm3DoiQX7lSd+3X9etQ/fgjVD/+aDxNqYQ2NhY1twpvaAcMML5Tzt8ttUIN7iV47hzaTJsGXdeu5tEpWW5uo1PORaXS+ILWtF7qjql++rZtjYWEqFVq9PXIww+j5t57rT9YFCG7ccMygNUKYvLsbMjz8yGrqoLswgUoL1yotx360NC6IezWNFR9VBQMwcH8f8HOOLLVBBzZcowtW3zwxz8Go0+fGmzfbnvZbFtw7RG5iivfgRMqK6E8ccJy9MtKSXp9eLg5fNX07w8tR78kzZ3e9XVLt4pQKM6dQ9DMmZAXFTXt4T4+t6f0WRmdMoSFue+eTg7A/tY0Dn89UlVlHH29M4TV+rClQqPo42MOYjprI2QRES5bI+xOfY7TCB2EYcsxrl6VIyGhLRQKERkZOXZ/rdeiggVEzeRO/ylAFCHPyjIX3VAeOwblmTN1pj2ZR79uha+a/v1haE4VMHIJt+pzrqTXQ56VBcX581CcPw/luXNQnDsHxYULNu01BQAGlQplf/nL7RGq9u1hCAnhO/61sL81nUvXQosiZDdvWh8duxXOZHl5NhUN04eE1F/IIyrKOGPIAW88uFNRFoYtB2HYcgxRBOLi2qKgQI7Nm/MxYIBjfsbu9I+UPJ+7vxARKirqjn7duFHnPI5+SYe79zm7q6yE4uLFOoFKcfFivetbRJkM+g4dIMvNbfBdfl27dsg7dMhRLfcIra6/2Zs7roWuqTEWeqlvquLVq5BVVDR6GdHbG/qICKtFPHSRkTBERUFswuiYuZjNL7/cftP8/vtduhk012yRpAgCEB+vxS+/yJGc7OWwsGV+MiKC6OuLmrvvRs3dd986YH30S56ba7n2y8vLovIhR7/I0YTCQigvXDCGqXPnzCNW8itX6n0XXvTxga5LF2i7dYMuOtr40a0bdJ07Az4+DW9ALpOhauxYR39b1Nq54+sRLy/oO3SAvkMH6/eLIoTiYqtTFU1FPWTXr0OoroYiMxOKzMx6n0ofHFx/IY+oKBhCQwGZzOr0SwUA9YoV8N63TxKbQXNkqwk4suU4n3+uwUcf+WPSpAp88UWRQ56D78KRM3lCf2vS6Fet8KW96y5W93QBSfc5gwHynJw6gUpx7pzVPmd+WGBg3UAVHW3c+Fsur/dxXM/bcpLub+Q4Wi3k16/XX8zj6lXIysoavYyoVBqLOFVXQ56bW2czaMD477X8uedQsmiR/b+PRnjcNMLCwkIcOHAAycnJyM7ORlFRETQaDXr06IGJEyeiW7dudR5TUVGBdevW4dChQygqKkJgYCASEhIwdepU+Pr6NqsdDFuO89tv3njiiTbo2FGH/fvrbuJqD/yPgZzJI/ubKEJ++bLl6FdaWt21X15eddd+RUY26Xnc8l1fNyeJPldTY3zH+45ApbhwocHpSbqoqDqBStetm3FtSDP7CvcSbBlJ9DdyS0JJifVpiqaP3NxGt1Iw0bVvj7yDBx3c4ro8Lmx999132Lx5M9q2bYtevXohICAAOTk5OHLkCERRxNy5czFkyBDz+VVVVXj77beRmZmJPn36oHPnzrh8+TJSUlLQqVMnLFq0CD7NWHPAsOU4xcUCevWKAACcOpWL4OC6Uztaiv8xkDO1lv4mVFRAmZJiEcDkhYV1ztNHRFiOfsXGWox+2XWD2VbKnfqcUFpqEaQU585Bee4c5Jcv1/siSlQooOvc2SJM6aKjoevaFaJa7dgGM+A3mTv1N/IwOh1k169DkZ2NoGefbXAzaF14OPKOHnX6v1+PW7MVHR2NhQsXIiYmxuJ4WloaFi1ahG+++QYDBw6E8tZmgFu2bEFmZiYmTJiA6dOnm89fu3YtEhMTsWXLFkybNs2p3wM1LCBARNeuWly4oERyshKjRjW+eR8RuZ7o64uaIUNQY3rDSxQhz8w0hy+vY8egSEuDPCcHqh9+gOqHH4yneXlBe9ddxuDVuzc0n38OxeXLFlO6pDQnv1USRcjy8ixGqZS3bstzc+t9mEGjqTNKpY2Ohr5jR9dt6sugReQ+FAoYoqJQExUF0c8PaKiKqELh9v9+JRG2Ekybd94hJiYGsbGxOHHiBLKystC1a1eIoohdu3bBx8cHU6ZMsTh/0qRJ2L59O3bv3o2pU6dCcPNfTmsTH28KW14MW0RSJQjQd+6Mys6dUXnrb7BQXl539OvmTfPX9V7q1gazAS+/jLK5cyFqNBA1GhjUauOoGP+GO4dOZy6lrjSNVt0KV7KSknofpg8LqxOodN26wRAezt8dEdmk0c2gJVDMRhJhqyHyWwtgTZ9zcnJw8+ZN9O3bt85UQS8vL8TExODo0aPIzc1FRESE09tL9YuPr0Fioi9SUlz0ziYROYSoVqNm6FDUDB1664AI+aVL5rDlu3o1hHqmaAuiCN9t2+C7bZvlNRUKY/Dy9TWGMLXa+LW122q15fFbn823TeHNE7RgOpdQWQn5hQu3A1XtUuo1Ndaf7lYpdXOgqlWsQgwIaHZbiIgAoHTBAnjv21dvMZvS+fNd2DrbSDpsFRQU4NSpUwgMDESHW2Uqc29NXagvSJmO5+TkMGy5mfh444ut5GQvTp8n8mSCAH2XLqjs0gWVU6bA+5dfoGhg2pkol8MQHAyhrAyyykrjJXQ6CEVFkBUV2aVJolJ5O5TdCmZ1ApqVQFfnvlufnTkdrvYeNDAYENrIHjRCYWHdQHXuHORXr9ZbSt3g4wN9167m0SnzNMBbpdSJiBxB1GhQsHWruZiNeZ8tCRWzkWzY0ul0WLJkCbRaLaZPnw7ZrZ2qK25VM6qv4qDq1iZqFQ1UPdJqtRaFMARBMD+OUw8dp1cvHby9RRQVyXD5sgKdO9tWicZWpt8df4fkDOxvNhKERoOJPjIS+aYNZvV6COXlxuB167NQVgahvLzu17Vu1/na9PhbG9sKWq19w5u3t8UImqhW3/7ahtBmMQKnVhvXJVj78ZWVoc2ECVCcO2e5B83//R+8k5JQ+te/QnH1KuS1wpW1AiYmhqCg21P/TB+mUuq3/p+1eH67/LRIivg3jpzGzw+l772Hsr/9DeFt26Lg+nVzURYp9D5Jhi2DwYCvvvoKaWlpGDVqFO699167Xn/jxo1ITEw0f925c2csXrzY5qoj1Hzx8cDBg8ClS2GoVWDSrsLDwx1zYSIr2N9sMGkS8MUXgJU5+ZDJoJg82XEzEXQ6oLTU+FFWdvu2tQ9b7q82rjcVqqshr64GGgg2TaJSAX5+gEZj/Gz6OHcOOH++zumCKEJ58SKCX3jB+vU6dABiYm5/9OwJxMRAFhoKLwBe9mk1tQL8G0fOJrU+J7mwJYoili5dir1792LYsGGYMWOGxf2mEa36Rq4qb01BaWivrcmTJ+Phhx82f2161yY/Px86na5F7aeGxcb64+BBNX79tRz33Vf/wuvmEAQB4eHhyM3NZZlacjj2N9sJc+agzY4dFqMzwO05+Tf+9CeIOTmObYRSCQQFGT9aoqam7iibaRTNdMzaKFutETiLUTvTLIvKSuNHXtP2IRQVClSNHWsx9U8fHQ3R2v+BOh3g6J8zeQz+jSNnc6c+p1AoPKv0u4nBYMDXX3+NpKQkDB06FLNnzzZPHzQxpd2cev7DMB1v6F1SpVJpLiN/J1f/cj1dXFwNADWOH1c67GctiiJ/j+Q07G+NE9VqFGzZUv8Gs2p1iwo/OJVSCTEwEIbAQPtcr7r6dvCyMn3S/913IS8trffh+pAQ3Fy6tO4iWKn8PMnt8W8cOZvU+pxkwlbtoDVkyBDMmTOnTtACjCEqKCgIGRkZqKqqsqhIWFNTg7S0NAQFBUluCLK1iI83VrxKTVWiutpzCoQRUcNEjQYlixahZNEibjBbm7c3DN7eQHCw1bv9PvvMOIWxPhLYg4aIyJPVTStuqHbQGjx4cL1BCzAOMY4aNQpVVVUW664AYNOmTSgvL8eoUaO4oNNNdeyoR1CQHjU1AtLSWAKeqFXi32ebVY0ZA7Ge/w+lsgcNEZEnk8TIVmJiIpKSkuDj44PIyEisX7++zjmDBg1Cp06dAAATJkzA0aNHsWXLFmRmZqJLly64fPkykpOT0alTJ0yYMMHJ3wHZShCMJeB375YjOVmJuDjre+8QEZFn7EFDROTJJBG28vPzAQBVVVXYsGGD1XPCwsLMYcvHxwfvvvsu1q1bh4MHDyI1NRWBgYEYN24cpk6dWmezY3Iv8fE12L3bB8nJXnjuufpL9BMRtXaesAcNEZEnE0QprTBzsfz8fIv9t8gxdu/2xh/+0AZduuiwd2/TKm81RBAEREREICcnR1ILK0ma2N/I2QRBQER4OHLcoFIXeT7+jSNnc6c+p1Qqba5GKIk1W9S6GCsSAhcvKlBUxLUbREQ243o3IiK3wrBFbic4WESnTsb9zE6c4NaaRERERCRNDFvklkwl4I8fZ0VCIiIiIpImhi1yS/HxxrVxKSkc2SIiIiIiaWLYIrdkWreVnKwE190SERERkRQxbJFb6t1bC6VSxI0bcly5Ind1c4iIiIiImoxhi9ySjw/Qq5dxKmFyMtdtEREREZH0MGyR2zKt20pO5rotIiIiIpIehi1yW6aKhCkpHNkiIiIiIulh2CK3ZSqSceqUF7RaFzeGiIiIiKiJGLbIbXXpokdAgAFVVQLS0zm6RURERETSwrBFbksmA/r2vV0CnoiIiIhIShi2yK2xSAYRERERSRXDFrk1FskgIiIiIqli2CK3ZhrZOndOgdJSwcWtISIiIiKyHcMWubWQEAPat9dBFAWcOMHRLSIiIiKSDoYtcntxcVy3RURERETSw7BFbs+0bosVCYmIiIhIShi2yO3Vrkgoii5uDBERERGRjRi2yO3ddZcWcrmIvDw5rl1jlyUiIiIiaeArV3J7KpWImBjj6FZKCtdtEREREZE0MGyRJLBIBhERERFJDcMWSUK/fiySQURERETSwrBFkmAa2TpxQgmdzsWNISIiIiKyAcMWSUJ0tA4ajQGVlTKcPatwdXOIiIiIiBrFsEWSIJcDffuySAYRERERSQfDFkkGNzcmIiIiIilh2CLJqL25MRERERGRu2PYIsmIizOObGVkKFBeLri4NUREREREDWPYIskIDzcgIkIPg0HAyZOcSkhERERE7o1hiyTFtG4rJYVhi4iIiIjcG8MWSYpp3dbx41y3RURERETujWGLJOV2RUKGLSIiIiJybwxbJCl9+mghk4nIyZEjN5fdl4iIiIjcF1+tkqSo1SJ69NAB4ObGREREROTeGLZIcri5MRERERFJAcMWSU5cHDc3JiIiIiL3x7BFkmMa2TpxQgmDwcWNISIiIiKqB8MWSU737jqoVAaUlclw/rzC1c0hIiIiIrKKYYskR6EA+vY1TSXkui0iIiIick8MWyRJXLdFRERERO6OYYskiRUJiYiIiMjdSWbBy2+//Yb09HRcvHgRWVlZ0Ol0mDVrFkaMGGH1/HPnzmHjxo3IyMhAZWUlQkNDMWTIEEyePBleXhwNkTpT2EpLU6KyElCpXNwgIiIiIqI7SCZsrVmzBvn5+fDz80NQUBDy8/PrPffQoUP4/PPPIZPJkJCQgMDAQGRkZGD9+vU4ffo03n77bSiVHBGRsshIA8LC9MjLk+P0aS8MHFjj6iYREREREVmQTNh68cUXERERgdDQUGzatAnff/+91fNqamqwbNkyAMB7772HLl26AABEUcT//u//4ueff8a2bdswadIkZzWdHEAQjKNbP/+swvHjSoYtIiIiInI7klmz1adPH4SGhjZ6Xnp6OkpLSzFw4EBz0AIAQRDw+OOPAwB++eUXiKLosLaSc5iKZKSkcFooEREREbkfyYQtWxUXFwMAwsLC6tynVquhVquRn5+P69evO7tpZGcskkFERERE7kwy0wht5e/vDwDIy8urc19FRQXKy8sBADk5OQgPD7d6Da1WC61Wa/5aEASoblVgEATB3k2mZoqL00EQRFy5osCNG3KEhBgaPN/0u+PvkJyB/Y2cjX2OnIn9jZxNqn3O48JWjx49oFKpcOTIEVy6dAmdO3c237d69WrzbVPosmbjxo1ITEw0f925c2csXrzYpmmM5DwREUDPnkBaGnD5clvcdZdtj6svZBM5AvsbORv7HDkT+xs5m9T6nMeFLR8fHzzzzDP4+uuv8eabb5qrEZ49exYXL15EVFQUsrOzIZPVP4Ny8uTJePjhh81fmxJ0fn4+dDqdw78Hst1ddwUgLc0Xu3aVon//sgbPFQQB4eHhyM3N5Zo9cjj2N3I29jlyJvY3cjZ36nMKhcLmQRiPC1sAcN999yEoKAhbtmzB0aNHYTAY0LVrV7z99tvYtGkTsrOzzdMNrVEqlfWWhnf1L5csxcXVYO1aXyQnK23+3YiiyN8jOQ37Gzkb+xw5E/sbOZvU+pxHhi0AiI+PR3x8fJ3jV65cgSAIFpUKSbr69btdkdBgABoYsCQiIiIicqpW9dI0PT0d+fn5iIuLg6+vr6ubQ3bQs6cWPj4iiotluHRJ7urmEBERERGZeWTYqqioqHOssLAQS5cuhVwux2OPPeaCVpEjKJVAbKxxdCs5mfttEREREZH7kMw0wl27diE9PR0AkJWVZT6WmpoKABg4cCAGDRoEANi+fTv27t2Lnj17wt/fHzdu3MDRo0dRXV2Nl156iVMIPUx8fA2OHvVCcrIXpkypdHVziIiIiIgASChspaenY8+ePRbHMjIykJGRAQAIDQ01h60ePXrgzJkzOHbsGMrKyuDn54f4+HhMnDjRohQ8eQbT5sYpKdzcmIiIiIjch2TC1uzZszF79mybzo2NjUVsbKyDW0TuIj7eOI0wNVWJqirAx8fFDSIiIiIigoeu2aLWpX17Pdq00UOrFXDmDEe3iIiIiMg9MGyR5AkCEBfHIhlERERE5F4YtsgjmNZtJSdzZIuIiIiI3APDFnkE07otjmwRERERkbtg2CKP0LevcWQrM1OBwkLBxa0hIiIiImLYIg8RFCSic2cdAODECY5uEREREZHrMWyRx+C6LSIiIiJyJwxb5DH69TOFLY5sEREREZHrMWyRx7hd/l0JUXRxY4iIiIio1WPYIo/Rq5cWXl4ibt6U4/JluaubQ0REREStHMMWeQxvb6B3b+PoVkoKpxISERERkWsxbJFHMRXJOH6cRTKIiIiIyLUYtsijmDY35sgWEREREbkawxZ5lLg448jW6dNK1NS4uDFERERE1KoxbJFH6dxZj8BAA6qrBaSlcSohEREREbkOwxZ5FEG4PbrFzY2JiIiIyJUYtsjjmNZtcXNjIiIiInIlhi3yOKaKhCkpHNkiIiIiItdh2CKPExdnHNk6f16J4mLBxa0hIiIiotaKYYs8Tps2BnTsqAMAnDjBqYRERERE5BoMW+SRWCSDiIiIiFyNYYs8EotkEBEREZGrMWyRR6pdJEMUXdwYIiIiImqVGLbII/XurYVCISI/X47sbLmrm0NERERErRDDFnkklQro1cs4lfD4ca7bIiIiIiLnY9gij2UqAZ+SwnVbREREROR8DFvksUzrtliRkIiIiIhcgWGLPJapIuHJk0rodC5uDBERERG1Ogxb5LG6dtXB39+AqioZ0tMVrm4OEREREbUyDFvksWQyoG9frtsiIiIiItdg2CKPFhfHdVtERERE5BoMW+TR+vUzhS2ObBERERGRczFskUczlX8/e1aBsjLBxa0hIiIiotaEYYs8WliYAVFROoiigBMnOJWQiIiIiJyHYYs8nqkEPNdtEREREZEzMWyRx7u9ubEXRNHFjSEiIiKiVoNhizxez57Gka0dO7zRvj2QkBCKt97y5xouIiIiInIohi3yaGVlAt55JwCACL1eQHY2cOWKAitWqDF+fAgDFxERERE5DMMWebTFi/1w8aICgGWoMhgEnD+vwIcf+rmmYURERETk8RSubgCRI+3Y4QODwfrolcEgYOVKNc6cUSIoyIDgYONHmza3b9f+WqXigi8iIiIish3DFnksUQR0uobP0ekEHDjgbdP1fHysB7KgoLoBzXRcyQKIRERERK0WwxZ5LEEAFI308JAQPRYtKsbNmzIUFspw44YchYWyOh81NQKqqmS4dk2Ga9dsb0NAgME8alZ3xExvMaIWHGxAQIAIwQ2XkYki3LJdRERERO5MMmHrt99+Q3p6Oi5evIisrCzodDrMmjULI0aMsHp+Tk4ONm7ciPT0dNy4cQMajQbt2rXDgw8+iAEDBji38eQyY8ZUYcUKtdWphDKZiIkTKzFxYlWD1xBFoLxcuBXG6gaxOz9u3JChqEgGURRQXCxDcbEMmZm2tVcuF+uMkFmb0lj7w1HTG8vKBCxe7IcdO3yg0xmD65gxVViwoBQaDadUEhERETVGMmFrzZo1yM/Ph5+fH4KCgpCfn1/vuefOncPChQuh1+vRv39/JCQkoLi4GIcPH8aHH36IqVOnYurUqU5sPbnKggWl2LfPG+fPKywCl0wmols3HebPL230GoIAaDQiNBo9OnTQ2/S8ej1QXCyzGtBMX98eTTN+Li+XQa8XkJ8vR36+3ObvUaWqG8gaWoMWFGRodMSvrEzA+PEhdX5uK1aosW+fN7ZuLWDgIiIiImqEZMLWiy++iIiICISGhmLTpk34/vvv6z03MTERNTU1mD9/vsUo1rRp0/Df//3f2Lx5MyZNmgQlF9R4PI1GxNatBfjwQ79bxTIUkMl0GDOmCvPnO26ERi6HOdxER9v2mKoqWAQw0+3CQnm9I2parYDKShmys2XIzra9fYGBdwYyvUUg+/FHH5w7p4Ao1l/FcdGikib8RIiIiIhaH8mErT59+th87vXr1yEIAuLi4iyOh4SEoEOHDsjIyEBlZSXDViuh0YhYtKgE771XivDwCOTm5kMU3W9UxscHiIgwICLCYNP5omgcgbI2enbzprURNTmKioy7PRQVGac6XrrU9HYaDAJWr/aFWi0iNNSAkBA9wsJuf/bzc891Z0RERETOJpmw1RTt2rXDtWvXcOLECfTv3998vKCgAFlZWejQoQP8/f1d2EJyFU8KAYIA+PmJ8PPTo2NH26Y36nSNT28sLJRh3z5v6HT1/7DKy2X4xz+s71Hm7S0iNFSP0FBDrc/Wb6vVDGZERETkuTwybD3++OPIyMjAxx9/jIEDByI8PBwlJSU4dOgQQkND8Ze//KXBx2u1Wmi1WvPXgiBApVKZb5M0mX53rfl3qFQCISEiQkL0AOoPaAkJobhypf4/D/7+ejzySBXy82W31pjJkJ8vQ1mZDNXVAq5eVeDq1cbbo1IZagUwA8LC9AgJMSAszBjIbt82wNfX/UYjG8L+Rs7GPkfOxP5GzibVPueRYatdu3Z4//338emnn+LgwYPm42q1GiNGjEBERESDj9+4cSMSExPNX3fu3BmLFy9GaGiow9pMzhMeHu7qJri9SZOAL74ADFZmNMpkwLPPyvH3v6vr3FdRAVy/bvzIzW34c3k5UFkpQ1aWDFlZjbdJowHatgXCwxv+3LYtcOu9EZcTRfY3cj72OXIm9jdyNqn1OUF0x8UrjTAVyKiv9PuFCxfw4Ycfon379njyyScRFRWF4uJi/Pzzz9i6dSsGDRqEV155pd7r1zeylZ+fD11ju+SS2xIEAeHh4cjNzXXLNVvuxFiNsA3OnbNexXHr1hstLi5SXi6YR8RMo2N5eTIUFMiQlye/9dl4X1VV097F8vO7PV3RuJ7MYF5XZhxBu33b27Y9rW12u2S+d62CLNUsmU8Ox79x5Ezsb+Rs7tTnFAqFzYMwHjeypdPp8Pnnn0MQBLz66qvwvvVKKiwsDH/4wx9w48YN7N+/H6dPn0ZsbKzVayiVynqLZ7j6l0stJ4oif4+NUKtFbNlyu4qjVmucgmiq4qhWi2jpj9DXV0THjgZ07NjweaZCIPn5MhQUyK0EstvBrKBAjupqAaWlMpSWynDxYuN/4gIC6ltbZnksJMSAxmrqmEKqZcl8Bf7v/+TYu9eLJfPJKfg3jpyJ/Y2cTWp9zuPC1rVr13D9+nUMGjTIHLRqi42Nxf79+3Hx4sV6wxYR3a7iuGhRCUTRdcVFahcC6dKl4UIgogiUlNwZzOoPaFrt7Y2nz59vvC1BQdYLfpgqMa5bp2LJfCIiIjLzuLBlmuZXWmp9s9qSEuMLHZZ9J7KdVNaiCgIQECAiIECP6OjGg1lRkYCCAnmd6Yy1i37k5xuDmU4n4OZNOW7elOPs2aa3zWAQsGOHD8MWERFRK+JxYat9+/bw9fVFeno6Tpw4gb59+5rvKywsxM8//wwA6N27t6uaSERuQBCAoCARQUE6dOvW8LkGg3FvstvryqwHtLQ0yzVudyorE8xTMomIiMjzSSZs7dq1C+np6QCArFuly3bt2oXU1FQAwMCBAzFo0CAolUo8/fTT+Prrr/HBBx+gX79+5gIZhw8fRmVlJcaOHYsOHTq47HshImmRyYDgYAOCgw3o0aP+8xISwnD1av1/Vm/elGPQoLaYPLkSU6dWICaGBXeIiIg8mWTCVnp6Ovbs2WNxLCMjAxkZGQCA0NBQDBo0CABw3333ITQ0FNu2bcO5c+eQnJwMb29vdOrUCffddx+GDx/u9PYTkecbM6YKK1ao6xndEuHjA+TlybF0qQZLl2pw1101mDq1EpMnVyI42EqdfSIiIpI0SZZ+d5X8/HyLkvAkLYIgICIiAjk5OZKqYkPSYaxGGHJHNcLbJfMTEwtw5Ig31q1TYedOH2i1xnOUShGjRlVh6tRK3HdfFby8XPUdkJTxbxw5E/sbOZs79TmlUtl6S78TEbmKRiNi69bbJfNv77NlLJmv0YgYO7YKY8dWobBQhk2bVFi3ToWTJ73w008q/PSTCsHB+lvTDCsRG6uVTHESIiIiqosjW03AkS1pc6d3RMjzGTdfjEBubuP9LT1dgXXrfLFhgwp5eXLz8ZgYLaZMqcAjj1QiLIzTDKlh/BtHzsT+Rs7mTn2uKSNbMge3hYio1bJ1VKpnTx3eeqsER45cx7/+dQPjx1fC21tEWpoS770XgAED2uLpp4OxdasPqqoc22YiIiKyH04jJCJyEwoFMGpUNUaNqkZRkYCtW1VYu9YXx497YdcuH+za5YOAAAMmTjRWM4yP5zRDIiIid8aRLSIiNxQYKOIPf6jA1q0F2LPnOubMKUVEhB7FxTL8619qjB8fiuHDQ/HPf2pw7Rr/lBMREbkj/g9NROTmoqP1eO21Uhw6dB3/+U8BHnmkAj4+Bly4oMT//I8/Bg1qiyeeCMaGDSpUVnKoi4iIyF0wbBERSYRcDtx7bw2WLClCSsp1fPLJTSQkVEMUBfz2mw/mzAlCXFxbvPJKAA4f9gLXrBMREbkWwxYRkQT5+Yl4/PFKbNhwA/v3X8fLL5eifXsdyspk+M9/1Jg8OQT33BOGzz7T4MoVeeMXJCIiIrtj2CIikriOHfX47/8uxf79eUhMLMBjj1VArTYgM1OBjz/2x+DBbTFlShusWaNCeTmnGRIRETkLwxYRkYeQyYC7767Bp58apxn+/e83cc891RAEEQcOeOPll43TDOfODcS+fV4wcOsuIiIih2LYIiLyQL6+IqZMqcSaNTdw6FAe5s8vQefOOlRUyJCY6IvHHgvB4MFh+PBDP1y6xGmGREREjsCwRUTk4aKi9Jg7twx79+Zh06Z8PPVUOfz9DcjOVuDvf/fDPfe0xcSJIfjuO1+UlHCaIRERkb0wbBERtRKCAAwcqMWHHxbj+PFcfPllIUaOrIJMJuLoUS/Mnx+I+PhwzJoViKQkb+j1rm4xERGRtClc3QAiInI+lQqYOLEKEydWITdXhg0bfLFunQpnzyqxebMvNm/2RXi4Ho88UoGpUyvRvbvO1U0mIvIYomh8A4w8H0e2iIhaufBwA2bNKsPu3fn48cd8PPtsOQIDDcjNlePLL/0wcmQYxo0LwYoVvrh5k68OiIiao6xMwFtv+SMhIQwDBoQhISEMb73lj7Iy/l31ZIIocttLW+Xn50Or1bq6GdRMgiAgIiICOTk5YLcnR5N6f6uuBnbt8sHatb7Yvdsber3xxYCXl4jRo6swbVoFRoyohlLp4oaSmdT7HEkL+1vTlJUJGD8+BOfPK2Aw3A5XMpmI6Ggdtm4tgEbDn2ND3KnPKZVKhIaG2nQuR7aIiKgOb2/goYeqsGJFIY4fv4533y1Gr15a1NQI+PFHFZ59tg0GDGiLd9/1R2oqZ6QTETVk8WI/nDtnGbQAwGAQcP68Ah9+6OeilpGj8X9IIiJqUEiIATNmlGPGjHKkpiqwbp0vNmxQoaBAjuXLNVi+XIPevbWYOrUCkydXIiSEG3gRtQaePqAlikBlpYDycgFlZabPslpf13fb8uuyMhlyc2UQRevTBQ0GAd9/74uaGgEhIQa0aaNHmzYGtGljuPW1AUFBBsi5S4ckcRphE3AaobS50/AzeT5P729aLfDrr95Yt84Xv/ziA63W+CJCoRBx331VmDq1EqNHV8HLy8UNbUU8vc+ReygrE7B4sR9++cUHBoMCMpkO999fhQULSl0+Dc5gACoqLAOP9dvGAFRWJtw6v/bt20GpvFyoMxLlKoIgIijodgALDr4dxKyFs8BAzwtn7vQ3rinTCBm2moBhS9rc6R8peb7W1N8KCwVs2aLCunW+SEm5na4CAw2YPNlYzbBPHy0rbzlYa+pz5Br2Xnek18M8+lNRIbs1CmR9lOjOoHTnbdM1HEEQRKjVIjQaEb6+IjQaA9Rq07Hat0Wo1YZbny1vP/dcEK5fr39CWWCgHs89V4GCAhlu3LD8uHmz6alJJrsdziyDmN4iqNUOZzI3X1zkTn/jGLYchGFL2tzpHyl5vtba386eVWDdOhXWr/fF9eu3XyB0767FtGkVeOSRSrRt2/A0Q5ZEbp7W2ufIed56yx8rVqitjvYIgojBg6sxcmRNnWl3phEjy9sCqqoc8+peJhOtBh7L27eDkikk3b5tea5KJbY4iDT0s5PJRDz3XDkWLSqx+lidDrh5U3ZHEJPjxg3jscJCmfn2jRtyFBU1vbEymYjg4DvDmXHE7M5wFhysR2Bgy38mTSUIAsLDI5Cb6/q/cQxbDsKwJW18IULO1Nr7m04H7N3rjXXrVPjpJxWqq40vMGQyEcOHV2Pq1AqMHVsFHx/j+aapSTt2+ECnAxQKYMwY95iaJBWtvc+RfYgiUFwsIDtbjuxsOa5dk5tvb9+uQk2N/d8JUShMo0a3A07dAGQ9DNV+nOk+Hx/R7d6waWhUsFs3HbZssV81Qq3WMpwVFspQUGAtnMlRWChrVjiTy62HM9OxO6c4BgQ0P5y549RVhi0HYdiSNr4QIWdif7utuFjA1q3GaYZHj96eZujvb8D48ZUYP74Sb70VgAsXWBK5JdjnyBY1NUBu7u0AZS1UlZc371Wxt7cBEyZUWZ1aZ+22KSh5e7eO0eyyMgEffmh8U0mrBZRK45tK8+e79k0lrRa3ApkpnMmtTmc0hbPi4qb3D4XiznCmt7L2zDKcCYL7lsxn2HIQhi1p4wsRcib2N+suXJAjMdEXiYkqXLtWe/2CCKDp02voNvY5EkXg5k3hVnBSWA1U16/XXxWvtjZt9IiKMn5ERho///OfGhQW1r9+qF07HQ4dyrPnt+SxpDxduqYG5tGx2tMZLcOZ3DyKVlLS9HCmVBrDWU2NcZTO3f5/YNhyEIYtaeMLEXIm9reGGQzA/v1eWLvWWEa+oRd/4eE67NuXD5WKP8eGsM95vupqICen/hGp7Gw5Kisbf2Hr7S2aA9TtD535WGSkweq/t5asO6LWq7ratnBmul1aans4a99eh4MHnR/wmxK2uM8WERE5nUwG3HNPDYYOrcHevV7Iy6v/v6PcXAWioyMQFqZHhw56dOigM3/u2NH4OTzc/StpETVEFI0vSO8cjaodqPLybKtKFxpqOSJ150ebNoZmjaosWFCKffu86113NH9+adMvSh7P2xuIiDAgIsIAQNfo+dXVMAevJ55o02A1Rq3W/UcJGbaIiMhlBAGN7sUlCCJEUUBenvHFZu11Xybe3iLatTOFL8sg1qGDnmu+qEHOeLFWVQVzaLIcjVKYj1VVNd4IHx9DnfBUO1RFROjNhWfsTaMRsXVrgXndkalYgTusOyLP4e0NREYaEBlpXN9382b95yoU7h20AIYtIiJysTFjqhqdmvTyy6XIylLg8mW5xeesLDmuXpWjulrAhQtKXLigtPocbdoYQ1jHjro7PusRHq73uM0/qXH2rIApikBBQd1RqdqhqqDAtk7Wtm39I1JRUXoEBTVvVMpeNBoRixaV4L33Sm+V4c7ntFVymMb+fxg7tsoFrWoartlqAq7ZkjauZyBnYn+zXUtLIut0xhGDrKy6QezyZXmjG4IqlSLatTMGsPbt6wYyf39p/P7Y52zX1ApnlZUCsrNluHatbtGJ7Gw5cnLk5u0NGuLra6h3RCoqyhj8vb0d8i3bHfsbOYMzS+Y3BddsERGRZNw5NampJZEVCtyaOqgHUFPn/pISwRzEjAHs9uerV+XQagVcuqTApUvW/0sMDDTUCWCmaYqRkXoo+D+p5Cxe7FfnxRsAGAwCzp1TYPLkNujQQW8OUw1V4DMRBBFt2945xU9nEaoCA91v/ycid+YJU1c5stUEHNmSNr4LR87E/tZ8zlzsrNcb9xwyjoZZBrGsLDlu3Gj4RbZcbhwVu3OdmOlzYKDzfvetsc+JIlBVJaC4WEBpqQwlJQJKSm5/rn2stPT2fcnJXtBqm9bJ1GoD2rWrv/BEeLgeSuuzWD1Sa+xv5FqCINyauur6PseRLSIikixnvvMvl8P8YnnIkLr3l5cLd0xPvB3ErlxRoLpawOXLCly+rABQd/5XQIChVvVEyyAWFaVvtDhIU0ntNa9WC5SWyuqEpdvByHpYqn2uTmf/DqNWG/DXv5ZYhCl/f45KEbmaFP8NMmwRERHVQ60WEROjQ0xM3XLFBgNw/bqs3sIdeXlyFBfLcOqUF06dqnttmcy411F9hTtsLYRgKvTwyy8+MBgAmSwU99/fvEIPTWEwGJ/b+oiSZVi68xzT17bsCWULmUyEv78If38D/PyMn023AwJqHxPh52fAG28ENFiwIijIgGefrbBL24iodWPYIiIiagaZzLR3TA0SEureX1Eh4MoV+R0FOxTmkbKqKgFXrypw9aoC+/fXHRXTaAxW14l16KBDu3bGQgrWF48rsGKFGvv2edcp9GBinH6HOlPtmhKWSkuFBjejbgq12lowsjzm52dAQIDxc+3gFBAgwte3aaNOhw55Sb7CGRFJA9dsNQHXbEkb55eTM7G/UUNEEcjPl1kNYpcvK5Cb2/BaMUEQERGhh8EgIDdXBsBa0jBW6+rWTWc1SDV1zVJ9vLzuHFEyhSBrx+qGJT8/0elFRty1wpmU8G8cOZs79Tmu2SIiInJjggCEhRkQFmbAwIF138SrqgKuXq27Tsw0VbGiwliGvJFnwblzSpw7V3/VBkEQzaHHNA3vzuBUOxjdnqp3Ozg5agNdR2ppBUwiIlsxbBEREbkZHx8gOlqH6Oi6a8VEEbhxQ4bMTDmefjoYxcX1j4JpNHq8/nqpRWgyhSV/fxFqtQiZfZZNSY5pc95Fi0qcWgGTiFoXhi0iIiIJEQQgJMSAkBDjCFRxcf3nBgaKLPRgAwYtInKUVvp+FhERkfSNGVMFmcz6lDcWeiAicj2GLSIiIolasKAU0dG6OoHLVOhh/vxSF7WMiIgAhi0iIiLJMhV6eO65crRvr0NUFNC+vQ7PPVfOinpERG5AMmu2fvvtN6Snp+PixYvIysqCTqfDrFmzMGLEiDrnTps2rdHrffnllwgJCXFAS4mIiJzHVOjhvfdKER4egdzcfJeXRSYiIiPJhK01a9YgPz8ffn5+CAoKQn5+fr3nTpkyxerx3Nxc7Nu3D1FRUQxaRETkcVjogYjIvUgmbL344ouIiIhAaGgoNm3ahO+//77ec+sb2frf//1fAMCoUaMc0kYiIiIiIiITyYStPn36tOjxNTU12Lt3LxQKBe699147tYqIiIiIiMi6VlMg4/DhwygvL8eAAQPg7+/v6uYQEREREZGHazVha/fu3QCA++67z8UtISIiIiKi1kAy0whbIi8vD6mpqQgJCbFpOqJWq4VWqzV/LQgCVCqV+TZJk+l3x98hOQP7Gzkb+xw5E/sbOZtU+1yrCFu7d++GKIoYMWIEZLLGB/M2btyIxMRE89edO3fG4sWLERoa6shmkpOEh4e7ugnUirC/kbOxz5Ezsb+Rs0mtz3l82DIYDNizZw8EQbB5CuHkyZPx8MMPm782Jej8/HzodDqHtJMcTxAEhIeHIzc3l3vQkMOxv5Gzsc+RM7G/kbO5U59TKBQ2D8J4fNhKSUnBjRs30LdvX5v31lIqlVAqlVbvc/Uvl1pOFEX+Hslp2N/I2djnyJnY38jZpNbnPL5AhqkwBvfWIiIiIiIiZ/LosFVSUoJjx47Bz88PAwYMcHVziIiIiIioFZHMNMJdu3YhPT0dAJCVlWU+lpqaCgAYOHAgBg0aZPGYPXv2QK/XY/jw4VAoJPOtEhERERGRB5BMAklPT8eePXssjmVkZCAjIwMAEBoaWidscW8tIiIiIiJyFUGU0gozF8vPz7fYf4ukRRAEREREICcnR1ILK0ma2N/I2djnyJnY38jZ3KnPKZVKViN0BE5F9Az8PZIzsb+Rs7HPkTOxv5GzuUOfa0obOLJFRERERETkAB5djZCotsrKSixYsACVlZWubgq1Auxv5Gzsc+RM7G/kbFLtcwxb1GqIoohLly65fJ4vtQ7sb+Rs7HPkTOxv5GxS7XMMW0RERERERA7AsEVEREREROQADFvUaiiVSkyZMgVKpdLVTaFWgP2NnI19jpyJ/Y2cTap9jtUIiYiIiIiIHIAjW0RERERERA7AsEVEREREROQADFtEREREREQOwLBFRERERETkAApXN4DIUQoLC3HgwAEkJycjOzsbRUVF0Gg06NGjByZOnIhu3bq5uonk4TZv3ozvvvsOAPC3v/0N3bt3d3GLyFMdPnwYP//8My5duoTq6moEBgaiW7dumD59OkJCQlzdPPIQoiji8OHD+Omnn5CdnY2Kigq0adMGvXv3xsSJE9G2bVtXN5Ek6rfffkN6ejouXryIrKws6HQ6zJo1CyNGjLB6fkVFBdatW4dDhw6hqKgIgYGBSEhIwNSpU+Hr6+vcxjeCYYs81vbt27F582a0bdsWffr0QUBAAHJycnDkyBEcOXIEc+fOxZAhQ1zdTPJQV69exdq1a+Ht7Y3q6mpXN4c8lCiKWL58OXbu3Im2bdtiyJAhUKlUuHnzJs6cOYOCggKGLbKbf//73/jhhx8QFBSEgQMHQqVS4fLly9i1axd+//13vPfee+jQoYOrm0kStGbNGuTn58PPzw9BQUHIz8+v99yqqiq8++67yMzMRJ8+fTB06FBcvnwZ27ZtQ2pqKhYtWgQfHx8ntr5hDFvksaKjo7Fw4ULExMRYHE9LS8OiRYvwzTffYODAgZLbr4Hcn8FgwBdffIGOHTsiIiICe/fudXWTyENt374dO3fuxNixY/Hcc89BJrNcHaDX613UMvI0RUVF2LZtG0JDQ/HRRx9ZjB5s27YNK1euxA8//IBZs2a5sJUkVS+++CIiIiIQGhqKTZs24fvvv6/33C1btiAzMxMTJkzA9OnTzcfXrl2LxMREbNmyBdOmTXNGs23CNVvksRISEuoELQCIiYlBbGwsysrKkJWV5YKWkafbtGkTLl++jD/+8Y91XvwS2UtNTQ0SExPRtm1bPPvss1b7mlwud0HLyBPl5eVBFEX06NGjzjStfv36AQBKSkpc0TTyAH369EFoaGij54miiF27dsHHxwdTpkyxuG/SpElQq9XYvXs33GkbYb4KoFbJ9AKEL0TI3rKyspCYmIhHHnkE7du3d3VzyIOdPHkSZWVlGDhwIAwGAw4dOoRNmzZhx44dyM3NdXXzyMNERERAoVAgIyMDlZWVFvclJycDAGJjY13RNGpFcnJycPPmTfTo0aPOVEEvLy/ExMSgsLDQrf4GchohtToFBQU4deoUAgMDObec7Eqv1+PLL79EVFQUJk2a5OrmkIe7cOECAEAmk+HVV1/FtWvXzPcJgoBx48bh6aefdlXzyMP4+fnh8ccfx6pVq/CXv/wFAwYMgI+PD65cuYKTJ09i9OjReOCBB1zdTPJwphAVERFh9X7T8ZycnHrPcTaGLWpVdDodlixZAq1Wi+nTp3OKF9nVxo0bcfnyZbz//vtQKPjnlRyruLgYAPDDDz+gc+fO+OCDD9CuXTtcunQJy5Ytww8//IDw8HCMGTPGxS0lTzFhwgQEBwdj2bJl2LFjh/l4jx49MGzYMP7dI4erqKgAgHorDqpUKovz3AFfaVKrYTAY8NVXXyEtLQ2jRo3Cvffe6+omkQfJzMzE+vXrMX78eHTp0sXVzaFWwLQmQaFQ4NVXX0V0dDR8fHwQExODl19+GYIgYOvWrS5uJXmS9evX44svvsCkSZPw1Vdf4V//+hcWLVoEvV6PhQsX4tChQ65uIpHbYdiiVkEURSxduhR79+7FsGHDMGPGDFc3iTzMF198gfDwcEydOtXVTaFWwvTObteuXREcHGxxX/v27dG2bVtcv34d5eXlrmgeeZjTp09jzZo1eOCBB/DII4+gTZs28PHxQc+ePfHaa6/By8sLK1eudHUzycOZ/u7VN3JlWk/oTnttcbyXPJ7BYMDXX3+NpKQkDB06FLNnz+b0QbK7y5cvAwCeeuopq/e/+eabAIBXXnkFgwYNclq7yHNFRkYCqP9FhVqtBmCsWmi6TdRcx48fBwD07t27zn3+/v7o0KEDzp49i5KSEvj7+zu7edRKhIeHAzCuybLGdNxd1msBDFvk4WoHrSFDhmDOnDkMWuQQ9913n9XjaWlpyMnJwYABA+Dv74+wsDAnt4w8lelFb3Z2dp37dDodcnNz4e3tzRe+ZBc6nQ5A/eXdTce5dyU5UkREBIKCgpCRkYGqqiqLioQ1NTVIS0tDUFCQOZS5A4Yt8li1g9bgwYMZtMihXnrpJavHv/jiC+Tk5GDSpEno3r27k1tFniw8PBx9+/bFiRMnsGvXLowaNcp836ZNm1BeXo5hw4Zxiwuyix49euCnn37Ctm3bMHjwYIsR1aSkJOTm5qJLly7mAgVEjiAIAkaNGoXExEQkJiZabGps+rv34IMPQhAEF7bSEsMWeazExEQkJSXBx8cHkZGRWL9+fZ1zBg0ahE6dOjm/cUREdvBf//VfeOutt7B06VIcOXIEkZGRyMzMxOnTpxEaGoo//OEPrm4ieYi7774bO3fuRGpqKv785z9jwIABUKvVuHz5Mk6ePAmlUolnn33W1c0kidq1axfS09MBGPerNB1LTU0FAAwcONA8BX/ChAk4evQotmzZgszMTHTp0gWXL19GcnIyOnXqhAkTJrjmm6gHwxZ5rPz8fABAVVUVNmzYYPWcsLAwhi0ikqzw8HD8z//8D9auXYuUlBScOHECgYGBGDt2LKZMmYKAgABXN5E8hEwmw1//+lf8+OOP2L9/P37//XfodDoEBATgnnvuwaRJk7h3JTVbeno69uzZY3EsIyMDGRkZAIDQ0FBz2PLx8cG7776LdevW4eDBg0hNTUVgYCDGjRuHqVOn1tns2NUE0VQ7loiIiIiIiOyGC1iIiIiIiIgcgGGLiIiIiIjIARi2iIiIiIiIHIBhi4iIiIiIyAEYtoiIiIiIiByAYYuIiIiIiMgBGLaIiIiIiIgcgGGLiIiIiIjIARi2iKjJ8vLyMG3aNEybNg15eXmubg4AICkpCdOmTcPs2bPr3Ld27VpMmzYN7777brOu3dDjm3ufO9HpdJgzZw6efPJJFBQUuLo55GBHjx7FwoUL8dxzz+Gxxx7DtGnTsGLFClc3q0GmvzepqamubopkvPvuu5g2bRrWrl1r1+s29Hdt2bJlmDZtGnbv3m3X5ySSMoWrG0BErrN27VokJibafC7Zz+HDh5GZmYlOnTph0KBBLm3L9u3bcf36dYwZMwYhISEW9+Xl5eFPf/pTnccolUqoVCr4+fmhY8eOiI6OxpAhQxAcHOysZlMzHDx4EJ9++ikAQBAE+Pn5QRAEqFQqmx6flJSEL7/8ss5xuVwOjUaDjh074u6778bw4cOhUPAlRmvzyCOPICkpCWvWrMGQIUPg4+Pj6iYRuRz/EhIRACAgIMDVTWgRX19fREZGOuTFvr+/PyIjI+sEkZY87siRI9izZw+GDx/u0rBVVlaGDRs2QKlUYvLkyQ2eq1Kp4OXlBQAwGAwoLy9HSUkJsrOzsX//fqxatQpDhgzBs88+C39/f2c0n5po69atAICEhAT86U9/gre3d7Ov5efnB5nMOEGmqqoKxcXFOHnyJE6ePImdO3fijTfegEajsUu7qelCQkIQGRnp1H+LISEhGDFiBHbu3IkffvgBU6ZMcdpzE7krhi0iAgAsX77c1U1okUGDBjkstDzwwAN44IEHnPY4Z9q5cyfKy8sxePBgtGnTpsFzn3vuOYwYMcLi2M2bN3H27Fns3r0bycnJ2LdvH1JTU/Hee+8hLCzMgS2n5sjKygIAjBgxokVBCwD+53/+x+J3nJeXh9WrV2Pfvn24cOECli1bhpdffrlFz0HNZ21E2hnGjBmDnTt3Yvv27Zg4cSKUSqVL2kHkLrhmi4iolRJFEbt27QIADBs2rFnXCAoKQkJCAl5//XXMmzcPcrkcN2/exP/7f/8Per3ens0lO6iurgYAh0zvCgsLw5w5cxATEwMAOHToEIqKiuz+POTeOnXqhPbt26O0tBQHDx50dXOIXI4jW0TkMIcPH0ZSUhIuXLiAkpIS+Pj4oEOHDhg6dCjuu+8+izUdpaWlePXVV1FYWIiBAwfi1VdfrXM9g8GAd955BxkZGejQoQM++OAD87Q201qS0NBQfPHFFw22a//+/fj555+RlZUFnU6HyMhIjBw5EmPGjDFPi6rNtLatV69eTSp2Ye1xqampWLhwofmcPXv2YM+ePRaPe+eddxAQEGAeFfjggw8QHR1d7/MsWbIEe/fubXL7Tp06hevXr0OtViM+Pt7mx9VnyJAhKCgowKpVq3D16lXs2bMH9913n9VzL126hO3btyMtLQ03b96EIAgIDw9H//798dBDDzU49enMmTPYsmULzp07h6qqKoSEhGDw4MGYPHkyDh48WG8/+OKLL8xTN2fNmoXdu3cjKSkJ2dnZKCsrw6xZsyxG7oqKirBt2zakpKQgLy8POp0OQUFBiI2NxcMPP4x27do1+PNoSv9vqtTUVPz888/IyMhAaWkpVCoVOnbsiGHDhmH48OEW/djaurvafRCw35pMQRAwbNgwpKWlQRRFXLhwAf379zffX1RUhK1btyI5ORn5+fkAgNDQUPTr1w8PP/wwAgMDbX6uHTt24JtvvoFGo8HXX39t/ltwJ4PBgDlz5iA/Px9TpkzBtGnTANT9m3Hx4kVs2rQJ6enpKCsrQ3BwMAYOHIhHH320wemQubm52Lp1K06dOoUbN25AoVAgPDwcAwcOxEMPPQRfX986j6n9d2Dt2rW4fPkyNm7ciLS0NJSVlSEsLAwjR47EuHHjIJfLAQDp6enYsmULzp8/j/LycoSHh+P+++/H2LFjIQhCned49913cebMGYvv2aS4uBjHjh3D8ePHkZ2djcLCQuh0OgQHB6N3794YN24c2rdvb9svwoqhQ4di9erV2LlzZ7PfyCHyFAxbRGR3VVVV+Pzzz3H8+HHzMZVKhYqKCqSlpSEtLQ2//fYbXnvtNfOLGD8/P/z5z3/GwoULceTIEfz00091puCtXbsWGRkZ8PLywty5c+t9cdWQVatWYcuWLRAEAb6+vqipqcGlS5dw6dIlHDt2DPPnz3fotBeFQoGAgABUVFRAq9VCqVTWeTGmUCjQrl079OrVC2fOnMHOnTvrDVtlZWXmd49Hjx7dpLakpKQAAKKjo+1WzOCBBx7A5s2bUVpaWm/YWrt2LdavXw9RFAEA3t7e0Ov1uHz5Mi5fvoxff/0Vr732Gjp37lznsdu3b8eKFSvMj/X19UV+fj42btyIw4cP2/QzEEURn332GQ4ePGjuB3e+WD127Bj+/ve/o6qqCoCxAIRCoUBeXh52796N3377DS+++CKGDx9e5/rN6f9NsXLlSmzbtg0AzO0vLy/H6dOncfr0aezduxevvvqqueiFTCYzr8ksLi4GAKjVaocVsKi9brKystJ8+8yZM/joo49QXl4OAOZpjFevXsXVq1exa9cuLFiwAD179rTpee69915899135n8D9957r9XzTp48ifz8fMhksnrD/759+/DFF19Ar9fD19cXer0eeXl52LZtG06ePIn333/f6mjg/v378cUXX0Cr1QIw/p51Op35b8quXbvwxhtvNBjMk5OT8fHHH0Or1cLX1xc6nQ7Z2dlYtWoVLl68iHnz5mHXrl1Yvnw5RFGESqWCVqvFlStX8L//+7+4ceMGnnrqKZt+ZiarVq2yeJNHpVLBYDDg+vXruH79Ovbu3Ys5c+Zg8ODBTbquSa9evQAAGRkZqKystLkAC5EnYtgiIrtbsmQJjh8/jvDwcEybNg39+/eHSqVCTU0NTp48iZUrV+Ls2bP46quvLEawevXqhUceeQTr16/Hv//9b/Tq1QsdOnQAYHwneOPGjQCAZ555plnvumZmZuLMmTN44IEHMGXKFPj7+6OiogLbt2/H2rVrceLECXz//fd45pln7PODsKJHjx5Yvny5eZRlyJAhVsvVA8a1D2fOnMHvv/+OZ555xuoLlr1790Kr1cLPzw8JCQlNaktaWhoANDhq1lReXl6IjY3FgQMHcO7cOdTU1FiE4m3btiExMREqlQqTJ0/GiBEjEBgYCIPBgMzMTKxatQqnT5/Ghx9+iM8++8ziBW5GRoY5aPXp0wfPP/88IiMjodfrceTIESxbtsym6pqHDx+GVqvFH/7wB4waNQq+vr6oqqoyB4Pz58/jk08+gU6nw+jRozFu3DhERERAJpOhoKAAmzZtwo4dO/D111+jXbt26Nq1q8X1m9v/bfHTTz+Zg9bo0aMxbdo0BAYGoqqqCrt27TL//JYuXYp58+YBMBYtMK3JNI1wvPLKK+jdu3eTnttWphErAOYwWVBQYA5a7dq1w8yZM82hKi0tDUuXLsW1a9fw4Ycf4uOPP7ap0I2Pjw/uuece/PLLL9i1a1e9YWvnzp0AgLi4OKvFakpKSvDVV19h+PDhmDJlCkJCQlBdXY1ff/0VK1euxJUrV7B582Y89thjFo+7ePEilixZAr1ejx49euCFF15Ax44dYTAYcPz4cSxfvhw3btzA4sWL8dFHH9U7dfMf//gHBg4ciOnTpyMkJASVlZXYuHEjNm3ahP3796NTp05Ys2YNxowZg0cffRQBAQEoKyvDv/71LyQlJWHLli0YOXIkIiMjG/2ZmYSFheGRRx7B4MGDER4eDh8fHxgMBmRnZ2Pjxo3m8Nm9e/dmFR3q0qUL5HI59Ho9MjIyEBcX1+RrEHkKrtkiIgDAjBkz6v24cuWKzdc5fvw4jhw5gsDAQLz77ru45557zCHBy8sLAwYMwLvvvgtvb28cOXIEmZmZFo+fOnUqevToAa1Wi88//xw1NTUoLS3FkiVLIIoiBg0ahPvvv79Z32NFRQXuvfdePP/88+Zpar6+vnj00UfNlfh++uknFBYWNuv69jZo0CAEBASguroa+/bts3qOac3V8OHDmzQiZ3r3HQA6duzY8sbWYrqeTqez+FmWlJRg9erVEAQBr7zyCiZNmmSeNiaTydClSxe88cYb6NKlC27cuGH+3kzWrl0LURTRrl07LFiwwPziUi6XY/DgwXj55ZfNoyYNqaqqwtNPP43x48ebRxV9fHwQFBQEAPj222+h0+nw6KOPYubMmYiKijJPywsJCcELL7yABx98EHq9HuvXr7e4dkv7f0NqamrM0/2GDh2KmTNnmn9+Pj4+GDduHJ5++mkAxhGXCxcu2Hxte9Hr9eZwIwiCOYhu3LgR5eXlUKvVePvtty1Gr2JiYvDWW29BpVKhrKzM/KaKLcaMGQPAGNiys7Pr3F9UVIRjx44BqH/kt7q6GkOGDMFLL71kDmPe3t544IEH8OCDDwIAfv/99zqPW716NfR6PcLDw/Hmm2+a+71MJsOAAQPw2muvQS6X4/r169ixY0e930PXrl0xd+5c83OrVCo8+eST5rVv33//PYYPH47nn3/ePEKp0Wjw0ksvITQ0FKIo/v/27j2mqfONA/i3FIpQ8EI3lQFymTIjFw0CInNM5hCCg7lsEmc2tyxxzhkFsxmXJXMzxJAtGSrRuEsUiU43zcwsLnLpNHjhshiJQ00BhzgUoQiC3Aq2h98f/b3vWmxLr9LJ80lM1HN6+p7Tl3Ke87zv86Kqqmrsi6Vn1apVWL16NUJCQngQ6ObmhqCgIGzevBkxMTE84LSFRCLhP58NDQ02HYOQpwUFW4QQALrhRab+WFPogN0gJyUlmXwiKpPJ+FN1NpSNcXNzQ3Z2NqRSKe7cuYPCwkLs378fXV1dkMlk+Oijj2w7wf8zVYo4MzMTEokEWq0WNTU1dr2Ho7i7uyM5ORnAv0/n9TU0NPDqctYOIezp6YEgCADg8NLQ+kPj+vr6+N8vXryIoaEhhIWFISoqyuhrxWIxXnzxRQDA1atXDY5z7do1ALrPylhgGRkZyW9QzZFKpSYD9ubmZvz9998Qi8XIyMgweQw2fLCuro5fR8D+/m/OX3/9xa/nqlWrjO6TmprKg0ZjAYKzqNVqNDQ0IC8vD7dv3wagu0a+vr4GwUBKSorReVkymYx/JpWVlRa/b3BwMMLDwwHgseAc0M3L0mq1kMlkiImJMXmcN9980+j/x8bGAtDNy2LFRQCgv7+f98/MzEyjlR1DQ0N5hVRzn8Xrr79udM7V/Pnz+d+NLcvg5ubGf47YNXcUdq2USqXNx/D19QUAl3l4Rch4oWGEhBAAjpsgz345KxSKxwo/6BsYGACgG1402jPPPIP169cjPz+f30CJRCJs2rTJrnV7ZDIZZs6caXSbt7c3wsLCoFQqxyUjYMqrr76KU6dO4datW2hqakJYWBjfxq7NvHnzrBpCBOiyTMyTWguJ9Y2WlhasW7fO5H7Dw8MADIej3bp1i8/TYvNBjJk3bx4fHmmKuTlqrI0jIyPIzs42eQwWYA0NDaG3t5dnHBzR/01h/VImk5n8vN3c3BAREcHLrzuTudLiUVFR+OCDDwDoCnSwIDE6Otrka6KjoyGXy9Hb2wuVSmXx0gEpKSloaGhARUUF1qxZwz/bkZERnD17FgCQnJxstPgNoOv/pr4X9APm/v5+HlTp90dTDw7YOVVVVfFiPMb6nalhvPpZrBkzZhjdhwWulmR0R2tuboZCoYBSqURHRwfUajU/J8aeQIl9r+h/1xAyEVGwRQhxGI1Gg97eXgD/3kyORf9psb6EhAQsWrSIZ5kyMzPN3mRbYqy5B2y7K90cTJ8+HQsWLEBtbS0UCgU+/PBDALrryzIA1ma1APAJ/QAcXhBEP5ulH8g9ePAAgC6YYgGVOfr76H8mLHNjjCXzS8xl8lgbBUHgxSTGwvqwI/u/Maw9Y50jWy/N2f1Yf1Fjd3d3+Pj4YNasWUhISEBsbCzP1uhfR3Nt11/nraenx+Jga/HixSgqKkJvby9qamp4ZvTatWtoa2szWxgDgNniDfoBmkajMWgfY8k5abVa9PX1Gc3qmXp/VoXQkvZZu8xCSUkJCgsLeXDFCq2wYHB4eBiDg4O8QIwt2FxN/e8aQiYiCrYIIQ6jP5wqJycHiYmJNh9LpVKhrq6O/7u+vh6CIJh8Om0JY0N1/gtSUlJQW1uLS5cuYe3atZg0aRIfkmdLYQzAMAiy5am4OWxIk4eHh8GNKOsfKSkpZjNbxug/cTf3OY5+Mm+MuT7E2hgQEIBdu3ZZ0ULH9n9zXKUfj17U2JGsOUeJRIKlS5fi9OnTUCgUPNhimV9ThTGeNFf53O7cucMLzSQkJCAzMxMhISEGWbezZ8/iu+++s+t92EMXNpyQkImK5mwRQhxGIpHwggNsLpEttFot9uzZg4GBAfj7+8PDwwNKpdKiSnPmdHZ2mt3Ohsw4eg6TvWJiYniVMpbNsrUwBqN/jvqZKHsNDw/zuVVz5swxqETIhkXZ0jfYawHzQ5tYZspWLPPQ3t5u9VN9R/V/U9g1GKsfs+2u0o/1PztzbdffZm3bU1JSIBKJcOPGDbS1teHhw4f4888/+TZHs/acxGIxpFKpw9thi+rqagiCgICAAOTk5BgdVuuIxajZ94qr9ENCxgsFW4QQh3rhhRcAAFVVVQZP+q1x/PhxNDY2wtPTE1u3buVryJw8edKuCdudnZ1oa2szum1wcBBNTU0A8Fgpb2dgT7ktzcQsW7YMgG4uUFNTE68kaMsQQkCX2dIPLBylpKSED6XTXyAYAK9A19jYaDAfyxKhoaH8mt24ccPkfua2WYL1X41Gw2/WbXm9Pf3fFNYvOzs70draanQfQRBw/fp1g/3H2/Tp03kmVT9bPRrb5uvra3XGzN/fH5GRkRgZGYFCocD58+eh0Wggk8kcsmD3aPr9kT1cMIadU3BwsNPWNbMWCwCDg4NNZnnNfU6WUqlUAHRZYkImMgq2CCEOxW7+7927B7lcbnZftVptMA8C0N24/PbbbwB062kFBgYiPT0dMTExEAQBBQUFdmViRpfqZoqLizE8PAyxWGzTsDxrsQyIpXN7li1bBrFYjJs3b6KoqAiAbYUx9LHKfTdv3rT5GPqqqqpw7NgxAEBQUBBeeuklg+1JSUmQSCQQBAEHDhwwG4wIgmAwvNHHx4dX8CsuLn6s3wC6QGus4hhjef755/liyj///POY855G90V7+7850dHRfEjWiRMnjO5TXl7Os3tLliyx+NjOJBKJ+JBKhUJhNGvS1dXFK26yYYDWYhmsiooKfixzhTHsIZVK+dpRcrnc6Ny75uZmPufU1nNyBvbd09LSYvRhT21tLQ/YbaVSqfjPjr1zbQn5r6NgixDiUHFxcbzc8dGjR/Hjjz8aPIXXaDRobGzEkSNHsHHjRoOJ5r29vdi7dy9fT0s/a/Pxxx9j2rRpuH//Pr7//nub2ubt7Y2KigoUFhbyG4HBwUGcPHmSB2Gpqak2LeJpLbYos6n1gUabOnUqL0PNAgpbs1oMC17sCba6u7tRU1ODvLw87Nq1C1qtFn5+fnyNIX1Tp07FmjVrAOjWo8rNzYVSqeRB18jICO7evYvTp0/jk08+4esjMVlZWRCJRGhpacHXX3+Ne/fuAQAv1//tt9/aPVRLJBJh3bp18PDwwP379/H555+jurra4Ga6q6sL58+fR25uLo4cOWLwenv6/1gkEgkv+X7p0iX88MMPPHAZGhrCmTNncOjQIQBAYmKiQeXK8fbGG29AKpWir68Pubm5qK+v59uUSiVyc3PR398PHx8frFy50qb3iIuLw7Rp09DT04PW1tYxC2PYa/Xq1RCLxWhra8POnTv50FG2qHFeXh60Wi1mzJjhlKGMtmJBYktLCw4cOMAfGKjVapSXlyM/P9/ueVaNjY0AdMMtKbNFJjrXyGkTQp4qmzZtwv79+1FZWYny8nKUl5fD09MT7u7uGBgYMFnswNx6WpMnT8bGjRuxc+dO1NTUQKFQWB1shISEYPbs2ZDL5SgpKYFUKsXAwAC/2Y+KiuLBgLMtWrQIx44dw8OHD7Flyxb4+vryxUWzs7P52kH6li9fzp+U21oYY3QbDh06hLt37+LevXvw9/c3u39hYSF++uknALrAaGBgwCAz4+bmhiVLluD99983WU4+PT0dGo0GR48exfXr17F9+3a4u7vDy8sLAwMDBlXVRhcUmDt3LtauXYuioiJcvXqVr8c2PDyMR48eISgoCK+88gqKiorsqrA4e/ZsbNu2DXv27IFKpUJ+fj7c3Nz4e+kHXsZu5m3t/5ZIS0tDe3s7fv/9dygUCvzxxx/w9vaGWq3m1y4iIgLr16+38eydQyaTYevWrfjmm2/Q0tKCL774gpdRZ9dTKpVi69atNj/sEIvFSE5OxsmTJwE4vzBGaGgoNm3ahL1790KpVOLTTz+Fl5cXNBoNr8Ank8mwbds2/rPtCqKiopCYmIjKykqUlZWhrKwMUqkUg4ODEAQBYWFhWLp0KQ4ePGjze1y+fBmAa2X0CBkvFGwRQhzO09MTOTk5SElJwblz51BfX48HDx5ArVZjypQpCAwMxIIFCxAfH89vrEpKSnD58mWz62lFR0cjIyMDcrkcRUVFmDt3LgIDA61q2zvvvIOwsDCUlpbin3/+gbu7O5577jksXboUaWlpThlyZIyPjw927NiBEydOQKlUoqenh891MlUqOTIyEj4+Pujr67O5MIa+KVOmIC4uDlVVVbhw4QKysrLM7j84OIjBwUEA4AHS5MmTERwcjNmzZyMxMdGiG+XMzEzEx8ejtLQU165dg0qlQn9/P7y8vDBz5kxEREQgPj4ec+bMeey1K1asQGhoKE6dOoWGhgYMDw/j2WefRUJCAlauXMmHj9mb4YqOjkZBQQHKy8tx5coV3LlzB/39/ZBIJAgMDER4eDhiY2ONrhtlS/+3xnvvvYeFCxeitLQU9fX16O3txaRJkxASEoKkpCS8/PLLT6wfW2PevHnYvXs35HI5amtr0dHRAZFIhICAAMTExCAjI8NoaXRrLF68mAdbTyKbxDKIcrkcdXV16OrqglgsRkBAAOLj45Gens6H7bmSzZs3Izw8HOfOnUNraysEQcCsWbOQmJiIFStW2LUgtlqt5sGWvdl3Qp4GohFLZmcTQggZd01NTfjss88AALt377ZrvhZz48YNfPXVV5gxYwYKCgpcpjy1rQoKCnDx4kUkJydjw4YN490c8oQVFxfj8OHDkMlk2Ldvn0sGnU+7iooK7Nu3DxEREfjyyy/HuzmEjDv6FiKEkP+IM2fOANBluBwRaAG6bMP8+fPR3t6OqqoqhxxzvLS2tvJhlmxeCpk4BEFAWVkZAF1BGQq0njxBEHhhmLfffnucW0OIa6BvIkII+Q+4cuUKLly4AADIyMhw6LHfffddiEQi/Prrrw4vV+5ov/zyC0pKSnD//n3eVrVajcrKSuzYsQOPHj1CQEAA4uLixrml5EkSBAHHjx9He3s7PD09sXz58vFu0oRUXV2NlpYWJCQkGJ13SshERHO2CCHERXV2dmL79u0YGhri1RNjYmIcvm7QrFmzsGHDBqhUKnR3dz+Raoy2un37Ni5fvoyDBw9CLBbDy8sL/f39vOiEn58ftmzZ4jJrGhHnqq6uxuHDh9HX18fnE2ZlZdFCuuNEo9HgrbfeQnJy8ng3hRCXQb+NCCHERWm1Wl5EQCaTYdGiRVi9erVT3mv0AsSu6rXXXoOfnx/q6+vR3d2Nvr4+eHl5wd/fHwsXLkRaWprJSojk6aNWq9HR0cGLUqSmpiItLW28mzVhJSUljXcTCHE5VCCDEEIIIYQQQpyA5mwRQgghhBBCiBNQsEUIIYQQQgghTkDBFiGEEEIIIYQ4AQVbhBBCCCGEEOIEFGwRQgghhBBCiBNQsEUIIYQQQgghTkDBFiGEEEIIIYQ4AQVbhBBCCCGEEOIEFGwRQgghhBBCiBP8D5wRN2QMqk3uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create the plot\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Plot Test MSE\n", + "plt.plot(mse['x'], mse['testmse'], color='red', label='Validation MSE')\n", + "plt.scatter(mse['x'], mse['testmse'], color='red')\n", + "\n", + "# Plot Train MSE\n", + "plt.plot(mse['x'], mse['trainmse'], color='blue', label='Train MSE')\n", + "plt.scatter(mse['x'], mse['trainmse'], color='blue')\n", + "\n", + "# Add labels and title\n", + "plt.xlabel('Flexibility (Degree of Polynomial)', fontsize=18)\n", + "plt.ylabel('MSE', fontsize=18)\n", + "plt.legend()\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "\n", + "# Show the plot\n", + "plt.show()\n", + "\n", + "# Save the plot as EPS file\n", + "#plt.savefig(\"01_auto_mse_seed3.eps\", format='eps')" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.pdf b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data.pdf new file mode 100755 index 0000000000000000000000000000000000000000..e1512dbc2ea4ef6ed3eb7b58eb9149c10291476d GIT binary patch literal 145441 zcmeFYW0WLKqb}OEr!{R)+qR8qThq3!nYL})wr$&(MzwACsdw+Q?%n6^eb)N!|L;dd zMXrpMnHBLUDkI2$ii*=Q(X+vkA6#EN!!a`xF%sGRvV`O1We~Tpb~bTj5VtmTHW4*3 zvNJYekTtP2b2cYp=455(=ZAB0b~G`xfpcHq!kw@sZM(^?IVMC&xq_}`^amLO@yal; zjo{O0X5(@Xm^_HxQNS1@(L7JClE7WXpBz<68TG8wU{IQ95u-!CfKkyDzO1>Lpv0=p?6b&brQyMWbCz zTE$NHJ6M03n5JRn3T0-zn&^cfH(lbrYJ2Q&ioe$kzxSUF$a;DI-jq4M`lDCq!0yo4 zwosDCJAH3?{H??QT@fT-$Qfc8sw$=FBBUC;KR`@V1rrK`OrU~{?Tju>qtrz;NtFB- zHbUZoNP7n62E*U~Z--P;9|&3mS%NSWGBtUeGX$6twj6ExNWCRLXt}v5omr^*U1}~N zLcP8k+VGo26=`*JwW~iVLY3)hgJ5pIInH-gez>Y{*yg)Gv3$NhCgxj0A*ciue3J*2!7_E-|UwhA)eh!+#B*B}!zrNVOI+Pzk+&fI_*6WkO3l z?ur)ND^CzC=D~f2&@iXxH|-mz^`@=)loc^t?nwqT(&kjCCB*d3zjv1{C3Z&ZG(ZkE zZ5Y%F&JDO*H3j_hrE_c|uu`Vv%C_OBem{i>1t|7F z_B-nc*1!`JNvb1&=gd79F4;YQ{bU#Mnb`R2ba#H#Jf4woa655(W_SIFaL3Fr0DH24rU1gc zB5F@^ivfe$}1k`Lf29h_*kFkHH+iLE}}) z3agLfR?CDfYYnl|Wv#+^41dSU>KDDs^Ma&J=KSf2+3!womOQ#<206EEe@#!qnNlQ3 zTbkpLLBAihH;fvO_b;LfUn#g)@ znK@0_bIwOtBZY&cGDX}LPbGCGnNoufF7W#cn%ZQY<(&uIZaGRb^J!4i2l>~!hdqp}%Cyc=n zkh*{7xoA17k{Z&)%m4^V`o3I@{qnP-O~W%SA}{=@?(cj_H2jukw1Y+NgHAVYh45gM zErN|n#rP0Y_1+Moh}GVi75-Uja9-jRV-FwHwTC&1z>N;_6v~-Zxd$mb%NVs|_LIyizwU>~Sepd!y`YB!XE4K3%trod(7Orh5 zb>oK_p%b@K2XII8&Acrb2EVsEr^@;G$uUKoy+hp#lz)!VvWz~pOohd{GMx2)P~1zW z)6GqnzRPQ^_b`ks^A?EC8nUfiHJd!w*VD1kUvtlGl~UU=y20VSrFRU+u-rz3qpwqW zmvcQFIF{GDYJkgE)Ckc_TE61mn^+kLGYIg~n9642DgjbMH&bhd@?dTF^otSk-Kceg zt#{MsgLZ3S6Eo+%#<-02_-ybN>@$dH@>z9)AjWilpEe%uQVXxLiUX{{4nodpsq>1K zo2M>f)9JW_=+2O;*Rq)Shd_A`)}qEitSV)xJczlA4uV?bgOqOjrDet@Hk0F1H2KJ{ zW>}rG;_Xi6ic4u%OduV6)C>jzq4T8NR;r^YrHYHW^KhxGT6u}|UKk-`Fpg-*q&R<& z_SVUcODEw-v$;X{ycW&=FlJ%?EMsPd0()>n5-8YzL%TNQIgk6T9ZQJ5fA0!K;FMk! z5%$NiVIt$t5sUq|J59UaMN(KMf9+n}gM;VQoa3aqHNSCMQy7d3>(#K~8sGS`CVFzT zKcfG-8phpv!(XJXS{Ri`m|<%_nil$2#GWbG>`HF``rF3#E5+%Q*a0B-8oU(q5ks#u zc7s$%zYLF%Mcu3tDMXml$5~RW@4RUxofanpwUz7snV`*`JQc}8S zv+b5xI9AL1Pmh#PH^*M$3HVWNI$#fcw{&ybx;u)&Cr+(tSx7Tw7I&4d>!hq36x%=bUw> zj7t22y?nJBGd_B50=(mK#bBF_Knxj!G>5MxrVcV675%}XVBDUdL|}vZ+966__nGR# zQtrA;tuJrKkTN)&M3wrM1g}y`=c)AYbl92gUtZFtBGQn%Mn{PET>;iRDsuWjh0xYD+}rQe~#e(u{kk2ag2AknQ#r&9DvU zwsY6&<+j@4?`ZWIR(M!dwd+0ypb)e%H@R5U-uYMtd2@~8J`jl9SsNrG7e8T{2Fpw5@AKeW%Ql?LdU08U*U+W-zDOCPg`(NDuc805Dq2CF#6Xq zjs7^iZcnOvn98(nFMMk*o|mcKVKHD^-IpTyjjy^S-2~6;c(A=j59U`?r+2rlr$hP- zKl{Ykjch@&3s$oi^!bVK0vq$rkIS_Dn5PT|k@k=mM|wME{a`S;!)PCA30J%_{T=Ey z%sPEiKD`Ep*4Vc-ft4?dMhVNX*>Y>vQ5OX+Dh&2>dh%)5x}w%A?J72sKu)cT6WSaIctvzInhK-UFiM%ajSDJ1gqu$o2rs&+F3Cbv|C2&XqR*GRTr| zNbD}yHQ^Y&-l~;?FRHx$^$~7Cy&xn6pPMF(T`_JqsjeFzyhW^w>MBnDM-a-F0#ueD z)dv2z9qte&SXXeLpo8eLvw5EQf0l)(CaHIyFgC|^xXcTP(wiErPI#bf(iLLSf4$8pVKhc_*^Iyr>EX=H&|21P@;7vqtwgNNu zEOKP>6|@1i(C@+C?aphPx{x%B7^iEfI;YXAl5pcVTIsDSH7oXO14FBJRZ`4|pAd_uxAEr#@b4vdBv9nqi?cei`!xCu>rZ+)z9pZqk3b zBu_r}?s#~g7kYX+-ydESry0)$o+*j4jZ~K9ds4J5OvwZ07SzF3H78KWNy4R{sT7ID z5L~PScoh;HY%!HGR{!*ntj;K%uEucCPYQDywrhG~$HmvG*{9uGA(O4I(@J`gLSBKu zM-6Q>cJsp7-7Q_7C}Ka%Sa_xt#{_lEL6%_URBT4gmGyGz2-fP5N6m<`rn*t=!9^*0 za^!4TXFUertbym`KW&lWC5L)sdz#N2LdhmJafLo-FMRKB%@Wf8AuJd>OajF}@b;%? z=lV;8p8!CL9~q;LJToNp>(%4+f#aEz4#{Mo#EjRT$OkiI;cBQdmYm{%u*Vyln26l( zjrHRm8P*Fn0)yx(M=ur)Qet)JWZ`7RO*l2>30Y0^`7jX$haO7;M(-5xVVC2Z{rOpj z78^GK+6HB5LUizhxUvk~Ou0tXw&SBaT)tneZ`wYS-I_?We+$MmP@%v4dY>b7( z5z`IQu0o9rlgN~kSK~{FN_C}Jsbbr4I&`u9R=KCiF=m zOnlW|zQaLAU`04NZuonDm&mU0A0ZjH3VZy5Yc5@#cFB$jw=RVi-SlA{iHN>wXg%K8 zH;vETFF(1LiBKPWiP?tvPc{}R_Q`Q6^>0+{{qm$+i6-{7@XMo^muespmo$mwiqwq& z!BYtQP;+;u@95K8Z~=&L(etpqC?-CY11H&aDZgo5gnN@;N?X5|8eM9SX6W!xV?l2v zaFh|mBM?*lNF*u=f5rcECjBh5v6h#_ZrQ9Fmmee!Fq&KMf9Tv0!2&-m42YPX(z|Gn z9xyRGxHiFWLLKTmzDf8X(>*okPjjhML&rK#Z}4FID3r-)Le(54h89_V|B&UjNEw}J8tk5+uPwsGuhOgo_1cKbI(T`$z$PBPRscu@NC;08 z?J$&-1}FLOBM4Y<1?SMpr5M>9-4!(mmIK;R4#(awq322jf2tSSw0$nsRYTZYTTkrZ zqyH%XE3M-4W>~(~u*+&Qo^oA!CSKn3&5Fg2+ZKm!0#JR=4L74LvGv!}M@Q6XC9`j< z4l9uIZ)uQv)i1A9A#Kfw)!b2OS!K&rL9p`@t0Gmf>v3u!573NUT}iQT&P4gU7pgVi z-QZ~_nbosoZn!~Weqnj5f|xN1c>vOLbs@x_c~Fe5GopIh_isf8^+oOAd+|Jp4HZBr zuuN_VIM!PaxMKOY<7-ri-#);py;?;irWY9J=%&9Bri1k>yF$u31UbBH(VUEPYsI=m?OIALRczAu zi#IC=5tvkan>MB92=HhH_#LPF4JrY2891ms`^-m5a<)zXeZOj;6KKUlznRd6Izk*@cd7v{Ax+|mOd zJnM4#-5qWqG#kd`z%blpe;>C@fU5Mi&fifF9RpPFEo>`V$fvr9i3z%WyFYcYb-h}n z>Nl=L!>b&)jIJSo5E$$x<_3Gi%GESdYFE4`n#A*G2tSpn=owGDxo9Jvd?<0lU9`LH zBxN=4F}piw9Y|SiE}53|F!3XTpdg&SvL4hY>>h1LoTn%5>XrWHhbJDExAn286A)Sb zV-h7KqNRAr6O~5QUetE`&{~>N_$v z8rSiUnU7h*JG2FI5{kJ_Wj)rKyPSs);P^}hM#*M~A8(!^_?{Hk_6Ss@;ju~#>81~t zoHl~NiIkl$)^YTV6Vjdx`{bpq6oxJ8xzl7h?8VL80>9j2H@ni8S^|Z z;W7=O9RiAXA}8m89^{1X9&bORt&f`W`+XSf#rAmSG2Ox{Qd=*O9eXPE zQf?fOZKD}FmB%@d9NwP%(&!a2i%^5A?avywvAH_x^m(OQbc9w?7q%$fv7Vj&xGPE3 z(AV-|pJSs*VOZNK5wOrF&b@Ly{*QSQ_GFfYmu())A)e|Yw5>d0`U!R(q@ z{7er8a#>?uFvfL||vV7XDdy-e&i%e%<#XoH_} z%jIo->p!DWWVHryiE4Y5mXE#nJG%@tsZ051Bh}mJY<1UMEj%9=H26|U!7Nt7)ZBiV z_MF0Pxo>=duU1S7-YH7d4OO6Vm6+Z zT}3N3!6L{m@}AFy2jQ|qVj@jNb;R>2r+y_Ap_iSAPD*`i5An1Xv~QPJR>K2P5XO}> zA!gIf>UwI!atH{ia^_9=iEI=GB?hkvOH+E%LOVGNo4e04jxMws$V9Cw<%F@Cxs2#C zEH}#B_2GPKW(US$UrmjatU+iaYL~_@Mo`WG*m34mjCHhF3;}Q#1mA{}iObe^loJ`; zO}t3F`IOaSSLfIG8E5Z2kC&3>NAzTiuV#$o4z4RX_3N+}j3k-vU)Y}Zikj(oXxEzT zm`O7EM%ZuTK_+m&9)HRTArN-7w0gh9^wYvkyluwF1J3ESxbe+i%GqS1bp6ItEf4w# zBr#N3ZsE=hm>$_F!NqYC^EOAnC2HTZ3PF?L_*#=H_68RqP(dUt_R|3=SkYb;9Y7R`3{;EiXp)Q3I%Y-zeh z^{nFPPKub(7Q=q#U2M9Xl7zEOTtDeVU_N+fn}xiAT)T0P1+%KN;h6FY7Nku#@KzZ*Z(o=(Vnmcw4!bu(cFVChuWcG zBS3-1Lzy1+cJ$GDe;m_#LY)}L{pYI%^sA=o>T|NFU^*G<2;-aUMG-PKpRB>g-k8+P zz#S9MSNv*$zMJobIe(vZF3%b!oPVTfuKkYj%i2r0nS(9t%Q)FlMxW7xIZ`|F>kklk z-@iMXQHc2!{OhY?@I<dw6wB7Z%C>%Gk|7+Cy)r98l9l~sy!pP!W8AZMrCT539bRnz zmE5F5+aTK`+w%!ka+HL+e7YEk3DwA=k@*?3_-9+*?@fjN4~m~}s_%0JO2Y4LIw4u) znkaVUnV!#9T5(dp6fqgj>|O5n`;7sH1$_ePr2y%|oT_>sx#Gl3d@$-;!o@I|;c_a( zrju$lfTxe^a&=$v-|~f*m(q1aPL7?WYC<8uUR7S=W`V8m7J`%oNA5eMiqITvKkl^0(jzbC#LksB@W z+Z5S@mq+!kvRNyYgC0dfPZ5r6Zmhr)<;)dd4Jj@ruTP_8dqr#%s{ql!1V=7iuA~(}l$BOcGc#R{5?%a8YBF8;)C}~kS_m7rmznjJ# zQgb#-4+HQwJ>kH|u{Jk8FRpUmf`tsC8p650W9Vt(4m3qHKLQMv`Wg&PnK@d4Bjbnp zCAROet&E;b>pU}cr3V>1!j>BBk(^UTQqGyX6wQLa()1$TQnTtOMvV&;a#JN66EhbmzF!_n5>i1S;SZHmSvvfw51&XziDDGQSy&?jr;skL9p>^hV3&O&NT z39r#j_!dKaWJ^a+*~-SXRCcJHCPw3!bt`&Kr7(D^0-@b6ijcpa#VCK&i9i^&_pIUR zL?6QsHew^S8!O5>lmUZ*5i2~{=yJjta^x&XckRD$9Q+GIvS!hInXU`xI|~s@lA7;Q z0jjUWQT5Vium5q8R~e;JiB_*-v3_`o;FJ+E*cE6XvuB{FSuce#{hus}mL)Zam$GJ~v#|x|U1JL3q7SxEY)F#zNzRFSZdIHCm3%s(Zmho!GXdXl8Qc1KN@i znbYH^!XL&o?(#avXtN92vJ6Hw?u+l&ohTi%j9sn#EWzm4)Szk{#oI-i$4|J$%J(Ek zzG6y}T;VukcjQ?YLx=2)tzT4YOn#V|dlgU-LHaT#j3ksO{jFG>rF zZ_EWL9$iP1rY*b#0|w_tA$v?;a6NX7j8aXDE=QQ~@@%l>88PY88$w%98#(4TA+?6j zh{?a=b4 zy`{#R(=aTyD8-jpq`}L)|xMn6nj=_ z|E`^X=)M)fJ&MW}7jya)b=UG8g*#1}Dn7`uZ^6&6pqp-P`(_8XyntJ&g)IJ{6& ziq9MWfatFTl3rg8c6Lwi#*fy|)GaG*rp!VVBNVg^Km1<_tEMOgND26#Jfhc}QYRnh zpIEH#Cp&(fAMf7Dq`4o^8DP6i5GEJbop6_HL(5{f_S^=zCmsY2K+ty9BL)Tn^qfB!se`i@YCv=2~sPf_+I6a0c(`W@j09g!|_UU6J*c8l8Atptu&-2 z7ZIyn$D~ATVi<|G+kJhjL%YpmL$Im&R8~gOL5MB<{!W4)d4zC= z*twlAsKToU5;jZHFfv=-oPiDmPl1fVFH^$U`;P7~8CK67A+@;potXXDr>Mk{6OQUI zMx|A_m&k^RNBAfM+)A!fS*@kKSe0P_Pxi5fg_##91?ISY_)q;ey%V%Y;!bOz87X?QM$BUVHm9w<7TC{3Vc*~S8 zA$07xD=%M^>{)?2^Q=q7*^Km+Y8mQa^_K;x1yw%NF2<8Jht7EeVbr{|3$(jwsKae5 zt%=OLnGtzh;-4wHvb`%^w|ogN=gncM90j1?&cXm~Va!lU@DzSbR-;%`y07(K*yB1= zGTqcg|!vkj~p2jk1`9BDq0V^);dOwD#jG&*32s^3*x9` zcyj$8N0;?86yT@WHsx>crMa~yKaC7l^@Ek{4@EhW2++fMJc^4&NB08@gz}!(!Gb;e zm{CzWVzX~%3j3TXEpqy+&y=1~SsoVHxouV-1UXGZU zzNqO|ibEB|^QS?bUWdI5ytw%r`D&5VX!IPl#%`}9bXhvFXxywVA+E{$+~#5kuw&u1 z<^2*SzNDE}oz_O&^^X2OZ4^_kI0np{CU_jgle9#@2q#as)8W-0yD#BVht}vfsVrd0eswo`xpuDGideQ- z3+ub8U(kd=R$~7Ud5gBbFHIgTQ2bU95-%}*U40N&a2wUK#SEF_mjC_6hF(Yp4{zmw zIM=1t{n|vVPJZc}ncnyysmE2pDrGGtzapW^mRLafveEYaNlJIJ-CDh*`#EV-Z~;OHU%d1r;pKu!-0mtZ-3l8Z%nxQ2~a?y>Vf$Xe$TvV|X_YUkA( z;L3_Gs@@4%a-csjlF{MVX^K|1)h0}_Z_vDlE^pi`1N4^<#SyG~yjs>Pspc*a#_0-f*KA-ET` z$aE$;+&U+BSnYBTPC|kymib`V7yFpX`GSL7VY7nDM=h?z?p$HDatIUsHp(TiesD3o zY8}4HweHqBGH4tI{pXi4z;iv(!82|CH_}R_$FcVb;E`nY(rESNc^37kmaELCLgHL%;n|u^z+{mO08|2Xz!`B#A( z9mQ@IHY#~uBj@VKdg}1f;GL#yCh9DtG^s?ZxHzOp#k|;|gQtENeT&dg)VvzJw5X|t z<6VbIh$JNm$>}lfU6T?CTXL##W%#smx2=_>FyF-+b`hkY z3ypmlrWD1De{gH7x1FhihssWMrmO`W>#sj|u?uj>(YX+78rZfEHx@aTA&i?p>B2O5 znEn*sRf^)+n88uL8&AuoDOxg!OCQMwPtJ)LqPrku_I}a-m$xT4M=u6;arJ#Iy-rGFDMc(-G#w`>H8s0Q5tmeqTC*@ zaFg=ec@lKS9T~d6-|TaLB}8H13R%PyXGEPKwJsa`iwQyxyaC*7oQLn72ZGT_SfhjU zYmm_Q`EBE5M$KXZ9fV^*28g=p?tRnR%rHlKTKrebu;1B1C3!LPRDKMFf^^ zA%YV8uzj%%*4(q_beDX(>@ZWj01`dykr68#{c_!Xk47EvCHM7yVro z6T=T1?dhS2sgE$&-_Qj924hAnpc(Uu1koWI%Tb!jRXySB3mD#AQs(pS2u0mw!LwVE z$Ci~a;M{30NUEL7m1(yHXHgP=Ku;YXrYbAZz>I^9)il@TOSoBA(n)-4Q=q0x`;B-G ze_7k;_%Qk4s|T^1l56FkH@w*&!-`SPdwwLQ3Dtf$bWG=6h@vh(0O30uyUUJCZ=sYW zZp1IHO$LpKsve11yTe{|pV8RCl`jd2n1#y`JRo8iQKP}HrlYnV6bg1K=UYBY@Q$H_ z!8haHGocQz;wY?yUj|R_BuXc~A&|p?p3-R9w?TZA*ru#i&OG#tp+Q4rbBSjsec2lM z{5E=)>>S|4+okDwj;kcO9l!1cGQ|T5_X(p;eSAr9dG+(}}tVc_p znCq`JEIKsuv!GbDO_D13REeo-LcxRVrjw}zCy0i!Ll5Qranb+UBfI@?8Qp-1oP3$9 z7~Gq(R^L?fJGZ9!A8kvUY!%w`BNo*;yPLL^4RaSfG{v%6Jy1~%ro*E6uZ2oAg*p_+ z5X<{~e%=G)w_!Z(R%Jap`vO}L=&5rCu*S}GJ*V>SXg%_H$gbLnMkMX!cdwB?2(!es z5*{VnWVQ~=|`N2>tqF+`Lg`aZDw0D zzfPhSsuC^!h56mJM4tuj&0!35PZb#+T}#}U86gHs+}Z|=&d$ng;>t#y;&()&X@xdD z`GUP%;tsP6t0o3Db|L$rbH021B$dFKGM9DUsk5|LSYmo+k+BTR}8I zWqW1r+>g~8GOt(ZCqYdchpYW!S9aHgTI_GgdhBSx%ngY)N8n6DMlTwAK3ZE!D+a`YC!G0S7mkm1-wWbLuhL+BsLl5jixA zvX$uYmP!KjUX}olsCInTyXEv*XhX2j#@uJ-_~sY|tHO*a35wQgN!bor#zSrzvm3I5 zxvga@Ru-*Aa92uGdoe7!3L@)f=NBekj=_;t%H$!3!{T9?Ll*aVHx5JGr}$z=)1NqE6V{FvKFBbky`F0yc&3_&P^K ztk^TUBz{pXF&{M|rV{8+MRc0UU#!g}laHfdb$GT>;jtY_QIQ%DEpFi$s*IFkD*N@}#}B9^1EEg_#kw$f`aT3~hV z)o1k3O4?0wHY6MQ61R8c$lTc~+<6ew4*otfcQ|s0G1^AeIB*m~w$#i9q=?U?j7?W%e~M!a9qH z!6J;kQ)38g;(B3&2YH_-f$ApoxKn&m8Fh4sM-ZzADs6jJz9Fq5zL0Pz^+>gw1Y6WI z^eYcFe$pXx?EK=-qK{nHL1WVrOmVsBCX& zWWpe7;%Z@JBH?K0!60nm?DW&bQN+&1-phtI5h zdNOnWgH`;OtN{(qPW+&^aWKe)obY8x#7vu(gJ0bd>b z-+hCKjh&N&<-g8Y&$nQ`znOfF+?YAu=Qcum{uD&PfKU`d)kvE7hD?tN2?-Gh388DR zt~>PYqh`gkew;2G&wmurzn+LPlpZ}WDM>_3lzzi;foJU9FX0a>nT0ugYT-wxerNrF zF>{s&bL)=BYsS%>v#vVOoadG2}m ze7nkd+#eeoQ>#$Lj3yKS9`}50*le~s$fVF$X*HEUCBHpgrBHsYndNxcBA}t6;USGM z*xnt@_}$M*c-hreTs{-o3GYI`b!BPKjN zzNNmQ0WfT^-RS|G=I+$pBjSscQ>1Y~lyh5eyb_h#95|^XeWFpy=63fBCfn&>g zq2sEX#tr81=DG_61MUL=LQM&)4eX0gV0R(mbE`C2E*(x~JYDVd06T_10C|^rZ(IHE6MPofSu-@qry|xEAna zddLD2Zw^=`%N}pD-fUGwx&n@UQVUr2P=;Oi%P46~VR7;0TEmFx-G=~`MIf+$F4vpR zzCN$MvVC7IoB+#J+5qKS(u0mz!~<*~Qe6fRIY!$!tXFFfq}H7>pSIj`p0rI-CqABb z^y4itkuAh6zJSObBQ7c_aXX$BQtN)&_WF9;`7#zt&j+3u@=>cMX#;tdfCHi|Hr_o~JVMU)|OfQ-I zlY)%we5Xf0|1=m8*SP3u;SbsxxsnVm%a>N0qsds`*(TYA&*#h0QI22tSKj!|s6)EI zJrGR#9d!ELI+rNk+{#~%Ej?Wi%i5-RtQ?>HHm8eacZX96skXKh7OIYIg$i7xGX%@k zx-`(F@bgGOs&*CnDd?pT{(yIk-WE7(JIYSbu;#bbE>j|3JMXb|B$*FZ*Yha)3X@z+ zKBg6@lTM<}UWS*vY2Fs(pfvCnVrS=Hmuue!0mqF_aaaLQn^Z-PNv(o$6^0mfy5M~g||o7 zLA=a?+$bxfkn&VmWfVj}ryIcpvHGFJM1o(Q5p4Z0mfw269`P z5{S(9!1c?m4)qGPDcLSZkbgjz<+e=)y7i-0Iy;&72dw+?Y~HO13k!?B`)-iij*q(k zK8CsuF%6&gxHL;5G9KqOP!$wpWD+v@4EqB|2)tyOi}3Cuzq3rz)pT5PbB%&SBaPw* zoe%1?{ThPvNFpQ_kZ*oEa13j%&pAFezluL=+40pz5^*eNHQMR+0hn=RO#}HPotix3 zdb(%Xgpo9!DU}NhP8agMMVY z_bX>80yPIq-&^r^GsAWu7_maJAo!_-EcEM4|0{mh^s}ixgSJw$VK{O~UEinaMNLIT z<>U2%yvEDV8wku>2UyoHAd(n*-W{Eawro=pY5z1S7Kr1rTgOuRjo`bv`<;%)km54~|bi4e!Flwx}!i03K*K8F)SCQ!EfAnhJX?XuqU5@uGnk zrFptCo(wMr3R<7{#KJAe->4&gP|?nv2x8)Szx}laGZ};UV~V!TBRZ*GwD0in@Lg6l ze0@H%xk8^_6-q_notGOe49}?YnVgDfdO#ZTvX=)`3IhUFim_?~++6PBRes@zG@%!Z56LSBI6re4K z>20nnLIdaq$q5Ohs5{@rBicQz+1r?4+)2=634wkV@0XXw<0daDd0l9a+~yKjNWZfM zv~qw2-(3nq$p@TtseX^|Ew$!m<$N6GGf>8HSk3J(npTp%e>f7}UbO6N`@UUdu-hnI z-b^RN#~bhV{sGRQO`qCghNEyxvQB|)J<{j+nK!GCM6{RXsz+>ha&mIJ-s#~a<@>p- zjdrx6?`LDXKgANC6$3Os*;Ga${}k_X)mFfsLQ4ft5S-^Qk<5Zy^0PM2il z^K26(jr=eH-yaUQDP%PCdH4HI(C6T)K!fD9xk?=TY-z3hrI#wbzh2oRHuDyrw z3oBD}F1beMvlW43aKH&vObWw)bex@Mh`chRCVrylc@KUJ5WjMFcL!h>>2IG2J7`aO z7nQ~sm+SI+N|vSNK#sqi%1@b`lyxE@P(Y11>3Z5u;K`TEVE@R;2y|@Yi9e_R!*9@X zZy^QuPyP{j{tJ{ZE~i6D?U(n#J@-S5+sP*?H!Mf%>?5lwJtx4YOUTzqm(}Ija@Coi z7x+J!74Y*qF7IQ9&ejvl3H=l}rVKi*v*+geSC8vfHFBApbCqX5f6#2{djOJ@lAIDP zpHJg+6orL_fx^F1rTs&KzHO7%{N~^m$Y;G}-kZU1hn`n+O?*FYd%=-`A`M(VrxrZs zaBwKJ*J``~)D`}RMdf-^U?@Zi8StiF^qSyyIR%D--5sDz?F~f$XkvfcMr+*xrFbTt zZGyK(sqL!!E!+Ec45%OM7W1OE0tfUHM}`4=?lUy#KMTa8CWC-#?pcipLX-ktnmgIO zvE%zj_qU_N?Mm(P2dzxgjGFEEhr!-_kxY*7>j^N+bpu(021hPI{ghA!Om-cWv`e;A z0XHpXGX#JoSlwWjcyJb{ms-Pte{9?hD}K?WYw&(`RRgvO5)#ss{^>jM9IZapMOfm+ zaG83I9uU}jKm<bB}vWSwVlp4dEq|@$r2Cm6_iTpWk~`*+;KA zYh-ZH8E9D3nOvsg92Ip*9V?o8K<;>dCBYgn zapHx&l)r~-ybq0x$l&F0I^;VFpy)Jf!`z)Hv~fwv%ky^_;qX8I4Y+LwhUYXEv)dR{ zAYTN7mj4%JZygs^_pT3PqJki(lynFZgS5neC?O!-Ez%7`w}OgD=gM!mnA!W@Yp-?R*LB_3+LT$UCv-ke9jR~J%7E*&cXwBy zSBqt(oB{gvy!nK$sku2GC;2G&%C(zj@sE+`MJ<##l`OYg&cdO5eEY$C6C0X`p*|-s zk=Q$xhjR&?JjHK_AjhFCoHk?6N@&Lr7HLk)gRuBwAAVz};?GTj#q}FMabV8TEb4pT zeEI;iU^Hd4*WWU3Fks3Mo#pOs=X2U@B2LIyjbxPP6-2RDuW+VF1=0&(pX8mZD=tY|(kZ8mj~};dgCbo#VwoHr%^+!mhhURjCRNtq%!+FT zb>s}JrdUJw+1Xi;SOw?sS0`$ZRn>JdwetWlmYMauK$_xhwPEIpk$ThB@;$G#wBq>} zd%-+o-oF;X+UW>Elz@=~gikqbJ54;WYY=YSRm~5`B3O~`XG_+d@jPG^c`xTzlv|Cw zouF$AZ*BkKht0CjRd{wyIp)JyX{$9F0K*9Ya!Nc7+bVc{&ODI~vk{Tn)Lcm(YmnJ; zJCNkJ*b-cnv6#sKD^q#KUc1u^#+BD$u7g<5RaB|$*Cc>7vDs@A9_!IeI$OG{!$mWs zd;m%u^Lw9E#ucTdr9GC7pM_F>{@@)Dba6{q`Pxhg$1wBmS8LDx5?sdYCH3?sBISjj z9Lv9Y6-IBGc{ow);UT~GgwlP1hMzD1F#{@_h_`1nvnqXif=A2-pTW=T=XCHB>%F1O z%uILrAAJBT9UQoB%QYZAH_?k|P0s*$ub!vTlcUPQuRL z0BQnW+gh*oH_66{wS|hDRRYwvUc0a7?tYZ|(jU-4`cOQQr(Xd-WSEo(G@FQ3gL-oZ z@GA~%Na=_bD07j|1VM5<+FkarWtEbFm542YIplqaffv_)_@1MhtLM4d1nz2y*ajH6 zgY(aeeF%L(_U|*wT@c6F0~C9`=f>2Jv+?HXPQJ+%FyL8=>GalA&+MKTZ(YD_?RI(G zSXm5pr{KMm4K~DYz~h<%iHYH;Cc{wZ^Con=7r{j)xI@Be72B%^{t0_KxhEyEiNt&)<`GW3nYodI~Id^q{-@Uw6sP6 zT(~Hp9kCpSpu|@@uSNtagwz0<0cM{~UuN(a)u+`T*PgkQPS4F?VSSJWqbPE+(Re9- z1Po%myW@Lwp}hQ0&4t8u?LwHj1wHyJ!Tg8#au1LBw`Yn!9>rFN3&ot0k`gBu7gE4n zel)WA`l^&+Z!(kos(Hx>Sme?Wb;5Rl0~^nu@yK$8#z?~c<6T+LR;4I#z$q@poXfAR z81Mqt?UVi=mrxe}uw&K2!keF}DNPKcy*Hibb$(6WUtHkj4g6>`A z2qac_TY94TY-bORbeW{k+sE~Ug7;@pvr2}>r;O6 zqmQ^4R)zP83+(vyv_yZSVa7%DMI`0_EUrwvkig!3Ni%yI^Gob9(zGcLPI#aGg*5gd zh^RTz>+%4K0Bl~oq^Ib^|97ZvX>RQ9z?ECBUc4&ZKKutjSzT@cM zS2MEe|6VlK2i9Gs%S+Pv@8D%>|7Y+@|7Y;8YXA4(qufF827>CfYZ6^g_Odct^kn(5a|Ejnf*5SJIGF$>jf zdEw)R1vEtyzQes$bnVdkc=i5pk>OUs;ex4}+8{{(MyUpkpM*Wa%pip#X9sj}GH_Dg zuk|O~Ysh&@HwrG34xn4GXbLehnu4lUSi2XWX$~|@?iQ_)3fq*L(bYYW|BpP!R?NWo zi(GzOT(8?9#b6BFrg>p>x%H#__qjawRzQL1E7>~P?xqs;xQ;ltVA*v7CD_J=z5=XaIa(7wABjrpj^%gBU%%8>=xFd0dT(JBJ8p@ zrdeVVha%Ro`;l8%7atKpC_0pQerxUP#VPKWGJ;d21+BVqa%2t`7RrS@djVnR1O+@` z>Mj|#E0EI-{Fp+4?hN;DD*RPO2N5nA{wb zCz-g>p7FSXY0jbOKh80Yi{^U5)fW_WTwJ2cQCsCBwpBjjyYs-G^`g)@fVr%e>ook` z0O;X!KwJC;Zq^xw-RBVS<)J*yJ}~T+mCrO&0Be_B-%T=n3Hg@4arHRxcEUErn|g;S>A`6sCmeXiTjzBjY?kf)O79(_nVFtq9r)Mg~n^ z9tx*=0;NeUw+!4A9SiVrrkFl+d;CpABy^#dRR za50dTWv-qA$$A)Y)62^=;EzK!*3=6{&Cu%sUJBO6C;+v*wiAib(HYC`09mjjXCu(I z^}3uD`!OJ)$;!wi2)e9+l?aj-8%^CsW)pOQ*o29JI2*o+|1?UW>B6+@iV53IHAGmA zfEa-I=8JPt?lYA7^}AeI!FSKI9_+%m#~8u4_lj%&t(W36MgP<^*7f8(!_@i<7;ua9 zvb;WRttQ}<`=|QQ!j~@-ed>$9K;qs_H~3{`o9#G*saxe0qyN^K=byIrs_W;59j(fa-#oF(zyD9< z4|o3=>aZpqc^|j8ms8%Ul)K{m58R4fUSki95+(dQgP2m}cHok)2yiYZKzN^dTbEk6vd&*r z^qgOXn*_({?~HEcTx-*jyF`ARTHj>%q%LsNbAGYQm)ylqF_$>dh;*n=U+(heGlxH; z3}l;?1Uf&^J_12=2GCJKfEhSAih#BTlt3>aJ=gM~>%5L@+_u4je~bp*BET$*fp(~< zsHo!%E@{JnU$Z4G5+$>6usH*$?-n3PS>{^7WIO<(gCri6oNQC3RqKHKwg&`jDc?ds z!v8lcfdLb_L0i$sZMGlo&k2|5I-3_cf09}w9!Ru5>EolM6oEVg!smt3V_Fgv6a?y3 zdvh&Fy2C~3^auYFMr?uDraFH<3&d)NQcR@wVQq7I&TYN1qKi>}E)jPf=4QT_wcR<0;)-7VTo4Du?3N!kW*|B?OKxv3 z0u^Yy=X(y?8vsvK|M~Q&%6U}_AO|ompik@#3JBnT%`)t@MnxK+M{8UH^oY1<%mlM~ zLEac$)%7u-)C44JN^o#65An})77lz)T09=w-xmc^%EK2FNR~GqT4RcRs`*;i%RF0Q zZrUx0fh6-)9&V-880R(vW5id7rIdly2YQLM|RwsJ!;QH7( zDB7UoX$;Y~`*EYN?kH#E3e}U|-rfU$Nsr!S?#E^q_(e=}RQc++>X0V2T6ZwVS}}+} z+0^x`<>;CrpkwZXhSxZlt3Wrx0-5s4E1B6Sp$uX$?-4 zj5UCpRR!CHA$#AT=C6N)Q>+H`mLnLrN~%0)3SpR+YiSF1QWLz|Vad~B7+A?2aimO# z*F*$Q1d2fd1=G<M~9y%Ji_l-l;qc^sc zQ5u~*3PgL~T&=QO7JFgAks2i?vhwftLi^jH%V9O~_3liptlY~zwZ=w9Ox`Tl!RW2BG0;(; zpPz4OX}J*Xl8XqGm6fsYlF_4I12nQZ-BdgR;Af)T{6A=+KnNT#F#-hzj6n9a6og$3 zC=M3DiU9EcD!StQXt@x~f9ugwb2vmdC&}HR4~$4@X(^DJ+f5?I0o9lQ3Mt@6#C)%4 z!J(LKAR_#Fw@xt`4gqL$KFi-e~Ii{!Cf%f%b!!f zE(4;UYcbGToj$dELGKR1V~;Iw++e=?FQpWr-A|SOH)?rl+P}w1?ZW&+R=Y8Bm!)Ux z-vUx)<}uX}@Lv@xE#E_lM*Omnw42FX)(#0|;w9cFMUJUvM|=rpxD2loL!j~N#oyxN z_6HW%eJK~b3+o9X@6mzK!5JCA(-pxm-@}Z)@?MDit2e;lsBA;g8AgGQ+~5_+Od_auDk6_CfBSVu)1GFyn{)YQ;!N{iBJb z?rj)2(7d2Jy2NKXvs<^Qg2aapi0mQ5t3`*0_Tb^07?`-EDKXJp?_&@(xQi`RV8txC z_s+J(gwwHAyX0(c z1DJnm3C})F>7@}il z(~VI~yb~eI@L8MHt;*(vIs5C>FX_uuzu+ec5|7?Mb|=_WJ$d|iZo6AVA9!BEIzc0| z$Z=6=M5%oKh$$pamLXJ{IeOT_qz{k63ZkyGfj_!h1W_+m%HCo|5x7jlI{Gpn3Styg zRB(qt-eWRM3qJXQQoVhQ0vUg-P`@7dOhPXiIw0vFMT%Oj1enDpBvd;st4Ym18jD*7 z?lSl)Quqrh(>NBd#M7~e3v&+(>)AZAW^AbFGf2U6pj!?`XL+1kHW2&^35kgw85yba zC?^RB1)b44V3MkQ=4;xQ#pE=fl%vibotRf#+~1#VvA6POq|`IY=jq=As&l04^cM|F z*O`N~PsU@xZQ7Lxips+W56E4(CV{SHF;R0!;WDO(kfSIFni^5*1452P8zGPDcTU0j z<9+p9^<10rtEPR$PDTDS4(+M$dd3oAOmDGyz`dj~f!ck2i-FlsxXs_C5a?fYJOkwf z%)pM$PJnju)$&JyZ^gDu3;9?&LUz7O_1aCQ^{#aSy8fRZCE#uiR$4agB4f&Uq#t+B zY~z&i+$ixuerJmQqS^v$rwABuPklrzYTnfJkX6@W^7{{$x&GbdfnwvMuc9~B2)yNL zyV_+Av6b;a)_@(3v;nu5Ch*sd17(O6hEI7*V2?FDh7{f0i@}K0wzR^%5l6 zheB|8R-qHfJv~~@>mUr<)(gk`*!E-G#DFt+IBRo0ev&ihq*wzKVV3YL@`4p8d;Wk zq$hx=ge};(ByT>!Fq91cF6ItlSM))G5x$K{Hlq~X zZt(Z}`EyJzX?ne~QK_OJ!ZA4_jgu?*P?(rqZF`PGZHnKhOiQ=GB9ie@+4DI^x&JB= zI*nLZVx?P~zY)yn1I)8@ZGqK>F{DJ%fge86!$8nxYnq~%bg8?m(O?4c*-n5pxV5#V zq^ztBNL#itqkOH$^=#^pdD6HGQgz(RMIqs1H! zAqTQx9?x#QYR9B_Zb>y%TrFU?hD?HG3lQHI4;PS>0f&nCpbq+7pq&Z2MV*QK4#2WR zClT~HBqZdQvkP(H{9;wHh6;az&jj?2hmwYB5c#vOvv01}F)U+lO4Z?VQ zVEa4)OA}O-(Rv>rNXvKHRG~3uiP>rJ1o_A&9|6F`?{Oe&UhKj{Z#|pZ8@c!ZV1gN@ z-N|5>_IzA^_}&0LLg0B??9YxwK4xGr1}!#Vq3Qr&@sb`rENFddP|+fnOz!-UjtexVCSxSmR&`3+wZVj$WCCQOc{<&?zw8fRp0FhB;bcOU0zP_}|L17id8P<0QsW zps%kFN!}>w?X45`CA_AlorXW>8~x0m(Ra3OM^lZ;SFzsNg_f*IeN?$YT7Qxl&u!id z6y5Wac@ebL6@m4V;$l1`delcvF<@@%2=FKv|EHc^qoV7DB)8iX+oA_b5P#PwDxMNb zl1zy8?p7$(!<>)|(5%cD&CWCjN;Fej%!TV1*h7HiI1XBf?;fq7E96NB2=;Qk>tkQZ z%0>^J9`8Hwf5L~OoQPN?x~9KEh)_R1;^fMv*a!tLktQp>;J=9UIVAL(j-Hl#8)Z7M zaK=70cmc@d8gSiCm$!9w#i)-opa1A;GYxmz88g_o%IG675JGq88 zU=!Mg3KZm5OaC@e^4psAn3T6;Zz26kZ$mRBuG~uVcl3I2X9eOC28I!q=taup zttjOf86Mh#FLzwMdSihS{Cf00gOxlNyn1@NbhtISqxu1|29RTb01o?7&K}sUb#umY znRWrc@bT_4@$3&-E^Ta9dk#Q1x!R`y+k{@r{fBE>NJ~p!_u?=&H=lPrkBhU|GTPlk zx4*8%7a?chlQbQEf#=UbYYFQ;czXFL2;W?OiI?W9>u z55(V+fn>!yf875o#0<0UM*m=tA(Yasp3oG-+){+SfCy4%*n;P_;EBS@J_b)q-i31vCi{J%^FN5O`lOtc9V64 zPEP1mjz~sEo8c)Br+odw%-8n2YhK?}bdP)IMBTs0M4@b5&|o25*cFey0Zyl81MC3?q|s3u>{yt%!-NK51v~L-5>d#?{j_z zK(@ZuE;wC6rhJMp@MHi308*vIwo0b}bUO|TyB)Z2ROpicZ^rU#TkF7_JuV8BYR12YWxcU@LT z2XxZSwLtSA2BKR9oVM#akpFBTglE7;`z=c{j_^OEnPb;rzX*>R+NEFboDH$swQ$-W z2ecbY^xR0OOfac!ra2o_*?mMQ&CBVdz2Fk9k~_78we&+@{i?{>=QJnnW+xS{pg}u7 ziUSUZOMUE*>tJyNwp8G7+5whtDvq}wK5WItlALGzbbSHlfi`FZ7(L*gcoTCMG=4%z zxg>~efGkCAh@_@=Sz>eELJezJ9`8v!j(NovY>oG!H`T8bBP|e@e^In`<#$J{e%<0R z`W(-%?54h(AUe6NejBrjwrupbOqOqh`Qyds?F$Eix((yH8}?yqY8C8M?E0|V@E!)_ z%W-`@1%>Zm=>g?w3GAD2LFy0%W?bw80J;Kz=k_nt6I1*9`$he31_R$eFpLKhv&+4H zJyvE3?^~<^1}2Z)r6!Dq)>{7~5w9xaQ}@Y!bO}P(t(fS$l1}+LxSkn2*Euk~+C_1TMaSW;Qdub_1$ z`$`?X-&-$1=OrF+vj!R%Ty|_P{flO@Cb0#+MlYT_eL$ zk+gLZrDA`{Ry$PgEhy2Ccr56zum}pG$?-Ct5vC&*ekNYG4{VD4JQ3;cCqy_}n6fl^ zE@tbZ7ISB7cEN3a5e2tY&NO@JpA#ASLCazYWdCJRVW*v}K}6_!V|uvWx_tq5%%4;x zATlkuvVzikI;{MRJnH&BpiJsl1YaeCZhiMRXbhs9g6Kx= zlfNv+{QL;0iy`6fKaJO-ig8Kb)+~>}=3Wm}?FP^g(^XB(=-{&&3ac!Q_pj-5Y7jwQ zD>3^mlVT|p!Q5s;Zz!dmRn00%OTWzv`24_#I%-%WJ#dKIqr7UB_n}=$GIRi&>bf_~ zaat_jcJi$VuyBfN$K!{(7iSJwJn>m|o4bYr!Uw1u#|q{b#E=W?>+~#)E(&cG?hRoO zcn^r}W) zTCmUT4Vy`to^H=S8edJ9OgZQeqmf`*ACyI!xx;n1u&?TWH9mkho4DcG*=yA>T z^qu08bWYBwzPKI9K|Q$jn>Z!aFWU-Fu&|b94=|WF#qv&%x9`xvZe+_iOFF0)CJP(* z#>8fYkSn^mNtl0W3?C{nO*D0E(yb0s0#@V5$Jw9mIw49nW+T&ie1#TWXFoePJzQ!c z9_Y z#G+8UwFxgjO<4J_)sheTRqku7k)X<&x9@$ef&^92%YjJaB~#5}_m zh>7ZXXxXp8rd0_+{#rO1a6)J@v*DCkqQ7|bZo>70Zk-L)llgS~Ai8Gb)*~)`W-qnC zZjC9OuSrV_(hzy`Zbg)3fU@f;3-M$*f>a|DH+p*h=wg!nOkv>a)3JNZ2>0*%^C;iU zx1Rxl(9V=CAyO~4DjQ|c+*|WHST4lbTd{A=Wv$jBouJ`iUWz?jK-8zc95`MlJ{|CM z<^Bqcl4OxR=TE=nChiHdx9!NpWO3!yLK;<)jB^hmXoPP!n(V$qq6`I=!kXs(Di^U1 zk3|@Yzzv+P<(Gy;NPk*dKXjkubY#-ovZlRw+$M^39;2$pD52f~b2&9R95Sp-adf=t z*}J(`Jy7K&Zs{u|l8*r@yK#^?0_OM_w~mO)sgpC7;yiFMS2; zbC6D*Pd##q9!^JFzcsxaai1_~dP_A|rSX$QcpJ|UNnvq~ds$K4hncj>6mqAU%};uW zkj*Dw@*!+4BJGB?LeIcBjJ+JWn(5;O_&ora(w?H}i2r%Oz+ znKbbZUVqy+N+SyN+BR7|-IvF8h8*fS8w>O2$O#J_wbCsu7cv9_IUDuqt~)9w#^+Qf zI`v|n`*wS(M2s#MLsd1)V);ud!tV;HKwc-S0L(GOHS69Gu6;_uFaay^O3wM#f_N@d)Z2#cW~CG#PJ)L4~PV z`~2Otp-?qv0q0?Pwdvjf1^MJ()yY_H*tp5a`iRjQ+DxIPiz{=a>&t|W4HsH9r zRQ2a3qA7yG!$E+exT2=!SJZ<*BZWina%--tUVmJUw8Oi6B;q{y!e+09=zUfv^_yBy zF0o#t+eeeQpyT?pc1Xc1g?U#)-LLNTUj7#gN0aA$w( z-$b#8>LPn#TazA&YB5RA$R(x0%01Ds#gmNoSTCzRE~uKiy4xq;e$qdAZWHu|%Ped# zBaqxc?qiiO3m#~5ed92fPc-mou0Jiuv=XRCGq?EP4GfyKE^7u-(mrGt^H9;=sSTnI zTOA$jBND)Nd%V>`#ipEjz2L*)mW)?7rMg~nU!q^%Td7{|kyNKGqfV~pmGtWaxdVVB z6xOTBCgiN52P*B`JuQDzt5y`mi%gDY$h@|v=sueVx*0IKGbMCR+f_2FceQmwm$t*H zulXMb4N-dLbb;o|Z!|q>q87*+7C)~W%gs9;eBX@8GyO!3g>|*h$w4S)OA+({3V)9| zwYfzc3Pp}r2J!_hJva~UoWAQ&LftJk;haDw^vsT-qcvQs!bUEjb-i9+D#AwMlUB*& z4X#Xw`J9f|lNHI{qZ%SMi7_cDU(MYRPj-&Lc93fxC(*{0nj>zeQXO5cGL zxJ53u)qR>@KCGTT$SW|dwyaaNzkk~;a@C8nf=Aa$wP&V0Bgy#z);m}?Y~$-ez&d^RfQr?yiS!lx>C zN#8=PdsP_{M7a*$d|ul$+B#X+JBhY7Q3$Q9^v#f2P0p68?RFXAJbjOS$H74vRpS6O zBx?w}z8^hv@^O$3!18hkosT?V;dT$&$Z*m-hndo@IzwBZJ|-m!r z`;3SX9omg0L4UZtH15LVf}O)_^h#&4&R)$@&A{Lf=~+}nlqB||8d%3!1o#K6n=kRR zH)jHSO~bN%2nl_is?b(BmF|}E^-eR*puKU;c4qOGy6IE9%I!D%C zVO%4J$jV!ov-ZW;X^A(n?t$G`;-EF+GIAI#g-f0_TE^9Ul}}K?AD{0Nm1ZfEX113p zhB3L^wQ)S3aw@LX_o{kJh~h*fwi~TSC}p!N9i?dI8NWOCaNctWy!WaLgm|F9^EjWm zE$=x)9s<9BzUk?Y{d*^SQ*ixKaBBYQTj@-QfX`@G%2!wl1TZ&bHfXa+Vx223nkFl5 z&t=DP1^;R2guvQ#(#uOu4F&H6mhe+&pKT~Q}}!=i=Tte%GcZ-CN+wL#nGFz|!9)cKXS{x0=pq(?sIy5nvL#ix;pR(atm z&pgUG6w(oNH6M0&eq77}TTxs5o&Cw7E~EMRHQJrRAxYPXW(VvWU&qdf3q56-#UPU!jB6^q@a%&WmR7%N?j3fY(zIP=5*w6NL{Xy7|RNzzH8(8gljwJ1&!0VA`+zJZk^ zGzjM^R2bfj^J@5$#cB6-)$Hr{T0?&_VIAL|fckdcHQ~7u5$pHAIQem9b5~$Z65@*x zI9+RVM1QqQD8J(?k3G%RPQGBKv9jE==|DMMk>B5>R%-XPl$2F<62FA-(pG;kk?PQ{ zU|xUXy0SMj>3M(mU?%?h{wi9&hQSng(YBt9Ta=aC+U_P-m@O(STS7pyxH*iw1@F3}46emu9ESQ!S^5F6~dQS1#qG|_K&;dsso?$X)Xk%s8}$?miZ+m_*MK*o6xNZq`wul|B|D?*}HY_R&ge5 zR#{>-E-LY`65)YYVf^*8OA*U89mKDjtmGkbAS>f;?*)0xQ!M}RD;OT0A$<3R1$MV$ zwzK910h?=_n6z|{zU5HN34PHnt3K5DAgS`C&ulBYy}r|7>9o=E zY#Tv=MeQ4VifMkCLO|FqAE-mQ<_nj4MY2o6DHa;q-Nv6w0l$bflVKHY8u@1FVI5nN zp!QO~l(6e>TG25d+Eh|5m1yR8qZhh-XS>$Ni&a%~bNyAyQp7KR-113wYP?I%b{q zD~~3*kR?sG0M`B~o(D6L-XBDs?X>P49~U6)Gvl2`0$hctQgaDfcI}6v4QM~E!oN}G z;p+H>P5xabLOmfAB}S&XFcnZez*3>S6BWdQ>~kDY&5@^aa;7?BeW_aHIonEL*|2fC zh=>Ul?!CHZ-Hf|BsGaXJVa_9H!w@0u4tY#XB>4NwtdrYvW>-!}y47Do zB>VDA_XW3hocEWapBjJRnZgw{E@*_bwMNhH2&$TzPmz5%;Y}7~!oo-$J_-`&C{#Fb zfJ;@t5z!*4W*MSCCL# zIn#lzq%vhH-~PESRfl;2C+N%KH(f|l+;rUf`*5D7CSj?GA2=B3L-tEX{cZ-1$jIJX z4L-9yAGXItkNV-?T+2;<)?+4MUL;AWSnIJYhiJk`3rDu8ePQnzWUu*6!pPXl|H=7x z73UDYE4)ukTpTn76Q%g?c2TT-#ZrmVS<5!e){N8%5&5ink9>os)dA|bW1joPY1~In zG{Eb9uEOk;|J^<+FYf1#dypu2!)Y61Gy8Ruj^8JZF4fLC4yHWT@mt9itw9u31*d!3 zQ$OuTR!+9Tvm+!H-E!69Jz}GjkMd=B_}~5}v<43oDCkOJLqJ;;?jC!6ik^lws9Abj zSOj|=<2`t=amxTygOpBeLM&=4O}ROkI)4s3pl#Ln@H~lTU8ZZ@k>nvC%=P5~j)mLcSs-7Q6_K@8kJ3Y$YpHRjjI*=o?5dJYzRo1gz3(Me0 zM50v9n(^Q)$VzSBK!}o*RP$888FVa=h(VJzN5${v%~Ofe!g}7Wh0=MF9MR=0hb-zY zqXl`a&$s%Es2^1L(NG-ZRZa#}>*Q3v2zg|yqOPC6G{}>=3;xccrly3*CVPFB$2#zL zkwV)e5R+a*eAXVso+xeJgj{#0({`5p6i@Jc2NNTlws5FBiS0nP!?ZFg23h6Ezv4aG zd!Q1QJjFNhv}!nzv}-IrJhk>H=R6=Wi)(XTT4bDWIzl2=c$}FOdcgn5;3_`7Fr{TCZiZYD$R zxi^En+%6S`=ZXd>Znescoz*N}2X>&D_sdL|(5@wfaiVITa^QQaZPQ8HcCVpf{_3b^ zCtD{eH=IowUwGjO)6k?hdU3LTdGfy1o+_2VH|b}lIqG^9j>|E_$PzF*@4JN^q*28C z!LC$pza3Z?UDV5;sLLEAefru(BQja#QDHp<$vtUn?+qa@A{R92xNEJ z=R`p5dB^t@n})+*K90YS>45jxFM)^a@j9*s2W^6`ooJ7CiRq&_J>fMUJ(sc6!90HB zUoT~qcb7rBWObQ$$N9XLYU61K1%?_17idbY$x zOlRrqpFL=|taUG*%F(MG1GYb`XHCh_x$~-4%(H4w=?CO^la(gU*MMO1_ATq}+e-_I zw=)aoI?sRmPEq@XxrX9RT*!a*l>tuNw+Hq1A4y17e{fn4S3TP2`=s60HTd>zDd=!* zg`#cMH#eJyKO@e}P^#(=AH8N+x6snl(OIH!8SYpjZrf=Jb_Zrw;=7U4kwZR*3>yJ8 zyD^|Gch!a9@Cm~xVSAFC>_qSvPO@LDh4AXn=6ykD-VOr2y+jUhYxk}&`)5{QNAUSN zprbyvCx?^gtQn*~l`AxMK3oU8$|#9Vqh9ip$B&sIb((!^q-ThTEF?o75HIJ)#ceUV zcan9JslV`@nGVE>=V1XGO!ZL8S7@# zv&rPKJ@cou2ortP(etBIN3Wvb3~l>&ooZNQEt)Lo>%Fu#0SriI^`VEVdwXUcE%>~tx?_9}iPtQ)%2D|5}$bNK1$>3$%T z0Lk%tS6R9g%=1V_OY2dM*#xb!_So}QWj%JjM=s+T1xN`X&;F?WuF^C{LmrIy26IRs z%n#J76*v+(FS4GnYQu3B>arL}oKIQL(?u&HLTUso`@-4U^C&>dG^+Ov@hvvgPdwDbe|fg~F)>mx@rm1f&L&wGR=V%l$QtgOC&38$0vR3{=Ld$0GR zq_F2*-O=G zd3!hHlb2Z%>v_8w%ru7tvh(^?>LIt{CQ(&mO&AGG-T5lOsC!_u$UB>p@Q?G!J(>y}2i3Sto|Nz$4! zobw^{T`ArI1d}DjDx|*V4HDby3Fp%|1Bg&X%-g|U*P8}We%XqRu{2Cm&sT&)t=!M^ zj&=vG;a|6D=t(b2hNeqDN^dmarUa5nkxa}lRz33Fl=FijXTdH(_IfAFL*?Ja89l)i zCOT45ZWUv+K0$&%$Hs;`wRuCwT~|s9wX+8{mnwUH=1e)4&F<;S^sDA<0ODa=^`y|t zqos*>n~DkRmSyt1u;m~XF>*$DAE3D5Q)mo0DB<83_@ z&pui1ZoIyRcr*uIVAa%VZK7xlJ{R!N+1EaPdJFn0NK7!1%j- z31gT($TPgWJs*I}X&ro=5BwGkI}3_!CR{hsBs|iV14~f~HiOQgWKPqC#*Zu%$X1tf zgH0v8lIx>%p(kMXwaodE<;)=p7&6K%CEY6W`PGivT2iNFCC8B|>Cv9;xO1wnZ{*bV!;i zG3QeVX_!yc49g1#9Ig9!t#?AInAZ2uz$PM(Je+H+KQDl9g=~=D{iRo)@aO8oT9t8H zA4;Wlz3e)!YwpUs;{hHe!H+QV)7#zi7mdbzZEtjW^P45GR~Gz@6_t&~8zO?vMD)BLNXjE=D0TI!hHfu|?fK3Ue+>9VHCbQgTAcT^Kvna6##V%-Q zxUB;@-onHS?&f631WWQVgsu&z*6>9Nsq1h@NmQTi#nyT81oUqa&=j($=d9N$_hl|d zvrxg1LC)Le=&Y>!0b}RNFf1x>GxCl)uN)IuS+XAvN)v+NcY$goOt^uv7<^s5%8T}= zvPe!sA=C;=$2@Ft)cf@ zMb7L`dL(hQDhB&{r|%Pj{SbOb$5m19=1Dfpx<@+gR`N8}wy}g-%Jc^glyvtslSKDD zCs3+_Be1D=JdKs>5sxH+n=X2;D<3>WZ!nM5RBKd|%3QIp^x)ut^Pg=CdB0Z|9h=W* zs3K&@cb70bE2IW(Xp7*$K$bOKf%h*SzcOz1+Hb3NLyWKBC#$zQ63qv&7MMZ>wRcyw z%?I=Dd(BomX9G~qUY8Zau5NE%)kyP00C)k+!k}m?u-*5nh!4L{-O{8;yA@wbdF{3w z9X!Q3XfK?uY;F8LH(LYogKsXArtLKANdWGY+YWtkD;-);-*bC6u(ODe(D#<2yoEQR zXnl%-x0lR`bsr3u`*c6icbsW*yy4^^@67L(t7FrIPOW49P7xZ;I&KCs*MIY(UewrIgi zuO5Z|OfLFC7iuPb=q+lECX)|W%Qg9hiF%+LGImn@34iGPP=2Jjr!a+$y_+e(4f8O4 z{y0Q1=sd>?ZQ{Aq##r{w_H^9`h}6v_oW=g(bOS)H7gEs-nHl$3>zVN4+u+|@ zG<2%S8IiyLHQjySj%iBl4b^0K?#++HX?3T~u#@2cpU3u3Zk%FMc%4QYzVs(5HT$Fg zMz>s#3YmBluk_&sUSH*BP%qZuXHnPMTivd;kML2zYY7lF(RuRZa7dT&O6^yv`}yC0 zmpdTl&gA{UGogZLQx3PC4h6ttYdU<~q=`p0*IuMwIHF44em_4jWY|AvATG5q-ia1d z+sdpLvbwSI6vEn}p3`j3Cn$Lu_($P-UXa|v3wegB@d998ifeqF6Co>RTV^4eTwgl! z<D%)Q`WZSC%iyRi->#0X*BIsJ?K+n|ioDT|mooy6 zfpu|h$=ufFPpAW_ucm#y>U*p5>${b}J2%>u6quqid{?MHuN;TaeqA}16MxPtdhdph zn5g2t2S%1MLo4W$edAtk*~gLQ5#{D_+n8mziJP0lWCGv(IRE}cVck{V5MuDCO1j5# zD%}Z);K07-7I?7=*468`?kQZ&vMzAQ*f~Vq(9=7yQ~q>MuUPxK;`5(ZY%@Z>6n_f8 zFQ8lg+GOH8&6res(!rtWn+BE1It=d3TvILl+~@+GxD6s7^P=Amn%-*X@{F?K_U~#p zd?&>v!TJzfuAvb$SSvU;SbyT1?A|Uq_J>_)Dt{GiAN;NISxm%BkG(gc2iR2KYi@iH zX1-Hqo3fsN`~LSgH|wshBt9&-@}t0KkxH^qDVIN|KXinPw_g7V%24pI^JDS-t#iusy!lNF&)6K)5J7uiw??EnvY5Q%}? zo~8jQ0rm5D?|$9{&*Cu0U|#G*VCm75=<$)LG(8pN-^DjZ2?!mnq64kUYjjA#pTG4K zn)_|@PW@=F$;Nf?<|;uV@1Sj&O)x}HOc{|D&0?P^t}Ydt+w)aKCg#n=VH;zmA@}Nr zC*$KZ@6!zl-(43t8(oz2UPXHpjaq?`500KX({LyUJN2+pgtex}%bgDI{t>D6k}!7~ zvQ6$PdzZsHitJ9!IA}WC?dfN})`HIT8f<;3*A$J8p~GU<6Dv;hPr_RdxZeT~ufyiF zzsPCS_8e$1U!aD8^H z%}F}_pgr9Wo9+BmQbH_jL(1>ULBZV+c;@W{HB#_Lsys&sdulz5Vf9W3a# zD8!y-A^U}Y48#ntGym4xdF4nm{$(@KTr@A)GBBWx6e?i4pn!>C%fX=H`oC-y)_?K` z`zu!jedb6F?moD2FY z{rkUqK0%M}y))O$tTpGt%*r=G>5W4UuUa}$tEg3(_Z`obl2aWXp$$OK)QdU^#)j<( zMUnhLZA@KBdbt2oWuWL@@pQV7`s@0S;Fs8V8m}svXc)=P;f7uylI@0+;0K#_10+aQ zy8~F?_x>7Qs7Y4-l8V_KlWTGH_cun3(Sl04M|+UPBYYHXvcg!R5q<9?Y&5h80X;Ua ztSnU=V6NH>32={N>NJ~e zKLfxo<~UEW7>SYWQ%0qzkm~c%1hVoXNu*`HfV?CM0+bD$tw8>RuALL)7IRE4i!Eb_z!-*>1QVR%7SXnKzZ7xyo%*&=WM zZGGO#))FH?4Vmlk&_?N1CZ>i$+-wEk!a~f}n{6>$Ul!vHGpZ?Q^9*JtjGXH<&c{eq zs@AAQRUN3MiBvf_G>)3aM4<&GM15!XML9OP;h2BCDB64kXiuc*P2L`+b@4128}y;+ zjJ!llLdz9t#`_YBV=28;Fqx@Dd{n&7Qp*jLwN6>AS#dy30zL@$h_ds~+c`>O6nBpT zAqI^a?I8wp%^pH>vfo{&Sy2Qb+5_RNzmq**tuh~~2EvqNV72Q&H6FD(IO2%FsIS&A z+P1uYJ)Afp_2moidUh==W{iP<2aqZ?)iW3CCyN@)RzU_eT4*W4J zUF|K5x_F3&dxMp*u-X0u>j@AQ^#A!o!r26YI1n>f}BT-i+}Yr1kUwNK_M;xt?o)KNW)ztTfep1&kd^W4h>e*aP!`8 zs{h`3{`XMbf1jU+>By?RhwvdOsQzKpYZ;Btm)`Yz(!lSK)_NdvuS(#DJ9~61?Re)M z;x3Jh!`_j+VdQTU$%STmKx|}lrTe!KvDJ}=&5vtldhkYe-yj@hTgrkmg8Y7mG~3bA zs@LItc&3;GIvkpFNGf?`gLyQ*SdlJA#O1%`jW*)b{l;Jm6aJejW0Jy2UDpx!q93AA zi*+NDl0v?J^K41}zi4g|A_ts2A_*h-xJ1WV>~5jG{_MSqacIT zNKgo#P%gc}g{W|-l$Bd}zmR6G_iBh_pa^QFBNbC7f z-4?_rVp=$#2aL#QGQ%Eb8_dm`JRCqkFm;G-^1DN`B~O!$BQ$e(??A*?T$|Lpk2ER$ zxJRpVXNE_1_!4+bW{t)lUT)f(D_0?lrV!EYX@NLO)1P~|kflx8Gw=zSx zs23MEnr)LMQ7u@I`bE5=!c=NFJp!^YnI*$(!o+T6Y`I#0@L=$pR`me$SZ9F(Tl(~qAJS3fw8P_`JM^37<pYW zajjFqy}%C>HpF~|N$=^>2o95q!=A#H1E}x`17Wnw)swk=s|&4lwFqM?98)byUo>JDyHZ#pf7p+*>MHx=d!uW%T2 zgg#!mU7Ki3;S$ABw1oKWZ$$$9 z#O*}P+V7mCUqPnwmDddOwHi*Rvm^LNsukqR&fj`LcqoP;yKe7KDi%uz#i-Aa`CiC; zjuCkop(vgXlFoA!rFvh+U!K)HwtoFu6mmQ9m-Vf;K5@Gmz5-}5IuxvtzPGmlevA9G zW?uoHPHathU931hue_d9W|>B_QS;4M3hyPXWfVVxGF+YxzpR#Ex0Jca z?rq<;Yq6S?JfjxjR`V4h`ScQf{Z&Q{n*@zK;0TF)4pz}0Y5)7ZKUSuY&GR)39vsAX zc{PN|(x8Kft?Sd7$Mt|KY;=0)Um`BE+*Wq0m8oQtq1d3}Eq4ZVd6DK@)P6lJ)T#dV zM{A45k9c6E-Tv~pABY<(y2_5h*7x)39XQRZ?mAdqA5Y5x!Wpwrr*cL2@x$!ve$b?} z|3JHVYmDZ+o^JfhJpXTzG!)+9e9RCW3`YD=YG8WnYgu2G-%+g2L~>=LO;rZgis|?9 zgwpv&1gnF^vKSYXv#Ci7H)qe$@Xeg~z9Q zJwS6jR*+#x>%I=`@7~S_=rc~6?d`ezFhRoJFD%0IrV@~AtxC@Oq2V=iZ6E%qivKx#pws`hPq3-XiJeJvJJdtQA0<*EuXDhehXslh12AD@6c zs`EX@?qv8&d*Vvz@ZY)_biY;5xDJb@Pr9C%_W3-~snInH5jN2Ewc63Im^JS(5b>pS z=**ut1$=g*P^hU}^Rbb&R#F$LV}{7UAP?r#22vk)gwI)yud6)gA!eO(A#u~|I7cqx z1-RW_r?z~|3h=oroeB8)F(+3mF6y5Vk5+Sdi>w!KJyr|yuI=Tbs}%F(YO5BteXsQU zSDj9-J3TD71x9wg$Y2NeyezLHC|A%fSQYk?(YX$&1QhnZ7Yb!yc1^Nn(YHIAMOuMF zUcOzes_Z+36+*fzMyOXb2!5ynH`ar}FsN_#<3Mr)pf& z8&s?IJ8HkiDqN>w(eQGvsgPLjF!CXN=(z;wCW6#D!3m$_Q$L>_B|3Y-5h|B2#=U#e zq}aZ>T5s~~{YBBea+)Q1$I1l@@%%^KZlyws?95?djr-ns=N3RWG_sG`Y#U&|J0mwO z7hB6E6eORC-5J9uoD6|@oSBp`I*5f8mQ;by9T;bG@vR5abQ>uO zMPS$&of~oTGOW8j@}JPaVg(vCH5-0WR@%piMHuVQ(}^2_$<^I8cO`MEd4tpN`e&-TjgHI@_xH z6xWE^pMM?TLC>kYPQc<;ddW1WW9!*gHW`cK{BY{ZWy&xuQy2x-n9Ef*v@r>C;!S}t z4AOn+f&8+(mfHMI6h<7t_sI6~nj&>X|2z(HEvAI&x7*cnL)oM6+H86#^SGnn-esW( zBhJ5rDCGRMiOU|}0?lv9#Gue`jT8H0h+ZeW+vjvL>*lWKYq&3`I(B_|w!Fmh`R;`C z`~EjHR7TN((jw^$s<~CEEDoV^m^{6)G1Ruqz|oO@%T>kf-p=eMuk{u*FesYdcm`Ud zU!X{^G~=!!6)BBY1B9$I?d%1!QqOVNBrc83s2`bC`2`~ zGRnQG-}c`>y_`p4*FeA=CE`j$NW}i@33u8CMn{P=&T&#`QpUj0-94=Qw{=GlvZ+<}7%mUH#b0 zXq>a+r=PpMGu_(m`@!<LA0j3?{Mk(Q*5M?ZrA&pK+T$$0SM-)s)dEoKg}>?@&6Ag; zEw94Lxkb4@xnF)ZLybwX3Q?%0w*wXg25cLUBZGD-7}uWwgX# z<<<3f=n(@Da-u1+2w-c0oQTHu+X^8_`JMdanzV=T3;nhm{^VKjyAnQvNSat7cC$ol zGZZ!TLAgq^ewSs|q!{wvPl6cH`#Z|g$>Mkuorkb`;gE|cMtxh?J2dsczqC2f>4i=f zx^m9@64}+f8e*|PzAJd_Wm|h*&>k7$%svCEkpyA~+|oZ;7?{hF(m<{pU6f=m8NvpI z#N-8%%WLt&<9W5aV>F4PlRUq|4%fxuAv48HRT_w7P;l@M9^!TvS?7m8&rjPKl7wDP zdLjOqD#?eVl#>X!>Hn5F*)0vr)!;&WrBOht&n$kjq|S|vL-=_7EfAt%v%fX#fs1e| zmMe&AQlJi_*+i2$Z$6qKIm^~I&4V=c)gakTZ0os4oh?O>C9SI)tkwg!5q4)fx2Y-c z{RmH@90kO^+oHF(tE>C|Z7->}f|3NYI2TRaW}}i;&y+|EhliOrAn-%R!GVe-@UgrT zN~O`7{BkAX8|)bkNslv(%US4Msn^*S6wyky3e|OQP_NmldWGX(WaSF+X@MwxcaV|W ze-9@u+cQLdJI-u3HynX8m~+mKAr&Gy1LvRF&1K?O^q%s|mk9ajg&l4;_8*T~#!o+G zAO0l=CX)4na8}J)szT+fP?4U&)IR=!(_#b z{Y5tDqTzLwYjY^Njbbdem=%$hl~Q&N(mK%=k-7j^vXd_Pfouk>=0zgQzr^niQ4 zor}!>4afH^BeXS$3^I*=`;PF}fs&XZcB?kP(C%Q4oQE35k`^w^>&r(Hz5M9dM)hqM zC9T_~)rm@G-a^WJZ$Za`)RRqgy?NEYty)vqJr)1;lDA!haeb*Oc{&RZkE1r~FEBn1 zgcZ#eX~Cx_i_xNcT7Xpc<_rdSZNPvEPGvic69y4{)%Mj!B}5uqL-;C=E>~9ESw8(7 z3Pt#b!zz^%>v{eCkG%m9_+qMWk$^J;o2yQk+{jmzY$vTr(mZ51%71R~(R>RJ>{)Wz?*&Oo(mtwBi{zy_5=RELg z{!zP&;6xaLj;!E1yPW{2fbsgiDFGEV zNZOhHWyFGB5F`kGI~Txofl1#F&_q|~@2MWo6LJM|xb1W6)M$-1(XP|`jT3Tt!%m+$ zx8u3FFYVQo}n9fO45*X?+K5d=aAS#(Bbj(b#5IZrTz&-J}R71|OYAE6$%cs`On0S1RB}o%y#e9^ z(a?jJammKVqn;1J3EEjUc-PpZ{wKK`=thsH zuFF+MC*)}8>HioA>e<>ZEtETJrq{m0xJSFM^nB4QSEpQUBUuP{voh1jY}XYP*y-He zO=DHkrOBE9TtOy`zK`j2Lvp&mJI3g6WsWv*J;&ygW9-bAmSSqOp;X0yR?^q6BcXxW zGYv=+lz{GQ3>EhW4MFr&E0Bh;fhm1Z``dG_64CEb44*Fb;QxW!?JbP zQMYbG=*haqY&Aij;BQq14I4JtNRmqR*8H>k*Ym(B(Vi=6jGabuXdgiC;oJ(xW|erP zSLdN_wol9E&uaTsP;RAS1cLtK6=x*|&uBbt{OO!n*L9gAWo)K2rdt+^G#jGNaH5$q zm#MeN=PkR=1OqTTYt&$Fc0d7AqX7f3R4-SR<~8(h)~M-E%7vp^sjS`J&L1)cWza?< zO6>32DuJ#;;_#)vAE4o<%O>u5KJ<%`n9NrG_m^o^qP$&> z77up1+7LV{W^O_2dP!E_5EFw(>P-jwuEhrt+{!HO_gS9HhqFA`1-#|kB84T&1MBw3 z(S$kN7O@4QP&SKys7`Vz%NI8C1DXv4Wn*v`F4k3Hx8??L!fbpAxQ#te$?+=P`VZ)S z22bY5;=(UQVvHt`%KqjLX`NP%nvt{7{C%ycj8q)+pwr<7)Z10r#cR&*(@IQ4Uv+ns z12%=*1j#5VL=l)jMK_JwLPJ7CS9YqNNk`~WG-#O@kC2FlVITCnnAR0!2gJUX=d>GbtE zgWl()u30tvGxyA2k#9$t>?(I~HN{64js z0a_Zf2^$QIi2l%Cu)d<1>5i6Cw|6-|M6eRWE<=pJ$czj=wq3PYpbJ4Y9oh56^K-9%L}bIM9Ry6lSMX?{V|td1LVdShfQbHhR1eRs+9le^~`m)Y<5h z4Fr6Uv}#y$u3;oWF-&iD zjdnV9UL4s(YPu9y*rVud^uA`rpnrr_EF38mL#*@0KHohigs$ zRvZ2s7WXB9UN&=gz$q~ie5B2PPDrv^Uu`;vme-ZeekzT+NM35@@j?fl83WwNdX25i zN@ayoEEb#i^TVy*R((31nBN!wabQUq*8%%A-!X(%-JXFqAngqyvlK|~n}!2mO8`;` zIE$AkQmRs42F~OGt`I=1y?K8JVsM&({JQ7JKEv>c2rJ+Q90&p-M;$d0kd&3w7XAD- zywu99F6c!u4)%CD=?C99fp-(qLWk*;Cy*%wf8v5}sqL}j|8Jjqp-A;8DT5t%s_Jp| zJqbZKYNxjjo*;5KR=o0{Lz%o?80?P_p^wHgOEyUqmI<-DFB0=w6C5R@-#=>nkI{A_ zDf!7aPF_3+?9pCl76ZQt1nS5KV{NWU@Bzj9Tph;K|PANvX5VXwqii&7{vS=1H%w??0MU zsWwnNupX^sX3i82a_;h)hZVnhoK!ATuy%A@d4KscEkJ6i?fL1wib-Ezs<;enx8kcx zu-!eX(d*IgZjI;D{=-lKSMj~gtSl^rMMXu0g*&4Ft@CZuZM#o=JSH=b+sXWLqfKaA zjRqs$(H+#F$NS|L;78N!5j-l^GbEN!TuUpK z(e*qW$Uyw7%xAeoHzAY72^>s-qFI*C&HqiXoWL$tA8=msY)Dk;+i0R4n;7hO;9O~1 zcGksTYmOPByG9#{T9rX1Q?LpzMXJ zxgddBWreY1CZ9jWYqlJtK!dED(Lg}1LY{i2vO!$@wB4mhoCHXl09DE-y0R)ul zBfKPL6mT<202o`=8!Qw7eiH6C+B#Bl@4a|% zBZzeWn6ey*w43@r&*^n$dcF$7q3LizVlA0ga5)+yhSprp{ACJpSZ7+c_hkL`<37&h zGxM$HJ5ysF)tH|Ch1k>88oxO1oonIp>{z8PRn_$mzA)Y&9H!0c*hlm}SGQ0D`^>-m zQ6T&n)Ym5~%!Pn_@$*eO>DOi2fvIlPf`tp^3M8FD?3T|mzZYOh;uvKviH!uLG}37MP84qE-@xc5mBZk8AhjBSmeF8=6$9B~sXPQnwTb-o zsPh~Qlem$zO_64kn8*eOMN-ZN?giJ$_pnlTEuDnk;Wp57dtf>`6on(320NM%nLK+$ zk%jes*au~czYZYr-q*{;1IW7p1TTR2cfZ~Vn6*%XexCrMA|%@2u~7M((a+nkP7K(>8O!TAUf|BQFq%DSHms6EW~)`T~-LN3?(N+Zn5vsl19OkZQm>f z1j&aJqarJM(FH?iF%k^n-<)=deM~;LFl|nhfOccxE(~JvG9069Pp$HElO$lzDUSMl ztHqv@!&WGF)g;#wmfcRK=P7sb_?d<|3BAF52S+gX=bV@Y2VPLWRv$WeLH+6hD$FF0 zkTCbE9R|%wyBnp73c1FwP@)?HKkCOzcEP7?jMyF~etvKz*LjMzb>#I1iMjqgE$bh@ zhsju2`TROy=aH8- zNo8Cftk1uIrmCaFsNrP*=`w{*GKQr2Ck8p?Jgr6{l7OL7SdC@?j~fLV+JIKYF&D;! zgb7(#*ot}3&-N^ct+hJRyc8~(5&KnSpn*VShiRlH{S=M`=emk1t9e0;N$oqscI!&f_k;&cxxR z;O(i%*n~YIg1bnfpdY4(`UeOI2q+(Ay!Qy=L!*_PI)eYpX<0+5JZsmZwlp^=P?x9? z@Fal#h}S2RDT@>eVNADHXuB$lsad?wG6xvdv*O4PV5e8c*+|OJ`045C2Yep|?j~4& z=7C!y`T_VthKYp{D7okFwCT`-mo@7)eZ?TcVLg51hjU4k4{_- z3fL6&Nz>2D=+W@}UL1NQu!IoLaMQaO?);kB7;+$bff2pG)MG(lag~6r@!`6CjC|(K z2eEuul_tt&9Vy^h6#gP!DX`m;^F$+%CKK7k0Lc#C|NLO_c@>MrKb3MR`(Y}dnf!Xu zLLQ#XTP=1tUS_{m92GNUkv)mYZ5(X8$z$Xl6`eK@ZbYl0uyZKhkWf0ECwO(R0lj_H zZQp|(PRcKq#QX^Vg#=u8f)YZlj7!uf*;CjXGG~jNo}vtdia-1#f4vgy)E_r}mH~1Q zkFX5DkGk9#kM{Ds1GB{taw#c{)7n&gA-?K8qb@4bt})dcUFjeD-ipQ4X=mHn#}JnO zf)&}cXu5~MM2e9hDpW4>wsPG=c^+N}y*@q3bnh-4GneY>u(+pvO>LWZ02}|0Pp|dO z4z~CIq>NQ|aRr!zN?^irZ}j1v;9n!8p?tY$0pQ-_M#osHb}&zf@-=baNTJ7*zb#dC zct2gHw`>{D1%Nr{@RVc=RE0d$1s|yu{hoNaV{bdt9vqCIv3I)%2cP}tIu-`Um$G$G zTR?umm70*WZ2R&DPab%@uJO3l2U{!l6ceFi~giB>~pn^Toq1&d&*>YQXOa-|p$=W||d zZp=Wdx^oL27Ung%d@08~r8-?eMVd7fUQ9NqJ###O1k}@Dse^SEb5;$Kew`M4dZ8yS z#A0i;$Ch41SO{YTK^Fp*a&&vc;W!H`5dE;bbwjFNtqMpT3n;dN6G#5`J3o>cm}eI%wGQHm3wyp?!GnOk3A=?t?VO+rdRjakc?h2i zEL?>YOILn7K?i$s8!lOu-x4zB^h_sef|b=SfL%YgVykV)*KMoxxQliLu^uI)i5$z| zKyXSZk=+%1h{geDN@OoQO%x~pD!EJoK_xt+8w zFEHxhmmdWu=N@kykHNfAbK+w85OBpGuS2bLXkQ;;K-v0Or`6b7AX#tTWn;lVUEFms zjIo%iJ+@Jl9WN3?jUb~4J-jv=|AwC3ls{c8&4pMmmjR0jSIrDg5SA+@UKgy_htwBW z9~zE?7ux;Ka%F-KMUvz}y8T-Yr{6`cLSv+_=HVZ4BKoW|M5(OXl`)iH1zV??Z1KDj z2JNdrya)u7E#lNa4k0F3JdU0HrnvIw0VGl*L@0}hK%cF{aW1(P-#d|R`#k*5&325g zcgG#O0rmuw@T+Y%%gLS>ic+Cb)LR{}qh>N>8|WwtOT7r!D~TY;!z$p=MtM9ng<7Tb ze#LSWl?g4A2_!d^UJDhn0;$qK-)c zJCEhdZAKceHQUICvjOudvZmODwb#dshBCzwx24;PKU6eFQv_q{w}q;6#t!Cr0)MR$ zh`8e4pG{KZ5C|gC8l2D5850vn8==K$mp_83QEY!)ZCjLMS~W?yT+#(h+i%AbRXaDU zP=5b7ffG9ZqEw9EjDI{ei$tjDLnu`M zDyP?0KZs}HLhwD1>I{?TWmb|a^*i^f$b5O<>13l-eVRTj5o_qgsBp{ASs-vR8mCBJ zPRvwjO}tJsH5nc8VEv9BTR#2UUteC!eF>dB0WChCE#bz{TKCX}6lhAl3^wU*x0-!$ zY848vDSXim*T0rxTT5rCkX=E&CNwP0R;ZP<(j= zO7#Y17(Tg)wQya93e}UpDBeFmUnn!#;g;QR`Qld_?1a{gO(IS#E5&gH@VjmxV_ice zjEzrTALwUZHkj3#fs>3S>_CLx-2t)n=5$Thv(QlZzDuVNP;rUE1`CJkQA7gG?!~T- zWa)iP@L%-D2awAks8NSm9HU(&(WY`J$)B3mi*s)0RBg@??S6T+tAG|D#h}a7`AT!a zFNl?QcNv0(Zm2m;tRT}Ll98_3xRsb%kMfbP1(wN@HGlv)W}C`%r>;pEbt6N@?Zfj& z5(((s5s$^QI8L)TG7Q`c8rQ~jYjR6~An=xLR5tor`;NYSiZ7RLpU3NbD4b`AuDZj#YroV$rmnzJH1x9}QJQ*%+K z{nC&ULg_PB^7-^w=?@8>EkIrRPbVi3A**cT{mXqGhSERz_E-=@n#1z#^XZWL~aZqu2K3yHFr5ts*`_?ufZ&wYuB z^UbZ0f$ip)Zs&;4?JwwQ`!;n7ntQkgS#HV}!gj=XMI0WJ$Q@gQ3RUU#21?sL(8b%s z*5Kz1Rx_RE3Ej?>=c6p(uU-fv5PEO6FG%TE`i#zU8?5LRe9obQ_P@w{%>h#WlH%HV z71$jCv|o#_7_{jJs?FEGbep ziVr%s9Y<4Im^G7EgB`db`hJx%c#~LcaG5li17<4~BqHTFLUF(zC@uAukTW)M{Nr!) zRPpfDvf^e_1!`Ae=vT4+oc!<1&^#duD%~X8fN*N zPUdXRobyRMLt2{0mrwrDA9fo$cI%V$MlH}l5l#DzU%G*^>^HOu`ae0cj;C_GfSGhG zg;o(r*Pcp6MuZjzu)whZAo2DAkiTH=QkD4vt)isY~_b z&WRN)vwK5*M(rTeI7Ejr?wKUeD$5Y1=99{C1Oq8QVhMu$fB*^Usl4e|Z?7}rLs%J$ zjO~wG*=N0e?i_{O!Oz?E7J@t@R9(-AQOUk0$Pxb3!cHCK0-D#RY?XD}~}qm0Bo8k^^_w5oq*_e=;1S(%_(zYu9X8dev4Ev+gUM=Mwkk z($=qR7+-g5JPDwd$`jDU-mD=aErYx*SZj(hOev^PO^*YTm&bLIC<-7E zD$Sizrv;o(gn);foEeS6(C8`4z7UO)X>qF-#De2|6HhSAAdeqUJ}XqS!{Gv#*({Ru z&oqMCpZsU{)?4dVj4#)VrirM>Ojqj~ZuA#Y$-=G zNt^@P=YTT!oS;T6Iuu|^*B(fvFDjKMO|Os0-TVdi{-@i?LdU)J{#+}4dSM`}Q2tEu zOXGs(&;BcOUjNUQ0Z#1e%gdMJfcYX!`r2;YaxqqOP5M+ifnoR=+!ZJD2yCt&2XGl)tdj6!Pm&b>=I~N8O~ElzNzMJZCs_m4i-7JTZzgev^)IB z-CZE7^XB;m9IvW)+Y8BVUBaElXv+hN$Lv}QUb37mN03p!J^9yNS{!zOvWk^gj#BRG zh}DwrKtzPIDtb=FX_D_KuS-APw`s7`6_hPCCIxw~O)36eS@+XUX z9ypM@#b;+6ExXS2pX##< zRL0`jA_k42{$9qu@jq1(-Ym;)LbQB5PW*@;!_j@+(iJJ+r4Qz@ELlRtB_dH#<1L6n z5y?XloZNLla(GSTqgu|HgCJ4L6dUe;EzyB$GD^RuS3`<|uNbYeOcdy`wgXT0n-BE?c{#u@v*0T|d5o5VZ!4yb&GLL(_9y?;s$sgR~2?2!~ZSnKXs0NuD-P03d zUm)Kt;I>34sUy$lLRPwShV~IDK!1*9&J3%K7)Ut{ zM}S(b!hrIBuyuK|_eGcY3Eid3p8LKc;Q2=tIUV2jLwdUgsh7{Cd9&Xvtk2J(sY$)j zz3zirbAi&o;v)oBJ3x2nAraZa0j@9Ev*iI-*{XT7J6=gC#&TcxO~3e2ODlSxxY8 zl5jtP!#*+Vat7Y;j3A*K+Xbd5s5cg;ifs!LN55e_wN@0=D@#-86+3Razszzx-Kbun zzJjG)ky2_En9|_;!A?;*naQnO`u+TC*aPY5yibkbMQjKMKDg_g6fTv1KzAF*3U(5- z!i1i1p@A|MR<9L#GCd%caA?mx2hpisyQ%gSBD`tZE^6@~wBbXvU6nGq!G9m7ljGRa z<)lLQ+kM}dyE@oyW8${cFvfck$L0Yn{J!0czif3cbJ|j6pCp318LUDd*X=3f^^^>n zCp-4TEyqF^;j4IPbY8(A=E=&pMjmSFew~HVv)zH<|Bf4OQfMRor+iJ`;ooEkB{e|U ze0?r_e$d?k>T&v)x&Wzi{`WN!C$#65Lt2u5*UJV8Ffe;PpT?hyj~7`GohrYQI;y-< zXe}zW&@k|1)8%AVsyJ-Jv8X{l<+&|bFay%ykbh|Js`mR$YUH z?}dFvA+2TF!~lx0X)*UY7KlnkOhkmTIs$(qGT~3>4m=pK4Z^e3v{`YwqubWyO6jc0 zPo2>??)?|c>Fry^f+_yA?3Dfd1e1}IVDRn4S6w5wDh=OHBL-YneEJ})ZE>&6NXGCA zd!|flPgguHw(I2sQ%|7ctO&XZ1xkrs?UFi!S*{1xbA%0EP|>z3H*WV z3Pr1=h$7VO<@UT%S4_CA=)Xwpw8bY{rckNU6-xQ`%-fcN=%DCx5c$X47pUHnh`$6#{cf?Ivtl8 zFvAS?hp%gabevmWnkj2Q{FU=K3(}3va^&!R^<9 zp7wX*J_km=LOw38W~T(Ac((Wsn=Wu*e~Rs}B?Xql0yIkHUa`8DKTTP0Y_UdHdT>a3 zLn4@Uz1_4gv4rwx&jZG);9RQymUo!%aaDE#Df>Ves~a<)&nOtw-UW_r30M2zF@wyH zzrWRKGx)RkKm0;q#ljGQkasKQYkC7Ep&Fz-7V$QZhJEMXdb~c1G!>Hg`cxZ!&;%zP zt{9uGD9zs7awmU9#0Cs$=oa(#0mlQ?b9}=-CM{G zh#YG~5%?_N zQRxAYF*reLM}VF;0_}M}xY5m$3}tr|AlM7L>droo{6 zwb_>l7`3VuBlk_=4lz+5AWy9wS?Yn*f|jx2mSczP(a!{VQt zk+D%peYPg9V*H-Pz-%=#SnJbbdpt$bmHX?+oZmbB`Q3?yLw(qyipqzH-HzsSAIUH^ zc$TW`moOIInZd-|z8Ar=MO{O6_v$&;VX8uzN_ ztT7egFMX%`2akFQD`KtDK&>_^FVpj;k%j9J=g<5SSpxcAhz(jZ~5IC4D`PTs? zW_s-dI=woI65a~Nml*hl{gZd8f>?e#1?fmE6oA+UkgW{Hmfys9gk)axnnSEkpIxx4~JhcmTD zN^an{#0lNzO7Aj-lc((=jhfKOygV=+Ops3EG5H_Jt>NVN_D9IhFfy08*g)vaq(B3I zSbsdS7~uZ`QYpWl;pI`*lYn#~<9o||f{C7`^z=#`R(QL0%(>5P~BXv^sbHFMhYpr(=u6`x`wVtV5U}{;Z&lhMz#ORT6&gEC zuzt5I+O9;}Z(C~Qc(q~Wd5EzKI*E46??n=Z5Jag(DU<6hR~Ke+W(ZYymge!~2bIm*lv52~xC2oCX@1E@>yYu)Se&4Cw-NMOS*#uX z-}?MXlbEAr&g2mUYb)Q;D3GHtjXtDfa8H0yul+=;j7l=seg*p*ju{#M#DVQbI$Oql zxBIVrcF7>POV7FueCID;Zn@|Qx$FYyXpbZKz}bK#h}?y8m0I|diLvqySA=Cg0q4JU zhOU>{Kz80m1SQu6PO}GVn+xqNetsmzu4xz;9W1r16o#V9N`piUev-83E1Mkq=xRgz z&&^N0(9&Gc1(|-=M7~LvB@v z?X#wG|8`~e`k->TA+32GVNtHjZL&xM=)&T)EU!KV2nhoI}ijNctWkKM$xePe9rgJZH!)fO=nchhjU`CHEzsa{%|H^q zX7hQ9%7=*zF{&KN$v8wZ4PZg6VE0_4$#&~!KqN&)OS!p`iIlnfqr!r%>U8v5z0wey zTOPUgcnXI%_0iWD`fpD-GKl#gTqi{0APy@bpO7MdiiR;YB~%Y+4ORxUW;q)gedkhrX+TLR%7I=4Dt8G zxGs1yFD{kdgd!XWPKs8mn3xuvKCakk)7sr6;Zlp@8c_g&j4fnIqoZCggviLLT4@-0 zUeW=~e<8BbSJGyTG~ijHwAtAp`C_Utz~!AkD&+UWY8ErDG=H*-wGhCxjbfZYEjyJb zxj!6oxYWb6{5t^v#NdPn`Gc-x19Sa#E=t^yk_OcbroZv!W|XFQ1t0AxID~dpu^R1T zass^$DsD`$AE!Ugk7Qq0yeg z3UCe5XtI*P(fcThxv!{oYCYA0&UkGd$gOOPvF#+cK?hPQDCQ?DLd7Di>cgUz`~(&w z?w0Mv3PqLvpP#Fp_CW?(BdQFNTbCTH3e?9va&1)hdBJY{2FEM5jXz@^&qv={G#E)( zlfI9pBjELCu_XYv(SbeJ`1%DRj9zSC%ny(aI1ae;Pf`__^pTML3GVJ1+--0t5FmK) z;BLX)Ex5b8yF+lei@o=ErRvoEbq-ZiOu@`6{kA;aYxUDRivG^AgmirwA@@aZfAF`n zb`waM%W+V9wBv26=;Y_hfCi>hVlTleD|fwv%42d5N`)XT1%jZ?uh}1YZ*k+1Wk{zE zUY>BCxUsu2X+g_-oV;stpgAGx*2Lo_aM=5?8~_HQKK*6(t4xRmV5x9O3;Vs9rlf+kJ)V#Tx8#9 zP$98LZT6|rvhfuv9=LjZgayM$e4SHnYgk5CSK}pO1s(R`u<0%jX1i2$s<^K-cXW`T zhq-n|kV0w~V&eKY%|eAiLw(ZmCL$-F0O>EmXN`O1-V-e~ReG2>!E79<7KVZ7&%Qj6 zz|)}F?*Hj^2NtuP@}s=f*_UGFL# zw_)f$f4JIdM|Byr$sC<4ChSz-&9~I}Sf!#{1NLnHSZ&W2`4u-pnvZ+g+jnwG!x?no z@y-K&s)BZ+vv3+-0hG>N5>*ItD1D+Bj|(lv1eu*}X8K~j&k}H0sP0YctncF2OP75% zu3e_9z3t~gNM?NT-s6?f<8yN7+N-?z1J{KCL{G{HdkK-n?qv{%=?I2$@zycDH47aNj6>^yzvY1ta<;p+= z8&53jGrjj-b*=ppsI*x6O|H5&X!S;Tu_W!=o4L(TTGrGx2kA#mS4>ky%+mz{MN~7) z2q@`mGA9I_VmZF5G=0atYI##DO0EK=CuW_(t@hWJIkT(IALKHDN}^F#;j4PVdg~kKS9IdIR@;I*psN_a?)w#?J5P z@_@H_4L8H0-Ytn-%B%I`Gq6tv2BkNFA*IazQ70uWCt-DN1A*w})lv#qZ~wMcDHbI( zo5irb|2EY0o^pnn5+Nh1R`BY5?GY9qd2WT{tCMfFpK7ygCo#{QuKEiu;M@!EYICs- zufo4jU5=7DZ{l7U>r_6%xwDojlfQ++@j79MX0Gjb z7oA?M#M*7^z3utM_$v%-xcnPeV=9ou>DP$)4LYMs@f}3DdQE4f`!Gs4lj%f{Y=99D zInP{$#f>c|GMQ^#L*DB#uvmL@9w7;IIhJ!e*yslIh{7m?PW;%PtxPmoBH_Yqy337$ zH3=kge>(za$8&J=#C_qTPBK%vzVn{sKViyCVErQD#OpN(bGbaIs1E0)j^6Yc9@{uH zs1XtxMGG9zhEW8ep#Er4ZpV)wmY3s!en%iDw*Z^|I|bMjH?Z^ZW9zLwnNJ+jE#w6m zvUEJ8WU9UgHxrYK{Zr#Fy)tq}MtCgb^m5zuk&%_?Kd+RD`4zBLXC&$hIM2bx<*rZ` z8*<|qGP-6=$q3S3g`?eMgOecr{)b<;FDo7S_A2pSQwGTE$?j=i4EfJD3C*5c!uAve z6zhoe$8rcxw)>}dg(8iRtq6GCznJ<=r~XMDhZ~34pP{+6Gh8@S&o;inNbx&Xmi)|g z_laDy>u3+!5+wEnRoq|yyYNtw?r5CTzOuKlNdo8xqBt^87nLMkTR$H}eG?RT)awXEd^)ExFZszqRql{xus;-3LEkVtyObG0&54poJ4e zHBrwysXEUlEMcAvHjZ!7(k(Bqv^qDxP3O|!4vBoTL7;Rgo!u!>j!R_&&6{7fKeAc; zVl@uSR;FuX^9zEKScNG-g+*O z`)Ml8pI5@t6Cam*3V+B$s^0R1ryv zP(qNsDOxbI@gTK1!#ysW6FqWJ5x?J?h7CAQj)$-?hcn3exD32@YOz7>R~SNx9m`YL zMc8fSvv58VbTmc4(TG>d{wGJ-*yGmp@5L_LH1vWGkKc`2eaLRk(7_z0p%JG6PBB8z zP^2+IBL92H>pxTPHyttDkd(~Br2BqGOqhbf>OsX?%&bBjxn;FCI#+e!wEUj8PX#6PKtX0SBI47>gm%3JD7T{- zFgW{-NuwCL?=a(~?tpNm{pp{cbboJFE=52^u6}p)ar5})p5OO{4QO%J1+%!;=qqL0 z#iG_&;uSSlfr1!k#Y7UewC2VA$CMjak#5$@k@R0%gPUAVuKn_T74kSDaeZ+j1aw*1 zZ&{MZa%Hw=D{>l~b{+N!gwh}a9kxgeP2bPcDymnMvHdfBknffGeNcmKKb-Wb5p;2v zUg)?a{(bILLNemZsdrEStn!`R4U@=y16iMLf2K&sjGX)FOA5fxu6Ju>W}K)+CDHQO zl4RXtfm>}z3oi&GI{{t-kPZrc7K4)NMCr&ZH1^9araD>*|U zVZwgDD>f8d+uf@2DYOsjkH`Ax_QcxrFYK9^na|o$H}9^D2jlgNR7Vd3u91YB90GHw zhOkb;yx-#d5L}z9%G{q6;Jg1>QjRG#f3%R^She!oeRHaZ_Z-<{1&S^zqL?i98k=VI zL+fU7?^@?Cd+SQuo2K+JH;x}-GQ0+&Lp>3yNSiN$_<2Kni6u|5ca(IaZ4eiJeG&0y zb=v9aIp~f05EZ%Na@`S_Pa!?>K5B@Y^6y1S8mfX~Pmb)zIieii#hY`{e9~X&QU%%g z>{}YCUShGEa*r$(7bUJ?bKP~5;VJ`vyg^kft#;my8yiMRwj)-&FtAGwSkjEXgD z4Bv@61AUyEZ9+_K=;dEbFX*Ou0ax|+5FlefOi~a_+l$Li&oWK?bg(O9U)a`~#n%|YfoHZbV@AVTs5ufB@DApoxSu*(g-%D?sOQb;<$hRHrOWxn<$kE; z+}G*QuQIxxylh?e3dVoLr+#D7bFK%z+oP?kAh<1LGmH=i#nFVlshG#>5BZ~SjF=CK zvngZ}_9tw~O}Fwex?JC-Xvr7odP%#QuU1Wi&HT;x<|#2n*EBjDd}68GVv_M_vRd!0 zLqVrFz*Io}$XXb8okovJu#5 zCF0cQHcD#@v;mEgI3!A!G}GCL4~&C}1>3_E2dBwXXPe_HMdHh~qv}<^zY@I&#|MwN z!Rf<$FSQ!;~k9fHfHg)D0`OH+ILRmB%bbu=duduEyAV>O?%>rz`S$LMFM! zwuUp?|J2^4P3G9)C}fIl+r5L-xh`^c%xR>lBKmRKlN-yvd(P>}J;G3Q=58;>6FLMX zKMxvxl9Dwsc%%_`t3QQo1!lWmrX_OPt2L}JFx1gkjv?-Kh4!qrx5v`z?!k{>WIwF< zhD;XFIqbc&R`Y>%Lp-mj#2>G66f+{Phrq@ed!6+*N`6@H9=F@xqUlzcS<%=PBWJF* zFa>!5;KeCsM>)8k*1-e>0)5eC+;@ed7LX#0t?q9<22(St@y1Bcm zC{LqiB2z@d>$+`J-CnY5g3QpZa(vhBjkQwEsEOdt<4T*M>)&Xm_P0b<6DDJ!jec?% zLN*g=ROM?7LdyQM*Niz3m#KkxIUct^3ZN0iKbCHn$KxT*N2XwP)Up?cO z)E}d9*b1MlM+Jb>;(y6Pw_GCw7KbiZzO8e+uLT0{_xf=DZuJB9yR^zbMUH_@V+w5d z5^|!sNP+aWUudUL@Uo64sP4yQHsMiPks?#Q=;w1n*?4)kGsE+KAUvUT6!{=mbX$+4 zwPG4v6aSc}uw+wulZnjJu*$VJWF!ZMSWUq z#Vc(TBjiA}=whkqdkr3okmh|hLf=nJ;gEc=xxyitlj`qrE)&xPvylOv>PmOuiaHTe zaRxVyF=hkLIiq4jm>;>AM3q@yPrFMnl25bd=TiZIZsm@fgORjn#5m|8Hjs%^ZWo50Opt?CJ&eUZz+$~;6|(+ z*UREJ*St4YGkQ4p!cAYaE*r8bqET%?uRSo{i)WuV2`CIqr`~cnhM=G_SPHo!nO;=n zN|w#8zlff%4qT+3!nzhr^SsT6=_@x)SlyhWR%-1NvdMVWsOb$Q$m{%uQBTl*z8aL^ z4YV06E#e_(217GtmHh8#M7+Jn5Xa3+vWd82d31dSQ?lX*`Vdpu=(eh+H$YFgkBKdR zx{su;NT-W=i$}5-TxwA0&Wtu>6ETMoCjDl`cVfLe6p+t{d`OHEfJ~(I4$)f{X8sgj z20OThelZT514;!CIB!S_!gopKKfh^LSyvxD#ypQh-j=1UA@R}aA#h^7=!9v~t}=@; z>qKO_%3-C)WO4X?T2up~`kNEg&m^PBxEcEkYCK-e?%UEnIYLgy!YITjGy;FK#JCIm z{eEmrv?Ne@*60*uY!w(AHMtwTu0y89~Uh$T;99;@%GLghcrTf!k zX*}~P-hmDB_kisXobwuu! zX3P}yCL#&TQBhO-?wCr^t>*h+k|3cS24A(X&}Il>!Tu5Q($pG~SRz9-80>je8MN)v74O&obxm9-PYV6&~2a6S_Fbk)M-3zt7t_}=b7D4j|ipE$M5wJKk&g1Bc4b zTP}*%`*p=I_2yr1r?z7;7#&f39BFxAD@;{(O9}ewbaP*~5OqIoW=L zNw^%4tm`?}Zd2t<;jOXkgoqEpX+5PYkr)S5I28uCo$?LU)lSwLg5R(EFy+Hx3&E0J zj7E+4P-=~Go_7@UhRnDkEv8HmvdzTXOyPXpOvrw${zIV_m;Mdp@MP8Az`#U$DDo4@ zw~2*Q|Fns=Zv~_=3DlrJ{bOQaA?^CS^_{Mx&j>sdNvHgX2xyhdA64y-9(BKvqtf7p z^{Vq;YxrYU)yL2*>+u&i-(g|9Tv+5;bML&|oS?Cl>KK;{p8XH2W7Z%d*C?9WtbyV`D76WhoGJS~nn@LXeSf!{L8D@lu`z)A zRHlFV8h`A_qjw~IL8-o|Ms;ke5ZC_Bu~~Y1D4=)HX!r4<@-%t|nd>9>L*>~Z`=mgC z`jN>VIrR+@i&y3nYu{!HS6JUZhH6wx3#1RDWwzqRs6xlx{n7t5YF$OQK;Pp`iRfl( zzs8O3$y+z{O*NS#T9;Fy&58V+1XejBC`$Z5K_0#Dt}`EJ!w7kG z+@Bd663Cm~X(9`td}d)?a~AOqT=v{zqQ@ zLIg}s$eb%N!P{*2ZtJqUl~2TBrtp*d0mOnTCF0>kF%S0@Io8X4h4LJa?}v=WCE|{@ zA*lG8VVWqL?lWJi-D-w2gw}$w>r5|-)mZfXN6(e%peSYd)5$s2!AM{GW!~e>{@ERr zX61sJ%0Qyn_H8hIfrvK=8)G9(Lt0EeQt#62rdZ28(L2+6L6yTW2$1k%*FovUT%6p= zcXqiV!Gx#w_n%{^24?N}qTY9hX677Iq?*(_=-0Fs62y4XTjyglh|t4Rw%-M9`c4Z4 zlWq?^R5b+$QM(@Vco>lOy@cBI9iDbPmPU1*&v{p%+M+Eh+o~ThY&>|D%pQ)7{$YPq zV7#tEW8tIf&%}b6(l!W3Pl3u41+B19epl%D#cn(LO3DJ}J(}W4&n~19H7v);`p|B8 zl!)pQtK>V(ckuRT77!LFQ&MMk<~(MP9n_ezacS>(HK6ZSWyEj~pVLfL$| zu+jpvErghjdcab%rrXm=opiTGP4R8LgHgQXcs}~3x+Rde&1f!@ahpbsf!kG|=Yx{# z3e@t+v;$wrXmf}Uv?in{#{4hgEIO@T8fHm74ts1{pHq)IW84y=k zTp}6ThbCm8KttqbQ4}74uY!oErFRZ+1Yc>s`FNI1l;ONr4B|3CMc?9;63+Vx2rnoZC)S0bAENK5Ga1qI;{T zeaP+K&oU5jcJBT0R(pTyRZx&S?_HtI(SkU=3R!Z$`Nz@%A3Qvklh!YqJ)5$Q*;=g< z#CX3!9aZY-@p=UliW-;8z4(5c&v$H0(R`}M^TuzHCEA)vESxYiK*zl?-AYSqf9keJ zw12wvV~U{sD>cnu@l;}B5k#NfE!N2ViZj0Q&@WOaYY&JEA=ve)fj@g=<%CVTd9izD zIS)e}vlc+CXlv`=61%*`56IhuN1ZU6Rd0ufIokLyl*yY0L6z=Dm4aW5yG66K;b zu_$+J+B6U8ufwq|vd(fXJ zDccv-j@*xbJ|ErCR;tDdwLXTE z`|XhfHmUsmUV-+q7ek|mMzwMH#*W;g-LO*C*S$6h50W@v^b6OUsiLK4r*rO_5o;=y zKnaG?VxK@m#dU4t^9uy;GP;y+esy%MCkvyX829B08$vi<%7#C_zk%Fu`mcQTIN!QG zvGFKSp39?5k@UyzFs$p>`boQSmf^IN&ufXt>aji0J6~NClsrN<)bklw_#t6Yo+$9y zSM19po;N!9B|matxA&wQo^Mc*GD{YkL|^p90oQq4(t@SaC`zbW?a^Sg()#;iTC6b6i8;9Q zc0_gq0)^Bzn7BlvOsQOgg@J8{UUfJpN76ls`XUYS)& zv~af>Riy8GdUaC`ch##mV*1sHdp1|5I;g0$bv($H>tn2OAx^0|#=~o`(Cy{q@=&1^ z7Y9>kt|t_ToSO`6MCOXMst)HRq9TFIrdBSY$7RkjyVr`;?^bQs{{Ro+P{j=`=W%OP zE-Y=rsZ*n-!)24a4EI_g$A*G}qW?b3;QI8?>iLkjdw#RMr`tZj%d50997)6nTs)D~ z&(spt2IbRs)L5Dywp5GDEgLZ^z@T!xp`sC>pjsz)K9GpRy_UC_C24e!iPT;>ff zr?X4flBY+N%d`HRxvIt6;nn3P8fl4&0|<+?)!)Cu^zg%Jqq106fDI6A99m#uPAxf{ zQ(`p=sg}UjG=T-za*3PjnXp!S6@&?0HMji_Gm-s1pNQ)kjQLKA$CSQ~!UjafwTwYi zwooHi6rcnQ8+573-!Y(hlcu`N)8n5T3dML@exjNx!KRD}sxnt9X*RRjHb;U`c$gI| z3`YL!UuC%e!|$R;LIx2N4?48ha;`NSz!^;Yf>RD|WhG4V@v#$~;ubVPvB$e_4K>C6 zTzq&1`AIRw=XiNd_A~5j)O5x4ynupQNHDv1 zE;(*SH!|*bI#y2plnyqi6Fwm}%TqPme8aoVks6#V_z)+6=_<#}v;i74*{!j(TCBLV zu;0otL9$#=zE+el{Dy&ol7;=X2?6{EDsFd{W_Lp=$u$lITtxO!Nt~Tlwfnuk{So~I z7(lttiZn12*#f#ptHm)57TU5qjO>H3$?e6eST-dF6x3%-DZ32N z)l$(#QzAR=w8Sk{qRm}4)AR^U<&-N!zyR+=+S4EPa29MaO~1R^?%uTYSEF9JXaY?)rCe4H^V3 zE((w5!x-IU-Qg7xssww3WQ>e^ZN8!J-#=fBH~i{(Fz@xdQXM|CTldF0*Bx1Q&N#`W zq=B%HuGjCdHX!V}Y{B$ekq@^87TePEi7ytz*B$muZm(3jJ9ZM;yDyc1T)3lnNiqyh zzIJX6{%LS(YPpxc8TP90kJNvI1OeldZeycG!w4b{=P5vd0_l9!5FW3rd}W zs%3l>B!#O(3EPE{ytiwgz#(ixWO%ain7i%@O0MxjkN^0=O2pQ-@$cJ5ZW!E7%hnW+ zN;#7L>@WEA#j2Q;O3ZcR#|0oTsxoI0GCJ3)5X=Y-0(;YbgBX8(F;4mH38KYswi1Jg zy?|Zxuv^i3UMc~H8q837y};pkC4j8=h2AUj8Wwg;zne6=Go0XUZf;!pG(JYw?ou-7 zR3#kH*3QFu7EV%~I&09DC$ZN6d*TD{4XM|mI`)&jmh1f|^BwNTESZh7KJr=@1;}3X zrtMkQ^&i;z{?KKeWKuK`=f}SILguT+^|KJ4FDPO!My0X&PC7b4w6Xz0Rg{k7Sx=b0Fo63?AJVyKS>OL{x4T0vfX7NV&g5z>VRxZ`*|)Me%6#j&=} zUrQyF(iR5?l{fWJhW&gAe9UrsVA#~dRZC=rai^&%fYcKoMC!L7L13!Atmc5eZ$G0j zR9z$VD?gt`?s-`&dCChw{ytYZT4h-f9Kv#UlP(G_M)t9=1{V>BGdiIe30q#0od$!x z_7_fvkEXT@rO!DM(k1PW8q-YcsSpbOHlX}zYXYK*(SQQ==4kOx5obCx!*w)BC(h7LY9pWx3=o>|k&$)I&jVt&ITf%oTvQZj zi3}L|v`=5D7(@gIjwkayUAH|FTcv&yT3a-CXGMA!Jr(Y$8&nwt+F(WRh!f= z$0YnqKTfMvx4@OHgzjHA`su;5uPI`ZcxXf5ZbUd|~2L_Pcg4N8-R zYEjKb#>VS@z(GS%#sGbGSZVSoF<8wen@pb#oSNFo-we zL+bUbG_=IFO~WEd%%fDRpZyM;gu|R>ou?XlWxs@Mx~<8`$sfUEEhI!kEC1T&^I4_A zVq0LcSPLJYX#)LHknsh0$qk>q#pnQRy{;!xIjw3HV3RR#@7)r9Xk(@b-RpSTG;5s{ zL7&H6wmMBck1Fw|9Yl!@+T?j$CW9XD7cVWY3LtiNi)(#!m6a2d)tS0t(^L=C+&S6GosQ zDu?_5T;2V9UnL@@4j~Ie_R&ynz6#80!#s+;Ks{*i%1GH1AfZa)Y3SM+ow$hS(O9g= zot?hw6>P9>t|Q)9TO(>9S1R|aZ*xig^5x3~D+9x@3Co`N4jj@^gc5)vt=$mvVVUZgTe5r5S!mm45<^E;|swtnnRXPSCb^PfjqZzQQfFs11>tUu$->hn`yPECh3g79+_*vV+lGC_&U_(yZ@<{Qxv51J)lq5~9A;0*QI5^;~$ z>)}lCv@|sR7HlHI!YBlv-jtAlBY0O7Izbsycmp*K%rTa!NYydC*Y^E#y6ALK5LrqB=ZM|HqRgtsN ziA{6M?h1PL%`w9918(CG;S-+^%pJz~sdi;pg6!7gI-QcIiQg;v6PXaecB~hnc)OgA zf)5e>&!1c2m1^<)UHi%Ggf(Fgo&02SFX&E7n?||RfAj3e6n@!D2pBOAV3x}DY5)LJ z`R|8%P9AnLgMt$4>dxpi@^pVIOYvCX^a1eu{JAFy@`f7sIx+g(oawzuCUaMMry!+* zYfeH|#Z2M&q86l||DM$ghhG3`dqDTljM)eQ%+cM}NgH?Zc;b05$3hSw0>A zmJHcB+iW?vh|D6r2_u~NIF*-9#DcIX^zTQvPi|m?vGIL;^Qr0`>E3awLpFNWd7=*D zbj(7C2HA1)EbEYiCH?pQy-e>4fQVfZ+4tN3&@z^lmUiXIoe_J{?nm`Zmy|s26}T70 z&Ltcz#-LMVl!9sn_>t{0(ax3D)+5<8H9LRpzc-$9GmtvW9G`S=TT;?e%_+48n5!VTs!}5Su4{=iltpu zD>;S!_cSM}-~RyJqfg?Qr!DOe0=evqvNE5>M);xU0CJUr3TsQVS!sH)&ix|82=|99 zK=;oc8`!i!lk238mzJzNiI_AB=!oZV_|5of1_#3c5s|5X^J;s1zu*C+5Ny^)Pc(qO zXF&+z-)roPsul@v?C8L=wf%EoA*ZZ-nXgc19sgS?(_0#~t;y}+@rzM<>B{-=^VTD) z@E64N&!=o{$NAH4S7SZx7cjrw;{y$-3Ccb0jshV07f0;N@1ptG0E7mg^A`CC3%hAK zPtM~k3-D5-gM`gp^~o^2PD#zc%DUavytTvOe5Ue$GL9fc1GOggyH+c-jcp_dB*bCw z*TaJxDM)z1k24w!w8GbSJhFk1JhJCR037~bbAbBy`~UOnzrX$;{wInc(M4{MpsM=t z;m$vfJ|o2&IQqO?bB1bohlst&f`-vCI5;@H7=eGHitIm;WjLRrtE`rwN}Wf)3;8xk zKJEXBls?-N=yeO5zXrDk1|y8}H`SY=<^HVo+skZEz{{+J z7TDnkI_kT&1{24}$64{D0J9Vqm;y*hXvrQ<(O|bdlqD8L#3bPE?p|Rum{;ccaGMGi z@FrZa7_-hL29CgiM~h)+Ha0Hl{Qm8Ro>@IsL~ zrlrMezS?q^qp7h`Rx&a^-es*L5Ri=~|5lWj=QlJRN&6B`!~oL!Ae}fn`xk~J_j&km3mQ0 ziM5G|Nh+_$pZ4~$&B9t&*P$--y8FOah=>`F#_V$Mu2W?`0>)Fp_bJusm9cOzFb0N( zqjw{_OKS$t-LF0PZI1(Zv1On;Mvjw~;mbrja*q7Rry}}sFE;okRj&m7x zSIY45{)RI-?ACFy-objY9)L;5xvilTo(4dBMx;G(aBzUjY*fnDBmfTwCy&izK3QkC zJ+0%lXmv^9>FEg|X?5bxD~_?7q1}7&!?Nf5i>;^2{v|5*0}n9R@IPf~3ljR{x$~wz zI>t*n0tQ!fWkyEE4jCrI_wV0d!lQ5l4o8pMi?YNP!~R%w3TeS@cUhifoqV1;J5HTp`I_wg zsiI6xX+G6lX~GMcidjihYe0s2IA3%1_iqjrobR`>zd$Y7E$1-s@aF0r%q=)*GE!11 zPCKq4(^U@p%1zqDZ{NNpB$O&(kxKUvoMXu9O5t%sL`0O$fFCtsp^!<*f-7pz>+%Ka z7+rnc?*BUTFiw*E?(PA!jC;{hQzN3Fgarp@)?mfL81ACt=FTgwHwa5%i-A(98#-Q%smurKS=W z6(n;xRTJ7q#KnQ+jK_?{bgbhD-gGOG-CDceKJbvr=Yyknz>+9|$~EAr0h}9}`HEvp z9EbS|vjz7fV=e7Bo}$Mr2eo1AZ{LDp#StH^f7SZrE$GL84^OjgR;+9;;naqxCGF<$uLCDjVJsD2Bbx)?!0^-z-}L6 zudJqRpo?z_wy}|s)m-K7Ks+-LTrQYfJPwy_x8csWffq*6SV47=-#P>w#LV{M=;&zm zc>WeJpWTsk0l39+3Icf#awi)*S>(=zI&foF%jRX$LMO2 ze|B~jORps!s@>#TR&Zc9r)K+9q|@>UV#W@k2OyNXI2x<7Gp^GNgXXMzmN!ul(*-Lv zb)Rh#)Gfs}XpepM>eU1e2ZWSe9$I7Qtmyf2ZI^P*4~PNw%g_)H8JW14hi35=*JXU*(81sKR(6ueObKWr4hMq!K~k z=VbN*PEeJMQM*NP=t`h?^*Wy>aqX2;yKRbaW<0y~5-1+vv6y@WY06R4%_;_>5O|QI zTK)CUlJU>VBF!8X#h349#vbL1_wn(WtuS70aAII$ItyiADt+j{{2u{D^lQO7ZN70t z6qS{IGp}W|Z9jh~JEo!;+ZNGlzzNwvC<%$1GmObi6?#Dk1hV^(sKi7;(fw=_JeZ}f z^qRFN!2MtFo*p$E$Lcg~A4MZDhh68PF-9WJAAT;W0~xeRIVFuBv1o=19U}%~Gc?<*@&lK-o6Wdf>Ez$qO}FsG?y^%&ZJ<(=uSosv^BXKIf4x}K zY~gM95KAh|Qcy+ONp-9hsFvZmoNzmCQrUa2VZqT~lR{K=Do9^qu|1rsQ(^S_jx?AG zjDY_;Z#@eYk}ePc83)YzLL{TW;;XF|`?~Trx3=hYnv?Jr8=SfqZ4P$q>p|4y-ho0r z{NV){dM_p&AEgr6EN9F8=6vB^yN=`9OEx zRGD>#y>h7qvA8_|RUu}_!%wTLRmNiql zcAwix8${+P^&)O;d5EywqbE>%1`=z{!(+VO>%>jYycxq zi-IcMq|&+B*rpt}K;WmzU!po~o9+m#f(VA2uj{frU@?o!_ zguwdT<#KNlpe_YpBLoD5G&oC`Ds?&yIUTn{R@6pOJpkyyGzwLX%+Z}o*L=l35AWKq zZP3bjOqcD^(a|?xhrU7?X9WpBRzva3xn{>=oC*UWA;_-lt7?3rn`Y+bAU+kQ%jb86 z;I>z!oCzI&hW_@Biz_i1M)-K#y6I9mrbW<~`I2`38F^Jm(s1b###Coi($P8Oc~e}; z{1tAmK)G|IMQO^F0rZZHOKm*WcARR@VRa2h*D%w8iJaV@6ZbL(#Hu?e96Pt+q zsE(|R9lK+93RjX5IDR9ZJ?0oR6~xtbg7Z-7a=vwOR1N^?#Dt zhA^TUWNn)#1yVwp#sTO9pv)Bg3qE49^!EBXIxg;PzC!MHirWzS-}lM+#^4EuA0`>9 z&$@V_=%wTFn%ozI+dMM!uPGu}HX%ADT+rvrjk>(Z3#ADAH*w&0!O{7r{_wvowJH|; z4pI}vFn~z5wzis2yYRK@?QQR^+}-bwTb_6=W=dyfR3{LjT3@a@|5G9PFL#0ZFO{i< z4gqFn$TIC^z;)fXPM80=y=ou8i%(jT*_!r8mymegOroUcz-8ymS@|5RJfhY@f@;yFr4FK5pJ;O_=tRh{PJ z0Q2w&gXQFJO!jtAZF?S_0aBXo&Q4qO?SXi^qXiE2YLGP9pF}2SAhx9?9O#3TuF^NSAQLZ{1MD%j&JF?r3~rq{ z6)rRP3(+7M1Y#B?MN>z+70OqB35V8%Tys zo^-*G7z?5zWr<)BwVS%_l*Es^KAQB~YT+(V+k8*6wYDD)(MmJ7E*f?;E{x?HbNsTX zKs8jZVDjOU2et-&G z6B5*O?asSqU@xM=aB6Cm+fQ#ne9YsXWwA+@wEUu98)OcXt3Xf+?*MzAAo$TLQ^_e9LaHOAilDa#qm0o z5IeW!s^Pdf(-GhtsSug- zJyb1u($y;{*?a(H@Z$UlRko7&yi%HhHB38_qz)S^%s5#(9Lz)nr)ZjNsRcyKihGXy zA*G<$zr6kN17Uu3iK$e!>SwR7AZVNP)&&;oHdueYgF3i5e2k5y(->PDJs%%xZ>M<)wUS`d zNC1^4{~DKRjnkxIw}wisU7O+yu6!Oh(WNDHE^ z1Ox>9_}{b3C@W+29}&Bsd|M31#=<%)3@EUqkaw?{_j=dX)@EvI3Km<8o(x}iZ>AHX z^$o)LzNerF7~?)3PN%Z?71V2xL6NUgl2TK{F2(13^6pUD=0!4o2Y);-J9`|Sj>n}^ z{$}NC>0c^i|#cpw{nfke2|lXZ#q}!t%dspDt7r;0r5;hEjUvzwiR8mVkkQ z!O`Fr=$PZOp27jW&b25IGw^x8z_glcz@*gzN)CqOvpA@137xn%H#cDcdumxIh=_X6 z&w%Win6vHc8w8kY6<^(#-KMGEV=wCK@PP`HnSv%6B@K^{!A$)V~!1>lkh0V`C;1-|#5})VL`qwn0+Y_|yd9aQQoH zyt@xlnGvyn#Z0{bYIA=4s~~cN*kZ&KuSza0Dq8FLP|u&fGg&bGA@w~N+ygvTDNk|X zs0jd$;-No(zG3TJUTy(Z7~xD?Q1HPBvvh(2Q1bqAT1VkiwTHBN768q5+qqlY+g`xg zPM82w21(^?2PlKVz`$T&VbKH3##QTiveL%m_E%OP{H~UnDb*DyQ%#D9kW*ANaMMgO zJOy;+Tw7#=J!Lnf2bEN8Ex+GY>fFT;*f(Q*VtFS~7>KK5; zV|+a2<Fnn~3;do@x0vi(%XUa~eSOV+IiXO^Cl3gY0RUxC zuQUMzlEA{SosG@M2jQU0$^jNHfD}f-ojfalp8_ayfw&~n#>vC;0N!AfeE9GIB=&0? zeoqN(mg2pj4tPEdW|i2k`^!=mYBe|t3U)lNJnHjEfk*@iKp}iCs)0puQ0uj}whmgv zXaiHVYUS3EQ-{6o4r|cS(WyW$(HKb;NMZnxKH{WHPfw3dG_3|TSa7&d2=l{Iv&UWe z9Xtnpu0Fl7zB;8PyXn|>&-}&kkq%&k#|w2)5HD%zuwH{RfNN&U4MBYk%peL#c?o3| zWX+Z+2X-ep*MhnZ5UiYiSa`SyD-;wpbl1OF@BdpX{vX(-y5dR;79&k`b#(#E6(Iy) zK=}_G{;$9A-(UZK|5+RM1m7X!7>;OYWngCyG1RquerK&`hRDM7?&G`XH{9F|!loAX zh7bl}3tf9dK|_6O149N$Ln~u@lXr})Y@pu;@xQM+&o$xoLkK8NQc70fu>{VGA$9Wk zq{Y`;(N^@tBt_F4qGHhmXLq~)-(L7f7&&&AvEc1wr(PgU9mI=~pNKHQU(?LAqYo{u zpI=U1F|WUPx)Du7meE8|h-xz=7kz1}h6iUAVoX8htwARunHnF}>KDiPD({OO!}n=q z43(Z;7-5J_#AKpQ3e4T9%wO9tTVy?jT;i5WD_9tEZbr6Zn(Z)*%m+GHZ3_~+3u_PT z^zP@=)BRVdEn;CNPb2cAA;K^8XA}~s>Etv5%K40-Y;v2X1S!335aenFag=O~dtU0# zsnchTr9<>Y6x0WUJmW(zb z$2es>`^P1hKDNJGWFdZGjoB%YIy($fb7QKJtnnr?481RWU}II6CAoKJL=kfG`{Z=y zYsPP(O42G{nS$T6)dh*YHb+iwQ!DPq%B#Zsy;j~i62;%!HA@{RYn?r`lq{9Hdlk*E z=i2$zndhsvAlkvpy9-<$;|{m*;prDVom4%vx1u;k@925*UnCS7e5ue`M)lsIqt?x>-RDg#3n@%FtT0Dc zH_Z$#Be#e^2qotW)%RxN5us3YC4vxBpKayYlu}sIAJMFcB{sCgXdgV9gI@X9zMN)e ze5BSxF-=o(?6~lVobVTuCurv}g;dp%t)y^Ot-u5(j`p5(4Em?^xAJ9m5?Eg*Y#8W! z2&?NvKD-w5O0kqNUy0-mPY7~3FQU93m7=2exJ6&A`G%n-b*%pD3o=%l*zf*^s22hs z;_Rzu>wog4$43~#;YM!KVH}}HXHoR_78p^hS^wgA^iN%PRWiv$Fin}t3y*ipUrp8SAEeB*v1O*v=*LscCHWr+^D z|JDG>n7IRLGEn8umj7P*i`s4rK9z8Km%>B@M%$UFkx56j-(ek0vqmXlopPLH?I|nb z5o(jRJ3VxxYc|mwNB9&PDl-bR{}+329aZK3t&7@XfwY2vbb}(DN=P>@x>LHl6i`Ay zy1S%Hx|C3ml$4f|?(Q=eU-$j(efBJ2TGKjh#q}hlGww^%H%c97<=^D?W-h52hGmB zx{B!3ro_6-nAf#1u}uF#*?m*-!&1w>?56MHHa*&74L z|M0s%YX z_lW!Qw5VsjDEVubtCrU}n^C%xdILJ4Z^(-Jm$8YJ2Pv`#yG<3mL%2`pt`SGR8j+ID z3udzK%boWlSPc#dQf+YduRrV`?3uJPG9kwwxsy?6TC8xpI{tc@D0a0uT~NR4(&^ny zlwT1F{+-4h)x2Ri$12H=vCsK_l5^B?wNTp-AiiP2Xw>c4y2hjV zhSX~P^>&{=#j<1iwG@2zvNihmZiWk}4&QIoyEYn^bT4_lXr1&ba7#L}I!c-3Q^MPs zOnAAFK1|loXw?W5XjAv{$}m&SXQVQ)L{rrEafMCswvL-`SI)bnT7KFA65K) zWw!lS@DJU+8ssg59XEqEZTp-Gu7oUREk)!vzF%mc5{#pZY-S}vZ3)2*w-(_4#VF}4mXKKGB7R6f-3 zak+Th+3(4uBaY8t^Kp@v9pdLZJv!;zNt*9aP8M@fs9L_m5<>G^o~&1QZN@0u!Qpy! zN1s@W$~de>z~ z^M!fgg`CFQ`4@WZ5o|6!S8d7*W6Yn&gweZ*59Yt>pY?y4OjL%*cpFUV{-Z9-HL?*g zxVGCxGWaxdEj4sKpr;g{bG>+HmK0@+l)f(Fn&5m!}#{w+O;NDooX%Ac35PlB}L zRlnhgdbN?XjvC+5y(*7(#3S)1YWDphkKJaI3pRgY%affYig}(VQUYXOm^|o{_3Zm} zyI{8c^;k*Puw?CniJ!6fHyyThgoJ;Gn$5mP zA3%Thp@>EL_zLDs9k5hmx~vj}#c!B5)1Kk+ih#raQhsp5=CUD2LCGVTg6_^6M&4XW zThBstnWwF%f*M_HhNe`e5NiYecck3%nUjgp&JJyAmHl3ICE#EfZ0Y~({8Rl-P1?F# zg*FMZOM$&3yhoXX+NJ+!uJ&CuS7uj##`=Snch`RT38YaE4Zf(&c@ds{spp673Qoh* z7n%2H{FL*Co36LWEhrV5|2A%uKe-7ahQ`j=rGkzmDns)|6EP#+r)={zykZHT`mN(e z<8LP@|GDMaNkyhb+KYLu6*rpICpVP%rLTjhC+iMP#pWyJ=Tj_~egYdTN~hm)^pLpk z*2Bj^iqG$Urp39;Hb3>s!-AA3L~;i%XRGeIZAd@xq-U%saMK z>KW~r{Diz>kE_MJ6~pjOXc>S;d=^%Xl>P&0H$k~aEQOknWoIJaM7^*L2yp&;G zZrxV*@74CwL}kU14mq+%l$Ic3K7VT(*Fw8KR}$2iZD06A$;Y=S<9a?%xWVUd^0DoB zk|}Z()9A=4+Unxa=YCptF97lxB^i!)2l0VTLE=9v4m=3-F(sWIEpFde9!aIgM*k_vz zJz6PkU8!>DPf98YIXAz2xU)#SSEJN5-6pUq68AR)Y zk`}7UF6vW~N$KT38?Oq-oA{uK2Dy?P24!Q$sRw+1E?=UIZtuCS)$DL66_wRc;Klnqy1HPc2PchRemrIN|{Db;OP0Lg(|8$|Y z@MpE;PT#=)Hj`R2oZnrmpldYh;_X=rOJA1YA=Y+4XRCGhhyEg^$sG1z_~Leb87peY2c5hofwBIqIBslg;rzyhH><{J?rF7hI=;i zyF6{pd2}9u4$5~wlvwV)j8>P$d2>epTDj?T;q%=zqNK=iopTkHciMa;^jsppIOt7Q z7D;u?r3&qhNY-Q2`F(7Iyri|%|_F)duWfS8;GYoqu-)WV$0wEgyZ(QpSHfn zRB-cpRGI`&(i?$=DMvrw+|+tSIu$%j?A-WLJef4+9FePndhZ zJf$f@KX*m_B|qR?^>bFi?1kDO6Vfk@#2WGK7=gdM~G{-U?U%M*1 z1wo8|+!p=;Gn#}Z5i451Hf1wml2Eb=!D4B2`xI|L4_Y_6b;jIF#sW!4bfcI}f>}oW zwf76C8&OOkzx=hth-E)}C=xi8)-YR$wvDU%=yGwp=6xgo+b6Z$v+-zFr2vx?!rKg2AI0B$$5PbBIsAsSD&0CWa=n-0 z%I^E(a|SaKsdvVh0rR|OI=?O}zriv!*yz{0&by}e_QURPo@}`v!@gJVqD|GcuNjLZ z{hlvKd$aLW7GF4UwBVC=Not$=s7J1C9+_eMJHN_QJ1wcO6Ak~G8aAsMhb77UHb;K% zfz!q~r#gwrAFmlAq?&{s_S{TS&oeZC{mwgj73dhfwYWH2dkB)|<>f-9Ss6v1!H9FYRipnVj%9Bc;$h>|h9NP{KmvI3hHNd-J+DiSYZ2 zGVjxqm!HoMw$ZYmY?Lc~(|=*Os3;ejp36qZ%TP$dw!5C@I5N-vdwXP}PnG)aY`%1+ z)T@eKnbRgI`VhM2F{{oTiQ#^oyhoA059M=szGs}%7)s@3B>8Vr{30r#)7VMX{weaB zCvL^X7(G6*{`iiO-KX;Z0xq-v3oa`-S?V(?N$VKv>)JBP+v(UM|1WB$ZK%(v_*xH` z8Fm&9MiKqjhDNrJS(u+N3Rsw0Sj$^#>*_NK>f688)fcwbc4FjzZEGW=Z!KV9W@%xr zZ*F^=9e#@BcVx7!&1``A`JX@VnEjt`vU&Uz`42lYbDN7R$yn>_z1Fq0uzt+M%lp6P zi*7%C!p`>ZvHWV^i(8j2-Mw0T$Tpr$wG$%3UinDo{;e-6TJ%LY$d}R`M|1W<0|Ck&3??>hT+yVUe_pL?$|IhsY(+m9ni!-nF^J*k9 z-qruYLUR1eLjEUna zh0~O?&s0jQM1>>9La3@`2Cqpy^ofxY;^M`edB%Kn$o4?d^n+qt_p?tqu%_s zd#6cELc;jH?$YlLNluA|dP1_uia4X_AY?(%V{|BZ@Dzj+?@JiO@P~-^fBWWh`MVnD ze6^07shtLCnfNlG{Ij=boqL|}*7&-e{~x)0NX3$o3HJHPG(*Pe$DM+d){?wP8pGyH zsTXB$Iemr{XoUlzeCKlz@{-R=HaSAG?Pm_cFacz3x1s^W|t0)m3h_8ZRK z>d-VATv!-Cus~u~vQ;;j2ce>JbU2^nVm=1a1<0)m(k(-xkcDWfov{Ig%!T_z8=yH0 zpd2aE_Hqem(RuwdRmkgPz4?3@^c_Kgfv51(aeSz+Jk8ZS%>jiONGa|suG$}i?5#+z zEfj9!;P9}extaTDAq~U>xNMS1yy~X=u3sP#csfILelbghTYX7qJ8hIn+-^soMMM%` zmgq!iX0o2YZCId=e&Yhs9kckSf)**+*fAgx^E zu-?_)ZZqlJ&9h&--Nm(*3zGDETZ$nl`0r9hKJ;9<wQqpXwU>t;WJPt0aWkYbbU{p*D^_5A;FS{R)PT~c=MDOaa&3MUN4C)xi z;cjbgb3lQx>78=xo2_UO>ayo=LG3bmX zCoGCx(SPEbg(;m*(O7EOZ9ZBqc~S;xcm)T@v^K#^vg$OW?B@73COY7v7inYC_!V8o z!uetI=URd0x?!o`?Z|g`somD9-g;j03B7!Y*@Oi3rTv;~7$NuehIYoEv}%$kfdpI# zGJf=*{mKe(WT|eMijY6X&nLXRXW3bax9{E^tF)T2aNouc*$xd0GjXPR-$WdW5E1c3 z3HR~wA*pkkpa~r#IzRXh3JmlugN|tQ`}ZFcI?c9*z$xNmwNBfh$7|-D_TyeBIr9YR zh`*s)jlG$aRM+|0`g#4qbijK3ae?!)!=xK!$w(-P6k=`TZ2gak1~WebNCM^P(W54YfWZobn+ zX=A4r4{&jZ>fKy6zXz<)Vx;)y zK*fRWBu#-7C`O(>EjAe{s2H~&g-pN4P8v~_#p%&*w--Ye z=*p%}Gl5@*OSh?sE4o@iE#xgq% zj}3}aNdp6eD)CiP5y3|vf`Sk;$&Y&@=JQED(yLX`H+&AkM9>;OV6r1djsP9DP;n&8f z&(=w7gYenbKw>6mLGVQD3(?ue&HXMCayF5Sk0{F)r_Oxc>KE23ZA!AK1+&ZuQQ&bw5UjiJN7s;I{HD#6-8)2gfRswnW22u z`TA_L(ej56AA&L_(BB`!<6U84;c+Gy^o`YuNgT8T&?l-@T247M94Gi@EfLQ+AAlW) zv;PV~hf^&lJ`Ykcuws3%Y&JG5H=|Cb&^+#^JY!`=)RooNo`BYYFuSRzL|+_3TNjTh zeP<@PGXnL|vMroBk%0w@Q8pvk>E}m74Quts=KE@Hpc~<{Tk0nb=GI|~X`X{U0i{*O zPS+BoDlDfO4U^pLK~QNn^4V#3Kyh4vr`b(t!+Em>SLh2Kw_}l`-aeTJ8ux~0YXZqT zC{qzlaQk-ZIqh`58SLTf%3=EJ$^Oc--7~aUwH$LIW}_Y`D}b^xx6KAjD;qEqB%am5 zbQU9@!8f$kmHO76LzfKm+RyqeqiB}?MEA=am_AkH=mzR5FZQ;SJD0Hqvqb81fcEp* zGx@0=cDvg-*b}d^z@9^)Hr6h^0W%&x_a}vXu}!+N3jN;TqBFr2)l!OiKT7|R^0J3_ z{b~E7oE#nja?tP-bWBUJ+*>(W9qs1Z@-1yJobO_tevCvl#!&KBRVg9KB8Th-BKT=o zaAD($`ndZ3HAU&9tAiL_hj(S{GD z2?rzA+3i<;fq&>o?o>Ff_%1NtI82S?RX z9Tdg^7CdesVJc9s*#mj$!eoPosi|pMFrWEYC9-f!(i?mh9-sRO*q;8l4hHaN4K4Bq zM@P<@fng~4a)laDK-c!8H;E?~lHW3q0dtBqf9*;jwdnN%#pvRCVgF2!H1FZ;RW$D3 z^+!k-t9}SurygoSkb^NIc#uYPy0H132$xnqQv%9nzJlLZlqY!vsOtRK<9r&qpKl$U-) zJkTg(Z}nMb=8>RKgdA)d=45a0Yx~vX=1?TE4-&z!m>A`?>GgHZ)w;1N$=TYXqM|#v z4E;L?P-XUr+i?Tn2bK^zhn(7OtsTIt=|QM`JA=w65>NlygFkT=fK4U{q+wj=Cpbt* zQk^2`{fgd@lSc#y8Wlevazq9lMg(bilc>kmCx>FCn3l{HDo^EBR zy&#n>yD^t9CB_7@OcDWTp)9B3=ZFrdN*#6YTJS&Mf)BqD?IpUb$%f4(zwk1il;<9A zI6t*0%(lYN_M+sUZ>OT~G^!AH=9#;E>5Jq~C@n$O_<~X$4HXrs*|xX0_afu3(`azo zHn3~4aWOYvV|3pPxP?h!3u^Vpj~~<1o538BgjPFHfsotdtoAskO%LEA8M?8eX)GT^G|i$r+s;1^eJ2StK?RXKz{vk*M5G*mitkk z&N{8MawKT$APB8Hi%28rryjVyq!0nMi&$8KvXeS5(~7@(i4Ejnb%TZ)(XP&3Xw@Vx zWuI8&?UZx*(sP>^B&LpjeqHHFp^d+x(%?Bse@;4?A^y}?uXocrF}+|S$@uC0eJuqA ze-WTM?VF=Mg4hfr1(B@|=TwU#!?}k>9m9suE~EnFm&Hn;rVNXU!o7dL2ZAfmtqw3J z^+4$fvH%ITClvcQY|XYwRw-d(=4-mYwzeaun-+q=OvIZ7pw&2F7x)YI@+26Kj*gCX zb+8|Z-Ps=hRM(BKH#;+w1`53Ivfa4E%!vA4AZzA8yR@*`AQDAaSJ$vJcA(D1VLx(b zX9r5b7}Y9^KxGS$FXsxY`!~4KEwH+*r$0nQik57D441yMnYYbX<#M#Uaw(P<IK zoM*eJ!)5seZ1yu-BWgyOOV9fZpF9u@g|(4RWlj!;3F@S7+#@!Sjp(FCM~L$TCeOEB z6B>br>1g}{0$@&E07U(f`zk6rM}n?G_Yyo*@eM;xf z*8P#V_rt^9wek9VRbgjMj}H**OnmF7{)CXp+K4qaqw(vRvg}CUV&ma)0~M^pxLuUX z3;?J57#K|2jozHRV8L|Xp%Jac)Ijlt&|vNEd0Herd04icd%gMc;7V75nZ|Ywb_R_` zC6p=#PSoF9!cw3G7*SU6rd#V%U0|Ll8NcjpsOB6k(Qi+1nBaKbOSZoUj)Z{M)e%(p z_4W03u2gB_1K%5V&#CJ){DUjjeoY-Wp}qU1lp9s|78`e>?eFad8JnF5E?Bbjo@_LM zav$vxyXB8?>O|5BC?+AkZ3Gcu#M)Mw`1(YhVMp}Oa9Vciwipz7dAD!Dj8k&}(_-^p zN_nrbvul0v1idjL_EI*~TqJr0`9Mvc3SH#F!UA{~dzef=Tyq_gZ3X03(H@`HIzKzj z{q|yt5VxBiS(5Ho1Ta(bgw8%^R&W06^p35rsNXE!4it1eC#f9)PblNzWlHY<)DeiX^_m$(o^GS-}yC_(&jwh)hVJXAl<`kAn74iz-!Bh!2 z>?2B9JW76n;6jrh70^O{GHKNg6-P%jPEOS`-*>}dpTl>B{G@7W`56HO4t!j4Rjkz# zq6@G)1+#i~mbc8nqyWHswRDa7c<*8R52}k%=})&`U7=SUX>Xr9J?5~4_e8wm+>8$S z3!oR9WlyeW2`LKr_9#wimcQSje(P2jYvauKd$^20{$5*F#1{io7nAn&Yi3O3xTGMS zN?$x-C`tktG&v(ucnUK9RSN#y4)T{mDNo>O{ba(NcZ!YFdA+Y$7_pFQM4cP%`^x20mCWHN0w+FtGyX@oT zBidS1V4!-KE&D6auFQ9Ae(>u0uwdy+|Hh(LwohG0XXWeHpk6r+o&;`~QxP~~bMk06 z(W-~wcEZgNlgI7Y>bGLD00nh(mF8*_b#_)OZN#yA#(KCgf-}{>lGcHE&v6oR}gL zLROri_3eYo8uVvOQ|F3HZT)AQwM*flXY-WhcbYNF%gxNDrbzI9kWfg)A=+KNbJ}kP zT`WX62^;y7bKTBhYI`PQO*?*=)Ss>fblqBU$sGX6q2cBhg` zX17hBwT>7S`)4ufYvTzwgXHDd|5;WOEjYM}_Q$Iwod(c$X=GnvK3V&pwdG7)7SnSA zzD`z_zQ&4y>tfbb^!F!B0{ni?%^!Q5InmdUQ*w=>IIOb{+EQ>Mw~F>Qy{!6Fn6$q~ zCy^W3@G8sdKz11YlO9>QR4&J!=P_{87%3Ih581lVADOaSHCi;ii?vA$|Crn*CUUWk zTJcKX&_G`bDBr^gm;$-vGKuox>q&G`7S>*?+g)aXG8n}WN0y;Rm6G&E$} zDd5Pi6xeBee3^c5j4K)c;Na}|&*8SX$H`2ry|@_7Wc2_W%K*C-NudBNt7yE^KxCnO zlIs>6vpGLKGb8-r!OwhEHuN(M=fw;ls=DgBk(C;yr4Z!u0_1X8tNQ-^yCLZ2pBZ%A zzg0qwyBsl`)7NV(<^35JjweOR)6u_2q;5b2DM*V(nM)LIZ*doa5b^0 zd$u(Ic&pUA9>%hm5W4OBq)^T48qN{^u%TH$26H%ZyslUi%sF=O`-OmZ%A@;Vh9Pcy zp7y$fwGk>NoW8wyp%xer00ng&t*tT@3jSV=5V12bl$MmlI=10tm%b`gmhUqi08gKq zYU)q2KGFGz8NMLbuSmtYZo*ADKRg`EY8XI2g+|GsMqL4iDhtwZduArTmUIKw?_Yk` z$$SzhJpeOcY=epT>Y zd#3c&ptNp(!Ud6Q2eA=nLV+B~Sc6AHb>hd58vrG$GmF0=aP8D1^~2iI3z&bLe>$l@ zHYMP~3nJLotgSql=PRrhkPEeOHwMpMeAehJbKY;TbJL46Lj~#H%~=1F4_3@j)pVM} zwu(tg@&KL$V!sur%0m{5KtZkMt`#Crsn~W=&W?wI0-BO=0B09?NaXV8;p-paI3CBU z0rN>wIgf4=F*S2M)i%hSnDYG)1d5E`7rtNP-NkkJ+XqI-Fj7*f{)1~ykF^J?LQG1^ z94KOFWz&2HF`Dy$8x$4K@FwR`tgWn=s?H?PND*=}bF(Ws>=><4CWVhfH&p^?)iK^M zc`%?@1#I1*ntP`&t~pRhpI9cEG`8Qd1Qxc?mj(bn&SVaZ7zw+&P%>|0)A33DB}eFf}z2 zgC}J8}mkJw&l1f)E&3uOilc?+AOZHMTZRO7dpussTs;v?%%(^0a2oh@QWcP zRXbp5Xwi=(qGcLsA($9*=JfwPNL911q52-R`oy(wx+TI~?q-y)pa}Ja-E)ZgT+qWZ zp!22Cr*|Mtr2i{99N8fz7VSrfH05xIki z_e^aIYsq-si8mheY%TECErc=xs2)8-c~a!2U0CfO&e4zSgw`c%fp6Z3MKN?OX1}Jm zKnRjlwk(*j=bLC%pIYlelyAY~_{j*+806O5w%L>$+aZ9k7(uys7c)bn({vyTGbOm` z#pR2~zM+tiU#-d(my|@xr|GZ~{bmc^CgWds&@W$V@9TMRSI)I|B;w=M?-x+$9(L&~ zi^;Xb{MfJL7jMwNGR!sj3wOG}+&U5vz3$-``lL( z6~PAoJnjeo;T*nW2?m-_{b~%DLX4C>h1h(Re?c&XdulAIcGe}OflpW>{*F;7ZRsnI zQ#<~*rGXpGw*<@?UR_)w)(UR+a9j1W45yu3+^xTuOl2C(=Rd@nOaM1*H>rQSQMnKk zSHIVtv9qj(>V7@KvQ*ee_t}qO;#$k8YL{fT?dld$%RTOg>Ff_>SAYzK67o4`HItg{ z91_0;aTr|yF`Kc{SNp81Aqz;@3J5SS5T58J;o1923DK0me-Nc`Lca6!E?gbANnTwi z4&?e5@y1K*LX69D4*vM4sKKy4+5JZM;^K*^--)8`zN;@^C+kwX_~1x7d{A+O`Y$|X z$u;Utcke|l4n5+*hIxle>IDW%FRXIww*9=@P|F>e#L}?ts7xWV}ORhs2 z5~}l&)qbc1&ff_fkhFPPFt0N-{JIxA?{yD;lB*w zf9f&u9L|OTT~-0Ke6_&q*V&crXnZF{5E+eHG>k9jX6XvM$b2N_o3tpzirN@9^y$l_ zHh5O30>GvSfK3t5tcg}K_Z4TRr*Gf6^Nfk9c>tO3ddSpFaFcvq>rMmo`|*naV`!4< zY`gSEcd;fCZGl0ZiC(!;90#fZUyDeks91b#vA1oI(lq=C$Sy{EU zwGFHl{l`%K)}1>hgN4{EX9T=Us_bSeJvF7O&=eHlcHo(!kf7iO>mJkp<>oR&Q3z1K zL$e>~e}SYChSVKi)ks5@9vVTAVN3uIY2q9YwZeCac*mYO7#bP|e&ssd9Sd2(mn2UK(QPzR>Y#S@Zn}-=Z_z~t(F#nC;Y%RAi04xW0nVZ%PK-xV7|q) zp=|{8rK^G*HKk;%!YVIxh(PkamX;d;X`$bMvGYX;Z!yRil}?r`;$0*4a*WS9{d{W< zFe{|33xDQ*2qt3`NRZ1ZP%uXf0 zbk2?^=Tb>D>VXz}!EC_S2xN*s`@;M@E;e?V=`d4w+!56C1K$V|0bh2bG8LDdg<|N; z)=dDd_io<9OAiraiU~I#H-*rb9w+G&(WJ?8&sR7e`gL3A^mn3pYzTZ~9Y~;sYor=w zrfR*bQ%0QNZ%n@@jEvF=YCUe5x@;lnWnn1fii-R!=&1Mz753M18v%?r=#*qmN|Qu6 z2^e)?OMJkb!irL{Ul=Z(2Y{1JM$A!lQrg{-o!zC~Pmacewet=C9VVq~!&$Xy>;2o% zrgH4DN_6b|W=Fks@iecM(z=mB?yVh182%21^?S`NGu8NY?W6L#T8;)>lbW}5$g6M>&!#C$g5 zsp#)I?$A)VEMh)m_qHk$?L|I*zK; zKpEMb$&>{@%D=Z-r(9u<;NzR?B_A)=Ju-IC`sZ$TtY4;K;VP;s^7{<~iG9hhXPKO0 za4Z(P^Q&aY&F2nD(Fj)PobzXPR-xux)uN8YWzY2XzJa(D0y9OL{uoO# zk?vyfDmMiyLA%3ZGN>?eaI)QvOvV=2pF>g^n#ct=)(wY-#tR4TuRe>67^p-;4w2_O zQEwJmW4u59s;OqGF71(kwQy33z9j%iVN|=A{NyQ2V!S9iMP|%Frbt}?yWilxhZeS<@1@e}1b}nW3%T)h8)ez5aH4SM%F87lIkXJzONQfaeA^#|2rbyZ7 zKlROjIzBkFT+Fr;VFqNzXGg2enP7Qa*jxkA!hw)z|4--v3hsxH2_TYWmn6tI6{uBN zL-+$J{C-5)KeQVz8=Hr{xdU7!N3uQ1q zJ|5aeT)TO*0#q;V!CH2*L;A|BF%nDu4nsQDCEE?P4uwCBBistG??fyt^iDNN(kg-x zw_JpL;>5h%oxbG&1^G|%IoLpK58_LDv&NZ$NDX?O(a_OhDK<4V0eSN@U4x*%SpZ2p zkaSDNv&&}X8qUmtd}9oAy1BU-+%6@MCd-=A=;(4HzP6jG@nM)wqh@xMO#zHzw2DUo zbK?#f3k%LXy4Ngp3tg~fFQAE0h01a`3K{|DPR-;g!{f)lo6z_aZn}Pg++m0bjPx2k zbZyFf~fm zTsCC-VE-seK`!(a8Gk^_!7p9Aqwbv2SI3~Vy54Xo$zza7 zE}$Krt3jKJn%=#_`Xezl|JK7nRSRfQ}9k4Z-=9GCNC1hLc!H z#V}<|d=Fq@cv@W06o_0yqZLDQb1~*xK~~TQonQ&8p(}}xk%32=oTTbqC}f8v@;(sq zR6{a-=_Pa^0$k=B0o}U>pQ6I>z9->D{RhD`e{~iYvqoj$ux@r-lpA->TG|zo=A}Nn zr&Q#Lw1|(b;5*r#CIL(JvK~b_K2BT9DL?JrOL`$2yW>w^Ie%AaIzyE@{HFRkE z{JEMH6DOEx9pyII)yzwmFZGmg?vm0mFzjVBW&4dh2MS@y{IP=HZvZ%oa&p$4??LyI z?dzp851oLZg{{*>KQ#6MEun7&;2mhUCzlr<6$OX1ZACTsMtu45CFyj zNvrr^%udlseNWLa7xm<~m*?R&hX+vlWQ`^p`}>TrtgCu#s=tEXK&;@QMoyi$I^GFz zkuCbKUoURWwbPDc5fTKDT7cjAK?>= zL|``P8G?Yl24*e|vNkZB?vN!%1{l>Dd3h29o@3xV#JHlu!+k#vK~mC$cLghIWPkB5 zV#=znEXlk>;#KGQ0 z3IdP^dw?7WhEffbo6t>I#|0Wp56td^t}UP)I>6oD$GIS~^Ii51($gQLrLEf4MzIj5 zbg-zFL6lYK@NakZ@&OhWbgZ`pAxT`P{cI~b3+g*>ZwY%AMkg9Z#`ATL^W1krxAzC- z=aY+-Tnm;pgbI|ub|$$|;Nr@^gCI~wz1w6Aq#V#G@)!aVUaM*ES>r2@IBkuzw6rqD zp)t>3siAb8#w0Muw=14vXdh-J#TJ@a`pG~JA>YlVsVyv%T-=|?<%7;Yqub`6JxG-N{pp40%dbt>m0S8Jr4U@ageCB*~0B6Ijw-N0o{N^&x#3iI7EC0FOY&jY7H{=;e~t)!Q2 z=E0I)AhC}qxmKOZS93%4oxpmAujfaFD*z7t=7(9h9^@m37xzy419i-vTz`_ zP>Ll!H9BVv2Iwr*)(HlNb6Ui{oE&120xq{EsOtn64@~(Qh+$-mCArW!yVa~Wl2eLg zP*E!D)ifYPIR6om`6_qoeEs|pIyx2wa(&ZcU}8cGG&ksoLoOcq*?ipjqj-BHJ#{?= z755lAff<+0H&8lReev8{u3mpt`ik$I+vnCL&zB28@J5)d+0G|8pb~PkKY6kN3j!pI%(g-;dTAg;9spgn{{cJ>ej2}hOds!CXkPTqI73;cI4M;<>V3+5Trl-wI%u0mjj6Ty4Q_4yIexyP|S3?iU~ zz@oS-SiwEzABDO`{*WnY-uz`v^y4+)w*d!$8r1`j$JrJ}5W;+rDFTNv?I#bYIw=|_H5W$)IC$)M{v?Mm zbR+1W-h+4`R`&dXA_4)4f^v{35rF9*hc3l6>;|mnc%h*`_Se}|=)N7VGvU=cX!qfgKeO1*Q@3UZ$vR?K%)LTUwSxJ($TnjLjK5K^Ko`!_yZHb zx3K>jMrFyWL0YxXJMRE?CvLH&4S5^IW>8%aS%62 zb#@j`17joQO%sB$U(>H|s2n-zvd;6P0{uc76dgMKOq*Zyl<>_zE(j3`U2dINas`bd zmbflUUazZPXrugRkK^LN9`FAwt%!1ILRyyUDzgDn8AV4vu=2@E9QDzY@bFd&c^*DN z|L?(Q&=jkwShpUZEpps}DC5V_T~AeM2D-cP&%RqU-DsOa>01#11_f)z zofz$eT$yVkV-Yk3Bc@$73hLQ=KOdnE+wJ}kBS>tmBC*GDu;OuSaZ~Tsmyj;pGx@fj zTWI8X$$Z!1XDZ3*V&9Q`R&&MyagHLc6$@onX3YYl8VanL!lTPX4;BC@sC>4p#F-b9 zk!kUFX`c%WZ4)f^68wa{xe3&I^LKIkat68%+4b+m6cp8lxeTsTJ_g*kzZyr}xnn0J zWc}ieO-50Vn{u(7jFw7$?MOV?**a+FEGbwODQak%oQ8_-o(`81^PN|fIjnDun$rdc z&zoE|YMqTrD$L~ZqCHU;b;o5Kw8a&Q%su@m>*{Knz}XhXu-Gi8KvuqR`*t%)0*8E5 zgW%?Ferv!q6MLmjhMeVHR0JE%n>T?^#=R@{XDQI92XEa~sJ1O8;5PcK^g-ZV_;{-T zWD#$6Br#qIs~l-fyDx~6i?K2mQlR4^8`5RB{Hm?nj$+N(J!o|G$Y#D^CQZWCd1=>Q zgRv^oAKUB2xW*xc*9+GX4Q2Ew9d&hCB4KrO2M4pl+Em`4{-~J6%wX$RMyR=T^fc2Hg03{jvicDljUox9{uJI`TJ{YGp4#AtilCc1N)vQUSW zi<_YZNBFs?)7L9*c0|MF8yjN{=i|?;2QbRx#lxhf$Vr9$#qv&ANZZNLxV0q3whpIm z7B6%s?Td8H!!ySYoa7$9D6suxKI+G zWzSDYu)uhq(eca)$`FQ1*#ZtwO6=Cup6GsyNciwlxIHq|ahCH2V$(0@hA_+HYWbOg z&0-z#*V%My)72{9-&!3Us$*mF#NzXeKE^IH>ov9a&_dvCQaqgw6!d);8m<87?Tn4R zQt&>XTms)vfw^eTg8Keedsi|d+pj>baog8c@vXXOTi}UkmjK}_FZJi1N(E%xb~lTK z#@DK`h!V=U^A21KDJU0hGe}=L4$GKqma4jTAx>kfcDlGy!~NAX@uveMXZh1;3Gnt; zF)#o8Y@VP*7K@frHXD`TmJybeTP9tn(mo%}LnjgFoY?8E)AG=>V7cw;6+uD_qH_1; zA^b{H#UD}8;)oS1u=-tsnGq~AyIkI+Ylo4cslHpu`rI| zdUeAY%kQ*c^M$a%@51+t*P8zX*$$!D^YXH#H5>mBRXlyPAGBU+;@;U>a&Uzfy?xbWx(Ya&j;pOi5koFwDj?~tY zG`nS5Nw+lvKJ;?DHTB065r-gCt35K-6BM*ZL|O+NGXx|}PEF}#>ptZ4*cb|bJn(xV zMlw(cywuD)@}X9S?*bVDEpq};n^4a*Sc20s^9(9w;5%ZDXNn(YPn zS7#9ENS^1X57B=8YG2&H+AhREUx)E%d+TkMbYb~q&_TgdLSDK^V+<$9gI5nXx292U zO@+M|LR;bEZIbwbouzwZs^7aH^KY|jMx-SG1oTC+rG6m)kepl#uC$DTI7 zta>+mj8#`pB3G$;+>iC(p|Z<+%>MN-;ioap)0NzXF*Y(bWjs}?6R^3uC|VXO zbtT#b1#>ubajbOfWZUAtPnvx7@Mi*Ei_IprAW45F5XB@|nmse$1{x+44>r}^)~mIf z9_6cqgfUCGCP(crQ{wCjHynJc%Q@T_6Pil7<6^v!-P(MdR5~?OuwPJefb&;6*{(^ zWdv8F6GhDjwAm2<|icSI{U0$ttWBtYvH zAau$wWT^M)s=VNH=C#Q}*tTP?3u5netop66$ZF%p88n`e5c#$^9u%RxeU~O|l6192 zn+f}DuL7IigXGZXT`%f*JnvJy9LkDT`=?KJvj5<=v;;)NVXJ4$I-J$2sTi}{OVGV? zc`+;?ko#~5gJ6|g%zlQCKK9#dRLG%A*BZ6Za!?94I20B;SS$zD%HrD;;n#Z7jgD3@ zqPKgYaTa3ZY7V$MPVozEgI)on^Zkf|-1G_W9*W1b@xY7vt`~%>Ba0;^ISH`}t^&AH zG5pG`%QB9bF4pZOY5L;D?0m0is2LrC*m9gN9qqhUw<^|f_4_j`LfF}j?Exnf@i3M2 zCgZ3ogda%es^vm+RHOcP_d=U~w$8hO*zb?35|m4r|4PQ4EN2TvDRdV6{f%$`^t9cg zL7i?%dUhlh&CPYpE9y1xPGWH8m|9w^tMP$N*_9>fgq)GpZl_-ry22*&UFE-&=1CAb zI?asU$&;rAN2rDZ@8!xTwpZS z)?rm|-@fp+0qHJjkVd+ZZlt@UQ=|nXL>i<^5RmSWZcs`>I;0h(QyM|^9m~Db@UIqjJPxfp? z0^`T!0eB)czQ$KFc~!YweL>;&T4t zy1F`~g%kaKednjPfq|QhzH5!uIZpDBk*-?_g_6>}a5{N&!Ox;6wx;I3zNNdc!ry)sVPG(g#b?H>pQWa*;3DtoZhV8W{V)*aJH^Bx--b#^@@;k3|h2c#4fcX~!S`s#&A;VFp!v8E2XrSS$d9>6WvE{{m=AvXVzr0y+w?L_c zuR7aHTuMZ(+~Jdol`ng-(u;E3!hzw6rW|3RdCs5w7{8 zX=9k40Dfigacixt9xY~~hrRRORP(!?{62!g(&fi{e^Vzz z)#H!RC1E3equIsxOA_(A!Lry-+o~(PnFMvndSie8Q>dj&H*$lp_NO%_eS>5?CZ+x3 z`Q+aUpV_4n4Aim-+KDH>uV?(oYiT)@XtMMzLh?%vc|p&j_x%%B}Mz2-~ zZjJ9$w3mfG`TiRzo?hl4Fg&q?Xe76If6Wdk%;Ln+2WonMwZ zFUAW>hJG#!aoQI=(t0-hu(H9@cj@HT{KkH5{d&RD$?aI?Zp!GacZI#Cy?yWwe4ZWVQquMK-uP0@A+_Z;(^s;s z@w44F)BuRSJNE<)?A!svM1*FTJd{_sQG7DMq+M2W*-R&wR5o={AZKj+EFy!zK;GXz(rNw0fkYLs%i8sTNn`)9m`w<9s!C{)7MvOU%=Y=xO=*Xii@H zPpM*8bc6Jv2bPLANUh$@>a3e$RH{KRTCVhS0}VCd`t`Kr zE$8!ht}DHo?Bc4gK1S67>b3vu$>&E~i>;=cQ%VL~9Ua~@VRFSDCE{=Xz#MzK{{!Yo zbLL*__73oUVcVF>wd&YWfYbv@X2!z;Xi7g>rY4EQB_M$3^&HR7CcmQpE$y2dPT+uV zRe4k%d}qI0-E(U~Yx{Hao59?HD>v4k7oX)VEjxumM(KkB`I5KQjC?iCa%VRRjmjnn zJsX1#6&ct;tze>?}d_ ze1=o^wp8CnAzL9Mc%~9 ziVBIANd3Cf8vgImehI}2fsuTDL@zAGKI8sNqUf7U5b*f^80*f0;f)}$xxmN63)?*| zZ#CMTo0AaVSzUGZ5^xz2Eor%O$#Lz)%YD;7oSinLdDogC8L^PgAGvd2-IEC|~7!6uD^1PDiK5fcgHC>x0}7AQCDl1qJnC z@jQMUt|mHwT7x!DR&PW_%V9qd>7X%+KnDX|2XIBg(0fXoXz+z5Vf&AsVbcT8kYG?{DX@yz?N%A4+Lo-Ct!<82%oxnHUni;p{VkBVQP);9H2e1W@FQj~Z)uPF^NV!~T|9~CK z)PUc?MEU2n`2UaBLT8<+{`j%K4y{6uJiJm19gEaFWIE3!D00U)~DLSz{ zjG6&{5dJreQI_go%7!qOz#I|=IS&}vBY<)=;?}Cxg*i|3fj#gyPeYU{P>YuCACkiV zP8o5gDz&E8z(s)<#-`*d(q=0$sz`fS@$h+4GCU5vP+VWG>;9fSouX16;`!k#c>kai zx8vf8{=xj^*J0)75k2Ag=VciFhO#h>-V-oKfcYq}#3K;kSAWEF#~@`r`G<8vBaUFC z!n4)U(jnde85b^I-@k7_GLV{MY|pW``I*aCLd4V6$RjWi@>Gba2NLj0fYO?Pi$Gz* z3%KKC3CzDnz*fUB_3+4_0_fzEqK_7S1$;uXfg?24y3mjIBoZZv-w8r|44A1Cc@cx=&batnQKak$>N7mH)a?LZ6_D}e|GN-|09u9j zwoT}O3Vcd#=Yq=LKi40E4<^ugb)=<(fhz_UDxf)`Ve=Lou_|;bm%$E*mX;R4;sB8* z*Vtb^O+e%0Fvh?;8G)$ zVw7xFd;<>-4ye$lT(@CH47dgOH90+E+P1Ox6<{~!j9lMJ+U1d$GUUtR@eXt4Lo;%kti!8BQ{e?N(vZk zChnR3JljC4eV;$R+z1AWBFHYZZ-U49ywWNvCw6U>j^$u!YO|FOL+eWRnbJe!^ zGA=Uzg^L>t8yOznulz`cuq`z9+N5KQh|!D-$T0Z$F&naJVH#jVm`ug_g zDf~+)qv@c_YG{}~vW3eJurolQ0vt|?THbuHPFP+}8w|w1TMdUS6ED(x!UNnzV0&XS zfzHF$B#ctR5@95DygR2|S_%_0m>2SBhivmF3eoV*At|RlSXukSc0+{G|6scz zqUax7GrR;VzwUqipq63Ai=IMy+`mIF1b!`Y^3`RjtG;+IM8t;w-TPS^vc!zy>r?={ z{fRt`ZjN&DD2PxB5u`aR27wiafK&&aACjfT)}BM>e}gGq4;kqWJyZPn_#cQk#3q^n zyurXfF%%vja*_Ez(af336#{YopDYD&FfXGK#?#;O6gUu!JNNaH$eoCK)RD18*ajc9s8>k&i{HN=5b!fj%0j~}VeG2|1H2 zz`C-~$W_j*a$4o87od{+*^{wTCHTW^8KOQOsOFFfTE^ru{TN<~i6&)lIgq9R)TOA) zM^&?lzKauIs_R;_^mX2cVV*!BkPU@<%lcTcCX8Cdw zk11#4hwc3)s$DX}Uke@BIbISW_DCuRf;!luCN8mCZDri#p_=@rq}fpnU@Xap&W+HA zJ1x~IKfq9ooThMRN^~#+zLb>=}jt4bdtoHrAwi z29#}zKs8Hq_C6=4OLsV)X+2!B!GQ;uMQac*f#$}W_>2jSNbTa_c1M zJ#{s5tLIjC>|1qgf2%9ymvorc`jB?_r0NMn`+%Kl;>eFN8=j~_H(rANCVZez!;OC~ z69D=ck}xP?LBjs6>lOlFm89h4;n(b)3-o-TXJM7$X$fZK0G8nyyWG*jGLe?IcTAS&$E3tKTsNpl#SJKHH6F0bF0k{0Mv8xUD$V`MJ%PSfl9SfWpU;^{dgmkeXi zDDsN&>Ijtv>)7_0(!d~o*iK7Jc**|$DEH9*Y>;x8y#oVENkO4`w{C6%#69>Snp5H4 zzI990FEYE&lHwpFEEJ#68p`jwZxcNFksph?tK3Q|2DJu%zblkITYspX;XV3U+g!3a zG%T5osUj3p&iv2HP6Q(30FdGwAY3P#;mj*H#UQuQ0*Xau5=_2*X7Pgl!cQ8bBQq#*^PAqVfn>xe|byK`A zYL<>SiQf*GI~$;fMtygDZe7^m8r(g=gzo1T1Z4mU0Ly5xj3fZVhmgVm?I$Y$a%|yO z&j?wMWcK#<+MXF#nsx)MY4QYEhmdJQ&wKBde+YBkEBjsh_a)fbz{gduAfC+6;CI2p z6k%R`0)_P<{^ZiqE%58ejl(vS4%V^tZhG-ok(-@r#-wq0_esuLzB=yHa`naH%tycd zp08gc(@bnTu<6TJT26+ zW>K*n09J?=O5tMazpL$@lkK(oon@-KXe^7Rac`Ii%EGdB*|{}i zGoo6@8rVb%M|)kI&8LUnvayShk=0*jMg|a^m?Gs=b|1KlmX)6mF6vsz_*m7cT>Cs@ zqD6bm;3QjLtWi8R*K1o#6&QE960iKYltDeeFmlxh%t@sqiQS-@00YwuP*MOb0?UU^ z9HyhcK73N|CVa)WQr6f^GF9FxT+&on*bt%nskrChaIx~u8%iz><2WPSqsN)Jwg>=aK`<%5RDm2JJ`-qUj5CkYADKfNqn{3aLB+aL^pAy zAQ!!fqo2eLN6H0JKaQp9i!~0L(%?Qmn~z5k2AbVe6aO_k&R$JFU1DCL{NQ zAxvqPC6BFy{+-&umuaMp8?5)?nWS_ifcq%^oziiJj|7JtJj}2{Lqn~Y;S+Q7fLt0TszBdzcb59NB59TIU}R|`*#(O=XM7N z5o`{go5lbv6N4^iZTb;e8zJGCGM#RGo+L3{4fi<1-Ohv^Y4lw!5sjdR7CA86ajWOfR&w__|mAomiJr60BaWKXEgX-%|CJKe@*M}IiOC3AiubK{<_vb5x&mWI| zU-}^tvUclMrAY?-f8aH>Yua4(~#KO6Bx7Q+uz&d&eC=I;m#o%i9r&Ji=d-ut4qP%Is#DAtc@Y@CSa@o=nKouy8`Mej|ga*g(Mt#o&- z@H&*{WFb-J@@VbP*eUkkYG&CO=Qud!aoy55KOS#P7bNIitx`x%u(9cHeLi^?e*#Pr zXCB9JKPmnu|M^pKpa?C;DKU;XDOr&CRHYduP{ZPXA4Uuut~xwF<=dYt=s8_`bJ6C* z-5I&^|k8Y#(o*i?Is36X!ERvJs zinFeyq^hLk+VN(JejV-^-Trizi1#$n+}zXWQZfX?O1?i2uII(&BhHz)cxcYIEk+V9 z*#H)P-AY@{gZULstF)<7r%rs#OcDVuIB-AL25Y%+Dcx`a#CkMK3Xza0-9lgd1@}3A zkSBH7c|Bfb;ZUO8On0BD{pZ+?xtwTxbdn@qYn8TWjOX#lMK~)fy;eiV(^cJ4B`m(4 zmKq6`TN688C+9Z{-5V}Y8ORNOy$~s@v&L2Egk6{6Nmt;uO%*Af@w%|Z*Rb}8ryal|YpGaCTf!%BKV#%OEq#|i zmc(|<;fYs@_|li=XG*ALoqnsU3wTfP{Y|fhygMLeaMWKk33ye~(YvzFgwIwt_KhK# zgaRc@6q()#M=ADi{Iea|L7rSdpKW1yYnGAm)gd8QYluv)}BIn5U zaBzOZBbAmWOR5Y#{)O_Gpy|=LCwmmk08zhjf$ko2O%J3@EaV^p%|8R(l z!dI>DwM022SWG!y-klR9l85rwc20V(7T!-+!pKi6A*{Y0)PP%#UArSmp4GoX&HF&n z?x`NOyEB8Glch4R6-mdTdcRLbj{ERR4)KtJIlexfuh~7PhtgD8jQ5(H^YrDzotHYi zrc-&@h(&~+ZjAg4Mk_m`a}mC4`s`EMrU})Z2(j}W-O1PNBEnv{si&X9wFKf{7~~X{ ze)3P_z@Zx>?Y_`F=waaX(Y_#mTtnerhcn6}qxW%0o}*x|u$`GG=NC6Dpj< z>2Kc#-=JWLgj%wN1i9I~WHTg#Z>ZGnt>=Wj+ z{n=tQe1g1o`G(Crt)@iytL?eOSx~zSYUE&FE0oq}&C^INkvB|g3#~aM`^C}?oyDhRQ|s7xlz5a8 zL~85aUcXu(64v7}8B`d?-|qQ3_31LJCu-2`>k0E~&3(ZK-qOMI^d}mY%WSmW{jc

46D9b4dDgC<`m5x)1^Dqw zqzxWWOQ^;V=W*aseuTqK8hM9&LMc5}*h2nvv2|!536D+R%uP4~l8e!EmbuBqmth*= zFR#y>Y-{OVzFS>SrpKDF4Z!q%##44qh?~o+5HBYuUm~%cox>evq+2Ex>*UUABu@TD zF`tE&HX)l>ib7CdRf9%Zu2Q5B%V@Exd)0SRqX;5sRG2vB_E_FKm-PPYp@`k7{q70SfRl5XAJs!S{=4&wT`ZS2FzQJR~UoqajQCyz)C-z|gVk{A;R zqElmY_&(C13AY@X^K#kJOu)!6^nr1?p53aRW@09Bq~eB9e7;EHdEscnIXNq96NBh+?*;$`lABw!3fxi3#;&ij}!<-`cE%bI-w1+Q%{JV@H}tMH9%!M=w(5 z-V}N7&E?_1Ofp*uHcsN$uR{w9wYaKGQQu!JI6Tz~KQ8d?x}X5*Ga|rzU(fP|oKYx< z6oo_B(8SGD#>>m5&3<}B-j1AyoZP22X}O{3*_Xl8e+!~WGl_fWjjrT(ZXlvGX_}hA zg35^3bAnnMm*Ex8-n$z&WF^#7LPe#6)kGU%1e5p8KzmRG~a>ti$0FyU;Ds;^(vpa@^IqDRGh z+pH-jx6Ok=w0zg@?y8kr_})Dm3+w5Tni6fM&4*8)-UuQn>RVT1AwqpWX(j7vS7cH;Tml;U#BQ|k{7#&1GR8m$JoGW^m6Vjj9s64}9$Hho zt;g(wm!}^Z_^hlCIM_D!%0oV|th?X5xsjIkT2rpfvBc?tXl-+1$uOpP=w@eqI9s7c ze_+SP#Ae2~#zyCO-}O0;gMK_sF@I7MdyX05doe~v7lKFW`~8vzb-6a|JjErK=v&_~ zUGh=(qjEXH{|s60NnYAbWKi7IjXOL#HV+^#av9DG7lYkKsTtkeoMoZF!ZRM=)yhmO zWx}6K%dMG`QpD#w|Kt4NIcv5GE}O0ue{$ZjCn{Ynqh8Onmr{Ib zJMx%&wNVbk$k`1S;~eZLW*{lfScG;Ee>UFvGt6LeyXH^mn0+9Cr7&bh>UqnzmR!dAL-Rq zHODym3YDUq?E|AYuk(#HE%(kv{~JSYE(?}_epeT}|6jJF z;t@)8Ob;~eZER3DQ$l^5t2pk=&*+7`HSfjSG&pd=1tk!3`5X$)+i1trR8)H@Bn6|radCS@ z8T0~~M~Ap{`%XOV(=*kNrc19P#5Q&KXyl$1+&HV7DES#TpegQI5QFpg6FR-1 zxO;cplvCLH0d70-_89Hz#^?zrXX4ax{9f(nD%$k>xMbJ&_HJML7{Ar2Cz`wR+9vq( z1md<>BND#8UiM^U!JibF?t45ZA@yjxwMs#m7_#pSSHO>yjPf}uub;hfZo5Sp7#@Qu zzJ;k?U>Oo*qa;PSu8%2h?+?{F<}%+zhqf6OJk5Y5=wZRd6GWyOynj?_mE3#i>kXtt zC1pa;3X}sM!~r%C+JVT2#EuiR-}Z*vOuFu1Qpd*o8xds}I_?s*SHO2%NJt3iRhaLD zDCy{Wc4VEM4}k~~5CBf4@Zsa~eR+v#${X$oSRP2ezkdA!I+RhBdDtp)(vv`t0Y^Ip zMg8m}Buc20NyV^0yeHpa9c=Hx9bF+$&24u!aflkeg;a#SV_$v%;^-jQ0d2GO%}u#= zEU4Q9C#0krz|?vNC>(Obf4-uDcUp6yXlrW=B#^gnjTw9frKBZwSd*KZn!^7QHq=Bi z8_PXr$kIplktgjdJIzHxXmLIuY#%m2h490WMNS%ndGR|G2I?2a>x#o}YW%gkBuTR*;1;~81vk;A-6@XW9S1l`(a{+3dWoHG?VIZ2_1G5)d~y1Ct~VG6 zK*t)y!@D!`GnJ7SkPS?zrM0GN2O+c{%@uZ0s$y&7Z(#E0jG2odlWw*>lO zxkpiQy(f`^vVnvo4_BdoUxm;i(M9q);=jon66AATL;MX15%l4YEXZnz6+#?R_#=0y z<1=+!Rio$88tAJpFE5uHwR&w&m4PU9t@WtsNT%3eDtC?(X#h~yLDB*PsRc-b&}}IY z+ersrqr+m$4?tCcSH$AtVsA0EOcY2<=2+}t1$_7`#9_7uS@|odLmL}^0Yu&s@;o@$ z6Mr7?z)X!0+hty=B!bsjzwFtYz^mAMKUD=Q!|2SlYpBsmsS zXosnwdR#zbzGq-y`{HCf`~0%oHY4`{7}j|I$99j!r+9#D1w!9utzU}KA4PTx{UW`+Lm z(f98!$g$oDiRFwczTw%0lS^+U_-qfA4Q`T@VBi2M@@`H}u$Z+$Aax9;_4W2MY68w% z6AU!tAgKQpd39w)5@&`DHa$?r!8;xfGfXnG#Yi)M-R38}cTX6`;6clK4HW5*WWG&P z1EuaI2Xu&j5BvS1<|bI`1%+A)99S7;oS9qj<~up@eGTB`1N?(oS*O{ZWd*dp@`u23T=CEhY<1 z2l!GbRW86sU{cHOLjReoPF+o19mvigmZ$g}11R2=!~Ol)K084?Pi95Yla5&o;Mi<0 zF9Vy9`W`9Bz&AHv0vgoTe!)8FTJFox>%rZx3~z{GTtmnuL+5pz82vp^_*ImFdN;Ct z0)x>P^It%r-r1Rh#jO42?c31)1R47E^>u|iAe-|}rZ(-=3ANm~JtH>u+QQRWF_?_Z zgCZ-)uTAOTTUM|aA#HAM!g`#Yp03g3UrH5>`+!U>F!>9^#)zXnfNq{e53i|G3dbri zT9-2oSoc3ye1Sfm4f*q~&Q3EB69N_bE6@U%C^rE*u!qX8Dlb$oi4_ zi)H(UIGdiYl$5OPExoc+SSvP0M$qA0ND2TU`7cDY`o^XiLhH^@A`UeoI|!Tc6U zft#fJ09)!gSYjTBtebi~CdWRDM!3T$E+C98mv!Hks+=H;zhilUlLQfFuq4&YvB3+1|BJm&++CcKvz^t`;)~ykER=F2NuIptl)XRe~UpT$)6_x3|af zP0<{S!o4e&TIStTQ2N{yQ&t|1iHU*NGPkgxRAibFEPOlg>f5css0eCq&d`|fm;`-v z_pJ#Va5+c_IDG_*Fc_64;D)077W9m>Uf7IeUQ;rUMp|$@+0q;j&@1EN=hrRMQWuz} zc6|G3R-AJgDLKFmHS-6g@mMUL;6K7Myikqdq1A=*?{2PQqXY($W zGM2*`Xi|Kz&TZX8<@&_4bx%NOXB31YAasTWK)xOt9P|NMw??f5;W0SJFjRUn{q9<{ zanT8ZvRUEJJ7gZBpM)q*qYPMOf(=b1^|JI<<`JXG^Q7>Y3H%u8gTKVPY3b>$SAouJ zTnn=%Xc2Q^QPu{6xF-42){`ksdZKw=~AEv9Zm2G#_`%oa6d~<|4bK6$FzI408OZto~CW z$#5Q3T9!Q`rQ%>^BR!CFq;qsZ`hP|njhHKwiYE6Ip~?qB;;i88f!NVr$A$IvAgSQ0 zsQ4;5nIO_EnjSa&v$5Y5>`rJ+??ZU4(PJ@~f&GK1NBDIFum7*ExaboldT|1RWXNVL z#%TzV&q%9y`@_<$B4Ts0q*H_V=`#nOS(|+0!J_ty30Ut(SH(wsg*T9#} zeh&%m*Vs<>`gMFX&}ZA0UOl$Ip7&A%N8_cH8gOY5$OxmvI1@K zl$026SS4YK?~&XNpyc7f_y0)lH{bIXP8Vd@w$oWVg!6)0QK0BgaDONp-?UboW1y#h z-xhcEDkd0*PSJX%inaq%9~?=1H2otko3UJ&UIBOwKCA+6Sy~ek#2bXq8#awE5cEq+ znQ?0X)dos6d(blFYD0fatgpJYocRp>QGbu1ghg3^oy!(JEJ*?2n(=+TgWfu>qvmDwY zL~bA**#Gzf)&>Q+xed+Dzk%Y;STQK*wv~{P@eA_ZeOg+|;G}?UU>P*PbcaO94e(rP zX{6o>vmBJsfQtJL3!0ms-yx<_3AGB~oBVR5BN>x??XMY0#EFWFo4UBUfuUH?khD;q zh6xXsx^rb|_BRU?&7ZfJQ7xi-J6pzfA^8D74(v(L$W7jZKKXnb1fxv?MDg(Q)?L_` zyjDY`u~?s+QMl;K8I(pJ4AQ{`PN&t&OQN-lZ=SSRpdoM z0ZIZmLQ~x`30M+ZfLxE+ph5a6DAsBQ!7|7Udh(&_7iP&-wWVTv#j^ ztnqp&aK-7}RD$vF@r}4%j;$tY8x_T6P~*nO_%y_3XHyxB)Z}()$8f7Wr(aS*(q$CK zP04Ot4!fU0e-xdW^6sM)BM2vO>Me{N&8;z^77?D zXwJVc!3Y1SUpAj-=DHK^S6HLwaP7VyB)JClrCaK^{*v(qCl^^lj&I;?D=zpx2MuvJRl*2>PJe8bROI4|2{nL5B}z(_$AM`eNDxX2 z-t4+_-47rMPwWXBTsN^%3`4UZB`7N^BOxIXBV_`fhE=!f=I5fHN^teMzM5u@x;;@e zewVG~vAZ|~rsa25!(>0xbtwZ6QKhJH9nH-H*r9?28iY&~{k#w`{1alBl*?*^FSBtJCsM_BN5=(LrV)E^;S_N zsec6kY%?!SL^n7!2!DavkF1q=&xfzy+0@QChlOy6iNgc0U3N0ZI6=WExxyki{_t|A z8fN=YPcAQi=ip#&LAICyM=dBvsMv%+!XsuDvkIYO0hOw%KJcdQV5@EB+d2Jt|8>8F5CA2{cT@vha)K^Ww($WS^|CEZxjpU+#4ug z;lyOo;LIX5<-*40%hoD6Uiyr{5q7FOB? zzT*#&&S;VcvOI2MkTH8PQVys%wjK14Oy}$n#3tzBEM2F64L9X*HPTh4{!PS{fy*^< zf=39%)qoNgdK*#&+=r16I`5&VLf3_HNlBT#?6YVxAN~RaSkAO`VrIwYM@CuM?BRL{ zcjxL(?V%XQ^rrNB-Jm69e6R1XdTI^gQWkU8n`p1r_V#{(Y^uVbKPX^%Zfhdf9$F{eeU}Py-Epc@0a%@vA7> zYv{L~Y>Z0S*2RjZ(5zL?j#;4I-G;HI)9xFTkCIy&L9>|GLN#y;ReZr6CUmBc{)F-k zCZbwCE`g#Q=|-yDG*p2RFTXH4X6J>5cm##oc<_LV!S~MBcRrFb&dc zmXttLR<-m83f-8zuVZ2!Un)QL-m%N)ktHPrgn)B%R^jz_Y~?3~RO5{V`H`L+W)D+0 z#USHDWdQ2>GTHAXQp}n9J%)WnxL9M`gOzYtS%)4E)~s zjeHuwnHxT_a*n>X%HJx!xs(9cav?aaTKW^_bUx{!?Svxqx6M-g1G0_huuIIyyN$oS z9Jxw*h$W7Bofa4}HH?}RS2|QeQ5q&TE=ah&@|B{BiPKYCjEp0qa3*R#@wrG@k3$PX zCnGojFiqX9-)hFR@4j>ooDWn2@F#egW49M+4njUm1THxld9#F&n}8rC7{DUZJcoRnq_sMGF6k^lQebH;w5`~mCEpqjDY-vaL*-zu0inIAW|!N zrCE|%H28u)Cki{zt>;}w^%6_4;ji4WZuVMY>htnfOk0e;#^u|XXU z1_rrLRxfj#gI#iIL)cw6;Hw5Yaj?{QJSCd|AQb-TYggz>`JRVm*0xI*3 z8(C&>DVF!EtfGZR^E)pCSI)^5rUek(>fTWp<+8p^!}iD3EK09v0r9GE)fdndji)1y zAQL7@r)q5-vAv&eeN=sKv@Rho&Q#%sa`%|BT)m1~G3G}*I!)Q08e*c&OqN*x%n%Mi zKpz6qN=s`B%Kq*TTTvNmMXt}DRb12G{nAdZd0m4{h5P}Dzlwitn-u!;HYwr`bQTFL z=Ev<%zlapI7AQi}bwAzFt<@8@=*O+Jo&o*1e(rEmDS~jh>VOyvI9V}7>rz@z%;YwA z%@G|#BAJe*FWp@xB+aiZdU(X;#5I|NA@gJ3tH`ft#8EdeF}Hd5n1Ks|!8~18$ZEY7 zMp6n{jb53`gUMK5W-Kz9;s*EK)EVstdxR=nez+PSM*XeN5>wwRVch}Xn7xgKq)!n< zb=l{#dT?_Il=JcNVS4wfQPVg=FK}`rC^%TlH&S|T+wEL%pvSUgiYa|!LL;TpDRtN! zc2Dn>Sm9f^@>Li%Pi-NCyDxDMO?dWXiT1#&5)2-wL?A&fEiKX4A=0>WZG1}kV=53{ zGc+;DQY)&d{5XX#c~@&QXFe0@paAAG`oL}Zw8l@1ZOXysYvjKnCVO@MEgFf-VSf7f z2^yqhH+T17O)&PeE0Mo@C(qZGo{&9{;5OGuLQDXy5)*?|T3Bs`9~853!FwqJO)Zf4 zfI5z~5CpeK-peg$Yv2v0A(ROHcm8UnZEC0d_KCO&+TaZNc@ajB^)Xpq!a2iySR+u7 zYXG;Yh}Db7PpU^#pqGdJ&Fe|DQKES{1i9Cf4bW>33}s6u#SJTKp^ig__FQg1R4JGd zTFkmt=5QNSqehcIfE$%BXa};je1FN6AuK3(8Nt?uS%M*tW&?Msvx5Vu#NL9g>8=HG zcpo&>!%ZmwRt)!aacXH9nYo7IGL}%hY8LHa&hEK6edZ&|uJ~QF!0TB({dq`~+$tUj ze^;1bR6Z)`ybAALQOr4pyxRAwP_|aA*1_1A#t|QCUd3dnUYS;r2Hdxj)bUHpMK(4!!_>%E zacFuWDL+xwfIz1kUg$OZ(0HJrx#yr|%NZcQF_t#~re(|o6`LS) z@hIR^cyu&EiERn%z@5+LcH!oZKbU`7LrW2w@!+CSsKZhPGls%Kq?d$@H$M(=;}Msq zK&KdPk*TSv;bZq=aS0M~vr?)mg|8CCL3LA2O%3kWFKBQ{NSGG0s2uQ9pTjhfJLz6b zOMzkvhusvjbvihHDllJC?cH;KuU+?9hhhPWLI2sP(yg@why=K|Wx7$R5Iw797I)Kd zR#Wtkx^3@rQ$-zu)Iz@06Z$);)JjMPyF=sQ656Z_0juFk zC~Mon%^Zd!(4A2s%xPOJRHeo>1I1$kDT)aavUx3Sa{KZ8L1=Jiey0%0d{o+|JNXLA z^z0Q-H9dk^5G4h4g;l~u@inUS2T{9RfK~^`Q04%ra17Ery5)|eO>TB+De>`Uu;$2w zj8s&nAnyww8FqzMHO-gMPYuh+;f~fDBO@wEY`BGay%E6v=s15c3f)nPA#fEum;+sQ zdK%KFQ>7`JeQ>=A(9)^490Xc;<|1%rq3!zs`n;pYx{FETe8=FF8PFmK#s+F?*uQ3H zW{4bu;=qU|eMZlRC;u(S4?vs$nl_7G@^!-UKw&_WcoYQ%T#~eQz;hMaV z8L+-(a6(j6YpqP~UCXY4tq=NZ4d5C zK-|W<7Aai~n+7%vDB9n;a|gV(Mn<_S+#uxzd%e^vivnR&vC=A-9770&InxJwYc@)} zfNwAoU0s8&9YXS7Ow9lFJ}DWQQA+JH7(!=2gKJ`90tk4TO9nP`(8m$-KK~ATHb;XI zW`i&s?{*}XTmy@V;*?ukp}Ec=rjZsOPklQYc68cZw&XyqlE|>IO}G^*i6Pp|XLr&c z-KRqX=T>QH=_o?>>^K50L(`_U%`fc_yS~7qQ_5vYQJ~zoafAH%P9-n^bsm}1O@>S7 zh>c<6h-ByFEM1??r9n)1sACudITil&ueSt9W&ZAD|Nm-eBOpVFpZ}*DuJ-xd&)#S- z1;xU_+{M+|!sH3!Z%<8aQMeyaJfJ}QMM#KE+Q#11!kJCl-o({H(!%Vixdoe|g@cu= zH3d62zlaFRKR@X)8>uvaa-AKu>^Lb16eeZf@% zf8b1(eI+wnbsrkZff&yJ{T_Ka{wME|ll?#5qv4pUUBCm(zrH^6lOhw89@Qx!2_4xa zjjCm;^_ey!RwgK9m-N|af7=%%qNsB2+{n4Oxvr@y$By;8@QzWZq#h*++P4RG=qo7c zF=S|R)aNVaZ(FSTkB)@Z?@Zk|@Owo5v2*?C^DnMr#W8cAmkw?0t!-%v#PPTF=6%|j zD6(8MC(fK+w#Ds=j!jT^8IN`GZ3^n{rY@l1j+5(Ag-?T!EDGvNH6dmSA5$F4s$L=30##`)%xlo+QigeWKN?s*}^lWb5@Ym5r z+rw!sVl3s)r^N*YW|Y_?I@QM>&yWrR29(_Pz3dg#^<~HZq7Xt&Z(jUja+tqMWZW}f z@Ogv8#lMfCf?jb9tc1Cvm_)hVn7S{de?K>Nnrzf+ zAB(oFB%4s>A|O(Il<=VY)_9sVKC0}Gj(?LCzhCqXuDF3IyUvE`RP3LjPL$ieGLoRZpHZsGF>#z z&A=7ne5X-V*}JVVQRJAc(=D;WGop##@U4p5Hvj6nYMD@S@x2l-{^&3NaN0P_cu!;h z>0qBSQV4qWn~>|+_6CV3W~nBH=DcytE=W$=DX%TBD4MCs^*z|1K1>b3ue#r?uR53P zrMiWFqc_FlQO2CJNZm(i^!RL4u0&zJl=|{C^8&Y3blG2QdmriT1Wy%e+bC9#r8zsl1_P%^*P4YJyrKxi3pQc1KIha3^ceoZ&;NO=w_KE%KdJp5WHp zwmd#5`3J$=<7LXjQ7wa(!Mx?dN@fvL+XQ-cW&CU8L4gIAwi?nFXXFa0DS`jZ`g8x! z)}Q@9*WVDr3@&1euUDDjMwZEo1x{%>md+LKPCrqMN>_=;+?D!$#U2#;Lgj4KcAfX|^<7yDc!uQbY!qipa?%i73XtltRTC3VOT_rX0vteyr9zg;q)EmI!F~9Ga_Y@ zbHz-|te&gPlMAm&+zW3bwJ^J^5)RVUbS*miCzUXH**wTV9Wxb536cMGR2@3DCH>P` zFsRxa731Y=3!EUqY&=!58uuEMFskgb95->Ub*!@WUNlw38tPe`d!$mY3LSCpM8(B~ zdSeZ8;Jb*V(q^F}pC}YcR5>vXH!BS&#|h)%JhS`A=Gr9Sl<#McCz8iItEjv8>zXG1 zYvliC?RowuYtO;Q`5$XPYHZg@f%(_>Gw<-{JA|~qXUl^yd&lsu+wrF2pV}VBAxDPG zkzMQ(w2p-!qdaVlKSCX_HD=%!KYzkq;S{LFXyP;yzlwzBu6E1my7=J%W&2@93I%iY zr!<{tO#Ic&Z|mn5od!20=@kj+7!1trPsFqH?x;p$-tye5h$s>&zl9#`RHNudXg(_B z+>3tHdqZRS%a5r4kFs})5^Y(i5em@e`Y9Ajeg8%ML|6B|iwB(3IS8t=8p3sOVh$Q`*A*1tzew|2O_+WoP;i z|0c>>Z3v)NPM|CrSG_2j9j8ZG-A}X zs`=F#8S1it|8?-WRx|rL>uPpqPci-~>46<0?{~LFF;6mcaKW^?|9U;#hoh+@=*tnpnJ5Y<~h$A#oaz zvHc%oL3#r4_20>@BMoKz(hQy_W7s!gIEP$Q)xADRSBkNg+`i&m?1F7#tIhDV=bd?E!8fc z#)mYK&LyCpN(Ph!mxPoE@d7h+T+ht`GecXB0kH}ktFLt>nFcx6oCevpFsxz#OPD zszIeD2+W5*UN=alLE=P0!c;RLQgM?JF#>bva>d(nx#S7ok$qh6TQ~H?A?N)5Q*Z4X znb|XmEXiyZ>!}6w5WmNkwldX8*3)e418u0K<&ZM$!eLk4{Gfl~dK&ts_W1=aTq3IQ zFF!cPe{%tu+5a=R#_RvT!F6co3&rCSW9Y{L6j3XSpm8JhN(#S9k2{Ynem&Ip!$R(K z00^pQ(@WmgHYN*AldwH*ORSel$><(I7bpOD9%>x#bm1zlEe z6<)>W0lxs|KD+r<8^et;1`4V8$8yxTHTD59o@p<9s>0>S=*=93Mcb4&1NKGPgQGaql8u>>$ChieHl>zINv*M{+zV0~ znex($-VtZM=p%GlP= zLgc4sJA!adN#EZ9d|}8AXs8>@SB<@-f8pi8x9jWuSIUUaAxBP)}S7pZcWjD=@Z*(;F#&x-#+)!T+Cr`-U zz?Kes8O5lRpKerZyWOTwsU^GG))Huixvyi>`jk9gYxUcW4)*+X%DWva-QL{?4xXrH zrWX|tCPg?8sTIW$jsNmt5kd<_9;^pwBPmm$tB8=rWLgN)bP$vL85olY)+iF?qgdf# zI2yEM7rT6#$}5;+->kkE=mVT0VL@mVl$eC4xF*?CkUhhO5QkyVZ2WHg@YY)qc_xF< zsZ3hn@Ed0za(PwkvE2K@W9)2>n2V50v>dhDcvNb!sTgFog|p=}3|AEb7b`D@vld|* zMhix{6&bJgHF2;#LlO_q!sJZuBvhWvK_sHdX|;hc~QHQiq15PBp%nn`k-c4ASS zKE_&3zeO$oCrv`gMdUTA_!%@JP2+r$_GKZuNjW{_JtL0d^W-QEPIE$$4yZ& zi>eAoWXD(}5YDrRbkEon>8~Q8R09WKSd z{1Kp|*&Jwoa(UZ9cGioc~up48ovU@mG)np_mBEk*~Q4&!`_5m zSW-mH&emDw?>B?+|E02LVq#_Zr%#jApjD97v9bkH^Wuxs3Duann6^F=b$;1f1SQ5WdBj4^2Com^^N9^}oph{jB4(UV-T``6K>iDuhsTih8rkdDLyd z_QFId$uRP9h1d!A_94JS0gw(O8)z!TFTnp`kiBb>*%H49dH*DN&(fuo)1`og)$Sh6 z#j9N*qjowLoR=4Q>@`w!Xi3>d$j2y}RVJ+%e`g_i2u6uXO3Gf&+@?v&DW4@qHi~*z z&RggSPnpmojpgiE6(h4;4tv(lUQ{TPw-}dZX#+LJ+vJ$Uqem`J1ZyGbNL!{pI(EB? zf!QXPRZLEt6n@W=l?ek!CYhxpNA>vrXhKNnDO|5oB@4GUP&F4^N``hO)cFyx($%1d zhSTOdwI0oARrF57+a_K`nsE5;UL-~C6SJmI&Q{)3c1IP~VJaY~0MQ7b1@Q$46__ks zk-Mb8(FhpvJ3n_y0Vi>HLUB}=NaBz*0e&qP-(#$kn~#wXxLfdZ?UU>KSC4%Uy&*T! z??M9o4{gDW*fpO+APJ1t<7X429#nV}aboO+=r+j3Ha(n4K|1A;{f^saUI$evYf

    dDO(x1a}?L}8e znID#Yq$f(PF_3`2Vo}l-hIvErR{bd!`OF8kVMzl9c>YwqpA~@vy7(qz=XW%$MGEW~ z6_AY;{mPz~3AYc_X0+}Ju*M}jus#rEEkK6=gvK~xC2_7U0bX*s#jIJ|0@J=K)2GGr zqs0OD%peaKf?3wRzWlIEI+~4H22O|_lza0`mrovfmn_dq+=M@$UN=Wj+;v!j2Lc5A ztlYXe;RUE=QYH>)$BaJ~9oW zl^4AsQQ&e{Fc>M2`J=v)gUy1w`nvn&y3ikycVE7pTl*yxgVCI_A>r9a6SeDFTZgxu zg_h)DbCQ22Fi0gQDK=9{R*FWAYY@X6t9Uy!Vqt7f_OJauO0QYd4%<}0*^6Fw zkH}|~=Qpt>GY6T{NDzNQ+{Ff1sN{FYY;)M(96Q%iHbk{$F+;H=P3QV0E1MNK%$ZT^ zK!@PrpnhY6uF&B~H{5EelizN;a6291G|&<<<9x!N>m9Z>4iXN3RUzFsm%{d!4P&v) z=VWc80@X&uYa(fMgIO5e5Q*IfcJK4W46A_F?n-8F(J_6ff>yVT7TEOU6XT6o&#_?YA<+K6| z)7;MUBnL$LR$WYG3DN;)Aa&jZGs5r|sf!2myAbe^nJl3}I;gBN62L>k?;F;2etz)D z>%krxfZ=_B`5M#8N6L#{oO??=4Lh9N%Vg9|SpC~`sm_;s8q3cr4YHADC-&TL0~iWXngj_7}Gh_ z5stl`gD7~?422hqp;}SD*lN@NA*xNMME=wd4CfYRuC4oI*$BKxrdO>u zf%IoK4rBV%NUUWx#WnDHPgz~(7w}#KsPgeUb7OwI`bL(XQP|Es^ehiB9O#Fsf8fPt zpoMSP+S7*Q@K$hnQ@qny4Qenzr2LFMXymz47J^UZ5Ox8#vu^w${@8~lOx_gQjkuK` z)E}RO5GrolV-QwshQ$m#v?kq9J8jFQssvSUz{6 zzE^E`J}5fS@+k-}YvMyUbBoyGV%#<$6Zfn{^^z>wO9}f4-k`EJD(W4a-&$W2D>{ku z)NY{ok(08ud)<;PK-K#-*go_?(}obbOk$!^u9|SVWet`oykF|yey;%s}aSHd7UxRB@W4kC1s0t6&!aA zR)+k0(F*PYjNuFTw4WqI7x~y244Hc%H-b>l3m#m9$PIVe61e}m;z7`zq<5OuEfOh2 zE_oZUWtCdRmSsayimM6~i0w!f*%QEeLw=0q> zB;$)PopCDpjo8ROEMu2|88E^}K>Y0DeSJv|vvu!}r#6bn90%fT99%o*BHyC*^eNLp zlyxM3J^$mMEBLAW__seV`zB+04O2EJf1GZ3U%YNO-!cyw1Zu!x1|})ATLf(#Jke1# z)yMJFsTxBL<9P-lMF2#MA!LZ(xR|8n)g9U|GJVIz6WT&R+umOm9smsZQseG*XAF_q z)i=)Q9UheZAzpwC765>mdYugbId|EAW8S*OqtdnMQMpKN|K>)ZtLMa#RvYWC-Pu}2 z`7H`JvL8&@gHqkt*YtNJ#!)3!5fISZfg$+JwF`B|S46jDo#astgMZ zb*!dWtOw_j656`9eyplD_R=n7{XB&yUO7&O;nYRa7sEV$H$56PsaE6}%plFH;ZT*t zyh*530?8T*#CziMS)g`~>;wA>HeIaF>l=ykd6C;{?EPNKO7pCI=?JyL#-A2&mEa>! z8j52JZ|K>tct%cu8SfB?+a22)z;+g>lb~{ez`_({7=?~^6)Kxa@0jU<#l~e_A-z0< zIauaEVhAp2F(`EmdhJ{&884Nk2>&YVQrX?l*sN8!aITCTS6fkJo7b$x4;|`$k4yNn zftq3(eoG`yP|+k1iHjmKi;R z$AS?p9D9#;4u>0j;GXyg2r}*be8pgDFZNP9v}Qr-fUXv-)foL6RYx^&780c46qW9s zq$loQ72h@yt$}Ays{>M=EbZD1+%fmC7psAIa zf*NqKp^1SV7ub8V;r=GbxyA#MF-e92t#ZA|vr&X(+SC^LSSx^@$-T$kwF0W2E6JSCGWSYERhw}}!X)SN6(Jbgp))R| zaWxCPwt->dQcZU!&?Sqjb)^-v*L$OtyoLQm0MrYOPdS-^ABl<(RR>Xu3r5pSNgiGc zUx_I9;-mbA2wIyv&*g$UK|nwMlL}|PYWsRGD0Wn|>uL8ttUH~;p|Edm!0fisy4_Fk zQZh<7O=?W7V!)b`cznQRW>b(__w=Kd&(Z1kD=9Zz4w4Kr!|)nTpFJ%bYv?0g@-aI? zZYqTBlLmUWSS6s6ruTTXwIn~SC&scikW6s~!z?jXlrf=quoJ*RZnLiKxN|WndSZ>R zEeFpO+iZCbmrb+JHdVB=LKKG^)wfgQdEc?8{B=(dwi9oVx*I>y3=XeiF97_GF4}j7 zbtPD|)H94lVoNgpPN3_ZfHg&?Ggp<(diQGZ)x55`D+Cx%NlYo>trq2o%nSQjbJNr2 zH0?bfyEZY>*Ssqo^verdm=|jkvgGQfvUn|@kk$x93;z-e|0|mAuRh{GUX%X@*;oSu zV}O9av!Co>-~cd1fWQBzWzK&v1pnJ8%f!I?AH;u=nuh|)8t%1e4A}&SLs}L{NmB=_ zCFMAwyVVe=4kD;CVtynz_c#NAFuW5G-ozOW511)H(g3DFHJ;t9mV;_y>)@~Gi(<99 z$p}jJ41=N8jOe75R|z)W_NMPR{)h4lmz9;Bo30z5r;o1py;O~;Jr2C|%=lt@g$8IN zqInjrNI4srT&vfzPZoj#cc=r4OtXO3Ga}y*4ARlR0z&)YN2h}-;di9*G6M{o&kw!c z_cjzMQwZGw9VX1c0xi~PXgEQ88W3!l&;!MWGqrvPN;=P`1+CU!apINH$hf%N{0#KJ_KDM6&UN43iIjcu3QQZ)T;gQ@?$0i#N1Ej^jmb7~ zwRBu+#}UgJD70#3KuZ`lH)<5?Dw<_skC&X8VrCTe{KZGy8I6@CW;1WhjK-$@%XqR4 zi;VG?GFOAxOnTa3r!LlVp&=0w#&F>rLz}77-hC-WgD7?xyJdkRNDQUaOS*9c)SzhP zT5LLATxQ~}-g)s0(bSMBnYf*CJ*%lp_B6^H|ME9T;dwNuB`#SM1Pz#W$j~pyRV{1Y z}=+ zK|aA;w_7x|`n{KE2@V=)v#e21l|(u)cUOik{Xk;8a;`83|fO8dhov=WAUI zG0%ehd990kK;1V?+4+(ZSlr06Vun8up+p!=0Clchpdpls!6;c%6}FV^yZ-w2gIpaQImbgm z`^qd$GW|$7tazh^is*F(FqH)w{Yzem_J?_fyF8NA{cLwTlwV{yl6FlfSX?w)zWQb* z2GGEj`aUx$j<35;95;DkJ3M^CV~BFUfDFdAp#3XiP5&VJRnsobBWsFGHb-MFN5c+) zChi=+WUIMcUyU#8mOq>a`T2o6!Qr(YUmB;UDs-jEbMBd8<9W`2ig|&5G%gcKR*hc9V2vtU0Ti;{Gy0X|fag|&4bEcxp-OTizQ3*iZqhIh|J6A_ercFth=XOpucS&8D1aGle2@Iu$nwfE@TNn;-RJoqlFnXTJx%Mf()@O3E_uFiGK+-y2?1MuIv*Xs`g5Tn zyNPrhUD3X6A6c}nbK!&K)xs*D9W9EEmUU1S7ddYGSd(5gp@K3I$XZRrtiFg8dp_f8U61Mjkw;*Zr~u>>nsrCK#b&n_oEzHbGwRITbwQtN>~{N% z&xNEV#YpCZ`Q-(3@Omj39=Xwz#FvLYv%8fvs{JmZ7&5hG{d_|C+%vm-`Z$fwUr!wq z);T&wy9f9`Q2^pF(f#2lxlcF6Fj*&3;A6xifNt@}G0o3_OF%+!egJCUoNn0ze>x|T zx@f$03-GxF(JV#*=#Zz7*vq@#M5!_g<~2q0-jHduCV?egsv7dtj(VWDDE;jskS)_? zLFoc}d)6;0I7L?cRBEi|^Yvv5gY$wrWsR)B=m-rEoWX%6D}H~M{3gVo#VIyC9`qym z*mQXotMAj@*e~95>_)9lHAfX_De$+htbqQF{WemC-qt+9s(eU+Qq}SteS7n#R;Toa zuND5{hFZu2o1fbr%$0wXJf#B!dzu4#inJW6WJ*tNO2{_chzzNZZp`0Q0bV8I@me{T zHg_zR(i{pN1crUpS(YV}8!?d;m*Xl)8R{9u(lxf-h(5QktX;W$dcPP+YOa1nYua-9 zP^ZiFdcMjQYxu4wdGqY8a9DiY--V|ef}b4-TMX#wt;lilImtB$Yb$LwPO`fvT{m6$ zB4I)qp%|*>4}Vv>){@_fbFjDL+c<-GPWR3GN3G?O;gMEtxlAi~Ktw{M)7YnrUKsj< z$x7cSdb#+n-o;HRw>a1zADL&^4D`3tVwPGaMN;@iq67~mHf?i?T2%kzeWB8(EO~SP z_dwVyrE^+`cD-k20_eT%cHI362S|_WvI>VRo47G9&vacpx2g%%ld=TaeSS}~&y?{W zpq$6o#(x1A|6tMo|2yISPv`;wga!&8C|J_co~B zTTu-)IC|T*Ga0rUalcUsj!Kb%9}g(+ny98evJwihG834qOc9l)Kwu(@$PlpvCBH@h zVBQtPX>^g!)JoYgY(QU{JQNriq0zOVBx^$7N4x%=q@N53>-{9_p^1>6+_J8}tWAS@ z)oI9!F<(a|vRg1=I_GTZb#QQP z=%@eGYdjRRNN_cu+R!Ij&-wer-C3;^ijh@m;kA&F(v9m`p0sFGc5WNY(5{+BzI(|1 ze27c@;zE=YL4F7y8q^+SBFff~B|+vCp;Hvl2uEs5WUv51?(<)ygkZnxnk4!7EOKnq z^OZuZF;@;V#(I-U%k>sY%N3{9E5F{M>s?1iSi^UOA^VM&*eKUITYaaV3*{P(jeBd= zC-UVpgn!%lr18}kaM?ZoYm3}Rm|RL5m(_afF5%krSl*{ix)sPW7}$&Yj)u028z*4G z)|V_3)AH9@(T2jZ+a>4Goay599!)Nbv%I@=FsqN#&W-=?H(GR_O0CKoJQQ;Hkj#)W zh~mcH#1%uRuOjnc$n@lw*=(ki1|$3ol|;?-X#=>v%s6QXA;E=}b93FFt z`Rc6^L6v`T}=0NbVP=i1E(w8EgdjXdeF20J~g$t zl=h%LOOOQHEMa^XID27TpBhg%{+q{*$-q=gA4M?PBzl( zpmhvinuzEZ0^o2C2_lsu-R#x)MR>ICM*oVe;iLSi$3J>G$$|8L4}~~9-BZbrB^w@6 zbO;&N-%e?gK4CCza5gh^(yXRW?qgQo37_CjcblKqj9Su`ZtSpR29vc8{-r4y&*tMy zc}j4-P|+f%qN~3)F@FK|r=(JJPeu{V@#dhut3w`tnQa-bvck+lHP7ZSzah{+tsrL` zsgkz?&Vd~6%`$ycaN1{j+>(~JZgyR3d2P+JFl(q7;%_&ZBcQZCrOt0YPA@c{`&&Y- zws7G4H4@owKG;wr)#1_6ri;?xV90S>f;me$ShrY!1Ekq+AV$I*VHh=FLAPFk(ps%d z;klH%dVtAlzR)#|&KRJk(87`}lo8f};qFYF0!H$Z84jM!6?PhjL+-Omda(x3RRn=+ z<#3*{c?;h=yF4Mzq=QmkmA*YU0(_y7vEpQ~8}cZEz6C{dQBjzwU*p7@`75uyG3B0c z=w*#?0LXJj!c zVz>DHx>nTdgNDA*r3*oj%P3}ND1r4-snEfDD*Yo(RkUc+%y4rQS6`9bA)qc2 z-q)S3m4KbF^#*3|iHmF@)CRsE@{8u|-`CtaJPt|R{?jxtGJ@yFruVz#LsOg9@jcbG zac8FQCR@3D{Aj%)V=GZMhJ>8Wn2E#4!(GEjKDj29J7=x~-MBea>B@#0lB>0%fI>P$ z6XoZElw+S_vcd?yWA@u!yE9dvaRW&Kwl7+{LGy1j;fNT=sj*b<6~sjPqa!D8 znK6Ef?yr-Elp86;9Sd4SGe|<*TIdlWYbfh1Ky5^8*gy@g>rlk-0idHsJGZseTL2*J z=?+(JoFzJN^bqV?B+pUl03>Q$V_Vy3FY=NOsW&zv@OfW^S;L*-GLkMPm~;s)@?7>c zf0G#p@0W5Uq8wS0iLNFuuGEKbtRAv3-Q)r$}`W zO>70FtlY!>E_Ar{=8j4knO$>|+?S@0?G#%$^x{5wUy?LfSA(KP*T8_L8Piqfu}LH4 zeyC&Kk`3h{*2Q=2_eS34XQ0S7l^nW5-3~XC%X>yN86&i{{U>)jhI0XB6dI=TH6=6Q zPQ+8kXGi?Fz*R`-i5 z%Pbx$3E#kCAlxti0(btwhyP!I)PFEC{~yt=!k}Q}V8F4P3j%;(2;}%LrvE`N{cn*J zBMZlWQ0*ov77BlX2S z*X*Hzx9$+31CUa3k|j_m?_syI&PpcplrVZMahM}P0F1*15P?n@{h^pMCS_R0&lC`-#5le~LSWfma2AF{80RfA@g#8!sXw?vjR&6={pduK$<3$iect-3?ZbocHkRKxa3$7rs_i2k zni$WBGwi5mq1kWg4ZN2DMHjPR`(h6WDWZyP*eeLU8N{O?118-}5HyC#$1$l$$~ zBVe!j{SMsL3>M)R$Y*3TGHxg=+*&x+Kh*r0E)zerevz*`O`|BoClO=%9`Ylmy;L>tpx|H_}v+D4AMRK z#0m-y+AQZBjf9ArJ_2e#>}BzONWGL%)8;Nm>DpY}aQz*W%fbzmuJ&y*k~4)GHm!gA zjDRx8Gl^0l2!D8)z7_yOm4B8oAX(>*#s^Qsk@03;WM9PvnoLQN3?Big%h`Bo&ncMJ zGHY61(ynTjHma)_F>P7@D@3gJfp#bU19ZufkMuut1S7*gUJCv%`R6~9ft3LO5S%|S z3=9+u4;TRKHel1g8U6=D@W0JIY^)qC|9td_)`HYQURlloNXsRH`h~*$47XHX1+CT6 zz6gqr0<}&R!5vUfABO;;y*j{VxI=i!O)=C?UEK;|wPC)rtkprGR#oNdbraR~_|+{L z5b}5H;teU`-t^|trqlFS&I5n=@7h`d5Fr2Pii`{vmG|SxvkRY3qJS>r_eiT&hfV5A z)P00LMxg2KD6geVY`eT>q+L<9W3Ioli}00RbYHr(-oXSQWyG&;4eZvfW@-m-KYCRy zp0a*>sukfuMVN#HAxOkwjDsBekp7^@0fhAGj+?|!&koxM$W-vL;xmqab)u%B&bG}p zf9LdU`YunVHI$s~ps&)q)w>In=s2)#_8L-l_v%>ZgRPdwslm zfqtw@`&@1Lux*G3eT?>BeHqV(b?w=4taf~W2W?On))RPrD<30Y9-v+~jPMaT|M@ei zcYX7#$MXQp&5PWkbaR{4phe!i_0QMi+4J)rAK&x0_|YI#f4GKhC81838w9%%?H%16US0O8Kr1qKxa^>*5p-Sjs^BFFPq=On`kw41 z*)sxP5dEG!2!g)|0-{V1LS9hfs`O}>y^x#;lA=iCZ>9~)Y3&%lO5)`+8*{-yq#vYK z=x$bR3o>?Uwvs98DgK7qCW+cvNZMfO;GshZrciI9bz;kU6zyRRKFoc_!|BGC=>4@RWgs|^0I8~Zg zHCorI!MT{ry#6l7ndP!N$!eLgp^hqu);Q6jPOSaFV^S^*xL6bKB+TyaepL#TX3VNG z`BF(J^pF-ttfyx6<^DES>b1TyUo}Fh;>+>~@06>%v0%*+Z)uAxbv7`1Fd0LuF`p28 zXj&DG*IKRBO}s^c8n~!Ks?Cub#@3nYN_uio0S0qV(fS7~uCm4{p^L+8Dvc;EWr}%P zx(U&XM<&*YUu$W*Nicdz{^HhYRC!2Q)vceKOWL!(K#CIq7jmY!x!UKeuD(P1gN|&D z@+|q|MxUeO}08Ndos>usO!DEmnGTxf9hraD?MM}yuiz=xT6-q#g4C^#PWWbQ|s1dvVl3YqIBmv`9rSyL$!L7&uj~ zGI2u~97Ht=CykXYM7^DLRKm+?k^uWUQr*>4W3g(KB<9y<10lqGsU~429O05k8vH+= z>pmj18u-Soh1LOf(yjE8>!#MM33Zj#RQqnVLNc@vEJ68C3G~gThXiXe#3tYGmTb5S z0)Y`)!`4-Y0L?iusSj+H29udb-XA1EvDeyisw_nGLSsnWW(i*RymB#0=9JajDzz^C zen{F0+nw(&lQPg#W(1crZ`d3RJsrgO`t|wsX=&u7=R{^BT2oIGHw$r4f%Sjtv{Dn* zF_gtuRLsjUtQ2&ZLzR8^PozbQtV??MFLHi=YfwoUd~tKHO)DAm>O+@2(gTW|iTMn? zd4y@3oEry?9M#^mNE=j_G9JWwVRLP2)X8s|L%QaRJsZdoaw)j*cO*>LjMSP7=FRjvWH;f>mg=?+;!mBE^$gryB#~rw!ujJ~=1WX)z2bH?j znY)h2C3b8iq;T?T2jLDE(&Xo1L_Sl8w>4&c>8^RJ4^TX5DA6K;7rALby;0APc#$v1 zhS8p_`SAwoX^mn}H%ds|QKIQz$d>5(59;K6Z z8-1FLY+`Lz=27gt-`>vic+;;J#r-_Ld~7Vnrht2G9SaOYk#qwCDJwZK zJ%njtZPGo>M0z(SeToI`7c@;D-7D@czafi;@5W2-ZdQ&JD7!Plw%PPsfWRiwc)3vm z6KWZS9%|E8Tz1R;x*NH+0EqJyxHZ#3O|=@^ENoNyGB)yRmirnPk1boXCl8{v|JqMM zNS$dPSZ1FXz((INj;#~gesydy0lubvt(~^Ui2v}jYY@HW=TW-v-^E8HPVVaz%hzwc zPAxnnqa~`%^gRMuy1(}~n@7kBwaH9GN+?MjP#M!>a%TK7`DG?3n*utxO81jcVNV7b z%;;qLejz^lI^g{m4R-PM76;`Gofh1@XGmG#f{azJ`A< zt_vY^aGYiK8YZ%$&Y<2QU=CBw$&+Hxl zT~1T=^eYK`4z|8t@lOQYZF1`QX06kAe9}er3vZk2(|YI@_U6-vKLoA2rHw};Mge#6 zMsFz``%#(N>1-l}9S`3-ypxlzv7M6VpfDq~xy8H4}`YrlMy@FR)EQE>dDDRGXO9 zRGOj`TJ9$s8sL(#b<1YxQ8(Ygg1g$Xggc0k^ZsRiSs=#0$1@wI*6+?(O=g#<&*c}* zw?OSxC2_MFTNR9}wNb$3hP(J+x5y#~H!;+rL&v$C&pkELPA_pi-4PvXSkbbr*ZTdM zOy7^-;-h)UeM6TZz`wPLz1AG=U=&7;O&KhJt7mJSBnRtvP?d@f!|<5(Pb`gChKDYJ)cpa3+>bt@WC~@ zFE7tfiT=}gD9*FE!_3-`-RCKRnl`+G=?|wKnXl;~u4=32KzMG>r{WUV?Pc9Ik)L$2 z9pA0&t~Y*ogo?H(p>>oL=Ri2-b?ny#MbmqH2F$>I88PcvLjhvnP|`AzDeZ3~rlJee z6ZfG64IG;YBR`=u$jkxtLnjks#*7-@o4@D^;*n}k{A&Q*71l}y+X;BT8PVzP-jy*q zjvz26_xnHqr_cvVn>r|0Y`S;;4AFondhDofdP|D&%?ykG_|9Q zd1~tAXHYS}p{22wkpPb6!;bEr=&y zL3#Z)>uow&15p%V$gsiH!!U$!zqU#WK*cg*T(|lPWKt(TZRi4nMZ2yYg7LX->i5NC zQx$|8)fcj^2$^uR2IW)^RPF3ug#%>diH36xNn2MBTgLH8PJ)|a{O#AqKY6CKR?@c7 z7J^Mhux%!m6J2jlWkZd{-Hl0oR<&*JT_q(WVl~KSh%T%*{c{Co)41E+kbwSmt4?dx zV+kp^oLZ`jbBcjf*paK)&iD{(ZQg7r@F{~Pl%$fN5Pr~n-grrQa>c(2kPa0;Rr&sK zjb23kAd?jjmxxFnELOOhlAW;{)H3y{M!Nv|-Hg%l|NxDZ4hp+x4OMtl?ZWf?cD@@g{CqBoW<9O=^u=vax%h8rExZ`#}V`-v|wKB!{ z)WlRpB8$k<=pmwmU^Tvt-}1{*+YJJHiL5b13h-}^sGT>V)#f}iU~6pFm zUNQ_oBEu5`R*uxlZP9%X_jCkb=Jkmo9+I2QAVc?%I1$WDvs39S z%u0e;f2o|givcHC?TLamqImcjD!DacDm!1okxoI!M`|Bg+G$II18ifJ9zeU10)1l) zZ#BdFlDSUKp}=)F+3$7%=p?NTXx&IS>@4)gC$G0`2HG)A(QQW3Zys|dWfKayB z?X&S(V^i4ewA~b(awyykQL?O5*rK$zWLQZiHAy>$)1W-9K&v&l#Tpb)(fU4^q>>bD zSQ;rG>r8GLTB@}>Lf4sS`oxsC!y>KX!<6FWd6T2yqhJ}iZ}wPy&t;`8e6jNr2J1{I zED|^R9ILhLD}TfHl~M;4c6HO(b$CIn8dUT`pw;N1RoK5H3H3# z&UL5N_q$&ff2Y%}>tunL)=`u+pN9JxMYJjrX7&#rF3ZF9>5LN{2hLi+R;~7-o;L`7 z^%k`4uGR`nXqzdXWz)ov!pjcPKMOkh1fO2-421jR%4a3tH3j=V&P0nvxM=AvFR$3=#=Z>e- zj=zil{oeB?WQ5!8sz9yyf+Y?{YH&Gdm^op~;O7*}gMwHNnP-R@sTP>nsF{?h;#7-N zRq)68?NOfSGbx#Z{dE$6+bszP03Opm6CG{SUgHjcX@oSs-QJkOWGRq=sttq#j-tW; zxUREpImq?DX zi0N5t1EuBnvJwW~N>o=K4J~-_cz(ymk1<${0sk(U{ktB>v)>|3Dh^3KK0T$c*PEua z*GZQo!G|&MERBMWl9X01KEB4>I#{=}1GTHr#gl6FL!Hb#%>CUG1pR^OJUSHeaH1R} z`}atsjG{eHwm^5KQZEPwJ(JiFAny*#?6Ifs!AD)k9BZ@ViNvpb+=D=^7f<%8lDZ+0 z?5w@GKPA7{$VWQPtuS#KRgEJ6Bf;j!G&jxf-m9R|INEi*Zg11Cr>lNRXL^M91R(>( z?D3)Gj6zaGl@tge^E#z6T~bCVpNKTiMti7Yu?C(DRR65^alq^Bdk%#<9inz>p+aFM zR8b6F_iHq9)hF4iuBesEE)FEihi1CywPR&_E9^Ke{TamFvo?y)gdG#2OzUP;dVXD_ zwl;L+l`>CSp^~O4+u=JeU&f2~?s%lbi?}WSp(TdulvQh~n}-W|@1l#3zKw6KC0r7u z5LrO#$myQHodeXPzm0Uin0_(MM@4w0lzigldB0{u7VCG$O}$vPD^1g(VVBWKuy_AH zcFWh@n)5|`YGcezO9Q%2X?5Gnz18NU@XmNRiSWF-DS9m6F06a2Z#k*ry#7?>0M73cD$f^vN-~NW{I$|yC*5+)b|a=Y zbr#xCPQ$9HsVdl*9m>2ahcYp~etti}9icEPXmc6*w_@<@xe--7Ql?e0nBtVLMf`~v zY7+D?cPV3FadSBXk1vjSzUiTYhnx^(JiknJEl}YqP&gZ3lu@}j8xxyzkMs85iP|y3 zqe{C@F)MtZn2|iqZL-QI3qO_<1EG)q$pQ$OCsvIZb+kLnLK|zKm1XN7#sLA zgdgnu`Wh?=T!{5!i_$YkPDMAQl$0kE&AO<0o}CE{ZLEtkrn?9gb54iBaR1;>aztIP zggR9`3urBZazM(2w0e#Pf`!Cwv;xqHo*|iNZBQbnJRfnN3tc?mcttvqUVeG$=u-;V zpjUf(QqFo^%3A+Y+6u&)D z!uN51i6!nc_V{M(pqeR$7>9*kv+s5vn!v!y7AYGiqCU8|h^mr!MErW*mQb6kG=(Mw zrquYy1^(@%^i5}-;8{MwpOVsl(s54u+ZS#4nVJ{uZ_jEj6F^So2JG=Wm5(>V>7OYY zy%y{~HJzd5cW_hDVS<**CrL+7NU!3!|EIEZ46f{LvwqUCZFkVIZQHiZ6Fcd+W83c7 zwr$(ColNHa^nYfanYZTqsryvz+Pmt$uJv1M`5CA1{fV6FlIkpnph+<*g;*cL+Mkzu zw_Sg~70>qDG4qAgYG@RDTYN}-=#k&B#Y40F4u9M78EJugXy0p)~3t4oF&H827_SK7` zbO~UrutEEdI^2E*YgWv5I3|B5^u1MvZg+$|9J(E7_Q6TWQ)B_6(z)cdUiBe z#8T26NSf8*NOW!)H#tUWT)?KFj7Dsn*bYt(NQY?Vxc!;{Wjh5==ImBFAn`#f<%e`I z$fTH-p)W1YsxVXCm5|bpt1ik?>l}AG3wm0J*AF7TRxd{qjZwak@>am=y8R}Scgi!| zA=3ku2bIRVevJ`>zrJ&(3|=GK4qR40P=D<}Yq@v15pCKcNBg(%_n!3z6ohudr&LAR znBxAT`H)yvW+TL7MNNpzI3R=)x;b+r$)Z}9QH-Rk>O;&=eK^0-!kh^agDj-$-@Q6f z+u7idY(ux^X;^2iutBlzvAXm}`Hp1wJrbe<@V8e{aAnXer@ru^KE?O>QO(0y}t<>LZ(A#H&j z-)`)1;tDtg-QZ;J5BPH*^PE?Ldlhgd3_xoQYG66VjWqTJ#RO++Gw`fF5%#O7Z*x>E4c-wyf%KI4sQ!}~9%3G6jI zBwU^!UAQ|&-}(FZe@d4}|A@1af$zjWW3Y4l-5`b@k+KrXz*A%trF&ST7uWv^-UzOkaxo1Ei;E4K! z$mBpkBYe#{2I=ZOkxvg7>ib9c#J8ii z)gx!0-GV8clwmj&ecco~^xv_|-sf_DZ%j<#$n*BI2T+QMy18tVkl)$7dU=bO4bZ9D za#N5n=~(@GM>F9<$7pfS#?HaC8Uj+vQ1@Yo9?p;*qM1Dtl*c2MXn4O8r4mBxIb(I{ zHiU~$3N-O(=1S+7TPcX{Jz50C%>FivFuN{ECMt%?rtue-AQxzA(k0Kv&YUgIjm=Z? zbVwr6shkuz0qAAU3KTUfm#hv$f=}m+i7YFqnPcN;f+#}*opRqjd&V|(>UiB2Zb_w< z%C)fb*p5$x8qhJ{>Q+{^@%k*yc7a0hsle2=PM^5x?_M#hv*O;i2 zpa)g-s~TMyoK-(8lTo9`>)WT`D(O?Gw{nI2as`6D9`?}JSoRk1-%eVyW=mYtc>=q< zz&GN#gf51L0q}97S7B5jdS9HJq#nC(jg3)xk2f>WYzkhfUs3U1^@??`B+aveBo{36oCPf(X>>{ zQX_hlrBvr3;2W8-&(S_p%9gP#BjVh(KD``17CQaIQ5LG730tlKyfZIy9(--@68l=+ zuALyPH^o3joF8^|5;foE>7W&$4(0x3Yd?DF`RXP7Iap3?N-Y|{YwsD3yS{T(2VWx# z$Kurte7`>zOjuz8FhP=YlL^!@h0DDK@f;;B6pUIuz@xp~qjc}nC==)u6IxSLexLot zEyW|ms*b-N*v76M;dgs=2q(Bpnzs{vWzblfdgN*G?A@ofk{B zyQVBA$K22a;63lVxw!}W56fw<_lip`LREvkcz)BiG=sg9()yZIvX~zB z^G$Cu2H(|YdukI*$7^mkk-kYEP{GBd+!|b?saH%sX?~vUBM!xK6x)1iYp(f=5HtKY zC>^LPNXP2~0^SYP@q}HX0f@uA=;JemsvV#*I#bYpyF>p4)|SgpRyJw@!sOEDnb){gFC8XwemZZqUpS z6ieD_t+K~5kx_wK7YiNWa_pyeSHzNGu|E^!>sZ+jUK@r`sx|Ujl*T%Waq?;a&{N}! zIDN8eEy5(nZ+0xZ#NLUnd0PRp7aE*tSYe28p!!QsrZNyWhfW6@&6VIq9`I@|CY#17 z{|)Yr{phD#8EZ^SGJ^=_(-_&oxZdB*r0r{oRF!X4Qe?~24#t_gvt%sUK$EVZs2*;w zsz%*cZoE7vx#D=e(sWE?#3>OfOcX&2$|^BQT8F*`D4B2tEfPz&QxNfjBSKWu%%T)e ztzL8#w~;W+E8VxT(+Z+P|M`19{U>Tq<*lL-yR^1)+$jk6xvxG30hP+WFq;c!gW|9T zNJ(QP0LfVX4$=?-oK#6{XX!jHFSz>)7WzXUx4$p5U+uin;9FgsMYKcO-lU3Y+w_b$ zAGT2*j)p5C>P6Ha8=zSY-Z!pLO50wahR&3m0^Y|E2RoJrqYJ<4CnAiIbH)lmIL8Q2X8FeKcsu zyj_0ed^sO>UjroP_=VHGJc~UyO~~rV;s!4^sHT62!GlIUe7?LuO?hEg(1t6>bQ_%I z2x5x!EJv7!(QpIs_IX?RCBz%5g=~gLcxC1uB`AuF=Yb$OouaVklibzUOy~UUz4~-~ zn$PB@TMI(F&eIBJq$oKkH{_)fh`kWWg+2Ou;I5 zCEAJzqmXV~d61G1PL&0tYyAaztim-7lKo-Z<7MS)E#4WBV)!hUkgfw^hz(0KFG-`f z_<39YMrOzp0+b0iO6hJ;n%LV*9n&C%AnA*ta`uD1e?OoVTU{PUi^+Pr z?e_z1j@tL>XTLQ=w#|OcJ1&rB>JWB5P09_!5H5%_;$kHfMDN}&$AU_RI1)wmF?_gQ zIl?^$JTEW_AkJ?N`LZ`!!l)@Hz>9NkQ(*9dXhEQY07iire3a{=$7acZcON`VU4tUT zL=Oau(tc`kf@8gqYX+&iK;LepOQ3&m$-&ycILu^%BVImC?GDTw}k`us< z&l70K$WR!Q2+`-E?G^bsA)?DEPZc)=ep~53i{3uiaM<~vOf`PL-`9ibEmrkcOxKCZcaiCBif*?`Xea+?G!&N?Ziz zFBOly!S0gmU{`LJC}oV6TExBmQ8hBH%hjuMAjVF+eSnB3>K2zgtZYVV7r7SNh z)ly6ByhY4xdkk#=NY+3Nnx=1H^?_(4jyJv;fzO)v3yJ(@tWy6-wYvpv0F51UuSWM` z&*b*TCBok0X%Qp+CBLB2EjxN@L9nhR0SAwkDfy+nd-3Iq=#zl&yzb|}8yfyWOaITK z3FChqO|}t}l+nerkY}#9AyI&^0zq~D&Djk9fb9OS0}1Q*0_vYET!n_a7ph8Y1(`Au zp|H4h5M{^0d4#w;I8xIQ;g4DrC{OX>&SD`CsVfN&nbIfO;w6$y9zR(~e?$>}LP_Bu zAWF`B;@t>F+NmR)ha_DeJ6-1=BvV*NRZAmP@yc7R&Q~v!uAO%q*VQ+B4EWJ(&V7TC zy^1^e(bSq$ljO9+VY+L*yxqLR{lMt@)DuQvd&{W|=jAs^?D)^tI?{)HyMwvKyN1EL zgIlwCx!HWr1O9w}4BFE?o1g6Wih7=#HP-DAE~C;>I^Lz$wW(cj2m8njZ-2 z#(9i-Ga)L6(M=D_CnhP-F#a4!#o@afpGX>{wzm_~=~1iS4ik6zvcG-?Znu#1v__Qw z%#~JFCLAW8Krfd&#RTMCl^%1qNzS77dQmv^@iEd3kJW7Ff0Ete6 z3@OaP;qO(`d_FP|J`mSVV&J~Ht8E)$ZhtdOIJ0}~9j8^l8?Eki~0ye)@^EpU;tAiqK@2%>4~c4Pcx8Y5N$M8 zQ(SFUb5wm)v#^YP4rYzlh`;vRrk~YFtJ?Tn#F{F}-=?q8h^vNYS(h44YUt4bOPwq! z^1uj8ok%qzQNJ(+k*aT$fq`s*lHMH_1LpDp^ii0Za*qM(5oK!f%_IY`zL4^q;-8{7 z_;y|L?DB3GnD%V)U1Wr|#%X`qA5BJ+YMkEgb^Fjf-|Q>Rfy77bWA{GeiQim&h3|4o zP*fz>!Fmz;-46|cvK~r>Lbs9ba)tQC@wxJb-*(mUw*3+G-~+8OKH%^2Fd5h$CU4{k=BhahZ0#FW02(U^`=#O5iBFtSqJZm6r!L^X&^5-P_9%+ zHf`bTcP{v3B$hh+1)ripajOXMiZs+lCIMUdzX74s=FsbdVslXJ5W4mAyEnlC&!2<{ zgSue`(cK(go;Fr~)8#ZXe$erjWf5@;jqDq$m*GATulAn5YgUKJ3gw9AD9a|clbX+^!RI~n!+F3RK`0MH3!+;9hMWta4zh2E9e zU%ayUXyE$$Fe%y;2LqIrSs2Q3lI}h@#S&3SI)IBiLz_G^1?Wy#+5R{;GQ^uEOl12M{S~5v4`-j(i6ei7cpvllu z?LC5|T+0%L^~qQc4#%u=$_&q4Ml|#P%6MFQaBEl^VgCzYUl)!h1hI$DfS?t)k%zVV zz46{v*#0IhP^qa5sT(Y}gC4SQLc$dk0ZxLHrdSjM6B3P2n3OMPuY*K97vl&KU)8Pt z#}P26-;fynhtz!iG_#ZqUg(_;@P3fI>e%@Ec~oGLXZVflDS~b}@tya%ZH=pZDTqWe zUqA<{v_U#j6%B`C82&PM+MyoSB%c}8*B+nk#XtS}a|x#&U!pKB_SAxz*Uqo~kH^m= zIp5$ZK_IoBXTQyHxcc&|Zk&$=t z`BPl7`#B=dUt;j|0rHHHb1fIEAYSSDFoUh)(IvU+=9QGwzyq4NEXYSWpdn94EFSSi zY2~$J2+WIIs~I^LeD>jUr-0bZ!UzHN{H;Q;W8Pg7>7m?IddX78iGrALccG4s1*qQa zUG%mE6M~h|3JGF$7l5Y)QSi(--Uc2Op`b3=Hhyq8ZXgt{wm#%(h))2O96h4d_aixh zw125+oi=!l=Bb1+xSh!Sn98-lRY0Cu-!B@E`p~!Y<#T-gn%;*xKH%e%dc!0q;yvx~ zF#LULp>STjw-Ys%t$pY{L20Q_t{)HOk zrpz$>2-|BB(Edrc&8F91oxGg?P7D_N>(G4hyafDJP^_7e<1uI^u|uH!4{z@bsK$zr zCwaw;;lhkd@d7$wn+U#0iIcCzs{IbvRoA;hG6ZO}`|HLB#x~uYT}0&vR`1LSr{&W? zBNtw7GP$Q%MJQ`(1h(ROj=6;$+>gJwitXQF zpsH>ecH=+%Ll+bZOhhV7q#mze^T=p(*eDtY2~7~zjhqPAV6V~I#k3(!X5-ln@2;aN zjgHu>dTJQ3aTRC+5?QtEXMB~`U%^V?$b;P{eZRYl!FLLK0;Pn;<#&B+qIvp47|s_N zz{DyQ$7Hs}6^f*UbD{avc2RoVlREl}R!gW0`23Rfrr6uW}3b719#&a#q z9WN-M_rEBu{RvfAVgGiDRo0X)+pe+nNV%U)yd`z9(M(gPU9lb3JJ&^o{sAi4Jg_b* zi9R35nMtGl+6xw<7m!XU@W4r$H_z-8-54Y5gqa}f4A#OG_jS5N*Y}oYYxVHvEAcxm zH!8OuL1SVgsHB0cS|nCQS+GR8k}UZvhD(~@UFpo7+pYf;Hn#W)ZZ(9Dn+TxLW8LX$7p{fcAc)MEnn8x>k|lIRv?C4+{|~%t_o6ol;mI+ zx~qU`eP)`ccb#}9$m<47SpceNwVMWrcl`62PE{Y% z*!kPZi>b+Xzp56x!$71s7Rhf?s-7sNB6Y6q#0$$|$u->M>T-DvQgw6@?(&w(l(`r~ zs;Z!6#R?+hoTw=qhMhR^>%y+_LCW*7=z>xHN&c6#N|Z=W$!bI4&l)dap^@F)RFmXvHdM0r*O(cY;Av#ZZs>xeqq- z`DIPN@KcoSF^nL<3d~lKkrSllRC49y>WvVqz3w>Mtj2d2VXHPo{!a=r2Mjl5_K`4pTU-n0?Vq}--zq8ibBw!%>Rv&t;=$0B>VC@wS{^>N4b( z-i3;~-;AL?_K51Yfr5ZJ%cc_$hdX*cEMw%`IkVvJJcS?c z?4{?>KV%K105JBSNx;d=)TQ|eA?A;a5bQ_2W&zKBT$pg_JT52l<5i5NO`2)Ha$!x2 zhmKAFEHjr$d-OZbw-*`2>9ckFEiK#4luf$A2Up4HqZTGL9#$+^GMBXJ$#*fpS^#=s zcN*x-#zp1)e6`#FBecnx>og2zU8|4t?V#o4-i~5fMVZah-g;POi9`XMebK}O=?mK9 zE)K!wYE)hytjRXm?#6Mpyf*S?^k33p6Ui(ry0SIDzh}4anC4#P!;fkviD^4KaaEV3yqQS=;Fh2{WA( zr8tC%m0Esl;r^`}3jiAQ18$1|#3K0_0Zm+z{q4T_@6LRpBmIVN!e>n}&pXJ2gxNtj z6>E-S=CSOx{w^Xjz-IxP>zS_-?-?X*T!sf_MgpXa_n`GRg*HPb#3FzO{0fQrb0u>Z zrFiF=j_4|&E|TsNhiq&A&ev|ghU+Ksxt1&d^ky9$tgS`mFXM4NXSJz8n1nitmO_5K zm3W2H$_}6984uJq=!dGuo)$LEn-Si3Y1v1}>^N`Pj(wpU_JYA!Nd!x{&~=v-!)Hj6 zr}>La*AEB4p7?uSj{fqOM`1?S;Y;zMzec~i`JgY!C#J-P%uxQVK(iZW@GH?X%#b11 z`JQjq>*QU@O0NSEJE?4)<=+U09Um4Qg@R384nf7Tra3sxj7}zl(h)^l<|P1gWLP}( z6wU%)Gr)<#q93Xmq^bsYoI^(7T|9SEAZXXd?hDVm4oW!5$FW1nB7&x9=4W=jzgf3s&Yv8kEW3{;9Sj-3~Y}Yu=br zzc7~HQyGCR#U(wCNvOXnn07-Q)2LXP;eFK4Zu&s%fUxPyCJ5NPL<-UvI{XrKgy~A| zRpZD|26*sg;DaD>bvLzI+hSnNHzpaM)HbjXLKN<>a25?pGe%tV*KLfwpqdA2c(pAV zI>I81FCLUktasltfM|Wko496Q^R{O*MV@nXZkW}y45Pb?XOv7G6itb6*)tVOiPnyi z+F8_i2EYTF7{v8QatCu4)Gj-+osfKTb!j=#x;dPa9XcPMXe{O(~nc?nHg;3HHVDqdN>GYbljh^I#MjN_X8 zK+<}nm@N%B(#)`tO!eyGFU!iVt_n`mqy_t`&ol!#0r8a3Yk%oo0UxWLnZ<^0YY6zf z5-+-?vCK2z`KoHX)?wH`H{)I5$+q{d1ZM^?Ss|aUtIm09h#?P~c22T*HktNc%C3A? zzk*#jQJ(C8iHAP^nVubQRs`gs|vWKtwE9;9UAUJBU_7NRw%n5|^#t9_GyH9D$;jRjnLG z$nZR2p%iRK*b#nC=oD)6LF!>f7#sj-zwX@ON^Gka;?GWho@wiR+XP(*Ot}-j2=gtA z9y}aP&@`q^?wOrIqq1Z#yfG&xJV}JKo4SOcIgN?#&}7bm`_ff73IuhO2_ewjQx6p- z<9h?g%+n_@VBwUM67@Qah`e%GXJ3*?9nf*ljy)bQv94lkF=%gnbo+gJs@MW0sm4uZ zNSBlA>J+6_QmG9{z4`MX59ITlj9z40+eF8e6%6YH6lC}!5BI=jOCkzdWj7YB9hqOc z)sAfOxh353SSSf}*3lIo74UxOwL}pVH;Xr<1mT{JyTmau1*ttiNw8IiQK{Hz0 zHJ}5(`Z{7=LcBQMCZlDjqZ_JTXtD_zRwiBYQ?~FB2*5Q;B zoeQE00^G`vPlaDSn>uZg119?Sj-|LI-pA7(=CksW!Otp)JV8D<-l48=MDCZ^ypVV# z6OKm;dKTDxUN5_R%ptOc+}?uQBECMRmjkF9mVt~#7Y?B%ZQwn`5IZ5YLe?y}R>&N! z0zGm&!Oy=rk{Tj}i4PE!oU`Lg7Xl9OU$Yr~_HV;=Etwh;sekAqOC^gphU`zh{x&d4 zx157lEGnDGPjfIOu06($$sNJn-#@n^0BLxqKhrxGROC;{g}k+!Wg2sPoH9mx1IrLF zI2@niEgcl@EEw>K4ZRhdYuG}(s2TZWxkJ=*5F^$z&@g*of2d?>HOr2$;G(bl{N`}{ z6G$L?P5;nDl|07|fwXagZL|6RrA$+7g6fO3=GbQ8`wK=kv2~%dekiGN*4zyfbO7>23#) zypkkLrfzLv8;GFs9?U;st58jOY4MoqxW958>=v(Nf41pSCqS+Xdh3edQU}EtN)Le^ zUaWoyaNKO7IsSk_D|yP^rZoJ{_gS%D}c3&8+(qJE}wMyk}sEP<_^i!(=` z(+5>V!{@>Dz{z89D?ZN2(rcn&e!^Ikjy7B(R`|?3swJ@_qfhNtMX=fJi}gkE+PDM5t?uIsxCdWLHcVDCZ*jS6s+F zHn*{KkpD`E>gFQN+mfSjw)umsb;Qo55g{ArPhi-Fr>BdqCEsBvE@(@vt`HZP`&I8v z$jPzAfNQ|Gc=?d`iYLVli%Vwk7o1d-45(1cC@5uCpMtgpep*N1s)l3vjlRxS4^DmY z29CwgDH9hH>hDA?`*z+C9&Qp4!;C zjH7<8Adv*^i^uTexSZM223FSZMVWR~kQe6N=m8m{$2=V?PNAlJB{MylWd6 zpc2!a8o$uJV9fdot3eL~Sjc!ads_y_S8&EQ-!LovPE2>zDXQwp?4No^hphz}-vf}oyB-cY=9=^x0fTgFqpluIYw z4@>W5-Fid$@&%s6L6Q4+BEUZk@&Aj!@Gk*&|C#oiqMya1;Ca<`LbqAP2?WHH42k{k zPX7m4^?#NanE%Dz@2sdNuB3p;=c=_fn{R3iIdMTn9k!aJiLe+C7dh}AAPWVxYs>BF%;)eJWfK&ZGUbSPP(G^CE z#ro}I@BySPt+Nfg6VFoUPZ>+5 z?nmp&HbLg4Bz?Ch7Je*7Ff{H;J-oodh4d8a;lJt@uZrFFHQB*4jj~?QMj#*>B-VLN;hNjVzc-%W{VJIyI`rM#S(2=RchIgrdIs@im4G! zFFa6OFVtBzZB1;(Gu^{a4Vn!m2=rqpf znB`Mc6Td=v4NgOzGCb4*oLp~GIyd4pW7TO4+P`|4ix*} zPh|YZ$MT=0PjqsImP$@Gbh3nOtl#xd4vtQQEFA3rTM-l!!@p316Pi|zbK>Y9on3id zGTO@WT?AUnmUp;}h{I%lK-k{&jr5xi*2xw0*H=&LNd&h-WY~}_6mhoBTbH~$s80ZjpJMs5&Hg)_0o_fsiH=>O!MHwTx11%;|^pA zwd01`jw96l4awu;WUvWXL8>^W^tQNzH0O@+p5~;+A46enYmqh`J&|}*r3AFSTsmh}a7b)|AKB)R? z6MLCUNiv!cD%cueaC2t?VEFCev)?yB(ZfKlQDB(pkg5RnxHKR~dK$!dL}`v~(CL&S zgJn>_IEWrpVv+^O@=h!mCB7j3H3$McvAT6ZKLE%F7!rt1>J$y&S{==5z6!jJ4ymzC zx)TlZxz7u5Vve>V_(0+R-3TjAevXW5uNiCDml5Q#lX|xd!@n(Me+1|kLD35NO4AcQFnoJ54!9TaNxjluDtsxLn}8Km;P=Qo3Yj4`C`9gX_ z0=TXc^_irZZ$;eGyLr6HSb^)Md(814=R=Ls+Zk_LBKS&n9nQYv+LvKqx;sU8 z?mXXm2)Af;WjsA6{_gKw#p#>?6vo}h@ zRvugCg!3rsDYuxW*-OTj9t-4zb1CYnvZ$t^O2XD2Q#HJ$(TY3~>Ee=+StsP&DXD3< zzSpK!IpFR3`fUmP#g4Oy0KPKHE{n96wcDO0Bca4s{2bMS$CcKL>-&-Tor z0>4pv?9gXz_NscLx`Kgv5!P;tmKeWr{d&+Rxe08}c1coiG^sq};uf|(6+y!x*7fZo ze`YBmm?n%9V_$mfhQtmde`Is)QRXx1V}XvhZi=2Ebw69v3D@b0>&5uW>PgCX{ln=g z@uTGz$Eef9Ms|g2ODi9C*7p4h*Nbb01LL2ZjvBe<_sF{~&BENJJukOqq8$xY&NB>+ zh<(HPiFmfT_Xlr=V+17i@r3&n0YipG4r+$iJ(n5$2#N4VspHMc5cqhxX7rVezxLXhC`RAM zU)ZnQPs=0l-C!mTC~NiWC*@y@-G255USF??IFiJOSWAb>fP!t7@()HjrQTTN9EqC^ z1Ct6Kvd1`}@`ftNrwBb`M`to48wt$|0#T9X31}kLvAsX0_Fzvk8I>5!KQKmh_YA~r zkDVaPg5+GMQ`DTNxi^i_UA(;_K6c5jhUthxMkkI1tw(E%po72FY=Eee3 zWb%s3mJcUN=cv+Vj1`3cF>S^$#jF@ihQTaVd^Umpf` zSMA|*<$7LLJ+p4y!&k?Ey}Dv}Wt&V1-w4ML-A;K!z7~_&yZxliD{9G>peCu8eZVS_ zOcqY*hoP??XuNh`ag$qR-wC}>){|$pRB9hx$C?jDNZJlr+gYsi?rD+8V@pSF>xBq9;uyaq5329wZGAz{mB>*FnO^l)0< z8F0yKXaBeg-+O{F+y9&~pY{e#N?}QAhN$gV)yO-d-Z2OwbCE!S0ar2KrJf;~_EZ$R zT3L5V6Q>H=Y0$pmYOclWhE_O-R`3GJvsT$iATH5m>3Q)K(g$ zK>%eggDhmIN_I;}S=+rn5P2P2sTYAXVKrdrSe`U2?-kUwVY>I@K2R}SH;AlL5@o&! z&P}nnlR;%1T*cb4RJ-d1@bZqnsT~oVKV%H;J)@Ni?d|Ucsg`jkRVhxH8#4Z&_QtKAyogQ(*+3zlwm;7E)+ zI#9EC5<#UUZ3(?aRqby83cq4j4X#wX@u>P{fk$jCLunGjR!_|+ZpUZ_*}$bORU}ru zJ^zcl$b+w`?byEw^JZZ9M-}$}yJ@K_nwZi_2y1aOaIhM&eD@z3vKz8!g@*|t0|Psqnic~g z6CtC{|8kRK`d70F%j^gph&|@u%@bB3xem2TLxN_Tyt33q10CBJNNE22fF2Riy0#8! zL1O_@rL#TYdt;`JmqEhP^{Z;^*B1A8uBfrk&!2^Hq{uP6t5WF}XcYw#oYHen38u%G znRzHqNwRb9oMOqxKXeMm5O4legQ>oYbBVJZWA`V{;nkxdFV76**~9=elNqu7`!}8K zr{TqG_4z~?vm5ENM>;Zs{iYjf(duFT;HPt;EDeU|={hSSJj`02<~z@eoLPWWuD46@TC{UAY(7Ueg$%aY84;PaM`IDNK4gmh9s;@W$w^s~ z1(vhDfV{??$8YkKp8x%!dM12ncXt6T4>=82f} zB<%^7boJFmqA!xMdgfwhfv|E!VkIkes=<{P6iH6ZVo1<&>P~H Lq@*HpqR{^VGqGL9 literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.ipynb b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.ipynb new file mode 100755 index 0000000..c4a9900 --- /dev/null +++ b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.ipynb @@ -0,0 +1,267 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "03c68072-8fd9-4c26-9f8b-e6f6e24fd583", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{01\\_Auto\\_data\\_1}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "4e117807-3711-444b-838d-775303383d93", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "e0c43ee7-0ede-4d7e-9966-f00493b33f0a", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "**Get and Set working directory**:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "57ab9acc-8d99-4165-8930-db6ae2be39a9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/01_SupLearn_Regression\n" + ] + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4424246b-bee1-4b9e-a5ac-79c20e4b4c26", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
    018.08307.0130350412.0701chevrolet chevelle malibu
    115.08350.0165369311.5701buick skylark 320
    218.08318.0150343611.0701plymouth satellite
    316.08304.0150343312.0701amc rebel sst
    417.08302.0140344910.5701ford torino
    \n", + "
    " + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ISLP import load_data # Package which contains the data\n", + "Auto = load_data('Auto') # Loading the data\n", + "Auto.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "141f0257-39a4-4e21-9be0-78dfd645445a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import statsmodels.formula.api as smf\n", + "\n", + "# fit model on training data and calculate training MSE\n", + "fit_lm = smf.ols(formula='mpg ~ horsepower', data = Auto).fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4ae9bf59-3b73-4020-b039-885948f6cbbd", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 39.9359 0.717 55.660 0.000 38.525 41.347\n", + "horsepower -0.1578 0.006 -24.489 0.000 -0.171 -0.145\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "print(fit_lm.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "77170717-6eb1-41fa-a2b6-fdbf5e9193cf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.pdf b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_1.pdf new file mode 100755 index 0000000000000000000000000000000000000000..cd042fe2e637078042108dd41e80fac6d7013c8e GIT binary patch literal 29710 zcmb5VQ6JrDfJ zF08>x><&CdT)dhx&jKBu6^4tnt37diJ~=PTLduvF^f!|t$Y+mKjL-gt=O13LhM69( zOz*dlG^xx!H#V<7Y56&d%?o|)Yh;1kU*8w?ts%w?F%v)|uDf?z-S{xK?)^8n*Lvte z1%zEoar$LF)&3rmqE=z|8)81a#3=F+LstVG9Ri-_{z(g$K`+X- zv*&m_^HBtx8B4`r%h9#prTck%yk8jsXF6#7nU@phK7rYm^;uSpi3CBud`#PUumYw| zn>A9~M@h!)WGa)k@*OdEAefA(qjfzs^&eit$OsvOLze=w&*}w0!i5s`gX)?gl50ID z4n3O&>moo)ldLh;cSh@4F6o(&%Y3Ra_ed*-r(VKFs&D+>OtP2;j8C=#H9up;u#tme z-{z<#M!02YIlHeOr0ShPJq?Je1{BAbh_|1?vH|@SNF_(I2}cd%4Ag&5z5^xCSe-kQ zfRFGSJrXD<_En->_w*+Z7wnsSWLK!+sw8^6A|d&#v@JQR37`D%>&LARk|u2-ck$EbE@JAQu|vd%bo8 z@uPlN69%mfcSTxZlML(N!wk!nVyZ92z%PUob3X&sz6dQ^}>e&z9+o zKE3fgm_26zneDmCMVSgK<%)EKoVL{-%j|-Cm-G;`c9nrfuY|D!EL=xFYRJzZnWR#& z4NOd^9cQQ>_6aCr4RoRsD0<34DW$Z%ZuRy-F*j73vuQ0cso~IyHRlS77!i-;2|a8t z=0#Cwxg(2BQra-#-JhHwJ*BJ8o9YYyAU$3~q{3_av7?VsBm8|G0Srb= zMu`?v#$R-xYeRXchVIH>3xt?KtC-D|C_@_+m^O7mqTVXsO+;JRrdXR`+T~^vIuG@# z9UV&zA;u{-cbC_dFp;0_i?Wu&jKSkmKXyfRL2DHVA6tGFwnC|0J>x4p_7aYf*(-X{ zhFcHMc4`DY)YvMDJKKuk`WWwG=G!V8m zhPK%(j)ARdSl2E_kIl_Q2l?B(*0~)C$~t-1`|Q^h*ZjIGqcai;hlQtQ&qd%V71S4S zp1I~vJmip&Aw7uG8^HJM@!lXwldFpo{PtETVVKaF*z2p$5AM#n3t0*&1RAZx&hqS9 zq686+AYKF$B@v8Y1v7PtJWxs#xsGAeGXKe`Hb5?{LerX5W2;K8= zv}Z;x)EmVnlK~@Ji)jGmIZh7(^Z?i|I2; zxt)Uq-pFU8<{N1UuuPC+fGqN{d?aklMm> zv zNs^#kj*p_#OCQ)vY4o&~W|9~Ofc=HrT6nOy*_f!26G;i05h8&QYnyGRm^B$?4=gDz zwpeL6;OR?pqDw_V>R7w&7$CO9E>J_I-9oE>6XpDNt{LKt7+MV&7?N;7DZ8I`QcZ<@ zQ?JYA=(=pY;L=lHc{Am#-Ka}mVy{iyZTU2NthxMTht6a5mc*-5LFBM@$JyOh+1Wwu zvH37&9OjXuAcR%1#!u9t=f=>8kZjXiu3W`js+1&MFlPhsw800Sa4DnfFYe%IvzBdS zjuIOeF(Icaeo_DBQK%;0b~PYR&&D%E$KN)msGf+nw_bkf_I{lcm1+J$n3gJ}d4sJ_Ax zJ0>ISZfd4NiLXZCt5f3181d1PdZfydjZd3sf7)ndE3@5Ndh_6^7lRukP{z~ zI+}ZY)`iLmf;F6&;#P%lR!~$|*>H0=6v>On)Pb{-R=L1}m)mo-3NcHwLJZLkoGKMG zXP5_pLB!ko)_67NX;pM00R8saI8IqxgJYz*V_3lw-vh>pxwTbGF?+yulhRln3Dj!O zHp60T2$iP;OUFnqlD7YR8JfJda7wjeqDL)9O*QRvt!3+=!;yoi!q;eo?Q9sutnel% z+v(#X4s2T@84P0iImMvq(q}=1Yr2YJlv=gM4c~x-)}J(}g$kT;O#z(^=YAoDYON|2 zmlimU1}CT=wZMaixtSC9ruvUt@X}JQbr+QrSglg^@@#0?c$Q2HecjD;*d}PFA$=ez z+j2fdM`v_t*K*p!X+eHiXH^_3NuRlfrS3Vjs&}&$V-2BGSFhqE>LOsOeRschhLZ!=^p{vsgQa>gn!oDNATJu6xUcs{M-qN0gf=8X6eJ0SlXK;*1! z3l?9rT7KpFrCgzI;{PSIF&WlR2lrVX$^O}7G5 zCM7G3yF=J6#U7q5_p-m4SsFJYuTLD`n3nUDF?DUwk~hxkUUUy@I6Wq*v(A5^uatJb zsI89MDJ(qw=@7nPh1x;Rt}^6P3)jdvXVRZWq& zy;6ijix*WowgYfzPi}#(@fz_;euK)!KoU4sQvAZ2CTeUx*DBTO+}hD%WFEOlvS$dP zf!mUVidxN_vAfua_2t^$a{Ss<;CyBtP}*C35lCYxab8^LbC2!^96EVy56ala=>Ip= zf35ys3(m;;Z@f4Q3&Y>6xbl?E20cvo4aF;vipZB75hmy_Y^xGjBqQb0(5LPy}W^h`!s3z1RNb?4wUnAMCwrCc<15ak9X>!CU-f zS$bZ+&Xx7-#^+KNbF=~02v<<(CDJY|n2pP6B2Hr5XllmEbc{xq7xrynkCIWO8HIW_ z)j7gL)wI(vqKXJJOUxe?#Wy^AFoD=5^+)R-oj9<^y6Mkb|7}bqPhE;oH_B?TzaxJ`4MfB zkNzh}G`R`_)66-}okkE%WiKd-_7nm%Q}a55Gn+3>A!kszZ0>RArMA<`_ta}YK?X*;13|M&QUJi*Z8n%M`sT+}|McH-86 zwo+apD$g-{0Tpg^GymjVf~-u`&c1il26Xq3dc5*+%{_X&RjiJq8irrjdwX$9Od(h5 z(`@tVBwUdj(>tAXD5B~a_VdC<*nie`0Ca7)$pgeGMY&cqWu%c^1K4!BUjtc2TyU+l zmA!a2BGl|1N@F_ta{pM7=x&9Wt9RCwO6~4bfar)+E-frLcZIn60Hh)Xmi$+)F){xe zt}!vN|0mb9=jAN}=n(*RU42AwxkTsGDzHLl&q4IBme>1r77m>RqX^E0e!iq=ANBqF zQzo+RWcX^rC0vm2dY*bMQ-3dr=jmgcO!;l*UKNT75pwc!tdZTM-G6@eF2+6ae{Ri~ z`*e1C<4z0B5KAwcnw@YhTwD|tG9b?GUQY-CLS|Ludq*NaCRu^S7vmCq$1g`Ec*icu zz_7V7Sn6u{UK>fOtaLV0JykB^c*G(@c2YMSk>kd|1Bni?n~`eX&g-=?#wSlCx#JJ@ zuuIclE#K-EPr0PiZ3N&Kr^&a9S<8`7*00M|m_7J3tC0{u?ZjGHac#P045xn-(y#v;3_Eaed+a^a#N>Uf~?=)bqs_BIH3$TeLyWs1@)C z31ynK;=eEYT6SDSxi9&Fb`F0+(!^6$MU2-0`vY3ahXK=<&0@N`JcI1|EG>Z$18kOV ziQARQv=NTE&b*C63OYD1d%|CCw&q;sL*2TY*m(GIB;tIBgNsT+ghF$)P@f9$YAd7+ z38aC2Z`oC@!GC<$LYmS4WH@-%%(WatH8|=h7I$;G4!}(T$j2Hh$=KPBTU=%-offqj z#EKgJW&I3|0Dpbmcnwrb7I+usEE;f?7no5n=4X=Yhf5Zd%t_EENiod%CyfQ0O^p}o zX)t&pRjsy|91-SUXM0I`$!vJhsBU%Pl@!tC^2iXifa&%eR%U29eFL~Ng~a>=!v9K8 znHc^Lgm)|g=uw7m9#GmYF@}EH{UNesVyiUgo&o3GoCKu>7bCjA45A+m{D?mtreEx3 zq7zg_NP^QiO=;YLnXbU*EK(2iIcBjQ1MstDH~eO>))Hc*5Xtx$o~A@|Wwf>UCf=Ve zlqTXJXLeR*>0FCnRwU1c8iU{(=-@#YcUmdaN0)VLetubCn~c-j_lX^3o*c_gyD&ur^d}R(vuJou6kP0^DdX~ zbcb`-D)aHv7^itHkAVu2+05YJ!@Pm#KbP=Di{`nQjYXq!`r&Jgnp zW>NU(ZVuNb4>q8X{AL)QWm-FTvYybiwS2f(%oaL`SU!fnGP|-{_Q3|>E~zQhPu+g(F5*pZ#TTp?}I$Wr=7)E5nX`fUcHvYAn zjt^s=fwy+AWidOpcpnAVZ3c4&6}Arcyvo#|VKhP6xL^d?ZQCp{`h(pnRl(fw0R0C_ z?ig3VI;;x1w@YhqD*0E7s5;Ze2Q*V#saVgYqM`ozw?`OLq>Y1pc7DkfRABDRSwQy| zoFcvw-wzFe^R!j3N6SGC4p1@qiKx;0G;{H#gc|M|!@`hr!wZx|=?|eQj)&>wBHYzG_J4ytBg@~pFE?Q^K#$OQLG_%f;E$Kbfhn}VYw&v=i3<;3 z(oz*c(trl<^QFlsK?t2Vb!n15y|k1zNd+z+k1<~qJZnDQju{y;5Y4klJ>Flb-3O?vsGsQ3+Ll(%>2h}{15`EBWY_AjbO{px$I7+G}Rtc`!aT`YNM z;xIO8;t;0k^Tk_D*_zCo!`(%L`jVYD(;dbaC{{;t1~>C&h|DneVRedY}A@K|O3n)6A^`GSgqw{}&5zd0h{ z<=70~8_@m3R?e(mbKr#O;=J>EA-BY3*JFEYcjUBw8=n@%vh{P-`JsNQ78XFgROKwvk6j(hS;qbOGT^CDf_QuQ|>k4H;ci zc%H)ufASGIFpX4}%R>W#iROTQfw82OJ=AGxy`;yC267(=l_L94Iw+DSCDsjUPrbIg ze_k{RiW^!*bJskm&?Fu|ThL8|8=9NN9SprAz;5ocs&A+efyGhq(q#G_CcAAiOkF0M zfUd+OxE*5~K~g&tfi^g+xs{z@jlra@(9&g6g4440GSzT|+Ifx<+IcR1q{C>{Trw#W zVL6y1%Psz75C&bW-SA3gJB1mShC}FqAcHPsrX#OAh#qIjEnrYmkGID9gpV#Q5ARt1 z?gQRE4^i~L5{H@o-w=n1k?C*5nb-Ya?&{W+PXw3kFL%{M6IyEls@~z#?AbE52FU_B z$NRV;dn1U4CihC>YT7wCQ<1N*HTo%AAp%Qe$wfi~^KJrK%cRA5bQe1&6DjkG=4Hsu z$H#o!b>{arl2g;7eOJ$i-8lad2Od$?Jw9}%b{{BiM)B;%)+=~YUV1YC;Z>wDHNR*$ z`I9XHU(nT1qFOd{%RS?z2HC8L{_HevnOSB#td$4OQr|nlNIhciC@6^`MbyiB4y5x- zipbEMBWe+m~-tcPE%L zS!7TOvkJN545=V%Tb8bNe^QcV@Sl&SH!wUEv%Lk$Ymccn^*HqMv(z3Yjq5T)=K@M0 zHZQjL)v)QP`~FbnsLRYtMV*P|hX(7l?i5vn@0sfl>xZZIHJhe+eR|sV`}xtkyIMGo ziqhfrfdUdV4)nKg`-@YJQjLbU&A)naskp=WpjRMLB>TwN`9Y7GCYrT&ntFAW@zrHb z=R~qp*DI-*K|44iu02;pLz1SDHI@PXl~n)M-lGts^hAd%U3aB4u`>@dF;JbU>YwlI+leNdK6o+ znz+BJErJt;N)&+OeZ8R zENW}xr1aOCUg*EOrDA0Hn-V9fKr11u{>tW0&5JKiCs1MHWYW;QA_T`FZ&|xyR?l+rM+mA1yU=w)nH|U%PAOUN3-J^E6#; zY(mdO0XV&jAasi{ACh)7F?rnJ;&+n+`dPP;8Oq1^M`Hp4521RcDrva2fvUNnQc|=t!Ojo=m97SPH0(C- zsr4uZ%c6H`o;I;6l7z!|w;~BLujn;hGS>2@vOCJq4ikO>IfzC84Tvv5sDNalirghR z_C~;P-~8MuIqbyU3HecN!rzA^3Gi#VcU@ zADRLgv1?w3K)*3skDrYVdQjnw#fY#LqS_!A+jOue1!xsV_B(EydF+)XtVEm^-+9C) zkCtGglZz{XIf@M;iUMC>Z{1%QE-!bl=?&QG$3B}GNSF8&;<}`1)!jGf=~s8&^?ABC zmg83=aBxfC!u3vaQ0b!AX*QA<-OqnN^@@qzF--*+i&=jQ9=nRNmHr%-Yc9G#O8qeJ zBRx@QjDh%z?=wo8>*o!{TlS}z=QADDh9(W@;rdbbepUnwXyX}=o!?Qj6v?q+R6sUX z^ecK?Cfq(ynbNo=z#5h8zjLt0?6(d-I6#$>W3|F*dqZQ*W<=m-F3<6!V;4e z(j$ct+?2n3{M8S8;X7xEc}6vC<#=Ml382)V}*F?2(r?EpT(Y>|=Mwq_#fG%=+*C z!LSkeW4@62W6XSwx@@Mzwvb%dQA$T;a6n31B3H_nU}<7Jm0HzsI)EnRF<=H5f31Tw zXuptrOaj>DXl%Rib+OX#8_`+1-XrXXkl5|c(Y3ZzhVUCPids+l{ zd(|6jbh!=(+Tm6Ut^9VIh1=<1$AOmM8K)Dr+&`gf;~-)1R~3?db1AHU#Td*M`5Y{5 zl%Sf3xJ|_EG;NeQ{P1i=l%;_NVZ{>L*?zWD(!V!J)g5i2ef?&>zGwPiTyUF^#0pYQ zk;yF?^6E_+u@jUOo!73{=DeI6)CH>C4AjeIXz~G+R7YT2Z0vK=UJDp}>a4bs+t}Yrz8qIzVVc{y zpJaeY-l~f!EkHWp^d!!kU`FWQBD8T~dJTBLLig`+UQ?%+C)#c|O=d z1JJ(@FkNF>dP#WFiE(X-rD27Uc^Z$p3aNg3EY*2)P5<(-%tJ_Y=mTyY)f;!7o3f1i zGDBXyXew{(4A9d9`HB_k>i5>@#p-zM5H^CDE(IkVq3Xi;w)y z^Bv)xW+cr19;55c+7(@=b&GR#NMF4%0~x^){fLuWy~`Xyh>14QP3W&2wWXEQ(y z7{LN;2%Ph}2asRnLj96&%ifn~%ef~aOEgioAPwR;9q!wiQ}TM0vKEe=I-sJXEb99? zSLVH3mvM`X$C6XRooYH;VYO%W#O^pW9hPqIx(o9dFy}Rca&6To&5HkLWO~(V6G(Sv z<1o5Uh1g1JQ%nuF_mstDegXH@pE4h>GdKFjvu|YS8HM%SUB}`8!=7%K>IYtQ23qKb zwLNV}26qLAC*@BXi(U-|h=h-kJGCrl%0keo48ktpcGis_M2uZ%!sJb%?TBmnLH*%s z^k6bAPu>+3=6TXz;1qn^Hn&$7e5vi&SLMf&-^->7siRN=9>U!38 z=YygHEuVt$up~ZoGqs2=F2-#GGIGuSu3nNxdnsW%!5vi8L`A)W^I7X_VnHW%n%WHz zJ91RCa;saip%|hpQ$PoNh2UJXu0u;>zdGI{Dfa(FO5j`H&aR(G52))7%V48(OWmU& zwgm3CE`JbsC;lf*;}(eoBA2WU z*rH0MV#}f-DaAzz3dH86PeHS7%Y=%m0b1u99>T6K@E=^#zl#q4maACm>Fw$vNTDe) z+v}+T0Kh5(3H?Li|43~9r}m41@$Uy=l2n3sLyF`b4f>ysGA8=e=>8;-ZkLwf!iaF~Hfa?KV28+#9QRCU#HTvf`( z;KO+CK}cZ$VIv4BqBl-PNm*6<_KQsKaj}H9V9>VrmxTuaJ>Jx~d+iy0WH!}}GdlYR zML&oaAiV_uV8&i2JwT3KHebwJ*LYOgHXTZ5@oir&1loEIY)O@|?%JKLRTN(lxRL!J ziXN2e#=fTMsVRrw<}N}dE1)auyPR0mDMA{Hu+YYIl_}|&*sy%J@=z);6(dPRG% zA1R=%YU{_UdSfqbgV)bfxZ@S$wCGQr#l11i;&;=dP?KtfpTYFfJR1&`iOre>OMfF- zL4o|4xP0cXog@9gx`Is?t@HdwqIh29vK)KAm#|bnD_=T7t+4i^0bIrZ$diO(-@+Yw z_9>o`;b+1<1mbeTvI4M~1?t4FT);Os0U1W2=mDqC**P7rkP_m>%ep)&h|0Sz2m zk7f?LD}2D7*arwQ&HQ}DU}`VcQaiMILF$0E2CU^6-5O;_HEYKQz3Fg&6Xaau0r8kP{eVWf&g9uBLNZNii|njOquUsFx^zyD?NEf>T@5n3WbP*5 zL`A5H9Q2eZ`$P4!_Kx`8WA9o4<PT)^{Gu1$P2~K7J<^PQ2B2^`1~{sA$*IZZRx7okAh7Z?3>>Hc{H$Pw)~_3fN65 zjIE-;>f*S(z-6XWkQ(=NqZZFm>GvxsH=Oq3^fSZoYL1^hEgNg-BVDr5JA$rC1nrZ0 zIyS#bK*de&acOFae_BtBq^%(tziBr^fTXV^8_&o*--{-XOI%exm5@UqxR4_#B)y@AT_Re$i0P zFcgU{N%cE|u6F{~6q(FiRW|F~tH4+Dxa6+jV>~4>ri8Vcmm@MQ>}SnQPn%J<_k8SH zM@wGwtaQ*VFKl66tW8LhshUXRwtPZbArLP7gBJd)^pBD8KQo-aL^f7W&j`RD1PqJ~ z3>*Na2+;SxR%ZE+SmJ-GvW)aBe@l&uRNUoI)^M&(qDd#%?bEVAN}4)YEGWha+$@Jc zwGcs_5c4CzxyI@7h2R~5a3{{Nxxq{Tk_IsOt8r~-HSCoWTL%rJE{av^Cc`P%GW3R8 zGoq4KUVpRlv^Ran@jaAZIIpbi+;rV|J$-b&@1?3m?y=*hXT}%P$u&S55Y97eM95gf zdeAWkT!Lz?9_iOx25v2a*w#}>^Q zD70**M@twsGiVg;Dw<_xix;1nVqy^SFytlbjQW)&YCUhngvP3AXf)aOireVd8n-hC-~g9ug`n?->GNHm4SOS(}w)SyV^T5LLQTxQ~} z&Ux_*;na``shF)%J&TER_B6^H-|{y|;dvCO1rBK>1T~mu@Q@+os)iL$a=7)Ni@}>3 zph<6~TG;PeS&W3bF+idrpd)75;f7nlO!#-TMlF!Rh`}zTFr(k?((fei0=xpbu2u90 zm~hDJ!gdYX?hETVQ)rqnLA((?M{->oLQBi-007lrtV>Z@*Y;s;FMXc83`H&YL+Sq=WAW`(a!>Wd990k zK;1Wt+4Oaeoq7xpDfKf^a_L@NQ!neMta`Ky#1O<~eBB3>lB6CdNyOoC~wMX-UbQ#^?`8|+Np&~*? z2biArAc$uotrg8q%f>^TfMerL)|nFAQ9oXoR@hLq@A~Q54RUsLvWQj)ENkP24$t$yRZ` zz8Yu3dOoS_&bmLmTXn_|zO%^hnf40tD00^#G=mFzr5VChBRbXAg#tUZkCfXKapJ!@ zfmKd>6#l^KO7YEk)CHT?(SSPup^~+0(W&y?3hn@!;c^%{eHGU)f{*Ogl^!rMfO$-h zQT)1OmBnpS>LT!@`_l6f6=TG#R@YDxSM{M&=JvUos_2qCk@a+jhb(p!>RprmA%`hO zqPy1VaBpyzqzsbyq08S~UwARAyoz9T>p34YcrRqK``0Vh-`HlpgXD`eRD*9P2; z`K=7;n)gNzHdMf3MynCJNDe(M1g!@o73io(y(uHoOfHX{{tJ~CI_L|QRgkPuEQdGb zkkAO(;b@nDD)O!$jn3NuAQ>if7rImq?uu7u?zedisz*E=IJ(<@MomR@lkO|ne)jLI zi1NxZ@TNn8-RJoq;?7=e9d)a+()@NOPFdbCQuBoQ34R-0S}!f1`g6e{+lh2+ZIQlh zFKM){bD@Lf)xs*T9S!o1mUU1iXBjTLSmRz5!Gbbj$XXnymBmK9yv?WHrTJf-Rkje= z1iD(7-sDPqc)JrNa{WO%9`AZ6+*>T=rTYnc5=A2CtBPql-E6J-l&~nVjGZaSnYNhp9@J#@)1l2 z^UDin;Pnzx+%lsli7yX*rgtl8l>1$R(WENNy7>gMxo5Wbba85(hEE+6RykTly9anb zkpN;aQT<^kxlcF6Fj*%O;A2E1fUfb!(aq0*OF)8fJ^(7;9In{|F`bi0UDSWH3-CAv z(9A~xXpyIo*vh-!L?|-~=G8^=-jJy^CV|DBs~YlDj(VUtDg121kuB1tL1_bed)6<> zIfPeylxi&J^L3>QgYtqpr41~>XbJQXoWOx5D}298d-)4f z_KWu%x>2iB%~1JU3jC}pE1-R`-bSj>+nOg>6c5Q!s#>0-Zf|00wMuVzTj4Kms07`y z__*xAT=+)GQaV7errEKkNXnr~rgUVc1Z~0$NRj$z$NWs>;FZE3uN8A?a>rsR%%I>w zVAxijq?t3h5EEH&*sqclp`KAJTw>b|=yLnY+7-*E_luDv=ITc@rY)uqwYprc=c{af z4d3-7Z=Sss4vUTZIdgYI@Ua15i2^;n6*(+EC%FXv+De;^6YuUx*G?C@NSIJWD2A$u z;p)`fxNZx=1bDv)w0s=uzs zq+|;)#R_qjr82IQpI}V6>#-6N^MS_q{rH734(&w2#7y-}`1yrU1}7)6z%Xg$7xe)| z4&@M3)(en2{jZBVEmo{pn~H3#;TlMi%)Y02D_lI8*S3^&RJ*RfcYd~g7GJ(@QV^j) z2@=Lg$*Od0*Rn0Wc}N}7j5B!gB@jv?Y6wxO>H|l|guhAbgS9ftdmEJREh&c@9RAp} zGwQb+aJ^9qj7pG#9}g(*8Y`zhvJeQeFyWgiO%ax+Kwu&YOA#^$CclOQVBQtPsdbUe z)JoXWZ$MufKNJ`kpwYIVB&$Q;N4a==OHKNR_I{G~P>0J-Zduh|)}}$dYBglbM((SM z-C0s|5t{?@tr#3XzzlC%Yr0LK@h-(qqi?{dVCDR^p`ouIi`v|j%B^tBwK+jf`C1#?x<^v9cW(TA-)PXeD>W)>a8bzMgENE6Ac`A%6Ib-1 zzKYC(Ak&jyX0sVn8Vv92a{!}j@vKrNnhn0v!y$vrSe zl;b!pCL;^%b?o+6Jyt1f)JcQ&lJ0RvR?NS;~ z`Ff77ATzIWtZokV2LAe_D#%d$v3$1yoCmSb$L|1)+qXm@{n_J9GzS^i*9v`B`ztHY#Ujh(L3WGPdI=KyCTS109;9Dw%FT2fNAg82t0|ge28sUxeGT zFyqv2$;knUDkdkSUbN8G60Y48-C1wtegFp6VaJ>uz;+;&8dQ*1cCwLP2d$<5(nLtN z;17p=h##R4;cBPCC(NyJH~L&!iiZ+Yk9YKPk^|}Y9s+TAx~G&MOFBFxZy!9YyPeYX z*LxO|1}9T}NA+sDH#LJ zc|+FJI-`M_LJCW^P)1k=hPyMd3mC{sX4ttmSJ`xfNQL_}bw49AJo^H*MZqRTzt$PU~KQ$^-r zf50D2(SdMFx#`CQpzin;wZGrn3uq45jWh;6LR{DzlZ+LlXXRPQa9dxPzPe~lZGC0= zL@|IQ&c@i){ z1BbrRB@022%gASED1dcRDbc}uD*>$^*}q}GttY8Jq2RpP!MFWe@FE9{&}6OWsfAN} znTrt-;HUE=s=6-Ah=jTyCTC}546#nA_{-8Xn#{h(3@L&j7P$nZXHZu{p{7F2wXybD zZKdiP_!SW;-&fx{JPuCWj%gYg8Nu~o)$uL)P}ih!cu#d{+?naS$yO{M zKU#0d*h-X+CMIJwVq`aPcT+QvO|D7h%9-mxH);-1xU!~#$;YD3jl;Q-QmK8y+jL+ z9*k9soQ-msrI+mP5R_@_` z7dqT}b4R6=)UFwE?n~3hc8U!gdU2nuH*p%Qi(XNqOMrjVjL9m~*rb7CKh!Z#$%f(( z%i_D{dm~TtGf+gEQV#8*c89C+{*#+6{W-rP3N>T-nu4iNC*r9?a`2@M z(h5s2sjgu{d{*i2rczS;rHOuFx$ez_yVfn1CYzd;mvjk|MOd6t%lpNZWoCD!gl}L` z5Uzii(PjCMJp8{gQh!Ti{=cAIiC)gYUXOh@7X$!7ALt*3BU%04LTUd z+x|wj#~ATBvB@}Vl49sTyGlt!Y27FmG3&D5mvDrB4D>)P>G(2#u-UvBM)F4yF*&J1 zGe!_xMH+@cMA;F4?T5M-u>~qned|{hMU4K~!*mjpqx+-tCnp4c2G8vk$(I;V0HNut z570gl`H#*E0G>1%$58L17KjnFaw77+~s`-{zOWO=3@9! z`#={X(h*=J4LU(->)~TX5Tzm(fiTw(lDWg(>8GOgcY+*Yz}LXS*3;udFR+yd?A zZNL)jyJI9ADV2;6l@vshi|`;8fV;>0WWhQ!^B(GyD0PfloY zhoutLe1Qw*Gmn$_Ay(-D5K|9lMB)RABN&~4EN`)?;_Aa?DoePvJu(QHmCd02c~hd$e=$Bu)^=OakyA?RMzm5znlAi0;xfLg zy0{JEN%z_5<%Z1Ik-)EYtmzaAl2|0DhU zzyDKze|cc32LJ?zkk{Lb4*&pu4AAxuRsZA2^FRHaSQ!4EsYa0k`iO+1f0=7(&Ek?w`>@P;vD||! zaFH#!U=go3qitJ{(jMK@?FMla#EW9EByeJQsP>-ix;T%K-=0E~ASU(EjRap?j%#a9 z4Kv~5iY$fl*k>Wta?L|5CzYV`{E{Enm*BuxA(N>@(Vn-rLYhRAg}7>TMk^xi4x~EauQx&O51+-b{#)TR}sw_f|&a> zWUug36+r}~$Ti4{p=_aSVJ)F&gD?i93=yf)lLW^|Hwe(7L4zHGNc%kdUj2S{#F?Q* zflPJ&YT~U(6`?GFSa*PXGL=N!p-+Qg2FQEjZirkEw*4WuB%csIgs~8W{*WAqf`LdK z5G07=!Ws9hdwdaLL!uX{h;@TM5ZoYQAn;O?(#dJWsh@i7gUtO-HET)@C=K3wNcueD zagh1i`9jALlU!3ZQTbvbG3`cmYxzU_o)aDwNh&2`Ggwu>ytX~+otvIo42vVxSw(qW zHr1k{7K_)4cT}u5q|)Tt4ulVk4!SX3GFHVl`MOO$h3pzlo_^*XYsx@9^{x!nEXRwQ z!YAeI zZ>$%a0H?nDK}Jy>y-($5mKFvOxvkKk-7m8+;)i)uVFwnF?`Gk;?Q zqnjBtWR*>k3!6^S^0~gGFyo3Q2Y25JyZmx;#Mv0Gd6lgTk9v#}RZ^GoCCd=3xm$bD zUunsrCrPP0*4nF9LobPtmXef}6bX;5RfEk+R8aaglQ>ji34Ep=B=+$j&Vsd87gJ>}ybTUd*0O;Ay62gT zadNki(m|_B*x?GKjjqk^b37mQAmbRva?+!$l`5Z^7IV8YqY4qRph!t%=By>%M;%pOM{aB=wW|es^mIak&wX6wG-GBzSJzTQ~GpLo{+KVBH;gmmY zt8WxQvtJa&=Kkbh7J+o1w?x}!4@;$&kD(@3Klip%7vJN085HER zrTq02-Rw0jzrAJi5UEirnXza|1&KW>L(&yr4k$7+M5=65wlTD{-iehRScmWA&uyqB4*Bvbw-klGZWQ`REOuRa6t zo6xdo=WOV0&F1Eoo4X|{RXW$I2m0zsozF|c$b}7s4)z^_DUlK*(V~25#ES&f#(;q_ zTSH8Ck!6*JEdJ_u#F&xfg_1o6n5D2PpL8gLRJ%`aA`P&F!PfLn9q+w@ipMkDqYDvH zJl`#k|EIEZiq5Rt7HynLDzc+D))(v6e%oiC|L)uF>ujsd zm-R3(`{-k(wvEr|hDngmzrf6a#sOv9rDsPYx_865`8@mJ_q+BAigr(vN8($Q5LP9it`{lk#*9y#kcx4bL<+mRY)Z4SWUvv5PxR3~JF zlm5=U?QC8ja5LDsYSTl(rrYbdG9Y@_W(5DU`}GD@X@6$Y#Cuf<%8y+7sSzJ8*YFSW zFa^;&Z3fbC-}!+mto-<$+$X+#_G}R}?$(n!u3x+LWQT+K25$Isr9yEHO;%kz`-Fp#-fClO6Pccg2^_dJ|i?sy{8kQOroQDNUpakeE{wz-)5-} ztPMU{2>DISMwS*<1e%G5S1Wh!fa0^dp%ZUb$xjIMl2+pJp!ML-V{dcl0Bu9X%I1{yzSs4>Ig%^+^+qCT z*$ly2D=27S!^)K5ShFQUc)SXFOWQJ$t}(KA&J{Q@PkcNlpq+?8np%=Z@LBr?6~hwH zGT~yQ5=0Z_pE=nNdJ*&@U}$9JBb6eenv+jEIfs!-+78YWD*9p?x`a{`O7gH%fw{pJ z5aS+s@#hCPHJ9xEH~mIDiVd-gNYkB{w>C!jrIk9xIHs&a2S##{AUJUvafP-+r1K_W z9g`R*f^H zQ)vH?R6pWF%n}&aWq|j1Otarau$|Qln~9h*X7rB%G{cb_dQ2?Gh-kRr5htkhDBSfZ z2u#1BWBtx_r@+IN-+?Y-CB-!9xEves#EcCLs4jR)?%-&$+W z^`N!KWDoAbOnxRm%dUVJ3zA)66+m?vR=Fp6@aGbTmHL3YiAWL4~*C#`?aw`$XVAmfd!9jgYRnhkdvf5V&})J8$xI_FaTUzQ?|SKy^Pe--m;?pn$9=-!DulVU8XaFRBG42Ww6|2J zd5uC2p)(g7Di6WgaJz#3En&Tz1`dFylfmN11X;}ov8OIh0cw~N2SQXp`)`KZ$ z=?OcPras;2{lddgt@-46(R_cp7&V%AlX2a>yXx@m)GAyf0QOJxQCbw(Qe-pO`Ew_6 zqZeDFS1@@_nX5g4woDHna7>`d*M!0JP7FxvHI5E0I?ngI?&`Hby{-!@d${`S7J}** zkgVVF?zm3o-nB`rM@@>BFfga%_MfA}<#hKe7vprHBATgsioQ(#U&xDn<9e(ziycD@ zjarBq;40Z8@)dh{!-)9T#>j(}hWwV7%ONpDRJTlsA^leM!~^fIAK^X&4TjMLT{00Gsk8h31C$CW9R}NYkrE-z9lE0=*3_vkdc06m7EI-o+n)#xn zr6l8%iw~-BwGE)Jkwh8qU5(?m@5j)#aqNa1L3MV#hQpmy(BBWNT9Q_47)A&NHEP%! zL+$4NoHc`+!2+}C&WCYbygG34A7KT@w(!B z7jJI;pk~7SquM*5h1m^+B3+eD%@m_OqYyDPup!Nosn4zMTJ)EPETXEH^6&39!(W4YYdgHn zg(_H?U4=klNoDW#C;im$ki&ee%d7O(9~E%HLZ%in7E?*?yBFx&G@1{^9?(d zdSkYUZl4evw_9ruexj(Bn5TrmPu~6sz!K%QHK&F>;Z9zX8M=6^lVkcblDOg7vlFqq z0n#Zz2pgcE*x78s9*ST>T8L$@h=$ux7hGc}rXXn~-p!44JxGB9kGrU-sW~5Xmyc=| zl>8awDZ6yFd5A*lnF$QgL?pztodGhufdP6~Eb`;-;X3u;4zl@e8Xb*e;wgicCkZz@ z#IF~~OOKgPPfso9l5S{Rm5pUht=0Qi+n%Mg2N$X-<-l0VC?h%%g9!VeXbG0?bvDvE zU)@fZs45KIg*%Fm_a6r~Wp&WiE8-+#qviMA@3NYh*x0jV6GhaA7Z=f0 zQVvO<&pMjw1H?%b7UyNflQ>^nziuR4=+L;hxW5kq) zVr&pst#%3)navG$3@xqjWlPF^vF^Oau7|%tomFk78GhIId#t&nJqQ0jBnOVptq|~N z*R?Yr)%i8&b5(s1wm_*7QuEW^6~St8aq*8jds-Q~`B8prt6powC(tCoTq4^>9Rd}v zbQ*RX;64*!EKDv&m2XU@`hKuDiMa8nrgi&8Z{n7z_nBtA&NE}`*XJ%c|5^9lui$X- z0^($G5ke~X0w|i~WI{BKNGJ~E5<$+4;!!=$hv%bR@T0{c>CG_)e`?UG3XTT0R*i0l zUVmq!622)gn_oTe3!gy%FdJ z8hbodt{8l>9W4yWy8@QRWLcYwD_>VzNEyBdnGHVdZ|uAQ>K;L8ZNdRHWrp}H5<7VF zB4mujx!re?2OG8pQM=KykW~{g<@bh=;G?uc7HJa~6vSf@3KmyNF>I@Q8z<6i6gT+X zhRPMHqmgGVzu4$@`SQtMkvxKg+ABJqb9GxsJTj&Z@ zoUbmeHHq|)yzkD*D>7<>G~1EtcP*af;(}^Atz22^Dij5HI7L;@;o#Gky zDjBK?Qv-~)hmt#}8EAQ&9pNoT;oWYmjnaPF6^JZZT+SWmH|)MaN^LXwA7HiP9U?K? z4kH-SKih*KyFr!VZE1bJ*fOe`)7fnIkN(26L8P_#hvwtI zQ4#<5mL`DpKT*+?7i-Ut`_|4Qch_h<5Kb)Uu79}u-<}};e;b+41#}+SCgLg zLYd>LPv+L-YOEK7p{^33O=ss)r;u88W*w-bf;P4a^!jblrhPO#ywU_e7qoD4z>>tEy?03$@iTBc8ih$(=ZRq$tut}D9K=ItX7 zBONDatZJP`&NHB^rTt7R&()S$F#56R_MCL6qPs*LB{!#Cv{0_J=2j3o zT8*y+-%fngPB8TfV7d7s*)Hxw7S^9>$l)gxT*0SAE>^$Ugo;(X zX(B#Qpi-aWa#QOf+*Fl$DQIXC%=M9w`vX*&6#19Zh{a%Vg}{?LzU>{DRjk8~fgT5o z;Gb9C9JjxF-*JTVaL{O4~!m7c!ioVsGP9s^;Eb zlfc}WxGIz2O_B?YylB{V9|>x5Df1KBCIn9NnRNhsv5Yd$GfD8kai!sP(Ur!0$EK-- z{U}B?g>@z$e$G0d96N@aFuLaDQ0d6NL1JZew@>RLw39T#_Zpd@+e~(@@Zu5d#<0}+ zPB|?CsIAoI__3h;qlTS$@#gE^q{`Ln2e4yEEG#hBgc#h?-lW!^Z|IP9u}X0u1nMTh z_%|5WqJT8=enYvqumU6G1ey~JYh|<2C9B^yjjgThY%M{UNO|zWpuro?VZBv$E^MV| zI&QQY(GZgBWwlnf!J89>r^Ukkj;4Cuq*{j4Nnqnw^0b|w_Ji11B|DBFte+(S1zaQTh6B#Ws6+pbNo=%Odr0iE`@20poYILoP)}KP-$X=TKhw zig8LRBuFtaBG^!VKSY{>yIW(4z-NHhk@yq}3V)~L)0=c!tzOsj09}R~7NbyA`LiL` zS_6o?#QjP5cfx$4fM;gp#aIjXZlx(09Ux`#5BUumerEmJM9No~`{+4F}6}!l-A;HD8Nc zOlMU63`JP&?cv^(GCtZeM0z}?wib*K96a|OH*9Z%WlO&aR$)=;-kt9v;Pt(u_xth; z`Sb`&NHV$uUv_oKwtktw%neQpMly9vtibKa?W3CjD6~iq9FiE^P&*-Wrw(;Q?N_n; z=ubp<`xTJ5a_ZlVxN*f8+%F`g(l7HpwOUL8ooPvO1j-@w7(ZhZ?+{8uV0*kD3CN;A zTNeN9@VZqOltMxrM~;c4lMOD5jO0PvBM@NQ;HXIPX3OidWv@A7oyciT9xY8*c`EB$ z+Psi-KLIPMW-9lel@e5)+Vc}%HWpU;g|u|f@33uNIy7JU(>g1Zrt`L31rF$;H7OYn z^h|czv%Wg7)fav!A_;#|41SQbsLc;By>ex)Bq+j`E<%{$H>8 zVK#B)?q&a0v{`0WZ4uQocKh6V|H#+MI&%Xoa#;L$lo4KR$`0?akq>;HXmv=Q1Mrv{ zj|AW^UeofLn7J@y#m3$VSC+fA;X@tueirV-Wv{-*`w0{;cu@DTz-d;`z&nuW9@{OJ zcGz$k$uZ0S3FoY>8XOTCuHZ*0O(&L)mL|GbOu{cVmk`^ zzdg>LLK^_dPDfMwxVzB>JQA;e(!3v!GZ-Xrw7d&j?w~8W<=2oc379JqF1LYORn=USSE=!9c0ZfIJn9FLiLpTHYejI~L7F*9=#`-9 z!|c;a(?~MOrP5ghZDii=weQ~g!jltpr2hGdw`gI9cjGZx@7lbfT>BEMLioz^p}&7Z z^$%Jb_J1P}{!6yEq!hE=9-$vhx1oILM!36OD5Q=nY&jjcL_+&~@lq8Vd z)Bs+ed?D?*C>3Q}blaNs%_i*@?=`!YuD-t`Ywl~e+1vJDS|1NKPj%Y|*^);`zk9Z? zkKeL)iIOQv@es^M|Jbe%liW5<{j^CsOo6@MGq#_VpKGch69f;T;9~Vh;R~0Z$+3~& z3s}$U==e%zjr1gsxtMWzT*UO43C!IO_Y6C&6v>Syqje&;Zx`m(1pQ0fyXL6K6CE3MsX^Md1;Aw@z*mvoz_-Foq| zJvzg9t6p}?aeR;(fj*ByEFhjTvz}EMy6!58L zm@7zzev?MGdtU+u+9yFl>+N}}l+n#3OGmAv)&Dz@fj%dlOc$rme&Y4=6kEF0POFK* z_qdZaLur%|N&5K(Of#-tCG(M`ACYlkBq^AySmticQiaA`4LCHb+?MlLVQ52sF^WqczR z1CCnjbPCEDe_Uya8D;w#ESBGF&Z zjT#0jV~BSsA$sPb9q{_Q;?+y(+HQ(Z9Ih?r#(UyuYZRIBcXf!f=X46X%;2NV!V;56 zU%&zbf$j7p7$RgkA5?VT(R>bv2eGNMXvu_46Ig1Y#)rL23m%>luHCXdcB+=NwT+2R5ZObrYBCx55>&LflCMC`woFqP3G8H zI1_HVrU5flvL(G2X0Q$;OHo2L5@BIA6gA!8?pFkoTtSmU*ZS`5jv{jjIHSOtJrXLD z^z0X6t_s|wF;kZ6GWrhJrY=(fMqL|wYLu<25UGN_P=?tBZ%WY(O!b<{67~&E+L?oM zaMutx_h;A|AA&nQ0lK1@V~b@x0h7GJ5EE`F`!q@2WXtXz!{ox^j@47Z4QBb~VY#bp zxs!lnkZH(L2|R9@=8XhTW_+lRN|yN z5i({e%$Xn5}^NrxMRj_&2zIl?w#*D~Xk7iAcnHj*J;av#7$0 z4BwC~BX=yxw6R^doy~c#mh$%mDr<%Jx!B}9_od*SidW+6S@P%oWOpWi%q3iCq292L zq83V>&k(tI9+zwfQLF0WC9ApJMhaJLbMJOUGWAjZXH*F0XQ3G9bKI4oL5pCVtvvUw zbp32wwW9!c18!JqIwa3}vW2Kr>xy6sC(?y5trnFQ^t!upZg4qsUA`OWFep3ZSN^%i(jSs z9DjXZF{mBXCh?HRN>wyu!jHr*g@z zg)3kqN2|o7$=y7?d-;#{ok4f=kA7(XgI}J3Kb8X)MOP1n&54fLvt4{S+gYv^pNsn$ z$E-$`HU&f#GE~c&1KLoosed?xNBo z-p$AM6$@@^n9w~uHD6H)z zI$4kHSNDI3nsU9;SwwE6EVs6@Vb5n#u~cnu?kIF!aV;<|@3!~4%Yw%^4p;X%k zBcAI6XN*&d%Gb~N>Kr5Mr(XpP*MDeX|A22yk&9DXzbJ8QJ2bek{qSQ49P!>(HQ?C6 zb;$Ax8m2_b0!v=7G?L5<=DSN{tuBW9B_?4;jWvm{i9nR77dHk_K!T7C4uN-kGztg` z9VuGZ66DlmvF}keF$nzFogoMbC z_8Q&+B=p>GyBJzjI?Ipp$<$=rD4!ynN!*x}76NF-5BMvpCXdg(&GfK9_D60D9 zm&#dxbgR>^WKoEWab2r;P4zcwd&WZLt%1_Hu`I>3d20s?=X(}E%ro)-#Qilv$4Q13 zm>}v&6FkmSK3h3~kTq{faeyIO5<6|ICqiAhrT}%2B?4!LGjpxjWnPTDVQXGBY+LxN zBnfj$ugyww)ypmH7SrscF)A(LY}zUV*8c7-s%4lfJ;x41!9M(Z#cXqI^K3_YH-t z1Th;moLYT&MkvF3iGZ4c7qP0!qWsJFy#`bh$gh5&=sq}nbsDY-q@|Y*!8}{bGW(0p z4qSHV=f`&3C-(h=;zxDzfNb|O;QN@U_X<}@+z*y@FHVDyr#ji9KI2m6$Z5PV8C=~b zNST0z)sQ|A8;2XL-vG0_^DfitoY3UHufNAm4JbrPlpQFb zfA*^|ygzc+=`PVzO<)pI#Z;1vdB+2T4+Ob>JwmuZu7hrc`0wiKu6JoYP_!6ha#qvE znIK1#PlKI@KtF5q9n5ux6;LTI8=+@uHd&9u%RsbPm0PVF6CfG#M93GJql9sL$HAk1 z?l0Y8%-hW2lJ8^JS1fbjG4?m7LALK1Q}qm%1UnF3zkWV#Aq0iuTeyAjZ*#rxQ4;zy z0|WiY%gfob928S3b54BY`aR1xPj9$yp^PPJ*>P!q_1iG1YgVE_HMMmOL$LU6C5g)W z)AHC6)s@c;Ob$%C_Zw}K?$_Ld zbPa8v0m)2q`(zx zppj{rg2V+|r9H-l`(pr!V6lyG5e<7w4=%6rG}h1J8XvTbME5#(aKBL}cEAM^`bd9& zJ`8%7zD2DfhNy{`hcat6#k-JTau+rs%@F+cR}udaTQ%lhc@^`PIjc2}Dv5GN0S+3| zOn$s-&P+qB3}NS+$fIeidcee79syb|p?CMMKagc?rrWnXxUPYhKCRPq>yvn%{pP~1W)zlQ-m&o(FKnd z>E*5&4_?-(nzFD*Di>?IQHg5t$RiExAuu^xMZCupLRn~GLw zdT$ArnB2X`FK=7MBO}3!t3IifLWWN1_-YDeg_HCiX2{6~6(CttrX7&O1Pcwn|Ew{{ zr`vdhJF#ZN>3YsDsVpB4<37Zq1Ejg6%@LDBY3NF(W8jQ%+3>h^aBFQzcmzaoJNXI- z-v6kDH#C=~H?AHcD82g-ttpm2$ni*s(kLnItW?>lDjDa!ePA@k9QP8Q!+lOI_O*|b`= zm9}q>#ZaumKAW|1!A1si7e{-GxOCrc9 zZ)BzHV#_E;#LE6xC+OttLd3!f_%C8XW=^L6vHq$@ecfrD6UBGCu76#Ftpw?5N@cR8 z72RCL(J1~>h5?VC38k=H3PTkor{T*FK~R@U6PTXm@j!%hBDU{xf091}SrCFd*h~(K zm?=S0P8x(Vh>Z4 zP7|kS9Fl|0sWjNmEFwJ!F@oopsR)KToe7dG>@xvVHi|6UzLUf`SR$k#!=?b5DGCSG zjK&$L!Gw!IA{15)(Kwq;MP>?;NDOU`Z5T0S0GEgqz!W(w!ikm0#uN%i4q_G3ymAae zC>GmMAIF4O0?9;#Uxd$`LPeR#PoBvos@E%{x0za3H`xuOq9RY5kYuJlQg8CvQ9Q19 z(2|jU&H)r-9D}V6L!;k}QKBM^QDQQUQXWkH2)wtPzuz7M_kVfy*uUBS z@mo)U7tv|ZL9nG+CqFzqb-(L-kNE`bz5C)uBRm*e&U=8{VAN}rhXjKHFEJ{; ze@s3P{1+Szdryu`V~wj=41lp(FQeV68B}71aZ>cTW!NbsRl1ML?ijoe#Bl%j`CEqg zXwePZ(*odKtx`%}S_YH)nAT@~{TFK6`PyU46Bt6<&Cx{Gt%D-DM5RvSK@DNt{r(;U zeCpgzx}y*Fj>*-1V>)5>;qoWxi?@y+={Axx|C2t?t}UWHw4a{?$2)&6eBahaVjlwM zVUm>9=b208=DyJycmaY}A0%qgG{8stp7yX$;Z?ef`^4v{Ogwm}yZZCAeVPQ=HZn_j zjrsZBnjKR%PS$%##4|uo(MBUA^F+pYFUbshowkk!n<|+oRmozhG@?PFTUnHFDl?%X zY@P3%;WVcjeNx1x$NCFS`ZoA?j0}DAFjj5`O_=H2`l$+423PceX&^p@7mekhWoFe5 zjP1AA1m;R5YP!(?L1YiJ7;*0vTJ+X?8AZ+tnG6+foWOvrsHo{13l5qVxOAIl?M$3s zq+nIZ9c$=v3QA^3EofHX!JGPR_Z$a^qgxbJZH*KI)Y=`|_b8OvT~&mpRX~W+r{F|O zWF!RILyHZBU*{!I)Qs%LGnp5q>OBlrknWQDZCR$2MJ+?HMk_UFHZaSR3@q^$t;lPo zwDOYZl{d6^H>)czKRn6|XRE1YfPi)8o5tmM+<;bQF*94ZGc5M$^SmKgQ|cK#H-KLGkmsF@d;k-7l}l$Hw-FvS}B_ zj}y0~nc%mjk3t~F$LTT&&8izYSgC;H zg7Ar1-`nkp_MtP-7ih>E!cS{uRKA~oqAN*#>a?LK^Q~D0?m_YuY5aD_f;-bgD0xAW zUkfR={RtJ34)dj1<2lXcLDA*hxqX_h+`;)FXzbKu50ZQ2%uk5RH?r4Ce*Rn?IPAWl zo7(;6{a0^J73KjiXBDNJ&# z7l}s>CHo1?=NrH!@Q3`c{BrUKWHqy>E%QjT!Q|F#jU@@e>~M40#OcH8+x{{e)eI$- zTNZWZXF@)!9isu)9a8yB ztG0s3Eh}T!EcVvF9-p7QHpaT%KXtxd#3R3Ew~*Bo zk2|ks`u@Vp%wt=<`-REuD9zlENZDmHZ+Zubp2=mnB&ELcMMej2x-mOq^Uzc(E6^q2 zrrmi1y;-fZ8TbWKxRoUJ50U&o!>xvrsTrfBh&C@1D+`O689Or*C&0|ukeSn%-Pp+Z zuQkrp7+`2-Xl%;=|NcUkQOVxk1@>QkW+g^RJ2QKte=V?7VpO*DG9}_*V^r5>{(Az@ z{V&lR@IUuGkpJe96LLfw-en;QD%2q$QAbMPNK-GQhoK8v`C%+1T&@AuFo2$}Q4fVV zK(GP=6RN@h@|kSe`<}_dW#+~oKHcW+ByRVYY>1F2kPPHaMDe6RSE6uLBB!4x!k?$` zoe%XiqZ``Oca46Ihb0rLl}yn|#EK+Eb~WEhBYioRV8qWTB3*YrI70X;uE4v~Rt0Ox zp^5jBJS09TkNU>1D%nk-!svlprG$l`!Up$O(Jp4Kidxh|6FkvH(|@4;5MZgXG~`k` rX>@y;tK*xl3nH_NKl{J`inEKMlZ%Iw>0gYE3&070B_|h^7lZvjze!}m literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.ipynb b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.ipynb new file mode 100755 index 0000000..bf1d6ea --- /dev/null +++ b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.ipynb @@ -0,0 +1,562 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "03c68072-8fd9-4c26-9f8b-e6f6e24fd583", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{01\\_Auto\\_data\\_2}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "4e117807-3711-444b-838d-775303383d93", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "23889938-8996-46c5-8751-fe1c7da1deb0", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Setup for Tasks 2" + ] + }, + { + "cell_type": "markdown", + "id": "962ac167-f15c-4ab4-8abd-a9d1ab26455c", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "The following steps will outline the initial setup of the Auto dataset, including the creation of\n", + "separate training (train data) and test (test data) sets." + ] + }, + { + "cell_type": "markdown", + "id": "e0c43ee7-0ede-4d7e-9966-f00493b33f0a", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Get and Set working directory" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "57ab9acc-8d99-4165-8930-db6ae2be39a9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/01_SupLearn_Regression\n" + ] + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory" + ] + }, + { + "cell_type": "markdown", + "id": "e20de814-7963-4856-8892-b5a913ef10b9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Loading the package and data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4424246b-bee1-4b9e-a5ac-79c20e4b4c26", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
    018.08307.0130350412.0701chevrolet chevelle malibu
    115.08350.0165369311.5701buick skylark 320
    218.08318.0150343611.0701plymouth satellite
    316.08304.0150343312.0701amc rebel sst
    417.08302.0140344910.5701ford torino
    \n", + "
    " + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ISLP import load_data # Package which contains the data\n", + "Auto = load_data('Auto') # Loading the data\n", + "Auto.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fc65f415-1870-4b3f-bbdd-cf89eedec1b9", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "n = int(len(Auto)) # Number of observations in the dataset\n", + "nT = int(n/2) # training sample size\n", + "nV = int(n/2) # validation sample size" + ] + }, + { + "cell_type": "markdown", + "id": "fd7b9df2-ad21-4de3-87bc-18b5939439ce", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Define training and test set" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d942dc0e-7286-4c46-ae15-a69cbaeb25b1", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "np.random.seed(2) # set seed\n", + "\n", + "# Define training and test sets\n", + "train_sample = np.random.choice(n, nT, replace=False) # indices for training data\n", + "train_data = Auto.iloc[train_sample] # training dataset\n", + "test_data = Auto.drop(train_sample) # test dataset" + ] + }, + { + "cell_type": "markdown", + "id": "b8e653c9-fa9b-4414-a8a6-8d785b3e9913", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "We start with the following univariate linear regression:\n", + "\n", + "\\begin{equation*} \n", + " \\text{mpg} = \\beta_{0} + \\beta_{1} \\text{horsepower} + \\varepsilon\n", + "\\end{equation*} " + ] + }, + { + "cell_type": "markdown", + "id": "5b497789-eb36-412c-b95d-50ab29d0c9f4", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Fit model on training data and calculate training MSE" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "141f0257-39a4-4e21-9be0-78dfd645445a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import statsmodels.formula.api as smf\n", + "\n", + "# fit model on training data and calculate training MSE\n", + "fit_lm = smf.ols(formula='mpg ~ horsepower', data = train_data).fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ae9bf59-3b73-4020-b039-885948f6cbbd", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 39.0131 0.994 39.245 0.000 37.053 40.974\n", + "horsepower -0.1510 0.009 -17.040 0.000 -0.168 -0.134\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "print(fit_lm.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "77170717-6eb1-41fa-a2b6-fdbf5e9193cf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for training data\n", + "y_head_train = fit_lm.predict(train_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "eecfb895-dc1c-43e9-bcb4-13697cd6a602", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 23.002\n" + ] + } + ], + "source": [ + "# Function to compute the mean squared error (MSE)\n", + "# Takes realized values y and corresponding predictions y_head\n", + "# as inputs and returns MSE as output\n", + "def MSE(y, y_head):\n", + " return((y - y_head)**2).mean()\n", + "\n", + "# Compute the mean squared error\n", + "MSE_train = MSE(train_data['mpg'], y_head_train)\n", + "print(f\"Mean Squared Error: {MSE_train:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "1da45d5e-86a2-4cd0-bbc7-1f02fcd17421", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Extra visualisation" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "15c7664a-bf12-485f-96bd-26c4018b0756", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.12/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtMElEQVR4nOzdeXwV5dn/8c/MnHOSk4RFCAFksS6tPN0sjRsBta2PKwEVZSlgrKK10tbYPrTWrtDlJ/YptVHBosUqhSK4gBC1WrspqFVA7WIL7eMCIhiC7FnOMvP7Y5qQhLPnnORM8n2/Xn3RJDP33DP3nJhr7nuuy3Acx0FEREREREREss7s7g6IiIiIiIiI9FQKukVERERERERyREG3iIiIiIiISI4o6BYRERERERHJEQXdIiIiIiIiIjmioFtEREREREQkRxR0i4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjCrpFREREREREcsTX3R3wqr179xKJRLq7Gzk1aNAgdu/e3d3dkAxp/LxN4+ddGjtv0/h5l8bO2zR+3tZbx8/n83HMMcck364L+tIjRSIRwuFwd3cjZwzDANzzdBynm3sj6dL4eZvGz7s0dt6m8fMujZ23afy8TeOXnJaXi4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjCrpFREREREREckRBt4iIiIiIiEiOKOgWERERERERyREF3SIiIiIiIiI5oqBbREREREREJEcUdIuIiIiIiIjkiIJuERERERERkRxR0C0iIiIiIiKSIwq6RURERERERHJEQbeIiIiIiIhIjijoFhEREREREckRBd0iIiIiIiIiOeLr7g6I5DO/P0hzczGmaWLbNgUFhwmHG7u7WyIiIiIi4hGa6RaJwbIsTLOMpUv7UVERYPhwHxUVAZYu7YdplmFZVnd3UUREREREPEBBt0gMjjOQ8eN9zJljsn07OA5s3w5z5phUVvqw7YHd3UUREREREfEABd0iHfj9QZYvN9m8OfbPN22CFStMAoHCru2YiIiIiIh4joJukQ6am4upqUn80aipMWlqKumiHomIiIiIiFcp6BbpwDTdJeWJbN8OlqWPj4iIiIiIJKaoQaQD27YZMSLxNiNGQDRqd02HRERERETEsxR0i3RQUHCY6urEAXV1tU1h4aEu6pGIiIiIiHiVgm6RDsLhRmbMsCkvj/3z8nKYPt0mFGrq2o6JiIiIiIjnKOgWicEw9rBuXYQFC2xGjgTDgJEjYcECm9raCIaxp7u7KCIiIiIiHuDr7g6I5KNoNArUUVVVyJQpJViWSTTqLinXDLeIiIiIiKRKQbdIAqFQE6bZhOOAaUIo1N09EhERERERL9HychEREREREZEcUdAtIiIiIiIikiMKukVERERERERyREG3iIiIiIiISI4o6BYRERERERHJEQXdIiIiIiIiIjmioFtEREREREQkRxR0i4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjvu7ugIjX+f1BmpuLMU0T27YpKDhMONzY3d0SEREREZE8oJlukQxZloVplrF0aT8qKgIMH+6joiLA0qX9MM0yLMvq7i6KiIiIiEg3U9AtkiHHGcj48T7mzDHZvh0cB7ZvhzlzTCorfdj2wO7uooiIiIiIdDMF3b2Q3x/EtkuBMmy7FL8/2N1d8hy/P8jy5SabN8f++aZNsGKFSSBQ2LUdExERERGRvKKguxfRcujsaW4upqYm8cenpsakqamki3okIiIiIiL5SEF3L6Ll0Nljmu41TGT7drAsfcRERERERHozRQS9RLaXQ/f2Jeq2bTNiROJtRoyAaNTumg6JiIiIiEheUtDdS2RrObSWqLsKCg5TXZ04oK6utiksPNRFPRIRERERkXykoLuXyNZyaC1Rd4XDjcyYYVNeHvvn5eUwfbpNKNTUtR0TEREREZG8oqC7l8jGcmhl7G7PMPawbl2EBQtsRo4Ew4CRI2HBApva2giGsae7uygiIiIiIt1MQXcvkY3l0MrY3V40GsVx6qiq2seGDSF27IiwYUOIqqp92HYd0Wi0u7soIiIiIiLdTEF3L5GN5dDK2B1bKNSEadbjOHWYZr2WlIuIiIiISKveFR31cp1dDq2M3SIiIiIiIunxdXcHpOu4y53ruPrqvkyeXITPZxCJOJSUNNDYeCDp/u4SdTeJWjwtS9RDoSx2XERERERExKM0092LtJT7uu++IsaONRk2zGDsWJP77itKqdyXMnaLiIiIiIikR0F3L5KNcl/K2C0iIiIiIpI6LS/vJfz+IEuXJi/3VVVVmHCmumWJelVVIVOmlGBZJtFoy5JyzXCLiIiIiIi0pZnuXiLb5b6UsVtERERERCQ5Bd29hMp9iYiIiIiIdD1FWL2E45BSuS9b1b5ERERERESyRkF3L+H3w7XXJt7muusgEOia/oiIiIiIiPQGCrp7iUgELryQhOW+zj/f3U5ERERERESyQ0F3L2HbNtXVsHAhzJtHu3Jf8+bBokVw000QjWp9uYiIiIiISLYo6O4lCgoOc8UVNmedBa+/7gbfL7zg/vv66zBuHFxxhVv6S0RERERERLJDdbp7iXC4kRkz+rBihcnKlbByZfufl5fD9Om2Sn+JiIiIiIhkkWa6exHD2MO6dREWLLDbLS9fsMCmtjaCYezp7i6KiIiIiIj0KJrp7kWi0ShQR1VVIVOmlGBZJtGou6RcM9wiIiIiIiLZp6C7FwqFmjDNJhwHTBNCoe7ukYiIiIiISM+k5eUiIiIiIiIiOaKgW0RERERERCRHFHSLiIiIiIiI5IiCbhEREREREZEcUdAtIiIiIiIikiPKXi7SC/j9QZqbizFNE9u2KSg4TDjc2N3dEhERERHp8TTTLdKDWZaFaZaxdGk/KioCDB/uo6IiwNKl/TDNMizL6u4uioiIiIj0aAq6RXow2x7A+PE+5swx2b4dHAe2b4c5c0wqK33Y9sDu7qKIiIiISI+moFukh4pEYPlyk82bY/980yZYscIkECjs2o6JiIiIiPQiCrpFeqg9e6CmJvFHvKbGpKmppIt6JCIiIiLS+yjoFumhDMNdSp7I9u1gWfo1ICIiIiKSK/prW6SHchwYMSLxNiNGQDRqd02HRERERER6IQXdIj3UwIFQXZ04oK6utiksPNRFPRIRERER6X0UdIsk4PcHse1SoAzbLsXvD3Z3l1Lm88GMGTbl5bF/Xl4O06fbhEJNXdsxEREREZFeREG3SAw9pb61ab7PunURFiywGTnSfc975EhYsMCmtjaCYezp7i6KiIiIiPRovu7ugEg+cpyBjB/va1duq6W+9YoVJuvWDQTquq1/qYpGozhOHVVVhUyZUoJlmUSj7pJyzXCLiIiIiOSeZrpFOvD7gz2uvnUo1IRp1uM4dZhmvQJuEREREZEuoqBbpIPm5mLVtxYRERERkazw7PLyBx98kEcffRSAqVOncvnll8fcbuvWraxZs4YtW7bQ1NREWVkZY8eOZeLEiQQCga7ssniEaZop17d2nK7pk4iIiIiIeJMnZ7rfeecd1q5dm3S75557ju9+97ts3LgRv9/P8OHD2bVrF6tWreJ73/sezc3NXdBb8RrbtlXfWkREREREssJzQbfjONx7771YlsVHP/rRuNvV1dXx85//HNu2mTlzJnfffTe33XYbd9xxB8ceeyz/93//x7Jly7qw5+IVBQWHVd9aRERERESywnNB9+9//3v+8Y9/cMUVVzBw4MC4261du5ZwOMwpp5zCxIkTMQwDgEGDBnHDDTcA8Mwzz7Bv376u6LZ4SDjcqPrWIiIiIiKSFZ4Kug8cOMDy5csZPnw448ePj7ud4zi8/PLLAHz6058+6ucnn3wyw4YNIxqNsnHjxpz1V7zLMPaovrWIiIiIiHSap4Lu+++/n0OHDnHttdfi88XPAVdfX8/evXsBGDVqVMxtTj75ZAD+9a9/Zb+j4nlH6lvvY8OGEDt2RNiwIURV1T5su45oNNrdXRQREREREQ/wTPbyv/71r6xfv56zzjqLD3/4wwm33blzJwB+v59jjjkm5jZlZWUA7Nq1K7sdlR7FrW/dhOOAaUIo1N09EhERERERL/FE0B0Khbj33nspKiriyiuvTLr94cOHASgqKmp9l7ujkhK3xvKhQ4mTYYXDYcLhcOvXhmEQDAZb/39P1XJuPfkcezKNn7dp/LxLY+dtGj/v0th5m8bP2zR+yXki6H700UfZtWsX11xzDf3790+6fUuQnGgJesvPQkmmLlevXs3DDz/c+vXxxx/PbbfdxqBBg1LoufcNGTKku7sgnaDx8zaNn3dp7LxN4+ddGjtv0/h5m8YvvrwPultqch9//PGcf/75Ke3j9/sBiEQicbdp+VkgEEjY1mWXXUZlZWXr1y1PcHbv3p2wfa8zDIMhQ4awa9cuHMfp7u5ImjR+3qbx8y6Nnbdp/LxLY+dtGj9v683j5/P5UpqMzfuge8mSJUSjUa677jpMM7W8b8XFxQA0NDTgOE7MpQ4ty8pblpnH4/f7W4P4jnrDTeU4Tq84z+7g9wdpbi7GNE1s26ag4DDhcGNWj6Hx8zaNn3dp7LxN4+ddGjtv0/h5m8YvvrwPut98800Mw+C222476mcNDQ0APPbYY/zmN7+htLSUW2+9laFDhwLuMvO9e/cyYMCAo/atq6sDtAxCup5lWTjOQJYuNampMXnnHRg+HKqrfcyY0QfD2KPs6CIiIiIiPUTeB90Atm2zf//+uD9vamqiqampdal4aWkp/fv3Z9++ffzzn/+koqLiqH22bNkCwAc/+MHcdFokDscZyPjxPjZvPvK97dthzhyTFStM1q0bCNR1W/9ERERERCR78j7ovv/+++P+bOHChfzpT39i6tSpXH755a3fNwyD008/naeffpo//OEPRwXdW7ZsYceOHViWxamnnpqrrkuWdMUy7K7i9wdZutRsF3C3tWkTrFhhUlVVSCjU1LWdExERERGRrEvtJWkPmjhxIj6fj9dee421a9e2vl+we/du7r77bgDOPffclLKhS/ewLAvTLGPp0n5UVAQYPtxHRUWApUv7YZplWJaV9WP6/UFsuxQow7ZL8fuDWW2/ubmYmprEH7uaGpOmpsS5BkRERERExBvyfqY7U2VlZVx//fUsWrSIZcuW8cQTT9CvXz+2bdtGNBrlhBNOYObMmd3dTUmgK5dhd9V71qZpsn174m22bwfLMlEeChERERER7+uxQTfAOeecw5AhQ1i9ejVbt27lnXfeYfDgwYwdO5ZLLrkkabkw6T5dvQy7qwJ827YZMYKEgfeIERCN2qSYrF9ERERERPKYp4PuL37xi3zxi19MuM3JJ5/MN77xjS7qkWRLqsuwp0wpwTQ7F3R3ZYBfUHCY6mofc+bEP7fqapvCwkOEQp06lIiIiIiI5AHNpUleSmcZdmd15XvW4XAjM2bYlJfH/nl5OUyfbiuJmoiIiIhID6GgW/JSyzLsRFqWYXdWVwb4AIaxh3XrIixYYDNyJBgGjBwJCxbY1NZGMIw9WTmOiIiIiIh0PwXdkpfcZdiJA+qWZdid1ZUBPkA0GsVx6qiq2seGDSF27IiwYUOIqqp92HZdVhK2iYiIiIhIflDQLXmpK5dhd2WA31Yo1IRp1uM4dZhmvZaUi4iIiIj0QAq6JW911TJsvWctIiIiIiK54uns5dKzucus66iqKmTKlBIsyyQabcnsnd0A2A3wB7JihVune/t2d0l5dbXN9Om23rMWEREREZGMKOiWvOcuw27CccA0iVlKy+8P0txcjGma2LZNQcFhwuHGlI/RlQG+iIiIiIj0HlpeLp5mWRamWcbSpf2oqAgwfLiPiooAS5f2wzTLsCwr7r5+fxDbLgXKsO1S/P5gRu9ZB4N9iUaHAEOJRocQDPbN3gn2ErHGQkRERESkJ1DQLZ7mOAMZP97HnDnuknDHcct7zZljUlnpw7YHHrVPZwL1tvx+P6Y5lMWLixk71mT4cIOxY00WLy7GNIfi9/uzfbo9TrbGQkREREQkXynoFs/y+4MsX26yeXPsn2/aBCtWmAQChe2+n0mgHks0Wsr48Qa33GK0a+eWWwwqKw2i0dLOnmKPl62xEBERERHJVwq6xbOam4upqUl8C9fUmDQ1lQBukO7zlbF8uZV2oN5RMNiX++8nYTsPPABFRVpqHk+mD01ERERERLxEQbd4lmm6s6OJbN8OgYDZuoT5tdd81NQYCfdpG6jHc+hQEYsWJW5n0SKDgweLEnewF0v3oYmIiIiIiBcp6BbPsm2bESMSb3PiiWDbVusS5r59SSlQt6zEHw3LMlJqx+dLHJj3Zqk+NEk2FiIiIiIi+Ux/zYpnFRQcprraTrjNT39qs3z5kWXg9fUkDdRHjIBoNHG70aiTUjuRiJN4o14slYcmqYyFiIiIiEg+U9AtnhUONzJjhk15eeyfl5fD6NFGu+Xky5bBrFmJ262udutzJ1JS0sDs2YkD6tmzHfr0aQBUEiuWVB6apDIWIiIiIiL5TEG3eJph7GHduggLFtiMHAmGASNHwoIFNrW1ESzLbreE+ZFH4KKLSBioT59ut9bnjhcsNzYe4HOfS9zOVVdBc/NhlcSKI5WHJm3HQkRERETEixR0i6dFo1Ecp46qqn1s2BBix44IGzaEqKrah23XEY1G2y1hDodh8mRYuBDmzSNmoG4Ye1KqH21Z9dTWOsyf77RrZ/58h9paB8uqV0msJJI9NDGMPd3dRRERERGRTvF1dwdEsiEUasI0m3AcME0Ihdzvu0uY3aC3xbZtcNZZMGmSG3yffLJDUVGUgoIDrbOqplnGpZf6OP54uPtuKC113wdftszkoYdMVq8eSDRaB+zk+uv7Mn16ET6fQSTiLikPh8OEQsfQ0GDx/e+7y9ofecQN+lu0lMSqqirstbO50WgUqKOqqpApU0qwLJNo1F1S3lXXxO8P0txcjGma2LZNQcFhwuHGLjm2iIiIiPR8mumWHi3eEuZwGFauhLlzoU+fKIZR125J+dq1JnfcAaNGwQ03wJgx7r+jRsEdd0Bt7ZH60Q0NB7CsXTjOTgKB3TQ1FbJ0aT/GjPFx8slG637r17uzuG2pJJbLfWhSj+PUYZr1XRJwp7KaQURERESkszTTLT2eu4R5ICtWmNTUuMu8R4xwk3RNn24ftYS5ubmYU081ue66I1nPwV0WPncurFsHixe7wbJptg8OW5aTx9tv1Sp3lr1lxrulJJajJOddLt5YzZljsmKFybp1A4G6buufiIiIiPQMmumWHi+V977bKiiwWLeufcDd1qZN8PjjUFjYfibU7w+yfLmZcL+nnnKXtbdQSazukcpYrVhxZDWDiIiIiEimFHRLr5HqEuamJoMlSxK3tWQJNDYa7b7X3FxMTU3ij9SSJTBz5pGvVRKre6QyVlr6LyIiIiLZoKBbpAOfz2lXZiyW7dvd7doyTTOl/QYNcv+/SmJ1n1THyrL0K1JEREREOkd/UYp00LHMWCzusvD2y9Jt205pv/37VRKru6U6Vlr6LyIiIiKdpaBbpAO3zFjiYKvtsnC/P4htl1JQYHHjjYkzolVXO4weHYn7Prl0jXTHWEREREQkUwq6RTqIV2asRcuy8Gg03KHklMVnPmMk2S9KOFynJeXdLNUx1jiJiIiISGcp6BaJwS0zFmHBApuRI8Ew3BrbbZeFt5ScmjPHfT84FILLLoOFC+GHPyTufpIfUhljEREREZHOUp1u6RH8/iDNzcWYpolt2xQUHCYcbsy4PXfZdx1VVYVMmVKCZZlEo+5yY8cxcJyBLFtmHVVyats2tw73pEmwdq1DWZlNNBqlsPCQZk3zTKIx1liJiIiISLZoplvyXss701CGbZfi9wdbf2ZZVocl3j4qKgIsXdoP0yzDsqz4DaegbZkxv38vkUhfli7tx2uv+aipMWLuEw7DypUwcaJBNBqNW54s0Xmlo2M7wWBfotGB1NVBNDow43ZzJVfnnWk7qZaSExERERHJhIJuyVupBNQdl3g7jlvqac4ck8pKH7Y9MGv9aXusvn3JuORUth4UdGynosJHXV2AxYuLqagIMGQIWX0A0Vm5Ou9sP2gREREREckmBd2St5IF1JZVyvLl5lFLvFts2gQrVpgEAoWd7ovfH2x3rPp6Mi45la0HBW3bee89WLUKrrsObrnFyPkDiEzk4rzz8TxFRERERNpS0C15qWOQ29GmTfDuuyY1NYlv4Zoak6amkk73p7m5uN2xli2DWbMS7xOr5FQq55XKg4KO7UyaBE8+SU4fQHRmOXeuzjvTdkREREREuoqCbslLHYPcWMJhI+Ml3ukyTbPdsR55BC66iLRLTqVyXqk8KOjYzsyZsGRJ4nPI9AFENpZz5+q8M21HRERERKSrKOiWvNQxyI1l167Ml3iny7btdscKh2HyZLc82Lx5qZcHS+W8UnlQ0LGd0tLM3zFPJhvLuXN13pm2IyIiIiLSVfSXqeSljkFuLE8+CTfe6CTcJtYS70wUFBymurp98N5SHuz1193ge8sWh+efj1BVtQ/brvtPSar2UjmvVB4UdGynM++YJ5Kt5dy5Ou9M2xERERER6SoKuiUvxQpyOzrpJJsrr7TTXuKdiXC4kRkzjj5WS3mwuXOhT58ohlGX8HipnFcqDwo6tpPpO+bJZGs5d67OO9N2RERERES6ioJuyUvxgtwW5eUwbZoN1LNuXYQFC+yUl3hnyjD2dPpYqZxXKg8KOraT6TvmyWRrOXeuzjvTdkREREREuoqCbslbqQS50WgUx6mjqmofGzaE2LEjwoYNoYRLvDOVrWNlI3jv2M7QoTBlCixeDPPnO1l7AJHN5dy5OO9cP2gREREREeksw3GcxC/FSky7d+8mHA53dzdyxjAMhg4dys6dO+nuWyQQKKSpqQTLMolG3aXDHWcy/f4gzc3FmKaJbdsUFBwmHG7sph6nJpXzyqSdkpIQhw4FCAQChEKhjNsF97ouXdqPOXPiP59bsMCmqmpfysfI1Xl35jzzTT59/iQ9Gjtv0/h5l8bO2zR+3tabx8/v9zNo0KCk22mmW/JeKNSEadbjOHWYZn27wCob5ay6Qqwa14nOKx0d22loOIBl7aGsDCxrT6cC0Vws587WeTuO8Z9/238tIiIiIpJPFHSLp2WjnFUueeWhQCL5tpy7J1xTEREREek9fN3dAZFMuUufk5ezqqoq7LZlxy0PBdr2seWhwIoVJuvWDQTquqVvqXLfVa+jqqqQKVO6fzl3T7imIiIiItJ7aKZbPKuz5axiLfnOpmzVuM4X2VoW3hk97ZqKiIiISM+noFs8K9NyVl21PDlbNa7lCF1TEREREfEaBd3iWZmWs+qq98ATPRQIBGDaNFi0CCzLn5OZ9p4oW3XDRURERES6iv4yFc8qKDhMdXXi+tDV1e67xy3SXZ7cmSXo8R4KjBwJzz0Ho0bBDTfAsGGGEoGlKJt1w0VEREREuoKCbvGsTMpZpbo8ORwu6fQS9FgPBQIBeOghN9ieO5e8zLiezzJ50CIiIiIi0p0UdIunpVvOKpXlye+9B4bh7/QS9FgPBSZNgiefJO8SgeU6qVy25KJuuIiIiIhILinoFk+LRqM4Th1VVfvYsCHEjh0RNmwIUVW1D9uu+0+5qyNSWZ587bWwbFl2AuOODwVmzoQlSxLv05WJwLxY8zrf6oaLiIiIiCSiOt3SI7jlrJpwHDBNCIVib+cuT3ZnsOP5/OcdKiuNhMerqTGZMqUE04w9o+r3B2luLgZMbNvm6qubmDIlgGX52b49cdsticAcJ+FmWeHFmtf5VjdcRERERCQRzXRLr5LK8uRBg8g4Q3a8meP77ivC5zOBMCNGHMleXlsLL77o/jttGvj9XZcIzOs1rx3H+M+/7b8WEREREcknCrql10m2PDkajWScITtZOTLT9PHNbzrtspePGeP+O2oUrF8P3/iGQ0lJnKn6LPJqzWsvLokXERERkd5Ly8ul10m2PLm4uC+zZ/u45Zb4M6ezZ7uBcUPDkaXkBQUWDzyQbObYYMoUgwkTOGpJ99y5sG4drFljcOhQADPHj8TSqXndFUvdU+XFJfEiIiIi0ntpplt6Lfc98Hocpw7TrG99H/jw4QDnn28kXIJ+3nkGjY2BdjOuL71kcccdiZc4//vfRtIkbfffD4WFmc/W+v1BotGB1NVBNDowbiZyL9a89vqSeBERERHpfRR0i3RgmiaXXQYLF8K8ebRbgj5vHixa5L5/3bGsWGlp8nfBL7oI7ror8Tb33guNjem/n9xx2fWQISRcdu3FmtdeXRIvIiIiIr2Xgm6RDmzbxnHgrLPg9dfd4PuFF9x/X38dxo2D888/uqxYfT1JZ46HDEktSZvPl/567mTvk3esLd5VNa+zWQM8nSXx2T62iIiIiEgmFHSLdNAyAxwOw8qVMGECnHmm++/KlRAOu2XFOi4lX7YMZs1K3Lbf76S4pDuaeKOj2s1s2XUua17nIuFZOkvilWxNRERERPKBgm6RDjItK/bII+7y8UT7DRtmU12deBa7utpJe0l3psuuo9EojlNHVdU+NmwIsWNHhA0bQlRV7cO269IO/ttKd+Y9FakuiQ8GrawfW0REREQkEwq6RWLIpKxYOAyTJ8d+F7xlPzjEJZckDswnTky/v+kuu+4oXlK5TOUq4VkqD0RmzHBYutRQsjURERERyQsKukViSDYDXFBwKOaM67ZtR94FX7vWYceOaLv9GhuDXHmlkTBJW1WVkXYisHzLRJ7LhGfJHojYdpTbb1eyNRERERHJDwq6RRKINwOcaMY1HIZ//xsGD47iOO+12880TV58MXGSthdfjD8jHU++ZSLv7Mx7IskeiDhO7o4tIiIiIpIu/dUpWRMM9iUaHQIMJRodQjDYt7u7lFOZJCFrmZFOlKQt3Rlpvz9Ic3MxM2Ykri2ejUzkqeqKmfd4D0TybdZfRERERHo3Bd3SaX6/H9McyuLFxYwdazJ8uMHYsSaLFxdjmkPx+/3d3cWcyCQJWTZnpDtmBz/zTIPFi2H+fCfrmcjT1Z0z7/k2658uvz9INDqQujqIRgeqzJmIiIiIxynoloy0rX/c3FxKTY3Bd79rtMsUfcstBpWVBtFoaXd3N6fSSUKWzdrYHbODv/02jBkDr7xicP/9sGMHWctEnq6uqgGeb8fujI4PUYYMQWXORERERHoABd2Slti1lw0KC2H9endmta1Nm+CBB6CoqGcvNU9HNmpjx8sO3rJs/TOfgQcfhMLCw90WXOayBng+HztTuSixJr1H2wehtl2qFRIiIiJ5xHAcJ3HRYIlp9+7dhMPh7u5GzhiGwdChQ9m5cydtbxHTLGP8eF/Mckzl5W5CsLPOcoO/FiNHwvr1Npa1qwt67h2BQCFNTSVYlkk06i53TjVAtu1SKioCCROGjRzpznSbZn2WepyZzpynl4+dDr8/yNKl/ZgzJ/5z0AULbKqq9uVl/+WIeL87c8WyLBxnIMuXm9TUmLzzDgwf7r5CMWOGjWHs6dJVLl7X1eMn2aOx8zaNn7f15vHz+/0MGjQo6Xaa6ZaUpVJ7+amnYNKk9t/fvh18PiP3HfSYztTGzmV28GzLdg1wrxw7HbkssSY9m1ZIiIiI5L/u/4tcsqu5Gd+//52jppMHBkuWwMyZ7b83YgREIr3rqVe2xFsyGi9DdyAA06ZBbS28/DJEIqaWmXqAlx6iSP5I5UHoihUmgUBh13ZMRERE2tFfcD1M4dNPU3bOOZROnEjRr3+NcfBg1tpONTDouMJi9myHPn0astaPfJOLdyljvzt/JKlWMNh4VIbukSPhuedg1Ci44QY47TQYO9ZUIi4PUJkzyYRWSIiIiHiDgu4exvfvf+NYFoFNm+j/ta8x+BOfoH91NYHnnwe7c3+wpxoY7N595OvycrjqKmhoONCpY+ejZIFxZ4LcZEtGQ6Hidhm6AwF46CE32J47Fy0z9RivlzmT7qEVEiIiIt6g/xL3MIe+8hXee/ll9n/724RPOgmzqYmihx+mdPJkysaOpeT227F27Mio7VQCg+uug2XL3FnX+fMdamsdLKt7E3nlSmffpYw3Q576ktFDrRm6r7sOnnwSLTP1KK+WOZPupRUSIiIi3qCguweyBw/m8A03sPuPf2T3Y49xeMYM7JISfNu20fcnP6HsjDMY8NnPElyzBhobU243lcDg2msdbr/dYf16m+uvP4xt7+y2LO/ZWPadLDD+29+OvEP94ovuv9OmwV/+Ej/IPTJD3r/DDHl/TLOM5uaSlJaMNjQU4Th1VFXt4+abbZYsSXwu+bLMtKeWNurseXmxzJl0L62QEBER8QYF3T2ZYRA+9VT2//jHvPfKK+ytqaF5zBgMx6Hw2Wc55otfZEh5Of1uuQX/a6+5U7VJm0wWGNThODuxrF3dtqQ8G8u+k7XR3FzCww+b7d6hHjPG/XfUKLdm+cMPxw5yj8yQGx1myA0qK31Yli+tJaOhUBM+n5PiPt33Xncul+N3p2ydVzQabX2IsmFDiF273JJvVVX7sO06lX2So2iFhIiIiDeoTneGvFyn23r7bYoeeojgqlX42iw1D48aRcPUqTRefjlOaWnCenv5XP84WS3xdesiOE5d0jYuvdTH8ce72dhLS6G+3l06/+absHq1w/btBjfcEHtJd0vN8pEj2x/Lrcfcnzlz4pdQ27wZLrmEtGpwR6NDGDs28fud3V0vPRvjko9ycV69ud6l13VHnW7bHsiKFW6d7u3b3SXl1dU206erTne69NnzLo2dt2n8vK03j5/qdEtc0eOO4+CcOdS9+CL1K1bQcOmlOAUF+P/5T/rNm8fgT36SY2bNgnXrIBKJ2Ua+1j/ORgkdvz/I2rUmd9wRexb7jjuguRl+85vE71D/9rfg87X/fijUh5qaxDXLlyyBL30p4SZHLRktLHSYNSvxPrNmQTDYPb8Ie2ppo556XuIdHVdI7NgR0QoJERGRPKOZ7gx5eaY7FmP/foKPPUbRypUEXn219fvRQYNovOIKGqZOJfLBD3ZfB1Nk26VUVATSmiWO1UZdXYDrros/i/3oozBuXPLZ6Oefd5fcHzGUYcMSB92BAPzf/8Gll7pBW6zj19ZGsO0j7bb0+fOfj7/PPfdAWVn8886lbIxLPsrVefXmJ8Zep7HzNo2fd2nsvE3j5229efw00y1pcfr1o6GqivrHH6fud7/j0PXXw6BBWLt3U3L33ZR96lOUTphA0bJlGAfyt/xXNkroFBRYrFuXeBa7qSlxwN1yHLPDYWybpNmGhwyBLVvc5enz5pE0qZbfH8QwTPr1c1i1ClatghNPPLLPvHmwaBFs2tR9CZV6ammjnnpeIiIiIpI9+ktQjhIZNYqD3/se7NjB+/fdR+P557u1vzdvpv/NNzN49Gj6f/nLBNav73Tt72zLRgmdpiYjaSbwt99OHjy7x7HaZbIOBKJce23i/WbNgnvvhbPOgtdfd4PvHTuco5aMtk3gNWaMjw9+0OBTn4KtW+F3v3MfDixc6LZx440wYUL3JVTqqaWNeup5iYiIiEj2KOiW+Px+mi+8kL2//CXvbdrE/u98h/CHPuTW/n70UUqnTqWsooKSn/4UK9l0XxfJRgmdVDKB33cfVFcnXj5z7bVuRvL2mawPM326kzDb8IUXusvXw2FYuRK++EWIRsNHvTsfr074t78Nl18OoRDcdBOcfrrNmjXdW3Kqp5Y26qnnJSIiIiLZo6BbUmIPGsThL3yB3b//Pbtrazk8cyZ2nz74tm+n74IFDD7zTAZOnUrw0UfTqv2dbdkooRONRpPOXr78MsyYQcLjXHCBGzy75cBMKit9hELF9O0b5Re/OHrpeMsy8MmT3YC7RXW1c1TQlkoCrw0b4Pnnba6+uqHbEyr11NJGPfW8RERERCR7FHRLegyD8OjR7L/tNrf295130jxuHAAF69dzzJe/zJDRo+l38834N29OqfZ39ruYrJZ44hnfVGYvZ8+2CQT2xzxOvOC5JZO1z3eIwYMjjB5t8/DDblB+//3uMvBx42DbtiP7lJfDxIlHH7+5uZiamsQf35oaePVVk/vuK8qLOtidHZd81VPPS0RERESyQ9nLM9TTspd3lG4WQmv7doIPPUTRypX43nmn9fvhD32otfa3nUJmv2zqTC1x0yyjstKXUvbwluOYpp+//c3gvvuOLA/vqG0m60CgkMbG/kyZYvKzn8FTT7nlwlrq7M6a5S41v+kmWLWqY/brMoYN8x19gDYMA154Ac48M7/qYOdzjffOyOZ59eYsoF6nsfM2jZ93aey8TePnbb15/JS9XHLK7w9i26VAGbZdinnChzj01a9S98IL1K9cScOkSTiFhfi3bqXfD37A4PJyjrn6agqfeip2NJoDnaklfmT20ukwe+kcNXtpWQEcxw2AL7gAVq9236murYUXX3T/nTYN/P72maxDoSYsy+bFF9snTXvhhSMJ0MaNc9vomP061QReu3e7/7+r6kV3vC9aEsi1FWtcUtkv3+Vr7XoRERER6V4KuiUtbTNmV1QEGD7c1z5RmN9PaNw49t15J7teeYV98+cTGj0aIxol+PTTDLjmGgafeip9v/99fFu2dPfpJGQYcNJJDvfe6wbC997rft3C7/djmkNZvLiYsWNNXnnF4Mwz4bnnYNQouOEGGDPG/XfUKFi/3p11bpvJuiV4bkmaNmGCu82ECe7X4XDs7NepLIGfNQuWLTvydU2NSVNTSXYuTgdJ74s4S9sz3U9ERERExCu0vDxDvXV5uWmWMX68L2YCr0RLmH1bt1K0ciXBRx7Bapl+BUKjR9MwZQqNl1yC069fTs4lE6mcp2FYjB9vtG4zcyZ85zvw2c/GrvFdXg4PPujQv//e1llQvz/I0qX9mDMn/vOvBQtsqqr2HTVzmmwJ/KJF7kx5y21qGLBjR26WmGd6X2S6X0/Xm5dpeZ3Gzts0ft6lsfM2jZ+39ebx0/JyybpUMmbHW8Ic+dCHOPCd7/Deyy+z55e/pPHCC3F8PgKvvEL/W25hyCc/Sf8vfYnAs892e+3vVM7znXdM7r+/fXDtOPDYY7ED7pb91q5t/73OZL+Ol8CrYyK3QMBd3v7UU+A4VtaXb2d6X3TmfhIRERER8QoF3ZKy1DJmJ1nC7PfTfP757F2yxK39/d3vEh41CqOpiaLVqyn97GcpGzOGPj/5CVbbNN5dKJXz7N/fZNEio933PvtZuPPOxG3X1BhHXZ9Ms19Ho1Ecp46qqn288EKUf/7Tafcu+LZtbjsty91nzYLhwzvWDe/88u1M74us3E8iIiIiInlOy8sz1DuXl6eWMTvtJcyOg/8vf6HowQcJPvYY5v79rT9qrqigYepUmsaPxwlmN7mW3x+kubkY0zSxbZuCgsOEw42kcp4tAW1bL77ovo+dSKLr05ns17ZdSl1dgM9/ntbl5oGAG3DfcEP85e4ty7fjX4tUZHpf5Oh+6gF68zItr9PYeZvGz7s0dt6m8fO23jx+Wl4uWZdqxuyOSb+SMgzCp5zC/ltvZdemTby/aBFNZ5+NYxgUPP88x1RXM3j0aPp9/ev4N23qdO3vZMm7DCP5eTY1cdQ29fVHf6+jRNenM9mvTdPkssvcrOfz5rkPBCZNcpeUJ1u+XVAwuFOJzDK9L3J2P4mIiIiI5BEF3ZKyVDJmV1e7M7QZCwZpuuQS3l+xgro//5kDc+YQGTkS8+BBipcvZ9DEiQz61KcoWbQI8733MjqE4wxk/Hgfc+aYbN/uxvDbt8OcOSaVlT4Mw+IrX0l8nvv22cye3T74X7bMXcKdSKevTxy2beM47UuP/ehHbsb1RGpqTF57zYp7LWx7YNJjZ3pfdMn9JCIiIiLSzTyxvPyll17i1Vdf5f/+7//Yu3cvBw8epKCggOHDh1NRUcH555+Pzxd7merWrVtZs2YNW7ZsoampibKyMsaOHcvEiRMJBAIZ96l3Li9PnjG7tjaCbWd5KbBtE3jxRYoefJDCxx/HbHJngB3LovnTn6Zh2jSazj3XXU+dRKrZwq+6yuGCC6yE5wkWlZVG6zZ+v1sWbPZsuvb6EPu8Ul3u/sIL8beLlzm9o0zvi265nzygNy/T8jqNnbdp/LxLY+dtGj9v683j16OWl69bt45nnnmGd955h0AgwAc+8AEKCwvZunUr999/P9/+9rc5fPjwUfs999xzfPe732Xjxo34/X6GDx/Orl27WLVqFd/73vdobm7uhrPxtkyTfnWKaRKqqGDfHXfw3quvsu/HPyZUXo4RjVL4zDMMuPZaBpeX03fuXHz/+EfCplJN3tXYGE16npZVT22tw/z5DiNHQiQCN90EK1Y4LFjgdN31IXYW9FSXu7ep4HaUVBOZZXpfdMv9JCIiIiLShTwx0/3HP/6RQYMGcfLJJ7eb0d66dSu33347e/bs4fzzz+faa69t/VldXR1f+cpXCIfDzJw5kwkTJmAYBrt37+ZHP/oR7777LhdccAGzkq0HjqO3znS36EzSr2zx/etfBFetoujhh7HqjsyGhk45hYapU93a3/37d9grveRdqZxnUVFfDh4swucziEQc+vRpIBIJdfn1sSwL2x7IihUmNTUmFRXw4Q/Dd78bf59589zl6CtXxv55uonMMr0v8uF+yie9+Ymx12nsvE3j510aO2/T+Hlbbx6/HjXT/alPfYqPfOQjRy0h/9CHPkRVVRUAL7/8crufrV27lnA4zCmnnMLEiRMxDLe806BBg7jhhhsAeOaZZ9i3b1/uT6AH6kzSr2yJfPCDHPzWt9za3/ffT+PFF7u1v197jf7f/KZb+3v2bAqefRaiUSD95F2pnGfL75a2/zqO0eF7xlH7+f1BbLsUKMtK7ey2JcQ2bAhRUwPXXeckrAFeWQmPPhq/zbbXIpX+pnK9YrWTD/eTiIiIiEgueCLoTmTYsGEAhEKh1u85jtMahH/6058+ap+TTz6ZYcOGEY1G2bhxY9d0VHLH56P5vPPYe++9vLd5M/vnziX8X/+F0dxM0WOPMfCzn6XszDPp87//S3Dn39NK3pUo0PT7/ZjmUBYvLmbsWJPhww3GjjVZsqSY/fv7M3ly7GzgybKnd7Z2dijUhGXtoawMfL497ZbAtyzfnj/f4fHHHTZutEm0YKO62qaoqCEr/c31eYuIiIiI5CPPB91bt24F4Pjjj2/9Xn19PXv37gVg1KhRMfc7+eSTAfjXv/6V4x5KV7IHDuTwddex+7e/ZfeTT3L4c5/D7tcP37vv0udnP2Pg6Z/kS4+ey9+/sZSrrjiM399+//JymD7dJhoNJw0Qo9FSxo83uOUWo13m7699zWDaNIOf/Qx8vqOzgSfLnp5KxvBURSL9ueQSg1deMVi40E2atnAhvPKKweWXG0ycaCScCZ8+3SYUKslKf7vyvFtkezWBiIiIiEi6PBl027bNnj17eOqpp/jVr35FQUEB06dPb/35zp07AXcm8phjjonZRllZGQC7du3KfYel6xkG4Y9/nP0/+hG7X3uNfT9fzpsnn4+NQcHzf+TD869i8bqhvDv+Oi4b/DwjRzjtknclCxBhEEuXJq6B/dRTbq3stt9bscLipZfMpLWzA4HCTl+CSASWLzd56SX3ne0JE9ws5RMmuF9v2ADr1jnU1kbjJjLz+w+zfHnn++v3B7PSTqo0qy4iIiIi+SJxRqk88/jjj/PAAw+0+95pp53G1KlTGTlyZOv3WjKZFxUVtb7L3VFJiZuR+dChxDWAw+Fwu4RphmEQDAZb/39P1XJuPeEcnYJhnHvPdDZvmc5wtlPFUq7ml5zU/H8UrPkFj/ILwid+iNC+z3Jo5yVYIz7AAw8kDhCXLTN4++3E12bJEndWuW2Sspoag3vvTbxfTY3JlCklWFbm2fUNw2DPHpJmav/hD00uuihEVdVhpkwpbpPI7DDhcBONjQNTyvaerL+pZo3v7Hm3aHlo0nYMWx6arFhhUls7EMNIkLa9m/Wkz19vo7HzNo2fd2nsvE3j520av+Q8FXQPGDCAk08+mWg0yu7du9m/fz9///vf2bBhA8OHD8c03T/qW4LkeLW72/6s7bvgsaxevZqHH3649evjjz+e2267LaUsdT3BkCFDursLnRKJwB13HJmRfocR/D++xf/jm4xjPddwHzMDq/D/31b8P5hH8Y9+QPNnLmLrK1fjZwJhYtf+vuMOd7n2okXxj719O5xyCtTWwrJl8Mgj7vf69Tt620DAnRWfORNKS8EwAgwaNJQEt3BSdXXu8RLZvh0CgQClpR3PM5B2G2VlQ7PSl0TtpKLjmHfkzqr7uPHGoeT7hLfXP3+9mcbO2zR+3qWx8zaNn7dp/OLzVNA9ZswYxowZ0/r1v/71L+655x5Wr17NoUOHuO666wB3WTlAJBKJ21bLzwKB2EFVi8suu4zKysrWr1ue4OzevTth+15nGAZDhgxh165dnk79H40O5Gc/izXGBus5i/Wcxf+W3cH66hWUrPoFgZdfpuCZx1nM4/yIgSxjJr/kav7CKe323r4dhiaJDUeMgNdeg9mzYdYsWL/ereO9f3/77UaOhIcegiefhBtugHfegeHD3SRmM2bYmOb7RP+TfT1VhmFgGEMYMSJxsDtihPvgaefO2PWwo9GBjBgR6FQb2WwnFfHH/Iif/QwmTw5hWflZB7ynfP56I42dt2n8vEtj520aP2/rzePn8/lSmoz1VNDd0Qc/+EFuueUWvvzlL/PMM89w6aWXMmjQIIqLiwFoaGjAcZyYSx1alpW3LDOPx+/3twbxHfWGm8pxHE+fp2maSWdY/7mjD80zrqFpeiXWv/9NcFUtjXcvY7C9k5uo4SZq2Mxo7uMafs109jKAESPAshwg/jKaWbPcGe7t22HuXFi3Dh580OEf/3BoSacQCLgB9w03EHcp9Lp1A1Kuk91WaakbuM+ZE39Zd0um9lAo9hgXFBymutrXqTay2U4qUhnz7dvBssy8v7e9/vnrzTR23qbx8y6Nnbdp/LxN4xefJxOptTVgwAA+8IEP4DgOb7/9NgBD/zMFGQ6HW7OYd1RX5wYxWgbRs6Vblzt60kk0f+8Wlt/6FhfzOA9xBSH8fJJXuIsvs5OhPMhUbr/gCUYcG02Y+fvCC9vXwN60CdauhYqKI7WzJ01yZ7hzkWDM54MZM+wUspPHr4kdDjd2uo1stpOKdMdcRERERCSXPB90A61Lb1v+LS0tpX///gD885//jLnPli1bAHe2XHoud4Y19brc4AaI06tM6sovZgoPcSzvciM1vMopFBBiKquYdO94+o8+jj+O/SY/n/Ovdpm/581z3/WePJmjamDX1Bg0NkZZty7CggU211zjJlxLpKbGpKkp8YqMeEzz/dZjxcpObhjJl1cbxp5Ot5HNdpLJZMxFRERERHLF80F3XV1d6wz3cccdB7jvFZx++ukA/OEPfzhqny1btrBjxw4sy+LUU0/tus5Kl8t0hrVtgFg8spS7jBu5ZOSr/OorGzk864vYxxyD9e67lNxxK9f/5ENsGXoO7//0l/z8J4d4/XUYNw62bTv6eEeWNddRVbWPj3zESXkpdCai0WjrsTZsCLFjR4QNG0JUVe3DtutSelc8G21ks51kunJWXUREREQkmbwPut944w1WrVrFe++9d9TPXn31VW699Vai0SijR49ut1R84sSJ+Hw+XnvtNdauXdv6fsHu3bu5++67ATj33HNbZ8R7M78/iG2XAmXYdil+fzAn+3SXTGZY4wWIF33zePZ//5vs2rSJ93/+c5o+/Wkc06Twz8/S/yvXcNbUoZy3chanh9cDR7/T0nZZs2UFiEbJ+lJovz9INDqQujo3qZjfHyQUasI063GcOkyz/qiAM5XxTNZGov60bduy3CRnLa/8OE72y0t01ay6iIiIiEgyhpPnb7v//e9/Z968eQD079+fgQMHEolEqK+vb63HfeKJJ3LLLbfQt2/fdvv+6U9/YtGiRTiOw4ABA+jXrx/btm0jGo1ywgknMHfuXAoL039XFtzgPdxx7bDHWJaF4wxk+XKTmhrzqKzZQ4b42LlzZ7uECMn2MYw9WZuxzLZAoJCmppI2tagPZWW209y5k6KHH6Zo5Sp8b77R+v2tfJBfcjVLqeJdhgFu0Hf11Ydobu7D/ffDO+8YDBrkJlqLZ8ECm6qqfUn7msnY5HI8O7Ztmu477k8/7bBokdEl906uxjzXDMNg6NChR33+JP9p7LxN4+ddGjtv0/h5W28eP7/fn1L28rwPug8dOsSzzz7L3/72N7Zv387+/fuJRCL06dOHD3zgA4wZM4azzjoLK07B3S1btrB69Wq2bt1Kc3MzgwYNYuzYsVxyySVJy4Ul0hOCbtMsY/x4X8wkXuXlboKvSKT9hyfZPuvWRTLKtN0jOA4FG//F+lm/4tw9KynBfSgUxeQpLuBPJ1zNV35/MRQUMX68webN4Pe7pcRmz3aTpnVUXg61tRFsO/k1zWRscjmebdsOBOC5547O0p6tY/U0vfk/Xm35/UGam4sxTRPbtikoOEw43Njd3UpIY+dtGj/v0th5m8bP23rz+KUadOd9ybCSkhIuvvhiLr744oz2P/nkk/nGN76R5V55n98fZOlSM2HW7GXL4MorCwmFGlPeZ8UKk6qqQk/MJmadYRA58784/a+L+eX9t/PWTx7lkvfv42ye42Ke5OI3nsQePYDNo6Zjb74GGE047CZcW7UKnnrKTaq2fbu7pLy62mb6dDulpdCZjE0ux7Nj26lmae+1946007JKYunSjiswfMyY0SevV9SIiIiIdJT3M935yusz3bZdSkVFIGESr5EjYcOGEKZZn/E+vVXbZc3Gv7fQ99ElFDy4AmvXrtZtXuET/JKrWc4MDvoHMmkSzJwJQ4dCWZlDMLg35QA038azY9u1te4st+6d1PTmJ8bg7RU1vX3svE7j510aO2/T+Hlbbx6/VGe68z6RmuSGaZppZ83OZJ/eqm3SMfvEY9j3tTm899JL7Fn+JCuZQjMBRvMqd1DNToayPDyZAyuf4NIJEU47za2xnc6Mb76NZ8e2S0sTB9ydOZb0LH5/kOXLk6/AyKR2vYiIiEh30F+4vZRt22lnzc5kH2nDsmg463y+NmIlQ9nJl7iTTXySAGEm8zBPMJ63OY47+nwTtm5Jq+l8G8+ObdfXZz9Leyq8lGVfXM3NxdTUJP5PU2dq14uIiIh0NQXdvVRBwWGqqxMHODfdBIWFh9Pap7razRAtsZWUNDB7tsNeBrCQL3EqmziFV/kZ1dQzkGG8y5cO3MrQT/0XAy+7jOCDD2IcSn49MxmbXI5nx7aXLYNZsxLvk817x7IsTLOMpUv7UVERYPhwHxUVAZYu7YdplsVNvCjdTytqREREpKfRXy29VDjcyIwZNuXlsX9eXg5XXgnhcFNa+0yfbisRVgKNjQf43Ododw3/wil8hZ8xjB18/YSHaTr3YhzTpOCllzjmf/6HwaNH0/8rXyHw4otHilt3kMnY5HI8O7b9yCNw0UV02b3jOAMZP97HnDluAOc4bqA2Z45JZaUP2x6YleNI9mlFjYiIiPQ0Crp7McPYw7p1ERYssBk5EgzDTWa1YIFNbW2E0tL090kl03ZvZ1n11NY6zJ/vtLuG358f4KsbJnFwxf289/LLHLjlFiInnIDZ0EDRqlWUXn45ZePGUVJTg/nuu0e1m8nYpLNPuku127Y9dChMmQKLF3PUeWf73tE7wd6mFTUiIiLS0yh7eYa8nr28rbaZtqNR94/ZcLg5YRbCWPtohjs9RUV9OXiwCJ/PIBJx6NOngYaGA+03chwCGzcSXLmS4Nq1mIfd5f6OYdB8zjk0TJlC0wUXQOGRALK4eAAHDhS0ttu3bzOHD7+fsC+xxtNxDJqbi7Esi2jU5JVX4KabDN58s6V8k8OMGdGk5Zs6tl1SEuLQoUDCeyeV+szxtmnJnP7ee7RmhC8tdd8rX7bMnXUfOvRIpvR8rAXdm7OAgpu9vLLS1+na9d2ht4+d12n8vEtj520aP2/rzeOn7OWSsraZtk2zPqXgOZN9pL2GhgNY1i4cZyeWtevogBvAMAiddhr7f/IT3nv1VfbefjvNY8ZgOA6Ff/wjA2bPZkh5Of2+9S2Cr7+OaQzh7rsLGDvWYNgwGDvW4O67CzDNofj9/rh9aTuefv9eIpG+re9DDxtmUVFhsHmzwYoV7tJed6m2QWWlD8dJvFS7473S0HAg7r2TyrvYybbx+00MA557DkaNckuVjRnj/jtqFKxf786y97b3vr2UVE4rakRERKQn0Ux3hnrSTHcsvfmJlRdYb71F0apVBB96CF+bpeZbgx9nUaNb+7ueI0/d3NlBB9vembTtZDWSFy6Es86Cltt/wQKHqqrUa4p35tjr1kUwDJJs47Brl8G11xJ3m8WLYfBgh0suMfKyFnQ2P3+WZeE4A1m+3KSmxuSdd1pWKtjMmGEnXanQnby4oka/O71N4+ddGjtv0/h5W28eP810i/Rg0Q98gINf/zp1L77Inl//mtCkK4j4CvhQ41/4GV9hB8N4mMu5mMexiLBpEzzwgLukPZFU3od+6il32XaLmhqD5ubE7aYilWNv3GiyfLmV5H1teOstJ+E2zzzj8O67sYPyI+30jPe+vZxUTitqREREpCdQ0C3iZZZF8znn8N7PVjJ68E5ms5CNlBMgzOU8yuNUso2RzOdmnqrZwsGDRQmbS6VG8pIl7nvSLbZvB8Po/FLsVI5dWGhSU2Mk3KamxqC4OPE2ixYZ7N+frB3v14JWUjkRERGR7qegW6QHsCyDv+04hruZzWls5OO8xu3cxG5KOZad3MyP+f3O/2LwZeMo+vWvMQ4ejNlOqjWS266iGTEC7CxUb0rl2H37klL/+vVLvk3fJJPzPaEWdCoPMnrCwwURERGRfObtvyhFBIBo1GlX2/ivfJyvcjvD2MEkHmEdlUSwCGx6gf5f+5pb+7u6msDzz7eLmFOtkbx795Gvr7sOCgo6/05wKsc+cICU+rd/f3a2iVcL2itJyVJ9iOL1hwsiIiIi+Ux/aYn0ACUlDcyefXTiijABVjOJiazj59/cRuPc7xM+6STMxkaKHn6Y0smT3drft9+OtWNHSjWSZ81yS2+Bm3Bs2jQHw4iReT1NqRy7qcmmujpxgo7qaofDhxNv86UvOTQ1JWvn6FrQXst4nupDlHgPF0RERESk8xR0i/QAjY0H+Nzn3CA4lvJyuOLLQ9l73Sx2//GP7F67lsMzZmCXlOB7+236/uQnlJ1xBn2uuJRZRb+mYnTsOtXl5XDhhbBxI9x6Kzz2GPTvH81KgqtwuJEZM+yE53DaaTYzZkQTbjN9epQxYxJfiyuvhNNPT9aOfdR5eS0pWSoPMmI9XBARERGR7FHQLZInOrtk2bLqqa11mD/faVfbeP58h9paB8uqdzc0DMLl5ez/8Y/d2t81NUdqfz/7LP1nX8lzbxzLKxU3UDn4ZQzc9n70I3jkEfD74Wc/g1dfhcsvh0gke+eZSn3mVLbx+99PeC38/vfTrgWdblKyfFiCnsqDjFgPF0REREQke1SnO0Oq0y3Zku06ykVFfTl4sAifzyQSsenTp4GGhuTLv62336booYcIrlqFb8eO1u83f+ij/Pusq6mpn8n9T5TR8bZfsMCmqmpf0sAtnfNMpT5zKtuUlAxg//4CfD734UC/fs0cOvR+2u0A2HYpFRWBhO9IjxwJL74YwjDMTo1ntut02/ZAVqxw+7N9u7ukvLraZvr0/K7T7UX63eltGj/v0th5m8bP23rz+KVap1tBd4YUdOcXvz9Ic3Mxpmli2zYFBYcJh2Mvkc43plnG+PG+mDOo5eWwbl0Ex6lLq81OjZ9tE1i/nqJVqwg+8SRGsxuAhvFRSyX3cQ1PchFRfIAbaG7YEMI062M21zI2Pp+f8eONlM4zlfEsKSll/34/lgXRKPTrF+bQofZ9CAb7cuhQEZZlEI06lJQ00NiY6fvnZQwb5ku4RUGBWyM81fOMJxefv1QfLkjneO13p7Sn8fMujZ23afy8rTePX6pBt5aXi6d5LbFVR3lZR9k0CZ19Nvvuuotdr2znC9zNS5yGnwiXsYZ1TOQdhvNjvsZ/8Xrc7Ndtx2b+/ACLF8cOROHIeRYWFiUdz2AwiGkOZdEiP2PHGgwfbjB2rMGiRX5McyjBYBC/3/3/ixcXM3as+Z9tTBYvLsY0h+L3+9O+LKkkJbv2WjfJXF6N53+EQk2YZj2OU4dp1ivgFhEREekimunOkGa680MuZom7UqpLlhPNJMeSrfFr278P83eu5pdUsZQyjtQM2xw4g+O/X0XTJZ/BaVP8uu3Y1NbCDTckrrF90knw3HPJZ4kNw0q4TW2te77JtrHtnSlfB3AfkCxd2o85c+I/q3ztNYfKSqPT4+mVz1+ueXEFi8bO2zR+3qWx8zaNn7f15vHTTLf0eHk5S5ymfK+j3Db79et8hK/xE4axg0tYw2NMJILFJ0N/5phvfJEho0fT/8tfJrB+PX6roN3YlJYmDrgBTj0Vli9PNkts8cILibd5+224//7E2zzwgPvuezpSSUo2aFDy81Rd7OS8voJFREREpC395See1dxcTE1N4lu4psakqamki3qUvnyvoxwr0IzgZy2XcCmPMf7j73Dgu7cR/tCHMJqaKHr0UUqnTuWY08oxvv8DRvI2APX17nkEAjBtmjvz/eKL7r/TprkZ0a+5BmpqjIT9qakxKC5OvM2AAQaLFiXeZtEig4MHi1K7CG0ky3gejUbydjzzIZt6qrxWmk1EREQkEQXd4ln5PkucilTqKN94o0NhodVtgVKiQPOBp0ppnH0Vu3//e3avW8fhmTOx+/TBt/1tvnpgLm9yPL/lv3njh7/ma19q5LnnYNQod6n5mDHuv6NGwfr1cMIJTkrj2a9f4m0KC1Obbfb5EgfmsUSjURynjqqqfWzYEGLHjggbNoSoqtqHbddRUHAo7+pie23WuCesYBERERFpK6N3ut966y3effddjjnmGP7rv/6r3c/mzZsXd7+LLrqI008/Pf1e5iG90939cvU+dFczzTIqK31s2nT0z8rL4Z573AB18ODUy051Z/Zro7GRwBPr+cfXfsW45t+1ft/u249HA5/lx/VX8zKnAUeC3vJyWLPGoaIi+fvQ994LF1wQf5utW+HccxMH3iNHwvr1Npa1K9EpZyTZeNbWRrDtrste7rW8B17/XHvhd6fEp/HzLo2dt2n8vK03j1/O3ukOh8Pcdttt3HnnnTF//vrrr8f93y9/+UsikUi6hxSJKZVZ4q6eVcxEvJnkH/4QFi2Cyy6DUKj7l9emmv3aCQaxp03kzz96mg/wJt9jLruLjsM8sJ8r6n/OS5zB3/goX2UBZbwHuLOXr7ziUF2d+Bd1dbXD4cOJt3n/fYfZsxNvM3u2Q58+DQm3yVSyJeiGsScnx43Fi7PGPWEFi4iIiEhbaf/VsnHjRt5//33OOOOMo2a5Wxx77LF86Utfave/U089lffff5+NGzd2utMikFpiq+nT7bwvjXT0kuUoa9c6/PWvMG4cbNvWfvt8DJQ6ahmb0vIP8H2+x0sPvsG0Qb/jV8ykkUI+wussYA7vMJzVXMpEHuNrN0WZMYMk4xllzJjE23zgA/C5zyXe5qqroKEh03rdiSVbgp5ohUK2eTHvQb7nORARERFJV0ZBN8DFF18cd5u+ffty1llntfvf1KlTAXj55Zcz7KrI0fJpVrGzWmaSo9EoEyYYrFwJ8d5gyLdAKZa2YzPkWJOVuz9DFb9iCLv4PIt5kTPwE+FSHuMxLuVPbwyn7/f/hyd/8lrC8bQsm1/8AubNo9028+bBkiVgGDaWVU9trcP8+U67bebPd6itdbCs3C9Lzoe62F6cNe4pK1hEREREWqT9l9Ybb7xBUVERH/zgB9Pab+TIkfTp04c33ngj3UOKxJVPs4rZ4sVAKZa2Y1NWdmT28gD9uJfPM4YX+TB/58d8jV0MZjB1FN19O4M+/Qm+vPw0Xv3CXbz7en278TTNAEuXGpx+Orz+OixcCC+84P77+utw2mmwbJmBYVjY9k6uv/4w69fb7NjhsH69zfXXH8a2d/bofAxteXHWuKesYBERERFpkfZf7e+//z6lpaUYRuzMvz6fD5/PF/NnxxxzDHv37k33kJKGYLAv0egQYCjR6BCCwfRqEXtVd84qplKKKdY28fbrbKAUDPYlEhnMzp0QiQxO6R5IpX/BYN+MSk6FQk0UFu6POXv5Dz7MzfyYEWxnzTVraB4/Hsfnw795M8d888sMHj2CATdOg2eeBttuXS4dDsPKlTBhApx5pvtvy8qAtqsAwuEwhhHBcaIYRiRmsJ2t88xH+TxrnOhz05NWsIiIiIhklEjN7/fH/fny5cv5zne+E/NnPp+v18wwdTW/349pDmXx4mLGjjUZPtxg7FiTxYuLMc2hCcdMMpNKKab42/Rn//7+TJ589H7BYGNGgVLHe2DYMJLeA7H6N3lygP37+7N0af92fV68uJi6ugAVFemXnEo2e3lKuZ8zfzSePffcw3ubNrH/u98lfPLJbu3v1asp/exnKTvzTPr99AdY299MeCx3FUDmY9OZ88w3+ThrnMrY9MQVLCIiItJ7pV0y7Prrr8eyLBYtWpT2wW644Qai0Sj33HNP2vvmm3wrGWaaQxk/3ohbFqi21sG2d6bcXm9O/Z+qVEoxGQYJt1m4EM4668i72233S7fsVCb3QMdzCATguefc+tmp9DmdklOWZWHbA1mxwqSmxl1CP2KE+wBh+vQYZdAcB/9rr1G0ciXBNWswDxxJfPZ7Ps0vuZpHuJxGitodxy0n5XDJJfGvRbpj09WltbL5+Uv7uueY10qYpUu/O71N4+ddGjtv0/h5W28ev5yVDDv22GPZs2cPu3fvTmu/uro63n//fYYNG5buISWJYLAv998fO0gCN9v1Aw9AUVHvWGreFVIrxWTx0kuJt3nqKZg0qeN+JoHAobSW12ZyD8Q6h0mT4MknE7fTts/pZFJPe/bSMAh/4hPsv/VWdm3ezN677iJ09jk4hsFn+AO/ooqdDOXnXM8ZvAi4v+Srqx02b3YSnsPGjSbLl1sJt/ntbzM7z3yTT7PGXixhJiIiItJZaQfdp5xyCgC1tbVp7bdu3bp2+0v2HDpUxKJFsd+xb7FokcHBg0UJt5HUpVaKyaCwMPE2S5bAzJkd9zNpaChKK1DK5B6IdQ4zZ7p9SqfP6WZSz+j9+2CQxssuo37Fr9n953/x86HzeIPj6ccBruceXmQMf+cj/GzY/zLzv3fxla8kvu7BoElNTeLrde+9cOWVR772Qsb4RPIhm7oXS5iJiIiIdFbaQfd///d/U1hYyFNPPcUf//jHlPb5wx/+wNNPP01hYSH//d//ne4hJQnLMlLKdu3zJQ4yJHWpZhjv1y/5Nh1XpLTNTJ5qoJTJPRDrHEpLSamdtn3u6kzqzsgSLtn0Tdb871amlv2BpVxJoxHkw/yD6h1fZ9AnR7Dx2Im8/M3VzJgcIlY6gyFDUjvP445r/3Wi80wloV5v11My84uIiIikI+2/bEpKSrjmmmtwHIe7776bH//4x7z66qs0Nja2266xsZFXXnmF2267jZ///OcAXH311ZSUaAYj26JRJ6Vs15FI73rHIpdSzTC+f3/ybTq+qZFJCad07wG/P0g0arJxI9TWwrRp4PdDfT0ptdO2z11dcqp1ufTnDrBgUwXnvXsf7/99G4d++nPe/cAYjGiUY9av49T/N4nFjw9n2xVf5bwhf23XRkFBaufZNmCPd56pJAYTV2cz8+vBhoiIiHhRRtMJ55xzDrNmzcLn87Fp0yZuvfVWrr76ambNmsXs2bOZNWsWV199NfPnz2fz5s1YlsXVV1/Npz71qSx3XwBKShqYPTtxQD17tkOfPg1d1KOeL7VSTA5NTYm3mTULli3ruF/6JZxSvQf69m1sDRDHjjU57TQ3adqoUbB+PfzmN26f0ulzd5WcarsKwDqmP+csu55hbz3PKP7BbXydnQyhuGE3Q1bcztO7Ps7LxmncwCL6s5dg0EnpPNuKd56OM5Dx433MmePO4jqOO1s7Z45JZaUP2x6YxbP2tkxLmOnBhoiIiHhZ2tnL23rnnXd49NFHefnllwmFQkf9PBAIcNppp3HppZcycuTITnU03+Rj9vLKSiNBtmtlL8820yxLmmEcEmchX7QIxo1rn708Vmby1PqT/B6AaMLM0YsWuUnbbriBlPrcmf5mi98fZOnSfsyZ0/4ZokWEC/kNV/NLLrXWYUXdi9xsFBCdcBk7zr+aGfedy8ubjw7Yysvhnntg506orIx/nvGO3daCBTZVVfvSeoe6J3/+UvncHJ2Z3zsZz3vy2PUGGj/v0th5m8bP23rz+KWavbxTQXeLaDTK22+/zfvvv09jYyPBYJABAwZw3HHH9dgZiHwLuv1+P9FoKQ884CbMaikLNHu2w1VXgWXVp9Xf3vzhSVUqpZiAONs4TJwIVVUGL76YnRJOye6BgoKD3HdfScIAcd48N5i+6iqHtWvdZHBt2znvPINJk9zZ3O4qOdWRbZdSURFI+K7wJ4btZkXlcgau/SWDdv6l9fvNg0fw55Ov4lv/+hwbdp3IiBHuDPeFF8ILL8DWrXDiifHPM5VjuyXMQphmfcrn1JM/f+mWMMvVg41c6clj1xto/LxLY+dtGj9v683j16VBd2+Ub0F3i6Kivhw8WITPZxCJuEvKGxoOJN+xg9784UlXIFBIU1MJlmUSjbpLYzv+8R9rGyDpfpk4cg+YRCJ26z2QaoC4fr1NMLjvqP6VlIQ4dCiQ9f5myu8P0txcjGn6eeUVg2XL4JFHjqwaaMsw4J13HAL+93E2b6TowQcJrnkMc9/e1m0OjD6HN865mtu3X8GWd4pZs8YhEgknOc8yhg3zJeynYcCOHenNxPaGz18qnxvI3YONXOkNY9eTafy8S2PnbRo/b+vN45dq0J34r8UE6uvreemll9i5012yPGTIEE4//fSUDiq509BwAMs6gOOAZUGDXuPOOffd4iYcB0wTYrxpEXebtt9zHDdJlGma2LZNQcFhwuHGoxtLIhwOYxgRLCtANBppfTiUauZon89uDX7a9i8cDgIBWn6XOo7RJvDtXJ9T0XIsv9/EcSyWLnVn4t95B4YPd2eo16+HyZNh27b2+44YAbYdJhRuho99jP0f+xiH5s4l8OQG9t/+ACO3/pa+r/yJT7zyJ+4t+BKRyyfTtHES9ujRhEJHZ/0PBvty6FARhmEwYkTiTOgticHMHpqQO9N7IJXPjd8fJBz2p5zxvJf9d15EREQ8IqM/A5955hmqq6t54IEHePrpp3n66adZunQp1dXV/OY3v8l2H0V6tGwlierYzpAhtGvHtlPLcN4xc3Ss/k2eHGD//v4sXdo/54mt2h7/U58K8PbbPsaPN5gzx2iXuGzuXJg9G1at4qgyYTGToBUW0nzpFP7yv0/y3K/eZvv1P6Rh6AkEmg9R9OtfMmDCBAadcw4lCxdi7toFuE8zTXMoixcXM3asyde+ZnDttYn7312J5nItl8nN2rb9978bncp4LiIiItLd0l5evnXrVr773e/iOA79+/fnhBNOwHEc3nzzTfbt24dhGMydO5dRo0blqs95IV+Xl2dLb14m0tWylSQqWTu/+U2UBx4w0n43tmO7gQA895ybbK0rElu1Pf60aW6m9blz428/bx68/jqsXHmkP6km5zKwOYvnmDPwl4xveAiz0V0q4pgmzZ/+NI3TvsCFCyfy0qsBwA3u1693g/10EoMl44XPXy6Tm6U75nqnW7JF4+ddGjtv0/h5W28ev1SXl6c90/3EE0/gOA7jxo3jzjvv5Oabb+Yb3/gGd955J2PHjsVxHJ544omMOi3S2/j9QZYvN2MGLuAGcitWmAQChZ1uZ9kyg5kzHcrLY29TXg7Tp9vtApdY7U6aBE8+GTvgTqfPqeh4/JkzYcmSxPssWeJuN3KkG4zV1kZak9rFa7eFg8mznMPEPfez8NvvcvD2GppPOw3Dtin83e845rrJ1L46jNu5iY/zGuGwu5x94UI32B850n2HO9Gxe4Js3beptP3II3DRRaR134qIiIjkk7SD7i1bthAIBLjuuusIBAKt3w8EAnz+858nEAiwdevWrHZSpKdqbi6mpibxx7CmxqSpqaTT7dx+u4ltR1m3LsKCBXZKAWKsdlMJfFPpcyo6Hr+0NPH70+D+vLzcYcOGEFVV+7DtuqOyjqdyvX6yuB/7r/gCe9as4b0//YkDs29ml3Usg6jnJmp4jU+wkXImbLuLiePe5/XX4d573YRtiY7dE2Trvk2l7d76YENERER6jrSD7gMHDnDsscdSWHj0DEZhYSFDhw7lwIH0s2WLdIbf7yYhgzJsuxS/P9jdXUpJqsnNLCvxRzXVdsDEceqoqtrHhg0hduyIJAwQY7WbauCbrM+p6Hj8+npSfL83jGnWx539TPe6R086iUPfupXh0be5iCd4iCsI4aeczdzFl9kWGcplK6fy0wuewrCjCY/dE2Trvk217W3b4Kyz3NcGFi50y7lt2OD06AcbIiIi0nOk/RdRJBKJGXC3KCws1B9A0mVymcypK9i2nZUkUem242aOrsdx6hIGiLHaTT3w7Xxiq47HX7YMrrsu8T6pJC7L5LpHow7HjvDxGy5iCg9xLO9yIzW8wicoIMRUVvEbLmTQ6cfTZ/58rDffTHZ6npWt+zadtsNh9z39CRNgyhSAcI9+sCEiIiI9Rw8tYiO9heMMZPx4H3PmmO0yWc+ZY1JZ6cO2B3Z3FxMqKDhMdXXiwCSVIDJb7aTS7rJlbnmubB8rleOvWwdXX53s/V6jNRiLtwIik+tVUtLA7NlHkoPsoZQ7uZFP8gqj2cwdfJnGogH4dr5DnzvvZPC4cQycNIngypUYhw9neAXyU67ut1y3LSIiItId0s5ePnXqVEpLS/n0pz8d8+e///3v2bNnD5MnT47bxhVXXJFeL/OQspd3P78/yNKl/dLOxp1vTLOMykpfp7NfZ6udZO3mKmN3KsefNg3OOAPGjIGnnnLfLd++3Z1VnTULLrwQXnvN5vLLDxAKlbB8uUlNjdlay7u62mbGDBvD2IPjDEz7epnmUCorjfj7PNJE4DcPULRqFQV//COG7QaPdlERTRMm0DBtGqHTTnNfSk7AC5+/XN1vuW4bMq8tngovjJ3Ep/HzLo2dt2n8vK03j1+q2cszCro7a2VLLR8PU9Dd/Wy7lIqKQMJ3S0eOhA0bQphmfdd1LE2WZWHbA1mxwg0QW4LI6mqb6dPdADGVVzay1U4q7Z55Jixd6rB2LdTUGFk7VrLjf+xjJrNmwa5dbhb1mTNh0CDYvdudgX/0UTjuOHjuOYfx442E5axMc0/a18vv9xONlvLAA7Bo0ZHznj3b4aqrwLLqW38vmDt3UvTwwxQ9+CC+t95qbSNy/PE0TJ1KwxVXYA8dGvOcvfD5y9X9lsu2LcvCcQYmfBjT2fvWC2Mn8Wn8vEtj520aP2/rzeOXs6B77ty5GElmaZL53ve+16n984GC7nxQxrBhvoRbGAbs2JG9mtG5FAgU0tRUgmWZRKPu8tlMZuiLiwdw4EABPp9BJOLQt28zhw+/n5P+WVaAQ4eKWo9VUtJAY2NuEikGAoWEQscwbFji3z/TpsGppzrMmRN/u7YrIILBvmmfQ58+pezb58fng0gE+vcP09R0uN3saZ8+NgcOBLBMsF5cT/9H78W/5lHMhja1vz/1KRqmTKHp/POhoKC1fW98/lyZXL9UZesz0SKXtcVbeGns5GgaP+/S2Hmbxs/bevP45SzoFpeC7u7XU2a6s6VlFvb++91Z2JZZvNmzHT73ufazsJ3VFTOGsaQy5k8/7S41T3ZfvPhiCMMw0zqHWNf4jDPgV79yeOwxd9bfNGH1anjrLYeSEoO+feHAATh0yKHi44cIPv5LCn79awr+/Ocj59W/Pw2TJtEwdSqRj37UE5+/7roHMtVVr6N4YewkPo2fd2nsvE3j5229efwUdOeYgu7u11Pe6c4W0xyacEl1ba2Dbe/M0rFyP2MYSypjvnWrw4c+lHg2vKDADYqTLUHveA4dr3EgAM89BzfcAJs3u1+3xNKPPea+c94SjM6aBZdcAsce6xCJ7MR64w2KVq2i6KGHsHbtaj1G+CMfoWHaNPrdcAM7Q6G8/fx11z2Qqa56SOeF350Sn8bPuzR23qbx87bePH6pBt3KXi6eFQ43MmOGnSSTtd0rAu5gsC/330/MAAjchGcPPABFRX07fSy/P8jy5WbCY61YYRIIxC8tGKvNVOqspzLmwWDykmbXXgvLlye+Xh3PIdY1njQJnnzyyPemTIGiIjfAnjuXdhn15851j7t/vzsO0RNO4OA3vsF7L73EnmXLaJwwAScQwP/3v9PvO9+BY4+l//XXU/D730MezRhDbu6BXMtlbXERERGRRLo8kZphGDz44IOdaiMfaKY7P+QymZOXRKNDGDs2cVAxciSsX29jWbvib5SCbM4YZrJEOdmYFxQYLF5sccst8Y/76qtuved0ziHWNa6tdWe5W7738svwxBOQKG3FD34An/+8TSRy9DgY779PSe0TFPz6QQJ/faX1+9EhQ2i44goapkwheuKJ8RvvIl58tUMz3ZIKjZ93aey8TePnbb15/PJ2pru3DYTkVjQaxXHqqKrax4YNIXbsiLBhQ4iqqn3Ydl2vCLgBLMtIaRbP5+tcEkTI7oxhJnXWk4354cMm55+fuJb3gAGJA+5Y5xDrGpeWtm9nwAD4xS8St3vvvRAKHT0OlmVhlI7iHv8cTtq3mU/wKktKqmksGoi1axd97rqLwWefzcBLLyX44IMYh7qvTrUXZ41V/1tERES6S+LUzwkce+yxnH322ZxxxhkUFubPEkLpnUKhJkyzCccB04RQqLt71LWiUYcRIxIH3iNGQCTiYFmdO5Zt24wYkThoHTEColEbM0HM5b6fnXyJclVVYcxXBOKNuWnCZZfBqlXxa3n/85+kfQ6xrnF9fft2TDO1YD7WdWl5ANFyPbZzCtce+hmzuY3qE2r5/gn3UfD731Dw8ssUvPwy9ne+Q1NlJQ1TpxI644yktb+zqeUeeO+9I6XbSkvd67FsGTzyCAwdmvwe6Eruqwl9WLHCjFv/u7e8jiIiIiJdK+0/h6666ipOOOEE3n33XR588EFuvvlmli9fzvbt2+nfvz8DBgxI+j8Rya6SkgZmz068imT2bIc+fRo6faxszRg2NxdTU5P4V1BNjUlTU0la/XOcKI4DZ50Fr78OCxfCCy+4/77+Oowb5yY5q65OfL06nkOsa7xsmRvIt9i5M/n75O7P21+/RO9Ihyjgf9+4nEUXrWPva3/hwDe/SeSEEzAbGihatYrSyy+nbNw4SmpqMHfsSHzwLCkoOMy3v23z3HMwapS7xH7MGPffUaNg/Xr49rfzb9bYMPawbl2EBQtsRo50n1OMHOkmXKytjWAYe7q7iyIiItIDZZy9/N133+XZZ59l/fr17N69G4B+/foxbtw4xo0bxwknnJDVjuYbvdMt+cY0h1JZacSdxct29vLKSl+CY0Ww7WSZq3NTZ92dQe+fsE737bc7fPazNuPHW2mdQ8dr7Pe7Aebs2e7M/IwZcMop8PWvx+/fggUOVVV7282opv2+sePg37iRopUrCa5di3n4MACOYdB89tk0TJ1K0wUXQA5XIXVltvxsy3b977b0u9PbNH7epbHzNo2ft/Xm8evSkmH//Oc/+dOf/sSLL75IQ4M7kzZs2DDOPvtsxo0bR2lpaWcPkXcUdEu+aakh/cADbg3pliXVs2c7XHVV9ut0dzaBXS4TW6XyUMAw9qR9DrGu8ZlnwgMPOKxb535v1Sr4/OeJe+zHH48Sjb7X4SeZP4AwGhoorK2laNUqCl54ofX7dv/+NF56KQ1TpxL+2MfwB4pobi7GNE1s26ag4DDhcGPCY8ajcn3x6Xent2n8vEtj520aP2/rzePXLXW6I5EIGzdu5Nlnn+W1114jEolgGAbnnXces9quwewBFHRLvioq6svBg0X4fCaRiE2fPg00NBzIybE6M2OYy8DtyEMBi5oao01A7TB9erRdQJ3JORy5xgaRiLtsPxIJ0dRUQiBgEo1arFhB0mO3yNYDCOutt9za36tWYe08Mssc/vDHWH/S1Xxl40z+snNQ0gzxyXgxe3lX0e9Ob9P4eZfGzts0ft7Wm8evW4Lutv7xj39w1113UV9fz8c+9jG+/e1v5+Iw3UZBd3J+fzBrM2uSnnTHL5djlajt5DPSDpFIOGZ/UulzrpYRB4N9OXSoCMsyiEYdSkoaaGw8EHOblsA81jZtzyWrDyCiUQrWr6fowQcpfOopjOZmAEL4WccE7uManuICPlHuY9269Jbvu3LzaoDXtdyTgUCAUCik33ke1Jv/cPQ6jZ23afy8rTePX7eUDNu3bx+PP/44N998M3PnzqW+vp7CwkJGjRqVzcNInrMsC9MsY+nSflRUBBg+3EdFRYClS/thmmVYnU2fLVmTy7FKpe14ia3mz3e45x4480zjqH3S6bOb4bwex6nDNOs7HXD7/X5McyiLFxczdqzJ8OEGY8eaLF5cjGkOxe/3t/bvvvuKGDvWZNgwd5v77iuKe03dzNp2wjJnaWXWtiyazzmHQ7+4n4Xf2sFsFrKRcgKEuZxHeZxKtjGSKzZ9g9/U/ItAIL13v1uylyfSkv29N+h4Tw4Zgn7niYiISKtOz3SHQiFeeuklnn32Wf76179i2zamafKxj32Ms88+m9NPP51AIJCt/uYNzXTHZ5pl7UoftVVeToYza5KOVMcvl2OVTttHZqT9/OMfBvfcA48+Cm0/Yi37GAbddn+lkjwMohn1LxvvyXfUcRn4R/krV/NLruRXDOLIsu/mU8fQOHUSjRMm4PTpk7RdvdPdnn7n9Ry9ebbG6zR23qbx87bePH45nel2HIe//OUv3HXXXVx33XXceeedvPbaa4wcOZKqqiruvvtuvvnNbzJu3LgeGXBLfIlKH8GR2svpzqxJ9uVyrNJtOxRqoqDgML/+tcO558LKle0D7pZ9Nm40Wb7c6pb7Kxjsy/33k/DYDzwA27Zldk2j0SiOU0dV1T42bAixa5f7TnRV1T5suy7tgBvANM12713/jY/xP/yUYezgMh5lHZVEsCjY+AL9v/Y1Bo8eTf/qagLPPw92/FnqrM/Me5h+54mIiEgyac90/+pXv2L9+vXs27cPgIEDBzJu3DjOPvtshg8fnos+5iXNdMemBEv5IZXxy+VYZdJ2Kvs8/bRbF7s77q9odAhjx5pJj/3b38LJJ3euf9l6YpzKNT112E5++7n7KV55H/5//7v1+5HjjqNh8mQap0whOmzYUfvlYmbei/Q7r2fpzbM1Xqex8zaNn7f15vFLdaY7cSacGGprawE49thjOeuss/jwhz+MYRgcPnyYLVu2pNTGyYn+IhVP6zizFsv27WBZJr3sM5l3cjlWmbSdyj59+yYOuGO1my2WZaR07GAw+TZddf8XFBymutqXcBn4Z786mEjV9ey+oQr/5s1u7e/HHsP39tv0/clP6LNgAc1nnUXj1Kk0XnBB6wm6AXUdVVWFTJmSm5rXXqDfeSIiIpJM2kF3i3fffZeVK1emvZ9hGDz44IOZHlbyXEuCpUR/hLYkWDKzmsZP0pXLscqk7VT2OXCAtNrNZlb2aNRhxIjEgfeIEdCYpPmuvP/dZeB9WLHCjJshvnUZuGEQLi9nf3k5B+bNo/DxxylauZKC55+n8NlnKXz2Wfr17Xuk9vcpp4Bh/CdZXROOA6YJoVDuzyuf6HeeiIiIJJP2nwClpaWd+t/AgQNzcR6SJ9yZtcQZi6ur3dkw6V65HKtM2k5ln6Ymm+rqxNOF1dU2RUUNWc/KXlLSwOzZiY89e7bDvn35df/HyxC/YIFNbW0Ew9hz1D5OMEjjFVew56GHeO+FFzj4la8QGTYM88ABipcuZdD48Qw691yKFy8msO8Qtl0KlGHbpfj9Sab6exj9zhMREZFkclanu6fTO93xJa+9HMG2lck3l9LJXp6rscqk7VT2AbjsMh8f+ADMnAmlpVBfD8uWwZtvwpo17ja5yCZtmkOprDQS1hWHaKevaS7ejep0zXLbJrB+PUWrVhF84onW2t9R08dvCypZ1HgNfx1+EV+6yWTGjN7zTjfod15P0pvfS/Q6jZ23afy8rTePX7fU6RaBzGbWpHvkcqwyaTuVfSxrL6tXO5xyisMNN8CYMXDDDXDKKQ5r1jgUFDTkLJu0ZdVTW+swf75zVF3x2loHy6rP2/u/0zXLTZPQ2Wez76672PXKK+yffyd/KzoNy45wYeMa1jKRF94ZTnTON/jSuf/CtnvPqqZ8HXMRERHJD5rpzpBmupPr9MyaZCzd8cvlWGXSdqJ9ktdEdhg3zuCNN+K339ls0kVFfTl4sAifzyAScejTp4GGhgMpn0My+f7EuG2d7o/wt9ba32Xsbt3m3ePOpM+NUzh08UU4fft2Y2+7TsuYBwIBQqGQfud5UL5/9iQ+jZ23afy8rTePn2a6pdt1emZN8PuDWXlfNlk7uRyrTNp2HOM//7b/OrWayHDaaYnbb8kmnaqO189xwDAiOE4Uw4jEfAAX6xxSGU+/P0g0OpC6OohGB2btHels3UsAzc3F1NS41+/vfJQ5LGAYO7iENTzGRCJYHPv2i/T5n68yePRoBlR/Bf/6v4Fd2qPf+w6FmrCsPZSVgWXt0e88ERERARR0i+Qly7KykggsW+10lWT9bW4uaQ324qmpMbjmmsTHackmnWl/Fi8upq4uQEXF0dcz/jn0Z//+/kyeHHscOu43ZAhZGatc3AOxymRF8LOWS7iUxxjGDr7G/xI5+cOYTU0UPryKQVMvoHnEyaz6yK2s/tm+vLz/RERERHJBy8szpOXlkkvJl1AnTgTWMn67dkVyklAsV1JZOn7ssUbCNgwDtmxx+NCH4m+3YIFNVdW+pDORyfqzcCGcdRaEw0eup2EkTuLWdp8j55V8v8yTv3XuXorFtkupqAgkLJN10knw3LM2X//0Riq23MdnWUE/3CX4NgYv9/kMH7q1isYLxyYvbu4h+t3pbRo/79LYeZvGz9t68/hpebmIR6W2hDp5IrBIhJwlFMuFVM579253ljqRESPcGK68PPbP29Wm7mR/nnoKJk068vXGjSbLl1sp75POfpmMVbbupY5SKZP105/aLP+1wa+2nM4N/Jwh7GI6y3mGczFxOOPg7zjmS1cx5JOfpN/NN+N/5ZUja/FFREREehAF3SJ5pu37svHU1Jg0NZUk3GbPHrLSTldJ5bzvucfgxhtTqdO9v9PZpFPpz5IlbtmyFoWFJjU1iWfiO+6T6n6ZjFW27qWOwuFGZsywEz7YGD3aaHdOTQRZwXTO4xmO4y2+x1y2Wx9wa38vW8agykoGfeYzFP/855i73YRs2XwPXURERKS7KOgWyTOx3pftKJVEYIZBVtrpKqmc9733ugFrslnspqYGHKeOqqp9bNgQYseOCBs2hKiq2odt16VUPzrVcWi7oqhv39SuecdVSKnul+5YZeteiuVImSynw4MNh9raCJZlxz32No7j+3yPD0T/jz2rnqZh0iScwkL8W7fS7wc/YHB5OQOu+QJv/ewP/POvBtu3+/jHPwK8+GJ+5iIQERERSSQ//toWkVa2bae0hDpZIjDHSW0pdioJxbpCKuc9ZAg4TjjlWezOZGVPdRx2H6mSxYEDqV3ztvuks1+6Y5WteykW0zQxDIvjj3cfhrzwgvvv8ccDWCkde/hIk8Yx57DvzjvZ9cor7LvtNkKjR2NEoxQ+tY7T/t/lnFI5nA1n/g+3Vf2dzZtNdu3yYRi9pwa4iIiIeJ+CbpE8k8r7stXVbt3nRAYOJCvtdJVUz9vvP9TpWexs9WfWLFi27MjXTU021dWJl7933CfV/TIZq2zdS7FEo6WMH28waZLBBRfAmWfCBRfApEkGlZUGhYW+tI7t9O1Lw8yZ7H/qd7z9xN9YWjaH9yhjkF3HV/kpz+z6KBfOPYMnL/k5h945mDe5CERERESSUdAtkmdSeV82lURgPh9ZaaerpHveua4Dn0p/LrwQHn30yNennWYzY0Y05X3S2S+TscrWvdRRMNiX++8nYYK2++5L7VWAjsd2nD488PJHuKrufxnOO0zkMVZzKWF8nMFL3LLtBkaccSwl13+RwHPPgZ0fKzVERERE4lHQLZKHjrwvm3kiMADTfD8r7XSVbJ13rvszf77DPffAlCkwdGj7/sU/B4cHH3S46SY3s3zH88rVueei3UOHili0KHHit7vuMohGSfvYoZDFL37h/v8IftYxkUmsZhg7+CoL+BsfwR9povDRBymdNo2yMWPo85OfYG3blvZ5iIiIiHQF1enOkOp0S1cIBAppairBskyiUXcpbiqzkh3HL9N2uku+9bdjf/r2tdm/P4DPZxCJOJSUNNDYeCDhPi3LqJOdV8t+gUCAUCiUtXPP7jUdyrBhyeul79jh4Dg70zx2srYdTmMjf6i6j+CaX2MeOHLdmysqaJg2jaaLL8bpptrf+t3pbRo/79LYeZvGz9t68/ipTrdID+A4xn/+bf91unK9FLuzOpaGsqwA0P68Mykfla2SUy3XzzT34POZ3HtvgLFjTYYNMxg71uS++4qOyqod65qnMg6hUBOWtYeyMrCsPVkbq1SOner1ikadlBK0RSJOysdu4TjRJG0bvDfyNPb9vzvZtXkzexcupOnss3EMg4Lnn+eYG29k8OjR9Pv61/Fv2qTa3yIiItLtFHSL5CHLsjDNMpYu7UdFRYDhw31UVARYurRnlUzqeJ4VFT7q6gIsXlzcet6TJwfYv78/S5f2T/la5Or6Oc5Axo/3MWeOW4rLcdySW3PmmFRW+rBtb2bVTvd6lZQ0MHt24mB29myHPn0a0u5LIHAwhaRyDgUFByAYpPHSS3l/xQrq/vxnDsyZQ+S44zAPHqR4+XIGTZzIoE99ipJFizDfey/tvoiIiIhkg5aXZ0jLyyWXTLOM8eN9MRNVlZe778k6Tl3c/b0yfqZZxqWX+jj+eLjySvjYx+Df/4Z77oFHHnGXKD/3HNxwQ+ykXfGuRWevXyx+f5ClS/sxZ078Z5ULFthUVe3r9Ox0V49fJtfLNIdSWWmwaVPsfWprHWx7Z8b9qaz0JWg7gm3HGT/bJvDiixStXEnh449jNjYC4FgWzZ/+tLv8/NxzIRDIqG/JeOWzJ7Fp/LxLY+dtGj9v683jp+XlIh7l9wdZvtxMmBl6xQrT8yWT/P4ga9ea3HEHjBoFX/gCHHccXHWV+/X69fD5z8OTTybOkt3xWuTq+jU3F1NTk/hXZk2NSVNTSVrtdrdMrpffH+T3v3dYvRrmz6dDkjlYswb+8Acn43v0SPI356hkdEmTv5kmoYoK9tXU8N4rr7Dvf/+X0KmnurW/n3mGAddey+Dycvp+73v4/vGPjPonIiIikg7NdGdIM92SK7ZdSkVFgO3b428zciRs2BDCNOtj/twL42fbpdTVBbjuuviz2I88Ap/5DLzxRvx2Ol6LbFy/2MoYNsyXcAs3eVj6s+hHt5P98fP7gzQ3F2OaJrZtU1BwmHC4MaPr1bLPwYNuzfGPfhT8fgiH4W9/gxkzoF+/TK5xe9lM/ub7978JrlxJ0cMPY9UdGZ/Qxz9Ow9SpNF56KU7//hn3tYUXPnsSn8bPuzR23qbx87bePH6a6RbxKNM0EwZA4L5HbFne/vgWFFisW5d4Fvuhh+C00xK30/Fa5Or62badUvKwaLRzdaP9/iDR6EDq6iAaHZhx8rcWR97X7vhOfH9Mswy/P/3rZZomhgFPPQUbN8JZZ8Hw4e6/GzfC00+7DyA6e49mMwFg5KSTOPitb/Heyy+z5/77abz4Yhyfj8Bf/kL/b32LIZ/8JP1nz6bgT3+CaLRT/RYRERFpy9t/tYv0QF0V3HW3piaDJUsSb3PnnXDNNYm36XgtcnX9CgoOU12deJ/q6iOlwdLVMZnZkCFkOfmb0SH5m0FlpQ/HsTjhhMRtxLrGq1e779rPnUu7dufOhdmz3VUKeXmP+nw0n3cee++9l/c2b2b/3LmE/+u/MJqbKXrsMQZOn07ZmWfS58c/xnrrre7urYiIiPQAiddK5gHHcdiyZQsvv/wy//znP9mxYwfNzc307duXD37wg1x44YV89KMfjbv/1q1bWbNmDVu2bKGpqYmysjLGjh3LxIkTCeQokY5IZ7jBnS9hwq6W4C4U6sKOZZnP56Q0w3rccYm36XgtcnX9wuFGZszoz4oVxE3wNX26kfFsbEtw3HbmvyUz+ooVJuvWDQRiL1uPt3TcTf5mJVxN8Otfw89+ZjNxYurXq7g4xNNP+9m8OXYJu02b4JlnHK6/PkRD+gnMu4w9cCCHr7uOw9dei/+vf6Vo5UqCq1fje/dd+tTU0KemhuYxY2iYOpWm8eNxioq6u8siIiLiQXn/Tvdf//pXfvCDHwDu+wJDhgyhsLCQnTt30tTk/nE7adIkpk2bdtS+zz33HAsXLsS2bQYMGEC/fv3Ytm0b0WiUE088kblz51JQUJBRv/ROt+RSp7I3443xS/Vd4j/8AaZMaR/oBgIwaZKbaG3UKIdoNNwaaIJ7/S67zMcHPgAzZ0JpKdTXu+8fv/kmrFmT+PrF4vcHWb26H6ecYvLUU7BkiRsUjxgBs2bBhRfCa6/ZXHZZ+tnLM82MblkWjjOQ5ctNampM3nnHXeZdXW0zY4Y7y3z66b6k1/j55x0uuSRRJvL21yt3783ngaYmCp96iqJVqyj4058w/vP5sUtKaJw4kYYpUwifeqq7fj4GL3z2ciHegx+v6a3j1xNo7LxN4+dtvXn8Un2nO++D7r/85S/84he/oLKykoqKCkpK3MzAkUiEVatWsWbNGgBuvvlmysvLW/erq6vjK1/5CuFwmJkzZzJhwgQMw2D37t386Ec/4t133+WCCy5g1qxZGfVLQbfkkmVZ2PZAVqxwg6mW4K662mb6dBvD2EM0wXunXhi/VALNH/wAmpvhqqsc1q6FmhoDw4BHH4Wnn3ZYtMg4KtA0jD2Ypkk0Wsr999Num9mzHT73ObCs+rQ/vy2B5q5dbsA/cyYMGgS7d7vB/KOPwtChmQWamQaxyUt9ORx3nEGiUzUMeOcdB8OIpnG/dV1Sue5k7thB0cMPU7RqFb42S83DJ55I49SpNFx+OfaQIe328cJnL5uSPfhJ9rsq3/S28etJNHbepvHztt48fj0m6G5oaKCgoCDu+4y33norr7zyCqeeeipf//rXW7//i1/8gqeffppTTjmFb33rW+322bJlC9/5znewLIu7776b/hlkrFXQLV0h0+zNXhm/VGo9RyLh1vekm5pK8Pn8jB9vJKwpbRgkDUY7zo4nl8tAM722/f4gjtOHX/3KYs6c2DOuAD/5icMbbxgsWhS/XTeYdzDNnSnfbz16pvs/2s3cRqOUvPIMgeVLKVy37kjtb9N0a39PnUrTeedBIOCZz162ZFLjPZ/1tvHrSTR23qbx87bePH49Jnt5UVFRwgRCH/vYxwDYuXNn6/ccx+Hll18G4NOf/vRR+5x88skMGzaMaDTKxo0bs9xjkezJZvbmfOPW6XZYuBDmzWtf63nePFi0yA2OWwK/UKiJgoLDLF/uJKkpbfHSS4nrTt97r8Gtt6aXpCyXCe7Sabsl2dprr/moqYkfcAPccYfBtdcmbve666CgwJ2JTPV+y3VSue7UMaHd8OE+KsYWsORfF3GgZjn1f/0rexcsoPn00zFsm8Lf/Y4Bn/88gz/5Sfp+97v4/v737j6FLpNJjXcREZHeKO+D7mRaZpvbJkWrr69n7969AIwaNSrmfieffDIA//rXv3LcQxGJpbm5mB/+0OSss+D112HhQnjhBfff11+HcePghz80aWoqabdPTU3iX1s1NQaFhYm3WbIELrrITVJWWenDtgcm7a8baCZ+eltd7WQUaKbadjBo/ScTuUnfvqSUiK6szKHNmzftlJfDtGkOhnEgrf66SeWMhO3OmJF5UrnudCTbu9kh27t7r0SLjqNx2jT2rF7Ne88+y8EvfYnokCFYe/dSsmQJg847D8rLKbrvPoz//Heop0rt89j+MywiItIbeTrodhyHF198ETgSRMORWW+/388xxxwTc9+ysjIAdu3aleNeikgsLfW0DePI/6D9/+9YH9qyrJQCzX79km/TshIondm4Sy4hYaA5cWLSJmLy+fxJ2778cli69MisYn09Kc2OA/ziF7FXEyxZAn37RjNK/NbUlLjdxkY8N8OZ7sxt9MQTOXjLLbz35z+z51e/onH8eBy/HzZvpt+3v82QT36SY77wBQr+8IceWfu75TOcSMfPsIiISG+U9yXDEvnd737Hm2++ic/n4+KLL279/uHDhwF3aboRJ8NsS0K2Q4cSz0qFw+F2724bhkEwGGz9/z1Vy7n15HPsybwwftGozZlnQk0NPPmkW/O5JQnTrFmwfj3cdJO7nWW55xGJGIwYkXiGd8QI2L8/8bFHjHAToLWoqTGZMqUEy2qOu09zczFXXmmwcCFxs5dXVRmsWpW4nVgOHSpK2va2bQa3335kn2XL3J/NnRu/3epqm2DwIEOGFDN6tMm995r06+den+Zmm8GDbeD9tO8Tx+nD0qUGP/yhm1Ru4cL2SeV++EP47ncNrr++L4aR3rXoTqnO3B51r/j9hM49l9C552K+/z6Df/c7wvfcg//vfye4bh3BdeuIDh1K4+TJNEydSvT443N8Jl0jGrVT+jy2/QznOy/87pTYNHbepvHzNo1fcnmfSC2eN954g+985zut2ckntplievbZZ7nrrrsYOHAgd999d8z9f//73/Pzn/+cwYMHc+edd8Y9zqpVq3j44Ydbvz7++OO57bbbsnciIr1UJAJvvQVTpxI3CdODD8Lxx0PLK9fvvw933pk40PzRj+AjH4FLL42/zbx57hL2lSvdrw0Ddu2C/yyAiamuDgYPBr8/fvbySCR5O7Hs3AnHHpu47eeegzPPPLKP3+8+mJg9O37d8N/8xi2XBu5Ea329e66O434/hVfZY9qxA8aMSRxsuaXIYNiwzI7RHVrGOJFU7pVWr7wC993nFkN///0j3z/rLLjmGrjiCijx7tLrSATuuAP+53/ib/PTn8KNN2Z+r4mIiPQEnpzprqur47bbbiMcDjNu3DgmTJjQ7ud+vx9wy4rF0/Kztu+Cx3LZZZdRWVnZ+nXLE5zdu3cnbN/rWmqi79q1q9dlIewJvDB+fn8hjz3Wn82bYz8V3bQJ1q51qKraRzjsLn+ORgcyYUKAdeviB5oXXugGlOXlibf54Q+PfG/ECAiFQuzcuSduf6PRgYwY4WbsXrnySMDe1siRyduJJRIZzIgRZsK2Dxyg3axiOAyTJ8OqVUfPjreU+rLt99m5M/ay5rpOJJQ2jCFs3574abb76oDDzp3eeYWn7RjHk+xeaffZGzIEvvlN+J//ofDppwk++KBb+/u55+C557C/+EWaJk6kYepUwqefHrf2dz6bPn0Qv/61L+5n7bOfjVBXt/voH+YpL/zulNg0dt6m8fO23jx+Pp8vpezlngu69+3bxw9+8AP27t3LJz/5SWbPnn3UUobi4mLALTfmOE7MpQ4ty8pLkswy+P3+1iC+o95wUzmO0yvOs6fK5/FraipOmn27psZgypRiTNMt0VRQcJiNG30sXGjGXYa9aZPDBz7gsGiRyTPPwOLFR7a5/no47zx3grFtxb+WTNuhUPxr5SY78yWsK55KO7GUlDQwe3Yxt9wS/3ocPuxQXU27EmHbtrmTpi1LvE8+2aGoKEpBwQFCoSbs9BOpp8RxoowY4UsanDpOFMjP+y+WbI5xu89eIEBjZSWNlZWY777r1v5euRLfW29R9OCDFD34IJHjj6dh6lQarrgCe+jQbJ5WTpnmHtatGxijxrvD9Onuc4RIZGCa5fm6Xz7/7pTENHbepvHzNo1ffJ7KbnLo0CF+8IMf8N577/HhD3+Yr371q/h8Rz83GPqfP1jC4XBrFvOO6v4zzTNkyJDcdVhE4sokCVM43MjEiTbV1bEznt94I0yYEOWUU2wKCuCkk+Dee91t7r3X/bqj8nKYPt1OmkzMzdhtJ0x2lko7sTQ2HuBzn0ucSO3MM2HGjOhR24TD7sz43LnQp08Uw6jLedbwQOBgStnWCwrSy4re3XI5xi3sY4/l0I03Urd+PfWrV9MwdSp2URG+N9+k7/z5DD79dAZceSWF69ZBc/6/Dx+NRnGcOqqq9rFhQ4gdO6Js2OBw0kkOY8caDB3qo6IivfJ8IiIiPY1ngu6mpiZuvfVWtm/fzoknnsjNN98cd2l4aWkp/fv3B+Cf//xnzG22bNkCwAc/+MGc9FdEEsu07rVh7GH16ginn27zxS+67xZ/8Ytw+uk2a9ZEMIw92Lb7yuzUqXDBBW7AesEF7tc33OAuyT7xRFiwwKa21t0nFYaxh3XrIixYYLfL2J1uO7FYVj21tQ7z5zvt2p4/36G21sGy6jt1fL8/iG2XAmXYdil+fzDjvrrB6dEPAFq4wWn6WdHzQWevcTQ6kLo6d6l6wmtsGIROP519P/0p7736Knt/+lOazzjDrf39+98z4AtfYMgnP0nf73wH39/+loMzza6WGu+G4XDJJQaXXGLyxhtHl1xLpTxfMtm8l0VERLqCJxKphcNhbr31Vv72t78xYsQI5s2bl3RZ+C9+8QuefvppTjnlFL71rW+1+9mWLVv4zne+g2VZ3H333a0Bejp2797dLqt5T2MYBkOHDmXnzp1aJuJBXhg/vz/I0qX9Ei7lXbDApqpqX8zgLRAopKmpBMsyiUZblvw2tbb7zW+arUnJSkvdJGLLlsEjj7iB7JVXRjGMAxkFhvGOnQ1FRX05eLAIn88kErHp06eBhob2M8bpHN+yLBxnIMuXu8t/WzLEV1fbzJhhYxh7iGZQzsqyLGx7ICtWWNTUGB2WFUczbjdfdNc1tt54g6JVqyh66CGsNiUtwx/5iLv8/LLLcAYMyMo5ZltnP9PJ5OpebssLvzslNo2dt2n8vK03j5/f70/pne68D7pt22bBggW8/PLLDB48mO9///txa2+3VVdXx0033UQkEmHmzJlMmDABwzDYvXs3P/rRj3j33Xc5//zzufbaazPql4JuyWdeGT/TLKOyMn4SptraCLYdO+NXMNiXQ4eKsCyDaNShpKSBxsYD2HYpkycHWkuRLVnSvhTZRRe5pchWrQphmvUZ9dvvD9LcXIxpmti2HfN91VS2iaWkpJT9+/34fAaRiEO/fmEOHcqsn+Be4/HjfXEzxK9bF8FxYl/jVM4hleA002vhFZ25xnFFoxQ8+yxFK1dS+NRTGKEQAI7fT9P559MwdSrN55wDMV6x6i62XUpFReJEdCNHwoYNmX32cnKdO/DK7045msbO2zR+3tabx6/HBN3r16/njjvuANx3tfv27Rtzu2OOOYavfvWr7b73pz/9iUWLFuE4DgMGDKBfv35s27aNaDTKCSecwNy5cyksLMyoXwq6JZ95Zfz8fj/RaCkPPACLFh2ZLZ092+Gqq9wl1x0/Zy373H+/u09LQD17tsPnPgeOY7N9u8UNN8QvRbZwIYwcmf4f6KnMtAEZzcYFg0Gam/vHPa+Cgn00NqYXqGY685itGcWumJnsbrme3QUw9u4luGYNRStXEvjrX1u/Hx0yhIYrrqBhyhSiJ56YUdvZVcawYYkfAhgG7NiR/mevK66z2z9v/O6Uo2nsvE3j5229efx6TND9xz/+kUWLFiXdbtCgQSxcuPCo72/ZsoXVq1ezdetWmpubGTRoEGPHjuWSSy5JWi4sEQXdks+8Mn6mWcYll/g4/vija1O/9RasXn30H+emOZTx4424AfUTTzj8/OcG3/te/OP+4Adw/fURwuH0/vBPZabNMMhoNi7ZedXWOtj2zrT6m+nMY7ZmFLtiZrK75Xp2tyPf3/9O0cqVBB99FKtNotDm006jcepUGidMwOmm2t+5vBZddZ298rtTjqax8zaNn7f15vHrMUF3vlLQLfnMC+OXycxVMNiXxYsTl9b65z8dzjvPSPrH+QsvRIH3stxfN2vzJZekNxtXUlLKokX+hOc1f77DF78Y5sCBdAKK9GceszWj2FUzk90vd7O7CTU3U/jMMxQ9+CAFf/wjxn/qw9nBIE2VlTRMm0bojDO6tPZ3bse8a66zF353SmwaO2/T+Hlbbx6/VINuz2QvF5Gepbm5mJqaxL+CampMmpqOzNodOlTEokWJg4hDhxIH3MB/fp7er7/U+mtQWJjeOQHs3+9Pel6LFhns3etPrbP/kUmG+HTHJV4m6UzG14syzcLfaQUFNI0fz/u/+hXvvfwyB265hcgJJ2A2NlL00EOUXn45ZePGUVJTg/nuu9k9dhy5LLnWbddZREQkCxR0i0i3yKROt2UlD6h37SKlP87tNP82T7W//fol36btOQFYFim1nW7OrIKCw1RXJz7R6mo3+VmLVM8zEDAxzTKWLu1HRUWA4cPb12P2+9MfXy/K5Bpnmz1kCIe+9CXqnn2W3WvWcPizn8UuLsb31lv0/fGP3drfM2ZQ+Nhj0JTbVQW5KquXD9dZREQkU97+a0dEPCuTmato1Em6z5NPwpe+lHib666DgoL0Enil2t/9+2P/LBCAadPgqafAcax2s8LRaGoPCiKRtLqc0cxjKud54olg2xbjx/uYM8cNro+ux2xxwgnJz8nrM5O5nN1Nm2EQPu009v/kJ27t79tvp3nMGAzHofCPf2TA7NkMKS+n37e+hf8vf3EHLcui0SiOU0dV1T42bAixY0eEDRtCVFXtw7brMk6c1xXXOa066yIiImlQ0C0i3SKTmauSkgZmz04cKBx/vMPUqU7CP86nTXMwjAOxN+hUfx2amo7eZuRIeO45GDXKLVs2fLjRbla4f/9w0vOaPdvhmGPSzyOR7sxjKuf505/aLF8eOzs8wKZNsGIF3H5775iZzNXsbmc4RUU0TpnCnocf5r0NGzhYXU3k2GMx9+2j+P77GXTRRQw67zyK770Xc0/2+xcKNWGa9ThOHaZZn5WHDrm6zpZltVu1MWQI7T6flmV1uu8iItK7KZFahpRITfKZV8YvkzrdpjmUykojwT4Ophnl3Xd9rF3r1uluKUU2axZccgkMHRohEkk/2VIq/QXabRMIuAF3ohJmbtZzK+l5pZu9vK1U6mm3SHaea9Y4VFQkT1a3YYPDpZcmOqf4ddi9qOUaBwIBQqFQwmvcLaJRCtavJ7hyJcHf/AajuRn4T+3v885za39/6lN5Vfs7lnTu5VT0hiz7vYFX/rsnsWn8vK03j58SqYlI3stk5sqy6qmtdZg/32m3z/z5DrW1DpZVj+PsYfDgCKNH29x7L7zwAtx7L4webTN4cATHyWxGLJX+dtxm0iR3SXniWWGToqLDCc+roGBfRn1ukc7MY7LztCw7xXfQ7bybAc6lUKgJy9pDWRlY1p78CrgBLIvmc85h36JF7Nq8mX0/+hHhT4zGCIcJPvEEA6+6isGnn0GfH/0I37//3d29jSubs+h+f5Dly82kn89AoDDjY4iIiGimO0Oa6ZZ85rXxy2TmqqioLwcPFuHzGUQiDn36NNDQ0H7JeLZnxNJpt2Ub8Kc4K+zWF+7bt5S9e/2t53XMMemWCcueeOcZjQ5h7NjEidJGjoT1620sa1fOxiFTfn+Q5uZiTNPEtm0KCg4TDjdmpW2vfPYsy8JxBrJ8uclv/vfvXPzeL7nSXEapvbt1m1B5OQ3Tprm1v/v0SdheLq9pLnV1nXXJHa989iQ2jZ+39ebx00y3iKQsXtmnrpLJzFXL7/SO/7bfxuiwTXZqFqfSrmUFcBwfpplaZvKWLN4dE4tlK9FYcfEAotGhwFCi0aEUFw9Iuk+8cSksdJg1K/G+s2ZBMOheoFyNQ7o6vrvbMeN6Pr+7m+3PqOMMbE2E98x7H+Or/JRj7Xe4jEd5tt8EHMsisGkT/b/2NQZ/4hP0v/FGAs8/f1Tafy9fU8isioKIiEi69F8RkV7Mi38w+/1+THMoixcXM3asyfDhBmPHmixeXIxpDsXv9+fsvFJpt2P/XnnFSLGEmYNpDuXuuwsYO9Zg2DAYO9bg7rsLMM2hFBQUZNTngoKCdu2616tz7TY3R5kwgYTJ6ioroakpmlf3V9tAM3bG9YFd2p9U5OJejrekOkyANVzGOfvXcs+33+bw9+YSPukkzKYmih55hNLJk93a37ffjrVjB+DNa9qW6n+LiEhX0PLyDGl5ueSzVMfPiwmETHMo48cbcftcW+sA0ZycVyrXyzCsdv2bNs3NWj53bvx2Fyywueoqg/PPT3xemSRSS+V6pduu3x9k9er+nHKKwVNPHZ2s7sIL4bXXHCZNsjn/fCsv7i+/P8jSpf2YMyf+s+YFC2yqqvZ1aul7tn935uIzmtaSamM3/s2bKVq5kuBjj2EecrPNO4ZB+OxzeHr4dVyxfBLNxH7nORvXNJfc+6I/c+bEX32xYIFDVdXevD0HcenvFm/T+Hlbbx4/LS8XkYS8mEAoGOzL/fcnTkr24ouwfHnsQK9lm0zOK5XrtXGjxdKl7fv3yCNw0UWJZ4VnzHAD10RtP/AAlJQkXxLeVnHxgKTXK5N2AT7zGaiuhtdfh4UL3WR1Cxe6X994I5x/Pixdmj/3V3NzMTU1if+TV1Nj/uc9/PyQq89oWkuqDYNweTn7f/xjt/Z3TQ3NFRUYjkPgT3+kcvkMdjKUhcymnI1A+z+28u2axnLJJYk/nxMndm1/8kF3v3IkItLTKOgW6aXyKQhJ9Q+8Q4eKWLQo8fvAxcUGNTWJt8nkvFK5XoWFBnfd1f7Y4TBMnuwGpPPmETOLdzR69H4dLVpksH9/ekvBDxwoSHq9Mmm3ubmYK680qKmBD38YvvhFGDPG/ffDH4Y77oBt2wxuvz3745ApL7272/J5CIf78/GPm0ybBn5/7G0zuYaZLql2gkEar7iCPQ89xHvPP8/Br3ybtxnJMexjNnezkdP4Cx/nJm6nFDchW75c03ha7uVYn89582DRIqiqMvL+wUG2ePGVIxERL8jf/xKKSE7lQxCS7h94lpU4CzhA377pJS5LVcv1CgTcJeO1te6sem0trUFRvGNv2wZnnXVkVnjHDocNG0JUVe1rrVOdWgmutLqMZeWmXdM0efFFOPdc6NcPfvtbePtt999+/eDTn3avU3ffX2154d3doz8PBrNmua8nrF/vBoIdZXINCwoOU12d+Dyrq90s8/FEjzuO/V/9DmcPf5P/5rcsZzqN/7+9O49vos7/B/6amRxNWnrR0wKLioLoylFBpAisB4iU+ygqwrLuIaiL16rrqovLzxUPRFSquF9FEYQiNwVdVlABkascCnJ4IQXpCT3TNNf8/ogJLW3TJM00meb1fDx8SJOZyWc+7/l8Jp98PvP5IAK/xWHMw8M4K1yCszeMxYm5G2AzyzAYon1KoyeB7IV1Xct1y2fdURsDBjjLeSj/cBBIan9Gn4goVIXHXYSIGgiFRoivX/DsdrnZNFdUQJHzcjgc6NcP2L7d2QiaPt3Zuzt9+oVGkcXS9GdbrUBOjrM32GaT680Gbrd7l2abzackK3ZcV15s3QqUlQG33AL85jfO/5eVAZ995jkv6n52azVyA9HQVFpT5WHWLGDGDGDFioY93v7kodVag7vucngcUn3nnY5mn2HW66vx1weBLbgFk7EUqTiLJ+PeRNXVfaGRbUj5ag26PDwS+i4dcXz0s9B+XwZtU132XlCiF9ZVD7rK54gRQL9+zv/n5DhfD/aPMa1FjY8cERGpBRvdRGEq2I0Qf77gRUWZMGOG5wk6qqtlzJzpeRt/zkuvr8YHH8iYPt3ZCGqsUdSpk4y//tXzZ8+Y4VxTvK7o6Npmz2vGDBkxMbU+pVmp43qbFw89FPg4+CtQDU2leFMe/vtfYOzY+q/7m4eCUIoNG2yYO9fR6CMPglDa7DEuztMaXSxGf3IvBul342ocxst4BIVIQpKjEP22vYzEQVcj5rYRMC5ZAqGiwuc0K9ELG+x6MJSE0iNHRERtDRvdRGEq2I0Qf77g1dRU4Pe/9zzpUb9+wF132RU5r3XrPE9KtmoVMG2a5/RNnQqYTPUbHNXV55o9r6lTgaqqcz6lV6njAt7lxZQpodXIDURDUynelId33gEmT77wd0vy0G63Q5aLMGVKGb780oIzZ2z1Hnmw2+1eHadunv7pT8DHHzuvi29xNf6Gl9EBpzEKa7EOI2GDBN3+3Yh9/HEk9+qF2AcegG7HjgZrfzdGqV7YYNeDoSQUHjkiImqruGSYn7hkGIUyb+MnSRIcjvZYtkzE/Pmie9mnmTMduPNOBwSh1Osv375LQlqa54eJBQE4c6b+kkharRZ2ewLef985CZgrzTNmyJg6FZCkEjgcjoCfl7fLLO3caYUkaTymr7G6Q6/Xw2qNb3I/rfYcamt965FW6ri+LDklSWKQrq+m6XQRMJujIEki7HZnL2agGlX+153elYevvgImTgx+Hl5Mp4tATU0cMjKannchCYV4IHYJHk98F9rvvnW/buvYEaaJE1EzYQLsTTyT4NMyZ2KJT2kPbj0YOpTM49bA7y3qxvipWzjHz9slw9jo9hMb3RTKfI2fko2QprT0C57RGI3KSiM0GgE2m3PI9sU9yIE9L99+JPAmfY2JiopHebnevV9MTK1fPdFNH9f5DHfLjutbXgTj+goWf+tO78uDDMAaonmYirQ0zzPWCwJw5rQDmv2bLqz9XVnpfr82IwOmSZNQM2wYYKg7QZp/P9L5wnWd6nQ6WCyWEM1j5bTWWvZK4fcWdWP81C2c48d1uonIaxaLGaJYAlkuqjfBl5Ja+iylyVQBSSqALJ+FJBU02qAN5Hn5OvGcN+lrTG1tDQTBCkkCBMGK2toav9NcV1XVOUjS2V/Tc7ZFDXlf8yIY11cwaLUG2O3tUVQE2O3tfZpV25vy8Ne/yoiIcG4jy54bt8HgzUSHHTsCNjtg7d0b5S+8gMIDB3D+9ddRO2AAAED/5ZeIe+ABpPTujZjHH4f2wAFAlltl4seL8zQU81hJHGpPRKQcNrqJKCjU9gVP6QmXLp6ZOSUFIbs+Liefqi8QsfOmPPzudwLS0qSQvS68mejw4okEZYMBNWPHojQnB4W7dqHikUdg69ABYkUFIpcsQWJmJhJvugmx77yAv//hrMdj+3vNKV32ArnEmdJCed4DIiI14/ByP3F4OYUytcRPbc9SimISMjM1yMtr+F56OpCba3Ovu+3PsYcP1zQ6UVR6OrBhg//DZpUgiqnIzBQ85IUMh8NzI6mtCFTsmioPf/4zcOutwIQJzjXf/Tl2awnIdeFwQLdzp3P4+aZNEMzOH95kjQZfRA7HvPJp2ITbYcOF5cdaUv6UKnuSJEGW22PpUmc8T58GOnRw1m933RV69VtdanwkRC33PWoc46du4Rw/Di8nopAXqBmUW4tSvUBqWx/XYIjG6tXAggXAs8+iXl48+yyQnQ2sWeN87r6tC2TsGpYHO9avl/HNN8CAAfUb3L4euzVotQZs3SpjzRpgzpz618WcOcDatcBnn8nNp1cUYRkwAGWvv46CAwdQNmcOLL16QbDZMLh8HdZhNH4RO+BlPIqbU460qPwpWfaUWOKstYTLIyFERK2FPd1+Yk83hTLGT1mB7gVS26zBdnsKMjJEFBQ4142ePBlITASKi4ElS4DVq4HUVGDHDgckqSDYyVWUkrFT23XhSm9pKfDcc8CwYYDRCJhMzqXE/vEPICHB//RqTpyAccUKGFeuglh8oefZ2rs3qidMQM2oUZBjYvxKc6DzWO2TkqkR73vqxvipWzjHj7OXK4yNbgpljJ/aKD8zc2B5OUv1GRmyHHpDzLVaA2prIyGKIhwOB/T6alit/k5Yp2TsQvO6aDr/Wim9Viv0n30GY04OIj79FILNBgCQIyJQM2wYTBMnwjJgACB6M5hPmTSr7QeTtkCp+15g6wtqCr+3qFs4x4/Dy4mIVKI1ZmYOJK9nqbaF1o334gmzOnTQtHjCLCVjF2rXRXP5JwitlF6tFrVDhuD8O++gMC8P5c88A2u3bhDMZhjXrEHCHXcg6YYb0O7llyFdPCb/IkrlsSiKHhvcgHOouSTxa1ioUqK+IKLwxdqeiCjI1DYbuD+zVIcCJZ6xVTJ2oXZdNJd/giDhoYdaN72OhARU/+UvKP70UxRv2oTqKVPgiImB5vRptJs3D8k33ID2EybAsHIlhJqGvZNK5XGo/WBCvlPzM/lEFHrY6CYiCjK1LZ9WU1OB3/8eHtM7dSq8Xpu8NSg1YZaSsWvpsQO5VJU3+ffhhwKmTJGDcx0LAqw9eqD8+edRkJeH8wsWwDxwIGRBgH7nTsTNnInknj0R89hj0O7b52xBQbn4hdoPJuQbtU1uSUShj41uIqIQoLb1cSWpBLm5MubMkS+apVpGbq4MSQqt51RrayMxf77nW978+SLM5iifj61k7Pw5thLDYr3Nv5oae/CvY4MBNaNH49yyZSjavRsVjz4KW6dOEKuqELl0KRJHjULi4MGIys6GWFioSPzU9kMa1adkfUFE4YkTqfmJE6lRKGP81CsyMh4VFXpoNAJsNhnR0bWorj7X4uMaDNGoqjJCkgTY7TKiokyoqWl5T3RUVDzKy/XQaACbDYiJqUVVVcvTG3jKT/LlmtVep9PBYrEEdG1jX2bMV2bdad/yz3W9ua7jQF1vfnM4oNu1C8blyxGxcSNE19rfkgTz74bCctckCJljUF4T6U5zTIwVVVX+/3jU1LrrM2c6cOedob1Ot1KUnJQssPc95/Wu011YoSEhASgpca7QsGqVs74Lnckt1Y/fW9RNifipZRJDTqRGRKQiWq0WopiKN9/UIyNDQFoakJEh4M039RDFVGi12hYdd+HCSGRkiOjQQUBGhoiFCyNbdFxXb+p//qP7Nb0CMjIE/Oc/upCcZKg1nrG1WMyQpFIkJQGSVBrQXkxv101WalisL/knikl4910jMjLEX68LEe++awzudSGKsPTvj8oFC1D89RlsHv8W9ulugGC3w/DpJsRMm4LIKy/Fjr6PYOgl3yAjQ0B2trPs6PV6vz6y4brrNnz5pQVTppTB4SgKqwa32iYlczgc6NcP2L4d6NYNmD4duOEG5/+7dQN27AD69eMz+URKUFt94S32dPuJPd0Uyhg/9RHFVAwfLjTZO5mbK8Ph8H35LeWOq0RvqnJaa93kYJe9YK87PXWqjCFDpJC9Li6+brviGKZhEaZgMVJxYU35vbgOizANR3vcgWWfxPpVRuiC1qgvAln2tFoDystjkZXVdN25fLmM2NjzfEQgQIJdd1LLBDJ+6vt+wZ5uIiJVMBii8d578Ng7+f77gNEYHRLHVeMkQ+HyjK1SS1V5k3933SVj8eLGGylA8K+Lxq7b4+iGJ/ACOiIfw5GLo1eNhU3Uog/2IRv34eNDqTh3252I2b0fCKOe6UBSY30BAOvWea47169v3fQQhQO11hfeYKObiCjIqqqMyM4WPG6TnS2gstIYEsdV6yRDapuszh9KDqNvLv8cDjvmzQvd68LTdWuHBpswHLdVr8LWxWfwIObhEK5FBGrR/dByRI4dgaR+/dDuxRchnTzZuglXOTXWF840e647588XQirNRG2BGusLb7HRTUQUZJIkeNU7qdF4/hLYWsdVqjdVaeHwjK2SS1U1l3+yHNrXhbfXbUyXRMzHg+iJg+iNPCzAfXDExkHzyy9oN38+kjMy0H78eBg++giCKbTWog9Faqwv1JhmoragLZc99aWYiKiNsdtlr3onbTbfnpNS6ritMSmZkmRZ+PX/9f9uC1pjGH1Tk7r5el34u464v/t5m77iYtdfAg6gN17s9AbO7DmDc9nZMA8e7Fz7+6uvEPfgg0ju1Qsxjz4K7d69Fy4oqseV7zodMGkSkJsL7Nrl/P+kSYBWG3r1hZrrOH/LB1EoUHPZaw4b3UREQRYVZcKMGZ6/sM+YIaNdO9961ZQ6rpK9qUpqqzOiXixYw+i9vS6MRpNfcWhp/LxJ3z33OJeEqmvGDBkxyQLMo0bh3NKlKNy9GxWPPQZb587Otb+XLUPi6NFIHDQIUQsWQCwoaPzgYUqvr8ZTTzk8zgT+1FOhVV+osY4Ll/qN2jY1lj1vcfZyP3H2cgpljJ/6iGIqMjMF5OU1fK+ls5crc9wkZGZqPBzXBocjdGYXBdQ3g3JL+bK2d6B4c10A8CsOgYhfc+nLzgYGDABct3ePZUSWodu9G8acHERs2ACxxrl+rCyKqB08GKZJk2C+9VZnF2+YU2oVhboCXfbUVsepbcbni4VS3Um+C/Ts5Woqe5y9nIhIRSSpBLm5MubMkev1Ts6ZIyM3V4Ykeb+8U2scV22TkrXlGVGb4u3a3oHU3HWh1Vb7FYdAxa/p9MlYvlzGgw8CNlv9MqLVnmvqYLD064eyefNQePAgzs+di9o+fSA4HIjYuhXxf/4zktPTEf3MM9AcOdJMzrVdztjJHmP34YdyyJU9NdVx4Vi/UdulprLnC/Z0+4k93RTKGD/1MhqjUVlphEYjwmZzoF07E0ymigAeV4DNJgfsuMHoTfWHUutXX4xlz6mp68LfOAQ6fo2lT6czorxc7y4jMTG1qKpqosHtgfT99zB+9BGMK1dCqjPU3PLb38KUlYWa0aMhx8X5fFy1UnvZU0Md11p5rCTWneqmRPzUUPYA73u6Na2QFiLyk8EQjaoqIyRJgN0uIyrKhJqaljeUKHRZrVYIgg2SpIPdbgvYj3smUwUkqQKyDEgSEKhJl9UyKZkvM6KG4vc9rdaA2tpIiKIIh8MBvb4aVmtNsJPVJGcvuxmyDIgiYLE4X/c3DoGOX2Pp0+vrr1cvCP59RbJ36YLKv/8dlX/7G/RffOEcfr55M3TffAPdN98g5l//gnnoUJgmTULtjTc6C2SICeT1pvay19S1HEpCOY/VVndR6FBD2fMFh5cThSCtVgtRTMXChZHIyBDRoYOAjAwRCxdGQhRTodVqg51ECrCLJ8FJSUFIT4Kjtkl71DojqtryuTn+xkHJ+EVGOuvVBQskZGQISEsDMjIELFggQRRTERkZ6fMxAQAaDWpvvhnn334bhfv3o/xf/4K1e3cIFgsMGzag/V13Ifn669HuhRcg/fSTf58RYEpcb2ote2oSinnc1uouopbi8HI/cXg5Kamlk84wfuqjtklw1JZerdaAxYtj8OijTf/WPHeuA1OmlLVo+JoSkzmpKZ+b428cnPvF4tFHmx5JMXeujClTzvscv9aY5KsuzeHDMObkwLh6NcSyMvfrtddfD1NWFsyZmZD9bei3kBLXm5Kxqyuc73utlce+8PVaCuf4tQXhHD9OpEakUgZDNN57Dx4nRHn/feczutQ2qG0SHLWlF2id9asDTY353Bx/46DRaDFqFDzuN3IkoNH4NlN4u3ZJXtW3MTFJPh3XE9s116Bi9mwU7N+Pc2+9BfNNN0EWReh370bcww8juWdPxD78MHR79rTq2t9KXm/exI5aJpTyuC3WXUQtxUY3UYipqjIiO9vzc7HZ2QIqK42tlCJSWm1tJObP91wdz58vwmyOaqUUeaa29LqobUZUteZzc/yJQ1WVEXffLWDBAuDZZ1Fvv2efdS71NWWK7/ViWZnkVX177pwCQ2H1ephHjMC5Dz5A4Z49qHjiCefa3yYTjDk5SBgzBkk33oio11+HeDZwPe1NUep6q62N9Cp2aruOQ0mo5XFbrbuIWoLDy/3E4eWknFSkpXn+EigIwJkzMmS58S9ijJ/aJCEtzfOkTc6Yh8pQYrWltz4lZ0QNbNlTdz43x7c4OOtFrRYYOxaYPBlITASKi4ElS4DVq51LfXmqFz0d15Pm6tuAkmXo9u6Fcfly59rfv854KIsiagcNcg4/HzIE0OsV+HClrjfncZuPXcuu4/C+77VOHvuaHk8uvpbCO37qF87x4+zlRCplt8vo2FHwOBNpx46AzSaH4qS35AfXJDjNxdxud0AMgfFJakvvxdQyI6ra87k5vsShbr2Yk+P872KdOvleL9rt8CqPbTbnJOOKz8QsCLD07QtL374QZs9GRG4ujDk50O/ejYjPPkPEZ5/BERsL05gxME2aBNs11wTso5W63uoe11Ps1Hodh4JQy+O2XncR+YOXOlGIiYoyYcYMz78SzpjhXGeZ2ga9vhozZ3qeVXbmTGdPYChQW3rVivl8gVL1Ymys3avjtm9vb/WZmOXISNRkZaF09WoUbt+OygcegD0lBWJZGaIWLULS0KFIvPVWRL7zDoRzvq8nfjGlrjdex8oLtTwOtfQQhQIOL/cTh5eTkkQxFZmZAvLyGr7H2cvbJlFMQmamxkPMbXA4QmcIsdrS21qUmL2c+ezU0nqxJccF7KExi7zdDv22bc7h55s3Q/h1eICs1cI8ZIhz7e9Bg/xe+1up6601ruNwv++FWl3ha3rCPX5qF87x4+zlRComSSXIzZUxZ45cb0KUOXNk5ObKkKSSYCeRAkxtk3ypLb1qxXy+QKl60WCo8Hhco7EmdGZiliTU/u53OL9wIQry8lD2//4fLNdcA8FqhWHjRrS/+24k9+2Lds8/D+mHH3w+vFLXG69j5YVaHodaeoiCjT3dfmJPN7UGozEalZVGaDQCbDbn0EmTqaLZ/Rg/9XJNLqXT6WCxWAI6yZcSlJyUTI2UKnvM5wv8rRebExOThHPnJPdx4+PtKC8vgsORgP79dR6fT+3UCfjySwtEMTg/iGqOHIExJweG1ashnT/vfr22Tx+YJk1yrv0d5f1M0Updb+qZxFC9Qq2u8DY9jJ+6hXP8vO3pZqPbT2x0Uyhj/NSN8VOvthg7fyYPU3zCMR95k57o6GScPy+6G91xcQ5UVBTC25mYT5+WYTBUo6am5T8AeKPRc6oqQ8Snn8K4fDn0n38OweF8rtZhNMKcmQlTVhYs11/vTLCvxw5i/JpjMESjqsoIjUaEzeZAVJSp1eJAgdEW605/KFX2lCzT4V7+OLyciIiI/CZJks+Th/mzT7DPISoqCqKYijfeEJGRISAtDcjIEPDGGyJEMRWAgI4dPX9Ox47A4cMCFi6MhCimQqvVBuecDB1hHTnSufb33r2oePJJ2C67zLn294oVSBg3DkkDBiBq/nyIZ874duwgxK85Wq0WopiKhQsjkZEh/ho7sVXiQBRISpU9Jcs0y59v2NPtJ/Z0Uyhj/NSN8VOvthQ7UUzyefIwf/ZRkjfpEQQJw4cLTW7z3//KeO89GY8+2nQ/xbPPAt9+61yqqSWTunnD5zyWZWj37YNxxQoY1q2DWF3tfFkQUDtwoHPt76FDgYiIkItfc0Qx1WPslIwDBVZbqjv9oVTZU7JMs/w5saebiIiI/KLVGnyePMyffZTkXXokfPUVPG7z7rvA3XcLSE9vfJv0dOC224DVqy/s8/77zmfPA82vPBYEWPv0QflLL6Hw4EGcf/VV1N5wAwRZRsQXXyB+xgykpKcj7ul/4n8vHMD+/Y03eFo7fs0xGKLx3nueY6dUHIgCSam6U8k6meXPd+zp9hN7uimUMX7qxvipV1uJnT+Th4XahGPepuc//wGGDvW8zVdfyRAEO5YtEzF/voj8fOeQ8nvucTa4J0wATp2qv8+OHQ5IUkHgTgiBzWPp5EkYP/oIhhUroPnlF/frh3AtFmEaluIulKB+702wJ4yry25PQUaG2GxeKBEHCry2Unf6Q6m6U8k6meXvAvZ0ExERkV9E0fOXKQDIzwck6cLXCH/2UZK36YmJaX4bQQBkuQhTppThyy9lfPUVsGCBc0j5gAH1G9yufTQaz5OV+SOQeWzv3BmVf/sbinbtQumyZTCNyoIZevTA13gVD+EM0rAS43A7NkKCzadjtwZJErzKCyXiQBRIStWdStbJLH++C42ak4iIiEKGw+HwavIwu93Ron2U5G16ysub38bmbHPCYjFDlmVMmACMGOF8hruxQW/OfQLfW6dIHksSagcOxLk3FqNP2lnMwALsQzp0sGIcVmMjMnEKnfA8nsCglOOtFr/m2O2yV3mhRByIAkmpulPJOpnlz3dsdBMREVE9en01Zs70/EVs5kznmrst2UdJ3qVHRnW15y+FM2bIaN/+wnGiokyYMaP5fdq1M3mfWC8pmcd6fTV+/1AM3sQM9ME+/BZf4xU8hGIk4BKcxRN4AZ+d7YbksTfC+OGHECor/T2NgAhmHIgCSalyrWR9wfLnOz7T7Sc+002hjPFTN8ZPvdpS7EQxCZmZGuTlNXzPOTOtDQ5Hw9nLfd1HSd6kB5CQmSl42KbhDLyimOrzPoGiZB43dmwtLBiOjXgo5l3cWPUxBLsdAOAwGGAePty59ne/foDY+v04wYwDBVZbqjv9oVS5Vra+YPkD+Ew3ERERtYAglGLDBhvmznWgUyfnc82dOgFz5zqQm2uDIJQGZJ9gn4PRWIncXBlz5sj1tpkzR0ZurgyjsWGPriSVeNxHkpSbaEzJPG7s2KmddLhx7ihceWwNSvbvR/lTT8HapQvEmhoYV65EwoQJzrW/582D1Mja30oKZhyIAkmpcq1kfcHy5xv2dPuJPd0Uyhg/dWP81Kstxk6ni4DZHAVJEmG3O4ciWizmgO+jJG/SExubjNJSERqNAJvNOaS8rKzQ43GNxmhUVhrd+7RrZ4LJVKHkqbgpmcfNHluWod2/H8acHOfa31XO4amyIKD2xhtRk5WFmqFDAYMhIOlpzoU4iLDZHK0aBwqMtlh3+kOpcq1kfRHu5c/bnm5NK6SFiIiIvKTVGlBbGwlRFOFwOKDXV0Oj0aKqyghJEmC3y4iKMqGmpnW+1FgsZoiiGbLsHEFssTS/jywLv/6//t+BYDBE+5wX3pyDzWZH3QGAzr89M5kqIEkVkGVAkgBTI48vNhZPq7Wm2WM3t58/cfFWs/ETBFjT01Geno6KZ59FxKZNMC5fDv3OnYjYtg0R27YhJiYGNaNGwZSVBWuPHoAg+BU7bwiCBoArjcKvf4cnf683Cg1K1Z1K1hcmUwU0mspffzQphMkUvj+aeMLh5URERCFAkiSIYhIWL45B//46dOigwYQJOpSXx+KddyKRkSGiQwcBGRkiFi6MhCimQqvVBjvZ9TR2Dv3767B4cQxEMQmSJPl9bK1WC1FMxcKFgc0Lg8EAUUxFdrYWGRkC0tKAjAwB2dnOzzP42Vvrb14omYdKpFk2GFAzbhxKP/oIhV99hcqHHoItLQ1ieTkiFy9G4vDhSLr1VkS9vQwfzK0OaOz0ej1EMRVvvqmvF7s333S+rtfrW5olqhHM64ZajvFr+zi83E8cXk6hjPFTN8ZPvVoSO1FMwvDhGuzf7/xbpwO2bwemT4f7tbpCcaKai8+hrvR0YMMGG2TZ/0l7hg8XAp4Xyh3Xv7xQMg+bE7DPdjig27EDxhUrYPj4Ywhm5zBWKzTIRSYWYRo+xjDYoA3J2KlRMK+bQAj3+x7jp16cSI2IiEgltFoDli4V633hGjsW+PjjxhvcAJCXB7z/vvN5ulDQ2DnUlZcHLFsmQqeL8PnYBkM03nsv8HkRFZXg1XGjoxN8Oq6/eaFkHjYnoJ8tirAMHIiyN95A+dHv8MnobOxBH2hhwxisxXqMQj464kX8Daa8b/2KXWRkvFexi4qK9+m4ahTM64ZajvELD+zp9hN7uimUMX7qxvipl7+xczgS0L+/Dvn5F17LzXX2ctd97WKdOgE7djggSQUtSHVgNHYOF+vUCfjySwtE0bdZbe32FGRkiAHPC7s9FRkZghfHlSFJ3veY+psXSuZhc5T67LqxuxqHMQ2LcDc+QBKK3dvs112Pzs/+HrWjB0OO9q7xrVTs1CiY102ghPN9j/FTN/Z0ExERqYQoNmxQJiR4bnADzvc1msBNUtYSjZ3DxfLzAUny/auHJHluXLmO7WteSJK3eezTYf3OCyXzsDlKfXbd2B3BNXgUc5GGMxiNNViHkbBBQm/LbsT/fTqSe/VC7AMPQLdjB+BwNHNcZWKnRsG8bqjlGL/wwOgREREFmcPhQMeO9V8rKUGD1y7WsSNgs4VGr0Jj53Cxjh0Bu91zY6oxdrusSF7Y7d7msU+H9TsvlMzD5ij12Y3FzgYt1mE0RmMdOuA0not9CdYrukM0m2FcvRoJWVlI6t8fUa+8Aun06SaOq0zs1CiY1w21HOMXHtjoJiIiCjK9vhozZ9b/QrVkCXDPPZ73mzHDuTZ0KGjsHC42c6ZzfVhfRUWZMGOG5wa1P3kRE2P16rhxcb49TuZvXiiZh81R6rObi10hUqB54hFU796F4g0bUD15Mhzt2kGTn4/ouXOR1K8f2mdlwbB6NVBzYemr6Ohar2IXE1PrU3rVKJjXDbUc4xce+Ey3n/hMN4Uyxk/dGD/1auns5ZmZGuTlOf/WaoEdO4AZM+B+ra5QnJ354nOoy5leGxwO/2cvz8wUAp4Xyh3Xv7xQMg+bo9Rn+5rHQk0NIj7+GMacHOh37HC/7oiORs3IkTBNmgRrz54QpUsUiZ0aBfO6CYRwv+8xfurFZ7qJiIhURBBKsWGDDXPnOtCpk3NY7IMPAsuXy3j5ZRmdOgGC4JxQZ84cGbm5MiQptCbVufgcXOmdO9eB3FwbBKHU72NLUglyc2XMmRPYvNDryzweV68v8+u4/uaFknmoVJqb42vsZIMBNWPHojQnB4W7dqHikUdg69gRYkUFIpcsQWJmJhJvugntFv4LmxYVNHlcrfZcILJFFYJ53VDLMX5tH3u6/cSebgpljJ+6MX7qFYjY6XQRMJujIEki7HbnkEKNRofKSiM0GgE2m3MYtclUEeDUB05j52CxmANybKMxWpG8iI5OwPnzWvdx4+KsqKho+Y8a/uaFknkYrM9uUewcDuh27oQxJwcRmzZB/HXtb1mSYBs6DOVj/gDrkEzYBA1iYmpRVRU+De66gnndtATve06Mn/p429PNRref2OimUMb4qRvjp16MnbqpKX5arQG1tZEQRREOhwN6fTWs1prmd2wDny9UVMCwfj2My5dDd+DAhTeSklA1ZgxMEyfC1q1bQD7LYIhGVZURkiTAbpcRFWVCTU3o/uAVary9TtRU9qg+V4x1Oh0sFkur10XBxuHlRERERG2MJEkQxSQsXhyD/v116NBBg/79dVi8OAaimARJktr05wOAHB0N0+TJKMnNRdHnn6Nq+nTYExOBoiJELVyIpJtvRsLw4TC+/z6E8nK/PkOr1UIUU7FwYSQyMkR06CAgI0PEwoWREMVUaLXaAJ9V2xIK1wkp6+IYp6SAMfaAPd1+Yk83hTLGT90YP/Vi7NRNDfETxSQMH67B/v0N30tPBzZssEGWlZtwKdif3xTBZkPqoUMwZ2dD/+mnEH5dK0yOiEDNbbfBlJUFy4ABgOhdf5MopmL4cKHJ8wynSdr84et1ooayR/WFal3Q2tjTTURERNSGaLUGLF0qNvolF3DOcr9smQidLqJNfr5HWi0wYgTOv/suCvPyUP7MM7B27QrBbIZx7Vok3HEHkvr1Q7uXX4Z06pTHQxkM0XjvPXg8z/ffdz6jTg2F9HVCAcEY+46NbiIiIiIVqK2NxPz5nr+6zZ8vwmyOapOf7y1HQgKq//IXFG/ZguKNG1E9ZQoc0dHQnDmDdvPmIfmGG9B+wgQYVq6EUNPw2dOqKiOyswWPn5GdLaCy0qjUKaiaWq4T8h9j7Ds2uomIiIhUQBRF5Od73iY/H5AkZb7eBfvzfSYIsPbsifLnn0fB/v04v2ABzAMHQhYE6HfuRNzMmUju1Qsxjz0GbV4e8OuwZkkSvDpPjcZzwzxcqe46IZ8xxr5jThARERGpgMPhQMeOnrfp2BGw2x1t8vNbxGBAzejROLdsGYp270bFo4/C9pvfQKysROTSpUgcORKJgwcj8s03IZ8969V52mx89rgxqr5OyCuMse/Y6CYiIiJSAb2+GjNnev4SO3Omc23ftvj5gWJPS0PVQw+haMcOlHz0EUzjx8NhMED7/feI+X//D5dc3wlbokZiNNZAC0ujx5gxw7nOODXUVq4Tahpj7Ds2uomIiIhUwGqtwV13OZCe3vj76enAnXc6YLGY2+TnB5wowtK/P8rmz0fhgQMoe+klWK67DoLdjiuObsAajMUZpGEuHsY1+Ma9W3o6MHUqYDJxve7GtLnrhBpgjH3HRjcRERGRSghCKTZssGHuXAc6dQIEAejUCZg714HcXBsEobRNf75S5HbtYLrzTpSsW4eiL76A6YEHYE9ORSJK8DDm4Rtci0O66/DfUQuwcck5SFJJsJMc0trqdUIXMMa+4TrdfuI63RTKGD91Y/zUi7FTL63WgNraSOh0OlgsFuj11bBaG85sHSp0ugiYzVGQJBF2u3MYZ2v2KgX78y+mSNmz2RC7Ow9YtBSGT9dD+PV7n6zXo+a221CTlYXaAQMASQrM57VB3l4noVR3uuoCURThcDgarQu82SZcuGLsqjuDXRe0Nq7TTURERNQMSZIgiklYvDgG/fvrkJIC9O+vw+LFMRDFJEgh2qCyWMwQxRLIchFEsaTVv+QG+/OVJkkSRN0lePPUKHQ7vBJJ1l8wK/ZVFKVeC6G2FsZ169D+zjuRfP31aPfii5BOngx2kkOSmq6Ti+uCDh00DeoCb7YJNxaLGZJUiqQkQJJKQzrGwcSebj+xp5tCGeOnboyfejF26iOKSRg+XIP9+xu+l54ObNhggywXtX7CyCeBLntNXxcy7rzqAN6+/v9gWLsMYlmZ+53aG26AKSsL5uHDIRu5hrcvQqHu9KYuEASwvmhEKMQvWNjTTUREROSBVmvA0qVio1+gASAvD1i2TIROF9G6CaOg8nxdCPjwaG8s/O0bOPfNEZzLzoZ58GDn2t9ffYW4Bx90rv39t79Bu3eve+1vCm3e1QUS9uxhfUH+YaObiIiIwlJtbSTmz/f8VWj+fBFmc1QrpYhCgdfXBRJgHjUK55YuReHu3ah47DHYOneGWFWFyA8/ROLo0UgcNAhRCxZALChopdSTP7yLuYCICNYX5B82uomIiCgsiaKI/HzP2+TnA5LEr0vhxJ/rwpGWhqqZM51rf69aBdOECc61v3/4AdH//jeS+/RB/JQpiNi4EbA0vvY3BY+3MY+JaX4b1hfUGF4VREREFJYcDgc6dvS8TceOgN3uaJ0EUUho0XUhCLD064eyV19F4cGDOD93Lmr79IHgcCBiyxbE//nPSO7dG9HPPAPNkSPKnAD5zNuYl5c3vw3rC2oMG91EREQUlvT6asyc6fkL8syZzmWOKHwE6rqQo6JQM2kSSteuReG2bai8/37YU1IgnT+PqHfeQdKQIUi47TYYFy2CcP58IE+BfORdzGWYzawvyD+qmL28qKgIX3/9Nb7//nv88MMPyM/Ph8PhQFZWFsaNG+dx3xMnTmDt2rU4fvw4zGYzkpKSkJGRgZEjR0Kn0/mdJs5eTqGM8VM3xk+9GDv1EcUkZGZqkJfX8L30dCA31waHI/xmI1YbJWYvV+S6sNmg37YNxuXLEbF584W1v3U6mIcOhSkrC7UDB4bd2t+hUHd6E3MArC8aEQrxC5Y2NXv5pk2b8Pbbb2Pr1q34+eef4XB4N2xj+/bteOaZZ7Bv3z5otVp06NABBQUFWLFiBf75z3+itrZW4ZQTERFRKBOEUmzYYMPcuQ506gQIAtCpEzB3rgO5uTYIQmmwk0hBoNh1odGg9qabcP7tt1Gwfz/KZ8+G9eqrIVgsMGzYgPaTJyO5b1+0mzMH0o8/BvakyCNvYs76gvylip7uVatW4bvvvkOXLl3QpUsXbNmyBbt37/bY011UVISHHnoIVqsVkydPxogRIyAIAoqLi/Hcc8/hl19+wdChQ3HPPff4lSb2dFMoY/zUjfFTL8ZOvXS6CJjNUdDpdLBYLIiIqILFYg52sshLSpU913UhSSLsdodi14Xm8GEYc3JgXL26/trf11/vXPs7MxNyZGTAPzdUhFLd6U3MW+u6UItQil9ra1M93ePGjcMTTzyB8ePHo2fPnoiIaH79u/Xr18NqtaJHjx4YOXIkBEEAACQmJmL69OkAgE8//RRldSo2IiIiCk8WixmSVIqkJECSSsP6CzRdYLGYIYolkOUiiGKJYteF7ZprUDF7Ngr278e5t96C+aabIIsi9Lt3I+7hh5HcsydiH34Yut2729za31qtAXZ7exQVAXZ7e2i1hqCmx5uYK3VdaLUGOBwJAJLgcCQEPS8ocFTR6PaVLMvYu3cvAOB3v/tdg/e7du2KtLQ02O127Nu3r7WTR0RERETUkF4P84gROPfBByjcswcVTzzhXPvbZIIxJwcJY8ci6cYbEfX66xDPng12altEkiSIYhIWL45B//46pKQA/fvrsHhxDEQxCVIYPdd+cV506KAJ27xoq9pko7ukpATnf50Fslu3bo1u07VrVwDAd99912rpIiIiIiLyhiM1FVUPPOBc+3vNGpiysuAwGqH56SdEz5mD5L59EX/33YjYsAFQ4TxFstwew4dr8OijzjWyZdm5zvWjj4rIzNTA4Wgf7CS2GuZF29cmG91nf/3lT6vVIi4urtFtkpKSAAAFBQWtli4iIiIiIp8IAix9+6LslVeca3+/8gpqr7/eufb31q2Iv/depPTujeinn4bm8OFgp9YrWq0BS5eK2L+/8ffz8oBly0TodM0/Uqp2zIvwoAl2ApRQXV0NADAaje5nuS8WFRUFAKiq8ryWntVqrTdhmiAIMBgM7n+3Va5za8vn2JYxfurG+KkXY6dujJ96hU3soqJgnjQJ5kmTIP34I4wrVsDw0UeQzp5F1LvvIurdd2G9+mqYsrJQM3Ys5Pj4YKe4UbW1kZg/33Pf3/z5IiZOjIIkqa8X3xdtIS/Cpvy1QJtsdLsayRpN06fnes9isXg81po1a7By5Ur335deeileeOEFr2apawtSUlKCnQRqAcZP3Rg/9WLs1I3xU6+wil1qKpCRAbzyCvC//wGLFgFr10J75AhinnkGMbNnA6NGAdOmAUOGAB6+F7e2oiLn8GlP8vMBnU6HpKTU1klUkLSlvAir8uej0Cl9AaTVagEANputyW1c7+l0Oo/HGjNmDDIzM91/u37BKS4u9nh8tRMEASkpKSgoKAi7qf/bAsZP3Rg/9WLs1I3xU6+wj12PHsCrr0L45z9hWLMGxpwcaL/5Bli5Eli5EvaUFNSMHw9TVhbsl18e7NTCbm+Pjh11HhubHTs6O8fOnm3ba1+3hbwI5/Kn0Wi86oxtk43uyF/XMTSZTJBludGhDq5h5a5h5k3RarXuRvzFwuGikmU5LM6zrWL81I3xUy/GTt0YP/UK99jJsbGonjYN1dOmQXPkCIw5OTCsXg2poABRb7yBqDfeQG2fPqjJykLNiBGQm/kerBS9vhozZzonDmvKzJmu9a/bdjzbUl6Ee/nzpE1OpJaa6hx6YbVa3bOYX6yoqAgAh0EQERERUdtju/pqVPzrXyjcvx/n3n4b5ptvdq79vXcvYh991Ln294MPQrdrV6uv/W211uCuuxxIT2/8/fR04M47HYqtix5KmBfhoU02uhMSEhAbGwsAOHbsWKPbHD9+HABwxRVXtFayiIiIiIhal04H8/DhOLd4MQr37kXFk0/CdtllEGtqYPzoIySMG4ekAQMQNX8+xDNnWi1ZglCKDRtsmDvXgU6dAEEAOnUC5s51IDfXBkEIzaHUSmBetH1tstEtCAL69u0LAPjss88avH/8+HGcOXMGkiThuuuua+3kERERERG1OkdKCqruuw9F27aheO1aVN9xBxyRkdCcPInoF19E8vXXI/6uuxCxbh1gVrZn1W63Q5aLMGVKGb780oKCAuDLLy2YMqUMDkcR7Ha7op8fSi7OizNnbGGbF21Vm2x0A8DIkSOh0Whw6NAhrF+/3v18QXFxMd58800AwM033+zuESciIiIiCguCAGufPih/+WUUHjyIitcWoLbfQAiyjIjPP0f8jBlISU9HzD/+4ZyQTcHh5xaLGZJUiqQkQJJKw3oYtcVihiiWQJaLIIolYZ0XbY0qJlI7duwYXnrpJfff5l9/eVu7di02bdrkfv2FF15AQkICACApKQl/+ctfkJ2djSVLlmDTpk2IiYnBqVOnYLfbcdlll2Hy5MmteyJERERERCFCkiTIUZ3xH8u9mH9mBnT4AQ9Ev4dp4vuILstH5HvvIfK992C96ir32t+O9u2DnWwi1VFFo9tut6OysrLB67W1taitvbBIvMPhqPf+oEGDkJKSgjVr1uDEiRM4ffo0kpOTkZGRgVGjRjW7XBgRERERUVsly+0xfLgG+/e7XrkcD1bMxsOYhXuv2IqXu7+DiE/WQnv0KGJmzUL0c8/BfOutMGVloXbw4JBa+5solKmipFx99dVYsWKFX/t27doVTzzxRIBTRERERESkXlqtAYsXi3Ua3Bc4ICH7u1tx+b03Y+rLJyGtWA7jihXQHToEw6ZNMGzaBHtyMkzjxqEmKwu2Ll1a/wSIVKTNPtNNRERERESNq62NxPz5npsC8+eLqInoANPvf4+STZtQ9OmnqPrTn2Bv3x5SYSHaZWcjadAgJIwcCeOHH0JoZGQqEbHRTUREREQUdkRRRH6+523y8wFJutBcsF11FSpmzULhvn0493//B/Ott0KWJOjy8hD7t78huVcvxM6cCd3OncBFj30ShTM2uomIiIiIwozD4UDHjp636dgRsNsbaTzrdDAPG4Zz772Hwn37UP7UU7B26eJc+3vlSiRMmICkjAxEzZsHqRXX/iYKVWx0ExERERGFGb2+GjNneu6NnjnTgYiIKo/bOJKSUD19Ooo//xzF69ej+q674IiKgubUKUS//DKSrr8e7SdNgmHtWqCmJoBnQKQebHQTEREREYUZq7UGd93lQHp64++npwN33unwfq1oQYA1PR3lL76IwoMHcX7+fNT27w9BlqHfvh1x992HlN69EfP3v0N78KCia38ThRo2uomIiIiIwpAglGLDBhvmznWgUydAEIBOnYC5cx3IzbVBEEr9Oq5sMKBm/HiUfvQRCnfuROVDD8GWlgaxogKRixcjcfhwJN5yCyLffhtiqX+fQaQmgizzZyZ/FBcXw2q1BjsZihEEAampqTh79ix4iagP46dujJ96MXbqxvipF2PXMjpdBMzmKEiSCLvdOaTc6x5ubzkc0O3YAWNODgwffwyhthYAIGs0qL3lFkTMmIGzPXtClqTAfi4pLpzLn1arRWJiYrPbqWKdbiIiIiIiUobFYoYomiHLgCgCFosCHyKKsAwcCMvAgSgvL4dh3ToYc3KgO3gQEZ98AnzyCZISE1EzfjxMWVmwXXGFAokgCg4OLyciIiIiolYjx8TANGUKSjZuRNGWLaj6y1+AxERIxcWIevNNJA0ejIQRI2BcsgRCRUWwk0vUYmx0ExERERFRUNi6dUPlP/8JnDmDc+++i5ohQ5xrf+/fj9jHH3eu/f3AA9Dt2MG1v0m1OLyciIiIiIiCS6tF7W23wTx0KMTiYhhWrYIxJwfaEydgXL0axtWrYevYEaaJE1EzYQLszS0yThRC2NNNREREREQhw5GYiOp770Xx1q0ozs1F9eTJcLRrB01+PqLnzkVyv35on5UFw+rVXPubVIGNbiIiIiIiCj2CAGuvXih/4QUUHDiA86+/jtoBAwAA+h07EPfAA0jp1Qsxjz8O7f79XPubQhYb3UREREREFNoMBtSMHYvSnBwU7tqFikcega1jR4iVlYhcsgSJI0Yg8aabEPnWWxCLi4OdWqJ62OgmIiIiIiLVsHfsiKqHH0bRzp0oycmBaexYyBER0J44gZjZs5Gcno64adMQ8d//AlZrsJNLxEY3ERERERGpkCjCMmAAyl5/HQUHDqBszhxYevWCYLfDsHkz4v/wByRfdx2i//UvaI4fD3ZqKYyx0U1ERERERKomR0fDdPfdKMnNRdFnn6Hq3nthT0yEVFKCqIULkXTTTUjIzIRx8WII5eXBTi6FGTa6iYiIiIiozbBdeSUqnn4ahXv3onTRItTcdhtkjQa6AwcQ+/e/I6V3b8Tefz9027dz7W9qFVynm4iIiIiI2h6tFrVDhqB2yBCIJSXOtb9XrID22DEY16yBcc0a2Dp0QM2ECTBNnAh7p07BTjG1UezpJiIiIiKiNs2RkIDqv/wFxZ9+iuJNm1A9ZQocMTHQnD6NdvPmIfmGG9B+wgQYVq6EwLW/KcDY6CYiIiIiovAgCLD26IHy559Hwf79OJedDfPAgZAFAfqdOxE3cyaSe/VCzGOPQZuXx7W/KSDY6CYiIiIiovATEQHzqFE4t2wZinbvRsXf/gbbb37jXPt76VIkjhyJxMGDEZWdDbGwMNipJRVjo5uIiIiIiMKaPS0NVQ8+iKIdO1CyciVM48fDYTBA+/33iH7uOST36YP4qVMRsWkTYLEEO7mkMmx0ExERERERAc61v2+4AWXz56PwwAGUvfQSLNddB8FuR8SnnyL+T39Ccno6omfNgubo0WCnllSCjW4iIiIiIqKLyO3awXTnnShZtw5FX3yByvvugz0pCdK5c4j6z3+QdMstSLj9dhjfew9CWVmwk0shjI1uIiIiIiIiD2xduqDyySeda3+/9x5qbr8dslYL3aFDiP3HP5xrf8+YAf22bYDdHuzkUojhOt1ERERERETe0GhQe+utqL31VoilpTCsXg1jTg60R4/CuG4djOvWwXbJJRfW/u7cOdgpphDAnm4iIiIiIiIfOdq3R/Wf/oTi//0PxR9/jOrf/x6O2FhofvkF7ebPR3JGBtqPHw/DRx9BMJmCnVwKIja6iYiIiIiI/CUIsF57Lcqfew4FeXnOtb8HD3au/f3VV4h78EHn2t+PPgrt3r1c+zsMsdFNREREREQUCK61v5cuReHu3ah47DHYOneGWFWFyGXLkDh6NBIHDULUG29ALCgIdmqplbDRTUREREREFGCOtDRUzZzpXPt71SqYJk50rv39ww+Ifv5559rfd9+NiI0bufZ3G8dGNxERERERkVIEAZZ+/VA2bx4KDx7E+blzUdu3LwSHAxFbtyL+z39Gcu/eiH7mGWiOHAl2akkBbHQTERERERG1AjkqCjWTJqF0zRoUbtuGyvvvhz0lBdL584h65x0kDRmChKFDYVy0CML588FOLgUIG91EREREREStzH755aj8+99RuHs3ShcvRs3w4c61vw8fRuxTTyGld2/E3Xsv9J99xrW/VY7rdBMREREREQWLRoPam29G7c03Qzx3DoY1a2Bcvhzab7+FYcMGGDZsgD0lBaYJE2DKyoL90kuDnWLyEXu6iYiIiIiIQoAjPh7V99yD4v/9D0X//S+q/vAHOGJjIRUUoN3rryN5wAC0HzsWhpwcCNXVwU4ueYmNbiIiIiIiohBju+YaVMyejYL9+3HurbdgvukmyKII/e7diHv4YST37InYhx+Gbs8erv0d4tjoJiIiIiIiClV6PcwjRuDcBx+gcM8eVDzxBGyXXgrRZIIxJwcJY8Yg6cYbEfX66xDPng12aqkRbHQTERERERGpgCM1FVUPPICi7dtRsmYNqidNgsNohOannxA9Zw6S+/ZF/OTJiNiwAaitDXZy6VdsdBMREREREamJIMDSty/K5851rv39yiuo7dfPufb3Z58h/t57kdK7N6Kffhqaw4eDndqwx0Y3ERERERGRSsmRkajJykLpqlUo3LEDlX/9K+ypqRDLyhD17rtIGjoUibfeish33oFw7lywkxuW2OgmIiIiIiJqA+yXXorKxx93rv29dClqRoyArNNB++23iHnmGefa33/+M/RbtgA2W7CTGza4TjcREREREVFbIkmoHTwYtYMHQzh/Hoa1a2HMyYHum29g2LgRho0bnWt/jx8P08SJsF9+ebBT3Kaxp5uIiIiIiKiNkuPiYJo2DSWffIKizZtRdc89sMfFOdf+fuMNJA8ciPajR8OwfDmEqqpgJ7dNYqObiIiIiIgoDNiuvhoV//oXCvPycO7tt2G++Wbn2t979yLukUeQ3KsXYh96CLpdu7j2dwCx0U1ERERERBRO9HqYhw/HucWLUbh3LyqefBK2yy5zrv29YgUSxo1D0oABiJo/H+IvvwQ7tarHRjcREREREVGYcqSkoOq++1C0bRuK165F9Z13whEZCc3Jk4h+8UXn2t933YWIdesAsznYyVUlNrqJiIiIiIjCnSDA2qcPyl96ybn296uvovaGGyDIMiI+/xzxM2YgJT0dMf/4B7Rff83h5z5go5uIiIiIiIjcZKMRNRMmoHTlShR++SUqH3wQtksugVhWhsj33kPisGHOtb//8x+IpaXBTm7IY6ObiIiIiIiIGmXv3BmVf/sbinbtQumyZTCNGgVZr4f26FHEzJqFpN69gXHjoP/f/7j2dxO4TjcRERERERF5JkmoHTgQtQMHoryszLn294oV0B06BKxejfjVq2FPSoJp/HjUZGXB1qVLsFMcMtjTTURERERERF6TY2Nh+v3vUbJpE4q3bAEeegj2+HhIRUVol52NpEGDkDByJIxLl0KorAx2coOOjW4iIiIiIiLyi+2qq4BXXkHR/v0493//B/Mtt0CWJOjy8hD72GNI7tkTsTNnQrdzJ+BwBDu5QcHh5URERERERNQyOh3Mw4bBPGwYxMJCGFetgiEnB9rvv4dx5UoYV66E7Te/gWnCBNRMnAh7WlqwU9xq2NNNREREREREAeNITkbVjBko/vxzFK9fj+q77oIjKgqan39G9MsvI+n66xF/xx0wrF0L1NQEO7mKY6ObiIiIiIiIAk8QYE1PR/mLLzrX/p4/H7X9+zvX/t62DXH33edc+/vvf4f24ME2u/Y3G91ERERERESkKNlgQM348Sj96CMUfvUVKh96CLa0NIjl5YhcvBiJw4cj8ZZbEPn2221u7W82uomIiIiIiKjV2Dt1QuWjj6Jo1y6ULFsG05gxkCMioD12DDHPPovk3r0Rd8890G/eDFitwU5ui3EiNSIiIiIiImp9ogjLwIGwDByI8vJyGNatc679feAADJ98goj//Q+Fe/fCkZwc7JS2CBvdREREREREFFRyTAxMU6bANGUKNMePw5iTA7GsTPUNboCNbiIiIiIiIgohtq5dUfHMM8FORsDwmW4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoWw0U1ERERERESkEDa6iYiIiIiIiBTCRjcRERERERGRQtjoJiIiIiIiIlIIG91ERERERERECmGjm4iIiIiIiEghbHQTERERERERKYSNbiIiIiIiIiKFsNFNREREREREpBA2uomIiIiIiIgUwkY3ERERERERkUI0wU6AWmk04ZF14XKebRXjp26Mn3oxdurG+KkXY6dujJ+6hWP8vD1nQZZlWeG0EBEREREREYUlDi+nRtXU1ODxxx9HTU1NsJNCfmD81I3xUy/GTt0YP/Vi7NSN8VM3xq95bHRTo2RZxk8//QQOhFAnxk/dGD/1YuzUjfFTL8ZO3Rg/dWP8msdGNxEREREREZFC2OgmIiIiIiIiUggb3dQorVaL8ePHQ6vVBjsp5AfGT90YP/Vi7NSN8VMvxk7dGD91Y/yax9nLiYiIiIiIiBTCnm4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFKIJdgKodS1YsABffPGFx22WLFkCnU7X4PUTJ05g7dq1OH78OMxmM5KSkpCRkYGRI0c2uj0FVlFREe6//36vtp01axa6d+8OAFixYgVWrlzpcft58+YhLS2txWkMd0VFRfj666/x/fff44cffkB+fj4cDgeysrIwbtw4j/v6W75Onz6N1atX4/Dhw6iurkZ8fDz69OmDcePGITIyMtCn2Gb5E7uffvoJe/bswbfffovTp0/DZDIhMjISl112GW655Rb07du30f0+//xzZGdne0zPk08+iZ49e7b0tMKGP/Frad3Ishc4/sRv4sSJXh17xowZGDx4sPtvlr/AkWUZx48fx969e3Hs2DGcOXMGtbW1iI6OxhVXXIHbbrsN11xzTZP7874XXP7Gj/c+/7DRHaZSU1MRHR3d6Hui2HAAxPbt27FgwQI4HA7Ex8cjISEBp06dwooVK5CXl4dZs2ZBr9crneywptPp0LVr1ybfLysrQ2FhIbRaLTp37tzg/fbt2yMhIaHRfRm7wNi0aRM2bdrk837+lq/Dhw9jzpw5sFgsiI6ORocOHfDLL78gNzcXe/fuxezZsxEbGxuAM2v7fI1dQUEBHn/8cfffSUlJSExMRGFhIQ4ePIiDBw9i0KBBmD59eqN1KgDExMQgJSWl0ff4xdE3/pY9wL+6kWUvsPyJn6f7YXV1NU6fPg0AuPLKKxvdhuWv5Q4fPozZs2cDAARBQEpKCiIiInD27Fns2bMHe/bswdixYzFp0qQG+/K+F3z+xI/3Pv+x0R2mxowZU++XX0+Kiorw1ltvweFwYPLkyRgxYgQEQUBxcTGee+45/PDDD1iyZAnuueceZRMd5mJjY92VY2Nee+01FBYW4rrrroPRaGzw/u9+9zuvewbIP+3atUPv3r3RpUsXdOnSBVu2bMHu3bs97uNv+aqpqcGrr74Ki8WCYcOG4e6774ZGo0FlZSVefPFFHD9+HG+99RaeeOIJJU+5zfAndnFxcbj99tsxcOBAxMXFAQAcDgc2b96MRYsW4YsvvsDll1+O2267rdH9e/bsifvuuy/g5xKO/Imfi691I8te4PkTP0/3w+XLl+P06dPo0qULLrnkkka3YflrOVmWkZKSgszMTPTv3x9RUVEAAJvNhhUrVmDt2rVYvXo1rrjiCqSnp7v3430vNPgbP977/MNnuqlZ69evh9VqRY8ePTBy5EgIggAASExMxPTp0wEAn376KcrKyoKYyvBmNpuxd+9eAMDAgQODnJrwNW7cODzxxBMYP348evbsiYiIiGb38bd8/e9//0NFRQXS0tIwdepUaDTO31DbtWuHmTNnQpIk7N+/Hz/++GNgT7KN8jV28fHxeO211zBq1Cj3lw7AOVLotttuwy233AIA2LJli6LpJid/yp6/WPYCL5Dxk2UZ27dvB8D7odK6dOmCefPmYciQIe4GGwBoNBrceeed6NWrF4CG9SDve6HBn/jx3uc/NrrJI1mW3Y253/3udw3e79q1K9LS0mC327Fv377WTh79avfu3e7ncNrqszBtUUvKl6sXaPDgwQ2GcCUkJOC3v/0tAGDXrl1KJD3s6XQ6j49l9OjRAwDwyy+/tFaSqJWw7IW2o0ePori4GJIkoX///sFOTptmNBohSVKT77vKwtmzZ92v8b4XOvyJH+99/uPw8jC1a9cu7NmzBzU1NYiJiUHXrl0xaNCgBsOSS0pKcP78eQBAt27dGj1W165dcebMGXz33XfuX7iodbl+1e/fv3+TFeiRI0fwyiuvoLKyElFRUejSpQsGDRrEZ5+CyN/yZbfb3b/kN/VcY9euXXHw4EF8//33CqScmmOxWADA42RAP//8M+bPn4+ysjIYDAZceumluPHGG5t81o2U4UvdyLIX+lz3w549ezY5dw3A8tcarFYrgPr1IO976tFY/JrDe1/T2OgOU/v376/3986dO7FixQrMnDmzXk+p69ctrVZbbxhJXUlJSQCckytQ6zt//jy++eYbAJ6H0h09erTe37t378ZHH32EP/7xj14/30+B5W/5Ki4uht1uBwAkJyc3up/r9bq/UFPr+eqrrwB4nuzp5MmTOHnypPvvffv2YdWqVZg4cSLGjh2rdBLpV77UjSx7oc1qtbp7OZsbWs7ypyxZlt2xqFsP8r6nDk3Frzm89zWNje4wk5ycjDvuuAO9e/dGUlISBEHAiRMnkJOTg++++w4vvfQS/vWvf+Hyyy8H4JwBFHAOQXE9c3Mx13MgVVVVrXMSVM/27dshyzIuueQSdOnSpcH7cXFxGDNmDPr27Yvk5GTodDr89NNPWL16NQ4cOIA333wTUVFRuO6664KQ+vDmb/mq+++mZvp0ve76DGo9hw4dcg+fHDlyZIP3jUYjbrvtNmRkZCAlJQVGoxFnzpxBbm4utm3bhuXLl7u3IeX4Uzey7IW2vLw8VFdXw2g01pv4qS6Wv9axZcsW/PTTT9BoNLj99tvdr/O+pw5Nxc8T3vs8Y6M7zIwfP77Ba9deey26d++OZ555Bt9//z2WLl2KZ555BsCFoSWuySoa43rPNaSEWldzE8bceuutDV7r2rUrnnjiCcydOxd79uzB+++/j/T09CZvgKQMf8uXaz9P+2q12gb7kfJKSkrw2muvAQCGDBmC7t27N9imb9++DdYx7dy5M+6//35ERUVh06ZNWL58OQYNGgSDwdAq6Q5H/tSNLHuhbdu2bQCAfv36NTm8leVPeT/++CMWLVoEAJg0aVK9YcO874U+T/FrCu99zeNEagTAWYFlZWUBcD7f5vpF0VWB2Wy2Jvd1vefLMx8UGKdOncLPP/8MQRBw4403+rSvIAi48847AQCFhYX4+eeflUgieeBv+XLt52lff57FopapqqrCv//9b1RWVuLqq6/G1KlTfT7GxIkTodVqYTKZcPjwYQVSSc3xVDey7IWuyspKHDhwAAAwaNAgv47B8tdyRUVFeOGFF2C1WjFgwACMGDGi3vu874W25uLXGN77vMNGN7ldeeWVAJzPcRQVFQG4MFTHZDJBluVG93M10OsuN0Ctw/Wr/lVXXYXExESf97/kkkvcceMz+a3P3/JV999NDaNzvd7UMDwKLLPZjOeffx6nT5/GZZddhscee6zel0RvGY1GdOjQAQDLZDA1VTey7IWunTt3wm63IzExsckJuprD8tcyZWVlmD17Ns6fP4/evXtjxowZDUbQ8b4XuryJ38V47/MeG93kVnfWa9dkFampqQCcvx66Zpu8mKuB3tZnHQw1DocDX375JYCWrUXqirvD4QhIush7/pavxMREd9wKCwsb3c/1uuszSDlWqxUvvvgivvvuO3To0AFPPvlki4bGuYZOuuphCo7G6kaWvdDletTqxhtvbNGjUix//qmqqsLs2bNRWFiI7t274+GHH250GDjve6HJ2/jVxXufb9joJrfTp0+7/92+fXsAznUPXcumHDt2rNH9jh8/DgC44oorlE0g1XPkyBGUlpZCq9WiX79+fh2joqICFRUVAID4+PhAJo+84G/5kiQJl112Wb33m9qvscn1KHDsdjvmzZuHw4cPIzk5GU899ZTHZYqa43A43Oubuuphan1N1Y0se6GpoKAAJ06cANCyH6FZ/vzj6u3Mz8/H5Zdfjscff7zJId6874UeX+Lnwnuf79joJrcNGzYAANLS0txfMgRBcE968NlnnzXY5/jx4zhz5gwkSeLs163MNbT8uuuua7C+urdyc3MhyzKMRiNvUkHQkvLl2u/zzz9vMEqhpKTEvYycvz/IUPNkWcaCBQuwb98+xMXF4emnn27xj1dbt25FdXU1RFHE1VdfHaCUkq881Y0se6HHdT/s0qULLrnkEr+Pw/Lnu7q9nR07dsQ//vEPj72dvO+FFl/jB/De5y82usPI119/jQ8//NA9bMfFZDLh3XffdQ9VHjduXL33R44cCY1Gg0OHDmH9+vXuZ3CKi4vx5ptvAgBuvvlm9y+XpDyLxYI9e/YA8Pyrfn5+Pv7v//4P+fn5DfZfvXo11q1bBwAYNWpUs8OISBn+lq9bb70V7dq1w5kzZ/D++++7J5aprKzE/PnzYbfb0atXL3fPAAXeokWLsGPHDrRr1w5PP/20e21ZT0wmE1599VV8//339V53OBz49NNP3TPG3nTTTRx9oqCW1I0se6Fnx44dAJrv5Wb5CyyHw4FXX321Xm+nN/P78L4XGvyNH+99/hHkpmYxoDZnz549ePnllwE4h8vFxcXBbrfj9OnTsNlsEAQB48aNw8SJExvs+8UXXyA7OxuyLCM+Ph4xMTE4deoU7HY7LrvsMsyaNQsRERGtfUpha8eOHXjttdcQHR2NhQsX1nsev66TJ0/iscceAwBER0cjISEBAHDmzBnU1tYCcFZwf/nLX7hcWAAcO3YML730kvtvs9kMq9UKvV5fb6jWCy+84I4F4H/5+uabbzBnzhxYrVZ3fF2xTUxMxHPPPccfw7zka+xOnDiBp556CoBzKFzdeF5s9uzZ7n9XV1dj2rRpAJyT/SQlJUEURRQUFLgnAerVqxceeeQRzsDrA1/j19K6kWUvsPytOwG4y6IkSVi4cKHHIa4sf4Hl+i4COJ+jbirv4+Li8PDDD9d7jfe94PMnfrz3+Y9dW2Hksssuw9ixY3HixAkUFBQgPz/fXdl169YNQ4cObfK57EGDBiElJQVr1qzBiRMncPr0aSQnJyMjIwOjRo1qswUkVLkmjOnfv3+TDW7AOfFIVlYWTpw4gTNnzuCXX36BzWZDTEwMevXqhZtuugk9e/ZspVS3fXa7HZWVlQ1er62tdX+RBxpOWudv+frtb3+LOXPmYNWqVThy5AhOnTqF+Ph49O3bF2PHjuWKAj7wNXZ114wtLS1FaWmpV5+j1+sxefJkHD9+HPn5+SgoKIDFYkG7du3Qu3dvDBw4EDfccAN/BPORr/Frad3IshdY/tadwIWh5T179mz2mVKWv8Cqu3TX2bNncfbs2Ua3a2x1Fd73gs+f+PHe5z/2dBMREREREREphM90ExERERERESmEjW4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoWw0U1ERERERESkEDa6iYiI/HDfffdh4sSJ+Pzzzz1uN2vWLEycOBErVqxonYQRERFRSGGjm4iIiIiIiEghbHQTERERERERKYSNbiIiIiIiIiKFaIKdACIionB1/PhxbNiwAcePH0dVVRViYmJwzTXXYPTo0ejQoUOD7WfNmoVvv/0W//znPxEZGYlVq1bh2LFjqKiowPTp0zF48GDIsoxt27Zh69at+Pnnn1FbW4uoqCjEx8fjt7/9LYYNG4b27dvXO64sy9i5cye2bt2Kn376CWazGfHx8ejduzfGjh2L2NjYetsfOXIEzz77LLp3746nnnoKa9aswY4dO1BSUoKoqCj06dMHkyZNQlRUVKPnXVJSgjVr1uDgwYM4f/48DAYDLr/8cgwbNgy9evWqt21ubi4WL16M4cOHY+rUqfXee+6553Do0CG0b98eb775Zr33Pv/8c2RnZ2PQoEG477776r1XWlqKdevW4dChQygpKYFWq8Wll16KoUOHol+/fn7lOxERUVPY6CYiIgqCzZs345133oEsy4iJiUHnzp1RUFCAbdu24auvvsIjjzyC3r17N7rv0aNHsWbNGkiShEsuuQQRERHu9z744APk5uYCABISEpCamorKykrk5+fjp59+wpVXXlmv0W2z2fDaa69h165dAIC4uDi0b98eBQUF+OSTT7B7927885//xCWXXNIgHbIs4+WXX8b+/fuRmpqKtLQ05OfnY/Pmzfj6668xe/ZsxMTE1Nvnu+++w7///W9UV1dDr9ejU6dOKC8vx8GDB3Hw4EGMGzcOWVlZ7u27d+8OAPj222/rHcfhcODEiRMAnI3owsJCJCcnu993be/av+7rL774IkwmE3Q6HVJTU1FdXY0jR47gyJEjyMzMxJQpU3zOdyIioqaw0U1ERNTKTp48iUWLFkGWZUyePBmZmZkQRRFWqxXvv/8+Nm/ejNdeew3z5s1DXFxcg/1XrlyJm266CVOnToVerwcAWCwWVFRUYOPGjTAajXjiiSfQrVs39z4WiwV79+6t1zAFgBUrVmDXrl249NJLMX36dHTu3Nm9/eLFi7F582a8/vrreP755xuk48SJE9DpdHjmmWdwzTXXAHD2Yr/wwgv4+eef8c477+Dhhx92b19bW4t58+ahuroaN9xwA+69914YDAYAzp7pt956C6tWrcKVV17p7vHu3LkzDAYDTp48CZPJBKPRCAD48ccfUVNTg/j4eJw7dw7ffvttvXM7evQogPqN7nPnzuHll19GTU0N7rjjDmRmZkKr1QJwjjqYN28ecnNzcfXVVyM9Pd3rfCciIvKEz3QTERG1QHZ2NiZOnNjkfxf30ALA+vXrYbfbcd1112HkyJEQReftWKvV4p577kHHjh1hMpmwefPmRj+zY8eO+OMf/+hu+AGATqdDQUEBZFnGNddcU6/B7Xo/IyMDv/nNb9yvuRrpBoMBjz32mLvB7dr+D3/4Ay6//HL88MMP7kZsXXa7HRMmTHA3uAFn7/r9998PANi9ezcKCwvd77mGoMfExOC+++5zN7gBYPDgwbjlllsAAGvXrnW/LooiunXrBlmWcezYMffrrnwdOXJkvb8BZ+O6sLAQ7du3r9cQz83NRVVVFW6//XaMGTPG3eAGgK5du+JPf/oTAGDjxo0NzhVoOt+JiIg8YaObiIioBVJTU9G1a9cm/6vbsHT5+uuvAQDDhg1r8J4gCO7XXdtd7MYbb3Q31OtKSEgA4BzCXVJS0mza9+/fD6vVih49ejR4zhtwNnhdPb6N/Xig0Whw8803N3j9N7/5jbuhfOjQIffrrn/ffPPNjTZWb7/9dgDOXmez2ex+/aqrrmqQhqNHj0IQBAwcOBAJCQn13nP927Wfy+7du92f35iePXtCo9Hg+PHjsNvtDd5vKt+JiIg84fByIiKiFhgzZozHibRck3C5VFdXo6KiAgAanSyt7uu//PKLx/cvFh8fj379+mHXrl144IEHcM0116B79+646qqrcMUVV0CSpHrbnzp1CoCzkf700083eszy8nIAzt7ji7Vv377RHxUAIC0tDceOHcPZs2fdr7n+3VT6U1NTodFoYLPZUFhY6O6Vdw0Rd/W2OxwOHDt2DJ06dUJUVBS6d++Obdu2oaSkpF4DvO7QcrPZjOLiYgDAwoULG/18F6vVisrKygYTyDWVbiIiIk/Y6CYiImpFdXtwL55kzMXV2Ku7bV11hzdf7P7770eHDh2wdetWHDp0yN27HB0djZEjR7qfHwcAk8kEwDkRWWlpqcd0N/bscnR0dJPbu86tpqbG/ZrrfJo6b0EQEB0djXPnztXb77LLLoNer8ePP/4Is9mMgoICVFdXY+DAgQCcPdrbtm3Dt99+i4EDBzba6HadK+DsSW9OY+frKd+JiIiawkY3ERFRK6o743V5eXmjE6WVlZU12NZbOp3O/Tz5mTNncPToUeTl5WH//v1YsmQJgAvPQbuOP3bsWEyaNMnnz3L12Ht6r25PuOvzXL3nF5NludH9NBoNrrzySnzzzTc4fvw4zpw5A+BCo7ruDOfXXnstfvnlF8TExNSbcb1uXn744YfQaPgViIiIWgcfTCIiImpFkZGR7h7i06dPN7qN6/XGlunyRVpaGm655RY8/vjj+OMf/wgA2LJli/t913Bp1zBzX5WWljbZG+9qGKemprpfc/27qfM+e/YsbDYbRFFsMMu66/nso0eP4ttvv4UgCO7XUlNTERcXhyNHjriHoF/8PLfRaHT/wNHU5xMRESmBjW4iIqJW1qNHDwDAxx9/3OA9WZbdr7u2C4QrrrgCAHD+/Hn3a71794ZGo8GBAwfqPXvtLZvNhq1btzZ4/dSpU+6Jzq699lr36z179gTgbPg3Nnzbdd5du3Zt0Mvv6s0+cuQIjh07hg4dOtQb3n7VVVehsLAQ27dvr7d9Xddffz2ApmcnJyIiUgIb3URERK1sxIgRkCQJ+/btw4YNG+BwOAA4G7GLFi1Cfn4+jEYjhgwZ4tNxv/nmG3zwwQcNenLNZjPWr18PALj00kvdr8fHx+P222+H3W7Hc889hyNHjtTbT5ZlfP/99/jPf/5Tb+kvF0mSsGLFinoTxZWWlmLBggUAgL59+yIlJcX9XkZGBhISElBeXo7s7Ox6veTbtm3Dp59+CgAYPXp0g8/q0qULtFotTpw4gYqKigY92a5Gdl5eXr2/6xo1ahSioqLwxRdf4P3330d1dXW996uqqrB161asWrWqwb5ERET+4gNNREREraxz586YNm0a3nnnHXzwwQdYv349EhIS3BOEabVa/PWvf20we3ZzampqsGHDBmzYsAHR0dFITEyEzWZDQUEBamtrYTQaMXXq1Hr73HHHHTh//jy2b9+OZ599FrGxsUhISIDVakVRUZF7QjPXcl51XXnllTAYDJg1axZSU1MRERGBU6dOwW63Izk5Gffcc0+97fV6PR566CE899xz2LlzJ/Ly8tChQweUlZW5J3IbO3YsevXq1eCzdDodunTp4h4+fnGj2vW3LMto164dOnbs2OAY7du3x2OPPYaXXnoJGzduxCeffIK0tDTo9XpUVFSgqKgIsiyjf//+3mY5ERFRs9joJiIiCoIhQ4agU6dO2LBhA44fP46TJ08iOjoavXv3xpgxY/xanuqqq67CtGnT8PXXXyM/Px+nT5+GJElISUlBjx49kJmZ2aAhL0kSHnjgAWRkZGDLli347rvv8NNPPyEqKgqpqam48sor0a9fv3rPZrsIgoBHH30Ua9aswfbt23H69GlER0ejT58+mDhxYqOzm19xxRV46aWXsGbNGhw6dAg///wz9Ho9evTogWHDhqF3794ez6+pRrdruHlFRQW6desGQRAaPUa3bt0wb948bNq0CXl5eSgsLITD4UB8fDx69uyJ9PR09O3bt7msJiIi8pogy7Ic7EQQERGRehw5cgTPPvssunfvjlmzZgU7OURERCGNz3QTERERERERKYSNbiIiIiIiIiKFsNFNREREREREpBA2uomIiIiIiIgUwonUiIiIiIiIiBTCnm4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoX8fxWUadxi00iKAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10, 6), tight_layout=True)\n", + "plt.style.use('ggplot')\n", + "\n", + "# Scatter plot of the Auto data\n", + "sns.scatterplot(x=Auto['horsepower'], y=Auto['mpg'], color='blue', s=50)\n", + "\n", + "X = Auto[['horsepower']] # Make sure X is a 2D array\n", + "y = Auto['mpg']\n", + "lm = LinearRegression().fit(X,y)\n", + "\n", + "# Generate predictions across the range of horsepower values\n", + "x_range = np.linspace(Auto['horsepower'].min(), Auto['horsepower'].max(), 100)\n", + "x_range_reshaped = x_range.reshape(-1, 1) # Reshape x_range to a 2D array\n", + "y_pred = lm.predict(x_range_reshaped)\n", + "\n", + "# Plot the predicted line together with the data\n", + "plt.plot(x_range, y_pred, color='red', label='Fitted line')\n", + "\n", + "# Adjust the text size\n", + "plt.xticks(fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xlabel('Horsepower', fontsize=16)\n", + "plt.ylabel('MPG', fontsize=16)\n", + "plt.title('', fontsize=18)\n", + "\n", + "# Show plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "34765acf-c72c-4f4c-9c6c-7259c57c1535", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Task 2" + ] + }, + { + "cell_type": "markdown", + "id": "e9fbd0f6-598b-413f-a584-669b68fad554", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1. Compute the test MSE for the univariate linear model and note the training and test MSE." + ] + }, + { + "cell_type": "markdown", + "id": "d1f3413f-6ece-4238-a398-38debb776882", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "**Hint**:\n", + "First copy line $84$ and generate predictions $\\hat{y}$ for the test data. Then copy line $98$ and change it correspondingly to compute the test MSE." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94a8fac9-ef1a-4841-b67d-1fe0c053080d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "377b9c15-fdf7-4c6b-8cf3-187cff086e45", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "2. Compute and note the training and test MSE for a quadratic model:\n", + "\n", + "\\begin{equation*} \n", + " \\text{mpg} = \\beta_{0} + \\beta_{1} \\text{horsepower} + \\beta_{2} \\text{horsepower}^{2} + \\varepsilon\n", + "\\end{equation*}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e8cdb96a-1898-4000-b540-7b690557d353", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "b2d02d24-b07d-4a91-a65c-1fb83a175819", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "3. Redo Step 2 but add the term horsepower$^{3}$ to the regression. Then add horsepower$^{4}$ and so on. For each model note the training and test MSE. How do the two MSE change with the flexibility of the method?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d95f27b-33e2-41b4-b674-e7f44a883458", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.pdf b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2.pdf new file mode 100755 index 0000000000000000000000000000000000000000..c3fedd180c2b100d2ce4f46762a8cdb7460ffaea GIT binary patch literal 107640 zcmeFYb9kKpw=SF}X>6;pZJSNf*tTsOO=H_;W3#bsJDs?(^G^EvUT5R%_gwp&zxN+= zJu~yHkCyIxt$Bt_UR0cpiJlFHZ2$7?0fw2Gkde^N&=Q81mqFaZ+S$aBLEPHF*+kUD z$j;b=;hTxAnX@?|Gdm|2KR=9>+W+CC)pgwH3Os9zvWAX~=2 zO&_LLHj20!Ad|gQFXX^S2(ib*h`tt;N0J&DF|sSprAW$xz73DiJkS&$32Xzv zy!rj=FZ}${eP1+WXQ!kzS$w!_V1l~7UP!&X&_p>Q@?!;cmz6OfN|zo1 zTgQKLL;4l)bFRKpT&;0i{!)NB>ZPP{5Dod-pP9$W?!(|g-m7ltiSYLsvpqCjwLZoWJ zeCCnllCVPkd}dno>da`V8aHpIfSp%LO*K8%>pGm@Hh%sq;A+8H-XK{j{>sG^YRFRp z3y&H~!%HZP1_=$K+vVGX?^B|h`aNwpfG{hgk^C-m{3LXih{y`0sCiG5EDSbAAtlM4 z(x2vJZ$hL5RX~zS0@;M9wEr}i*po;Lsk|?BdPedX>fu?zLpfm=BT=Hgm*&b^rZ{J7 z{tq;w@SaFqZl$^BoQCZ$EU##LgeazvWGdIJS`^HJMI64fdxxMTGC+FL4sLL+&e-=~ zi`?8T%Y)C+0u3&SBb~-H8`F#7zNKv+I z4Ls*6>f3@?M^~%jZd}*h7iVw}VW>L`OA9NJ-=8M&Gg%;q6e#XD~sqxXXIG1 zr$f*ypl4n2ggQpEDK45is#EI%J>S0U?;iH8wby$P70pgBjc}U-HbA=}K%vVtiNN`K1jzUO;(f6S<7@b! zp{a7%T*<&6^fKZpDyVWMvN8NlGTD-m(NeBaqbAZ!ph;~ig{Q`@QR?TL2h@xbZH1U6 zf_U?vJhmR+O<36VYH}U5<*UsYKmluL+#z?KOdK_Wn#T=Vd36;B88WYhY*sOAr`VL- zJ?$}Jeb~Gj8p-K03(_g9bX-jR+iC7DREui5cC1X|DH&L5j4WyNRAaGdqk5y0#0ev? zO5*N~IrwOJW+jjmXyL^uyyC%=%H=!w)w+9@yl}1TW;Mz>5JxBM85N;@aoHwLjD06b zloU4fOKz;Fa~56%T)A~D{uSasVfX#(^dQ(|Wn|BXtEfhLPPenY!shI}O63yn?0PW_rZb9=FnKf?9(A?^9pb}x&RmhAYd=??kIJj@ zpU5|BI9R}8#U&a^t$$N^;#`#RWXymgGEyztV=?{Ix~ZvV+hM+5*%UeLG`*vxsx>&S zOKnoND)mRnV`YI2De>D_93TxH4BWT~ti$7 zZvo!$@o^kNL(GKt-tCI|TBCCSVemAt5kkyGoh~+$qhSWAmB;z}B{Zdp!D@+jk}-iF zCJ>LFtC?69&uzB!+9A4uQ>#ce5(gZ!iswFDO@|g-UI%JU8yiha))q37jQF(Mylh>DZTtTnZQrKn4X`Prl(Up=Za=0)%$PdqfTt_U`R}>RF?m?L+ zjZY62ECXMJYl=!JU~DEdDMe{=ybeLNlApA!YPTJ~VR2^oyGJKmr_8x#bTl^JEMG(_ z+rvtkl5DDSK9P5-ipnEWypkGUOuK!a~2Q>)FcLk^3R8tU%qT5 z`@5~};6t~3dK6+(wK3Z!Dq5k=z@p@6?LcnH39wqug#;5wR5UZ$F7f6S5wW0Y`$||NV)(Axpv1QIZBqTxQM4Q+tx8hoAC`K>F>9WVkj3nwe*_w@=6St zmKT~V^M5c}v(K$U)9tDaBD9-2lid!&GaPq@I?hMM4m-_4SIwI92q_1rbDY8sdq!n) zM8ULF6jX6;+4b5-++u~Qr(|IU9DSi4qqHwfxTgd;j>MKUp!Wd1oQf5$WK{>F&aBdL zLPgIWX_DN-#z#EmM+)|(R^cknQ*sJpc>?-_5a0s^s|t1`*`+CZiDbe?g=eV;;1oq= zByCFF-g`B{L+2en3#rPqp0-j!w7uTrPbwq*jT%`-YxR2@P&ReNfz7@+J zT((TzmBp-8@}#R(&4#a+Umq-VS{{v4mq?HN{OO3-lqj^Z6+_rXAml9&$f@zkMeE?g z0sNELA#K4q3?ba28K$6N|MUiR+rzO?t3VI(&*wffJ*9m1)t((Pw?s-%Co~vw*n_kAAjo4YN1iUEeC9OcreIxQRC*t1@#3`bYg*Cv$H# zvj_1$zd|~4UY%YEyu5gC1yI~&rDce+U+3u12`pWoyB3nM<}}X!xK@~ay)bCZ9IL2I z&TC0oU@p9`(~Q0$t~e0hoU&|vt5}F%s=7UNXfJSUztz>Kb*7ppLx)vjdqy;ZxwF&t zydVNVcd(vdy*>23e-fU7bAvIlHU5W-0^fbGS7y%t4vl4DWM}`6G*-rLgY&$ryVs8p z-$xoEP`{?fHlWpIdQBfeQg@cm8Dj0+;QcK=p7KYX?(Wf%ev{A)che(ncs`}?kMu5C zN0duBS>0cLOnh&j>I@;b}=WgZ%QY6DYkRvkr`M_=9&mw5GboFqYoF?+=nap$51Q0!T8jm0+xMxlU$z0%k8$H^e^CTfZ zPs7_&P2(NM-H4oF9U{FMay-@&E@fF7nHSV~BK6|57%Q5pyt4i_7>DNKjZ_H2+Cd$P zaj$rio{~Ky7a&AcSsK#Fte)$5(BNUo#a6yWr)_dwRPFo{!R4!8#k0WQu_n{TQ6FG3 z^hd8xSN>!b{&!>X5QjQc&v34Pu0#7uA`Sh|CvII;#p2pVN}FZD&>P9a)zE=Mv)Vxq zHpF&|`rNV!{ME{wq@^!5D-k_3v!-ry=(PN}L1!uZ%b6q{Y$`!YW~xhG@>AzKwe)z?(ZCGL&3F9)RmnR<*JJWocnWXSIia~L z_)<0b$1+|j=naZB4$O01sTa>cBPSI}qE;>RYsuy0EyicT-JuNKGRUt7PK9f%0n?K2 zu93W|*k8{i@YclhW+XNKG{F=rqMA^5(2RT=eO}M1&r;}G4@SV{dU8R4 zFuOJ@xNpRBvp}J9*`*K_*qR*SD;Aag%NxKQuw8dzpKwg8nZlNYIHDq&UfH1=!n}`J zF2BgmOi%htJZ{MRi1|44s=(-R2eB@fY}Kwx)q7sP*d)n? zeS&){qu0T6vBVEGSA4E3nOzmq1U50>o%KBD0m^Y*dL76zUvbP7dd2IjrrYZ#X(hk+ zWy&ol3%G2I$JFn&3&x>7^q0OmUc*I}!Uwj*Rm;*(^YSOcq0@`Rp*;>~6FHZ~|P?24RYZoOh?`uBg& z(@lp2YDNEugc2FAS=UKTM+^ZmDNgi+ZiR{_T8g3f8?n#e!kVy8=*B+MhT^*F2qu_IkRS(X(8q^*ZkB6*9EG!3_Ir@5K6YT$NJS>$s-A19`yT&H7Vubk*Cv} z{W%6BT3a#6g}ik^43FXW(t4koV0Chz57;!X{_LsNIqot@9oa9nku?a{Pkfc48*KKu zBvo;2janeINjkaKW4VG>gWb;4{$ZhR&3ZkpTKbGazZ8z~u<|SQq?|m>PRR(@Ch$0E^?;kKJu-{}<~ zFI>(PZTpk2WAU`$$5GEzDlSe2f)ii4LrtyXl_qM5x(ia;{iGoxMWuABnJ%)b1`2;0 z(vb|SoyCmpTYjnyb*T78Z(?6T(3LFy6v7)KUDwfBVo!hHKA_Z6xYby4=}0T}R3p`5 zu{-^n_Cn4%p87ZU3X0!sD6}1SY;43F9aqgk7{@?%q9Y)EG~Khm#VIIxIg8OZD$elE zT)^ZFHI8MtIVE9qV>lb3FNf{R&{n@>1OM?89t0-zA$kPG&k{L1V=8&$13c(K{9`V9}H-M+w4;IZuw&cZP}rzri|SqhamrwK{LG* zHK4hV*bxJhNE<7SY__H>jeU7TNa9=1pvgwP_)R?ZgDr~5;HMQcBAdg>hE%=YDHBz5 zgnZe7d8{#X($DA5Uprx*scx9H#ASSSqCNGc6<(lIYEDhJjA_wp*LulCwr z!ml-&I-QkL3LX2?spHRW6V;Q+7ZiiW_h~V|bG1I#8L!u;kIdi*(G9l^snXiz1Ar|IM27b+sa zdbfbnzE!|t`>Fk@*voml{j2>7pIDgY#HfXhG+L3+g_f1Gg*phWKb1TN5r%oxAF00v zaziFQvJDUlqecHL(}QGz`Arx#2)YOR+do1uz7UpJFSaE8rmZi25@D;t{RlUj`el}2 z{l?gn5I@@8Sl#7ZB*0$Ts5O4U;iISIuh>be{iJ05a$#e=YL@#rEEE665a;@7WR*tpfdN%F>?OsNF9^!q`g;l4~(aut?Ph>hT zZt2I;KQp$*3v%m4$k4=JG#sM^U{7lpHFE$cnu5u*$BcH?>IdpMylu5q?)Hvq{@!ILxElXVrB zr?w4P6sg|A*Se*zd+H;3n_=xBND*R+*!z(=fkfx&=%Y5&aNqvIVzC@}O;{}}M(Sc@&)tvVYdRJ3&MgVS<7-0ava zE=HlLt`~nfYhl>59?y2zYb(fMo}$J2fz+#kc)7Rr2HBK&`}2RVA6S_FJM{xI8|Qzh z9|p9gV@NmB9eh7H;_vhlbhvPOUfgd(DpSdw*$$^mrS zhHKfk@ciMJ!op*~T0aGZfOj3J@5;>+g|<)N($d1SKu!r__rs6+6_%-zBbEmK5Sp`+ zqd7YPCUPz#RVGv34lJXW+r0#5lymhKMNrMY6SVW5#tNGqZut-^c-o;e6?7L@n zdGK_`tZ!2!BvrSJLJj3gzbPOq`;BAZaK*v)?D&<(`%j-=cebDJYp)sMGmSSo*3>3! zRf)h{QM@a=ln}+m^0sM3;#EK#=D2V~P891Z#_H-7x6Ej2ngcX=<0BvITAC9en zt5k~4Q==)5GLDAbsN`a7kXQ>qHmWNMt=99|qR#|RFCQiapi=#(LhyEoHLC>RwD^-_ za(KZ@t$h=Br!-VasldeAndM#zD_34>cv&9})i=-F+5#>;__cf5#ggbrR^|egxhJ`tbk)U~U z=|6^}2i@-N0O17@h4P2_6ON?tY|2u~eU~VJ@mBYXu9rJE8m3Z3ILBXS&~3S|2G!|d z+N`R_#hb=+I|>T(32GSg`49T%5WM55H4U7Fo01JAhDl?I2f`Y*s_nkEBdI|2u;PT$ zFHGc(27Kto7H(f*RPzsL`@yP$FA*K&57jA+&k6>6+rMu+KP=zWODvfa(fnEffX+>{ zK|C~olyD`~Se!Cpx?{(yv>+Mdb}1+)d;@dwQ5b4|_P?|Wv3bI};jb|L>@Vj*#0`E+ zf52w9f*~ZZn|V&v+()IujJEnn9(1wI;YOp{B!G}*lEMJcG>oS7Y}F6LyOe0Xp%6!# zRTMA5-MeyhjomRdm?X$)m^LUU{cQA2s34UAR~&~$pNHlb!`@`&D2T9w!GpA1EKJVJEmMEB= z=7~S1P$-JGrkgF1JQRirYTANp!6Q}4#AiyKbY@iq+YO+rr>S!&vtfb!GO4RavFT=r zEqd(J$u*8-Yh|W1(n}3_zB`X{Xi*I}MNX9!t<6bf@O4XkXX5wnt!eYoF4%3y<~DqV z5%wa0@wW#|P+mBDbP$WtU zKTAzDb)Tpi&El_5+<;GySH9aX8K74UzBsBVg?H4}-v-H)NcAq&^4Ct)5lz%5gFtz}mX zx-_yD#e(M61%OzkxtI#9BKH4OH;P^kVCnS8cO`WEp+*=CzZR01|J^Gq(&if`%1a$s z^!JIf;M3*;t2mk#Uti8uHT88BPjlTObgl;_E~`*}{ISR== zZP~H)=Z;$HAXwi-D%TYjOpsh`o7OiW9am(b0XTaIJ+1M42|p2>pz94^jSBQ7o$TN) z4AZ556JI@MmDy?x=XY53R&?!8NYsB*bI@Y0iqxlBrcfLpD~n(6!r-pK`J=j4e~7)f zx~8c83xqjRsG708GmyDsjD`}h6GtGeusUIYAAlgSLV$noPl!ny#MIdFb`#D&r+M_knda_2Owkq z5w{Pvm!jf`7cN@fI#|@k)I{Fs&$kgRwMhjUMeZv0*=TkTu}|2-ICNeebwgRCqs|Em zn5_9%w64+LvMCy1wO<6f9+s#{AifM53<#Xxvd`U-%;A6XZ?lM83U`vCK~N7PV9c!B z-&CKJZp;i`Q1ALJQ3xJCl8MSYXi9p`=l7b&t^_msDTC_sfdM;76>c3Sz!Wt0heEEp(q`ZM+z_mIG%G41;#-+xB14XJX`pvaP0-gwLHc?;5 z;=Z^=I1Nrg`QA+Xx_4He?}$vJ!@519q0yGC2xlEnEeNd1qE8w=yD+cpp0n^^Pq!h# zW`rDLJlNSx5(^`mvQGv<$5C0zvxrx6O~-5dHWl<+Z_&)#;A76%=h;Rk)3u%?Vn_Xm z)pNu3B1lEXADW?~*CrO?O$tTw_4;oQV2JR0UQG(m%rjN9V@*m*vt7;f-45IQFwN{9 zq)BfzK4=J&=(P4dtK2E>@l>ZTtV8%0(M6iP*7#%i zM?r_Rrw;5_8R0}6Gl1M(@ziY6wQ$_^By01S9&f0u_$oIL;ZL|s+6zJ7mTCwZQ}L}e z&#{~*rF4h%!ET$_5qtDUAL!x83m+~q2AgZ74KXOh#uN(#E*s2$nv{}4o?0X)s)0Y&W|Y6XI{R*`n6cK^-ZUm^VTE%=3F%moCeZ6~*`rzT zqiRwKm0K$2d-YJ^A+d!Ysk`yK<)0QQJ*Crl z>24Hehn`{RWoLb3E-|&+tP^XwmV?a#`oiTzVm?9I35@Ht0qis8j@iMVCsASsOD*hR`U&ym1l46PPNCh8dV%4W0tjaWLC7^t7;ajyWro>;%z zy9b$ZOzS=V>fW3mdErPS9B!4Bdc`VXm~I9*33^P)87z^z_nQ>hxff7+vcKK(taLFa z!qZ%d8FH zhluz)o0Lu~^luW(cS;iq$*|-=PMC`2X9F^=1 zj7%6rOO$2a~b9R4Rc{F4tK zSow6NXZ{PQVEZ?y_}@~$qJ%Jml8k|q6(P$9q9`)_Uw{eB2bla9sPNx~4VM2JHei_8 z{!h3;$i~XW#`y1n<8%Yo9qphM^3u)pE;|;a)m{dCK0gyCgb+rmOa&Q!SO%07DGZs@ zzET0#ONt>-Mfx_8STh$bF5*XAI}-RWTy*7f?FRJE4f)_u1VMhu-zDV|8g+ zr?%`P4^@Ab;@?`8ks@5R3Z z@9))v>+gk-0rKN2sEhFTG$p7>MB$WHI z+XZ(ylk)IrtE^aPseS$r^qikQQntdPq`lxlL9G;=&wNe zbQfN)WHkpS##MIVy3xC@VOi@hec`Z=!LcbK1r=3M8ZGj#`G#{gP3pmaZQ{Yj`gYrY zO-6QHzw9j3a|;0!1?~nXhg6b^>f^f-rGFdGf>UvQHJ@O|zF}PcZ{Ip`R%&P{YNlT} zvy-tX)veh;A%9FlJuex|xYxomFaRwkCiQw1k5cp~rJLO!@5uh;*N07k7MAH}bC=g} zZK5I}QAKhuQL^X?r1wk(a|aR*JN6zgy!3{={6L*=q&YYM)YYxpuVa_Y{doA7 zkbiMc{MC)~MgUmKn}(wBt zoZ@+{pFr*Wx<2DhIZ({sJoM;5hR$-$aei^IMnpAhpxDf~|EdE%^v zXPZG*gv(%p>n1z6d`x~L%me(%CAJBVt`iXPZ-(kU_)zN%+|*cxvbhbHrol9{Q%_fh0$4%s0x%2wt7MtSvI)x4xvq{&G|a|F?{{9qob^K z)sYkpohpk{!!Rp8pO?x^vbDPj@4T3yysWhy02|{)1C#{WKR}{&(~8c_Y;oA5<^Dnu z?r3ctwV(;G^GIa+$H8`v=sh1sX|nUbYwKo{(Twd^|IVubNN3~|`@X+b6c*?A4J`fkS``O*?}N#TMRGsL}LsWpN7Wv@7an)6-PI4`n&1Bz`#dhs=YzVs`dV z9{cTC0cj~pfgA?v-G~TO;KRKHKml`Cb3KHr97;t4q6^7UzPk&GA6n&fKb@O|MW7Bqv1!e={r&A39s*3(z;NQv)X8NG@hoU zr4^xsr9dhvTx1U%=Z_@Xf9?xw)HlM(j}Qd9)-me zxYu%Zb!C?0b0_frC?_N&WNS-5X}Hh$ffmk>kJR^G=TbYaJb@qj&m|_#PU*hi^wRUW zT>wMmjg5_!cRNp})51fL$l>=n?|%19POPVrl$2yKn>4oD^f=18KAPI26-W5q7cRB) zaT+>ihU&^nT3Xsu;HEu2JvUnGX#Ji5C8rZ#+}3yaI?blCb=sUAxU+x+YR3B+bP~^JVNTb!!L`6l#*SAZyq>cq09sOuB%gD~QWd|Zh zgO*Le<7$6N&(CK`$8ASc9ARl&s1)skmrUnhUHQE~Z+YFFV)MG&SL=2vV^Y%5krh!l zbpbWXUmu^4urf7QA_v?#p<0oB1}*9o>T2Q#{SkH6wQXJls?@Yrom?*a)GqD#*zzuc zZqHWZoQ_?UDpW^BrKl~xZ{Rh%%8ET>!;bhpvBj-U?9?&>$Xxz%93amD5*dc-p}{Cz zxg7r2?I6S^o3+I)=JR#U#vc)0`5RMx%Q6}4ReIfmxmWPv_x80B$|+l+Xs+>eo?U;ptdCZ+`FeefQc@ zOG-(pu%!UK09`2>JXbf4{1x=?Sr;Xcb;<5YI@BK=jHNKRac9jH%j|hnr86=yF`b&p z$iTyPPGMr4W6+*2(w0Ma@|4^!22SRjq8t$Lc5Z5G;r9JRl8lcWv;5duj?Hi*IIU+NvWxvcAFitS=@0IY-6oXN2|?t z7oGMR8rVBpd8$$$QL5gVuGbPP;1Jm6TGYX-qpFG<&9hg2|B(f!S6R)T9VO%GwOi!f z+9n1z1Vc=YY}T6i{N7%G2Zn^l+3#GABav910)`&GSuNWpI7MN}2?Acr%~U+f=+sd} z_`~ilxU0lpya(pgnh#If_z{6Y_cSE%#^n3*P-`^QR$`CGq2J@5#pBim49-mtF6mLZ zY+foT;rF*!2MiI^K~-Xdt=ff(|3wXWdDen0e*-t@-_e1+?)UzB(Rsgll;hWBGM0=? zB3|>Yv!la%B%aKAG0SbUOkwQvi$$R-@s8BZiuiJL*`(nd3$vjI{$EN<$YAF26QodA7#z31KO5r}%^{kWy~r|H>Ec0i2eNIFHHf$sMVe&8S!KeLs4x1e6M#@Dyl+Wn_yML@7E1W1!&(39MlV%q9FNbeTl>Z_ z!_2)Y`;dx?26%uI_rdZqPDNwgf&|<0^WT)Di!ejq6UP%IwbePR)H#>d;!H)SJKnmu zYdR60#?2;HjqElLjlmltN^W_e=q}22> zzx3$bT*Wq!#%9}vQy@Irzcf^eF+7|_>$U`lhlLFhoOQD^by^=yDr{RU zS23>b7rXZPTY+6UUbf+|N}RJ|Ex+t9RO|`7Yd6~ym1K1-si>G}bg28#vA^z$Njq;I z0cQm&9#Zc-jz>kui!OtvCBwLXAWr;=9_kn~iO?R$3gE2WuyOPN`_BfkHtM5V^@2uH?du?&1Gj$k+$Y%5IGhUP+5Zwixg|kFk!n@;mOwwqm zkk`komj%7<Qe;jUjOeh364H*>^nV5ZZvMZK?!Pp3okC{b-_<(J8^>Q1V!vb|t zL5WwDM!j)zBCK%89Jc(%jjB^lU-6#d2MFvR$Rj3)Jx8tsEaUT>pPU)&UpV3MzZnfq z=ZnqPmsr;j>9Cb@I?@2>bt@1J68-|l3=o2#A4cSVyfxP zEsK_PNCN~&TRSx+l9wGsDcCf4++mjf*!FC~c1iQrnB>=uqu@Vk`iu&H*G3XMW*^aC zxlU)hnc!$}sZfd^T?g=tA#>R5>UqaC*_EWRjJ$U6a-`sUMbZt%;8z(hv#})w%8$hR z1_{-ypuoV=WmBA3kMMaVe*Z&z;bv5?ENr&sa+Pyy3em>ZRpFt=I(M5Va7?1 zz6El=K617?P(L>x8zyGM`^P|n_tP&R*iDH~b$liwCm-C>=4JRU_<5GJ&m1j0Vgd5j z`&uTQP5P3TZt-NILaibuq}AyAtgz_>&Oy$(XCUt}#6li&Px9sike3m16Kw@-x1<{@ zf8+=aj_dlBmV>bcHRHLeMH=8PBSS`#Gg$$%Uh}9okU>9yCW>iq0n0jzHyVdBB% zuNM$$55S+FGe^Vs5WTA}TyL&U&GONW2maBikSOn?Vh2`2McM~wMGdT5fO8Bg*^)lC zQnQy_q0pZ?Avy1v*Y$;SJCq{VNuj|wGeGwJB_xAW#OF%`}5T;fTsKWfhXSk`pn}pf+7zd4oc2SBNPnq^$>PVnSBh*na8f z1J?%%r&By4EFr~bBh%k{3ZbFGz&>tvuCV)HIw9gb{TW*SPQa}bg4t*9wcV-uEwZz1 zRbF*aaXGjcub^wk3;#hgiuJETKB}OSIPYgxHY%#T7w@jpFa~;ALTcC@HxKp}HwKHP z+k^xEJNdo49xuA&LfiGPJZ{IB42RlUjI0w_xA0rnq3Z}AArCt_eK?tgOZHt;Nr^;~ zF4tWfHIn|s?&a>(`WpBYqjlTVRZ-D=E6eQ(1$UOAeD_yi(*!Mb0~e1i-1UO|-tHzY zU5bl~cxYk1{rf7(xYuIciuto^I#Un~OuBRAQ|N^U>V=K5Zq5wYhj)F@D7x%G!v6mL zhl~hMT7~Ziqah*3d(AoA1K-`CBrlk#U|}dZ)O?t7+I(@m)Rp^j;fg(Dtj4j(7!X}y z-`Hs+e~6BpQg{(KT7#`$L!8qAb=sgkJXR1r_;7{*iMdHc+BsCXUK4QMnF3mNg1HKH zy=f(rE;^Q?1ZKy${H01wMdAxE=hahLdqUO1+fVg5@_evuI^@+9iLI*C_djcLIjWXt zWs@$5L?e)CY3)OW&UVu~xej}YyAR155}3fp3YdJKU6v#hD84&EjkNt8J((qKv&zXO>mxrkEuMO>OLN(D z`WC#{R0#Bmox^Do9-G5(v>#?+k(BQ)gwPmOZ#9t1QCj;QhsJY}+c`|DJ6qQ$$@3;Q1|QxK z7C+utw_6vgrrZeYp0~77^W+wr4+-c7KyM&g-7V9hKz`*fQ0Uxi9%DXw@;LAT`^-ab z0#weDj@2NXmuhlA?b?}8l){CjR{q$Ong{*4t=8@ZWpCq=(Ai(xg92@zV)=8u15EA- zPSmbhO9abc^SQ;+av9lSWF$*UdTRMhh}YeOB}T4^n4^nAG1!O;lo{#MKTkM+heTx(2cXX;}B| zk;|s`=`Mod;jn|p#dR>|QN#}(2<)UV-1j5^yEb0il5dW8Sevex<@aC^U{Tm23FNh2 zAV7v=&Z^3Tw@BIj1(+}WRpHLmx5Ggov*8Li#N=hPj}b(3(xuwn=HNM|$J6GEU^&cV z4Q`L!v*j?r^BOl1${e>4c1D4&4)l{5vYr5n#x)&Iyjt1-Qwvt<;&#`C&+&@S>xfuz z4YpbFaZ_0pyo|{Q(o=ii5tk$th37Xvk_9jehY|nW_1}GYRJ5e_s^)Dr{iqQ;Bfu;h z+8=fxo09qYbg<(nE)!ReeD%k%R=cv&>j;cnxNF#t&yaxQ8*G8y3N`3L&RlVpoA3Df zfuJyXv-xhdmy!vI-w(=rHxZeIVZL*iR5=5MKO8#r&OQmpXkIRd9+6=3bCP2F&;zOB z;KTSxt%)%fxR9P=epg)0eNbd1;3^S5&}@e0MA_5)Ls7!PjYx z|5i*Wm0IrwQo@o~8M*P5be^sOg(##CtPBznI2W*q6WE&V?t5dd*$|fP8P1!8vGP0+ zVbL30Aw@|}{$%sR_oDM=sk?kivnjH2(H}<_HgLNY^7nF_@>r?F*B$$_LsoVz+MmEK zqQANSM;j)dbc7imztVZdc*R2zB`JkQhdsw5v{kp@AJt^V^T#0mg5^HGy4^ zs|E(M4|mRzooP=f>J!=!Ck+(hPn0R=F0yW)FYS2xv=- zQ;y-Fk=E@@7fAsUU!abT4v_~M&|GoY1DlG}p3lIM+S`pvXGabwjvPxX`X`YK= zS}7t-O=!^q{tUZO$oBvpuTj1juT1hptG{^&zY*|I1hd%K*qbl5{_?ml+p96l<;C9Y z%V)EZ{#6<05mNEKtR^OQEc|(144X4{FmgxrXCbbwzDFTnurN&klpXR-@w&VG@q8d_ zt~LoUa#G({CsnElH*gl_=fB3IJwA^(XlJn7l$V!xC=o|XQ&Td^<^0UxNzrSL#%1(B zoG8fR0rZAQk0mBkpVdGj?0<<~Rkg2E-{t=Y{!%L{mD8(v9}8LSvJ*@K-o()j@9Aho zD^zvLehyFG<%u*{qPqZkQC3C=#|%Z5*PvG18BAh!(9&#SovmN_VzSt`r<~b zq{+DKVwwm{r?fN-p;GJ5-|>Vs9HQDN89D^_1_v%X*c|WJh1v1l<1x26WssoX_c)9b zfw5{X{+kU0z&dJlv7Dz&`^P>?VXCp%2(i4#m_89U8TgM10t0HJFb~N~-N@N~3<+uC%Po;!{~rI~dJap-3rU=fcV}XO^t2tikq+ z&6X^SS-ce!KLZ2)*5P-E101c%0)NIxM_>RCk7*g%cRz|_fcL$@zQR$~in z`kqvweZwfo0%j;Z&zxj&rDAy*8Bq>;MCq}mwyHA?dfkuT1BZ-FB+qBbAcEo(>m#*o zYQgiFwKIi&G&n{ft=jNH z&!nYO4-J(4JeV6>){mVq-J8s!h9A1V24uPY-W5yd)AD`uxRYom?uDHM*P1J^mHE*o zrnW964Ww7DPL50@B14-uzkg+Mi;0O9wyAgf=Fd^>_7RLv>XrQu_a@Bt*C);nGjlTCOuto+P2r&DVqbK)o?ufd zSq+6VC=qr$O_kTRefeFGnxe<<{X_+D-ep^=xl!7)ocsFY?Zxad+sph|*<(5vr~UQY z-WMGxwxyS%c`>o|7KfV>ffTl#enFn16A;*a;i@z31(&$k zv}O{pdj8U-8=n~{7`0T)8=Oq>rdn2&v{ZfMc5!EWEz{cCV1~%|RBAV-);LJ5tq}LK zMg8Z!m1p}#@tg$%Ijb%?_M^(N@S4blV-!TtFWY7gpH}fwwS72IphM-oL=9eFkrypR zbb4yAFk9lg3r0tvN=XG@Irbgp454Avd1qBrxwxK)V?<2ppRq-WINHfo%Yhp%sh@bd&Fmg1mLc_vyxsP+@^ri1pt{i@`bw6fW~UBhmXAf@Q{9LeK-4s-&&)c-E~hquY=ch1m&*o{zQ$%x8wHh`E|k0 zV!S;x*Xk#Bl&}L+8G@Bzeca%pdp56D0_l|+PMwhiw_`8{o#G(3PFJS4=30Bo%*li+ z4*>x~wa!@W7LOOZ&vR9sx-C6C?%&oT-xv0)hzcSgpwcBJE!`j} zAT2H3-JJsp0@Bjb-O}AC&CoT}3|%uYG(&R_e&64H@BMH7f_?Vcd#$~n=d;#f117+v z#)(Bw?X(i!oTlg6D<-v!+0jC4sAPYYDnWgW(NdC90N+WKN zU?d5h$d&EdnP2!dlN z#n%^olzr{j)hlsIvrVsB+>ROjDWrfo%H{YSIxP$2$QJjD;rh|^7BwQ%YtQsKmL;dB zOHDNs=skL>tA~9FJ-v~tuUpcj2Vq`$QqjGn4tYUXS`%7pj%jvNFozhiTg5Ka3xBEogu>$G7+#^)KBf z%G0MZuoL#w--eLoJbcthF67EWXC^&WRP42`S!}aRv08z3TYHc1Pyx}NW@E$B02W)B z1`#xW?o*|^*lM3{HcSEyCE$4ccz5G`JUSkkZPF(zBV%+O3CkV8K-+hfozESx#06IH zbmbKdYQ|Ilu7_}uxdJf7-|nfjvg-C*m{y`U+b+M4o1Q=W_Vk=kKTE%Ddo7yX?Zg$e zJT$U7Q{Ki&65}4-d+rHXJ9AO52pKAAtXo}P+IFYtukQm&1fU}8!;JrQ2) zU|Eh_WKKcatErj@yeWBDa!EZeLNcel&V<#a;*uB}Oox3cN`s^*y?s+qW$JBH_raLq~cWoAA|duVeGXEK(c_?)}99{gLjEh}kNhwZ3o>AKn`r7cxDM z^j2G9LP{kanmXq0ib--(9iOo&XGT9@2tp1J=) zi^~7Y-tn8ZyQ0I-%E3&4S0r6Q6X*NJB-ZQCia4)c#cVbH%R9xDpQ9q%rn0#XE~!aG zNT4^eP=?H##B1Ls*u$+y0=@5ps~!5YP^=r5=;#FhX9GMMZXMsRk=)u4$4+CTqn*Mb zR!L8_*`Ew4Et>|R(vee)lP&wbYzF05mo|*NGs&?NM9>c++-L6Bp7XUbGJ{Z6`{vM* z%);r?Vr1+teU4J59Jyd%38hMdbgoB-N}#ycaZ<-;6?_I6`ozPU$Pg3}XyjAZ)3(05 z;PXke9}EGZo)RbP8C2r z#*~QX40773?hXs}8-(obN28$xfd20n6@DyQ4#u8ID4;5NI}&8_(Bg@JkxrO05D zPL2?nY*f2_`h+<>Uy@?la5d1dy*PwL(Fz5an7V~`E<$~&~;c{P#^ zJ@q~eCjE^oY)CGq9~MohnD$~2jD2_OA+H=`1%3^)ex<4kxN@EDDs4h08n3IccW1M! z8{!z`LPJlGEsGmz3Bfq(g5JR^jcO_u$447~<=7dOHY`R9FbTF}r29vIepoDPIEtfx zJkHJq%ku<#K6`bLdV6TI!;)y~ z@JySJNBc-%cdm3an?d_^f~LL^cz>=YBs~IA-V#NwQ#uMJHL>&%U>gy2G&~K&oxvgL z_WS0z`>Xu-P@|8>5SX1*^h%yLx!b0k`mSmkIRYq~*T@zoA0d~5V+OGmkG<8!nkX`( zs|qy(s|acY6!TEW!6^iX@l>CaD*>5N^5u=FOMwbs0rJ~9;{J_UMYx3AVILMgexY=~ zVSsEAvb1!2)}SPIQ`_7u$je**Ap|GqZ3e&7YR#yqkmtd2=eI}LPXa9l?m3gY>thC` z3{yFJ28J3w1K-0Qz{(c&JTOdW8!O;vZBR5e!QLBj8i{|o(1xl;hbE^CW{Q*wd8wfG z8a7#VSSs3?;u8dfTtAbGsJV3eunFl54aTaYG+z8BV9=hWkEYlFwjFzWRsdR)PQwAN z)_&ZJXp$Z_>eH=_-K5)H3t6N->V1Jc9)G!%+ts(sm|j7T^Q9O5+7JHW1>H5%8ymV@ z^iNyd_he;d;d3>G3=N_H@euGBYa~s8%XND!gu=UDr0VzY-Kstc7k;uhdIb^=V{{?n zjg5^_(W~8J)j|ME$XHxleBe*6176`;_Q}(?OBZxwVr4xQ;CT`_U~aScZPLxa-%h_} zrrJ+L4hR;zpv$R<`?J4_{lbjRpLI4pS3ma*#f+C`P4XrVtci``z@hOTXG`Vf$+2{Z zSTlyS(dw0~a$3GPh4Nx2~wHx%kzfI-@IKf9xCdMCoYC4-#)iktX3j=M^lVjv>3 znu@>GCJb?Eu51f-s@mmyqGP{!s#S)BD5Y^q5{c?=LzK?AvkyPX_ocufNd>}gIF zE=k{ZO=6dk&8|yG;mi92!+%Oc`)iGkR=Fg$yq8OrKGmhb+Kg{&T8k2DB}B~CFz6hu z58UHUCdC5fRK=^e`_6071w%k$)!x=b{iL0EyM*vpZX_QOT3N0_tur^R^e5ZEWQ8>!m>xf zX^O!(eZs_RJKG79PZyl_b<5w|Z@)qU^ox^|(|x$0(y`wG(8&zI9-f%6rdO(mg80D2 zZhcXhuU_@G`LKc$3)DgHIKnHCp3o!%Qekm74~zH>rvINrr1&m15_I{+6Gks1v$He! zGc#kA!J%Uqbb^PPkn85$blGaP$^P<}$G1%=BOxI;hURf@76x*Fp5T zNFtMylaV|5#3riM z?%GnbBHEpmNA!B@)CAs1nuw>_Z$xqn@LVL zjS6=y`BaDqwFuJCY&v%g0hp9|9sRkEqzR?9jfupU(u~ThrcuC-{kAsf1gbxg7QNpV zfOzuNQ|hxmtQ~ZfA>t#LJ_2BRScGh3g09wM*u>L;oMZcX0XV>?h2L-6ye(JcPx!H7|Kc;Hq9H`W|%gntj z%nb87+nLW?@;Nb#%8=skU#YB6>df z=oIiroC5eqe#TG95Dq2iXcUNU7hGwQJ`e8xxZlQuUM=hFT=>E-2Cn@u7`i1|So8_i zPm>-{yu6fBG5Q+&|6HYBjD8vbKW%PY@&{tsJ(H&;3lMZXcJtiMb%su63_03^Z<;xI z1L5Y<(G()S=Z^bVOo^!fp=|D#Cp$k%Zr5DtTMq)1ikd{Yf3@ARU-XE0Nmkk1i%P|Z z>3m5OsiP_q4;8e<1@3Z0VWCzGVlq~;&p@{V!zq&gN0@o5cR=FIz>_djmblK3{hy6kvRXX3!=3R`T0EF7=U-9Iud30AqbX1yOs{m;X>al0t3n2l{kw9Cm1YDwugP)j>G`RrY; zQUD|hQ-#+1UcMi!V(LHKhk%(f zQmhlylK<%K+`#FN=@rK`A&(J@0Zzy)-?>JS)u-5Qd>eJ!=E>qIQzv~7y}h)#pyT$I zXqc`v?ySsGG|p{;pR#Pae&Hb&axQUVE;(_tMKG1qmdI|=b0_l(HJQlDZTWLo-+72= z1Hi>I;-7qYpO0`892|^Q^LH~Z$eSmeT&aB0BHM4n^KKW2zGH$Pb<;m??lml#Yn_)h zzyO+5GrZ?$L}-83wjMZav2DPg=T}x9toDQhC!D?UTxqIQ$@K2vcSNQD_~BAGIEiG) zG)=b5_h}@P!S}hNb)PHGU{5q>$xdb{vSDD_lP&a<53v_MNI9(Ahzm|{GIxY`DAG1Q z&G)}{8U*J$t@U5kBMyxIJJbkym@^9Xm4BY*h?q52Ex;&0^oBSkA0bE4voY|5K@$uA#1 zda}FNbbNzaq6Fs0q6&cb(uBQY$#w1t#BaP0A#uyRl9JcAH<}6+SG2$AvVejO+kqe~ zf;;V_{>^yl4B{4l`Hg4Cy%0bqHa1A(3*1y_+9<5=EAU%1TP(q@8WsMKgtevX+!Q30 zTv}<^5{rL|14$ypvb;-IEc6L1&v}b%W>%lat<;Nz1nSVO*O5@T1JiH0lfue=cedbw z+FRf=?f(g|g`V_&XLA;%8fC`G3QO%E5o|Sp2fhVh;r-)Lv88G=@DDtiF9rJg`t7Cz z_`C?!oak#to>hYBW+x1yeLAnsD z%?#1qA?~D@m|?}AMVi9(2!i-yYUm~uxd@dA+|ru2GbEkduHMoA4Vz6&U?hL5HMZ-{ zJi73OX>{g@Z9NxHC-JJJJO>njF0M5N8l?j35`6#9oDJ!>t}FL23U!l^2zVO?K*UJv z4T!$a-re=+ooAxFqGASzNiVRDu%0~w7|hp{l>XP}PKnp2+v6q^c`~emm$$(Yn2uHS z6k7B}41bt*evey{as;%UPpE(|PZN1;Ork-laut;jH#GPSGg%Cl2$F80A@k)^@Pq+=ryo^0`(Za^{IcJ-n8Ix71;0rg_i3(4kt@%SG7yHAo{=Yl) zn+#T}r*8c5`q?&+i74{H%B+XH>lp7W zjY7*%QnjUhwaanSDHM_)dmEI1^^6yv6xjP~ubkS%*b^rE@cG`zF)PosOT*YN{$bP9 zG)9a#MSmAs`!(k^gyi3y$s4g-gt&1<=I^YuziV27PZ=uXJ;vXdndYpU&e@7qq%S`q zs;%sv@u7*MXUw0`*%+|q`ByQa${do}SuWKL_@_UUq;nqt3&*%B5j=^n*Ip03U^v=2 z?2Bl@ZHucje%UsjB#Myp@-Mg^j*4NPS&z`>Qd@Ne)Y3Mk^iT>aVoG)ft*ABMn!qtUATf{$h-1!*d5= zlgqZaD-$UtQeluKseLxg5Y^-JVC%3?|4)~NBt0KKIB%0g)vq+p3b;%i9}UV5jwYox z((p6~Q2$Fq|Mr*YCuP(ybz6j<1#l>;?g>2xY`lfQAg3J$%zD^;6*6~ z!p;N6aNK$rr!;?altg}cW_LAf65QrftmsW*c)u+7BLRRE1(O4oB=T(R;zHJj*gXsQ z)fIxEWqe4PW7yQO_<7@2;t@447n?)#hXBZZL0Tgskc?`_dcHq~WDQW%6mrU;V+@U= zXmjoFNMRlFJ(TKe%qHxMPQu3r!tD2I&YSEHiFG!^qc-Y3iv+)Z3L#RVRy5BqLAEr)k4Mm{Cv^EUW+Qr?JV=EZoO8^ z@g06;Q%1g)s*+Ytr9|wjvt-C`4u`qFEy2050_E=gKLIUjK?L=4U|pYyz5ryFKi(G9 z*fbIMDLW=&PH37SSSM?Lmyh z=5>n)J{P;rQZr2Bmf6wNR?dzeU#t{oR5)G=@nL;^L-nnMc!NA*uYR`+{kX z8Vk*5|0=t7$(PGV{dNVnpiGC=20{Y3af#DRh zG{L$!Dz&LLk>hTS3c`;Z*_8*fPKZTaCMFf@B1$pEiwnS#vqxy026)35e(bSc?YLBP zGg-9QbE}zGJ+esZLPBM=P5`d92Ec4SO9i*=csYZadZ4@HU$h*Mh9tyiu)y;G-O)DrVl{7F|XO!rr3 zGU{Hl=KKj909_1avRhbWVy#>~^Cx9zd#!b}XOZZ8$&DKOpyn|%kw29kDC|sI*etHa z7G8^(1nI1TM!WD=f3p;8A>X`NUtsW^#k-ezzFUSDo*g^avPXB9Vwa6cP&L@ubnMl` z7j>_O`4Faxx0hlvXR2M6eYq!pm9}e`!fq11(^xjk%W+XzuAe3>cD`}Jl!a4b<9Em}p6jcU;qVfYp0Xr%%@mK8g!sxkyzho6Ig>Sd zf)2-Q?=?DJ5qc@m%xceK5Z3L?s$KmohL5lz8_S7MR`egkzX@1?aCx>d#uVp*43FDu z&(e~!oKZNbAk*dueI}^7b2o8(r*qi~I_XToGyzxuPl!YIW$@jJ?@oMd&J-iA`**6y z$i5z{NPH5?eGd)Yv?Z+=-ukysP5{R09$)LkNFoApnWGA3%?z{9qRGy>8!oX^Cg{q65q)VUuW>c-)sHxnr?l#qd1p%o^ z@*L*jS?dK%;uGkQm)9VMs2ks})KWDDTFr_~Iv!Ez0}93cf`Uk*L{zXc6VHm-9uw0Svi+ z66^P(VX$(CFn$HEn!ssOz=v`lkXQF-{g-r0cppH1VAPV%Oc_^&9-xv=h~%G1i`|+# zj{FUiVQ!%FG2lPmlAD{`x>0W}_i*50valHni?s7!2~aMiQO-L*pD!t?`SyE5_D2HV z2X)e)mBN1e`a*q&;yv}$r(il6(EH3EqQ12`gG1CAs|BsvcQq@F#YK|2uLp@v{IL$Z zz|~`Jfrn9u4k;wRX)G})MUUKCo0xnY*|y=;Hfd#Ok$mIu1_Nh*Hf7k(j#or3o-PzB zkJvpUsmRlCXh1-1c24VZJU717$~o1<@moZBFW99<0)+_>*up#g%>rN}7=OUfOZjE`NO!)RNKKLzI{_8<2na4LbKOc1L!B4WdBlVMo2&UKyGzSdw)SgI6hgh>yEkH3hZMqGd0ETk}cGjmLw6)dgQ_aMI`$TUd3kJ`;z4QW^HX1@knd{lPNw6wP#9v`w%?v| zxVAy_o!42_*xHx->}L zFK3xx6BF?jtcYQC)I3A_E18ZUscOg=tPm2ZZRZDSy4_X= z_eSp073g;9^~>ZJ_wA&FJu|EDJO9=jkqrn*-02F8Z?mvTxBon4B>7ks8F1ekuT;sR&5>$7^`{% zsOZT>>78QK_LhOj@iGB!bo++I=H7zUro6LQ)bMb=h|gPUaW=-4>mH!O1w<)NUnV^- zNKV*K>?HDp4LrhICB(d6%_@~Ez|OAEQ!h$G5F|+}Tol#m@EsUPzzDeG3fTgj(duj< zNWj!Tk@tlc7sA=RfciijqIVBs>_Xo-ewKItu> z_Uq?rXYeJpUZ9DjHIuXP7^fyP28n!#{Qh(r?>rJD%{1wcv`L8}|RC zhVc+4v1q9PAFQB}4hGl|X;|g_HcG3apDex#=_sruEFLW^VbV7-S96Mzw=)#3D}52G zKZ?3Itnao;7IGO;ZlTnP>e09vD>Yx@_Vywx zkuuZJNE{M%+;1=Cv^lfA$GrAdqp7>=k^LWyLM^DeNO=ZAzz)-&+|MsAoC!Sar8M9D zkI*L$_R9ne0U^K&0o3tFQ)bhrEJn5M6PU!@}#|V17A$+(E zY7w0RylHLQxrfho6`)$s=5fFf@M|0V&8S)gQ_K|a)c~31RQ~w+zX|P3_$~5tYr~=S zu=jAS&tm9T%+H_8BA}bgQ=q0fnbT~LCn-NKul43^K`7MD2X)2O zE*njCw8{I;a;R}>HI)1%^Bx5K@C1FYkMGcn-F4}siGGd&SuRpW%?~?a@x3(t1Y&K3 zHL{d(*z>nZA8f$Qgc)N~2)R7>y8R|`v4+Aw4M?=slfhv~=U+xk)qsv48Ge zdU)lCri^{`zrbnR>od9462=N1$v@5ch27!vuHz$zj++_dDqTR8J!MNyNf~_8lh`LY zDZw-MXzDYUp(vW%l~;gyUA=;g@>ylUU zp+ff)bPnDTave>Jj{tt29|q2ml)d>%mOP`P0&Q@ev=ojeN?swnlqYc z)PMIGVt%tO?q=$DA7Ea5)V~)|0n5SNW3{C^e6-trZ$6=>7A@Xrdaa~{C7@Fv{l5+p zb1G-8%1_OvisHAp!gcp3Ta%viwz*^mOsL@Z;E)u)UqkhF&jJ|xx2aPTao|f@=W6^H zVcs|FB6m98?$E#mu03?* zCnIARbEG#Vb z`l89loWh=n-oMj7t0r}rBW1nTOCV0CEI0iz++LihQGb0c&V!Tk5yoY8rEjBbP-m>R z%M!n1^ZbHFA3pQp30(5QNaEbuwBm+?@Q%JJ(8NiDXsVx7b8x^;g{B&Qb;}tU}A^StPR>-wiH{S z85tQA{jd1|3rpn~s8;?spUrD`b%aA5oem4r$@c0ktq^)45|fYo9WA=5?=3?-d$iaj zCl^Iofq?3mJIKm`CR_eNq13ag%WZN`9+m0IsTMlJTK>!!7q5rC>ONa9Yp8wJ(P+gt zmc;s6`tFuzZmwQvU(Mbqnw)@%DZ)q0Gye5$yy(v#cPZtBJA)$cbVL|JNI4_`+2#+@ z?h^w?H=>5Ih0RjmN|rmoT4m{1CI+{F!oJ0vK4}*HQDWi?&fZ?Tek95}7+J3G%Wz-yV7G&AXSKPL^shM%QRJJ;qWq&(C|C zYfd4!t`(cVOvuIQI=`d$wXoA7sW&qBc&oVR2e*4Jtl6&|RAi1NpZsQh3oIaDtgTJg zV${fVy3Sv0(l_6NEEybr<$pqxU6LZ^*ZP#4^g}8|L5F+p{vhKHt(y@TKqho`m`kP1 z`(GG`7FY`d_#!?&+WbPn_0qene(uYJ8CM?S!$Ok(L%0MEgCD_drwf%R&s+fF;FL{E zS9e!S)EX#5e$B2yITxeQ;W>_nDwS2^%1{scgn8DlI#b(@cE}vDJ^o6vBH`{B z(c$I|*MUoIlu5(h)0W*H_@|- zd4&z6JcoyM>>Yp(&uced3$(ld;@<1+HaVF0mjgzU0FO!J6dn0o7WP6t0 zpV%fsK51x%m0P0ZvF`_{Vw^LRh01_hM*L-Ww%+Z(>0o5K9u~WEQ1YH*UTZvUTd(j= zzfM?mIBWlgy0MTL!7?bU0Cg=x`La!<%i7vDQ@qbKa#41O_KB2IOQ7=Pz30)r*DiEZso@-=C4kkp;cOe(b?VKWeh>I4HT zw^2RjcFBi8P1Ua?E})XXxU5XC&U)I9Flx=%*f>IpCiRP+-kv@6;4RF;!a~{*d_@16 zRENt(V`z7d$?m!Nurpz1RBxqaqDqV%uU4J9x_x;pw+}1vX9bZx)fa?)NV#D4&d$Z+Kk(J-BaEAkYYguUL)dwkV+ThT8d z$vtjspPCB3SkQ_5QFY(aYO6U^qw+c-JwE46dn5lhC~55(^InN%?WGP-1Z$~<21o6< z1DFiV8O+Lpb+-~iIZMgf0v)L)Z9yod{V{AjozbE6J71}-t^FY~MUOx+{_l=is>8K@ zv89DnS4v)=nHTyP+bs%Wxs@$;-O156qhpWG@LZkP&ajr$ln{8F(|`36F60rYUW zLhUb&ngPcr8mWk1f^Kl&RI+wchZj}dnil^CS@$o1inWm>9Py86TO?jDEKNiZlgV*> zC@S9Ce@PTcs9C{VLSMkhcrvYdGQ{QFV6W*OSa!OdyZ8wAv#l-7%qj43i=4faoo3kz zyq~7|eyh z30NDqQNSQ<2HN;kXq{0NUGuc_wLj>IN*o9NVEwWZ&wp-n>vhS8xZDC#OsX9lFH4(zM$1C@h8*0eJnl;HPW1^ zqds@A*)Klo3E5UpvYHmhwEPdKw(O6PE`OZK()p=LPb@YbU9nVj*!!7q`QN7bXqYWg zFX0SmeLm`pA>eRmr4G;O8imn&?BpD~tc(xD<*+2xr65$-WN9|4nr9LY{u31g#8}I& zx?m^%CI3{fkHR!*`V~q?<(5u7dds9GMMdYp{+88S!uHsmb?W^3kYwSpO2(MxGl~2O z-7i_&wyNc_x$&}4tqlLc>SQ{VKkg$g_s0DbfR|C_rge22>B5~VU zT#SG_C@f2V6kJ{DeVX7T1yz9cMXGA&dFJI++D;gGOid{8={4>Y01yQBf>>*%p*noL zVGZYYjp6BC)zEn*zk8b95>c^(LCZ}E!yj`OUG;>Z8-v$snf*VmDOtxuk>^g+u3*McqHnU>BsQjW{wp=qlK@b#iOt7 zn}YN~>K$Ik2~$nqKNz)SYgu{vv zg7ymGIg?TNch-t8vK>6F^?#4%pY_#2wELnfh=nxZvoX*Vq4ZF>B&NCrhn7eR?;o2( z%5#~$h|&30&47-`6C`xi0q9DQRktDht(IL3fUmAEj_G8q0b>v7sw3#WYgse*TLS@L zW4CLRcl;b2Rgz@Zs`cy+7_}0m1V29uZe8fuz||6mnf4LoN9%Da+S>Vr>Q$)M0DdT$ zA(((=LMc9aw%=5E>m)Vc-_Y|It1%&Um2mfNr?teORa#6*{%1vDg`1gKFSNx(-*4_< z&LURS$`f{4ij`o#AssbFc~|7>T-Kmuimsn&v{SG%htaY?EU30~q_dy!71sxR(Si0K zOvbg!wI7VS@;#l_l#`XU@3=Wz0?bPw@)|kZGh)@%)oXpxHM_n5AJ-3ds^f_r6Wp?@ zNJyXqdLD`N2>RB)vrk)^5~vjofGyljW^V5k%G9xMHY`o-&dG|6bT+d(FR3=XK@@ct zQXqM92+~Dz0ZtCk%9=c(MU(yr`9j%Z)#53qEk*4nm4WlQ-ka0Vh)x6-3zWN!@2|b` z=CI8e>od{a^HG97=s;1$a|eBj&q9fS9Zd8*80gJVm5F5B9R^q&v73`gfIeKk{Mwr< zQs6Bm#WK1Opl$O9&F|XN$EiwJEss0oEu%8$RI4x}m#T4SaR;k>N?t7&raK>+Fx#G! z)a1lEu9(_Rcd=81zdniBW!K#%7sZSAi{4gqo#6>hAweY(S*$r5u~Qu<;jP;Ru6?2f zzd6p!!)P-ZXKr`@8S_?rZr)YLw+%Y~e79O(fr}P=;6RWf|K7{X%*+f@uBSjBhx&Ln z3iSR-=XXLAw*|eiK<^&wRfFh<4<~Khx15vPyncl^m0J*&PtF2Q20zWGNj;slX+H<^%|u*+Q=V$ZFBUf+V!WJB$ZCsO z>r2?Y`q!KzKK`R#b3gs$MSsVAZY>%CODdlLEy{`oqQ5pkn4&!Z@YBB%pwf2)aPi?UN>eup_ zr&5pz%KcrK$lr>gvGVWUd_Y-b3eO-|opk)$eP@~!JSLn@^~J#2tu5y0S6U-*iagN2 z)_vUI+s0ls&HY!)BU)XJiM_ACz;{I&K^UY{vwlt-8|$B;+0JwEL-Hf(jPO(0DoU=pX3IDb~?jPuuAjW%1=I~Ch5Z+ul6uadVfKFuauP1 zoDJHZ3t&T}fLB5y1Kj^16$Ybz+GR8B74F+()VwikjqHf+=~B%+a;8hr3^Tse`xCtL zUvO*#ITNh=_}6w*Ws-24#AU8KO*kpyy!Di_zs;uxTu&~<4(MN-BO8!1f+2Gnoundo zLF&*cMef^~v%Lj#2-}EH)#OyM@E)v+a(&L>(~7nA_x%n?I=>ODipKoH8S1elvo|j= zcd^;{qgnJWvkmbzI%n|CVerf}?ma%ni~23O8QSJ_5a{`n~nGr&;%qgn~|Pjrd-nYrYVu~yCAoD%_0jBShZ%1dsOBS-SVWpbG zU~n7>-t8!A=gbmI?KLx_>HAut0Im8aJwAn%^9_4nxvcN7wsH9MV!fU3wKM9OtC}CA ze7)9c`^XG7<~2bJ8*BO_5dwXOoe7#|XFcKm%i0|I~ zWxf7xcPKIf{nJAtPCg|nf(O26nK=z^-;Y3H6C1~y!!%^J83KQ8+_{pzvL#(w9&^jI z>{F$wLh-m$%+=MOrO*=vPg+OT)j@R(mM~qcEwl{=whK_;s3AV(uppVGlHw%dH71KvDz4Y`G?wYdYiZ49Xx^hYS(M2C- zfe|0#mkNn=2;XCLGMBrF22`dNK%E?_KKh?icgWa6r)bTGRZLC0r|s}ty!DbJjDKyG zYE19N;wLA=0ivG5yLWogPy!Sh%5pA(v)nAzeTQwGa-@vfc zP&t~KY7F_!&Ef5SJQhdHve)WXl)s6^vi1>jYMFjHUm6sh&MS|=?1z7(q~N_#)A@Pt z^qSEfedl>g((56FUBwj1CDWw?PjblC795lnagsC2(MRt)^*m_2%d-(oA>9S1OR#OJ zF$Mk7{q^VT>(J1T?q_9-KZAlkD&uh&1*EK5F9KaqXj5Gi&NTH`VBX+%Ha;St_~mD4 zX#5W*Xikpbs*0|J5%ry1KdcSC9h*hFo1w!NnqmnR&xRkrw^PZnA0lFz-N7O(I&!`^ zTmwqSHb&C>Z8cy%4hmEO$LHl(-GN4L3Y7}?=)VcNh5ZsveuJU+S^n%N`T?dXT4txk zi?A1tXo)$!K~TNJApJ=CjVZx>L)O$o)n%F~Ps2u!^)tO{nI6J1NsUcY z@WwmPlIe|=X7RZJ(=JfBG(KO~ZC(?ZC;r@@)lHN1(x4EHkrL zA`7{YM#uSTf#N_rV3M?f6dOzh_6;UII7dTBo~*GmJx(CeZRkzF*0KUPF;jgj}W z*lG8p+QeykpP<6T*~R7C;<9d_KI>acwlpl&%c5dsb}eK7RN{`z#Dapikce2QA}=E+ zMJvtxt7pbDEY?U}A-cOg2g`1ZzxRVv7IU&Pr~f-SRX#BcrYTU;q){`o33OV1@B0E$ z9%Q$a{UwR{?y#{W>j7nABCFe4A0jr66=+L{5IvP`R~n@@(_z0K5;vwElBu(d+SBM& zxT3R>Eagi{3|s37?iCsDk>1D8Xj5x@0xKrl>pc&?_?x_n@^Y8;v9nvu61VJnqR$MG zmO!(fkym>*@kDJ(NjFUHOZ|`^rd-ldJ=-ZAeMjdHuLC(rUkHeHa- zPPxlm zVQ5t@C&O_H57LcTrme;**KNX6z-NEws8d}t-W&OrZN#5+S|c~taS;@$Df`C^0aUd< zcz`JZ>~N{v;_~u#$CbaK1Pp+_cVARdR8$0Ld&Se%36DNi7B8dbT(f|FC4viuPJ;-pl=K<|3nLF=MMtF9}bkT~df zDU+UAF<%>6RBW`mCQvq`0}5-Q;?+1D^~Z-)w|ahC=^mm-{WO3s+$GUk zTYEB9tP1Ga3qbLRq~znx$2KQfRA{bVli#4UN&U^mO^(!@$-4Ck9_&iA;@{iOQf~Bg ze{XFLt)xle#elUEWG^nZx|PJT)5u`E=yyF8hwl~T*60;YQM*p8OBOfX`A;5^2;hSb zA6FOdHX)%E5JtU~$5NLBF`N2&)`jvM!sk@>T%a=+b&Udk$M-e1$=BP;Q3c6odw6@r z17yg6k@T*~35=oldcv<;J3H-?#V8>M%}Y{A>b?;7{gLH_SIBNgRif5sf4{dFbv%tD zx6ioGoe%Vo)ocw9Rmbw>l8m~7-2ky4M{NZ30^lcabvb)Y>;6mMQthD);nTP20(mEG-xafw=H z7y>dLO7K=FwMzwXaaMx}J#$lfgV?`x&KTJK&^CO5zR+CfG?q1QHTf%we4vEsa#iy3 z+H1Nn(^{jVfKAWX#CUf0OS0~s{-rk}qb=u8hRBn0-%<_FSAWh0elWDB)m>R18Z@wD z|KEr5)0td68#g7|+#b&bdUM_Y*G<%Bo8$82kj;3?mtE#2dJ^YzfS34!2EhoI637Qw66c<`-NJMa( zs2kNGxv@?q9kirN@e#FWBX*3Z|D259@Xdg;5RaILVtQsYF1+A?Z)wuazmRd1EdAtz zOhoAp0$Tb={;c4v=!xhz`DKFhc>dO(`;)hPR?Q8s?u&T<>FYB9U``k=U@v!wYD{ma zX}+}{HWzU;e)M{kThA`NP199y#0BlKurVp&n{Ap;hFZTrzc{ThYamgiS^wcWQ3q{- z-_E!9d_j2?%8%32VVc!@uw#VggRbCPnH7F#T0OTn0A>Q@pXxX<9ASYg(i4e?Bvq@c zQ-qt(M+UM6hjyDBUe>a*_UJ8=72G#WdLTTp0USfc9G5#`Z9b#vLLqmhYD_{N z$micLiQjaYJo1&zdQXkP^ITrk<~3?N_v1bc9XyCg5B^@dBJ-WBmAm0fj@a$5XsErM zftXDqJq_^5&>g(EIan?g?MpMD68S8K8Z2h4)Sklks%-mPJ9!B2${K!{&W+vWmR6kf zkk!gbVc_RyWH8Ilexv#O^2-NJMt#Pd$?X@Lq%3{@*N4*Ad9*UsHjr|_CR+v?-%=%k z^B1Rn)|yZc%wDckA*O&D<}RoFckSs%JFn2vUpr4ueLOoJ?Y_GW;kA=+qZxN65vN)@ zrIG2SqsNcLT52aJFvjzOrfzb(<102<2TeS_;eQM|BGM)ZwEvPp^MJB8d?8aKZDFcI)u@5c-L=6_q~utWhq^t-u~l#=@U z0`oJZ`85UUG8S6T%K+SWiS(ZDvc1cxe_98OhApWX;)BDK|d*tS4e!XN<`A#8U4_vR76C z_H53fqnOXO^XX)HIvb-*W}2-P^zsZlHdspB&FAbLpq2nei<;{N5JO{lmbSh=d<5Lt zDFUdhZEXB6HVD5}EP_zb_vICM-WiU6K4tYwpes&V$LwFmco z@pr=&QBZHKx+PRfqCW%%^5{!Z4>q9F2&>Mf_Azv1lZuxkPQG{1C0bNKD=EI)s&1+$ zT+OTL`f8sCF=N!GNc8+;;fT2xGan~`4Ej5}e8*$-2g#ib2gL6-Sbu4Ln)15<=xC!C zpI%U}VG>ULd)c)aB30*7K*ycEg04goFD z1t$O=eW}IRTL_VgSboj2JY20=;U4cx5h^dLG}((uFvY>KeX>IeNf%1eX?(#x2R^KI zth=B1%@YS>mk#$Et_j__SGMNwL@N#zW4>jmgZnS-G3i`tEo4X6{dxRk z{MYyY&vxy6>+t8sIcG=si3F!#6E+)Nh(kaPgfUZ}8W@_pk_*{b3Sudf-=$YkpqxHa zv$Sq{nlIKnIAl%TI>BccS8Zyx`FsPFLr{OPRaG=}HlFX^)|Dw+PRtuWX&q>3I&bMg zvrYTnI*_0r{Xu4DA#*gBLpS@=PsD$am|GdLE?u}2;|;A6z@q1ms=RGG)qa=71D_+9 zo8B-s_Ly>D?@PuASmBSQntg&b^+X+idFFWP&|au=CW!DF(=9m=2Et<{3U-&5WX2ya zEE}Pe7^Rp1@UY2)m}!~GArPf`8J;0+#vE)fEAIXcV5om(dx}ns9t*=FBG#Ey=XE*N zxh-xQ?-#(aRAA8y+YJ`SkAjY$YuA_$Ji&g`8zsr&Q@W=?4a<_PR?ZzWiN*`TUFucI z<uxb5$ zORD$pLdh!GlSn$B4HJuT05!iQ>a9j>)lY~Q>%!kMyt_0UUfmwpPgI3wS$U48oCM*F44e6a&ulgq+Rsnt25nc!v~UvI~RrP+VUU+H%Ly>02c z0uWj3fMGRXWa^{;Ze4}z2@P2wfo*3ZyFcj3^1z059>B#vE>;O**9#Lq$vDv)o}3&n z%*2m;#ZXNWGy3b>8Itb6>NMu(SD07d-**Y+`plvk(Ws+IrE5e8g~XTFSefQm6`jd% zFkN%kNZwPmE)OQyD&rmc3)qQDb}fBS%KV7>m^COgmdsmFQ$nu8&8(?H$X-1@ZVOKI z>fAUz7&m&i#fDG3YV2-tiIr-Su-lWpZBA@hiQ!yOkC`jRzgC4#{hjm9xAx zgn^QJNXScNuL(O~?df=*MA;q7HozC3BY58?m}41tF78B+zn;UJWA8IT~WXNsqizLCm9BsH#LncomGN#1uX`l%q(5Al)BvVHnD!28_lw-M2$rX zC%dxeL%r=cfsr&=LxTfc$MNuZdANtir5oo;MH*R`9Scc= z;z0g`x0X2XGRem%=VKlcE<8H*o;)FNR1OIVqLTlT8*L|7FR0sk%zM6JvI$K%f92n3 zcxY9jVM2J};5vk^IQC83-KfEACT-8CnotBv(s2bWO1zL#NiyKY`Jur4_yKF1IKcvD z(^FZ4gM4%9y7;NKj47FQ3GwIAUsCK^*9U#Tt^kd9X!m6rm#y!8&K)n+2tE*T(XQ~R z3&58D)azfyX?wge?o}t?^+QOVJ$uYZ=vr`ju!WJiRk^7Aoy?!>!_U9VUH>fyU!blA zbl>6_ShEH;gvq3paG%JB($F$ma{ z$lBnm3qHFGw&?nrKDt&`j*tIB#zupT;i(5u+`rutreEE*qfVW0|^lSl3hu%Uh{d8Ol`0R10`DUQ#SMElFr z*nb|L|By5X zv@f_5Ye8fq^1Vp*-qv_@SoFN<)*Bol*m#(m&0ZYC=!7!!G=BBtwcD3<$7Svg;ilWt zidyM<%e>vceQ$KMUB&opbLh#s7h0MoJ2HTZ34*8#q7na%!3krU8-!VC_u4Nh<7xWY zXfl{mmohEmA>7%&C6qLwZ;XSs54*KxBy;v@t176|m;)mo<-QWd!GF-3!@>HM!YaY+ zR7zmTZHCpWPQ9C|{e`}4c<@ImbFVaUQc|j*tRaa4D5XvX-eMP>olosgPi&8v{VnYd zY>=n$5D&3j_*5&5lo;^x`JD7Yqa6(7zA6{A>xnSiU4R~-C_M!J6k0OP7wE31!n`d& z{m>OfsuKM3!96xg;FCpA;O;(;O!Y1tZ+CT+?hl~O(^4>?xCF+1e+(L_w*+YiK*`lZ z#x<1DZ&LG%*W=}weRUYB%r-e&Wp7dd#%8F}@a(vCJy!geCRZ!AZe{1t|MqW*esy2~ zY0vSaR>udAn)$o?+MMNLVKS3{y(dA-=_}Vqhl|Yw<5417$WzgsakAJLUq8IHhC-vn zKf4nqO-Ipr(r7Uh@-SIQ2RE3rBJOIsS!=i3!B}*oyAwOVm}y+^EkKufLDMN%Q)j`R zk8H20krVubmvC>^-T6v8N_RLH_4cj3%}0-|*Mx{3L%4hWZzTrei}jfW5)VM(#{>xq zzujnhI4&%HMuAUhZnm~KN}ADy77_0^mY)Ll<|9}9tpyd_uI8UC1j=C&$RMz?Tv zDj9DN(lEd~HDPE4ERS>Df$O79Y&IiiP8%qPT^|yXKakK}jxAG+zb11Z3UHdUB-LK(V|P?4a{5v zhR4;rWDbm3@kBP{!#V%x7|kQsI-c)I(rJa-t_64g*qClt`RC_xO^$tDH;{y&3N0mM z63U3yJ6K+}yZ^U2fw~7G2j#d>QoB=!D4wD2dF=l9yl>K z2M}h`Yc{g*K7+=fdae0y?T2l(E3YDt2bgp50ZZTpR$T+?C93!HNicNTBN9Z#cNsw118oO}o9 z4dJ+~dt;)61i;orX(LZM?e2CvgUj(?29d9)7)085Aep@hH3TZvD)1cNctMoaGB^qQ zBVm_M9xb(S?VORrDo-@PMamQ_ms2m+3`kcWaM+EGW$z5JH(VXw1_+7#WN78DsacR< zKs(<;bFjr?kN^3juWxT40nO8EjHFpam{i1CC0l-y_2c@x(7e8w-Rou1u`%}x^x^|T zPn@?{Key9A_eO+<^^)-Bhpq<&cBNRMJMM>$xLm2m#v7p>$Rf*gKpXXr15X#>P%PO?{2b$CX$c7~5C{XPxPW?zfsSr|3{01X%-Njw|5|MP ziK=x1R4Sw4)Z2cVvI77-0b|LiH?Oj&ez!Q|LVABk?pu$rd#&HYDkCFWPs~CmA^BnN z2g{y%uug&gBm9&HixYi?E;Kb|kdbPY{PqCn$XIi8z}CSUk70LxM!x}dIFfc%PgX@g zSQX=GE93>;xu20B#5i{+h-~RrhMd~FE{pedz}WROO>!N|9C!YUR}+vB4ObG z-`7L+_a2zAdGFFMCKLd^!GA)c)2MOSzV(7asU##UJcy;N*Mt853N|zxO0m}*=$|e& zI_$5lt%3Ic3%WcSC53F+J8@FQJKvn7-kdnofI+7{OoLNQlqdE1bAXQGP}n=W&#u&% zU3*h#j&yl;w)xU&pPIy-cIDRk-@5dMOQ$llkbFzS5}c?gQjWP^6g4uOWms){CaX2C zC>yBIQl_Les*2%7Mx6E$S*ox%+8Pa3^)*}KWteYN1Tir;TX=@L#Jse!vUe5wmjwls z^z=bnX;U)atGS3OSbAw_OiClcgAu9li zb6nQ;gxCTfN&Z7*D8(uo`c-BO#n@W+&VJc#+l|BX6MUN$qu*58)~E06SqgK{@JK*= zd0W!I+G!GRag>ju#9`(of!`LfS)3REkNs0lHaNIh@2{yp$@`ujTXrw#CfEmQQ)uGG>vTXvZ(p_&~JY_8qNCbkc@X44ruxflH{QwA*R-V zqfGncc6(;HBm7`$(Q|8 zn%ZK5y@k(0XQ%L|-X`A?x~4gGnYRvU{(c}n>-OB`+(r`WDO7uX%3sM0ExXW=DekvU z8%)c41eRs1c2HY9>2f5Zlk$6 z5Lok(e&zUu3pdi?Gw#cC90{nM4uG!*h_NLmF3NQ~&5tMlp0#S2)+8Ha_7e^6@oxUv zTQ>JUWPK_X&#i2U^h}tceut@uj0h7c6Y77sh-YZXD(PS4#Ro(#Px2vaX5EZ_-{Za* z=6=pqS8`mhp<^HyeutM~#9|6mK`PBSthKpfG8AX$hh9aHrlynOhz-`>*CI8;=&6luFFht9xe-Sk5Q6mnQuW_qrH>mABv^p2F*%YzM7m7*+aifmGPs>CW8 zUnS0Rso4c+?Q5qAIPJkg|MXUWUh_5jqL2#znJedP@w>M32<3&%%?C^N-mD$t@y1SEnt;JIJ9%@AyR;e?_zN|_G(`O(qkV0R?sUX;)KdAcr}==bCEN#bvb z{%;vI=V+d7mR~?^dXx$QHlWv*np$dVA-T*-tB?2Bgdg>U7Vnvo2JaYk4tR)f*a>p6 za6w+x$!h0*Sy6v~|3N(IZ$+Z_rU?w%TOZ=&c@veVyw~K(FEj7A|OXD{G@UcUM^v-gjXD$D|kR74AL%_{=+TiBQ$L za7%6?3P~MtiGh_Z1Sjd2orY6(iG{9Q9>4r%^U~(=&Ork>D4qd=^EV@-zo_Xdva%IU z$65~xgj|m1zJ#ceVm)7y%eqJ}OPD-)rl%=)c!rRt((07lYz>t=?Z>x2dC}Q@{H)em)6_pQqK9ZXcUt zGRGp(zMjw|dTHSs^E0vOXgq?TNJ7dmg>}6%BOwl)z{?HM$xO|XZk*{y=eMuW;jNFG zI~l@o0!BU>R3w6C=Ksb)VQKt_wpL(ra`H=-VSgOW^@82V!E6;?VsV$MZ&1>Z5$$LS ztC`Ysw%ooY-UBsEByE@9V=amm5Id}9i^d$zFB_3n>ch=db_+)5=lC5=2G{*9PcqbQ z^Hi5bK%k@xbJ*ZCLDol4kNM2Dw1Rn~1ikY=wD`b${`x2kRYH2W1X&@a06|OGeA!ZW zR?fL}i1(qf&>d@R-GJ3CNql)_uUmWKM5zsdil2F|e! zM8Gx!(lQ7uYym!HTCTffxs|$KVQbWY@rI?l8YslptRgPU9S_x-6>wRMzxIX`bZa1; zd9X==WiejSVuqh%ZY_<;zd#~JEIJ?-(@+@pxZ@_{`9x`My{E#e#ZbbzKw6A=*(*bN zZy^5EtAdx;@pXwtFj%1(+Gu0_X>-?t0>f#yRIwY z*zw8H-KfrT?PR4& zLAyM1KK2r-WERz0O&6;PYqgpOhZ*YYLyyaa`V+Q%D0uhLN3D8CB(c|ZS2M2k$$j;z z{d)=pckp+a73M#&bq3c1Lq_MIOb4n3Hb?@K1OrrPg;9QiyC{J3~jQ*1PRwlr%AA|L!gi;rd|7W%9#+~ zQ=}DqQU9e7PnH<_m(PUp1r^mz=5VU)_IA;9SsuMMih2bU;g;JmVD;<(D}T#pjxp2| zrEuaAxR+oizt>Q;+QXFxKZQeqlUoxOom%tNoEcj9PZm=56iZ(R7csG5!K`|qawwN$ z0I`}QUQhCxnvXl#5r47wJH9{Kswm!jL^joS(|~%s!C-e5jlLFvR}iCPwqh}R}jsTMec*x zN>Yv-8hK1<`iB~e=jpXJN8|zo67r8xS~Vf%kKc)!>rCs!|I%&G{a=V*qMskNr2e8( zwepolOV)6UShocf4|V@!o7drbL<%}Od{q*!6AF_3W;&1VKzyHc`o^Rw=)MG9$iK0X ztiicPKx3YiVgt*c49UwLAihaA^myhAhx(qwwu>733vDHyJMP=JtZrB4^ZP(w@s8Pu zR<-g27nd8D^(w!$>#cw5RoDXxHaLbbazc)$d%m5o6D?EokEd;@=;kuRVs~MB_Iwon zDH$MachO6Do~K&(I#{)e<=s16ADyboo0;t}QaXAq_W{AhUAp!$&m6^rkhwyI0tFHM zjcBqZ?q*8$Tj>%waFbPqaJ42@pUunvl{~}*D_Ba1v+5nua%Z;ul z!%22T(1tjsH+G3BY>UG=nGlWN5xE(k4B?UmJ+zGKyv>y6J{hTCoI5f zQ0%Mx=xCN0{d42f_CmsJ8} zPcm}_)pq-8HCtfj_|6S5zpmCJq88~oLlBpyC+Oqph2`_mN%mKC_@ehFgE6WU-(g|3 z7z97!f*x|ZGf87%p+-F}$+gnrJP&dyk8+tgGrL0F^^*GK-M%72OU^=zdRj^mCAAzr zhY#u@O&LxA>U8d}WY^0x*BiUjBMeWY7g*2-`-Q`F1K$xmiyVOGoexNe67e(BlB}$L z-%Zh&yFu&dzsIE&9-TH97Z`BYyi|$3TsH1l{`! z^@4nVKv$QU*f_->At}q4x|M3p8aa|Us@E2~ob@GBq(>6)^lyKds}19Il5Vory=i;4 z0L%p5huf9k`LbWt*sYlbQI<(BCz?VcBG=*Az<5B|a{v-y1@_JtMRnR@DeyY4 zXQd1%%B@dostSInY)o=|uGKFvZcP!z6}t4^K0Mk#a?+oUc4VDzZG#%#E0T-(8Y4WwV^<7j4olITqp1`z5R zStps8)UkHakBoaOGx0P)B>iZ(*7C5e1kf%$cWR?^6g5qZ*L9lFq1xuR3^bAKTn{(t zk}Li+u3)5HGd9W)lAy!`^Qnv7i=wihjW%Xs^UznjCm*1Ay=8)_tOVL*MmHJfbgu3Y zN!AmXf1EzucUJ6}yU+Q+suZfdLitc(%3=3vR$<^^cIS3m*1o#iy!4_Rr9|D%fv|70 znKFX|V{;?(m8?`x#P(5JMzwmUKT_21uhap^d1Jl)X7_{4#&`A|vMb>U+9Gb(=yKAq zdqE+<*_??hW$$I>iX|YEhf;R!2fZSis`!dDl0xI--e-GrZ+IDzxs+ zMR9_l0FjY7Adt{`fQ*wtat#GrxnP$noh`d&2j~^)&OS2Km>8W)4hgWt6-~iV4n*)C zi=y=g54(*H$ZeMMkw;S!39%o{G(P*Uady_13-8%mP1#tCfxc+MkDKc4bbV0$KGs1W zBCl-4bCn-wt>_Dz+Gga#AGFGW2p+dXBu` zyZY56`Ky0eiQ|qKcEF?HQ4PvTdIbZbQG-7LLu&h5E3mq&k~h;Z`2n)HL6MGr1IuP` z6FU(1%GVBBqee|#v*Z`(gnUwucT<+IE<>q}DDT*vpKeX!if@2JN&Hf&Q5061A31A^ z^VZN2_x)Jt4^>*a`%6*+MJtd*{gd8pI9kGX)Odp~^2Bu6!fdM@MOvK+MA-C=JU>p9 z(`0aq7>QOH)<#GoAT&-YJO-gT6Wx{GYC#T&Tp!Y4zpt~#^P@lm6~8zf=%9f7$+5hZ zYXpcJ4TBje*;$<0d5OoiOJ0&akB#u`bbbU(vh7c5k_s_*z*;C&H*buks8DXjOqKRa z5$oT-S{Qwaa(z-M0S8abfy>GTpWKtTX@e80(EI52`bN7;zDVYjcvfpVWj{B!(|-}l z;KexY`<_eygxKA1giqWbqfot;nw-)+LMP>l1Yzu7_9xJTG#-x(`qN(YEtKqTJ!1b` z!?b~cF=ZkCJ{_tV<)}!p$zJLGYGB95cN`%ho!gT|StO*S(&SA>EV$hYpR>Lu4h`+a zeb=D=ZCw2WN8l}HW{)>l0IKLKU;khFj}sA>8wbdzPRz8Dc7Ec%hC6K1Jq99YbjE}6 z{T~Til(-S-V##p@8pf5gZbhdqs>lYGo5PJd+HWBY9N3$GF6O#+qKFR9G zt?M1u${HZpa$IjF^cTn@(AMrXwHq1zT<>kTKOzl4xfJDdolc&O={s5-HT7(@kGOI)n)js#4&68*S+;6>PGmVlK7IIY z%$;Sk{f|FE(L@b(wOJkmVcgh`Yj&s>cssvoo9k7WC1;{sTAi`^G)fGN%QwZ4VdtDL zC~I6VOZF`nf&x&49VghOQ-c8VuidFw^i?I%j!+=%S5h`x2rc9~gV(C!O<#=hsourq z^n>=pT|wT>rjT!m_VQ)6kZq_duYFpw*U9P#20Ar1ee>C((_2;5o>mWp@E9*e7Wcz0 zbj&)OA#r}uQ&SqEA*=7Q*#{BxQKY_?t&>FAfI(->2?5$M6aM8r;?gLjV#l9Q5b+?V zC-Vsm8>WqeifK1q?lxZm9VlP-+l-jSU(UD=)MLO@M?aJjrAn8qrx45S|vBwSk;oiv0^P7WiF%TDBfXE*=ql~&Fa zVV$$i>vulm6TuJeK*L)`%sTG@=1e0##0lX;WaUiPz_~Y;%>)(#d{5 zvt>a%%kb8v#(D>X20!$xlW%%)F_G=6v|A~%Qfn}U0uz5sSpCw(yJNrO0i(6MeeE%I zt1N(FQ@X{o#*cJ41txTfL90_VeH>dskKJcAH8(Ed)XHA zI%oIh2f=2(Lu^z$n!x5c1HjNE5N$GjkjmuF@8Apw;7&a z0!=B~tlGRtn_+y*e#}=zDi4~gN|UT@`l4&&WKWHTlvhYBJ3JQ`b(Fw{F>TbU zGCH(>v56JSs5aeM64?gbKjF#f~(yYU&RR1v*-OP#Lb|J(Ztw|+R{bnKo*k$ zz91X!lMz}`Rqv%8S1T?i`dgnS+N)=yS-dTB(_5nN~kV#)myuKjBG+d^`H& zlaI-|Kg?$-o=_XBUns77$ao5PY%AyGoZBQM3+n%FmA{;JE4Weu))MW#QMon>C;BL+ zJ;zJ}bTUhENI46SCV1D64~J`q(_bjI{*zFLS>s%DHfzGi^OoU;eX`jrLV<`|J7+P zMt{PkC&}F=QHYs@7xF$H4lndm=H=hH z_Rh?ATBboBBV$fW0sRX+5#Of5>(Qg<3U#o=kR1YxB-w-I%hrjnm?0CJKzM z$^2hNbCttbs`wk{vpvPT@!YE(ZSu^8q>Wy>dYbt7l8jVBI!||3L+e-Wv#Nxpu4^4J z@L+ttQSRCT(i4Pxc>5fW+tIu!i)m%$!ThZ&&sYoTSQzyMA zOdTS40#NTROdLF0T|0XcE62Z$HH~O_PB+)Ol~9TCnPQq^wsm9sVxZrFoptx$fzk|` z;zWG(bp$((Wjzj?^nTECo=L|D-=$kL`;r~g<1%U3yt;DWxAaxiy8ZSA2j!^&2IZC$ zAH9+HfD&zcZ8=+^AJrQ!JeW~N$f=N!YQDEj$l>^Wk%~w~%k>%Eas=(ab1TFrznkw7 zt-dikgs(+qJ@q=(UDkPsCo*`}@>}q?r#Sx@^a%K#2*f88u~{l?Zx2YP$yqJ^K>a0! zmolH9YoV_FmDu0#ThQ-L4k!qg-CgLbO*v?lEXWKwUrfEMps=Ua2(-61&8JTXXrhN{ zpV0jMv(mU)G~lF5*sgc7BxKmR&*1+$T>wx7)PAE`<(mVWfhf9Y7Q3U6q0S6)#5I1r z#Maxfu`RqW=p_QZ2JFFr*p4PBSzntO7}DC{wjPiC>38)|6nRyt9@rOi`{v*&OYoom zZ4^tDUimIiQW@#@l+pj-hB=x;&ARX}GTZK~)bJe(CF+}8#~M#p^C8`#$f&%3(EQfG zDSvPf3qEre{}JT=0YSO2bYX9_CNx}^El94<>GU^(uuMj5 zwKL=S6dW2JdI?z@8u~5fzqF*A%*T(8r=L*yb3BUDeF ztu3dg57I7bxS`9aJ+rtfffDnHQ3JQ5Vlm{P`=y{Y94HNlM+cXXjG{sZ`~ojwMQBbR zle*C#R|Adv&^z}22oEObf|%>XT>_WSMqoXP~K3JIqb+Q74_#>s{b`i`5J`6YrA^@-Y2~0F=3w2$(f-&AQ9*14Ro$~)0F&!CB2r4=*ShGg{df03u9zZ?tlEIyzK=S6k8u|Bpn6}|d^(L-ZXbU606HeaS{%$$nMsVZ9&^x1x z+z~aLuFMrwf;{hb|BmiGmkUo1t4(@G45dN(!T7sW zFu?$}CE9TS`w6lW=eUipIX}oa)!A@W(11x3Otf*aCldci>^0puBA`uU2FyphEo=E- zj5o8syJs57@Yg}zB-nlbZkL@IgXbE*a&gPz^MG-4h1YQJ{PALw4YL9QH23-_~gzFS9br+THK&eocQ1scW@4% zN57)ju?0|}o41V2s!OTVh(x5|uVG=Ce_1a zR`HLt4ZV3S`?d@%enx{t^cwZ7)drPj$k6B*ez{V3osq;Unal*7k^gZquZjyZ`CE*T z9d0Yh*y6*&kjKSL$>dkROAcrFGOx%_HJxLo3uRpxBy`vbsU%=%#Mu0%q@lq`YW=X1 zO$TCCb8`Hkk8xJy^}fEyOH7l=fsh5YS7MRcNn$02sZrTSqm%^)YRkH>a?Int|1g}1s*1d6+ z{hk7kljWt|2vzHyIA9tr)JQz7N8AKCKRR@-{02zg`gcgrS}U6-nOwF{{xM?#OWd%8 z6GVa#aC!3oHLNU zT?Gn?H8pFr!GMrC-L~f2>?l>^QUyr)j%PXlWa9OoH07e{IcCSRe7o*hDD|ZLHn`(F zO`Z4|c`SYdo($mRf3v1b<2u>R)qUqoK}|LJyXoj5{k3#KLrp_(^rd93FEdA!`Z!(&C9 z<+0oN@=#z0i~s&TjkQcrko81x%)_kQQmBX}$HjG7Utn z6P{Z4yw=h=CTeH2=_L?WZNqtI63$I`Hn%vL)v4a@BDxr6zs7UhX&n z*)J#QD`_4UZ1kmDz*@-VOzbv_6bN1o1t2}HiXDIZocJS!q4MMaF+4yuF+(he3sc5iTpnZz zE#^a#$5ft?zUsc!T|$Z#c=HSHeLEZo`shELpK@^t=?si>yIS!L`!NaZAOU%!(H=n| z<8K^jkN?`e-i4!XU&LC`{7w+M0nz4&&>m)g)SkB;DR`t8yde|+#{l&m+d|?P@*A|Q z9wAQZ)zv^c@|d3czL`zi;UEK?Rq!$rj)A31MY=)O~;*k5**SP)>4{CzE z4RVJ8bQd~jbZ@!F+-Blsik-7aZ@k?FZ{U&OztD}|mq8oV_nyhT{$n;?yFuYw%HPHt z?zlApp&?9{$J)S_?3W)*hr!R0v}}59rK4GlTJxlX4KeBLifW6{uET^EUlW420v_8J z+c0SVT?PtZ9o#IdrkqYI6ErW+K{YAB8N*{RW9=Zq9-uZvMnQv{kg2qcG3Z2AY4LDPZ zi{;Q$Buk6W0JEpeKU~nWuH8Jr-M{SMcw6ArkMtTeESZuXjt^AYP`qvHW9ME5v1`Ow zG$<&j#WAchZnQWlx3ZGud*6(S`e3|NN`469JXcRTk3&I0z-nhhIivPc_ly9oweYa9x0wz8*h-Cc=IiL#0tK~})_&|CNl%zk%@f&sxe2jNPDOThZ-s?JNJUS6 zx1J%!Z#BkZ%9m-WsLs%JDY>M~3q95V}XAg8WKGIqJv0y!C*tS+WTl+TRAKOI&%|z7sT^Tr9w#fdJ{oL)_-d#|a)Z zexQ=P-Hh@ps}!Xdfgjn{JvCZl+x1e_xvV{lxD4>CsK6*B`&U+Upu#+$dGcQEe&$5} zv%{fZ-v&f1VZN_G2d`(r22NE~OuP9@24C6Th5XRoROLYKd_=8QWy4$Ek!g2MAMsqx zR*m#Di#+1=Dwr4^=i}6L8OO2(dO;(1#Cs3H=9lbUhy|aq{J#FmXXEx`yw|$)X)kw! z8|FcJfXYjR6R;fScCA@!p}v%g_ngK@NT=!(9sPB&EKef-4cPGc7?r@$_%8*S=3@D3 zzc=)h4Bt?-sjyaCsanNB#r69elt&JX7VNNo_x`*WbmAkPBi~u-|9LAD;H_xCL>_)u zf0LxVkg*FySZ~o*Pe_ZqIZFTGdHBFKW0Fk2%xXMHCflSVX0B1n|DP#9dQm!$y3NXW zYA2)y2MP9zPPd&T|D9VX7CqSHMhxUyqB*PG1*#CB^$Dbf6nsiwnLtk-z5&SQ|MzN& zyF?PNpMrF6AQ;FoG8UPsf~^&xI<0S5w3*3?*ngn%<{$Gp?u^Yrc5}#&g}mRHw=u@x zrO&FLqV)JSK!qg%$CqPQ_oBhpu7H8Rb@P#tFy>sxI8b>RS8F6hVGE;Q9?JL+t#YdC z<0h?T=*sG5UJ2%ZX-i$s@s<&hCRU$0IqA4Hw&8kGv7%2Uy8?}sWbCVH?pFDBl9(_T z5#ySJo@(-P>_RJ`C-?uNO-=D0x@J`VyHwfs7ci?|(8QNZ8C7|%3H{?5+@w{r)Y7Ym z{F!jqCX>kE{c|K5Ly^5dT{iOs8VZI6pSXv@SVSxt$y*~a^7pHD_)26?ajH$Mx~#*0 z8i=+AyB{@R0o_qj5*45Gn_Kb#Zy8l6zXzV*({?$*KV*V>NjUhMkpN!@h6x%eier#0 zdQYRoC?bb|1hOWX+8gq)p#F zi*%ah{qGz8B(%kt@TKtl&mS!1vS=15#@AM@a&_`c5T-S?jcOKLF9W;C!&dfnwfs$Z z3<1}#;Q>HIRNo{Zd~$Dx09q~26P+A6mkMHbRg!lBmz)xev%Yn2(<7|Q2BUNcGdfNO zejkIwA%xFPfTuc^S#tc;WIk0$xyq-q?QASCUqKwuj**^49x_@!dZ)@BEptiPAv9kH zRUu*mzwAxTn>wg>9Rz8+agqlpw;%p5T|NQVWJ5!UFI=44^%^M&i6Eb8>O*!En<#6xJJ`5NZh|h`Gv(K5ebS-D$MCi*A^$dwK#G&737y@8eSmk zUI#3%o3SS^Fnv*N!6h8bc*>DTuZ>Q+@G9zDAeH~u#^rq|=S@PC{3Yo)WX$sF*!|Q} z=JzAq%>_YwxUj1xlp_>i{va5z2|m*PwdI(rLmf&DhDwQ0BMGi)k@cAgaL(=1+KMsU zyuUt&daN3OhqijFBXZ%$@_@mz$;=Wfz{D3rg?3Y&m%Ne&R462VhbryI@*xqXCq>YJ zEkSgCb$?@_S{xHSdbv+Yk+*8{G$=|J)itN9J0_7J7cP#&$Zx{3*F5#6jAi!T9o;Wi zldH2__h8TqGp+4>u3)@&CxS0a9^>ng{Y4wrPJdK1TO!g&15=ivc)DzYsM)fN1p`DB zt~VK13K-3HP#H`9<;xUZV!#v}q99uUYhNs8^lbBLbR*$HbhmiCbs-fGp#dM#0)RX_V)?^kiE9e-foJh0b~XECCJ;65E#{`aDNt+AjeFrrDYmMES#sbW6QHf6{=?rPgXh4akS*8-wKIKIYt3mH69FvqFwdCEli zZTJtoFZvgtcD4BN+clQXTR^7vKhh^ zN;~A#*=RQI!2lUt`7-Rw`hf99!yR2nQjes?bSi9;=jOOn6L{Zo==z{%sqH3c6PllI z^}rEM@;o`;Xg}%Y=VuP5Wix2XVPOT(X-jAD4h00NudUno!weWlC4MpZwp?hTOI%9# zpLd?1%?igcLE?eH$FYan#y6nlqKOiL<*Wex9bEUup0IUT?tLWf4verr#fR9(%d(mn za#cP3f`Nnr8fAk#=>m33h0X1lxH!;iJ+RCuQkVms0+m?yQVYq~dlP{yDPdVGdqP(z zl8(DFEWtarK{4grG)pF0TkYBK?J1o!0R1{a&wCn!VSMjv(^}04Bp%*g_{mA;tLBLLw`5z9YEdr zr&fYk2q>$Hm0(6{%yrmL{+3R)*w*I$=(>1wS}aa>e^?j9zHB~KWT89rXUw?jHS6mf zb~7wO83I>A2n8gF|AQL-d(lGfm9!HjDUJC-v{Vg;kA5&0zy>X#AlCWzeU#W6&_nAS z&8m_Ar7~ATN<+P~wzjpICoj9SJSIvvwkeUXNM)*9boj5&j;og~ZE)OfknkjQo^cl7 zOq)5dDvJzEErGY#F4xPLJy&G{a+#p+(VQZ?u8-#=<%87OLwEVyIPcCV?Zv9f?bXN5 zp{fM?pDZ;3rF!Fq3bV*RXLU~n-=32tad0jaC1^Enuc*(kF+V~JZ;@P3Ktk?C?M>?_?Fh$Sh z*Gf5R%fKvOME$>1F)&kz0_^1=?!f&DRc40np)p-`B3V>Q{}@Xd$OzKllBgl6-GICN zTk;}4+KrAm)iqh>jqTBGcM~N#q->){%=(d&Xd1%Q)3fF-u@>;c=QT44*0W=g6Z-TmlUWAz--+K3z^XySN6Td?APC z_25REBxV!!x!Xdx+63de3-vOtM#dxtau5N7EB2$LT@jl$Lxgy)(`$VJTwG{1HIujJ z7u}(SBYe~DX9y0fP;vyhrzgg+m2R!~M!%RN*g^8ivMC9)g@AFe(R9 zC0Z^*C?;Fvok$o-Xy_Ck8#oQ_+HJG!|6T2L?675BU;2gqB4N7KRevY}NQL9328@NU!;4_O@(jnY5? zPDocl@QI}V`zTI663y#bU&9L|x?cCdoo=P5BZLjoaRDM;Tq?Z*CNZZuaX3OpDb>x{Rn)#%yTbGG1T67FFDU7YXX zq!VPTT-_hHX*WBgg>J>h#@ej+%<|m+C(*v$OwfM)>a)4Id7I~>NH{)KAYlU-i%f)0 z^S?5wI6w&Fd4FheOz|NT#I5c?;eC!!IjYZgJzCh?PM1Ge9GI^=m?L{W6?GSCernV` z(E)>V`Wx;u(?bJ;Nu7#zJ3a#X)cf|wv&;SI?X4}4D_#qnDzHr2BogR>ct>WP8RYra z0XIeUE|`g#^+JgHMoc#ohVv>AqL1jam&)N^bg ztgE}a+8KD5uB4`R2ZYSJVmv0}IUsyw<^Q4Vt>db0wzhE$R9Z=CM7kSk6zT46Hr?Gw zOLuoSNH-`*r*wyOch@_3pL3pb|DN-{pY!97Eh_9i-&t$cy4ISR>ly?NY?qyqT6gf_ zySux9FN2H{FF}4Auw@jnSW%F=3SvTNW)nwK@2iMa>=BEXHJ4wYrCFJ`rBfwM6m^1+H%|70T-%E*) zk56DUXgThs1Y_&;{VX8xNf2DJ=am&O%!7g-!8_8q7tIB1=&nt-71on9VAnk}U&!i` zj(aLjlO_1ACv?M>=Sw2&do>bS%#g$p87h#VQLFVUxe2OV7T(wRg%kBu6qjK?ZBWZx z`mhg#11>v&Q~=N*x|nyU1sBBX>MjATU>MlDwj~0O3I+8J(f4VQrE54bvFqi@oZ9sq zn>#)iZ5Y_aF0uj9*;Fmrc3V^$wToG^IkCT&@Zs`VwbA>b{%leSc+#&$6MK8iJSR+ToS8%@~ z=AP>Aey})@NY5f0y$icY%;v!Md5-+Fy9FBh=|`fcAJ3_^#WN@0V5Ss3MYNIj+<|&g zm;VJZ^ZjOm^iORZW=;vFgDL9bOgw^ulH#O140b zeOz*(@LJyPY?cIad1AlkUQ|80gOKJ?YNe;_-|jCTX_)5Jx#C{me&gvxxO&`3z{8{2 z0(JxJ>Tf!mnwnNkAP1e)H8)Ox$$NJtwa{dHz@T+*DE}Z%zFG2ob}Y(SMr=FaWkbA% z26TD(NEO&BLqUe8R4^=4I|6MVqmFm)A_oWF3n<;)7CPm?!f|2H6kjsB=(XHY$NOIJ z+nFq(IDKI~PfYELF;!pI`r6x{DYDS?O@AOUhEkDYR6LO>0o;k^<^Aq<8U_Oozxth* ztAMoQ`B`>+EdiMj8eZvjpQfCqTaHS_=W6>BZt@<7PWZ*?N_lDN!g5{tyXykm@o3jl zjgre}ALP$(c<1KkwkHr8XaiMr)4HG4mrtIml}_%gnFtF*;|t{U7w=~I`T;o<>U9V!JP_z!Svl(pD^e(pR=|2| zh{xQEiXuBxJl(9}J2JwKfZZS;Z-~uOr7quOy>{&;-G_Dgd4K1=V06peI;Spo!y2+_ z7u7?QLwn-oYyC3FnpM=-Q={i}a6juIZ9G)>*;#ffD#}=t&cgcjWMK@CeK8Z*ddar& zcDu9zcf{pYw3Xu7NIE%f^Q$9Ktv2T7Pe>)kny-za9lnSq=LZwGdyLg|a!0(h)-Btr z=j`TQlD4us3c+T*b$7Cv8ZWA;g*u5O1{W>@BE!Rzl`Bo#(>%^%_VzM392)RB$p#Fr zPrcspiItc0hjBYk`t#7zuslq9I6drWCbs)~(6`Exj>}3a?`K_zaMMZpsJUZY-rP(U z$^!u+N;bB7pvgVR1C&9cUCn-FLO<{W(izIRIoKCSvAM#MtfeXt?EBkY<&{9R5fLm_ z7Jk85KOQ8+mLLzQl9m>2K3w4{I1FPMSu+PWv1G#tD$0|CGN6w1_%R#mALjwXYKdws zSk|L#aiV0BqN1b5)!_d8dMm)Hh26++<5}HZ7wW98`TR{UYKt|?I6M{%7B~;CPT*Y5 zs}MXET3dVDR|X%#?*O3=_erpzZB<-Sk}6;uyekd6Ie1!mg7V9lIVUIf<}@I@@4&0O zyBn9o9`F#Bf{U7)!x@odjEsyJv>H@A+aRWws8nCl0_|kgECmdIUx>f&T7Tl&)tbTu z?eF>4`IT~$I402&m38fQFqIv9GxJw>)RCIiGi?oa-hejPy>(7jV;bd`A#AZij6hbQ z9v$c0P(3Fbo6|jDO0@mxxmRogD1wt%Efm)KQ#d9U7d0Udx9J!fj@rL6`TJt2qtdRg zuQi$+r6uMQSaJtn9x0yc#I|JWX-LpX0%Kmfg(l3V@0&N{EVpdk zYva^JL`3i2Wdya!BLs`c*Om&+$-K}hhBK5$!=X~Gp@{7=jKZQL( zN7t-9&BaAlApEiYxc^lktGZrZh}O z;FT;LKT+-Wj9qAncpvja9ReU>(dLtfq|s@r7+>*E+1pUQ{UDXNzAgW_`tA}KJ7Xww zVwjBe0z+8@1>+XRmxq?Us;sQ6XpZH8+QW&9un865q}kg`iHj3F$W8^T*vna_-=%9{ zz?iPiVqWEk&{sx%C3d@Ba%yVwhxbK!23AV(Thj(`goJWfA^US|phJ7p;+E?1&1{!_6lFdAM@lR z5|^lMv>f?OzQn(+GfmLGvIaJt55N<(076eGAMFQV=>RvOhn*&sE(}r`u&}WM$E|n>nK8NcK(tPu=YZCHqXIG#s9GcE$5Z?Kxzs;Cp3kV=&nb#z z?QTob{N^0I$6}LmTI6pImztp@3-r@{v(OM~$KNn98j=}*OjCEkl$hCt9~aAIFeurc zhRDl~hzQKBOK&*vKN>N;&)6b2+SQ#5I1f8y^-SPq)qt|4|SF-7n8 zj_681bGTIg145lCtbJdvHa5&2)0!y!ZJ_GaT@6UM4R{ywNHvXxMc6U-T zaeamvd>9N2Xwj`CGJ}ZDL>Go<78punHujZ0;&CZT;Zoh-U(q&&KP*0!@YwI>Ef3ME zA8UN$Rne|B&yA1w`r%yy?;-JME?zsSqM+H@q1f|IY`lm2+UK?x%`Wp7dr|rcECV>0 zM%ee9Ows?ES3EpuY3Y$FBO@LJ5BFuS4W0+`k~$|F8?j)cRUy%4=dl1au(k4KTM7#& z`67>J?d~Yd{N@5Xj`m`zO4wsP*nJS^pmvdFcf8Nu18hoAu(HDPKaS#ibKWmhuJd@N zvxmDh?e-Vo`TP-`OlL_-#)b~S=x3`kBv!4#9LT*as;%8B$jjauOr|FydaGDGtkJxE zR@*8}X}q`q-0Pe6gi19T>R%Io+4!a2=y>-5R1OHs3)m_+0xg}IMY>kAu8 z4IQUi&bZ89-c|T+e+%~JJSMl^eg2zsH9fb6$8omRJi8I`+0Fygtxi5x^QncSw)JlCj`Qd!mwyJNbo|0VQKhZ)=cEr{0>%i`7mmbuUKi}}X+ z)+>QT@RtleU|om({=<#Go-8QMpJy^V2NPTa0+V~+w9$G`TvDgZXk%MtG)5+>MPNtx zxYEA8U!w|4fd2Z7^cBl{PZQ$M$f~*JacEj*5k13(qo{FoB|*K=6~ijE{=^wA@STFKNtoE#M|nvEsZo+!jgP-j;LG1 zDLRlBQ3L;BT_7N`|8Q@yZ&Fr&uwd5M3fWPpMIoKb6$dk0lVU6rcu-&}}RiX|z~+2)f2 z^>nJ>e>v{{eq>vYQK?!vf(IUc8HdB5JuVk_OSUkItXMFxMLNMhKR^61<>I){35BE% zm(%cT7;CX6?UVV9z1rrD0m|L!QQ)?%?#RE%|8lU4R2B8HoS>?|@Ej>ooySc{*I>#B zRkd*fSTwWMS^x6dygW7%fyDDUHsIR-2HMSL6LoaO+x=DVZvW-9Rl-qof1N(#NAf>wD(kWU7Kc)R{X@1 zvOze*2M`%oeWn=mU#?>^$r6G~DGsh=Zq22`d)!a9icrGCF?Mv$`0-pE|8X#=@eF_; z3?_<`c^;;9XIWr2_y2)W8QdB^+W^~w8nR*ipKihv28NnkR#6ZZK4=Cn!J53?Wi;wAo0;O~vRxIDmwNptF61NTgkW#9oU80- z3-3Q%g@J?y`2Vh>NZnR`y8;O^1l(;rH2K$Wj=muLBS?zpjH91#zN6-#?E4c)RCO|q z&x~8gi$r%Om_x82p#kJZ3(1eG14Jm35|vzow3u8;3B;+oa@#GLz44-jAar5M?XezI z6y4C^Drc9d$1n}zngnRkF|bYSiJ8Gm!3hzb8c^9<0;{@50XX)P9MU8!6nu5NAv($ZkP&DNHI z^WJ|(d-&xW7W}$&R<;qXMwOeh;U_N|>VcD!p&YbYb2As0&F+X;cDp}=<+UR-8zZ|I zSF|A&x4yYHQRRL3cl2_)_5MloH$_^IRv*_q)IL{8ZoVLr(e(5*@CZ;CJ?7Plj+LS^ z21LB7u_D1gKUEkuJ~?^X&p2Y6CxN-L!mO;!Odb7aU`wAwRH}Ou=(F@oll(l8z&rkd zE&q7^Ga{(JUjJAh>d)&R)CBd{>z{dm`t$nb&lLXk`p2!H{(Akh(xCpl{_i)ZNVmzz zD;zDaDV_aQKng16F%(o#t`8+P&(MtV8&8(H;g^{4@;GfGJHztSvw@(n_8lT&H+{U~;-@uLrfBxff|9WUj*gCcdU^>EwP_&RMJg6=83hg6cQZ9+ zlqfJTFn}$v*fIec4*mJdmyKFmp`dgFR24vO^BptuxK8=cpFe|f*ecq5ix!Y*)f=in zX#+Zbs~a0PS69BizCF6mAe@U?f#MR-%sn;&Wr#tI4l$akGD_oiYXFN!zel~%o?4|U zzpWL}J(M|Y4tqK;bPDVxrc`d91&4;V^mqqjv(gX}wsqX(0a2Ivr61leqoSflM@C@b z;M`nYRjLf>wZ4A=nlI%WO%7+aDJi7&x2!0rs6=;V{bC{O7-d?!^Not1ns)ghlxKj_ z$nhu>#~%@&n@V|fem(^YcKQd9MlHO(EiNt&4u)^mSgfyiQXj`PFE1$$vQ{a zzD7A1AZ=b;|*b&hXHte?m4Tyj0#E|e7DmG(-BFa z+6TDeawhfl^#>CeH~jJ4m1<0qlEwu>y)w(6|Hw2tCQ5?I%17-dnxd*)9m38gx5;rk-ew zjoR6#&S`4clxViLfLs1MOwC=*c78f7IZDRu-)zdqIw$|4bmT_gRS7XZn16pqD{HWX0loJ*p zfWyGZDEm|gbbRyu=&(Z2+`~ggB7m>7{h6*DFkM~8Nf9A?pf{{vIXyY4SThbf_3VpQ zR$$#@vzm8*1}e~fx0zJQv9b2x_Sc%&n>BI_$5mb#cW+4%5zq&`k4#FUG}y4trGa=X zSx`5l$RGGyXG@pvM7Q$Gue*YFGvKw!NJXQdppZf2T=TG9Zu14Kp!yI9CcGbsc%tpW zLh~(d)a7_c;-HiN%?Khcd$b2D>fNZal~wtPLVxPX{=_I4=<4xeKd=-XD$xkMF;~MB!#QKlToCS?3y`BA@B)R|4`qs{4bpapUUQuc4~k-iA{nx-zYXk*si`FQm7bwtzG<3qH9IjeF*moyVCu$D8js0D zF=(q6>{@s#PHX;_-WRpWo$~|ClY+#Qjo;s^+5v)G&|%u=)I1Ms_eVMy$q5?Mlqdtj zG_@c+0(wmvjV2|LnR*)o5k-yhn+)B|TkM4xwqCxB;GaJ~ubu68cMEM?$((?tpM*v|kfC>M~`0U9N1-(}rj1{PlML3&^@fb`Po6fB6_dv_O$ zaRER$hCFMR!?xVU^-(Py28E>ijT_+LwYJ@wuFU(PmHtJ3E`KYzRxmRdXbo1IT-`k1 zOhW|hXX+Jt0b)NpJK6W6wT7G=cD7_VBo{7}870DO8{*^N#@q=AuK_+80wAf{OIzH( zn&nGj3$(X^3{>}zIv}6a+VG9)d`wod2W++Y-J*|EmTlijDL-Z-$Gr5S2QgB^8~2 zt%UJ#+ipsoCtu{J(o~-i#Z9923bH7bC~U=ndHWv8O=Q!1Av8Wz=9|$5#|h+WU|zk- z?|s}EQ>5s*yGAQ?=CKuv_86B>SbT(#h&08% zCcn!wo2`i=5vQ=hfOQ#cRF#aIaf<9SfnDx2!~ZF zB^8`6*J0;nc;sT|s!ifff{;KKlJzSozU~=$CdNJs@~I5lz#VMLCcVD@33l6nS-G6HAk3oXO`C@+{Z#i084scO__w1!P><+jD z!om($+fBFI<3*Dts-&aR($X=_#(sqtkM85_;?gH=0D8>5F7ZI`5Q9cd3B-f>y`)tdU|>Qqqkx%94u^LP|*DRJT5K4<4PqT zqdsc~U<2%m&mK#Oq{I-ueEz&2pr9YzQN<$kvNAHO-?J)O!?*KGDnX*BM7g@U((MYB zpI$sB79 zfMY0kKHJiVAsD&^mO?|w`#SJr6n|2g+WTVj3h~gl^q<%hPGiQ#SCMiO%VIx1 z#9A(dK-uUq8FQ1T%hXP3zlOwA>+sxRdQiFJPsrJM?7e=s2)p^W66OC=G5tTwG3J0! zWGLRVw><8y`ugi2VGt4$_C7Gt(CmX_4fxE)a<;Zi)lZ=?ex5yc1pmEa8+$$n4w5rZ zf@fkeog&aYIX(ukdbZkx)pY9H3k0kWv{`fU_np`lj?O@yteS$2jg6FaBPUKH@axxa zDkUyJA+lVz3m_FxIW#vl-QM2fxnC}OK6^P)Alr5Hs$vSPAiZ*%jX^Y2)NY21jEwgJ z!TA8%>n3DpXM?T%8jwIiF6D<{!^>USKIAO0A%v{Qzg+c00nt@d7|C->q!uWxKLHa4;vkCAb3+;B94c-HyzCt07+&$zP4B-~a=xsr^GOmu%rM1*vi z1{b8IBDkVScM#+sF_I`Sn&N=l45G$&e14oK{fzPj@P9p}HQ2Bt7L64`1Q$f}h|P_e z5W>3RQ{OV`2Y=SSs>#nMBPBHesY4*k3hau3Wu<@~ zbp@u~_OnJrcsM~u6S(M23%VxR9*~3~o(Hx2VW4PuIH796_5fxM+1H>y{#U6wN6cO3 z#Krf?CwZlxNJFaL9l3-mZ}>ca1Vhm zAiFT%#BfUU*rE7h95G);Qv(py$jAr?Zy+yF*bsf;2B&L~WnzlPLg9u2L2}~;YK+K> zF&4yJqN_1Vv`=Q<^u}B*FE58$#O%^sIUcX}gi>x+^dERU+~Du74pkeCc9u64kATx5 zF;b-!nto|?+HEFf%{3km?pr7nu~zvzK@SwRN(XHWHuWC1s8zSL}=pVW6(I9 zPYtcDE3B_H>uG3)E-Ht(qqabfCMQ?JQ=S-jGfM2bv9^YQ$LV-^xEzXRGF~{2e}DLr zO*lMHmLx8&3_j&G@4(L+Aj+%)Fi>^jS8Mg@<*9PrV>^)21{ueVs~H5Z3Mv5uGDl|K zd#0k@+Grt>Qd3AM4x5ac+FXm9%f{>gxE__Qx^W}sBayc=-&lK+?2qRx^t(D43algw zn`jv2VzH-qOorjT?%Iv%>AVS9MDAT_;WkiCUR=(n;mi*GawN$^2&*`}PPYt0IiNhP za6Z1YKDIpRg#v>EfhJ!8K=sz14OsF~kRU+dV31y?P7P%PvAEQ-g%Ma2AQ*6Xs+P9( z)*39x$NtDx4bTbz+UMo{9YGi|yWDQqrwpyBDJdltnx*!s5hWxfTCCRs zk4qS&-Q8AwK3m&>s0{#Xw$u1fZ7x}Dff5zEQ@B6~)?*ob3wUn3w|w5Ga{!DYmIm%; zpa3_r@?DD=4W64*+i)n3)kOKz=qdbZ#Xo&D5DiOg#g1+%Wu8i-3obfFiadf7LsA=8 zS64vS7K1&prW)0gUC}xuBUeWP+3$?iq-_nZhy<0P(^_9yy-G=}W?cG#QU$t|O~!u&G=_Y~c!aB#Sa;ozXZ zx7S)@X&syj$=m~;E0N0S1iS&n4Jy?dF-U93?9m4hOTUJMl=MEMP&}ec-l_{N<;=CN zpHCP!rmoDE$TOL)SOYFdtk;Ldeq5`YA1jFGw0gYOhkS(F-u5B&5<}DVU8{uRlS6{# zSPrOsD^4!17|PK&8g+`3_YjGMWjGIcOG``8RLT`gI0oUiuXYwNP_9#6IFdP3%5?x- z)u&mgNN6V|75>K(10Z^UxRm+JFj>%B+8ig&=7sRGaka{o0^Y|#fyl_nXjQdj3mR6e zklp~1tFD)iJ-MZQlf{;1*E^u+onoL;q5ug!9-SS|=gEmB?ln0Zps}X|HY=GEZD$^t3MmU<;V!SZsq{Dq}r0(Z%@_u;m=- zdu7h|?{xuYD%1>Bqrr1KmA+~)8YN+e`SaPS*zC6XpkZOVISe8I6?#x)Kpd5FWMZN* z6V}by&P7p}$L$LK;A9LyNfTw7v?$=%kM#QG)fK1-^Q)?C2b0;5LsKN7z@I0z zt#{&WG-{$wjBOzT}Tnr5kYE&6Uto*)yJnm;U zOM(J8>TTS=uMZ^coLvJro}7%cvGZF5oyYak@=6U44Q*|0tr`?(AXtOUz_AX3Ll0Yf zp?uLMC)B>|T=GjOX6cpA5HL44J)~(uHL-Nm!ir7?+1XPdQH2ezgvfQ8vRHgOIXVIr zRk#vun3R$dS-E?EJbh?Ks_StNNT;Bm=K#8p$KQ_q0TwLNXfABxkj0!E&Hzd6h4(ue z8X7XP?)LT-peq@H|t3A%o8z z5lUUsHSn-}>Gv=bptH*Eao_ZF2VgC5Hc`=Psg=cSMyLYp(<&JoZ-Z&6QZdug(gK6< zhsXSlvje&BqiqG3sR8&nAI+0Y1G`s!eWE(GpASLEVc*A6%pc!Y)O520kRozrjUE!y z*4CDpmDLwKIs#m;XP`n!N9Q*HHAJj^i?|;w(~qw{u1!|D(kSj5MN|O{YI2nYap%{k zQTnC@it@-CMg|7pJ!xs0peq8pY-0dBIwO9$iJmd8mVt))J^)%B1IcW%nKo)_IO9-X zTs;3TfKRL4kqYXICI&JxIP%1c3$?Vc?EJXv|GyjP|8F?h_3*4m>YX$!#9YtD)*7O1 z_V}HJjxj7F3jrO$<2Rg~v;sz^wh(Jt0aI;T$Y+SIg&u@f3}S9zYe+!P#Q1@m8}=W+ z>NvBfENX$n3g2>}xQSFuC6kHwrJO8~<)e+wvTC@u!=4?IgleAu{avJUaQ0a-t5Hhk z6PyDr0i4L+e1xsiV_8ojmq>EF_n6fW-C4D+^J&dI6e*XQ{jjlJAuN6Z%>4o|ui#Xj z#1hF05#Ek1{FuoOqku9-`GNKfmmN1GKq6y2)?kLfvok!e;qod=n&-Z>G&SET^tipc z!BH3Oi^NYBb^M>sa1ygi<7ay}qPnhgBz+E3CyZDtxAwZ;QLK%7{yPrac{|GLQd+hQ zFrRV1<)AC&*|Ga7*&**_IBH-$YcvSUIr7W#q@F&SFUPHQCDx^?fS}XvYz~vvNPlx& zlFeeDSXGYl6)4ZxJlBs*wmWi_pqW7HkIm=rLRE23-LE&iI9{E}qbA zQfW@DwD}5o$v8c;dx}!5tC-(xDJK!+mhR{Lcrt{re?=aKq&z8>uUz+S` z&ZHKFR3vhrORV}-;6mJ8HZ4R`E7&!Z)no~+p=%Nydo#PJ`*4Fon=C|EozICr?P^Y! zP@7Tbm=RhjCLi1c#4?O}RcW;C@=$2&3h!}=Z##)#IcZwOIm*?~tXmfaGrf`VC=i=? zL*PStA=&SE)OELfbBADvej}@-OwY-_QbT;7#V9&Z6vjQ1LKG9 zH^o4VLKZDH7`U^K`5*ZdDx^}vR4SIPpFb;@4ritrV_$3+GF3Pu|G8=I7px>26{Brm zEY$N&&23Ied0R0DG0?>{!1!4DeD{|db0N7?u#Fz2QJ{GaKSJsa-3f=kLgzwuxbqim zZA8l~Zd3|1+z^T<^tY%D_nu79jv1j(_J5knrDY^=b=FDce!v*PNufL6Vf*f7%Y4P0YRkUjsa4Ex>du`|1??O^vcZff`PF*$ z`(u0G%L1MEU+PCmaI^MaOqTYXC0M(4M!Rgj>19WFA?ZRdxK?=IbHFN(H~3_2v^$)G z^S!pQq0I%P+cK6r4F17`*BIBSp}43yOZ|wyN;C=ci2vgo1IyKl*O8+?eWUB`RxihM z726>WMdAsqEKMQJ;|sz;2ysyEi&yn5Kr~0^D&p6OU#p3Xcrc?C?iZs|X@ua;Z$n=% zldVzivgh{iuy~g&hz&^RBZqRLbYTXDJ1EtDnBif(tuG{DMt>hPemB z_?4lak*YE`8tY7ByNYOFqK;18x5G1}X<7S83%#r7c&%|K)615<5kqgV2DFhEfq^ zRGxiHU?(P#v_$`|U*FTgZ~pWfWa4TrgUyN+k|`6nXFXEE=HSbU*S?y$b6PI3_G&8B zO67H!evDp17L{+~Z#_#i=~=Agx?~v0Xs@S4Un)XgD~1{uim62|{D?c6@EiUVs%F9h zMWVC7?7{a1+KsN*LWP*O@)2XNW8yx_7-oEVhyV2E*FE-NuC8}k%MEsB1b*rNj`1uX z{+k%jNYD1~Azpptqlq^iD%4VAD`8itG}FZP3qo7=gxQ9e89aNjs5}&7cxj}&3r435 ze`wT}rd8sWyfj6A;>Li>mt2QfBqO#mhHw3qZ3r+7IktXXmpJnL{K zxIa3)KR-FTtmi@Giegg6&qyf~D;vs-?EK8@T_nj0O=Mddc+Da)tXP35l<2J2Q%QtR z>h``U$j>GYF#Dg}$st*=^>kj0(! zP*^LcO4rf$N^{70S}P~RjunlgTcF1&SZT%hka517p0chxVDY8LZDx%gQlVX|HmeO` zWZoy5dw^#qtL)?Uc>ONz$$zi`+ka&P2A03sAX40~mJ!F(+D%W32Fus7g^ld|_jQ+>J?- zf~fRaj?@z1E5qeI(gdft$;|VyB78yVW59t=&*r7{DF)G+&LRyW?Cp0o%av@`(`qFlN zV>LpBR}ixNq)E`dRRtTVI7;z!cv~~sOv>JTEzHt}eO6*Cnxyzp&iS{Hv~RRy;QMS; za=zcG$e~qd(G1zJFn074VknZBXFthhe0&<11U{+P48PEwg7avb`gG~%SWwaa_Pj?^ z%D-7JKd6A!z)HKu2ycJUbZwx%$MoUZ?OTH`4g`<1pI974xA)L{?dd50+Z3#H|CK4| zng3>ri1|Qoy4Su3C#dzi6{rt(aD=vYaBVZxGu*sbf~-BJ|Q5I;a*}nJM8Vp3(z;&zkvYiH=-nV7bloB)RFtlbdv|`(LC>*p((;AK$Bw z8*7c6Tri)WcqiQLIUnoHeDa^3%zLqIp@u$SldMGs$umqu7D?eJ>FnX$+Mg=qXezPb z$%THeC+SezR8BikeD>@`IEtNc?6fsrO_w}emOc)A6j%6|x`M#yXa&R5iaU%8!svO9 z`@a6feGJiS>$PbSPYd$UaKu=zVVSxPL?O?d!>^~F^u@^TglIyVO3-!@K@CwkZ%s&^ zAaBQ#yy`WBcM;|kmG(l_g*PElO)JH9N;1QBx7&kYrG+TB46B$7C_hLGIo6lOXvo_? zJP~-3;Q1fspZ>p@eHC~=TRpZWkiHjCv zwA|IOd1I&=E{p1~uZl6c*C?Bb&BHx()vS3sTNQ{ywidWeg@21p&Nyll6*lZ9%+;C( z4xUt+{n`uk^GS0nb-1~`GikI)YV-MFD>>O!@@;gK9w{b&(`$33^8Fin3kCm;<~)5} zni3@{&Ud%(N?Itj@u zKfXDSM?FUs(hW00gf4B{#;OunfdA>7?t`|Tj`@mIbm|xE zPv(TBk0rRm$tr6EW5K_O6F!VQ5o+TYBgWyEijxYfBROSKTt=*T$|+>40sU34O__+j z%o2UzIdlLG`KcJ=53~LVsjzyIIpf=x1J0XG`dp_fm3SyF{;CMISmtMm5BS$yY62~G zE7dp~Tg(z`?K8{PjTtt&j0=Y|!zMJ1HQ1GNH!t_@wm$v`qci+BMrUND|C`Z4{PX60 z?RRh=$dw!YnpvOKlYj{8$4E9YewAXDF2zrI1)J{HvVD%zVQ622jg^#y6y@m7f>LMt z8zyo0OpWLm8hE>b_En-%+oGzKtIYi4)Smkjc9Rt4s-YP^h0)h{=XST;O)Upu;weT$ zDdtHo^v%gAl7U_#b*X98FllTdl0&6=?BkI46DERRr>(l@&eq9Ek}~T@`W!E`VHsjt z0(ywqr;|pr%nszD_I-DJGQ>ABYMRLNO)8VcaxGSi=a+qSQs7B#g)km=Z7{Sa86JB2 zH~0Cy8+Sx#ae5ZL*3(mR2%w0+d9LG`!i6JYNBM|*u@FG(K$9pac_}?XwH!oy#kPi? z{TjnF_8Wb<2D}be?%S%$DqbXpC(yCcCc+H__|J!+*9oN)bW}X)Fkqm4g~n?2s=q;jH=A9*)iJ`D8EFx(LWHh+Wv%nSKZpt8I;B2@QyOuuu-2VXK`Hy zX*zReyuIxDcZbf!N(uX|+im^qSqANK9;-)-+r-hA!Q?N^ zn&q*eH3k$Ndg`50-KHRa`C0tC+NY|Y*nW~8N7|@P3b96wPwmAQ zuXm(axhIx)DpX$&VBcNTNPR2->^VeEsWL6b(#sXLisa>Nzc;)EAm5&bAV zXhPb#&$mA3KE*74&!xMIcKTGsTj6UduVpz=9a*R9d-e;Tgz*45Pjz@9o#5w^XYgKm zpKKxJgI+ij5n3g6aK&gVzh*oQ#lb%h+f4XW@40j2lF@R(a>47N?;Ym6meO@7FK9?!W~7Gt*u-@YeV4VCj2HgNXlXSU zWf0V;w?rr{>79rftUT5qv1DYaNyUj9KpLV>)sH$jF#><3ydare(jm-&Op#wlT8x&p z;*K@sK4}Qk<-}o6L%ir1% z>XCisASv@-xcbHw6n+)_PK5kPB)uwMT$3ni{}nvB%(sYlLAP!{CVMkudD&CzSDdDW zQ`a+b6YdK1@Hwc z$jaWu8rwTW^~_t_B`ojP-!`u^EyEAmYMx-G zyxaVsaglL?GK|H-$MKrsM0PkT7mD@}-sk%1%hfDGzOP#!yKtw5VM58G=03Sp4ZOB} zVw@H^$->u7{FyX2x{A~qM%;nbSxTSqqQzFR#vWxv}*789)<)@cZ*v$X3Gb7$06 z9Q1k5_*t7%?<=2vrl_CnV+0WfURXp7qDur3K>}e!w?xj_goa|4aozmOYD_5S(VM?4 zl{9p{_<9@DxkI?gY*jJ|2i!N~^Ksz#ii>omnD2oc22m)2?8oTc?J#e^d|ys>VHT1~EVl9x*sUUd(OU?Gt1a-`J4 z!}$0lCBtCu2e&b13}r$LqMr3!6UitkCRDw}_>GljtLy6?N3I$INAXq2$+J6aVjUay z*bkqmZ6|D+#J}9e6lK;AAo~S6yca=!`A%_qimC&F3$o|vXHen>6BBcU$CYy2NjAVB zuK4zg=qj6$@rbsIaA7I9#_2`S^pf;wOh{U$FoOO2tjEoVsu~+X+RyQaYQ8S1t&+^k z!&2X>t13}dd#U!QaH-G|z0}XUFjgaoO*f@fVBuqSU|MoZFjSA3d|Pq}5!(pE2uqsu zU2-lz^f7h#vN0Z3VXTm~3gY*+ky%+PipWFX-JYd1ylw~!V;SLpB`+~*I!dN4+qry% zpKCQj!|3rOI4kY!KiK8pN_|;79a|?$2rZxRX8{XyTRHGO9pC?>$;-gNO!x2Ricx@* zLs7&^<&DpX%uRf!z{t+1qPj=;1i$f8W!^X@>x=v=m7O3(q6psZAVn^M=dXH*UcVv> z|GY~7`pxqv(A9*W`i#|)%vBrRE~oHz6wD^Kr%N0xH`zEmRpxbvtQ-cDIT$bII36xM z9xm=SjtRK&e;+w!cIO+~83PTkZ%c+w6(7;c&IU^%`gDxsPX?D>^Buk&@lROm>tC<5 z_dH00zAa}norG_NgbCj1e|lZEiFPo>w$`G>a=}0@OxJa@_ofN)>V}t-3@Q;`+*|(> z4=>M&R_c;ba&6=o%<-A*JC|yan8Id{Z$?JYx=UBisxf)}J8pXZ zlmb!d$Ri`+)feQL#Kf$HjP=UIY?3JgB;9C7g>tU1|Y z8DkL%#%8cRT-DYwoEoH(ga}5$*3<=x-93j>Z!zm7QgTV(#{?WRr6j{6k_e}$Nl=_# zpF-ZfbLOj%D-lPWZZG-en@@ti^{MH`YqGgg8Xc$JePAYp-X!OmimP6*gg9#T+A&9j z)Gc&cla!^fy5NZ7Yok8zN2ym;P%5wPp1^v?@)f0zOMR$%68I%EeLxB)dZ|ykTb)p7 zl{gA%IvwAsr-_4`p8HwL$J^;!_Iuq{%T`)#4&*P{1e!OhACtnT-BzCpy{%h6hk#Io z1QC3XJsMIEGghyG)Bll1w(ED}VGWm+yof2k?btP!VE@`ULTGGm@iVquouC|_%gaNj z3;NyNrF}Xb){36n8hVm(9+`+{aT;Z(SvtC@#cOS@mf4BOsUTdu{Hs8%jWjgc&>8C4 z*fFPVp|kITf=7%4-Vi~v`%mi*0<8HDtA(m#_Ap`(Ouv!O$W?ltdkOz$5H-@y=!i6F zi!;h(T>17jrdAH!iuG*~OjS{vtn+Tv;R&SywPO^5Ufv>t z+bfdVr>ju!^l$|7BJAzFTqM$SnNt>c2i@fcH*-h2bG?okpP#(_m}2_fod|_sDzbUY*d-3t)T_<$b@I8z%LiJ6uR*3AFD-0@P`s7=BG8CTRyI5ZX z-{v1JZ4%8Gr$7Sm-nOm{^kL9#Qelu-yQ5Xh>*_ieY(I@lBBaHBiJ}vUjghXQ5H98q z?p1mZzb@x$RfUbshW6vQ1gGnwUhSokW$L<hNnV9boCPHy617`&D z?+*lqX}_;YmtQ(s^XZ)8JM_0re_2Z`n^yfgCx^2fGT|7QNiWF*F()y6KA;pOc=l!q z8)~$e#}TvM>i1mFwu-DanmLmJsxfgQyRNu+igzbl(l;xb*G^W72WA*jjn*`sb;fF$ z4d$bVgMK#cwSGgk8?5QBU#EMY2O#YgiT?N%$3jd|!DO7t##~PUt@;M9ny7)go+6DG zi8Y5J-$y4PS7ag8(_%neXpThL#scn(=g{5#&<}WfylP~@thh}SG86iY3WF+~C^?xk z|Lr3;{~7Cs@-hLMh4hg5f|8#Rv8jbGii?ve%27x}J-6IodM|oPsPa3dyIiV63yrXF|y-b|KW7TcssjX3=|;o6g79f4I)OvzbJIuW8^slXyyeRhmm-{JarS zOJutmzKiZENF5LUOZJmfMv|yXQJ;e1ASfpxk9!3Bk&&NgE+>|7P;}SrjQf}-ZXzzU zf*kXL3D^OoE|6{qKE-?I@p5;LK`alGjMvfDKc3ZfYxUaw8Ze2tGenu%sV=N<^48LN zeizQ)^urHFqlg=2muTFF`CMxK#nY5?yc6EJc(6INriW?kZ;i;>@PW{`-vE^hi>_2! zGuLF!^CY-ltyRfam=wM{`7^tzyhrH73HiLm*n$m!VTikRYPJFw9hP=R++g}Cl6Xi*VDEQ22 zd7SYE!$qdchG!paItBw0tsIu%PrZM+4WaIv{t#y&aP1nLGM#&>IW)T(`a^-pRBTRA z3Ge$Rv;D{@-lZ2sCVo?T=!46TuJLnJmTe~uNCHD}dLg$U$L#B=xq4FZi8BZr3aC zvM94^^Wyi9eE+kDfvWo=3$uhxRndq87jq8{X>Ia?@8osR5~t>ev!wzf%j8Z6%FkO(F0uCVa6b`9a!=fT(glibu1q@ zC-0yrkimFz`HFqotQLN~{9TZIoCRbhUs4|;k7Sb z4tfZ`Y9{UJfhTeF=6L<7^#TvE^78>l!uU(i8R-?DBVpGBl|y9WSLvkn&x}hHisp?g zW8&=PV4s^`{E$(tpVz0Ptc26JM|x%X!{>jaq!0g92bke+y(kkcttGA3V(4;AR$73R z7D4_g-+y@Hf9rDn|A$|H-++NAxB&Qtmr75BLZ2H;kIKlvD4!t*O?ZyFb6reX@--Hn zqDn{G0%T<(GGU41HQ!_rk zxY=Q2uftWsL+XtUukbhm$TOJ<%I=sTR~05L;q2cyk=tIs6L1hf(V``|dZTa35TU8W&UQBgp70Yg!bALtCk zp(noHC*UDNuxIdj0dr~U$vXlk zC!7BmTOlc;%7UMEbru-`1H^VjuR#`%cH|mg06hJhk5G&)Y)+^IER9^B8z-^K!6M{O zofymu$WtJUqJJ@b6gVgIjid75D2IYo8Cqk-W?kM09hv^`r1{X#U~aGOYk;fQW-3|h zz~7LKjHs~aItOeDoRCx7enwn!o3!4aBsX(9u|H*m-*H#^qhB$2ug{c$%MHsU*(vwIQ{XOChFd0cSzWgl{@ zu8d)!P;Bn(EH~8{{=vHHN04V}E6_bLwtw}a-jOAzJ1wn1vAZlp1~kFKl!2Wh zgXB=3{J5+X-15Gw;A0(ig$8fhFsr>-K*05XYT--=s)t_rj))8*!P2O-!?MA*fhWJO z^PC~3gTSgi=O!w~R3*=SNc=~H0>5_J@{=PTN5(RR&Ubb%>!-t0tj86T;aAnW>x*(`6vXO^%NF9l8>|K78UEAH)*vV;e&6PsMnl3VC%Q!8ff z7yDSD8;@d0u35%YoJqOw)D`|7{DvS(Eg0l-rb8dDCn|oX3fe@PNx8M14hi*EZjkjG z0w#hHn#OZ`K_A$8*i8)ot(SfLuGC7uGIg-;7%%Uk5SiX+N zUUqgwkZURGH1tw&(cq}^)4O5qbF(K4Dx=E{nqUK8X-T#pOL|e+YWn%px4xi|ztz*S znq0k%PTlY8#IOopu({r9scd8fC7+TqbiZV3ysLET%*xy-BLn*n4o|`NcD1P*PP_T~ z{zSrWqvFoL4%+LT`y2;GFE}fd_QqtNX^_Fw!p?edFum@InM{$fW5NCF`$OXxRPEZa zK4R;#Qgo8H@B0X169Sxq-o#ZYd7Yv%sj8%D!jueRx+^9>W1S$2No_t3z{sRmwleM<7o5 zPOv^SW0*Y(X7VsbM`7JAeWL=fF8@oHKA?@;6=8Oc8h;pw6Q5*nO||3; zSj5i*^_5Du+qB2qNCm3uk+fg{0`cs>O0Q#3FILT(Cq7zMAv$Rf`@^+SZrb`>vg{3w$r!wLoV*sx{Z+iazOu2t;kdrLearwL0J0u1_J67UAIjtZy2YYrVfxQ^mZ*Bj zqpaiJn8uP#u{&hsfRwd#u~!+DD@WXuCQ1*{Z@oPBdq3Ear_CVr26mY+0rR(6qoLsh@2f+wVnPp<8qC%E9V%+S zm=?8Lf6K}!wuZ8tW=I(l6&0bAok2@Qdu(VkAtU4Ba`DmA866O3xLoMGe-J78;uV=T zWw<0rOOhm2(jm=ro5tpvxLP_ccjAcV4Ha9p(xWAfnj1EY_LR&svn5K*%`h>DcpC8% zcgJAmh}tX~Goi6+85vJ^V39ExDRDN5&ShpCb?acQ6dMo`VT=|p(070Xq+63vX5l8MajyBx^X2XA| zH*13oM-BHNMHq{B%6yQ12=EHzyVcMiV!|PB2-`R5c>LYSn?cip3E_?EJC^U+6k1;C z1OTZ0W?l9i3a!3Q-d4D7uClhx>T)>3BO&LQq`mdu^yvp@Ll5~7(?6COf%V0MQSh{O z0jJDi%}UZVRJT%1x>)a_k9`r~D`;QZ2kO0L%q^4<$Kpbk5jFUQ2qVH^1ZZ&O1P!H7 z2tlDWf7{rU`k4wUJzbu6>=%eUlo4U?e)B@?L#~x~Y4GAS{MnY>9 zMdp}&aIXwc>5SzC=`p^=4|pV>K}Cd&4Kh3HLy*WuS}&QOl}m&;1;@dkZZIRfr+&IL ztFoo&+zZgNALi`p$~zeeK2TzAksd_KW5F9QRzPnkf~hW2A6)iAv_C2^*yEO<8f3lS zrT8Yxldx++!Q!Oe_SG{h(}xDG*7KQ5b9~!#V!tg2-{s~Nnn08_0@9z@h7PETH;qH| ztEE|9MAi_VZjHfQiGdvgP2N3u%~f@|xt?UgemSk~&3QPwUvt3_zPBvwoAn9vEb-7L zGKUL!qZz?eCqC2Bg91Bqh?d_Hapu20g;mLT68^;QN%PNp(gT~-)r30)p^~$2)2;E} z4($S(<8mB1dy_CIfsgLjlNmBLgn7!0Q~JJQmBZ^$?jiJ|`_}gp6=TG#)zDOyQ1hcx z;r6?psp^qGmGg3ehb(mx>R*@nC5I_RqPx-U@@Vpqq70Gzr7PUp`1@*JeI3Q>-i6Hf z3bBD7@#g#{4#^e&CQA(k6(?vwZf!l#_WBVDwpqRnLYbA&G4PbNp(HvW#SChP}Z39%9vL4rYb*UM@VC%Vmc@gU$odkhHsHctTORl_+zc*DTKNzCx`Js=(z0Fctevq^; zSt4?=rj()E%hp~<35ya>F0$eDG-|e;GZ2|(&ud((<53$Z`~-{=9f*8Nz2S(r)aurT zb4&AbPL-X%A>ea^-D#io^*3c%A&Tj6apkW$c%!5=x9s?7^6TS(+5Kt;PG=LaP%wPmc{_|}qOwOq!_yqA7pj+ZeZ0if) zGLRsgAAsr)hgW5k98?n#DK(E%FQ!TV>C?2xV5$qJ~JpJ2JKAG_ZtA zO;dsDaUT>XMSxu-vSp?WC~Z)G-^LX=hw!SOa-G#;p`J`}NI^)qjG+}6EulVwGdR$6 zmH$uKKZ4+SqrtKx>?l!JoyZn~79scr`O3(wFkINp+m2dn{S{DfREIalLX(d$IjIQjAplyU9 z8PWjlM1ZM0ymI8zjZ!{M{zN>5ITSny4BMKs40ARYVloRZ`*n&E)C-EGYka36UH(8t zr&8tYK`D~tLgSd`tmW*Hc8}}LVvQ}<=zU-6*745e+=D6yNROL}Du*1Kgb7a1OdUM8 znkkjjiX@o>K2Ni+w8>wfyr;M3|I%RmhlTe4zY)RsKj<_oeE=XdQ1BoLSQscGSvUaH zPN41ovognj$WH&;)`gj!7ESs(VmEP6*}A;_}tX`@S6XUZ#`k`*BPXfdxbxGx?zxPi$VA4W?b{GblCs> zhMk@PMgB*j7OYjRS*`J0=@CVYf4>HG3#AM=?#g>qlPM-K8%;J_G@(%(CMqZFBVw&b zTl_VZb=5tc^e!Dw1rHIXLS9}-Xv|-eUw@!zOi?nfN{$$`EVk}uR7InXgHQ~fNH$>P zdne0KrBSOe*{3XFmE|#roTejEq>)mtEHoKxldO#guQ)DXw6QMNCjBcsZX(52{hCCh zFluQ`MI?08VA(M}B}Jw*b=(LMLuR|PRDoslhEhW5ZJAC`lw0XeRGfR!J!ds>q2jAc z<&93G+v0nVGQ%1}EnSfqGRY#40QH>A*YWZ`NLfNjCLRDuhlL#yGeBmTR6mi9&Wf59 zJJY{2c%tvr;8y=y51J0&3ZoVK4XPDUGqPgfy9Q=W+zPoF_-+KKPJk8+YJ{jxf)*lT z#GsCY7FR(Jo9bT@2|5N%M>jo%38Y4?ARI1T$eSiZ%bF%PVl`~0^QVLJF2FtBxaG(% zT>k*#etd>rf7E|802r(m^KF@+PCz5batpi*9bT8~EnI91!7|)r{JCJVz%7&pcjdf- zL@aR^1|Itdfz|8D6adclZ(zhvABvKcLZi4mr&)*4AA4%3I!H=KR zW(wmmut#yw`zTl>(QIPYDjXM9se+M7yui9W1aVm+x-G-{3s~i8PlPdY2(3$#`ZUp@ zeOZb{$$YA-Q6BfA+1{KW6F%GqFIJr(!n9t;_zLd>n{$h0Ps19?x+q4RX_I`u1;~w| z&GeV~856Cu4yi96qsrD*7G>pSR5La|V*{;=I5d_8vAN(`{h@G~(UDP923u%i6?_o+ zV%r^_<&avTPdGKkVmWbHpLv7MkFVNWji*@$3X6vWC0h%%1n{L3<69&95iJWim zKVQReL!3Nbo!)l*m#`1?dVr{k;$j-q(n^j41Ob*_P}=S_-De+*QOxzZQ}yA4*BEJavrR1_F8%7BvcXpZe42LT$N zdKO*XsTI)86;LI-9s|wV)hOhgpOm;wnw#f9ibcWryh`8?XQrT0zM%*?fsG7Uh7w4E?(l^W@?$wA&Z0|1MR88bWXR%@k3N#@O1Gonli1W*BX z1?Tpt*-rS4^D)nRt7ka%@3vV&&8J{rd$s9#kl+%~e*+kXjOVk`DH^8!4xYs@y$-G0 z&pyv4anYp@X|3rO@sg!P)`?q}S5fYMj|9HF&evB!2nj9RfgcuN7iZ>s5gr0^%mb(J z6l(Dpo{f2lV=uQfG+4S=Ti0|pG_c&tcq(ioA|;@p zgq*D=%@{qJf*; z7q(xrc`E>xbzH+a(8Z)qtRyjylspVVTQn~o-c8<}9<0m@_YzsKYk*TPNSt1wAY=S% zkXpQ+>6ad$2>JByl#ey$WjuKS+AUXEd5U(^#o&6cCDB%~SDXUXTUFwpfar=)URQ-7 z*z|>G=ERJZE0`qSzr)cn>2QnZGlX56%+}M0^UIP0WD(n7mH5`}VWEU=6-FUc&zr*H z{Bc3@+7lmx35vBne1BL(jB@_o4GPdCPh(k(jbhC&eS@uHF1A zjeCixH0s$e2QYSslkL*fPa9aPgZL(*=jzdJnorMTeOpZmj-V+)yr2*8g$ zf>7bklYD}#)ZBlkTD$;VJBR~hwi8fL1t=tsw27KLy`1$STFwISpZtOGac^xUIC?7r zEY{l5stZ*D`V&V)Pf6@$l;O%L>I{>waYrRTPNmXnTS(g~EZ2ByYC2Gv-y`9UfU`0d zFdJPgmR=H@8wV%9u)uoa=q<82Ji{U-rk2Qs&NTM$S)Nl%6~U!+mr&7{n6HZbK`g_T7g+lkSA!)piGfclc$e(1El-s>(?}oWM#7k?EiLBA=Fd<*2l#R0^uDzOgX0*37{B72SbS zdXwdJ;evI|ovS)zbjdgBV+APa#`k1NoK5Qrkt031{oYQyX%_(l z?5pbt+j5RaKs>-EvOoP=mFV;nzu$XkS-VR{jCY0->pt$`OP(`3)5QaTN0x_gca)a* z&cf7d)t2mH+oP<5K#6lHhkoe+L@0PZBw-((*9=JJe^dQRTe>mt{Aw8U0b|pAJ|IS0??H7#~^_2Yxc^_@A<12MX zwJ!4h1W=`1*@3+Ccz(M%*Zs655XJR!tN!Y6eW=!3xp+*Q|#Zz3NHjT8M-5zNZ9mu_GAkT z<(n~UL-&xMHKBj>6WU`aDZ*55ScP!))26 z;26Hs`|!dor->Eng@S*M4)X3UhsLe9-Yd6PYx~h)uCoh~O`I+|Z^Dn32ip-=hJS6c zWD3)9X>dF<8S4)!9|nkGdeYYVqAXTq|Dt><%uKE4)iv*~%r~xtZ6O=x)4Nl3CF%Iu>HJ^M z5l9}j56Fq8odj^m!fIsU)_Sj@07J|coM7j1%m;V(v9XVBXSerfFf@zzj78E54|DFI z;d*sN;K*y%QOz}o%Co%uD!?AXH~S?f_p|eh4v|UsXnZmoMP{&%U^-}NgZwCDn6^jMo(z@bcIsLAFi=H$`aBl0*FZbO*ch$k zFzGV2wxMP+`o+rvt4Yw_kv9cY6?#WBlji`mWFIBS61y;bvqFJ;yWn*|Ug^%ZKMGAq%_>qmW3}c<-8u&+)fpoJ@;_L7 z*XrzBA&W~GMTI;=2hLUq;K8`ej|lZzc?+dA>P)f@u%Glw+Y|KGVONvT6|#r~Pv#)` z9*0;Nk|3Bk+KCn(7f1timEay2 zz5wA;auwbYcNiY(P4;9tfH~Mhg^aRcjZ!5IbFqoD^zHv5k-P$1Cg&6Km9^+vv^y?H zShT>Z1!q`W!{WT%DTP7Ec0dQe+6VqZ(8lZPE%20PcIf)OJhUx6XO#Vk(W>_pNcPbp zRx`2VK7n_o7wf1^RP8)8x_)B*yYU9VYARK%VB*STRw<+5T*@((EqneTz~RL2*kf}J z!fYvF&A&JJAV;*8YCYSVW*JizsUlVeBK^6J9+^Lu!`1hcbY=BgJ3!jUbHp9@?fT1R zALc!6=g&K6oQ#`<8s9ra!!(6%ZqY2g_(%m;CUCM<;U_Q8_|0_`V1HY|w1N-Z`jC1M z+gaQhE{#l&oiS%A+mcgqdzHtQM#|@9_Sof1g?SWKXrBX@zJwwtE}mC5w2ugP;}`Hv zb9=k_T|^iR(t+Re?xjLYXlkQz!8B(71|rlsgb&epIMKJ=&mJU#9PzG?mF@k(KU5Yo z?QEcm!rw_BkT)4Y`HsSnHx-Avw_Y5=5KuWf)_O9#l| zUugx73L{34fEWkepl+lN>Od$~M{cmM4sxH&ZRHB7li1WGzb9AMf0M&<{MkiK%!8Mf zj{NqS9cgvUO@&uAArtr9!+4s&0ObS|1I97;wWW>P60?ZSB;yGta|JEh^rpO(Z8SMm z;+hBQGFUKrR{}I3iYIIFaLu$#(4F4$@0vs&TjtEAebY>~oma)xM4eOPP^8A$?rN0T zn)Ny96RnkRME-#`FZ%4|)aOv4{O;v@)>}s8cgS_KymDZkur|e?%Cl#**IK^=3Y%(; zboXqpw#;jZhGe|-Mx_i3^HcW$g;2vLmb6McaFswjqiA>OD`dWwlnh1ab!{I7>7Ukh z^3UaodZ;`$n*ulrbE} zYnYq6ZpoWZP83{h@E`w5O%kUN7@|Y}d5KWAvgfODoX|6W&};=$wl?a>2J*sGX{(V= zDwl~_-@x>}5**85YJu_2)AQFW=dz_J%5yL^-)o-jg&67@_xgr6&7Gmz_uSHNRfoN* zJ=4!G5+h#tV4zO?a;Qe%%ztyUb%zc8-RI+u)FT&BKuC)h^7}cNR|$pL)_`ZkT7waC z^yE%at}oJ_b7#kofj_o*b*MAIVBLJL-&|F)Iz>+zS}Wx43dTIUD09XK*aCL|rh{$N zsz$3?PPA*;nC#%}P7ueftIAMY(kPFY4QWuvz~XUGM)eB@yan;8fQV z*&YYd)T9Ca;DfRKm)iefc>ZsdJtk)Q|6xk{s6i?#t#b~%*$pn z5GFNPM(yc$^F=y!3ZDLV=HeNwh*Q@pR%*)}%AKKX?zd>%3Wg;DDj%p~wW4APdrA7j z=7Pr(4ON;ZU$8txnfw{BB^|10utJ?OR#S>pF{|8oQaqz#W{DL&QT73ed>}(zZBq7| zOpB6>&G;+6N66QS!gc%P1G*=96Y`iKXWSX>1!j>z{6OIMu5pRX#3crrpt3(5_ zqMg_K{!VHBh}Or}Vw+?zEX+W%>XZ-z>Yl)iWpRSj#0G8hAZ<-Sqz39~8vgMISWZ23 z+f6RYLW0lv$o%J9W{#wQq)-cL-dMUcc`g} zt?*3m9r+>XxLme>p`U!cR3boQG~9&-9~e}LN{-XrtzvDF(8JliH2^&@A%*_I1!H0- zA(~!UqXYJOy#Cna_#sNMaFLjun&9sC2Pc4yT&uEr1u6h`ZY{CRqwFHXimgG*0Ao(| zFrFiQ!1isqD~S+bhaJXNB=FOS1E~aG81roi!vf{4>nSg&kAe_W4umxJ2t1I5ANI?i zB8FKFuF8POy&nwlb2CM~)u+T479WYlW(o-|F3H#5;epRDkGD_EJc1k!QoiH0X;xd3 zwg!RBa+X~vfQKZjU=i3ZL8BYG1$uE8vlV)7u7E|_4lxq_j@;69io_28#NXGX$ zIU5t5TU1EgMz=Knqyav5_eTYQ*%3?0**xM@%krO)m1n9~y1l!nb6tgCleAc{2LauOpm-JM#TpYM{Vj=heODt7Ck zfHnNOAq9Fga6yf~Lti^df)5GM6e8NBm1|V|%!jl(BMUY3?>pUIrCt;@d!BSBx`I}M zWq(k1MfU=2y%Z*>m;dA>cqg}H&@5=NsOrGXv67^j4Xe!U*XzA?J+9(udo598IH$s9 zsc1nHaXopbvbaAIsSIbV=Lfv&<@I^9pGJkuaCb4k7aijlN@z#GD0Y?Eu2D89R*N`3vk4-0Xbessz2YJ;|FT;H!os9(FDf^ULJk*89-wb0-D@B ztj_+EPc9xvq%ZBy_ykw#(kTn1R}^%9_WNg~>#qc&!G`ho zMahIF4RB)?j~=s{UGB)?#vi3-E^Si6=Y*bL=s@niAc8A66fOAcodd&(JcGFd{Zrpl zaOl3(_xP?LQ!%~7k7S+B)HU@STGm#P)#c^IMUjvFI^#P0x#95o$@44XMe?C>+m=PW zo)KxX70r4&ss39*Aote=lN3@BJx3x7j1^;I$$fPeQ=DO>uHqGg845Iej9h-H1sJUd zMPVp#82spP6D+GJXn55ZgSiFL&DRnQ6)q<6-&OkeFuV0v`hXzTB?pL8vHU~f4i>N}c@lJ{n>YlCw2T3egt43nH{t=DAlt+@-&g~>o}+Z| ziPJ-D@o2=7tm38^KA*Q{=U{Qc)5DchoB;}HOIAixX!liq;2lzy`RDa@@{}RbvIS^I zSJ%oJ)A|SN*5%|dm}~{1P#haG1+Fp8xIDoXSpjB7Yhlq+9zG#)$F(aKN{MDBdA>V; z)62h-lTK6ZK_gyLP$2A-1{=H>;ZAWYT;)kdOXS;qvv0s1YmwDZC>uGdxHkdTSn( zA=3DO6LjJLqLW6x<>`-dDJuTdR~)PoaBJATO2KBD_J%iLc+RHLH0b{ce3imrW!GAL zzK@lKBl~$^Ljbutj`2CEgW4_?$gA0JqKg0ahjNCwO!Dcst*bub;*v#OvDfqM1@VHq zQCw_-NemR)>jm9fzh6X}Q1S2-IjnrYRHb8lz{k+b4j<}wgf_g3#p2t!ND-9#guzcNw<*?r zo&GVaKv z0LRtW_ZdO+NR}0mb=0h~Xf)NTNyA#T7bR7XlX*55LD7*C8#UEthsb=Iaj`resoa%g z_2y>JK12Hy!k8K3Qu|nMxSk)V%|#bR0X%dzT^NY_tnDLUp_0(QfhX`zto<`c@HRl4 znWNNDmjA~6D%^t?*@$%>81t7%=Y%IVYtG zK4aWws+rpn1Sx1s3QZ-Ml1?EZ1rM*Fw%7h>$4*n2`@GbGvq^#x0=_H#QJp`}Jf+j* zvuD0`_MczSMG~;NrZv~UYrg?sb$%9~4Go-ZRjG5$BxbcrBW$J3cvjW7+^9~7@B_s4 zdfa%EpK~kPWAJ(71nw}btzq@?6;#5UfWOBX+?;gh#3Zr|v0Kd*Y}su$Qn~9Ui;GC= zN;;Zkr(qqT*eF5?2dEAh<9Zg3>{l;eKwb(8kDwuf)ZDrX>L=v1<8)5sp}+WH$jC4z~KiW`Y*Nr0~`6@j)1I;%>QEqjM0G9MqXXX z1IQqdM;TSlY+$me+2|y2snTo-j1(McjZ{?lr-?-c^REqJA*2Hs>;f62$WW~4SS%kP zEwwt>*jQ;%sdibkz0R&l_3gR|@t=9s-F_maPvmsG&UTo+=RNij6I5421n}?G&rV69 z(Ri(!yoBb*w~qsKoF8cVGX7GVjorZvGy&;a4)B>x@Y$6#Am^)HQ^&Zf2Jw!+slSAY zzEKN6EFIo29B6?5By2yvp=;T_2A&75*-{$V2tYt!8*(#5q)UJC69km#ZzcWd0Go6L z^8f)8p&CSqaLUoqKB-H-mQ4-|38pM|`u8-$h>I?@on4X(*hOSKxfV`u!S9^E^jG8J zm|BNU>7dGB5#3~AF-M>PFkwJZqkf6&%*I07I-Xk8wr)kxrTD!;h(9%pKP!NkcNeVa!1<)X&VfMFj zBjLp}gPW2du^%6+DulFn807%ekn*1B9*H3+U1FNZ6xk^}Euv$X+mN>*-aSNJn3^mV zp$=&({CL=E7-}%Zo>&#>W*EzmW?!OP)*bOOqAeVDSadLJP1u@jhpZK86OwN*Z%qIM zfh&TaC>(-JFoK>aJDh+hf}AKb9IM&+I5$2*|=}zXXy>}5cP0QCY`ascMvzM0Y#{ocWmK(W zrlIa_{_kPlicBUuh3%rxAM8IVf7#~DNtsB}&if|{CkT_g$bJE8U$XbvfPb?U>(O`K z0C(z-nz)8lIF2neOX;~{r3x05x^>+Nlu9Csi;_C>rO|j;)(Dg-+Pke;dAPWURgjh^ z&(rnBJ56hglqN#zW%?iu2-lfKFba=|iZVMmU(gj-Ctd2zF}rC*Wskz{66Sd~_iX&D zz{Xyq;3p$4CF&x<6|btwrX$S8E82f|oWfuPjF3 zqm6pm==j~<;o_lh32!;&*~fOUk+gC2bd_z*Ob{6%sXB|UZk$wZrBqo*5WP(${X?N{ zBI&GMNYX*p(ORgkr9If}(!8Sj_qZg(LdDuLh1Zv_r>#bHb@;++1N)NXCH}2|v=4T0 zq_eq^8F?yyaB^_u6(tLFARFR+DZNZiW=-}P|3h6V0YJRndrsh&fSQb7p zwXrSW$EZ^7bi!Y6EDEHnxLA`Rr3`+(WRi!1U0oeFlB2!}`}Zh807vTD$EFTu)M?ZC z8gXU))QzQ}T^P1a<3TWLW}@|ey|j_kvuktyWAi+&#?_PNkoX|s_blE_X{4Ff<4u zAB5|Gd58Y$`jw@AWEL{cL)IJTSsP*!!gAwIp z?;JC(%ggjsX4u-!x9H^!z89d{LrJEi)Y(i} zcvUkwB0D7~CTEi9tkRkF2QrA=j*-nd2CLe;vULVM3VTte&j3{_z8^`?KZtqM9# zyxirqaG8^&b3iLltAvwnW!=a14tZ^EVp#e>lyQ!0|FP1NPPl}r3$M6|@r_EY^E|xh zhgYN3>sabqz=pQ=X9s@6#%U0fW5i>!Wm5FJdk-51F7&KrpiYibW4sZEcc7POPLdk6 z-BO?9#^_D!P7+A!&nt!#__y~N5VdL7i1%_rC;>i}K*6v^rP+biY9x=!LgWrR)kI=q z@RDc^?6#i-O~0@wetiNQ2Ah_il9g||6T6vAQKVMwek;oeeVYXPtPLMu_Zyrm+R9W` zbWgn;bmf-|W@yjpP#2;BIv1tDt>_RyX#f`T7C2~s5OqZ-qYwj5qhY_8)Z;lMRlO(=M-W*8sxDCj&r;FouB~% zK7!r-wT)q!m$ll^tK{>Cugk@?3SKK_2er$~T6E@r*^BC zXfMfK%)yPm^DJSqw-Jb>1{E^jnX-rV1H>85=nKc)d`jLu4s8GE5K>RzVi#%3KRdX^cd$Nn@eZ@74dH5G2 zf{`B(k4xg(pmim*wHmuh8zbqHGv^!6t%=WXY zWqnXM_}hTv`AP`j-)cnwwvUfb>UZij%h5iQJFX5n9jwvu@wIGk6Ur#0dHlg?Wm-83 zNIE4q#(a@r^b8!XZcBBpPI@{5+l&Ro4wuM;Y!HqwB4!%fT)l#?zSrk*1f0)5WupRZM|ZFJP|`34El5sMl>fxfrwr+So9VrMlOfS4;? ze&z@MOJAWm|LgT3Tp3T+SfxxFXep5y8TQd@g#%D~p3ebL_iMo=(6JXM$Wd5Pb*pHO zwz0Pr4ojc`^heo)(%@N{^WJxZP0Y#Aa&fqtUD-L^7Q=lw9d{WZDai1rqv>{X3GX?EhWbN;Emh(i=zPhjo`uo?PI?PFxjik4oO|Oi^CI8X1^JQaIO11crQe&rO3+iWY zPfr(L;y)CW<+PM$4^Z&rp68#db+GkITd24h*Ah0;LMBcMDWjfl4oRKaD=aFlP3AO> zD0X+Ruj?rG2h2h`E4lwNKbA6vHd&eY2}oY_8jL=kP{m?bQe0flGd5BgZ#a1X1Z@Fp z*#-Bz+bOGvih>2)2p~>Bv}MS0vg1p|`_&w3`NCa7e?!hMma0J_3VCZjvxN{Y^IfO|Tx!1JwW-u-?!5F@y=gRKhX-^3pHGu@Fzkh{YnjjL(Q; zzSRsR@xZsuM8NX!nIw#sHtTZNg#k}OEoV~z%iuknb&&K9ZO5-tcbOF{HyT_1B; z-tP#c++uvj4Os2cjnCQn(_|XaK80nEokYBZRuj+*wpLs)mzeRa`Y&i>#{G3-t-JV_ zQ;C~kw2#37rZP}Ovt!%NifyzMZ(t`T7pIKTUWxHsR@T5VVzkjF_U+ODXbBr@_UZcM zvjd)VA7ObAb!UCA4Kh?EtOKhaw*-U?X~3Gu^;&MoxZW~OM?=EI$@P)p&3HJ>T|Q0K zYC9Y6MCo}LFRNb3(-?4R2&PgP?oOLn(oEKou^*<0pK%(y5Kh^uC%7Y0Q4(26P_w~V z)vl-`p{A0in${RHq9^2VY+*H{4`Y#OWWKLFiqY}uP;>0w32!aqhx|vW$9p+`i4f*r zj1v$Co28j$e)M`CQ5AF#~Oeg4KTJbOQf zwFBRi{xwFy`$}ci(ycd$HkuG?BlE0a>R+^iG6WAdTJ>zs5-w+$rrKx|y4hkTA?B8Q z>jYJ;f5z^g3!|gS;_~oL6?Q%LeFO&pJ=66v!&@0_G@A9Vg&4cq7agv}Qu!6eWEVAk zjX}x@`)l772pTdsW<*Nx)3El*Hb-AX4uXqM4Shhg-Cuy%Xs?L1b*qr7s?{0rUEN;q z=M7Rhbfv`8YgqlbByTvpKHs$*9d}#{$wJ6=3kweEdBMD=VD8JKuQ%=tVcj$(CBO2w zeg#weh$wTE@+eUq;~YT8uzYrSxr#ltaQyZiAtEq}pV~sudvZA80Zw~@fsc-qPfgk%}AEwy_N8o9OfbV#ZI4l9n;_ROkF-7>z$I74|s7D(=tM#0t-ABnu zhh&XFD&3edGKZK>@&+WW+p6n37K6PRlP{$QLc2zpIGF7Kj}X74?HKI$H-oF&D@%4$qIQZCk^#r5Ek=*GGkAA zL&WRBVq@duV)4ev6q@ULU@qZxLPNqi`-(gNRpRyCxZ*cc$WwP#Gx0 z4YynCZGPgaiuAX9$lV!$sJOUSW|n&LK{aNmx;i*DOQ-j;5o~XCI@jlJ$J-y&!&A06 zn%91)cOY2^_tZWTUIh%*OvyjOWuNGcD&uk2Daa~K&vpH)Xz^oQ(;n7;{S+^q2L7wt!Zrg1-IJM145hp*m#`5_`VWvN2CS5g$}v-M8C=9=n7y1I;9O&4 zHf}SRo$|UJo^A<%=XqnK$-Egga#JwbfecZ^Qe{RCq(?e!m5%ZWsv_31pYXl^ z%|w-<3JXtTMifo;_$mU%l)T7@v#q?cD*957i%JPW9IXbeUi)+VSb76(q&rMSR_i50 z+5;Is&#o@@1Knm<4AgqpiKBl`3%x)eeK5O{E;?6KGMATxiIbZK7K+<^qHh$$g^dTK zxI20+R{pHv#79WTD+j54iWeyvqq+WGaVJhsc zaMH5C*mg0MQtju(8!$`AY0b+6CYc9+a>+2Uc_~UC1ON8`c^xPzb8e-LDW4>XMjIpC zodhN-8s=v8jCvD`?y=w2ktMrrbqx(wRYum+VF5w?i!+TU_g|vKvi^{nki;D%6p(^B z?gctNI7VSrMgTge7U1zg-_ys=Coy&W&kKn{+V~>1hR$10!eKlUOES1mVLyu#w0aw# zd6^IK^AT;`h)^5QU{qpZSSK`L%8J3NA@k1A{W5`3w$_>D-hr=xu~u@L>U5sEY}=hI zuoHHE=u0n?teH~mKwD8kZ4Q_kyBq%Fg^C3y*T{=;>w>}^anlvC^z`>d{+rfEBqGFcBHvP< z2o*D$xFps#L9s;=bCR(5w~I18`^{IWwc_y+cOJSTAr*G7YU_+>D}RKO>uf#0yx$fsZF->A5D)m&k2Fw~KE38- zCl=4eNVe!PQh>&wW1@@Yl2<-L*faQ8eUH1)b*HQ2L<-q(lxp~vGU9m|YjcFoeSG?Y z6!Bul7~2FIk6RF@PEX(^wa42`|n4huYH;LS(6@ak~P>-{+6 zhdI|jl%(uuc~c#5Il5s=ZRYydHq_v=L>8K)VmCd#Sd8}Q*^O!b@unI&Er}(rVGRL~ z+Tp^e+zu%VqBb6XSEfm#F3S?d`JJJe>cU0e-myBw%@Vr$19nv@?>>ygCXZWL)V*nH z;ca;as;|kRu7m9(rpuam}d+t2hJ<$(sm+6K)B6c)G$I{(?DnjL98FBT#mTHX zyqmooLpd+p`cH>+r|dr#@Wx;=OQN>xytWAXTaHjv7O#z$6pe61~zhq z5*9|@ViPP6BJ%{~sZ-D!7@rvjQ&e3L9_C(PfxjTwh}6;0D)5VtFjKH@wo`g?Zbl@( zWiOUOM$yc)DAZPsI((pQaAMYB7zr;e86RX~E#iF!U^;@*5j;B%4Cn!3dM7JGq$)y% zC;9N9`H26ZxQkTgChSgfm(;9wT(T(Vf9k8oXWGP#OQOJdP$P1MxQ%e7*mxUY(mrtP z;pNb$sMbH~wIq-DMPD;2B5|%Cwlv{`$sWaa0Y2Dyt3eFU2S|7BNtVR4K*;*2_@ojY zC-qHi&OTaeR&`&rwsyF`;p15TEQ@l&CmV+7i=xbf?9(S(dpYBcX7crmeqHy!0<-E< z;vm87RpB>MNi$YMN(6xRtpL`cb>=s>0Ps4L6MJ5t(x|_&vvbPhS;I8_%tJbNv6kiO zem1^%q&)HY(9z8tJF-Jl`jV+FDBYSpB=x0x*~;juk`-yRkuPpXNV-yxO+cP+&i!0r zv#FysGlm@ekV!=mi0(QTdL9XvDTAlxX>8|hpxu(coOD4#@H1G}pBG?P zp}~n=v7Vs+roDAYCD)7B=I)QB#EoS4iZg#&AMufN|C@`#U5qsa(8!5kOxgTScgEih z=1FC&GoH$TuGdD9;O;`hSY>9|FAp z+X@LY2giSjY^DLDiK2m?i^xnOX=fIxUFc!{QGb44Y3%1(qfPL7EmE&dKn6tw6-r79 zj0`RVE=E2if|`1-NGJ)!)=eGUyy|av_5NC|y3|Rh)TXzkU1iW$)3em$`*D>MIM|xv zo3hPwlIwCE@a-~-2Ze+wDM^}4v0ANX!<@Cco|_QmyJ0Gce4_pnMMRItJ+j3Jb99PK)vPor>>@b_m+9E(s3<*SW*%Dan%U9W*r-f2qTQ1Q z28o8M)N@sp-)w4g)NxXmm6Yyws9m$EVHQu9tSL!qR<6<_%r?^If7x(0V5>%r&05e^ z!Z*12qT|-iYHWW`Bu^d~#Ej-EX|qY$hBHZ-7};^d;iT8|=jz!rZ?3a>w~Sh@)F&m; z+N@Y==FFJq65!cQ&5LK!Zl0Rbn#8fgLTMF^xFt;)Xkid^m>(sZU92+1G;Y}0HckwZ zTiHtY3}8P&YD$EI^^&6~pr}NhME)Yq%8=?7oF+m?VL+LR;xq8;> zE+AD6jh{!c3QZbMHD6o>uZTJoi&vkHn&_`Mvl%;beiy33wz&gLc)C=q zY@Q`&!FYd`^ontrIfbQ87zAdx?XTd%w$XeHO3=QiYT)(V56YkB14)#<(a#CyPcRYP zNA__**>BWbY*2&ztd87J^!au#xhVOhFpo^_zOt;Kf-qlgZO-U|WOyuI_Ij=`pDIFJ zy3*-vBsprZ!Yfk_k5?YbtM=hr$Aan+uksFLRs5U%i_dtLzuAt^*>FK%_JJzJx8aC{ zH_}cQspdKQe$$=@Jw;;)ppQa^8qz4aO9|6(N`*SHaMgEQcNDg`Ju2n>+me6VKx-1^ z;3dpR$t^*&93=V6mGT46kR)g4M=U>ImI5wp1TL*X9=TN(dbi=l1hg(j6Z0|lX}SE2 zi_S~TXi(_kd_DHJM-)0a?2xYp^KBFl(tc@6P9|Kue#Yv7V|DefR&zYiMx)Wl>$@=C za-LPXxQqOo>sgV)Wb>kP1rvVmX|sVSUcT4Ir^8i_EIGV-&t>QK(D*D^jA|yc0ue1rRUzh8i2!n29Cb7( z2DmUx;O<(*6N49+b3x#u`7>N)kugHT)F~a>+GW+4k;L=H=GIQ#nt!OG7ioOmpcRc` z;f;EGmM9=yU{Hc_?N4Z4E3x%0tm2(mG!CPY6;k-izs#O`u?onVa@?`&59GDK&u~>M zCB%z{ih5=J{r53grOW~Dm+YZ2K%kO*n`MzJb^MltmRG!VePV2maMoxRO@SIoQi{*Y zYIOd~tt^)0RvbnG!$53s)N&*wM1hy<2D{$@<7EIkqYI!ozYJtbYf=ipx)2#OK3nhc ziwEY5+3tM8`;9@z9szsiHH!7t;n-z~Hqg~_k}xK!+2Ua-W{^+Un_kGErT>_b$*IHn z{Z+S!(Jdrti8}&)9bW2cFNN4vaM~WJP5gbX36JzYiF{JwM=$^Gj=qoKn0KJ8D!Ij8 z3U+)$4TMI-a4SNTpI>3u)$KP?L3M<%TA|{Dr9i-~-JO-+-rFgBfv@KnwpTtDMaT&8vav}%$u$vHvY4z0D|FX~24&b{mj@Bt@$U(X zzFu1T>nEBv`)nSMyT!7)>ANL|S`6*(WCGv$a1enZprM5?Q+w*X7az|xW2(b#LN z_HF^%tMsFQ+5^l$;yQ6xMEQq-^}GfTF5$%P>#JO?KL%6&f8i9R7OL}FXr&mOF=5DRVS!!CLpV>Rx-pQ_eq z>bh!Wz)5_i{FQv1Pl)o*S<~stwG>&TR0?do7`jiECt~{4$FOCDyeA4iA;d8D6z2rF z)TTOGR=cwwc>(GUm5S7fw)>y!?YZrL)FB|U%;J1{oj>V(o4kjRWsIeA&`H_RnqAaP z;9a(pNW&(rT9_o|H@u3v{$?wnF}|Mn*?(*_&)M9E`(KBF>%XfBfm4hV zDIB#$!u%xI)J)$z2LG^s%EcDioWYn*SX{KfWh|o zg-M_}x?c!<;HxJ?5Rm#QhI93LsH$KqSnqD64bzt3x1`xi!c(JEB-PVmuH=A`rN-F{ zb%|L^16=sW4bS_4DJBy*aZ;tS*33a&xXMitw8+l z7JYNkq8(pbaChEBn@Kl-&wlrRb({~9azjcFqvO}@Z47h%Sulj0kM<)$z_?QKeaWXI z-Qfsus%46|u?DF>-%q+$s=3YQJ8b@bWZ2q7SjK~VM7P;6s#WKueVtRVT!o8Dj1E53 zv*w4)e=v>DQmNqXkcP;mpy7F=r#0?qMh4kubFf_V>y!h8mW5w1OGP(752=aGil;3Z zmR!#Nvi)Z#`+iMK6oZd?Xih&h-?6QZD= z3dE_WNoRvud-Cl;A%w(?)^~yUF!GZ7I=>BVWDlOLqogbp4Cwb%kxXPUt>#$gXl?5a z#i(1{O!gxp(unr#g-w7b03d|&k}rpSk^c~Ap)ec$PkHlyG?)A@nfZTF5d9xoG2*eR zxnwT#!Yu$31qjm;OyGYS`#%&>|F=0g8w>k?F?OlZ^72JhYpo?$MIt05Zri>g@TeA?{!_2;m+Az^r2X>;m*-dac#X0brmKQENuKGYNbRJ7(GjV z&U;kxFp4GNaCS7)eGVo$y6|?Pc7IXqu-EyreUtr=^PuLE7=?laAHibs@SE;a`P)PW z!vWO{9m8~Nw3P*c8DRm6RD>9I#K;pRW5a1WJL(t={%xYPy*hwgHc)|L7>+`=yCir> z!1uNY%kP&EC)>-geqRTMtW3txcf=3({{DLZOsJRSCs=5RtavHO3lZ2o**$32STPSy zE!X(mnW`#bGQEs`r|X-xf2OKpVmiYColfWDorFo9!hNpHvEAe}{eeuV7?&a(q-Udbq!owq|*8}GLx@514H*n$H zPzK6_h5&G`5w6U^>=0h3vjJRSh19&Et$G&;Y6reP)!{AO#2gjs>3ur=>Az4e&Yo|? zN*gLNzaxjeCVYi<#uqaX$cc>)edNhcLZB4n97kpnaI#*fho>yry+Nz`zde$9a-$tGyIq`bQmItp z<>dan8wJ~LPFgiu<;kVX3b@P_`yB5rv6?)@y1YPNe@Pf?9h6BOWU~C@bZ$)19s2tj z+YSFa>19*Dr-FS2!rugH&b4OirC)gO;$KszGP(34Lrx1tH=U09fl&Up#c7QG zI^oyOi1`E|6&UZ`XJ?1yz(8hpp0~`1aAQo~^CMq3%N`mSht#2AhfcSw)~!0Y@VwJy zX{OAjv?VYbDn8{zwrHQ2E9eWzWc&t+4W%eLCNxNP*u_vfa+j zBo;heJ=~L=McED;eEb%x&L91CicKpA%?EIsftu#?G?h|u(X~nwe@Vb0zdnAoL)QjE z8gXa)Tk&_j4*mgrui>cCJGI2t&MP?@?+RNX-I>nbeE-S?C)I>3MR+o|DGkdwdCeIOz*m#AKx2PMytP zg}!SvH>;;v_kVrz8(R~mmkk9gRu10S88LlsU~$D*@Y%e?%l~|)Dfl%j4p$WEjQOy_ zd5ql@`C-MM0b7<-k7!bqpSUOOq2l;X2d*7G@y|32a*?qfmlmwU5aG!eE&YiAgri^U zkQi3h0`*kmpVWR3%WIkQg|v~#`CK6USH^I0g2$?g$p@Svmm|~r4-$hbYGe^%2w&~Y zSj#4lkT2dfGduc&+&KuHRtr*?+`1Q`_<)~g+-&(W!1~XlqDn~5j!^3lg0;KmrJHAa z>gt1ytB)#aHv$hhv!dZ3tg+i~sFS968{7I8u5rLv`G$E#Qyl)$YN`^g$fcHc0}`vt z*gw`sec+#GE(yS35n)nT3@$|HzJcRw3ajAe%rQB2u%1^HzhmgTox;ut;rH?NzzLwI zx-A9JoqAlY$kh?xn8<(6(Cd%f-Z3|)#3%IIkl;z*$1d{Js)oAExEyuVpNqwTQGhXR zJ5Mu@)7)>Y{AuH_F%i~-Yvbp@Y%z0vQ$8X%SWJ#k?NHT~nx0Y2UpE9RH?B>(TF*ag z3+7{>l@Lx=aqbK;1VKIcT?6+HuW}J-N~ILg*Ky7e0+0p)_+z@}@lGEw#0vb?+w}?} z=g?OJ=c%t4qqIJtK2ZLlgHp+j63xx*pTVQ8$k3pb}6z<*SldaS&wm*45TmmN3u5n1DC|AZF;? zNN4+Pu$}4v?V#+BF}#~On(28B^W?g~8p?bogVX2adhja6c{1*E@bzeHG}kyJ4W42= z{;HN;F>l|HFOEo>0liF^vvkCE5+&8EDdwWJa8*RwS$ol8MhP6diqRooIni8)u`s~BVLh;cZ&q+|5=;MaJw&|4v-26}>QAUUiNf9tlc7;=^iaYzLxhp{trLVEAc_HwG zsJ`56(&vBs$B+c(aXEUPbf*Ijg=^#%SL{9BE)OB?K!eN+7iwx3G1*$ktZmrq>2aeYI$hG-AQ!Pbf9aW1Uc0;2wPJS@>WeAXDq3 zXuIP=`ty}BC!l*wcYuZa);3MbX4o0P8O?8A`$JjA;2*h0yILUFCM|354Ln*drwu-U zuKP?L5nM9%oFwcwBGjPHkg3=(Y8fPx&}CfASB%p~1T}1kwzL>qQ9c*QL|m6FOX_e* zQUzl1YqD#L`&Gjevdl7m|88H`zVU^XYsxIi0o$>HcTFM$HfK-MkB-ZkWy2e}BHc|CYxota0$r-jB7S*mMG}DeG71STRlkP(eJ6oZj zP|Fsnk+4FGIB4nS+?;~1Fs#YP!4Xw8?KsJ3fe&)Ki~6?CYhv#J*agg^S$sZioobR? z-zu=0kya+}=DG3`4#dCGCWfp)(W4-Mt_E+FuplZ~DC<%B?ZqPFDlPw5Mcf>6y zCoBQ)Q+RO_Ji;bl&T9&+CJm(|3i3zth^fEOD{LyWtH6n`+~4l8?VysT41M7b?h71|nIP%n! zD%QCe3HV|$o^HVZqpxn?u)}{r$cL!_Y$eGMYCbaTcFP*lT=_eK)F84;91ohh#OiW@QTl+g z5oXzXTn&pWwsFD9S7qeZjL-8ke3%}%MI|YJ6zm89@$S$}n}|krfisjDLBIz-iMM<$ z>XSRSpGyzpTz7r7~1h!tyTH)!?cgvX&{tcPu4@28Ou#IB~BMFSVsBzQy zamOuE&kNcMqOzZPwHw#7HBtTCw8b3-?^7S&*#pm#sb@jcl<`q|u=B|=VG^8!Aq^F! zU7)xb$4}axk?qb8A zKole1t(NJyv*Bxgk1-=_g6$}N0r;MtqKVF^i68Jg&$1zT)7$;h{U;5JUCDPImRmR3 z5*svW?Q$}i7U_oA`Q`PVxZe;rSd(tsn}DIYL$?*pafA^xZe~S(`lf*x4h`KqBQz@@pBRPEwI+v^QZ2V+ii91YBaC@vD)4sCtA-&|;VGMk7C#@q*ygdtpM; z4=@GR$9g({TGGD`gWXw&TIT%F`y8)!5+L^!YlzL*yz%t0OE1Jn290iS+ud8G>uOe0 zyjyeF%Kt(#w{EL05=bLCSOgM%h#d)G`2lyx^IJ)sGFvD0GTNo&M|3 z-p4c}b?tbx>UQwtmXic@cEc^)^~-^S&Y{4STcrh?;gq#KOQhGtV$qu*?BV{mdGz^| z2-?3=7NefpD8XW1#q2;8su;L(BQwL4sx+m_nIV>0i}xq+cAYg%(us|}J{W#=T<9LN z#B36Ua86xrd(nOX;Iqrq2N6YWX+&H49@ScTEE~DXXXXjM_2I5BCKyuO#PXvZQ=3J9 zK5p5@@uv@l)vx*jQfFgZz>_R~VVhn~xJbK_Y>AqgndO&P7|EsK!-PZ+9QOPllTJ%E zbl_LXTCF?s4h`)}nx*B$j$0&G-L_|>XOK%F4}vMrKUenykBm43>6kD$Y3RR+=|j}E zkEzR=m1odNob^U_r~O2Ydb{LhYwT1qVXEuk^(+N;F%e3$!CoYQgMO|isvJRdTfy$# zX|ki^Aq4QMNd}5Z0&LDG=;6%j^jf)5k{Oh!f?XG$>F#X*eXs0=pE$m*^HS~{&5KXN z1w+tok;!;`mAvACST}(id>$fzyZt)^4pd@3DyH!^HDu_NJ-+CEvUzsmC|l32;flkH z*G}wvAl;DYM=!@+he!~+@~Wwg01(;Ib?T!>z=`wF#)MX)4w6h${mkFCBn%L{eL^LR zr7BhNmfq;eOuDTO0s}X4hw`$qCAY{_*5;Ua#ILIYcLuaempm81(*BYL=QPZ1(1I~+ z-A+ZeJ+v-P#YCGz;xB#NRfG_Uh!lHfB*&PovI~YpX*1-k)ve`XH5>I)CoA^LKPl7+ zxYu{^_-`e2v)f^d z=}Wgq4tVYGxn5}90-VGU$YfCla0?=UNu6qJtDoG9Gp{&sr zSWj*KSdQ^=IkduRUE_pnNeLOfG7?F)Zebnlcu0Ca!+(u}4F~#Z8syBX^##q4rA5dh zOxa1&wgn2{@GIaK*cI_F^WpRo`8a(I8-;YWbj5P!PUE87HhL{3?ZcWi^ki(pHJS!k zd8o_kmC*2jhuW9~g6sPik3=643b&eJo}QBk?Fyd4e&qe|Fjt~C97Le1Aj~Ul6<`;M zq4pGaCB&eIrgd?WZTFX^E;}b6ADrlYeoV|C+bai;`{FDR-uesH?XcgG_ItNieUG7i zeNgefOz56R;w6KErK;C7lO)m9IzGHl5qNf}GTpQERa+N%M=y{UT5X<>&NwB@mS&Ae z=XR%U`rY+?3~W3S#K?(Bjlvp4Og^B8rX!zNjU7Gg=f=0HoWi2m;9~FEZgIKXKx>6v zsgS73!nLm6ajH#gi^e!f!NUG4yI*`=3?A8zVx1G)l6AcyK-nGx!z3gM(BH@<5=C}{ z7(MAJ^2~oyx9hNcef3Ylok_IbaG_D89{}5C!`E3Tayw6cJ9)~r@E*lj0(mQ$9hL&! z8jQ*4v=o~YOTCH)8Mo_|RV(B*+JZ;)ikC8D>AJMo*pbbewuiydPc*A2%xObqWx@QN zaib}PSJj*=rdh3}u(;ho2c7HC!$?%Vxg-0kI)s! zeba@FtZY8K0qw{L?S$89G&7!;Nwwpq<%&rlnYsVmf=a4{q~Ao*dWDTQY9*pcf$dBp zX8txP`CW@#5e=TKR0XRlS{3YsGk*tdcNYdPejX$zzw-Gsx~uN5#8=LmckNt}Zh_`J z@ei)$ThK&Qw}>GT^@mOwnhUV`9sVH+m(2J<3?@_<>AmuzYUm8wu!OAIQD+gC&&-%q z$dILwjg!a9Cn1Ccd1jwrI^kbXO;QJ_wob8lN{UrKkcdhMAtgwX>K z5JuMEVq$pd>KC$Cu{A8MEC0%WEt@V+%sCwmHcw;I=Ug5+U2`@8AHE-#J@Dx$SQGos z9SIZ@aMCl_cI+if)k!$cCTl9tMcTD6b2Y^#r)5H-^I#FbovoOIbBBru5=_}+Jc*PJ z6?&LFM44C|#-`h61G0wpb2G8*Z>Hlj^~m1oX!ubP`B3mXh`fK3!~z_-nz$02e$B>g zTeQoxOZ~*8XVlCTtDCD}hb$^KCoP_(X~VraZx?EyPc*-YahDLU3C=2bdimSZZqbvv zG;`kv9Uabtiexl{An74|1dq4R*-mF`a%WCCDo&0q{$ws!OvQexw zG?*N&8|~{OVvXIQTg8+pHAyR7R5re@sjQ%6T04-~$H~8Is5)%r7X6Cr9>uT!^?>c? z>#1{j-!fs1n)s)+_%&UN z8ct@l?1I>@0MYLG$(x|QFP7Y|`_5+s$%=}iULG{*Je-}O9*o@vN_$9ii54Xqq|K-r zfca070x!ZwsYoc>>=V2g0JR4#nStHU_9*gMeiHlb!_rk0fq*6MI2XB}=$Sm*ACM?m ze?Z8lyRNm}%pE$Mr;qu0%a|>+cC0`?t(T1{A(&(`b!)EhmS4LSJ8V#DsV^1gWjXso zbB&nsb9EvhJ(AZO)|cM@e)+O`Ol-co_lEVg0tygQ3Bcl4@OAc1k){4_bkQc3@^x7% z)G(zG_*W?2UD6mu%7$a zLI^6hPa(`nKWz5pbzu?ktwZ=a67T{R4Eb%$F8+P4n+hHLx?srqeUes^K74YD|CvQP zetY^fC~wJ%e545XTY1=*sRs?!_YRG>RWd*HenhlaIMBfH0Hca11L1RIo|mwP7Bx=? zJC#wtU!OaeU{%%wvZMWufY*D=L`a$wL;G3kEFrY#nVYVGo2q~vB~iE?a<(5yAj=;0 zSZG5x*cgq$qp?fQM_`nfw+!RuSxmujH+hTmYZONyy046nQwbzp-N2Z*QBc0GHc?~sNRp1`X4 zO}2H^(^)Fb`0PWUDqHcO??4dU{s9}M_m9h>9&F6PDu zv8<1T;e!oiGsv`w6X>+_i)=)p zbLKEe_hv-EeT%D+h6Za5ua@mddJl@t_7{_sh84N^PDiL3~K>jz}&zix6ZeZAhtLN1JQ<#?o^C zYEHrTH_@Ds>fV7R#P64niY_umTaK-1^~y+P8|tcRHT6GMWdkLU;Nu0}41^{p{cR zxPDPHaY&3n-;1qR<9f;t;ljhyrplybt;t!+jKSFF*-zJg^$|TtGwup-K3;ju@du~| zRS09T&OY9qU0$xla?+bA2;DQkux6tMmwIDIotqF?X7dTOkf{Y+hY9)ri7L5^bacPYhC7ck7 zt({W~QPxyYut1dsTv+}C68>F)_djJ@{~=lZ|4!xpE4;%7U?^pr&!7l|Buf~a6c$tv z^a~G8)jbGEsWJmo9GDsa1c3(xk^&<5-{Ud=N2OoY%h8NM!Pr{G)s8`)kb{#!+{)R- zm5`l@@!yfHtC{mZvZ|4*nW&kGgQ*#VteL%qt0f^bCl}*?8r;oj>#1x>qWkR`EI7n? zKyU96=ulaMhK5Q>HVTrn6fK09z#P!kQ|Xwd1oWM_%e0!(qRS1g%EMVzd_4D@ zY`HHd(>%a@l$nT}QZXWc?Y@X*Zdk@R*DntYJopRTLcHh+lLPh|5$7xGv(O;L;5@=0 zt{uW3?h~7{0i@=y;7lkedyE&bP_;QSd?I8Dwju33TfZG$ifM#uNkoqDU%pX6NM_a3 zePNc8dG4`lP_A*fDCtBn&@ceJtJPUXMA|@@KEK&Oab1Az$ZVL<#~iO!^^g1G?0 zjUYuLu<}3&Q~7VCNkT+WMo>$@2*e0)EH5*#FHxjsF_f`j$_j`mp`1(<4FEO}rCuLC zRPwl35OFA5So!uaHWV+B$1$ve-Vn|bdMvAdIR)&tZ>^aSSH>=hAm8VvAJf+n9#o!- z*hZ4nl9tal*y%QQ08k%}ti+Yc@5AnU*W&A?A3q7=d~j*&$=R37FzX=k7lgVf{_k6L z=nm7O^ot~&9_A#SKG!6IFaR%2wfno|462$vdv~aYT$Hb;dwxW1+&wmU) zvT5Q5i@mF>clHJjswKkC=^`W5AAv`cZxz?sGqLpv=i=EB*$(f(TcNT>WYT06I-m7Q z(s?fQ%49QwuTMVKW6p-6RBU}n$>$&Q><#eTy@PJ=QjK-JtJ$Vd4Nz*JO;_a{KKbKK zUwY(rciGt9eW=SbTeH7yHA@zc7~?XG{#tb%XPxk`OvXzK)s}aQLG7b4vsS?nZ<4EK zWzRPj_O}nF#{Rsp0`k#k*3P7DDKekr5M$K_r~cJ7y0Bz%2cU9dEl3m zQ<)fJs*~Vgj_(&enQ$sxb6w=$N7<_w)I2NbW|~hEZwuO^Rg{1mJ-SZ5h7+lGG*>a| zU9(z81GVCUfTM>%o>C@S4U*w3Wt8R$9BBxiUNa?C9g|_?iEOD;WWY zUewjn4oTV8=wsSb33yR2oV6VvCXA9z4eb(? zp&s$y@*fix!?{b1jpsZ5{5JNW^PIO`3w|Ox#VLGb!-t zL|NKscGV+Db1oFjAxvc~-YD+!$MkQv#M+R5_Mg}h@a4uU=p7dpEhQGJSv&SK@|{hX zOWdvOzn%WiH6P(ww$Kc9$PTLRDT3A6oI3$V;VvMMI<+1FXx}NzSOt@IZuy|(U zUbV93u$F09*3`jp#C%_3rB+~pJ&{mIOX2*?^_{tGLzm9gtsDL4w8znh1ruVs&gc>a|spU&zQ>+D;Ohlq4In^9LK}lRS z&n00MY3x|1i^^q@)l^evc+n>-1U16-W>nBzs@ohTT{e!uW=k6J$H^<^>`q0xoHDQRNvp*W6ig?9zKb=I{YIZDwHhhq)MT-dQ= z*eJv4w4XS4guWuFrnR|k`Gm`lnw7WjLv{4w@-Xt+Di8rde2O?ex98_=#i1_1+r^u` z4{IiLi;t%Ex>f>)S>UIYHs(*t#u4u-hQ^Xv$7}0@FY}KoZ1@d&iZN4;-c`1&qMYoM z1E^?cPY=C)`6^(=LfI1ykD;`U68tnpgIgzopZVN9F#M$d5e5Yx^6{$5*!ziVgZIbz$%$Ji$EZD~7QUQ$LyT&|ooqKgtWaUH!RKfQ z1^064?qOraZQ%9x)!Q{Jg}}eB0K_j`+K}A(o4fHoj~v%$R-! zN7O<{vW>JyyHKKb#$N92x@tdW!;^o285YMcs&?YnKdIwshia|fw7_&}J$=R#LcuzH zssa3*Kfhi`QWxaI#YBQe6oy@z=aXdGda1N)4KltqbAwH$CS^GhiiH$;Q19P-2Hn&x zdK9Y?#%>jwZ{QkR3P(Cr1|8uAzR<=MH-ofLA8M#CHRt!|$InYY(1{c~ie1}ZBYp{r z)n|)QN;OwtVFa$ido|#4TTvfLTT&E0aB1tmrF{|7T)l2+P>I;n4m<-&aC^P)o-aMa z!UYPHg>|TeeAAV=Jy458RH&libNkP9)L(|u7AJPKse(AtkWCRv{@q)H>ZU+d*r&Yv z^Lcl<)&|F_;BpVvLWJ_5N0Bg}Ly?dym*dIp1>(mw{dc0s|8=4%r$1cTRfeiHLbmkNb=y&f5@ zi}XAK*UK(*hsGH9iUE0@0e;W>R~}jh$I-uM z@wgTLTlTb#Dq%5711{&6#u-=-Tn?aCg#w#UkpRq=|7-`dPYVFS%Ofrcjd zzI0cAIB(N{JJMEqw3TeBtbXUZr_S{7t8w))eR?Wo4Fj@Fpa&~$3Cj<(AtNV#a!$bm za{*y+a}jAzZP$8Nt5tI+5gy-K>Ld0jBUnSjjP^zaFnWXCajrTYu-{OCyHM#8cB*p9 zk6Y3fd`+O}M)yQerkid1-&1uaCKf_QLI-1OXkK21|2J3HR5mkbkP_A5WinwjWi)4G zVKZUkVq;@r<}f!i;W9NfGh^iXcZ$oD|Ns9AJqBe52UlpOe<73^r0mTd2>;JQM43Uw z%G->PiHVg#Lx+iwg^*eAe_0E#F#eYvX1c{GdJ!em(YvR#-4&%3n9Am5p|no5otREE zl&E1IOhzS^sHh-Dwo;}CWODt1ewfHI&gbt&^1ja|_r{c#CNWXoIf~>YDQ+Q&iahs4 zvQ9ypX6dz4=$+yV*FW|P5IY5st_kdCM54Gztw0P0nms_i&QzUr=0&_ z4IGgl=1}@mxR}-F*9CcQ5L38n26l8y_ v=l=XS+PB#l#C(GCM$#+)_ZRNsYUJ$d>1<{W&BVyT#LNgyMkb~p4*mZCTY~>d literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.ipynb b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.ipynb new file mode 100755 index 0000000..2a3084f --- /dev/null +++ b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.ipynb @@ -0,0 +1,940 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "03c68072-8fd9-4c26-9f8b-e6f6e24fd583", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{01\\_Auto\\_data\\_2\\_solution}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "4e117807-3711-444b-838d-775303383d93", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "23889938-8996-46c5-8751-fe1c7da1deb0", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Setup for Tasks 2" + ] + }, + { + "cell_type": "markdown", + "id": "962ac167-f15c-4ab4-8abd-a9d1ab26455c", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "The following steps will outline the initial setup of the Auto dataset, including the creation of\n", + "separate training (train data) and test (test data) sets." + ] + }, + { + "cell_type": "markdown", + "id": "e0c43ee7-0ede-4d7e-9966-f00493b33f0a", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Get and Set working directory" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "57ab9acc-8d99-4165-8930-db6ae2be39a9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/01_SupLearn_Regression\n" + ] + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory" + ] + }, + { + "cell_type": "markdown", + "id": "e20de814-7963-4856-8892-b5a913ef10b9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Loading the package and data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4424246b-bee1-4b9e-a5ac-79c20e4b4c26", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
    018.08307.0130350412.0701chevrolet chevelle malibu
    115.08350.0165369311.5701buick skylark 320
    218.08318.0150343611.0701plymouth satellite
    316.08304.0150343312.0701amc rebel sst
    417.08302.0140344910.5701ford torino
    \n", + "
    " + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from ISLP import load_data # Package which contains the data\n", + "Auto = load_data('Auto') # Loading the data\n", + "Auto.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fc65f415-1870-4b3f-bbdd-cf89eedec1b9", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "n = int(len(Auto)) # Number of observations in the dataset\n", + "nT = int(n/2) # training sample size\n", + "nV = int(n/2) # validation sample size" + ] + }, + { + "cell_type": "markdown", + "id": "fd7b9df2-ad21-4de3-87bc-18b5939439ce", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Define training and test set" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d942dc0e-7286-4c46-ae15-a69cbaeb25b1", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "np.random.seed(2) # set seed\n", + "\n", + "# Define training and test sets\n", + "train_sample = np.random.choice(n, nT, replace=False) # indices for training data\n", + "train_data = Auto.iloc[train_sample] # training dataset\n", + "test_data = Auto.drop(train_sample) # test dataset" + ] + }, + { + "cell_type": "markdown", + "id": "b8e653c9-fa9b-4414-a8a6-8d785b3e9913", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "We start with the following univariate linear regression:\n", + "\n", + "\\begin{equation*} \n", + " \\text{mpg} = \\beta_{0} + \\beta_{1} \\text{horsepower} + \\varepsilon\n", + "\\end{equation*} " + ] + }, + { + "cell_type": "markdown", + "id": "5b497789-eb36-412c-b95d-50ab29d0c9f4", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Fit model on training data and calculate training MSE" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "141f0257-39a4-4e21-9be0-78dfd645445a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import statsmodels.formula.api as smf\n", + "\n", + "# fit model on training data and calculate training MSE\n", + "fit_lm = smf.ols(formula='mpg ~ horsepower', data = train_data).fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4ae9bf59-3b73-4020-b039-885948f6cbbd", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 39.0131 0.994 39.245 0.000 37.053 40.974\n", + "horsepower -0.1510 0.009 -17.040 0.000 -0.168 -0.134\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "print(fit_lm.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "77170717-6eb1-41fa-a2b6-fdbf5e9193cf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for training data\n", + "y_head_train = fit_lm.predict(train_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "eecfb895-dc1c-43e9-bcb4-13697cd6a602", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 23.002\n" + ] + } + ], + "source": [ + "# Function to compute the mean squared error (MSE)\n", + "# Takes realized values y and corresponding predictions y_head\n", + "# as inputs and returns MSE as output\n", + "def MSE(y, y_head):\n", + " return((y - y_head)**2).mean()\n", + "\n", + "# Compute the mean squared error\n", + "MSE_train = MSE(train_data['mpg'], y_head_train)\n", + "print(f\"Mean Squared Error: {MSE_train:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "1da45d5e-86a2-4cd0-bbc7-1f02fcd17421", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Extra visualisation" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "15c7664a-bf12-485f-96bd-26c4018b0756", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.12/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtMElEQVR4nOzdeXwV5dn/8c/MnHOSk4RFCAFksS6tPN0sjRsBta2PKwEVZSlgrKK10tbYPrTWrtDlJ/YptVHBosUqhSK4gBC1WrspqFVA7WIL7eMCIhiC7FnOMvP7Y5qQhLPnnORM8n2/Xn3RJDP33DP3nJhr7nuuy3Acx0FEREREREREss7s7g6IiIiIiIiI9FQKukVERERERERyREG3iIiIiIiISI4o6BYRERERERHJEQXdIiIiIiIiIjmioFtEREREREQkRxR0i4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjCrpFREREREREcsTX3R3wqr179xKJRLq7Gzk1aNAgdu/e3d3dkAxp/LxN4+ddGjtv0/h5l8bO2zR+3tZbx8/n83HMMcck364L+tIjRSIRwuFwd3cjZwzDANzzdBynm3sj6dL4eZvGz7s0dt6m8fMujZ23afy8TeOXnJaXi4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjCrpFREREREREckRBt4iIiIiIiEiOKOgWERERERERyREF3SIiIiIiIiI5oqBbREREREREJEcUdIuIiIiIiIjkiIJuERERERERkRxR0C0iIiIiIiKSIwq6RURERERERHJEQbeIiIiIiIhIjijoFhEREREREckRBd0iIiIiIiIiOeLr7g6I5DO/P0hzczGmaWLbNgUFhwmHG7u7WyIiIiIi4hGa6RaJwbIsTLOMpUv7UVERYPhwHxUVAZYu7YdplmFZVnd3UUREREREPEBBt0gMjjOQ8eN9zJljsn07OA5s3w5z5phUVvqw7YHd3UUREREREfEABd0iHfj9QZYvN9m8OfbPN22CFStMAoHCru2YiIiIiIh4joJukQ6am4upqUn80aipMWlqKumiHomIiIiIiFcp6BbpwDTdJeWJbN8OlqWPj4iIiIiIJKaoQaQD27YZMSLxNiNGQDRqd02HRERERETEsxR0i3RQUHCY6urEAXV1tU1h4aEu6pGIiIiIiHiVgm6RDsLhRmbMsCkvj/3z8nKYPt0mFGrq2o6JiIiIiIjnKOgWicEw9rBuXYQFC2xGjgTDgJEjYcECm9raCIaxp7u7KCIiIiIiHuDr7g6I5KNoNArUUVVVyJQpJViWSTTqLinXDLeIiIiIiKRKQbdIAqFQE6bZhOOAaUIo1N09EhERERERL9HychEREREREZEcUdAtIiIiIiIikiMKukVERERERERyREG3iIiIiIiISI4o6BYRERERERHJEQXdIiIiIiIiIjmioFtEREREREQkRxR0i4iIiIiIiOSIgm4RERERERGRHFHQLSIiIiIiIpIjvu7ugIjX+f1BmpuLMU0T27YpKDhMONzY3d0SEREREZE8oJlukQxZloVplrF0aT8qKgIMH+6joiLA0qX9MM0yLMvq7i6KiIiIiEg3U9AtkiHHGcj48T7mzDHZvh0cB7ZvhzlzTCorfdj2wO7uooiIiIiIdDMF3b2Q3x/EtkuBMmy7FL8/2N1d8hy/P8jy5SabN8f++aZNsGKFSSBQ2LUdExERERGRvKKguxfRcujsaW4upqYm8cenpsakqamki3okIiIiIiL5SEF3L6Ll0Nljmu41TGT7drAsfcRERERERHozRQS9RLaXQ/f2Jeq2bTNiROJtRoyAaNTumg6JiIiIiEheUtDdS2RrObSWqLsKCg5TXZ04oK6utiksPNRFPRIRERERkXykoLuXyNZyaC1Rd4XDjcyYYVNeHvvn5eUwfbpNKNTUtR0TEREREZG8oqC7l8jGcmhl7G7PMPawbl2EBQtsRo4Ew4CRI2HBApva2giGsae7uygiIiIiIt1MQXcvkY3l0MrY3V40GsVx6qiq2seGDSF27IiwYUOIqqp92HYd0Wi0u7soIiIiIiLdTEF3L5GN5dDK2B1bKNSEadbjOHWYZr2WlIuIiIiISKveFR31cp1dDq2M3SIiIiIiIunxdXcHpOu4y53ruPrqvkyeXITPZxCJOJSUNNDYeCDp/u4SdTeJWjwtS9RDoSx2XERERERExKM0092LtJT7uu++IsaONRk2zGDsWJP77itKqdyXMnaLiIiIiIikR0F3L5KNcl/K2C0iIiIiIpI6LS/vJfz+IEuXJi/3VVVVmHCmumWJelVVIVOmlGBZJtFoy5JyzXCLiIiIiIi0pZnuXiLb5b6UsVtERERERCQ5Bd29hMp9iYiIiIiIdD1FWL2E45BSuS9b1b5ERERERESyRkF3L+H3w7XXJt7muusgEOia/oiIiIiIiPQGCrp7iUgELryQhOW+zj/f3U5ERERERESyQ0F3L2HbNtXVsHAhzJtHu3Jf8+bBokVw000QjWp9uYiIiIiISLYo6O4lCgoOc8UVNmedBa+/7gbfL7zg/vv66zBuHFxxhVv6S0RERERERLJDdbp7iXC4kRkz+rBihcnKlbByZfufl5fD9Om2Sn+JiIiIiIhkkWa6exHD2MO6dREWLLDbLS9fsMCmtjaCYezp7i6KiIiIiIj0KJrp7kWi0ShQR1VVIVOmlGBZJtGou6RcM9wiIiIiIiLZp6C7FwqFmjDNJhwHTBNCoe7ukYiIiIiISM+k5eUiIiIiIiIiOaKgW0RERERERCRHFHSLiIiIiIiI5IiCbhEREREREZEcUdAtIiIiIiIikiPKXi7SC/j9QZqbizFNE9u2KSg4TDjc2N3dEhERERHp8TTTLdKDWZaFaZaxdGk/KioCDB/uo6IiwNKl/TDNMizL6u4uioiIiIj0aAq6RXow2x7A+PE+5swx2b4dHAe2b4c5c0wqK33Y9sDu7qKIiIiISI+moFukh4pEYPlyk82bY/980yZYscIkECjs2o6JiIiIiPQiCrpFeqg9e6CmJvFHvKbGpKmppIt6JCIiIiLS+yjoFumhDMNdSp7I9u1gWfo1ICIiIiKSK/prW6SHchwYMSLxNiNGQDRqd02HRERERER6IQXdIj3UwIFQXZ04oK6utiksPNRFPRIRERER6X0UdIsk4PcHse1SoAzbLsXvD3Z3l1Lm88GMGTbl5bF/Xl4O06fbhEJNXdsxEREREZFeREG3SAw9pb61ab7PunURFiywGTnSfc975EhYsMCmtjaCYezp7i6KiIiIiPRovu7ugEg+cpyBjB/va1duq6W+9YoVJuvWDQTquq1/qYpGozhOHVVVhUyZUoJlmUSj7pJyzXCLiIiIiOSeZrpFOvD7gz2uvnUo1IRp1uM4dZhmvQJuEREREZEuoqBbpIPm5mLVtxYRERERkazw7PLyBx98kEcffRSAqVOncvnll8fcbuvWraxZs4YtW7bQ1NREWVkZY8eOZeLEiQQCga7ssniEaZop17d2nK7pk4iIiIiIeJMnZ7rfeecd1q5dm3S75557ju9+97ts3LgRv9/P8OHD2bVrF6tWreJ73/sezc3NXdBb8RrbtlXfWkREREREssJzQbfjONx7771YlsVHP/rRuNvV1dXx85//HNu2mTlzJnfffTe33XYbd9xxB8ceeyz/93//x7Jly7qw5+IVBQWHVd9aRERERESywnNB9+9//3v+8Y9/cMUVVzBw4MC4261du5ZwOMwpp5zCxIkTMQwDgEGDBnHDDTcA8Mwzz7Bv376u6LZ4SDjcqPrWIiIiIiKSFZ4Kug8cOMDy5csZPnw448ePj7ud4zi8/PLLAHz6058+6ucnn3wyw4YNIxqNsnHjxpz1V7zLMPaovrWIiIiIiHSap4Lu+++/n0OHDnHttdfi88XPAVdfX8/evXsBGDVqVMxtTj75ZAD+9a9/Zb+j4nlH6lvvY8OGEDt2RNiwIURV1T5su45oNNrdXRQREREREQ/wTPbyv/71r6xfv56zzjqLD3/4wwm33blzJwB+v59jjjkm5jZlZWUA7Nq1K7sdlR7FrW/dhOOAaUIo1N09EhERERERL/FE0B0Khbj33nspKiriyiuvTLr94cOHASgqKmp9l7ujkhK3xvKhQ4mTYYXDYcLhcOvXhmEQDAZb/39P1XJuPfkcezKNn7dp/LxLY+dtGj/v0th5m8bP2zR+yXki6H700UfZtWsX11xzDf3790+6fUuQnGgJesvPQkmmLlevXs3DDz/c+vXxxx/PbbfdxqBBg1LoufcNGTKku7sgnaDx8zaNn3dp7LxN4+ddGjtv0/h5m8YvvrwPultqch9//PGcf/75Ke3j9/sBiEQicbdp+VkgEEjY1mWXXUZlZWXr1y1PcHbv3p2wfa8zDIMhQ4awa9cuHMfp7u5ImjR+3qbx8y6Nnbdp/LxLY+dtGj9v683j5/P5UpqMzfuge8mSJUSjUa677jpMM7W8b8XFxQA0NDTgOE7MpQ4ty8pblpnH4/f7W4P4jnrDTeU4Tq84z+7g9wdpbi7GNE1s26ag4DDhcGNWj6Hx8zaNn3dp7LxN4+ddGjtv0/h5m8YvvrwPut98800Mw+C222476mcNDQ0APPbYY/zmN7+htLSUW2+9laFDhwLuMvO9e/cyYMCAo/atq6sDtAxCup5lWTjOQJYuNampMXnnHRg+HKqrfcyY0QfD2KPs6CIiIiIiPUTeB90Atm2zf//+uD9vamqiqampdal4aWkp/fv3Z9++ffzzn/+koqLiqH22bNkCwAc/+MHcdFokDscZyPjxPjZvPvK97dthzhyTFStM1q0bCNR1W/9ERERERCR78j7ovv/+++P+bOHChfzpT39i6tSpXH755a3fNwyD008/naeffpo//OEPRwXdW7ZsYceOHViWxamnnpqrrkuWdMUy7K7i9wdZutRsF3C3tWkTrFhhUlVVSCjU1LWdExERERGRrEvtJWkPmjhxIj6fj9dee421a9e2vl+we/du7r77bgDOPffclLKhS/ewLAvTLGPp0n5UVAQYPtxHRUWApUv7YZplWJaV9WP6/UFsuxQow7ZL8fuDWW2/ubmYmprEH7uaGpOmpsS5BkRERERExBvyfqY7U2VlZVx//fUsWrSIZcuW8cQTT9CvXz+2bdtGNBrlhBNOYObMmd3dTUmgK5dhd9V71qZpsn174m22bwfLMlEeChERERER7+uxQTfAOeecw5AhQ1i9ejVbt27lnXfeYfDgwYwdO5ZLLrkkabkw6T5dvQy7qwJ827YZMYKEgfeIERCN2qSYrF9ERERERPKYp4PuL37xi3zxi19MuM3JJ5/MN77xjS7qkWRLqsuwp0wpwTQ7F3R3ZYBfUHCY6mofc+bEP7fqapvCwkOEQp06lIiIiIiI5AHNpUleSmcZdmd15XvW4XAjM2bYlJfH/nl5OUyfbiuJmoiIiIhID6GgW/JSyzLsRFqWYXdWVwb4AIaxh3XrIixYYDNyJBgGjBwJCxbY1NZGMIw9WTmOiIiIiIh0PwXdkpfcZdiJA+qWZdid1ZUBPkA0GsVx6qiq2seGDSF27IiwYUOIqqp92HZdVhK2iYiIiIhIflDQLXmpK5dhd2WA31Yo1IRp1uM4dZhmvZaUi4iIiIj0QAq6JW911TJsvWctIiIiIiK54uns5dKzucus66iqKmTKlBIsyyQabcnsnd0A2A3wB7JihVune/t2d0l5dbXN9Om23rMWEREREZGMKOiWvOcuw27CccA0iVlKy+8P0txcjGma2LZNQcFhwuHGlI/RlQG+iIiIiIj0HlpeLp5mWRamWcbSpf2oqAgwfLiPiooAS5f2wzTLsCwr7r5+fxDbLgXKsO1S/P5gRu9ZB4N9iUaHAEOJRocQDPbN3gn2ErHGQkRERESkJ1DQLZ7mOAMZP97HnDnuknDHcct7zZljUlnpw7YHHrVPZwL1tvx+P6Y5lMWLixk71mT4cIOxY00WLy7GNIfi9/uzfbo9TrbGQkREREQkXynoFs/y+4MsX26yeXPsn2/aBCtWmAQChe2+n0mgHks0Wsr48Qa33GK0a+eWWwwqKw2i0dLOnmKPl62xEBERERHJVwq6xbOam4upqUl8C9fUmDQ1lQBukO7zlbF8uZV2oN5RMNiX++8nYTsPPABFRVpqHk+mD01ERERERLxEQbd4lmm6s6OJbN8OgYDZuoT5tdd81NQYCfdpG6jHc+hQEYsWJW5n0SKDgweLEnewF0v3oYmIiIiIiBcp6BbPsm2bESMSb3PiiWDbVusS5r59SSlQt6zEHw3LMlJqx+dLHJj3Zqk+NEk2FiIiIiIi+Ux/zYpnFRQcprraTrjNT39qs3z5kWXg9fUkDdRHjIBoNHG70aiTUjuRiJN4o14slYcmqYyFiIiIiEg+U9AtnhUONzJjhk15eeyfl5fD6NFGu+Xky5bBrFmJ262udutzJ1JS0sDs2YkD6tmzHfr0aQBUEiuWVB6apDIWIiIiIiL5TEG3eJph7GHduggLFtiMHAmGASNHwoIFNrW1ESzLbreE+ZFH4KKLSBioT59ut9bnjhcsNzYe4HOfS9zOVVdBc/NhlcSKI5WHJm3HQkRERETEixR0i6dFo1Ecp46qqn1s2BBix44IGzaEqKrah23XEY1G2y1hDodh8mRYuBDmzSNmoG4Ye1KqH21Z9dTWOsyf77RrZ/58h9paB8uqV0msJJI9NDGMPd3dRRERERGRTvF1dwdEsiEUasI0m3AcME0Ihdzvu0uY3aC3xbZtcNZZMGmSG3yffLJDUVGUgoIDrbOqplnGpZf6OP54uPtuKC113wdftszkoYdMVq8eSDRaB+zk+uv7Mn16ET6fQSTiLikPh8OEQsfQ0GDx/e+7y9ofecQN+lu0lMSqqirstbO50WgUqKOqqpApU0qwLJNo1F1S3lXXxO8P0txcjGma2LZNQcFhwuHGLjm2iIiIiPR8mumWHi3eEuZwGFauhLlzoU+fKIZR125J+dq1JnfcAaNGwQ03wJgx7r+jRsEdd0Bt7ZH60Q0NB7CsXTjOTgKB3TQ1FbJ0aT/GjPFx8slG637r17uzuG2pJJbLfWhSj+PUYZr1XRJwp7KaQURERESkszTTLT2eu4R5ICtWmNTUuMu8R4xwk3RNn24ftYS5ubmYU081ue66I1nPwV0WPncurFsHixe7wbJptg8OW5aTx9tv1Sp3lr1lxrulJJajJOddLt5YzZljsmKFybp1A4G6buufiIiIiPQMmumWHi+V977bKiiwWLeufcDd1qZN8PjjUFjYfibU7w+yfLmZcL+nnnKXtbdQSazukcpYrVhxZDWDiIiIiEimFHRLr5HqEuamJoMlSxK3tWQJNDYa7b7X3FxMTU3ij9SSJTBz5pGvVRKre6QyVlr6LyIiIiLZoKBbpAOfz2lXZiyW7dvd7doyTTOl/QYNcv+/SmJ1n1THyrL0K1JEREREOkd/UYp00LHMWCzusvD2y9Jt205pv/37VRKru6U6Vlr6LyIiIiKdpaBbpAO3zFjiYKvtsnC/P4htl1JQYHHjjYkzolVXO4weHYn7Prl0jXTHWEREREQkUwq6RTqIV2asRcuy8Gg03KHklMVnPmMk2S9KOFynJeXdLNUx1jiJiIiISGcp6BaJwS0zFmHBApuRI8Ew3BrbbZeFt5ScmjPHfT84FILLLoOFC+GHPyTufpIfUhljEREREZHOUp1u6RH8/iDNzcWYpolt2xQUHCYcbsy4PXfZdx1VVYVMmVKCZZlEo+5yY8cxcJyBLFtmHVVyats2tw73pEmwdq1DWZlNNBqlsPCQZk3zTKIx1liJiIiISLZoplvyXss701CGbZfi9wdbf2ZZVocl3j4qKgIsXdoP0yzDsqz4DaegbZkxv38vkUhfli7tx2uv+aipMWLuEw7DypUwcaJBNBqNW54s0Xmlo2M7wWBfotGB1NVBNDow43ZzJVfnnWk7qZaSExERERHJhIJuyVupBNQdl3g7jlvqac4ck8pKH7Y9MGv9aXusvn3JuORUth4UdGynosJHXV2AxYuLqagIMGQIWX0A0Vm5Ou9sP2gREREREckmBd2St5IF1JZVyvLl5lFLvFts2gQrVpgEAoWd7ovfH2x3rPp6Mi45la0HBW3bee89WLUKrrsObrnFyPkDiEzk4rzz8TxFRERERNpS0C15qWOQ29GmTfDuuyY1NYlv4Zoak6amkk73p7m5uN2xli2DWbMS7xOr5FQq55XKg4KO7UyaBE8+SU4fQHRmOXeuzjvTdkREREREuoqCbslLHYPcWMJhI+Ml3ukyTbPdsR55BC66iLRLTqVyXqk8KOjYzsyZsGRJ4nPI9AFENpZz5+q8M21HRERERKSrKOiWvNQxyI1l167Ml3iny7btdscKh2HyZLc82Lx5qZcHS+W8UnlQ0LGd0tLM3zFPJhvLuXN13pm2IyIiIiLSVfSXqeSljkFuLE8+CTfe6CTcJtYS70wUFBymurp98N5SHuz1193ge8sWh+efj1BVtQ/brvtPSar2UjmvVB4UdGynM++YJ5Kt5dy5Ou9M2xERERER6SoKuiUvxQpyOzrpJJsrr7TTXuKdiXC4kRkzjj5WS3mwuXOhT58ohlGX8HipnFcqDwo6tpPpO+bJZGs5d67OO9N2RERERES6ioJuyUvxgtwW5eUwbZoN1LNuXYQFC+yUl3hnyjD2dPpYqZxXKg8KOraT6TvmyWRrOXeuzjvTdkREREREuoqCbslbqQS50WgUx6mjqmofGzaE2LEjwoYNoYRLvDOVrWNlI3jv2M7QoTBlCixeDPPnO1l7AJHN5dy5OO9cP2gREREREeksw3GcxC/FSky7d+8mHA53dzdyxjAMhg4dys6dO+nuWyQQKKSpqQTLMolG3aXDHWcy/f4gzc3FmKaJbdsUFBwmHG7sph6nJpXzyqSdkpIQhw4FCAQChEKhjNsF97ouXdqPOXPiP59bsMCmqmpfysfI1Xl35jzzTT59/iQ9Gjtv0/h5l8bO2zR+3tabx8/v9zNo0KCk22mmW/JeKNSEadbjOHWYZn27wCob5ay6Qqwa14nOKx0d22loOIBl7aGsDCxrT6cC0Vws587WeTuO8Z9/238tIiIiIpJPFHSLp2WjnFUueeWhQCL5tpy7J1xTEREREek9fN3dAZFMuUufk5ezqqoq7LZlxy0PBdr2seWhwIoVJuvWDQTquqVvqXLfVa+jqqqQKVO6fzl3T7imIiIiItJ7aKZbPKuz5axiLfnOpmzVuM4X2VoW3hk97ZqKiIiISM+noFs8K9NyVl21PDlbNa7lCF1TEREREfEaBd3iWZmWs+qq98ATPRQIBGDaNFi0CCzLn5OZ9p4oW3XDRURERES6iv4yFc8qKDhMdXXi+tDV1e67xy3SXZ7cmSXo8R4KjBwJzz0Ho0bBDTfAsGGGEoGlKJt1w0VEREREuoKCbvGsTMpZpbo8ORwu6fQS9FgPBQIBeOghN9ieO5e8zLiezzJ50CIiIiIi0p0UdIunpVvOKpXlye+9B4bh7/QS9FgPBSZNgiefJO8SgeU6qVy25KJuuIiIiIhILinoFk+LRqM4Th1VVfvYsCHEjh0RNmwIUVW1D9uu+0+5qyNSWZ587bWwbFl2AuOODwVmzoQlSxLv05WJwLxY8zrf6oaLiIiIiCSiOt3SI7jlrJpwHDBNCIVib+cuT3ZnsOP5/OcdKiuNhMerqTGZMqUE04w9o+r3B2luLgZMbNvm6qubmDIlgGX52b49cdsticAcJ+FmWeHFmtf5VjdcRERERCQRzXRLr5LK8uRBg8g4Q3a8meP77ivC5zOBMCNGHMleXlsLL77o/jttGvj9XZcIzOs1rx3H+M+/7b8WEREREcknCrql10m2PDkajWScITtZOTLT9PHNbzrtspePGeP+O2oUrF8P3/iGQ0lJnKn6LPJqzWsvLokXERERkd5Ly8ul10m2PLm4uC+zZ/u45Zb4M6ezZ7uBcUPDkaXkBQUWDzyQbObYYMoUgwkTOGpJ99y5sG4drFljcOhQADPHj8TSqXndFUvdU+XFJfEiIiIi0ntpplt6Lfc98Hocpw7TrG99H/jw4QDnn28kXIJ+3nkGjY2BdjOuL71kcccdiZc4//vfRtIkbfffD4WFmc/W+v1BotGB1NVBNDowbiZyL9a89vqSeBERERHpfRR0i3RgmiaXXQYLF8K8ebRbgj5vHixa5L5/3bGsWGlp8nfBL7oI7ror8Tb33guNjem/n9xx2fWQISRcdu3FmtdeXRIvIiIiIr2Xgm6RDmzbxnHgrLPg9dfd4PuFF9x/X38dxo2D888/uqxYfT1JZ46HDEktSZvPl/567mTvk3esLd5VNa+zWQM8nSXx2T62iIiIiEgmFHSLdNAyAxwOw8qVMGECnHmm++/KlRAOu2XFOi4lX7YMZs1K3Lbf76S4pDuaeKOj2s1s2XUua17nIuFZOkvilWxNRERERPKBgm6RDjItK/bII+7y8UT7DRtmU12deBa7utpJe0l3psuuo9EojlNHVdU+NmwIsWNHhA0bQlRV7cO269IO/ttKd+Y9FakuiQ8GrawfW0REREQkEwq6RWLIpKxYOAyTJ8d+F7xlPzjEJZckDswnTky/v+kuu+4oXlK5TOUq4VkqD0RmzHBYutRQsjURERERyQsKukViSDYDXFBwKOaM67ZtR94FX7vWYceOaLv9GhuDXHmlkTBJW1WVkXYisHzLRJ7LhGfJHojYdpTbb1eyNRERERHJDwq6RRKINwOcaMY1HIZ//xsGD47iOO+12880TV58MXGSthdfjD8jHU++ZSLv7Mx7IskeiDhO7o4tIiIiIpIu/dUpWRMM9iUaHQIMJRodQjDYt7u7lFOZJCFrmZFOlKQt3Rlpvz9Ic3MxM2Ykri2ejUzkqeqKmfd4D0TybdZfRERERHo3Bd3SaX6/H9McyuLFxYwdazJ8uMHYsSaLFxdjmkPx+/3d3cWcyCQJWTZnpDtmBz/zTIPFi2H+fCfrmcjT1Z0z7/k2658uvz9INDqQujqIRgeqzJmIiIiIxynoloy0rX/c3FxKTY3Bd79rtMsUfcstBpWVBtFoaXd3N6fSSUKWzdrYHbODv/02jBkDr7xicP/9sGMHWctEnq6uqgGeb8fujI4PUYYMQWXORERERHoABd2Slti1lw0KC2H9endmta1Nm+CBB6CoqGcvNU9HNmpjx8sO3rJs/TOfgQcfhMLCw90WXOayBng+HztTuSixJr1H2wehtl2qFRIiIiJ5xHAcJ3HRYIlp9+7dhMPh7u5GzhiGwdChQ9m5cydtbxHTLGP8eF/Mckzl5W5CsLPOcoO/FiNHwvr1Npa1qwt67h2BQCFNTSVYlkk06i53TjVAtu1SKioCCROGjRzpznSbZn2WepyZzpynl4+dDr8/yNKl/ZgzJ/5z0AULbKqq9uVl/+WIeL87c8WyLBxnIMuXm9TUmLzzDgwf7r5CMWOGjWHs6dJVLl7X1eMn2aOx8zaNn7f15vHz+/0MGjQo6Xaa6ZaUpVJ7+amnYNKk9t/fvh18PiP3HfSYztTGzmV28GzLdg1wrxw7HbkssSY9m1ZIiIiI5L/u/4tcsqu5Gd+//52jppMHBkuWwMyZ7b83YgREIr3rqVe2xFsyGi9DdyAA06ZBbS28/DJEIqaWmXqAlx6iSP5I5UHoihUmgUBh13ZMRERE2tFfcD1M4dNPU3bOOZROnEjRr3+NcfBg1tpONTDouMJi9myHPn0astaPfJOLdyljvzt/JKlWMNh4VIbukSPhuedg1Ci44QY47TQYO9ZUIi4PUJkzyYRWSIiIiHiDgu4exvfvf+NYFoFNm+j/ta8x+BOfoH91NYHnnwe7c3+wpxoY7N595OvycrjqKmhoONCpY+ejZIFxZ4LcZEtGQ6Hidhm6AwF46CE32J47Fy0z9RivlzmT7qEVEiIiIt6g/xL3MIe+8hXee/ll9n/724RPOgmzqYmihx+mdPJkysaOpeT227F27Mio7VQCg+uug2XL3FnX+fMdamsdLKt7E3nlSmffpYw3Q576ktFDrRm6r7sOnnwSLTP1KK+WOZPupRUSIiIi3qCguweyBw/m8A03sPuPf2T3Y49xeMYM7JISfNu20fcnP6HsjDMY8NnPElyzBhobU243lcDg2msdbr/dYf16m+uvP4xt7+y2LO/ZWPadLDD+29+OvEP94ovuv9OmwV/+Ej/IPTJD3r/DDHl/TLOM5uaSlJaMNjQU4Th1VFXt4+abbZYsSXwu+bLMtKeWNurseXmxzJl0L62QEBER8QYF3T2ZYRA+9VT2//jHvPfKK+ytqaF5zBgMx6Hw2Wc55otfZEh5Of1uuQX/a6+5U7VJm0wWGNThODuxrF3dtqQ8G8u+k7XR3FzCww+b7d6hHjPG/XfUKLdm+cMPxw5yj8yQGx1myA0qK31Yli+tJaOhUBM+n5PiPt33Xncul+N3p2ydVzQabX2IsmFDiF273JJvVVX7sO06lX2So2iFhIiIiDeoTneGvFyn23r7bYoeeojgqlX42iw1D48aRcPUqTRefjlOaWnCenv5XP84WS3xdesiOE5d0jYuvdTH8ce72dhLS6G+3l06/+absHq1w/btBjfcEHtJd0vN8pEj2x/Lrcfcnzlz4pdQ27wZLrmEtGpwR6NDGDs28fud3V0vPRvjko9ycV69ud6l13VHnW7bHsiKFW6d7u3b3SXl1dU206erTne69NnzLo2dt2n8vK03j5/qdEtc0eOO4+CcOdS9+CL1K1bQcOmlOAUF+P/5T/rNm8fgT36SY2bNgnXrIBKJ2Ua+1j/ORgkdvz/I2rUmd9wRexb7jjuguRl+85vE71D/9rfg87X/fijUh5qaxDXLlyyBL30p4SZHLRktLHSYNSvxPrNmQTDYPb8Ie2ppo556XuIdHVdI7NgR0QoJERGRPKOZ7gx5eaY7FmP/foKPPUbRypUEXn219fvRQYNovOIKGqZOJfLBD3ZfB1Nk26VUVATSmiWO1UZdXYDrros/i/3oozBuXPLZ6Oefd5fcHzGUYcMSB92BAPzf/8Gll7pBW6zj19ZGsO0j7bb0+fOfj7/PPfdAWVn8886lbIxLPsrVefXmJ8Zep7HzNo2fd2nsvE3j5229efw00y1pcfr1o6GqivrHH6fud7/j0PXXw6BBWLt3U3L33ZR96lOUTphA0bJlGAfyt/xXNkroFBRYrFuXeBa7qSlxwN1yHLPDYWybpNmGhwyBLVvc5enz5pE0qZbfH8QwTPr1c1i1ClatghNPPLLPvHmwaBFs2tR9CZV6ammjnnpeIiIiIpI9+ktQjhIZNYqD3/se7NjB+/fdR+P557u1vzdvpv/NNzN49Gj6f/nLBNav73Tt72zLRgmdpiYjaSbwt99OHjy7x7HaZbIOBKJce23i/WbNgnvvhbPOgtdfd4PvHTuco5aMtk3gNWaMjw9+0OBTn4KtW+F3v3MfDixc6LZx440wYUL3JVTqqaWNeup5iYiIiEj2KOiW+Px+mi+8kL2//CXvbdrE/u98h/CHPuTW/n70UUqnTqWsooKSn/4UK9l0XxfJRgmdVDKB33cfVFcnXj5z7bVuRvL2mawPM326kzDb8IUXusvXw2FYuRK++EWIRsNHvTsfr074t78Nl18OoRDcdBOcfrrNmjXdW3Kqp5Y26qnnJSIiIiLZo6BbUmIPGsThL3yB3b//Pbtrazk8cyZ2nz74tm+n74IFDD7zTAZOnUrw0UfTqv2dbdkooRONRpPOXr78MsyYQcLjXHCBGzy75cBMKit9hELF9O0b5Re/OHrpeMsy8MmT3YC7RXW1c1TQlkoCrw0b4Pnnba6+uqHbEyr11NJGPfW8RERERCR7FHRLegyD8OjR7L/tNrf295130jxuHAAF69dzzJe/zJDRo+l38834N29OqfZ39ruYrJZ44hnfVGYvZ8+2CQT2xzxOvOC5JZO1z3eIwYMjjB5t8/DDblB+//3uMvBx42DbtiP7lJfDxIlHH7+5uZiamsQf35oaePVVk/vuK8qLOtidHZd81VPPS0RERESyQ9nLM9TTspd3lG4WQmv7doIPPUTRypX43nmn9fvhD32otfa3nUJmv2zqTC1x0yyjstKXUvbwluOYpp+//c3gvvuOLA/vqG0m60CgkMbG/kyZYvKzn8FTT7nlwlrq7M6a5S41v+kmWLWqY/brMoYN8x19gDYMA154Ac48M7/qYOdzjffOyOZ59eYsoF6nsfM2jZ93aey8TePnbb15/JS9XHLK7w9i26VAGbZdinnChzj01a9S98IL1K9cScOkSTiFhfi3bqXfD37A4PJyjrn6agqfeip2NJoDnaklfmT20ukwe+kcNXtpWQEcxw2AL7gAVq9236murYUXX3T/nTYN/P72maxDoSYsy+bFF9snTXvhhSMJ0MaNc9vomP061QReu3e7/7+r6kV3vC9aEsi1FWtcUtkv3+Vr7XoRERER6V4KuiUtbTNmV1QEGD7c1z5RmN9PaNw49t15J7teeYV98+cTGj0aIxol+PTTDLjmGgafeip9v/99fFu2dPfpJGQYcNJJDvfe6wbC997rft3C7/djmkNZvLiYsWNNXnnF4Mwz4bnnYNQouOEGGDPG/XfUKFi/3p11bpvJuiV4bkmaNmGCu82ECe7X4XDs7NepLIGfNQuWLTvydU2NSVNTSXYuTgdJ74s4S9sz3U9ERERExCu0vDxDvXV5uWmWMX68L2YCr0RLmH1bt1K0ciXBRx7Bapl+BUKjR9MwZQqNl1yC069fTs4lE6mcp2FYjB9vtG4zcyZ85zvw2c/GrvFdXg4PPujQv//e1llQvz/I0qX9mDMn/vOvBQtsqqr2HTVzmmwJ/KJF7kx5y21qGLBjR26WmGd6X2S6X0/Xm5dpeZ3Gzts0ft6lsfM2jZ+39ebx0/JyybpUMmbHW8Ic+dCHOPCd7/Deyy+z55e/pPHCC3F8PgKvvEL/W25hyCc/Sf8vfYnAs892e+3vVM7znXdM7r+/fXDtOPDYY7ED7pb91q5t/73OZL+Ol8CrYyK3QMBd3v7UU+A4VtaXb2d6X3TmfhIRERER8QoF3ZKy1DJmJ1nC7PfTfP757F2yxK39/d3vEh41CqOpiaLVqyn97GcpGzOGPj/5CVbbNN5dKJXz7N/fZNEio933PvtZuPPOxG3X1BhHXZ9Ms19Ho1Ecp46qqn288EKUf/7Tafcu+LZtbjsty91nzYLhwzvWDe/88u1M74us3E8iIiIiInlOy8sz1DuXl6eWMTvtJcyOg/8vf6HowQcJPvYY5v79rT9qrqigYepUmsaPxwlmN7mW3x+kubkY0zSxbZuCgsOEw42kcp4tAW1bL77ovo+dSKLr05ns17ZdSl1dgM9/ntbl5oGAG3DfcEP85e4ty7fjX4tUZHpf5Oh+6gF68zItr9PYeZvGz7s0dt6m8fO23jx+Wl4uWZdqxuyOSb+SMgzCp5zC/ltvZdemTby/aBFNZ5+NYxgUPP88x1RXM3j0aPp9/ev4N23qdO3vZMm7DCP5eTY1cdQ29fVHf6+jRNenM9mvTdPkssvcrOfz5rkPBCZNcpeUJ1u+XVAwuFOJzDK9L3J2P4mIiIiI5BEF3ZKyVDJmV1e7M7QZCwZpuuQS3l+xgro//5kDc+YQGTkS8+BBipcvZ9DEiQz61KcoWbQI8733MjqE4wxk/Hgfc+aYbN/uxvDbt8OcOSaVlT4Mw+IrX0l8nvv22cye3T74X7bMXcKdSKevTxy2beM47UuP/ehHbsb1RGpqTF57zYp7LWx7YNJjZ3pfdMn9JCIiIiLSzTyxvPyll17i1Vdf5f/+7//Yu3cvBw8epKCggOHDh1NRUcH555+Pzxd7merWrVtZs2YNW7ZsoampibKyMsaOHcvEiRMJBAIZ96l3Li9PnjG7tjaCbWd5KbBtE3jxRYoefJDCxx/HbHJngB3LovnTn6Zh2jSazj3XXU+dRKrZwq+6yuGCC6yE5wkWlZVG6zZ+v1sWbPZsuvb6EPu8Ul3u/sIL8beLlzm9o0zvi265nzygNy/T8jqNnbdp/LxLY+dtGj9v683j16OWl69bt45nnnmGd955h0AgwAc+8AEKCwvZunUr999/P9/+9rc5fPjwUfs999xzfPe732Xjxo34/X6GDx/Orl27WLVqFd/73vdobm7uhrPxtkyTfnWKaRKqqGDfHXfw3quvsu/HPyZUXo4RjVL4zDMMuPZaBpeX03fuXHz/+EfCplJN3tXYGE16npZVT22tw/z5DiNHQiQCN90EK1Y4LFjgdN31IXYW9FSXu7ep4HaUVBOZZXpfdMv9JCIiIiLShTwx0/3HP/6RQYMGcfLJJ7eb0d66dSu33347e/bs4fzzz+faa69t/VldXR1f+cpXCIfDzJw5kwkTJmAYBrt37+ZHP/oR7777LhdccAGzkq0HjqO3znS36EzSr2zx/etfBFetoujhh7HqjsyGhk45hYapU93a3/37d9grveRdqZxnUVFfDh4swucziEQc+vRpIBIJdfn1sSwL2x7IihUmNTUmFRXw4Q/Dd78bf59589zl6CtXxv55uonMMr0v8uF+yie9+Ymx12nsvE3j510aO2/T+Hlbbx6/HjXT/alPfYqPfOQjRy0h/9CHPkRVVRUAL7/8crufrV27lnA4zCmnnMLEiRMxDLe806BBg7jhhhsAeOaZZ9i3b1/uT6AH6kzSr2yJfPCDHPzWt9za3/ffT+PFF7u1v197jf7f/KZb+3v2bAqefRaiUSD95F2pnGfL75a2/zqO0eF7xlH7+f1BbLsUKMtK7ey2JcQ2bAhRUwPXXeckrAFeWQmPPhq/zbbXIpX+pnK9YrWTD/eTiIiIiEgueCLoTmTYsGEAhEKh1u85jtMahH/6058+ap+TTz6ZYcOGEY1G2bhxY9d0VHLH56P5vPPYe++9vLd5M/vnziX8X/+F0dxM0WOPMfCzn6XszDPp87//S3Dn39NK3pUo0PT7/ZjmUBYvLmbsWJPhww3GjjVZsqSY/fv7M3ly7GzgybKnd7Z2dijUhGXtoawMfL497ZbAtyzfnj/f4fHHHTZutEm0YKO62qaoqCEr/c31eYuIiIiI5CPPB91bt24F4Pjjj2/9Xn19PXv37gVg1KhRMfc7+eSTAfjXv/6V4x5KV7IHDuTwddex+7e/ZfeTT3L4c5/D7tcP37vv0udnP2Pg6Z/kS4+ey9+/sZSrrjiM399+//JymD7dJhoNJw0Qo9FSxo83uOUWo13m7699zWDaNIOf/Qx8vqOzgSfLnp5KxvBURSL9ueQSg1deMVi40E2atnAhvPKKweWXG0ycaCScCZ8+3SYUKslKf7vyvFtkezWBiIiIiEi6PBl027bNnj17eOqpp/jVr35FQUEB06dPb/35zp07AXcm8phjjonZRllZGQC7du3KfYel6xkG4Y9/nP0/+hG7X3uNfT9fzpsnn4+NQcHzf+TD869i8bqhvDv+Oi4b/DwjRzjtknclCxBhEEuXJq6B/dRTbq3stt9bscLipZfMpLWzA4HCTl+CSASWLzd56SX3ne0JE9ws5RMmuF9v2ADr1jnU1kbjJjLz+w+zfHnn++v3B7PSTqo0qy4iIiIi+SJxRqk88/jjj/PAAw+0+95pp53G1KlTGTlyZOv3WjKZFxUVtb7L3VFJiZuR+dChxDWAw+Fwu4RphmEQDAZb/39P1XJuPeEcnYJhnHvPdDZvmc5wtlPFUq7ml5zU/H8UrPkFj/ILwid+iNC+z3Jo5yVYIz7AAw8kDhCXLTN4++3E12bJEndWuW2Sspoag3vvTbxfTY3JlCklWFbm2fUNw2DPHpJmav/hD00uuihEVdVhpkwpbpPI7DDhcBONjQNTyvaerL+pZo3v7Hm3aHlo0nYMWx6arFhhUls7EMNIkLa9m/Wkz19vo7HzNo2fd2nsvE3j520av+Q8FXQPGDCAk08+mWg0yu7du9m/fz9///vf2bBhA8OHD8c03T/qW4LkeLW72/6s7bvgsaxevZqHH3649evjjz+e2267LaUsdT3BkCFDursLnRKJwB13HJmRfocR/D++xf/jm4xjPddwHzMDq/D/31b8P5hH8Y9+QPNnLmLrK1fjZwJhYtf+vuMOd7n2okXxj719O5xyCtTWwrJl8Mgj7vf69Tt620DAnRWfORNKS8EwAgwaNJQEt3BSdXXu8RLZvh0CgQClpR3PM5B2G2VlQ7PSl0TtpKLjmHfkzqr7uPHGoeT7hLfXP3+9mcbO2zR+3qWx8zaNn7dp/OLzVNA9ZswYxowZ0/r1v/71L+655x5Wr17NoUOHuO666wB3WTlAJBKJ21bLzwKB2EFVi8suu4zKysrWr1ue4OzevTth+15nGAZDhgxh165dnk79H40O5Gc/izXGBus5i/Wcxf+W3cH66hWUrPoFgZdfpuCZx1nM4/yIgSxjJr/kav7CKe323r4dhiaJDUeMgNdeg9mzYdYsWL/ereO9f3/77UaOhIcegiefhBtugHfegeHD3SRmM2bYmOb7RP+TfT1VhmFgGEMYMSJxsDtihPvgaefO2PWwo9GBjBgR6FQb2WwnFfHH/Iif/QwmTw5hWflZB7ynfP56I42dt2n8vEtj520aP2/rzePn8/lSmoz1VNDd0Qc/+EFuueUWvvzlL/PMM89w6aWXMmjQIIqLiwFoaGjAcZyYSx1alpW3LDOPx+/3twbxHfWGm8pxHE+fp2maSWdY/7mjD80zrqFpeiXWv/9NcFUtjXcvY7C9k5uo4SZq2Mxo7uMafs109jKAESPAshwg/jKaWbPcGe7t22HuXFi3Dh580OEf/3BoSacQCLgB9w03EHcp9Lp1A1Kuk91WaakbuM+ZE39Zd0um9lAo9hgXFBymutrXqTay2U4qUhnz7dvBssy8v7e9/vnrzTR23qbx8y6Nnbdp/LxN4xefJxOptTVgwAA+8IEP4DgOb7/9NgBD/zMFGQ6HW7OYd1RX5wYxWgbRs6Vblzt60kk0f+8Wlt/6FhfzOA9xBSH8fJJXuIsvs5OhPMhUbr/gCUYcG02Y+fvCC9vXwN60CdauhYqKI7WzJ01yZ7hzkWDM54MZM+wUspPHr4kdDjd2uo1stpOKdMdcRERERCSXPB90A61Lb1v+LS0tpX///gD885//jLnPli1bAHe2XHoud4Y19brc4AaI06tM6sovZgoPcSzvciM1vMopFBBiKquYdO94+o8+jj+O/SY/n/Ovdpm/581z3/WePJmjamDX1Bg0NkZZty7CggU211zjJlxLpKbGpKkp8YqMeEzz/dZjxcpObhjJl1cbxp5Ot5HNdpLJZMxFRERERHLF80F3XV1d6wz3cccdB7jvFZx++ukA/OEPfzhqny1btrBjxw4sy+LUU0/tus5Kl8t0hrVtgFg8spS7jBu5ZOSr/OorGzk864vYxxyD9e67lNxxK9f/5ENsGXoO7//0l/z8J4d4/XUYNw62bTv6eEeWNddRVbWPj3zESXkpdCai0WjrsTZsCLFjR4QNG0JUVe3DtutSelc8G21ks51kunJWXUREREQkmbwPut944w1WrVrFe++9d9TPXn31VW699Vai0SijR49ut1R84sSJ+Hw+XnvtNdauXdv6fsHu3bu5++67ATj33HNbZ8R7M78/iG2XAmXYdil+fzAn+3SXTGZY4wWIF33zePZ//5vs2rSJ93/+c5o+/Wkc06Twz8/S/yvXcNbUoZy3chanh9cDR7/T0nZZs2UFiEbJ+lJovz9INDqQujo3qZjfHyQUasI063GcOkyz/qiAM5XxTNZGov60bduy3CRnLa/8OE72y0t01ay6iIiIiEgyhpPnb7v//e9/Z968eQD079+fgQMHEolEqK+vb63HfeKJJ3LLLbfQt2/fdvv+6U9/YtGiRTiOw4ABA+jXrx/btm0jGo1ywgknMHfuXAoL039XFtzgPdxx7bDHWJaF4wxk+XKTmhrzqKzZQ4b42LlzZ7uECMn2MYw9WZuxzLZAoJCmppI2tagPZWW209y5k6KHH6Zo5Sp8b77R+v2tfJBfcjVLqeJdhgFu0Hf11Ydobu7D/ffDO+8YDBrkJlqLZ8ECm6qqfUn7msnY5HI8O7Ztmu477k8/7bBokdEl906uxjzXDMNg6NChR33+JP9p7LxN4+ddGjtv0/h5W28eP7/fn1L28rwPug8dOsSzzz7L3/72N7Zv387+/fuJRCL06dOHD3zgA4wZM4azzjoLK07B3S1btrB69Wq2bt1Kc3MzgwYNYuzYsVxyySVJy4Ul0hOCbtMsY/x4X8wkXuXlboKvSKT9hyfZPuvWRTLKtN0jOA4FG//F+lm/4tw9KynBfSgUxeQpLuBPJ1zNV35/MRQUMX68webN4Pe7pcRmz3aTpnVUXg61tRFsO/k1zWRscjmebdsOBOC5547O0p6tY/U0vfk/Xm35/UGam4sxTRPbtikoOEw43Njd3UpIY+dtGj/v0th5m8bP23rz+KUadOd9ybCSkhIuvvhiLr744oz2P/nkk/nGN76R5V55n98fZOlSM2HW7GXL4MorCwmFGlPeZ8UKk6qqQk/MJmadYRA58784/a+L+eX9t/PWTx7lkvfv42ye42Ke5OI3nsQePYDNo6Zjb74GGE047CZcW7UKnnrKTaq2fbu7pLy62mb6dDulpdCZjE0ux7Nj26lmae+1946007JKYunSjiswfMyY0SevV9SIiIiIdJT3M935yusz3bZdSkVFIGESr5EjYcOGEKZZn/E+vVXbZc3Gv7fQ99ElFDy4AmvXrtZtXuET/JKrWc4MDvoHMmkSzJwJQ4dCWZlDMLg35QA038azY9u1te4st+6d1PTmJ8bg7RU1vX3svE7j510aO2/T+Hlbbx6/VGe68z6RmuSGaZppZ83OZJ/eqm3SMfvEY9j3tTm899JL7Fn+JCuZQjMBRvMqd1DNToayPDyZAyuf4NIJEU47za2xnc6Mb76NZ8e2S0sTB9ydOZb0LH5/kOXLk6/AyKR2vYiIiEh30F+4vZRt22lnzc5kH2nDsmg463y+NmIlQ9nJl7iTTXySAGEm8zBPMJ63OY47+nwTtm5Jq+l8G8+ObdfXZz9Leyq8lGVfXM3NxdTUJP5PU2dq14uIiIh0NQXdvVRBwWGqqxMHODfdBIWFh9Pap7razRAtsZWUNDB7tsNeBrCQL3EqmziFV/kZ1dQzkGG8y5cO3MrQT/0XAy+7jOCDD2IcSn49MxmbXI5nx7aXLYNZsxLvk817x7IsTLOMpUv7UVERYPhwHxUVAZYu7YdplsVNvCjdTytqREREpKfRXy29VDjcyIwZNuXlsX9eXg5XXgnhcFNa+0yfbisRVgKNjQf43Ododw3/wil8hZ8xjB18/YSHaTr3YhzTpOCllzjmf/6HwaNH0/8rXyHw4otHilt3kMnY5HI8O7b9yCNw0UV02b3jOAMZP97HnDluAOc4bqA2Z45JZaUP2x6YleNI9mlFjYiIiPQ0Crp7McPYw7p1ERYssBk5EgzDTWa1YIFNbW2E0tL090kl03ZvZ1n11NY6zJ/vtLuG358f4KsbJnFwxf289/LLHLjlFiInnIDZ0EDRqlWUXn45ZePGUVJTg/nuu0e1m8nYpLNPuku127Y9dChMmQKLF3PUeWf73tE7wd6mFTUiIiLS0yh7eYa8nr28rbaZtqNR94/ZcLg5YRbCWPtohjs9RUV9OXiwCJ/PIBJx6NOngYaGA+03chwCGzcSXLmS4Nq1mIfd5f6OYdB8zjk0TJlC0wUXQOGRALK4eAAHDhS0ttu3bzOHD7+fsC+xxtNxDJqbi7Esi2jU5JVX4KabDN58s6V8k8OMGdGk5Zs6tl1SEuLQoUDCeyeV+szxtmnJnP7ee7RmhC8tdd8rX7bMnXUfOvRIpvR8rAXdm7OAgpu9vLLS1+na9d2ht4+d12n8vEtj520aP2/rzeOn7OWSsraZtk2zPqXgOZN9pL2GhgNY1i4cZyeWtevogBvAMAiddhr7f/IT3nv1VfbefjvNY8ZgOA6Ff/wjA2bPZkh5Of2+9S2Cr7+OaQzh7rsLGDvWYNgwGDvW4O67CzDNofj9/rh9aTuefv9eIpG+re9DDxtmUVFhsHmzwYoV7tJed6m2QWWlD8dJvFS7473S0HAg7r2TyrvYybbx+00MA557DkaNckuVjRnj/jtqFKxf786y97b3vr2UVE4rakRERKQn0Ux3hnrSTHcsvfmJlRdYb71F0apVBB96CF+bpeZbgx9nUaNb+7ueI0/d3NlBB9vembTtZDWSFy6Es86Cltt/wQKHqqrUa4p35tjr1kUwDJJs47Brl8G11xJ3m8WLYfBgh0suMfKyFnQ2P3+WZeE4A1m+3KSmxuSdd1pWKtjMmGEnXanQnby4oka/O71N4+ddGjtv0/h5W28eP810i/Rg0Q98gINf/zp1L77Inl//mtCkK4j4CvhQ41/4GV9hB8N4mMu5mMexiLBpEzzwgLukPZFU3od+6il32XaLmhqD5ubE7aYilWNv3GiyfLmV5H1teOstJ+E2zzzj8O67sYPyI+30jPe+vZxUTitqREREpCdQ0C3iZZZF8znn8N7PVjJ68E5ms5CNlBMgzOU8yuNUso2RzOdmnqrZwsGDRQmbS6VG8pIl7nvSLbZvB8Po/FLsVI5dWGhSU2Mk3KamxqC4OPE2ixYZ7N+frB3v14JWUjkRERGR7qegW6QHsCyDv+04hruZzWls5OO8xu3cxG5KOZad3MyP+f3O/2LwZeMo+vWvMQ4ejNlOqjWS266iGTEC7CxUb0rl2H37klL/+vVLvk3fJJPzPaEWdCoPMnrCwwURERGRfObtvyhFBIBo1GlX2/ivfJyvcjvD2MEkHmEdlUSwCGx6gf5f+5pb+7u6msDzz7eLmFOtkbx795Gvr7sOCgo6/05wKsc+cICU+rd/f3a2iVcL2itJyVJ9iOL1hwsiIiIi+Ux/aYn0ACUlDcyefXTiijABVjOJiazj59/cRuPc7xM+6STMxkaKHn6Y0smT3drft9+OtWNHSjWSZ81yS2+Bm3Bs2jQHw4iReT1NqRy7qcmmujpxgo7qaofDhxNv86UvOTQ1JWvn6FrQXst4nupDlHgPF0RERESk8xR0i/QAjY0H+Nzn3CA4lvJyuOLLQ9l73Sx2//GP7F67lsMzZmCXlOB7+236/uQnlJ1xBn2uuJRZRb+mYnTsOtXl5XDhhbBxI9x6Kzz2GPTvH81KgqtwuJEZM+yE53DaaTYzZkQTbjN9epQxYxJfiyuvhNNPT9aOfdR5eS0pWSoPMmI9XBARERGR7FHQLZInOrtk2bLqqa11mD/faVfbeP58h9paB8uqdzc0DMLl5ez/8Y/d2t81NUdqfz/7LP1nX8lzbxzLKxU3UDn4ZQzc9n70I3jkEfD74Wc/g1dfhcsvh0gke+eZSn3mVLbx+99PeC38/vfTrgWdblKyfFiCnsqDjFgPF0REREQke1SnO0Oq0y3Zku06ykVFfTl4sAifzyQSsenTp4GGhuTLv62336booYcIrlqFb8eO1u83f+ij/Pusq6mpn8n9T5TR8bZfsMCmqmpf0sAtnfNMpT5zKtuUlAxg//4CfD734UC/fs0cOvR+2u0A2HYpFRWBhO9IjxwJL74YwjDMTo1ntut02/ZAVqxw+7N9u7ukvLraZvr0/K7T7UX63eltGj/v0th5m8bP23rz+KVap1tBd4YUdOcXvz9Ic3Mxpmli2zYFBYcJh2Mvkc43plnG+PG+mDOo5eWwbl0Ex6lLq81OjZ9tE1i/nqJVqwg+8SRGsxuAhvFRSyX3cQ1PchFRfIAbaG7YEMI062M21zI2Pp+f8eONlM4zlfEsKSll/34/lgXRKPTrF+bQofZ9CAb7cuhQEZZlEI06lJQ00NiY6fvnZQwb5ku4RUGBWyM81fOMJxefv1QfLkjneO13p7Sn8fMujZ23afy8rTePX6pBt5aXi6d5LbFVR3lZR9k0CZ19Nvvuuotdr2znC9zNS5yGnwiXsYZ1TOQdhvNjvsZ/8Xrc7Ndtx2b+/ACLF8cOROHIeRYWFiUdz2AwiGkOZdEiP2PHGgwfbjB2rMGiRX5McyjBYBC/3/3/ixcXM3as+Z9tTBYvLsY0h+L3+9O+LKkkJbv2WjfJXF6N53+EQk2YZj2OU4dp1ivgFhEREekimunOkGa680MuZom7UqpLlhPNJMeSrfFr278P83eu5pdUsZQyjtQM2xw4g+O/X0XTJZ/BaVP8uu3Y1NbCDTckrrF90knw3HPJZ4kNw0q4TW2te77JtrHtnSlfB3AfkCxd2o85c+I/q3ztNYfKSqPT4+mVz1+ueXEFi8bO2zR+3qWx8zaNn7f15vHTTLf0eHk5S5ymfK+j3Db79et8hK/xE4axg0tYw2NMJILFJ0N/5phvfJEho0fT/8tfJrB+PX6roN3YlJYmDrgBTj0Vli9PNkts8cILibd5+224//7E2zzwgPvuezpSSUo2aFDy81Rd7OS8voJFREREpC395See1dxcTE1N4lu4psakqamki3qUvnyvoxwr0IzgZy2XcCmPMf7j73Dgu7cR/tCHMJqaKHr0UUqnTuWY08oxvv8DRvI2APX17nkEAjBtmjvz/eKL7r/TprkZ0a+5BmpqjIT9qakxKC5OvM2AAQaLFiXeZtEig4MHi1K7CG0ky3gejUbydjzzIZt6qrxWmk1EREQkEQXd4ln5PkucilTqKN94o0NhodVtgVKiQPOBp0ppnH0Vu3//e3avW8fhmTOx+/TBt/1tvnpgLm9yPL/lv3njh7/ma19q5LnnYNQod6n5mDHuv6NGwfr1cMIJTkrj2a9f4m0KC1Obbfb5EgfmsUSjURynjqqqfWzYEGLHjggbNoSoqtqHbddRUHAo7+pie23WuCesYBERERFpK6N3ut966y3effddjjnmGP7rv/6r3c/mzZsXd7+LLrqI008/Pf1e5iG90939cvU+dFczzTIqK31s2nT0z8rL4Z573AB18ODUy051Z/Zro7GRwBPr+cfXfsW45t+1ft/u249HA5/lx/VX8zKnAUeC3vJyWLPGoaIi+fvQ994LF1wQf5utW+HccxMH3iNHwvr1Npa1K9EpZyTZeNbWRrDtrste7rW8B17/XHvhd6fEp/HzLo2dt2n8vK03j1/O3ukOh8Pcdttt3HnnnTF//vrrr8f93y9/+UsikUi6hxSJKZVZ4q6eVcxEvJnkH/4QFi2Cyy6DUKj7l9emmv3aCQaxp03kzz96mg/wJt9jLruLjsM8sJ8r6n/OS5zB3/goX2UBZbwHuLOXr7ziUF2d+Bd1dbXD4cOJt3n/fYfZsxNvM3u2Q58+DQm3yVSyJeiGsScnx43Fi7PGPWEFi4iIiEhbaf/VsnHjRt5//33OOOOMo2a5Wxx77LF86Utfave/U089lffff5+NGzd2utMikFpiq+nT7bwvjXT0kuUoa9c6/PWvMG4cbNvWfvt8DJQ6ahmb0vIP8H2+x0sPvsG0Qb/jV8ykkUI+wussYA7vMJzVXMpEHuNrN0WZMYMk4xllzJjE23zgA/C5zyXe5qqroKEh03rdiSVbgp5ohUK2eTHvQb7nORARERFJV0ZBN8DFF18cd5u+ffty1llntfvf1KlTAXj55Zcz7KrI0fJpVrGzWmaSo9EoEyYYrFwJ8d5gyLdAKZa2YzPkWJOVuz9DFb9iCLv4PIt5kTPwE+FSHuMxLuVPbwyn7/f/hyd/8lrC8bQsm1/8AubNo9028+bBkiVgGDaWVU9trcP8+U67bebPd6itdbCs3C9Lzoe62F6cNe4pK1hEREREWqT9l9Ybb7xBUVERH/zgB9Pab+TIkfTp04c33ngj3UOKxJVPs4rZ4sVAKZa2Y1NWdmT28gD9uJfPM4YX+TB/58d8jV0MZjB1FN19O4M+/Qm+vPw0Xv3CXbz7en278TTNAEuXGpx+Orz+OixcCC+84P77+utw2mmwbJmBYVjY9k6uv/4w69fb7NjhsH69zfXXH8a2d/bofAxteXHWuKesYBERERFpkfZf7e+//z6lpaUYRuzMvz6fD5/PF/NnxxxzDHv37k33kJKGYLAv0egQYCjR6BCCwfRqEXtVd84qplKKKdY28fbrbKAUDPYlEhnMzp0QiQxO6R5IpX/BYN+MSk6FQk0UFu6POXv5Dz7MzfyYEWxnzTVraB4/Hsfnw795M8d888sMHj2CATdOg2eeBttuXS4dDsPKlTBhApx5pvtvy8qAtqsAwuEwhhHBcaIYRiRmsJ2t88xH+TxrnOhz05NWsIiIiIhklEjN7/fH/fny5cv5zne+E/NnPp+v18wwdTW/349pDmXx4mLGjjUZPtxg7FiTxYuLMc2hCcdMMpNKKab42/Rn//7+TJ589H7BYGNGgVLHe2DYMJLeA7H6N3lygP37+7N0af92fV68uJi6ugAVFemXnEo2e3lKuZ8zfzSePffcw3ubNrH/u98lfPLJbu3v1asp/exnKTvzTPr99AdY299MeCx3FUDmY9OZ88w3+ThrnMrY9MQVLCIiItJ7pV0y7Prrr8eyLBYtWpT2wW644Qai0Sj33HNP2vvmm3wrGWaaQxk/3ohbFqi21sG2d6bcXm9O/Z+qVEoxGQYJt1m4EM4668i72233S7fsVCb3QMdzCATguefc+tmp9DmdklOWZWHbA1mxwqSmxl1CP2KE+wBh+vQYZdAcB/9rr1G0ciXBNWswDxxJfPZ7Ps0vuZpHuJxGitodxy0n5XDJJfGvRbpj09WltbL5+Uv7uueY10qYpUu/O71N4+ddGjtv0/h5W28ev5yVDDv22GPZs2cPu3fvTmu/uro63n//fYYNG5buISWJYLAv998fO0gCN9v1Aw9AUVHvWGreFVIrxWTx0kuJt3nqKZg0qeN+JoHAobSW12ZyD8Q6h0mT4MknE7fTts/pZFJPe/bSMAh/4hPsv/VWdm3ezN677iJ09jk4hsFn+AO/ooqdDOXnXM8ZvAi4v+Srqx02b3YSnsPGjSbLl1sJt/ntbzM7z3yTT7PGXixhJiIiItJZaQfdp5xyCgC1tbVp7bdu3bp2+0v2HDpUxKJFsd+xb7FokcHBg0UJt5HUpVaKyaCwMPE2S5bAzJkd9zNpaChKK1DK5B6IdQ4zZ7p9SqfP6WZSz+j9+2CQxssuo37Fr9n953/x86HzeIPj6ccBruceXmQMf+cj/GzY/zLzv3fxla8kvu7BoElNTeLrde+9cOWVR772Qsb4RPIhm7oXS5iJiIiIdFbaQfd///d/U1hYyFNPPcUf//jHlPb5wx/+wNNPP01hYSH//d//ne4hJQnLMlLKdu3zJQ4yJHWpZhjv1y/5Nh1XpLTNTJ5qoJTJPRDrHEpLSamdtn3u6kzqzsgSLtn0Tdb871amlv2BpVxJoxHkw/yD6h1fZ9AnR7Dx2Im8/M3VzJgcIlY6gyFDUjvP445r/3Wi80wloV5v11My84uIiIikI+2/bEpKSrjmmmtwHIe7776bH//4x7z66qs0Nja2266xsZFXXnmF2267jZ///OcAXH311ZSUaAYj26JRJ6Vs15FI73rHIpdSzTC+f3/ybTq+qZFJCad07wG/P0g0arJxI9TWwrRp4PdDfT0ptdO2z11dcqp1ufTnDrBgUwXnvXsf7/99G4d++nPe/cAYjGiUY9av49T/N4nFjw9n2xVf5bwhf23XRkFBaufZNmCPd56pJAYTV2cz8+vBhoiIiHhRRtMJ55xzDrNmzcLn87Fp0yZuvfVWrr76ambNmsXs2bOZNWsWV199NfPnz2fz5s1YlsXVV1/Npz71qSx3XwBKShqYPTtxQD17tkOfPg1d1KOeL7VSTA5NTYm3mTULli3ruF/6JZxSvQf69m1sDRDHjjU57TQ3adqoUbB+PfzmN26f0ulzd5WcarsKwDqmP+csu55hbz3PKP7BbXydnQyhuGE3Q1bcztO7Ps7LxmncwCL6s5dg0EnpPNuKd56OM5Dx433MmePO4jqOO1s7Z45JZaUP2x6YxbP2tkxLmOnBhoiIiHhZ2tnL23rnnXd49NFHefnllwmFQkf9PBAIcNppp3HppZcycuTITnU03+Rj9vLKSiNBtmtlL8820yxLmmEcEmchX7QIxo1rn708Vmby1PqT/B6AaMLM0YsWuUnbbriBlPrcmf5mi98fZOnSfsyZ0/4ZokWEC/kNV/NLLrXWYUXdi9xsFBCdcBk7zr+aGfedy8ubjw7Yysvhnntg506orIx/nvGO3daCBTZVVfvSeoe6J3/+UvncHJ2Z3zsZz3vy2PUGGj/v0th5m8bP23rz+KWavbxTQXeLaDTK22+/zfvvv09jYyPBYJABAwZw3HHH9dgZiHwLuv1+P9FoKQ884CbMaikLNHu2w1VXgWXVp9Xf3vzhSVUqpZiAONs4TJwIVVUGL76YnRJOye6BgoKD3HdfScIAcd48N5i+6iqHtWvdZHBt2znvPINJk9zZ3O4qOdWRbZdSURFI+K7wJ4btZkXlcgau/SWDdv6l9fvNg0fw55Ov4lv/+hwbdp3IiBHuDPeFF8ILL8DWrXDiifHPM5VjuyXMQphmfcrn1JM/f+mWMMvVg41c6clj1xto/LxLY+dtGj9v683j16VBd2+Ub0F3i6Kivhw8WITPZxCJuEvKGxoOJN+xg9784UlXIFBIU1MJlmUSjbpLYzv+8R9rGyDpfpk4cg+YRCJ26z2QaoC4fr1NMLjvqP6VlIQ4dCiQ9f5myu8P0txcjGn6eeUVg2XL4JFHjqwaaMsw4J13HAL+93E2b6TowQcJrnkMc9/e1m0OjD6HN865mtu3X8GWd4pZs8YhEgknOc8yhg3zJeynYcCOHenNxPaGz18qnxvI3YONXOkNY9eTafy8S2PnbRo/b+vN45dq0J34r8UE6uvreemll9i5012yPGTIEE4//fSUDiq509BwAMs6gOOAZUGDXuPOOffd4iYcB0wTYrxpEXebtt9zHDdJlGma2LZNQcFhwuHGoxtLIhwOYxgRLCtANBppfTiUauZon89uDX7a9i8cDgIBWn6XOo7RJvDtXJ9T0XIsv9/EcSyWLnVn4t95B4YPd2eo16+HyZNh27b2+44YAbYdJhRuho99jP0f+xiH5s4l8OQG9t/+ACO3/pa+r/yJT7zyJ+4t+BKRyyfTtHES9ujRhEJHZ/0PBvty6FARhmEwYkTiTOgticHMHpqQO9N7IJXPjd8fJBz2p5zxvJf9d15EREQ8IqM/A5955hmqq6t54IEHePrpp3n66adZunQp1dXV/OY3v8l2H0V6tGwlierYzpAhtGvHtlPLcN4xc3Ss/k2eHGD//v4sXdo/54mt2h7/U58K8PbbPsaPN5gzx2iXuGzuXJg9G1at4qgyYTGToBUW0nzpFP7yv0/y3K/eZvv1P6Rh6AkEmg9R9OtfMmDCBAadcw4lCxdi7toFuE8zTXMoixcXM3asyde+ZnDttYn7312J5nItl8nN2rb9978bncp4LiIiItLd0l5evnXrVr773e/iOA79+/fnhBNOwHEc3nzzTfbt24dhGMydO5dRo0blqs95IV+Xl2dLb14m0tWylSQqWTu/+U2UBx4w0n43tmO7gQA895ybbK0rElu1Pf60aW6m9blz428/bx68/jqsXHmkP6km5zKwOYvnmDPwl4xveAiz0V0q4pgmzZ/+NI3TvsCFCyfy0qsBwA3u1693g/10EoMl44XPXy6Tm6U75nqnW7JF4+ddGjtv0/h5W28ev1SXl6c90/3EE0/gOA7jxo3jzjvv5Oabb+Yb3/gGd955J2PHjsVxHJ544omMOi3S2/j9QZYvN2MGLuAGcitWmAQChZ1uZ9kyg5kzHcrLY29TXg7Tp9vtApdY7U6aBE8+GTvgTqfPqeh4/JkzYcmSxPssWeJuN3KkG4zV1kZak9rFa7eFg8mznMPEPfez8NvvcvD2GppPOw3Dtin83e845rrJ1L46jNu5iY/zGuGwu5x94UI32B850n2HO9Gxe4Js3beptP3II3DRRaR134qIiIjkk7SD7i1bthAIBLjuuusIBAKt3w8EAnz+858nEAiwdevWrHZSpKdqbi6mpibxx7CmxqSpqaTT7dx+u4ltR1m3LsKCBXZKAWKsdlMJfFPpcyo6Hr+0NPH70+D+vLzcYcOGEFVV+7DtuqOyjqdyvX6yuB/7r/gCe9as4b0//YkDs29ml3Usg6jnJmp4jU+wkXImbLuLiePe5/XX4d573YRtiY7dE2Trvk2l7d76YENERER6jrSD7gMHDnDsscdSWHj0DEZhYSFDhw7lwIH0s2WLdIbf7yYhgzJsuxS/P9jdXUpJqsnNLCvxRzXVdsDEceqoqtrHhg0hduyIJAwQY7WbauCbrM+p6Hj8+npSfL83jGnWx539TPe6R086iUPfupXh0be5iCd4iCsI4aeczdzFl9kWGcplK6fy0wuewrCjCY/dE2Trvk217W3b4Kyz3NcGFi50y7lt2OD06AcbIiIi0nOk/RdRJBKJGXC3KCws1B9A0mVymcypK9i2nZUkUem242aOrsdx6hIGiLHaTT3w7Xxiq47HX7YMrrsu8T6pJC7L5LpHow7HjvDxGy5iCg9xLO9yIzW8wicoIMRUVvEbLmTQ6cfTZ/58rDffTHZ6npWt+zadtsNh9z39CRNgyhSAcI9+sCEiIiI9Rw8tYiO9heMMZPx4H3PmmO0yWc+ZY1JZ6cO2B3Z3FxMqKDhMdXXiwCSVIDJb7aTS7rJlbnmubB8rleOvWwdXX53s/V6jNRiLtwIik+tVUtLA7NlHkoPsoZQ7uZFP8gqj2cwdfJnGogH4dr5DnzvvZPC4cQycNIngypUYhw9neAXyU67ut1y3LSIiItId0s5ePnXqVEpLS/n0pz8d8+e///3v2bNnD5MnT47bxhVXXJFeL/OQspd3P78/yNKl/dLOxp1vTLOMykpfp7NfZ6udZO3mKmN3KsefNg3OOAPGjIGnnnLfLd++3Z1VnTULLrwQXnvN5vLLDxAKlbB8uUlNjdlay7u62mbGDBvD2IPjDEz7epnmUCorjfj7PNJE4DcPULRqFQV//COG7QaPdlERTRMm0DBtGqHTTnNfSk7AC5+/XN1vuW4bMq8tngovjJ3Ep/HzLo2dt2n8vK03j1+q2cszCro7a2VLLR8PU9Dd/Wy7lIqKQMJ3S0eOhA0bQphmfdd1LE2WZWHbA1mxwg0QW4LI6mqb6dPdADGVVzay1U4q7Z55Jixd6rB2LdTUGFk7VrLjf+xjJrNmwa5dbhb1mTNh0CDYvdudgX/0UTjuOHjuOYfx442E5axMc0/a18vv9xONlvLAA7Bo0ZHznj3b4aqrwLLqW38vmDt3UvTwwxQ9+CC+t95qbSNy/PE0TJ1KwxVXYA8dGvOcvfD5y9X9lsu2LcvCcQYmfBjT2fvWC2Mn8Wn8vEtj520aP2/rzeOXs6B77ty5GElmaZL53ve+16n984GC7nxQxrBhvoRbGAbs2JG9mtG5FAgU0tRUgmWZRKPu8tlMZuiLiwdw4EABPp9BJOLQt28zhw+/n5P+WVaAQ4eKWo9VUtJAY2NuEikGAoWEQscwbFji3z/TpsGppzrMmRN/u7YrIILBvmmfQ58+pezb58fng0gE+vcP09R0uN3saZ8+NgcOBLBMsF5cT/9H78W/5lHMhja1vz/1KRqmTKHp/POhoKC1fW98/lyZXL9UZesz0SKXtcVbeGns5GgaP+/S2Hmbxs/bevP45SzoFpeC7u7XU2a6s6VlFvb++91Z2JZZvNmzHT73ufazsJ3VFTOGsaQy5k8/7S41T3ZfvPhiCMMw0zqHWNf4jDPgV79yeOwxd9bfNGH1anjrLYeSEoO+feHAATh0yKHi44cIPv5LCn79awr+/Ocj59W/Pw2TJtEwdSqRj37UE5+/7roHMtVVr6N4YewkPo2fd2nsvE3j5229efwUdOeYgu7u11Pe6c4W0xyacEl1ba2Dbe/M0rFyP2MYSypjvnWrw4c+lHg2vKDADYqTLUHveA4dr3EgAM89BzfcAJs3u1+3xNKPPea+c94SjM6aBZdcAsce6xCJ7MR64w2KVq2i6KGHsHbtaj1G+CMfoWHaNPrdcAM7Q6G8/fx11z2Qqa56SOeF350Sn8bPuzR23qbx87bePH6pBt3KXi6eFQ43MmOGnSSTtd0rAu5gsC/330/MAAjchGcPPABFRX07fSy/P8jy5WbCY61YYRIIxC8tGKvNVOqspzLmwWDykmbXXgvLlye+Xh3PIdY1njQJnnzyyPemTIGiIjfAnjuXdhn15851j7t/vzsO0RNO4OA3vsF7L73EnmXLaJwwAScQwP/3v9PvO9+BY4+l//XXU/D730MezRhDbu6BXMtlbXERERGRRLo8kZphGDz44IOdaiMfaKY7P+QymZOXRKNDGDs2cVAxciSsX29jWbvib5SCbM4YZrJEOdmYFxQYLF5sccst8Y/76qtuved0ziHWNa6tdWe5W7738svwxBOQKG3FD34An/+8TSRy9DgY779PSe0TFPz6QQJ/faX1+9EhQ2i44goapkwheuKJ8RvvIl58tUMz3ZIKjZ93aey8TePnbb15/PJ2pru3DYTkVjQaxXHqqKrax4YNIXbsiLBhQ4iqqn3Ydl2vCLgBLMtIaRbP5+tcEkTI7oxhJnXWk4354cMm55+fuJb3gAGJA+5Y5xDrGpeWtm9nwAD4xS8St3vvvRAKHT0OlmVhlI7iHv8cTtq3mU/wKktKqmksGoi1axd97rqLwWefzcBLLyX44IMYh7qvTrUXZ41V/1tERES6S+LUzwkce+yxnH322ZxxxhkUFubPEkLpnUKhJkyzCccB04RQqLt71LWiUYcRIxIH3iNGQCTiYFmdO5Zt24wYkThoHTEColEbM0HM5b6fnXyJclVVYcxXBOKNuWnCZZfBqlXxa3n/85+kfQ6xrnF9fft2TDO1YD7WdWl5ANFyPbZzCtce+hmzuY3qE2r5/gn3UfD731Dw8ssUvPwy9ne+Q1NlJQ1TpxI644yktb+zqeUeeO+9I6XbSkvd67FsGTzyCAwdmvwe6Eruqwl9WLHCjFv/u7e8jiIiIiJdK+0/h6666ipOOOEE3n33XR588EFuvvlmli9fzvbt2+nfvz8DBgxI+j8Rya6SkgZmz068imT2bIc+fRo6faxszRg2NxdTU5P4V1BNjUlTU0la/XOcKI4DZ50Fr78OCxfCCy+4/77+Oowb5yY5q65OfL06nkOsa7xsmRvIt9i5M/n75O7P21+/RO9Ihyjgf9+4nEUXrWPva3/hwDe/SeSEEzAbGihatYrSyy+nbNw4SmpqMHfsSHzwLCkoOMy3v23z3HMwapS7xH7MGPffUaNg/Xr49rfzb9bYMPawbl2EBQtsRo50n1OMHOkmXKytjWAYe7q7iyIiItIDZZy9/N133+XZZ59l/fr17N69G4B+/foxbtw4xo0bxwknnJDVjuYbvdMt+cY0h1JZacSdxct29vLKSl+CY0Ww7WSZq3NTZ92dQe+fsE737bc7fPazNuPHW2mdQ8dr7Pe7Aebs2e7M/IwZcMop8PWvx+/fggUOVVV7282opv2+sePg37iRopUrCa5di3n4MACOYdB89tk0TJ1K0wUXQA5XIXVltvxsy3b977b0u9PbNH7epbHzNo2ft/Xm8evSkmH//Oc/+dOf/sSLL75IQ4M7kzZs2DDOPvtsxo0bR2lpaWcPkXcUdEu+aakh/cADbg3pliXVs2c7XHVV9ut0dzaBXS4TW6XyUMAw9qR9DrGu8ZlnwgMPOKxb535v1Sr4/OeJe+zHH48Sjb7X4SeZP4AwGhoorK2laNUqCl54ofX7dv/+NF56KQ1TpxL+2MfwB4pobi7GNE1s26ag4DDhcGPCY8ajcn3x6Xent2n8vEtj520aP2/rzePXLXW6I5EIGzdu5Nlnn+W1114jEolgGAbnnXces9quwewBFHRLvioq6svBg0X4fCaRiE2fPg00NBzIybE6M2OYy8DtyEMBi5oao01A7TB9erRdQJ3JORy5xgaRiLtsPxIJ0dRUQiBgEo1arFhB0mO3yNYDCOutt9za36tWYe08Mssc/vDHWH/S1Xxl40z+snNQ0gzxyXgxe3lX0e9Ob9P4eZfGzts0ft7Wm8evW4Lutv7xj39w1113UV9fz8c+9jG+/e1v5+Iw3UZBd3J+fzBrM2uSnnTHL5djlajt5DPSDpFIOGZ/UulzrpYRB4N9OXSoCMsyiEYdSkoaaGw8EHOblsA81jZtzyWrDyCiUQrWr6fowQcpfOopjOZmAEL4WccE7uManuICPlHuY9269Jbvu3LzaoDXtdyTgUCAUCik33ke1Jv/cPQ6jZ23afy8rTePX7eUDNu3bx+PP/44N998M3PnzqW+vp7CwkJGjRqVzcNInrMsC9MsY+nSflRUBBg+3EdFRYClS/thmmVYnU2fLVmTy7FKpe14ia3mz3e45x4480zjqH3S6bOb4bwex6nDNOs7HXD7/X5McyiLFxczdqzJ8OEGY8eaLF5cjGkOxe/3t/bvvvuKGDvWZNgwd5v77iuKe03dzNp2wjJnaWXWtiyazzmHQ7+4n4Xf2sFsFrKRcgKEuZxHeZxKtjGSKzZ9g9/U/ItAIL13v1uylyfSkv29N+h4Tw4Zgn7niYiISKtOz3SHQiFeeuklnn32Wf76179i2zamafKxj32Ms88+m9NPP51AIJCt/uYNzXTHZ5pl7UoftVVeToYza5KOVMcvl2OVTttHZqT9/OMfBvfcA48+Cm0/Yi37GAbddn+lkjwMohn1LxvvyXfUcRn4R/krV/NLruRXDOLIsu/mU8fQOHUSjRMm4PTpk7RdvdPdnn7n9Ry9ebbG6zR23qbx87bePH45nel2HIe//OUv3HXXXVx33XXceeedvPbaa4wcOZKqqiruvvtuvvnNbzJu3LgeGXBLfIlKH8GR2svpzqxJ9uVyrNJtOxRqoqDgML/+tcO558LKle0D7pZ9Nm40Wb7c6pb7Kxjsy/33k/DYDzwA27Zldk2j0SiOU0dV1T42bAixa5f7TnRV1T5suy7tgBvANM12713/jY/xP/yUYezgMh5lHZVEsCjY+AL9v/Y1Bo8eTf/qagLPPw92/FnqrM/Me5h+54mIiEgyac90/+pXv2L9+vXs27cPgIEDBzJu3DjOPvtshg8fnos+5iXNdMemBEv5IZXxy+VYZdJ2Kvs8/bRbF7s77q9odAhjx5pJj/3b38LJJ3euf9l6YpzKNT112E5++7n7KV55H/5//7v1+5HjjqNh8mQap0whOmzYUfvlYmbei/Q7r2fpzbM1Xqex8zaNn7f15vFLdaY7cSacGGprawE49thjOeuss/jwhz+MYRgcPnyYLVu2pNTGyYn+IhVP6zizFsv27WBZJr3sM5l3cjlWmbSdyj59+yYOuGO1my2WZaR07GAw+TZddf8XFBymutqXcBn4Z786mEjV9ey+oQr/5s1u7e/HHsP39tv0/clP6LNgAc1nnUXj1Kk0XnBB6wm6AXUdVVWFTJmSm5rXXqDfeSIiIpJM2kF3i3fffZeVK1emvZ9hGDz44IOZHlbyXEuCpUR/hLYkWDKzmsZP0pXLscqk7VT2OXCAtNrNZlb2aNRhxIjEgfeIEdCYpPmuvP/dZeB9WLHCjJshvnUZuGEQLi9nf3k5B+bNo/DxxylauZKC55+n8NlnKXz2Wfr17Xuk9vcpp4Bh/CdZXROOA6YJoVDuzyuf6HeeiIiIJJP2nwClpaWd+t/AgQNzcR6SJ9yZtcQZi6ur3dkw6V65HKtM2k5ln6Ymm+rqxNOF1dU2RUUNWc/KXlLSwOzZiY89e7bDvn35df/HyxC/YIFNbW0Ew9hz1D5OMEjjFVew56GHeO+FFzj4la8QGTYM88ABipcuZdD48Qw691yKFy8msO8Qtl0KlGHbpfj9Sab6exj9zhMREZFkclanu6fTO93xJa+9HMG2lck3l9LJXp6rscqk7VT2AbjsMh8f+ADMnAmlpVBfD8uWwZtvwpo17ja5yCZtmkOprDQS1hWHaKevaS7ejep0zXLbJrB+PUWrVhF84onW2t9R08dvCypZ1HgNfx1+EV+6yWTGjN7zTjfod15P0pvfS/Q6jZ23afy8rTePX7fU6RaBzGbWpHvkcqwyaTuVfSxrL6tXO5xyisMNN8CYMXDDDXDKKQ5r1jgUFDTkLJu0ZdVTW+swf75zVF3x2loHy6rP2/u/0zXLTZPQ2Wez76672PXKK+yffyd/KzoNy45wYeMa1jKRF94ZTnTON/jSuf/CtnvPqqZ8HXMRERHJD5rpzpBmupPr9MyaZCzd8cvlWGXSdqJ9ktdEdhg3zuCNN+K339ls0kVFfTl4sAifzyAScejTp4GGhgMpn0My+f7EuG2d7o/wt9ba32Xsbt3m3ePOpM+NUzh08UU4fft2Y2+7TsuYBwIBQqGQfud5UL5/9iQ+jZ23afy8rTePn2a6pdt1emZN8PuDWXlfNlk7uRyrTNp2HOM//7b/OrWayHDaaYnbb8kmnaqO189xwDAiOE4Uw4jEfAAX6xxSGU+/P0g0OpC6OohGB2btHels3UsAzc3F1NS41+/vfJQ5LGAYO7iENTzGRCJYHPv2i/T5n68yePRoBlR/Bf/6v4Fd2qPf+w6FmrCsPZSVgWXt0e88ERERARR0i+Qly7KykggsW+10lWT9bW4uaQ324qmpMbjmmsTHackmnWl/Fi8upq4uQEXF0dcz/jn0Z//+/kyeHHscOu43ZAhZGatc3AOxymRF8LOWS7iUxxjGDr7G/xI5+cOYTU0UPryKQVMvoHnEyaz6yK2s/tm+vLz/RERERHJBy8szpOXlkkvJl1AnTgTWMn67dkVyklAsV1JZOn7ssUbCNgwDtmxx+NCH4m+3YIFNVdW+pDORyfqzcCGcdRaEw0eup2EkTuLWdp8j55V8v8yTv3XuXorFtkupqAgkLJN10knw3LM2X//0Riq23MdnWUE/3CX4NgYv9/kMH7q1isYLxyYvbu4h+t3pbRo/79LYeZvGz9t68/hpebmIR6W2hDp5IrBIhJwlFMuFVM579253ljqRESPcGK68PPbP29Wm7mR/nnoKJk068vXGjSbLl1sp75POfpmMVbbupY5SKZP105/aLP+1wa+2nM4N/Jwh7GI6y3mGczFxOOPg7zjmS1cx5JOfpN/NN+N/5ZUja/FFREREehAF3SJ5pu37svHU1Jg0NZUk3GbPHrLSTldJ5bzvucfgxhtTqdO9v9PZpFPpz5IlbtmyFoWFJjU1iWfiO+6T6n6ZjFW27qWOwuFGZsywEz7YGD3aaHdOTQRZwXTO4xmO4y2+x1y2Wx9wa38vW8agykoGfeYzFP/855i73YRs2XwPXURERKS7KOgWyTOx3pftKJVEYIZBVtrpKqmc9733ugFrslnspqYGHKeOqqp9bNgQYseOCBs2hKiq2odt16VUPzrVcWi7oqhv39SuecdVSKnul+5YZeteiuVImSynw4MNh9raCJZlxz32No7j+3yPD0T/jz2rnqZh0iScwkL8W7fS7wc/YHB5OQOu+QJv/ewP/POvBtu3+/jHPwK8+GJ+5iIQERERSSQ//toWkVa2bae0hDpZIjDHSW0pdioJxbpCKuc9ZAg4TjjlWezOZGVPdRx2H6mSxYEDqV3ztvuks1+6Y5WteykW0zQxDIvjj3cfhrzwgvvv8ccDWCkde/hIk8Yx57DvzjvZ9cor7LvtNkKjR2NEoxQ+tY7T/t/lnFI5nA1n/g+3Vf2dzZtNdu3yYRi9pwa4iIiIeJ+CbpE8k8r7stXVbt3nRAYOJCvtdJVUz9vvP9TpWexs9WfWLFi27MjXTU021dWJl7933CfV/TIZq2zdS7FEo6WMH28waZLBBRfAmWfCBRfApEkGlZUGhYW+tI7t9O1Lw8yZ7H/qd7z9xN9YWjaH9yhjkF3HV/kpz+z6KBfOPYMnL/k5h945mDe5CERERESSUdAtkmdSeV82lURgPh9ZaaerpHveua4Dn0p/LrwQHn30yNennWYzY0Y05X3S2S+TscrWvdRRMNiX++8nYYK2++5L7VWAjsd2nD488PJHuKrufxnOO0zkMVZzKWF8nMFL3LLtBkaccSwl13+RwHPPgZ0fKzVERERE4lHQLZKHjrwvm3kiMADTfD8r7XSVbJ13rvszf77DPffAlCkwdGj7/sU/B4cHH3S46SY3s3zH88rVueei3UOHili0KHHit7vuMohGSfvYoZDFL37h/v8IftYxkUmsZhg7+CoL+BsfwR9povDRBymdNo2yMWPo85OfYG3blvZ5iIiIiHQF1enOkOp0S1cIBAppairBskyiUXcpbiqzkh3HL9N2uku+9bdjf/r2tdm/P4DPZxCJOJSUNNDYeCDhPi3LqJOdV8t+gUCAUCiUtXPP7jUdyrBhyeul79jh4Dg70zx2srYdTmMjf6i6j+CaX2MeOHLdmysqaJg2jaaLL8bpptrf+t3pbRo/79LYeZvGz9t68/ipTrdID+A4xn/+bf91unK9FLuzOpaGsqwA0P68Mykfla2SUy3XzzT34POZ3HtvgLFjTYYNMxg71uS++4qOyqod65qnMg6hUBOWtYeyMrCsPVkbq1SOner1ikadlBK0RSJOysdu4TjRJG0bvDfyNPb9vzvZtXkzexcupOnss3EMg4Lnn+eYG29k8OjR9Pv61/Fv2qTa3yIiItLtFHSL5CHLsjDNMpYu7UdFRYDhw31UVARYurRnlUzqeJ4VFT7q6gIsXlzcet6TJwfYv78/S5f2T/la5Or6Oc5Axo/3MWeOW4rLcdySW3PmmFRW+rBtb2bVTvd6lZQ0MHt24mB29myHPn0a0u5LIHAwhaRyDgUFByAYpPHSS3l/xQrq/vxnDsyZQ+S44zAPHqR4+XIGTZzIoE99ipJFizDfey/tvoiIiIhkg5aXZ0jLyyWXTLOM8eN9MRNVlZe778k6Tl3c/b0yfqZZxqWX+jj+eLjySvjYx+Df/4Z77oFHHnGXKD/3HNxwQ+ykXfGuRWevXyx+f5ClS/sxZ078Z5ULFthUVe3r9Ox0V49fJtfLNIdSWWmwaVPsfWprHWx7Z8b9qaz0JWg7gm3HGT/bJvDiixStXEnh449jNjYC4FgWzZ/+tLv8/NxzIRDIqG/JeOWzJ7Fp/LxLY+dtGj9v683jp+XlIh7l9wdZvtxMmBl6xQrT8yWT/P4ga9ea3HEHjBoFX/gCHHccXHWV+/X69fD5z8OTTybOkt3xWuTq+jU3F1NTk/hXZk2NSVNTSVrtdrdMrpffH+T3v3dYvRrmz6dDkjlYswb+8Acn43v0SPI356hkdEmTv5kmoYoK9tXU8N4rr7Dvf/+X0KmnurW/n3mGAddey+Dycvp+73v4/vGPjPonIiIikg7NdGdIM92SK7ZdSkVFgO3b428zciRs2BDCNOtj/twL42fbpdTVBbjuuviz2I88Ap/5DLzxRvx2Ol6LbFy/2MoYNsyXcAs3eVj6s+hHt5P98fP7gzQ3F2OaJrZtU1BwmHC4MaPr1bLPwYNuzfGPfhT8fgiH4W9/gxkzoF+/TK5xe9lM/ub7978JrlxJ0cMPY9UdGZ/Qxz9Ow9SpNF56KU7//hn3tYUXPnsSn8bPuzR23qbx87bePH6a6RbxKNM0EwZA4L5HbFne/vgWFFisW5d4Fvuhh+C00xK30/Fa5Or62badUvKwaLRzdaP9/iDR6EDq6iAaHZhx8rcWR97X7vhOfH9Mswy/P/3rZZomhgFPPQUbN8JZZ8Hw4e6/GzfC00+7DyA6e49mMwFg5KSTOPitb/Heyy+z5/77abz4Yhyfj8Bf/kL/b32LIZ/8JP1nz6bgT3+CaLRT/RYRERFpy9t/tYv0QF0V3HW3piaDJUsSb3PnnXDNNYm36XgtcnX9CgoOU12deJ/q6iOlwdLVMZnZkCFkOfmb0SH5m0FlpQ/HsTjhhMRtxLrGq1e779rPnUu7dufOhdmz3VUKeXmP+nw0n3cee++9l/c2b2b/3LmE/+u/MJqbKXrsMQZOn07ZmWfS58c/xnrrre7urYiIiPQAiddK5gHHcdiyZQsvv/wy//znP9mxYwfNzc307duXD37wg1x44YV89KMfjbv/1q1bWbNmDVu2bKGpqYmysjLGjh3LxIkTCeQokY5IZ7jBnS9hwq6W4C4U6sKOZZnP56Q0w3rccYm36XgtcnX9wuFGZszoz4oVxE3wNX26kfFsbEtw3HbmvyUz+ooVJuvWDQRiL1uPt3TcTf5mJVxN8Otfw89+ZjNxYurXq7g4xNNP+9m8OXYJu02b4JlnHK6/PkRD+gnMu4w9cCCHr7uOw9dei/+vf6Vo5UqCq1fje/dd+tTU0KemhuYxY2iYOpWm8eNxioq6u8siIiLiQXn/Tvdf//pXfvCDHwDu+wJDhgyhsLCQnTt30tTk/nE7adIkpk2bdtS+zz33HAsXLsS2bQYMGEC/fv3Ytm0b0WiUE088kblz51JQUJBRv/ROt+RSp7I3443xS/Vd4j/8AaZMaR/oBgIwaZKbaG3UKIdoNNwaaIJ7/S67zMcHPgAzZ0JpKdTXu+8fv/kmrFmT+PrF4vcHWb26H6ecYvLUU7BkiRsUjxgBs2bBhRfCa6/ZXHZZ+tnLM82MblkWjjOQ5ctNampM3nnHXeZdXW0zY4Y7y3z66b6k1/j55x0uuSRRJvL21yt3783ngaYmCp96iqJVqyj4058w/vP5sUtKaJw4kYYpUwifeqq7fj4GL3z2ciHegx+v6a3j1xNo7LxN4+dtvXn8Un2nO++D7r/85S/84he/oLKykoqKCkpK3MzAkUiEVatWsWbNGgBuvvlmysvLW/erq6vjK1/5CuFwmJkzZzJhwgQMw2D37t386Ec/4t133+WCCy5g1qxZGfVLQbfkkmVZ2PZAVqxwg6mW4K662mb6dBvD2EM0wXunXhi/VALNH/wAmpvhqqsc1q6FmhoDw4BHH4Wnn3ZYtMg4KtA0jD2Ypkk0Wsr999Num9mzHT73ObCs+rQ/vy2B5q5dbsA/cyYMGgS7d7vB/KOPwtChmQWamQaxyUt9ORx3nEGiUzUMeOcdB8OIpnG/dV1Sue5k7thB0cMPU7RqFb42S83DJ55I49SpNFx+OfaQIe328cJnL5uSPfhJ9rsq3/S28etJNHbepvHztt48fj0m6G5oaKCgoCDu+4y33norr7zyCqeeeipf//rXW7//i1/8gqeffppTTjmFb33rW+322bJlC9/5znewLIu7776b/hlkrFXQLV0h0+zNXhm/VGo9RyLh1vekm5pK8Pn8jB9vJKwpbRgkDUY7zo4nl8tAM722/f4gjtOHX/3KYs6c2DOuAD/5icMbbxgsWhS/XTeYdzDNnSnfbz16pvs/2s3cRqOUvPIMgeVLKVy37kjtb9N0a39PnUrTeedBIOCZz162ZFLjPZ/1tvHrSTR23qbx87bePH49Jnt5UVFRwgRCH/vYxwDYuXNn6/ccx+Hll18G4NOf/vRR+5x88skMGzaMaDTKxo0bs9xjkezJZvbmfOPW6XZYuBDmzWtf63nePFi0yA2OWwK/UKiJgoLDLF/uJKkpbfHSS4nrTt97r8Gtt6aXpCyXCe7Sabsl2dprr/moqYkfcAPccYfBtdcmbve666CgwJ2JTPV+y3VSue7UMaHd8OE+KsYWsORfF3GgZjn1f/0rexcsoPn00zFsm8Lf/Y4Bn/88gz/5Sfp+97v4/v737j6FLpNJjXcREZHeKO+D7mRaZpvbJkWrr69n7969AIwaNSrmfieffDIA//rXv3LcQxGJpbm5mB/+0OSss+D112HhQnjhBfff11+HcePghz80aWoqabdPTU3iX1s1NQaFhYm3WbIELrrITVJWWenDtgcm7a8baCZ+eltd7WQUaKbadjBo/ScTuUnfvqSUiK6szKHNmzftlJfDtGkOhnEgrf66SeWMhO3OmJF5UrnudCTbu9kh27t7r0SLjqNx2jT2rF7Ne88+y8EvfYnokCFYe/dSsmQJg847D8rLKbrvPoz//Heop0rt89j+MywiItIbeTrodhyHF198ETgSRMORWW+/388xxxwTc9+ysjIAdu3aleNeikgsLfW0DePI/6D9/+9YH9qyrJQCzX79km/TshIondm4Sy4hYaA5cWLSJmLy+fxJ2778cli69MisYn09Kc2OA/ziF7FXEyxZAn37RjNK/NbUlLjdxkY8N8OZ7sxt9MQTOXjLLbz35z+z51e/onH8eBy/HzZvpt+3v82QT36SY77wBQr+8IceWfu75TOcSMfPsIiISG+U9yXDEvnd737Hm2++ic/n4+KLL279/uHDhwF3aboRJ8NsS0K2Q4cSz0qFw+F2724bhkEwGGz9/z1Vy7n15HPsybwwftGozZlnQk0NPPmkW/O5JQnTrFmwfj3cdJO7nWW55xGJGIwYkXiGd8QI2L8/8bFHjHAToLWoqTGZMqUEy2qOu09zczFXXmmwcCFxs5dXVRmsWpW4nVgOHSpK2va2bQa3335kn2XL3J/NnRu/3epqm2DwIEOGFDN6tMm995r06+den+Zmm8GDbeD9tO8Tx+nD0qUGP/yhm1Ru4cL2SeV++EP47ncNrr++L4aR3rXoTqnO3B51r/j9hM49l9C552K+/z6Df/c7wvfcg//vfye4bh3BdeuIDh1K4+TJNEydSvT443N8Jl0jGrVT+jy2/QznOy/87pTYNHbepvHzNo1fcnmfSC2eN954g+985zut2ckntplievbZZ7nrrrsYOHAgd999d8z9f//73/Pzn/+cwYMHc+edd8Y9zqpVq3j44Ydbvz7++OO57bbbsnciIr1UJAJvvQVTpxI3CdODD8Lxx0PLK9fvvw933pk40PzRj+AjH4FLL42/zbx57hL2lSvdrw0Ddu2C/yyAiamuDgYPBr8/fvbySCR5O7Hs3AnHHpu47eeegzPPPLKP3+8+mJg9O37d8N/8xi2XBu5Ea329e66O434/hVfZY9qxA8aMSRxsuaXIYNiwzI7RHVrGOJFU7pVWr7wC993nFkN///0j3z/rLLjmGrjiCijx7tLrSATuuAP+53/ib/PTn8KNN2Z+r4mIiPQEnpzprqur47bbbiMcDjNu3DgmTJjQ7ud+vx9wy4rF0/Kztu+Cx3LZZZdRWVnZ+nXLE5zdu3cnbN/rWmqi79q1q9dlIewJvDB+fn8hjz3Wn82bYz8V3bQJ1q51qKraRzjsLn+ORgcyYUKAdeviB5oXXugGlOXlibf54Q+PfG/ECAiFQuzcuSduf6PRgYwY4WbsXrnySMDe1siRyduJJRIZzIgRZsK2Dxyg3axiOAyTJ8OqVUfPjreU+rLt99m5M/ay5rpOJJQ2jCFs3574abb76oDDzp3eeYWn7RjHk+xeaffZGzIEvvlN+J//ofDppwk++KBb+/u55+C557C/+EWaJk6kYepUwqefHrf2dz6bPn0Qv/61L+5n7bOfjVBXt/voH+YpL/zulNg0dt6m8fO23jx+Pp8vpezlngu69+3bxw9+8AP27t3LJz/5SWbPnn3UUobi4mLALTfmOE7MpQ4ty8pLkswy+P3+1iC+o95wUzmO0yvOs6fK5/FraipOmn27psZgypRiTNMt0VRQcJiNG30sXGjGXYa9aZPDBz7gsGiRyTPPwOLFR7a5/no47zx3grFtxb+WTNuhUPxr5SY78yWsK55KO7GUlDQwe3Yxt9wS/3ocPuxQXU27EmHbtrmTpi1LvE8+2aGoKEpBwQFCoSbs9BOpp8RxoowY4UsanDpOFMjP+y+WbI5xu89eIEBjZSWNlZWY777r1v5euRLfW29R9OCDFD34IJHjj6dh6lQarrgCe+jQbJ5WTpnmHtatGxijxrvD9Onuc4RIZGCa5fm6Xz7/7pTENHbepvHzNo1ffJ7KbnLo0CF+8IMf8N577/HhD3+Yr371q/h8Rz83GPqfP1jC4XBrFvOO6v4zzTNkyJDcdVhE4sokCVM43MjEiTbV1bEznt94I0yYEOWUU2wKCuCkk+Dee91t7r3X/bqj8nKYPt1OmkzMzdhtJ0x2lko7sTQ2HuBzn0ucSO3MM2HGjOhR24TD7sz43LnQp08Uw6jLedbwQOBgStnWCwrSy4re3XI5xi3sY4/l0I03Urd+PfWrV9MwdSp2URG+N9+k7/z5DD79dAZceSWF69ZBc/6/Dx+NRnGcOqqq9rFhQ4gdO6Js2OBw0kkOY8caDB3qo6IivfJ8IiIiPY1ngu6mpiZuvfVWtm/fzoknnsjNN98cd2l4aWkp/fv3B+Cf//xnzG22bNkCwAc/+MGc9FdEEsu07rVh7GH16ginn27zxS+67xZ/8Ytw+uk2a9ZEMIw92Lb7yuzUqXDBBW7AesEF7tc33OAuyT7xRFiwwKa21t0nFYaxh3XrIixYYLfL2J1uO7FYVj21tQ7z5zvt2p4/36G21sGy6jt1fL8/iG2XAmXYdil+fzDjvrrB6dEPAFq4wWn6WdHzQWevcTQ6kLo6d6l6wmtsGIROP519P/0p7736Knt/+lOazzjDrf39+98z4AtfYMgnP0nf73wH39/+loMzza6WGu+G4XDJJQaXXGLyxhtHl1xLpTxfMtm8l0VERLqCJxKphcNhbr31Vv72t78xYsQI5s2bl3RZ+C9+8QuefvppTjnlFL71rW+1+9mWLVv4zne+g2VZ3H333a0Bejp2797dLqt5T2MYBkOHDmXnzp1aJuJBXhg/vz/I0qX9Ei7lXbDApqpqX8zgLRAopKmpBMsyiUZblvw2tbb7zW+arUnJSkvdJGLLlsEjj7iB7JVXRjGMAxkFhvGOnQ1FRX05eLAIn88kErHp06eBhob2M8bpHN+yLBxnIMuXu8t/WzLEV1fbzJhhYxh7iGZQzsqyLGx7ICtWWNTUGB2WFUczbjdfdNc1tt54g6JVqyh66CGsNiUtwx/5iLv8/LLLcAYMyMo5ZltnP9PJ5OpebssLvzslNo2dt2n8vK03j5/f70/pne68D7pt22bBggW8/PLLDB48mO9///txa2+3VVdXx0033UQkEmHmzJlMmDABwzDYvXs3P/rRj3j33Xc5//zzufbaazPql4JuyWdeGT/TLKOyMn4SptraCLYdO+NXMNiXQ4eKsCyDaNShpKSBxsYD2HYpkycHWkuRLVnSvhTZRRe5pchWrQphmvUZ9dvvD9LcXIxpmti2HfN91VS2iaWkpJT9+/34fAaRiEO/fmEOHcqsn+Be4/HjfXEzxK9bF8FxYl/jVM4hleA002vhFZ25xnFFoxQ8+yxFK1dS+NRTGKEQAI7fT9P559MwdSrN55wDMV6x6i62XUpFReJEdCNHwoYNmX32cnKdO/DK7045msbO2zR+3tabx6/HBN3r16/njjvuANx3tfv27Rtzu2OOOYavfvWr7b73pz/9iUWLFuE4DgMGDKBfv35s27aNaDTKCSecwNy5cyksLMyoXwq6JZ95Zfz8fj/RaCkPPACLFh2ZLZ092+Gqq9wl1x0/Zy373H+/u09LQD17tsPnPgeOY7N9u8UNN8QvRbZwIYwcmf4f6KnMtAEZzcYFg0Gam/vHPa+Cgn00NqYXqGY685itGcWumJnsbrme3QUw9u4luGYNRStXEvjrX1u/Hx0yhIYrrqBhyhSiJ56YUdvZVcawYYkfAhgG7NiR/mevK66z2z9v/O6Uo2nsvE3j5229efx6TND9xz/+kUWLFiXdbtCgQSxcuPCo72/ZsoXVq1ezdetWmpubGTRoEGPHjuWSSy5JWi4sEQXdks+8Mn6mWcYll/g4/vija1O/9RasXn30H+emOZTx4424AfUTTzj8/OcG3/te/OP+4Adw/fURwuH0/vBPZabNMMhoNi7ZedXWOtj2zrT6m+nMY7ZmFLtiZrK75Xp2tyPf3/9O0cqVBB99FKtNotDm006jcepUGidMwOmm2t+5vBZddZ298rtTjqax8zaNn7f15vHrMUF3vlLQLfnMC+OXycxVMNiXxYsTl9b65z8dzjvPSPrH+QsvRIH3stxfN2vzJZekNxtXUlLKokX+hOc1f77DF78Y5sCBdAKK9GceszWj2FUzk90vd7O7CTU3U/jMMxQ9+CAFf/wjxn/qw9nBIE2VlTRMm0bojDO6tPZ3bse8a66zF353SmwaO2/T+Hlbbx6/VINuz2QvF5Gepbm5mJqaxL+CampMmpqOzNodOlTEokWJg4hDhxIH3MB/fp7er7/U+mtQWJjeOQHs3+9Pel6LFhns3etPrbP/kUmG+HTHJV4m6UzG14syzcLfaQUFNI0fz/u/+hXvvfwyB265hcgJJ2A2NlL00EOUXn45ZePGUVJTg/nuu9k9dhy5LLnWbddZREQkCxR0i0i3yKROt2UlD6h37SKlP87tNP82T7W//fol36btOQFYFim1nW7OrIKCw1RXJz7R6mo3+VmLVM8zEDAxzTKWLu1HRUWA4cPb12P2+9MfXy/K5Bpnmz1kCIe+9CXqnn2W3WvWcPizn8UuLsb31lv0/fGP3drfM2ZQ+Nhj0JTbVQW5KquXD9dZREQkU97+a0dEPCuTmato1Em6z5NPwpe+lHib666DgoL0Enil2t/9+2P/LBCAadPgqafAcax2s8LRaGoPCiKRtLqc0cxjKud54olg2xbjx/uYM8cNro+ux2xxwgnJz8nrM5O5nN1Nm2EQPu009v/kJ27t79tvp3nMGAzHofCPf2TA7NkMKS+n37e+hf8vf3EHLcui0SiOU0dV1T42bAixY0eEDRtCVFXtw7brMk6c1xXXOa066yIiImlQ0C0i3SKTmauSkgZmz04cKBx/vMPUqU7CP86nTXMwjAOxN+hUfx2amo7eZuRIeO45GDXKLVs2fLjRbla4f/9w0vOaPdvhmGPSzyOR7sxjKuf505/aLF8eOzs8wKZNsGIF3H5775iZzNXsbmc4RUU0TpnCnocf5r0NGzhYXU3k2GMx9+2j+P77GXTRRQw67zyK770Xc0/2+xcKNWGa9ThOHaZZn5WHDrm6zpZltVu1MWQI7T6flmV1uu8iItK7KZFahpRITfKZV8YvkzrdpjmUykojwT4Ophnl3Xd9rF3r1uluKUU2axZccgkMHRohEkk/2VIq/QXabRMIuAF3ohJmbtZzK+l5pZu9vK1U6mm3SHaea9Y4VFQkT1a3YYPDpZcmOqf4ddi9qOUaBwIBQqFQwmvcLaJRCtavJ7hyJcHf/AajuRn4T+3v885za39/6lN5Vfs7lnTu5VT0hiz7vYFX/rsnsWn8vK03j58SqYlI3stk5sqy6qmtdZg/32m3z/z5DrW1DpZVj+PsYfDgCKNH29x7L7zwAtx7L4webTN4cATHyWxGLJX+dtxm0iR3SXniWWGToqLDCc+roGBfRn1ukc7MY7LztCw7xXfQ7bybAc6lUKgJy9pDWRlY1p78CrgBLIvmc85h36JF7Nq8mX0/+hHhT4zGCIcJPvEEA6+6isGnn0GfH/0I37//3d29jSubs+h+f5Dly82kn89AoDDjY4iIiGimO0Oa6ZZ85rXxy2TmqqioLwcPFuHzGUQiDn36NNDQ0H7JeLZnxNJpt2Ub8Kc4K+zWF+7bt5S9e/2t53XMMemWCcueeOcZjQ5h7NjEidJGjoT1620sa1fOxiFTfn+Q5uZiTNPEtm0KCg4TDjdmpW2vfPYsy8JxBrJ8uclv/vfvXPzeL7nSXEapvbt1m1B5OQ3Tprm1v/v0SdheLq9pLnV1nXXJHa989iQ2jZ+39ebx00y3iKQsXtmnrpLJzFXL7/SO/7bfxuiwTXZqFqfSrmUFcBwfpplaZvKWLN4dE4tlK9FYcfEAotGhwFCi0aEUFw9Iuk+8cSksdJg1K/G+s2ZBMOheoFyNQ7o6vrvbMeN6Pr+7m+3PqOMMbE2E98x7H+Or/JRj7Xe4jEd5tt8EHMsisGkT/b/2NQZ/4hP0v/FGAs8/f1Tafy9fU8isioKIiEi69F8RkV7Mi38w+/1+THMoixcXM3asyfDhBmPHmixeXIxpDsXv9+fsvFJpt2P/XnnFSLGEmYNpDuXuuwsYO9Zg2DAYO9bg7rsLMM2hFBQUZNTngoKCdu2616tz7TY3R5kwgYTJ6ioroakpmlf3V9tAM3bG9YFd2p9U5OJejrekOkyANVzGOfvXcs+33+bw9+YSPukkzKYmih55hNLJk93a37ffjrVjB+DNa9qW6n+LiEhX0PLyDGl5ueSzVMfPiwmETHMo48cbcftcW+sA0ZycVyrXyzCsdv2bNs3NWj53bvx2Fyywueoqg/PPT3xemSRSS+V6pduu3x9k9er+nHKKwVNPHZ2s7sIL4bXXHCZNsjn/fCsv7i+/P8jSpf2YMyf+s+YFC2yqqvZ1aul7tn935uIzmtaSamM3/s2bKVq5kuBjj2EecrPNO4ZB+OxzeHr4dVyxfBLNxH7nORvXNJfc+6I/c+bEX32xYIFDVdXevD0HcenvFm/T+Hlbbx4/LS8XkYS8mEAoGOzL/fcnTkr24ouwfHnsQK9lm0zOK5XrtXGjxdKl7fv3yCNw0UWJZ4VnzHAD10RtP/AAlJQkXxLeVnHxgKTXK5N2AT7zGaiuhtdfh4UL3WR1Cxe6X994I5x/Pixdmj/3V3NzMTU1if+TV1Nj/uc9/PyQq89oWkuqDYNweTn7f/xjt/Z3TQ3NFRUYjkPgT3+kcvkMdjKUhcymnI1A+z+28u2axnLJJYk/nxMndm1/8kF3v3IkItLTKOgW6aXyKQhJ9Q+8Q4eKWLQo8fvAxcUGNTWJt8nkvFK5XoWFBnfd1f7Y4TBMnuwGpPPmETOLdzR69H4dLVpksH9/ekvBDxwoSHq9Mmm3ubmYK680qKmBD38YvvhFGDPG/ffDH4Y77oBt2wxuvz3745ApL7272/J5CIf78/GPm0ybBn5/7G0zuYaZLql2gkEar7iCPQ89xHvPP8/Br3ybtxnJMexjNnezkdP4Cx/nJm6nFDchW75c03ha7uVYn89582DRIqiqMvL+wUG2ePGVIxERL8jf/xKKSE7lQxCS7h94lpU4CzhA377pJS5LVcv1CgTcJeO1te6sem0trUFRvGNv2wZnnXVkVnjHDocNG0JUVe1rrVOdWgmutLqMZeWmXdM0efFFOPdc6NcPfvtbePtt999+/eDTn3avU3ffX2154d3doz8PBrNmua8nrF/vBoIdZXINCwoOU12d+Dyrq90s8/FEjzuO/V/9DmcPf5P/5rcsZzqN/7+9O49vos7/B/6amRxNWnrR0wKLioLoylFBpAisB4iU+ygqwrLuIaiL16rrqovLzxUPRFSquF9FEYQiNwVdVlABkascCnJ4IQXpCT3TNNf8/ogJLW3TJM00meb1fDx8SJOZyWc+7/l8Jp98PvP5IAK/xWHMw8M4K1yCszeMxYm5G2AzyzAYon1KoyeB7IV1Xct1y2fdURsDBjjLeSj/cBBIan9Gn4goVIXHXYSIGgiFRoivX/DsdrnZNFdUQJHzcjgc6NcP2L7d2QiaPt3Zuzt9+oVGkcXS9GdbrUBOjrM32GaT680Gbrd7l2abzackK3ZcV15s3QqUlQG33AL85jfO/5eVAZ995jkv6n52azVyA9HQVFpT5WHWLGDGDGDFioY93v7kodVag7vucngcUn3nnY5mn2HW66vx1weBLbgFk7EUqTiLJ+PeRNXVfaGRbUj5ag26PDwS+i4dcXz0s9B+XwZtU132XlCiF9ZVD7rK54gRQL9+zv/n5DhfD/aPMa1FjY8cERGpBRvdRGEq2I0Qf77gRUWZMGOG5wk6qqtlzJzpeRt/zkuvr8YHH8iYPt3ZCGqsUdSpk4y//tXzZ8+Y4VxTvK7o6Npmz2vGDBkxMbU+pVmp43qbFw89FPg4+CtQDU2leFMe/vtfYOzY+q/7m4eCUIoNG2yYO9fR6CMPglDa7DEuztMaXSxGf3IvBul342ocxst4BIVIQpKjEP22vYzEQVcj5rYRMC5ZAqGiwuc0K9ELG+x6MJSE0iNHRERtDRvdRGEq2I0Qf77g1dRU4Pe/9zzpUb9+wF132RU5r3XrPE9KtmoVMG2a5/RNnQqYTPUbHNXV55o9r6lTgaqqcz6lV6njAt7lxZQpodXIDURDUynelId33gEmT77wd0vy0G63Q5aLMGVKGb780oIzZ2z1Hnmw2+1eHadunv7pT8DHHzuvi29xNf6Gl9EBpzEKa7EOI2GDBN3+3Yh9/HEk9+qF2AcegG7HjgZrfzdGqV7YYNeDoSQUHjkiImqruGSYn7hkGIUyb+MnSRIcjvZYtkzE/Pmie9mnmTMduPNOBwSh1Osv375LQlqa54eJBQE4c6b+kkharRZ2ewLef985CZgrzTNmyJg6FZCkEjgcjoCfl7fLLO3caYUkaTymr7G6Q6/Xw2qNb3I/rfYcamt965FW6ri+LDklSWKQrq+m6XQRMJujIEki7HZnL2agGlX+153elYevvgImTgx+Hl5Mp4tATU0cMjKannchCYV4IHYJHk98F9rvvnW/buvYEaaJE1EzYQLsTTyT4NMyZ2KJT2kPbj0YOpTM49bA7y3qxvipWzjHz9slw9jo9hMb3RTKfI2fko2QprT0C57RGI3KSiM0GgE2m3PI9sU9yIE9L99+JPAmfY2JiopHebnevV9MTK1fPdFNH9f5DHfLjutbXgTj+goWf+tO78uDDMAaonmYirQ0zzPWCwJw5rQDmv2bLqz9XVnpfr82IwOmSZNQM2wYYKg7QZp/P9L5wnWd6nQ6WCyWEM1j5bTWWvZK4fcWdWP81C2c48d1uonIaxaLGaJYAlkuqjfBl5Ja+iylyVQBSSqALJ+FJBU02qAN5Hn5OvGcN+lrTG1tDQTBCkkCBMGK2toav9NcV1XVOUjS2V/Tc7ZFDXlf8yIY11cwaLUG2O3tUVQE2O3tfZpV25vy8Ne/yoiIcG4jy54bt8HgzUSHHTsCNjtg7d0b5S+8gMIDB3D+9ddRO2AAAED/5ZeIe+ABpPTujZjHH4f2wAFAlltl4seL8zQU81hJHGpPRKQcNrqJKCjU9gVP6QmXLp6ZOSUFIbs+Liefqi8QsfOmPPzudwLS0qSQvS68mejw4okEZYMBNWPHojQnB4W7dqHikUdg69ABYkUFIpcsQWJmJhJvugmx77yAv//hrMdj+3vNKV32ArnEmdJCed4DIiI14/ByP3F4OYUytcRPbc9SimISMjM1yMtr+F56OpCba3Ovu+3PsYcP1zQ6UVR6OrBhg//DZpUgiqnIzBQ85IUMh8NzI6mtCFTsmioPf/4zcOutwIQJzjXf/Tl2awnIdeFwQLdzp3P4+aZNEMzOH95kjQZfRA7HvPJp2ITbYcOF5cdaUv6UKnuSJEGW22PpUmc8T58GOnRw1m933RV69VtdanwkRC33PWoc46du4Rw/Di8nopAXqBmUW4tSvUBqWx/XYIjG6tXAggXAs8+iXl48+yyQnQ2sWeN87r6tC2TsGpYHO9avl/HNN8CAAfUb3L4euzVotQZs3SpjzRpgzpz618WcOcDatcBnn8nNp1cUYRkwAGWvv46CAwdQNmcOLL16QbDZMLh8HdZhNH4RO+BlPIqbU460qPwpWfaUWOKstYTLIyFERK2FPd1+Yk83hTLGT1mB7gVS26zBdnsKMjJEFBQ4142ePBlITASKi4ElS4DVq4HUVGDHDgckqSDYyVWUkrFT23XhSm9pKfDcc8CwYYDRCJhMzqXE/vEPICHB//RqTpyAccUKGFeuglh8oefZ2rs3qidMQM2oUZBjYvxKc6DzWO2TkqkR73vqxvipWzjHj7OXK4yNbgpljJ/aKD8zc2B5OUv1GRmyHHpDzLVaA2prIyGKIhwOB/T6alit/k5Yp2TsQvO6aDr/Wim9Viv0n30GY04OIj79FILNBgCQIyJQM2wYTBMnwjJgACB6M5hPmTSr7QeTtkCp+15g6wtqCr+3qFs4x4/Dy4mIVKI1ZmYOJK9nqbaF1o334gmzOnTQtHjCLCVjF2rXRXP5JwitlF6tFrVDhuD8O++gMC8P5c88A2u3bhDMZhjXrEHCHXcg6YYb0O7llyFdPCb/IkrlsSiKHhvcgHOouSTxa1ioUqK+IKLwxdqeiCjI1DYbuD+zVIcCJZ6xVTJ2oXZdNJd/giDhoYdaN72OhARU/+UvKP70UxRv2oTqKVPgiImB5vRptJs3D8k33ID2EybAsHIlhJqGvZNK5XGo/WBCvlPzM/lEFHrY6CYiCjK1LZ9WU1OB3/8eHtM7dSq8Xpu8NSg1YZaSsWvpsQO5VJU3+ffhhwKmTJGDcx0LAqw9eqD8+edRkJeH8wsWwDxwIGRBgH7nTsTNnInknj0R89hj0O7b52xBQbn4hdoPJuQbtU1uSUShj41uIqIQoLb1cSWpBLm5MubMkS+apVpGbq4MSQqt51RrayMxf77nW978+SLM5iifj61k7Pw5thLDYr3Nv5oae/CvY4MBNaNH49yyZSjavRsVjz4KW6dOEKuqELl0KRJHjULi4MGIys6GWFioSPzU9kMa1adkfUFE4YkTqfmJE6lRKGP81CsyMh4VFXpoNAJsNhnR0bWorj7X4uMaDNGoqjJCkgTY7TKiokyoqWl5T3RUVDzKy/XQaACbDYiJqUVVVcvTG3jKT/LlmtVep9PBYrEEdG1jX2bMV2bdad/yz3W9ua7jQF1vfnM4oNu1C8blyxGxcSNE19rfkgTz74bCctckCJljUF4T6U5zTIwVVVX+/3jU1LrrM2c6cOedob1Ot1KUnJQssPc95/Wu011YoSEhASgpca7QsGqVs74Lnckt1Y/fW9RNifipZRJDTqRGRKQiWq0WopiKN9/UIyNDQFoakJEh4M039RDFVGi12hYdd+HCSGRkiOjQQUBGhoiFCyNbdFxXb+p//qP7Nb0CMjIE/Oc/upCcZKg1nrG1WMyQpFIkJQGSVBrQXkxv101WalisL/knikl4910jMjLEX68LEe++awzudSGKsPTvj8oFC1D89RlsHv8W9ulugGC3w/DpJsRMm4LIKy/Fjr6PYOgl3yAjQ0B2trPs6PV6vz6y4brrNnz5pQVTppTB4SgKqwa32iYlczgc6NcP2L4d6NYNmD4duOEG5/+7dQN27AD69eMz+URKUFt94S32dPuJPd0Uyhg/9RHFVAwfLjTZO5mbK8Ph8H35LeWOq0RvqnJaa93kYJe9YK87PXWqjCFDpJC9Li6+brviGKZhEaZgMVJxYU35vbgOizANR3vcgWWfxPpVRuiC1qgvAln2tFoDystjkZXVdN25fLmM2NjzfEQgQIJdd1LLBDJ+6vt+wZ5uIiJVMBii8d578Ng7+f77gNEYHRLHVeMkQ+HyjK1SS1V5k3933SVj8eLGGylA8K+Lxq7b4+iGJ/ACOiIfw5GLo1eNhU3Uog/2IRv34eNDqTh3252I2b0fCKOe6UBSY30BAOvWea47169v3fQQhQO11hfeYKObiCjIqqqMyM4WPG6TnS2gstIYEsdV6yRDapuszh9KDqNvLv8cDjvmzQvd68LTdWuHBpswHLdVr8LWxWfwIObhEK5FBGrR/dByRI4dgaR+/dDuxRchnTzZuglXOTXWF840e647588XQirNRG2BGusLb7HRTUQUZJIkeNU7qdF4/hLYWsdVqjdVaeHwjK2SS1U1l3+yHNrXhbfXbUyXRMzHg+iJg+iNPCzAfXDExkHzyy9oN38+kjMy0H78eBg++giCKbTWog9Faqwv1JhmoragLZc99aWYiKiNsdtlr3onbTbfnpNS6ritMSmZkmRZ+PX/9f9uC1pjGH1Tk7r5el34u464v/t5m77iYtdfAg6gN17s9AbO7DmDc9nZMA8e7Fz7+6uvEPfgg0ju1Qsxjz4K7d69Fy4oqseV7zodMGkSkJsL7Nrl/P+kSYBWG3r1hZrrOH/LB1EoUHPZaw4b3UREQRYVZcKMGZ6/sM+YIaNdO9961ZQ6rpK9qUpqqzOiXixYw+i9vS6MRpNfcWhp/LxJ3z33OJeEqmvGDBkxyQLMo0bh3NKlKNy9GxWPPQZb587Otb+XLUPi6NFIHDQIUQsWQCwoaPzgYUqvr8ZTTzk8zgT+1FOhVV+osY4Ll/qN2jY1lj1vcfZyP3H2cgpljJ/6iGIqMjMF5OU1fK+ls5crc9wkZGZqPBzXBocjdGYXBdQ3g3JL+bK2d6B4c10A8CsOgYhfc+nLzgYGDABct3ePZUSWodu9G8acHERs2ACxxrl+rCyKqB08GKZJk2C+9VZnF2+YU2oVhboCXfbUVsepbcbni4VS3Um+C/Ts5Woqe5y9nIhIRSSpBLm5MubMkev1Ts6ZIyM3V4Ykeb+8U2scV22TkrXlGVGb4u3a3oHU3HWh1Vb7FYdAxa/p9MlYvlzGgw8CNlv9MqLVnmvqYLD064eyefNQePAgzs+di9o+fSA4HIjYuhXxf/4zktPTEf3MM9AcOdJMzrVdztjJHmP34YdyyJU9NdVx4Vi/UdulprLnC/Z0+4k93RTKGD/1MhqjUVlphEYjwmZzoF07E0ymigAeV4DNJgfsuMHoTfWHUutXX4xlz6mp68LfOAQ6fo2lT6czorxc7y4jMTG1qKpqosHtgfT99zB+9BGMK1dCqjPU3PLb38KUlYWa0aMhx8X5fFy1UnvZU0Md11p5rCTWneqmRPzUUPYA73u6Na2QFiLyk8EQjaoqIyRJgN0uIyrKhJqaljeUKHRZrVYIgg2SpIPdbgvYj3smUwUkqQKyDEgSEKhJl9UyKZkvM6KG4vc9rdaA2tpIiKIIh8MBvb4aVmtNsJPVJGcvuxmyDIgiYLE4X/c3DoGOX2Pp0+vrr1cvCP59RbJ36YLKv/8dlX/7G/RffOEcfr55M3TffAPdN98g5l//gnnoUJgmTULtjTc6C2SICeT1pvay19S1HEpCOY/VVndR6FBD2fMFh5cThSCtVgtRTMXChZHIyBDRoYOAjAwRCxdGQhRTodVqg51ECrCLJ8FJSUFIT4Kjtkl71DojqtryuTn+xkHJ+EVGOuvVBQskZGQISEsDMjIELFggQRRTERkZ6fMxAQAaDWpvvhnn334bhfv3o/xf/4K1e3cIFgsMGzag/V13Ifn669HuhRcg/fSTf58RYEpcb2ote2oSinnc1uouopbi8HI/cXg5Kamlk84wfuqjtklw1JZerdaAxYtj8OijTf/WPHeuA1OmlLVo+JoSkzmpKZ+b428cnPvF4tFHmx5JMXeujClTzvscv9aY5KsuzeHDMObkwLh6NcSyMvfrtddfD1NWFsyZmZD9bei3kBLXm5Kxqyuc73utlce+8PVaCuf4tQXhHD9OpEakUgZDNN57Dx4nRHn/feczutQ2qG0SHLWlF2id9asDTY353Bx/46DRaDFqFDzuN3IkoNH4NlN4u3ZJXtW3MTFJPh3XE9s116Bi9mwU7N+Pc2+9BfNNN0EWReh370bcww8juWdPxD78MHR79rTq2t9KXm/exI5aJpTyuC3WXUQtxUY3UYipqjIiO9vzc7HZ2QIqK42tlCJSWm1tJObP91wdz58vwmyOaqUUeaa29LqobUZUteZzc/yJQ1WVEXffLWDBAuDZZ1Fvv2efdS71NWWK7/ViWZnkVX177pwCQ2H1ephHjMC5Dz5A4Z49qHjiCefa3yYTjDk5SBgzBkk33oio11+HeDZwPe1NUep6q62N9Cp2aruOQ0mo5XFbrbuIWoLDy/3E4eWknFSkpXn+EigIwJkzMmS58S9ijJ/aJCEtzfOkTc6Yh8pQYrWltz4lZ0QNbNlTdz43x7c4OOtFrRYYOxaYPBlITASKi4ElS4DVq51LfXmqFz0d15Pm6tuAkmXo9u6Fcfly59rfv854KIsiagcNcg4/HzIE0OsV+HClrjfncZuPXcuu4/C+77VOHvuaHk8uvpbCO37qF87x4+zlRCplt8vo2FHwOBNpx46AzSaH4qS35AfXJDjNxdxud0AMgfFJakvvxdQyI6ra87k5vsShbr2Yk+P872KdOvleL9rt8CqPbTbnJOOKz8QsCLD07QtL374QZs9GRG4ujDk50O/ejYjPPkPEZ5/BERsL05gxME2aBNs11wTso5W63uoe11Ps1Hodh4JQy+O2XncR+YOXOlGIiYoyYcYMz78SzpjhXGeZ2ga9vhozZ3qeVXbmTGdPYChQW3rVivl8gVL1Ymys3avjtm9vb/WZmOXISNRkZaF09WoUbt+OygcegD0lBWJZGaIWLULS0KFIvPVWRL7zDoRzvq8nfjGlrjdex8oLtTwOtfQQhQIOL/cTh5eTkkQxFZmZAvLyGr7H2cvbJlFMQmamxkPMbXA4QmcIsdrS21qUmL2c+ezU0nqxJccF7KExi7zdDv22bc7h55s3Q/h1eICs1cI8ZIhz7e9Bg/xe+1up6601ruNwv++FWl3ha3rCPX5qF87x4+zlRComSSXIzZUxZ45cb0KUOXNk5ObKkKSSYCeRAkxtk3ypLb1qxXy+QKl60WCo8Hhco7EmdGZiliTU/u53OL9wIQry8lD2//4fLNdcA8FqhWHjRrS/+24k9+2Lds8/D+mHH3w+vFLXG69j5YVaHodaeoiCjT3dfmJPN7UGozEalZVGaDQCbDbn0EmTqaLZ/Rg/9XJNLqXT6WCxWAI6yZcSlJyUTI2UKnvM5wv8rRebExOThHPnJPdx4+PtKC8vgsORgP79dR6fT+3UCfjySwtEMTg/iGqOHIExJweG1ashnT/vfr22Tx+YJk1yrv0d5f1M0Updb+qZxFC9Qq2u8DY9jJ+6hXP8vO3pZqPbT2x0Uyhj/NSN8VOvthg7fyYPU3zCMR95k57o6GScPy+6G91xcQ5UVBTC25mYT5+WYTBUo6am5T8AeKPRc6oqQ8Snn8K4fDn0n38OweF8rtZhNMKcmQlTVhYs11/vTLCvxw5i/JpjMESjqsoIjUaEzeZAVJSp1eJAgdEW605/KFX2lCzT4V7+OLyciIiI/CZJks+Th/mzT7DPISoqCqKYijfeEJGRISAtDcjIEPDGGyJEMRWAgI4dPX9Ox47A4cMCFi6MhCimQqvVBuecDB1hHTnSufb33r2oePJJ2C67zLn294oVSBg3DkkDBiBq/nyIZ874duwgxK85Wq0WopiKhQsjkZEh/ho7sVXiQBRISpU9Jcs0y59v2NPtJ/Z0Uyhj/NSN8VOvthQ7UUzyefIwf/ZRkjfpEQQJw4cLTW7z3//KeO89GY8+2nQ/xbPPAt9+61yqqSWTunnD5zyWZWj37YNxxQoY1q2DWF3tfFkQUDtwoHPt76FDgYiIkItfc0Qx1WPslIwDBVZbqjv9oVTZU7JMs/w5saebiIiI/KLVGnyePMyffZTkXXokfPUVPG7z7rvA3XcLSE9vfJv0dOC224DVqy/s8/77zmfPA82vPBYEWPv0QflLL6Hw4EGcf/VV1N5wAwRZRsQXXyB+xgykpKcj7ul/4n8vHMD+/Y03eFo7fs0xGKLx3nueY6dUHIgCSam6U8k6meXPd+zp9hN7uimUMX7qxvipV1uJnT+Th4XahGPepuc//wGGDvW8zVdfyRAEO5YtEzF/voj8fOeQ8nvucTa4J0wATp2qv8+OHQ5IUkHgTgiBzWPp5EkYP/oIhhUroPnlF/frh3AtFmEaluIulKB+702wJ4yry25PQUaG2GxeKBEHCry2Unf6Q6m6U8k6meXvAvZ0ExERkV9E0fOXKQDIzwck6cLXCH/2UZK36YmJaX4bQQBkuQhTppThyy9lfPUVsGCBc0j5gAH1G9yufTQaz5OV+SOQeWzv3BmVf/sbinbtQumyZTCNyoIZevTA13gVD+EM0rAS43A7NkKCzadjtwZJErzKCyXiQBRIStWdStbJLH++C42ak4iIiEKGw+HwavIwu93Ron2U5G16ysub38bmbHPCYjFDlmVMmACMGOF8hruxQW/OfQLfW6dIHksSagcOxLk3FqNP2lnMwALsQzp0sGIcVmMjMnEKnfA8nsCglOOtFr/m2O2yV3mhRByIAkmpulPJOpnlz3dsdBMREVE9en01Zs70/EVs5kznmrst2UdJ3qVHRnW15y+FM2bIaN/+wnGiokyYMaP5fdq1M3mfWC8pmcd6fTV+/1AM3sQM9ME+/BZf4xU8hGIk4BKcxRN4AZ+d7YbksTfC+OGHECor/T2NgAhmHIgCSalyrWR9wfLnOz7T7Sc+002hjPFTN8ZPvdpS7EQxCZmZGuTlNXzPOTOtDQ5Hw9nLfd1HSd6kB5CQmSl42KbhDLyimOrzPoGiZB43dmwtLBiOjXgo5l3cWPUxBLsdAOAwGGAePty59ne/foDY+v04wYwDBVZbqjv9oVS5Vra+YPkD+Ew3ERERtYAglGLDBhvmznWgUyfnc82dOgFz5zqQm2uDIJQGZJ9gn4PRWIncXBlz5sj1tpkzR0ZurgyjsWGPriSVeNxHkpSbaEzJPG7s2KmddLhx7ihceWwNSvbvR/lTT8HapQvEmhoYV65EwoQJzrW/582D1Mja30oKZhyIAkmpcq1kfcHy5xv2dPuJPd0Uyhg/dWP81Kstxk6ni4DZHAVJEmG3O4ciWizmgO+jJG/SExubjNJSERqNAJvNOaS8rKzQ43GNxmhUVhrd+7RrZ4LJVKHkqbgpmcfNHluWod2/H8acHOfa31XO4amyIKD2xhtRk5WFmqFDAYMhIOlpzoU4iLDZHK0aBwqMtlh3+kOpcq1kfRHu5c/bnm5NK6SFiIiIvKTVGlBbGwlRFOFwOKDXV0Oj0aKqyghJEmC3y4iKMqGmpnW+1FgsZoiiGbLsHEFssTS/jywLv/6//t+BYDBE+5wX3pyDzWZH3QGAzr89M5kqIEkVkGVAkgBTI48vNhZPq7Wm2WM3t58/cfFWs/ETBFjT01Geno6KZ59FxKZNMC5fDv3OnYjYtg0R27YhJiYGNaNGwZSVBWuPHoAg+BU7bwiCBoArjcKvf4cnf683Cg1K1Z1K1hcmUwU0mspffzQphMkUvj+aeMLh5URERCFAkiSIYhIWL45B//46dOigwYQJOpSXx+KddyKRkSGiQwcBGRkiFi6MhCimQqvVBjvZ9TR2Dv3767B4cQxEMQmSJPl9bK1WC1FMxcKFgc0Lg8EAUUxFdrYWGRkC0tKAjAwB2dnOzzP42Vvrb14omYdKpFk2GFAzbhxKP/oIhV99hcqHHoItLQ1ieTkiFy9G4vDhSLr1VkS9vQwfzK0OaOz0ej1EMRVvvqmvF7s333S+rtfrW5olqhHM64ZajvFr+zi83E8cXk6hjPFTN8ZPvVoSO1FMwvDhGuzf7/xbpwO2bwemT4f7tbpCcaKai8+hrvR0YMMGG2TZ/0l7hg8XAp4Xyh3Xv7xQMg+bE7DPdjig27EDxhUrYPj4Ywhm5zBWKzTIRSYWYRo+xjDYoA3J2KlRMK+bQAj3+x7jp16cSI2IiEgltFoDli4V633hGjsW+PjjxhvcAJCXB7z/vvN5ulDQ2DnUlZcHLFsmQqeL8PnYBkM03nsv8HkRFZXg1XGjoxN8Oq6/eaFkHjYnoJ8tirAMHIiyN95A+dHv8MnobOxBH2hhwxisxXqMQj464kX8Daa8b/2KXWRkvFexi4qK9+m4ahTM64ZajvELD+zp9hN7uimUMX7qxvipl7+xczgS0L+/Dvn5F17LzXX2ctd97WKdOgE7djggSQUtSHVgNHYOF+vUCfjySwtE0bdZbe32FGRkiAHPC7s9FRkZghfHlSFJ3veY+psXSuZhc5T67LqxuxqHMQ2LcDc+QBKK3dvs112Pzs/+HrWjB0OO9q7xrVTs1CiY102ghPN9j/FTN/Z0ExERqYQoNmxQJiR4bnADzvc1msBNUtYSjZ3DxfLzAUny/auHJHluXLmO7WteSJK3eezTYf3OCyXzsDlKfXbd2B3BNXgUc5GGMxiNNViHkbBBQm/LbsT/fTqSe/VC7AMPQLdjB+BwNHNcZWKnRsG8bqjlGL/wwOgREREFmcPhQMeO9V8rKUGD1y7WsSNgs4VGr0Jj53Cxjh0Bu91zY6oxdrusSF7Y7d7msU+H9TsvlMzD5ij12Y3FzgYt1mE0RmMdOuA0not9CdYrukM0m2FcvRoJWVlI6t8fUa+8Aun06SaOq0zs1CiY1w21HOMXHtjoJiIiCjK9vhozZ9b/QrVkCXDPPZ73mzHDuTZ0KGjsHC42c6ZzfVhfRUWZMGOG5wa1P3kRE2P16rhxcb49TuZvXiiZh81R6rObi10hUqB54hFU796F4g0bUD15Mhzt2kGTn4/ouXOR1K8f2mdlwbB6NVBzYemr6Ohar2IXE1PrU3rVKJjXDbUc4xce+Ey3n/hMN4Uyxk/dGD/1auns5ZmZGuTlOf/WaoEdO4AZM+B+ra5QnJ354nOoy5leGxwO/2cvz8wUAp4Xyh3Xv7xQMg+bo9Rn+5rHQk0NIj7+GMacHOh37HC/7oiORs3IkTBNmgRrz54QpUsUiZ0aBfO6CYRwv+8xfurFZ7qJiIhURBBKsWGDDXPnOtCpk3NY7IMPAsuXy3j5ZRmdOgGC4JxQZ84cGbm5MiQptCbVufgcXOmdO9eB3FwbBKHU72NLUglyc2XMmRPYvNDryzweV68v8+u4/uaFknmoVJqb42vsZIMBNWPHojQnB4W7dqHikUdg69gRYkUFIpcsQWJmJhJvugntFv4LmxYVNHlcrfZcILJFFYJ53VDLMX5tH3u6/cSebgpljJ+6MX7qFYjY6XQRMJujIEki7HbnkEKNRofKSiM0GgE2m3MYtclUEeDUB05j52CxmANybKMxWpG8iI5OwPnzWvdx4+KsqKho+Y8a/uaFknkYrM9uUewcDuh27oQxJwcRmzZB/HXtb1mSYBs6DOVj/gDrkEzYBA1iYmpRVRU+De66gnndtATve06Mn/p429PNRref2OimUMb4qRvjp16MnbqpKX5arQG1tZEQRREOhwN6fTWs1prmd2wDny9UVMCwfj2My5dDd+DAhTeSklA1ZgxMEyfC1q1bQD7LYIhGVZURkiTAbpcRFWVCTU3o/uAVary9TtRU9qg+V4x1Oh0sFkur10XBxuHlRERERG2MJEkQxSQsXhyD/v116NBBg/79dVi8OAaimARJktr05wOAHB0N0+TJKMnNRdHnn6Nq+nTYExOBoiJELVyIpJtvRsLw4TC+/z6E8nK/PkOr1UIUU7FwYSQyMkR06CAgI0PEwoWREMVUaLXaAJ9V2xIK1wkp6+IYp6SAMfaAPd1+Yk83hTLGT90YP/Vi7NRNDfETxSQMH67B/v0N30tPBzZssEGWlZtwKdif3xTBZkPqoUMwZ2dD/+mnEH5dK0yOiEDNbbfBlJUFy4ABgOhdf5MopmL4cKHJ8wynSdr84et1ooayR/WFal3Q2tjTTURERNSGaLUGLF0qNvolF3DOcr9smQidLqJNfr5HWi0wYgTOv/suCvPyUP7MM7B27QrBbIZx7Vok3HEHkvr1Q7uXX4Z06pTHQxkM0XjvPXg8z/ffdz6jTg2F9HVCAcEY+46NbiIiIiIVqK2NxPz5nr+6zZ8vwmyOapOf7y1HQgKq//IXFG/ZguKNG1E9ZQoc0dHQnDmDdvPmIfmGG9B+wgQYVq6EUNPw2dOqKiOyswWPn5GdLaCy0qjUKaiaWq4T8h9j7Ds2uomIiIhUQBRF5Od73iY/H5AkZb7eBfvzfSYIsPbsifLnn0fB/v04v2ABzAMHQhYE6HfuRNzMmUju1Qsxjz0GbV4e8OuwZkkSvDpPjcZzwzxcqe46IZ8xxr5jThARERGpgMPhQMeOnrfp2BGw2x1t8vNbxGBAzejROLdsGYp270bFo4/C9pvfQKysROTSpUgcORKJgwcj8s03IZ8969V52mx89rgxqr5OyCuMse/Y6CYiIiJSAb2+GjNnev4SO3Omc23ftvj5gWJPS0PVQw+haMcOlHz0EUzjx8NhMED7/feI+X//D5dc3wlbokZiNNZAC0ujx5gxw7nOODXUVq4Tahpj7Ds2uomIiIhUwGqtwV13OZCe3vj76enAnXc6YLGY2+TnB5wowtK/P8rmz0fhgQMoe+klWK67DoLdjiuObsAajMUZpGEuHsY1+Ma9W3o6MHUqYDJxve7GtLnrhBpgjH3HRjcRERGRSghCKTZssGHuXAc6dQIEAejUCZg714HcXBsEobRNf75S5HbtYLrzTpSsW4eiL76A6YEHYE9ORSJK8DDm4Rtci0O66/DfUQuwcck5SFJJsJMc0trqdUIXMMa+4TrdfuI63RTKGD91Y/zUi7FTL63WgNraSOh0OlgsFuj11bBaG85sHSp0ugiYzVGQJBF2u3MYZ2v2KgX78y+mSNmz2RC7Ow9YtBSGT9dD+PV7n6zXo+a221CTlYXaAQMASQrM57VB3l4noVR3uuoCURThcDgarQu82SZcuGLsqjuDXRe0Nq7TTURERNQMSZIgiklYvDgG/fvrkJIC9O+vw+LFMRDFJEgh2qCyWMwQxRLIchFEsaTVv+QG+/OVJkkSRN0lePPUKHQ7vBJJ1l8wK/ZVFKVeC6G2FsZ169D+zjuRfP31aPfii5BOngx2kkOSmq6Ti+uCDh00DeoCb7YJNxaLGZJUiqQkQJJKQzrGwcSebj+xp5tCGeOnboyfejF26iOKSRg+XIP9+xu+l54ObNhggywXtX7CyCeBLntNXxcy7rzqAN6+/v9gWLsMYlmZ+53aG26AKSsL5uHDIRu5hrcvQqHu9KYuEASwvmhEKMQvWNjTTUREROSBVmvA0qVio1+gASAvD1i2TIROF9G6CaOg8nxdCPjwaG8s/O0bOPfNEZzLzoZ58GDn2t9ffYW4Bx90rv39t79Bu3eve+1vCm3e1QUS9uxhfUH+YaObiIiIwlJtbSTmz/f8VWj+fBFmc1QrpYhCgdfXBRJgHjUK55YuReHu3ah47DHYOneGWFWFyA8/ROLo0UgcNAhRCxZALChopdSTP7yLuYCICNYX5B82uomIiCgsiaKI/HzP2+TnA5LEr0vhxJ/rwpGWhqqZM51rf69aBdOECc61v3/4AdH//jeS+/RB/JQpiNi4EbA0vvY3BY+3MY+JaX4b1hfUGF4VREREFJYcDgc6dvS8TceOgN3uaJ0EUUho0XUhCLD064eyV19F4cGDOD93Lmr79IHgcCBiyxbE//nPSO7dG9HPPAPNkSPKnAD5zNuYl5c3vw3rC2oMG91EREQUlvT6asyc6fkL8syZzmWOKHwE6rqQo6JQM2kSSteuReG2bai8/37YU1IgnT+PqHfeQdKQIUi47TYYFy2CcP58IE+BfORdzGWYzawvyD+qmL28qKgIX3/9Nb7//nv88MMPyM/Ph8PhQFZWFsaNG+dx3xMnTmDt2rU4fvw4zGYzkpKSkJGRgZEjR0Kn0/mdJs5eTqGM8VM3xk+9GDv1EcUkZGZqkJfX8L30dCA31waHI/xmI1YbJWYvV+S6sNmg37YNxuXLEbF584W1v3U6mIcOhSkrC7UDB4bd2t+hUHd6E3MArC8aEQrxC5Y2NXv5pk2b8Pbbb2Pr1q34+eef4XB4N2xj+/bteOaZZ7Bv3z5otVp06NABBQUFWLFiBf75z3+itrZW4ZQTERFRKBOEUmzYYMPcuQ506gQIAtCpEzB3rgO5uTYIQmmwk0hBoNh1odGg9qabcP7tt1Gwfz/KZ8+G9eqrIVgsMGzYgPaTJyO5b1+0mzMH0o8/BvakyCNvYs76gvylip7uVatW4bvvvkOXLl3QpUsXbNmyBbt37/bY011UVISHHnoIVqsVkydPxogRIyAIAoqLi/Hcc8/hl19+wdChQ3HPPff4lSb2dFMoY/zUjfFTL8ZOvXS6CJjNUdDpdLBYLIiIqILFYg52sshLSpU913UhSSLsdodi14Xm8GEYc3JgXL26/trf11/vXPs7MxNyZGTAPzdUhFLd6U3MW+u6UItQil9ra1M93ePGjcMTTzyB8ePHo2fPnoiIaH79u/Xr18NqtaJHjx4YOXIkBEEAACQmJmL69OkAgE8//RRldSo2IiIiCk8WixmSVIqkJECSSsP6CzRdYLGYIYolkOUiiGKJYteF7ZprUDF7Ngr278e5t96C+aabIIsi9Lt3I+7hh5HcsydiH34Yut2729za31qtAXZ7exQVAXZ7e2i1hqCmx5uYK3VdaLUGOBwJAJLgcCQEPS8ocFTR6PaVLMvYu3cvAOB3v/tdg/e7du2KtLQ02O127Nu3r7WTR0RERETUkF4P84gROPfBByjcswcVTzzhXPvbZIIxJwcJY8ci6cYbEfX66xDPng12altEkiSIYhIWL45B//46pKQA/fvrsHhxDEQxCVIYPdd+cV506KAJ27xoq9pko7ukpATnf50Fslu3bo1u07VrVwDAd99912rpIiIiIiLyhiM1FVUPPOBc+3vNGpiysuAwGqH56SdEz5mD5L59EX/33YjYsAFQ4TxFstwew4dr8OijzjWyZdm5zvWjj4rIzNTA4Wgf7CS2GuZF29cmG91nf/3lT6vVIi4urtFtkpKSAAAFBQWtli4iIiIiIp8IAix9+6LslVeca3+/8gpqr7/eufb31q2Iv/depPTujeinn4bm8OFgp9YrWq0BS5eK2L+/8ffz8oBly0TodM0/Uqp2zIvwoAl2ApRQXV0NADAaje5nuS8WFRUFAKiq8ryWntVqrTdhmiAIMBgM7n+3Va5za8vn2JYxfurG+KkXY6dujJ96hU3soqJgnjQJ5kmTIP34I4wrVsDw0UeQzp5F1LvvIurdd2G9+mqYsrJQM3Ys5Pj4YKe4UbW1kZg/33Pf3/z5IiZOjIIkqa8X3xdtIS/Cpvy1QJtsdLsayRpN06fnes9isXg81po1a7By5Ur335deeileeOEFr2apawtSUlKCnQRqAcZP3Rg/9WLs1I3xU6+wil1qKpCRAbzyCvC//wGLFgFr10J75AhinnkGMbNnA6NGAdOmAUOGAB6+F7e2oiLn8GlP8vMBnU6HpKTU1klUkLSlvAir8uej0Cl9AaTVagEANputyW1c7+l0Oo/HGjNmDDIzM91/u37BKS4u9nh8tRMEASkpKSgoKAi7qf/bAsZP3Rg/9WLs1I3xU6+wj12PHsCrr0L45z9hWLMGxpwcaL/5Bli5Eli5EvaUFNSMHw9TVhbsl18e7NTCbm+Pjh11HhubHTs6O8fOnm3ba1+3hbwI5/Kn0Wi86oxtk43uyF/XMTSZTJBludGhDq5h5a5h5k3RarXuRvzFwuGikmU5LM6zrWL81I3xUy/GTt0YP/UK99jJsbGonjYN1dOmQXPkCIw5OTCsXg2poABRb7yBqDfeQG2fPqjJykLNiBGQm/kerBS9vhozZzonDmvKzJmu9a/bdjzbUl6Ee/nzpE1OpJaa6hx6YbVa3bOYX6yoqAgAh0EQERERUdtju/pqVPzrXyjcvx/n3n4b5ptvdq79vXcvYh991Ln294MPQrdrV6uv/W211uCuuxxIT2/8/fR04M47HYqtix5KmBfhoU02uhMSEhAbGwsAOHbsWKPbHD9+HABwxRVXtFayiIiIiIhal04H8/DhOLd4MQr37kXFk0/CdtllEGtqYPzoIySMG4ekAQMQNX8+xDNnWi1ZglCKDRtsmDvXgU6dAEEAOnUC5s51IDfXBkEIzaHUSmBetH1tstEtCAL69u0LAPjss88avH/8+HGcOXMGkiThuuuua+3kERERERG1OkdKCqruuw9F27aheO1aVN9xBxyRkdCcPInoF19E8vXXI/6uuxCxbh1gVrZn1W63Q5aLMGVKGb780oKCAuDLLy2YMqUMDkcR7Ha7op8fSi7OizNnbGGbF21Vm2x0A8DIkSOh0Whw6NAhrF+/3v18QXFxMd58800AwM033+zuESciIiIiCguCAGufPih/+WUUHjyIitcWoLbfQAiyjIjPP0f8jBlISU9HzD/+4ZyQTcHh5xaLGZJUiqQkQJJKw3oYtcVihiiWQJaLIIolYZ0XbY0qJlI7duwYXnrpJfff5l9/eVu7di02bdrkfv2FF15AQkICACApKQl/+ctfkJ2djSVLlmDTpk2IiYnBqVOnYLfbcdlll2Hy5MmteyJERERERCFCkiTIUZ3xH8u9mH9mBnT4AQ9Ev4dp4vuILstH5HvvIfK992C96ir32t+O9u2DnWwi1VFFo9tut6OysrLB67W1taitvbBIvMPhqPf+oEGDkJKSgjVr1uDEiRM4ffo0kpOTkZGRgVGjRjW7XBgRERERUVsly+0xfLgG+/e7XrkcD1bMxsOYhXuv2IqXu7+DiE/WQnv0KGJmzUL0c8/BfOutMGVloXbw4JBa+5solKmipFx99dVYsWKFX/t27doVTzzxRIBTRERERESkXlqtAYsXi3Ua3Bc4ICH7u1tx+b03Y+rLJyGtWA7jihXQHToEw6ZNMGzaBHtyMkzjxqEmKwu2Ll1a/wSIVKTNPtNNRERERESNq62NxPz5npsC8+eLqInoANPvf4+STZtQ9OmnqPrTn2Bv3x5SYSHaZWcjadAgJIwcCeOHH0JoZGQqEbHRTUREREQUdkRRRH6+523y8wFJutBcsF11FSpmzULhvn0493//B/Ott0KWJOjy8hD7t78huVcvxM6cCd3OncBFj30ShTM2uomIiIiIwozD4UDHjp636dgRsNsbaTzrdDAPG4Zz772Hwn37UP7UU7B26eJc+3vlSiRMmICkjAxEzZsHqRXX/iYKVWx0ExERERGFGb2+GjNneu6NnjnTgYiIKo/bOJKSUD19Ooo//xzF69ej+q674IiKgubUKUS//DKSrr8e7SdNgmHtWqCmJoBnQKQebHQTEREREYUZq7UGd93lQHp64++npwN33unwfq1oQYA1PR3lL76IwoMHcX7+fNT27w9BlqHfvh1x992HlN69EfP3v0N78KCia38ThRo2uomIiIiIwpAglGLDBhvmznWgUydAEIBOnYC5cx3IzbVBEEr9Oq5sMKBm/HiUfvQRCnfuROVDD8GWlgaxogKRixcjcfhwJN5yCyLffhtiqX+fQaQmgizzZyZ/FBcXw2q1BjsZihEEAampqTh79ix4iagP46dujJ96MXbqxvipF2PXMjpdBMzmKEiSCLvdOaTc6x5ubzkc0O3YAWNODgwffwyhthYAIGs0qL3lFkTMmIGzPXtClqTAfi4pLpzLn1arRWJiYrPbqWKdbiIiIiIiUobFYoYomiHLgCgCFosCHyKKsAwcCMvAgSgvL4dh3ToYc3KgO3gQEZ98AnzyCZISE1EzfjxMWVmwXXGFAokgCg4OLyciIiIiolYjx8TANGUKSjZuRNGWLaj6y1+AxERIxcWIevNNJA0ejIQRI2BcsgRCRUWwk0vUYmx0ExERERFRUNi6dUPlP/8JnDmDc+++i5ohQ5xrf+/fj9jHH3eu/f3AA9Dt2MG1v0m1OLyciIiIiIiCS6tF7W23wTx0KMTiYhhWrYIxJwfaEydgXL0axtWrYevYEaaJE1EzYQLszS0yThRC2NNNREREREQhw5GYiOp770Xx1q0ozs1F9eTJcLRrB01+PqLnzkVyv35on5UFw+rVXPubVIGNbiIiIiIiCj2CAGuvXih/4QUUHDiA86+/jtoBAwAA+h07EPfAA0jp1Qsxjz8O7f79XPubQhYb3UREREREFNoMBtSMHYvSnBwU7tqFikcega1jR4iVlYhcsgSJI0Yg8aabEPnWWxCLi4OdWqJ62OgmIiIiIiLVsHfsiKqHH0bRzp0oycmBaexYyBER0J44gZjZs5Gcno64adMQ8d//AlZrsJNLxEY3ERERERGpkCjCMmAAyl5/HQUHDqBszhxYevWCYLfDsHkz4v/wByRfdx2i//UvaI4fD3ZqKYyx0U1ERERERKomR0fDdPfdKMnNRdFnn6Hq3nthT0yEVFKCqIULkXTTTUjIzIRx8WII5eXBTi6FGTa6iYiIiIiozbBdeSUqnn4ahXv3onTRItTcdhtkjQa6AwcQ+/e/I6V3b8Tefz9027dz7W9qFVynm4iIiIiI2h6tFrVDhqB2yBCIJSXOtb9XrID22DEY16yBcc0a2Dp0QM2ECTBNnAh7p07BTjG1UezpJiIiIiKiNs2RkIDqv/wFxZ9+iuJNm1A9ZQocMTHQnD6NdvPmIfmGG9B+wgQYVq6EwLW/KcDY6CYiIiIiovAgCLD26IHy559Hwf79OJedDfPAgZAFAfqdOxE3cyaSe/VCzGOPQZuXx7W/KSDY6CYiIiIiovATEQHzqFE4t2wZinbvRsXf/gbbb37jXPt76VIkjhyJxMGDEZWdDbGwMNipJRVjo5uIiIiIiMKaPS0NVQ8+iKIdO1CyciVM48fDYTBA+/33iH7uOST36YP4qVMRsWkTYLEEO7mkMmx0ExERERERAc61v2+4AWXz56PwwAGUvfQSLNddB8FuR8SnnyL+T39Ccno6omfNgubo0WCnllSCjW4iIiIiIqKLyO3awXTnnShZtw5FX3yByvvugz0pCdK5c4j6z3+QdMstSLj9dhjfew9CWVmwk0shjI1uIiIiIiIiD2xduqDyySeda3+/9x5qbr8dslYL3aFDiP3HP5xrf8+YAf22bYDdHuzkUojhOt1ERERERETe0GhQe+utqL31VoilpTCsXg1jTg60R4/CuG4djOvWwXbJJRfW/u7cOdgpphDAnm4iIiIiIiIfOdq3R/Wf/oTi//0PxR9/jOrf/x6O2FhofvkF7ebPR3JGBtqPHw/DRx9BMJmCnVwKIja6iYiIiIiI/CUIsF57Lcqfew4FeXnOtb8HD3au/f3VV4h78EHn2t+PPgrt3r1c+zsMsdFNREREREQUCK61v5cuReHu3ah47DHYOneGWFWFyGXLkDh6NBIHDULUG29ALCgIdmqplbDRTUREREREFGCOtDRUzZzpXPt71SqYJk50rv39ww+Ifv5559rfd9+NiI0bufZ3G8dGNxERERERkVIEAZZ+/VA2bx4KDx7E+blzUdu3LwSHAxFbtyL+z39Gcu/eiH7mGWiOHAl2akkBbHQTERERERG1AjkqCjWTJqF0zRoUbtuGyvvvhz0lBdL584h65x0kDRmChKFDYVy0CML588FOLgUIG91EREREREStzH755aj8+99RuHs3ShcvRs3w4c61vw8fRuxTTyGld2/E3Xsv9J99xrW/VY7rdBMREREREQWLRoPam29G7c03Qzx3DoY1a2Bcvhzab7+FYcMGGDZsgD0lBaYJE2DKyoL90kuDnWLyEXu6iYiIiIiIQoAjPh7V99yD4v/9D0X//S+q/vAHOGJjIRUUoN3rryN5wAC0HzsWhpwcCNXVwU4ueYmNbiIiIiIiohBju+YaVMyejYL9+3HurbdgvukmyKII/e7diHv4YST37InYhx+Gbs8erv0d4tjoJiIiIiIiClV6PcwjRuDcBx+gcM8eVDzxBGyXXgrRZIIxJwcJY8Yg6cYbEfX66xDPng12aqkRbHQTERERERGpgCM1FVUPPICi7dtRsmYNqidNgsNohOannxA9Zw6S+/ZF/OTJiNiwAaitDXZy6VdsdBMREREREamJIMDSty/K5851rv39yiuo7dfPufb3Z58h/t57kdK7N6Kffhqaw4eDndqwx0Y3ERERERGRSsmRkajJykLpqlUo3LEDlX/9K+ypqRDLyhD17rtIGjoUibfeish33oFw7lywkxuW2OgmIiIiIiJqA+yXXorKxx93rv29dClqRoyArNNB++23iHnmGefa33/+M/RbtgA2W7CTGza4TjcREREREVFbIkmoHTwYtYMHQzh/Hoa1a2HMyYHum29g2LgRho0bnWt/jx8P08SJsF9+ebBT3Kaxp5uIiIiIiKiNkuPiYJo2DSWffIKizZtRdc89sMfFOdf+fuMNJA8ciPajR8OwfDmEqqpgJ7dNYqObiIiIiIgoDNiuvhoV//oXCvPycO7tt2G++Wbn2t979yLukUeQ3KsXYh96CLpdu7j2dwCx0U1ERERERBRO9HqYhw/HucWLUbh3LyqefBK2yy5zrv29YgUSxo1D0oABiJo/H+IvvwQ7tarHRjcREREREVGYcqSkoOq++1C0bRuK165F9Z13whEZCc3Jk4h+8UXn2t933YWIdesAsznYyVUlNrqJiIiIiIjCnSDA2qcPyl96ybn296uvovaGGyDIMiI+/xzxM2YgJT0dMf/4B7Rff83h5z5go5uIiIiIiIjcZKMRNRMmoHTlShR++SUqH3wQtksugVhWhsj33kPisGHOtb//8x+IpaXBTm7IY6ObiIiIiIiIGmXv3BmVf/sbinbtQumyZTCNGgVZr4f26FHEzJqFpN69gXHjoP/f/7j2dxO4TjcRERERERF5JkmoHTgQtQMHoryszLn294oV0B06BKxejfjVq2FPSoJp/HjUZGXB1qVLsFMcMtjTTURERERERF6TY2Nh+v3vUbJpE4q3bAEeegj2+HhIRUVol52NpEGDkDByJIxLl0KorAx2coOOjW4iIiIiIiLyi+2qq4BXXkHR/v0493//B/Mtt0CWJOjy8hD72GNI7tkTsTNnQrdzJ+BwBDu5QcHh5URERERERNQyOh3Mw4bBPGwYxMJCGFetgiEnB9rvv4dx5UoYV66E7Te/gWnCBNRMnAh7WlqwU9xq2NNNREREREREAeNITkbVjBko/vxzFK9fj+q77oIjKgqan39G9MsvI+n66xF/xx0wrF0L1NQEO7mKY6ObiIiIiIiIAk8QYE1PR/mLLzrX/p4/H7X9+zvX/t62DXH33edc+/vvf4f24ME2u/Y3G91ERERERESkKNlgQM348Sj96CMUfvUVKh96CLa0NIjl5YhcvBiJw4cj8ZZbEPn2221u7W82uomIiIiIiKjV2Dt1QuWjj6Jo1y6ULFsG05gxkCMioD12DDHPPovk3r0Rd8890G/eDFitwU5ui3EiNSIiIiIiImp9ogjLwIGwDByI8vJyGNatc679feAADJ98goj//Q+Fe/fCkZwc7JS2CBvdREREREREFFRyTAxMU6bANGUKNMePw5iTA7GsTPUNboCNbiIiIiIiIgohtq5dUfHMM8FORsDwmW4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoWw0U1ERERERESkEDa6iYiIiIiIiBTCRjcRERERERGRQtjoJiIiIiIiIlIIG91ERERERERECmGjm4iIiIiIiEghbHQTERERERERKYSNbiIiIiIiIiKFsNFNREREREREpBA2uomIiIiIiIgUwkY3ERERERERkUI0wU6AWmk04ZF14XKebRXjp26Mn3oxdurG+KkXY6dujJ+6hWP8vD1nQZZlWeG0EBEREREREYUlDi+nRtXU1ODxxx9HTU1NsJNCfmD81I3xUy/GTt0YP/Vi7NSN8VM3xq95bHRTo2RZxk8//QQOhFAnxk/dGD/1YuzUjfFTL8ZO3Rg/dWP8msdGNxEREREREZFC2OgmIiIiIiIiUggb3dQorVaL8ePHQ6vVBjsp5AfGT90YP/Vi7NSN8VMvxk7dGD91Y/yax9nLiYiIiIiIiBTCnm4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFKIJdgKodS1YsABffPGFx22WLFkCnU7X4PUTJ05g7dq1OH78OMxmM5KSkpCRkYGRI0c2uj0FVlFREe6//36vtp01axa6d+8OAFixYgVWrlzpcft58+YhLS2txWkMd0VFRfj666/x/fff44cffkB+fj4cDgeysrIwbtw4j/v6W75Onz6N1atX4/Dhw6iurkZ8fDz69OmDcePGITIyMtCn2Gb5E7uffvoJe/bswbfffovTp0/DZDIhMjISl112GW655Rb07du30f0+//xzZGdne0zPk08+iZ49e7b0tMKGP/Frad3Ishc4/sRv4sSJXh17xowZGDx4sPtvlr/AkWUZx48fx969e3Hs2DGcOXMGtbW1iI6OxhVXXIHbbrsN11xzTZP7874XXP7Gj/c+/7DRHaZSU1MRHR3d6Hui2HAAxPbt27FgwQI4HA7Ex8cjISEBp06dwooVK5CXl4dZs2ZBr9crneywptPp0LVr1ybfLysrQ2FhIbRaLTp37tzg/fbt2yMhIaHRfRm7wNi0aRM2bdrk837+lq/Dhw9jzpw5sFgsiI6ORocOHfDLL78gNzcXe/fuxezZsxEbGxuAM2v7fI1dQUEBHn/8cfffSUlJSExMRGFhIQ4ePIiDBw9i0KBBmD59eqN1KgDExMQgJSWl0ff4xdE3/pY9wL+6kWUvsPyJn6f7YXV1NU6fPg0AuPLKKxvdhuWv5Q4fPozZs2cDAARBQEpKCiIiInD27Fns2bMHe/bswdixYzFp0qQG+/K+F3z+xI/3Pv+x0R2mxowZU++XX0+Kiorw1ltvweFwYPLkyRgxYgQEQUBxcTGee+45/PDDD1iyZAnuueceZRMd5mJjY92VY2Nee+01FBYW4rrrroPRaGzw/u9+9zuvewbIP+3atUPv3r3RpUsXdOnSBVu2bMHu3bs97uNv+aqpqcGrr74Ki8WCYcOG4e6774ZGo0FlZSVefPFFHD9+HG+99RaeeOIJJU+5zfAndnFxcbj99tsxcOBAxMXFAQAcDgc2b96MRYsW4YsvvsDll1+O2267rdH9e/bsifvuuy/g5xKO/Imfi691I8te4PkTP0/3w+XLl+P06dPo0qULLrnkkka3YflrOVmWkZKSgszMTPTv3x9RUVEAAJvNhhUrVmDt2rVYvXo1rrjiCqSnp7v3430vNPgbP977/MNnuqlZ69evh9VqRY8ePTBy5EgIggAASExMxPTp0wEAn376KcrKyoKYyvBmNpuxd+9eAMDAgQODnJrwNW7cODzxxBMYP348evbsiYiIiGb38bd8/e9//0NFRQXS0tIwdepUaDTO31DbtWuHmTNnQpIk7N+/Hz/++GNgT7KN8jV28fHxeO211zBq1Cj3lw7AOVLotttuwy233AIA2LJli6LpJid/yp6/WPYCL5Dxk2UZ27dvB8D7odK6dOmCefPmYciQIe4GGwBoNBrceeed6NWrF4CG9SDve6HBn/jx3uc/NrrJI1mW3Y253/3udw3e79q1K9LS0mC327Fv377WTh79avfu3e7ncNrqszBtUUvKl6sXaPDgwQ2GcCUkJOC3v/0tAGDXrl1KJD3s6XQ6j49l9OjRAwDwyy+/tFaSqJWw7IW2o0ePori4GJIkoX///sFOTptmNBohSVKT77vKwtmzZ92v8b4XOvyJH+99/uPw8jC1a9cu7NmzBzU1NYiJiUHXrl0xaNCgBsOSS0pKcP78eQBAt27dGj1W165dcebMGXz33XfuX7iodbl+1e/fv3+TFeiRI0fwyiuvoLKyElFRUejSpQsGDRrEZ5+CyN/yZbfb3b/kN/VcY9euXXHw4EF8//33CqScmmOxWADA42RAP//8M+bPn4+ysjIYDAZceumluPHGG5t81o2U4UvdyLIX+lz3w549ezY5dw3A8tcarFYrgPr1IO976tFY/JrDe1/T2OgOU/v376/3986dO7FixQrMnDmzXk+p69ctrVZbbxhJXUlJSQCckytQ6zt//jy++eYbAJ6H0h09erTe37t378ZHH32EP/7xj14/30+B5W/5Ki4uht1uBwAkJyc3up/r9bq/UFPr+eqrrwB4nuzp5MmTOHnypPvvffv2YdWqVZg4cSLGjh2rdBLpV77UjSx7oc1qtbp7OZsbWs7ypyxZlt2xqFsP8r6nDk3Frzm89zWNje4wk5ycjDvuuAO9e/dGUlISBEHAiRMnkJOTg++++w4vvfQS/vWvf+Hyyy8H4JwBFHAOQXE9c3Mx13MgVVVVrXMSVM/27dshyzIuueQSdOnSpcH7cXFxGDNmDPr27Yvk5GTodDr89NNPWL16NQ4cOIA333wTUVFRuO6664KQ+vDmb/mq+++mZvp0ve76DGo9hw4dcg+fHDlyZIP3jUYjbrvtNmRkZCAlJQVGoxFnzpxBbm4utm3bhuXLl7u3IeX4Uzey7IW2vLw8VFdXw2g01pv4qS6Wv9axZcsW/PTTT9BoNLj99tvdr/O+pw5Nxc8T3vs8Y6M7zIwfP77Ba9deey26d++OZ555Bt9//z2WLl2KZ555BsCFoSWuySoa43rPNaSEWldzE8bceuutDV7r2rUrnnjiCcydOxd79uzB+++/j/T09CZvgKQMf8uXaz9P+2q12gb7kfJKSkrw2muvAQCGDBmC7t27N9imb9++DdYx7dy5M+6//35ERUVh06ZNWL58OQYNGgSDwdAq6Q5H/tSNLHuhbdu2bQCAfv36NTm8leVPeT/++CMWLVoEAJg0aVK9YcO874U+T/FrCu99zeNEagTAWYFlZWUBcD7f5vpF0VWB2Wy2Jvd1vefLMx8UGKdOncLPP/8MQRBw4403+rSvIAi48847AQCFhYX4+eeflUgieeBv+XLt52lff57FopapqqrCv//9b1RWVuLqq6/G1KlTfT7GxIkTodVqYTKZcPjwYQVSSc3xVDey7IWuyspKHDhwAAAwaNAgv47B8tdyRUVFeOGFF2C1WjFgwACMGDGi3vu874W25uLXGN77vMNGN7ldeeWVAJzPcRQVFQG4MFTHZDJBluVG93M10OsuN0Ctw/Wr/lVXXYXExESf97/kkkvcceMz+a3P3/JV999NDaNzvd7UMDwKLLPZjOeffx6nT5/GZZddhscee6zel0RvGY1GdOjQAQDLZDA1VTey7IWunTt3wm63IzExsckJuprD8tcyZWVlmD17Ns6fP4/evXtjxowZDUbQ8b4XuryJ38V47/MeG93kVnfWa9dkFampqQCcvx66Zpu8mKuB3tZnHQw1DocDX375JYCWrUXqirvD4QhIush7/pavxMREd9wKCwsb3c/1uuszSDlWqxUvvvgivvvuO3To0AFPPvlki4bGuYZOuuphCo7G6kaWvdDletTqxhtvbNGjUix//qmqqsLs2bNRWFiI7t274+GHH250GDjve6HJ2/jVxXufb9joJrfTp0+7/92+fXsAznUPXcumHDt2rNH9jh8/DgC44oorlE0g1XPkyBGUlpZCq9WiX79+fh2joqICFRUVAID4+PhAJo+84G/5kiQJl112Wb33m9qvscn1KHDsdjvmzZuHw4cPIzk5GU899ZTHZYqa43A43Oubuuphan1N1Y0se6GpoKAAJ06cANCyH6FZ/vzj6u3Mz8/H5Zdfjscff7zJId6874UeX+Lnwnuf79joJrcNGzYAANLS0txfMgRBcE968NlnnzXY5/jx4zhz5gwkSeLs163MNbT8uuuua7C+urdyc3MhyzKMRiNvUkHQkvLl2u/zzz9vMEqhpKTEvYycvz/IUPNkWcaCBQuwb98+xMXF4emnn27xj1dbt25FdXU1RFHE1VdfHaCUkq881Y0se6HHdT/s0qULLrnkEr+Pw/Lnu7q9nR07dsQ//vEPj72dvO+FFl/jB/De5y82usPI119/jQ8//NA9bMfFZDLh3XffdQ9VHjduXL33R44cCY1Gg0OHDmH9+vXuZ3CKi4vx5ptvAgBuvvlm9y+XpDyLxYI9e/YA8Pyrfn5+Pv7v//4P+fn5DfZfvXo11q1bBwAYNWpUs8OISBn+lq9bb70V7dq1w5kzZ/D++++7J5aprKzE/PnzYbfb0atXL3fPAAXeokWLsGPHDrRr1w5PP/20e21ZT0wmE1599VV8//339V53OBz49NNP3TPG3nTTTRx9oqCW1I0se6Fnx44dAJrv5Wb5CyyHw4FXX321Xm+nN/P78L4XGvyNH+99/hHkpmYxoDZnz549ePnllwE4h8vFxcXBbrfj9OnTsNlsEAQB48aNw8SJExvs+8UXXyA7OxuyLCM+Ph4xMTE4deoU7HY7LrvsMsyaNQsRERGtfUpha8eOHXjttdcQHR2NhQsX1nsev66TJ0/iscceAwBER0cjISEBAHDmzBnU1tYCcFZwf/nLX7hcWAAcO3YML730kvtvs9kMq9UKvV5fb6jWCy+84I4F4H/5+uabbzBnzhxYrVZ3fF2xTUxMxHPPPccfw7zka+xOnDiBp556CoBzKFzdeF5s9uzZ7n9XV1dj2rRpAJyT/SQlJUEURRQUFLgnAerVqxceeeQRzsDrA1/j19K6kWUvsPytOwG4y6IkSVi4cKHHIa4sf4Hl+i4COJ+jbirv4+Li8PDDD9d7jfe94PMnfrz3+Y9dW2Hksssuw9ixY3HixAkUFBQgPz/fXdl169YNQ4cObfK57EGDBiElJQVr1qzBiRMncPr0aSQnJyMjIwOjRo1qswUkVLkmjOnfv3+TDW7AOfFIVlYWTpw4gTNnzuCXX36BzWZDTEwMevXqhZtuugk9e/ZspVS3fXa7HZWVlQ1er62tdX+RBxpOWudv+frtb3+LOXPmYNWqVThy5AhOnTqF+Ph49O3bF2PHjuWKAj7wNXZ114wtLS1FaWmpV5+j1+sxefJkHD9+HPn5+SgoKIDFYkG7du3Qu3dvDBw4EDfccAN/BPORr/Frad3IshdY/tadwIWh5T179mz2mVKWv8Cqu3TX2bNncfbs2Ua3a2x1Fd73gs+f+PHe5z/2dBMREREREREphM90ExERERERESmEjW4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoWw0U1ERERERESkEDa6iYiI/HDfffdh4sSJ+Pzzzz1uN2vWLEycOBErVqxonYQRERFRSGGjm4iIiIiIiEghbHQTERERERERKYSNbiIiIiIiIiKFaIKdACIionB1/PhxbNiwAcePH0dVVRViYmJwzTXXYPTo0ejQoUOD7WfNmoVvv/0W//znPxEZGYlVq1bh2LFjqKiowPTp0zF48GDIsoxt27Zh69at+Pnnn1FbW4uoqCjEx8fjt7/9LYYNG4b27dvXO64sy9i5cye2bt2Kn376CWazGfHx8ejduzfGjh2L2NjYetsfOXIEzz77LLp3746nnnoKa9aswY4dO1BSUoKoqCj06dMHkyZNQlRUVKPnXVJSgjVr1uDgwYM4f/48DAYDLr/8cgwbNgy9evWqt21ubi4WL16M4cOHY+rUqfXee+6553Do0CG0b98eb775Zr33Pv/8c2RnZ2PQoEG477776r1XWlqKdevW4dChQygpKYFWq8Wll16KoUOHol+/fn7lOxERUVPY6CYiIgqCzZs345133oEsy4iJiUHnzp1RUFCAbdu24auvvsIjjzyC3r17N7rv0aNHsWbNGkiShEsuuQQRERHu9z744APk5uYCABISEpCamorKykrk5+fjp59+wpVXXlmv0W2z2fDaa69h165dAIC4uDi0b98eBQUF+OSTT7B7927885//xCWXXNIgHbIs4+WXX8b+/fuRmpqKtLQ05OfnY/Pmzfj6668xe/ZsxMTE1Nvnu+++w7///W9UV1dDr9ejU6dOKC8vx8GDB3Hw4EGMGzcOWVlZ7u27d+8OAPj222/rHcfhcODEiRMAnI3owsJCJCcnu993be/av+7rL774IkwmE3Q6HVJTU1FdXY0jR47gyJEjyMzMxJQpU3zOdyIioqaw0U1ERNTKTp48iUWLFkGWZUyePBmZmZkQRRFWqxXvv/8+Nm/ejNdeew3z5s1DXFxcg/1XrlyJm266CVOnToVerwcAWCwWVFRUYOPGjTAajXjiiSfQrVs39z4WiwV79+6t1zAFgBUrVmDXrl249NJLMX36dHTu3Nm9/eLFi7F582a8/vrreP755xuk48SJE9DpdHjmmWdwzTXXAHD2Yr/wwgv4+eef8c477+Dhhx92b19bW4t58+ahuroaN9xwA+69914YDAYAzp7pt956C6tWrcKVV17p7vHu3LkzDAYDTp48CZPJBKPRCAD48ccfUVNTg/j4eJw7dw7ffvttvXM7evQogPqN7nPnzuHll19GTU0N7rjjDmRmZkKr1QJwjjqYN28ecnNzcfXVVyM9Pd3rfCciIvKEz3QTERG1QHZ2NiZOnNjkfxf30ALA+vXrYbfbcd1112HkyJEQReftWKvV4p577kHHjh1hMpmwefPmRj+zY8eO+OMf/+hu+AGATqdDQUEBZFnGNddcU6/B7Xo/IyMDv/nNb9yvuRrpBoMBjz32mLvB7dr+D3/4Ay6//HL88MMP7kZsXXa7HRMmTHA3uAFn7/r9998PANi9ezcKCwvd77mGoMfExOC+++5zN7gBYPDgwbjlllsAAGvXrnW/LooiunXrBlmWcezYMffrrnwdOXJkvb8BZ+O6sLAQ7du3r9cQz83NRVVVFW6//XaMGTPG3eAGgK5du+JPf/oTAGDjxo0NzhVoOt+JiIg8YaObiIioBVJTU9G1a9cm/6vbsHT5+uuvAQDDhg1r8J4gCO7XXdtd7MYbb3Q31OtKSEgA4BzCXVJS0mza9+/fD6vVih49ejR4zhtwNnhdPb6N/Xig0Whw8803N3j9N7/5jbuhfOjQIffrrn/ffPPNjTZWb7/9dgDOXmez2ex+/aqrrmqQhqNHj0IQBAwcOBAJCQn13nP927Wfy+7du92f35iePXtCo9Hg+PHjsNvtDd5vKt+JiIg84fByIiKiFhgzZozHibRck3C5VFdXo6KiAgAanSyt7uu//PKLx/cvFh8fj379+mHXrl144IEHcM0116B79+646qqrcMUVV0CSpHrbnzp1CoCzkf700083eszy8nIAzt7ji7Vv377RHxUAIC0tDceOHcPZs2fdr7n+3VT6U1NTodFoYLPZUFhY6O6Vdw0Rd/W2OxwOHDt2DJ06dUJUVBS6d++Obdu2oaSkpF4DvO7QcrPZjOLiYgDAwoULG/18F6vVisrKygYTyDWVbiIiIk/Y6CYiImpFdXtwL55kzMXV2Ku7bV11hzdf7P7770eHDh2wdetWHDp0yN27HB0djZEjR7qfHwcAk8kEwDkRWWlpqcd0N/bscnR0dJPbu86tpqbG/ZrrfJo6b0EQEB0djXPnztXb77LLLoNer8ePP/4Is9mMgoICVFdXY+DAgQCcPdrbtm3Dt99+i4EDBzba6HadK+DsSW9OY+frKd+JiIiawkY3ERFRK6o743V5eXmjE6WVlZU12NZbOp3O/Tz5mTNncPToUeTl5WH//v1YsmQJgAvPQbuOP3bsWEyaNMnnz3L12Ht6r25PuOvzXL3nF5NludH9NBoNrrzySnzzzTc4fvw4zpw5A+BCo7ruDOfXXnstfvnlF8TExNSbcb1uXn744YfQaPgViIiIWgcfTCIiImpFkZGR7h7i06dPN7qN6/XGlunyRVpaGm655RY8/vjj+OMf/wgA2LJli/t913Bp1zBzX5WWljbZG+9qGKemprpfc/27qfM+e/YsbDYbRFFsMMu66/nso0eP4ttvv4UgCO7XUlNTERcXhyNHjriHoF/8PLfRaHT/wNHU5xMRESmBjW4iIqJW1qNHDwDAxx9/3OA9WZbdr7u2C4QrrrgCAHD+/Hn3a71794ZGo8GBAwfqPXvtLZvNhq1btzZ4/dSpU+6Jzq699lr36z179gTgbPg3Nnzbdd5du3Zt0Mvv6s0+cuQIjh07hg4dOtQb3n7VVVehsLAQ27dvr7d9Xddffz2ApmcnJyIiUgIb3URERK1sxIgRkCQJ+/btw4YNG+BwOAA4G7GLFi1Cfn4+jEYjhgwZ4tNxv/nmG3zwwQcNenLNZjPWr18PALj00kvdr8fHx+P222+H3W7Hc889hyNHjtTbT5ZlfP/99/jPf/5Tb+kvF0mSsGLFinoTxZWWlmLBggUAgL59+yIlJcX9XkZGBhISElBeXo7s7Ox6veTbtm3Dp59+CgAYPXp0g8/q0qULtFotTpw4gYqKigY92a5Gdl5eXr2/6xo1ahSioqLwxRdf4P3330d1dXW996uqqrB161asWrWqwb5ERET+4gNNREREraxz586YNm0a3nnnHXzwwQdYv349EhIS3BOEabVa/PWvf20we3ZzampqsGHDBmzYsAHR0dFITEyEzWZDQUEBamtrYTQaMXXq1Hr73HHHHTh//jy2b9+OZ599FrGxsUhISIDVakVRUZF7QjPXcl51XXnllTAYDJg1axZSU1MRERGBU6dOwW63Izk5Gffcc0+97fV6PR566CE899xz2LlzJ/Ly8tChQweUlZW5J3IbO3YsevXq1eCzdDodunTp4h4+fnGj2vW3LMto164dOnbs2OAY7du3x2OPPYaXXnoJGzduxCeffIK0tDTo9XpUVFSgqKgIsiyjf//+3mY5ERFRs9joJiIiCoIhQ4agU6dO2LBhA44fP46TJ08iOjoavXv3xpgxY/xanuqqq67CtGnT8PXXXyM/Px+nT5+GJElISUlBjx49kJmZ2aAhL0kSHnjgAWRkZGDLli347rvv8NNPPyEqKgqpqam48sor0a9fv3rPZrsIgoBHH30Ua9aswfbt23H69GlER0ejT58+mDhxYqOzm19xxRV46aWXsGbNGhw6dAg///wz9Ho9evTogWHDhqF3794ez6+pRrdruHlFRQW6desGQRAaPUa3bt0wb948bNq0CXl5eSgsLITD4UB8fDx69uyJ9PR09O3bt7msJiIi8pogy7Ic7EQQERGRehw5cgTPPvssunfvjlmzZgU7OURERCGNz3QTERERERERKYSNbiIiIiIiIiKFsNFNREREREREpBA2uomIiIiIiIgUwonUiIiIiIiIiBTCnm4iIiIiIiIihbDRTURERERERKQQNrqJiIiIiIiIFMJGNxEREREREZFC2OgmIiIiIiIiUggb3UREREREREQKYaObiIiIiIiISCFsdBMREREREREphI1uIiIiIiIiIoX8fxWUadxi00iKAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "# Plotting\n", + "plt.figure(figsize=(10, 6), tight_layout=True)\n", + "plt.style.use('ggplot')\n", + "\n", + "# Scatter plot of the Auto data\n", + "sns.scatterplot(x=Auto['horsepower'], y=Auto['mpg'], color='blue', s=50)\n", + "\n", + "X = Auto[['horsepower']] # Make sure X is a 2D array\n", + "y = Auto['mpg']\n", + "lm = LinearRegression().fit(X,y)\n", + "\n", + "# Generate predictions across the range of horsepower values\n", + "x_range = np.linspace(Auto['horsepower'].min(), Auto['horsepower'].max(), 100)\n", + "x_range_reshaped = x_range.reshape(-1, 1) # Reshape x_range to a 2D array\n", + "y_pred = lm.predict(x_range_reshaped)\n", + "\n", + "# Plot the predicted line together with the data\n", + "plt.plot(x_range, y_pred, color='red', label='Fitted line')\n", + "\n", + "# Adjust the text size\n", + "plt.xticks(fontsize=16)\n", + "plt.yticks(fontsize=16)\n", + "plt.xlabel('Horsepower', fontsize=16)\n", + "plt.ylabel('MPG', fontsize=16)\n", + "plt.title('', fontsize=18)\n", + "\n", + "# Show plot\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "34765acf-c72c-4f4c-9c6c-7259c57c1535", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Task 2" + ] + }, + { + "cell_type": "markdown", + "id": "e9fbd0f6-598b-413f-a584-669b68fad554", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1. Compute the test MSE for the univariate linear model and note the training and test MSE." + ] + }, + { + "cell_type": "markdown", + "id": "d1f3413f-6ece-4238-a398-38debb776882", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "**Hint**:\n", + "First copy line $84$ and generate predictions $\\hat{y}$ for the test data. Then copy line $98$ and change it correspondingly to compute the test MSE." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "94a8fac9-ef1a-4841-b67d-1fe0c053080d", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for test data\n", + "y_head_test = fit_lm.predict(test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4c054d4c-bd52-483c-a252-a5fa6adaae88", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train MSE: 23.002\n", + "Validation MSE: 25.109\n" + ] + } + ], + "source": [ + "# Compute the \"Mean Squared Error\"\n", + "print(f\"Train MSE: {MSE_train:.3f}\")\n", + "\n", + "MSE_test = MSE(test_data['mpg'], y_head_test)\n", + "print(f\"Validation MSE: {MSE_test:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "377b9c15-fdf7-4c6b-8cf3-187cff086e45", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "2. Compute and note the training and test MSE for a quadratic model:\n", + "\n", + "\\begin{equation*} \n", + " \\text{mpg} = \\beta_{0} + \\beta_{1} \\text{horsepower} + \\beta_{2} \\text{horsepower}^{2} + \\varepsilon\n", + "\\end{equation*}" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e8cdb96a-1898-4000-b540-7b690557d353", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==========================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------------------\n", + "Intercept 56.0467 2.594 21.610 0.000 50.931 61.162\n", + "poly(horsepower, 2)[0] -0.4566 0.044 -10.278 0.000 -0.544 -0.369\n", + "poly(horsepower, 2)[1] 0.0012 0.000 6.992 0.000 0.001 0.002\n", + "==========================================================================================\n" + ] + } + ], + "source": [ + "# Define polynomial function\n", + "def poly(x, degree):\n", + " return np.vander(x, degree + 1, increasing=True)[:, 1:]\n", + "\n", + "# Quadratic model\n", + "fit_lm2 = smf.ols(formula='mpg ~ poly(horsepower, 2)', data = train_data).fit()\n", + "print(fit_lm2.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d2e2d83b-47fb-4b33-84a6-047784f75c9b", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for test data\n", + "y_head_train_2 = fit_lm2.predict(train_data)\n", + "# Predictions for test data\n", + "y_head_test_2 = fit_lm2.predict(test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "987a0ad9-fd1c-4d3b-87a8-af11032d171c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train MSE: 18.353\n", + "Validation MSE: 19.723\n" + ] + } + ], + "source": [ + "# Compute the \"Mean Squared Error\"\n", + "MSE_train_2 = MSE(train_data['mpg'], y_head_train_2)\n", + "print(f\"Train MSE: {MSE_train_2:.3f}\")\n", + "\n", + "MSE_test_2 = MSE(test_data['mpg'], y_head_test_2)\n", + "print(f\"Validation MSE: {MSE_test_2:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b2d02d24-b07d-4a91-a65c-1fb83a175819", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "3. Redo Step $2$ but add the term horsepower$^{3}$ to the regression. Then add horsepower$^{4}$ and so on. For each model note the training and test MSE. How do the two MSE change with the flexibility of the method?" + ] + }, + { + "cell_type": "markdown", + "id": "8d58316f-8d91-4aee-abcc-f832c61f2bc9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "- $\\text{horsepower}^{3}$ model:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "1d95f27b-33e2-41b4-b674-e7f44a883458", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==========================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------------------\n", + "Intercept 64.6844 6.696 9.660 0.000 51.477 77.891\n", + "poly(horsepower, 3)[0] -0.6878 0.171 -4.019 0.000 -1.025 -0.350\n", + "poly(horsepower, 3)[1] 0.0031 0.001 2.270 0.024 0.000 0.006\n", + "poly(horsepower, 3)[2] -4.746e-06 3.39e-06 -1.399 0.164 -1.14e-05 1.95e-06\n", + "==========================================================================================\n" + ] + } + ], + "source": [ + "# Quadratic model using poly() function.\n", + "# (yields same predictions as the quadratic model above but\n", + "# the polynomial degree can be easily adjusted)\n", + "fit_lm3 = smf.ols(formula='mpg ~ poly(horsepower, 3)', data = train_data).fit()\n", + "print(fit_lm3.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "0c588ff7-0658-4e46-923b-b9f6dea5dc01", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for test data\n", + "y_head_train_3 = fit_lm3.predict(train_data)\n", + "# Predictions for test data\n", + "y_head_test_3 = fit_lm3.predict(test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "7f5c8f0e-dbd0-4d51-9b18-f70bbeaf5ddd", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train MSE: 18.168\n", + "Validation MSE: 19.921\n" + ] + } + ], + "source": [ + "# Compute the \"Mean Squared Error\"\n", + "MSE_train_3 = MSE(train_data['mpg'], y_head_train_3)\n", + "print(f\"Train MSE: {MSE_train_3:.3f}\")\n", + "\n", + "MSE_test_3 = MSE(test_data['mpg'], y_head_test_3)\n", + "print(f\"Validation MSE: {MSE_test_3:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "76ad7276-852d-4164-919d-7750c4d359e8", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "- $\\text{horsepower}^{10}$ model:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "eaff5326-7fea-403e-a0f9-fc07679531a4", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "===========================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "-------------------------------------------------------------------------------------------\n", + "Intercept 2.256e-12 1.1e-13 20.570 0.000 2.04e-12 2.47e-12\n", + "poly(horsepower, 10)[0] 3.91e-10 1.9e-11 20.569 0.000 3.53e-10 4.28e-10\n", + "poly(horsepower, 10)[1] 8.099e-09 3.94e-10 20.570 0.000 7.32e-09 8.88e-09\n", + "poly(horsepower, 10)[2] 3.176e-07 1.54e-08 20.570 0.000 2.87e-07 3.48e-07\n", + "poly(horsepower, 10)[3] 8.66e-06 4.21e-07 20.571 0.000 7.83e-06 9.49e-06\n", + "poly(horsepower, 10)[4] -2.016e-07 1.11e-08 -18.115 0.000 -2.24e-07 -1.8e-07\n", + "poly(horsepower, 10)[5] 1.748e-09 1.07e-10 16.372 0.000 1.54e-09 1.96e-09\n", + "poly(horsepower, 10)[6] -6.662e-12 4.42e-13 -15.058 0.000 -7.54e-12 -5.79e-12\n", + "poly(horsepower, 10)[7] 9.413e-15 6.71e-16 14.022 0.000 8.09e-15 1.07e-14\n", + "poly(horsepower, 10)[8] -2.054e-19 1.96e-19 -1.046 0.297 -5.93e-19 1.82e-19\n", + "poly(horsepower, 10)[9] -1.066e-20 1.15e-19 -0.093 0.926 -2.37e-19 2.16e-19\n", + "===========================================================================================\n" + ] + } + ], + "source": [ + "fit_lm10 = smf.ols(formula='mpg ~ poly(horsepower, 10)', data = train_data).fit()\n", + "print(fit_lm10.summary().tables[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "67721d57-3743-47e5-98b6-8aa265f30a54", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Predictions for test data\n", + "y_head_train_10 = fit_lm10.predict(train_data)\n", + "# Predictions for test data\n", + "y_head_test_10 = fit_lm10.predict(test_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "a4a5d8d0-509c-43f3-bcde-ed887d579372", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train MSE: 57.118\n", + "Validation MSE: 79.702\n" + ] + } + ], + "source": [ + "# Compute the \"Mean Squared Error\"\n", + "MSE_train_10 = MSE(train_data['mpg'], y_head_train_10)\n", + "print(f\"Train MSE: {MSE_train_10:.3f}\")\n", + "\n", + "MSE_test_10 = MSE(test_data['mpg'], y_head_test_10)\n", + "print(f\"Validation MSE: {MSE_test_10:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "6090a810-949e-4bea-99e1-4f6937ad4a87", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "- Setup for $10$ models with different polynomial degrees:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "a4c7f519-e573-4492-a4ff-143d9502bdf9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " x testmse trainmse\n", + "0 1 25.108539 23.002395\n", + "1 2 19.722533 18.352971\n", + "2 3 19.921368 18.167881\n", + "3 4 19.823280 18.151318\n", + "4 5 19.115938 17.951430\n", + "5 6 18.891373 17.927435\n", + "6 7 19.129574 17.955439\n", + "7 8 19.341569 17.985236\n", + "8 9 19.322458 17.976080\n", + "9 10 19.132870 17.964630\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# Lists to store models and MSE values\n", + "models = []\n", + "test_mse = []\n", + "train_mse = []\n", + "\n", + "# Try 10 models\n", + "for i in range(1, 11):\n", + " # Polynomial features\n", + " poly = PolynomialFeatures(degree=i)\n", + " X_train_poly = poly.fit_transform(train_data[['horsepower']])\n", + " X_test_poly = poly.transform(test_data[['horsepower']])\n", + " \n", + " # Linear regression model\n", + " model = LinearRegression()\n", + " model.fit(X_train_poly, train_data['mpg'])\n", + " \n", + " # Store the model\n", + " models.append(model)\n", + " \n", + " # Predict on train and test data\n", + " y_train_pred = model.predict(X_train_poly)\n", + " y_test_pred = model.predict(X_test_poly)\n", + " \n", + " # Calculate MSE\n", + " train_mse.append(mean_squared_error(train_data['mpg'], y_train_pred))\n", + " test_mse.append(mean_squared_error(test_data['mpg'], y_test_pred))\n", + "\n", + "# Create a DataFrame for MSE values\n", + "mse = pd.DataFrame({'x': range(1, 11), 'testmse': test_mse, 'trainmse': train_mse})\n", + "print(mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "901752cf-6c22-40ed-89f2-71f9cc704071", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIcCAYAAAAAFrRlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf0klEQVR4nOzdeVxVdf4/8Ne5O6uggiCiiCCiRJoiiLmApZWaOZk1U/Ntm5bRrKbFpm/Ton5rxqaa5tdUtsyMzTRNmruVZQq4BCiapSmQooAaCIgIV+Bu5/z+uNwLVxZB77kbr+fjwQM499xzPsgHvC8+n8/7I0iSJIGIiIiIiIicSuHuBhAREREREfkihi0iIiIiIiIZMGwRERERERHJgGGLiIiIiIhIBgxbREREREREMmDYIiIiIiIikgHDFhERERERkQwYtoiIiIiIiGTAsEVERERERCQDhi0iIiIiIiIZqNzdAG9y7tw5mM1mdzeDrkBYWBiqq6vd3QzqJdjfyNXY58iV2N/I1Tylz6lUKoSGhnbvXJnb4lPMZjNMJpO7m0GXSRAEANbvoyRJbm4N+Tr2N3I19jlyJfY3cjVv7XOcRkhERERERCQDhi0iIiIiIiIZMGwRERERERHJgGGLiIiIiIhIBiyQQUREREReyWAwwGAwuLsZ5CJNTU0wGo0uuZdWq4VWq73i6zBsEREREZHXuXDhAgRBQFBQkL1SHfk2tVrtksrgkiShqakJFy5cQEBAwBVdi9MIiYiIiMjrmM1m+Pv7M2iR0wmCAH9/f6fsr8uwRURERERehyGL5OaMPsawRUREREREJAOGLSIiIiIiLzJv3jy88MIL9s9TU1PxwQcfdPmcqKgofPXVV1d8b2ddp7dg2CIiIiIicoG7774bt99+e4eP7du3D1FRUTh06FCPr/vll1/irrvuutLmOXj99ddx/fXXtzt+4MABZGRkOPVeF1u1ahWioqIwZcqUdo9t2rQJUVFRSE1NtR+zWCx46623MHnyZAwbNgyjRo3CrFmzsGrVKvs5jz/+OKKiotq93XnnnbJ+LaxGSERERETkAr/85S/xm9/8BqdOncKgQYMcHlu1ahVGjRqFq666qsfX7devn7OaeEnh4eEuuY+/vz9qamqwb98+jBs3zn7cFsTaev311/Gf//wH//d//4err74aDQ0NOHjwIOrq6hzOy8jIwBtvvOFwTKPRyPY1ABzZIiIiIiJyieuuuw79+/fH6tWrHY43NTVh06ZN+OUvf4na2losWLAAY8eOxbBhwzBt2jRs2LChy+tePI3w+PHj+MUvfoHY2FhMnToVO3fubPecl19+Gddeey2GDRuGCRMm4NVXX7WXVV+1ahXeeOMNHDlyxD4CZBslungaYWFhIW677Tb7iNLixYtx4cIF++OPP/447rvvPqxYsQJjxozBqFGj8L//+7+XLOGuUqkwd+5ch9Gpn3/+GXl5eZg7d67Dud988w3uvvtuzJ49G4MHD8aoUaPwy1/+Eg899JDDeRqNBuHh4Q5vISEhXbbjSnFkyxtJEsAKPEREREStJAlCU5N7bu3n163XZiqVCvPmzcPq1avxu9/9zl7tbvPmzTCZTJg7dy6ampqQnJyMBQsWICgoCNu3b8ejjz6KwYMH45prrrnkPURRxAMPPIDQ0FBs2rQJer0eL774YrvzAgIC8Je//AUREREoLCzE4sWLERgYiAULFuDmm29GcXExcnJy8OmnnwIAgoKC2l2jqakJd911F6655hp88cUXqKmpwdNPP43nnnsOb775pv283NxchIeH47PPPsOJEyfw29/+FqNGjbrkFL477rgDt956K5YuXQo/Pz98+umnmDp1Kvr37+9wXnh4OL799lvcfffdLh3l6w6GLS8h6PUIWr4cuq1bAbMZUKnQPH06Gp55BlJgoLubR0RERORWQlMTIuPj3XLviqNHIfn7d+vcO+64A++++y5yc3MxceJEANaRpBtvvBEhISEICQnBww8/bD//vvvuQ3Z2Nj7//PNuha1du3bh6NGjyM/Px8CBAwEAv//979ut6Xr88cftH0dHR6OkpASbNm3CggUL4Ofnh4CAACiVyi6nDa5btw7Nzc3461//Cv+Wr////u//cM899+C5555DWFgYAKBPnz54+eWXoVQqERcXh2nTpmH37t2XDFtJSUkYMmQIPv/8c8ybNw+ffvopXnzxRZSVlTmc9+KLL+LBBx/E6NGjkZCQgLFjx2LGjBnIzMx0OG/btm2Iv6iPLFiwAL/73e+6bMeVYNjyAoJej/6zZ0N17BgEUbQfD1i5Etrdu1GzeTMDFxEREZEXiIuLw7hx4/Dpp59i4sSJKC0txZ49e/DJJ58AsBZ7+Nvf/obNmzejoqICRqMRRqPRHmYu5ejRo4iKirIHLQAYO3Zsu/M+//xzfPjhhygtLcWFCxdgsVgQ2MPXk0ePHkViYqJD21JSUiCKIkpKSuxha/jw4VAqlfZzBgwYgMLCwm7d44477rCv07pw4QIyMzPxz3/+0+Gc4cOHIysrCwcPHsTevXuxZ88e3HPPPZg/fz5ee+01+3np6en44x//6PBcTiMkBC1f3i5oAYAgilAdO4agV19F/dKlbmodERERkftJfn6oOHrUbffuiV/+8pd47rnn8Morr2DVqlUYNGgQJk2aBAB477338MEHH2DJkiUYMWIE/P398eKLL15yjZO9LZLU7tjFm/Pu378fCxYswJNPPompU6ciKCgIGzduxPvvv9+jr0OSpE43/m17XK1Wd6udHZk7dy5efvllvPHGG5g/fz5Uqo7ji0KhwOjRozF69Gg8+OCDWLt2LR599FH7FEzAWnRj6NCh3bqvs7BAhhfQbd3aLmjZCKJonVpIRERE1JsJAiR/f7e89XQt/ezZs6FUKrF+/Xp89tlnuP322+3hZM+ePZgxYwZuvfVWjBo1CkOGDMGJEye6fe3hw4fj9OnTqKystB/bv3+/wzkFBQUYNGgQHnvsMVx99dWIjY3F6dOnHc5Rq9UQO3n92fZeR44cQWNjo8O1FQoFYmNju93mroSGhuL6669HXl4efvWrX3X7ecOHDwcAh7a5g1eMbNXW1iIvLw8HDhzA6dOnUVdXh8DAQCQkJGDOnDnt5l6uXr0aa9as6fBaarUa//nPf1zRbOeQJOsara6YTCyaQUREROQlAgICcPPNN2P58uWor6/H/Pnz7Y/FxMTgyy+/REFBAUJCQvD++++jurq63evdzkyaNAnDhg3DY489hhdeeAF6vR7Lly93OGfo0KE4ffo0Nm7ciKuvvhrbt2/Hli1bHM6Jjo5GeXk5fvzxRwwcOBABAQHQarUO5/ziF7/A66+/jsceewxPPvkkzp49i+effx633nqrfQqhM/zlL3/BK6+8ggEDBnQ4wvfAAw8gJSUF48aNQ3h4OMrLy/HHP/4RsbGxiIuLs59nNBpRVVXl8FyVSoW+ffs6ra0X84qwtWXLFmzcuBEDBgxAcnIy+vTpg4qKChQUFKCgoACPPfYY0tPT2z1vypQp7b7RbeeLegVBADoZLrVTqRi0iIiIiLzIHXfcgf/+97+YMmWKw75Rjz/+OE6ePIk777wTfn5+uPPOOzFjxgw0NDR067oKhQIffvghnnrqKcyaNQuDBg3CsmXLHIpRzJgxAw888ACee+45GI1GTJs2DY8//rjDHlQ33XQTvvzyS8yfPx/nz5/HG2+80W5DZj8/P/znP//BCy+8gJkzZ0Kn02HmzJkdVj+8En5+fvDrYqrm1KlTsWHDBvztb39DQ0MDwsLCMHHiRDz55JMO0w6zs7MxZswYh+cOGzasw9L4ziJI3Z0w6UZ79uxBcHAwEhMTHY4XFhbaS0G+99579vmgtpGtF198EaNGjXJaO6qrq7s9X9aZgp9/HgErV3Y4lVBSKHDh3nu5ZqsbBEFAZGQkKioquj1PmOhysb+Rq7HPkSt5Qn+rr69HcHCwW+5N7qFWq136WryzPqZWq7s9cucVa7ZSU1PbBS0ASExMRFJSEvR6PcrLy93QMtdoeOYZmOPiICkcv12SIMAcH4+GxYvd1DIiIiIiIuqMV0wj7IptWmBH0wMLCwtx7NgxKBQKREVF4aqrruqwGoqnkwIDUbN5M4JefRW6rVuhqK6GorkZpuRknF29mmXfiYiIiIg8kFeHrZqaGhw6dAghISH2ko5trV692uHz0NBQLFy4EMnJyV1e12QyOQxRCoJgnyfaWXlL2QUFoWHZMjQsWwa/Tz5ByFNPAVotEBQErtbqHtv3zm3fQ+pV2N/I1djnyJXY36i3uNI+7hVrtjpiNpuxbNkyFBYW4pFHHsHkyZPtj+3duxdNTU0YOXIk+vTpg9raWnz77bdYv349JEnCyy+/jJiYmE6vfXE1w6FDh7ar4uJWJSVAXBygVgN1dUA3N7kjIiIi8hXHjx9HUFCQu5tBPqyhoeGKS9h7ZdgSRRFvv/02du3ahWnTpuGhhx7q1vO2bduG999/H2lpaXjiiSc6Pa+zka3q6mqYL1WG3RUkCeHjxkFZUYGzq1bB2LIJHnVNEARERESgsrKSi8dJduxv5Grsc+RKntDfzp8/zwIZvYw7CmT06dOn3XGVStXtAhleN41QkiS899572LVrFyZNmoQHHnig28+dOnUq/v73v6O4uLjL89RqdadruzzlPzDDhAnwX7cOmrw8GK691t3N8SqSJHnM95F8H/sbuRr7HLkS+xv5uivt315RjdBGFEW8++67yM7OxsSJE7Fw4UIoFN3/ElQqFXQ6HQwGg4ytdA3jhAkAAE1enptbQkREREREHfGasCWKIlasWIGcnBykp6dj0aJFPQpaAFBRUYELFy44dUdrdzGkpQEANAcOAE1Nbm4NERERERFdzCvCVtuglZaW1mXQampqQllZWbvjer0eK1asAABMnDhR1va6gmXoUFgiIiAYjdB89527m0NERERERBfxijVba9asQU5ODnQ6HQYOHIi1a9e2O2f8+PGIiYlBQ0MDnn76aQwbNgzR0dH2aoTff/89GhoakJycjFmzZrnhq3AyQbCu21q/Htq8PBh9IEASERERUc/NmzcPI0eOxNKlS93dFLqIV4St6upqAEBzczPWrVvX4Tnh4eGIiYlBYGAgZsyYgaNHj2L//v1obGyEVqvF4MGDMWnSJEybNq3H0w89lTEtDf7r10OTn+/uphARERHRJURFRXX5+G233YY333yzx9f94IMPOi3u1l2PP/44PvvsM9x1113ttjx69tln8a9//cuhfTU1NXj11VeRnZ2Nmpoa9OnTByNHjsQTTzyBcePGAQBSU1Nx6tSpdvd69tln8cgjj1xRe72FV4SthQsXYuHChd0619/fH/fff7/MLfIMBluRjO++A5qbAZ3OzS0iIiIios4cOHDA/vGmTZvw2muvYefOnfZjuotey5lMpm6FqNDQUKe0b+DAgdi0aRNeeukl+Pn5AbAOdmzcuLFdUHzggQdgMpnw5ptvYsiQIaiursbu3btRV1fncN5TTz2FO++80+FYYGCgU9rrDXxjiKeXssTGwjJgAASDgeu2iIiIiDxceHi4/S0oKAiCINg/NxgMSExMxKZNmzBv3jzExsZi3bp1qK2txYIFCzB27FgMGzYM06ZNw4YNGxyuO2/ePLzwwgv2z1NTU/H//t//wxNPPIHhw4cjJSUFH3/88SXbd9VVVyEqKgpbtmyxH9uyZQsGDhyIpKQk+7Hz589j7969eO655zBx4kQMGjQIY8aMwaJFi3Ddddc5XDMwMNDh6w4PD4e/v/9l/gt6H4YtbyYIrVUJOZWQiIiIejFJAhobBbe8OXOrsVdeeQX33XcfcnJyMGXKFBgMBiQnJ+Ojjz5CVlYW7rzzTjz66KP47hJ/aH/vvfeQnJyMr7/+GnfffTeeffZZHDt27JL3nz9/PlatWmX//NNPP8Xtt9/ucE5AQAACAgLw1Vdf+cSWSnLyimmE1DnjhAnw37gR2txc6J94wt3NISIiInKLpiYB8fGRbrn30aMV8Pd3TuL6zW9+g5tuusnh2MMPP2z/+L777kN2djY+//xzXHPNNZ1eJzMzE/fccw8A65KcDz74ALm5uYiLi+vy/vPmzcOf/vQnnDx5EoIgYN++fXj33XeR12ZvV5VKhb/85S9YvHgxPv74YyQlJSEtLQ1z5szByJEjHa73yiuv4NVXX3U49tFHHyE9Pb3LdvgKhi0vZ+S6LSIiIiKfcfXVVzt8brFY8Le//Q2bN29GRUUFjEYjjEbjJafitQ09giAgLCwMZ8+eveT9+/bti2nTpuGzzz6DJEnIzMxE37592503c+ZMTJs2DXv37sX+/fuRnZ2Nd999F3/+858dRsIefvhhzJ8/3+G5ERERl2yHr2DY8nLmYcNgCQuDsroamu+/h7FlWiERERFRb+LnJ+Ho0Qq33dt51/Jz+Py9997DBx98gCVLlmDEiBHw9/fHiy++CJPJ1OV1VCrHl/mCIEAUxW614fbbb8cf/vAHAMDLL7/c6Xk6nQ6TJ0/G5MmT8bvf/Q5PPfUUXn/9dYew1bdvXwwdOrRb9/VFDFveThBgnDABfps2QZOXx7BFREREvZIgwGlT+TzJnj17MGPGDNx6660AAFEUceLECcTHx8t2z4yMDHuYmzp1arefFx8fj6+++kqmVnknhi0fYEhLg9+mTdDm5UH/u9+5uzlERERE5CQxMTH48ssvUVBQgJCQELz//vuorq6WNWwplUrk5OTYP75YbW0tHnroIdxxxx1ITExEYGAgfvjhB7z77ruYMWOGw7l6vR5VVVUOx/z8/BAUFCRb+z0Jw5YPMLYsMNTs3w8YDIBW6+YWEREREZEzPP744zh58iTuvPNO+Pn54c4778SMGTPQ0NAg6327CkMBAQG45ppr8MEHH6CsrAwmkwkDBw7Er371KyxatMjh3Ndeew2vvfaaw7GONk72VYIkObNYpW+rrq6+5PxYt5AkDBg9GsqaGtSsWwdjaqq7W+SRBEFAZGQkKioqwG5PcmN/I1djnyNX8oT+Vl9fj+DgYLfcm9xDrVa79LV4Z31MrVYjLCysW9fgPlu+QBDsa7U0bcpyEhERERGR+zBs+QhDSwl4LcMWEREREZFHYNjyEbb9ttT79gFGo5tbQ0REREREDFs+wjx8OCx9+0LR3AzNDz+4uzlERERERL0ew5avaNlvCwA0ublubgwRERERETFs+RDbui1Nfr6bW0JERERERAxbPsQ+slVQwHVbRERE5PNEUXR3E8hHOatvMWz5EPPw4bCEhkLR1AQ1120RERGRD/P390dDQwMDFzmdKIpoaGiAv7//FV9L5YT2kKdQKGCcMAF+X34JbX4+TCkp7m4RERERkSxUKhUCAgKg1+vd3RRyEY1GA6OLZm8FBARApbryqMSw5WNsYUuTlwcsWuTu5hARERHJRqVSITg42N3NIBcQBAGRkZGoqKiAJEnubk63cRqhjzGkpQFoWbdlMrm5NUREREREvRfDlo8xjxgBMSQEisZGqA8edHdziIiIiIh6LYYtX6NQ2Ee3tHl5bm4MEREREVHvxbDlg4zcb4uIiIiIyO0YtnyQfXPjvXsBs9nNrSEiIiIi6p0YtnyQOTHRum7rwgWoDx1yd3OIiIiIiHolhi1fpFDAkJoKgOu2iIiIiIjchWHLR9nXbTFsERERERG5BcOWj+K6LSIiIiIi92LY8lHmxESIffpAoddD/eOP7m4OEREREVGvw7Dlq5RKGMePB8CphERERERE7sCw5cNsUwlZJIOIiIiIyPUYtnyYMT0dQMu6LYvFza0hIiIiIupdGLZ8mGnkSIjBwVA0NEB9+LC7m0NERERE1KswbPmytuu2cnPd3BgiIiIiot6FYcvHcd0WEREREZF7MGz5OGPb/ba4bouIiIiIyGUYtnycadQoiEFBUNTXQ33kiLubQ0RERETUazBs+TqVCsaUFABct0VERERE5EoMW72AwVYCPj/fzS0hIiIiIuo9GLZ6Adu6Le2ePVy3RURERETkIgxbvYApKQliYCAU589DVVjo7uYQEREREfUKDFu9gUpl32+LJeCJiIiIiFyDYauXMKalAQA0DFtERERERC6hcncDuqO2thZ5eXk4cOAATp8+jbq6OgQGBiIhIQFz5sxBfHx8l8+vqqrCk08+CYPBgOuuuw4PPvigi1ruOQxt122JIqBgziYiIiIikpNXhK0tW7Zg48aNGDBgAJKTk9GnTx9UVFSgoKAABQUFeOyxx5DeUnHvYpIk4Z133nFxiz2P6aqrIAYEQFFXB1VhIcyjRrm7SUREREREPs0rwlZcXByWLFmCxMREh+OFhYVYunQpPvzwQ6SkpECtVrd77pYtW1BcXIw777wT//rXv1zVZM+jVsOYkgJdTg60+fkMW0REREREMvOKuWSpqantghYAJCYmIikpCXq9HuXl5e0er6ysxH//+1/cfPPNGDp0qCua6tFsJeC5bouIiIiISH5eEba6olQqHd7biKKId955B/3798e8efPc0TSPY1+3lZdnXbdFRERERESy8eqwVVNTg0OHDiEkJASDBw92eOzLL79EcXExfvvb33Y4vbA3MiUnQ/T3t67bKi52d3OIiIiIiHyaV6zZ6ojZbMZbb70Fk8mEu+66C4o21fV+/vlnfPrpp7jpppswfPjwHl/bZDLBZDLZPxcEAX5+fvaPvZZGA1NKCrQ7dkCblwfLyJHubpFL2b53Xv09JK/B/kauxj5HrsT+Rq7mrX3OK8OWKIp49913UVhYiGnTpmHy5MkOj73zzjsIDQ3FHXfccVnXX79+PdasWWP/fOjQoVi+fDnCwsKuuO1uN306sGMH+hw4gD6Rke5ujVtERES4uwnUi7C/kauxz5Ersb+Rq3lbn/O6sCVJEt577z3s2rULkyZNwgMPPODw+JYtW3D06FG88MIL0Gq1l3WPuXPnYtasWfbPbQm6uroaZrP58hvvAdRJSegPwJKTg6rTp3vVfluCICAiIgKVlZWQJMndzSEfx/5GrsY+R67E/kau5kl9TqVSdXsQxqvCliiKWLFiBXJycjBx4kQsXLjQYfogAJSWlkKSJCxZsqTDa2zbtg3btm3DuHHjsHjx4g7PUavVna7zcvc390oZk5Mh+vlBWVsLZXExzCNGuLtJLidJktd/H8l7sL+Rq7HPkSuxv5GreVuf85qw1TZopaenY9GiRe2CFgCMHDmyXWVCADh37hwOHDiAqKgoJCQkICYmxgWt9kAaDUzjxkG7axc0+fm9MmwREREREbmCV4SttkErLS2t06AFABkZGcjIyGh3/PDhwzhw4AASExPx4IMPyt1kj2aYMAHaXbugzc1F4z33uLs5REREREQ+ySvC1po1a5CTkwOdToeBAwdi7dq17c4ZP3587x2t6iFjejoAQJOfD0gS4GVVXYiIiIiIvIFXhK3q6moAQHNzM9atW9fhOeHh4Qxb3WS8+mqIOh2UZ89CdfQozJdRHp+IiIiIiLrmFWFr4cKFWLhw4RVdY9SoUVi9erWTWuTlbOu2du+GJjeXYYuIiIiISAa9p+43OTCkpQEAtPn5bm4JEREREZFvYtjqpezrtvLyrOu2iIiIiIjIqRi2einj6NGQdDooa2qgOnbM3c0hIiIiIvI5DFu9lVYL4zXXAGgZ3SIiIiIiIqdi2OrFDC1TCbUMW0RERERETsew1YsZW4pkcN0WEREREZHzMWz1YsYxYyBptVBWV0NZUuLu5hARERER+RSGrd5Mp7Ov2+JUQiIiIiIi52LY6uWMEyYAADTcb4uIiIiIyKkYtno5Q0vY0nLdFhERERGRUzFs9XLGa66xrts6cwbK48fd3RwiIiIiIp/BsNXb6XQwjhkDANByKiERERERkdMwbFHrui0WySAiIiIichqGLYKhZb8trtsiIiIiInIehi2CaexYSBoNlJWVUJaWurs5REREREQ+gWGLIPn5ta7b4lRCIiIiIiKnYNgiAICxZSoh120RERERETkHwxYB4H5bRERERETOxrBFAADTuHGQ1GooKyqgLCtzd3OIiIiIiLwewxYBaFm3NXo0AEDD/baIiIiIiK4YwxbZ2fbb0ubmurklRERERETej2GL7OybG+fnc90WEREREdEVYtgiO+O4cZBUKqhOn4by5El3N4eIiIiIyKsxbJGd5O8Pk23dFkvAExERERFdEYYtcmBo2W+LmxsTEREREV0Zhi1yYExPB8CRLSIiIiKiK8WwRQ6M48ZBUiqhOnWK67aIiIiIiK4AwxY5kAICYLr6agAc3SIiIiIiuhIMW9SOoWUqIddtERERERFdPoYtasfYUiRDk5/v5pYQEREREXkvhi1qx5iSYl23VV4O5alT7m4OEREREZFXYtiidqTAQJiSkwFw3RYRERER0eVi2KIOGSZMAMCphEREREREl4thizpkbAlbLJJBRERERHR5GLaoQ8aUFEgKBVRlZVCcPu3u5hAREREReR2GLeqQFBRkX7el5VRCIiIiIqIeY9iiTtmmErJIBhERERFRzzFsUacMLfttcd0WEREREVHPMWxRp4zjx1vXbZWWQvHzz+5uDhERERGRV2HYok5JwcEwXXUVAK7bIiIiIiLqKYYt6pKxZSoh99siIiIiIuoZhi3qkm1zY21urptbQkRERETkXRi2qEvG8eMhCQJUJ05AUVnp7uYQEREREXkNhi3qktSnD0xJSQC4bouIiIiIqCdU7m5Ad9TW1iIvLw8HDhzA6dOnUVdXh8DAQCQkJGDOnDmIj493OH/btm3Yt28fTp48ifr6eigUCoSHh2PcuHGYOXMmAgMD3fSVeCfjhAnQHDoETW4umm65xd3NISIiIiLyCl4RtrZs2YKNGzdiwIABSE5ORp8+fVBRUYGCggIUFBTgscceQ3p6uv38Xbt2Qa/XIzExESEhITCbzTh69CjWrl2LHTt24JVXXkFISIj7vqArJEmAILjufoYJExD4/vsskkFERERE1ANeEbbi4uKwZMkSJCYmOhwvLCzE0qVL8eGHHyIlJQVqtRoA8Nxzz0Gj0bS7zqeffop169Zh8+bN+PWvf+2StjuLXi9g+fIgbN2qg9kMqFTA9OnNeOaZBgQGSrLe27ZuS11SAsWZMxAHDJD1fkREREREvsAr1mylpqa2C1oAkJiYiKSkJOj1epSXl9uPdxS0AGBCS2W9Si8r9KDXC5g9uz9WrgzAqVMqVFaqcOqUCitXBmD27P7Q6+Ud5pJCQmAeORIAS8ATEREREXWXV4StriiVSof3Xfnuu+8AANHR0bK2ydmWLw/CsWMqiKJjqBJFAceOqfDqq0Gyt8FeAj4vT/Z7ERERERH5Aq+YRtiZmpoaHDp0CCEhIRg8eHC7x3NyclBVVYXm5macOHEChw8fxtChQzFr1qwur2symWAymeyfC4IAPz8/+8eu9s03unZBy0YUBWzdqsOyZQ2ytsGYng58+CG0eXlu+TdwBlu7vbX95F3Y38jV2OfIldjfyNW8tc95bdgym8146623YDKZcNddd0GhaD9Il5OTgyNHjtg/v/rqq/HII49cshrh+vXrsWbNGvvnQ4cOxfLlyxEWFua8L6CbJAkQxa7PEUUVIiIi5S2aMWcOIAhQHTuGSIUC8OJ1WxEREe5uAvUi7G/kauxz5Ersb+Rq3tbnBEmS5K2uIANRFPH2229j165dmDZtGh566KEuz6+vr8exY8fw8ccfo7GxEc8++yyGDBnS6fmdjWxVV1fDbDY77evortTUMJw82Xkujo42Y8+eatnb0f+666A+cgTnVqxA8803y34/ZxMEAREREaisrIQXdnvyMuxv5Grsc+RK7G/kap7U51QqVbcHYbxuZEuSJLz33nvYtWsXJk2ahAceeOCSzwkODsY111yDwYMH47HHHsN7772HV155pdPz1Wq1vbJhR/d3teuvb8bKlQEdTiVUKCRMn97sknYZJkyA+sgR635bs2fLfj+5SJLk9h9S6j3Y38jV2OfIldjfyNW8rc95VYEMURTx7rvvIjs7GxMnTsTChQs7nD7Ymf79+yMqKgolJSUwGAwyttS5nnmmAXFxZigUjh1LECTEx5uxeLG867VsjC1FMliRkIiIiIjo0rwmbImiiBUrViAnJwfp6elYtGhRj4KWzblz5wDgsp7rLoGBEjZvrsG9915AdLQZAQHWRVwxMWZs2lQj+z5bNobUVACA+qefoKipcck9iYiIiIi8lVckjrZBKy0trcug1dDQgJMnT7Y7LkkSVq9ejfPnzyMpKanTaYKeKjBQwtKl9cjPr8Inn5wFAJw9q4RO57phVKlvX5ha9jvj6BYRERERUde8Ys3WmjVrkJOTA51Oh4EDB2Lt2rXtzhk/fjxiYmJw9uxZLF68GHFxcRg0aBBCQkJQX1+PoqIi/PzzzwgJCcH999/vhq/CecaMMSEkRERdnQL792uQmmp02b0NEyZAXVgIbV4emi9RQp+IiIiIqDfzirBVXW2ttNfc3Ix169Z1eE54eDhiYmLQv39/3HLLLThy5AgOHDgAvV4PtVqNyMhI/OIXv8DMmTMRFCT/JsByUiqBjIxmrF/vj6wsrUvDlnHCBOAf/4CGmxsTEREREXXJK0u/u0t1dbVDSXh3WrvWD48+GoqRI0345hv5y77bKGprEXHVVQCAyoMHIfbr57J7XylBEBAZGYmKigqvqmJD3on9jVyNfY5cif2NXM2T+pxare526XevWLNF7U2daoAgSDhyRI2KCtd9G8W+fWEaMQIA120REREREXWFYctL9esnYvRo6yhbdrbOpfc22ErAcyohEREREVGnGLa8WGZmMwAgO1vr0vsa09IAAFqObBERERERdYphy4tlZlo3Zt65Uwuj62pk2MOWurAQitpa192YiIiIiMiLMGx5seRkE/r1s0CvV6CgQOOy+4r9+8M0fDgAQLNnj8vuS0RERETkTRi2vJhCAWRkWEe3XL1uy8h1W0REREREXWLY8nK2dVtZWa5dt2UrkqHNzXXpfYmIiIiIvAXDlpebPNkAhUJCcbEap04pXXZf27otVVERhHPnXHZfIiIiIiJvwbDl5UJDJYwda62O4crRLTEsDKb4eAiSBC3XbRERERERtcOw5QNa1225pwQ8120REREREbXHsOUDpk2zrtvatUsLg8F197Wv22LYIiIiIiJqh2HLB4waZcaAARY0NSmwZ4/rRrdsFQlVR45AqKtz2X2JiIiIiLwBw5YPEARg6lTrkJZL122Fh8M0bBgESYJm716X3ZeIiIiIyBswbPkId5WAN7IEPBERERFRhxi2fMTkyQYolRJKStQoK3NdCXhDejoAFskgIiIiIroYw5aPCA6WMH68tQS8K6sS2ioSqg8fhnD+vMvuS0RERETk6Ri2fIitBPz27TqX3VMcMADm2Fjrui3ut0VEREREZMew5UNs67Zyc7VoanLdfe0l4PPzXXdTIiIiIiIPx7DlQ0aMMCMy0oLmZgH5+a4vAc91W0RERERErRi2fIgguKcqocG2buvHHyHU17vsvkREREREnoxhy8dkZrau25Ik19xTjIyEOSYGgihyvy0iIiIiohYMWz7m2msNUKsllJWpcPy460vAazmVkIiIiIgIAMOWzwkMbFsC3nVVCblui4iIiIjIEcOWD3Lruq1DhyA0NLjsvkREREREnophywdNm2Zdt5WXp0Vjo+CSe4oDB3LdFhERERFRGwxbPiguzoxBg8wwGgV8+63GZfe1jW5puN8WERERERHDli+yloC3jm5lZbl+3RaLZBARERERMWz5rLbrtlxVAt4WttQHD0LQ611zUyIiIiIiD8Ww5aMmTjRCq5Vw6pQKx46pXHJPS1QUzIMHQ7BYoCkocMk9iYiIiIg8FcOWj/L3l5CWZtvg2HVVCVkCnoiIiIjIimHLh7lj3ZatSAbXbRERERFRb8ew5cNs67b27tVAr3dNCXj7uq0ffoBw4YJL7klERERE5IkYtnxYbKwFMTFmmEwCdu92zVRCS3Q0zNHRXLdFRERERL0ew5aPa1uV0FWMtv22OJWQiIiIiHoxhi0fZ1u3tX27zmUl4A3cb4uIiIiIiGHL16WlGaDTSaisVKKoyDUl4I3p6QBa1m01NrrknkREREREnoZhy8f5+QHp6a6tSmiJjoY5KgqC2QzNvn0uuScRERERkadh2OoFpk1zw7ot235bubkuuycRERERkSdh2OoFMjKsI1sFBRrU17umBLxt3ZYmP98l9yMiIiIi8jQMW73AkCEWDBtmgsUiYOdO14xu2Ue2vv+e67aIiIiIqFdi2OolbFUJXbZua/BgmAcOhGAyQc11W0RERETUCzFs9RK2/bays7WuKQEvCPb9trScSkhEREREvRDDVi+RmmqEv7+IqiolDh92bQl4bm5MRERERL2Ra151X6Ha2lrk5eXhwIEDOH36NOrq6hAYGIiEhATMmTMH8fHx9nPNZjP27duH/fv349ixY6ipqYEgCBg0aBCmTJmC66+/HgpF78uYWi1w7bUGbN3qh+3bdUhK0st+T0PLyJbm++8hNDVB8vOT/Z5ERERERJ7CK1LHli1b8NFHH+HMmTNITk7G7NmzMWLECOzbtw9/+MMfkNumvPiZM2fwxhtvYO/evYiMjMSMGTNw7bXX4uzZs/j73/+OP//5z5BcMo/O87h83VZMDCwRERCMRqj373fJPYmIiIiIPIVXjGzFxcVhyZIlSExMdDheWFiIpUuX4sMPP0RKSgrUajX8/Pzwm9/8BlOmTIFW21p5r7m5GUuWLMH+/fuRn5+PCS3V8noTW9j67js1zp0TEBoqc+gUBBjS0+G/bh20eXkwXnutvPcjIiIiIvIgXjGylZqa2i5oAUBiYiKSkpKg1+tRXl4OAOjbty+mT5/uELQAQKfTYebMmQCAI0eOyN9oDxQVZUFCggmi6MIS8LaphCySQURERES9jFeEra4olUqH911RqVTdPtdX2Ua3tm93zVRC++bG330HNDW55J5ERERERJ7Aq8NWTU0NDh06hJCQEAwePPiS52dnZwMAkpOT5W6ax8rIsJaAz8nRQhTlv59l6FD7ui3Nd9/Jf0MiIiIiIg/hFWu2OmI2m/HWW2/BZDLhrrvuumSFwW3btuHAgQNISkrCNddc0+W5JpMJJpPJ/rkgCPBrqaQnCMKVN96Nxo83ITBQxNmzShw6pMHo0aZLP+lKtOy35bdhA7T5+TC5cd2W7Xvn7d9D8g7sb+Rq7HPkSuxv5Gre2ue8MmyJooh3330XhYWFmDZtGiZPntzl+d999x3+/ve/IywsDIsWLbrk9devX481a9bYPx86dCiWL1+OsLCwK267J5g+HVi3Dti7tz9uvNEFN7zxRmDDBgTt34+gyEgX3LBrERER7m4C9SLsb+Rq7HPkSuxv5Gre1ucEycvqoEuShBUrViA7OxuTJk3CwoULuxzV+v777/HnP/8ZwcHBeOmllzBgwIBL3qOzka3q6mqYzWanfB3u9MknfnjqqRBcc40Rn39+Vvb7KY8dQ/jkyZC0WlQWFgI616wXu5ggCIiIiEBlZWWvLf9PrsP+Rq7GPkeuxP5GruZJfU6lUnV7EMarRrZEUcSKFSuQk5ODiRMndjtoBQUF4cUXX+xW0AIAtVoNtVrd4WPu/uY6w9Sp1nVbBw6oUVMjoF8/eRdvmWNjYQkPh7KqCurvvoPRzWX3JUnyie8jeQf2N3I19jlyJfY3cjVv63NeUyCjbdBKT0/HokWLuhW0AgMD8eKLL3rdkKOcIiNFjBxpgiQJyMlxQQl4QWitSpiXJ//9iIiIiIg8gFeErbZBKy0trdtBKyAgAC+++CIiPWCdkKfJzLSObmVluXa/LS3DFhERERH1El4xjXDNmjXIycmBTqfDwIEDsXbt2nbnjB8/HjExMTh9+jT+/Oc/w2QyYeTIkdi9e3e7c8PDwzF16lQXtNxzZWYa8Le/BSEnRweLBZB76zFjejqAlv22mpvdtm6LiIiIiMhVvCJsVVdXAwCam5uxbt26Ds8JDw9HTEwM6urq7MUtcnNzOzx35MiRvT5sjR1rRHCwiLo6BQ4cUGPcOHlLwJuHDYMlLAzK6mpovv/ePtJFREREROSrehy21qxZA51Oh1mzZrV7rLa2FqIoon///p0+/7XXXkNjYyNeeOGFbt9z4cKFWLhwYbfOHTVqFFavXt3ta/dWKhUwZYoBmzf7IStLJ3vYsu+3tXkzNHl5DFtERERE5PN6vGbrs88+w+bNmzt87Pe//z0eeeSRLp//008/4fDhwz29LckgI8O6bis72zXrtmxFMrhui4iIiIh6A6cXyPCmUoy9XUaGAQBw8KAGVVXy10qxlXxX798PGAyy34+IiIiIyJ28ohohySM8XERyshGAa0a3zPHxsPTrB0VzMzQ//CD7/YiIiIiI3Ilhq5fLzLSOMGVnu6A6oCDYR7c0nRQvISIiIiLyFQxbvZxt3daOHVqYzfLfz75uKz9f/psREREREbkRw1YvN2aMCSEhIurrFdi/XyP7/ezrtgoKAKNR9vsREREREbkLw1Yvp1S2jm5lZblg3dbw4bD07QtFczPUXLdFRERERD6MYYvsVQmzsly0bqtljy2WgCciIiIiX9bjTY0BoLm5GWvWrOnwOIAOH7v4HPIcU6caIAgSjhxRo6JCgchIUdb7GdLT4ffll9Dk5QGPPirrvYiIiIiI3OWyw9Znn33W6eNdPUaep18/EaNHm3DggAbZ2Tr86leNst7PNrKlKSgATCZArZb1fkRERERE7sBphAQAyMy0jji6ZL+thARYQkOhaGriui0iIiIi8lk9HtlatWqVHO0gN8vMNOD114GdO7UwGgGNnIUJFQoYJ0yA35dfQpuXB9O4cTLejIiIiIjIPTiyRQCA5GQT+vWzQK9XoKDABSXgbVMJud8WEREREfkohi0CACgUrVUJs7Plr0po29xYs3evdd0WEREREZGPkT1s1dfXo7FR3oIL5By2dVsu2W9rxAiIISFQNDZCfeiQ7PcjIiIiInK1y6pGeClmsxmffvopsrOzodfrAQDh4eGYPXs2pk+fLsctyQkmTzZAoZBQXKzG6dNKREVZ5LuZQgFDWhr8vvrKum7rmmvkuxcRERERkRv0eGTrp59+wu233477778fpg6mf0mShOXLl2Pz5s32oAUAVVVV+Pvf/45PPvnkylpMsgkNlTB2rBGAa0a3jLaphNzcmIiIiIh8UI/DVmFhIQBg4sSJUHewP9KOHTtw8OBBAEBwcDCmTZuGmTNnon///gCAzZs3o7y8/EraTDKyrdtyRdgy2Ipk7N0LmM2y34+IiIiIyJV6HLaKiooAAOM6Kdf99ddfAwDCwsLw2muv4cEHH8T//M//4PXXX8fgwYMhiiJycnIuv8Ukq2nTrOu2du3SwmCQ917mkSOt67YuXOC6LSIiIiLyOT0OW1VVVQCA+Pj4do/V19fj+PHjAIBbbrkFffr0sT+m0+kwd+5cAEBxcfFlNZbkN2qUGQMGWNDUpMCePTKPbikUMKSmAmAJeCIiIiLyPT0OW3V1dfD394efn1+7x3766Sf7xykpKe0eHzNmDACgsrKyp7clFxEEYOpU100ltO23pc3Nlf1eRERERESu1OOw1djYCFEUO3zMNqrVv39/h1EtGz8/P+h0OjQ1NfX0tuRCriwBb0hPB8B1W0RERETke3octvz9/dHc3Nzh3lklJSUAgKFDh3Z9UwX3UvZkkycboFRKKClRo6xMKeu9zImJEIODodDroT58WNZ7ERERERG5Uo9TT1RUFACgoKDA4bjBYLBXKhw+fHiHz21qakJzczOCg4N7eltyoeBgCSkp1hLw2dkyj24plTDa1m2xBDwRERER+ZAeh63Ro0cDANasWYPa2lr78VWrVsHQUr6us0qFx44dAwAMHDiwp7clF8vMtH4vt2/XyX4vQ8t+W1y3RURERES+RNXTJ1x33XX44osvUFVVhUWLFiEmJgbnzp3D2bNnAQDJycmdhinbaFhcXNwVNJlcITOzGa+8EozcXC2amoAO6qE4jX1z4717AYsFUMo7dZGIiIiIyBV6PLIVHByMxx9/HDqdDmazGceOHbMHrdDQUDz44IMdPs9oNOLbb78FYA1k5NlGjDAjMtKC5mYB+fnyTiU0jRoFMSgIioYGrtsiIiIiIp/R45EtALjqqqvw+uuvY9u2bSgtLQVgHa2aMWMGgoKCOnzO8ePHMWrUKCiVSowYMeKyG0yuIQjW0a3//CcAWVlaZGTIuMOxUgnj+PHQbd8OTV4eTAzjREREROQDLitsAdby7nfccUe3zx8xYgRDlpfJzDS0hC0dli2rl/VehvR06LZvhzYvDxceekjWexERERERuQJrsFOnrr3WALVaQmmpCsePy7uOyr5ua88e67otIiIiIiIv1+ORrZqaGqfcuH///k65DsknMFDC+PFGfPutFllZOsTGXpDtXqZRoyAGBkJRXw9VYSHMSUmy3YuIiIiIyBV6HLYWLlx4xTcVBAGffvrpFV+H5JeZ2dwStrT4zW/kC1tQqazrtrKyoM3NZdgiIiIiIq/nlmmEkiS547Z0GaZNsxbGyMvTorFRkPVehvR0ANzcmIiIiIh8w2UXyAgPD8eUKVMwcuRIZ7aHPExcnBmDBplx6pQK336rwfXXy1eV0JiWBgDQ7t0LiCKg4JJCIiIiIvJePQ5bo0ePxsGDB1FVVYXPPvsMAwYMwNSpUzF16lT07dtXjjaSG1lLwBvwr3+pkJWlkzVsma66CmJAABR1dVAdOcKphERERETk1Xo8dPDss8/inXfewS9/+UtERkbizJkzWLVqFRYuXIhXXnkFeXl5MJvNcrSV3CQzsxkAkJWlhawzQFvWbQGANj9fxhsREREREcnvsqYRhoaG4pZbbsEtt9yCoqIiZGdnIz8/Hz/88AN++OEHBAQE4Nprr8XUqVMRGxvr7DaTi02caIRWK+HUKRWOHVMhPl6+MG2cMAG67Gxo8vJw4Te/ke0+RERERERyu+w1Wza2zYrvu+8+5ObmIicnB0VFRfj666/x9ddfY/DgwcjIyMCkSZMQFBTkjDaTi/n7S0hLM2DHDh22b9fKGrYMLfttafPzuW6LiIiIiLya017JarVaZGRkYMmSJfjrX/+KW265BX379kV5eTk++ugjbNy40Vm3IjfIzLSu1crK0sl6H9NVV0H097eu2yoqkvVeRERERERykmXYICIiAhkZGbj22muhUl3x4Bl5ANu6rb17NdDrZSwBr1a3rttiCXgiIiIi8mJOTUIGgwF5eXnIzs5GUZtRicGDByOJleW8WmysBTExZpSWqrB7txY33NAs272MEyZAl5MDTX4+Ltx/v2z3ISIiIiKSk1PCVlFREbKysrBnzx40N1tfhAcEBGDixInIyMhgkQwfkZnZjH/8IxBZWfKGLUPLfluavDyu2yIiIiIir3XZYau2thY5OTnYsWMHKisrAQCCICA5ORkZGRkYP348pxD6mMxMA/7xj0Bs366DJJ2HINNsQtPVV0P084Py3DmoiothTkyU50ZERERERDLqcRqyVRw8dOgQRFEEAPvGxlOmTEG/fv2c3kjyDGlpBuh0EiorlSgqUiExUaaqhGo1jCkp0O3cCU1+PsMWEREREXmlHoetv/71rwCs1QfT0tKQkZGBRJlfDNfW1iIvLw8HDhzA6dOnUVdXh8DAQCQkJGDOnDmIj493OL+0tBS5ubk4ceIEjh8/joaGBowcORIvvfSSrO30dX5+QHq6AVlZOmRl6ZCYqJftXsYJE6DbuRPa3Fw03nuvbPchIiIiIpLLZc/z02q1OHLkCI4cOdLj5wqCgLfeeqvb52/ZsgUbN27EgAEDkJycjD59+qCiogIFBQUoKCjAY489hvT0dPv5e/fuxYYNG6BSqRAZGYmGhoYet5E6Nm1ac0vY0mLhQvnClm2/LU1+PiBJkG3OIhERERGRTC47bNXX1zuzHV2Ki4vDkiVL2o2gFRYWYunSpfjwww+RkpICtVoNAJgwYQLGjRuHwYMHQ6/X48EHH3RZW31dRoZ1v62CAg3q6wUEB0uy3Md09dUQdTooa2uh+uknmBMSZLkPEREREZFcehy25s2bJ0c7upSamtrh8cTERCQlJeGHH35AeXk5hg0bBgCIjo52ZfN6lSFDLBg2zISSEjV27tRi1iyZqhJqNDClpEC7axc0eXkMW0RERETkdXoctm677TY52nHZlEqlw3uSX2amASUlamRl6eQLW7CWgNfu2gVtXh4a77lHtvsQEREREcnBq2uz19TU4NChQwgJCcHgwYOddl2TyQSTyWT/XBAE+Pn52T/u7aZNM+CDDwKRna0FIMi2nMrYsg5Pk5cHAbjidVu27x2/h+QK7G/kauxz5Ersb+Rq3trnvDZsmc1mvPXWWzCZTLjrrrugcOLGt+vXr8eaNWvsnw8dOhTLly9HWFiY0+7hzW65BQgIAKqqlDhzJhJjxsh0oxtvBPz8oDx7FpF1dcDIkU65bEREhFOuQ9Qd7G/kauxz5Ersb+Rq3tbnvDJsiaKId999F4WFhZg2bRomT57s1OvPnTsXs2bNsn9uS9DV1dUwm2XaW8rLTJwYiq1bdVi1qgEREfJVJew7diy0u3fj/KZNaAwNvaJrCYKAiIgIVFZWQpLkKexBZMP+Rq7GPkeuxP5GruZJfU6lUnV7EMbrwpYkSXjvvfewa9cuTJo0CQ888IDT76FWq+2VDTu6PwGZmc3YulWH7du1ePRR+UrrG9LSoN29G5rcXFz4n/9xyjUlSeL3kVyG/Y1cjX2OXIn9jVzN2/qc8+beuYBtRCs7OxsTJ07EwoULnTp9kLovM9NaAv6779Q4d06+ubP2dVu2/baIiIiIiLyE1yQVURSxYsUK5OTkID09HYsWLWLQcqOoKAsSEkwQRQE7d2plu49x9GhIOh2U1dVQlZTIdh8iIiIiImfzirTSNmilpaUxaHkI2+jW9u06+W6i1cJ4zTUAAE1urnz3ISIiIiJyMq9Ys7VmzRrk5ORAp9Nh4MCBWLt2bbtzxo8fj5iYGADA6dOnsWHDBgCA0Wi0H3v77bcBAEFBQfgfJ63/6c0yMprx7ruByMnRQhQBufKvYcIEaHNzocnPRyO/b0RERETkJbwibFVXVwMAmpubsW7dug7PCQ8Pt4eturo67Nixw+Hx8+fP24+FhYUxbDlBSooRgYEizp5V4uBBNUaPNl36SZfBOGECAECbl2ddt+Vl+ysQERERUe/kFWFr4cKFWLhwYbfPHzVqFFavXi1jiwgANBpg8mQDvvzSD1lZWvnC1pgxkLRaKKuqoCwpgSUuTpb7EBERERE5Exc+0RWxrdvKypJx3ZZOZ1+3pc3Pl+8+REREREROxLBFV2Tq1GYAwPffq3H2rHzdyTaVUJOXJ9s9iIiIiIiciWGLrkhkpIiRI02QJAE5OfKVgDfY1m1xvy0iIiIi8hIMW3TFMjOto1vZ2TLutzVmDCSNBsrKSihPnJDtPkREREREzsKwRVfMtm4rO1sHi0Wmm/j5ta7b4lRCIiIiIvICDFt0xcaONSI4WERdnQIHDqhlu48xLQ0AoGGRDCIiIiLyAgxbdMVUKmDKFPmrEtrXbeXmct0WEREREXk8hi1yiowM+ddtmcaObV23VVoq232IiIiIiJyBYYucIiPDOrJ18KAGVVXydCvJzw/G0aMBcL8tIiIiIvJ8DFvkFOHhIpKTjQBkrkpo228rN1e2exAREREROQPDFjlN26qEcjG0LZLBdVtERERE5MEYtshpbOu2duzQwmyW5x6mceMgqdVQ/fwzlOXl8tyEiIiIiMgJGLbIacaMMSEkRER9vQL792tkuYfk729ft6XhfltERERE5MEYtshplMrW0a2sLBnXbbVMJeTmxkRERETkyRi2yKlsVQnl3G/LmJ4OgCNbREREROTZGLbIqaZONUAQJBw5okZFhTzdyzhuHCSVCqrTp6E8eVKWexARERERXSmGLXKqfv1EjB5tAiBfVULJ3x+mq68GwBLwREREROS5GLbI6TIzreu25Nxvy9Cy3xbXbRERERGRp2LYIqez7be1c6cWRqM897BvbpyfL88NiIiIiIiuEMMWOV1ysgn9+lmg1ytQUCBPCXhjSgokpRKqkye5bouIiIiIPBLDFjmdQmEtlAHIuG4rIKB13RanEhIRERGRB2LYIllMmyb/flv2dVucSkhEREREHohhi2QxebIBCoWE4mI1Tp9WynIP+7otjmwRERERkQdi2CJZhIZKGDvWWh1DrtEt+7qt8nIoT5+W5R5ERERERJeLYYtkk5FhXbclV9iSAgNhSk4GwNEtIiIiIvI8DFskG9u6rd27tTAY5LmHgVMJiYiIiMhDMWyRbEaNMmPAAAsaGxXYs0emEvBpaQBYJIOIiIiIPA/DFslGEFpLwGdlyVMC3jh+PCSFAqrSUih+/lmWexARERERXQ6GLZJVZqa8JeCloCD7ui2ObhERERGRJ2HYIllNnmyAUimhpESNsjKZSsC3TCXkui0iIiIi8iQMWySr4GAJKSnWEvDZ2fKMbtk3N87NleX6RERERESXg2GLZJeZaV23tX27C9ZtVVTIcg8iIiIiop5i2CLZ2dZt5eZq0dTk/OtLwcEwJSUB4LotIiIiIvIcDFskuxEjzIiMtKC5WUB+vjxTCY3cb4uIiIiIPAzDFslOEOSvSmiw7bfFsEVEREREHoJhi1zCtm5Ltv22UlMhCQJUx49DceaMLPcgIiIiIuoJhi1yiWuvNUCtllBaqsLx484vAS/16WNft6Xhui0iIiIi8gAMW+QSgYESxo+3loCXbXTLNpWQJeCJiIiIyAMwbJHLyL5uKz0dAItkEBEREZFnYNgil5k2zbpuKy9Pi8ZGwenXN44fD0kQoC4pgaKqyunXJyIiIiLqCYYtcpm4ODMGDTLDaBTw7bcap19fCgmBeeRIABzdIiIiIiL3Y9gil7GWgJe3KqGhZb8tloAnIiIiIndj2CKXartuS5Kcf3375sasSEhEREREbqZydwO6o7a2Fnl5eThw4ABOnz6Nuro6BAYGIiEhAXPmzEF8fHy75zQ2NuKzzz7Dnj17UFdXh5CQEKSmpuK2226Dv7+/G74KAoCJE43QaiWcOqXCsWMqxMebnXp9Q8t+W+qjR6GoroYYFubU6xMRERERdZdXjGxt2bIFH330Ec6cOYPk5GTMnj0bI0aMwL59+/CHP/wBuReV+m5ubsZLL72EL774AgMHDsTMmTMxaNAgfPHFF3jppZfQ3Nzspq+E/P0lpKVZpxJu3+78qoRSaCjMiYkAOLpFRERERO7lFSNbcXFxWLJkCRJbXkTbFBYWYunSpfjwww+RkpICtVoNANi0aRNKS0tx880346677rKfv3r1aqxZswabNm3C/PnzXfo1UKvMTAN27NAhK0uHhx++4PTrGyZMgPrIEWjz8tA8e7bTr09ERERE1B1eMbKVmpraLmgBQGJiIpKSkqDX61FeXg4AkCQJ27dvh06nw7x58xzOv+WWWxAQEICsrCxIciwYom6xrdvau1cDvV6GEvC2dVsskkFEREREbuQVYasrSqXS4X1FRQXOnTuHhIQE6HSOFe80Gg0SExNRW1uLyspKl7eVrGJjLYiJMcNkErB7t/OnEhpTUwEA6p9+gqKmxunXJyIiIiLqDq8OWzU1NTh06BBCQkIwePBgALCHqMjIyA6fYzteUVHhmkZSh9pWJXQ2sW9fmLhui4iIiIjczCvWbHXEbDbjrbfegslkwl133QWFwpobGxsbAaDTioN+fn4O53XEZDLBZDLZPxcEwf48QXD+tLfeaNo0I/7xD9t+W/Vw9j+rccIEqAsLoc3Ph6Fl3Zbte8fv4WWQJDj9m+Tj2N/I1djnyJXY38jVvLXPeWXYEkUR7777LgoLCzFt2jRMnjzZqddfv3491qxZY/986NChWL58OcJYRtxp5s4FdDqgokKJs2cjcdVVTr7BTTcB//gHAgoKEHDRKGdERISTb+ajGhqA554DNm8GTCZArQZmzwZefhkICnJ367wG+xu5GvscuRL7G7mat/U5rwtbkiThvffew65duzBp0iQ88MADDo/bRrQ6G7lqampyOK8jc+fOxaxZs+yf2xJ0dXU1zGbn7gvVm02cGIrt23X49NN69O/v3KqEioQEDACAH39E5Y8/QurXD4IgICIiApWVlSyQcgmCXo9+s2dDdfQoBFG0H5fefhvmrVtxdvNmSIGBbmyh52N/I1djnyNXYn8jV/OkPqdSqbo9CONVYUsURaxYsQI5OTmYOHEiFi5caJ8+aGNLu52tybId72xNFwCo1Wp7GfmLufub60syM5uxfbsOWVlaLFyod+q1LX37wpSQAHVxMTT5+Wi+6Sb7Y5Ik8ft4CUF/+lO7oAUAgihCdfQoApcvR/3SpW5qnXdhfyNXY58jV2J/I1fztj7nNWGrbdBKT0/HokWL2gUtwBqiQkNDUVxcjObmZoeKhEajEYWFhQgNDfW6IUhflJFh3dy4oECD+noBwcHO/cExTphgDVt5eQ5hizphMEBVXg7V8ePwW7u2XdCyEUQR/p9+CsnPD2JoKMTQUEghIfaPxdBQiH36WKcdEhEREfViXhG22gattLS0ToMWYB1inDZtGtasWYM1a9Y4bGq8YcMGXLhwATfeeKPXLa7zRUOGWDBsmAklJWrs3KnFrFnNTr2+YcIEBKxcCS3322olilD+/DNUx49Defw4VG3elCdPdhqwLqa4cAFBf/tb17cKCmoNX23CmHTR523PkYKDWYiDiIiIfIZXhK01a9YgJycHOp0OAwcOxNq1a9udM378eMTExAAAbr75Zuzbtw+bNm1CaWkpYmNjUVZWhgMHDiAmJgY333yzi78C6kxmpgElJWpkZemcHraMaWkAAHVhIYTaWqBfP6de32NJEhS1tR0GKlVpKYTmzv+dxcBAmGNjoTp6FIqW9Y0dsQQHo+m226A4dw6Kujrre9vb+fMAAEVDAxQNDUDLhuPdarpSaQ9i7UbLuvgcLdVCPY4XTXMgIiIi5/OKsFVdXQ0AaG5uxrp16zo8Jzw83B62dDodXnrpJXz22WfIz8/H4cOHERISgpkzZ+K2225rt9kxuU9mZjM++CAQ2dlap1cXF/v3h2n4cKh/+gnaPXtg8LGphMKFC1CeOAFVSUlrmDpxAqrjx+2BpyOSWg1zTAzMsbGwxMbC3OZNDAsDBAHBzz+PgJUrOxzpkhQKNN12W+drtiwWKM6fh1Bb23EYu+hzwfZ5UxMEiwXKs2ehPHu2R/8Wok536XBmG1VrO9VR5fxfgYJej6Dly6H75htAFBGmUKD5+uvR8MwzLCpCRETUywiSN60wc7Pq6mqH/bfoyhkMQFJSBBobFfj66yokJTm32mOf//1fBHz0EfT334+GZcsQGRmJiooK71lYaTJB2bKOSnX8eGuwOnECypYNvDsiCQIsUVEdBipLVNQlQ4ag16P/7NlQHTvmWI1QoYA5Ph41mzY5Pzg0N18ynAkXP15XB+EKKoSKwcGdhrPOwpsUFNTpXwW6/HeLi0MNqziSjARB8L7fceS12N/I1Typz6nVat+sRki+R6sFrr3WgK1b/bB9uw5JSc6tSmhIS0PARx9Bm5eHBqde2YlEEYrKSsfpfrZ1VOXlECyWTp9q6du3XZgyx8bCHBNzRVPrpMBA1GzejKBXX4Vu61b7PlvN06ejYfFieQKDTgcxMhJiF5VC2zdUgqDXtwtnQhcjaYq6utapjvX1UNTXA2Vl3b+lSmUNXh2sQ1Pv22et4njRfwKCKEJ17BiCXn2VVRyJiIh6EY5s9QBHtuTx73/74/e/D0FKigEbNvRs+tilKKqrETF6NCRBwJkff0TEyJFu+4uIcO5cx4HqxIku10eJfn4dB6qhQyGFhrqm8c6e4+luZjMU58+3jpZd/NZBQBPOnYOii/Vu3bptdDSq8vOd9EUQOfKkv/qS72N/I1fzpD7HkS3yKpmZ1hLw+/drcO6cgNBQ5/0AiWFhMMXFQX3sGDR79gAjRzrt2h0Rmpqs66guDlTHj0N57lynz5NUKlgGD24fqGJjIUZEuD/ouPv+zqZSQezXD2JPi6Y0NXU51dH/X//qMjjDYPC94EpERESdYtgit4uKsiAhwYTiYmsJ+DlznFyVcMIEa9jKywPuuefKL2g2Q3nyZIeBSvXzz10+1RIZ2WGgskRHc18qb+DnB9HPD+LAgR0+rPviCyhOner06crqagS++SYuPPggpIAAuVpJREREHoJhizxCZqYBxcVqbN+uc37YuuYaBPz73whYuRL48svuVYeTJCjOnOk4UJWVdVmUQQwJ6ThQDR0Kyd/fqV8beZbm6dM7r+IIQJAkBL/2GgL++U/oH30UF379a+vCRSIiIvJJXLPVA1yzJZ9vv9Vg/vz+6NfPgu+/P4NO9qzuMUGvR/8bb4T6+HGH47bqcGf/8x8oLwpVypZqf4oLFzq9rqjTwTJ0aIehSurb1zmNJ69zqWqE+ocfRtD/+39QlZYCAMxRUWh48kk0zZsHKJVuajX5Ck9az0C+j/2NXM2T+lxP1mwxbPUAw5Z8jEbgqqsioNcr8MUX1Rg92jn/zl3uFwWgq5UzklIJS3R0x+uoIiPhtERIPkXQ6+1VHFWiCLNC4VjF0WSC/6pVCPrLX+zl+03x8WhYvBjNN97I9Vx02TzphQj5PvY3cjVP6nMMWzJh2JLXAw+E4ssv/fDkk/V44gnnlIAPT02Fqos1NABgGTCg42l/gwcDGo1T2kG9jyAIiIyIQEVlZcf/KTQ1IWDlSgT97W9Q1NUBAIxjxqD+mWdgnDTJtY0ln+BJL0TI97G/kat5Up9jNULySpmZBnz5pR+ysnTOCVuSBFxiw1tzeDiq9u/naALJo6t+5eeHC7/9LRp/9SsErliBgA8+gObAAfS/4w4Yrr0W9c8+C9Po0S5rKhERETkf50GRx5g61VoY4/vv1Th71gldUxAA1SX+nqDRMGiRW0l9+qDhmWdQlZcH/X33QVKrod29G2EzZyL0gQegOnrU3U0kIiKiy8SwRR4jMlLEyJEmSJKAnBznVGhrnj4dUidrqySFAs0zZjjlPkRXSgwLQ/2yZajatQuN8+ZBEgT4ffklwjIzEfLEE1CePu3uJhIREVEPMWyRR8nMtI5uZWc7J2w1PPMMzHFx7QKXpFDA3FKUgMiTWKKjUffXv6J6+3Y03XADBFGE/6pVCL/2WgS/8AIUNTXubiIRERF1E8MWeZTMTAMAIDtbB4vlyq8nBQaiZvNmXLj3Xpijo4GoKJijo3Hh3ntRs2lT5/tsEbmZOSEB5/7+d1Rv2gRDejoEoxGBf/87wtPTEfTaaxAaGtzdRCIiIroEViPsAVYjlJ/ZbC0BX1+vwMaN1Rg3znn/3pesDkfkRE6tmiRJ0O7ahaA//hGagwcBAJbQUOgfeQQX7rkH0OmuvMHk9TypUhf5PvY3cjVP6nM9qUbIkS3yKCoVMGVK6+iW07EYBnkjQYBh8mTUfPklat97D6Zhw6A8dw59li3DgGuvhf8nn1yy8iYRERG5HsMWeZyMDOu6raws56zbIvIZgoDmWbNQnZWFc6+/DktkJJQVFQh5+mmEZ2RAt3kz0MEG3kREROQeDFvkcTIyrCNbBw9qUFXFLkrUjkqFpjvuwJndu3H+xRdh6dsXquPH0ffhh9H/ppugzcmx7jNHREREbsVXsuRxwsNFJCcbATivKiGRT9LpcOHBB1GVm4uGJ56AGBAAzaFD6Hfnneh3221Q79vn7hYSERH1agxb5JHaViUkoq5JQUFoePJJ68bIDzwASaOBNi8PYXPmIPTee6EqKnJ3E4mIiHolhi3ySLZ1Wzt2aLnun6ibxH79UP/SS6javRsX7rgDkkIBv61bEXbddQh59FEoy8vd3UQiIqJehWGLPNKYMSaEhIior1dg/36Nu5tD5FUsUVE4//rrqM7ORtPMmRAkCf5r1yJ88mT0ee45KKqq3N1EIiKiXoFhizySUsmqhERXyhwXh3Pvv4/qL79E8+TJEEwmBKxcad0Y+U9/gnD+vLubSERE5NMYtshj2aoSZmVx3RbRlTBdfTVq//tf1KxaBeOYMVA0NSHorbcwID0dgW+/DaGpyd1NJCIi8kkMW+Sxpk41QBAkHDmiRkUFuyrRlTJeey1qNm9G7d//DtPw4VDU1SH4lVcQPnEi/P/1L8BkcncTiYiIfApfwZLH6tdPxOjR1hd/OTkc3SJyCkFA8w03oHrbNpx7802YBw2C8swZhDz7LMKnToXf+vXcGJmIiMhJGLbIo2Vmct0WkSyUSjTddhuqdu7E+WXLYOnfH6rSUoQ+8gjCZsyAdts2boxMRF3j7wiiS2LYIo9m229r504tjEY3N4bIF2m1uHDffajKzUX9009DDAqC+sgR9Lv7bvT7xS+g2bvX3S0kIg8i6PUIfv55hKWmAtHRCEtNRfDzz0PQ693dNO/CoNprMGyRR0tONqFfPwv0egUKClgCnkguUkAA9I8/jjO5udD/9reQdDpo9+5F/7lz0ffXv4bqxx/d3UQicjNBr0f/2bMRsHIlVCdPAqdPQ3XyJAJWrkT/2bMZuC7BFlTDU1MRPm4cwhlUewWGLfJoCoW1UAYAZGdz3RaR3KS+fVH/hz/gzO7duHDnnZCUSuiyshA+YwZCFi6E8sQJdzeRiNwkaPlyqI4dg3DRuk5BFKE6dgxBr77qppZ5PoegeuoUVJWVUJ06xaDaCwiSxHHM7qquroaJ1bpcbuNGHRYs6IuEBBOysqov+zqCICAyMhIVFRVgtye5+Up/Ux4/jqDXXoP/xo0AAEmlQuMdd6Dhd7+DGBHh5tZRW77S58jDWCxQnjwJ1dGjCHnsMSi72J9PAiD5+1s3y1QqISmVgEplfW87plJ1/rFCYX3f9uOLzrVfq6vrXvy4SgVJobC+b7l2u8c7+Lhbj7dt18UfKxSAIAAAgp9/HgErV7YLqgAgKRS4cO+9qF+6VK7vok/wpN9xarUaYWFh3TqXYasHGLbc49w5AcnJERBFAXv3nkFUlOWyruNJP6Tk+3ytv6l+/BHBy5dDl5UFAJB0Oujvuw/6BQsghYa6uXUE+F6fIxdraoKqpASqkhKojx6F6tgx69vx4xAMBne3zmvZg5fRCKGLn0tzeDiqt2+3/j5tCWjkyJN+x/UkbKlkbgvRFQsNlTB2rBEFBVpkZWnx6183urtJRL2OOSkJtf/+NzT5+Qj+4x+h2bcPQe+8g4CPP4b+t7/Fhd/8xvoXbSLyaIraWmuIahuojh6F8tSpTsOApNXCHBsLZWkpFF1sgm6OiMDZdesAiwWCxQKYzQ4fC6LY7pjDx6IIwWzu9FzBYgG6cy2LxXqdzj623eeiYzCbHT/u6Pkd3cvS+R+B7W2+BFVVFSKvugpinz4wDx0Kc0wMLDExMMfEwDx0KCxDh0Ls25dBzAsxbJFXyMgwMGwReQBjWhpqNmyAdts2BC9fDnVhIYKXL0fAP/6BhsceQ+OddwIaFrMhcitRhPL0aWugOnrUOmLVEq6UtbWdPy0kBOa4OJji42GOi7O/WaKjAaXyklPhmmfOhGXIEDm/Ms8kSZ2HsZaP+998M1SVlZ1fQqmEYLFAcf48NN9/D83337c7RwwKsoawljBm/3joUIj9+zOIeShOI+wBTiN0nx9/VGHGjHD4+4v48cdKaC9j2y1PGn4m39cr+psowm/jRgT9+c9QlZUBAMzR0Wh46ik0zZ1rXd9ALtMr+hw5am6G6sQJh0ClPnYMypISKJqbO32aOSoK5vh4mIcNs76Pi4M5Ph5iv35dvmC3FXm4uEiGpFDAHB+Pmk2bIAUGOvVL9BXdWbPV8OyzUJaVQVVaCmVpKVTHj9s/Vv78c5fTEMWAAOtImC2IDR1q/1wMD/eJIOZJv+O4ZksmDFvuI0nA2LEDcOaMEv/9bw0mT+75plue9ENKvq9X9TejEf7//S+C3nwTyqoqAIApIQENzzyD5unTfeI/eW/Qq/pcLyPU1dkDVdv1VMry8g5fvAOApFbDHBvbGqhsoWrYsCua8ivo9Qh69VXotm6FShRhVijQPH06GhYvZtDqwhUH1eZmqMrLrSHsxAnrmy2IdTEFFABEP7/WIGYLYS1vYkSEtZCHF/Ck33EMWzJh2HKvJ54IwapV/njgAT1eeqm+x8/3pB9S8n29sb8JTU0I+Mc/EPj221C0VCwzXnMN6p99Fsb0dDe3zvf1xj7nUyQJyp9/bl1P1Wa0SllT0+nTxODg1il/8fEw2ab+DR5sLcwgE0EQEBkRgYrKSva3bmobVGEyAWq1c4KqwQDVyZNQtgQwVWmp/WPlyZOdBnIAEHU6e/hqOzJmGToUlshIjwpinvQ7jmFLJgxb7vX55zo89FBfDBtmws6dPS8B70k/pOT7enN/E+rqEPjuuwj48EP7VKbmKVPQ8Pvfw5Sc7ObW+a7e3Oe8itFoHZWwhSrbeqqSEigaO1+TbImMbL+eKj4eYliYW0aP2d+ukCS55vtmNEJ56pTDSJiqZYqi8uTJLot7SFotzEOGdBzEBg50+VRxT+pzDFsyYdhyr/p6AUlJEbBYBOTmnsGQIT0rAe9JP6Tk+9jfAMWZMwj661/h/5//WKt5AWiaNQv1Tz8NS1ycm1vne9jnroAML3yF+vp2gUp97BiUZWWdvsCVVCrrC9o2xSlsa6s8bYoe+5sPMJmshVRsI2G2kbETJ6xBrIvXvJJGA/Pgwe0qJppjYmCJipJlVNWTRlMZtmTCsOV+t97aD/n5Wrz8ch3uuadnVQn5HwO5EvtbK2VZGYJeew1+69dDkCRISiUa58+3bowcFdX+Ca76i6+PYZ/rGUGvR9Dy5dYpXWYzoFJZp3Q980z3g40kQVFZ6biequVj5ZkznT5NDAxsH6ji4mAeMgRQq530FcqL/c3Hmc3Waa2lpVC2FOqwj4yVlUEwdr52XlKpYImObr9GbOhQWAYN6nEft/+sfvNN6zrB66/v2c+qkzFsyYRhy/3efjsQr7wSjMzMZvz7352Xr+0I/2MgV2J/a0/VUiZe9803AKxTVC7cfTf0ixZB0miu/IVvL8c+131dFiuIi0PN5s2O/c5kgqqsrHVvKtto1bFjUOj1nd7HEhFhL1BhahOuxIgIr/+DAvtbL2axQFlR0bpG7MSJ1umJZWUQuqiEKSmV1iDWtmKi7ePo6HZbh/T4Z9VFGLZkwrDlfoWFKlx3XTh0Ogk//lgBP7/uP5f/MZArsb91Tl1QgOA//Qna/HwA1pLFkk4HRW2tQ0Utd/9n6m3Y57qvyzLcggDDpEkwJSe3rqcqLbVPhW13vlIJy5Ah7famMsfFQQoOlvtLcRv2N+qQKEJRUWEfCWsbxJQnTnS5JYGkUMAyaJDDXmKab7+Fbvv2Dqst2krm1y9dKudX1CGGLZkwbLmfJAEpKQNQUaHExx+fRUaGodvP5X8M5Ersb5cgSdDm5CDoT3+C5scfOz/Njf+Zehv2ue4LT0mB6uefe/Qc0d+/46l/MTG9ciNv9jfqMdu027ZTEtvsJdZVgZjOmKOjUdXyhztX6knYkq8mKJEMBAHIzGzGf/4TgKwsbY/CFhF5EEGAISMDhilTMODqq6Gs7XhasCCK0H3xBeqff95r1rKQB7FYoCwrg7qoCOrCQqiKiqA+cgTKSwQtUaNB0+232wOVKS4OooeVwSbyOoIAMTISxshIGCdMcHxMkqCoqmoNYS0FO3RffdXpqDIAawl9D1/ny7BFXicz09AStnRYtqzn+20RkQcRBEiXGBVQVVYisqUim3n4cJiGD4c5IQGm4cNhiYmRdS8h8h6K2lqoCguhLiqyvi8shKq4GIqmph5fSwwPx/k//UmGVhJRhwQB4oABMA4YAKSm2g+Hp6ZCdepU589TqTw6aAFeFLZ27tyJoqIiHD9+HOXl5TCbzViwYAGmTp3a4flHjx7F+vXrUVxcjKamJoSFhSE9PR1z586FphcO9/uSa681QK2WUFqqwvHjSsTG9qwEPBF5EEG4ZFiSBAGCyWQdnSgqQtulmpJWC3NsLEwJCTC3DWFDhrh8DxhyEYPBWka97WhVYWGn1f8knc4a0BMTYRoxAqbERPht3Aj/Vas6XrOlUKB5xgy5vwoi6obm6dM7X1/pJT+rXhO2Vq1aherqagQFBSE0NBTV1Z1vartnzx68+eabUCgUSE1NRUhICIqLi7F27Vr8+OOPeOGFF6DmdBSvFRgoYfx4I779VousLB1iYy+4u0lEdAUu9Z/phXvuwYUHH4SquBjqn36CqrgYqp9+guroUSiamqBuGcVweJ5OB/OwYfYQZntvGTyYU8G8hSRZS08fOdI6WlVUZK1K1sk+VeYhQ2AaMcIhWFmGDm0XvE1jxkCzf3/HFc7i49GweLGsXxoRdU/DM89Au3u3V/+sek3YeuihhxAZGYmwsDBs2LABn3zySYfnGY1GvP/++wCAZcuWITY2FgAgSRL+8Y9/4Ouvv8YXX3yBW265xVVNJxlkZja3hC0tfvMbhi0ib3bJ/0xbyr9boqNhuO661ieKIpQnTzqGsJZ9jhTNzVAfPgz14cMO9xJ1Ous6nPh4+yiYOSHBWnKYIcxthIYG+whV22ClqO94qrjYpw9MiYkwtwQqU2IizAkJ3a5aKQUGombzZgS9+qp1uwGTCVCrrdsNLF7M6pdEHuLin1X7Plte9LPqNWErOTm5W+cVFRWhoaEBaWlp9qAFWKvm3HHHHfj666/xzTffYM6cORA8fI4ndW7aNAOWLQPy87VobBTg789KSETe6rJf+CoUsAwZAsuQITBMn9563GKxhrCffoK6ZRRMXVxs3ROpuRmaQ4egOXTI4VKin581gLWZimhOSIAlKoohzJnMZuvC95bRKts0QNXJkx2eLqlU1j2qLhqtEiMjr3idhhQYiPqlS62VLj18gT1Rb2b7WW1YtgyRERGorqz0qgqYXhO2uuv8+fMAgPDw8HaPBQQEICAgANXV1Thz5gwiIiJc3Txykrg4MwYNMuPUKRW+/VaD669nVUIib+bUF75KJSwxMbDExLQPYWVlDlMR1cXFUJWUQNHUBM3Bg9AcPOhwKdHf3xrA2kxFNCckwDJwIF+cX4KiutoaptpOAzx6FIKh49/XlogImEaOdAhW5rg415RV5/eSyDt44c+qz4Wt4JYNBKuqqto91tjYiAsXrFPOKioqOg1bJpPJYT8tQRDg17J7LkfDPIMgWEe3PvpIhexsHaZPN3bjOYLDeyI5sb9dAbn+zVQqiMOGwTBsGAw33th63GyGsrS0NYTZ1oSVlEDR2AjN999D8/33DpcSAwPtIcyckGAPYs4YcblcbutzjY1QHz0KVWFhaxXAwkIoz57t8HTR3x9mW6BKTLQHKyk0tN25/OnxXPwdR67mrX3O58JWQkIC/Pz8UFBQgBMnTmDo0KH2xz799FP7x7bQ1ZH169djzZo19s+HDh2K5cuXd3vzMnKNefOAjz4CcnICEBER0O3XNxzRJFdif/MS0dHApEmOx8xm4Ngx4PBhx7fiYij0emi++w6a775zfE5wMDByJDBqlOObC0fCZOtzogiUlgIHD1rfDh2yvj92zPrYxQQBiI8HkpOBq66yv1cMHQqNQgHWBfYN/B1HruZtfc7nwpZOp8Pdd9+NFStW4A9/+IO9GuFPP/2E48ePIyoqCqdPn4aiizn4c+fOxaxZs+yf2xJ0dXU1zF1trEYulZgoQKMZgLIyAbt2VSM+vuvvjSAIiIiIQKWXzfUl78T+5iP69AHS061vNiaTdd1R21Gw4mKoTpyAUF8P5Odb39oQ+/RpLcrRZjqiGB7utBAmCAIiBgxA5ZkzV9znhHPnHPeravlY0djY4fmWvn1hHjnSXrTCPHIkTPHxgL9/+5M7KdFO3oW/48jVPKnPqVSqbg/C+FzYAoDMzEyEhoZi06ZN2LdvH0RRxLBhw/DCCy9gw4YNOH36tH26YUfUanWnpeHd/c2lVn5+EiZMMGDHDh22bdMgLs506SfB+j3k95Fchf3NB6lUMMXHW8NEmz/MwWiE6vjx1uqIthBWWgrF+fPQ7NsHzb59DpcSQ0KsxTguKswh9u/f7RAm6PUIWr4cum++AUQR/RUKNF9/vb2KY5eMRqhKShz2q1IfOQJlZWWHp0sajbWNLYUqzC1rrMSwsI7by77v8/g7jlzN2/qcT4YtABgzZgzGjBnT7vjJkychCIJDpULyXpmZ1rCVlaXDww+zBDwRuZFGYx3VGTECzW2PGwzWQGMLYC2FOZSlpVDU1UG7dy+0e/c6XMoSGgpz2z3CWkbFxP79Hc4T9Hr0nz3boWy+CkDAypXQ7t6Nms2brYFLkqCoqGi3EbDq2DEIpo7/UGWOjm4trd4yWmUeOvSSm1ATEVGrXvUbs6ioCNXV1RgzZgz8O5raQF4nM7MZL77YB3v3aqDXCwgM9J6/dBBRL6HVWoPKyJGOx5ubW0NYm+qIyrIyKM+dgzI/H9qLpiNa+vZtDWHDh0OzezdUR49CuOivvIIoQnX0KPrNnQspONi6Z1VdXYfNE4OCHPasMicmwpSQAKmLGSBERNQ9Phm2Ghsb24Wp2tpavPfee1Aqlbj99tvd1DJytthYC2JizCgtVWH3bi1uuKH50k8iIvIEOh3Mo0bBPGqU4/GmJmsIa1ue/qefoCwvh7K2Fsq8PGjz8i55eUGSoDlyxP65pFTCPGyYQwVA88iRLGNPRCQjrwlb27dvR1FREQCgvLzcfuzw4cMAgJSUFIwfPx4AsGXLFuzatQsjRoxAcHAwzp49i3379sFgMODhhx/mFEIfk5nZjH/8IxBZWQxbROQD/PxgTkqCOSnJ4bDQ1ATV0aOto2A//QRtdjYEi6XTS4n+/jj/yivWgBUfD2i1creeiIja8JqwVVRUhB07djgcKy4uRnFxMQAgLCzMHrYSEhJw5MgR7N+/H3q9HkFBQRgzZgzmzJnjUAqefENmpqElbOkgSef5B1oi8kmSnx9MyckwJSfbj4WnpkJ16lSnzxH79kXTbbe5onlERNQBrwlbCxcuxMKFC7t1blJSEpIu+osg+a60NAN0OgkVFUoUFamQmMjy/ETUOzRPn46AlSvtxTHakhQKNM+Y4YZWERGRTeebTRF5CT8/ID3dAADIytK5uTVERK7T8MwzMMfFQbpo70hJoYA5Ph4Nixe7qWVERAQwbJGPmDbNulYrO5vrEYio95ACA1GzeTMu3HsvzNHRQFQUzNHRuHDvvajZtOnS+2wREZGsvGYaIVFXMjKsI1t792pQXy8gOJgl4Imod5ACA1G/dCkali1DZEQEqisrvWrDTyIiX8aRLfIJQ4ZYMGyYCRaLgJ07ObpFRL0UKwQREXkUhi3yGZmZXLdFRERERJ6DYYt8RmZm67otzqAhIiIiIndj2CKfkZpqhL+/iKoqJQ4f5nJEIiIiInIvhi3yGVotcO211qmE27dzKiERERERuRfDFvkU27otloAnIiIiIndj2CKfYgtb+/drcO4cq3IRERERkfswbJFPiYqyICHBBFFkCXgiIiIici+GLfI5LAFPRERERJ6AYYt8TkZGawl4UXRzY4iIiIio12LYIp+TkmJEYKCIs2eVOHhQ7e7mEBEREVEvxbBFPkejASZPtk0l5LotIiIiInIPhi3ySVy3RURERETuxrBFPmnqVOu6re+/V+PsWXZzIiIiInI9vgolnxQZKWLkSBMkSUBODqcSEhEREZHrMWyRz8rMbK1KSERERETkagxb5LNs67ays3WwWNzcGCIiIiLqdRi2yGeNHWtEcLCIujoFDhxgCXgiIiIici2GLfJZKhUwZUrr6BYRERERkSsxbJFPy8iwrtvifltERERE5GoMW+TTMjKsI1sHD2pQVcXuTkRERESuw1ef5NPCw0UkJxsBADk5WkiSmxtERERERL0Gwxb5vIkTraNbzz4bjOhoIDU1DM8/Hwy9XnBzy4iIiIjIlzFskU/T6wV8/rkfAKCpSYHTp4GTJ1VYuTIAs2f3Z+AiIiIiItkwbJFPW748CKdOKdsdF0UBx46p8OqrQW5oFRERERH1Bip3N4BITlu36iBJHY9eiaKA1av9kZBgxpAhZsTEWBAZaYGyfTYjIiIiIuoxhi3yWZIEmM1dn9PQoMDixSH2zzUaCdHRZgwZYsHQodb3MTHWMBYdbYGWFeSJiIiIqJsYtshnCYJ1Y+OuBASISE01orRUhZMnlTAaBZSUqFFSou7gehKioiz2ABYTY2kZEbN+HBDAUodERERE1Iphi3za9OnNWLkyAKLYfiqhQiHhjjsasXRpPQDAYgF+/lmJEyeUKCtToaxMhdJSJUpLre+bmhQ4dUqFU6dU+Pbb9kNcYWHWIDZkiNlhVCwmxoLQUBECa3EQERER9SoMW+TTnnmmAbt3a3HsmMohcCkUEuLjzVi8uMF+TKkEoqMtiI62ADA6XEeSgOpqBcrKVPYwVlra+v7cOSWqq61v+/Zp2rUjOFjEkCHmDkfFIiJEKFiqhoiIiMjnMGyRTwsMlLB5cw1efTUIW7fqIIoqKBRmTJ/ejMWLGxAY2L2pf4Jg3SA5PNyIlJT2j58/LzgEsbIy24iYCpWVStTXK3DokAaHDrV/rk4nYfBgc4ejYoMGWaBuP6ORiIiIiLyAIEkSF5p0U3V1NUwmk7ubQZdJEARERESisrICruz2TU1Aebk1gJ04oXIIYydPKmGxdD6/UKm0rhOzFum4eFTMAj8//vh6KkEQEBkZiYoK1/Y36r3Y58iV2N/I1Typz6nVaoSFhXXrXI5sUa/ijnVTfn5AQoIZCQlmAAaHx0wm4PRppcP6MFsQKytTorlZgfJyFcrLO/5RHTCgNYhdPCoWEuK8X0SS5J5/OyIiIiJvxrBF5EZqNRATY0FMjAVTpjg+JopAVZXCHrwuHhU7f16BM2eUOHNGiT172l87JES0rwu7eFRswIBLF+zQ6wUsX26dfmk2Wys7Tp/ejGee6f70y96Of+wlIiLq3Ri2iDyUQgFERIiIiDAiLa394+fOCS1BrP2oWFWVEnV1CtTVafDDD+0Ldvj5iW32ELONilnfR0VZ0NwsYPbs/u0Ki6xcGYDdu7XYvLmGgasTtpD6zTc6iCKgUITh+usZUomIiHojhi0iLxUaKiE01IQxY9qvI2xsFBymI7YdFTt1ylrGvqhIgaKi9tU3VCoJ/v4S6usFAI7DX6Io4OhRFX772xD86ldNUColKBTWSo5KpdTy3vqmUFg/V6nantP2eOvHXR+X61/Q+fT6jkKqiiGViIiol2LYIvJB/v4SEhPNSEw0t3vMaAROnXIcCbN9XF6ugsEgtAStjkmSgKwsP2Rl+cn5JThQKqUehTOVSrJ/bAuBtuMXh8OOjts+7t7x1vtv367F0aMqSFL7kHrsmAqvvhpk39eNiIiIfB/DFlEvo9EAsbEWxMZa2j0mikBFhQIzZoTh3Dllp9dQqyVcfbUJFov1ORYLYLEILe+tH4siYDZbg4btuO3ji49fHE4uZrv2xSNt3kQUBfz73wFoaFAgNtaM2Fgzhg0zY8gQM/xcl1uJiIjIhRi2iMhOoQCiokQEBEg4d67z8wYMsGDjxhqn3VeS0GEI6yyc2R6zHncMerbjbZ/f1fGLn9uz462fm83Axo1+aG7ufN6j0Shg9Wp/h2OCYC3vbw1gFgwbZraHsagoC5SdZ14iIiLycAxbRNTO9OnNWLkywKE4ho1CIWHGjGan3k8QrNMBVSoAaLumybvWN337rRanTnUetvr2teD++y/g+HEVjh9XoaREhfp6BU6dUuHUKRV27nQ8X6uVEBPTGr6so2HWYNa376UrShIREZF7eU3Y2rlzJ4qKinD8+HGUl5fDbDZjwYIFmDp1aofnV1RUYP369SgqKsLZs2cRGBiIQYMG4cYbb8S4ceNc23giL/PMMw3YvVvbrhqhQiEhPt6MxYsb3Ng6z3WpkDp3bhMef1xvPyZJQG2toiV4Ke0h7PhxFU6csK6fKy5Wo7i4fSGTPn1ExMZa91ZrOxoWG2uBv793hVQiIiJf5TVha9WqVaiurkZQUBBCQ0NRXV3d6blHjx7FkiVLYLFYMHbsWKSmpuL8+fPYu3cvXn31Vdx222247bbbXNh6Iu8SGChh8+YavPqqdZ8tk8m6J9j06c1YvJglzDvT05AqCEC/fiL69TMiJcXxWhaLdcPr1gCmREmJ9ePTp5U4f16BAwc0OHCgfWn/yEiLw2iYbX1YdLSlZfSQiIiIXEGQJO/YdvPgwYOIjIxEWFgYNmzYgE8++aTTka0//vGPOHDgABYvXuwwilVTU4Mnn3wSFosF//znP6FWt/9rcVeqq6thMrUvs03eQRAEREZGoqKiAl7S7T2GJIFT1rpJrxfsIVUUVVAozE4PqU1NQFmZyh6+2gay2trOF3mpVBKGDGm/Niw21ozwcE5L9Hb8HUeuJAgCIiIiUVnJ/kau4Um/49RqNcLCwrp1rtf8jTM5Obnb5545cwaCIGD06NEOx/v374/BgwejuLgYTU1NPQ5bRL0VX4R3X2CghKVL67FsWUPLC5Fqp/+n4OcHjBhhxogR7Uv7nzsnOAQwWyA7cUKJ5mYFSkrUKClR45tvLm636DAV0TYaNnSoGUFBfCFFRFbcuN05+EfM3sNrwlZPDBo0CD///DN++OEHjB071n68pqYG5eXlGDx4MIKDg93YQiLqDdzxH2loqISxY00YO9ZxFN5W1r/taNiJE9b35eVK6PUKHDyowcGD7aclhoe3hq+2gWzwYDM07U+/YnwRQq7GPtc93Lj9ytiC6tatOpjN1qJQ06czqPaENw6i+mTYuuOOO1BcXIzXXnsNKSkpiIiIQH19Pfbs2YOwsDD87ne/6/L5JpPJYbqgIAjwa9kIR+BvY69l+97xe0iu4Gn9TakEBg2SMGiQCVOmOAYxgwEoL28t0mENZNaPq6uVqKqyvuXnay+6poTBgy0OAcwWyCIjezYtsfVFiBYmkwC1WsL06Qa+COkBT+tzno59rudefTW43ZpUoO3G7cFYtowbt3dErxdw8839cPSo47/fypUB+PZbLTZvPst+14m2P6u20VRv+ln1mjVbbV1qzRYAVFVV4Y033sDx48ftxwICAnDrrbfipptugkLReXnm1atXY82aNfbPhw4diuXLlzut/URE3uL8eeDoUaC4GPjpJ8c3vb7z5/n7A/HxQEICMHy441toqOO5DQ3AhAlAYaF1BM5GoQASE4G8PCAoSJ6vz9dwhKZ7fKXPSZJ1jz+TCTAarW9tP7748+583NVjn3xy6Z/7mTOtfVChaH3j58Cf/wysWtXxyIwgAHffDSxd6vg825tS2fUxX/6Z94WfVZ8MWyUlJXj11VcRHR2NX/3qV4iKisL58+fx9ddfY/PmzRg/fjyeeuqpTq/f2chWdXU1zOb2ayTIO1gX80agsrLS7Qsryff5en+TJODMGYVDpUTbFMXyciXM5s7/9+/Xz2JfFxYba8bevRpkZWkhSR2XzL/33kb+tbwLjn/1tRVl8Z6/+rrD888H45//9O9wmwZBkHDnnY145hl9S9gQYDJZ39s+N5utm5Rf/JjZLLSEk64f6+j57R+zPsf2cUfXMxp9+FU29YhCIdkDmDXsSQ6hTBAkh6DW9hzHN8khxCmVjp9bn9/5sbZBU6mULgqeUpt7t79f28+t9wZ279bghx/UADzr/weVSuV7BTK6y2w2480334QgCHj66aeh1VqnvYSHh+PXv/41zp49i9zcXPz4449ISkrq8BpqtbrT4hm++KKpt5Ekid9Hchlf7m8DBlgwYIAFEyY4HjeZgJMnlR1US1ShslKJs2etbwUFl17wJYoC/vtfP5w7J0CttlZUtG6AbX2vVlv/81arHY+3f9z6H39H12j73vG89sds77uYHOFS1jU0/dqtofnnP5XYtUvj8jU0FgvahITWgGENKI6hoeNzbIGj/bntz2l/rnWUp+PPbeHEbLZuq9BR0AIASRLw8ccB+PjjAJf9uzmTWi21vOGi9xI0mtafFY3G8bGLz9doHM9TqSS8/34A6us7r3gaEmLB0083QBQFSJJ1JEIUrX+csX4udHrMdn7r+9ZzbSMa1o+Fi56Pbt2v9fmt5zs+p6O2tV7j0s/vrG3W41VVik77nJUErbbtc9DhH6A607adVr4fxEVRwNatWixd6tn/x/pc2Pr5559x5swZjB8/3h602kpKSkJubi6OHz/eadgiIqLLp1ajZeTKAsDg8NiFCwJOnGgNYiUlKnz+uR9Mps5fGDQ2KrBunb/Mre4ZhaLroGYLgN0Lghef11UAdLzG5s06HD2qaveiTBQFHD2qwt1398X06c0OwaZ9WLEFko7Diu2cjsLRxWGo6xeT3sf6PekopDiGE8dg0lGYcQwwtuBjvXZH59m+923Pax+e2p5vu6+cU8pqaxVdbtx+661NuOeeRvka4MVSU8Nx6lTnL7sHDbJgz54qh2OOga01gFks7UNiV8faBkmLpX0QtR4TLrrXxZ93dG/rea33aX1eZ8cuvndn97Id+/hjfzQ2dv7XLZPJ86dP+1zYsk3za2ho6PDx+nrrUCPLvhMRuV5AgISkJDOSklqnZBcUaLp8EdKnjwWPPqq3v6C3WBzf2wKELRDYAoN1lKX1fdvH25/X0fWs7zt6YSmKQss6Fs/9H16SBOTna9sVNnE1a8BoGyAcg8vFxy4OMm0fd3ye4zkXX//i67U95ze/CUVVVed9LirKjD17qjz6BZw79HTjdmo1fXpzl0F1xozmdsdtU+mUDoOJF4/iePaozpX68ktdl2FL7j8wOIPPha3o6Gj4+/ujqKgIP/zwA66++mr7Y7W1tfj6668BAKNGjXJXE4mIqI1LvQiZN68JDz98wQ0tsxJFdBnyug6Are8dz+tOAOzsGq2P7dihhcHQ+QsRnU7EDTc0O4yKdBVe2gaS9uGofQi61Lm29RmeZtasrvvcDTc0e2S73S0wUMLmzTWyb9zuixhUL8/lhFRP4zUFMrZv346ioiIAQHl5OU6cOIGEhAREREQAAFJSUjB+/HgAQFZWFlasWAFBEHDNNdfYC2Ts3bsXTU1NmDFjBu6///4et6G6utqhcAZ5F0/aeZx8H/tb93W8d0/ri5BNm7h3T2cuPTXJ3G5qErHPOYO1CFAkKiv5O6679HrBHlRNJuuUawbVrnnqz6pare52gQyvCVtvv/02duzY0enj8+bNw/z58+2fHzp0CF988QWOHTsGvV4PrVaLmJgYZGZmYsqUKZfVBoYt78YXv+RK7G89wxchl+f554O7/KvvvfdewNKlrOTYEfa5K8PfcVfG09cZeZK2P6ueMprqk2HLEzBseTf+x0CuxP52+fgipPs89a++3oZ9ruf4O45czZNGU3sStjykeC0REZEVX/R2n20Nzb33XkB0tBlRUUB0tBn33nuBQasH2OeIvIM3/qz6XIEMIiKi3iQwUMLSpfVYtqyh5a++1W7/qy8REVlxZIuIiMhHeONffYmIfBnDFhERERERkQwYtoiIiIiIiGTAsEVERERERCQDhi0iIiIiIiIZMGwRERERERHJgGGLiIiIiIhIBgxbREREREREMmDYIiIiIiIikgHDFhERERERkQwYtoiIiIiIiGTAsEVERERERCQDhi0iIiIiIiIZMGwRERERERHJQOXuBngTlYr/XL6A30dyJfY3cjX2OXIl9jdyNU/ocz1pgyBJkiRjW4iIiIiIiHolTiOkXqOpqQnPPPMMmpqa3N0U6gXY38jV2OfIldjfyNW8tc8xbFGvIUkSTpw4AQ7mkiuwv5Grsc+RK7G/kat5a59j2CIiIiIiIpIBwxYREREREZEMGLao11Cr1Zg3bx7UarW7m0K9APsbuRr7HLkS+xu5mrf2OVYjJCIiIiIikgFHtoiIiIiIiGTAsEVERERERCQDhi0iIiIiIiIZMGwRERERERHJQOXuBhDJpba2Fnl5eThw4ABOnz6Nuro6BAYGIiEhAXPmzEF8fLy7m0g+buPGjfjPf/4DAPi///s/DB8+3M0tIl+1d+9efP311zhx4gQMBgNCQkIQHx+Pu+66C/3793d388hHSJKEvXv34quvvsLp06fR2NiIfv36YdSoUZgzZw4GDBjg7iaSl9q5cyeKiopw/PhxlJeXw2w2Y8GCBZg6dWqH5zc2NuKzzz7Dnj17UFdXh5CQEKSmpuK2226Dv7+/axt/CQxb5LO2bNmCjRs3YsCAAUhOTkafPn1QUVGBgoICFBQU4LHHHkN6erq7m0k+6tSpU1i9ejW0Wi0MBoO7m0M+SpIkfPDBB9i2bRsGDBiA9PR0+Pn54dy5czhy5AhqamoYtshp/v3vf+Pzzz9HaGgoUlJS4Ofnh7KyMmzfvh3ffvstli1bhsGDB7u7meSFVq1aherqagQFBSE0NBTV1dWdntvc3IyXXnoJpaWlSE5OxsSJE1FWVoYvvvgChw8fxtKlS6HT6VzY+q4xbJHPiouLw5IlS5CYmOhwvLCwEEuXLsWHH36IlJQUr9uvgTyfKIp4++23MWTIEERGRmLXrl3ubhL5qC1btmDbtm2YMWMG7r33XigUjqsDLBaLm1pGvqaurg5ffPEFwsLC8Oc//9lh9OCLL77ARx99hM8//xwLFixwYyvJWz300EOIjIxEWFgYNmzYgE8++aTTczdt2oTS0lLcfPPNuOuuu+zHV69ejTVr1mDTpk2YP3++K5rdLVyzRT4rNTW1XdACgMTERCQlJUGv16O8vNwNLSNft2HDBpSVleG3v/1tuxe/RM5iNBqxZs0aDBgwAPfcc0+HfU2pVLqhZeSLqqqqIEkSEhIS2k3TuuaaawAA9fX17mga+YDk5GSEhYVd8jxJkrB9+3bodDrMmzfP4bFbbrkFAQEByMrKgidtI8xXAdQr2V6A8IUIOVt5eTnWrFmDX/ziF4iOjnZ3c8iHHTx4EHq9HikpKRBFEXv27MGGDRuwdetWVFZWurt55GMiIyOhUqlQXFyMpqYmh8cOHDgAAEhKSnJH06gXqaiowLlz55CQkNBuqqBGo0FiYiJqa2s96ncgpxFSr1NTU4NDhw4hJCSEc8vJqSwWC9555x1ERUXhlltucXdzyMeVlJQAABQKBZ5++mn8/PPP9scEQcDMmTPxP//zP+5qHvmYoKAg3HHHHfj444/xu9/9DuPGjYNOp8PJkydx8OBBXHfddbjhhhvc3UzycbYQFRkZ2eHjtuMVFRWdnuNqDFvUq5jNZrz11lswmUy46667OMWLnGr9+vUoKyvDyy+/DJWKv15JXufPnwcAfP755xg6dCheeeUVDBo0CCdOnMD777+Pzz//HBEREZg+fbqbW0q+4uabb0bfvn3x/vvvY+vWrfbjCQkJmDRpEn/vkewaGxsBoNOKg35+fg7neQK+0qReQxRFvPvuuygsLMS0adMwefJkdzeJfEhpaSnWrl2L2bNnIzY21t3NoV7AtiZBpVLh6aefRlxcHHQ6HRITE/HEE09AEARs3rzZza0kX7J27Vq8/fbbuOWWW/Duu+/iX//6F5YuXQqLxYIlS5Zgz5497m4ikcdh2KJeQZIkvPfee9i1axcmTZqEBx54wN1NIh/z9ttvIyIiArfddpu7m0K9hO0vu8OGDUPfvn0dHouOjsaAAQNw5swZXLhwwR3NIx/z448/YtWqVbjhhhvwi1/8Av369YNOp8OIESPw+9//HhqNBh999JG7m0k+zvZ7r7ORK9t6Qk/aa4vjveTzRFHEihUrkJOTg4kTJ2LhwoWcPkhOV1ZWBgC48847O3z8D3/4AwDgqaeewvjx413WLvJdAwcOBND5i4qAgAAA1qqFto+JLtd3330HABg1alS7x4KDgzF48GD89NNPqK+vR3BwsKubR71EREQEAOuarI7YjnvKei2AYYt8XNuglZ6ejkWLFjFokSwyMzM7PF5YWIiKigqMGzcOwcHBCA8Pd3HLyFfZXvSePn263WNmsxmVlZXQarV84UtOYTabAXRe3t12nHtXkpwiIyMRGhqK4uJiNDc3O1QkNBqNKCwsRGhoqD2UeQKGLfJZbYNWWloagxbJ6uGHH+7w+Ntvv42KigrccsstGD58uItbRb4sIiICV199NX744Qds374d06ZNsz+2YcMGXLhwAZMmTeIWF+QUCQkJ+Oqrr/DFF18gLS3NYUQ1JycHlZWViI2NtRcoIJKDIAiYNm0a1qxZgzVr1jhsamz7vXfjjTdCEAQ3ttIRwxb5rDVr1iAnJwc6nQ4DBw7E2rVr250zfvx4xMTEuL5xREROcP/99+P555/He++9h4KCAgwcOBClpaX48ccfERYWhl//+tfubiL5iAkTJmDbtm04fPgwHn30UYwbNw4BAQEoKyvDwYMHoVarcc8997i7meSltm/fjqKiIgDW/Sptxw4fPgwASElJsU/Bv/nmm7Fv3z5s2rQJpaWliI2NRVlZGQ4cOICYmBjcfPPN7vkiOsGwRT6ruroaANDc3Ix169Z1eE54eDjDFhF5rYiICPzxj3/E6tWr8f333+OHH35ASEgIZsyYgXnz5qFPnz7ubiL5CIVCgf/93//Fl19+idzcXHz77bcwm83o06cPrr32Wtxyyy3cu5IuW1FREXbs2OFwrLi4GMXFxQCAsLAwe9jS6XR46aWX8NlnnyE/Px+HDx9GSEgIZs6cidtuu63dZsfuJki22rFERERERETkNFzAQkREREREJAOGLSIiIiIiIhkwbBEREREREcmAYYuIiIiIiEgGDFtEREREREQyYNgiIiIiIiKSAcMWERERERGRDBi2iIiIiIiIZMCwRUQ9VlVVhfnz52P+/Pmoqqpyd3MAADk5OZg/fz4WLlzY7rHVq1dj/vz5eOmlly7r2l09/3If8yRmsxmLFi3Cr371K9TU1Li7OSSzffv2YcmSJbj33ntx++23Y/78+Vi5cqW7m9Ul2++bw4cPu7spXuOll17C/PnzsXr1aqdet6vfa++//z7mz5+PrKwsp96TyJup3N0AInKf1atXY82aNd0+l5xn7969KC0tRUxMDMaPH+/WtmzZsgVnzpzB9OnT0b9/f4fHqqqq8Mgjj7R7jlqthp+fH4KCgjBkyBDExcUhPT0dffv2dVWz6TLk5+fjjTfeAAAIgoCgoCAIggA/P79uPT8nJwfvvPNOu+NKpRKBgYEYMmQIJkyYgClTpkCl4kuM3uYXv/gFcnJysGrVKqSnp0On07m7SURux9+ERAQA6NOnj7ubcEX8/f0xcOBAWV7sBwcHY+DAge2CyJU8r6CgADt27MCUKVPcGrb0ej3WrVsHtVqNuXPndnmun58fNBoNAEAURVy4cAH19fU4ffo0cnNz8fHHHyM9PR333HMPgoODXdF86qHNmzcDAFJTU/HII49Aq9Ve9rWCgoKgUFgnyDQ3N+P8+fM4ePAgDh48iG3btuG5555DYGCgU9pNPde/f38MHDjQpT+L/fv3x9SpU7Ft2zZ8/vnnmDdvnsvuTeSpGLaICADwwQcfuLsJV2T8+PGyhZYbbrgBN9xwg8ue50rbtm3DhQsXkJaWhn79+nV57r333oupU6c6HDt37hx++uknZGVl4cCBA9i9ezcOHz6MZcuWITw8XMaW0+UoLy8HAEydOvWKghYA/PGPf3T4HldVVeHTTz/F7t27UVJSgvfffx9PPPHEFd2DLl9HI9KuMH36dGzbtg1btmzBnDlzoFar3dIOIk/BNVtERL2UJEnYvn07AGDSpEmXdY3Q0FCkpqbi2WefxeOPPw6lUolz587hT3/6EywWizObS05gMBgAQJbpXeHh4Vi0aBESExMBAHv27EFdXZ3T70OeLSYmBtHR0WhoaEB+fr67m0PkdhzZIiLZ7N27Fzk5OSgpKUF9fT10Oh0GDx6MiRMnIjMz02FNR0NDA55++mnU1tYiJSUFTz/9dLvriaKIF198EcXFxRg8eDBeeeUV+7Q221qSsLAwvP322122Kzc3F19//TXKy8thNpsxcOBAZGRkYPr06fZpUW3Z1raNHDmyR8UuOnre4cOHsWTJEvs5O3bswI4dOxye9+KLL6JPnz72UYFXXnkFcXFxnd7nrbfewq5du3rcvkOHDuHMmTMICAjAmDFjuv28zqSnp6OmpgYff/wxTp06hR07diAzM7PDc0+cOIEtW7agsLAQ586dgyAIiIiIwNixY3HTTTd1OfXpyJEj2LRpE44ePYrm5mb0798faWlpmDt3LvLz8zvtB2+//bZ96uaCBQuQlZWFnJwcnD59Gnq9HgsWLHAYuaurq8MXX3yB77//HlVVVTCbzQgNDUVSUhJmzZqFQYMGdfnv0ZP+31OHDx/G119/jeLiYjQ0NMDPzw9DhgzBpEmTMGXKFId+3NG6u7Z9EHDemkxBEDBp0iQUFhZCkiSUlJRg7Nix9sfr6uqwefNmHDhwANXV1QCAsLAwXHPNNZg1axZCQkK6fa+tW7fiww8/RGBgIFasWGH/XXAxURSxaNEiVFdXY968eZg/fz6A9r8zjh8/jg0bNqCoqAh6vR59+/ZFSkoKbr311i6nQ1ZWVmLz5s04dOgQzp49C5VKhYiICKSkpOCmm26Cv79/u+e0/T2wevVqlJWVYf369SgsLIRer0d4eDgyMjIwc+ZMKJVKAEBRURE2bdqEY8eO4cKFC4iIiMD111+PGTNmQBCEdvd46aWXcOTIEYev2eb8+fPYv38/vvvuO5w+fRq1tbUwm83o27cvRo0ahZkzZyI6Orp734gOTJw4EZ9++im2bdt22X/IIfIVDFtE5HTNzc1488038d1339mP+fn5obGxEYWFhSgsLMTOnTvx+9//3v4iJigoCI8++iiWLFmCgoICfPXVV+2m4K1evRrFxcXQaDR47LHHOn1x1ZWPP/4YmzZtgiAI8Pf3h9FoxIkTJ3DixAns378fixcvlnXai0qlQp8+fdDY2AiTyQS1Wt3uxZhKpcKgQYMwcuRIHDlyBNu2bes0bOn/f3t3HhTVlT58/Es3Ag24tnEDRdGog0osVCTEQRlFiY6Oics4TqJTVlwyKaOZ0dKaTBxTlmXFJK6xjLFcGI0xZtwwliig4wZu0VEJATQEBzdQjMrWQHfz/sF7z6/R7haaJjDJ86myCr23b597+9De5z7nPKeoSD09HjZsWK3a8p///AeAbt26ua2YQWxsLPv376ewsNBhsLVr1y52795NZWUlAN7e3lgsFm7cuMGNGzc4duwYCxcupEuXLk+99tChQ2zdulW91tfXl3v37rF3717OnTtXo2tQWVnJypUrOXPmjOoHT96sfvPNN6xevRqTyQRUFYDw9PQkPz+fo0ePcuLECWbOnMngwYOfOr4r/b824uLiOHjwIIBqf3FxMWlpaaSlpXHy5Enmz5+vil7odDo1J/PRo0cA+Pn51VsBC9t5k6Wlpern9PR0PvzwQ4qLiwHUMMabN29y8+ZNkpOTWbBgAT179qzR+0RFRfH555+r34GoqCi7+125coV79+6h0+kcBv+nTp1i3bp1WCwWfH19sVgs5Ofnc/DgQa5cucLSpUvtZgNTUlJYt24dFRUVQNXnbDab1XdKcnIy7777rtPA/NKlS3z00UdUVFTg6+uL2Wzm1q1bbN++nezsbObOnUtycjIbN26ksrISg8FARUUFubm5bN68mYKCAv74xz/W6Jpptm/fXu0hj8FgwGq1kpeXR15eHidPnmT27NlERETU6riakJAQADIzMyktLa1xARYhfo4k2BJCuN3atWu5ePEi7dq1Y+LEifTr1w+DwUB5eTlXrlwhLi6OrKws1q9fXy2DFRISwquvvsru3bvZtm0bISEhdOrUCah6Erx3714Apk6d6tJT15ycHNLT04mNjWX8+PE0a9aMkpISDh06xK5du7h8+TI7duxg6tSp7rkQdvTo0YONGzeqLEtkZKTdcvVQNfchPT2d06dPM3XqVLs3LCdPnqSiooKmTZsycODAWrXlu+++A3CaNastLy8vevfuTWpqKteuXaO8vLxaUHzw4EH+9a9/YTAYeOWVVxgyZAgtWrTAarWSk5PD9u3bSUtLY/ny5axcubLaDW5mZqYKtEJDQ5k2bRodOnTAYrFw/vx5PvvssxpV1zx37hwVFRW8/vrrDB06FF9fX0wmkwoMrl+/zscff4zZbGbYsGGMGjWK9u3bo9PpuH//Pvv27ePIkSN8+umnBAYG0rVr12rHd7X/10RCQoIKtIYNG8bEiRNp0aIFJpOJ5ORkdf02bNjA3LlzgaqiBdqcTC3DMW/ePHr16lWr964pLWMFqGDy/v37KtAKDAxkxowZKqj67rvv2LBhA7dv32b58uV89NFHNSp04+Pjw6BBg0hMTCQ5OdlhsJWUlARA37597Rarefz4MevXr2fw4MGMHz+e1q1bU1ZWxrFjx4iLiyM3N5f9+/fz+9//vtrrsrOzWbt2LRaLhR49evDGG28QFBSE1Wrl4sWLbNy4kYKCAj744AM+/PBDh0M316xZw4ABA3jttddo3bo1paWl7N27l3379pGSkkLnzp358ssvGT58OOPGjaN58+YUFRXxz3/+k3//+9/Ex8cTHR1Nhw4dnnnNNG3atOHVV18lIiKCdu3a4ePjg9Vq5datW+zdu1cFn927d3ep6FBwcDB6vR6LxUJmZiZ9+/at9TGE+LmQOVtCCACmT5/u8E9ubm6Nj3Px4kXOnz9PixYtWLx4MYMGDVJBgpeXF/3792fx4sV4e3tz/vx5cnJyqr1+woQJ9OjRg4qKClatWkV5eTmFhYWsXbuWyspKwsPDiYmJcekcS0pKiIqKYtq0aWqYmq+vL+PGjVOV+BISEnjw4IFLx3e38PBwmjdvTllZGadOnbK7jzbnavDgwbXKyGlP3wGCgoLq3lgb2vHMZnO1a/n48WN27tyJh4cH8+bNY+zYsWrYmE6nIzg4mHfffZfg4GAKCgrUuWl27dpFZWUlgYGBLFiwQN1c6vV6IiIi+Mtf/qKyJs6YTCamTJnC6NGjVVbRx8eHli1bArBp0ybMZjPjxo1jxowZBAQEqGF5rVu35o033uDll1/GYrGwe/fuaseua/93pry8XA33e+mll5gxY4a6fj4+PowaNYopU6YAVRmX77//vsbHdheLxaKCGw8PDxWI7t27l+LiYvz8/Fi0aFG17NWvfvUr3nvvPQwGA0VFReqhSk0MHz4cqArYbt269dT2hw8f8s033wCOM79lZWVERkYya9YsFYx5e3sTGxvLyy+/DMDp06efet3OnTuxWCy0a9eOv//976rf63Q6+vfvz8KFC9Hr9eTl5XHkyBGH59C1a1fmzJmj3ttgMDB58mQ1923Hjh0MHjyYadOmqQylv78/s2bN4rnnnqOyspLU1NRnXywbEyZMYNKkSXTu3FkFgTqdjo4dO/L2228TFhamAk5XeHl5qd/PrKwsl44hxM+FBFtCCKBqeJGjP7UpdKDdIEdFRTl8Imo0GtVTdW0om0an0zFnzhz8/Py4efMmW7ZsYf369Tx48ACj0cisWbNcO8H/z1Ep4jFjxuDl5YXFYuHs2bN1eg938fT0JDo6Gvi/p/O2srKyVHW52g4hfPToEVarFcDtpaFth8YVFRWpn0+dOkVZWRnBwcH06dPH7mv1ej0vvfQSAJcvX652nLS0NKDqs7IXWPbu3VvdoDrj5+fnMGDPycnh+++/R6/XM3r0aIfH0IYPXr16VV1HqHv/d+bKlSvqek6YMMHuPiNGjFBBo70Aob6YTCaysrJYtmwZN27cAKquUdOmTasFAzExMXbnZRmNRvWZpKSk1Ph9g4KC6N69O8BTwTlUzcuyWCwYjUbCwsIcHmfcuHF2/71///5A1bwsrbgIQHFxseqfY8aMsVvZsUuXLqpCqrPP4ne/+53dOVcvvPCC+tnesgw6nU79HmnX3F20a5WRkeHyMZo2bQrQaB5eCdFQZBihEAJw3wR57T/npKSkpwo/2CopKQGqhhc9qXXr1sycOZMVK1aoGygPDw9mz55dp3V7jEYj7dq1s7vN19eX4OBgMjIyGiQj4MiwYcPYv38/P/zwA9nZ2QQHB6tt2rUJCQmp1RAiqMoyaX6qtZC0vpGbm8v06dMd7ldeXg5UH472ww8/qHla2nwQe0JCQtTwSEeczVHT2lhZWcmcOXMcHkMLsMrKyigsLFQZB3f0f0e0fmk0Gh1+3jqdjl69eqny6/XJWWnxPn36MG3aNKCqQIcWJIaGhjp8TWhoKPHx8RQWFpKfn1/jpQNiYmLIysri+PHjTJ48WX22lZWVHD16FIDo6Gi7xW+gqv87+l6wDZiLi4tVUGXbHx09ONDOKTU1VRXjsdfvHA3jtc1itW3b1u4+WuBak4zuk3JyckhKSiIjI4N79+5hMpnUOWnqEihp3yu23zVC/BJJsCWEcBuz2UxhYSHwfzeTz2L7tNhWREQEAwcOVFmmMWPGOL3JrolnzT3Qtjemm4M2bdrQt29fLl26RFJSEjNmzACqrq+WAahtVgtQE/oBtxcEsc1m2QZyP/74I1AVTGkBlTO2+9h+Jlrmxp6azC9xlsnT2mi1WlUxiWfR+rA7+789WnuedY7aemn13Y9tFzX29PTE39+fTp06ERERQf/+/VW2xvY6Omu77Tpvjx49qnGw9eKLLxIXF0dhYSFnz55VmdG0tDTu3r3rtDAG4LR4g22AZjabq7VPU5NzslgsFBUV2c3qOXp/rQphTdpX22UWEhIS2LJliwqutEIrWjBYXl5OaWmpKhDjCm2upu13jRC/RBJsCSHcxnY41dy5c4mMjHT5WPn5+Vy9elX9PTMzE6vV6vDpdE3YG6rzvyAmJoZLly5x+vRppkyZgo+PjxqS50phDKgeBLnyVNwZbUhTkyZNqt2Iav0jJibGaWbLHtsn7s4+xyefzNvjrA9pbQwICGDlypW1aKF7+78zjaUfP7mosTvV5hy9vLwYMmQIX3/9NUlJSSrY0jK/jgpj/NQay+d28+ZNVWgmIiKCMWPG0Llz52pZt6NHj/Lpp5/W6X20hy7acEIhfqlkzpYQwm28vLxUwQFtLpErLBYLq1evpqSkhPbt29OkSRMyMjJqVGnOmYKCAqfbtSEz7p7DVFdhYWGqSpmWzXK1MIbG9hxtM1F1VV5eruZWPf/889UqEWrDolzpG9prwfnQJi0z5Sot85CXl1frp/ru6v+OaNfgWf1Y295Y+rHtZ+es7bbbatv2mJgYPDw8SE9P5+7duzx+/Jhz586pbe5W23PS6/X4+fm5vR2uOHPmDFarlYCAAObOnWt3WK07FqPWvlcaSz8UoqFIsCWEcKsePXoAkJqaWu1Jf23s2rWLa9eu4e3tzfz589UaMnv27KnThO2CggLu3r1rd1tpaSnZ2dkAT5Xyrg/aU+6aZmKGDh0KVM0Fys7OVpUEXRlCCFWZLdvAwl0SEhLUUDrbBYIBVYHu2rVr1eZj1USXLl3UNUtPT3e4n7NtNaH1X7PZrG7WXXl9Xfq/I1q/LCgo4Pbt23b3sVqtfPvtt9X2b2ht2rRRmVTbbPWTtG1Nmzatdcasffv29O7dm8rKSpKSkjhx4gRmsxmj0eiWBbufZNsftYcL9mjnFBQUVG/rmtWWFgAGBQU5zPI6+5xqKj8/H6jKEgvxSybBlhDCrbSb/zt37hAfH+90X5PJVG0eBFTduOzbtw+oWk8rMDCQkSNHEhYWhtVqZc2aNXXKxDxZqltz4MABysvL0ev1Lg3Lqy0tA1LTuT1Dhw5Fr9dz/fp14uLiANcKY9jSKvddv37d5WPYSk1N5YsvvgCgY8eO/PrXv662PSoqCi8vL6xWK5s2bXIajFit1mrDG/39/VUFvwMHDjzVb6Aq0HpWcYxn6dq1q1pMeefOnc+c9/RkX6xr/3cmNDRUDcn66quv7O6TmJiosnuDBg2q8bHrk4eHhxpSmZSUZDdr8uDBA1VxUxsGWFtaBuv48ePqWM4KY9SFn5+fWjsqPj7e7ty7nJwcNefU1XOqD9p3T25urt2HPZcuXVIBu6vy8/PV705d59oK8b9Ogi0hhFsNGDBAlTvesWMHGzdurPYU3mw2c+3aNbZv385bb71VbaJ5YWEhn3zyiVpPyzZr8+c//5mWLVty//59NmzY4FLbfH19OX78OFu2bFE3AqWlpezZs0cFYSNGjHBpEc/a0hZldrQ+0JNatGihylBrAYWrWS2NFrzUJdh6+PAhZ8+eZdmyZaxcuRKLxUKrVq3UGkO2WrRoweTJk4Gq9aiWLFlCRkaGCroqKyu5desWX3/9NX/961/V+kiaiRMn4uHhQW5uLh988AF37twBUOX6P/744zoP1fLw8GD69Ok0adKE+/fv87e//Y0zZ85Uu5l+8OABJ06cYMmSJWzfvr3a6+vS/5/Fy8tLlXw/ffo0n332mQpcysrKOHToEFu3bgUgMjKyWuXKhvbKK6/g5+dHUVERS5YsITMzU23LyMhgyZIlFBcX4+/vz9ixY116jwEDBtCyZUsePXrE7du3n1kYo64mTZqEXq/n7t27LF26VA0d1RY1XrZsGRaLhbZt29bLUEZXaUFibm4umzZtUg8MTCYTiYmJrFixos7zrK5duwZUDbeUzJb4pWscOW0hxM/K7NmzWb9+PSkpKSQmJpKYmIi3tzeenp6UlJQ4LHbgbD2tZs2a8dZbb7F06VLOnj1LUlJSrYONzp07061bN+Lj40lISMDPz4+SkhJ1s9+nTx8VDNS3gQMH8sUXX/D48WPeeecdmjZtqhYXnTNnjlo7yNbw4cPVk3JXC2M82YatW7dy69Yt7ty5Q/v27Z3uv2XLFj7//HOgKjAqKSmplpnR6XQMGjSIP/3pTw7LyY8cORKz2cyOHTv49ttvWbRoEZ6enhgMBkpKSqpVVXuyoEDPnj2ZMmUKcXFxXL58Wa3HVl5eTkVFBR07duQ3v/kNcXFxdaqw2K1bNxYsWMDq1avJz89nxYoV6HQ69V62gZe9m3lX+39NxMbGkpeXx8GDB0lKSiI5ORlfX19MJpO6dr169WLmzJkunn39MBqNzJ8/n+XLl5Obm8t7772nyqhr19PPz4/58+e7/LBDr9cTHR3Nnj17gPovjNGlSxdmz57NJ598QkZGBvPmzcNgMGA2m1UFPqPRyIIFC9TvdmPQp08fIiMjSUlJ4ciRIxw5cgQ/Pz9KS0uxWq0EBwczZMgQNm/e7PJ7XLhwAWhcGT0hGooEW0IIt/P29mbu3LnExMRw7NgxMjMz+fHHHzGZTDRv3pzAwED69u1LeHi4urFKSEjgwoULTtfTCg0NZfTo0cTHxxMXF0fPnj0JDAysVdtee+01goODOXz4MP/973/x9PSkQ4cODBkyhNjY2HoZcmSPv78/77//Pl999RUZGRk8evRIzXVyVCq5d+/e+Pv7U1RU5HJhDFvNmzdnwIABpKamcvLkSSZOnOh0/9LSUkpLSwFUgNSsWTOCgoLo1q0bkZGRNbpRHjNmDOHh4Rw+fJi0tDTy8/MpLi7GYDDQrl07evXqRXh4OM8///xTrx01ahRdunRh//79ZGVlUV5eznPPPUdERARjx45Vw8fqmuEKDQ1lzZo1JCYmcvHiRW7evElxcTFeXl4EBgbSvXt3+vfvb3fdKFf6f21MnTqVfv36cfjwYTIzMyksLMTHx4fOnTsTFRXF4MGDf7J+XBshISGsWrWK+Ph4Ll26xL179/Dw8CAgIICwsDBGjx5ttzR6bbz44osq2PopsklaBjE+Pp6rV6/y4MED9Ho9AQEBhIeHM3LkSDVsrzF5++236d69O8eOHeP27dtYrVY6depEZGQko0aNqtOC2CaTSQVbdc2+C/Fz4FFZk9nZQgghGlx2djYLFy4EYNWqVXWar6VJT09n8eLFtG3bljVr1jSa8tSuWrNmDadOnSI6Opo333yzoZsjfmIHDhxg27ZtGI1G1q1b1yiDzp+748ePs27dOnr16sU//vGPhm6OEA1OvoWEEOJ/xKFDh4CqDJc7Ai2oyja88MIL5OXlkZqa6pZjNpTbt2+rYZbavBTxy2G1Wjly5AhQVVBGAq2fntVqVYVh/vCHPzRwa4RoHOSbSAgh/gdcvHiRkydPAjB69Gi3Hvv111/Hw8OD3bt3u71cubt9+eWXJCQkcP/+fdVWk8lESkoK77//PhUVFQQEBDBgwIAGbqn4KVmtVnbt2kVeXh7e3t4MHz68oZv0i3TmzBlyc3OJiIiwO+9UiF8imbMlhBCNVEFBAYsWLaKsrExVTwwLC3P7ukGdOnXizTffJD8/n4cPH/4k1RhddePGDS5cuMDmzZvR6/UYDAaKi4tV0YlWrVrxzjvvNJo1jUT9OnPmDNu2baOoqEjNJ5w4caIspNtAzGYz48ePJzo6uqGbIkSjIf8bCSFEI2WxWFQRAaPRyMCBA5k0aVK9vNeTCxA3Vr/97W9p1aoVmZmZPHz4kKKiIgwGA+3bt6dfv37ExsY6rIQofn5MJhP37t1TRSlGjBhBbGxsQzfrFysqKqqhmyBEoyMFMoQQQgghhBCiHsicLSGEEEIIIYSoBxJsCSGEEEIIIUQ9kGBLCCGEEEIIIeqBBFtCCCGEEEIIUQ8k2BJCCCGEEEKIeiDBlhBCCCGEEELUAwm2hBBCCCGEEKIeSLAlhBBCCCGEEPVAgi0hhBBCCCGEqAf/D0jCMo/UM+huAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Create the plot\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Plot Test MSE\n", + "plt.plot(mse['x'], mse['testmse'], color='red', label='Validation MSE')\n", + "plt.scatter(mse['x'], mse['testmse'], color='red')\n", + "\n", + "# Plot Train MSE\n", + "plt.plot(mse['x'], mse['trainmse'], color='blue', label='Train MSE')\n", + "plt.scatter(mse['x'], mse['trainmse'], color='blue')\n", + "\n", + "# Add labels and title\n", + "plt.xlabel('Flexibility (Degree of Polynomial)', fontsize=18)\n", + "plt.ylabel('MSE', fontsize=18)\n", + "plt.legend()\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "\n", + "# Show the plot\n", + "plt.show()\n", + "\n", + "# Save the plot as EPS file\n", + "#plt.savefig(\"01_auto_mse_seed3.eps\", format='eps')" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.pdf b/Machine Learning for Economics and Finance/01_Supervised Learning - Regression/01_Auto_data_2_solution.pdf new file mode 100755 index 0000000000000000000000000000000000000000..0d01f84fe3454c30dbfa466b56c0f2b3e23cf15a GIT binary patch literal 159942 zcmeFYV{~L~w=UcrbnJ9GPCB-2+qP}nw$-t1JLwo5+qUiGtMvPfvvKx!#y;ow{!wF9 z)ta}au4~R(MJOX6L`h4<2uZkmdG-iNM~6#;YprJn$-zM_WNP7HXh$t%q3d8MV5o0x zU`Q=tXl3kRf=kE5%D}}1Y42cXsA~!7vV4Xy8im<(m05L&lftwC$D;!B74vH+>Ezg@ zuA8$kYdNqu>+XZRV66yBo4b=1+ai3vtn@<6onDPreqmL7I>>8myz-^8#6(x`itwYy zlhuT`N2b?vQF?w>V!hF`M{0Wp|LhEJ+R`_l_Sa`#aC>AvE~uO&V#6)XtS^O|H$WS6 zGrUltc^sX4u~NI*C&i$`r0Gz3<$Va>@eu5Twij z|DMF3W(u_6`#~WQ5#qemu$$!qVf}-FHn_C zlsuo_7V`v4mj?x=_QMZe8JC2H%TeOd>pgvp=Yb;Z2sb0Gf#^Q{Pk8wB&!6UB3YvEO zh(e&GWs~>#&QO(6rqcTOrb4swQ}RM;;T80p_z*f`#-QhPB@Pb>96?^+^EpaIZRtnz zG`GIHHWJNDbj@Bt!13(_<9)5r+T7Qq8OX#>=hu%gE6a?axz&hJGrz6h7=%em$v005 z>B0qx)b>I>t;zEbw`{+7?1kZ-FOf=HR-2N>kaoaGRcA~FT0o){nwS?*pATM2a+1r)`H&b6>UaIRr8N+BVe`ZGA z6)e%`7%w*z(!}3eX?{qCSgHGl0qs(l&y1!T(v!b9t6;V!%|atZR$&I*0eAbSE&<7u z`-yL#BEGK#Gt(tZ^`wS}q~D(EV=DJqMo>?=xAcr@D%bZ4p&vd4S1l!Ts2PwNb!dGJ z>bliDzkj>vCkO?SoakprT}X6*c#QI#bXzOqlJSRtn`_z9%M@w&(d{wm=oKU2Cb_>E zfzQ}}>yQla!Ih+iZqK{oEz`cb_-P$4} z(cIC!e`?gjJnGX!>W{LU@az4~7Wgqzj&-Rm1Nbo=9`~1gHFG}UL^)s72c&;LJ*&Tv z>YwaGfg+EJ#k<2<)b-u4q|>Y6rRHW|oc!^{tx+Z`;5N`s7!X9c20m~%A8(1F4}v!u z5kg&eM8s=8^HVYK%PuBDX(jpTG)_vd1=a=%d=jbyX7sd~2}F@)mB7s8145&cE)?xZ z*;deDOqlDC;{(rwkL0mMkAA-qTi%Y$4)A_6l#~vAFh>@@gNXt99{te$0zmM8Er6$F9%(Xj}% z-W_@yJQ3IY!QB{7L&CSzUKk5Zn-srP#mGG?ew9)i>7X8*=b$vMdNr$bUrgE>Rcrdw zqF~W<-SK;s)P`ez^}82VthR#al+>2|U5Q~gKjEVf<7WLbdVXoi?%~eY<#lwOz8v)7 znlSO;<-+T?DYO>a1uU1uI}a=-2NxO7IYX$0S!L+pNW{9OhdBG8cD3cjqAemmB>~gs zTZA}PI6{ZvUPGVik{pL#3!vTLQ;H!~hysa>67u7>!!?3QcIN=FvLxL|7$N zG`VXD2a#cV>qy9g-Cv2RaR)7ogcEgYV(aUshirr!(|Mu1=#`^D+s_o;KBEW${0;*m zS-3KJLsA8xG$!>tq?%524)F*Epx7x2Krnp`qLW&`K!rFMf%=@QCZKiM#yeUH6^skNWV;3-iROm>MLe87DnT&PGicjZmN~ zhU{k)_ayG!{}ziL$3W(o81*X~sB=^R>w4F2Sdc7s1cAxC#05@Fpnbw8AM%%fBh!J6 z1XWqH#uigcNQd)oEo-Bb-B0kU+vc50jU%LyKhC?k@3rdKwHg@q%ze|k9U8HH?#kt5 zNl>%1qk+q9bI^|M!j(JvV=^~qj25vcjSJV68n*IOuPF*s?Fy?MYA-k3ncT zN_E^uE|o2p{ce;QR@~*3YN~-LSpHQet={lhmgOq1$@!9t`!^8=9?36%HLUWyb-J_6 zGP!<(V+Gjg7mKXt=CRg1*EzC^p$fJQo3%10s&c#5gwuVpL0xgQ*|#0=?LmaTX#9}6 z?=qj!D-17VFiv+|`K4!dcN<6~0<~3LP+6OkYr{H+rSt81(>exu5>;Spp`LE3(TA?Y z@AonB3r+$~-((}K-mLd~Z<+;UE=WTwgMSDq;N2&MrDOT;a9Mg9CZ_+$WhJfGSk61U zdc1M5J;lHI=~Q=H`L;MtuIRvuYE5%Gd|Nr!{dkXyBMGh5+CDhYY2=+^YkZ;z%O&v& zP3@GjL%fuh()#U9%lZD*8fWvlz4ha5=5~fVSv1TQAv~Rn6ZrPq#wndA+nW=4fEywo z`OjBTaQmKvHViC=*KL&M0QhSJFWDpI))TO2vUf=MyVXYi2-vCu9>pLk=PqvmMHnn9 zi2^pYGrAYrQt6b6eHHm2FzNtde{&AoWEDAjJAQ}ZdOh06%JTMVPo`&hf%Ae4IWUx+ zm-60K#y2vLOqlrrG_<4&T>eEM91$DWtZ{%cr^${3Gu@g05D<%6V&@W{T~ z(c6^^8+P6{I2%vw%^7+s));Pf1T78XO9)O5O;Dx7cK)~ZimPB6~w^O9IWIM=#0 zKyyUFK;a#soF_4lV{iG-Q1{{A^_ZV(a2GPn^iA?=-QauBn+@cQ6yF#Qb^k!Hazx1b zqi!J$M!S?fi%&?M5pm-pDJ~4ErdQ3hKdQ3RXQL_HeWz%2npf(;3TO4wsbHVuYG09T zWv=rz9K6!*)si_`hB<5~9As7j?;gtb$+m4CUk>Wu zH?A3QWrS-pt;;SM!(J}WN?gFQTng_dpEh!y`A)&*bcn+=DTp-jO<@nw0rwt#I!gr7 zAK8o|4IH8S7et1FkF;Up-nu-PXu68%B^Oz)eRH=5B{}4f^lax9kYdjMcWqkFx#zG3 z%@gwbJgkcGE3-H;|95bPSYWqR`5sJN)vOeF;Tq*2k)q4-I}}i!?ZGsy5-^cH`}`FK z-$~IArw9%uG?6o5%oU-WDN)s{M#w@rBtx<;as`-Q$4Fs`KlKs85kVza*M?SJJyF0g zEqiL*6Glu?3tTm+m@ugKlBO0LM(dDFrYtt|fJj423)B3~6;qPRTqTctSLX#o#I@J2 zf7uB}X4{Ec^$GP)M>4rqcX*eG=^WzJJA0%Tu`bXgv5R7=^plQry;WgRJ)VHY#Q!?t& z8)vsCi+dbO%$9tz6A8Pra2Bn}s+Qm?A1%t@mv7mw-T6yRtIXA34aEJb;+kMif!tI= zTg^9lgw^oP&6>WbkhSqFCGq;sM|dA)e?@?~u*$=|(0zgb^W zlL(`lr}OiedvBJgM1eO)Z5r8?`_}ZlWp0|UJtW^uFuLLnd0^M2&Jig7tmzI(J(!yh zR~C>)1RFVi{VqUU;#V0@c|~lQa#;ur(ZaG82dp0DB7Z7Mnp{~@ULqX9&TJC82C=h% zN@^5+FTc-?!0PYe&RVh>d3r?isybu)Dw!^Dl2}I;Ll)Gze3#Fn%Q!~;_k0lsFI*!i`kpPy~3$3jR~=`Jev+xXDaDh zTJGuQfaG0a7Fde@t8+>6CS0@R<@p{;83WeZVMq1RQys3fT1ucxJv_hbTuMJC-|vo- zJ|RI5$~FDXX}Y>eC6i^0+Ei$m2flv3aH zqD5OY1H>qW{Rza29oDFMjujWBbCQ?n?8xQ{{R%K+9rao;bzx4X+g+M;DA!Ri;WRxH zaTfNJ(u|um2Hfp&#R#x5+t5;OLV+^^_UPHHd|t=Bk&1XT9P(x1~LhlSx5=x8T;7Gnf2e z%yP@GuU%2|!pXLSQe9@c4wAekA5c73o<83wAd7z6*&vi01lkRh0%VAw=R1#D zq5R%=}lrJ%>R_s~Iio_ELvSQQ!jrdKDU2g3I!$4dsc)<(Z05t>+wIgr{E@vE74 z?Ge7P+{X-fjrgwi1GCJRH>a7Ki|8R|gq9&Hd1Iv$BaaRLmS30C*)b~>2;vlam&@=z zx+?{qaUm(nbo8cD9gV!>_Za0TJcz*WD84PgtT!UDA>2w|SaYZPTH=(|u6WXHw5%pg zcm&NvGHhq!#$l>1q&LF_B>dw+nu49Y)43}cpGhzLAzk|FrtqNsz3kq#7HrI2&VM9^ zlU-y`zu>LF>KcdXO!6sqQ=^x&^yP@giajLN+>Px@XWp_Sx=CH$jhmc&fw=bKLk_B) z^u7U#Wrdv3(WPFzsAKt@itWTPYFu1z&`H=qy8?Btrg0WiIdorO#ICO9`i2ecmhYvG zI$C!YP*)KM!97L@x=}j!bo@RGgh1xTlu4P)sa1vyVKV*3x-2_(Np-u6>Y$Jn#g|pV zC>&j8nH{@ZhAw)KZi-3HI*Vb8|D~r!gv>wvN}gs!vyQJt@;l`9Doc}DmnH+bO)=Os z?e=h|m}~=dKmP6*gE#zzxS}a@R9?QuR!;wdfXCuEvHDa)2b2C{K6zyo+gEW|E>D-V z21oqB?@gxi>{gM??sdki&F8m8f9Rov@B(b+fnOh+KE8?!-qZc>^#eWaf2V$+V`TXc zz3_ew@n{TI*v^ZpV(!WB9XQ>%s1(&mI##N;mNdZ*Z5gb$6imN*-`@(b6T--rsLDpr z2&|lki3DYLh2^3%J0(5zE~BNDy1kh?-XWy3Ht!to-X{)@da1p(E$;u^96do-NNaHuZ++vjpG=|ZbJ=(dL=#u(y z%Pb9;Oq=#MZU z4pmXaJ(Cyb#3aT`e6hG`RF-h<8~fuAUwBp|!!pY9@->^}NXjo;2#|&+PKK3V_D9LL zBh9SEVw7&GjX5N-PLhlS^^N#-Jqtu`k30ekkLnqSyyE|cY_QWMMw7Y zmCWNqbMDG*>ljh87O=4`Qg<;~IVKjS$dO|gC8`*vbGfX=fwb0V zx$%Y=vJ6Z}f(ru#YDf7ZU6YPxKcA%}FOcZElS&DuJ$PRtgSrAgq=$L0)g2-y`c0`@ zCKU0Q-q_ym+1oRG&XL+XogRl-n=u!&&iw}dXriXe{7#LKnd#zoMDH?I+42Y_mzJ9d z>cw~rokP^x7 z-dQymjUi>K-)5kKF-V;nB^AzV67h?zLkkT>^c5`2Dg_OGN;t5XvmPe$pXnDFufvL1 zDTeo2!L$y-{i$fZA354=kH_TN4_YsovT8;;%{3RjSAGYauEdjuWv|AEE<0HSA^(CY zcXRsnVf5QFqEe*+`<#X0Q7Y3cHOEItZfsJgLzE-qLt|||?|p00+95VIbNq4*6~8i8 zMMba!f)z=|63z#oPw>}Dplpbz-dr|_DpY?}h*$;w#S#8P5)BU^jOwY?9@^P}uwZ@j zA%$w<_g30=bl8UMwsbRCcQRd%tfEST;}aXrv%nbhx$0AuGuf|9LP`-M0ZCE{#kJ0@ z^vN8+6mu7{?;7|dbH80<^Y9q<+ULUbX2FIx=Nf76EkbHCUu^~R1Z>Tn1dLcM@EJ?F z=Y`DRy&@vP@p%Wyv2-Zw#!rP`d>6l)|3P54DP)$Og%zN>f()qEZHtk+wW*4)i9F)- z({}2rU{Et;tHuS|cq?nt_?x0+PlYNSCcCYMx@SvwgX$NB%`5YDDnA3-X znJ$Fc^(f**UrJ( zlFvkr?*o^9m&3=baQ^tn7(ZpxRMBQtIOMPA6YXci5~Ru^>+>YFWO;&OghsKePHl-p z>DCNpK_iPf!ZYyW4gwnE=&*iN4g14h{f zgD#?IVNSY{qa@a4Orm~9AoVq%I{=BUK^yj%(Dp7KOYpPnHWK4?O&Jq82|5*ITLLEK zSVNR?)1~emg65j88L8K8YQR)9kM5RZ@DR8z8=Wd>)ThF~fpn4}*5_F7NFt|5L;Jzs zmY;C{RkwClzP`wESP9}=zv^8boz4JP;2XwTIT4%W_ zhQL}aXz5IQJ`GHoB0$N%_f*S(zfvq$tV-kk>Khz%#ko@K`Rh>W$Z(~E)O15Vd4t6U zCr~|&BTmeFkqZ*+AWUW1g6lQRt7lelrR!sbz*Z$1t*!SE_!r^Pn6h zHdC}=^bPNg$~_CllVpEP+M$DtExv?woMk`ExfoNuunt#%)bKp}mmHr+)XHPtLi5FF zHHjZ-N$lS;>f#n?7kN4=#(-&3=sKbNAxO2>dmd4oME`8(o2Z)If@PwNH9#ls`f!ff zUDwG*FS@PMoys!Sw}eQnD39V@4=vSODM`SM5&ev`y}C%1#2e136P>f)u#j7JV#2Y( zR&WD1cC(;^C{gT~bnbo{m4RlE!*1lwfciF~)%i9lX=d;4vf%WK#8Q$UdymJ8@kW>h z4qL^Xp=Qq2j8FLJN`}$vl|%$2D}zxUUrRvris6pGy*T#TggW=Mmp4eJbA%cUC!v!u zY+a5>8p<=__Nvn_JidMd{}nWu3d7I>mT8O1M&-)%kalx(5boy3xp8&WPw$`kDO{V9 zbNo`TJKxOk_hJWgt!g^=jRJ13gfM}S&u+kh2QKGG@B)-wCp7bd-hEmnNWoE3ovZLR z3)8>3;4fJ||~#;9G1%A}+9 zMd5@$#gUV}5Sj8GqOUejO%p+UaquGwvTxd6f_(>kYkp}kupo8?L6ODwxhtdEybouk zgSy*x%oKN|oU#?r^H4vIm}-`i!lSVwikN!2&xqXtTvykH*ty;qn>LBIh?^^DY1aTJ zU2E~Y9c+rlVb~~=Nv&%A#?)K2)sZViCQx#XlT+pDhpM4Y*2k5%umC#Df59#p{*7HK zxY`&}t4Qma8R|Pw%RA~he0~XkL=% zv1nJDVj3oT`QUunRozeekl z@oC5Wdv#^~d%>j!`@HgK!T$X?H2U@P`p;0GU@AA*yVVx^T$08RO-V5^GHU9T_ln%WN3zl3D2(Sl$3R0tR!E4j2-59%U zetK_%IG%~Qy0(^=GhsRp968`|eQtDUG>5c0pMz7=d9%B~J1IfNi%VOf@5c{f_{5)o z1xhD7F?&R-n17&LXXdZ!e|YJYwEWiL3;7%zlgyu2RuQS%Ec2GDH)GkT67bh1uB;62 zcYQa6gvWJ@4!qrW-vFY3-JoX?h?0_iepe*_Z{z9F%Wke`H;MFVJdn(6!dAp`}*-mc>i3!cQZGW+7}n6Q3-+7w`6$v#FG z8C9o7Qha}R%AHusLq3TWK+=TG4|m9}=Xmb5C-5~CX|{oUZ||tKcG+eXt!O6n z@n1qdh23%2w+?H*z{&5ba(quu9B82YZr~W-E5H^8?lVN*Voy#s+=Y?J&uoF@Q@QOoZ5A z$?B463|1B<`2$2N$=306@>@RkB%-;PMoh|%qws$-RL|b0TBo2VM$;5bELqirXMW_> zq@Fo>b&hNu?1>V|C$2?7eTHQ2kIZCd%jOgF(HyqXwc9|$dJ8nw&e>bTN1F@+!uo7| z=l^8VspiiR1-OtrL=L5}IhlTst#Md*|IGgwshGU9SMNR35Xx*9Rh3#m&>TH21FqTR^>l3#ZB;3=HdqterxZFeZx zu!zI#EG#1D)Q+rO6KMZ&u&o0sx5p9k%-moNtxQ7l(cP-UoU$YFv|K!|kN2{|yoi5H z4z3BlaP0mc?07M0V&rc@J<<`gU`>9ZXH==Dm^?N-+CQtEHC;BR%` z29664vkMKkQAAt@F`=w0>v!Zy`iaS`_kiE*pW6T!D*h6By~PNoCK>G8#iz+XgALN( z`E&U%*Vp^O{}Kf3H{S+k-89~C+m$cvZ*=i+qI}8#l>7JcUnl1f=;A>jS%E6%h53O? z4rGkUayD?^6!| zI6>Fs1KQgwA>OcP9aad0|5O+t<}+^H>IeuC3G1>>J#WqIo^w6;zX z4Xwtnn>|D9<~s)|KnXrWzD^YIQf?irapZw@fK*4W;y3Pv_jwDT`$@C8`GIUX7QhD{ zaJ*uy(UYpKPTL)!d!yIKEB(Q!yI=0Nhf~b!E;~c9_)KY(tgKIsD^_hE?=LXlfTeT| z)()=PoeFGJg7&+rP28*5=Ipv>X3&e>QV+2S7?r&*$6a2J?eI zzvR``!{t$B2}Jn{YyjhY;05|_>{OGIDbY@0japj>borIXBy(+ziHA}ZLu>{R8;ix>Xa&~rT_l@`@wjIzO_~J z*0(HG3Px_%>)i!yZ_foy=Pdyt*o95rV&qR=GMRgQ?fvnx;eLOL#^GX9rPZPEgM^Zj zuz;+w6QEJ9y14lGrHPp$X~52Ll?!arD3B(QmJ>edkAQ=gRnrPUrA9R>MADh3*1wLA z&FvVrOpWuAZkdu>xVxz@k zcj^O!yAt3)kl+El`jB#oGslvW+n|!_B3utAbI`+&?%eL>k^5WgR*~LdC>h*t54U=Q z-8YmIlatG=h=DGEmI?;WRSY72`~Q2^MFL=5Qahryb$ffG$<)ql88d~FJFXR}G_%!6G2wOIa?nm(`JEaewS#WZh!T7~aG>%H6 zS;o0_tbdIs(D1-=rIFM7{S|OvFc|dRj>TAf;l&9+=wTbzFs_3T=NFy8Vm9AS#37DM z9E68GZf}D)3ID}=Ku)dx^rW@Wa1_etLGE{2uh+*K{lV5E8%$=MZl4Tx=T1OyuDh~| zk4R^7kb?7lyuaC^@FNW<;puMF%$5BwYQVw15@2=+*q~2)JKC!E$J<56!}>v%ccOAc|-}bgc;y*9Ec+?=6xQYL5K6^H!h% z%L4{u^9Mm6E!ON5N~T2t#JBrGVX@d&omMRIg`;kj2@n_fX!(r!LBrGh55wwSPj-g%i#|6j%&~zU6v_b$qkF~k1$>d)YGYN1+{7S6e_)nlS zX_$;6JPznc3?ZLNRxoZsdW&&RJcFK499wgm_UTZ@|GLpbS{%#nIqlrG zc1%6>V8k@2sHh6!YtOc~xQJfXP&+5gxcKrnC27GBG;zuu+TWq3Y zlZ#y9BQrBCOLeRhYNv0PTbOCPTXK z>wKxAK~10FjpyGA?Aq?K6`eu&oB?(5b$708hxwKKM(2W}qM>TLiYF!0+qR&% z!}VRi~@2PPn&P!6y}{S0bLowfG(j8j3jkDdKo zQ}?u6e2JK&l7+=sx$5ySbJ}{LBuopsfw&x=EZxiSdeim`W+V>)-FY1NG6b5#x?i?;?Nm8#dQm{p{+F&e$OB{mdFtsq}Gm0&Auv4n?g@%gh-}(W0t+9E{6oM4R8!i^m8}%6) zsX4GoAt&yW0|3&>T3H_dbqh`m>K6>g5Pe@vTPALss7Xt7(%afWz?HHNjqKmG;RTPG zhIN*1QW({9Wjanh9EqO|*{9VImULb|t*(w3kOj0tE zpuqeY)0-P6PFgV z{>I87|w;4d2b? zR0D<29HGj5Q@7N-H#(gzeIsm+uxDpXkg;6_?(6bbo2pVWJhkFRWR&xN=6qJ{fJ&%9V-LBYo?+wY9EDV> zsF$(W_%)k1s8Ta9>m&W9E`Mf=g#RWnC;)v5;C?2yGSQ$t68Zt+s-0#s6H|GKy!;!k z!SC0fm@(om=kMk7|(&e--js1r^15yf845lIFa6bQXtDQ%T{HL2Ws^GBrC> zn=ahN@A=%z?A&*|QzqqGt%|TaAOE1<*HEWn7(=~-*|-T>h5Zb9sPW1D@eB;YU^RJp zd{N457Y(EcsuSzi`%{aXvZ`x~)`{zag4q`OyAxuz3_Y1H5kS)fIb{t4lQGQcg6P5e zHa1m^l@)JrZniCW8UK&_eC?9Si&HACKO|(TL&S5?g)7p9rGZw~6!52aebOk(Oh4Sd zzP`t_a5oCs;JuN+z~h~!EVlk&XK>LAT2d%T5@uyj+N@SDbaxenJ`CtWw`lV}sD#vT zPEhYm7dVICd7mt2f`yDFHgI*BBbjiyC-5g9ZDs{*$0%Fn_h$_q-z+sO03w zGWgB9xn!!qXtF%8HO(Scg|ebB79i)h)5h{G`bER1E;D;f z@UN=_<}tYvMF-$6!+`ZhXU1#vZ?qBkI4*s;Rw#V0Cqh8MDjYS0eK4ne|S7$lss8M^(Pqrg!_4f9#7W{6U5Zh z{-EaDWccv%ySU0y6#vXs#VQyuK{g>@MqkJb$eg#!I+JZ~iM=tKhYIPRLAyQTtc3kB zd#%bO&9$m57Q?WZEb4>Z5L45{To+#0hR8be{%q#rnqYKtw|O>)5cRH1Ezd-^+n8u< z7(FQLI0LONE%546ebfhz;s&*oJ2XysfExh3;pg&pi6$|^8&{re$4=8I-NCc#o+mIU zJCPwkISZQR1JLeDNxn5JXS|WJ7iQ|YqZ7)mROeRe+ZQA~4F|kue{By0uzj*wy z^fR=8b(1iI734rdr$MLz;q*UpF9xINuhq|jt6vY+&4wv?e0<6oqm))0Dl9HMB|Sq zs&W4UU^pfWO6-{PBwbj5eCeYEeWtP*_5~~xI)6=2MpEM#Rv;@?tj&1_hI#VOuh{}9 zW|J7*yJMG3X%vv0hIQByyA9Z_5rC@${A7x-+n2auMUw@yhQim#ltH|(&1nuaPVQwD z4i&oIDkCm-BBP9hCTUN6Vka1GK~#=!cKtJ10J3lhUgfsW_Un_J8JT+(N0ZTKjo1+m zY*yd)xCPdj#KozJ7E64YuzcX9^9OagGb6PY$Do<5n(6oq9x%S%3ec@khRA2h7NWlm z#?JKvg3OuDb*{M-jZX;PEA3f_qvL}NW;U#F00@6NbkMy`BD(&pbQTpH&NyhIT-)Fy zf!x63pWzxq15^-RZMode*y;!Wh?t%&NmX*Jzl!81&!H9altTp7QtO+jGZRh1A|(yN z@oH9xCZvreBTE>(#9)#sl2T3#G|e``6dsdkdi+0kWt2c z7|&UElD_RT+jV)Z-k*v2qd1Rbrir`XS4XHuMK&zV1{{#!71_81Fcf|22hfh_c{F!M zKtf_RPqMnVNHp%KGtv|*S%XoI5Yn9^^PVVeiGa511HYD9Iv6k5)^po|sVp6VuRPd` zm1p7LOP%>VH$5LG3b^JP?QvNd41cg)X@TH*XIh;aOeSJjmIq$@W3HQgq;==kt0T5% zOPoX@u2@Q)`cBy}%`4aDcf0O&q_LOc$?P6Sew~Ot&zOM3kkM z{&3TtfHE->BBE!@P_K)Q+l8*u3AM(E@_8S0EhxXu7O=y`ScTDIVUaDHvwa38b&5(r z7tzPW=d%qHM=(qWgI(^hWU%BahnSd5uE~_;8dNCVRT`it2>L|cI5ce%xlhQJfhlqm z$DCP@Dn&l`7JNe0t0A*2ZG#aJ|#&%dzY7#}ZJHVei5H z93wn8X2A&!PoT)_>80`p3oUl7S-n*$zp4EaLCCXQP8Es%L8jf0j z#VSNIlZ$J0r1B>Nh%Z1#2Yc{F@0mOpk^AlKE*C{TgVEY%p`C`|>FE?T-`B*|DnjFl z?I{d5YW$O^iJfoaRyEL>B5Lbe8q80q$+fIU;ki7R^L0u6&Z}5q>U4Z_d@=sj=YsFh zkj@4)`6+;%nAv45x3_I3nKxvDVWmXLZYYLtUe`O0GlT_cvun4PDfxj+A&{D@k$E3B z(ur94$jSj32oSq6#{a3BqPu=z?UqW)ELwA9k1i~n|EOQlY$YHMCnw9TMpm0b88E(a zv^Gk;{>=>-4bsZJgzkB5wH(mP4^MbX!mrY1oOXn2)p6vu>f+up`j;NaP{?RSE@&Kn$?}D z$&1r+EmcGT{RvF&p`_f987J$$fyb% z%oE3BGYiSXf7t)}g~D5G0UC_Sr)nG7N0yjHG8vIlTPmJN^T}8YGE}cVVNAb?JT5^b z;SZq7cW7}4W%lXm5Ef+O4_Qrnjw>@WNmjTF7+HP4%Lh^+&l9B?3#}Drs#IE^zXuK)7>b@x6MplLOQ?&` zu&e>erPD~~4Xw9}gkQGg_?8RwCB&w9a604^7;N6ah%G)YK)%Sq(D0eMtG-;_c)i-U z&1LFWD%oIvN#)+m=%P-{n9FyX(Dh6J8J0IEea8o|R;1 ztDy3#m^gr5IoaFM;`0x#-yZ(XU=tJ+%x_ic^2(hd-R{NtGnTVh6djmRGF^6JQ``32 z^(H;n|cv~Cff^J$8VmeuQFUP`hylgBgZk;69QLiMfuj@gVz==-bjQ>MGgv4ZPlHhSBe z#157wIOD==!K|R*YP0Qa5%&~+^klKD7-_F&Td}_IhQ^bfsmSQwbd2AUg`TYq3$#U; z*|O~;O>)MVy$0*bEM*faj#tV}(_#WCpT041tabs_B4iv!S_ClN0xzcon3DC&L;C^4c{S9{d9S6r6i?!CM2SoT{ z-GY|e`~|C1D=yuSCvu^XBOruI|&laI#yc4b;plWCgc3fXnSJ7F;MnE04LGP*XL>w- zVS!@Ub|8_96k3l7okgN-o`VwkL)r!jT)+3bz1s=pxwW@`*`@zCTMB$?GQ5d-r_Y-G zsQ*WaCi_wy??Sv|xS4)pIfc~A>MRjA(cj;aIg;Io>RblBNj8Bq!hwg_CVI0lKjDB5Us-k7)&;$mYr2CLEoTth>M=DV;i%WBs(I@rG%X~D(XwCMqkX`@@NN+ zc2%df7j~j&vU%fXRIz>{m|tV`2A%(WZxwjVN-}DX9LzEUL4ud=tMheb9Z6#(&usd* zEjsu?$>w>v`Q&Saw=mZ1{4;{6SLyS=nv?!JAl?-+i*dhxjU-=ld2|+5RX9eW=5#JzZW+|E;uGt| zdQ0UHnyvd50|1S|L>n7n_wh0H)Z%^`i_1c_jmc?8D5ssnX&CXo_TfaC-mCrY{pD@W z+VoFbP_}s`S|pz>Z3(QoUR~_Kyh|pBdOX3kGJ37PFq>Tf3Z>itn`URahuTV8^3=(g z6FUwLb(Q95%?7(WljloCt%?;D4938{06J%D&GECKS0dZ&XNLj6a=#*2H*amHv(`{| zI5cK=zdoN7I&UyyvUF?N+V3x(w@H(F|9@1yWk6Kj8}_S+3L+q&(j_G=-5@9+EiK*M zodXI2($W$`H`3iG-OW%lbj`rf49(g2y#Mo_^Nmls_TFo)d#&sGUH6DuzTlarVgp`) zNwpJ;p2q17Dz}m6+uL!Gp`U-2eYdHhX#z}gRg2zpobwGaJrT-P$2Ht@JFcFBR5N?y z{3cIYuh_sMatul;;t%Z>q#Rntf3z;W@xLaIcmb5+7nNge!mDpf^HVOIn*YcqwaYbZG(_2t2bfqth0-yjP<_?e~ezDVA;s|q7- zkYFSUoye8#+L>SYHIp0m(ubPZ=f@%B|C0+C)3;G`Xvar`nyF+2Yuiih<^wMmM*S6q z{fn+IdMSI`uB%q!lx7=WHM<=%`cp^&?M^Rd^AD``UFl%7Y(WyuTOjYKz zA8ldd*$(qW_ExrEfsgoSL?{X@Y}~5%27|=eQsf2CNGW`OrgDWm!OgFSHN`jk9Q7^T zCd$*NGO!bN*WHGYWj}n>KrZCULT4sDRaoS;u32QWOtD&ybz5_f?@$4|J%)xyqjwTPvaz}Q zMrGdDhsDyAJiaG*gCoNWbvw}%k$@4|Aa*YE6)5 zi&kV}(e2YKOL}8rE+}%Ug8qkUa3IKIRK)b%*lZ=Y6+Rukie%6Pk4tB8i4^iBy4AkE z-@&pRxyYP?v{z#l(cq@!VeuvPya>sh_Bs<*r;1BrY%m@6sVEJSqU82Xex<1kCOi$e zN&_cjM}{iDCyIn4vkvXxRyN_Q-(JV&iJ7E06x{oZ{rV$a9}%;aJZrt-B0jt~I4)#* z9^e*RVnRwKLbjj7^ahHir-~M<6L~eB9QCG{P;X{d-A@bklS9etqGgM^^VJ~~pc7f6 z7fN-l=8;E7i7DRdH!l+Rt18yFN=^jLQq785QV~Yi2?e`GqBL&7Rk(IzKESAc^u*)t z4bmt;HB?V=)9kqgFHeg4hiamTs8fgkqL#2;y$Zg$GSMjIY`YT;&7KgMGPN$g(L8hi zgBF$dm%aTrZC81_pOu4|0IvvGK@;cu#w6D3&x$y&Ud3!R{Hr@f6`!LbTc@(P4lb!l zL`a}FvQUPMo5XA1M%crxM*=m+0sO|7QU_8g3ciua?}}5XVkqqobX| zAyxsW+U!q;l$1_`P+;T~<7D%G51T>R)ujz1?@V&+1QGOu2=|%$wdZ_|jLZO3)xIfo zB%@%uqzDFP-Djt`aEjb)3}xSp}a#hCcDIIx+-B1RD9&`Lwn7 zF8F*B?FU0ZsHeoq`i5mM{!YzPMNNm;EC>XLd_dn4nLWoHO$DsN@dY;B3# zVna&Aa|Su>RCkAkx(!11wxiKd0zm)wiwZv$EgQt1Nyw)ve&p-z>CLV9>xF@OH>Jox zqfWLEnQT;>J$S;Lo-au;ZMn&v=lfzh?Ex45KqIhUf3*y15uV^NU3O*UsPyiMfbUG6 z-d!eb00kRdeGvk3Dt&%-|YT z(=yf-%l;BdS~N3y{)CRvqW0^Aw}AV~1>OdvXiS zN8}>cYD*EAnjZVSekXW7GQi#flqjtL#LfkEuMTMv2V7^}h8FzZ*Us(>rk;jYpuWTNr95_@+x ztExVZK`u1(1lhc}k(LmQqb}$jywaeiVsU)5@mG$WQE9_sG#`^-J4U*1^yi1g()yz~ z`p4t!T)^8MaUm>%Fi-)&VF2b2hE?K^o8*-@qWAa(-;%G(-h3@$rqpMz7E)&qZE{!= zO&y+T_3>yM3GB*|j%G7xyH3#5HyYfZs}2E2Aj+Df$aP9a2T4sVJp|ZBL>&!J194|? zNV@#KIqv={`#sd)<1sYIPAYmO&zsz3Q$~GPIgK0vl+9~oGn0>yOa3u~*ow#A>SA>i znbB3bnt@dWH3EuxsN>)ig2Q;K&&id5OfUZOM${!=g)blZ?HqCc#jGM+Lhi5+3m(5v zx?eCrwFp^Sx;?8`61%BsY7*q-t@{vyll?ZG-)XgaR8+|GV7cSlBkU)E7X9~}$=&ra zgHpPw96bX=HJ^d+VK-o9i+Uayg4xFM`C01~jZLukMw~|CUoNzws?edyDFYcIB|=^* zsJ;44Rvnh|Hm3Ll0U_7VL`sDzX=$$XX&FUHh^Wv-j*4F)~Hi| zfUC71_ad64n~nN(YhyR*cGp4{sgHV}FOSDxCgpbZEhDB!(BpjRg}?TLe|SMx_4LMu zE*JgNX7@c=Sy}j8bpb=YC_p>}JjNPH6X0^)9t)xH?h~o}{d>2vm%@dgERJ4*gu@tJ zhf3<@-I!QePX&0M1ooTTEPk7GGw`?5 zZ=R|06OjWpi(Sy=RK)$+U&Vf5#^%pDo1Uwmd%9x!OS49K69?ABhH&7}c#pHC^73R` zIz+4)Lt1I|idQ);U!20b@r@I@0nMxJdcvdY&HkhD^H;!g(erx@`+?AajpQHSntnQg zIF+%+6=64HA3kqs(W$owKmeG62EOhY5(+>oT8RP846k3k0^OWK0Qx7H*N$Whp4x}x zYVz2>y}jD^M?pP2pl(Tw6?iV%$YW=|0##R$wo-F3(jvX8_@9P%J4z*#-hH=m8IJDF z$XO0OtDU@~E$OHV+WEO!W=2W5Ar?0j>Rf<9+I2sxy>)sg!o4}2oc@ZN_&JWdN}6II zBBP3mzr`jDacZt?JLpuo%lAabe(_YR6bVsEExK;6*1`62I z>`Gjc-tFqdP9vLLmym*&_Xmdml!ms~8tpA|No=_rv+;R|`xnVZgXRUaQ+7Djny zByIUo$QLI(ofFCae|`9{4993;d@k#k3h6^P#~GT_5>DXDch3zR>KD+ncm*0&CA*VL zbqF*{Rs3q3F)n{=9ZeP0cyY<4OyhPL7ga9A1wxS^_19Zbwu2fgD6FGqSplMG0O#oatC;y0N7e-e@6yVOX~9j_F>Qo9%@3ai*wUutHmbk%U>SfR-yESgy0yO$ElI2B05FGN7WgOq`nts zNK`w+^w#$7`!vN57+1^XDhe1r$Wm$p@@2-yqPsu-?RBffjL9D1p86yA|K7;nLj8U% zM4yW!GC4UJxsz8GAyW>iw}FgUB&@HSo*kd;Og6kHy*dKAkb$y1_KO=`A{{`U_J4|P zqFU^(Ej7!d-C21=ueVMPC&fnQ9Eg6Q3U?_2RTBxm7;Af=XYeh_Yqx5*{y2{!=Qbb8 zlY*6{tp0U_^xqCdT3Dn8*k!PWseS45KfZz4@b16U#HaK# z>Q)O&(Adsy7lRGInUTj_u8Lf+$5NYR13hdWw<5Q1CZ z@0SH2o_zI``m7IY16`$y_y~eW089^ykc~{xb-NQ+48Z3~n#Br*>NQw{x6>_ATxa*B z&rG?&zTZ--4{9sjM==LwgANDg-^ab^w-e#)`rh-P0F~QM?KdtBvqJu3%#w94iRaP6Q2&K~m>;ujXa*XmeA z&j%iz0{)0o0RPC(_$e8}p#&X`e9`UvD^1ep!CfEsTY1o{WSyN0UiihpwI2pUw?qpH zKcV_)zyU?eODW}}ud)BnRqDm)r~bjGO$|%_z+QIGBIv}9c+AbS>4;bzE)9`#lk)IJbLAW?|W{VI{*8rU2Z6|GEnD z5PtPcHzj4_2B5wF9;BwC8eqrxAd>i25R33&VD14^5c9`YUi(!{-G}=v zV5XE5>jbsrKYBaYfBIv3#W79DW5lAL6Ee$pu2E?9DYgsWM%}h)vS`ZGN#8?nFKsU9 zxUD%FrYns*E3*`hbDQ9&EDP2zIK)EEB~HvGCvG+irgGX6*)4kRWL%*p6Ir<}f9~o# z4-stuxOjT}lMnCn5N?741F>rUZsz&9^MsQt6;GOF`)qjL?E<^+nBYfU@W;))`XzI% z^U``4K$B{QcOQ)i?a$iQ0f#NN4fylCii(5P?r`9Qvp1e2O_eGM?h1ZKWD0;EE(HUV zNQMm4WXn9C1~M6ZpF3Ljxw3TjM01v`WQIZ;2BtmP0zdf>d*OqW!`h9wU~r?kBfMRa zw&7`>|FzS=V2;yT-&Gyr!05k2jgW^qqfl?z=V^|JS!30FjIu*-cr*Y`c7Ml|suQnE zywa?Ort^*NFj3|B)ej%ng%T);m*O93V?P%v8-4xkf4Tx|I;*X2R#g=zD(=Xptg(mu z^5LT=yNiv-H>f2_;Qd%s0`Oj%uvaX(&OL$njrSoWZkbn7^7{5hQ=$Bd_7`0y5ZJKo z55gk2(?06kjF(O)ZuXbocy`cmj79#DOisnh(D%=ZbFfZP>H}Tt$8~`(#h?r9sS?1*~A1!^0!)J zyY9@R3tyN_IET2r7=szF_X@Bf*zA$``hWgbSMZW0m!Z^HnH z7-_u$(f8TAyB@vsOq5qtOy@A^0p=0bvu6N<`I?f_|N7i1@%nUo++-qGhE?$LHaG&) zv67xbi@uQI57W-?aZ6H;fY$Q~mBGu?L>?QHXi%zLc?Cqd$?x&T@BCfWsUTfFS`%a2 z+FEcTTOI*J!=kQ=ovm9VgW1I4&-3jp9jP4sc!sDuDT5d_n?1u11-`JA<)P z1zhsSEuUZWNf}-_`MDEMV+`pB!7ju{}Ss zyF~+&QThVgx z@)M$(imn+SnmBsKycwO1eruk8i3wHakc^HpsV=}j{h1`4^8lDQ#+8YKllXdVba0e2stnR{OjSU80MMv2yHI4RaZbQZB+uNa@N5}W#n^bKvmjJ z8drM&TnkvC!H&4Zst$QE4+w2U(6h`B#u!wBhgk$tWy&|k!ng(BMa@)0WZ*4D!!HF> z6d=8lingtM0Jjx#wBgTwG zCnDA#Uf*VO5&z^GY;K!9UTfMC)wc7=?2$F9Mys)}!U9)kXs(nrT(P3^6i54uF`^aE z9fVCT+w87Pq?Aa7L6)TU*)UyHkI#dx-5&g(E(=L|K74TADv7FFX_ysonL0iikR2FJ zN^PLwX$qkJSBA!4EA9DZ2#?sij1yIZj!bzW8vDkjZl=T~wa#$0BeJ9R!cmhG2|~e( z5(z04WM42TV!i+1SN}tPQby zCh%8h2!fXJA!W8yYoERBuBTVQ+L2K0dI`ey`%Z$@-93YcovB=d7-7Y+byVuTUXg;!*kj z8QhE4dHV%mC%0ZQoo-Y6oV8Fhgx>(O`?y%WP3c5VF7&3!@1`sNt}a(nEbm8+L&gCH z_P^`yk2+6lF@SL@+zHjt*GC=@ABdP;a4_gCj!Tg%O}P<8?m{>fS6!8M3p|7aE$@uJy4hzDEfUsl z#7Jyzmw4cFvFl7V!!&N09ZhZJtoZT83UNk-tV_E(akL`Zu;hVG%XgAijTT4 znC7Ul(0ul>6ipny`4?_ zULAZ<_iC6AVXAn0DJFBK+G*LFbMjYdyP7HNCeb^MWn<35X!$*CrBMB<@Z4?)i0;); z3%Gu|*jnjaoGS8;D#1B&+4flb5Ik0<*U~Pv&SK`j@;E_D#JkTnDc!HBC^bFA7v!vq z-;6R0(b}<&>hc3{-pWTA{Nqzy>YqOmPliFUrYn{P{di3zY5wm>8Q_)gx$(ZwQ-ARD zG*Vc?$*Z;;7nSAuX~JUX8y8GjFeNsAhy3EXzA70GFDB_OO=8zf@n}wnueiheZitdI zS)(Utcg*r$qvI8!mjcbKb}t5D-OjAq)y-n~2ph7ooCsw`|1tcVfCUJbXB%ToaW2U4 zxV^SaEjh~>g_CkJZH~}qf~q@r6UTQtmo1=^jucE2fCcb`IAmQ0-<|mG#K&e&G2*&^ zr;3d1?Y4@WNEr}zp* zN|3YJ!wV}aSLqBB$TvWB0#b9|rT?Mw9Mu*ER+}qSo%AG~`s_EGYGp=^Wrnr4sSYd% zNOh9uFb~gK4`33XK!?1%1~5e3_uLmJeVOm`0U6cTf7lwCk|On;M_gyRlWm zE!#gBrzc6JZZ2|NVOw1^Ixy&hGHW?eiWGdOFmpeI0;JwO8S_%2ee_2lj2fFEtQK@t zH&+|Z+}d>XY_K>(i^yir12jBURF`oR;i>=swe?@$UO4Ty1w#wU*ab>aTFmUx`re^_ zr_3pQ(R4S8%{LMUp+x{wU{3VWCA+7d z^2)9w@%$;V)uYSh&M41+Vp;ldoR`hn)kpoPl2S7a(?tabH|gi#|L_K{!q04vqT&QS z%380G@DK|8^47$5M{!M+?5kU!$<$Qm-{DdPApZ&23IaY-R75t|o#7=_B<{Ch#{$l4 zzXNk}(rT6A7&-9tyx!n1Y1i@w?S04GYVErN(d&GtjHD386IFY*mw z$o-R8zZVVjW4{Ks2zb8}la>Mdm+4m?a2HbY^NcK#~?$^|sax##Ee#l_X%es9SB zNWlA`PWrP#*l%B7sP|C3yN>#FkWL2lKH~@ZV@yi-`)w46Uv+V{d~UzS7iP!Z%*I5n zxY9hOJuxT3kuIfD^MH4$98DJU42r}bZ3RA2-`bqPA?k?Lf>!Rknia(2BFWs>gG49( zSchHU>M=LN!ze_D6q4UG6dRPFM{cc6Og@fm-2i@z#LCbj`NrW52G0I$%CMasuZUbc zT_{u@v3o{Ro~z+dkAT|joYrQ0ZhWbcbE=Nxw}|pyuuF{uf(a1V!aMzpvOAHIt5X84 zlcVE}G%^m>Qk9qNACC2D*+pPj0YN7;%7G7?~ka)pv zCo`%bL0G{B-lhIO^@-nSMCJ3%BDmc=6X?q`(>m!|ec>UV0q(oMIPGKFTLD$hxW2cz zXU6c|)J&aT%a;iXs$^uT@M1aR3!RDosx^`M2!;PrqN!ZIyk2r|w`UbxG9x$SRxh|#GdvnOeR8ZqU*M7J9u^S-oFfi5_-oB7zB zpd9CSYH|x)9zWJJ2MqGm?np|9ShG_tKruIMybYWHhI2INtWQB`Ypc_%nt^d4g%LgW z-^{ZNXGl-_@S@5QG^4K=TgVN6Dr@l-9-__imO#5wtFvPTV zzb)l(ZG+mQjIH5iP1nbE8uZhBrJ$f&3PmhvbIIuCt&jH|=v1pjV?2V`iG+0%N(O|w zG)UbqXPICV6Y(*z*%kSoxgZ)~e*l)TZ{;ek>3lNgH!3vCTGqFjx|2$>nOFAadv7h5S zg<3A9>i`iYU{BXI&zF1wFV7v}99cC^z)8w}Tade*%3n7u)Pl!2yhs4#O44=6-OqQC z;g3UteiS~xyN`wgXfOsI|J$4%N8xDUH>vUg!-=z>cEA~~yyF83MJefdVxD7F=8=H0 zs@IQ-o?MjPDMD>;8HgM&6W~U-ZCGsXEm&>JJBvjP59f*ayrmXrV_doJ1`;kHN_qNH z>3KnN!aiarktb|}BfOPD%==ZWQaJ+b?D{-)qBI0SlC;8wQ5_E7fq?{!47Oh(n}IW0 ztqlYTnEEI3zVM;~IGY!c55ysQ_aMeD^o`?ZsYr7okHtT3J8xXKskl|Vx7fjMTf0$y zH*6;eO@Kf$T1YQX_dGqD_t?+&*q^^DJ2AWNxl27amsG@r4keoWNfSy63*U+4`$SVm zcs;dWH&-)*FRAqcO(d;}oQ=mgHJLF;vnC^=5=z8|U?SM=Pl z?O^&G+>Di&FL8T&k(F}A?1{PB@pLC9RyAW>Tq63FY&U)p zX;({`X=o%4i8}7Lm2lde+1_Jbd#lmZU3JL5k4B*uRGp+e{UL)6)1TbWFD{%3JnW@3 z-~Er!Cl2<@01N>kzzPA}s#eOxW;f)b*U&GHbblmZTV)IadQcc5zuRi{Y2ibQ9@uDU zP!*>iOc+^I(AWIQkgM)P16hr||E!or2cq4d$3xTmBJ8QN|_GR>~|@$-K#v?JlS$j_|} zhnB;h!?j+Ep7$8$wgFiVQbx@WJ7Mv?H2nl( zZG<(lgmKvOw@ELo-_3*>V^avZJomcoCULQv!aoftwAPcsW?>feiZ!%!gk#VF!pa#rzYZD$!zCp z{1;)~H|!#JI^OQkzy;)uQL<4l&ds++dpKl2?+(77!hCEvIk(RipmxG!IKb5P@;a_L zbmS)^V;JBZb&4H*mjM%^JcsdeL^cUVDql&i$sTL+#47aqYXLeX+L3eO)9usCrb#R; zEcLp=$;X_+o`{~m(?2UGb(kY%z1E8%PNyt4eKFi#oTyQMeJ##|ld=)UWp$-*qij%T ztk%n7zhm>f{01LB^Wh0x@_|U=oSL+v`h)QH-b&EKNxf*QpHx$FdEq;USwpRADgX5! zW|Q=1_|2}B=Ia=AxcF}6&Ek-x2WY)?Pl;+W&*~U?4g=wr)|^sEJ_+E(4x?Ecw7G04 zHbc|X(<%C1^8pr?$}x~u{y3k-Yj<^oLmdrW{iv0!(Mfrt(VrT z;u}k1eJy==%QH7uC$z6-Zxl^Vz{C{cBjy?Z`Ziwl=a0LTGQyn!k#{;G3?ZZ(5`b*; z2Wj_-fujpi&DhLlsc$9A9bm1p^eY2{TR`%^qXKjK{NCWBfk9j{en+6qLdMOm1qrD$ zGc)r7&|m~Gum)d8&9^MtM(MOIc5q5$?64%r%VvLj{vwm!`DSGC!0;>o6Pm2z6fwV+r{ts`QYrG=-E;N_7h)UwJ?A$;^U*uFXUe@z02(5zD$^L+>>8AFF$(RTi$@1{(M0U+5H7M=a@}kN+IF-<=7{a_SCZuk zcgKi!H*dHOoI)vqYkS|vYMJ`7oUrM7DYscs?2KsNLOs1(!EL6>jN8lkh0j7fTBN** zo>j~%Y@p;hJgjAJ2XuH|yZIWR@gzS3p|VHc1CgK2mHjg_9ponH91IX&t@i-nvt*>pvQcI zftA~+9&?-ILm*T2D~St8@)wns>eX6L`w>R185 z2}p8}+uEn54qhziME#{|!o7bH=<^Y*}-u1B75Lwb0vNl6Usz{p=N@;%#8%}3*DE-b?YHDhJh)mHVP>lb(W0vS} ztzT?uA=Q>^4i(GfI_08zmqtiWCC$`hAB{d}k9%uJmy+q8`hT~A= zE?o!vozNI#mh{-8x8YJBBkMea@t3li4Kk(0vK~qm?=kvLstd*_E>NuLzXKhc)u*nW zr6b*o<56=92DhZSB7#iX_x5=PjnsXJkB?);t;Fa;~@6bPp^&-OgEjg!|dnmS*O(`7%Fy?_{S* zwjA%LX`bI|^vuLLEBNlpA{o4)n&(8Qv=i+cQ&CE#qwVA|Kj*LuiC3$)@VPo)8({4U zp`3uVavKESZ}1NcCKe`ZiVfHk;l}80-s*PPCfuZU@wTZR2Ztm z$LrT{Zr2!|-c=5rSMa;1*)0(jIT$qG6f^uWchOZ(2)Z$Nt(MXECnOf}OfuQHOK z%sbu=SouHjE%k2!m+beKN{N@{zLh#(zWf4%MQmr^q2rOLTY`__zs(%Wfkq2oLyJaV z+cyU3gVfu-juWODzk$$277VJs`|t6j2*kBq83Re(?(Tu}oWQ3BUe?Hk&`Hx`@`S_k z5rVdI;W?90_;=RwFS6}CEp>m7=AZS}LbQ9M%ZY_F;IlE%6d`b^ToP05fnN;i)KK3Hu^l$gJHE{#L^-2EbR>7sqrm)_}1Gbkz}b-?gls`>lZh zu(8`U$~%4zj!H=~Yt=e-2aFnt5`v$f1-CAAY~X5%!%X{#vZM7l6>aUj0`*GNYXCo# zOczYRGNBY7J=}6SB>%I#pxn*OtOwd`qVG3% zFlP}fYUK$#Ex}4K-;jb#^{{{~Um zRX~B{$tD1cf6#$Y#d8OJiqArcfE`TqJQ(QBP?>>b+#Lp39I=~|Nq|0Fz5Lpf zBa-heCB-tj5TI@I2hH!=)5ob&S1p%2d`fN&7p6NOnlRg* zlhowIIkJDn~Il4dN6pOD!a zv(}ridG)V3M|}K8y{10;$&0@B``TJKGAOBh0<$&BFoj#4bU%N`saUWmAc@lGZ*>@N#Z-&=XRo!L%z0`L>aTt+ zn|Ue)iJ;uyg^Bzv9~vwB?#&0pB2#z<2GvQ&zukAHNx@^n=}=z`tl8RPj((*z0;k9Y z{cGLFJ$T#Dqo%q4YI#JfvmvqP^%wZANCOCibZXYmiDP5^Gc?P2E`CUU1k4COl}-MX zZF&~hihE6DVq#-H+;l>F@tm&hWAsT*AZVu}`~<5cueI#tV``E<-0^A;)1>DYZe^g!(Q&bJx0wNv(~_l*q$!Y%q3^K1kEtxOT9nA zJO2g8Hjp#Hy5Ij=Zz@d^Zj-pob*Bj@MVz;uQuej_R1emX3$X+G*XGCuq?BODoJJ?9 z5T2hpbV`x)cIIqv!5qRi;!`;}RV2IztE60?bNIAkZT)?}9RlVzf>qL(UpPZOmSpzk z1?Da`8-6s2-et5RzD8#c+&K)KnZ~`x$9R!am==(Ro?EiW$m;ru+7M&;&$o2tuD^2~ z15W<9F3;e~x#%j}=*mAo67j5lW*6;~Jo5nWX1gkQ?Qumh_&s&BYv{}ER zY+rPr|E;yS-rs<>!RO4H5MRh=`*~~ASlRExu*Y_$oXmJ65n-|Y%TMxcLsNW{sfL`Cqx7cC>Z-tGGlC~RWmcypMB%r;%%uZ=rb(pR>mOUq+! zndW_}G*u`bcZ#{X`m+>zqTosE$l6+na0{Dczm4@&9a`sKS8q_l)*feawsw7;Si6d< zax}$ant;0~2&D%Q{2nSbbVsh*c?SpE2#6VXB+(N|sTAzsc|i#5z!3n+6=Qw~)`&Sz zs>~%Sow$LeB^I;WJ)2?Yd{AO>xEh3zppVLU97X{tYu1ZE7Zlo5*Mu`o{S}z^U>h4B5fFa) z85$b@g9)0Q?YF9;D`7-^C)WpSMQ_7q(e7esw}qxyLdCP-$M5Y_vh9b6SY~&y2n&y# zFAmp$=-9>xxX)Gt=HsA16>xlBhSe2l^rk?mV2}Qrpj+54;p8_MdY|Rbexe^>nxbWN zSiE@aAb#ciqZh5=akZA1(;EcUI}Fl~q~Dkl+&5%RJycz$nQ}F3^jJUBtCj*kbCRUS zrYU&i9can)#!9p3+<<8p2riA!*Y;T@kbLHFXSv+1CcRTo>`^;#GOu`Bj@2G$uolbA z?3KtuE~L?ZzMA0B)|dh=rQ`^R8#EKUd3iX%T&P~sN6huoz%TT=a71Jm&Eby~ky}IL z{afs?`%z`$G`&wyZsP3X@@;WhH&CDTttDF;mg;3;kutlMv41LYdq!e@{#!^yEL4$~ zk&~i@X8zSP;~5rfq^=O%-JXMG7slWF!6}P5S((%Sot!G07#^g_SJI?WGqVYFT7K{Q z0#X)ax0LlIiTUoZp*ZsaWnv<$+gdLoHjWi&ONbCXm2FcRr8d)HzaJ7erXG^1qmj~}^8Sjyv$Ioa}Yq|r=C)?^g55D-Dyo&O2m-Vr;Tg()VcxA7{_9a$Cc;Uht&;GE)-N0_c&1n=f@VUzPozW?G znad5W%H(7?PT@hi5zDkySY^76cnbLJ?;Lfis>gdG-?EMPlTK^ow^cF62JEJmL_Yc(m#}*LDd@a^oss2LU_F?awpoMHRW&z6&(JxL))eQ8mx9zkpYP9OQ@(GCp zewQ-fjPm)K(8404)ir_A868kqGZnAK;ix}8q&$ZYw%n?Q+FM%yc*AXE^IVzU%~pH_ zM3I30txoN#(0C&HGXmh~{yLxm4p$0#H@C8RztFzs_Y_nt6};8++X8!t9`(@xx^SmN zOHIwmRFNv6XDHgl@99l_}!iyQyN|3#{*y>Ue%St1I?V{gxmmj`Ylv|@$G)3(?u`XHMbmcvHL?VC> zI(%GJu-k})mO~izRvt@T62xrk>sc4ba|oYP*>i!;SkyK0`5oU^+a_OcD@WxgpY7r8 z74?%L14h7|lM@(2@AZUVw{&#aC5ur)4w{yvlGJ@6?)xLl39pb{jH*N}&;EXIHfnzw zM{b{fUppV@A*?N;Nq+X5qjpN^aQbg>6kIF{h@960)3&W)@dwr-fHq!6nTF!)8(q< z<+ayzL58(Pc|Mz-v5E2Q?3ZNSJ^f2>M0#uXpLCHYWxgdEp0EC#3;bYcORK%IJ~XIj z$Ns+$<)<^bcs6cIw7ET=1N7#+0pb>iHbdh%(V~I?wA_#X@Io||YRcNqtu`fJCfKO6 z^KfDaYe%4aE3^ja<}`bX_j_=L(Hu?ZxJOk>t84f(tFCrR9$R*J9}_e;Kq)S?$dHKO zHc>aKU2GR&0GJbo3)su;q8ig1 zYMO7Yhs{MCje%cO;?}bRw`#fyj<}#b7B(g&e6vmS$x!R}=NG5tX7wbBH0wWHCu*V1 z@Z0&e?k^~>0{L-zI!v=V4|a^uJkS+Gymm^w2Jo!^;|0)^5E;vi$poNe_f4Hh^QOnB#H>tkq`}EEIBAqQ)fT zfqee`lK4%h$s=Fc%=gq7JkRAtZC<0cb3X3F&<6();Nb5iD>C27TDa@KWQ*PYiiXD<^|ZfV6y z4_U386a;>LMh3I&=rfwXk6%7$H0m|xOm4f_BxULKzdn?{&ZU*9vVoKVHrX=J_?9YZ zFmG|{XN?JU|Lo;TC1MK5Fn2oTy=wy>?Yu$*zjmIS`gnFc+I4pu!fPktMln$5(8$4w`s;!~Ym`M5Ij+X#XXh$me9dAYwx`EI33+ zU(fT;+fQ%4S}_NuGCTl|M&Cxib_lt%G;DnNVIttS-iH_X&HuL6VToe!(C_9_QcCLY z3(U`urq>jt%UEdLF9UFc0xAY%vk$GLqhkw{2t?u139?s*y=QUWW!gbca9%E4Uv6@H zK8}KHvC*X!I|MnSxq)8aY)RHo;eiBSl@f)Cs*>H1P|j-_@X*p9t&IAhq$1thKhQh! z%ilK_d*GQn2>Gp5?SFTRfLwes1rmpp!k+Im)&br3;UyYYs42a}DtZ{p$7Sxk*r5Rl zQFw0($!RRzndoiQTc6HC1#$sSn+ z*t0o@_98ypj;E7lU^YgXj5J#-=;ax9Y_OELo6p%hKrI1`7B$xkU=NMqS=##g@DXrl zrwE|3wz2WQ*dY8?z6e4=-)cVn3rLNv*g=rtMSox*l-1D#UiucoQPtY}gy#zIe zi-d%kgv9jq#ekAnH=3T)L8kM*zVAoN+RO1AH%7)yd+32xdPB$Gn)_P$HJ+NO{Ijxh z%)BHmJ-uvcQC5;>U+emT0ydhjchLKoAdIxc_%4_igR`2%XgUuIX#%)3MHHOQ7p>c# z{&&L_kzZ%6x+PRXqCYeU)X|rs9&A9T5muc|?PKW3CKWG7oP5usOSGtfR#JSIRqa%F zxSChv_0>KPV#cUdk?8ryf)R5sWR8gH05^z(9uRO zKE0q`!z7&g_pxizMJmswfQ~zR3pp}zpIy0`*rn&@ws*C3FpW-4Jak(CC5hTe;7z9= z;#8fOI0c*Z^BO`iJ>srgVoYhRSDpE#+(O;7%ck0BI_pxq!F@5V{BSnNjt7W_UdMav zFFTXA3vOr4x8szg(e*sVf7RX3MaRPV?%kx2ClU_rWQ_@A6dKd|44+M@(F&B~IRvyo z7n}fi^rZ%4Zy`h~V)-@8@^F=AxqG}XMX0=}(qs=N!4wC__Q?(@1T2)K)9`|QZt$?i zvG#%jsnU?vmQKa8H%}alT{7HfxF&SxUeS`b6RkK@g!z`C7Vf{a$E0(qwU8BE`{(hK z@n7HnKg+e_t;3%i=jja-+T(zm$rt=L{HbLFNR%PMP*?69NYiEXR88L7Cq;;UB>Aa-} z%{J|O>p+4&^amLo12t8X%((k6fT8}C?I}7jdMpf!h*)P*o!8}5 z=eDSEyiWkfQh`M;Y&TdOKMFd2u3c^3{{;I@Pn0B!PsyGJH7rxMN;zlDBpNRScd17u zhf7b9d|$tJI!oMB{7HXZmh$-zNzIAz6c6O>_uGwJ=MSQyBiU!EwZukB`O(+X!lrfi zEveqW3ni;yPa^4fHcTwW0c3uQ)mx0%s-6%p)`q`jdcz?9d7g)}?odmw)Nx1W_V-0s z=(ng!K-u6 ze!kZfDtq`vqt@t=y886NjrL28`636nCYObsQj2p!6T!_qzTS=rOOyYSztZjgd)tzC z`5>~`e#0uh$ka#w-MR|a6Y4WT0^80+c7M>5<$(q3+>eWYT%;1jt`{bJl76B$JUKaD zkbxihilK@mX7ty$GbG)C)oIMnuQ0FPzwZ*t^qED|qftkbO4o=G3W+bTu`|FYwl<^VuF>^p@ESWdIx|m#tn^{wZkiBYr+;%Y0 zle@z-M4IPceNpO%JNFqr#GuF6ddElfch}GLl*xHb$FJn#?p9j(G#+%kIwY@ATE_C$ z5C%%>CLu48y(VmjwSnz@_>LhwEmYxzwAf#l z8t?qF%eOB3ihYy1pg0LZyDFc^M;L*QUVeJ5>nDBDIF5h(%m85ozf-U4Fb~Ljihu- zcXxN4!QcP+oadZ3@b0_2v$HezT=x|V1G?dx=IzWGNR#fna`sQ${X@cz&}w+EIsNSE z$uh8w3Wkw1iiGu~?OcE1K($1>zh@8z&Y#;GUse3qt-5>H9gq^@jaENBXczwO!~WVd zJ!WR5rbRWxps?xL70Acu!MPU3UTxK8;chS!f$%QwQPht;yQnboH~;m)JCyhrdv6E` zO%#ZFh-=$K{UPj=!EGp3t6B8vQH`(d-;nzINvx=)u|m%prEC&Ndf=-R97!9AtXAo^ zSn|Gw5RcOIZCBK9e=7V8=ShZv=1ol_OJ|iJT|tXMC^JjfETt~DyiKg%=0>yZDp6yR z!pW}e`A~2BO<*Jq*3jSp*Ks^NULNk@ap}gnQjtd1CHddooDj6PYS=>1ut3&Fb>g4D zBOnNm)71eZG~Mjxq!HMEw3yTvQ@~+Y4+?b+nt%d(2BxC+8lw>re}DGZy)n@tf~e%bD~^5Bb~kD;n@QUH@IkKlS>TaoQeljC<7yc>NGkXU`rp61o;#9&BM`ZdEQSe<$B4Pi2ArQEEFXfuP`PlK&XH)?j6E04!DbHfpUC;UJL>@ zC9*d7>VnVif-SnfrjM?bmE+^Tkg?GqV|eNT6!&kpgy~neZc8=hq|zPe@5jyIh&?d& zHE)q7=5=uQ;MElWM0k?ycCDsHr>;tsXX2wEwwP=^ z+MQpI<75>a)IspJ<5EcUI;ZTbg{pGiV;HEy<>Zk&18k_@N?z%>C_w)QVv6H4CDH!! zH1?l|^vw94DYR~WrMD7&ouf>#TC#DDX(+fBy~IT=;2z+j?j{yZ60{|eFwTx)@joQZ z0qqO!#99#9hUrTYV@^RyHUC@z6<-yefU>McRq0Z?-F zkZ}!V^qbWD;`MkrW?vnKDzi<_R@s{rfUy~>G(0CodkfHIUeI(3*3?op;w#}Mvb|67TH_+ou#fy4t)_%T6( z!f!X49*zr(pHbjbnwzaHj*@0{p+&^|jpe6+z4^!$e`^8Axq7t6O@==vpSi8dl+i6* zol3^rgES2APE8nE0n6iDci{SH6PwM5nbQW!Vb_O*gn`EbrZI!5!zwT|a|l5|?3wrjziKQ^Y@RsQ*TT$5v;*9{~gs6tB# znS?T;^$wPo?e70=PN43A$U!+Sl+^CjA&O_Hdmg(#KJVK&KTBolI=|ApOidCSNz&hL z9+aF{s*osb9A=e2LcW$Kp$G(9=l;yt6M8P>+Z1+EQ9jw(PF9j%F3(Ap0 zoGk142^$$dsGEf@!LGid_Uip7{;T5%ELwgU9)FRDt@AE3mYtHigSxs3p`}K}j}Fvm zgd@jd^V|gAMtY*L4;KdjDYsu!uKAuySQZA&S0?@c9IoUFFzXTU^PGVwIO=|PfFZlA zmBjCU(f|=?*$=tO(|M)1uW)Rqyr-IC;w{EHZl>G*N~RbcEhOca)x0sApx*8QQF9pPP@C^&fs!9m_g+0DF%@?9!O?yLJfgRwF*4PH(n5BwG2+e z{z%y6lSfM}Tsvpvu*wq+aFH^_%H`CHH3QPs2OM^zW7#`H>U>B*yDfx=)S8Y5{I5hfL}R>_v1Wc|4QE;O$%X7_qobZpH10=@Wv z&=cn^*3a$q&%F_$VZ9{0`JwAUfn6z9=#KlLBQ95}vGGP|NAk3g+HOOw1&B}msT`?^ z`BA)ZQp{;w`@LZkxj8y?(r>Zlb92uKy(TxdsOv1r95{bjsMFKZ=2J9f=O#>PW%#C0 z?7W8ntvc7A1JFjjdmVxs^2ZnxRBo8k^9yo>|X2lu*%4Y))TYPNl1R! z`@yoO9;{QK{|G-C`jzk&@7hf?e{2l}Ur zjSl;3YipqW|AH=$MoA%C_D-Bs@y<6VsW&IiG+@wa57Xcj6Xi*L{v4pAI288I?z1a3 zX4l>nnj>AFoo&8!+NUOQr(LXBk%8p2=#> zE6N5cw3I1njjCdJkrAhTM3yS-jkZRERejBtcp2s!6+ukQ%@&@aE-^2ytn6Kd{$)V{ zB|Ux6R@#)z_i8Sp3YK0P8k5pU@L)tL{Ng2oMi1^=$PktXA3#u%vVy`2Hc&2GT9e0b z-5i&-Jt4NhN0R>#8A`E=hJKY9Lov42y|Z6-+jisd`~=@-#ppMcw)N>ddzQl7GdvQ| zUf!1UuXdWmTO8%1C~=s1N#M6dY!)X5z+?ZElMN1T*86MfPx8K}$Clj-x(W6{+LT)K zjUvg>>$_kKgeJ0;Ycdiz3%9;R#09P9_VPorb(G5dd0hlghx08Ow`(Q7+niiOiNc>G z=C@~wqJ-VZU&~YkRE}*0KIXvs3{4}Oyew*dKJ?q4jz+USJ0#@gCu!qNQkL5 z;3(5Rx!s-_?g)Pu`j#;D;7eqQ55MTD%lurPCL$aAJvA)I`X-8QEXSfq4)oayd-7%f zl%}?rU~l2G(Ag>cskh0ugsy2$UFNMrn!g{2&$>N#Ik%C7dJ5HEpYm5SL(48SWQzN( z(+1P>9)V@qs-0D%>F=smWl2Ch*HL~t*EJX#<>}%v3UXVfcbty2Ynut`j>qpWuiI#@ z4g}VGq+dCH;lhn{_>BAV97h6brvu>Y0b*>4iHmaGPV?i*zh|u)rZvgNnEgb9d%T-} z_Lj~44_Ti|#d9lLB0UpksNZ2KA|t{?%7pqKF5(#)vP$|_dGP^}%aeS_nproa-}ksL zhPj_})s-CAYv>rrh2P<27_pcFRgg+E4r^_$m<+|)`Jq=4q^ap-IAVjf_q9k3F;|M$ zL@9-f5qXiEVx4&bI7Qm-%Aqr`SvUO<0fih^mYJSw;ChF08TpbsMi{}s^TGG&5B0Y< zAvbBt+GIw9qv(Dg%Sne!*2dKp1`K|+J-sE|s4=5ML>hX&&p61-P=JNKDevk&T^*5^ zqb1<{V$HTHKw~~;fH!V^?#D#|aRbBatCf(!VF%V~-ro#z^73FqRi!A4nj)K&o+`0Q z##f26Txxa!TKn2*0#19d&_BJ^pVxeiKKT&>UW@nLs}faTIk|(Jj=mvb8ynk@HH*+P zO*_hO-v(FMeGj3$V2j2Z^)_u?%!>&mHpk`cci!MKwuh&7PuX3RyrQJCQTfyAQKvB1 z6ZQ}dT~}I>Vdly?Tl}u=JVJS4bMwKHy*F#ec)YO_mnL9vP0zCme;E~*tDIgl1mxkU z*P)bWvHeohVVLEeva#7&ax(=HQ`4+p~ZWqq`^BzodX`?8+L+R zEL@ORb+X#IUslxL-+vHK`dg9cy=el2_ST0udEP|jDepCTa(T-|T$AZ6yLmQxp2x=7 z!Fekc+9A;&k@Im?p94-#kx!AD2z6D>Kf80c@zYT?%+;gRpWHZe{Phpp1db6XZBxdj zH9-*+hgfoo{(Ed+D~zSZL4s$UMbS5-N)r>>0WBJ;3Kp!&(hL28P;3Oz!UUrF=xB(P z>M7YpoN&&azbjob30_YaNLrhvnuQA*-OAc%&fQg3g!f$-z%l6sdxd+?KR)wLTq0Dp zF5Hrvh(c0FTw-8l3&BbHWvAhkU1Fgtm&Y%^*}SxQymQb14vJ@h;QY-X9^E&A{EmlXpy@Wr4wUaR-l*KO+P=+y6ijh|0K;^%3#rQ65m zn9Q+Aw67;LiC$Xx#{5idIvS54D3XveOkrK`%t(j>C-8DZbTU)3q#I}Y(fREwba?CI z=1zt%oPd#!1{H~*nfbqQP*@uOp{*5|oSgiUW!N7_bG=|Uaxhzkmss4T>Kl|aWJEif z!fK}UoGrI+iT6Ma6G_|U_gIT!1;h@k*`hIr^UFqLmHKdVmED5T`8j?ElfiX=%aaVX z+dS1}5fCWp!W=d@O_24`(_=ofEv;bQC_(T14=p}0pT9l|LzR#oEnY37EGapN}`OXeh8>R3Tu%)5?qlpW(8apE|3-@UiQjR z-W!NN^{U|Ib$nf-5e!ynhBn&R{pwQd1g4xh?ce`UYv&>ByNfVEz`eqv?!5#cvW`+4rY@NaNz>v{7DAR##NSU_2g0jwE(nRtR^vlXY(Zb_)bpf1&jvlo= zZ*%MGaq3Edr4u7R<}nqifPw=opL6` z_Y`RbU(|mo#FHh){^c`ad_hHZlR2C!yS-gBU6x0$jiO!wMY!d53|Kuoz{=n9nPUv~ zL@Atj1nwo6$?r8(t@d!`!B62(;N;eXMW@z$HD`tv{*#5&J;l=3!9`3gSTL&|s2s}W z7(lG%h}V<6rsm^LcEn%o{f_UCwknGE9+6G8-82bBQsl4#k+c%jakQN{@5pVR+&TF& z>NH)}k*kf-2%il`i5?s-GM?Y)_cGC{lT|W(psG^YNJI`_r|j48;*)z&$`wSjWRd$I zwvv=1hejS#n*O22;(2x6=2znRXXI}qO|oxU+?3c4>r7xHgx zBx`W45zv??rP#poCqweG2Z(Rd4LzRu!lAzBu7H-r>qN`c{NrgGD!RGMu-ILgo;@Fh ze@X@j+g>vE&( z$#9Y#5wu~@edy**2WWo>2kPnp{|I2GGx|c7^ieSr<)hK)lcfZ%E0Ekj&4d|=$_Wdw z8Wj5~KRTKvM*rOSw7n3rtnOfSJsIj&+8R(-n`BW$25h1B$)(0o-*xnDPBz$qmfc#4 zRR`~_P^%T;ZyU)#ls^I=R7Z%HJUV2|+lMgHg_nWBd#7_@Rz@QLh!unOf z!;{QhLABk!TFn-iIlglP%&)8Uh^R%n&Je_<=?VIHdSUrIbdvoQ9lq$j$zY5s#dla( zEe64lxS)re?o85HSg28tOLDEWIM0Jz%A;In&djb*cfF*3dAF~~(2}#zqMnvgL`f}& z&*6i5NK=LrfI6M~E7|q(%=O0Z^a#V#=mi$^!G7T|-N1JQ&msrldFKNXqD1`6v?MF5 z-*;0qW-r)%e#*GvqQIN{4JJ|6u483|KdDN-hO_gXREs`zUQNzD<%r+@*D+Az9zpm1 zLcJj0AJElhX7*PD;2nSs_Df$>u1vX1n~=v+!~FS4H!)Nqp?T(wnZ_43;;hws`fmRV z;(ssSFVhCe#4vNaW98ME+@r_lrV!XKBHOkJ2-vjAoNpy8LJYGj%$ZUyu|h}BzUzK% z!ECuAX4($tw>Ykc_7VpigiB4Giu6uHU|>kVbq0D)F7fcqiJpH7OxdmvRA;NcP3@P_ z)LAJ5igN3dnyP{yDjSm=pKJ9Cj9XJgaYdINxN<>)$CT7>JQ*9mrp8(qrd|&VDAk#t zzn>%CVgS+>3mQMKFu4)-AKQ%R4l;^tkNcpWD6H+FPJiV&LTDl36DnbA$gIi0IJ zM3VIc<{zg|_nj3x=I(PouquUWuTVZzm~z;?npGG$nBBSEmbI_$HZQ#>M=4Rab0F;7 zY^KcMz}Vc#d?hQ@6R~~NmQk(V>5mlk`zv(-a^6_4zuEmDv+|Rg^a5iURk_;<2>2n|@m3q9Jl1?!Ky;{^Jyw#D=5EigFd*1bptd3~n;tX#&j|#1O zb5WciC_rRn4hST49w6gnkX%E-Rxa43N@vTi*#UY*y0ecAH6}*ql0yP4aYa)wlmijG z$D(Mx!NYE&19F??eB{xTL_+KbGmX#wYn+|+<-&XRR#P?>W1ugZ@Z+X>J6#`CzmIj$ zhsY~iF*zW|_GE5OuI*?iCI<}XXFa{cjXq~X5zV4Z`nLm~kBTjZp_~*6v<$u6m7XK- z_pW|5N&e~|R^qrLh8^%IcvOROl3u}pXw=|Oz>wPh)(Wids^rZyOn!hYZcwD7-@vjN z+{6yVz4En#)~Hca*DU!3Iw7Cbmw_1<`BG-pB*zfDC@%$*zK*cW(2RbMqe{w8u zsS`7;q@AC*ui*}xbdQ0^8J+Q9 zeE&zn7A0;3x|p(|_{Xah*L4wh#>2VY=;({SzGhJ$mSkVkY+U9x{X33c-msV$NK8+FsC_;A{A+hA7JXGov?CM<`<0Z<7D5ZT&fvAGc+(eSe5!YG zIsKsha95Cbvnk|TqP={XEo2+&%4?sN>~*p_f`LwrP2YUB==4@qwWrksAw0%Qk;VP6 z3mvl#XGol1^wgAwXvpfjZ1zFKd=#ngW$PqSHek>hb3%Z2%!Ge=kGM1nso3!+6hu78 z>B)Qo!-i?&pkmsMm%GhZKnKd#{Wc?J@t5$B}sZfn7KQz>j=%S>(7-he!Fn?)D}Q=DX>-)A1b=tLNm++X$! z*SRXxywdp`RXTS(f)G#>A6zc)2&S=0ECcBW1qs*IMJEkmlas^9! zMOf#o^ZK37_(br7JJ9f!5wp&FfH~8M4{<{HkXg~iZA=wnt$g1bVTufxUD(zN^tkfDzp}@o+6IQ=8@$T5~c))1wZeM#$ z-6{)U*wk;w_iw-NL&N=KXcO|B=!dK}vgD30zguX_(3V;ax2x%M_6Q0Di6@SQq1gI= zJ*{q9b2Xd#XUn+jJ)hFN+&N%9n6NDNLZoR0tDdE}wU^w4q{cCO7(dX;6-_Ir95tC*mk5^+W(-X0_o@Wb!tdg4rWb+Kg^Oe1Ben3nSYSFslGO?5kWC#kXhW0rg=m zZrR1fcpSca`yAP0(yKnYc=q>p8gT318cYBe-pgfMwi_ zRZv8AC7$hHr=J!}+zMaYpS!#jO%_WV{*ddhhE4}MQ?gxUOG)Sx_$PJ^dF|~6aoD}5 z5{eMY+^_m+`#ifBQ=ZXka(iiXak(|lLFc*qJVRh5Dc}`?Mi~3IQ);bI^+zuq?_RdW zyw2IZ`9ZLm?+_amk0!8r&Hykp2}GMrA7u0Ahn_s0a94&6E9_m;{8c9eL&vIx2!eq{ z2kf&P@LZh%RLo34cdFc>A)}}3V5{T(bcwA!L*;&?QEH`~HtS9*DehdKN<`Vj+V$<~ z*oq}7^}y0q%g6dN3F+8yTI*i#ykcfPeyLW*0hB&M(fE$>#e@t!yQ;xBjp)$!M!&!I z70&bR@{@XWj%Xp*=rLXWINLU=sSE9NAXw=~KHmf$T*38@W*=88uvLEwRk;;SSs?sEDo4)AUIN4L9A>|bk%MQ=QMI9xuVN4sf zs*DcpUu2Vl**!qqcMrI*`R= zfG@~~`(%VxRMmTF$JL69NqNwQXHWUzU*_PU68ao6t5#~}S*F!bk?~>A)lYbmA>WQZ z`Q&4=?ho@>iYL^@>KBUZ9x|Q+9^1-!Ip;PB$%6X7TjejO-3qRhfVD(>Z&a?0!iheL zY0oi}0G-TI98%80qY2*i@q8wn&l(<(w^$U{Zq5hdC3l?r%Zc1ydx0pMkB;4r zMP^kh^a&}FCbTFe1peykO4)m2Fv`uK039D7!$Sb@peWk?BndW3lX=FiUy(luL zCiCWla338Ov*+O}3YDPsqM6doap}OsfE!gBH+XfJ=y5rX+bwC*NcbPQdFgAh;(vA8 zi_xDnCpa&Zw>(_vg7%kMD&4LNUCv`OJOW@F^`1Suy`gV{MolkCMfJQbpUyK>hs|22 zFH?@cQ8zor_!LcOjCrj6PSD>w&18q zA+JNrbBSpK5^A*4+uVfOwQt$lbd!GEPGnq&i8XE*u#x!uS13Q9_!=#8ZeATS{Zey# z*39sHdn8upYG%C_hu$fKE`&2sc;eiddheq1rJo4y-$`<}Nfcrx;f1`9hrhTeHfu)*A{1NasH0&pMwcepYjF-Fe zTo%a{PF4$PV4I$dqdEJ@!-HbLgYQ|~k$*?9_?x6Z>~!~brMT>1dx-S0?Vwp8>RJPP zMGWTU1F-)`o@>v;B&<#^L*_m{UETfc?>P#Z9q9>&Cc+bp=)6yqRE zK!#G+*X%)?6-62xhKE2qL_-ZVL0V7j?;oZNqsq0!t z3_KX0ZXfb<069^O93<90M}%3@ksc`$$L$}`qNIysq-O-n?tT^sZFBYilCOOTRP z6!?h4{b7PFo;H35jg+#ZY5M=e5RPDm~GwIz8L6tU}xR^cc3(b zrZ^EFeI3D$V_A>GCcPiDoM+N8!guKw&Aw#E^tenKHm|N6_$_@EwQj$C!9jUyfI+$C z#7A%BJ)lI}UR%yq=tuR23lCZ(Q!Ab(eJ>;)x8Nwfq+R?J3Sb20a44Cj#*aMQoM|+uH-uX>wLeKTv;3 z;ib&y=US+1eZz_LW%k&*RjUa)qF^IC^9PVA2h!; zaLOMX!~&6fUFRbM;qQh2dYF&gR`&$dwHfLUFhe*&@PU!bq=J4SticzVez*HVT*)Mb z2Pmt(U6~Vk!6{>W_5Mg`!g2Q&rVBe?U+!EM3?etqBd+Webw)b2|NvAS{y+ zTkXtvJ_Uz{hh9R~hK7EN`7bT$CiC&5jDi#Df%F`e3a~@4%Wg zoU1kx6Z@YGR0_yIHRwch$Nx^|S147h{9~dWcktHDnv3KEpv%a_q#otwG=hZW2P+6= zY*>hwUUH7ob^KK7qDP`x=MqfA@eL&@<}(&1ORx5|h?~Setw@1IcE=R2Lsmia|XS#<#2tLWf-nqm2Pd3y0tObl0@m4qZQIoVb@{Z#oQabkQi zZEMTv>4UV38gA$^YR@dLN}$AiV${Ixs8|d+=zb|^4F^gC;?cn+B%`R%0l&aYSP`1j z$E0rb$JIdNKJ<>gKf;5_xgh2`JKwfQ153T5mvEXvASNmcP1|QE$$VFiHa#e1*x)P} zL;rDCa!WW+qBx7H9|sRlS`TN=5xSmg;{EQ@(~^Xb8D}=5su3o(!*f2=jYI*p}DAufzzaBOl4W`W8KxMpeDAXvaqo@z;7}wXe$hk1> zQhHBZy1Vy_c|tvIts_%E2+-!6oIsHWkW^wm88Rl(;wd701>cix1z3m=_xNaFvje3( zMgBm|EDnjC1t?bSquXGj=qg#EhLJc-qk+9@mrmXJQyUX64cu1V41_?KTdQf&%Kz za=h>SLuk9)q6bh9yku}ED3H9luSWhoAEs^iQoV^Q7TUsy?}U^0w!d4>w-Ma*>l_1Z%-M^!I&*j3?6=|LepJ=;g^C=7K6RGLqGCutdN=Hwkv%zuRSJ#^AZeuUy=+_&i|TT;Vm`JAb^`Q@LMjOu8ZkD%DQRdhl3G8k zWYd9I)tnqZ=wqA}dA+YM@)FZzav)?u?Uh)hc9K|$VQN(N(I{oXf!ea}s~q#V?>|hY zSi8UXh9-}uwKDasvWW=#)`!81r=d)*tgJ+BxplvR@jJwo{|P`pkFJ*i$SSe(OCKE$ z3xPF3#QPy2VO19WVqyKty3jQN(HY%;DTb$f1T9Gt3j<@_8WqVE`^}G&4{2QO7AtXd z0*shsbt*X5N)0MOpvrEIlEd^olqP`Mx29rs@}#P-VRb}!I}%Od&Q@P4m{oE;h;?sV zWxuDu<79bhH$v5VCk~iK3pEl?>k&6W&W{eAE58AfxBeZ{v)0O{NhX)=lYh)uz!Ens z;RKN&1YDl{KY0qb%r=TObeJvnz+*;}3JFIK+1fC}ruq1q>KS4NZkR~fG`*I_b2`7F zL05r-Vol8&Z7?8YPPeW3HakkyxKsgBzT;WWKbd&_Cr!C%dXCxgEZ?qs7D_!SzYXp< zPg5s;MjngbfF}bu`QNPR(zs4`b9LW2Q&3Y){%$&YNPjI|&`{IR8+|F6>&wg$<-X?M zxacNmTiJ2MBLGp)wso}Vu)BNr+n1vumDeqvnn4+#7r$1||Dhf7NlhgU1RdkAY7sND z9HlPhcF+*O$&h>%zr?l$z*Xci#v92KZZN#aUx=M5gw80CHgcU6V;Ts$oUpIZe)Qx6dvt2Io(-Tej3FQUpbA0^ z30`AxcyL-IT*>DJ^~F$`6-SJgb%qVSK5jT~;`x-@84yUj`YtVA1f)e;Xx8G)J+JjPzHl)&LSDEY4kr0!yLI>>_)Vbu@lOmcI_>v{Pe~=VvzduJp28_Ak>Br9 zylC~#jegd~qk6r6PalOAE|JLS?I^UB_^~uBB(v2HOv5sJeC}X=sztdapZiT6Z4~&@ zu>%uMr|;^xG$&66PgKnxF1P0Wz?D=K<{ z?~=hAIM?$qr+9A#qUH$R2m#<0p4>Tom|!KGGU_{D(xm$w)c!Cb?R!sY)xwl97ncWF zLW}v3XFEd*2QRfTj^*Pqt-m>U_(qgyQ116wCgb8#n*)3t$@e& z#WoDuf0uy*SO+)Dswt<_$^^~Jb5KnRaK`W$%vd{!um`9Okx|g#CS)q@E0@OJlD^{- zQ{%K}{DC8zl5T0Tm`qET%b*?qcvs|lZsZ`1;&Part4LF-%FK6BfSDSdvO*^@SOdAQ~K_U;0tB?O-dC8#+=j{}sY$mzd2M4CTsywU%h z)0Cs!Of5WY>}_U)Keke1o%uRCwm?CxrL`aXN756fRP#jkUT#8clT(qM-CJSd5K_^T z->qke@mr0tnDS*>DylPdT}mz~Gx^JuUg3y?l2T!fIWQk3LxIf1NfmKwURb`K)rEJq z#kL7P=@dX?pm>HDCT1$D=bMN?(vZlN+qGXMbpIYtOI%EdR%I0R?ww7CHZG zzqZ4|d4?Q;;t03xMopK{*_q*GPnb&P#J6EUoIeG-X_Te}HxN-+Msru@Rh_A$ybvV)Nr@+~GKzVhCl zNoy&(z*k_SvL4}hw4qeGu{Bt+?#SWA%jpswkr^m6-aIE3zzs35JnGpw(kT@Cl?DaXdpnk@esGU@^OL( zjUT8aZ#Sd-$|^1J0DT2RoU>CcVya~(?>j4 zvsEKK%_5IDy$U9V$N4xlUB7h=I@EWfY6^4Ylk81J<%ecH?2 z;D&jS9-#6P;RGy)xm|14TBt9j;ytJF5z?vpL`Q#JEX$LKe*-prK1L;QH2zCLrny+Y z+V2fLCBrvVZ7QtQR;pHUP;veK2IY|hqXj#x-@QNY1)cba=g4=K`hVWa1b8djFOi4e z)!!s3FJ$Zj5!PF@)f3XPthi?F~`TxC| z;x3WI>!%>y8wdt+jEqHQs$gpcs7~t}7Hwv7BK9Asy!pp`jyq#>klh^eV0sMPEI;*jcvG|RIKPz$*w?SB^mo_n!8oLog^mA zMZ~z~pr@L=9J|m8=*j)RXj4f%U#!zJMPnXR+frf&i!6)vaFcuL@M)KB3jQsto9ljFTQ=DoOt1j#C zp9Z3>!R|*5SU`7_ltjhn{N|QCz*|NY%I|^a_q1J3@DG`wUJ?%eW+cGZfnkD1isBd~ zi{8^HF^Y-a_)p?YIFvR(rx7%{XDZ+FK+j^4$|$gS!xBP${V=xjmKqmxypb;MVQ&%D zD^)L%B|bPDm}UHwkT9f>DV#1-wwUu9DX+E|FsWJEoXz_`Ul8d6jokcF z&mx^>dH?%{KM8FyCVVM8|MLe+xh$GRit)8ot6ZJ@5`<|@ZKIk6*UP{z^01YCT`hkT z9z($OYj^+<5!E*d2%p^BA%IrP^F${{&ZUBwU6tfrz$K>y#x&yY>Fo3E%@|qV56bAtueMMXb}kiLg0Xafy6baIGRE# zQ6-(PgnhhjbLiWCOpBOf53bR)3=;RRQGQ`DNkoETlL~YC(zV42Z!M18O$GU-nT8jL zy4L~A>t^i93rt^BTW|>nGoErJ(rcrWF1(657f9v*wQ+eL%6XFzC4Wge4jHq&I(9#` zl==M#cXL6|9xm*v3FQa{m_G;xY=V!pe{DJD>QIMLgP~F))JTGBT4a4@0-SUEw6WEx8vOHk0Y%;UN3NZ1-P@&ya=OwSC0Tl{~-=RwTv3y8`=}8eZ zU`r64U)|qWs20aWk6!LmQsk|gJPnG{MRm>T>W)by$c2mJF!GzQ>@`olDPx(vcSrZj z)#U0d*F6~Y!c1#BpDP%z-HG7KlE?UZWPj0ywbLIJ&6bGt(ZG~tD4s5xAZoTOW5ECs zh3ieml>$by9aP4WfB7;+ml!YwhbYJvz}gp!89m#)8o5yCH4Xmox3oAGA@-{*@wwjT z=5d4NQ&p*&Ik5cEBOnNaO8+-rRN{$<8{My0wM;6HZ;DCJDJBh3T(AFg z%YgOpd3Izc5V1q8I*$Y1FF@$@tJNc_F9`)qEtu>hi%nEu2Q7EyJ z$C!V=OoydQ9XWyC#ok3Dbw!YY{Kp{DoCY^60&C}tkEALi;#TNtU+nUi)Q!&CxvX(DMO7%3GCGvcs#YTV{iX2|IgEXL zg}LDM9nfOHB}Q|`h(f^zZ@e=Kv7H_NMeh&*b>8TOh5aovFR$6jos(Ez+X9G;&a|H! zZ6BPw?~n2BuPHuBS9p0%@;!}#-bWC&RwRh=R<~2k^h-`Q6X4Wto|m_NhUE1?{J)p4 zL-U`L19~2hoIomAqB&4w=0sCa^L#EV@u8wt&O}U1mW^H@tA3dA$G`99K3qoDpx@x- zE0GZ&C!?rBLz^V@`f6x+M(8R@Iy+rTBAW6OlGGzTByZ{xAc^QHfs+zAYD8=n|LG z{pX!0XtTm`OptgW@Nw*+w($*UxoDz9U^y#5e+SpSu_tUDmU|yby8|QaPw^r4@v^KY zhFn!ozhEGtfJWIMPr88JQeksDCN2)NS`REUiWKHRr$8l^z0^YT_1;7vOG;Q4%bw5` zilpPN3`_8iZBPvS%NO?j{=^~vtldc9TXweDw?Rr8TH5=IiMb1VrJ~%>&`xYR)3H36 z^PCS;0myz&Z2L?9S>8BJoZf?CY{vuQE8UBg!OJhTd)#nJG<>Mc#PGWv@ha`=Eh;N? zJW|-)q`Eqk$L9`0z1mCw9lPe zhusW|P=>&j5JCY7;{TwA|6a6^dnN5eNlIgW5G_^1;iDhS1+YO2D2R2weIF(E2K3N6 zN3&|=f2qvXkkU}^tgUTr=E=)0Esu%PjcrQgD^i*279IZUv*YSzOB)=w8zejlooAc{ zIMZehtjZz-Q%m42w#)T0X3tfbfLtc1do-uWuIuADN%f* z6AZ>Z7>qpM7+n%nuTWmqqPdo^a$Xk>e?dNjAYQWWnKnMek9c-yE$elC^pTD%229a& z`L$Ax+A=W97g7H&RSe7&q5yk2h&yn-1V*02dcpP0i%( z`9*hV;RxTf`x%16Diq$^?llxr_>~Db4DZqXVBt_f({R7?7ghMnq=upKlZPOu2#m^s zREd_05Q@nbc_$J^5*j*%#|BP=yLQ_w`+rwE-Fpe{Vlfx%ZGZy_f3~s-MLa#3PB;t_ z{|nF#gn^K=SiaSwGk;6Wn3&DdUBx|b$^r7$;L&t&y=-XJM$oF`4ZIsQ#Y0xdM58oN zfD_VH5PTx(|2~S7k3{o&*4OX?iLTc@aHm@-D#`lZz_3tARV4`YWMVxJRA@(&+>T+D zcye0C1&pl{Nzq{dTMb3W7V+OaE1fHMFlV^^?M_+S5Cgriz4ZkOA9^1(kVLO} zQBcr0mdz0s&}!{X&5%IIR|?WMPP?)Hm>bR2i2@G>$2#NfYBhRx_M9#FnS^^7Ko{qG zIOzo0Dp&W%ZQ9MwXrWuNv9UJmJ+nNw|4FoOHxsm9zxr%$Zr4iF#tJp>xq9y^d)Z}8>2 zySsqn`WGrt6M#vgD+!X993PME?G;LaWm59!Xy47zsx+xq%>U!ZZzr4@ALzt|y}1I& zd(aKbbecRi4_8tQgW#&Bvln^zU=P_~3;TDHOMptq&rx&0Q_hk+2=2{3-iO~yO-M*c zWHD_y?xO``>+=5~Dk>}nF4+qzikjuapo|e68Qe?d0XB5crrQepX$G+Co>d@jcge&* z6R*o2^4j-l!fj3Ps$|q%j3Lkf1TEO)B}{RCz3s)&xY5^;VRW;lnm)W&P&d z2f_iDoj@u8Xb@d2y3~RTVs&+wfL1UZ>|HyOfk%abd5h)`TWsqYK~C;@d9t8&y};#7 z%*PlGcCm{cKy?13mEyQ9C6C$7rrVq}&`0uc30G}SIy{g=DT6}!t$1p0FGDChAmfeI z^G$nMdBFT9FYl}CxW7>UOAI)J_B|kB{PMWz1Pp8oCio!9=Qex2mlE)%AMR&9eF~0b z%soYJ!(m_rK6+9{IaL9emC6k{?mdo3l2`%JgZ~x&6>Lw-)2FaPWUxZ#^!gvOreETw7Q>=B$ouZVAk-Cn zM$01IOqB1?CwO(Pj4*2_=M48jSg_`W_;c~8{gTCp{Kl#WD{K@^l+z1`rD(-MCGJVt zrJ`$Pr?YtqXwi@xT@4KR7{uBH`PZV#HaE({kO#49(;p3hH2yDLa<2R&;@(9wBX zUOrX@w#qPGq0p+Bm1!M;wvTz|+qY3egQTKrceh1uxk$)-I1DA1EFMNJck~JV7a~rU zzcJiCbDSro^~ZkFUeWv3H;^T{)bzt-Fe#Q+m1g{75^Ey36D=tC)9W-G5d~%KryyS; zWheYuPD1S)Dse2L((8U*C0(yvjfxM|&Jcd;UY9PE<=IMQdHJGpL*={cLdVG%&r%)8 zB^;;n`HkSh!ov0xY6IhU4a4*vxcc(xQ?1hJ9jK**#8YC?+<}taZ2tfthho(8V&kM} zU|;}=I3GbLH=;ByEp4c$@$b{h$$od^nX6T8zDTu(L1zRsU4t`#j z4&aWsvWC7|0vAOWuVX=V6sFzA!r}>~%tZ6G#Z#Bh(kTTYZ@hgbYP$F%pV=FhZPoMk z@c)*#vpWjK=eYHDbC{VduBnANi6RFVE`p*WB2v^VKeea(oW<_#W%9T*5c5(EnqHrN zdHY_vyj&!l-+ekzfRTayVcN&-VMjNqJ<#V}t0Lv3qOAIU_Jt%rlk8V5Z=B1Uo9QBD zAV5UR#Z?b9xrYRRGDwW4)o9k!2N6IzL%Xnmgn%BGCn3vGs$qth_vhDJ0ah*QdG$Jh!`pMI&hGks;HQh)65TQ$pC!{J-h-P*^QFC)7Giri`g$0LEhfZJ{#B_*8^(7=&s$s9H+>jSAg)62`c#t*j{I6AKSqgf*TarDvY*VorN zO|J4Xi%INO*WlFX2_xtf)OMdEp6G-=sGR<3tFp5$BGx&-`cz_4D63MmVVW*MYdtQC zd%vKNk5=6Vm)1|N36dlCFm;t;9zAxjp*Ohw4hIJZXfA;)u|3!+a|cYvfq`NoBFgOI zBml#gT|+4cIBpb&b|s4Ha5Q&a^YVZzu zlaZ0VeVh3m8BjG_Y)=&4wu27=5~q{{no4sb`8Vty0-w=8f}~p&?>&rle6uvKsngxchG2n57u;C7GRa^ zogJ7?dlnvyWP*?Rp$-+0u;{;6Hcn^K)v&k{nQ?ZYea$JCw7#wU=zVvIEM2j*xv{Jk zM&HBO#l+&5CRc`6zEs)S*)bd|0kww{4+%>;z)7>Wml_{0c94?>y!eZ|!hlEj;GhLl zoz0@gFY#|ICTiSHebn^y)DNV^`KESi30t$K$Rs36c%l0XT%bdH)8dup^Uw%3rfE`3 z*D?c@-1$QxrftZUO;9Zk=5gwaJLGrB>(2XFbEA2_=dj$U znp74ZZgqK*knrbx@4)lYp$^j?bm(m5UG5Q2RQ!JNTEwvK`6G8>(V~D0Ayury!vgUt z3k}uaS0YIv=fj3idLDZpSdGD89<@t8-=PwUQi*<2kzLlbL>!#kuQm9#=|f*V?2h=@AHs+KG)&De}_Dwuc{jjiO&W816mGyg760U9|( zbED-bVEP&HZQZ9t{VRL0ri)<&k?SX2_)q;1W&;Ecrb1VSg&r5P0NdSb<@1xLcQ*i5 zgN5(z-ceKtDOQ!DHJ=$_zrETV%|*pmpnRMem?A&&H*X#~aZYqyg&r1Nx}g22K+sx2 z(QC;|Rbyo}e16{sms8G|Nsj98+xPjZ8|nIJ`__=jFH=mnOYX6Sa^%Wk_nr~DXkA2syQ3?>Kg@>2>*Vn%{Zx3*brhwjU z$y(o>gU?uQQcsWi!{bpioNR-Ax^ER0O7HpyF;+)5^Y7BsU9cu)brZ+O@tF?Ewx<*G zS!c(E64lE^+tfNPF_ z&&wL~AM;8?^i*DctjgS60M*BP<;#Y^12v@1&A~xB#C%O$s@Z)aNDFMOeBPGBBS^W( z7l7U!gQ(^uyVVOB@CkxZM!>PQp?6+>hU%FLw>&Yo3Pg2?XdG$VXvDYy1 zYUNHU{9|23Z}+#5Zq8%#>b)0#xL3d9*YP>dv0LOeCqLVHV7+x)?fUoA=@lwcKA`*b zfTR3(N2^gosFu^)47%q!b#fXjhT(UtxAmjq|2CM3?LT5fy>aYb4ZzL6!e1;lF1B8Y zCV_usz6Y!8vOjRR@z0Y5rw0m5=j7soYd~Of@0&JS@5v!`>MRb9Rpt{^QhINkNFF^s zgIn#3-wB1xt@-82rE54U{;9xihR+WDLA?VqDGA7WPrYuK|HEP+4BKYHT&$QK`kCT*&(fX0|xP$460GT0flV-xhY3BciQ; zur$UhaBrqo*;VIR54g2Z@!7>`QBhb!iRhm+S4m)OfB455e_UQc1ujxp7lSamE?rl* zCqdD7fX*MG0tm}$R)zyn%H7@nyK> z=|cX)aQFA4+H%cHwaQU_h=|L0T!x$p`S@FMBrp`EL%>>Oy!rR{M;xYJ9QV6nP}C9f zntcoBDA8qnvbeEV+q^MIyE{7$%(m70)gS7A4D2FJLwh1OxauD~M@d%aa|7ufN*$xC zwnzj{GhdzkA6A>6&qX1cbiTj^O#8opcB}a$1H+H)ftq)>|6#OM6449PiuSr*lU@fp ztH;nsw*)ihWjb(}$k&*mD*!%%&!foENdBK7>Z_vp`sLe?UaJB6dm4tGP4h>q0Uwid zKsX}?5SdVWt_1f#OviGXJ(Q64Be;^ewUB}0b3ffGNsEHa(%Cf^AaHT~*T7&VGXZ`u zohnHYc$hVuXGh%J{})DO_G8#y3afuFw94WkIJO@CfUn#OWN?Dd3tLA~e8h$8lr$W*~Wk&!+{f!sh0e z`#WVKqQCy|dr7f4xV^2Sz0KZa=yay4*V(6^W7!q-9|jeQeAN;rGO|tJlefDp=ABk^GyHsxYvRgsFaE}b0<_#v{Ee1#jr|;n z{fDb?kkA1C-*q&l*XkcnAVG#oxJ`tm{Nm-&XViZM$&a~{*yo#X>3L}T{{|9GgDi_P zi`L0vshugdP(0(XAZqialt=FX5y}#xk!PA7n%M0BOqAZn3*=(^&w!5;wNaa~XBaT~VG3){f#$~T)%7k2|IXTrY*00J?HR?z0tsQaFmz#zcX zBI9@hTHl*R7vx44j_!_xn+sK3l>eM(fM)h5wm?j4u}SYv;~Vqz@*0$v2mUr+TL#X1 z{~hh&=O1_|>+;z-=8QU3UhZbXUl`~IPfmt&v1+ZYJUljgBICH7{ti~qiOOn%>S9vW zf%2pM&9$Yb;KP4KFQ;3iPnv(IGJ>@F=<_i9e4%*-V(8|xv$Mb=Kw-F!5VE%diyZSJHU;m;en15dX&I8Qf*Ux{a@SoSeW(D)l>t9cU`TP1mKb$7RAv3>d zyu7A#ezcGhRLm0?n4nxAPHLWGm=Lj;F7+aYSP2TkBoq9*##E54li{lm&+U4bJgAr_ z9a$Cw@T%;0#BGUpg_K(PX=}%L-4@kpJT5XV3P{@$eAE;Ll$|+gwyEw>kB0NlKwx4e z@o{j(uq+m4qeKD!T-Kxo_0#|I4dQ&03ww{-n78K}_%Yz`e?9I$56uQcjCg~8dDxEb za8QGNltDIN+7^7LqkPX018W2S63q=qeNq^Ss>d*DV<;&{S>tC=4z~H zF%S_E0b5{+ZQ@g8Z1`u-8uhlqKUOnmA}7#uc12#=hAkdxCAtFkBvYDa!{iio6l95r}KL?0Ov93)oygA*QhFJ zYXx)etrg;FXbCeE@zIZsg(7%92l6GWOro)(xK}(WqP}djjF;;yYG!@&j6*7 z>roa#AQ~}0o%;CVVk#ce>@OgVT6B9`Qc@BUg3_$BTxVyvapkl<5h)p`KEoDVKU+#8 zrP55?Cj{LC;D&}Ks%0@l$ge-1(Pp7e{=6QLBbF)`#|7iC@bP)|#ZdQE5oE%_!sY~f zn@)rOi`Q{499U-rE(eOh{sBjS0`;>Y^|R19V;;bhpuWsFVrW%s_4c}cT+1pBKrsp$mp}laHwCo)B<8_qYd5<)1!L2LZbwJjiO$5h zlXKdFu8splx3vY_^7pzqkBp40kmx7i5{o$zPMiUUmQ+-*$%~|ggnj|bFcz-SFOp9L zY^HrgJ`)A<6%WUUhjl03my@cx(6u#S#o@RtqG+WutFQqS9p8d zH@wEe$|X=$I-l-dvmFD9$%%1QAJUs9ht!?GLx9TjRr2}%Vt>no(2y)Po!SUc9U=dK zv?U|UccujBYWhEQf^{x_i=J$=pN_|n^ewDPpj5Uf=)g6vYj39 zdwdS-o)16;y8kwdE+sC`8QlJYO233sHl|(w&%A5#@DH&~662HkoNyG&D2{XuMD#$CWmJzzS+&Y>bN%K=Coj@nEU> zmN5EqGBjz(E%0UxjgULWhXeC&T;0yD{6u9S?PPyy91L{rczFP<6u~&KKPhqX#}!$< zF11f8nBE~Qo8z2-XsR0f;KQ?(MC_u5gAJ0RHUH^oN?C5*T(xq8&XZvQpA-B$ZS~0; zeG`*B0zIQFoo09AIHh&YQqPPKo0cn4|~6d3bvu`oUOk@Pw{R84#wa z1>q6UYcl9GsY%Y&JD5tU>P+5b8fM+%FU4~8z0VBk==cCV+wbWS-?&mZ0j~5lFz^`y zLZ73C24L>PzX0TDo>%rzv6#|re74k+a{_)(H5$^p!J{RfYg7Lkn`H(s+5B--Jl1b~ z8_fmzQhU6;&{kjhY*8+sn;z2eDyw4+E$LI~ax$JBy@W?J*sI$m~J2oUFypFvSm4E_1nKwXEwU4o6U@hC9 z#t~?50~x5EUv)q}skPw;-T8!~Y%kbq3An|cq%GUNlT&}pMy~l8#gX)PgB;5PgM+Au zh=5f}TG^YNn_FZ16LX?W3a8MM;uiUFE*rno0k9%{U)K_7?!P0S4;QPJfhei!KDrt% z!0)&zcb;-lkj7AbLKZ)b*(b)X22t6H2lMtbil5A(??QZXxXeGZ4Vf3n)gV59UeNcr zGp0(@dv}dhVjB0U!Kbn!Dk@W8#X*vJiHFAxXlXW7wPqcb7Tp^rhN87}6gfrF z!0Nri#LP)ypgq`Pa1f@}#f{744emTnf4CKM3Vy#w6C1yr`x&YXlGl-Dp^>PlXd?Ne zr3n>oG`XFC!x8k|LDRZEcX2vO$~wC$=dTL>h<@B?LhVEK1-;nTT>M+Dd>_fCxEIuS z`Bw8a(G(wP9B`04h8i_x`Yn;5eqqYz!!ate-3-bB*OD?a43%q-slpP3a4HR4 z2?+@x%@kj`QL5dja-?d%t8^YtpYhL#GIPPMTo~B0q&s2PiYFKI2Ph*2gaF{g<9Q#8 zZ7=JSQ`~4s&uBalmF%+f9F~esPfx*yr)G243iq92y-{*f5~x%wsTK2LS|`8qZ7f3m zF?qJm095=nOIzC?_H^>alYRI&&if1MChtE=Nk!8q9=-2Vv^I$B;|z!QaRA}4N&`~C z`)nO)Q9(c{ZlT&T{v;S3WFf@>NXd2Y7@RcsJjkc6pivDhS2mshPGuMYC_+c3rx2 zYP;!nd$M>MqDeU}FE1b4Y!Og&@n}Bo9v=Pjrl7~%=aB&P4sjT?)IjVgHxz>=MFeYB z81;hHrdN(y{mvX>=WmpLxa4ub<&*Y};76_1d>)G8VF!ln;qef}8pKCUl4d34t4@2> z{q$pLXgv?Z?9y7O4#;oTeA=cPg$xgQ@C%Ajgv)Llgt2#QDqMTfs36oyRZ#bBRewF+ z+%((p2gtJ-T+_ND?rm#nX#qX{7^pFAXmIe!;bBICF&f!H>qAR;_;5F|kJh~*KZvXX zz%LRbp5ETw84Ejq0RXZu;JOW&vF`Vqpx)kI!04@-hm3^uJvexAagmVm&7-GMPtc#W z1F!*h#pjRZBvWHap25Qp02K6#Ke|NnouY!m+RyBY)`;x_NF_-0v=~=cSBBkT%CpPI z+j{D#QKD<}nb}PoO?sp#2oSX3kUg<|*2%OOf=Pl3otSk~6n}d;&5rErx&u0uvZPC9AgU#dj%tS z_FBN()5K&QBn%P~lD-F428Mlbtbv%#LdnsQwHg)%r{nCgBluq{wh8zJaFCpB8axyG zrAD^RMGX*W`!zsAPK#>c0{FrL!#rU?e@=q?=A3rw$329wyL z1s)x*8y3Wv+uM_2z<9_Dj@We%01{xZ`_p8WRtZ_k0L-;s z00sH^`BFXi>&Z4cK!m7w z&={NF?Ko#m52B(8P&PU`y79We{SkUlEAz_10Wl_KOmZ>^n=~tp#{F?&S~>~}$DsA( z0}g31gLH0{$mnARcELa`5dVQTeEn9{$au+ZBNgz3_hdhP_N+g%chzjcj z`Qr|J@%qL_V`C$S#RL@(&kau_h-Y0L9aR0|9r0yR$%L)O$E@T! z{gQntz}b@qO#}p5iG6P6qiPMw$<=r^?5_$_@Oz@b!sRG|3xdVFjC4K3fO`o10kR8= zP0XhZj~$B77Lki(3^f2zjg5_g@CNb%jRVTh$caYrpfg0nhHO41%FZ*JzR#sNRY+`pAu3V4Tdc$ZpD+UgH9&U(t*M_Uj$Ggg#O2)wHkXX6W z3f+KoCjB7jqy!SVi~p%kfdQUG;}CNIWpfeaJc9-Al`jojfEj1NVp|WS$LdPR z%Enhlf;3UEtJ+N-FGUh>)4yhK?5}*jvmdKmHo&c_hWmE}-l>K&5#VqY^TEMDU!T3s z?{#o0Bx?^?u1p%Q8?XitH|R8Lq>Woc=Z`o+Ed3T53h9HRQ9Ytf*{TaG<;}CNUrd~| zps&o4$+w)XfC3XFH|odZKCU$^h!Z1nTRVpKzd9mpZ{tk6#L@M9+bW~_enq& zC2^9Ii}OLHAi*e+0#s`HYP z8UoBzq#LHiK;(5Qf7M__R8=_+rEt9pOO=HIf1lL0-hFH< zKQZj1Atxi_TuOHbWh=VCtsDjD%DsC1x?lhW9sT0sVt8msr^+mH_0RR=aX+hh3Jkze z@8JD&eK2|F>>9xFloW!Eoj;P;0-l$)S6W0^SWqam8Wd+BScA;KvkrnoFIRh!a`7fF z%)a76$}<=?`PHsaFgG{7l+{o#rj@fx%nqV*nocqJutP_JBInQ{n>F18L1(PrQx ziyy(bz5DOIy~Q8;?>BS-))-prjRtjpD{v8d%^J``>er1?W89(Z2TCBJLvW7>r7rmz zSXhBPDdH69taAI@H+Ad)tOd>{s@nZ-Ww)9WuK@eBY8DpTU|Om)tn~Esz#sxqaQ_hO z7~l6Zwt~yl0DPQ}=gX#p-K+k7DTCS%halu|@8hW!Om3^{dN~0|5w!|^XB^ws)|Qo> z-5)YO228JautLqi;12*bWE}m=gq*e+$5%qo=}J!q)qV5GDu6*Pud}s=qG(g;}6D$Hb%yb(#F=Nj%II|nVFdR`H}whtFCj4 z8iV$v^{6cy)Ynft-u`+hqE@DW|H2YhUHX9U1uL+ywf8sb>YWPvFoz!bsxvcR$J7Z zQ=WnS!tC?L!q=JO>4}8bD_XcRBBOP<>n6W*)S_TM9_4hcRNPLZs1RQ6ch59_>gI=| zW=;6ReAm;wUoAO?e6VRv>gmXd^F2NMCRN@@dykn1^(z+aLBZhLX$s0k`6SUPR7#mx4&4UOqfGdW8x<4}i&dLd(4vGq^u6RJq>3b7XR zxjs6$l|o=?bH+?e8?7D;grLCeh!xrB-j{ON#l1`VU*tIf~RCpv++6stMcg z^6_SsV03kuY|F021vALwcp5|#)%$o^FPjLE+i_Mh<-z}aUgF=$P)VSe&trsZzG%|V zb`a@r>*-cqF+Y>L@Dep1VR)!n6Yw0c82H2U(5*|$)?^)7|~o@Okk)NPd%kx zoXDVzX=^%7K!~f~eCIRA!XZ-XL*MTv6f&q1$}p0ot(~tD`f`$(K3O8$iFS|{0yB>f zmxPi zHjY91j%>B6yPlM(#Px6|th!!!QE&+8>6*UjbEo*tyHJuYoKx9V>QNu@xyo|#Rd z4~{`)mn&@6J5^R{%82hbODCS-(^h9{?q!gcqxo=uB7kU`eRga9@;&sDfQ)|BLXRQ@ z!DRb$Xzbhwr0+o7&-bBeW+twm7#8fabbKMgClo1^z3A>L&kqP?#G>V1xJzeND0p8Z&3#oZp+VTX?y!;&<>cw8V|sv{q;s|K<>` z6RPAOS@`K;mD2ce*-Vm4f8xS>vul$}=4)ei@^PiHy_n;8<(WNUgR&8UTWdYZXpNXn zq4)r4Y^*$IN*%|V|0w17;mY#^x1MhPby=>a#n`-6>K+dI`P3+tI31^+W(AQbcee0p zVq8tFx~Vy96dNvPqIz8c=KH(UA4B0eAEP>#&pdv8jkb5hB+%i~vsUbSPD@BwP0G3B z23yV#X~)`hG&8jgcRXKTriF$|@dF%BNCj)BQdA@-|Eq9Y;pk1kEBL+|v{(@w7Tl`Jj&&#Yz_vyNx)5okED=nP0p z-Dy+&su5VicN^jsFTbP_@p6aiPjw%tYvn5ME6HhTu?1jCE0-&DeMr}%GpnwXd~M+q z%Z;f@TOBKA`HV2g>CzBK^=b}FRcr@4NoY`LPNSRklmvr9V)Cc-Yt(^>%sP!i2(Jdz zCFj>q={=e(zR}l|-P_wc2&K7-v+AVC8k!rW&KQdu)9yT;rny3}QszNwbG zjOiOKYE4v1>v*Upd0;38y;h~~`rvNQ{5n3P{^q)-*LW5AXsrf3fpt%b`b8^*P)8tJ zJLM|1)^wlM_0XT*>}%6gu+0Shfz)l3tJxiDk}`WolWuOyl1v`T&SKtJX#BYW-mx|B7$+@cXSv>yOgP zHi_jJm(lg~;E~DTb_acJg89Vb__$ng5_{jarqi?pXX!xV$}L~BSQSc@7?i6qV)t&{ zbWkEZTpB&SH61@WIJ~3fU52^FO0$7B*BFm?9VXiO4YtZ=8k=#KtGnmtKYV<`%QFPw zyS#mZ>T^9@JKZW^4p2agPCD-SeEUXt7Q?M+m)yPH-6}~ot1$I3rrrZ{vHX z2j;|!HLf%wA_C2a*AU5=k9gVSNS2ULcqh@A$01)yzlw8xS;~`s^S;RJ`Q^6(o_g=@ zhh#ID)#oGH?XS9DcMBD!vFgGVSW1wQ#+)=B;`KGY^fk zcm{F%M81LpCGz&THoopw)Ms!WXbg)@)pu6x9uut)Uut?2DL%7{RIVONiBi^b|Jpf| z)fIpGBAY=^W?o%wRv+&rSCsQRF_l3irQos2_;3BbruJFgYw|KZiBs|c&)W-;D(1VF zuTBiY>ZAO^(EWQ%f+;%2(*=_S!y;WSn~A6UHP)(=LRkr~GRlxd`qH$t^+>WK_MG35*r2 zg=ZnUJc=ii%NdGtH=CGLtslBnd7kYf5b7EQzn~Wl%eB)hVB5QWKjYWhqk4V4njkCf zOJbKDMQ{4@61fh8Vd!aY&cPr3N`Y)I?bYGu6nLtK>W!CQ3r!|p*d$mpTz&G_Zlj5J zX6h^XA}lI_K>1mJlzwA$&I}SGW``Iq)Adb6&Y!qGGev!(YSpz=NFl!a6#e1hT_BZ(&Fp2zyUI@%DFd-H21pUGdiIOJ$cS*1Y+v9{BSSblba(BQY} zZy%1BgCtz@Y6f3}&r{~GEEiP$bh;QH6$NYj;9dujvR-t`zR9KPAe+!;7Oxj9_)4#O z&HZ))8!jK_S*FgCL;g*|BE5?z@8|q#YJ^CW-Irxd^7o;&p zfjdcEN-`vi3eoib#QRzW-B}1i$1kV-_-vbK7R34R4+ml6T!&aCm_^fH_pP|`)3MV- zo<)Zxx&H`RL2rLErEh>*H|6IvwEjVzEXLjlF`v41Bv%} zNREZ-tpsJ{i*o0-+}QNg7&w!SFr;J*gxlA-i3-&jeA+5UJtE6!s)W-pka*=iY#WW= z#pgcu^n?8C%=8eirP9p8CQ;lv>Gy6W#Lfj5BO^*t*?iin(L1(`BO`#px~kG)HT)TQ zm4h!d={s(wFK&J0cA6Uj=R0#f9S5R~ff5vliZyODtypXw%nsN$L887gqZg_C6s0DVc$~1{Mgd2~h?#^Pb z?e1@1i@NHB<}s_Ok1iQo2Ik&0j%nC3IftSyg~hbUtLJ>D#gMGw+O?l2$n(lb+qu(N z8&@ZmTmr22eTlhU6k)-LQ{@n;HqI5*ezmua zdX=6@&xN~ucz9Qh_XLJ_j_Zy{GlB9j^?Bj9*_9;?Q_Hx!+H`3}PC>@_wa~>^Y_5 z`6sgjc9$V9`Bfjb)FU(pT-p;&3RQXWUbri7ZFV|y^2A{)m{QBz*iKsZt#s{;a?}07 zzDnW!HC0v(TYS|nN|RUw56(hLztban&V?%Tb+XbxD^DdSGQGYm(D(4txI|~o+g_=C z`~7x(p)u==Nc28Z%+=LPn4WggI@_sxAvKh&KX04FPPs!O7K^A91n}j^xo*f_ULAAe z1tmMF&BQsE%M8jMrqa;btF|VeRyE=?x!@Z+jja(J$OnlsYdGu@rDEbXF6*$Lt0|J4 zV2j3t6)?Rh+WweN$fyQWVM3I0so>(6GlUZO?%)spLWC<{Z(GdLY4P5 zEL0|}GN?LAr+>W@xOvrWrhII}+}mZW5y@itIc*?1uv<2lm&p%Cek(%n-d{SyyJca= z+*){#o%#9`D<3 z1V$|jOH~HvDS>!y3t!9aou#)Mo+!W=!Q}|{A}IP!(Pxbb!S(Ta)}d0+EW)=dMry_E zBp>d-#ug0z%<>tD^L;NGc-O});npWFpZLts=ULGE1QAj|q#KcXc%-fG2r1^qC2Pe_ zTE<#T*tsHzT63T61g(D%s}rpvPQT+E_+;~1KnK_5*!Gs&KJUY7knX$#CB;GZUJpZZ z!}+ab#CD-q>>t5Azj7z{i1BJ$U%LM3YD(AZ-Fn>K z(&g!n^2ucfGc{pTNe^d5?uqe#%_M_-yL^J8LmUrh0q6hRS-E zCgSFwRQ*r4R+n}I@W(!6spGxB^muHUXNYaigc&MuSw zCk$p~{$IghR+e}F4F+pUg%dos`BW!}%^*wYdQ8t@$q>%h{Q(Yk9B%hWKsDHiXeCy# zDVi+X#xtB|;)U)T1Y@2By`omJyQ=u+-!4$jiRk0$b`7`B|MTo>^Mp7(F8!XogM<^A z_Zt+@1iHAIwjFO>O+Opb{=MKjbcVd4;!yg#5hc9U>za#Qd0=x4)BDa2(z5@#%9PDt z@#h(e1Hwr@nWwOnoA`35sQcQhxz!2A5Qj)Eh_8y<)T&GDzVaX2B=b#U4%?WiQ5oq^ z=E{uNK2)KH_JAcs1k0g)*zx0sOjNu?yet#5c$Mw|9(poG6-6cmzk!Sj2K(=v28J(q zlwbu}zWub!dK;j^juN?U6nJp5IwbB#xWA(Mrk58}?Hvyyvd5bKqWkDjiH1brPB8KImlui(BPndGrt5l6BRu!dE!_Po%k zfuk{oP@ zXgQcVO`&j7TCT~Z&bmpk(+B;>4RpjTMZeq^9s-7`i{7ejQC9?g7=^GVys^n_o>F-G zW~@$bwx7?p_Qmq6Q8lO|ImzpkX9*`X$r0SP$g!X2zsYA#3CY)YbI3pM3OcR9eBwX$ z`Ry9UH}nGUU#;32C|9Hme&K8(0@X@G%tz1-==AdMRoqKpoNgqt@3eIE98BCp^x9T` z=ZGSI$uPQtwtu~JavzzYZl~iE?#+zOI3aq=vrPNW)}7`?Xh-Rfr&;=aFyAZ5y&;qh zyt!y^dhg+aHPTU9@xy$LJUQI=rnlCTRP@M!_MJN_Wg2ataNqApi#&lNZZ5u#}aariGof-iZG5krx$3vg+ei$o4Pt zZk`_vIhqq^iH3QC&6~g_>&g2%0CYM zt}8XomyAm*$EG&!u=`HnUp+0Yl>1duAy#srpGiW55Rg_{IbyLGbAg0RD9>-0+Ag}( z)Ml{hc*GH#bg5`0AiaE}G`qYCH7Z0BHAoG}bbnbe~QoG)wu3 zyX$Yqd9^bgJw?Eap@4EE8B19DI`))HFgt4?wJXb!Kk-F*pA~ChlBr^jhJX$El93eI z9|-YAnTcH^8`r$uyJaLI>{`V5m^U#+Uz5_4zhRH*IISOF$w|0Q@46H_#tRQzr|VZ* zd^x1zVwpcS>#$;d_G;JF0MVY7Cr+;;*#rJf2osIw*Qz*^-^eaC)SI5|!*kqbHcgB*`#BesS%pNeni0iP`H}Q^;WI=_!oE!pIsncrOf^}})-Tab#8R=Kr2LEN;tmBB_VO&Nr zd=z?#Qj`s3BJLf8&@m^g-6h^8cQbB+Ji3c#F)DdP)Fpg~))!W*fNVvhklqxu>BwLY zU6Sqg;`((-R*Q1=&a@Y=4;NA->xQ)9U)pcGy|(UPDB%yqjnpFF+ew1MO5(Hbn{}JRvX%Eomrp z>ch_rD~a>MuV!357rm{T)pXQlLQ-zZ4ZF`}aoIVeob5*M#1yRb|5RTe<(+leXe1}U z{MbnX)u(jR)Fg^B6!8lXFODgTAydA1t`#TtyFQBw60IR0SreBcP*M+1NApF5!GS?L zseC9aW@sQ-VMtm2mP+~NB(7*tyEHDOn2~>n#yKV*i}sz=(_gu3Z+TIkl9fw*uQ90f zf~W~ebjHO{ItjAvxV0ET9Mv3yv1s(iw%)2jViH2%Xw*ps%`+8U(AHSUvq1Flk$e=e z2q*iig*g-)$Ju(ZJ}KsWEJp2%IHZ+Za(Q*$O%*>^%+*)@XDdRAaLcTPurIfSo|0cG z4=Xt*iCUu;o^y~QhcToG!+x~XMo6=ku9Z)&s#0fTLNr zhAmHQ9qGl2(7+r$*@saP?B#3c<0bk(?7ekVmfgE9YJ;FCtw<=+NQi(mf`l}Z(gISF z(vm9O(p}QsT>=8q-3`(W(sk|^{eEk$z1CT0pE33rdyg~DAMZCl1>a{r^O^I$ulu^^ zb6ttM2MYQJ&Tk`WNiO{+_ADrZmane|vA#CpotB1<&4NxbCT78bzS$fJ?mHtR=txxC zi>db~daujyA>X;LFI@SkBJJ7KT>PdB)*Zg>hr7DBJ=!a^SHH$opg&4pl;jfV`FTm0 z&7L3U+wbkLyj{_$WMq79&0gz`YuQZhC__JGW_8AyV&zZ?*cb^Mtp%aQ%4>WOi8>K5 z#y^KQymVvF!!$PE6_pxK=$l*vk40tpV0ag1Ymvfoye_L)bo;!s*!Y$l4PAc3t0Cpq z&pD`y;zOy^Rd`x$o&L<06MAKHw50E)9}C@;-H_Yl(%<74+)fjI<|$^}W7>;a{r=

    wS#5olhK9%!}QMoOOc zeB%9ZjxvKV0atI%qR3fP0R$u6_N#m~1j+yFW)*hL^3YLw5=@ZJHC!e?ivnPnn>(-^6 z%DS4F3lGnWP8DTlA9SA|G4>S_>83UNQoWr&w|8%LXxl@2x=cSj&HeJ4UtrKg=Q?-X zw8Z(*-rho}4(pYXnmo!bf|ru?b2Ulw>^?0*DQ^2GgaWsVvA>E+*4+{JZoy;4{&B_n z{*Bo&ibU6GoJDrtQ;H$=jzSf7O&5V6D`HQcR!urZflkurgJmP=Lsa@7hkFF-Qaq> zC7wRHwei*9(d4)Lb~IiS&q7Sm1#fZRsX0L@!Hl#2yfS))mGhg$=a%6HrhN)>{78n> z7jQOeLk;H>H;(+=RE8i@jN<)gYzg_HalwUt`W&UIKOgjoV~e|m_c-PW-k=;G&PM)j z%V12(xQzAW=@Sa%%o`i`oOo?~YxkW$htLM0seTH?bG22--kxZ>ep7lYqX&Ue6 z2w^*s59s&Iaww-B+b6oppu5WW8#_OW^=}%?PyaR{Ae~K-c~s8vl*d=RBF29?gf5rP zMSQxXe%GV+=cYagZf+R~B!zF5ZM2K)vlMCT1%XyO#S|)Z4iMLSrgsN8WaS0kLmH2xEPYIk`+05Bn26nCVbH7Azcf9fu4zy{t)L< zD=SJ+lKFMTz07sG?Mb*3Iz z-uT7=S0Os&EB^s)+DnOYE2$>7^w(0H3$Lu((02HI{TsfQ;Aq7Ae9Vq-4Vv+|D!dn# z%J*Dx%-ADO#v8qeUQ=R4BUNrnL@UjSE9H#1!LN0@^8RfKy}`ruMWGM-9Frx9!s!Ba z-3i#uCu;aNoT6^#ekB*n&0Rmp%P}JzeKqMf(8k9fk>qE)i`ljqT*KviUHR)qkGX)R zm!iSCqR6H*kM|VzZ0`1~UqM7xN_Rz?h%(A)uJ$|WmR@$LJ@KS&GObThnS1Q*N$7e6 zeIM*cyeixAI)7HA#nwwr7#f&0AF}<%!qX%u-T!&b35)EvhDK|dedK|B z4_(?ofE}|~fRv3;Q>u4WqW);(<(7~WOrj>$@=Wgs*o778Z6c+X$wb3}_%r0!%M?nn z4lPv~c+;bmGq0jj>D8B~lIIsc>q|{q|;u` z;LAVOHM`qQYluFs`gI6@&D6JAuy8if(#z6&^{m_1tje}f^Os6-`kUm}V=eCqRs)G2 z&aO5h|1>E%`0mp!LAzU{_M5spn7U!T`;NIS54)we1C~k-#eT!j<_{Y*)l3bal+ulL zD&;<5SClB3{!|u7;yf{>&*P*E6~`b*ooU&h+jy$Z7Wq=gWwA?)O{{>0J?8$ycRF}c zA+ImL`L_D2L9NL-k+g%V$ve|OIHv2In|D6J`jkMg9-rRy#;xmEVTlw^#hb?h%nah# zW$_wKo)A59YbiRm&Quo;b_Dw)HWXe`!&3oCD!k(b8%e&DGT%ZI!G|AwH6?qmayx#h z^%kaf6(*Gy!S`6wBo#%=WW!DFKoe#8^x*V6Z|<%4=HIpAgmZ7%{H}Yi){<0uQd}FU zn2~u`E;IA3-0keCl_mdxv359>UOOh4rx}1n?5;s$g&d9^YgBcd= zLS0I^79y^A50mk8q>T|OW8+QL2i3HTQU};RG8ply!WB4951fWG?ybHMtaFofx*gL< zUrvpbg1O_x+T@a{WVPkhE1)LA^u|m%4)w9P%=EOVfWMiE_`TE656!4OQpCyoDPqxG zyg^nBli14q-tWr@^0Z^W#=L&AJd_xePAmEQ!wzH6xOoRpqFp9Arsik6c81g--U{?3 zCVymsnF!XF=`fP%zKEo8(dNo8Zxgv*G~b){lVTWXt`cr^57!Lbb=Q8TXeducYU zvv{ADNmNa5$O1KEe(>7XH&Dk&EQu9qML|6*qJJVAotIzaDY$!Mpeda=CRp!j6TR$_ ziimQG!G4a6`*AiTyu!N{Wi_Fy6NGz267t)PIs@E z)6aE}1m>${t=UgVtb{AV)w@w}SDePE9sv5l)bPZSPv=k1&g(&Tl`xbzhfCE8c!@@iI6%@I7kWgF7A;*9JFvksh(8 zvl()u2sAym)s|x*(Y*eaZ1Et_HdinK8Xgee%b3caqMLyqX1e6-3cop4LuzKPm8YN=l1+7WEv zOL==ed)JUWC`E>LzLfnbS&`_Ytc2?2+>|}a+I4~cXko2yoO7FN`e(THgJMm_mP21< ztYwV39#9LiKmYgGwjaOM_rbsQ>A%zCT*kO+yQ5*`#p$ih(NSCB9u3e|)-JF;q+DrL;aYJf zPJ>M@VJ21nucc!?@+*#uiT6)Pds~S%Pj0HJssF~TtWNIyNE=Qo8aX_*x)B(;s4f0( ze&FX)P2hu=+ewOa6OP}1#Gak*t^v|vyE^1(LKPRCr6ncqc;F{W9VX!&Ufpn+Q%Sgt zmoEgJla&w|m$-J`KU5DxxZT-Q-D}#IB~#~xrigWXo2WbSw>T+ZemVRB7JLr}YNW@; z;V9cN3bhiSNb6<yx`buA3R_p!EEEelzp2grvH&M}3B==NWWa!Sc>FsWr zkF+y!;bnbeSDf#96X6s_B+V$wd>MF1kzv7;i0?I4DcWE{y2!Ekrj?I)KPmI{6{#`z zZ$nSynO8VcOqIl^0(F3N8Y%>>&9b)+eRsyLJ?f?FHLj^2U8y5|#>|ya|9MyFn%`t# zc>D|Jt#h!%Cb&#}c-;HDmpd(r;z{ruHqI(B@9A0d=}*BCOG~>Ycbwfz{BWB|xb&=_ zT32DzO-EP9wKo}KZzY^W#L8Mf3Q9x{H&Ho7w%vK=a(HkI7vqlU!Q*f&Y>MrAc8~X$ zF+uN>o>q^Cjwjs>bh~Yg#+zn&pPy|ywwt#q$g6%|8^sZ-t#A%C?W5zZ!+G~z>flLj zVG~{S6;)OhtT4ud*e1FX3R0A;FTd26T8^}I(K^*mbd(u9i9K&LB_X#m)8mrS>rl+R zbUv_-Ckl})H6oW;nN-Mg@Zl1z=N7-#|I-iq>g+T5Z`k#ra<|;NNADBq{}%VU(yoqm zKc01!;A?dQ=u`0 zH6I=uu?C0Cl7(&dPgDuEerb*r~; zYCW3l!`+(#V(O7s0=M;t2vAl%DibO%SNMHK(!;H|V~d9K?n+<|?EX9acGi1a&b^%M zt}awxet288zk3}^aovGKKo?!+HTqbhz{@WWc_}bWK@xD6Vzjkk@TlexoRWIYs zkMEJ2-1WuCW~J#{ztHs)DGX1C68YK9x1)yVu@(b4Y0B7bE3Vol;h^eb0D#s)zO$REU8nGBe%@~DsGlN~tlr|;k96Qh!Sj=^u!x_I^D`>6e-Vw`Lg`Kl25 zH`KPHD?f4ZYq-Gcbz$@5+rE*SW74W;LrVuf@N{=Vjibc0535T zjjk?F@V1Sbl|$&;{)Lb(~-gMO(NQ7$^Uk;)wP!N91jftFyOXV~tF9^uU<<*Bhb z`l%I4tD+tTk_Hq3JcQ*f4aMtAORkw*sjp;KaVDSgB$5&<6v*exsaY(DlD)UkxVP|zN}q`cBwRhO|jsn8=pBJo98{oE#={Z zOY#0!*PE~sQ)Wb%u-#0k#OvkpG2dt&@_93wYtX~L1_ zem9#2vi_d52yHE};X&st=Q^`>Hd^ZRnq&JAk=j8&ev~${w-oV2dsyXKH9O(Aum;}8 zq$=ci{!7_m!H;nkJ^ObB*r&;etIAaO^P9IT%=tr}ZA9)A2x4gYSW1_6f1&LpTg%GT zk@F29ADyCVCZo$&r&(FHQ2aVPE#EhKx7Sjo&xQ4|X%+4J1zl!q8D^THxC}%24@>2Q z;;UTWLfTQ%4IfnarOw@pC=;(@4HFZ|@JbHjkYZ~1HJyG;aR--%-$R%cN8#{%oy&8B zfB*I4ITmE>=pdONa`^a?*Mj7c*?bwl_}0trzb2$Dcf;^E&BOrfO-0uho<~?|qkikC zY`ZxAyi|m*sgn{;1;#m&Ou`~xu(SDM4Y_A2`bsg2`+P_-pdfAFH5@_Pdsc%=pH5*} zF*NMn_eIhmX8rA^R(Mr*N=T&;js6&|Z29~H8moH-><8*|gzOx@KcLP~x4C|2iY0x7 zZlyqUM6fxmQnB^&+HA0yn90ZWqMHik^#-{fCiU`p4sXtuN|TdkuKn=c%6cV_@_7=; znqR3KU&E85TaM~V9{qX$5c3->H8{{k5iysf4XqK>*L-8>y~vlo7)PDm&sM z-z6rEwfAW+BBa_{Vy4)zCsbm3XDI}x_uec{+m2gXs7Mo7XyYBfpjxdrGS{dqtv~iT zgR@{pO82Pd%-zg=!wMuq7bR-wUOg8$#{Np{Eywuj`O<2{gOa-Foh_v)lLRUM*@RpE zAJ8=#DVMdrex{il(|c_9)w?g!yU^C`N9`s4jE+@NGIGy5mbl3`e9dISZ8$n!C#@8w z_aB5*kY3ARw_@YwSGaBLH}Pam-lqIbI?t@%iZh>|PIT;ox3xoN&LY`1Vao zxr{nLYQkgV6MG3UW97x*RmRi#Pj6PNtfzdcFa>|#KW2C^gg$rA`9?>(uW9D_gNQ29 z@H(Hm#Vzy%o=S3!-yhkksPupO(zd?;UB8lVJ2r{z$FyiGqfPF?7Oc&5X0?PT%s+6M zUs7|hXiC%hJbERS1zjXHV!o6GT|YJOca&q3VykzkeOJQqZ?r|Gh6vYAX<;TRiC&$f zrDma{U!sSe#ap9SU$0Xjjo|mtBjs!ek@aaUtrRRXTz@KUVnNX&7w0IXGGM}8PMgu~ zm(#kQ=a@m8p+1>F%PusOMytQN#HnGFo`a@KyqlS$r(teLhFf@JKr7yoO{i(E)5ltJPN<(Vz*;j)eIJZ4e&X5Eee@#?=mt3Yk z8$G{7Ot7`^pP?($(|?1mG9OK}=-x1eBRRhZ~XQDV+Qiy&&vO~6Zr4P{g&qcfAasU7x@1dpZweIt09l@uKpJh z^5304`cDy0N|2XMT1?$c|KUX-m7@E95kpZBG4#I(hX1qC^4WhKEm58_{deK=;WI|o zXa6Byu8!YS?z5OV-zw87<+Z`#N_t9J zhDH^Rqiu!b%O!?M)>=#1q*Lfq9(uwPrYc$Y@Y&YmmXseLAA& zd30bP8-V<;%UV|=EI>BvP`CHMpaWh{A6Zog34()8$1}4ca^rFNk2nG$Fqr4t8EU63 zx{L^Ui`!P~pe+Q#BE%uL?=$=&@62^LwQ+Pjm#g^SVlA?ERe7{r_6pdE;gm?-Pu^TXKlvh%ZJ(5a`!kg9*kWW6~>?cv0`&=IY2 z90KYr%GS*Oav~xk{EY-pHJo=UR=N`e>t9jvP7s|RG=U39b$a^y$!dFSZ0rslP>|dV ztvP8pluYR@`=#O!Q}YREu*L@!=1ci@hua9Tp9yItrQ>0pSWZybc_Wk>d5A#YOB?gL*3JMCbcH15-0+o{Wbm+!! z2Qn3Auxmh}1SA;9;U{GaF~=)v=TzL0(a|*dBc9mQpnSFki^YS)s*`h{@wjold?kC- zs6vcHhMSvvix+g1a32jFX0lx9MDfPAK42GeUgK9#At-$NS$$T(rJstcuF(TCBgR1y z8okL?|7=6IMk>sjshZs0SexdDV~nc7~#&q9Az%N(Ho` z$g?vuAfZJwQTel)7~M0~X1R}YpKzVxkWn~0J)ShFzYP*E!eU|;T*n|0*}$BN zw-v*0PKIu2g1^dOkv_lpI;mame6aC&W2MB9TBXES68X}L3=cjgjUUM9!FjdFVY_beWDQQoH2XJ%5r48^OFVcXbF!U z&}v-;Webo`n6br;-|=N%x1RNR{!0fWQPphMm=oZGe-_# z{ytg>4&9Rh{icFf4h}AYzJ-&`j@w~~o&RyYY(dq2R~9|eW^a`hL<;iEnnBMqlop}- z`RVdiz9+WeN~NTFE*6mJdgnpMXeB(Z$+NwZ8o1{sKOztnDg-?gD|ogklVv1K(I>-Y zDX(*C1#%{Sdf$HrvP8i(Cv$YfYkG`6J7K~}c*~pLuinW7?H+VDknC~Md@Bs99m=Yd zZGuBKu09VQH1g z=hxhv$NSXORODN?RwrxD3-x;OR0-6o?LLCaZ2}#Z>|8*a)yN)_Z(`}#x6d;h*f%1; z>hi|r%a==FS$w&UN<~e*Q96tEQ3r%5K`(+I4fXbIgk%)x8)_)6uCjnW94P;I4DEyF znT))=R{?A6a&L;CI}ymDVtbf?w9x}*0~0QogB%cwK&Uo>5C*RC%bY>>*rUTv$7+*l z-Vb#k5VsHhbdCr0M0^~x-(L^)o0Fm+P zfb`f&=CA=sXPiB4)?bEa@VI5>da1*#L#Xy4*sojo9AH5w~*ZCI;( zHJRtgLCF|O$(a|+0{dcg%wkXl^lI{cUg{`2BD7u2d#2L?;v1YGt~%oYYF4tcvNTaV zNm8Jru?itQj6q8nvW}X=q1J-rovk8bYfjMWAbty0XCBYk$qy^$LX`N{v7Y{}b3xr+ zeb#~LIe5C5;Kx@DDyaEpd*O19P7Y{d`=AZ#0O}YJ6hjWy`OfZh+7u$kbx^m4hleA? zN(i42Z@|V={;IE7{c}7UbTSF?@i`D1FXrUL?jy+_EcahtTc!`Llq1Hw8Yg`Q{+f}l&Nydg`6^Sa-Nf|Si4MQ zSNvL?gnQGma(Yaav<3GbTCY@5QGelB=zAsb(+n`}ZD;l`pD}^{Y&wKs(K$6zc&20nPR#Xr}-eX=!b(IXeP@6?wWhxl_UNs^}6-oF3K#tjuMg zlsNNK&hJt=TW<<=j5Tj)DDHiXZ@M3fMK`)2mpKfjN=s&K=CfsGWmyDfm{d2;HDvcL zfnpIS1Nw+TF$gLxEG(qJI!H`p*(WC>V?KFW3LBk|5urXSpQSjbe5oQHq3RjVkfhE= zOG%lhY7}t~cYDXn-CG71C&d1&Z1|~HGVXc%BdTwysqX6#`cvhs6`~{B=PmKPJVIvU zTD??cw7@`)^fQ=_m-)2OV8kDo&?)4<19@Cf2#n^mwQNO#rF8}{f*sPuoM(|#)@VK+5)TsCQN*m zuMY}(C*l0@qvwbs7g&ye;D<~z!zPkvz_UI)*9-ge_ieIf)I0@shK zZe3;2)=fwOpvXsj>(;F(M!g;ofdfHk6=~^&!Igw>-x_@hB0+4JbTBlB(@ZMhm2>%+ zGU8qeea*0E1&lzuvF2}dTs_l5wifXZ$WXuU0TATTa?0hm`C>FF&2 z;EVxXEM{1Me2aD`TTO!A_u@^S)LViqohvz(+A*jj1|sMD#CO9%+uYwj-_3Dc<4MvB zKnh(Qer%du_jW1;@6x9X5bPy4w%Z%lF|OQdgz)go&Gkmj8yXxD)Nr~dPcpG{MyqVC zwmcDnag~)WaFd{qS8vT`yJxUfPD}tY&=rY^@4x}@0`ODUn-_Hj;JUp-s9jrmY2xLM*1@HiFZ46Z7AQD^l ziaqB9aW}~DxOq?5*ua{x3_^WqP42YpEKI6roF$060bu4JA^8OYbkR)uas@f;5Fy~V zjE8ckLD;vB?AFHCp1hooHKPfUK0k$%!QA zMfw(HWhA_pJ}m^0@EaQ1W`!**kQW&-RfFcxE}-TE(1ZTgyCg~`ZD)64?0Bq%j{n?n zgkJJ?KCD|*))0B}=^uMxyeX8_lW2@89AcTbui_$-3UoDG(7z9a3S`2B(k)$Gy(^@Bvg!m{%Ao#0bM9ELgP4v z`*aC}K!uY`5gLoQbe3ei;2;5lgHZ~c^Hqxcpz z1{_Y8>+1VSNz1Ej+kIIxE??SYad3cbU=@Yi9c&K^cx6fHJxgwp@W7%@OqY zF71M%O$_2`#M;rAg-EP-lv(>0%q7P+9QHxf^@(z6S2!}i-73I|g#noJ{vhF<)YlHN z_Q|cykD!$0*eePDW`S#&6AliZ5)q6`#iK^jECZD+A7=Q#PIOd)UA^uatAZ~PclF%k zhSpP9XIl|??ckkW-$TU9zxm!M|h0Bm78yXrq+yF4ZJ|W?aCG%q# zSewYA567Bd!M}Ow6WTshZP5^hVrUr}PK_6v5%Cd}{g2H`#e9_lxnxOVK2eCxfQ~u_iJI2!@GJSluCw(oP$QInU z6u|7lM2Do#@)4a*3OR!Nz=-b*&>`(xA4#H*q`ZyD(ZBfzRI?m#Yt5dw>am zd;Ap^EP0aA+L25TfA;7SY*x7mdlCz%l!xd?sYlFp(dwz zm?cOTl%D!RDZSw;Hmt8@zNHFd#6R%IjJJC#k3{8ufJY|?!NRrid>wVxz8 z%K2s~GkA0f2uCSmbIgIuR}JFh(yUfl18 z-5r^Yq4-?If8GD*t7|GZ=~VmHCnXT>(HQZ@IJqrgO?R=^KJhKKE>~b&5Go#BI^DrQ zP<%zUkFKItf90NDt_YC#@AXKEMxw$}r|N*5fk|RGtb6Jtaxr^W;emnJrt)>=Y{D=W z_{aWQT@RH^a?{g=ZKp0J0aNqJnX7p?n4Ued?qd3h_~rkM)k1qA)7hL9SRuHBclSAl zaIg~7Gy4cRUi}%UM2~LU&6_CY7#EM0?pd>0*ROdgEJR9PO!$@Ue6%)-cp8ZBZ^6LT zLA@oTQX1FXnZkH6E^*S#RX7b^E_Pi`GoZ>l&@1B4Th$cq=my+R5L8#26@O=3b_Po zM!@*M4|0)^B|12Zcgz3L zGyZEa(?0<5zBc@^rh=wnbYHUY*9oG5v62Gyq1v_bDst0l;_ z3{b|8_eJHh4f?Y)Z#!YFF&%pE*&5ssG1iW8q6?@#a6 zRWy3Ma=@nxvkT(AU~2-nurvIbVE@BM(HtM8u)08d7tg*~9u0&Kt(VhM@Z4zJl0AB} z(kJnWjCXdVLqjv}5agrXoAQW#+x$89oiXp9?{4iMsrBf(k8ocBYA~a`u-2d}j^{QK z0V*t*&em20EeOvmAt8aYXx@UY)gApPO9=uQVFZE%e7^LPZ_(Qcv`@umMveY{_PemeB`yB$nRDnlsVj|zz1D{6O3^^tnDsYQw#hl(99KChJLLq$qC;CdT zSSD<|DHjhDIIm#e3??$5?7DvYI-M2iSg}}Wv>1X6CJ^CAH^-8e3Md78>wh*jgroUi z6k&p}i6NLUqN5Q|-M_WmBh}uW@J}eJnt<2Id5y^6D^2bb^5_{9U zJp0Hcr2bsgi-f!8DBD??1wuEZpWRtg%Zo@j`6CnX4n(t+CyxbQDQ1=DO4=`D{Rx@X zKPQ4s7A3D=j1D87E)Wu%j*j%7=-2DfH6ifo?`?MTv1m9af(I)~pH7G5KUZ{g^coBP z%Bp)YSe?_-D1wXsdya_Kg@2Nz1bH3$W0E38v%M#O!bF##(B;b^D>?FAq8GDS-S(^0 zMD*`vRJ5C>Fyv@qu1I)^#GP;6+{<=Ok;v$bN%|9SafLpA4mq&C{`adw!=wH+v6bKd zNfvIH>bzePrS!z3rLeL78EazP!!qjl7}TbVxhVLB+H~vBWhS*u+l2qQO_li{e75p+ zf#kB2j(;;5UBDM7nwPE=i+{2}wfEm=GuXT%vr0%jM-|2>-6G zu7GhsxEBaIQ;-YIsXj^{n&q0K5JE}nX;@(N!NWdSueg|xi6~@E4GqwNCGUwblW=eV z#qOO@8l{l0U*r1UH^eN&*ovq0GM%IY^nV9Z^-xtGH_$nBPdCV`WGUx9)SVS@>QC>| z#lj@Vi*+ccqL(ynZl23_9?@))S?Cxpx16ho`5F=WFKLvJeMV2GI*O);W5mzz89$nt z>Pu6ZaO9p^RSjxR;P9olcMAvUqf(m8(cxk9gS9QAnvtvN*KhC-S1^mlJ3*RcVJ5J$%7fLTn({7cpkp+Q0J znZtw|3P~u&#g}BM^k2XB$WTpc{r-8x38^zjL9=pK?)jm2!j7I>HD31_w>MV{!o(2Sy4 z!T-Rzh$pNxh*^LYhM*rIu;tIfMG1~O5DSg0k&5`OQzBhMqhhR0dW%brhUG0<^-{VwLpFm0 z84V2$b8~YAg<)w4PHarfUSJQP*lKBM*{D87*eKwRA_$f7bbPnl1TbTt2GH56$rWvL(8Q7R)_vCZ-I)8RmaG;M=V4TeovCXGJPMHWrUSKIS zdGYq`6gUX2QS!5@e}QCnyOT?4Zsb{HV8D;6y{<>H3gKC1I$TB2lqizH`kdiSWGqFM zFsj$D{d0k4{$CoeF>M(o` zwaI1#(TVlwT7z1qXO%|jw>GXH&0##XxdDex){HGylZcky@TQa-cLS%O%8q$VD zDIqsBz0MffioG^ddER!bNlJoNwu{PRT;@%fdHwCZ52UolWQ8tnN*bEM0f{Npj}S?^ zyo{(Eqj(UX@$Vg4g@$Nv2$x!9OuRGQ3SaqG4b*;{&;Vk6cClQMeT7%#&AI8u2q&aq zZ0w+C7hgk{)KlG<_l>h0LxAti(XO;`fKd}#3lPFzk;fH}+j%s#(I5pw<%vv5NmiuD zW+`gB9OShS_mq^J`kpdWGOwK1=~&(fixzhB%xNI1&6+;R3^VwL_U&P_SE6M9XD%iq8lIE5pTziY{Nx^!K+ANMLwgqB0*B z|Mz~`lk%$s@FSs4nsms>%uI~Bcv4wO$pcoTK_v1q1335fe0=3b4BGx=&vm1=dx3J) z(QHYq4wdjd>a6UD`!Kiq{JDcwSD9lb3_;ESSa~{9LOp$U+LBI%^7pnCBcNUs_pMGA zSgPwCDYyDN&n@+xaBthxX&9d>-SXZZga{$#a9cek7u zf0T*sO~p7^-0#T71|k81cssSbJ7CjHzkmz`^*4RW}S6 zS|Er2AAnHs9WZr4crgHH4fzWWCOlQP-PojR1^?PM5GUtjVv33ydhAh!2GdTtt$h|3B5+7TlXGrPlCl<>}fq8 z)l3?qg$cEqySF!j-VS@J39%N;ld8DS4?6?&L(fWGN0O-3&COLxjD!mmDr}#}0%u@S z#FpEn=?T+EjxrJ)>I$M@XthxCtLvG2;v`w>dGY?jpd=hjf1%2^{>CsST)RmQ$ zEi87IdQ%$eL4sZ^ilzHL(sid=dhk@r`>;91bBAV&kaPKHzhuZDJH|<%+N2G!&ZiVS zauwbejeMMZ;v>+zeR*BNh-|E|IT+V>Wg%^%K=8FvYZE*SYZKxpG&JKij*hyzx^N0( z&bPU(4Qn471u;sCm}El>am_6~qXx9>Ix4YT5C?53pcpE}!`uHz{Ri6Mcxl1$gwO}V zCy?ZU?EseVHW63l@YN@1+r?68zs+t{Vm~mFUG(q>`TjylA>8KNVZ19IXD|x3X#8XZ z)6tl+h^-}Q5NhwZC)P#d4NE5DISFrMd$IM_47AD%3k$)GK-&*Yo;u;d;1UvYLH=%y z)`6z+($dnlC3Km=v+<#?RlUUbA0D2v8CdL==4FT4gV8ck`t1>M;}uTCk4KMB5vu+~ znshJ!DSDT2JR}1W!HmWLDtU15g6}ul3xhRBt6WOY$oLyLa%5E0in0Gxvn!30lOJa( zVjm6b%p(y}nDw*vUqupduWM_kVf(t>gw$b=`> zYWR*I7TJ(_^bZ(ef;J#fo{Y9tZ+_GwmK<=Sz_n`tv8}`sIS{WmV_qWh{a_1n`^S$X zJyKc=9ob9bxcNX2eH(=HTZiL0INPK*J-bCCJ^_cNX zStVciF8B3QDl=7lV`Wu%)G4gXSgiJ^+A|Ladr%im_414QUicc9KQc8H)vvU7QPc$N z9^Q*f9-FQY+G=ZyJyB#;V=R9l54Q1Wt_|kUaww}veH*QiH==`)nTQdKN=Q7vcdO%R zW&ZZIX=FRXk1x5Y2975&F)`6qZt}LKM9+5BT?XKzT5VT0h*Kr-)F?`CoUO+DmQx0X z`e~-~%D|GTDdH&G6pG4g?mBF0xlCvYba&{)e4Gb@%xLcboMebtOg`0}3T@AjhKFab z{wwyId?2pGzwy0<6@3JkWuinvUU@bD5!ZI*vyt%%Y%)wzKoujL=-+&Zi4C^4v|U6Z zZ)WA?SwypEcngd_pOmb-$aj~eq{V#s7Rx`>3MY+;rs^}`1N#Me&=;a}Ph3Qp=KP+k9?~VLq?Po3-zYkxLt!%5WI^0zSoG#aG7b8OWJ$=3lQeegI$DFcRVJA&lrO*U?}*Nh zyoh;!8IJq?ap^=KR_hu>etk^0V7DBqK(M;XPJD0RP?faw%g@CTW5Hd)1sG`e-lE=? z?eEjw-$=2(eCY)$qv457M*k6bm%P)~mV;9oZg7qQ8V=DcABah9i=?DPse;WHzZS>6 z7*7z4rtYb32@3kPAA1g0KqC@|S^w0U>`KkLxH(-9UEhTq$5Z{*q(LH5A;sLcwcw=- zhlQ|kaclM`Y!Q?%+sT_C$zG#eDIui*3=3JH=pU zCa;t+Qa#S!?o1V|_v_Vlvo2V{#pHFKo+yrvj$pRr%6E@7*dYD#9|N zF116$lQzx2XfMRAd2~%qPU*WGSg98Je2lt>oG+oSV zk{k5(ZLAa7vtGEh_eBcp!awnWjf$i3FaZO}87@vvu$@z$*jY-6jljRE5sCJK%jS1# zDOB6+E~9K|X?tJB3!58ShcEgb${pBQ3Z`(l%K=(_kS-xg`}q2DIiA@mD1;9Y5fM!? z9yW`4Jbn5U%SazHeyd;J=>m>>iXiP21`L;d|DY1hn}q;!FCNSH3BV8$24?qf-N@*N zbn==N&DF()6V77!)VmFz><+56s{7X&M*kalA7sMyrEx+U{qjXdR`#MwX)o`w@B!1B ze3R)qAcmH~7Y9WUb1G3N@XMDkcm$SksuV1kGy0dox>m9@D?w%?@+S8Y#ly!h>2frB zVEkIN`ZyOf% z$s{~RUj}c=Z`8{Qnj69t;(zI3pTa>|O`!mavEo-E1%8yx&E1226e^~5M{}zedy?@3 z_G1w^1p%&n&vm;V3a{b0d*tn{>T%l2?d%SgM;e*dx@*GmhtferM{F1?^C_^J+04Kw zvzf#3S$M>dOBR9Gvvvaj_u6i)=_!)WQvDsK`}c2zlJK^EeN_DEk}SW={1guYH-B>N zgTo0u5`>I!ZVb>5FopT~`QN^M1E>jSW2Yg&;Q5d-Fi6c!+!lxQ#vIv>xgrpNr9W^G z8l1Kc_m{sG>MKh%zPA<;NDhf6WV(Lzu59p3prndQ`yD^r(?gy=7-+6PT`mJG%@tXu zgmduVkerwmkboQDLv3beR`cPm4$(91Hn1;*2qaQf4hKKAt5n%+<;;Gkk}(gA>|sU- z`Y^oHUN$wQ1&*!(PNZbBp|drcNlrp{czAdiA_nopv%yDHRPVvT436FymVdpe*fgmo zEX-gyVGye{Lh8|l=#j=oiXh-Xmn603XVo0sL+Dt2M4SdqmWW08lOxW=ZPp^eVYwtx z6Qio5{nAxn)FesrTI9n52_f1;(Efj_QGtp!AnDnt!VcdvDToDzV?4;^T5GcFIHEUNN|jU{Fs4)RyOTk`p;3cXWO74>uo4Wheq zeyZjG%>SpE^lUsYKI^V&VKh0aV6eb^e;9WA0duBGMKL@;s4E^ldIVi~b^`E0>jsCk z!!RHX!R=Q-6`vp4vzdv7jEHTz(Ds3c7%JAjx%m-X{?}B8KmlBm2XshHt#Uj9u@RuJw4O2vmGGe*%btkiRN|+mzt$y=S$tke^Rt% z0C4(-Q+cJb*+FiRqoV^kvkuP5OTLtohx9{%CN-xcYED64u`S%AmyRQhx?+ za9@R$N{vGZj)1RmljX9ZfiEvGas)E;5%=`>ToH{>Lh-aTGJoV} z47X@sIs3Be@)7qf{OTLCr9&*&G5vwCe;w=-;O8$||MygLjH-m5UUHJi)o0IkX%CIs ze2pT?qwtdw%(IvE=R)OsE_ZwVX*^1183iF{$*p|j_u`9*gzjj1Q6M>3r?GKzs!Xi+ zrgXyj)VlimswvE8_T|J6U%Xb%aXSXdm;>>AZC~orkW_i^@ftAn0Z|rhD+aH{EDl znSQ3U_xAI}62pqkVI3xQb@}5#?}I5EY;2)`AOBTH)65IbqpJUhw&|!TRo2Vi9ot$r zGNyhC#J)HZB>YhOgaaPjXz@~h0o~blXjTTpnaK9Pjg_D#KWmIFEIgd`Pf?Zn#$Z3+ zql*ivJ%)2+XF;WFG!EL(z_0)}YDj=z!-sDN$BiMf23)i~Meq%H{0J>hkChCV=R#;~ za7pUoUy?fUK$*d6>79QakoeFRqDt~$u_pbcT_+ZKi#}-zOPnl z!sBp{kZ|3}gZ@!1{ykl4YUz#96au!sp2mW30#y7JGt)OyKhgPJ0 z&_B&ZlpoVi8~sXh^ee4$iZk1;Tac@<49xwK{QD!~$A(Tf6i9@^gXg{gfd#aIHk`hI zH-PH+u zZ$A%na)JYS>6ILYqn+B~!hf5o@G}>IgnQ3Bv>y8cv#PDrivSGpx6RHsX;*}G%cfm{ z*@a;FXIwmpZf2=*Y<6jB78AwcVYnNbEInd9knmcExFajsRochv40^MKTo7gOKp&#l z1+oa@mz>IwElgn`%BL5^&PXsJMiZGOila7E&aZXCk~%uJ?haCiIYAtQZxer? z-ikw)rqA`IWo3!Fo4UY{-_jgLSw~$`^y~4~aO*H$UtbB&$y1@z%iq6-B zAV;#kMC9UE&YP)6(!))m6v{op^bcX{Tr{&`MhX&>$_(V{{`Q$K9x5R0w8WQgh1ahy zGsmREuNp$}09RJ1t4n-flZ<>XwzrI`dJFqSO+>moBt!(HOIo_SQ$T6y zk~9G6l$7p}?hvF)5NVJQ5R~q&`>eh9x#JyYob%<5ardV!%3A-J^O;ZlV!&yL_Tl4y z`rEKzqzXPmQcjaq>@<{si~BHE)@d($?R@*O_CME8yXWZ2{8yF;kJjyBcH+MaLtZvm zrZ_H~d?b}`Y~`s18DaQ8H7I-*9rVhj%f3I0Nt_xtYdd>g2yhHjcw{y~A!*4(kICTGY{^9cI5j7p_BPk=bESvt<8R_~N1T6I1K{t^@83Y409$Q!b@e+)NJrcAzQA`YFE2;OEGj6_DL3f^4oxQ; z!g5U+One@kHCzaSNRzSJo>p3=&t@d;pQ2Ndinw|Krjh3s1N2go^^2x`@;|ZvHBK!ve3MmA%4%vff9U_rpg|fyuvOY; z3{+K3s&&2hak)L5Cvz17l!OX4hI0;S!Zj|>-SDry&R_kgotI7F4^hRZoB`;D9r;w& z=aMY};F9%VBe-Oz7w7ZEq&#uOdXMfRd8`}d&l%(i{oE0$R?SP-^+oggzjc3mCPGLh zS8^}!E(;GiMPnXamIF)2D;tfBog@23ALsmbx!BOKgbl zrDP0U$0*SX3+rho)X8LI>;+sB00CrA3IauH4h?Pw2L|24hg@OrQKZzYbaizb-a7@X zaaoV+H@WWuMmyJSQ)z9svBXHYzua^hI(=%nRX(wVkn!ByZYe!Z(z*YN`|x-^WG7F^ zM}NOv!Fxr1j!pw3Xj7FP(}WOy9a)?0s$(PNwpduaH}nkWAn6e6w)>j|M*ek>{!F!aG4GO^u*W zZEVFJa@!Kcai)t86+#DIF_M}7E_Hae+kWc?ZCkhscv9Pc)^D;JE0k11@CAaDe|N?k zdRTS_{R$_;i1_07Iczc*bU7Av5&d_0ESk$Mbfh zhV%vM)EL|&5oINc$wqgUyJX5+YgFe-iZ#Z^3i|sxHuF$tp4Zt}eI$L5Lim~M)fu*? zrq;bD+Rsn+qvM8Vc4{^S-#;K)>--0e6AyLz=+1`T1)tj8RR-P%_J-<63;e zB22QOj?QYIZ`Dv2F0@0%0^k&akm(OUjqb`m?HzscBKFM`2>tm=)jzf)!KNeD=^u!{X(_`U1`w8DOXhu3dQe1*Ok5 zDD>>@M@A<(6=a`1Q@DPB1eG9pncy8b8TzeHy1f9EJ5kxtXvGAtlg^Y`UyWX zGIlCBtc@xqYh;y6waYa=wQ}36h$ytR|1v35c=lIi7b=5%D+HW@Fei5!7v`o{Kcw{1 zkbyolCCq$!N}W#c!#-a1me+S_$8Ax(lKkAp$0w}aC{2iZz3NghaOV+qlpwyrIhWi= z*~j$xiZf)WPis1?@H5JqgUS~+hksf4j$5ef76X>?5T8l$i6{`70gw#o6)J8<-TW85 zM{Q!-+Kl(GCfnMdu(3^NNxA&2Wkf=ER5&Rp*5GeAyCk~mP@o;m#a76|zTfL%d4+(H zZ8;32d_c11tQkysrNus!S5q^EI(|jzGifubnIJDz;YEpo zH0z@KD7`23w_cSQ&utCg^07i8r(Bhj5wC0S%Ih=fuQMkLhOw$m@5IZP%b@ay`D<=5pg{`y2M zC$mO0z{|KWfUNQOlb+lV0m(G)#o;OqSFI40{vfY|2}f2TK1vSl-IiU+ufo?lmpwFu zzPqTNM(T(J$MAXE9k3ODtE1zw`?IB2{FjzEkfZA?qP*KpRPgY4yK~~a526~LU8(VR zT@*5NSB6#$Jjb#uRk@1cbIEk&liklMG&L!t^kV&ceJMQ98$-p?OtiDrsL^umz4 zr8)`cHX=FK6MgrTbx2b)7luUq&iOg`=E%BbBI15>?3n|(Prd5&L`6s5Kdf#j(JJkl zy`rYkOO*T}L=s*&K53&F+xN7v;pmU>@%6z-I?wzl9-g1zmHV&7PLmdhtgHISh{TRH zMG+d_x-D}oG-C4&;`E|o97UIWTfkU)<+aSi(03KR9j@A0f}N}LXLet51Rb+SHl|jL+Zob)rUhJ?mXQ#jT{x=#6q|&?_hRi&I`*^H z>5Gl=@xZ{v*+xsgJ@`oESEIOn|7%SoqvA$SGf=E zM$>(*U9V0UXtF)@JhtlZD`_5<(65`Zvg9Lo7;2QEqS8apMDg_@D6|TlZsB=`#?YzMG=C+aFg)Gs@6@Xu z|Captajeh!#D~1x0HLe8hV(aWH*c_{`v5Mk>6{-iSm0W{@#hm@S@~W6q9d)w>6Lh3 zkT{uSF0@=%mqzZ2X>q)+o)4~_%j{3jQ)7sQCfV4S@N9|*%6+yuuS$o#7i0BK(=<|5 z_b~22C@E~3VSj<_g!I}Lp=rUQUZh)$Vc`&`gOh=Y-McxWbO|tBOd)OWu`C~#hG~Fz za&Z+7t7<4ma&f8);5n2P7hSg9z80S~Td-hAbEezY1KqJfQlQ4@fA&GKV(&P8hzvR_IcBG_RoC%cN6 zLKYP4*=vdB@=IMmO3-fDhI5O~Q>#ArYSJ-ov6ttdntt1Azx(!HaAjo?h3^ajR{GDD zmVLov=jKb-%@Tu;=r`&(x=7BG+eBS#OAPbW z!r5x2n1XWh8+V{~UiThanair^TTd&*JA0(Ht`yFd8#eR@YET}#@sUHy&A#z^r)4=7 ze7m2nyCsdZv3+(+T|1<9Xx_iE5d}ZSjXF}G0ugh6!y&OM`mDY=H}GxP!p%j{LtneD zjFzL)b?-$E?P;k#aa1(U-i%Y>q6x~q8#DK`!o0U5Zp2ax8|}}!P4Db9l$#D{oiFRx z>sEsajr4eV2t1(S^~q)#j9%_m=+O%I}h)l-so)Trs-0A(T!iS}}ygr)L$6RoBiN zHoffkhq2H4u!Pgzi^+D(4@ybd*K3S-i_C5hEK1$p4B(RU;>J!QU{<%8%H;Wk&(}qk zb$j)YaJ#W|Wsv`N95cGtA95(KQhW~?)l5vrD!(V;;y$JjQT{(>Cplk5wj)}Y+{CHH zJwqaDowxM0Ak@~Y@px1v-gybdhI;M$sgfE*#73qH{KDn-H=(7X z>rQ(7(^FlC_2JIAXp@E{mKSHYx6fJY6jIJk6IE5Mw(7)Q?`9tTdbYW{bo2Tw{_Mn| zKmD1iHWAly!B}w3eW1yUNd{E3vasjS77V6ojgKbK$?x=?Fg6<<`lA-ES;1)Q=#w4V z^`#vgCUYKw{oZD28DT?iIXT2yB?kc11mdXwO&*hw(54;WZDR@%9dwaiSx=mm>MR|f z{^4?))i`XNpK5T)^7_TNwg&ipi*T}Cy?WKDYy+{4`|jI<*Ac=5Eq^){aE?jBeoxj2 zk6I*6DHm)U4~8M#8}&7=G`FZTvdLFJ^6Zvjp7LFllsiu;owOHA9&mWeYteek+&X`s zAKw!=>|Y$OyoB&JgT?8k5y z#WDNEL`xy1$KS=vW4WuVkC*}{CZD#S!)Pw1T=X`~4hSlJS|S=ZXW zEYf@oNH`alBW5=kSd&hY2wXU{o2dn#)7_ig);ke(*q*d)qDm`n6+0(RCJhU>b8c%e zn|`o1-?iK(>)`MkhI^4%)@efHfB!c8wQyjmSwA}{cUcpcr^U`JrjuulLSDG~CL@z$ zJ^r`ljKRJ2)+?XpI?R)9;X(@UDj-7=F<`oxR~De6Y%D0vgpwYpLpN<6M8Jsi305VU(d6 zVyaHa{P$=JzgDjA34Kp0Hn~i>k61?svq4}Gt*E|#73b1=={>ujxjcz@9=UXW{Avse zJhST2aVxd1uZGgDKR=h=pTlmGnk zsm~0t-lB1Nse66*b#wz;qSMk`zTR-KCTmqnt1%bH?&wqq4>JE=$ZV)i&YLc1|0_D- z?;kBn+~v@}byM9%1=_{!yRYM#yl))<=m~W_$8c^b;)Bmw!S%+}7|R#+*DrmiAJfp# zprWEa%pE*Vy1pw=sR($+o7X2&zviz?8tk75aAHy#o^DhE_LJcw<(Mm#49v4jw=a&x zaMK&As#XEo@awF`4szXs-S^w%Pg<0{usx1?Zu_XlvP1fHg@*W z`)M<$+mmb>PPaWJoa?gpjch(ETnxWzS+SzDKqg!$g@|#k&rxhxDP9_1)b4DVQusa9 zrH00eEIw62UY$6saJzZL=Xmzv_Os*+x9u*ra!>aFcu?DN>U$7nyl>`El)|2~*ZXMQ#DtzQ?Uby_vYrFLFYP<#+ZS$Y>La^l z(UPW^_k_{TBRy|c#7XiyzPcD&T{}C1U1E~iX+n8SQ%lqLD)^D&q#mvU-R463qHFIx zk-SPt2`;h~8>L`DkGk}mlY%7PGJeg>h)y!=pOrNj-5t;M2b#Lm>P?go8hTfs@wD9c zSVC_ZE4mcAo+&dH8z6U^d{j+vZPduj_w~yyF~&Il7+MXL9}y|nWTb0Of09m>?;;uE zTy=PF&!H5@nH)3dzDmiWQfBkHh~O{Q^u)Z0jZ40ywe}OQlk&b<<%#vP8IsEs<%yz+ zhu*lIlHXIc_Ea2dmkVY5l(Tb_#Hj%Q3Q4q7(fVwo$&bu4nc|iU_Fqd8ms-UQCq+gY z-%}W`>dbT0w?p2eYn^LwHcppzQu{`KHlJD^4_0iyMfnfH9rJog+w6uPlAXb68 zDe@L8NjmBcwZhF)JnU_CEMe5tKsN?ep~J8Ioo)BsA30LrdUudTlcJ2bdjF=V=o>sy zX*<2<>n&2cPqPY>epRyF=f{If=fcvGv? zZK{P*%`$Ft#q4U2hw~%(r88AHG;HeMU){+-ya&GF1*)~j}1T*5Gwfekz68?ATJ zqvt7uFS{{Fs0uiKJBqO_U<%i5Pl?gcV#HRUMx{gf-U6K^Drz*hxhHxRbG~U@?Hjj? zH4`I$;o&YhFT6w9-~SWKW2-%@oTmxN(#Ob_#qna7>d7!Q+g>RNsUTBYns2}!z( zfnBxV0;EVnZrLm?**F+zxaDHw+`fH}fFx|_<<<;S0FpylV`X#lEh-I1$8;jj%vV1b zYhH0JEF_SwB^0@ve)dG8xi+l3ahLO(@!Rrp&F-UW6F(oHMBj7L+mWOE3J1q5FiDe; z4953~iYm;ewdSGIFwl5jyhJ(=&28xBm+03=CnV(mu*g+RnVzru5)oBbR|kEI&aN&1 z)SaK5fwG6^!QUTNai?00-sc2-Pgf<5<>96=NfwoP7WdGUSmOIbLQ+BvqGa$b&@Usa zZFI;eN}|ZhB~ZhowU+P*NE*DOf^V?sm)TqwxjC=}dY&J3ZcgLZ+HE%&zyDdNp(%Mz z&hFPLvnG631$>~2N*eFzcT3hm!>_7}6BDASogI_5tvy@=FpBB%f_r+TSy))y7eFHr z!0r4_EAo$;*9(M5xQ37assPe(KUI+ViQWpkh_qPU{)%GK$Ma#i!b$DC5JEOBV+z8& zp6_n#1hR?2fw>xt3xOuK7Jfa1QOECzu9q%Oqp3x{u^3crTq})a-uSF7#h05GQ3H$E{F-* z+8J%{+wx7@jeX#!$u6M?S(~>XbFuMDVI;F*05Ly){zmifsiOB@b}d|YMNnb_eZlDu zh%qj2FcqE=apv1^>FYRGIT@zT420dz!0B${9FnBE= zd;?uUgyFSZX~4oDa>0lmuBzS9O#R!NH!TmJ*R6RNyyY9=ee)$PEp1iSjpkoQIShB? zRmUXO$CFkDxMXAs#XgL_zgOAG=J1u@PGj_00iGDiM~4o-JFAGVW--$I{ijGNtxJ6^ z(AE~|S<`vu)UUvSq^E_|^uxnwE04b14G)PSOqv&~x_PscoKG4h-*UEruklR=22NwH z5A83HSAMBo%wnLKqM!xTu4R%&g2vbTxjEPbr1hk2j#{Q4`k7>_*q&jKsMpyfuEiVa zXJ!WX&C3ryaH-3;lXmd9&MQz|)vadeIQX0O5J+RoV?__c>DOr5u=n>yTduLo%5KorU|vv?PTs!H|iaq#e*FV9^3tNHjq^2rA@i4?x@ zKY5~HT8%4h^6dP`v3gpV>Y2|k5#3MRNqebgk@hj`&%*AhhAHKTj;!T5nCfiL1;{At z+vMv$!lyQ&pk(>p7cC)0O4r*=!ozG?=6GySIrzQQD%>Ja)A#!K$B%uIMFKQgRfHl- z@2J0fbvV6>p-aLb7Z<~7zvVnMQ2dR6z`Gj@o~mt@Mvkh6zNF?nzX>_8RcmXH0iCFn z%$qR+FVTt%u#bo96Ya=?#pq(IFFI@C>R z&MY4YHf9>-cT0{SZ>N2gb9gi^okBx`iiaL`~bnBD3%f{_wOp2yz%a~^< zKo1)DluQ1Mw1$b>_hRJEz4(J$rcAd+{rnxs2t~=R>&Ldjc_F4ed4eAP*X$_zoq7Z| zf!EHnCDZQFr%(4J!%m1~rJpQr*bJ3okjqZs;eF&?oOK=O^Skp>GJu_Ldg`}9i;KVM{Lz)gKJO9>>Ta)E{zcvyB(H24d+jbwev?G^t>1_B;xBKh{DzR% zL3Bz$Z66U$0ag_&y9`9n&Yq(Cx;3K#0ahi38sq|h1)MEz-u8=Z=;)LfDW}OD<~lt^ zlKRNkT<@-un2_J(t@rwO;6B8?O{91ELcWGf>#?%!SWIr8ZitDH*Xfao2F?;KfJP1+ zie-@r3G_m#92jU=*w_Fm$7BMo%i&j$YMHLyKR5u=gfQp;fmYhb$7&~ibt^=?Wxsyf zk!~U~gzT$@wZhfW`)UQ7t=LP8vMAUrhR#>Zg#8P@UUY3eXBR%}dGPMlbWd^$aim}5 z*-O8nR=6n{O4G3CtrHVkM8@v!Coov|y*!*qPA0>|jJQYXg^6Nl4H$+{99BVsq}%tj@MiKucxkV9im9IMpB`XiAvwKw{SHHFDm-%X4j6a z?s)`^9^`VC3iEG6Rkp=Et0nmTN!+h0=6ycB6+_Ozj_zZ#h|EA*U}-6@{0!u=8PSNI)6)pJ%BRFWJU)0q$>}$lh-WsC z7$fLr`&>kXq`UTk-y~8$auB|5)liL<#^`=0y)-F>;pdTZOcMAfev;B8tQ+qG z;Ge@S2LMjxq4&^VXEe0`{*D$KTOy2Pb$BE;Pl=z6^S`SJ%pa@px$For)qF?`S7PCp zozYeZ4?+|NgS)J{8YZKEa^SXEl{{&5|4ygRAP;GA5=f4@xFGT^T6R?)k2z-@@GJs&F{#w$=WD zr_%!oN?C zSi=hN3$VIdEq#NUO_w$C+L}d&t*vEZkfRw>kXW&H{(4@_ z(fAqhZ5DnVb5Z^1De8Kivj&93I?jiMYtvjWRiZBTUOtk4>05+}GK}&J4SkG64i_DD zYs)4Y@py-jgAB0oHFn_2`3w>XyHWgoE>4=BI#raxLbRPx?&@a5#ZgayXd{Zt_WipS z?ZX0Aaz6Fkd`JV+gRsO4M6i?oZWhN>=Ait0%ZD+<92J-p&dts;4`ryF%M?fle%hIb zM9Aha@oI<2&@o2)FvwiPT&dnjt#eFoId%d_?@SY|KpC0MXUp$+e z692A-l#%=>pOIX>{Xd=?lM9(61$Zb5>gqS0%NDPYmmS3>#(jJwu(4l`o167LRFId( z$_Xm`{oB$BPFq8>V>QU5I4NWQLK83GcNq7k7B`&HQ##kizGEGrA$^n}C$X&Dt0K98zz zicL+x;D=9e?ky5YI(ea|TF`tEhwv8&Y-`(jmeF#3NBEROF$%ckm83 zbj-XZ17`ArUZUWssl~!(*_u&Fo^p=m}s=w#g2~W z3~GWZIm3 z%byE8$(h!h8Sc3n{qq!u)88&s+m*JyXsF1SMtc0Q54%&;B(tzg*>?1q(}Blns$fY% z;qhd8>~WQ3V6HY62E%xQZow2ux$;6%^yT*4CfW!Wd9pG|k?sMT47_DY=|Gw+&3-s8 zP1p?zMtW`M)X|6+KSde8bT@nS$UC07Q@7Zd<6E_Ey@RdxSCX) z%lChPqSir@6DaexZDOCBM zscpqFGRViX6jfBnc2Ui=v^bNRn|oVW1d)@3;Gp+SX5YU@1u>Y!ICc^UyYlkiAdSYs z#pNOy0A$Pg@wQ#f06>B#iuFDW43CVEa#@XnA{0m@R{{4pR6rGX#;Hl@gWLR%to?a+ zn!FCZ!-}7^_>x@eC{i7Gly>>{#H8zfy$7{nr0c)@jg3hP=*wTq6@MZnEkHb+9mCI1 z9z1z60J7Xaf0Clck#=-;0=8POXv}qe{0Tcd&_?!wdj(iJN^8GesY3FR-Lv2jbaLux zcEhx+hEjdz{oNm@Cm)GFC>L=#llo|3#m2Lc5|q(#s5$Iqlf8> zTI|1%IHr==L5KV6R}mwlc}QqWwaeQa-vgQm=o()DO{kjjtIlER3REXSBhwh5|B7VO zaigJlgNZTzz2)6Z1=HGN>|(fB9Ge7HRf~fsXxfg z8m_fa$n#_@WwOmY$m%wQgA8JVd5WlVvcH&wZoBe}p|0DL2W1|dXb z@it|tFKLgJlvKEGawf=YnZ4+F_zbUth|-Se?G7SD^SdQc1Sxv_U<$@*Z{wt(_;!iR zHpI#w^M^MRy&rj7251a+Gj#wLDX^Vw2;u?&zO1~wA07x#vtJ<>eBWB%EZ!b3CW@(& zbl#=Gf7sPcx)K!BmrT~VI$|ZCD}21qSS}_*ASTLb#kEf~T$Wj#;X?P_LEO@BoLJb$ z%f@B{p&A_+82IMR8xRbGBIfMuOz{)6*Y%=*M(Jrc+#LhLwDj~)H=|Z0phgw6P>Gd`lk^45!pxZvt zpGA}Um>403!l8xzgaG>j?nsLi;rWrO=F-nq9IwCEJ5`dgC`yIy1cfkig#XPD8=7~P zBA3FuuZ?#({`ywUd-gU=;ftLSC1GH~5m?X6&cbS@BqFkKIfoWbF~H`TfSm+u8}qD( zsb%_Y3I`TZ-k7vS{%4~Wc58NymktgUliE|AAvw6V>ASlD(Ver6a<$G*G1ZndsF?B9 zuk`p{d&b*FraU1P&<4O(hM#Jga{&Y2^kolr;)f43-35l*J@HnTp_+d6k~ECW+-RYG zGPxJ^$pG3V>fd|it_HaM74&T zgpPEDILgh%r#;j+i`E2g_8%T*m8n)Sm2Y^jfItjv4NMFS1lRTbyLYf%YVGEmVMS30 zdNhHUUfg*(6OFu_+=vC|x9y_xUpHUNJ33aRawQYzRi{qmX47XQ4K9uWL_syH-0}Q) z_eU^8P(nDl+V<3v4Yy;cXom0AsX#ZQ$z#2p2P9}u&3dQKw>_B+*38DeqxDOCR}!0u zIUGYJA4=K2sn?biQdXzsF$nr-TE)E1I8ejVI9!&f&3gVsb1zPn63f(Oj!W^&?+|IK zXdzjnM0t_P$|2@32j4auHjh0E;!3dE^KI9EM|%wVl5d!#)B3sYqudf!|LY9 zJ~O};KmO6c4om|t#gjgH>8)fXFyd8bziY7$vc*W0?+Ct}U`Eabc3J#o&d!Fin0z=k!I_Ao}a* z+Hh>{&*xtbp5P2eKityM(dR&WMOvgkNzZ^%|$?f*%A!*?7jSC#>$K>bV zlKIg`k`VdC={BxWqE1RdZ)}Xy1R=iIn~yG~s_X13%p4qy`0N?BT`39PjJJ%=YC<<< zeg+C^^{@BCfuYGCV z8NIOffq1JDBJa5uANKa#4B7ee3r2N)IA`mZF*>{9LEEEN2&n1nxQwY5HpgT4p>0nO zbO-nJ_2G2B{f2R$Dz2_^o!@2nISyq6rIy}+DGASb^O0_NBx!MtGqayePh=#msj+si zzOK=cUgdl+RpGLk(sh@Wv5S44R2%{Mrp>fu9vy4&M_TzD2D7st>iyY=bb4_RF z=4Fk(?7VZcDvY&2M;R6&Co7OpXeXAIG27?OTQQ2SXm*!#dU&!4f2*V-ntE6fCk9qyfGQ|l#(jD?=|QSVZKBuWE(kywIOEQO2pzkPzFyL$?Y<`U}HkDm2E|`grwUlLiK>RrfAM=tXEI z=f3AED{(a68#TITKacdn4@?jOc8sam*g&+?ZHtTm*r>pAT7VqaVX*_cR=}l`0-P)U z6FJb}iUU#{C`SWH+swr;(&JM%Js!KMKcV-lI6Wex21qt?6Vz3^Nos+&#SblQz{JBXFlH9>FMn?R%TV)yj!iyZ6@zyn0hh(#Q)Q$ z!Jm2`B8CY@JId~_Ev@)&GRDff9S4&b^pZDsTIlK~jZ&f)#ObMmBo!PFQ{xE^RuQ}x2@eUD z^giMV*vz>1ztt#sizda;h)Q#1KF5NxPOL4O15xZk5`-wN5H%?8cNq= zW5h2xBv|A?KOy#PUQ!&o}tS0 ze6Ab$>I}qqp=xaw4@1=!iGDDchuuNka%2E=F4`@`{~?MI#BXL`BTA(I_m7rk_U_`2 zcDBHEhW-vPCk$JBE`ggGM#6=HiAf1w31GlO#2elkfKKXjvT%>-VjkF{AhAyT;Ajvu zv=PP)l$1u=+JBdq{pDPME3EK|`(@80jmH-X?1ooAxo6()@9lYcdBHUX@|U%=2;c5D z{J&+u=+wucOwQ+VK)Ujvp7z&mzva>~Mv_UM3KvoTuTxig5bJ1lj94T^y6Zy?BT z&o=V3chAYl%IbdcsIIK!*m#?%4~rf zgei)(K+h+5q6<753XmbWxp?Ed-B2r)SbzYCgQG}TetA%=+5fd%3hwSU$Ijv5CFuWW zFH(Qjsj(sEL}Zv~)Q!(UWxlSPngSu@ZPJO-kIrp7gG^4wX42tzAGd=*JwHt`*%fElq($TSdZIH~Q?yw@vt3FNNE>{B{Vx<4c`8kM- z_cDo2<&~#ICnXh5tV5ZgFi!z&9sK>zpP2$8z6{knng4zMdY(Gi4eGkZMRv1qM3&3> zDp`>39fOFy^`#^S<^v7!7p&jRHb{^K?<|6o2r>qSnFa3+km2oe(iIo?Q_SOsSL+NY z6LQ$bXvF6aSy`2HRR5jw$uTOW3Isi+=qDBmZ-sEc!Os5cGM6O~T!tW`L9%6F9nU&X z5>sdoF%E?L++V*gCkVOB9J2!H9ba&5T9Emeu|TBX?4@HyhHVWD9XN-v7?&MS%Z%IU z05h^vE+rr!0K=yiaJ+)d4aUyoUG^Z&oPSLdA;9kZS2-ZU^g%M_k=?1l1Fs)@j4*d4 zwBSqvcd3fHI(JyvUSk$5pew^nMYRC#0O|$ql=fJV39`*My>-Gn4uxXO58xOfq_Aeo%Kz#KiQ6d zonfebbq3BVK-ylLD5bpJp;+&6xCUcJ(65=RcqtbU(EebJ^cfz4UfyZ4kCk1C1h!>Sv^;RG}ZtN z@-q;yhdcec_p{pi7)%86$JT(z&E`e6+E>kliWe(oT`VUW_Y_y}$Eq_B$)~|540a9} z58*en)L4Vk7AqvR=HJE_m;)RZp!E*o1lnfwQ~d5i@x<$>NyUWLR(Uv7VUg;(_n=z71X~@|dz&esoSIZz zZ@+MBO9(7^q>z^W{ONvBA?3%T-{LdtoFkbfqp0ZW>YB?pNfRiPSRHQGLE?IEo#^Xn z)0Z!%rlzPUDA_Ar?tbmBh}ZpDhLL41hg(wxJyq|KzkjTjn^3G%XHOMs4|OY9=U|B( zNrUsMBkWW7CQK4e>Cf;T-nO<|AdKD7oVgJN+Mpn<^lGZ&Zmm(l0im0zwhxSFCHilh zZ1*fX>X%uEN(-uoFdl<_L}x7&r$!l~!)1QF7!$9-i{(crVj;b#*GV;mEQUu7LUV^?QaQwi0#=0kx%Csxga;A>$ zb~l9zJsu(uUZ2ljQwVvTK#(N~LsFT7IH{5)S^>EDR8rDe z%k_DSHo#d*L9NW{Y#V?E=U@jh0wZ-W>KN`r*gEM{<^t^s*n|}?A8FRsdcQ2r0HlJ# zr?}MAt4=~A&R5ePgNg~@xpjbJNr~Z?BuJ$u)+xbgiH{iP6*LGE5DFNel;HepsOzN* zNb<6ob_MPi-_k4{f=B_!ly%?7#~={$BAN~`DO;!xX~pjEkw|$VPQGXJ3kV2)7H1U> zqt@K)Y;g&R#I^M7UpOHDP*PGtK|%3Ex5@%E&=BIVoR)2z`gg(VLHP1OjS1G3-=h`e zNl&4)gc22oSUAx|#bITvgCLe>K|<{4O(lWdJDFx616)U7<@A{Y1{EDq1$J4@4fXZV zrr8h*>mC`w-rmAzW%ymGg3Q0eym_Vt=}~3@@VzA}QMB9xLN!i6p4D*x!8x&lVCR_s=HEG3Rfe z$RSg?1Q?difAQoYpnxz=>btnPNlr|B3igW2Ak(DG5R28(a=B@zTO9Y+k{`q}66XJS zO6D&Vl{QZ|dwViL5I%tP3T<-w5ho|CLtcJP($@pCnLcbt{KG@eM zDoKiiGYsb^gfiK~BK!VSA#X4=sHLH%E_;5am!f#wdXKWBt7}mUtkk01#jL7d20ca` z6!1+ZCYh31mgAqNfOZRa(m^VC|L4z;gjWbNBRC8~N{@)6YC19?htS4DUa$aR;#c*x zaMta?gt6vg8w52#F#=9^N+9v}1-yo9vYTzFhNCk(o0cr&EruB zi3U=jBM>vv@qXN~nt_Jh(6dj|mSODL@ zqr%YdM*+cc860Jl6ci-xw3_g{tQ|mTfjqCtYPFjH%UT*oT3Xr$);uiuH|9&cIqJrm zTx!84IvVT!)atv0$i@kR7!<9HDOa#H0T`1Q7Z(tL{1s}R#RCv{VwhWi>I(FCeW9~z z0kY1EqO6UoztSi3M#b9?*y};c9^Btx?21LGki^;Qe*_7bu6KM&a&l<9*tDFIk`ywH z@pDsJG#(zF${oCCeqUvzrM1B;M)$(fuZLa2 zp%Zc-$M3@LIE=$n)Qc@|y>kGUHmnD7G~)SiSp>Q7UYeVm7i)fc{yW~t=UKL&zki}F zn!^Ps4s~?#>hRvH@YUA6oA)M6_*5c87ewT>Wa`=^;rCn}$B{?LlpbU*Adf1K#`}jn$G~p6CZJN)0Ix-_-eTd?-?(IN zkY9g`357J>6XdU9{$2Fk4iHc05Xr=G+A5}MVT(wP{$gUHz z-;;$8W)d0hAKT)jC#kCzj2HJ>7ZAZlGnU-y{J7!O0OUPsq**nKhK{$anmZZaG6j0a}L7g^ztz!O*DZkGQcmY(yi-qAJl5 z;R)>n26@|j;!DwZvcS2eJZs>VeF^DuZZjn+bo>yDGnjwhv)HLB-~{H)ghY% z2T543$Vo6RkA=u=y7v9B;t2Aw={eVD>~@qD>2*0G+f zi^FP^em56KHy{+)O7op$uUmMf3plY=ZoE$f`M;jds21uppZx(IiDz1`U$!IE^M$CG!{Cy#9<0a}q_M)e!mu@Qem-#9T!cQtMe!A1y{4YT46;#I8gPe8dJJ2%k2eIG}ZwBOx=Z5HSL?QXQ&ARl`y-uLVd zRn`3KKjh*bva%?jXZIrQt)O6Pn0z|82>N{l)sJ>>1UQE?s(fr}3vxhfZf=%VbeF9+ z|GQwz>T}_4kz=n+c0ct#n6g$wR6{AKzO0wd))NrjQB;IE-waFQc%8ZDT`Gbdj{dyY zkW;AKpfL=M)3-ypTS4$U9&A#ed3Fh&r3-A6IK(nJ;o}u~LD)2s4@|$_goC|`;2rn` zpcAo*Fw{heq|#28Pw({+QGFg+ebLoySLj7MET=IUp#3JBTFn3Sasktq^(RriP}O}@ z*r?GyE|9`wzcEAkS)lePYFF=Wl*QxSGM+lZtGl@tr?|V#C*Ulx__-+3=d&Z^@eW(8 zXqBY_XvEY4WAdR}l*nw0XJG83C@qbZx3aK6m53$U^||kXqSPJ2gM-xI`I=XHkL_t8 zy$$&tb}5p;% z%o-}7#D;d#)xn68M8JpS6;K#1RyVTk!GlcUnA~kQR;$B$6sDLvun#sZw>uQhQ=-T}_D3I|Sa?QiNNiW1|}b4l2u~o=aVhHvEswp9Do897Ul;KA@Uf+_@7w% zRv%(xWZvnCyCwR->bO7jeU$nsYj)-{8AfP~_?_NAtqeYh#naDZ8t6)oi&ZOmd_}VI zD9KhmnYJ+5=Ns0w##~0QAw?0R2Go`9iCDj2@+tid;Y=%GF|4B}NL0`wW20G)eFT*v zm`Wj&>CESo^=tB! zo0|YeWk>lpDhah+df>D+_JjAG#Osh55)$HWU~T#dN9{vpxkx9&;vreGYTt@P)33?T zao9;zv3=U;8YAqV_Wat}W$xU)>kUT|SG>;}t46|+vVqeFl$KTS{{`!l-7>0B<&T1T zHIEDKTRozUiH;Wcq@(AeKm{3d?_Yjv~6azxU~f@$vW6w%}1zy6v=!$IuAKe1oRfkjmf-j4c{%a3j-%Q-0J&918c zcnO-AlDd}tts;Mo&A_TjNl_6JerS>=XzPr8$Wv#Sot?F&`V7U~uJoG^_XIE##zgW( zjpi3o7VX0k8Da`H1x5HN*iUBfrFvFCkEpJW*WCOMNXv#O_9NW9Wyh$c#{F%EZ5~!_ zzyyljw6SOH2~$B`GQuE=-Bf}1qS1oaW{J@>u{=~+HNTL20sOf;LbOJVx5RO^?o_Dj zl-&Zy(+*2fA*PngIqC#R=Djz$H@ zGkE30{|{;J7+u-7eT!CX+o;&KZQHi(RBWeWCl%YaZQHg}N#6e5_Fik}+$!rV z&zCui4`;lu>H69=t5a1OE35KJ4UQ>qCICjQ#18q<=J{|8=!~thQ&3PKR5eD{oCB2T zro-D10QB|?aMExE;FD|582UbnWll^B_%fgXsG5q3N{Q+>TX$U(m|~!+BP}~7(bprO zAO~#GNo$+MB0?<3Lo*c)9*AWCOJpP%fHZG$A?qVRC9q2Er^-Ku;o7XUmC4)60|p{V zdZ2lhGEjIlHJXxOPGs-hdTmaoo~kc0KiliiMyRs6-O+1c{NK;W8)^V`6J;bP0H@T3 zNd@td?)(ZJPDgXu>h{%Uk;bqOuoX;(yare}{++eTOqANYzNTxx5Vpu%n(p*^Dlc8J z{@7EU7y^77)&}xwK+c4Ys7Z#898_Dw9{Y#0C}RWEDk3HSh+4k_R9K3Hun+eE-o+EC z^!`V`)r;OQ0dk!HThQO9z6w+lnOv^rfQDkg$qZolZsV;NXyXL1TOq~)a1Gx8>?Y(V zJQma7u%4~0;A5KY8gmvUKt!@26M;y+83PeII7W3GG9P=ilmF}W0AM*IQ?az~BWmtc z9QFuE;}g+cpHtb~>||tO9z;U;R$z5j!jsoiu#*k|SO7{tBBhvL z>ac^v%KzQFiUA-j06*N%PG^9O*61G*{(rFC_ES1JVk#=B zn_EKz8Pf$yITp`TU&gStCF zkO7zmvHOT%B%YL&g&A9ONiH-dmy3mz)Hnd2iVp^O0MiaDAd$nI#IG$2TvTW8ea1u)g~j}dzF&G}#iO1&1%771Vz40nw`=>mwl z10)Q;j#BlFjEw<1Sv=N(XBS`{jSd4SQKEW*RUErbHE)8;&9(=CRIZ^%Ji=DlvJ*bJdH_}L!0`_*O{h1jKs_7vPYrjABm#gbLb8sI zkM~;u10W0}mG%q8F=xYo>LiHzAMsuQ@?6UfKv@ABcq}%nRA)`4jU*BAV-$V&uWdj> zlRcn5e6?=Uim?ch1Z;X+l{I`g3p2c)*KH>NXe9JuNDfh%0f&bZkZlkWl)B3Ha{$hX zhJArx5;Fk#GeGl*a0UW2Gyv_|ETO7_QYoLIN@tPO?sEE8=Gp3o1k-v#cfLJOJtCa|2I7l68{LneV>{!a@IVv94qP_%`nL0?}yTjjf2~ z_&#g4>2w2Fr;oGXBR>rQ2LafT0IgM|@BkU*UBG$(AbNCkbO5WP$nbCjk(KU?O2Am+ z3>0AW4&YV=i&!BdF0Kzi%K>3DQ}u=_!>$yUfGlGH7)=14BN`eS)T?a3ncj=vcPJz{ zxbyG*L|IuGfW<2tZk}&W0>I<@gAsra1bFz{+uM(ik0Z}nIMM)B?2;UWt4MtoKzy2y zoLpQ5ACKJ*ms^hxAw~?Ku$%^v)n=ghhhbJ?2WZ&NS@e#KkTWqk0kD~uHsJ-jV(Z)y z0)O0l3>+L7(vT-WD&OE z#Q&mc<3r&AhspoHgbalLT=4MFi&@&Z zm^#sm*%-Q*ikKSPo0!tenA(}USP(KYuru-TLI2ajkgF=cni2HX8Y`3PJXo-86M zP)C7o8+1)Ow2AI5aZJujvSH?ZdXc&qXX}||#&jW=bf-}u8u?d3>#!69Z2XqL^w(cT ztCz_G?QZ;ZuZfid27(prCLpQx02+TqPgA|}=w?cEa{o6I)8>&-_KjvW`fb z0*U9t?rKEpX95;9_gUyaTd^dRYtJ8wCb6P2Dh{|A98ube3f#0Zf*S& zqYF7INEbLBJ8N4`#0m-bjo#ir-Q@NV-&$4Kdw{tUZCRlfpD8j3Pv}USw*0^5Fx~&w z-ko}aA`I^;R*N|%lyMhp7}KP1?$zexwtl+sk`^0uiSNDLntn)r*5f79LHEfJO`r=^ zLVK#SOMx`F4g8+ME!jaA1tvEgY}@n*WeR7?as+RI4S6XH72Jn9S68bqq`4UL|gZWox!-+qV`-m68pKd(3-g5qAd1 z0LYBY{2Jh@7@N=P;;>@o0jubez9=a_Xh`iREn9a4Z#OD`=Bmyv&vtR2DV4J7lj;!Z z`L(R+nV9F%eL!QmUz19oBahVB+Cb#X>|U{)8}a?5!-f9uCyqG~QA@Uq=Fnapr4OJk^i(#ZbI zMR=&^Ctw}{cIdUFq+gW$qb>~S3FoS*g*Y6Darn&3gz}SLe5yp2Dty|)x&4@Z))NmD zZT!OlWfpmrX(6vwT?f>lKxG$rX1H1Yws3sGT}ioR!)$ggCD_x;k-^hA)*Azood+Sf}H}G3UD`eO&MF$92u+^^r!Ly`STZ`L;8@UtgW2FG7d3@Ms+Vq75->6)^)ZUfkj z9|cwiG$9*S1CzGLphy}9x-EoBDUf?Mq8^RChd1c`Z3b*>CjSrGNsUi zXB!5S<-j1#s!uxTZCpZYTKzZx`Fo$GuhDwIKV7qV!DkyElyM3@#Cs83wSc$+t|_v) z6wz3Yao9*Dkda)SS+FgGUM->G9sm|lh+ipyjjK9RDcGxN^Jwa54F#wo7u>>)4L1+? zzRahY7Q_YIkEOMBxm~(BNXPvN9Ldf1?lM{XK;X2`MgI>mVEwORz|8UQG1&TFF}QXA zj^uHR-fyuZ?6*2WT&`M7vGZ;iTZ3YSn&W%y$=wd&qshCKc1oQH(^k2Va{KArB6f!@ zw(O>aiMhDsU_j2{K7R*7#>J<#m-`aqwrR9*8dnT)j32jS MlbL;va|SW-yFL8K zQ2!kYWp;k?Qx*iKvclCDN9>e(jVi?y-uT*XoG1Et7@b}yd)M&#g9TWIe8$F+!s@cD zMoT{rf|F@x%vt6{*;WS%(`BHKw%bG z9IZ4MHMs~94ZJ8VIT2aKWF$ut%2L#e7_Er)3=Qq0C{aXHNQ*aCp)5>_M@gWdm4if4 z$4c~KNaaZdIaYJdPB=5fO43qXSrSvcsR$Lr%Om=^^B5#Mx9=0}wt{h?X;-@sCikW| z$-!Sv>x>h+hu>4ZH0(cwh3&rz3nSaVg(X2Y3h-!z-h4&kcF+vjZv{eDRTJ906gH=J z{c&^wVTDpe_i(_n!Dz4F4mKq!&z4$HM?Y1$2nUXca+k%^a^zzZH-;`I zie*9N<-laG$vIYTdITT-OnE&*(cyL(XO)DXEdB0;)|Ssun>;ANEp2E*sb$PvG^^Ao z?lpj^76C6oI?t^psC$`TU7u_)#UdiKH6I-0gfpP0w4;akgG!F0N=Tl`@aPsX(zIf0d@GsH&SQ1 z9@fez5gs+ai8eVqU3d5ys4~Yb1e>%8!}nv(CycH#?>6dWCY7Gkv2N#5mpk$`?&cy< z%+XHw;B0xvS9V_{by>6wRaQGrW>4FF32|shoYhASFQWDDUssN5|89SuC*7m@!>1^^ z7waSaxG-HS5n*!?0(=mtvCf_3xDAP|?QHKl9WkLnWi4-T1Sxd5~pLWJ) z_RhSZ5q6fo6tFkGaleQE@On!~wcuE)Mj?ydXO z|H&qsqeMS0g%R3*Z0CfG(XO_B2coFrIb-tencWnN<8OAQu9oD0keS=^`1y43u)3K3 z+;vvmhPLovc_OW-0JXAENQ%U8lk_w|!rnS3Tv#l-`}#a36{iv1G@QAl&|Hp6dzOk^E+F zCg#qMzsW2AJ}1!!&H`df8$x6Ofn#wzzy<+U%P6@@VgaW_Slv5_hE7=h1Df*$IXKG+ zL@7K<5N0*4RS$UIO9slq+ApTAs zQRDn?qQ=Vl?@>$Ex84^(9ol)IJg$?blsvYFL9SKAFx;Z62=R>>vjF5%W1rg%d#01w zFlcCga^{yTW_EVkmI~XISmIBVcdr|9N2?C9S8IQmCJb?ZyAG1n0?Ug8RR0TURuap$ ziqM^v{w|iF>!E9({5DHMbHy z8uSRnv&O2f*gZP@6j}dA{^Rd$p#$NK?4begwz%(0`+?gt`feQ26jV_jy0G?k`@gQG zRs`kOmr0^*zR-26GP%Tex(~Knnl{`y=W$e%aVIqk2b#qX#7bCWiEIg*T#1v!W26#$ zl2G#rGEhvb;`Mpz@gP+KGpi#_7>Fw=3dI7mmXfn&rKVt}l`X@3aDfmoN}S8E5=Jqg z;^$bP;?P>CJQgs45YmAVL(02?b@;p-h`jN6T12{{OO?ya1*M7dT`VjRuL?guL~9YOX+L}>$Q$nOPK7~ zU>>xYV5_0?Q{5oHy4zieTLX;%e1)w!kO=&|1;F32pSmN5l0G;IO+gT0evX%09^&(p z_(eH-kDl=kMw35H@k8{JYP&-i;EFlu4@NUflsDdL61W}*I;s7>L5xE98~)EV$H>6& z-z++2cGiE}LK5Yzg9H$VZu}y7i<5W1n}CpzV+r(KU(MBi3@ImPutRuS5zhk`YuE69c4^lA+_lMO|8yC5cj4`hllhV?RNh4C64Xab&VuV$b$_HaASJTz|_kHvt zL<`<9UhtB2H{MH>q}wy6&teC*Oo(P6JPE5Q*8_+Zz}JZuAOweY0-XkdWxFAu1!rM7 zATu`O=b~A_=$P0E3ymPDaHoMwK`Bq+7=^`9s)Jw~S5WssbAlXRW`V$3tB5STN)Oz(` zOqsX@{TFyf4a??t=o5SUoc>er82_8#vHWkrOV+h6{D1PiDdnBDSvz8|$_25FoAkoh zkHVzN*-}jB1pgkcnS2atl3Nb*W8V{ATy{@Y6<_v>sS6es2=)r)m6oIq_?9xq^V4Zv z0+Bka4m0%o@2NldL9*R7BRfw+WwMH2n>Rb%-|IJFe&PKiR@M9+$9D%^(a~005$i7> zrz$i$Xkj0&ZmH$`a8?~~$?Ki8;`%3N)qqBB2bY~?cmLvLSzUiM1cJA|9?s3-y9Hex z{tAXsCV!paHZzMY*Ge4rrO!364F^xACfZbT7@eK3mTK0G*pg#=-m0Uy2POPa%Vf`S zUMvc^Jj`{)bb(7|p^y@eFuhWl{6r~=2#p1W$qa>aN=icEKLIqqh2&Mn`5euN9LY$| z<#UwgK7jJg-4MNwv4rT4#3;SQBpz?mBXba;is=#CFo`+`O^PM^lM$zp6IV!Tgdua) zB%Gny=UZdj5{AvAbB0S&nC~n@ii{uC7V6R_S@>A3$xLz)t6AL{TAPJRt+~2_FIR$Z z6D3IXkU3H4Q|z!iEu88K|J|I-3t`fnBpGwZ(>h>8CkUQt7KKG8fc zF^5Dd8VCcIp!?f@uf=v1-&uuV3onL!eWVXcSqkiNbG{r~RA(PrPG90=$LDO#pGa2bA=`nu(k_-z4_?MIL&+fH<1$cET zw(;dM?H3|bDLc2r2ux3UYHfZ1t!Js@K?}nWc~e=x3vSO*(RILdQeJ7x>Eh@WE^$&e zDn$!z=7I4M+K49DiOWc^iJpR)5>nRmLEkkJqna&5((E2hbeoscp>-&gZH*lcudazk zhL?_{5k2FITJCyT?te(Vg}W#1$8)Hm7IAe%snQbp-8^;z9I%9=y=uIvie>4OBGV< zB1)YkL0~jWotF?4a*PBKk|JK@kP#6H6bP(|SZKmZ7r{=u!}oO+|3b}n<$SHm-Qkpz zJ3wp8c*fCvI*Xh6Wt02+#sB-|^W>h8k6{1KqhPeu!qv)WJ+OAy!n0lwt>$UE+SH7J znG$Gv7g6{Yb3QEnXkzlX!7bn>7wm5xr_Bm%k7=CvrRQBTt@A5 zEF?ca>ezea&!H7%8xbF)Xm**jV&a{pZ4<~tC(1Aa@ob? zKYvHuvt(z%!jnm6>&Q_(zCW505qSyMt5nItuMJeqg_M$^p9yt-1g>;7D5B%G`Ax0I zFk1h4r{QfAuOdx4eE0YxMeZBBrccgR-c)u+72aVcAgBP@_(Kcw69_seMYtkwNr9sg zDDqc9-jo7v^6rG#zk61PJ+Axpi|R z3en1>OdZivp0#Mhfo_1mgC5J|WSu}1vju;fNCy{wp~8t-%nC>KR-_8HW;z8Cy7RpV ze0Sx(VNhV04_xX9Upqb9Mw9M}G<0SE$mtl}k~%`}hbwQ`BLy2b;K5wob<6C+5tkP> zAcGa!RJ?q|?uWbhHEdt00;10;a78@K6|ehI=GqD__&_uaRyg|wWd+ytk!290yyydk z3ZJ)v$w-01AN`pUVjj}f*WEAIh4F~8`|{<|+ApCPg6^CHg}^?VtXjIn2pzVR>+)RL-gpKvecW-KkzeWl0FsYSkm@e>9KvrQ z1cVh}5y36T;yOgGiIiJrcN2_OJaq%BWe>4&PM4-HTcFh%8`~ z=Qp(@vjCmaND_ZS+Qs>?P|5Fs)#kXrId-n4Y=~yZVvcG>n!#l(E1MlO%$Zs1NQda@ zsD5LMq0r$(H{5EaQ_ya=a6299JkSz4<8s2D=M%m*4jO@QRUzFsm&!&;RnKBoz{%Q1 z1*VOJ-$c?*+eVcufWZETsx;UrqF8D>C%}G6R$`M()7c*8SHR5Y*GwO*8-5eAcwy=( z3WYUee!Y1kZjy@9Q`q^PZ`it1dtHqf-F9BgR$0|xLP}0Kcx7c4RUHbMbikP})cDI- z6;0`|;)r)sY`ImS?qvVIOk@Z;ZNU!}^%1xhJICDg*Fr}BI-9MOHjej_Pv;dl*yeVg zCplo!x9ValE6@&j1F7>S*b#=eC|!KmUqwKV%w$Oo(!phwQ9nE-{J-Gb=H~~WydNB3 zelWZbFkfR?`$~D!i*s*@r{hGBdz+5B3#)&5E!FvPPhufrFvBulWAjS2~pm8 zzoPuoO++}}Fi33$*whUA!;d<7I zqgX+VL2_UBeiZz1qj@Q?=jh9~=h_pM|2a{%APed|9r>#>x8(IGbuAJ%Z9q*=RqWT_ zxiY`yy3AV?0@mCTo;35>3Y$HPCl2SK>4*$R_g&b>pgG?e)N7kQSvEqSk?B>NOqtU-cwe$`33yfK&k?Q&b-)f@4k_xXH>RxPd%#xOh@`*>Td+G85rRk zw)XTPIs6qo-c+A-R)ZQ$P$_>CPa1iy)P;~!ImBI{?d+QX$T)}aq{*8i`w{o@gZjhO z*ufM!-ux?Stn=T1AE)r+wz<8!@Ka;Qv8o`!VoR_}T{3tVX$3=*{7AO?_l3$2EJ5-h z`?RwCLQ2lG&CRPj*m#N(# z@grwt8;`mrJIW!dG9?V4S4gfk+dA}gj;rH6(&E6s$VvR`+d1_U89{a35t;1t9%*}& z#C+3L?0D19HPaRBB+~n?bwp9BsrIG^rSh^+rmRL3I~H{&$d|Yz8&;Gp+Ewt}vDlgN z?|)YC7GMouAg28#A-l){Ba>tvLEMN!Jumq14I($(=}Qm+>xu`#calEoTDQogka^^7 zAXZgs6jNZ{gMF@ zyNqyBR%9DThz<;{cLB#T*f(}CGY}C362zK@9S$Qz<_HS*kwMbOXiA}(z+d@G(O{cf zsY`9VF}hXYQ-km2c9S<_cJ+C%o$fs2y}k3{?SJBqAUS#jDw*hBDeJSIXg;ZriqbZp zn7K#brISS-O3X@KA3T~sOhC9zi*hpR*s0|vMw?63`|~0BWhTj9F&G(C(7vuY(kR*+WDz8E6L7J6IPTowOa&3B_^4+odZTwdw)unlC7E6Ww3k<{X)maHyULB9?X!G z+(M=JaQ7^Ct|i+u-z6mQ*fXcU+H`aoNV+t3F;I^iO+`*8AFmcT+soC9ejE^^l_2bv(kBg!LN zgb3a*QG~JsAgF?Kx(atZgD+7NXN?O zh||-BupdpRLk3|J?Lk(Iz zc=XaiDVEU)Vo?~6A-a$NF4Z_Dj?M%t`pw1c-d%5EbYuJ-?Q1K}CHx9V#((|xGJB?$Q^WXQP(S?rh%5@4t z?s=f9wl!tjibK`g_2m{IK?BymIQ#lGq~1$nxfa)y-^O4@T9J(Jze+GG{V8xE48O#A zX@Wz<0s78Sp>0|^`7Q_@;JlyZ-OnqXz|K`j6}hgC8D*?W-u93N4+(i`f3a1V93x(% z+&HWculO0pt%~)Mm(fYz>4Y_AcL;GS$j;LQp^H^o~!i4_Vv^^JYntxP)uI}DU9+GU4=*4H$ zZw2U>>R4Xotka9fgz3qWDh zuOQ>YTJg@onRNPDx5mk7fAqup42br)#OF@@bH}&t5>Qv368K|Ccp@6<3>9kM14;Ih zY84Z83pt3ugsGoq9@!lQe2m<((yIb~kbWX`KB@z4liUR^77Y;W1lkmz#s$1yzMie{ zHXqSkzi+|Hs`ivVB=|M425FJG1&G4PJgRm=j_`TV!w-Q!!Lq`7~<(9kdXNysFsBv5o=A)uA%>f2=74DFiu0%L5 zGte~1I0w~)JMNnfTtC8EDd|(NfiJe^W8?ZRz#v~DsQTs!SSWw%L0EY;zk;nc_KNw& zq!+P>Pn$i{M&`6;_lJJdbB9n};x={92%I+269x{P8{p#SHV+%z;!l|7=M<}iQxC;R6CtH_+2 zim)MuAX?grO|?qt7u$==$1a{r_M~iJ8Vo{LNaWB_Wp%={@lmvN59FK`zf2FXq-+}a zE7i#tHGPY@m^V2&8J{V^#q+C}R*%&5GPM^TI`AV?jn&Dbgz29XL)*#nY` zYAT+2+ecQLBW$d!*Eg3cUANmO+$7zP=6+wA`^KH)5bgMoS8sV?xEv50Gh>4v0Sn!A zLnju-3;L`pybbbA#b;y1>@Ea8F+7A7-jnBM?ycAg53;SPC39+=ilR^*CGC|??oH)O ziJGZHhkIa<5IZ0ZFy8LY9UVTZ-s$;~L=}oHGI5df%gu5ct3j%))wV6al-L8>6)yyz zf4hl3C$uQyJiu?R!8&uw#uPQwfFgfE6D2N$j8@yDtytkHRKFha{Q*g(7E2ajWBZHO zpC+xWzZU{dde}xZQ-*jebXPG$0cjmR1Qesxv?JZ|3z={Y=@BG;7%7caNIpD(LEC#X zO{!{qV#XIa`^sQX6%xe(lLV(M;|=F{rbexc!nRtvRo(ODM^;#=Z3KO>~m?5p~#~Q}TaQA{B;WrX|UnH0{z6O1= z%j2_mZ0wQv%hglj;vgHo=nWxdQ zT!US1f8sw80JDQ#*`Oz38!q(uPD!yThhY%zt4}%x)O}hjNYazalP}SpK&{Fy6pG#YDks%)rATrVr=` z#s^5xf4cd<;HLlMT9AR2`Cs4kkD8|f>Kfj)SuEKEhhus+Xh~BCs}e; zg9xv+ zqoCm7aq~0K8}I*2cRkmAdnZ=*!!I;zNOw(;ks?Vdr$?UUF^kPHb+d9>YR47J9VoJH zW-sax!k#EOGsVm(>SfILvoi)eTg-Oegc+Sp+t_5X4V#S7SedIqY$hZ9 zuu~U%xyX>17<0I2j-k!WdGEfIqCpg=jNPix2{e{c>LtS@5_(XyaxFdsKOrmmR`0y{ zg?MVnj7;3#q@LBxHD?<2jeq$IwCFqr%nFYz8j=QFJ9NkxYE{dIHzm?`(9P&g1IVnm zQX@j5Rvt5{ZVc$>5bzNT-EhM#P!__wMxzesVANn2a)gOQyX-sZyC9!no_iI;0Tw*U zx`;!AuIIvf?i9KTp_5k*)o%~j5Ms(lFrw<7-F9V`SV*B_kg=^ zm~sjvC9t_sWW@}>A;X9|JvbiR5c z^`KNMI5oUg1tYY+sB;Nel7@tmH6o)oi=l8%-+PpY|89@v1MM=oAqaS&m_kE>iVZS9 z?Lm~xLSFkbJ1w6Gc>;k;Fj;3#bVu`eVP0WJ*}fZ~?=Z;K(UE&R6uhs@(j?Q5oXd(o zTBL|kR|s2KsL{XVjpT5cZ@9}NN!`zOw?p|!mMdxBgo@2Yv*o96USa?PQmOAdlj`)k z>&$VJAHKuGCp?BEXAEpGwgnSV5pNcU@VwGT9u1wHyOC0G7OS{F0;QdVMv{ zjPra_*`0lVc(>|`DRO63&@=5D=Jm%@hu8u>

    ^OXKIMu0AyQsbjRlrl^a+%?X@p z`lHAPPFL!$+(&)zX+16Y15j#thZeo6Ut6Iaz%$%VL#MBjhJO&Ed-Y`pOpIV3Gvbs# zFWKbr+f=%Uyy-s;{KdqXu&On+R3z2?=~a3Bucj)x6i(#5T@j#)orQbXWWOn3i;?NC z^*THoJf*2Zq`v73HrE$k0FKg8Y#tpb{4bE}fbmzCR|zQY_*Xd^Xy`a0Lkb(4zLuBw zQ1Fe?El{e=gtorN%ynh4@t;-hInP;&u9pv3u--42N^}*uy)Anr9AM}Q(%p)5bCXfB zbhwYI3f>>RLqJQc4s{>6O9xkbp`-F`2$K+J%`&wfxl-`LmEt4nZo9(9oo+HL-B@3$ zQ11C}4B$hBtQK@y;foY7)50(Yz%s$k1~i*;qRkYFC>hvjd@v!OaBM>4MdG=9VTZ&f zC{9PaMAXrD{pj?5Mn6(u!*^jy72vP<^yVZi2@g_6T+-N)-A-^t|2;PvglY7Er;V##4x{J3kJaZ)NvI zraJJMRO@LA^cemlT{L zEB-1q*7F7WvPB{JA)T^D*5GtR28b>Yz>^ifzDj-(5zOKi8y*k(lYDHtK8w}&>2B;7 z?>Tj&Ri{~?3A7Xj*i=@){K9z~slsS$o?ulzq(H4|d5*cgiL2Eqz2R#`xVWJf^2Fii zb^v$dA0I`JMgWCn zUv-gX$>K&zX2s*U`mGH8jB4c;-)=;o*H_lATt2;Dj4U-*KcY2lHGQbl<#s(^Wrsa{ z*ORh&_Et13J|5u8(+$bb4vZrP{Pgz6X%SHP1!Hfe&n8HA_hjg12wx;kC?gg_*TnI6 zWoRw=uegNxIK7QCi05|SynobMEg2qZ)t1Y&LIg%8MLCcCb=3>USTJ4b8^tIW-_^Ug zDdiRikMoszhReiwJ1u6ZWl|(XXe3VZRASS%pr}O)INld3ZOWFn2zU>IyHYx*b!^vr zW+sH$+iu6(uW*F&ye_M7%(hJ!8I2QWGqM35vLEHtqk{13Et;I033>wkgB{-?zYD?9VQaltW~5FRKa z&3c+CYQGqFn;x3h>g#ARG)+m`_5wR>+G^RF8QF#& z(IH8J=6``gwk3ChLXr?QnEC9ys1=jEglIRutG$agFq?ldpYVTUK{1${%Mc>A(rR~; zan18v?FZLc9}-!G^vut-$K&*W!nMxg#yCd*O5$|1hiS{7KGnt8)5AEilW(*SAAQA* z_zE=)tn`chXaJhsFs1m8`KzD07aJ;0cVmD|F7xZD@7*}4w#N{m&L46RIF+C59x@U> zo*pVuysTd(L-K%3CXI=nORNwU21<2|Og4?dGx~r}_?T0!d6A!in2U&xSmu}jjYOME zuGuFGz?uQ?V3Xk>;gQ0`hrLq=n$Gnx(Z7kMbIDalCxuWHE-^a(92x5r8rV01nj442 z`YubRKKydLCrsy}lBiBD6FRB~`1E)I+DXOBOeXq)j}#r9)>iA7G_!Q*U{uSD%wh>@ zl)|E;)Iy^Xjz0!t)H_d6*|+aDS3{`PJz{j5O|}EktTCdMZI#CY3xC%WwvF@4AhBQ5 z&vx5sAXP;_svG=`>JK#-s8w9Guz_Vm$BC02Br{B^d#STrb+G||26`r9gLoK3HgCx|N2+;E zjaSK2sBirTk7N3=Q)!L&PI&ilcTZdKW9D{E`*$c%AW$C&e#cwe711$L_H}ZHBA5KT zg~5R~^Ntr6g{1}OLQ;aYAZ%4{6|H(N zK6Kjvo>CFIu(^ls;W$=fvj}?1Hn)khbtgCoy}u#3QfqL>yz+R{tJNPloNE4fVPX4D zkj9Y4d0W9usTKuhbT9gdN}0+k`kG4GajSJJvy2OP3^t`Oc?emfz`K}Guu#*4#5Tim zxNegC>^B9^ulc^NY&4cVtTf$|9ZA*fjW^mLJ`O6}oX1Tk5y;%=Bx5OOFY1 zVpYkJVtUHelNE7=aT#{$pcv{x9}Ce=9v?hW(2wB7#$m=W)m|;R{vVydX)w}f%C_VW z)}?wM{+O7J+Lto1Y+^8{)p&P79{sy*216jCbiZ5BZ5VQjC8WUbb?z|hdfUXizo-;WN z1K#_vAl3mY;SGdMW~knzs={OAwP=EI+X=+Mhin_GjcX)?!<>)t%1*$?XkuYa)8h9e z$bv4}y5#6S=%g%4hhjJ-Rvulw4}M=Cuh-3;viv}V!;E8CBxvKu2O^EP38n*Uq&Dee z#{86VI7vtJa;%;YZOtexZEYAFBYI?&rXOsA z2(>aYGM+Hfl5#snN1ad6oTK*XBIU{+DNzv_K;9i)m8HnPXzo-ck zy)Kerv4MP6_+02CWc4!0Sa%h=aAi_)WHSJiQMJC{5@>b3dOg4t646__x5bee_ov|! z4_(d}%wbfwbq!v8qsq-N6&79Uw-Jk6*}aG}C5y(T?WDDl!4dCYL&L$3XuK5aA?2n> z#Yd4eO1t_)*Lel1P~(eEMCI|-p*aQGbH0jFB>e^p;k0Wip25=3_*i8J{YZTdrg~_v zb`&hOg8EPf;$V7d_GN#P1}X@Ay)sf*aer!n;fhtk3kdxwWJjGvYCDG? z?>@Uxo(RpiPW{&TbXzBV7$jLj-pRgToHe|^uqTUA+)Q;9k+`I&yb?>ePMX_4Ws$NYRC=tQ?@+V z0-ySv^}PtKE-lHgV{bP4^?h9I6eICTJA&vA_%<3a&Uh=>pj};ohIYZ?#Cc=FXk)&j zp*ECaB=7q3yIAxzftsYumU+oWCaU}#BSA#9Si_2-^*ZzD3`7vDwV5p3rgw%{(D5Xh}@d8 z;PA7^v@Avts=NJ%e}=$1nZJKU1~x#eHmsYijW1%PnV0O>n>8k4GSU!Z!d6OGQB=6G4u`gg0MM|rmbFqW+cW>*pYU;Ya;h_X_U0L&Z`(Zkst@}QPSJEY+k_iRB^w&V^!#1}d5MJ0eafFi6iVujO=CR!>Dy?|38;b^g7mrJ zdQ1OFKl>}>6#58o5?PYq+?Kf_iMy7`L7{+X{#wo0_^**4H+!*;-kOH=5SRmk=6C~5 zX^y2IVM!FEv^JzyZtY)) z2KTB_zK8kmMUFpA;)Dps7dGrYSsrlYe4@6$erl?HO3NdK?OaxTPv`RDoXHm>!+m>U zbTwbz`&()b^kn@uUrT{#shHX51L2tK9=Tq2tU1TO^pAUe^(DwqM!uVe^^Yi-R1A4VLN#Z;saxcdjn)SiK7#u@dY+bluWAbkq* zYk%)e@3Qt56!2^DVTmX}citN-ct@Wd5A4KqCB!-ef4>;eH@$qM?!_%PI7G+bOp-d~X$k+LKe{g+8TD-Lso@If4(^G3uJGj2FXn!1LddF8cnm8s+vC11%8GT>?@^lr zQQQGr-~m4ReZ|O9lRfpDBzgeqr4TL*Css*6D>GW86D}x$?Cb3rwC{jf$OFezs;W0p zL#z;JmKL}=)L8Pg4Z^G6&*6uz4k(Qplf3=XA6cE?aMee#!{o@|h0(Q;(i=&V0>z#N z_Y`!6wzcI>emK~q*97i7RWDtb4=+I^dSNxWt~9Z;N3U!kOlp?NLZlK;OIq@|EQ6fe zkDu&Zq-dCMMReM^+736&5eFAybBer9osaeL6@nLk zYB)|Cu~X#{mr6jhzJCcN<`>QiuNW zB5KuelHXaz?RljvIugXDx%$_cn#w`QQdAT#?*Uf?>f6uG%WhjkTJo2BJ$|0DlKVB%RRF+aJ5P(Mf(=f(vT zr?SK^YX8_{%SO9zIlNqQL(yxP2T>5Pq(;|l*iyBkv2X&gSfJ4A>|woPLzpgqm(hBA z0@HTlA3fTKJf4!Um8mR@<)F~eL2^2Tb~zqwxx5Cz$h?e~xR~Zs6-Nrl{sw7%Mh?v& zRk9?-=@4Cl$C%@dH~`VV-&~CI(v33!Jc%jQ60ewCPgKFBDi5Ouhb29*O=qF9ke%Lo zdOkr8{#J@A?n?%SRtAhM(T`!tfo6nwm`WMo!c?uxjGog!3y$dkp5IRpoDcR3npvfO zzqp2IEfS#Hi@SuU!*&*QKDr;(ED>^cF_7=_={2<2JKSM3w6}c0I!|Pj*UgUFU;F?YyLGmorX^2(*c>#aSqC7mQ-34xf& zL2-O-vv#cMPsn;%oaf_8IZd5J0yYeRQ||#0Ki?pwlz;43UqSO8S_MQ!oq)JuCN(k-mti! z;DEEDSBcBj{Q*8-HzVX1oQmS?lUi8wmh>>_m1pG zBt%-kP8&%;P5;~WdhfBhOc?Eys2v^o`wOw z2RY7}{JC7ez{MUN4De56(UEnu8}*d1$iX^0Enf96jO5JY)ht-;S=}Apw>>^ zd%iU3Q6>62m=0&dxF`lzJwOTe#sS7%!C{*ty&9$3m{e>F+*E+ifdZ z)n>vj?ibiK((D^xI;r-#k&ww}u|!%4xbx|Ef95JDR4-S8=5g=y)_hslh7Xc&%l`d(9(hz^-{!7_j$_Q;-L|Lwl- z5FYB~OCpf&FM=G;C=UF=5bxs-9&!_WUV}-(DYMThL#BPe?!NFxlwK{!ATe0XfLRcv z{Zz%*Qy%jil7k^_UIO5t{jMrMPzu$NW6Pcw4MRnN6on;3j={aMLcTdhn(g9A^BpHS zF593;Tn)MbSYs1x!U9$7R}eYroOOgT^6Q&*PGNe$AObSUsb)iD#laQM@2+qkDBWEJ zotB$KkGjhTLta?CddZd$7b-toF>CLd%S4XSXytT5iltG8)3VZuTbtsUc!Q;Rb7eQ6 z%z=_{>GhEXMQD)>M>)MV~yRlmshoQ zjeZg6$Lnjv60K^B;U!rqT?V@YXj<@@tC_Dd(cGyO$5xTD$rqF+1#kH~cE~kERr#G` zf-B9BUlcCM5p-NQMy=`AndFM#(HazwpiM@gaLGMm#^VH+8~h}8qx3=Kj2FLUt4l_b zf02r*p=Y$(P)=YngQ-R~xC6$0m(#$T&8CP%LLqiE*&aK|IYu-4K`h6&GX}W>Xyg0H4l4AQ z0y6|%=x*0Y5_;o1Y^}LI&Mm5VlhSwAZF+k_QyG2N)zq}qaH4r37WPea@~1jun54M6 z;C$=!arGwRzIj-Jlaa^AD>{M{+Ph<@s<4AK$pP(9Ui`b|ezR}nt-%(hH3GzMJGrWY zSwW&SBU+>4v2$$5%q~k@Pk(BL)JjWW_-8XYjFSIM7A*Dxm0T^NYiS;euQ1$7gHpaH z#-Q=Rro{Mfi=s*(C&@w?(b3r3^J1BmIeT6f5vQKllD1^K<8Bu_>_k0e{uAOJU9KdF z&ey-r*Ur_N`;^PZvz78@4u&Ok;&p#|u!x^GXL0k80Y2he7W7X%*;sqjr%=St>w*~& zJ8lla3YZ0AAwfyz3MQ({1q&g7xEu*W>_9$*pL^rs!T!6Azpsj&08gc>IU2fSg!`J4 z==+})nE8lD(ngWlt7r%yO-pjbDx7D$7`V5xUE%#LZ3;jbA;bJnSS_5d1d;&P1-~ax zQjMHs6bZ}Q=A?7iYvn6$3sgQr3sk!fy@aRH`LIS~Ds2wS<-r0L8?A1aKqu$-;l->1 z?aepLU|q#$jH8p%W}Alz{U7>O(o!!jFOkm2U$j1JJ82(lQ>cx@hBJ-oRj1n8SASQu zrD~Qfr^lyV&p-TjI!1{8n~VJ)IOhLikpGX$hku}FJbWEZPgNa_-ANW*Z8CbkKLU^y z7ufTEc>&{p00jS6o1BT6{(s!~ebgY8l~y}=5oBREASMXRovt_n!VVyo3VfP_B0*CB zpooY-{E{R_Cy58eP!?uDZxD*dKu(!2WE{h%5vy9^)V}EKmVH`Z-KTASQK{@v^!n>( z|FGi2#ona5+c8cE>2=fiv;Xn^v#BN8-l52tF=aG=U=k|hAW;i01IcO~?FJhnZdAM) zADHGYiD;bY8Gdv~=+S=Q07!!ZtOiJX8%A>*M_-b@vqUD^Jlp%`qC@5a^zJ8%#P(0I z&*Y;^(g~8I9g9MhBqc?*OZY{3SQyE6>Qp~`yI9Aw&1cdv;gOkrY6v(6)6?^rD$Brr z%Vb@BdQ0J8=flQmm9Z6PJVso!6}!8b`+GY0dqxn%M3ep*#Y$YVYVK%@xm*r?y0Eti z=3Fjj$y|aI6|!uw5cKENPBT|5!-)1|d1JL?vpkgEaCfm(>{=;jy==OON0}U4hJuzb zeJUJs*&t3*no&HfaPSwXWz0P=rTtX5PkVJ%5t*j(^fqM}IC zU%N1}fAkV>P8n6tl{WC&V)CTZ z<8s-)`9AXXQi%YKk#H9pJdoc?RC1i|ZWU__1Rl=rEdgkO2`TjVF6iSs3DNY*8tpKD z$Lfwvj_;!s3m1sksqt@bzOe(?$hH1dtpEaGX4ev1J<2XJtk~+c4A5s)592w~`)yyB zJCg{2cG#h9MFKyJI1o$lgfU(R(Jhc)J0J6cdMOAn z-TT0RKQ>d;TYO4V{j$Fg(;>}n{gS43en^C z$iW|D^$Y&gPGtn%NC4h>j<4X|DrOddqcZhPE3e4im%l(G^R$a|Kr_D1$=R6b+@eC_ zHoBzoCJgYfy51{*%#K(}&gKv%o0rK#R-UL{==N?O&wbsARlm3qO#7B<#8d{1>Wy0~ZqVEk(*Pg2&N*iMY!+pZh7j^PfB0@1>c+PT<)1 zoEg=C8;`x$;~Tjb%XvetP@tjmlzaY5lSbJ2G&ab z$c)KHMys&l3_BSBkJSs#`R}rm;*bnyy;W0qM&)KP6xFjShVvx39QUg1dERc-<9-{D z#u&Y{?fPbhtYZ>v8_ZT7V_v<%{Gvz$DJM2E)7`1T{{AX?Y~O1ysbsev3|Paf9aNx4 z1sBv<9Q@o#61-1!mPGy-b#q;GNu@K{Kz#qN)Qu%SxPPHl#AUU#Iul`LK$s?X^UW?wksfrJ@Bz$o1%* z%HsY&s4|qXo*(e0m)Gmfei{`r&E3iTR&zHzJ2fb;Hs&7RcCCZA}S=b9KeZtNk+ArAF}BFtbNb? zcuba;PiMC)3bhKs4+pJAI#k=YqmHn??XwT1JU%G@hLAsR_-oMomqRDSu^hqoM1)XY zYdD3XIx?^j7x1uSJyN`oRA0V5$2VZ&CoiI3(FEHDP9AOb2}olT0*c%`tk(X6PcHtK zNN*b1*f>|}(kTn1R}@r!_S;9K>yHG2!G`hWG%SAI|qj2c?Pow`lr69;84A*Z}FW$ zreb=D@5wqHscY&vw5%;6tINv^3nK6PwZ^r0vqRx^6X#b%3*>`iw#^HA-NVwPE1Gq5 zQhhgqzuaHuO;Sii^c)E-&{vF!B=^->OtFU$JBwEgrYTVE(R2Bw=ApIj6@>xd(0I|| zCYV-HP;jcx2D9@dn=d6ADqKwBKdba_VRq{;_SMrZU8aeBA+ug(blUhR9F}#X)MMjA zN)8aGV)=){?JQuE^2BIN*KzO?X&L>X38OjVZbbdqLAHsnzOe>$-AC!*r-v)2*!>jJmaL4XQ0}YzAUh;1b5HB*O)nQEC!8kR zf`+}M0HExY1{=KS;ZAWYT;)kdja)Z`R#XM|4P|Y7`^sBMe6kH+-AM*2K`%GxeMR?zGdxls)XZq zzfvj9j-?OLm?F%#^$FyywmgZ$Vb|Rr#Nq1^Q6o|&E4(EyGdxHkd~F(#A=G$>6?EeG zMJJ7P!_yb#QdIn*uQ*UC;P$TxCsY=KAz|VBW!u?S4Id6lOV+~(6sD0wd)Aln}^f*PlyisHk z6C+m1<&H>=kh?}3ah|Bt1($Z+DXxYu3Q5b<3&YuWSTAt<&&FNr2fO2gi+>Havlfgo(}Zs>EdBdIY16nirH=FAt#+ndO+w;LPI+bI`nVr{Eu zz%>y^coX(=tK^o#YztN07a)sP2Bf)xs#@d)0dKdQ&bxKM#z(4?WE8~&L;`xT{SuGS@of+xgc`IEl&`gZ$j z&-8-2!V1361>rV6Aq}I)2ys>dl;iUuNX!a$@V%oO#F6wxA2st_UW6m}K;*IUJ0XY@ zIC4{c*Dn=&m6F&CMPSoFVKr1#WSyg}k6KvUzZ!5_ci8ET*sQO8V4zsu2C!Vcy&n-Y z52RTUSw~GO3r3SInl!AHdr?w#*qLXu5ftqyu~Cz)b_mR;85hfAk;~3iBfF$j@bqOi1#`Wd^>^+{7s}#>F=j!r}1hZE%d}f!*isG1+4n z7An1lGL_D;=-{E)?&+ue>8v~;zaq>#Dc!i*vDP2}%|F2dVIaIGD(MswQ1I{yYJ2UEwC^;Axz9<>JDVgJ!Q;8oAJzKv%uzZ`JbC8-%ZB~@ zULXdWZCrC*T>A<5to5__sITW_t4y73A~vg08fGhP!nLZp;YM*nfa@o!)8odS_?TVM z9)-&r!*_>fZ3(N3ub>j<1pYbB;O3+|CnA<*h}~+cV9Rd3mdaf>Sy(_+SJKfWJq>FQ z#X=TJI6!egAJemNWWRd;{N<&f@bEiCkeXXpLH&fBc8t!6JoE=IQ`V00zv;C9V6p!f zA^86Xz5gZtWEoX=4*GBVOi-YJu=zm=|J%d=1H<~iia=Htw*S$(5TgmMt)#Zu3+xya zS*~4_ZZ%t?+3b?Y@6)rX4i=2 z71hq2m-gqmo0l9QfX_$EZd!1#(+$R~$HpU(=k8C_l- zKU~P&0jELNEuvijs4!%9^zJC%*8To$Vt=fe-de?~oPENyX=ZByzub(YhiF;>CzK`;REs;tj3Mi~JZQmm@QZ%|U1gvRwX=#ha<}@CS#%(2n+LyQ|KJVaH3EaYT zF<33t6GB3UrJ+)WtM`+_@LHG~n_55f5T1zE6WWPjiga;N_%7TkOH?CNmsQ~~%u1u* z?3;ehuompk@r<%ZwQ(Ls)mQ6pwCGxSIcGezN7}v^u`)t)26b`h{3Pxbp)ey^3#scG zkDhujLef+UyKh&F+$WXin5Co?0f$cVsie_y26y%XWW4dnl`zIZMIN=puy8jOsH2o` z&M;~D^TZ?Lftas=M47< zLXT?Yr0~W9VvqmVk@KD42w6E#vNKk zBHS)cM0z4Q9vg3l%l+1m@964ZdWx(@WbAz`3lC`z=Ri`CBGLQ&_%n4@hW32+SgHsm zm5+L_qj?2MSrjB}REj9tC|bISe_obQ%rwk#iM4^RqBkU(S|QZ#?6nPbZTYdYi402$ zqf~g8C8agEpM{9GKnE%X<;pb_#qWzi7YAJl-4yC9yN!_BF_nWUu)oWs8o<4?yLm5i zfE7;TP<&|}M6{vO2TN5HGz=t#VhRN(d`~PTyQsru2h0@e6gb{+{UaC$Pw`NpI_ij* z-PX8WwYg*mmTutluP&EW?x~^|)BCront#&+M4F*mp756iD(R8f*rGIDS+NDcO<`BkBi zog9fR*L5^RO3olEuS)MH$33n)N-*r6Tuy$B6!E1>9eC`vu=Z4=YtYUOQXEQwB81NC zLGsotkcO~A?%!#AdeJbZlU2xZ9W6w|uBQE6T*(S*F3#mkPlRp(*e_ z!laJOLK-$Pf2DC;zeL329U;RUezhK#Z@^3;WiF>JinkgAQqVjhb?OpF9O}%06`dHw z`yEg)>GB``FxsQ8*CdVXbcYG}x4s+k{276HI zglni{q{L)zdrnW8Zt|t19F`kBdKBG{6TNLTzODN5Xj{|GS4$l5?BeWNxJYRU z<+A)oWnLaxgPpTpp%>byk~QebIwD`BF|ugjhuTiON6*tT&v_Y;VAm|b4t^pl*hA*o zkaG&=umxeuX8nVj&d0Mck+^@gZ=T$Nce6^pi?xo6$l`QF7nbfFDlQ+mmNy$@mH+0C z(QmWyL2`S41;RDhBI*5DeNr1ZONd)VP%uxnuqNDcI}3r=z;(SEj8TkHY1R<3C&jPp zmu)wSpkG~?$RCamO&K2KBNkrH-hVs{HH{-BQI$|t=HDMQ=m`cN1*>$OXMs|LH4^Mq z0Zym=%G|I9v!}o+Bg>CNp)gH-Nul*G{a_~v?gK(Q|9)yHGD(McO9i$fMh%>5;4t`D zMXOPm{j0nCajnI)7##$G1IFNaQQINgAN2-MXG^m_c_!T&)R}EKP1#AI;=Jjf^m4*p zSXl^7gW&MI;J1q>FJsEhq3pynT4HRWQmcJ0Jzoy3)M|9D*Uk*L;DXQlb?iju46F9j z4LSqfbjH|;|E4P6vH13Qw*l6TaDw~QBgpV%@C!=;JQuxaeJOGy=dr!{)zt3(^7p!U>K9TXMq)9tbz)o${LEOra< zZ0M6~v%2@!D2Syc(&!-xj@u^{LQ{wRMLCJ|m=pJEnygvZDWj&f6CQnHK0nCaebxia zDEcG0Q!w#x)onzDgI4Q% z3GM)dwxg;{jCK-C6iJAVrC=b#ZmUjFM=eh4+Ux zWcSSH!kdq{Oh}1Q*#SGYuQw{`;MF;0s+WH|5FcDg*4f$or^aBrZzS8lV==7V-6RT` z%3Qv0*6{G;LX98lU9-PyZk(OEpC z{2MJL18et|Od3W`;xWrJ;Du;R-P9b7Or7wBMp$yLwJ9pfhiP1<-2tHZd6F4blvW7&(hNy_fR20Q< zh&hS;4nSSB9fPGcQ1o=;OK8YN?BQG^pd6*{D~(0zAXkI3bRT1Yy(5kpGe5G035HhS z?oS0wt43|t(6+w4UqTv}UWO>a+GpwlbO8|Hde}AS$w6UHWp+Jy-!URtPzZ(o5C!;x zZ9>pri=ASrRZb64;rw;`y-T+B*B~_MLTQ*FiO|Pe1~6ZbD*dl>W;V+n8 z(`SE0?El2(Co6>6^oSC7$c`p0OtnsjE3Td&wD1x$o^UC`X8>k|OLgN)gVpoF2=VaH zgCUgVs7t|`;U1q4-{DVIl&EgKIu`oQLTtX0WcD|`h3{E=2+&PV zjZc#&F9@9hChF3C@0FW*u71AHTEtT}sgI?TzWmstu00SfHdk8^o1$@Oj_)S0#dlV9 z7^42dTdd+REg-6PWq01(I?%mO>yr+B2RJlyrRvUVU%@bz%XT;K(oa#q zDk#A|Eub07oaH}u{CjDagxYs5v`=SdI&-OY*q zW?*6^4pk4@-tkKGXYM&*I3GlC$Y86$M8Lh{3bMB{?_F49zJPk?y8hGQ69cP$` zc}Fwhy~yGcrlQzz!00p{J*JZCa$GtYZy&xeY$;~$WzL(N_yRaa&8Ay<37Q{bcVn3$ zf{$;DSkhE7<5@Mqh$9h>+>bf(1obhtt#fd+qcn7g>x2uUpdib)XC6UWArcnpQ)#|e zESV%d1d3$wbv#W!&0vXPru=anN^iZU4OgeRGy^?_mbY^jBhtVz`3SZLXWCS|BcJl- z!;$Vg`WV#@xq2vWk)^u2%C_Zuf1XIWWTWMpxu6-NdD53i^afz`7VPGjL83G|?S0Jm3JR9K)i6n>Lhz`-7~v zmUofUbxNn^6+%IdaMiQW_6^4N?zH@_=63Qj!r6>3nk0ifoy=#DY2xvJN$ zX(!8=iw2=UcfSCdF5b(|)`xTlI?kV)=})#mH-n&0C>{TJTRB7 z>sb~!Eria(pvDAap=yd`zsaA-`Y3kIN*FuCtfuAT4PZxo5dbQ9P?&(&8Sq25{FC^G zWVlyhBHRT3`1y{4L_XkQ?HIq?E+q+PxmJ-Zscv|kKXiwUs#Rh z$#FIIgO?0D-U)%zQP7`X^70}^kG{`}+sh!rbhlB?m783RbCkEe0!-U*aXsBOK*Rc> zz|t_EYE#q%n&_me}Od51M3L5RlZ`Jh&k2az7foltQG z?0{v}@{4s$owuED5a`N9HEb9%=st|D8v1}>ZR$kbXAW$=KyJ9}aV^dE@`a6}waUN2 zS3$8!s|M!l(S6#;sVc?uPpexi-7IeAlFIUomJeIXS0jdtC{ic2T-UcEs z4!xIqNP&?Ruas$<~8FqHZ=SK;7{{u8uYym zy&rG&qcA+m7c#%y&`G{fq$)ui=Qa!-?4LIdUQA%BX?Fb-Fp(2O3Y#(%XnYhg-h(A$ zRLY7h-Q0Kshoe%Ud`!PlpXgIB#e1+?HBSEi<+J)2DdYkuXC!JOFOZEc=`sK&n*R=u zl^sfZ5h`*Z~s1OALFgN#~ zeBI$#6Nc}-Mf6=x-Y;hHpP1A@oC1$x zWfb#IosE#xR>|eqKSYLc|HmV$4KHx?=cs zVT29 zz2G0dKSRMzmp^omIGLHWs`>_#tQk(Tdi}hs>$up67*&+g(?B&hX`e!^#mT+3{T_b3 zhCKWwh#^9W73dr-WyUu~ZTAkf!t~wKjAXxTj??8LHyTaQc$nd^W zgTs3&-DF0z+Rmp3#Y$%;xQ%Zr_%S9BjI~Fcj_$hcKim|9&18zBb;0fRRs%y#vNMw6 zb{-#i+lhfh5$%sul1#jxyK6wA!E1Qo-DWVGUU9?LX2%X>3r|X9p{Q@@^CUz~0)ev_ z`5Y!7kr;1dgp3jMW_mbZ zw8I^M0F}#C`|K98*9n^49bsYsIklU$n8^D>!^oU3t9<^zcla>G4?T`uj2$P_Jgdu{(5KeXt2N z_PapwGq>KbwF&|)^g_g??ikma0c9ar?Onid42Yac2w@AA4fdc<2#isj2?p^~ z{7Ow)9iXK$c|%2r4%m&z`mm}xq6^XQRzaAO32djKPxBx~#+)B(t0oC*K>QoqE4!2L zIvt-BV?k>dR*lhq(kvm#8zG~7XAq&C>B+T|dtjU^aB8evF-xe{FUlRBO2_broW4AP zZm;Pv1~(`DZHcWcmd+H)xvM6Aa)JxWVI6$B*|}v?1G_?oP3?%~*2CHXXE$|l8{YY# zuv^qZi7x=|vCwht8ONFl#W7f7;Y6Mn(Et($LsD6BQq2M95%n{GJxJCjoD0`)>{HQL zGl4Eke2*YttPQG286{yJg%{rK(Z{0nh^X!KuyPy|&7oC2BL~GPo+n);zxL?j#!9Nu zGTfM>=C8ZBYlDZf14%+BPh}TrRwu;v!N~=0rsVCEB^~>I%H9z`*7c}YV{d2+dFe}A zMdC260C6ZEc@?^NA;M>*>e#A%+5Mg|oqA;%QBC1-+Y^_nnOS|0o*Pyze9*k~JwzwH zNl&8DtwCOQoF{nNkn}Gk>5arh-8XM9Y$>DgK=s=1mRth7O9QIAgVTe*g?HxZ;LKf= zyy9^3YrbZc`!9~JNohaCw&mw(uyE&06$!1_#RlZQC~-p%L!IWO-@`8G3#Y)MU~eqZ zXCp*I_os#lUM1bE!wBy%`o}eBE$7vk`cS%Va90LUL?2vndLds2T`UO~{6^s_Br27a z)&e#|IuL^o# zn+);&nD|P8wR^A*ZInbbk|%0|Y6J$LI!Tk46UJY=AK8q3AI9JM>~tY8N&3{R{iaHu zy>08aOt?~QY3oYy0YnXSi3e&pcXK6DI0ochfFu|>+wHDr%-lfg`X_|>d7|4%1Vv@( z6v49ML^?RA)1pFn-Uz>dq@azQ#Qf}JQ{wcwX$}tKxRG6%Xk_)MaXJO$=6_#31YKn? zp@9klHO&NV;k-N(TKh2kj$yiQxxre%y>|6oLeb<*bDeqR%+$=Hss+^SHB}Qj?Nao2 z>!TlV>(&HM`ZqgxiS5Z<&FOb8)pCXzJHwBxUBAe{kZrCc;^EF)#Cx|{@WY= z184ld9-5fw|L1~_iJFHx(kf~mP=>#}CPpAlky~k&i$SHK&U=-Lg8knEMVht5;CN6$ z#6+NoKt+N0@w#w-!mKJt{07RvmK9%}YG2A_bv>!7TAvopN}VRRozBlY(_etvoGG>> zuhS`x)9;y^Y$vf`4-W&vgtLg|%awDN_vRBcBEhutX2=0;XttCr(+3djK6c5WdEBkV zT!A3S8z*|%P}N$&cD zQ{WGyf%J%-F<)XwZ*x-%pxxT-lmZn@R#Ph+1_%fVlTTok3Pp-p=Nt$KPC~(#f}R@a z-I}H1D`x45EKSmB{I#$}t0D83PZ*z7p}7UC^NuB&r831&5s#wBsGQTq%$epX3VEjV z)6hk1e^^L4h3uqD-#Qg4R3@Y+Ksja7@|hP*n-gPqnhc1#6>FImtylmhGsVS1LKYjv z$_ti_>viPZTiK<6MJ$#5h^}Y~Z7xb<0NM_e&fCU&Oo5dejb6R)U?hFxur%34jC0@u z^`g0qf!{x4HvDc>`AWl@^Z6Gm7F7R0J;$2Vn)j87HAM@wR)mNV!y2YF&NEmG@MgG8 z{{aIA>F82Am{h;BdIwn?xt}~biT-7Xi9xFfWZ@+)oyQrsttajC)otdLixRh#wmL$9K;N>n6qiet zN}7stGDyDk{cejsEiZ-TH-W=T5g?jrv7RiUz=*4Ix}qDr zucjqlpl~%988Se}7*R|}4zi|?oMpX6A|tRugAh^UaXc0hj@ZY~Iv_}re23n9*JBey z{<;B%&bfcefG}Va(nXP-;{c6QH^D^m7ro*_h8I6@p*`V1p%J1=wKU5zM`A>lx)L7# zOv~TeDx->{>s)MbNS^C&Xpo8!0jJd}J)DxS7CdN)8E^L2yAZe{J+SYn>^c#45&C76 zSDZ9tI-X3$beK6Lk?27LXd+@6FRuel0W&2NFC%(yCCAL}tZmtAJ6fB+3ytRr;cL8U z1?Ww}Rn32;$A4*Ls*~nSNleQqZ~$QCW2U-42i&^nr4VU4|3;&x$N40CC30Jvb(Z&P zgy!ACqh0^9xOzMYMB2F}`L}0ZR{_I3T0^6ngz-t4gmwRi0$skZv>3DqLSjI`rVL|< zl;P$Cyr={bq)12(6{z2}FsR}K*z-BNOubEb%am(P6Oxh(Y|XRv&^DOQ8BE);f4$~t zH(ZYcW~c$8Vk%iNoQEOfhsCUcZi{+kO(Bd99gs?qR_6cOI6YfF}ahRs5ycM#TvshfSvop|R zfSO)nPTpelYz$+y9t1~~!}_aUK3{!OuUmi44N*Qof&5O%L&i9Yy_vfX7^qKex*@)4U8r{^!8@688# z2w9x2W$Edl#S(Kk-K;`d6upQ?6i;>w}S_l8CgP?cUhJun4h~qeEHT^UB7Zh|SlKf+;Y5Tj| zn9CQ7kb2M2P=4+$=SWY=3L4Dy|C@#6Tq3O2`iZ9{{0Na=YFK<>vM$Z8xxA z0Ke-{#wmt?5R!6n|7onX?A=xnQdvn`r%fF6+en27I556`d^lotk@!vBM=k4WhK;er z8M~H)uwDiE+T2l6u5im2dH_To=3X52n(bvKtwPStH=zak`T|(Ge(@FJ88Z?b^AcNz zM}V+DUSKs+a%`9{m$7ARX=P(+jvIc?ReIb*tm-)$Pl-Ke-Gk^uKYQZeI#Hd=P#p8( zf@(!~A9mGsV3}!ra$x8pji&{!>aXV9apF>vdWs!GJ}ipJR?_aH^L@keRID;_y_yGu zssfh3H_!Q{`l2I0Th#ne{1{rCV4*yQ(TLC$`-SCu3{Syn4p%%7lw`@njy3|$*GUQ1D&NP|)|;GO)=lZ| zFEVCM5x(~Pj9S|BEyMF_H9uiqp!1QW{o8PApI>EUab)tG+CUE2vK@{Oth@fZs#RG~ zg86r>-##}R>OJM=Iq}W|NVeXgtuR)h`%?x7D^TkFJqBy{>PX$IYcyx!JHiggj-OJrDTtFPM^O ztJF0fiW&vBT&Udk2e0iP%LyHb@tWTBtqE5~SXkubDNBs7DHLQ>Ea2?OT2#iwh;$mr z7(DP_IT3-nU=B_@t1Et>qm-<4Y$Ir^mHb^iy;&9aHAd-!ki}c3j7s8^^>rOH?+qZ& zjPV;E4l8BE+0JjfY}?iwr%PNQw44S#N$xpGgZSql%q0XBpwhJnW!Fr~%%DilLRyDz zpT0MaCF9z{CUqhhIz>G?dj)@J>M9o_Gm#>pT)0+rZMYuc&%x$WniK4IJ^ST&s!L$%z`F@B%-(e) zasD;de%rYQrIfrcS9=!n7DlDRfSWvkq)AH>xEt!}5X&!x=-CTImiubmLq0dqDxwZx zF!7g}TG>7~j<(sO|GlUmew2WSe2=0#%X}9yZwxl6m(b>lKc{j^mya@bl{hX>{ zF;~&ld>S>8hL(;KSsEStJj_K?s^dCm=5_H!w!e%r5;%Lj8i6f#+3DqlRP0^mv=^>k zWT5q6$NvgoEAU%eUO_t`NJ1Cu$(NUvPw$jC?M7dSfeM?XdHCb=lNP1Hnu6~SmC@uU z?%@T7Mg(Hn(YAPigI~=0XLW7$ui$c-|L!6v#mk9m#kv`&g%|8 z9}7PVCa06^m#(x^pIjtdRu9IJ!@KM4HjAV>@z+-)sg)=tD96RY)s_ahIygoK|KI3R z59Q$qWb)>FTzJrPF+OAYJSe9%L_5I!Qbj3#n^=gq>Gn$*mWQ6rv49#5w6KCeYC z4;Xq_*t*85*L~KH`hJ`LL5RYtP zoC+A?$Ov@VY$XA#0HTHhW7^L%L<*(*6G?srkTWU86QQE)4h2#hRNxaSWoK&PYrZpq@4mHZsB5Nc`a948 zynwRecmiogQuU?kP1X+A9Ib!1AbKHch494i1o4D*`*(*|53d-|8DQ0={i_utwT4Rd z?+&yXM6Cb225XJh0=^mbcQCOY*_tmkvc!Nxoi;V>*eFCDK{YzXkWe~0#eh*7cUUCQ zt9n2+#E20iNuTdt(PNd2hev|Zf|-)#0xzi~Np4^3ZZ<;sm#l)=Y%HvF4%^dvlgVQG zxt#P5xvAS!HHHwA?XYbWkHc)L*Vc=-_w4SC%WRjK>G+iX)^l6y0ZL=(RO0M=X5Q@2 zhfmB)x9d;RiyxmBK-leQX>sklM>T_7J)4?faCXw;d~?x8)20uP>AD*ZB;rp=s{a&cYIokP%P zj&!&v)1E7Drc7Vh9*GkSZY5s8P0X$S<1x7_5bsdya?>$DCR30m9wTM5IJv2GdB4e? z?{TvZxYYwAD#cpWeWC+h%Uj(h*^(Qo@@!VwQGhb<}2oBbjO z@-)-}Xc1Mal>p&RY(CyJP5*4caH(;J^|Z(2dQRy)zN};LQj0|Tlg=#IdA#HKa=mEp zpZo)6g~3+))<8W?F-=V!00k^p7Np!!v?@q$82!rd~b#h;?Z>S9=2mEhZfe}ii;`8)7#l?Vz@vQZ?jX~51TW|+5C zcP*U)eRw8x6_ok5j!GHtx6{tkkJ$S=<#@P3Q(}61U2myC6jDdF{)w0MjM)u`5q#{~A zo7c>d0d#w$X^`%VOey#6bH)~g8Q@sx%qeOheRSrD$gAlRDlyL3$r_a}md-s4PEVt( zTq1q@-(zAjH(zn8#(+E%h!Tg*X3rOOZ|q++6uKiL-}B2^HQ*;!56U9Bktw*l;>uQV zm(@&)<^1x>cXqD8F2ABP39-BxaOsU62CTO25QUylOAX+Vk`(&nT;zwlit^aXwnAV& zn3N*K8&F%^A!Z0bh`!%?Ur3|6r-(qvhhaHhlHGRpm~%(#;Fz%UOffotf8N5qf=Q?p z4aZ#+vqLqC%WM*0Ri<8GwNFG(NJk|=huZhLKLj&k-w-+@@`N)E^iF@eZ2dKd^{)FH zF^#?rs(V9LX_>(zvt`FyDr&3mYA$4$!w<__6$~PyJzYE%U+Y9SO z>7~Hwg=RXAq3q0TsuW-q$PQ!tIZaihvr}bR1~e@ExW3V@c4geVMMB&vs)2AT65z96 zuEnsfI$3rR)ynCi*h7sFzfGJ^1l9r6GJsU&X8FCtRKQUh}bZGW8~med@Gsuwi=R1{<$ ztrJFKXosZ~d~ZVDep_h}%*Kb~Y+hIo1OJs6B^FK;bbbq74HSh7hZSJ^&J;JKOJoW- z_!<(pr6&f|Z&JG8w<}X{1qHr0X`_agkPyJ4csviRxQl+|wCHI^H~@{Oz7Y47qToi9 z>%4Mn z5BJXktN{m??%yic%2IIqkW3wWLKakc`5%7`Z_ADPtF8JG+|4FlQ$E^m$%2lKDgUk%zpX$iyX%GA_3D91|+}*B1H&&*!6( zhyMK~(%sI9qayzX58jtRWsh~5v@wLvsj@dkZL!P3Y;p=kog%ejWGwVfqJj zE0YJL-1Oo`(e|ZV>MBxAE8=TrIl$f2Gr7KEM66cCvQ5}_L28^Zn5Xu`6G#61+ieiW z-_>`dbPZ*C8q7&N@_r$6<0nmi#1O=nefTm2d{%R=uU^ouV`g0aYW(0E5=CAahXp{% zghMC077K`wa|)+4{V5$EzuBJPNALkYTP3YkA6Buz%DG`xzqEt6Sb|)svsWY|2(&&# z2#9MCe8-1>AgfA&pZm8ZmQeU)5n%oyM%(_4I;Md`OEr0DMEu0Jx4R_K$6CX|9NeLE zr^BQ%n;*aFd3yecgM$)XQA4fbu&7LG-f7}5;7w8My62F;_?#=yw{wU!@)(Mb>n)Xg zboTrDsbed59~dw&yh3o9GXC~kXg)y9?q{<1-KHMQmOH*pajJd2>)_enO~NA9R@wze z7h~OfQqbj|bPqT1j&2ma)Ea?KWrQUvTlkr;^$qd_fr$PPPRnHzxfm*D0%qc2f#Z$l zgUGrzn`INvLbA@Al9DomqbHvUroZ~cu`p=<&p3xh^z3^(aY7F-;EO%(gJ1A&Os@bq zgfVgUVqt3+)FqU|QySJrAJ~BhZ*h`UpNtkOw?57ua|^l7o#(^e(u@WG44ze?aM8gq zkhwbk>VM(RF=3nRq%N7fxQ1eeDrqJ*q`#y(NrPp-RR6~K_0$+bxPs9yIRhUG8E|q~<=@AZpM-uJkTnaA}bE4(dx^4g{lo%00mApMS8^8E3b8%!?W97!?wTQQMD^mfHrHO*vh>+-Oq z=j9mN<`_GCZp4$l-H**mf0C_kf>q&q2Yx}m=|R-RE9UoSrLq%`8c4T0e@(%69d<%F zQD@X{7mw-DEU&bF*M(36LMl0rxcu?iOSD{Wa4LUT&(&Fu?gqgGqD3a3-63Q5u#r1s z%>K|h*G?PT63%?(+GUIWj^Rjvp=(o>Hl0QyUU)$xD5Ciq!{c=2;CcVnD6mDcSxj?% z1l3|cXxD|I$_wrpTg9FPf#k@4zv#ChKxn{%oKi0o-_e8VTRE}eRNR9VkNx#jSenn9Ab)S)(KsOz-GNHa_G+9@RQLk=83tp{ zu=&Y;{qwjX_g$H&>afbwjkhr4Z50O8bRC!wL$ulyGf< zn2VY9;A>AcN%hA?3S-3}QCYG5?4bP7@%j`as5jq>>IBiD$mK1RR9d@Sx%?7Po6(ao z_wtZPp3w}V$4~@J*z}~MDnhd{Hx{1?xvAw&RdPe|#UgUM% zJDeI2M_9CJp$5Jlxjs)nGPBU1bcW0KVb>;dxvx5pH!*k1{{9}dS}X2KH>Nha>=0HO z&axUz#15&kevV75Cb8tsY#Uo(AEWoG>a4#C+eYaX9G4qL#Gsa)^Ti+IzBX3 z23J7pqc`^nlOsWI^eV~)Fz6|b`)r~@3Bh^P%JVr%u@NhGll#R`I#;+Roy5F?-hz4~ z{FmF#`rkHnq1278*vqu!yNfg&ubYwuYt*sk#(N#}^_janLD5se<#ROpK!-U(7H1t# zZ{7+hcXH2>F+iHz8)hapD1z`<$Etcpd!f{lPIlGIqC%KbdZe;hwmH%S2NZ~vnOVp^ z2e$aa*}85OhcGo~Rw=vHmjny0Qw<7q*YH5znZ1?!%eQ;XqGLU--mafjGPz$eE7IwJ z4s8k5(4fAvVdeaGu~)MYX*@n(GT*FWzWwWqj`vyaxeZXM%tp#Uy-+~`S5dLCGiOn5 z&n?;+t9{;mn0|3(1@F=O_0TMH7{f3a2i9~e2;$2UKs_BSI5pn4wHJ=8ARR2rTOR)< zEiUk+EzTS9^=ErW0sKLmGpg5e`c^Qz8@KL<+;Q@0qGF6|mVaaiFA zSl_p-|5=bY<3E6jkadqZ)Z4!J12jo?QyfpNj)Z+9sI!)K2(by&YSuN;wbd9y_Sp`{ z!Csylq}H*>o>5hjI(EYaPG|3snJ2swiNiM#%V4f1yQBolm+!i$5&8;!0Zb{iY9?lr z!L{5n$|IDiSObkVtRA1=tAk9^@CqI(2qG^G>=3fC&MwI$V@`KBh__OYqKNjr>Z+f zj!0Ex>N%I3(8<~es_&0Lt0o9+C+m8u9ng@tBxv#*lYZvX^TU@DiTiT9)lN3m%@2YXhJ*GpqLOqU2%5@mF&UDUD3u(tRiLHW)kL{?sDPjY!75`n6k+d|Y} z__74G$MvRz-Ssxc`{U_QA#1WGauL)K7H%=?%a$=}8^k8*!Wy7OCfh1szN`}JZT`MZ zGdBk7J!N9q&CQ(`I<~)@eN;V*=nkmP>}!d)pBg&JXL0{*vlrCMfRkrs>lHJiSvjJO!Hw1ljsdCgC8(4*UXDBAvb7^ zYUkz+?Rayf^g-?8!v0Ce31NTx<_g~K)Gji??4?8TPl8FyPop65agUaqAKZ;78r}nb zt3xQzSsKZgzTA60pG{rDY-17K*fNi_V}JSdS{A0Q>!~K!EDsoUH)Tk;mL=8bYX5?I zpLTrSQ53@%kvixhG7AGGbMdHce3I=hdIvd^pBc}XgsiS;Jz$ZQC9;`9vC=?`<6{_z zrgJkyZ&dRx%`0yn!OT6@vZlNie#$i3#<+H?HwZ80q2N!nsqRd>;*{ruZD&f_8p*#P zFF{%1pT)Z0zS@QNhIh5k7ci8K8_SwWmBMmc13AQtmNb>LAS%SPBlWNdiRUKR+uz0^ zxyU7u-QJ*n_T|hZcBuck?71JTejs$T07>RXjDz=v`aRPp?QI`eIecp3y0S3h8Cn?P zNpJ_-x?gXb`uOcLkPCaq`|nF#>R&BcLLx#sj9NBvBKz{>cu)YE zC&185yzd*!eYC7=ORw?@V~zuM*KJ+7o{yh>0)H~n6Ll{DDl41d#35eKp{uZ&F3uHX zXOp62gv+>RlO?8g!#ylP9&Q_3h@7uRd#cQ0p?EU)j~vO%US5LQG1rRM8sjv@8|wx| znfUY!Eo1QklA1l{`qwp+grmTGqTiT*7TpzpKOtrLP&*ktY{Rgn*e3Q|bQ1U{Z08;O z4W~UE6>g~F?pBloT4k2 z=CGB=nQ8+o-3htPZFZpHfzu~GswZ@y*sZ?Dj3Zp?BH5vsDm|n%4~}4bprOZ;QE42# zpHH?J3sBjb7g2s}}4 zYAF-J$a2A*!OOdTu-wPNC!LcxD2Nh&tN5{NKdTLjs2=|@zSnXhhw8tp36!4@g0 z;EYRHSr#QqV&sYMG6tD4+jlJEB6;jv))}@WD%bV#*@A7;AIZMHz$POgZ2qUI{(nf` z{|_4jj{nRs``^ZD%(FXX-K};J)|`hVRSuyV5em)u@gb<2OQ zYFP3xQt})H2_=&)567=REuf*oTM8bvq|YG=V62)8pkPqY(5Fc5F_=*}QNmD!NYNmI zgkd-pLrT>M9B5_E=hS_*^=8=f2tNc7e06-d&D=I z&u#Cd4`SQ{eAaf?iOF^OXcYjfHBQ-9Cz^kT0_0}l;Cy-6fr%;QYUHJ-XY2oRQ=p*| zycn~K<`)#=7yU&_yE{&k>!Z(}WnY6yyxQr7%cWLnFzx3ngHCa}Ib~|3$0k%4SX~QR zO_N1R{5BM3$=&vkXjs+Is-+5ykBAqc2w4=UtU1Eix6g%LY@$RYO0AouGkltzl7S_O zR0~iXEHdXRhYtxHEcFjYG1>|ev}lJ`*;z;kMXpXf*#)bm)5u6G_zA)68;5)3tYX+z zugH_#Q%IyFp6g91a&nEfJ`c7F2erxY+tQ5NSFj=AV8z3{jTRLm}JYVLFb-qSMC@f*}J8wjwY;AP(BIA9Ud#*E0Xrr`kxAJj_ z1G4IAIVP&J5UeD{mRu8oox}le=y>r<1B4DnN_05h!x%bszHhEW>|O6Wq_kFutx zrKe`|mQqD=gRq5$6{aw6g+AM78-b94pvUXs8X+6{%n2rHlI@>EFpzrB&ye50#vq9b zhw{-@5suNnxBSdx6`{d6BKv#T_Fc6N*ML!Q9f$(3)qs7aMHUsLk;tpXXm5cZoZ@VK z;01**W^HAGc5Qe_D+VC^J6K7g*r#{X1?uRo|z>pEY2s zz$?h>m$bgNGDYy+J4hA%-|sXP4Yfz4_2khPeYh<$9KpA>4=Ixlel}$f?Yr{#@B- zQIco-LqRN<9Kg@cl_#dR_oTg%*^ZCfUOUDvQi0i~15Y%rNn>?*oxBmDBT-n4W75By zw+z3huy=<<^S?tL&Xz7DKt3bF`!zyrS@z{3KW;Cai`>41+QC{w+nD=2>rKmMW=30o zjvKcKoTR{;3k?d;+_%>a0&DU~Nku32zfmOqCJrr>XV)W>4ei2B%A(e@`O&!8*)zn) z*A4FO@``M{6BO<-I2-MU{WY=XkOomB1~l~jH+CBRd;J9`pI`Zdj6UwDyU{FgAijRJ zxpP@c*xW0+qQHEws~Q`r4;Oq2Qp;|OQ>_AMtfybWk=d^rmNy6dZ4KG!qDkWCbF_w+ zk&Tvv!5|mF!?`}D7-~!0l*g!BDP1@oh5XI{r%+J$u(J)V*SkF=DA;lSSMVMN`=jcV za;vg$k^)Y+Jl{c0&u~7rSCkQ?S7dNu7k7V%g2t9AF_RmXi;~0s!TLted$ir&Pwa12 zvAJmJeocF&CDG29<&5yp%fAcdcyJ3dI(a-|yC3f*6fnSxXe0tLL^U%yHqP&Z|Fm_? zg7{njQKzu8+{UC9OveWw(M({lIXD=&9pmhPw6~32`~wjUCb+I^?BO>>7zCQS65-jZ zv&7y{V3^F!<4hrg#%#-jXX6HFNq1h(dScL!@s6w}iRab+kvGlrOg-GcwDH+)LTgis zz)}7E6ee+WD(PaP`B*XZclThLF(+oZG^^5Uklcl`pVUlBTuT3_A~RSwvxVTcZ)N$c zQSi2;&)3*D)9csPgf)$r&_^&;!Xyn<4%he7^-aWP1L%airqInOHnbA+ny?t=x2Y9W zpzo@mEF#Tlt7-NJux#< zdbK!5s3I7EtbAf(S~2X;N{ihZm9xc$tM?-6kNF0U!NS79!9wL(6(rAg3OST1Sma!` z6QgGarskFs`$b&#a@LQqfo4T@KvF=et0HtW2d4VD;$*;L%oa2h-)LqfExnpz%=^eS z+wMN@mf|s&)Kq`j=h4;CxKcwJVwpg;f5D~4iPEalvg0Ex!<~%bV9Nmv^k-{fKBh+V zD_hi}=cpuWM<4KaKxH1=V*ColW;3cLYDnF`>?E)usF=ogQW+@@wSO*ZGN$d2*@J{W z-VX)?Jlsg78UIx6;hj(SBV>|%dPik0eRek(e@i;=F57tn%+_j& z-*BvICJbdn)i|F(pdxR{$g`uWXjk5J70gdg`e&NciMD|W56ZEra6S+ms{QiP)|QX* zS3bqG(pzesNJ^s%Dx}Vqw#-?Dswu*F{$!j4|G;AG_J)>i!$qE~qP7v^^zwN^#8<&y zb~c1!>-|`H_nQ-MB;t}E2GCoX_Gsbqw~_qB!m2rkD0EiG_2;*YK18CJ>aqbKcv*gZ zzS6{u0XPNE@G&dTw+v)lwd!VuBR30hnRQ0=yZasUQf8(oJu(etd7N^}*H=M1zm#?+ z7Vb0$UiIK<8iRw$&?Sgn&6v}4ym<%|xd&MX%}V-|*9xonF}8V?ZHw}X7R`!EYx)8y zlDjwLEqo#Q|EVAS58nO%f49s2U->b6)KW%yOp0KrvLr$Ap@I2G*6=^tt zZ?t=0P=sJlWZ&!ldp*|wXs%T~9ZZ=NjI2~#Y?)F~ zA6=yNLuZ7TxREQ1iqw2udtWgMfsyCKI3}IRa+J8&dp`-x@OQS6P-7m*LQz(kOS4jZ zSBd=>mwr5DHQr=2Ls!B8ugr!hWrxU?0XxpXCQE&ZTa$!6j!+9eO6c-$yYJHympK>i&m?8A2k#IU#Vr?i4~B8X6<<`*{|Cj?noxI*J<>LzZ)_ z6b(f1s=in0(|UO_xFN>oAc7TZ`n$SXaC1cl#HT6a z>`&y7hvU<-2olv|5R*(Pm^oitCp7KHH;lRsc#<858W95Z3Qa3cxW#8>kF!q9*2iVwS?~o=rNuVZ>yWk{|wT{N3 zp_EZvn)FC6!L;)Z+9|*7K`8EptSTE0fXxZXgK^6x36lrN_nnZ8C7202H!+L2plMb{ z3I%c5zJXho5$uJBOWiDAxT#kGyho$Q1@?8Yg1dQfexd~1JbU?MwwA~uxL!An+5a%G z@uh$+<6P0OG9cYbrd361o7liQ$fBQK-vIK&(i&F_BUV+_KJ-<*P9Rj()L!&uFzVRV zwSK>89DcW-+if|4T3Ob9@8f(&2FL%X)rbx}xJ2b~Fbdy(?6O*OYrY)mQn8Kk+H>(9 zLddd=TMKNwMCEd*0gc8ro>`d`)~a$UADCGAP;e^KW-s^pI_JqwfTrLpq;Pn7c|caAQ%dsz>K1o3d;^es(ojMXe}!sySr;LW(_5apfZb633R zdrfmSZJlaIki#>901!c+kr8|F;MlC_-lc2m1d^XmQLNT6Zy|WZZk9^Q`a#p)8?E~F zP`sUe*H#s?c<^-8|7Gi3I$?9E%>+C_cA9N<%X)JR=rhl zDSkQG)e?A$#n1%Hyu+W0r0>3)iKkkjdPlyPay%`uK@RszSZX9;2d@&Ipe8Ow-1^8@sIpR?e z$xW)eT@*OC?h&8c^26UVZjK zu7Bm5?w7MIS8LZ>r~gErnqhtAM~JXsMF2kPvA@at$twrT*u}hn`$CxNfAn4(Y;yX} zm@61(4$vaZnTnzZIJKl559X@By!bk@Ws=otJ}y4xlB>tmAY(^$i_jI^8UcUVW38$d z%EXz3%T~r8b1vGMgp9f1XxX^pvEZ2sR5*m&MHHxu<60}F-AzTt_h&7VAunYorpx^7 zidg86O`6xbu@C_)S4AfPcpJ=$#}P)qC*!gyYbWZ3(uMcuu~99mC4|TaOR)Q})*iqt z9YD>_6<=$z^*@ezzJ4wjUQ6OJh>PlL-^q@Z1-{Qg)kw0|VEQJsu1nDG{HQXjGCiovo-qQ_}qT#C4gJM{=TEZ{+tG~|WLyq8UnXX(?9z3~vT1J_l^ zg%OLV8}o9_Rdiy!CcZzPco8w*rKZCFD8Qt-_!{~x_89v*PsRSVXx?e z^I^R{XaM^*!Ml%ScIaS3dl5~I0|V^QBMwYqr7as3anXmtU51JMA_@5>0}hL2MFGLb zN@lB#GBDQfgLP(sMo5NyIYySL4mmKSgtLH3B>!j1!^V*05CJ4~O(n^=K!xH-gw zY!`A9;GO_^K$c1(X<$HeD=D5~C1FqSeKAaggIgK6k5ocKekux|Lx)Nxy(-YWAl9B_ zA-X#eoF%=atK$0RL;Yv^huAKK?XW0dKgCL~22(sXNq4tASW?-QOlhu69weEv()_6l zLq3z2Z0(DSRK%@*XNqWFVujpX(aF-`G1c@h+9_fwT?t!E$~LGpgz~=mI0PoXlx(Sq zic@5rM5-a*^wK_>4iU)&5Zgi{gl`!0OB!{3iQGHevo?I-RH=PdBs&D!x!1M;Q7kIh zZPES+&p^kp%D3p}DcZ*`k`7N|-fUUYHP}Scjo-19m9l zke(zIZH~uo@V&U%|1?IuE-D>$kwf?KVAnfx{CoQGGMh@=$4 zQy;p{#oaw|SGj+1l8a#U#i}7|J0B*}{_(WM?>$y(HvD@3eDD>w_^wrt#iu7@Xg?DF zb%WyXlQ{DryvHLOI?-_dHuB5Gt4f0B=gaH1O%&d!1GXBWl3G(7G*JuF?FD600e0fp z(hY|Au+5#1pKl_Y0AD+=KD%^WGreuW-=Q{kTz-DgwSSY~2}-Jbjs>+-?LC6Sm;A`R^I6 zIb_fJO#17ckGs3Uw`Mk{FAGODU$~MsxsnhG)?v={0=kl$xq_(ba-;qND77q#3JA(y zh1hKqmnBh6$~ZgY*k54!ZlY`C(f0A;H$*1u+r(Z~E}&Hd=@%!*X^ia?&9k}PRC?HVEFByF z7GT%s?OkbMGuJ!Kx)JC4eorJrHdXX|{y3I6*N<1iNUSSla~Uc>xt29f9UtTtm$U0> ztma{?)m(-XiEF>M=X%gTYFwz;T3!^!t_wC=$30__Ng`d&l?b;hBtP~(w~GI>t_4>J zVoOr(HC>D3dN2cT@>5CFdO_5+LUL;A$+f-@vc?S7{cvIqol|35avYuAEskQMxODqD z@JBkpaWWIg5_Cy-VTjS8ncC8zV7Zy!!==(9vpJVbQ>(B4 zem6Ujt}(orP3zRyk{nlQo2`LZ0Hc8hS%_G$SCL4KCnoHO>(4W;=CLP>ikwBWZF446 zCzax6S^1jO(%JlUJfZF=BlvnLmvWGpYHn_CeN0K78$fT>*rN7Ffk#cmv*KAYWm?5l z{}jBY3T7hnPXKD~dB_=9LqF~^qmx=Lse9|+o~(GIOtu0+^PDfAmrq36D@T^hMVa`c zcN?IO*8p$AMwQDlms&@LyE>CPR~uPdipzrLE3DW1ddHEk)%J5iR;B#JJ5;RPpC&rJ z<vqMca0fm);+fwBPW_p-Q1N)5d83{I zRnd3uJA+uX7_SopD6}?xy85H+6O+FQZU>AO%Rav0T_oad`Zk~{NQdqUtcQFk-v%pi z9?+COnRe-a*e6^!`epP3Z2B(S!0+22;n#wy+pwQN>NbOJTXDSgu&p4*DMPla5q{0^ zM-Q;hTV}UCVfy_a7ekDE!Tf8{R5wjc&$J(Jr5T3{=Z7aEcQX2S=edWi>xWN1PM&l6 zX9*95uLGhBwLh;b>vO$QikG7tp21U}@R!GiD1Z9e4!pPpL@ zE89X4O6lVV%(h2j69f@KUq124IVJARJF3YlE<%472L_Nod~1sJCL)(X#XumJkh7{B z3@jQNyH+YF!YFVzo^L2JFAGIh-4)u!e1U!eefkvfvi#!N7oz8J7k8^MjPz|*!^wyK zJiqHmHxt*=uhzwahc=&h6Fu`L>fZf!oR91E_~o-vJVYtfr+lbSo%d5AIPjS-d;HJU^Ed7D`j+Nw7(_^k^bjLf&lH^=_PgRd=HoBpb0L7o_8nZA zt&edoGIH2HdnwgUtX##0B3};A3xoK07q<-BaxpLvjK%;>V>3*k%3IkU9JzA%ai4!~ z@j)0{3rbb!R?%>Ae}WFi=NXaLf4=d_E9^=p32%j?e;(j?mhV4)AyElFdg_1wR?;MC zPx%cJLsGdA)vNLOEBScW7E{3!zeZzPEwqW@!o6<#tkOo@ki9RRcQ>j?_<;=AqrJV2 zC!3n~w(MQhM8AG5B=;I9ayv;y|Gdmk@Bst%g!^WX!P4?DW}C(0&vcEYCW^w^?(Pc+ zg@ALbmHx|Ew)p#J@962vyF@!_k)ZFM>pBt4ibuIS1-%}s*$LhwN}U<8rHTI1Mo3wy zxhwsK-&CGMBrtt%m=gd41?HD@1#)_ z81=ftCkhmw{8H3(kDeaW{7WJp{}iHm$E)1r!o-KF>3L_*(ig{Q9GQ}$=|6L@&~&qz z;^~m)rmCt+5Z0wrrckKVx@-mUzKd{sxVwkQ#8qU!>Mh-&ecH7|>$Y9|S3X_wkhrk0%JlTReo9+geF1^ak`^88&a!HU zc(#hP+S=x=68zJdjg9m_YFxYeaS469I~vY*{OLBVjL4rAVT^ew2(Bfb+oJC1+v z`V8D*LQ2Xam@s&sw5ImeBPUJ*=$Y^D(b3U^aeDBu!^2W|T`)w9jHiO_WHjG>e0=Ij zx!tqH;&e<+=d_sx1lo$>$ZR(U@wwebJ_yW!!t^AtG1V({{qTpT-=yx8pm5j2P1~F{8aA-bAc1G2X$!$n>g8!hLBY;J^G&XfGBPq#2{$Wu7cCF#Cs%Uh7+pt9 zrjyT}dJFg?+t)GTb@lc2DHa+vCp8u~xn7JKRTf7-oK0!EIyqIke59f(GS%O~O&uP% z$=xkLf|p?4BIG5*C5~h9ef~;);Typw_Shx9zm4bA;A-7qO4u^1pZ1gc3!X%Y&FNX3 zx?1%6qtB|6+Hna}`uZ@C->QO#he>pPTCI}nmyb~&cXzAe^31AF3Y9Uet%n9vHkDK_ z;+P7WbA_qVC-wEl_4QbX;)y-Z3paXRyT|u3GGvs`2#$<&OchHTF(M`*Lz5YwZ3~M| z22&KjcQ~wesfOXmqvOAXChzaDeIuOY+>ILk@=vP0lA9!^6Ys4Gvr$ zx3z6(8qseB{AlCEyos#v2x+yv#7K4}ypGY#W-Ie1PFWV+Doo+PC`)ab{TUAC*NwTo zCI~S!rZX+bZ?1oPr!r+y6mXv{dxh~%dZ*RLebJ@hc7cn(sQTrzZf@)Jq+9Gz261t! zkYGwTH!{Zf%tFe;J!SKfCv&4R=WZ7PzF}dRm6hk)vQYSs7?U3&@F_G{h!4G%78-A` zawIwE5PgkxWNh~1Gb_;{Mv*L`JiWNMI2RX#`*U2jT|rRkI2o??yU9aQk|DyW1lpBZqh% z+)g$IOs9(7lXQPnnNI0oSL^p-dJ|2SXf6&omp|qE86RJbArLMmCT3z{QZFky1WLnO zIh$bbAT)`uDtYMWea9=x$QtU%QuSW^8Fb=enbFbN$;taD!T!%6n~-(`!pZ*9^__s-3~D8C8!krih!Q`*=l-z+eQOQ=z6X`^R}ofv1l zIVp0!{n@K?7RMAMRZu{{T_`R-vH8#V*l-fi(9-@L&y$_Ml5?=PSFf>1k|O(4sx7d7 z@~{~j9qoR9wTa7Op;lut4{CpM!NreHkwHOys+LXmOTS>u4J9iaj<0U@`(l!~-Rmoe zchL}ivHh5snIpp*-lVEEIGDG3!KUJ0(oaf$Y-Zmq#%F{A@cPw$6X%L2V;2Co$An*eDtX5CJu5WG0oYeuM4 zOuVNV527utns_O-#Yq5)Cfl2sd7VE9(728B_CNyIl*jY)`=nyIeci*21Sf85g-W%$a6JoI8=Ki^I2E76 zp%Td*`t|#_4!{XQLPCavc8;$o_)r(!PC|q-w(sdzgRnpwc9LfC#p8+WTc4-A>KI|+ zjZox~ectCJuza?$zy6keH+q?|pg-#zlX9sv zG+PmhUxCk|prNRk5VO&&_vLzsr=}&_&)i}`A_ZYkYl;1J2TZCo(Gok`7ZDMqn3%~7 zq3DJBtUJ@xH#j>FbqhA$&miG~d`dU>H*U?1#i6|hw)ptF^z_fXX)9|K85z6bU=fof zSQvj8PZ2M(vT3#tw|?E-Q!8Xhi#KDA?vW!yua_T2dbvJS(xn^!Q%ae#T-2|1wI{zo z+RmFuxMXQ}clYpcNRNKAKTdX9=aZ@@*oGVqd&Aoa|Q{n^N(q9OpkjEszG!Os#mUB}Lj(y^ZG&emGL=R-|#KUZeybGAO!Fc3qP zS9HJ*Q#GhLt<5e=yEnEIxYksMjj^=IQLTlA<{QIChMnylJzkM&nzYa+ntxhVwoi}4 z?%W+Cy&3;l93?C8<%>Us#|+iAu$_D-DCKy@92SX0OjW0oR1jIS$2>KW)-MD?GF+VA z!$s1m`SA9ut4;y}g2SfIMvOD061jRsc+c+~n>IG8sIn1cDfr5We;zY$BEtU z#d#4yUgrAxJXS=$Lb5%2zY`M!FP-Q;Cwvf?b-Ut`@yN)@AZY$RvU6vres9m?1s1Fy z#@$s;?skc0c!c)q;gF-XG5WLQBn||~j$p`ToGkw9*ZQ)uv`WT@M&c%{*9;-mbVT#uzwDHr}Em z(6yp?$1lIKk)*ZHFssncev=a4@03*tqtVBL44A<-H&WX@==zT!%5t$8m)T6I+0D6v zFG{=3&)3h7TBEVnw7|)3f4%_=n$i?Vn8t z(UY!HdcI*I9v(SC=4S6C*l8qo^j&-211?1KnhzBL8PACH37gAkl{_cSY@0ty%k>V$ zKBkpP)pbEh^Uh#nTx>>pxeQ6vn>TMFMgpYB=7gI zih5-^Gc&V-O_H77o}Mp8vsf7%Phr0bjkN~GNX%55tD?lfn-B0guMgv)|HJgGy9bV3 zn1!|j2M75chYod(aBsq&1V62D2mT)d<;^(N@B|$NC9FWPM5D!n>)pE*!5@dEP9#dcq-<<6t*vP{f=q3zM^9n-OiXrSs8n4V|4MRSeIOdV3M05%>xl{s3=|B)w66;njinY86eK1k z#l^vK_!%dWLrO|IH#g__Gpf>jt{U792?G*;YMQ8??r{oBEoD`JFC+$>H^~wcFKjhovdgI z#f3)a3J%=&)s`#m0aTm1IZbCVv3YsP#H_Y;#4oUzMgLS74u!uJa7lINBBi7>>;3U@ z01d0IHWBfeQOuU5e)RdI>U@cG+DM_eFe-P;*F(|axf(JP&f zRt}ho#I?1xzkdC?F7B_nv+XaP!9C7KoT<0W-@4K<-~nr9RzI1ElxC&Kg8YpG1C>ar z(J8fz4$^`?S~h=FYWyjZ2K_RkDERs7SETQYip{~0XU}L2%OI`HEd7cYnyooSRh0tI z+^J&q44J&v)>d_k58k&Yscd94&wW~z%Jq5@*=#lJ1;UG^Oc;6e4VrfpZi7zQ>;n_= zHA}Tx9}fNmkW<4$`ih%Dq@3kl z3p#S~n)efn{EFW{uaf!cR=2kz5h7x-$I)lgODcy<*p`?0(h(;0axLd<=AtJD370vT zKW)px1Mk%R!2`o^|GxLgF-Y{8W+Z=GIoOLP1ny}C<09Rku~U%lDtnzWKdF`R+L^IY>!>c&->aqTZsh=r_rX5wcXwNsVXg@_cD~Ru62gk2Mm($aN~7}$EfR<4 z{q5tEZ`)rllHg@n(^VJ*(5E*?!iKCea8eU)u|{EOYYB>$s&)wsI#3#Q)zPFZ)AuN6dc3DVq1@V+F+g|rbP%f=)4xS5$5XTbYF|dO zArVp0xsrFq<>jA94ctjET~jzVE%mEB*M#RKNs5RqEG#u!G)SUnak0r5aUilN5ySR& z^zo?{Z4(#$<2AK1*5-UfDEsqg+uZRLOdrjRqCz2!#-Ey+4|TCq@Ro-&;-7W*ge8*K z*G`iY5)OS|Y?6v$o0_|)r7j7epa`(LFCDf}FyYY1${s)Y$(NRx!g?ekJgYT;tmMItDtro{5Re)^M7) zw>O1ivE2@{vg{x3%>|Pfr>djfpz;=YZLp=DfnFg}G1rwXWBDVxsMb@HES6?_>hR+E z>pzkyG5K=qGI?OxMVXn`+*~tLq!rCgk>`m-tI0A9&bnk~t*5EhbVKXL>iDrjbIf|( zhtAG<_VyxozatDhb5+31>y$YSr}BZaJ9cBv8}3=Yz=%LhPM%*@7D4p=1s1hfB5Rr9 zi&#$4aK+6hy!&^ul(>$5ak8pxbcll|i85E4+#zb|=<*7S>}G3BMQz6+!NKi1))npP zkJr0s5qUW|IW;vi6B9(}DIYC%Ft_{l@b>A-%8KDoazxys%Wl!4#|;%J>E|K^LN=TB z(b4jf!CwxlVEm@IJ%9fW`19vmetusRX;@9!)zX3b{P#SKJkFVM^Wh4_7ca78jK#&p z`S|#xr6Y{T8WBT;biqQ=)=rZmTS*8NO$34r*g878x;+-rnVFe%x}A1Pg2hU18HHjG zBzHgJzBu@!GckrQ^E;WCc(`-Hgv-gEl-Ad`)p1-m`tnT}y_c6RkcX;IcFHo8`j zlG5Z^598_o+5i1$6?E8nX1!-V#}^N|#DQCT+kEWFbiFAq;>;8h6Ww6 zj_STku3&;ZI&hC_%7}5z82S10=dKqA>eXg(1qG%mDzl&=b~{%oC@8#r`*v2DG9)Af z>~wYKJP2WI?C>evzQ^%e*1+`#R~JT{msc)5iii*(;ckab7hqUmA;ZDMtL>Z==vQy= zP6*4wa41cwQeklQQ1(IjE#}dRj^Y$57S?N$*H375%XBz)Dqc}UuRX!wqfO9w1?4{H z7eqDj2Id7{IM#1j**C2BCtD+vX6F+tD-+h%Xwki)ZOc-5)(i&Wl9{q(aA!p*&W(5g zA|o zt30GhV*4-6&JTae5kLl0$i1qW-%@K`MonUaY7kPqA1A75+Witj*e5} zYpf`AcDNzSj6q*0aQZ6j8YI^+X8ejhhEE^x)1-rvg;d3qB($xJIA4IC`>Ds%QY#f* zo|a0Tmb^(h>*(mnq{`**QY(IQKhQ3nU0haJi{;3pMf3&6(7!EuKHS}1ERy=$18!<% zMO)l8)g04|$6lG*%uPv0M@e^7+QO64y2bxCb7^Ub%k^9;PaVaUR5DrY+&BusJp6SE zjan_O@n~km`_C(^gIcsg!PsdJBzOZqzI-4-@{1<8iT(Qqsf<5@3Ju1qCNHmM!L;HG zT}yY&zpn$rnJ|InEtG-9M`S9V}fB_&g2=MTo?d`muYd(VR-yQyTmMl$3)`_<~cSh3t zRxDQ2j6ulGMO#3iN(>%)*q%c1{7AZp%*cH2w8Z;aKma}zg_$nyU@1J4p(UCxi=GVq z*nd{q5g7``=QsyzR9;>le*^4|fQ4}%G_dq67rD7p2(hqg91j;=L)JDn2)JAr-@Wq| z$^dG>!TJ829#|N5yu7?}az8|}R9ZZm&h3b)V|Ulq+V$w|UtndmD+OzA+};nBj|Sfg zh}s)=$7n39Uk-8)am|!Rp6-?Sz@)OSJnSvZ?v#BDm7>^k;gFDu3IR5o&3%=rIxhLi$%$&M)iRK38&1t2 zFCZfnDOdQlYK>1$9!!_{sKx$BNC0H=x)p)YY_VBAV^GrevE}}@gICx~c zW`_Uvr3r|~i3Nz*17stoK>#u4PgLCB+E#=OMa@*i$(a-@{YlzqXSe5g<~?1m-v@4y z#e5e1)vKd<$Hn=2`@W%}Ff}y=8JXkDs~EtS)$8q^x0Ny&4u->s+|+E}9JVZ$>2}@S zT!766L_x~;?O_-+R`1IXlexKQO~ylv$DZ0an;GXh5dXy_Od&!*APGHr6HHoR_~cjO z^mJi%>xu;$IXZWCcHf_QXFHcHF$ZQIPfwTnbCcHFtJ$sw0-lAlwJ$eWzTdv>Ew;4W zaXvdP88t;Osoy z2lDryLjkWwiS1Kw@wnR_%dw|vik$m;`rXUR3pkEoe>Cs-5p|3DBfoIN7yf{@FEX1f zuc=uw6qsE69Odz{j2m1%0s<8#rP5#T9dl7BsbSILqbeKFMHewC43;P6kuyI7f%#<- zwNSW$l$W<%gzyKKSDT1$)qN}wyonxYn@D(-r*#qv3FKUgH;1ML9%YcsK9@0af`9z$ zdt&gWM=hk=6akLxQPS~lbZ~L>T3KGUKHHhtohteK>62Yz!wDYd;n_4E&t(Jb`=OqB znvk~T52U0m-{XQg2_%V7GqbZTW=2n1fO95{a=y@&o*SiWO)SAt1bJf%q znd0QP=7O`=+K7As_mXAt=Xq@_O+^|ibvBRl=<4 z9zA+V$stXTt1ONVKVM&o3frWh3jBFUP6`C;`dkeaMg|O zOiWAw^K1_i_&xJJjhE+a!v9C|2sqE>dCCWAjfCK?#b!pWc5QzDwEOxs4Da2_uKeq7 z46%KNv^#6ZZ0^^3Ec;Zh^h8S@`dNUjkcV_m^@};S-NH?kEE=)%$fUe?2nE7DC`+JX z2D%unsyw}_*=B<2JzDLuwYBZ3Z~_`!wZ*(h^4w_tzo;8>HYYPc{r^BhQXRc$Fo{Kp zi^89kiW6`2<2Zda%^Y7}EZyd^+O`^}KJ>%5i1zV%c@PH^d0p8dW#7jXDKDU*haq$%`f)3k`b=?(6zbvc)ysQ|*cxxT)>wN-1g-dkD8h|~rgcRKfLJ9wYB zsLvb@{=6Y1M1ipV2I3eD?{BYwa0WC>purHc_#OVZce`Kz66KwqF}AaV%}VeZ+liTn zhm)zQV%<)}$S5}DMiPTHk}0rWU?Pz<7vCBf z&{thc85lU3kk^g1~X6dbUi_U{nZ_W zwauE$<9Xllo1f=J5GaA}i}UJau?Su5-_a3~w3=!z8oAwnvTDpv*D}9d7E%T`n>$Xk z;G~=1#Py_0S43oz%V~JnF8-j8MYl7!X3=A=w^xJ=eE~QIK#3i(D?V!vc)dB0;IBOm zG?R&CHB!dnR$Pf__ab8sm1k><>h>AWW+3jRZ>|oMl*Cv}i#}4}Z0#$Eg9XgVU1v#)2Hi-l$J z1=gVCPuj`ZYkt13EzuKm?l+6j!>L~LVYBakY@#KlqY+2y39tk!!m*poZ} z(goeb^Ljf6>`(+00!jc1cje4Y166NwFj*SJ&9@`w#+wNJ~;Oj=qRwBx6IYPD9{K;Y(5 ztzA?0Ze%BfOb%0YW@;Jw6K8t^q^*)SfAsQP7_Xsa<(6MhYQHZr#*eYo)BAuKlt7G$ z@p$FQUWtElV zhORdiS66FOd_}M8>YmHX$C64CSn8g%&NtM*l5LW4Eh>FVQ$xTd50F@0uu_+C9 zo3-z9T^P>cb9O=2{bQ6*M1MLcKfw>*DM^Wchn)7K(y z-t#(W8@;!oxOfv0u^Sy$%S2ADSon0JRC{P+fP>kg@TGsoz(Y`r=Ru?M+7L%^alK%b z{Y|^h(XR9K8}C!ZraS~ejvo~0h*xghe%j_|431y(`FOd9$@IUKM|4&gnf^dvq3yKF zmy!E&pZ_mngPKLfrz({qnY?ZdyAUCtRaWT3hYx$8sLYh>7Z(>B8yl-uo4wtfP*GL} zIMB$jjFFic2N&0IJqs33OtR%QdgV>eYi-%C`yiq7QzJ&4QdL%N zI_kuoJxrp+qAZFCX7JIxFf!i9z!gW=Sld9pA|vHkrHq1^Yo zg0H>>5{*BFfpENuG)Ie$kEy~4+&9*leobFW+n?pv)~c0Fhql3ZY2MxSv?wC+3ZmkX z%Rd}$arMp3-85Y+R8&=E0r?%7RK5nQs9xpfS6|-?sIaJL#_Sxd%pNUd6V^TvONiUO?t1aa-CTn)0p}8JMu$hB?eISu4D~J{6$_8(&+#m=<`l%_V(Q0e>RadSwE&vk`f|3 zI5?R7h0GT|xFasW36#mT4>NEtFxxvjO~y`+kN5WWC=-M-s(>gAVgbgCDix=I{}g(HDo`_mEm85aGQEsbwC3iMMuhp+4uUu#&o?0|7aVgsZ8qQ5v?I#?+r?MJ zpG_Dj1Tn-!v4TY`6^z~78dZu2fIjX|Q=!@7k(`{&8cGo@k|i@U%vgN~m>95=Z`MkY z!@6D|BTwFG4KKzD_+ySw`4f})5t9&{Uu-g9tCM|0$HQwh93mjE+SNV)u4WInRh}Fo zwAQ})Chk>bVacqnXo!P{%uVQ#PGGspD zVnWJy7zu+8HuU=RFkXApxl?iND%8=)^mHRRonJdUn+*))5Cy-Wii8Li%E5XGr?F~E zmAX#TG5}rAik9~0(JiWE4iYx4)=)ARut&xiJT){HfR9;u^g5^`eQY}~FApcgZ)j68 z`SuS156~ISnCBK2G#b9KQd1*$9f2lKi;aZWb#rl8(y+%#Lo+lsCd(n4|1Ua)q2_8( zv$*+{&DJouA2GZd2HMN8gt_-gf0KmLXyZM$TyDo~?d*UT+i1NiIoMx3;zb8O+Tkix#N@D$uv=?G!cY zsh*yI9=#n*YLS34?3VtkyA=JbH&^~KJA>g=O^tm=N$$z6<@&_iGnxobc&*zXW}2!d zbY=0<6efu^^Db>$m~GWZ1v6T|5~vb*smME>u3i^5=+&!H^Vn@k2@4C`*x20AjQ#qh zH4x9_;NW0W#|b>_xd^NCJ!QNufX2+VwckbvKdutsn+#1``K*ApDt%GtXC6LCpEiwqml{;)TtyXsTU_M7%J;1%7FAayJa=pYmM@_>u#(_+KH!PUEVsW&=V z17`-9PQPf)0PuMEa-}P}DwRefJyE0}@nJXzlIqW0xi+odm{aH^-ARfYG|Ei!b|Q9#5r%#LPBevd z!J43~xn#DQu3Mn-X;}pi89WgO&{6h|nr4w+z65l6cV`FCU*K16BvZM8*|Ti9t1c_E z2C7#@45*YOq@<=(@GW?;)avCmH8f;oMyA8dDPKEufJy_Xc}IJDp+=L+#VAMul8XHV z+6$Sup+eI;ny9?I?X%sft`J)EBZ8t^7y4LlgGD zG>rd}HF6vg$iQtpDhM8TE}uSq>Z;=y(mv7%8#wZ5p`blZ{G)9U-23;sIWtMXEuQYg zb4u5?adS$Uxq_uSUK^kX;5-%G7ftxb=4}JH%XVY1iObz(D5fxMcPx9r+Tnn9&eg&~ z(qM>Mqt>cn&`;|D0%4!wlP!@)rDaMi(p+9eMMX<%38?J?{QN2!`{Tx)Mek6E4_cNj zrV^&BcT`&x7Oy8fmKBRM){mUh($X@7LQGsq$kisW^_d@pI@*L_eRm z^lBvITRypwfQ@*_Cb*%*B%ag1TLD-jY|D9hl5pP06%nc({x?_K%6s5`_mPl**QDWo zHASX)e7WMKUc4Ga(ut@QNu&DGmeI9rGofUr-!-L?!t*yk*no&m!evzf@; z3R8OqOlQi>bceZrgcg7gtF~t5Smso_fy*yM@I~y#3R&BppM;e!Ups4>vNh zbC!A>j8CPM-O8f%d9uq<~VUphS}SH>pBGtU?Cy>Q)O!zjp*3(tMEiigM`b0O;^W8to)oD zLl7YCJFV^QB~%ebfDrvaRwAZg0`BY#36JLus#Qi|Kk+-AnfZnW;AB~7k4V^e+1MCx zu#J$RLt0Btr9N!|*|Hj+Rh8YZ)&dqgf)o*70ADI9AV^((^L(3ui{0f{90N#P@Qz8L zCx|3jotcD)O@?)yaC>r3kBkI&zdP9bzPyB>FbN)ZgZ|c2yPPP}C=(NS99$L( z?SO>21{O<~WG)Uac9pb|)77JQu&}_2yh&uQB6+)v<>`s=Y6-mZJmh<= zf`WtDA6B)^>9uMLSr?ajV53&prUFSfJjO-V3k?HfVtQH_wHkPkL@lvfeY9Sfk%La zY96o?JE$6J)iWX~o)R-Th8-<#5%H#tZBt^3{+VStRx7&{3bIbQ`17ZHV~|R@_OH0% z=EFiWl^mH{f4^8WWe2ZLX1Ep!zbZL9GT) zk0h}!tNO<5+`D7o{)&;T+SIuKOU&Y6>f^^VMBnpEg%_9w)n(E%c50%&fO9NY%6j_| zNpQO|mq?~`r>8r+-y{#eF?q#;Z&>o~nZek{lNd9HIyn*U;vYTTI550LBjIfFfQFiQ zr|z6mR8~$;FoB~z-+J1iex<@`iy;E0%rO|=OsQ#WR_Jd*3(pm)H%#s`Z-Fe8@)=5+UScAp$M1J|`+w`-t8 ztsv+vQkIBP{R!6(R8&;H{AtYW(&W+TA{6R;I3e(+7h}>`i-z!h*)3bfg?GP8PCPv{ zFVNByUQI8q>oOWFqJ&~5DZO`cdi5-1Vq7Y8b+LjT#11+G@u1Wb%5E*ew`9`KM8;Td zYE)>_WVFy5^{+uV9mLZt=j*d1SF_0FD^O-d;`+b!WJ;6i1?%(}C^B}uhEj)({$d_Z zKSoF1FsL~-0<4*KbhJOE^fp?hY-UZDo-yx7&vhlHbd~K3Ate=yzvsw-p%NI+AR?P% zz4`tk=5m3B>}<4Xa@7y-bn_mm<4_9&hD=_yEW#67%aPU$7w#RZ7-4D*%;LZx)0m># zw6~m0XJ#Oe8^3vQkQ@~?Hl02P5Bjcg_WynY z5FKB$t#Zqh`JfIG{9iOMC5bi3SNcul?=D`WTt5=G6s`IG4VZ@vT2>?m($%*NzG20X z7wanKl3Y*#p$;R7pX|)J50d(W2Jf6wM4R<_Yi_VXNF&hNA8nYk`z;qGdE)Rs9voUP zku;EM6R)mlP&;+35s#7D(lau;aZ3@A77*Z`ST~^ zbC}SlPs2u)Ajbg0tqEdbp`pmno_!At1jqV-dMPO^Of*)fRt%7~L;5@4L5J%@$#v<) zFG0x=?|oWUaRJSj6T&aYgpqGVXbx@M3{y6f&6K~moKLlqe^Ec$F69}Z46#77W0ABAK#9Jt*_m(x}1)3II>edSUFS^2ifZ%>tTkH%E?EF+Ry3? z7(CGFgTt<+NzL+HG>qnsT0FM%y#6Iz}r!ZUuMAbm8OjEKu*#K?`2%~9G zQ;K0cW86nZ&z_o~0)XP7vC#vMOGN-R%)|twa3RRQq8wl>`+jU(Ms*F3{0w4Y zfC-{V#7*jIUINo{6s>bAZsr0U7W&^w{I6;euD6#*-@iY*Q(U-zLaAEaKQOSL5ytIe z%!JIq5{AvQK=qEFBX*sTW_^GqcCo=Rr}36}yh^(b9*}X6!j6@~0;J>6OPev~Yu+5~ z%$~q+TGx3Buz1!NH-3G6LQ}zx*T#**`uDWL@ZoYxudwP&_G@Z(8Qt(ga=>a26BA9& zf_MURQ(_?K(DyKakwB1GS;dX^cRrAIMPcRM~)baA=TNVpOMk-l; z@Nx~pN8=Xw{RI}kd1eSZI?hQY8g~>LKm6lnUmg`$z&$>8@$BZguU^rlyZLvxaxr(I+!z1qwzct(qa$zIy+QLEOeWiB_&-q}K}ajI z$b7U=xuhN=>GkW^tA~r%Lg1_f(Su5pL8Mv1f0(a8)x$wU8$I3u8C0+=+kXG9SMyl5 zq<~T%{LUTT?w0>M&!J*DQ(0S~pIGo%s4`tEA#`yvJ3o3ZD#jU}j0_=s4vAmg<76P& zn0&D??c=+;+tlQPj~}vi`rFShg@FMDq`QZ4T*I}FbmlcBH#VqS91qv!?%Hyt0S7u9 z8?}4wxCeH9S11snPM2n6!2LF<1FQJH6_Z-+^6#>Mdv(MBMvx%~8@{llp==(=52QOd zs_lPFaB~9)O)@BuJXZKmaIl)|+)?9;V$GHjJKD6331+yZje!IZ>3B4atXDe=EM7bw zG*1VX)_>zU1)2LNI{yRD`T29z))l7oy%Dw6Dkvx5e``v!;mKERcL-T0M|AFUB zXp)ZnZOTaq@xY=j+_>*KrqF~<0|z<-ng$XQSS1#4vI;lOEu+g2QZo*F!Fj7O+qpk7 z0Z+S1o7E0*v$IEtiEVFA-;Uw`Tk5%o-0}KaqO5|!fL`=Nqdyl9cdXYqPU!vnurS!5!BYmw#Wy#DGlO>Z}R{ zvn!ZMIm9fJk@Pey>b38mAS>t5Oi^E7kj1Z_z=r4|%wtskz9!0Qrpj3(FJ7`7mL zkKfUH#;y*u60WuT+3nOlBL zP*T6+d${MXyVcOoI^gToe2JSqZuIBfJG_@K-{*)q|Ghn8r>X+el`2gJ0{NY4^&h5; zz#*ysWFsJTLm9E@t{7@tH&u?`{9!}%V|#;RGWM8f zR^gDR{#FpI^7StFC~()>T~Bv@)B zu-pHvV}q8knL8#OG*#loiUv^;X|OP>AL!?dksv8rvzyf}JsyOav+{puAUr835I8g7 zG5APfC}TxX^!4qPK0>!EhbbJE1Xm}a1qBCLDfA3|nKBTWiP5m15fv^&+sKiUgan_v zdxpxLyhvb6G)BtNMZ|ct%=Z1M9W;#E&X9ED^iP<$Sl_i>r%c)smjq;moYP!nQ3C&k z+9*kilmAe}5`IDO=BB@}`7R;CQECB2bau#ciT;nx@n<_(SEP(3F@Z09<>!&WqvMwP zPR{1;2M+g5V;Yvu^R!50>$0kA$c}qlfgmeMly#jN*Bp%u**zKc6NsR!%D7NtymN0CZt?z$v76@PizAl}8nl28@3sG>GqP8VZVT|FuihXhe771n1j zM0js9IDYS2H+g6ThhtH<)PYS_$9DB=bX0~6-6Z36mduy5%25oE&80;etFYoz`?md) z7-Wz{WJr5lEvga!kHjV;_MAM#a6~EM31pWH_ok5SDR`Ul^~U5>1R6PKY*edzI;4%L#L0jl*=c~P;_olX#oCwl^qoAKmQWp!PR4P>zb& zEoufGU1D!Fq2AU`&cNdTVlV?d3MJqil*8WtL)ce9Rn={6qhb(Bry$*u(hVLEkXAri z0Rc&ABo&E6H%PZMNH-`cpmaz}DIrqQ_0QwI_xtX>;~V3D2SZ-qoPG9Qd+oXAeCG2! z>xtN0Lfrq+bke?rmi7skjc|e%56v|x(QO?&-?3*+>g{Q9QLSS=UP`mY_m9GLqAkq^ zIfJKak1MC!AOo?Hl^v#}`1}Q3vgC>A$TS7oHL}~$i#+<~Ux3KZmzw%pR(8pO1PTro zLbTc^PXxOr$hx?M!}@I#>88cW{aVeBGis)^M&e*Sv~8#bQ4^1ysN+Do$nvsNu@cAN zb^mAQ=jVW}>AMRla%+I?Yi#Ej zhk>XBR74;yJZ2q*OpgE`|Fh%&Qd`HFpSM1USM=}qcHXK};z3LQv%}Hlvj6ILcU)|? znKxxo)Cf`9t@VmOAEY1W#|6T`z7tNW;9Kf+x2nY=)%5&nK9ltj4U8w!JX=1xb^g4Q zw8+ByzHv?a)zTg7^U2y9ZC+W|HWV&lKfJlC*?Ufo6#C!dMEk|GdX|pZdcTCg$)RY1 zSdx6skD!jFZP))QCkTWS+b84Pa_k#QOS3XE)QgqzZu~H47|YYV@^S6(u!&CAq%S3j ziP(^tc|h6ZsO37&J~owj*Tj*$wY9nvU&6PEPKv&sR_?*l1XQ1KUh>iducQ+xUuL?L_k&g}{VoyT{ z!K~nSdDQ4d@%J%{!5~`dZ<)wyj*&Ef;$j6{ES(I=OV8D)%Rd`oV!pA8j^#>VNH}Zs zPUiBZ_q`OA?7%bE53})yQ1A3^#ByH+KAyJsvDHGcL=DyX^f`OyC9rk6p~8dF6GC=x za&tcCc3h0jlOeDEaOK|cJ4C|hXlN0vEMFJkWv`jvpo4P{8sa(z$|MRIR!I=k?0I4{ zS^1(Xj1uIMar%9(umA=dOORk)|tc0;jxktVBo${)yV)k ze22XO8XE4+?38qmgBcf45qmGkYUzlI08bZWQ?fhBt)t-{HQ$L1mE@CTUGzcAljgD0 z%_zbT(rf(;Rp?2t+PlD6Io=vlRuwJ-r5Xiv@{f4RH=*GTLNRm<3^cU#HaXM8?dwz? zFV{v`yf{;V#034}TFw^R4Un20eSeDs@)TA=Ot0+;5(C%yq=z-b!8eS%Yi80!E#g|A z7O;tHmj8I6^86BB{zCDKds-_z*T$xlkNb!MPE#{+Qt4@(j1rxCX!U=D(s+CBm5dTi zY2tTr*Dd(BB(tB5FVsr8ur8`wgj=&~pWMB09sYJ*Da-6$&U>TYb*0%?t-cuS97zo@ z7A@y{rQO}#8YILa*U`{cJhDf8qEb@CU?^S;zh@x~0xDaz{W7YBr<`2tyfMkya%vB) zNdhP!<9_)vZ;!3&|8_l8?6VCQo0&_vkojS2f0z<5ym=A4>9IPPdo8ZWUEKM*;JMLz zRTu9iI@{-;T>58E+X@fpXODLeZ!`H*$gtlF3!hA>65OQSrw(P|5y_oHE>`1@uj%}xS){;)v z#xTkKOQognv)%e77OxvBs`hR4GGx9k?0n>`Zv0ywVRyybNaA>|e!)0-?osnmY3Q65 z$iS*}0@? zE~I#ob6(v~2-5ns3=M60$#p||%y}m__Nxy);7Oom$U*Ng;n}`!S}|c$6Hr0WGRGNR zH9$xRo*~AO5@}f11f9DbJop%hre=k`zYll%d4y$#tS=M`_fny+r<`^)Ck~x<(9wB_ zv}CE{5p+@YIw|QQKoJF#V8$ar7y7uoH7(Lb2Q?nos1;9i@ zOADCX9WOWmQg8!HE#MxbnB7pv`}RVkQ2o)P3TSWx;~1NahhEQymmEYveB?^eKjY8c z6F7F?zhP_M+(X=tmfzF5D4N|1|6V~IYm;1H&hh!t(O-CRerNvZ1$vv7q9P~?2Qx^u7UWw zcJ+M{bV8zcPJTCR7T3%M6}7^x%?=85sC_;?M7zP%QXpQ|Z@9VO;DaN6NG%{x(~(fq zs&LU^IqT4|oTOuL_qUtqpMm?@+S=h_`%h|30IE&v zo=S0YTG?rq&3jEo)JXj#;B+r_=h4~{wsA{YuGZ|_oy~H9Y8e@(AQ5Qxba!tgf!Lcz zEmcR{^NmA4mm@ac$j8Zf%FMe eL$35OOY>ZWG~sV=UtZ?HwUZJ}86M$b6hg^zrZ zL)6;v0wlhiDtwc4j7W!XuUF(mq*kYDHs32HIsf_=nUpkjr(Y$3i*xY}zpf)9cNiQl z1jWR}^rFD@3>wOypsaSog7@`FO=9%8%y|kxHlStj;?>P4h)lq!sC;|hq61*KcJorR}+$2VjZ{FzI^*gTLf%;~te%|kW?r{8PwXCen2LY=J zwQ^K~=_x2(l7*du=7Mw6)1P)nG1%0c*ptk?`k4Yl{?y8N${ywlb4NJbLYAC??&aQ`9i zyLz_Yc2VtlZ1y}^=%kJ_Tr{%dYU6ya^NCW}x}(AJeof#?oURR+b^uAhI@(3t;fJD( zOb1MFAh*5TsJeoNHc%&*f0aQ*#Qpbl9Y8aWmNuao5fD`)s81eA$lm7Wn{LXBDH+8%}g&BM^NS0!exV#jDFr9sfc!yoo{a> z@((wYXiBFHb=9hNsqEe|;zpi0rg9kLKFWh9$Mn}dh1hqj!)xoo;k*5T!NCrK6zt7) zZS%N4!{p$zr6UzdaPUUQ#&)hdH;9Rgr*e-Oy=~`vnL2HJVx`@aqGHjopD%J^J@`Q7 z6&u#!qe}-u=dX9&6V&e`>^(0>vz=BEdDP9RNL!yAo1S9w3ywcjwa*JfZlI&mmPFimnT9d{72ET2!`ZwgEg zEWH3FglWZ5FlTdZVj_&e$`b0fPgQSx6_}f@eDTQ1X>Yx>DeB&PpU?4K-gjGXcrQ_XY(R*KiW_u?c2{%7rZXKK}gFYl9GD+$>Nw( zlxsjn45X=maf^ov3X=fxLb47~#4q$FydN!urRq4lNOx_syR2Wu(nD6^tw~PbhBNq9 z*4oL#C4;7f!vzdVB}byvNpN6T5E$K+>EQfue+3tQN`ISv^*=J#&ke4mbe%HwW90Bx zISe}4k)6_4+lm91bAvwMP{g@(6$lkH0kA7dr3E91eICZ(h~2CI{b~K!gR8V z?}x}6_U-vZ7-rEs_*d}A=^as@HPDx6#ss7(6NtamiO+~p$3fo02P054TuORo_(m=K z&tQxY4$gi5UiR-PazsW%P&?jGLudbwm;5tcQ%k|o&<3S^F2lFXxBrob|JSi;_2o6~ z`_d$+ZlL>yWp02Ujh2Q62BjZwdI@bneGtVOtNpm47N#GqxOj8%!kcwp^c-vS%a+_@oz z>JnygVQJ~Xkq4du1pz^p>UV+ky!o{2Xp-5YcW{jF^7Cu1NM=jrKb93t;vvKoN>NTx z4xo_vGSG1ajauEHRDh9Dc7<7(CPC4Zi*#*m&G#0%4(fs>8wcu!l}&g~j|oIhv0yk} zulygQGC3H-@(84L)Q*JIVsfg!U4GJfPFJ}X26BkLJ-}ey<6QjL;NFna=PU7%aMSmQpVYB5p$9axy7KY*C!AY#b z@^UIJ6_xkRP0O+;V8mJhoDPdB9oijN(KN5){85XWhFj}~7n7R@E&G#}tE;OZhjrio zRW`LTUjeQ}OHiM+a_+gE@wKD1O8d}WHf6)JtESCZL_>>Q5DfE}-FK^3nCUSwjqYxz zBE`PeNqSLUTZ^)IK#3bcVGpX9Ke-ZTtNT;7-un|~pcAsKnF4jromWedY3F}(PeUKQ zSA=WrU+4%9G>7m2356h>0NCS!4*cYsaX1)#RCF9{%(Zx{sSSFc@1_CaEC~tUFP_|u z0~y!3m9@1skag>w)zWMu-4_T%6<_iciz7UCk%^$XhI|b)L|;rDKv-|B%ly4$bYXbFL(<#d@7<_FL*iUcHJNuth>hI+Nk zZ61V^^A+r|!L$tgdLc|!nT~wRm%Mp5FAu+1v#@KYPC>c8{sp z;(J?8cOIUn+r3g!`U<(ep!H-W7!WiWcmu5++-S}ZyCiNIez&h2x$wcz*tYqSex2iyvOGpvm4_S5Vi#+QK)VpmR4B#z-damXyL9gG%{!up zFg7gUT6A(o9Q+*8+m?&7%{G#|pkD<6+;TSTnz`(%q-3o>RUW4ll__qSu%z61= zNdp6%t%jE@4{HO{SQYUmebC#JgNue}b0dS<=(>bM z24=+~n~lRg+J&Pa8%yKopb&Gb9JToR_3N_X9biB-pZvbf^;8nL^#0gnJ1{Zh3|}_Z z)(TQYb(<{UfIX$FQW{bFRrhUVAYTeHukjt$)dWSaoWe_JlQY13J$lQrBWONu0Q65w)O=tU45~o}Dvj(3$evG1s93LNV zZGcp8b*7<4I^zcVWdwa6yWV$;jH@z=Q4JC5GU8MkS~n;G|H6x0z5MpmM^dboX{ggs z5eP&pHz|c3JA#NjOeGPejXOP%lO-o42!XND&s6s?B=|9dc`$G}rJG-6b-2_)rFpP1 zrKO|O(*it(Cisyk$X_A@>S&mXuzt*z8n!^lgX;oDd+m1C!s4P5<0D{tAAXBbcrG$_ z!;ui~ZL5jB!m7gGdu{FuwJr6C@`Zle>uf~v_rUcrHVoFR*3=`mNTk~!6`|lWmFE1NLaRini1Ztk1XJ%=h{E${| zO)M=fNm6g6U7TL;MaU32ZX>ZOvK?fuCKn@b*2}CsL6f}OC}m^u`(WeG)^vUoFQ&6b z&FNk#s4!iAL-F?z0gIdWVH;H(hyL-&+(k1i9YR7!)l)W)SYtH{onXmA5K>Wb#`o^I zHFcXs|F?%uA+N;djyP% zu8_V4z%uFfX9dFMwAabTyiFn-IT(9BQW2|yVjK`)0Oa_DPCylT@k5~H2s|87%j!8~ z+5l(3z{xv1^Lsl3O&?Yg>~JY5=OH0#DLfKWrNs|~m}q(m>}GY3+^go=O81Gw7E@gp z0@F^HnBqkr6j$pM!`+z#*CLP%roH-+0Aa~%r<(~c>;|0T!L&m^TWO;`kQ|`=t~t62 zzB?{6PUHG6GkaYU=XTSzcCb{Ggh>!Mzc6{`F3?&|3W*;LL-He(@whJ0l1> zf?+TiQ?O3LN#HeqKRwz7*SmR+J6VI@sw>i^aMcpizobb>c!+{(A2fO-goH3G0h}O7 z(yp=?g_mEP{*^Q659hNC#P@}rp#~Oz6pQ|98A_eJ>_C!Tc^4>yq*>&3U&-C zVtXSWp0za^*t&Aq1?wmpy6vsyj9P%xhE>G`I1-zh{^;dw5q;hhvvpOev#4=zOn06^ zLnom0KDY6L-hjU$?FVBJ+DSk+1574W9zLYYRAv6tip4n%a2-JLY4D&z9+c#=T?9EC zWG<(6a7dI72v=%iOXK(18Hq6#Y@cySVQ8hmNF%gp=@vmUpu5FtjJSV1v#S=D4M~{lYx>V^qB4d7?s0 zz4j~uA%fv2EggWSg`0!X14b@%bw&3BQh7~ZkTS7-X}I!Q5Ma6bdf`}13iOL8HH-NUOSs~qG={)!wqR|ix^vp(nfueAk9TDkB!ix6jVIgs zqWk218~DOdSHBMPN0-Td$M26Hh2+A9<7VPP@=@_OtwFFrF56M`?lZhm4HJ@`ZGu;* znp*OYln<@JO@dedIOKKsOTwc-ZhIlY0R0tIIwMSoPq=Ml!N=f4BTWa(JpyX?h0e{- zZ=az?{yCfydBxUxH!T$AuUCA~Wv1`u`{uwKsgEJvS7C|l5ZX~NIo^dMQNqEQT`y+{ zdw=jFFlFmrer)*QXTOsx>Qj8+EE-jsMO-eJB&>udTJ@kq6V)y4YaMzCjk+F=lq$u3 zfL@zoW~uwD>)EMWc@8NP0I_Q57(rV$O81yeit@%>#(rDRR}vARhHwq_76XQs?gF~Z z6f=si{X4qXj8N$vf{30ulZ&TK4$*)~nen4ZG>(@xv)qV-aBZs=&cpW&x(uOB`I?i$ zL|y$ymslsIeumr#X?bzZltMyUUURnB z+p^s#f~k9-cSSaDzb#sfzIB=I5#KGq}ST%~#~_gGzvrx8Mx@HkXAo)m%#Y z=4z9*)iM5#mIbr#ElE-!0fQ|V8#}v3{$mKli9!zVJB;R4iuD`z0ZD_BDj9rP$BI!; zzuW$=iDz$|1`ErhDwzt_T}Xtz5>s5a5p9Cnzy8iJ8i;s1ySt#Ot8rW%Lgh<@nC#l+ zuww^mS?;}pBl-affsSAjNVz!S_w(k@f|K{#4t9PCyT9PXkr*a*C%*zPJ#vUR2E051 z!ogtt9z+J{TY`Tg?jYo4ZMo2&Xr>f#CL|^XbCZ_s4OCrZyW;aK1e#&z=}JZo>@$bI z-vkZw&8i2KS{Bu3#HgsUS`*&j$|+ZxT?sl=8PQBDboh(w5DEQ_fhj5wgF+!C#)~v4 zwN<}!107aDVgiEb)YRFf5uhJ{Eo>K+nW-sqGI)e`-lk@~Dyt6=cDn8BFSJ^kDCs zIWX{;n12bzT4$qBpF@UhY;1hnFddMGugBVxTTGwB>(}@&HGl7<MK@*2sIC=d*5!|A#KtI|I~wY;P4VvFe z_D7Ig2n%wBN;^N)x`MYMs_R}hk|_H(JPpz)5Dm9KO677A9M7OgJ+DAQGp-^$Vm8u zt$tW-3}7ux#%B?u$XGF91qDse@G37UHaIXCLirDyM07o1jxU>E?F?n=-xOW{PC#gi zWVnA<$TGj^9gnch22`7`!$|(I>ge9p%6|+nmdW+&4nlPILT;<1&KdqHItZv#Aj6B~ zOHrm+RtP3V!K5oAnU2^&^nVma-t8&aMobwFeW>GZi+h8@Pa*7TxjHNc_s$ysjcV5+ zs`2yC#UXFS*KMSt;c;U*FF`=gdyOtLQY5Ppj;@5vD#c7eAW)HHcT_Ls;kS=)m6JsH zgk_8FuMUZ(o`j?>L?e+_9j&skatxHfC(Kx{%93S8kEZhEhBJ#|UtI(!H~n6;h0nt7 z5h}xm9*^{joXaLKq+rQ&MzA zGW>-p(1b)B*+U&CBX9z4@6vA z8mA-m28S$5%R~W_SDuvuD_&$poWq#GJU?7Wchr{p!DjPGN!KDEGVt&Mr^q;DdpV>G zX1DgYZt#9Vs|dRk$NO9E4&x3S zhlz2Xn|aXRu*}*vayZEcwP+7?%hz7@0}JDEco3jlXqP+uf|nfR*-+!VHW_d_>TS@9 zXeUu*k+~9eJcOIx=#D zQl}w;o1YezGm#C}sP4QzrTxAmc>sm!r+s$j1E`KYnj!1jUm1MMDFhWOB!VdB4m2w< zZ|jPXC6JxSdwtE=5zZAFek!6=O&g>_C=AQ`>uRQX;uwJW6jOxxl2dTi!taOyfOrgO zBPOXvgF^Ttv-bQeG?PjDbhHZ}^x#|_)$x^80i;%Bd=xDm-3?nmFv*Eh8k_h>BAr*= zaPgk?O2UNBrcZ`8)q8jX`B=aj`Q>g=&b>Nz*bQaptv{<1g;{V=>^ZFWnDVaJJ$c}+ ze!A7B%FJsqk_W&?!wjIvCD5}0*Bbqmfl0M;<%#iZF$3+EDaW>%YEM1pb`$(Q9=LQJ z`g!!{P>X@(4XE0o!}GBACG?=7G$Q0GxW&bDZ{PL#nayr`LvTyBLu`x{u`n%MGCw0= zairLNsbcQHM*+UOOP!uuQ!_Y85C_Yw)K1P6=lj>R>TKn~U_=b>d#zsE%9Z{2T4yJ+m}hJzS8V_F8Kd)9tf=}hZ`2~=3f{Gr zUuQPMH)+1`UW2vo@MV&IKogQwd`wEFRUFta@sk7~b<|xM<+wvj&TsV% zO zQQc+bWJmXJy7-fJ6usl;?$yh0VC5>&ha@VPYl+ACcHwb|qX^sOnj4hZ@E}Y@tx;>o zD(nG3J2U_C1|>2=mfjxW_|dj#_xj(A7e0kgiiS42+oWd7FHBl)W>`_v#V@@3fLQ2X ze;1S@gJ%R}ufhkj9mU3DfAC@h;1UvaGK}FSn?F>id@GIU=;(mJ4*h2^$gmXs`i`65 za_sJrh$Dg$Lc)*KSS42pY-4jo<*e5C z-PoA{VSoa5*qoO=)k%;7xOb%YOcj@KmI5Z$_Kt~FxI5vni7_W~FImM}u^qYN^-eMaW-5c@vrT^`v!Lt9r4WlPhCK%AH$*c!B zv_OJ}&WS4|6wn_ys({B4EE}Ac{?>i zqN7XC==1~9HLdB$)ygkaoomEoN|-wLYpcdj34~oBzzFFf-04eSgrWrR#-j6lzj}p$Nbe07!@S zUU~BoFbo|HjjE@ge13doLS+ASzKxdtx&r+k&CLN^D%5?2hk$XG0^fjKB&niGVI4R+<|ypkRxT zDgKO_E2i>`$ffFvHd{Wc)7j?TqD5Ittb0*#XnI5xMh^-)I9!I3!mCQ<32Y!0yv!KA zYMVaWE)-YPnKU7x25iO0+!v zv`g>0937B|JTUFVM6Kf=tD+5jc)-~s<329cL-L9K$l{lX&hJ%S{Trg|lBkw(lz-Uk zzSr8rkmtzI-3vuH)_&1n$2<6F0MS*GMrxI?Xcf^u5mZk;Izzxq6Shw%>=y=nhwqc{ zH|)b4)x63Gq^v0^gdy#K4>S;l^l<2zQ>0P3NL!x}WzBQa=ON0Py^a5R(Zy%o7+1WWac!IwW zf6|6l%W>=nJWQXt$N+_4!7$^H&@WtG8cWj}D~;X}@*Kv}4`6k8>69Ix?%QBH>v=E( zR!-n#%~)8~{EZ8cILa+0T^EhoZ{RPXc8A%lS?`?3sIx*GWs zm32~ty>Ib^Io(fEyzae4@Jb>0Q0r7LwW&kdkc-~rG0ZS6l~xP|P0g_fRG#3wPsqW- z%Gv`>m7X4aF4jxj4~6jn_dqgFWh(`#jU3&di>dd;1{~r0n!GKx!Z!%mFh)nfz=N2( z^VS4B>u+9bgWvkzQX>75*s1^S^L+$Qr>qI-MXVt_z;8Ey!?{IZV$`HV;}?u1<^YLi zjRl)MK!%i(1-F3)R{i9zbO0l+*MmE{cCMcM&GA3ezi#YYyBdP}Sc|{OAy9hFzPzJx zB+PtP9-${S>sFATi6Fpx-flUxIO6BLIo{DH;?|BqNd*g7HY9efg@uJD(7lEM+_0B9 zk;8hg8Zn_T@}Zc!^x4G8y((!L)Z9Zcii^M=8mMHa!_aDlCc$G(P5eRVY6F9d+ELHv zS-kQRO(q_hEUmDCw&C(V7BOTQA2p(0`aqr-2Th>RJ7TEj)GZR|HysXS+`lZ#z_reR z8bIybUzS7ogEm$+u-p&PK*9w<0M$A8{^mM3Ws`C!%FDB`u@P{wKI2~R5DRUSHEqWq zRQ@{^DIrya{^IRiM$uwT-M^V)=0}w!7Pfh5lH85yL{rtzD@8N9<_DO>&_Me*3duP> z0l_2PDaT)C&!6WEl6F{n(L2$^2Azr*6x@g>8`-(d?$)Xb^uCB&una>cfND#K-NCtt z;wHwvhQcrTZ8Zb$C^F{8@Mb<_+!^qz6K&`dmL`dlgWHFD58iYz>uwA5nN9DD6Zqe7 zB){$K>6d%`5N}lycw|-veB1Blk64lRC}}on(i9e8ot73Dq@w_%5+7dz=oQ5PYxD3V4_6Kt^>cOcQp60c=!3ybgg1>#7(7pxcmaw(9i-S))dOc(`;eS31CU? z{_HCu{vvLZ?_~;He6BFuH>wPX|}*LitdM0WQ?A% zArZ#hmY1Uqjq{Nzs5KEItqYln3qxT;5!YZ80P&uKodF-0x`F7JR02DvTTr|HgVB^g zPKmI@-!oT>ULz%>W#!;-7ES@O-^O^Up@)Y@ZSp_!E&_l_?Q&IAU(n2W=q~R3#;_<< z(^%WuU~>*#C1!i=XS5AdAD0g92_$Myz}6Y4cm2si_rPQgGD$$^ z4-XH4Uar4A`+uQhKr=w*m6w;tPC+&|H}?UX+*q-2bm#i`uH7VY#e0W2DkfdE-ModW z9x0akxBLes6=ADaqIKPG7}J;cGwA%I$?zA>DcFU;TMnND&1w`&6~&jJbeSH6f&&UN zNN`{WphCA>Em1*Ga-YV*5SQxKgh}*$`GRWi+uK{Vtcs+vHC!BV@)z`L(C23JN{GC` z6*2Ffd-Uu4toB^%)Qdmq>jr@_lkflJR~aS31aRT7B+a^SE{EUGz{P_!e+E_@Xi>Fv zg^&@<-~U%LMHBp|mTbXydkI=#TV1D|hhQuyN&S*&u;!jJ)dNJT&nEbyC8li@Qa=rjVhE+$jBOjw%QVF$0NiU2NlSi4qMLceU zq2=r!*;g3Rn^&V?DhOvZ{rAzm7rDi24CV5pNB2>^U;sGhv7i$^?y4~{R;*LC1`HM0 zuJm+tA2X0@n2eeK4f3<*^ukqujS!W&19;f;Nn`*pKLD5jq8_wozX2`^rRxPiiLhO# zPKN3?t7;I0=xrN>Edm}F8y{Z-O?SZ4E)8OSOq8wS(|bX)KGty5eOuj8wyJTAKvezr z9jm&aZ2_3!l#)<4qS(n^tY0DcKj)c%X-#Gf&IIIq79&KPU;hntW1kcIN2><;dD$LF z?z`6a_>)4Bu*(hnH@R0)dEHe0=T1wGDc0;RArHUk%!gI?lfHYm{w@go@Sv09prbeu zU~fp<;sQV&qVnZ@>r2#@XNO-5cm1|QpuW3{H^m0F&9Rw2Rr{<^! znHp9vNZ#4w?sWoTZs5}=B%VZMZneLINJ8Jhsi?6P!ryLV+d-s%1l8m~Q;U4r<`rFM zaw}jFTD!1+&^zN!<3v&gUc9O?WNZJjklqhxS41Te0`F^IT~+dM>iG$)YJj1R%p^_{ zaOaUx4557*_SMp3g|@*z8#)UbnDSJ{T@MI_x(rVG`#IzZ?c}S@L2gw3iO77!z>F~ANeBwoHAuWmu051D8Yqh36`lEr zRDL|JRqIi#2dl%qmc3zA%CQEstl^HgY@(5O83=b zn}^cAwY3$HCh!KtB#K&j*MJ`#*(-lbq{D#U_IAQEQ5}Pt-H=5yPl7USA$Z>#SO8JT z+xEj)h1ld|sI8VDt-~UU`o3p!mjHjJKu$8B>vtO^v(_kK3b;Fo-Gp@s{+ z4r}`kFvTz_eF&cn=M8nn5|{sa6W@TyjhdU*xNw5}Rr@*$3&nlg$A9f=qWQbe!)vHD ziMpqx;@dRDNQ4wjekg6V8s7sjM2Q=iC&LvPfV8Pxab(q2^8DV=Q-8@+KL7!P@KPJ* z8Ar{Cr!ln0;g#>Wv0CURq({m)9lC;Fui57_fVai@JZ4gw&A zpoxur=$OaA?(2zsY$$f-3L@(vW;fANer}?Lf}+iGYb0429K%b0$z$sW$lQ+4;Tq-O zQ*Tj;gWKuZRvS*hL)lPrR~ZLjs#BxMBcvYh9j}+dh8inCq6mHcCJ^%xbAGU&m5d3S zg_zW;@epGNbHV!M>k9fc@1Jc-!azj%UZ~DCxY+KJb=1r_PXXcJYT$#)L%Z_i;tzYh zCL!DI=av9WuD52%QU^pn%nVIL8&j|Z9l)5o;!K#|gW6`UF3s^nHAjJwdx;au&l2k(k! z0JIaR3aH8tT-W0h6MJx?*f}`(NwML#_`r1 z=siH?G6VSk|HPT6TVF1pHZ8n>t;BT$=}3p?simf+|I_y3Gn|1A<2*4TZBS@v3b(QU zfEtoAx|=13jfg0s7^$fBc~;Twd76o}m&O?cVfSN3Cq-X)j}k~eFxX(P5*C)g@bFEb zHw}~_@&3|w^j_dK%*U}Ai1G|0(Q{-dy8Hw&?e(}2QejwrwbT#Z;F2uV;&v_IbC;7& zz81h`bvRa_Y{m~L9hu*Kxy*`5K2rXqsx>dNt6*6+bUIJ7yELm`_Kd4dkJx+Vwjvny@& zBEJjv-CojbPVc?#cp}Z=JwUbOL&Nb|jjMfoRT{bILqT#wZADr>!qQDCVo{m~)1D$t zowwn~P_ADs+IZ`*PDTug36tgZ1gE!m>q7*c*w*(iZwZEpY+}TXxILs4KW~9c=-CMO zxPSMpf~hK-5ubgQ&Yi-@+oM5P*XxOzSi^RGKb;k4XpaJPm+21t+ie}vOJwjA*6IFuSIkWTq+xF_G&b? z$&aXmZB&EKuQ`OM(KT)InBz1*{rqDqR@gJAsu>!5Bdcurd!sdfI*PTri)5=t^Atig zo+m~t6j)fSU%6%bVeIxxSD(M%9bdhrh#V%dKlZ5BG@E%rSY)?=U#Lbpa+96A%)(EN zUBF^VI0u`B4;lK$%MoNev%tZej|Wx~h~WE0cNL9{XbsDOOiRzK1l45E!#c^=EG4Jm z;yi8dv=%0v#47DsvQ)vCfsq>VI-!z(>-{D^(gKM67SxvK1JE?PMKjm z-^4;Fy7yf&cU_1{NcVHaPwy0EJpz-r&7k1s=_KTdy2lvJEkx%R(w(SJXQs$Vch%UQ zESfv2_nnVK?VrS8mu;NJt>5!E&Jt^jAM{a_*M(_}q#U5T5DGdI3X-ZFpnrXe8nhCZ zDB_ztYCemC4NOlKwst~k`2$MZ=L;RH26$$;G$bcG zJ0=!y{Fewf=|XaIdfRPBR}OhSid4yBft5ekEXAY(1aNOeGJSk?`CP%pvTc@#hi6M( z@%{p>fCYKWW75GabV_A6jG(r8*qnYo9+Hwx*cL`mgbcQ1hb|+7syS_3grWuetM&Y$ zu@5%7g*Me|RhZg2Q!NLIp^V=hUS09f#8c+vcuz@kYt2I|$v#58^ABqRYRHz{ViilH zb~*P*4A#hF%?TC1c+Ycp4iOkJnlMaHh|E%9FKdlbRoCIf*Y!^}D8SD&^HSLPp0?9 zrAs`-xoYh%2npRMECs^~cLOM9VL*!Z&?#fDZW5oQ=d= z)!-4g3mpFZ2)lsrZI6X&4k^sxx_2#NQkn25F~{~urq4G3{@Al@@3c89=Al_S9?&mM zY8-Mm-|>fgNhMMyB0Z0&JmbYN<<+n*2_bt8+w7`gaxard*)~hdm`|sl1 zV-%9aq_QHku@!>Vo^$8jy+-8yRMqg=D8uV9h;OUVVgUFX#5s}(V8hX5c0TNa-9Bc` z+htwYpN={H{&GM#!9_?*KF8*zk}*uOREe2TGAf#-)*J9^@|^frJHBy@aYI+=#vKxD zyQ@FN0<3SbMvN05Dh9Wu4~YuXN#rHmmt zT~(wUiy7wWck}CRu^#4$&&(6wEY_+AY`#o5fv+br`bwTp0hI{z(UBdYQ@h73Bk(PA zJrGD#{I{i z?e3tj69Z%F>o<4k^qUKda16VVQBFOKVhF|*e8c^ZK=btr%eV?1&|*Un)UMjs6=@dg zcy2eeE^dFb;;)zhSs7`FQJ z`kkxyk7D=W@d&W~-8vbpv@D!s^;)~D|B6Kuo&l@xaXsu%*F!1jIqPt&cVAuIeYIpJ z1W>N;X2ZND^s*X0nlw*`<(N+Hz}mqtZfSSiLvb^dgFTEf?%rCamUd`QjI1?#AUEd3 z@&)^3b_t*|C>}ZqC=T>?+vY9gORxHw@g$JmB&q2>g-ZzsuCjJdGA!UN zt;@St>!cwc^XgWeCd~<<3b5oZI8HW`=P4aU3Z15)97U=uUHa7hyvQZ0 z+9k?)@-=-tbT3-JGO_(!yA0vaQ`g`D0&a#E{(xi!$0Vb(J%yGR4c+{doL;;sJ?2CQ zf7G48#6N<3oyI|FA!Q~hJleSw=3{t{Q?vbHWx^aK6pGr$|G9W`q(0lHIdD1z0&GsDTAY%$)y zp-e4kWo5!`)%xFA~? zQ^oU9wGxt-AC1|e*(EPzTX_~nJg&$epeyMV>9EAlcKKRnMfDzTUR`s%67(jMU#c6# zw*oeLz}J5J={rb`;sEqA>VU0i?;}9Z1*DkUK;D9Fw0BCq&n!X9T-vmss9D&waF5}& z;r)F*hM)OniOSo7nW;K7x2*3u)8_$=tQ`6rZBSd7WG*Y02>+F&HYzmHAm(NZ1* zs|!$89IAe(X`uxO%~Fsc%?sK9pC0^F@9>!1!26maaxmU)y-t6l#r%CyHnwLoZu&>ZSW~f8-sVwE{`EYo8jEfPoqHiT{1B{uNV3y|!qSv)a(!XEBek`0B{d&oa zq4OJfD&*wkgvcIW4+O|>2y7SP-)peO!u1Kg+A)bne-6kH;346<%ek&Y_7mCevX{V0_+P#Amq zY1Lvp(Bii@Q6B+O-zJ;>-uXk*ivpr@14d70663guh?$OvNYbnbnLR=LZ4doGs-@PX_yx6LjR3f|A zf!BP=OvA5Yv_a&aJe)crX(U!UBcjJJX%GdS0hd2lF=3}7?d+G^9cX3$vm4#%7kV2* z_f$s<_;rtHU!05#svr09}g%nFpu&1Z{EW-uqhhzxxM*}(0kX_AV#PBO*3 z7nzHwf}%<~l`PldNjSZlF<)Nd7ojzZ(Qlfl0;F&Yw0XT$G%q_;7>;^jUJVC4hF8o1PB_g{F z+UoSB11_rtmB|GRUzX%W;V3XoIhzlSF3!)!xen==n9LwnKnemB1K@b0q_U>Hq_-u! zL|YUTKu`(&;e5@)0N85i);!kR7skvq3CItrz#v8@_%^tLLnX=IUiK$a%f?)8JYZ7P z@416yK>-2&{@C%rlQ4sZBm(q>^lAMEz!9yV`3+J6kSnxA-}S*aRmx3dEvbyy`$hLx z%f*g5K>!{tZI}(9#9LP8?nG&GU}xR~oke^RQ~BjEN=YmfK$ZZ{Ac{Ff>BGA%vh!DS zix<5`N?6PPB~jUz5@^SgBdG2i8*H1y&Ticpbr&y`LP$N&mHy*&EGb?5TZeB6+{!B` z%uxq0$By+qlmZYcBU>*_3Wh{p5gglso)ffl5&4?z7fIPl zQ`xtlvsJ#nrtRCKUUWm|x|G2+-)9u;!mS~V_c9lK6wH#X2-`&VLcz@<~zT)8E=CIq)rO+aFknGOT9n86H zVrm)}8;ikam+H2b4<11wa0#X3us?|6uOWJzVStMyCmRLRVaGcw*krj?e+0n7YdCjK zL4Ct5E^hEd8hiYc?^G2{I>4WgU)f2*2D#xuL7-YgEG56?fgLfx<|j}mUI1y~NgMvn z2?nF~XU8Q5F0K!-;W|=US{kx!KiP&E4&GL$N{%INq6HMuoLb3%LKXU?N{j?}3=9l_ zx~9Nx)tsCt=_vJVk@^=GCsSp$J^G8p*F1E5L!|2n(! zcq-d&jgTl)k~D})<|#u|<|O1bm6Dl|DYIlO^N>Q3s1Pz_&J{}bIZntp@3&I0gy`3T(3Hzd-O+f$G0fQyVch3VWNF*%Y# zE)oN;fPt@j`4V)rLeD-Ck(*(^f01ep^4<k*b`WWWvrH1J`D>Xa3I%SgzUM#!+g{F zZM#x^iSod{eV=|E5ot8OGMSOj+c>p}oC-lEO0{z}0iaFhYVjy4DK!YCA2HQ-P7V{= zM@;W0mrdl+%T}15AJiJ;6LB_B)Ml*Wy2LFo%6n*T%xY|k-$Md}lvgdBQVohF?h{Pq z8Ui-`JOiRKff8|05M|NSye6lC4z-Sv;BDiyiOcKPZS&ceJU9%MZ#+0aO$Xcp^sQQ$ z3^WJD5&)zTtog5BsyA6gZFatu&?dZHjFJGBY%bW$Ly@5)?Yypxh5XeF$S$abps^i# z`V{rKd+lJ|*7n_Hu2~-MW+^bS^1%jNV^1ufhQ>q0#1Fsa#7^GRo$WM zZR(dTHhgc2#bmlk`HhYTx*fE^=3tHks6-olElkL;qTBHSoMoi;U43%}P8Jr$x3+vj zX~t{yLO`4ZH1FI%%hXFEeIp>=_m7bVM!>ZG)_SGdSZ~+8<*Oz_mNdjX-SU3B7JS#vAp{_=`)%&0@uK(rEdAs3Qec2f@C(!KNjLajudhW-FjZ)8 zYg=>{q{yaY2%>-@-D}^})I?bJN3Y!-ite?uu=eO^vk#md|L|z-Xn%9FsH5}{G4`Rb8cfb6 z{5dQtE#g%Khi0?*NT*8USxZaHlP5Qg8`ck0Q~YXm{rjs)yuP0yPd4rE;BkIF;f3bW2?23doS5}^E}JHQ2fc%z~=o2`IX$(aV; zJ2+?E_LBafr~)Ybum>&NJsP8Sq{a6K{}8QbJC|EodKUn2BgnV>a62ZRg8r8P(&bxt zqjHT0iL_5dxNzYg@Q&Ejgzyme4?$>7Yv`?5aQ-}G8bx1}*`@~$k;sHV+RVw`c zLXiM$Y^G$fX-G2<57TgTL~jtX?gmD!lvB#$EtY!v>hXL<>cIcsrzfW}5H&H02;<_a zJB?2EwPW-b@&BBq7xrz~J?MX(h=fMhRn{}Ia z)31Nqo-O25hCx#;O`+^Nv;OumDJPWVukzn9)Qk~TR<3Bp2&XB^U(GFiyV7F59owZAmSj&QrYgXbCMt22&)x%;5EMq;j>C2lhpPJ%v2n&$%d z`yl}jUJQ;BXNvsByIMMwI_h+{jajQ;C?`^hk2Ky9*+QjHcy9q3o?(?i#XaqDI2Y%= zDFH`94s)&h>K^=KrvPoaB1TD+6Mv{vydS}QLMgB>1E2dVD1gGT&{Tpdm~nhD&8NtY z7{=8_f%n#(_(~z4ljhB& zy*A?OcG<)(vVbGlhDTY6(;)M0+2G#Oj20U8SHQi%`XgWJ3lnwAe%@vH{_GhI)Y;R2`i95QVW734FQ-P>uIo636R^ljbK(v{bR#dc8H;rO0Npj zsqAz;R8n)nVR|q0Ggwctz5b%QQ)NIzCr4z7iY#SiGL<|7B5P=t23L(X*O_)JfYJYT zPi6rCG2=(CiRvte&+Ju|hdaxG6vcOt#Vk) z1mBn+Jin#ic0%WB($9|^@^?jEg^1?Ow1!AViOY{O#f!-T`a*-=G%rYaYlLy={=$jY!`zI6g_&h!^&P4>~KG2 z;?D3-%l*agij90_d{9sjJU1F5D?IFhwpSzz>7~2X9U*r{b$hLVmyijUc65G)lDWp|Jry`bUxRsl9y!j=Uk6TRM&XJh; zLYi}7V^(K&o~$fLr~apPezytOb92(L3evSCpKk2ajK)*?rWc9577TuT8^}7)Un$4_ zVESi%^gf<-8Kq}-wliW;Ma|94v9ZjTs*mq1$j!)cF+Qy@Hve`cK8M!$wB{J?(@uY0 zjt6B531!aPuSW-eQQg{j>ndsaaKTKjPzd3zqLn`n zz8gV^NVLA+GwFtwU%#P)`o?wvAe4dWu_@v)m|s-&o32iJsa02(hnEkbLQn5jlZuxL zWwtqw_m(i4@MRSzC-GB%ZfrdCv}B5W0}E!UWYopFe0!Sy22z2$zwk7_ zXv%+gq-ojN7ZH`cJ;|^FtW7h41t206AZ@~Vz;jMX8HTpm1e?}#Z_$xxffwu%-$*m& z66J&0PjlQ;GI9i8&;$xe@=Lsl%f6`*?8se38GQ4MwPf`0!x`3i&|sdQQiQX1EH8iZ zq@uG3`!AYL$2NYSOYL@|-QrpDCaY+q^>|tit(Zwa0_Wm0ais$uqBqKX8dah!;xg&> z0RZIm67%MwjSUZyL}frx(bCfD@tr<<_N=-2MC;g6rqM4VfdY|=`s^06? z&-}B?&3^FtU#p=Nfnix)Wc}%r;+B;6l}2gh)?=Z3-CwOF()KvZjEAArw=_coUcIbb z+$MZzZg~rxpIGJ(PszEg zPHLZcYin%5R0RW^J(U_~N&b{tm#6>P>*b)8Wk^PM3h-67*BUf=I+(Y3mW02)L+|;F zlFW&LoN74UqNc{aUHN{p+6NA2`>yoW5}!Ykex@6D#+;4oTg0Dr@s3qr4Rlr3S8||P!n(EKJ|!PsgQdI*>gDB6m`)?9<#!uW+K9^Rv&nLd7k{dFTk4IUBt1fbq$v=9&i-j!Pl$cM?(bI{yJnwQ0 zwUl_qIN!2=6(~^ippS}z%#8}0AzpK_9q%L+{RV0Lgh)ll;`|P)9Hc*@xhpg1Me#`n zomeKjSn?EaC3*6j;%|ku-wVf>)HHkAkDjQ_eBkG{`eR>1eaT6N;v=z%yX<09`De$t zb8<7D8swB{`wB`(=@#C7lM2kX?9XEq<&=JfWYuJm5f(RAul{wf&GXXOMo%4WS^qy< z?k`-DbY@qtNm^cxG}?Q4Yp1k?g!Z#M3D-BId3;xadri7b0_#Zb8v9>%)=}3KRr3zG z^XP`gs;I;LZ^G{v6;Ec@X>kmR;DQQXD7t@5nDlAYsQJcU*e*1W{GIpMd(o0f`h z@d{`i@VL5{9!HS8sop%iAemF(+QOkAVwxXUP4DQlH0R zzr~FrJ9syo+|hSe`qotq=L<n76c834Y~X+hR5U8 z9JBYUZ^H{#8Drdh!m0DjGrxq!7e_9k_I{r1yNRbAKiAlQ1&FY50v zIU+0TDE3D(=~7p^I+YK}s%A-D(q&hY_`OLBEEzxQPU+K0*>CFGH1w_{Ca~&GUf>hv z^meTrKM~V*{!{QFC!W*kH2Z^#1^u%OnZsjOw@G=e1-DqTJkB(gXjq)Qy!ZW(ay)$S z{1^O)&4?8^oj2EDcyiII_#Dntoysx9cvQBIr|ovn_EOi01Gknx-L<+AfYEEXW7w$@ z{b^sLPUohkMGcvxmki%VLYKN7_F2a5vGm;-VYIj6g@c5i?Z*smzC)$KvF5gqJxg+j znhq*nTGBV%(Pgt`7oQHbSjJR9XvFI3eutECeYquNa^58p_|T(1m0zLeH%qmjOi>QdIjSLSAhL28j+7%%=zgWM#e#HhMD zUc)Y~G@iQWbz4}>OwC4qWleniXx>?wRDM~okuCe$$!!`vbB-S)pC#sWH#y^Xn5%NMZ7yQjaou^ovmq%d>v52p@OS=CT--U5RUgjpR%4=OHM42s(q>_O z;p00veIT1DM(CxF53hK#;>+-?cgwDw*)?T?ReDC1_WL)#JS(V?w=Kh}VjE#Wce3v2 z@LThiUEsuQxu2k($(2)D)_MA<*R3EqsT~iyoy6+Jd^OHHg`52*Hz&>Pu6U<;`+}a; z$NW!Rr$3K+B=6%%cQ@RR!Fb3sBtLS+ZQ;6ERE*AXwQW1h&xKw(9x@dnY{dLXtb&R- z*uhNt3$MpxW=}loRm|ja4EouG%Cc z`l%M;VA73j2;BHg$1VBx+m(t4#{BsySgFG5ixfmGXULAA<}{XZ zamQnw(!FQ1-t3PGdlDUaYn!fXT+*|(RnVbjbr~{8Uf8<5T*wC9Vyt7PmOfum zn(2NkW11h!Hzzr#)vI%piwZ*g9p-mr7uB4!sXfm1S7*oApDFIu%DY`|6@9mi<<)?u zB!4gIire8v)m%F{A!hby>pkRd$MDTgH>jv|wV0ip87@^^=f{3}^ABJ>nk*pzcj zGilSFn~ofyqs@H2m-bAY5c87B#+x)a&@2nx<}|@STjk5}g1EpMdf@3$RjlzWWbm`u{jxh%()&n!Ik^qgLl<&GPv zMQ<}IU|}h%ZKGBstEQo#B^x@-nw3@){}?6j z`LbL=hrnG5>9n@$oO$OcJ!`2ZhzT|P)|@uO&eAMua^csE=ZXi}gyC6k>~qLs1Bs;S ze?GldI@p4|)&JPttswLtoR)?}qsi*W?MB9Xv4_6#R%wG8DtYK+4P`iprJo`#`Xi|9 zoCdU*sK@M-cCk#*$HBT^FLVb$2L8H=MUzLV!Ss+UI-%e*MEC1=cY#_>N(y#pyrY=P zDCu~rD2=HzYvmp(FW~Q8!1|Wx>4QD&TEF=t8|IO&BCJJx_|i!!?+@)i zcR%;1Zq>}s%}qA?J6zdK$+85dq?A=Vo1ENImjp!D@NgjY8U3LeN%kb^PPzSa@3x+G zdm&~arTIYCK`fCQP#q6W4D~Se*O%~YRkO^eg|x?5}!9<*upd3^`NV{nXyc6d2}lmyOd*cq18AD1j*m4 zW}d3IgIGg$r3^!bGRoV$^W%%>q3(r;+){w7?7OmqRdd9KyYCP-- zGYZ^^EuMJ-KJTCvVaqX5s&!I)|G+xZzRVy zgX}+_x^@RFV$&Oqs^Iec1v$A|fT+9f9YJ2ePL)j7z$M;Jw>JG`%! z78iHJ8|&I;XPumQQGR}O7#P%j!Kwog$~F~e58b?j%Y##A32GE5 zYk5QD5@!ZnZae5H4f(21(T(F~T%3hiVptY7(a0lx`MJV205)RDSph)ilV)F$NK&Gr zbNCB$IbVeto5EGQkI4lFrMAxl$dMs3Cvh1;{jjyG%YUI)zd@*;4v>HB)a_bt@nXRv zw@n~!e0_bPZgdc1Dh^={F!SYBM;OEs+ee(*?@FK^Hp5)SlZ_)PvoJG%w1;{?c2*W+ z0apbta-gR;{C=95nT;UnY+XbblMlHzs2tYJ*3tR-`I(bGQthHY0S54%D-)btD18a@ z@eNeE9;ApkkD|CNL^P3l-T_9WmR6z5XEn2&$0+HLH{NmG$so08i!|eVkYC-<9yBT{ zs=HgO$Sx)ym2ni!ZkQh3WkmHQF z7)6r8`JuS?a+$EM5^S3xE_z(XnV*wW;f@|Bu)xq%tG|-|xTvUS;gKqLoSDdQEiD6s zer_)zKkDOilnE>gECduk!i=^L?M0IN8`dEN#wE7nEBPP4YVL*u+uObv9M)?g)gC4M1TzXj-Px3%32Xp^@W9n6B85AkU|DNGd&%v zJqYzJRCs6xQBejei0?L^fPes2A3wi(0qKN_iq(Y+%PT7uGtoubdRoSK^7s8z{c#6PPfOL$wnE06#sVxL90T05YyMr&JIxe6-dT=%y4YJeAiijJu^Q`L!qW$ciRQF z?B*^w?*H41X*|CW^>LuI99^tQ zNqzt&qo<4r8$rC))twXALsr3xD7~`?a!i3Qy5GEU!yH0Clh0#gHFJ$S$;lBKy9WZW z2?Mf?6w2@+9o0JU<)nAfCv|v0p931kzBmBXZ+}A2US?|F-`VVmT|lD(tHhb65J)Y( zE4sbC9r-`6ZisUFi62GvUn?t~zs$%} z+Tb7DY9LX~r0wM;%>>A(Lto(ta%nK$FJ8PrHRr)GZx2&b)2ec(&h3H*EKE#uka;}3 zb0<4{kZ8z{A8sRxEm&6Ppcny|OGpUy$T=J8z!#N&P?$t>87r|wsB2<0P=cJ^MFD|W zPonb%$=DnHE^ZTogFGx~rp|D5_Bk#b++2T1V%n4rz_v+0pzWW@=>Si&7BbhU1)dXN zEj4%t<_G5ZP&*a-Z8Zs)JwhG`I4wF>0Y-Kt=pi(=1d-*py}iekl?k^1+MP>HMpl*$ zKs`9#+|m*U3dp!Z6YpsW>tOW+A;>jD<#qxHJY?#COIWP^vr-G704(rfm(j59WhiVC z@I2SEk*+m34>%LLW0Ft_1*iqBp@(KqlFJ{&e4Fs83mit}O?n)x{wtcAolt8NaTZ*R`b&5ANN21}zp? z*MEo+!NEY7l>f}*uY4PBudEirkBtocX3B4nzn6{t~ zkhu5{0MMI|XGJ=6a5swopJ7%$pf>~&p*#T)U>`4Ui#wO9o7)e}VP5+-%k{Aa!y1Tz zg1o$r_I3o!k*tEuHA#2wRM_;Sfv9_AseEu6L@jn{m;D5$<{p$^3HKH+7aV4kudcl0WSkf;hCKmKwg#9`Z)CY_59Zc$2B=mX#@2hKr9RV<54q~}U zPLmEGHyh-6z^h}uKkKo<9Qg_i8g3bC%S)S9FvSR|mGk9}MC!gH8KX%{Sf-IH7r9{& zfVjy!Gd?=X81wzLgzb``A!) zWaPdyIAX+tFcoFl*)0o!1hi=j`wy%`8BBGRhuVFpQlN>UOQoSIbX|0^0aqGWYxT6X zv0===4Y7bDyXaHrF!%Pjca%DJ24Bz2%me@h;Y`zq549N?$59Hpj&4SB&{FKNfz z_X~6a;U<%g@{&!kASZh7lV|OU5qNusLJXTWq2{Fcu)`{@?Q=d!fz86UbilUs>9JMj2~IbE zW##8jz?-TBzoIQvYfFpQ?2C;nKPDe)@vvC{jg&LnBlQr{7g_yQC0ND~6vQE>rx%$t zJ8VlsLPM*{JgXUB&-?&d6T2fT7}CW6*2rL2Sy(@h4-Lowhs(qI?9$fOuFIeVJTfOE z13DayiQ0$9StBz(-MhIAS+*QyqKen2J3AM7k427WXew}mY664}NU1|Ab<e?ECmj3=7veCZ`Pc?6atPu1X5ns9NAzT{iPZ-hC2x8$p zJX!C^gX<5uO=xv`!P8ZJdmkauMdq|YDQ@_V*@cB|@z00$15pGgfYxM` zR8*60Pciv$d)*CreSLuigygWS;yT z3l!Gzz5kyzz?unxd|TTu*nxYG)CI#l!gd4agWdx5jg9C)HOGx+T{0UfXrBw#vv~t_ z2DJ*r6u%K7Qg7UN13(Sfb5d=z2!L2Hh*kMQi}f&DSkzGc^!PbzHX_TzaO}rT*Xwhq z44&BZfIU-vWx+P|C0f)JLfH%6f7*Jt8C=~Pk6iC(#t(ouoH?_EKpIB0t-XB}-A~ZE zXTydK&~JA=Q*b8N=&9Qzq21>H$JgKg51K)=Crf{aWv$fIq@|%jk&{qsMjVK08^Vph zk(FOpyPNiS6UtbGVos68#&N@kJs_6+m>yiRUZN)(qImr7iC8$8WXx5RWIacTAYVWa z+lnV}|9_6SO>|>BuwR3fdV=EqQByh@y5CLIHzVLuAz^@mun9z(u{||U*e8vf-EAYz z#Kg2^%NE?84>%rnvoV@vPx)7Cx9r`9y)3|63JMC4^@5IbP~T_OXhWe75ZJ@qQ&*2P zE_i^w=c)JH^knIq69}=7qu11r8f|Ke0&ZfxT=jo@+JEICh|FXYEtt-D{@=4q|7+^$ z|NG*neIDd9$I#+rJ$pfBWDSRyFMNPqE6fJq<$t_rhG>7r? zse*_YEh8N(6zS33^&1ou0|5hpouMTZ4-dVVg|)MZBfXflfwPH-iIJVL3B8Pot(mhq z0TUAg6CWRxle43Vfen=V#l@2lE0etqF9Fhg{q05(AzN(U(CaM%4yJ!R(8 zT%TSd(ldrtw;Y<6djB{U^U!=yA&De|B?#|%t{zz?~kNVD6 z0UBzs>MR|;oU}a=S<_WCDqY~w&!Mi=r-qaZc?ln0bC8)6P)6u3@7CqetVBo&5Z`g4 z?nztA5~8$4HFQb#Ad*U9{V~l*qciVGC&g=~wBeMxP@bjE?nk*@T=8-l{H?ydsiG>z zB`d5PWJFNVJ(let~6ad8mnxA!|eI7+0A!2u+9> zgZ7`(L>`I1P@TGh*TIc=)pa3>y%ZSv$Z<110kOTwC&G#tHaJa0Pd~~>kaaU)QY5G4 z(CO;#Uf^(=M>4R-8?c%B+8cslV~cPW}ErJ z;6_L-ub*MvU^;b$!I+V%=J*>Zq)oYn`dyTPfZEKW1K-mqA)=BA#(zXPX+zR7Wy4sB zbPIgwr9W*-TrV?bgiGq#&7uM%|9+4ipC3DH4`Y6@aJ?N{an`=C& z+}A5L@1Xvg4h5%R7-ZPf;smj2ST&-r(T)c_ewMCJx{6L2^sU|-_%tTuzCltgUq7#x z>%V($KPkOL0)k@eS__!AY)$H$|HU{BaRpRuL7XL1?Qk<)x#iZer(CPog%Za6I?hZh zYT&3Ka^VJ@2cj)gD+e+>ffN4Sb ztF@P)#$DWf7sPia@z}8}-elQUl7h7YR!wH4-6Eh{0Is%bfVoi`hFg8!A2Bt1bQ#ip zp#^z3H0RQnT6>Aq-GQd~xr}t#lhwpf)i6ypV5w12e{pGzj*dFNzOaP>;tIaA?9J)M z5gfDLwA=PRPg!%qC(SgBPWoh_ldgMQ7Gbt!?R<>cgn~{R%j>0^O7zsOsf0TvaMSUd z(a;0~80Gy1X*K5K1n}2_+74d`;;;Ui1i?Y{>L68&$laz;c8tU(QHbO`?Jq3}nqmdQ zZ0&BrUX~x8T;Gll*h&-6SCnXh0RZsz)UJt0;R^&Ptba;Y!~?*ZYJ%j3xfG&QG(WtqLaJ3Rfl_QO_mGjuN91FqLmt>wL*s1@R zY}~!GOJf)5m{WDvJ4~y&c5F!0-l4_kA2`Ol=n2^!D&{4&j~eK7TI7(SAQ2ZLE&?Dj zOyl2`3*O}%WD06pfoxB)fI?pb^}7t`yu8wil3t74-tcb~XVg6Qc@OjRqklg!GeTLBoDNE_i_nRe7+t zqk>~T3bK^D#*ScD0x}`+XNxgn#(_(wh^r%9lYz$8&l_gOEA)*GqbLwkioDx0X}L zLfa5}^(+*MCX!=Z0dRQO*=2YMZD5b~!7}Q)e&AwAMfFvTzOH_-js|t3*56sd_{7A~ zgCbQhWf-K0FoJU|Jco*ofYWZkLn7P?O}T1){HB>6^QG}vNklBA$N-xBM66Lj`+~_p zDdlN-4?y5NPtDtNh7~`BC2pE24(+aPYkLS zAK0p+3rR@<)ki~VuIj-@3Gk&rSSt}Ah@a-2<}ad`#uy!Hq#5moR#fs)Qsia$wE0rG z-4?eYBrL}-IGd3FR@U%GD_!bWCh&j`3Dk{MQDIL?>2>=Is*>nXA(I(`Uo4>?Y(8e7 z>#zN&glwrcp^KQie$j*-=w=;gPnl$9e6UlDn9lgybRvuA+jL97_X^gUWn1wl?5EwD zALxtQ=CO-DKlNAP+OEd&`kI{%(n@vG4H&Pba#CjGF>E7@03c?DfCyxS=|f-gLbGX;icYFry>ZsP7t`*Lf_117c>4n z&sv^UqEfNmz(6@HgBMzIUtj_35ZypP|JyhO@&6bH;_4scKsdJ-9BRmI?Z0C;1(Nxf zJjf#KUNk8QzaZrvoy^9;uV3E()imgO`apgIzZrJDkKR{EQ<*p|xKw1vQw$)a&igRd zOu@I-r`zne^&Xr>#rzyRMKg%Q*JdX=3`TaG%iH1P_?ls%0l=a}x}hct54C0zNy)CA;uHFP~R7^AVBzRWsZX_KZlSRFY? zKUJNn;v1}C!%SlX5CBwuE1duPJiudBbN8wD1C9)34hLmoYyAI0%0H|BjWx`S{|(iQ;jK&8t^ohtHjZ7;KBxFubIal|e6I6!Jao$~zUnqoVX` z-$c88c&I2#$qoOq0oNH2)hG}4b4-Tu3dh!x^^s zFLu6|fM8T`HCjAu)GjrxsGSMQlH4^;rxv;M@Ihd(9_puG^h*aFPfBRgshtEM!8>H? zZMP^jgCQrkhp`vM<4@6cSb8wnV;^BN)jsjv6WlGLow?3wC7Et0q)EL=JXS zh~p}NPO3OiDcq`h@n~pkjs&P672d&4%(f2syl$ks6ut&Ltf!asxLTg8s?Aaen+&7pWNI%-#EIv@~5>kA(ym&mE~Wx>FUy!V$>y3tLfu%)6L%6|KbfvTq`Q$ zMj1shdbwJKD)OxvD!H-s_Pd6lrggGhd&Zn?Ec?dG0 zvuZRj_XUrfe<4MQyvyI#?73D&?rKvxxv^()%N>zLcGHf73!d5uc*!;?B-{=#fz%ja z`pclyQZl4k#n({^OcMm!LLbZ#3fBkD#z%C37o?s6a1n4b1;Z5<6QHMtDn!NE4k<6v zD5DI-VF!|qkq|8*74|`FI|`Riv-_4u8`0sc3(Eu+X~lANWMmYfo3ItCmfBu>SdNe! zcf0$}uy6)2TIKPE|Ug<&n52`W$SE{l6|5VfY=is1(-hQKYTw#pZZ3_gi zs8UpKt7@&)u#U-}7&^tim=x z>u~SC0UqiwYclgaudfcmr&@U&PCZsUA&*vsJUuB4 z15I_wK4XYoxD}?*OyP`f9in((JO|OLYU`ev^nNa7JCoO1JJ3-%DQ%~8D#{xg=O&$! zWyft`O;{+n2zR2XIWpOCaZXL1AHhNX{KXTo?`od0t1;`)lX3hj{pDS%4+|w&A3{C1 zqJR=0MImSa5GhDW0l1!CQ7}%mD+p;08>px3zoXyO3}^#8!dDJLXc~@ZsLZA_o9rI? zM_Qruj9xGlgI9(WGmBIiSCijZeqJw7a(FyaNNRo8{L`^Nh z)ei3F4SYSiM7DZvpY*-;7i95xZNLWqPyr2v*Of`tIuZn~~w5-~eL?cfF4uxA~?3b2VJ zfl8pd4{%`TdQiR@6auxqE~F=PF=;tafhp8qXS8uL0$7))!h*8=+JdrnGVXC!#-Pwg zFlKeKGYt;A{P;oUpiC?}On1`^dtb^^gWhB-Lq6y_*srCtkwz{Q8q-z#9Y=bZ^uLCD zQMxoY!N-q5^sZy%-yAkwFG|;|pHpQNsbh2z5KAFFjb+(i(9IBq0R!O$=E)LuaV*vAos2^)^gV8-r#zt8&V6lRFLL76c>~ zmP(?$lcrl4s3sMZ)(ItrtSCuBT9WgR+-||^EHzyVHbl|cxL^+3oC_!%o1u9}a*5=< ziwA7BdCh>0s6Qi6L`AGIwY=CqB+>8tp8?mg(=G+288ZQ>X-CCf%pX_phgll zK&38PmZ$MWG&MScG!ZS{ce|^J!f-nA`l`%B=7oh+)HOIFyT&3xaGoWk`^Kh75V&ws zO(dWd!CeLRQ3+aTsH|;y-Xh_2F7G?7ariDa&5{S-@NkbQi$7briDvO@c1Nxa5a+OJ zCQUMMV^XhRjnRN2RWh=%XluA7=XV3Qy%I!}y!|)YEC!3yE4mIM*94{>cvp$EISfeT zQ=mwzz>PGz&~5NGx`mx}B}K&SY@L<=Su+U# zU#Eer4F6i%6jf+tWHqc@f%JmJ(o8~CW-ew;t!pAc{H{06ZOfD*e-#ML%P2LH1cC7= zHC_S`hzSw|2#R=-BSr*75J1otBB3cu9e7)e;n`lPX(9cyA` zRw`l7JK0N$WeS!OGAwPNCU{#MQ+RaA<%wV|Bpqoh)W#?7)-W(TMiBlpTSaPyq z;K(F%wB@LtKAubn2|a}ym1|_-)`x25L(0j}&V{-^16O;R6wz=xd}lUd7_CY^Xm~rs zYewO~i?@7h^ggmpXKDrUmJg#typfT6rB*q^w1qmp*vKr;nFmV^d43fjLVJ zqe_C`-tIhJ8LzJPZWs*N8z;V68OfIU|0MLt(rI{XGBB*|ei-ofZmuM*Md9L=zenny z=AqKZZqRO~E_qx?Jok%>-!snynTXr`2%Wfzv6ufIRcbA{LdyKI93VYYYEFOzN**vt zTNo6KBw7uoSrjrK)`zDI>Ei`Z^?y|b4e8*UOkCX4u$CyWV^l#lR}Ct8UM1ZA@9BZIJXZCoxE+rYN>j zNmh$SPpT8coG5!cG-G3Pq7FRN;EcU?XoFkW=bm^trF0BfWjFo|4o8eBp74h)oM0Ae zHsmrVcZB7`j#D|QfCEz55xY^nhRTxQtJbSU(gU<0PXIH*1Zp2(sN$GcOKhcO zpw9H*flOow8f_tfvf3DIo2^4$##<4iUxW2_Y6r(h*|*awEKF-B&$Ap5>3eM{l_f|Q zoW9gW3(Oe9dz20yjDIoU6Ej&-lXP%JbrgVygx?RW>%zkDv)7|NGyucL5c3VDm5-Dc zy*T%_cm{R^xtGbfo3PrC=W>HD_bis5RRKb>;{b5`xc;Qe{ESt?w>k3KWlLp8caXk5 z$alPG_dqC)ZWSN$70Gfi>x;q(7*Ng&-lM=)`tju4u`#A|m?Io}CkIi;v>6I77DKI~ zUa8eqz+-fWcAt8PBst7@wg{KCir>(s#aecKj#R%gV=`^b90BqN?@yF(hOr38N1UE7 zTTg6*_8so^5ku|fU&tuV*eBfl+C7#iB22WYUZOyim~DNPY1qCEq9|5iBjCKZeSpFe zSDM#CJC1<@JFb0EdE%*xMOhH1*+~EHyt23BwDm}w^dVJU6*2#>`3m2ahO9eeeAc`& zo^-RhD(ijoXAY;4*@#RBw>_Arpn0FaC^yyvvTOw2W3y}4TR?h$H;-ZmR7tF5w#3!( z`p;Nh7Z&l}0;vk|yYpjzy#~gXUr^XCJajD&F&yYesej?c{z41ivUO&R$l$sz0k?&RDCK*ZUHCr#fL+l{$Z9yT7W#SW*^@fKWDV_u~E zQ=FpDyVlOyqHpzGhnm6!^KHQzHOb&T#8q?+@?+WBluKm*OhNJ>yYz~KB1)G@6|dbt zM^0b|1La}QzcbB0RdzNRXIjz;w_dh>x{3yr75$XL1!9HV$$DP(y@jCYKr3e;ysXKO zz07T5OG^nmfK1$T61B^+Xs>1Lr+C9kTBxY^aDM9pEv)Dy&NF*K;>S)(*6t0Sn9h zNu&>48VI9Q((FtQ%jIPuO;`;ncFh}%k*;t^HZ3XJv})kEW3jU2KT1|{7hw!u!Dsy> zA$rIsCSb_igSZid`d;zinnZ57GnT;vHWUwo?YJ_4o7LSjLnMH-`zg_xP)Y9|#GlyCEjI7+oLXfujx z6;WWYe?LfKyni4}AImZ{F% ztce*QT@-Nx9NN7j+bwIt*G6urd!*ba$2`r5*lCoCJc4-|7-Wn*w{7}gAgONM6F_<<~NBbd=bn+LVlc1SFvie`-a8O--yJoh3&~7b0U%z=`;|ic}Bq}Yme4%N1 zVv?kWNB{nyKcx24>Or6XeYBmIlB$P{R0D5}WSsqDV(9w_k&4$&HubL(m1$QIfzhL`r(A4lKmZXwXG&@XGVD(|Xa$4n*BR6q z4X8u3;z5t>46_;RtAn(HdO=4G8#ZjK^P~oo8d0iar3ReWTNCQ3|73>DIHs)OQjhc^ z#RsYnkh1^bkS#~Zb=ke%IsB1u7P+Fw>)*b2?;au^Iea{w{`>8qIoHhh_msEJgVZyo zh+jJT3J{m3scrjH=GN!Q2*b~(I>Y=ReOHp+xHm@J63PixzdbjQ@C^bZ{JN|&$#r=o zu`Wc^&iJZ>wk9T~W-Nsu%(u;Cj!mG~O|l_)C#VQRX)bb^$#ABUzr4=d-co-~4iT4o zsw?jH&{@C``_a|ltPbg97XS;JLBTQ#zNb(TNp^XgZBuV@|vCngV} zFOh^`OPi{@{7lZEk%4*sGClhtoU#H{Sv?H|P=ADFlEuU}HmWdEisaNVZO*D$HO3e6 z7DqX<7JzHJ?By0aFjzH=I-4e6HK^`eKWEL7S%HdaXL&f@-hpdRYZI2k!MJ1%_;Oo_ zUwAHo!vWso@BPyb099~G8P0iTe?}|{YS>PSfoNK>pXSA^a_03WQ) zOX(_y9r1OXLqVFD~sWX41*b(EIb^|njNV{&~ofbVk0XtF;Swq zkZ6f|l*lfuCjLUQf-*P!dvtni%naGs=DDOIMs*?(?O0{~JtXnQ^W@FqT~%|oa6(t< zv&pTGiKz&3wccD%+J6(zs>-smq*ze~-cR^Yg^j=CiuO|Cya@bV7LY>I2IRykOQU5( z!G`r<(!uHhtHNf*9HL6hZowA5n1PhZtYxL8QJOaZd_5c6tt_F2e>dEZPQ;^g4x}0WIy1Wp_>Lv zF$^CYzPLY39`0)LVW2Ya>N$Demf@P16V$&Y*z{J)V;}j0?0Y@98jiGlN%iPtvfd$< zGgW5;!7+i1rq3rR{Rfbn(h$`CM2FA~SXG*Nq>l+l00fFKEz)QvMcn*`V#kWpJMY4H z#FPwyB*6l(zpx;K?2FwbRK&9qSe^w_=q>ix|Lq*}e(F9$Xn?{2CbjpCI9?Kl-1Y~0 zNtkZQOuL-ao>s4p`08vCwf@pR?vhzpC|VxxSj|%$mP^_kBa|Nicf+ zU;oo#(!!~c_~`SBdjqS}f?GY8I7vWWXX>cZ zbYL7NP)v0RXh<*_=-^@<4&+NmN=N0w&~9pCG#6>!PF_ZRSbu4(j0@ zOI4V;cnqH}@QBH{m?YHHwnw+W$>}sbJ}ShkM1kv<@j*Zr+N>-2NK20*bdjt#U`JV@ zg#|L$?5fzc+^`YF_@FkFFjS6T#qnH61HXO2C6a62p|K$B%8#9UK+bX!1pc^9*-{lLVL@C-BDKMI|KOTXua{k0e z33UPMlG46aR#YbYA!P2k&!J5>0?Rpp;JX~*g%j;dx z7jknVNVabKF#g^akd>#OucQ9gn2M;o=e@$y{(c9??aVz!ua2Yqmjo(6A%=mXjeaY2 zxTo)&uD)L=*m5Z6Bg3Qmj|I9|bOYpIzJ6VkKvI(xg9qQ>izYJCzQRgMHA&>-nZjHc z`a#cZ0|`nDpUDV60FdY7J2!!rQtK(Y4g2-tnxgjGCK_pnJ$3o{gY?TnsHv)fOb-b4 z8)vr;*!5UYO-#^{<*iFgktj&AYPR8%;F3O)&TSXw^Io8*k5;lap72_7HlGhtZ^DxXYo9BGkFJe4okdMxVk@$ zFYhWK-7$JUAVjL)7KF8p4Gi%fiXftcsok^KZKz?GtlcUqpiD%;LZNeO)oNSWJrm^K z$=f|ZpW;mr^uDq28{-u`rrK~rPU2iYZ{upXssvyrrO1AA_(Xx)B*e7qMk1~c7MvsG!WmC4VY1?uZ z`siGdlMJwJT(4{I4Wk;<0dk0Z-hN-}7>yMNZ?PlS+Y;-+nxGnjIfzK6rGUBB6$^FI zSHUU1!|!xMB>lS6=Qos~(Df$8$`;5T7s3w;14WAB##q3!zb;<0~A z$NrywE?yCWA@{}KVE~mJ901P=q~$;C{V%D+|ForJVq;S|4EW6jET>c;Mx^xyS}=cks}IBsS)-#(|?Z{OY5ZE8XwV8{p&CToi? zDd|o+qlaWkC)yL^-#H*cZH$oQ=zatsYQ%N`LLn+1?C?{{67-aSpp15Q?H?icJ+XC) z!1yDW$Jbsnff5|rURaHy=qGp_g;>II03jiY@PgpXIRrgK0>WH5Ci3+{b{Z)*<29Mq zZc0T)#>Ep2rpHE^3NdVUQZmyE5kLN%EbI~5l^Xe`wHgaDxwM37+Sr4GqIMIsE)L6s zQ4J=Jo`G`aGW%2%y7~IdsaCAUYHiC@QtrhMA(S+877flWQtBAwJPoiWK{Hkor*+JU zP?}j&7JFz_QWD31-Y{afEj91N8?f3ZkvU{9>+eOgX`Mu$nQOUPCX-ULa*0Mah-LY~ zHHv*cl8yAV(l{(Eh(4asOQ++TOtm;rrqa-@>n~y9jokt>pEev!7OMpU8^I+Z#R@{kqjSs{l zSz;`x(zsp^WMh`rDQ^%3Hf{8~3F9CF1Wy~g;CkGEYxU~PlzKf{Wo+3|T@ul|VU#gj zO>&3I?Szvy5-{j{IPdBae{Ed4Kq>yFUnGBB$~Q$L7mWA(W39W9<#~JWCE)D+$W}Di z%aq5kKz=zPuN0G*^#WxwTJ-A@Ad%Y~I2Hi4U8ZmJxFjUXZfBO+xhT#Vuf8q#Sd zEbjOK)}(vO>gMLf?TO({b@w}}{43CX=bsink&FPhzc41gC(U}a7r_8SZw6Log%8UY zJ_ogU91n4*k72Fv&@LSl1eF-=XS#xgZksN1cs~e?LEq=Joa~%#v&!BRv5bY9OC&T4 zJ)o;TV)ZHXrB#RIphx4)7f606t;kLdK{9g4sb!-1Fl3oLeb6>udgXHMz=Fr?N_BGQ z1g{rd&rF`#y={#oIrBppZ>d$PrIRjoxDQbtMLwsO*|pY$ds?Y^mRsa;*roc+;T0(H%;?rC%l z*{YUS?*tlSq>B?I%kSB1!65u5xt+A}X$g~xRUe4SEbfK-i%~|pP0Kz9*!fN7*xdNV@`iZC zgZF^TY2Prfb?VAhnI4!(`_7s9oa6DC<k3Ty4im;5ZS}eY}+Rc`rgOvsZ z4o)c>mfD^|sAmgCSZVGx*Drf>6lllSVO5A^bzU701Q9b|*m(RV0~j?}xz8MDU>rJG z{L-g;Y988Y?%crz@>y*@+eg0#zq9fg_TcLUo>G`#UMr!7-}u(@;`ue&yk>yA4?fJP z0V2HBS1~q5{zb4A(JtG1LRI>7^ERt1b2BiG960BOWz!Gs*E6tRy%;f|~Hmj|XpZ*)^17bGji^z+}@+-h&nY7LQ+A(m*y`WTspd4wvAyn0zuhNjM)#>L|#K5*}_Zzn7o@MQAJ$9 z+tt$h5Z)y& zri9xkz{7m+Z9-AbG4UP)3}KuznvJz7e5S&S(2P*=Ei7Ntl9 za?ax26bu{?K1_nJ_3_iOp#h%<5l{mSFz{|b;6bn&$e-;rXZ@Kx8HdgpL*8P?hF1FT z2E4wegb@&F|k9^BV74?!mcG2Cu@g#{N(Hl0)`dVngv zj(Mxyp)>f5O4VxxnhLL)o8pr}^l{*Y%6ARh(m9o&3kYXg4rECmY+Ad2n7S;^nlrIvaXM0vvnq{^ub#ncD!bO33tVMQ zT_&-k+*z#!oAt)zg?%D=OsA^? zR@%77F@9;~3!3OWE6D90qy}eUJN_pA-aXL%l^Kc1%FsceCj5k*=ve{}>56bSP-GQa z*sB6uhyg||Z-F!+YJqvWu0Wa=1}9JgPh2Q4);U&-*;YHmFlhWNt6dn+VaoOTW4>t> z6E#qu1Kz-=`-moZz|mcms+~|4#X?l>{2>rY^n4|w+<$c5F+o|_nBe>Lxc3ta;)HLo zK%LEZVtDmEFcmKE)V*%qXlE9O-_f!w?1rDqYiD}(^t^>eZp>9<0_|vg@d%neK|XGh z-1hCCfa?3h+fxB7F&TaAdopnOh}w=ei_>efml*~X>Q%DxyUkB}{FL70Yt9pQ`v`Lt zhLcsx1v2hBg{L=ctkTP`vy50pRCm8X%~3h|%(PDgdoS~YFOW$)S{i{4mmhGSh$7Sw z9fb#lRI_e$1T<@L5wnZ8X;`XE!_D)`dZkx3MxnSPa(1GR~=!qf2CH8 zIn_e>hx^GsKs6SXesDPNE6q?^Lb0d58*Sx!Tan%@5Ez+ulAsu85Io3O!mFgJapBl? zS$TC^fy%25zs_${M@#3tcDojb>g#!Ztmfhu5PMRO@joEzzdQo@zx@35A8=R|MZs25 zU)w%r01yDZ6*%et+?(}ZqLcqA4zn_`{ad6GqXDUoyt?rZ4hxDZhpurM{T-%TL4DQi z>R7IE0Y_C^sSl-vMnHg&CYT^JND|cm7PJ=-0D1MPOI`8oGS_N&>3rJhRHo$(3j6i@ zfmFTxzP#?q_$Sjalbe0-z0JA(-mxPh%FcmIkT~jfpO`$8_$`-29;;IhHc$DX8awm$ z<@kki2IV1eR~??pc|$b(Q8D9LQ0d-W?r?+KVb(VEj3%u^2&S-#Km5{%fY;GO?S<94 z`RFv-!>_eNppy#@#}I%a(wml*gC_= zp`syCCeGt=I7oJgeS~?(k$)He2|%2`zX)gO@KcWeB9?zgl7C+~b2ng-;iKY`!pnzv zRs)+V3Oe3_!tYS6QK&d3tTeZY_G~WO;%1Sdjf+zi9S@OD5vsUTqYgaUC?^P!s)bY; zN3VW(Nc|fZyD*L(21-@91oi%Q@7SSP5FcjA!gwo_oR^hf|XXPRa6PAk}i3C-iBpZ_!M(peG4IABrK@Ef!5U zigXAe{|_iz%gV;xFb?BMR?|TXIIO` zjaVFP&ic-pk*H3{p6`xJJfKDBbnD=~U@zWQ{oudaUHqC0eECP!+I7x4eS7Cy>=Cy` z3fjR?VLmPH4G+MFR^uRX96`HD$QH?Yz&wtp(c(0hB=|!H3~HL{Nmm!9)@5oKTFqq z(wd$Z2sR$Mkk7cCY{LNfw><7oP{y*-OTLBq$8xNZ)@+t=<~l$TAyY_fO?X{h71i$j z`*bV(T|8uZe^A3%kK#D!e9U+YL^~mzYtfnQ{If0N!^yTW?8QboMGF^IrRw&ag4QO$ z9qK86Ovm$)V6FIY1VX#-8J|=K{f$PD?f9J3biSlJ*_q2fqd$7BCqipGT1>+QKY%5v z9m&WYVSpH+sde@+Lx;h}cozaP-{Z)HX^C?%B|+q=TcRu)Q1E`Ab8_?+d_03!nq8)A zpH6s3UbjSHa*#Prldvv?;7K{DfmOKUaSu$;F!diq$rRo&cGW~$MPHXHjIH10dG*kW zuA=y-!QPx0S64*I86hS!T$XcWz~xpx$E20Gb(BAC(lev2*zzrlHK|Rop8#q-Rp%Uw zTMZt_V`$_;NwK~_LdL9_M##%<1y8fPisSXhC0Q_-WOtrtBP#h^B$+ZMld-k@$Oa zzO%TneTeRdo7hy`o-=YS4}JHSCi4>1=i9$Dt;_O8)FqD9Giv(Si@wlUTIzJ!#j3GE zB{MWkdgOj|k?v6~MNlcuo|BQ^bQNYLa%r3mn>}MiHB3MQW)(u_ijU z<2w@m`rhs7Ub3Zkz!sZc{!wl&rSbI|YOT~H^oiNIzrQ>{XG%s!Y;VZ-1kN&;35_pxjgbn%l%(MkxzHb70g7VfM^8p=!~4zUwA?MH zHl7Nk6|_26XqUN$4_q2(z|P>Lj?0lWuFz|8`#bHBdB5P_s3=i<+TJxp1$ z@={bEbj|@5bNx5)h4`J2d`OIv>ERp4IttiwZgTO{a?%o^TC&DLT&Xv7aG!8RsW^A_ zzR38vB1Z7OHx$56z`!S|uTN#leKzkmpib5x&Pa*va!}a9q#`g1dZK%?>XQ18LB;5@qHj$hK-0l)~eXaK-L2_+}4U+m5E=c+r5LeLPcfh#@b?{ zO20hqsUARcMj$VzM7{)BT4^eh3fdCj2LZVe!)e$QRbpmN1e{4}|2y-VGiLLO#zj!? zkGfJ{);nTvg+YSSEx>vu{Aw&7=kIvKcbDd?<^blo%MnajgZ$(=InD;<-S{2$*%_=u z+^&M0tnVHKjGlC>dL(_2rko{A4lHW4AzE{2*S6s4a++|tHZio&|9 z4{XfL)gtU1n=^`?*FH*sW3VyC3->lbS(JoB!bhSV%A08n)D1(^cvLqWrwKHLJY1dT zfXu57THhX2OVDyW9J~Ub~d>t;2eee6q6aaF5cJYJI+9H!O z(UEeYXskJ=bqno=Kxc(!V%8K~iKXkGA-h}WKdvC4T4*MxEe+l2#c~E6MvL-o7$7%I zyjpV;R2H^u8E%bBQ#)Vujn|o-;|zlJBTK_KYZ@wc=r@L+N!f8O?d#j`E@oQf%OmJe z(%@G6jG$4J%>st4#>ZOcTheAxPy_G8xTzO7=&>wfCH>}P#u23C87he>CqzC_xOv%` z36OUXS7iIFB+Fk165-Y3=Ncq>yWXR!72-L`fRNAKDN-TqXGWy zNtU8;T_3(9zx0wi-uD-VgrU58&mJXh-?7~o4-x&Ak}mw9NnFlG6n@<7U$@QvW=OGqeP&%{n4tekPhtIB*NXMz|Bik-^VkmlPFWJ7d4dQW4%r31YGRUC5QB@XzJBVUShYT-appt;15;43_8&| zWAo^Cp6D-0o?OgSmli_{xntc>vP;LvxvX-3!X%VeNxB259}1#S_~L9yhD zIk^^anj>HVNlE9ANTC~R!CEAt>05H%4ailf^W^yUVZieQkOIJSd3_fVk@2r;-faz1 zNUC=LYnZ4#ndh@70r;O~`@kjutUC7!Qd1WARZ}lXZ*|?!Ued8QVv5_tXRl615YAmwY`xSo9LjK0F^p$6BbmtwjfESbqH{55sfv^*x+qic4Rexr-Wv3Vi{8px+fVKQ_2IkKszcHd(L6 ztRXdzD67sFJPt@bTB?|}e%KT=wGd2wWJ_dr{S6kdeP7L@&9(PgN$Dg!MvqEXEFsX3iQ=%*or523MzNUDbfz0%Z=!Gpi&KU-5j$ z83FWvRq|C)aVXoi3GNVR+#Q0uYp}-MIyf}$Zo##2cY-^?-3f%oo!}7MHE0Mo=e?i3 z-`VH9aer&nSRXa2)|$1}oRegpqfCP!xy@V5`Rh9&3rPK;|Mra8}5Tr4o3DrJn(d=REAzoda{NdGBci4MY-G6X6Mw$ z2@022%K)=ybJABErKOs6kNdc6tGkKAY)!V_caO-Kf{&KWhFGVKqGa<)FbE-_xOoqP z0Xt(?inZeEbvvfj`jWHii~iPnL@-95ZAs zqr?PHHg6ql?2fqQiF=zm{LD9YH%LoTjub9>LeiZXI5ErLl!ep$U2Pj()9RjJgDd+! zk(NJ&D~Zmy<}0i8T#JLPq*-RPpw)ZRs>TAt52*Jl1d5+<;RM}QVB7MSU+YxL;FG=# z)CiHf6r(uQjKHV;IIByNFl!Clu?CS^GrPfG3>Tqcu*7)=xT&e0H0Aold=d|_DAU~7 zJ(ZKbl=P}1p}^=K-d-a4Dy&7zGZmQ;m}e$jx^tl5@V61+VwbD3=ysIeVnx5eqA!+zaQ+~c){H$Bts?gk5i{4BMQ4OY}a=Lr)Cj!#@N37SG--SXABMO?k+KaoDb?~!Hg2B`e zP5WLa*87Wjp5VIqvWr^(DPQEi4gQaXOCOT6_JNE%2lp)(6cKmA^aG;DRq_5xF|Z zaR07tp5)u+p5{l?1H&s_rAJ}j+YwTb%=?K%G_tMlH(ah-UNH9T;0&}k@ki)=8jpY| zfu)pu*$aO3lTf8tN>sRQ$T~@5MXQR|U;_3cFJ@zR;}y3d8wY3tei46Cl?j7Ksgr5AJt}`Q(kD<()R5H zSlpxrF2HfFUN>zyDzt*-wkQdV@)~2HR9&V8E0A?}qiZ93bb(W(WJIDgY%>{4A}6>2 zvUoI#gL-W7AGDH~3*z=gbD7|p9VZ59hmrdAJ%44>2ux*B!p$f3^2EQuHw*XGVEa34 zCN#4Rzf9lbMzqg@DTljApI6`4N)TU+wd)ub-MtWMPku}*FPs}Mt=446&W2xU1vWqw z+uPj?n5usT)R9$(7J&4)OLdC%S+5plrd~4&SS_uMrD4YQ@K#0-J3={?x_D__G-OA% zZ_dh;7hrBF#WY-c&gGN|cZS&_JT^XH8TyHFyoP_i&{AI$6Pd*CWN+&QICoWso)$QOMJ3maxqQNj3)L)l%EZwffgpC!kwt5&r1-rbun$u zI;M|+`{AGB``ad%sQEY~#?Hh}bYJwmp3(f@df<^ET8Zy1fld`Q${aLlLA&sltawrz zo+?=p!r4fALIqApnkTbda*NmKcZ%@f;bGw$dfn2j-W*LKCt;#7IBP2 z;k80aaqN+-G`}7tN#cmvn&&^&fyzN>?#J`NlsD73ArLi5?!sX61sa#et%QrjPFR?H zc-fIMnw8Z+YS|?OR?#DD(?iVS`K@J}dDWJWiTCnHbMpJgin&XGg!~(bZJwj`We=GQ zp1Hivx4D(1;%Mf;h#yY8Zi}N@`G(dEEVZ*4~(4&c9H(|4S3~Zw3>8I0Xq@a`|HzyRD3<>_D|aG-%660^tY+BqNh{ZoEsDOz#fm)qYt3+D?A3 zaU<00>dG1i-6M$Gx$>5o9Nrb0Xo5ibT(p(m**gox)Yh@d$^m#`fXDzknr)b9EWR)UfW%iDRubvz1hIslDmXUGIye70(AT52N$l=m_8>v(w4VH zb@pDIc|iv+#4KZ{+%xUqtZloT1OJtwl^nEL>p3Hp&6DcOHak3~h*^)rS#Bcexuk_M zzCM(=hAwWPUNwl4I8)dv9{3A7+TqdlX489bnJ z8DdQ3M`ycy#OK^#uRJ&NB@DM9EKNT~4Mxs} zq1!Kpi~{yUZ+%xxylvLC2xwY8tLW3gA_bOFUvZi3SeWVb2eJbBpagb;fyZdZ%**}o z1cQp37IZpf&y;SbyrOH&Q#c_k42xF4-lB!+qejUPsHW&NZshkcJVBD%+ox`Ig8Kz) z!(n=({nP+uII}M|*L-BYNMVW2WR$-PcZ)8 zTjoaPLeuwWCj3fa4$2;Aee5xv5{L^wFY*`!K8@_V^UU+s{j@A-*|vktp|r^=NG6Jk z0o7)bjxWEb19Q;=zfm;K`Ly=30s`5hf}$P5n*%f(c7Uw$8ePX%JC;C`!e3+9Gc)<- z!MQ3r5r#Mzz@}g1>f|B#HdV-18x80re)xT?VI@6ukV-cx48D!vlcczTx^yJ1_l?J^ z2uXM;&yqGXs9id`MXDv-nkYAzU$nMcLsS?T)0KhQ|Jond?0#r?}duZFMEI5rRP4`k_(M1$DW zn_33F4=FXbziiV|1}P>!5s#tV`$(LsFZpa^HVaXlp6wD^brLaViK?lqxr8KtoKuu} zODF=swX(l{T*>}LBLEQD?LD-;e)jtm&=~&_wfLBv_jJYgAF|P3SWf>r+j0EOEzs6@ z-1^NMSfjTN{}AslBdGsvcH`v!yYi+c4OJD#lk6K`XfYMZqO8xi+Vyq)sSthfnxbaI z3qLe_>9=akqCVmjZ%rwpfJi}Da^Goa^kBRb5WghIdBJOnk9`oYNm(@Pt~_hnIMQ70 zJW^Wiyc6_a3uymIMr`f7r0lzNvVJ}ez88DWfAJT4b?kX1M~#jP|5GhyMF^jZ_xzww z?$FMZUz}=c=IqJ(z;%`30sx8{0c4=49P#^nrPb}3o5%L%PT?Vs^XZ)PjOX=XeQHio zK<2?3rUbJKaM#C!F)|i3v^KO64I(8Zh<)a0Vn8vKfE3V9V-}?TNk3V*6Z*gQ?psic z!v+js3Zxj-we98fS{-(jE2`yL-!p3cAYQET-Q6B>NA018S2@6sDoI7DM>zeL_dftAKmnO{tIW|i&y&F>X#Qxzf@m^r$X$vJAB^c4$A((q! zuLf7ftyjBSHk5?g7nEz>*@)Q*Bbl?WJqwP2UGV7sPQj@+!_nMk5HoG(!|}r24W2V! zAubz+ohz#!%rjX4n)73!w3_5nZ{PznKB-UO;1I^|QA}a6p^b-1C>}I^FPYvQCo~sM z8KbX3fV_j0g>_I6v~#>O4=T3}e8tOt{}O6RFDwC6BQA`SHo$wDkjPA75-aQ4)hfi#X~5o<-IKmQQ+3D_#di8cs_T5BVt*K{t@?`@ zRXk>+-*I7e|8Tf3WFA-9EO|m{fMu9&pt@Cm!iuWDqVc%eM)!aYRAz_Jy=t_|8cLYeqbjI=<+0*_*QF1Eyv(vY+SWD zL6Zrav*%h=#n?1HkrpylA#W?(OjY)Z+xNik=1x=$?RFj)Zwu><44a2!uFnrCINb++5_)*E=16{g3mJ|`&2Ea8Z!6T;Btvn}jlnV=h3O2LuZ(2L za0hioAnIxgmbJ$=@oc)AO~8Q{U49&;ODr;<*l!t!tZpGq?K{C`n>dP8NF051C<&{!?_-up zUV&Tc7*Pi7I=y(zt^(frEd}QLx1d#Li1<1`e#tyS#jB=e;XyACO{kfWL9#bqp0(6V?#eUouxY~1Dx1}BZoKjzMxLtJo)`-0GJF2*%tdVCN23J4_p|9-@*!W^6bI1$C6tTL+Ik3(NXt ze5c>lA>#PW6;BZBa?gqJdg5l%U@nfJVJnEFDL?Zxgcn*DI#nHLe7cvu zr@)4KUtDx|TtP?-UdCcTTZVnGRedVcO=^Y`LpIKMS=0gJ$bw zV2eiFjD8yqU#dj(52B(q7@BA(vyVQzF1jsl2V*C~DZn{Al6yeNRjP2@N+g6G7{>WpTSmSM%$TL32a5_axIFj5R8I~ zu{4KzimtofMkRf~CAtk(-V%H2PP6D+zGx^&mmn^yaE7_ukU8})Zb4;Q$Q)8sZz}f{ z9IPo)TzhouKX43AVd5HBFCGuJm};ze?)TYnB)?#`lPHP9ULsf{ZF6b#)MdN;`~yL< zG{QaZ_&kp6;=B3wA**1ill}P=tL<~lVcRFkfH!z!Ew!~HE%|ew4^DUak)Lh--t9ZLSPT^**+$-6}m^0dX4hdLzZipf#l~gQ0n~~L=>0@ywiVb6XZ=I`dJ!z683|WEf37BNkrg z!u~s;C8?%=B~Sk&8vOL-^jH#U^W<_z{W4_! z3|9$wR5wK~FFSos7plf|ERLv3{}la^c`Ho}6CHd60GdacSTBC;#g5M>C~S099K&Zm zjQpXTvDcx%$*?JcjYEm>Xqv4}GvEr<-Xvo&=q{d$GlNsF zQ7j&HCvP%1URt3skFGO`QEqfuifHI%^bxox;qU^Z6bj5*b4q)g6X%!Q7F?Ba!ncK@ zfOlP_-dKr|^M+7}L&2XYqR%ltSrxz4Lx{KyhpOTlko|t@T$EjCE9Cq3AknEU6^e|gj zg-39NBOh_e01x=GXx-V~1~iIGuC_}{d^)x~%P-8o%bK6*8_^Z(zk(VJkLH?Wg$f&U(l^Dn-c|MFyFQ!%yCaIPErE!Tw)-nm7dhZfn}CYpb#Pheg%XTi6@B3@G1R&nhg3C$Y>3q6q;G#K@2XI-NBw znA4dXE-&ua($IOg6q^XkVSet2PImjdIifNWScW6-WPqvm6!q!C!0H@F?A(gZ%r>RP zgD4sZzKj~moJW~6NsM6O2tXr|;J9-?+|3&2gx;t|sY$v5w8>Jkcsfy$A(zuEvu>1Y z?8*(}SkbE>WAHk{s!E>-AoV0H~Qt+#>~iUnW^Ipu-<)qktP9R-u|my zguK!?34D{2$vZas3xnPqD01{HXq9@f?Lp#5&b5Jp7--uu)UqQ#7-*TDrA(N4u)-q+ z5fP!!9Yp9Kl4&oVLw2dwc%e{t4&-lVJLUd4yNHOd!E=whHijyqAKI+4RHu?YJ?O^` zJZ2Xm2EE3h)PLh3!&M|9X*zL)oYal@yx25BwvNGw!hx?FB*XV#<6;PWA?$y65qFOI zQT<5^%<^>U0l%Q)81w?!>xyNMMeap&A}9IF*yDt)2WKv*x=$uE%#raNZ<}1yc<1T@ zaBFM%`LbM@_&vAEUd9DR25|Q)t-kq$x{v5ZY&NC3c94P=MhSk^m!>+8Ij3kS2+U$~ zi^*YZ2V`_ruvQlL=DiWjD#U0E--z%n4rwstzAaSsD;pYoXzK_nwcpw}gCg-}jO2PJX#mT?PSpwMPDjNhiZ7zG*TX~KK6DfD z+4m*iTEVHSQ=5p=$oUcHKlbO#N(ENT> zHyb$UO3xW0QpOb@yqz;{U^@t5$X!AE^R7h5tn*qiG{{Kb!*-g3_QU76`B)v2=!O3< zyYi~moC(~oXyn#1(HJ4Ms#L(moAH8KV}h~@D2Z1=S7dGX1pHFw4l672#?w1tTG)21 z_pmRNG{TS2Fo4?UA=@VEE(-qlC8Ny~T_qi0q?Z0@j?7@fK3?s2cG!Og-r&XMa`@`v zpeFI~L=twNFd|0*lljmP_Cj-;J!+XGsu)#sImb|GTevX`3}nR8kD22HIk{3J)6$Z~ zH=(lyEYldY>08?jGw6UanDt6*Q{ig6*n%2{l9jG!g21mITDT;M2Pu*P!?WQ_dYZS4 zFZ&y^SDIiVMCpUiby2MmlawU{MK;7tmq{C=n!=dhT>w=HyLnIfvRBDx%WvWnIC8Y1 zMI3KZ6YMe29Q&yx2EHab-HR7^ip{?py!MK^`b<4(0u7KS0J~MMN%NY5c^FQ2j!Y99 zU?LJDMZrU(8MuW#ahR&)v7C7-+*)-jx#qI8SMtBuaLFDToY5)+_cXG+lfD@?=*-Kt_pY zOvOqJqs_a!$K!98 zvH2ku=9&Vnmhm(Qd)!+!dMy;iT-=Hf%itcd!VBT-b*)j)0HEQN%mTr;gzB2+BO?4j zRkc?ad)tn3(Q$b>#FSLW0uR-?_3L^fFf3;8?g0D84kLABc?hDAH9q1t!S z_E_+=@KXKmxI^KQKYjxX?It#0)tXi)qL0K=>=!$+Y5gSu%ef4_MuuGh&mQRGYCNR9 zZxl|c(;mo8kfTp{vvgCkc(Oh-h0rnjcWr-=EN9_P)J7R>br}i>VVa_Mie+#JVX#Il z6t?YPQV8{u#97Ft3;7K_+WJ9;6435r`aq`<^Q*w8A(i1_RG&V&a5w~1GClCJ^V8h+ zj?BvRtDsWMv3Romq7av~h)MMMWXkWoiv#iifA{FAd_w=e`Nqb=$LnCfnfM3OfKaw9 zM;2!7FIVtO`rH(2^;e_=&Z#;GI^Qs2qVg9%+FOionmfnxfkXIeVI6zUinx5oaqcqC zPX)w8NxMW0cU-b(@jp)#J=g4sNfMj2rf0@}f@`(URC9y+yY#N(`ouFasqalBiN(Dd z(OQD2mNFWh7n%)fJ3uj>rQ>r|wP(tiVv|q32C9!jRp12$54z{WQrq5((vzHk&oL?2 z?UPcRw)s+iA)GK_GF!HKGh&Wm{ypPuj&(Haqe=GdzQ$4OZ3io?_iHS}LXEpeBA!}% zzY*6cmOlM^dFTC$r|ADF@4D(1U^bu>NSKq4N5IU4gO{6~-;B?c-HaW~3Fa{8F%d8q z;NuhEH5dK=?=WCfcXV_^`4<*fX9GHb9Vz|=Ce+z9tbHsfc=_0LKpcNoI1TQl@;D5VMSa{+gh6tx;CRLX)}uvy*mU5hdN!0Rrr(WeQK zcB<>=uwn*l(_|XtcL~^x3GW$k^5^9s+;Ztn(7@Y~3^d9(B!#+8YiYR{DPYD|V6ZL? z{D~QB5`BmWXR#5&fxXiK!bOFK^zM#6;R9C<%CE+>5U5U7+>tgDB&=rP>yPq1)8?6D zWA~-&IzyYE^*uIwSf|Z0NM!onr!Y6u+f>(xBE5v@|9Y(JbMzqq literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.ipynb b/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.ipynb new file mode 100755 index 0000000..edccfe3 --- /dev/null +++ b/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.ipynb @@ -0,0 +1,902 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "6cbef61b-0897-42bf-b456-c0a409b87c41", + "metadata": { + "editable": true, + "raw_mimetype": "", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\\n", + " \\Large{Task 1: Logistic Regressions - solution}\\\\[0.5cm]\n", + " \\Large{\\textbf{02\\_Default\\_data\\_solution}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "13be77f3-44f0-4983-b4cb-bd3e4b5dba8b", + "metadata": { + "editable": true, + "raw_mimetype": "", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "72f918a4-cdd4-4b46-a88f-f4b43c3c3a88", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Task 1: Logistic Regressions" + ] + }, + { + "cell_type": "markdown", + "id": "0b3f9fc6-db4f-47b0-9dfa-e41d9f85a5ba", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.1 Randomly split the data into $7000$ observations for training and $3000$ observations for testing and set the seed to $1$ before sampling the data. Call these two datasets *train_data* and *test_data* respectively. (**Hint**: use the code to split the data from *01_Auto_data.ipynb*)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "335aa198-5a94-4c5a-8ad8-67c78bcf71f5", + "metadata": { + "editable": true, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "no-execute" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/02-SupLearning_Class\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    defaultstudentbalanceincome
    0NoNo729.52649544361.625074
    1NoYes817.18040712106.134700
    2NoNo1073.54916431767.138947
    3NoNo529.25060535704.493935
    4NoNo785.65588338463.495879
    \n", + "
    " + ], + "text/plain": [ + " default student balance income\n", + "0 No No 729.526495 44361.625074\n", + "1 No Yes 817.180407 12106.134700\n", + "2 No No 1073.549164 31767.138947\n", + "3 No No 529.250605 35704.493935\n", + "4 No No 785.655883 38463.495879" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory\n", + "\n", + "# pip install ISLP --break-system-packages\n", + "from ISLP import load_data # Package which contains the data\n", + "default_data = load_data('Default') # Loading the data\n", + "default_data.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f980cc3a-cb5f-475f-ab83-add7af6ac643", + "metadata": { + "editable": true, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " balance income\n", + "count 10000.000000 10000.000000\n", + "mean 835.374886 33516.981876\n", + "std 483.714985 13336.639563\n", + "min 0.000000 771.967729\n", + "25% 481.731105 21340.462903\n", + "50% 823.636973 34552.644802\n", + "75% 1166.308386 43807.729272\n", + "max 2654.322576 73554.233495\n" + ] + } + ], + "source": [ + "print(default_data.describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2f35039e-b8b3-4f9b-b129-38fd6faed429", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "# set seed\n", + "np.random.seed(1)\n", + "\n", + "# Number of observations in the dataset\n", + "n = len(default_data)\n", + "\n", + "# Shuffle the dataset using np.random.permutation\n", + "shuffled_indices = np.random.permutation(n)\n", + "\n", + "# Compute training and validation sample sizes\n", + "nT = int(0.7 * n) # Training sample size\n", + "\n", + "# Split the shuffled dataset based on the shuffled indices\n", + "train_data = default_data.iloc[shuffled_indices[:nT]] # First 70% for training\n", + "test_data = default_data.iloc[shuffled_indices[nT:]] # Remaining 30% for validation" + ] + }, + { + "cell_type": "markdown", + "id": "5b484b9d-6786-436b-b34b-a01ecdb0babd", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "Compute the percentage of defaulting (\"Yes\") values in the `default` column of the \"train_data\" and \"test_data\" datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f8f69dcf-c511-4852-8e5f-21aeeae79072", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train data percentage of defaulting: 0.03157\n", + "Test data percentage of defaulting: 0.03733\n" + ] + } + ], + "source": [ + "defaulting_train = (train_data['default'] == 'Yes').mean()\n", + "defaulting_test = (test_data['default'] == 'Yes').mean()\n", + "# The \"train_data$default == \"Yes\": creates a logical vector where each element is TRUE \n", + "# if the corresponding element.\n", + "# The outer mean() function than calculates the proportion of TRUE values \n", + "# in the logical vector.\n", + "\n", + "# Output the results\n", + "print(f\"Train data percentage of defaulting: {round(defaulting_train, 5)}\")\n", + "print(f\"Test data percentage of defaulting: {round(defaulting_test, 5)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "116c466d-0627-43d6-adbe-a937ac846a28", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.2 Fit a logistic regression of default on *income* using the *train_data*. Analyze the significance of\n", + "the estimated coefficients." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "2e38a201-7f2d-4999-beab-5739217a9318", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: default No. Observations: 7000\n", + "Model: GLM Df Residuals: 6998\n", + "Model Family: Binomial Df Model: 1\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -979.69\n", + "Date: Sat, 01 Feb 2025 Deviance: 1959.4\n", + "Time: 14:20:46 Pearson chi2: 7.01e+03\n", + "No. Iterations: 6 Pseudo R-squ. (CS): 0.0004155\n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const -3.1353 0.179 -17.492 0.000 -3.487 -2.784\n", + "income -8.81e-06 5.18e-06 -1.700 0.089 -1.9e-05 1.35e-06\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "# Create a copy of the train_data DataFrame\n", + "# preventing to overwrite the original data\n", + "train_data_copy = train_data.copy()\n", + "\n", + "# Ensure the target variable is numeric (binary)\n", + "train_data_copy['default'] = train_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "# Logistic regression model:\n", + "X_train = train_data_copy[['income']]\n", + "X_train = sm.add_constant(X_train) # Adds an intercept term to the model\n", + "y_train = train_data_copy['default']\n", + "\n", + "# Fit the logistic regression model\n", + "glm_fit = sm.GLM(y_train, X_train, family=sm.families.Binomial()).fit()\n", + "\n", + "# Alternative:\n", + "#glm_fit = sm.Logit(y_train, X_train).fit()\n", + "\n", + "print(glm_fit.summary())" + ] + }, + { + "cell_type": "markdown", + "id": "43c6dade-5a22-476a-b3bf-bfd1b880038d", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.3 Compute the *out-of-sample accuracy* and *error rate* and compare to the *in-sample statistics*. Do\n", + "you think this is a good model to predict default?" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "29235f3e-980e-42ee-a998-62f0e148e26a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample accuracy: 0.96843\n", + "In-sample error rate: 0.03157\n" + ] + } + ], + "source": [ + "# Predict probabilities on the training data\n", + "logit_probs_train = glm_fit.predict(X_train)\n", + "\n", + "# Predict default status based on the probability threshold (0.5)\n", + "logit_pred_train = np.where(logit_probs_train > 0.5, 1, 0) # Ternary operator usage: \n", + "# (If \"logit_probs_train\" is greater than \"0.5\" apply \"1\" else \"0\")\n", + "\n", + "#np.unique(logit_pred_train) \n", + "#result: array([0, 1]) at logit_probs_train > 0.03\n", + "\n", + "# Compute accuracy and error rate for the training set\n", + "accuracy_train = np.mean(logit_pred_train == train_data_copy['default'])\n", + "print(f\"In-sample accuracy: {round(accuracy_train, 5)}\")\n", + "\n", + "error_rate_train = np.mean(logit_pred_train != train_data_copy['default'])\n", + "print(f\"In-sample error rate: {round(error_rate_train, 5)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "32ccd1e4-2d84-41e6-8ff7-7ac8b8327482", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Create a copy of the test_data DataFrame\n", + "# preventing to overwrite the original data\n", + "test_data_copy = test_data.copy()\n", + "\n", + "# Ensure the target variable is numeric (binary)\n", + "test_data_copy['default'] = test_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "# Logistic regression model:\n", + "X_test = test_data_copy[['income']]\n", + "X_test = sm.add_constant(X_test) # Adds an intercept term to the model\n", + "y_test = test_data_copy['default']\n", + "\n", + "logit_probs_test = glm_fit.predict(X_test)\n", + "logit_pred_test = [ 0 if x < 0.5 else 1 for x in logit_probs_test]\n", + "\n", + "## EXTRA:\n", + "#from sklearn.metrics import classification_report\n", + "#print(classification_report(y_test, \n", + "# logit_pred_test, \n", + "# digits = 3))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "bf8934b5-d383-4290-93a9-f16a6d87951d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out-of-sample accuracy: 0.96267\n", + "Out-of-sample error rate: 0.03733\n" + ] + } + ], + "source": [ + "# Compute accuracy and error rate for the training set\n", + "accuracy_test = np.mean(logit_pred_test == test_data_copy['default'])\n", + "print(f\"Out-of-sample accuracy: {round(accuracy_test, 5)}\")\n", + "\n", + "error_rate_test = np.mean(logit_pred_test != test_data_copy['default'])\n", + "print(f\"Out-of-sample error rate: {round(error_rate_test, 5)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "c28971ef-8bee-462d-9612-88f1534bfcb5", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.4 Add balance as a predictor and compute the *out-of-sample error rate* and *accuracy*. Do you\n", + "think this is a good model to predict *default*?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3a7216df-adf5-4df0-9593-69c1a7649f64", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: default No. Observations: 7000\n", + "Model: GLM Df Residuals: 6997\n", + "Model Family: Binomial Df Model: 2\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -542.14\n", + "Date: Sat, 01 Feb 2025 Deviance: 1084.3\n", + "Time: 14:20:46 Pearson chi2: 5.42e+03\n", + "No. Iterations: 9 Pseudo R-squ. (CS): 0.1179\n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const -11.3514 0.515 -22.060 0.000 -12.360 -10.343\n", + "income 1.847e-05 5.98e-06 3.091 0.002 6.76e-06 3.02e-05\n", + "balance 0.0055 0.000 20.428 0.000 0.005 0.006\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "# Second logistic regression model:\n", + "X_train2 = train_data_copy[['income','balance']]\n", + "X_train2 = sm.add_constant(X_train2) # Adds an intercept term to the model\n", + "X_test2 = test_data_copy[['income','balance']]\n", + "X_test2 = sm.add_constant(X_test2) # Adds an intercept term to the model\n", + "\n", + "# Fit the logistic regression model\n", + "glm_fit2 = sm.GLM(y_train, X_train2, family=sm.families.Binomial()).fit()\n", + "\n", + "# Alternative:\n", + "#glm_fit = sm.Logit(y_train, X_train2).fit()\n", + "\n", + "print(glm_fit2.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "75e6de1c-5c71-41ea-afd4-1605af956909", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out-of-sample accuracy: 0.97067\n", + "Out-of-sample error rate: 0.02933\n" + ] + } + ], + "source": [ + "logit_probs_test2 = glm_fit2.predict(X_test2)\n", + "logit_pred_test2 = [ 0 if x < 0.5 else 1 for x in logit_probs_test2]\n", + "\n", + "# Compute accuracy and error rate for the training set\n", + "accuracy_test2 = np.mean(logit_pred_test2 == test_data_copy['default'])\n", + "print(f\"Out-of-sample accuracy: {round(accuracy_test2, 5)}\")\n", + "\n", + "error_rate_test2 = np.mean(logit_pred_test2 != test_data_copy['default'])\n", + "print(f\"Out-of-sample error rate: {round(error_rate_test2, 5)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "f267ef66-1775-42a8-a1e9-45fda849f4d9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.5 Compare the results for Task $1.4$ to a model with only balance as a predictor. Which model\n", + "would you choose?" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "28082bd5-8fe1-4160-aec0-1a92aebfa671", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: default No. Observations: 7000\n", + "Model: GLM Df Residuals: 6998\n", + "Model Family: Binomial Df Model: 1\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -546.92\n", + "Date: Sat, 01 Feb 2025 Deviance: 1093.8\n", + "Time: 14:20:46 Pearson chi2: 5.73e+03\n", + "No. Iterations: 9 Pseudo R-squ. (CS): 0.1167\n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const -10.5908 0.435 -24.330 0.000 -11.444 -9.738\n", + "balance 0.0054 0.000 20.441 0.000 0.005 0.006\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "# Third logistic regression model:\n", + "X_train3 = train_data_copy[['balance']]\n", + "X_train3 = sm.add_constant(X_train3) # Adds an intercept term to the model\n", + "X_test3 = test_data_copy[['balance']]\n", + "X_test3 = sm.add_constant(X_test3) # Adds an intercept term to the model\n", + "\n", + "# Fit the logistic regression model\n", + "glm_fit3 = sm.GLM(y_train, X_train3, family=sm.families.Binomial()).fit()\n", + "\n", + "# Alternative:\n", + "#glm_fit = sm.Logit(y_train, X_train3).fit()\n", + "\n", + "print(glm_fit3.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "339a665b-8391-486e-ac32-4c8a30e6cb3e", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out-of-sample accuracy: 0.97033\n", + "Out-of-sample error rate: 0.02967\n" + ] + } + ], + "source": [ + "logit_probs_test3 = glm_fit3.predict(X_test3)\n", + "logit_pred_test3 = [ 0 if x < 0.5 else 1 for x in logit_probs_test3]\n", + "\n", + "# Compute accuracy and error rate for the training set\n", + "accuracy_test3 = np.mean(logit_pred_test3 == test_data_copy['default'])\n", + "print(f\"Out-of-sample accuracy: {round(accuracy_test3, 5)}\")\n", + "\n", + "error_rate_test3 = np.mean(logit_pred_test3 != test_data_copy['default'])\n", + "print(f\"Out-of-sample error rate: {round(error_rate_test3, 5)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "495fe989-c027-478d-98b5-0b034b91de4f", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Extra:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ea5f65f1-448b-40b3-9d6b-e10fbb2cc243", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Model In-sample error rate Out-of-sample error rate\n", + "0 income 0.031571 0.037333\n", + "1 income + balance 0.029333\n", + "2 balance 0.029667\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# Define the data\n", + "data = {\n", + " \"Model\": [\"income\", \"income + balance\", \"balance\"],\n", + " \"In-sample error rate\": [error_rate_train, '', ''],\n", + " \"Out-of-sample error rate\": [error_rate_test, error_rate_test2, error_rate_test3]\n", + "}\n", + "\n", + "# Create a DataFrame\n", + "df = pd.DataFrame(data)\n", + "\n", + "# Display the DataFrame\n", + "print(df)" + ] + }, + { + "cell_type": "markdown", + "id": "7ccad70f-5ef5-42c8-8c2e-22e76943d281", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "1.6 Take the model from Task $1.4$ but now re-estimate the model using different *seeds* to draw your\n", + "*training* and *test data*. Does your *test error rate* change with the seed? What’s going on here?" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9ab2f559-83b1-4a66-b1dc-8799b8301d85", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out-of-sample error rate: 0.0253333333\n" + ] + } + ], + "source": [ + "# CHANGE SEED HERE:\n", + "np.random.seed(123)\n", + "\n", + "# Number of observations in the dataset\n", + "n = len(default_data)\n", + "\n", + "# Shuffle the dataset using np.random.permutation\n", + "shuffled_indices = np.random.permutation(n)\n", + "\n", + "# Compute training and validation sample sizes\n", + "nT = int(0.7 * n) # Training sample size\n", + "\n", + "# Split the shuffled dataset based on the shuffled indices\n", + "train_data = default_data.iloc[shuffled_indices[:nT]] # First 70% for training\n", + "test_data = default_data.iloc[shuffled_indices[nT:]] # Remaining 30% for validation\n", + "\n", + "train_data_copy = train_data.copy()\n", + "train_data_copy['default'] = train_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "test_data_copy = test_data.copy()\n", + "test_data_copy['default'] = test_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "# Logistic regression model:\n", + "X_train1_6 = train_data_copy[['income','balance']]\n", + "X_train1_6 = sm.add_constant(X_train1_6) # Adds an intercept term to the model\n", + "X_test1_6 = test_data_copy[['income','balance']]\n", + "X_test1_6 = sm.add_constant(X_test1_6) # Adds an intercept term to the model\n", + "y_train1_6 = train_data_copy['default']\n", + "\n", + "# Fit the logistic regression model\n", + "glm_fit1_6 = sm.GLM(y_train1_6, X_train1_6, family=sm.families.Binomial()).fit()\n", + "\n", + "logit_probs_test1_6 = glm_fit1_6.predict(X_test1_6)\n", + "logit_pred_test1_6 = [ 0 if x < 0.5 else 1 for x in logit_probs_test1_6]\n", + "\n", + "error_rate_test1_6 = np.mean(logit_pred_test1_6 != test_data_copy['default'])\n", + "print(f\"Out-of-sample error rate: {round(error_rate_test1_6, 10)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa19927b-162a-4581-bc2a-00b6d4ac4127", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9732ba48-8e42-4d5d-8801-4965fddf0f29", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "ede0120f-e5e4-4e3c-be86-4926480ebce7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABZ0AAAMUCAYAAADXJokZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FOX6//H3lmQ3vVdIQofQe5cioILiAURQjiCKXRR7ORaK2BuKx3KwAHKwcQABRVEEBJTee0uhJaQXUnd3fn/wy36JJBIkUj+v68olO/We2Zhn5p5n7sdkGIaBiIiIiIiIiIiIiEg1MJ/vAERERERERERERETk0qGks4iIiIiIiIiIiIhUGyWdRURERERERERERKTaKOksIiIiIiIiIiIiItVGSWcRERERERERERERqTZKOouIiIiIiIiIiIhItVHSWURERERERERERESqjZLOIiIiIiIiIiIiIlJtlHQWERERERERERERkWqjpLOIiIjIBWLcuHGYTCbGjRtXLdvr0aMHJpOJpUuXntc4zkZlsUydOhWTycTIkSPPS1x/dLHECRdmTNVl6dKlmEwmevTocb5DEREREbmsKeksIiIil51hw4ZhMpn45z//WaXl33rrLUwmE02aNPmbI5NzbenSpYwbN+6ME/MXquzsbMaNG8ekSZPOdyiXhE2bNjFu3Djmzp17vkMRERERuago6SwiIiKXnREjRgAwd+5c8vPzT7v8jBkzABg+fPjfGldoaCgNGzYkNDT0b93PpSAgIICGDRsSFRV1VttZunQp48ePP+uk84Xy3WVnZzN+/Pg/TTpX17m7HGzatInx48cr6SwiIiJyhqznOwARERGRc61Pnz5ERkaSkpLCnDlz/jSZvHPnTjZu3HhGPaP/qtGjRzN69Oi/dR+XioEDBzJw4MDzHYbbxfTdXWjnTkREREQuPerpLCIiIpcdi8XCzTffDMB///vfP132888/B07UR46JifnbYxMREREREbnYKeksIiIil6Wy3s0///wzqampFS5jGAYzZ84st3xhYSFffPEFN910Ew0bNsTX1xdfX19atmzJxIkTOX78eIXbqlWrFiaTicTERJYsWULfvn0JDQ0tN9BfZYPROZ1Ovv32W26//XaaNGlCQEAA3t7exMfH88QTT5Cenn7a412zZg3XXnstwcHB+Pj40Llz579cMuDQoUM8+OCDNGjQAC8vLwIDA+nZsyezZs36S9tzOBy89tprNGrUCLvdTo0aNbjzzjsr/V7gzwfDW7FiBQMHDiQyMhIPDw+Cg4OJj4/njjvuYNWqVe7lTCYT48ePB2D8+PGYTCb3z8nbPZvv7mR5eXk88sgj1KpVC7vdTp06dXjmmWcoKCg4o+ODigfMGzlyJLVr1wYgKSmp3PGYTKYqb3v79u0MHz6cmjVr4unpSUREBDfccEO5c3eykSNHYjKZmDp1KkeOHOH2228nKioKu91OkyZN+Pe//13pOanMyeczJSWFUaNGER0djd1uJz4+njfeeAOHw3HG201OTubee++ldu3a2Gw2QkND6du3LwsXLjxl2Vq1anHbbbcBMG3atHLn8uTzfvz4cSZMmEDz5s3x8fHBbrcTExNDjx49eOWVVygtLT3jOEVEREQudiqvISIiIpelVq1a0bRpU7Zt28YXX3zBQw89dMoyy5cvJykpCS8vL2644QYA1q9fz7Bhw7BarURGRhIfH09OTg7bt29n8+bNzJkzhxUrVuDl5VXhfr/44gueffZZAgICqFevXqXLnezo0aMMGDAAs9lMREQE9erVo6CggMTERF5//XW++eYbVq1aRURERIXrL1++nIkTJ+Lp6UmjRo04fPgwv//+OwMHDuTNN9/kkUceqfJ5W7ZsGf/4xz/IycnBy8uL+vXrk52dzdKlS1m6dCmPPvoob7zxRpW353Q6GTRoEPPnzwdwJ7I/++wzFi1axPXXX1/lbQF8++23DBo0CJfLRUhICM2bN6egoICDBw/yySef4OvrS8eOHQHo0qULycnJHDx4kJiYGGJjY93badCgwSnb/ivfXZni4mK6d+/Opk2baNy4MfXr12f79u289NJL/PLLLyxevBhvb+8zOtY/atCgAW3btmXdunXYbDbatm17xtuYN28eQ4YMobi4mMDAQFq0aEFSUhKzZ89m7ty5fPjhh9x5550VrpuUlESbNm3Izs6mcePGmM1mduzYwejRo8nOzuaZZ54543gyMjJo3749R44coVmzZvj5+bFr1y4ef/xxVq5cyf/+9z/M5qr1o1m9ejXXXHMN2dnZ+Pj40KxZM1JTU/nhhx/44YcfeO6555gwYYJ7+Xbt2uHp6cnevXsJDw+nfv367nnNmjUDTjww6d27N6tWrcJsNlO/fn38/Pw4cuQIy5cvZ9myZdxzzz0EBgae8bGLiIiIXNQMERERkcvUq6++agBG27ZtK5x/5513GoBx0003uaclJiYaX3/9tZGXl1du2aNHjxqDBw82AGPcuHGnbCsuLs4ADIvFYowfP94oLS01DMMwXC6XUVRUZBiGYYwdO9YAjLFjx5ZbNzs725g6daqRkZFRbnpWVpYxevRoAzBGjhx5yj67d+9uAIbVajVuuukmIz8/373Pd9991z1v06ZN5darLI7Dhw8bwcHBhslkMl566SV33IZhGCtXrjRq1KhhAMb8+fMrOp0VeueddwzACAoKMpYvX+6enpCQYDRt2tTw8PCoMJbPPvvMAIxbb7213PSmTZsagPH+++8bDofDPd3lchlLliwx5s2bV6VjPdnZfHdlcVqtVqNGjRrlzvXWrVuNmJgYAzAee+yxKh1fmSVLlhiA0b1793LTExISDMCIi4ur9Hgq2/bhw4cNf39/AzDGjBljFBcXG4ZhGE6n03jxxRcNwPDw8DA2b95cbr1bb73VPW/w4MFGVlaWe977779vAIbdbi83/XTKzqfVajWaNWtmJCQkuOctW7bMCAgIMADjvffeK7deZefl+PHjRmxsrAEYQ4YMMXJzc93zpk6dalgsFgMwvv/++yqdqzKzZs0yAKNFixbGwYMHy807duyYMWnSJOP48eNVPm4RERGRS4XKa4iIiMhl65///Cdms5l169axe/fucvNKSkrc5SJOHmgwLi6OG2+8EV9f33LLR0ZGMn36dDw9Pf+0TnS/fv14/vnnsVpPvHBmMpmw2Wx/GmdAQAC33norwcHB5aYHBgYyefJkYmJi+PrrrystNxAcHMxnn32Gj4+Pe58PPPAAgwYNwuFw8NZbb/3p/su8+eabZGZm8tBDD/H000+Xi7tz5858+OGHALz99ttV2p5hGLz55psATJw4ka5du7rn1apVi2nTpp1xaYK9e/cSFBTEvffei8VicU8vK4nQv3//M9reyf7Kd1fG4XAwefJkWrRo4Z7WtGlTd+mJDz74gLy8vL8cW3V4//33yc3NpWXLlkyaNAlPT08AzGYz//rXv+jXrx+lpaWV9mQPCQlh6tSp5Xr13nvvvbRu3ZqioiKWLFlyxjE5HA6mTp1KrVq13NO6devGCy+8AMAbb7yBYRin3c7MmTNJTk4mIiKCadOm4efn55536623cvfddwPw8ssvn1F8e/fuBeD222+nZs2a5eaFhYUxZsyYs+7BLiIiInIxUtJZRERELls1atSgZ8+eAMyYMaPcvAULFpCVlUV4eDhXXXVVuXkul4tvv/2W+++/n759+3LFFVfQtWtX+vTpg8lkYu/evRXW6QUYMWLEX473l19+4eGHH+baa6+lW7dudO3ala5du5KTk0NBQYE7AfZHo0aNwm63nzL9vvvuA+DHH3+s0v5nz54NwB133FHh/GuuuQZPT09+++23KtXb3blzJ8nJydjt9grrC7du3dpdCqOqYmJiyM7O5qeffjqj9aribL67GjVq8I9//OOU6ddddx2xsbEcP36clStXnk14Z23RokUAjB49usL5Y8aMKbfcH918883uBxsna9euHQAHDhw445g6depE69atT5l+++23Y7fbSUxMPOWBUUXKYr7zzjsr/H+h7Nh+++23SuuyV6RscNHvvvuu0v/nRURERC5HquksIiIil7Xhw4ezePFiZs6c6e49Cf+XhL755pvdPVsBsrOz6devH7///vufbjcrK6vCHo7x8fFnHGNJSQlDhw497cB/mZmZFU6vbJ9l01NTU8nNzcXf37/Sbefn55OYmAjAXXfd9adxFBUVkZGRUWmN6TJ79uwBTvQer6w3aHx8fKUD2FXk4Ycf5v777+eqq66iTZs29O7dm65du9K9e/dyvVv/ir/y3ZVp2LBhhbWHTSYTDRs2JDk5mT179nDNNdecTYhnpez7aNy4cYXzmzRpAlT++1K3bt0K1wsPDwdO/A6dqcrOuY+PDzExMezdu5c9e/bQqFGjP93O6Y6tfv36eHp6UlJSwv79+2nevHmV4hswYAC1atVi0aJFREdHc80113DFFVfQo0cP9/kSERERuRypp7OIiIhc1m644Qa8vb05cOAAv/32G3Aisfz9998D5UtrADzyyCP8/vvvNGzYkP/9738cPnyY4uJiDMPAMAxq1KgBUGlZiIp6gp7OK6+8wty5c90lPBITEykqKnLvs0uXLn+6z7Kk359NP11ph5ycHPe/V65cWelPSUkJAIWFhac9rrIkZFhYWKXLnC5x/Uf33Xcf06dPp0WLFqxfv55XX32V/v37Ex4ezl133VXuOM7UX/nuylT2HcD/HeP5Lq9R9n1UFuvJ30VFsVZ2fsqS7VUpg/FH1XXeTndsJpPJ/Xt4Jt+Dj48Py5cv57bbbsPlcvHVV18xevRomjZtSpMmTViwYEGVtyUiIiJyKVHSWURERC5rvr6+DBgwAPi/3s1ff/01xcXFxMfH06ZNG/eyDoeDr7/+GoBvv/2WQYMGER0d7a5963A4SElJqfYYy2pET506leHDhxMXF1eulvDBgwf/dP20tLTTTj9dL+CTa1iXlJS4E96V/Zxcg/d026wsPoBjx46ddjt/NHz4cDZt2sTRo0f58ssvGTVqFFarlSlTpnDLLbec8faqQ1WO8eTvwGQyAZUnas+kBERVlX0flZ3z1NRU97/Pttd4VZ3peavM6Y7NMAz3vs702GrWrMmnn35KZmYmq1at4pVXXqFt27bs2LGDAQMGsHr16jPanoiIiMilQElnERERueyV1er9+uuvKS0tdSef/9jLOS0tjePHjxMcHEzDhg1P2c62bdtwOp3VHl9ZWYvOnTufMi8jI4PDhw//6fo7d+780+kRERF/WloDTgxmGB0dDcD27dtPF3KVNGjQAIDk5ORK6+FWFntVREZGMnToUD7++GNWr16N2WxmwYIFHD161L1MWXL377Z7925cLtcp0w3DcNckLjsf8H+9hitLuu7bt6/C6WdzPGX737FjR4Xzy773qvy+VJfKvv+CggKSk5OB8uetMqc7tr1791JSUoLFYilXJuRMzqfVaqVDhw48+eSTrF27lptuugmn08mnn35a5W2IiIiIXCqUdBYREZHLXu/evYmMjCQjI4OPPvqIFStWYDKZ+Oc//1luOS8vLwByc3MrLB/x2muv/S3xle335J6mZd58883TJro/+eQTiouLT5n+/vvvA5wyUGJlBg0aBMCkSZOqtPzpNGrUiJiYGAoLC5k+ffop8zdt2nTa2tlV1bhxYwICAgA4cuSIe3rZua1KOZCzcejQIebPn3/K9O+++46kpCR8fHzcZVIA6tSpA5w4B38clNHlcvHZZ59VuJ+zOZ6rr74agPfee6/C+e+++2655c6F3377jU2bNp0y/dNPP6WoqIi4uLgKHwD9UVnMU6ZMoaio6JT5ZcfWpUuXcmVCzuZ8lg2CefLvm4iIiMjlQklnERERuexZLBaGDRsGwOOPP45hGHTv3p3Y2NhyywUGBtKkSRMcDgcPP/ywu36x0+nk1Vdf5auvvnKX2qhOXbt2BeDRRx9116Y1DIPp06fzxhtvYLfb/3T9jIwMRo0a5S7JYBgG77//PrNnz8ZisfDII49UKY4nn3yS4OBgpk2bxiOPPEJ2dna5+ZmZmXz66adMnDixStszm83ufT/zzDPumtoASUlJ3HrrrXh4eFRpW3DiYcBNN93E0qVLy/UqdjqdvPvuu2RlZeHj41MuSVmW3P3tt99OSe5WJ6vVygMPPMDWrVvd03bs2MHo0aMBuOeee8qVdWjRogXR0dEcPXqUsWPHustsFBUV8dBDD1XaYzcsLAw/Pz+OHTt2xr3E7733Xvz9/dm0aVO532+Xy8Vrr73Gd999h4eHB48++ugZbfdsWK1WRo4cSVJSknvaihUreP755wF47LHHqtQb+eabbyY2NpbU1FRGjhxZblDDGTNm8NFHHwHw1FNPlVuv7Pdj7dq1FfbGf/vtt5k0adIpD4SSk5P5+OOPAWjdunVVDlVERETkkqKks4iIiAj/V0qjrBfkH0trlHn55ZcxmUx89NFHREVF0a5dOyIjI3nqqad45plniIqKqvbYxo8fj81mY968edSoUYO2bdtSs2ZNbr31Vm666SY6dOjwp+s///zzfPPNN+54a9asyf33349hGLz88su0bNmySnHUrFmTefPmERoayttvv014eDjNmzenY8eO1K1bl9DQUEaNGsW2bduqfGwPPPAA/fr1IzMzky5duhAfH0+rVq2oV68e2dnZ3H333VXeVtlAbj179sTf35+WLVu6v58xY8ZgMpmYNGlSufrUV111FUFBQaxYsYLY2Fi6du1Kjx49eOWVV6q836oYPHgwoaGhtGjRgmbNmtG8eXOaNm1KUlIS7dq1Y/z48eWWt1gsvPrqqwC89NJLRERE0K5dOyIiIvjss894+eWXK9yPyWTixhtvBE4kO9u1a0ePHj3o0aPHaWOMjo7m888/x9PTk0mTJhEZGUn79u2JioriySefxGw2895779G8efOzOxln4O677yYzM5N69erRqlUrGjVqxBVXXEFWVhb9+/fnvvvuq9J2vL29+frrrwkICOCrr74iMjKSdu3aERsby/Dhw3E4HDz77LP07du33HqtW7emfv36JCQkEBsbS+fOnenRowcPPfQQcOLhyMMPP0xkZCS1a9emQ4cOxMfHU6dOHbZt20bTpk2r/FBHRERE5FKipLOIiIgI0LJlS5o1awaA3W5n8ODBFS7Xv39/Fi5cSOfOnSksLGT37t3Uq1ePGTNmMGHChL8ltjZt2vDrr7/Sp08fXC4Xu3btIjw8nHfffZdp06addv0rrriC5cuX07VrV/bt20dWVhYdO3Zk9uzZPP7442cUS5cuXdixYwfPPPMMjRs3JiEhgS1btmA2m7nmmmt4//33eeedd6q8PYvFwty5c3n55Zdp0KABBw4cIDU1lVtvvZU1a9YQEhJS5W35+fnx+eefM3z4cGJiYkhMTGT79u0EBwdzyy23sHHjRu64445y6/j7+7No0SL69u1LcXExv//+O8uWLWPXrl1V3m9V2Gw2li1bxpgxY8jNzWX37t3Exsby1FNPsWTJknIlHcrccsstfP3117Rp04a8vDwOHDhAr169WL16dbkBLv/onXfeYcyYMURGRrJ582aWLVvGsmXLqhTn9ddfz/r16/nnP/+J3W5n06ZNGIbBwIEDWbFiBXfddddfPgd/RWhoKGvWrGHEiBGkpqaSkJBAw4YNefXVV5k9ezZmc9VvZzp06MDmzZu5++67CQ0NZcuWLeTn53PVVVfx3Xff8cILL5yyjtls5rvvvmPw4MFYLBbWrFnDsmXL3CU/7rnnHsaNG0e3bt0oLS1l06ZNZGVl0a5dOyZPnsyaNWvcZV1ERERELicmo7IhsUVERERERM6DcePGMX78eMaOHcu4cePOdzgiIiIicobU01lEREREREREREREqo2SziIiIiIiIiIiIiJSbZR0FhEREREREREREZFqo6SziIiIiIiIiIiIiFQbDSQoIiIiIiIiIiIiItVGPZ1FREREREREREREpNoo6SwiIiIiIiIiIiIi1UZJZxERERERERERERGpNko6i4iIiIiIiIiIiEi1UdJZRERERERERERERKqNks4iIiIiIiIiIiIiUm2UdBYRERERERERERGRaqOks4iIiIiIiIiIiIhUGyWdRURERERERERERKTaKOksIiIiIiIiIiIiItVGSWcRERERERERERERqTZnlXQeNWoUJpPJ/TN+/PjqiuuiMG7cOEwm019e/6uvvqJJkyZ4eXlhMpnYtGlT9QV3kqlTp2IymUhMTATgt99+Y9y4cWRnZ/8t+xMRkQtLWXt18o/VaiUkJISuXbvy3nvv4XK5zneY59zf2R6e7TVCVag9FxG59GVkZPDiiy/SuXNngoODsdlsxMTEcOWVVzJ58mSOHz9+vkOsFmXtZnp6erVt84/3wSIicm795aRzQUEB33zzTblp06ZNwzCMsw7qcpCWlsbw4cOpW7cuP/zwA7///jsNGjQ4J/v+7bffGD9+vG5SRUQuY06nk8zMTFauXMkDDzzAU089db5DOucu9vbwYo9fRET+3JIlS4iPj+fZZ5/l999/Jysri5KSEg4dOsSSJUt48MEH2bt37/kOU0REpEJ/Oen8v//9j7y8PAB3T56EhAR+/fXX6onsErdnzx5KS0u55ZZb6N69Ox07dsTb2/t8hyUiIpe4W2+9FcMwKCws5F//+pd7+tSpU89fUCIiIlLOnj17uP7660lLSwOgb9++bNiwgeLiYjIyMvj222+58sorz3OUIiIilfvLSeeTb07vueeeCqdfSr777jtatmyJzWajdu3avPHGG5Uuu3fvXoYNG0Z4eDg2m434+Hj+/e9/u+ePHDmSrl27AjB06FBMJhM9evQAYN++fdx2223Ur18fb29vatSoQf/+/dm6dWu5fYwcOZJatWqdsu/Tvc47btw4Hn/8cQBq167tfs166dKlVTwTIiJyKbDb7dxyyy3uzwUFBecxmuqXlpbGXXfdRUxMDDabjbCwMLp06cLPP/8M/Hl7eKZtbFWvEU53fXDyPrZv387NN99MQEAAERER3H777eTk5JRbTu25iMila/z48eTn5wPQtGlT5s+fT6tWrfD09CQ4OJjrr7+exYsX07Rp0/McafU6ePAggwYNwt/fn4CAAG655RZ34r1MVe+ZK1LVdavaHpfZtWsXN998MxEREdhsNmJjYxkxYgTFxcXuZapyHSAicimx/pWVkpOT3Tc10dHRvPrqq0ydOpXCwkJmzZrFe++9h4+Pj3t5k8lE9+7dL9obocWLF/OPf/yDTp068eWXX+J0OnnttddITU09ZdkdO3bQuXNnYmNjefPNN4mMjOTHH3/kwQcfJD09nbFjx/Lcc8/Rvn177r//fl566SV69uyJv78/AEeOHCEkJIRXXnmFsLAwMjMzmTZtGh06dGDjxo00bNjwrI7ljjvuIDMzk8mTJzN79myioqIAaNy48VltV0RELi7FxcV88cUX7s833nhjufkXe9s9fPhwNmzYwIsvvkiDBg3Izs5mw4YNZGRkAH/eHp7JA/SqXiNU5frgZDfccANDhw5l1KhRbN26laeffhqATz/99LTxi4jIxc3lcrFgwQL35yeeeAKLxVLhslbr/93SX+xtN8DAgQMZMmQI99xzD9u3b+e5555jx44drF69Gg8PD+Ds7pnPdN3TtccAmzdvpmvXroSGhjJhwgTq16/P0aNHmTdvHiUlJdhstjO+DhARuSQYf8GECRMMwACMMWPGGIZhGDfccIN72tSpU8stb7FYjCuvvPKv7OqC0KFDByM6OtooLCx0T8vNzTWCg4ONP57Cq6++2qhZs6aRk5NTbvro0aMNu91uZGZmGoZhGEuWLDEA45tvvvnTfTscDqOkpMSoX7++8fDDD7un33rrrUZcXNwpy48dO/aUmD777DMDMBISEgzDMIzXX3+93GcREbm0lbUNlf20bt3ayM3NLbfOxd52+/r6Gg899NCfLlNZe3gmbWxVrxGqen1Qto/XXnut3HL33XefYbfbDZfLddr4RUTk4nbs2LFy7fT69eurtN7F3HaXtX8n3/MahmH897//NQBjxowZla5b2T3zH++Dz2TdM2mPr7zySiMwMNA4duxYpfup6nWAiMil5C+V15g+fbr730OHDi33Xzi1xIbD4WDx4sV/ZVfn3fHjx1m7di2DBg3Cbre7p/v5+dG/f/9yyxYVFbF48WIGDhyIt7c3DofD/dOvXz+KiopYtWrVn+7P4XDw0ksv0bhxYzw9PbFarXh6erJ371527tz5txyjiIhc3jZs2MD111+P0+l0T7uY226A9u3bM3XqVCZOnMiqVasoLS2t9n1U9Rrhr1wfXH/99eU+N2/enKKiIo4dO1btxyEiIhcWwzDKff6z8oknu9jbboB//vOf5T4PGTIEq9XKkiVL3NPO5p75TNc9XXtcUFDAsmXLGDJkCGFhYRXuszryBCIiF6MzTjovX76cffv2ARAUFITdbmfTpk3UqFHD/WrPsmXLSExMrNZAz5esrCxcLheRkZGnzPvjtIyMDBwOB5MnT8bDw6PcT79+/QBIT0//0/098sgjPPfccwwYMID58+ezevVq1q5dS4sWLSgsLKy+AxMRkctS2UCCpaWlrFmzxn2DtHTp0nKv8l7svvrqK2699VY+/vhjOnXqRHBwMCNGjCAlJaXa9lHVa4S/cn0QEhJS7rPNZgPQtYCIyGUgNDTUXX4RYPv27ecxmnPrj22q1WolJCTEXR4Lzu6e+UzXPV17nJWVhdPppGbNmpXuszryBCIiF6Mzrul8ci/mrKwsWrdufcoyhmEwbdq0S6IuUVBQECaTqcKb1D9OCwoKwmKxMHz4cO6///4Kt1e7du0/3d+MGTMYMWIEL730Urnp6enpBAYGuj/b7fZygxKcvJyIiMjpWK1W2rVrR7du3fjf//4HnBgE5x//+Md5jqx6hIaGMmnSJCZNmkRycjLz5s3jqaee4tixY/zwww9/um5V29iqXiNUx/WBiIhcPsxmM/379+e///0vAK+//jo333xzhXWdHQ5HubrOF7uUlBRq1Kjh/uxwOMjIyCiX/K3qPXNFzmbdigQHB2OxWDh06FCly+g6QEQuV2fU07mgoIBvvvmmSstOmzbtlNeCLkY+Pj60b9+e2bNnU1RU5J6el5fH/Pnzyy3r7e1Nz5492bhxI82bN6dt27an/PzxSekfmUwm99PTMt999x2HDx8uN61WrVocO3as3EBFJSUl/Pjjj6c9JvWWEhERp9PJ2rVr+fXXX93Tygaju9TExsYyevRo+vTpw4YNG9zTK2sPq9rGVvUaoTquDyqi9lxE5NI1duxYfH19AdiyZQsDBgxg06ZNlJSUkJmZybx587jyyivZtm3beY60epUl2st8/fXXOBwOevTo4Z5W1XvmipzNuhXx8vKie/fufPPNN5V2APu7rgNERC50Z/RI9H//+x95eXkAtGrVqtyNG5y4gY2Li+Pw4cMkJCTw66+/0r17d6xWK927d79o60u98MILXHPNNfTp04dHH30Up9PJq6++io+PD5mZmeWWfeedd+jatStXXHEF9957L7Vq1SIvL499+/Yxf/58fvnllz/d13XXXcfUqVNp1KgRzZs3Z/369bz++uunvK4zdOhQnn/+eW666SYef/xxioqKePfdd8vV46xMs2bN3LHeeuuteHh40LBhQ/z8/M7wzIiIyMVm2rRpTJs27ZTpderUYdCgQe7PF3PbnZOTQ8+ePRk2bBiNGjXCz8+PtWvX8sMPP5Q7xsrawzNpY6t6jXC21wcVUXsuInLpql+/PvPmzWPIkCGkp6ezYMGC05bBupjb7jKzZ8/GarXSp08ftm/fznPPPUeLFi0YMmSIe5mq3jNX5GzWrcxbb71F165d6dChA0899RT16tUjNTWVefPm8dFHH+Hn5/e3XAeIiFzwzmTUwV69erlH0J08eXKFy/zrX/9yLzNy5EjDONHd2ejevftZjXh4vs2bN89o3ry54enpacTGxhqvvPJKhaPYG4ZhJCQkGLfffrtRo0YNw8PDwwgLCzM6d+5sTJw40b3MkiVLDMD45ptvyq2blZVljBo1yggPDze8vb2Nrl27GsuXLze6d+9+yjn8/vvvjZYtWxpeXl5GnTp1jPfee6/CmCoatffpp582oqOjDbPZbADGkiVLzvociYjIhamsbfjjj5eXl9GoUSPj4YcfNlJTU8utczG33UVFRcY999xjNG/e3PD39ze8vLyMhg0bGmPHjjWOHz9ebtnK2sOqtrGGUfVrhKpcH5Stl5aWVm7ditryP4tfREQuDWlpacYLL7xgdOjQwQgMDDQ8PDyMGjVqGD179jTeeecdIz8/373sxdx2l7V/69evN/r372/4+voafn5+xs0333zKNUpV75krajuruu6Ztsc7duwwbrzxRiMkJMR9PTBy5EijqKjIvUxVrgNERC4lJsO4BGpgiIiIiIiIiIiIiMgF4YxqOouIiIiIiIiIiIiI/BklnUVERERERERERESk2ijpLCIiIiIiIiIiIiLVRklnEREREREREREREak2SjqLiIiIiIiIiIiISLVR0llEREREREREREREqo2SziIiIiIiIiIiIiJSbZR0FhEREREREREREZFqo6SziIiIiIiIiIiIiFQbJZ1FREREREREREREpNoo6SwiIiIiIiIiIiIi1UZJZxERERERERERERGpNko6i4iIiIiIiIiIiEi1UdJZRERERERERERERKqNks4iIiIiIiIiIiIiUm2UdBYRERERERERERGRaqOks4iIiIiIiIiIiIhUGyWdRURERERERERERKTaKOksIiIiIiIiIiIiItVGSWcRERERERERERERqTZKOouIiIiIiIiIiIhItVHSWURERERERERERESqjZLOIiIiIiIiIiIiIlJtlHQWERERERERERERkWqjpLOIiIiIiIiIiIiIVBslnUVERERERERERESk2ijpLCIiIiIiIiIiIiLVRklnEREREREREREREak21vMdgMgfGYbh/jmZyWRy/5yLfZbtp2yfZfPPJIaKtlddMZrN5ipt82ziPnlds/nsn1GdvN2Tz2uZv+O7FRGRv49hGLhcrnLTTm5v/q42+8/2WbYMUOW2q7rbopPb7L/ShlZ3PGXnqzqvoyq6ThMRkb/f6e6Xy/59PmKq7nu8M71Pr+r+/so98um2Vfbvsjb/j9clZxrj3x23yLmgns5ywcnJyeGhhx7C39+fyMhIoqKiiI+P58Ybb+TXX3/F4XBU+z6PHz/OgAED8Pf3Jyoqipo1a9K8eXPGjh1LVlYWAIsWLaJhw4YcPHiwytv94YcfeOONN065IPgrCgsLGT16NA0bNqRWrVrMnj27Sutt3bqVq666irlz51Z5X8XFxbz77ru0adOGmJgYbrvttr8YdXmlpaW899573HTTTRw6dAjDMFi6dClvvfUWx48fr5Z9iIjIuTNv3jwCAgIIDw8nKiqK2rVr06VLF95//30KCwv/ln2+/fbbhIaGEhkZSXR0NPXq1WPo0KGsWbMGl8tFQUEB99xzD3fddVeVt3ns2DHef/99NmzYcNbxORwOvvzyS7p06UJMTAw9evQ4420kJiYyefJk9u7de9bxAEyYMIHevXtTVFRULdsDyM/P58svv2ThwoWUlpZW23ZFROTP5eXl8dhjj+Hv709ERAQxMTE0adKEgQMH8p///IeUlBScTuc5jWn27NkMGTKEAwcOYBgGGzZs4PXXXyctLe2stltQUMDdd9+Nn58fkZGR1KhRgyZNmvDoo4+SkpKCYRisWbOGZs2asXbt2ipvd/ny5YwdO7Za7tOLi4t57rnniI+Pp0aNGkyfPv2Uh+MrV66kdevW/Prrr2e1z2XLltG8eXN27dp1tmGLnBNKOssFp6wHU79+/Zg3bx6//PILH374ITabjccff5xt27ad9bYrc+211/LLL78wb948br31Vj788EOeffZZHA4HhmGcceO9bNkypkyZUi2N2YIFC/jqq68YP348CxcupFevXlVar+yYzySG9evX8+mnnzJ8+HB++OEHXnjhhb8adoXxnHweV61axaeffvq3JSdEROTvYxgGVquVTz/9lF9++YVZs2Zx/fXX8/zzzzNz5syz2nZlbZdhGHh4eLBo0SJ++ukn3nzzTTIzM7n//vs5cuSIe90/a+//KD09nf/+979ndY1RZv/+/fznP/+hS5cuzJ8/n08//fSMt3Hw4EE+//xzEhMTzzoeOP31z19RUFDA/PnzWbZs2d/SIUBERCrncrm46qqrmDdvHgsXLuSDDz6gffv2/Oc//+H+++9nz5491XIPWlW9evXijTfeoGbNmgBs376djz/+mIyMjLPetsvlonfv3vz444989913PPjgg3z11Vc8+uijFBUVue8vz+R4165dyzvvvHPWsQGsW7eODz74gAceeICffvqJ/v37n/KG01+JsSJ/JSchcj6pvIZcsIKDg2nUqBFBQUEYhkFwcDA33ngjCQkJtGzZ0v0ENTExkby8PGw2G/Xq1aN58+Z4enpiMplITExk06ZN1KtXj8TERNLT02nZsiUtW7ascJ9BQUE0bdoUgLZt2/Lbb7+xcuXKCp/QGoZBRkYGGzZs4MiRI5jNZurUqUObNm3w8vJi69at7Ny5k5ycHD7++GNMJhONGzema9euFW7r0KFDbNy4kfT0dOx2Ow0bNqRp06bYbDYWLVrErFmzMAyDtLQ09u3bR2RkZIXHcPToUdatW0daWhrBwcHYbLZT9lVYWMj69etJTEzE6XRSo0YNOnXqhI+PD0lJSXz55ZekpqaSm5vL2rVrufLKK8nNzWXLli0cOnSIwsJC/P39adKkCQ0aNHA3qt999x1+fn5069bNvb+1a9eSkpJCv379Tol1+/btrFu3jqysLD7//HN8fX1p3749TZs2xWrVnycRkYuByWSibt267vazdevWfPXVV6xYsYI77rgDgCNHjrB161aOHTuG0+kkLCyMVq1aERUV5X419ptvviEsLAx/f3927dpFaGgo3bp1w8vLq8J9Nm7cGJvNRvPmzcnLy+OJJ55g7969dOjQ4ZTlXS4XmzZtYvfu3RQVFREaGkrbtm2JiIigpKSEJUuWkJqayrJlyyguLsZkMjFq1KgKbxpLS0tZv349+/fvx+FwEBUVRYcOHQgICCA1NZUvv/yShIQEmjVrxvr16+nYseMp8RiGQXp6OmvXrnVfYwQGBtKxY0d8fHz4+eefSUtL4/vvvycxMRF/f38GDRrE+vXrcTqddOjQAQ8PDwzDYN++fezYsYOePXvi7++PYRhs2bKFbdu24XQ6adCgAQUFBaecj4MHD7Jp0yYyMjKw2+3Ex8fTvHlzLBYLAF9//TXR0dH4+/uzbds2DMOgadOmNG7cGJPJxLp169i/fz+ZmZl89tlneHh4cN111xEdHf0XfotERORMBQYG0rBhQ0JCQgDo1q0bnTt35uGHH+abb77hkUcewdfXF4fDQUJCAlu2bCEnJwdfX1/atGlD3bp1gRMPXn/99VeaNm1KamoqCQkJ2O12mjdvTr169bBarbhcLg4cOMDmzZvJzc3FarUSFhbGlVdeiaenJ+np6ezevZugoCAOHz7Mr7/+Sk5ODt988w2RkZE0a9YMu93Otm3buOGGG/D29nYfx6pVq0hKSmLw4MHuNuiPAgICiI+Px8vLi1atWrFt2zaWLVvGgQMHKlw+OzubjRs3kpycDEBsbCxt27bFz8+P3bt3s3nzZkpLS5kyZQomk4mGDRvSuXNnPDw8TtnW0aNH2bhxIykpKXh6elK/fn2aN2+Ol5cXy5cv5/PPP8cwDLKysti9ezdhYWGVlr4oLCxk8eLFHDp0CG9vb1q1akXdunWxWCy4XC52797N7t27ycnJwcPDg9jYWNq1a3fKPX2ZkpISduzYwb59+8jLy8PLy4u6devSqlUr9/301q1b2bRpE9dccw2///47WVlZhIeH0759e4KDg93XYWW5jaNHjwK4lwkJCcEwDJKTk9m8ebM7X9G4cWMaN26Mp6dnhbGJgJLOcgEr65XjdDrJyspiyZIlBAUFUaNGDfcyX3zxBS6XC5PJREFBAV9++SVDhw5l6NChWCwWNm3axFNPPUWjRo2IjY3FZrMRFRVV5Rh8fHwwDKPCHjwZGRm8/fbbrF27llq1auFwOPjwww8ZMmQI9957L1lZWWRnZ1NaWsru3bsxm83uC4I/2rt3L6+//jpHjhyhVq1a5OTk8Omnn3LXXXcxcOBAjhw5QmpqKg6Hg/3792M2mykuLj5lO0eOHOGtt95i7dq1xMfH4+HhwcGDB8slzR0OB++88w5Lly4lNjYWs9nM7t276dq1K2PHjuX48eMcOnSIkpISEhMTKSwspH379hQVFfHdd99RUlICQG5uLl9++SX333+/+9Xht956izp16pRLOs+dO5eVK1fSp0+fU27es7KyyMjIoKSkhH379uHt7U29evXO6VN5ERE5e2XtdXFxMWvXriU3N5fWrVu752/cuJGff/4Zi8WC0+kkLS2NH3/8kQcffJB69eoB8PzzzxMYGEjTpk3x8/Nz3wBWhc1mw2q1UlJSUmEbMm/ePN566y0iIyMJCQnhwIED1KhRg4kTJxIYGMjRo0cpLCzk6NGj7Nmzp9KbRcMwmD59OjNmzKBmzZp4e3uza9cuWrZsyUsvvURhYSEHDx6ksLCQw4cP4+npScOGDU/ZjtPpZMKECezZs4eGDRtiNpvJzc0lICCAFi1acOTIEYqKijh06BBWq5WQkBAKCwv56quvKCkpoWXLlnh4eOByuVi1ahUffvghzZo1w9/f3/3KsI+PD3Xq1GHFihVs27bN3QYbhsH27dt54403KCgoIDIykpycHKZNm8bo0aO57rrrMJlMjB07loiICBo2bIiPjw+JiYl8/vnnvPnmmzRo0ICMjAxyc3MxDIM9e/bg4eFxSnJbRETOHYvFQtu2benevTuLFy/mtttuw9vbmzVr1vDmm2+6E8VHjhxhxowZvPDCC7Ro0YKDBw/y4osvUrt2bSIjI/Hw8CAhIYFvv/2WsWPHUr9+fVJSUnjiiScAiIuLw+l0kpmZ6U5crlmzhk8//ZT69etTVFRESkoKJSUlJCQkkJubS2RkJH5+fjz66KOEh4dz9dVXA1BUVMTYsWMJDg5m8ODBVT5WX19fXC5XhffpmZmZTJkyhZ9//tl9v7tjxw769evHgw8+SE5ODpmZmbhcLnebHxAQUOEbQUlJSbz11lvs3LmTunXrUlBQwGeffcaIESMYOnQoKSkpHDlyBIfDQWJiIl5eXrRt27bSuD/77DOCgoLw9PTkwIEDzJo1i+eee45mzZrhdDpZuHAhBw8edN/vz5w5k169evHQQw9VeG2Sl5fHwoULSUtLw2QyUVRUxOeff87QoUMZMWIEAIsXL+bFF190lxArLCxkz549XHfdddx99914e3uTkpLCq6++yq5du4iNjcXLy4vi4mL8/Pzo2rUrGzduZNKkSRQUFBAVFUVOTg5ffPEF9913H3369FGHMamUfjPkgrVgwQJ27NiB1WqluLiYgoICRo8eTbNmzdzL3HXXXfj7++Pp6UlhYSGff/4577zzDoMGDXI/JU1PT6dp06aMGjWKwMDAP30SV/a6SmFhIcuWLeOXX36hS5cuREREsH37dvdyTqeT1atXs2DBAh566CH69euH0+nkq6++4qOPPqJVq1Z07NiRNm3acPjwYZ577jnMZnOF+y4qKmL+/Pns2LGDcePG0apVK3Jycvjwww/5+OOPadasGUOGDCExMZH9+/fz5JNPEhgYeErPr7L6yIsWLWLChAl07tyZwsJCpk6dysqVK93LLVu2jI8//pjnnnuOq6++GrPZzPLly3nggQfo3r07PXr0YOjQoWzfvp17773X/US5uLiYu+++Gx8fHywWC5mZmbz77rtMmzaNTp06YbPZzngwg/bt29OjRw9SU1N57LHHCAkJwW63q9ESEbmIFBcXM2rUKHx8fHA6naSnp3PllVcydOhQ9zLt27enWbNm7oe5ZQ9bly5d6u5p5XQ6yc7O5pZbbqFJkyZ4enri4+NT6X5dLhclJSXs37+fefPmYbfbqV+//ilt0bFjx5gwYQLx8fFMnDgRHx8fNm/ezCOPPML06dN5/PHHGThwID///DMDBgzgpptuAioe5OfQoUO89NJLDBw4kDFjxmCz2VixYgX33Xcfbdu2ZdiwYQwbNoy1a9cybNgwevXqVWFP7ZycHGbNmsWzzz7L0KFDMZlM7qRzQEAAN954Ixs2bOCWW26hZ8+emM3mKj2QLSoq4tVXX8VkMvH2228TGBjIjh07eOKJJ9w35jk5OUydOpXCwkKeeuopatWqRW5uLu+++y5TpkyhdevW7gf8ycnJvPbaa9SuXZvU1FTuvvtu5s2bx+OPP06PHj1YsGAB0dHRPP3009jt9j/9vkRE5O/n6+tLTEwMCxcupKioiNLSUiZMmEBISIg7uZuVlcVdd93F66+/zvTp093rFhQUcN999xEREcHmzZsZO3YsGzdupG7duqxbt46NGzcyffp0mjRp4k46+/n5nRJDfHw8119/Pbt27eK+++6jQYMG7nvF9u3bM23aNHr37o3FYmHFihVs2bKFWbNmVdrLuYzT6aSgoIA1a9Ywe/Zs6tSpQ+3atdmxY4d7GcMw2LZtGzNnzuSuu+5i0KBBmEwmfvzxR1588UWaN2/O1VdfTefOnVm2bBnPPfccJpMJT0/PU+7VHQ4HixYtYvny5bzwwgu0b9+egoICpk+fzscff0zz5s257rrryMzMZOPGjdx///00aNAAu91e6TEUFBQwbtw4wsPD2bVrFxMnTmT27NnUrl0bHx8fbrjhBjw8PLDb7RQXF/PLL7/w7LPPMnjwYGJiYk7Znp+fH8OGDcNms+Hp6UlBQQHffvst7733HldffTURERHAibGVoqOjGTZsGFarlU8++YTZs2czdOhQPD09+fbbb1m5ciVPPfUUXbp0wWq1kpeXR0BAANnZ2e7rhn/961/ExcWRk5PD+++/z7Rp02jatGmFsYmAks5yAWvRogW33347Pj4+pKenM2fOHGbOnEm7du1o0aIFcKJn7+OPP86OHTsoKiqioKCA3NxcMjIy3DdMISEh9OrVi1q1av1pUtTlcjFz5kwWLlyIy+WiuLiYzp078/LLL5/SAJWUlLBy5UpiYmK46qqriIiIwDAMhg4dyscff8y6devo3r07np6emM1m/P39K21Es7Ky2LBhA507d6Z9+/YEBAQQEhJC//79+emnn9i/fz/x8fHY7XZMJhN+fn74+vqesp2CggK2bt1KgwYNaN++PWFhYcCJ+lqzZs1yLzdnzhz8/Py44YYb3K/p9OvXj6effppFixbRp08fvL29MZvN+Pj4uF/VLSgoYNGiRcyYMYOkpCScTif5+fm0adOGjIwMoqOjz7iHsqenJzabDbPZjJ+fHwEBAWe0voiInH9Wq5VRo0YRGxtLYWEhv//+O19//TWdOnXi9ttvB04M2PvRRx+xcOFCMjIycDqd5OTk0LhxY0pKSvD09MRisdCsWTOuuOKK0954FhYWUr9+feDETWF4eDivvPIKMTExpwxqt379epKTk5k0aRK1a9cGoGfPnjRv3pzvvvuOxx9/HC8vLywWC3a7/U/bol9//ZX8/HyGDx9ObGwsANdffz1vvPEG8+bNY8SIEXh7e2OxWPD29sbf3/+Ut3wAvL298fb2Zv78+cTGxtK5c2fi4uLco9GXxePt7e2OJzc397Tfxd69e9m5cyfPPvss9erVw2Qy0aVLF5o3b+5+eJ6dnc2qVasYPHgwTZo0wWw24+vry8CBA7n33nvZu3ev+xqqffv2tG3b1v22Vu3atdm1axeGYbh7l9tsNvz8/Mq9Ki0iIudP2VtFhmGQkJDApk2bmDRpErVq1QLA39+fa6+9lilTppCSkuJer1+/fjRo0ACr1UqjRo2oUaOG+w3YmjVrkpuby8yZMxk+fDgtWrQgNDS0wv1brVbsdru7fSlrxwzD4P777+ehhx5i48aN7nJcTZo0+dPewXBioMIlS5YAJx52t2jRgldfffWUpHdJSQnr168nNDSU3r17ExUVhWEYXHPNNXz00UesXbuW/v37u5PglbXTcOIh7caNG2nTpg0dOnQgNDQUwzC46qqrmDNnDgcOHKBVq1Z4eXlhMpnw9fWt8D79ZDfccIP7HHfs2JEOHTqwatUqcnNz3XmP119/nU2bNnH8+HFKSkrIzc1l165dpyR2y+69d+3axXvvvcfOnTspLi6mqKjIXTazLOlsGAYjRoxwf27RogUzZsyguLiYkpISfvjhBxo1akT//v3duY+y73fz5s1s2LCBO++8k/j4eCwWC76+vnTs2JE333yT1NRUJZ2lUko6ywUrJiaGXr16uWs6X3HFFQwZMoTZs2fTuHFjtmzZwqBBgxg0aBCTJ08mJCSEVatWuUtElAkICMDX1/e0vXDNZjNXX301//rXv/Dw8CA6OpqgoKAKGyGXy+V+suvv7w+c6BFlt9sJDAwkJyenysdZ1pCU1bkq25avry8eHh5VHmCvpKSEvLw8QkJCyvU6PvmGFeDw4cNs377d3bOsjGEY5c7byUpLS/nqq6948803ue222+jUqRNeXl58++23rFixwl1yo6we1B+3q3IZIiKXLovFQteuXWnSpAkAAwcOJC8vj2effZYbbrjB3ctqz549PPzwwzRo0IDCwkLeffddiouL3QPimEwmIiMjT5twhhPlNP73v//h6elJQEAAUVFR7jb0j0nnrKwsnE6nO0kMJ26Iw8PD2bRp0xm1UWlpaVgslnKlujw8PIiMjKxw/IfK2O125syZw+uvv85DDz1EcXExXbt25aWXXnInxitS0bXMyfHn5OTgcDjcAzkB7vIcZW8RlZaWkpSUxNixY3n55ZfLbadmzZoUFRW5p0VERLivg8xmMzabjby8PLXrIiIXqNLSUjIzM/H39y9XavGee+7hwQcfdC9X9jc/Ly/PPS0iIsLdzlitVvfbxC6Xi+bNm/PZZ5/x/vvvM2TIEOx2O4MHD+bZZ589baL1ZJ07d6ZmzZosWLAAs9nMunXrePLJJyuspXyynj178swzz+Dt7U1ERARhYWGYzeZT2sWy+3RfX193QrqsJ3NgYGCVHuCWKbu/rlGjhjsRazKZ8Pb2dp+bMxUVFeVuVy0WCwEBARQUFOBwOEhNTWXgwIF06NCB119/nYiICFJTUxk+fHil9+kbN27k3nvvpW/fvjzwwAMEBweze/dunnrqqXLxeXl5ufMWcKLzl8PhcA+8nJWVRe3atSv8Ho4fP05ubi5jxozh8ccfd083DIPAwEANbCh/SklnuaCV9fgxmUzYbDaCg4NJT0+noKCAn3/+Gbvdzvvvv4+npycul4vVq1efUovpTEo+hIaG0qZNm9MuV3bDmZiYSEZGBn5+fhiGQW5uLpmZme6nghUlYf/IbrcTHBzMkSNHKCgowGazuRtLh8NR4StLlW0nKCiIzZs3U1hY6N5vWc2qMrVr16ZBgwbMmDGj3Ks/ZU96K5Kfn8+aNWvo27cvDz74IN7e3pSUlDBjxoxyy/n6+pZryEtLS0lLS/vTUe3Lvp+KamiJiMjFo+zvuclkombNmhQUFHD06FGKi4vZs2cPjzzyCAMGDMBkMnHw4MFyN7p/3MbpmM1mWrZsWenAOieLiIjAarWye/dudy+v4uJiDh06RHR0tPs6oypiYmLcAzKV9RYqKCjg4MGDNGrUqErbgBPH2bx5cz7//HNyc3P57bffePTRR3nuueeYMWOGO56TryHMZjPe3t7k5OS4H/YahkFSUpJ7mdDQUDw9PdmzZw99+vRxH2tKSoo7Ge/p6UmdOnW44oorGDZsWLmH6x4eHu7jqupxKAEtInJhcLlc7N+/n3Xr1rkHuC17G+jJJ59011Eu4+HhQUxMTLnyFJWxWq1cf/319O/fn9TUVObOncszzzxD/fr1GTVq1CnLl7UtJ9/jlSVsb7zxRmbPnk16ejo+Pj507979tO1wUFAQLVu2rLBk1cksFguRkZH8+uuvZGZmut/GLSgoID09nU6dOrljKYuvsp7OJ9+nFxYWut8ALmuHzyTZXubAgQM4nU53zeb09HQCAgLw9PRk1apVmEwmxo0b536Qv2DBgkrbWafTyZo1a4iLi+PJJ58kNjYWwzDYunVrhctXdo7NZjORkZEcPXqUgoKCU0pl+fn5ERQUxPDhw+nbt2+5zgEWi6Xcg26RP6r4/y6RC0BRURFpaWmkpqaSmJjIsmXLSExMJC4uDi8vL6Kjo3E6nfz2228kJSWxYsUKvv/++3MyiI2HhwdXXHEFaWlpzJkzh3379rF7924++ugj7Ha7e+Cj4OBg8vPz2bVrF8eOHavwBjsoKIiOHTuydu1aFi1aRFJSEps2beLLL78kLi7O/frw6djtdlq1akVycrJ7tPutW7cyd+5cMjIy3MvdeOONmEwmd6Pm5+eHh4cHaWlplSZ+PTw8CA0N5eDBg+zatYvExEQWLlzIokWLyi3Xtm1bNm3axJo1a0hKSmLRokVs3rz5T59+hoWFUVBQwM6dOzl27BgFBQW6gRURuYgYhkFmZiapqakcPnyYdevWsWTJEmrWrElkZKS7zMS2bdtISEhg7969zJkzp9KbourWqlUrGjduzL///W/Wr19PQkICs2fPZvv27dxwww2YTCY8PDyw2WwkJSVx+PBh0tLSKmyLunbtSlRUFB9//DFbt25l3759TJ06lcOHD3PjjTdWOaaMjAwWLlzIrl27yM3NJSYmhvDwcHevpLJkelJSEikpKWRmZuLp6Un9+vXZv38/q1evJjk5mRUrVvDDDz+4t1u7dm3atm3L559/zqpVq0hMTGTBggVs2bLF3RYHBQVx5ZVXsnfvXlJSUvDx8cHX1xeHw0FWVlalN99/5OHhQWBgIIcPHyYpKYm0tDR3MlxERP5+hYWFpKenk5KSQkJCAkuXLmXy5MlkZGRw4403EhAQQGxsLD179mTNmjXk5ubi6+uLt7e3+167Kg9vAXbs2MGyZctISEjA4XC4yz9Wdu9ddo+3e/duUlNTyc/PxzAMrFYrPXr0oKCggK+++op+/foRGBh4xmMDVcbDw4M2bdpQWFjI3Llz2bNnD/v27WPGjBkUFBTQpUsX4MR9uslkYsOGDe779D+2+/7+/rRr144dO3bwww8/uO+vZ82aRWhoKA0aNDjj+GbNmsWqVatITk5m0aJFrFy5kq5du+Lv7094eDhOp5PNmzeTmJjI6tWr+fzzzyvtwGUymQgLCyM3N5dt27a5cyJ/7Bh2Ojabjf79+7vP0759+0hOTmbDhg0cOnSIuLg4OnfuzPr160lNTcXb2xs/Pz8cDgf5+fnqPCZ/Sj2d5YK1cuVKnnjiCfcrHnl5eVx77bUMGDAAm83GVVddxeLFi92jq3t7exMbG3tOagpaLBbatGnDrbfeyg8//MDSpUsxDIOioiKefPJJd83p3r17s2DBAp544gl8fX3p06cPd9xxR7lteXp6ct1113Ho0CE+++wzvvzyS0pLS7Hb7YwePZq4uLgqxWQymejWrRtDhw5lxowZfPfddwQEBLh7nJVp3749Tz75JAsWLODnn3/GYrHg4eGBr68v9957b4VPKr29venfvz9vvPEGzz77LAEBAXh5eXHFFVewe/du93LDhg1j8+bN/Otf/yIsLIyIiAiCg4MrfR0IoFu3btStW5cXX3yR4OBgbr75Zvr16/enAz6KiMiFo7S0lBdffBF/f39MJhPHjx/H39+fMWPGEBQUhM1mY/DgwXzxxRds2LABHx8fvL293W3l3y04OJgXX3yRN998k2effRabzcbx48cZOHAggwcPdt+09e7dm0WLFrFlyxY8PDyYMWPGKaU+IiIimDhxIlOmTOGpp55yD7Tz8MMPn9KD7M/k5OTw8ccfu18NdjqdBAcHM3r0aOBEj+rOnTvz1Vdf8dNPPxEdHc2kSZO44oorWLFiBW+//TYhISEEBQXRuHFjdy81m83G008/zQsvvMBTTz3lbodDQkLcZTP8/PwYMWIEH3/8Me+//z4mk8n9GnWLFi2oW7dulQYE9PX1pWfPnrz33ns8+eSTeHl58fzzz7t7Z4mIyN9r9erVPPHEE+63V8vakgkTJtCpUycsFgsmk4mnn36aKVOm8Oqrr2KxWNxjGLRu3drd8/d09u7dy+eff+5utwoKCrj66qu57rrrKly+efPmtGrVismTJ/Pll1/Sv39/Bg8ejJeXF1FRUXTq1ImUlBR69uz5pwPvnSmTyUSTJk24++67mTNnDmvWrHFfmzz88MN07NgRgCuuuIJOnTrxzDPPEBwcTI8ePRg5cmS5ntQWi4U+ffqQlJTEzJkzmTNnDg6HA6vVygMPPEC9evXOOL74+Hg++eQT8vPzycjIID4+nkGDBuHt7U3z5s254YYb+PDDD5kzZw52u534+HgWLlxY4bbMZjOdO3emZcuWvPnmm4SEhGC32+nSpQt79uypckwWi4W+ffty8OBB5s6dy/fff4+Xlxc+Pj7ceeeddOzYkVGjRvHJJ5/wwQcfYBgGHh4eeHp60qZNG2JjY/9Sr2+5PJgMdSmUC0xpaSkJCQkcPnzYPc1qtbpH4g0JCXG/znn06FGSkpJwOBwEBwcTGBhIYmIirVq1wtvbm/T0dJKSkqhfv36lpSPgRAO9Y8cOPD09adiwYYXLZGRksHfvXlq2bIndbscwDPLz80lMTHT3DAoLC6N27druhKnD4WDfvn3uEhPR0dEVbr+sl1hSUhJ5eXl4eHgQFRVFzZo13Un3st5X7du3d9dlrEh2djYHDhwgLy8PX19fwsLCyMzMpEaNGoSFhWEYhrueY1lcnp6eBAUFERcXh91uJz09nf3799O0aVP3jWdxcTEHDx4kJSUFk8nkTvSnpqbSqFEjvLy8MAyDgwcPcujQIQzDICoqitLSUgoKCsoN/pidnU29evWw2+04nU727dvHsWPHcDgc1KlTh5o1a1appqeIiJxfaWlp7Nixw93Lpazub0REBLGxse6/5Xl5eSQkJJCdnY3NZiMqKorCwkIsFgu1a9fGbDazZs0agoODT/uGT3JyMgcPHqRTp04V9sp1Op3s3bsXwF3yoqwMxdGjRyktLcXPz4/atWu7H866XC4yMjJISEhw99qq6HVfwzBwOp0kJCRw7NgxXC4XAQEB1KtXzz2QUE5ODnv37qV27drunlR/VFxczP79+8nJyaG0tBRPT0/Cw8OJi4vDbDbjcrlITU0lOTmZoqIi7HY7HTp0wOVycfToUQ4ePIjT6SQ8PBxfX19SUlKIj48v1xYfPHgQwzCIiIjA5XJRUFBA8+bNsVgs7uuOgwcPkpub637lOSoqioiICCwWC6tXrz7l+9i1axdOp5P4+HjMZjP5+fns37+f7OxsXC4XLVu2JCgoqKq/PiIi8heUlXk6dOgQgPuNHT8/PyIiIggNDS13L+VyuUhPT+fgwYMcP37cPcBfdHQ04eHh5OXlsXv3bmJjYwkLC8NkMlFSUsL+/fvx8vIiJiaGvLw8kpKSyM/Px+l04u3tTc2aNd11oFNTUzl69CgNGjTA29sbl8tFYmIiR48epaSkhJiYGGrVqoXVaiUjI4NnnnkGl8vFSy+9VOmAhPB/bbphGDRo0KDCe8ScnBx27dpFfHw8fn5+7iRzUlKS+43fkJAQ6tSp405wl5UiSU1NpbS0lKioKOrVq1fhfXZ2djaJiYnk5ORgtVrd1zhl9/wpKSkcOHCAli1bVtoBLjs7mz179hAXF0daWpr7Daa4uDj3+AmGYZCenk5CQgLFxcUEBAQQExPDtm3baNSoEWFhYWRlZbFnzx73fbrT6SQlJYXk5GR3TiQ6OpqdO3fSuHFjAgMDOXjwIMnJyeWumzIzM9mzZw8tWrRwXzuUfcfZ2dnAibGx6tSp404oZ2Zmkpyc7L5u8PHxITIykvDw8D/NT8jlTUlnERERERERERH525TVG165ciX/+c9/ePrppxk8eHCVyzqJyMVHSWcREREREREREfnbGIZB586dycnJ4bbbbuO+++6rUjknEbl4KeksIiIiIiIiIiIiItVG7zGIiIiIiIiIiIiISLVR0llEREREREREREREqs1lO8SkYRi4XC6ysrLw8vI63+GIiFzQCgsLCQoKqnDEaJFzRW23iEjVqe2WC4HabhGRqrvU2u5zknSeOHEiU6dOpaSkBDjR8DRu3JhXXnmFFi1a8N577zF16lRMJhMjRoxg5MiR+Pv7A3D06FHGjh3Lb7/9Rp06dRg3bhytWrXCbDZTWlrK999/z6RJk0hNTaVPnz5MnDgRPz+/KsWVmJjIFVdcodFSRUROw+Vy8fvvvxMXF3e+Q5HLnNpuEZGqUdstFwq13SIiVXOptd3nJOn8wAMPcPvttwNQXFzM9OnT2b17N9HR0XzyySdMnjyZd955B5fLxdtvv01AQAC33HILLpeLxx57jNLSUqZMmcL333/PPffcw8KFCwkJCWH16tW8/fbb3HTTTbRs2ZJ//etfPPLII3z44YdVeipgt9vx8/NjyZIleuoqIlKJgoICunbtqr+TckFQ2y0icnpqu+VCorZbROT0LsW2+5wknQMCAggICMAwDI4dO8bmzZvp2bMnQUFBzJw5k9GjR9O3b18MwyAxMZEVK1bQt29fCgsLWblyJbNnz6ZNmzY0bdqUH3/8kUWLFjFw4EBWr15NfHw8N998MwEBAbzxxhvceOONJCQkUK9evdPGZTKZsFgsBAYG4u3tfQ7OhIjIxcdms2GxWDCZTOc7FBG13SIiVaC2Wy4kartFRE7vUmy7z3lN5127dnH06FG6devGsWPHOHbsGB07dgTAbDYTGxvLr7/+yvHjx9mxYwc2m40mTZoA4O/vT8OGDdm8eTN9+/YlKSmJuLg4AgICAGjUqBFeXl7s3bu3wqSzYRg4HA4MwwCgtLT0HB21iIiIiIiIyJkzDIOtW7eyfft2AJo0aUKjRo3w9PQ8Zdn09HRWrVpFRkYGYWFhtGnThoiICPd29uzZw6ZNm3A4HDRq1IimTZtis9kAyMvLY8OGDSQnJ+Pt7U2nTp2IiorCZDLhdDrZu3cv27dvJz8/n+DgYFq1akXNmjXP3YkQEZGLyjlNOjudTr788kuaNm1Ko0aNSE5Oxul0uus3A3h6euJwOHA6neTm5uLh4YHdbnfP9/HxIT8/H5fLRUlJibuBhBNPUO12OwUFBRXuPyUlhS+++II9e/YAVLqciIiIiIiIyIVg8+bNPP3009StWxeAb7/9lieeeIKWLVuWq5Ocn5/PG2+8wYEDB6hXrx4///wzGzZs4L777iM4OJgDBw7wxBNPEBkZid1uZ86cOYwZM4bOnTtTWlrKvHnzmDNnDrVr1yYlJYX58+fzzjvvEBAQwPbt23nnnXfw9fUlODiYX3/9lcWLF/P000+7k9oiIiInO6dJ59TUVBYvXsxbb72FzWbDx8cHq9VKdna2e5mioiI8PDywWq0EBgZSUlJCYWGhu6ZJXl4etWrVwmKxYLfbKSoqcq9rGAYFBQX4+vpWuH9fX186duzo7gWdmZnJunXr/r4DFhERuUitXLmSd999l/T0dAA8PDwYNmwYI0aMwDAMvvjiC2bPno3JZGLAgAH84x//wNfXF8MwSE9P57333mPjxo3ExMRw//3306hRI8xmMw6Hg+XLlzN9+nQyMjLo3LkzDz74oF63FRERqcTkyZOJiIjgueeeA2DcuHHMmjWL+Pj4crU/f//9d5YuXcq///1vGjRowKpVq/jggw/Ytm0b3bp147PPPsPlcjF27Fg8PDx45ZVXmDlzJm3btiU7O5vZs2fTq1cvbr75ZrKzsxk4cCDz58/nlltuYcOGDRQWFvLYY48RFxfH5s2bGTt2LHv37lXSWUREKnTOho81DINvvvkGPz8/evXqBUBERASRkZGsWLECODFKY2JiIgEBAfj4+NCiRQtKSkrYvHkzhmGQnZ3Nzp07ad26NXa7ndq1a3PgwAGysrLcrxwVFxfTsGHDCmMoSzpfd911XHfddfTu3ftcHb6IiMhFJS0tjeTkZJ5//nlef/11Xn75Zfr06YNhGMyaNYvx48fTv39/+vXrx2effcYPP/yA0+nE4XAwfvx41q9fz+23347JZOLBBx8kPz8fwzDYvHkzr7zyCg0aNOCOO+5g/vz5TJgwwV36SkRERP5PaWkpv/zyCwMGDCAiIoKIiAg6derEli1bKC4uLrfsxo0badiwIQ0bNsTPz4+mTZvi7+9PUlIShmGwaNEi+vXrR3R0NGFhYXTv3p2NGzdSUlJCdnY2hw8fpkuXLgQFBVG7dm26devG4sWLAQgJCSE7O5ucnBysVivJycmYTCaioqJOidkwDPePiIhcvs5ZT+fS0lKmTp3KiBEj3OUyzGYzt99+O+PGjSMmJgaXy8X8+fO56667CAkJweVycc011/Dyyy9z77338uOPP+Lv70+fPn2w2Wx07tyZBQsW8Omnn9KsWTNeeOEF/vGPfxAXF1dhDCaTyV2Q2zCMcq8iiYiISHkeHh7ExsYSEBCAzWbDy8sLl8vFlClTGDlyJMOHD8flcpGVlcVPP/1E9+7dcTgczJ8/n//+97907tyZbt26ceWVV/Lzzz9z7bXX8ttvv1GzZk3uuusugoKCCA4OZuTIkdx3333Exsae70MWERG5oOTk5FBYWEh0dLR7WlkC2OVylVs2MzOT4OBgLBYLAHa7HV9fX7KysnA4HBw5cqTcdkJDQ8nMzMTlcpGZmeke7K9MdHQ0S5YsAaB3797s3r2boUOHUlJSQmBgIK+//nqF996lpaVkZGS430pOTU2ttvMhIiIXj3OWdN6zZw8REREMHTrUnfg1mUzcfPPNlJSUMG3aNEwmE7fccgv9+vXDYrFgNpuZMGECb7/9Nq+//jqxsbG89957+Pn5YTKZaNmyJY8//jiffPIJ3333Hb179+axxx67pEZ6FBEROR/KRk++7bbbsFqtxMfHc9dddxEcHMyRI0fo3r07JpMJq9VKnTp1WL16Nfn5+ezatQtPT09at26N2WwmODiY+Ph41q1bx5VXXsn+/fupW7cuISEhALRu3RoPDw927dpVYdLZMAxcLpe7t5TT6Tyn50FEROR8slgs7oH8yjidTndi+Y/LntxmGoaB0+nEarW622yHw+Fe3uFwuLdjsVjcbe7J8z08PDAMg2XLlvH777/z1ltv0aRJExYvXsy///1vatasScuWLcvFcfjwYV555RU2bNgAnEhCi4jI5eecJZ2bNm3Kjz/+eMp0k8nEyJEjGTlyZIXzIiIieOWVVyrcpoeHB1dddRVXXXVVdYcrIiJyWWvatClvvvkmoaGhpKamMmXKFP79738zYsQIHA5HuZ5Qdrud0tJSHA4HWVlZeHp6lqvR7O/vT05ODk6nk6KionL1J00mE76+vuTl5VUYR1ZWFr/++iuHDx8GTvT4EhERuVz4+/sTGhrKrl276NSpE3AiqRseHn5K4jkqKoqlS5e6E9R5eXnk5eUREhKCxWKhbt267Nmzx738oUOHiIyMxGKxEBISgtlsJiUlhdq1awMnOo7VqVMHp9PJqlWraNCgAX369MHf35+AgAB+++03tmzZckrSOS4ujnfffdedwD569CjXXXfd33WKRETkAqX6EiIiInKKmJgYWrduTWxsLG3btuWWW24hNTWV9PR0LBYLx48fdy9bUlKC1WrFYrHg5+eHw+EoV2eyoKAAHx8fzGYznp6elJSUlNvXyQMG/5HL5aKgoMB945yfn//3HLCIiMgFyGKxcOONNzJjxgw2b97Mxo0b+fnnn+natSs2m4158+a56y536dKFQ4cOMX/+fA4dOsTixYspKCigfv36mEwmhg4dyty5c1m9ejXbtm1jwYIF9OjRA5vNRlBQEA0aNGDevHns37+fH3/8kdWrVzNgwAD3m0u7du1i+/btpKWlsXbtWtLS0ggPDz8lZrPZ7C7LZbfb3eU1RUTk8nLOejqLiIjIxatskMCIiAjCwsJYs2YNbdu2xeVycejQIfz8/PD29qZJkyYUFRWxc+dOWrZsSX5+Pnv27OHqq6/GbrcTGxtLQkICubm5+Pv7s2fPHgoLC6lXr16F+w0JCWHo0KHuV4WPHDnC3Llzz+GRi4iInF933XUXqampjBkzBoA2bdowYMAArFYr3377LeHh4fTq1YsmTZrw4IMPMn36dD788EOCgoK46aabiI+PB2Dw4MHs37+fJ598EoDGjRszbNgwPD09CQwM5Pbbb+ff//43t99+OxaLhXvvvZfOnTtjNpu57rrrOHToEBMmTKC4uBgfHx/69evn7n0tl64TZVcMDucUcTSnEDMQFeBFVKAXFrNKm4pI5ZR0PksakVf+SDXFReRSMG/ePGw2Gw0aNCApKYnXX3+dWrVq0bBhQ4YMGcLkyZNp0KABLpeLuXPnMnToUEJCQggKCqJjx4689tprPPzww3z//fc4HA6uuuoq7HY77du357vvvmPWrFm0aNGCZ555hm7dulGnTp0K4zCZTO7Xhw3DwGo9+0sXtd3yR2q7ReRCFhERwcsvv+wuReXn54evry8mk4nXXnsNs/nEC8yenp4MHjyYXr16UVJS4k4m22w2AIKCgnjuuefIycnBMAx8fX3x9/d313vu2LEj8fHxFBYWYrFYCAoKcq9bq1Ytnn32WfLz83E6nXh4eODv71/pm0pycSu7VioocbJw21G+WH2Q5KwCHM4TJVOsFjOxQV4Mal2Tf7SsgY/txLWa2lMROZmSzmcp+703cGZlnO8w5AJh9vEl+NFnz3cYIiJnLSMjgylTpnD48GEiIiK49tprufvuuwkICODuu++mqKiIhx9+GJPJxK233sqgQYPcCeE33niD5557jmHDhlG7dm3ef/99QkNDMZlMdOzYkfvvv5+3336b1NRU+vTpwyuvvFItyeSqUtstJ1PbLSIXOpPJhL+/P/7+/qfMKxuYt4ynpycRERGVbsfX1xdfX98K51ut1lO2V8ZsNlcag1xaDMPA4TLYmJzFm4v2sOlgNh4WM0HeHtSK9AMDEjOOszs1n/Hzt/Px8gM83KcBveIj8Pa0KPEsIm5KOp8lw+WCk0b4lcubod8FEblE3Hbbbdx2220VzrNYLDzyyCM88sgjFc6PiYlh6tSpFc4r64U1ePDg6gr1jKntlpOp7RYRETnBMAwKSpz8sC2Fd3/ZS25hKV3rhfLPDrF0rR+Gp/VEr/qiUifrkzL5au1B1iRk8cycbaxJyGRkl9rUDvVR2Q0RAZR0FhERERERERG5rJUlnGeuTuY/yw8Q4OXBmF71GdS6Jn52a7kezHYPC53rhtK+VghL9xzjizUH+XbzEZIyCrirex061w1V4llEMJ/vAERERERERERE5PwpdRp8siKBfy/dR4S/jaeuachN7WPx9/KosGSGyWTCw2qmV6MInr+uMf/sEMv2o7lMmL+DORsO49CbRCKXPSWdRUREREREREQuU06XwacrE/hkRQKhvp78q1883RuGY/ewnHZds9lEXIg393Svy6NXNSDjeAlvLNrNtJWJlDqVeBa5nCnpLCIiIiIiIiJyGTIMg/mbj/DZygRMwIsDmtGhdjAelqqni0wmE4HengxuU5NXBjUjv9jBh78eYObqJBwuF4Zh/H0HICIXLCWdRUREREREREQuMy7DYNPBbKYsP0BOYSmvDW5O+9rBWMx/LVVks1ro3TiCD25pjcPh4sNlB1iw+QhOl6HEs8hlSElnEREREREREZHLiGEYpOYU8dnKBBLTj3N/z3pc2Si8wvrNZ8JsMtGpbggvDmqGyzD4YOkBVidk4FLSWeSyo6SziIiIiIiIiMhlpKjUyfwtR1i2J52rm0QyrH0sFvPZJZzLWM1mejYMZ3TPemQWlPDu4n3sO5av3s4ilxklnUVERERERERELhMuw2BDcjbTf0+iTpgPI7vUIsjH86x7OZ/My9PCdS2iGdq2JjuP5vL2z3vJLiittu2LyIVPSWcRERERERERkctEfpGDdxbvocTh4qZ2sTSK9MdcjQnnMoFeHtzSMY4u9UJZuvsY7/6yF6fLVe37EZELk5LOIiIiIiIiIiKXAcMwmPpbApsO5tC5bgh9m0Xiaf17UkMmk4kIfzuPXd2QSH87szcc5rstR1VmQ+QyoaSziIiIiIiIiMglzjAMdh7N5aNlB4gKsHPnFXXws1n/1n2aTCbqhPrwzLXxlDhcvLdkH/vSVN9Z5HKgpLOIiIiIiIiIyCXueLGDST/vxekyGNY+liY1Aqq1jnNlTCYTveIjGNYhhoOZhUxbmUR+seNv36+InF9KOouIiIiIiIiIXMJchsEP21NZm5hJs5oB3Nw+9pzu3wTc3a0uTaL9WbL7GMt2p+Fwqr6zyKVMSWcRERERERERkUvYocwCvt10GIfL4OHeDfCz/71lNf7IZDIR4mvjnu51cLhc/G/DIY5kF6rMhsglTElnEREREREREZFLlMPpYsnuNDYfzOa65lG0jgs6J2U1/shsgna1Q7iueTRrEjJZsjuNEvV2FrlkKeksIiIiIiIiInIJMgyD5MwCftqRipenhVs6xGGznp9UkMlkwt9upV+zSOJCfPh0RQJpecXq7SxyiVLSWURERERERETkEuR0GaxPymJtYiY3tK5JXKjPeY3HZDLRvGYgVzUJJzWviP+uSsalpLPIJUlJZxERERERERGRS4xhGKTlFTNn42GiA+30bBSOj6flvJTWOJmHxcw1TaNoGOHHf1cnkZhRcF7jEZG/h5LOIiIiIiIiIiKXGJcBaxIz2ZicRY8G4TSI8DvvCecyDcL96NM4glKnwftL9lHicJ7vkESkminpLCIiIiIiIiJyiSkqdTLtt0TC/e30aBiGv916vkNyM5tN3NC6JvXCfVm88xi/H8g43yGJSDW7cP7iiIiIiIiIiEg5LpeLWbNmMWfOHAAGDRrEtddei7e39ynL7t27lw8++IB9+/bRqFEjRo4cSePGjd3b+fHHH5k5cyYlJSVce+21DBo0CF9fXwBSU1OZPn06v//+OyEhIdx33320bNkSk8nEzJkzmTZtWrl9xcXF8eCDD9K0adO/+QzIX7VyXzrbj+TSp3EEreOCLphezmUiA+yM7FyLp2ZvYfpvSbSKCcLfy+N8hyUi1UQ9nUVEREREREQuUD/++CPPPvssPXr0oHv37kyePJkVK1bgdJYvR5CRkcGDDz5IXl4e9957LwUFBbz22mscPnwYgA0bNjBmzBhat27NNddcw5QpU1i4cCEOh4P8/Hw+/vhjVqxYwbBhwwgJCWHEiBEcO3YMgB49ejBx4kQmTpzIhAkTaN68OQcOHCAsLOycnw+pGpfLYMryA3h7WrimSSS+tguvz6HJZOLa5lG0qBnI1sM5LNudhqFBBUUuGefsr47L5aKgoICSkhIAbDYbXl5emM1mDMOgoKCA4uJiTCYTXl5e2Gw2TCYThmHgdDopKCjA4XBgtVrx8fHBbDa75xcVFVFUVIRhGNhsNry9vS+4J3giIiIiIiIiZ8IwDN555x2GDBnCnXfeCcCRI0eYNWsWnTt3dvdSBvj555/Jy8vjlVdeISgoiJiYGMaOHcvmzZuJjo7mvffeo1u3bjz44IOYTCYyMjL46quv6NevH5mZmSxdupTRo0fTv39/Bg4cyPLly5k+fTqPP/44UVFRREVFAVBYWMiECRPo1q0b4eHh5+W8yOmt2JfOtsO5xEf50Ss+4oLNkdisZh7oVZ9RU9fy444UujUMI0C9nUUuCeekp7PT6WTt2rWMGTOGfv36cf311zN58mSys7OBE43mAw88wDXXXMN1113HpEmTyMzMxDAMSktL+fHHH7npppu46qqruPHGG1m8eLF72ykpKbz44otce+21XH311Tz88MMkJCSci8MSERERERER+dsUFxezdetWunXrhtlsxmw207RpUxITEyktLS237J49e2jSpAl2ux2z2Ux4eDhBQUEcPXoUwzBYt24dV1xxBRaLBbPZTPPmzdm/fz+lpaVkZ2eTm5tLgwYNMJvNWCwWunXrxrp164ATPVLLfnbv3s2uXbu49tprK0xklnUcczqduFyuU3pky9+v2OHkizXJGIbBze1j8fK0nO+QKmUymWgTG0SnuiFsPpjNusRMXOrtLHJJOCc9nfft28f48eO59tprefbZZ/H09KSkpAQvLy8Mw2DixIlkZGTwySefkJ6ezsSJE6lXrx4DBgzg8OHDvPvuu1xzzTVcf/31LFiwgIcffpiff/6Z0NBQvvnmG3bu3Mmbb75JYGAgL7/8Mm+//Tavv/46drv9XByeiIiIiIiISLXLy8vD6XQSFBTknubj40NBQcEpZQiOHz/ufisYwMPDA7vdzvHjx3E6nWRlZREYGOhe3tfXl+PHj2MYBrm5uVit1nJ1ogMDA90dxU728ccf07JlS1q0aFFhzNnZ2fz6668cPXrU/VnOrQ1J2WxMziY2xJtrmkae73BOy+5p5qZ2MTz5v638uieNNnFBBHp7nu+wROQsnZOezgsXLsTX1xdPT0+mT5/Ojz/+iNlsxsvLi5ycHL7//nvuu+8+mjVrRvfu3enYsSNLliyhuLiYnTt3UlRUxNChQ6lbt677laJly5aRmZnJ5s2b6du3L23btqVRo0bcddddbN26lUOHDp0Sh8vloqSkhKKiIoqLiykqKjoXhy8iIiIiIiJyxspKUh4/ftw9raioyF2O8mR2u53i4mJ3MtrpdFJSUuLu+ezr60tBQUG57djtdkwmE97e3u775TLHjx8vV74D4NChQ/zwww/ceuutWK0V92FzOp3k5uaSkZFBRkYGWVlZZ30epOqKHU5+2HaUzOMljOhU64Ks5fxHFpOJlrGBtKsVxJLdaew7lq/aziKXgHPy12fv3r2sWbOGsLAwmjZtyurVq9myZQtPPvkkWVlZFBQUuEfUNZvNxMbGsmPHDhwOBwcOHCAgIICIiAgAvL29qV27Nnv37qVt27YcP36cyMhIPDxO1PyJjIzEbDaTmppKvXr1ysVx8OBB3nnnHTZv3gyceFVJRERERERE5ELk7e1N3bp1Wbt2LT169ABOvElcs2bNU5K+tWrVYuXKle6yG1lZWeTk5BAeHo7ZbKZZs2asXbuWm2++GYDdu3cTGxuL1WolKCgIu91OQkIC9evXB2Dt2rW0b9++3D5mz55NQEAAvXr1qjTmkJAQhg0b5k4aHjlyhPnz51fL+ZDT238sn00Hs4kKtHN1kwu/lzOcKLER7nci3pe+38lPO1JpHO2Pt+eFnzAXkcqdk/+Di4uL8fb25oknniAiIoItW7bw+uuvs23bNsLDwzEMA0/P/3t1wmq14nA4ACgtLXXXrjp5fmlpKS6XC6DcPJPJhNlsds87WUREBKNHj3Y/JT527BgPPPDA33LMIiIiIiIiImfDbDZzxx13MHHiRJo2bYrL5WLBggXcf//92Gw2Xn75ZYKCgrjnnnvo1asXH374IW+88QY33XQTX3/9NaWlpTRt2hSTycQdd9zBPffcQ6dOnQgKCuKrr77ipptuwmazERwcTKtWrZg6dSqBgYGsXr2abdu28c4777hjKSws5Ouvv2bo0KHlynD8kclkwmI5UUPYMIxKe0RL9XMZBuuTstifdpzbOtci0Nvjgh1A8I+sZhNtawXRpEYA/9twiGEdYokNtlw08YvIqc7JX/+goCDi4+MJCQnBbrcTERGBl5cXubm5NGnSBIvFQkpKChERERiG4a41VTb4QUFBgfvVHpfLRVpamnsbZrO5XD2r4uJiiouL8fPzOyUOm81G7dq13Z+PHDlyLg5fRERERERE5C/55z//SWZmJk888QQAo0aNom/fvlgsFpKTkyksLASgZs2avP/++zz77LN8/vnntGzZkqeeeoq6desC0Lt3b55//nleeukliouL+ec//8nQoUOxWq34+/vz4IMP8uqrrzJs2DAiIiKYOnWqu9cznOj5XFhYyC233HLuT4JUSVpeMWsTs7CY4eqmkVjNF0/C1mQyUTvUly51Q9iUnM2cjYd58Mr6KOcscvE6J0nnVq1asXr1ao4cOUJMTAyHDh2iqKiI4OBgoqKiaNSoEd9++y21atWiqKiIDRs20KZNG2w2Gy1atKCgoIDVq1fToUMH9uzZQ3JyMp07dyY4OJhatWqxZs0aunTpgre3Nz/99BNhYWHUqlXrlDhOfkJmGIaemImIiIiIiMgFzWq18vDDD/Pwww+fMu+DDz5w/9tkMtG6dWu+//77Srdz++23c/vtt1c4v1atWuW290fdunVj/fr1Zxi9nCuGYXAgLZ91SZn0aBhOVID9ost5WMwmujcIY8GWo3y59iAjOsYR7Gs732GJyF90TpLOffr0YcmSJbz66qs0bNiQAwcO0LBhQ5o0aYLJZOLJJ5/k9ddfp6SkhNzcXAzD4LrrrsPDw4OYmBh69+7NJ598wm+//cbGjRsZOnQoLVq0wGw2069fPyZPnsykSZPw8vJizZo13HHHHeVG5RURERERERERuVQVljpZnZBJTkEp3RuEEeDlcb5D+ksaRfnTJi6Ib9YdYu6mI9zetfbpVxKRC9I5STqHhYUxduxYlixZQkZGBr1796Zz586Eh4cDcM011+Dl5cX27duJjY2lU6dO1K1bF5PJhL+/P/feey9Lly4lJSWFIUOGcPXVV7uf2HXs2BGbzca6detwOBw8/vjjdO3a9VwcloiIiIiIiIjIeWUYBpnHS/hxWwqNo/1pEu2P1WI+/YoXIA+LmUGtavDDthS+XneQf7SMJkS9nUUuSueson/NmjUZPnx4hfPMZjM9e/akZ8+ep8wzmUxEREQwdOjQCte1Wq20a9eOdu3aVWu8IiIiIiIiIiIXOpcBaxIyScg4zsjOtYgN8TnfIZ2VZjUD6VAnhKW7j7FoRwo3t4873yGJyF9wcT76EhERERERERERnC6Db9YdJNzPTofaIditF3eqx9Nq5tbOcZQ4XHy76Qj5RaXnOyQR+Qsu7r9EIiIiIiIiIiKXsV0puaxOyKROmA9t4oIuugEEK9I2Lpi2cUEkpB1n+d50DMM43yGJyBlS0llERERERERE5CLkMgxm/J6Et6eVHg3C8b9IBxD8I7MJRnauRXZhKb/uSaOw1Hm+QxKRM6Sks4iIiIiIiIjIRehQZgE/70olwt/GlfHh5zucatWhTgj1w33ZcjiH3Sl55zscETlDSjqLiIiIiIiIiFyE5m46wvFiJ90bhhET5HW+w6k2JpMJH5uVQa1rkJB+nPVJWRQ71NtZ5GKipLOIiIiIiIiIyEUmLa+Yn3emYjGbuKldzCVRy/lkHhYTHeuEEOlvZ+W+dNLyis93SCJyBpR0FhERERERERG5iBiGwYp96RzKKqRLvVDqhvmd75CqnclkokaQN1fUD2N1QiYHjh3HpQEFRS4aSjqLiIiIiIiIiFxEikqdLN19jJzCUm7pGIv50urk7OZvt9KxTjBeHhZ+2H6UgmInhhLPIhcF6/kOQERERC5sDoeDQ4cOUVhYSGxsLD4+PhiGweHDh8nIyMBisRAZGUlwcDBmsxnDMCgsLOTQoUMUFBTg7e1NXFwcnp6emEwmXC4XaWlpHDt2DJfLRUhICFFRUVgslvN9qCIiIiIXPMMw2HYkl10peTSK8KVtXPD5DulvYzKZaBLtT7OaAfy4PZU7utahdpjP+Q5LRKpASWcRERGplGEYJCQk8NBDD5GTk8Pbb79Nu3bt2L59OxMmTKC4uBiXy0Xjxo0ZM2YMUVFRFBUVMWvWLGbPng1AaWkpQ4YMYcSIEQDs37+fyZMnk5ycDICvry8PPfQQbdu2PW/HKSIiInKxKHW6WJ+YycHMAh6/qiE2q/mSq+d8shpBXrSNDWJNQiY/bE/hnh51uXSPVuTSofIaIiIiUqnCwkI++OADIiMjCQsLA04kol988UV8fX2ZNGkSEyZMYPv27SxatMjdK3ratGkMHDiQ999/nxEjRvDiiy+SkJBAcXExs2fPJjc3lxdeeIF33nmH8PBw3n//fY4fP36ej1ZERETkwpeSU8TqhEzC/Wx0qReK5VKtrfH/WcxmutQPJSrAzqwNhygodpzvkESkCpR0FhERkUpNmTKF0tJSbr75ZqzWEy9IZWRksHz5cm677TZq165Ny5Ytad++PStXrqSkpIRt27ZhGAbXXnst0dHRDBgwAF9fX3799VcyMzPZsWMHV155JY0bNyY2NpZhw4axf/9+d8/nk7lcLoqKiigoKKCwsJCCgoJzfQpERERELhhOl8Hu1DzWJ2XRs1E4kQH2S7qXc5n4KH+aRPtzKLOA5XvTznc4IlIFSjqLiIjIKQzDYPny5cydO5dnnnkGf39/97yUlBSKi4upW7cucKLWXlRUFMeOHcPhcJCcnIyfnx/BwSfqC9psNmrWrEliYiL5+fkUFRUREhKCxWLBZDIRFBSE1WolIyPjlDj279/PyJEjadKkCU2aNOHKK688NydARERE5AJjGAbHix0s2ZWGh8VMl7qh+Novj6qpdg8LVzWJxOZhYeaagxpMUOQicHn8dRIREZEzkpGRwbhx43j00Uex2Wzk5eVRWlpKXl4eVqsVwzAwm//v2bXJZHJf/BuGgclkKtfr5uT5lfXGqejmoXbt2nz00UeUlpYCJxLeQ4YMqbbjFBEREbmYHMst4sftR2kVG0TDSD/Ml0Ev5zJXNgonws/G1kM5bD2cQ/Oagec7JBH5E0o6i4iIyCmOHTuGh4cHTz75JCaTiYKCAtLT09m6dStTpkzB09OTpKQkIiMjMQyDY8eOERoaisVioUaNGuTn55OTk0NgYCAOh4OjR49y3XXX4e3tjYeHBzk5ObhcLkwmkzuhHRQUdEocVquVgIAA4ERSuqSk5FyfChEREZELgsuA77elUFjqol2tYKIDvc53SOeUt6eVga1q8O4v+1iw5ShNowMwX+L1rEUuZko6i4iIyCnq1avHZ599hsNxYqCWzZs38+GHH3LPPffQpUsX2rVrx8yZM4mJiSE/P59169Zx1VVXYbPZaNasGQ6Hg59//pkePXqwbt060tPTueKKKwgODqZBgwYsX76c9u3b4+vry5w5c4iNjSUuLu48H7WIiIjIhSunsITZGw4RF+JNp7ohl/wAghW5vmUNpixP4Lf96RzNKaRGkPf5DklEKqGks4iIiJzC09OTqKgo9+ejR4/i5eVFREQENpuNp59+mpdeeolnnnmG4uJioqKi6Nu3L1arlZiYGAYPHsyXX37JDz/8QGpqKg888AANGjTAbDbzj3/8g8mTJ/PCCy9gtVrJzc1l9OjR+Pn5nccjFhEREbmwLd6ZyuHsQga3qUnDiMvzuqlGoBdXxoezdHcaK/dnMKStks4iFyolnUVEROS0GjRowNNPP02dOnUAaN++Pa+++iqHDh3CarVSr149oqOjMZlMeHt7M3z4cNq1a0d2djYBAQE0a9bMXcu5SZMmPP300yQmJuJwOIiJiaF+/frn8/BERERELmhFpU6m/55EgJcH/ZpGYfOwnO+QzguTCYa2jWH+5iOsScjkmiaR+Ht5nO+wRKQCSjqLiIjIaQUGBtK6dWv3Z7PZTHx8PPHx8acsazKZCAgIoEOHDhVuy2KxUKdOHXcCW0REREQqZxgGK/elcyDtOM1rBtC+dvD5Dum8ahDhR7MaAew8msv+tHxaxgRWOlC1iJw/SjqLiIiIiIiIXKAMw6C4uJji4mIAbDYbNputwiSbw+GgsLAQp9OJ1WrFbrdjtVrd2ykpKaG4uBjDMPD09MRut7u343K5KCoqorS0FJPJhJeXF1artcL5AB4eHnh5eSnZdw64XAbfrD9EqctgaLtYPK3m8x3SeWMymfCxWenbLIo3f9zNtsM5NK8ZiEW/hiIXnMv3L5WIiIiIiIjIBS47O5tnn32W3r1707t3byZMmMDRo0cxDKPccg6Hg++++45BgwbRo0cPhg4dyoIFCygpKQEgPz+fV199lT59+tCrVy+efvppkpOTMQwDp9PJhg0buPPOO+nZsyd9+/bl888/dw8o7HA4WLduHWPGjKF3795cffXVvPLKK+Tm5p7z83E52nI4h+2Hc4j0s3FVk4jLPtHvYTHRoXYw/l4erE3MIiO/+HyHJCIVUNJZRERERERE5AI1ZcoUfvvtN9577z0mT57M1q1b+fbbb909jsvs2rWLl19+mRtvvJG5c+fSr18/pk+fzq5duwCYM2cOs2fP5tVXX+Wjjz4iOTmZmTNnUlJSQnZ2Nv/5z38ICwtj5syZPPbYY7z00kusXbsWgH379vHWW2/RtGlTvvzyS/73v/9xyy23YLPZzvn5uNyUOl38vDOV9Pxi/tkxDq/LtJbzyUwmE5EBdjrVDWFdYiaHsgpPeQgjIuefks4iIiIiIiIiFyCn08kXX3zByJEj6dChAx07duSqq65i6dKlFBUVlVt2+fLlREZGctNNN1GrVi2uvfZa7HY7u3fvxjAMZs6cycCBA+nRowdt2rRhwIABLF68mJKSErKysti5cyc33HADjRo1YuDAgbRt25ZZs2ZhGAbLly/HYrHg4eHBV199xaJFi/Dy8sJut58Ss8vloqSkhKKionJlQeSvScooYG1iJgFenvRrFnW+w7lgBHt70r52MDlFpaxNzKTE6TrfIYnIH6ims4iIiIiIiMgFKC8vj5SUFJo0aeKeFhsbS2pqqrv0RZnDhw8TGxvrruHs5+dHQEAAaWlpOJ1Odu/ezahRo9zL16pViyNHjuBwOMjIyMDpdBIdHe2e36RJE9asWUNpaSnJycmsXLmSoKAgGjduzO+//86qVauYMGECERER5eI4ePAg7733Hlu2bAFQ0vksuFwG65My2Z2Sx41tYwj3r7iW9+XIajHTNDqAOqG+LNx6lCFta+JpMev8iFxAlHQWERERERERuQCVlpa6B/0rY7VaT0k4w4m6yycP/Gc2m7FYLDidTvcggieXwzh5O2WDB5YlrOHEQIGlpaXunsuhoaHcfffd1K9fn3379vGvf/2L1atXc/3115eLIyIigrvvvpv8/HwA0tLSGDNmTPWdlMuEYRik5xez6kAGYKJv00g8LXpZ/WT1wn2Jj/JjzsbD7DqaR8e6Iec7JBE5iZLOIiIiIiIiIhegwMBAbDYbKSkp7mnZ2dkEBARgNptPWXbPnj24XCfKDBQXF3P8+HH8/f2xWCxERkaW205WVhaBgYGYzWaCg4NxOBzlBgY8duwY4eHheHp64u/vT926dQkPD8dutxMWFkZoaChpaWmnxGyz2ahbt67785EjR6rtfFxuEtKP89v+DLrVDyM22Od8h3PB8fa00K5WMIt3HmPupiN0qBOCOjqLXDjOyWOy7Oxstm3bxsaNG9m4cSObN292N3aGYZCSksK2bdvYtm0bKSkpOJ1O97ySkhISEhLYsmULu3fv5vjx4+4C8YZhuGtPbdmyhaSkJPe6IiIiIiIiIhczDw8PrrjiChYsWEB2djZZWVmsWbOGxo0b4+HhwZEjR0hNTQWgefPm7Ny5k+TkZAoKCti7dy85OTnExsZiNpu58sorWbRoERkZGeTk5LBy5UqaN2+Oh4cHAQEBREZGsnbtWvLz80lJSWHp0qV0794ds9lMgwYNKCgo4OjRoxQVFZGSkkJmZiaRkZGnxGwymdw/ZZ/lzBWWOlm5L4O8Qgc9GoYR7OOpc/kHJpOJtrWCiAqws2hHCjmFpadfSUTOmXPS03np0qU8+eST1K9fHw8PDzw8PLjhhhsYOnQoCQkJTJgwgczMTAzDIDY2lvvuu4/GjRtjGAY//fQTU6ZMwTAMHA4Hffv25c4778TT05Njx47x0UcfsW7dOnej9sgjj9CtW7dzcVgiIiIiIiIif6sHH3yQxx9/nFdffRXDMEhOTubJJ5/E09OTl19+mbCwMJ5//nm6du1KmzZtmDhxIi1atGDXrl00atSIZs2aATBq1ChGjx7Niy++iLe3N9u2bWPMmDHYbDaCg4Pp378/3333HUeOHCExMZFatWoxcOBAALp06cLSpUv58MMPadiwIXv27KFWrVp06NDhfJ6aS5ZhGKTnFbNw21Ga1gygaY0ALGYlnCsSF+xD0xoB7EnNY/GuYwxuU/N8hyQi/985K68RGRnJf/7zH/z9/TGZTHh4eGAYBpMnTyY3N5c333wTl8vFm2++yZw5c4iLi8PlcvHyyy9z/fXXM2zYMDZt2sQzzzxDly5daNasGStWrGD9+vU89thj1K1bl48//pjx48cze/ZsAgICztWhiYiIiIiIiPwt2rVrx/9j777joyrTNo7/zvRJnfSeEHrovUoRxY4FXV3dlVXsbrGtLqhr72V1VXbtvevaZVUUCyogSJNek5AQQnqbZDLlvH+wzLtZ2BUUMglc388HTeacOXOfA5knc80z93P33XezaNEiAE4++WQGDx6M1WrlqKOOIjp6Z9uFuLg4rr/+eubMmUN5eTlHHnkkEyZMIDk5GYCePXty33338c033xAIBPjjH//IiBEjsFqtuN1ufvGLX5CWlsaGDRsYOXIkkydPJiEhAYDMzEyuueYavvzySyoqKhg/fnybY8v+ZZrw9cZKSmq8HN03nbykqEiX1GFZLAZH9U1j9g9lvL2khJMGZWJX72uRDqHdQueqqiquvPJK4uPjOeywwzjppJPwer3MmzeP6667ju7duwMwfvx4Pv74Y2pqaigrK2Pbtm386le/Iisri7S0NGbNmsXcuXPp3r07S5cupU+fPowaNQqHw8GFF17Iiy++yNq1a/WOq4iIiIiIiHR6hmEwatQoRo0atdu2KVOmtPk+PT2ds88+e4/HsVgsDBo0iEGDBu1xe3x8/G7H+3d5eXlMmzZt7wuXn8wXCPHCgiIy4t2M7Z6My26NdEkd2oguiWR53KzZ3sCasnoGZHsiXZKI0E6hc05ODpdddhmZmZmUlJTw5JNPsm3bNk488USamprCgbNhGCQlJeH1evH5fBQWFuJyucjIyAB29rPKzs6msLAQv99PdXU13bp1C6/k6/F4iIuL+68LFYRCIVpaWsJ9n3etpisiIiIiIiIi0hF8s6mSjTsaObIgjUE5nkiX0+FFO20c3S+dR7/cxKdrdtA/K179r0U6gHYJnQcPHsygQYMwDINQKERWVhZPPPEEBQUFmKaJ1dr2XbtdCwXuWnX3358sDMPANM3wn/9csfff7/+fNmzYwJ/+9Ce+/fbb8PFTU1P3yzmKiIiIiIiIiPwcwZDJc98WEuWwcWy/dFx2tYr4MYZhcPKgLGZ9vpFvNlRw3th84qPskS5L5JDXLs9eFosFq9Ua/n9ycjI2mw2Hw0FUVBSFhYXAzrC4trYWt9uNw+EgJyeHlpYWKioqAAgEApSVlZGdnY3dbsfj8VBdXU0gEADA6/VSX19PWlraHuvo0aMHr7zyCps3b2bz5s3Mnz+/PU5fRERERERERORHrSipZUlxDdkJbg7vnaoZu3spNzGKEfmJlNW3sLioOtLliAjtFDoXFRVRUlJCQ0MDZWVlfPvtt1itVnr06MGwYcN4/fXX2bZtGyUlJXz33Xfk5+cTHx9P3759SUxM5O2336aiooIFCxZQXFzMhAkTcLvdDBgwgDVr1rBixQoqKyt56aWXSE1NpaCgYM8na7HgdruJiYkhOjo6vOCCiIiIiIiIiEgkhUIm7ywrJRA0OXlQFrEuzdbdW4YBUwdnUd3YyqLCavzBUKRLEjnktUt7jblz57JgwQJsNhuhUIj6+nrOPPNMcnJy+N3vfsctt9zCddddF2618atf/YrY2FhM0+Tyyy/njTfeYNGiRVRXVzN16lQGDx6MzWZj7NixLFmyhPvvv5+oqCi2bdvGNddcQ2JiYnucloiIiIiIiIjIflFS28zCzdVEO20cPyAj0uV0OiO7JpEQ7WD1tnrKapvJTdJEQ5FIapfQedKkSeTn59Pc3IzT6SQjI4OuXbvicDjo378/d911F1u2bAGgS5cudOnSBYvFgmmanHrqqRQUFFBZWUl0dDR9+/bF6XRiGAbZ2dlcccUVrF+/npaWFtLT0+nXr197nJKIiIiIiIiIyH7z9YYKtte1MLlPGhnxrkiX06kYhkFClIPxPVP4an0FG3Y0KnQWibB2CZ3z8vLIy8vb4zbDMOjevTvdu3ff4za3283QoUP3eF+LxUJmZiaZmZn7tV4RERERERERkfbS0OJn/qYq6lv8/HJEbqTL6ZRcdisTe6Xwj+9LWLWtnjHdk3HbrZEuS+SQpWVQRUREREREREQixDRN1pTVs768gSG5CfRKi410SZ2SxYBuKTH0SItlcVE1lQ0+TNOMdFkihyyFziIiIiIiIiIiERIMmSwvqaO42suUgRk47RYMw4h0WZ2OYRikxDoZludh+dZattU2R7okkUOaQmcRERERERERkQgpb/CxqLCapBgnI7smYbMocP6p4l12BuZ4CIbguy3VtAZCkS5J5JCl0FlEREREREREJAJM06SoqoklRTWM65FMWqxLs5x/BovFoFdaHN1Sovl0TTne1qBabIhEiEJnEREREREREZEIaAmE+L6oBp8/xIj8JOLc9kiX1Onlp0TTMy2WtdsbWF/eEOlyRA5ZCp1FRERERERERCKgyRfgi7UVdE2JpkdqDFa11vjZoh1WBuV4iHJY+WT1djTPWSQyFDqLiIiIiIiIiLSzXa01lm2toSAjji5JUZEu6aBgGAZD8hJIjnHyzx+2E1BfZ5GIUOgsIiIiIiIiItLOQib884cy4tw7F7+Lcam1xv7SIzWGLklR7Gjwsbi4JtLliBySFDqLiIiIiIiIiLSzZn+AOWvKSY93MyjHE+lyDio2q4XxPVNx2Cx8uKJMiwmKRIBCZxERERERERGRdrZ8ax2lNS10S4mma3J0pMs56IzvmUy008a3myqp8bZGuhyRQ45CZxERERERERGRdvbhijJcdiujuybhtFsjXc5BJzshioHZ8VQ1tvLdlupIlyNyyFHoLCIiIiIiIiLSjhpb/Hy+bgfRDiuH9UiOdDkHJavF4Lj+GTT7g3yxrkItNkTamUJnEREREREREZF2tGBLNfXNfvpkxpGbGBXpcg5akwpSsVstrC6rZ3t9S6TLETmkKHQWEREREREREWknpmny9YYKAiGTyX3SMQwj0iUdtOKcdib2SmFHvY+lxbWRLkfkkGKLdAEiIiIiIiIismemabJ27VrWr1+PYRj07NmTbt26Ybfbd9u3pqaGJUuWUFNTQ1JSEv379yc5OTl8nM2bN7N69WqCwSDdu3enZ8+eOBwOAJqamli5ciWlpaW43W6GDBlCamoqhmFQWlrK0qVLaWpqAsBqtdKjRw8GDhzYfhfiIFLfEmDZ1jpsFkOtNQ4ww4Dj+mXw2ZodrCipZXKfNOxWzb8UaQ8KnUVEREREREQ6qFWrVnHttdeSlpYGQEtLC3/84x/p378/Fsv/h2dNTU08+OCDrFq1ipycHHbs2MHAgQO58MIL8Xg8FBUVMXPmTKKjo3E4HNTW1nL55ZczcuRI/H4/H374IW+88Qbp6elUVFTw7rvvcs899xAXF8f333/PnXfeyeDBg4mPj8dmsxEdHa3Q+Sdava2eigYfBRlxZHvckS7noDc4N4GEKAfrtjdQXt9CdoLamYi0B4XOIiIiIiIiIh3UI488QmxsLDfffDOmaXLzzTfzj3/8g549e+J2/39guXDhQj7++GMeeOABCgoKmD9/Pk888QRjxozhsMMO47nnnqOxsZF7770Xp9PJXXfdxcsvv8ygQYOora3ljTfe4LDDDuPXv/41lZWV/OIXv2D27Nn88pe/BCAzM5PLL7+c3NxcAGw2xQk/1bKtNdQ2t3L2qFzUWePAMgyDOLeN0d0SWVJcS2Flk0JnkXaizxSIiIiIiIiIdECBQIA5c+YwdepUMjMzycrKYuzYsSxbtgyfz9dm3yVLltCzZ0/69++Px+Nh4MCBxMbGUlhYiGma/POf/+S4444jLy+P9PR0Dj/8cBYvXkxrayt1dXWUlJQwfvx4kpKS6NWrF+PHj2fOnDnh42/evJkzzzyTk046iVmzZtHc3IxpmrvVbJpm+I/srskXYE1ZAy3+EIf3Tot0OYcEt93K2O7JlNQ0s7GikUAwFOmSRA4JemtSREREREREpAOqra2lqamJnJyc8G3JyclUV1cTCrUNziorK0lKSsJqtQLgdruJjY2lpqaGQCBASUkJ2dnZ4f1TUlKoqqoiFApRVVWFxWIhMTExvD07O5svvvgCgO7du3PjjTeSmZlJSUkJ9957L0VFRdx3333hntC7BAIB6urqaG1tBWD79u379Zp0dkVVTRRXe+mdHkumxxXpcg4JVotBz7RY0uOcrNhaR21/P8mxzkiXJXLQU+gsIiIiIiIi0gFZLBYMw2gTMAeDwTa9nP9933+fYWyaJqFQKLyv1Wrd7Ti7Aupd9/1v2/v06UOfPn0AGD58OJmZmfzxj39k3bp19O/fv00dxcXF3HrrrSxatAjYGULvOs6hzjRNNlc2UVLj5dQh2TisO/9+5cAyDIOUWCcDsj0s21pLZZOPpBiHrr3IAab2GiIiIiIiIiIdUFxcHImJiaxfvz58W1lZGSkpKbsFuenp6Wzbto1gMAhAY2Mj9fX1JCUlYbPZ6Nq1Kxs2bAjvX1paSlpaGlarlaSkJAzDYMeOHeHtGzduJD8//7/WZbPZaGxs3G1bfn4+jz32GIsWLWLRokXMnj37Z12Dg4kvEGJDeSMNLQFG5idityqSaS+JUQ76ZcVTUtPM5oomQur+InLA6RlOREREREREpAOy2WxMnTqVl156iVWrVrFy5Urmzp3LmDFjcDgcfPzxx8ybNw+A0aNHU1xczMcff8y2bdv48ssv8Xq9dO/eHcMwOO2003jvvfdYsmQJa9euZfbs2YwbNw6Hw0FCQgI9evTggw8+oLCwkC+++IL58+dz4oknEgqFWL9+PStXrqSqqopNmzbxyiuvEBMTE15U8N9ZLBacTidRUVG43e42ix0e6qoafawuqyc3MYq8pGgtItiOHDYLvdJiSYpxMG9DBb5AMNIliRz01F5DREREdrNixQreeOMNNm7ciNVqZciQIZx++ulkZ2djmiZvvvkmH3zwAQDHH388xx9/PNHR0ZimSXV1NY8//jgrVqwgKyuLCy64gB49emCxWAgEAsyfP59XX32V6upqRo4cyYUXXkhUlFYRFxER2ZOLL76Y8vJyrrjiCgAKCgo45ZRTsNvtvPHGG6SmpjJu3DgGDBjARRddxNNPP83jjz9OdHQ0U6dODbfFOOOMM9i4cSMzZswAds5I/tWvfhUOnc855xwee+wxLrzwQgCmT5/OuHHjCIVCLFmyhFdeeYXW1lacTicJCQlcffXVpKenR+aidEKmabKjwceq0jrGdk/GE2VXe4d2ZBgG3VKjyU+OZt6GSrytQdx2q/4ORA4ghc4iIiKyG7/fT8+ePRk7diw+n4/XXnuNsrIy/vznP/PZZ59x0003cdlll2GaJk8++SQOh4MpU6Zgmia3334769ev5+yzz+aLL77giiuu4LXXXiMmJoYffviBu+++mxEjRjBhwgQeeughqqurufnmm/VLv4iIyB5kZmZy5513UlNTA0BCQgIejweLxcKtt94abrPhdDo588wzmTRpEj6fD5fLRUpKSnimcVJSEjfeeCNVVVWYponH4yEhIQGLxYLFYmHs2LH06tWLxsZGbDYbqampuFw7F7o79thjGTFiRLg/c2xsLImJierVvA+CIZOiKi87Gnz0y4on3m2PdEmHnCxPFN1SollUWM0PpbVM7Jka6ZJEDmoKnUVERGQ3gwcPZtCgQRiGgWma2O12nnzyScrLy3n88cf55S9/yfTp0zFNk/r6ej766CPGjh1LKBTirbfe4tlnn2XcuHFMmjSJI488krlz53LMMcfw7bffkpKSwsUXX0xSUhKpqalccMEFXHjhhWRnZ0f6tEVERDocwzBISkoiKSlpt20ZGRltvne5XOTl5f3X43g8Hjwezx632+323Y63S3x8PPHx8ftWuLTREgixdGsNyTFO8pKisFr0Znt7s1sNBmR7mP3Ddj5dvYMJPVPR34LIgaOeziIiIrKbXa0w1q9fz+LFi/nkk0/o2bMnAFu3bmXSpElYrVbsdjvdu3enpqaGxsZGli5dit1uZ8SIEVitVlJSUigoKOC7776jubmZDRs20L17d1JTU7FarYwYMQKbzcbq1av3WIdpmoRCIYLBIKFQiFAo1J6XQURERORnM02TltYgS4pqyU2KItPj1ie8IsAwDAbmeEiMdvD5uh20+tXXWeRAaveZzq2trSxbtoy6ujqGDh1KYmIioVCIFStWUFRUhM1mo0+fPuTm5mK1WjFNk9raWpYvX051dTWJiYkMGzaM6OhoDMMgGAyyceNG1q9fTzAYJD8/n759+2KzaRK3iIjIz1FVVcWtt95KeXk5NpuN3/72t/j9fgKBAAkJCeH93G53+Pbq6mocDkebHs0ej4fa2lqCwSAtLS1tthmGQUxMDA0NDXusoa6ujgULFlBeXg4Q/mixiIiISGdS0ehjw44GpgzIJD3OFelyDln5ydHkJUXxxfoKlpfUMbLr7p8gEJH9o12TWdM0Wbt2LTNmzCAUCnHvvfeSmJjIN998w5133klubi7Nzc04nU5mzpxJly5daGpq4tlnn+Xbb78lPT2d4uJiRo8ezTXXXINhGCxfvpyHH34Ym82Gw+GgrKyMSy+9lCOPPLI9T01EROSgk5aWxiOPPEJ9fT0ffPABb775Jr/5zW+wWq14vd7wfq2trVitVqxWK9HR0QQCAXw+H06nEwCv10taWhoWiwW73U5ra2ubx2lpaQn3jPxPra2tlJSUsGXLFgAaGxsP0NmKiIiIHBgmsLiwGoth0C0lmliXJslFit1qYWz3ZL7dVMXHq7YrdBY5gNr1ma6pqYm//OUvDB06lE2bNgE7g+g777yTPn36cPXVV9PU1MQ111zD7NmzueCCC9i6dSvvvPMOV1xxBePHj2fZsmWcd955TJkyha5du/L+++8THR3NVVddRXR0NI899hhPPfUUI0aMIC4urj1PT0RE5KBitVpJSEggISGBESNG8OmnnwKQnJzM4sWLGTp0KKFQiNLSUmJjY4mKiqJv3760tLSwbt06BgwYQGNjIxs2bOCII47A5XKRk5NDcXExDQ0NxMbGsnHjRpqbm+nWrdsea0hJSeGcc87BNE0AysrKmDNnTrtdAxEREZGfyzRh3oZKkqId9EqPVWuNCBvfI4W/frqBeRsrafIFiHbqTQCRA6Hdejqbpsl9991HWloaU6ZMCa9yW15eztKlSznjjDNIS0sjPz+fYcOGsXjxYlpbW1mxYgV2u53DDz+cxMRExo8fT2pqKl9//TVVVVVs2LCBww47jLy8PFJSUjjppJMoLS2lqKjov9ax64WriIiI7NnHH3/M559/TnFxMcuWLePZZ5/FZrPRrVs3Tj31VGbNmsUXX3zB559/znvvvceoUaNITEwkOzub4cOHc//997NkyRIefvhhfD4fRx11FC6XixEjRrB69Wrefvttli1bxrXXXsuYMWP+a+hsGAY2mw273Y7NZlP7LBEREel0WvxBFmyuIjHaQc+02EiXc8jrkhxNz7QYKht8rCipi3Q5IgetdnnlZpomH330EfPmzeOdd95hzZo14W07duzA7/eTk5MD7HxxmZKSwjfffEMwGGTbtm3ExMSEZy3bbDYyMjIoLS3F6/Xi9/uJjY3FYtmZn0dHR+NwOKitrd2tDr/fT319PT6fDyDcH1JERETa2rFjB48//jiFhYV4PB4mTJjAzTffTG5uLpdccgler5dLLrkEwzCYNm0ap556Kna7HYB7772X6667jlNPPZUuXbrw0EMPkZqaCsCoUaO44IILePDBB9mxYwdHHHEEd999d/i+IiIiIgeb5SW1NLUGyUmMIiPeHelyDnlWi8GRfdJYUVrHt5sqGdU1UbPPRQ6Adgmdy8vLuf3227nooosoLi5m8+bN1NfXs3nzZrp164ZhGG1Wow8Gg+GZ0LsWEzRNM/wksGu7YRh7fGIwTTMcQv+74uJibr75ZhYtWgRAIBDQi1wREZE9OPvsszn77LP3uM1utzNjxgxmzJixx+35+fm8/PLLe9zmcrk488wzOfPMM/dbrSIiIiId2bwNFbhsFobkerBYFG52BJN6p3Lfx+tYUlSDtzWoFhsiB8Bet9eYP38+gUCgzW2tra0sWLDgR+/b0NBAjx49eOmll7jqqqv461//yvLly3nwwQcJBAK4XC42bNgA7AyMy8rKSEtLw2azkZeXR0NDA1VVVQD4fD62bt1Kfn4+MTExuFwuKisrCQQCmKZJVVUVgUCApKTdm8Hn5+fz+OOP8/333/P999/z0Ucf7e3pi4iIdDo/Z+wWERERkZ8vEAzx7cYqXHYrQ3ITIl2O/EuXpGh6psWyvb6FtdvrI12OyEFpr0Pnyy+/nKampja31dfXc/XVV//ofbt06cJ9993H888/z/PPP89NN93EiBEjuOmmmxg6dCgTJ07k6aefZuPGjSxevJiFCxdy2GGH4XQ66du3LxaLhffee4+SkhJef/11mpubGT9+PImJifTt25fPPvuMVatWUVhYyAsvvEDPnj3Jzc3d/WQtFlwuF1FRUbjdbtxufaxFREQOXj9n7BYRERGRn6+42ktRlZeUWCc909XPuaOwWAyO6ptORYOPH0rqtPaXyAGw158fKCwspKioKNxbORQK8d133+32YnZP7HZ7m5nHCQkJOJ1OEhMTsdvtXH/99dx888387ne/A2Do0KFMnjwZq9VKdnY25513Hq+88gpvvPEGhmFw8803k5eXh2EYnHrqqZSVlYU/4puSksJVV11FVFTUPl0IERGRg83PGbtFRERE5OdbXFhNazDE0LwEohxq4dBRGMDEXinM+nwjq8vqafQFiHWp/arI/rTXz3jV1dWceOKJbXolh0Ihrrnmmn1+0P79+/Pggw+SmJgIQM+ePXnggQeoq6vDarWSlJREXFwchmHgdDo55ZRTGDt2LM3NzbhcLjIyMsLH6tKlC9dddx01NTWEQiHi4+NJSUnZ55pEREQONvtz7BYRERGRfWOaJt8V1hAImhzWPTnS5ch/yPK4KUiPY1NFEyU1zRRkKHQW2Z/2OnTOzs7mtddeIz4+fucdbTaSk5OJjo7e5wd1u91kZWWFvzcMg7S0NNLS0nbb1zAMXC7XHttlwM6WGUlJSXvs4SwiInIo259jt4iIiIjsm7pmP+u2N4ABo7sqs+hIDMPA7bAyunsir363lcLKJnqnx2IYWuhRZH/Z69B58+bNNDc309zcTDAYBHYu6vffFu0TERGRyNLYLSIiIhI5a8rqqfW2MignnvgozaLtaFx2K8O7JPLU14Ws3d7AxF4puNUCRWS/2eufprVr1/LBBx9QVFREIBAIN1lPTEzkzjvvPGAFioiIyE+jsVtEREQkMkzTZHVZPbXNfk4fnhPpcmQPLIZBlieKHqkxLN9aS7XXT5ZCZ5H9Zq9/mm699VZCoRBjxozB6XSGb4+JiTkghYmIiMjPo7FbREREJDJa/CHWb2+k2R9UP+cOLCXWyYCseD5ZU05FQwuZ8S612BDZT/Y6dF60aBH/+Mc/GDBgwIGsR0RERPYTjd0iIiIikVFW10xxtZdsj5u8JK2n0VHFu+30yYzj3eXb+KGkjr6Z8ditCp1F9gfLj++y06hRo9i+ffuBrEVERET2I43dIiIiIpFRXOWltMbL8PxEXHaLZs92UFaLQbfUGDLiXczbUElrIBTpkkQOGns90zkjI4OrrrqKY445hqysrPATZmxsLNOnTz9gBYqIiMhPo7FbREREpP0FQyZbqpooq29hZH4iDutez/eTCOiWHEOXpGi+3VRJQ4ufKIdVbxKI7Ad7HTovXbqU9PR0li1bxrJly8K3p6am6oWriIhIB6SxW0RERKT91TX7Wbe9gViXnV5pcVgtCjA7spQ4Jz3SYpi3oZIFm6s5aVBmpEsSOSjsdeg8Z86cA1mHiIiI7Gcau0VERETaX3WTj7Xb6+mbGUdCtF2zZjs4i2EwKMdDQrSdj1dt58RBmehvTOTn2+vQ+d13393j7S6Xi6OPPnq/FSQiIiL7h8ZuERERkfYVMk2217WwcUcjvx6VhyfKEemSZC8MyPaQFO1k4ZYqar2tJEY7I12SSKe316HzSy+9FP46FApRVlZGXV0d48aN0wtXERGRDkhjt4iIiEj78gdCrNpWDxj0SoslymGNdEmyF9LiXPTJjGXjjkYWbK7muP4ZkS5JpNPb69D5/vvvD39tmiY+n4977rmHHj16HJDCRERE5OfR2C0iItL5hUIhnnnmGV544QUApk2bxumnn05MTMxu+65evZo77riDNWvWMHDgQP7whz8waNCg8HHeeustHn30UXw+H2eccQbTpk0jLi4OgNLSUh555BE+//xzUlNTufbaaxk5cuRurSFuvfVWPvnkE2655RYOP/zwA3vynVBLIMSiwhqyE9zkJEZhUWuNTsFqMRjbPZl//rCdOavLFTqL7Ad7vYRqTk5O+E9ubi7du3fnD3/4A6+//vqBrE9ERER+Io3dIiIind/bb7/NbbfdxsUXX8xFF13Ek08+ydy5cwkGg232Ky8v5+KLLyYxMZFZs2aRmJjIHXfcQVFREQDffPMNV111FWeeeSZXXnklr7zyCu+88w6BQICGhgZmzZrFunXruP322xkxYgRnnXUWJSUl4eObpsmcOXOYM2cONTU1NDY2tut1OJBM06Q1EKQ1ECJkmj/rOF5fgO+LqslLiiI7IWo/VikH2mHdk3HaLCzcUkWNtzXS5Yh0ens907m8vLzN94FAgMWLF2Oz7fUhREREpB1p7BYREencTNNk1qxZTJ8+nTPOOAOAjRs38s477zBp0qQ2s53nzJmDxWLh1ltvJS4uDo/Hw5///GdWrFhBbm4uf//73znhhBOYPn06AMXFxbz11ltMnTqVqqoqFi5cyFVXXcWkSZOYNGkSn332Gc8//zzXXXcdpmmyadMmHnjgAe6//34uvPDC/1nzrj+wc4Z1R2aaJsXVXu765xqinXZ+MTSbAdke3D+xLcbKbfU0tATokhxNSqz6AncmyTFOhuQlsKiwhu+2VHN03/RIlyTSqe31q86ZM2e2+b6lpYWSkhIuvvji/V6UiIiI/Hwau0VERDq35uZm1q1bx3XXXRduc1FQUMBXX32F3+9vs+/mzZvp3bs3NpsNwzBISkrC4/FQXl5OKBRi2bJlXHvtteHj9O3bl2eeeYZAIEBtbS1NTU1069YtvH3MmDEsW7YMgKqqKh577DFOP/10evfu/T9rrq+v57vvvgu/+V1TU7M/L8l+t3FHIze8u5LFRTXEuex8u7GSa47pzXH9M3DY9vrD4QCYJny5bgcJ0Q4K0uOwWtRaozMxDIOj+6bz1YZK5m+qYnKfNLVHEfkZ9jp0Hj9+fPhrwzBwuVzk5+czdOjQA1KYiIiI/Dwau0VERDq3pqYmgsFguO8ygNvtprm5OTyTeBev10tUVBQWy86g1Gaz4XQ68Xq9hEIh6urq2hwnKioKr9eLaZo0NjZitVpxuVzh7bGxsdTX19PS0sK7776L2+3mhBNO+NFPTPl8PrZs2cKWLVsAOnQbjtZAkCfnbWZxUQ2nDc2mZ1osz3yzhZcWFtEnM44eqTG79bT+X1oCQb7aUEFStIOCjLgfv4N0OON6JOO0Wli1rY6qRh8psa4fv5OI7NFeh87nnHMOgUCAHTt2UFdXR0pKComJieEBTURERDoWjd0iIiKdW3R0NFarlfr6+vBtzc3NuN3u3cLQqKgo6urqwu0sAoEAPp8vHETHx8e3Oc6ukNowDGJiYggGg7S0tIS3NzQ0EBcXR0VFBZ9++imbNm1i9erVmKZJYWEhDzzwAABTpkxpU0dKSgrTp08Ph+Lbtm3js88+278XZj/ZVNHEspI60uJcXDG5J1EOG/XNfp6ct4V3lpby+0k99qnNxoqSOsrqWjiiII0uSern3BntbLHhYUull1Xb6pnYS6GzyE+11686y8vL+e1vf8vEiRM5/vjjOeyww5g5cybNzc0Hsj4RERH5iTR2i4iIdG5ut5tevXoxf/788G1r164lJycHu93eZt+uXbuydu1aAoEAANXV1dTW1pKWlobFYmHQoEEsWLAgvP/q1avp0qULNpsNj8dDdHQ0mzZtCm+fP38+AwcOJDExkcsuu4zrrruOs88+m1/+8pckJCQwbtw4CgoKdqvZMAxsNht2uz38/45qUWE12+taOKZfOsnRTqIdVo7tn0HfrDheX7yV8oaW3WaU/y8fr9yOw2phVH4iTvtP6wktkWWxGEzuk05FQwsrS+v26e9fRNra69D52muvpaysjBdeeIFvv/2WWbNmMW/ePG677bYDWZ+IiIj8RBq7RUREOjfDMPjtb3/LU089xeuvv86rr77K7NmzOemkk3A4HFx33XXcf//9AEyePJlgMMiNN97IggULePLJJzEMgwEDBmAYBpdccgnvv/8+Tz/9NG+//TavvfYaU6dOxeVykZSUxMiRI3nyySf57LPPuP322yksLGTatGlERUUxYsQIpkyZwpQpUzjuuOOIj49n6NChdOvWLcJX6Kerb/azrLiWRp+fEwdmYhg7r3f3lBgO65aMtzXI64u2sreRY4s/yGdry3E7rBzWI/mA1i4HjgGM6ZYEwPryBmq8rZEtSKQT2+v2Gl999RX/+Mc/6N+/PwBpaWm4XC4uvfRSbr/99gNWoIiIiPw0GrtFREQ6v1NOOYWamhoeeeQRDMPgvPPO44gjjsBqtRIIBAgGgwCkpqby6KOPcvvtt3PppZcyYMAArr32WvLy8gAYO3Ys9957L48++ig+n48zzjiDk08+GZvNRmxsLL/97W95+OGHmTlzJmlpabz00kvk5ORgGEabVh5Wq5X8/HxiY2P3qd9xR7O5son15Q0MzU0gJyEqfC4Wi8GRfdKYvbKMlxcWc86YLqTG/XiLhe+2VFPj9dMvM45uKTEHunw5QAzDICHKwfAuiWyqaKK42ktitDPSZYl0SnsdOjscDmpqajBNE4vFQjAYpLKyss1CAyIiItJxaOwWERHp/CwWC+effz7nn3/+btvuvvvu8NeGYdCnTx9eeuml/3qc008/ndNPP32P27Oysrjrrrt+tB6Xy8Vbb721l9V3TKZpUlbbTGltM9NG5+H6j77NPdNiGdMtmRcWFPHC/EKuPKrX/wzYgyGTz9aU0xoIcWz/jE4dxgu4HVZGd0ti1uebKKz0MiDLg8Wiv1ORfbXXofMZZ5zBvffey7Jly/B4POzYsYMPP/yQc88990DWJyIiIj+Rxm4RERGR3QVCJqW1zTT6AhRkxOGwtu08arEY/GJYNrN/KOPd5WWcOjSHLsnR//V4pTXNLC6sIdppY3JB2oEuXw4wh81C/ywPVovBqm11HFGQSqyr4/YmF+mo9jp0vvjii8nJyWHRokX4fD7cbjeXXnopxx577IGsT0RERH4ijd0iIiIiu2vyBdhS2URitIOMeDd7msTaPTWWo/um88qiYt5aUsIVk3v+1xnM8zdXUlbXzKSCVNLi9Ymyzs5iGGR6XPTOiGVJUS01TX6FziI/wV6Hzu+99x75+flMmTKFQCCA3W7nm2++4YMPPuDMM888kDWKiIjIT6CxW0RERGR3DS0BNlc00SUpmji3fY9hstVicO7YfF5fvJUv1lVwypAs8pN379Xc2BLguy3V1DX7OWN4LmrCcHBIjXUyICue5+cXUVrbTHaiG4vapojsE8uP77LTo48+SlpaGsnJyaSnp5OUlER6ejp///vfD2R9IiIi8hNp7BYRERFpyzRNGnwBtlQ20iU5mnj3f5+Ll53gZuqQbLZUNfHpmh2YprnbsVaU1rJsax2Dcjz0TNUCggeLaKeNvpnxuB1W5m2owB8MRbokkU5nr0PnqqoqYmLaPoFGR0dTUVGx34sSERGRn09jt4iIiEhbJlBe38KOBh/5SVH/s22CYcDZo/MwgHkbKtha09wmeG7yBflyXQUlNV7OGplHtNOmRQQPEoZh0DM9hi5J0cxdu4Pm1uBubzqIyP+216Fz7969effdd9mxYwder5fS0lJee+01BgwYcCDrExERkZ9IY7eIiIhIW/5giDVl9cS57GR63Nit/z0WMQyDLI+bEwdmsrKkji/X7cAX2DnjNRQyWV1Wx6dryhmSm8Dw/ERs/+NY0vl0SYqmR2oMG3c0sr68IdLliHQ6e93T+fe//z0PPfQQy5YtIzExke3bt1NfX8911113IOsTERGRn0hjt4iIiEhbgaDJph2NJMU4SIl1/uj+boeVkwdnsbCwmpcWFtM9NYYR+UmU17fw9NdbqGpq5bzD8kmP+/FjSecS5bAxONfDnDXlvL+8jOFdEiNdkkinsteh85FHHklCQgIrVqygoaGBwYMHM3DgQPr16/ej9125ciVvvfUWmzZtwmKxMHjwYE499VSysrIwTZO3336b2bNnYxgGxxxzDMcccwzR0dGYpkl1dTVPP/00K1euJDMzk3PPPZfu3btjsVgIBAIsXLiQN954g+rqaoYPH855551HVFTUz7ooIiIiB4OfM3aLiIiIHIyCIZPCSi8JUQ4Sox0/ur/FMOibFc/Zo/L466cbuH32Gsb3SGFtWT0Lt1RzwoBMjihIw2GztkP10t5G5ieRFO1gzurt/OmYXsT8j3YsItLWXofODoeDUaNGMWzYMAKBAA6HA4vFslf9inw+H126dGHo0KH4fD7efPNNSktLue6665g7dy433ngjv/3tbwmFQjz++OPYbDZOOOEETNPkzjvvZO3atZx11ll89dVXXHnllbzyyivExMSwcuVK7rrrLoYNG8bIkSP529/+RlVVFTfddNPPuSYiIiIHhZ8zdouIiIgcjAIhky1VTQzJ9ZCwF6EzgMtmYcqATGqa/Dz9zRae/mYLwaDJ2B7JXHp4N1L3Ysa0dE55SVH0To9jzupyvt1UxVF90yNdkkinsdehM+zsZ2S327Hb9+2dnUGDBjFw4EAsFgumaeJyuXjyySfZsWMHjz/+OKeddhrnnXcepmnS2NjIRx99xNixYwkGg/zjH//gqaeeYsKECRxxxBFMnjyZzz//nKOPPppvv/2W5ORkLr74YpKTk0lLS+Piiy/mggsuICsra7c69rTSrIiIyMHsp47dIiIiIgcb0zSpbmqluqkVT5SDhKi9C50Nw8ATZefSw7sxqSCFhZurGZAVT//seFx2q97QP4jZrBYm9U7l83U7mL2yjMl90vT3LbKX9il0/qmsViutra1s2bKF+vp65syZQ/fu3TFNk+LiYq677jpstp2rvPbo0YMlS5bQ0NDA+vXrsdlsjBw5EqvVSmpqKn369OG7775j/PjxrF+/nu7du5OWlgbAqFGjsFgsrF69eo+hc0tLC0VFRTQ2NgJQUVHRHqcvIiIiIiIiIh3Axh0NOG0W0uNc2Cx7Hx4ahoHdatAvM55+mfFtbpeD24SeKUQ7bCzcXM2OBh9pca5IlyTSKbRL6AxQWVnJ9ddfT3l5OU6nk8suuwy/308gECAhISG8n9vtprW1lUAgQFVVFQ6Hg+joaOBf7y56PNTU1BAMBmlpaWnTv9kwDGJjY6mvr99jDRUVFTz77LOsXLkS2BlCi4iIiIiIiMihYUN5I267lfR4108KjBUyH3qSY52M6Z7E3LU7+Gp9Bb8YlhPpkkQ6hXYLndPS0vj73/9OfX0977//Pq+//jq/+c1vsFgseL3e8H5+vx+r1YrVaiU6OppAIEBraysOx86PvXi9XtLS0rBYLNjtdlpbW9s8TktLCy7Xnt91ys7O5pZbbiEUCgFQVlbG8ccff4DOWEREREREREQ6kvXlDbgdVjLj3ZEuRTqRU4dk8eGKMr5aX8GUgZm47Fo4UuTHWNrrgaxWK4mJiXTp0oVRo0ZRV1eHaZokJyfz/fffAxAKhSgtLSU2Nha3202fPn3w+XysW7cOgKamJjZu3Ejfvn1xuVxkZ2dTUlJCQ0MDAJs2baK5uZlu3brtsQaLxYLD4cDlcuF0OnE61exfRERERERE5FBgAht27AydMzxqkSB7b0heIrlJUazf0ciG8sZIlyPSKbTLTOdPPvkEh8NBt27dqK6u5vnnn8dms9G1a1dOPfVUZs2aRa9evQiFQrz33nucdNJJJCUlkZCQwNChQ/nLX/7CH/7wBz755BNaWlo46qijcDqdjBgxgo8//ph33nmHAQMGcMMNNzBq1Kj/GjqLiIiIiIiIyKGpNRCiqMpLt5QYMuIVOsvec9utHNcvg+fnF7KkqJp+WXFqtSLyI9oldN6+fTuPP/44RUVFeDwexo0bx0033URubi6XXHIJjY2NXHTRRRiGwdlnn82pp56K3W4H4N577+Xaa69l6tSp5OXl8eCDD5KWtnO10NGjR3Peeefx17/+lR07djBp0iTuueee8H1FRERERERERAC21njxB00Soh3Eu5UbyN6zGHBs/3Qen7eZ5aV11Db7SYhyRLoskQ6tXULns88+m7PPPnu32w3DwG63c+2113Lttdfutg0gPz+fV155ZY/bnE4nZ511FmedddYBqlxEROTQ1NjYSE1NDS0tLVgsFmJjY0lMTMRm2/mrg2maVFRUUFdXh9VqJSkpidjYWCwWC6Zp4vP52LFjR3ithfT0dOx2O4ZhEAqFqK2tpaamhlAoRHx8PMnJyVgs7db1S6TDqW2uJBDyR7oM6SAMLCRFp0W6DJGDTnGVF4vFIMvj1ixV2SeGYZAR72ZkfiKrt9WzpaIJT65d/45E/od2CZ3/1w/hj/2A/pz7ioiIyE/zwQcf8MEHH1BbW4vNZiMlJYXzzz+f4cOHY7FYWL9+PTfffDPV1dWYpsnw4cP53e9+R1paGj6fj3feeYeXX36Z1tZWDMPgnHPO4fTTTwegsLCQWbNmsXr1akzTJC0tjauuuooBAwZE+KxFIufV5X+jrL4o0mVIB2G3Orlu0iy93hHZz4qrvViNnaGzyL6KdliZ2DOF+z5Zz7rtDQzIjsdm1fO0yH+jKUUiIiKym+zsbC655BKeeOIJ7r//fuLi4njhhRdobGzENE1uv/12LBYLDz/8MLfeeivff/89n376KcFgkJKSEp588kmmTJnCE088wS9/+UtuuOEGiouL8fl8vPXWW5SXl3PHHXfwt7/9jZiYGB555BG8Xm+kT1tEREQOYjtnOkOmQmf5CRw2CwNzPCRE2/musJraZn1CSeR/UegsIiIiuznssMMYO3YsGRkZ5OXlMXDgQOrq6vD7/VRXV/P5559z/vnn06NHD4YNG8bIkSOZN28ePp+PVatWEQwGOemkk8jJyeGMM87A7Xbz5ZdfUl1dzcqVKznyyCPp378/+fn5TJs2jXXr1lFcXLxbHaFQCJ/Ph9frpbm5mebm5ghcDRERETkYFFd7sRgGWQkKnWXfGYZBdoKbIbkJzN9UyY76FkzTjHRZIh2WQmcRERH5r0zTpKamhtmzZzNw4EA8Hg/bt2+npaWFHj16AGCxWMjKymL79u0EAgGKioqIi4sjOTkZAJfLRW5uLlu2bKGxsZHm5maSk5Ox2WwYhhH+urKycrfH37JlCxdddBHDhw9n+PDhHHfcce16/iIiInJwME2TrWqvIT9TcoyTwTke6poDLNxSTSCk0Fnkv2mXns4iIiLSObW0tHD99ddjtVo555xzsFqtBINBTNPEarWG9zMMIzzTIxgMYhhGm16kFouFUCiEaZoYhrHHRQP3NFMkNzeX++67j9bWVgC2b9/Or3/96/19miIiIh2WaZoEAgECgQAANpst/MbtfwqFQrS2thIKhbBardhstvB4bZomwWAQv9+/x+OEQiECgUB4HLfb7VgsFgzDIBgMEggECIVCwM5xfdf2zqKu2U9dSwC71SAtzhXpcqSTsloMBmR7yE2M4oMVZZw2NBubxVAPfpE96DwjhIiIiLQb0zSprq7myiuvZPv27Tz44IMkJSUBkJqait1up6SkJLxvZWUliYmJWK1WMjMzaWpqor6+HoBAIEBZWRmZmZlERUVhs9mor68Ph9Berxe/34/H49mtDpvNRlJSEhkZGWRkZJCent5u10BERKQjaGho4M9//jOjR49m9OjR3HLLLZSXl+/2Zm0gEODjjz/m+OOPZ8iQIZxyyil89NFH4ZDZ6/Vy7733MnbsWEaOHMmMGTMoLS3FNE1CoRArVqxg+vTpDBs2jIkTJ/LKK68QDAYBmD9/PmeffTYjR45k1KhR/OY3v2HBggXhELozKKtrIRAKkelxY9fib/ITGYZBQUYsPdNiWFpcw8YdjZEuSaTDUugsIiIiu9m6dSvXX38927dv56GHHiI2Nha/308oFCItLY3Bgwfz2muvsWPHDgoLC1m8eDHDhg3D4XAwYMAAWltb+fLLL6mpqWHevHmUl5dz2GGHkZSURPfu3fnmm28oKiqisrKS9957j8zMTPLy8narY9eMac0eERGRQ9VTTz3F3LlzmTVrFo888giLFy/m/fffD4fJu2zYsIGbbrqJU045hdmzZ3PUUUfx1FNPsW7dOgDee+89Xn75Ze655x6efPJJNmzYwMsvv4zf76e2tpbHHnuM+Ph4Xn/9da644gpuuOEGlixZAkBOTg5XX301s2fP5p133qFr167ccccd1NbWtvfl+Mm21zUTDJrkJEbp9wr5WWJcdkZ2TSLOZef1xVsjXY5Ih6XQWURERHbz7LPP8uqrrxITE8Pf/vY3brzxRl588UVqamowDIOZM2eyatUqbrzxRm6++WYSExM5/vjjsdvt5OTkcNJJJ/Hiiy9yww038OCDD3LRRRdRUFCA2+3mxBNPpLGxkTvvvJObb76Z77//nvPOO4+4uLhIn7aIiEiHEgwGefHFFzn33HMZO3Yshx12GMcccwyfffYZLS0tbfb96quvSEtLY9q0aXTt2pWTTjoJl8vF2rVrMU2TF154gVNOOYUjjzySESNGMHXqVObMmYPP56O6uppVq1Zxxhln0LdvX8444wyGDh3KG2+8AUBeXh7Dhw8nOzubrKwsCgoKCAQCuwXfHdm22hYCIZO8pKhIlyIHgcO6J5Ma5+TTNeVUNPgiXY5Ih6SeziIiIrKbo48+ml69erW5LT09HafTCcDYsWO5/fbbKSwsxG6306dPH3JzczEMg+joaM4991wGDx5MdXU1CQkJDB8+PDyraODAgcyYMYN169YRCATo2rUr/fr1a/dzFBER6egaGxvZtm0b/fv3D9+Wl5fH22+/He7xvEtJSQl5eXnYbDtf5sfFxREXF0dFRQXBYJC1a9dyzjnnhPfPz89n27ZtBAIBqqur8fv9ZGVlhbf379+fxYsXh7/fvHkzjzzyCFu3bqWlpYULL7ww3Hrr34VCIfx+f7g1R3Nz8365Fj9XWV0zgVCILknRkS5FDgI5iVEMzUvgrSWlfLK6nF+P2v0TeyKHOoXOIiIispuRI0cycuTI/7rdYrEwePBgBg8evNs2wzBISEjg8MMP3+N9rVYrvXr12i3UFhERkbZaW1sxTTP8pi+A3W7fLXAG8Pv92O328Ju8FosFm81GIBDANE18Ph8ul6vNcXbNVG5tbQ3vv4vD4Qgv5AuQlJTEiSeeSHFxMe+88w4LFizgmGOOaXMfgC1btnDrrbeyaNEiYGev6X9ffDhSyupaCARNchM101l+PqvF4IQBmby3bBvvLC3ljOE52K1qJiDy7xQ6i4iIiIiIiHRA8fHx2O12duzYEb6trq6O2NhYLBbLbvtu2rQpvLhfa2srTU1NxMbGYrVaSU1N3e048fHxWCwWEhISCAQCNDQ0hLdXVlaSnJwc/j4uLo7x48cTCoUYNmwYl112GUuXLmXs2LFt6sjNzeW+++7D59vZcmD79u2cffbZ+++i/ATBkMmOBh9B0yQ7QaGz7B8juySSmxhFYVUT3xdVM6pr8o/fSeQQordhRERERERERDogu93O2LFjmT17Ng0NDTQ0NLB48WIKCgqw2+1UVFRQXV0N7GyHsWrVKsrKymhpaWHz5s3U19eTk5ODYRhMnDiROXPmUFdXR2NjI/Pnz6dfv37Y7XY8Hg+pqaksWbIEr9dLVVUVX3zxBePHj8c0TZqammhsbCQQCITD6V3tM/6TzWYjKSmJzMxMMjMzycjIaM9Ltkf1LX68rUGcVgvJsY5IlyMHCavV4PThOdS3BPho5XaCITPSJYl0KJrpLCIiIiIiItIBGYbBH/7wB/74xz9y//33EwqF2LBhAzNmzMDhcDBz5kxSUlL485//zLhx4+jbty8333wzI0aMYPny5XTt2pX+/ftjGAYXXHABF198MXfeeSfR0dEsXryYyy67DKfTGV4Q+J133mHHjh1s3LiR1NRUTj31VILBIJ9//jkrVqwgLS2NlpYWvv76a4YOHUrfvn33WPMuptkxQriaplZa/EHS411Y/60+kZ/DMAyO75/BI3M3sKS4lqKqJrqmxES6LJEOQzOdRURERERERDqo0aNHc9ddd+FyuYiKiuLqq69m6NChWK1Wxo0bx7Bhw4Cd7TVuueUWDjvsMKqqqhg9ejS///3vSU1NBaB3797cf//9JCYmYrVaufLKKxk/fjxWqxW3280ZZ5zBmWeeSXNzMwUFBTz00EMkJiZisVjIzc0lJiaGrVu30tjYyC9+8QtmzJiBx+OJ4JXZezXenaFzlsfdJhQX+bkSYxycMCCTrdVeFmyuItRB3mgR6Qg001lERERERESkgzIMg/HjxzN+/Pjdtv3iF79o831mZiYXXXTRHo9jsVgYPnw4w4cP3+P2hISE3Y636/EHDBjAgAEDfkL1HUOt10+LP0RWgjvSpchBxmoYnDQoi7eWlLKosIaj+qSTHOv88TuKHAI001lEREREREREDlrV/2qvkelxo3nOsr91SY5mVNcklhbXsLGiMdLliHQYCp1FRERERERE5KBV29xKSyBIZrwLpc6yPxmGQZzLxtH90tha42XZ1hpa/HteZFPkUKPQWUREREREREQOSqZpUtPkx+cPkZUQpcxZ9jurxaBPRjy90+OYu7aCigZfh1lEUySSFDqLiIiIiIiIyEGpNRiirtlPyDRJi3NFuhw5CBmGQXaCm1Fdk/ihpI41ZfWElDmLKHQWERERERERkYNTky9AQ4ufOJedGKc10uXIQSrWZWNkfiKJ0Q5eX7wVnz+o2c5yyFPoLCIiIiIiIiIHpUZfkPqWAKlxLmwWC4ahBhuy/xmGwZC8BPplxTF/UxWrttVHuiSRiFPoLCIiIiIiIiIHpV0zndPinFitCpzlwEmMdjC+Rwp2q4UXFxZFuhyRiFPoLCIiIiIiIiIHpUZfgIaWAKmxTmwWhc5y4FgMg8l90kiPd/HJqu0UVjZFuiSRiFLoLCIiIiIiIiIHpaZdoXOcC6tCZznAUmKdHNMvnZAJLywoJqQVBeUQptBZRERERERERA46pmnS6AtQ3+InNUYzneXAMwyDUwZn4Ymy8+ma7RRXeyNdkkjEKHQWERERERERkYOOaUJDs5/m1iCpcU6sFkUgcuDlJkZxXP90KhpbeWdZKUHNdpZDlJ5xRUREREREROSg0xoMUe31Y7da8EQ50ERnaQ+GYTBtVBei7Fa+XFfBporGSJckEhHtEjp/9dVXXHLJJYwbN45jjjmGBx98kOrq6vD2QCDA/fffz+GHH84JJ5zAu+++i8/nA3Z+HGbt2rVceOGFjB07lgsuuICtW7dimjvfKfL5fLzwwgscffTRTJgwgb/85S80Nze3x2mJiIiIiIiISAfVGghR1dRKvNtOlMOKYSh1lvaRkxjF1CFZrC9v4Mt1OzTbWQ5J7RI6L1++nG7dunHPPfdw+eWX8+GHH/L3v/8dv9+PaZrMmjWLZ555hssvv5zjjjuOO++8k6VLl2KaJhUVFdx0001YLBZuu+02fD4f06ZNIxAIYJom7777Lk888QTTpk1j5syZvPHGGzz88MPhUFpEREREREREDj2+QIjqJh8JUXZcdmuky5FDiNVicPqwHKIcVr5aX0lRVZNyKjnk2NrjQX73u9+Fvw6FQtTW1vLuu+9SU1NDQkICjz76KH/605848cQTCYVCrFy5knfffZdBgwaxefNmCgsLeeaZZ+jduzcDBgxgwIABfPnllwwfPpyvvvqKE044galTp+J0OmlubmbWrFlMmzaN9PT0NnWYptnmhzwUCrXH6YuIiIiIiIhIO/MFglQ1tuKJcuCyqbuotK8Mj5upQ7J5cUERS4pryE2MwmbVbHs5dLRL6LzrIyymadLS0sKmTZtIS0sjKiqKkpISKisrGTNmDIZhYLVaKSgo4Ouvv6a1tZWVK1eSmJhI165dMQyDpKQkevfuzbJly+jWrRuVlZUceeSRuN1uAPr164ff72fr1q27hc4NDQ0sWbKEiooKgDYtPkRERERERETk4NEaCFHd1EpuYpRmOku7MgyDaIeVIwpSmf1DGR+uKGNs92TS41xq8yKHjHZ9q880TT744AO+++47Tj75ZGJiYqivr8c0TeLj48P7RUVF4fV6MU2T+vp6HA4HTqczvD0uLo76+vpwew6Hw/H/J2SxYLfb99jX2ev1smrVKubPn8/8+fP5/vvvD+wJi4iIiIiIiEhEtAZC/5rprPYa0v4Mw6BHWiyH90plUWENCzdXo9bOcihpl5nOu7zyyis8++yzXHbZZYwZMwaA2NhYDMOgoaGBtLQ0AJqbm3G73RiGQWxsLK2trbS2tobD5YaGBmJjY7Hb7RiGgd/vDz9GKBTC7/fjcrl2e/y0tDQuuuiicIuNbdu2ceyxxx7o0xYRERERERGRdmSaJi3+EDXeVhKjHAqdJSI8bjtHFKQyb2MFT329mfE9k0mIcmi2sxwS2mWms2maPPvsszzwwAPMnDmTo48+OhwgZ2dnk5iYyIIFCwAIBoOsXbuW/Px87HY7ffv2paamhi1btgBQU1PDunXrGDhwIAkJCSQlJbFx40ZaWloIhUKsWbMGm81Gdnb2bnUYhoHNZsNut4f/LyIiIiIiIiIHFxOo8fpoDYTwRDlwqqezRIBhGAzPT2RU1yTWlzfyj+9LIl2SSLtpl5nOL7/8MnfeeSc33XQTXbt2paysDJfLRUJCAna7nfPPP5977rmH5ORkSktLWbRoEX/5y19wOp1069aNrKwsHnnkEc4880yefvppcnNzmTBhAg6Hg7Fjx/LYY4+Rl5dHcnIyd999N8cdd9xu/ZxFRERERERE5NAQCplsr2/BbbcS57ahiaUSKW67lV8MzWHehkoe/WoTJw7KIi1u90/nixxs2iV0XrFiBcFgkD//+c/h28aPH8+NN95IXl4eV1xxBa2trVx//fXExMTwxz/+kaFDh2IYBikpKdx8883ceeedXHzxxfTv35+XXnoJh2PnxxGmTp1Kc3MzDzzwAM3NzZx22mlcfvnlWCx6F1NERERERETkUBQ0TcrrfES7bMS67GpnIBFjGAaDcz0cWZDGy98V8+gXm7ju+AJsVuVWcnBrl9D57rvv5u677/7vRdhsXHfddVx33XW7bTMMg759+/Liiy/u8b4ul4vzzjuP8847b7/VKyIiIiIiIiKdVygE2+tbiHFaiXW163JWIrsxDIPpY7vw6ZpyZq8s44SBGQzJTdCbIXJQ0zOviIiIiIiISAdlmiYLFy5k0aJFGIbBsGHDGDx4ME6nc7d9t2/fzpw5cygvLycrK4vx48eTlZUFQCgUYsWKFXz77bcEAgEGDx7M8OHDcbl2fsy/rq6OefPmsWHDBmJiYpg8eTJ5eXkAFBYWsnDhQsrKyrDb7RQUFDBmzBjcbnf7XYh9FDR3tteIdtqIc2k9J4m83KRopo/N5+6P1vLigmLyk6NJjN7951jkYKG5/CIiIiIiIiId1KJFi5gxYwalpaVs3bqVe+65h2XLlhEKhdrsV19fz2233cY///lPgsEgn3zyCX/729+orKwEYMOGDVx99dVs2LCB8vJy7r33Xr755huCwSDNzc28+eabPPPMMzQ2NrJgwQKuuuoqamtrCQaDLFy4kAULFhAMBmloaOCBBx7g1VdfjcTl2GuhkMn2uhZinDbNdJYO45TBWQzvksDXGyv5Yl0FoZAZ6ZJEDhg984qIiIiIiIh0UA899BC9evVixowZmKbJTTfdxJtvvkn//v2JiooK7/f111+zePFinnnmGfLy8li8eDEPPvggP/zwA4cffjhPPvkkcXFxXH/99dhsNu6++25eeeUVRo8eTU1NDe+99x4nnngiZ5xxBo2NjRx33HG89dZbTJ8+ncmTJ3P44YcTFxeH3+8nLi6Od999l9NOO43Y2NgIXp3/LmSalNe3kJXgJlYznaWDiI+y89vDu3PJi0t4f/k2huQm0CU5OtJliRwQmuksIiIiIiIi0gH5/X7mzZvHCSecgMfjISEhgREjRrB69WpaW1vb7LtixQr69OlDbm4uUVFR9OzZk/j4eIqLiwmFQsydO5ejjz6apKQk4uPjGTt2LCtWrMDv91NXV8f27dsZMWIEMTExpKenM3HiRL788ksMwyApKYm0tDTcbjfR0dE4nU5M08Ru3z3MDQQC1NbWUlFRQWVlJVVVVe11ucJM08TrC1Lj9RPj0Exn6TgMoF9WPL8Yls03m6r4akMFrYEgpqkZz3Lw0TOviIiIiIiISAdUW1uLz+cjPT09fJvH46Gurm639hq1tbV4PB4slp1zy5xOJ9HR0dTV1REMBtm+fTtpaWnh/RMSEqitrSUUClFdXY3NZiMuLi68PS0tjVWrVrV5DNM02bx5M8899xznnHPOHvtKb9myhRtuuIGFCxcCEAwGiY5u/5mc2+qasRoQ57bhtGm+nXQMhmEQ47QxZWAm8zZU8sKCIkbmJ9IzrWN+YkDk59Azr4iIiIiIiEgHZLfbMQyjzazmQCCAzbb7/DGbzUYgEAjPmAyFQgSDwfAxnE4nfr8/vL/f7w/PVLbb7ZimSTAYDG/3+XxtQmXTNPnhhx+46qqrmDRpEr/+9a8xDGO3Orp168YzzzzDypUrWblyJZ999tnPvxA/QWlNMw6blaQY5x7rFIkUwzDomRbLyYMzKatt5oX5RXhbNdtZDj4KnUVEREREREQ6oNjYWNLT09vMON66dStpaWm7Bc9ZWVkUFxeHg+OGhgbq6+tJTk7GarXSo0cPVq9eHd6/uLiYjIwMbDYbSUlJWK1Wtm3bFt6+Zs0aunfvDuwMsBcsWMBNN93E6NGjmTFjxh5nOQNYLBZcLhdRUVG43e42fafbU0ltM06bhaRoR0QeX+R/cdmtHNsvg+FdEnl72TY+W1Me6ZJE9juFziIiIiIiIiIdkNVq5cwzz+S5557ju+++Y8GCBXz88cdMnDgRh8PBK6+8wvvvvw/AuHHj2L59O6+++iqFhYXMnj2b5uZmevXqhWEY/OpXv+Ltt9/myy+/ZMmSJbzzzjscccQROBwOEhISKCgo4B//+Adr167l7bffZtGiRZx22mmYpsmCBQu48847GTJkCGeffTY+n4/GxsbdWnx0JDtnOltIitlzOC4SaTmJUfx6VB7RDisPfrqBLZVNkS5JZL9ST2cRERERERGRDur888+nvLyc3/72txiGwRFHHMGJJ56IzWZjzpw5pKamMmXKFHr37s3MmTN5+OGHmTVrFllZWVxwwQX07t0bgJNPPpktW7ZwzTXXEAwGGTt2LGeeeSYOhwOPx8OFF17IAw88wFlnnUVUVBQzZsxg2LBhtLS08NFHHzFnzhxWrVrFa6+9BsCQIUO44447yMrKiuTl+a+2/Wumc6JmOksHZTEMDuuRzEmDMnnu2yL++tkG7j1tAA6bNdKliewXCp1FREREREREOqiEhARuv/12fD4fsHOBwF2tLR5++OHwwoE2m43jjz+eSZMmEQwGsdlsuFyucBuO2NhYZsyYwRVXXIFpmjgcDlwuF4ZhYLVaGTJkCI8//jiBQADDMHC73dhsNux2OzNnzuTKK69sU5fVao1Y64y9UVLr3TnTWaGzdGBOm5XfHd6dL9ZV8NX6Ct5bXsapQ7LUh1wOCgqdRURERERERDoowzBwuVy4XK7dtkVHR7f53mazERsb+1+P8++B9X+yWCy7HW8Xt9uN2+3ex8ojJxgyKattIS8pWjOdpcOLc9u56cQ+nP/c97y8sIjBOR66pkQreJZOTz2dRUREREREROSgUdXYii8Qwu2wEu+2R7ockf/JMAxG5Cdx1shc1pc38o8lJTT5gpEuS+RnU+gsIiIiIiIiIgeN0lovFgNSYpzYrIo9pOOzWQzOHp1HQUYsH64oY1FhNcEOvFCnyN5Qew0RERHZo8LCQt59913WrVtHQkICF198MTk5OQAEg0FeffVVvv76a9xuNyeddBKjR4/G4XBgmiZFRUW8/PLLbN68mfz8fM4//3xSU1MxDIPW1lY+++wz/vnPf+Lz+ZgwYQJTp07d48eGRURERPZVSU0zhmGQ6dHvFtI5GIZBlsfNtNF53PrBGl5cUETfzDhSYp1qsyGdlt7yExERkT0qKyujrKyM5ORkZs+eTV1dXXjbyy+/zF/+8hcGDhyIx+Ph9ttvZ82aNZimSU1NDffccw/r169nwoQJLF++nMsuu4zQv2ZrfPbZZzz44IPk5+czcuRIHnvsMV544YVInaaIiIgcZLbWeLEYBpmeztOHWsRmMTisewqT+6Tx7aYq3lu+jWDIjHRZIj+ZZjqLiIjIHg0fPpxBgwZRUlLC+++/H749FArxl7/8hXPPPZfzzjsPv99PYWEh77zzDr1796aoqIglS5bwyCOPMGjQICZMmMDIkSNZsGABAwYMYM6cOYwZM4bp06fjcrmw2Wy88sornHLKKSQnJ0fwjEVERORgsLW6GYsFMuM101k6D8Mw8ETZOXVINkuLa3j4sw1M7JVKNy0qKJ2UZjqLiIjIHtlsNtxuNzZb2/eoS0pKKCkpYfLkydjtdtxuNwMGDGDt2rW0trayfPlyPB4P/fr1w2azkZOTQ69evfjuu++orq6mrKyMAQMGEBcXh8PhYNSoUTQ1NVFUVLRbDaZpEgqFCIVC4a9FRERE/peSmmYshkGGZjpLJ2MYBoNzPUwZmEnQhJvfW0mLX4sKSuekmc4iIiKyT2pqajBNk8TERGDnL8exsbE0NjYSCoWorq7G5XKFezQbhkFCQgI1NTX4fD5CoRBO5//3p7NarTgcDpqamnZ7rIaGBpYuXUplZSUA1dXV7XSWIiIi0hkFQiHK6naGzprpLJ2RYRicMTyX+ZuqWLClmreXlvLL4blYLJrtLJ2LQmcRERHZJ263G8MwaG5uDt/m8/nCQXJUVBSBQAC/34/dbgfA6/WGZ00bhkEgEAjf1zRNAoEADodjt8fyer2sWLGCTZs2AdDY2HiAz05EREQ6s5omP02+IFEOK4kxzkiXI/KTJEY7uHRid1ZtW8Jz84sYnJtAQUZcpMsS2ScKnUVERGSfZGVlER8fz9KlS+nSpQuhUIjNmzeTk5ODzWajZ8+e1NbWUlJSQn5+Pg0NDWzatIlLL72U+Ph44uPjKS4uxufzYbfb2bJlCxaLhYyMjN0eKy0tjUsuuSTcVqOsrIxjjz22vU9ZREREOont9c0EQiFyE6OwW9VRVDqv4fmJ/HJEDk/O28Ir3xXxp2MKiHYqxpPOQ/9aRUREZI9aWlrYunUrW7duxefzUVhYSFxcHBkZGZx++uncf//9pKenU1ZWxvz587nhhhtwOp307NkTj8fD008/zemnn85LL71EbGwsEydOJCYmhuHDh/PGG2/Qq1cvEhMTeeCBBxgxYgRZWVm71WAYRrintGma4ZnTIiIiIntSXucjEDTJTYyKdCkiP4vVYvCb0V34fF0Fc9dWMK57Ckf2SdOigtJpKHQWERGRPVq3bh2nnHIKdXV1NDc3M23aNMaMGcPf/vY3rr32WrxeL9OmTSMqKopLL72UsWPHhmcsX3fdddxyyy08//zz9O7dm2effZa4uDgMw+D000+nurqayy+/nObmZk4++WSuvvrq3RYsFBEREdlX2+tbCIRMchIUOkvnlxzj5PIjevC7l5fywQ9lDMjxkBrrVPAsnYJe3YmIiMgeDRgwINxLeU8eeOABHnjggTa3GYaBxWJh1KhRzJ49e7dtALGxsVx99dVcffXV+79oEREROaTtDJ1D5CS6I12KyM9mGDCsSyJTBmYwZ3U5RxakcWz/dGwKnaUTUIMjERER2SPDMPb5z/+6348dV0REROTnME2T8roWAkGTHLXXkIOAYRh4ouycPDiLWJeNN7/fyo56H6ZpRro0kR+l0FlEREREREREOr1A0KSiwUfQVE9nOXhYDIP+WfFM7pPO4sIa5q7ZQUiZs3QCCp1FREREREREpNOrbW6loSVArNNGUowz0uWI7DfxbjvH9U8n0+Pmia83U1bXHOmSRH6UQmcRERERERER6fQqGn00tQbITYzCZlHrLjl4GIbBwBwPk3qnsqO+hSfnbYl0SSI/qt1C5xUrVnDuuefSp08fJk6cyJo1a8LbfD4f1157LQUFBQwbNowXXniB5uZmTNMkFAqxdOlSTjnlFLp168ZJJ53Ehg0bwv1rvF4vjzzyCIMGDaJnz55cf/31NDQ0tNdpiYiIiIiIiEgHUNnQirc1SJfkaK0XIQcdp83Kr0bmkhbv4h9LSvihpFa9naVDa7fQ2e/3M2jQIK655hrq6uoIBoPAzkb/d911Fx999BGPPvooV155JY888ggLFizANE22b9/OjTfeSPfu3XnjjTfIy8vjzDPPxOv1EgqFeP3113nzzTe57bbbeP755/nmm2+45557wscXERERERERkYNfRaMPb2uA/OToSJcickDkJEbx65F5tAZCPDx3Iz5/KNIlifxX7RY6Dx06lMsuu4wJEya0ub2lpYUXX3yRP/3pT0yYMIEzzjiD0aNH8+GHH+Lz+di4cSNVVVVcdNFFDBkyhFtuuYWqqiq++OILamtrWbhwISeffDKTJ09mxIgRXH311XzzzTds27atvU5NRERERERERCKsssG3c6ZzUhSa6CwHI8MwOGN4Dj1TY/i+qIbP1pZrtrN0WBHv6VxaWkptbS3Dhg0DwGq10qNHD4qKivD7/axZswaPx0NeXh4AHo+HHj168MMPP1BbW0tNTQ1du3bF6XRisVjo0aMHoVBoj6FzKBTC7/fj8/lobW2ltbW1Xc9VRERERERERPa/YChEZaOPFv+/2mtEuiCRAyTGaeMPR/SgxR/k7aWllNe3RLokkT2yRbqApqYmTNMkJiYmfJvL5aKlpQXTNGlqasJut2O328Pbo6Oj8Xq9BAIBTNPEZvv/07BYLNhsNnw+326PtW3bNp555hlWr14NQHOzVvsUERERERER6ewafUGqm1px2a2kxroiXY7IATW2ezJHFqQxb0MFX6yr4LRh2dgsEZ9XKtJGxP9FxsfHYxgGtbW14dsaGxuJjo7GYrHg8Xjw+Xy0tPz/Oze1tbV4PB4cDgcWi6XNjOVQKERraytRUVG7PVZCQgJTpkzhoosu4qKLLuLXv/71AT03ERERERERkZ8jFArx3HPPceyxx3Lsscfy/PPP09TUtMd9165dy/nnn8+4ceO45JJLWLFiRZvjvPPOO0yZMoWjjz6axx57jIaGhvD2bdu2ceONN3L44Ydz+umn891334U/tl9YWMhdd93F8ccfz2GHHcaWLVsO7En/BPUtfmq9fjLiXThtFi0kKActwzBwOaz8ZkwXbFYL/1y5nZJqTaqUjqfdQmfTNAmFQuFByzRNTNMkJyeHtLQ0vvrqq3D7i1WrVtGjRw/sdjsDBgygpqaG9evXEwqFKC8vZ926dQwdOpTExERSU1NZs2YNTU1NBAIBli5disvlIjc3d7caoqKiGDhwIBMmTGDChAmMHj26vU5fREREREREZJ+9//773HzzzZx11lmceeaZPProo3zxxRcEg8E2+1VUVHDppZficDi4/fbbcblc3HXXXRQXFwOwcOFCrrjiCo477jimT5/O888/z/vvv08gEKChoYFHH32U5cuXc80111BQUMCvfvUrysrKgJ0Tw+x2O5MnT2blypVtJoV1FA3Nfmq8rWR53NitEZ9fJ3JAGUCPtBhOHpzJgk1VLNxShT+oRQWlY2m39hr19fUsXLiQ0tJS6uvr+frrr2lsbGTgwIFcdtllPPLII0RFRVFWVsbatWu56KKLcDqddOnShYKCAh566CGmTJnCq6++ypAhQzjssMOwWCxMmjSJv/71ryQnJ5OQkMBf//pXfvnLX5KSkrJbDf/+TqdpmnrnU0RERERERDos0zR5+OGHmTZtWviTuoWFhbz11ltMmDChTZvKOXPmEAgEuOOOO4iPjyclJYU///nPrFixgpycHGbNmsXRRx/NxRdfDOyc2fzGG29w4oknUl1dzbfffsvll1/OMcccwzHHHMMXX3zBc889x8yZM+nbty99+/Zl27Zt3H777RG5Fj+mrjlAjddPr/RYbFa91peDm2EYxDhtHN03nc/XVvDSwmJGd0smJ8GtrEs6jHYLnXfs2MHf//53vF4v3bt355133mHDhg3k5+dz7rnnhj/q43a7ufbaa+nXrx+GYZCUlMR1113H448/ztNPP03Pnj25/PLLsVh2flzmmGOOwe/389Zbb9HS0sK0adP4zW9+ox8yERERERER6dRaWlpYs2YNM2bMCL/GLSgoYN68efj9/jb7bty4kT59+mC32zEMg+TkZDweD9u3bycUCrF06dI2x+nXrx/PPfccgUCA2tpaGhsb6d69e3j72LFjWbp0KcA+vb7+z085BwKBn30d9uYx65pbqWlqJTtBM53l0GAYBr3T45jcJ42nvt7Ce8tKuWhCN+x600U6iHYLnXv06MHbb7/9X7fv6rP8nwzDoHv37txzzz17vJ/T6eS0007jtNNO22+1ioiIiIiIiERaY2MjwWCQ+Pj48G1RUVE0NzeHQ91dvF4vUVFRWP61mJjNZsPlcuH1egmFQtTW1rY5TnR0NF6vF9M0aWhowGq14na7w9vj4uKoq6vb55qrqqr46KOPwm096uvr9/kY+yoYMqlsaKWhJUBuYrRCZzlkRDttHNs/g282VvLct4WM6ZbMkLyESJclAnSAhQRFREREREREZHdRUVFYrdY2C/41Nzfjcrl2m33sdrvbhNGBQACfz4fb7cZisRAXF7fbcdzunR/Fj46OJhgM4vP5wtsbGxuJjY3d55qtViuxsbEkJiaSmJiIx+PZ52Psq5ZAiG21zcS4bKTGOrFooqccQgrSY5k6JBtfIMRf5qynscX/43cSaQcKnUVEREREREQ6oKioKHr06MHChQvDt61fv56cnBxstrYfXO7atSvr168Pt92orq6mrq6OtLQ0LBYLAwcObHOcNWvWkJeXh81mIyEhgaioKDZv3hzevnDhQgYMGLDPNXs8Hk444QQuuOACLrjgAn71q1/t8zH2VXNrkJLaZtLjnMS6bGq3KYcUm9XCyYOyGJKXwPdFNbyyaGukSxIB2rG9hoiIiIiIiIjsPcMwuPjii5k5cya9e/cmFArxwQcfcNVVV+F0OrnppptISEjgsssu48gjj+Tvf/87t912G2eeeSZvvPEGoVCI/v37YxgGF154Ieeccw4jRowgISGBV199lenTp+N0OklMTGT48OE89dRTREdHs2DBAtavX8/jjz8O7JwVXVxcTGFhIYFAgDVr1mCaJjk5ObvNhjYMA6vVCuzstbzr6wOpuTVASY2X9Hg3MU7FHHLoiXPb+ONRPTn9sfm8vLCYcd2T6ZUeqzdgJKL0bCwiIiIiIiLSQZ1++unU1NRwxx13YBgG5557LkcddRRWq5Xa2trwjOf09HQee+wxbrrpJs466ywGDx7MzJkz6dKlCwATJkzgrrvu4uGHH8bn8/GrX/2KU089FZvNRmxsLL/73e/4y1/+wqWXXkpaWhovvvhi+L6FhYXMmDGD5cuXExcXx5VXXkm3bt247bbbGD16dISuzE6maeJtDVJa28zhvWKJcdkjWo9IJBiGQd/MeM4f15XHvtzMU99s4YYT+hCrnweJIIXOIiIiIiIiIh2UxWLhkksu4ZJLLtlt24MPPhj+2jAM+vfvzz/+8Y89HsdqtXLWWWdx1lln7XF7Tk4ODzzwwB63FRQU8O677+578e2k1ttKZUMr6fEuYpwHfma1SEd17th85m+q4st1FXyYW8bUIVk4bPqZkMhQT2cRERERERER6ZSCIZMtVV4cNgupsU7sVsUccmgyDIN4l50rJ/fEZbfy8nfF/FBaRzBkRro0OUTp2VhEREREREREOqVAyGTjjkYSouykxDjVw1YOaRaLwaCcBH4zOo+t1V4e/WIzFQ0+TFPBs7Q/hc4iIiIiIiIi0ikFQyZrt9eTGO0gJc4Z6XJEIs5lt3DSoCyO6ZfON5sqeWDOOlqDoUiXJYcghc4iIiIiIiIi0umYpklrIMSqbfUkxzpJj3NFuiSRiDMMg6QYBxeM60q/rHjeWlrKXz/dQDAU0oxnaVcKnUVERERERESkUyqqaqK+2U9anJPkGM10FoGdwXN+cjTXH19Al6Ronpy3hUc+34i3NajgWdqNQmcRERERERER6ZS+L64lymGja3IMNi0iKBJmGAYDsj3ceGIfchOjeGreFp6ct5mqplYFz9Iu9IwsIiIiIiIiIp3SkqIaYpxWuqVER7oUkQ5pbLdkbj6pL91SY3jm20L+9vlGiqu9hBQ8ywGm0FlEREREREREOp1gyGTp1hqinTa6pcREuhyRDskwDEZ1TeL64/swLC+BN78v4bYP1vB9UY2CZzmgFDqLiIiIiIiISKdTUtNMZWMridEOshLckS5HpMOyWgwG5Xi49rgCju2fwbebq7jq9eU89uUmvK2BSJcnBymFziIiIiIiIiLS6Xy3pRoD6JMRh139nEX+J6tl5+KC1x1XwBVH9qC+xc9Dn23gohe+Z/W2ekIhU72eZb/Ss7KIiIiIiIiIdCqmafLVhgpslp2tAwzDiHRJIh2eYRjEumycd1g+L50/kn5Z8SwurOGcZ77j0S83UVbXQiAUUvgs+4VCZxERERERERHpVGq8fpaX1BHlsDK0S0KkyxHpNAzDwDAM+mTE8fQ5w/n9pO4kRjt4eO4GLn91KR+t3E55vU/Bs/xstkgXICIiIiIiIiKyL5YW19DY4mdQjoeUGGekyxHpdHbOerZz4fiujOuRzDvLtjFndTl/enMFRxSkcVz/DEbmJ5IQ7Yh0qdJJKXQWERERERERkU5lUWE13tYgk3qnqrWGyM9gs1ron+0hLymaCT1T+GDFNj5YUcaiwmrG9UjhlMGZDMlLwGmzRrpU6WQUOouIiIiIiIhIp1HrbWVlaT2BkMmEnimRLkfkoBDntjOuRzJ9M+M4rl8GT369hXeXlTJ/cyVH90nnvMPySY936U0e2Wvq6SwiIiIiIiIinYJpmizfWktxtZfhXRLJiHdHuiSRg4ZhGCRGOxjfM4WHzhzETVP6YDEMnl9QxNS/f8tLC4to9gcwTVM9n+VHKXQWERERERERkU4hEDJZuKWa7fUtnDo0C6tVsy5F9ifDMLBYDBKiHPxyRC4vnDeC04dmEwiZ3Pz+as56YiFfrKug0RcgpOBZ/ge11xA5CJXUbcYXaIl0GdJBWAwL+Ym9I12GiIiIiMjPtrXay4qSOtJinYzpmoQiZ5EDY1cbjdzEaG45qR8nDMzkmW+2sGxrLZe/tozj+qdzyuBs+mbGEeWwqu2G7Eahs8hB6IM1L1JWXxTpMqSDsFudXDdpln4JEBEREZFOzR8MsbykjlXb6pg6JIv4KId+xxVpBxaLwcj8RPpnxfPpmnI+XFHG7B+2M39TFcf1z2BynzT6Zsbh0GKD8m8UOouIiIiIiIhIh2aaJpUNPt5bVkqUw8ak3qlE2RVwibQXwzCIdtqYMiCTYXmJzNtQwVtLSnhy3ha+Wl/B8PwEjihIZ0iOhyin4kZR6CwiIiIiIiIiHVwwZPLNpkoWbK7mF8Oy6ZcZj8WiWc4i7c1iMchKcDN1SDajuyXx2dodPPdNIS8uKOaTVTvomxnHxF4pTOiZQqbHrU8jHMIUOouIiIiIiIhIh2WaJpsrm7jv43Vkelwc1SeNOLc90mWJHNIcNgu5iVH8emQeJw7I4NM1O3hhQSFfrNvBvI2V3P3ROgZmxzMiP5HBuQn0yYgl1mUPh9DGv/7z75G0AuqDy0ETOnu9Xurq6ggGg7jdbuLj47HZDprTExEROeho7BYREflxpmnS0NBAY2MjADExMcTExGCxWHbbt7W1lZqaGvx+Pw6Hg/j4eJxOZ/g4TU1N1NfXY5omMTExxMbGho8TCASoq6ujpaUFi8VCQkICTqcTwzAwTZPm5mbq6+sJBAK4XC48Hk+7jNvBkMn2+mYuf3UZjb4gZ43MZWTXJIVTIh2AYRjYrZAU4+SM4TlMGZjJ4sJqZq8s49uNVSwvqWNxUQ2tgRAWwyAtzklOYhS5iVFketxkxLvIiHeRHu8mxmnFarFgsxhY9/DHop/5TuegeGVXW1vLrFmzmDt3Ln6/n9zcXC6++GJGjx6N1aoeTyIiIh2Nxm4REZG9s2PHDm655RZWrVoFwNChQ/nDH/5Abm5um+C1tbWVN998k+effx6v10tCQgJnnnkmJ598Mi6Xi9raWu6++24WLlxIKBSiX79+XH755XTv3p1gMMjChQuZNWsWpaWlWK1WTj75ZC666CKcTid1dXU8+eSTfPLJJ7S0tJCamspvf/tbJkyYsMfwe38ImSa13lZ+KKnj/jnr2VLZyJSBmZwzJh+79cA8pojsu39/Hop22pjQK5UJvVKpb/azpKiGtdvrWVveyLbaZry+AOX1LRRWNeHzh2gJBPH5QwRCJrEuGykxDpJjnaTEOEmJdZES4yQ51klyjINYlw2nzYrTbtn5f5sFp82Cw2bBZrFgsxrY/tVyR29KdQwHRej84Ycf8tFHH3HrrbeSl5fHs88+y3PPPUe3bt3IyMiIdHkiIiLyHzR2i4iI7J3HHnuMNWvW8OCDD2KaJrfddhvvvPMOF198cXgWM8CqVat46KGH+P3vf8+ECRP4+OOPef311+nZsydDhgzhjTfe4PPPP+evf/0rMTEx3H777bz00kvMnDmThoYGnnrqKXJzc7n11lvZuHEjv//97+nfvz8TJ05k7ty5zJ07lyuvvJK+ffvy0ksv8eCDD9KzZ0+ysrL2+zmHQiZrttfz0oIiPluzg0DI5OzReUwf21VtNUQ6iTi3nYm9U5nYO5WQadLkC1DV2EpVUytVTT5qvf5//WmlvsVPY0uABl+AxpYAhVVefiitp/Ff37cGQ0Q5rMS77Xii7MS7d/1xEOO04nb864/NitO+M5C2W/8/iP7/UPrfbtv1/X98bfnXrGqLQXiGtcWgze1tWoT864tdt/z7voe6Th86h0IhvvjiCyZOnMiYMWNwOBwcd9xx3HvvvRQWFrZ54RoKhfD7/YRCIQCam5sxTZOWlpaf/C5Ii99PyO/fL+cinZ8RCNDc3BzpMvC3+PH7ApEuQzoIw2qlpaXlJ99/13OlaZr7sSo5lGnslo5EY7d0RBq7ZZdgMMibb77JFVdcwaBBgwA48sgjmTt3Luecc06b0Pmbb74hKyuLE088kdjY2PB+GzZsYPDgwbz++uucdNJJjBo1CoApU6bwxBNPcOWVV1JTU8P69eu54IIL6NatG926dWPkyJG8/fbbjBkzhmXLljFo0CDGjBlDbGwsp59+Ol999RUrV67cLXTeH2N3yDTZXFbDvLXb6Jcey9F905nUO5Voh9khnrNFZN/ZgLRoC2nRLsDVZps/GKLJF6SpNYDXF6DJF6CxNbjz69Ygdc1+6ppbqfP6qfH6qWv2U7yjiVqvH29rkObWAL6gCZjYrRYc1p2hs9VihNt12KxGm/YdbW43LP/a/m8hs7ErgKbtbYbxH72oDXY9tRlAeryLUwZnkZMYtU/X52Acuzt96Nzc3ExFRQVjxowJf6wnLi4Oq9VKQ0NDm32Lioq46667WLJkCbDz40eFhYVMnjz5J38kKFBeBkG9QJB/sVixvfXPSFdBReM2WoOtkS5DOgiLYfBh3NKffP9QKERpaSler3c/ViWHMo3d0qFo7JYOSGO37FJfX09FRQW9evUK35aVlcWOHTsIBoNt9i0rKyM7Ozvcpio2Npb4+HgqKysJBAJs3LiRSy65JLx/Tk4O27dvJxgMUlVVRSgUIi0tLby9d+/efPvtt3i9XioqKujXrx8ulwvDMHC73Xg8HioqKnareX+N3Y2+ANvrWih221kW7eBei2YNihyqgiGT1mAIfyC08//BEK2BEK1Bk2AoRDBoEuwgWa3LbuH5hCiiHPvWMvBgHLs7fegcCoUIhUJtFjDYNZDtemd1l6ysLG688cbwrIFgMEhjYyNxcXHq9/IzNDU1cfjhh/P5558THR0d6XJEgJ0LlB111FF88MEHeDyeSJfTqZmmidfrJTMzM9KlyEFCY3fkaeyWjkhj9/6jsfvgEQwGMU0Tu/3/W0pYLJbdAudd+1qt1v//2LdhYBhGeGwNBAK7HWfXtmAwiGEYbdZVsFqt4ccPhUJtjr3r+P85bkPnGbv9fj833XQTRxxxBBMnTjxgvakPlNbWVq644gqmT5/OkCFDOtS13Rs+n4/zzjuPP//5z23eVOksWlpaOO2003jssccOSIuZA625uZljjz2Wt956i8TExEiXs8+8Xi+TJk3iyzlziI2NjXQ5+6S5uZkTTjiB1157jeTk5PDtB+PY3elD56ioKGJjY9m+fXt4CrrX68U0TaKi2k5lt9vt6hN5ADQ1NWG1WunSpQsxMTGRLkcE2Pk8YLPZ6NKlCwkJCZEuR0T+jcbuyNPYLR2Rxm6R3cXHx+N2uyktLWX48OEA1NTU4PF4dgtJExMTWb16dTiQbmlpoampCY/Hg81mIzMzk9LS0vD+VVVVJCQkYLFYSExMJBgMUltbS15eHgDbtm0jIyMDl8tFfHw8VVVV+P1+bDYbfr8fr9dLfHz8bjV3lrHb7/cTFxdHRkYGXbt27XShbWtrK9HR0WRmZtK1a9dIl7PPfD4fbrebnJwc8vPzI13OPmtpacHpdJKbm0tubm6ky9lnzc3N4TE3KSkp0uXsM6/Xi9VqJT8/v1OGzna7nby8PFJTUyNdzgHV6UNnq9XK0KFD+eqrrzjttNNITExk+fLl4UH133W2QaQz0jWWjkj/LkU6Fo3dHYuusXRE+ncpspPdbmfSpEm8++67jBkzBoD58+czYMAAHA4HGzduDIcXgwcP5u2332b9+vX06NGDVatWUV9fT25uLoZhMHnyZP75z39y8sknY7fbmTdvHoMHD8bhcODxeMjKyuLbb78lLy+P2tpavvrqK6666ircbje9evVizpw5bN68mdzcXJYvX05DQwM9e/bcrebO+vPbWeveRfVHVmeuvzPXDp27/s5c+97o9KEzwCmnnMKSJUu48847SUhIoLCwkBNOOKFTvtvUGVmtVoYMGdLmo1gikWaxWBg0aFCbj++LSMehsTuyNHZLR6SxW2TPfv/73zNz5kxuvfVWTNOkurqa8847D7vdzgMPPEBKSgo33XQTo0ePZsKECdx9991069aNkpIShgwZQv/+/QGYPn06V155JTfddBMul4vS0lIuu+wyHA4HCQkJTJ06lbfffpvNmzezfft2Bg4cyJQpUzAMg0mTJvH999/z0EMPkZSUxLp16zj11FPp0aNHhK/OT2cYBvn5+Z22nY9hGPTo0aPTzfLcxTAMevfujdvtjnQpP4nFYqFfv35tFvPsTDr7mGuxWDrt77IWi4WBAwe2aXd0sDLMg2RZxE2bNvH999/j9XrJz89nyJAhnfbJt7MJBoOsWrWKvn37dsofeDk4BYNBVq9eTUFBQacdSEUOdhq7I0djt3REGrtF9sw0TVasWMHKlSsB6NevX/jn5KuvvsLlcjFq1CgAKisr+fbbb6mqqiI1NZVhw4aFFwc0TZN169axdOlSgsEgvXv3pn///uHQrKGhge+//56ioiKio6MZPXo0mZmZGIaBaZps2bKFJUuW0NDQQG5uLiNHjuzULZpCoRBbt27F4/F0uH7TeyMUClFYWEhqairR0dGdsv6NGzeSk5MTXqCyMwmFQqxbt46uXbvicDg6Zf2rV6+md+/enXLM7cy/y4ZCIdasWUPPnj0P+uD5oAmdRURERERERERERCTyOtfyrCIiIiIiIiIiIiLSoSl0FhEREREREREREZH9pvM1bpGI2bJlC8XFxXTv3p2srCwA6uvrWbVqFcOGDTvoe9FIx7FrAZWtW7fStWtX4uLiAGhtbWXTpk243W5ycnI6XW8nEZH9TWO3dBQau0WkI/H5fGzZsoUdO3bgcDjo3r07SUlJHaIvb2lpKRs2bCAUCgE7F/8tKCggNTWVUCjEpk2b2L59OzabjS5dupCamorVasU0TRobG9m4cSP19fXExcXRu3fvA94vORAIUF5eTmlpKV6vlx49erTpBV5TU8PmzZtpamrC4/HQs2fP8OKBu/pSl5aWYhgG2dnZZGdnY7PZME0Tn8/HunXrqK2tJSYmJrxw4v48H7/fT1lZGWVlZXi9XgoKCkhLS8MwDKqqqli/fj3Nzc3AzgXgMjMz6dmzZ7j+zZs3U1ZWhsViIS8vj4yMjPDfR3NzM+vXr6euro64uDh69Oix3/tvNzU1UVRURHV1NaZpkpCQQLdu3cLX2DRNSkpKKC4uJhQKkZGRQW5uLg6HA9M0CQQCrF+/nqqqKlwuF926dSMxMTH891ddXc2mTZtobm4mMTGR3r1779ffHxsaGigqKqKmpgaApKQkunbtisvlAqCwsJDCwsLwz4PD4aBXr16kpKRgmiatra1s2LCB6upq3G43PXr0ID4+HsMwCIVCVFZWsmXLFlpaWkhOTqZXr177tYd1fX09hYWF1NXVYZomHo+H/Px8YmNjMU2T0tJSioqKCAaDZGRkkJeXF772wWCQ9evXU1lZidPppHv37iQkJGCxWMI/O5s2bcLr9R6Qa98eFDrLXnvuuee47777mDZtGg8++CAOh4P169fz61//msWLF5OQkBDpEuUQUlpayp133slJJ53Eaaedhs1mY82aNdx2221MnTqVrKwsvXAVkUOexm7pSDR2i0hHEAgE+Oabb3jsscew2Wx4vV66dOnCzTffHH5DLJI++OADbrvtNo466igAnE4n06dPJzU1lSVLlnDbbbcRHR1Na2srWVlZ/PGPfyQrKwuv18tLL73EJ598QnR0NDU1NRx//PFcdNFFBzR0bm5u5p///CdffPEFc+fO5YYbbuCCCy7AarVSXV3NE088wZIlS3C5XNTV1XHiiSfym9/8BpvNxrJly7jnnnuwWq2EQiFiY2P57W9/y4ABAwB47bXXePPNN/F4PDQ2NjJx4kQuuOACoqKi9lv9DQ0NvP/++8yfP5+PPvqIBx54gF//+tcALF68mBtuuIHc3Fzi4uKw2WxMnDgxHDovWrSIu+++m6ioKAKBACkpKfzud7+jZ8+ehEIhXnzxRT744APi4+Opr6/n2GOP5bzzztuvweG6det47LHH8Pv9WK1WqqqqOOGEE5g2bRo2m41NmzZx++2309LSgsViwWazcf755zN27FgMw+CTTz7h0UcfJT4+Hq/Xy8CBA7n88suJi4ujurqav//97yxbtgy32011dTXnn38+p5xyyn6rf9myZbzwwgsEAgGsVis1NTVMnTqVM844A6vVyosvvsjzzz/PuHHjAIiPj2fatGnh0PnDDz/kueeeIzY2lqamJoYPH84VV1yBy+WivLycWbNmsW7dOlwuFzU1NVxyySUcf/zx+63+wsJCXnvtNXbs2BF+42fcuHGce+65lJWVcccdd+D1erFYLFgsFs4//3zGjRuHYRh8+umnzJo1i/j4eJqbm+nXrx+XX345Ho+H2tpaHn30Ub7//nuioqKorq5m+vTpnHrqqfut9vag0Fn2SUFBAfPnz+ebb77h8MMPb7OtpaWFuXPnMnfuXEKhEGPHjuWkk07qlCuhSsdmGAYFBQWcfPLJvPzyywwePJicnByefvrp8OBz7bXXEggEGDJkCKeeeipRUVEUFxfz7rvvsm7dOhwOB8OHD+cXv/iF/o2KyEFNY7d0BBq7RaSj8Hq9PP300/Ts2ZNLLrmEiooKzjnnHGbPns0vf/nLSJcHQHZ2Ng8//DCw8/lz18zI22+/nezsbGbMmEFdXR0zZszg448/Ztq0aWzdupXXXnuNiy++mMMPP5wFCxZwxRVXcMQRR4RD0gPB6XQyYcIExowZw7Zt28K3m6bJkiVLmD9/PpdeeilDhw7lq6++4u6772bUqFH06NGDv/3tbyQkJHDttdfS2trKX//6V9566y26detGY2Mjd999N9dccw3HHnss3333HXfeeSeHH344/fv3329BelRUFEceeSRHHHEEq1ev3m17Tk4ON9xwA926dQMIjz+tra3cd9995OTkcM0119DQ0MA999zDhx9+SG5uLhUVFTz88MNce+21TJo0iXnz5nHHHXcwefJkunbtut/qz8jIYPr06eTl5WG32/n444+59957Oeqoo8jKyuK5556jqamJO+64A5fLxRNPPMHrr79OQUEB0dHR3HLLLZxyyimcc845bN68mT/96U+MHj2aI444gqVLl/LVV18xc+ZM+vTpwz/+8Q9uueUWxo8fT1JS0n6p///Yu+8wueqy/+PvM71s732zm900QhohDUJoghA6gtKRJlL0EUVBUVFARB7EhjSpIkUEaQIiLZSQhBDS6ybZ3nuZ2ann90eezI+YAIHM7mySz+u69mJ358z53mcymwmfuff+lpaWctlll1FSUoLFYuG5557j3nvv5YgjjiA/Px+AAw44gD/84Q8YhhH7eYBtXd6//vWvOfvss/nGN77B+vXrueaaazj88MOZMWMGH3zwAatWreK6666jvLycv/3tb9xyyy3MmTMnbo0XpaWlfOtb3yIpKSkWJN9zzz0cffTRPPHEE/T29vKrX/0Kj8fDAw88wFNPPcX48eNJSUnhxhtv5KSTTuKb3/wm1dXVXH/99cyaNYtjjjmGFStW8Oabb3L99dczceJEnn32WX75y18yb948srKy4lL7cNBMZ/lCiouLOeWUU/jLX/5Cf39/7PumafLBBx/w61//mtzcXEpKSrj99tt56aWXME0zgRXLvsput3PiiSdSXl7Obbfdxt///ndWrVpFZWUlL730EpWVlUyfPp1//OMf/OlPf2JwcJD777+flStXMnfuXKZNm4bP5yMcDif6UkREhpReu2Wk0Gu3iCSaaZoMDAywatUqvvrVr1JQUMDkyZOZN28eL730UqLLi6mrq+Mb3/gG3/72t3nllVcIBAK0tbWxePFizj33XIqKipgwYQIHH3wwH3zwAcFgkFWrVmGz2TjmmGPIycnhuOOOIz09nffee29Ia3U4HFRWVjJhwoTYSAfYNrZiw4YNFBYWMn36dDIzMznyyCPJyMhg2bJlNDU1sXr1as455xyKioooKytjzpw5bN26lY6ODj788EMCgQBnnnkmubm5fOUrXyEpKYnFixfH9d8pLpeLsWPHMm7cOJxO506319XV8Z3vfIdvfvObPPjggwQCgdj316xZwze/+c3YyI2DDz6Y9evX09vby+LFizEMg1NOOYXc3Fzmz5+P3W5n8eLFcasdtoXOM2fOJC8vj4yMDCZNmsTAwADhcJi+vj6WLl3KSSedRFlZGYWFhRx66KG0trbS3NzMhg0b2Lp1K+eddx55eXnMmDGDiooK3n//fQKBAB999BHFxcUccsgh5Obmct5559HR0cGKFSviVn9JSQnTp08nJyeHzMxMJk6ciM/nIxKJxI5ZvXo1X//61/nOd77DG2+8Eft3wLp162hqauIb3/gGeXl5HHrooZSWlrJgwQIGBwdZvnw5Y8aMYfr06eTm5nLhhRfS3NzMmjVr4lZ/amoqJSUlZGRk4PV66e3txWazEY1G+eijjzjhhBMoLy+noKCAuXPn0t7eTnNzMxs3bmTz5s1ccMEF5Ofnc/DBB1NZWcnChQsJBAIsXbo0dp/tj31nZyfLly+PW+3DQS0C8oVYrVbOO+88Lr/8cl5//XWKioqAbb+i9PDDDzNr1iyuvvpqDMPA7/dz5513cvLJJye4atlXJSUl8aMf/YgTTjiB//znP/ziF7/g448/5rjjjuP000/HMAyKi4v5wQ9+wEknncTmzZs59thjOfHEE2MvBLv6h4WIyL5Er90ykui1W0QSraOjg0gkQk5OTux7o0aNYtmyZQms6v8bP348v/rVrygpKWH58uXcdtttDA4OMn78eILBIKWlpcC2Dui8vDyWLl1KJBKhoaGB5ORk0tLSgG1v9BUWFlJbW5uQ6wgGg7S1tZGenh6bY2yz2cjOzqa1tZXOzk6CwWDs3yUWi4W0tDSCwSA+n4/a2lqys7NjozRcLhfZ2dnU19cP2zWUlJTw3e9+l7y8PFpaWvj9739PVVUVt99+O21tbYTDYYqLi2P1p6enMzAwQCAQoKamhpycnFgQ73a7yc7OpqamZsjqjUaj/OY3v2HmzJkUFxfT0NBAf38/paWlWCwWDMMgOTmZaDSKz+ejpaUFu90e6yi22Wzk5eXR0NBAJBKhtbWVzMzMWGex1+slIyNjyP4MQqEQd955JzNmzIjVNH36dCoqKsjLy2PJkiXccsstBINBTjnlFGpra3G5XLGfZZvNRkFBAXV1dYTDYTo7OyksLIyNM0lKSiItLY2mpqa41l1fX8/555/Pxo0byc/P5/bbb8fj8dDX10dJSUmsQzspKQnY1qHd2dm502Ofm5tLY2MjkUiE5ubmnR77rKysYX3+x4NCZ/nC8vPzmT9/Pi+++CJnnHEGsO0d4y1btnDsscfGBr7PmjWL3//+90SjUc3nkyGTn5/PWWedxYsvvsihhx7KPffcwz//+U9uvPFGYNtzs6CggGg0ylFHHcWdd97JSy+9xBFHHMHxxx+vTYtEZL+g124ZSfTaLSIjwSfHG5imOSI2EQSYO3dubH7toYceCsDrr78eC9b+u+7Pksjr2h60/ff6/13TJ69h++fbb/+8+w61cePGMW7cuNjalZWVXHHFFTuM4fjvP4NPq337sUNV/8DAADfffDM1NTU8/fTTWK3Wz11rd2ocrj+D/v5+brjhBrq7u7nrrrtir/PHHnts7JjZs2cTiUR44403mDdvXqyeRNefl5fHww8/TFtbG0888QR/+tOfuPbaaz/zPts3avy02ob7+TNUNF5DvjCXy8XRRx9NX18f7733XuzXHhwOBz6fL3ZcX19f7H9iRYbK9nfMbTYbFouFoqIibrnlFhYsWMA777zDu+++yzPPPENlZSUXXXQRzz77LCeffDILFy7km9/8JnV1dYm+BBGRIafXbhlJ9NotIomUmZmJzWajubk59r3q6upYB3GifTKstVqtZGZmEgwGycjIwOl0smXLFmBbANXc3Exubi5Wq5Xi4mL6+vro6uoCtnUaNzQ0UFJSkpDrsNvtZGdn09HRwcDAAKZpEg6HaWtri41ScDqdsb/To9EoPT09OJ1O3G43o0aNoqWlhYGBAWDbhoXt7e2xzujh8Mk/C8MwYjX39PSQk5ODzWbbof7Ozk68Xi9Op5PS0lJaWlpi/87y+Xy0tbXF/Xlmmibt7e3cfvvtrFmzhr/+9a+xNyhSU1NJTk6murqaaDSKaZr09vZisVjwer0UFxcTCoVis7jD4TDNzc0UFhbGOm/b2tpiI0X6+/vp7OyM65+BaZq0tLRw0003UV1dzSOPPLLDzOJPPv52u53MzEz8fn+s6z8QCMR+lsPhMI2NjRQXF2Oz2cjMzKS9vZ1gMAhAb28vPT09se7ieLHZbJSUlHDQQQdx1VVXEQwG2bx5MykpKdTU1GCaJqZp0tfXBxB77MPhMA0NDbHaW1paKCgoiHWct7e37/DYd3R0DOvzPx4UOsuXMnr0aGbNmsXbb79NZ2cnVquVOXPm8MYbb1BVVUV1dTXPPfccRxxxBBaLnmYyPDIyMqioqGDNmjX4/f7Yrs61tbWxmWI2m42TTjqJq666ir6+vh02uxAR2ZfptVtGIr12i8hwMgwDr9fLpEmTeOWVV6ivr2fZsmUsWLCAE088MdHlAbB8+XLq6uro7u5mw4YNvP/+++Tl5TFq1Chmz57NY489Rm1tLatXr+bDDz9kzpw5OJ1OJk6cSCQS4d///jfNzc289NJL9PT0xLqmh8r2OdltbW0Eg8FYOBYKhRg3bhyNjY0sWbKE9vZ2/vOf/9DV1cVBBx1Efn4+Bx54IH/729+ora1l8+bNvPfee5SXl5OZmcn06dNxu908+eSTNDc38+9//5v+/n5mzpwZ127PaDRKf39/bFxGX19fLCivq6tj48aNdHd309DQwHPPPYfdbqe4uJiioiIOPPBAHnzwQRoaGli/fj0ffvhhbJO47XX+85//pLm5mRdffJFIJMKsWbPiVjtAW1sbd911F+vXr+dnP/tZLJSNRCIkJydz8MEH8/zzz7N582bq6up49913yc3NJTc3l7FjxzJ69GgeeeQRGhsb+eCDD9i8eTOHHnooDoeD6dOnU19fz3vvvUdzczOPPPIIOTk5TJ48OW71NzY28tvf/pa6ujpuvvlmkpOTY/WHw2FWrFhBQ0MD3d3drFmzhkWLFlFYWIjX62X8+PEUFhby5JNP0tTUxIIFC6irq+Pwww/H5XIxdepUNm3axIcffkhzczMPPfQQBQUFTJgwIW7119fXU1VVRXd3N21tbSxdupTBwUGKi4uZPn06L730ElVVVdTX1/POO++QnZ1Nfn4+lZWVVFZW8vDDD9PY2MiiRYuoqqrikEMOiT32TU1NvPPOO7HHPisriylTpsSt9uFgmNopRnbTjTfeyJo1a/j73/+OYRhs2LCBK664grfeeov29nba2tr49a9/HXvnzGKxcMMNNzBx4sS97lcAZO9y55138uKLL/Kf//yH5cuX89BDD9He3o7dbsfhcDBu3Di++c1v8thjj8VmtUUiEUaNGsX3v/99MjIyEnwFIiJDQ6/dMlLptVtEEiUSifDuu+9yzz33EI1GCQQCjBkzhp/+9KekpKQkujx++ctfsnHjRmBboJuSksLFF1/M1KlTWblyJTfffDMWi4VwOEx5eTnf//73yc/Px+/38/jjj/Ovf/0Lh8NBf38/p5xyChdffPGQvpns9/t57ll87bYAAJgUSURBVLnn+Mc//sHChQvJy8ujsrKS0047jWOOOYYHH3yQRYsWYbPZ8Pl8nH766ZxzzjnYbDaWL1/O7bffTigUIhqNkpWVxZVXXsnEiRMBePzxx3nyySfxeDwMDg5yzDHHcNFFF+2wYeGe6u/v58knn+SVV17h7bffpry8nMrKSr72ta9hsVh4+umnMQwDi8VCKBTi61//OieeeCJWq5WlS5dy2223YRgGkUiEoqIirrzySiorK4lGozzyyCM899xzuN1u/H4/J510EhdccEFsxnA8vPrqq1x44YWUlpYyevRoLBYLmZmZXH755YwfP54tW7Zw66230tXVhcViwePxcNlllzFr1iwMw+C1117jz3/+My6Xi0AgwPTp07n66qtJSUmhq6uLe++9lyVLlsSeU5dffnlc36B58sknufrqqxk7diylpaUYhkFBQQGXXXYZxcXFsQ5o2PbzkJmZySWXXBJ7jrz44os8+OCDuFwu/H4/hx56KFdffTUul4uWlhbuvvtuVq1ahd1ux+fzcdVVV+0wsmNPvfLKKzzzzDMEAgGsViuRSIQ5c+Zwzjnn0NHRwa9//Ws6OjqwWCy43W4uueQSDjnkEAzD4PXXX+ePf/wjbrebQCDAtGnT+M53vkNqaird3d3cd999LFq0KPbYX3bZZXvdvisKnWW31dbW4vP5GDt2LIZhEA6HqaqqoqOjI/YuXmNjY2woe05ODiUlJeqWkiHX0NBAV1cXEydOjP1aSlNTE6FQCJfLRW5uLjk5OTQ1NdHS0kIoFMLtdlNUVLTDr+6IiOxr9NotI5Veu0Ukkbb/RkV7ezsOh4NRo0aRnp4+It5wra6upq2tLfb3YV5eXmyUQzQapaamhtbW1thIjezsbCwWS6zjeOvWrfT395OUlERFRQUul2tIrysSiVBfX7/DBmeGYVBUVERxcTHd3d2xf4+kpKRQXl4eC42j0Sh1dXU0NzdjGAb5+fkUFBRgtVoxTTM2pqC3txePx0NZWRlJSUlxvZ5wOExtbe0Om8tZLBaKi4txuVzU1tYSCARi4xqKi4tjofEn/zwsFguFhYWxcSemaeL3+9myZQv9/f14vV5Gjx6N2+2Oa/3t7e1s2LBhh+85HA7GjBlDamoqpmnS1NREQ0MD0WiUnJwcioqKsNvtmKZJJBJh8+bNdHV14XQ6GTVqFGlpabGZw93d3dTU1DA4OEhaWhqjR4+Oa2je1NQUGxmzndvtprKyEq/XS3V1Ne3t7YTDYdxuN/n5+WRnZ8ce41AoxJYtW+ju7sblclFeXk5ycjKGYcRGntTW1hIMBklPT2f06NHYbPHb3q6zs5O6ujp8Ph9Wq5XU1FSKiorwer2xETj19fWxzUu3P3+2P/Zbtmyhs7MzNpJl+99D//3Yp6amUlFREdfHfjgodBYRERERERERERGRuFEbi4iIiIiIiIiIiIjEjUJnEREREREREREREYkbhc4iIiIiIiIiIiIiEjcKnUVEREREREREREQkbhQ6i4iIiIiIiIiIiEjcKHQWibN169Zx8cUXs3jx4s88LhqN8tRTTzFt2jSOOeYYli5d+qXXrK2t5eijj2b9+vWYpkkkEsE0TUzT/NLnFBER2R9sf92MRqNf+hzPPvss8+bNi1stev0WERGBnp4ezjnnHJ5//vkvdL/m5mYuuOAC3njjjT16fReRPaPQWSTOQqEQ3d3dBIPBzzwuEonw4x//mMsuu4zHH3+cSZMmfek1I5EIHR0dhMNh2tvbmTZtGu+9996XPp+IiMj+ore3lwsvvJD77rvvS59jcHCQjo6OPa5lwYIFjBkzhoGBgT0+l4iIyN4uGo3S1dWF3+//QveLRCJ0d3cTCASGqDIR2R22RBcgsreLRqPU1dXR0NCAzWajr69vp9saGxsxTZOcnByKi4sJhUJ88MEHdHZ2YrfbaWlpwev1snXrVlpbWwmFQqSlpVFaWkpycjIAy5YtIz8/n/z8fACqq6sJh8OUlZXtUM+WLVvo6+tj+fLlABQWFlJeXj48D4aIiMgIFgqFqK+vp7m5mWg0itfrBbZ1RG3cuJEFCxYwevRovF4vGzZs4OCDD8ZqtRIIBFi9ejVjxowhKSmJUChETU0Nra2tJCUlMTg4uMM6/f39VFdX093djcvlori4mJycHAzDYNmyZeTk5NDV1UVvby/Z2dmUlpYCsHr1anw+H++//z6ZmZlUVlaSmpo67I+TiIjISNLb28uyZcvw+/3k5eVRXl4ee01vbW0lGo2SlpZGRUUFDodjp/v7/X6qqqro6+vDarVSUFBAYWEhFouFvr4+6urqcDqddHZ2Eg6HKS4upqioCNgWYNfX19PU1EQ4HCY9PZ1Ro0bh9Xrp7+9ny5Yt9Pb24vF4KC4uJisrC8MwhvshEhmRFDqL7KGNGzdy22230dvbS1ZWFsFgMBY8f/jhhzzwwAOEQiFM08Rms3HWWWdRVlbG008/zeDgIC+88AI+n4/k5GSefvppNm/eTDAYJBAIcNRRR3H22Wfjdru57LLLuPzyy7nkkksAePDBB+np6eHWW2/doZ4lS5bQ1dXFK6+8wqpVqzj66KMVOouIyH7PNE02btzIb37zG6LRKHa7HZvNxowZM9iyZQv9/f10dXVx1lln4XA4OPvss9mwYQPJycm0trZy6aWXcu+99zJt2jSWLl3KnXfeicViISMjg+7u7thIjL6+Pp588kkWLVpENBrFNE1yc3O54oorKC0t5fLLL2f8+PFkZmbS1NREJBLhu9/9LuPHj+fNN9+kv7+fxx57jNLSUi644AKFziIisl/z+Xy89tprfPTRR3R0dBAMBrntttvIyMjgmWeeYdOmTYTDYTo6Orjgggs47bTTdjpHQ0MD9957L4FAAJ/Ph91u56c//Snl5eVs3LiRa6+9loqKCmw2Gy0tLXg8Hu644w6ys7NZvHgx9957L6FQCKfTSUFBAeeeey7FxcX85S9/YcWKFbHRlqNHj+biiy+msLAwAY+UyMij0FlkD0QiEf7xj38QjUa5+eabSUtL46GHHmLVqlX09/fz8MMPM3fuXE4//XQsFguPPfYYL730Ej/84Q+58cYbee6557j++uuZOnUqpmly0kknkZGRgc1m47XXXuPFF19k9uzZTJgwYbdrOv3007n33nv53ve+xyGHHILNph9zERGRSCTCqlWr6Ozs5He/+x0ZGRk0NzeTlZXF66+/zuzZs7n00kux2+2fuS/DwMAAf//73ykqKuKaa67B5/Pxne98J3b7smXLeP/99zn33HM56KCDaGxs5Le//S3/+te/uOKKK4BtndA/+9nPcDgc3Hrrrbz11ltMnjyZyy67jGXLlvHb3/6WpKSkXXZriYiI7E8GBwdJSkrihz/8IVarlZ/85Cf87ne/48477+TUU0+NvTn7j3/8g1tvvZUTTjhhp3NkZ2dz5ZVXkpubS09PDz/4wQ944YUX+J//+R9g2+vymDFjOPfcc+nu7ubrX/86CxcuZO7cudx3330UFBRw6aWXkp6eTm9vLykpKbz77rssWLCA6667jjFjxrB582Z+97vfsWTJEk455RR1O4ug0Flkj/T19bFhwwaOPPLI2DujRx99NG+99Ra1tbWsW7eO2tra2MYH7e3tpKamxn6d1jAMXC4XTqeTaDTKli1b+N///V8aGxtjv9rT2tr6hUJnu92OYRg4nU7cbrde7ERERACLxUJpaSltbW386le/4sgjj+TYY4+NdTw7HA48Hs/nnmdwcJANGzZw2WWXUVxcDMBXvvIVHnroIQA2bNjA22+/zZYtW3A6nUQiEWpqakhOTiYSiQBw1FFHxX4LqbKykq1btxIMBnE6nRiGgdvtxu12D9EjISIisvdISkpi1qxZlJeXYxgGp556Kj/+8Y8xTZO1a9fy/PPP09jYSHd3N7W1tbS1te10DqvVymuvvcb7779PT08PGzZswOFwxH5LKTc3l4MPPpi8vDyysrIoKSmhurqasrIympqauPzyyykrK8MwDNLT0wFYvHgxK1as4Prrr8dqtRIOh6mqqmLatGmx13SR/Z1CZ5E9EIlECIfDO4S7drsdu93O4OAg0WiU6667jtzc3Nh9PB4PJSUlO22G8Pbbb3PzzTdzxhlncO6559LY2Mhf//pXQqEQsO1/lre/KGp3exERkS/GMAymT5/Ogw8+yJtvvsnjjz/ObbfdxmOPPbbTsRbLtr22t7/OfvI11zRNQqEQLpcrdnxSUlLs81AoxJQpU/jWt74V+x9T0zTJy8uL/VshJSUlVpPNZiMSiRCNRofgqkVERPZuVqsVl8sVew31er0MDg7y8ccfc9ttt3H66adz3nnn0draytVXX43f79/hjVvTNLnrrrv417/+xZVXXklhYSEPPvgg3d3dsWOcTucOv11kt9sJhUJEo9HY+v9tcHCQGTNm8O1vfzsWMJumSUlJCXa7fYgeDZG9i0JnkT2QkpJCXl4eK1as4Nhjj8Xj8bBlyxZaW1spKSkhIyODnp4ejjnmGGw2G+FwGNM0cTqdO4XO69evp7S0lHPPPZfU1FTeeustOjs7Y7fn5eVRW1tLMBjE5/NRXV29w//kbme327Farfj9fqLRKIZhxP7nWUREZH8WjUYZNWoU3/rWt/jmN7/J3Llz+c9//oPdbicYDBKJRLBYLGRnZ2OaJnV1dVRWVrJx40Z6e3sBcDgc5OXlsW7dOo488kgikQgffPBBbI2CggIsFgsFBQWMHz8ewzAIBoNYrdbY/zB/2m8huVwuTNNkcHAQj8eDYRj6jSUREdmv9fX1sW7dOvx+P4ZhsHDhQiorK9m0aRPFxcWcf/75JCUl8cQTTwDs1JhlmiZLlizhK1/5CqeeeiqBQIDu7u7Ybx99ltzcXBwOBytWrKCyshKn00k4HMZmszFmzBg++ugjRo8eTW5uLqZpEgwGcTgceu0W+T8KnUX2gN1uZ/78+dx2223cfffd5Ofn8+yzz+JyucjKyuLiiy/mwQcfpK2tjYKCAlpaWsjIyOCkk07a6Vxjxozh6aef5rHHHiMjI4OXX355hxfMk08+mXvvvZeSkhK6urpYv349M2bM2Ok8KSkpjB07lueee45gMMjo0aO/0HgOERGRfVE4HObtt9/mo48+oqysjPb2dqxWKwcffDADAwMsWbKE5557jqlTp1JcXMyUKVO44447OOyww1i0aBFdXV3Atq7mE088kQceeACr1UowGGTdunWxdWbPns0bb7zB7373Ow477DBsNhtNTU1MmTKFY4455jNrHDVqFCkpKTz66KNMnTqVyZMnk5GRMaSPi4iIyEi2PTS+5557CIfDvPTSS9x8882xjX4feughUlJSeOWVVz71N4GnTZvGggULKCoqor6+nurqaoqKij537YKCAk4//XQeeeQR2traKCwsxO/3M2fOHObPn8/rr7/ODTfcwBFHHIFhGNTU1HDccccxffr0eD8MInslhc4ie2jevHkEg0Heeust/H4/F198Ma2treTn5zNnzhzy8/NZsGABtbW15OTkMGPGDNxuN+FwmAsvvJDMzEwA5s6dy1VXXcUHH3xAZ2cnX//61+nq6oq9GJ511lmEQiE2bNjAuHHjuPLKK0lKSsJms5GcnMwZZ5xBRkYGFouF66+/nn/+85+88cYbhMNhhc4iIrLfs1gsFBUV8fHHH7NkyRI8Hg+33HILhxxyCAUFBTz11FO8/fbbpKenU1xczO23387TTz/Npk2bOOGEEygoKCA7OxubzcZXv/pVIpEIH330EYWFhfziF79g6dKlwLbfTPrxj3/Myy+/zMqVK7HZbFRUVFBRUQFs2/C3srIyVtfEiRPJzs7G5XKRkZHBjTfeyMKFC/H5fLHfmhIREdkfOZ1OzjnnHDIzM6mpqaGtrY3rr7+e4447joGBAb797W+zePFiAoEAP/7xj3nmmWdITU3F4XBw3HHHUVpaisVi4bLLLsPtdrN69WrGjRvH97//fQYGBjAMg+zsbI499tjYSEzDMPjqV79KWVkZAGeeeSbp6em89957NDQ0MH78eFJTU8nNzeWOO+7gueeeY/ny5djtdsaMGUNBQUEiHzKREcUwNRRWREREREREREREROJEg15FREREREREREREJG4UOouIiIiIiIiIiIhI3Ch0FhEREREREREREZG4UegsIiIiIiIiIiIiInGj0FlERERERERERERE4kahs4iIiIiIiIiIiIjEjUJnEREREREREREREYkbhc4iIiIiIiIiIiIiEjcKnUVEREREREREREQkbhQ6i4iIiIiIiIiIiEjcKHQWERERERERERERkbhR6CwiIiIiIiIiIiIicaPQWURERERERERERETi5guHzjfeeCOGYcQ+bDYbKSkpjB49mvnz5/PAAw/g9/uHotaEevjhhzEMg+rq6kSXIiIiIiIiIiIiIjJi7XGncyQSoa+vjy1btvDyyy9zySWXMG3aNNavXx+P+kaM+fPn88EHH5Cfn5/oUkRERERERERERERGrD0KnS+44AJM06S7u5uXX36ZqVOnArB+/XqOOeYYOjs741LkSJCdnc2sWbNwOp2JLkVERERERERERERkxIrLTOfU1FSOO+443nnnHcrLywGoq6vjzjvvjMfpR4RdjdfYPmpkzZo1nHXWWaSmppKbm8tFF11ET0/PDvdfv349Z511Frm5uTidTkpKSjj//PMJBAKxY9577z2OOuookpOT8Xg8zJkzh3/961871bJ93ZUrV3LGGWeQmppKRkYG11xzDeFwmA0bNvDVr36V5ORkRo0axW9+85udzrFp0ybOPvtscnJycDqdjB8/nrvuuit+D5iIiIiIiIiIiIjsl+K6kWBSUhKXX3557Ovnnnsu9rlhGBx++OHxXG7EOP300xkzZgzPPPMM1113HY8//jjf+973YrevWLGCgw8+mEWLFvHLX/6SV155hVtvvZVAIEAwGARgwYIFHHnkkfT09PDAAw/wxBNPkJyczIknnshTTz21y3XPPPNMJk+ezDPPPMOll17KnXfeyfe+9z1OOeUU5s+fzz//+U+OPPJIfvSjH/Hss8/G7rd27VoOPvhgVq9ezR133MFLL73E/Pnz+c53vsMvfvGLoX2wREREREREREREZJ9mi/cJJ06cGPt8y5Ytsc+tVitWqzXey40IF198Mddeey0ARx99NFVVVTz44IM88MADGIbBNddcg81mY8mSJWRnZ8fud84558Q+v+6660hPT+ftt98mKSkJgBNOOIEpU6bwgx/8gDPPPBPDMHZY97LLLuOaa66Jrfvaa6/xpz/9iWeffZZTTz0VgMMPP5yXXnqJv/3tb5x22mkAXHPNNSQnJ/Pee++RkpICwFe+8hUCgQC//vWv+c53vkN6evoQPVoiIiIiIiIiIiKyL4trp/N/+2RIGg6HeeONN4ZyuYQ56aSTdvh60qRJDA4O0trais/nY8GCBZx55pk7BM6fNDAwwOLFi/na174WC5xhW1B/3nnnUV9fz4YNG3a63wknnLDD1+PHj8cwDI477rjY92w2GxUVFdTU1AAwODjIG2+8wamnnorH4yEcDsc+jj/+eAYHB1m0aNGXfixERERERERERERk/xb30HnlypWxz7fPd97XZWZm7vD19s0G/X4/XV1dRCIRioqKPvX+XV1dmKZJfn7+TrcVFBQA0NHRsdNtGRkZO3ztcDjweDy4XK6dvj84OBg7Tzgc5o9//CN2u32Hj+OPPx6A9vb2z7tkERERERERERERkV2K63iN3t5e7rnnntjXp5xySjxPv1fKyMjAarVSX1//qcekp6djsVhoamra6bbGxkYAsrKy4lJPenp6rIP6yiuv3OUxZWVlcVlLRERERERERERE9j9x6XTu6enh5ZdfZt68eVRXVwNQUlKyw2Z6+yu32828efN4+umnP7WD2Ov1MnPmTJ599ln8fn/s+9FolMcee4yioiLGjBkTl3o8Hg9HHHEEH3/8MZMmTWL69Ok7ffx357aIiIiIiIiIiIjI7tqj0PmRRx7BMAzS0tKYP38+y5cvB2DcuHH8+9//3mEzOpvNxlFHHbVHxe6tfvvb3xIKhZg5cyb3338/b731Fk8++SRnn302fX19ANx66610dHRwxBFH8I9//IMXXniB448/ntWrV/O///u/O20iuCd+//vfU1tby9y5c3n44Yd5++23efHFF7nzzjs58sgj47aOiIiIiIiIiIiI7H/2eLyGxWLB4/GQk5PDuHHjOO200zjnnHN2misciUSIRCJ7utxeafLkySxZsoSf//znXH/99fT19ZGXl8eRRx6Jw+EAYN68ebz55pv8/Oc/58ILLyQajTJ58mReeOGFnTYM3FMTJkxg2bJl3HTTTdxwww20traSlpZGZWVlbK6ziIiIiIiIiIiIyJdhmKZpJroIEREREREREREREdk3xGWms4iIiIiIiIiIiIgIKHQWERERERERERERkThS6CwiIiIiIiIiIiIicaPQWURERERERERERETiRqGziIiIiIiIiIiIiMSNQmcRERERERERERERiRuFziIiIiIiIiIiIiISNwqdRURERERERERERCRuFDqLiIiIiIiIiIiISNwodBYRERERERERERGRuFHoLCIiIiIiIiIiIiJxo9BZREREREREREREROJGobOIiIiIiIiIiIiIxI1CZxERERERERERERGJG4XOIiIiIiIiIiIiIhI3Cp1FREREREREREREJG4UOouIiIiIiIiIiIhI3Ch0FhEREREREREREZG4UegsIiIiIiIiIiIiInGj0FlERERERERERERE4kahs4iIiIiIiIiIiIjEjUJnEREREREREREREYkbhc4iIiIiIiIiIiIiEjcKnUVEREREREREREQkbhQ6i4iIiIiIiIiIiEjcKHQWERERERERERERkbhR6CwiIiIiIiIiIiIicaPQWURERERERERERETixpboAmTfY5pm7GM7wzB2+d/hEo1GP3XdPanl0671k9e5/fZPfv/zzhmP2j6tRovFstN5TdMkGo3u8jYREREREREREZEvQp3OEnerV69m7ty5ZGZmkp+fz6hRo5g+fTqXXHIJ//73v+nv798hWB0O5557LjfccAORSITBwUFeeOEF/vnPf+L3+/fovB9//DGHHHJI7FpLSko45JBDuPfee+nr68M0Tf7+979TUlJCS0vLbp3TNE2efvpp7r///j2qbfu5Nm3axAUXXEBFRQUFBQXU19fv9Pj/+9//Zty4cTQ1Ne3xmiIiIiIiIiIisn9Tp7PEnWmaRCIRfvzjH/PVr36VcDhMfX09r776KldddRVnnXUW1113HR6PZ9i6am+99VYcDgdWq5W+vj7eeOMNgsEg8+bNw+PxfOnzbr/Wm266icMPP5ze3l6ee+652Hrnn38+pmkSDod3O2g3TZNXXnmF2tpaLrvssi9dG0AgEODFF19k8+bN/P73v6e8vJy8vLydjpszZw4vvPAC2dnZe7SeiIiIiIiIiIiIQmcZMkVFRRxwwAFYrVamTZvGV77yFf7whz9wxx13cMghh3DssccCMDAwwOrVq6mqqiIQCJCbm8tBBx0UC0e3bt3KO++8w7x581i/fj2tra2kp6cze/ZsMjMzMQwDn8/HmjVrqKqqwu/343a7GTVqFDNmzMBqtbJu3TpSUlLIyspi9erVrF69mkgkwqOPPorX62Xu3Lm0t7cTDAaZO3cuDocDgFAoxFtvvYXH42HOnDlYLLv+5YDi4mImTJiA1WqloKCA5cuX89FHH3HKKafs8vja2lqWLVtGZ2cnbrebCRMmMG7cOJxOJwsXLmTjxo10dnZy3333AfCVr3yF0tLSXa6/ceNGVqxYQV9fHykpKUyZMoVRo0ZhGAbPP/88r732GqZpUlVVhcPhYOzYsTuF/Z2dnSxZsoSSkhLsdjubNm1i1apVTJ06lTVr1tDW1kZ2dnbsz2X72JDe3l6WLl1KQ0MDpmmSmZnJnDlzyMjIIBKJUF1dzYoVK+jq6iIpKYkDDjiACRMmxK7jqaeeoqioCK/Xy5o1azAMg2nTplFRUcGqVatYu3YthmEwefJkxowZg91uByAYDLJ+/XrWrVvHwMAA6enpzJw5k4KCgi/4LBURERERERERkXhT6CzDxu12c8455/Dggw/yxBNPcOyxx9Lf388TTzzBc889R15eHm63m+rqaiorK/n+979PUVERy5cv58orr+Tss8/G5XIRiURYuXIlhx56KL/85S8xDIN33nmHP/3pT2RnZ5Oenk4gEODjjz9mypQpuN1u/vjHPzJ69GimTZtGV1cX3d3dRCIRqqqqcLvdTJo0iTVr1vD3v/+dP//5z4wbNw7TNGlra+MnP/kJZ599NnPmzNmt67RarbhcLsLhcGyW9CetXbuW2267jebmZioqKujs7OTRRx/lqquu4phjjqGtrY3e3l58Ph8bN24EYPbs2btca9GiRdx8880AlJSU0NjYyBNPPMENN9zAxIkTqauro6OjA7/fz+bNm0lLS9tlx/WKFSv43ve+x1FHHYXX62XRokX86le/Yvr06WRlZREMBtm0aRNz5szh6quvJjMzk/7+fn7xi1+wfPlyysvL8Xg89Pf3k5mZyaxZs1izZg2/+tWvGBwcpLCwkLa2Nh588EGuueaa2BsOP/3pTykoKGDcuHG43W7Wr1/P3//+d0477TQWL16My+WiqqqKZ599lltuuYUxY8YQiUR45ZVXeOCBB0hJSSE1NZWtW7fyzDPPcMstt1BaWrpbf04iIiIiIiIiIjI0FDrLsCooKCA7O5v169cD2+Y/P/zww5x99tmccsopOJ1OVqxYwU9/+lP+/e9/c9FFF8Xu63a7ueaaa3C73Tz55JPccccdXH311SQnJ/POO++QlpbGddddR05ODoFAAJ/PF+tY3s5mszFz5kxmzJhBMBjk2muvJT09HbfbTXJyMk8++SSLFi1izJgxGIbBCy+8QCAQ4IQTTvjULmf4/2M2ent7efnll1mxYgVHHXUUKSkpOxwXCoV4/PHHWbNmDX/84x+prKyks7OT3/3ud9x7770ceOCBHHvssTzzzDPU19fz05/+FGCXo0gGBwe5/fbb6erq4oEHHiAzM5P6+nquu+467rrrLv7whz9w7rnnsnXrVjo7O7n22mvJycmJdQt/nu7ubsaNG8d5552H2+3mpZde4uGHH+b4448nMzOTp556KjZK5LDDDsNut9Pb20t6ejp9fX08+eST9PT0cMMNNzB27Fg6Ojq48cYbuf/++5k0aRL5+fkA1NfXc8cdd1BSUsKyZcv4wQ9+wN13383dd99NUVERK1eu5Kc//SmLFy+mvLycrq4ubr31Vg499FCuuuoqkpKSaGpq4qyzzuIvf/kLN910025dn4iIiIiIiIiIDI39fiNBn8/H3/72N4477jhGjx7NQw89RCQSidv5m5ubueiiiyguLo59HHnkkXE7/97GMAxsNhvBYJBQKMTKlStxOp3MnTuX7OxsUlJSOOCAAxg7diwrV65kYGAA2BYWn3zyyZSWlpKTk8Ps2bOJRqPU1NRgt9vJzs7mo48+4sUXX6SlpYXs7GzKysqwWq071eBwOGIfycnJpKam4nA4YpsALliwgLa2NiKRCPfddx+HH3445eXln3ldl156KeXl5UycOJGbb76Z0047jTPOOGOngLelpYWVK1dy7LHHMnnyZLKysqisrOToo49m69attLW14XK5cDgc2Gw2UlNTSU1NxW637xQ6b9myhbVr13LuuecyduxYsrOzmTx5MocffjjvvPMOwWAQr9eL0+mMXesXmaPt9Xo58cQTKS4uJjs7mwkTJmAYBt3d3QD84x//oLKyktNOO438/HyysrIoLy8nPT2d3t5eFi1axJw5c5g5c2bsOs8//3zWr1/Ppk2bYuvMnDmTadOmkZ2dzZQpU8jIyGDChAkccMABZGVlMXbsWPLy8qipqSEUCvHhhx/S3t7OySefTEFBASkpKYwZM4bDDjuMN998k0AgsFvXJyIiIiIiIiIiQ2O/73SORqM4HA6+9rWvcf/99zMwMBAbP2CaJsFgkIGBAcLhMDabjeTk5N3uFAWIRCJEo1GuvfZavva1r8VC1/3VwMAAHR0dlJaWEolE6Ozs5P333+eII47YISCORqOcddZZsQDRMAxycnJit7tcLiwWCwMDAzidTs4991xM0+Txxx/n9ttvJy8vj6uuuooLLrhgp27nT5OUlMRhhx3GzTffTFVVFYsXL6ahoYHzzz9/l+H1J/34xz/msMMOw+VyUVhYSGpqKoZh7BTw+v1+fD4feXl5seeBYRikpKQQiUQIBoO7VStAT08PwWCQ4uLi2PcsFgtZWVn09fURjUY/t+7PkpKSgsvlil3D9nrD4TAAra2tTJo0aZc/D6FQCL/fT1paWqwGwzDIz88nGAzS398fOzYnJye2ht1ux2q1kp2dHfue1WrFbrczODhINBqlubmZ6upqTj755B1+lqLRKBMnTsTn8+F0Or/0dYuIiIiIiIiIyJ7Zf9PP/5OUlMQZZ5wBwIsvvrjDbb29vTz99NM8//zzdHZ2kpmZyTnnnMOpp56620EmbAvDuru7aWpqwuv1MmrUqHhewl4jHA7zn//8h66uLq644gpsNhvZ2dlMnz6dH//4xzt1E2/v8v0spmliGAbZ2dlcc801/M///A+bN2/mgQce4KabbqKiooIjjjhip/tt3wjvv783adIkioqK+M9//sP777/PzJkzOeiggz732srLy5k6dernhrxJSUmkpKSwdetWQqEQDoeDaDRKe3s7drsdl8u1Q33RaPRTx3pkZmbicrnYsGED8+fPB7a9ydHQ0EBGRsZnjgOJh5KSEmpqahgYGMDr9e5wm8PhICUlhba2th2uc8uWLXg8HtLS0j7z3J/VjV1UVERRURG33norU6ZM2eE2l8u100gTEREREREREREZXvt96PxpIpEIb7/9Nm+//TbXXHMN48ePZ8mSJfzmN79hzJgxTJ06dbfOY7PZKCwsZO3atWzevJmenh6OOeYYLrnkki8UXO+Nent7aW1txTRNenp6WL16NX/+85+ZNGkSX/va17DZbEydOpWUlBTWrFlDWVkZaWlp+P1+2tvbcTqdu9UVPjg4yJo1azBNk5ycHFwuF1OnTuWxxx7b5agFu91OSkoKW7ZsoaamhkgkEuvqzcvL44gjjuDPf/4zGzdu5J///Oduj6PYHdnZ2cyYMYO///3vvPHGG0yePJmWlhZeeuklDjjgAHJzcwHIyspi5cqVrF+/nqysrNgIkE/WUlpaysyZM3niiSeYMWMGxcXFVFVV8eabb3LcccfhcrkIhUJxq/2/nXPOOVx33XU89NBDfOUrX8HtdtPS0hLr9D7ssMN44403eO2115g0aRINDQ08+OCDTJo0iTFjxnypNQ3D4KCDDmL8+PEsWrSIcePGkZ2dTSgUoqOjg2AwuEfd3SIiIiIiIiIisucUOn8Kv9/P0qVL2bRpE88//zz/+te/CAaD9PT08NFHHzF27FgeeOABNm7cuMv7z5gxg7PPPpu0tDQuu+yyWMC8ePFirr/+eqZMmcKcOXOG85KG3cMPP8zrr7+O1WqNde3OmTOHs88+m8zMTAzDYPz48XzrW9/i2WefZfHixVit1tgs4zPOOONzZykDBINB3n//fd59910Mw8BisdDX18dFF13E9OnTdzre7XZzyCGHsHDhQn72s5/h9Xq58sorOeywwzAMg8MPP5z77ruPKVOmMHfu3Lg+JjabjbPOOouOjg7++Mc/kpSURCAQIC0tjSuuuIKcnBwsFgsnnHACCxcu5NprryUpKYnvf//7TJ8+fYfQ2el0cu2113L77bfzy1/+kqSkJHw+HxMmTODSSy/F4XAMaeg8f/58amtrefHFF3nttddwu93Y7Xa++93vkp+fz9e//nVaWlr405/+hNvtZnBwkPT0dK6++mqysrK+9Lrp6elcf/31PProo9x0002x54zX6+Woo45i8uTJcbxKERERERERERH5ogzzv2cM7MdOOeUUjj76aC6//HL6+/v5+c9/TnNzMyeffPIOc20PPPBAysrKePvtt2lubt7luUaPHs2cOXN2GnEQDoc55phjOPnkk/nud7875NeUCP39/WzYsIHe3l5g25xhp9NJWloaBQUFJCcn7xCeBoNBGhoaaG5uJhgM4nA4SEtLo6ioiOTkZNra2li/fj3Tpk2LjXHo7+9n1apVjB07ltTUVFpbW2lsbMTn8wGQnJzMqFGjYmMcVq5cidvtpqKiAsMwGBgYYOvWrXR2dhKJRBg/fjx5eXkALFu2jAsvvJBrr72Wc8455zPHVPT19bFx40ZKSkrIysraZVd0S0sLVVVVTJ8+PTZruL29nZqaGvr7+3E4HBQUFFBQUIDdbsc0TUKhEBs2bKCrq4tIJMLEiRM/9fzNzc3U1NQwODiI2+2mpKSE7OxsrFYr4XCY6upqQqEQFRUVnzqPvL29nXXr1jFjxgycTifNzc3U19czYcIEPB5P7FqrqqooKSkhMzMT0zTx+/1s2bKFrq6u2ONeWVmJ1+uNjQ2pra2Nzd4uLCyksLAw9pguWrSIrKwsKioqgG2zoNesWUNycjLl5eUYhkEwGGTTpk243W5KS0tj19XS0kJDQwN+vz/2RkVhYSHp6emf+uclIiIiIiIiIiJDb78PnT95+aeeemosdA6Hw/zxj3+kqqqKm266aYcgy2KxYLFYiEQiO80F/u9j/lsgEGD69Ol897vf5dJLL43/BcmX5vP5WLlyJX/5y1/YuHEjTzzxBAUFBXEdryEiIiIiIiIiIrKv2+/Ha0SjUWpra9m6dSvt7e1s3LiRBQsWUFZWxrx583jjjTe46667OPbYY+nr62Pt2rUcddRRTJo0abfmDdfW1vLUU08xY8YMotEoDz74IFarlRNPPHEYrk6+iK1bt3LppZeSmprKTTfdRF5engJnERERERERERGRL2i/73T2+/387W9/44EHHoh9z2azcd5553HJJZfw4Ycf8tBDD7F+/XpSUlI47LDDOO+882Ibvn2e+vp6br31VjZs2IDdbueAAw7gyiuvpKysbKguSURERERERERERCRh9vvQWURERERERERERETi59N3SBMRERERERERERER+YL225nOpmkSjUbp6urC7XYnuhwRkRHN7/eTnp6O1WpNdCkiIiIiIiIiMsLtt6EzQHV1NXPnzsViUcO3iMhniUajfPDBB5SWlia6FBEREREREREZ4fbr0NnlcpGcnMxbb72lbmcRkU/h8/k49NBD9fekiIiIiIiIiOyW/Tp0NgwDq9VKWloaHo8n0eWIiIxITqcTq9WKYRiJLkVERERERERE9gKaKyEiIiIiIiIiIiIicaPQWURERERERERERETiRqGziIiIiIiIiIiIiMSNQmcRERERERERERERiRuFziIiIiIiIiIiIiISNwqdRURERERERERERCRuFDqLiIiIiIiIiIiISNwodBYRERERERERERGRuLElugAR+WzRqEldl4/W3gAep5XxeSlYLEaiyxIREREREREREdklhc4iI5RpmvQFwjy6sJq/L62jbzCMw2bhsMpsLp83mvJsL4ah8FlEREREREREREYWjdcQGYFM06TLF+LO1zbwxzerGAxFmViQis1i4fnljdzw3CrWN/cRNc1ElyoiIiIiIiIiIrIDdTqLjDCmaRKKmPxnTTPPLGtgakkaPz5+PBMLUmnvD/D7Nzbx3PIG7vzPRm6YP57iDI86nkVEREREREREZMRQp7PICLSppY+7F2wmP9XNd46qZGJhKhaLQXayk+8cVckpUwp5f3M7f1tciz8UwVTHs4iIiIiIiIiIjBAKnUVGmKhp8sgH1XT5Qpw+rZBpJelY/q+T2TAMcpKdXDhnFFOK03jqwzpeX9uS4IpFRERERERERET+P4XOIiPMyvoeXl7VTEWOl/mT8nHZrTvcbhgG5dlJXDB7FC67lTtf30hrXyBB1YqIiIiIiIiIiOxIobPICGKaJve+s5moaTL/wALy09y7PM5qMTh8bDZHjMumoXuQP79dpREbIiIiIiIiIiIyIih0FhlB1jf3sWhzJ7kpLr52UFFsrMau2K0Wrj6ykiyvg5dWNrFka6eCZxERERERERERSTiFziIjRNQ0eXFFI4OhCCdNzifFbf/M4w3DoCDNzeWHj6Z/MMzfFtfiC0aGqVoREREREREREZFdU+gsMkK09A7yXlU7DpuFk6cU7vb9Tp1ayPj8FD6q6eK9qnZ1O4uIiIiIiIiISEIpdBYZIRZt6aCx289hY7IZlend7ft5nTYunzeaHn+Qf69upq1fmwqKiIiIiIiIiEjiKHQWGQECoQhLq7vo8oU4Y3oxnzHKeScGMKMsg3ljc3h3Uzsf13YTjarbWUREREREREREEkOhs8gIUNvpY1NrP8XpbiYWpHyh+xqGQZrbztemFRKORnl5VRMdA0GN2RARERERERERkYRQ6CySYKZpsqm1ny1t/Rw5LgePw4bxRVqdAcOAiYVpHDU+l3+vaWZ1QzfKnEVEREREREREJBEUOoskmD8UYW1jL72DYQ6tzMJp++I/loZhkJXk4CsTckn3OHjw/Wp6B0PqdhYRERERERERkWGn0Fkkwdr7g6yo72ZMbhKlmV4sli/W5bydYRjMGJXB7NGZLNnayVvrW+NcqYiIiIiIiIiIyOdT6CySQKZp0to7yNrGXqYWp5PpdezR+dK9Dk6eUkCG18HdCzbT1heIU6UiIiIiIiIiIiK7R6GzSAKFIibrmnrxBcNMKEgm2WXb43POLMvksDHZVHf4+Ouiao3YEBERERERERGRYaXQWUYU0zR3+bEvMk2TwXCERVs6KUhzU5aVhOULbiC4Ky67lcvmlpPksPHPjxtZ39y3zz6GIiIiIiIiIiIy8ih0lhEjaprUdAxw68vr+No9C/nf1zZQ0zGAabLPhqYDgTCLtnRQluWlJMODEYfQGaA828v5s0to7Q3w6MJqwpF98/ETEREREREREZGRR6GzjAimabKqvodv3LeIvy6upbF7kIfer+a7Ty1nXVNPossbMmsaeunxhyjPTiI3xRW38xqGwQVzyihIc/HBlg4Wb+3YZ4N7EREREREREREZWRQ6y4iwtX2AX728jt7BMOfPKuVXpx3ImdOLqW738b+vbaS5dzDRJcadCby/uZ00j51xeclYLfHpct4u1W3nisMraOsP8PKqJrp9obieX0REREREREREZFcUOkvCBcIRnlxSy4q6bk6bWsjVR1ZwxNgcvn34aI6bmMfCzR08snDf2xAvGjVZuLmDdI+DMbnJcT+/YcAR47KZWZbBgo1tfFTbRSS6bz2GIiIiIiIiIiIy8ih0loRb39TH+5s7yEt18e0jKkhy2QHISXZy0aFl5Ke6eOajBtY29ia40vhq6hlka/sAmUkOyrK8cT+/YRikex2cOb2YwVCUF1c00jUQjPs6IiIiIiIiIiIinzQiQ2fTNHf58UWO3de6YvdVoUiU96vaqWrt5xsHF5Ob7IzdZhgGFdlJfO2gInr8Ie57dwvRfahT98PqTgxgfF4KHod1SNawGgYHlWZw2JhsXlvTwqqGnn3qMRQRERERERERkZFnRIbOL7zwAieffDIVFRVMnjyZ6667joaGhl0GybW1tRxzzDFkZWWRl5dHXl4eZ555Jp2dnQmoXL6o2k4f71W1k5vi4tgD8naaa2yxGFwwZxTZyU4+rO5kRX13YgqNM9M0eW9TOw6bhaklaRhGfOc5b2cYBllJDr46MY90r5373tlMfzCsN2VERERERERERGTIjMjQuaenh69//eu8+uqr/OUvf6Gqqop77rmHQCCwy+PD4TCPPfYYa9asYc2aNTzwwAOkp6cPc9XyRUVNk5qOAdY29nLMAblkJTt3Gb4mOW2cNaOYroEQb6xr3SfmEgfCUZbVduGyWZlUnDakaxmGwazyTGaWZbKkuovX17YM6XoiIiIiIiIiIrJ/syW6gF05//zzY5+Hw2FOOukk3nzzTfr7+3G5XLu8z8cff0xvby+5ublMnjwZi2VE5unyCf5ghI9ru4lETaaXpuN1fPrT8cTJBTzw3lY+rO6kodtPSYZnGCuNvw3NvXT5QpRneylOH/prSXXbOWVqIYu3dvDntzdzSEUWuSm7/lkSERERERERERHZEyM6mTVNk97eXpYuXUp5eTnJyck7HeNwOJg7dy69vb0sW7aMe+65hz/84Q+7HK8RjUYJBoMMDg4SCAQYHBwcjsuQT9E3GOK9Te2MzUumLMuLxbLrEROGYZCfum38xua2fpbVdO714yGW1XQTikSZVZ6500iRoTKzLIN5Y7Kp7fTxt0U1RPfyx1BEREREREREREamEdnpvF0kEuHPf/4zzc3NXHXVVTidzp2OyczM5Morr8ThcACwbNky/vd//5fp06czf/78HY6tq6vj97//PStWrAD41HEdMvSipsnW9gHWNffy9enFFH5Ot6/NauHEyfk8t7yBFXU9HDU+l2SXfZiqjS/TNFlW20UoEmXO6MxhW9dlt3LxoeW8vq6VF1Y0cswBeUwsTB229UVEREREREREZP8wIkPn7V2st912G6+99hr33HMPlZWVuzzW4XCQm5sb+3rSpEkUFhZSXV2907G5ublcddVVDAwMANDa2srVV18d/wuQzxWNmrxf1YHbbuWAglS8DutnHm8Ao7KSmJCfwqqGHpq6B0nKtQ3ZBnxDqa0vQE2nD7t12yaCw6k8y8vZM0q4++3NPP1RHePzU4at01pERERERERERPYPI3K8RiAQ4JZbbuGZZ57hwQcfZOzYscD/D6N9Ph8+nw/YNvM5EAgQDocJh8P09PTQ0tJCSkrKTud1Op2UlZUxceJEJk6cyLhx44bvomQHkajJ+1Xt5Ka4GJOb9LnhsWEYpLntzBmdydqmXmo6Bthbh0Nsau2jyxdkWmk6ns+YYz0ULBaDCw8pJd1rZ9HmDlbUd+/1o0pERERERERERGRkGZGdzvfddx933303P/rRj9i8eTObN28mOzubcePG4fF4uPnmm/H7/dx555189NFHLF68mPz8fABefvllXC4XhxxyyE7n/WSwaZrmXtklu6/oGAiyurGHQ0ZnMSrLu1v38TisTClJx7aohqU1XcwenUWSa0Q+hT+VaZpsbOmnxxfikBmZJOIZmOJycPEhZdz5+ibeWNfChPwUXPbP7jQXERERERERERHZXSMysXM6nRx11FEsXbqUpUuXAjBlyhSKiorweDxUVlbG5jFnZmYyODjI66+/jtVqZfLkyZxyyimMGjUqgVcgn2fh5g4shkFlbhKp7t2bzWwYBqUZHibkpfB+VTsXzBmF12ndq948CIajVLX24w9FmFGWkZAaLAYcd2A+z37cwHub2jluYj4HFKTsVY+jiIiIiIiIiIiMXCMydP7Wt77Ft771rU+9/Zvf/Gbs84qKCn74wx8OR1kSR29vaMXrtDKlOO0LhZ0FaW7G5Sfz5Id11Hb4yEt1JaRb+Mtq6QtQ1+kjL8VFaebudXjHm2EYZCc7OW1qIb9/YxOLt3RQkZOkbmcREREREREREYmLETnTWfZtvmCYD6s78TpsTClO+0L39TisjM9PwW238l5VG9Ho3jWPuKHLR0O3n6kl6bhsievSdtoszB6dyahMLy+taqK9L6DZziIiIiIiIiIiEhcKnWXYrW/upW8wTEmmh/xU9xe6r2EYjMtLIS/FxRvr24jsRaGzaZo0dPlp7PYztSQNhy1xP36GYTA6J4m5Y7JY09DDstou9qKHUkRERERERERERjCFzjLsPq7txjRNphanYbF88U7fytwkCtLcrG/upbbLNwQVDg1fMMLmtgFMEw7IT8FuTexgELfdyuzyTArS3Dz5YS2DoYi6nUVEREREREREZI8pdJZhZZomy+u6MU2YVpL+pc7h+b+xHG67ldfXtsS5wqHT7QuxsaWPitwkMpKcCd+4zzAMJhenMaEghcVbOlnd0JPQekREREREREREZN+g0FmGVX8gzKaWfmxWCxOLUr/0eQ4alU6S08Zb6/eOuc6madLtC7KxpY8xucmkue2JLgmANI+Dw8fmkOK289DCrRqxISIiIiIiIiIie0yhswyrza399A6GKMvykJ3k/NLnOSA/hQyvgw3NvTT2+ONY4dCImlDX5aOlN8CYnCRS3LZElxRz+JhsSjI8vF/VwcaW3kSXIyIiIiIiIiIiezmFzjKsNjT34QtEOHhU5h6dJ8VtZ3JRKsFIlMVbOuNU3dAJRqKsrO8hxW2jNNOL3TpyfvSyk50cNS6XYDjKPz6qT3Q5IiIiIiIiIiKylxs5yZfs80zTZGNrH75gmOmjvtw85+0Mw2BuZTamCQs3t4/4DfCC4Sgf13VTkOamMN2d8HnOn2QYBqdNK8Rhs/DW+jaaewYTXZKIiIiIiIiIiOzFFDrLsBkMRajr9BOKmkwpTtvj880enYnFYrCyvodef2jPCxwipmniC4RZWd9NYZqbwjR3okvaSWG6m6PH5dLWH+CNdS0jPsQXEREREREREZGRS6GzDJumnkE6B4KUZnhI89j3uNs3w+tgclEavYMhVjX0xKnKobGyoYdgOEpJhod0ryPR5ezEMAzOnFHEYCjCe1Xt+EORRJckIiIiIiIiIiJ7KYXOMmyaegbp9AWZUJCKJU7jJY4Yl03fYJgV9d0jtjvXBBZu7iDVbWdsbnLcrj3ephSlUZGdxOa2ftY1aUNBERERERERERH5chQ6y7Bp6vHTNRDkgIIUrJb4BK+HVWYTikRZ19SHLzgyu3OjUZOFVe2keRyMzUtOdDmfymGzcMq0Qhq6/Syr6SYSHZkhvoiIiIiIiIiIjGwKnWVYhKNRGrsH6fWHOCA/fqFzUYaH0Vle6rv81Hb64nLOeGvo8lPT4SMryUFZljfR5Xwqi2FwWGUWbruVFXXdtPUFEl2SiIiIiIiIiIjshRQ6y7DoGwzT2OMn2WWnIN1NPCJnwzBwWC3MHp1FU4+fLW39I3LExpLqTgwDJuSn4nZYE13OZ8pLcTO7PJOVDT3UdAyMyMdTRERERERERERGNoXOMix6fCEau/yMyvLiddj2eBPB7WwWg9mjM2nvC1LVOjDiRkKYpsnCzR04rBamlabF7bqHgmEYJLtszBubTUO3j9UNPQQj0USXJSIiIiIiIiIiexmFzjIsevwhGnsGKc/y4HbE72lnGDA620t2soOq1j46BoJxO3c8DIaiLKvpwmm3MLkoNdHlfC6b1cLY3GQqcpJ5Z1M73b6Qup1FREREREREROQLUegsQ840TXr8IVp6BinN8uKyx2/EhGEYJLvtTCpKY1Nr/4ibQ7y+uZeewRAl6R4K0zyJLme3FKV7mFaSxrLaLupG6JxsEREREREREREZuRQ6y5CLRE2aewfxhyIUpXtw2uI71zjZaWdSUSo1nT4auv1ER9CIjY9ruwiGo8yuyMQSp80Th1qqZ9vjaTHgvU3thEfQ4ykiIiIiIiIiIiOfQmcZcoFwlJqOAdI8drKTnMQ7e3XZLVTmJuOwGqxt6mEwHInvAl9S1DRZVttNMBzlkNFZiS5nt1kMgwn5qRSle/j32mZC4ahGbIiIiIiIiIiIyG5T6CxDLhCOUt0+QE6yi1S3Pe6b6RmGQUGqm5IML8truvEFIyMiJG3rC1DX6cNlszC5OC3R5XwhlblJlGZ62NTSz6bW/kSXIyIiIiIiIiIiexGFzjLkAuEIW9t95KQ4SfPYh2SNvFQX5dleltf30DcYGpI1vqhNLX10+YIcNCoddxznWA8Ht93KQSXb6n55VWOiyxERERERERERkb2IQmcZUqZp4g9GqO0cIDfZSZp7aELnDK+D8iwvvmCYNQ29JLrR2TRNNrb00+0LMbs8C/aOcc4xhmEwszyDVI+d19a0EAxHE12SiIiIiIiIiIjsJRQ6y5AygcZuP/5ghJwUF0ku25CsY7UYVOYmk5Xk5N2qdqIJTp0HQ1GqWvsYDEWYWZaxt2XOAIzJTaYsy0tjzyAf13UnuhwREREREREREdlLKHSWIWWasL65jySXjbxUF1bL0D3lKnOSyE528sHmdoKRxHbmNvf4qen0UZThoTjTk9BaviyHzcqRY3MwDHh1dXOiyxERERERERERkb2EQmcZUlHTZGNLHykuO3kpriFdqyTDQ2Gam8buQaoSvPldXZefuk4/00vTcdmtcd88cbgcPT4Xu9XCoi0ddA4EE12OiIiIiIiIiIjsBRQ6y5CKmiZVrf0ku2zkpDiHdC2HzcLEwhQcNgvvbmwb0rU+SyRqUtfpo6nHz/TSDJy2vffHrDDdzZTiNNr6Aiyr6Up0OSIiIiIiIiIishfYe9Mw2StEo7C5bYBkl52c5KHtdDYMg2kl6XgcVhZsasNM0FznvsEQG1r6SHLaqMjxYrPsnV3OABaLwfwD8+kPhFm8tSNhj6mIiIiIiIiIiOw9FDrLkGrp9dPrD5HqsZPpdQz5egcUppLqtrOuqY/W3sCQr7cr3f4Q65p6GZuXTIbXudeO1thu3phsANY19dHtCyW4GhERERERERERGekUOsuQ2tDSj91qoTDNjc069E+3FJedycVphCMmi7d2DPl6/800TTr6Amxq6WdsXjLpwxC0D7WMJAfTStJp7h1kQ0tfossREREREREREZERTqGzDKkNzb04bBZKMjzDtubcimyipsnCzcM/DiIcNdnQ0sdgOMKYnGSSnLZhXX8oWC0GR47LoblnkA3NvUQ1YkNERERERERERD6DQmcZUhua+3DaLJQOY+g8pyIDqwVWN/bS4x/ecRDBcJQPqzvJT3VRmunBuhfPc97OahjMLMsgappsaO6nbzCc6JJERERERERERGQEU+gsQ8Y0TTa09OOwWSgextA5O9nFhPxUOvsDrGvqHbZ1AQLhKEuruyhMc1M0jNc81HJSXEzIT2FjSx/NPYPaUFBERERERERERD6VQmcZMr2DIZp7BnHaLBSlD18AawBHj8+lxx9iWW33sAWkpmlS3T5AQ7ef4gwPBanuYVl3qBmGQZLLxsGj0tnU2k9Dty/RJYmIiIiIiIiIyAim0FmGTHX7AFHTpCjdjdthHda1543NJhiJsqahB18wMmzrLtjYRpLTxtjcZBy2fefHy+OwMqk4jcFQhPXNfQTC0USXJCIiIiIiIiIiI9SI3OWsoaGBDRs20NnZid1up7S0lHHjxuFyuXZ5fE9PD8uXL6elpYWUlBQmT55Mfn7+MFct/21ruw/ThPKspGFfuzjDzZjcZOq6/GxpH+DAwtQhXzMSNXlzfSsZXgcTh2G94WQxDIrSPIzOTuKj6i7OOKgIl31430gQEREREREREZG9w4gMnV999VU+/vhjPB4P4XCYpqYmzjnnHI477jis1h2DLr/fz0MPPcT7779PSUkJbW1tvPnmm3z/+98nNzc3QVcgANUdA5iYlGV7h3VdwzBwWK3MG5PNkx/WUdXSx8SCFAxjaDf1q+30sbGlj6klaYzNSx7StRIhP9XF2Lxk3tnYRsdAkKwk55A/piIiIiIiIiIisvcZkb//f/jhh3PNNddwww03cN111zFp0iReeuklent33hRuzZo1vPLKK1x44YX87Gc/46qrrmLjxo28++67CahcPqm6fQBMKM8a3tAZwGY1mD06k4FAmA0t/fhDQz9i4+0NbQBMKUojyTki38/ZI+leO2PzkhkIhlnd0ENUewmKiIiIiIiIiMgujMjQefTo0ZSXl5OcnEx6ejrZ2dmEQqFdHrtx40YyMzOZPHkyqampjB07loqKCtauXUs0uuPcWdM0Yx8ytKJRk5pOHyYMe6czbNtMsDjdQ1mWl/XNvbT3BYZ0PdM0eXN9Cw6bhdmjM/fJDmCrxUJFtpesJCcfbO4gotRZRERERERERER2YUSGzp9UV1fHc889x+zZs0lLS9vp9p6eHrxeLw6HAwC73U5mZibd3d0EAjsGjeFwmPb2dhoaGmhoaKCxsXE4LmG/1DkQpNcfwmW3UpDqHvb1DcMg1WNnWkk665t6aekNDOmbDQ1dfjY095PktDF9VPqQrZNo5dlJ5Ka4+GBzB6GINhMUEREREREREZGdjegZAHV1dfzkJz9h3LhxfP3rX99l96hhGDt1L0ciESwWCxbLjpl6bW0tN998M0uXLgUgFArtdIzER2OPn0A4SlmWB6slMV2/yU4bk4pSeWppHZta+5hSkobdOjS1vFvVjj8U4fhxeXid9iFZYyQoSndTkObm49ouqlr7mVSUuk92dYuIiIiIiIiIyJc3IhNX0zRZu3YtP/zhDykoKOCGG24gOXnXG7NlZmbS09MT62oOBAK0traSlZWF3b5j+FdWVsY999zD4sWLWbx4Mf/617+G/Fr2V03dfgKhKKOzkxJWg81qoSzLS3G6mw+3djIQCA/JOqFwlIWb2wmEIxx/YP6QrDFSOGxWDixMweOw8faG1kSXIyIiIiIiIiIiI9CIDJ2XLVvGDTfcQH5+Pt/73vewWq34/f7YjObXX3+dV155BYADDzwQn8/Hq6++SmNjI++//z6bNm1i6tSpO3UxWywWnE4nHo8Ht9uN2z38Yx/2F409gwTCEUbnJC50BihMd1ORk8SS6k56/eEhGbFR2+mjqqWfrCQnB5Xuu6M1tpv8fxslLtjYhqY6i4iIiIiIiIjIfxuR4zUee+wxXn31VQ488EBWr14NwMyZM7nyyivJz8/nhRdewOfzcdxxxzF69GguueQSHn30UZ5++mmcTifHH388c+bMSfBV7N8auwcZDEepTGCnM0BusotxeSm8u6mdFXVdFGW4ifcwiOV1XbT1BzhmQi5ex4j8kYqrCQUppHvtbGrtp7HbT1G6J9EliYiIiIiIiIjICDIiE7If/ehHfPvb397he16vl6ysLAB+8pOfxDpW7XY7xx9/PDNmzMDv9+NwOMjMzMTr9Q573bJNOBKluXeQYDia8E5nm9XgwKJUMpMcvLqmmeMOzMcSx7nOgVCEFfU9dA4E+erEfPaH8cZJThuTCtPY2j7Akq2dCp1FRERERERERGQHIzJ0zsvLIy8v71Nvz83N3eFrp9NJYWHhUJclu6nbF6LXHyLZZSMryZnQWgzD4MDCVApS3by1oY2+wTDpXkfczl/T4WN9cy+js5OYkJ8St/OOZIZhcEhFJs+vaGBhVQenTi3UZoIiIiIiIiIiIhIzImc6y96tcyBI32CI0kwPNquR8EAyP9XF+PwUQpEor69ridt5o6bJxtY+NrX0c+T4HDxOa8KvdbjMKMvAbrWwsr6b/iHaoFFERERERERERPZOCp0l7joGAvT6Q4zK9GIZASGsYRgcVplFktPGCysaCUWicTnvQCDMirpugpEoc0Zn4rJb43LevUFuiosxuUn0DIZY3dCT6HJERERERERERGQEUegscdcxEKR3MEzZCAmdAQ4uy6Awzc2K+m42Nvft8flM06StL8AHmzs4sDCV0oyRc63DwTAMDh+bQ///Be8iIiIiIiIiIiLbKXSWuDJNk47+/+t0zvJitYyMIDbVbeeo8bkEQlFeXt20x+eLRE1W1fewua2fWWWZ5Ka44lDl3mVeZTb+YIS1TX0Ew/HpHhcRERERERERkb2fQmeJq3DEpKM/yGA4SmmmhxGSOWMYBqdOLcDE5J2N7XT7gnt0vsHwtvA6O9nFlJI0XPb970epPNtLTrKTxh4/TT3+RJcjIiIiIiIiIiIjxP6XlMmQGgiGae8PkOFxkOq2J7qcHZRkepldlkVTj5/3NrVjmuaXOo9pmjR2+XlrfRvj81OYWJC632wg+El2m4VppRm09QWobh9IdDkiIiIiIiIiIjJCKHSWuOoPhGnrD5Kf5sJlt46oMNYAzplVQq8/zFsbWvGHIl/qPKYJT3xYi9NuYUZZOlnJzvgWupewWgxmlKXT3h+gumPgS4f4IiIiIiIiIiKyb1HoLHE1EAjT1hcgP9WF0zbynl6zyjMYk5vEmsZe1jb2fqlz1HX5eP7jRorTPcwbkx3nCvceVsNgclEa4YjJ1nYfvuCXC/FFRERERERERGTfMvJSQdmr9QcitPcHyE914xxhc44Nw8DtsHHG9GJqO30s3trJ4BfsdjZNk8cW1TAQDDNvbDZlWUlDVO3IZxgG2clOyrO9VLcP0N4fSHRJIiIiIiIiIiIyAoysVFD2aqZpMhAI09Ef/L9OZ2uiS9qJzWIwZ3QmJRke3lzfQl2n7wvdf2NLP6+ubibNbefM6UVYR8pOiQniddo4sDCVre0DtPUpdBYREREREREREYXOEkdR06RzIMBgKEJOshOHdeQ9vQzDoCjdzfwD81lV38uiLR0Ew9Hdum84GuWvi6pp6Q1w2rQiSjO9Q1ztyOd12DigIJWGbj+NPX6iUc11FhERERERERHZ3428VFD2WqGISVPPIEkuG6keByNoD8EduOxWDq3MoiLHy+NLamnrG/zcTfBM02TJlk7er2onM8nBt+aVYxmpFziM7FaDUZkekpw21jf1fenNGUVEREREREREZN+h0FniJhiO0tg9SLrHQbLLhjFCQ1nDMBiXl8K8MTlsaRvg8cW1hCKfHjqbpknnQJBnltXT3DPId46qIMVtH8aKRy7DMMhJcTEqy8vqxh4GguFElyQiIiIiIiIiIgmm0FniJhSJ0tzjJ91jJ8lpS3Q5n8ntsHLSlAImFqTw6Ac1LNrS8andzoFwlFdWNfP2hjYOrczmqwfkMzLj9MTITnIyKtPDusZe+vzhz+0aFxERERERERGRfZtCZ4mbUMSksWeQdO+2TueRbmxuMt+YUYLVYnDbK+tZVtu10zHhSJR3Nrbx8AfVZCc7ueywclLd9hHbxZ0IaR47ZVleuv0hNrf1o8xZRERERERERGT/ptBZ4iYUidLY7SfDs3eEzhaLwXEH5nPRoWVsaOnj1pfX896mNsLRbRsLhiNRXlzZyK9fWc9AIMxFh5RxYGEqFosC50+yWS2MyvKS5nHwUU0XEaXOIiIiIiIiIiL7tZGfDMpewTRNevwhuv0h0jx2kpx7x8zjJKeNiw4to2sgyCMfVHP9s6uYXZ5JUYaHlfXdfFTThQlcdUQFJ0zOx2nT+zS7UprhJcu7LXSORk2wJroiERERERERERFJFIXOEhcmUN/lx26xkOF1YrfuPd3AXoeVHx43jsqcJH7/5iZeWNkYu60g1c2Pjx/P4WOzsVoMjdX4FCWZbrKSnSzZ2slAMIzTrtRZRERERERERGR/pdBZ4sI0oaZjAI/TSlaSY68KZw3DwG238o0ZJRw2NpvFWzpo7w9SmulhzugsUtx7R9d2IqV7HBSlu/lgs8nK+h4OH5uT6JJERERERERERCRBhiR0Nk0Tv9+Px+MZitPLCGSaJrWdPrwOGxleR6LL+VIsFoOidA9FB+l5+0UZhsGE/BQ8DiuLt3QodBYRERERERER2Y8NyYDaaDTKz3/+c/7xj39QV1dH9P82ZpN9lwlUdwzgdVrJSnImuhxJgO2h86ItnZjaTFBEREREREREZL81ZLui5eXl8eyzz/Ltb3+bX/ziFyxdupRIJDJUy0mCbRuvsa3TOTNp7+x0lj1TmZtMssvOlvZ+2voCiS5HREREREREREQSZEjGa1gsFq644go6OjpYt24dzz//PBdddBHFxcWcf/75HH/88SQlJe1Vc3/lswXCEZp6BinN9Oy14zVkzyS7bIzNS6K+y8+qhh6OSnEluiQREREREREREUmAIel0NgwDt9tNYWEhhx12GDfeeCNXXHEFS5cu5YorrmDOnDn85S9/ob+/fyiWlwSo6/RhmiZpHjtJTu1PuT8yDIODSjMwMfmopivR5YiIiIiIiIiISIIM2UaCbW1t1NfX8+abb/Lyyy8TDof50Y9+xOmnn86yZcu45557yM3N5aSTThqKEmSYbW33YbdaKEh1q4N9P3ZQaToAK+q7iURNrBY9F0RERERERERE9jdDEjpHo1F+9rOfUV9fT3FxMd/73vc44ogj8Hq9GIZBbm4uTU1N2GzqiN1XVHf0Y7dayE91J7oUSaAxucmkuOzUd/lp7vFTmO5JdEkiIiIiIiIiIjLMhiz1HT16NJdffjnjx4/H6XQC2zqge3t7SU5O5vTTT8dutw/V8jLMtnU6G+SnaY7v/sxpszC1OI1ltd2sa+5T6CwiIiIiIiIish8akpnOpmmycuVKKioqYoEzQHd3N9/97ndj3c4ZGRlDsbwkQHX7QGy8huzfZo3OZCAYZl1Tb6JLERERERERERGRBIh76GyaJqZp8s477xAKhWJfm6ZJd3c3ixYtiveSkmCRSJSajgEcNgv5qep03t/NLMvAH4ywsbmPUCSa6HJERERERERERGSYxX28xl133cXWrVvp6enh5z//eazTORqNsmLFCiZPnhzvJSXBWvsC+ENR0r0OMpOcn38H2WcZhkFpppfcFCctfQGaugcpydSIDRERERERERGR/UncQ+fu7m7a29vxer10dHTgcDi2LWSzMXfuXC6++OJ4LykJVtflwzRNijM8WC1GosuRBLNZDKaVprO+qY/azgGFziIiIiIiIiIi+5m4h8433HADkUiExx57jG984xs7zHSWfVN9lx8TKM1QuChgtRhMK0nnvU3t1HZue0PCMPRmhIiIiIiIiIjI/iKuofOSJUsoLi4mJycHp9PJP//5z52O8Xq9nHjiifFcVhKsrtNH1DQpzfQmuhQZASwWg0lFqQyGo9R0+giEo7js1kSXJSIiIiIiIiIiwySuofPKlStxOp1kZWXxr3/9C9M0dzomKytLofM+Zls3K5RqjIIABpCb4qIwzU1Nh4/OgSAFae5ElyUiIiIiIiIiIsMkrqHz1772NVwuFzabjdtuu22Xx1itn9/xuGXLFh566CHee+89otEov//975kyZcpOx3V1dXHHHXfw7LPPxr5XVFTEX//6V3Jzc7/0dcjuM01z23gNE0o0XkPYtpmg12ljXF4y1e0DdPQrdBYRERERERER2Z/ENXROS0sDtgWRHo8Hh8OB2+2mubmZV199lezsbI499tjPPc/AwAApKSlcdNFF/OhHP8Lv9+/yuEgkQlNTExdeeCGnnXYaFosFu91OZmZmPC9LPkOvP0S3P4TVAoUKFuX/eBxWxuUn887GNtr7A5rrLCIiIiIiIiKyH4n7RoKwLQw+++yz+d73vsfMmTP52c9+xurVq+nq6qK6upqrrrrqM+9/4IEHcuCBBzI4OMiPfvSjz10vGo0SCoXweDxkZmZisw3JZckutPQFCIQiFKa7cdgsiS5HRgiX3UpFdhKhiMnW9gHmVGTitGmus4iIiIiIiIjI/mBI0lnTNKmurmbcuHGsX7+eYDDIQw89RENDAz//+c8/N3TeXRaLhaKiIt59912WLFmCaZocccQRXHjhhaSkpOyyrkgkEps1HQ6H41LH/qy1d5BAOEpl7s6Pt+y/LIaxba5zupu1TT34gxGFziIiIiIiIiIi+4khawl2OBw0NDSwZs0aCgoKyMrKIhqN0t/fH7c1kpKSOP/887ngggtwOBx89NFH3HLLLRQWFnL66afvdHxbWxvPPfccW7duBYhrLfur5v8LncuyvIkuRUaYrCQnJRke1jb24gtGSNPIbxERERERERGR/cKQhM4Wi4Xjjz+e733ve7hcLi677DLS0tJ4+eWXKS8vj9s6DoeD0aNHx77Oycnh1Vdf5YMPPthl6Ox0OikrK8Pj2ZZ+dXV18cYbb8Stnv1RS++28RplmQqdZUfZyU5KMtws2tJBR3+A/FSX5jqLiIiIiIiIiOwHhix0vuaaazjyyCNxOp1MmTIFm81GWVkZP/zhD4diSWDb+IzOzk4yMjJ2eXtKSgpHHXVUbLxGU1MTd99995DVsz/YPl5jlDqd5b94HFZKM71YDIM1jb1MKEjFqsxZRERERERERGSfN2TjNTIyMjj00EOJRCIYhoHP52Pq1Km71eno9/vZuHEjPT09hEIh1qxZg9frpby8nEceeYQ1a9Zw1113UV1dzYIFCxgzZgxut5tnnnmGZcuW8T//8z+7PK9hGLH1TdPEYtHGd3tiMBShfSBIOGpSqk5n+S+GYVCS6SHD62BZbRenH1SEFaXOIiIiIiIiIiL7uiELnZcvX84f//hHqqqq8Pv9se7igoICXnzxxc+8b2NjI9dddx01NTVkZ2fz29/+lsrKSn75y18SiURiGwBaLBZWrVrFPffcg2majB07lscff5zp06cP1WXJJ3T7QvQPhslKcpDssml0guxkVKaXzCQHH9V0EY6Y2LWXoIiIiIiIiIjIPm9IQudIJMIPf/hDRo8ezdVXXx2boQzs8PmnGT16NK+88soub5s8eXLs89LSUu644449L1i+lG5fkL7BEEXpHiwKnGUXCtPc5CQ7ebuxh9a+QXXEi4iIiIiIiIjsB4YkdDZNk7a2Nu6++24qKyuHYgkZAbp8QXoHw0zIT8FiUegsO/M4rIzOTuLdTe0sre5S6CwiIiIiIiIish8YkqHGFouF+fPn8/7778dGYci+p8sXom8wRHG6G6s6nWUXDMNgQkEKHoeVRVs7El2OiIiIiIiIiIgMgyHrdH7//fd5/PHHeeihh8jMzIzN+83JyeHuu+8eimVlmG0brxGmKMODGp3l00zIT8HtsLJkayeRqIlVTxYRERERERERkX3akITOhmFw9NFHE41GMQxjhw3mUlNTh2JJGWaRqEnHQBBfMEJJhkfjNeRTlWV5yfQ62dzWT3XHAKOzkxJdkoiIiIiIiIiIDKEhCZ2tVis33HADwWCQ/v5+XC4XHo+HQCCAzTYkS8ow8wXDdPYH8TqspHvsKHKWT2O1GEwpTqOqtZ+Pa7sUOouIiIiIiIiI7OOGZKazaZq0tLTw6KOPcv311/Of//yHcDjMggULWLhw4VAsKcPMF4zQMRAkJ8WJy27doZtd5JMMw+Cg0nRMTJbVdCe6HBERERERERERGWJDEjpHo1Huv/9+3nrrLbq7u9m8eTORSIT29nbuuuuuoVhShpkvEKajP0BuigunzZrocmSEO6g0DQODtU09+IORRJcjIiIiIiIiIiJDaMhC5+eff57vf//7zJs3D4tl2zJTp05l/fr1Q7GkDLOBYIT2/iB5KS6c9iF5Gsk+pCDNTXG6m47+INUdA4kuR0REREREREREhtCQpYWBQIC0tLQdvtfa2orL5RqqJWUYbRuvESAnxYXTptBZPpvFMJg+KoOBYIQNzX2JLkdERERERERERIbQkKSFFouF2bNn8+ijjzI4OEgoFKKmpoZf/epXnHDCCUOxpAwj0zTpD4To8gU1XkN226zyDAYCYdY392KaZqLLERERERERERGRIWIbipNaLBZuuOEGrr76atasWYPVauX+++9n1qxZ/OAHPxiKJWUYhaMmLT0BDAyyvA7sVm0iKJ9vWkk6kajJlvYBBoIRkpxD8tePiIiIiIiIiIgk2JCkPqZpEg6H+fa3v83ixYvp7e1l+vTpnH766djt9qFYUoZRKBKlscdPmsdOituOYSh0ls9mGAYZSQ5GZ3tp6wvQ0OVjbF5KossSEREREREREZEhEPfQ2TRNnnnmGR577DG6u7uxWq1Eo1E2bdpEJBLhnHPOifeSMsxCEZOmbj/pHgfJLnWryu6xWgwOKk3nnU3t1HYqdBYRERERERER2VfFPTFctmwZv/rVrzjzzDOZNWsWbrebwcFBli5dym9+8xsqKiqYNWtWvJeVYbSt03mQdI9dobPsNpvFwrTSdJ5Z1kBtp4+oaWJRl7yIiIiIiIiIyD4n7onhM888w5FHHsl3vvMdvF5v7PszZ86ks7OTv/71rwqd93LhSJTGbj9j85JJdmlciuweiwHj8lKwWgxqOnz0B8Kk6PkjIiIiIiIiIrLPscT7hCtXruSEE07A4/Hs8H23282pp57K0qVL472kDCPTNAmEozT1DJKm8RryBaW57YzO9lLTMUDXQDDR5YiIiIiIiIiIyBCIe+jc09NDTk7OLm/Lzc2lq6sr3kvKMGvtCxAMR0nz2PE4FDrL7jEMA6/Txri8FKrbfXT0BzFNM9FliYiIiIiIiIhInMU9MYxEIqxZs4b+/v6dbmtrayMSicR7SRlGJlDbMYDbYSXL68Rq0Uxe2X0ep5Vxeck8v7yRxm4/k4vTsOopJCIiIiIiIiKyT4l76FxRUcGTTz6J0+nc6bZwOMy4cePivaQMI9OE6g4fHoeVzCRHosuRvYzDamFUlpckp5W1Tb0cMS4Hr1Pd8iIiIiIiIiIi+5K4pz3XX3/9Lruct9tVGC17D9M0qekYwOu0kZWkP0v5YgzDIC/VRUmml5X1PfiDEYXOIiIiIiIiIiL7mLinPePHj4/3KWUEMYEadTrLHshJdlGa6WHBxjYGAmEykxwYhmZsiIiIiIiIiIjsK+K+kaDs20zTpKbTh8dhI9Or0Fm+uAyvg9IMD/2DYTa09KGtBEVERERERERE9i0KneUL6faF6PaFSHLayFDoLF+CxYDynCTSvQ4Wb+0kGlXsLCIiIiIiIiKyL1HoLF/I1vYBbBaD7GQnDps10eXIXsgwDMqzvGQlOVi8tYOIqdBZRERERERERGRfotBZvpDqDh82q0FBqivRpcherDTTQ3aSk00t/bT3BRNdjoiIiIiIiIiIxJFCZ/lCtrb3Y7daKEhzJ7oU2YuluOxU5CRhAh9Wdya6HBERERERERERiSOFzvKFVLf7sFst5KvTWfaAYRgcWJSG225lYVV7ossREREREREREZE4Uugsu800Tao7BrBbDXU6yx47sDAFj8PKB1s6iESiiS5HRERERERERETiRKGz7DZ/KEJTjx+71UKeOp1lD5VleclJdtI5EGRDS1+iyxERERERERERkThR6Cy7raHLTzQKGV4HSU5bosuRvZzVYmFmeSZR02TRVs11FhERERERERHZVyh0lt1W1+UjapqMyvRiGEaiy5F9wNzKLKImLN7SQSRqJrocERERERERERGJA4XOsttqOnxEzW1jEUTiYUpxGkkuG1vaBmju8Se6HBERERERERERiQOFzrLbajoGME2T8myFzhIfSU4b00vT6fGHWN3Ym+hyREREREREREQkDhQ6y24xTVOdzjIkDqvMpm8wxOqGHkxTIzZERERERERERPZ2I3I3uGAwSGdnJwMDAwAUFBTgdrt3eWwoFKKjo4P+/n6sViuZmZmkpKQMZ7n7BX8oQkvvIIYBozIVOkv8HFKZRShisqG5j/5AmGSXPdEliYiIiIiIiIjIHhiRoXNVVRX33HMP69atY82aNTzzzDPMnj17p+PC4TALFy7k/vvvp7W1FYvFwsyZM/nud79LRkZGAirfdzX3DDIYipKb4iTZNSKfNrIXMgyD7CQn4/OTae4ZpKbDx8TC1ESXJSIiIiIiIiIie2BEjtdIT0/n9NNP59e//vVnHtfa2spjjz1GRUUF999/Pz//+c95++23efHFF4ep0v1HU88gg+EIo7OTEl2K7GNsVoNZ5Zk09QyytX0g0eWIiIiIiIiIiMgeGpGhc35+PvPmzeOAAw74zOPq6+vp6urimGOOobS0lOnTp3PUUUfx5ptvEo1Gh6na/cP2TueKHIXOEl92i4VZ5Zl0+4NsbusnGI4kuiQREREREREREdkDIzJ03l39/f0ApKZu+3V8i8VCWVkZ7e3t+P3+nY6PRqP4/X76+/sZGBiIzYyWz9fU42cwpE5niT/DgJJMD3kpLqpa++kcCCa6JBERERERERER2QN7dehsmiawbS7sdhaLBdM0Y7d90qZNmzjrrLMoLy+nvLx8l3OiZWemadLU4ycQijA6R5sISnwZhkGqy84BhalsaumnrT+4y59fERERERERERHZO+zVobPH48EwjFjHsmmaNDU1kZycjNvt3un4yspKHn/8cTZv3szmzZtZuHDhcJe8V/IFI3QOhMAwKM1Q6Czxl+K2M7kola0dA9R3+lDmLCIiIiIiIiKy9xqRoXMkEqGvr4/e3l5M02RgYID+/n7C4TBbt25lxYoVmKZJXl4eLpeLjz76iM7OTmpqanjnnXeYNWsWVqt1p/NaLBY8Hg/JyckkJSWRlKRREbujcyBIrz9EQaoLl8O6Q2e5SDw4bRbG5CaT5LSyvK4bf0hznUVERERERERE9la2RBewK21tbdx///00NTXR29vLvffey4cffshZZ53FU089xccff8yTTz5JYWEhJ554Is8++yxr166lv7+fjIwMTj/99ERfwj6lcyBIz2CIUVlerAqcZQgYhkFxuoeKnGQWbe3g4kAZXueI/OtJREREREREREQ+x4hMddxuN9OmTaOvr4/DDjsM2LZZYFJSEvPnz2fWrFkAOBwO5s+fT2lpKXV1dbhcLg488EBKSkoSWf4+Z3un85TiNKwWhc4yNArS3VTmJPHssnoauv1kJzvVVS8iIiIiIiIishcakaFzamoq8+fP3+VtWVlZO3zt9XqZOXMmM2fOHI7S9ktdviC9/jClmV6FzjJkvA4rY3OTsVstLNzczqSiNKx6uomIiIiIiIiI7HVG5ExnGTmipknHQJDewRCjMjxY1HkqQ8QwDMbnp5CT7OKt9W1EotpNUERERERERERkb6TQWT7TYChCe18Am8VCXqoLNTrLUBqTm0Reqovldd209Q8muhwREREREREREfkSFDrLZxoIRGjrD5Cb4sTtsGnGrgypVI+DAwpTsFoM3lrXluhyRERERERERETkS1DoLJ9pIBCmrTdAfpobl11PFxl6M8sy8DptvLa2maipERsiIiIiIiIiInsbpYjymQaCYVr7A+SnunDZrIkuR/YDU4vTSfPYWdPYS2O3P9HliIiIiIiIiIjIF6TQWT7TQCCyrdM51aVOZxkWaR47B5dm4AtGeG9Te6LLERERERERERGRL0gponyqqGnS5QvS5QtSkOrGZVensww9wzD46sRcIlGT19e2EI1qxIaIiIiIiIiIyN5EobN8qlAkSl2nD4/DSlayE6tFmwjK8JgzOot0r52qtn42t/UnuhwREREREREREfkCFDrLpwqFTWo7fWQmOUhz2zEMhc4yPBw2C8cekEeXL8TirZ2Y2lBQRERERERERGSvodBZPlUwEqWmw0dmkpNUjz3R5ch+Zv6B+fiDYT6u7cIfjCS6HBERERERERER2U0KneVThSJRajoGyPI6SXM7El2O7GfG5SVTnp1EVWs/WzsGEl2OiIiIiIiIiIjsJoXOskumaTIQCNPQ7d82XkOdzjKMDMPA5bBy1Lgcajp8rG/q1YgNEREREREREZG9hEJn+VS1nT5ME7KSHHgc1kSXI/sZh9XCYWOy8QXDrG3qpT/w/9q77+g4yzP//+9nqkYjadR7tSwX5A4G0wwGQwzBBhtSgLAEs3x/ISFtw7LlnE3yJWVTSMEEQtgkLIlZSiC00DFgMJg12GDcbdnqGvU6mhlNu39/OMw3BqcQDDO2Pq9zdCw988z4ei7NzB+fuXXdsVSXJCIiIiIiIiIifwOFznJYCQP7egN43Q5KfZ5UlyOTVEWuhzmVuWxtH6FnNKzVziIiIiIiIiIiRwGFznJYBkNTzxhZbgclOW4sy0p1STLJWJZFbqaLE+vy2dMzRnP/OAllziIiIiIiIiIiaU+hsxyWMbCne4ysDAelORmpLkcmqUy3nfnVubgdNjY09ROKaMSGiIiIiIiIiEi6U+gshxWJJdjXFyDb7aAsV+M1JDVslkVDcTbHleWwblcvQ8GoRmyIiIiIiIiIiKQ5hc5yWG2D44QicQqyXORlOlNdjkxi78x17hub4H+bB1DkLCIiIiIiIiKS3hQ6y2Ht8o/htNuoyfdi0zxnSSGH3eL4mjyKs9089GYncQ12FhERERERERFJawqd5bB2+kdx2W3UFXm1iaCklGVZzKvOpbogk9cODNI6MJ7qkkRERERERERE5C9Q6CyHtcs/htNho67Qm+pSRMjLdHHylAJcDhu/39KZ6nJEREREREREROQvUOgs7xGOxjnQF8Cl0FnSyNkzS/BlOHlqezfDwUiqyxERERERERERkT9DobO8R8dQkMBEjKIsF4VZrlSXIwLA1OIs5lXl0j0aZv2evlSXIyIiIiIiIiIif4ZCZ3mPfb0BEglDQ3E2dpueIpIenHYbnzihkmg8wSNbu4jE4qkuSUREREREREREDkOJorzHnu4x4sZwXHlOqksROcTihkJq8jPZ2zPGlrZhjDGpLklERERERERERN5FobMcwhjD3u4xEgmYVe5LdTkih3DYbVy+qIb+sQle2N1LPKHQWUREREREREQk3Sh0lkMEJmK0DQWx2yymlWaluhyR91jWWEqOx8lb7cO0DgZTXY6IiIiIiIiIiLyLQmc5RPtgiEA4RlW+h9xMbSIo6cWyLPK8LpbPKWdvzxhvtg1ptbOIiIiIiIiISJpR6CyHaBkYJxiJM6fSh5XqYkQOw+Wwcc5xxQD874FBhoKRFFckIiIiIiIiIiJ/SqGzHKJ1YJzxSIzZlbmpLkXksCygriiLk+oKeHV/P+0DQW0oKCIiIiIiIiKSRhQ6S1IiYWgbDBKKxJldoU0EJT1ZlkWB18UZ0woZCER4uamfcDSR6rJEREREREREROSPFDpL0mAwQu/YBJkuO3UF3lSXI/Jn2W0W86rzaKzw8chbnQyOT2i1s4iIiIiIiIhImlDoLEndI2H6xyaYUZqD027DsjTVWdKTZVnUFXo5sS6f9qEQL+7pQ5GziIiIiIiIiEh6UOgsSd2jYfoCE8yu8OGwK3CW9JbhtHPGtCIqcz2sfa2VQDiW6pJERERERERERARwpLqAv+T555/nkUceIRqNsnjxYs4//3xycnIOOae/v5877riDXbt2JY81NjbyhS98gezs7I+65KNWwhj8wyEGAhFmVfhw2BQ6S/qbU+ljbpWPx9/28/zuHi6aX5nqkkREREREREREJr20DZ03btzIV7/6VS677DJ8Ph+//e1vMcZwySWX4HQ6k+eNj4/z7LPPcuGFFzJz5syDm4wVFOB2u1NY/dEnGInTPhTCbrOYUuTFrtBZjgKZLgcXzCnnhd193PlqC+fPLsfl0B9wiIiIiIiIiIikUlqGzsYYfvnLX3LSSSfxla98BZvNRjwe5+mnn2bJkiWUlpa+5z7z5s3jpJNOwm63Y7fbsdkUPL0fo6EorQPjVOdn4vM4//odRNLE6Q1FNJRkscs/xgu7ezi3sVTzyEVEREREREREUigtk9loNMpbb73FWWedhcvlwul0Mn36dAYHBxkbGzvkXMuy8Pl8fPWrX+WUU07hiiuu4OWXXyYWe+98V2MMiUSCRCKR/F4OGglFaR0IUl/kJcvtUGgnRw2n3eKzp9QSjSe45/V2wtF4qksSEREREREREZnU0nKl8/j4ONFolIKCguSxzMxMIpEI8fihgVJubi433HADPp8PYwwPPPAAN954Iz/+8Y+ZN2/eIeeOjY3x1ltv0d/fD8Dg4OCHfi1HA2MMg+MROoZCnDOzBK87LZ8WIodlWRZLZ5YwvSSb3f4xNjT1s3RmiT44ERERERERERFJkbRMF10uFzabjVAolDwWjUYPOzYjJyeHU045JflzQUEBe/bsYfPmze8JnYPBIG+99RZNTU3AwXBbIBo3HOgLEI0nqC304nHaU12SyPvictj4P2dM4Z9/t5VndvRwYm0+vkxXqssSEREREREREZmU0jJ09ng8VFdX8+abb7J8+XIAOjs7yc7OxuPx/NX7JxKJ96yIBigpKeHzn/98cqyG3+/nvPPOO7LFH4UmYnG2d45QmpNBWW4GNm0iKEehU+sLmVuZy+utQ7zdOcJpUwu12llEREREREREJAXSMnS22WxceumlfOMb3+Ckk07C5/Px4IMPsmjRIgoKCvjFL35BOBzmy1/+Mtu3b6e9vZ2GhgaMMaxdu5bOzk7mz5//nse1LAuH4+AlG2NwOrVhHsBENMG2zhEq8jyU5mSkuhyR982yLLI9Di49qZobHnibDfv6mVeVS3aGXuMiIiIiIiIiIh+1tAydAS655BL6+vr42te+RiQSYeXKlVx22WV4PB62bdtGMBgEIBAIcMcdd/DWW2/hdDqZO3cu//mf/8mCBQtSfAVHB2MMw6EIe3sCrFxQQbFCZzlK2S2LeVW5zK/KZd3uHpbPLaexPEernUVEREREREREPmJpGzo7nU6++MUv8sUvfvGQ45ZlccsttyR/Pumkk/j973//nvsraPrbGOCttmEcdoua/Ey8Ls1zlqOTZVmU+Twsm13Kdx/fzQt7eplanEWGZpSLiIiIiIiIiHykbH/9lNSxLOs9X396/M+do8D5b2cMbGoZJC/TxZSiLPVOjmouh41FdQXMrfLxwBsddAyFMMakuiwRERERERERkUklrUNn+fDF4gn+t3mQvEwnU4u8qS5H5AObUpTFmdOLGRif4HdvtJNQ6CwiIiIiIiIi8pFS6DzJHegfp3MoRKkvg+qCzFSXI/KBuRw2PtZYSl1hFg9s7qCpN5DqkkREREREREREJhWFzpPchqZ+HHaL2RU+3A7NvpVjQ12hl481lhKMxPmvlw9oxIaIiIiIiIiIyEdIofMkZoxhw74+Mpx2FlTnaZ6zHDPsNotPLqykOMfFc7t6ebNtSMGziIiIiIiIiMhHRKHzJDY0HuXtjhGyXA7mVuWmuhyRI6ooy81nT67742rnZsLRRKpLEhERERERERGZFBQ6T2JvtA4SjSdorMghN9OV6nJEjijLsvjkCVVML8lic+sQz+/u1aaCIiIiIiIiIiIfAYXOk5Qxhlf29xONG86cVpTqckQ+FJluO188q4FQNM5jW7voGQ2nuiQRERERERERkWOeQudJaigYZVvHCHabxWKFznIMO7m+gHOPK+F/mwd4eV8/0bjGbIiIiIiIiIiIfJgUOk9SO7tG6BmdYHaFj1KfJ9XliHwoLMvC63bw6YVVeJx2HtvahX84lOqyRERERERERESOaQqdJyFjDFvbRxgKRjj3uBJsVqorEvnwWMCMshwumFvOxv0DvLi3j0gsgdF8ZxERERERERGRD4VC50loLBxjp3+USCzBmdOLU12OyIfKsiyy3A6WzSplemk2t724n5aBQKrLEhERERERERE5Zil0noSaegM0948zvzqX4hw3lqWlznJssyyL2RU+ls8pY3wixpp1TQQj8VSXJSIiIiIiIiJyTFLoPMnEEwl2+UdpHRjnnJkluB32VJck8pFw2m2smFfBwtp8nt3Rw6NbuzRiQ0RERERERETkQ6DQeZIZDkbZ2jGMx2Xn+Np8nHatcpbJo8yXwepTa8n2OLjjpQPs7BpNdUkiIiIiIiIiIscchc6TTM9omM2tw8yryqU8N0OjNWRSsSyLk6YUcPmJNbQPBrn1hSaGg5FUlyUiIiIiIiIickxR6DyJxOIJdneP0dIfYGFtHvleV6pLEvnIOe02/s8ZU5hb6WNDUz/3vdFOPJFIdVkiIiIiIiIiIscMhc6ThDGGwESMJ7f5qS7wMrsiF5ddv36ZnDJddr67ajYep53fvd7OK00DxBOa7ywiIiIiIiIiciQodZxE2geDbDwwwKzyHBpKsjRaQyYty7KYUpTFP507jf5AhDtfaaa5P0BCGwuKiIiIiIiIiHxgCp0nCWPg4bc6sdtsnFCbT0GWO9UliaSU027j3ONK+cQJlbzROsR/vdzM4HgEo+BZREREREREROQDcaS6APlo9IyGeWyrn4rcDE6pL8CmVc4i5GY6ufykGjqHQzz+th+P086/LJuOx6W3RhERERERERGRv5dWOk8Sv9vcwUgoyin1BdQVelNdjkhasCyL6oJMvnhWA1OLvdz/Rjs/emYv0bg2FhQRERERERER+XspdJ4EBscnuO/1NrIyHKxaUIlDGwiKJNksi+ml2Xz7otkUeF3cs6mNHz+7l4loXKM2RERERERERET+Dkofj3GJhOH+NzoYHI9yRkMhM8tyUl2SSNqxWRaN5TncevkC8jJdrN3Yys3r9jESiip4FhERERERERF5nxQ6H+NaB4M8+lYXLoeNq06tw9IsZ5HDsiyL2RU+1lw6j5qCTNa+1sqadftoHwySUPAsIiIiIiIiIvI3U+h8DJuIxXn0rU5aB8e5eEEFjeW+VJckktYsy2JuVR7fumgWC2vz+d3mDr7/1G62tg9rxbOIiIiIiIiIyN9IofMxyhjDjs5RntnZQ1GWm88sqkGLnEX+OrvNYk5lLv92/kwumFPO+r39fOPRHdy7qY3gRCzV5YmIiIiIiIiIpD2Fzseo4VCUR7d2sb8vwNWn1VGVl6nRGiJ/I7vNor7Iy9fOmcbnl9TT3DfOTc/s5ZuP7qC5fzzV5YmIiIiIiIiIpDWFzscYYwzxhGFL6xAPvdnJaVMLOWtGMQ67AmeR98OyLAqyXPzjaXXcedVC8r0uHnqrky/cvZknt/sJReMYYzR2Q0RERERERETkXRQ6H4PaBoP84KndeFx2PrmwirJcj1Y5i/wdLMvC5bBzfE0e9/1/i7j0xGq6hsN85d63+LcH32ZfT4DwH8NnERERERERERE5yJHqAuTI6gtM8MOnd9MxFGL1aXWcWl+ITYGzyAdiWRb5Xjf/fv5MTp1ayN2vtbJudy8bmvq5dGE15zaWUFfoxet26AMeEREREREREZn0FDofQ3rHwqx5bh/P7uxhWWMpn15YhdetX7HIkZLhtHPucSU0lufw5DY/63b38ssNB3hiu59ljaWc2lDInAqfwmcRERERERERmdSUSB4j2geD3L5+Pw9u7mBRXQFfOruBirzMVJclcsyxLIvKvExWnzaFM6YXs3F/P4+/7efOV1t4ekc386rzWDKjmNOmFuLzOFNdroiIiIiIiIjIR06h81HOGENTb4CfPrePdbt7mFuVy/+9sJG6Qm+qSxM5ptltFg3FWdQWeFk8rZjXmwe57/V2HtvaxUt7+6jM83DWjGLOn11GbYEXm00rn0VERERERERkclDofJQyxhCNGzY09fGjZ/ayt2eMM6YVceOFsyjzZehP+0U+Agc3GrSoLcikKs/DxxpL2HhggLtfa2PjgQF2+ke589UW5lflsWJuGWdOL/7j6A2w/nh/EREREREREZFjTVqHzoFAgNHRUYwxeL1esrOzsdvt7zkvGo0yPDzMxMQETqeTnJwcPB5PCir+cBljiCUMwUic9sEgv3y5mSe2deF1O/jsKbV87ox68r2uVJcpMulYloXDbpHjcfKxxlLObSxlX88Y977ezou7e9nUPMD6Pb24nXZOnpLPmdOLWVibT0GWC7fDjsthw2m3FEKLiIiIiIiIyDEhbUPngYEBvv/977Np0yaMMcycOZPrrruO4447DpvNljwvGo3y1FNP8atf/YrBwUG8Xi8rVqzgiiuuICsrK4VX8MEljGEiGmcsHGNsIsbweIQ9PWO8uKePl/f1keG0c0JtPp9aWMU5M0vI1KaBIin1TmhsAdNLc/j6BcfxhSVT+d8DA7y4p499vWPs6h7jlf0DGAP1RV5mVfhoLM+hptBLrsdJlttBlttBptuBx2nDZimMFhEREREREZGjS9qmlHfffTcbNmxgzZo1eL1efvrTn3L//fdz/fXXk5OTkzyvubmZX/ziFyxbtoyLLrqI119/ndtvv52GhgaWLl36odSWMIZ4wmCMwQDG8Md/DfyZnxPGkPjjSuVY/OD9YwlDPJFgIvbHr2iCiVicUDROIBxjNBxjcHyCjqEQnUMhWgeCjIajf5wVW8KpUws4Y1oxFXnH3qpukWOBZVkUZrn5+Jxyzp9dRvdImF3do+z2j7G/b5yu4RAb9w/w0JudxBOGkpwMynM9lOdmUJztpsDrIifTRU7GH4Nolx23w06G05ZcIW23WQe/LCv5/cHx0VZyjAd/Ms7j4O0KsUVERERERETkw5OWoXM8HufRRx/lE5/4BMcffzyWZfGxj32M//mf/2FwcPCQ0Pntt9/G7XazfPlyKisryczMZN26dWzevJmzzjrrkFXRiUSCaDRKIpEAIBQKYYwhHA6/r5WE2ztHuP+NdqLxg6Ezh4TPBxPnd34Gkwyh4wlz6Jc5GEBH4wki8YPBcySWIByNMz4RIxiJY7dblPsyDgbN03JpKMqivjiLqcVZFGa5k9chIukv1w0n1+SwqDqbwEScntEwPaNhekfDdI+G6RwO0zkU5M3mUfrGwgQjCdwOG1luB163Ixk2ux023A4bDrsNuw3sloXtT8Jny7IOCZvfCaDLfBmsnF9BVX7m+6r7nffKdz5IExERERERERH5S9IydB4fH6evr4/p06cnjxUVFTE+Pk44HD7k3IGBAXJzc8nIyAAgIyOD0tJS+vr6iEajuN3u5Lmtra1873vfY8uWLQBEIhFaWlo455xzDgmn/5qRUJS2wSAfRf5is2DIaafZbcfrOhg82W1apShyrInEEgQjcYKRGKFonIlogljiyL7JZDht/CYvk0zXe2fj/yWJRILOzk6CweARrUdEREREREREjk1pGTrH43GMMTidzuQxm8122FV28Xgcm812yEplu91OIpF4z/kVFRV84xvfSAbX8XicQCBATk5OWsxMbW1t5Stf+Qr33HNPMkSXg3p6erjiiit45JFHjslNIv9ewWCQJUuWsG7duqN+hvmRFgwGOffcc/nDH/5Abm5uqstJK6FQiOXLl3PPPfdQVFT0V883xhAMBikvL/8IqhMRERERERGRo11ahs7Z2dl4vV46OjqSx0ZHR/F4PIcE0QA+n49gMEg0GgUgFosxODiIz+fD5XIdcq7T6aSsrOzDv4C/kzEGt9tNXV2dQud3ycjIwOVyUVdXp9D5T4yPj2O326mtrSU7OzvV5aSVYDCIw+GgtraWvLy8VJeTVkKhEE6nk5qaGkpKSlJdjoiIiIiIiIgcY9IydHY4HJx++uk88cQTnHfeeTidTt544w0qKirw+XwcOHCARCLB1KlTaWhooL+/nx07dpCTk8P+/ftpamri0ksvfc/IjHRYzfznvHtVdjrX+lFTb/426sufp978eeqNiIiIiIiIiBxpaRk6A6xevZobbriBG2+8Ebfbjd/vZ/Xq1eTm5vL973+fYDDIrbfeyqxZs1i6dCm//OUvefHFF+nu7qa2tpbFixen+hLet4yMDBobG9/XfOnJwul0MmfOHPXmXex2OwsWLMBuf38zeicDm83GvHnzcDjS9m0uZWw2G3Pnzn3PX46IiIiIiIiIiBwJljncoOQ0sWvXLt58803i8TjTp09n9uzZeDweNmzYQDQaZcmSJQAMDQ2xadMmurq6yM3NZeHChVRWVqa4+vfHGEMkEqG5uZlp06YpXP0Txhii0Sj79u1j5syZ6s2fiMfj7Nixg8bGRgXP7xKPx9m5cyczZ85U8PwuiUSCXbt2MW3aNAXPIiIiIiIiInLEpXXoLCIiIiIiIiIiIiJHFy0ZFREREREREREREZEjRqGziIiIiIiIiIiIiBwxGnSaJvx+P83NzcRiMUpKSqitrcXtdqe6rA+stbWVnp4ewuEwGRkZ1NbWUlhYiM1mwxhDMBhk//79DA0N4fV6mT59OtnZ2cDBWc5dXV20trYSjUYpKSmhvr4+OYM2Fouxd+9e+vr6cLvd1NXVUVRUlHzskZER9u3bRygUIi8vj2nTpuFyubAsK5UtOazR0VH27t1LRkYGM2bMwG63Ew6HaWpqYmhoCI/Hw7Rp08jJycGyLIwxdHd309raysTEBMXFxdTX1+NyuYCDvWlqaqK3txen00ltbS0lJSXJ3oyNjbF3716CwSC5ubk0NDSQkZGRNr0xxhAKhWhqamJ4eBiHw0FdXR0lJSVYlsXExAT79+9nYGCAjIwMpk2bhs/nS/amt7eXlpYWwuEwhYWFNDQ0HNKb/fv309PTg8PhoKamhrKysmRvxsfH2bNnD4FAAJ/PR0NDA5mZmWnRG2MMnZ2dtLe3E4lEyM7Opra2lry8PCzLIpFI0NTUlLy2uro6iouLD/m9NzU1MTY2Rk5ODjNmzMDj8QAHZ2B3dHTQ0dFBIpGgrKyMurq65KzwiYkJ9uzZw9DQEJmZmUyZMoX8/Py06IuIiIiIiIiIpBeFzmmgo6ODb33rWwwNDSWDsauuuoozzjjjqN8A7ZZbbmFwcBDLsgiFQlRUVPBP//RPlJaWEg6Hefjhh3nooYfweDwMDw9zyimncP311+N0Ojlw4AA333xzMjidmJjg6quv5txzz8WyLJ5++mluv/12cnNzmZiYoKGhgS984QuUlZUxMTHBbbfdxqZNm8jOzmZ0dJQrr7ySiy66KO1CskgkwrPPPsu3vvUtGhsbuf3223G73fzhD3/g3nvvJTMzk5GREU444QT+9V//FZfLRVtbGz/72c9ob2/H6XQyPj7O6tWr+fjHP45lWaxbt47bbruNnJwcIpEI1dXVXHfdddTU1BCLxfj5z3/OK6+8gs/nY2xsjE9/+tNccsklafN8i0Qi3HHHHWzZsgWHw4HL5WLFihUsXboUm83GM888w1133YXH4yEQCDBnzhz+/d//nYyMDLq6uvj5z3/Ovn37cLvdjIyMcOWVV7Jy5Uosy+Kll17i1ltvJTMzk2g0SmlpKddddx1Tp04lkUhwxx138MILL5Cbm0sgEGDlypV86lOfSosPgfbv388PfvADJiYmcDgcjI+Ps3DhQlavXk1eXh5vvPEG3/3ud/F6vUQiESorK/nnf/5nysrKGB8fZ+3ataxbt47MzEyGhoZYvnw511xzDTabjZ07d3LLLbcQCASw2WwkEgm+9KUvsWjRIowx/O53v+Pee+8lPz+fUCjEggULuOaaaygsLEx1W0REREREREQk3RhJuZtuusmce+65ZteuXaazs9N861vfMp/73OeM3+9PdWkf2HPPPWeamprMwMCA2bx5s1myZIl55JFHTCwWM62treb88883d9xxh+nu7jbr1683U6ZMMa+++qqJxWLmpz/9qbnsssvM1q1bjd/vNz/84Q/NxRdfbHp6eszAwIA59dRTzQ9/+EPT3d1tNm7caFauXGnuv/9+E41GzcaNG82cOXPMunXrjN/vNzfffLNZtGiRGRkZSXVLDpFIJMzbb79tvvKVr5iLL77YrF692oyOjpqenh5z3nnnmTVr1hi/3282bNhg6uvrzUsvvWRisZj51a9+ZT75yU+aN954w/T09Jg1a9aYZcuWma6uLjM0NGSWLl1qvvOd75ju7m6zefNm86lPfcr8+te/NpFIxGzZssVMnz7dPP3006a7u9vcfvvt5pRTTjF9fX0mkUikuiXGGGMeeeQRc/rpp5vXXnvN9Pf3m97eXjMwMGDi8bgZHh42y5YtMz/4wQ+M3+83GzduNDNmzDDr1q0z8Xjc3HvvvWbVqlXmlVdeMb29veYXv/iFWbx4seno6DDDw8PmwgsvNN/4xjeM3+83b7/9tvmHf/gHs2bNGjMxMWG2b99u6uvrzeOPP266u7vNnXfeaRYvXmza29vToje33367WbZsmdmzZ48ZGhoy999/v1m1apXZsmWLSSQSZsWKFea6664z7e3tZtu2bea8884zv/71r000GjXbtm0zZ511lrn//vtNT0+Pefjhh019fb3Zu3evCQaD5utf/7r53Oc+Z/bs2WPa29vNDTfcYK6++mozNjZmmpubzZw5c8zatWtNb2+vefbZZ83y5cvNc889Z+LxeKrbIiIiIiIiIiJpRjOdUywej7N+/XqWLVvGtGnTKC8v57TTTqOvr4/e3t5Ul/eBnX322dTX15Ofn8+UKVPIzMxkYmICYwwtLS2Mj4+zdOlSSkpKOO2005gxYwbPP/88IyMjbN++ndNPP50ZM2ZQUlLCeeedx9jYGPv372fXrl309PRw5ZVXUlJSwvHHH8+MGTPYunUroVCIF198kZqaGhYvXkxpaSmf/OQn6e7uZufOnaluySHGxsa4++67mTVrFvPnz0+OQWhra6O/v59ly5ZRWlrKySefzOzZs3nmmWcIBAJs27aNE044gVmzZlFUVMQFF1xAOBxmz5497N27F7/fzxVXXEFxcTFz5sxh3rx5bNu2jUAgwIsvvkhlZSVLliyhpKSElStXMjw8zI4dO1LdjqS1a9cyffp07rvvPq655hruuusuotEolmUlR0BccMEFlJaWcuKJJzJ37lyeeuopgsEg27dvp7Gxkfnz51NYWMjy5cuJxWJs376dAwcO0NHRwWWXXUZJSQnHHXccJ554Ijt37mRkZIQXX3yRkpISzjnnHEpKSpJ93b59e6pbAoDP5yMQCGCMITMzMzm2Jjs7m76+PjZt2sRnPvMZKisraWxsZOHChbzyyitEIhG2bduGy+Vi6dKlFBcXc/755+Pz+XjllVfo7+9n7969nHXWWUydOpWKigpWrVpFS0sL7e3tbNmyBafTyYoVKygqKmLRokVUVFSwbds2IpFIqtsiIiIiIiIiImlGoXOKjY+PMzw8THV1dfJYTk4O0WiUUCiUwsqOLGMM69atIxwOM3fuXCzLoquri4yMDPLz8wGw2WxUV1fT1tbG+Pg4IyMjlJSU4HQ6sSyLzMxMPB4PQ0NDdHd3k5OTQ1ZWFgBOp5OCggIGBweJRqO0tbVRXl6eHBdRXFxMRkYGbW1tKevBuyUSCR566CF6e3v51Kc+lRytAtDV1YXL5aKoqAg42Juamhra2toIhUIMDw9TXFycnFHt8XjIzs5mYGCA3t5esrKyyM7OxrIsHA4H+fn5jI6OMjExQWtrKxUVFcnZ2EVFRXg8nrTqzc6dO3nssccoLCzkiiuu4OWXX+a2225jfHyczs5O7HY7JSUlwKG9CYfDDAwMUFBQkJxRnZGRQV5eHn19ffT19eHxeJKzse12O3l5eYyPjxMKhWhra6OysjLZm4KCAjIzM9OmNxdeeCEf//jHOfvss5kyZQpr1qzhM5/5DLW1tfj9fqLRKDU1NQBYlkVpaSk9PT3E43E6OzvJzs4mNzcXAIfDQXl5Oe3t7QQCAaLRKLm5udhsNizLwufzYbfbGR4exu/3U1RUlHyOer1e8vLy6OnpIRaLpaodIiIiIiIiIpKm0mOAqxx2znC6zR7+e8XjcV577TX++7//m2uuuYa6ujrg/13fn16nMQabzZY8bow55LGMMYe931+77d23p4OWlha+973v8V//9V+MjIwwOjrK+Pg4fr//sOe/u/6/1JvD3fcdh+tbuvUmkUgwf/58/u3f/g0Au93OrbfeysjIyGHrTCQSf7H+d67v/V5juvXm1Vdf5YknnuBHP/oR06ZN45FHHuGuu+5i6tSpf/U5/5du/3O9eed5czS8nkREREREREQkfWilc4q9s2Kwubk5eWxkZASn04nH40lhZUdGIpFg06ZN/OQnP+H8889nxYoVOJ1ObDYb5eXlhMNh+vv7k+e2tbVRVVWF1+vF5/PR09NDNBrFGMP4+DjhcJi8vDzKysoYGRlhbGwMgGg0yuDgIHl5eTidTqqrq+ns7CQajQLQ09PDxMTEISvKU83v95OTk8P111/PxRdfzF133cVzzz3HlVdeSVlZGZFIJDliJZFI0NLSQnV1NR6Ph7y8PHp7e5OjSoLBIIFAgIKCAkpKSggEAoyOjmKMSfbG5/Phdrupqamho6Mj2Zu+vj7C4XBa9aa2tpaKiopkGOrz+YhEIiQSCSoqKojH43R3dwMHe9Pa2kpNTQ0ZGRkUFhbS399PKBTCGEM4HGZ4eJiioiIKCwsJhUKMjIxgjCEWizE4OIjX68Xj8VBbW0t7e3uyNwMDAwSDwbTpzYMPPsiZZ57JypUrmT9/PpdddhnGGPbt20dpaSkulyv5XmKMobu7m5KSEux2O5WVlYyNjTE0NAQcfM10dXVRVVVFVlYWTqeToaEh4vE4xhiGh4dJJBLJ11tvb29ylEYgEGB4eJiSkpK02XxSRERERERERNKHQucUs9vtnHnmmTz11FPs3r2bzs5OXnrpJUpKSiguLk51eR/Y+vXrufHGGznhhBO4+OKLSSQSyUCvpqaGrKwsnn32Wbq7u1m/fj179uzh7LPPxufzMXv2bF5++WV27txJd3c3jz/+ODk5OdTX1zNz5kzKysq488476e7u5vXXX2f37t3Mnz8fj8fDkiVLaGtrY/369fj9fu677z7Ky8uZOXNmijvy/xx//PE89NBD/P73v+f3v/89n/3sZznnnHP47W9/S01NDUVFRTz55JP4/X42bNjAjh07+NjHPkZWVhazZ8/mjTfeYNu2bfT09PDoo4+SmZnJ9OnTaWhooKKigrvuuouenh62bt3K1q1bmT17NllZWSxZsoSuri6ee+45/H4/Dz74IPn5+TQ2Nqa6JUkXXnghb775Jtu2baO7u5vXXnuNyspKPB4PlZWVVFdX89hjj9HV1cXGjRvZtm0by5YtIzMzk9mzZ7Njxw62bNlCb28vDz/8ME6nk1mzZlFfX09VVRVr167F7/ezY8cONm3axKxZs/D5fJxxxhn09fXx9NNP093dzWOPPUZmZiazZs1KdUsAyM3NpampiZaWFoaGhti7dy/hcBiv15uctbx27Vra2trYtm0br7/+Oqeffjoul4tZs2YRjUaTr7fHHnuMsbExTj31VAoLC5k+fTrr1q2jqamJjo4OHnzwQaZMmUJVVRULFiwgHo/z0EMP0dPTw8aNG+ns7GT27NmHjIUREREREREREQGwzLv/Rl8+cl1dXXznO9/B7/fjcDhwu92sXr2a008//ahfRbhw4UKamppYsmQJmZmZAFxyySVccMEFxGIxHn74YR544AHsdjvj4+OceeaZfPnLX8bpdNLc3MyaNWvo6OhIjty45pprOPvss7Esi6effppbb70Vj8dDNBpl1qxZXHvttZSWljIxMcGaNWvYsGEDHo+HcDjM6tWrWb58efKx0s0Pf/hD9u7dy49//GPcbjePP/44a9euxeFwEAwGOfnkk7n++utxuVy0t7dz66230tTUhN1uJxaL8Y//+I8sW7YMy7JYt24dP/vZz3C5XMRiMRoaGvj85z9PdXU10WiUW265hRdeeCG5sePll1/OypUr0+b5NjAwwI033kh7ezsejwe73c7ll1/OWWedhWVZPPPMM/zqV79K9mbhwoXccMMNZGRk4Pf7uf3229mxYwd2u52JiQmuuuoqVqxYgWVZrF+/nltuuQW73U48Hqe6uprrrruOKVOmEI/Hue2223j66afxer1EIhEuueQSPvGJT6RFuLp161ZuvvlmwuEwdrudaDTKggULWL16NYWFhWzevJnvfve7ydvq6+v52te+RmlpKcFgkLvvvpsnn3wSl8tFIBBg1apVrF69Gsuy2LFjB7fccgsDAwPYbDacTidf/vKXWbhwIcYY7rvvPtauXYvX6yUWi3HSSSdx9dVXU1BQkOq2iIiIiIiIiEiaUeicJnp7e2lrayMWi1FUVERlZSVutzvVZX1gr732GvF4/JBj1dXVydEJoVCIlpYWRkdH8Xg81NfXJzcHNMbQ09NDR0cHsViMwsJCampqkpu8xWIxDhw4wODgIC6Xi6qqKgoKCrDZbBhjGBsbo7m5mVAohM/nY8qUKcmN99JRZ2cnoVCIuro6bDYbExMTtLS0MDw8TEZGRrI378y67uvro729nUgkQkFBAXV1dYf0pqWlhf7+fpxOJ5WVlRQVFSV7Mz4+zv79+wmFQuTk5DBlyhTcbnfa9MYYw8DAAK2trcRiMQoKCqiqqsLtdmOMIRKJJFf7ut1upkyZktwc8J37trW1MTExQX5+PnV1dcnQOBaL0draSl9fHw6Hg4qKCkpKSpK9CQaD7N+/n2AwSHZ2NnV1dXg8nrToTSKRoKuri+7ubqLRKFlZWVRWVpKbm4tlWckxLH19fdjtdqqrqyksLExeWyAQoKWlhUAgQHZ2NlOnTiUjIwM4OHvd7/fT1dWFMYaSkhKqqqqw2+0ARCIRmpqaGBkZwePxUFNTk/x/RURERERERET+lEJnERERERERERERETli0nPOgIiIiIiIiIiIiIgclRQ6i4iIiIiIiIiIiMgRo9BZRERERERERERERI4Yhc4iIiIiIiIiIiIicsQodBYRERERERERERGRI0ahs8gH8Oyzz3LdddfR3Nyc6lJERERERERERETSgmWMMakuQuRoNTExQTgcxuv14nA4Ul2OiIiIiIiIiIhIyiklE/kAAoEAvb291NbWsm3bNvLz8xkbG2N0dJTCwkJqampwu90YYxgZGaG5uZnx8XHcbjdTp04lNzeXSCRCa2srfX19OBwOqqqqKCsrw7IsOjo6CAQCAAwMDOD1eqmvr2dsbIz29nYcDgfTp0/H6/ViWRahUIi2tjb6+/txOBxUVFRQUVGBZVkp7pSIiIiIiIiIiEwWCp1FPoCNGzdyzz338M1vfpNrr72W2tpaysvL8fv9RCIR/uVf/oUTTjiB0dFR1qxZw9atW8nKysLpdHL55Zdz2mmnsWHDBu644w5sNhvRaJTs7Gy+853vUF5ezoMPPsgDDzzA8ccfz8jICK2trZx77rlYlsX+/fvZt28fl156Kddccw2hUIgnnniCp556ilgsBoDL5eKrX/0qM2bMSHGnRERERERERERkstBMZ5EjKBAIcO211/KDH/yArKwsXnjhBSYmJnj++ed58skn+dKXvsSPf/xj/uM//oMZM2YQCAT4zW9+w/Tp07npppv49re/TVtbG7/5zW+SjxkKhVixYgU33XQT55xzDr/5zW+orq7m29/+NqtWreJnP/sZAC0tLTz55JMsXbqUm266iW9+85vYbLZDHktEREREREREROTDptBZ5AixLIvFixfT0NBAZWUlU6dOpauri2g0yksvvURjYyOnnXYaBQUF1NTUUFZWRjgcZu/evZx99tlUVFQwY8YMzjvvPJ577rnk486ePZtZs2aRn5/PokWLyMzMZOHChRQXF7Nw4UK6u7sJBoN0d3fzzDPPcPPNN/PpT3+aq6++mhdeeIG3336baDSaws6IiIiIiIiIiMhkovEaIkdQTk4OcDCAdjgcxONxjDEYY/B4PNhsh37OY4whHo+TkZGRPOb1egmHw8mfMzMzk5sUulwuHA5H8nyn00kikSAWixGLxaitreVLX/oSlZWVh9Rkt9s/tGsWERERERERERH5UwqdRT4Cs2bN4t5776Wnp4eCggLi8Tg2mw2Xy0VRURHbt29n3rx5xONxXn31VebMmfMXH+9wGwPm5eWRl5dHTk4O8+fPT86I/nPni4iIiIiIiIiIfBgUOot8yCzL4qKLLuLxxx/n61//OqeffjpjY2PMnj2bE088kZUrV/LQQw8RDofp6+tj165d3Hnnne/7/2loaGDhwoX8+te/5sCBA2RnZ9PV1UVlZSWXXnrph3BlIiIiIiIiIiIi76XQWeQDqKmpYenSpfh8PlatWkVjY2PytgULFjBlyhRcLhdZWVl8//vf55FHHmHz5s3k5+dTVFSEy+XikksuwePxsGXLFjweDz/5yU+YNWsWcHCec0lJCW63G4DS0lJWrVqF1+sFoKioiKuuugqXy4XH4+Haa6/lmWeeYcuWLcTjcWpqav7qqmkREREREREREZEjyTLGmFQXISIiIiIiIiIiIiLHBttfP0VERERERERERERE5G+j0FlEREREREREREREjhiFziIiIiIiIiIiIiJyxCh0FhEREREREREREZEjRqGziIiIiIiIiIiIiBwxCp1FRERERERERERE5IhR6CwiIiIiIiIiIiIiR4xCZxERERERERERERE5YhQ6i4iIiIiIiIiIiMgRo9BZRERERERERERERI4Yhc4iIiIiIiIiIiIicsQodBYRERERERERERGRI+b/B68d2RjMrVVQAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from math import ceil\n", + "import io\n", + "from PIL import Image\n", + "\n", + "# Assuming your DataFrame is named 'paneldata09_SL'\n", + "# If not, replace 'paneldata09_SL' with your actual DataFrame name\n", + "\n", + "# Function to create a single plot\n", + "def create_plot(data, var):\n", + " fig, ax = plt.subplots(figsize=(5, 4))\n", + " if data[var].dtype in ['int64', 'float64']:\n", + " sns.kdeplot(data=data, x=var, ax=ax)\n", + " ax.set_title(f\"Density Plot of {var}\")\n", + " else:\n", + " sns.countplot(data=data, x=var, ax=ax, \n", + " palette={'No': \"#FF6F61\", 'Yes': \"#79C753\"}, hue=var, legend=False)\n", + " ax.set_title(f\"Bar Plot of {var}\")\n", + " \n", + " # Save the plot to a buffer\n", + " buf = io.BytesIO()\n", + " fig.savefig(buf, format='png')\n", + " plt.close(fig)\n", + " buf.seek(0)\n", + " return Image.open(buf)\n", + "\n", + "# Create a plot for each variable\n", + "plots = [create_plot(train_data, var) for var in train_data.columns]\n", + "\n", + "# Calculate grid dimensions\n", + "n = len(plots)\n", + "cols = 3 # You can adjust this to change the number of columns\n", + "rows = ceil(n / cols)\n", + "\n", + "# Create the grid plot\n", + "fig, axes = plt.subplots(rows, cols, figsize=(5*cols, 4*rows))\n", + "fig.suptitle(\"Variable distribution plots\", fontsize=16)\n", + "\n", + "# Add plots to the grid\n", + "for i, plot in enumerate(plots):\n", + " row = i // cols\n", + " col = i % cols\n", + " axes[row, col].imshow(plot)\n", + " axes[row, col].axis('off')\n", + " axes[row, col].set_title(f\"$\\\\mathbf{{{chr(65+i)}}}$: $\\\\quad\\\\quad$ {train_data.columns[i]}\", loc='left')\n", + "\n", + "# Remove any empty subplots\n", + "for i in range(n, rows*cols):\n", + " row = i // cols\n", + " col = i % cols\n", + " fig.delaxes(axes[row, col])\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "ef2f86b8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "######\n", + "# EXTRA (Parquet Format)\n", + "default_data_parquet = load_data('Default')\n", + "default_data_parquet.to_parquet('default_data.parquet', engine='pyarrow')\n", + "\n", + "# Später laden:\n", + "df_parquet = pd.read_parquet('default_data.parquet', engine='pyarrow')\n", + "######" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "vscodekernel", + "language": "python", + "name": "vscodekernel" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.1" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.pdf b/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/02_Default_data_solution.pdf new file mode 100755 index 0000000000000000000000000000000000000000..760043dc9c0d82aa18be503903e56af26e0e3d9b GIT binary patch literal 162240 zcma%?Ly&0EwqwJhfW)Aur~PdM*txm6*+FFCIYPdC zEq?_S8+Tdzp{;onOKvYWJ3CQj_ehy&?&qW@27gUFzhHKG2VYKhZv8&Fzn|flGMKfH zzMkJ1OX$xIOM{-A#{Y2qJ{o9z4K=2ZnKYCY!Q9`{{%Nw$IoQC3vt?kXJiv;JhWgbM z%dt-$>7b`X$5tQ!Wne-cTl^k&Lcpzw6`p1v)VDsc8qAE16_ps_L^#_~4{whQIdCC9 zMU*087-{+@l2`bXd+@$p|AcKo{tT_b_fbfLvlMcH(+giR59HI~(5YL^2U}BxcbB(ODrLu4k9qrbShc>WR-M2+ViHj+c`9!E+*z}|5zSbG(u-q-^L5E|L$T0xk zQ&P4j3{Oq&iQp;2iwkWdU$lmsh3YLe>w@~IkE0~>2-s0_f_@k#x?ws6pArOD@pa&x zn6UG}!(91<=cOI+F1mHj^aC53D0ep+ua%KSFXS~E!oC&XU%7+rt&r#icCk{%&H|FR zT1p>15M{Qj>i6IzSu$a6u{4AFXo+WiI5^R$X_wOalL) zJKntH@OuOjv>s=tx)~Ak_IU;RvN*ww9564mUsAIBDjMg-PNE8&^Md84qc&6 z*IHnaF0qG(r`?ro2@Bbr!UyxAr9UdBvSa$Z%}g1s^Gmy+@N7p4_lD%QZgHs?;kG|i zm+u>f3hbHw*BnC501xMF5rSfoIAtcTBw-hRNC9Wo{%+q#}$19^A8jW*HY9Pe)Z`y!_l&%1c1l)gqQ1#AO$B&rb!O^3Em~8gzz(Ki3 zQ+#{l-jETLbV|Y~D1uu8O&02S`0p*jH~np?va_ogxlg1RxDT@-;KEd(+9)r$KP@7ccm_F)LwHZk)oHC=2z zx3in2`Q-Y(AlsOxKf%}1aJ+3tX~6!Xxh@TD=zFthK}+JNJ}mL^-TvvbIz$8Yvm@Y| zjF(;q*9ciqUp9>hhw@N$fVVj@8D)Z9OBjpvK{|wWpQxEqs2kv?#` z(oBX|0)+c?c3(HSZzc={uiqM>(afCt3PZ)icZpz#4F;ys=WI4aC#>rCC|PpGT!Qs= z&2F9q=ka)x8FMtOiV(rE+L*bzkTtul_~~p`Qip?xd2$zyY3MA6Mrn#s&nx<>SM`P5 zZ({BeDp}&h1hzr$3j)D*4~}xv!~riM1XPt`J4@4d-4*F5yLS?eClbtm9L zH)m(RB=FdL1FU=R-#ocWSRk8V9IOW}|2Uy^KA7qpMVN_!-s6jWV^i7xJHN%_nTMdp zeur%h&{E?Cnp7N$EHtZ8P-_t{QTuW|c=9J3Zb1`uKrak zL<^SiN&hnTQJaEYmDdTE!t zx^A;M18dLPE{4-KgCDb{hi7)z+)iBdtLruI&<%vrMGHo$CA50+60oLiexZJq zk~#rYzVY<}oTN%X99s}G&18A=SmKw ze96HeQ`BJLVvWn`o-=QVTxd-mU~ATl^9BZ-jxJxYLXa`f3y+_2Z;OHD$Z)UxRn)60 zREs~Qm{rcI#ldh6fh-PUeO#z4|X%VWqhb_(gW3_6&%^jz+R{l;>9^J;9LMSxm33nOBljtP&v+lM7R+k<;*fF_d|{^qz&fdLGZ3}B{Q7n zBqmp98CqoLLP6tzi^?{oX<^u~ZrMCNmD1oiL&B}F(DZ|g!&sP_MucXF=0yG_e&QU^ z2J;A8NpP&vm(Crn-NdT$xdEf|L;8d1aCh1#_xRO|+Zpldpq|FD_F^#lfHJYr@W-5w;W~6>7h2t{4 zLJ>UY2Ocx&P3#Xn_P0yB4FMs}XRSy&cGyes@?wN5a>o;;&eVs8t_3j&L^QaWg_ZL| zQmEStq)zhpd?A8wT58F&1lwZ59H0X{uFChTBO9|ZjL)(R^e5_>(lRP$c97sZ=Z?*x zNrHJNNm8cZ8|q!9!85~&MfAE7nv&(;fMo@7PbpH&Hr;|riJvF>NbI}e?!D3Il8_W( z6Wfa<#)*|GEae1;#_Huz6?kDmbJuK6Bh8J5Qd1X+y$Mxd;q7N6x3%Xx0MF;=`NE2J* z{}Yn`ef?LgW}^R3@--6!JJWy5*Vt3G#BKlb^*Nq=)*To=xPZSgz~1V5)-el7=8SZO2K8#xNadw&FO4(7y%5^Wei}7h-$0w({YQ%z-CE*F z07RGO!1l`?s$WE(DFIcRDDAHfw>wL+UZ3Vhuf6Ghs- zkUHt}6-m?e$J9TrB#BH%@EW4eh~@FxXAK~ajnsk_De|<|AihreJ&KbyJi6pfh=t+h zrWFPe$Z;$IOT~69^b4w{4$Wwa+id-bqn&lWJ_gC3n7Sukoyel!P8zytCr-z;Dxwd! zKI1x8DAnK&?EaXvWceB-2f~Bk1n94SsHkh+umNDQh@NTqOAa-W%Z(riRIe-pF+L zsu{gK_P~ao>RbuJm{rqXQN2t;0z>lE(+;jh=wlH@L4TIDvM`gW}P=DK?5F(X0kE?{A(* z%MaPfflIB8tOCF*K0h;^-4BNF``QLiG^>y4N6{wt5d8Ug#?SC}o&t(7)ZK;|?pe2z z>gQJh=s2w+@Rok3e4I+s>WyW|Tf~P5R?37BBzO0*H*harG9eQaL-B(7ppnh0NYcMG zL~>EAgHA3gfMvjFCv#YWIJzJR7C^_K#xf~@6KXMs_ujbAgNFG$W{1Q=p+nJ2L zcW{U@6MI94lJvh|GH^i2NkdD^W*o#f(a%s*!O?JqO~-*+S<5X6BagQ~HT9|!3F60r ziN$?|tlB1iWIn~t7x38cE31}0Yv;(6f+hKy(@9ER9^e+`Qe2f_NkS|(ury=PcF7-> zAXvEV?V7trrZCKMS-wo6T0mT)x)AS)2yhCs7`xpeK!>PBHpc0wFzf{5bYcr%Bt63Qx@Hoz0ngCEfOYo4aTJ) z9|UiSfpvl(*<}}qoP7X}mZoM65$REO(-MEMMR(gMosLG?E*u%l0YeXl6b(OE%`As^ z_quLfzQS7k8ofH~`rtFMHoC*2NMA>;^8_AUnY4-B0PC%R^Jm3MI=l&1(z0Ph;C^n+ zx9Lhl;%?{Q{@l(zQ&gT6d{Cd$Ksx$W68E`=@&|4u(t!^`%ViVMv`ea06Zge>2^Cw-K(F zsYwT4abEL1-=GB0kh=8kGV#n;_1l}%{52$rg``n{59`C#fynn)o90RJ5R+_>Zw&AC zvyQ~OJ$Q$%REC6!y}3U7q{EeUf0DV&-M?SsKA;2cB0eb@cXjI72mC!}6zifjnCDPlqG0BDFkh*XXdPg$CI8=hU5n_^*^W@e%yYKKPnZzjOf z?vt$pyKEX)OM}Th1>z3I4P-`@`Y(TCxrr~VH06o)b;T@#Z_A?&m1BVW&a zC9Ie+n4-58dIoRWS#*m=c*t zdB9r9Y>!mTRPp!Q$^w`)D0vB3R-~yQ0tUkY88lHc@u72IQIG||TFOihMCdB??;TZP zswa+0LdXxYJ9Rh^{RxTp!14}dcpR}In9vFvBKEpngIn23Lql7s%EJcQ2eyla0Gkkd zy_Vt!ISNzK@sj3L*Z>Wop*5(H#jFP`Tv^1XK~8hs(Km70@6J#on`$$o%o|e@gTUza z=@I&%c83vr)2D;q9O8>0?F|RzDJhEdnkRI`s&g!2vt{{9%dTT;tc$_rfW!bh^!2uI z28YPD>>e>lyhnKCjGfC($?Ddfni5se`XZ}~+XAhl1QT;>N2@#FM6mW|WiN|UzUdMR z%#q0Zy}c3z%tx!c8Y_0yxZ{qo5)-lw^YH{)7{knZk8QC;=|5$(swPAAsDTzBk6gHP_72MmiY=7p_CdX8LhmqimKAPU zgVW)l!y`!-<~2G)+y#!SWF%;ch)&zdBR_1?Y@t=^8lIU9irA*l;3+GZ85trD6sAWB zCk^fiLvZ=2)1gLp?LiFHdoPm*_>cH=vzEn<=L$zk;W(;Y2NE^gk6!eF%hd`2xakVZ zd*T$!$VL8m#5wjBFAWk=Tm7-gW(^uPrcbG~wM)?3O_GMY~;(Wn`=ZLn#1F&W^%egxIZc!GpDqCwVlL zFSv(93}CPCfuQc!uDN}7+D2g9kgl4W?lma>A-d748j9Z$h} zcas%$aUsg{0+EW;ssm=ZTDp$&Zk~zH4bK=Su2{pEY1W5?aJV}=NNZ~@H~5snx*=Q^ zg@5<>`-P$Gg_4V@Rzk?xuX({Q&_(0`WH_g-QoMS-7?Fr+!}27>a(UIlZk!g^iDSvL z*Jp=RX>6=8%u#>B+mIAq07`2}nSbuHbt^qPo+ zEe_GZWaJFk;w`(sy@V{NDm9xK3{=HhcE1v)40KRb(q3xr(|Y!sv-nVgfBErz9yfPV zJNEKGA)mm_yFB37RmBA^E>Vno`A@-j5T2#Kxx_6~hfIojkxAHd*CBb{+fR0fb1W$i zvEo_$$X~+X>Ai(3TPQ=kM|RLj3-&4(VekGY^hX?u9O#jY_U&e1yTTHTUF{7t(9c5s z%9G(R<7g{TA5yQ|(-P*fwNmKH%7ro`JMo}$lrJYe3-NbcJUMu5UpQNVdIDgIZE>To zARzS#oENrg*h{Hm$a;00d>wX1X%>9RDFdfPwjEhi1NBp{E@ygzHkS))jo}}!%7^N< z9i^BtLsi^0zdyEyEsb;>4`0!d?#KjdD|Asg#Ym<;iZgQk;gFYBZ{0m^$Y@1ZWLNi- z@an9%dDe&OD?J6bCtfSNTB|KyE0~#W zuTJl~@3|9By~G-)dE#b{iEpx!NlK%5)hyZf^OD^HR_qN0dAIa62hC;1qiJVeC=ct& z3HJrP!W7>%E;w9`H$%<-pI!2tGj4MtiO=O6+Z!%b!z@^m-k-3uFnAKObI5n?4MJHQ zcgc>l+}je99e)<8-_Layw5@mWFTBHU3=&Zbm#!+x;yV^c_=VDOM{s>8h)kGiO+-ac z;#r{<_jV`uu`!_qu2#~&#`C>lrOA1JPyFgLNZ$SjXkq$KpoNixk^cXMmK&_8SgeVg z|ALlu*B-oneR$w;%=IjwJyfrB+?ebjw*M^!MhqJwRdy0JF=sFVptXunRp1gw)Do7T zZ4#5je~*t=jK~<61=*u&u`qEziSo~XbOEp3qcyA1&I7Acw0 zcug$_D5@M1;w9bi;9og0Q=;a0|YXoy6hu$t z{P5*FCbw0i=FwKpZb%q@xP08aKD(+{7;DMR<=aYpP)nEHja2)SknZRCd1DhuNdElw z__&Xf4oeM3QIO4x^N)~)nxyyP{rXED%)!f}ZgMaIWl#d|DKSSG!P!m7TNNV8kswNr zEizZztxsI759=}mLU0*QBqKgYC)elqiO(RsR6`zA^*+;~zW} zCFPpxyHd>SCp)*Ad*tx3%Q9)(XeZgup|J-b)9eTeuZunyd5v7CUXyAGZuUt!4>&3I z1#Nj{*b;7?tiirKX)E0tP)2jaTa_+5z)1*YJ;o(r)i$THxH;pUrQ%&B!VHiLmV9f5 zFtP7CwG?2fN6wYM<@B(t`T(eMR&5yP;9WE;;7oLUo#=)h1bHJ#k1$s*_{Ibn=W|I? zlA~hilkf@B5VXQCcpweMVz*LfP-KN%o##pBH&5r8B7`pPF)F{vjb?QxtL5c_-{d_@ zR_<9@tW+uvnH}TCwp82P@lKzNKw(|)#tUPzA|qCiXl;#sgxa@{<8o$7-7>G$d^e~Z z)lM=Z*?`W^8qM?_H>?FttDB`#gvBmayZ-~7#i~M8Rhjl!NWI*_ z92fcieuT8PPR*`=jMVDHc;u{Fgcyfq#jwgSY-sd^@wNr_?}OrSI9E0Y+@Vn6YH44; z|Kr%#aGbpZ{~dgj`nY_fbg?BM+!qmTITj2z2d2igxz?N2~MQQ+2yN% zhnwUU!bU6QhwezqNw&Z1wP2rw$X>=ourhs7I=it4B4;JqwwdGL+FKQ**}Bi7IeH~iyYPhby|A{D z3A*HLq8EtE_5&JHwnU}dWW$vHRpVx+?=%xL3?B#-q%()(mFz*Gs=-JLrzm=wdSUc^ ziq%2=qOitc8>weRQAotO25FL|sI)1~y)++|(by9Dt;6iGzNvAEELd^>ZsioC3Zz-( znvdpOrzUeCIqc(|@vEBGU@b5RBw7g_VHgQsY>8=CT(HijM>GMFcWIR19n+?7Z6Dpj zPEK73!%2SLh+EYGj)WWM?FQl?R}Fzah}^?z&Uuc!YCyzE>LK>)zazDss7f+FXV3xO z10p)mfkRXQWGb5Hk*AcV`DPGl;Vi8tELbR?!%d=+X8s;5V*C?%i_uHln17EUQC_Y! z(}QQ}eAmMWFh&?DMO3_9-X1{c(KIry|l8%2-MvkyKznDQpWQ?#hjRsoi=E-=B&fNzX35qxDXbvy#0Hu9{j)~~IA zltbw?@)m$~HH(wE$DRg~C) zA{ZQGn!Jo60Ar+HCCzzx`wWmSG zT@y6np3&g6?~HAk!l+25EV5KS5-)}?O(ZgRk=Au_7cg1=z3st5Ktkbd6&2=?s#4yI zAdg-swMq~guM~kDsFD>1ergrkEU^<2R{rVJLb&L$61i^Q_Ln6u(4;feq?8CYizXfK zHwT342?sv)32T;sGm0jqzrsJ}H_ATmLZD;nY{i5eMbS1tUaYwZ%kp?Br87IzUhp|j z3?Huju18HX2JgrRmUgUMrV`zET{#pWVZwGK)5$JbyAA|gP_bR>G~%e*D@j>%PofkT+2ZHarj+ZVXHN!FF)nli6xXUz9nO!tL^d5{RK4xtd+EwDR> z!mR0#HYSiRQTY@VE1z0(!c2QHq$~4es~wcKO`ewh^w-92tJdUw@a(Te;)>_0Zy6zi z(p|N1viPO_MwuX?zE24mkn!|(Ee(m&E?uXb#^Opr-YJTNfDu9V3S6_sKwmItcTZj!pR|h%*W8Z1L|_V62I$ZAfJjFSlUEbLifED1 z`ODe3(tTAa_5cksOG|7@l%s;~i#)is;y@UZP4H;VM)CC%&A?(v%#raKGGJGBReA}4 zZ1GMJwVTRs_cn#FRIe^17qy-haz9JYcHhKACvquQ*WW}`E7|IMpY|}BKo|EikEhIT zhhQ}-Eg;DE&fY%|?k>JJ{hymoVL=r$iPo~Rra0~`0h6!OcuSjMGpUtZ9k_tn#p+fV zp2dl}T+QO?miAsfgC1bsdX$SPj5}Q@MTJ&h1{pEL4cF52I-zsR3L+*MtAA6gni!0} z;*pC?7Gzyz_3rR5?zQT0>Y#b{5>y~Ln^p(TJH9N8(1Xip$~I1zy7KI;)8;f~8($Ke zyos-9aYuLDb*e^A+UfeKUtRttWhNc(@+?B29woqr=>(936z@#8jiw-1yGGqcQC(E7 zA2l(1WjZwRQ3u!29066mx@IfIxv_nR{q&1wwG#lkeFns|q5|#MzPtSf$lOe|^RK9? zi}q0Sj5G3dzukRLGd_UnksZ{uZVdPNspXA4 zVW^~7m4(SATAk3jTuqA_HR4IRgol)e{xwEMwU3vj>l-%5H*m$o?-#gs=B;yUvXped zbTqp6GlqN%-6m_DYP+!XTlyy#ZMH_I=NE$Q=RR+)&d={1T)lMe_oWSRcY~wg<=Lxy z+16ALgUu&mEp$fPyp{)(EIkJhLbaTm9!R%T0s{z5u>2NgvdzLXr}QG)YUs*fWqSiY2o!w1JmC^e1)ALl_y{oRxK%nfb zuV28t1s`_bYamcl&d-a|5BTAI9NZEdUm&+rI*ya~$Ngmhi zyfYyb&4&#=Lbui(*rhqomO#VMh2ZBiE7)15wFJp zjXkodgRL;)Z?eeEE{>y)zb&i+Zc6ZiYq zsI>!YRLy4YRjhaF=%~#==sODlxu!Cl5t44d$jza-jX4JLjgxZ#Q+2b8mof#exh!7Y z8Te;kQ(u>2878i=6>YrZE;v~vxlgR7OPG_wrkG$N%v;zgk_`nQYP3j;w{8v!C@iL975e zmj&K)kX8#j)f`-%}(t+wA+K2Kd6fDpZ@3)8Q|3=XB^tL#m zZrn=gjZu~8G4Y`b;G_%HfV2n|kMNNHCeS>>&7Gc=o4jgZIFJ?vwr5d!+48!X(c)kl zP}f#(WCy1v0AmqQu$%C3@g$d&b`gK45fNm^Nq!*Yh~mG<*UYsa;a?&vCA_I+l@)YF z_D(;;g#zdIQ#Y#re6O#0db46vw#9UEVf>O^0!t`mU<^=Tk3-f+pxvr=m*Yrg?H0Z0 zO5=D`o|SscKwuv^s4H;)nOtH?n?HVhElj$~Lpkj=hE?d@VFmhNIn93}(Uk!N;b+vK6P1Th@Qt2m_s*@&_ z-k-%FdH>jj&NfoG1T@oO)lh#|CE39@wt@z^pjA6NPRO3*y>|=mHsgi^OqCoQvSr}; zd=8YRtNk17I`Qo9FPUm9I9u-@c_dK^{t*VI++@{#PHQ5qzQcf22X)OO2e_TAn&AB8x;GJIqftnB`~jZ zYR(L+^8_Xlpxju-wk%bz0?H$FwNsTlG(S^$$JbGU(v#ApMOeE}QBBT)r(?j6HYgaU zX;5aQU7kS~`Y>F+PBl8_R^50gB_{}5-3X{x(bhJCYFT_M5ngX}%`h-C-J!W*G|6f~ zrNA9wh)~dXa5p$d+VhpesqTVd#+f4D2ZXPY{kwB8IH9Pcu6@&tPOppa@ zIinPq3BBVd3&&o?VZM-lL&glVHMCJ%@aDwMGjox+*L9Z>CB5;5<#ZXVvw%5>q@bHS zxaPwAqA&hKqxeH%6U^dHja8giZw)C!5#n&6T4zHp?@~QhjuV#?GDayF7<_z zKijUvgBhiGR2Hd;m|B;tjKV6wCQqD3AFRGj$vr&i=?p|=HRe(S%tpy?V`>FFS?&=X zofx)FR%Cpx=A_(+C3b;P{w3dm_!Z}7(*)SfP!|Omzozf zs-GLRp@J$LmV2oD<@#j&5uz|APJO2Po&OnV?QE_Dh-_0e6Zu#XeA|6>&PuDVWzTH* zpx8d;>C{^& zU0hGc!>DNTtiqZ|Pd9&jTzRY`QN(3exp1U2(MkMhDSu6uO&M~%nL1CP&c+hITu|=J zs__u?6t(0TLQ#untBzr|yYZSk4~7(>5_pJX#qyY0IENdb0#xCW(Xk}4>Yq+?>(}B~ zaCeSSYRHRp(y`2$7p$R=J3>hJ2+fETyCNJwHpb?Saz@XDT6Du@mnt&Tt+X`Mz_b)` zee=eVwx&dGm!!@_30}vKqs*Nr-@?nwb0=@QENR?)eXSy_)+&L1UDigxo{aQJ_)1t2 zjsjgmI!20$KxGBZoGkCIp9OD-t+0$V^5AKATYbuHhd_KVph7$N5%9`eLlIu1WVQH1vCOciVVZH*R`uD50%vpKSXL``tQjt2K$3S&uefs14RfOp zh7~Z6P@>+}@!G)@p~#$%WB#YCiD;?O(~1xN^ylKO4)t)V z@HS5sNJ)G{?$!?}1t0{%ydS||?3qu?PbP8dIAEr{_h9CLn-Zww=asfsF z##2=mcch;3W$V&rbQrSai{A)-nkw{yV$>%`K%kr$GTlLFK9BT26(>ywuO;pYco$;Qr8k~3*?6%W)WtkfzuvoHLY8PI~JDJ;E4zdWxvojV8Ac#}rjE z!76mCu-ELajdy$(l-FwHhe%ggJT%8Pb{?yr+SCnq9g#4uIS^cGeeeduAU+HVC7_Br z%;@Ui0fPggq{5)0;Pf1a7=NNAC;s(6vHlG|q~JpSi&glT2T9x`XHh3QF9g(n*lvXT z+MVh=)bV(=v{M>sUE7@+RuYb>YS#;)CHA%88WSs0uVN6YyfGRjAhUAmV>RT zT4*(Tp!2Uq$R!9(%_o3Nzfj6e=>V&y^|XJC&pPKrZ>L0`%R^6*wYG<>s-LXQYco?HX@)VqpJ!e515YEHZn(0bxz>A( zRS*pVot5aZs9?|Mi*Tf^c;U{CDHWy6zj-+`pqUI{>Rh&P64$yR>c7s@OE3O}A;Qh$9Ip5(zIbdttow|IvqPzaMM&7i=Ei z&8lwx=I(hfvfKSL87w2qM_I9t}sLaoY=lA6#BaZ%h zuYjr_rw2_FuCGkYOq8}baY)OzwFrLk{m&?rX;^Ten~A=KI|iu9^mw~+Z)K6xZEF*vCy&hdS*)Q(kfmfHT0J_19rHf zG-(yP?1ZFGYLytIfHC{EEJmxuog$tLqi<4$d7KQSvT2Vs56ku-=G_u(b9E(gG0;h|nGdu8G+Ewg;e# zsKc2CNJs_YmO7ydzMMIf`5)E?u7|}sb1qKMXI3_l91L)zCn7b1aiH5()ksC{~4F8{rh$sd8O8#-xwqj-a`KCrtib&+f#1e?44> zqN$unTb*dN1=hw0D7E;w;YO#zD&as2Sr@C8aY(*U8cq06k*YOk43?n!-f+7H2GiNk zswxPuEYnewv%^71v~rSu1K7>R>hpB90(ZGb(KPa7xs3k}4y0qMrBq@CE$%AK+Or55E@Y#2c=PKc%QH9{=L zq|Wlk`<|KeaoOTVyHepsI1BwlwJ9<>Qg2B35@{%yDCRjSZ^n$sNWfb+A^rvKu(~Gt z@aGO8ovGEY5*(QsHSK zYygka@kx_4+BW5u!a?gvwTnXgiQz?DJ^i{r;;i|ixr06HMTKz)1(`*^zMnrqMYiEj z3`ixSk}xe*kA4q$mj%vg^30f&cBQ*T@Y#@O$%xbX+UWGGQ(^c z7tJvvjXC;!wXb?LW|dqN3eIt->^fGU3LV5(@hLVeArJiHWZX18{ACd7WI$1=2kYQr zw6y?erhp|6xUhr7AUO(xLKM3OF0v?*Cd7l3064+N;XwFwy@IZ6zgK{BQ&<|Jq>2XIiWNg$sW5uujJ zGQmAYmx#uu#?usG9a6N{;~7t##Bc535kkAhNLEl1bt|TcebqBEx{cF|tpt>QoyewQ zC!6IhO@K^Z0pthOrkH|8Qex)Tq!H7b+r&gu#LYDX&v^tH99S3Dt#gO@SdAGhhjTem z3P1QVqQ`Fzd+c~3yy85V@`7?eK(BqejcG?PFVqiOpQys(Im1``$UcoBgeR1069ttomfHvB~+*IN!EFy;~RpL|wVPg;$u$T!p;UHadTtxW_htAcFZV z!!T3}*0DpMmD@${<{yxt^^pFOpFI3%9&s6@Fcht+pTrkKKvMohL=n)SRr)4N2PDR7 z)hYG#A@t@YHH28-%RU)OEVj7J#Jq4?Ji?mEO>wNMO_EdWC)_DeE(I*IHSsxx`R9Dd zV-1|WdBwe0(A{%dVM6ArP!%`cgpvSUE}8<#{1drL^^U46)ejt1uDM!I1>QJ>D!XiFK$mGIy-b??_GLsh zjMhsIt+8Dz0|Q6aA?>pr2%-89e8vcnK zZ~K!I<4RtpW2Z)VU~0E;(6&k=ZJo6Ll~=IQ0A2mYLJWJljsyqnT(wtmQ|=B2<5{i` z2jRonI_Y!PcPx8(XHzI_fl}^OYNZ_@&M)m;O(MJaJ$kdKl$_sEY}(3;=xREq0DLl( zkM*V`chvpy{0AzQ8D0^tHO_+C|uv4n{qrJ;hLYh3`|8{uum|+3>uVuVd!6V$ipa>2yuV~ z3>kD%T`Z}=U!bKzrRu~C@Zi~6>+_S9oV=ZrIB}^E;|)=@Be8}MZV71X-%+)$hCMnL zNx-~brmPjh6kLJPUSnBs?CTpg)7lnzvela9@Kr!dQk0#NS2d#* zNX;`DA%FK$u-)w_Ilyh4lCVggI+Gpxn^rW}0{`tyPDIrdhZZ%jB1QxDSy)a)#mFp( zY?b%hm4RTdO=wjzsS8B`mzT}dqF}k$U8~d^@Y8?oP_jDbSDsU`Du!C`p$T0`vuL44 zE>3X)RL{7|#Qqen-bNW&Nv`$rm&Ky(Ep%iq0S<9CK4$J8VwKLZ^&QEPX?-X1;jl(+ zUEUAD5`-%P@jqlYddE)U?e-+1YCAtZl2$E-{o2ZLC?oFNSQsaYxDT1cMZ>~4;=EpcjJOnrh_30wh0k|Lp4 zahvZ$87^SF5TC{I0oYq>U42R|b^2G7YL}6~0I`ivVq}mQ1l>GFCJ=HiPf+4Sgbvf9u^jI%qWT33TPLzIK8wO+ z>{*}t*Dl7FYhTQ3u@IL$;cg<>P>m?1I@LgWlaI%pOH4~KV}j7z0(P&4K4lu^uo;eAJGf_ zfA6#W7rp#n+0^(33QeSrZ-viBcZzyUk2&KGCtLp)_wQ?(NaLHO7qP;O zVNaF%$m+AnA=1962o*5igEUHEhUB*?;nAcOA9L5P#aVO?x;#X%0 zd=vxMNA-B9Xrim%t+>Oo(Y!+Uph2i}%Pi{+>@c9&Q$WD4GKUyb!q*V=01LgjPpQ_<8Z6B%(e-_#Jq-dwu`?9;c$7fhpMUo8$?|;-(GBq6 zOg~&apr`@Z#cayNo$2lVLyTyNE4trGy)Uz)y&%84ub1bawXwXiJX{_;42_w1IY6FB2BsZN}Cj2L`X~TW#?Z zH{pc8AZ_948y@8N>o6wJJ7*unnY`w5P~+>0Z@D}0wJF16L{tg9?4cL#*Msl&JIem? z%jTy|EfeROw?V74#9bi{epC@3e@CR!RMS?k0LY&G4ju4Jy&8#N^*!+CKB{~Cu5S-A zu;RUhCn3_Bg+|*b?oD;bEkQ+B2(shYjb{~h$6(uzG;%&KnGrXMjgf*mP|$VaE@Cd- z*fHs_pY-qj@12sj((!69thoK?R%x5U>~XY(EQBcGL^O3+wq!kKR`qELU;?wqBw+ae zV(%@Z>gu{I;SfR+G!UF%!QGwUF2UWM;O-s*!3n|L-QC^Y-QC?K&^zy2HM**+`WxM2 z^!KBB^!;<6Joj+U*?X@w*PL@5F_r5^oMKx^T~m7yZti*IpGl@Y+}BMa@4dA!Vkqp; zTd(45JMbZ%V4czLV^oW_RqJa3)n0Muz$cMKCDpKp>Teu=_=vI`(O%pBk6+`R(%w)( zM`lM8UOFcg@DYHvRLxGqpzlH#8|xTt!IP=_WGIQ1-&P3|K1x;e<3N z%2%wP!*&$MDhZ-#Oyx!C=(yO38REihoOF*3l&f(blS+0f)=>}-mIH-{v@0wFx(<#8 z&fT_%T7smq!hT9-6>4d7B2j|$d02p-6g2i1p-lOQ4O3CPiLYOTzfNByy!u?9 zgbh*fUV(|EP{Y<0qZ!Ml@)ZZNM~QRiZ;L?DNdKfh?y;uR`5wOc9y&JxBnqkc4!72H z`!EIz5!F0bWrZc<6utsE=WPmMb3Hj))kDTHBUxDmNpn8GM*DM1onSqsXJ7?*!04bK ze0mBGF@l@jeDmnp{HK6Xe%d6^+=6L(|A0@dl1kRcIK9IDU&UILuyir8CcELVc(?mvG zIrJuE3zjoug6YjUq=xRSb++9FFv4bK<3Y}PzRg~@pk2Z@Yf}$LVF)j?3KRdG z6G@XkL6}2$(t0w7vQx2;nsy>gG31%D>cHQj$$&$d^k{D~T8*WaWvWy*k|}H88xLDa zIQM&IvoKos8A)Y!S1fS4aFYQ#2IPzNQ#+cqh z*R)2GXhkFU)>>Iwa~3U7u_Pr!kdqnZ(b1Vd2#I`_c2$e5qAv2s&<6atk6K?8GMyzfw--{>Voz`j$<3a|*1Qlph<1q$TT z{#>;1F5lsVNus)a=ne-em&?yeGiizh0Ry}~-F~!baGu#Zd?n)=Z!FXO@wZ z+!xl-G&}3}%_V+b-nv;%;LWGvC2Fh*Mn?$(u>#p@V`Kobh>PPi`87IBhe5 z<1Z4pDP3cXWVh5TB=%b+JhuAS$(d|PTe0GVz^$tzDfu`Y^kZ z?Q}BwN>8bFkQ+Pt!MY=xHjk2LTLbrl#df8RUZ1hko6`Q+&Hm{LQ?8|0)-^-d zs`a|igLO1FU!2*I>}tEifU}#9=`~U$$ALugCmcVK=&Akjxx}-d10BK(6{$N{2HVTu zMr!^zCInm5GU1snnixCNE?Ty)Hj_C-6;H;msvp%mmQ*G;j?NqsI9v;exQQ?43J2TX zM|C&rx!Y~_+G4@*acNSFu6Uo2q*`HR3LLQ81-fQ-6{(u)#OF>D_X%io+U0N{J~qA% z4r=R#aPie9FBGTEY_QWdf_~$WtLHKh66!=ev!gAJ|Kq}{;OW?lkMw-$KM@qn|4V{` zp8nrmy*3R5#lJp)>f{!Z?k%5pkxw)GnML`}2&PT!CcY!=i^u!}rwHu)`!Q$8aLI~k zMNLi3Q%lo3?lYfu9&Qx~FY~%5h}+b)OV9~v-!*e7@tC*X2np{YJ9_bWuPLzV6FR}k z_2l$^ICFDpVgCA^{nOcLX{lH9mrJC!XJ1Y56rbiX*E>RPR~{_NBD|LDQp``q(FAMf z-{(JnOwXoBtKMdS8;Far$#1mpbT$R2~vo{q2Q3=a9q|)8qO-%&=U@ zTGO)gk`ZqiaVLUy2(Mr&Jh@8c77Ym_JLwOf-o^7@%pGNdHQ`A!oY)f-k9tLtmq% z<5WDJ$^*iDH#q3q$rayy?g$l5fX-499XB#XiF;L-xMq(tMFu}J^VP*JcHLW31h?i- z)jTcbh>y^eohrm{6gV?MgBV*IQ8U|ce6G^sH^s4^s`AsGeOBxrH>phq4ph+*Z3sgT zg7ixe{h%q5vm>qTH;fCPTZ^xz0^FruzylBjn(~ozXQA|PfingNl*G$Sy4tghFiF0WhF6MyvX`fI`Zfq-IkGPCK7>lx zeExX}R}(|*u7#~ZD)rlMo+mwZ)sn8XQp%2yLhpbOPY!6>2=3dhu3kYumya~i#bcoq}u7|)}Q zN7*8mp`c4l8y9E5Mk<#OE0B#UZ{#*6dhsLIqDqg2CUFHnItBZCu!9iNLzSegTR_d zJx3JA{96confG}vnQ`#SXaS1YO4SKJGCq}B(Y@6(7RgbXz1k;o&`LWXLVxF{u09W| z+bu>O|751R7l2tNK0k^JPab*3N>8X?tR3$(5d}FkZ*f<6qou2*bS4oUpV@p%O55dT0WRw*;?@EJ&l!bH8e4!GP5=B|e zMZ^w1Ft&(%o8dJ>4sQ3C4bplP-qw}FAfNNdeXXL?M5Xxa&~u&i{jNj7Nykq_F#LW~}&-Y>k z4x!aSzr1MF;_h&6`o9NR)W2mwpW~K|#D1!dEIw9AauD~|O2Fb5pY5s_d{OV7Qhz@> z9Tit%Yg$qysdLK#-=1NTt@7C9Psdn;d&p3yEAe!Yi9pDp&~ES+H8I;b(XdX5QX6RQWOZz$ZD7-|+O>yK1i?+XP6k z?2uF6a)!Rb|L{m4{}6n&9+oq(En6T<5#RTF|HrXl!?MGouVa5{2b{oM_v@2%+h2B? z96GU2Im_A5dv5)-Gh;GtdwacEoa~!;HSD81ci*EevuzIPo}0i5 zx8Lk9TJ@Fz-RzpGZJ*EH%!_tHxSR6gqQ)h0rn2fJ zxV9TV{zaKx%W}HWNiW@ptnHEC5GKM~_pL*Qo}X?MzTnTT)||Wp7ZpDoi!C!9{?KdH z?5I-Hu}&37fiUCqDyVvIeLZgWMNng7Kf);%y@*lRt5Qvi=#u<~T~v!Gb$nbuq=3_k zuksY3TY_pMA^DItT3cqXb4J^=8UMV_IPG3mU=4S#r@BVZq`1}%Z-1*JV?Ko=%-&N> zzJzlYeT&G*FkDr;d+0lT)kATU`ym~F&+Fj_=92VXKC_}Jg(L^*dp`0?e5?#yPOfO& zj_)IPCse0n-n8iRQSZcdJVTu*(;*-{bYj#f5bV2JR7#y~Ub`{Q4B}U+Sp9jxUaP+p zH~Dg9w6yM{1w%;w;1qD>tnl4!vH_J?>f6mDafsd#+>IOwzpht8(|bDF_IWN*ogZkY zG}Ilz7+U7P(0mNJugHIjNd$6`PSr8%lKOFRuR!9sWX-=<53y^sG4G1?9e^*SfmheK z#-Z0nARzB)NgEv@pZ|0o&3hqBdE_9OM|#QiWoJ{b-}45_V~JXu6hr6(z!jmX4Z@o<%wiYhm;ndDX%dZN; z3r5P!RP_SSABKz>r|wwTGJJnzxk!#b8p5(m?~bM;l%bhnzv>Bf7{HJu&Ef`G%14SelRsa{5lwUK z#(J8*<{v&_E^qxBD`eTlX+ko>vD<@qm>{i>l8MHJv7BtJI^mp(Y@L{5dGHicBTR-0 z6PDl3;fu3rvkdLtdfC2g*l&dL1|h7lwDC=f?J|wUg8RjH;yYmllVYj?)b(n=)>%wA zc|9-DIB~3}(Kw-&Q&e!*)5I$zzHyB3Z6_lKy_6#al^al=44EL!5cx{z+;Zk^FyVFX z9;lEne{hm<`D6-PdWk#vV`qkMo93$f!fDKM_YA7|>%v#wTi3iRJuabz?eri!!ZbIo zDTdbYGb!ROf-B+EtcGU!r~V&2nLimMLy}^P(Js%(f)VN{1~Srk95Nf75ydBc$Q8uL z$)0;-c`HTgSWDGsJozhEwWH|L{CO7^f09{Yi;VOh#(!Lt3iwwVjb;*G7-j@`8W{M}z&=Y30&l&@#5q;H&s_RqrDeFt+v=m8! z5GM~%6p1JzB{K77Dy@Qsg+5Y-KHB0(p7TXh2drc964!4Om}sxIe`yC|rS#yaV~G}( zTo3s9JbJEE#s(TUQ9JU}{u!Hk>P<)U$}VXUYrT4uo2=b|^tifJCX$x0I^H{w7!nE@ z{Gjz`+iPJf!u&sx8*Kk;a)X)u-`&~{H0aJLNI7xkVH)n-pWT5z|F^r)A|Q=d`XjrNP8Hz#Lr zbb@CvUU3R0`ae4ub~HtoI@sW1G+ApF=^@DQNuuf$bdoHPI)CzfK6EHXX4hO+>*OU4iz(}o>E7L&3h*CqV%ojs zRbQ2tuw#q7kKG*Gg@#xIcgtY5v|sv{YCpaF%!A)2ChK^NwckETGJJ4(*j9F~FHtD- zMy{NtMQnHlx;3@n4w)BkVvMnJHWm-(o5J^Z43(2V4{3R5f~y8I<|+bUn|ARl5j<0L zBwg=Ay*6L3T(X_K&^SN9ouY;nrh5K4yS%#n(8d_=^?V=Z{kLMqA#vI<3C=D$I7|9xnSVJLCNJ@OUdD6{TT$Cg86DPfS?a^YP+IAtqeGx1iG2NXc(6|8dJe=ljo@I`Djl5HV^=JY zOmEUq7%Q6~_UfsI-uqx-XT(r*+w%DMJH%1XzB!4x^|#a7@lk0^^mQM{L2$*qvOV0E zIqRJB4L>OpI{%|0v8?;EmR@V}ilOXQqY+{Kdd2K?H~v*2ZU7aY)tbRNC%=<{td_`` zO%5qXZavhU7E0&OrjPGVk2R{daS8b0Pg6H2-HPyAE8-c}epIa(=JYAJTx)Px7Q7#$ ze@CeE?z5=LS-oJ2i`LtvsnZiIHvIRe>M4bMEq1-eFELV9=T~g5STg<{hw}DiDUQ;G z<5R^LNQ%@?Fj>DMxS2buCNfiIV$ATqm9?1Zo+&`%4ojsSB!uK}ny3c2b8?jD6mU*= ztAyzt*`|HWS*@wDC`!;Xz@imeoFS|urDjnRff2)5w#UR_^J%#GyUVoO@a|v!e zk|#Un_4i+G*J!O$eg>);`$Vr8g=WdDo?HZ1cp*6wb4M=hy?d&Ww4M~-yz=t+Q^n)_ zz0yvkhl{{S@brh4t6okaoAKxjtk*>BvDA4blQagd#{+DE)8L0Cf|~yL=*d6Fgk1fI zP0}wZk6z?{@_o(r&M{ry=-QL79Y=y z9HeU$F+ZObqB+z;&uW$?w;Sl|K9fnuD-iuJ8x?HBnz^?ThAo^y31xiTl8{EYoWcR z*-v2IyqN6$u7)%N4!8YL7yR(yW3-<~Af-ASgA0h(z@oN^BjRkZT1Qgl9nt8RBXM1od-BS9A&U)9 z8wZVl3N)qBD!sSKgem9Ks<+ZzyIK6D93)vJCc^SKK}tYWYNel|P!unlwPHFd`)-B` z+7H9?+o%WE+*G&y5cR-dp}hb0=O96g#IDQ4qf!R?^Cf(SEQn;b*I)6WdgbZaysHVJ z>Zgsw@S69m1o@Qv$Q(sKMkmF~wpJ2-BtlWa+DD?ZBJ`tDQYQQOnEmVe8_X3EJTm&k zKIC~h58~V%<(Qx_!%WFC#~`m)S<~m#^SKe4{D2;LoKv}j-i_a|C=Ch^;(We5<2MlL z5)p(oifgO_$U^t_#jVKvbyw)uf&v;xPNttw-O~lRvwv&P{qa<8x3pwuS7-ZKz4SXB zPGQmq3A1&^5I3Ba<7w>!G%JE!pj(H8U66B2t9*dKwv+Q|0hGTsX)su_cI0l-q84FDFQ~L6T-AHrKASJ=FhM1$Wa}30M9tF0ea+?) z7KDGTc@y=Vvnc2k)0P%YvmSh3Oojf3PUY=&iNJ2E z;k$!B9ko@J>-VukM}pVt^c|u9G6+>$KREBo5~M!-q#k64e2@??z|}3euwsO5S#5wQ zd=uxW)M_YYakVFfCVc(F?bLOqS#nTQUGUzGt8Z0LS?gzO_Z{M0yBaBF*n%TPYW+sz z-O#$s%BEd^8;`;70JBpfVHQqXul~L^PxD5@s6RaM6b^wyYN_>MMhHx$xd`?R4=Su& zB+UCuo=Lm1iG?PG=rao3A@OW1mk*>>D$?Jc|ZR+7to+4K=4R9FvfSB*q1 zl_%*|gNC1+Svnqge{E-aEZrl#(|oLwI&tQUsMsvxKH12IcK2F9oqtA2!Au_Y{EqEw z9d*6GGM%HI!5@^kf`azDUT6@Z260zH1Kx5+!RoRjW%ZiH{^VIjr2`_UvV73Ni3Uc7 zuK$v{bn}8}vU1+>6j~EEIq24%u6crzF=hXOZYx_Qq#hV?pI|I=F}BY2j}X3Gvd4^Q zHuAW9fAob^?Grq0XIz~ivQxi}?RSAkCxePhw?)>Of|@X~I()squ-nk)kCWTT3zK?z zM6oiqZFrnk2Up+Z{wZOIYjiuE)6$xAcsqU2(p#O+U`6ahPYDI>Ve6LB$lYvSJNNxE(ihHQahPew zG=;J6vy=KD1Hr1JOK6_wb&iNX)`_M6FBi1ki2DOGLm!j`H5{urh8Ja89rbHm@86G$I|#$=ojRJEAG? zy-p0G99HlbioQSzU4X+2Q(9vyMoF!&DCG6?!lt~tg^WH}XPSmzS*ki;qEsI&7?xdV zH}}cq^+lt~p=ZcuYjoo|w}G|yNyi|eB#A$Ob=gdQZPN+~KgaTYJ}mcK$@>^<_cQ>C zKF7eybqO&glRV_4UvJayXVt67s)eZYcOTa6g7=>2X-;E_bbn)JR&eNH{XpRgp`S#- zrl^U_-ZIm~U$H<>s%#Du$)GQ3*Rabm^acauP;m0veq(1e5)j1}9eEtS-6hnjl)Ba|_>*#sH0oNt}>7hT$33hq$IsgW~sH zGP`+ezg_PU6|Zy3-?=$`&^c6Fwt8h!Wd_}%anz*v1mT9}u;%s+(YLp<#RoU0 z{LkMN0>eO0&-U-M(-b}Yt5J<$11ih_*!U+LA5ROJWAtW+1m8Pw;5&}- z-+cd@AOFj4v_l2)KMwC7!ve$nH^ckK*#F%e{8!p2uJXgev`;>(KuL z^N|zbr?~9WSvoqza!6Q62UK-sdga-YYEC81Mh7e9?h`ciav46Ma$Z4xA*igZ z%O@?ol2Z@QU2d}P6^-9Zck#aXvop?i`OG%$axmJV5PuAOjr7ltEPYm&Ca>T>Kiw#g z%mM%Wgb$3|8Zkx zW_}L*h=df;_II2aqZQTF%=Gl_yzcH#!RWL#R;w*erz-+K5gd-@&KE!3o}JY>9;<;7 zJ>PqViiG33xVgnrtKaNT=7N)eN}^YI;{GMLNL45zJ+ogV{qoSfJ3Jv})v z?zOcw%|=HY4*R{c_0HqP+E^M63W|g7VDz}2nVA~zPo8IM?NwDwRe_2V6B7ySc01dH zv8&B)$_n9mbSx~ElR4nse7h&hjoS~*9i5$4D^29bvu*sGPA5fKSwEH)%k_kgV#>-5_fw@mg!Y&E~tD>Z&^zGZ;&T!&5m0Fw9 z;MWiwHp?ZpBV;$X$GEt-pC9lLaKB*ifE-MGi2(tCqK<`xl%A90e=RL7-OG8hx#`RE z;mANpNQhn)#9kOS`*$B0REj7X%?B`LaYrESEG;d&PX?U;y!`|7t~A@~4Xv%|-db}! z)SF19ayJ|Fe?&z^1)!Gd^^B>{?fJx})8?(;8|HAj@@Kx%I3XdS+7vtir=c!EXSu<_ zR=cc0r~UiX)D+0>(RfCYhmaw++Y=}#sO?r)wtQShqYyy?)du^05STVQ;dVRF$Ry@V zbx39(5fODPEosoGOO)D7nvSMn?vYv31E?!%YS30SE1XWXsPgh0OB)*-!Tdh|c~mY^ zNiQm*!f7=g#Wh#>^KdOh8xj_VpwtM?jBODexvRH#6ht8S0U+mci$|kI<>l@u-WTVy z0>#3rsw$Lcw+|zvx*`sHW9a~OHp}9++ir={($dxkmPaNsnb@wiLFnu2Ke+;g z2eZ4jY!23UkN+WSYikSSoRFa4T5`vy;=;nZ7@2j7=MA0P$VphQu*ZR z{&K?1;_RpW*&3gKfWR{;0O0Ti! z{0MLh8X7v0#p2<>qBmi+$wgjPwp_VXOD{wPb9`P_!Si9Cl#8pmudh!cmZm=p{loGv zZhDl-tJ78Og?xyIhlj(NVoK!_Y^lfccUuX?O2t?;n)aq-TaOA6=>k8+IhnhnCUd2& zmg>%@3zZ282)0N-c&;=$mF`V>TP`<*;&Q27Ic-&j0_<|TzsOEZTm&m1nEO@%q}*5C z+Y*g>xf`oj7JqkyH}UJUK$a6DNbHEV!@twPZ8n}ECWc*U^>{q%Iw>>HAzn} zcohvWd0nDBJRqu4bZc*q=H(qXz>FkuI8cz0k09R!-H3-nq0E$BaX_y<0rPU4#4UIl-{|s2dKlll1N3aHljJ$lO7?so! z0PeWaN%-%+zBXaSB_)>n`h>T?L51Kyi6m*Q8?)K$(FExgtL>>;t_LM`3b1>r$>oxE z#RCx!4-W^Y_}An5i!v=oswcePi&o}m3{1>w%jJd1Njrcd_uA<)WFTi28ypS+hRVyy zb)ll^jhB>^OmO{*h#0RlmX^HiN7K{S-|p#iuyYR+B)|j%=n4JQ+MwFB?|e8pIjP;^ zu9_(vDqVAVcdq}G1j=%TQ1F)4!`V8dr?8-)ii!%;x3M%(2)VhrK~1!?v1!LksjRHb z%*?#n{{&c9*FX3PZKNlk7z8mfG5HqvYsS<2T;~)+J-rR|PbRA^%>V;VTVFhPN0Qsx z+L+B|^78WP>g$Wus>M%!`!of=MMjP+)w&|Re|X^bde#8Q3LvOr6ZF-Mi*{F<-D0U! z<<4LUE`B0AQ&JY5ot^$@n zE6A{sp`j?VOS@R9zWHjiSuk??b5QsI{VFT$#-Rl1x(p_1#pv?H`0spxB#ay_krEY^ z>GN>!0hcR>zqCDn0gM7HiR0;t2LZaU-sn&=XRVCaFEI3f5Tgu!MD1E6931Kh(X9p+ z0zyJm+f*0TUyd4f-90@kbvB!T5j@@;bK398SX-9?LR3&-${noK=YbHgw>|;7n-9tfV2sN(7K`Qj zy(rJOBq-&pfC+)sH>3?#DcAFJ9@bdqARN0ShnIY^(v}@$*m-2J3mw_|ggiI6ofZKN+jIe2yeiZXHMpRQ-?0$Y3^Y zT+J;ksQ;uW_$~EHZtQ}{-coC00x!g7bBGONcfb3aAvRbVg-XTlXk0cMf~cs`K&7k^ zX}b%($HL@vEUH`52Srl5oP9$Lj+M2xDH&_5!cfA_?lLQjXdFUTK~SUzaQJasFjJqH zO^F^&0SI^Z1c?NR68%o*bfVF2(GU>WR7ayoNM^UosUqA2TSt<7ebA_!pPvU&Tj@MU zs`DY>nQ-X$s2tEY{s6Vpba3qQm6g34RjzPGIAvlFmP-f z92c!2|9wHlLA=LtI2`;YmayIkf{>S=^!E1N+A@HIgiNXn3V!_quu#jnvh{GD=Qi^4 z`1tsY41yd$eW|5#KVY)~Ah0wu3*HBLO(^AUJe&}HYo=tt&c?Pjz|uNfCg05 z)Y?tXNO*YRIo2sux7k@xJ}%P99NE8igP_R`4YvXK0jx3wfIGL6vGDU7vhkgXi3v=7 z_;FNYiSA01ODv5hhs%Y*e1&0oaGBjoi$^fC`}Kk1id4q;#4j!vfZn^iyB8G|Q79Jt zu=oHAYX<%%p24sylXXinfyo5SEr^TC+S>5IKqL=DLgA3TxpIAO33A1PsNCG#!a~Xz zKPODsiRtOk;9yXy4ILdFn_aKF3_w0r+Ub5Of1RJ7&&S7yiHUjV(Ec6ji567*e+cXG z)ovyWN8L93CFFnc?zyuup;M63A$@V^ZSm2PFtqq*|U zp?Jnx%jJ%JS6kZ(P~-qL063Nam`b-0$crZ7P^`gN+S{8O&%3j9pn-lO-~fdeb33RF zyD^q704S1?kx>O}P2c`v?J2-A8qJ0)KmtqmIPQsx90A{uPUWUvh;^$5STb9xoeFq4 z;O<~aEi5c@L28*!Z%u*RUndJ-@ktk4c)FC07@2kdKp;5ZYB&ssoJzW zo}cbPnp9U;7b+IcWJ{n^@oQ_RzUToAtN`8x^zFZz7pNlcE&qp23e^8U9gu&!bGdaI zviY|kaGNX^S?Iqwoh*T=jygK-W*JFjl_rQlv3>v=ekhfPhlq%Xn)7ll3bGVM$v2{AEt`@LURv%shsO5swMm5p!{=6${as>@=r2CyRqW#!t+O3H-{ zY$P6?wpVEFf>)sxm6d?^H`{@vFa=eL*fX-V_Pt>i^7!oe#l^vVC8?>@ejIB(U5i*G z$?9Do7Lr&wI20!k4|;k8Z&6TDi9d<~-3AIH2&;PIA8Bc6LqkI#ZEaH#$8Yn!UY>Dr zaY4$%qEV?-eT(2f5mD#i2ga3bKN+*v!+tIRO}JXK*^}E6fq#42cpOsZMXWGkbxDUH)nZPf~&?Y1%&h9c-wzp?`{REI#R#vv5p#gx2 z=!jCWng;{F&C`S4>s>FwyQOvBnrcwxsWj@&02a*cg7nk|>>(uumoPb?1tCMg-c+Gb z>3Aw%eqdk#<8OXT*H=_jh)?wVHAjF*>r)XD>JG!3TKL$n$&$iK=UAda&O46MzJ5 zbL@wD!jawJeHN`2_j*t*;jx(JTD`m+9dAGtB?Oh1)cNK}wbLISpa#&Jx<*EhAjRqR zdq6#eNM|vdDFT5^FoGBh=z)k>=>BSp2apnVKrp|tF*iQ~Ckw#jcCFo4JemU4wA&vJ z^ZWc?XXt8A7I9`hgrF~r;D}HaDV`4aSYA{Z+TM zq~y>pfx?3Pi-X7ycZ7Epq4viM)j*;6zWd<$ba!55GD&9yFfhcP-~oo6ojq4N6|M8H zA(@QzVuzKJA;-|6VQpu3IG)*C+6vypx-TC!FRBT|fTH3wzv3)Z{9Pm;wbsS$El_sl zfaC+s3SbkM8cr8m{UIT64i49^aiIeKU|lWqA>vC5Ar)n2ZXO)Cf_j&gmDTz4!z~by zl9@?`cb1zV3MIdOrPXT6OHcRFUaT@9yd6phm04%;uNBfj4S2G(t9Oy$FU33=K9n5M zW?&r!??8{Yh8Xy~?527F##$jmX{4*`v(&{4D&-vp5y3+Y5xQ~=bXZszz})C( zwI#--#YMNiU!Pl_E`sl>!SbzsOuxrNx?sn~z`zhC6-fVLGC>4aWjam4#)eUSF;lFL zxi5Hys;8$1JPa~_S?L`{Lz@qF=|Br_u=InU2}6NE*aefiVVquY_+9d;KMm~zqTp0v zUf$iqLy&~fD@vKX%vZoYZs7!m4hkfYHYhyd*z6g<+$e*pv@=z-Ut*Gy+;2~okqCtY zKBE0n0+z_ z!V5(Kf}aKy5?~o1DFJ1ux|;CUI|k$)7Ms7l*>Eh3R0-|-N@ zkh42CJk4=m2kadJwYq)lT{45?z6Uy}jh>LUz^BI}U#mi_Ga!z(7EGeoLigXHNru1AJ@Xp?B_k^*de- z@T*cictA-@j{?NsF9o$TuRi-j#$aC`o7eNxu2MMO6_TuM|HufS)hD2Mb(e08M-vBT zXK&}pW`fiOG0Badeot!sEb^n24V!KvaBp!qo-tP;Uk<|=pc>HQKn4XI1%-xk0s0z@ zMxFA-Mea9?($(5~a2`Vg10PpEMSD4D=E;5W0>&Zeb+ADXJl1d4;z8{__8u~ervcwA zEk(Z1qa(gb7$v$qIvRE2GZPcaHU0CYqJqNNCD6Xz_JCTcjMZ4EM|A)Z(lztvycdtm z!lvq%R2hgMAjw%xCJaEffhyeTRH{S46P+5{%hXfh}1a#a)3L-*g6mznE?_*>tSi;Iu@BT3z^_IwzR zC+oRAxRr)rZP$TiIEVP7?2bDM7-f2$tty)61t>2Wpq3FF98MRqIvh*|p;8J93+uhS z-0!A}9$9^XL40K1Tg~_FZcF3yHRz?Jq|C%eR(AZ%fS5L4A9NZ+zyYKxh9AdaHQMdlB9p^q_zRDhH+!l$wHQm z_y+U~FK^r5P*3Il0}2ojWXQieC=?&W7sSc!r-!D44FXTj}yQOX2_8D&!&I{@-f;{afn$ zf4sB!Uw7xxFi!0sgf6rv=!0Gqe+&oB2v+Jnp`(9hJ)Nai6B8p(orkR^nFt);Q9gn{ zmv4C2VmS#M-gv;-*=;eOkD)K?jk4ooyf8c^#>DiSydxf|2R|;}O^a~VXOg~P1?~ki z->jmbR~R18X6x}4+&(Q*>6rYf$L#hF@R%o*;zQF^FylX(P1~UO{8<-RE5PuWo|x$H zYH4Zl1Ss4af;pKdONbg>`l2r?C3ONC5kT+(T^1c34G#~$ytD-RO4`6A1!X4$iy4Mi zRZVSYvZLN^7r+&R%|=(pjx3;wR;_>hvjH~)a-;!N%hbdRV2L7=NMf+t63tMjz8xO{ z9g+R@btF)eHa03iD z8{l*T#s%nWE0DT=YL-AW0dF2Kf={@(TIG7(K-PHK{OvFSLR4+BI5RR*QkKZ>_3Td7 zF*yl3VV9IQa&mGLK%8G+T>%dwJ13{7RhZznxTItfuwf{8yI?Q)fFc4i47k2Lf36|} z1ED`QenSVWbsW_0zgWw{!ji`*YXW+=uV5*hVL_z_1755&4$oVGhlBg|w+ONT)9(5j z2ROZ8bca*}!v3GIt6Db1V(lL#9phO5cc0`9THpRb>>{;&ubQ-exVM+~Q7E4SZ1(cB%L9}pl$GE@Gesddu}b4n zsjpwVvB0748n zZV$Jo;T4M7+AoE-mG*_8D_05HFHTNQz_m85acdbi&B4y9MLzT?IWh^UY6(ty!X ztlg?5EnSLV*#v|Qunz#*KL>fj*AL3Uz;ZqT0R*fYFcp|U(UVzK{q3kaRM*rv0zm;B z$X`}{)2m)DI1!3fu^+3<=RdlbSz3mz1InL~atb`2^atiHn9QZWj#|a|?5q`xqq%a))-o>1n*ssVhvZ8Ra%QHZ zl3D@r-RwP1Hnv7MMXtVkECeZ9fWE&mFF`7&leH_*kTt3T$-mtAMq>|7U;WT zy-i9=Lfi(IEC8}+n+`D9SEvazrIC#E^?e0rrl#CM_l1|2m!JPNKjvTo2t*J<+eYq} zJHvp0mwf}70ajm^Po)#&C^ok{MyVbjSr_o*x0Loll?{+;3L5UZs(=S&XQkB(FVPoU zFpK5e*sFKxz|9A(O~OeY&!>Pg%kd1Tx4<6$k*)6vo}uFA=B6+~-~}4=4)*rIeWHNB z1=^*tp<$rpRTz_sPhB0G!g}5v=mZ5bzr;xB2L$|zM5RzbbOC|q3{o_a)e5Xs7Uf4k z@L>9l%*}xzO0Cemk+A_7nJ%0y6&>AJU*G$AVyEHn0osDZzwtzTK-q6~KFGLNlQow5Q@41=Mji2&}=07Yqw5JPL7WNsknVG1t3K51lVDf6%}RT-;|`KKUCt| z+Po^zYUa=a!PBB~L3oK&ydjfOS{e?GI0YnrM;xQ^2!2~RJLvqhH_d5Ps&vj7(9-T5X`D*!}ZoPbw?8=s?O zu7bjJe$?|@&Ypn-ATf&yNqP(NW2YYocL!v_KtrG3-iinXX(MgsNy#SZqY2WRo&p{^ z6#TXvMWG`=ekkndV4=G3ilYUntF*3TAjwt+g%P_&d9V?zo7yx2Y^bCx6YlPuQPu$@ zca&vkg9(PBiwUddud$l1fI1H-?&%@G*gmix3b??aGzUIyXvcTUr8=JijPalgj8L86 zi<`T&gBJIDh5;+{*Gh11&}Lzp=U>oS&|o_fK<0_mG@)CIc6@&I?lpE_8QV}Wn&5Hh zCLu#BaEfZJR(mGCN=nMaZ({Rd6L*Wj%wWm~#h!8NePO{?rx@WY*wJfc0p!f>Gj|z( z#7{31l*~TCq`BZ&fPkdjy#nVyZ7Ypw1fk`04yN)!(hCRR|2MAw1DwmZ{{zM)BqJ#! zvNzcw$tYQojF7S=Nr|dRhyHTg>n?<`02|_8e#%UhzEQ*|` zvIkm}9bY>1Np}5AqCJnW^$dakc}4PYwmM`;X7p8x1kCZ^EiDmCF6s#%#gSC^I=4!jHGrdVl3@Jf}w8f5XQ z8W>B3#RwiSPOzw`Xj!+s47Eu_A8kp9ElU=~x1HK5afvO?ciFi1d>Wmc6llu!Z@8kQ ze6WOT{sXW-+jj?eXv|X-yksbxy58rhtL{kA*=X@FxYHt9(*j_dCyOTMus?I97~oV! zQI&E5l9=Q*COW#fDrHq}Jp6tTworH62g>*H%^NEa!%3vA;Td`DdVJPJHWP3805Gys zTgzXkPrdi&1wwkuO`gML%vVFYU(f8?!}7WyOIt-@g-Xbs#X`6L=k#>eZMA13(RZs~ zc`Wi3+@$?voP&S~%7JCqF^4^o!e|E%NZT6#bbh*()Y#QU*WMT|%kq%K0<=qdI_m;U z;T?}sBjW@IvE8&WEGnh3v9aalhtGU!9PmfQLB9W!!X1H=LZZe`iAsZb{%)>*$Kj2V zRep9iDCmK#3-Jk?t5-LGRwEK*OQT?aWbNSaM3!FtY+kU$j)lFSId)1g5>tq9jDpz> zIlL(2_|;PF^zB@6Ei`ot7DLFyoXTSbw}f5LHOiKSq^v`Af!r)x#vubUFk@+ycft#1 zQF(cm=CIqhiCk_BVZ#w9oeOs=8=qYi)HnxJY$mJrs{cI~PyZ3(JyMX3Jb*Zdi#62` z0b=Hm-r^jZQDgwb;Mil6JbZlCk}NwU*uF&)H7l3e)!scqywTUuq2rcr`95YHcv!tj zK;@s2C?#k2x3<D z*}5_x6{@+%iqo7~&P{;g#3=dJH(CS5X2P20F1NmZrUj2RFhF1Hb*}J zVh(hJvRTMmy$hLt*48XPk#mr6`Kt2%0Z`OaV5rr9KjJwFEPiRAod>tM`^~Y;5QxiCdwoMr(TA)%9feH`J)e zB!Z(JU%nwmFo;~Zd!;FoHS9MUeZFbst}>tN124T8mGmC8nJM{Ks2@FsPSAmsnQoK$ zBk(+foG;PnvAAC^P6;;+?Ytp0ZdPeeA4w}4`D5vL+>9N|E>afe+%xI+j*bycv~zg_ z08CWXx54xhXzrhCB4~qeHoGn4~*5fOZ{tEfwPQspQV0W1lKVEFf?G zwCIcG$BrG-dpK--+p`j(P{4w=2J%7WG~Zb!b~}c!mE~n1S$Po=)YoaQ2#P$;koO?S zf}RL{ApclaU6hN`N+46uGCND{XvDmI%_B#yD|&acUz*9W0uZvB4Smi7a zJ=Fuq&_KbhwOG6_SH16=wYC4Rx3s$s1yw4KqNp}BG^8*8AsgaK&B6hEH%LMFnAi$U zq~I4CWA+Ny;f8z2Z5JI&FM^f#52k7+5op0V4NY(fc@vjJ^?0`|SIFf(e0+Sv&H(|r zvY2zAIMCKcu`3d&gmv@qT@9y90@ik`>&banuofD-=o&yOoxISUe|8s${t}ntQ$eyP zx40;Er@?lFaM7Fyf4+bDJAcQ79(6V=$q}+>X^rP-*W1Zh>@SUy>OX`+P=kSl_d3ar z;94N>O>qJ`02mi-MX$5-3Nxz+b6G!SM!!suCJJ3sIhsZNGk`qS%ahb-3*AhJ*1Jmx zM$ul}T#{zBp+!x?ke$_%BW@S19e- z5MeqiJYdzoTw&40kP=<%eAGIjX;NW(_3EK%J%d=N`%VB8i#y}Iz2%ek3(1~&nb+5G zu=c2s0d#FF(o)jWjjpGanB33@sk?*9(UCvS%)18ILg#_})a-0zOJn%jy_R?{hghRx zG(uLQEX2BJLofS>TpHpn6=r#?Se0!Kf_CrT+i$C&b4a4?7BVtkdX|0RrR&5V3hOi> z%NkjKC`zc=6Tpse+Ntkr4~@9~oCu+u+{=OT7$q?F zeL|D_U2}*tsvPQSgJ5JUFEKGu*(vJi*KGt_n+@%!#2UWB67nV~k|>6~ zyMM8cU~OG3#1T@n)OJ?~B3RgE)y zJTG&_2k>B`DJtueyuo{Et87DRqT|>6w)#~mG%Aqsa7@f_?k4`)nTn2}@l|0zJgmdH z`dR+b(^sz){l&H`=}UQ?80ijMOFyNH`?1~;pOh3*6m4$IDdG>A6md?`8r9j9fKHKk zI~J~@T9 z{xv8%9EfZ#6%EKQ8R%2pQ<%Bh-@OygxV*qE0+8ST{vN%1e+*TM9qQCfO<7Xz`_|A4 zok3&Mm1q(EYI4#}_?+iXZeo_JT&qO6wNHr!{Po^u$u%2U#xjar;CXH^+QORj=x4x) zmXT4yQcUOYD|(ktEYBz}iAK6WMVs&;P*872n1$YQX!ZeL>kdo)!$bG-p6->-^VR#K zc`amXxz_@)2KT{ZA&ggMLZnWfzNhtAPrf%#?;>^^L7!U_X)x1MbdY#EEGi3t1Lp+@ z7Nz#hAl4%9#ds|Q8lV%n{4VJZ7n9Zz8JVV~vU@@(D$cmw4EZUk`*PxQrm#sc6y8Q| z`z_Ukl^qODtQ?GFOVBSo#<~efJv?QJs`w=wLa6b8}G~`$fVwh#CtuMCmrs z`zDzG<@=L5#(YXsb76T|RdSg8uB@8cMTV(D4Ua2NMydlZ#`m+{E8F;G^5C_O%2JKP z8y&imkY@05L!(Lp0(Nij?nYU@mLc!i_UpI<-=6F*a(xG>T#D~(elD?4N~6?JqJMpS>-%esZ3f<1 ze|B9UUuWLNMB$kOCaKr?yUqP+uW`uExF`V%z(^kB?~=K^1(^L0((@#EL1gmdhowOi zC_H|B9r+h~`V!;f=)eSmi$52_t&6bdhx~rl$6pA0~Y( zb4_7YWG@hTqXA$>z$;404c-Cz2CsX_pYBRN$8J4Sp$qPj zWEoK{dZopg?hR_HeJ3KgwZP6iP5ek+U_7rtic-y^(6uH2{fwd!n^v=J=mS_(1RLl+ z)YA%+x1sbIoqCpla7H-%$z14;-_9OX3n2Hl z@fxI|D^>h*@JqccUFc_~z9=50UDr;asA}vP;!g;R@LU|HK6AwRf&WRio5F))X_A)r zzSRG%SlDRzDebF59)h+kOsi<`NhlJqcMosn04?)@CTgC={qHK5U)b+0t4o(I@mz#5 zl-8Nt(}um%8!C(88a8BB<;HuJ${$};SBHoR)9IFjVcIcNMnFk7RxjJya(z~hU=DoJ zdfBC=5^^R0)%$mkO-2{AdFL;COW?ZM)h7pu6^X#gfwu~CmCh73-xmxsl>-S_;QpoAfrILdzQ^cjeJC3^ zxJXsmtf@-_?m$R5timcW2-pypl*v(FBe(A~iG$vW5UZL)Mo*6OSf4kpNKHMMATX`b zAWQKPT@R-oZEe|+S`JP|G$3dQ^UppGohXf9S2ADO->$RIVoO9cR81r-hkG5R>elhh zd)Av!VWJf{kKXS-Q{zu;Y4EkB>;*3chr}qQ0P;SyQT0JEeQQYK_oIousdx!B<(*67Xqbi2NN3_u`+IJT~(=6B3Dqu?6PA&kk zMa5rKV~=|HGv1%yYb>A-fu9w22q0?uU92S4YZshs#26s#pmMN9NG78?!0~c+r%AA< zqP)B}d^|}<4jrPDIOe%zH@|6WVE`;2Ys$yViwfPc8VtQ`mepZ|_2(Xowo(GG(l#K4 zxqjGMeTZo2$B)}5< zfa1_+E(~Uft~VZnxyQx<`9Pek@a}T6zBm&xd#1>%&zdCCmPE%W&RSFJv0SVQ;ifeI zvo@by?QqbG>hllYwB(lALip7x!pTbASQ?)ieW|yj2$o?vMvzNo#i_Ps3eyej5I9SF zKZFj#qANqe{m0YqeK~dJ41>-el}}+^%5F-2TP&v{nduip=W>+&GgX?kG|YHt^vNXx zCH3Wlc1ncwLvUEHAr&^wTxYHJ&KfOx!GUCX?Ah81u${F!2jiQL-QOG05}!+MKFX#{ zlgjZ&^68%8g3D==4^!w_d56^wKEZ9S-?L0CY@&@fmZ%7tAJ*k<^Hq_Wc2%((q|ueo z($(GD$+qj5iz-`C{-&%?8{jqwql) zk#^J-hL=khFCGS1iTVK)*d<%r2S;6PK|f;S12VPKRafWF;0+24l)ln=H>#dfC|{Rz z;FZs}wzkk0SvD7w_Dj6GXLUw}YO%y9Zj%}64K^veXyw^kACQF>VO&8}?F0UR|9YOB z4|w?$LME7ZpdqwgtNQMX)}$ZYA)JoBo6Efjn#|111avF~6*}a|=%;*8ts+x@czjX= z!9!iWxxGD%wO)l+M^jT1K;QcJO>WEo&qa9F@a#KfU=UYV=Z9ti%d|2(a17d6l=oKN z#>QWubCXC*Ntyoj3+>z|U;yVJ*#ldTYypAU;`}`51WiPxPahCqP;av_GhYBF*&zbO zfgbEi78Vv-T48?nD!k#(pUZ8%nZNeIOm7(LaA3SaoS!Rb{oIDhgA&>U2iBmzLB>=Y zgF#ABO-N7>46Qjj)1yZT;O7@H_%IHX6c(Dm3F+szO<+QUgH6t#hfdha8}u2huFzj| z_LgwQXh1~xdw)H2+7iy+!Z6F#=N0P77v|@;o&nGv4BQ!d(gOz%qS*Wf zk^eh-I=ZFbLnjTol5+5f1==MPB_uv|bj$&(SVi3TLZDoPxePwww#q08KxT}LE)B4+ zytoxL$3?40yRfoCKz9lGD*PiD`luH#j!Aj|Fv2;&ub2Ub3l&pz(}8=fs0_A|9??I+ zs9A>p3FLzsLknN(I`JVX=|Eij#isBf=~h@xa42tp5=0JvOF)5v$(ZJ7(oYS{Ax^vk zE&}5KNa0y9yjV!cQK8{-LtKF@!FBxIiML|s%WSZHf%ORV#{7mAWM<&Sks#;=py}$a zx@MuIq+~DytTz=xg1S1TaZl9pplK()&Ng%$Qj74K{KyH!v;pY!G&bA-Izi6WseGhn zSf+b7gip>;OKfy*z`w0pQf>Ll)J5}Z-7&T@IDX9i6_z#7I zgk+^SreO;h3-!A*M^3vL7P{t1&GRHUI2iWL>SmQwr*=2uie1~|4<*LN227)D&TLVq zs&f3sFt&iB2n-=AO?BW&aWR2WCs+=@JuAY~gEC?gEZyL>7`=DA)^XptRaKU5>B8Mr zQPK7J^GV68_V!#AK;9%_P{lU3k`)!5MR}SRgzd6-1`Bw?Gn*Wga3j=PU#qV9A>B|? zQj#c6j}SBiO%QE9JTYs`m6dfrIyyQf z^$oNOoi*X%;o?l=Z*}HdbR^jJyL)(8Jw#83>z_lIQd1){H+$xgZ0Zs@ti;EsX6nq! z#MHVP7^10Mr>3hLou4mQrsJmY<1)5fOaMrz*Us4gps8t75TYR}fIyo5Ep7ZPG_v5U z#qR_J)Wco@MZh$ghy$Cys=lu+IdEn9CAkkSLqv&V10#_nY+(jXc>xff$Fv@}a`EEG z$O!fUTH(Ch-0{iD5QAo^q&2`oA{Q#$(dGnF(CgY{OV{EshYG^A%(HK|(3N>w3xu^> z$7uC3L&W%^$N9-r7=va=I+Gf8PTwYClz0#y&zt+^b`qtMs<2iw_j8GHBmuS zzT89rIpXle68haxv*&Th%Dh?$YwPQRzwd3S7+6E1koc@E@`UG}7TzPBpxZbFjvOPd zxFPyVLPcepfoC0>H!LiyC3u$pLOlZmtkT6xuJQ<&bR`Fn$sgzD^7-5hf)xky0nG_i zY*W;Ojvih9_3enHLDkzDz&H%d3if5MP>-!kil;BjBT1Ax!rs$vo~W;^=>FWbf?Y z%MIkl&CN|9Z_cnLfYL22ECd&#FV9S{fB_gedSjZ-*P4o}x2MMl24D!qk?&UF^@p4r zah}kT*HBSWAz+BlfvF^%wsS~+!o`i0R8-!7mae$DEkR>3|GA-I)b9gtTwDWd7<0|q ztG%DgzOFm$wZKj}ZPsCefr3as$c}SP)UB7eK&}3*hq`?&R_5Wd9*lZfKX)!FgI(_<>XHw)o4K=oPZPR>eZ`Ie}uN5oMeyox*W~J#rexjx!}IPf6as3 znpe4H`>u8JTh|4-+qpi73E9=^=O;AE)Ut6_F46y83B~rYl75mhMI z=|}qywNQCGt;L=dqO*;yyR>UzT~OtFCInFhg@xbx`cS4ocKYt?*XP)*K*o)$oLJQ` znt?^hw-(O{OC%77g0l{}n*fv@b>+kELIH^44u3+iCGWlF{60k*IPRy4D`zoIVZC41 zfUZ}IJ6z!JuQIO{c{p zRrl!!RgY>C-h@w(*6e>M%XakoC>}Dx0|rDS2%le|S74-a4LV9YM&nVK`qOWV*EOS0 zI4?h+vvu)K$8RC0#=wWcB_oFM@l+KCMep6{ zcqptST06L7$J0Ik^hQL_i{2C|OtQ}xEWa8sx$9SN%ZJw14?{;B{1{cfAEx!WMmB!` zVE&UQ@|=nNYdGd$ky|3@*!L0Fr=h4xWEhV3E%8y=8{C6tN<_nd_P39Trwrgm! z9_PzF%W-5>r(~t3pQ2}CE@-1ZbfCLZrk0tmvSW35_jc8ggy6|^NAde+2UY$m5=P9R z-1R$a`^@I&`;XM;0<>>*KYmu!Ral%;oLkWE$hT%_sG5K2(&s+bf-TdIg{c=&i#iI& z#u;Pc>wk__RUC})LWB1shMgyUAZreT#9Y7G7J9pEgs=jJ#@0jBK^>5 z2S>)(w9>zC7g-0bl52UReI5SS*?zp!NqRa# ztmuis$Nf?_=*Nr{fV8~NTV%9i``Zl5?iVtX&Hqf~{}v!ch3npFjc>E8%qyH8 zHjAMm7~{XLbZ)dR8jG6=4{lUIpv>^ zO@mK#%-TyfF6^i0%^8nBttMS^AoYIf%5`UFgMDIs580v0{?~qnZ0Q}{ckg@QT6$Hz zV|e8*sWO?5Mu%n^ne|ib+gR-rrlxFYf6tB-Xo(GAO~vX2JsLb*QE@m{Q{&+CuL3o3+prTXsuzf0sF)!>N||Eeh8Bad!6rO&T4{wNEBuw(VjJIA`!>JN+5-9oZJLgS$>$`y`$qP&F~q*Dx~(bm zKY(L1;yMq-E2~l(^G50N!=;D2*IyiyCONjBHL)N!x$l02`5UJ5ecp_DBp3hpfW8Ze z9QJB165nqYVH+QQV>_ti#QIY5gZtL!)WbsgazuBj4D7i#^x`;g62+|@1cXJ8pk;D} zRRZE=D*}>A9EWT>)@Y0|!6;pM}9_j>;m`skG=Ix>&|33zN;dOE>2hnzn%v%PH|fD#U6 z0Axx4&E~BCsbHCedVqr+@Ln%fNt+ zPi=(K^?im?9aJNnoSaQfP5q03@v+=}*SS@+v}=l9o)=v9TXMYw&*6&nyQ>!_l_E8& zSL9PH!j*aBHTAYXk8>O$ECYI!VtA!7+h?0S9BHh1o4(0Xo=kjSYuLPoKIZ1YNq1VX z>G9ZGqTH^|&OiKKQkWctQDS}q@x4#Ze+KMh;k!;+2UuqXoew&6I!24v=ucqF$CL_d zOG{lm0CcBo8yo1sY+>d{zr}jkmdbtx%K)z}OdPm+pguQX^C2{Zu6X0kNE0e2e(e;S z2b4unctexNemEs5$$5gY=lu^F9WF&93A`w}aVbNoQtzA|^FZg#r_BS49fL=TY@Rf0 z$-wKk-VPTKDp~?GhYVbhm*+P5(F%MT&3I^3)HXm^bUJoL z=;xD8Lond`=_@)XG^W@-Vz(|tlDS^L{%C^O+d^^v%%w|ni#~y@-7kuBa#I$R>WJOj z?M*P3%5rjBZp+-*0q0Wl@0X-6B{5ML1BH1kmDj%ef@QR~w@0lGztS4Jd9||@?3j?I zf|IoDFaR0s> z3`?@Hv9UCl^3U+5B<%i4b#A9sfGiAkSwak}p4;1x%b1z-5>$26(R5BeYwr@|)9}evQnJXeJY_q|N;ei;| z)0i$O(1OWrnCYf_0p2rK*X7v(6VBDyeRLB^?O+l>_ee=~_4F`|NSpwum7~pyc|kY4 zfB-EP2W4hj0pD%#Sb*#Sb0r$9)Oy~8UpHQk zF>If-&!4|4f#N13=D~x=yXgQA^Yf>0^Y9(6jJED45x9Rw``5PF%-w#}Qg4ZrjRX_j zNQ7O; zcMuT~{UCGu?z7576*Td{E7Cy+13qB6w&^l6GP13N%SuC|M?4q&*2#c_3YP?FGXwVHTN>7grEM<3>4MCS^jLCXhC`Ca(`bw2&3c|L8#L}eX&uu;G%77xf(Ho# zweZOk(7hsJVpV+(6oFjg;!k0e!lsN03E|*H?nNY%XDb1u%McdW1>Zw^M+d)|GtAE# zKKj3)E=Pn^&U6N$A`~AQSFxVDC+dGV;x4n1Z(Bt9-D4s>LBbU%86cST zpGGv&SI?da>KAb|IVkJ=18Io%mr__-0o~N;4W?gsmebr?hGX;Ad%63PV8)jrw z%N|uQy^UcKqdFmV334nf>&ZTc)pyCU?=KZ=M$P<0hneGX$x0AYG_Zy3w zUOxm8H&mlbP<0b*&LG73&ZK?8Jj2i|rLa?){J8>I{3ds!R$`wOPL5)PxNr4 zTyCH_lsbZ8;-PH3!RslGl7g!b{jOJgyV|Zl`y5ZR9Mxdue!18q2OAE3~Sl>O)(bC$wo09S;))Ye)!W!Yy_gng;zWVFiIgGHhdVANzsirZt z5tYZpygOo(XyVVl%Nf7E*D3AU_wPE^D1xl0Y@1j6x_6)0x_4sBA!V9FEd1oz5l>RT zM6;KIi^E9|PH3L)yZs?6{oE?x+hnOL`l-seJNusJ(RgQ%RLZ^m{Lg$&INa1c%yRJG zXZ}9Q)->l{nrVE^_o0PKl73gFxru&=u!v@jSjo-anrScndY7jUT_5fx{`c*-SB6)_ zQxA(3@cymP;LR8)JyTunFwMUCmQ}Q4<#Rk=>i%7na=S*Q|9vyjS8b=tdE-(}O^xAsrUALWYBVnCi3jYtt9%BelBD! z3tqUWfNl>Ci_15jyRSfyd9y4q|GN+(zr^=bgNf(9+1(h-U{foV z`%}0)QT{obj(E?e*_rsp*`^4+*N;nSvCh@PiS35w=1!Ft>fgRq;i6@lH!v`mT=q=K zt-MgAocT~7lDD%r9#$L*jokKcO}t?p?WZ5Iw2_t)yrHgIpduUc<3)5Y5z+1Ts18g8$naih zMHLFuBj_vSdtu|JubryAi3AFHK|(!Md;D1CvXoz&;;Xmc3#_b~$< zc9!>V^++-Tf9fJmNXgJPa;ZL zh@jh{t;bZlQD36m^v`oI;f4tia)vdX+Q zt40~se6hSwm?5m&o>z(1nTY7OnG;RyxzBE86!ue>+!l-UHFxgZ0r}-tWBSNng-cIB z)J)^u$UFwLfp$2}7yI7!tWf-*wDjopqp9zEel8bfR(o zJ#aOj=CsQPDvz9N&dd*=B$D`^_~Gdqi>G_m&1(;w>gU6_pOgO4RU>;SO*q;=7?(UZ z;Zgvj-Z(OkS~~3v|9Y!!d24k<*4DB1sBo`Z%Ez%8Pi!6A{1n9P%Rgcu?kEzK`pwzi zG^u29D`GAhA|l0t9=i?2#|7t-YQv0_*Du&xYMiT7d%ICnJ3kTHG|MT;qWxQya4=ts z?Ydl9$+Bkxw)xAY#tdOO#l^FT@8$qp6WdYbb=y}`)kn*rl$Fxng%LQXbDNsfl24Cc zuR&AeRJVCEQ&(f&Cr<>xYhi*+KML-Qz%AdSAEE zV}4#`TAuxD{XZG6_g(ZNt*e}Pi^MbF|A;P7@Zb-xe+R`PwY42bALtNYes zvO;nzEo~^waBbkZG|ZSV{*;mu-Tv_S)AX17hHS-jD-lMWuafBw3>lX)1aI#;O+(T=VWFmtv-lYEDJ<0HzF1ldDzVP6a}ZUe-7B@#9Av zs>Q_)rR~`lb7+FL);s)~8XNWK2wgogpNMI7be9Bk#9`Za(HcAtGDM)5JI8vSyR(~^c>k)SuHnVwMHs#Z*T8& zxJjsob@zrf?xP4qx2JjP)D=6sXw4k-@PqNv=!s9&-@m^vv7H`(_`!o=mIzl97hRt# zDe4Q+J3IYiXc_sa_(!zm+-iej=J&LGd2@#YF?q|3&dxS(s{Tdyx>J0ysI$BtR=Yx3I1$}SW+Ri(bSU0nBG_&n!VC>?8L6VN_( z|N6B<{|+-@*Bf%|jc#*nYn2JE=cE}5uL^9gcThY(yClB7uf- z?r<4a4SF6*Y?n?x4Y?l&P0he8WCcpgU1t$x*rFytr9S!#B82#kB?OIF?qO$H8-7%6 z2xrG29@qX1t|~+NYQn0M(ebn*yLb6^U7GIo`=wt!m>v4~q(URG?zU^zqpbv$qOTcI zBb16H9(Y?0zP^`(X~54yrj=rqq#DNH2woGv!c??(!_LWR7NhsrJSQ{3$oOsis)C-+ z1-S}EAbd2>LGnN~rpdFf(;j7-4nkO~4Q9<1Y36uN! z0s?>IEv4A+b?@>%#Id~|VvoNq)~~0?#csA{x)5iWozEr>YwXlq_sNdu52YSkHj2L+ zeDCOwlLB}DUGD3u>Va8ANyXo>7PGAsG%5KgV683Iwox|VqES0HXD8^ zZCBYeu~%!>(3cS3xjplEx&61h{G+2Dg9(SMomg@_+wbiQFnIk^TJWiBEq7paDs#SF z#nIM{>(vTthjz02um7heP|OA11oaHGC>vKXVnACvqJ7LhUsq4>1jWm%_P~Sl4GKO_ z^*h}%Hy^~fjoKUN(u58jI(6u!xeglz1;s)_>;RjRZ~v4Vx?JEB8ls8(JUo~sIf`*4 z$d@1Oq(nNdW6B?NE`(Ot;k&K}byV=t^Y$%;PR|Q<^1jx^o_4hSY*58<#o+dulF~Wt z$^CD01W)%7Wvnl8k^EcJSB+C{o{U?6=aL@0cS=VqXKs;w>6cDumR-ut7XyQ;CryfZ zuUr{36YWYRnZIhz9vA06VNF6paynH;L`G%>*%*S1qsTY7CX)xM*`K1-wfXk<^-Q_J z>0C?euk+UUav8fw=f--e+Re}R7q`zW_E>ifuN`mgIZIz-s6F*b^Ka&zlK+-|ubW$J zB-x@+GXL7F%*;F?6t7R${ao4C_f@m&ls)l_0VkPMP^wo_dh9Djitq?eNq1^y>Q+w&f=fLb#BH!sZ2pZ6GPs6%yFt*az% zM4!9&M(!%_Xr~};D0@e*(=oGThMWdB>fiLgl1+IwuVBDfzU}1?Y4a;d$UzY^wl?*s zLpJBO^Z{mo27KS%&b=utIG^BEGRr-dlan*p_HR)?G6&Z)iCeygg`$N#Ej$A%CXAms zPJxCI(g%$|5W}%2Zk#`#+-NNbw}OKMX6a`O*rT!lmD>4p`OzpE!$-_lfM8Z$_=U3m zG~a%vQkW61fhT=*-PDxjin*cTrSd+Fnm3jl-52VpdbZuGu0{VaNuNE*xTI~=`$JSH zFyveEpsa_O57#Ivp<>tW2qXTjkFU>FOn6gw?o`BlSztkFwrH;jBV=4$=KV=2HTYY^ zsisb|d(B96PTa>>`dcL?Rgn&eSjaTc*2K4uVHVLVR6b~72Dj#cqOr+3bNr`;Iet(_ ze!ii+Ly^#|NoI*2I>bHVESY9rW^)fgVSOwSvwSkr(*8~tmaKr0$M8|~phy^xy0QC_ zs7mcVab@ZzrKc;v3&|GsSXTg;?=r*_5Gp0a#ewO;IZiP6(9*)e{rA>)pQ`^zs2<6S zi2Nd>*~kggO_|wlEuLoJ`o$oelm8*%{qA!iEgNkmSN=#;t$Y~W`#19qbz(0^#RWvA ztJp^8g&7dp{Z`N#N-{@)#9VckADsYX2surw%#=0vP z+s7VV*VX;#+M!SdS429r@;_cDr1yXEpsvdh?TYU;aXQr%bSN-=j#{7Ys(Y60M2DeC zd0X=m)$qsaJAD1_9@H<*x0gQaXytSwzeF(|Zn7?AfjR*<2d~bkUgtsI?akHY`B6A}?hU&LKg(bX7rwsm|KB-=6cWQ1LB7tm;(bL6U-EOdwo zjzvbtF#N+Jy;5HxwNj9O=UR`W$=%>!SSy%5Ia%HEP&|5pS%BWAf#mm5x5wU5`Lv;y z$v?brd|ns2xVo2VkDQzLujF2GYHAcYAFx=fU;p~ZQgC*Kg4M!nTpEg|Zp?~asKNet z^X3g<>O@r3twwH|Xs?)!2G`5?dhbj%_^iUm|eB-g+2Wa@ai{a{(!GhpqQtHMFzf#TBo zdZw2@2ut^~l)T9d-czhl9*%%EHZ}%<2KEE=f4NuWWMrPf`~tqI;K>sn8dfD=c}Yoq zp?IJ&LUf^!+E2SZCm@xW-oq@V!LiqUPW=YV6c{zxp}29n$f&uwxyq-JPSrlN(OT~? zi}Js#ss1X@X8Uc5A~Cfl`|{Jf-&-GxKQ;CR>~ZjP_d3Tixlky}bJMAkM+-ot>JTFf`G%+O|>47y=K}r zu|ytUqu>i%U=QPLC^755o}BRUiOu4t^9R!mFDP-y9OoYT&JioU>OjxzQ%&ar3g3L(8Lg}RjT;iHA~2eNkuzY8U6?2Bo4hKA6shtvvz!& zJm)uAI8j*RG^;4h-o>p&*Gft)hvVvj|GU3S?g#3&|C)}8RabcDCUw+E1nezjP!|ZS z)Lwa4=IPDz@S^hnkR-_`XL@HBr7z?^yqq@^L`|HUOV*TM<1qcL+|XE#PLA(?c$(B53?NTRgiVC@bjRm)AI#M}~ z|NY{xau*!LFQfx@w4&h5lHf6apPBD!*kqqg{pofj+5dj4g(Uzn;`H`5RYT=+zN<~;l8$2JX>F+Vh3oh;bm_F`xA(h%}%xre!v#&_F%X7fgN6SLBpd+f<{O zUEIpXKFQ9t|403J_o36GjMogk)gK{I z(K8%tbEnn_=-2kv25>rXhwK<1k9dJ<9NlU5f1&BOglOVb^m}k2P@*B(vj?@8ET(}DI9&yY7iVrq0d){heGj$3pv6vNVk)wL=Ed#DDY$>locp;`T931d@2GI) zmz3P9F-0mv3?7t2*-+9OYc$HQsz(v{*5r)P%(tp22hh8<3vGumOZ^dn_tn(W`tCkL zJ?F_{ZWD|dJ9~ly9L}9PcPr(0!u0z~WLoEncr==tgNtyehNbouDb39^HU;rqzI``1 z>G-ZY|A`W}qcR1M=qh<6(c`tZF^kY&u+@*wc$8a3to^yj#A84EU|XH2j-8qe^p`N5 zJ@6P$uC1*FFq?2$@X#TXYUd%8{(n&31Mc+!$Z*Y+oDXG);N?UiU(@ZXQqV zEN9tg#)H%EZssI~{rLa;&6wbHPJj*u0~Bkcy{Hi4HM`}C9(LOkCU{hR(|)GS7yHQ$ zhtWai7~XF4@ZoEd$2fOr-;72%ulr;6_dzD6Q*C0V)jtO87Q-JM?KAwTtpDrf>foXx zr3W=!a?>QGl`rH;rE~dG4~gjCdEr};x%c`DQY}Au3zJ8On+tfQI+;I8{Gg#H1mV}s zPy1#dcJNv0y9^CK-V^|l_f&5Qdt&?M*2Wyf>>5H#I8{%cg#W#8{(KF}TR=6C$*4GrMz4Ed&KmkFY&vLK2qXPb8UV-s``5e7^`*Imu`%Y> ztCbqhm>pl*?%)*&Z64VjsC=UQ1Fgx+R^Q^b1G#&H4yh(Zek4oOzVS&T&U*F@ar(fR z+VO|kZubbJUd2sRE+9kkx~e<5QxMZ&!V4!4&t0n|z~lF+JWd6EOSz}QrEe#G07Lz> zQb=~~LZphP3Tr*kJ9a%rVjdvo88&S#Ew9lS^_FPHJETN*7Ldr7J#C+JA z*hYCzak*Up3C{(QP^!JG!g=Mg{lt4B_U<4gjE_UI=^v`At1;>9#lTi0qlJN?;mf5? zEzIH`A)vt@(oT_iL$kmi@B`xIm|p;k#wI3o@D2k&Mm7%G(;!PRWzho?AHW`HY&;PJ zsL1L8TS?6Bz^&tCVO$7~BLBDRHKu&AdUTb}L&|gA0`hEg54>iXByGs2-mQDT(#%=- z@K{$UzNB^`)Vze>NA`*`v;KRHs_&T7AKThsTi$IieMMOagC6d?jSmJM=Gk{oIdhWb zklo)sRl$PYCibZ_1O7SsJ9e>`TTmwKMgg&(Hz?x}Gg)&!?cRSdgIpTAvgMh+*hcFZ zPO;$n^L4&H+S>2Y6Czs92D5pF&@o3e;qQ^*w-wkrKszY@naqZ#EIM-$eL3D-aoD;c z1kh9LjwO)jt&_=Ak+8u0Y2l8l5UvCG{mb92s||c8#3Clo*1dh*-PcM?T2Z<2v-fYTp>-oMwjdy|>y011 zIZyfe`T}tVR0RWy#t;Z&%r;d1EXB0e)X>n?+Y4A69-$Zu2)0kvXy!n017xeZ+g?OK zfa3;%q~wnRPz)PRr3b^@+YP6xZ=b2GcA@r+^ghzZGW(=6NIXYegYWg}`gSg>DO#bk zA=O@s_N-@wOLwroHB2rUa+ZZ$X5h=0q_ngrx&ke?v3}*~4{YpG(Qq*^sHr`F)QeOq z>pC6|Na6-z{=vR`E$q9QMxeyG6aKhW4bl?K+`keyLPF#$GPV2%bDc0=Fq&-*gDP(U z2~E@zP4r@?Cnp))*Llaaraz(bu#F_s)R$9pj^%w9C{8ttGK8gKlB_)GdZeu9l7I(A z*{^gJwB61FQ>Rz_zvk)<1XOH!tBh2skcGUBf9tdU{P0-B6+KN7lHwODI!xkJv8ky9 z{1Jx*;H4m4D7YSx^JP53!tego^I(7g9VWdWkHYf?wvPjZLj^w)auf^G7Qr+K1Emd* zc2gS~q9}!xFW3z(X+%WDyb)^UNafj|sv*xqcvxWHUfZSpnIWukBd>nwVJhN8V*4ck z_TSI6og(dw&Jx%Yd~&*C<~@p#lFv>N1_Bs9AS$|Y_0pet7y{sb>iRY~!8b7g% z*Ld5!U9`owNBdF(35#f#U&h&pS~541Uw*8ieGa}rRbL*K{+sfd1&0elgCw|950%tf ziywg8Y06CwBARMYOB=HPrcT1+yieOcyt}r3#tYm$)`;& z#6;Bzb}0$%W1t>!jt9@ka&T~9jJN|94dXR&BXktddO6CNn43R1azqbs1l}T~n8D7> ztSRR)#}a|L4biU@GGI_V40L0M-|*iD#!ifBh6AiU-v)H{oF6E^E%JtJdV%jy*~bj z&OLe>B`q!Oxxx9*UM8Xstus&t5aQEPQ-9&DJ?y@)KcWs+2q3KM2zACGBEf{gYUvn^ zb#0mvQ5nylzsEQQtN;)w9h1KSg3qt4gCWFAWYJR?{OcC(9ZIq_2ki$>X=|ctXtxy| zsvtbP$hvVM^>|h9d>gvmv9oI|+eK~YY(PDmJ0FeR)~@Bc_xPblDg~fFQZ< zfxjVA*2viSjT2RhVls3LLyko_@v8JPp$18yEjNTMMny?Ujgv<4CQG3Fw}gkjlE;47 z7NF`&i}q6DqVqFY_$BkQA54DsnP#hWOcjcc7iA4XA8w4?Q1A#?)a>K2HFC{Cz+jxw zpfc1a6!pP6XAbyhs2yrAkPy;orS@fcaLwSZL(cg8*94Y{cA9hA?*x)y=)jdF_I^)Nzy}HLLx}c zxmJA%`_9FH$|8IAfereZkgS(Ey==+-bvD^YF0wuN1u^0?i_luHOm3npYcId0$}o?c z>ln8s0%NcR{AEG9;WbG3H%+?A`cUFJ2cP*qiS8;n}+h{?dk8jt8a_9p7K z_B&7m)fw8=ri;hTLJYD|C+8^okse5(O%^nbkb^#tMx&3I)lG2J$a#1c9_|cxD3TUv{U8s%muJ3;KdX zdzpzoP;VsHGZ1u3N`@IPCQfneJ|pW}#k=`E{8$xT)SFiH|EH}!PCT}D*Sb|Ij(*L= zB-x3YEa0;p)=k^dLB8`0vbEi$1)BAPvs9!zPq@ui(L%;~86J1Vs8_EpnSbYcnFzBa z^m^}6^`VN&QsY!)zI5r8`P0LfOW(fza&^EIohj#GP*)HYaI)3&}Wp{-XwB;y$RFko?8e_=tz;k0tygMu#hwWPELJnP+d z4I6RJZVZCH6I|Rn7vbsmden;KrKxLyVb#iV-^SZ?>`Hj z((04G%_#z!oR>N8u3*`EM3`M)e|hGd z0$*h&YN0d#eFl$uBor+koMoj7=gC*%s&_};m0t2waPwH#yB1lHqH@0|_QRqrJ_tI} zobawm*0RpY-#TZ8b`udXG6>iKJLbqSRi}9e+2^Tga;M>_vdILVsbtu=XGXZaVIZ%4jL~p8);n z^=A?0De<*ZYU4|L5P|DK~FO<6|XWsTE_m&a-UBPLpEv=IK8( zYp*7n@H?Xa{!Xd8YXqfGv}f(9y#Mp8(wz?`7B)G)ZnO7v$-iDLc4hND1QiM1PN`~r zx;E^hmr(Fzo*d#8LKCpHS?78Q)e2fz^i3b+4-$RIiyj#r-f9(>}k5Hs?G5)cve(YU}}uy<9w4AR#b-ne$_EI7;#rYI-!7dM~pU_ zm_9_HcTHM4XD22;x)d+Zj@$+jkJBiX@P51?DEsh#0A6lrk-J=i{R@Y5f#y4SSrs9m zw1Q*_l@USw^-q6pLT%K>C`VzQlN}@_CG9>I4 zyP3FocH1RBhg3BkE1M&9)_zz~3N2CyEW*&yh&u6aL_}_T@Jip6ee^0Q9Yf7tKW2J~ zOgxBB1TiNHmw+8UgcNGXM0QgQR0SnOae199*%L`ubMui-y#)|UU8{sxNgr_%IMp*d z%w0-0(P74SVuI^PeI#<{H&JT45=27Q(7A)}8nr$j>VAkR;4>6QFSXL;UmW5*clk1} z(a#3Z?<$Yi0`ltK@$hwM?%&1|{ExKox)%DCY3qWHDIsn1D?I&lMHTskF8NefeC^3I zX9y``vBZC03wv&r6kgmd6c@cIVhADt_S0`KpuqvdyTfE>aGhZgsZ@d@Yf$UAZ>TNN z7~}DO?&3Imb{1M1D4tN+01gxo=+x*%=Ge4*`J&4PdR~64vG*yprDSnUch;9}-W$Ew zf_+p=*yeTH!rbp)Uz=S#g+^z*3P;85LC`;|O?>zL*{${8qpe@Wy6>Etn(5qI{dhD) zbn@Q)!lPcRw|3KMw(nqMPd`hb(gIFIHv~L=dR_V_o_NlWH@5uXPGDFZ&Yz+&6{MCpiEd~l6HtjSBat9NRTQ~ER+XLp!`wqdPvpN`J^`Se#zE zw>?tvqaVe>XSTOmWZvZcO-i!2<9ZELuPu|1*uNmqu$dWA-L`&)w->{@jFI>9)mtzrs9nLKcb!WT7@xf}G z;QIL@>NI-4eH)sdPH!2Ii;&fH8wojGW~X9dSLpdQZNK&SX6Cl#^Eq9g zn;X(~vY(p|wez%UFp%z7(f2YNBAtJRm;K78(s+p$V;+%5WH&K`22kC;|9@~`5GlbN z4sH5I{l#gF^&ZAUO*H8owsoHV{Z=IfFqc-O?9zArfWT+}zKVe#&p{&`~mC z9c`$&H7CE~nPezWWoBHF@KcJ9;be;0`z_h7!Kz0tzUNd<`K$QM-ZafCCiXo}YkPx* z%1gj5y!`&%54?6LBs5Rwm6k@`I@lZ;c=|o;WVZ#G(TY%yq2L!d+?;T^JJn$T+`mRW z7yKfG!&fKoWn-$0v$ge%S$fHDjRvt&UfhZ1*S$h3iYcZUDm-dzOXQ<@>QYB#kB-wa z&eSwD%lW^!Bv@Q~`@mUCiuu76y2rKWxKHeBm&!h~Ep&=LO*1PmBfh>_P)&S5{G7Fn zCUg2(OhEyf0fC}A_R_XC4+yn@ARhVOMtp^BaE^p)$vJ)*3$vzR_{Vu2{Wd^a!gpIpO2n zR~PV}p;h}n>3HwT44x3OUMLlI5Y3z-+=!T*lE({m@* zTv}!22Bw1v9vzfa&{B?bkSta|TJ@{S5g6@NZjbgW*HlbIN;-USnA4-`a6_$uv>M>d z01MIU18KpM$%nsU-}%2=9FagcYeb5qk-z+t^_{Qy!uPz?6Aas5fR__0#_zr5f!oT| zu2ve@F`nT=oejyJwcp3qn2?#mUDA*tsyFG9E0C~jj_*+Iqi!R2$LqvPCxbWy?3NtC zL!%H>KKNg8+ZfJ8)?#l``sf79m1ESJBc7%rL-%b;M4l{;fSr8)C5=8R%@~|YrqLTt zSwCu#bkh9+kq3`aTaQEP3j!Mp$l9y;k#;(*@75ND_AyEzGykhk?$$q?oliO23E(nN zYT$Ody>8|@>ms?)%1YpkpT3K2A>ST#O!Y=5olMW`j-Zj1Ez2|>YrPUnmqabWF6L@$ zmbTaFXEEgmWkR0-#Tp^pLqo$XQw@<7rOQ8jp*1>cN<>t;lThc|v&!a;x&=2yH|&1C z`#g_B$Bm!5;kxz#F~8|Mpo^8`JprpN!Y~lk`eD&L()qw?#kZ(iRjxU8EXjzO?evs$MBUlpVEm zCu-+|0`_k-PhSQthkXlR73iiWhzrDlGbP5? zv(Va7vrJjFq8<9EJ08C<mVX8*VDTi@W0Zxbs0Xn;fv;X&=PO;Gt3?TndKuH^ zMqw^-UZ4F8%o$j8hdIKj`|7#ALWGG(dFYUO0d-y4SZG0rFqLl=I23Fubk2n^-XUg8 zBfY&Lf}dj7ZlZpx)fP> z``Pk|iZs{F!MA%x2y(d2C&in<%si6y((h#652FbvUpH4xUqa-L^0< zV}LVOOHeeO-y`$un7()ZeEwoq_RYqFkM|Mv2P_Z%xoinXlZm{JtD7|sH4C1tt@XKc zGmmCQ#6JF*;!k}DFK>`=yxU&Cq0OB04e`m$TCKpToeWiR>>e4hcDQUcnSbVGBI8~O z8=K4~V}x!yVfx{?J&X$|folzQ)Gf|qDiXpv5bAUJa`X#~d<W3 zA1ofn>?$oMm&87SL&{=~jxQn&$wda-fflKw!1vKJ#udnSebm39?kN;eSkW<;kS$a< zL38Z*mb%ow4`%xEucSWSK75k<8(#mmT zFJJ=M@|sb9L4?EQEHbR9FFSlgnp!G^&!g<>&0w4ZGfs^(k=pOim)o}z$nto zo3rpnp_W}zNNTypf51odbZG5>wRJ(Lp?@H0Jacl*fVJeU+Fo-$`shBsOj=6H_ZZk6 zFxp)5lAydVn&boCg`d0h5*{)^ccph-+esp}i@(%qCeJ8k@6b;OMSj?2sGQV1HR;x3 z_%acj1WGXkZ0YMCt>l6N03G8(k$su5oS2vw-cyo)pe=JO5`<{?MMT{QdO#S*=T_Dc z@dSt~F;Uv-!f8&KV zZRc>KRz4n(d#1t{VS&|qiRlb4@8a5YSzoS&2C6QCa}S`R&M4{{{PaH>wsw|U41tP9 z{zNx;0iTQV4(%l)`mm_S9S(i11s}bb0;P}WYx#_h&{EEWkDA8qfhF+B zoD7zld$#nc*RiN1H@B^b<+)1A@gAY^W+SKpnNU7tU9kVL zzfDL5>5Y}6d#xFR$4^mJk%sJ^iQZy7d_nx4;#KwdADRi7YDOVmHrC(zO?C68lYUds zY<56VYhCxtxUI4AgJG63M=QF+SI?gdD?mvFd|{rPct<5yyuqiZhrroc<{^O00(%Z# zr-cCmOZss4fofTB#HgL^;Qv+(S3;_i3ITu8Sgws)yVJKqy5mRVevit3{Zt3pt$6JCsi0~irz0lza|HRG|13>LuEMr`yXp=CV>`14 z;l&Mz+CfAV1;sSVdwu=5mT{bR7z5^x{tZ|S7?Yro5NO}87WG773Z!EZ*7pHAIsuy> zqW7+3fM!>O;s$YeuL1I+-ogdf*Vck~Fx%i{3V6(ur^eX^{G5nr{VMKDmEO+U!1ft( zcuhr5k1?`dR#a0p%RWo?AnZz!K0*F7V`lJOK}V+yZ6iYMs}0_FcWXw}(a_WXYqqC|f`h#aas+s%yn4MZ6w?D^Pg|0E3)9LB@Ir%#Uyl=Q zn==dep0GBoE<|p<&vPoGoCl&pEed$WEJI~PkIEZ}i zcnK9@^0qWq%_2wP+8h{GfX&t(7ZLWhS~gy7q1HuK~$Ar zxMLVu133FtR8=u1P&--axp0oU%%dzQRn*f$l-{JIK%Z#f%|JzEz!%{sj(zF4ejoN; z5F4ak!rbz#UIy&fi9w5ck;UBR?l@EG@!fnnY8z31x{0Z&ItGbABrTDPXzN9ENM<}Q zLt4a|+2GDy^W*PDq>uNLCoBO-=6JO*6ffrix}MLf_c{j|J>Re7q$r4eSQ*zqiC!DV zL%VkDIYc_$sFLI3glvaMl3ztcNITLWKD>qf5tA2n`o4)P$JGtbKCJ#{`LgF>+wu7W z>^?2tWg7((!fDAyZ^+JW`}2S}3h&JRKsThKr6u#}y@CBtdx4t9kf*_}ixZ1D93Ogl zh1ZQB`x3eLpny@kg1f;o#{|QEkamCx@Gq(y!BC802oyv*2YjnAJIDbFVGIX~V3w7p z+evtSdk7^6Kt~9dKNV%q^Y^*U2Y9YOSoqp20U;BVp%^?HuVGaZyigg>J^r}J;iq^m zLdP-yb6{nv>bM7+UtSpsVhtKc*%c&}0LANwCl`0CO<(2M8c zOQCaDdo8c|*-5L%*r6y~-fQ31z_i9kH(B);bGlc162JOZn_VfYEPPFPb8(6{K_7xg z*N27;W#2IR+B9e*DkZqT*45N79|tSQ_Mo%NvdFJ;;2HBYa#SQEv1<@CYZ$Ex{V^@c zKakq8#ti|;fA$4uDWMcQbmeF+^aoXwjzOhM<+~0e#c~XiG4K6HJ=SL>U=mauK>i?| zpCL5tNC1hC8<}4zC@3JSBv3`*uHiB~$%FIb=vN^<&CnQ4wXR4RPcjm`j5@uwK}vO$`~$@#QO4-7N++o{$R+Cv9whi$pn z7dLmQL!765XTYnt_!2h>tH=b*N6Z=cme4yZtEhnXarPvqpy(@fNO4LdPoJB!RUFeQ z>nIDCO@g)%-wx-%-8@+XgJT`LO~h8MlUfcjF#I~jR)oaW1xs3L>NM?=Re0+7A||0} zH?iCO`tu+&d5vYw@0@}HW#zcm;aO33v1PL5SMpw57c@(cr|7j8yj*Lk{3|DU7m{sQ zb~=gut!h@A7bgu=41M-3G8P;yJUt1Ae(WZ)<~`4__tC9lXQTU-1KF~s`(%@Xs9fyo z;&&Kjb;NHsfr1?jk@U&w^*!(Ttr)E?gw`&;`+1!`_zSl5(BNP|zmvc)$G3aOLD)oX@rLu-M?4xLI*Nty5c(3S4| z?lV?PjR(XW=YYasAGmE`kbTK_X+*_wEuoeaR#imT*emztbXB6%?IAnBBB5Q$mLSGn zK~+InvSN_TEXYB$?cVSE$Nnhp?*>3d0vHDwhUTUr;o*l4AC@C^5Qr?-oiQs7ImX78 z1ZL1M3t>Em{5~N9g2tB@_FR}yFb3u2^+cpq*#B(v%YI&CfP($x$y&Y4vBg#7@sKl| ze|GC&R>$?X&eN>YQB|%b*UWk&G(MLk@L^O!U$8i zAq7AcFDgb@z=0~bIly36(X7F!3#ASqKR|d+ykmHLfMp7rPfyPjS-z zXO&ulU~Va=UHc*?FLZc7Sciltlb1|fx_8yw#x)fN`akL0Cjo`)10vx@HM-1%4b+`oe^ zb#Fv1u}{8T> zQ=2l?<+Z=x{H}k!xf5^4t4%lmFo~mdrLq-9Nn#vSEK@iG9Fyp8@bz2$Ck_`72K`&8`E9$tG~khWA9UC z8{>%<{RD5~b(y~j2UjGFP`O$sAHT#0EGX&x{@a<4jvHsg{Pk+$xxl&Y+dY2{KK#=( z0vs^d9S6MyMTlSYyB_8 z>&jzPgf59FM#L^(kk~g!5Y<+|bZQ<8PhJoAYY^}BfO_p4N8>vPFuAWgJ4Mc$1f*)3V z(=v|gLPFsi;C<7)E*#6hYzrh;pe{nIAmM?1`g8VPv5FJsz; zVpL?L%ok{CZ^EFfs5pm!6N2^DH4EiZQhYoE;#YomSsmuLWC-{SVJJG@aNJOp6bomX z#GADT2L25IvA1*#)v&UyeyAx#-`?aTe2=?4zn3|h=~Nv@3dIeQ4xU8w578}A&g9cC zxE|dy=hHy?fp{EpDp0VZXh(x{G@zM>5mjM}+~1&{Nedz)X-EDDa~FznuYZK^Ub%bs zpn88Czu2}t-ipdkVq;=sj)?74P?9%!a=$quhU%(-oW0C@$OeJ6zD!aO78b$JQ%5?%^<%6hB{IJD}^BR$CYsrw=s-bdivOKP!M9z9NSW z!WUGGIB*<3^M0wVg+K*^YXZh0O0pD&*On#rk&Nq4H}X?1#g}yA2CjNGO0kabpO|YI zekB-cE3iwTpo9HR&i;*4OCH4_G6;#j*wrD&$<57$xl!avT3XsnGNdCZt&&#@k;hOw zEL@1Ghl&q>syy2asPL)66ghD34xs@Zi14;;9s-)w{SY9Cs3>_?+L~FnfX;*V*F4A+ zVy{+iO$)E>`1YfvM$GLr>4sLbYw1Tgms7Qh9AU_g6mY1}fW)IGySTU;39wc$eQ};T z6?or1&4=sBJu=D6jEoP61>>!VB_rNJfLeNn^)JBMNqbtXroJAr?G$+|gg7?^5r>~{ zGjt-E>OW&%*l5PRexH>+wtvEw=Y(f#=8(jL$X~(SQSYyM_LN-G*|FaUYX}8fBwA*) z4PM)PflmmWKmSU=fwaY?M2MNWyrH3?q9PVzU>IT%Kr8uK6a+l{l)ok?5wITg{5fg_ zSn=H4ij_F3C@0?ST;r$A{AVCI;u!>I-fy;@i!F<3Gj<@pm~g#*&5TEWY*=jdg8hP1 zafoW>uqNxthnpd;&ZVD_dQ_%ce*fQiz0si|b}CZL7uvJOmyiU6<{24fu*2i2Yr$-) zd76TRWM*MO6Z3gc`KqLAPyV@@Q$aNXPE*CU!%_&X8q&!&R)BQ*XRqc1!liiAQ9mdT z(@?Q6Vb08aF(-VQumZOM`AetJf))v{B-kDyeg#0Qn$*@4$yI#ck}f+3W{izT@EV!G2_R- z<|TFf*Y0K=+cTeeX~NfQ1mc_dWh}eQG_s8|5&zc3eUj=)CTlm}pT%at#Zz-CB{xJ` ziS&e7+$|Bd*@F7gT|eeMp45)_eG#naiaL68L6wVVAK|mZ4})1p#Rs!p>>$d8A`Jce zCS)rAEFz)^fxjri<>Ux-BUO6h+3l6M6SA+)zit`lk~T1iw+`BDZf-_ff}pjY&Q1YV z)=!^5@A83MLQPCo*5AuZ3=&}!N?5vw*ZEuNt+XEN9S`kfzhhVOsG+NAqM+Wx_xJJC z%fVBl2E)3?jUpS-U%LKzJYO5oi^7T>4r6LyU?v(ag!IvoJ?fOJ1+-fik%y87?$+8f zWp1!uqHvQ$I@2n6pj#?@_oXl-(WtH+^?s~dFNLl;zX(SC|%gLN}pbvcJ-@#hr zav<340J4W83vrj1k(LRcDWwlEP(y%ML4=8NS?JIJh3?vtAs5$=8h0b7ZfG}VFb}2) zD%#mLMpmSk)#Cdtb>C|A`FB?d58l8Kt*SqhU?-CJFtOFu6#)!ggf#V();7a@n6wep zSyEC0k{HUUv@{DBm%?)0^N6L#%Z|4pfVP1He9}$`=C*UXB#U5!Oo(`D48RW zXATKC9tdDnIzJkkExz|LE#pAj=H}-KexW^kra$vnNww0sXBK`^|1{4_w?`p}^;T4F zK%SY)y7+)q`+SaopyLjeJsY%S|N~MqAX?w_E$~@#I^4!6%1}GZ(#neTxI%t z>;B(oZ1}0-N8158Gr2|p@QUMQyuW5u(p2_%4)Yx(b1Bgd6FVK+{_PuyGZ*tK&wHvv zqD;(MaZTU+b&hNh@~}%533y|)%S3V)lPo5gW(X&N4~)JfTn)8qO+2N9*@eS? zO?PxPb``xP&YM;9U?1-aGRazf#BrN)ifAF)x;lvP9#nsQqr`!y(3!=-&CRW;rS)^K z#T^$HP)vJ7sBsKKPlUY?%Z8nOY@#(qn90D}$?3Bubk57{NC%e;2ne7+2#FruK7`MI z!*m=Z3B%jr+*L!Dw@Rs(Df}AN3#7x}DUs9R%ZiseO?^?lCclTC+RH0mF3dGPy)xIg zW7puk8uNmV^}jo3^;hIZBYZMdBX0`lBf$xQEFY*8ID%@hxDhmW+F%U39P&iq#07%~ z3lbW=w|EJCL}OtlAvCxcXbu4>_G4Ex`&^+2rw7CW=LIDt<;*zVd_p2YT$A_lGin(} zSXh1_cc9If2T$JNjDxf8^-(i##4Fs?$4>+IrEI#aPnvRo4< zzU;MY&UjrHT-;$ml6ZQMIj9Dy{P;R~Na+I{#}WJmFnum?{lY>Qd<(UH2#cYi+4Yrv z|NdDBGxSX;mLm)!>f5dRSLpl#)Q-6vt2U803vgg-4q+_bEY~04PJY-b?D^4#oKTst z%gr2;!XgvJQSCmGBY=Bf6`n;&Inm zMGEmaB#&Vy2S1S@n^dU*5xhZeMn)LE8!$Apc5m~gX}zE=mMqazgAVL|!I~V-nHv2A zAJ_Zd4NpI3Q)J$F*yiu!U5{}};!2KCTk<*fM<%;r^RDyiv%-&hvxlP%^-Sih z%MyEazn)0`ZIk^2-z~&1q3YGWx@aAzskIgpi{fAFk!k0%ujWZ`sr*SY-rp+cMXl~v zuX`fsySjP?A01nu`=*sMs#xFgjb)=U-}6-KPr--ES42hguF1&sWa>-k>BVBW1`RV5I(N=aP-?%7I zQTrl>0{}Cyj*_#pl_b~k{LvpYzg0d7cPr)@zy?q6_X$QGl&d;Lj;90!V5}#Uc@;;A zV1*+XVsJ?qQE>}s9{|ErX2IUxQ&+?@)!ocAE1xSjRbQ)$mDnDs|FS45Um^b-pN19J zd)YCaqFpH%`e1ngVP+Uc1r!y<@yjk3$-h zt!{x)){&7~YHA0$U7ek=E`MR;z;l5#sv4}tQ50&(heke1NQjCPwRl{UF3a_ddLQpG zx!W|VK4L6RQR!C`U;CjX+M(_|<|i{U^)%((0J-RRw1p~Rm2JqO9L2AdmtQqjh7ASI zl?UaByH;9zaW%fHtLtczcwD)J?aJlTZo!hrxWiLnRhZh2U@Q0?0VUrx;e5z@T~yRF z{@g)ZDJws-88>pu7?WAi_@x?puO!7MxmwjO+|3%CBPZzpys)c#P|-9!fAjV&Wv?j@ z-L3D!$x5&ZV?4+nUyXo1#57d+FfEge3mak&Gl9w2>0UL#DThi!w=g#L{+|z1(!6;i zx#{F>%3Wp`%pUx+SLOXRtsUtGc#*i%{PNu26p{aYc!!Y`-_9y3DhfRaQk9JL3fskP zZQo=3v=RsT-o2+!oT&Nw)m%?tCoH@4s7CU5ugS^L%63a$ySCrAYHDiAfp%Je&2<3^q z729NtxomiT-90^sgxEw+4TN=gXy_HDRY9)+=MWMyFy0)KNIxY(6%Z+vFwvQll9S_r zm^ic#u-c6D_h(?+#3FQcacR@?LK4zc-z^?GFFQe;aF#);Z=1&bdiP4H>});0-#5x{ zZiDyimb|b>=#|l^IxXiNP2&E9gW0|ao?T{#E(APi(V5~uQSg05Qyhz|utH9(cOzTisIvtNn#8b@j zW=_5C!u!#D;-2~%b)g)IM&CZ2@9r1ax@+sjj*m8q>wi*V-M_!*^rcIh`SVp4Auqp` zitP~Qq;dN7eHQQj+X!#fU@6|phr!oGMV-F#yt_4H+g~X^=4fo0J@0U^@r(ObYjM=; zckb$i*Dkzk@}3puMM$r{#=x1CmRDOQyHl0%uLwNU*EY$KwOaV$z`kH)L47fys-G{4 z!^?iY;AzBdx?fzWA>zJ&%M_*Qv4v0Twtl_UYi5m}V_%+#o)Wac9{kMt~U6l3k zN>oglca)c^Dh>fYzd}uO2vI8_ba+`G zVR3`cb5Ow%Eup`N@b#?Bekxtup?BKWP96|%9 z_mLz=-Gb{NxRTF!cc7=427Y=05n;d<(J08&Zj6csnMTMyFuQ>U7zg$izRS^BAGRovZkGMD)=xcU$w6r@eR`n}1r!@g z$$hQVh6L)v*Q*B~DA2uL^YHY8-3k6R!Zbj2mO#X`qf7^~k0^nzj*gY(KR}ps3m(~Xe;n@3mxm+H+juF106}RN@{znG!hFqKN zc&*_5j7syOXTho}b)+Wd@k_2d(FEYPIy=?xq{y@5D+8I>bAY+$%NMCM6>xlR$AUNG zl=LzWwjh>fYCFCUGKK6GCzP+ND$hpc{VDy)WxT|7l#-RzBsG;t+lV))BX>l)JSt== ziSj&ub}Q3SCP7b#C2oJg^dMbsZk}Z~yj?#gCR|PmD=Xos@Tt;6i{mGLLrW`7zME9J z`Yu)Y^+y4w4HaAm$--1PwkGejB1Rfz9%|7&iD*xHJ=QEN|3qV(nl~zK0v|(};608? z78EF1-LJw!C_V{G6WdHiMh1M?$TZkvHwh32Hc(?j3Xo;6oma@L;_Ils(_BFeG01d6 z=MN^`xDqK&dMk)4g3_a^aD9E9>3iPEly@f-+Vi_Oh7`|Q?YOpez>(7H`kXmiUr>#g z>!9t$)r+fh^_+e+f=nL~NaY<|K`kSWw(<;m%7>BztAS8};9=fWQ#+D@Cx_C3eB9aD znS|gXbihCd8yla1fb`VVZ{zkj8|2xkdV6~vR9`D`Xkb2>1tm3gmCT<3g?^1_;vk2* z2x9@Ea97Lx0lTY%RUY86%O=go!msn8^vr&PKN5xv@&$40BOUQni>d)7DboEL>4m*rG$< zY219Qy4A&+KHvsFsaz6O+ZbU-A7YA5S5Q%Tq=x?9%LjcfGgYo>t0`(CFfkx}y#pW) z0-gofv$V973PUX5j;ds{=}qOGk> z5EY{MqWkM{nbaE=l0Wl%$W1$YybN}JI&u!jQSOYcHzj5P1 zK3YOQ$qhs=+Ugu5?3-`*$P6zpFQYpll^KR|7fo?2wN?Z(reMNj2!OJ>AF2OFMxhZA zzI-e2WSfo(XStz!7KnU@B#PMB?c{fuOMqZix5d{VrrHWBWHZyhur$$i>t2F#=MO21 z8?GqEJgtn6eyn3nEcp3W|HQ>JhJFEiGy3xne&(IJ0^$c#J~qRIdWUk|_rA6RT9-Hc zqINhS+`8+}j=GVI@~lML%FOI!F{HNy!1Syl_!^9kpOqEw)@4Bay9vPINqEus-cb9q&ZoT zEhoJ+cx~rT*?31%>nAgrMv*+kWC#Am9K@5Aq>equpB=D3@R{)IH?A&T2?@6+B_GQs z0r-_f<%DX%VN{r91cf5<`Eul#Q{TMVXUV#H`88SfxUQa&kyCo9R!;phEydeu&kElR z>1`H7ZYIj}w>Ekw(na2?*)*eWrGYcqHY+fNN>MvV)-zOzg{iyqT*c>2P4(GFS%?1b6%dzf>^{KihINF~xeMMb zygx|jI}=(v`ZYWY@iGQuXuN??BL0EUCpb>3!()MYU|)Hm6~o~K&58$J5frfqk>eV{ zYzyzFPc<<&1HAR+<^Bigh6TZI%3No&2a1I}+Hw0rEJdu^wy2*98e~2`YMh^bmaIA| zt7{o%cGk5utDhduO}wb9f5JUSHAB*1ebe4WSoUU*boQI8dhzJ{Sy;F)^Cv|GUv&s7=aoQpi|sFxCm{r&?7B{*s1c#L zpy=xwL4ST!#!`A|Zce?>e%!(b`zO@xcV=|bMAJ^Ow-&JE8IDD z)-%AVzL7*O{6*1?O25ac+X?rA*zU@yyMW zb;DNWgySg{X^|?)KX{<%qF24{^}?IC(zC5|L*^4-+pD^3WxmM?-N;f9IwUqh{Wxg8 zmbbV`{6SCK|NRJI%kT%mUpvI>J7bFCGxkxKPOf;~vixjC#n}`6rj=fejhynoZe1Hr zboIyqDaY_2sVT!aU9Uzhs0aPq-qRK?KX&f4EP0mm>w`l{`G+h%Iwt>rCkQFH2db#u zR8bx@J?iuxqBnaAAaa-4Qu0>4Rt41E-Fa@Wq+c^lixQzHC;RVnO3#OC$G*6>5t*7$ zY{K4i6ckEva?iyb5v~{6RT*VgR*h|MC4}HNc0brjsAKlG(vG$~NgIAnWOPzxXOBkY zj#ndlP51Zfm5hi^jFzz`&?b{JbQ-h&ujakqt6Tg`!TfkA@p+9bzOi0>3&st`zKQnY z$bgLzyYP9(&(YE+M;gT|Km3Jk-qLdWrjT-E?^WTJbCqr*?y-BWA?K0f8fRr39WurC ze2>n`S;yf(debz2Uj3>6eNaXC3l^ZFbv+iGckIXuFCY7%k+gw%Q-e`tm zq0KHk)vVg<0oMi!=trK+-v3hxG6^kkcos#Sq3$bGyK;;&Q+Q0Myf;Bn^0Uy7rJi}l zic1!ra;KO|M!r5d%5N)`;^0P_>ii?0_|MG{bi=vy{i|Za_2#zrsGO@y!PW5vMRgNR zfoB{j>@%LbyNs=V^P~M;H9Qh*az6W(WBlLc;4*ePo>o<q;Jx6ygJ$Iu}mM=QhGqbulz6v?t&O6yS&VR<$?~5^KB{(e=#g?Cf2y7 zgAoePwd4I49IW$(4``1M?DG*tj}6MJvc%lezgBBjV~#(m`L||$c=st?wXQ_c79VJ!&SugEllu=cZPr%NvT1dNu|z^gr+YX?7LjOJCfac>COG z&S~fkv7mj$wL`soRi^in{_OjrUpM>0_t5bhp84PN61tx8$!Og9&VHK`m`^&eSGs&J z4Y|)o)R{~ZJEX%G#)|h}BF2HLpvCJVVs1Dd{Hyu({-|83LlLA(p59fldp-7|9i;d; zI$7{yzGb*Oh@TYCD8OW@v!YV`lg5)adWQBtTWl<0ss_yqGe_;OieKV;L^NN}{9;$! zV4?I$9ctb-z%=Q`;IG}#=OQ%!Gwwv0R&BsS*7W`fnt|I%FS6t|W^CyHoa#-LulWxK z^s%20)?Bz#lz59NSMRJ`Tg)nnYhqH#Fiu5AB=feX_Y*d?P4EC#;V$>(o64Y+udr!o&3EEXz#A*djnIuepq?9 zax7Z^sEfO{6BJUescBbl!)w4Mc22=kx0s*WkZhSrTs%Kxv-PdT2Izp6y87GppD4|d z{g$BUU$zgt7qJ~n?3w_(JnB6Kg?lDu2QruYq8#3|n)>?sBDNP{H1{)*&pLwaOU{!g zEB`T6NLH%Q6o}lrAEQa>tUxjb9&+azg5E~h(Cw`}I}qZjTgTezpBCI!zQM1Z+BhcR zI5X8hU9Ek%)$_absbew>X~S}&F673;v#zF1ayA#(o|EdIllGK5*)~C@7g*gYJ~bS( z;3)6%{bpeo$4tYY6Ee`dN-4YRVM`VY3nj;t>Xe0d)b(5EeIVK+gf>4w0 zygv_07j|j%!f4MEWh3b@l(_w8;Qg3Ll;>CcUj18%qpL)(z6j^0A_AL#{NTpm+Oe^* zE^)c3yXD553T9`FLOinJiMYB`;Bnl=m79_uyAusgi_lj*4A!LU`MPuK%Ujd>Bx<&y zkmEzj2BAvHyoJT@C%#ok$@sliPx_ovuZt1R^=;g2!QCC|Q>lvm)Ge}Y-0`&ulm%YP zZ7Edgdf`f()V>Lnf#2+J(tKX~>Y%AlDB6Ed!YRDu=H^DQsX#6Wsj-ujljSKEmU9)l zvZD4n2#Vl_(g}7;J~}_#gDzCufQugnarYwO(vWObZ()RG_Pi z?K+{SGz={)1X1HdfnkXf1H20;ZwyKoZ-myoLX$9$yffz~a}dCWJmaSA7cx(Cer#!( ze@Dzq_G!8M{j_WX7p$nL>Almvjp3bZFAwC9Z*V<7HfX+U#VicT7LkoHffJBb7|60UK8)L6m$J|Ne~ zdsu(_o$O%Yo&`N1}alZrlXe!GNtCU}2LT=4Y2?fr0@KkJsuNy^rOmd}?x z;_ldFDT6Z}ACBQ!($${+#4E3ZEI#k3ibIy@Bq)92K}_(8z?utS3bK^GkMNRMa zJvZ$0<6mj03eGO6oN*NL8EbN{omx_VJ};G$BhcpPes^YdEIoQ7&EE!@*y?G9t>H(B z?f(8VzlNQO>{c$~mMSzr(!pZG1TuiZzL$NjB$`|bl3bF(Is!VibP`3+GBhJmgnP?bPuK#`QJ6?t?EBCr~nMIb#+ z18fvxXyT!(gF}!YDY>}0XnpIl^RLX$XfB*XL%DlSqDh4j7A#8&re_OYxNbk)yHUNl z!4dpcNJ$oiq9>?75KCDkBa4=rBFRd6BJit|CgsOWaozjaNk;O~Z+*_3$IIsK?BZfh zZtlp{l0Y7>rVAfw^78VGES?qUav5>45!)4}n_F1mkOFp!Day0C`T5`L>)%=SF=^$X ziz0o%I3~w3LLztWYTiF~yPd(eXNu^ZHW07J=nXWB@kT~QM@5kxox0N*LIAF#+L`o6 z@f4XXxg-M3&CTVBpmks6@<%Eph;{i&b~*R&*Dz(okrLhL<;!I*-0zUeS|T%1lmBR6 z2m}E?Yi?~P-(jAL|8P%-fBSu$i#H#Bbm4z@&!PiwB|*xb`I$-NAq+y)KddZ>dnrPc z%TLKFZJiC9Pm<~WVXyPLwyDH*i7@{f*!t_+fCdo+4OWALqvcf7wX%vvo?MydmJ4^hs;A2y zZ1HX?dV|a~z8ZO!?i7b<!zR5DEha3=9of`Vr7dX(xyj5uj%h#9qRI!NI(@zYsvlD}tEN3CQj^8yl1i1eoi? z-ECtHgf#?g5r>Zt#B6$cKQeArA{BH(IRL}h(l<4`yyjv&CMpkinbm?s1O9Q-vqBeh zB_`7>4ux!~MXk1QUAeVymudRVlr7Q4dH+PfnODf5^&nCHUbx66@NF0JKybR9QqR^k z%bzu$#S%hb2>VYr2>rNTj3#OiQ<0}vp(O*c*g}V~L*q9Hv@FeiU@#Dj=X)S;2 z>MFwazc|r+;X(Pcz`$EZMyhgCjSuH=;>6}EJYI~y1PcyS*FCN|vFy2Q=X`60o3w;!HJMxq{>WoxWO0H}#!2M#O4%{n6VNo$D?4{vx ze=hjfs@%8{qlFt_16 zO&pn8dR`v?Z-!&BLYbyi2kA+|85tNJu70G%rIQuR?hQVk%2LT z<$BUfk~K=HW{k+hwvtLKLHQZ&vVXhKOFt z8`IQ1MNekbZeG`CyLthF1&&=2;%^v=#fEiTZ3`I6xCb&DE9xJ8DW@r`{ZjDw7(52I z)KUq7o4=7@p||Dh<5S+S2@MUD{|rd`+9=36+jH{#908yup&?QB))|}s8hMfS9pAO30&7$be!tb9NiX@fWfPW8aG5w;j&3@A0UozG||Dih&MNI9&$$% zWu`rai;TOjD=nk&f8=-n?UlMXjto}6C`Z=wwS3!23h_^kS+ZxKd~ywA-QCo9XE>p!XAqI*DB0meZwDU`zsOy9PE`pLUW z%3ZrwUOF@~V#q_6SqP_5zXk&a<$`JXllwn{Naf2y!mR_Xy}g^cY^S#zuv>q3mZ!jE z5lj#L*haBuPi=Me9qgL^hcElv5=a(oAQk$rp)m+JO2;t@-4FXQ4vE+Dx*>>cGw;m4 z_J$!r(Z_0`QGa_wJJ*h7Y79W7T)T-IV0r+0Gm7vd`|PK>oiPWcxUBG|NdJdNkZW-5 zJx6lLI|~~cjkpDY{$(h(X{6&bKe&C@_9;U0$a6GrEIlaq>t(Q~V@DVDdxF6X0eiHH z!0U{RjzV=rC-@yfR&(1@3n9THXg6kDX*Uy5=DQt3(&GVlrQ%p4LO4rIoOkaanuUGy zO^>7bEC}wTsr)nQv@Sg$5%A1}lT;<~02!;84M9I+`G}R-!{&rTkBpR*z)v^r5?{Z% zL>OR+V}_iB1V_h}NA23KX&9|A<^Y8gk(cP`R{bNbeT^=^fB9HBVeu4>liWp}%ctU$ z(qQt$ioNpjVGr;BN8FpnbGb%egU z$s967k&vNKWXhDG%slI>^ZWl_JpH}#Qj_xHZ9YhQb>z4lsmIoPCb0MtSJzP5c- zgIw891an)PI3_2gn%=y5p5SRTYUAkWIa@Z4zzGYof^)(EW-(+6c2k~4X08vupArBZtmmFPn-NQ0+a>&Jc;QaMd3*v+KO`q|Y(YQ=QTIyOn_@7-J9rL6u zUZDZUE|coqg2@?ZPoS%0SWr_QFEQ>I1}%~zT33g1Z!QgoChxuPQq%9y!oguU2XO;b zXoWTeK4jJY?gbEH??l#<-aqGRG1DlXt=VL|9F64cF+)rNcJmYH_5O_yiT zAy$L#bO4<8cTpEWEzLMMt(5Vuw^#Lr#?MRa><3(_*@y&E!ooW11NT+dJU;sR$?QP9Q!g!t?e6Z{s!kTzwUK3NOA3QB*t(K4BAE-Ffd@`SEQ7rriiHc zHx890K8(%10x306!b^A+WekA;h`v!08QsyNzOREw1^v9+1ouQx4ZJ=EX&^&1>=!93bBj{d;&j8^Q5MB=-z6`C&r|;X_$%MWkqTom%aCN@} z7;oxeVP@W|rRnxa0BWDqexTSrdid~*L-hf+9~g^}h;+hIQjH6~H`;P2g*Y{U$>YborJkk(&-Y1^DjQkDnwf(;O>FEjHi$OTRgmm5hXD%&m4Z0ayS z_qgyTm@JEnjH20_xKJ2Ldtk5I5Tr2ok01Z`S_z~bWlcmhuwGy_!k$HaY`^OOwzfQ9 zhV;o;c|MSfSO-PP_HVS_KMD)H-n-1QQIP!lTP&41?baM%g3pkLjMR47r|=x{71SIk zSnFv;3((!x#(3$&aLiHQV=bdx<0U6WdsyRWA;gz-#Cav$CI>1m)4mru;__FzCgq={ z(S3HpD9P5RI_c-9o}R-4D?|l@XuW~Netba0?mOgBACj^tzED56mT*JX$ojc}pZ4(< zn5LvEW+JzZiFz#15h-``X3fo1k-tHu1+et!v*L*?UIBsRp&(KgVagz0w9+5dYAj_d zQ0jxQS(mXp?c&9Ya~2`;;6LHr91Sus4V~W3Jm)2IQI)2f#1BrOrayXzKB_s6#uiGE)6|=t33+)hrRp9AZzXUIoju81SLgNb zzi1vQxrWOOu&v#_Gpp?U;ama)9Z)f2uaj$SckbG5&6=|~q^zVw7!v~59IfPN@)?_@ z!@}TvqnC(tG9W0ZI@e?NmNWWSSc>q@sJT=Bc(gULJ?g^973H=BnlTUa^Fe0ZG{%s) z>sthPf>B+nHqD($Nc9yAg=iX6-KysmxqbuSGUkIZcSJ`;#k70>DU55t7&(c;4b?vO z=t)Ir3pV!jME;Wa?;P|_PG<6u!9&IyydnD}g1jxtNtfx&L`>2F^<0`OMrE2%bY=gt zL?M39-o7Cn8M@C8u)TJCR8kf1T$$|3q^i58rgl`j(7`+nPNi^d zeR}ZMR4+3$Nsqh)A#quW>T8*o(jpm)+szk*fylfa%1 z%Wc%kC_qGk>?zS6=mIgdcpd1KZN6{#56P1jYPsZB^(X(z?E1Xh-yO|Tt1qwa+`S7` z1w-yykI!%H7$4)jYPqj zcth^8>81b&$1KKG>cR+gD~zrH)eI2+fmhH$aY%0Im22IM_=inMZP`Dk2bM4!!O3MNMu0gnp z&rdQv5o8Q|D=*$#B7c{aQrO<8PWOEkakv(^1Q z4E`7J$KGs(lTokJz!<634lKi+0=0)isO{#Oebk$v+H?OyT`5>xvaE? z#%IuVsI)#oVqj04@=}-rC5G~GzQWbv$wW8PSEe>F4u-F%XSv_Ce!03&x31|o; z7`h&@IhaH0-(TTqh2X3QN_Gf&%m?e5>pqG@EHimQrbS#OI=coK>&ef@iPMG1r z5%W3#$9t%19A+=Nm0a3h{DfPVQO##ib?c zyuNGBAG~iua~0;CYCzAP|HSK_rbH!KVpZr0Tb0lK{d(tEf#kN_KjEs z6RgE)DKL%e+)v9Vu$tQ2^C-%nO5AY#>ukgAYLp`9{D;P4yP!Cdut@&GCwLh`^gpnJe)Y^CO;IE%QS0Ipc^XBnO=Bg;10K^uO zf4iVS_O(MtOe`?C!&oe3Q{#>U@);^-*(0zSrq7YmuQO#~EI)=09k_JiGN}ma+d@Vd z!GW1Om@RJZ?ngZ`2Qja)#ED7+RfKU#KL$+ldurwzkAXYB4%`ARnA>Z57r@+4luL)F zA^O$44%0`nV|*rr;ZJl-$YlwNB&$6}nR$5Q3W3}gu{wRCThJq0s;ciMa@)FM?P`+f`GthWA5@-ubiBnaW|ln7iDBL z*VQqeKi}Tc!UhBp>^P}Xu=(cavCX6A0VvKgN6Fo|(LHGgW0aC9)T)ha5ODS}xq0&@ z@Vrk~C_1!6=-My?@&3K|goL%F-kRAUB&CBOR!L5N|0y_~&COE2V*ff=L(v70A`bB} zOq+=wX|ls8^UOzN!sJyQ#wx7T#9O?(K}dPyAp88imWs;Q^mIVflV_?=)pLbmu>z=8 zUOqTC_gv{7ijIM+0pgXpSy|BQ6BSS+o+Iueo-?+Bbwi7OQTb}fMV$J%W@1iAG+yMv zq;W9mDA-mVmXf#VLNs|PAmMk{1kD<$7p0|e;cWPO*M;LVwmIM_F{Y#LYybOXkXf*r z$Y)2O3B*Rk`s%qVNBVhD`)4U&46SX`9{aI(N4fn`ZMwoF5o$O0Fak8eaZ-jU z0R6Tjx!U{p?-!c}5SAR`m&P`HF6lCDtxr2Ps?TR*x*7~i0bC96@maxC4bBZengTRO zq^0*oc%^>TIf259HNC1^p>TVQ%pQu52fQ{)t;c(OrQ z_(pxh65TRzNg1=wYn9u5-ZO-v5ToUw zbzHm!^O&fpUWhZ^kuAl28|Pwx5mQkk_BdXfZ=slXVteKqzzGZB@AqJFEF~vL&{6C7 zc}VVF1+w^Ux}K~1k6nK~jY-9TD2!L!WT#nQS@}LbUPFL}$98h1{@}OzFq5iz5l^v! z1&_(UN2Tbn;tkdAri3?Zz|Wwoxjj>zA3tJFiTS4jaJ+|M)2K{9EJtm=a3WMA##$6h z@U)rP6rm^mk?{rTQLgVG;)3Lc&ZM{(-OLQqZSFRTnW;96juAMy1ZG4;1mk_Ch5al; zW##2i)+;Y7!>)FAbp<1QZFLpHGO|&ee^aSeS5*lWfdNVw{z9gqN=mzk76_V9B2MFD zC$QJ~u9+QD$Z>dDTeo{g%d3_Xr^FkvlgDVAe0=S#3?4q714PB(xiOy}??RG@cV3g5 znMtAED<{=$QR8-x&M6$zN>}o zekv(*pvtH$A2FXVN>pQ~JAn@2!){F0vP(LB$JEgPlqq-LQ6nxx`e7UlSG2zs+<~YQ zxYStOIxdr^Uo@I|hf*Y6f$}kAE@a~c`#L+Ri2lVB`o>hIsqIQj-~ZcZhPc0OVJeRz z+jyvYlh9InaDbispvU*|mxNCoeNEty#V2T~LkawBcnf+YyKjhb18=~r8c@r`O&F$= zkCD&)2r`5G6v(84$fMEIh8v?9nl8aXsj2DdW+mz+>TxkK>Yr8e4(1SNss{ZuzM5Eq z89v8)0i8Wd#8 zm6A+XczIXQo`8np3iWl-cajWyZ9(6QKK_Eh4F{_viI5Ku47lUiH%>>~2n4{4!U{A4 z;{o9Ee7wAXNDF2Ie7w+CRj=_75(Z9}VCpsf{F)c~*po9eTAG@0Oa1`r%jd@mn9F+U zzV7hm#+wh@&I5!gGe_fC24S}&2XCPj{O`ZJe8nh_9z}-c+sN^+1upr48N`}j0D_k$ zlApw*RZ&~!JGndX?|=5@sF#qeQUrH|(nO%3x5qFGkeVaW9p52rR$B?{wY5&=^|dv| zEKdw&sa^+l#+vu**a^n+yLG%kYtEAQI?fFWp=SH$(T?4EtpLw|?s&Ub5b_UX7=Sl` zbzzS9(RlpE8SY6)8^Pd#pL~RTx*tC+U02`~I37R8Ej^I3?rw?q7g4!tHjo$ zhS(oO{m!TPOS!$-H=BaG4-ODoz%+&#*35& z$F}8O9*isF90o0b;x&rFx0roB*~|EmnVA{73E*hAjxON&fZf3;lUx?GS5V}F-U1Q> z@*foS7(F1*w&$m(=_T;Jp{1T1#O!$W>R;-UQG4!O5fY-m-bhJaZzG1*#jAUxB%jXG zoktM8Of(=wF(>(lt|=yF=vR7dhf#a`(OI@X@f)D2&M0$1swA@ z&xJ@ml}RlwwuN{MG{(_qgt11SZuKOZ6p+e%RVef`S3WSa6&p z+l3LUDyZY2x%K>2-EYy8NPPG!Tmuk^=fHA@EgHI*^^xKSiC59;4E~0Xh65XAB9Pim zC^X|#{W*!Me9(D34zUO_YEUt(!L3ATtw^cfGdE}dF@xMbMCuel%mYf2SQjvJx(CM% zNy#Rp8OV6dN(?GIHu)nQ(5m^P=m{?*8wd-2Ip&K}0Tau7+TI^ObV0wNZ58y5M`F>k zY2BuT&L2U7$FA&e@sqJ#yBPg9UX@8j-%yF zM$1i{(Ad~0Auj%{fEfo^4xT}1;s8f_T5`?wb z!r>j5_WNTv#16XKcyNqEiUaK$4GoPE3t(($0}@^eq&VpoNt^+vc|Rh)zJ<>RyrLRl zCE9V^7Y?dULx2c_g2&K+9b}A^NyUtG6y$~mA!u&Q9fQ#w0k(3rV@Cyo7mY1)gqB1R6Lpgx^*zR1nQBqNfN00=6hiWfROq7IM zyvN!k$|oFC{pN&(FpdYC`o_QPFc_3CF7$ zRGTbh24Ztt^tsRwk!SspMj!$e>)I#8e0iCKlW5la&u&_#Y2u;XV^;{Efc~fs_boV-)6=}#l;2o2sklwL@+;_oo_n!2uYaD?Vaf;#`03a?tA}o93MuP@uv}ghIyp$<;@dDWVAZ`;C=Qgj>9Rq{zL{V=DeiHmqntiFgY73w; zgK}#x5z+R5{h9CFVW4tm>G+S!Xm(_{TjF7eY5oY*x~7h-EZGguq5kF6?5yR}Rj1?JdG=r5wfov7ahgN&y5#gvpED+(7-PA3pMQck zh>`NzRSF8~VDZ00U`|O)Pg!JFE->kypOxpHU%nldx2>;tpLjAiYjIOha8qfh9K^FB z+t_hFtF|2{@4prf{ik^tod2I%;C(mo|19dipZ!le@q|t$@ipzR?c2X^ONWxK^Hp<2 zzjM95C3V@w>JizeORgJVL&(ZESS{BEHJ~pgdYzo8A(`G`M^P|%z1i%0DI%t}eYY}> zw~xl$>bajr?}2SLaWP@_9fCM4vKp%*x8M-&fw@ND(zaaD1Q7e<&z9 zZ-c&Sl~Fr`!X41`F$~ye5UB-&LBrxzNcfJ}_h^+OB!V$WR<0Q_iVokK@kRI5R-G*= zp2LSx3Jl(BJ%?_;%PC3<$IOfj-XjS$n=@8DnzrxZnxm+q(s+FjL3YpiVWorz)xa-1 zeuABh$1qg_#8Qz#qW3Tj@eGdgiKJteuWEHU1FTF(ysvCP=nk`pP%1@b4#5KCrK?iT zf##2_%0?r?W){2@oI$K-e&MZ|M39U1G2}ejtyJiH-Gs{CL`79k>u3srM;qOoid_ z8V)t)#>@i_)j~*qC~V=h1YX@a`Gt=yP7Y#Ko3I8zOWv+xz*kJf4ZX9ZpZZ*@AFrPW zjyDn{AeYGNb~F-Y5y%%lyCAwn$Q@uju@0X!q3LJHEz;7M^Lx&+oshFMH}5hnL5*N) zVnRVQS3bpI6XewU(iZFhvObSXye(p9km<5U`0+M$ z6MF!i21CqZs^?l-SP;BfkRY%#ataDUO|gigwe9J?-MesV;xivg5YKtj32exZ*Urw) zCpIV`AWD|GgC?o2PhAMZ+e!9fK4KVm15wRi2l*C3*3sscO`1=-?bx(5Hhwi* zJ|$+fPVim>Qyt})UYs0@%NP;?-fs`7Eb$3ChCC3nJ?H&(d^oBmbel%z5&W?uq%;Xa zl0DtszHMa_uh-p#ZIm@MVtK1U3G1-hCcJa3=OReo4g2tvFYk>5uHKH{H z$Ff)CG0xf3!xHa~^bp^hnw|aaB-mkWhsF!!j|&t|qMu)b)DFwVjGI<`-<6eGGN5f^ zcKoo1Ff+?`dT5qc*7(iZM|Z2qbHm$5!@>eioa8lrUO26&+c`KehK~w3=`rKV(8k#1 zV(HZFbZEa z5Z23B$to|8xecxRzy4}Aqtg(Rgh7hF15vtQVMv z?MS$?Vu2ur+|hBS-yZMuGB>wV)!_DO!uD!+z6TFxMDW8}b}LXid2`F>B3Z046w5s} zMvgxT2q0`6_&`5nX849ku!6Wqh>bvnw5U(Bu`{p92h+Cwk;N9Xs_8`uOSGY?5ANz1O8B| zuc^;#$fQ6ba`SV|=I6L%0Nf7Ky(i=KkU$_DCAB5>Qpxe&!4hH)%Y^B0l0V1VuY6B; zcu)QmhRx+)ukG5*d^na9wl~IM>-;=5Rosr95baVGovBCRLGZ=?!2F@gWU5>LJ66)Cp@{=|x_<&}4)i2ETv+ zVWZ2@D7a%bzfE}EoWgI}k~-<=X<>*}XLqY}@(T~6bLojRzKwU}fOox3kCtPc-AC!9 zrmbq8jgOJlDV>u=6$zTwwR;XjGd$7vF*JY_>Itr4FiqU+b?vDGt~>~VZge-WQirRP z`uk!T43UKcWZ3HOsg8&e+42ZrSHQIV`>}n9zT-p&OO)Oyd8gLD`#Mk%1VF` zhSS@}shW;Ef2W`bgs;kZ4UP29=o=bnqCzM<(LwQ=j|(h5#!{zgU(U`%izNQh1BPku%Gw#r6~Osd%JTT7HrHs%&Z_~U5AeP=UR*>eGIMwS0VI z{)s31+905%is_Y6OLF=iW;oeohojRktbrcNNs#%t<4RBt zkvhdV8*8y=KDnz528xthK3%Jn z8XgBd3LOYi*T~SfDH#Rt4O<6AG?mrW*|MN6Tg2i+Y~)XQ*w0pz1DVOZ8Xclck_$=@ zw89AMhqT&h_$#nbF}gpg&CW`lUBXGtDog+fiOBZudT?cP@+OX&hZEhf6u8b&_PsM< zYbm5+v@brTeSB(e4hn{7oi%sf_hDEW+TL15*ErwfS9VeuyGsYQNCo<0Xiwas|5Y7n z)FkhdU5x-9E7n+R(nm_gl0x zQ1H`zypHY>`e{I(ta;f7gT08v4~kphgdqFmfCaqQtJbi%%If4?h3JijjN@BBy|L2x zo#X{u6FcD*jIU14{CVx9%j*lQ9TyXT(L&v3HTn3aF>?PTCij%98A{j^*atL1&NV}x z{U+&J&ZFVm+=oJ$5cNKM2%ebnkD2>YwisEnF^bp4@#^cYdHLZ?@gYK&1ED1;ojy=v zz_L^&Td3~-Q&o26w!^6q>GRDiVg2@ih@m-Xj#nyI#a~aHNPB5f{B`j^bYSPp39stg zECb2Evc1|aS=Er!I;sxkRvdy&*urmZO!~1e?Nn! z*c|ODb){crxpjyIAa^^2A%@#dB3K^CBK{meZ__+n3Z>2 zcANtRnagL9fna>p9caVWT2GB%TjInFgeE_OH&Tu{qM~(UI+>*hguI|*d>gU**$sX3 zzM@fqq185wR|Zu^O3toe4H0As{e`U^PIzU!bV`~I%1tWW$lqSe$LSd5#A+krVBohO zD)e3|)vQMbtnILx&~J))rI{$d+pG3$-YY#2iM`{QTz(PqLzJS`%T;sG&j+VheQBm) zl?CBZ%W>eeh$HTkVe@*XqLy8Uc+y=0za~~T%}J0$eLP!d(-iP|Mmuy5&&{sqTDf0$ zvmdbU@%5vBXJ%ZYZnMz@w_Y_Pm$aH!g=OPoYDOw z-*a;cjb}ohOGHGpll^!Vs>19>$M!u>U-xC0XTFZl>zZ4A1ct$IMAZAa-Y&5B#`TETf}?4&~nAd1`@X3`$6cQ zA%p@cG`RiLx?&(ME-pzWsm&l68MBiXqJh)*kPr%+A#}N_O6lfPhU>76ve+zv*a4_C z?hFbdwaLxca6PO+u?!)pc2JZXavMfbx!|?DWg^^2tm$a_-=g-#n~WO5m{4peFiZ;_~*9~9p$cHLJ) zzw>4idBs56b_yYUd?jA+sBCmyK$Tly?s`nwCSz4x3_fI133*YCA9re`o z>z?Ii5*(b-vXZKejF_S63gDl9W!9A_4)Bs~z09u5)n6Tg$hGZBSFQl0^Qw_x3_<&1 z1H0&DpLzPTdo4saL@27($g-^GGrVf}CFvc4SXBhufWkcaS$R5{)U!i5%lzIqci&_5 zbh`I?N0aJ^j5vKO{7Z*FqzkW*913)?dW(!ya78Uw<#@T@cX;n~OZ$K1&3S`3iILl`EcdMsD!k|>jck$5?w zIiBZ&TE>-c5cc-Nqb3=YUT;??FW?(o| zz2G|V0rXu$vE{x@wTJVdK3DYRL8oNo*Ybp)aMD?g>w&s0s_fKAZN28boSUd1kPtqo zu_XMvWblylLFrH|!S{w2j~sY$n)5y4!aPx1d@bRhgYF-tBmDW-37wFhoxl9G>Q}jU z=Woro|1$}=TFv;Mm%{%Wj5u`iYJ7|S_t}tU`4g5O*o-1osY!gJ2-kXD__%WK!V~t^ zTBjddH|RaT^wS5Va#aMW9vPxbKCAcuaj?7`DdG7j^}gLj_#)S z+n#>(scC3(b8<-IQvy##(TCR=JCC1Nf>Zk+=QMjxr}4AvGP!H{xfW5kEtOeMMXH?@ zPN>Lm8xdZfE4333Gl^C>M!0!v^Aq?rp&_F~)g2corQ>T-+@!;`F7R`RhNdtU|6Uj| zWY2mbw4t)RSV6RJ$18!3soCsA!t})amCf0!?jiFzds6vJ7QWg@hni}owW_=)C-Pi# zYnA7e%OPCb*jqGGqoDMKYzAll5AZiGgvNWl)tQ_d&(br#Fx^N2tWL~ z@IIcT#Nt)!MPaK#amU(^Bn|7i2eMSy^7v9~O}aJ=B)4N{v=w*moO33m=c-3@^TMsq z>w0gOSPn<1Fa1~+k_=7ZirvZz`yo=;MfjwYCc`^#yz`jz!SCL+SEqknDwRlG=}KB) zN?4t27%jej&dM>!XYpv!&O7?^WAE36+^Z*kMCTnP9SLdYHdVfzo4F`S<@uS9lTPn% z1;V{Xwc#<4y$PGlrDtLa`TnStZOH0Qpy!Ed9qn7M3{^VJa%U~Hs%0Oa{ByGwxLJmY z1qpR;k#L92O0L!`LTaI>Vzu3CLl=~o7nh)iX#H;=E8)tVTKL(#FoQCC))$_uE=(j;*mNHjQY*`+81AeqR#RpS#G(C!=W*ZUab;s6BU5W!{7PfTH&FS}-pS-~o`>p@^Bv*oj32knD$zRPIyniJo$3EKcTzT@@YoRHvLD^@D zCkK1y`aaIyY5wz|S-$fG?VFkXNftjy<&(;xrMBs{IOb`nX5cNbpwnJ*V7FeGrbXFv z-4Wr^_s=caFPuH}Q6chfcXo}7;-)q07G83-ROs@~I!imaK-;M!816CgK5u5AdXXkl z$5v+ZZLweVJ;i~ei!zsH7B?Jj$>pa-zimzmb?`DYEOcfcl~SyI8<=;9=TZKP12qFY zp>3S{I{`RtAK_}Yp4KD6H+_|t!^5U-@R#r^>VML<5xJ46ygc!_3NMgPW6{GiXMo-z ziknAnM71U4)LY9gH{3pZw6m$}kQ8sN#-BY!cHZ7bWu8g}XJ=lJY=;WJl0{pzTvQ}KE(>D+IIp*tm|e-|fcA+K+4 zZnh{Lc!~A}nx<2B+XdaQ&2{xFYFub;wDwRFqE5R=?iU%J$4~=FWgq zn2LSJLW_WQ|8iY?;+{h<3)$cCQ4D9w-schk5#Lj0T8%R6uaw_q-A<@@ z<#xSdJo5aUK=q(=muu6`Z@u@XE9HQ`8tD#F39AsE*zG&n`vWCxk%#+P#m2-y9R25F z!uFS`UkolHsIMX7qzczX{{-%D6ua-f#S<=;dB-D{JS>dr=@US&{oT@>1>?hhY)4u0T+N}|4wb!p-1Jiz? zK9i`!M;An>43azOCi*V%Z1#9=_CWfrjejb~i^a~-aeLb63dB$tLdAMVq#|k2ntp24{2xDtZOWHDow~4azdjPDQuT-M-v*J$s_7<$S#S z`bK;rOX+glrBZ$EvhdqGnEOHxRy)8Rc*nj(fn*7zPJDUC5&RGQ{fiSYlMnHo!Hy1_ ziG9PLf$~49zccR)A@~@xyu?F8x0#u&%oiuRTgnVnMu?_a7!OguvyK^isy;aLYk6HS zZCF!H#+LWU+>%6B%Rl~)gIvFr$c;3#X3x4g4u*SZ9JG11(H1}lIdz$gGG(h0T&Kwm*iZFmcw)eE_F z0rVKiru>Yq_{_4d+c7*~dDh!Eex3NU9pILH6~@RR)2$;I6B(?_4(GVRC=ujJghp(o50RN3982o@FgPgm?g zF-76N*9-mdlNG9u>%aLl=wWE2QZZ8#Q`M-L1@1N;=$~XY?;lr?QWPzGn|0-5*3r;Y z%7Q_GAyoVrAJ{-XzTp;!udWj;PpdWze`P`3SFJ&f)%ngl}y&tg?@9zRu^_{ ze9#!sikI?LzC60QUaMRA`PiAli7fiYedUjQd|PvbtZY`>wT%aghHmNTBbg;!|2xy3 zlTi_jzFivh+Q||n84C&d6(%28jUv^TOh>0I>Z9Lvoxju}KsotK{P68Q`>cI*f=S9} zRJ!>Lc>_G1ONZzKid+7>5Ke$wi&sw^xvtE2AXR0PkYA)UQeO8JUlv)kcF9_#En;5| z5?d$z&SOs7y}LSLICIKRmZi;Z_Q$Ww_JR6RJ9cwd85r{~2w6<=7rbv8mWds%x6tdC zH)kuJj3wHo#T1g6>wGF?@G@P*=)YyDG$r@+#@}G&E0>VYeln9Ei?muf`+rqB# z+tu;+n)41UbYd>JC+e}tywa4eRI1Xu>;jLK?1;94*cVxmG3obw52{7DhlsW6S{oMj zIlQsZZ1jKsoXXyKtOykcbejj|at583%^DCFhl?`Rv>*pRxydQjUHQ@@s zGEaN+o&lzi+N*AcA#alsQr^4B#Y|?gahsbjzBsVg$(itmPSg_>^bCE|eUE2B5DHa!-K+)qHm8VB( z!-rGHzWwbPaGRKL9}C3Jfs@P;vW~9FZv!ebKK@q7*HRvrXHB6O+Pcckx5^V~z(;v= zW@0}4^U`q5+e-T~El<2=C*kvcX z{Z2@HZq!`ir<8klu9)?ZWEidLz*m{Hi>_;4A#e1_G@A9l->|TZy>>DCjo_+HX9o2+ z$C5W4WfBTe;Dr zKYocj{9dD)JdjU?`}ym;FrJFvm6++pCeygRRb#9gDxoAlG$kU{IxkT#J){a#Sybif z?BYvOK1-vbn$G6Jma3;xSXSM*#`v>Npq%z+v?FnGNY`;pG z`EK66?aY>Ia0*}QCz6V9Rux2{nFs#czfB=MQNl>4yahD%KdJrtQOI6(ChuJFk8F~_ zIlDDR-=$MaGu~eFmR4fvitITrZa5z~=7)+#bV@hFp7qV2mO5Y1&aI?=9tdId|70lt zq%earJMWW$TYA&+fYU6AW4T_0gK_deg?8?<1x`PH_FR7Xu=Jssk<^`)LMN$xHzwGC zFGkAIxxT?L_r{e^l@f^xx2CuyC^NOH9{4ikoirWfI}gv(r&W6Hm9qj}FB_iAJA5RRe=S^n-L*Ke_I zC^d#oBEeU*+-+-ESk`EQ74g!3-Km7|ZcaqvfiUZrJ$F7~{4rA|hd))1E~X^0`8$`{ zQ17^03X8+Ly8Bn~nv|$%+2|kB?MstL6*N!@Idw>|!uI~{{e)}WJL(*0!f2~|N%BL| ztw>e75k+0)#KbRYbBhiA%ucKCW4@>{t1P$RP!p`(wrn@xNB|bKPH27?3T)V`1#Ak1kboR9wPSeKhcV(k0 z+1gdg5GG&r>7AW#!tlI%$f@&32%qIUGxpt^!P;Q; zOxDs#C)aptkQmg9ccz|#R_sFsBuhO{B)dowXX3))5K5os4y=D6A@v!UKKO@>R zPHe>`cT>Kk&;NfD&+F;in(sZ* z%I{%qs`|-Otm$iKcsu_}sMHgywut^SydP$T$|44H^Etcrtd8NmfcfhNA z@Ac1r>V+f|1S;}-05jqX4qEp719!$(Hn#{wFl*}%dWGzoufTzO>cC&*;3yWc-!v}G zm$kA;{z`H07a_`lInws?r9rm~Cj&P07UdHaE?RB0&^eMwXB8a%p_x`HAi<%jo_Oo5 zb06W+ok*8;&>lg9Vc?}jEJiv~6*o6G2@v^Fqi2aqTRM&xXaffwhuk42os*SC%fR4) z7EXS}Z29o8Ud#_-e!)9sSMzL+HdX0MhjPn|#zg0N5B{(`cA)KSu@BRT;=RbrAGwZb zY8u2U>$Q#c;york&VPBpwQgU!w1D;#GQuq!IUFXmwVe_sw>EaUrVPYAFnsQSUPovy z?Rwy;8hj7wFSz>eK)u|mnsc{8GaS%8+AXv*cKY7ZTM!5hy1~`q%DRgySmx~sBiSU?Q<3ZN?k}|~ub!TXnQIuk7ARAg)fO_sbmA$Acvb5Jw+X_NbXYIpx8A3_XfVa& z;OKY-RRdV|MSbSp49n}_`GDN&({5VQ|IHfw0;i4b^3F`9mKlfTpdV9H$@{9liJge) z$_%G^k?nIzTE)vnI=rgv3ike!>k^rcr^+2q=zq+LcwaE?@z6{wP0xQe&^=y1CRLP> zw45lFeNTNKJ~MM3%M}0*`lEI?%Yk#Z1@F73w zhWnPWV0fkt?NdKr+7;bTSu{$j#|Qfd_^CCO3=kb%l6(5Ubm*_WYott8iCd@0E0}6E zU$f9+vJgER4jrGU>UDf(6f=oz+YqCe)jlnP~!s4VqvC zSs%qr7<2WNT#N_51B5UMH$wO76s0pPn=u9f3xnSN{&E-^iV_+4w1YIK%Q+$0@z8xs zRWLm7EZ2<*t(F-~OLWH44_@WwY0PBR8kG91+idcYBlqR__29!nc~)yOt(^PK3Ge)> zT=eujEga8ZgJmuN`Ux0$emY>t+MtPm!6adj6GEiE0}aZ^&aQy_Aw*ra2(5AT+~3eP z5}bWCVw}!2vDl!ODeGmXw@BMysCCzOv_xh3_iTut$fl~HUS+2c7oA_irS#qmh0*K5 z<4@J5CG4lo3`7Sn?QjP6>tw$;=f4lb6PRlmmxnucb8XPe@O6<{PW}wDE+K3S_j+=r$IfTjkIzzQ%{WThu>T-!wziPT z<=lHmZg=yFH*Nh=ada>nBolpxq~AT$*~uZ(Ks%b}<}#H+Hud$a{m4d19iw`70{gwc z(U7O{OMfits~9Vn9$#4{{>FksP3@3Rns&bc^^LSE-<69re|ndezc6iBpsnc4dEa^e z?4i(%8UgCLpAWCN$q^CmhSO%}ZUlMg0wUGz)w@$(jP@Kx#%T*H4j}|Bi<18i>=Bd+@n^n8;UF5^{Yn~*3;93j2|Ra2lvlNYBTA) zEusrb7fgIJ;dF3Re^5O&I4Ijz=@6~9Im7gCiLJ@ib6$x?j-UHjUS)77QH=S<8TBG-Z0oDH z&ZR>;PwE<;RJIsf=eU30LE2(Dp4HE3egc;wR6o6A@4rIlVSW8J*QT)Z!PVD3p>L9J z2>r9w+w!3+Rc;;(y0>$zBK1mRJk%tU0jsIEpUD?Ha<0^; z$Ld(o%Nda7oQ#n%itq1OPH5-$9?3i#l#d;(%$oMzI&fFG;)QyX7e~3#K1-3_iSw_! zes>UG6Am@#JAPv=N&52xXVzO~mXD;f%ZDGvgjf%kTG_dc7dqbV=4T^0DB$9j)PCM& zV@fXXitC+B6`p~QM%|Aj(&w*gkGzgxl^K*IypJfDxi5rj%73^>seG3DkwmUKUxVn$ z0NT;gc4Ko^uFdI&Pb`j024o1HXpXL@sBxr<#9X>4PnvaaBF=Coc4p9;@iguI!<2-J zrI9!XR-S6z6Bl1_E!!@J`&K*;`JoTl;RzbrB`y(WtsYMVo@O{4!E%;+a!`ISa^QJp z!PHPM3lN?J?rfj`F4Ce(z|tg>6})P%va*B`yGCBt>&hSrjG@a66*;Ngd+^ZpC%%`_ zLgGuML7Hn&rq!23=Vt$Tvbug7BS5W80S(lgsOwMwT##kYR{P?^~=$h>}By>fKM7hT%~z5=nEv*Lp&C+UNJraDA$5e89u>YYn2R zk*y_24?uPQo)&A_U+HYCrq-MFqp|i;RXO=W<{AC!m8l8IYs&Vdq+$dm3X1R9WADs9z z%@9R-cVJvOVie>NkaUc~X#Z^=Uk8gMp1w#yRaMG|MZ{a+S)8{BYucw4eo5Yt{?6kk zc3SJ4ryHO41WQ(dxcydNaZ5)y!3un6F^A!l&S<%ts>zB^)sN<1Xi({*mY|x9c%aJ_ zcXEe@%(>dgO*RU;uCbLBQt8VBcDEcVC78qdFhz?FlJE4Jqa=-h4F@u8qOinBq(hZv zIB7Iqc-1=9oL3puW!qtM%D%iX%Ht-S@OcLE^9)ZU(T!o1OXUaszGkK2JY}D6r_ep! zu$~r?e_X9)H;0~xs4H4n&5}7d*Z&vPN!ASRmN_BCM1u#!x|J{E!j9JN2W4Nxhh%8V z%WFxUclmMV5X$`ZsoYtPxd-}GpJxf+$m>%AYn6?l{b7(-O-Tt;sbKS7IldO&VJrx8 zEAi~^$=?!OMVd35lzwN@<)!wsPy9 z*;*G8b$oH&Ft<&7xc{%Iq0slgGM_*1O*&gTDIi2)#j9X=*L&ybMJY)p^t}4|?|wUe z_(GP?y!=eME|ab8p(wM7(AKtz!44(aZ0 z=~UTBqokC8pmex5-QA^hBO+Z=A|)avEh&P)SsUMT?)~oh&bjYD4u<2m>xq?f&AB@X zC`|O|17P8F_s4)RZRU96IZ#qn42zdBlf?y4-qGa1p}8uDLW~p;DfW_Vyrq-+JJdou zIk?1a!(&jD2qFetL}A9IWQ2sS5ON!_jsdXeL|g}&OCfCza6b*9|1xN?`}XPZvJ)_3 zL-OYZvkeURn3ekL&-g5|Brj*kn{ef8;ztd??#H?kRtEhCtDd)l_~t=pA%7gAfWtUd zB^R#Mck9wd7nos2Uk%Xn=I7)b8XSBFGhx4gM>J2D*#-EXyw&34m1yIYfWR=IHC-bg zJ^<^=+!ms4s$?t=UyAAuG|=2*8RBCmr)TF@Nc3+j{7I{e3i=nJj9IkMp$zFimVtz;}R2&I~{yi~I&=hH72rfN73o6?2_kNV+@p{je@S z-qOrT|MH^e_mk-s^d@Xo6hiU)$5gg`G*kMWhU4aL^3`$Xt?&Ic?;%*AlWi zQC)~SV8UjrU*l9?1i}F{tf{%7;SU%Q(cL7Np9BnI0|3}PMOKIxN?#5($b?1qsW}7= zXB9JYt!-SF!nGvsNjW=4)I`?ClIdzm0B1)hNh-NV0FksQA4ks}PE1T>GARRYY;@F2 z^v>4$X%yH_&*QRJB6cTVd<%snvb zLg}vgS{=B55h0fC6s22eq-E3tl|idYI9VWM4EZ0rz0_fRUoQsK#~wYJebfQHKA8J0 z-%&d}I@)a5={GHCDcezd!fs3zOUTs?eFqBp`ojxQjaL}@YYp_;ACW4+ORv!-y-~@f zkq?%lg!xmE56wDor(yo0c_vkf7DfZixQIYK-TP>ACU^j#WiYSZ0n6_2_P^GsLCJf8uSlxs-5Nsbd=kzW~NvNl9O5@+ipr?|7wW2h`4 z`Yg+TSQgqUQi@)_)s>Z!+Qo#mggYNva5icBJs0E6u?3+;_+c#oaD?c)ThV=WOB%OD zx9o$R+MAJ1js>0lnY!N|m2|cW_S-&X~(26wLO$XL?korM5g!W6yLykmPg7kxi z@-EQ=gfmVu+CviP*RnH!!+S%$3~B!HgVay87>xHWEnM?R||{grxV z1@Q=i+u@A{1x%GxV!f_%4tw*@P2~8z$BobfD*FcDHEG^S-uwd>PBmMj6wreJ^$lFB z385ZJd6vh1axxG~#a z4iUh#_SBRTqQi&}=@NiTLy)XpOiomr-lvH{}_TDItE#2p|=XE!bav1AM&fMqHM z0n&cfJu)g|h8U^TbAbs>#C7QcOaTajO!%l3H93d|qR;v3qLxNQhvMGt>uLP^GFVCey4Gz`H5*Hp3!8j>#M;z={?(9CAV zYtbvTzJ+HFZV_?Riz^#bjh$xT2h)u1%O<+lHy}fqnFtNf_7QL5I&n`M3|0ML$W7X= zEPc^u!Sy5pq(48b?wxErZ-%Bxlg6@ADw{yzN1M+a9dx-2S-$PKAsQ6U?v&}S-4Y(? zBikz9vl}d3*W2#*Fzn+|#WFwF+>S47G z`WVHjnXXXh4llz{^J|H8NgQk(oRB#wmwQ1e_OWzDWAw=~#TqT{Shf9WT0Ajvsjj)D z19yycElmxK&tA=E+HDQNq3G@>NhorC^2^sOc=rz38BV3g`s1h64WjJUEDEAp)lALa zXGF^S3mYfzyTYVpSR~K9?!%1G{EofkP0yvbEkt?&W&-RoWz5grKV*2UaozeNL@uup zq@}aKzVTyA7Vm!|;OyH+<`RH~>Q>Sv2XS$_Iqq!*q@KJeYzQ(y^noGkMAr{r3L#g^eu$C%^Ny2ZyIEp{us$$ zu9T*&S1-?=PV9PfR$KSEw(5P$cWP_{yAU7MQ#6_vB}K(1htgc-5>QTHSx@0IIBSi) ze??J>yec4cD_VoGd<8?AG~b2Lkk)qfVJC^w&A*`xIplz1^@3U2jNLZw5=dEQ0p}M; zc~*MY!dAthh0&FFVFIQEiC_HKjm1l+)xnSr_g}gsj zNq@A=s$MiqT*`Y7 zJ7fTSulw<=M=apEB0BIeUjt&gb@r_;bBDu@ROE7tm=X%}2_L%fF-M%#RnhRAoG>`I zSAhFG`n`PYxyIeXU^)Pcm3nF^DdC+80+e~ z_VNt)hyuPjm_@%lyiaW#MJ>-7>Ee>F$7PmF$5}e1poIRO5AP}O3*pyKd!77VI$iQU zSvv9()&Na1IU~kI78d{EgQS?*T}HUEJUgL#;+l zYxJQP8xK#s%Evvwq%Z(f4M*hQp}>oWLd|@$Fzk|CVv8rA)i|5=gFxpFYOM3=8C+$r zZ84qnDZ(!Q^*BH>!02;)_24L`?WF(q+SwD5E@AwdIfZ(xR-lVAwM1&vkF(;R5{oA$_#P+sSq& zTwVXfxprt!8BhZQq5kyD3>n5Hm|rtN(=*(Gk)Ku^(FT}44j^^UgMb|>8|Xp@s0EN< zz6ORMz;^vHt+H*HeI*)`G|R;(Z#B;^k78W+Kcw7QbQ!oa$1THBzkilO9>lGkL>rfy zlp*BV2@Qcgu;mACI&I`Kgkt*e%@4HD%_TSn)6>%e$#y4ye#7WXhs`9S!y54I47b6+ z7{?pUs3F{o@^i=TILBAsc>nkCqx(07qwb&e%t>5e6oK@Q4HuD4Xojr}Wsn$`);c?C zEba=FqlzAvLzlc_0ALb1S@P(YJ`|$I5Vz~@ETc=p_=viXiG_J$D|!lT!uk;a<~EK9 zCG~gyb5bCjya(W^>6RLWbozHIge4rpz05p8pFMLYdG7_^IZ&<6L=CtpjtpwS+L}SgFyU)vgb=1 zNXq;WG@?dtY&E*9sgS{8%Un`1d1D1C$|5FFe{a(lC|s&vT};0uvqJ>6Mj4wcdmRPW zse*Qazv{1zF_lf_zhj1Qqek64jn>-};GW~o!I4LaaFp^TBU5LD;~wdpISa!3U=Zo! z`<*9^!9nDm!~(DWaJ7uX=fs*p3!`t;+Yp)b2uJd*KGV2Wbd zQBj7ni)9_g9{xu8HejbRqy&bSgZPy63&oYWa#G6|V`cF2q4PEw-U!?z-p} z_I5b0a+zDo^w5%-W2{ceRx;g1^&fkIeulq{8OoZ*CcE#2@Y}7G1X0w>T-}vn(#a`u zj@~}`^ys_CP5>*f9?MJVUau0_p7!W|l%-szW>Ly=FttYg(ZzJvU?22j@71YFk&c`W z;;U+%d0NrBds3!#jMd9`G{00mKe~F6!~bu>eD>7*g<4y7i=hHAj_@;Mq{=65Bmfc- zFa_%y&;0*h(R(c0MEtTb*8v)!ET9!6Ez6a|d(IdIGlPiEycB#~|^`3tXwC8?0qf8jLW=<9V}k&ijKwGK*6z!Hz&Fw^g0 zeaCSx^r_{qH>2p^;FAgA&eGa4PC<0=ibSSw8+Q(Ow1&REEgPrxX+tq@AJJLv`b-n{ zAZhyee3*v%9A}xuk6qe{=jzeL-H!k#GPw*YB6mU?`wh7qGhp4@B!7-`|n{>-rD!&`+cw<>*r!;<;2J z{VncYUkOnPVYI#Y@(YtkK+u`X_0)tB+Z1DG>47}#)%P#&>RR-SEG+Kc;Bo$qhz~oPPxwX!Ie?^8YLyvzTo-;X zQ#o#!X~*f<*W~xIddVSV=KIukXlk=;zg7iw-rydpu3mvzNr;l ztTpMt6s)6eZTn6kno^fQT`Kd9q6?V!A$T8Yr26<=^Rd z>*tRgSaRED)emz&>5Q6K{7jNtP&>RM^Aq_qVz(e~!torpRaI*rH9Uy@R?0v{@3+`(!L&C@J+mg%+Vb8ug)FO^`-@h|Gs zP-ulHS?-Zh$n*lq8w+g?g4nx_+QQi;p+X1qNtG$YO=l)mIU6j?@AhHmlD#mi1AKPos9YH&hL<7mw=wc$oJBcY=R(=K9ol`BUsSC zI1#V2>U2bS26L++9N`wYUO25aJw=o;mL*MeH>~H4OfgZ^y_DpK#@;o(6GPp9$5fti zz;7mq4(o@N5V5CCrmkTud22t8lvfSm#8wTV&wuXutj@pSZ2Jvwz|WC3i!5*doDli& zvlYFSVUDj;!d7D@9!pE%FM{zT(ko|~PZP3AQe+Q^V1bdKadMp$NI-X&hm~m`94P|X z0Dut$+_tl}xda70U>q74pQb&CJiWZ7{WAL(S5g50kZ*0+bcH(MDs4Qkm-g04e!=P$ zI!=0p~WL`b(fD4IVb7Iqoqc ztL5R3{o#kt-4s_yz(VU(s7o5naS~*V^%LG~p404OBDPCtVQi1%s9T^S1 zVSSwyB z>wAq&%^#Qd|5+RE3ojaE6cs}z*P%M5nd1NIRgEEQ=`XUb#J0zJWr(10oBg9>^b|i} z{()Rf1k^V7ufQZV5ZaX#7e{w!7giGYzLc`EwU7QRn6n$kO;o|$-IJt{oiN4A!^E?u zDZNwDpzo%Xe}*kx>(Kj`_bM*s*ILj|7$Qlz*$2y-^G?dk+Bxp3-}^g+X2ST%8RUS0ZL$HV zES)|E-g;8*2I@bcI0gZ&=j`h{Nh(X|L>o<`9Tf%2euu{=z|H_WheaxM@IhG4H+M8; zvx>{2IYc4$^U6L6i?tF4PWb)H?TG2t7FSEi4OhAL_o?CEd>FbFb+V{JMDVm zkC(S!t8-2_kB6MZ4QH%B$uikQQHZ-qh;gq1tHt*RYp!?!e|_K`XE7tm+~MQ5%0~q9 zUw}L0?!s2!Eh;pXh~bwek6gzSQeo^nycXOAQGquzQ$no2k@Ym?^1JG*OwAFiuJais z-@+sMSb3I*f4e?HvYlVx{kdr&gw6S=S^el(c>lJ3tK@EDhU9NQA=a$10@)mCY$eWS z=d_B7ud}h0X9xel+{!=A)UBaO6|-oTqAt{eD)Z&Q@@*1#Gi@a!#nr^C3Z5g}=*|9i z9W2pX$4VBny>LE9H3tL+JUD0#tY;nB(yyDG-*S~swELi+e7~eN_TypwwpAsOmWuCq z+QQ1U16)h>_QJBcHP+1#!2$cfjTTRA=df^U%axLHZgGLWH}lU}OJ1^Ns~0v!CK8$s zH9s#q9RBXE@YmB)tPqjpH?S(@e<3$k~8u=rLe6+mQ19R1m)Q|9IHx~UlYqti&> zEuGRjSN0Ff@RVY13TM77&Ctkiy3fqO#IyTQ{rCvHiO*R$QvqiE(I2nVjX(O;W8P+) z7BUx2*gmHHp8cp4FnQFE+%BM{yLh%lnDE&-UpGYbC-T$_+ttV3OA|(u@>iOy(Oq^H z9Qa(-j(4|ck4;=%-dN8Dcf#fR{YP!7C{HIe8L>Fb>EJUmK=i|?-o_#tkT znF(M%Dw?o8m$4DAcUE?`da$5`eP9KHY2}qm zdxIZwJ>$@1)XEbVEcQ0kHvHm9Hh<^y_}_OJBu!a?gdUw8w9)t@;! z>C#T`d0_*6VWz63aU|sxAhTGJeO9vB_B{Z5n+FR-<*@nZ!vp2|53|?7Fn{O`qz&>@bI~s zBv_7fTFU)?(pY{d=B*fV6^WK+h0nc##>kz3+$i03rswnAUyRO7iBAuKbC}qU>x*2* z#Ov0!wfVERWP~sJdi$wlo}3&QU&QN!<1}`Ue(TWlpXc$M!+f@nj;pi>7Bg>mA={HK zg&4OU%+26uj0uU*(dp*8IeK?(GzgSNT(>>@I`@z|SM`HNo0bfXPF){7v7x6+|29J# zlB?tNBO-Udq_Wm{+(=E$ddD8?Ec}TjTOm466SOoL(8Fc5_jV+(Q|;nK-=~tf>ZZ5b9qhxtIv_f6=$<_JNO+h=j#dd6TS!X}o(1FsQoZVC8G!-XG-(YI)e&*pm7YF%)s#lm+!J6xE_ixD$lDmb! z@P!+XZ8BSxEzu>(_h!hO9G70IBPyTr8J3I{JZ+{7n@syAszLx)+O4fYoB>GzAw}^Q zud0t$OV|wPPpT7MA$ke6-Hy*t8(~}PB`4w15P!ZUJ53}13hirA7o*dukw9LY7?IkA z5hUtL_yqbzpBmN2YUZim2^oK`*pt$7%A1WrGTbYCsVJMNjU`th#MQVNdVY&6CI5v} z>lW|+?MVaS&>QeNpN-(UcABwo&z|yWq?nl2n=0vRxMIMbqK5LcmIvF9a(A1oCEUf8 zdrGTQ^y+3^#ci)sp?_JLK}L!Fwcp2Hr32o1d0x}GW~Q7OwEIDW5HEd0feJG+{ctl( z-eX~Z3M12NdbX^slw``Y=)<5(Dt^Bbdfz@JtBuuE1Q+k;RwZG6wgz)GGK|~XLWFTc z&(gj4iG{*J!YQxA*Prv-SC$%|-t)3pH#aY|QQ5eFb}nhegPfOQRlmG zr>Pfmno2yN3Y&B9SYvxzGH$XBW;LRJgxdeA>KfjC;oRJYEN#cNv+q>$s;=ETbY}Cp z$1z-WukyX#_<}_UU1Npy;JA*hWi1{_KE)Vqrh@+os)LjjQwTdtz;61;#=qlY^OADRa>9pkQ(xx@{J= zwxCf#8_B@OS93oiO=@=Q_d4s-pwW||eqUwT9vZp^Tc;JA_FP%Qy&`re3C3uJLiKoG zXYhE+ec^%zqkq~@P&g`Dn@o8}Kbl*u1R2>U*)7zZu3V!Mf2sOeRNET&zHu29}5posB+O zVjZhKQ%99!#*;v@4rJeN z(%0XlFMN(aI-Z!cQN@J+(HMD)zv;P>ge&{?>qaH*w{Bb2JQ4e|o0I|xP-L`nE@Q%u zwSG78J#deoU+B}C1n53cYoOu#ii?l;B#>)GnZo^nnnAo|DTf6_6qOE$0GVQeQ*gng z6-K3!*-4{AbDK+56}GvwXn&n{{WCXEZ~0>Z(0tY(NLLly9Y?iv0B-AD1|)aRVZb)o z`;Z+?`wA4V)YJ%&cL6;(&|iOibe=>cbzt44N7ZfZ8Q&kTX24psHxrXFS^wF2iCg{a z>E+O79p0$ZJ&PH}(@kNMo`WM;!wUhEtB!61u{?&Psl)5GmU~}}K!Ec0Q)~f~{vWno zq1eh1*ZKmlMfa*L--h2G+xE#+GuRU05LY~EFghRQJ*wQ_O>3^_S6=k>#8Ui$a{2Ja z_T7pVHNVdmpBQgrxiOwr5LL=dOJ-{1pBhiA9Us5FIXbgKC+wc!_XI~pF8E+E@e+f{ zv+Okt`1R+KGfD=585#tPLEBI$EId4hMJ2bqQQXKVx$W^aOiWbA_I*}Xm5KUkJHM7R zE@0+!huLW0!KIEcV%34RdKANhi9%A7?7>;qs)kKG*s+amzNxR;)dO=!znT@r1@_23NJ{J`JhfTg`3?AmH5b7-G*0weq0{>>>7Wk@GXo&2wmE;tywMePQ8kYJ5o}!YdIIwdXI}n;+!Nr7Pyt_f z*D(i7h-K2HryXI^S@uAAeNj{c^%&SVfzN(JbL@>S!iFZ#?!lOarRAUn7bu~Y4b}B= zb@56Rjw+}D7US&mDP|TxU;xxny>6ke-$C`|x)O@zaZnrO1w|16g)3@10)h9dSC^p5 z4TzQ0fmp!Y#K-Fy7Kg^bvQlT` zc|WB|o{2^Q12s^VA^<}GbHhNXl%mfZgQhpNt1dOHE%QD-0SN`KneZbAx2(^@vgQ z)$;MC!!oRMvh)$bn+J?4u7e%S%<>l@LVw(5B z$_@)e|GWaOjke3smoKjSYkC2#w@699f~p$)+Hb4&T-@C99n=*-+ik%`bnQMHo2oA+ zHg?Pj5TGtc?3S06Y4}>%+J*%MA=9EJFDj}H)zsDLKaN5oU8B>0B-SjIQ-mOd2DB7h zNaNDxGtH>86`{!ivO?{8b<|`m(=qV{g@utRa%xY?^{y$nL$8UR0*V2mlYXdn&bhJx zI9Na;%P3x1QIRC_V&X}8*JQRmFxj8;MGdepF)=YP*w-4Cy^lH?>|Q$b6uI_bIqMZe zP1|_ebDUle>QEsxtx+97(liC`liJMI z%Bl`}C+HC*vBek^%hSm!SNNV8$lvvmV3;Q>KNXxe%D09VqDe10WEf%459*Cu7Jilc?#1$s8dDX7sJZDeaV8n z?2e4nx|LRFj`8`qEHsf^0%&1T{{f;o5a7`<%dz2^1g&CHU>^sy2tbA|FF~7-#_F2( z6>ks*#T^0LRpGFpaQA%mBnuvkxETU*;3+b`1O0l$6*Iaav{K&o}l)Vpau z2B`BS9+sKCMpS_)YE-{mKeH+8bmWK*!8&-CjmBTb*Y?dtkH$gHiQ3k<+Ai72859PA zE6|U6!257G735v#_uSEiIS$iyA+TH^wfUvNt^9^2aI2w(=4VciXK+WJHy;^UQaxan z1i^xPKJI-GycmNV5YYIY0&!g;;)_`hb!%)|Rsgz=)DpWP3?o@XlW>86OVbm$x7IFRg4J^VGurx;qZFd5J3hg5_Y9n$MdUy3B z;%LAhxS&Xpf%yBf1pYV5oJ7E}#zacdMbZ>*fMU^`SO*6O#4HOC-MSwDhDel_Rwm~m z2ug8YfMP6al*Zl&PFSu=@&srnfh-RbBO_w@P^f}s zB`?oRBf18B%ATGLh)zJ$jgF2c7pJ0Hb8~ZLrKEOOMit9Gf>LXj7pR8Ow5AHVfviN) zZUcy%qb>reqJlOXLxoWEI!cCzmv?Dt2_7gbC|LPy@H9FMOmQJdaUeB!K)(3RB@a+x zK;?Ta3C`pf6$t^){rm5zCMfS(qgE8ZmL#>Q0V|||0n>fT% z$0iQV;Ge=_>OZ_J1R5||hbUqwuZn3{$X8v(BBJigdUuJ&Z5zZSslUKg0{Y&2qFzGm zw~CD$1(=wu0q_K9L3g-&z-ozD?q(nyvb|;n72Jzgv8T$+LZD0+556nr3mkY5yIS6I zMf3pET-F&^V)Eu#X=+96U8H4n8lneI+k7tPg(1Fkx8nPr+|`ID(sS*OSA*L3HaGg{ zvQ$q|&M{NWFD`C;ZJb3RN@w9!#|hpx{PR z9raPSYynJ&JSP<;W&Z#uUa8~XxuYnBx~RCqbT_jCX~+dROH)%5xRHzp;gZN$N-C;i z?ZQh;PlF;NbovM17;3uE8(hE(A6S9~H*$8~gL9Ubbcvdp-iQfaG}!h~Xhf0$P(YSL&OVWJRqWwSm7Tj5I>}Y)6-};Tl zatbDCH-Y_FI)nhCxyoPVjnxomZp)a32sOPW+OCZ;soeUoejb#J55TxJfUGYJN5TrA z8Wl5++BEuKpZ9tpI!WxwIwW>wVdwW19MV5v>GmuHJuDWwqj9H~M2sdpExn_>jFogQ z-W@^1Y{BTEIkw@x8UyPykoqJbky~0li;C6W9Q0;60?*dbm4qLRe8zLc^xibA^z>>e z3YZ|E6(z{$#E81KIav+g_?I`tNg!Ltyqu+993BzzTp$@5GzxyeE1#7`9n@*Vqobu& zJ8idsO*AC)7*Hv>Qe#t7%wY>Og`8hT3eNdZ?Fs>Z|W@#nb;fpvz z&j9VLSoH@qBBp`fct|z2Cp!s~S{%sQ6}%BLS=D9g{O3FDssSDdq)-r|x_tuCd*bLc zY8StjHz*WzLklixJ$OJxb@Oc+WD%fb6QyJF#bGz)aX^I|n2ZsJ z0Ik?H5g7mU=_UyY3$a;6s}OEfZ+@uHS}g!At`)!uyh6b)UTjpq4+L0Az<~?W zC}^_z;lUJ5IH?K#qq0a^M#}W{aQRTM4^a^q|sIT6;gR&^SwvQj3s=UyuA%Kp7 zxzjIuV8L3MJLbD{(5|8`jJg6l0V2Do`5}IOemMJJ>0a5))YxZ&j-9G1Y*%R( z5`dqs%^#U83lKdZ_({*o8dI&KsR=fKRz$>D{|ap$7=;pp>J2tqG|>{ngB&!S zb5t62^$hr}T{NnwBZ91XrJ#^n>Dme?Wr3jt%}VqH2*hr%svs*ZA@KnY6eDp&1@g&| zt}iO|5Hg_1WI27(Tepx9JjbP>+iSo{qx+}uTM4Lbp7-FMn;hvKD z^)lgexAd4}8X6ivuKMus5L_Q$vP$M)p5ZM?0frFS56IixE^E4t#%xBYw)`UbWrU;S z4gmRY-M&o|SqZS3aaBvp{9d_I<3{RsP|tB~G}gPw`GS*q`*PHIOHrz`*3w7OYlv}^#T z)p1sa!dGa)*M+c`yD%%H;IIfv?>+c7Q#Ih=VzR)J>YzJ)~h)kLI`SmWKLD#_Lo^ELB3~(D5Ji_ix`aC)cp@ot= z(;S0QbOeaeW$ZdaR1Em8GPn?E9duASM2rdppcPI-Y|PLAI zCywod8z&V7dTY+0?qV%7EZ|VaI-hsp9>2ppgwrvV6vxPyB%FvqW)w()`CY{kfw-o- zeRp>kEj9@8$1gC$wqG0c1fGu38kdP3X^5F1r6(yw`UyM}Pz5=N)O|h*vV{M5;nP2NH zJu@>f*`b*A9TXSJ(m0nP;{qFui=0n|ajxz*+J$9s$wk_Q^GP7Dh!SJ0CbzV+19SMs z2pn-&YP7ZE6~6Z{7QQT|ub8VA(#RJ8#u10A;p1gGY`n1s;ab8 zx~IBsoMk;AIN2kjOdENL#*qk}LD6^s|1K(AUeqjUA=50=$$)=eJVn7fs>hcx%xqo0 z69Q!1D2?1Vzq(1Ojf=IJ@IZL9@RC{eBn|!Vy95NZVHX{j^iv0PKr&EIZ`q~Zj1}<) zB$xwo_Pjr`i6i*sCXFy?p!*PCYu-Fc%jBYzrb zw1RlVW8~|CwfGsize|b!7wWPRtJZ)2DhaMbmm$DI6y*Ki|LcMkh>QX=!*g-*^Jl=I za|insH_l(Mgs=?Mqab6rfliXoeVfcIdFcZz0}u&hUZ-Me>?ynuW_3dAzH%mlGLS|EAy;6di7709i*@2}-+IpPx%h{(uH z)YWGlYP}$mhb*lK=JH`W2O=fVRff9k&e8xGkiNr|3+N9(Za!`ITvzuC+8(%#!63*C zcrCD{kl}%jp)!Q#*%}KFs0w?yfFvx$g${i8;7(3J90-CE1EZ^ZAXH+KD)J)ktXKC# zrKahMKxp5SdXNW5bzjK`j(eC>tEj4K0x&;F%QgWA9yH-kL{E1_UmWftdC(aTG`GEu zVW|~=XOt$V0WP7yCVo75vC3fWn6J!4q>{Vsg!_#pu2=tHH8@~hSjJ*yKr*m ztnBuKhtK#TiDb40h_af!lcIXN{FVCf;Rdjcfu z*REaL-i78lxy`C=`_~fJh4|`@{FKO}`w+E@3@|F9G3HkzwLo z$XT22oDqpLmJ zl`DX~N11ZSgb~qrfKp4@QdcA$X!~?yFKD@$!gT;CNUp%3phssN+%!RT`Tfqb&ht5+ zlE9;evt#JklLa{kFF&V<2am;WS^HZ03Fjj+ zkN2%EzVu|8M-OFn8!6}g_}w=Zefytg*!Iel^&(xl`l~wmsw|P;6{)2Y8`)d^cEic) z*1_C~@r}U!=Y+wpu5OB3?<~fmqvRT)_&!6_owgGvFOxp>R4rJeSdtx-R_fS-u26627^yN$>>Yt z+p4R7ofxOakEt0izZ*yIenIAQjy&csM z18dkMZ|p#!T+)ljCQaX$-|EKT3G=_A2{_5U=)+3icz9}I@(WgI)r?AB95+lWaZS%0R;A7HDeCd*qA#!RuxT0qy}2 zMX^C-nym=6hu{7TkNcDt@sAj zfk8BgH_i($usr*{*W0JiB6jMJqE={?pgTmwpemGY2ET@jnwX(#20@$_^qZ zydJF|-ANu3hFtRG=d@;elH7_i8IVv$_@~|?!niE0u@=;A$cqwow@cUdF*34C1D&;a6!a8>A0zo2TVf@W=xlSy?~V4~JC@;d88h zq^mbaSc)Vutm7FR4A7*dhEN|^C?z~XMiIhDNb@L#+GPzO#5w`(lAkdR=P8{rzO4? zX+GP`hSsXi(_!xqlvFMlOkT(Q#7*7hJ{yOJMXR>fX06(!jI}oI5w-(^mD`UK3&Zc( zJEDjw65DPC#S4uJZQha1+Gep{HJX@iyV7URZC-p_AYMeL^I(Zm!5T=Jx-AO(Gbqm8VW&ON9}t%VG~E7gdBcmsaqoZ+8# z+UREX`RhtQux>xqX7Vq2FHxoyW}M!ZrW{r)Zu;P1%&;MwK;mJXfw|sh%z#Jqpt;)7 z=g{dMPM&7bxRi#Il1-F|`42CuE=8i`sE-X@4o^fM6htLh`QG8?@*9+VEfy3Wvi~Nb zy-*-7J5o~qHLVPJWL1dO7Hgq*Jw{H7_2_jT3Te#k+je^jNGIKn=>B_yNAvLRhy(S%2luWQp0XR=eL9!?#B58w-f~xWBNSo9K)6}x_D zI$4h|Pd&AH`#fPb&uqd`%-0@C%$%CcRFXyTVt$hB7vGMI*1jh)esq;9%Y` zJW!Z{dQ5quhtuF6R3X7b)c)x6y-pGV3SlCY%+Iba5x0S;r6t)MFI}9EqEr33bH9#e zUGKWnT9!45@ruS7&y>)F$zNpIXcD>o=2I=>$`YTrNtX+`<;tz^Y?hCcb|Z`S`}4Y4K1q)bB~zMK-J$CMwHX!}zOZzwhK; z%b7Mf>8Ti3*)j9D`H|~Brl>lxW>9bu&j{m0hD0cT8)1n0we}>#zDo;M8%2~l3m0Fz zsfSNwVn!8y*Gy|Fs&Xv@M9sxQYN=UbRG4kRk=-!i{lPJ@-$i>v#)2+_e8Z*`vwP-w z;_=KLr{}Tnr=I&STfq6Rwt$!WKehlhY2_z&(|_|taHA4KOZlYOP24bYF6FM5#>6DW zH+A&(D4&`xcuTjj&h=zr7fO*-&G2V=}2H9wy0wc$)jJn_3=D=CxIiyQ;bQjAmP zq>NZsQf#XUO!rZr!y`S*MoU&UcXMp$^pG~vt=iS|87#4GgrpU7i zR!S`Kkch9XO2dye@hKvRC8#?LDJ`xI+P?Z)OF_S*Od4gc6qM;6So_SWCp|Lpn!w?B z?@``W&BR~&4Gu95dKVj0+*?LiD}0TKg?9bAhi1s)+?pHz%ijH~AoM;r`+x485nLa9 z|IOpuwQGcJPp8FRX){F@Pv)^q7Ke4H^+U za(1Ffwc|sWt|UuV$B|s`eZ$4k7YX@n(t>ZP-w~GMD9&5PJg=JIYK(Z&jhRg#rGd+f>D(6 z(@b`_UVkvj>h-mJ!q#Pi-{8{MYp!n;R0Ig)J}Z-JBM-Q@y%};Gu3?G9UFNvI(;pB} zlh-qWeLdu~Cf~aEL%831GQaAbvAZtpxh*mb=Et8{q-L9mC;5XzVqH!~!~NSty+^zg zb2kUrN{7EpaMgNq=l001Zp_RSXukV;@6oYKGS=Kj=W)YvHDTw}&3Eq9-sKJS7QM_1`3VPCaW zG5q-NMwfkk#jctW$kCAp8NP{sC6G(6wgemvs=-0Q)Qf3qNLt^N_Ivodmju$&=st;G zz8sXo;G~B4sLD4Z%|#qD&nR;Tvr-X}!*GY*!bw8H=)n`IPU#H&unF#4oWnK3?y`=} zea1(g1&z&M5}>e#`Vhy};Mb!#J*&TL z-Y)Jt$K{TDyq=+>@VWTozZ?_pe{)PY|3AkBscZ+1@b#~x$1(W@7)nD!mnA5(UkO=)}QjFrT2jIG%z?tqQG5F!dyJXsdik*TU?KIZ2I)v+bCoA2M@By6PL z9EwgfJ&MB$4_l+_+`%BP;^ZJc_EGN2WooLKil{Preea=TzJ99Zo$L+146Zj)(zBCD zcItAf-eArVO>Dx2ps)+u6Ee5b=TG~~)9UuuWGYKbY@JbAsjsOdgw|1FmgKk=WEOXR zuzV8vB%9W&u1(6EoyB~7Y1PP%z#x_Qu2n)I(5?ib9` zq^oro(|8q;IE-RHamiQVIS=xK`A^rRBGi#S01tYA8>5C4YaqO>{K!1`CL4jPd3Vhng4LF3P%74^c`|x<6k8bnk2gh3eQ~Xl0BfpKB$Ag}k zPaV7jHoo9e^N8%a@?vbYYU#}!ov&Bm211N;7&yaS#}7Bz4HRFr+^OC-qnXe)dgQ`r zrJpZrYWF3bh#Ye}DcrP)C!J>B|9XX?5l3f+<@}rV9OTu!`R3yhb0eayp5l-vZTKY8 ziZOz1#v$C6EplCnW1p?16&|O?x$IiaOLgG1ywd@dgjH+w{0j*uvce<4Z_)_GP`4o*W*o4=ny#9ovkEP@e8JA8Q_( z-A;Kv#x{`X#%?xIe(*a}xjndgb-H6YDSXm>Ca&%A{RM97>4uvLPi$$D3l4xPs+JMluz|kG>lGu z{gIjcy5Ba_KpZo$d9+Zj$72#+LBt^D!h>q`V`gHR*JaqIYP*e}=0PuE{o@IBsd@FA zlxg)Aaq8=oD1I}&NTof}FR|jp`{F9tl=plCo;~ALyMkKQE@dVATsZ#-i^?8bJ`=vfG7!+R%gu~6Qmr3f_l*tzx!v(J1l1b^8J^mm~C~apnVnj4BaM;rMP$$Xb{7bG=uz-0^LsP@gm}$B{u-T~<(K zvITzFc8S&FJ9RFQb9{E%gPdcviHKQ{p5H@n9U4}kq>*iL$M*wB>GmELR?8UwFsl_T@Ykd(v2j*Wc=6zC zz^sgLP!PZNz13%|q&hwR?db*bTHh74=X>d%sPm+Lp&a~E?r|OwTXj-A@_mE0yngN( zuW{$3j}T-Pa$<%LYOcOc!;cbQvYv2FJ9kO7U%cJ1u}0#<|JY~7s0DxVy2uJSW89v`1iw=XaI-}i~1{om{pHz&t`*yAW=>pAwD zVw)$o1zhwLY*q_j-;|5Iav|~9LSNV2(dK_p_D(^zMccMu+O}=mwrywbowjXf?zC;& zwr$(CT^aRtZq%t4?|!ZMHRg&HD@L^5)JZMPtPVIrKR=qDLhvjkcE^aP7R)NwEIPK? zo^nlkKAJZ}1#vHm&j*USo{bek?aDJqCR9~Z0u?^#XGBvb)jIM&G&2L!zt%pzeSP1) z|Fl?Uuu0#v2;V8Dyx7)cOqNmMgnM^63m)}vJbk-h_PcN3XtU;!OHJtw7tss*D!WdU z^9I>2tk!fxd2eMdZf#iLi$AYae?Xkf!cfVgMYigM=&Y&j&7&HhMjoTYyL0hDv+n$x zA%c{BI_h$i;l`Qp73B{$mH*?Go^FL`jyfjT7UFP981Ef`m&e-p7ZtXy7}-d+D`+`x zxKCncl6f}7JytFpWjw4=L9Q^C5SVTq@r*#e5W#bnNxqVoWLe1V+*E=GpWrU&pIiJ^ z*a>hIV}a+!J5@mw(fL5Dm)C zMo#W_#`MCHB4V~SPAb3848s2h9fgVMf6lN;YS1dk>R8zVsd@3m>4a*`T+CY9S44pL z9j{tj7D)wust{Tik?JII0;7@YyaXT+V(tTJiE_&amSLoiBAQd0JE<~B`IPWdb` zvQgB#a^6A@c*=wxX)Gs)s%V+za@ezW_M$?Wyv4XQ3u~w`-X@169zAk-B3N@t2ih|A z(XrcA49qsUtYUKFr0{!|tV|d5b zsK8|5irggyjz+);zx>=O1)Rj)3B^%eB8fxN1o*XFeD|?VZazjn;BLXswNI|^KRtFm z^oHC>euV`3AKHQ$v1{IkKoS_O$Ir$_J*e=;;>6esQEiZmZF)G9f^^Cw`yIEn(iA6 z468fuhP>Sy%kis`xOk;+5e6qYsPxh6v>VBb?&lIuz2f3`%u|8J;@00n$F5@Rr9X$| z+KVobGCwT)NKcenV;}*N`%Kd2hIvErmi;N_`OF8kVMzl9c>YwqpA~@vy7;@UmBhI?2YAZm7PDq;3rzc{ zOrI9dj}`~qGlM)}2xeLJ`tZXt>1Z})88{+#Q0~n$T|T+zU9vncaTET0dfpsCao1r9 z9taTdvvTX^gcqQeNg3OtB|mG?h5_CH{RBRi$;mnZD`p8M{gnf*AyrEN|n+{y+2wyuqTmK{76=~?o0?6(d-I6*&>W3|F*dqlUH{iio z-F3<6!WNeoHXwr$+El!J#OjB=@Ef+RQ~}oK6u2T9=8Dz*D06NF6MP^X1}&KVhO~ff z`p7hhQeO0eM1jj)!C<67=KuGV9Bdlg)z{rG*Mnh7>wqa4GGUany6jZ z+B&@LB(x+Co0II9z#x^Jq}WU)St7&Bk1E}J>AEi@N)l*&;R9FWSE*p=!fM3w|!tyVpP9-s+% z444rnK<6M0+CMZOlMr?}8pkeTUA*-BMr@Y8_ek*t7g_OJOJrPr)!hi$6h z>_siRMdUNe^BdccnSo4cB#1vD?qUNhRPwuFw%PA*j-6{M8=~5RBxEIa%ANK(!I^nn>Dd+o*B`;Mt3)N`s8Ti>0=+f0MJa5}Rb2j<(Q#{xe_SGkq{F zcuh#+1u3V<6qby6^`?zD2`WlYq33trq3aIqbv0si+qqF&WmSW5$=T&#m6e%Pb;xAW z{%78h<1b@XG^N9eBc4ss@$8 z^Mg;G4|dQ14DSQX*O->xQl9kU+*{&l*x}@!#-pyn>fatqbw1qFSiY8d2#F4Tz^$VO zQ=CfRvaf^)4np47)YC2nCwP*Ik;W#uMo^J2D3-cH_=RJdRZPh2sM&LCv zy=t`yq(8H97~Q8vVkNUFu7THk%IY$|fcF|em5<+<8~x+iH?s7M!glViXK{dGPd`lk z11~lMEque)o;DsxiFk>^TT2tJiV*ah6qy77mIu?tI>yeYID zaVoyS!@ca#nt!S?$~L!W-88ow)StcqZG80<4JpfdDTVXI z^0^cBJ!`x3LD7MhPeFKD6Cb*nTf`O@o@QSab<*ZP`R z(Mg=9b_2za9F?uy>XvLMhp5Vw&;ef|xYn%e(9$@rj`v8513r-w_}90y>nG9!>$<}; z*y-I;_b7?@rmNU-r=M%4E7(b-_nqqqBUMvujSouYWg(4OjVN}^>i!~K;*e}uP_}4S z!Er}pWyrr5t>7-e7`}i{`$|G|k&lhRkhukNBM9}p;K4PB+;FEYf%~s39t7P$&{x1jr2L<-OgNG zG>+J~J|(W>U1Zzd9%S+&UzxwG@qVmuJ{+bUx<7R9ym;>1c>DHX0v?}*|CW{J)ZR*{ zTF^9b*clcIl}U%Ic2r%oVQ$Lo%G#q0&jHC@_e~)=)Oh40*zTFz&V-|$uENBoZGeO!NQ#wZuUx78#c(B!+9b@8*jNLT|pXANGCUN7a4AtAfco#PcMFr`SHGgnmpA ztAK5%ljKww9ok0>t|o%CQ3>J|tV7|S{Mre z-4sAdxbGE0+Ktfa^l%bc7_NrIwh(Q*Pv~dlC6Sjd-n#{}u~CX1{J<+%wJQnlX%1U?I^X?+%b3fqnH;uU=V5 z!ATfQ$S2dy=JC8=*#__O74l6=T^07w*f(qYDe60UEn&DGmLQ(%W%NyiyV&j{W_??O zV$hK8L-2xl9DY>D3iq@y8fEX#XJ?AOEIxjJKjtGH&EK&+Z+VHo(O07>e%Ui?aeum3 zWipx?=dY;oaw=}w5k$1^km61(kvJ(zr#El>3~{>7u(HNBxJ{zOIAYzaMX+A9FeJ75G@f)K%@rS18UvB=yu#fZ`jW`%>+RxDdV5r zJS;V|?Oy5u>N@=4J`61OW`~c+wdH=SE+j?fzz7^>>`~Hu%S-WTY4E}#%zCN3H^1NOSDz}qoS+>0;pUgTPuE? zV(cgra*QidFsVzsM9g>6_Y9+96Lr#nx#i)ww8a! zRynQhXs`UPI2dQmK%?;s@bf4oa9FTqMZ16a@S*k&nGqc4_h!{2?g#DchuELl?)k@O zD+`UZfHWlPGKUHLzVIR2I9`hrvj(mPaeI@qY{59+P_WV!A}};sAmnQ?0x5xso7uKN zt^aPM^v;Vkfbk6KILCh@cl#&h3o+6h7Kf2gEJGI1e^(%DW${(}S86jHqG2$=QGkb; zTXLYX>s!p&NN=L$WG2b77Lln@j}F;}R!8u}DI|#_|0HK5B#jMDG-oTQr1(~uHF`4K0usU2}<*1y-kmt#>KSr7BkMA& zev_{$?wOQ8QhnqDd~9YOCMy$fquE8>OYgQD2xTenO0Bw}0m(-wo(DmbM|z6f>MUUg zq6Tfqyh(*Cv^3Y+;ixekY3xDBcl+!Li4+S`UUq|+`MBrPw~vz{4A<{*+txuc?ZiOx925j!VvTX zU%013$Y$fULJ6&X}aSp)Z-l z+QX&49eWSH+vAn+F}GEtvt-dFL4P&WHq@IYb4&;}X7i-PauCDxSg@qXj}JBKubsAF zQt9Ekf+(o-#lXVQv=P0JwlJ3j=|T%|MY755dwzjCxG|VFSuO&$plk_tVfIf1b|&!NoB7?L~1~4(wR0z>0PaEy^&SR z8TDS9UhnG}7Dz@epG^HTT~;&td_#}l z-A54_9-lernHQm{p35b!L3k`~5SpqVWkL*p{w`LpCyS|P2&kja92`=|A3UBrPSYRL zR^K76=bup3d{^fk-_=`5;LbUk(++s(8|XF)H+?AVxRWV@Lq>jpH=>=;NZ;3d&r>hp zCVcU>n(NidH}5e>R#h^(7N?}FL{<~d`2~1933z_=4}fnlIsXMis-{ovGlyV(1&wug zaXjZ*?8lrq*ud{)zHwvMI^jd`%Z_!bc0+KDWYUD*vG?M;q^N+r(9HWhJ1^|d29#@I zXafQ$v5PsLMv$R=jMGrG0R#-FlYWBMjQg6Td4*RVj()P>lC50PV!M`cly+$j!^cDe);4m`V%7os@o0hZm=vz;J@vh); zfi8BZ=?Ht~5~ z#U{N${}EZ&>aDma!a0g`**s{Oz}FkHf9Me(JSlYrzSJmQb)9zmIx}NBNs)Zj0Pj!r zNd#YydQ=t9yjKiwq37UoSfmcph0-q8LNyAb$jcEKy^5xksyb_MSQ7mQc$r|a_%rQI zUO(HHO+5tV{T*4Z;pVsWonkE|O;@_ZAb)X+BXSjFY9*d~o-8*+eWG=9_(npILBSa7 z7*`z%BSRwZ>bCi}%4!4hm8g1dclTH@7ZSBsW)-gXA?we>@W9p$t90!yVJ3NqgX9Sb zao2a!)Fmmo=f~M_o}_4@tKSrs_q=|zDJUM~>y+Mxj&g%|fUI2J$v5GwhCg9+^#GTC zQ)bCB`IO_ZifsgS+;P_`xb$xPH%2y1Z9}`pGv&)=e?6DD1KBPwzXion*CQ(h)GR1L zOqkG9nao*$XF!UnwC(E}vg?z8Ev>Uws;>zZ0a=Y)!Oh#FG-)kA6&LopzGX5oI#PEX8IKzzY7c!G!*%(ti0 z6mE^Si4?p2yHeT5Q{eXn|G>NMp@`h;1ow>87m_Zjrt}7xzvJZiy!Pr~_9L%vg^y9W zT+f~tatGJ6HrA5&6pl0n;?mw%86Ur4?=PS)fRe8?u-n4LJY)3=_dr_zR@a3-oTGLU z2<$n2Lr>A;=Msh%X!bnIQgmC*w6of#PQxkPR^1pBU-S~721QhIpaQf098RThY-uK_3*S>;x@IPBp(C4?QRB3(`-3!ynm6d zofpiv^quSIrSdTKGa-!~M!8Uo<~s6&5a*0u2hyL@DYIY9xMmV{(3_`lot{h7GO3W+ z_w30XN!)OLdQv@;`FgsS$83)UFAAxu1}n?R-v3i_?*Zu~Z%D9_aY503JNs1!o1d3G zJlWeVDvg_wDw-NA7d@d|&DLLSi+*6S2|)t>%PjVPrNT0?{HLz+{|!ar)m9KZKbNY zzG`_Zd3|S9dS)&B>9Of0hMU>dr^oT;%V+0zmjxjZFl4w0la=|Wlyp1YpZi2fN801R zKeIrDIvBx;|9TOCs1aKM2!*J4u)|I$i_nw&1JhdBb-sn%cE#2x0%8wg9$val1&VNJ zyJ0m8{yoCuC`1#E0tg9FgyjXL&m!m}5)fv~F_Ew3v(rei{aux5?xa*?WL!AbWO}HV zDHFqHCnYmE7xCrK%D^6?U9OUESgkTAlS_%4r2Wli6|@?ob#Peh4{I`UboG@om)Iqv z(9PARPc&oISL#?KlX5S-3!$W#v1oF3kWxn>=V*d82%55zIIdxih0si!u-HMXk&-yr zC&OU3EH-Y(8nW6YklAN08SMUJ(?0%pYNqXCkw{9-$|d@*PAtP0u3qfpfo!O&nZ|y8 zUi9IZUOE-uc%sRkGMR>M&0ryIa=CQp&-(;AVY8hP5Mx{zQGPh32+bW6V@en?8Ul2< zn-OSTyoR_LB(EWfj0jeo++PHDB}AdRU_?V72H^0jL0(AeI_YchN@xzsssta@R^rE9`zd=z2-uez>r*L&tD)OHEV)u@OXsU__*BgbPs|K!e*&g~c82!5Z{#SY2H` zxjitvsBV9TRel6IZ~aoj#u5?W_U1>#ccobmcf%QA=uN>&Eb(Fa!e*fsj$$DW3^1$= z>|3Ry0-@sn`I;DW)lfbL-*-v3|W2%eQMVr z+3VAI@dc0{NGq~aLy!y|aB3TC-49qKPVTpi7GFAF*|XsBx=PG*)iRT(cWzlB zNltwe##(3>YwM;;9qd7rMv~9!r+2J2;GUFgon{xfUvySNwIsd~=P`-4$Jx<$)A3)uce=FnLG$?}SL$b)x}%V}3Pr+wnW zRh}9UPy5E1{*>kZk>TAD9nq<|0jd0M>m=k;a-<+JQk4{Aa9vQYofv@N5iH?ssaGOb zF*7z{Sc;IZnxoT^J}k3e`F4!^u7{kFlVK{eWTvgelYw!bVPvVPqQux?0CFT;f>jyk89=m=i+(G zMpV>&s98u>PWbx!3sx2n412g@CBM}iMpalwSUnnFT>W}e(B4uL0tcs<4NHAjA;hBz zBeXdCitC5HF%q=x^PnPFvNETJ2ZD&1FLX3^g8_^htkip!Gav??EOzn3Ejb76Bzt!M z9Qm|5m+igRo!?326ubZB98Wn^FsGSN(|2@pY2oY&ZBEPI%^M%)#1IkQ^0N>dBlkSW zl4yr*Ev_PUOQ)@>z7?f4<+vE&NMp|REr$82=?U6(uKrB?w5S!$|!JAx`Ugo>^% z67GQ{?-QJIeH%YAmO&hiv}2cSPRRf~YLU|Mhb5Z2<3r8ph^B zI7q6ID@uKTMW2_VNC;bFQ9zu3Fv0$^@#GeQr`{JyCS;Wxo-n9y9QQmW_SD3J2S{+1 zR&ha=?^xoYj+f`Fn|`4_V=E&fe%VZAznS{&!3EL^EKQ|0X7`R_k8JH)zOJEk^pN~4mv^E$a~8qM9&jpGs&AAjGK10o=dEi5-3&v(9NyQ`_5VMSBx z^zSwW`-#RWX;I31OTBT4RL!6M3V`*KE*GtboVgZz9%hOKzIbIZUrY(t4}kl*?wh!R ztRv!G1{lH^Cp2p-6Zmw6XQ3&f!W(8rm7KdS?Oy}c#ydT>#wMjm8FJRb?F0-Q5I#(t zu+`Dyk&z*vI}uPF4KVPIf53i_I*8I%ij%=qj*NZ#lo4;CLtQidR~=qYL);Jv>$Enk zGGW-7j!t?`$(-lI%hkg*S{Lq1io2jAf*5Y6ox;2`CYx?D6g@x%U)!AJ&cG>rTDjVl z0!^7`)pg-dMBr9rbQN=mXi1r{x(YMB!k zUd(OS90N~BK_;#3L$Y;Aj1^~m(ZXbeAZJAi8(%Gh=R{_;7Z_krzcu1FoI{_jq(88W&;6e;A>N)eI zagp=PlQntLv@kdU5_sZ50ntv;+RQdO!A60jrx~rnc=i)6SMPHTE10MO1|0B)-kpau zL46KxYE-R+vMA=Fa%cAeNTO%UX{CO{a}IGT!hZ?APL8@iupo~4`tvl{e8vV>-U5>0 za!%Z8*8Xfyb9ru0uAH1T(a4RsXpW&BjxHQR)5pojjFa2E{>oNg?_M4X zVDX9QBVXeIONZ39v>BY98{Nz>s8BDG?|cDFI{%~*=y3S~_lPJ$jL=bdP)N0EhKE2i z78Wo&cpC<#N;F+PF0GckWup`d+ajh{I!Ab{TGh5>TzxbUHhPz<#h8=LRld0&?fliE zQR({!b3Rjyq$L!)YCF-EueKEFO#^_DX~zi)ar(gn|4MikRn*TPxh$!yY$;HAw&2(J zZs=<3o>gyE<4}D*t&LQj{{Ui->ofj0%=#bRkpKTQ?SBKrYA6aek_I|)<_$Gkc4hPB!CwrPn*wLCsgT1 z9WpO%wGyismN{Dc9ArZxmI=@9UDI)sBDVNCTR6s0Ke5pJy4}IEwv!24Z3EWnO zrEuR84}MCB^Q>!j&aBnB@@@0$7=5Bj>k&gJE)#ronL@y4i9`J`QfKP7u=Cja1ll}XH`1U4x>80=;suvI~;h>7^&&p`s(>QMpFPr1&w2_ZlL38!zR^V^!fJqf)xAfw)r!8!HGn%#MI{ zko_lwN(`?iYM%dRST5c(Bxrc_AYWzAVXsCiPvv!p0_Z4xR3KQY8cuOE#m(Jq99>+r z{AfZL7$uGo>TNLG!Tp~QA-rNm!A>@hW));MN)c2x4#{J9TBX-IrAhr)S9qj))njI> z*IIxmH7}a1(n!UTpdyufuFw^F`M4ta_20Mt>A9_pr87?3s7=(}~ zf`KR}f)FRdQWvFwh((kfMvfFtLZtbaaB4b7Zv+Un_kebnjEf>pBqtK_FJCVd77i^` zf5?3QBRVeng_OFGsVsg|#7EBO;_%w3VTbxl?m1`c=iaXjcpvm@0#<`VCDxOUvoRUtuIp6hT{ zEP4lv{QM4koHVu~{vo50M(tUGgj93*lZ0$6S9<#QHoS3##0F~iOw&`1m!}D1k>GGB z7+13#qnl)F0H32q0x24~6OnA*u3T6^#ACpskd&S2{%uNWCl-yGj9c(uSS4@>G>kKJ4_fF{Sn|M6pYQ$>aIU-9?G{G$OUI8@ zK5-2zv=mJi^evS!?W9qv8+1bp4Fs=I=8#J)^Y((vsDOv zbtp_Ew74Xu@t$#&7D5upiFOCLTdOBH zD3`F!{ihn_&ZrXWYA0(6lc57jd&F{2PHo_#NXfC}QlA@gX0=vaYH0aIYx!lKl1%`+ z!W@U3^&S_qO?#ad7H=HPz%L5zY)mfzly(nc!sm*~gp=%Z10t9WJ_T-&AFfAbOmT zEp<#qO%=_?*V$(C%U$ePYHwiOMgij}Jci`)Kmu#cdT3jG24LJ10^V%ec8@A04S@DU~)$V{?XG{)$=AXGNQYG5>Q ztw@jJfa%aOTcl{xGFT$60e6FNN&jrOEAhn(l{lOaA4I)mdMt-2k(^uY%xLDFj0sMK zM9F0{JNE=z6Tua)h$b3PWb8rhqPCoKq2dzoQdQau{mA6A<-J!#_x4>sqqOb5;-l=l z+^PdbDQYga3YW7aGWGbEC(fh!&K&RMdVpSwz#CTuyV*$vvfHOG*?hfxLs>B6yJ>$E zDSd(NSFV>f>An5V$&9YkYF~UeUnL9x>mjd%?@M7+gm6dne^ zWtJFaapb$lK9L_QHt%`MIjA~AkgT+pd~8`8W!?i0OG|?;resOp8*hS^W|Odk9?~bc~dFGfdHua zSl!x?nZ^Uc+~OvcB{gnvpZG7(GJ}loNyw>H#>= zpMYj-0OYB= zbPhx=AJNIs0#2rDSs!Li$cOlOSQnSR6AxihDHX;6xOna`RVmsl{64ti0}hr(e%E#O zLm{~kSf#(aA8V5MAL<27rd$=$6^NB`RW70nJwg3PWXnp0$@04+qvJ~0zz1GV-#&i* z>ty`=ks)b~Zg(GiYQeP0vTNB0XhPJ|C^|SANf_7I0`zW&;W`RGInlb7a(vBsc#AdK z!0Jp?`l(rCAt!?lQBH7`bQK_q)>k1=#~TwVHO*vA<>hO1>y zDqM9WO^vlgJy^TJsj;FN{Vf#&79m_zerbUC>MO?V*S~ARNv-V#oxk{wv0sbRMd7-D z|LQ@rN8@(AuHFTDYQt;vYMxmiLYP8nU$-JS)O-)qj_xrj=@fVGVuLzp)&z9O(%ci+ z3d^kljmHmAtuQorsezK$kv#?`dfXaCQ+ndXBSAYfnr;?pt&Zg%9m=cA>9%VeHlghv zqQ6V%%vv{||0{(^ic|#FBIOR8Sc!GvYqkY221j!4*nU5{q8ks%HJD)Xw!xl=lssoi z-XQ;S3zZ|_x_AJ@rHMZ_DKLkZhJ85nja@3UBo+c~LeuTCe#sv9$UvZOF5$M!@J`#( z)pu!fR%Cw#GCU=K<*7Dc3{IAiIj-b^&T>4`F$8RNs~pftx*CiN8AZVu0;ypzC2x?b z?^h|6%{z!!W@ZA!^VcQmOfO8=zlMwh<>Yx8j5#byh_4{#;z2rn74h!;;xvq7VM+Z5 zYqe7!9AqReuqoO^)S>Hbd-o%(l%mhqu5oKPqyMf})bt&adFzZVhkM3(M}A9*v}PN> z71^2grtPIJQpcaLxZ*Z=Ggfe(10;#-&YAdwx9M&F98jh*zz<)4lC1m9PHXvE(g3Bh z;_zegB#PY`Q@sAXuETw;wj~;PqZAVZJ$BR%qsjPo#xf%dx!v8nqkY95Gc5eghsK$0 zd&8j&+b@~PWO0!$LjRC$W|y0r_b+m-NHRhKUdN;V2Q41b(}M%blzb;;3J#YY7vh7( zoVv60FS6F&9PuNhTWL8ePSu9?{3MPQ)DztwO7eUT9@96qbvhdB&%|z>_K%RPw*J4P zS5r1T2=JJpqC(|~Uo3b}!oa?66bM_FK$;AX^REE5QSygk!z(4{1}qg^05dJK*0&;4 zfOfUl3QK&)y*^R4wAvTYD-@@EHiz16(m-(c5&p1px#r(9fmFF08G#(Ty|H*`Aa3+AyGcXu9- zTg6xJc=_>VaZZVH;`)-jvfwwc?{R>|q2oWJ7dsB&m?&EYE^20sPZfCV=4f63M2$UJ z5C%+;2T`u*1G|ik7-~3uiMZ`e&;Yv4b!_3M_T%Kpfjkkp}uX9hir}E4C2O)cD zI0%2%kBAG|E)`y6II1)sz~ZfY-qP68GgtlsJXzquW|}T83{oGdKh05vZdPJ!EI=~t ztc;$dCp4s*x(<+QVxS398(-_Z4s_|GyK|B%EiOy)%e7ZHDX&G8szmNc)hY3G)0?;( z_V?+rkm{qzk8Uz}B#2~AwmA^AGa)3EiSlrrZNge&4HBKT#eJpQli*a-!^-JR-6NR~ z@~*s|LWjyBGviLGiV&|J`OHJYc$zD}ys67=gHjzSUjX2BR6j1XO&_I} zj5alwuIwQ!pLQ$z$qhG{ULzHns*oWyXa;n)Ua4a`hs6VSklhgegZS&}>y5-r@>jxo zG2_6S&)uT#F#yihv_Nl6$4^CiS)ww=7_RG2)*TpG69a~!BAbGO@@DM`>!BzhEdfhb z^;=>poeVhQpMmp%MXSZg&A%hWE+uGzwZpwYJwW6!`9-9rr^oBh8>57-~*8s~^gSgIw4*ey#JeDW^&-L>a6@(49xyR1EV6Tnu!@%x{834CT4UscK6(~=H*5R?zaguSMzHq z6Fc4O6e15od16whm}CPUlrD_PDyN!BEHEF^R!Y)m(UGJ>a_(;{29SY3g{z422{J=6 z7$!Tp3%M_Sfwc_?IK=W=a%hT(6ju@N~hg`VJ8C%R7KQoSe(2MbL?=k>L+|v<@Bz)yW5%%v;zen z58MrreWp@@@Jp&Q!zH(<%M0Kx?LB7e9Ld@th-`^;B#9cqGHf$Dp4OE$<5AXwjtaI) z!n0UvL@3N-a3_JNmF^?IC2+hQ;iJS5hz{a@sr8D=#dA$Q0dQ2rtu&Z@)ircGmg823 zc$(q1rwA0DIMDHJr$GT}jCx1i5(+dfQOz#&3?ee4>{JIs2oQS9HM!E-6~}{Fh^_0&C&0i)W~o}&Z?{&W!d~ziubs4=iHVG7&2+qFA{L@;v*V>u zUQXZJ4wd%%4Sf3PbOzoxT-Zuc)%EwTmr}jbs2q7VOskDSVlEvg^xs#;`1AXYIB61j>)sK2@Y5 zco-v{ylC-r2WoQwXZcB^=YJ$)?#Go##U!TUhH#O3f-5d6DOWe+K1)X{NQQs-4pnrZPqe-*VVd^Tbz?U9 zjDzM;`gQ@IIr$k?LxvW(ghLd;Z(H?zc>?9*QXT%ew>@4n*Q%v1B6NaKfy~#w6r1E! z2lNe9IwP8RZr#b~Q8Q}Fyd|eR^L`u4sVOiK%A`XJeNa45RRbhM5fl$Ef=k>#z{#cUbXlZni8nN3OoD&Iyk z1{6FFkvY=ou7FX4a*JV-AjZjmEoxcFQ2upv7Dar!W42$eg)CKyC$*EBZs-nB{ut)b zvVuUbbRO!FhZFAS& zME+Rp8V68j36%WEy(+r1*V2v98`fe#P^|&uOlacMVrLg)FhaTQJOCJAFW$K89NmyB%)AUK!c+Zz+`0bd@9kQ7 ztz|pO*k2aG_uwMMF5l)>NjJY*g4-IjN2LN#_lZE8Lsatj&4^>otI%@1`t`x~-PS{v zEI0_ZR05Xk$vo@_{vJ0#6#k_PO-{}AHAnj&Ro3l~jEM^iKrQx1e%~>^mns`Xt#2n2 z-|yy29hnka38BZ|0d0;pi5vRiUZ8m`6E=@iQ$Ey`PNN&B@OkWYQpek7E~+R0`#J6B zAq8Y?W+qHj&pYAA*VLu%=Pz5TX{LCO7{Z{;M~s0_H5PSGE{rJJk!DeDPl0KoBmXIn z--WNcAM1t{KEsYxbEd0HbCdS{r2FqK5qA0!_uU^L=<3Uc|3)tVhpqnqz+C^20;^vu zM=U}uTX(COmflIa?MyR6EJz_h&;9qL_UkQE6E)66TRO#xa` zp`xJ4y03;~v5As})xxqCI?WjhIbE8;m}YX!`@C7N{$)Ec-NyNHob5Ps^EoXG7d>`_ z5q*$GN;WN4^LH{aLC<`@vYlys-yt=VQok;iR0ddy*o;9i5}HERO_c2K_z-L%jo|nX zU*;2dTGAbf=Qj{PEBlK;y}Ker%s{b<*P=`N}P2583z55gi9cmDUP{^@wv!( zMJjYERW=(aa+4k#kjog&r#zvIP4s%E}`;{nK-Nl<>5g6&h zq|Hgvt4_Ne33_$G_`3BeU(b9LkFj*hcP%LZ&2n7f_R`na-smpi`=-^oviL z?PuK6D5w8A*1rF|rTxqflZ?f-b0cQ_E31<^QcPR4l7#pt(WDzKJHpq0y+8GO)wtiN zKXgHL2gWlbo;~h%;O>mSA-q5%y})awuP-m3BbIa(5oI!bD{uR7)neRl@|})l!@5(i zxAV$in*%9jIJPX+)m8dttpO4V9OC~ugQi!(4?T#md5ZUWb;{oNn@PG;E5Sk=aF~g} zb)0Cn0%ESbcIJQ7@&B;H><;<+p^%9GBHW4|_9xa!+|)Tym@g5b+$s#3e4j(#QI4-`_HyUB!(!sB$GBJj3OA4{wwf27BkS@s0H9;%59so~y`@!W+%b1w|MXCC;K zE;v+Zn!SfSVH&9^>J;q4OtWp<<<-fF7bqY0y$;M``IBq39cYBNa$D~Cf@i5L@|HrH zf6|ix>B1+E>np24KL^!SV-7;kaz!#oJ!7@ITL1t(Ps=CoUp$?MVa5wiPRa`ptVg6* zLUSwn-sGAnePA&M-Kma|P(A*<0!hq|S2aTa-29@~MUT8$kY-`uBBbJ9W9gb`ClsZz z27Olb(Xa39+#GBpgpS~a8s=c{(=M2)MQmY6HV2R)mlL9ln@*o-m-i&}p|HEV9oJU@ z!k?`N`%ZHxuo5h&Zdkw&FQ}W^ZEk z1INN9J=i$_=AWy3-fjO=jNuse)tdb(okyX^oG1eaOWFh}N`ezDf;E6=okY}9%fSBf z`@I?qpoWs)t12VQ80{~xmIHR^Nde_s8G&$Tx0jLNa?bF0=H(xAuw=Y2VVgk$5QtRD z0H5O-k|vW)5Y%GR#pTJP#mJ#!7OPVgT60PW9YhG#t`#kY$D?34i=%L$4_gOUH8?OJ zoWO)h(lAmWu3$lg{RJo%(FjI>%ih5Wpy{9g%Vo^?AJ(`3|I3*1e`J{~4JOSEFw6x2 z0CYV7eg4~_|DjF(Z!h5AuA2WLA6BVD{syP8vN6b@lq%PqCSezn{1pbESok;J{q^IU32h0 z;BlKfkk7svf19x7vQ16y`5*XyUb=Tax^{jX3Gng52KFX*nml7zi1q3%j7Og*U!4^5 zT^TZcQhkE%N6cXI?cro6^YM@7BfV-}UF?v*&-f!X&u6Y)UecnC!SF*Cx>E!2{R!Y$ zXFU1Y@j+hcjdp-Ozf#=5hd=QHk0%2-V)0qv-%%eK9!7*p5NYrX{-Uc0Rym{+56IT&)D3VR62Z@OE;zceYNL@ma_U5fz zR75}|Nksw}SowId?pU z>oK&zs{GW1FLGgL#mtx+Vb>wALWuHs6;M!sA#*__K#T>DBp{FMG`ZHO5uhHCE`U`X z@D5<6J?xf2ud%L0b5gv<4RBoU9~*Kqty8~-GP60=y#~C=KeO*VU8{dK`F=nb`~hv1 z@a%ep@yCxld7SZGEwpKS0ty%B#7rF-$x`?GY!b%G#g;_5qVPnPK>fc8c;!jWC4q) zC`u|d= zTqaV=iuFiAV}=zfBWfLhpyBFudFuy%2O1lwXEgQ46kAW103uT0*c^5>RI*bO5Z;wV zF{R>z^Sin`yZg*;9nZciDxG?r6B*&GoAc_#PeV=MONTD|gK}52V~i+KLduXZQx*NV z;PYrOu~duK5^tE^Io1`nux9@th{~%s2T49`qnLMN;p_$%`RU5|=I`4Sk*WFIF{&@6bnS^F! zYWXAy)sPt#)rt{w(%6LYCj#+sN=%J=*MFKrCQLcY2I%kD;nh{fU_PxImXH zs#LJLrd8L~W7`}jmK@w&EUxkzP8R{=wyyPAhx=OHSxuB_wW8bK8oONT&~EHIWL*nq zLJXZja}36mjEOaxH!ey_KIrIyt26wQV%DbK|h}*%PH>U4T+pVrsYbtnYwl~cH{$z34i2(86MZL<@GI?TP1vMZc5*BQCJVE2pouU*fFusT(R?+?lPEhyWBfMbqb2$ zBwCb+fWF6-9`OfVf8`dagM}tA1z3CqSmcAgyQX;ce+DO3 zeqZ}VJd&8uUgRpRcX<1Nbs9se{3>_*JMgS&`>sM~4UYE{O0TW)*c?me?)i6a>M6SUF;{P7PrnD4^w&a{E!3wWMz6-C zGVtj5G-LYREk(t)M))d4(Gl_m*Pip4)T4XcsR-b6I)Nd3h-0)5iU!?4%R*u~t@{#W zt^x!frv(l!8Y5I5e6whs$a5YzW%drQpN(Zy4ffiPK!l{9 z4BBw=_%~jer+7ueK7<`tsw8oQL`k1;bKRLO5ZKnd8PD>T#Y3LE6D^XGKBOUa9e0{^ z*^ONt>Xa)3NjBdP_#}V;A4>2{^^vi4>9m62NQT-)q6P=4yDhI^2#ALwb@ z6R|$(Z|v*}S(2fmXM`hyxmBB2WwBW1(ZG;Mk#wZlReLn+^l>0Dr1vJ~Zji}*Z+nuf zbS$iSX!9pRz13hsmH4K_zZe5iSOsw%pI|1X3~X%P^an7vE_9Hny2zf<3&uI%f<_Hq zjogA>o7E)B&>^@J5}U2SiL#Q5^zVgCeVm@jO8a_qgJ_K1zDq!X-F5!)X33Vbgf#NK zX66aX;);8%E?Q|mOEr;;KgPad2j#ul|4z44LVBnJ5sxa!+8z(PH;Xm?fNO^An^j?v zRTDFF5@Uu|%*<9}`4P~Mz{OM&qBvMu982~+hutNUZH@h^8lh38?jZT)(s4gp?5`YJ zyiXnN_jQ8QlTrilp}0FJ(N*b5S)AMJD=T5wmAFf*-nQ6?cVt3M_9a78UOkJ3c5!EX zOI?DBVrYlP^)jczrAu9krGw@M&CQFO{Olf#v~O+!h61!-(BDDvzlhQOrk%&&`MG|i z9YbO0KdpIUf1*)QF&cH-C~f#W7;0BV(`n(DZ|aj8-u?gdfpL_jaMXbn8Z13$4P3nG=udV{74W$+tR7 zDxkg8+N^pq*sO!qnw;qOV6(q5T$r==Z1TJY87epWp^CbwtLPdfN$09(Q%VMV! z)%$1qc_lmD@#OV6J#w{y3zQ}sVwhUW*f^fR(lc(^RHzC1##Cum&680Al}L;;{mWuC zhsS0CpJA4-|A#cqrnXcJy6pmJ5z7TjaH^vmbNv%Q8m;7#olPt)Ucm~@lxW8fg9Xxr zn0i8tk63?hnGTdZO+SO<^VlU3{eO^?h+7kO76)DmvYd#q#Qeyp}zrA#dJp-N|_wI2-D_E8! z%bvxGw_(j4ZfP1d@@bi->gryZhGKnNjZZ!E4&LarB+BP;8$C)4=kMe>AAM0RkaC1+ zA-Mu)g@`VSpnaiiLQjLdY6unpSS6C;S8`P1kEON3~-7; z8jR1LaIA|}tFu{Phd{-pYAgJ)5VUXm1G8pBRz~MZSDFpJkFC?)*v?CKI9~bd_WVuK z^<g%+Fbr>64 z@h&)s33m)BDYI980QN)Qv=_JyaaRRq)nR|rDmIKq_xawN8y64V{9uWv(@A)cB!Ns` zu6iCs$>1L#kt0;1oeYS+y5&KIauv$LW;RWzbL6dLpIahs|8G2-d9qt#Mc^kPN^-mq z_uHh!tJbR^Xd&`X?n6MQPb85XNN94bsn&-l6eAGDpm*wF&@`K@wj3#n1v+3NFF`tm zZZ_NSjHGK15}A4ExQ^KU7ZcnBIlQitn9Y&e^6)?xT%eIXAl%Ph!a;EV%OS@DY&$Kw zfXocQa8G@j)Flg%F1Lh~-Vu*Cxew*u?3|j1JAK&(!yS$5j%Qw!aMya8zVppWS2y9p z_97_7uUhJn2veTMu6t5Q1bQDCbW?q~Uua8-0Mh=88YcLuSA3riU%PFfaJX&8dQ;j5 z_9t6EWrkiD(|YyFMd_78YSA2>ttV|6ZJ-qN*~Rx)fJX4yvT$G*CUmN|*;l`JbO~!c z{Bb>=4K^kwE;n%|%jfLSJ$RsJ>lExhcL-y|`wCNkoJ)H-V!dr7r5x2+7zqZT;2<=? z?$BMuCog+@Lq&c$w|F?mx6l>GfBe})7o4+F?IW0hi+O3(#;~^H_#(M}@z1v7I_{?D zC*3;4t>l#W1?i2rwGWTU?S(SCt258Z7&TxHk1$6@b{^QaSInxGf)IXzh}GwZU&q49 zzOVGo9OMD_#_pNQa!!x+OJ$#*|4D-nJb1v2g6Z9{8C$-5uI}0V6iKGRI!7MQGg%kI z8egA;MhTcmS{0O%IGUZ(3u)r^Hjh^4=f_Jf63Bw5vF9zn!{$nke^J~wxks+R!hbjU z{^P{_KaAD?5{~?T?1+1I`ilAn`et@}|59gS0ek*9_Cv}Qf6>T7LRhd3w3XI(<3%_TYil$%AX$OBlqTli4K zVjlG{e8hgloBqmef1yq0Ff}@sEnj*-Mp6b(TAiJ6G>H|K?V9D=`XFColUyge%jJQQ znYqz*`T`>&+;m2cF-?)PSjvh54lNhK_ugc{C~sXSkaFQHA`Mj}-_ zv#5JfRj$(eJv%j*C?>oAM1!W8qUr4*xm@35!rXWMp_T$v=5EIIE`~67i;7NyGHOyl zW86SH3Po>kEMoDU;Y7quEx@%3T_0hKt;v+8VBP zto<*)Lsk_jfPa1(SMNaWb^3@6WLbDMl@;B|LcT{-DLb5{m{i;U2_GGZy}?ZhE2qt~ zCMdl1r|+e7W~Zx#IZOjz-IMJwtf@W4l9>93M%8XVCq9fa{K5V>q38uKbm!7z4wAW1 zLn-WQE^Zh2=OCgjzzH@%t!o=k5lT7M-CkEhH<={Uay|C0s5K}(Is;yd1XR1Tm+v$e zqpE%!Mj-8jUp-IqbV<>~%2--h!67^Yw4Y7d8hNDLC^0!fneL4uK%zD1oDh?(KS6k= zw>#UC-faAhp&QZsyQ|W+4O@)e#NmD6B4L6lB@J+(d9Q-?Qxu$$3mw-n0zOp5FnjVj zS>;UgdK|htVN>hYNGNE~Tm=FhWvwr{QRce>*r_S2tUaFEgfP$)g`jK0HP#zACY%Sz z>LgFCAC+uzid=7bI1e94OF_#aAAf_PW2yW{TXQ_v73ZJ=JMOa{IUKy0;O$3CU;PsO)TUv( zY2V(V7n{$`r>6A+W=X7(v-x-B?@mQ0i z)EAmSko}l?XH;T~XqANM4{ap(7MXu>K}eHPO!b+YkVa=oKgN^@?ACmhms8P$foUj9 zD_3g|ZBpb`5NLg5;aZfjO{?@n$XICPeYhwiZznU#g0YE%nY_0s;bt0OK+_cNh+8p5 zm}56W6w2tXT5dAZtF_TD8K^d5YlsDsd>I(FafvJTAe92M>qI#yYsZ?&r(|ImuV95@ z_=N)3=^=f;l*s2KkSxXAi{BGZIg%AE)QQ*Klv9yjwtCgUrEMi2y%B5sR=epq@w`FJ zl^rJ)x0k9CUmfW8NAD~_>;k=Mu83zq{{D-{VM>_1Q~TKwy=5SIX=vRLn(Q zC=Cu^`C9hg3A@x=kIQ6sr9m|sWVk`a5bfAAZn^p ztN3(eoC&3QIXv0L}7j=o$Zs)_y#%Tf|^J!0QqRYy1#bv2WODav9**)$157)b<;kBc4 zX$IhzIe1hOCw->1K4ZWu|M3vJSau{=Fjg?PabVzXEg?8ObF+V_eDuur^y&5dHr)hb z7Hddz_I2xpIsm9k^XR(WJ!9$*icv2)7u_-kAuW>#WjJMI1;^VWDFZ>PxqGszogR3y zutvO{1dLS50L~v&gV=olN+Zip6@x1_zOfJ9iZp55@XR!c!Q?y{ zk6N$yB`KyuR?qv&V)ND=T>`PeDR(7l=W90|Ue_b8HZR_;hab_FI-9uh=gF4(d7%BQ z-Ha>YoyN0wQ)D1H1usjE6%RTikP?*k^++NjZb~xV_NU}At#@sLOPuw z*~O{1>r#^z%y)L+QWH4*7{&F~&JpyRclb5lEX%XOS183j&Z>07saH&rcHd5@ed;-k z&eMR5%%kX9@CPR|m>fcgC0aZD$xiiWUYZTNDkuYb{Z=pO2_2g?ba}$qz<^1^THVpn z+PZP4v0v{O?W-uzyhF(YB{n|Cjtd|YJ^NYjYDp=+>1ju@uC}d& zxgd0b;yqwK#hc6TKH{RGCB_s+8aV#H2xKD;=aS*R{vEIaaQ`^2v$=eo!ISyubzo;( zgwy*FHpY}ig3#Qck7?SK0g39pFgUF7lcl_sLJ^pOLotINj_BxvtkF zZ?D=zV9*k(wX&(LwvpaFH#f;HJs6AUZM_q^VX|67%9ehY-o0{$pNIRE4hyy@B{)qq z)yRv>Cr)HBUC_$OTfJaswZNK;X6^7f&NKZ+x+BSon{DbTl8D*k>0xI?Ywm+==C2nb zQydkPYprHAF5klslTWIzNg{Po{$Vll5Ksv(sbf(4Fa@~=hvS`?RGM#RYH5GU-WQ)> z4C=_4F~`mfdEF|{YwQIXCqZbD_D?=&&Vjq;Wb9D+BdE>N7>5^2JP+RNVnAuRc+uAv=?f4uK8CMblPgaF;NG{FaLDXt{F2IJXFC@Kiz4Z!zB-u1D_6tHj+ z$s!8OAmOvVXuAufl;olGd#};cjM0wQCPdxw^sjQ=k)}+V;W{C4 z)>>d3&Kgav`RUZtxBWa{gf+4}RUR2>|NT0n;oSG=;n3zKyN$&!fZ39tm`COlBN7Hg z6qF6J3&i*s)gf24b$N~qm>7?<=I#1zj>b zIwUqi@V`(qu$X!q>-*z^U~uz?9k}-t+bJr=71LwQsf{m9`u>U071EwQhXHJ5297sa zBdqkX`JnfZG+)MCvwxbmj?7`=-BT$4FZ0LP=Xc6e11cq=1f8}K!^F(^3}xz)nDQj5 z0VALb{*C+2>wB>+LT`}@OI$%Hfc>BKcS*bToo-z166r(75M#Ka`^!3HvHlr8 z?Q_dADhbVMV8m89($$tDQC5h-$@`?)2b>BBODH7e`H7F;)p zRZx+{Z%64IdLacS29}!6LHn+S-)j_NDJbY(tuu15>M0na7PHPu(yF3MNl7|MJ!#Zv*AuY07cr9Yg{bx&@q0-N z`Yi0ak?i3R{SIoCoBQ
    4Z|%{*PI|Tfv)4?OjLcAolxnT3Mq0 zP`*Q8$f$o9v>75_??EpAgzlYKx*Y@<(6PMWjlCmU4Op_mi+K{K&k_;%{d@WQ>z*ZJ z@Aj59pD|O+_3dDv5St|d!MFO}m~XRbq?Xi$Sm-OeE`~ zuCT5dl7Bz58+2a|rdz&3p6G|geu57La&qR4IFKiJre{>pbGs9Q#M*yH+sr}J_8S>X zG9zFp>{e2R{@cS>j`5*^RJa=|k@l#g33{UZwQQ|tK)@~kf`%LB9(^?uORdQu$gA8j zMmG+DH{pUn}C7&prf-9Eai{)P;Z^#u~vyYJgqOm>SK35X^>5>1HFCz!dmhBMYaOBB4jwuVHFpOIfHiVF413@ z_b`a3bG|QG3&CvKl5F|C@X;swWCC(}ObYwD9&N+#G9)vKqqhgzCeM2dYa#z@Hk^F| zxjD11W9klr=tG<@9FaRY1O|;<^}K>)D4&g+ibnq|{Lz1h<_=+BsC#OGs~ia$du!y_ zF4n+afr`+kz)485EmMC$nZtdqpzqyh^aX>g25vZFkGUGhb3dt3;Chw){TlLP-JY%) zpXa*aa}7U@5%An?JySB5j(vI@EfY@kV?gBDP!<|!2BzHbjlk+A(Eg*TK}?weosuK{ z7ci%N#^HK&iYDf6kD90N*uZ&Ofhn)DsUKeT_6&W@ngg@V)cD_+|6ECXskMo@@C(*6 zt?f!Z;J0_6x3zE#CXTx_` z9*?ei1(RXZBlF{p9hk3t8LGS_ioL8?h(XRTX#l&nOgS{ofwlZG!t;tjNV)28iUs?< zlx_03^*<2cZupg>-n1!Tc>9L^3+8UMW;g0AGUnlo%n6gr%lLfON|xeJqE0E!E9Sa_ zddgF&$Y{A4*v!lH+rWH#&Cot3I>BM^HGA~qC+2Ncc-IOzaV{BuIL2TxOM|QJ{;^-Z znqjFos<+sm0vp`CTV~jZaJYNAH4SqI-=pv4<}`F8pZD5O#S?jIYTDt+fBktBb>MW-3f#Idcd;bx7InJxB$C%8ibSMdZ0`&xJfLYyib_M;?`g4xp;o zm>O!fg56hXZGGK-5P5Dq*kFUahfGEZr28*&o5YJ9e=t?2DiTh zb*1l72hj?$7eT*yPJFz46FIw@U>Wf@?j7*&4ox9{We#4lZ?!y+IwxVeO8co>EwF|D zlWRRZ4eNG-mUQo{K~qtj0?uKVyd>L zhX^jb&!IH&p>J&;-gCo$J8OQE3J>I88^O&!__pbK@73)Y;BCJYcEz#-NF^l=LfAh+ zLYLD(x)A~f9;xg9#XtXgLSrHF2!(M40w4KsA6e3UA(f2$-T{Spqy4CBXv*h};+(UE zr}m%hy$*zgts6+S)?T1`eX|3@7K}g#Qci#K2iA{+}QUd&U-ZMA@;S0)2Hx@ zO+f0KF3wb(dxl3e^=?Z}U_bsvukgho^jU3g9~kO~zKe_xpWW<)jlSR#61f9&d;=P@ zs8{aZkh(&>fc+Ssc}u4bHo&LL;_EBY6S%IpW>ul?XlNASb-#H8#M9!^h0r(Awavez zjr$rKPt@h(F@tc+ud#j)_8yyZ5u^x5w6LwrZ<(+}&o#?l`R=H2c;iJ^@ zGYQ8DAm2XZ*!gc1l1|qhUe3gRVM)-(Sgy zljjBTIcC%w1)Tp_3rAHPJjG)t;O2udUqeX}B%jKp^d7*zS(VMSDa>;>{&X-tjqAd( z`9qH^A7M{(uzzH6;t+JCb%*MsuRSb%LMprh*MrM1>KAc;vsrHmrWGNFJj63)E!l~G zp7bz*Br=?Qyb|(IWCp5pQ{@YXYaw*-qfN}84wwxi%iI6J`&vXQ1$Vei!HTy}fV=oG z`ZNDX2j?5Xy)3NjEVU0@Ojph7if}#8K9{TUlMKP)_U5^VI^Zys&C(6?m7L@E^R{oD zfN8b0u0G7ub&0iyEAAYH#yl~B1Fl5KY5zg&HW>ziwUB?cI~U;1NcTaaV<*sO?(}YL z$NL0Q_VX$bDL|*}9598sUS|so{=>X#megTEF?;j@#=m#$c+>;Sd?cZ03|_6mYi$Y_Y_fa+jHs@>bn0uIx?j(10||YxR%lP>#d*{KA$=a zyV^nv*ionVTXC%tF75~M-|z43ygdT%T(lWgjk{rsMWWJ6yx-#tdqxroebc*=6CoyB zk@HAA=f{n|4_)OkI-TV{uyN9TRD1-_JqEWLzLZkoRbbm~oADOlH)s&CFdGLQv$L`U z>}O3*XPx^eg!d3A{*w~H`-ABG8v`1U?{L{6Z{Nm*e#Q%zySI@O*W@}={sqsE{e*b& zi!;sehtEH%Wo{i)avu~LNb*i#A6zhtCSQ&61T;muZLh%R!^Y1c9-xT(^+G^Y z7II+4RPwiF_i;GVdw)|&eHf@d_2GZZaerkp&ds@pbB{2$(!)FBz?O66yya=+Fs*yb ze>#wWUjA#|CS4DROZen3vy))xf#_aQ&Q3UZXz6lqNgoWzMBe*dvH%%dzV31kY=c(5 zcku+&scoMyE$DCZ8YBL8w&U0zaWh<|?m$1BPZzY_yhDZZpob^szt=(ul%BeaeG1Gw#b>IHj#0{FaU8O>v#Mnw2O{bVQCX^3S(uE9^OVv-GFB znF0@YakB}h^uh(gq3cZJ!$9(4XI8Joe7>I}jZ+2xIY*VC*x6dp-ePlmO1chsgZn5%q?-+%UldI@m|xC^WmIh`G9ZoGVw7sd&HBDn#jY z!zb>fGa)_=@ICB}!WBF0a|!dM(|RSudYR9CB*n?mHl!MmhNq|TOzX}=S7BDnC6?Yi(e2!GUHfLiZbbt93Xmo`H zZ!ETTU)o9lp1z!e=UcF!;djK9CiS0iai9Cl9Tnsjb?)@uk{tk{V2Q96C%lJhV^_)| z-oq2pH?*%&3i+`brIj+=?`-VO+A!fgO$K#*XM8S9fqU&=ubW~WU`?)g9E{uwyxzX> zARF)N2|dxyjQ2PdZ4}-ee}?N4IP)?a&@lgIpcOAX0V}6Hk3KHNzKw)g*#ykro!R3T zLB9+Aw3lX2Y81O*= zU%$iKgsaZ=Drf2p>|q=AwniWAiWl!>qXp(hB?~M!kOw#2e(0+Say+m9st5bT^n=&J zud%&0FxBLZ8&hOjes>jq6->>uUCG0!R!l)&HO4{<$r1Hj#}CD^V9S@7%%t z{lmsR!4K$Pe7Jdxcmn%_Vhd!{#QGpRj}SkIIiGy1^o`Q-X>e_ieHV@@gmU zK1O|_^ml^2XWj%*FZ`9bwJ-%Ta`!JQ1|Y|^U&ys18|PP*eNjbWop7$_zTj7K4}*xu8$rZ|U$%d2?O;oik1BxCv2DCFO# zv(bn`exF!NNu1*(NOFg#*z@9hl#^y%4g2oGIx{&{h~1$5DR^ou2)SYV)Z*F=@En&- zxwa_M3@0b9aQanOfyw!)R3aL*Y1(v{Z7N6yp!DPabN=Z^dFRHaG!i6 zpT@V2r5}EsPF>FTn*^iXAD_=-A5_sB)_oJ(WCr$3Y`$W# zKZU(UTVhNc*e4dN;C9dfeKr;IF0ZNih`^ovqIL=SG|ulh4s7>+g&mVUYZ~Yyo<3!s zzeG-g-ElE8@9K$QPSa>Yjywsq(B*>815@a)x{@)A`@;dVAHUD({y&G?hR7nHXSa-0 zf~sd1WD6Jyb#!!q63u+ka(fF*UkeWSgSpg)!^{Q0`_PwYDD|2?Xc+zTyZG}~a4(h0 z{!Q{d=2qe!kg*Xez##Sg?n6=YP#AvZ@igYtri?CAP@+FMAY&jcka7yN2U-FwkYn*X zD05T|b1HIL^S63jM}VT?o}(Y`e~>qt{+*)(9`V)B=Y1JPUqqsNL{AHxKIm>|b8;BY zEw7g-cw%qlJTd^9R{j-QHT)es$_-XefH z_hxj^8v>Mp@0r6L*@gIX>rFA9y@C9Lr&sKk(BGuTkzVS3bqplgjz-x1M$Y`b?OXxe z7b*nrlRbXD9uyvvf2igq0>`h=+#AmQps(}%G4F|NcrX1`)pP*&*{qDjG__XHc-j*g zP3i%4`$1VRb^;JfCiq6ldO(+MRJU9VxqgKl;&wp<&~>~We});k@y}%Syo&Mu`1bp; zc;uQ@MHL@g{yG7knWC?b;B(hzk^cGBb}J+>u}%NQIYXOg;oBYLl>Lj~Nq&g;kDvVp z4B2X!UtBpxecKAplZr5{Xyo&SRC4CuMIRQ`dX)4o9n6>Wk>$00B*F1M%BN|_r=UOh zyvhaVwb$}=%@UZK31m{)rRLfJCDjTEZ&07FKANI1w1s&9mD=tF)K}%Lo~u3z|`!{eUi(+pomK;Ev%^L0r#G$-sFK7OYg zoF5E|{X~x0ao!e!0s5!jR)0AA>sAxg^>94QK|e^rQKti8?s#8MzTZSA)(4rgNuINI zvv5d4PooU?d9;Lk?hLQ7k0Ox#z3&M6m2%0#e2(?P>et4+(JkcBd2vN*U=E?9{gQq* zet%xZXg|vzt%D=xwfS{bGe9bg{it~r`JtcLO*qkSN*R8_^3p)+t^Zjbtvi&5Dw%fIztHoz3z(l&{Co8jR_^m7gT92|{Do~)_p z2LlP@FOIld4gEmfC`D9IO-QjG*e5!!tYQ9aD#qS-=LiWTTOQQYpuatJl~+bIy%+e) z@5kK9MW0Zl><^D-)ODp|KG(|+L-^dMGo|CL(30HsJ`VTnXu?qWUoWEC%YBBJ+6T({3>Q)5i=;GgKWUO9lf|y&w-;e*PhRdPxOH!GrkFCcUO}-s~kY@D{u!4TM zZ6h}>ya(Q7=(}Oqf}B_TeGT-cllZ-2p}ctu`3Jq67edkJqAhUdKm&4qPe~{OwH*2d z@+NkDyn*{C!l*lk8}?YHroQzwM89lzm_Er7ed=fFDwCsYK#+BJp2tBVIQ~3Z)Zc~Y z@M>VS>pA399~H8ChCLE0Ql64ir>4O9(2k#i#~76NN@?vrhunSYJzJ*eGYEb}er$LZ zxeAl&%5mtE_Y?)UQclA+dJo^z zVJ#peLwEKL?h}uMiKWyb7dc+xsbj==8*EyhEN)LCL9wVqR>+YNXe@JgqD4L8oFdQ$Fx zI?-2l%ry7UKMmArBX|aq3L3y<=0YP8?QKyigRmiJ@Qx8pEr%4x4&1>ern{!)@vMd)wKN$$5k#1iD3Ut*5?r$UM>8+ z-Qsc$sKp*YfBtZS9?lK!H)XvUhe7Ps_Y&e>^l8Mo=9TF6ft%jEKJ|rB=>G64#}oPJ zR`s-Hu|bm%^OTETZ=(i&Ke;$?2YEH_LNXi#)Q94nY7R=};6AQnWq){3E5tD;UKf5s zgoG;t?+JLny&5N?ocpgD${C#Ez7J!L(71EYLCj0brLJ_F`ytQi{s>_&p%%`j7=+uE zB3EX+Rz0s1`JQ2$<9Dg%fqrfDyK&bD40fMUoN2^)%B$n=YuqQRy*AFW_npP(Iqf8W zTQh_zj)nVKOhe@92LxfG2KZLKR=LMx3QB|b76}}h0FhZ1cYfwBh%!@+r)Qpo&;XeWuFH!qm~5WpKUs!61ed#37v|f6$LzX>rdlmLNpIySIXVVx zCsR1yQse&e%81<$zAk9WA1PbMeNpv`eLwUHhv0&aujcxF^o?rQ#I^oIpK8=Q1ELY` zhog2fSw5ow(qXSp!dg6?J6ERB52pY6LCsH~U3kRfluiPXbEL$eFSF41)$nH-`tOzBgnI1G zuY;{VdgqHTaDPKrh(4vEHo+3qCm8S%W!{3xA(_IuUp<|4njp6`)UuY*ac_<{s=?E9*d zj~djQ0HrOm?nvy53eVQNRE~QU(bO3sUae6OBV-z8nc*D2Us@(epdXyQvN!cDrohCx zjDbE3^PHlTiXrF5!Mct^AqwXuzsFOLvlbTc9?X4(YIYEos2-e^LeA}T6EEM|nlT8C zvml#^FM)T9WsFMLyYa?3^JMSD7}yGJ?%h_vd4;zicjFv#Y$z;f+nQUEe?eDwa9=-U zX3L!mSDpb^PZnCPzIOPjyxb&xW&-4m8^dc@{?D_%ox0321*vPby`Y2lR;#JXev?+X zk=&~IjRW&6@qZo*pTpj%kD+%y0TwK zVWoVkjf}klmhB2=CyLskXgzaS{}bkO?@Mbk=i>Xc$#E#Rx&vJ2+L(Tp;qxrlH0W!L zJyGjJ{O9d4pD~!&x?|J{-F9-OrKl6QlKr49M!sOqQKC#Bzet|mCH74haYALjahze(%6Gy-l37O{5D=p)hV z(i-2!9v+EQp$C|&OeYf$Av=b9GU8PH@tSUskN-%R$N7Xs`n>Q)83`7$_NUtQjf1o7 zMQf-0DX>`4IsY!d1tRQgON8+EKDYeaf$!NYY{5}L>9RPq#w(Ia`_E# zg7)SSs?AZDJQ%oJ@hA~4#_x?MRUvQsfl8h3G7(yz9geK^!W^y8y;nZk=u$RK#Iv~<3U z!_TF1Wby&SH0)XF?D%|a033)k0bV$l-k&PYQmE|I|8qeMJQKEw4frg0!z-uS?&wT#6$0%+vKJ>4-MMCyyvC z3-dv^%i_c*ig^bbp1ReG|ND9_MrnNI8HK!fsdK2FTA9Ib(}D+`w{oF9R^W6wjyPj$gZ@kkX3*Fm_-nQhDx(1ARh z=+j~q*aH|DL1~HlwzsJFbI#IX=3a(WJ>SnV$#Y$^gN$)GWxqI zVyTIuH;}hSUb-L^P6Cks=H{}FyehpLjO*y5I&(8_{s!hgq_p{~ELE^qP&h{?d_VdY zPyAY>!@i``E8TZYyncXe)(?`^S@ef>mGN8Rd>C(9OPM4x4Qvga%4e|WU?wtd<{I4) z#0wNYIfMF6YiLS!Aodm?Ag9t7D#9MZ^3%O{Ci{U(T&Zn<2lb!71z&dp`$6dQ%~KDN zdk}T-aVr!0RJm{5^SyYW2Z%aRo)jPZflF#u;*lBN`>!Qm_Z9AjM*4|a&FmrAV`DGn z<1-G^i~QbW_a>o)rS3JY8v4B6wT2h!Hb9oQ4AoP-hibEXubE+wPNrRT>0vW;xX_ysBOuz#=dDdo!t{O4GA4-<*6Trfa6BM zSYZMQ`kn4Hx!=M5#(jghoo#`QRB3+)vko}G5qCG~9|`^%v>D0umcX+7EX!{GPI&5E z;6pNRf+OsU>9M|@(DK0MuwM)IOFio_s6E*XSKY2gyRo89QR2-ta}j^ulSWr!MF-$q zmCDoZ^Z5Q1=d_C!Az|OwD5alVA6V}m(`^WBfzswmJq3K;s1K=s3GVKK&*6SUnIY)g zxp94Lul6XsYC5HG7w`M#gTck-bJz>)T(WWi-)r1L&pwu0AZJeg;}u8p7TD2_QG1-< z3H0ePg>Ot7;MU88l4CdzOgl{FiZ={FaM_;<_oJS?S>!z@EfuOX{RyV3n}&S8zeSOLHrq zO>YJYDAxgMtq*F_6F@QhkC+(4H^`umGPub$4@->7;@Rkv_?O?X z5@wJ4TQalVb-|bu5Nh2Xs%wXnWoCrb&`vn)PWYJHfb+n|zvhbDLtvxk9{BYma!n{i z=&v(2fqy`VZN>=ZlGv|uYpCP?Bw=7q^efJtLix!$tJoiO@9d{x%yFFbRk01mxhj-W zq9y|W{0oU=!S8UtE_wfG?JM&MD2-d!p}txJCyjy`_D8p14-Z4Z*`WqF)#3NnEdc!( zCNE##UM0cxMDI5ahEwpFC~x1-hVv-{Z`5)BG3b)6V+x){|Fb7Y&?;3w&^l!@4@vhx z``?f!{QI$IDEyxP5dOZKD8e#QhAJTFT8Uj<=pd-&@J(DnF5}$8z=A~F&lV<|T2e)z zF3Yv|UWW|ckF~Eig&_x~OLl(yTXrs7cWtIINoTnN8gAs+GrDy^bf0xGH|Bnv1(Tf? zFvq7f71%O~@82{f^W#$2JD}YnM%6lH6vFSQ5N~Hf&v|Zd;s^F;sM!eTDM1VzUf$u zx32w+Ox;y*C&Nu3#=$MtAG^ zg_8r=Cjc4GaXz5aG-D!tnufM1Yi{{i-eA*~}zYnk! z3L`f-LHOduEl2bvTFX?qSk^+!zbz9b6ZFyA1upbpkHd!>o3(v7-|z0ZD|%Z5^#$oY z;cMup7^G!epu#!y7)h^}2K}|;Xj4g_c$zL z^UuT>zmF85l)w0~S9I5Q`u))%p!WHf-Jyc#VQ20_LmldmRo^o#sxj|&=xcc5HtH+l zhac3Jj^g|q6XS__6qk1Y!{<$FA>f(nNvqUGuyBEip-pBnt;}>J{n={uOInwg=hIL_Se6p{Fd|+ z`>#u#cSWstW0E_ws~_+GWkmZ?v(w$c`cV?7Wr#3gZ!vS=6bZP(%sABDnqkg2(kcw^ z*=$)RS$nI|@1eHPJ&e8-FQ>bgizv{SqtGkFiazhPr!&-FQ0M0DyzDl6=|`{!ssJCwsL8b7QY`4{nH8P!*v-yC+(w;eBW4l1>433IF@{^@B`;7b zH3KH!aDJ^wnW7eLLOqu%>{cz#3m(R?E`vAE&*(=W``jNl8u{G(|hkZBl zP5kc^a6i4cKK1z<=4c*UnBV-{-Vc;JNyTN%xc@(T_t|CiF^KW{#NI}~{Mt|rsH3l? z%QAYAx4Rzhwq5UJ$Nlol7adb&$ZK_{XiO9~LYc;Lpqt z@Ok^b5*1N~edCQK(-WH=a6y2*U!!>(?lC^OoPyjkLIs^k56&Zo*7WE6EE_?8^fvEy z+cX%mS!O7qKO{Vxb7$fa5jGx&Zb)yAf$ros>4wt~#M#EuzN5zXb3#n6 zq!Jmrz`c8?tW7E{@`Y`_ zy%$bIJ^bR-;e=|;F^(J(PRvFB{Gn2%yy9UvD$sGkml1P_MuGF?wnXr}dnshC3Fqee zlp6-NnP>-k1&o6?c$!n(io=dhg2ezB>hzI7G&i>;|yr_ox78imb&ssZVQ2dnMyQdp+nFeX^q0Y2oYdTtX z7<*!t$)Y%#27uPpVZj(VOUH(jp1%%49>d>+%{%x#k3RX?igTR^RhKfS`r;cvw#NGx z70xBETULh&O#PtcX;QAj*$BmEISF}D$jvH@d3fjw`c(hE3Q+AwU!mN7qcP-)P_MEy z8+=9IwC$~lKW}^CsYwXy{^1tnrx4P^I(k6WSmARf>TwKo`S)*3W1rWBdQ)0qyl(@q zkTCXmmOqs)VX~QnkIe^Mj}^4Ri=sq%mkJ=Bx z&5AOaKj@22)s4FBt&jP14W7Egw`+hjOat%!F4;}|{EsOe5aPjodSHgU@D20>+~<#YO2VAj0q>(}^l3yWrL&qp zxL66cdGU)n$a8ex7WNFW=>(JL6#21^E5BNF<~Zx>g>||1q2elF43W zGBF}VTnqduScAQ|!LCZ#1e|AQnb*o|JHgYa_h5n+=A@R@wUz>YL0RAaV@2Tv2zn7# zl7st9?Qe|bN6;6l>6Ql(lc>k#GG6J`8-P=9-kdt%KLBi&Et@5ZRd6DVDanNjbAu_? zIXUk!=WXno*(5a%It8D|Cr=>E}H!!X9=hwrk55*xRAk zz+^%Vb;xoWhM(->9Wd%VKv+b-m&yLyDA6OAl!}likMjlBp!52JYq(d`mo~^bi}`a2 zg$u?Sm^T!dRj!P{esw8@rZ1(qe|gNSl6}4xxkTIsN6~j@quF_bgg#=Z-FJdA7Wb21 z$qAyvB5dC<{2qN(x#=8~4?Z5pOh zfcf;zqL3Br4LKn9gDrFv?*TS^|FU=+p`LE6zsDVWyM$^6!++u2ReL~@sS5AAcaC>m z)|r4Y{nqT3k2BDCoZq*cG=@EIya$cN8o_)2i`YtcB53>b0=q~9a9Ufxut&ZhQ^Y~( z?_Ah_nBvrFcds5ORzgGP`*Gg$5+5+e=fr=BiRkdsnM{20C7~m za=0mxixrYwRPNCPKFfF6-}83CAB)Rbt1jpZV~*~xMIC;&WmV5~s1@EDwg|eQFIBN~ zzA6g!yWQX9ZCjCx{wwAuc@XwF{BCBpDjggE&Y~_pDdhQjeV5@)Dn@P#_wmkY^h?{E zWTWn)9Dq-bC$r_pkyq?^Rf^@`1Z*Ss#Jl2Tog;n-H*%Rx3BoavX%8v&&mu8V9zt1^0H(9(cO6%+fS~ zdVr-}!+zW+T=(m2K6wXwHB5O}RB;c-y89CAJkBxNp~@x?LZ`vjro(wIy94yYVyqRZ zaX(Vl!7l8C=j^^o$q27DkZp*HGepkm*1>L>@SoTtliyqv{?`KG(!X3c z(f74hW=Sc|g85Lbw8@Lk*qf(p=9oQ)df|RgqEBr#>@*czD#{-N>w*hEYmW}Y_@M60 zjnnu%)~OA;zCfQxOy&FcCvZRJ|L5rx{_~4Yc_-BJMxbnH6F#rbLQoDH=W4_lOy0Yl zY%4JeTCde4888p+yDhVq#}K(+(XO!#Dt*w$&Tre@JO^iI#t&)W92cSLwy)I(b*^t> z_oVkt0oi5M+$j4Au#@dIz4ovLpL>awe(c*xF?#W3`gtd){Mb3#ikyC>sK_^;(YFtg zVo?<}B>g|2FSxoRsr}Mm9o&W>gTlw- zQ1sZQC>i%|e)BELs6)1K0}4`s@dc%t* z33_}_O@*X|>9oVM11HjSzM`JC5~`p73HLsIWR$UD*h6#OCnWgr7$oMDjtU_^GM(=J zg;w=Z$h~u!s|NRSy)u(8BWc@!m&S>yAAQ^%-SW567BH`MeKVSfoHn)(yK(}MgPL*U zni>T;?rBc(W!`M42Vzsan1wz8viEK5dGdP%63&>aPsUn+hriqBn@C2zFcJDe}{f9^KD*#;?A9=}wWk+-VLeEHN*oO8Xt5&sws z!`It=H~VYqp+oMw^o>iEu;Gvyy`K*CIwRMSyzl+MNw*P6AmaPbEiF@Fb{vixSB8|* z5rK_-g(2+VILuuvNSC0Uf<1v-kCQHTLnL%p?B9?4%oIA?L z(~o-4&=YYH^tqpXxtMjN3HvHzFWtuHHQ({~4~p$RF#mg2QVDY{EPED4Jn)_@;xzP^ z7k!i36n{qk6}3UbQe{Y}KM6EcG<%&;_t-w|t=W(JUB>ozM^o2(FsJ{Nx>T?N?uB#h zq0k)zS)aejMYae(sBj@zN`B1qpmec-7$Iv=fe)xTDe0XTfla+$}3WZ9UQf<~{RWW>z{3cjeL}9K!JUHao4EAH%&Zw>smbawtpGV}w!_a{r;NVb=-Rb3NQcqkbGnQqqfUICrqeGl_`t%tEZtkM*dsS>Ove^37I- z0M-P9Lm9Yt8tZ3Cpu>BVc1pZUPob zBM?NG8Cgof^Icc|ZmU@v91mN%kgJcJOJ-Tpc=P~_k!RUd%#8xAqA8im*o3=Sam>MMNt$@^yRE?De7j9ss~x2M zI`;NN^nlwzpUAz#*aOJbN18U9hPNZqWqWOLzNK$&Zh3_7krvgFZ)NCfwW$qHeT1BO z#x72BuUdF`NPkcm`MFwaM7K8dxm4Y(60YcM0ZnoambWRbpptt1k`L1$SO>^jN}!%# zx4Qkk`WJpbNav_D_oCjjQ@M~xH3yr@=ljy}eK0XTA{f9r50{oQ8um-gLioQ|)`7g3 z3!+JSqy3{B%3i5GJ%1gaV*{QIQN$8_@} zo5h}JAyL7@=o<=Ww)y10)dl2L}o{rfn`%O7U6dTxL+yO2%DRNp4`gJ z2b}2R4mz$-WHk=OuJmO$u}4T`_Rrc!$u5}R67&3wK1m-vrDILX*b}s^a)oscbMt{! z9A@a_Gfew_!WcO(Gu%5}+$YfA_sIFaXKgzy1-u`>fq7Rwe-gX1B%Y6Nw`8o2PlKfU zp7ki)V|;i*x=n}ob?I96pH81KAGdWQt_^iR1ICFUzSS{c?55JyLq9{={inRA4^M-| zJJnMntmxk}yhxzcLS1+MO~DuR!z5jh1pF*-7^fk>GrV^t2=LQx3a}k@=w>sL-takGCB8$9H=RN(fb8 zD>ry0La75F;Vo1AlmCDIPx(Wb_k3{1ZsFv6?1z5JUHOiA82se7rk2r{S!n&@>ZyCx zpi9cpzr{HY@%vAll@sg*0dIfvMf9!v#!jxNTGv6oarw#PsE+A<_OeZ^G(Ie zHzMElD6^{QEL_Ru-n)%CJCAoZ$t^fH=_mc;4MLtIJB|BIQ}k&QpZgg8AR^C4lfRT( zy%cskiyu>aJ_nm2e}Y@a*H`{h0Mo?aPJwn|wr`p@kCYuD?u?yPsTKzCKH(%L`J{i}ll4qwcc7md|l%9(5G@Re$ zp>Pw%d)-O3O*=Qt*%ahfYa4Zdr-STej9bkRYjFJKKokPu)%0u%#@QKq#npUSDcmm_HC@@#PtD>_#l5+%d9E43(+%C%CirX3Z-m|YRDzaH^glmFlI?2k1fzpPzt0HFx=HEpXw-_Nm zBj6_a|9!eVX1hxs%QV6Lv!{k=!iYes_B^0|sU6JeWUd9{c~`*rawP!ySXNCNS5z;} zLejPDxFGcRo~zJU79(#3YOxzmUysy+g79t&2Fo#MYu;c9!g;0S;a%Q6#@LS(G4baW zUp;(0Jis+E(FD#3;;|RQ@Ls|{6l?5K2^oEX0v_0d^+n>m_8+_lXHb!e*BFwZ>kRYZ zKREyVRtx;0TRsYjW&-ASaX&-W`zb)qe;TG}OkR*I#-OZRexWoNxp-O3?rn^taE$Hr zPy_bGNYmXi^AbaU*%?38rAh1;u({PtY19N1@-G-&@qSY6H@&K&j~vnS=e=UT;6031 zvqKmNPtn9)^IVI!$c|O-aNIY|R|k<7cLw7}2HM+gD6xW5%X zZrN4P4drRiADU!hUy17B_w5QTaQ5oSJ+6O|OX#>~a8aus-e)>KQkBJ?g_J=VSDa64 zZp{qT72sYXR6EjbybhjPJmeL``~T;>%j_xWcYj>?ILsRNVo!9>aj#Ed4-D<23I^7Dv62+^IMDtPsA>gP9bYQLhNzccRNKnFw{S;}h4B z_vhnYT}{OE@ds}AC|f(h>3Mbd;nD@v*^{TDkt--M9`Gv-eVoP5Z#%VJ!@N(;bcol% zez?K#yz=9@MoZ?KvQgwq<={ zLVwE50$~}BuT%tB5Q19{V#cuVYKiC~(iuPgY~f;^FP<|;PxVnqPwi5-UYJ-)**J>tWBpa^-v8nWh{ zndmcYdGn@*5_!(i&-wS@eMI1sUdudJH})9}^hlqW23Eg_>XX?G=-;BdduR& zq%rc!@)A=&of-qBLxy9f=~K|@%*!+;JOwY-cSpa~#(W>0nOQOVm9$qw)4MMtAKxwZ zmzaJ793X1hRO6g!DDEN9i+wDshv~z?8bqSYJr?f8QJrbB{E=0cX2DUt1 z5#x_j5bk##0xaMXkh$DiBRq&`6nxD3q9ts|XwBpIgKcXEl`}z3di#@YI zUug2ZCZY-$37p|0_@3LBzxhr8^V^|z^?de?o$yCmMS$u9_T{mbcg!J&UByF??q6>& zNS3lL{~jHI@w1Gv!xA{>H9le+!~K<1YG$`=Gjb)(g~%e0*Fn@{%KOYZ$gvUX6L`9W zoGTk*ZU^e2e)Y6t*~YVQU4l=fdvXTE+GfH{#t2}s^jm770Cl98`HiD^KUMC!ebzj@ z6B4yQ`P->ru5Q=MuA8{8KjbG(ZBsW28{_Ub>9AMn8?ADHh2JzBe#`nH7I_bH%!H>t zzlpGF$o(^hx)Cbp6dr!KfO&G^p_uP2!=Rg`rLTv2(UKyA!#Ce{n6~9*yd%{KZ+>&H ziESfSP~lAVH$0c(_6*&jjc9_3!JB&OqAfu7$6Zw{X9{#S89vgWU+Ls+wuv+Tct5gq z>7_<}$a022a^=F_o;DYgy-$BZ!9RT)b=>=o`s^CMihCx_>$j5M?(PIPhO4LYCoso2 zG4p`T3g?$&JK8HN?T{U|rmpuGd+DcV`pz6_hG@@x$zYmxFd~qN$_6)s<_1M@PfZgD z(`9e-;=aWpXu{{|(GDFY0yC+5BK3PH*L_o2S+l7X1ShY56?fBZ>|B@+eITHE+vBbgpA{LC-jDa>U=?{amhG{LZ z>m{$AhKQt=@}mQFP)n~t@IN#R_f{UQPs(+`q|JxgUC0luTn$wGP&@+{R__AtmALNn?4oW(pP8y=yMYqs@)GGjW#7T~H>W-K@!!pGtwi5(xNrgt zPG0%;4LMYCX@$dE`1vjt>BkcciNMlxZiN|r26CX%7>3Uwty`5{W@#HFjsCt{jQ920 zH$HD;G6-(VkjbB&!fk=t4E-Ax?Ehxev~UN^k7*4DW*u&WR4(q;|}gE+;m*eV?V>IN0%n9 zxgpoa!-v=Y-8h6j{Mqu+X#fhNd4#9;Ou_FV+o<&KViG+dGz~A*R18I&o{u|TistA(Z6V_Jex$zHVhvd2jlO~)k0{D!54FfP7u?n zI>duMg$R$bPw9V2z%F675p$&jY%D3JtT-@l|HS*k1pfO6ox_LrqEE7`=Fg>uJIF_U zd730&HVBF|%#XjN4nS0qf<{$6`d|O{q|dn`pV`G_d3dQ6o~_kO(^0j6b*af85fSVS zPivUH^Qa77hJQH!|9hB4u#jgO^LnPCi^e$=<9N?olHf5!A%C$PqkJm;oi?j!4OTHvnabG|xu+!Ig6K6*{t z1SxcEk4Bzg|L#<=>I>8>$)6mvZBv|rJdI`c8(ou7xN$ls*L?!a*>19RsJ21pxj~+B zQ{-y4$&IAqxzQ)j`ukqVBm{Q9K4bcdfHxY(W#)HXK-lq6_O-$Lp|(DsKJu(iF$%t# z{)B#Fe}xtsg%Oa+ylr5YTnpuU_a7L}7)K7)tYsqh19s}2O;D{O!bjmp{vsTW@Q(T{ zkG?MfIbTlR)GsO_^YXo!)$B@mR=%BG)QLVq&ExjoAMp3tuKBRmwGv3Mc1{8NPj))x z-p#Kx!7mmEk>{wtoviqp6;FnH_lx?eA5sa>d)I6gX>E;NUZ(93 zd9`==_h2LXaYA=T1a?6IiHdOGFwQTdoy@GO`LJJ8_>`*y3DSy&ezs$t&~{y7M2lts zT;7HZld}(lQ@g6qWPLZ@1B5vL9z~tPMny9q4Si}RtiOrssN>!MGo~%{53ZQZxh{^t z>ax_27hISlOVUdk4DJKF+OYtlVjJiSOKPtRPr!Cb{1GF(hlz7b337|q01MX@9_xMh zz9jalJ&yg~--F19*qi#me&1cne$@NhhRV*U zAYVvCwpS0ibB5bxUc}IDsJ-z*oD$~^w>Ph;I5DUDi~MHHp+MyM{vK$!J%c{gQG0XC zQ~fX?=Ez2a=gN^D%~4gDQXE|LXzoN zteODv(vy&^ItKgG61y(cOo2jMYg}mO3>;dWmCZfa4o@qGyZ0lXOLFYP2Mg4-9{_tMT@R3?AGl{Cul2=a#T&9+n6K7~ zO>z%MKOf&&0Sn7s=sqTD?TbIB?q}{Y))XQr&LpWSZD7yR9x8HQ&R@L!1;Zyp4MqT0sUu8j02*}wII0O>UK1}0~ij~zN|Wj+~{Cme;U<(uzM90VugFT zl@ryUMSKV0*3(XnA@r$!66{mTK=+VsY3EvtF@DcoYDEXsNWdw5(UYlk2z*lwJiBU} zp|E#satQbD_796@*>Ioj^nFWf9QDc!&abcZVh4fZU9jjW^o9JRa&Vc(y}||ZNtMjA zO~9tYY$1y}^m(eQ`%WAigcIprCzWE97y;FNvjvpBYCiy=%Jdnp1l*rz~ z+=zLmdgrm+&`D^T-ect>&<7XW9tekC!M;0&ABqotpuf-h^#K;#GuvL=_G8o>fScJN zB_S#mP}8&WJBFbXKBgr-XT*EZvx4jcs}my-T%DA4`&u_}W}A&DD9l1CQ|ZCp`yF7u z>uhk|*KX*Y*Ik3y zuld_BtMM0dOEomeD$svQQZ3v29{n*|rl*c3{OJLjkt>c$-s6z;Z{cY??g3N%-q-Qr z{4KhuE@GpL`Ce82sJEDpY$&?Vc3Qm$>gYJu&El~Ckp8lGr8DZX!<3`V*jHUHxrg%2 zu1R1qZ<5b$od!R4va1}}JEE9wR?tj`JqMdsG+6;7u-vMAT95O8|NiudfYm(gFtsTK zNe@8wMe*((SZjd{n1VlNnwKg(EQJU|{d4t%#vf~Kml*X+8V{sF5B5D&du z#&Hh&X%3q^1|=ew#X0-2Ld+ygrXBNrjkyi=NVS+Trb&=;E6A7@oq&f`EpN*=`hlF| z3y&vqE%tnp_lntre&?>R$aT*t@E4AGAcy&_ecwwGpEhBRuthQHy!--WR1|k!*@J$t zTmSz3Ey14m*FQ5%ueCzs$}1WM>;ddM;C9Cb`+a@V7`3fy3mY zZ8PT=?5C4uFDsq^>gFjsBjoKWsk!w#bR)M=uUqij3EVG?y$_$h+YI(EUW91vC4q-p zsqjDXQQ%13=Gv-8Zi9yaLj!(Z?;fAAeTaQ)#AkN*cm}aI)SH!m5pdrsxJhNoKmx;K z(&~xZc>Z!xr=?==)NWB-LKo`TEF_j!MlXjk&wjl)r>_iH>7@kTBX_RGX0hxea%a4c zD}GnUxyXO}W=cN?_MHC|aTJtmgT_~sw+zuY`D7vAV5PeWLhDWcJk79EPGkc0dDP#(6*|&QrB9~I=NY2CisEe6qx_ovZ zc0sxr$MdnlUicuibMQI7pC4^p7rIYA39>8=H~e=IA^%t9xN-pI3@Z zwQ?_FMN?6Bs_Z zdB|=6{iPlv8^Y-Se5!hn#C;X>^(7MHs*RY>oY`C|K>f_~xV*}sehKb;DN8VRDDr7Jle~+bU6;^x)9Y91k5Xqc_?mr9YSuM z%Ea>`Jt7EE(JNkaoPduV7yhg-;{ET&_Iai?>^;p(33$gc0Z+R%OKkBR-Q6N^;NoB0 z$L1-vs`}$z>G6!K5b9#zgWF`M8?pE0RH?{Kml`PC*5}^y3HS24-|wzq-$DMs*XZ6B z63Ch|uOthP0KYfQyt4EHv<^HAe|w+>Xe;0MZr~n6kcF;kH|lnrUdb$^A-s2r@7uS8 zJr7|Q0$jxsyWtCKZ(dk4?%k=rG}SA2g4TQL!?LP_kjkjjM?{@#em%(JE#_$Zy0}uC zCGhW|YM~wO)dl~QPdmIjMu41N%c^dhwxJ$QOEl z#0z=0d>sA`om(^DKGUAME;R~0eEWHy6WgF;ccYeV0{UN~I4_5?wrB*@UFNfm%<|KAuJZo;;|lpq0`B#?7ya= zRm5`XiB==_upd8i(V~Ozk2Y` zNhVjPAEW$#FBL@$s;GzPxf2$_w{b7rx2zjehkSc+!LL53Gs%eF4^={c58ZKAt0BCX zU8j^5FncozU4QRud&d$WOStj+L%dHtF$p&Mp)mpbxw+r_p(?w6EH>Qv`vhDQxO*il zA3sNqw$FF()qrQ84znlDWeSsa8xoSJ_h$|H+*Y4~vss7bCRzr-cp&Kf@rHTm2|36s zSJ@5$_TCXfU$NKQbvJ4JDE5c3x1H+_t^p~!psi+{qY5J$y=vLof&TlxcZQgQAaXX( zzJAh%_jIlqwqo=Fv2oS?Naz5$z4Fss-{xS@TsP@Pay`s1HlAbTAA*wd)9dw^m;F4p zygqw^0QMn|y*I;Vf$XU9g&Wupt-CcCpkGFW{#C0VeY>zg`*!e>1uO9B_r9I)&uoBmiICi zZytb5iJxK)sEgYKK3O~X7<0H>S2NO){~-I6BAogH?uF`)c^Rd*Kp68*rs~5E>^mRn z+Bi211{GOeIg#zaHdnNkc&Qb63Jn}Rn1{ShBcZ;<+yZvlS%1F%=mFWcX&NP{r~dH0 zq~(V9lh(48qn6kgCUZ=6b95SWej;(E3DSe0_npJD^?oxj3~Ts1H4`D@8|~w%9Rhfb zYhFrT9EK&FMe6zR{_r=p-x~W+ip)(J^FNbdIe}T;0sVvD=AW$o#q)NK_2kmR*D;{y zs5VVIJq)==>Mr|Y&OCZeRmbZn`jZqssqMHA!MK+s?GWz_aGxm<8c9Kp?KepRk5db< zS67jmH?Xg``9+sfOfM))*`L0N91^zieFkrDWB*uK8C#d!7@SeIk+UF-!dZ<%TTzoq z+;<3RuASQhf^@%JeD>{r<{dNGHPF>&Qp zn0Gsva{lSLj&q#Em+h-#Zs;?~iqH&e#rH+rMU6zvQGZz@Ur3A`1J&W3NIsl5YEQG? zP|3uc_>}XF9J^o8-J#@Z$={0nkf`NnI7f&}Hi`e^s)IOd-OV9#^nLMV+@nJNFKfGb z>o?>p)Nj@Ad=DZ)ez4y9kGnNMJ~J})H*O5b#LVOc_Krenkjvd1Jcn~ytVIMdzeTlS zZ(oA%n{br|)}zQ<*}hBjcNYKuSEKfBx~VMyhtq~+8~QH;w(JCzZqGnzbo+;Gzd@*q zPoH)`|B3k#70t+K-2c4Jnm)Z40wz zP);d5z-5j9eVeYAS739&>#Lr#m{RDhBgH5+)WvTzgr`f zVo9CQ$;@6&Kbq_hoRbmxalKx^2aQoN5L5^WaOO!PoIM@NZ9D>;P4Pm}Em+{z%K-9OW zM#MkizVg#EHFElMBQSi;mD%ZZKd4q#9lM`33NDT7WiwOQUl?I|mZcAUldU!v|IbCQ zKi6(3QfdWp`tL_Q@cwO)Rp}Ls`^*Pl5_rNJM!=Udquvntn{JB2n)aAWl)sqB>W=;~ zVZ-xlg%6S2#^v(l3+DI(*3~$|kT1csdXBOlxpI4N=BXD(Vei51kkY}nKG=I;ZFl#V zd5CQ!ORWh*oj(68r!MA}x;ZYq&p(fRvWGXi3NXQBe*(;(%NFff9EtDN1MaZtq zjIuS%5TX*5Rdzc?>^q?+6b?-PX72rjq`XM zm;bUL`nKldR=n_e+njf9?i2eoaD+(~=U;D!%W=(=WMt@LIGh-tWQh52_41K~o2Yvx zhHFn890Mw|3c|k{s4sE&T+7GvQzf^1%illvJPH)MzJ}MEd}P==8ntP#5jASi!d?K2 zQqQP^o|AB1BgdJkIfj2-{CDtKb*Ke1H`%`iuH?h>oV9KTpJ@is|Vj zoC@6f8;X0!J8#==T6>}2sj!*>E0Szi-tclI`ScCKPx%in4^Q_1>GBa5lV7Nh3E8rhp)Y*1 zBy@ps5wGL$n@!>psF!u9mhy0+pU>p^w@%!LH79WidmJ7F1JZz>>xrE(b5KI*M{PZn z*MCX*mER7xRxT3D9Kf6iyS|I>r3nyNoi{xB6nlS9<(zsfT@TG)b1&cHTLR(_N*M;5 zGax(?Px-L48e|3jewM-fpKDD7>xji1L^pRTuiAFNc!z@C2J(Ry2>VJqr;tza_1;PBatwuZG@?!rFEmt-9PO@zzKwcf)JNHD0tt;~piz49 z$My5wpzum-d0D+49DEA4c^tdI*tW;e7;~GF9Al>p%P`MMwD?mNKM%h*nwQz{^nknK zL7zVQ2{2|@+2TaqMX7ODPZYn7K5gbEUtkkF4U*a`5O2bMa=$c^_8wUIakyTK9_NUz zVCr8|I45p}nrIl$!!yE|rJ>>;`05%xd39YupohqToV#s1{eHN63s;XDxvG>aOwIgvvAMkQy^ZT%lK<;E}j4S$s z>(fq#FcP9J0eXfNZX*zwolYahi2K~22R;0j=p!AIP@sQ23+_DTH*VXG!}s(XbqD9D6Wv>zHc=aC4Gj&0vsEvu>-W0H2-sT)RgS|#49v1oH zUh&@tiM?M1m9YJxaPtECDXgBHv!z3B`HA`&FA*QSK7v_m*=Q@_s0zKSr(ri-n#?@> z0=fRF-&@?YasTbL|2Zf=vl{rNClra(hQZ|eikYD57|cesIzL<*f$IWytrmT;2O{HH zt*&Mn{Cw*n!H#u$^WX9M2qNh23B~h&oBrr^Zp?eUIa9^(tqV>@h16ZZbDn+? zt3$|>|MQg9hr-ZLan~(8Rbd7>V1jFtiBE^%z{Lz_W8B-At%pr4;J$}z@2`i(ebl*# zzRf4fwF0GaE44KDG$f4`kCcWkqTe@JR|9=RN%yXO{eti5>#vm~DpTv>&StYf?dci# z*(}7O+={&!^TlU43P(Wq{nVi-^xcWno9Egww?l*Tt(7~NN6NZ5%jSvm=%^mUdEuQU zP`GuZ!3X`|2`N=<%(&T@ALr;`9<^3}Pt7N$ZzdoX$=u?d3XjeN}mt{UxjG6~$y_>r>n9n@gXa(ElUN zRv82%ZLT4Pj85Ryn7G`E^UB?_9a00MK?pjlChoh7{pq&n1Fy}@!6et-$@6LhaA1E* zbSHWOlBzGn)#0AjCpGMgB<>|t)J%QPeZ+q6pwFq!sKb14SGv1VI|HRh4(Xl6T&=SJ z*=;64-0LkpnYh@5+>=I23NGXV+IQuqYfjC9w<7O{2XRd>tW@-iS79DVJ)C&0JCUQT z$QDG8^X+7b!(aUj>|>F8#S`g?d+#fA{FIo3D9U+eUpR+8pfOU95%edfSw)MwrS*fc z%hja&-|OKkNAxTwa@^v)hDnCd54SK`Ua@-}bq%A%o1M5nm;I?n>RZ_aMD_jQxjo2l zPUcK}iRXLS#~ho@cz&FV*Q^geI0AbKfv0ZvH$mrH!|_7&C-70wcoZaI{y(k!FJs04 zSPJ=GVchP98p-q|H-6OLLZf@ks^$QmcE~c)U@zhxS!&eX8IY6jAs|3qK%``(DHHR* zF&T?1s=j0J>ih|kqnPUp;c=1@LLX7to;FDr@?G-j1Wr|Ty#RIW#P9^z7{V zk)L``=?wKKM5Rh_|GZzX zEf5g(GUs+?KTu|0c>~|D@9z9vb2Sa*yP0#}ZJ!y2>F|rZpD9pZQs3uH$GN2VvQO}% zsTpwOO@A(h`x0+;zkw&^J&>Q;PgsC{BjH1)DFx}m7vBC`{7%&(|>%2>F^A)`=E`X3$oHy;F?D7*GQ zAJG1)w;%FwUA4#$thEFCS>DEE@mV<6-O|O6dlLV_lluv@b8vz$<4#FNKh9yPcZo9= z;Hz1RVX??hC~3RWNj#4{5E&CckvB6COd)mM;4gB1`hWMxmSPY3Rb4lBoKy1YbSuAe z4#UZ0rmVoiZcwAxVI0Een_%N&U?}G4$`LYvCuJCCD(2$G9O1_@_9wp%Vjs1$;bR8z zC15$GP&$R@ieFPxkEL-AaAes&_v#OFIMwTt3igrXYVYBp6oh+~ih`WQ74+L47OM07 zh<$G3US;ygeRw2RC}N5Ie^V-zH~k0Ef4RM+T;Em;_sY(_pl_If0_mkNSGFpMHeU~& z?nFKL`@7^P>_gDQ-kAT?5;-6j2E$cpr-12w9I5FZe%)$53%ZF`p#B!alXkxe7-I}A zTSJFHPwtR=@j@Ml4F%I`3gCOaNAaMm=@e|_wOf3Xode!`t|}(jGZ`+HG#So>JyX(m zQWo$z+)5)t{JCNgG}eTz9{7&J^N+V&HSk=YLOS4ShP`%o)E9jWpUh*g@`}D4?!67U zrdaX>T41w7d9s#$1UdAj=|i}`rS&*mbN>kHjiwJO$pw&~sK?DBE9^Pu+?N+G`ZKD2fd!c%wB>q6zFx;vt749JZUk|uV@h%nTxA?>qZ)x1C z4ZUuD@u>sEzO}ku-NHT9jV96{^gS!C*4FW0zE6z?GB$B8FXgF_klDf<8*w&YY!z~D zyOc^~zRsdAOV+w}pc8Ib#va#xfd2jQ#A$8hINooweCl!p{oFA<(QcW|;B$hwNHMDl z4#uzMOVRdXpPf|nSM+lj{Vr+h!1KOVCWCtH-DY^iXz{Uxy$e1kh~McM!MyZ}(0&H? zy!EjJzEVM7!))P^&@--m@QBo8J2n%Wko(@GZd7+eN$;!g+P6kvIGv4rlW`Ij>d!D- zOG56_)Z)EGAJqBQ7rMXJV85vXXef}5LC$Ia^qM!bcwMJ&%nG)^_JxiuC(OCzwm7)e z@^pdr&O;h?yiWfS=%_LwSGSjGZ>0$ zc0w{RC;L~o@vrCzY;L^MsYCzM=GTt6)QT}Ud|^Dt;z%br*Ki*H#Mc68Pmf%+Gs51M zbFXd)qt32OHQjY-ShT1wjwnD!$+ufryzuhZg zg#W0b=6na9vyRruxhB(aE74q9odR<#F6l+z zkpHzl^Qc6cxf}fn)q5|`c7XJ;gDiBoug#5FIINY49OfiLy|2H}SD{jUjh_|wNWm02 ze{YY0`zL7`g|Db5D6r`l9jybU35Q6dnqJ^mq6$eE9mkyPbQvi=FZ0?j4p#rfp3pmn z;~x)W-q5M{NlDf)5ItE|wnI**PTYwFLgdf--YQ_c_7HnVScb^vQ1AYD;USGX?#sBC zM3q99s=@DEhV~ZfLllfRvnirm;ia;>Z3deBiSOiKk3qFu=7d-q@|S%KJ!SEHdYJG`xE1Cz zckhQN9C5}Tjql0ARsj?6`d;7w)hhb73!NJT((8a_fXG=I_i)=9rAO^AO~J~GO0xM& z1E8bJvg4;w3BPR~IpQy_uIMewTFtav86qiS(#V_l_QF19Rr^)xnA%Ma|f#>`tOF@!3YaYPoTbNP$616v^WLfA{QP$ zNB^6f%DR>aVI!RK-n8Uf!r%A){{05@1>WOpjpjmLM-}&roPn%nc&r?fuZq3iMeS#d zZn|Ut$SaxReAHRouJqQ3px-H3X5lBTR~K-O2YI`$U=APiJ(Ku8T#GPf7J=vhDCNT?cGQTsdQ2+B)D^-#~-)w$Si_cn5IpmYEr)FS|p_V%H zmk;*63!G8Tuphzw`RyXkf^UmZcIf@@m$<(szCr0*B!zwhRofE%mS#AKnS?W_UpnSE zJL{xjE}8u5B2~&Tyby%Mv5axJc~JjexZ)^;5~zCit|5p25dHJ4DAdvRi~Cb|yCLXC zJ`0^}JGd7((5*iog@LV_QDNlmWVzbwe#7VR+{@Y0tcG!zym6J}+M`Lxw|DMz=|erq zhrW0l^UG&QXGLUJ=O96*k~jY`@_b$h2ME6_2llAjHiO=SAbU1qf*}R-_bM(t=EyfL zWW5~u;XoHK(aOXx#*D$;$jRg)YUG8l8eKe!_nVILcYlTB<-n2nx$rM>13c*utKF|z z0PD!$@i`Xc`8f+F_r08h#g&KTQm8jJ8Uzr(z`VR=6l1yI>s~OJRAuZ_>Vb|v-;faO zySmxOu@yLhKA+eAd>lIMAot|_>xhCD`2K{xYf}evoC*sKx~dJp8a|LZ(1N|Uc?4H@ zbg{o?HJ{A`{m9g5eB1FaSFoRFi}w}oAsEd3PfS<#LZ;bGsZVdFV2{SOT3QtIl9j*M zo*AM3_}%=0;3o2E)`oqZvFCJ)cWIX2WgNs9qlHbvu(!^9?`#0_s2#(Vg!WqMAgMy+ z760BWoYoI2K2?Q0QLl~8j&RI(+;Mu|-98CfEaP%6->V=YAd6rtY7E%II87Wd7vAPG zOf+9M01ZV{>+Yi11LbqyIiF(zG+d=?>&s^0Q3hQA6JE~;>jw4c^Rcf>g?eN>W)g(j z%atDEbHYR7v<@#3a#xnpNLwWapn7h*QDVIjq9Z_-ni+K)3$pyEcerQgq+BQTL!L)) zgBO`V4N&jg7ry9@IxZs%1I52-p!lw>`xbk25m2NU&NvE(k7cfS7-60?`nF~i`uzP_ zi7qq|EdbROZIS9snQ3v4OJ{n|utOH(FryANuO+$Wfb%96)@+1NqU%kp%fQ`$kv+{$O zOEOIq@yC75b%%O=%RHPfGUn_bV~?h;L?T?>9tORU&(_DDwZm!w(;4ey!;t%Cg{zFc z0~~2Ro;bw(-(M~Eeo~vvB`W#xC7R z57=MZyZXza8Ls($4h}5GK8}~+M|pj5k884ezLGwrW9zH-TwT{=%_T=^P z2lGR4*tcC>S*#B(iZz?$j`f1Ss%mlhwNVhtOeu;3+z(4clQ-l3x-9Uq(A~4>BXiUh z59P<+xC!DAH(tC>k}jwAPjwdBc4dybb2W;tz`{4CRj@;<62KYfSHggGk>?Cs+ zQnV=s;MmSFgILrZ)2EqoiaQJ7-R0&^?jht!)knv9;e6Ul`Za8@WEQ+xGh8;&-&1|P zy7lyKGo&&0(JCSTI$q5spapZ*igUL|M|+0giR^=J$oBp-yrfDa8LpRu>L zI@zQeb?+eIIu!*x4}Z<8nhZpJHqXw9{wL0rhpykv5Q#^PY~E!jX12QFWbKUymN=&hpFF!OacB-?9ho@! zaPOcM-5e?4I|r7IYQ^T{bI_jfjP1r4a*y1V(*yA5FiR`+{dOGpe`8B&`bju9~_Zk zt}b&>3M~dZCvd+t+ghmqr5Yd`TP3i~InH?~C8{LgQ78+f0KI-jUc zeA+s4I-;s}(*>|6DQ(iA&Ta4AQ{?-~2T73;)gsTA%tm<775mb4?nzSB&q72*k&XPBNw5yI z3HV{M0E4wjR%W)%(D}zWL=Mk0S_%G-+;3DtWeNA&^`&-*v_Erq?-TlTCdMPV?sUNu z!{&mLG)K0X3XvP@eSSO!d~@#V>bWFaZp&TC=Ue+jE$U_p;D3+&jOT0?S^fNVjjWIv6~CecTK7sGuI9yf3@rbBPZrSj`Gs(mmoK4^>uQmvjvON9cl7*4_5;W{TAS&h>ID&%)H;*@ea2_(Se2yvAWybh+6{G$+j)}g zCq?T(?>19d4BlVcW^4yPE=|LspFb{_7GrPL#fSF0U+X}MdZwKgc}DzeCTgqw$U&B+ zZT?P!I-gnMrNO;1;HTmH9FKi1t(+B4Lr&p&P4Y42{Uc)_(DlIBf$aai@_Mf>=7j(D z)jxX_R|{KS^bP~T{cwHc*>$`%-!p`CKe@Opn%EV4vvU@6WB%@Xz^IrEXm- zUT@4MdPH+jZ5S-xyfzDIwzHRypX-Ca<0+>elAxbO`tk^)Yc(hwXlhVLH}x&p2h^h}BK8xy zm;1rl{9{r24(0_?UEP19j-WE5A@em5{Uray)x40W5XnXnErb4swW#)@lOlNEep3mh z!ueycl~w4C8unu3!Q6dv)YoceHD>U?n-51a_nY?v&wiKm`Rz%N{^roqcX<~1d)$g) z$C2-$RdCZLbPYbyu{`s~oX4tr5M{nU`nuN3taT}o3qt?ek|%itcz;z22I6yg=Gdko zJ0CH(dpaEqP8q?BOWkjc(Lxz#cfJem0gjlW7)(_+O&V6A}e0_ERHsQA{CLx?)WVX}2wN;~uqY7Npl8!o~9 zBt9+Cf7P&hnKtE)YZVYR{(PjekG*FH`}H;(yMXe}3cKrkYenmDK74!A_rMzR z>${;tUNm$3C31oWnaGln z&+|5Hm!j@E>Q^`Wvo2u%qq(Yd;=%D=V2XLn=4rG5npy;Kqo~F2Wt`DL$koKUwlzy4ST-k{U~mr?~jPl zF|vrH2EK_sx6)Pa2Xp@4-c$-LuuPy`F7SH@OdreiG~s+=AUtAJPT2;+jXejctY={N zb!dhW`WkP4kh(jIdVu0>{(+H#A_%5x)xAeB2<}-AvJao{gud}ZFZG3o;N?$cuFaZe zkUnztZhl=S7??b2?i6W(o|7ThuRTX!0#~u|9P;JsjK4BE=%B6`eec<_{2*8~Ime`6 zzAX3G$u=^}8Sv|S_4OoOCqy`%CXhxwnV>6m@*Vp0-wS52oIN`R%AYuFYE!$w?bFz{- zPKZlANH9HVoJP*Xoh3WPSLkmrQx_cnn^g@Q1!gxC#CyS3@hH38SIlYK%QCpiPC{|cTDA7#P*Zq<&!;SDM5mF3AvFyU{3VI#``>(MDl>~*j7Q$c^z z<$|d$+?PDrax2Wi-n)mRP6Iat>*32W!WjNyDDRiofSCE&dSzhJUi#?wgw+PD`k>??>n-GQb zN{ZclJf$o0g}*FI_8Z`RaW;`u>gLWag0Q+Eg)u8+Q@~ufqZeu6F?4MlP=BW zgHHy*OV3=A3h)01-dn#vxzCS=zk0UbvzIE1X~tAZ!CKt2f^o_VFMHDICC!^x}hK7hu%u;-xAE(XUW|(ac_q@ zqZhoT$W?lO&5JI-uorIlcRMjU&O;re*oi#+z7Gnf4w^_KZ#RPTW?n`cWD^d2vw1s& zd)6}B*^D7zo0toHOxOz{462sNcsL-BHMSSb| zqXt;u9-TBr?xEm=t|F?TP5=%GSB0Pb5GJNTskYe;u~Mo!|K7|4#a?(!;+ZK}=#6l3 zV?w09!FN&_P0XhTs%0Z z`mq9a>u++h^G5Yxr4?NI9p}a`iLTd zXH-hie?xwtl2NY}b$YvM+xl@}sD36ehx^Du=M&ZidTsEjMz}W21pNUe-+i`lPn{pR zIx?J$x;b-w6@BL<=o?%v33-G1-#HqZ&p3zpuk`$#JcIs^sCjZB+(S*PtV{GFcR{&$ zx9Or3?lD+sN9b_ABOYiA&@o4!&Wy)%@*KP#`#d{jqB?-;MeN`u5zHYj_me-PMI9#k zU)t_H-0P8u`rkml&ta1w5|d}+psuzM9VLt02=&~Ds&UQ1E>BY(}s9IAGqwqT1(aj6~rlpuOmj` zow>GM$Rg?}Nq-Z2q-Q|mfRA8n`vMe9xine&_T&ERg48VTy(zC4>nF!`fdT(OQ9Sye zH6|BDiCBh^>q2S$0&`ZfCswx$P;Wd=#CI*YAA2J2r8w=|3_)_+m{b$`)rD>?XOW?v zuIm=SepF)=PTX5qdq*_|XDI78b8)`5y|i;Y0r%rEtz(u7>Fhwpmz=u~VH%3zyAoPmnV|Akr__O{= zW10f@&W7o;rx|-->GJNTnm{|W6m{EZ;`y!ms?`8X;5Y=O__x+zzv@pN`k|aSr>Ye)j|U zd^zc23UV5*ZPpv)_J9|;f@ay^IIz(L08{S|xTjhco6$84^W{?~rt!MW4BhA*xi||> zw0l=KkJds?CZ$ZQ=MuabdC`^E)dYHfz6+1^qA&D1g{3*pOJiQgbUoe=gSgJldl5Wu z)I97f3_xC!dKCyUF%QG!ru2KK@8e*aR`H1?vlGPQ4e};dk;{A7`3(=-Fr-WSH3=BM!sTU4bg)P3hv{WC1!2sU=|(*hM}Aq$n^`hloTo}1w>H9wr(yF%n}?hi z_K8*TE7Ee}^{_Y)yf%P(`A*QN3vwcbUM3DU88<<-lJhYYjb7m3AeStyMove@ZK(%> zt+3Mcz?S1S`hC}wJd6I0;&WGNP>`h?s_*e^Y%!-m8LxyzKJhf8 zp)O$Im0@;6U(VyF>N`j9{2X(Bh$8SM_9E|4zHZ0+Ls4^3%kg+8?Cr@~DGay5r1F#E z6}+Cyj%WqlpO^!`&#C2a?qEMMJ&Bo?=@RyGp9)i9!gHYw57onr2B;-Id)`C73&J=k zeP7EWABTm=ms$sXp1Pcwrr&Y@`R;wjEzH*+>ZfFol^|vvXD-ZnOXM3@mlV{% za_7B~>>T9QD*qDo8W{unmx&K@anIB(c+|5P^P8cprthxTq0Zc{=W_&~gJ%2JujOH$ zibGrXP+n*Y=I2cv+_4|drlo*ONVFHEC=#M*aBpJjEk*Tocnr9?XX?4VW`L~4>E-8L z^o_pVDI`aqGnbAPKEx6 zxV`VWaO{$f4&9^sX| ze&6gv3+(N$xvZ$PfwB_oyAA>5iu>S-NO=mL)7(pO!5oSEF_YH&B*=w4VOgT)F$<;D zp0+n}ACu`IVN{6kZ^gC?0@~=uKOw~Eap~MJtQNm~m6|dQCmBE8Qd_G5$)wI9M=#9T zr4t`tU&K9DhNkiw`p7wR8d^_hbiuN}+RmJGE3~JZ7!5Ozp&mD6XLw`|uD^XW?$*}} z$Bm8N3^t&@idqe{%TZ^$Vj6p{8~4J@R0VQ2bC54IH_3y#@=y7HGw3pbMY*V+x2Hxy zw8ytiz6^U}nZ|x4n+-v^iO|Vn^dnWr9y=3y8F|3>Ni9_#6@!$^&+}g~C-;i)q;JX5 za(Ml;Y?9w+2CAqpwUsVo{v)qB=@hhtJwsv`*-ElP=0|%Uj0$(&C&i zlh*(G-w90uscFzV`Ka8XZ5rkdeu)*=m;gi7CdwN8`)3NQ8MRN2f(Rdpt(j3XsNS0t zw7?#*f)h?g6;37aYc%5ayuu_beyD7{+lW1TE*=bJp4f|=E6AmTe&jVj9<^iB$iF}L zNn#1}iMMZBJ|%q64AFmi*tf5szfL1U@PK(cq_I7GlyeC=q1Rd^9dN(=-L)m;LEkKx zYlX$P4gH_P%oFRy_dSC;i<0&9FtCZZ(|!4jJzBYph5r0Yz^rmhTpahpgkGge%bXKH z6ym<^Q`Lk0sL^!o%T*v}waMh)i+w*HejG>bd$8B*s=5%)6TI%D-4oBSKhJ9IOJ!OM zh*nW5==qHy?=0@8GWuLae?9mkcx41$hy)wUC!@|Op~7O9gj|Y#67m?6IXK8t{zdye za-VcM4UY)V0lUi2PA249URRx*;zeKV!qe!DYuU4q0<4Uwk=^iSCSJh0wF82U1hh}c zu0U#~N6bk{-1Bqq#xBNH!{3Ld2?@H(z;w$ez^bAS3A~+4F-n@hyrM>l! zW{vN0Kg)Z*)(_8@Tng)?E{Cchp!$HYuUk93Ec{Jhl-v&DD(7jdzaUR-kIGQka}=tn zNw$eDAkWclq$?QpneHREX=(_NVKe+F{(6DwZwDywWwUpne(quvOQ?hT21)RAMq&c?mNThuw{VYwapcVd8QP;z zq+oKe;@=X)l-KLMME}hU>vNaw|9u7VBWVJs%l=+5zbiWhcO9c%e@1P`ZsA#7j-Y^I5 z8p^uZmAlt|B_6yF7Z!X{P^Q(X_8(W7?^DJU- z>_5w6)uYgQz1-mx*#h{!AdMkiUx4!hUMgA0zo7AA-WX1)ffr75X=D?Vu>ALC+83Nl za&C!LMCMFG`QGFHMvZA$^{;hY!ROAIOY?QHj8kCcv(HZ4Jqg}6Vt?1r*R2wt_W7Rl z6!JQY=l^`0g$LJf^+dHG&p+b>gTOh=Jx=at(c|yEMThcVC3v1VUgkfz)&*n? zcVfelk7k_uJ6{~Re+)Nk#i@g_N7!#?ljP9~yu|pfE&T$t6Xl&9Xq*EwJr;&4ml@b0 z8tLDD*9Nj2^qu?XP!G~Q)>Yp;0wyN0iGlp+kGk?=U*yv$B%3mw=D_?Nl~KgU9L()d zP%x2aGL3=P?j5zm7e|4Eg0&=kYz_|7GS<94*9PLXHVeD>xh9GF&=PPhA;%~;_fRtC zWLSu5^bEq-&~MGxSH#Gg*$XbumT#n?kEwagWpNDsv57;0k^8Q* zaJ9=bTM>1V5W?TN5))H^4V`Z^q(;H2^{Tg!ViPc!n*E4loCQ9M4z^`U8 zxc_oDOJl{pU`3Xf0za~yl|x)e*}rssenub-vZ8|f-%<1Sl$XoY+=n}#Kg70{72aFMB>1f{gf zXV&=Kqd5@o=W}2L*ho1ad_36)FSq5gUVOms-|I@vYx@>BKqKzhOn`hN#Ys!S1{U1oM%h|XPdatL33fh$xP9!w>6krSN;Lrg zLKPyWlRLor@fX!0!Y+u3`C%=?KM2Ee_M)@+`50H$=bTVSpEt>cT??HNuw7Mo{2O!B z>+-iKTv3DD9Mnn(MDjdJ|IJl9``upzG^2g)^-A?>w%TrhrLia_J!9J zxpXe|uH7F|U)eTf$crSc0gjl2(X5CraTYg z$V2W)Gr{~wN)vF3njcAEz;h>4@!$O2RTwR>vm5?54<&LDM;_w2X2!z$#mE8Fmp0-K z-Y@KezEfAUe=>JL#NFpcvHRV?&wC<^5_RML^_Hq1VFR#vQZ6A9&ku=j!7UPXzNYhK zO0UsB@!o8aW+-zBbP60#?c(0=eD#F=E1Y8tGajzxvh>3D^F0OZm+;)VwU<$}hJKdz z``&&2xIcMGcfAAWa2d{Ks#|@SyLw)<*@c`WzEtXhZ}@xuxm2z$!GQdFk{5|lW3!+i zC%$O9)(K;so=>dtJ`yIOJ@=}43`V@TJ5M7wbU=Ttn-Y0vLS*m0+Tr_EuVa0&#C#rX z?cA$Rq90Qd+EY|Fx?%IKg&;u-&bbx36}tj;U}`Y$$B%k#-)#viCz??Zb8`1RLV|n8 zZIysV^b;e4fh!^2#>6{J)(FEEGA0W(#AM!{X&+x+tBP(CmZ9B)=+?mJDw z?wx;+xlzxitf;o)%pQOZo1SCKtV^KWY9yV=hJ7QZH}BkgI1BSzf6tjA4>g%_vg-`) zJM^}==EBiu`+ITiEI;O5P5u-e(P%+FRgYaN=bt|K!LP_jsx=P&WG@Eg>X5TD_jbLk zp%tD}{PlU9Jq}uhUp*h?wnDnk1S1jluXMD#4QIb>1G4ww*1u``ps49Zj3OnTx56&c zu$K-)b^gH*vB-CM9zs52w}W$X6D|4D)C6eSJ+Y|8eftubkeAXJ=KMY-5xZdyPQYyB zbqw+#ZU^%m>PNqs@+*7({QfDp7Ru&%dlTorD?iTV;C0@)LSbEyI{<59ar>pno0usm zosgnm1pT^078GquApeKl`>ae05dL0bC&9Uj!X<%Qj2F2tHg8m??Un(NLmxCTw^8OL zAbE)x&zbzaOf30t)1?uKCz}Q)^^BFz&P$wqc%I zyIKFSl^UKyyT3$?yo#J0QO3!ixJTl1d`8Ip z7kz<$Zj|lg98)>Cz|8ie9bAT5&#c(2!VeD)syCPi^VV-X;-rmyrjC*@tM@>)Kl}CGAw0jiub0XpXX%-$l4Swrr;AzDi- zZV_`Ob;s^?8R32QYHlu43HfN#jzW_hl4BM;`)Fr5kJBuq*a z>}((Og8o+h=Q!l*==f9l38TN2BR27(1LlbI7;fZe4^(4*n7i@#sWw>uy7@aJ279Cv zPqB-awgV-@u$=?;w6>3TS8XTH!fMbvp^!h=7jgaG-z@YoC%-1ASN$>%Oj9LI{?4PY z&_o!UUOEDjhX|?VH<91gWMv8gec)9)O^`k_2|RRdRl(fIw|{s!vqly^K=nFO7RPT&!LH$s2s4xIIf|LT^Vt?SDt8TEoz$`rt z!!@q!&&+$EpLi%rV+KFpN{Uv07o3x}{H^NfanCFstR#A+161zUX-oRx`9O?}!W;R% zt$q5bVYv<9q#N|L_X_%@S6^CMZp^?@a;@Qu6jji^OI&(^w*gwKhOSq!x55*RYnH`@ z$YVTpqg`@m2BaQNzL}Xoo=tr2tB{>qoLd&9n8nXG`zLp^ z3Gy4$?Xp;cuqW=5J1?mN?q?{QyI(5Kz%*y@T$EG`ypp|AcH;FoFfaF*sK!mg@!c|^ z)6S@;giiK6a>l+39&$4oZ_FddAG=fZ8|UqIQZpm$OEdgCbYVxS6JKv@2;DM^9Z-Im#=0$^#7XI5Ox{^r;>=arj}kfDV}vq@ogPc3R&c5|HB?` z(#$I{LhWFAM|7hc&$EQtROZsWlMvhFD(7Ll1Z39dn@^Cez|08I#Qi4Z!Y3Ua<2#M~ zRJre5QfbKhyrr}t9`+M+{j7T`Swj%kFE{mJX%G|(^ToD$DuL>bX39f8)W<0(1_C(e z;8*Z3d3nt)=uD&9c|OvDy-}C4k0OU5=iqq2ulgGBy+oIJB&`cb#1w`PT^&W9_9Cxd zXdS$^^aheMT`=myORw8=FC*J^4yY|AoLpZ-GWLg|X-qF_vZ!OCLwve zkl&pCQelfB8HSyf6xOeN z4KT3AMb&y_3OZ-q6uLsE!CS;bFh^hsXxUnyXkm}2qws-QpBKo-rI9)NOtTp_ye^)O zz3On~YbA^u@70c?)qtVwrP?Shq9jC5Xz}1mIbgcP_lW#F{L9ofF-D|Q@|}p!4u{6U zDx&gTti~94$SP?^W5kT!l9SOX6fIy+)ZM23mcq4MZCw^IjE?1<9TxtGqZMwmo&v6% z$bGDOaAi#CG;B`zrw76g&23EJEzfRut0CF34V*YfEI#Pts_=1c-pANhQ1Pd@$0d)I znD=r6PjmD@3eETr%h@h)kV;FJz=++N``txlO0+Ec?k7~+pcUbDt7SSOGn$^H&Suf~ zfQOCHy#x4)8r6R9;ZV>Evxe4J#GMx)g44#0k$4%LdADS)U+RYhX@yf=4nrW`?D{;< zXaKUC`uZaOwS)en>R-3f0w0|qS5opFkt;RFUfxi|Bgo`oEhdycM{7g!kE!FUW5d+D zs;v_=R!)oa{uu^O@rEy9=lg&@zn8Wvz7M*Ij*^Jx;H_k~i6<7UfbI4*V_)fnyy^C8 zBYfmPS0f27Ywd;{;e}(qD0#ZSy?FQF^KQtz@LTeuBj|D&YNHR|ZtH`Rga zLN`?zTJJlfezE>p#3+*Ps*M94AzVqGN_;}=IFsIj+=r%7xR{+PPlKquvo+__ZJPT) zJK@?rGCb0;yKU^rqJ4L}VzAz!LeP?@}c=0=3&Oow32{ zmJ+JF3Ap-voxSjdEd@t%|2-rdqXaB)BhOd>Fa5sDr7>02;BlAYe)@B?Jda0^sG7%i3HzAEa2*+JJQk-(Z(fowujd+`jPc`Lol})GJ;~p-UlPP z=8a~676DrPm=9|0MNflf*Nb>Ltdy46zCeB&kx(B}ye-ucHAgLce!*gG1}fKiE?+t^ z2W+`~9Wru=CgUY1sqJcn#os(SlpP`@QGv z1w@k8&)V-HN&&B#lgd93VKAYvWwZqO!rjlPc}+Nl=-^eK?6|A?i5z|EWrl@br(GM9X{2#@eI; zTEM#Kh$O3CW5sQ9G^mC66t=$6xc_O%yDL2;F zNY9>tgHxKZ++uyOoK7dLh!TuVcM|0gO*dGJ_WE;$VT5@|v)!|}6{d*!-+Y;>ftuWF zPu`^=iiMb#VC>@@?0zxM&c+ChQsj>+1}j{3?Fio(qa22oPft1D;mRiRXuV=MA)>>+ zH(5}c%)rHV*_siGPAF3Ht0+I#3ctfEk8O=1GKo%Mi^jeUc0+aQ*2(%Xvb*s5EUr`u z=%~Cl9a^B&Tknpu+wFslM(sVIJXigviL-^7xR z&+SYvu`8vzHPGahTMes-v@r{LdL|Z;){(o$H5yZ3S<`o#&1MFM++r@ap|#?-?V;T5 zn^;xQOT=|WZveu&cFW1pI?ncRQ1JX3Mxa7tFLq<(@a*l=s*be%u&B389>81=N-p27 zXJb`CadUKORzF@Z`n!i%mRq zebjOfBNRQxrsrfPfO@`lHYfn2Vh;4Z_r{muZ4bM+)`bC3c;mZbZqg54eXb+1C@s>9 z`;dPu8wXO#s|WV6BFT%ETL22$;7#a7P^F#)*J^nRQe0IM9X};ri?2Z8B}pb$M8h5) zd1lIm*3%E$b=2%B7=fO7&a|>ZCf4G=BaonSHeX%Ue?hrAis@ji4{5+uaxzHlY;_u5xFVfyU5$_DLT zyzb4%Cr5t5l$P@Q+K6sAO{qCtf>wY_7Gz0HD0Q3Dr#gDOBVw|Xz?A-A7e?|cEpGTV z!?9)gQemeVu-oA!-9Iz~`VIumhrG}-+gdpJDxekqP%rQvIfc*RrHztG{QU1rYtJ%c zRlvf};3AraF7R&(HeW>PnAk->bO=Z4YIWN~#e-;(n+o#vWtxSK>baQFKCEPoeKSB4 zj7MUs-~nP>RaK4G_mUsMRpyfuR(wD4XcZ{lvgO|adz1EY_88$fYD}YDJKG8$dChYT z3`b$|M98t*Xnk;{{bR(9NMYZGPv_-LaCJ548J@y$`50-8<}q_bJ^0rFO-C1) z9ft=Y{LSCQYb98v^tr21d1MMWykkYa~Ok!F=>fMA_kW0i2MjI-MP_1 z$L}+gI*f>JHYqnu97v5e(4YCxUw$H z!;BcwgSJIPuYZrHF$f-oEydI0i60J_Y!s=DN-NX^n z9tdQ)9dG1=lI^t-!Ed-?4SU|>dG~1tguD*>9)Z`x^Rt@29zDQ_&cO!j@2Y5_4qEim zz$gt3@x(3m(ppfS6JKKsZid^P2g`TS+Vn&%Q8ir*-$PCxp9pAA!rvcWb)k)j0(o6H zS`^a;!9__!-qXDx7SZ-r1(BDf!<`|uMp*5&d)1Hod=<5kH;z_yUD-=uo!y5TP0e`(0w&{Z(AiI(}gi{L&2`cbK=85gBqc zlfslhzZag0Jfztx!D#wrqVPDJhYaX*7@u0TL3;@2R?1ymjalBj9)?H5-GPfUZ>up< zL-gpr!~G8M+vIO~kJSZ1TC0osJ0sx0%s09%_#(voc;EL_^9p^`ga2B1gyGz^G z1s<&K3OCf+!RE9x-DO-MFTM6_hhtqJ*I3F+oi+=k>Y`ihx}EU)rqk;~PY2+Pta{}7 z-8vW!{VMb>XA+dj{r`Ts)d19w5>{U#g0Qpfd>}VgiMw%Xb(@qRn(Njt={l5r3=5K! z1<~qy&M4K9bE^kFU0NyshZ1w!J4VmHv1s)nc{`hk5|M%C1HP95vyf+z6|BBL0tDx1 z1H8>p3NzDYU-*MaYumVVZoUpUUwCHvb!R)Ali~Bdb$kY-zrU1~ww;DvHqP*Nysx;T zo(KQO)_KOa_`dJIdr9}uk+w;?+jQx!;L4t@RXa%9sv@Xe1htFUs|b>`sE?qi9n>gQ zL90VYS{a=LMeX2sejogw{U7n7`l=-NeP8E!9LM`;vu#7QP5O%lu)vh7E*5{;@DA=5 z1DpdXw^RAT{XymKQh53Y&sMi+U_{U)Lgo$h!SvEmw3itJ*XnpE`>CH?8Fzh4NF zOQ4&Ez||s6+tt<`G>F<*d5!uG$dm-Xkgpm*krHp7dcPecF4t*4BWv9|&p3w{w9B;$gS$py?xfrJKuGnpxHF*O;hWT`RVDF%OMIqHoo>sCyey+wz#2b zpIeaq(S!dOI3@X>JzdN^WT@U)Q^N*nP5L^%I?6YQ`>O(c>oSPT=8PG@N zTjc$86^4@qrjO2fd4G0IzW|UR!x>suCv8c0c#8!y3cPvVY_isb{y}Xv> z%xFVZS4IXVz-nd9ZjZ32RsTb;)IY|<+;o5A?rV|OP#N3oCL0dduku}8#s4Jvvdz5U zw<~l=cVhas*sM0>(K?XTz8@;J(60GAzICD*)40RTbKyRDy!qvi*?Q!%GxYZ2m4Ir~ zY#Z+~?jf>f7>_IjYv9JaM+vW%zCe_F!NLn*rH|O_Mm)r9M$%(X7ls5qMwhjZg_8lr zwes(=M^60^sUI2tE32~}IefLHSjYFGs73OrcRjn1-{(cd7w@2od0+h@Em(**y^z`B zI-5~-TzDSErUj)vd0zM;;(t}pmE`#c!D8>b@V&wbs%!dD@G(H>EFRfoD9dUN^rcOnE+9} z`Cf-V|Ml)cp2CN|A?E?Ls-1PL530MyH@3yUZGx4c&DIUGU-qEkC88k<_d@jQ?Y$co zb6=o2;a?_?4r)dk6IC+N_T zwEpEjU=d9FHEwe%AQN|YChdxAMn4o%W#mCUO7QtT+-n#hp}jASCkrYNi2?Mf zZO4QIS$$pTkmsGd&U!8Kxf8PI8T|b^_bCg;fOM~9%)2PA2J7Okh}o5#7bx=T@wfc^ z*GMvc>X*M@#eX}hF(wqw=hwZ%p8oXdMsGhH`Wdv;b%*?aj_dtyX zKl|;p{ab^Y`l_|Vgs;%JHD4sg8dxE!41O+ejOcp@_0BK_pf1Pu4G(}77IK(+d=OBe z)GHGUw|jI0!fW`IOn6?TXXI6f6#_D3QQJ%hKx;cL491^@C`%Nlxx&t}8(BzbA1748 zJiNecjng|L`nu{9x^}zIL=~sgl3pf2*x!yj6#MpQ2|LhZg66 zHE_mw$)|IMMx>e%JFw(t1A=(X#sy%#vu&KZIJsAc8j^$wr*sA+61$G=221ycKWyRN zUtq0`|M2(cs&0e=ef}&+t4D9!TZP$x9OH5KZ67@z&adRp?TM*uFU#1%OQICIIyVcW;95PueyfDKpA@z{3d_5|hw$ywyAbJD7xjWiwxR45C|w zqO0d{3ysKbuC@8R4X;p2_{oK%&O;QSW5D*_^A{*k>m8ht{tR`Vj@gn|+ky_Ryv!jk z0?XIaWFh-mJsLXAUi&W)&MC9w6^p>iST`d+*%GAMOP?!`&jQ4(AkupF-r-;=4mce) z4^xM3;*@{fVP38Cb162(ccCs*;)8IQPsg^++*I)+08lWWm* zHenQ0wZ?tfeK`i^uvbo})ha+WuiW~iZYEU3*Z+8JwgXV?wRic>g}2e%%QI}1h8JiF zp{fuMuUpbsixJ<~L8a!o)g}xeq?V{}pQ{Dw{jS^fg?C}aJL8}8)*)NfXv~WAn+M^X zRA#rPBW^5IoE*%@4uGVgZ z>t-cdG1`6cQ*?LAIt$laKr^JXN6#GqH1BBaBeyg_$aw6TzMQE;3vVzsTQBZHdy}i& z3PIX?m(X!0&Ks)QFBH7}D{DbgE30L5;q};EG{~gq8Bn0%^_|;b@%~u4{nyc4I1j9R zT$Im+eM08e&C6ls`FB_S#gQkV@+C7{?wk4+9luq6YS+VNv~+I6i}`bS9^(^W4~(PdGbVltdl-p?KR z-^Ctu^6zDe`?6j{T{YG*#`GNB+I@4%Bneoh7Vi>`%xgfTsoUQD2T>`;irS-A`(C57 zkEZpXg1NH6KQwAu7Dx`VaftH?B29tI0_K8c$Tv9ku( z`x`W_WJE;z)ECIHnU=Zac`YLQE>SSd;r=Ij@=Xv85wzKo#do$eqA3w4y}|%pa$ueN zh$++B0HqqWw}8+GbMnJg+wQ?$VQW$UZP;%`|0?8p00LpDJQ`PLc!~6}m{=X-0kRpt z(9i-ED${4*v0^;$L|co4>>ScRqO*&AJCkR?e3KcHG5-S~6n9|{jnTocB`YfiAv>?Etv=)& zzW}0gksCgS!Ti6_=GN2I;vV#7>r?D27dX%O+xxBA4HY_*;-#UF-=Sp>Ru&}pcB50( z_l)Z+8)0tapUK+@U(Y-*_zrVa?_H0cw-4IU(sg4;ecBF^=8kC6DqldEuRk5r_q`V- z9_H*-!<@{Yd?_Jz1XweUizmJx4*%|cTids_P>n0bTMh#9@L%@F?eXC-pYNGQKk^YO zelFx4fA#7y+LGh1+zOv_s|zv9dfvC9*0-*{j4iKG*7U!TS4K3TwePaHrGQ|>7TLWR zIM9nKY{Omh-*qCHo2>-`OA?BGwvd5DI!PjdM>g4~Rj zS=b27HUf&8shidfmEQhIize*!fpfm)YRRK0h_dW;+PaVP7QL?ywP<+@)g%#3QtqB^ zCoCDxIb&2xi%)G0|Nf4RrD{Aenvz<8g58C zN_hcQVegw!lCNk+z;hk??New9^#BX_x2GSgV4jJiw1<9<)uLI(&kHZX`*1yyrfWU+ z7=mPim#mWYJn;|$}LN%K6{Wp>F8YNr^tKYd{Pa9iqe1|?JL2`Vf!ez z@rQ38Vr#4V`gC>3{j+cBdpYdi7d-xZ44$*@Jx>q+7!MVsaUQ!=a2;Zm1xc^o_o08> zj(1_EXDIe`_=z#A0XeXG(BlJ~PtIP(91MVJd53$G+_G}ODq4Ns@$1It=%1bC{uVf= znJ!bDfFXez2NoOOgMrDsDTbZ3tNY9}aEnFRaD zCI9Bw-f95kkZmPz3{+?j8SI)>4}1F&OURa6VZ4{;>u0o(mV3ubbNhd#KF(<12=DBfG1q+baV*k*#{bstUbEi%T<# z&6b)gP#=TKRW&b(MzI>gr$AxVw7z5%&mIFzCZU$Hq5~z^b7D00BO`VB~ybe)c>i7MO#M1YOd??rF;IB@!a#hsY&L*%ZulU_WhKhHG zZ8c|GAxg&nXZEsWHCQ|gs!D0FH_ph-y>lf?i=rQ@uASx&z%~A{H9EN;(B8k^kAR3( z1-hisl5yA6sI~maG$%D0T zAu5O&eOWZty$NkgTxz)G+mG%(!21n_`|Hk8o|`u6nozylw>h>jCwmju8T%p9H!QEW zNk3nQ$X)Np+f6p0E9@h~JESd0^kok>Gvp0A)o8@#F9OT!J>u3&5SjDtsQi}$(WShK zG`ZwG=rB2lN5u)-(C^GDsTCWd%5Db+*8GKeV&23GC$LZ)z>bVo-Ks?%kObcPvlW>c zaL(4VK%#E{#w`QgVd$G;`$D+i|6#}O|1k}8!n;{Rcr-my-dXG5_Z}*M{`s#i+tP$i zTb}CS1ip~Nq4MiJbb*R-{?m^WwqS+STuJ4G4>Y1RRDD85n zh9PbHW(^k0^8YB!jj*5PnFw+7pTNF6_eN1I=yc_mnOirF>p(AeI_JwSSE0SeL(Gn1 zsG8i`z9Xye2|8!-u6P^hLB4}5qwZ!On)P~FV^W45&B+T*So5X_<>$Ue_gc*I}RO|M_IKi1PrYSVo*F zVgPcWe%kqu%szDY*5p(zoL?th+MI(w+=cEg*N~dw9JT4^J;wJxK4kB>V52>tkBWaAmaY-QIo)T2?Dvj# zw7RzG*=(?=D26&r@rZz^<@@p;exU|Ux>NAyOTasH&M#zC*v>lS5q$DZ6rAt1FY@gk z59rXY2aHw%SZbaSb5DM00a39hZHE#nOhbYW zoSV4pIf~Fa9u9Ygig3ypT)QivQJ$`P@b>)x3ivbaz`!i1JnuHMeW`0hYuEg&!tH^* zB=zdpy|5>|cw*t+ei`UJmF-Sxu5ZxMpX)yo!T_byRx)Gqkv7!uWOT+S3qWu``a16h zAR889zaRVuQG-cYPvi+{op7IUTvT@FC7N>h@I6LdD^gQ`{BSv~M=SU3Djxg?mDPzO zlZlTFXp5!Y_|4U|NPE~R_Rn!ZE1eHHe*M4;)ERM}Q32xm&bb~bFW~z`+s9VNHTR*z z9;-vgKvZxf=GLe?vPNWe%QNWI_SfiEiQ|97|J!R{gQ2LX*qBV2hqHFpa z0ncI2_IGi_KZ}Q;hs3sinot9=a`6#KHY|+KBts-(!{QTr0J-sT!R-zIvu4%F z4H>rY^yu{6fQk8M`p|8cBL~sDfaQs5{=ywuL!( zyz2C(2cuij_SKg@ok<7FNB#*f)p@YQieArN*##C<%O?+?&3=zMyv@E(1)aWFZC^b4 zO)Dy>J3Z;-)K}=>k5T8AeTE9Ssn2U(1$Cj?iQZ!AeTax2y)yR+@3&b#yxfXd+n?NS2Wz{(rpW5QKP{-3NQ+#!6e3A0j|2s! zLA0mVV`$x(*Qi7|uJhwksD$$@I>!52gZe6hw&sc&P-b*$X|xTXC_{H--TnC#^|*Fp zi^2MNL~NHXf^$)Ugpt;lTZ3lg4W}L)`xbR|-gjKN|0(k6tr=T=rgTb=ZI=7Fn-czDrvY7I1ddS}P*m{Wif@x%qi+wUw=4~X`~6lk^cvTPEMhm;o%HHMquOON z>Y@MWRHhv%B= zY^3f2_+B=T*IJPQC52Ai>dQZj96!nC+dI8N3EPgxA1UZTg7>9G>VJ(W!%aSSpdIw* zo5s5XfYur6Gb)lPggy2om#9yNA-Yj~8p%IswqXX);$o*dMR<5tdFGT?bb0 z=H&LrZ76M-yJ&N63o@U}BumFYg-)B(A)oKB5Slyo%_m#9Zce0sSJKMqKt#hTY44qb-Jov|GDc6%Frb_T`(E_z??(#ndfqqYLzGFm9&SJN1KNS1e>|AnC7{A051jz?)Qi(!miu}`lm*3cx&(D7chp|XC-2^%XN$!)%`^jY zm^go7ycHl#tjen+kM*L@PGRIT5bf-EI&(iytl#mMfF9XxY`+D*6Gq^^%Ve+= z(!7%e{nz@@yE6ZrPYVE97VFjfbrC#2BKsE}gZJe==18?SSjIwb=Lhe}G(z>R^Y_+J zIR923I{g$Xaj))WR+sj}UUhdF$4d?tvw{1HK?3OEuGa2ixPQId+PQUV0_;N$>^!~i z@+e~V-t+?EYMD=W z&qp}VhdGp9iGpb3YQ-nn#k2-=iL#q2-6*9h?&MEp7h3zvJf)5H7WviePT~y%)YF{!vXtz{ z=;BFH?ps|K`tkd8!E*5T%%g|Cj&6eU-|n_(cc|7lrf;0LArMes>=nQKpEseEb{VXk8zwnEhLZF|u|5?IGOuUdWE zrbqISDU<)eKH#uzzCcv*2uW61&@Wi^ps-h!%X`3b+q(2B?qkFQlz)E5wDbCAw6gvz z_Mzu9v}S|biF=i>XE>U$buswb4*BiK)xdqkV|$Tt;~AJEexF;R06m&N=1hHI4peQG z*B9p;eu5S*vW}bz2=y4t>aRRI4I1pSvyxqFLq+!|<$8neGu7qfYIN&4imZ`X|JbNU zP6Kv#`XG9@B{(5q{|wldxX-$Dj|#|$)AL_op|ak49L8@B=!wsG`yS2)f6Jd2L$d0t zdcn^&cjxt7h%#GYTt6HFYx5shnerFx-@W{r2gmiHJpNg79?YkuNwJ#zhk&po45y|8 zDrdpWm?$(=i-v#m-yQW?i!KGmULG9@)w!=H+n7IkfkaDf1Fxqxp&JL!(yA~}O`3N; z@Dj|CHU0e;`A{8ZbKu&oS%4~fSLsW8R18sz-iaEA$+r;oJ-gB#2NA`c_Vn3c>Fp^= zxFmpxti$RxryDN8W4wDDru2t8^SUtKYjyf^0CB< z^|P(tqwRjbx0HJs(TVeyD|X-1Bj@TJAAeiFMVWlXQe%t;y-0o2=DauNpPP$f9T1Y(J-%-Hhhpyg9!3CBhi^Xv>%GsP_P;-EmN<{vv#aO$vNoCmgjp8wcpUSD$3XQb2U9 zO`5xUVJjN-?Dvh25G{H;yU%U!DFfO*Y1+Z`jqRxQbEfCXwM{6uiPOA(f&u;9;LWE& z^;V8OzkK@le$@ZQH|bse5x$z;aypBY8y$?9Z;9K2HU7^15m45w;Ad2p$;v zY3E$fX~KSNTL=0BMc}JsK4D46OS18XY#w`2J@pps7nj`iDCKQYm-Ui<4ZKySO1W@Rx#c!3iifTBT_8epprx^YvArtx1eWl-m8XpK_%VJsxPF_ zcH~w_?U)+<68TqST)rP@LA%K3zI>k7g92UOd3D2_QS*s2F#H7|;pnVGH(?Ijb|$<0 z7d(%0*WWlW4kBGI@7BIFOo3?s@bLxwrG4n@cGrzrDnJj!#4N{m0kU4VS#zNH4O9YR zttY|WFlSb1X`cH_)Yh_M#HAhe==Zrjt>-=9T%~rIJk+WVNeBM2eqQKCdAT;77n&ZR z&1*KXL{?C3-MX+e&cpg0h z(KwCwiput8bQpK2E!j+sER!E9XU^zCfm2R~buysBtN1BpN;o`sZsd;ALo{yurMzuF z;e2oFJ+1mK_+>Az(^7n4J__o^oqTx;^!WF9_Zd0OXdv_Cnib!kpwF+4#MKlU(Wt=9 zf8_9aAx_*@l>O@|>aw0OeoeUsMcmo<&K)fOUmV9>cnSLGKR4Oq-1)G7JLKcq?AD6} z^tUfJ!=7G}{h1bZSBEZIgbRo5dXCt6i~z-ZK$Yi^f)1MAqRknXZaL0-hi*Cqo*wn4 z7qzMHu8mj+5yt7yCh7P0pi!Yi2G7Bq?9v&ztqgRMobqN|)o7T*tzQ4uKvl2nGmFEw z%m5j8zQlPp_=?9&sD8}72A_XFhJ^#%k0rB5Ubca`fzJ9p-4PI7)6+e8ql3H9>Ty0% zk8SGFt-QLam%BkCsw*V{uunQ8IQ;D^ z+#ij{7rV4W^=k0WiN~B z$0ush_U*IGWRf=Ys_S*3bx0qo^{Yv{RR`yMcEV%%eDD>M{p*t>`cTXI!muN7|ENk7 zZoCL{)toK1*Fc35vFN3VSXZn?u&n| zM^keJ>py@W*4r)SqjU#U7*)$=v_mvI@WaGOWij`WRd2}L|DlCePZbo80Mr7`{=;(% z*xRm`jjFQSVn9ozerL>28LsHz(cDA3LED`V0lwEjmI_Id(Tu}pZv>p1@oWwn*9eydO;?CPTZ$>L^| z*nahb!!6LQ%QyPvHA6+Y?^phH{A1KiTzx+v7?4Y&H(W4$F`zlAs@1k!@WZc01U>CSLcn`7Q=@_3`vop22_`{xfg!h9RKSUMqWC2@!7lD$T~he5mfO zZhkwnLyJ7-=iVPSr4eQSE;j%9>m?fcypSUu{t~S)oO^$B#XI!m1o>U`FK|b#&pfjx zq#kX3urhhfE$~-0e_ApV&iT(TmB+aDcA%WuSNb@!7uP@yzE?EinB1 z#@kKkQdz{<9fB9=_pIcN2Roq(q|@T5*_Af5EX)n_9L|ZwXTmc|ZS;r}JRNhjTZ7Vg z#P7%FcOt^esE^mHKY*_~%I|Pw7jiAb@U5=(qV}01vrag`uRZ-6N5bb@5-H)Sz|YeX zNS}ID2bIeSf9pSNdXFTyPjk&~fWPv{hYO1_HE4&(QaEkjD|9r1>u?j89P_=S?iM|)7x<-xu* z`21YCE_cjLe}l@Dk$*pgXb~%rYc&t_0KbuTZb>cR2lBsH_#RLcD<3pW4FjahkEhw) zi==&M@Y0U8=WZDg=}_L2>qFa6#M$)jR2fv#pYzs-7Ivdr&gg>-@L{HZQ6?>(1AZeP zi{9-PI#iptSzzQtC6-LsR)K3qm&ZEwN83OZ#2nq0;Z(>ywOos<2VL0nXkNspf30Y8 z@LakoqaN+5W6HQNPn*&|C$uELL_6ohxOS;RQ#P``D3vbS=L=Ty?Pa( zepZX-@2+S;W;Tbqb_(92PhR9;PpCR_X^$#E)eq2$@vElXQFNot<*VJ#t!_wd(Iz_h1aJpe*=5ZNJ1ZGhfN0>IuHBu z9#jC|obo+?{iwI7(wH%L6i{-Sw9Rjl*l>O@{H?zyX+~N5W$pQFKtW7bL^&kaqesyp z7n-Zu(IZMoSb`Fss@_=3-=Q$UxLj+!y-XTvk( zx^&f+%U3{;ylU3j=-GOb!{tDC7il(ZLA59 zyx<_-%z6Q6)C+&Ec#`T6WmS55pI0xsKEwOs=wBUZeQvP-EYQyi;;D-R+6<`7X2!b+ zoA+q+fdN0+uueFc6vS zoVqwZCINhty%si`~+FvFVJ zAq$xq(F}tuwPqwU7i5Jq=b3pRYk@i6%p2Lr%tdBcWUDn7o8gch&O%}qjO+y#QnPU6 zAhS@K5z!E>g~}`rVQ`jevqa=5u+*5PA}5)p(Ts$gwU#C`gj{e|7;_qO6qYV)PYUtp^-FGK+{Tcf!crgK}9c@e_l>@XIa5ME%1wJ1genH|wW zf`YVmB#S*L7-!G3IDkR~_I!&H6e_b9Sx8Zs)?REOL*Y0FiA5QT5I9IJ%2A}uL202x zQCbI;MFk?_hNvwnQM6!)#^MHwkqt3gs8FnSh{>V~#o;g*%SR|)fWcbUpkXo$(Nc{P zv=|bwcoT7sJWKG!3mo~DEht&$D6-U`6s@D!5<-MHCy6E0qYIp*mVGE)=A^VVqTyO6 zmE`~;;hfc$gJ^`nS!4MFjg&bXElp^Y*4bofMn*UnjFlCcEO5bE*^wzS7oru0Ox3!O ztX#-6oGZ`DgG?8=@~ynd44JFQ3QJ~cUBy;7G7IM>u?i-$1#VKSa56{crnDlGxmq`s zRUDazb5~m>k~0ME8mm-trp(=FMIw*Zx|^&Jc?`}2V@)HE6?kB+S>$mt527`XJYMTT zvK~Xu!g=znv&a(!o_y=c7S3%Y^c#%OrEJ7YO*dO3vk{Tn@wb)z#D5*OwN{h6Ky2q z9IZFWW)C?R=fkr(K%OP=;oFpu^JG3E8!36V)<@*)8iYg+fSw(l7)!u`IN)j5V5_0Qi2PW*ymD?2tuXy z`IMuwP^GFpYg7<%BHEXfLLm)P|YtizqT&IL2WUMJ@=( zIuuhBvT&kxX(Lq*6%-{dO6^cdIWLIPINYFIkVP3CRFsR_D3e1Kr2)L4X5G~~fE=Dq> zi*i#CBOTI5xh0EH4lz=0YhzSH1}G|Ata`{G<&Gd$Gvo*5t}NC##6-ELjWrE1qgLVK zFc>T9eL)-+V@G`;iz8w%)Q8$Q62^u42p7-8cu=ba@qCOo^|35oguzmuXye5g9JK~F zOo9ofJ{1g;V#2AlvSCULk@`$KOofS~s&NTwOd|EUAVGskrM{3Q7%?R3OKpM)gQ#`5 zM2sViS}#b%Iv5?v+OEEf%sc*C?CdVSG z7MF@~+C;Uw5cSgJ=88-8qetfwOf$JcPgRw$kIekQfjX@P3$D2 z_TkbcPG!`7LAunbocdOlu5?mT-)YlTP8C!mZn)a1lKNgST;p_u`aw3_=%k{4)DAZ} zRZ$0UB#iST>L&pS>s&+qEF%$})zmLq63MxaI*1#=b8e)56^!6Jw@|;yMu?m>)bH96 zVrMP&2X3Uqxr_Q!FjDH=NBt!msdP3{e``mooYxIdO}J5N=RxWp!6=RM59(jpD5JB9 z`cFH`ee%7Y~}Xkj!`SrrF5JA{Q*p zR!0`Q;AnPuio_+DW-p{jUBYP&a*EQ0NE@P~s9fS`7(7+&l1OtDQZ+8AG$%RL=t817 z>!>CdM03H@Fs?M3tB{6uWzpQ^G@>hy=B}fWT*uHn@N}MQ7R^&g=etg(dCBP_S3Yg1 zjxKf;(7f>siEA#+N63)6=F@!T45h1x=BHz*TnlJeJX7tul;$sFYFrCx0dl6%RZI)i zF-@*TG#s9Vaoa@03t3pVVj4ltBDzUvK{^)6Z4WIN&*r%upoIw8e76!>sGKcwlhVR; zY_Xe+7LMmg+{$PXLXOm}oE9nPDBYB_C>=-TRzV};xoWpcTC|X>al1i_k#mi1Dq5_L zYjUfi#o>7v_eZpNArI?bLmMXN5#80a1Ram$UPnvBXYkw`X-UEizIzKTS)L(s*U(aQ z8De)WEft?Baqps~2{WbceYA9WrqbO=8?MV#xew4t_|atRQy$j1;pFm$SJ49UZVPQ#Dod3ez2!m)f0Z#qLhR^)-D zGj(Id9ymG+KThHiOlJ$nNj<{p9Qin<2a(RzjZ=BV(RujsYL7&EhH$*bBbA;hA8+&^ z(MRjXn>-MG3_c6vNu!SyW??;9^l|bmq9>0&UYAAk97E5-PvCiG(I*He@I5EfC(0*? zJo)rVx(Q-WkS6gHC7!wTDZ+_T&wTn+`9!6sh(1j>QRP`c=i?`-J(tp_3nytj3+XfD zlZ>8X`b^yDlthL@xm<|wTGUIpThGxK%XU?!uKkn z=gFstyrlHmx+!8W89g6ARpM1fpCg&l}}ZADe3ccQ&nCSbP;}<+N+X2UpP(U zb%VY@KF#Q*qA%1VN=*#8PMME|86}su-p;~$&euiXd7k#C0hIHtT;bU#FXC8fwNU!V56oR*dyR0UTx-8{`6_H-@oMCm?ydFgD?Z zJZ}%iW}%Sp?akOC7mB>GjIBDM*c-lNh^oIVNw!*n`i-_|O=8g}GQC7Gs}0m*~S|?APUze8w;i z;AioCvKR-2v-m!f8HePvL_U1RVcjgTkAP8v&y)D%GL8uIq(1qKqw+kZkBD(hm#6Y6 zU`X+^)jmrZ$Az;sK81`E^4UfoG2^6ew#lc6A;afmd^a)V!hEc6F+(BGC;CblrMi5Q z?;b`Oeh$y~0OOQ!4&S$gaauk{bzY{4&=_~$ZPh0CS> z`OG%?a;3kB*{)lz@-JX&@GI2*OPL+Q6&n9SW~Y3G(O=Abqg!F}FJfx(g_wX%Or5Y0 z8&J&D%L|DC5~e{{NDA1)?82|)1sq^@3s>?3N|-(Jm7)MCvsbrL93W%%;a5ol%9#Da zRnmZR=3DtHWq^|TPPa-GP{B0fSE~amneT|VD#sofM zeiDkYfi=v}axpPb&HSPhlLG6QgZMSPz((d*;TnEm3-gih3fD>l`AgkPr)9Ay3xuG0kmVE&b_GX|QN|8(n2fo3c- zLJ!s6^$7K$Pw4#Tq47m;u-EGxo#9?pYhoxPrq^Jdv7){AghmaTrh7>8ro z5jIG0!7Tgi4N_b<%R#Y0i6gRx=r^cvaV!jBqZ*gUa?IYS!KJdC6dR2=63bb?(S$=R z7s4hCp2l*`-h{=oSZ<0uHQt$k70QbHuLaVEYIxCeEejVmtwOB&u0zQZx-VP zEN{XV2|kwvm6cL_KFe3JMTr-&{PbH?_yQJ|uvLv;%JR?Ns=*fmRCKEmFJ=Ymx0>)p zEF7U2L)gT^XBT4$#VmrNm`ISYg7n2C!X8#IVH=NdfEALxjZY|Hg(|j*2vSyDGJiCQuI5; zL0VQSVV5MRi}Vs1{qny^}AF-11u6@w>oH$H6nYrCg=xiq++)*$iy0@ z-)#yqVYCT z>i3F+acmZ0pCmY#&CcE@4Gw2>6#JCHL^fByPZb=;<`MR*gA>^q+50uYsq9R}eq%6+ zJzBrt6pYwo2nR4BH1^o+1K1E2dz|6`F@(n+uRlNv8N<#Z9OQ*$u_t67HYvFBtTm4=qH=PHgWLzV1#`lG7Q3bu%FOdVRuo}Yb8 z6MBQaKyl0%s$wtHA2Wqku?q-NOxPp#qHHNPtcJZX*-P|NQdk{(Dd9LTtdYGe z`#3*rT?>1;;+~m0VP>2nf(#RG#aW*%!-m^&HYjAoa13XoUPcOc;cOzv zdEp+M&DnB(xHo5uLM{r&a<=N_;&2?Nn4pk^2XnS%E2QD!ob3vQGMvcSp;xHF<2VvR zsX9E7vopI?6Q0W1r6@IqlQ_HerKWJi*+VG9M9?^Uv&*m%EY3bf88L##*{?4nMU3Gb zAe`bwWN{8=pW;VM<{VO-5=HPihxMn#5duyL;j|jFBqNMg2KbWEH1^pu|Ky;#|sBVxwv}mlaB4 zl$vuzuOvm)aViPtc~Om=tJ&xIQ7xQniu0l<4d=T4yf{kBxk0!fiR$9q%)TIv>f_u} zTu??CIk)u}R8a#Q72%>fYLIg$`=Tc52j{NhqA|+Exu?HqiZbI?5h^f5EAIX53M|o% z`#@1aBx1M^^%W$d3-=M>5|8M?taUoHh+9Xf#6;7$_1Tr! zXcqUCqLLWR<2L9kNzr4tjfAVb=qzqi_EmoLWNx$KswkSzeXYMLjuvoR2-hUhx!l(5 zYtra^ZkytoGFrrK*I!db7jQL%>+0yG+>Y$)n&?7qr{cOXTFiZ;zix^y;%W&uFfp6B zy6hX+m}0J8af28m;TrTeNHKf3U4)ywm;>DI?3?_U5^j&;rYJ_r?bY8D$H=&Sgjz;@M0UeU$gJ>&3~_B~DP5AI*ZJ!7ni`%iz* z6l=ya3#!7zS@Fzss<3f(Jd4sQVjPBNX{aK_x$vxl?(^b2c-A@h`ElMno6`HDI4sZB za9~kJS{VOCKxaMLa*lV^w?s4;%DE9lw<4pYuc$U&sq6 zePWCk^8yV|Oz}lLTu=>W*d`u6rv^K$m`5nBAr6!9f($jJVS9MNK~H(Z4)8*9p7Mv4 z@Ip(UiiSyfVTPyTVKQELP_1NG880HIRywSl7g<`X9H!(&8ERF-DtN@8XX;^gtO-iWaB?dj`B{cGq za-Q=OT6oE&&!JG2mtuG>PSEmFgI-7yx_D_hFQf^5y!6r+$^;{CxZ#B=VSq;pdZ|tr zqUv!45p!8oQTU{1-+6a24}EyUP%+fGdQKMl!?R)uHls`F)o7_ z)SymG%*e=T&?Kg2WR^A<6G<7P4GpG5lrbi#5tBsA7@O0GO=4w?D{Uku@iN968c9iG zGO~i2cu83q6LOmPNs}`smNto!_!*N7P2wa$#^j)8Nm6dcl$>U1QhvtN(q;&9WlS?P ztC9*b_(8ALNlP=P=e*V=6=uvReQitvl95;1DoU1S%r>-&lVutCL2Z)cvWz)7ZPMiOjJc(4 z%4B86JVTo*xgtXp)UHmh%$T3ku1UU;v7ofwn5@cJXlOSjS7j6gX)q~|G8W}%uqo?m zG8UI=h$-rfB?b*Cr7mM>PzNuiF=JUy2S24HV|i(ZC`FU8!q6d3(Pk6|bxKmYGFIkv zN>lnWR+V-tQ;Zp_4V|i#fedlb8+FQH#+sZrnv@?IYfIl4Q%o7_3~x*+W|>7nT1=`{ z=K35hHq|b3L#dXSipkt)(2`PJGB*Y3c&Q$ln{#yhRPW3!r8-e6Hgl^%Cr-s>76<7i zsll1sa`e*F@XYO{dSxmxbB95%N{!2u1R2z+iJ3cd44Tx`%w44hV=5_gx4~daMVWho zx-e<9%)L2X*fdt=zS1sY8ZUFdp^KC@Ci6g0H!m$K^I%RlKW%d6q0(+q8b9-}p9app-w zuPLo4Qx?>RN#B$y&*{Ua7iTI;`-th1%u+)iDSc07Sx`SO{XpiaoPK_KN#^O&eo?wK z^NgWioG!~O4|*#}FUvfe^H!Q(p7~$tTV=X3^PJ(WD!n388T3w_UYU75=ba|~M&^am zcgFPpE9T9k+N#>NajaO;5=5nyDnV>Bp#*75m0CiXr;>RdPR4Ui5=a7ND9{q1Ep2H_ zC~av=TY_jap#)J;Q3;}=q7ppKfh_P+0Z z?)%!;zV?0igX{s)GuOUber$-;yLB#f_b};M*<94_5z=#4=i+vclAgadm%MwN)VI}F zuzP~^g3Kq_JxO};s!z3hiuBSoU(N0rQvcTZrrl1`%d+|Q-CoiwSLeHT&yileHb1a? zfi$r7`_bKtB%AE}sohJY!K>fT?OrCmcJ2G+-9hA`tqY;a!Q|Iv3sK1-G;*$;x`Nb=iPe^4byk>9!YLrroFd1UL4P01+oyRskKlX2wt zuKw7a97lft+K&Ut3FOhOKaD0QlI^merjnD$V^@EgOHL+#aP6n%(2!Q2Kf`&&jJF6{OQ%7RRjU~vui)s5X9ukt-mx8 zK=S9ZU)l)@@)uWs=_aViUtarVfKWo7+WPA#p`7fH{W?XcB2Qoab&gO&{_5JV%Y=IJ z%+{sQlm_zGvZbh$M)EgTm*P^I$k(ndC8xBIom+n^NNFXzWWNbg+Q{y!zo}B%$)0P! z)ueQiy<2~8N->aUWxuzlSjgXA{k=P-oBZ9i-v?59$#Yx(7)|LT`(%GirSy~Mul_NY zGC=W!y&ocSXYkw~938Dm{f)J^}l$*dHWNHXyogoOH8cMm@8AM18rv#&J zBBn-AZUJusQX?tr4L7M%qbRpJZ_=j5P(o1abb*r?Zv)rqQ*o5r4eP9_ag+_tb+*(5 zN+{}Pduk#D0p9Egd?`K5aI-HpnR18oW`AlbB^(uuNXw+$2?it6aw&Hig7Ikul)Ih5 zgft2z0(A>9jX~K6-U6g?D4PtosM7?Ldz`mu)5MfW)OuYSNZAao*QY5c_Zrq)(^QoE zoa=3AC6p-Ct@gBX3KG24kyb^CHr(n- ziL%uhLP&3+pis9F(_1NM@HQa5je;@UrcQ6CV4b&V(>p0R)a|--10@!`U7v2DJZQMx zn%+%$$a%Xhy_XV)+F(!bqu{{}j`V&?ykUbceSq??bAvy9h?0N`MPv+9wt=C@j1kIq zLnuCDl(NGaO2`Vao(xTjG^YD?$TwVsCnRB z`b-=(-*A^TGmg5~d6z9Sfm(pN+n$+7C4zT5GLxtz!`;5jWGdNtw?8wLN+vNEYu zFanvCOQjhi@L2^^x-){1MWHfK8;MyADihoYWO1l0!$x(MfXa4m)MkmP9MmRV7D(lS zoAg-1O0K1X(4KUHJ6&zC(wEq31L&mN+dprQ~t z!_<9X6f$RoT55>G=ZsRzoKb|FacVgVNz9p`R)9z#XOg<#fK=y9Q7fHDZO#m}3Kgx( zaZ;IZ-~&KzB<+~t0d;N^?YQ#+ZEg&$ z5w%5^i=v$Xx9D?mw3CJ{*4#MSDd!ejZUU_dwbh=RNYjB^9l1%gX2VurZZhq(bE`i$ zmDYknA@VY5X9EB9ke5q4Ye3=i3TWq?C_)~E)`~(C^BA=AAR5Ty&@LFz>O2AMq7$vn z6VuvI7+oGny98qNc?#NP1IC)CqFr%fYe~7z^aL(M*O|b$&a|?2Ogs zchW4V2X*-dS{L}BKHoxn%J85yznk{7^FdpFFRdH(kUhVTW(6N|S|18e+&e*g0mK7)CuuJl@anx& zw3nQC?cNz$KPq0g*GYRBjMwk=(q1vdTldb==x>4BfPzT+ z+lFoGf++es&TZO)82SimyRHC5e;3@YFTl~?Gi;;K*JGjG9 zkVGFd?C=#N(?4+T@E4@g$5Dw0VkZ4VFcC@2rGI2d#1jkXA3GBXL<)TZwUbC>&_4lp z0z?k|Q^QU*Q9%F9xl>CN({653=^p1UEvb|4MLnh?8R)a%V|tQ>{;lCLE2*3Qo%1mpsjinkhuUo? z_0fIcZU?EKK5y9VBMs2MckcF+hUg2ZWCVGb{sWkdB#+R4G$iB6qx7Gg$prE^eGx?< zk|*dtg9Ly)N&m$_P?M+Vzd8w8@(g_mm7*g%>A!&~da{@PyCKC&o}>TaOtFy{=*y@* zcJd{ZHo}KRJjIgib|Jf*ChKsYpr)W1TS-PYGq*>`En2!WqHn zG$JK}aSN0NP$C)YjcIC16ysJ`nwAp72tlXoC@98lP`aLiW87{`w^HI58(ir&N&+Jk zonfaWG7wOPgObDuGiLZG$&5Q(8GcGCBOINHpk^}egffxTT*h6-Ogy!KakndzK&3Du z&{;$(gRv3H0;n9uCS#VGDq!5>%FV~4ANKp$r$ zqKQQM1Y;*e1n85DM~p-@eTwm@i>Rf~Fp|(D9o@;;1(Ec0FXJ&I$x5GN>~@iC^aVyT znrx>pG6)daL0@8|7|A~RGGmX6?577YQ_&OzBbb>6QIL!fX1bArXM{2{ToeK$oSBKH z5*ZQ9EQks)BAMAns+tkS%yCh*j2LDvnxc*>+|*6M)zb zW))LtWc!#kOp%N2XVx>tXbytaz?487B&(4rHFEH*CZ^2AA+TDQAeu{LwK5@y3$WUl zu#u}~wKL@|u9nrwRG@h}mVv2+czRZyg;{9iSy|o8A{Wob>Se0Xd^@X;sfPFtRzFi? zbJSUWO#3d$h!dVSy36T@QItobuP9*D?QKIHV zv5vbWT22hB5iQkmP^=S>RL{Y&P8y|FP8{o$OKRgJu$s^^J13E)gJcd)606xL^Kp_{ zr(H5XCzaKL1`*s$))@#ya&uW{jUb*|z&hsw30w-R6%7%&4AyxF0=OL31tX;93Ro9i zkd`ZEwV`1h7i3+6U_DpCx@?54Tovnz3$}4fSnX)Jomr{tS2A^lGn(3(x|}mnpjs|3IeZ%Wk4&5yjGSGQUbg-mdU78^V(Tvmr~2? zWLeOKI-Y^m1r_Rf7S>b7LMyME^|Y(d#_MHuql@gkK9&_Ka`5_DJ;ov*Z-DiTtH{qA zV)dd`2>vkZSxANCkFcIIs_^_#*7GhEfj`dbL#v7W3Dygc8sJZ|UNoxJ{3+H;F140F z!|F$CbbKf4Wk{pvds(j-HCFx{>s6P=#$R9!po{JNMV1XJcJP;2gT`VXf0^}~tJu#E zVh^E95Q1R#>re?&5W;@LSb`UXvfp%-5Cq}uVe~$tAcFlCv=0zOvfnoDQwyTl@3{79 z1u^Uqbg52&V!sQO>IFFVd&W|$AddaMtJEe)V2`59?1DtL9V&AOlGtO$GM^xs{ei2@ zFGyvNqstLMCi_FE90}yIKQfl%fdcl&u5toEVNakdhya8A2~+_99QLQi3N;{Lf99&t z0%Gk?w4m9Vllzph^c&#hx}+`hXhtSFTDw zP|u!0S0RKA?609Jq_C0wjj;+ZY+_$?RS|?OY$v*!C~RfBplU$a#&#R4)xvhR$5pKr z)^)PI=mR>TfjtWy&Z;c16!fy6=t^+njT1ym7uz!ZMfM}Bai&3iW;Dln1*u{w)1boCHPU3`_j`+mM zoIBh{{NhwjIHmz1$>iJ#Hy|asoV!d7cu4{0Zg&GgLg7SUjuIsd&PMnsAmMN}nU1O@ z0?s||qgsiW6Nx#dlYpGf@G-qa!MWFT%qmfF?sFfrNlG|TnB#UyIR^ ze9{5V!|qdl=@2IY(}a)>bGE@vNZANyyQv8;8|Cb9HxXpxoJ5R{D4XEygmr*ylJkg3 zrxYD>Pm7K{Z^F z`=TGJ=ZZ0H2)KbOf!mO9BUfr_!^2HnnY)buw{StsB_iC)h2Tp7T-U~hO_$VgJ6G<$ zq=h@V3e064Y~U*4%X-+tEi_%W!rj~=_hlR0%T-~n*x^2|8ouIy`?(s^6(2mnEp}h= z!$aH>Ogln8%-sjKBjqF9Qd2u#KFTd~w-e;!+;WVbD4*a~z)em~ z3V0XY zMy*oJYr~jyN|1L6HtCfL-er@?s#Ni=xJ@=?39lVvwkykddf4nxR`EJaW}mW#_qf~a zSJv}7F&0E&1Mdmgf-G$0J!!Jw3!8XX-4;S&3(tV*A{MstjBpoF*v2!Ny3~d3JhQt? zTiD67V4l(y8hBmsQ~E*+?oGm;D;(fG z<9^y-IK=D4bR&v}dC$V#$f6P6bEa;5(J1eEcQ>JEoY#l35{o8yFThryXp$HBDzLg} ziuaP+sx6w~^<#Q;MNZz!aF4#o%X`JtV=bEFz3T3<6)o@vFwfYF7I`-K8As6)Z_xCN zuV|U~n)?}lQ4oI!(~D3A^IwO1k*W~>8>U{oDwO}GyO*E}=MQ6^C8{F$Z^6$3s!0CZ zrf1cvDE>R{XSJ#r{s`tdoeIT&7k*B!!tviTJ!e(L@!xkpXHzBcM={UaRf&8%{JcYz z#2+&~?^7l7KX5U#bRrXQhc;C~JGBQ=fuZ%qAoO%wl`yPu$`YvDUFFB3Jb zd>8yOplRc~O)sl8?R<~>Wv!-@@5Q{L(-`=(@GE+ah5xPT6|1J3|DF34o2HjPhk4bm z>Erw0R~?#u{=Df`pJssnz57+aW{AIl89)>d^M8N`ki{eXA58=J;!*xj?g2vaIDZji zBNk8ae}-*9@g)BjlTBSb#sAf9(-zP0moS66VkiGMcu-&L<^OIPv=-0t|8Ni5iWm6H znAhyZi+n%)nxlA$zhZjLSG>&s)BT#iI7kqL9YT}@3vQARAxlC8>&!#=l2F0To*_a> zxF8t&IykA4jms{FZv3KyZ)eE$u$BAQJnwZXYPvEPq?SPa(M1 z{I+$UN^qa&ZQH&QK@|2K`@V7kQvQx(UzH%*{Ely5jo^OIJN|w3f*9-wqO?KqfP4g5 z+9=p!9>JG33ATDh2&F9o6!u+WX{!J&e-|ii6JX5ms!Q7iSkJrK(oO*m`<|}UAc&Q} zr!Tb#9yGsaE$tRO6X50VJ4*WlUu=2bS2`eg*z>->bV!hZ9YvH4 z3%1Eek!2%-?dDN@*{EQLXOvJjE=a`MiDeUlopL)+HYs?-Y*&{}2_E&>wPiDcBtYve8-JUU9*@7S$`+>b|Q9zJ?;3!)Xq?kYOl`RYQcs}r#1p%qp zaYT7AkR~5TmWKf8=5c&^D3IY9CzOW+nb;4B_@tC6p$zXNMDWv^35Mv%j1B(o{wzh2|xk%V|#fbK$L&%C{F@N=8t{l$pG2&vA;YO zpkOBu6`254K7p*r1!(38d_@63_e>BfC;$Wd39*6!Fy)^B6&!$N{zP3N0N9>Sv=w52 zgZ)%j0Rmk4r}_#7z%zeptxy4c&!@JE58Q?pu&D>-`@wQ^Hh9l<) zRkHB3=bFDNRoH@cBC0cmXXH*~b*}KN*@>?%5T5fm3Dp!~E7nD#9NFCAnK)tq@)|yRFqK;T4bDR$U@&$9nA5KftW9*@7eUf7BCA`UbNpOAZz2O5P>n!We~O~R`lFX2Fo(14vK9%vOB<+H$nHlfKp zt3J>!G<#;X2Relo?6&j}e9`PvADj}t# z&?f)had1gEX#U=Ja9Q}8=X?LbAkh$Z0Z|hydR@MNtO*glVP3%3go@tuED&nKMZ?%1 zh&2(Sx8y$nHIbsX%|EDXqD1d_e$dv$h(@qK>S|D;cjZ6oYjC3X%s*Od;zaLzezesj zh(@tL*=rI-cKJ_^nk3Pf`6pjZvgiZPPyU)z(KvPyq0JP1C|^Wsb44GS7xCHx(Z`-e zf|eqh!2V3sGDM%qe+IN1(WmC0)mnk*GtbXjtynaP{Y9q*MW4%m(Q6f=FU-GKwJOn< zo?mR*644a)SG%@cs3L{98)#M)MoOa2>B+a_|Ge^b}Ci#(p+w6&cgFZOp`twA&^|6N~e5q)d^ z-CEl%`p)yat+rP*hyBA|+b8nL|8Ugyi{{OL_-Y44-+TV>*A9smu*-Tq80O>zPe@6pPoPcbwT1FTu@kju=plL zP;`BWc%3CEzCKiZvo|QEK3p7(yNOgEA-+X%ldwKgyxww?ranr1tM{hb`WSHtZe4Rd zN_?AQT}M4me7j{`Pko$tgLmCveS$a?ck@_%q8OpLdAdGH9A>$BzCKxehxg`{`c!c^ zE;#H^rua@paP*;E@m-eS_(KKayS>3FhbZC*+%2R-4Dm+AEy6<_@g~bHnnMEdJ>FYt z4~fN*xb@A4K=Ee9`i?^i@x7MyJ%?1{`@HK150!|caJP;fDiaD(^(MM(7FM)4L)Nc`a@@m6n0%Hb9<3U?dnaH|-txJ`JtO^mVJ zra9a$#(Hn7J=`hA;cjm}Y!JsPZtpm35kF|Tz2|VZ_#yA@gNJ*?akvd*hx^2M#fIs_ z{o;7bhWWz-;)lH(Rt^t|6L6tnM~21Q6rs^aM#S4Kq47sX#XG#ADM!Y|i8uu5$b@*O z0wFvyDSpI)&>Wc(Kk7x)9+?p*;li4aIK{gZVI4=j;>RpuJxAumyS-t9M;64%xI4y< zEQ$$=JEo5;iBl|h%pX}6@A2NTawJHSiVF{G2$rNN!lN5PB28l!w8GWo#BDF-u zA8V4xypbu#S|lKDGwE2X1X64k9&3}pmd%=D?Gm|nbM3KCi2`?T^D%=&skpb}m_<@( zxwq$7x1`8>@8Gdsi3)e$*s(r|T5;d>v3`lha^L*10ZFmK1EdY z@exU>B`W^-sHDsrm2!MsQjSBCj!#G`6iDImNy&Z-QgeJtQt3t39-om^;i8+5J0;bM z=#JxF$pK4r&+$3QL2vZn@dZf@?*6gkixREk{^{dOl3L6C^T(GZb>90|jt5EWaWP?y z!O}yDnCQk3>0wJud}FBeh&LvsFm z+tS>KlAcg(>1f1BPg=J0G{#9!dAAHUCPpd>Bb~!vt{diW3u$Lck4=H zsip6iCl`Q7I=V(pDUrbb=v0uRse=aHJP3Xw38S}D3P|~uwy66rFsQ+`b3qq!-AbZQ6qia zi(LsEfYXV?g`I4WKB2%xpKO#qX~D&xY?5B};!;kwNDa7H(#ck-Q4uRV*(NnvVl^k* zrDktz?a5B51@~a{NrSXY@nFYEi}WeWgFPp^rB8bw96Z@8?Z!PccCt@uRXj9(vR~R` zd1(IRfb<#fLn|kTq`kPfuv5d*XBBbLr$(gDS>obPjY^;Q#-*GZm-gZCq*D{p7ZiBm zsY&UJ7QE)vl=LMpzV_6Nv>zAWe99?(SrOlH$}4@v65n%bPWq}he(=C2L%hK1p53igGk`3V!!kU6*uPYLwn?hu7SQ6r!LS=7y6H=POWy82_ zq^1bjTZ(PMrbyY_mTj7*DA_ySZM97?vJu?&<|dTvUB&i}CYbF*)iXgEc?K_W2GroHjYaS(`Cv&R3t|0a%CS`6619RvX8xq zDLRU50=JW-W5_;H>=f!avQI5LH9CRpGw;q?ome)Bd!$(h%05>-(xFqxzOX#fqf^Pg z^gc4Et1FRB;T|2+mCGE8N2hgFvT4hs^ST<@SKdcgboH_sTvAwbgY0WXQgm~p>>Eo` zd~=iRnl~w>xkcv0?IJa|%3O+F!sa%a+pS;b==%@*0W zmdARUyJg>b9~*4$mCfOHk2Uwne2U%E&Hb`@%kKH+0onK7-7C#QvISgn*y&-}4~pdI z(<8DUEy?kxM`b^GlT%KQ%NB72(&-7=&kBO@^rY+;3qf;wO7^RlP`!24#i2hWs%QL#B=XUajOGH3cs6&T%>Gk>NA zyni-lNs_1wJ}UtUWgaCdHDP&pE+eN>ax;FZfs&sps4rxOq;p)@5Wx-|q!@1n%FhC&&$l$6$RC^MEyYK?%h zlvH7BB$VAn)wD)IIkVK-))*)^me$;gg7TEKj#eC$-$m5N zR5FFp_Rs3cYpc5xWmrxZkA9Dz!^1o0O~p|V*)%EfW0JQg5b zoPa8nfbilZw7(0`T%3X`XMx&_Gf-8mu=%1Bs#Xd+E_$H@UBaG=bI`$A;o!vus3ul4 zc5xBXDn-*5m!R4%(fq|_sBTuYaxn<5j}?ct1;dAw;^?*z_;8mvzAY3!GAmAL3x^wG zC8V|p_^47MY>R}CbxAaBQSk9uNo`vU+!!luZbQK*l+uni9DK4%+S3*XpPH2pwk5z# zv9htYL|CVkO}8b%&0Vtjwq*G9tZbz%6>fQZVhx5MUHW$ooo*b-aVeAxhZDGNI;Ti~a<3VSYh!%xo^ z4qonsyJL&SF89G!WzqEIez>QrX#Vm5{LF08%H<)rH&zvPWf*=|sfxZb0zcQKioY@n zKR>HVxiSv-#i~hHCg2y8YT=bh_{A=@=E@ZO(yY4n$_(5et7*RCgkM%_I<9!(SGqJk zSLWbXXElRY7T|%{;;}1>uuWM!ePszA>?)qWvJAgATfA~5NIn!>64o9pe_dG;-5w%; zqpKvoJyibYY)MM{#^B9@ok5Z7%VY{jE!h|nv@sODF7j3of+ZEIa&%BZRN!Qi>$bA; ziohwPf7xzd9VeBjBpMkMv~jh!Ua654tD&Gxfs;%&M{O>^1VwEO-MlksefZ|TB5qu_ z>fPkMW78K1Ogbhc>X9Ja&0MG~aviBSXmi}g;J}e8>w*He@W4k<&_6=l0B|G3$fix7 zZo;&OVZK59e+Y8>zi`|@d?QHxOB*(IytD!H(a3F>epKMguGTMK!Wjn)fss7Uuo6;%qJP@1 zLlc!(m#n7TQlU}GioxqBD%2&_e>sY!g^;X#6`dL?mw=LTNnrTFEl@yHpi(1WeU{0{ z#wTsj{te7OQEa&(+tncdfbw_8|G*=Yltc33Ql(6yT4UxPn3S6Gr2jyqsZfjl_0$>- z+XLx}OF^g**LKc-!up%z{{gHUTj4)p{mt<|V8NuM3 z`=Qb@WwB<}x@}i{LVUuO0Mact(*Mo5J$`%qjxE}t$j~$zjm&=RdZmo)Mm)TB$+ObZ z(x`#o)oX8BT4GwdJS{sdO`et^U$dpB|HEIoY79Jc!=Im)dA%RFuSHq&=cT1prUjl0 ze69vbFAj89`)O&}MS=0@kLIaW6}%i)B4;~kzciOsF4Yi~WM#S(s?IN!uy+>a6&B0$ zH2Dgt8dT*eE9H6WoeC+NxjLo-WLK3HWTYu&J7@}-h8nP?Ro>|Dmu2KVl9!oPNzDAq zrn+v+-o>G>#<`JCwW~y`rm3JD)`8Vr>>XuFsXDuyM-M!ovvZp?r?MSWKESAu&(0?Vs5H z&DCGH0{>m7;;FN@Npr8q=BZUGX$}qkYfc&YMLaf75#TOijnDsvUrh>NVQHj0@=Lhe zv&(MqzD>$W-^tlQ+bIjoE5NlffG>fZk+;fEIgdkA@N%*fxU0P71~?4NIk2XG#o=*Q z*EOwrjgK7x44ixwZ*`4wcnWDQNd2K2(^kp9kdA(s>2WBab^zZ~zLR{10uIfPkY94!4d+BN}yXpXsvu#&F#_AgW8z)ztT^7Jr7+CxNs---2 zK;Jppfi=Ib7g?Yk;PSxVx#p>>_H#MZ?WF&84!kny_Ur^w;eXZC+FpSJx)1EDziCCa zs73uzv#W{QY3{8rJOr{Tz_6cU7$IkHV~-1%+u9#Ekp^_W@n}#UD>4(~wG} z+Y{Gf5S5A51%*TF~HcFsCu9h<@am|>s zYW%BI2BNH%wwxPW1x8fvzcF4O7?e&;%LsVW(qwA|a<%xa1zihqJzk(V2ClWxYpwLv zTsePfV$~LSUcQ>=dg`=5$h`*wNs\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
    018.08307.0130350412.0701chevrolet chevelle malibu
    115.08350.0165369311.5701buick skylark 320
    218.08318.0150343611.0701plymouth satellite
    316.08304.0150343312.0701amc rebel sst
    417.08302.0140344910.5701ford torino
    \n", + "" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory\n", + "\n", + "from ISLP import load_data # Package which contains the data\n", + "Auto_data = load_data('Auto') # Loading the data\n", + "Auto_data.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2e38a201-7f2d-4999-beab-5739217a9318", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 392 entries, 0 to 391\n", + "Data columns (total 9 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 mpg 392 non-null float64\n", + " 1 cylinders 392 non-null int64 \n", + " 2 displacement 392 non-null float64\n", + " 3 horsepower 392 non-null int64 \n", + " 4 weight 392 non-null int64 \n", + " 5 acceleration 392 non-null float64\n", + " 6 year 392 non-null int64 \n", + " 7 origin 392 non-null int64 \n", + " 8 name 392 non-null object \n", + "dtypes: float64(3), int64(5), object(1)\n", + "memory usage: 27.7+ KB\n", + "None\n" + ] + } + ], + "source": [ + "print(Auto_data.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7dd29324-cd54-415c-ba83-56c0d9f74159", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " mpg cylinders displacement horsepower weight \\\n", + "count 392.000000 392.000000 392.000000 392.000000 392.000000 \n", + "mean 23.445918 5.471939 194.411990 104.469388 2977.584184 \n", + "std 7.805007 1.705783 104.644004 38.491160 849.402560 \n", + "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", + "25% 17.000000 4.000000 105.000000 75.000000 2225.250000 \n", + "50% 22.750000 4.000000 151.000000 93.500000 2803.500000 \n", + "75% 29.000000 8.000000 275.750000 126.000000 3614.750000 \n", + "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", + "\n", + " acceleration year origin \n", + "count 392.000000 392.000000 392.000000 \n", + "mean 15.541327 75.979592 1.576531 \n", + "std 2.758864 3.683737 0.805518 \n", + "min 8.000000 70.000000 1.000000 \n", + "25% 13.775000 73.000000 1.000000 \n", + "50% 15.500000 76.000000 1.000000 \n", + "75% 17.025000 79.000000 2.000000 \n", + "max 24.800000 82.000000 3.000000 \n" + ] + } + ], + "source": [ + "print(Auto_data.describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "aac9e3c5-e19b-4568-b205-e1ce3fc1ca3f", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "# set seed\n", + "np.random.seed(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f9a25057-a631-48dc-883f-643bd09d0999", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: mpg No. Observations: 392\n", + "Model: GLM Df Residuals: 390\n", + "Model Family: Gaussian Df Model: 1\n", + "Link Function: Identity Scale: 24.066\n", + "Method: IRLS Log-Likelihood: -1178.7\n", + "Date: Sat, 19 Oct 2024 Deviance: 9385.9\n", + "Time: 16:50:14 Pearson chi2: 9.39e+03\n", + "No. Iterations: 3 Pseudo R-squ. (CS): 0.7834\n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 39.9359 0.717 55.660 0.000 38.530 41.342\n", + "horsepower -0.1578 0.006 -24.489 0.000 -0.170 -0.145\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "# Logistic regression model:\n", + "X = Auto_data[['horsepower']]\n", + "X = sm.add_constant(X) # Adds an intercept term to the model\n", + "y = Auto_data['mpg']\n", + "\n", + "# Fit the model\n", + "glm_fit = sm.GLM(y, X, family=sm.families.Gaussian()).fit()\n", + "# Further function options can be found at: \n", + "# https://www.statsmodels.org/stable/glm.html \"Families\"\n", + "\n", + "print(glm_fit.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b5c7de71-463d-455b-a596-923cfcddcefb", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "const 39.935861\n", + "horsepower -0.157845\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "print(glm_fit.params) # print coefficients" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6b8fb99c-d172-4398-92e5-89324c1787f8", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "# Number of folds for cross-validation\n", + "folds = 10\n", + "num_models = 10 # Number of polynomial degrees to fit\n", + "cv_errors = []\n", + "\n", + "# Perform cross-validation for different polynomial degrees (flexibility)\n", + "for degree in range(1, num_models + 1):\n", + " # Create a pipeline to add polynomial features and fit a linear regression model\n", + " model = make_pipeline(PolynomialFeatures(degree), LinearRegression())\n", + " \n", + " # Compute cross-validated MSE (negative mean squared error)\n", + " mse_scores = -cross_val_score(model, X, y, cv=folds, scoring='neg_mean_squared_error')\n", + " \n", + " # Save the average MSE for this model\n", + " cv_errors.append(mse_scores.mean())\n", + "\n", + "# Convert results into a DataFrame for easier plotting\n", + "cv_errors_df = pd.DataFrame({'Degree': np.arange(1, num_models + 1), 'MSE': cv_errors})\n", + "\n", + "\n", + "# Find the best model (minimum MSE)\n", + "best_model_idx = cv_errors_df['MSE'].idxmin()\n", + "best_model_degree = cv_errors_df.loc[best_model_idx, 'Degree']\n", + "best_model_mse = cv_errors_df.loc[best_model_idx, 'MSE']" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d9b3b0b3-8b66-4624-b75e-74f97015c362", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIhCAYAAABwnkrAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF90lEQVR4nO3dd1yVdf/H8fdhb1QQAQeiuffK1HLc5shylGWp5cBsYdm8y7wrbWjZuNuWpqiZaUNN65dmtztHzpy5t+AWFASBc/3+QE4clnAEzjnwej4ePPBc13Wu68OXA5433+v6XCbDMAwBAAAAACxc7F0AAAAAADgaghIAAAAAZENQAgAAAIBsCEoAAAAAkA1BCQAAAACyISgBAAAAQDYEJQAAAADIhqAEAAAAANkQlAAAAAAgG4ISgHxt27ZNQ4cOVWRkpLy8vOTn56fmzZtrwoQJOn/+vL3Lu65mzZqpcuXKSk9Pz3Obdu3aKTg4WFevXi3QPg8fPiyTyaRp06ZZlk2bNk0mk0mHDx++7vM7duyojh07FuhY2Y0bN07z58/PsXz58uUymUxavny5Tfu9EUOGDJHJZJK/v78uX76cY/2RI0fk4uIik8mkMWPGWK3bvXu3HnroIdWoUUNeXl4KDg5W8+bNNWLECCUkJOQ4Rl4fjqhjx45WNXp7e6tJkyb68MMPZTabC7Wv3F5zzmzIkCGqXr16sT43+2vG19dX1atXV69evRQTE6OUlBSbjg+g7CAoAcjT5MmT1aJFC23YsEEvvPCCFi1apHnz5um+++7TF198oWHDhtm7xOsaNmyYTp48qcWLF+e6fu/evVqzZo0eeugheXh42HycO++8U2vXrlVYWJjN+yiIvIJS8+bNtXbtWjVv3rxYj58Xd3d3paWlac6cOTnWxcTEyN/fP8fyLVu2qEWLFtq1a5deffVVLVq0SF988YXuvPNOLV68OEcQ9/b21tq1a3P9cFQ1atSw1DhnzhxVrlxZzzzzjEaNGmXv0uzqlVde0bx584r9OFlfMz///LNef/11+fr6avjw4WrRooWOHz9e7DUAcF5u9i4AgGNau3atHn/8cXXp0kXz58+Xp6enZV2XLl303HPPadGiRfnu48qVK/L29i7uUvM1cOBAvfDCC5o6dap69OiRY/3UqVMlSVFRUTd0nIoVK6pixYo3tI8bERAQoFtuucVux/fw8FDPnj01depUqwBtGIamTZum+++/X5MnT7Z6zocffigXFxctX77cKkjde++9euONN2QYhtX2Li4udv0abeHt7W1V8x133KG6devq008/1Ztvvil3d3c7Vmc/NWvWLJHj5PaaGTRokIYOHaq77rpL9957r9atW1citWRKT09XWlqa1e9UAI6JGSUAuRo3bpxMJpMmTZqU63/oHh4e6tWrl+Vx9erVddddd2nu3Llq1qyZvLy8NHbsWEnSjh071Lt3b5UvX15eXl5q2rSppk+fbrU/s9msN998U3Xq1JG3t7fKlSunxo0b66OPPrJsc+bMGT3yyCOqWrWqPD09VbFiRbVr106///57nl9H+fLldffdd2vhwoU6d+6c1br09HR9/fXXatWqlRo1aqT9+/dr6NChqlWrlnx8fFS5cmX17NlT27dvv+545XbqnWEYmjBhgiIiIuTl5aXmzZvr119/zfHc5ORkPffcc2ratKkCAwNVoUIFtWnTRj/99JPVdiaTSYmJiZo+fbrldKLMU/jyOvVuwYIFatOmjXx8fOTv768uXbrkmIEZM2aMTCaTdu7cqf79+yswMFCVKlVSVFSU4uPjr/u1Z4qKitKaNWu0Z88ey7Lff/9dR44c0dChQ3Nsf+7cOQUEBMjPzy/X/RXVKXXNmjXTbbfdlmN5enq6KleurHvuuceybOLEiWrSpIn8/Pzk7++vunXr6uWXXy6SOqSMmbcWLVooKSlJZ86ckVSwn4/sVq1aJZPJpG+//TbHuhkzZshkMmnDhg2SMk5B8/Pz0/79+9WjRw/5+fmpatWqeu6553Kcfnb+/Hk98cQTqly5sjw8PFSjRg2NHj06x3Ymk0kjRoxQTEyM5We2ZcuWWrdunQzD0LvvvqvIyEj5+fnpX//6l/bv32/1/NxOn/vss8/Uvn17hYSEyNfXV40aNdKECROUmppaoLEtjK5du2r48OFav369Vq5cabVuzpw5atOmjXx9feXn56du3bppy5YtOfYxefJk1a5dW56enqpfv75mzZqV4+vKPGVywoQJevPNNxUZGSlPT08tW7ZMkrRx40b16tVLFSpUkJeXl5o1a6bvvvsux7Hi4uL06KOPqkqVKvLw8FBkZKTGjh2rtLS0oh0YAFYISgBySE9P19KlS9WiRQtVrVq1wM/bvHmzXnjhBT311FNatGiR+vbtqz179qht27bauXOnPv74Y82dO1f169fXkCFDNGHCBMtzJ0yYoDFjxqh///765ZdfNGfOHA0bNkwXL160bPPQQw9p/vz5evXVV/Xbb7/pq6++0u23354jAGU3bNgwXb16VTNnzrRavnjxYp08edIyA3Ly5EkFBQXp7bff1qJFi/TZZ5/Jzc1NrVu3tnrzX1Bjx47Viy++aJmVe/zxxzV8+PAc+0pJSdH58+f1/PPPa/78+fr2229166236p577tGMGTMs261du1be3t7q0aOH5XSizz//PM/jz5o1S71791ZAQIC+/fZbTZkyRRcuXFDHjh21evXqHNv37dtXtWvX1o8//qiXXnpJs2bN0jPPPFPgr/f2229XRESEZZZOkqZMmaL27durVq1aObZv06aNYmNjNXDgQK1YsUJXrly57jHS0tJyfFzvep+hQ4dq9erV2rdvn9Xy3377TSdPnrSEuNmzZ+uJJ55Qhw4dNG/ePM2fP1/PPPOMEhMTC/LlF9iBAwfk5uam8uXLF/jnI7vbbrtNzZo102effZZj3aeffqpWrVqpVatWlmWpqanq1auXOnfurJ9++klRUVH673//q3feeceyTXJysjp16qQZM2bo2Wef1S+//KIHH3xQEyZMsAqTmX7++Wd99dVXevvtt/Xtt9/q0qVLuvPOO/Xcc8/pjz/+0KeffqpJkyZp165d6tu3b44ZwtzGZcCAAfr666/1888/a9iwYXr33Xf16KOPFmRYCy3zDz1Zg9K4cePUv39/1a9fX999952+/vprXbp0Sbfddpt27dpl2W7SpEl65JFH1LhxY82dO1f/+c9/NHbs2DyvEfz444+1dOlSvffee/r1119Vt25dLVu2TO3atdPFixf1xRdf6KefflLTpk11//33W12LFhcXp5tvvlmLFy/Wq6++ql9//VXDhg3T+PHjNXz48GIZGwDXGACQTVxcnCHJeOCBBwr8nIiICMPV1dXYs2eP1fIHHnjA8PT0NI4ePWq1/I477jB8fHyMixcvGoZhGHfddZfRtGnTfI/h5+dnPP300wWuKZPZbDYiIyONxo0bWy3v27ev4ePjY8THx+f6vLS0NOPq1atGrVq1jGeeecay/NChQ4YkIyYmxrIsJibGkGQcOnTIMAzDuHDhguHl5WXcfffdVvv8448/DElGhw4d8qw3LS3NSE1NNYYNG2Y0a9bMap2vr68xePDgHM9ZtmyZIclYtmyZYRiGkZ6eboSHhxuNGjUy0tPTLdtdunTJCAkJMdq2bWtZ9tprrxmSjAkTJljt84knnjC8vLwMs9mcZ62GYRiDBw82fH19LfsKDQ01UlNTjXPnzhmenp7GtGnTjDNnzhiSjNdee83yvOTkZKNPnz6GJEOS4erqajRr1swYPXq0cfr06RzHyNwu+0fnzp3zre/s2bOGh4eH8fLLL1st79evn1GpUiUjNTXVMAzDGDFihFGuXLl891UYHTp0MBo0aGCkpqYaqampxsmTJ42XXnrJkGTcd999hmEU/Ocjv9fcli1bLMv+/PNPQ5Ixffp0y7LMsfvuu++sjtGjRw+jTp06lsdffPFFrtu98847hiTjt99+syyTZISGhhqXL1+2LJs/f74hyWjatKnVa+bDDz80JBnbtm2zqikiIiLPsUtPTzdSU1ONGTNmGK6ursb58+cL/Nys22W+LnOze/duQ5Lx+OOPG4ZhGEePHjXc3NyMJ5980mq7S5cuGaGhoUa/fv0stYWGhhqtW7e22u7IkSOGu7u7VW2Z37eaNWsaV69etdq+bt26RrNmzSyvv0x33XWXERYWZvm5ffTRRw0/Pz/jyJEjVtu99957hiRj586d1x0LALZhRglAkWncuLFq165ttWzp0qXq3LlzjpmpIUOGKCkpyXIa2M0336y//vpLTzzxhBYvXmzV8SzTzTffrGnTpunNN9/UunXrcpySYxhGjtkGKeM0oaFDh2rbtm3atGmTpIzTvhYuXKi+ffsqICBAUsZsxbhx41S/fn15eHjIzc1NHh4e2rdvn3bv3l2osVi7dq2Sk5M1cOBAq+Vt27ZVREREju2///57tWvXTn5+fnJzc5O7u7umTJlS6ONm2rNnj06ePKmHHnpILi7//Kr38/NT3759tW7dOiUlJVk9J+uplFLG9zM5OVmnT58u8HGHDh2qU6dO6ddff9U333wjDw8P3Xfffblu6+npqXnz5mnXrl3673//qwceeEBnzpzRW2+9pXr16uWYefP29taGDRtyfOQ3qyZJQUFB6tmzp6ZPn26Zfbpw4YJ++uknDRo0SG5uGZfr3nzzzbp48aL69++vn376SWfPni3w152XnTt3yt3dXe7u7goPD9f777+vgQMHWq7XKujPR2769++vkJAQq1mlTz75RBUrVtT9999vta3JZFLPnj2tljVu3FhHjhyxPF66dKl8fX1177335qhFkv73v/9ZLe/UqZN8fX0tj+vVqycp4zqsrKdNZi7PeqzcbNmyRb169VJQUJBcXV3l7u6uQYMGKT09XXv37s33ubYwss1wLV68WGlpaRo0aJDV7xAvLy916NDBMlu0Z88excXFqV+/flbPr1atmtq1a5frsXr16mV1Pdr+/fv1999/W34/ZD1ejx49FBsba3n9//zzz+rUqZPCw8OttrvjjjskSStWrCiS8QCQE0EJQA7BwcHy8fHRoUOHCvW83Dq+nTt3Ltfl4eHhlvWSNGrUKL333ntat26d7rjjDgUFBalz587auHGj5Tlz5szR4MGD9dVXX6lNmzaqUKGCBg0apLi4OEnS9OnTLW9KMz8yDR06VC4uLoqJiZEkffPNN7p69apV44Fnn31Wr7zyivr06aOFCxdq/fr12rBhg5o0aVKg08Kyf92SFBoammNd9mVz585Vv379VLlyZc2cOVNr167Vhg0bFBUVpeTk5EIdN/vx8xp7s9msCxcuWC0PCgqyepx5bVphvvaIiAh17txZU6dO1dSpU/XAAw/Ix8cn3+fUq1dPTz/9tGbOnKmjR4/qgw8+0Llz5/TKK69Ybefi4qKWLVvm+MgeznMTFRWlEydOaMmSJZKkb7/9VikpKZYQIGWc2jl16lQdOXJEffv2VUhIiFq3bm15ji1q1qypDRs2aOPGjdqxY4cuXryomTNnKjAwUFLBfz5y4+npqUcffVSzZs3SxYsXdebMGX333Xd6+OGHc1xX6OPjIy8vrxzPz/r6OnfunEJDQ3NcGxYSEiI3N7cctVSoUMHqcWbXyLyW5/daPnr0qG677TadOHFCH330kVatWqUNGzZYQmBhf/4KIjO4ZY71qVOnJEmtWrXK8Xtkzpw5luCcOQ6VKlXKsc/clkk5fw4zj/X888/nONYTTzwhSZbjnTp1SgsXLsyxXYMGDay2A1D06HoHIAdXV1d17txZv/76q44fP64qVaoU6Hm5XXwfFBSk2NjYHMtPnjwpKSOUSZKbm5ueffZZPfvss7p48aJ+//13vfzyy+rWrZuOHTsmHx8fBQcH68MPP9SHH36oo0ePasGCBXrppZd0+vRpLVq0SD179rRcwJ5dlSpV1LVrV82aNUvvv/++YmJidNNNN6l9+/aWbWbOnKlBgwZp3LhxVs89e/asypUrV6AxyPp1S7KEuKzi4uKsLvieOXOmIiMjNWfOHKsxvJH7vGQeP6+xd3FxUfny5W3ef36ioqL04IMPymw2a+LEiYV6rslk0jPPPKPXX39dO3bsKLKaunXrpvDwcMXExKhbt26KiYlR69atVb9+favthg4dqqFDhyoxMVErV67Ua6+9prvuukt79+7NdSbwery8vNSyZcs81xf05yMvjz/+uN5++21NnTpVycnJSktL02OPPVboOjNrWb9+vQzDsHodnj59Wmlpadet5UbMnz9fiYmJmjt3rtU4b926tdiOuWDBAkmyNETJ/Pp++OGHfL/XmT9bmWEnq9x+3qWcvxszjzVq1Khcr/+SpDp16li2bdy4sd56661ct8sMegCKHjNKAHI1atQoGYah4cOH53oj1tTUVC1cuPC6++ncubOWLl1qeeOXacaMGfLx8cm13XO5cuV07733Kjo6WufPn8/1Jq7VqlXTiBEj1KVLF23evFlSxhuY7LMNWQ0bNkwXLlzQq6++qq1bt2ro0KFWb2BMJlOOv8T/8ssvOnHixHW/zuxuueUWeXl56ZtvvrFavmbNmhynIJlMJnl4eFjVEhcXl6PrnZQxC1CQv67XqVNHlStX1qxZs6xOMUpMTNSPP/5o6YRXHO6++27dfffdioqKyredd24BQcoICQkJCUX6BtDV1dXSDGTVqlXauHFjvi3hfX19dccdd2j06NG6evWqdu7cWWS1ZGXLz0dWYWFhuu+++/T555/riy++UM+ePVWtWjWba7l8+XKO+3RlNhTp3LmzTfstiMzXftafP8MwcrSULypLlizRV199pbZt2+rWW2+VlBGm3dzcdODAgVxnLjN/n9SpU0ehoaE5utMdPXpUa9asKdDx69Spo1q1aumvv/7K81iZLfPvuusu7dixQzVr1sx1O4ISUHyYUQKQqzZt2mjixIl64okn1KJFCz3++ONq0KCBUlNTtWXLFk2aNEkNGzbMcd1Ddq+99prlHPtXX31VFSpU0DfffKNffvlFEyZMsJyC1LNnTzVs2FAtW7ZUxYoVdeTIEX344YeKiIhQrVq1FB8fr06dOmnAgAGqW7eu/P39tWHDBi1atCjPv8hm16tXLwUHB+vdd9+Vq6urBg8ebLX+rrvu0rRp01S3bl01btxYmzZt0rvvvlvgGbWsypcvr+eff15vvvmmHn74Yd133306duyYxowZk+PUu8y26k888YTuvfdeHTt2TG+88YbCwsJydGpr1KiRli9froULFyosLEz+/v6Wvzxn5eLiogkTJmjgwIG666679OijjyolJUXvvvuuLl68qLfffrvQX1NBeXl56Ycffrjudo888oguXryovn37qmHDhnJ1ddXff/+t//73v3JxcdGLL75otb3ZbM7znjfNmjW77n1poqKi9M4772jAgAHy9vbOcR3P8OHD5e3trXbt2iksLExxcXEaP368AgMDLR3kjhw5opo1a2rw4MGaMmXKdb/G6ynoz0d+Ro4cqdatW0uS5dRSWwwaNEifffaZBg8erMOHD6tRo0ZavXq1xo0bpx49euj222+3ed/X06VLF3l4eKh///7697//reTkZE2cODHH6aGFlfU1k5KSoqNHj+rXX3/Vd999p3r16lmFnerVq+v111/X6NGjdfDgQXXv3l3ly5fXqVOn9Oeff8rX11djx46Vi4uLxo4dq0cffVT33nuvoqKidPHiRY0dO1ZhYWFW1wTm58svv9Qdd9yhbt26aciQIapcubLOnz+v3bt3a/Pmzfr+++8lSa+//rqWLFmitm3b6qmnnlKdOnWUnJysw4cP6//+7//0xRdf2PQ7CkAB2LOTBADHt3XrVmPw4MFGtWrVDA8PD8PX19do1qyZ8eqrr1p1JouIiDDuvPPOXPexfft2o2fPnkZgYKDh4eFhNGnSxKp7l2EYxvvvv2+0bdvWCA4ONjw8PIxq1aoZw4YNMw4fPmwYRkaHtMcee8xo3LixERAQYHh7ext16tQxXnvtNSMxMbHAX88zzzxjSDJ69OiRY92FCxeMYcOGGSEhIYaPj49x6623GqtWrTI6dOhg1aWuIF3vDCOj29748eONqlWrGh4eHkbjxo2NhQsX5tifYRjG22+/bVSvXt3w9PQ06tWrZ0yePNnSjS6rrVu3Gu3atTN8fHysuudl73qXaf78+Ubr1q0NLy8vw9fX1+jcubPxxx9/WG2TeZwzZ85YLc/ta8rN9bqLGYaRa9e7xYsXG1FRUUb9+vWNwMBAw83NzQgLCzPuueceY+3atTmOoTy63kky9u3bl+/xM7Vt29aQZAwcODDHuunTpxudOnUyKlWqZHh4eBjh4eFGv379rLq1ZX7vc+s8mF1m17vrKcjPR26vuayqV69u1KtXL9d1eX1/cnt9nTt3znjssceMsLAww83NzYiIiDBGjRplJCcnW20nyYiOjs61xnfffddqeeZr8/vvv7eqKXvnuoULFxpNmjQxvLy8jMqVKxsvvPCC8euvv+Z4XRem613W14i3t7dRrVo1o2fPnsbUqVONlJSUXJ83f/58o1OnTkZAQIDh6elpREREGPfee6/x+++/W203adIk46abbjI8PDyM2rVrG1OnTjV69+5t1akyrzHJ9Ndffxn9+vUzQkJCDHd3dyM0NNT417/+ZXzxxRdW2505c8Z46qmnjMjISMPd3d2oUKGC0aJFC2P06NFWnQcBFC2TYVznxgYAAMBhbdu2TU2aNNFnn31maQSAknfx4kXVrl1bffr00aRJk+xdDoAiQFACAMAJHThwQEeOHNHLL7+so0ePav/+/cV23RmsxcXF6a233lKnTp0UFBSkI0eO6L///a/+/vtvbdy40dKRDoBz4xolAACc0BtvvKGvv/5a9erV0/fff09IKkGenp46fPiwnnjiCZ0/f97SeOOLL74gJAGlCDNKAAAAAJAN7cEBAAAAIBuCEgAAAABkQ1ACAAAAgGxKfTMHs9mskydPyt/f3+qu9wAAAADKFsMwdOnSJYWHh1/3BtGlPiidPHlSVatWtXcZAAAAABzEsWPHVKVKlXy3KfVByd/fX1LGYAQEBNi1ltTUVP3222/q2rWr3N3d7VqLs2HsbMO42YZxsw3jZjvGzjaMm20YN9sxdrZxpHFLSEhQ1apVLRkhP6U+KGWebhcQEOAQQcnHx0cBAQF2f5E4G8bONoybbRg32zButmPsbMO42YZxsx1jZxtHHLeCXJJDMwcAAAAAyIagBAAAAADZEJQAAAAAIBuCEgAAAABkQ1ACAAAAgGwISgAAAACQDUEJAAAAALIhKAEAAABANgQlAAAAAMiGoAQAAAAA2RCUAAAAACAbghIAAAAAZENQAgAAAIBsCEolJN1saP2h89p01qT1h84r3WzYuyQAAAAAeXCzdwFlwaIdsRq7cJdi45MluWrGvo0KC/TSaz3rq3vDMHuXBwAAACAbZpSK2aIdsXp85uZrIekfcfHJenzmZi3aEWunygAAAADkhaBUjNLNhsYu3KXcTrLLXDZ24S5OwwMAAAAcDEGpGP156HyOmaSsDEmx8cn689D5kisKAAAAwHURlIrR6Ut5hyRbtgMAAABQMghKxSjE36tItwMAAABQMghKxejmyAoKC/SSKY/1JklhgV66ObJCSZYFAAAA4DoISsXI1cWk13rWl6QcYSnz8Ws968vVJa8oBQAAAMAeCErFrHvDME18sLlCA61Pryvv66GJDzbnPkoAAACAAyIolYDuDcO0+sV/aWZUS0X4mSVJQ9tVJyQBAAAADoqgVEJcXUxqHVlBTSpk3DNp18kEO1cEAAAAIC8EpRJW1S/j8/YT8fYtBAAAAECeCEolrIpvxozS8QtXdCHxqp2rAQAAAJAbglIJ83GTIir4SGJWCQAAAHBUBCU7aBgeIImgBAAAADgqgpIdNKjsL0naQVACAAAAHBJByQ6YUQIAAAAcG0HJDhqEZQQlGjoAAAAAjomgZAcB3u6qHkRDBwAAAMBREZTspGHlQEkEJQAAAMAREZTspNG1oERDBwAAAMDxEJTspBEzSgAAAIDDIijZSYNrQYmGDgAAAIDjISjZSSANHQAAAACHRVCyIxo6AAAAAI6JoGRHNHQAAAAAHBNByY4aVWFGCQAAAHBEBCU7akhDBwAAAMAh2TUojR8/Xq1atZK/v79CQkLUp08f7dmzx2obk8mU68e7775rp6qLToAXDR0AAAAAR2TXoLRixQpFR0dr3bp1WrJkidLS0tS1a1clJiZatomNjbX6mDp1qkwmk/r27WvHyosODR0AAAAAx+Nmz4MvWrTI6nFMTIxCQkK0adMmtW/fXpIUGhpqtc1PP/2kTp06qUaNGrnuMyUlRSkpKZbHCQkJkqTU1FSlpqYWZfmFlnn8rHXUD/PTz9ukbccu2L0+R5bb2OH6GDfbMG62Ydxsx9jZhnGzDeNmO8bONo40boWpwWQYhlGMtRTK/v37VatWLW3fvl0NGzbMsf7UqVOqUqWKpk+frgEDBuS6jzFjxmjs2LE5ls+aNUs+Pj5FXvON2hdv0qe7XFXB09BrzdPtXQ4AAABQaiUlJWnAgAGKj49XQEBAvts6TFAyDEO9e/fWhQsXtGrVqly3mTBhgt5++22dPHlSXl5euW6T24xS1apVdfbs2esORnFLTU3VkiVL1KVLF7m7u0uSLiWnqvlbyyRJf47qqPI+HvYs0WHlNna4PsbNNoybbRg32zF2tmHcbMO42Y6xs40jjVtCQoKCg4MLFJTseupdViNGjNC2bdu0evXqPLeZOnWqBg4cmGdIkiRPT095enrmWO7u7m73b0ymrLVUcM9o6HD4XJL+PpWk9rV97VydY3Ok76MzYdxsw7jZhnGzHWNnG8bNNoyb7Rg72zjCuBXm+A7RHvzJJ5/UggULtGzZMlWpUiXXbVatWqU9e/bo4YcfLuHqih8NHQAAAADHYtegZBiGRowYoblz52rp0qWKjIzMc9spU6aoRYsWatKkSQlWWDIaXQtKOwhKAAAAgEOw66l30dHRmjVrln766Sf5+/srLi5OkhQYGChvb2/LdgkJCfr+++/1/vvv26vUYtWoSkZQ2nacoAQAAAA4ArvOKE2cOFHx8fHq2LGjwsLCLB9z5syx2m727NkyDEP9+/e3U6XFK/PUuxMXr+hC4lU7VwMAAADA7qfe5fYxZMgQq+0eeeQRJSUlKTAw0D6FFrMAr4yGDhLXKQEAAACOwCGaOYCGDgAAAIAjISg5iMZVaOgAAAAAOAqCkoPInFGioQMAAABgfwQlB0FDBwAAAMBxEJQcBA0dAAAAAMdBUHIgNHQAAAAAHANByYFkNnTYznVKAAAAgF0RlBwIM0oAAACAYyAoORAaOgAAAACOgaDkQGjoAAAAADgGgpKDaVSlnCSCEgAAAGBPBCUH06hygCQaOgAAAAD2RFByMDR0AAAAAOyPoORgaOgAAAAA2B9BycHQ0AEAAACwP4KSA6KhAwAAAGBfBCUHREMHAAAAwL4ISg6Ihg4AAACAfRGUHBANHQAAAAD7Iig5oAAvd0UG+0piVgkAAACwB4KSg+L0OwAAAMB+CEoOioYOAAAAgP0QlBwUM0oAAACA/RCUHBQNHQAAAAD7ISg5KBo6AAAAAPZDUHJgnH4HAAAA2AdByYHR0AEAAACwD4KSA2NGCQAAALAPgpIDy9rQ4TwNHQAAAIASQ1ByYDR0AAAAAOyDoOTgMmeVdhCUAAAAgBJDUHJwNHQAAAAASh5BycHR0AEAAAAoeQQlB0dDBwAAAKDkEZQcHA0dAAAAgJJHUHICNHQAAAAAShZByQnQ0AEAAAAoWQQlJ0BDBwAAAKBkEZScAA0dAAAAgJJFUHICNHQAAAAAShZByUnQ0AEAAAAoOQQlJ0FDBwAAAKDkEJScRKPK5SRx6h0AAABQEghKTqLBtRklGjoAAAAAxY+g5CRo6AAAAACUHIKSE6GhAwAAAFAyCEpOhIYOAAAAQMkgKDkRGjoAAAAAJYOg5ERo6AAAAACUDIKSE6GhAwAAAFAyCEpOhoYOAAAAQPEjKDkZGjoAAAAAxc+uQWn8+PFq1aqV/P39FRISoj59+mjPnj05ttu9e7d69eqlwMBA+fv765ZbbtHRo0ftULH90dABAAAAKH52DUorVqxQdHS01q1bpyVLligtLU1du3ZVYmKiZZsDBw7o1ltvVd26dbV8+XL99ddfeuWVV+Tl5WXHyu2Hhg4AAABA8XOz58EXLVpk9TgmJkYhISHatGmT2rdvL0kaPXq0evTooQkTJli2q1GjRonW6UgyGzocOpuo7Sfi1aF2RXuXBAAAAJQ6dg1K2cXHZ5xOVqFCBUmS2WzWL7/8on//+9/q1q2btmzZosjISI0aNUp9+vTJdR8pKSlKSUmxPE5ISJAkpaamKjU1tXi/gOvIPP6N1lE/zF+Hzibqr6Pn1TayXBFU5viKauzKGsbNNoybbRg32zF2tmHcbMO42Y6xs40jjVthajAZhmEUYy0FZhiGevfurQsXLmjVqlWSpLi4OIWFhcnHx0dvvvmmOnXqpEWLFunll1/WsmXL1KFDhxz7GTNmjMaOHZtj+axZs+Tj41PsX0dJWHrSpJ+OuKpxBbOG1THbuxwAAADAKSQlJWnAgAGKj49XQEBAvts6TFCKjo7WL7/8otWrV6tKlSqSpJMnT6py5crq37+/Zs2aZdm2V69e8vX11bfffptjP7nNKFWtWlVnz5697mAUt9TUVC1ZskRdunSRu7u7zftZf+i8Hpy6UeGBXlrxfPsirNBxFdXYlTWMm20YN9swbrZj7GzDuNmGcbMdY2cbRxq3hIQEBQcHFygoOcSpd08++aQWLFiglStXWkKSJAUHB8vNzU3169e32r5evXpavXp1rvvy9PSUp6dnjuXu7u52/8ZkutFaGlfLODXxZHyyLl01VMHXo6hKc3iO9H10JoybbRg32zButmPsbMO42YZxsx1jZxtHGLfCHN+uXe8Mw9CIESM0d+5cLV26VJGRkVbrPTw81KpVqxwtw/fu3auIiIiSLNWhZDZ0kGgTDgAAABQHu84oRUdHa9asWfrpp5/k7++vuLg4SVJgYKC8vb0lSS+88ILuv/9+tW/f3nKN0sKFC7V8+XI7Vm5/DSsH6tDZRO2g8x0AAABQ5Ow6ozRx4kTFx8erY8eOCgsLs3zMmTPHss3dd9+tL774QhMmTFCjRo301Vdf6ccff9Stt95qx8rtr3HlQEnStuMX7VsIAAAAUArZdUapoH0koqKiFBUVVczVOJeG14LSjhMJdq4EAAAAKH3sOqME2zWonNGl48TFKzqfeNXO1QAAAAClC0HJSdHQAQAAACg+BCUn1shy+h1BCQAAAChKBCUn1oiGDgAAAECxICg5MRo6AAAAAMWDoOTEaOgAAAAAFA+CkhOjoQMAAABQPAhKTi7zOqXtXKcEAAAAFBmCkpOzBCVmlAAAAIAiQ1BycjR0AAAAAIoeQcnJ0dABAAAAKHoEJSdHQwcAAACg6BGUSgEaOgAAAABFi6BUCtDQAQAAAChaBKVSgIYOAAAAQNEiKJUCWRs6nLucYudqAAAAAOdHUCoFArzcVYOGDgAAAECRISiVEv+cfkdQAgAAAG4UQamUoKEDAAAAUHQISqUEDR0AAACAokNQKiVo6AAAAAAUHYJSKUFDBwAAAKDoEJRKERo6AAAAAEWDoFSK0NABAAAAKBoEpVKEhg4AAABA0SAolSINaegAAAAAFAmCUiniT0MHAAAAoEgQlEoZGjoAAAAAN46gVMrQ0AEAAAC4cQSlUoaGDgAAAMCNIyiVMjR0AAAAAG4cQamUoaEDAAAAcOMISqUQDR0AAACAG0NQKoVo6AAAAADcGIJSKURDBwAAAODGEJRKIRo6AAAAADeGoFQK0dABAAAAuDEEpVKKhg4AAACA7QhKpRQNHQAAAADbEZRKqUZVrgWl4wQlAAAAoLAISqVUg/CMhg4n45Np6AAAAAAUEkGplKKhAwAAAGA7glIpRkMHAAAAwDYEpVKMhg4AAACAbQhKpRgNHQAAAADbEJRKMRo6AAAAALYhKJViNHQAAAAAbENQKuVo6AAAAAAUHkGplGt87TqlbVynBAAAABQYQamUY0YJAAAAKDyCUilHQwcAAACg8AhKpRwNHQAAAIDCs2tQGj9+vFq1aiV/f3+FhISoT58+2rNnj9U2Q4YMkclksvq45ZZb7FSxc+L0OwAAAKBw7BqUVqxYoejoaK1bt05LlixRWlqaunbtqsTERKvtunfvrtjYWMvH//3f/9mpYudEQwcAAACgcNzsefBFixZZPY6JiVFISIg2bdqk9u3bW5Z7enoqNDS0pMsrNZhRAgAAAArHrkEpu/j4jDfyFSpUsFq+fPlyhYSEqFy5curQoYPeeusthYSE5LqPlJQUpaT807QgISFBkpSamqrU1NRiqrxgMo9f0nXUrugjKaOhQ9zFRAX5epTo8YuCvcbO2TFutmHcbMO42Y6xsw3jZhvGzXaMnW0cadwKU4PJMAyjGGspMMMw1Lt3b124cEGrVq2yLJ8zZ478/PwUERGhQ4cO6ZVXXlFaWpo2bdokT0/PHPsZM2aMxo4dm2P5rFmz5OPjU6xfgyN7a4urTieb9FjddNUr7xDfcgAAAKBEJSUlacCAAYqPj1dAQEC+2zpMUIqOjtYvv/yi1atXq0qVKnluFxsbq4iICM2ePVv33HNPjvW5zShVrVpVZ8+eve5gFLfU1FQtWbJEXbp0kbu7e4ke+9nvt2nhtjg93fkmRXesUaLHLgr2HDtnxrjZhnGzDeNmO8bONoybbRg32zF2tnGkcUtISFBwcHCBgpJDnHr35JNPasGCBVq5cmW+IUmSwsLCFBERoX379uW63tPTM9eZJnd3d7t/YzLZo5YmVctr4bY47Yq95DDjYAtH+j46E8bNNoybbRg32zF2tmHcbMO42Y6xs40jjFthjm/XoGQYhp588knNmzdPy5cvV2Rk5HWfc+7cOR07dkxhYWElUGHpQUMHAAAAoODs2h48OjpaM2fO1KxZs+Tv76+4uDjFxcXpypUrkqTLly/r+eef19q1a3X48GEtX75cPXv2VHBwsO6++257lu50GoRnTC2ejE/Wucsp19kaAAAAKNvsGpQmTpyo+Ph4dezYUWFhYZaPOXPmSJJcXV21fft29e7dW7Vr19bgwYNVu3ZtrV27Vv7+/vYs3en4e7mrRrCvJGk7s0oAAABAvux+6l1+vL29tXjx4hKqpvRrVCVQB88mavvxeHWsk3t7dQAAAAB2nlFCyWp07TolZpQAAACA/BGUyhAaOgAAAAAFQ1AqQ7I2dDhLQwcAAAAgTwSlMoSGDgAAAEDBEJTKmEZVrp1+d5ygBAAAAOSFoFTG0NABAAAAuD6CUhlDQwcAAADg+ghKZQwNHQAAAIDrIyiVMf5e7qpRkYYOAAAAQH4ISmVQ5nVKNHQAAAAAckdQKoNo6AAAAADkj6BUBtHQAQAAAMgfQakMoqEDAAAAkD+CUhlEQwcAAAAgfwSlMoqGDgAAAEDeCEplFA0dAAAAgLwRlMooGjoAAAAAeSMolVENwgNkMtHQAQAAAMgNQamM8vdyV2QwDR0AAACA3BCUyjAaOgAAAAC5IyiVYTR0AAAAAHJHUCrDaOgAAAAA5I6gVIbR0AEAAADIHUGpDKOhAwAAAJA7glIZR0MHAAAAICeCUhlHQwcAAAAgJ4JSGdeQoAQAAADkQFAq4zIbOsTS0AEAAACwICiVcTR0AAAAAHIiKIGGDgAAAEA2BCXQ0AEAAADIhqAEghIAAACQDUEJalA5kIYOAAAAQBYEJcjP042GDgAAAEAWBCVIoqEDAAAAkBVBCZL+CUrbmFECAAAACErIYJlRIigBAAAABCVkoKEDAAAA8I9CBaUJEyboypUrlscrV65USso/b6ovXbqkJ554ouiqQ4mhoQMAAADwj0IFpVGjRunSpUuWx3fddZdOnDhheZyUlKQvv/yy6KpDiaKhAwAAAJChUEHJMIx8H8O50dABAAAAyMA1SrCgoQMAAACQgaAECxo6AAAAABncCvuEr776Sn5+fpKktLQ0TZs2TcHBwZJkdf0SnE9mQ4eDZxK1/US8OtUJsXdJAAAAgF0UKihVq1ZNkydPtjwODQ3V119/nWMbOK9GlQMzgtJxghIAAADKrkIFpcOHDxdTGXAUjSoH6qetJ2kRDgAAgDKNa5RghYYOAAAAQCGD0vr16/Xrr79aLZsxY4YiIyMVEhKiRx55xOoGtHA+NHQAAAAAChmUxowZo23btlkeb9++XcOGDdPtt9+ul156SQsXLtT48eOLvEiUnMyGDpI4/Q4AAABlVqGC0tatW9W5c2fL49mzZ6t169aaPHmynn32WX388cf67rvvirxIlKzM0++2HycoAQAAoGwqVFC6cOGCKlWqZHm8YsUKde/e3fK4VatWOnbsWNFVB7uwBCVmlAAAAFBGFSooVapUSYcOHZIkXb16VZs3b1abNm0s6y9duiR3d/eirRAljoYOAAAAKOsKFZS6d++ul156SatWrdKoUaPk4+Oj2267zbJ+27ZtqlmzZoH3N378eLVq1Ur+/v4KCQlRnz59tGfPnjy3f/TRR2UymfThhx8WpmwUEg0dAAAAUNYVKii9+eabcnV1VYcOHTR58mRNmjRJHh4elvVTp05V165dC7y/FStWKDo6WuvWrdOSJUuUlpamrl27KjExMce28+fP1/r16xUeHl6YkmEDGjoAAACgrCvUDWcrVqyoVatWKT4+Xn5+fnJ1dbVa//3338vf37/A+1u0aJHV45iYGIWEhGjTpk1q3769ZfmJEyc0YsQILV68WHfeeWdhSoaNGlcO1MEzidp+PF6d6oTYuxwAAACgRBUqKEVFRRVou6lTp9pUTHx8xuxFhQoVLMvMZrMeeughvfDCC2rQoMF195GSkmJ1L6eEhARJUmpqqlJTU22qq6hkHt/edRRE/TB/zd8qbTt2wSHqdaaxcySMm20YN9swbrZj7GzDuNmGcbMdY2cbRxq3wtRgMgzDKOjGLi4uioiIULNmzZTf0+bNm1fgAjIZhqHevXvrwoULWrVqlWX5+PHjtWzZMi1evFgmk0nVq1fX008/raeffjrX/YwZM0Zjx47NsXzWrFny8fEpdF1l1f4E6ZOdbirnYWhsi3R7lwMAAADcsKSkJA0YMEDx8fEKCAjId9tCzSg99thjmj17tg4ePKioqCg9+OCDVrM/N2LEiBHatm2bVq9ebVm2adMmffTRR9q8ebNMJlOB9jNq1Cg9++yzlscJCQmqWrWqunbtet3BKG6pqalasmSJunTp4vDdAS+npOnTXUt18apJN7fvrGA/T7vW40xj50gYN9swbrZh3GzH2NmGcbMN42Y7xs42jjRumWebFUShgtLnn3+u//73v5o7d66mTp2qUaNG6c4779SwYcPUtWvXAoeZ7J588kktWLBAK1euVJUqVSzLV61apdOnT6tatWqWZenp6Xruuef04Ycf6vDhwzn25enpKU/PnG/q3d3d7f6NyeRIteSlvLu7IoN9dfBMov4+laRO5f3sXZIk5xg7R8S42YZxsw3jZjvGzjaMm20YN9sxdrZxhHErzPEL1fVOyggi/fv315IlS7Rr1y41aNBATzzxhCIiInT58uVC7cswDI0YMUJz587V0qVLFRkZabX+oYce0rZt27R161bLR3h4uF544QUtXry4sKWjkBpz41kAAACUUYWaUcrOZDLJZDLJMAyZzeZCPz86OlqzZs3STz/9JH9/f8XFxUmSAgMD5e3traCgIAUFBVk9x93dXaGhoapTp86NlI4CaFg5UPO3niQoAQAAoMwp9IxSSkqKvv32W3Xp0kV16tTR9u3b9emnn+ro0aPy8yvc6VkTJ05UfHy8OnbsqLCwMMvHnDlzClsWikGjazNKOwhKAAAAKGMKNaP0xBNPaPbs2apWrZqGDh2q2bNn55jxKYxCNNyzyO26JBSPBpUDZTJJsfHJOnMpRRX97dvQAQAAACgphQpKX3zxhapVq6bIyEitWLFCK1asyHW7uXPnFklxsC8/TzfVCPbVgTOJ2nEiXp3qcuNZAAAAlA2FCkqDBg2yubMdnFOjyoE6cCZR2wlKAAAAKEMKFZSmTZtWTGXAUdHQAQAAAGVRoZs5oGyhoQMAAADKIoIS8pW9oQMAAABQFhCUkK/Mhg4Ss0oAAAAoOwhKuK7M0++4TgkAAABlBUEJ19WQoAQAAIAyhqCE66KhAwAAAMoaghKui4YOAAAAKGsISrguGjoAAACgrCEooUBo6AAAAICyhKCEAqGhAwAAAMoSghIKxDKjdJygBAAAgNKPoIQCyWzoEJdAQwcAAACUfgQlFAgNHQAAAFCWEJRQYDR0AAAAQFlBUEKB0dABAAAAZQVBCQVGQwcAAACUFQQlFBgNHQAAAFBWEJRQYDR0AAAAQFlBUEKh0NABAAAAZQFBCYWS2dBhG9cpAQAAoBQjKKFQGlcpJ4lT7wAAAFC6EZRQKA3CA2joAAAAgFKPoIRC8aWhAwAAAMoAghIKjYYOAAAAKO0ISig0GjoAAACgtCMoodBo6AAAAIDSjqCEQqOhAwAAAEo7ghIKjYYOAAAAKO0ISrAJDR0AAABQmhGUYJNG165ToqEDAAAASiOCEmySOaPEqXcAAAAojQhKsAkNHQAAAFCaEZRgExo6AAAAoDQjKMFmjbjxLAAAAEopghJsltnQgc53AAAAKG0ISrAZDR0AAABQWhGUYDMaOgAAAKC0IijBZjR0AAAAQGlFUMINoaEDAAAASiOCEm4IDR0AAABQGhGUcENo6AAAAIDSiKCEG5K1ocPpS8n2LgcAAAAoEgQl3BAaOgAAAKA0IijhhjXOvE7peIJ9CwEAAACKCEEJN6zhteuUaOgAAACA0oKghBtGQwcAAACUNgQl3DAaOgAAAKC0ISjhhtHQAQAAAKUNQQlFgoYOAAAAKE3sGpTGjx+vVq1ayd/fXyEhIerTp4/27Nljtc2YMWNUt25d+fr6qnz58rr99tu1fv16O1WMvNDQAQAAAKWJXYPSihUrFB0drXXr1mnJkiVKS0tT165dlZiYaNmmdu3a+vTTT7V9+3atXr1a1atXV9euXXXmzBk7Vo7saOgAAACA0sTNngdftGiR1eOYmBiFhIRo06ZNat++vSRpwIABVtt88MEHmjJlirZt26bOnTuXWK3IX/aGDiH+XvYuCQAAALCZXYNSdvHxGbMRFSpUyHX91atXNWnSJAUGBqpJkya5bpOSkqKUlBTL44SEjGtmUlNTlZqaWsQVF07m8e1dR3HwcJFqBPvqwJlEbT1yXp3qVCzS/ZfmsStOjJttGDfbMG62Y+xsw7jZhnGzHWNnG0cat8LUYDIMwyjGWgrMMAz17t1bFy5c0KpVq6zW/fzzz3rggQeUlJSksLAwzZ8/X61atcp1P2PGjNHYsWNzLJ81a5Z8fHyKpXZk+HqfizaeddEdVdLVvapDvKwAAAAAi6SkJA0YMEDx8fEKCAjId1uHCUrR0dH65ZdftHr1alWpUsVqXWJiomJjY3X27FlNnjxZS5cu1fr16xUSEpJjP7nNKFWtWlVnz5697mAUt9TUVC1ZskRdunSRu7u7XWspDjFrjmjcr3vUuW5FfTGwWZHuu7SPXXFh3GzDuNmGcbMdY2cbxs02jJvtGDvbONK4JSQkKDg4uEBBySFOvXvyySe1YMECrVy5MkdIkiRfX1/ddNNNuummm3TLLbeoVq1amjJlikaNGpVjW09PT3l6euZY7u7ubvdvTCZHqqUoNa2WccrkzpOXiu3rK61jV9wYN9swbrZh3GzH2NmGcbMN42Y7xs42jjBuhTm+XbveGYahESNGaO7cuVq6dKkiIyML/Lyss0ZwDNkbOgAAAADOyq5BKTo6WjNnztSsWbPk7++vuLg4xcXF6cqVK5IyTrl7+eWXtW7dOh05ckSbN2/Www8/rOPHj+u+++6zZ+nIha+nm2pW9JNEm3AAAAA4N7sGpYkTJyo+Pl4dO3ZUWFiY5WPOnDmSJFdXV/3999/q27evateurbvuuktnzpzRqlWr1KBBA3uWjjxk3k9p+/EEO1cCAAAA2M6u1yhdr4+El5eX5s6dW0LVoCg0rByoeVtOaDszSgAAAHBidp1RQuljmVE6cdG+hQAAAAA3gKCEIpXZ0OFUQgoNHQAAAOC0CEooUjR0AAAAQGlAUEKRo6EDAAAAnB1BCUWuoeU6JWaUAAAA4JwISihyNHQAAACAsyMoocjR0AEAAADOjqCEIkdDBwAAADg7ghKKBQ0dAAAA4MwISigWNHQAAACAMyMooVjQ0AEAAADOjKCEYkFDBwAAADgzghKKBQ0dAAAA4MwISig2NHQAAACAsyIoodg05DolAAAAOCmCEopN4yp0vgMAAIBzIiih2NQPo6EDAAAAnBNBCcWGhg4AAABwVgQlFCsaOgAAAMAZEZRQrGjoAAAAAGdEUEKxoqEDAAAAnBFBCcWKhg4AAABwRgQlFCsaOgAAAMAZEZRQ7DIbOmw7TlACAACAcyAoodhlNnRgRgkAAADOgqCEYkdDBwAAADgbghKKHQ0dAAAA4GwISih2NHQAAACAsyEooUTQ0AEAAADOhKCEEtGIhg4AAABwIgQllIhGNHQAAACAEyEooURYNXRIoKEDAAAAHBtBCSUia0MHZpUAAADg6AhKKDGZ1ykRlAAAAODoCEooMTR0AAAAgLMgKKHE0NABAAAAzoKghBJDQwcAAAA4C4ISSgwNHQAAAOAsCEooUY1p6AAAAAAnQFBCiWpIQwcAAAA4AYISShQNHQAAAOAMCEooUTR0AAAAgDMgKKFE0dABAAAAzoCghBJHQwcAgKM7fPiwTCaTtm7dWuDndOzYUU8//XSx1QSgZBGUUOJo6AAAzmfIkCEymUyWj6CgIHXv3l3btm0rsmOMGTNGTZs2LdB2JpNJd911V451EyZMkMlkUseOHYusLgBlE0EJJY6GDgDgnLp3767Y2FjFxsbqf//7n9zc3HINKyUhLCxMy5cv19mzZ62Wx8TEqFq1anapCUDpQlBCiaOhAwA4J09PT4WGhio0NFRNmzbViy++qGPHjunMmTOWbU6cOKH7779f5cuXV1BQkHr37q3Dhw9b1i9fvlw333yzfH19Va5cObVr105HjhzRtGnTNHbsWP3111+WWatp06blWUtISIhuv/12LVu2zLJszZo1Onv2rO68806rbc1ms15//XVVqVJFnp6eatq0qRYtWmS1zZ9//qlmzZrJy8tLLVu21JYtW3Icc9euXerRo4f8/PxUqVIlPfTQQzmCGoDSg6CEEkdDBwBwfpcvX9Y333yjm266SUFBQZKkpKQkderUSX5+flq5cqVWr14tPz8/de/eXVevXlVaWpr69OmjDh06aNu2bVq7dq0eeeQRmUwm3X///XruuefUoEEDy6zV/fffn28NQ4YM0dKlSy2Pp06dqoEDB8rDw8Nqu48++kjvv/++3nvvPW3btk3dunVTr169tG/fPklSYmKi7rrrLtWpU0ebNm3SmDFj9Pzzz1vtIzY2Vh06dFDTpk21ceNGLVq0SKdOnVK/fv2KYjgBOCA3exeAsqlx5UDtP31Z20/Eq3O9SvYuBwBQAD///LP8/DL+0JWYmKiwsDD9/PPPcnHJ+Lvr7Nmz5eLioq+++komk0lSxqlw5cqV0/Lly9WyZUvFx8frrrvuUs2aNSVJ9erVs+zfz89Pbm5uCg0NLVA9d955p4YPH65Vq1apdevW+u6777R69WpNnTrVarv33ntPL774oh544AFJ0jvvvKNly5bpww8/1GeffaZvvvlG6enpmjp1qnx8fNSgQQMdP35cjz/+uGUfEydOVPPmzTVu3DjLsqlTp6pq1arau3evateuXdjhBODgmFGCXdDQAQCcT6dOnbR161Zt3bpV69evV9euXXXHHXfoyJEjkqRNmzZp//798vf3l5+fn/z8/FShQgUlJyfrwIEDqlChgoYMGaJu3bqpZ8+e+uijjxQbG2tzPe7u7urQoYOmT5+u77//XrVr11bjxo2ttklISNDJkyfVrl07q+Xt2rXT7t27JUm7d+9WkyZN5OPjY1nfpk0bq+03bdqkZcuWWb4uPz8/1a1bV5J04MABm78GAI6LGSXYBQ0dAMD5+Pr66qabbrI8btGihQIDAzV58mS9+eabMpvNatGihb755pscz61YsaKkjBmmp556SosWLdKcOXP0n//8R0uWLNEtt9xiU0233367Ro0apV27dikqKirP7TJnuDIZhmFZZhjGdY9jNpvVs2dPvfPOOznWhYWFFbJqAM6AoAS7yN7QISTAy94lAQAKyWQyycXFRVeuXJEkNW/eXHPmzFFISIgCAgLyfF6zZs3UrFkzjRo1Sm3atNGsWbN0yy23yMPDQ+np6YWqoVq1aqpfv762b9+uAQMG5FgfEBCg8PBwrV69Wu3bt7csX7NmjW6++WZJUv369fX111/rypUr8vb2liStW7fOaj/NmzfXjz/+qOrVq8vNjbdPQFlg11Pvxo8fr1atWsnf318hISHq06eP9uzZY1mfmpqqF198UY0aNZKvr6/Cw8M1aNAgnTx50o5Voyj4errpJho6AIBTSUlJUVxcnOLi4rR79249+eSTunz5snr27ClJGjhwoIKDg9W7d2+tWrVKhw4d0ooVKzRy5EgdP35chw4d0qhRo7R27VodOXJEv/32m/bu3Wu5Tql69eo6dOiQtm7dqrNnzyolJaVAdf3222+KjY1VuXLlcl3/wgsv6J133tGcOXO0Z88evfTSS9q6datGjhwpSRowYIBcXFw0bNgw7dq1S//3f/+n9957z2of0dHROn/+vPr3768///xTBw8e1G+//aaoqKhChzsAzsGuQWnFihWKjo7WunXrtGTJEqWlpalr165KTEyUlNE9Z/PmzXrllVe0efNmzZ07V3v37lWvXr3sWTaKSKPKnH4HAM5k0aJFCgsLU1hYmFq3bq0NGzbo+++/t9zc1cfHRytXrlS1atV0zz33qF69eoqKitKVK1cUEBAgHx8f/f333+rbt69q166tRx55RCNGjNCjjz4qSerbt6+6d++uTp06qWLFivr2228LVFdmq/G8PPXUU3ruuef03HPPqVGjRlq0aJEWLFigWrVqScpoIrFw4ULt2rVLzZo10+jRo3OcYhceHq4//vhD6enp6tatmxo2bKiRI0cqMDDQ0swCQOli17nj7PcwiImJUUhIiDZt2qT27dsrMDBQS5Yssdrmk08+0c0336yjR49yQzkn17ByoOZuOUFDBwBwAtOmTcv3vkaZQkNDNX369FzXBQQEaN68eXk+19PTUz/88MN1jzFmzBiNGTNGqampua7/8MMPrR67uLjo1Vdf1auvvprnPm+55RZt3brValn2a5dq1aqluXPn5rmP5cuX51s3AOfiUCfZxsdnvGGuUKFCvtuYTKY8/3KUkpJiNVWfkJAgKeM0vrx+oZaUzOPbuw5HUS/UV5K07Xj8dceEsbMN42Ybxs02jJvtGDvbMG62Ydxsx9jZxpHGrTA1mIyCtHopAYZhqHfv3rpw4YJWrVqV6zbJycm69dZbVbduXc2cOTPXbcaMGaOxY8fmWD5r1iyrtp+wv5R06cU/XWXIpNdbpCnQ4/rPAQAAAGyVlJSkAQMGKD4+Pt+mM5IDBaXo6Gj98ssvWr16tapUqZJjfWpqqu677z4dPXpUy5cvz/MLy21GqWrVqjp79ux1B6O4paamasmSJerSpYvc3d3tWoujuOPjP7T/TKK+fLCZ/lWnYp7bMXa2Ydxsw7jZhnGzHWNnG8bNNoyb7Rg72zjSuCUkJCg4OLhAQckhTr178skntWDBAq1cuTLPkNSvXz8dOnRIS5cuzfeL8vT0lKenZ47l7u7udv/GZHKkWuytcZVy2n8mUbvjLqtbw/Drbs/Y2YZxsw3jZhvGzXaMnW0YN9swbrZj7GzjCONWmOPbtU2LYRgaMWKE5s6dq6VLlyoyMjLHNpkhad++ffr9998VFBRkh0pRXBpe63xHQwcAcHznzp1TSEiIDh8+bO9SHMLPP/+sZs2ayWw227sUAMXArkEpOjpaM2fO1KxZs+Tv72+5N0PmjevS0tJ07733auPGjfrmm2+Unp5u2ebq1av2LB1FpFGVjKC07ThBCQAc3fjx49WzZ09Vr15dknT48GGZTCbLh7+/vxo0aKDo6Gjt27fPvsUWkWnTpqlx48by8vJSaGioRowYYVl31113yWQyadasWXasEEBxsWtQmjhxouLj49WxY0fLfRnCwsI0Z84cSdLx48e1YMECHT9+XE2bNrXaZs2aNfYsHUWkfliAXEzS6UspOp2QbO9yAAB5uHLliqZMmaKHH344x7rff/9dsbGx+uuvvzRu3Djt3r1bTZo00f/+979irystLa3Y9v3BBx9o9OjReumll7Rz507973//U7du3ay2GTp0qD755JNiqwGA/dj91LvcPoYMGSIp4w7deW2TeXM7ODdfTzfVrOgniRvPAoAj+/XXX+Xm5qY2bdrkWBcUFKTQ0FDVqFFDvXv31u+//67WrVtr2LBhSk9Pt2y3cOFCtWjRQl5eXqpRo4bGjh1rFXT+/vtv3XrrrfLy8lL9+vX1+++/y2Qyaf78+ZL+mcH67rvv1LFjR/n7+2vFihWSMu7FWK9ePXl5ealu3br6/PPPrWo8ceKE7r//fpUvX15BQUHq3bt3vqcQXrhwQf/5z380Y8YMDRgwQDVr1lSDBg3Us2dPq+169eqlP//8UwcPHizskAJwcNxKGnbX6Np1SgQlAHBcK1euVMuWLQu0rYuLi0aOHKkjR45o06ZNkqTFixfrwQcf1FNPPaVdu3bpyy+/1LRp0/TWW29Jksxms/r06SMfHx+tX79ekyZN0ujRo3Pd/4svvqinnnpK27ZtU7NmzTRlyhSNHj1ab731lnbv3q1x48bplVdesdz4NikpSZ06dZKfn59Wrlyp1atXy8/PT927d8/zVP4lS5bIbDbrxIkTqlevnqpUqaJ+/frp2LFjVttFREQoJCQkz1ubAHBeBCXYXWZDh+1cpwQADuvw4cMKD79+d9JMdevWtTxPkt566y299NJLGjx4sGrUqKEuXbrojTfe0JdffilJ+u2333TgwAHNmDFDTZo00a233moJUdk9/fTTuueeexQZGakKFSpo3Lhxev/99y3L7rnnHj3zzDOWfc+ePVsuLi766quv1KhRI9WrV08xMTGWW47k5uDBgzKbzRo3bpw+/PBD/fDDDzp//ry6dOmSI1xVrlyZBhdAKeQQ7cFRtmU2dGBGCQAc15UrV+Tl5VXg7TNv02gymSRJmzZt0oYNG6zCT3p6upKTk5WUlKQ9e/aoatWqCg0Ntay/+eabc9131pmt+Ph4HTt2TMOGDdPw4cMty9PS0hQYGGg59v79++Xv72+1n+TkZB04cCDXY5jNZqWmpurjjz9W165dJUnffvutQkNDtWzZMqtrlby9vZWUlHT9QQHgVAhKsLvsDR1CAgr+HzEAoGQEBwfrwoULBd5+9+7dkmS59YfZbNbYsWN1zz335NjWy8tLhmFYQtX1+Pr6Wv6dGcgmT56s1q1bW23n6upqOXaLFi30zTff5NhXxYq53+w8LCxMklS/fn2rbYODg3X06FGrbc+fP5/nfgA4L4IS7C6zocO+05e1/US8OhOUAMDhNGvWTDNnzizQtmazWR9//LEiIyPVrFkzSVLz5s21Z88e3XTTTbk+p27dujp69KhOnTqlSpUqSZI2bNhw3WOVK1dOlStX1sGDBzVw4MBct2nevLnmzJmjkJCQfG9an1W7du0kSXv27FGVKlUkZQSis2fPKiIiwrJd5qxU5tcJoPTgGiU4BBo6AIBj69atm3bu3JnrrNK5c+cUFxengwcPasGCBbr99tv1559/asqUKZZZnVdffVUzZszQmDFjtHPnTu3evVtz5szRf/7zH0lSly5dVLNmTQ0ePFjbtm3TH3/8YWnmcL2ZpldeeUXjx4/XRx99pL1792r79u2KiYnRBx98IEkaOHCggoOD1bt3b61atUqHDh3SihUrNHLkSB0/fjzXfdauXVu9e/fWyJEjtWbNGu3YsUODBw9W3bp11alTJ8t269atk6enZ67dAAE4N4ISHAINHQDAsTVq1EgtW7bUd999l2Pd7bffrrCwMDVq1EgvvfSS6tWrp23btlkFim7duunnn3/WkiVL1KpVK91yyy364IMPLLMzrq6umj9/vi5fvqxWrVrp4YcftoSo610bFRUVpa+++krTpk1To0aN1KFDB02bNs1y2p+Pj49WrlypatWq6Z577lG9evUUFRWlK1eu5DvDNGPGDLVu3Vp33nmnOnToIHd3dy1atEju7u6Wbb799lsNHDhQPj4+BR9MAE6BU+/gEBrT0AEAHN4rr7yi559/XsOHD5eLi4vlfocF1a1btxw3bM2qbt26Wr16teXxH3/8IUmW0/XyO96AAQM0YMCAPPcdGhpqaRdeUAEBAZoyZYqmTJmS6/ozZ87ohx9+0MaNGwu1XwDOgaAEh1A/nIYOAODoevTooX379unEiROqWrVqke9/3rx58vPzU61atbR//36NHDlS7dq1U82aNYv8WEXh0KFD+vzzzy0zVwBKF4ISHIKPBw0dAMAZjBw5stj2fenSJf373//WsWPHFBwcrNtvv13vv/9+sR3vRt188815tjAH4PwISnAYjSoHat/py9p2PF6d61WydzkAgBI2aNAgDRo0yN5lAIAkmjnAgWQ2dNjBdUoAAACwM4ISHAYNHQAAAOAoCEpwGNkbOgAASsbVq1c1ePBgffnllzKbzfYuBwAcAkEJDiOzoYPErBIAlKS3335bX3/9tR577DF17NhR+/fvt3dJAGB3BCU4lEbXrlPaxo1nAaBE7NixQ2+88Ybl/kRr1qxRw4YN9f777ys9Pd3O1QGA/RCU4FBo6AAAJSc9PV2DBw+2uolrenq6UlJS9Pzzz+vWW28lLAEos2gPDodCQwcAKDkffvihNm/enOs6V1dXJSQkyMWFv6kCKJv47QeHQkMHACgZ+/fv18svv5znerPZrOnTp8tkMpVgVQDgOAhKcCg0dACA4mc2mzV06NA8O9y5uLjoueeeU8uWLUu4MgBwHAQlOBwaOgBA8Zo8ebJWr16ttLS0HOtcXV0VERGh119/3Q6VAYDjICjB4TSqQkMHACgux44d07PPPpvn+vT0dE2bNk3e3t4lWBUAOB6aOcDhZM4oceodABQtwzA0fPhwpaSk5LrexcVFjz76qNq3b1/ClQGA42FGCQ4na0OHUzR0AIAi880332jx4sW5tvx2cXFRaGio3nnnHTtUBgCOh6AEh2PV0IHrlACgSJw+fVojRozIs4ud2WzWlClT5O/vX8KVAYBjIijBIXH6HQAUrejoaF2+fNnq5rKZXF1d9dBDD6l79+52qAwAHBNBCQ6Jhg4AUHTmz5+vH374IddT7kwmk8qVK6cPP/yw5AsDAAdGUIJDYkYJAIrGhQsXNHz48DxPuTMMQ19++aUqVKhQwpUBgGMjKMEh0dABAIrGs88+qwsXLuR5yt3dd9+tvn372qEyAHBsBCU4JBo6wF7SzYbWHzqvTWdNWn/ovNLNOd9cAs7it99+07Rp03I95U6SfH199fnnn5dwVQDgHLiPEhxWoyqB2nf6srafiFeHWpwSUlhZ3/AHHTqvNjeFyNUl91NvkGHRjliNXbhLsfHJklw1Y99GhQV66bWe9dW9YZi9ywMK5fLly4qKipKLi4vMZnOu23z88ccKDQ0t4coAwDkwowSHlXmdEg0dCm/Rjljd+s5SPTh1o2bsc9WDUzfq1neWatGOWHuX5rAW7YjV4zM3XwtJ/4iLT9bjMzczdnA6o0aNUmxsbK4hyc3NTV26dNGgQYPsUBkAOAdmlOCwaOhgm8w3/NlPGMt8wz/xweYOOztiGIbSzYbSzIbMxrXPZuvP6eZs26T/s2262ax0s5RmNsuc+TnHNlmef+1zmtmsD37bm2PMJMmQZJI0duEudakfyqwcnMIff/yhzz77LNfrkiTJ3d1dX331VZ4NHgAABCU4MBo6FI5hGLqUnKZXftqZ5xt+SXrhh23ad/qyDEOW0JCeGVAsgSIjcKRn/WxkfM4tdOQXXvIOOGaZjeyhpiRHrOAMSbHxyfrz0Hm1qRlk73KAfCUnJ2vw4MFycXHJ89qk9957T9WqVSvhygDAuRCU4LAyGzrsO31ZO04m2LucEmc2G4q/kqpziVd1Iemqzl2+qvOJV3U+MSVjWeJVnUvMXJbxkZKW+3UIWV1KTtP7v+0tga+gaLm6mORqMmV8zvbh5mKSi8kkN9eCbeNiynicue5UQoq2Hrt43Ro+XrpPri4mtYwoLxdmluCgxowZo0OHDuV5yl3r1q312GOP2aEyAHAuBCU4tMyGDjtPJugmexdzg66mmXUh6Z9Qcy7xqs5fTtH5pFSdT0zJWHYtDF1IuqoLSanF1nHtlsgKiqzoJ1cXyc3FxTpUmHIGjBzBI8c2LnJ1kVyzfi7EfvILOJnLi/MUobUHzqn/5HUF2m7tgbWqUt5bfZpWVp9mlXVTiF+x1QUU1ubNm/Xuu+/m2bzBxcVFU6dOlYsLlygDwPUQlODQGlUO1NzNJ7Rq/1nFezlO9zbDMHQlNT3LLM/VbLM8KVYzPecSr+pScppNx/L3clOQr4fK+3ooyNdDFXw9VMHXUxV83VXB1zPLMg/tP31ZQ6dtuO4+R95em1PIsrg5soLCAr0UF5+c62mLJkkVfD3UqU5FLdp5SscvXNGny/br02X71bhKoO5uVlk9m4Qr2M+zpEsHLFJTUzVo0KA8/6hgMpn0xhtvqHbt2iVcGQA4J4ISHFpiSka42HosQVuLsV2z2WwoITk1x6ls/8zyZJn5uZwRfApymlt2LiapvM8/wSbI79q/M5f5ZQSf8j4Z68r7eMjDreB/+Q0v533dN/yhgV66OZJ261m5upj0Ws/6enzmZpkkq7HLfMv51t0N1b1hmN5MTdeSXac0f8sJrdh7RtuOx2vb8Xi9+ctu3VYrWHc3q6yu9UPl7eFqh68EZdmECRO0a9euPG8s27BhQz377LN2qAwAnBNBCQ5r0Y7YXK+lKUj3ttR0s2V2J+u1PJmPM/79z6yPrae5ebi5WM3oWAKQZdbHelmgt3uxXttSkDf8r/Wsb/cZOUfUvWGYJj7YPMt9lDKEZgvmXu6u6tkkXD2bhOvc5RT9vC1W87ac0NZjF7V8zxkt33NGvh6u6t4wTHc3q6w2NYMYbxS7Xbt2acyYMXl2uZOkGTNmyM2N//YBoKD4jQmHlG42NHbhrny7t/37h23acuyiLiamWk53u5CUqnOXU5Rg62lunm6qcG0mxxKA/DysZnkyT3cr7+shXw9Xh2uvW9A3/Mipe8MwdakfqrX7T+u3VevV9bbW+Z7qGeTnqcFtq2tw2+o6eOay5m89qflbTujo+ST9uPm4ftx8XJUCPNW7aWX1aVpZ9cMDSvgrQlmQnp6uIUOG5BmSTCaTRo8ercaNG5dwZQDg3AhKcEh/Hjqf48af2SUkp+nLFQfzXJ95mlt5q1me7DM//8z6lPd1l6db6ThdqrBv+PEPVxeTWkdW0LndhlpHVijwmNWo6Kdnu9TWM7fX0uajFzR38wn9vC1WpxJSNGnlQU1aeVB1Q/3Vp1ll9W4arrBA72L+SlBWfPLJJ9qwIfdrE11dXXXTTTfp5ZdfLuGqAMD5EZTgkE5fKth9k9rXClar6hVynfUJ9HYv08HA1jf8uDEmk0ktIiqoRUQFvdazgZbtOa35W07of7tP6++4S3r717/1zqK/1aZGkO5uVlndG4bK38vd3mXDSR08eFCjRo3Kc73ZbNb06dPl6UmjEQAoLIISHFKIv1eBtnu84010b4PD8nBzUbcGoerWIFTxSan6vx0Z1zP9eei81hw4pzUHzuk/83eoa4NQ3d0sXLfVqih3V9o2o2AMw1BUVJTS0nI/1djFxUUjR45U69atS7gyACgdCEpwSAVp10z3NjiTQB939b+5mvrfXE3HzidpwV8nNXfzcR04k6iFf53Uwr9OKsjXQz2bhOvuZpXVuEqgw13/BscyZcoUrVixItd1Li4uqlq1qt58880SrgoASg+CEhwS3dtQmlWt4KPoTjfpiY41teNEguZuOa6Ff53U2ctXNW3NYU1bc1g1gn3Vp1ll3d2ssqpW8LF3yXAwJ06c0NNPP53nerPZrJiYGPn48NoBAFtxjgccVmb3ttBA69PwQgO98m0NDjgLk8mkRlUC9VrPBlo3qrNihrZS76bh8nJ30cGzifpgyV7dNmGZ7p24Rt+sP6KLSVftXTIcgGEYevTRR5WcnPu1nK6urho+fLg6depUwpUBQOnCjBIcGt3bUFa4ubqoU50QdaoTosspaVq8I07zt57QH/vPauORC9p45ILGLtilTnUr6u5mldWpbkip6dKIwpk9e7Z++eWXXNeZTCYFBwfr3XffLeGq4CzSzYbWHzqvTWdNCjp0nv9TgXwQlODw6N6GssbP0019W1RR3xZVdCohWQu2ntTcLSe0OzZBi3ee0uKdpxTg5aY7G2dcz9Qyonyx3sgYJe+XX35RjRo1VK9ePavlZ86c0RNPPCGTyZTrfZMMw9CUKVMUGBhYUqXCiSzaEZvlHnuumrFvo8K4xx6QJ069AwAHVinAS8Pb19CvI2/Toqdv06Mdaig0wEsJyWn69s+j6vflWrV/d5neW7xH+09ftne5KALp6enq06ePGjdurDfffFOpqamWdU8++aQuXbqUa0hydXVV//79deedd5ZkuXASi3bE6vGZm3PcozAuPlmPz9ysRTti7VQZ4LgISgDgJOqGBmjUHfX0x0v/0qzhrXVfiyry83TT8QtX9Omy/br9gxXq9elqxfxxSGcvp9i7XNgoLi5OaWlpSktL06uvvqpmzZpp8+bNWrhwoebMmaP09PQczzGZTAoICNDHH39sh4rh6NLNhsYu3JVrF9nMZWMX7lK6ObctkCnraYvrD51nvMoATr0DACfj6mJS25rBalszWG/0aaglu05p/pYTWrH3jLYdj9e24/F685fduq1WsO5uVlld64fK24PrmZzFsWPHLP82DEN///23WrVqJT8/P7m4uMhsNud4jmEYmjhxooKDg0uyVDgYs9nQhaSrOn0pRacSknX6UopOJyTrr2PxOWaSsjIkxcYnq/VbvyvAx12ebq7ydHORl7uL5d+e7q7ycnORZ5ZlXu7X1mWuz7q9W5bH7i7Zts/47EynDHPaYtlEUAIAJ+bl7qqeTcLVs0m4zl1O0c/bMm5qu/XYRS3fc0bL95yRr4erujcM093NKqtNzSCu83NwR48etXqcOYN0+fLlXEOSq6urevTooX79+pVIfSh5ZrOh80lXdTohRacuJetMwj9BKGsgOnM5Ranpts9ynE28qrOJJddd08M1M2RlDVT/hC9LsHLPJbhZgljW9VmCmLuLvLKENKvgVsiQlnnaYvaRzTxtkU68pZddg9L48eM1d+5c/f333/L29lbbtm31zjvvqE6dOpZt5s6dqy+//FKbNm3SuXPntGXLFjVt2tR+RQOAgwry89TgttU1uG11HTxzWfO3ntT8LSd09HySftx8XD9uPq5KAZ7q3TTj/kz1wgLsXTJycezYsVxnjnILSZLk7e2tL774ghsUO6HMAJQ17GSGoYzP1wLQpRSlFeI0ryBfD1X091SlAC+F+HsqNd2s+VtPXvd5b/RpqNohfkpJMys5NV0paeZrH+lKTs34nJKay7I087Xl6f98zr6P1HQlp5mtTle7mm7W1XSzLtnhTGF3V1OWIGUdyLLOoHm4ueh/u0/ne9riqLnb5efhJl8vN/l6usnb3VW+nm7y8cjYX1n/2XTmTot2DUorVqxQdHS0WrVqpbS0NI0ePVpdu3bVrl275OvrK0lKTExUu3btdN9992n48OH2LBcAnEaNin56tkttPXN7LW0+ekFzN5/Qz9tidSohRZNWHtSklQdVN9RfdzerrF5NwxUW6G3vknHNsWPH5Orqmmcwyu6jjz5SeHh4MVeFwjCbDZ1LzAhAZy7lPvtz+lKKTQEo5Fr4qRTwTxD6Z5mXgv085eFmfQl65hvVuPjkXN/wm5Rxj8IBN1cr9jewaelmS3j6J0hlBKzrhTOr7bM+ziWkWa/P+Jx1rFPTDaWmpxVJSLuQlKoHp/6Z6zoXk+Tj4SZvD1f5erjK2yMjQP3z4Zb/v68FrqzhK3O9M4QNZz9l0a5BadGiRVaPY2JiFBISok2bNql9+/aSpIceekiSdPjw4ZIuDwCcnslkUouICmoRUUGv9WygZXtOa/6WE/rf7tP6O+6Sxv/6t95e9Lfa1gxSn6aV1b1hqPy93O1ddpl29OhRpaWlFXj7lStX6u6771b58uWLsSrHY4+/UqebDZ1LTNHphBSdzpz1ufbvUwkpOnPt89nLBQ9AJtO1AOTvpZAAT1W69jlr+Anx98w1ABWUq4tJr/Wsr8dnbpZJsgpLmSP2Ws/6JfLG283VRW6uLvL1LPZD5ZA1pF03iKWalZyWrk2HL2julhPX3XdogKdcXVx0JTVdiSlpSknL+EOH2ZAup6TpckqazhTx1+Ph5iLfbAErI5C5WX328XDNMtN1Lay5u8rHM+O5vteel7mfopoFKw2nLDrUNUrx8fGSpAoVKti8j5SUFKWk/PPngYSEBElSamqqVYtVe8g8vr3rcEaMnW0YN9uU1nEzSfpX7SD9q3aQ4q+katHOU/rpr1htOHxBf+w/pz/2n9MrP+1Q57oh6t0kTLfeFCR314K/MSut41YSso7dgQMHcm3/nZeZM2fql19+0eeff64+ffoUU4WOZfHOU3rz//5WXEKKMv9KHRrgqf/0qKtuDSoVen/pZkPnE681Qbg203M6IUWnL2d8PnPt89nEqwXudPZPAPLMOA3u2ueQLB8V/T0V7OdRsJ8zI12pqTk7HhZU5zrB+uSBJlnGLUNooKdG31FXnesEl4mfXQ8XycPDJH+Pgr0FjijvVaCg9N69jdQ68p/3r+lmQ1dS05V0NV1XrmZ8TrqapqTUdCWlpFvWZa5PvJqmK6mZ/874nBG6rLdNupqmzJfg1TSzrqaZdSGpaL9vmbNgmTNZWUOYj4erJWT9sy7LjNm1ZV5uLho9b0eepyyaJI1duFMda5X8dbOFeZ2bjML8Ni5GhmGod+/eunDhglatWpVj/eHDhxUZGXnda5TGjBmjsWPH5lg+a9Ys+fj4FGXJAFAqnEuWNp01aeNZF5268s9/WH5uhpoHG2pZ0axqvhlv/FD8HnzwQV2+XLh7YmXegLZNmzZ66qmn5O1dek+l/OucSVP3ZgaLrC/KjLczUbXNahKU8W+zIV1KlRKuSvGppozPV6WEqyYlpErxVzOWJaRKhgr2AjfJkL+7FOAhBbgbCvTI+Hegh6EA938++3tIrg74M2M2pAMJGV9/gLtUM8CQE5zBZTdmQxq72VUXr0rK9TViqJyH9Frz9BIZR8OQ0gzparqUYs762fTP43TpqjnzsymXbTOWW22XLqUaJf9CGFE/XbUCSzaKJCUlacCAAYqPj1dAQP7X6jpMUIqOjtYvv/yi1atXq0qVKjnWFzQo5TajVLVqVZ09e/a6g1HcUlNTtWTJEnXp0kXu7pzaUhiMnW0YN9uU1XEzDEM7T17ST3+d1MJtcTqXpftVZJCPejUJU++mYapaPucfndLNhtYdOKOlazfpX21a6JaaFZ3i/HlHkfmaa9++vc1nVWSGpaVLl+rWW28t4godQ7rZUMf3V1rNiGTn6eaimhV9dPZyqs5eTlFBLwFyMUnBfp6q6O+RY9YnxD/jlLiK/h4K8vWQWyFmWh1RWf0dZ6vFO0/pydl/Scr9tMVPHmhi00ymo0k3GxkzXKlZZrmuZpn5Ss0y25VlFiwpJV1JqelW2565lFKgDoof3NdIPRuX7Ol3CQkJCg4OLlBQcohT75588kktWLBAK1euzDUkFYanp6c8PXOe+Oru7u4wvwwcqRZnw9jZhnGzTVkct2bVg9SsepD+c1cDrd5/VvO2nNDinXE6dC5JHy09oI+WHlDLiPK6u3ll3dkoTOV8PHK5WHerU12s60hOnTpl83MbNmyozz//vFSFpItJV3X4XJKOnEvU4bNJ2njkfL4hSZJS0szaFfvPjJyLSdfCjpcqBXiq4rXPIdk+B/l5lrlwXxZ/x9nirqZV5ObmmuX3XIbQUvZ7zl2SVxFdO7b2wDn1n7zuutuFlfMt8ddgYY5n16BkGIaefPJJzZs3T8uXL1dkZKQ9ywEAXOPm6qKOdULUsU6ILqekafGOOM3fekJ/7D+rjUcuaOORCxq7YJfqh/tr67H4HM93pot1Hcnx48cLtb2Li4sCAgI0YcIERUVFydXVuW4sbBiGzlxO0ZFzSTp8NlFHziXpyPnMYJSohOSCN7XI6pH2kerVpLJCAjwV5Fv2AhCKXveGYepSP1Rr95/Wb6vWq+ttrZ2qzXVJuzmygsICva7bafHmSNv7EpQEuwal6OhozZo1Sz/99JP8/f0VFxcnSQoMDLScX33+/HkdPXpUJ09m9P/fs2ePJCk0NFShoaH2KRwAyhA/Tzf1bVFFfVtU0amEZC3YelJzt5zQ7tiEXEOSlPVi3V3qUj+UNxMFdOzYsQJt5+rqKsMwFB0drbFjxzp0x7t0s6HY+Cs6ei7JMjt05FySDp9L1NHzSUq6mn+DgtAAL0UE+SgiyEcmk0lzNlx/jDrVqaSGlQOL6ksAJGV0D2wdWUHndhtqHVmB32v5cKROizfCrkFp4sSJkqSOHTtaLY+JidGQIUMkSQsWLNDQoUMt6x544AFJ0muvvaYxY8aURJkAgGsqBXhpePsaGt6+huZsOKoXf9ye57aGpNj4ZN07cY3qhvlfO8WJ053yc/z4cbm5ueXZHjzzOqRbb71Vn376qRo2bFjCFeYuNd2s4xeuWIWgI9dC0bHzV3Q1Pe97QrmYpMrlvVU9yFfVKvioepCvIoJ8VD3YV1XL+8jb459ZsnSzoZV7zzj9X6mBsqB7wzBNfLC5U5+yaPdT765nyJAhltAEAHAcXu4FO81ry7GL2nLsYq7rMq8fyXrjzErXQlSlAC/LuiBfD7mUgUB17NixPO9fYjKZFBYWpo8//lj33HNPkdznpDCSU9N19HySJQD9E4aSdOLilXzbZru7mlT1WgjKCEM+igj2VfUgX1Uu513g+wOVlr9SA2WFs5+y6BDNHAAAzifE36tA2w2/LVJ+nu46dSlZpxOSM+5Vk5CsM5cyOpKdunbTzvy4uZgyLsi33ITT81qgunZzzmvhqryPcweqo0eP5rjHh6urq1xdXfXyyy/rhRdeKNZbXVxKTrWEnyPnE3Xk7D+nyGX9i3BuvNxdLLNBEZmzQtc+hwV6F9kbo9LwV2qgLHHmUxYJSgAAmxT0Yt2X7qiX63+M6WZD5y6nXAtK/wSo05eSrZadvZyiNLOh2Pjk675Zd3c1KcQ/Mzx5XjvVz8vy75BrAaucj3uJz8gUxOHDhy3/dnFxkdlsVu/evfXBBx8oIiLihvdvGIYuJqVazQZlnR06d512vv5eblnCUEYgqh7kq+pBPqro71liY+rsf6UG4BwISgAAm9zoaVCuLqaMGaIALzVS3hfep6WbdfbyVZ1KSLaEp9MJ18LUtVB15lKyzl6+qtR0QycuXtGJi1fyrd3D1SUjNOUSojKXV/L3UoC3W7G/+U83G1p/6Lw2nTXp6LF/ut7Vrl1bn3/+uTp16lSo/RmGoTOXUnTYcq3QP6Ho8LlEXbpOJ7kgXw/LbFC1LLNC1YN8HSpgOvNfqQE4B4ISAMBmJXEalJuri0IDvRQamP+pflfTzDp7OeVaoMoIT5kzU6euhavTl1J0PvGqrl5rPnD8Qv6BytPNJWeYytaQIiTAS/6etgWqrPegMtLNunIlSS4e3nr0udH6+PUX5eaW+3/TmZ3ksjdOyAxEV1IL1kkuexiKCPKRvxf31QEAiaAEALhBjnIalIebi8LLeSu8nHe+26WkZdw1/lRCitU1U6cSUq6d9pex7GJSqlLSzDp6PklHzyflu09vd1dLeMoaprI2pKgU4CU/z3/+2120I1aPz9xsmYkzubqr0v1vyaNihH41B+rXnafVIDwg475CZxN1+FxGHYfPJep4ITrJRQT5KKLCP53kqlXwKXAjDgAoywhKAIAb5kynQXm6uapKeR9VKZ9/U4Tk1MxAlTVEXTvtL8u/E5LTdCU1/dqpbvkHKl8PV1UK8FKwn4e2nYjPcW2XV0RjSRmnMT757ZZ89+Xh6qIqFbKGIds6yQEAckdQAgAgF17urqpawUdVK+QfqK5cTc/RgOL0teupMq+jOpOQokspaUq8mq6DZxN18GxigWrwcHVRjYq+uZ4mV5Sd5AAAORGUAAC4Ad4ertfaYfvmu11iSprlNL//2x6rGWuPXHff797bWL2bVS6qUgEAhUBQAgCgBPh6uinS002Rwb4yDBUoKIUEFOxeVQCAoscJzAAAlLDMe1DldeKcSVJYoJdujqxQkmUBALIgKAEAUMIy70ElKUdYKsg9qAAAxY+gBACAHWTegyr7/aFCA7008cHmRXIPKgCA7bhGCQAAO3GUe1ABAHIiKAEAYEfOdA8qAChLOPUOAAAAALIhKAEAAABANgQlAAAAAMiGoAQAAAAA2RCUAAAAACAbghIAAAAAZENQAgAAAIBsCEoAAAAAkA1BCQAAAACyISgBAAAAQDYEJQAAAADIhqAEAAAAANkQlAAAAAAgGzd7F1DcDMOQJCUkJNi5Eik1NVVJSUlKSEiQu7u7vctxKoydbRg32zButmHcbMfY2YZxsw3jZjvGzjaONG6ZmSAzI+Sn1AelS5cuSZKqVq1q50oAAAAAOIJLly4pMDAw321MRkHilBMzm806efKk/P39ZTKZ7FpLQkKCqlatqmPHjikgIMCutTgbxs42jJttGDfbMG62Y+xsw7jZhnGzHWNnG0caN8MwdOnSJYWHh8vFJf+rkEr9jJKLi4uqVKli7zKsBAQE2P1F4qwYO9swbrZh3GzDuNmOsbMN42Ybxs12jJ1tHGXcrjeTlIlmDgAAAACQDUEJAAAAALIhKJUgT09Pvfbaa/L09LR3KU6HsbMN42Ybxs02jJvtGDvbMG62Ydxsx9jZxlnHrdQ3cwAAAACAwmJGCQAAAACyISgBAAAAQDYEJQAAAADIhqAEAAAAANkQlErAypUr1bNnT4WHh8tkMmn+/Pn2LskpjB8/Xq1atZK/v79CQkLUp08f7dmzx95lObyJEyeqcePGlpu6tWnTRr/++qu9y3I648ePl8lk0tNPP23vUhzemDFjZDKZrD5CQ0PtXZZTOHHihB588EEFBQXJx8dHTZs21aZNm+xdlsOrXr16jtecyWRSdHS0vUtzaGlpafrPf/6jyMhIeXt7q0aNGnr99ddlNpvtXZrDu3Tpkp5++mlFRETI29tbbdu21YYNG+xdlkO53vtdwzA0ZswYhYeHy9vbWx07dtTOnTvtU2wBEZRKQGJiopo0aaJPP/3U3qU4lRUrVig6Olrr1q3TkiVLlJaWpq5duyoxMdHepTm0KlWq6O2339bGjRu1ceNG/etf/1Lv3r0d/peRI9mwYYMmTZqkxo0b27sUp9GgQQPFxsZaPrZv327vkhzehQsX1K5dO7m7u+vXX3/Vrl279P7776tcuXL2Ls3hbdiwwer1tmTJEknSfffdZ+fKHNs777yjL774Qp9++ql2796tCRMm6N1339Unn3xi79Ic3sMPP6wlS5bo66+/1vbt29W1a1fdfvvtOnHihL1LcxjXe787YcIEffDBB/r000+1YcMGhYaGqkuXLrp06VIJV1oIBkqUJGPevHn2LsMpnT592pBkrFixwt6lOJ3y5csbX331lb3LcAqXLl0yatWqZSxZssTo0KGDMXLkSHuX5PBee+01o0mTJvYuw+m8+OKLxq233mrvMkqFkSNHGjVr1jTMZrO9S3Fod955pxEVFWW17J577jEefPBBO1XkHJKSkgxXV1fj559/tlrepEkTY/To0XaqyrFlf79rNpuN0NBQ4+2337YsS05ONgIDA40vvvjCDhUWDDNKcBrx8fGSpAoVKti5EueRnp6u2bNnKzExUW3atLF3OU4hOjpad955p26//XZ7l+JU9u3bp/DwcEVGRuqBBx7QwYMH7V2Sw1uwYIFatmyp++67TyEhIWrWrJkmT55s77KcztWrVzVz5kxFRUXJZDLZuxyHduutt+p///uf9u7dK0n666+/tHr1avXo0cPOlTm2tLQ0paeny8vLy2q5t7e3Vq9ebaeqnMuhQ4cUFxenrl27WpZ5enqqQ4cOWrNmjR0ry5+bvQsACsIwDD377LO69dZb1bBhQ3uX4/C2b9+uNm3aKDk5WX5+fpo3b57q169v77Ic3uzZs7V582bOOy+k1q1ba8aMGapdu7ZOnTqlN998U23bttXOnTsVFBRk7/Ic1sGDBzVx4kQ9++yzevnll/Xnn3/qqaeekqenpwYNGmTv8pzG/PnzdfHiRQ0ZMsTepTi8F198UfHx8apbt65cXV2Vnp6ut956S/3797d3aQ7N399fbdq00RtvvKF69eqpUqVK+vbbb7V+/XrVqlXL3uU5hbi4OElSpUqVrJZXqlRJR44csUdJBUJQglMYMWKEtm3bxl9uCqhOnTraunWrLl68qB9//FGDBw/WihUrCEv5OHbsmEaOHKnffvstx18Nkb877rjD8u9GjRqpTZs2qlmzpqZPn65nn33WjpU5NrPZrJYtW2rcuHGSpGbNmmnnzp2aOHEiQakQpkyZojvuuEPh4eH2LsXhzZkzRzNnztSsWbPUoEEDbd26VU8//bTCw8M1ePBge5fn0L7++mtFRUWpcuXKcnV1VfPmzTVgwABt3rzZ3qU5leyzvoZhOPRMMEEJDu/JJ5/UggULtHLlSlWpUsXe5TgFDw8P3XTTTZKkli1basOGDfroo4/05Zdf2rkyx7Vp0yadPn1aLVq0sCxLT0/XypUr9emnnyolJUWurq52rNB5+Pr6qlGjRtq3b5+9S3FoYWFhOf54Ua9ePf344492qsj5HDlyRL///rvmzp1r71KcwgsvvKCXXnpJDzzwgKSMP2wcOXJE48ePJyhdR82aNbVixQolJiYqISFBYWFhuv/++xUZGWnv0pxCZifUuLg4hYWFWZafPn06xyyTI+EaJTgswzA0YsQIzZ07V0uXLuWX0Q0wDEMpKSn2LsOhde7cWdu3b9fWrVstHy1bttTAgQO1detWQlIhpKSkaPfu3Vb/GSKndu3a5bjlwd69exUREWGnipxPTEyMQkJCdOedd9q7FKeQlJQkFxfrt36urq60By8EX19fhYWF6cKFC1q8eLF69+5t75KcQmRkpEJDQy0dKqWM6wtXrFihtm3b2rGy/DGjVAIuX76s/fv3Wx4fOnRIW7duVYUKFVStWjU7VubYoqOjNWvWLP3000/y9/e3nN8aGBgob29vO1fnuF5++WXdcccdqlq1qi5duqTZs2dr+fLlWrRokb1Lc2j+/v45rn/z9fVVUFAQ18Vdx/PPP6+ePXuqWrVqOn36tN58800lJCTwF+rreOaZZ9S2bVuNGzdO/fr1059//qlJkyZp0qRJ9i7NKZjNZsXExGjw4MFyc+PtTEH07NlTb731lqpVq6YGDRpoy5Yt+uCDDxQVFWXv0hze4sWLZRiG6tSpo/379+uFF15QnTp1NHToUHuX5jCu93736aef1rhx41SrVi3VqlVL48aNk4+PjwYMGGDHqq/Drj33yohly5YZknJ8DB482N6lObTcxkySERMTY+/SHFpUVJQRERFheHh4GBUrVjQ6d+5s/Pbbb/YuyynRHrxg7r//fiMsLMxwd3c3wsPDjXvuucfYuXOnvctyCgsXLjQaNmxoeHp6GnXr1jUmTZpk75KcxuLFiw1Jxp49e+xditNISEgwRo4caVSrVs3w8vIyatSoYYwePdpISUmxd2kOb86cOUaNGjUMDw8PIzQ01IiOjjYuXrxo77IcyvXe75rNZuO1114zQkNDDU9PT6N9+/bG9u3b7Vv0dZgMwzBKPJ0BAAAAgAPjGiUAAAAAyIagBAAAAADZEJQAAAAAIBuCEgAAAABkQ1ACAAAAgGwISgAAAACQDUEJAAAAALIhKAEAAABANgQlALhBHTt21NNPP11k+5s2bZrKlStneTxmzBg1bdo03+cMGTJEffr0ybOm6tWr68MPPyyyGrPas2ePQkNDdenSpWLZv7NJSkpS3759FRAQIJPJpIsXLxbLcUwmk+bPn18s+y5Khw8flslk0tatWwv8nOyv53vvvVcffPBB0RcHAPkgKAHAdQwZMkQmkynHx/79+4vlePfff7/27t1bqOd89NFHmjZtWp7rN2zYoEceecTyuCjfZI8ePVrR0dHy9/eXJC1fvtwyRi4uLgoMDFSzZs3073//W7GxsUVyTEc2ffp0rVq1SmvWrFFsbKwCAwNzbDNt2jSr11JYWJj69eunQ4cO2aHi4lW1alXFxsaqYcOGNu/j1Vdf1VtvvaWEhIQirAwA8kdQAoAC6N69u2JjY60+IiMji+VY3t7eCgkJKdRzAgMDrWahsqtYsaJ8fHxusLKcjh8/rgULFmjo0KE51u3Zs0cnT57Uhg0b9OKLL+r3339Xw4YNtX379iKvIyvDMJSWllasx8jPgQMHVK9ePTVs2FChoaEymUy5bhcQEKDY2FidPHlSs2bN0tatW9WrVy+lp6eXcMXFy9XVVaGhoXJzc7N5H40bN1b16tX1zTffFGFlAJA/ghIAFICnp6dCQ0OtPlxdXXPd9urVq/r3v/+typUry9fXV61bt9by5cslScnJyWrQoIHV7M6hQ4cUGBioyZMnS8p56l2mL7/8UlWrVpWPj4/uu+8+q1O6sp+qlF3WU++qV68uSbr77rtlMplUvXp1HT58WC4uLtq4caPV8z755BNFRETIMIxc9/vdd9+pSZMmqlKlSo51ISEhCg0NVe3atfXAAw/ojz/+UMWKFfX4449bbRcTE6N69erJy8tLdevW1eeff261fs2aNWratKm8vLzUsmVLzZ8/3+pUrswZrMWLF6tly5by9PTUqlWrZBiGJkyYoBo1asjb21tNmjTRDz/8YLXvXbt2qUePHvLz81OlSpX00EMP6ezZs3mOoyT9+OOPatCggTw9PVW9enW9//77lnUdO3bU+++/r5UrV8pkMqljx4557sdkMik0NFRhYWHq1KmTXnvtNe3YscMyUzlx4kTVrFlTHh4eqlOnjr7++us89/Wvf/1LI0aMsFp27tw5eXp6aunSpZIyvu/jxo1TVFSU/P39Va1aNU2aNMnqOdu3b9e//vUveXt7KygoSI888oguX75sWZ/5Ohs3bpwqVaqkcuXKaezYsUpLS9MLL7ygChUqqEqVKpo6darlOdlPvUtPT9ewYcMUGRkpb29v1alTRx999FG+Yy5JvXr10rfffnvd7QCgqBCUAKCIDR06VH/88Ydmz56tbdu26b777lP37t21b98+eXl56ZtvvtH06dM1f/58paen66GHHlKnTp00fPjwPPe5f/9+fffdd1q4cKEWLVqkrVu3Kjo62qb6NmzYICkjoMTGxmrDhg2qXr26br/9dsXExFhtGxMTYzn1MDcrV65Uy5YtC3Rcb29vPfbYY/rjjz90+vRpSdLkyZM1evRovfXWW9q9e7fGjRunV155RdOnT5ckXbp0ST179lSjRo20efNmvfHGG3rxxRdz3f+///1vjR8/Xrt371bjxo31n//8RzExMZo4caJ27typZ555Rg8++KBWrFghSYqNjVWHDh3UtGlTbdy4UYsWLdKpU6fUr1+/PL+GTZs2qV+/fnrggQe0fft2jRkzRq+88orltMe5c+dq+PDhatOmjWJjYzV37twCjU3m+EhSamqq5s2bp5EjR+q5557Tjh079Oijj2ro0KFatmxZrs99+OGHNWvWLKWkpFiWffPNNwoPD1enTp0sy95//321bNlSW7Zs0RNPPKHHH39cf//9t6SMa6u6d++u8uXLa8OGDfr+++/1+++/5whgS5cu1cmTJ7Vy5Up98MEHGjNmjO666y6VL19e69ev12OPPabHHntMx44dy7VWs9msKlWq6LvvvtOuXbv06quv6uWXX9Z3332X7/jcfPPN+vPPP62+RgAoVgYAIF+DBw82XF1dDV9fX8vHvffea1nfoUMHY+TIkYZhGMb+/fsNk8lknDhxwmofnTt3NkaNGmV5PGHCBCM4ONh48sknjdDQUOPMmTOWdTExMUZgYKDl8WuvvWa4uroax44dsyz79ddfDRcXFyM2NtZSY+/evXOtyTAMIyIiwvjvf/9reSzJmDdvnlWNc+bMMcqXL28kJycbhmEYW7duNUwmk3Ho0KE8x6ZJkybG66+/brVs2bJlhiTjwoULObb/9ddfDUnG+vXrDcMwjKpVqxqzZs2y2uaNN94w2rRpYxiGYUycONEICgoyrly5Ylk/efJkQ5KxZcsWq+PNnz/fss3ly5cNLy8vY82aNVb7HjZsmNG/f3/DMAzjlVdeMbp27Wq1/tixY4YkY8+ePbl+vQMGDDC6dOliteyFF14w6tevb3k8cuRIo0OHDrk+P1P27/GxY8eMW265xahSpYqRkpJitG3b1hg+fLjVc+677z6jR48elsdZv4fJyclGhQoVjDlz5ljWN23a1BgzZozlcUREhPHggw9aHpvNZiMkJMSYOHGiYRiGMWnSJKN8+fLG5cuXLdv88ssvhouLixEXF2cYRsbrLCIiwkhPT7dsU6dOHeO2226zPE5LSzN8fX2Nb7/91jAMwzh06JDV9ys3TzzxhNG3b1/L4+yvZ8MwjL/++suQZBw+fDjP/QBAUWJGCQAKoFOnTtq6davl4+OPP851u82bN8swDNWuXVt+fn6WjxUrVujAgQOW7Z577jnVqVNHn3zyiWJiYhQcHJzv8atVq2Z1elubNm1kNpu1Z8+eovkCJfXp00dubm6aN2+eJGnq1Knq1KmT5VS93Fy5ckVeXl4FPoZx7RQ+k8mkM2fO6NixYxo2bJjVWL355puWsdqzZ48aN25sdYybb745131nndnatWuXkpOT1aVLF6t9z5gxw7LvTZs2admyZVbr69atK0lW36usdu/erXbt2lkta9eunfbt21foa4vi4+Pl5+cnX19fVa1aVVevXtXcuXPl4eGR53F2796d6748PT314IMPWk5527p1q/766y8NGTLEarvGjRtb/p156l/m7N7u3bvVpEkT+fr6Wh0z++usQYMGcnH55+1DpUqV1KhRI8tjV1dXBQUFWfabmy+++EItW7ZUxYoV5efnp8mTJ+vo0aN5bi/9M+OWlJSU73YAUFRsv7ISAMoQX19f3XTTTdfdzmw2y9XVVZs2bcpxDZOfn5/l36dPn9aePXvk6uqqffv2qXv37oWqJ/NUuLxOibOFh4eHHnroIcXExOiee+7RrFmzrttSPDg4WBcuXCjwMTLf6FevXl1ms1lSxul3rVu3ttouc+wMw8jxNRp5XC+V9Q1+5r5/+eUXVa5c2Wo7T09PyzY9e/bUO++8k2NfYWFhuR6jMPVcj7+/vzZv3iwXFxdVqlTJqn4p5/c2t2Nn9fDDD6tp06Y6fvy4pk6dqs6dOysiIsJqG3d39xzHyByr/PafdXlu+8hvv9l99913euaZZ/T++++rTZs28vf317vvvqv169fn+bVJ0vnz5yVlNCYBgJJAUAKAItSsWTOlp6fr9OnTuu222/LcLioqSg0bNtTw4cM1bNgwde7cWfXr189z+6NHj+rkyZMKDw+XJK1du1YuLi6qXbu2TXW6u7vnOgPy8MMPq2HDhvr888+Vmpqqe+65J9/9NGvWTLt27SrQMa9cuaJJkyapffv2lje7lStX1sGDBzVw4MBcn1O3bl198803SklJsQSc7A0nclO/fn15enrq6NGj6tChQ67bNG/eXD/++KOqV69e4I5s9evX1+rVq62WrVmzRrVr186zuUdeXFxc8gzf9erV0+rVqzVo0CCr49SrVy/P/TVq1EgtW7bU5MmTNWvWLH3yySeFqqd+/fqaPn26EhMTLaHtjz/+uKHXWW5WrVqltm3b6oknnrAsy2sGL6sdO3aoSpUq1519BYCiwql3AFCEateurYEDB2rQoEGaO3euDh06pA0bNuidd97R//3f/0mSPvvsM61du1YzZszQgAEDdO+992rgwIG6evVqnvv18vLS4MGD9ddff2nVqlV66qmn1K9fP4WGhtpUZ/Xq1fW///1PcXFxVjNC9erV0y233KIXX3xR/fv3t5zulJdu3bpp7dq1uYau06dPKy4uTvv27dPs2bPVrl07nT17VhMnTrRsM2bMGI0fP14fffSR9u7dq+3btysmJsZyc9EBAwbIbDbrkUce0e7du7V48WK99957kvKfTfP399fzzz+vZ555RtOnT9eBAwe0ZcsWffbZZ5ZGEdHR0Tp//rz69++vP//8UwcPHtRvv/2mqKioPE+je+655/S///1Pb7zxhvbu3avp06fr008/1fPPP5/vOBXWCy+8oGnTpumLL77Qvn379MEHH2ju3LnXPc7DDz+st99+W+np6br77rsLdcyBAwdaXmc7duzQsmXL9OSTT+qhhx5SpUqVbuTLsXLTTTdp48aNWrx4sfbu3atXXnnF0mAkP6tWrVLXrl2LrA4AuB6CEgAUsZiYGA0aNMhyHVKvXr20fv16Va1aVX///bdeeOEFff7556pataqkjOB08eJFvfLKK3nu86abbtI999yjHj16qGvXrpZZH1u9//77WrJkiapWrapmzZpZrRs2bJiuXr2qqKio6+6nR48ecnd31++//55jXZ06dRQeHq4WLVro7bff1u23364dO3ZYzZw9/PDD+uqrrzRt2jQ1atRIHTp00LRp0yz3qAoICNDChQu1detWNW3aVKNHj9arr74qSde9NuqNN97Qq6++qvHjx6tevXrq1q2bFi5caNl3eHi4/vjjD6Wnp6tbt25q2LChRo4cqcDAQKtrcLJq3ry5vvvuO82ePVsNGzbUq6++qtdffz3HtUA3qk+fPvroo4/07rvvqkGDBvryyy8VExOTb7txSerfv7/c3Nw0YMCAQl07Jkk+Pj5avHixzp8/r1atWunee+9V586d9emnn97AV5LTY489pnvuuUf333+/WrdurXPnzlnNLuUmOTlZ8+bNy7czJAAUNZNh68nVAIBS6a233tLs2bMLfGPYzz//XD/99JMWL15czJVl+OabbzR06FDFx8dfd8arrDl27JiqV6+uDRs2qHnz5vYup8h89tln+umnn/Tbb7/ZuxQAZQjXKAEAJEmXL1/W7t279cknn+iNN94o8PMeeeQRXbhwQZcuXZK/v3+R1zVjxgzVqFFDlStX1l9//aUXX3xR/fr1IyRlkZqaqtjYWL300ku65ZZbSlVIkjKuqSvsNVcAcKOYUQIASJKGDBmib7/9Vn369NGsWbMK3ZyguEyYMEGff/654uLiFBYWpj59+uitt96Sj4+PvUtzGMuXL1enTp1Uu3Zt/fDDD1btugEAtiEoAQAAAEA2NHMAAAAAgGwISgAAAACQDUEJAAAAALIhKAEAAABANgQlAAAAAMiGoAQAAAAA2RCUAAAAACAbghIAAAAAZPP/zqUUYTuPvz8AAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot the cross-validation errors\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(cv_errors_df['Degree'], cv_errors_df['MSE'], marker='o', linestyle='-')\n", + "\n", + "# Mark the best model on the plot\n", + "plt.annotate(f'Best Model\\n(Degree {best_model_degree})', \n", + " xy=(best_model_degree, best_model_mse), \n", + " xytext=(best_model_degree + 0.5, best_model_mse + 1), # Adjust position for better readability\n", + " arrowprops=dict(facecolor='black', shrink=0.05), fontsize=10)\n", + "\n", + "plt.xticks(np.arange(1, num_models + 1, step=1))\n", + "plt.xlabel('Flexibility (Degree of Polynomial)')\n", + "plt.ylabel('MSE')\n", + "plt.title('Cross-Validation MSE vs. Polynomial Degree')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "48c8ca26-cdb0-4ec0-8eba-db24aa1fa655", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Degree MSE\n", + "0 1 27.439934\n", + "1 2 21.235840\n", + "2 3 21.336606\n", + "3 4 21.353887\n", + "4 5 20.905641\n", + "5 6 20.780511\n", + "6 7 20.953654\n", + "7 8 21.077388\n", + "8 9 21.037360\n", + "9 10 20.982162\n" + ] + } + ], + "source": [ + "# Output the cross-validation errors for each polynomial degree\n", + "print(cv_errors_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "44cf3905-98d2-44c9-be09-424e22ef5d71", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best model is with degree 6 with a corresponding MSE of 20.781\n" + ] + } + ], + "source": [ + "# Output the MSE values and best model\n", + "print(f\"Best model is with degree {best_model_degree} with a corresponding MSE of {round(best_model_mse, 3)}\")" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_CV.pdf b/Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_CV.pdf new file mode 100755 index 0000000000000000000000000000000000000000..fe5dc23aa5d09c8d292f91666ff2b9d8b6d052d6 GIT binary patch literal 71802 zcmd421yCJfmn{l`;1&V|cXxLQ65QPha&UL|;O_43?i$<)?(Ps=gT2oG&#ig?%)F_& zRkvPUs!n&GbNYPW*IU+Jdv!x5FCt3EM9&6Cws-ma5ssOWkde^Fz#NX3mqFCb(h+3O zAZn@a2oeDq+8BWtq(Rmuj;4gntgP(({BRDA_8@&LIM
    @jPSk>6R>M+EXVodiAK zQ6R;kmR2Dhw9b0#Do1*8jM#%;yoZT3s;xEZXbGH|W|Pv&cFNT~RpEElTEj} zHSv7{ni(!V-)pA2y|ldl1nW9#N8VdMIcw(WDK(Atw#`%c^1fb6P(9=%cq@k)WfVE0l_WY>|3}n_*Gi{mG@JmUZY0ll)GE3OS^lvS8se|7?>TS zP_TS4`|xgE3yNxC)S zA0JpG#-I49=DyO7@I&KWGikQY6SRI1XRgEEo{=(O59WQbFi2f)4Dk zQzkR*BXg-n4+G?Vujrzm0*x>CV3auW>AZGsXBtk8?Sd)HO=l4-vuXNQhHyd@aiw2i z{Q1uk-2#{Ie(cab307B)?!yjRhw~EVPi{~9YLBk|ZhBi!T>(>7E$cmhUaE@qoP@R` zgtg!X>E2)JAYL-PIFHat)oMO$`5=*3Q~7;f%yGIH2*$j`!}p?ogubEd%KfBDbJQBM zUG2~NFgzd8)WYbvDT~YVX9Vw-kcB9ip}hpp68n*Tn}KrzihvUQtwqEq%pNL4e!7jq z&%2MOI~M#y7z6#h7OWE(;_bTP*X>VeU-o1M6{iJdslH#S2b`znri!*0zN#>hHXiw3 z6xl2FnOL@c(-|{;$^3bMlf*JPmU^q1_&WvW^9KDM#z)Aq?|p$oHW=1UcU0x`x-M7_ zF(F5+`ZCF_S7~2b(oH~i%yi1EXfyE1;Ms%wJQHR4+}QIa^S$ECAmxdE$%UJKEs2Og z)c`S(Su7FE8`{BMuC#FmPKR{#K9EkHol!H?<;VnYSz(s7&WbrBg!L&si!xvT@O(Q$ zCH8p84YpE11J_Ca<#I;<=+}1PtUL;qiAj0sQ6Z6gZ&a`Yk9{MM! z&n<@=SjWxlpBpG|U!tBuUN3_}Oe=zw^{C-)7ryBf#A}9Gli{)|QU5J?&R^4{KxOU$a zSlz0&JCl}CQyrZwIhCH7LHpmSrUsU%^7gx;2PSX&V*a&9uAkAj z8>rhusidw-a$lA&YAGQqsSvWnIgZ+^G|(bMP;Y;t2w9zcX=l4}M-EP~tbl*vwYq4C z{JLvG6EdaNYpC*?_`dz_!*IJlzp+19KrAB5z}Jk@5>LtH^4$h>)Lt?xF&b2e4HahM zJ`Gv>5K2w$w}@(aR>!mf{SzdM_ysCg@ohh9;qxoGl~_pgoTPFb_;p{AUR!|i8r*7~ zjXY&ddyplA(_@65=1}Rye(PCAX=g{uVhJ&6$jrD@jJA5Y6#R!4KQiCEAxcB-%vHiQ z(6uJ?s$VOak(F;?wO>1iPT@>1HH{KSbcpOa?@pyctTleEV!In_v-6Fq>ghqF3s&3j zgWt!$_6ycaq@W`I7=8b_FHTL!edtIV1B0bktOzBI4Jx@^@|RsVf^=hSjQR=@xq@a| zEgb|a7wLPsei~00APXykIO;F>^|wP{_OGkwHs^Kc7O}-izn3K*=4Y#RWp{@lX@mr= zmv;o-)u#Fy0b~q#B2cyY>Tl&msP0L1(&i!4+(fmEgFF{hWMK-Lvre>+AF!wg;)!Ty zYU8SsIpxh1FIlhLP`xY6K8msml_GsXQLNMUc3wJA#mOu}xyPGQuMK)rFAEiEy%3yZ zOW3JZ_%^QdHDLU74y0gl142n~ecbgr6x`zR`V79$;f*w#8l@a2m?Ea8=4|#sRt0pk1o7YF zMe`Io1*b)M#TO>Z{I^uGj@NtKWLuJybZF9LXSp~}RK1&2MVOAwL*Q)>owpVS zt366|smFXBz#Kntg}D=L@Th9ZAUTthuUEtwZ+XSn{GM@#96o$b+wL~$Bg z;cEPnm94!?MV{8haf*GTl+xRKoMJm>5~l{`0LsxB7L!wKFsw!NofGa0n^#rKMj~=S zJG;|X=F=Fjk+ByNm+5cbCqt5^?)gT4d40U4zStD||ie=$WyLN&l0^HB*v8DX4 zkvSqM&`D6CZghRLq@zloSf?*pn9_sREPRd%578xgMv5=AFbgKD9_ovKR>Cf5wdBne zE0k(WCeHpiC#+Ggs17|$Eof1u@0e6`%#r4-m#Z?eZ*iDSQS!ipJUD4GUKA@;unLFU zzFm3KRQuyyfMmte%2L_Up0Kf_nVQWxN1GsL z4#?iebQ8p(-j&3yg4%Hep=R0k^Qgk|D6eTGb-U=yV=v|C1pBhJvwQ-IJ4&E0tEWFhgApbJ_Wc=3In2n$0A2om6t_{&VF?uhh6rOXVwJW{)FU`;R2 z(AJ`-rMY1zUOw}B`#o>(2Fy|pvLIh8YVRYJ#B#VdA;0SQDF83 zF#pt8m}@UHyVPJYCkxe*AhAt}Yqgn&6BE~qT;a8arYW>kfdl22%KLKFatzx}ix=i)pzrg+KprHm` zc~^VVRx5MBYB#~9#^J!@Xe;3Kb?kI!nw-ZKBh2_}fI?>5vhQl?qvN4LYjGL7W7%Ct z-=XmU%$b{=V`sEhah~;5n5XFfgU7yf4IAiKBOSa zS$>a2hYU|(m7cfRXM(AYP#TkRiz23s7nhzvC6-3TkJz^8lXTU^IPHuX?Mb1&`&cSS ziKR?J~c2L(?<<+#$i0}B<{*)Y=aM>2vyv^FW zR;0<u~)qnxmL4P8|k>;&x2vjw*HwmmkDtCf*ANso~ur|dC- zm*jeFJYC2IPQXFU z1{3dKC0>7Oe(&$FA>j^g#*u%$X2NVrj3>Osj#Wy~s~Hl9g1Dd;<_&dbjJlcMcN zh?^}(Z8)$Jj)$m7XsDb8EKV4E`BPf0ks+KU-92|gwIzg931%(X!qW@9|KukqUhHmX zxGo1ohx)HdjwiGclwCMP0j$P-Q%mClh?cLzn6_!wRpXqElzx#tEWTgZe|PvoOVQR! zi0r1QFPpg~5LxS+Kb+SxLxityA6M5sAz0|(EPlK=Xx*%}UZQsNX=}keF#hh*D&I)v z=Dhgmrpr*H!V&VU+OpoevhYD~El?mE8K$Xo;jp^>S3T?fd1wKSs9f8zPX3|F)YzY& zM{c>grp&Ox^W(c)E^TjQKIZ`z9NCA`E6=z352!tYH>f2{gXdY^5#T8Z{*@R`?(}0}Op}00bmxWZmDGN)B7Skr?2vVKMf1f7% zXav&z2-!u|9u8U#s4w#_l|Yuc`dNrXgsfD>s{I&-0m@Bq7u9k0RPgbp^%2H?g&v;g+$sRoQW%75y&CZr{ z+hD);3TA~AH0{bj7O0}ehKEFpMXTyqwu*ACEoGOA`jE4sw%WdMaB`$!l}G`9#t(ZB$&x$`%<4e&F@%} z-=-ju-@jYs?)#6A$?78%EoC;pk}V3gyfW8^10?#~t;XMf86lya3zjxE_R^9=C3%-U z8)>skTfqG;&ZJ*-=ZVfL^9KFG0`p|QAas!XrSU_%0#EC@99qrjcz)Nm+*$jnMVCkR zlIAy*p&{(chQX`ko4!x2H(QZM_@z!tdl8Jl@TF=%+C><(av&M0&b3v$3M>T5RKx2+ z$q)ZG$7X`zg!v%C_#wJQ$@2&8*5s_gGEblOs{BM8CeG^Brt%Nul~yJuMHOe`d-Ibt z@z0fuGehDh<1gzw5!P2Pe6~>I;R?A!SXXqmgM{~Zz$ROY@D4`C#rp>bWG%Hbj%vwJ z)SzthlSy`sy}T(}P}*!(LD&4zXo=^g70u(I{;GQ1>fpltr8DNp2w{aiPK1$gmH<8b zHSX+&6JOhpEF(#YIDu#TyW+>N@lZL-bAxD7AP#}+f)ZbOE?g|+J6~tOC}c7-&E%L8qM@0` z1 zf(RMfA0qZ-vfI~fVq6lR5$PU2*7888bE&Z2zo>#&1PuwgyBHr^`J<79pb#1BA8|XDX(FTCNJ2MPVOpFGomX>4 z&|QRAU%p8UTPL(qblERkvPBgmRG%q@X5Ou}yvC52@qCMF+GDwE`dY;E0lKRv7DCTT z9evJH_Po9#%$QxL9ZrwQDu}5z5tNZrG#jCb*Cd6+dluBk|)`xzoRS<_S?Qp*T?S&Y^{Z9Q+x5b>ox?Dr}Z|9;@6&ng78 zmwG_3Cw22hv4Bvn9N*sMP4eyPL@wdUNJFF86Bc~x#t*>B1DrMFrk+xh`O_>F~X~h zSQVul)O#))v}D-A@4RC*z4i8px3aZ6`~_+|yn~CUY`s?3-tRkJZjrmiYehfpUwZ=T zT_elbXQbs8UIL$2(m-!NDOmj|M;9TOC%7qade?iu!TIAuigJW;#;mSwtjDI$kCg*9 z;8}@}-a$BzIPfTY6xj37npBl341u966Sb438=R=J^gB0G-F)wLyy*V7<}yUXFD=&H zsKNt1l6Q%ZHrwc0dq=Xg4slrCs%ZuBtov->@xLl`-M}P!#{IyKAxix2B-C^zcF>#9 zA>qj;SB~mM^Y+T4rg_}x3Ma6QC@r|;g&>C8A*jL>J`LB2WPt+N)7pByek9`XNTj_h zPRpHLv4GgZdh%xKm}I8C%(qxZ`DNwlQMqh%R`v^#mbvvME~vjvRvtl#2+JCr)N=Gd z?zjf^!{aJ#4m9 z#MAhw4^HyWyqTKXr(vHqT+Iw}`-~AInB9ybU@BtAy)ADRFU=8+RWyvpUby%db(8MT=Erb-wt)}ih`I2N+8ZT*JBrA_t zLpXDl*7*cj@&uiz;Kdcu!S!8muo5#PNQ7K#Da&_1QKb|-FZFOPLQe*E9MoK8rXjGD zciBEWkt?ZrUdA>|j4sS$6=Cgrl3uZS<6=Dutr)B?qk9=mkP4Ff4N3_qFMmwTAvD%h znxp6GMRU=N4To$C*;=|3GkTthbQq_+>L7p}3P6oA`w&bly&M++k>^1Ha~ zAjXrt6dQ3=1#vl;)l$S}!?d}CGRa=+Ti3b@acrlJJxC zj_2sp!Ezbd-#KJO&A$ktl2!36LowMDzs?v`q_&a3W#xE9InvEB3R4M6%oo_>!0=zQ znSU9gO$Xm$>7KVx8x>MUMB-+L{jJ>2DX`_LZ13WjLY5Dew#7w5LXwfEb=5DD%%-Es zGy|of0ADJTaTz6I%)U98`-x7(Y%&)SyjJ~$3+eT;)5Gg-Gdp?38_ZCdy#f{Y^wb4Y zPA7QIS)EX1@H?Oon_(*A9lsvDL3cdP`gCQ!{rN+zmU6G>i4IoHM9p}0@$~6hv$Rrs z_nmI@K%={-P-#Zaj9E&YS)fBUcej0%Z3Dy8> z;&QtB8)mY$ie#70{$m5#Ms?X;rrz zG|7E3K71ijN080vReIw0-}s>57q$o?heLzx4|A zjUnbkqR;NF=G(?H)Op$i@?@SLUXx?aL^0*4R`&~%O7+<)OeCv#w;h#=7988{W%flC zS2af>7iDi>JE^bTe*doAmU;{JdDlJayW_J8Of0yKX<(esX>zVs4NIl+#lY-F{B z&Z|^wKe^60uCf}U*x(iCu3&A&+z?=u`C-%67aXWp3X%x^tmnY&;L*L@HB1ei#JCEuY&lfr2Z*($Rr5Xn`GSBsyO46bb zkaV~o@F(<<(=sscY;`uowydIOSozL1NYJ;uwGGozbRfdx%kh)AEFV%BQ+LI+nrzt9 zMLfRs;((D5s~x|P3QX{wgJ*CnKV1jm%!<287fzWeh5%5 z*V>hxKhaNhKk^mO(r`&z@tSsQ*{;zlv_G}{`n_86%K272dXjmf9T$YNJAD=kxuQjP z9qOi)kK47BuZ#cFfr=TwL>F%jS+UwWl4rg=V4%I>wH34Oq*86QQj>gIb*tu4cOFhl z-dh%$z}EHfY!b-{&iRMs%l68g|0^NLJh??FnOmN`e(n|;Oq{e`MJ!T#xsr{{$a(rP z@Y_8{$)lQLUG*tZ$pmuZYSE_t^)g1k#Ia_=p>>F5bfc->t7%#L{G&`J7yPd1t$v2w zyJhp{<{@od!P!X;RLMOfVRLEYA_rLJnzF2s4#D;1C5B?eZ`T1ss!5cl+U>Ar$|1l_Nz1=;#rrZvo#y4Z=Wki-n@GntRFTH`*;_womcDU z6Cvh57uGyt+Bj~E?Hfw1A=9f{whehC9%m32@^@9+tsFkaBBiij<=={~=%7mXVQ3U6+&La5}d2kObmbE z-gcVeLR}^yQ(3%HD0Bv6H=O+C??G}uuO@%a&^t$NwC{aWHOq~ zdIYCB1A7ZQdFlvm!lp(e*a&W5Nj=)$jFYxxYOi$7`~H+dF3(@bj5o@L$zZffIcO#ImfR_p~HU8W5u_Nf**=U>*g&j96rwv!%pTpuhiw2-1=tr z6mfO|`n+++c^0=vp1%o0KrT$K^P&fCmW&e%xit?G>?)oh++&Q6PJ0inIO2oW2L<1- zrSu!WqYh%*3Ns?hJ)UKR7B_gr$*&nyP>P({XOJ_` z#KgWG^Ub$6#}fw>_19-}r)`mrtYl2%$em>Jz_0*37~h?!aWT`~G?nS2xv&{R`_3!Y zU~=~h!M8Ymx&KUoS(yJv6qucr@n6(V+_9*=7T^x{C31sW-bRnXKki^_G5l#->QjEW z-DCXcE$rJoqtUXuO8W_@@Ko&81_=dLi7TS1TdSSVH$IO>J@25|Q=7M!{CBUb>FBqI zLhVJ9<=g(=3DMTemu4z{?Ci`X+6CgpS@+(;>@#Glh(b>wOGoYD#wSayZlK0aE2rKdV5XC-2YqH^IdP@0Sz#E>Dhx@9J9 z73R<|)~P}Zo+sDIq7Yv|{^2G94^$@lbcued)a}G+qDc$fj-)!CUWB|Ep2z?(CSy7Gwvk1xIJc z>otkt^=n`JhyAIo&xTw@v_m#?eaDJz7GCimEA$UpiX@Z<)nX&!LfU~JROsp-P8-a%=<1) z@@4zugjEu}b{yL6;SW;G>jco&MX$$J<8(IYX@EnK!RI2leAb)UR!pH(Q9R`Q=k|n*no( z4^nBr$LTJCTg{XmCt1wIjC>C8={LvU?Kc$QC{?p?<;V~ z6KurM#>*l&m@ZemqR!dE@NhP?DI|nk3HaACP8Lew( zBh9ce2B@{{UZWTfL`Ge=j4A$5YG?I`XnXL&`percc7Dx{Cyl}yg4djsTt5@p42Jf-W9Jflfh%1i@i z#rA8EmwzOEo#i3PdiJ%ade*=Lwl?s{t%yoCDcZMG3&4Dlx@d};tG@M}QD2@5R|+OO z3Sn+0_*kg}IB`p!g@ zvN__&SY8lt!JJw5f-?91<%X(NmZd&^92)l)(&he-dZnWw2A*=2D);_^f@|5}yyE)Z zAKc0ZzC(fSi|!&vdpdjyR?=M-h__*X9@CVnQ$0?3$-5Lr7UI znaYzzY`16}8AwZ>pUbR`A-+g-ahMVE98YgHQm0jX%g{Kys=C$Zrrpv%>TfjG`6O=HQK2^TD^5ZhEl^`#I)N~*RhOle z)}RJ=)|K5b1LL&4X^^pmew({7Jqa<(iM6>}b?4TyqLn@`e>;2RB5r0q{#FRd1=g6- zLVO&5!yM{UoUT2?LsJAFgp^3W_58>|=(HTo zxB}Uaje=+YyIxF6+B%yNYJ_IK(YLnsM}Cy{uMS^w2c7sNy#A!C5-t`H3yo7-W5 zMX%E~)S*bFOzp>ekSN*eo*9?+z(R^KnVFhSb!JS^0UL+>E6t+*Ad#05;3ic=)pkj~R;CL-W-bZquIYQ9+8=q~}3z zeQ=0|b&x^o;l{m6i3JT&R716^s-r&^`m6Ok(Q>amPqgK+dstK!M``)U9nXX71wh^)V;PPp=LH@<)qi_ImJwm1Jyj7&fQ+;g`iwnSiI%=ZyOzKWCi1E6+$(F(yczt0OGwEn$$voD7lsW#{(_ta_a9zIlR{DN&sia!yli4=Eh7 zx}Rh{#19bjbw*+R{=G7%a~&zJ*q~t@a3$v9-YOJQbD@BkKtpK^=UTo9ucDjT?)=~- zt=16mq$>T z|M*l7f%yy0KQtEpe1IpvcPH5&4NV?@Y9MK4nq! zO#lk{85VO(TtHfGmYl*|QeDaJ}`5(iN?sklLztklSfz z1&$zhrWywMhS&6p?`mo^e7u1HzV3-^S^M?D?#&5ANM+}O7{3c)hsPboH=8VFB^(wl ztv8womFc&a_JioD3ZQzL&7lHvuuInHd3( zS8}p4Gl+xCOiUdK*;v^agl#Ns?3HZw4M7YdAZIf}keI!`8-tLUqk}xiUf9OU*2WrS z?Fh#SeEatyO?iELD+l25&Hs1;A?H6wav)^-d*Ebc?eLG8S7_Jqv*{Qut% zeZny@a{jAoJj;X#28PgAb49W4SMp~Wg_sQbmKdB9HUm=j!`~N$UpyG_>XFzY{rj>- z<%IqF%7FamDHP!UIHgCz_aCR&qW<%g|Mm5MJHo$B@ZXQ{Zxj62YxoaK{IA#WAC~y9 zSMeW4*dm4f=lB158UK4j{0~O>Uv~PZDgV%+UgSh1CY$j89#JI^!2OyDo|!UgKEljV7tZSnNZ7z_+-8V1fTOP+5Ww~d3E1@W02{O@bRDoYWlPJm{?N}HmP@wxXBsp#FKLp8rjAZX_*2(Z*!$eNl8iMa*bxQ2h+L2CX*SpwY9DDV{%!%$ET+_SXj%& zas+OiF6V1qUe8&ac6p+a*c_Q%!of)P3=<6FZC>}wCWtufXA70-+@iXeC@3}FukIlJ zZ&GQDHXFPY6co#>_SI4EhuJ;_k?x(|d&9B$qLGTC_`I(2sy3$!l`{g&wb9XXz!4}S zJUpDc{3V=nJNqV9ccsNHpV`vHgn}pCGLuL+NL_vH0Iy}lm`=qg(TF34t>Ymyk|RDK zKzM&N5r@Nit<&QnSnC$Z5q26p~y~XQZ7|26km{; znQ@rnGr_&U_q-HL?RL~*x(jM-baHmS-x&xm)S8Qpv(L!PbmGqBHeRgKiSxo?HNCtV zB9MydbiLZi;`6|u)4V-zzo5R7U0PkO)@nZQy0B-nSa^ARz5sm{>NqpA>3(erTnq^b zse2Y zBcttd9q6PL-0g9a=VG{auZSU5I11N0%&Ah>Z6AFk&Ea62Db$5o^!)km)J4pp+*01t zf@b?TRt%r2>q#o<_ex`VgHEIi;Gy%iR)&sCe-Q_#I*E944Rv+Pr5ZtlY-Uk|BZ_QK z15bNda>@l2I!{jpwcSvPtP;KMx4n`0p(s2W!KR2ey!kSfa+pKox>Wav^Yvz%&EhO~ zN%o^`pEr#?n(X*^k_!S(Hkci}9K39=`_$IfrwA+-={JXD@vGZeIhsB;^SR51hh%v& zjcvd!K#;w@+)O?EUgZG%B9qQ8u@c{RvkF*h#iE*O_VD0f)Ux~eyj`hScEr-l(~~rr z@{pZgyM?e?6Y%=e%^?~3e5IDl?a?nh9%ojK@-TE7=ZlS3AQrnEj};3g6XybA#_PX@ zV?<)Jal79h6=!?5fyR;o10ho%d!Y#u$VMO2n||%>RP<+F?GF77lEcYNi=~>}@gdip z+gnGCK7qGK;iBe-h6=Un4QK+-%W;+|$|*^`kyl;_EYr=dS15@1@Om263K(SM&3cpQ zalxor!@&r%`Le|8xe|r^f{_`IIAibEJ2f7jcEGy!JN=4kkth@cvjy38fpS)5)CKY!Pt1 z(gzp&`}6r?$jgu}wS=LL6X_i9$Hm!3nTl-ei&d4tIH10Su~ZvRY|~RY|NY>Jqs}T%H06 z#2!)6>C_uXwgruX&VfW3A0J*16;)Mn)df2sB(b=@1Boabr4Pg`jq7M8kBekYd_W*BIxZd_ znMs57`buBl?rC**(qrTI-VaaRx-&D+7u^h>qj5N7g(9SBhjJ?_Xt{=UI^9)Lqj3+7 zRO3oWmqx^~lH~1Y$s~ziwu1?bCQsO^H@%;KkEgQOBP8i##q5t>RoL&3+GixykOgn( zv^!HB7k|%3G;Qy$vg;qAFc>DuF&RmuGEk>l2n}Qb~Fzf372wvSJgzlzP?^Y7H$1j*d`9I z@Gu&eE06x$wVz{qMDjL}Cy0PuFSmM8UH10lnviihZ5N+&jYK41<9gsWsw4RR9Oa{e zNWTGLD)F5TAtAW#Vnhq=c+X|SO-wPigDV!H@=O4A2ShSz50W!oYpD(V7P=evu@GXu zRbnTWPx77#R<17yF&>S6`Reg%w=SWepkR7hemUeiF1^Sk^=6Ero7RW+nq5M%>+JGc zP5zR+i_R?Et|PvL+Q*=dYfsl%S;BsX0@W%J8CLu@Vg2iZ{07(XiX;n2jWspbvF-(H z6eD3>y{WE4AU2S~M=WloFyH9&7(F$Y+*3im5zlg|k(Ly+q;7%$q?->hlfoP8V>DVn zPmW`&>s8*%108hksw~yT;{GEYG{k-`uF`%8@el;r7w6-dZ*^(7LVF>^&_R`2&FtoL z;;$V(#j=@mPs2)o3oa@3ey+PJt$>6=oq@fG@@^&q4<{#O@QpK+xp<;*b$0gV?eT2) z%k`K)4)G}!Y^le?dA;$3;@~j+YJ*w+AdiO6T?mZEd~ie8^(;0lX_|88;c*m%9gH)^6vTIFhhNzAT(wxr~9gRO|nfI8_PZ2jid-% zE@o0vk#)$r71Un^o#9^?l75WVqs}GKYUJ_K*w6t8q|<1wvWvB{ygZ^s?&K3gN8QpxnM*JBKSi!Cz;EcEVRq*l#$KcjpARQ6S%k?}jMgpCkq zXJ^UUOAIxett)XkRRmsd`(vmcJ7$K6Prm<0{&9T(cAGe-t)N-vwA#S6H$W#* zqt@5gFHBwH5^}8Fv0^5!em8G!ICnFrhSKVMNbQhs6?&cE*c6XR1BEcH3!S%Z!y z7JS6&FW6oA8(I6jTm@raeE9Go!IA>NmK;bzHh&t!x2MDG^ucyuc8Q+2tZvVzI_~Ss z?LO4j^FKDzk1Ppwq5E=Q{gd74Rh@s`|6Y{>Q*r*;-!HQN8X&}+YFYG|LN+A>Nx9ko z1#e(r!0T$@%iy64nJ$n!iU;J8iQva5upuY)GdQRhMjRv?et>7`?Uj>y^slquWKt6{ zC6}17@-r~ys~UoS{1~xQs7p42my#L-isd&E5#HNrVdEe<_(-6_0u_uzG$Lkgw$sB! z!YnH*3za0H+eyu4H&vJk$j!-CoAVMVeYD*x1xVPF(n7M3n{uVL&PJdA$RO z-Fg$zDE267q!_k9L|E9#a(!_i1sC_Is{{+cY3N=+Y@oL%9tsW)HPkrli#cR8>e}&f z`5ODxcn(xABN@^SiIO;t)P5c|XUY-bKk`CljtP!;(E@KJyfk=)mLWfn7OOX>1l~J< zwaaF5Q+-LBw;?^AFHgojAXAgDPb_LQ{UyX+jvZkQlt;~Q3_75I<@PTws{Ky#f1vq1 zV*>$=l)($ z_&gR|BkU){xxz_;N8|&_)vDhBHcjCDn7bG7_~^>DHVPS!u!qtD7#x}ZaqH#j=GU)Z zKv2B`Ra^#xx*QD+t-*F%h$~QPxLl{b$z4#j&hTQRGg4rTAvhI)xwWPd$tp={X;yqH z8>k5+SB*@Rhwum7URt> zFPCP{Wph;Wf;;Kx@y-e+8%A<)Z6h zd2};;Ir73(dBI^Mj*R2CEr>!HHT_Cfw}+sSS=h~R0bqggBMC~~%z^;Q$ehH?wZN|F zy_kReF8L;$9I)mK4#CXA5;w71vSapGmVlJO+3 zK-jJUwCoOdUgy-Bkm#Z)`-KHoRFZw>*wMucEa`T$T#W&iCY{4(qt_P1 z@nh~)=^k?T!(n?pkSH4U#*NnNnpD%VJ#;pCQFuJ}^8BN+N5{vdS#@kI8S)9Q9llRv zQYUkz^#Cn?VNvcf5!-3+kSkFsPa3K3=ShId=!B4#I7{JnI>`|XNaL`1J4m8ObvsVh*wB{buF*{s(%_irw)sog4H7WG=~K@zg@4K)}001aX&PI3{3Xte6&e}~3-{zyjZUNL`LON+v}n(NPOGJuL!zSz*vu2I1~gI~l$8@4Llo7X|6+U) zr~O_Cw;<4;vs*3^E~^bn(MX#+(b3Wt5d3W-Q>S|TAXu20jn=DlJO2O>z4<&C_r1(p zoxl72x%)l-Bj58`{mj#hj-8zy0Ko}&SnQT5+%neI)^7~577G>2m0dT|#5y7(ftJi3 z9v-{VjU&(CShGbkILD9@J=@#cb;pSoKSnw1h6mGt5|_zdv-NsXwBdeAw+~_EqWp6i zh;^X#Q&m;ma2kgC%VA8iy%vBz{$=x*1Mtt@;T^)R$A!roK(_?+W>3#?&6F;z&`vBP zZzLm@05yu6|65_mo3Po;0Vjwm-T^%wkIOl&$6c$#VUx`!y_pBlDc1c;bVpkb2EkMB zQ`Hs1z3Idp&lXE5CT}hM)j`6EZAOsrc_}Zty#E|ixT#`Ld{VmJk0BB^%1(BcSbPQS zi(2ti1VXv+oe@WxM;3Ug5dr6l8OvQ+S!uIgZ?hLchJ~ft>U;x42L6{z;r-9w?6;WS zN-4Q`|8gjR^#So6m$7I1m*1yW7JTMH^#NRG|2+ofcz2g%gyh{t7c;)k2v7rz*7r(C zf^nT*0Q4baNl=cBi@V+mK$awYKFW`VTh`^0A5pLcdaycjRFwV40?$0{U(Ggp`^9Jn zpq=)Pthx;ie+ItjNlQs7bv;ZPz0Ei=`)F{C2#-E&RO)r>MuiV_;{D|# zfRK^OVnR+zT2NFZ*_3p~@AKxltE5*~J7=?{B;l&k-8~U_23vPfS4mcbZBijd;HA9N zSbzviAJ@IwWJLq7DCw9;jkPP3`jf`ByNznuiR@H-p(FpZO&!gsXsj#g_Vdpl@O2gv zN6EGtq&Py()XVRn;Dl!SL~50|S0Ywc;MI#(8q{Fx68AYbl?L9wNDc&3P7P|0Zut;oXD2^ zRKDp!acm1D#g12I^R`oQ3zs`QdKK)HDKvw{K+DENYhUOVmjSEzc7eLg2`0xSvgtU{@ zZl`~5Z;$vzMf9q)eL^cpj8)K@hg9{7y0JjQ<m$YRxzE~YK0Z( zsNJE``Uf-sZBJ%9Tmjhqy8@U4nUFdYwzjqgh+UjKJn1i}Xn-Qvnzwig&}yKlyO&oV z(6e00)&b;qekl+5Eipg;o2o#pqVZ1VHIB~=>X$Fc20HSpstbUe;P3BWQCZ2>ZIX~Z zIHRa3X=p}8S6G{7Rw`QzjFpBOIqKY@R5j9uiT2QBXKNc%m=G_}YCof{DJf+}OIKLP zs%l6_x3z1YpbAW63inr&{GaQV{}40({mOh@)g<@#PTslgxDN7K*Txv}K7fIZ;?lHz zMen>gJJLhSkdfqIsn75+5<^#OkJZ6(zONRV0w!b*tao`gZs+)N#%k1liW)xyiijw7 z02Xvr6)`e0AN{uPJJP7WpBr&VP4`zvO=Mb?(`M(lG0C_z>fn|70_dtcIvV!;T(4Ex zAOCRzH~yrv%PZ|ahM03(TC5B!&vfg$Vip}7t9ShLk5kB!Fb+uC*_E#|?3z9^>t+>( z|8v6QGd<8rIkJ1(n+IM~UVdc6wg;fueqH{#i2Y8n{gM3^z^Wq6BF1}2e=4XDAD|5aVi~|yIk~w_3PJ(G&ULCEd3mWQ%COBDQ3zAC)I;$ z`a*s5;>23x+AFm%kJg7D5{7IMNi&MrQc`AAk@M10HtjIws1^>2in@OO>FMbskAM_a z3G{&*9d1v0sQCE&?zg79Oh5qyQijs65g?$I%rQwu*2cz9548^6Z-2^FUBnt|)5QLc zS6JAPFle4rXl7b9>fR6sC+T0*+hAOu0A8w3QTyGud3yAKVLhmex`=0Wt{``+JuKL5DS)fdj$d+oL6 z9CM5@=XQ+M98r8(l@O2m{NuA-&?!9=Fni!^*8|3#-pAnZc9|E2R3qFa*&wN zFNc%%HJ&`dw4QTCDaDGaa#`tzh>;s&=?bXGkjNeql6$thi$dw)w`)P)2@);=t6%Gl zx7eSxy|u+@Z@4kr>UsHw1K?M&4V%d#*gyA(q|4VNvid#U+#Wu91Y}8De?QmJIY3e- zuv`FlL@mkIhL3lWt(uwH>Kimnd}h@jOG{BN%$A2ZHkG0!w!0+-gV$wj^|)NhD7M&9 zK_=*Q?cQKnicE5oGkjmq9e;m+;4q~;2$+;V_b+NV%qL1Cgqvyy-O}u<)TBB)J)+OU zFOAvJ%xApPKWhKagwh94l6-z#U> z2wK2k6L2{`PZ9S|e%4!BEhp4(?D*Jlnr*?=T|u%FB2PZl_Y>*_TtVh1`P-tQ)SR0L z16qWANto2{)AILYZX-_qh4{}0W1SqZjK60N{p4T1{rwlW_t6DeWeG$ytH(!`tylmP zbp|7ZPA(2ZAEg+rNxc2ni9b2jM*sUqnI{$snomyk`IA$voDlVOSQw=|edm37a!>5; zCsE{idBX3zWPfw=FT{Uh$Dg&0JNbeCUKo#)U%@^3745amH$(*bu%2rYZ2On=|7#`x z`xpK^t1JKb){H;jdVHbJ92D^uM`~(n65``0CnuMdmsN^PZd|=8m8H(VIr#Ph_GJ=I zV?bcjUrY@I2Rqpa_*hA1JQM%1TX5&Cyb8HhU3|*R1K?^V0&&pA`FL!jGa+aZKOK)=@&uWLYKd(#yj# zBV(n9{|Y)uiA8D;(QA1t)X9j6;rdlvU0v<%paKjE3W93PX=xzm>eZ`ILi0QPRIGAw z-rHLC)xi5_e8W>OvssR=)rl?%51&EuVk=1cGFX;PMROJ|{VVoxbadtC=SyEj3JD2m zX=@i5561Jgw6+HC>Brd50)-Uv8fs({0F6+zQLiyGGKveup>77WC45}m>B&jy5idnf zabOQYf}7BgoBuvDV`-z>V*aBmQEkv6)||kXDFONA1q#082ZeMgzRZ^``D`CMH43Vd zLb_s(K{qw%7rH)WWo5y^azHxw8lZ{;55eG!*K34EZ*dgoc-5Y1$Ckfu(+}thWZTru zERFx}5Danu7#8u~W?~9>gv)n-%>@~)o&})Z%i9}Bx@drpJczowBp}Nn6iL@#hk6uv z3td~4byQgU6hw=#Be;IO{Q0*x?wABTyu38Ts%17$?H3^5sQ|(ToxqQjpT~ZETEk^m z7br#DQik1S$j;A*agnuy|BP||uR*1ejO1kE<8x~GNDfub9u#JL+)J&Vp1uD z5>&8Yv>)(NJxkJx*pr24?Qi+9Ay+oq6#*t2A0G!9TSs3Xn@oU@mi7nm0UthmXvzcS z3^0|f2N2BcWBtArY6?r-$BRWPU+ZYj$-`4B87lxm^l1dUKP5z}l&~bG(- zO$F2kIN3hO&@Jv6QQy23$c~s87#8N{bSn=TNvLn%?f{aYLI2RvaET?y%SL^()ar|p zC_*1sLtAW^m;PU0M#3b=Y=D@vF2Xe=FD8F%dcrWQ1I29gEj{4sc7OxvV0dLmK zNoX7?@=}wduk#uc4GCCs)KL%CW}oz_7dKU)vKv9;#B<1q0zTz%=qBamVJchHvE4xw){T9195Q#F?V=?RYcTjGfQ z6Q)pQmBzE41Pbz|`ac-tX)SNt?*i%Z$qD{@;Qtwl&QIMq!CtrieE3@0f|iNINlbCi z1LVg0=POR)!vFD0{{dm3eEWl}0MY%a$_{_mI^8&lrIU;&pNRF3z(o8v^d4J^)-r#t zZCE6pVAGn$KJR~^u(xZ>At#@oXjk;7hCB}Nv?X@nz9|MVgRTa&qo#)97{P$RKonVm zjgO9sL-!hM%d)d?i&!+R%1H7DfBg9AQgUMA(^!FMQbzjUN8cNqCx=Njv>$#$S=uc- z&w$@h3m((&#r1ZR)1(HHA_SO?OAv!Vnd}GgspXmS{cSvQxYr%`o(go4)0=##V)>cs zT3da+K5$)4*~!Usz_aM@`Ietjnvs?PeL*Vq9Lsd}`T=g<;#bTMTFi6&o&BBGR+@qtK!tt9S`Lx8Et;31hDkXes9g9!Dug+z z(7@Fw4>Y!&{Ekl4(9!}dus)DBL2HeTjS$#=J~#ipy}zoJIU76z0Y-3V{4L}F@Vju| zy~_vEebdgszyQ>(c>6>DD9)S37kbn5Sz96A>$im60U`?+v|Rq*YxD!wsP4lJBLjm$ zaEQSzh+fXi$&spS4`-vHrTsGA51Zr8-Mc#waslbQw6Q4^kBx{h%j3{D|^b0Dr9`_Jw%k7-T6@ZMeU*4|Bq4N08O8?z(eHpOD z^1#1>P5^s0v;ToQ$zQmvD-P^-aBwdW!WedPc6K{IIum^B!RS)=?OWWr!j7Q=BV>P@ ze^jV;hRt=sBb2wK1qZ3EEk^jeng&)O?R7{}V&bS#x#N^C7i3$j{hc+JgI^WD7Sa~x zi+FM14+%+`ZZrOjrnqga7NlO!H~*IY|h7DWe8n)2^X2OjKghla_Sv9fXgd&*HE z%Cp~?-I#0N+u5PTwzRN7*w00SX)K!0zH7(5@O+(iI+o~j%;14H>uE1uE-$Xw?F$)> zl;pqimKZWIMo;+5ML<0;+%}ea+tS}>GvJ%x(LNi<>i6HC7ZKn$8-Eqp{j%CqJuB3> z$ZEa|yoNi!ex*)1Li*0p7T(kZpM{P%sBNv!&48mIr~4#uyqVe*M>~6F&*KbPSXyGT zIRlpf~W~Y}Vo-Sy@?w z-sb@?V!x1*Of4CMI#HPKhh6m%|4d;WNVKVAcH>T68C*4-%ZB>;WYe)q*5^)r%Y_(9 z#zyP@ykDx+%*nYEa@mfLzc)Jq3~f(yp<+NjJ{zbHRp^iJ6mvR8a^0hA1MWS}$9Njo zzI+jq;l+~LH=p;vvo?{7oZ88~ESr5kp$Y!$g8tm?|4N4{Yi+A* ze;7-KwKlV@4=11h7Zv=u^zL^oTtElG?bq@GXs!Ky8Nq)!l|L-YpIiD^+?6=W0N$@&@*GmusB!WheA?geuni>&IO1j!$^L+0ehep3}A-f}r@ zAh7e%)6+9Ew;>Rf){A{mgTvOBi2)g_C;rj<$*C!T-6)k2l)ysc!GL9{CxG9@Y^jcK zP?QJp@;Lq$Lq$3`I9TI}jg5i91E(rM8{u9Hb$~<+UkP}Dfjo!=cQ2ncXkd_O@3I5PI3JFF|%o>7IvTevs7tAqvzKue;Jy+j?yRY1<=9 z?oaBvFS!c$jpa{JZ%%&xDrV`?F?ZG*qFwR5^&NHXgJ+rV#*K=rUwXOZEMSA z|6hSuUa>DZ2>AeS6JJjcUyN(1*hV~Sw=N{M6^aBD64Nr6?WJ}P_|OnOeZJR!$p{>k z4mG2NK-+M~qwr}*jrOjwf%QD4V|nKIGpiZn$I-ou@`e7BS}hu<>-8IqyM4T?xa7+9 zk#F9;ykSb6mI=fE>VG_|l`Xle=>`4{XT0T9RJQe{gZ&IZxRNWkAwq9i{?duLy& zyl!&BoXi##CBOXGhszKmsjecEB%t4H}0=ez5>x>%W+QB*E0TRM~@;3?rW zMJ&zD)o&Hw@-0`TLM-!VIHn(-{Ru~o*2^xrf2{mVcUv1XJ-s)gN_gJ}Hco@zSQJxD z&{*a`q**Yk^7zin1VN{5p7rE#p#Ijfvj&0~0AQcRetpTsKZ3~7B3aec(r;e%%nA1W zb8!E}BIW;8$N%|(zaai^usS>;H}XH{aGeAQa;&tI2txdaUH$vxf8xSFgWunx0D|Ar zF&Xfk_r)7&wQndb=ACWF#s6PGeqMfjbMRYKznP4+56m3_u4xQbsIR&=x`9FfcKx1he8Bn#GQ|8t5LFXMPcYr}jw%0+3W04m>V1 zzh6J+*`N_Xcc8U3140lGszxKlYicdvkdlHbxlC>$Kp!NH8@RaaFFI~oe`W-KwdV40 z(O9eD^f?e@IC;6$Bh>VPkd%G$8Jm?u@{0{kiy39vhL>4Ns0?y+2(-RY&=}K(jxwc5ex)~5| zu;HD+w+5!zPvRdVBf(fX04|^g47jUtU{ykYr0^90W%~N;1rSL(#>QNMGp@@E4n_Ib zp=`3SvbuzU5djgntc*7j4{Rj-qSm#Y8+4%dkjZs2%4>VE?gP#Xgfw#1XqpRc0tJ_Vu!#6(?7CwSITUS<4=#OL; zVjWX4tw_8CD19ziLH&-4{N$7y`n4plMtPz(WL*be3X{*4kt( z&bZD#WGkKLV44HBJ<2SpqcaV3CRj~Abjjb5G3VD; zlbRjY8)>LGAgn0i41>FEAWK7VN+0Zpn2q`({Tr1PF_v4+aH{5=JAV zMXD{ya)K3Ru&d`pnC&~NT^?$YLHb&2s^DAHhU1cz-a6B z;e$HR#^ANc2L%C@K0dw=d`O6oZ!`Y&bfAna#!P}EMumD7U(jon)~E8hkRt&=)ZM}) z<9f~N{XQ?E))c~ zMOm^;;pF5*%xPQPasV^{wEy%;<|6qWzMKb#BBGP0`718aL}Fd;p72Tnk*fesZE z!x{;Xv8IB9zBVPf72+WW%l=tv?j-{&*|-BHSbM>3D3C}6T~rTQK5iRA2SmyKXfD6^ zI#yAJ+;WqIFe<*70!qiZc1?F24mA)@5+Wk=(8|K+1fKXhKe8j}#{jQS9k647+1JSq z9g!6@M>XwXccviQg&g%_L-K;1kccDC+UIqR2D(F-uJQ8n4i60>481_I_1^;@V3J-rZELR4LMShCrx|?ZuL+Q&06s=4A85VmKFrwxrK#Nn`PzA6w}JxS?G)iv2}5B z*6oZhJ@b`6!pJO5pP!$&3lzdqmnwnUNvU=+1DMOr% zKOW8a@vXmGLuwMb5=&Bi`rfn;6M=7o9D7DY#GbsSwRJg3GCVSJP7pg5g#2b+PPQ7k z(S6tbM`Gcw<}8Ui?5iz%P9jV5pH(=7#eA6rBZEUiib8S$OaT()QtJRkeEl&!J3AzW z!o$NuYRSapWY^Vi7r=d&TRy>NPtV7vx*KBI3sh83*S40flSR%_Q^OrLt~|cjsI{70 z4Yil-h+}kSuxm^QpAJ-Os_4Iw!+ph*BEGSxz-3~x0x)a6ivAx0SCAkYzCA?<)-^&x zyKYIBAZ|7ZV}1wn&DZCdNYfOQHcqZO?ax(H2Z=>&b0e^R%kPj))PO_R0@bs()e>q1-2t<8OqdrD1 zuFzJDmkfwJ+i%~#VFKU;2Np=6>jfgv-2|Z>3K4LCj{u7`!@>m7+P`m^=(lF(t@_txD z&x}8-Hy60!Qda#I%0V+vI60h-TT2?Q2fcRF5OY`N=0f3+LblJU{FMqZ9M!HdsyYH8vJ&EieQ&>p>kUG}Vu0@8Go;f$2Y>{X%79GSI66cg#el^O z2zTHPqwksveIS6`LB#&zWA2ZC03rG6L<{B40eFxAvu;g&r_+>mme*ru3;Ifv_H7Go z?XoT&>cTTYnw^jHB&C0T#!JbxVpASUCFp7(1>Aw6<9Zb|f`4v-5m9tJFrB&^)tvz* z_JAlqzjj#C;Hap5Xj2Sp(TA7?%NBM=yAC`+fFk(yTEbu_aT)a)LqU4>{3SChtDw(e zAtCsXpDjZQ0vhfDu!4P4Uso65l&ueFDEBV<8|X{=sEcy#&Z=f8bIc3^UFm3NXN)Kh zx4VEf<*Ae}nUXosT#r08QUXZ=v321aV7e@Ex^0y44xqtJDe-EV=g-HX1&`JFmla!0 zQHbbJq@b${I8s0fX9x^$(fQF42jO*fbJN<=5{$0xlppD^XAVKEme3Ys`nEs4-6NNU^f6`Hn2}29E~k4vNWsf>s^l%FPbq#Rdfp^mTIv; zQL!=t8GmWXWTWKrObsXGdJD2^*EYcEn>G(ega*PR6VozaY}f%Z%=6yRuQH%Ry}(@! zO;S5MJFr!-32)yc3XG0kURX$N*@x5v63s%I&TIhjQ$4CdW(I~u*ejPYFakUU_gCLC z+Jcohn#Wq2I=iT-YPqQT41fcP9Sf zJ*uNo?}UT|b465P4BNd|KUi|Ju?4Wo;lcJ8NmaImZa3063mPmDuFhB_sn?z`Kuwz{ zfs&2(v(CJ;r9~AVX8jOB3qc1zL;bN~6D;mxg@JT46K}Bv>|m)OV?>I}gUbM25x8o{ z@z>?pr;p&%iy}1LG4RUE%Ri6_9yT##h4E3bX_VXLczOzd6V&JdGjU01@3TrVjp`BT zG=!FbOun?JRhd5g4tfDc1!ng3$zP1G$~pmf0;L%l^%bI*w3b#pWj5$&R!alsfcl{L zmY2wOh71bKrUJb_Hu!xFmY|^_U=1K2_^lk43;I#61(Q)8rya9Al77n#k~>-tf$jx5 z)*5gFEZjb?VHC$vG z%P3o|d+*+>^(8<$21Z6k(wLWCfZwGF&6TD9iyAuW(M)l9`V#X)3kv81Q;^Dg{c+}} z5x^}2X2OYtvlADS8F;rCSP?i;J|tXiLqp0Iz3|vg^omPMjR#qYOgiHqK?1M$BO8P5 zrsABMrBUSq8-=wMnj(-te$X!7w)*i**9(#epgToSEJ4euC@&|4PMye@#=v(dBdj1W z!ua_3Pz3mW_#p54eI7RB$1vJFt*JM5p1B#QLUN_=-PKzN=k3wcXU{*8rEe(;v0-fx zRF6l5FsTGhfbpxT0tdsCr#%#Fz5RQ4w{ex3&($eN`o z2PMTwB6Mh9=eD3EC%=ENP+XP=PmYEr8Op%xur*;#4I!k1?@qLsiAEwSj8)gW(e%?< z*wiAIIZD!Fs&7VNgY=|IUK(-_zTkyTYkP=Z-lSo|P* z1-JbQ_%~|Gx(X)2?#HfSI7=f=LPU z6tGCSo{M?+?D4N(j|vEgck#=q?&`_~85!7uq~j0JLs`*ivtZK|>NMg6Hs`|qgQ)=4 z4CmnN734ELlq~zoVjijo)OETl$!GP0S7EfZ)t4C+sL~)%H6=q6s)*e#OEao@d{93& z@%W=}r!ufJ(kLADdo|x7Xq{2_n7{G`id)n=!1q*lcAA6v{wMaQJ5ES7`<{m3&4%3| z&?lD{gWfmaG5nEYHEEGHL>huWv`^Lg!&zVW$YR`Bx)e-P`?q*gi-&xdhO+Zq@oelM zzW-e8Z?CSVIFkJ64B8+xnjJsFK|fodS$MBCiC914M(6KpL0O&!G(y9In6;BCf89jK z1}hlkRE|a)AP7#MJ`G{%cvaYOkS$HZ){jy!_(ArkQHYIBYwsmlu{^41Z{%>GpZj%= zyQGA>L~pRf{=!W8-VvX*wnI$?-`-3_4RycPOdL479u9x?h*9R(^r{{J3b|;^1toB3 zzI@3KHPe1DK9E_oflUvr-LJOQW8e77C)os>J4qMnzEW`_3LqJv!%rX2Tz zGlIQ@x?~~AU`g-((>kKLJRIaXw!A!%d2nT$$feH%t>zHpOPBj42Ca_O)KeE}E)NQ@=aw@evd5NTV@agP-Y_8=EGde3 zOId|(bUD-m4sEhZ4W7x= z;Wj4b9Nj4U+0`P5X}9HCe>kVsS*aqEWzt%1=y*5hDD)b1t6T?!d1!%wiTR$}a<+kA z?Htf?8Fu<#G6$S~Y6YmF_XaL({xVYH=8`DXC5|?3e%4;pSTp@|NvN%3uq`zp;prn` zk`mkIvcXbr<>mulPfp?XYiUYn-=Y+$zzQni^wZW^_CWI2hC%ab;bCv4#X43i1Oa?RE zd_7sd$4CSW56E30%a~&3X897AT;WUQdUc2m zr#C+6r)x~I-VJ8x3?XaR$=Y$B%1!JDEFEVn+H-EE((`6-rN$i^T@~^Lt`iwzV1+5vft0%^y3c4elxIq$L*0n|N#( z_MeRk^mWL6TB4`i+4;Eop@_@X2jAj^wLeR}#^OJ+{kb2}>Waocw4OvT!oWRP*;nc@ z@9Zi;uO%Be2zI?}y| z+CQ@Di1VN)B{5MKz&jw(2geWOZ5s{2Pc_@+h2o+w6M7btt-Xj+apCxC&zSYPk&$wH zYpxRCrG=uyj$Pd{oWr|z0?c=IH+s#lcA94x$}hl<%&SVyi{@~alZO++2V~aK4p_?o za}5qjOG2do^az?b(D?TBJcpdnOt^Klbvql|WlTg2l&V&m_skG*>qR%pD2x0;mNC~i zmJsO+3D)#tEy-D;Y!&Kb0FsuByRl_~D=y#cQ-N&q`90*P{FGNLogIq&bSrPt-foIv z?=>(TS`2yf>&M%~2-uKshVtuA%Qto=!D$(dw1=ZJ6PhlX41}R6NOG=)V9yvD$kCoB zgY(i#udw;K*r<2p`kS+c*bC2$G~O^9_8WNFf^%ukgqN-;V&%hVguO^xpuvwXUAM@| zH31~=)&uAOq{(wPI|oJcXQ=iDPO67RMsls&1P`w=V{wvI6dNm4o95|(A$rI2ZWQybbQu4%ZCOHQ8(W;<(;-h=~ z*d>WNI!A>p=7TG48Nw_pJ9FM6kF)Mxc~)hyt*3r^lV4PS)5<>kMQ1z|von%&P(?ub zlk6%Q8KrulLBm|H${0t6b!P4I%tg3UOo>AIcFygPVQ#fw-lMQ!RM+{^_Ff)A<{41p zAH0jKvB#Fndhv}^&X}^U7aSCzt1pBBm2ioe{YiCHqwQ#84J;&>tGf&mMSoW2aWTi> ze)BsIS>e>9+0z7NrOv4o=&y&}Z=*NZM!b$@?tV|Xg zxWh1oFPf;a-=>7-E(hw4#i_|j<@^^D)6+Vd zn*NcId$Hd?^-D(c^p1{3la~2eSZ*qGv9{CbM|CGQAK0t?irM)bdHCWZB_Gk)diR*x z^>vrS`o5;>wjm*+?1IAl=CY#VJBZuTL|GEr*4lTG>e1B5!%A22Hw>My+R8UQLo%PH zHZ4nw)-?^3n?6C@aJ8<9!?du>&j~u}qnay7mGiP)wVeY7_9zCovC)4oCN`Rof`35qa=RZ*eM;U7vsXZ{MXZg%H?5qcwL?*P`1!1pjf?Yfy(9MpF z+#r@Uk4sp20u@7J2~Qx*e>fV3!4_-1-H!;zd%h=8a@SOlf2GpbnL|*2m9xlCSu);x z^*-7&@1?v%=04MiVUuL(ZvUoP0C$r9Ohd&)NMKB`ZLI(1m?!H#awqDjoRWctpO_wcFeM(tkAt>`e&)laXwrjcPe z>}tlwW1Ji07QHU3t)YIUT+VRcme_iyYOwQ#6QW{>T#5Tvdel-`!w0}g>d|?lI-l7` zztuG%>bg4Xx)9VXtE0tAqfTG1VDwsj@u~9jO3hdEUFyE+O zf)spRVkkLs;2-w=T zD$GmD!Y~6n^1dLQkrq^s;Isj`ih@S4XHZ=@Z%n)$KHFoB6PFaS&vh5 z#&hKJt!7zCTqRuSW@rpKWLN=Vx47yjQ(j2tO)+W5KWqepQJ?}uv=Kw<80NwdeEj}g z3u(688994y6;tX+ArpcX%~2hdyToYsA1LNaBXwJRH{3nW888vuG1YqTsr)dtjMqyM zgXKZ!h&~e4`Hg5@zUq1Jd6Fb3^aAZl>vHsQ`N$ToS8 zZN-x88L7rIKj7Xa_dN0|?Lkg&-y=UeG9&xo>e~q?74-nI#EJ5YA zDr>CeK=luu5T$r#ex1%07i-H%*)E1;n}EC)t8hILrCIy!a8~2Y=787bo~)m^*jQGd zx+4aMT59WBYL$_Ofn4K;3AQymA$D!oH5BFlN&O z-T4AlY0E>e-A%HL<;>hh`T<4t)_vQ^RIg8OdYBTVy%s95~<3!rgaahX4?g08YL|6m9S97Se{Je#9r0%~>XMU)y zM!*pN*o%^+xzsB{QR>_CC10&mycIRuQyUHHe^{Hf}2F+DAtdbBl>D8V} zyTO8IJk>tMye}Omv^iVzWx&zX zMY3XpmS!ngWhcKNW6zuorw{eGkVltlOr~|vj)V%j$!Iy+1p4=UGgG%*^nj4fO;OSWa78>#}z1x*_ z3ih5})##SB#wHdXE4t0HVn-Si0lv`HbFq&)LnD=l>!=c&C689hMHpahMJcU6%@%<`fP@L|Y%X?o@uyE~ z3AMGgC+>d)UX+HK`fyEnkmMCeK=Ra^tai7r2%Wo>&%uW%s-t1L#lo}V=bW>h`B{gy zIJ$|qBRTNhfUdjrO-nPnC~NR>|CEnt#SaZi`aDNnJ*`t~p)0yg%e!VSA@O=WXe zmXc$xmwQ}#YGz;mARQGqx6*?L3H$G*J_%nbgZn}a@JNivs$g}mrD~M4c;qSeaaXl# zYUGU;70YzZY*A{Ok$&n}$3yI~Rqir}U!2yP-$@t7-RrXizZkfaxyeRXw&5EI8ptH1 z#%Vat7(a5gZyFc4e=&uJCnC6)vyPg-Ho08oo%8vy2YWhgp0U+WWSp4_hHklvh=|OL zHMrjaz7b@g0$|1$?dDz8HO;k@d{fhDlCnCt;p&An(1ZxkHft*}bSM;sB{#5a{poBrZdvj2zUcS_>KeF< zDvfy(6B8vZF>2%Q<|wX6p|RNB?&-8MvCw7JSJ>)&i?3k1gRExTaeD?|`LMBdO{{lP zQ(UPr%3lH#kE(r^056oUg?`akc1fH4X`g0!hZ^1?JtK3)Hah`XB11xArru$>pH%0r z+a1E&UAAP(S@Z!p2|)lRv&h{kxe&f<8_Q3=-7*I6q(U$y&4H!GE8G3wC10J-sDq1i>Cm9B+_ zUc@QttzXxmHAgSn@U>P+o_duLjCGzPhwgYZRi)1V^t_sJP?CTa@prJ3vJvFzR7 z?0dD*r0qHjeDqi7%kodJmMz(zH@bglwLtXZz=lQbknX{a;Sl;<<#_{M?O=wK(ue}D z7Z!3ai$yQSA+8Etv_H)gvA{{~utR&mRrE=*(%o|@yh`8ifWM)ky@jQTnYQxaHc6}~ z{^>x=+uaIZ)SPEL(%h~r+#q-Rs35E$rnbd;)j9Dx}=+Cy1C!WLJSER2x-F$mR$dIC1?666pK+6ZMY=PqU z&-am+PfO11zCU_;xYY1yHOD~cK*XYBp`}~-M^v~}-l+I3L z7HVj&Zc-AuNdEh`t_c0U&Hwrw>CwSDo=$uVE<Kyq$ItU@Fp^ReafjDokzAbijSL~5FP)xJh8vLtjTsugzWJJ zzjOP9ddB2#PcSxLy*g!rR_hy|34X2AxVUf6iRk`*fyyF2#xgnM57Y_FNQeU2gNlj@+VWuPrnIjWOnC*#sLWwAH8ax$bWxar0SJ_mXkM8J zoC&pNFmU1E-~dMa((LjR?Jh1Z@`4PAQZLS<1~Y?7y`~SUuZ)aLVniee_8V(!+-BqV zOiVHp5~cuj!004rk;jJm`k@~`-W1dW{Q}kE^pk>#p1xY399#xVMG(0`e}LZP#E1xX zF%^)%z}@jqYys3%U^2iN4ZFdb7p?&5Hp)MnB$n6qGQkZ<{Ud%NtOMxRsBdzCzNTkjPy&WY7~XUx zl!SqS0iCyIeWn>C@e=zDy%9gO^XIiBD{Yn|;^HPq)cNJx4*j4(hn!|)bd-v0{@dFN z=2h?5Fl}1F*#-vd5!WZIUBIwyA;-p~9zT2b@%8I(pcYa^<-t5^kOUFM=Gs6(C01Y? zy?DWH_W^A3vNdiOpcQNU=F73lis)!Hutkt?7*h5=_xIC^Ib5y5ewPo9*#MuPz^D}W zUWbx?-3okL#os)pMOeFl_JoBLvMsemei&YYZ3zQbKk@{o9DaK_VOw z?XF$Dx`r?@O=6&jgU=!zO{U*!hFgD zQdVK14K%lhFsm($kKb&(4PJmfaQRyO=m38t+|^TtaB+>HHD_ySFf}zb z;8Hd~8qmDUTn>0lcv;lTcR-mI-Q@O;kEe)ow6?PPey6mw^qoSrBN7BWX&ITgrE1Bj z1hY_!_31`%g~%WqBF}CU-SwPQeH(cxrH+t{3_G#8xf!Nkzw`Ds>`M=qy#?;Pa+v7{ z-3im%Dzu~EDls>J!B%e@Y*t2g!A!x$!4a(f8B|XgQ^0gt8hlM4_k+>>hQfPE!2{W$ z-MvxUF@EP?J>A_hsi(nEJYHD}Zl8sPh3r@uG6OuJD62HAVw4NG)4E`4=C92~FuiR+ z-#%&vtJ}8v1o!iE3?IH_S3gMX;awjJ2Z0) zLij4m%Ay?Lz_Njj!cRdF4|Mlk-qtAYYu_f9C>x){R-T=i(bd&O3w_z0)Cww=83FyS zWsuW1O9O*>6*|u(L`9i63=iPp`2`~$p-T|wvJ6DR7s{`jb;QNR6%_~I?h*-Rq3aP0 z(JX~2jLgiB+W(kL=+NXdFk{7H{#*8R+0*@3)cIR^nVt)Mn*< zhkA)cB6Ma3_+&y^4i2JguIg1TqkVnyLqx=+qyTsXo_{@sULOX7$d8C|uYZQ%+SMlS zOax(y8}=_8bE@lf%qh3akM`#Tp|68J_kxIK5t!I|%8Eo_NEXa7cGHf93rjVv#$dKiV6w}4*tJ>{n`TIwyutvjSa@;;qW-Fj^7tqsb~=0 zy+CVD%>g@c;Z`tMdx`Fv-Td%$1pmVM^LjcuPYR~BK}UuYpk8V<53cpL82+;R9&VD= z+1G#Eu#kE1psAmFsRH^=23~{Zh7`I1EoMYnSXffdW5(7v7r?1z&VnVcJ!K-0xO@o) zgMGiV7jx+nOfZB^0lo1?Ug(HpcH`33eCB` zL~PVlRA`5=2gQojAaWL`_1l0GL>T5)u1-8)W6OiVh%o}r%Bi}_z@WT`;TPG@zroy2 z=&6I#0pW>hB8uN)`Uz0qZfe5M!L$V2eH5!M#)>2mEi{rbOGqS3?{jd<<(!=gbN^*$ zXZO_zmISUCl2~(V>!U-AEDiw}?G))cf8&|E{D$FuRL-R!+ELa%PVp#=1ZngbWx@aZ z&%gd}_#y2JP8jG5-RPYiEw{G>2b9~yt5>feP%uQdfDr`}?F@mwzCHml@h^h@BS>dp zE`xsBpnK}jkqVbdNJNy9nhK5UKUtDI9#(>VzX-1xn8TbiF!wN6lDf+D5)rEow6XG0 zqNmsl&=HXbp!Ih`4r}l$F`s%272J_%1hiqni8{ih!NkOr8M-9_@e0!34+<$Msmb8V zg`M49dq+pigMF~J$o?R>n4;+eFFJt70F7F@nwnA!>lcYocHAg1Ji>bc>gwt+sF}9f z(4&{(KFrLrD=M6QeW4uy^$cIjI^)A67o9QimfS4ndybA;vDAkUmSOfyZLFT2p6i|a zYD6qi;@@Ob&C%c?Lp;axJ_XMH^Mc^qC^nm@hI7I7a_HQ$QD=Ou#@MTmJ&+^%`)dv$ z$%5^EVQDG-r^Y$=j_k`Q?**UzI@r;12?&xiGu7E_InxQ*eK7Mw)?(=r1vz89o8n0z-Q91$6*UGlC6>LX}Sfb-ws4t1*B z4#6ADxd*t4KVV*BvUoU!kD&cJrH7`(#p@)e8Lp9#yno`319=}ChI}4?JqmJTH77bc zx>Aveny4rSeh#c4yujk37uaC!Ve0|O(BI#W94*@xJY2(0tW|&(8kkH`WxtW+?p_Ny z1zyyFiKkSs37&shokxCP;rVKTH(PB-zIVHS>~O0{QegKS-Cb_(47DFMe5z#`G&y``Jzcr(fx!h8=e3dMgk)E+4|FQx~MesY}*4-b5>8md!c@D`4X8n8IO zwvmDWI|t5MT`*B_u~9tZvj*15P@t( zIt6nZJ+R4`?ATJZb zDri78(MUv>YSm)w@VijRe5{&eC#(YR5g-kK0r={@0M4kNMnEjN$--l^^e+8d(lzN< zt(bW?X&KRSV(*%tA;LoYt_tsA87wd&D71k?Z)|Klt?=pd=X2fKW3QGdbiR;Y!Xt@u zQq8V|=KXKP?s8OavY5uo_umD5n;9GDhS?f&JKGQlAWx0t=}Ur75gKmT;S+)R!3Zva zLwotsCAZ?Qfwu<*k9H*!=jUc-UJmA>U7OOXGVG;)p#|idoV@s#L_F^iH_e@M^5;YC zFM-MO4l}ca)4Dim1Fd-C`gd}M>YyEu`mcI`dm-wt`I>>7nuQR1|mx{!;`-`P=4<;}%@ynyN@ zz@IQ>BrYN0mYyf4yPMnda+oy|6GQs_GRf(h;DDGA#1X z-q}AtT%ntqojs3s)uWaZivsE(sCwL~-f5e~K_bKRKs6}soc_EFK21D+7U*YtkQ0*+ zm>MvLP+p&cVlRY@8prtf_{TnkrzNW+F!72p?%f|(38taSUwGBZXSaHjj?MsN2CYtQ zDJlO|)th~J@W8dCVFxQbdB}LH+-aAU5kHmYQ102YQ{giHc+KDD+=#{P4MN5~qxxZB zj3|yP;6^IYKZ=WY+$B4qmEjf~f#^5F817C_o~BFSNuv@_n3ReN$z|`>yT${z-?3UL zRmNX`jd@mR1_@Q2d$2LQt)w{crV=?9n5O+=Q6ueT9ObXSx-(hx=Hh8ypO0_O0I07~ zyDubkCijv`di>))p%lt9)19KI>R+15tRVAq3S;J2F<*_;H2;GjJk>mN>v|1%JU?Kt zKV~Qu?&aVti42M>pkUXJb=gJY@ z8+W$GEW=%!%J?4_z4rIUjtX;g1GZ@RhXyo%*+nYM-pTs^6XH+(Q>I0iiU&?a#6;2i}e zbUOK|d{Y5P>b3)TIOV|9Uqiib$>} z6M8uhZsVI27-$N?ryhOn!t*&Nrkbbs6ygVER=hQ8sypK*dy4{Si1Ln~wY56I!B@R|ul;tNmb z2XbJnUOSWu3=RjPAkk-QVW?kx@Q4R?$2%V%7(&zxP^p%F9v~X*ePDuMvIjr(2SO8$ zogecgJsn**_+KG;UB1CX$yb?_PuSAYVFpPS-1u(}?#X~pJICCO00Tg}pvyj?5%hE@ zJ(-5~iHYwRi%Aq|vyVTEg)n~Od0q$IOSir$v=zX34^#s))a367a&98&MX^fvp`Ag~ z*$uxb_$?#8#kI;!XlH|=YcF9Iicsqk!zl*$JK8lA(=gCYt3UPOIe3b#Z~Z?mxF_1W zm3QB>J#+T#1R2mRY#bcRC=e!UoM4V(Q2mT&Nba6i49%ZF+Xkwi`J$x3^7x^Tw&reUEV?(_H%FOH) z!%d}5*0{S44h}HZ6OeRwf4^yGynDx!zJ`V$kYyppwnHfN^@rA`E0x|c3va`rS?a;H z3A5iX4ubi|EOk&x$s|GfxQYJ0KxqHZj%xW z1bIF{Pw_@_czF2M1t4OACD4%%vxC1=VHe^U8^erb2%*kP9Btt?&p}cdSS${(L*+DAfm&{GzfJ@OaFucL>?B|!IL;PeKf_hp%Iuy-! zz|IGan5pIYC50b@f?y61!L@5=tJ1@b-tk`0nSlpeGIve70u`L4Z$aZ&DR|+by9QnZ zBE1^~-5d_<(<1Ofh7OiNhCDdA7cN|Ycca1ELNKz@1AT^Jgi6xq&n>ZnRZyIRMkcG% zt|32Da_^YOlx9HH@?f=wS=g!~txI{`As!y^?iLLVNSLWrRf3f;DjgUmVq9Fxa9?}q zl?5(JShyb2ej#;M@;-_BMe^Q@44_*;-9m|`(uRYoWBzxgg8Hxj$&CK_t2)gQwh?*Y z(Est)J+6Pfb?>o(v6Zd`%VT3rE8X8O$72!KHPMGxlHOrwz5Va6vKv)wHqqv~G`h|3 z^Q=6jwB#p3+(*No@|tg!ePfKeD?uPKEKYE65a6KJs9+;qzpRDRtPr30VC`M}7Y21V zd{F*Y?~zfh#HLt3omuOhd;ih@Q0UByUSHX!t=m1VkEXvgMPGeRlkYR~=BbG~F z5GM^`RK04G)Wc|b_j>si$Ef@B-T1fdT1gIm9n^rxB>ieW;AB^nz9#UvSJ@!wC)5g! z$mu3NK6CR{0grF$Q~AZCvW7eX)CQYk8w>pJI<2Ge7vfLsx< z!i3Nq0pIZR*E;%_&7V+;*d|oHT{?1b%6mnhFQHi6=+2Tq9R0%M+Q0wK$OXkN1w;c6 z>K*lk%da96dQQf+9$cUwB-5xXMs4zfMoPHcLJBx z7m=Ov4JVZ6UsO)t5@DX(ry;gZzRc7W5tyWe54;uwdZa$SevfQ8rgu`d6)kd)&|h~} zG0&Dx`{X*-X~bRB8KrrU$jdFIT)4b(iBBex{ZUb~VTu5svqpee$k!%Zx1mtJz>A4b z_Lml8)U~r6+s}8}njF=2R{nZ>=p0Kn9=+NilO^Pw!wg5E>>9pUffpZ#r-D^jW^G*x zsuIce+ZLgp$J`jCpbg318aH=}E>@;%%1_~uNEB~8Y`}AacY-BBciHT!Zgaq8?kgc6 zap~-n>D%50up;c4>IV;94O+IhcZU z$y$gp6gcJFKpJk#VOg7!$$y6MN@FrEJ?m=Y*{vX42N^|gu5*L1i;?R_N-V)U!E2ne zD;e5LdTt6YNfP^{G;#>F!;2}jM}NFxBcFpL&sWAmacxaqU|29X_>Id}y_kjbSTmAG z*r0)341eD%qaU4b0^Yas$hr=x=N?h;=z`MZ*vxyRrpj?tquNH23)_XP`njuf!NsI) zlH%mfK$}_EqTWyE9z=$5UcEr*YP&%CX7ieDLGYR>tJ_)aRKA4T)WoRA<0(p=T>^>S z1MXgK4Tqg7uMaMIYF?}Bq)6hsGf}AAu>4-C@0MlOOoL>dtA}i!m6frKvl#4tl)MbR zldFzLu+FCB^=zWsv%m$DaK1EmBx55Y+N*c$JU98~%yGIMGB-KSUI5(X$aqN~jClh~mk*J0u)IIlpZ$<+Wb5y~%3-&z zi3V8w(iqYnr<@;&RJIBD*Xvkjht-A2|7QzNaqQF*O4;{|I`D? zYW%hZj^!6OI|4B&iWlpl8~AQ>(Ef7u=~-2imucsxduQx%%@Fk(uE?MF<|?tz_YM5l zlH?^v%bC@w{iML_OET*T_wIn?=^Nj9A#dX7s7lcug{HZ`R74%iRqpl-9CKno&I5Z7 zdXp}g`yYCf3@N1`Yr)^&SC!{!yu9yD_pS1GQoqZc)4GJ}71S9DNClfrj&IVbnF1#L8nz6yOilS_YP2hTYv6@2%BY6YSKwBOh^%s3qS`1F z`pr3v5v2$@lBF{Za%{z?DOxkZ4E0ce<0^nkp*~zL(5-cSZ{lc)3a%y@KEO`Gy$ScS zZEd^~u><~-)}HdbQNP(=&6@&s;~$Fmm|=R$522Ow`9C3GW%zF(VB%!?2L$ngQ9lrb z+`i8}%jo^>+Dh%f?fZ5U zQ{xa=v^uV1hbKp@@vv?t7gDIkF)L7ZYkvCsS7URwL-?-oVgD|%+aE{1q_P4Fk_|(rqUgIjM{b1AOPbv-mEN<$l2G_af?vQ-3o#pt>jjYf+Pz~sdF&LElh4c@X047`XXc&@6gi@! z4j|mGy!KxKS$K2R8_4m~T(*AVI?%BZwqhrrd^o!Na_A2Gg7IzW*J$BOT3RpX<@5Se z8fxVu5UO;NpPVxs%S5<^QaAx>Ql1v8a_ZLE4{`OUHe0O}o(h7dtIMvXyCvTG0Ec06 z5>H#Qkbq(mvJFir zV(EFTO~jCt0^WJ-;W8-~0;-6ea;S5oSQl|=$YmK}qJ?uZoPH#Lhy!omu;MMMqb7$@d=>m&Uh~ z_A@_}(xhqqRr=j89-q&zzguj!J#C-aF{>{Hy}rJl6T)i6!0^33E|km%+iu^EJw=N( zoK5RaoRbZ24Ap%4@3B{Ay3O|IlODI``o%qVG3(QpX8hah`kgnt*-FmiXpPHOUb=D} z4b=xlb*w@fOvyUTTJ$2#PRuhPEJMR=(qZ8l+LV#Dc?in=a;1H33BbHwi7cFV&mJ_!2#nQ;Zy~N>&aBw^i?<0t) z4A-y16%q`L)d&4t65=JqCWwd;RUI)n{{}+vS7yCpR-E5s+sOs%BkY@V2I2J@4v4&p z{zP=}KD=VC{CupA?wLt`u5JUyD9t%?Xr)_+24%UU{mf_%;Y2t*et=;V3*!g00ZS>3 zC`ni^d9^`}C}WtSOZ^wwMJ-y{Tpl*SaEie}t58k`PZZ$sN{P%?r|a8g+34rc=C#D- z#HDl>k20)GeloUO8ZY^{<+s11Ep5tjKbyLqKj(HzYPeZv>PMGl-)*LJH=`R%cKPWD zWYzy=0W$wL3y_)pA6eYG3Hm=f0Lt+0CyM74#xVbKTOdTW9Kwd}6xy@ZVKcH7(LCSd zro6KdKAOVo@s6{zozr&Jl=Qmn)aQbf3QK)UVswe(b~AxnzBM^6zkw_{ne++$yO+b( zl?FV%tNc`TMed>Hix&r8vP#(a%Zj(F^~$O8zVnJg)YhUg0h$Kg!v&+*< z)@}PE$2qw6HI{3Bs_CsVdl9#%X{EDTdiDh$4Eu$o+?4aeQqqH=Tv_NyK3b8rCn@>; zNpeF`n)*eY&DU@ctx2ld-xV*(mqyO*hqhcg6dM6R3KkSo0y~PGAR`614dGTm)V#Sl zG5}G6GY)V~T^ou=*bwcwWzB(eoYJr|qyf#>&@@tQ~oE$S#2V%`xEo%{3$| zusKI~#w}>^WQc92*Wa{)==m?}T@jjrsTk~x+Dz$pNSmA68Rm_*jXZly?z8pC?$xJ^ z41<)pMa|rJ){4E9Ls-$91HV5+hpRr)emx^x4w}&cE9sW$ky{9 zs?`uyY@0TL*E}{LZIhPt9p9(@-##j(nk~-5 zw`xBGgqT*3zx;5|l{$^-Qzj+CJ=l|bV!r6`)NK9pMm?_wTaUQik>GcS`Kqq$2OUbF z+Z9O^bHbb`r`CIlFXuG=L~|=P$&}EePg=eI3D^0c&!M#8#<`Y1JbiTGEhd*tISGgq zz#>5>fYc&%1{~m<4)%>gwFsJmQ6WTbl0Z}@h`>k`lL>+`lA%}FlTl+QQ1gIHA`LKs zGzw8y01KRj@$!NV)KmMFSDOBMrIWav?(l2_OoeD1$Q+@qR1i=TJ zD1@3N-`_kGf#M@|M#;f^mK%s3@nu*cEC%erxZS_n`9`o!sro&-=jOWBBW&b%*mkb2cCUM0fuMS|aFz|6gEd z{cm7rV*6*yj+?X^WIzyo`HIvmN!k;?mz;1 zPT(lyhPTsM4%2b~zAsH_5(VZ(mpLRcmqp~lX$xO~!6-E&^k0lGqo~0u*clH;@Mry4 z&AlCMJs}Y%S}^e)Fzi9N3uPEf$q$ozQ*89z) z;>!C;x>3$Pt7e5mx9KghHdVYGsS$M-YuW8-c?7sN1uXYM_ z8%kZSlg#g*q3*l=FXd$Wugb~tPrk1p`+vx0_o@0+{iISAo*O+;TZ+99f#&&NGE;$gy) z*`X|^0P(5i^Xr&w?Mt*hG;6I-%BW9u?I^AS7vpK%a1wBCG?N2uuZBt<(1rUzw552O z9S_NZUU$iiByYFAs?FJLj+g7VZ(-)-jyd4Zk@Ov;&&W^Et!=C1!e6QoT9;AkB=G`cQR=(|AQ0mu2oMx;B1en} zh#-KV%|t?zR=V(Z+MT|yYj~GxwyPKG)$R^woZJCg+s3nw?lW23%r9Hq-!J~(FQ2D> z2>9?1?mY^|$}C*1d^Q5>_AERb1W{|BW@=2$7?>#mXZ8?;?=Tj^(vK&nP8!_;ZgWBZ z)^pmd!t|QPihr63A=I9s-mY;T_ZYCfFi}b}jDB1rcEP=U2=Gt{({DCM-ezd6N9Y(yf%+t$>Bq;StTnt6eFhb~YZ8pC5JNJz9KZMcGcs$0(XzF0Ghw zZz*{MMu|yE%3i_Tu1U%%pDjiFKwBePNgd)~obTqKjf6rXNo z3pLK$?3B!-M=nnUYbohOTdqDfez%5!*)Eq|LQb3<@rNZl3kHr%GFwNE>hb;2l#tL% zxIv{_7H)m8dOoC#4DDQ~>mzWryHODhr`>OQBbw2=_??EgUA&q!@#x*7Sc=>?W?i40 zt)jX7o+`Z4Oh8Zpq6t6?;u8=mC`Gt3Z&`t(2{7_kLEf|iPSW0_;+QUx#1UyC{CXa~ z=Xe)4A0r=dkKo_+zg%C&y$-$fhTKTMiU{;Sv;{Nc)_sqFBrw`eo=uH z+aZ_Q^>C&H>6AwgI`3L|9aW`lL|vBNdBvxWmtkX4N~(Z4ON^q5gI{0oJYN{EuJ&#i zjMy8-|F$raE%PhIcgxagdTuf>tnI!V^7d@5B&1 zCl4Cn1yJ?m~GSN#}CV-quG>g;EdQwxxc`4 z_2ij<#qzw&P5AxS`}P=$yBE8z@6_!;JZ8b4V?nreDF#~_{Qnk_BZLCNMm<4 zKu+h_w$w4w0Bl9$J}Kyg0T0I7o?B)&wz#~o0U3 zt~lL~a@RI6!3V+-(89SdNGsUpk1T^|Iq`H(Ztu6wYWNx$iWpTq;SXCl!7R|K&tXn#56gocqjFXS z2c)tmcBgs?l_kMft5c7p2WUnf2WEr`)HzIt4hSp2B!pdw!EuP(5HI_>6`P~)J65cJ z^>7k4dc=318d(2zoKd^39loW4vmd?U5m~?}&u?l+W&tv-ktqIzxQ7j}SjF#w+3t9- zHGZL`Y=~;dVvb@(n!#l(E1MlO!kJm;NQdC*sD5jUuF&a3H_~RMQ_x|zcsCR3JlGmK z>vGDT=M%m@0TKa!T`Ao^pUOr`)xcs^z{%Q91*(mR*G$qu+fJ1$0MA}bRTgX%Q6jaI z6JS3rE3rkU>1+@ED`58XYqlT84X+tVyfF0)nZlYezrnl-Cs9S|DeU6jH*CYHqrO&* zZYM8#yS#cRJ|(9Dtg0%Dsven4I^f(Fa^hvYnx zu=q$wSrF%$$X{K#rLV`S>ybEVgKB!JV!!^*m;0^MXWk*>v*woaq?ylE+U#3AaX1gp zL}WO+@4-9<&HK)x+}QNXvJv=<&aByN0qM_f9>w&lk=V#=iEH5Xow2$tEaJTeQWfBL z<;8q^_m3_=qp)3g>RBCPIMR<$f5VH-LJQxrb)*l=;jQBGruw9_8q{KdNco$1(#UhA zE{2@RA?yL}WZwor#5#m0PTdySkGfYJHXN zW?2^PrIh^?Z%A1i74;s@f4#q%6`jOodM`-)*jd@eqkh?ra+s=I2_5hif@|Hj9xa{Y z`edK9B=9d%BLButPQzqIP<>BCCOf@H+CC)_-%K?-?#y%TOeH&s^nq(VVU%jBz3E|@ zyey_ z3m#mf$SrsJGI+p-;$iT;q))om9TF)-9(g;kRkd2>w$+c5u$u}Lh}}!Sl6L#H88vky zwB8pyghPMu|71yQ|DB%6_@5Gw^^ZHA0fG#g3X7w`PtFOfDvt8BayZH&E4!HLOSvL*=;>lx(z^KacDUvI<3E{| zzI)3aM$)7eNHTtIy~0PUs-X+bypSR-r%ltWlwLd~#!~7KJdhZPP)cH*l&+N}YfU%5 z!JW*(C7sJ9-Koi*NiascXx#Ha$1wL&9-otcI)Wtl?iUzIEJ2i$CdLpP@frY-@M=BA zl&L~g(-1*dyRDsVC?~IEM@Y=;J0F;)Pej8GU0I!plQ4T&2d$PWt6___ zk`baaUTStN6nTUsHRM#;s1hd?;#03s_9xsfR^cS2f{M4?jIej>2GJ*Bld!B*+a*#h z)&jXghi#tLV^Y-c_`S=AP~6Egg!NgrV3HWh(lT%lQ8a(+vRcQg-lKA2Dxq^qsba;0 zW`;kCCuOa-Da*C}&C*)Uw03M-+wi&P3{{G>)d0C$t#i@%i@)T13u0Nr2<@K0kT8en zY6w~cbf1W%K&ud_7)y4Jaja=b?SQ=@^e?BKs7|I?eTlNOgtV2ddz>N8cpM$ID4)|G znS`!i1KEjSy6%O&(}NwK+!ffKIBm|Ij?{moxo@}6?Zi}VTb+_5W;S3u@^{E#`yZ&PCTk9e}`h!?$zyzU&@+}ld)KZ<#ED42eE zt-*^All~=xGT#%$t|!Ai@WuE2qxLuixTB#F8R>sAbLQ<{$cKmCheAf%xN&bId35AT z5Ng-r7&_?6#No5I4#by^6J$b)uq?yY7d7=&A|NXaTw%X|7igPCsWDcgx8%zhOONlC z1w7;OuuNS#wmL2N`%$qYF3l z{<94wRe(wkl>Z0-6ii|dmO~g+Kn;ngPLGZ+kpqUMsgj~ftw$!IygAw;SRG}8;?Q){ zb$Cewyy3nr{GxmVW5)2__W{iia5mio;)d6~f}CjpU16kZQ|r*6rupue32j!upvwiS zdz*bK7vHP4I~SK%v72!KJ0pg&1cI|D<^o8o5GHU4z&gDT+VSLolLK=1Qx}USc&e6+ zAb!w={DEQMKCNF8qQs}B<&tv*_tv{n+iaItjq>^wJ}EyCmJGP3yrtM=?1A(PsE8G6 zv0wyS3TVn;Mhm)36_xIki)ClFUonmPuszPaSWAhmsOajqe*lx-8w~u9L(z*~kJrIp z)fokM9}o@+pHJvCOx_d^s02rxp=QB95JTmP4T!7M-Ug%(DIelCm`6Q$KK@tAi_KS2 zX`>sY@^rptCYSklm%QX3*fD&o{n29lBG*^!6r}|PZ=T|iz3V;e^zWBiKD5(cuO-=K z_3MvH++2OxD?w<}>k7dMjP<6fm-Db)I9{%2b(Tx0bo;-fHPuolt=gOMN(K|;Yj@u> z*%ge6$|p$kB}{4c+wbA6wI(q7Ilmj!BzV=5J}lH8`kk}x@m?dCLcc#Y1b7*4I(QvW zeaV~yioJ|e3~^?o5)xPMdC1;BT&YblZa0`H$BvGQ$2&38|8O_XyQz8MfOh*ZF28_P z_($(5Mpe5{)GJ%g`O;s0#=J?G;8IeYokaB(6a4*9$)-oKS|7c+6zL|!>qypjt!=u! z=$gQ~Aes;f=E;XDU?U6fc1VAN6hy8Wg@s_}{g+1aUrC8f{}@92bf`E31rq=uaIjDpFmM3aGQj+Qx$}R>EC1UT z#l*n+57oI?%~Jto9rwm8hHR37)C7KTYHJJ_lY#RzeBALL;;h(E^KBl$5#UaH*}bhk#TXk`5EYq4~WxU zFLdADiIn~D3e6hRUE^h>ND?dPk>+^JVscE~teloRaKv&4i>zB1&=N;1jGDx{i|1I_ z6C`J+nHfdBjQNPWqOr2YY!^(J(b%+&O{Uth$QX^4xf;c0Gt!T`bg@>742g&^MvCSc z+RdEz|CCWQiei_uTNOHi#867TWSB%k4T)B*$7SHfXC>X~U6i~KO%I!qiQAhru$sB% z%%HsSuY7?NT||Rg;gbD^paIhk9X5ts)3V`BiL@PZGkVhiH0!I)n0$4IOn2P7T_ zI%c68X}kl>f`8X&(g7KY8tO)hFp=nxeJ6bvxT!U=w;&yPL<7;nW$x?VXc;UvEI!P^DM}p-?p?5)N{*}Qy?jU#f>a0X7~*e zMufoxQ18YC8cL}cfW$coT%+LB_*NYZ-}a); zC16P!5=z#Dgw`U4%sKPNqar-HBZd#8+vFBM;DKTq6%jHf$o#AqK{5+zy?Aa$J^|ts z90z}@-kk8B=JC?J(vGrYFF@a6h^wqFa5xu?;rm9e5VA&hd z;V9p5k4KVvfbD*l@{=rA(!Lo5i;HI4Pv5-M02;VT-*-0E>2=SU<2FBhmxoVy98t~~ z$Y6XMI-oMnEEdtfhIV-YSyN=HB^q-j8g>vgY4_wMN6q!-dV(4I`LwDh`_Iw+nk$CL zy;VW)jBl7%v8N7^1zgB0?J%YW@tLkZ6xf;LZ-p&U7lGSTSk?4Lkq_+d)L*%e`d~A9 zT5yLT)bb9kdey(SLpyX)FbQ5~he;W9U zi8Eo=XlkiQs{7Nc^7vm*S9U9$%6q%QLzXxT_pQr*Q^1rU(ckEGdNz7WQ-w%<(-&-Q zEWTJ&T}QEbbRzS=Ky2Vgyt=$fKyt^u%F#eU#R?fx*x2;9zPyKmZI*3=P-Vuq_djNC zD2q)HSG(stXDPZ~Jz&CkzhEfQRp$1!?vrqUqA5uCDALVOMak0PJgO>qfAkFlF0(q+ zf8Z=1UhjvF$+yE#fuFa?)OqAe!3kH1kE*-v2^)90$*}ZbeyKvb=f5$44HvRn&}oG) zQ9#cKLmL3e1UnnhY{`kXP$(j2V4?CshkU}a36U3x=kkRe5t$%69q$oR|GpnUqxUlc zNP!98gDz8myXMoIm#~aQ^-6#PNB20$tgVb`)_(;%$dSm7s;DXlZ$2X2dtUe^>FU$f z)3hlsE9h|HlIM#cvrJr=6tL5$^VRWhxDXn)pUl9~746^gl|}2m5I$U4E2{S0)uQNZ z-2hc_mE(4ZGwo9oDl8X)tiyF#U24M5-+Jm>UclE)r{ z{C+i^>Y!UFhD>cmzkpCa@7(?meY{4O@l)rdO|DMy-XZ??Zvb(a=z$27yrFPWPO_*sdw0ZWc)Jv<6bB($^iRFWUCBWP`aSL-i<2?PLWlAm0IhC0)5${ko=G? zStDyOIzj^k7jU4d%3oilzX6HC+dicv*Y9UW-er^XaH~um5)J_oW84m1e z(h8{3X+61VA-f18GNgXG@c=Ugc$LV<8|6IOyzw|n3n+LH81^+6S(Yqr#3WW+j_YJ) zsAm)_x40ie^Su7@4&{oOgAydE`G!%g8LOEioo=_Ag=#yjk^A11t@F2{5%GxtSDqdS zes&;iF`%cnVyC6&WVc|f?ew{L$)4T}-3;NSj@5~$i({_YH|W&c%|5Fe+v2?p`p zp4<12I;&;FW39RhnKtmi$iyh;@xQKm;pmH|tNml>721+Z8~|zu(7#NE*#G0${=cOzY@BTW7`sM$feWChw|>*qHI{`>v_*EFz}1tX zv9xFy1yDc%CK5=2fC`?Q8ftP$>t4{{o_C{@V$>V6^f!p~ny^|KAuSA9WR&zUpCr6| zxw|8dN%!1-Q*>@|yPxEEPu%{U(F93~fFwnLDB;$*pT_fo`z{XEfcC+{~U1z-+YJp^EhBhoO+?@;_IlH^O(N# zY{vAWEDcMhd^(mQkQEVYNQUHeNl$5Ap9X`W3wfq6lRf^2FkgNofan#}<6VV)KzLU`aMn&H?G;q)y>I4tNjF;E+PuQlGV=$sllzO$*n818!VWx4W6=SmL@hw zcd6G_rB1Am4<15QO@d>21}5a`qF|ytb~Yx4`3VN7w8-Eah;E&74e)Cra)s66^TT|O z)S&$FE3Z4<+cnn5g;3RE0Kt8Qh<&P3=$acM@9yjWs8bBA&})~3KQ^X}f2O=8up&+d z!bTCLoZo0$yB8W-*gr2Iol zYLzZLU3{YWP!75zbisMyX@%IFrX@sMTvcwm1ib`hMcN#xCEP7hUA&@rSq{4-W`*3G zz9F=((6ThSq-KTvGgK&bQ+Q4Seu6rd;8f%;S1(^JTctF&LO&L|E_qg{S;Ah@o5RmqdRo52_HLf`BR$qL82T8>;X~1*ABypbUd*Wo$ZaE!Kxqd4@|m zL*ahOANl|!NGvhBD%vYr9WxBmJzXOMB#kA_ho%XwWf9sE^|RC>v1~JmQ8oRGMUZjc z+~~B(G*OGpa;hXFBtti?%gm{_z0ou1t($UI_RYy^WQo5dMBdv#(eyr8bJBzvzQkMJ zKK-j&gVYYmpWXQ7cLrvvdFWJ^F(!9ZMzeQ{nvmoc33*Y=LStibqqF%75A#bp4GXxg z(M$ce@v-Hyoh!V}6z6m;*4Mg)Aa&O}ZK+xXojDSsyBT7Bk9=B&!6KRX97CL|L6NyAGk;Z$a7qA$AcOI(VQ?jgbTn)e3&9G6 z-y&bZdWu}24x{8p+R${5UE2cyfh(AK90VM5v#DGh3~^yWU-nI^v=-CrCRgq(B6!{B zHqhwAjB4ey**x>V#pxjJaC$rNZl&L>5jyFr?QG+Ca8M&0(C1mF%>cH^PP$ff2? z->R*pp}w|+**|PI7&w&dXd}nfs!rx9cr;4-I$Q|S+sz4O>E+@jBB4BE*g^^pqS@Xl zd+((Paq38jLMhi($wf|zw=(`E3)Mz*6RuF22f@lVF@3`x0$ad#(`3zU<>)^3k~)I; z8M11Iq?~UvL$4619tEccmaUSfE4co_M7k!2GV!+mwl2}iUGMO;y1VSFHeLbU{$QK% zQNZ3l!Ct9woO!w=`%ZlJ?9Y^HLq{$awL?rM9x3iIp4eU&Tw_CqC@@0PQVOhEE_jt& z8y*O)979yMs*l~RUd|fo-aRC*$B2>txx5lJ|>eZD&sSu47dm zZ&J1oH$Dvj@5fOqBr68kE5i(c=YAIBw#m$JZy~KfpQHZ%9^8H1(F|^G#2%wRt(@Dw z9o}ddgN0`GCv)04;HZRxeAj=7LqspOh?4f2==mrYSxBkbh_wEFA*MXbHCjojWHCl1fhbeF4wsI5H|r(ACTXmna$Rkt7`47;>D|YbrC3AUofZ_t#%ynp7-MKUmL}wpV)h%RC$(n3#?J+{#F{3J;cG6O zd#J>8xNHtPzEjzBfmVCQA9Z$M)5Vu|75I^w{{Yit;UL5VYVy(GAs6iz2F>h_y_mLP z494n0D^*RGx3HI?0AH=h=~`T6z$aFevKBfmO9HwXWG#U9J#H8^+tbwDxpbp}&ab0X>qkDHh?q;=2+08^uY$#0tPHy=9S6EvJlx~m$?p)Mz9 zOMO<+dpT%M5|1E3jjyG${09+VITaH2ATxPL(c8NQ09-oMk;f>ytZ$%UQHtu;_S2^4 zdzRW^u-f{*iqBH_olGrxd2MBK3pHhtQV^27P0vxb20)8=+u+8ZFYu4p z50-m&0?W~N*uEmFIKNC>M8xD=h@y<|@CTMe=(x3zGzu<$xDq8f7oXA5Ql0UYftYV zyM(fG#nfJhE7iL8#~al(AJ(G^(T`({>P9p-i$QvGEB)Rnnc`QW9i=Ud#dhv>T5*DYV(C^pP3JtWI;K!l5EUmME0ge{ULn1NV2ouIYcc!#Ub;G&*g^N97p_H8or+%Q^$w32*^%+S3^iUk;)=Icgb7!FTF=#59U#<;unP zjFOQUOqE9a9P^lOsAQE$i$)}o8$}ffJg$GC?#NRn&lxx( zveemPA5I<3Y)0_b@Oi$xT$eO6!jk_u)-YSzBxl{R_~Ve`rv{Nn7unl^e7P1)hd?L_ z1;-&1@(>1moku6qU*AE5M+nwE;J0NiIOACANUEO!C2UQ24Y0l6UmM%&SH*QlIy@2z zBeY(q(Jt2#aV(1{NRe3;2L<72S!Tl8@jWthHkgZByUTKPhr9>K;elJ3!OR(; z8FhXIbJR8ol0n0yOk@>lX=Y_P%MY1dfUtuLz>Qa)*~NwA{iqj*gVSELUNIdiYIpwe zFYG1g&68R{Q6^UxAp_z3vfe$+pWS%_yRYODd3UjlF=jbBGUSSwg$+19wACVuW4}jv za3dbF0_Ba2U@-Qe#2tML{vgh+Gms;Mm7SQDHCXo4v5PN~Rm3e0{|zlFb8&*-u9x;r zmZmE_<-+>?$)7ctcb)II21}37MZ`tK0%Lk=j&^c%pz1J%l=3U;ZrZD+k@&arkL%z82vUTR2tjhJXJ4UB`sbthktX?D;%vJVTTp1acqLDWv#i9QUCtSYr6oYS2f` zm+l^)FPlDtQL6zKKfJdARCw_Ap-#Wo)PuK07Z^R_fIV0==WkEn-MR%^9hl#fns&MK zxjUhf9_jf5i`MQ3WgK4eC>Dge>dR*oQn>2!Oj<4|`4s0}4f-nc?iEjc;nGo~(ct1nDKFn*I++?-GJU5U`FTg`8d^m`Nh4_u zuS-=~DhaRP_kxC29dJHl1A|l``iA(1R-$@x5ls~>Rf@Gou2^LY8afyJbKjQyQ)Kos z#JTb!kq3bYwJ5HL){RqEx{y(B^E>GicPeh+&k}#6VP)a7lZ8vObRkXGLrP>Ro#ZID zi`8i+o4{9{buBa~p?-d>St8)>!9v9O(6hh3Z>4ztWxYnqU$3F~qfRi%Qqw3WOHNWp zQb(?L4bbP;T@{pjab&IV3fJsj%GU=Fbe)I!|L z@sJ3MBb%@WEaV}Wnt)9Dtio0|)?=rU`d4fT2ipuON+^+A8 zL~?)!Cl{oZ-npLAM|}+@l#2PS!7Gw{R=&o3VY(l z#K!pHgCBOu$Oaucq|EhpQI(2rD5kjoK8DT|^2b%kC%5smBFW4Cr5fW*6}> zoiOy^pN+PIPR@t1%H2Pj=cJ5wb5Y(Lh$>*Y4NJ=ye2{X>;DN~Ox`g|30jhIN0JYvO6Zte~lmCN6MniMteBKD_I zz-5gqHb+}Oiih%xdd;8qr4iD&zlCB!h!ymL;22=RlCj_RmzY@P1;0WoG$*`tfB#5y z^Ond-vNlMM={&>zNb|aS=x$9S;hAUrHN@JlBKJi=K)1{Y(v+rL>?f z<37K=RrEglfWN`Q*T>iCd^NB3J8{vU$FrtjB~?K*XzThsq*}K)n#W<96gqK8N=r=0 zgrQ=wt{Uv=~6nZ-|XD_wcdYUhFcIzkI z5r%k>R!LOE#mkJsQ5`39H-pnD*DLce)LsQ5ljRccJysTU@Hf;l?guQCk z+u%|PXWqSUh9A~N)NzUogdP{PT<>vYx|te&X**aFOIoTaQ%}iY>iw)NRa>Nfvw9%N z3BPOk)^UClFLIEw0=~`kTiqdFZLnntpuik2X9}?aCA~Cu_+vCnu|*lCFH@a7uxP+|Im$ z#=L5vP>l6Ktz`e>ptrC*_HTTvJTc=b?*W$kS`8h1m0vBXkirkGsokWO=NEr(9wOuJ zcu-1bqAyt_idi9&%T-JZz2xQT#3I=#R^DhoXm0`%uBAU%9Ak%8*&W_`bc@}O%gBfu zS+)p9iMlaJRWEXwj#k|nJ7uA$JNWoVGw@>$=&eCYn^GU+xP^G`PF+;JXi~{w_lS%& z=;QMNl{Z84GDg_e7y-fzi6auAuWD-OY{fz6fTjD@oQIog$k+r!*7J+@k{YID?~gbPv0D5qPxkulIP*=PQnW1F;bk6Z5JeDI#w#=%{bc zpT5ix(Gcz?N+Mj*8F_#*_8%U_R-rdr-^G!F6LrT_8EM_zx@ z{P(4vQCznhc9ZvI3!nBC9W zP`DN@8NOfST96jG!X9&H%YC>9_^Ef@?HqU9cJrkkBGcBn71~B^Wtm;ARka9zW6tWr9BSK4i^9-}g*lSVO7uKGKDfzaGnwFb zFZrFXl_Aq;+k&R=hf-In?`@@PRv^_<6mztKXH;^oebl*L@4u2axAa=w4IMdlC}m`& zXBDJeQ1OkR_5i2TV*GFf)&_8CNsyn^VpkRp98CcIrM1^PJ8m4??(`vguIHAsvT?ok zUMDNWS#th7HH^mg`T-~-@OWuyUuJFtA98OurU%!{y)1_I>6bYIOh0zl@ll?U-bkPa zj`X$)IzV=7U^`Z}zBp*Z8$E-TU$$eNOFV4i*v~z2)*btwIT!g(OtPY}?uDNQ9+K~k z`AnVi@_zg+9hPG6gw&VZLT=P_{e_~3xt+dT&KvcrnKBh{^NtA1P&-|k9#%LEs{yAD z?F*;wc)hTqRZ|))bI1A)l*3vZb3kqdB3tK<@Qn4K`L_!(E{y?f!j=VXk6Q!4J=pfJ zLl$|2Ndg>}=&u5Xf|!+|r7f|0QIY|L5A_vBzJEG?|0b3oYMVdw&4>>mzy20t|1c3v zfidwIS+oxArugl!J+$-LRLT&uWOvE!uvzlEw6a7WX`^OE5QeE(=E+>mT}$2Uon%#D zlwt0UzWj4rWLR+I->%@pg~R`^vUiH^tlPT1lZtKI=08pDsEeA69H%qfHZ20`OS$X4v3MCiFQ-%mMZe^aPnvC6?ax zi<($$`GczmSdi3tkbc)Sp^GyR=QgTzAFue(`p5`)PUF*UT(ND1j6E%hciAo=2R8UdT$_=kb9*3lQONNOlwpRXEO>d4{KNF zNFmtMK36Bv8)W3%rxQRxSX(*}E7_~Buti}$<>)KZBYl|S>@$|QKFS8K<^+;?QW#4lSC$sM4R87+OL7=$tI^~#rC;k+F z@nAqGdz|X|KF;sUF(0|$g+x5RFeVqTU z^y$afed~RGet&6B0|9j(Ko|dq5B$Rg^}iMT0E~ct^D3FBL8+sxpyvW* zgez)d6{gN}FD`3hu%VqlRjDZ0S66$9NI?=o1(T8jBZG?N9_IT5DFXU?D$BmpLMlf0F7DX3mKK?9yJz(n) ze=Ez#EnED743Yd5QRt%Z;5lr{wOz)DX;C78QOhoSTe?#DTa-(|EWF^g7d%9i2tZBz z$K9rQfImwan#*|bFJY89XIZ#baS~0lDDdgN$f8J4pi-Lrv&$byscS*cOdeeLmUjeb z+CPbj-+k6@4Z>>qy;`%!_)n&b)TfLo3SJ3dE&)18x|-?j8)}&d<)HRtHPU*C+*rmqN=G-RT0Bm(!+?Z1 zQ5%BhQIMc0p6B(nHG{aVb7g{plZo|`YR%>?_#;Q0T#ax{!f;9M2)2dF+ z$b@&U6(-9pjy}qR^EJJ!156&My^J5fzxu9JPV1hgUHXc7i4!-#niV;?Zq&H6bFHJn z8O0Yebx9%mIgreknH45PeO+)uSMuWWuAW)hSDRiD`mB>EM6<=q_(JGOf{W zBv!u{!Z=OI{_HxLl*$X6g2*Kx&AmK67ILNi926}+I-P(R?|7U*n0@Yu4(f}LVTR*?pR8LHu z#Jrlyw&p2-Kw_pYPBC*Fr1>?*hKr2|6N%fD88rw!l66_9ew@`9$9ez8TEo0FX7;t1-kwlL;wXa1vE zOYNv)Oc*~ay&_r>+S8=IzMhv-9@#^F(ej5@QHC6|&m3_??tGzx2ERIYML>BQj1D)w zBCR&1Z3DhFE%-3qmURih!Ays@)l0{r&muORV#qEVdw&5PEz5R0$3z;e6M$?&GY(dO zVVhIs11_dC6h4btpIt3oL2_O>87Dtv$G$xVB^0%s4+WT`K_D0W(X({tMTNPmktT1i zeq49Qx1BpgKQn?tpSlH{tc}d8epVn@#N?hrULh_(oJQ3nE{Vix{vfCH#j&NUpo9?4 z+Hvtog=fs5yWK|;dOVn+xPN;5HxZbA$G-mh>eY_kd#TwZs*c{d7hc2_sT6lp+}qOB zn|d|%#UV2Q7Vf9RmS8`6*RO?jFtSO4g8DI|3DO5_&&Tl%dsy5Zr{2^|Fbauz-4E^Y zjH}+nEwh6l>*UfUcxwQ0V4M`IaCDAP*ynr^c zR0UDiJ9OINN$j=d7WHL8umSkf&@{H2U%9MGW7T+kZsfJVq$l{lS(8*;OvEVVjJx1J zJvV9x=gxIq)RuhOecWtSbjiAyu7KD@HIv+(Z6q;^*1)Y(PZRAO*Y`sNkirb%$rQa@ ze+{2|vxNK#H0J+EY_QI9@rab0TTJ=z9pUM=FWvGsRr)!$LspqBOFu{lg=He4ToFUn z`gU0N-gqyd>2P1ecGvUy*8SGhQLK3;@9Pjt=OwHy;L;IORYqf5Fy|R8!7es22&52f zqk_x#s39gcTkfiX`3U<-9|Nfh4n)jCM%dQec*yS~gr%abq2De2^l6|&2{byM-Q;@2 z)+7N&+ovr1WDkk;n(!3!%_H+cUya%8tY=ui;uQ0wMXzr63wK2RLu?#`ql z=Z;q(SNtT5?yW&ATrklOq+RF|nb6F1%pd_2B_ng&nsN*9zu?0Sk=dHQ1)3V|FMaEu zu|TjPwzESrGeFh#Yu+tN4vo18+OrV!!yZpv)S>KPOOc>74pFJIUAa`Hv5%97Lg?9% zX;2|6w;^eI0}Oe7fg=&DQ#0Mz1Oco-lDbz)eP`t$XYNg|If>f|%7CRi$Pr^8tAyC3 zM{&u_?6S-JIoQprgL_1EwH<~d<{nqn2z^zRH}K+xjG>~aUsh`FIw`* zmjdRkDNXU1M#A|ctPlOuc*<$4`3Z8~7n`oCSeu^>06B^NSLFSNXF8qBBQWk2;Nm1w z#^Y#A0{jg{dz(I+QU8r+vCegBcvudy9(!t}Z0xX;*G7`50_RN^L_F=i-B=a*sBb5u zl}#7Nq_wferqDepk-Lhb1Fe<>s)F#z>M|i#puELx2oU?i8s+@bREBiunc-_4uJtV= zfHkN%9*x5Q=>@24zf|@lH=45ZGO!b9SxAED3$LId=~GTLwR8{gxzOr;9m#jL!>ya$OzdHn4^F>+j%A;01Wr!98D%0Y=$4 ze9L@L4v2jYT#wIf5MNwhTD_krFM@+0AEQQT%<#TR0)>jXLg8<1=YEwcz(NY9kNm!| zuns{HwkOHng|^d4bQN8xH1=%P^cD7caMzKFLh-lm6ck64b?wX7d%Z~Hbh9|Ry2{Yv zlU{FvLY0DCAJ@dD*lsm%R7RaAbVffF!RsG%@^5U571$nkYF{)zaLMU)BROg!j(;YK0uz^%UnN z%XZm%exaLo$+#$6bws?2`3Jz#Ld}IBO^q^oxw28=4cSpq{>J9_)}d<6awH#NEo->J zZ=2>`Hqm&da%)j;k&&-V-l{3S&)vl6o4RmqvHxjYL9^B4)fuN*l84jNUbg~D{cMVA zF$OteUi^_wg_f!rhYOmSyQtwpn!WV#yvUGTybkODfqIX-Gg>0<1rclcS>!OB`&*n^ z9eH*H@7&m`f*)h(-DEGZpn(=MvDaP}d^m5H!6#%Z_fX^v52D!p%r4NVB&>R=L3|_~ zl8sSI5oJu?>e&E#L`ZLZl5p&qT6g^S&44*e0NJ%fb~i2LolFx*p0~(f2yHvf_67HO{E=r>)KHYt6FSNHP{zkcpwupo=$_w^s>uOz zS23OQ%ewMwKf)P}e8H6Hv&FN`I9Tpe!=nVQ7GycIVCOh_G-iZ_ag8FW+~FB`M_ljd zL!%~%c6pn;TzJXXIYPahkiF5Vb77-~A;Rf#Z zX^>gT0prK$$GCSy4{%Un&Dc(Xu3lCz8Kb3p=PlYmrS>$#OF^DjAIGB!_(?Bzma9Bp z$A6Ae3=fW1cX739;2=o0md|-MtMQ92Nbrh0D;zcUCTM22uJ;_svP|whDhvJTZrnpE zAHIa%^p20Bkp4r{@Q(q9|I(HGTXXQQ;l6luWmNH8K@uC&n z&<1|j^a~>;^0BC}C!qmF&0Sw+m>+^*2~+Sb3#tsit)0iGwHc~hrFkOSo&gm+(;v>YU^`0qQ` zvKK}PFnUAu{D!{>agDK&!+4?*$5zJho}$a25ww%&rVi~UjxnS_kzbV}Cev!wX=oFo zK-)c#x0NQ-zV{-=-T_@0C>~jW2IydBhXDUHh3x5#?6Hl^F)8GU)yf~+h6YRwNqK1s z>4PZ8H;ONv9*RtQq{l~*!3)T@*C-xT9zU4m$WhU5R(pwkiTH%3W{)MJ8efTXN#kZW z+ML9o?Sksm2R4Yu_A#PfyGo=yc$o5LCzHe_b9GvziKk^yBOTL@>a2z)p+_+y(nPMb zIt;WFCl=_kmTTnJ>vGzHxMY^neNQLAnWk10Bp83e3L`1McAm54O#o}Mb4#toV zp-7Q5LU|&1LaKySi7FFL;xXd+h!}{^!2}igv7#u$s+Y-jkUt0Oo4tZ#3H_j#`fEJcNfWjr(+5o3;%{v zoPwA`j0^@Utw^Iue-erE*vvOoSomexrYCS5=wB>nESetAT*OF)!;JWR_fn_#nAm4laSpLBQMP9r_8rGNiEA8}_H28QuoYA*e)|s;r26&X-e#n7-(a z2Kb<3BSbY>o*aZ~Wl54!8?!jG4Q#Iyb=E7$4F2d zT5WKz$czSq*8LcPa9`k}TD+@$I|v6AgLSmykDQ+eQl4~fKwtQ*T6FX@y0woIG;p3K zXme%d*v-V`q+?H4Bbv~iL%&zz z_FxeE9vN+m`J7;=D$AD+hPRRjH}s*n`hENf@IqeoMCNta+j{O&C#Z9_jX@nXdg3z# z$5fU01ZUj7Uz*m;ls(0B3N&d(q%>8&@cm8-R-W;+CharaL-ogu{Z#FU#<)CF&xqb; z({aMYYd$HpSr~{T3!#7}UeC$t#8C{fe%8nWB$b@j5m^6Sht9bFiSAv-> zStTfUe|e5MvvM&4^%BYQP08lP;i{V=)k7y_B-=`vo;3N=Mt?13B2!PjNzmp>jAGL`yJ-|fTHReyOq}p83VaK)K=ARHN}|A75=y= zUcVkd>Fl1;T}WZ>(6tRzWh+)XjAvx!?7Zrb*P*MaU9>g1FQ#8BW?T0`@UfqM$GC+N z+BlHC$FSF`Cpxe8r)ZNTa1Ibx&UUp3q|>vdmx6o05Nu+nU&}~PIHjyHe((<2+;2Uf z$QCxd9{e1>g*I$bGHf9<&}xVKUbg|)HM%uevp0EDx|S!i`o&|4z!kTSZPF5IXdUWq8mSCH?U2Yqy*n{=W{yC4;N zAPHE8EK|Rx=_yGFY-B|Yn4d9+unC$;IpMTwy` zGt@1LU)xhJS<98X@2>wQrySbb3}vkIw5`GOjniqw%#V=1XH`|y{Mqy6 zIle{!PI%RA_mJc9px18HdND{nq@0kQJ!_3fItg?1!P&g3LiKw|lb-@+#8r@^$HdnO?ypVX4_Z`(Wjoi=8@dsoSSJh zlK#gHM&Y&g8X36CM7miWHPa$E#O);9D%b`}Xj3$%bl?Z9>CdG=x3=}J!TcldjibdE zb5lkV)>378Sntrg11e$F1ZfQc*UX7(PeIFgm5ec3Q!+^f)=Xr=E#)cw4kibLOuQ4E zes(*W4T zhZQd3pI1$tBIa~0G0R0DqIAs(>B?2!2cVScgngG0(DDKOf1HslNB*X;6)9F~I3(K} z+2EfMZe-b8FnHeZiW>dI>o#OL!@z1((@3Qudms<%?8mcjNvwGy!u;m?LjM+5^i1WU zfPkfPJR26)wb1CvuA)`Gn%hk{ylU}WRjnUCgL{XJYZt7nVO=&Kf0Vv9CTn8PyYo*) z;NrdP#&ufV@jGUjKbt=+HDO#t!z$Lbl~3L){~5Tabr5`?)~~X%J78sB677`KA~qkk zyB$tiApq@)PcJ-ckn3B)SC~+Y$o+xvdtNvL&%JSg0_EHon`CuxN&w??8Kd$lsv@k* zzl0HH9#uNWP0pl~DTb6nAx6rl;uzknaTI)}kMs1o*YokfLBMo>m)zDkOT_5c*7;(u zCxNdUNo0*buI=d{&DktC3aA-J^0$z!#Fd$W(^|rl&wILBTudwC*5HDOBmT+G1dGCW zFU|uHaNy|uyk?Jh?rkh#VTr&Te=YeJLhuLzgNwLBO-{FijuUi$k5w{rK|3QqsFEwP z155=>dYr~qU(~Omg=uhzw!G4wZhBTNO5{L5B1=@{7$THZim^w4quLTj7Hw`mOcOWu z%xi>dUFvKBpEJyb=$JS0YE;9vJ-!^D|Pz!Bv{&%4;z))OVhayK5>O05{g8p$q+A zKp~<=WkV^pCg+Gez)HIsh*-WH3H=n%zCJ$IT^T$Z{t}1{Af~7~)1+}UH}J5$l6k^5 zG0DTBUMlz@(zUy4f&NWpR_y)404D2e7CvURCwTV`_=NZLoYM}8(@VUxz-i}gJJ_t7 zFlP6}VF_R}guyk1_yVyu^wOoHq3*NTLRy=a4)B`{mL^fDrF8p9WPIyJkJZp0*!t)z z$4pw6Mlg-d?UE>+j6Mqku2#kd+Dcf{@X*d=+^W7ny}P4 z1**|vRGyCGPaZyruxmUaB5Q@`b=%^+e7>z}J^Kq~S+=@oo#1;PuDJ7Hdkb{osI4Bj zx;Vr+M{(YSZt5lOT|;!WN+3LAde-If0LeYmNn=sQfxi?E~AG@@j;r3Zum^X46Dl&LWdO&fU zXodT}J9YHphBAZ{nR9CQeR>->Rlr=>pKx^Ea+$e}L3I5LO3pIBC_%L;mNl!W7y;V? zceBd>bGr8Xiy|GYeG)+GQWC(782>80qQV66h*A0K9@4;12yxV&@yk#!MetQhyt29f z90w+gSnmD|`9<7@^5qw&Gd?bYa~@CZs104`BJDwTK3{AHikBJEN~tw{(s{)Lxc$m) zoR0lvMaKTDQI%{_sKv(=mJ z1bRMfZpF2=1t)~@OKy_j5hOVQGolN8yPVg3qtj7g3~^^-dniRvt*3}xlX!D@NMlDS z%#jNl6#*(%s%H)!=m16r5hSkPD;zv8KgCzCZq{)$ZP}usEbj_ko*X^2|^_Vvk=j}K6HHw*CqGq19#SV&GXzFepoF=Z~Jf|UDb4{w5dfO zsCM(!x}mmdRRujbcD-r^L!88o)#Oqj$V(tX@hJSGdz^DXcYsod>;B~z49Vp)V9%~~ zcUKLCiH@}*89ZLQr-6$#NjjvVM67^>lun;TVsw4Bo+`hxuTe^3qCwpqykfgfS#5PQ8|45<-$&7 zh-62>0!LQt@nun|EE{WeBp8~ftLqJ)=JPi0-!P7XpKtU(9Jd4JgN%)Z-*}~CMm;Cg zKGjfU=d)Bc?JT^Rj~<9akdk}Dnd^t!r#?!W zCy4w7K%fG~OTU+$Y{=CDh_mFuY7{(>5sxE0?<1 z`|%1q+kNdDAS(bTU3?=y$vg1FT~$_?D*K7e3Hy2eyy;0noD+9GPp1Zj)xHMcp<}8F z$J3g2v)(NZN!5WKp{l;Mjy^Z!^%e1s7RCl&?%nmTz}0-l(W+vXVCCL@pGT~lx0B2KufAz8#I20*yq3!mcWsv`#b&`p#Z4T1d$w;__=^21=PS1sSr+B1t4V7R-D z3a1ov|~obM>MW)DQ9k&X7l z8>IKAYr|>Z@Y=1~kmw_0q$?hZd~05+ZPjXu?8lmFGwZ67s2hh$LOGUmNQWaHl#+Cp zkPbR-*AQ*_PK23MAT*3&h2xTH_FwBoXUlgyZO^UXW&u4SI0dGI?9a#n{I{)j;=}yx zvpo-I+fa>HWgD~(81t};pFP3k<>O?e(SXWiy93m&TUuGKk4ww|mtJCzDwQaiHd3$p z<54)0hy4?$R^J7Bbf0drT4Of}tBbji7yFBW2VUpk9`x_8-(;3&G&d?%%u@`*>nmaJ?!< zKg?(u_%x1OPQLK8A0Hfetls_vm6~hZOZ%SOS+`cy(#>spkq#4-iRwzOm%rU3kg@5% zja-n>siJ+*nut#@`|RafpkiTv8=q;PaAxs^3;yV~cXc(4)$Hl$PM@dkTDobePfd+h ztZXQS0Q0CWQ?-}?AoKD65>N1OBnYyJ$YnG3FftrQbcGW&qUMq@I2=`po1X*sHI#Jp7xBD33vxtubS`1uJC1$(kl%kej{aez`oAA_{~n<8m&gzV0t*Wb z3kwbe`vv?T++Q63&{_Vsha4NrzmcY06!pZF6fpVRv^ExsOpPI@FKK8a*HbkSmXqLO zhChO2p`i9{xi@UJo>#lgYF>+Jpxv53|8zhKGBZbj5?lrCXZ=1W49|bo^}HqfQ7bXu z{if>7@iDXa{`}tKg?GKt{cda zqTlPpVU9PY$%uIsBo1Hm*F;DlGhdaBOy3ueAezo1vM^t+4eicksu>EZyZJn*5kw)F z=*t8(a_<2`ea= z9L@|}i(xECIKDcB)|+R7%u7x7;Xoq%REl6|+?#QHiGvI2CDhM<-6vifw`KP3Gz@tV z(sc1YJNp4(6CAspvE-?%ryUz`Xj$>f!*MB-z2f;DJ>9+XU^D&JXm%nIrRb~e$->v= zt|etX*F66Caa{G5&s-!;^V$U*(ymdmtBvW!+B3m0Z}Muh{5oli5No?+sinmlXIfif z*_^3X`cuJ6jc{)1k?Llt(W-T4dOHd506#loHj*sZPgy8k`C8GC&r>~Bd3HScn8JFp zKGN}IP|u=AOJ!nKL{&%f2IW062YJTy*kJGMcAMU_m8h`*!r&@g(qXt0HO0B<(!w|# zM$;zS|ERf@s7Z~UmokBA^{DykQLjvoK6xaG#7^0Ei$K%?di5VR%s+I#|FU8Je-a{Q z06!3rH#pFL*elHcCbs*A>E(pcgn{a9FqsjPGE5cZ z;ieAtL(MaZ?jR`1do^S>sxYXPz#sm&?kUlQbc^RU);Nn|KEeB*l-u2CMXrJ*s1aY9 zb|T&94dE67y42W}JBPg40r$s5*N{X<=KlM!^L@6y*Rk;d?tpzFT~rBQ&7kQ^f^W-| z9mb%wgnPM*J>M+ib^Ukim}v-~qm<_qG!MOzEP;0ogPNQ+y&FBoL&W6P)ls2Ado=@w z_p{^s(9y33Z@TW_KDy#p^iw{Hq9e=3@c4JtiWFD!c!1Cdnp*Zo}^uCbbNKZ;?syT2KuQ5RC9z4k>L1}z+II6hfZVtTe$V|ozcjERz# zUuVt}OG)0YfknH!hXlUR8S6~d=?x5&-#H6A+$9BW_tvf~4+Ausc`}it9F7Tb4X1<5 zUT#{_6o3~rU5>n?Zgu-dBI^FvgC_CP*VSH*%@M_R;YdsimIQLuXtIT2Y^>QhN-V2G zA=^0@0p%#dB9|#N8Q3VaLh(`_rV{wcz^27|d1eRn7^#m+lfdFc@&uk1Y4@T` znqGd31jY(OtP0$nXMXu@ePCax$Rt7#Rz(36InfNVB4CtlKM@f__jGn>a-i8z z4=E#5Y2fIkIo+B&)#PL-BVtojUV!OdAk=Xee}pD5q;Et#!d43(!OA7kQW@R+g%{lC z7=uH<^}a9(BPdl3A0HKIcx6@Xy~7io-nkTi3u7v%WvF|l%;{wZ4M-QiI)R8LTZOe? zI!d>O`I)~AmD$8_i}Pv?o~*S6)~1bpE4ZH*QQ((*EV$U0OYWi?CpZX&hY*;B4~P$ z*GvYf2ElkwQv|&oAI4rd7vJryZ=h(mb4JKo+~DLP>{KQH323quI2(h9Mr@tw5bfRm9%s2$uaq-0D!#)tH$M+Vl2LNy#G*$7r z!C~Xr#mybj4+js&kcB)^wXej+nRTlsoYzxx&WB7|72fGE-!x7%oga&0sQMgECw2|v zFIH4e4>sPcSVSt6mVp(ya`ZY8KrWv)2rKlP?U;dBIR{m_uyLjb7NX|PY%-%#g$2*P znZT3p&Z!KIY7cvI^Xof%6M#I#%%T&r8S+Kgv|^PB5st?z(mg)J<@mcgx`!={McX(8)1g*3Z6lWi*enonA?{}i}SN)5vDGw z=C{JBr_@r1AW~(O^TKxKh5h-^GWGy4ne1;~|0p07Q+64Snwm&9$Kk8Ji7O!6@IsFm z$_6k6*9zN7V;fQsIf%X%qM?Je@KG~^R z9$D-nHG_zn`k@wmiKM3%VS@`KC3UY~-W=Fn?N8?PcN#ON0OaAN2*cH+aKq>=#1N-1 z{^YZOeG_VrFx7~_bZ4-|p%*znRJ429-1MJ34lz6ykz1kUp{f>!?l74wly=j|x8Y=6 zKc(myY8k-AXc+Ba`aE)*jE2x9elLm}iiD6(Rfz}ALrdKJ7Dt9kl!v+B12k+TIj`mx zFHR+gzNmx~TM5t8g*RxqS>=|A@gQA#IQqIS@NsX&x4<3%Zj39#S+CM?$!%TISNoDK z2a6{UrKnk)1}egwLVQ;G7Z69Fbu5>vY?P+2mbWtL<03W4HWrW03ZLH=AGy$Yjh^bY z9;-eJJXP6K8znoa4T5_gIg+UoGxBtQv549YqG-{W+GH8FNO)QO;-NQRazkwjVpsdV z>UGaTPs;eFY)jWE9$qm!oK)4Y@++%KX}WzYG6`Xbmb?NW)s!Y0UI#BU!5O*hN1M}I zKa155WNCU>X{EG!*)*9Tw8pL8$K!lM?2G^UPi4hFk}UtfDnMP)#FRloSc`|#z<`;< zn8SpH(a6-8orR4P05E1U;ACbpFkvw;Fy`d_f4`x_plE034E?Y8Kt%=#TT?s2f7Kj{ z3`!QBCWM@f3~E|TgaATjo&Qo~F#kIujdh-nVNd~eW->36yo*GOjI^MkrBa*DZGc_o@nx*X3iGwxRG86y{SiBQ z1cf^S%B;zC#$4$($GujIh3~;OO~G?F#hCDt z*UyJ`w*cv*?p8qpPr1^_2wGFp%SSsgk#8#p?\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    mpgcylindersdisplacementhorsepowerweightaccelerationyearoriginname
    018.08307.0130350412.0701chevrolet chevelle malibu
    115.08350.0165369311.5701buick skylark 320
    218.08318.0150343611.0701plymouth satellite
    316.08304.0150343312.0701amc rebel sst
    417.08302.0140344910.5701ford torino
    \n", + "" + ], + "text/plain": [ + " mpg cylinders displacement horsepower weight acceleration year \\\n", + "0 18.0 8 307.0 130 3504 12.0 70 \n", + "1 15.0 8 350.0 165 3693 11.5 70 \n", + "2 18.0 8 318.0 150 3436 11.0 70 \n", + "3 16.0 8 304.0 150 3433 12.0 70 \n", + "4 17.0 8 302.0 140 3449 10.5 70 \n", + "\n", + " origin name \n", + "0 1 chevrolet chevelle malibu \n", + "1 1 buick skylark 320 \n", + "2 1 plymouth satellite \n", + "3 1 amc rebel sst \n", + "4 1 ford torino " + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory\n", + "\n", + "from ISLP import load_data # Package which contains the data\n", + "Auto_data = load_data('Auto') # Loading the data\n", + "Auto_data.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2e38a201-7f2d-4999-beab-5739217a9318", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 392 entries, 0 to 391\n", + "Data columns (total 9 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 mpg 392 non-null float64\n", + " 1 cylinders 392 non-null int64 \n", + " 2 displacement 392 non-null float64\n", + " 3 horsepower 392 non-null int64 \n", + " 4 weight 392 non-null int64 \n", + " 5 acceleration 392 non-null float64\n", + " 6 year 392 non-null int64 \n", + " 7 origin 392 non-null int64 \n", + " 8 name 392 non-null object \n", + "dtypes: float64(3), int64(5), object(1)\n", + "memory usage: 27.7+ KB\n", + "None\n" + ] + } + ], + "source": [ + "print(Auto_data.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7dd29324-cd54-415c-ba83-56c0d9f74159", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " mpg cylinders displacement horsepower weight \\\n", + "count 392.000000 392.000000 392.000000 392.000000 392.000000 \n", + "mean 23.445918 5.471939 194.411990 104.469388 2977.584184 \n", + "std 7.805007 1.705783 104.644004 38.491160 849.402560 \n", + "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", + "25% 17.000000 4.000000 105.000000 75.000000 2225.250000 \n", + "50% 22.750000 4.000000 151.000000 93.500000 2803.500000 \n", + "75% 29.000000 8.000000 275.750000 126.000000 3614.750000 \n", + "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", + "\n", + " acceleration year origin \n", + "count 392.000000 392.000000 392.000000 \n", + "mean 15.541327 75.979592 1.576531 \n", + "std 2.758864 3.683737 0.805518 \n", + "min 8.000000 70.000000 1.000000 \n", + "25% 13.775000 73.000000 1.000000 \n", + "50% 15.500000 76.000000 1.000000 \n", + "75% 17.025000 79.000000 2.000000 \n", + "max 24.800000 82.000000 3.000000 \n" + ] + } + ], + "source": [ + "print(Auto_data.describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3debf6d8-efda-4414-bcca-dd758dc65512", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "# set seed\n", + "np.random.seed(1)\n", + "\n", + "# Number of observations in the dataset\n", + "n = len(Auto_data)\n", + "\n", + "# Shuffle the dataset using np.random.permutation\n", + "shuffled_indices = np.random.permutation(n)\n", + "\n", + "# Split data into training, validation, and test sets\n", + "n = len(Auto_data)\n", + "n_train = 150 # Training set size\n", + "n_val = 150 # Validation set size\n", + "n_test = n - n_train - n_val # Remaining for the test set\n", + "\n", + "train_data = Auto_data.iloc[:n_train]\n", + "val_data = Auto_data.iloc[n_train:n_train + n_val]\n", + "test_data = Auto_data.iloc[n_train + n_val:]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "13ad6115-3358-41fc-a681-42dfcd4365d3", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# Define a function to compute MSE\n", + "def compute_mse(y_true, y_pred):\n", + " return mean_squared_error(y_true, y_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bf46cd61-c6e5-4228-88e9-27ded25be029", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.preprocessing import PolynomialFeatures\n", + "\n", + "# Try models with polynomial degrees from 1 to 10\n", + "num_models = 10\n", + "train_mse = []\n", + "val_mse = []\n", + "lm_list = [] # List to save all models\n", + "\n", + "for i in range(1, num_models + 1):\n", + " # Create polynomial features\n", + " poly = PolynomialFeatures(degree=i)\n", + " \n", + " # Training data: Transform horsepower to polynomial features\n", + " X_train_poly = poly.fit_transform(train_data[['horsepower']])\n", + " y_train = train_data['mpg']\n", + " \n", + " # Validation data: Transform horsepower to polynomial features\n", + " X_val_poly = poly.transform(val_data[['horsepower']])\n", + " y_val = val_data['mpg']\n", + " \n", + " # Train the model on the training set\n", + " model = LinearRegression().fit(X_train_poly, y_train)\n", + " lm_list.append(model) # Save the model\n", + " \n", + " # Make predictions for training and validation sets\n", + " y_train_pred = model.predict(X_train_poly)\n", + " y_val_pred = model.predict(X_val_poly)\n", + " \n", + " # Compute MSE for training and validation sets\n", + " train_mse.append(compute_mse(y_train, y_train_pred))\n", + " val_mse.append(compute_mse(y_val, y_val_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d6505c9c-d1f2-44d2-9dcb-e3d3e820519c", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best model is polynomial degree: 6\n" + ] + } + ], + "source": [ + "# Select the best model (with minimum validation MSE)\n", + "best_model_index = np.argmin(val_mse) + 1 # Adding 1 to match polynomial degree\n", + "print(f\"Best model is polynomial degree: {best_model_index}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "86d843f8-0497-46d5-9d3a-68dacf1da17b", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Degree 1: Train MSE: 11.02522, Validation MSE: 19.39243\n", + "Degree 2: Train MSE: 8.00342, Validation MSE: 15.12801\n", + "Degree 3: Train MSE: 7.86238, Validation MSE: 15.72968\n", + "Degree 4: Train MSE: 7.73052, Validation MSE: 15.80150\n", + "Degree 5: Train MSE: 7.17526, Validation MSE: 15.35206\n", + "Degree 6: Train MSE: 7.13461, Validation MSE: 15.04239\n", + "Degree 7: Train MSE: 7.20354, Validation MSE: 15.40961\n", + "Degree 8: Train MSE: 7.32205, Validation MSE: 15.68285\n", + "Degree 9: Train MSE: 7.43871, Validation MSE: 15.68433\n", + "Degree 10: Train MSE: 7.46632, Validation MSE: 15.45292\n" + ] + } + ], + "source": [ + "# Output the MSE values for each model\n", + "for degree, train_error, val_error in zip(range(1, num_models + 1), train_mse, val_mse):\n", + " print(f\"Degree {degree}: Train MSE: {train_error:.5f}, Validation MSE: {val_error:.5f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c60a0be3-9c8a-4469-860b-ca04d92e0860", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIhCAYAAABwnkrAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACN0UlEQVR4nOzdd3gUVd/G8XvTe+gkIYEElN4FFRQJShEQUAQLIlUFAQWxIPDQkaaiPKAiKsRCVYoVNAoEfFAEMYqK2ALSQaUHQsq8f8y7C5ueJclsyPdzXXMxOzs788vJkuydc+aMzTAMQwAAAAAABw+rCwAAAAAAd0NQAgAAAIBMCEoAAAAAkAlBCQAAAAAyISgBAAAAQCYEJQAAAADIhKAEAAAAAJkQlAAAAAAgE4ISAAAAAGRCUAJKKZvNlq9l48aNl3WeiRMnymazFU7R/89eW79+/bJ9fvLkyY599uzZ49huGIaWLVumVq1aqVKlSvLz81NkZKQ6dOig119/PdtzZLfkdF4r9OvXT9HR0Tk+f+zYMfn4+Oiee+7JcZ9Tp04pICBAXbt2zfd54+LisrRvbvvl9F4yDENXXXWVbDabYmNjnZ77559/NHr0aNWtW1eBgYEKDQ1V7dq1df/99+uHH37I9hxF8R4uCvb/F/bFx8dHMTExGj58uE6cOFHg40VHR7vV+/Jy5Pe9dTmvzfye8fPzU1hYmNq0aaPp06fr6NGjrhUP4IriZXUBAKzx1VdfOT2eMmWKNmzYoPXr1zttr1u37mWd54EHHtCtt956WcfITnBwsN59913NnTtXwcHBju2GYSguLk4hISE6deqU02tGjx6tmTNn6sEHH9STTz6p4OBg7d27V+vXr9f777+vBx54wGn/Hj166PHHH89y7ooVKxb611NUKlasqK5du2rNmjU6fvy4ypYtm2WfZcuW6dy5cxo4cGCR1REcHKw33ngjSxhKSEjQH3/84fQ9lKQzZ87o+uuv15kzZ/Tkk0+qUaNGOnfunH799VetWrVKiYmJatiwodNrFi1apNq1a2c59+W+h4vSunXrFBoaqtOnT+uTTz7RnDlz9M0332jLli2F/geGkqJz58766quvFB4eXuTnsr9nUlNTdfToUX355ZeaOXOmnnvuOS1fvlxt27Yt8hoAuC+CElBKXX/99U6PK1asKA8PjyzbM0tOTlZAQEC+zxMZGanIyEiXasxNt27dtHLlSi1btkwPPvigY/v69euVlJSkBx98UK+99ppj+7lz5/Tiiy+qT58+WrBggdOx+vXrp4yMjCznqFy5cp7tURIMHDhQK1eu1OLFizVs2LAszy9cuFCVK1dW586di6yGu+++W4sXL9ZLL72kkJAQx/Y33nhDLVq0yBJq3333Xf3+++9av3692rRp4/TcyJEjs/1+1a9fX82aNSuaL6CIXHPNNapQoYIkqV27dvrnn3/09ttva8uWLbrhhhssrs4aFStWLLY/RmR+z9x555167LHHdOONN6p79+767bffVLly5WKpxe7cuXPy9/cv1nMCyB5D7wDkKDY2VvXr19emTZvUsmVLBQQEaMCAAZKk5cuXq3379goPD5e/v7/q1Kmjp59+WmfPnnU6RnZD76Kjo3Xbbbdp3bp1atq0qfz9/VW7dm0tXLgw37WFhobqjjvuyPKahQsX6oYbblDNmjWdtp89e1YpKSk5/pXaw6PwfhweO3ZMQ4YMUd26dRUUFKRKlSrp5ptv1ubNm53227Nnj2w2m5577jnNnj1bMTExCgoKUosWLfT1119nOW5cXJxq1aolX19f1alTR2+99Va+6unQoYMiIyO1aNGiLM/t2rVLW7duVZ8+feTl5aX4+Hh169ZNkZGR8vPz01VXXaVBgwbp77//dq0x/t+9994rSVq6dKlj28mTJ7Vy5UrHe+pS//zzjyQV+fdrxIgRCgwMzBLUJDPcVa5cWampqZLMEB4bG6vy5cvL399fVatW1Z133qnk5ORCqUW6+AeMvXv3SpL+/fdfDRkyRFWqVJGPj4+qV6+usWPHKiUlJcdjnDlzRmXKlNGgQYOyPLdnzx55enrq2WeflXRxCNqGDRv08MMPq0KFCipfvry6d++ugwcPOr02IyNDs2bNUu3ateXr66tKlSqpT58+2r9/v9N+9p8bX331lVq2bCl/f39FR0c73n8ff/yxmjZtqoCAADVo0EDr1q1zen12w+eK6n2ZnapVq+r555/X6dOn9eqrrzo9t337dnXt2lXlypWTn5+fmjRpohUrVmQ5xpdffqkWLVrIz89PVapU0bhx4/T6669n+brsPwtXrVqlJk2ayM/PT5MmTZIkHT58WIMGDVJkZKRjaOakSZOUlpbmdK4LFy5o6tSpju9LxYoV1b9/fx07dqzQ2wYobQhKAHJ16NAh9e7dW7169dInn3yiIUOGSJJ+++03derUSW+88YbWrVunESNGaMWKFerSpUu+jvv999/r8ccf12OPPab3339fDRs21MCBA7Vp06Z81zZw4EB9/fXX2rVrlyTpxIkTWrVqVbZDyCpUqKCrrrpKL7/8smbPnq1ffvlFhmHkenzDMJSWlpZlyet1//77ryRpwoQJ+vjjj7Vo0SJVr15dsbGx2V4v89JLLyk+Pl4vvviiFi9erLNnz6pTp046efKkY5+4uDj1799fderU0cqVK/Wf//xHU6ZMyTJUMjseHh7q16+fduzYoe+//97pOfuHV3tY+eOPP9SiRQu98sor+uyzzzR+/Hht3bpVN954oyMwuCIkJEQ9evRwCrZLly6Vh4eH7r777iz7t2jRQpLUp08frVmzxhGccpOenp7le5Wenp7rawYMGKDk5OQsH3ZPnDih999/X71795a3t7f27Nmjzp07y8fHRwsXLtS6des0Y8YMBQYG6sKFC/lpgnz5/fffJZm9KufPn1ebNm301ltvaeTIkfr444/Vu3dvzZo1S927d8/xGEFBQRowYIAWL17s9B6SpJdfflk+Pj5ZwukDDzwgb29vLVmyRLNmzdLGjRvVu3dvp30efvhhjRo1Su3atdMHH3ygKVOmaN26dWrZsmWWwHL48GH1799fDzzwgN5//301aNBAAwYM0OTJkzV69Gg99dRTWrlypYKCgnT77bdnCWWZFdX7MiedOnWSp6en08+jDRs26IYbbtCJEyc0f/58vf/++2rcuLHuvvtuxcXFOfb74Ycf1K5dOyUnJ+vNN9/U/PnztWPHDj3zzDPZnmvHjh168skn9eijj2rdunW68847dfjwYV177bX69NNPNX78eK1du1YDBw7U9OnTnXrQMzIy1K1bN82YMUO9evXSxx9/rBkzZig+Pl6xsbE6d+5cobcNUKoYAGAYRt++fY3AwECnba1btzYkGV988UWur83IyDBSU1ONhIQEQ5Lx/fffO56bMGGCkflHTbVq1Qw/Pz9j7969jm3nzp0zypUrZwwaNCjPWiUZQ4cONTIyMoyYmBjjiSeeMAzDMF566SUjKCjIOH36tPHss88akoykpCTH67755hujatWqhiRDkhEcHGzcdtttxltvvWVkZGRkOUdOy9tvv51njZdKS0szUlNTjVtuucW44447HNuTkpIMSUaDBg2MtLQ0pzolGUuXLjUMwzDS09ONiIgIo2nTpk517tmzx/D29jaqVauWZw1//vmnYbPZjEcffdSxLTU11QgLCzNuuOGGbF9j/77u3bvXkGS8//77jucWLVqUpX2zY99v27ZtxoYNGwxJxo8//mgYhmE0b97c6Nevn2EYhlGvXj2jdevWTq+dPHmy4ePj42j3mJgYY/DgwU7vr0vPkd3i6emZZ9s0bdrUaNmypdO2l19+2ZBk7Ny50zAMw3jvvfcMSUZiYmKex8sP+/+Lw4cPG6mpqcbx48eNd955x/D39zeioqKMc+fOGfPnzzckGStWrHB67cyZMw1JxmeffebYVq1aNaNv376Ox3/88Yfh4eFhvPDCC45t586dM8qXL2/079/fsc3edkOGDHE6x6xZswxJxqFDhwzDMIxdu3Zlu9/WrVsNScaYMWMc2+w/N7Zv3+7Y9s8//xienp6Gv7+/ceDAAcf2xMREQ5Lx3//+N0tNOb23Cvt9mZPKlSsbderUcTyuXbu20aRJEyM1NdVpv9tuu80IDw830tPTDcMwjJ49exqBgYHGsWPHHPukp6cbdevWzVJbtWrVDE9PT2P37t1Oxxw0aJARFBTk9DPSMAzjueeeMyQZP/30k2EYhrF06VJDkrFy5Uqn/bZt22ZIMl5++eVc2wFA7uhRApCrsmXL6uabb86y/c8//1SvXr0UFhYmT09PeXt7q3Xr1pLk6OHJTePGjVW1alXHYz8/P9WsWdMx5Cg/7DPQvf3220pLS9Mbb7yhu+66S0FBQdnu37x5c/3+++9at26dxowZoxYtWuiLL75Qnz591LVr1yw9RXfddZe2bduWZenUqVOetc2fP19NmzaVn5+fvLy85O3trS+++CLbtuncubM8PT0dj+2TFNjbYvfu3Tp48KB69erlNIyxWrVqatmyZd4NJSkmJkZt2rTR4sWLHT0ga9eu1eHDh516F44eParBgwcrKirKUXe1atUk5e/7mpvWrVurRo0aWrhwoXbu3Klt27ZlO+zObty4cfrrr7+0cOFCDRo0SEFBQZo/f76uueYapyF8dm+99VaW79XWrVvzrKt///7asmWLdu/e7di2aNEiNW/eXPXr15dkvl99fHz00EMP6c0339Sff/7pQgtkFRYWJm9vb5UtW1a9e/dW06ZNtW7dOvn5+Wn9+vUKDAxUjx49nF5jn93uiy++yPG41atX12233aaXX37Z8b5esmSJ/vnnn2yvU8s842Hm9+CGDRuczm137bXXqk6dOllqCQ8P1zXXXON4XK5cOVWqVEmNGzdWRESEY3udOnWczpOTonxf5uTSnwe///67fvnlF913332S5NRr2alTJx06dMjx/klISNDNN9/suPZMMnt177rrrmzP07BhwyxDhT/66CO1adNGERERTufq2LGj4xz2/cqUKaMuXbo47de4cWOFhYW55YyPQEnCZA4AcpXdNSJnzpxRq1at5Ofnp6lTp6pmzZoKCAjQvn371L1793wN9yhfvnyWbb6+vgUeKtK/f39NmjRJ06ZN044dOzR37txc9/f29laHDh3UoUMHSea1MD169NBHH32ktWvXOoWgihUrujQ5wOzZs/X4449r8ODBmjJliipUqCBPT0+NGzcu2w91mdvC19dXkhxtYR92FhYWluW1YWFh+Z5GeeDAgbrvvvv0wQcfqEePHlq0aJGCgoIcH+AyMjLUvn17HTx4UOPGjVODBg0UGBiojIwMXX/99Zc9jMdms6l///7673//q/Pnz6tmzZpq1apVrq+pXLmy+vfvr/79+0uSNm3apI4dO2r48OGO657s6tSp49L367777tMTTzyhuLg4TZ8+XT///LO2bduml19+2bFPjRo19Pnnn2vWrFkaOnSozp49q+rVq+vRRx/V8OHDC3xOu88//1yhoaHy9vZWZGSk03vhn3/+UVhYWJZr/CpVqiQvL688hyMOHz5ct9xyi+Lj49W+fXu99NJLatGihZo2bZpl3/y+B7P7eRAREZEl6JQrVy7Lfj4+Plm2+/j4SJLOnz+f49dR1O/L7Jw9e1b//POPGjRoIEk6cuSIJOmJJ57QE088ke1r7MMP//nnn2wngMhpUojs2vTIkSP68MMP5e3tneu5jhw5ohMnTjjaMaf9ALiGoAQgV9lNUbx+/XodPHhQGzdudPQiSXLp/i+XKyoqSm3bttWkSZNUq1atfPew2JUvX14jRozQxo0b9eOPP+artygv77zzjmJjY/XKK684bT99+rRLx7N/iD18+HCW57LblpPu3burbNmyWrhwoVq3bq2PPvpIffr0cfTA/fjjj/r+++8VFxenvn37Ol5nv26mMPTr10/jx4/X/Pnzc7xmIzc33XST2rdvrzVr1ujo0aOqVKnSZddUtmxZdevWTW+99ZamTp2qRYsWyc/PL0sQa9WqlVq1aqX09HRt375dc+fO1YgRI1S5cuVc71OVm0aNGjn1PFyqfPny2rp1qwzDcPp/ePToUaWlpeX4Orubb75Z9evX17x58xQUFKQdO3bonXfecalO+3vw0KFDWWaxPHjwYJ61XI7ieF9m9vHHHys9Pd0xnb396xs9enSO14fVqlVLktlW9mB1qZz+r2b3M7ZChQpq2LBhjv9H7L1y9sk3Mk+IYZd52n0ABUNQAlBg9l/s9r8622WeIaq4PP744/L391fPnj1z3Cc1NVWnTp3KtifL3stz6ZCgy2Gz2bK0zQ8//KCvvvpKUVFRBT5erVq1FB4erqVLl2rkyJGO9t+7d6+2bNmS77r9/PzUq1cvzZ8/XzNnzlRqaqrT0Lfi+L5WqVJFTz75pH755RenD72ZHTlyxDFl/aXS09P122+/KSAgQGXKlCm0uvr3768VK1bok08+0TvvvKM77rgjx+N7enrquuuuU+3atbV48WLt2LHD5aCUm1tuuUUrVqzQmjVrdMcddzi222c7vOWWW/I8xqOPPqrBgwfr5MmTqly5cq7/R3JjH377zjvvqHnz5o7t27Zt065duzR27FiXjpsfxf3z5q+//tITTzyh0NBQx8yBtWrV0tVXX63vv/9e06ZNy/X1rVu31ieffKK///7bEbAyMjL07rvv5ruG2267TZ988olq1KiR7b3PLt1v2bJlSk9P13XXXZfv4wPIH4ISgAJr2bKlypYtq8GDB2vChAny9vbW4sWLs8yoVlzat2+v9u3b57rPyZMnFR0drZ49e6pt27aKiorSmTNntHHjRs2ZM0d16tTJ8pfiI0eOZDtNd0hISK43Mb3ttts0ZcoUTZgwQa1bt9bu3bs1efJkxcTEZJnaNz88PDw0ZcoUPfDAA7rjjjv04IMP6sSJE5o4cWK2w/FyM3DgQL300kuaPXu2ateu7dQDV7t2bdWoUUNPP/20DMNQuXLl9OGHHyo+Pr7ANedmxowZee7z9ttv69VXX1WvXr3UvHlzhYaGav/+/Xr99df1008/afz48VmGG/3444/Ztm+NGjXyvC9P+/btFRkZqSFDhjhmbLvU/PnztX79enXu3FlVq1bV+fPnHTP4XXpT0quuukpS4fR29OnTRy+99JL69u2rPXv2qEGDBvryyy81bdo0derUKV83Q+3du7dGjx6tTZs26T//+U+OQ7TyUqtWLT300EOaO3euPDw81LFjR+3Zs0fjxo1TVFSUHnvsMZeOmx9F+b60v2fS0tJ09OhRbd68WYsWLZKnp6dWr17t9L559dVX1bFjR3Xo0EH9+vVTlSpV9O+//2rXrl3asWOHIwiNHTtWH374oW655RaNHTtW/v7+mj9/vuPWCfmZ2n7y5MmKj49Xy5Yt9eijj6pWrVo6f/689uzZo08++UTz589XZGSk7rnnHi1evFidOnXS8OHDde2118rb21v79+/Xhg0b1K1bN6eQDaBgCEoACqx8+fL6+OOP9fjjj6t3794KDAxUt27dtHz58myvf3AHISEhmjRpkr744guNGTNGR44ckc1mU0xMjEaMGKFRo0ZluZHue++9p/feey/LsW644QZ9+eWXOZ5r7NixSk5O1htvvKFZs2apbt26mj9/vlavXu3yxdX2Kc9nzpyp7t27Kzo6WmPGjFFCQkKBjtmkSRM1adJE3333XZaJFLy9vfXhhx9q+PDhGjRokLy8vNS2bVt9/vnnThNvFIfOnTvr8OHD+uSTT/TKK6/o+PHjCg4OVsOGDfX2229nmbpaUpZwY/faa6/pgQceyPV8Hh4e6tOnj6ZNm6aoqKgsvTWNGzfWZ599pgkTJujw4cMKCgpS/fr19cEHHziFdFeCcE78/Py0YcMGjR07Vs8++6yOHTumKlWq6IknntCECRPydQx/f3916dJF77zzjgYPHnxZ9bzyyiuqUaOG3njjDb300ksKDQ3VrbfequnTp2fbU1tYivJ9aX/P+Pj4qEyZMqpTp45GjRqlBx54IEu4btOmjb755hs988wzGjFihI4fP67y5curbt26ThM1NGrUSPHx8XriiSfUp08flS1bVvfff79at26tUaNGKTQ0NM+6wsPDtX37dk2ZMkXPPvus9u/fr+DgYMXExOjWW2919DJ5enrqgw8+0Jw5c/T2229r+vTp8vLyUmRkpFq3bu24xgqAa2xG5mmeAADAFeHChQuKjo7WjTfemO2NUVF82rdvrz179ujXX3+1uhQA+USPEgAAV5hjx45p9+7dWrRokY4cOaKnn37a6pJKlZEjR6pJkyaKiorSv//+q8WLFys+Pl5vvPGG1aUBKACCEgAAV5iPP/5Y/fv3V3h4uF5++WW3HRJ7pUpPT9f48eN1+PBh2Ww21a1bN8chowDcF0PvAAAAACCTvKdeKULTp09X8+bNFRwcrEqVKun22293ujO6ZN4Ze+LEiYqIiJC/v79iY2P1008/WVQxAAAAgNLA0qCUkJCgoUOH6uuvv1Z8fLzS0tLUvn17xxSakjRr1izNnj1b8+bN07Zt2xQWFqZ27dq5fONGAAAAAMiLWw29O3bsmCpVqqSEhATddNNNMgxDERERjql7JSklJUWVK1fWzJkzHTeCAwAAAIDC5FaTOZw8eVKSVK5cOUlSUlKSDh8+7HSPCl9fX7Vu3VpbtmzJNiilpKQoJSXF8TgjI0P//vuvypcv77i7NwAAAIDSxzAMnT59WhEREXneANptgpJhGBo5cqRuvPFG1a9fX5J0+PBhSVLlypWd9q1cubL27t2b7XGmT5+uSZMmFW2xAAAAAEqsffv2KTIyMtd93CYoDRs2TD/88EO2d7vP3BNkGEaOvUOjR4/WyJEjHY9PnjypqlWrKikpScHBwYVbdAGlpqZqw4YNatOmjby9vS2tpaSh7VxDu7mGdnMN7eY62s41tJtraDfX0Xaucad2O336tGJiYvKVC9wiKD3yyCP64IMPtGnTJqdkFxYWJsnsWQoPD3dsP3r0aJZeJjtfX1/5+vpm2V6uXDmFhIQUcuUFk5qaqoCAAJUvX97yN0lJQ9u5hnZzDe3mGtrNdbSda2g319BurqPtXONO7WY/f34uybF01jvDMDRs2DCtWrVK69evV0xMjNPzMTExCgsLU3x8vGPbhQsXlJCQoJYtWxZ3uQAAAABKCUt7lIYOHaolS5bo/fffV3BwsOOapNDQUPn7+8tms2nEiBGaNm2arr76al199dWaNm2aAgIC1KtXLytLBwAAAHAFszQovfLKK5Kk2NhYp+2LFi1Sv379JElPPfWUzp07pyFDhuj48eO67rrr9Nlnn1l+vREAAACAK5elQSk/t3Cy2WyaOHGiJk6cWPQFAQAAoFRKT09XampqrvukpqbKy8tL58+fV3p6ejFVVvIVZ7t5enrKy8urUG4L5BaTOQAAAABWOXPmjPbv35/nH/ENw1BYWJj27dvH/TkLoLjbLSAgQOHh4fLx8bms4xCUAAAAUGqlp6dr//79CggIUMWKFXP9IJ+RkaEzZ84oKCgoz5uV4qLiajfDMHThwgUdO3ZMSUlJuvrqqy/rfAQlAAAAlFqpqakyDEMVK1aUv79/rvtmZGTowoUL8vPzIygVQHG2m7+/v7y9vbV3717HOV3FdxgAAAClHkPprhyFFcYISgAAAACQCUEJAAAAADIhKAEAAACXKT1d2rhRWrrU/Lckzh4eGxurESNGWF2G2yAoAQAAAJdh1SopOlpq00bq1cv8Nzra3F4UbDZbrku/fv1cOu6qVas0ZcqUy6qtX79+stlsGjx4cJbnhg4dmqW+o0ePatCgQapatap8fX0VFhamDh066KuvvnLsEx0dne3XOWPGjMuqNS/MegcAAAC4aNUqqUcPKfMtmA4cMLe/957UvXvhnvPQoUOO9eXLl2v8+PHavXu3Y1vm2ftSU1Pl7e2d53HLlStXKPVFRUVp2bJleuGFFxy1nD9/XsuWLVPVqlWd9r3zzjuVmpqqN998U9WrV9eRI0f0xRdf6N9//3Xab/LkyXrwwQedtgUHBxdKvTmhR6m4pKfLlpCgKps2yZaQUDL7YwEAAK5whiGdPZu/5dQp6dFHs4Yk+3Ekafhwc7/8HC+P+906hIWFOZbQ0FDZbDbH4/Pnz6tMmTJasWKFYmNj5efnp3feeUf//POP7r33XkVGRiogIEANGjTQ0qVLnY6beehddHS0pk2bpgEDBig4OFhVq1bVggUL8qyvadOmqlq1qlZd0qX24YcfKioqSk2aNHFsO3HihL788kvNnDlTbdq0UbVq1XTttddq9OjR6ty5s9Mxg4ODnb7usLAwBQYG5q/BXERQKg7/3x/r1a6dms2eLa927Yq2PxYAAAAuSU6WgoKyX0JCPBQZWUYhIR4KCpJCQ82eo5wYhrR/v7lfTse8dElOLryvY9SoUXr00Ue1a9cudejQQefPn9c111yjjz76SD/++KMeeugh3X///dq6dWuux3n++efVrFkzfffddxoyZIgefvhh/fLLL3mev3///lq0aJHj8eLFi9W/f3+nfYKCghQUFKQ1a9YoJSXFtS+0CBGUipq9P3b/fuft9v5YwhIAAAAK2YgRI9S9e3fFxMQoIiJCVapU0RNPPKHGjRurevXqeuSRR9ShQwe9++67uR6nU6dOGjJkiK666iqNGjVKFSpU0MaNG/M8//33368vv/xSe/bs0d69e7V161bdd999Tvt4eXkpLi5Ob775psqUKaMbbrhBY8aM0Q8//JDleKNGjXIEK/uSnzouB9coFaX0dLO/Naf+WJtNGjFC6tZN8vQs9vIAAADgLCBAOnMm++cyMjJ06tQphYSEyMPDQ5s2SZ065X3MTz6Rbropf+cuLM2aNXN6nJ6erhkzZmj58uU6cOCAUlJSlJKSkufwtYYNGzrW7UP8jh49muf5K1SooM6dO+vNN99URkaG2rdvrwoVKmTZ784771Tnzp21efNmffXVV1q3bp1mzZql119/3WnShyeffDLLJBVVqlTJs47LQVAqSps3Z+1JupRhSPv2mfvFxhZbWQAAAMiezSbllB0yMsy/gwcGSh4eUvv2UmSkOVAou7+L22zm8+3bF//fxDMHoOeff14vvPCCXnzxRTVo0ECBgYEaMWKELly4kOtxMk8CYbPZlJGRka8aBgwYoGHDhkmSZs6cmeN+fn5+ateundq1a6fx48frgQce0IQJE5yCUYUKFXTVVVfl67yFhaF3RemSGUkKZT8AAAC4DU9Pac4cc91mc37O/vjFF91j4NDmzZvVrVs39e7dW40aNVL16tX122+/Fek5b731Vl24cEEXLlzQLbfcku/X1a1bV2fPni3CyvKHoFSUwsMLdz8AAAC4le7dzSnAM48Ci4wsmqnBXXXVVVcpPj5eW7Zs0a5duzRo0CAdPny4SM/p6empXbt26aeffpJnNmnxn3/+0c0336x33nlHP/zwg5KSkvTuu+9q1qxZ6tatm9O+p0+f1uHDh52WU6dOFWn9DL0rSq1a5a8/tlWr4q8NAAAAhaJ7d/OS882bzYFC4eHmxzt36EmyGzdunJKSktShQwcFBATooYce0u23366TJ08W6XlDQkIc13ZlFhQUpOuuu04vvPCC/vjjD6WmpioqKkoPPvigxowZ47Tv+PHjNX78eKdtgwYN0vz584usdoJSUbL3x/boYYaizGHJMNynPxYAAAAu8/S05pLzfv36OV3LEx0dLSObP9CXK1dOa9asyfVYmWeR27NnT5Z9EhMTcz1GXFxcrs9fWoOvr6+mT5+u6dOn5/qa7OooDgy9K2o59cdK5tQmbdoUf00AAAAAckVQKg7du0t79igtPl7bR45U2qefSvXqmXcVy2UGEAAAAADWICgVF09PGa1b68BNN8lo00aydzHOmZP7LZ0BAAAAFDuCklVuu0264Qbp/Hlp0iSrqwEAAABwCYKSVWy2i8PuFi6Udu+2th4AAAAADgQlK91wg9S1q3mL57Fjra4GAAAAwP8jKFlt2jTJw0NauVLautXqagAAAACIoGS9evWkPn3M9aefzv7GtAAAAACKFUHJHUyaJPn6Shs3Sp9+anU1AAAAQKlHUHIHVatKQ4ea608/LWVkWFsPAAAACiY93fyj99Kl5r/p6VZXlKfY2FiNGDHC6jLcFkHJXYwZI4WESN9/Ly1bZnU1AAAAyK9Vq6ToaKlNG6lXL/Pf6GhzexHo0qWL2rZtm+1zX331lWw2m3bs2HHZ54mLi5PNZlOdOnWyPLdixQrZbDZFR0c7tqWnp2v69OmqXbu2/P39Va5cOV1//fVatGiRY59+/frJZrNlWW699dbLrrewEZTcRfny0qhR5vq4cdKFC9bWAwAAgLytWiX16CHt3++8/cABc3sRhKWBAwdq/fr12rt3b5bnFi5cqMaNG6tp06aFcq7AwEAdPXpUX331VZbzVK1a1WnbxIkT9eKLL2rKlCn6+eeftWHDBj344IM6ceKE03633nqrDh065LQsXbq0UOotTAQldzJ8uBQWJv35p7RggdXVAAAAlD6GIZ09m7/l1Cnp0Uezn4zLvm34cHO//Bwvn5N63XbbbapUqZLi4uKcticnJ2v58uUaOHCg/vnnH917772KjIxUQECAGjRo4FIY8fLyUq9evbRw4ULHtv3792vjxo3q1auX074ffvihhgwZop49eyomJkaNGjXSwIED9dhjjznt5+vrq7CwMKelbNmyBa6tqBGU3ElgoDRhgrk+ebJ0+rS19QAAAJQ2yclSUFC2i0dIiMpERsojJMTcFhpq9hzlxDDMnqbQ0ByP6bQkJ+erRC8vL/Xp00dxcXEyLglX7777ri5cuKD77rtP58+f1zXXXKOPPvpIP/74ox566CHdf//92urC7WgGDhyo5cuXK/n/64uLi9Ott96qypUrO+0XFham9evX69ixYwU+hzsiKLmbgQOlq6+Wjh2TZs+2uhoAAAC4oQEDBmjPnj3auHGjY9vChQvVvXt3lS1bVlWqVNETTzyhxo0bq3r16nrkkUfUoUMHvfvuuwU+V+PGjVWjRg299957MgxDcXFxGjBgQJb9Zs+erWPHjiksLEwNGzbU4MGDtXbt2iz7ffTRRwoKCnJapkyZUuC6ihpByd14e0tTp5rrzz0nHT1qbT0AAAClSUCAdOZMtkvGqVM6sX+/Mk6dMrd98kn+jvnJJzke02kJCMh3mbVr11bLli0dQ+L++OMPbd682RFg0tPT9cwzz6hhw4YqX768goKC9Nlnn+mvv/4qcJNIZjBbtGiREhISdObMGXXq1CnLPnXr1tWPP/6or7/+Wv3799eRI0fUpUsXPfjgg077tWnTRomJiU7LUPsM0G6EoOSOevSQrrnG/A/zzDNWVwMAAFB62Gzm5RD5Wdq3lyIjzdfkdKyoKHO//Bwvp+PkYODAgVq5cqVOnTqlRYsWqVq1arrlllskSc8//7xeeOEFPfXUU1q/fr0SExPVoUMHXXBxwrD77rtPX3/9tSZOnKg+ffrIy8sr2/08PDzUvHlzPfbYY1q9erXi4uK0cOFCp4knAgMDddVVVzkt5cqVc6muokRQckceHtKMGeb6K69ISUnW1gMAAICsPD2lOXPM9cwhx/74xRfN/YrAXXfdJU9PTy1ZskRvvvmm+vfvL9v/n3fz5s3q1q2bevfurUaNGql69er67bffXD5XuXLl1LVrVyUkJGQ77C4ndevWlSSdPXvW5XNbhaDkrtq2ldq1k1JTpfHjra4GAAAA2eneXXrvPalKFeftkZHm9u7di+zUQUFBuvvuuzVmzBgdPHhQ/fr1czx31VVXKT4+Xlu2bNGuXbs0aNAgHT58+LLOFxcXp7///lu1a9fO9vkePXrohRde0NatW7V3715t3LhRQ4cOVc2aNVWzZk3HfikpKTp8+LDT8vfff19WbUWBoOTO7L1KixebN6IFAACA++neXdqzR9qwQVqyxPw3KalIQ5LdwIEDdfz4cbVt29bpvkbjxo1T06ZN1aFDB8XGxiosLEy33377ZZ3L399f5cuXz/H5Dh066MMPP1SXLl1Us2ZN9e3bV7Vr19a6deuchuqtW7dO4eHhTsuNN954WbUVhewHF8I9NG0q3X23tHy5NHp0/i8YBAAAQPHy9JRiY4v9tC1atHCaItyuXLlyWrNmTa6vvXTGvOz069fPqZcqsxEjRmjEiBGOxw8++GCWiRskKSMjQ6dOnZJk9kplvv+Tu6JHyd1NnSp5eUlr10oJCVZXAwAAAJQKBCV3d9VVkj2ZjxqV7zs2AwAAAHAdQakkGD/enFd/61Ypjy5UAAAAAJePoFQShIVJI0ea62PGSGlp1tYDAAAAXOEISiXFk09K5ctLv/wivfmm1dUAAABcUbKbEAElU2F9LwlKJUVIiDR2rLk+YYJ07py19QAAAFwBPP//ZrAXLlywuBIUluTkZEmSt7f3ZR2H6cFLkocfNu/u/Ndf0ty50lNPWV0RAABAiebl5aWAgAAdO3ZM3t7e8vDIuR8hIyNDFy5c0Pnz53PdD86Kq90Mw1BycrKOHj2qMmXKOEKwqwhKJYmfnzR5stSvnzR9ujkbXtmyVlcFAABQYtlsNoWHhyspKUl79+7NdV/DMHTu3Dn5+/vLZrMVU4UlX3G3W5kyZRQWFnbZxyEolTS9e0vPPSf9+KM0c6Y0Y4bVFQEAAJRoPj4+uvrqq/McfpeamqpNmzbppptuuuxhXaVJcbabt7f3Zfck2RGUShpPT7M3qUsXac4c6ZFHpCpVrK4KAACgRPPw8JCfn1+u+3h6eiotLU1+fn4EpQIoqe3G4MqSqHNn6cYbpfPnpUmTrK4GAAAAuOIQlEoim80cdidJb7xhThkOAAAAoNAQlEqqli2lrl2ljIyL04YDAAAAKBQEpZJs2jTJw0NatUrautXqagAAAIArBkGpJKtXT+rTx1x/+mmJO0oDAAAAhYKgVNJNmiT5+kobN0qffmp1NQAAAMAVgaBU0lWtKg0bZq4//bR5zRIAAACAy0JQuhKMHi2FhEjffy8tW2Z1NQAAAECJR1C6EpQvL40aZa7/5z9SHneVBgAAAJA7S4PSpk2b1KVLF0VERMhms2nNmjVOz585c0bDhg1TZGSk/P39VadOHb3yyivWFOvuhg+XwsKkpCTp1VetrgYAAAAo0SwNSmfPnlWjRo00b968bJ9/7LHHtG7dOr3zzjvatWuXHnvsMT3yyCN6//33i7nSEiAwUJowwVyfMkU6fdraegAAAIASzMvKk3fs2FEdO3bM8fmvvvpKffv2VWxsrCTpoYce0quvvqrt27erW7du2b4mJSVFKSkpjsenTp2SJKWmpio1NbXwineB/fxFVkefPvJ6/nnZfv9d6c8+q4xx44rmPBYo8ra7QtFurqHdXEO7uY62cw3t5hrazXW0nWvcqd0KUoPNMNzj5js2m02rV6/W7bff7tg2ePBgffvtt1qzZo0iIiK0ceNGde3aVWvXrtWNN96Y7XEmTpyoSZMmZdm+ZMkSBQQEFFX5biPif/9T82efVZqfn+Lnz9eFMmWsLgkAAABwC8nJyerVq5dOnjypkJCQXPd166B04cIFPfjgg3rrrbfk5eUlDw8Pvf7667r//vtzPE52PUpRUVH6+++/82yMopaamqr4+Hi1a9dO3t7eRXMSw5Bny5by+PZbpQ8bpozZs4vmPMWsWNruCkS7uYZ2cw3t5jrazjW0m2toN9fRdq5xp3Y7deqUKlSokK+gZOnQu7z897//1ddff60PPvhA1apV06ZNmzRkyBCFh4erbdu22b7G19dXvr6+WbZ7e3tb/o2xK/JaZs6U2raV56uvyvOxx6Tq1YvuXMXMnb6PJQnt5hrazTW0m+toO9fQbq6h3VxH27nGHdqtIOd326B07tw5jRkzRqtXr1bnzp0lSQ0bNlRiYqKee+65HIMSJN1yi9SunRQfL40fL73zjtUVAQAAACWK295HyT75goeHc4menp7KyMiwqKoSZMYM898lS8wb0QIAAADIN0t7lM6cOaPff//d8TgpKUmJiYkqV66cqlatqtatW+vJJ5+Uv7+/qlWrpoSEBL311luafYVcd1OkmjaV7r5bWr5cGj1a+uQTqysCAAAASgxLe5S2b9+uJk2aqEmTJpKkkSNHqkmTJho/frwkadmyZWrevLnuu+8+1a1bVzNmzNAzzzyjwYMHW1l2yTF1quTlJa1dKyUkWF0NAAAAUGJY2qMUGxur3CbdCwsL06JFi4qxoivMVVdJDz0kvfyyNGqU9NVXks1mdVUAAACA23Pba5RQSMaNkwICpK1bpTVrrK4GAAAAKBEISle6sDBp5EhzffRoKS3N2noAAACAEoCgVBo8+aRUvry0e7cUF2d1NQAAAIDbIyiVBiEh0tix5vrEidK5c5aWAwAAALg7glJpMWSIVK2adOCANHeu1dUAAAAAbo2gVFr4+kqTJ5vr06dLx49bWw8AAADgxghKpcl990n160snTkgzZ1pdDQAAAOC2CEqliaen2ZskSXPmSPv3W1sPAAAA4KYISqVN587SjTdK589LkyZZXQ0AAADglghKpY3NdnHY3cKF0i+/WFsPAAAA4IYISqVRy5ZSt25SRsbFacMBAAAAOBCUSqtp0yQPD2nVKmnrVqurAQAAANwKQam0qltX6tvXXB81SjIMa+sBAAAA3AhBqTSbNMm8v1JCgrRundXVAAAAAG6DoFSaRUVJw4aZ66NHm9csAQAAACAolXqjR0shIdL330tLl1pdDQAAAOAWCEqlXfny0tNPm+vjxkkXLlhbDwAAAOAGCEqQhg+XwsOlpCTp1VetrgYAAACwHEEJUkCANGGCuT5linT6tLX1AAAAABYjKME0YIB09dXSsWPS7NlWVwMAAABYiqAEk7e39Mwz5vpzz0lHj1pbDwAAAGAhghIu6tFDatZMOnNGmjrV6moAAAAAyxCUcJHNJs2caa7Pny/9+ae19QAAAAAWISjB2c03S+3bS6mp0vjxVlcDAAAAWIKghKxmzDD/XbLEvBEtAAAAUMoQlJBVkybSPfdIhiGNHm11NQAAAECxIyghe1OmSF5e0tq10saNVlcDAAAAFCuCErJ31VXSQw+Z66NGmb1LAAAAQClBUELOxo2TAgKkb76RVq+2uhoAAACg2BCUkLOwMOnxx831MWOktDRr6wEAAACKCUEJuXviCalCBWn3bikuzupqAAAAgGJBUELuQkKksWPN9YkTpXPnLC0HAAAAKA4EJeTt4YelatWkAwekuXOtrgYAAAAocgQl5M3XV5o82VyfPl06ftzaegAAAIAiRlBC/tx3n1S/vnTihDRjhtXVAAAAAEWKoIT88fS8GJD++19p/35r6wEAAACKEEEJ+depk9SqlXT+vDRpktXVAAAAAEWGoIT8s9mkmTPN9YULpV9+sbYeAAAAoIgQlFAwLVpI3bpJGRkXpw0HAAAArjAEJRTctGmSh4e0apX09ddWVwMAAAAUOoISCq5uXalvX3P96aclw7C2HgAAAKCQEZTgmkmTzPsrJSRI69ZZXQ0AAABQqAhKcE1UlPTII+b66NHmNUsAAADAFYKgBNeNHi2Fhkrffy8tXWp1NQAAAEChISjBdeXKSaNGmevjxkkXLlhbDwAAAFBICEq4PMOHS+HhUlKS9OqrVlcDAAAAFAqCEi5PQIA0YYK5PmWKdPq0tfUAAAAAhYCghMs3YIBUs6Z07Jj0/PNWVwMAAABcNoISLp+3t/TMM+b6889LR49aWw8AAABwmQhKKBx33ik1by6dOSNNnWp1NQAAAMBlISihcNhs0owZ5vr8+dKff1pbDwAAAHAZCEooPDffLLVvL6WmSuPHW10NAAAA4DKCEgqXvVdp8WIpMdHSUgAAAABXEZRQuJo0ke6911wfPdraWgAAAAAXEZRQ+KZMkby8pHXrpI0bra4GAAAAKDCCEgpfjRrSoEHm+qhRkmFYWw8AAABQQAQlFI1x46TAQOmbb6TVq62uBgAAACgQS4PSpk2b1KVLF0VERMhms2nNmjVZ9tm1a5e6du2q0NBQBQcH6/rrr9dff/1V/MWiYCpXlkaONNfHjJHS0qytBwAAACgAS4PS2bNn1ahRI82bNy/b5//44w/deOONql27tjZu3Kjvv/9e48aNk5+fXzFXCpc88YRUoYK0e7cUF2d1NQAAAEC+eVl58o4dO6pjx445Pj927Fh16tRJs2bNcmyrXr16cZSGwhASIo0dKz32mDRhgtSrlxQQYHVVAAAAQJ4sDUq5ycjI0Mcff6ynnnpKHTp00HfffaeYmBiNHj1at99+e46vS0lJUUpKiuPxqVOnJEmpqalKTU0t6rJzZT+/1XUUqwcekNeLL8q2d6/SX3xRGU8+6dJhSmXbFQLazTW0m2toN9fRdq6h3VxDu7mOtnONO7VbQWqwGYZ7TElms9m0evVqRwg6fPiwwsPDFRAQoKlTp6pNmzZat26dxowZow0bNqh169bZHmfixImaNGlSlu1LlixRAL0ZlojcsEHXzJmjC4GB+vzVV5UaFGR1SQAAACiFkpOT1atXL508eVIhISG57uu2QengwYOqUqWK7r33Xi1ZssSxX9euXRUYGKilS5dme5zsepSioqL0999/59kYRS01NVXx8fFq166dvL29La2lWKWny6t5c9l+/FHpjz+ujOnTC3yIUtt2l4l2cw3t5hrazXW0nWtoN9fQbq6j7VzjTu126tQpVahQIV9ByW2H3lWoUEFeXl6qW7eu0/Y6deroyy+/zPF1vr6+8vX1zbLd29vb8m+MnTvVUiy8vaUZM6TbbpPnSy/Jc8QIKTLSxUOVsrYrJLRbAaSny7Zli6ps2iSfwEB5tWkjeXpaXVWJwvvNdbSda2g319BurqPtXOMO7VaQ87vtfZR8fHzUvHlz7d6922n7r7/+qmrVqllUFVzWqZPUqpV0/ryUzdBIwC2sWiVFR8urXTs1mz1bXu3aSdHR5nYAAFCqWBqUzpw5o8TERCUmJkqSkpKSlJiY6LhP0pNPPqnly5frtdde0++//6558+bpww8/1JAhQyysGi6x2aSZM831hQulXbusrac0SE+XLSFBVTZtki0hQUpPt7oi97ZqldSjh7R/v/P2AwfM7YQlAABKFUuD0vbt29WkSRM1adJEkjRy5Eg1adJE48ePlyTdcccdmj9/vmbNmqUGDRro9ddf18qVK3XjjTdaWTZc1aKFdPvtUkaGOW04ig49I7lLS5POnJH+/tsMRrt3S0OGSNldsmnfNmIEYRMAgFLE0muUYmNjlddcEgMGDNCAAQOKqSIUuWnTpA8+kFavlr7+Wrr+eqsruvLYe0Yy/9+y94y8957Uvbs1tdmlp0spKeZQzNyWc+fy3qegy7lzBQ88hiHt2yfNmyf172/eIwwASqJLRxsEBkpch5l/tF2p47aTOeAKVaeO1K+fOfzu6aelDRvMYXkoHOnp0vDhOfeM2Gxmz0jXrlJqauEHkPzu6wb3UXDw9jZ/0Z0/n/e+I0aYS82aUtOm0jXXmP82aSKVLVvUlQLA5Vm1Sho+XF7796uZJM2ebU6uNGeO9X9Ac3e0XalEUELxmzhRWrxYSkiQ1q2TOna0uqIrx+bNWa+xuZS9Z8SdZurx8pL8/Apv8ffP/76+vmZI2rjR/MtgXipWlI4dk3791VyWLbv4XPXqZmi6NEBVqFBkzQYABVISRhu4K9qu1CIoofhFRUmPPCI995zZq9Shg+ThthMwur+MDCkxUfriC+nttwv+epst73BRkPBRkEDj62sGJau1amX+ZfDAgex742w28/mkJOnff6UdOy4u335rbv/zT3N5772Lr4uKuhia7P+GhRXf1wUAUt6jDSTp4YelypVz/n2c06USV/r29HRp0KC8R2p068YwvCuQG3xCQak0erT02mvSDz9IS5ZIvXtbXVHJYRjSH39In39uhqMNG6R//inYMVavlm65xQwsXl4Mf/T0NIdP9OhhtsWlvxDtbfPii+Z+FSua4b5Dh4v7HD8uffedGZrsAerXX83eu337pDVrLu4bHn4xNNkDVJUqfA8AFI4TJ6S//pL27jWXv/6Stm3LfbSBJB09KjFZVsHZR2rcfLPUuLEUEZF1CQnhZ3wJRVCCNcqVM3uTRo+Wxo2TevY0exeQvSNHzFD0xRdmQPr/KfQdgoOl1q3NH9QzZ5q/8HLrGenShb98Zda9u9kbNHy48weKyEgzJOU2rKJsWbPtb7754rZTp8yePnuv044d0i+/SIcOSR99ZC52FSs69zo1bWrOUsgvVgCXysgwf4ZkDkKXrp865frxK1WSgoJy/tlTGrcfP24Gobxs2mQu2QkIMP9Ill2IunQJCsr7PChWBCVY59FHpblzpT17pFdfNR/DdPq0eQ2Xvdfoxx+dn/f2llq2NHuF2raVmjW7eN1RtWr56xlBVt27S926KW3DBiWuXavGHTvKy9VZjUJCpJtuMhe7s2el7793Dk8//WRe9/Tpp+ZiV7Zs1vBUowbDVIEr2fnzZtjJKQjt35+/yXAqVDB/F1Stav574YL08st5v275cik29rK/jCtKfq9hfeQRKTBQOnjQeTlxQkpONkeC/PFH7scIDs4+QGUOWf7+hfGVIR8ISrBOQIA0YYI59nfqVHPa5eBgq6uyxoUL5nTp9mC0davzFNY2m9mlbw9GN95o/kDOzuX0jEDy9JTRurUOnD2rRq1bF26oDAw0A27Llhe3nTsn7dzpfM3Tzp3mXzHtvYh2ISHmDHuXBqiaNQm+QElgGOb/68wB6NIgdPRo3sfx9DR/nl8ahC5dj4rK+vshPd28NUde12G2alU4X+uVJL/XsL7wQvY/i5OTzV5Ae3C6dP3S5fRpc9m921xyU6ZM3r1TYWGM1CkEBCVYa8AA6fnnzes5nn/enBGvNMjIMHsW7EPpNm82f5heqkYNMxTdcov516yCzKBWmD0jKFr+/tK115qL3YULZk+Tvdfp22/N98upU2ZPY0LCxX0DA80Qfek1T3XquMckGUBpkpZmfuDNLgDZ18+ezfs4gYFZw8+l6+HhBf//XZDrMOHsctsuIMD8fV6jRu7nOX065xB16XLunNlLdeKE9PPPuR+zQoW8h/xVrlz0M+GW4PtP8ZsU1vLykp55xrxG6fnnpSFDzDHSVxrDMGdEswej9euzTsBQqZIZiuxLdPTlnbMoe0ZQtHx8zJ6jJk0ubktNNa9xunTCiO++Mz94/e9/5mLn5yc1auQcnurVM48LXCmK+8PX2bPOw+IyB6H9+/N3M+vKlS+GnuyCUNmyRXN9IqMNXFccbRccbC41a+a8j2FIJ0/mL1BduCD9/be57NyZ8zFtNvPzR17D/SpVcu3/Vwm//xRBCda7806peXNzVp6pU6X//tfqigrHkSNmILKHo717nZ8PCjInYLD3GtWvz8X7yJm3t9Sggbn062duS083e2MvveZpxw7zL5Nbt5pL5tdfOl15gwZmqAJKmsL+8GUY5gfKnHqC/vrLfD4v3t7m0LfsAlDVquZzVl5fwmgD17lD29ls5rC7MmXMkQM5MQzzVhbZBajMwwDT0szPK0eOmH98y4mHhzmcL68hf+XLX7yW9gq4/xRBCdaz2cyZ2m6+WZo/37wfQfXqVldVcKdPmzPe2K8zyvwXHG9vqUWLiz1G117rXjd+Rcnj6Wn+sqxTR7rvPnNbRoZ5wXDm8HT8+MX1S19fr57zhBGNGuV8/VtuSvDQCpQwrnz4Sk01n88tCJ07l/e5Q0Jy7gmqWtX8IOnu73tGG7iupLSdzWYGlvLlzT+I5SQjw/wDQF69U0eOmPvaH+fG29v8fxAebt4CpoTff4qgBPfQpo15X5pPPzWnC1+82OqK8mafgMF+wf3WreZfZi516QQMrVq59gEUKAgPD+nqq83l7rvNbYZhzi556YQR335r/oL84QdzWbTo4utr13aeMKJxY/MDYk5K+NAKlCD5uXHqAw+YP4/37bsYhA4eND/o5SU8POcgVK2aFBpauF8PYCUPD3NIXaVK5s/5nKSlmRON5DUhxdGj5h8l7PcQzI39/lObN7v1TIsEJbiP6dPNoLRkifTkk7n/p7VCRob5gdI+lG7TpuwnYLD3GLVpY94fB7CazSbFxJjLnXea2wzDHGt/aXjascP8Bfjzz+byzjsXj1GzpnN4atLEvJbiChhagRIiNVVaujTvG6cePy7NmpV1u49Pzj1B1aqZ4Z5ZwoCsvLwuDq3LzYULZu/TwYPmVPMvvJD3sQ8dKpwaiwhBCe6jSRPp3nvNX4SjR0tr11pdkTkBg30o3fr1WceoV6x4sceoMCZgAIqLzWZeLxEVZQ59sDt06GJ4sgeoffvMa6F+/VVatuzivjEx0uHDJX5oBdxMcrI5PfKuXc7Lb7/l7x5CkjlCoW1b51BUqRL3IQOKko/Pxd8r587lLyiFhxd9XZeBoAT3MmWK9O670rp15k3eirs79uhR5wkY9uxxfj4w0KzJ3mtUvz6/eHFlCQ+XOnc2F7tjx7KGp6Qkc8mNfWjF669Ld91l9kABdsePZw1DP/9sDpXLLnxL5uQj58/nfeynn3br4TzAFS+/959y83t3EZTgXmrUMG9A+9JL0qhR5jVARTkT3JkzzhMw/PCD8/NeXhcnYGjblgkYUDpVrGj+hb5Dh4vbjh83p/R/5pm8Xz94sLmULXvxfiLVqzuvR0byR4crkWGYvZTZBaIjR3J+XfnyFycqqVv34np4uPl+KeEfvoAr3hVy7y6CEtzPuHFSXJz0zTfm9Q/2ayoKw4UL5kW+9gkYvv466wQMjRpdHErXqpU5jTcAZ2XLmv9P8hOUypY1g9Xx49L27eaSmY+POZQvc4Cy/2vllMrIW3q62QOfOQz98ot535ecREZmH4hyu77zCvjwBZQKV8C9uwhKcD+VK0uPPy5NniyNHet8/URBZWSY03RfOgFD5jujx8RcDEY338wEDEB+5XdoRVKSOVzqzz/N5Y8/Li5//ml+wL5wwbwuZffu7M8VEZF9iKpRw7z7PPcgKx4pKea1QpeGoV27zOvXchoS5+Fhfp8yB6Latc0bbBbUFfDhCyg13OH+U5eBoAT39Pjj0ssvmx+a3nhDtho18n9/lqQk5wkYjh1zfr5iRTMQ2cNRTEzRfi3AlaogQysCAy/eMDez9HTzWqbsQtQff5g9EvbpZ7/8Muvrg4NzDlFVq5pDaFEwp0+bvUGZA9Gff5rfr+z4+kq1amXtHbr66sKfTa6Ef/gCSpWScv+pbPDbA+4pJET6z3/MGbOGDJFXRkbO92c5dswMRPZwlPkC88BA6aabLgajBg24FgIoLIXx131PT3PGyOho848Yl7LfYT6nELV/v/mh/vvvzSW7Y1erlvO1Ua70aFxJjh3LGoZ27cp9Cu6QkOyHy0VHF+8HoBL84QtAyUBQgvsKCzP/zXyTwAMHzOuWunQxbyaY+cORl5d0/fXOEzD4+BRPzUBpVJR/3b/0DvPNm2d9/vx5c+he5gBlX09JuTjkLz4+6+srVswaoOyPw8OvjCF99tkHswtE//yT8+sqV855QoUroV0AIA8EJbin9HTpiSeyf84+vOfDDy9ua9jQeQKG0v5XYqC4WfXXfT8/81qX2rWzPpeRYc64ll2I+uMPMyQcO2YuX3+d9fX+/mZgym5YX3R04Q0nu3BBHnPnqsH69fL4/XfpkUdc++NOWpr5dWUOQ7/8kvXazEtFR2cNQ3XqMJ07gFKPoAT3tHlz3ndfl8wZ8oYNM28kCACX8vCQqlQxl5tuyvr8yZMXw1PmEPXXX+YNE3/6yVwys09UkbkXyr6e35Dx1FPS7NnyTE9XdUn65BPz1ggjR0qzZmX/mnPnzOs3Lw1Ded2Q1cvLvFYocyCqVUsKCMhfrQBQyhCU4J4OHcrffnXqEJIAuCY0VGrSxFwyS001b3ya3XC+P/4we2j27TOXjRuzvr5MmZxDVJUqZo/bU09Jzz6b9bXp6eb28+ele+/NGoj27Mn5hqwBAWbvWuZAVKMG94ADgAIiKME9hYcX7n4AUBDe3tJVV5lLZoYhHT2a8wQThw9LJ05I335rLpn5+Jiz8f3+e+41zJ1rLtkpVy774XJRUUxWAwCFhKAE95Tf+7Nw93UAxc1mMyc6qFxZatEi6/Nnz5qzb2YXouz3jMorJNmFhJgT0mQORBUrMqECABQxghLcU0HuzwIA7iQwUKpf31wyS083r78cMUJasybvY/Xpk3OvEgCgSNE/D/dlvz9LlSrO2yMjze3cfR1ASWO/r1Pr1vnbv0aNoq0HAJAjghLcW/fu0p49SouP1/aRI5UWH28OaSEkASjJhgzJu0fc09PcDwBgCYIS3J/9/iw33SSDu68DuBL4+JhTgOdm5Ehulg0AFuIaJQAArGC/T9Ls2ea1S3aenrnfRwkAUCzoUQIAwCqzZknJyUp/7jn92amT0p97TkpOJiQBgBugRwkAACv5+Cjj0Ue186qrFNWpkzy5MSwAuAV6lAAAAAAgE4ISAAAAAGRCUAIA4P/FxcXJZrM5LRUrVlRsbKw++uijIjtvcnKyli5dqoSEhHztv2fPHkd9EydOzHafAQMGOPYpTLGxsYqNjXXptdHR0erXr1+h1gMARYWgBABAJosWLdJXX32lLVu2aMGCBfL09FSXLl304YcfFsn5kpOTtXz58nwHJbvg4GDFxcUpIyPDafuZM2f07rvvKiQkpDDLBIBShaAEAEAm9evX1/XXX68WLVrojjvu0EcffSRfX18tXbrU6tKc3H333dq7d6+++OILp+3Lly9Xenq6unbtalFlAFDyEZQAAMiDn5+ffHx85J1pRroLFy5o6tSpql27tnx9fVWxYkX1799fx44dc9pv/fr1io2NVfny5eXv76+qVavqzjvvVHJysvbs2aOIiAhJ0tSpUx3D5fIzRK1WrVpq2bKlFi5c6LR94cKF6t69u0JDQ7O8JiMjQ7NmzXLUXKlSJfXp00f79+932s8wDM2aNUvVqlWTn5+fmjZtqrVr12Zbx6lTp/TEE08oJiZGPj4+qlKlikaMGKGzZ8/m+TUAgLtienAAADJJT09XWlqaDMPQkSNH9Oyzz+rs2bPq1auXY5+MjAx169ZNmzdv1lNPPaWWLVtq7969mjBhgmJjY7V9+3b5+/trz5496ty5s1q1aqWFCxeqTJkyOnDggNatW6cLFy4oPDxcH330kW677Tb1799fDz30kCSpYsWK+ap14MCBGjp0qI4fP66yZctq9+7d2rJli6ZOnaqVK1dm2f/hhx/WggULNGzYMN12223as2ePxo0bp40bN2rHjh2qUKGCJGnSpEmaNGmSBg4cqB49emjfvn168MEHlZ6erlq1ajmOl5ycrNatW2v//v0aM2aMGjZsqJ9++knjx4/Xzp079fnnnxf6dVIAUBwISgAAZHL99dc7Pfb19dW8efPUoUMHx7YVK1Zo3bp1Wrlypbp37+7Y3qhRIzVv3lxxcXF6+OGH9e233+r8+fN69tln1ahRI8d+l4aupk2bSpKqVKmS5dx5ueuuuzR8+HAtWbJEQ4cO1RtvvKGYmBjFxsZmCUq//PKLFixYoCFDhmju3LmO7U2aNNF1112nF154Qc8884xOnDihmTNn6o477tDrr7/u2K9evXq64YYbnILSf//7X/3www/aunWrmjVrJkm65ZZbVKVKFfXo0UPr1q1Tx44dC/Q1AYA7YOgdAACZvPXWW9q2bZu2bdumtWvXqm/fvho6dKjmzZvn2Oejjz5SmTJl1KVLF6WlpTmWxo0bKywsTBs3bpQkNW7cWD4+PnrooYf05ptv6s8//yzUWoOCgtSzZ08tXLhQaWlpeuutt9S/f/9se3E2bNggSVmG9V177bWqU6eO41qnr776SufPn9d9993ntF/Lli1VrVo1p20fffSR6tevr8aNGzu1Q4cOHWSz2RztAAAlDUEJAIBM6tSpo2bNmqlZs2a69dZb9eqrr6p9+/Z66qmndOLECUnSkSNHdOLECce1S5cuhw8f1t9//y1JqlGjhj7//HNVqlRJQ4cOVY0aNVSjRg3NmTOn0OodOHCgduzYoWeeeUbHjh3L8fqmf/75R5IUHh6e5bmIiAjH8/Z/w8LCsuyXeduRI0f0ww8/ZGmD4OBgGYbhaAcAKGkYegcAQD40bNhQn376qX799Vdde+21qlChgsqXL69169Zlu39wcLBjvVWrVmrVqpXS09O1fft2zZ07VyNGjFDlypV1zz33XHZt9uFwkydPVrt27RQVFZXtfuXLl5ckHTp0SJGRkU7PHTx40HF9kn2/w4cPZznG4cOHFR0d7XhcoUIF+fv7Z5lQ4tLnAaAkIigBAJAPiYmJki5OsnDbbbdp2bJlSk9P13XXXZevY3h6euq6665T7dq1tXjxYu3YsUP33HOPfH19JUnnzp1zub7//Oc/eu+99zR06NAc97n55pslSe+8846aN2/u2L5t2zbt2rVLY8eOlWReo+Xn56fFixfrzjvvdOy3ZcsW7d271yko3XbbbZo2bZrKly+vmJgYl+sHAHdDUAIAIJMff/xRaWlpksxhaKtWrVJ8fLzuuOMORxi45557tHjxYnXq1EnDhw/XtddeK29vb+3fv18bNmxQt27ddMcdd2j+/Plav369OnfurKpVq+r8+fOO3pe2bdtKMnufKlasqA8//FDt27dXuXLlVKFCBadAkpfevXurd+/eue5Tq1YtPfTQQ5o7d648PDzUsWNHx6x3UVFReuyxxyRJZcuW1RNPPKGpU6fqgQceUM+ePbVv3z5NnDgxy9C7ESNGaOXKlbrpppv02GOPqWHDhsrIyNBff/2lzz77TI8//ni+gyQAuBOCEgAAmfTv39+xHhoaqpiYGM2ePVtDhgxxbPf09NQHH3ygOXPm6O2339b06dPl5eWlyMhItW7dWg0aNJBkTubw2WefacKECTp8+LCCgoJUv359ffDBB2rfvr3jeMOGDdPq1avVtWtXpaSkqG/fvoqLiyv0r+2VV15RjRo19MYbb+ill15SaGiobr31Vk2fPt0x5E6SJk+erMDAQL388st6++23Vbt2bc2fP1/PPfec0/ECAwO1efNmzZgxQwsWLFBSUpLjXlFt27YtUNgDAHdiMwzDsLqIonTq1CmFhobq5MmTCgkJsbSW1NRUffLJJ+rUqVOWmxYid7Sda2g319BurqHdXEfbuYZ2cw3t5jrazjXu1G4FyQbMegcAAAAAmRCUAAAAACATghIAAAAAZEJQAgAAAIBMCEoAAAAAkAlBCQAAAAAyISgBAAAAQCYEJQAAAADIhKAEAAAAAJkQlAAAAAAgE0uD0qZNm9SlSxdFRETIZrNpzZo1Oe47aNAg2Ww2vfjii8VWHwAAAIDSydKgdPbsWTVq1Ejz5s3Ldb81a9Zo69atioiIKKbKAAAAAJRmXlaevGPHjurYsWOu+xw4cEDDhg3Tp59+qs6dO+d5zJSUFKWkpDgenzp1SpKUmpqq1NTUyyv4MtnPb3UdJRFt5xrazTW0m2toN9fRdq6h3VxDu7mOtnONO7VbQWqwGYZhFGEt+Waz2bR69Wrdfvvtjm0ZGRlq27atunXrpuHDhys6OlojRozQiBEjcjzOxIkTNWnSpCzblyxZooCAgCKoHAAAAEBJkJycrF69eunkyZMKCQnJdV9Le5TyMnPmTHl5eenRRx/N92tGjx6tkSNHOh6fOnVKUVFRat++fZ6NUdRSU1MVHx+vdu3aydvb29JaShrazjW0m2toN9fQbq6j7VxDu7mGdnMdbecad2o3+2iz/HDboPTtt99qzpw52rFjh2w2W75f5+vrK19f3yzbvb29Lf/G2LlTLSUNbeca2s01tJtraDfX0Xauod1cQ7u5jrZzjTu0W0HO77bTg2/evFlHjx5V1apV5eXlJS8vL+3du1ePP/64oqOjrS4PAAAAwBXMbXuU7r//frVt29ZpW4cOHXT//ferf//+FlUFAAAAoDSwNCidOXNGv//+u+NxUlKSEhMTVa5cOVWtWlXly5d32t/b21thYWGqVatWcZcKAAAAoBSxNCht375dbdq0cTy2T8LQt29fxcXFWVQVAAAAgNLO0qAUGxurgsxOvmfPnqIrBgAAAAD+n9tO5gAAAAAAViEoAQAAAEAmBCUAAAAAyISgBAAAAACZEJQAAAAAIBOCEgAAAABkQlACAAAAgEwKFJRmzZqlc+fOOR5v2rRJKSkpjsenT5/WkCFDCq86AAAAALBAgYLS6NGjdfr0acfj2267TQcOHHA8Tk5O1quvvlp41QEAAACABQoUlAzDyPUxAAAAAFwJuEYJAAAAADIhKAEAAABAJl4FfcHrr7+uoKAgSVJaWpri4uJUoUIFSXK6fgkAAAAASqoCBaWqVavqtddeczwOCwvT22+/nWUfAAAAACjJChSU9uzZU0RlAAAAAID74BolAAAAAMikQEFp69atWrt2rdO2t956SzExMapUqZIeeughpxvQAgAAAEBJVKCgNHHiRP3www+Oxzt37tTAgQPVtm1bPf300/rwww81ffr0Qi8SAAAAAIpTgYJSYmKibrnlFsfjZcuW6brrrtNrr72mkSNH6r///a9WrFhR6EUCAAAAQHEqUFA6fvy4Kleu7HickJCgW2+91fG4efPm2rdvX+FVBwAAAAAWKFBQqly5spKSkiRJFy5c0I4dO9SiRQvH86dPn5a3t3fhVggAAAAAxaxAQenWW2/V008/rc2bN2v06NEKCAhQq1atHM//8MMPqlGjRqEXCQAAAADFqUD3UZo6daq6d++u1q1bKygoSHFxcfLx8XE8v3DhQrVv377QiwQAAACA4lSgoFSxYkVt3rxZJ0+eVFBQkDw9PZ2ef/fddxUcHFyoBQIAAABAcStQUBowYEC+9lu4cKFLxQAAAACAOyhQUIqLi1O1atXUpEkTGYZRVDUBAAAAgKUKFJQGDx6sZcuW6c8//9SAAQPUu3dvlStXrqhqAwAAAABLFGjWu5dfflmHDh3SqFGj9OGHHyoqKkp33XWXPv30U3qYAAAAAFwxChSUJMnX11f33nuv4uPj9fPPP6tevXoaMmSIqlWrpjNnzhRFjQAAAABQrAoclC5ls9lks9lkGIYyMjIKqyYAAAAAsFSBg1JKSoqWLl2qdu3aqVatWtq5c6fmzZunv/76S0FBQUVRIwAAAAAUqwJN5jBkyBAtW7ZMVatWVf/+/bVs2TKVL1++qGoDAAAAAEsUKCjNnz9fVatWVUxMjBISEpSQkJDtfqtWrSqU4gAAAADACgUKSn369JHNZiuqWgAAAADALRT4hrMAAAAAcKW7rFnvAAAAAOBKRFACAAAAgEwISgAAAACQCUEJAAAAADIhKAEAAABAJgQlAAAAAMiEoAQAAAAAmRCUAAAAACATghIAAAAAZEJQAgAAAIBMCEoAAAAAkAlBCQAAAAAyISgBAAAAQCYEJQAAAADIhKAEAAAAAJkQlAAAAAAgE4ISAAAAAGRCUAIAAACATAhKAAAAAJAJQQkAAAAAMiEoAQAAAEAmBCUAAAAAyMTSoLRp0yZ16dJFERERstlsWrNmjeO51NRUjRo1Sg0aNFBgYKAiIiLUp08fHTx40LqCAQAAAJQKlgals2fPqlGjRpo3b16W55KTk7Vjxw6NGzdOO3bs0KpVq/Trr7+qa9euFlQKAAAAoDTxsvLkHTt2VMeOHbN9LjQ0VPHx8U7b5s6dq2uvvVZ//fWXqlatWhwlAgAAACiFLA1KBXXy5EnZbDaVKVMmx31SUlKUkpLieHzq1ClJ5lC+1NTUoi4xV/bzW11HSUTbuYZ2cw3t5hrazXW0nWtoN9fQbq6j7VzjTu1WkBpshmEYRVhLvtlsNq1evVq33357ts+fP39eN954o2rXrq133nknx+NMnDhRkyZNyrJ9yZIlCggIKKxyAQAAAJQwycnJ6tWrl06ePKmQkJBc9y0RQSk1NVU9e/bUX3/9pY0bN+b6RWXXoxQVFaW///47z8YoaqmpqYqPj1e7du3k7e1taS0lDW3nGtrNNbSba2g319F2rqHdXEO7uY62c407tdupU6dUoUKFfAUltx96l5qaqrvuuktJSUlav359nl+Qr6+vfH19s2z39va2/Btj5061lDS0nWtoN9fQbq6h3VxH27mGdnMN7eY62s417tBuBTm/Wwcle0j67bfftGHDBpUvX97qkgAAAACUApYGpTNnzuj33393PE5KSlJiYqLKlSuniIgI9ejRQzt27NBHH32k9PR0HT58WJJUrlw5+fj4WFU2AAAAgCucpUFp+/btatOmjePxyJEjJUl9+/bVxIkT9cEHH0iSGjdu7PS6DRs2KDY2trjKBAAAAFDKWBqUYmNjldtcEm4yzwQAAACAUsbD6gIAAAAAwN0QlAAAAAAgE4ISAAAAAGRCUAIAAACATAhKAAAAAJAJQQkAAAAAMiEoAQAAAEAmBCUAAAAAyISgBAAAAACZEJQAAAAAIBOCEgAAAABkQlACAAAAgEwISgAAAACQCUEJAAAAADIhKAEAAABAJgQlAAAAAMiEoAQAAAAAmRCUAAAAACATghIAAAAAZEJQAgAAAIBMCEoAAAAAkAlBqZikp0sJCTZt2lRFCQk2padbXREAAACAnBCUisGqVVJ0tNSunZdmz26mdu28FB1tbgcAAADgfghKRWzVKqlHD2n/fuftBw6Y2wlLAAAAgPshKBWh9HRp+HDJMLI+Z982YoQYhgcAAAC4GYJSEdq8OWtP0qUMQ9q3z9wPAAAAgPsgKBWhQ4cKdz8AAAAAxYOgVITCwwt3PwAAAADFg6BUhFq1kiIjJZst++dtNikqytwPAAAAgPsgKBUhT09pzhxzPbuwZBjS9OnmfgAAAADcB0GpiHXvLr33nlSlivN2ezj6+OPsZ8UDAAAAYB2CUjHo3l3as0eKj0/TyJHbFR+fpg0bJC8vaelSacECqysEAAAAcCmCUjHx9JRatzZ0000H1Lq1oVatpBkzzOeGD5e++87a+gAAAABcRFCy0MiRUteuUkqK1LOndPKk1RUBAAAAkAhKlrLZpLg4KTpa+uMPaeBArlcCAAAA3AFByWJly0orVkje3tLKldK8eVZXBAAAAICg5AaaN5eef95cf/xx6ZtvrK0HAAAAKO0ISm5i2DCpRw8pNVW66y7p33+trggAAAAovQhKbsJmk15/XapRQ9q7V+rXj+uVAAAAAKsQlNxIaKj07ruSr6/04YcXh+MBAAAAKF4EJTfTpIk0Z465/vTT0v/+Z209AAAAQGlEUHJDDz0k3XuvlJ4u3X239PffVlcEAAAAlC4EJTdks0mvvirVqiUdOCDdf7+UkWF1VQAAAEDpQVByU8HB5vVK/v7SunXSjBlWVwQAAACUHgQlN9aggfTSS+b6uHFSQoK19QAAAAClBUHJzfXvb04VnpEh3XOPdOSI1RUBAAAAVz6CUgnw0ktSvXrS4cNSr17mJA8AAAAAig5BqQQICDCvVwoMlNavl6ZMsboiAAAA4MpGUCoh6tQxZ8KTpMmTpfh4a+sBAAAArmQEpRLkvvvMeywZhrl+8KDVFQEAAABXJoJSCfPii1KjRtKxY+bkDmlpVlcEAAAAXHkISiWMv795vVJwsLR5szR+vNUVAQAAAFceglIJdPXV0htvmOvTp0uffGJtPQAAAMCVhqBUQvXsKQ0bZq7ff7+0b5+19QAAAABXEoJSCfbcc1KzZtK//0p33SVduGB1RQAAAMCVgaBUgvn6SitWSGXKSF9/LY0ebXVFAAAAwJWBoFTCxcRIcXHm+uzZ0vvvW1oOAAAAcEUgKF0BunWTRo401/v2lZKSrK0HAAAAKOksDUqbNm1Sly5dFBERIZvNpjVr1jg9bxiGJk6cqIiICPn7+ys2NlY//fSTNcW6uRkzpBYtpJMnzeuVUlKsrggAAAAouSwNSmfPnlWjRo00b968bJ+fNWuWZs+erXnz5mnbtm0KCwtTu3btdPr06WKu1P15e0vLl0vlyknbt0tPPGF1RQAAAEDJZWlQ6tixo6ZOnaru3btnec4wDL344osaO3asunfvrvr16+vNN99UcnKylixZYkG17i8qSnr7bXN93jzzxrQAAAAACs7L6gJykpSUpMOHD6t9+/aObb6+vmrdurW2bNmiQYMGZfu6lJQUpVwy7uzUqVOSpNTUVKWmphZt0Xmwn78o62jXTnrySQ89+6ynBg40VK9emq6+ushOV2yKo+2uRLSba2g319BurqPtXEO7uYZ2cx1t5xp3areC1GAzDMMowlryzWazafXq1br99tslSVu2bNENN9ygAwcOKCIiwrHfQw89pL179+rTTz/N9jgTJ07UpEmTsmxfsmSJAgICiqR2d5OebtO4cS31888VFBNzQjNmbJavb4bVZQEAAACWSk5OVq9evXTy5EmFhITkuq/b9ijZ2Ww2p8eGYWTZdqnRo0drpH0KOJk9SlFRUWrfvn2ejVHUUlNTFR8fr3bt2snb27tIz3XNNVLz5oaSksooPr6TXn65ZAel4my7Kwnt5hrazTW0m+toO9fQbq6h3VxH27nGndrNPtosP9w2KIWFhUmSDh8+rPDwcMf2o0ePqnLlyjm+ztfXV76+vlm2e3t7W/6NsSuOWqpVk5Yskdq3l15/3VOxsZ66774iPWWxcKfvY0lCu7mGdnMN7eY62s41tJtraDfX0XaucYd2K8j53fY+SjExMQoLC1N8fLxj24ULF5SQkKCWLVtaWFnJ0batNH68uT5okLRrl7X1AAAAACWFpUHpzJkzSkxMVGJioiRzAofExET99ddfstlsGjFihKZNm6bVq1frxx9/VL9+/RQQEKBevXpZWXaJMm6cdMst0tmzUs+e5r8AAAAAcmfp0Lvt27erTZs2jsf2a4v69u2ruLg4PfXUUzp37pyGDBmi48eP67rrrtNnn32m4OBgq0oucTw9pcWLpcaNpZ9+koYNkxYtsroqAAAAwL1ZGpRiY2OV26R7NptNEydO1MSJE4uvqCtQ5crSsmXSzTdLcXHSTTdJ/ftbXRUAAADgvtz2GiUUrtatpSlTzPWhQ6WdO62tBwAAAHBnBKVS5OmnpVtvlc6dM69XOn3a6ooAAAAA90RQKkU8PKS335aqVJF275YGD5bc43bDAAAAgHshKJUyFSpIK1ZIXl7mfZYWLLC6IgAAAMD9EJRKoZYtpenTzfXhw6XvvrO2HgAAAMDdEJRKqccfl7p0kVJSzOuVTp60uiIAAADAfRCUSimbTXrzTalaNemPP6SBA7leCQAAALAjKJViZcua1yt5e0srV0rz5lldEQAAAOAeCEql3LXXSs89Z64//rj0zTfW1gMAAAC4A4IS9Mgj0p13Sqmp0l13ScePW10RAAAAYC2CEmSzSW+8IdWoIe3dK/Xty/VKAAAAKN0ISpAkhYaa1yv5+koffig9/7zVFQEAAADWISjBoWlT6cUXzfWnn5b+9z9LywEAAAAsQ1CCk0GDpHvvldLTpbvvlv7+2+qKAAAAgOJHUIITm0169VWpVi3pwAHp/vuljAyrqwIAAACKF0EJWQQHS+++K/n7S+vWSTNmWF0RAAAAULwISshWgwbSSy+Z6+PGSQkJ1tYDAAAAFCeCEnLUv785VXhGhnTPPdKRI1ZXBAAAABQPghJy9dJLUr160uHD0n33mZM8AAAAAFc6ghJyFRhoXq8UGCh98YU0ZYrVFQEAAABFj6CEPNWpI82fb65PnizFx1tbDwAAAFDUCErIl969pQcflAzDHIJ38KDVFQEAAABFh6CEfJszR2rUSDp2zJzcIS3N6ooAAACAokFQQr75+5vXKwUHS5s3S+PHW10RAAAAUDQISiiQq6+W3njDXJ8+XfrkE2vrAQAAAIoCQQkF1rOnNGyYuX7//dK+fdbWAwAAABQ2ghJc8txzUrNm0r//SnffLaWmWl0RAAAAUHgISnCJr6+0YoUUGip99ZU0erTVFQEAAACFh6AEl8XESHFx5vrzz0vvv29pOQAAAEChISjhstx+uzRypLnet6+UlGRpOQAAAEChICjhss2YIV1/vXTypHTXXVJKitUVAQAAAJeHoITL5u0tLV8ulSsnbd8uPfGE1RUBAAAAl4eghEJRtar09tvm+rx55o1pAQAAgJKKoIRC06mT9PTT5vrAgdJvv1lbDwAAAOAqghIK1ZQpUqtW0unT5vVK585ZXREAAABQcAQlFCovL2nZMqliRSkxURoxwuqKAAAAgIIjKKHQRURIixdLNpu0YIG5DgAAAJQkBCUUiXbtpHHjzPVBg6Rdu6ytBwAAACgIghKKzPjx0s03S2fPSj17mv8CAAAAJQFBCUXG01NaskQKC5N++kkaNszqigAAAID8ISihSFWuLC1dKnl4SHFx0qJFVlcEAAAA5I2ghCIXGytNnmyuDx0q7dxpaTkAAABAnghKKBajR0sdOpj3VerZ07zPEgAAAOCuCEooFh4e0jvvSFWqSLt3S4MHS4ZhdVUAAABA9ghKKDYVKkjLl1+c5GHBAqsrAgAAALJHUEKxuuEGacYMc334cOm776ytBwAAAMgOQQnF7vHHpS5dpJQU83qlkyetrggAAABwRlBCsbPZzKnCq1WT/vhDGjiQ65UAAADgXghKsES5ctKKFZK3t7RypTRvntUVAQAAABcRlGCZa6+VnnvOXH/8cembb6ytBwAAALAjKMFSjzwi3XmnlJoq3XWXdPy41RUBAAAABCVYzGaT3nhDql5d2rtX6teP65UAAABgPYISLBcaKr37ruTjI33wgTR7ttUVAQAAoLQjKMEtNG0qzZljro8aJW3ZYm09AAAAKN0ISnAbgwZJ994rpadLd98t/f231RUBAACgtCIowW3YbNKrr0o1a0r790v33y9lZFhdFQAAAEojghLcSnCw9N57kp+ftG6dNGOG2cOUkGDTpk1VlJBgU3q61VUCAADgSufWQSktLU3/+c9/FBMTI39/f1WvXl2TJ09WBt0MV7QGDaSXXjLX//MfKTxcatfOS7NnN1O7dl6KjpZWrbK0RAAAAFzh3DoozZw5U/Pnz9e8efO0a9cuzZo1S88++6zmzp1rdWkoYv37S7Gx5lThx445P3fggNSjB2EJAAAARcfL6gJy89VXX6lbt27q3LmzJCk6OlpLly7V9u3bLa4MRS0jQ/rtt+yfMwzzeqYRI6Ru3SRPz2ItDQAAAKWAWwelG2+8UfPnz9evv/6qmjVr6vvvv9eXX36pF198McfXpKSkKCUlxfH41KlTkqTU1FSlpqYWdcm5sp/f6jpKgoQEmw4cyPntaRjSvn3StddmKCZGKlNGCg01FBp6cb1MGXM9JOTiemCgGbJKC95zrqHdXEO7uY62cw3t5hrazXW0nWvcqd0KUoPNMAyjCGu5LIZhaMyYMZo5c6Y8PT2Vnp6uZ555RqNHj87xNRMnTtSkSZOybF+yZIkCAgKKslwUok2bqmj27GaFflwPjwwFBqYqICBNgYGpOSzOzwUEXFz390+Th1sPWL0oPV36+efyOn7cT2XLnlfduv/Q+wYAAEq15ORk9erVSydPnlRISEiu+7p1UFq2bJmefPJJPfvss6pXr54SExM1YsQIzZ49W3379s32Ndn1KEVFRenvv//OszGKWmpqquLj49WuXTt5e3tbWou7S0iwqV27vDs8n3oqXeHh0smT5nLihE0nTlx8fPKk+fjECSkt7fK7kmw2s9fKvpQp49yLZV/PaXtIiORVDP24q1fbNHKkpw4cuPg1V6liaPbsdN1xh9v+l3cb/F91De3mOtrONbSba2g319F2rnGndjt16pQqVKiQr6Dk1kPvnnzyST399NO65557JEkNGjTQ3r17NX369ByDkq+vr3x9fbNs9/b2tvwbY+dOtbirNm2kyEhz4obsorzNZj4/bZpnvnpJDENKTpYjRNnDk33Jz7aUFMkwLgav/6+kwF9bcLAuCVQXl/xsCw2VfHxyP/6qVdI992Rtt4MHbbrnHi+9957UvXuByy6V+L/qGtrNdbSda2g319BurqPtXOMO7VaQ87t1UEpOTpZHpnFOnp6eTA9eCnh6SnPmmLPb2WzOH/rt1xi9+GL+J3Kw2czrkwIDpSpVXKvp/HnXQ9aJE2ZQk6TTp81l/37X6vD3zxqo7CEqJMS8aW924ZJJMAAAAPLPrYNSly5d9Mwzz6hq1aqqV6+evvvuO82ePVsDBgywujQUg+7dzZvPDh/uHCoiI82QVNy9In5+5lK5smuvT03NGqAKErz+f14SnTtnLocOFbwG+yQYoaFShQoXhxCGhMhpSGHmx5m3hYRcuUHr0hscBwba1KbNlfu1AgCAnLl1UJo7d67GjRunIUOG6OjRo4qIiNCgQYM0fvx4q0tDMene3ez92LAhTWvXJqpjx8Zq08arRH5w9fY2w0mFCq69Pj3dDEu5BaqtW6V16/I+1tmz5nI5AgNzD1P5CVzZjJK11KpV9mDuJamZZs82g/mcOQxXBACgtHHroBQcHKwXX3wx1+nAceXz9JRatzZ09uwBtW7dqESGpMLg6SmVLWsuOdm4MX9B6c03pVq1zOB1ceKLrI+z23b+vHkMe9g6eND1r8nXN+8wlVfgKqwp31etMod6Zh62aL/BMdd2AQBQurh1UAJQMK1a5W8SjPvuc3042YULrgWsS7edPm0eKyVFOnbMXFzl6WmGpvwErpxCWGCg2ZPEtV0AAMCOoARcQQp7Eozs+Phc3hBCyRxGePp0wQNW5sfp6eZy/Li5FBX7tV2bN0uxsUV3HgAA4D4ISsAVxt0mwciOp+fF2fpcZZ/y3ZWAdelyyW3X8rRggTnrYNOm5jVnAADgykVQAq5AV9IkGDm5dMr3iAjXj5OSIq1dK91xR977Ll1qLoGBUsuW0k03mcu115ozIgIAgCsHQQm4QjEJRv74+kpduuR+bZdk9n7ddJP05ZfSv/9K8fHmYj/GddddDE4tWkhBQcX2JQAAgCJAUAJQ6uXn2q433jB76jIypJ9/lhISpE2bzOXw4Yvr9uNdc43UurUZnG64IffZCgEAgPvxsLoAAHAH9mu7qlRx3h4Z6Tw1uIeHVL++NHSotHy5OT36r79Kr78u3X+/VK2aOcHEN99Izz5r9laVLy81biw9+qi0cqV09Gixf3kAAFji0hu5JyTYlJ5udUX5R48SAPw/V67tstmkq682l4EDzW1795oz5G3aZPY8/fqr9P335jJ3rrlP7doXh+q1bm0GMgCA+7r0A39goE1t2nDLiLyU9Bu5E5QA4BKFcW1XtWrm0ru3+fjw4YvBadMm6YcfpF9+MZcFC8x9YmIuBqebbpJq1CicG+kCAC5fSf/Ab4Ur4UbuBCUAKGJhYVLPnuYimZNBfPnlxeC0Y4eUlGQub75p7hMR4Ryc6tYlOAGAFa6ED/zFLT39yriRO0EJAIpZuXJS167mIpk3392y5WJw+uYb89qnZcvMRTJv8Nuq1cXg1KiRe/9yAYArQXF94M/IuHgT9bS0i+u5Le6834EDzvdyzK7tSsKN3AlKAGCx4GCpQwdzkaRz56StWy8Gpy1bpL//llavNhdJCgmRbrzxYnC65hrJx8e6rwFAycB1NqaUFPOPVPbl1Cnnx/blp5/y94G/Zk3zhuSuBozS6tAhqyvIHUEJANyMv7/5Fzb7X9kuXDCH59mnJP/yS/OX+iefmIv9NS1aXJyS/LrrzG0AYFeSr7NJT5fOnMk+zOQWdHJaUlMLt74//yzc42Xm5WUG2vws7rDvnj3S/Pl5f13h4UXbbpeLoAQAbs7HR7r+enMZNcr8wPDDDxdn1du0SfrnH2n9enORJG9v6dprL86q17Kl2XMFoHQq7utsDMPsHS9IeMkt7CQnF15tlwoIMH825rScOCG9+27ex5k1y+zZz2+QKEjw8CiBN/NJT5c++ijnG7nbbGZIb9Wq+GsrCIISAJQwnp5SkybmMny4Obb9l18uDtVLSDCvcfrf/8xl+nTzF23TpheH6rVqZV4rBeDKl9/rbDp1MgNJQcJNTkHnzJmiGVLm5ZV9oAkJyT3wZLcEBZnHy6vtvvoq7w/8I0eWziGMOcnPjdxffNH924ygBAAlnIeHOSte3brS4MHmL6Q//3QOTklJ0vbt5jJ7tvm6Bg2cZ9YLC7P26wAKgmttzP/r589nDSmZe2Z++CF/19kU1XDdoKD8h5e8Ao+vb/HOAHqlfOC3gv1G7uZwz4vbIyPNNnP34Z4SQQkArjg2m3kfpho1pP79zW322YXs4WnXLmnnTnN56SVzn5o1nYNTtWr5PycfWlGcSvK1NhkZ0tmzOYea3AJPds8VRa+Nj8/l9dRc+rrAwJI5dOxSV8IHfqu4ciN3d0JQAoBSICpK6tXLXCTp6FHn4PT999Kvv5rL66+b+1StenFyiJtukq6+Ovu/5JbkD60oeay4p016uutBJvPjM2eyH8J1uTL32lwacE6flj74IO9jrFkjdezIDJrZKekf+K1UGDdytwpBCQBKoUqVpDvvNBfJvGD50pvgbt8u/fWX9Pbb5iKZQ/Mu7XGqV8/8YMWNGC8PvXH5V5B72qSnX36osa+fO1f4X4uHR/ahJnMPTn6eCwrKvdcmPV2Kjs77OpvbbuO9l5uS/IEfriEoAQBUpoz5Iem228zHZ85IX399cVa9rVulw4elFSvMRZLKljU/QJb0O69bqbT0xmVkmPetOX/+4nLp4/w+99tv+bvWxs/PvGdNYfP2zjm45BZwstvX37/4rrXhOhvANQQlAEAWQUFS27bmIpkfUrdtuzg5xJYt0vHjuR/D/qG1c2fzw7+3t7l4eeX+b1HvU5wXguemuIaQpacXLIwU1nOXPi7se9bk5dKQ5O9fOL029okESiquswEKjqAEAMiTn585pXirVtLYseYH3xkzpPHj837tp58WfX0FYb9/iZXBzcNDGjMm5944SRowQEpMNNv6ckJMUfSsXA6bzXw/Xbr4+ub8+NL1o0elZcvyPseyZVKHDvmb/rk04ToboGD48QEAKDBv7/zfKPChh8yJIdLSzA/99n8vXc/p38vdJzvp6eaSklJ47VEUTp6Upkwp3GN6eJg9LDkFkYKEFlf3vZxevfR081q6vK616dGDYWQ54TobIP8ISgAAl7RqZX4ozetD68svW/Oh1TDMD9ZFHcbys0/mbUlJ0o4deX8Nt9xi3u+qsEJLSe9d4VobAMWphP/IBABYxd0/tNpsZjDw8jJDgjvZuFFq0ybv/f7zHyk2tqirKVm41gZAcSnhtwADAFjJ/qG1ShXn7ZGRTA2eG3tvXE5D0Gw2895X+R3eWNp07y7t2SPFx6dp5Mjtio9PU1IS7zcAhYugBAC4LHxoLTh7b5yUNSy5Q29cSWC/1uammw6odWuDtgJQ6AhKAIDLxofWgqM3DgDcG9coAQBgEaZrBgD3RVACAMBCTNcMAO6JoXcAAAAAkAlBCQAAAAAyISgBAAAAQCYEJQAAAADIhKAEAAAAAJkQlAAAAAAgE4ISAAAAAGRCUAIAAACATAhKAAAAAJAJQQkAAAAAMiEoAQAAAEAmBCUAAAAAyISgBAAAAACZeFldQFEzDEOSdOrUKYsrkVJTU5WcnKxTp07J29vb6nJKFNrONbSba2g319BurqPtXEO7uYZ2cx1t5xp3ajd7JrBnhNxc8UHp9OnTkqSoqCiLKwEAAADgDk6fPq3Q0NBc97EZ+YlTJVhGRoYOHjyo4OBg2Ww2S2s5deqUoqKitG/fPoWEhFhaS0lD27mGdnMN7eYa2s11tJ1raDfX0G6uo+1c407tZhiGTp8+rYiICHl45H4V0hXfo+Th4aHIyEiry3ASEhJi+ZukpKLtXEO7uYZ2cw3t5jrazjW0m2toN9fRdq5xl3bLqyfJjskcAAAAACATghIAAAAAZEJQKka+vr6aMGGCfH19rS6lxKHtXEO7uYZ2cw3t5jrazjW0m2toN9fRdq4pqe12xU/mAAAAAAAFRY8SAAAAAGRCUAIAAACATAhKAAAAAJAJQQkAAAAAMiEoFYNNmzapS5cuioiIkM1m05o1a6wuqUSYPn26mjdvruDgYFWqVEm33367du/ebXVZbu+VV15Rw4YNHTd1a9GihdauXWt1WSXO9OnTZbPZNGLECKtLcXsTJ06UzWZzWsLCwqwuq0Q4cOCAevfurfLlyysgIECNGzfWt99+a3VZbi86OjrLe85ms2no0KFWl+bW0tLS9J///EcxMTHy9/dX9erVNXnyZGVkZFhdmts7ffq0RowYoWrVqsnf318tW7bUtm3brC7LreT1edcwDE2cOFERERHy9/dXbGysfvrpJ2uKzSeCUjE4e/asGjVqpHnz5lldSomSkJCgoUOH6uuvv1Z8fLzS0tLUvn17nT171urS3FpkZKRmzJih7du3a/v27br55pvVrVs3t/9h5E62bdumBQsWqGHDhlaXUmLUq1dPhw4dciw7d+60uiS3d/z4cd1www3y9vbW2rVr9fPPP+v5559XmTJlrC7N7W3bts3p/RYfHy9J6tmzp8WVubeZM2dq/vz5mjdvnnbt2qVZs2bp2Wef1dy5c60uze098MADio+P19tvv62dO3eqffv2atu2rQ4cOGB1aW4jr8+7s2bN0uzZszVv3jxt27ZNYWFhateunU6fPl3MlRaAgWIlyVi9erXVZZRIR48eNSQZCQkJVpdS4pQtW9Z4/fXXrS6jRDh9+rRx9dVXG/Hx8Ubr1q2N4cOHW12S25swYYLRqFEjq8socUaNGmXceOONVpdxRRg+fLhRo0YNIyMjw+pS3Frnzp2NAQMGOG3r3r270bt3b4sqKhmSk5MNT09P46OPPnLa3qhRI2Ps2LEWVeXeMn/ezcjIMMLCwowZM2Y4tp0/f94IDQ015s+fb0GF+UOPEkqMkydPSpLKlStncSUlR3p6upYtW6azZ8+qRYsWVpdTIgwdOlSdO3dW27ZtrS6lRPntt98UERGhmJgY3XPPPfrzzz+tLsntffDBB2rWrJl69uypSpUqqUmTJnrttdesLqvEuXDhgt555x0NGDBANpvN6nLc2o033qgvvvhCv/76qyTp+++/15dffqlOnTpZXJl7S0tLU3p6uvz8/Jy2+/v768svv7SoqpIlKSlJhw8fVvv27R3bfH191bp1a23ZssXCynLnZXUBQH4YhqGRI0fqxhtvVP369a0ux+3t3LlTLVq00Pnz5xUUFKTVq1erbt26Vpfl9pYtW6YdO3Yw7ryArrvuOr311luqWbOmjhw5oqlTp6ply5b66aefVL58eavLc1t//vmnXnnlFY0cOVJjxozRN998o0cffVS+vr7q06eP1eWVGGvWrNGJEyfUr18/q0txe6NGjdLJkydVu3ZteXp6Kj09Xc8884zuvfdeq0tza8HBwWrRooWmTJmiOnXqqHLlylq6dKm2bt2qq6++2urySoTDhw9LkipXruy0vXLlytq7d68VJeULQQklwrBhw/TDDz/wl5t8qlWrlhITE3XixAmtXLlSffv2VUJCAmEpF/v27dPw4cP12WefZfmrIXLXsWNHx3qDBg3UokUL1ahRQ2+++aZGjhxpYWXuLSMjQ82aNdO0adMkSU2aNNFPP/2kV155haBUAG+88YY6duyoiIgIq0txe8uXL9c777yjJUuWqF69ekpMTNSIESMUERGhvn37Wl2eW3v77bc1YMAAValSRZ6enmratKl69eqlHTt2WF1aiZK519cwDLfuCSYowe098sgj+uCDD7Rp0yZFRkZaXU6J4OPjo6uuukqS1KxZM23btk1z5szRq6++anFl7uvbb7/V0aNHdc011zi2paena9OmTZo3b55SUlLk6elpYYUlR2BgoBo0aKDffvvN6lLcWnh4eJY/XtSpU0crV660qKKSZ+/evfr888+1atUqq0spEZ588kk9/fTTuueeeySZf9jYu3evpk+fTlDKQ40aNZSQkKCzZ8/q1KlTCg8P1913362YmBirSysR7DOhHj58WOHh4Y7tR48ezdLL5E64RgluyzAMDRs2TKtWrdL69ev5YXQZDMNQSkqK1WW4tVtuuUU7d+5UYmKiY2nWrJnuu+8+JSYmEpIKICUlRbt27XL6ZYisbrjhhiy3PPj1119VrVo1iyoqeRYtWqRKlSqpc+fOVpdSIiQnJ8vDw/mjn6enJ9ODF0BgYKDCw8N1/Phxffrpp+rWrZvVJZUIMTExCgsLc8xQKZnXFyYkJKhly5YWVpY7epSKwZkzZ/T77787HiclJSkxMVHlypVT1apVLazMvQ0dOlRLlizR+++/r+DgYMf41tDQUPn7+1tcnfsaM2aMOnbsqKioKJ0+fVrLli3Txo0btW7dOqtLc2vBwcFZrn8LDAxU+fLluS4uD0888YS6dOmiqlWr6ujRo5o6dapOnTrFX6jz8Nhjj6lly5aaNm2a7rrrLn3zzTdasGCBFixYYHVpJUJGRoYWLVqkvn37ysuLjzP50aVLFz3zzDOqWrWq6tWrp++++06zZ8/WgAEDrC7N7X366acyDEO1atXS77//rieffFK1atVS//79rS7NbeT1eXfEiBGaNm2arr76al199dWaNm2aAgIC1KtXLwurzoOlc+6VEhs2bDAkZVn69u1rdWluLbs2k2QsWrTI6tLc2oABA4xq1aoZPj4+RsWKFY1bbrnF+Oyzz6wuq0RievD8ufvuu43w8HDD29vbiIiIMLp372789NNPVpdVInz44YdG/fr1DV9fX6N27drGggULrC6pxPj0008NScbu3butLqXEOHXqlDF8+HCjatWqhp+fn1G9enVj7NixRkpKitWlub3ly5cb1atXN3x8fIywsDBj6NChxokTJ6wuy63k9Xk3IyPDmDBhghEWFmb4+voaN910k7Fz505ri86DzTAMo9jTGQAAAAC4Ma5RAgAAAIBMCEoAAAAAkAlBCQAAAAAyISgBAAAAQCYEJQAAAADIhKAEAAAAAJkQlAAAAAAgE4ISAAAAAGRCUAKAyxQbG6sRI0YU2vHi4uJUpkwZx+OJEyeqcePGub6mX79+uv3223OsKTo6Wi+++GKh1Xip3bt3KywsTKdPny6S45c0ycnJuvPOOxUSEiKbzaYTJ04UyXlsNpvWrFlTJMcuTHv27JHNZlNiYmK+X5P5/dyjRw/Nnj278IsDgFwQlAAgD/369ZPNZsuy/P7770Vyvrvvvlu//vprgV4zZ84cxcXF5fj8tm3b9NBDDzkeF+aH7LFjx2ro0KEKDg6WJG3cuNHRRh4eHgoNDVWTJk301FNP6dChQ4VyTnf25ptvavPmzdqyZYsOHTqk0NDQLPvExcU5vZfCw8N11113KSkpyYKKi1ZUVJQOHTqk+vXru3yM8ePH65lnntGpU6cKsTIAyB1BCQDy4dZbb9WhQ4eclpiYmCI5l7+/vypVqlSg14SGhjr1QmVWsWJFBQQEXGZlWe3fv18ffPCB+vfvn+W53bt36+DBg9q2bZtGjRqlzz//XPXr19fOnTsLvY5LGYahtLS0Ij1Hbv744w/VqVNH9evXV1hYmGw2W7b7hYSE6NChQzp48KCWLFmixMREde3aVenp6cVccdHy9PRUWFiYvLy8XD5Gw4YNFR0drcWLFxdiZQCQO4ISAOSDr6+vwsLCnBZPT89s971w4YKeeuopValSRYGBgbruuuu0ceNGSdL58+dVr149p96dpKQkhYaG6rXXXpOUdeid3auvvqqoqCgFBASoZ8+eTkO6Mg9VyuzSoXfR0dGSpDvuuEM2m03R0dHas2ePPDw8tH37dqfXzZ07V9WqVZNhGNked8WKFWrUqJEiIyOzPFepUiWFhYWpZs2auueee/S///1PFStW1MMPP+y036JFi1SnTh35+fmpdu3aevnll52e37Jlixo3biw/Pz81a9ZMa9ascRrKZe/B+vTTT9WsWTP5+vpq8+bNMgxDs2bNUvXq1eXv769GjRrpvffeczr2zz//rE6dOikoKEiVK1fW/fffr7///jvHdpSklStXql69evL19VV0dLSef/55x3OxsbF6/vnntWnTJtlsNsXGxuZ4HJvNprCwMIWHh6tNmzaaMGGCfvzxR0dP5SuvvKIaNWrIx8dHtWrV0ttvv53jsW6++WYNGzbMads///wjX19frV+/XpL5fZ82bZoGDBig4OBgVa1aVQsWLHB6zc6dO3XzzTfL399f5cuX10MPPaQzZ844nre/z6ZNm6bKlSurTJkymjRpktLS0vTkk0+qXLlyioyM1MKFCx2vyTz0Lj09XQMHDlRMTIz8/f1Vq1YtzZkzJ9c2l6SuXbtq6dKlee4HAIWFoAQAhax///763//+p2XLlumHH35Qz549deutt+q3336Tn5+fFi9erDfffFNr1qxRenq67r//frVp00YPPvhgjsf8/ffftWLFCn344Ydat26dEhMTNXToUJfq27ZtmyQzoBw6dEjbtm1TdHS02rZtq0WLFjntu2jRIsfQw+xs2rRJzZo1y9d5/f39NXjwYP3vf//T0aNHJUmvvfaaxo4dq2eeeUa7du3StGnTNG7cOL355puSpNOnT6tLly5q0KCBduzYoSlTpmjUqFHZHv+pp57S9OnTtWvXLjVs2FD/+c9/tGjRIr3yyiv66aef9Nhjj6l3795KSEiQJB06dEitW7dW48aNtX37dq1bt05HjhzRXXfdlePX8O233+quu+7SPffco507d2rixIkaN26cY9jjqlWr9OCDD6pFixY6dOiQVq1ala+2sbePJKWmpmr16tUaPny4Hn/8cf34448aNGiQ+vfvrw0bNmT72gceeEBLlixRSkqKY9vixYsVERGhNm3aOLY9//zzatasmb777jsNGTJEDz/8sH755RdJ5rVVt956q8qWLatt27bp3Xff1eeff54lgK1fv14HDx7Upk2bNHv2bE2cOFG33XabypYtq61bt2rw4MEaPHiw9u3bl22tGRkZioyM1IoVK/Tzzz9r/PjxGjNmjFasWJFr+1x77bX65ptvnL5GAChSBgAgV3379jU8PT2NwMBAx9KjRw/H861btzaGDx9uGIZh/P7774bNZjMOHDjgdIxbbrnFGD16tOPxrFmzjAoVKhiPPPKIERYWZhw7dszx3KJFi4zQ0FDH4wkTJhienp7Gvn37HNvWrl1reHh4GIcOHXLU2K1bt2xrMgzDqFatmvHCCy84HksyVq9e7VTj8uXLjbJlyxrnz583DMMwEhMTDZvNZiQlJeXYNo0aNTImT57stG3Dhg2GJOP48eNZ9l+7dq0hydi6dathGIYRFRVlLFmyxGmfKVOmGC1atDAMwzBeeeUVo3z58sa5c+ccz7/22muGJOO7775zOt+aNWsc+5w5c8bw8/MztmzZ4nTsgQMHGvfee69hGIYxbtw4o3379k7P79u3z5Bk7N69O9uvt1evXka7du2ctj355JNG3bp1HY+HDx9utG7dOtvX22X+Hu/bt8+4/vrrjcjISCMlJcVo2bKl8eCDDzq9pmfPnkanTp0cjy/9Hp4/f94oV66csXz5csfzjRs3NiZOnOh4XK1aNaN3796OxxkZGUalSpWMV155xTAMw1iwYIFRtmxZ48yZM459Pv74Y8PDw8M4fPiwYRjm+6xatWpGenq6Y59atWoZrVq1cjxOS0szAgMDjaVLlxqGYRhJSUlO36/sDBkyxLjzzjsdjzO/nw3DML7//ntDkrFnz54cjwMAhYkeJQDIhzZt2igxMdGx/Pe//812vx07dsgwDNWsWVNBQUGOJSEhQX/88Ydjv8cff1y1atXS3LlztWjRIlWoUCHX81etWtVpeFuLFi2UkZGh3bt3F84XKOn222+Xl5eXVq9eLUlauHCh2rRp4xiql51z587Jz88v3+cw/n8In81m07Fjx7Rv3z4NHDjQqa2mTp3qaKvdu3erYcOGTue49tprsz32pT1bP//8s86fP6927do5Hfutt95yHPvbb7/Vhg0bnJ6vXbu2JDl9ry61a9cu3XDDDU7bbrjhBv32228Fvrbo5MmTCgoKUmBgoKKionThwgWtWrVKPj4+OZ5n165d2R7L19dXvXv3dgx5S0xM1Pfff69+/fo57dewYUPHun3on713b9euXWrUqJECAwOdzpn5fVavXj15eFz8+FC5cmU1aNDA8djT01Ply5d3HDc78+fPV7NmzVSxYkUFBQXptdde019//ZXj/tLFHrfk5ORc9wOAwuL6lZUAUIoEBgbqqquuynO/jIwMeXp66ttvv81yDVNQUJBj/ejRo9q9e7c8PT3122+/6dZbby1QPfahcDkNiXOFj4+P7r//fi1atEjdu3fXkiVL8pxSvEKFCjp+/Hi+z2H/oB8dHa2MjAxJ5vC76667zmk/e9sZhpHlazRyuF7q0g/49mN//PHHqlKlitN+vr6+jn26dOmimTNnZjlWeHh4tucoSD15CQ4O1o4dO+Th4aHKlSs71S9l/d5md+5LPfDAA2rcuLH279+v/2vvfkOa2sM4gH+vNAph9bKajUbIamtCW0VWlMTCgS9iDTG20aq5JIoKSTEIRzREywxEt/7SNkEbUoYIwTQpmDbMoKSRMcnAoIbUKioqZd37Qu5wc5v/1u1S38/Ls9/5/Z5zOC/28Jzfc65fvw61Wo2VK1fGjBEIBFPW+PdepZp/8vFEc6SaN15raytKS0tRV1eHzZs3QygUora2Fn19fUmvDQDC4TCAicYkRET/BSZKRERppFQqEYlEMDo6im3btiUdZzaboVAocPDgQRQXF0OtVkMulycdPzIygtevX0MkEgEA/H4/MjIyIJVK5xSnQCBIWAGxWCxQKBRwOBwYHx+HTqdLOY9SqcSzZ89mtObXr19x5coVbN++PfpnNysrC8PDwzAajQnPWbNmDZqbm/H9+/doghPfcCIRuVyOhQsXYmRkBHl5eQnHqFQq3Lp1CxKJZMYd2eRyOXp6emKOPXjwAFKpNGlzj2QyMjKSJt8ymQw9PT0wmUwx68hksqTz5eTkYMOGDbh69SpaWlrQ0NAwq3jkcjncbje+fPkSTdp6e3vn9Zwl4vP5sGXLFhw+fDh6LFkFb7JAIIAVK1ZMW30lIkoXvnpHRJRGUqkURqMRJpMJbW1tePnyJfr7+3H27FncuXMHAGC32+H3+9HU1ASDwYDCwkIYjUaMjY0lnXfRokXYt28fBgYG4PP5cOzYMRQVFWHZsmVzilMikaC7uxuhUCimIiSTyZCbm4uKigro9fro607JaDQa+P3+hEnX6OgoQqEQhoaG4PF4sHXrVrx9+xYXL16Mjjl9+jSqq6tRX1+PYDCIp0+fwul0Rj8uajAY8OPHD5SUlGBwcBBerxfnz58HkLqaJhQKUVZWhtLSUrjdbrx48QKPHz+G3W6PNoo4cuQIwuEw9Ho9Hj58iOHhYXR2dsJsNid9je7EiRPo7u6GzWZDMBiE2+1GY2MjysrKUt6n2SovL4fL5cKlS5cwNDSECxcuoK2tbdp1LBYLampqEIlEsHv37lmtaTQao89ZIBDAvXv3cPToUezduxdLly6dz+XEyM7OxqNHj+D1ehEMBlFZWRltMJKKz+dDfn5+2uIgIpoOEyUiojRzOp0wmUzRfUi7du1CX18fxGIxnj9/jvLycjgcDojFYgATidOHDx9QWVmZdM7s7GzodDoUFBQgPz8/WvWZq7q6OnR1dUEsFkOpVMb8VlxcjLGxMZjN5mnnKSgogEAgwN27d6f8tnr1aohEIqxfvx41NTXYuXMnAoFATOXMYrHg2rVrcLlcyMnJQV5eHlwuV/QbVYsXL0ZHRweePHmCdevW4dSpU7BarQAw7d4om80Gq9WK6upqyGQyaDQadHR0ROcWiUTo7e1FJBKBRqOBQqHA8ePHsWTJkpg9OJOpVCq0trbC4/FAoVDAarXizJkzU/YCzZdWq0V9fT1qa2uxdu1aXL58GU6nM2W7cQDQ6/VYsGABDAbDrPaOAUBmZia8Xi/C4TA2btyIwsJCqNVqNDY2zuNKpjp06BB0Oh327NmDTZs24d27dzHVpUS+ffuG27dvp+wMSUSUbn/9PdeXq4mI6LdUVVUFj8cz4w/DOhwOtLe3w+v1/uTIJjQ3N+PAgQP4+PHjtBWvP82rV68gkUjQ398PlUr1q8NJG7vdjvb2dnR2dv7qUIjoD8I9SkREBAD4/PkzBgcH0dDQAJvNNuPzSkpK8P79e3z69AlCoTDtcTU1NWHVqlXIysrCwMAAKioqUFRUxCRpkvHxcbx58wYnT55Ebm7ub5UkARN76ma754qIaL5YUSIiIgDA/v37cePGDWi1WrS0tMy6OcHPcu7cOTgcDoRCISxfvhxarRZVVVXIzMz81aH9b9y/fx87duyAVCrFzZs3Y9p1ExHR3DBRIiIiIiIiisNmDkRERERERHGYKBEREREREcVhokRERERERBSHiRIREREREVEcJkpERERERERxmCgRERERERHFYaJEREREREQUh4kSERERERFRnH8AXu7QWL06SIIAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Convert train MSE and validation MSE to a DataFrame\n", + "mse_df = pd.DataFrame({\n", + " 'Degree': np.arange(1, num_models + 1),\n", + " 'Val MSE': val_mse,\n", + " 'Train MSE': train_mse\n", + "})\n", + "\n", + "# Create a subset with only the best model\n", + "mse_best = mse_df[mse_df['Degree'] == best_model_index]\n", + "\n", + "# Plotting Train MSE and Validation MSE\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Plot the training MSE\n", + "plt.plot(mse_df['Degree'], mse_df['Train MSE'], label=\"Train MSE\", color='blue', marker='o')\n", + "plt.plot(mse_df['Degree'], mse_df['Val MSE'], label=\"Val MSE\", color='red', marker='o')\n", + "\n", + "# Mark the best model with a red point and annotate it\n", + "plt.scatter(mse_best['Degree'], mse_best['Val MSE'], color='red', zorder=5)\n", + "plt.text(mse_best['Degree'].values[0] - 0.4, mse_best['Val MSE'].values[0] - 0.6, \n", + " 'Best Model', color='black', fontsize=12)\n", + "\n", + "# Labels and legends\n", + "plt.xlabel('Flexibility (Degree of Polynomial)')\n", + "plt.ylabel('MSE')\n", + "plt.legend()\n", + "plt.xticks(np.arange(1, num_models + 1, step=1))\n", + "plt.title('Train MSE and Val MSE vs. Polynomial Degree')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b1dad12f-7bde-45e8-822e-f80b13195f2f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train MSE: 7.13461\n", + "Val MSE: 15.04239\n", + "Test MSE: 57.43518\n" + ] + } + ], + "source": [ + "# Fit the best model again using both the training and validation data\n", + "# Combine training and validation sets\n", + "train_val_data = pd.concat([train_data, val_data])\n", + "\n", + "# Polynomial features for the best model\n", + "poly_best = PolynomialFeatures(degree=best_model_index)\n", + "X_train_val_poly = poly_best.fit_transform(train_val_data[['horsepower']])\n", + "y_train_val = train_val_data['mpg']\n", + "\n", + "# Train the best model on the combined training + validation data\n", + "best_model = LinearRegression().fit(X_train_val_poly, y_train_val)\n", + "\n", + "# Compute Test MSE\n", + "X_test_poly = poly_best.transform(test_data[['horsepower']])\n", + "y_test = test_data['mpg']\n", + "y_test_pred = best_model.predict(X_test_poly)\n", + "\n", + "test_mse = mean_squared_error(y_test, y_test_pred)\n", + "\n", + "# Display Training, Validation and Test MSE for the best model\n", + "print(f\"Train MSE: {round(train_mse[best_model_index-1], 5)}\")\n", + "print(f\"Val MSE: {round(val_mse[best_model_index-1], 5)}\")\n", + "print(f\"Test MSE: {round(test_mse, 5)}\")" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_val_set.pdf b/Machine Learning for Economics and Finance/03_Cross Validation/03_Auto_data_val_set.pdf new file mode 100755 index 0000000000000000000000000000000000000000..e8ce2daaf60bf9726513e2e1a3ea5760421a0686 GIT binary patch literal 76769 zcmd421yCN*wj~S%LU2NG65QS0g3E`yySux)yIXLF;O+zu?(Q1geLC;X)I7QWt2D}k-z4ltW4Aacd&cKiMib(6gmp;2%Yh z@v(HR5%*b#dTJ|&dtexc2{w?_h%Jt+)gtx;{nHv}715gX?aI?TrQGE&WMrngeOP$j z5N+_b9-pjp_`I__-_>L|$3;BYym&!V6BH|ECToAb@Mm{=%8u}m7vd!`K6CACt>JPo^_nsMJt7k~8KayxHcN`%~ z-B;oNeJ6N<8!>W1^wt4*Ed4CJh5spSb-AW@7kboIvS znat)zMtfDa(FO+1~WCA_ogg|U_nC!gXaCMn8apm0J5S}~V@jm;L;h=$U z>jom`N?XMan%NVKNob^SUBLP8z&G3TZ3Hpr$F)RDAQ?!*PQx0d)A7ivS_sA74#0GR zqo+kw3v;IjRo~RRV8PaTXB71@uhm&Qi1k$QvN>fqfGJ?#jQ;pO2vLU*Y9!Bf7(n;E zUN4gV4WU+|)=dX_*CVpvCr9PWIS?&|bTX%z+mVj*({|qU({)D?45MiVKV1SovY5gY z7;oNlkaySC`!_4ZH}aM3PR?-yje|LH^CxDnM>O7S-E~pdPV3D&CTq5zyj@se##yrL zJCn)&b~AK%Y`#7<7SJ93yRgb&s}tk993&T~*!5=}56B-n`|``7-gR+*u`&0Wf8@bn zd{K%$z->{_qoIZGX#L`&v$h?IYe>3#Vf3XTKYZ?@oGa~_MHgHTV+Cg{tsSFs3xwEL2zyfHK-Bf^ntANKiZ5jfcsG{{_NgSfn#fXN}MyV&WPj~ zl5teml`3wzOvh->Ffp=Yq)}u>J%URC&l%Xm`CXRJi9J^`*CWPAqW-&Ig7KzbLp(B2 zIY3ls21^KYhHjvzG-Hg8-5~?5&rB=N&Jem(@oX$#{djA+u<|3*X5$&N;GAHjX2yyxM*jVxAW)qYL`zev(%uzoGdB#waAxHH*|p_jT{I;ZOJ} zjcpFvuZ4kx9m@a>J;}gAp}{_7vs;mT234!l_B@a8Uqut*o{}RwT)O1*B?wft?k%i6 zG-(SIqvle~)m0^+jWE_J-ka`H%K0Gnv=lMtQsIRCwu3t*i>V<6w6Jfo&k|6J0L)roak>*b5fhg}ib_PE{kLsoz9-5!Seu^Ce zKSV8~npT5?VPv9wFV;>H@B^e_gb+sjzw@6u1maCyuCzL@IX4S0jQhPTaxt!0wJEwg z1cTrcHD2CPTSI!_$mOdv zCzLyD`{IO9=xV7bcRR1&Or@LI#}X6o=qphZPn8NQyrJ#cj-*@7Ght-Q5W zqPZu|eXZHj`$l@wz~CZCn=yYvA{y~lpm|V{Qq7H^pLFr15C}puyv^Oz4A5Q*9OVF^4l(-};du+p<3> z{&~y1BcV_sM4Gm&>NYXit8P#1GS8m&H&l;zoLh38iGGdq9v9W^{-=OX2vU_I<3FS7 zjh+lpET_eo%P`=UL!pOT)s&D|DTz98*vDZO?8_{SX3RLDMb}0q=3!xtxzj&ewYdKv zdRe4ty19Vm8^(Y`DZva-`-YUe9_l=yWZHz}+>lkXYBX3%$EN1eEi@=|*0+e41h1D* zXRp?>P-u{n=s|?2t0R10<$}5Wwf^=LQ81lo19p=N-VO0b+S$hduz>_8zvz1m$Ym97 z&<{G-)R6a$)1dEd@ByAl*55Anpvd=>Xjx#WRKfE7p*YtykxgB$`7d04eD8T*@qk-% zew10&K=#%E5A1y3_JAARpA5aD5nY1=z45fAd?ia}o;cJt?)Y_jCEYVX@Q@VUp|+Iq z?21d6*3jU(mp_}16KOSa;7m!uQW4pUDjn@WoSj@x+t?}>zQE`_wcBqIQf{~St-w=^ z=A>NEKychI3s>^wFdWMzOsX{0e6i`31YDeyV{=ECkGErF0mp74Ck95;rjjr2buYemfnL101x22VmW#M+4W}+oL zZ12_RVm^P=51~}(>BMP6HCoh;7GJ;nvJPu0_&?In%i_bMM3&yMN>k4}t zVCF|#@@9+WN;M^tW`fS}f2vkghaJQfG%M1!kDECD0I}D~j2qfFJItgiXncd*KW;T% z@Fj*yd+ z?YGgLn|(Gmm~jXseRpoDV2-0A=z>&w9$dbTJ~GWL!Kz@GOyJTi*~*QD8Dqd@Ou%*S)-7 zz#LqW!?C2|)fI@HSjEvjE*I5pf7zyIs_Rgpjnj7?7rOlbHx@V|M7<)49Yq{m-^6#)_JL_|L_P1j?q0nHqLTcoWag5JFaX z%01WagK%%{1|7WO;}1VO632ply*HmxrTCWL`qN<7LGPeAcsTq_ja481J~kgOp4XQb zVob+poD2v9bpOD@r)0cubplun9lItInX&}6F!2E)Fk=vyjgHiT2WHdrjI^j@rLsD) z$El$pSS5`KWCbl~Q!!$}UDXn|_LO8X`8fjFL&}f5;26gdF?RZ;7`#R0yb213w}Z@C zMMnlAEUGqh+q^<7kW^kVmZVOH#_1-#lp$Yc)hRt2xtnFdNd=JT<#bTyh;fC4`PpCW zlY9h^!DwgEHzgtk=01!4LEjNNvXw4K3ByD#^q+}Ski^ntW9}|U*+Mj zlY=s8)%=|C#E!a(^U{JjVLF|+E73UC-%cNP5^;MGEh<=M>)A*BRMMsEYA$JrRif4t^A(AIb4+k(B$2y9`b`J)L zu>^_N%m+<5*Z-7MxnH8^RhVr}d+rtN!BIDhtyl9bBbki@{PT+L;6MHN<$@Pfh=9QfQx?e#yD3(n=~xu4;)cwttHRnZ^xo z%G}8cv7VOh@I^4m$Q*fqx-*S{#B3Jc$AIm5mc_zE1g6-0UgB0V;_D|!b@29|7Wq)j zON;#~(VwEP3f-7vxPKX?FME27>EbtXF~3?eWlXCp95m#v)!%Xb36>4JFP1XE?BjRE zQYnafxv6@bX|-miGT*#cYhItKUxv_{4f3w$g4E(WnK?1O>yN7U=spTx5?$J@T1uEp zP_r4!hIh&z?f!9uGD!EVOrw{389wkL|`+tYpI&u`%~ z9I_e?7L*{#{6tZ{=j&Nq&O0f&92U-d8ybX(q~+>jR|`IoG#a zWn`^Si;$B^d$bpaaSq4H9!xo^wD(J)eClVU`=^r=XoeBp`*V=Efu$_I8HPq!FI;Z- z`%WP^VAgpf{F~&PV<^gC(T(-@2^J~c*R3UU@n$C4b+nWXM%j{krSy~yA57>vDCPu9 zc^tlnsFzhFRynE+YuVMuTX@w)Pfv>_zPorOo=JH*1~Y#CrtlF3hZ38x2g=6k1GAhl z|Cbi3cxC%ahxza7>d?$_8QaE^v&&bVvaJY?rT$kRllo1gr?sf^qk2}$8DV7$^A^ez zMH*t^XPYRZ@~&H&nX!!vr?M-P8`_mAwe-4iNwZS>VhAioWK3Sn_-JCb{xsxq{bn|u ziu4&%-($IwA9kduo@(l*La1Bs!fpTNvzx&hCShZqa->%6BY%DM zqoC=nXx2xrWn;hUV`CldmPcAIImK0LJn!b>*T_3mez~LAMs!8D4I5!6Lnw`K zpJJRCx0t+3Jx1!7REx^}B7Q#7gO+U?I3;0ZrqF=DQ7=*drpJEd>Ao-7Rab08F$9!~5W8#!=~sKR+Tcmr%|{;8_%mSV}M zeWULT-^Gy;{xsS-z{!NG?)9YyoSH~|g?i`!eQtl*Ky7!`tlc@$`K&=y>-YEfaN`5i%7$rj!;p3B75`YpQJtxgZL zQU~_(^Vfygxo|EcT|o{MR(}S~EXQ){qOV&x8yz}%uw9k&E9pTTY#L?ejtjJ(g-#El zJ>Ht=4`3AC)Wpel(j;fL%UA`K( zKQy8$9;yx=@@5zB;-*B9CyJ4s4l+iA&P3);2Pw)dq;Fs5-H-x~jLNzz4rVoKoSqX` zU+P!Yq3j(cthKE`t|hdr5NBq?V3<0Tl#RQt{X07{?+~(i=57Ck2eJK2Jcylv{onJT zJxxiQuPvWD4^(dOWa&1Ly6OGF!u&cYCar3qV+QOI*YVfCUfnBrq7EM$Puy6Sx5(F*-|cdvZOZeKyiUnOSx$o2xp!|o ztE_>y=-TrqR>-ypo;q*=Je!qhNB&Xb6}`lHSM$mEC!@9D7`+misTjH7Zm44BxrQXQ zd=f?cB)Nzyw5F}4D-K4oNKn&JTj!vt-t0#3mKA1popOhr$hfz2!*R#wXmi#$-I@{m z(*)!+V^PxPFBk3d0%r>JQEmv_A4u2a8SZ8IhhsnHYGp;Nm$47Wzk=P4msjF z5r)7hlsE$0f82%{cZF0J?;<^lItCqhtlK-l<9OqGKcabSnnp3vcYd%C*5 zIKYq%q1^C!6iN(UCgNcZ+bDFOskpvG{GD-FObv z5~PmDFD(ODS`04@H;H(%oFKJK-2Q?D1Ot;`4ebC+z!pI+Zd>Vb-Z&babSA%|q9a4zwF0zm~6D=lO2*8SLLm-G&6 ze}x=HshTco#?h~Bb!_gH_#)#vwfBjWWg4^?99Rm1O(yUg5b76G-Jpls=VtuH4PB`h z#Gm$4J|%PC0RmuQaUhN{r*PGI6P=kQYSj4>kzoB70R* zGc%#7bM(*3=Z^$n1Pl08lL&;&Pmn@lOWDvc6dQxO0-S>kvSMyf98}h&SNiJFMv?F^ zi7Qd4Nuw?C(w!KTtsGPB{sD>iM2@$H*pTBumcwdX?6 zea@p%*S@~o8r_~o(voYq{!O)@;Wm#`k$jF0)twul;e8NY<&eFs)>3?JMX@#$m)GJ) zE_XQZG=E7#jsOh??JvfoUZV$Pbb8wD4E_M7#t$km4do~;!b$3bll4Z;pp_Vf9U3x* zc{YfHGnEFZ75f&Xb7!WkJGmwZh8wAl(&HVUE$}-G<}?ZN>-{E|(m=~h3`w?;x>C!r zmyNPZ2eWP&bE|V(K@%xcJW0RO82Td#_h)@gKAVJBQ=wm5$)HDyG_!u)Vpz2H*0KMDr6dEp7(%O`RwJeB@2U#Zy_>9 ztQeiBDK~V}iwb#0D<%;XZTr#Y!X#N1=_ws4n9~y%V!s2<6B5OadXES;%zZ$x(Fv zQ=dVsL~IVxEVY)^e*ePto$+le2_wfd7Uh0$DA7Q{kZdC5qx5uoow;74FQ6Ri;rY55 zP^Ffjgmzn10_{#6<+`bnKk{W)v!TGzb3IeX+N91tmIa0foxDJ%sc}|*CZRv%W{Y`H zR<8PeK}?dc4j~34ZrnB@&yUnP57&#Y#NbspVqZ_bL0@8hYgr$UUcywVWqVa)RW=Vw zk64ujC+sX|1_#+kKybKU^b!BnFp` zfIBe6HA zG56|->m+(+E=JQtwolJ4sBiTP!SUMC+#Jgm*>K+U3gArbmT0r#Ix%~sYJ_acl#$U& z^*tZ*A!>?`D<-M39X@N&urst!2=*kRk-C-?1(Cnp4dK3};lWQOENH?eIhiq-8?T)H z(TO;7!s+!%*pMAY)bcMft-3$J4HQ-^Q5uFm(fcCBOjea@#`?|FV@;|f4wL94YTMxC zDOUuwO{9M5M_%oYp`og%X2VFM>u)WMRvkDV%`6IuJbUKO@#0^vbKbmg(S!bRA>?ZI zT4?k)pn+4inQfz$JLOgb9;eUl!)et>tWfxY3VC9)`)$w7ogaT%4XH9QsTZB$ns`|G zidqOdo=G(jaNe{pYJ_t;`YTPrUY{EtB79l?(jlQK&^%o!dNa;C$c8w<$~jiK7u|>O z&276A%2hbc=1Fzm@Nk5u&C8#==C~5=P$uGRZuD6D0*^%?jo-u5;e)f@M zAq{a?uM>|hxeU(>N3={ebK61N=~Hd?u2;eznX9g?-*#jDVr1zaGj~9hO$L;52XCDZ z%Sml*H0z(Zo+eRWyE|Q3)M*20tuAvZgjLravqMl-xl%59tY*iBmXUJ8cF#?S_Yq(Y ze0(}CgzD0YMD+qGt+p=K8KIZTOfg^-JH!gDF2t-j*W-Ky31PjPcrK#KUy!9Pko82! zR&ZS#7C&^gl_!D(Vr*S?6QPi4@b&^N-+jBo1){ahg?_d9`AgC+uGb-jDS~F<7S|9Z z`{u|c^W!q#%>u0>rcy{HOr9yz};5_^677kRe!)+77 zjIR+loB95n-EiB^@0@jVNKoQuq#^zN^%F{~d*<^-tv!5yYx&M3{yH|(gxrQYzh7a% z^R?rjYrHoEtbR74|H`A882=R>&BR3iA6^&FeI1S7ZM@8`orW}%4r~azcSTbZ^pt1|gfX1K$ok*+ z;a>DVF|bDwemwXdqo_@gt98X5iO(C7J3#?1MwG^3`tWgqYTVnwN2UjTJA*CYfJU-~ zD+I(R)AjbzMkN)P5SqRZG*Bn{j>+KLBZ?;GU!6egEb<^wm!}oHf9uN)RyZE#~kB^)H7j=Ncnu6Hcn@%6`|32xPdg zfrypeu0|Alfv0n(St>xm`Fa%{b{>aD+ztV|N8R7NKL^)aXP++A!vPt0P%VWH_CwA0 zC&M@Jx(}AWDstVGHI?WaU~CH)do*eBanoS^6W#WuL69%x=Evx7IspazMokRz=%A#v z0aNtR(Q6(bD}#?!CY5~lNTk8c%^6O=EM{3!!)B5iT3qu_`ZFXs+G5bwolm_Gd!4on zNJ@ELHj&FQ4WZ{iNv?!vs#ynejZ@~8n@c{A*nG^F=+;U_m&YLO`Nn_^o9-g}cqSpG zJ>85n*w{LVE`-Zv!TFR0jo5`|IR*tn2Hzwq3boC&JLkorJhI3h<|`e@Xu8$LmH0&F z60nbosi`vbW-k*KXxL`@WKNTakclS^op)d=EV^#rAQvGk1-h3!s9Gy96vxM#M{DrQ zKYjo4)ocJ<0(8;rD%?QB0&CuguEB+ZE>{LEs)wCE@Nqa^;`0k-@Y~&9n8c}IQ)$)^ z=ZqPdK2JYw?#WMn%;vm?k#iYt+%G6(jWzBOR6GLPj(d2TD3;5lYe9S_1d};=hM6bH zumPlg#iY_8yd@qkhMI@9un7|x$FA+u2pv?SnQ$#GvC~kCfw8ZR1Z+FYeo7v%;-N7l zgwL9|e+JmANpVM}xPHz#?k~?SBGyt>;#6Q-sVk3-9j5!so#C)D23CnRpT&~K)uC5p zms*pkPXyI&aKiJOz)f7{JU=_Y;#uznS=@jn7BYR>@kWnjJ*uEHMw@ws+c(2t&<=oY zcDcviD-GZ4_fVDA>NV*q(BOO^a3Sp@Kv~w>_4xWc>{3h-<|y+P6_bqnHj%Qu16!95hA*u*!X>AL#9 z)JBpcd%Qj4PkY+n!g|M7nz=ex^6O)UF`c7!1!PPqQ-0Z^tqU|6za`u6V`&EtpDnib zK+O4HZh1K843D+6$J_G33v}#3lKb98y`zV!`3VO_0gi)BpApxM2hRom)Rp7H`-k8m@UWd4$h}||xkWesa*|2XGcY)Rj2L!L2jTg!7COqXP zRYD!v%sfBIw`g|1^{UT>-d|CG`u&Z#3xJ-f47C%XX@+g&=E$o;e>Axo(`(jD#WR4=;hk6RnAPwPJ?{1m=Gll-Z_%Bi(rSOD zY`5#y84OilCT?yze2qF5eT_<$7>mp>u1(gL5AS-cCngg`lslNiq`OKZ$(^B&MdxHo znTbe+f!wDovIdPtiV~%{&%#f&kAaa9y&o zvi5SyAgQg7DPojJLHC;l^Cis;nT5MP+){2fy>*~ogDDwzQJv+kbP#2Y$}@I;U7TvY zE<}7sUDw_HTPQyAZj^eHy+ga7Oxw@c5*iU3+@;G~+`=<^O#gJX3oe|!{FcJ#wGPZG zj!EcfW6l7KVauu|$5rc3ujpPsEu#0=9{22z

    DwnECoUyTY&DsCgPbD1$A@Z??xE zDcsI7LLIL%==w_FE;1+@mN3L=ed3TDXM?|XzOgDKv-rSku889NB{+tS68=6^j)g%& zdlYL%ZHm<@gbMy6)Jnb4z@$u6L*@YQErS1<+UJ4!JcJuHwHUPLi?h{k>ZUIIi_;-8 z>BS!UVRysc0_z%*(f*9CuqK&HB}VU?Gx*+o1<}#U4`$j#;2c5xerl!~>^m1`pdp`#SJ7QBSQqnk)p`DG1PuKN}w|ugi zKNw1Yoi=3p2BqC-SVJ|^b{&^g^h@)e;uSmLc?&Dg4@v#rFw}MbolvkJGjbgH^UZkz zfi_W}GR>i1pv&whiq!3vChd+U3BSE^@VZB#LOO9XY)xO_kML|P0#HX=up z(-Vmpg-BX^h;|nn2K%$|3}uhWE*5#H26EAQY!CRqMbrh3R$2!8exHZC{DDRme@?wj zj;j%zo(%P;MybbDvW@Fp#H2BI)ZmNPr_xQExesBy{`BlTpd)r|gT%%n$FG8T$$wUs z7;F4_%e-j>*V}_U3@nh(xhsqj**_-5j^T)?4E`9OGtR=44Q$uAqJ}M6qAU2Yv?#5{ zJ-BK7izw!mo%(7VLE=d|ntKe>U zLleP1d;&iC*n8nUkIK6bfo~dsROGTM?5@ zPQNC@F_jU>QK$HctGkSF? zt}$Fz1|)3Mo*Jfgx|;>4E(Xni_UeUggHZ{+27R z)=8+Z7%EZd0sl73o>aE2fx31?SN8LCA@-&{dxtWD6chiR);dcE#l!q@yp&DnF(xMGHfaX;2sX}Ji`6DTohM0>S>YoPg+`9waVxJ1FSUo)6FF%7*=TV6Z9J631 z9ATqd$rj0S^8!SpPBJ=}gLGnjR$}Xk=h255e0CNmm3PHlWBN|rG{WUEa=-q-WqQts z7xeU;5P`eBYq=(Me#E}KH|f6@DIR^rIBeXs=sHMQUV3S(_xM=Q7j#1$hPWog)W9jn z#t@zF^yNFAw@0?6okfg(!G5~=zJx&zPSV&#NsLAeycthqjW@TL?d;bao0-^c@=6nf zX&yH>hYVfr_q{H-jriMtBA8hIw_s9qvo)eqmC-jhGH|3*aME}D`?t82o{15iikTs> z&6b^+kxtCW%*50YpM{x)PSD2E#$Lfz&%lUI$jI5uz(~|y&y7yN%+W#C$X?LK%GSo( z$l4K>9k}{;v#zY3y_Ey7jrTuyz-Rx*NDlZ6e?K@`Sv&mOon-Be49yH2ZS3)Z%^&~Y zn}1;$=-D~`{acaK83qI}F!;Womt<>xB~MGpge1^6gy8HjnUK;De-ARh1Tf&}7T+ZP zd)T6|!~8umA^*{Z4E*1^bc_4`TNhiDe{}g@m;c)l{^t$;`w{-<4gR?e|H;IEZo_{v z@jpJre;Q$v80H_>|Knr)pAGRZjPSqa=^s=1UyS&VHva!L)8b(N&2s-gxmf?#W?CHL zUvTRGrxxoUQS*NzEKvRtHviG*{*z1o*T~w(r8~oY`zIL5`oA&qzhIucr~sXUl%9hH zKGR<)m8bhZKvCGgDEd#}@L$DCrhkr?una8!9bn=E)h{;Ie~*}d)}TG5?%xM5ZIY4u zt02R)G!#z>YxE%+sP86Ri{+5%l zDdke2F9jqD0q5$WFE_pB*lNk`nCT%BZXGW{c3l3XlST62u`I`zEGpd z`n>bm8g@^Dd)INg&E>qiySvV0BE7!L{nq?)`xlqXS-aT`X@ayoEHrcoFv9tA162^g z=*|7n%%CiixU&@ZPC@HP3f=qthEH2->qy`c&HM9tm)rHe*X1vat*x#3`T6MR=mv`g zTpoAF+vB+?=-bSQeuwE4@{Xl}0TJ_R!4Sl0QlGaMnU^ZXIFR|k*ky72709!ZgVxf@ zs!*L$sciS`Y`t2iD@EHq?41qy+}HAWGFLEo-)yF6c*J9)(<_)YiAu%0ELXhMe6DQn z8YHvc?$%_z*6MnxZ$>ZlMJ;4$WknK<@n-+@l*i-l&)e&>AgmjIKMi9hVe^y(rpKec}U{UGMi2cs*PFHG`z29oYf-2M-M%V+PprFJX znG{Py!^6u|s!fwo#yFs5Dy8LJM}7A+<3mxO5<@&JX^XP{J8E2u|KQX9kxL6Ve|++iKi*Vq5^=Z`$DdKlyc6Avyf?n6&WV_%OEe-M1$T9`5egO*$R! z4WOSD4>>-lHtmjTH0D5BMBg~#J<*Xs+; z;&ORAsqQk&mAF1i!PBkMYrb1 z4e#eu;Ot*#W@fe9?q6+jIMHF?V5j043Kz8>d$`<*!Q<1eH5_Iz7`QoIVGD}eA5E!N zD3*?Qg1?kbHxhok8l}T|3X6{J^tiX)&cchA%Bd_+sn*WocC**j-E46}|*P0v6O7#XPICM-CQ6C>49UYycI#3$p`uaLWWVz93a=h$7z!~Kv1EO^SxXM4)+Ip6B7@6sL$o5q@)C%OQz6bK@?^)7D~`*HtQM~5OLTa&z9CM z4vF{^XDl~ZND6su&kNY&5MQlbT-d5nR%x}}^+4l!0&&NvP*7E{nLsL4+t9%BD50pB z=$Lf$_^=a$Kx1T_M5Ez6U!f*{`a~d|HbkS*D0YzqwKzAYv@cMj|LZ23 zzCkH=F0P3jzW3V&os=typhFr#K|v$*uk5z`#@~U(Go(nuh1ZF@lSg8_41z_A*C}~X z+=Dhv6?hGyJ}s8YARR3mvo38KO`(%yD2xOG;a3Dk%4s>w7t$e!3Z#qm4iAU@vBy7k z6NdP;iuD!?(!8A)YX<;CP7c97pEhkIgGi~Eynej{b@B$Y8IiXQlIdZ0i@QHdd~Xl= zmzSDfx?Zj#Dz1s~M>uWvMv`8iZmCqNG)EZEf|h9txUc7cE=(Lc5mBD3Jd z3a$4%Doiodr&KJ7-L>OX6X$ci=x&ZmN>YmVl8}gXQB&byXBR_VtT70w_}TUT=CQMr z0jyo6YE52ttYH?-&fLOHa6<#JmRhkya(pD!5mQSh@u`t8yVsLrDHa9>Mn_=*kK01P z`G(KCR+smy%Z8WAN7~Q*6BE@yte`{^6BpW74KD-FS`{yR<4VRMBSN_~z`j0AzT06k zksaSoGBhH=GyMJ6zyS6_?rip~-uAlT2nLNh@zRj3t)_8iK~+xx^r)dE#d4z+l|h{N z2(UW9tbTxiFuZ-Yyga)(nt4L}2|zuw*|boZWUVUz(}Ds5#CoI7p^%6P)w{z9qD8j9 z!qMXCZ`4Q)ABW?JLM{h_LG7S}U<91;96mZV(PYm)|5qS%M;A!qBtdc8LlF4Gw}(^t z!N{b*MexT$G2R3#Fsusr-RlXyl;b1@iK^qpnw>Nz6L`0&#p{X7e#6H^4z#adD|}YF ze7XWhTb)j5bviW%2v^K%xy8m4gymY_o=&Q1)azquN&v(j0mXR}C#S*7!cy^x!_3r{ z5_Ne|*ko}!8MeefkZ;`rDWXPiFCL@>9 z^Gmg`apd$aXPQS#%ge365Va!=XQIm|#q(k9Zr3Bs?SQGZysXkTqbQg@7Hh3e(=yu( z68y|J6n;ejTGZw}UGyPE?PNvnjnZ|^_C-|`7_Hs?X4`0g+|Q^b&7jv4_?^x|f_iL_ z;^gpnwU?k7htoS5iN#dlixRe*ze|=zUkZAqZn|Ihn2_zOHBU4nSF0_EEC*6)X^tHu zZ0W#XXO~E#WF#!*-}!PL7%9ydQW4MPbWDs_*jqS@q7T~7AD*(J=oHtVA8so6XgFsb z>Jm>uvU6VfElzR z8HoDE<$S*0F>T2RDQ+yk!WdL*M2KhPUZB42enPXONd+!u+^RR6VoFFLg3@If226DZ{W8FmAl6W{bU18b$nOVLOnJ=ATp4blRM) zmXPC(BHxt&nt@Tl?*}okB%R6OAcB%zLAHCoZi}qUdXf;~QmZ_p0!C;uo>}W2EA^Nt zN=Z=aa=sql`kB>85wxc zFd9h|w=O`zHbkSPqK6@I$4QWcHOw+uv@66=rW+bgATuK2)bIb)=W4V@O?A|t@*7($ zIsQ+B_p7@&H;4UhELuzdCqdcR@GNGt_+3n_iY*X(=~l7&lH@u7=@rD7rNcSiPiAi~ zk73Vg07(0Sf9M3fvM&S)kK0w&To=GT;Cg8wt{~r)97_9Tg}8NO{4Q~un3b6F{JrQ1 zcbR%aStq<0gOMf*BXM#eJw`kc)+l@GNM^i|_xGaAd8T1Sc zW*GfC&xMq)Yvtogh)-xbLI{P!3$ALx`1rbjT-XT&;7pNJLQ-Zwdl+x6w^SAW(~_3^ z_nZ8Ifk(mjRDpH{80a4!H-`jziliFxvAZg-LgZ>~z|W|;Ht7$*MNxDLq&nPhUJZYxlgkU#6A}9@$%8{C4Wk6G@qxk1 zsA0?u7K=ugbM4ZtLdleQAT$87TAK5VvY`!NhtQFVe_Jnql>Lt<{hB^GeltPcyNSJ8m1 zOqV*mo(^#0VRtds9xW}cTh=SGY}_3udwcWs_7>uHSTssz)5*=S*U|8$(NRg#KLFyg z^|#GF0~vmGb(Qz&kVr5C0NBE-Hh0oy&&OIj$%L3NaZ*~@AKk}u<%OgqNkDE_*btU^S5}8zbz2~ESA8t`1i}k9i{lIt@7ZD+0_Exf){8uET7#Y4- z#k?*^<)x4G(P2?2{R0ER!NC&RDQP6&+W;Jc_PVt+HBofT@mYKxF18*XT>IoH72Y;` z0(NO7Oqc7;=E{^(sMQFSXfhDOWauQ_&~;iJhabvp9|^c8=8!&`u@6Rh0W3*=;*D(AOOjqzBIWNENH6T&>M>nOAuJGqH+s%-0tzp^DVx6CeTczZCN9 zP<@G_69#DziAIklQKfjRCxt!VpNoo!r2oN~b!jZL9ncurW2Bv}?s{`SoFoWKEq$!2 z!2kB`8=Lj2DLXF?F0S{*W=~?V(6r3`*&2z*?`$58a0B)pJ_L(q*URmE(HLHUz7epc z{_&bR4=^w#GTQ`(s;#S&{QWH;VYXN%2fz|fK(NGTaylI+y0R-PD?0)4rdqQNs3Q{H zLf&wL*F}MA&k_PL!1vH-Yt{03&6 zcyuKY<_qJ2%`rgX0U!p{V~)2~6m{O-Xi5q)2SD$LpHr;h(<}ffP>l<@v%TGDy_SAO z4p3e)9SQ*3hEH)2wAieci6s-qtlwC_w|`)4`-p%&)YVdf4`^OXfGSg&shJeaG_QUk zUJ_TH_^TP_9Ip3&lLQJ23qyVUNUL67B3~#m@JvSB^8!TOfKGi=lgw3Bdo61^t5rIx z#JmGA5b(_AfCflt55{K@7rR>fOUwjB0NHJ`+RR`yf|_8^AP#7wjp;(kzyJAlhIuC| zQCGn@7=?p@ho|#Xw+E10=WA{EX(zS--yU{SZ?ewn{}h&rqDBm@38*Cif_+{t2Mfd# zB4bMbk|)wz{DhR%QyN3>Byu_Z$sgaJj0%G9;`Q%OR~7(?XkudWn*Pzuta-<}#eOf_ zDn)4`o2L+hq&=I*qY(g;zmoA`x=1Pm^=$9?ZpFsK!vh)`+UKGNIt=MsQS2r(Jmyb8 z6Q?ayYBbGPXC^_}08Ty8m03Leb-^SdG&J-R3=FWCQN%|;R>#~=9J5HfN~Y1cJ6qGR ze+MWRakfP7yg}x!B35<3zFDjlWtz^^)D-2fw%s8cp(2H34e>E~K1Pi~b>fR*7bC3L zOuN#H| zVe!kS$HYtkP{8N?;yP@Lj*cEb(B9rY5dF=f+3_<0<+PtKs?QXvh zm6eqwrJna|F2NQG)3JdxFnYDTZ-@CYRXSbSY&Povn2>eWvR^t3^FHo=*%1v$CDsbl zjISYn!aNr!m&+djW}cX56!Us_SOG9WtIZj!)`QZ(Q6KQ)#D4s1>$BCCrq@0_a&1YELvqLl2Q`jZh>MyX3sqiPEImb*9@~I(#Pz)SjBbc@FYn2Ak#z# zDB1zJ4UoAVfc)*65Y}lFX(l`Ld7W!&Y7&==pAP>?IBjxScN1-NFvJhe7$OFeD<(EJ zB@V0nBg&fLW8B6M#fVNOncl)N{iW@A5(!F)5t1~S;Is#SO?)ji?rS1OaIpPtKvczd z;jmgZ8;zoy6G5SL0)FLjJWEjqVI0-r0v4O31>`6|1z5~i0FF1(Y`0T_`~@fhxb7vX zWM*ap!n4u)^$F0sRq74l=HNgLE7t8V?s+}k*f~0CHd?9;1IltwISj42%>Oi}_4I0s+oQskg8Ol*hQ&&NtiYTOr$@Q*tt+NCJ3w!103o*xAQ<+T(#9oE&CVIZ~6&D{dI;mKfZwsCG(F@PfrgI^cXVNr%7g=I;Ji0+F))W?M%xd9k$oU}Iwg6XbsV zJA*ANE32=!clxJ;uI7?g$0R;y~b(r>wpE0N7EF< zd6A(mg2C`h4Hhc4wm%6Bj%5nlfdreMpTAB@NZ9LYl0DAqXP4m*1-HDiQheWDQ&&f& zSR%{%IBb;AD=#l0p+`YMQutG?sNm^BfnAHni>@*>Cg%R;X0_An8TchO#$J}JBj)a# z$p=sn0~OWKwU!+yXJ)HCops;<%LO1q=fidc!1j(0Rsis)1B7@yTSt4l@pz^huOGA6 zGN3@Xu7R>BzQSNz4DXZJ`r7I$ycGbZGi@$5W|&OIW2Y-k&w~(NEQ^`^0%vDupo$65?!UEIUw9N89IF38+gpZJ z^={q6*gsH2NdW&`F}yl0CKxgQ2EWKAz{&u?_!lVrr6?d!<>gEB>BlJk&@tx5j*gDDHU2`lWgXk@~|2~^Hv2+>PC4e(>JA|^^pOe*2XOi6LN>GTuW)>Fg%r}_z~E(;`I z3PE0MtmNc|Hh9G9+j=$bV1f>s0qW-A;gS5IRcbj5#$&BpjKcBf_piOZY*bW_SXGA$ zjhllhP6xEC7xWzL?a>Aw41-FYXUUm!7e5JjxI!od5b@p*Z=4y!km($aqB#IGN+APD z62sXq2bdAlJ!EDp7oxETHa~=(Jo%iJmF3Q;QD_7>#k*Rj=biUw&EC4~?pBa z>I*RutSuhaxPl>6dV82jF0LWxUU=(igSN}$E2^Tf13!Po3VXpeWpvgJi5-~Zf|8PI z`}t0QU+JxuQK;I3#VoWtNK^;R0nbaShSh3>y~PU>=6wL=C%|w64ot&+B;axI?aQ`H z86=bYH}LV3om)en0MrS%PiTSZ(7RhmV&kfSHYyB`5C3kUnHvl$hq>L}f(nN9;{=Gn=w3YuUnzIDou zHk;gmZOF>ngG3^GdRQN*8z>d(ogP^9m)lC7^Wp^0%c?oq-1(8i0%ANOW?e+gEoauM z^Vqkg1^Y;^U;i++1}OMgsnsY1F_IGFa(`2Eu=s5c28NLpA)&-g!N7ptokVdrDXH0& z+}Hz$^~42og8jte$lQej-o^)CI^qSrV86pRXRGFXEZ*JNsDy+oWP-Kk9}(QRM`ier zyUVQgh+k`g+P#_B8A-TXO;M6OxtIFuF~EK2utrXqA{dG7AHgqPS87P8%Y% z1s&-fB(;r$`wsd!{XEVCvKCwwtFcB^@3_0G;k*Nf!0WR1BHUS3{^I;V6<%=+%8#5VQ- zyOpd{7y23xH<66o-l0#mh}g;hu)z-xoRwy&C7rPOmltPXH-ir_`FKUcAlfq`!M2U> z`9@!kmNU#Aa0$D|hr6+#J{|0?qJu#ZoKV~w0w2e2N4xAIGPFiD#!9jx=HKDPv75Gc z8em`)4*PS(%37?(3RyFOxjLHWeTGHISPo}|s`kc>8&97Kxb0-yrU6Amy&pak=c|9i z2Vy|$S5$6n#8M?K>(|cf;Y8V{5@1Q>Mp>1~TFu>Hng;d&$ z?eEDGgOPSIJz-=F^R%z)&+2ap?E@cm3mIKIsH;TA^OS2e?*7YG_*_F3qyC&UijID? zG^5@(0}i7Qg3U`MGd+&Kqv z=$P<2d&UWaRXYJxe8OWl*0v4K41{MtAXtL1$vrb+|L_n9!8C(Lf7mKq#bZF=kXj=Y z3XLR=^$iLN3c$~4K>Fw6;sRWcuIK(Na9qv{J)+cnH)KXgaqcamzhd|VuQQBtXj8yliZ-vuajcel1mR^f?SW|Q#rZ7GVP z{Ys8$4A-EmR8VZ}fEFt_tKA+cW|#=MI6e()JUqN2;6T9}oIn;67Z-Q?_U*x39R{t^ zWgx01fC8eWrLtIB8LyH`?wua@xl9BW6ri~p+v&&EzK}QKkg%r%>~SClp=o*fgO=xS z_~w87SWBEcx4uGWfC!`#A8PIea>ONk6J*B-G3EA)ihaNABjn$k%%GE7R9 zQ?o`S%yslSO;>N>qGy59$!SEOw0QxzBoyl2y?ZJ)`R2Ve!+BoECFWxfQeLK|!yd&g zqUx7G9D+v#mIG3ZB;4GWQLvGLi38u^!X>;ivwM~%=pFc1TZsGo{mpw*J3^?XuEf%- z!>xkq;@wyMf0cDXSiHEp7WD5cs#W^$}b`R8C>d|KK(U<%Zs z;Sef7Lf)fzXAmAr$fT{Fqsf8kq^qk73n(><0mvc?kczOyx0Z){M@HB=B%b8NJ^|Mo z@3AustI6i@Q=T|LvYa&utUI&0fXzfzTF!kb4vUC^TOars-yL9J{Gbze?R5^ip+}X# z#jL&eX;>CbUI5Mm`Jg(SSs;D4Lf0NXe8|Vghx9zOg8j&9+{>FT=>uj zE4mnT2uncL415+o2f~E>{QK6{tC4s=bpZ5ZpmYr@%gzDED~)IyGwJA=8b8=J@4GuY z_0R(YW6c4xt6s$Cb-Gk!SW=RC-_QNsQR1zoL2JPBR#sNtxb?|=dY~|+))sLOwY+@s z%8l;@hGLjr@UkEQ8EwOWSnlW25`#$S>%n5PUdYagul~4r{`>>U?vpea8LjN6TS(() z92Vw8>XyiCM0Lrg5M&lgANc0yBFN7HuHbnzO}j(DsBQxRm&DG^8#khi4w0C+WxJA} zxpw8AjP=`0@SdJ$&UfP8UD1$<&!tN6+6=_PN(9p`G$)L3Q=M(4<1Y#(vvA#q83k+4 zDDyFS+!DAdAD%f%ll~mWd#gtK zI7O38^{MgAf-*Hcny1*Iv{|EN88{e1PKMz&a-n^Km(I#j)6hINlM^j@o@s4s7&gCi zayZg)qbpV^fGCT_5S}blYG7q$1$g@QqKe?@ai0pr#vcp@=0QN}BP&NP1f z_yI}*LDcofMWJ)l;gjn8y_YjJh=khp5+0f_tLIF5iIN7Hfc;*~wn8UXLl&&Mb2S`{N?9rW&{; zVLyO60lXwyWCJ)(Lp2&C;XCOR!SSOpKt1lJ=7U4+})V( zDh@FGh(Ew6|8L0Rb21AHOEe48V{g(I!b>zs0%=N03Lvr!)N9l$9iyXe0L{4C8yO{s zhK2%RQ(f)hN^20!0{nA+LBVsRe#tYkGVA#550onj3AUb|(e}KQ9au37W$FKZhinDK ze@0=mCtOqDaGJ=s97VGKvTVi6(;A~>HOkzMtAoJ=-HEf zW{b`llMdwo!jSp?WC_5zZXH*@a7oi6*EidL+6PwMR%7oBPLYY(DkO+nGjkblom0LmZT??3`215hxhmEE@FrI z`uYdBxn$x0whA%aN*bD(sL>Ky^oL;Fy0fhi&gJMYs}oSjfu{n~vA?xtZZwqlEvE2KxaL?E~E|om`*!8=m5ScP#M+}ok)P4FSpgKZ}3}0^8cNbeErsL z1s|V`V8PVClQNvq5?b=ctQT^vzoV@2P}$#DTvVBz7c>4nf}#QiHj}5=n{yd&|M~MQ zy}{f})q4a4DXDUQCs;#0eYmLP&1_qLG~3^2rOH6fc%_$~%*RK+o~09U-y&kCM&H{h z$?*3SxXlu5&&ALS=(>Hp09V$T7@|03G_(a3ucn>{+*SpSIuX{bM%i~wtt-2{=J&keRoyL^Ld^t?jI`s$+?zM{jV`K>%-_4 zcdY)-%i(HP2z7sBfcd%s{qOw~pOf>EN5x`oTV*g$>CY0oZpo`;Ws-7{3v_^$hx`qh zolSnR3P(`+e{6$dg+P*w|J()-JK}OUvUPK0KYfPy51pFz=jHM7DQl0_Yo)*iSaxK4 zbZd{I)kLo6-tV-JcT=sRaIs&?;s%#&WAon;xVsngPF}c>@dD%TFhfI0SReh@PT1eb z(DPIv3f##n^PhRx>Kc(j>ryMF_L`Zsi9Vg!V#0w+;_-I{3{jobi9s*FA)D@exj%Z#upZ-PY&->~@G2;)R|2!VB6J|SeJdYGmL&E4MEjf_6 z+SsfCuNZuj+YY!p@P!V`L*3sOAnSsh9~%qHKOi7WF{KrFtxvJB(G*>YPZc-}UPJ$_ zBbWXJZ>MZR^rG}gI5-ps1V};fTj{W1Fm?ji$Fre)eNbnC(iR8|S_NiMf3&|dxf-IdnP zAc%WjxJ24cO-7qi1g!9Glod$4KZ6&oPboR-H$bj5kQ>|IlcK7toB7BuTYG4k zO)Fl~GQ07sccZtr{Y`JSGg(h0iBZ9bUmu`wed5(6+Z zBwLD;`z2;cBpiyjZ?`s!d2C>Af2g*c$ORcojZH!X`{BOXz9$+`XCpX=F)VX{9C$!a zzo>rJ?CRyqp>F_UlGp^r8{lF`Ewu4yco>2yV1UWlpI&35#8&@pBEc!FPxm#86ci8& z3&Q|sbv_nZmM)E`0Aios(HNjfYKDXH&7{Y9Rp;r`r@-QDnH)1#>Q=h~wBWqhX9iJj zO-&5|FgfxGbpUCSa9VzA7bo3b$_gUu?~EPEQB*I<%C3@I`g+cBzO!Ds3guT6efZUvLx(D9BD`~u>WoX~sjsgu zzTLd4#tHkdrOJ>c?&_L>a%QsY?m$pi5NX=Z>Y&r4(V(C_hoySqVKIcwfa$4yk*x5& zQdJ)s7`Wq1XDA(nuc`}%$9zCJuO_p)cEg`u{sjfrS{)~EQI}caCp>9{h~`ID(HyO;{F~u?A~7vub6(|*&KF~=9J@L9CSY0QetsQLZF740a?#6Fm?}a1 zy5n{xkE5iU)yP)9aWt!DC)@d&I-mV+3}Sp|-M-rwu%r;)!}fNHB5%^4Zx)le+|#0$ zYO_?{DSzO&9CdKwR`N_I^PntWoKuvaMTei|lf+S>?5Unc(&G`%f+OpX%b8(`5{LQs z9Z?^7T(>5dzFp7hh-Mp+Ix)h&{4Q>D%lXnJPZ6OJsg?JyTuwazPQg9x_mi_>jpS4u zdU=kUHp<1fcn*~_PC7fN*Z&545mi>?qCd+#y;|GvJYkmc?9_96!b|R?HHa)zgYDjH zi6hqC>A?-=il-k+Wf(8897QksXqL+_X(qpo*qBYJ^3*v#DvH?L`r^D8R?4fS%j+z# z{Iz>szq9w8-ul$=?lr+RzGq|d^PL%MHYjRr!Q-&4+ZR&!ze^a0N?qBWrj?1wB;iml zFbJ+*M(t$sFkUMuWCXglj4F+W57m1#1L7iYF3OIxR;HW)$y z!49fjvl8q0lu|O#);Tp|lkPm7y=@$3898(P{n-n}tsf$pSQSSnGFFE|ckyWZQlu8! zm`fsMdlK}U;}DYJQ_MG9sF-9ATW&Nz5UCF(zqb|@sjK*WgKB-6wU@Jyn2v>s`|H<{ zw%4(-rB-Gk`&aVPo)6Kyb=Da9o&c`gaVPs=&oGDEqTEr6H%)#*VfSz~cw}@a{UUZT znO#RrmSzcgoTgf#k>p`<;SC8pa&nxVRY8zoa%h%$`lqRWBeb7x8j&I*%K@-bVdQWc z2h~??UE8nw#^LFwoz{pBU9r;-R^t^()TIq9vZWb{*5-nPbS9dC9e4F;0Z(>&(AN|{I1;#4K^gRS#bgTz%=$0zH9S1|8rqgIbO%5pKyPv!DFp|z5$SR5OxX*@*y# zk1(p&)uolAPZHDRhl&j&=R@uXMjg{?4ONyo)_NRXHBNTn2)SqjStW9!G?YjW4&u%0 zr?u|hg~la(v>CFT*zqnc^K7fVuVhR8mioGN-=rTy4TSS@OI3T)H*qVkOvIH1dDgN? zL^a3)r>1a!nDM)O_PH2}k;e5%EUkFm@DuV1c2H1;W@o(1N6Uec5%C*@X$XAL$|7bfwqK<}0%sgM z`k|#Prt8!58w)!qw`DBMXuB5sgDmBYwBtw#Zx7Ayv)>X>S)q|DCmtwm{(2P>!PD#< z5|9HIM>3hp&Q5LIMX6*YVxRezUy{W5{tabj6U$1SPuL1JQ zYNb5M@6Y&ztB9N&jX+?O92saaD19z|UE#+ioMOlK2%{x-7AYyz&@($Or-Bcy>={7tSz%`B~{pvuhOMT4jg>_iX)fChD;0*96Q*iSV_rJqMd#w@Q(eq z*VqOQLmoMQaWJ5t8a+*Bs|VY@*l$jJHuK0$)T3kKe@1F zLOgwI-@hla6J}p$8eQA&pBjIIZNBw0IdaH%-|JLYu?Utn-FJrEDw;gh>W5nl6%ZJ($B34v;&GJLlK1D4n7UTMZqKUojHNB6AEf2^j;m}3tstFTBwvN*ZwVq z3OL`M*NkQ*w-1&^$OVjW2lE6YW=@Wjc)xtyyPm>rZ|;0WwzJ$;W6`Aco2z0?{lw+U z*xTz&ymVTsRgLRCDFB+GZkDrGT;rf$>?XjiJuxpf(hx*Ee8^c<@$hUH&3cmEeAnQ! zt_I90$kVo-8Sp0~SRJ&PUY}_Sda^ujL z<2y?&VP$MoNMklUT6!<9?djkVOzDGtxvn2bew2~vF&3tuUz3`6c{v~78vW@vK8kB* zQg$(nI&=-Z3&M9kBOZ#BL>AoSE)}Ll%KYd@}kBFLK3%wsX z<5xO74{sO3I)S?4=R7Rkod^jphhyf)`;*<6av9f&(#C5VYx>)cWQbL!%D|f~ zFwA=2($^nhsbMoMjy#!>d@fOR{`xSD#D?wTM*nCNf#(EF?J|TE_Pe=GZ$8~_X*tYL zlDH{bQru_W^`KoPJ8H!Awn^Fir8`nIh;|2Fktv-W%JpZ%tXBMG=Ha5lg>vQgQQ6Gc zYU0|}2kF%f4>0XrGecc28NH(=KmWl;qqd{4U`QR+&KKHFyUJxPfcX0L<+u`wGD@o*f)KbxoCt$e>GR}df$Z=B+` zE0?efg941UQ6Ws5bwkleAE>|pHgiU(;!qE z=`qz#>mBaC*~UE5W^{{MipEw|kA7FySaZXTOV(~fa)X?DqgLPUoysCxhuRZ9!E3jW zlf&E(o~|}IU#fOd;3dfOa6=&znk+ahEL8H4Neomjns-?x>fBDo`QEq<59S`LAM!dE zdsn~$T7&3gQh%b_jbf=*{6q8Ec;xcWC}Nz|#X+K&*WA;zyrlT|J~s5@+|0lD*7+O4 zz_34ELE>mNV7!XLGh6o84|swWF2ggG#TL(owb{ zp+sDfXWlyBXS;p71$j%CT3d5zA!Gaj{)?9>DfGJ9ZXC~!)DL60C{p>S+tUP3w}J(W zBUz3QaHeD3T}4_o%-e6w&YKdDX7MwC0o!p-`}oF?kB0C5{OKEYVIiOD^XXL;mI_bE}oHZt{nQH|ILzWTu?HhK$myx-+)7ysyBd7D9*+hHacv z)croK^dehiL#e`Uq%F!Q@9kTv+?jHBjq&mX{!kI!rY+j6IDy!$yM)XGx-?jX?EFoO zGY!=8P+mJMlIre`^}exXHS4JYN~QM15S5fvveYZX8t<7@GgBDbiPWtcX?f62Kv&m~ z1F+z*%C8T|0MNkyRztVRz_0|*s2b7N8QbDnVA@6H^y7@s*_}~Sse{;he( z*j#Tfv9@rkw}iCzbEJ5-Mx?}HQ2ACn4?mc+^>(?%M#?T;<*P8&Ec$a_uJWu9>yTSy z&My24%TQ&Szs$K;i;SO*_~%Tx1FrZTEm8 zl8a+C_P0#~d0(zZ(POjV#{piYm^SwIp}Rt%X|ps*K-Bfr_FW7(59L)avV~qLL)jR$ zxK54xb4Z4PErk#>5+P`c7)3lsS2iiVb*=>Mhh*+YsA8EtjpHOGASiKMQgw4X1k_{h z>U$X*8$yg8MIh&vfaeGN1%POe{n^OU(o&!|+Vcx)*PBRzF@id+>V&|VI#BvS&FFoL z7t7vg<*Ke7P&<@jS4orFbU=j21)xorz#$_eV>=RA19IJs0?_ce4nl!~Of1iK*@P#E zi9bYuOh~uvna-m}uRZ%5UC)~Rgs-;q6#(@kXtKTG9}rePw5IF;TDud(>$cXQ00iYx zs4OdSPsZ{ z_zfuO_wUP~$Q#&ksaNbl&cL?5x8!>I{WFv^E?Mb5pAAQ=gVpn&G`%ARq82TzN|TLM z&DG9u&H>O52xF7C&J><|ljwp8fUZC^-_i`FFDmY6?i+*l4(O=UA79T^&qK8^lz5%Lcu^7&ItQTRl^gek zUZIr@XeE{<-g`JPP>P-d01j09va+zAq2cY{S)E{B1;CB7I72BdNO}__BFyV6P_Y=o z3Y5P7&k@*Vpf?~9kfh60&7oJaxa%{cM(h*z%H5A3UF8O&fh-#%rL+`KU)n+{Lh_Lufpa>QcdLbbQYL|Xe66&{sf!NsCu(JyyBh^4{J>kCDkw%u`$><2R%Rrvl z*x9iz(D&Y2g;oTt+ETYc`$2Ksz+1fp`rp9XI}}pk^eJ3Y)}VXSgnIOrC);`F&%!mPJeBG3Fu$Cq?MkO03=$z4ae(^3vEgiw|#1| z(6OuT?-%zxJ$61$E{2&x%U|G3qWUsI<6cvxOIV`SAuzA-eujpI_FzhZQFL>05f=nS z^8`rz;BbOEdv&ZLX_dTp)$kLSwJzpczy+P0ota^)!UwSR8Mv)!#S4|7AQ}`0=pqd% zsWy<>Eva?#aC2i*2xwOl-jzoSXkbCSpj@HKaS5#e1?9&Lici}c8&KJ+1vShmr%O4s9qF6 zDGP;zE=ZE#;e`@Uk3$Iz$QymHl6|zZ2JtM^YrV6u z43u#i>ikCYyG-Dhy1z(TV*3{iPsVL$1VYw z6@d1yCsi(9;Ma_{ldmQwCd$SOt9nrV6>ej8p&vwsPdwKgV$*pO8N|-zJdNa3}Dk`16c*;;RwQY*G<@Y=ps)D=7J$=f*k`CLfT>IYI&g4Ck$%-QZr9P}bv>#)gI>*g%&?X&|7k8^qevAR~h*1YH%n$3_{t zMFa!`Qh)A=0kSPTJRE`w+IaUuFd5)Yf1}pr8PTnd2XrOOy3n>xmjV2Xyg8IQoL@dMA{_fC?cGu_5X1&bJLj^OK$R6(~;} z1^pHXG(oJ0E|w!=RDZ7td*%MLOBuLMklR^;&>2h+92+>aD3IlW48+Ih@0!U1GgT9Q zi;r(?V!{i;LLk;op}Y(#!G6875q*SQf0^j3y}dnn z3zbl}j9%q0pQd!c+Es|d=DxMmzzbp2pWX5t_Rs(5CG>BDhfWUuuY>U4AN;Q-ME}E@ z{%Tb8dzatQNL%{u?d=UV&<%Q?K+KC8DoBFO)w2O&UvR}=(Lo$U<4_R8VU2VLViNqe zp$UwWuXbzPjfjj4H8ln8TX3f%K%4`{CKgaT1gs{yl@S?_!xLG!HQ5ht9prf_(FTu! z5|+U=TL=-s)o?qnd@3qp`&%s3R}QtOK0c!0Bk`Oo{|b;UIf+)v1`8Z*kxSA1cUhEx zEk5%DDKut*eGL4o+*tpATid#KyUZrfhtqzElz#Jxgm=xPrKRTrokRH1!A^NO zRMACH4||uD?Y_NE`HQ`U#tF{OyHws!Mr6a=qX_S5LX21BLT?;$LPAhn*UaF?Se>2bk)kH zTi-epJ9{yx8eNM#33c*xt3eKo?pk1$tB~|2p$j6Ls)`C0LAaIG5fR$(OSt0^au4>@ z+L6l~BV7M?1FQd^H(k4yWi}R8;XhZIm{xnh8$WT%&N%Ch8tu>5U#z>35vu9wnfVB_ z{H`APTexK|zr-*bfl!@dO2RA)&Yd==%kB^JE=b3xL^lM;>sS>HK== zTm#6(FZsvKziVt}(9_FdK+jBPyTeMhz^OI?^NIQ#o}P!Xt0;VzkV%tOAcd3*Il1}i z$)yQ*`)tQ0lG4%vVBZ2s!5Wf0c)y4q{!18sL1D;!qKWc#(dX8E;vFATN^WvWA0M%y zOAtW6WZm!&NEj;J)PS6OhD`n~IBC~Vzv~5617Qb;*8O=Dw3F~G5Ee1W3t0^(f}*3; z%De>^ZGO=DLez-)iF=Ozj5xrUe`Gv@a&rA8Ss>%7KB=s93IxS4Oa&VVAyspgjoUKU zZ2GIX{ywxVQqF2T)6%McWgI8CA1pRJbCe;E&)sRb+;;KwB>4BIH@Tj?fc7AOCLvu! zjt`lC3wBI8>mGU>6=cc_>mbshhN-bpff_x*rgIx}{jzm!;ZhgQ^SPUYumxrkp^}vv z!PHMeBdaVd{8w-!;8Dz*+|Zc8HKDAQ`&XP5!K4Bu6K#>8xEN^!I|-xTG%-z!eI3bL zHc}=h6Z80w)GA9^qUyb>bZq9%O3ELt&i2oQ@hi*%x)yu$6n~~@qRywaQBg4%X3$A>{UckXMEb9FX@O$ zGw)X%%*`0oQ`=qnBfpu0NsPEh@8!8&kJCCD^Y@XJ#T&bWBu7VmM0$VUkB_hK?R8C& zJYD)efJ+WIdlh-r1j0s&>av1hI)I8fS3c)+VJqq{-(!P$ZXIVB_x2xnve}_kIIw| z1SbGHAi!j-ad0!Qq`QUQeKTTk06 z>~jvb1M(DSh4(k2pY5dS>$7pA)gFIM>y}@V%b9iA!dL|KMe6(h_+x#2J>KrZ($doO zwBeWuI8mtZB)Knw{qf3LznThaWL;l>e|N>I$Wmj@-`Pxe zs2w3HD)Fx(-N2AVUv@S%guRW8Jm%rrO)|1=PLNPH@orwR{FnOW4JEyXqSesnv2iHi zQGNDImEYB6fM@+(y)g9SWj5AxUd%vjD#h0p=cnAuvOr_Z|fF zB3q{$bY-A6btqmOka2@hR-AUh&4%+o9mvt~aq~N3dq|q$D;LT*kVU5G{(MDFqFNdm z+e<2eB#XgMfQ?x6a|t41VT zxU3a_i{$1Q8T&>`Mkw1(PPDd{nk8I*J@W($|GR7*=q90Vi&`o@_|$q;;7j6zK~4-W zsp|_)DRk;WqKreL_y)^@-EY+m&u3pJ$R7IfM7W{urT61L8~n?kAN$eJ4p12cJ~_j} znRs47*x->6UC)X0jlyRU#urjhYh#1j+C^0m?Rc^+^YL1NMaNi|UEf}8# zpzsu38X$yFa^IX|adV4^Y;FoPG&B2q)#lFi%U4aTM)DgTaXQk=)`9g0v)GuH)fW3Y zEw!oUG|p=H)ec-lUo|yrIXbS0Gj1D7k^1`p_ac)5KRgZLGo*rX)h;jp+`}=>d z+AJ=PNw|!REZ1F_Tk!kWV{^$aU!8MxcOMECO#J&;?g#l5_7!n-O6rQZBj`E2wu(P7 z*O4uTv$H`BGc!Az@aNXA85sp4zEQbMRdzo2^#1i)rUrF8%ag99mio;>e{Wq6B<~<( znsH5)HO9pJJ1BQj&U^t6byprzuAteuzXSN1ky+?{3Dif+BOIkJEPsapIhEyvK(6VM z>Pl)edIsJ)V?k(8YDqlEWA+n)+KtMo9-uaQ! zn1!Xi1N-l?$mzwCJ^1qIPN_ZZAo@*VQP(cwn2?iecV%lVuju^x^c2}$0Xeyy7TVP*QR%xMu|!h@NQlRa3+I zf$T|FZEbb!o4;OY{VM*%#;oN}`4w`Pt5?U4*WgA7GV$GQ=?jhzqhFq>@`~?>>+tvg zj^1oY=#~?XE;o zMtUstQ~|=^Z;j+LvF_T~7%I1g-wph86-$=N;Op0HM~jH4Z#T(oamit<=;_kYaoW3| zr4~#k*m-pH9eowvV2|;hh7iW!^hzg_-edG)p+^wI5g_yF8y42k-uiOm<-a3%@Zl|L z=&Q8Ma44;1E554wTN)Sz%;SZ$oQ|5~i2l4T*|-_clI+hfL?8Qi#&dnH?L%9Jy3dM~ zN*!HYP?U@oRZ2?wLy2Ni(lj)?2n&19k@d;v!f0vWAz6S*R#dIv;ijDC8P~mi77>w^ z83c>r_lLj6NzpJk$aVMbT`H=Ev9Tj?>rmHUSy>7GTAjTAON$?Bw7D}j$#Qq4B~5O4 zs9>yyp9(GDZm7bs1u6vU$pb;Ba1a<62(`d>XY}>q7e5{nQZOGIDO`89i;E#8&hG6q`!Y2mxo|?`OKiv<4@=jI%Mi>DjJwaP*Yi8j33ZT$Hv*2K3b8vA5`}x`0+xHF*#slWw z_XIFy0FQ1@#DDmpZ)C)7^z9lMS!||kL-CV~ION%xne^ZKWtEhu=F1o&nC^Y=HC$NG z-dzj_0xRTX%ON+u^2l95KS9wXmBexOQ=)hS>Yo{CorFZ;&$vknib$!aY^b)s{ihp( zT)Fs&Wo!2PcQ-Z}_Kxhop76x{Q2W87PDjWG|-4fFc<+Qs(X$3t}3GU z4hu_nb90&lLWzN9|DAb(c~rf5jQn;{$!u<@$AR*}uBqsqmHq9d@Y&_D#Io;17X>!g z&4O2F_}V*CoWmc9c=F6fOITU$IPWnm%gS~RSol8W9nTySwg|6%(V>-kF8j%C&wkvFBIN#JUW?cm(F$DNJc0rsGW-KO|!)ZU3I24&A<-`5QihQW=?~I zy4UA!Zh!{$!2Sm83~CVpid4VR4>a5g`Q6;y)s4`E+mWbD17FqS1MNY?^XI-@ZHHn% z+^pGWcI8Y>?RD(zDrmmyJ$ksGClMMV(u9A$(Knd-keWhK4i)S@rKMtF?r&-JLGKJ~ z@k|Bi58>>p4~iFkBIMTN;x zLG46H1XIprugW$2&?Bf2@x0!VATfiEcfSSG$K1Ss&_OJC;{#b)=0z|HS(qauBPWgd z80ObzD_))pfGCW|<_S^bc!!8RGXM5qxYNofgbNXFU3+`^)4kmi%F~~bu2G?zOxFe6 zR9_A!xu~gbFfibI4tbc~9StNq45sWZSK&b0u@~Rfwc4uQ8g0yA-K=syEJX;*gJ><( z&F~r1?$WIg!E1_fUnIHZWbZP@UZ=ZWSvkch^29^U18RK!pW&lhBg5h=M#9C@6eGk?OV7ogf$fwwvwK29G?(eR!oiM ztzZbacTXd>;uumF^my=eQHZz6?CTz;TiXn4O#Z+W=64A)+rP-apPSUZv($X?$`24# zm$yZOy@+S6O5`-qgZk%EGDnHgT>KfKO!cH}Ai7EpFfJVJo+8DZWZ zID35+<8|m-t9`_6<8mid`LhxBmD`O~mx&~MklvRVIU|F?=})?dqFzXm$Wi)&uNu>5H;3PZDgQ`yPa;)J16oC zaRtLso@}2ZR@24sIgIsgcj5(mn;$$I8`RFi7b&)%jXlA{)P|i=ot$^dwCK3}HvJL? z7M^S7Lt$YnL;)Wt5x#v-zkayPmP;8Oy}U6Sl1@a>c+9Bf@?h`-jZAsb)?WHx%4JXT za~PRaTlj<#W83_KwaH>8YLt13CIsbIbGk=4xbD4;(z2@!M^;z(VtmO` zNlQ|&b3NANiEepkky3>~;KZ*aiG|}ED3{wXre(c3bF$}s;X*jKud6E{qMzj#`wcw~ zY+|c;%RZDlE{z|no*V=K7&CZXMP^^!r8uAOSOfxr0$`@qKWt>Bbw6e z?BE=65%0q^rtxam#;X)en>wUic87bj&8fSOp^QVbKzgBf)tAC(OkJ01s<5hr1LpTG z<3T!VAaF@rr=rMcWt;)M-mAlGP7An$`+GJN%@GmQmuwc4@)RhGZ}#2ZkP{Vnv0mv|C^0PQ@*u#{c= zaE{i7tk~h6{f)bpEpmp&KAapSt+nTCoZiII-#KmCfC; zyvr02FkNXiS{^AaGa*{7n)5pToRDM=4`ojN`|9VEl<_TBtQ6%uXM&1dx9LkyrTLOm zO{}=pHDW~M!U?tFNZTlZ*u)?vE|3T<4@yq032-ea7_&B!-|gTUlL860c7!m1ojr#H zi{Anjmo!VW{7I7)dg#3vLzlgdH4ok!h)S%8<6Yt)*<7DCu9>Y`9a@`wST%zv^@*e3 zKEoA(Zg7-fHt=qE)Sm45_TsosSe}kyFh!BaVR;b2grx>Tt!wPl==lL3Xi9F3ufLk< zzKY%R^o9Q%TMaGmVUmfogal8##EL@bCY3R7G;dG(HN$CEIkCgqQ@lCPpPB@&i&xQx z;W;*m%_!&Mx23`5K|QJ5FV$enGm1rg%Y)c0zggv5jE+xcg&CkS85w6*d?G@Xdi)M& z1&Jw`SKk#MY*&ybcwA9YAy$w!kq;#i(y0#V63N&)HSck<{&ShQmuPt6~AiI#=b37H-*B3HT9_pt{!lR7Det-{30y1ng zT0E1`KzVvGfz8xz&`ADm!dU$&!EV@zR(E9bnqb(Yf{e$>X+>d} z_o(+@j_0&AE@DruknHJmXP2Tb))SjS=#3%o+^>A~vxGcVVo;$%3Ac05@JPh|Vx|gp z?GeM32b9?82QTJUhMt>Q&CJfAD9rAm4q)p+d#BGUG>FRg=N5n5miqMJqP#}f_wyK^ zKXX6%g3)?L^layuqg=^z-p*Y&NU-)Vc4EkD;Lr+^sWDO=|67%U;aNGm)@T>2^wE+aZyqxWzvR0clq#eQ9MNz6@sIw zJYI;Rl>H49=pe3pl@S&!;?AzP>=GFrE#VdT?%g$LAA^B$mtWY53= zq2D8w*tc|#dWsz!9M0F8^u_*uKsr8z(_fV}m6ab22PGS?D!op(()zX3j1qB7+ z0`zkge}7P=TvF67HxoTg7(U+KMd-hOF;wX6>)-#7XQ6+3wqSF<%X*}E0r1Y2mKK1} zpyMf_d5VC50PsuI&Z}{im9FTTJ`azM_V)7{3p)nTkn_@ZOiT>?Bm#8u*Iu(=y*EL? zpjuv8d2o1mxljnYVS)ZDfPxd!JZfsubg4~XSfFnND3QK(c5-rXU|+quf~>B(#lXSI zDJv}<<_^v5xIqGfr<(!|PKvKmJg|8&pvBM64>jN*6{DlWw6~TrF-i6Hy<`P(pAslL z2(MlH4k($v>6^sFI|naD07cc*)P&9!W@M>3I8!<@uA6f*pq~MR5o)!4bj+YiJs{xn zad3B9JBWawT;FcKlT1cNW>Urc>C~pPw@fEWf<7W{CA=6ho(?sxzBJpn`r0Cr!zcoE&7g2nL755X`(R9?ei`Q2#SO>2oloWEz;fHDcv0+B_$=@ z-QC?C(%qfX(p~3v@3YqL`>y?-v%dQu7sA8y;kjexnwe{^d3f^ww@3OP$4e{6*VYX36)bwJDnD7XJ59{H>8gR2D=M&>1l zTBQW&C?@fG@mSHeJ)TQ`p!v7&0bmRK@`N_RT)yehu z_XkB#wRTVLE0@FBPz9P??#^G$>+5FH6qO&Q2A_lL`(uV7`LJ zVMGK3iXm|RfSzekn?Kw$vxNOG2Vki}j{-zmikm^O=mPjf=(Y|VjDn2r}xp1zaYT{EO1K617OJab( zv!@wc!5fc?h6YL%fFmdmIoAM44WQC2oxtGz5-dOpDm$>Os}uF~_XLKXu z?Lh(*As|+J^5+lTk)^1qH;{;(TU^wLm{C_(UupN!eLMwXDS+{XdJVPG>gEDu=0w79 zDc5npB_Of!6?n-3E8L}1lGHmnISKrGEzq@sRFz0plK2WJxcjrEAE%jy5x zGeAoP9oC~a6X3#>W#_%uvCHX>vYJDlMg58%zHsn9c;| z4Wa1dK058Qv9U$1CBV26U4T=OFO?XTk|K3i3)Vj77-VjKDr--0yPg{Y+AWZv`YSCC zTF*V7u2eJsOdSB*EF{zeh z@0nFz&TBDC1CCB6W^!7Z3^l{kn8IaceSN-GF-Q;{4Oam9*P|m#jkZUtP(ZxWeqwJW zCJLUJ*ZAu_VP9KYfNJ_bo#{V3>%TbLzdw)d@9XOu89DA=Z3a_G0LAe13Ak|pz+*WR zKxz?mMoY^6wNYzpFT}gREj$1=X#emqdPi0N;9ymK{oKR^N{|qs9NhO;PKW`6(VSGY z6VCgbfgK1q*}MtcO^nV*YG5}WC83l)JyKwQ*PC!=0Xm)MiGXASJe=n+2RQJ&`aOX+ z?|=*ac!6aHj20^^Yp*)sq6xI*(zgQ^78ulY+J52iXPNWa#oN^KQVNtRf&FaJ>x2SM z*4pjEse~wePX9Ny*6-33t3g^7F}Q z+W-Vm?C9mC`OA!n83J5TFcX8;a~|-E!f`Xd0roywtP+*o>ohQE=<(LBQ2RR|3+1~< zL`K>H(+Oo;!{kE$ywZf{@bL}&ntl~cRz%jrfpV6rUBXu0nmLp6$CzO68&z= zBg%jSD3AfD0#x@%(=9<_Lpq)c>aR3w zQrUF#o~!5CMDz1ix!2#(Wh}3mnX5s=g5nklDQRLt!gz{oB9rhzXuA8kII!Q~uOH;i z$;~b=_uA}v`z;OU3-Hk_X@9K}sBEvwAl-EWGpePnU9Q!bm6`bkWRZ7w^K)}ab&>!f z9u5|^e`G|vLJzWb7~E@0k*SFPEjDM|`^Ln~^Oh|~N-Fyake2~=1~QrA$5IAyjjt7q z5kaB3#>&^f#F}q_9APGR=1CmJc-!d8m7s@V| zC`sj3|B62`Gcf^7^m}ttz=meb5s(HcqvcPtD5c7D!j~( zr1&CaPEJ?A$|ypMOH1d9%WdZ93GoLo5s)Gk`Pk0`S{5@ib0G^A0}BfaBV*;|Kp>auiJg%k%q->oa}xh4*G>U-aC8(9pMmMcHNq*B2fV`6G*E@W z;r0BSP6@b)QZo}A@nAsJ15juw1S+GCm|HGMzjt;f^s@>8+>)ie1~W3oQFAJW2!M41 zI<{cXL55b~E)9QDAajQr|3?~_;&Kew#ccqY3@QUHDpPO+R8%l&L%^%YvoiCxe({;5 zdBI}{D`qazYc~nOClP&YJp{yQU`P{cxq&vv)B0TLPSsHsFkK*&i*h>B83!`=#?Ja1mU^&CWFVXjHce+ITP zA>sX5qDd6RPX&cYUVAv|$B4^#dxTs72K#^v$G9$)2{?-Go0&&q8|8rE1s<+jWf(Lq z2FP`Sh5kvoKqoV1_4#4#1z3`pN&H@>V3$WRic@tBjlTl-d17agKR_>yF8ItJS*gA~ z0N)Q({-mU(_m9zmLi3`~7`yqjn4qAq4<0Mj)llIcz~q;ha8fL<;Zj*p2Lq?ufmk+G za9Sh|K;vmefFY1DTq2bjx4H`G=!4nl?YFHzra#8W0aLRCIvr$r?);$60Dwy4^%`yW zH$LHgxeEsX4)FG#a%sf&Bf9>8%V73Qc_BXXy{PB_Yzc6m;v+o3+a-Mx=1$DTe*b=4 zfPUBf6~qo;b3q6gTUbb<_?=+sPJMI+rWAxr5^pz6Oa+%3>$BX)ZIVO0k(j6@-$t9b`&x#_E z!`Pb@0!x;QO;eHpY65M0x09ONRKZ-N{5Uk2c)%P!0+4Swfe}!wjaGR5eT+3Uk{;#d z6~6TD-pPAUSA$p!ydXq(CnR^6gtIue`~u?*o+rr*IBX!)Be_6(i2_{@z}swpkkqYt zST&0k*3?WU;@F{*P>R~uGPh(}a=*Xak0}6NQGn0}Flhgx$@Uz8P&ldD_!75Jc!{qt z6AdC9K_v8-jk{3gFTkr@3CuoFJR2-I0~DbWrm{xJzgd!XN8rUXGQR7l)YdxftAYoE zSywCueLumg<$3mibJ+g^f~v=(1?FedeSiWe0>zFSqI`*vy>3arOE+AE_fkSzec5bEX?ptA%7@O6XiV_2ym7 zw}HvYa}a~X5bx+}NE#sP?sf*#?`Nn`jlon*r{zw$0t|0z37Us;zXHs$f1{zM2AI;m zS+qtwKqmD@Cd8PDgk&4|Cik!w&_&@Nmlp#_Q$Uwe)*WLA-0LBnbMS01od%;R6%L~1 zW$KkQgq+DlU$Q+Cj6X27WB>?>iay-mgIN*bmy-YvQIr9GtPAMK0)`>C69kT$-$3f_ zZyC|t(vrq%6nIHq>*a=Xg2Y^<|7H7gasqGqOtUyP6UvsbfTL1s@mBX>mmS0YFUsj z`+&EfgysEO2u3&lOgtsQp1zPiNZ{+gjm(}a7@pi%iOAX{C8o=cR zy%7yStj8!2M1jxtViL^YzGa5iOv{UTQuBa{-#7SN-1~>WQw_Z)fh|#Qu-yQV2%PoX zp^yCl>H+zq;Wbl1vZP>Ox`5N9+zm=+VP?)Y%*)N40gCB^a4Z^jgE@iOnVEkNF_^n# zZf*{a!70|j!QP(xUztV^AURg1y)O=+JDj^w>Wt_>2>^WPXq4SRZMkD|(jLS;mo05= z&)}CS!Y7BffB&vCpD_oWahnd)J*KxHa-JYD{rv6Qx4&q@(eZIzm<`OLlqgn0*)ao> z#2P*z3SkP!Sr+ddER;m8Ma^YYRhhl>PWsCZe*cD)0VoIL;X^74GS zMqM7@CcrQTac2=IRAey6T#nBO*1ny z;1C{9qC6@9!wh7I7CSmVva!Xr8>Q-1X@hve-u@g&1_Q&PXi<$v&GSVv!$;C1WaTmT|Hpcdxk<$VHEZ{?6F{udL$#4ut*@4*kFXQQm)n^gDbT|1X1*+5cxyvWS_b zqmezmh~*bYBccB_|D9gS$l3%q-p5S7K|dJmr3}M$3(ey8)zwQ!iDcEreDZy z-}_b)8=RPgeB1h|r4@jAwfa3f>U8z)U&x*9gUWRveL5PO#7HaR%05a6@zvgx^va;~o(tZ~Bxnx9vMo^nx>k ztZ_kO^gXhJd-zCG$qi>3KL&k!K5aR2E$DUqm`)Qh__raG=H+R7Y;f9k&1qpsm=u2m z<0R%XRM}c)n~wuOz^Porbq&G6G2mf+Zs9bQ>tsBYS)a)WgL7gD-!BrjkJzL6^75s8 zl|s)@ZSAmCy$t!)i<$uvUp$MwCEC-cJH^w=2HobTw~i-h3fe8kR^;%`V@aVs+H&0a zW?j7D4f2oFTwgpEP+t5Pe|fev8A&b3Y4tpk7l~2`B2E-ARuudQ9~xOCUcU4RwP1Rc z11sg3&$Ge)-bKMsViez&rp+~_@DEG;j)M%1L5&m&9*yxx3Z-!HWyY&m*zj64Xz49( ztzWoN56XS`ws0#BBWWMn8zbj%pb5KD$u1 zx=zw*R?uC%HtvU!hrXR;E!(^CeYVov3+(=>>Wm*}Js|`~EMUtn4s*OWXw;C%_cqXd zvfGc#x8yr#a=@o-3};fN)3*C#Y7^cUR=Fo!f3+SljF2A057Hf}ueChm{;XW0lEMc-O zMP_9}IyYM>BVg9spE&OrLMu<0lb^afBtmCJYC{tReTBKWWZs5OVUoypne_UpJKUac zkEx4^4~7~$;lf51*Z9jYQZ$MhkAL?d4b!F*B$qxuKMl-=Lwm^?vO}|^*QTFelnGka z;g5Z(qIE1YCQs_XzWkIh7@94lM1}yutvGG*kSGCvZK5K%_rB;bjqnz`u#=NV`A%=q zgJ(r1<2Xi)@l}gGkKUR*;!LPcR6nU`Ibh`^{M59BaxXfif1gFO$3@Q-cY!^ejB!g^ zBKAe&&6?w@)}%~ds~Ola@}p*yAr5YK5}^Pi)%xvA=O~e@6iDsN{c9p>KlpbJvh9m+~mU;$4#y^;g`JWG=%veMg-R zbmpSH!=2?3ohpr=?^CPm?2??tCrTWfQr{^r>M^b1+=v9C%aVSQR>kIx^_wzIUpe_& zN4nzXSmRN+a}-!LiO1pa^IA=ie5yOrnA2}yQ=H4fXj3csPeJ%mt%A75sw~{_YvP${ zAvK%brmoY-vSRx$-{W*>;>->?r@AhgiwY9;RxMlWiENO}PSm)SNs-swzp1-r^xKBG8DmZ$LJ;cFL^|#xDCwUy z`kYps2&0CiaTD*%`REAvQTA1T*>OJWs&yxxlBY07amCoEew7+&Y2-NJy%N& zXd(GKH>DnicjkxTr1Aom+lY7DbnsPshY0ef`|*cXcAYi?yl1a37n3HJT@7BH(I0(D z)G=0=pon}k1{=>`_y0JU#laUkQcMzy zS0CGgT0Tga5pFl<-)Rvhv2Gm_!NU=^;XyK1=f<)5DT&4H=eahA00#W(ih^( z=W#Jf)ut(BuKdN>4~E)bDh*Cvgd!LaP)L>#4WTRETj@1-$7@PWeDs5|Bm`q6knb78 zFx+pO9)@|2kzaFbd#xyU&!u4yH%{a+=3eIf$#F|4zal#Ke~flJBFOUEP9`KklD8I4 zc_sMh@l&*CsDB!VFh%+>Ibq{;qwjkoH@B~$$Xwh{+P#iI|L}U042dYlsHz3HV~#xg zcTWA*5LN6W1+j1D`~&+(V=k0% z+`${%4GGd}p+eGWZOWp8*4vpb2cBy2)gmZx8G4`&17~PR-4W- z*LG9YXfimJniA)g#aNF_*Z%sz?3CM*@@&&J9(#=VzA0=6=ZAF^^nzl{i|`AvaUc1R z(X;m0FmguxH|hk}Pt*sk9$dz8R`@0QM(%;O>x*B@jdt86rqwKa2k%HY1(8}~_iH#X zj=!nMjOEN#+k*$G{C&_Mcu=){?&C7^jE&y!!ROb*TED*2*u3~Dmd z@0;evU;nV^v6@cxAaLR(aWhnPy1|GxXseXS6J-i`foK_%NpL=XYJPzT+QdfwKP?g~ z%YS2$m>D_#(;#V2%3Js{AVaLXcnRZkiA<;!e+V4kH|%N(TkO&?_^h2lMtC6j^2CC5 z&%nPiv@`lOKV4Orv{&fSCi^QQ+PF#=q7Z=1+x|R@| zy9D_LPZy7_pNqZ4lPt%^$JmYQ<|M@pCIteT>0J;>9Ls|5d1M%rsuW42xdk3crGG{@ zMvr7FBYrNmAfNIN8Hhcg2Reun)PTYb$diXD8_-tcbglO)sW))i4;zK)w zpCgXjIiwj%_iyQ$51o_fmwZ3wEfk$1)(XZJ^qY&8W^q&XBq;u@d>^YfJTN0ASN1zZ zdAq13i-CSn{*98iy>bfNbn^_pEM~llonEXTg}Y!?^|9?*E1PlZoImrQ^?nf) zVWE}>L`^r7I=DeK(w%Q!p4N3XyOU}L<{VB2tisbVmIT zPfl02(|VXm>u9AG_4Vi7ug=E9mDG{hL8VicRlF3axjp#g)M`|l!Q@(1Q~n#8(@FGW zjuEm@pHaBCGJEh}#TiOsNbf2XkZSJpF9H{fG@jwu<1R+z@S)+;h>XM-2Q>+GC)!qDD%#hy;^aN#eNn*@#KntHb2<3T>mp+?JRsTDk`#&Hl&PNsg%c`^eSF6s*_Rm$9w((^^_;K7LN8V)|AvR@zpwAm1oK&9@~S6&RJ)R$H8kS`cLy(!HaFv)e7vma#HJ@ zuGT|$)A;d-VZnCOQjU9ut5x>>?}i5P&_~)E2%?V`&k6FRzsb?<4=Hc|=;}~FMLVYP zkIXdN zna4NhZ6`M77Q5py79NXM_srVaB!lNltlQnTsKJ7xXBf8oMAv`Wfd48R!OHf}V;?hO zzQl(va^nd{t0+;y(*E|np#CpC(?tbx^d`leO6ovT!ljTF58Bjl8gsGruPjY#jm&Kq zGtRA6$qsBUoQ^Yesns4+vx1+T;xi={G(WK%moTWWD49%LwttFyvTXZC_i(bqXmqhg zzqFFRGG{Y3roDu5cU(7 z8rlEsZpe=0bQ9P1bM5K<0Sn79VY93Dah{EHe4Cf-uj#aE_c|?^a%wSEC#O$WMzKGt zxN{bW+CAeI^c|jPObSb1G{api-Ii3nhQ7GBd~M-L+bvU*sY#;X>#H#SIF!^cy{#&j zK*1vbI&ED(7uLFoSs*D@AglWX(p*Do$Qml01bMt$tU#)QvB2*l479CqL4FrUgZT#Q zBd!nZo8tO)J!RQKVj-CaXv+KpO7d;{p9Ozn?(r4OQ3~-=ZFAlcjp3{~aX_QI3rpj~ z^$~kVlCy9wvH^!@l`qE)l4?7kc9MT!RXXV!Dz@Ob>3X$bfg=mlWra}lc$u` z^4G~Z!fZ39uw*+aPnm%OCWN_6){#jw+_30kv#H&N<7Urg)~BaeyB~$6{^jIx{8v|> zo$()6KWfd~mjS)+#3NYC`RC?KgAc4SdHap;eXA=FTKBT|yD5q{) zG%gqQg~BCsb$hHORg(H#h{^=XNfDuQrUgCCoPpKa@Q=%O?1PD_Y6EW1*;kAY*;Hd@ zSKm1Bb0Y#4oazc&YL_kwZ8?o9y#b_dr;BY zGg^62pe@wVTKJu!{4KvJd@J-dDzifg$%H-KFl$w=S;+^5+J-0$t|19EEgI@dv6`37 z)pthmWp|}BNq>wbo3?D()dw#4@dGV_7381?`6-z^kd+>}3;1Zpx7{+3p)p4JMMx*n z8{zxFqew)t!?%N#tCbZ7?ajU)WP?sjKN%#j1zVH9|3z7<* z;PMa)7QjzD=eR5fyc%x1L27GN(nc$1By4^2+={i^OWnd{U3hkYxuqx9#pzRRSgh&(_xbWeKB6yW zgZJO?_mvg|>Enj@0#6;Hc*6fsVHVe|O|7)lIng$b;`eSg7d%OLVE@ql6p1H{zTFrf z@@4drHZ`Cx!r~~>$B4zFQLQYW9;v_X<(fIP=Be|M#rj=%dj2WJ;O4U8hPZbWddznf zAaUETDAg~inlU+5v$qf9iftPDSq{fQ)(7>7k@AQ#q7Q$H_`r_DZQ^6u=^mxQ2stv# z3^QyJw!87TlGL)*+f6vBJvKMUOwC@ugSVr?B7s`IRd56`XZ{9o(o;>}Z z`_J}YMbAv^{|KJ7BL@EN|Bn;TV9valb<$e1&i4ud-z8T_W!`ZQPR?WWL`CfQuC-|h zyu*w5VZ##gJN)qXIIQ)@=gBB%Q@wQ`vy`1IN`Y`zq1e6S9d{{sJr2L4iz4Kz59|TfsfaS6?@3~epploDcs{gt z8IKu;Bhg(KVw=;6%xfKtiZ%%sQp->vkjN|FIh)<$$0C>rQ;-)!{%ZUtkUCm zI-2ESntt#tL*+U4%FmCG>$~5B{$)uS|C=kt#PU!0FV`6i;D75b_3wEjN)@D)5ZGA- z>R{e^WA4SlVle zY7WRkKh0*_5N}OP42*gco{vKDf({Q)o-f-n`-5U6+IB8$&w9Mv99HEcl&iiye+tcv zLn2B%TuXK*HslUQ`I4Bv_YY0)nf{QblMbi@anfqTBkNJNVPti%=(bd+7UQk>}#KziD34F~UNdNy`Wnp4s z{l_tlRe@JRQ^iT+OUR7MOCnTZ{=}@Ic}xUJ(0r@0Vji3QT^Uy6FhrFklCM8RmHQ(! z>;MTeEJcLSHX||$G$c$dk-(6-Hj=ewv&Zc`{-KK1+`&Sri|rmKm$$}>!I+)PXbKne z%`(@^jn~V~)9(349)iuYuUY*CrcUPWi#`?Wrmj`|80A-^Wk$vf%#@I$>&Swq?SzsJ{b!jm+xVm%yaIv>9O4~QHnGCdN@XDd3X1~_n87B z2|?P|Sb&$0_d+ji-7KX(YWnT@mH0VJt3rCK91c#?*U(Sgn#EEodjtNNnIXU3e&ueP zQ#KOvFbby@O3Fu_nTc<|ro<*CWiMiGR43(>O%);Q$2cqE&iRH!8Qm_4<7i(RCN*1x zxZlK{n+vqv67|Ljodr!mNC|XJy zy?y^RSAyIlY(bZtt*Ex}j4H6%n2%o$wgy52_6ZWsH%_oPV@8gn1~T}2R>p`NZp`|S ze7`o4*fwc2(n1D->p%+^4GfzJx z*YEcB)b)n(=xF^9gFbuJz+)XF*$l5jWUDlty6X}H!~EL)7w)#D*{JytJp6*YV7=XR z4EnG|+NHQ@*8{Pu4pGrF<`G{bQLATx-!3BT1uxr0n$ym2rCwMzQLiX92B3Y!H<={O zzGU`BS#-slWifA61jcsj;d@hcJQn+QYZDj^9Guax=E||ZFMeB7+@<*KDEjn*+JyFN zG@@bt8lnd*Sv}M?1fe0WNPeWVlaHHBMjmVGD&MH5(&%2^WPhH|IWzRdd;V0*4o_Z0 zCN1@vR6PfjX3C98rlTv@%p;cT87{(?N4Jw5IIc<@{w==|R~Tg%U<~m~qz{ zw1JQ(P%plhg)-9iujEttV+|$!vY*irMNG#9LpqA%`5Th$eLuSJ-0;1$rr%*vV3~9u zX$k(Zzqa~Gx-L}RnhKHD+`l5RgW82yRJ}n8GpP6Z{rtLfa_a|CSwTHA1c7Dwqf4AF z#KZ4>HYG~0bUFEsiTXZ8Xg?G>HN57(Anb$59)Esoj#&GUq8F+-?fw@1UB=vdMhZ0E zpHFfACjPCRZCx_0SeIz)H_wg@U1IY7m=0-gk=XlVG%Fh#`c@qUW@Hi5%>ZBS!eG>2KX3xm)>NXNyJofGkFq*PTb=2@JqjZ`q2DEPG` zO|*?v>3m4+xl{#y`ayXTt7+agBhq5aWa*d%PXI87QSG=#&5D zRvT7i?xQ{2wJ8GPEg6zN@A z9+f$C^E*9>gIa`N40j>g_z2%~ATOE8qN^qS3QIyDT*bVe5uGO|d#>CrY~djo?z@@) zU|V=dxY3Jpt%xRm2qJeg>UR-Tef~C6>B%*U<7JVF9An@4s-a(R&}m}CBJ#-;ZT_&f zsIkRYPY?PjLb#>#2d+*r584sQj34W@-0#;=sn_@ye9H+tgX24f*p31A@7S9-i2R35 z(7ACK%H(zPES9}5el}{gtNDwQBlM>TeX>;c>OM4^PpL?i=ul#ep$#4Xh<4BY9O9X1 zD8z9euItIx8dj-wig&!tP_{JoHiR?m5-+1{oh5__8*`|Q$VWMJMNfGcv3-#!g!Prd ztMuCqh^$;^nwu;ej?PS*PaDFr#6yKs($Eg0!QWfb^KWaTj#HtYjm~)R~_@M_jdGs)GtUPWAK6}Y)y&1 zGWc_N-0|*-ta|0|p(VTwU1?-L#ZUR~$sn&ouBM)N!-m@iMh~Cl*!*%S+N#=~59^7e zLSDF=Ry24+oD(<(AGKZy3z9U^0d#D6~%}?%YlTf&s zP3bhK?6#(`?eKcDvmoH=Wu)f0*v2YxPg64T#Le1ENB#?CVF#sPrbrf7jILWnTNVr! z)a)KKH*3sA8*{zL^mODZBoo)TSlNs;=1o5PE`E=qCI-gYJFkV#T2?F)$B}hk(H#dx z%deF))|9m4qS6@is+!Y@X4M)v=V5|x$RY+C^?xt071S#1+(e znH*N;HTso-mFr>>zBE-Ga7X?t{uum_)$lYXSkRb(s5-@ePStWgx_RWXP1F^#N#JBh z50FfWCq4#9w^q_GiYf;qtUycniE{l@1DFYh)$KspUWOj)yicuO3h%K?y4Dktr!5nRY zLu|XY%FfjzqZmuKMQ{&&By`O^`nxGDr7_XY$&JI7Rmt#;R2G>FeVh`*%YR;}FKFS| zIN4&ybsHD243m=Cr>t21mcR`QwtDTGUBnSokMSXx1g|;ss9nNYa9dk{v2FOM=jUZ= zGgGxQDQDQH2BOtIj3hiV$wcn`7l-?+pa@Lq5+Vd4rZZxFUU@#XKw=@zFQim~IEgVd zW`%E^NUZF$;%>>!NO^-aP?YJW2G6(U&%5oL-Blu60;gRfAw>9x9in8*e!U%&Yj_CK zm^e94shVPwRSXU3UG4o zHY=!R>}R^mb<&RC#?o)@5G?nsn{YUoNyjq0>5H5#DOE`MWX8WYDEP6DhpV^1uF6mc z*+9^iufM%45emamjOPf2Hw>+ym5ya3m?#(H6uz9|yihZ>AfnfGnr|jEk_D$+d_I`7 z#d(8M&2{U5&oqf!%&eX_&cZh_F9ofaMdt^f+b-38?eULXK zhM^r7gd+)t^k3eMn5|(IlbnoB6S`Pg483Kq&Sz@<6yJBK>D@Nal`L_*_6l!rx!|yK zNOhrt@^I#fg^i~k--6*rmDuvfNc_tgj>Y%bPwoo)$!9W1(jwtVTJJIUetDLB8yG6W z3jfHT67B~Z+-~OeZpuzz5iM@A?IN@v(m!~!yMlbJo5FNJe_(WLMpO|0 zx)a|A%u~#i^CJ!1fOgh+Sj~?+(Je!0#! zg*C)$w&eNkR}X(RDOf<;;VFffG5V?gO=^ijk|vIpH0^|kySyl)b{IP$ZvE>xCTAe)V8nZStB`KtARxhO!vQCjmK9GxJ6X6G2etx9#Gh)?q6oM@&A7Op0$0RT#()d zDSOi;Q7D!!-l+&>$jPb;VFuS7RpG4j)8D9xUFuEYrM<-hk0X0W2XqPA>8E}s`O**e z?3SiMJOXBG56Iz^TfFwm&0hPzJw&v<>~P+XYu&!0L6S8u6ZjnFQ=o{2A#`ZT{+@Z{i7 zvMwF19yM(&eszA^%);VPkaPV<)#_)pH#ml6l>A|{zkg?bl~T&Dm)@@Oc^RHB@a+4f z&|#{*B&||BaC!%+23JV%`7!0G2#N0zNx+a#AZ;3EVe@fL`(u6$VajzoU4N!$MEu>; z@yM<8)YeMgw6*G5@7piu1A-|T@LqT0LWO6~ZRU2- ze8Da~SD(Dk(cR=ApYYNz1#KG!{3G%UBYPPeJ{;-^*a^yg!)=y>v04dtkF|WZg7a)B zkjK4xNP=?Ijkg&e6QFW0*$wnk1E=O zX0z$Obw&p>k%@IuIm&M*^@!TAuoYe=r*DGk?>ENvT*{+@VoffJ-sgOi2!uH=jAXOX zOrG04J~(pCQ1D+Wzf3#7<63fmcAh~!E8USDJ$Ob$9%9h`7l-&?5ff$9&{@qfNI`+p>g{%@Tv69el%QnI-!u5#!Lcz=w;$c8xV5>uh` zYnxfkDF+F^TJ*wbp};tzWQDxp8f5q=h~xl;KeUhg`L!`bY&SMv8NSW9hMjUuLytk| zVV+9ma4;o%vR-dPa%k+_tr#13Q|)sk??us})7;$JN$ZKn)kEw3MuOVU4G#RIl&Cy< zxoUWQqDdBw5E(0k42#>sN0yJ-U*WdQQcQeq_lZ1zyeI7!+BMn?+S%(-3OXZ=lImty zzP{*iKewWYA3<*OX*Obh#aC~MiHYmCp$5x_4d0#jWvs$$OF`?}IJ?2}Nk&?s?g#5` zqNF}ib~YB-9=zmF*F`O6G&DRsE?x$DgH7T@rvvS~dm=?o{A}auM5jn836kg{dergH z#$jnj&gS+rO}HZI-8mL@44Bb`~%lBg~A#-wb$&TS9SCMXV+bnK9Wk z4Gf1HamW}A6hBpqj3p&*w`k+c=6oR{df%5b!O&>zuyI~MQ7!zTklj4n9y*Lt;wH&3 z7_LXSWFaC6KQbleROcY?hG?YMm`v2hu!_~#DQy(}j(7GMI_Dr1#vG6ACoIit%^$r6 zZ|5~Ex#NPZdYtv|)F6#JO4NeHDrDbBR}MfD_d@Nk(DhZHLZ%?ytJP>h_k{Gcq6Qg? zHA&x--t+VDXSkFyY+=7cTNJXb)^?p*OdrA2MDXVcY2T4+T@sv`ZGwO(dt#gU*8QX8 zIA%ruxTe_BI=R_y8=r)NbCB-j`;te;8+I)Jdr`d|>0U%nd<6M#mQHV|QrVKDHT2ai zRH6?SS{cHw`FS%NrZ=G4PMFfN#Kmy9(4qwyqhNR6;1Ud1nh>7RTppSfTT?czd+XZv zd}?k^|K01ismM|*)rFeQir=3jk5!qCP?D|IHRFb2yPf%E{j)fA7u(qy8 z>q4<-LlL`SV%C1&q^UUlIUZ#GaJ^g7mU_N@Ht+Oa=*&E;ebgi1Tdu1Xk?A}CTiRZ1 zHR3&OUAWhKc0c8og&p}$b`g~mFNGdHw8no=ztnv_s-y943z}NiwqB?7`^t}Is4*`4 z-o0D#FS$rRJ9MSH4fPQ&lfo6Bj@V@J8+$U~+7qtonK?J7y-FY!X3wY)fWV_I??!uGWpjrRt2ks#>S z@mB0DSH!Ih4IEs!z!wTj%g*|n`ya2D3Ra-0k|P^CFOwG)MFxpWUDB>ok_{htuo1jutl(|H26i44)~ch(81f1Y(=(tGMd#32N(!xzZCJLb`u5HkzM z_!jl<4c6DqLUtNaPA1 z%qu49w6Qm2Q6Zv7PzWzNT=to)q;>|!+wvHeX}gyB2wlEH|LKFaOS5Q?KV9cik9$IU zy-%HzvB>Z7=R=ci^5azOjC=_5*5vGz>6KxohD~zy!Fa`vRUaONEvjmGdRai`Mi zOqHE>xKEVcHo<7-NzyQMz8&q0M--ewb6!g27L!@J(mDQ_{w>n_7O&|D^^hIkKn)jv zf6o6-NHC6@_vLqw7s248))w`EB&{Pz!cze=$h>xNhr zw<*v|>#svkPr@s-3Ql+$kPc6%1zbPya@oFi=ItksZ-)Lb%JE@@v|n$iDAX#IF40>yGA#6j%d=S&*&^{ zQY;$X%tMu!sQRTbYCgKH)$06bveX)<@2ov;dH*h_Pjt}R>2n(_FFVu+5vZ%XT>I(k zSZ6<+mBjH#@wWCP?Igj&=pjYqJh<|3-qs|I8Lv4f}=wm1|FSs0#wR^=Vvlx+|zF zBG&LES=tOth1qGM15)$1wJ{nZr5QSTDhkB~tkW9icvn=lX;qn)g>wan(;|ami$Yd; zN0e_4oCYHo1*~%Gn<-Vz>32jL6(1;&2BXijS||wy!_V`f z3izl3;qnA1urVYC3T-9$g%u>I7W;b>)WY1Yvg`IOO$B-tUWfxxF0n(|shEs^)?=G| z@EtIY7K&EvI_pA6%Db7m5grS&7vfF+!~SGD+*{cNxUvOy%)em54q2lUFn)?|h5saA z&^1Y8`ZD5IPWC6|t3lLpj+Z)3y;%L8$#UYi-^l~w(H7*qs5V&fA#16q3_IC{k%})h z%hq>oJLyv?`FQayRGg%>F~*YNQuRq`*SHVMq%|K9E8OPEt|coNcUjs^Z+Eky1N4^A z=8cE*YlD&U2*mnD8_iI(QqaS9E&P5(DIa_^6QkKp9o{^9RVxtdGbCYvHZ>WwN!lr` zMS34pX1=bml*OT2_l!kYl5uDP=aJozvHrR&_$jE&a#KUS1#=bEK=R(>md`XT&u+4V zHni83w#OWsRCj{RI@ZAsU;M6-64pnk-r3XJZ$|P36xyu9ujIA!z_roo@rEUBXuSMIp1#` z_T`Gzf5qoqeNrYL9yJ&kAXIo|jT2&1gPiX)!<2s~rbay5w5p~ZS~i#3G)~>vT8s37 z7+1Wwt6@Duq|Aq#B?B(kU}xJO~fh8MaqxRYDNOGL?8lfgVz}WkPR92#FTgeh? z$L!{oK2|w<9N{n@$;TwdyQ-PlP|{xkTsX+)&}$Z%d=|sM_#@tv(cEpg{y&tRQz4*p8?HULEJ>jg6XVqAC1V&*0pBa3u$$@%H4-`ZB5M3h3Ued9UD- zOwF$qFcFul%zhe|zwz^uVdBi$Ah|@x$f-m#0PULx34MAmw!dpKW#r98z{(l__28`C^89W+_)^(Ca$6hr`mzekMlyMDIOL5L{?Zr7Z@v#&H1hnoH?Z%v!lO8dZV5u( z?2uwp9jrbSHrO#_0*am(q9>z^drhg^{mGsVPVf7r{nO(9QcGuS?Br~uU4pA)3kzLc z9%u~{D<>}{E3S#Dqt?CI%xPdht*t~eLZ%UjdwU_UZ3va_yZobY}c+woZrSnF;>P}{iR{7jXj_)`^{F?CGS3q zW9;#VV#Nd3eWwlr?$Is*pN>N11f{T@*4qe~NhXP@Xt9XI@rW_yieDFq*eNSi-4f)N zRyol`WT>=}Mk~(oo+X4g+^{sKHhX>~24(;`tTMhoDh>Hw;AnRQd3<~BY*p?Y!Datq zJ*BlkF}$mwC7`Ti94+ z{>(?s$(1nebol!DWQAP*hKpzsTuk+zDdS?ppzTp7?1tSFe~0J6@zXV~T<3#8FxVz5 z8VF3OmAv(fMF#)tC7t8%^31A-mjj}rc--0mh;*v^LnBC_CDo$Qpj9JY#9XLrmPJs_ zE(=n0N0Ad`5QxV_xafidm$4FM!3%#X4-rBhX=X979qC1fRlZ)ZBvv#TiW}BbxOvKq z36)2+p&645m#_B+{o%%2I9=^&SD?R5#U4<2?0$5)eM~uPpQD@vV3SSo*z;iNgd@w3 zSB+IS+sS&TDYH~7oNR{{26ZF*$t#l3Plq9zebjwwKC63`vb67)b7$9+iM^;Vw;VRl z_taHwdFx-67)EwAaXw!$Pl=v!X-Kn;9*?`;%}8?LZT60BqEm(&v}N9OkJ%rO+otN~ ztxA-nX039n8L62oFn&cg&O;Y~X;-IIr1KAx-$kN^?HuU_=AAD%x+?^;-OE;C)d(+YH* zMc-ku#=-daw>gQ;Lclt+O;%eO=wfq#dkpxX%BN-*Uifyk6vZ0U#btkqGB0El$pTNZ z27+sikCp1$~5gi03^{DwaAj%jlEQT3W^P`sRYST8S{ba zz?OHS`TiwOpuG`e;^yY!qRtwTeha7L%$kZy0!1osARHQ7LE~ccd04ISIMve%Y%v?q z{Us_IbHX~kN?ODg)dfr+x!3hqtp?U$V$yMgB?wJd#R9RETI8N9;%X&E)9_WTZs?r`<6NiFDF$3o6O* zzOF}~Xk?_4`TbKnOu?{Qd`o&E#zl%JEooq+#L*OzhMAbLfu<`q>F_A|2vyAdZJ^o?<3_h zIvp?XSvnAu5u=xFS`PitiDgaSS#bV;lRvSW3dmpBNKJ(VCFkx@FUh6UE%q6HiM#{T_+tK6j zK`BpQnI(+MW zS`{ZjZpp5Vw(a7VXbQsaAWC6qij6sL82Aryv4$v%2_gS-jjOrRCMlCysHuoi5g7@? zC4Ha3YoX2XL7OhZGpdjCJ_k8r{#@S#4A;X7y@!Y#;rKn z))Zt%>Q-{+^_Q-pt3wxb%Bk>~{B(p4UPyH1Lc_%6&JS7>8DM>3jQFF@pu#DCb`{Bj z9fUur2VKPG;_h;Ja^>+`v=LzahUhW?3J=CD(&_gadf>L~2BJq8r~`}PjQ05T;y+=k z0uw!fPWN&)d)>#;J*L2O*23+kfzv|{)f`_+jp6c`A6iAaPC}J97sR5sOiabiLNXeu z=mb;lBPQ0pPH=#8wALGh__x8GF`Mw=+}H}r(ekd`amQfl-ghUw>L3aU@->^_G42ye z8p<_Zsg5Q_c4kVBOtKCB2A!@cR{3T__m53?|8>XhAx9c1q~p(WvB<5_W&bOB3M zUo)ZPOhqyGW29+DYQ9!2E^N6-K!Og!R-GCY6@yY2dKV~;F+lMlK@7Icc`AXjM5H-!4uMeg<}Kw$eAyhym{wakXOYo z#A4({fF6=H=56WF*rD-CpyGi3%5aC&j-5=@VNq#d*lUeRTvNxoF?Of9D0~c^2%ex2 zS)$Ue-xoIOzcizP2dEO9AbPLAP3QeInM@8xc@ZR)?5Tbt`e$b2z^padVsPJN_V$9? zHxN#GRCsf0&b*|G3rq z{ODJ>-1rGPl^*@{IStsTJqeLFgri|y+qMsXPJj=m*8?o}8sGPi7HW4IVEt3IwiVi#M^CH1bAj&u_^K&vCQU@9#=Fc39z`sl^@_!k?S>h@CSv+2_EGB6m2;Ch4RpZKZ81VF6e5 z@3=kj%l%%9AH21yN58;hk)~fUcyrf;j_F)mWyK@Y*Qs^eJtl6N%l;)>rXMo3c zoa*75y3XP|Zu?a7=j0pOm~kNh5ZejsBWM49sryuE-%D1kkA9ab!gaQGb4@5jd&x<-JL}u>)tvNLYT9XHB=u`IKa^x|2;>%&AsLZGHqh9 zP-$OE>48~OBLeiuqa(tYpe$FcTfEu{-0S$ z@4V8A*Q1^)9R)26+@-0&%=cRPbiU8_dfWOp!h2E!{Ad4cKg< zL?;YC0)i@en1PqS-6v+J%Hr2~0iFj>%w}tML^p8T~ zut!m!Aal-B3k{qLVvNZJYf#82l5eC(*JPzC8yq`6UuVVF z<@K5Cv&jC3gIZtHr|aFi&QGC71ry0UZyIm-R*2*I=9rnKv9D@L<}kJ4j-Rf92b|84 z_ptp5)kMT_QQ@JDoC>8I(n#fU0__5tt8Iu^u|x~O;g;S-K@FiP)dQ~nm&PXE3@I69 z`>suL;t?|O!HkYi9JN%fI3#VPmTCm$!^KC=awgrldfoG01BCtO&)ti^w~H$^xwUx) z|2a_y1bhTAx(;r5Aa#~;oWzc`#}CFl^e2s*qqj4o7c3B8VaB(3*|r0&Bvicu^oZ8A zv>7A*WE}D;Nq5hE&1w;D&Kx4*LqvcVMhr>LN4xtIMWG5?qy^@MS9Mcw&pXISk%OzL zN>Oud>HeGn@$~)xEclfsZN1hFwhRKLlX_I$M{kY;f@dxSt&Vm}=fpzMQrAKCVa~O4 zn}N;SKt2#kf_9=B^O}6q(#zt&qH&mB~cbB43;q zndA1$2sKk$x9~^8XhC#aQ4Oc6Uo{esvE9Xx`kAURvOpIQ)Cq zAA5Yud@19pu0fJJdJP@y^f1bzoqvNkn25WV-vldR8n#kk<8+abM>P4p#){TOpH?|oi^4h(x*QnDVaOot%S-G9w?jBI;R%z=NRRu zJsT67pJ2$dgUqJ=+ISK0Dkfs&&6E9$eu_#BRu^SuT~TRu`_Rh_BR%xyp=3_#8+xWR z!VBCDqwk9rxN`cqs^j!g?O&x9jS05$AGYQ-|7pfk=S@H_3}y*>Wu4Jh!}dj z-btm-)D)k0^GdtLrg-B4z|FP%S$@jSLuOG4#u67F=xhMMz{xx{xmX8*h@ZJJ9 z>si$gwI%1~w|mlY+zt48h%8%|7HA8V<)syMwzLx5u_;ko+qQP2v#^t2TY(3kLd0u* z44$d>sb|m89CRXu+!$QK%;34bO>fgR+&Jhr`sz+>|21{clw;PSruqDk5sE4Q_IcEp z1!0n`ehSjTE;MC&%cpZ(GzgQX6z0e#hFhWqi8?TX(zJ-N+GRn@UDbQd(Wog%#82eh+av9gckx zQoFq>M5J(gV$VvQCz58@-jdqe{6rTH{X1lLLrqt8ZKV=C_II_H)B&VEz1Q>Qg*XFX z|6;+p`VQ1J?iP6N%uvi@K$z6??|5~;%rjq0SD{_%%{@1eCqH|YT_dkvwofdgUO$T2#L4oG;5m5KEzp&QThIax8PY^u8+$Cr@|oJu)2{O zrQXcWxMZ<2T+Ed5oQGG-)T!RsKZ39f_EV)9qk~7_8gMF5J@6_HvI%(QwRAf)M-S-(iDgQzuRCOwvncE8K;(EZo2GqXpo*)bzAzBTz*Y;tw zZN~JY456K~q0X>gPo;P=xJCcU8~t(u4q?PltWwNZoz)2%`3&?T~qI}rLZ zl5G28$%h^Z3_=eeKT0?o%=x%(60VrdRPjS)or9GO8jE33ky~Iy>GvVuIqmsoTH@q} zF@iB)Oq|yl2=V68R-}$;^(MUaPs1J9?b>r?i2iej(B_bfYK+?y2s~^T*jo1Zqfws0@>PSf> zM$AUq8x75_cPAld5sZb{>Dw9@E5Dq=i15Qzk9mc3(FIgjro;Rcx#>oWO*#qdLuItd zfmLomWXq`fk+8dv_n@L|mdOnO!HL(6!1%rEKU%AM0bslbnqKtF>*RSF{Z7XumR250 zE+;roK9Pl29)`D&s+Nc-F)Bjv73UjsCI;&zJn&&r8_`~*?f4{#`TU#Ml!%@+>j6hp zvC8$w(5auOA=s}5WF_@5WzM2HB5BG7#+*%#S&jQzLo`6^B}G3;-N0-`F)K;EyjBgr z-R0GP-J{p;{`b%iG=x?g!+#L3{$XFqu+LNudHZnE4{SJr(NTErhN0L`|ZID z7_usNFYRPM^H(Nw@BItKB$}FpM*hp^rqOQ@DqE&ym;KuamA^Oy;f%PcVVAuO?f`H= zfhg|nQ0MLBt5+QdF@1Y?`E+;wf${63Z11<~z9R?dqnCPq(cIaz4E&-fHJS)T3t6iqQ!51tiBqARZ6gJ0RWdItiLqvY zJ!iBYf^a>mq|pnd=sPQ|(wKrYuzBjh)09pWUo~0zIm%z3EBdEW* zNpP@*X2pVhRk9>sH-~ykNz7tqiXdZ8Y~%XUoiPlWP4xEHpcHGMGMDX1`~Na`EMW$g!rd{g?jHojCt8Ociv_^cb*e3H4jp6*C>5t z^+^0Z<+~eFY*KKN*-%?twaXaqjj&lfJ(kb;@Nz^YkVpdr#*V9@mtT)<=nXMl=oVdnq~>Y_%gm7Jlp)4fI|4;;Yl&yoG!5;Qz26m$1X5oZ} z*DPX03O)>BT|5V~#FuUlktAV8WI#%Z&-hkGdZy=mj59peiVWKE6#6_#dz;CRh zo!e6n)_H_GyZe*4`S{M<8Q$tj;x4wd;w{-|<<=1?zv_;to24ktv4_b@+=>$>rUPf1 zA+Mo~`XpY(9ZNq(qs5E^4*Y3=JD!`JYq|m&9`M}vx(MhrQrKJ@R%-`#C;seMd})N1 za~tL-!*jF>m&R7LDfJYObtGR)NFmY|n~CA@d+?Z6=7=N;%`qBsY9(q(ZB|dgF9;W3 z)t`+Lc~CEORGyc9*$xEpX}XJ3VpxD0?LR{Z-{s<%LEipbq=@SXmm*WAG#O`+6}!U5 z2IMkPMLaVzTLFIZp0Pq%jFZ|?{W)n*(vZ`1mn?1221J?`2~Xn9ux!DiR}ryQN02Z& z1VB;}&ckw^7BMT=idWeRY*a$$ZtsP?9+bxIQ9O^sAuGjV8}4gApV)%#<;V9j{Z_}t zZiliGvb~x=M!BC13_x-r-c4vc5&Ts3klB&P3$*9+ z)s_P*_NrG~ST^jS!~)&7_0VONf4r7ivVhI1co}jdTmG$^?)vF4)tS8b#OzSZYZRGqI1t_~I3jW_a>^?Kl-=MJS|??KC8f>$M=4Re7ummEYSd z4!HOTe~vXirNvadJYmcO7VNoMF9>nf$GWcE`@!4(?^jdk)o_!~uDO}3#8TCZq-Y(+ zCbd10!s$NHvtSsPd|)3;mI+oKmZ z#Ts2zx)9w6?YO3C#gZJhvfb0H@yjuqfAoIn744z!NelOL^q(cHa|1!gTv~SxBSY2F z7#IT}9DU zwG_>IMBaItCy;%POzxZ>PS)DRKxhU?3}PmM7*)fslR^H-G}do~1}h3N3FNH(iaa5p?hOE_k8(}r(D^R*cb zFzx2=6E-rODtqL~@NxPjJu>1waPvIgL_ZfgMlGT>25mMY>g!G~0@cw`2aOLCFqJbMe6ixIXh`*f|V&?%IAtYW={!arjDq zo&&^q=($r^)Zgxg^I>A~nfOfO-T+)jW%ueo@^pXJkJ{5XCQ{oc;4$7P0$HTu%mi!; za*29nqj9vJ!&^zzd@Dyq5cyV*u{5D69mq-Oc%toK{UMQZR?BY8b@zp)uQJVwv)L#r z-o=4*ybl|hS-BsutpZ$-OvH3n>*kNMrELFW-`cWs8CE)zD*W*tqm+xC0wLxqeDJx9 zdZyIr>xO8nGv61hsu1;Ku6t6w?3A=V*3_K2r!0D3S#%)X8cSIaE?lJ=U08$=ODh9$MU_=6! z?hkS3?#J{PocnSk3^YX(FZW}i=v!r+JSc7l%cYZ^D7R&w=B6HN)FW=u4x|2n!-G$opCLe3a#(IL|?N z7CgH3`e=8p`Z5sFGn7s^&CWHA03O~(m65|%;vc;dBSR^=#QwrqN!ScABE9AMm;wM3 zcPYeE+rs)lKaGJ9JQr6{@Rfc;IQuawdbXnt3NKKrOb7x&-fnPu z{!jMtRazF2BXtVFWZte6N=&zKL%7lSd9|VlA*G0nWj1w`>o)Yjp=bKVUb4O0s-NBi zvqinKnKSQk$flejDmtv#R6fx=Tk1%Yx{L-XXc`|6z7Zqk-C~6 ztR^hREJ^{_@sUzB;&1@6FXP!-NOJbCtK%n9N=Je1(2<_8H^&PlykB80y^8Joi#d!c z=_C=dHa7-U)Pm$gA0~>4{moOj$-gP&z=rd7>1{%`@J>X}anXxC&g;VJq~NuyOcT^gyGxGw1d| z9t-(PMYbGszU&JPpAEbGx;OyD1;Fj`zgF%loU&jOjX%uS5 zNLC6$Bak6DWH_}3dZkiHR$*&PPDX2Mj^$V9l#HM5jBVZTotG_tsKtyKef?eZvGIkIap3&kicAXU3sVU8@9OC#}(#R4?=~NnTMU6s)yN7$y z?h@(L&+og_hsAF6M2`!mMyL=cN5Z@`!m;BT>3v&?eOr`?bwxh=UWLBNsqtBgi6cm7 zPfE@%4<*M~iK$6s$P&{19nw3c`!}Op9SW+$20u|wQBKVLY@1w__#EPW$$MuH>sEW| zJyK{;q-`%>wOE1dLG9-7QRI`u+k4W)L~}IyREdYg;KJ_Vj!T@o{la<4{o(lwG*bIN z>5Ud&f6&$KH(R+Rm8kZPphUYbaU{WhOJqM%```3#QlOxkqYz#O3E+vE5kkj@j2(;- zkw9uj^90a{rV`5&QpcMoq>MpJFg1dCVrqtU2Ud%-5oEyFux z;I7A+5M)U34Twh~5-J6TBVZ~;QW$9*u8$&_NIt@l5h)##%YmJILC(r3$Z_B~`^g*( zr67OIxt@-$>0LHSp07nTd?l61)8*dJB?nZ@%6)OrA&AR++huxVA>V}mcEtDG!N0cd z_FMd_lTRaaKpKMdlV%|q00-Fw-E6~4=J9~4jVuf8#V<4;<80;~u;mxP1z>ey{!^4M zHN;dY0E+Q)rKX}Oq$yK8pg>ySV91RMuw&ToMl~RZo@CxDzUNf!gjUHXpqeRBGhV*9 zJD^52CI{7`h?tlG*5;fM#>j!K*Q!=4S8Q}(#oLi+2Z^ZM|~P9S`bTG@ldq)PIX02A`VF*Q^~ zne+E2qYfmX4(tKAH`8j;{R9;;-D$p#U|vlR)+Xp{gQ3Q)Da_V89=nQG9ThVMtyz9N zIz$F!un*`H@}bYiV3{jn(}*;d%#jzP-at9JRURqKyK3ie)j4 ze*zrLJ9YBoSk+RoOxt_K7M9@4evZWZkWyD*94#(dFy6U(;y*O`vZrK#WdKKz>IK$B z{-%jOZDFbUmPp-aU`vf0Ftg#E_w4RTNz+Q;2C5D50HGN%jau4joy8Hoc- zPcnWc>OAh89R-EG`i;GsP${JlZwd?3i`9Rdt3 zFuq}Hd1VEQhplSJiPx6dt%SnH`CZk2V~)^YpZf)5%plPwWHgl!HeCU%t?tO`gH{-)n$*B_cwKQ-Pg`W##QTMYcH1|S^3tkX*ReAFaCUpPhL zIUd*(JY&*wCK)zq2EUtQ6sJVMO(1cB-21hC2hYtz;4!dxbM1%xeSd3i+`u2lxlt9z z>C;d{XMPH?XHmtJWY#1ZC4HVOTQj|PZE@%MMGO(TnL-*nP@p=f>pUD&^yIaU!Ywu62{aW^jA&id)2*T?nLN`;ggK0XJ+$Z_h;e!r_ zusyc=JgQa908A{JnOYR28B!1v57<;!^V^n0U0p{O3KK;oGdka>1B5E3sdA!P*YdR) zy$wQ&M6qa{kJwXx2l{W^TR{5H5bgs>uwRHIGxBLqc_G>Id%@P`fg6n@Ok9Azd^)Vz zr`>5wq-M4ike3Q+C{mERB^&C}>)kmf`!$)V>Vz*q-*#5Bp;sA1F^RU|vtMGFFUB$h zw&!q4_xWr~*H%Wz@H6~ASa!h}^9PBM%8ThAE}$lbi{(s~Qg^%wpX$H);P7qQl}mO$ ztbvx`+F;3j1*~sCOXoBC%}mt{84J|Z*;PK^I|fZw^Rnm*`it1qA@JAyEIzVprVfF6 zgtyoCA3?Hrzm9tqfE7<@)z#9eD`^g)$dFkrX~8&qi|Bt^Zou}E>Eg$v%lu|-X<;R# zi-{yF^#9=5Rb51n2wrG^TBhqLAgYrPa=mQWe9YWx)&0RI+{6=w5Mu z^<8*gG!8mm>vYkY#HgyNYSIX3E7mIR?t7^oV2%!_`f9%PHuDy?VE6UvCMs22gYo>_ z+Pg06_iLOyuyyt+w!_4z_?F5KBM(w3r(oJ17SD_%?wn4-|{ z$z!-~aObA18k84`-e%54n*uh*e*YWQ)eFf~P2LW#>s4dA)ukT_au53UB>OVI9wYT; zEJ>$Qi*HId`9>2>AUa8)x{O4@smsC@Jy|7yFz)U4c_5A<344 zR;+?rRCa>jSlpD)uYjv649e%KE|3E_Fff~BoLF&sN2DH+>Cg?P`hK8N>^m2?0*n&E zjj6x2!*_vi#G)N|QujzFxI34%9oH7`EK+l3YwQ}H4S8KX+I zPBw`uS+XN3CiBb)nKDW(LQ&OJ1S+-$g)zgR%(zlp_2hr;%&^tTLz0CHX%=W)s3s&G zzl8a+pPDO0r6EeGNI?Say(c=daAotnCVW>wQG8DBkDjk#6&F1@+!(e%ZH-_n>@nkQ z3B_0i5-I|rz#;C7Gj>&t=%;jHv>K+{Vk=bYQvDTuYY?M%POx#;;ex>HfnJ1|AWDxN z`=&Z_IX`w^96Y~&|H@;#3|rh)0Z-N)`a8wh#n>yAh#md0!r6LQvQ>3= zUgWyoTk{I79z0Aac(rorqH-$5%ZYW7wYQh!Le5+8E9O|fYde}3>6+6!)Z$hRrP!1~ zc?q*v(NJmfc1h0nr$%ug#PqhJ%HdkIU1z34lH2%H*a5zcJZ~WY<&q~mDtEA(R|TG1 zK@6&am_NT3z|?im^*mn3CSEM6NL>EUYg`e&@wQ!M7%7L&WDFg%JxMe7z}w`@Ufa#^oYdH! z7+*IGFa938`zn)idWR;H9v6jX*3=Tspn7*@$RfdM-N!YEMAv|BUm99d;{m1P*19#i zLFW&~o3Xp~EBJoVb7M`_3Nuj8>-Ap$kfDW%Yc6c7qn{4UbYKByTTyD{RLrb*E z7_S_>YRz;bG_{dbwR2Q0ofD;&x43oh8UOXRJOT9B5+axA!~O79O@0tsnwIlAab01= zm+5G17$A%%zeSUH?mr_%EpmZ5!54}i{9qAz2AlGSQBc>JX}LMTW=3iGpkIg|$|SDv z)P17D4tEeRErYk{sl#w5ikk2{-HFqOP3Vbq!rT}*I=@A zI~@%32B;Y{DKxT0!;&$_G0Xhz4m9a3mnfSNYFb@RU=ZP-5a@MAbGEhbG_iw|Y;LatRW~mml#VlCdrqrdh_z!8{ zxcQ-xC7oehhb~*=gVV=C>|d~}4WPpyL0kU#}T@1}!Rw*&nsj)V$8SJ_;H~!G>g3BZH z5vMAFEuJr4j1qGZ(;f0Yt{n}P?*Sf8Gd?BQoa|}6S(+h8Ukxnve)gK(ORN3;Ao+9A zi7KFK$+8>hR_UeEj33xEy6#w_sBZ=`0%hD$!P83rD@j;_VbP2}lmCKxJOS#y5$THh zf_fvIyiTj-GKKZ&hQk(6n>OEu?jxLVk(wd|P$6TAiC6DhjRj2i8VkMtk57!7y3Kir zd<6j@{u@}~&L%Zq9ZY{(n2`l&_TZO~oo*$z&BLLZ`!4G;ZUO>?8(t|-@b4%k_C&Ct zl4_h2_jDdu+W=$W3f?$o=lfI>2`jkfae*uzlaA6DUW;yx+#qV!5Fb#A>B(jY2wNyr zI>IYAeTHCg*XiN&&&V9;y&~0wXZGrZhg}iv(JJ!WF5KjY8?tjn86`2)Gs!pR@)8~| ziuvA6g#)7$&0Aa)KAwq!=>v{ttL_G@dF0yyKX$2+a&mv{_2ThfEMfIc%N!%;4k36Y z(=*JoV69^-_l62&f}OyY(;7y9h{i|)RZk=(t{z;N-oLhXKK6c(}N@Rm6qMTdTx1hMYO648AGAi8BTsa+^M)0}Ztfpk@IaonQHKnU%_TL%@}b^6C%PWp@?v@BgOk7U9v-5*795@_s%ce_ z$9YCSWfQdP<%TDOsn0nia=3#B;mJJ9|4_kOUu_({cgXJA1>5zd?ma$tjA7bJkzfU=i1j8F`tPmJ^3{ zetm`g03xw>14k0R!Rv|W~?P}>o+i? z>OYTsW8ZeD?|FX_%MlCa-aZkqLe%y4bLFPywf9~tU-s_`S`l!2*#}KqFb83Qk}~gA zyvbBcg075{WONMK4eqUsoWrT7SMy4)Tg8RZ@n4o#owXkL=IE0$j%(munk^`FRD^f% zhpY+YK;l-zsjnu~+!VIt)GDC+I`_!xtEdWSRxhwYJE(hBg0yeysL=tS8uct`U}a&f zq@BNh+;OrOkHWix{WV4K+Lpn}4sGzFgJq4C=X{MKutshK(|gyFL* zS}{}n0yNzR@tmqI8LFK?e$r*_(alT9RkJS!{2jlZ(BOd2tji*V!N!`iYm;BomUGMb zw^W(--3c*+TfT`MR{zs%&p^L;{utoFWPCCSGGzvpA#o32S!ORnn6^5sYOLO7b0O^) zq+Bl~GQYh^KW=Cpyz{AAd-eq@h_smQA#|edfRIpudRk7?e$Z#}#io1DXz)G@)+>F&UFIrbZc4n%Gj? zU(h=Vy>_qK4fiESP!6<@t86Y6 zP!1}80I!@58rHaSAMDd<;L2ftEZD)Sj>;Bc!E{={106-fA9{3*?|A&R+e|y@=$i(n3Ylo?dt&FldMsJ$$CKWDI z?Uqd4ws+~w8BR&Q-F_-XIYn$7j5V22Sjx8V+(J|jE$VQ1Ykg~&S`@T%U=Wm?I_xe$ znk^GQn(3rYA(^xboF9gvoiBEp^MUEOoo3_Lns?$$Hjn45^Y%k_68Pw$6U^vcbm2Zz z?a1N8ig{{-THWHITp{Ryj3JuJB2Ww@44ps99%=@IHrbOzup6yOTK6H+M(qi++_3P*2WOCm7@ml zb7vQ?ul*Dq+nx=(7Egg#z2B!XCNrRKT=g?5N4q}VgK#o*%o=6D!(0jjZzM}_$If*1 zDJ>bfST z0HE2Ez>$}#)luexW@G?7lR#Oc%3UHhL}ZoAN>}vB1WF)uWY|g{7Pn?F)rX4u2RE0bgY9)x+B;gQff#j_E5{Nmtp zmnGv+s3p70R1kC-Sexk)Y~PTNB1U!#LH^a5ULT6}aLQH2#N~korzm`4;1Dmlgy>n& z%6H7xKvjSkB!z-fN7o}X zKFfq024U^s&UO{w?rlE^Xtm1*^URb)1>F?4iG_bUj)5iYX}pQSNr*9z221389nr{| z8iUH$nI*uOy!~SPqL9QZ$F9;3pS=Zp_dLu0Zd81qRkH7rfW*4b)_`20wq^SFWchjY z#sVy9tFXfVh`ZXwGNxf&7o^JPhl$*=EJM;-Hy{;bajxWzVCO=;{Cfl4j z5zHF2|eByZswhTVn^A zLPwe45j=_zJ!!4#_nS(lk?k3>}RI{Pq-VnSLa_U z*WOqtGBbggzM`gy{FAB$zmfzSGyEAO2MM`v$Gu^v{j%0$Ui(%|4dveQb=C)|^>>~r5+4=mrz5e*a~Zsm$?uHg zD{LGHZ{dD{n?8xUxGnP!=V6G0kmk#e+1XEKHleY*87rRp2AZ(}$JSNvJZ#r;xoe)K z=;@x-N89Q5Ci4@?C?#JVFBbl84{d3ixt8&#&*SR%e5N89>bGvdkPgj~T^$T>*4_#F zdDA!BmA6Sd_*lDTD{XDoIJ3G+tCmdlGG0Y*b%MF&C(7I9ChNAH>Fp%uN4VJ$^O0ns zeu_ews<+C#bh7BzGG?b?1MU?f#?~pzta}ei@PmK;P?sw_E zTZx(r!1Qh+C7nh)QB$0ouB{BiVbtw%{ZCq3iCR=>c_|YZ)=ye*o((E=Xp=`$i0l;Y zckqOrAlLul(f)^K`aird|I$XS4KM-(004Zz022QDf=o>Rk6!;@xO#edBP(SWTY5PH zHip08dM9TW0+#=K_5Upj=H&brL-k5y-D!gZ?N?r1pSE_2Quwb7sg4n8ZbfptGFo%T zH6H^KvH4`0N)j&PpD!GLt@02n#t8FcL!DLu0C!%F&UO~_V5C|I_4l&Y*{(RQ?bSO#4IR!OD@nFMP17Qtt(|jTy zwmyIa32WQ`OZE#Jvqlcc4|ZO8xK*ZWZo2o zGrC-3GZTBwI9%g*cRQINFFyckfGV46MvC8aKQDc+9#3z1nzPof*SFKlKdRBa=;`CT zlO|lRFni4ujb|KOv%Rq1>ra!5DSiB2l-_c8o6?X$K~9#v0&#KD{X2_YHfZ=cCp~OT znP{|_Kzx~f8_p|2;~Fy_(i6)v&Ba>NCer82GA#-UY0O)Rgp&ALIG3XM_WW;+<{YF4 zAM+HN+Tv#l$DC9XK2bLti{8&VU%Bz#&*x77Yo2V>X5YS$qsQvCO`5*^SEkI#5BZ)C z9ODj5z(0)BBO$-Rr81+TWy~4Npm|o7Rb#kz{!d|d7S9HPz;V1&YQ{B5(K1zJ5FK@- zL8OXUSBQS3#85}$2nlIR5aU*@GOm)Ah$CexuBw|-<1C_XwvK8L!Mbm8wsGuspLRd< z`Ru;`-~KPZx35)tWS0vP5g&RAsAb?F4+i#wF* zd^pRDTj92o79JD3qQx8L!g3=yeT8O#6H*82tdGt2W%nDTo|0wYRE7!5pbS|jCJ&x% zzLPRdb=&UAu|5?pXnkv8b~p85`0#G~?$$(SrMZ!OdWb>d^gwk952tlip~6Z$95CN$ z^hWqsBd#a$MKbrvnKoJa_JWx5<8pL<{3ZAJfGPpWlZ2G2LNAhtEEYH>-|ZzsHWlx{ z#po-z3kQAJW>U3Pg@@5yMmQ&L(Z6U89F{G_( zL~0xu8DYQdIzxlXs>DV(Cv;T)S~<`RQ+6F?4u1rKd#Q}J77qM+oyd2Sl_cUrEx@dU zD4>9LnBNqnghM_#?`XmFiqeHxE#?A6PQ`wfq%4fu74c5>{!YJb;RCr)Y*J&qAv-@Q z>!I#vsOrZ+U-9}F9H9=V?*Dwt=Q|GrZb38ul<)(T>;1po?OX$eZK}(4NV_Y^#5F#Rjuezg}27oTU5l~A+=);kyL!&CCb zUfZRqp%Z~5^oYadz#(TWHqZbOMh?m56u1*6##u9usOaY4Lq9u@pzNJ=y?a_uXG=2> zve|pPLk=npSqC*MzIr!T_x!LTiCvfVES2)s2RX9KB~d{Eg3T+wQN5d-k?fEyhfV`{QyKjA{?$-52*QRGkc&wE`Aun>@4ij+bDnhT zx+H^s%nts6sI}zpBGDMn5=@$0WYizx~f8K~o*S;dJp`%|4V`s0vNW4j+Hf(jMd9tZXec ziA(SqqypgCo7dz9@QA^mB8(W_qKxIIakyvLi!tODkVWmQ;LP4;;}VlLx{=e3Bn8|r z#>;6zT;}?0e8~bzCh$_$Ygkr>fL1YdIs=SL1Q+Vub`H|rLQA$aDFX*b?&*FgPh}2w znBz=i6#M&8QDZ`=8zta)e$?v=sAGfqm`UP9_PTvSg&JeT)Urm ztxo4oxsMBb+PTc!sr_g-1P9NuS2!e5UjhVjKKl2o?~;ANC86M;vEA)`4C8;Z*78s*bqbUARQRwt`iib3DUs+FHZ;lUr;0L z<84TXp;YHAd7^=eNw|+a9c^C4lr=KZ@@&U_n^C(tY5R$U=7KmNF<(?#-cZpF@gxQu z2qSYR^uFMyd-@gm&Lts#FvnT_*zLoTr!P=nK6lVjTbeJuN8POk?fRQuUTC-n27W&Z z(xiM6l>dsiWEm^Ac!L#r^Ry{YlsEl%d`h?NRA#qa*w7p8r0z#^$B~h#&w904>h9IX zfxYz))36$9Vfcjl@SPy+Mo5KR6C6z1pAHLKF6;SP!$zQ{I!j~YilX+PttqUz&22Dm zEqxuo1w!|{yG!mNmY~9|od$e)?N~XFag1O}VlK??m7RS1b^ literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.ipynb b/Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.ipynb new file mode 100755 index 0000000..17ca930 --- /dev/null +++ b/Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.ipynb @@ -0,0 +1,465 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "6cbef61b-0897-42bf-b456-c0a409b87c41", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{03\\_Default\\_data}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "13be77f3-44f0-4983-b4cb-bd3e4b5dba8b", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "335aa198-5a94-4c5a-8ad8-67c78bcf71f5", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/mnt/ds/home/UHH_MLSJ_2024/Code/Python/03-CrossValidation\n" + ] + }, + { + "data": { + "text/html": [ + "

    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    defaultstudentbalanceincome
    0NoNo729.52649544361.625074
    1NoYes817.18040712106.134700
    2NoNo1073.54916431767.138947
    3NoNo529.25060535704.493935
    4NoNo785.65588338463.495879
    \n", + "
    " + ], + "text/plain": [ + " default student balance income\n", + "0 No No 729.526495 44361.625074\n", + "1 No Yes 817.180407 12106.134700\n", + "2 No No 1073.549164 31767.138947\n", + "3 No No 529.250605 35704.493935\n", + "4 No No 785.655883 38463.495879" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os # Package to access system related information \n", + "print(os.getcwd()) # Prints the current working directory\n", + "path = os.getcwd()\n", + "os.chdir(path) # Set the working directory\n", + "\n", + "from ISLP import load_data # Package which contains the data\n", + "default_data = load_data('Default') # Loading the data\n", + "default_data.head() # Showing the first 5 Lines of Data." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2e38a201-7f2d-4999-beab-5739217a9318", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 10000 entries, 0 to 9999\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 default 10000 non-null object \n", + " 1 student 10000 non-null object \n", + " 2 balance 10000 non-null float64\n", + " 3 income 10000 non-null float64\n", + "dtypes: float64(2), object(2)\n", + "memory usage: 312.6+ KB\n", + "None\n" + ] + } + ], + "source": [ + "print(default_data.info())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7dd29324-cd54-415c-ba83-56c0d9f74159", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " balance income\n", + "count 10000.000000 10000.000000\n", + "mean 835.374886 33516.981876\n", + "std 483.714985 13336.639563\n", + "min 0.000000 771.967729\n", + "25% 481.731105 21340.462903\n", + "50% 823.636973 34552.644802\n", + "75% 1166.308386 43807.729272\n", + "max 2654.322576 73554.233495\n" + ] + } + ], + "source": [ + "print(default_data.describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3debf6d8-efda-4414-bcca-dd758dc65512", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "# set seed\n", + "np.random.seed(1)\n", + "\n", + "# Number of observations in the dataset\n", + "n = len(default_data)\n", + "\n", + "# Shuffle the dataset using np.random.permutation\n", + "shuffled_indices = np.random.permutation(n)\n", + "\n", + "# Compute training and validation sample sizes\n", + "nT = int(0.7 * n) # Training sample size\n", + "\n", + "# Split the shuffled dataset based on the shuffled indices\n", + "train_data = default_data.iloc[shuffled_indices[:nT]] # First 70% for training\n", + "test_data = default_data.iloc[shuffled_indices[nT:]] # Remaining 30% for validation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e1b2a560-2a8e-4881-8d51-f3d96c3b05fe", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train data percentage of defaulting: 0.03157\n", + "Test data percentage of defaulting: 0.03733\n" + ] + } + ], + "source": [ + "defaulting_train = (train_data['default'] == 'Yes').mean()\n", + "defaulting_test = (test_data['default'] == 'Yes').mean()\n", + "# The \"train_data$default == \"Yes\": creates a logical vector where each element is TRUE \n", + "# if the corresponding element.\n", + "# The outer mean() function than calculates the proportion of TRUE values \n", + "# in the logical vector.\n", + "\n", + "# Output the results\n", + "print(f\"Train data percentage of defaulting: {round(defaulting_train, 5)}\")\n", + "print(f\"Test data percentage of defaulting: {round(defaulting_test, 5)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f9a25057-a631-48dc-883f-643bd09d0999", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Generalized Linear Model Regression Results \n", + "==============================================================================\n", + "Dep. Variable: default No. Observations: 7000\n", + "Model: GLM Df Residuals: 6997\n", + "Model Family: Binomial Df Model: 2\n", + "Link Function: Logit Scale: 1.0000\n", + "Method: IRLS Log-Likelihood: -542.14\n", + "Date: Sat, 19 Oct 2024 Deviance: 1084.3\n", + "Time: 16:53:00 Pearson chi2: 5.42e+03\n", + "No. Iterations: 9 Pseudo R-squ. (CS): 0.1179\n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const -11.3514 0.515 -22.060 0.000 -12.360 -10.343\n", + "income 1.847e-05 5.98e-06 3.091 0.002 6.76e-06 3.02e-05\n", + "balance 0.0055 0.000 20.428 0.000 0.005 0.006\n", + "==============================================================================\n" + ] + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "train_data_copy = train_data.copy()\n", + "train_data_copy['default'] = train_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "test_data_copy = test_data.copy()\n", + "test_data_copy['default'] = test_data_copy['default'].map({'No': 0, 'Yes': 1})\n", + "\n", + "# Logistic regression model:\n", + "X_train = train_data_copy[['income','balance']]\n", + "X_train = sm.add_constant(X_train) # Adds an intercept term to the model\n", + "X_test = test_data_copy[['income','balance']]\n", + "X_test = sm.add_constant(X_test) # Adds an intercept term to the model\n", + "y_train = train_data_copy['default']\n", + "\n", + "# Fit the logistic regression model\n", + "glm_fit = sm.GLM(y_train, X_train, family=sm.families.Binomial()).fit()\n", + "print(glm_fit.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b5c7de71-463d-455b-a596-923cfcddcefb", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "const -11.351394\n", + "income 0.000018\n", + "balance 0.005536\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "print(glm_fit.params) # print coefficients" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6b8fb99c-d172-4398-92e5-89324c1787f8", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K-fold Cross-Validation Error Rate: 0.02571\n" + ] + } + ], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import KFold\n", + "\n", + "# ---- K-Fold Cross-Validation ----\n", + "folds = 10\n", + "kf = KFold(n_splits=folds, shuffle=True, random_state=12)\n", + "cv_errors = []\n", + "\n", + "for train_index, test_index in kf.split(X_train):\n", + " X_train_fold, X_test_fold = X_train.iloc[train_index], X_train.iloc[test_index]\n", + " y_train_fold, y_test_fold = y_train.iloc[train_index], y_train.iloc[test_index]\n", + " \n", + " # Fit model on this fold\n", + " glm_fold = sm.GLM(y_train_fold, X_train_fold, family=sm.families.Binomial()).fit()\n", + " \n", + " # Compute the out-of-sample error for this fold\n", + " preds_fold = glm_fold.predict(X_test_fold)\n", + " pred_labels_fold = [1 if p > 0.5 else 0 for p in preds_fold]\n", + " fold_error = np.mean(pred_labels_fold != y_test_fold)\n", + " \n", + " cv_errors.append(fold_error)\n", + "\n", + "cv_error_rate = np.mean(cv_errors)\n", + "print(f\"K-fold Cross-Validation Error Rate: {cv_error_rate:.5f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "06091455-d874-4a10-9919-78c8c9ddfbed", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample accuracy: 0.97486\n", + "In-sample error rate: 0.02514\n" + ] + } + ], + "source": [ + "# ---- In-sample predictions ----\n", + "glm_probs_train = glm_fit.predict(X_train)\n", + "glm_pred_train = np.where(glm_probs_train > 0.5, 1, 0) # ternary operator\n", + "\n", + "# Compute in-sample accuracy and error rate\n", + "accuracy_train = accuracy_score(y_train, glm_pred_train)\n", + "error_rate_train = np.mean(glm_pred_train != y_train)\n", + "\n", + "print(f\"In-sample accuracy: {round(accuracy_train, 5)}\")\n", + "print(f\"In-sample error rate: {round(error_rate_train, 5)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9d115c02-9520-41d5-b04b-e8cbe84b0277", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# ---- Out-of-sample predictions ----\n", + "glm_probs_test = glm_fit.predict(X_test)\n", + "glm_pred_test = np.where(glm_probs_test > 0.5, 1, 0) # ternary operator" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "80aadaaf-e914-4e70-9ea3-411965a8d9d7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Out-of-sample accuracy: 0.97067\n", + "Out-of-sample error rate: 0.02933\n" + ] + } + ], + "source": [ + "# Compute out-of-sample accuracy and error rate\n", + "accuracy_test = accuracy_score(test_data_copy['default'], glm_pred_test)\n", + "error_rate_test = np.mean(glm_pred_test != test_data_copy['default'])\n", + "\n", + "print(f\"Out-of-sample accuracy: {round(accuracy_test, 5)}\")\n", + "print(f\"Out-of-sample error rate: {round(error_rate_test, 5)}\")" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.pdf b/Machine Learning for Economics and Finance/03_Cross Validation/03_Default_data.pdf new file mode 100755 index 0000000000000000000000000000000000000000..8167d1637a8636942887256526597831644378ef GIT binary patch literal 42107 zcma&OV~}Ry(k)okW!tuG+jf_2+qP}nRb95bY}4{jocDyV=K&+vo2yhvM=9 zk^SqC%KWhBJ(!>+GiO$dZ?Y-3d$#v>+$>JeaZWf~v5S48SeZV=a%JT>?lb0y6S#is z#hpm5LaGj@w7h{d)UxzGW0p@z)H=A}Ob*%S7ySYT!Q^8F2LHlxUMbb%yKZH%@(t!D zuJWJi5As$nh-7h}OjZM0R+!{*bn~-+VC{9cRR(KP!eoSg%9;?^xZq(a0k1H*1wS_9 zpGaRB+WjTg#1RR(NhF^LU{B0TWki$?wjj*!_Y1s{_}ra8+0$M}zo~NNZE>A(%UYg2 zU)|kv3-GhwfB!QuE8o5?`0-hmn(s0=juqaC8l%$Jy-oN%{fy%fnmPODmw~?SeGe>gF7H9z}l#?2vw_=XK_+OzUt+A;8UOX`bEgPdFEf^K0Yy z#z0x1Jf99)^at|5@#FF4H9T$pSpxdss zXHx5tgQBvN`qoN8hnZCwx}E;+jI7jj@m^Eqg6b+3PHRL<^T^8)vwlO4V@HmZ0-DWe z@NNG^s7@1*1e(q7+q>$}Y@MD7tCmr@0bEcbZo2le^wPU5jP?t2Q%7bxRo0`C=oH|3 z^5a;mi)HtCYEfk`(?pfe} z^Y6`)iGct~MxWv+(Fbw=e#o>fmxE z&?0TNPp3sZppIjLwOc9k+t+TWZwul~igj(sN8jYH?OF1$mwEumdQNrk-VuENRGv+) zZ=6W?5PN7axOO16FHkyq8qk=Xb@c;CYld9lbH`D1D}sLGh($y>w~FG>I8MC;dPGW- zz~QM$Avtrb1nx*_BKtT2XoSQPM3dF}R1v4!(N-$=fhvZH8A9?HRDokPYN?l3KXlw? zBzqV-sKAVCmOlCwLQwh6oq#lpqzxPSK{a^Pe`yqUuMDtLYsA#RAtI<-RWC0Cb0>}c zsd$|Ch?XXhS`JH)CWus`@m*?Df3MJ}erz$f?5umV-9L3&u=|@JNfIafkh};U!^G$; zFF{I*AfsA%bc!TJE)AeNTk;|v4t8SOiDfPr`wJ{u7Regh1-W%7nF1_BtTf-~fT-LR z|A?}-qdtDI^n;(u3-K`Om9$QOT&i5pQlf=8jOyJ-nn!!A`MWW9_{gFaBlTXMA{>UE zf{$jy`K4^RcCfJJdO~=kAC$PJim`bb-!|v3!z`F^A>kz<-WANvn?bj@e)jtdBGGYu`Z9EUe6CW#F|`~_n@3^LpQ@!6s>c0 zc`cWu!uTlO&f+#Mwveum(=CnND`~wv(~aJGt|b!aaiA5|vy*iGFxlGcCvgi%a%`1AeOG$}RiAsf~ zKEwK8m(c6#Xrt`PHMieTSh|Z#U0!v@LKe~%m8c80xd1Z>Gnn> zODDF4a#*Jox92JN>#t3^AC}I0ZsOgrobTn+Raws--(Uq zo>&09Y)mKkBNr5y{9+nuxR%YrweC)H|B z^Cvgljbe8gE_Nyyp7unm4qKE>9wu`ncRh@~tGeJAjfA2Pv8gg+bk41#f?nOtSokKz zZG@qc@55%5xDbU=9ngOV36Uj%nyA!h)@}48qStG7zhzy(z9c6U;zOF4FLa7|^saQi zAMyY{GXA25Wi|Dlc`CQu^e!S}HD4H?rOdRak`KLfIq>2bkj`!4p@!-x6V(2bYLMGv z!K0M6ny=M3-J>X7GSq80`N+AH%F)pXx88)u`Pg#wwD45Rk%-)N`8;G}LxcB&`k`@Y7FQtjThtC7iWFJw`M2Ym)qnsfRVJ~BN#K~pBfpu}MN3gnMyEJND z=G;zLM;zW(A_e5A+va?oNv?Cgt-O_XP_Vlnt&UcC@=#f9 z#&e5Ye&ne@B(XVTT{-XSz3F{Jh*(`mhBmb``G2I@zvzF7IcE0%M%A$}u`&Jcs%{&1 zG7h)nDzCnRAVaH%Aixk57#YMnJJdd!PgcP@XUGPTC;Zc|0)kAb^t!UHDsLOpO(06Q zh_Y8Su_m)u&d2CBUO~OzpPlaqUL$|+$@T87ZFW)N=MRc`lX;#(zCO@9VqJ4Sf4=`$ ze+JU+eN1F}e4p>P=Yr3Q^pGw<1FBCF%AJ>~49|!96&0$kw`8~E1Co;MBf$^4EiHX! z$fYw*WWqJ)mT301pUj6??HrUrux#dzoCHQ}g(79&`R)CckP{{aR5)?X!8?O%CTpKu z_LfWuXbo_=KPp((y6O>BLDE_7Lx)TTr|^sUDEiSAc;CC^ETsbG7D<6sJ{vTIPSjVrVX(1H=_TW%)4%*f$PNiUCPwI*o($^xqqn!qW1%JwcT8DdT(5tE9TLf%*k%cIspzi~rM z2 zF39W65OCU8E>lRm_Q%1svY!N?baG-Gt(Kc zc{jnS$TFnLA_F6$Oso!iSW-`iXj$C^xipQT|9L1v1-+WCg%N=wMTZ* z_@s`5-Xr$fc}({Pt|r2PGmx8}WNtc3s?0D%Sy((kV^5bRpQXUqIjonwf_D$ru~EN(_eBVQJ_eZH;wK* z37~`bw=BP0-#<8>CFTRPz8=KK3I2q<-`rDRi`4vj@IIj9)-EK=?~N76kHEGVVQ_XP zG*%>H-Q!V+*c%o}Z}trD{I3oChhzr1zt~alZZXtGI~w>8ZZ|PPD=PaHu-9)_VR-$p z3N%bOpNqSE;N6ZH!)f(}+N{(SzVE%X*frt$)22i-(Ry_lA3|0S75W}ALuAOAe$QFk zTk92`zu)(FLgim1A>2%Y=S2IdB4uGgj_syLv_jcoC9_rC#63?=6>d4^&&W9&J#vr` z@i5oLI9RAukQ9n!dPz=|i|Xgn9u6$78#99wV6GwS0aEs*Q-E7np-hkL#-ach6Sjma z>C=7pQVi+xylN)sOtggkdLiM3R*n6BtwsM_v{yl2H2!%)pQqrp(es`D(g|xM*qOFOws@$})2;|rdp4e{{ zVY`D5GVPO6tkcRL(QIHrgag8EEkdK(0w&P9nTOk@g`W&3HeX^b_qa(7rU^wMwzFCq zo~>(esU}*+xr$Z-((AEcR$9^6Hl_?p>0moEZsxHGO1o|Dt9k^Sr-E?5XtM^A3z>-0 z-NQAV-9p;%Ygp?Y6|MQ z9lwR$(kEscAN@&&(d1&+9!`uFbsZet^YFgX+0w@0aKYeA7$H;C$A}kR&!p|RmZ1{B`)xw?MXuybiOaRx) z00%sHaodhkVadC~AgS2$pzJ}p%+gRIDgm9?@tuO&ZZJRN38El zIdvs1J8AX#LZZsXYg|MR_3>7rE)T!x6qK>hn!xEzBC`ESC;g3(opIdGTGS<`MQ9=k zX3aV))}`{2-x3YGRrtaUNa3Z}X6CJQ7{88C?Y6}t1|=a)Ft(cC7r5LHS>sAm7QqX- zSW?>7X;~S>wf>O1VeBD*i`P0$#afOT9A)-~Gl#J5Y@JV^uUj`!Op0+?5+xm;kSmb0 z^o=P#nyki$LU=GunYb?!91qjZ5|f?XTn}^3Ld9^Xvte6F6m9JfM`>TW911d&$?nix z6N?s##lJfsnECLx?$R?>hc)h84@7a4LT=OTq`>wZ47e@(lD=x$KQi{oJv6*`^D`!0 zRs|Z-69Mdl`_4r>!vs+u#>!b)?hCkEwT!5__H#-T%d;G%AnsaUNgo)1QRHSc1Fc87 zV1_-PGlo1Z3ri3D1}8qo&}t_VEfP6C)md-SNt9q`^mMjqB!uV6VXG`s=}F6F6^ZIig1-Y*7Bfe%r&U|Pqc!=mIJ#<(NGSdo8zRSTPSrQ)?V#Ih+xG2g zX8GthZ#lQ533;+V(C=Hkg+nnqR^c1i^vQgW2C>LE&(jYe!8J!#sFVuLbDh{QTnc0# z7xqUq<5+F9XsxQpyZ&L<-b4v#X3W zR_Yllc@gU~2z2Z!`(4UMUNLY|6L<0;wC0=+G~7#T8$a1on|Yv4#chre9H?>=QI%Q8 zX9o8kXO5Dh6?U25XgLhZY|}#*?%HW$$nI{nch`MLR87zE(o@6P6;=4>X=e*NM!;P< z&R$LF_UdDG+7`C}f-2_PW}wzmm{sJ^hIotaK)n#f$TIhU^5V!Y*E5dV(8H!Rc+0(>wxOQku9~x`Gux2@VeI<)adze_{ zQID8=nqIA560m)tytDiGwdh0f&syb$%~oNPnN=V2ePHsw%3P7TF?p;FwJ7{Hirn>n z&E?S@K?AC+!Jq^fP|j@xD3V(UW`_LST!VeubYei-vy4qAdFpCm>}^=pTB8U7D?Ssa zJkp_B*z!=m;wVn)fwISf(Eu?Ug58rchl3?nTKv zkL@UU((95i52lcBlepQY&3$vR3(Sa$PHrxds63gJ&)(@BGWn0%(VYtv+e+OXQ+U}B z>9BgH@D(&JX9SgW$FjZzu2dA4FUuI?CRP=ly848J(sbYwfaoI`ZuRz}1pAyL?Hq)f2=Nh3~U1Y=GD&vDq+Dcr4@Bp(;m-@MEST7GYwLX(gzV4uA5~0 z@!2hjUNVJ6y4StB%%t#M-H~I%xMGuu`MHEih=ZBX2eiCt06MO=5C zn(%+@8DtxrhfUXtf}0$D<-JlnvgJCcWoWcIFh5#lgo{|PTP52(-)x9Uzh(G1#DpV} z4*30GG7xm{Xf3teCMaLNT%ZfJ(~nG+BXB>)FQhCmc@n5a;w9fyQ*dypBF!t zjAW*uyUXNAh2i7x23l^-t4VU|!ubpr-swUS*{8L!+ECtH{fjZ72G#Czbr%{~TC0f; zeNCd(2J9LnM%{i#cj@+)qPwT~SpSi<)I`~p;!}<#@3jtNxbV#A=}iG6SO)!waX(K_ z{(Cr3mQ~TX_dcP&$w+n=!HNHKFOZ(H;`%?B60ZNolrVEK{)Z{K`e#Z=+x~A;a@M$m zV9)^hixcLxbzlpYpsc(+cZhq;4*u;c0+}kZ>iqgVJr*-MH>>U-g)-?t2GzT~J~>D9 zor0o%AwFZrPv#|m;mJD4PkOcfsiTLcEVtPWUViXHzx>n6&mFlbZb1Ggm)Qee*{kpM zGfnSvf42|+=lz-bl=V{J)=HRnw4x^0Z%Cs0bT2e&5#v_|m)AZWVU+Z1rD9=Fr7_Nt zZB~qPQ^Lky_)oBYzcl4hzivlE^g*b_>4l+)l$e$v#{~wy1PkjXpsQF^59!|)w7h2D z6OCM21nF>GON6V3tnvd)m77_f@ zosuFok&YjoK&4%TDTf}NUf+TdPhK6(Q$u+eLQ;j#d^X{A7BMP|uUnenRO zA4k<8*`|sLN%cv{*AiK5=PLaQDNp}SY)z+FuhdUEO);^K=VM(j(UVPbvR^A$*HLk4 z*FeyE|7G8E+d`64@D#I%<&ddXH`T@jc#uuMbN{k;%%z&@1Nj@*wzju?FW{!`&Q)cu z;(T_Dwr~h&;3LjJY^E>aw@9EB=xG6w^zTH136^#d4C@TQ4)X`T6`3~$MB3uMnM#FJ zv_Y=6(h~O8!L)SNLYK>E`C3T{GgdqvxKozjDWb8!zjHVgB2$O793jo)O&q`JaXidD z=0Q5?3PX*MaXjoT06nwYhNV?}Bn?-Rb_g{79+HW|GxViX6`9wX;|TeuS(oAQ-S!~P z_9jBRvr=BaEed;(Bott(_?+A*d;dIO#;*_R9Gu4t;Zw%BZ{VDjO6v_&hE`gJXMcN) zpbp+B5w4l(iBD@G<75^nCIkizCS`r(2xMa9pJG24kq|U>?Qzzx>%sbTr&+~&ib34S z-{36;CVe{dz^Y-SOpO;L^>=!>)0|3YYhx6h5X9?5cANM5VQr*kG&K;@ywZ|8)5L0> zv5mCNRf_2>>Xml(l-N8fze94H;3+`Xm8@5{L~_hu4rS@YT0zN5Xb=yS?Fypo`0*SY z{RxRq!IZ_d>TEDv1{uMN8|NP~R1-OMwoTASG}RuJFpKx?FWoT?K^<1Bp?z^kSc2Xv zuiogE{>J(lnC&ZbQaQZ2?KmQOSI$q7ip@x0Y}ZM7NgN6K<4ftFHi=2${>pxy+eqMA7-+?(r)H6F4UO0Ht#pu1AZrRP6qqUv6ES-fp^jlzk+TVMl22| z_N5swL5IA9hqxB?o90@TYTWZ!XkzggkG_$Pf}c79ZEFmToQ;94w9DA<6J1sqpR{B! zlt}%2^uEwY;d++b9m$phN7zoq4VVN~>P$Igar9*%$W0N+dR7+n1nqY+*RR+4E%iyE^0}Q- zm50k>sqX^Q*Rhk8=vJT@t#mQL$hR*#T%9PzhLGY{fFcIKm$eg%yy;#lAVoWueP3zN zr-wAm_98ml?PCmD^?ao$|1MgY#z#kKU?KnF`04p#*dnXY(C_a!BERb|I-mAt!`$TA z7MX8V2b!S%C+8+{LZQPuvc2fCjJC(ueQdHaP3@S$%+VDKCo7Q(q6Kvg(^TPe@kJS0 zw~jMfnSIYpNak8y_A9Gnug~wUUu+JU)<>+K#nqaUsC>4lkPgGuMU`q%gQ@eFXS=K3 zwo0)Y7`XV-%BwAdr-O>tlGdoRcb%rYD(6s}-m8OXRxt*JePuG}&1z;wq3*sqzt34z zcq}6K*`qeQ_+gWr8_veq5JEk*DKMBs z@PdxpdE}Hes#P&qCbe6cGTe2SWX+g(EuNuU*|=F6`fhS|1TV_^`IZ%s>4JoArkUm50KrL$B}R}P0M!pBtGELs zJ69K&e(O$1z9%5^absoJ#FE|=d~Nwt8=lM@;`0fib%dH0EwN`c?@@k$8)Wy`DvR_> z?YjLp>xG_@@TtWORUtw~o|Z7dNoP?=?@{`*lWOC{=0w*fdGlX%S$2J%DcwYuHb?vH z1ah_(dkTdmx&5?Q!J*SrvHhPUwk?el2p#g77GOs*O?>C+7Feun=L3vY=G&{c6XqtN zjH<}FI{a-r*_DXzC)n79^QWxmhMG-9tg{(Y08oAu1s6(eHSjK#K=xT4_HAmW$br&o zM7?sFl}Hpk+YwE=9#Sie6xyJ%GT1|f{(vrPebXZ&@$nDO?V>rsYex!{g*l0EbQloi zip4rq7GZD!)KsxQm^*N{{K8O10o0b*6~09b3NJ`I?HTrt7)5H3MaqJRh@UxQJoKBC zyRnbfR2vmpniMtN$&mQ#c?JOl#Pod7YT<(Ms_Xn5xf#rYOH))5Gf>>>KGLsTkEJZY zej3-9)B{&qqCX7%1TiN)^_0pD?C@3#W|!QOiwBc@NIB4(fr=54qezjObw92yKkzn5 zZFt&bzw;HgGTraAlU{Zk0!1C z#CgfFSSz(YPUeE9V@lRVY^S@A>ltzD!^?EOzarzQ1?aQLTu3Qoee6%we7HqV5Oam5 zySQBo8|}2udRErWdb2$jHYMB3h-P!m-j``r`ntTn5KK%P`B}7IBC(d`+iZHNJADrmm^t)8-Z%>weo=tIm7sif4UrO7eL( zc4OU?dDTe9UE~rvafa+J@@1$-rt5$B8>;>FaE%A4TD)%*sJkj0nljE;nZXtLsKrtU4D~Da%(f`3?wPC#ooL~ zr%bztCGh&vTvs054AgwEeY3IQp=YhCyHzh(CA|kF4E{=Pwl7VzO10nl2;1-uwNq@@ z&(i3{o^4&CD3S+oL`%sMMHSDh-^c!!6CK07fapRs2IcUEijKVqi&+`iy#VbPi$kDMpsC|6O7j2kezi8ETiv(HEN z6L4FC`;R|9LiqeZu4)AMg8$&#FJ$TrypO_ajN$1ETlc2Q*jqNeyGYQN0GS*2klYCK!uVo5z45>G7M_8W@pi4g zKIXCAklOWPG2?mu;v=(MKCyc(bCkZXTZeV65x6sFz?Ksm5#hut_L%u^mSsj^$Pok< zt!ZUPI>cf&#tAE3IprZ_HU$+h@fdnR1+7d{CH)6(LBu|gGgoOyF>x<=&>e0n&{Moa2yg?O}2kfHal-NjHyQ-C78|!ZON--+)2ymapNupV< z@W|z5??GZ7Hj2k6{yy_$lGJXlD(+89z>S-fu<^=di>9u%;-tR72m=%Xrz%(QHg)*u zlxhVaF!(&khmZX0xMA2OyAx*tg9Xf3@C-w9v&t^NHjfn~5ZDCnj7*WhRT{6A;K}Tn zWQtZ$24M{WyQ6z$@j3Wp-BiHh$lycCy&*rf<@yi7uuef&_Se#x#9F*L<^yQPZG1Vj z(7lr-gNx>`6oBZw3^J;Qp`Iy6DB0T!Qb8L7NKRSfhZ;!aJcQ1K1$gm_-MMI|OxfrZQN(vM$p#W+EadPuW~PbLdL-ez(x+nl(ql4mSpddw-B!7u(wBss!| zEHu%uLvx1KFfyXUvhz&F#eM;|*LH!ZspCTWRHx3zZC$mPHF# z%_QZ&QpY-DL+V0SMRo$^T^Ju9pVRHGV&z=7Yf2l8<_$Iu-JXa#ZOo3TJXd;!s`7`=}D)gTH8|ecC^1{{08J6dkXAE}H2P;HZyn*;qIIKtg5UUzb7v17f%Fp~+ zxwVJ*eaA%j8eij>Q+K0sJbmL4Xm;^QD^6ty6X)|||vQ1uEq@*T`dUTpOD(xz?BJStSGpZbloEXnOhHs6*HG*Zsz7lGOsYmjB$7WTe9x}+Nl$W znKY}-8ITgx7&QsC@P{jK9x3@(U0lSG6g8&Vqc^9~!V_I8U<=pfAVTVHbO}=*!EK}D z_Y|kL!77aaBM;6{ImDU|SMiJ(^)2gc1JNdwad^~xNp7iXQSJ+kM%Y4vK;3GZeJWw} zX^r*xbWAnV7!rau5lz}gbR_8R^N}eGPn~z}GaekCkwnwYGqUu@zKbQ6LUVQN7VNf? zj@@QVM@G&?4zAB^)aUuaU(WSXBZTnnxi0^;MeUmn`pW`)am8c!UlCOq?XnBoyo^PL=@2^#zOd?*w+Y<`wJL1;xG{oA z=R+W0o(d_{g$!-biu%SXawZ<{Noy8_@eMv2?@5Db*j~)wWi#~RomAkRCoUo~(=!7!1>jBb^!Ip}pn8tXzRCX5lI#eTTZ8v!b?^ch>U}mtMpu1wVTaoLOa~sn^yoZ)&%+7}aVb_ZNub5SsgAPadhm!nQ*4G?rYuUrdjH-v@c$+mLVnHOD|G_OS&@s3%HYG zG>Tb2+bt`M<|MK+vP_9xvJUl;iQNtyz>MA~sIJS*&8)-B-_RkLpLW_-sg<8|bZqqI z$Gb5mO|+wwMK}(2hAtX#v&}1N$wy~6xb_RCDC)~k9e7{CPLK~av408;C1P*cpFpr} z0C+&W^R3|8m(y$_2)#W@S=InsWL2ZB-yhh7O&)P9p5b4ooOfeFr<_a+y8og%q}-MV zotYbN4x3(B?}0+ir@R?0YF#5#icZZ+wN=Q(D-Qu9OuB#Jy}68MxU1`(i#Z*d0rrrm zRBZHqZi}&Y2DScLQ>YLp>RMCba~^;T6c2v!Xjk)BAdHwS*N+)tt0bZseg-gQ@RVXo zp}B=r;{zxf<^1invdh#qY*R`_N;5Z1vUKW`8PJJ+P!TMjh)i7W9Es%cj(c{2#>o9o zLV*lC?sB)(+%_Ax&?w855#_ItR+tB5e9lK~ITH%PKD>rY*YgTOJ&^!Lt(;nTR? z&zsH&x6=E28rLeUK~#7anO>9+zDg6V6tZx>-yPW(WhjGIww}t7$&0zI8VuQSn3nfr zznDGE5rv>Rtb5wVERCPKJ|h3}SNEp4Tn7dwwFF(a$10sMw$d4GuJ2&N(-Jfjd7 zmtag4-gbeQ#N>|>36Si+fbvhoZ3?fy*X6W`bt3;hdR-H)q!QjuaSm~xlJ3(h{qgEv zodmd>Q@^WOoTU6H?H~Q(otwP<;RN%I+SFIIDAY{=sOZU#TvV1_re6c+MO13?E&)WbWhC%Rn>l zcK$0`Maf&im*pgiuL`M%aMqVcya|fVkx{4M_&i7mT`o;TT|Nz>;;4@^dvd1s^?0SU z$w)fBDCIcrpr?E}s-gr_2^pm}l3ld2d>KY*pUU^CxvhlfcxI9+$e*l~HzX6+t>HiDt`!%Mh zK36a#Zr$)dt;Op9ur7!Bztg=he_V4ZefN-FzpY|IIx4b#*UNxSwgfH78Z%sz zg^=Sc#N{)<<@{oIO>&*8GwLfR{ z{8ShKN~2-=g-LNnvkp%>i7UJ%Mm{1XFlIIzj?HJh3)8eM?MvBqA=pVuzmAv#6+A5o)6$$O zhE~klCLC2O>RHkrbBKDLM>+B_P)!lTyMpJp^dB>9;zB#iL7|RVLx#$Kqne4xF^1DF zSBp&~^-Y=kvDONUYc)^zp(|R}ac>et`+#2T6s7eq2nMUn|Dl7(%J$z7z{c^P1f=L% z9|)p`-F%^STsERk`?L}UEkh5w30QS`=aLuG{LA*9v%X!@Ss4a(MGxjou2U{^-o<6N zp4#|yoA)N`3EfVU4`W?dz?M!Iv#CA6p@yPkyvo=UDYoyp(t=`fS!LdjL7pm`|7YXt zt>^3g3Q$>@?c?^51HbxG)aC2DeneEgke9B{zmbA<=hpMVslQ;UeUoj&pKtQT^tFB} z^OCqtTYW<3i#JXxe=@2w%Y2eP_C-qxNg#b89zB*XH(^37tQP{<|~=} zR`WyK_*V8qOI}&`t=-3BgA8qHsr~gzx`_I9`nwXJfl9`A*fj4$j-IENXp%y?; z3R|Dqk=D0(OIphi|2_+ZBxY`!FqJcldKu$~uw8>#&tXH@M-=5;;~5h=GGby@9W*-n z6{3V_XyQsPu0C&yN`w{Z@FzY2HzgXEu$(_3GkKnmlmtmUj+!eb2$DqN7*AX%B(XRT zzL+p6QBr(DOq|&3h|%d449QR3^T7P9cC_A~6WLEFB)=2^zt3+-@>ML6TYQ?=FU$j9 zKqUU(d+OgK?GaOS0LXKkqh#=l(k%uy|?T``DJj8$0-=_z= zk0E|Ha3$B&7Ar@<-wY5z-QPnKf)|ZhxQSW%0l*9{S6(0&tdXljFI>?)w4a(o)3!AF9BA zH(Sfj`oCY5=_bip2MZ#G-F!#!m8I;xYy?0?s!K{`A)=fupJhNhYN$Jp_0?Z@9nFQJ z<>l79=QJ$ZwxV5)T^1*)36WT9DbZjbiKzXpbFmIR_NuX~o=^Bz*In0k>ty)2X(TcG z!9{pm1^Bk@$`H91U(j;g>oG8#ZXMT@f%l%8D@?I;Pe+|HDz~AyTMvzc&)AMd4^Ru;hjezques zi+;^si$Qj=FWXm|xpU-h;e~gN%i^!1+6p33g4pf>f)P*ag}7`2$#+3Q2~GBORQ9Z( z)d>$RA(y$TAR=It=OAptV$dmJnCHsN5Yar~@7Y4(DFr3M5*9^p-3=ZD$B>J(;d2v- z{)V2pA=lf66_5$vB$Hl2(Ivih(ePoj1ba$8*!8Gadr`8*YB3b(6?yK|7OciSH|7^V zet~4eb?E&MgmL^gRfCm-?LP=hnYYVk{8u$Rq4is{sQV4Nl8YoQ7b;{YJL#@K5FM0D zz!8ZsJU;^aiuGWr68RrCe{PHk4qO|kHq2D-ZVIcP{ZvQGY9agqbt1>h1Nm9((k)fl zR;bWF%N>`+9z8T4`p4_lugA0T=|(SCr*^9?x>>xa#&7GY2siedOH~^L^S#?%_00|q z>$~*D0vJ~fD$!yks-Ny!@67NVu5DFa!F~Codf^)ga^A}BHy6H`>-rzxi}}7hRis+< zLrzrtRdvtly)~bTtrP@wNdV2NVK=X|MEi@M9h{-&p@w(LaLqh^xqH&_MbiRTLKpz- z!W^_IIMXaN6N9$UETywWH1b4}pcbW=C1I>GrTH|RiIUb>A*z=s)dOi}@ZT>cMf&TS z%;*ny$*oY>n>@m;TEy!&?7?m5$SzLB^iQmfTlol+ENJW`x!^!avrx`(DddPwP9i6( zXY;Yj^2>Tz%(0|lsKnufMP)JyQghK-I{2`rTxhHm;jKK`6D150 zW*KyfzgJ9`+tSSP8&b?f<3U};$YDJ^)cYZlC++!hCW~r0+M-^Dc4-}>eOld}@Iy;Z z`yz;0p4VMvPx`x2y%(pN`!5KlEnqSKLw<1nH~GQL&io(wkuYgB#E2;N@*bu6??6i| z2o7K>Lj=n_5X!T!k1wpD{Y^@^3jOKz%An;Ygfn+BXWgo(fKNpw5ydF}9ZS+I>=YcF z1uJ6l2PKJ=%3)w6^mE#)N=g;Cl7Akb=$)S7bQJJ)>Y>J$D%IU<#KBjoxodCQ2oh(j zxN8=hK(B*$?upq@Z&FP-2`Ol@`Ij*ZOWnH;+sC=3Y2PB`(!iC$O23k#Hh--cmx$c+ zdX&tNuZ$BuihvbcB9Pp`iulF<==8Ai0v<5 zFzK%?)1Z$5%?GD2xsf%#9{(NSwwi?3#@{qoo&OY)IkPwE{{ZEGH{!#}@gGns3jHrA zyD!kZWuXQd5CFrNI$gj*+iBbY-L#cBLOm!={@0gOv}6$s(zW?1E3@RN)tu(=qfM;! zqHw)rC(g`usStPwIofGKOF$d_juUDcnHtGuIVMt){>-j*?+>D$iZLp;RY)J6pF_sY zAYNU%v)8ZCFA--=TH)5GZoBmH!?8+^gi}~TC}uv-w*ETRvY~Xe4=2N_GGMpWs#r-L zZSPT}@u5UCG2C>1*$D%~M&Tk9R>H~nLg=yCLg=uP?;iWAx^#~HUmq<#FqgD+lVdx# zYHcHaWob>$`!DU;8P+WYQ27^4BXw0C-$2p3Zb<(pc5F=lZyKt&8o78nm@dyL?~Q@GsPDSI^gL-5t)j zcmlPyjb|O*XL5L0{w)>$y!ijTe4XAC@)I1~c@&LRSh!mGYy|z;v+!&bLaTq8sWUZW zWT66{*+Ue$#asx_Jf567X>tp^$p`yv;IdhT?K6#+_%ahltUp7$S>rnHHDG^XrjlYD z{kTHvhJX7ILB8063eZWQA)bAlsW>Z!XhK%sAB2RB;!)Z6(=7c~?+zCW505qXI;s@BTEuMgGEhgOiI1BAOjf>wK)l+bZI{H8Zz znXF6SY56)NYRQt1-aSgCDSYGB^(ok^S}O0TBf884g%ly1fwUmMfT4raM5+sx6*-%M zqXLQwrWJ8h_9m6abcrR8$dVD(3kW>NyLtGT_(6JwKG#3Fzm5AG`WOs(kON8x^*^+Q zvJ=*QkA6vFwx2wk8ug(em`ae~EXH;~Ep_POP6^Sgj2?8|w(>cuN!y6IEWPtdOdT)7 z#if(6^GLbI}C@1#F(QA5cGBU31z8muOZmuM) zMdRUDyhRzD=A$vhZP0C|EqR_xKJ`mT+_6jtn@ZSz3!k`)b5#5sRcSA|LCOBG9w0wa zX^n#hNgXiDSQ-`%Cs_}sTNbe#{)tE(GQba{?*FU~9?~T+9Y4RLWh+(Wz^sO9t{znJ zx=g-(pfRWONQN^h--YvqByan51Vm(lD_)-H<{IQJUr@%DyCXQ`r#f?1wlG!}bk73% zfGLz~)9)t$$E>5-oNM5W)J3(wz zRw-@jh@SSWMHc~l^Xn)0u~J^n2}CJZDAhzJr1%>ZPTXQnB)Y#kU8p_VDVWfm|3&bp zC;ttD62pAxQb*+4>De}hY)`bQCl@HMYiwKk7z5=9{9D=pMKv}d4qP`(G_5oPb?+ogR_QYjSOIS&efV=P6xp}l=%$3=Kq0WLo+ zAem7*Emf(NTB=4YX5u#q?1`$6V>1p87uvvmE$-+`hYp0LL*9v}b85$cbxz~=;NQqm zr4xbhg%hkIt%f|7l#cKMxG`#HH3(p8dlGl*moPa}0`)%{Q4ByWDB~bZut7S9nJ|Ij zMOZ{|D{;6EQ5zB!-#6lO4E@JS4X++fB1Vq{?o)&70moVO>)H`ps<`{HD;`lrObP;~ zcH|bI)4!7?o{;u%fEH^6Jg_<(54Oh7wNwnz>{!iFt;n*tjpgKWgGacs|2WbkdOB*{ z*kUMlInj@_Tj>;a+AZGBggFnjh0VI0auoPPtWSVOB3xC=49usqlTkOaS`~4zbx?z8 zBjLA@cG7iF=L;fmlu}oO7)6#z@8kvAPs>Sek!w2J!vqA*etpjlz`EhLAWIadpP^7% zGZi+PH{&L&DnEsv-}#1bICVDEi_`BE#BNvC{!L8Fs{*g7$)RpQA(sgR_(Dy*jMvgu zj3|wIx5QOh1?f%=9>_+8qSF-tscMYEwb?o5XTBCQ`8U{Xr*&|?mw!30!ojw7@;=G` zB73VVqqYL=f;W&pZ-E_Ue2dn_hYctJeq6N#Sie<}RY~?X}$C$1{WNZ(WF(;xqu#K4viCIzMfl_+^3e z@7D`e9o@kO2B2RFV%-B_xO&z6D3_$mA#BfzC*Z$wpYb0Aw=#|==8jFUT*95;IXXFs zL#ND9`LG%5l=RE2w*ntxI&}Jehe}bvj^&7Q+o<^uU0AN={K=K>S7l0}i=87xdFT6% z_RBO8<$RCV_havgYtXsHyEb)Ja|=*};HJx*Vb!p#^`*HaS@_?)lw zTWQF?MIm6zFXzoLpR2anw|L@o9-fKJa&+H=eGH!WokjgO!7s;7=rcOAX0!E6e|GaI zZa|&XMs`c$H-7&ao7=)7{%a6*5kYrB+>iIb=<+iv`?;r{)gh)M!wAg}g7_?q$PIgE z=CC~eDjr|DPbQl|JtnBMzlkTU0(bgi=$Sm?9`H`?O(0~vLqzh_O^N-ed(~m%(OTT! zH2VLGvUhCGEbP`rV;fJLbZpzUZQFLz>Daby+fF*RZQD*xpZ)25>#W*!)*l%6tXZ?> zxWXJdb$SW9{Sc2q% z_G#t&g_N%2s@^+Fht3fD{biv~KT}QLmG-vjr`po-H{N!BdWwdW<$aXG`CyRmm#N)A z@grwt8;|-WJIZ0IawQDlS17JE+j>Ac$JOy3X-U8*N+SRIc22`YMqqtUcqTi&N7^1G z5#Mw*JKpqj?Q|tOiS)mrhA>h!)!y`=OkNh+l+}o0$D-Z@lTF+Dv!J! z)T&yoa?7eQIn_-C2F&iIUrD=t%Z!@35mxUT5z3)I=zl;-|NjWj|FV!<8yM^wAjtq! zSR4&BfPmmtL4^N@!vDc7{cqtHBMZxa4UeiS)(WWVXxpTWk!@lV*y5<0x+)ZW5=eM> zX?zN3!$j)=pb>~5G)VZ+Wd3NPz_6liz~G8LO{2n=Llglfiq^K&3y@c@H8IAnT(;G6 z)JBy{jb4r=k*-y|{L{QIn-6IZTlNT&6v<$c357-}UFKt~8RkI{GmVEu@a+Jp-}7K1 zjVRI*xRiH#3B5wtg+uX8`!vNWJ)$_v5&+hSEzzC83S}h@9;Pe`}q^7VKtV*)cEQu)HE!2jl2QR^d2*AlBf7J^K}{?g8F?6f|d0jP7y zR-;RBGrxb*db*GsUXi^91cFeU!$gC^M~R%EnH9_8{1bx7P6m|jtN9bm^Q&@)}$S1!WR-C6smIM`MQ5QRsE?X>d zsNhQ{`E1td$naflK(j24H`1p3#-~=29#_C1mqa7pZzq70E_pv!zz$teh<>xyRpjDf zbRavvEAn4s_?{dSbH_*(U__2hmeHhC37x$-}BK6%kT5_q1hILY+N;D`S3De-v3Mt-w!4MI>Ek zj&RhAmnMQmw@h718fAbXOJ;P)$Al?Wh;FZMuD2jdT+Uz-5X$l>OJwT1{=AGNqaE%O z!4yh)>&j3MmSX)6+(cAhC)$D6Q*)BnSJs>31-gr{N%kHUnUF66q}M2Ut7G2Zhs&0D zC5+BuVD>d)R2$-17)y4Y>+B#huh1i~Q&8n!P340sH@n&m&*TzbZFv@(%9`5B@|qo~ z*rXn;ha%MnL^+Fci~pek{Qsf}nf{B`{Xd<>K+VL!!oa{l!q@=_2w@3$;eV+8AH2x_ zwz)7durmMWY+tPAserbIcWo9!Ho@VTo()#o+{tQ1IZo(dJq)gc4DNzl5DCdW&hSeZ z(HR7P;tZDu!VD;R5KEv2-+orhQ8lS;$T<3{V&E`u^R;eX~^(0-|h^Vj-gX|PmI?8ihhZz+W509Ilf!=tZ zINkMJ_wAiX`8R%{S!23uyo?k{Vg)_QERR`Cj;WiK(^3bnSngnvbqfO^@vntZlUR50 zEDL*r?U0+%n+C91UzJ9) zKTx4Wm`p(RZd~9Yl#2g;vlg%G8`9qsfh8wPvrc`25eKrO99^&8$i1jF3Qmo0)j^1D zFX~(ZmZZTUWKAf57BN)L>3ffgu;h*yKCo_+8v_3aiYatt=$JtB(_SRWER?n4*=hL% zs1rzBg2{Sw!aJJB3-d}l%8p%seTN~g&d%K9;h=qGmS&j&lw4N)(IQ2R`a-y>LXCkX zZ)AtVe8XKHN$LT%yB*3evRp~~W;ARrnyugZ=A{O(pjG<5GpSCmyUrXp`C&Uee8OYM za>gJAV_UHPm2qaV$bL1nOY^9jB9krASj*AygWyR!$1gc*uGd%N%s9^{RXy4Fhj**4 zm?C#p1-;Y0pr;bqyo1!iPHz)9_>5n2GINhm#av${} zruDQC4#2489a{CO|7?YHg3NF`4WGVB8Wtl)_36tFni#=7X2dFgU9!pJx2tp$deeUy z_=$-#Vby4AsYt5((W~veiIdP-9TOa0In zY_2c7SX5m_vUzl(^1nc>6NJCIyh=cG$GytYz`(=`8B*BT^tZmehd^wUZGll`#<%xB zX09uXjT2Y9=R9XAx?VnD!Fj)6D$!Nu_O2M!a6}&(ChJlw@ z9qK=DmkzG>LPq7=5ho$fT4d@xa-|T2tHejt-FAhIyWC`0da%A#q22S}7$AlVSuN
    zqD2Lup3tm2;V-thx8mN=KA%x%<*f_)UgLB)WPUCrFDXVcAIvW=SU@&N$?(XHo+Q0I z^qb$Uq*Lv83&oJBE$bH$%IBTg-_yrybQwQ&PT1t?6z?7o{6qnX!$l8-qvbu_l)z=5 zNI{Mfj{v(T9LKag122IHA@~8QeRI0!490d%qIA>v=oS)i2?8uff#^`DP}nQF-$bc0 z3+FXO^WRWuv?f6%U8@`O)sA{$xG4SYBT%g}WWnhI`+CnfmYr69DREeTc=ZY!`Fs*aYHTSiNnwB0O7_zN}k#YhBM89 zGeuefQ#z&hFSubBZbXLCPdDaorhupt@p!GAN1HbmM`;0r2nNT#>LSaM#f_ZAipO!4 ztPJyvX5|*wVML$TU*4fyF}+`cA~n}AqBU(beW=szc0FHhhyC}iH)Zqet>~}#xW6k; z4-`K;2#y%Y(_69A;&ZZF5cXF3Y`kPoZ-#D$@I~T;GExalZ7hFxhSrkbic7GM)7vr1RLPt6mt!g6T^CC`N_&uHMB>8Min@tgp;7d?v=* zX$eamlOic%6H%h45}URKMIE~T@xD-5bGE#N|9c?(mC`w_V~5@|^Do%F?GC*CN=InV z>+(v+Y}@!TF0Tw-eD~@J)syl>*?oR5^Uu`rACTO~*QWn3z+n3i@!sT43QiH5PAp5*8foXKL+mqEp%aL_;1lH+6z(#O?~B?rmnFJEZGs=eJVSe zwLY(Y7zJKK0VxVODGVlHeqx}ZZ+=6`{7m8oPh=yd1Cil zzwsq=YFWO^ge{bbwE%3hoAo=%rS+SaQ3e64$ zVz|=l+bfl+bSjNzi^5NbR!hH>*^MKE06rFAm;3>WkEF3Rfm3U&WrBFDD)&; zVug5Co9rcp)4Q7z7V$wTXv_!g{x+^IwaR3==eJ>lL_3jy*fzSJzaGA!UZ}}le`psP zQ*mvo%>*5}d3rUE2Bq^Y_bEE=F{yTw1R3nZeZm`6GNCnqUM=K9V+@@yvU@C}ZrDFC zasY5~qiyo>?sg)I;D*C)@4jwRtU_tJ?G$_&mpVU4&oFt;ugcA{O{Wg#38r*t4MAFH zrqo!*xu|1>|3vhJ!kVikKwAV*R9iGUH?^W{j?$8=&QnvWRj4dmTEw=ZZI02B?-tWk zW?O`?B5n>}mswNNE~`$$GnKb3#HA3o;(p?44)h9Km*iBOUZk^PKN9Meyvl!8`k-VV z&*l>FRLEH*9FM#&@uB1&&xOeYDgQ;4mY__S6aZ70q{4wNSYAd!tZr;1cz-0qd1h-V zR18}Jbr05yDa%O3o`QM9HqHL6pSU7BFG~kg3gvuyV&V6mZ_z@b@z{PQws7s(;23>? z82e)q@DbFB>cMQ?Xw_&wDlmB9X>h4PA;3_Vs-yH<_cJ#v16cT?3rAnTqr@4 zX{XMiy9W4is4}s-o_j0%WvZD^Yju{x|RJbk=*j5jN;|-l+qU+Dm*(p2J<4bySQbK`eX`@z}a5KDbj5|c?0U_Xey*w0zpaD z>JpR!>^jv@l-HD}l`zqaFXAyTX6Tl9+^r^wys~#Q^F|J7ec2$4T(XT07&djXvNZ8g zsjA>;R+$PgfGlx?LS4Kok56!+d;KTr5Wp}CH(myij%E3YL#`+;W<2Scq0Ya1u58{j zL|aZD!xXa?s~%NxmIg!7wpr5lEDKiI)y8lRiuY;N+ucmDE}e>Pok{y9aBmP87zYub zwkgn2)WugCWJ2x>onnGxU@i_N*T;!6OCjmq^v?9aZ5hn~b-r1!we_21yuC(piTkwx zdP&`Qn~XUJ;6#85uoCIl+1l!d01oP~Le;z8c!w8JZyHc&gG0sqU3Dw8RI`Zw-DSK_ zbp-1S9ZTu{K3oZrr#$0JEJU%_%46b1zh1w!4Ky~&Vc9n9^-ex+c{+$Y+@9_`-D~YM zVkQaiQy6t_k$=83%7QK)pN@P`XM6QgNgaB!vvtg&ne>Z;Vc!XW%UqOuc71h*s$pcA z2AG}NjIU5M2(2bh-Ry+PaVEG~qDu@Ytq$c5(FzV!5gWOS-&o(^uMBk-&1k~(0aIqh zPTq$JsiJ&3Rq}8VPiu+ANhM+>A>gbgcxIUm0&(%(6KJ)_;Er~w0rB^T+~*JT6%hOM ze(@kR5gP+6k`yw5(GASrvWC@V!Q2P)5gE^1hwoB_;e0}s3*qOAWG4so{nR3m6QFXG z@yY_nJuc8K=-|$L9&%*!H*z#;Z%eJLxyg+gKG#B#hw-PF>c6W%k_otLEg5hHdw*^k zM~`8Qf=0KDoQg1mFuwU<0rN-EI+?#GjkwqKvvK>ry)!8o_|GUnxCfi#y$@Xe-o}K! zzSste5lnYVjKP1s<-r-D!ruMv7|Gaa5tR&UXajr4i&db%bgn+B5^s_>U7L%4QD421jV%0L( z-tFi=l%Pe{L#G&ccfpTx%YZM?e-L1GT^U#J#vly5M|;{Mg=q)0FQyeuO0Y)At6nw6 z*KB%RTs+YJ0%T-lH=R$cwK! za|n#Db@;d4&LMluGh7jl8i0o*@?697#Dm>~@Lh9b2X%XJv6({N-Gcg}X$hcetexBR zTSai9&R`%Lz#Z+!;pEEykiy+5bu8^P?*Bo91<(w^O&sn@#vcDHdpEQu^#TH)_NP;LUqK>1mW;uR<{saQRlz1EntFRs52q%zXz z6j@ic)8(~({VCmthCSX3r&$P|^2>rXs^fVnL$(b_H`0;aq3nE~radd>8@?p!HWqFH zJX_PsU1Yf`$m^vAccHL_-K^<1mW$@H<({<@dDh+Y<@}k_^K_k>ZuI7Z7M--c2(#s` zB7MlEAXOBNaGUBPQEe>&qG#)-mc)s41l z76$+PSLBf4uS>L_wr@zD?G;_T>u>||GSR}96?h@C8i1(dII(KGXDIAk{PA@~n_0b?kV2eP+ zzAIlh3Y~>wmpuR5VWP=Fi<+Y*kj#mLwd@HKDe^W*@n2HiI1y~c_g^qv4;1FOzd+uv zXXmX3MLF5V#qGDyLhdXl5$zm3p!p4-<|WRkaZMxQs&0_pgG;8(siC?j1pb5wk`}f$ z0{i?a9Z6glGL!m7Cv>F-Qn%HjyJG%ov0qL1bjf84M?GBs7bycN?#^2P8j4Z`;$uVK`vSD+Og88JaLHzx7I`oUC zaq*uD&e{RKl)`eDVkIMdf3Xx=ocu&uO|u;lJ8UQ4+w=H5=G%#^ zfEl?}jX0TU?tAW{Iu}pOT2@dW)=7K?N!S{|dg8m6(Z*8DQ4X|6-yd1m2`AgYB9@$| z60bRMEr*mHuWwku#V1Ots79`Wc4QGTj>PjPaG>CGe!yxBDiYPF7*yY=y{bi!T=CX1 z+W6Bm3Ja$m=NY_}Umwpg<*z@-Fy=}+Lx+?gW)^*nLe$tXYDgFmdy>SX%XB)FqDYVe z65%Fc%J6Rh$*X8wHWa`9WEitaA1w&Zo zQzZaP4SC4=mq+P}VQDS?g53gi(BYfgzwI4ty7QKOEW*bmi{oiKk|s?QX8+`q7(9`*&Ka7%n>7f$!lM@iUK=tVOqqC(=Qxj8_aV%w4Xydo5 zK%p5q~wTm(mp)|G`Y6RjNe`1ooTIj1s2k0$TC6YppmB* z)6|O?p21*FQkD)vZf-P{V|xv-B(&q>P^KO(3`Pn1AO061oFjdg5Jn{yuQx+}p&wqh zFE0ah9_hR2bI61)6wK_r{M0z~p$92-NLj%nR_)I%NOUo}CHy;ivh|2H03p}xGN0A& z2MEO4T28o0Gn2YEA@aob`S|(tG+~qzxwPjVF8ZpVnhnQgx_;`0_!v8)O;}1Ado*b^p zm5?dxu=4Vu;$h>zh#^KPFJD?Zc=~A)eJ5aqjfd(QI(eZoiO~NXQ9&lr}M?**UV7zQd%$jAeIfWB}4&JQxg-l zNh~5uK~zMAfglxZ@h0|?M&3+q1+D~<+3r_5&1Nqj?!6sbAA98hQxk9_nOIyZCEJ9w z6|p|*R)cF=4J^uEn*FW}iK}y}4C)@+aYB!%RT#Qre+sDSFCD5_7fdqAdDjRvC%FatFw*h5L|k&olN&8fa0toib6}2}_4&!;0rkBi3P| zZ3aZIE8R(aHz9}r1>WbM6Cmfkv&W{7Y{vMey*f?GRC)>m#dsS|JDC!za}o;HhtB`$ zhs-;4V8jgX&)jtaE#OAf;?_7gBi`~oJ)RHGq3oBbm`s1#0h7??vcxa;1VSaGKBUzr zK^2QZK`e*O^Q4N&me`5t@sz0)74zejoe#0OVxZP3VPc-**A{tP7KDR+G)!Z}$z9E_ z;ZwvkLK<)K#rR?3guGC=22AiJ?)bcf!ME3-EwHn&ad$XhTa+7HB=S^Ebs96ea0q@{ zkW6^SZ@E(x$ClP+=_|RK(i8me9pqm#Q3|qh3nTUeHk~95wPY)R*RCFG$f^dn;28${vuQgnpA)4 zpX3`o4b=1vkW(`IETL!Zi|i%p@hfw$tz5xbzSwr++Hw9o=LM@M-LF_3A7yBc&_HJY z@@{0{rDT?+Ra6~PVMkLzKOwUC_KjqCad6Y~Kb-Hg-|yUBdA_{cHZ)#nJ{SnDv35tk zK7k#+rt%aDs5o+QSJk$(R7Il9=7M-^Bs6JxdptWoPDnUMdWkm+@9Cd^S^19e|2p&b z@p*&-&4O+`jn^Z{2{w-q!`hSKiNrtq>ZeJg#5M^NrgK=CjjAAL|Rdx%fzSQ zD(qIU4l`enqhw2OL}K=sXMgBF4Q$kXYNkPOK#z9vZx$|IQuosz0Ufj5G7#8z;9MphWW(pXQmIApkTx6e|2s@j_9kvVpB;HRAVZfAVKuhUSi{6Nud)}I`95BEzr}@F zP!VI3y0D_k2+fEAq}r`tOrQN(^4u~3k;Lj1^BFub5u&{3K~}1(v64+L77tfH;T#*z zd1y8Cc`NAiLCaCj(qdNG(!#FTsB1dSLt8v+uN;z%h_2SxZGWoTIx(aP6AF^?ls-R+ zpCF}!bnBvWpR(l(g|t zuv7hA7ED#mc!Q8Q+-u-yD}cYQL*n&2r_v#qKYy^8 zUbeiItt@$`b!3%0+$+W(W9+TO7rjG!_x!BiFjM~81EN}7j1h`3&baeSOfk5m6720! zXWAxyV4gTP*L(_5{8qg=V4;H=Vib=E|JAvJh&4hw{@rnpYFU_N^-sB-pn{|^&gE{X za9un}%)?Dp6^)&!=PY=nLEv+SrL3x(Te?W@LG*iHQLKVkPJ5e(cL$+I{$(a4VzD?i%EJ9>Q&ZC-g`|e6iL$Y*sdntl#zTFO55IWCDhb2d zEgEC2!0ljfUzETVOlLOE72=Zxv7(Z&n{ay3&3kYxUuV}6MEb*a?+o)F^)@axzT~XK zofaWi89*vgI8|&-IW-0Sl=$u2P0K(447@r8mXY4g1%BcUW#wxV;}$jLRc^xmj2%++ zV=mp`qd!L~BZC2RNwla%@X@NCY6agG)V~FfNvCcY8ex@fTKYd#VHSsJ&CHUNx-+^~ zCWKgO(Pw1UUIMW$V(Rn+SLVD!SdRgSKG&OHmnyya!pXj%I?aI65B(eZtI)fSKrXV? zS)Z=%n+#o?bKYgABipep_#0znwvDcp6Bb+Kk@h7gRcp;&K|>)$$f<`-L$NP3;_9@x=+|x;0TK` z*L^>TA?%AwoW!Cwr;>E!NF4YlJZ+=1#s*y9U8$u@Jx>H z6DApv2bYdE&ib*hvG*}^+Ui`+n}hJK{Nie?nU|hkBGN6@iX)idm;T1DwlKXs*v^G5 z-?m~{#t#sdW}Rf0vS_=QmGckW)%)H@P9?r0bgf7#hrY(XJyZt+zGLT*89wtijWd&# z1M9m^)!K5zxB=>F=5D5TYd-$11kPDa?jm5b5!?(ZCqjKm zNzl?%*PL)gK!*&l53~@zr+y>rEW%J3+_2ZJq|F?hgl!D8Q3Q#)s9>%YSVh}GA!goEi2W#;pRDS8!I0W20G>rS*#U!pLBRTp=WgEF@0ru6?=?s=j&dU z77RiL?_6{!;Y!ojk$oAldgJo<3=OjqeBnBSW&SG5=p`oa30wch+5jR%=`b>P=$6^W z?Mr?guJeGj>%Ba@5jY=clEU6Qje!&#cF zlV3vdzhfobEgp3Z}gf`@+Y_-HWG$ZVjQH8EiH`z9ryi421_0gGuUWYs&bC$TO zdhSp~Dkj94DkvAOB=4(`vJARG^p)%ySxm&tR7Cpoyv=GzzUbn#ib!n7nHNB{LOaz6G~3# zWc?9k|C#db1LXkBab&)_%CKsXxWn8WRPG4>;2YzCo}z-D7S4Y3X-gN6li1e}lI(u5 znR9L_g;n&oUw{xTO5|Jga9s^YYns@BY}S$40Y@YB`dtU~2=zVddu><7rVn%D^!nu{ zh-~xm?FL@xRL;Rg$!F~A4-n{1bo&3G`2B|y_WzHjrCt$z1@fBgLX)b@V# z-T;BV2>=6a5yPVW4+s2*)9QaKDKfD${a1L*RNYepbp?=%#6+AnKaSKaawEfDnNm&X zde)fI@y8nD#fX+Lhy*Di4opHN2_!%!M3jnxH1E<7URyLyy*YPFhcDTxs+RQJI@i`$ z?ZSJV+c%YeTjtNcclKfC;r7j@^YmBt&f69i^6^DvxJW_ia*ek6EY7l)UJR7)U|uA~ zaY4J~rb{Q91JD5lviOI?Oj!FbeKjf}*rI*H@|)Yv(}^9~pYmjx5r(-M@?h^D5)Q?8 znjd*DnfES+IZ|I>Vjl+N<4|yeL`F_G$PZl-d{|U0`!MC|2=y~stw>ur4UwTPQ;5Q; zB2{ae$E>ihcESN)F#0M8YMD9CR`JMT;qyj{YQ(hhDN|xnhRO{WBHcu5l4<7Ah{Qg^=h+ zslaWa+9fJguf_-j_+raODN$=0z`_2lgLDPgq=8Z>`7PVA!&X>4r;Y|j$Nkh3j_^v2 zR*TVB2)ZGlGFXlw?bIV#G=C|5@EdXYj_|MkLLJs>aT?$?HZiI!2mM)_I7UpBampb$?q;|); zqp{<*qfZ)oNBL^j6{;a&LpUv?AiMj?_S*ab`Xlk9%)n%j>s^fV+zBcV7cW-RpnN>v z$mT0%Xvp>lX8%IAbv6ob=1RY!x|x;Z-vyTSecMVJj`=%}YJ>vuo)-JZaRyAzZ|!BF zSGlPy&%pPt##?uv2%grq{*gkJHxpHE*86q>fSY-$%eDJx=;`O}Ue^Ax;eRVI*lmz{ zh|>0am##LzMxS*#tf%cVb*8W^b>85`w z?=7kPJm|f;9IT^eX2?|i^%T3ge|P&?1nWKN+=)GItsfY<;$e_HW_UvN_SP@^s%op^ zQT`??bKR_3^n2F*DI^5Zr`YA0@r)v9srU?ZvTvp=uRgD%6_NK@xVMg zBitld*}v8<(4i_$hs@MqV-yWYvhR+|_Mq9~=h(pQ+X@c98m0Nd)Hywi<|-X(qHK1s zU)Cd3GwI;I9IhiDa-Zxr$cBP{tLKl>?k^Ss6`36soB6-Y?@Y0c6&A+oHY?V_*H*T? z2pKK$vVcpPPYKB9lM{3Skq=sa@vkU9?7?BJhvrsuti2?6-ME~0F;Vqhhv;65`{=48 zgts?uLa()hgSUuE8|gvR)1#{S_Gn$1P?c|#QG>LSGM@*L{RYGHFh#vMmoT$c0lN(7 zX&W3vjIK%+>dAgxOB|MqQ*>FKC91V7vq3j|aSugr zB!FEyY{s5?fJ*`!;0T*}h|_oC7SjzLfF+J2?yH?x@mS#%&>c0e0_)1WMrJnw1JNn3 zT2o0)GGRJPIG3TNb#ZKFAs67$7z1T$cH^d+%;=5ip#xLuq6TP?Qj zNPM&E{~*9m>AwQa7wl07(R%haiIYxM;jNL6OVGdOQT!*~e?-C)x!2_yID=}AvGe&X z0Q?Uy$@gmMpCw^LmRpM}PQp&nMW*I)j=x4A_Jp9Nr{q)_-DOurv$&g9yAMb(iyT!9 zQL!8ZT^ED%(?5cI@jEC4czNN*XrhJ(xWTBQ=%YXNcdGV1g>AJCkiWS+e(t~e^DGa6 z)RzdYn*o);O(^0I`TA*s$?0W~)7gJxU7Wh_Kr@4hdMl^v8`#>Xwc~~=bo5p`pqg3P z6}Kk2d&AY)>S~sChpk|Gq~bt#TAtk0@HU%)e}TsT)o@M>@U+3(9S>WZMsBp<@aB&3 z;V??#GgBeNWaZ5{k2Sb#Ru?(KGD~!$SdD3(~>D5%S32;nE|<7nyvwyZEB^0 z1$+$(0r)2-iI7cU6cXt4a0xV*7gCCl{Z4m6Xh6#7ac?6L)p_*ZPql6IXJU3ylD zEWRbbC_vStiZKQ&eSKOn7A5=hgJeV)CyYo-pr8_v6ZosGA*yG>y!$R*Y% zw6MwbThAU?(azAgVBrdCj$)rQ$2chH@8jYGTjhQu)(Z*Hv9GM2UszLR3JR2TZo{*; z?SZwP)~?j*(D&-O>rS5SSvNeK8+#)Jw%HkvC5)3ME32Aj9LENJ#1L@*%reUB!zo1| zoGgxeudZXmjE7PEEoU<~FERlwb<$23iXoB4n29`(?654!t5sCW{fNGz?`Ql+*UQw4 zE?FUMq^*pp$Z!lWh#wp|x-|w1F%68L>n=eevf_hLZkaRjr3(L0|Fm71E&#Xo<9Uq1 zKWrXq>)>Y5cn6g%k^lm+k`t0Z|2AY8B-B{ebdT}#>QJ(4!<4(UFmxM}v_|r%sJ=yK zEM8V!^6V;5T(NP!!E0r3>EpdKe4W5mu#a@Ri`S_c>!5WuyUc=Ayd2@rj~!q(ro%jy zsGQfe;zM+N`+q`kX6@X+_%o80KM8DtlJbnaIHxxV4rs^kNw%E_R(V))#*de{ywtg} z=3(p)Mrasy(MbP2qEAs482fl7Xc@4JeIR-&fK=jnYVD(JD16ou@cB&RsE?#d`X2%fV6p3o!i>ZXCZcWpw=_0)8|TA#fm5J$YA%TYP;)LgyZ zJF;e1Kj*D*2X1z-GkGZZ!rald;Fd$6iJ4p!XN-;pQbRHheM?jO=lbAtW;oIkKj}Yb z6R=}X#Wk!58r=9u3p(CLa+DmEUoJFZ2I7h|r$}#Wvn$C8Fu%LEYYAm%)YSk7ere&Z zJK!a0odzTW zexu1?XIqLtaam{l4yArR`~rS;(M0~!*v6W$uE_h+Q}5t(2KNmQs!h{nn*~2fa{x%` z4>lDw<+y#>vWR=X2B9VhKce{&;3WO;J#{2&*&Hf)&!2d0}X60n~uY5zb zrl$s)dQUZ=QbaUCfNQQ|vf9nvNaO(1xWzn5(O9PdnV2fzk~>O^ zFv<@W8#FH}fC-JwQzJ0sy6dG9>jyOCPU_}ho7@nw@3xL}(=V1KXbRTOZ1C7PKal~S z4IOp_e}LlB`VzrCn$n%VjZ8Bwt$~q~R6UC@g+5lR#b#K`Fh?gTK7|fIqu+8V9}B*d zi_(Qe>cL4!DNQjkGmb=ZNCvAHgJKhoVuL>3R*e-PI-nzHB;_UKRw0l^6($#sEODbeRc@x#df)gOshdZi4MzV zPEve$Tnd#!gA8@AtORyucof<)EsVJnlKCfaY^F4n#C-^2EI6|xWGroLEn#o?H z+v+;fLE-4H5l4jvouE7fjkWfs*bDr6JyI>CC?~}Bx0~V;*@o_!q6O0%E^;8nXrgYU z{%94(hV+@F1;!gfJDNAPx?itv+3?~Y7?)lpvte!l_Xghxu^n+Um|K;*WVOKn1YQm9 z*MDh%q=b?coRtB)9PuhM5r}lZ<&o3mx zkZ-|BX49nk!03llhkt~HPzF%a=35If3&qO#x}BF>7FgQL>vMcbt(Mf?m^X!nhS($U zJMBontlfO<{(kyedii*uaTLI8vy); z{Y~OSD?`rClgsyph+9J)HOHIr4oJm_# z+<(_T4?|yre1;OHy{STNxFp`tmnov1J(3Z}O)v#pppa@0e}Z`Kd_7t=@02+$a0%D5 zD)VTf~*K{0ytS-L+s^ST{Sg&&nld=a;=SaJ+w&$=-Jp!1G~mI&h0+ zgiDQe)Ocz|X!YXK=-d3vfhq%7fvmrtLRn+RWtPH6BlrYmyo>SHkOo-2Pm}@uxzqhRlGYa-f&cK!US_KRQQY8!E<#{D*jW7mdx%s6H3JSC1e*AZ7Q5z{eQR zfpzCAhAe^zCKsV9OeMB$0DW_bI$`?HK)9Ag> zxAQc0V|GBce>*dMIrsh|W4=yuo(a-l=immrvk;jBOu zTt1Pc^Qd!_hE+2A+VUoLE`fuWwl%|g?y(ddF?yP%t7V`^BuA9L2eTrWB*WokN~4M` z9rMe(K>qR$jZ^zg(Evk_bqd&wcB(~GVjc;+T3G5|pLTz>`IIc2ki;BW~uATH?;!cd;^#u?ecw$8!T35)}2!KA`KhlMNLXYGH*?)#P zGsp!H?hId^P(fAHefNO5aIZVw?^L(hZ49A4%-I5VvZo!G-azx^4Cfa*)1d>&i2j5?yRx-5X5P)+LJl~GVQB(0FuzWC-vYctX?K4h0>d2PGQ=1qGU@;Y zQ1aBJy_*tTIUJzOjuMXO3>2;=@!fUR!}}f!pjC9@g~RApl};?HlD#EL3ECA~gR1^S z+i>^>Z>dy4g#m&s)<}E|qZdCYzduZ&yn}fMZl+Fsta7{tw^8yYnjj-uLVH;F8e7BE z=R!F$h$g&U=!+TCXtmal>omGew0kNU)V+SO*T}z4PZbihbo{wVtL*LiLHTq&Ha~Fo zi>Yhnh+XB$mqqCOVKB9(W1bf)6qJpqguTeb2GJD+_q{NNg4jb1?9y&Egj7HBDm(mf z9hrJdzk3e=bHKG5CKUF_9FYq@hboWw=Qg0v_u4Eol8QE||F=@MS&Ley@8IgDTT~am zE2Yk1x`Ll-S#zfRtRey?H`a#YR&pL~P4dU}s@a|pUJ?_;JO&6P7b{2|g182bQ8?bu zJl7)zQFs*(bv;3+JOM}0Uaf#RS4bHt1`LX(tL{q7Jhn7H54Ei6i&L9$!Gk&8}P7`{S3tZnauwI9aIY*AGu%rRr>2jnd59-awn$9Q8e;T zE@Cpg==x2#R*s^s0Z=XFLjy@tNzm-%bD+( z$tP3_qckjGsbl32ZQQ5L``}1~Zs1m-fO9vAd*g#y-wYY9`5JXh74XBH>Bp5`P8fm; z@V&Y{D#U4{)ZjYty|-Pd-O=BHvnEk-+1k+TQ0^GabT9gK1b5zIQZS{*Wge-L!f+PJvZH*e z>A$83Aa|P(kSN2yTGefC_dc+YrSLo(?X*7e?XH zH;$@Vti+dY2CTYVeQpAF>|Obzw!72D3OYHcrvKy<5K+@{GPHbj$8QOeXwZ&?zl5;C zci*|17=Tc#IDsl)!!8#qk)q&;harAGH<;aDrKRYq_FZ{>G)%c2%R~;_Bhb=NGpGOQ zDAFJ$f3QY#CAU4n`6$-?*nbXVvjhGx8v1`KJIkOrlxzVL+(~dtkU($-9R~M72Y1)O z0t_%{kc7cCXs{5R;K3od1cE!k-Ccvj%l>-z?(W-H`?ss>bX9kq)7?kDgGM-XcXBYe zd@kL#s#4o)yp7ZXLtE0nO$8=L;WFb|-)tl&P&oVkLi_Nih1w63)*sX8h4a00(k|dW zdEv2W(mTRcM@lwv1Hl-jeP+$I-o~zBTHnk{X#0l_gkXlmM(iprkF6G%c4}byu<+tt zsj)}T+mal*j-%8D(ow{^zy%{6xe0=bBuYoMyeZl9w)d6%El65>$YLSS6F-pvmRXx% zs=dZpgM`o@nf!>i>E7zE=2mw!uHedC$w&vhlmK&{P+`Z&YAOiwXwxm)vVPlR376Ed z%1Ibi%rI9}I(u(r$w?1?y*F>+kx_=c%m@2?p;^52=95)~E|qqTm#Bc$o$%{PmsF*l z&KZr$3?skHO8(h>W6zG3a~LeiW#+?d?kGPhu-g-8Oz+ccMJ#5T+&z<_!Unh1~c81?HB% z)w71Q&$V!GKbk171YhBNPY2(45q^>j7EQMEq6?I9Wx=waI)}`32%MU!y{+cbUwc#+ znoe%nI+{@SsquZaUYVjQ-L_S9{$l~(ITw}-Sk~R7Lh-b5JjJK?1uR6iEelzR@s*Ag z5A|{b~SfE>9{yET})0U7tM<=TY)B_LnlWjgEF6v(cj%2Q9b8~QnhknZ5w>+CZQsl$qkdMb+lU(Y# z{Az*LxaZE#M3L2Y+iOXCg#9#ztAM|a$Q-N?b3dexst}TTT9_if4!>>4-REk2&GY|Y-Ztv6 zd5;GWRlc%#2V|B2&WXM7o z!-6oh;F8IEwK?iQ{RNKAtff^!qAdF%dPGs;x~7_ElGohzS!iT06OmlT`=%2OH@SX0 zYzy%&x$O7&JgF{=5pYMw;3j2`pQ8ODc$>L#091Unrp&~0~uvx#n ziRYl_u`#)}a38~|o+C%v%F{u%GOYyBmAu~JE|tyU>LlY%@d_V-2N4kcoHyO4c#;w= z`=+syf(l1x|62vZA(P;`oR_wQYRQS@#CiSs#fOMqb3PHgPF>?5H%_SuSZ zk3>&n`Zj$i-N0kJIO85<=9|M3PWV)ls)^9mkQ`F-=k+`7sc~du^*DT7xu=nV1{KS3 zhd$&lIR!nt9)i!P{A`GhzJ3!l+K6ARzair_a;Z+baSl;WA7F9UiU)+3DGqHo zNS5nxsH-vN|1P#yvYxV=bDuQWWmGM!O)_Z55G^b>eX|^3y`uge_{78?Ji*j&H(C}T z)x16=mc^cKD*AfhoXu(mac{3#hqqL#SlZsmltP7NW#SZ&545XQcoqZb|hv=fQ< zBirw^VkU?tl~!-&G@i4ArWbB+ zxp@{CtpUbci~61ZeHD{;ZaB(s++WOmA=G3jh=|^LAL#Un_*V1ly%&Nx#EFfB_ebJP z9)Laji!6?dXrUUqhIY1nY4x0g=*qrZy|9Xg)4QT^=|2g_B%+A}9eN@ckC1S~H5!7& zsOv`CstDpKdr^)U^e=cu!6psVM@<*%Ux&8XJ>xtNpBip~{s-LkP&`6xou$ zpEuG8T;-7b-nk~3!u|7Zg;GS!YCGrxP#W~~Sl~IzaB+Ped4+!ZwyN~ByDZJo?tB!{=kSa8qLI7@T06=wRuHr53iliKKYVO1 ztT@~>pz&R!CpJ<#V!a3)iFwuJ`T>`dtQ@U#SDMZ5e%}#Sg^eR67ojuKqLH8 z0;<-kAyK3(cE#NJ$-GM*RvQ;x#((*Nj6 z;0>&0WMO@AnlGtsSLqE>F+LHfL1iw4RE&{FUIxSa-~Jf(+bEu}Loqhatn;8Pc}q-_ z<3p8BRk9-ydsm9Ul^ZeItOR7I=BnTrw>d;E@HLBBH0;1)6GaCWC2uc33RfQo0-cEi z!3CM%k({UGLTGELe5y9I$MJA56~Sf zPE`@dbC~&F=>{JaKjGR?Yfs5q3-?iVg~xj{RPapP$4`{epu+|!Sek~fF-NPJB>ZMTHRDaq`t=o&>WYf7$>n6izL z1%c6P(9)tFHtw$&$;1U*Wjyysk`Z) zGATd(p{Haex#qX?Yz#A8 zu%iy4xwMr@+Hc9m$_liLl!fm}O)Y_3ck@d>vJ=@*ixH_zC7W~Y<+E*~5)BTE6DLe6C({);0uIO6Q%wyQtvOTQO9rK2j%$<n zTpD=^--?kHK$3tg8kgG~cf4P8T&5nWe%Ig5@|#Yr5=AWw`vCb0feypDS7>DZ-4;4$ zdG?}}tw+f~gUaCy1Htjx)m~YlhluhmHhMY@+b^A&)liIFIW%uAl6WrGA1jjL2d7;o z-jm>jlNb7da@R6i)PZNuqfP))#+xK0JtX?7MeiQC;^m8BS~{qPfMZ#u2C3 zlY}B7um*ADuByC_qYZTv4eyVJ@ z_9ocmJ8H~?GI+^Ak5~;FHWvNU!>QKkRK7Km35-VASffxxnxuoDR?y4a-)*^U9s)+x zXP$_v&P_s^1Lyaqo7w_SjGZ1HYMldM6#@Z|wwCkRb*pQq=UYan_j?07s8>ZdmxfB2 z<2F9FBIlhBh^4p>dD&KMRd)Qmy9zc;)l7>-HlyrU;SPQ`?SF8j?0BuW7Y9>8o-Y0D z{s$(CLkh(wJ!U7{oXV?vLqp3AXT45K-^05M>xa^&%1rAccwTrT@YqB{M~WVhTd8>nP_w%ik0h>R97RBVzJfvJ?!6AJ%6dB97oJ zAE$_${Tx=t!`4>Bst4 zLx*ha5p&4~1k(w4(Le4HDp*)+PQvp}hF3E!Hsv>YY}lT)54+znrFeM4QE844Yw45w zv|(9SCO)T($Q24>Ew?&w(Eaf0-PK*In?H5c?DJliGP+DG3-Ra|3J2TzseFLc z)~uuPdE$fVMfoe3klsatPRmrCCypWi+q;LJOO&Rx)+Wl}Ue)1~g$yDwDkUsaAoCZmR0eqA^Y z-B#OdD@1De8~N~wH+vZ>y&bLXyS(2jz0KmuRc5D7LRn(=8NLf2T`3I(5l%GF9zRzdW>*zW(B=)R*K z{j0)&{u09e4+`^7(Q)z*5=cnC=tyz@Dv;+doyz_J(+8+p*lWTa0V=foJb$qIu5NHz zUO}$^0NCdS3I0uETJ#+>=YJADw6t>GP<3?W#(JK!7)_waqQEw=Wb{f=)<`Pfjgq3R&ls%O!UxSOHLT;02#z0H1FV9lwJw3r4<;&aK)BZQ6C!%la+(D-2upcQlIs=ZRNbH7WAJ*B}y{}Ci z((VXm>7+l3$4XLA`jvB6z*pisDYv~cM?rbuykXJb0ipx*rM;Di4IU||_l9F8DF201u zHdoe@O_0!8^(kr{2w-;kDIc#P041xrPaI1La;&2#K1Si*r294V*#P|7-2k^u0>m*; znj+IXd!;Vk}hVK?jh4&ClFkx zTl#v^zFSzT0-S@u{6^gugBjv=S&2FA_jnF?8lzO{+i((5nckw13ir0YvP zbudD>^v;%M+%S_G9oTSI>-+0oR8y=@4ey8Ap#$(A#ASgjeu>3So*EXQNI~P7+SbK` z24m+%&YhU~#ovb(^@oAK>HzsR&l}Fi$BuJ5O23nKZbM+eqWd%%n_08OS6f$=y(JwE z>(}=Ux%5f{%`@-5nAm*j6VE-PxQ{P-UyG&Tw=OLuv|WK@kv>h{ zFYanJ$=z&_(@ZX%2HX?o4su7gvj*he>na8uYDEke&TeEK2XEsFQ6wpFZLrf=jrHn# z`0K{V5zUay93;e%;S_Kh5k`qC4!|=AMCBTz^IgM-gMH}iMZ1NXqsToWyWA)f0sCu_O{ z)jUmykk&0aV_doFDz6z~@(t4}6}Sm*l?5Ng(IvV(e(qT|3S?pz)O1;dLLxaDlQ9bb zYsz?-YTk`{`yxsua;Z#<0Ytlmhl*lCDVGllUZmH9RJX=kT5vSwFKWBAk1DFwV<(1; zZYO?Typ*(#%=Vq?p<-ijzh_IE^6Sd9_&n%xVA1YF^(QkPYMUT1(>fgVnsQq#ir1`B zp6Q1D9fV9gqWs}tgyXy~d-k2lnib#hiBJlYdIK+;`i?WVkGHJw62x=$?8xo{IzEEY z5b_nM+vxBSS?cJ#uBhtR{n3RdkWW$NkvQT|rqTQS=yt~kE5wuF{B#9PkDjJd=J@9y zlMrt7E$BOc+71bXk6bGk>s4S@__?ayI!!WE7}Bt%JO(bGVQQ#a{J@{{l|LtiRA$x( zZkXJFmmKz+UC`^@`RctTUf)14QIiTWBp`^{fd5n`ycQOC1@sD(Yk`f25}jwP=8e7M zPi_!W;&bSTFPNAo46ej0`1xD8@qT@8OOwEM_)KAVXW)hGxtvU#@QWYhP4w8?zLJSP z5~n=1&C>fak_*S!BIA&21c~BynFzP)NjLvlUY{phnr$VRXe#gxUT8fue8w!?ek6W` zY@6wrbK7j`)BAHCJGp&1hRUY6?g&bSl+*;&YW{e$NqIu7cr~1O+7z|bOnIS$@Vtq^ zMD(YrFpKH1HG}8Yce7>QIY6(R`SXp7SkJ^14tbA^r#j-}`Pr7Dyu=NN|XjvM6S@CR{O?|-tl-pr$Vso+Y$BijXa?uG|b*#76 zNE%JCjk~2_NnQyN_*yqsI+Z@v`!`SipWVqUC8;ieaL>bi917l&*3^k=ie36R$Hd`H zxbmF_(6Ya=vAa1$yE*$>S}U$KtvGjmKUUR420mqwc{Bdl_KlrM%5E-%TZ9YD$FpVH zthYX7;O#JK!)w83$z^HH z4dk`3G#7wEEiCx0%z+?YE^`4vezE_5hA}|H*%^-gk7tJlK*0&>O#6@3Gys}*KGw7# zUVyG4_n#3STnK|u z`gJ}QQ5LNRAsg7t+``e)&bb3szVx)TbZekZ)#W#^`bNYmGhZR1G@d#9mf*#0vD<~ewm0sPwl?mYVhHXREj-*dEwremg}8Ok>Hrr7hRJ_DEH}8h XE8NS~8j8)w4de%6GcwAmg0cSx1(5fD literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_ForwardSelection.ipynb b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_ForwardSelection.ipynb new file mode 100755 index 0000000..c7698e3 --- /dev/null +++ b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_ForwardSelection.ipynb @@ -0,0 +1,324 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "71dde0cd-56e2-43e6-892c-a35cb066edf1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "---\n", + "title: Machine Learning for Economics and Finance\n", + "subtitle: In JupyterLab\n", + "subject: Tutorial\n", + "venue: Python Intro\n", + "authors: \n", + " - name: Ole Wilms\n", + " email: ole.wilms@uni-hamburg.de\n", + "keywords: islp\n", + "# date: 2024/09/28\n", + "date: \"`r format(Sys.time(), '%d %B, %Y')`\"\n", + "math:\n", + " '\\dobs': '\\mathbf{d}_\\text{obs}'\n", + " '\\dpred': '\\mathbf{d}_\\text{pred}\\left( #1 \\right)'\n", + " '\\mref': '\\mathbf{m}_\\text{ref}'\n", + "abbreviations:\n", + " MyST: Markedly Stryctured Text\n", + " TLA: Three Letter Acronym\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Example code" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f1cf1749-9e5b-434a-8f45-5d63db20ee2a", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Intercept:\n", + "128.10911474918652\n", + "\n", + "Coefficients:\n", + " Feature Coefficient\n", + "0 AtBat -1.617362\n", + "1 Hits 6.980032\n", + "2 HmRun 1.324768\n", + "3 Runs -2.439937\n", + "4 RBI -0.007608\n", + "5 Walks 6.585051\n", + "6 CAtBat -0.228701\n", + "7 CHits 0.815118\n", + "8 CHmRun 1.538879\n", + "9 CRuns 0.709538\n", + "10 CWalks -0.600017\n", + "11 Errors 0.956309\n", + "12 League_N 79.566554\n", + "13 Division_W -121.244188\n", + "14 NewLeague_N -33.825830\n", + "\n", + "R-squared:\n", + "0.5150869657868427\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.feature_selection import SequentialFeatureSelector\n", + "from ISLP import load_data\n", + "\n", + "###\n", + "# Forward stepwise selection\n", + "###\n", + "# Load Hitters dataset from ISLP\n", + "Hitters = load_data('Hitters')\n", + "\n", + "# Remove missing values\n", + "Hitters = Hitters.dropna()\n", + "\n", + "# Create dummy variables for categorical columns\n", + "Hitters = pd.get_dummies(Hitters, drop_first=True)\n", + "\n", + "# Separate response (target) and predictors\n", + "y = Hitters['Salary']\n", + "X = Hitters.drop(columns=['Salary'])\n", + "\n", + "# Define the linear regression model\n", + "model = LinearRegression()\n", + "\n", + "# Perform forward stepwise selection using SequentialFeatureSelector\n", + "#sfs = SequentialFeatureSelector(model, n_features_to_select=15, direction='forward', cv=5)\n", + "sfs = SequentialFeatureSelector(model, n_features_to_select=15, direction='forward')\n", + "\n", + "# Fit the model to the data\n", + "sfs.fit(X, y)\n", + "\n", + "# Get the selected features\n", + "selected_features = X.columns[sfs.get_support()]\n", + "\n", + "# Fit the model with the selected features\n", + "model.fit(X[selected_features], y)\n", + "\n", + "# Coefficients of the selected features\n", + "coefficients = pd.DataFrame({\n", + " 'Feature': selected_features,\n", + " 'Coefficient': model.coef_\n", + "})\n", + "\n", + "# Printing short summary - intercept, coefficients and $R^{2}$\n", + "print(\"\\nIntercept:\")\n", + "print(model.intercept_)\n", + "\n", + "print(\"\\nCoefficients:\")\n", + "print(coefficients)\n", + "\n", + "print(\"\\nR-squared:\")\n", + "print(model.score(X[selected_features], y))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6b73a83c-3b00-45d7-bfc8-8d04353b3bfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Validation Errors for each model size (1 to 15 features):\n", + "[124621.80599921 97585.98973835 108054.65205434 109660.96621422\n", + " 104763.84348023 100783.43834678 104998.65236004 114426.75713735\n", + " 119884.39341126 127572.74609957 116991.35484176 114162.96717981\n", + " 116360.6476317 117289.1176923 115771.82167166]\n", + "\n", + "Min val_err: 97585.9897383486\n" + ] + } + ], + "source": [ + "###\n", + "# Validation errors for FSS\n", + "###\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_squared_error as MSE\n", + "from mlxtend.feature_selection import SequentialFeatureSelector as SFS\n", + "import statsmodels.api as sm\n", + "\n", + "# Split the data into training and validation sets based on row indices\n", + "train_data = Hitters.iloc[:184] # First 184 rows for training data\n", + "val_data = Hitters.iloc[184:263] # Rows 185 to 263 for validation data\n", + "\n", + "# Define X and y for both training and validation sets\n", + "X_train = train_data.drop(columns=['Salary'])\n", + "y_train = train_data['Salary']\n", + "X_val = val_data.drop(columns=['Salary'])\n", + "y_val = val_data['Salary']\n", + "\n", + "# Ensure that all categorical variables are encoded as numeric\n", + "X_train = pd.get_dummies(X_train, drop_first=True).astype(float)\n", + "X_val = pd.get_dummies(X_val, drop_first=True).astype(float)\n", + "\n", + "# Align columns of validation set to match training set\n", + "X_val = X_val.reindex(columns=X_train.columns, fill_value=0).astype(float)\n", + "\n", + "# Convert validation data to matrix form (for statsmodels)\n", + "val_data = sm.add_constant(X_val)\n", + "\n", + "# Ensure target variable is numeric\n", + "y_train_np = np.asarray(y_train).astype(float)\n", + "y_val_np = np.asarray(y_val).astype(float)\n", + "\n", + "\n", + "# Run forward stepwise selection using sklearn's SequentialFeatureSelector\n", + "model2 = LinearRegression()\n", + "\n", + "sfs2 = SFS(model2, \n", + " k_features=15, \n", + " forward=True, \n", + " floating=False, \n", + " scoring='neg_mean_squared_error', \n", + " cv=0) # No cross-validation\n", + "\n", + "sfs2.fit(X_train, y_train)\n", + "\n", + "# Extract selected features for each number of features (1 to 15)\n", + "#selected_features = list(sfs2.subsets_)\n", + "selected_features = sfs2.subsets_\n", + "\n", + "# Compute validation mean squared errors for each model\n", + "val_err = np.zeros(15)\n", + "for i in range(1, 16):\n", + " # Get the selected feature names for this step\n", + " feature_names = selected_features[i]['feature_names']\n", + " \n", + " # Select the corresponding features from X_train\n", + " X_train_selected = X_train[list(feature_names)]\n", + " \n", + " # Add constant (intercept) term\n", + " X_train_selected = sm.add_constant(X_train_selected).astype(float)\n", + " \n", + " # Ensure the selected features are numeric\n", + " X_train_selected_np = np.asarray(X_train_selected).astype(float)\n", + "\n", + " # Fit OLS model\n", + " model = sm.OLS(y_train_np, X_train_selected_np).fit()\n", + "\n", + " # Predict on validation set\n", + " X_val_selected = val_data[list(feature_names)]\n", + " X_val_selected_np = sm.add_constant(X_val_selected).astype(float) # Ensure numpy array is float\n", + "\n", + " y_pred_val = model.predict(X_val_selected_np)\n", + "\n", + " # Compute MSE for validation set\n", + " val_err[i - 1] = MSE(y_val_np, y_pred_val)\n", + "\n", + "# Print validation errors for each model size\n", + "print(\"Validation Errors for each model size (1 to 15 features):\")\n", + "print(val_err)\n", + "\n", + "print(\"\\nMin val_err: \", min(val_err))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "16f1c19e-7177-4bc2-81f0-9428adf4e90e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo7xJREFUeJzs3XdUVNf+NvBnqFJHEKUIimDvvQaB2LtiRUNsMVcTxX6jJrHFRBONJWoSY2LJVSEqqIktakRBhURFjMauqIhgRZAOM/v9w3fm54RBGRk4A/N81pq14Jw95zxDPd/Z++wtE0IIEBERERERFYOJ1AGIiIiIiKjsY2FBRERERETFxsKCiIiIiIiKjYUFEREREREVGwsLIiIiIiIqNhYWRERERERUbCwsiIiIiIio2FhYEBERERFRsbGwICIiIiKiYmNhQUTFNn/+fMhkMhw7dkxju0wmg5+fX7GPo0+jRo2CTCbD7du3S+wcRC/T9ffAkKWmpmLixImoXr06zMzMDP53SR9/U44dOwaZTIb58+cX+Tl+fn6QyWRvfE6isoqFBVE5FxgYCJlMhtDQ0Fe2e/LkCSwtLeHk5ITc3NxSSqd/mzZtgkwmw6ZNm6SOUiSqCxCZTIaDBw8W2q558+bqdjExMRr78vPzsXbtWrRr1w5yuRwWFhZwdXVFmzZtMHXqVJw7d06jvaq4etVj9+7dJfFyi0V1kSiTybBz506tbVSv7d9fI9KPmTNnYu3atWjatCnmzJmDefPmoWLFilrbtmvXrkjfi4sXL0Imk6Fx48YlkJiISpOZ1AGIqGSNHTsWoaGh2LhxI4YNG1Zouy1btiA3NxdBQUGwsLDQy7kvX74Ma2trvRxLXxYvXoxZs2ahatWqUkfRYGZmhg0bNqB79+4F9p0/fx7nzp2DmZkZ8vPzNfYpFAr06NEDR44cgZubGwYPHozKlSvj/v37uHLlCr755hvY2NigWbNmBY47duxYuLu7a81Tt25d/bywEvLxxx+jf//+MDPjv7HStH//ftSpUwd79ux5bduxY8ciJiYGGzduRNu2bQtt99NPP6nb69vEiRMxbNgwVKtWTe/HJqKC+BeZqJzr1KkTPD09ceTIESQkJMDDw0Nru40bNwLQ7z93Q7w4dXV1haurq9QxCujRowf27NmDJ0+eoFKlShr7fvrpJ5iZmaFLly44cOCAxr5t27bhyJEj6NatG3777TeYm5tr7E9OTsb9+/e1nvO999575QWfofL29sa1a9fw448/Yvz48VLHMSr3799Hx44di9R26NChmDJlCkJDQ7Fy5UpYWVkVaJOXl4etW7fCwsIC77zzjr7jwsnJCU5OTno/LhFpx6FQROWcTCbD6NGjoVQqsXnzZq1tzp49i/Pnz6N169Zo2LAh7t+/j3nz5qFt27aoUqUKLC0t4enpiQ8++AAPHz7U6dzaxpYnJCQgMDAQjo6OsLW1ha+vLyIjI7UeIzc3F6tXr0a3bt3g4eEBS0tLVKlSBQEBAVqH+IwePRoAMHr0aI2hPS+3KWxc+ObNm9G2bVvY2trC1tYWbdu21fo1e3nMdWxsLLp16wY7OzvI5XIMGDDgjcacjx49Grm5udi6dWuB179t2zb06tULVapUKfC86OhoAMD48eMLFBUA4OLigubNm+uc53V+/vlnyGQyfPbZZ1r3nzx5EjKZTKNQvX79OkaPHo0aNWqgQoUKcHJyQvPmzTF9+nSdzj19+nQ4ODhgwYIFyMjIeG37V42Rv337NmQyGUaNGqWx3dPTE56enkhNTcWECRPg6uoKGxsbdOzYEbGxsQBeFG0jR45ElSpVYG1tjW7duuHGjRuF5khISMDQoUNRqVIl2NjYwM/PD6dOndLaNjc3F8uXL0fz5s1hY2MDOzs7+Pj44Ndffy3QVvUzfevWLaxYsQINGjSApaVlgdekTX5+PlasWIEmTZrAysoKcrkc/v7+2Ldvn9ZzCCFw/Phx9e/Vq85hZ2eHIUOGIC0tDWFhYVrb/Prrr3j06BH69++PSpUq4dq1a/jvf/+L5s2bo1KlSqhQoQJq166NWbNmIT09vcDzVUMJc3JyMHfuXNSsWRPm5ubq73Vh91hs2LAB/fr1g6enJypUqABHR0d069YNERERr/x6RUZGwtfXF7a2tnB0dMTw4cNx7969Vz7n3/bs2YNOnTrBwcEBFSpUQMOGDbFs2TIoFAqNdkqlEj/++CNat24NR0dHWFtbw9PTE/379y/07yWR1FhYEBmB0aNHw8TEBJs2bYIQosD+f/dWREZG4uuvv4azszMCAwMxadIkeHt747vvvkO7du2Qmpr6xlmSkpLQrl07hIaGonXr1ggODoajoyO6dOmidSz206dPMWXKFOTk5KBnz56YOnUq/Pz8sH//frRv3x6nT59Wt+3fvz/69esHAOjXrx/mzZunfrzO1KlTMWrUKNy7dw9jx47Fe++9h8TERIwaNQrTpk3T+pwzZ87Ax8cHZmZm+M9//oOWLVti9+7d6Ny5M7Kzs3X6urRr1w716tVTfy9Udu/ejSdPnmDMmDFan+fo6AgAr7ygLQkBAQGwtrYuUAipbNmyBQAQFBQE4MU73a1bt8bWrVvRtGlTTJkyBcOGDUPlypWxevVqnc7t4OCAWbNmITk5GStWrCjeC3mF3NxcdOnSBSdPnsTQoUPRt29fnDx5Ep07d8aVK1fQtm1bXL16Fe+88w46d+6MQ4cOoXfv3gUuEAEgJSUFHTp0wO3bt/H+++9j4MCBiI6Ohr+/f4GL3pycHHTr1k1dcI0dOxbvvPMO7ty5g379+mHNmjVa806aNAmLFi1CixYtMGXKlNfesyCEwNChQzFt2jRkZ2fjww8/xPDhw/H333+jd+/e+Oabb9Rt+/fvr/49ql69uvr3qn///q88h+pvyoYNG7Tu//ffnvDwcPz000/w8vLCyJEjMX78eDg6OuLLL79Ely5dkJeXp/U4AQEB2LBhA3x9fTFlyhR4eXm9MteHH36IBw8eoHPnzpg6dSp69+6N6OhodO7cudBhXjExMejSpQsqVaqE4OBgtG7dGiEhIWjfvj0ePHjwyvOpzJkzB/3798e1a9cwcOBAfPDBB6hQoQJmzpxZYKjq7NmzMW7cODx9+hTDhw/H5MmT0bFjR5w/fx5Hjx4t0vmISp0gIqPQrVs3AUAcO3ZMY3t2drZwcHAQ1tbWIjU1VQghxIMHD8Tz588LHGPz5s0CgFi0aJHG9nnz5gkAIiIiQmM7AOHr66uxbeTIkVqPsW7dOgGgwHGys7PFvXv3CmS5ePGisLW1FZ07d9bYvnHjRgFAbNy4UduXQX3++Ph49bbIyEgBQNSrV088e/ZMvf3Zs2eibt26AoCIiopSb4+IiFBnDQ0N1Th+UFCQACBCQkK0nv/ffH19BQCRlJQkvvrqKwFAxMbGqvd37dpVODs7i7y8PHX26Oho9f4zZ84IU1NTYWlpKT788EOxf/9+kZyc/Mpzqo4zduxYMW/ePK2PrKys12YfMWKEACD++usvje25ubmiUqVKwsPDQyiVSiGEEN98840AIFatWlXgOI8ePXrtuYT4v5+zkJAQkZWVJdzd3YW9vb3G87V9jVTfr3nz5hU4Znx8vAAgRo4cqbG9evXqAoAYPHiwyMvLU29fsmSJACAqVqwopk6dqn59QggxYcIEAUCEh4drHEv1sxIUFKTR/tixY0Imk4maNWsKhUKh3j5nzhwBQMyfP1+jfVpammjZsqWwsLAQiYmJBV6zu7u7uHPnThG+ki/8/PPP6t/RnJwc9faEhARRpUoVYW5uLm7dulXgtfz7d/p16tSpI2QymcbvnBBC3L9/X5iamopq1aqpX/+9e/c0sqgsWLBAABBbtmzR2K76/WnatKl48uRJgecV9rfp369LlcfNzU3UqlVLY/vLv+8//vij1lxjxozRmutlhw4dEgBEjx49REZGhnq7UqkU48ePFwDEzp071dsdHR1F1apVNdqq2mt7rUSGgD0WREZC9Y73v9853LVrF1JSUjB48GDY29sDAKpUqQJbW9sCxwgKCoK9vT2OHDnyRhlyc3Pxyy+/oEqVKgWGv7z33nuoXbt2gedYWlpqvdG6QYMG8Pf3R2RkZKHvYhaVagap+fPnQy6Xq7fL5XL1u7TaZpnq2LEjhg4dqrFN9XV+uSelqN599131TdzAi6EzR44cUW/XpkWLFti4cSNsbW2xdu1a9OzZEy4uLvDw8MDo0aNx9uzZQs/3008/YcGCBVofRelxUY2JV/VOqOzfvx9PnjzBiBEjCky5qW2c/ZuMga9QoQLmz5+PtLQ0LFq0SOfnF9XSpUs1vvbDhw8H8GII0Weffabx+gIDAwG8uNn+30xNTfH5559rtPf19UXPnj1x48YN9ZAopVKJ7777DjVr1sTcuXM12tvZ2WHu3LnIzc1FeHh4gXPMnDlTp5uUVT/TX331lcaEDe7u7pg6dar6/ofiGjNmDIQQBXrjNm/eDIVCoe5RBYCqVatqnTxi4sSJAFDo354FCxaoe++KokaNGgW2ubq6YuDAgbh+/Tru3LlTYH+dOnUK9BzOnDkTlStXRkhIyGtn01P1NK1bt05jUguZTIYlS5ZAJpMhJCRE4zkWFhYFfvdlMplOr5WoNLGwIDISqjHMO3fuxPPnz9XbVRex//6HGR4ejm7duqFy5crq+epNTEyQlpZW6M3Ar3P16lVkZ2ejZcuWqFChgsY+ExMTtG/fXuvz4uLiMHz4cFSrVg0WFhbq8d2//fYbcnNz8fjx4zfKo6K6V0Pb/SCqbXFxcQX2abt3QTXL0rNnz3TO4ezsjJ49e2Lbtm3IycnBpk2boFQq1feNFCYoKAj37t3Dr7/+iv/+97/o1KkTnjx5gk2bNqF169b4/vvvtT4vOjoaQgitj8KmEH1Zly5d4OLigtDQUI3hP//73//UuVR69+4Na2trfPjhhxgyZAg2bNiAa9euFeGrUrhRo0ahfv36+O6770pkLYWKFSuievXqGttUN/7XqlULNjY2WvclJiYWOFb16tW1Tpzg4+MD4P9+vq5evYqUlBRYWlpiwYIFmD9/vsZDNSXxlStXChyrdevWOr2+c+fOwcrKSuvzXvVzr6uRI0fCzMwMmzdv1hiKqZoa+uX7NIQQ2LBhAzp27AhHR0eYmppCJpOpJzQo7G+Prq/91q1bGDduHLy9vVGhQgX13xTVsDxt5+nQoYPWQrlFixbIysp67c9zTEwMbGxs8NNPPxX4vq5YsQJWVlYa39chQ4YgPj4eDRs2xKeffoojR44U6Z4iIilxVigiI6GadWXVqlXYvn07xo4di4SEBPzxxx+oVauWxkwvX3/9NWbMmIHKlSuja9eucHd3V7/TvHLlSuTk5LxRBtW9GdpuQgZeXFj/26lTp/D2228DALp27YpatWrB1tZWvdbC+fPn3ziPSlpaGkxMTFC5cmWtmUxMTLTeV/Jy74aK6t1FbePsi2L06NH49ddfsWvXLmzatAlt27ZFvXr1Xvu8ChUqoE+fPujTpw8AIDs7G8uWLcOnn36KyZMno3///nBxcXmjTIUxNTVFYGAgVqxYgcOHD6N79+5ITU3Fvn370Lx5c9SvX1/dtkaNGoiOjsaCBQtw4MAB7NixA8CLd4E/++wzDB48+I3O/8UXX6B///745JNPCvScFNervr+q3j1t+7T1oL3uZ1718/X06VMAwD///IN//vmn0GzaLjC1/f68SlpaWqGzxKl+VopzP9XLuXr16oU9e/bg6NGj6NSpE06cOIGrV6+ic+fO8PT0VLcNDg7GmjVr4OHhgb59+8LV1RWWlpYAXvRKFPa7rstrv3HjBlq3bo20tDT4+/ujT58+sLe3h4mJCY4dO4bjx49rPU9Rv4eFefr0KfLz87FgwYJC27z8ff3mm2/g5eWFTZs2YdGiRVi0aBEqVKiAIUOG4Ouvv+ZsV2SQWFgQGZGxY8di1apV2LBhA8aOHat+R/zl3grVEA83NzfExcVpXGwLIfDVV1+98flVF2qFzSyl7QbIzz//HDk5OThx4gQ6dOigsS8mJkbrsBNd2dvbQ6lU4tGjRwUuHh4+fAilUqn1QrIk9O7dG87OzpgxYwYSExMxa9asNzpOhQoV8Mknn+Dw4cOIjIzEyZMnMXDgQD2nfdErsWLFCmzZsgXdu3fHjh07kJ2drdFbodK4cWOEhYUhLy8PZ8+exYEDB/DNN99g6NChcHNzK/D9LYp+/fqhQ4cO2LZtG2bOnKm1jWqYzb/XAAH0c+FcFK/7mVf9bqh+zgYOHFjoIoCF0XWlZ3t7+0JvOlZt19fP/dixY7Fnzx5s2LABnTp10jq99cOHD7F27Vo0btwY0dHRGsOFkpOTX3lBrstrX7FiBVJSUrBlyxaMGDFCY9/48eNx/Phxrc8r6vewMPb29pDJZEXuYTU3N8fMmTMxc+ZM3L9/H8ePH8fGjRvx888/Izk5Gb///nuRjkNUmjgUisiINGrUCK1atcKpU6dw5coVbNq0Caamphg5cqS6zePHj5Gamoq2bdsWeAf/zJkzyMrKeuPz16lTBxUqVMCZM2cKjOFXKpVap968efMmHB0dC1x0ZmZmqqf9fJmpqSkA3XoMVIvH/Xt2HgDqi4ymTZsW+XjFYWZmhnfeeQeJiYmwtrYucA+Hrv49XEffmjVrhvr162P37t3IyMjAli1b1D0ZhTE3N0fbtm2xYMECfPPNNxBCYO/evW+c4csvv4QQotAizMHBAYD2IUr/nrK4pNy5cwcJCQkFtkdFRQH4v5+vevXqwd7eHmfOnCn2vUOv06xZM2RlZeGvv/4qsE/fP/c9e/aEq6srdu3ahcTERGzfvh0ODg4YMGCAus2tW7cghEDnzp0LLKyp+jrpw82bNwEAffv21diuVCpx8uTJQp938uTJArPqZWVl4ezZs7CystJ6j9jL2rRpgydPnuD69es6Z3Zzc0NgYCAOHjyIWrVq4ciRI8X6W0xUUlhYEBkZ1TuE7733Hm7duqX+h69SpUoVWFlZITY2FpmZmertKSkpmDRpUrHObWFhgSFDhuDhw4f4+uuvNfb9+OOPWscoV69eHSkpKRrDQhQKBWbMmIFHjx4VaK+6qVGXueVVhdWCBQuQlpam3p6WlqZ+l/Tl4qukzZw5E7t27cLvv//+2neMQ0NDcfToUa3TCJ86dQrHjh2DmZlZiS6EFxQUhIyMDKxatQqRkZHo0qVLgaEpp0+f1vqOr+rdXm03dRdVhw4d0LdvXxw8eBAnTpwosL9OnTqwtbXFr7/+qh5qpDp3Sd74/TKFQoGPP/5Y4/t0/Phx7N+/HzVr1lTfX2RmZoYJEybgzp07mDFjhtbi4uLFizqtJ1MY1c/07NmzNc6TmJiI5cuXw8zMrMA7+m9K9QZGVlYWhg4divT0dLzzzjvqYU4A1PeznDp1CkqlUr393r17b9xzp43qPP/+Wfnyyy9x8eLFQp939erVApNfLF26FI8ePUJgYKDWm85fFhwcDODF/WxPnjwpsD85ORmXL18G8GLKYW2/1xkZGXj+/DnMzc3Vb6IQGRIOhSIyMoGBgZg2bZr6nbl/r7RtYmKCDz74AF9//TWaNGmCPn36IC0tDQcOHED16tXh5uZWrPMvWbIEf/zxBz755BOcOHECzZo1w+XLl7F//3507doVhw4d0mg/adIkHDp0CG+99RaGDBmCChUq4NixY0hMTISfn1+BXoZ27drBysoKK1euRFpamrrX5VUXJh07dsSkSZOwevVqNGzYEAMHDoQQAuHh4UhISEBwcHCRVxvWB2dn59euD6ASExODVatWoWrVqujYsSOqVauG3NxcXLp0CYcPH4ZSqcSSJUu0zqz1448/qm8G/jc/Pz+tN7NrM2LECMyZMwfz58+HEELrMKitW7fi22+/hZ+fH2rWrAl7e3tcunQJ+/fvh5OTU6HrdBTV4sWLsW/fPvW70S+zsLDAxIkTsWTJEjRv3hz9+vXD8+fP8dtvv8HX11frc/StcePGOHbsGNq2bYu3334b9+/fR2hoKMzNzbF+/Xr1cC3gRYEbGxuLb775Bvv27YOvry8qV66MxMREXLhwAefPn0d0dHShY/6LKigoCOHh4dizZw8aN26M3r17IyMjA9u3b8eTJ0/w9ddfv3Y9CF2MGTMGS5YsUf/t+ff3XDUrU1hYGFq2bIlOnTrhwYMH2Lt3L95++23cunVLLznGjx+PjRs3IiAgQL1gYUxMDGJjY9GrV68CiwOqdO3aFR988AH27duHunXrIjY2Fr///js8PDzwxRdfvPa83bt3x6efforPPvsMNWvWRPfu3VG9enU8efIEN27cQFRUFBYtWoR69eohKysLnTp1gpeXF9q0aYNq1aohPT0de/fuRXJyMj766KPXFjJEkijl6W2JyAC8++67AoB6fYR/y83NFZ9//rmoVauWsLS0FNWqVRPTpk0Tz58/F9WrVxfVq1fXaK/LOhZCCHHnzh0xdOhQUbFiRWFtbS18fHzE8ePHCz3Ozp07RfPmzYW1tbVwcnISQ4YMETdv3tS6JoUQQuzbt0+0atVKWFlZqeefVynsOUIIsWHDBtGqVSthbW0trK2tRatWrcSGDRsKtHuTdREK8/I6Fq+jbY2Gu3fvim+++Ub07t1b1KxZU9jY2AgLCwtRrVo1MXjwYPHHH38UepxXPbS9tlfx9/cXAIStrW2BefeFECImJkb85z//EQ0bNhQVK1YUVlZWolatWiI4OFjcvXu3SOd4eR0LbcaMGaPO//LXSAgh8vPzxdy5c4WHh4ewsLAQtWvXFqtWrRK3bt0qdB2Lf/+cqxT2c13Y917V/s6dO2Lw4MHCwcFBWFlZiY4dO4oTJ05oPUd+fr5Yt26d6NChg7C3t1f/Hnbv3l189913Ij09Xd32VT/Tr5OXlyeWLVsmGjVqJCwtLYWdnZ3w9fUVe/bs0em1F1XHjh0FANG8eXOt+58/fy6mT58uPD09haWlpahVq5b47LPPRG5urtZza1sv4mWF/U2JiIgQHTp0EHZ2dqJixYqiZ8+e4uzZs1rbv/z7fvz4ceHj4yOsra1FxYoVxbBhw7T+/L4q1+HDh0WfPn1E5cqVhbm5uXBxcRHt2rUTn332mfpYubm54ssvvxRdu3YV7u7uwsLCQjg7OwtfX98Ca+cQGRKZEFr6z4mIiIiIiHTAeyyIiIiIiKjYWFgQEREREVGxsbAgIiIiIqJiY2FBRERERETFxsKCiIiIiIiKjYUFEREREREVGxfIk4BSqcT9+/dhZ2cHmUwmdRwiIiIiIq2EEHj+/Dnc3Nw0FvPUhoWFBO7fvw8PDw+pYxARERERFUlCQgLc3d1f2YaFhQTs7OwAvPgG2dvbS5zGgGVkAG5uLz6+fx+wsZE2DxEREZGRSUtLg4eHh/r69VVYWEhANfzJ3t6ehcWrmJr+38f29iwsiIiIiCRSlOH7vHmbiIiIiIiKjYUFEREREREVGwsLIiIiIiIqNhYWRERERERUbCwsiIiIiIio2FhYEBERERFRsbGwICIiIiKiYmNhQURERERExcbCgoiIiIiIio2FBRERERERFRsLCyIiIiIiKjYzqQMQERGR4VMoFIiKikJSUhJcXV3h4+MDU1NTqWMRkQFhYUFERESvFB4ejsmTJ+PevXvqbe7u7li1ahUCAgIkTEZEhoRDoYiIiKhQ4eHhGDRokEZRAQCJiYkYNGgQwsPDJUpGRIaGhQURERFppVAoMHnyZAghCuxTbZsyZQoUCkVpRyMiA8TCgoiIiLSKiooq0FPxMiEEEhISEBUVVYqpiMhQsbAgIiIirZKSkvTajojKNxYWREREpJWrq6te2xFR+cbCgoiIiLTy8fGBu7t7oftlMhk8PDzg4+NTiqmIyFCxsCAiIiKtTE1NMXfuXK37ZDIZAGDlypVcz4KIALCwICIioldo2bIlatSoAQsLC43tcrkcO3fu5DoWRKTGwoKIiIgK1axZM9y8eRP37t1DREQEli5dCgB4/vw5/Pz8pA1HRAaFhQURERG9kkwmQ+XKleHn54cZM2agSZMmUCgUXByPiDSwsCAiIqICnj9/jq+//hppaWkF9g0bNgwAEBISUtqxiMiAsbAgIiKiAr7//nvMmDED3bp1K7BPVVhERERwDQsiUmNhQURERBqys7OxfPlyAMD48eML7Pf09ETbtm0hhMDOnTtLOx4RGSgWFkRERKRh06ZNSE5ORrVq1TB8+HCtbTgcioj+jYUFERERqeXn5+PLL78EAMycORPm5uZa2w0ZMgQymQypqanIyMgozYhEZKDMpA5AREREhiM0NBS3b99GlSpVMHbs2ELbubq64vr16/Dy8lIvlkdExo2FBREREQEAlEollixZAgCYMmUKrKysXtne29u7NGIRURnBoVBEREQE4MUUs40bN4ajoyM++OCDIj8vMzMTz549K7lgRFQmsLAgIiIiAIBcLse2bdsQHx8PuVxepOcsX74czs7OWLlyZcmGIyKDx8KCiIiINNjb2xe5bZUqVZCeno6QkBAIIUowFREZOhYWREREhGXLluHatWs6P69fv36oUKECrl27hri4OP0HI6Iyg4UFERGRkfvzzz8xc+ZMNG7cGE+ePNHpuXZ2dujduzcArmlBZOxYWBARERm5xYsXAwACAwNRqVIlnZ+vWizvl19+gVKp1Gs2Iio7WFgQEREZsYsXL2LPnj2QyWT46KOP3ugYPXv2hJ2dHe7evYuYmBg9JySisoKFBRERkRFTrbIdEBCAunXrvtExrKys0L9/fwAcDkVkzLhAHhERkZG6deuWuhCYPXt2sY41btw41KlTB4GBgfqIRkRlEAsLIiIiI7V06VIoFAp069YNLVq0KNaxfHx84OPjo6dkRFQWcSgUERGRkapevTocHByK3VtBRASwsCAiIjJas2bNQkJCAjp27KiX4+Xn5yM0NBSBgYHIzc3VyzGJqOxgYUFERGTEbGxsIJPJ9HIsmUyGadOmITQ0FIcOHdLLMYmo7JC8sIiMjESfPn3g5uYGmUyG3bt3q/fl5eXho48+QqNGjWBjYwM3Nze8++67uH//vsYx/Pz8IJPJNB6qObVVUlJSEBQUBLlcDrlcjqCgIDx79kyjzd27d9GnTx/Y2NjAyckJwcHBBd5xuXDhAnx9fWFlZYWqVati4cKFEELo9WtCRERUkv73v/9h3759ev//ZWpqiiFDhgAAQkND9XpsIjJ8khcWGRkZaNKkCdasWVNgX2ZmJmJjY/Hpp58iNjYW4eHhuHbtGvr27Vug7bhx45CUlKR+rFu3TmP/8OHDERcXh4MHD+LgwYOIi4tDUFCQer9CoUCvXr2QkZGBEydOIDQ0FGFhYZg+fbq6TVpaGrp06QI3NzecPn0aq1evxrJly7B8+XI9fkWIiIhKTnp6OqZMmYLevXvjt99+0/vxVW/s7d69G5mZmXo/PhEZMGFAAIhdu3a9ss1ff/0lAIg7d+6ot/n6+orJkycX+pxLly4JACImJka9LTo6WgAQV65cEUIIsX//fmFiYiISExPVbUJCQoSlpaVITU0VQgjx7bffCrlcLrKzs9VtFi9eLNzc3IRSqSzy60xNTRUA1MelQqSnCwG8eKSnS52GiKhcWL58uQAgvL29RV5ent6Pr1QqhaenpwAgtm/frvfjE1Hp0uW6VfIeC12lpqZCJpOhYsWKGtu3bt0KJycnNGjQADNmzMDz58/V+6KjoyGXy9GmTRv1trZt20Iul+PUqVPqNg0bNoSbm5u6Tbdu3ZCTk4OzZ8+q2/j6+sLS0lKjzf3793H79u1CM+fk5CAtLU3jQUREVNpycnLw9ddfAwA++ugjmJnpf9b5l4cjc7E8IuNSpgqL7OxszJo1C8OHD4e9vb16+4gRIxASEoJjx47h008/RVhYGAICAtT7k5OTUaVKlQLHq1KlCpKTk9VtnJ2dNfY7ODjAwsLilW1Un6vaaLN48WL1vR1yuRweHh46vnL9UCgUOHbsmPprpVAoJMlBRETS+N///ofExET1PYslRbVI3v79+5Gamlpi5yEiw1JmFsjLy8vDsGHDoFQq8e2332rsGzdunPrjhg0bolatWmjZsiViY2PRvHlzANA644UQQmP7m7QR///Gt1fNqDF79mxMmzZN/XlaWlqpFxfh4eGYPHky7t27p97m7u6OVatWaRRhRERUPikUCnz55ZcAgOnTp2v0vutbo0aNUL9+fdjb2+P+/fuQy+Uldi4iMhxlorDIy8vDkCFDEB8fj6NHj2r0VmjTvHlzmJub4/r162jevDlcXFzw4MGDAu0ePXqk7nFwcXHBn3/+qbE/JSUFeXl5Gm3+3TPx8OFDACjQk/EyS0vLEv0D/jrh4eEYNGhQgdk/EhMTMWjQIOzcuZPFBRFRObdz507cuHEDjo6OeP/990v0XDKZDH/99RdsbGxK9DxEZFgMfiiUqqi4fv06jhw5gkqVKr32Of/88w/y8vLg6uoKAGjXrh1SU1Px119/qdv8+eefSE1NRfv27dVtLl68iKSkJHWbQ4cOwdLSEi1atFC3iYyM1JiC9tChQ3Bzc4Onp6c+Xq7eKRQKTJ48WeuUgqptU6ZM4bAoIqJyrmLFimjUqBGCg4Nha2tb4udjUUFkfGRC2xVnKUpPT8eNGzcAAM2aNcPy5cvh7+8PR0dHuLm5YeDAgYiNjcXevXs1egUcHR1hYWGBmzdvYuvWrejZsyecnJxw6dIlTJ8+HVZWVjh9+jRMTU0BAD169MD9+/fV09C+//77qF69unqqPYVCgaZNm8LZ2RlLly7F06dPMWrUKPTv3x+rV68G8OLG8Tp16uDtt9/GnDlzcP36dYwaNQpz587VmJb2ddLS0iCXy5Gamvra3pfiOnbsGPz9/V/bLiIiAn5+fiWaRWcZGYDqn196OsB/UkRExSKEQG5ubqn2oqekpODBgweoW7duqZ2TiPRHp+vWkpucqmgiIiIEgAKPkSNHivj4eK37AIiIiAghhBB3794VHTt2FI6OjsLCwkJ4e3uL4OBg8eTJE43zPHnyRIwYMULY2dkJOzs7MWLECJGSkqLR5s6dO6JXr17CyspKODo6iokTJ2pMLSuEEH///bfw8fERlpaWwsXFRcyfP1+nqWaFKN3pZrdt21bo1/Dlx7Zt20o8i8443SwRUZkWFhYmzM3Nha+vr9RRiOgN6XLdKnmPhTFij0URsceCiKjYYmJiEB0djffff7/UhyfdvXsX1atXh0wmQ0JCAqpWrVqq5yei4tPlutXg77Gg4vHx8YG7u3uhs1bJZDJ4eHjAx8enlJMREVFpWLBgAaZNm4ZPPvmk1M9drVo1vPXWWxBCYPv27aV+fiIqXSwsyjlTU1OsWrUKQMEpcVWfr1y5Un0vChERlR+xsbE4ePAgTE1NMWnSJEkycLE8IuPBwsIIBAQEYOfOnQW6oN3d3TnVLBFRObZ48WIALy7uvby8JMkwaNAgmJiY4PTp07h586YkGYiodLCwMBIBAQG4ffu2ejXU/v37Iz4+nkUFEVE5dfXqVYSFhQEAZs2aJVkOZ2dndOrUCQDwyy+/SJaDiEoeCwsjYmpqqr6ROycnh8OfiIjKsS+//BJCCPTr1w8NGzaUNItqOBTvsyAq38rEytukP926dcNvv/3G+cSJiMqxu3fv4n//+x8AYPbs2RKnedFrnpGRgcGDB0sdhYhKEAsLI1OtWjVUq1ZN6hhERFSC8vPz0a9fP6SmpqJNmzZSx0HFihUlu3mciEoPCwsiIqJyxsvLCzt37kReXp7UUYjIiPAeCyO0f/9+fPHFF7h8+bLUUYiIqASZm5tLHUHD//73P3Tq1AlnzpyROgoRlQAWFkbom2++wccff4xTp05JHYWIiPQoNTUVwcHBuHXrltRRtNq/fz+OHj3KNS2IyikWFkZINZe5of7jISKiN/Ptt99i9erV6N+/P4QQUscpQDU71C+//AKlUilxGiLSNxYWRsjb2xsAuFAREVE5kpmZiRUrVgAAZs6cCZlMJnGigrp37w65XI7ExEScOHFC6jhEpGcsLIwQCwsiovJnw4YNePToETw9PdU9A4bG0tJSvTBraGioxGmISN9YWBghVWHBoVBEROVDXl4eli5dCuBFb4Wh3bT9MlXRs2PHDs5aRVTOsLAwQjVq1AAAPH36FM+ePZM2DBERFdu2bdtw9+5dODs7Y/To0VLHeaW3334blStXxuPHj3H06FGp4xCRHrGwMEK2trZwdnYGwF4LIqKyTqlUYsmSJQCAqVOnwsrKSuJEr2ZmZoZhw4ahS5cusLa2ljoOEekRF8gzUjt27ICjoyNq1aoldRQiIiqGnJwcBAQEYOvWrZgwYYLUcYpk1apVBnlzOREVj0wY4nx05VxaWhrkcjlSU1Nhb28vdRzDlZEB2Nq++Dg9HbCxkTYPEZEBUygUMDU1lToGEZUzuly3cigUERFROVAWi4rExETs27dP6hhEpCcsLIzU7du3sXjxYixbtkzqKERE9IZmzJiBw4cPG+RieK9z5coVeHh4YMiQIcjIyJA6DhHpAQsLI5WYmIg5c+ZgzZo1UkchIqI3cOrUKXz99dfo1asXkpOTpY6jszp16sDLywuZmZn49ddfpY5DRHrAwsJIeXl5AQASEhKQm5srcRoiItLV4sWLAQDvvvsuXF1dJU6jO5lMhsDAQABcLI+ovGBhYaRcXFxgZWUFpVKJO3fuSB2HiIh08Pfff2Pv3r2QyWT473//K3WcN6ZaLO/AgQNISUmROA0RFRcLCyMlk8nUvRY3b96UOA0REelCtW7F4MGDUbt2bYnTvLkGDRqgUaNGyMvLw65du6SOQ0TFxMLCiHl7ewPgInlERGXJzZs38csvvwAAZs+eLXGa4lP1WnA4FFHZx8LCiKkKC/ZYEBGVHV999RWUSiV69uyJpk2bSh2n2IYOHQoAOHnyJJ4/fy5xGiIqDhYWRkw1FIo9FkREZYevry/q1q1bLnorgBdvcu3Zswf379+HnZ2d1HGIqBi48rYEDGXl7QcPHuDhw4fw8vKCjSGuas2Vt4mItFIqlTAx4XuDRFTydLluNSulTGSAnJ2d4ezsLHUMIiLSUXkuKlg0EZVd/M0lIiIqA9auXYs1a9YgKytL6iglYufOnWjZsiW+/vprqaMQ0RtiYWHkfvjhB7z//vv4559/pI5CRESFeP78OT799FNMmjQJ+/btkzpOiXjy5AnOnj3L2aGIyjAWFkYuNDQU69evx7lz56SOQkREhVi3bh1SUlJQu3ZtDBgwQOo4JWLgwIEwNTVFbGwsrl27JnUcInoDLCyMHBfJIyIybNnZ2Vi+fDkA4KOPPoKpqanEiUqGk5MTunTpAoBrWhCVVSwsjBzXsiAiMmybN29GUlIS3N3d8c4770gdp0QFBgYCAEJCQsBJK4nKHhYWRo5rWRARGa78/Hx8+eWXAICZM2fCwsJC4kQlq3///rC0tMSVK1fw999/Sx2HiHTEwsLIsceCiMhwbd++HfHx8XBycsJ7770ndZwSZ29vj169egHgcCiisojrWBg5VWGRnJyMjIwMw1woj4jISNWrVw99+/ZFmzZtYG1tLXWcUvHuu+9CJpPBz89P6ihEpCOuvC0BQ1l5W8XBwQHPnj3DxYsX0aBBA6nj/B+uvE1EBAAQQkAmk0kdg4iMEFfeJp38+eefcHV1hZ2dndRRiIhICxYVRFQW8B4LQu3atVlUEBEZkOPHjyM4OBh3796VOopkrl69iiVLlkChUEgdhYiKiD0WREREBmbRokU4cuQIFAoF1q5dK3WcUpefn4/27dvj6dOnaN26Nd5++22pIxFREbDHgvD3339j/Pjx+Pjjj6WOQkRk9E6fPo0jR47A1NQUM2fOlDqOJMzMzDBw4EAAnB2KqCxhYUF4/Pgx1q1bh507d0odhYjI6C1evBgAMGLECHh6ekobRkLDhg0DAISFhSE3N1fiNERUFCwsSL1IXnx8PMeyEhFJ6NKlS9i1axcA4KOPPpI4jbR8fX3h4uKCp0+f4vDhw1LHIaIiYGFB8PDwgLm5OfLy8pCYmCh1HCIio6VaZXvAgAGoX7++xGmkZWpqiiFDhgDgcCiisoKFBcHU1FTd3c4VuImIpHH79m1s3boVADB79myJ0xgG1XCo3bt3IysrS+I0RPQ6LCwIwP+twH3r1i2JkxARGScbGxtMnToVAwYMQKtWraSOYxDatm2L6tWrQyaT4eLFi1LHIaLX4HSzBOD/7rNgjwURkTQqV66MpUuXQgghdRSDIZPJsG/fPnh7e6NChQpSxyGi12BhQQD+r8fiwYMHEichIjJuXGVbU4MGDaSOQERFxKFQBAB47733kJqaip9++knqKERERuXZs2cYMGAAjh8/zt6KVxBCIC0tTeoYRPQKkhcWkZGR6NOnD9zc3CCTybB79271vry8PHz00Udo1KgRbGxs4ObmhnfffRf379/XOEZOTg4mTZoEJycn2NjYoG/fvrh3755Gm5SUFAQFBUEul0MulyMoKAjPnj3TaHP37l306dMHNjY2cHJyQnBwcIG5sy9cuABfX19YWVmhatWqWLhwYbn4R2Bvbw97e3upYxARGQWFQoFjx44hJCQE06dPx+7duzFx4kSpYxmsY8eOoU6dOggMDJQ6ChG9guSFRUZGBpo0aYI1a9YU2JeZmYnY2Fh8+umniI2NRXh4OK5du4a+fftqtJsyZQp27dqF0NBQnDhxAunp6ejdu7fGmgzDhw9HXFwcDh48iIMHDyIuLg5BQUHq/QqFAr169UJGRgZOnDiB0NBQhIWFYfr06eo2aWlp6NKlC9zc3HD69GmsXr0ay5Ytw/Lly0vgK0NEROVReHg4PD094e/vj+HDh2PDhg0AgM6dO3MYVCFcXFxw/fp1HDp0CE+ePJE6DhEVRhgQAGLXrl2vbPPXX38JAOLOnTtCCCGePXsmzM3NRWhoqLpNYmKiMDExEQcPHhRCCHHp0iUBQMTExKjbREdHCwDiypUrQggh9u/fL0xMTERiYqK6TUhIiLC0tBSpqalCCCG+/fZbIZfLRXZ2trrN4sWLhZubm1AqlUV+nampqQKA+riGYs6cOaJbt27i4sWLUkd5IT1dCODFIz1d6jRERMUWFhYmZDKZAFDgIZPJRFhYmNQRDVbTpk0FALFu3TqpoxAZFV2uWyXvsdBVamoqZDIZKlasCAA4e/Ys8vLy0LVrV3UbNzc3NGzYEKdOnQIAREdHQy6Xo02bNuo2bdu2hVwu12jTsGFDuLm5qdt069YNOTk5OHv2rLqNr68vLC0tNdrcv38ft2/fLjRzTk4O0tLSNB6G6NixY/j9999x6dIlqaMQEZU7CoUCkydPfuXw2SlTpmj0ttP/UQ2D4mJ5RIarTBUW2dnZmDVrFoYPH66+HyA5ORkWFhZwcHDQaOvs7Izk5GR1mypVqhQ4XpUqVTTaODs7a+x3cHCAhYXFK9uoPle10Wbx4sXqezvkcjk8PDx0edmlhlPOEhGVnKioqAL3/71MCIGEhARERUWVYqqyY+jQoQBevAn273sticgwlJnCIi8vD8OGDYNSqcS333772vZCCI2xqtrGreqjjeqdp1eNi509ezZSU1PVj4SEhNfml4JqylkWFkRE+peUlKTXdsamevXqaN++PYQQ2LFjh9RxiEiLMlFY5OXlYciQIYiPj8fhw4c1Zi9ycXFBbm4uUlJSNJ7z8OFDdW+Ci4uL1vUZHj16pNHm370OKSkpyMvLe2Wbhw8fAkCBnoyXWVpaqmddMuTZl1Q9Flx9m4hI/1xdXfXazhgNGzYMABASEiJxEiLSxuALC1VRcf36dRw5cgSVKlXS2N+iRQuYm5vj8OHD6m1JSUm4ePEi2rdvDwBo164dUlNT8ddff6nb/Pnnn0hNTdVoc/HiRY13ig4dOgRLS0u0aNFC3SYyMlJjCtpDhw7Bzc0Nnp6een/tpY09FkREJcfHxwfu7u6F9nDLZDJ4eHjAx8enlJOVHYMHD8bo0aPx2WefSR2FiLSQiVfdRVYK0tPTcePGDQBAs2bNsHz5cvj7+8PR0RFubm4YOHAgYmNjsXfvXo1eAUdHR1hYWAAAJkyYgL1792LTpk1wdHTEjBkz8OTJE5w9exampqYAgB49euD+/ftYt24dAOD9999H9erV8dtvvwF4cVNd06ZN4ezsjKVLl+Lp06cYNWoU+vfvj9WrVwN4ceN4nTp18Pbbb2POnDm4fv06Ro0ahblz52pMS/s6aWlpkMvlSE1NNajei6SkJLi5ucHExARZWVnqr69kMjIAW9sXH6enAzY20uYhIiqmzZs3Y/To0QCgcRO3qtjYuXMnAgICJMlGRKSNTtetJTY3VRFFRERonXZv5MiRIj4+Xus+ACIiIkJ9jKysLDFx4kTh6OgorKysRO/evcXdu3c1zvPkyRMxYsQIYWdnJ+zs7MSIESNESkqKRps7d+6IXr16CSsrK+Ho6CgmTpyoMbWsEEL8/fffwsfHR1haWgoXFxcxf/58naaaFcJwp5tVKpXC2tpaODo6qqfzlRSnmyWicmbYsGHC3t5eODk5afxP8/Dw4FSzRGSQdLlulbzHwhgZao8FADx//hx2dnZSx3iBPRZEVI6EhYVh0KBBMDU1xYkTJ5CdnY2kpCS4urrCx8dH3cNOr3f27Fls27YN77//PurUqSN1HKJyTZfrVrNSykRlhMEUFURE5cijR48wYcIEAMBHH32Etm3bSpyobJs/fz727t0LGxsbLFy4UOo4RPT/GfzN20RERGXdxIkT8ejRIzRs2BBz586VOk6Z9/JieRx4QWQ4WFiQhsjISPTo0QOTJk2SOgoRUbmwY8cObN++Haampti0aRMsLS2ljlTm9e3bF1ZWVrh+/TpiY2OljkNE/x8LC9KQkZGBgwcP4vjx41JHISIq8x4+fIgPPvgAADBnzhz19OVUPLa2tujTpw+AF70WRGQYWFiQBtVaFrdu3WL3MhFRMVlaWqJPnz5o3LgxPvnkE6njlCuqxfJ++eUXKJVKidMQEWAA61gYI0OeFSonJwdWVlYQQiA5OfmVK4qXOM4KRUTlRHp6OmxVf89IL7Kzs+Hs7Iy0tDRERUXhrbfekjoSUbmky3UreyxIg6WlJTw8PABwBW4iojeVmZmp0evLokL/KlSogAEDBsDZ2RlJSUlSxyEisLAgLV4eDkVERLoRQuCdd95B7969kZiYKHWccm3FihVITEzE4MGDpY5CRGBhQVp4eXkBYI8FEdGbCA0Nxa5du3Do0CE8fvxY6jjlmoODAxcWJDIgLCyoAG9vb1SsWBEKhULqKEREZUpycjImTpwIAJg7dy6aNGkicSLjoFAocO3aNaljEBk93rwtAUO+eRt48QfaIN4B4s3bRFSGCCEwYMAA7NmzB82bN0dMTAzMzc2ljlXuxcfH46233kJGRgYePHjAdUKI9Iw3b1OxGERRQURUxmzduhV79uyBubk5Nm3axKKilFSvXh0AkJqaioMHD0qchsi4sbAgIiIqpvv37yM4OBgAMG/ePDRq1EjiRMbDxMQEQ4cOBcDF8oikxsKCtBo+fDjq1auHS5cuSR2FiMjgPX78GE5OTmjRogU++ugjqeMYncDAQADAr7/+ioyMDInTEBkvFhak1bVr13DlyhVcv35d6ihERAavcePGiIuLQ3h4OMzMzKSOY3RatmwJb29vZGZm4rfffpM6DpHRYmFBWqmmnOVaFkREhXt5/hNra2tUq1ZNwjTGSyaTYdiwYQA4HIpISiwsSCvVInlcy4KISDshBIYOHYoVK1Zwem4DoCosDhw4gGfPnkkbhshIsbAgrbhIHhHRq/3888/YsWMHZs2axd5dA9CwYUMsWrQIkZGRkMvlUschMkocCEpaqXos+M+SiKigxMRETJ48GQCwcOFC1KpVS+JEBAAff/yx1BGIjBp7LEgrVWERHx/PLn4iopcIITBu3DikpqaidevWmD59utSRiIgMAgsL0srd3R1OTk5o2LAhx6oSEb1k48aNOHDgACwtLbFp0ybOAmVgTp8+jffffx8///yz1FGIjA7/GpJWpqamePTokdQxiIgMSkJCAqZOnQoA+Oyzz1CvXj2JE9G/RUZGYv369bhy5QreffddqeOQgVEoFIiKikJSUhJcXV3h4+MDU1NTqWOVG+yxICIiKqKTJ08iKysLbdu2xbRp06SOQ1qoVuGOiorCvXv3JE5DhiQ8PByenp7w9/fH8OHD4e/vD09PT4SHh0sdrdwoUmFx9+5d5OXlvbbd8+fPcfTo0WKHIiIiMkTDhg3D6dOnsXnzZr7LaaDc3d3h4+MDAPjll18kTkOGIjw8HIMGDSpQbCYmJmLQoEEsLvSkSIVFjRo1cO7cOfXnSqUStWvXxqVLlzTaXbp0CV26dNFvQpLM7t27Ub9+fYwaNUrqKEREBqNJkyaoXbu21DHoFQIDAwFwsTx6QaFQYPLkyRoLWqqotk2ZMoWT1ehBkQqLf38jhBC4ceMGsrOzSyQUGQaZTIbLly/jn3/+kToKEZFkhBAIDg7WeIONDNvAgQNhYmKCM2fOYMWKFTh27BgvGo3Y64bFCSGQkJCAqKioUkxVPvEeCyoUF8kjIgLWr1+P1atXw8/PD6mpqVLHoSI4ceIEzM3NAQDTpk3jWHojlJqair1792L69OlFHnmRmJhYsqGMAGeFokKpCouUlBSkpKTAwcFB4kRERKXr9u3b6nUq5s+fzxWdywDVWPp/j7ZQjaXfuXMnAgICJEpHJe3q1asICgrC2bNnoVQqdXruf//7XyQnJ2P06NFwdHQsoYTlG3ssqFA2NjZwdnYGwBW4icj4KJVKjB07Funp6XjrrbcQHBwsdSR6DY6lNx6ZmZk4cuQIPv74Y6xfv1693dXVFbGxsVAqlahZsybGjRuHLVu2wNXVFTKZrNDjyWQy3L9/HzNmzEDVqlUxZswY5Ofnl8ZLKVeK3GORlpaGp0+fAoD6C/3yNgDsIi6HvL298eDBA9y8eRMtWrSQOg4RUalZt24djh49CisrK2zcuJGzQJUBuoyl9/PzK71gVGw5OTmIiYnB0aNHERERgT///BO5ubkAgLZt22LcuHEAAHt7e+zevRtNmjSBh4eH+vlWVlYYNGgQZDKZRuGpKja2bNmCzMxMrF27FnFxcbhz547G4pcKhYJ/A4qgyIVFt27dCmzr1KmTXsOQ4fH29sapU6d4nwURGZX4+HjMnDkTALBkyRLUrFlT4kRUFElJSXptR9IRQqgv+oUQqFWrFhISEjTaVK1aFf7+/gVmJO3du3eB4wUEBGDnzp2YPHmyRvHp7u6OlStXqofHjR07FjExMRpFRHJyMpo1a4Z33nkHEyZMUA8Vp4KKVFjMmzevpHOQgWrUqBGaNm3KccVEZFS+/fZbZGRkoGPHjpg4caLUcaiIXF1di9SuSpUqJZyEdJWfn4+zZ88iIiICERERuH37Nq5cuQKZTAaZTIbWrVsjNzcX/v7+6kfNmjVfObzp3wICAtCvX79Xrrwtk8nQrl07jedt27YNycnJWLZsGb7++mt0794dH3zwAXr06MFejH+RCW0DEalEpaWlQS6XIzU1Ffb29lLHMVwZGYCt7YuP09MBGxtp8xCR0VAqlVizZg169eoFb29vqeNQESkUCnh6eiIxMVHrfRYqnTt3RkhICJycnEoxXfmkUCheeaH+KpcuXcL+/fsRERGBqKgoPH/+XGP/1atX1WvGpKWlwc7OTqdCQl8UCgX279+Pb7/9FgcPHlRv9/T0xPjx4zFhwoRyfT2ny3UrCwsJsLAoIhYWRESkI9WsUAAKjKUXQsDCwgK5ubnw8PDAjh070KZNG6milnnh4eFahxatWrWqwMxbSqUSFy5cQJ06dVChQgUAL6YCXrFihbqNg4MDfH191T0SDRo0gImJYc0zdOPGDaxbtw4bNmzA06dPUaFCBSQmJpbrWaR0uW4t0ncrMTFR66IhUVFRaNu2LWxtbVGnTh38/PPPb5aYDJ4Q4pXv/hARlXVKpRKrVq1CRkaG1FGoGFRj6atWraqx3d3dHWFhYTh79ixq166NhIQEdO/eHWlpaRIlLdtUBdy/b5ZXTesbFhaGf/75B2vWrMHAgQNRpUoVNG3aFCdPnlS37d69O3r37o2vv/4asbGxePToEXbt2oXg4GA0atTI4IoKAKhZsyaWLl2Ke/fuYePGjZg7d65GUfHee+/hxx9/NNq/I0XqsXj//fdx5swZxMbGqrfduXMHDRo0QHZ2Nho3boyEhAQ8ffoUBw4cQNeuXUs0dFlX1nos2rZti7///hvnz59HrVq1Su/E7LEgolK0evVqBAcHo2nTpjhz5gzHTpdxrxqik5aWhjFjxmDAgAEYMWKExEnLHtWQs1fNwGViYlJgHQkbGxusWbOmyAvWlTWxsbHqGTTlcjlGjx6NCRMmqIdzlVV677GIiYnBkCFDNLZ98803yMrKQmhoKGJjYxEfH4/mzZtj1apVb56cDFJGRgaysrI4MxQRlVs3btzARx99BAAYN24ci4pywNTUFH5+fggMDISfn5/G99Te3h47duzQKCpOnz6Na9euSRG1zHndtL7Aix5ACwsLdO7cGZ9//jlOnTqFlJSUcltUAECNGjWwdOlSeHl5ITU1FStXrkSdOnXQtWtX7N692yjWxSjyUKj69etrbDt48CBq1qypHsdoa2uLDz/8EGfPntV/SpKUalo1FhZEVB4plUqMHj0aWVlZ8Pf3x/jx46WORKXg5ZuAHz58iP79+6Nly5YIDw+XMFXZUNTpetevX4/Dhw9jzpw5aNeuHczNzUs4mbQcHBwwY8YMXL9+HQcOHECfPn0gk8lw+PBhDBgwAHv37pU6YokrUmGRlZWlMd3o8+fPceXKFXTs2FGjnZeXl8aCeVQ+qGZE4erbRFQeffPNNzhx4gRsbW2xYcMGgxzXTSVLCIGaNWvi+fPnGDhwIGbOnGkU7y6/CSFEkXt2qlWrVsJpDJOJiQm6d++OX3/9Fbdu3cKsWbPQpEkT9OrVS91m9+7diIqKKnf3rxbpr6eHhweuXr2q/jw6OhpCCLRs2VKj3b8LECofVIUFeyyIqLy5fv065syZAwBYunQpPD09pQ1EknB2dsaRI0cwY8YMAMCyZcvQqVMnJCcnS5zMsFy7dg3du3fH/PnzX9lOJpPBw8MDPj4+pRPMgHl6emLx4sU4d+6cuscmPz8fwcHB6NixI5o0aYLvv/++wFS7ZVWRCotOnTrh66+/xt27d5GVlYXly5fD1NQUPXv21GgXFxensXw6lQ/ssSCi8mrq1KnIyspCp06d8J///EfqOCQhc3NzLF26FGFhYbCzs0NkZCSaNWumdVZMY3To0CE0bNgQhw4dgoWFBQYNGqRevO5lqs9XrlzJe5Ve8vLXKT09Hd26dYOVlRUuXLiACRMmoGrVqpg0aRIuXbpU4LkKhQLHjh1DSEgIjh07BoVCUZrRdSOKICEhQTg5OQkTExNhZmYmZDKZmDBhQoF2zZo1E5MmTSrKIY1aamqqACBSU1OljlIkV69eFQCEjY2NUCqVpXfi9HQhgBeP9PTSOy8RGY3ExEQxZMgQcfv2bamjkAG5evWqaNiwoQAghgwZInUcg5Ceni48PDxEjx49xPXr14UQQoSFhQl3d3cBQP3w8PAQYWFhEqctG54+fSpWrFghatWqpfE1XLx4sbqNtq+xu7t7qX6NdbluLfICeYmJifjhhx/w9OlTtGvXDsOHD9fYn5ycjM8//xzvvvsuWrVqpa+6p1wqa9PN5ubmonXr1qhRowa2bNkCm9Ka9pXTzRIRkUQyMjKwcOFCfPzxx2Xif7W+Xbt2DevWrcPSpUvV9x0lJyfD2dlZ49334qy8TS8olUocPXoU3377Lfbs2YOYmBi0atVKvVbIvy/VVV//nTt3FliIsCRw5W0DV9YKC8mwsCCiEqC6EPLz85M6CpUhQgjMmjUL7777Lho0aCB1nBKTmZmJzz//HMuWLUNubi5+/PFHjB07VupYRkNVoL1urRCZTAZ3d3fEx8eXeCGn93UsiIiIyouVK1fC398fkyZNkjoKlSHr16/HV199hdatW2Pbtm1Sx9E7IQR27dqFevXq4YsvvkBubi66d+9eYAZQKlmurq4AXr9WiBACCQkJBncPkFlRGo0ZM6bIB5TJZPjpp5/eOBAZLiEEsrOzYWVlJXUUIqI3cuXKFXz88ccAgCZNmkichsqSAQMGYMeOHThy5AhGjBiB6OhofP3117CwsJA6WrFdv34dwcHBOHjwIIAX08SuWrUK/fr1K3BzNpWOoq4VUtR2paVIQ6FMTExgYWFRpIVNZDIZ0tLS9BKuvCqLQ6HWr1+PqVOnYuDAgdi8eXPpnJRDoYhIjxQKBd566y3ExMSgW7duOHDgAC+aSCcKhQLz58/HokWLAABt2rTBjh07yvyMmG+99RZOnjwJCwsLzJw5E3PmzIG1tbXUsYzasWPH4O/v/9p2ERERJT6sU+9DoWxtbWFiYoJ+/fphz549eP78eaEPFhXlk1wuR0ZGBteyIKIya/ny5YiJiYG9vT1+/PFHFhWkM1NTU3z22WfYu3cvKlasiD///BPNmzdHRESE1NF0IoTQmLJ0+fLl6N69Oy5cuIBFixaxqDAAPj4+cHd3L/TvlKGuFVKkwiI5ORnfffcd7t69iy5dusDb2xuLFi165dgvKl+8vLwAcJE8IiqbLl++jE8//RTAi3ss3N3dJU5EZVmvXr0QGxuLZs2aISUlpUzNgnTz5k306dMHCxYsUG9r3bo1Dhw4gNq1a0uYjF5mamqKVatWAUCZWiukSIWFtbU1Ro4cicjISFy+fBmDBw/Gd999B09PT3Tv3h3bt29HXl7eGwWIjIxEnz594ObmBplMht27d2vsDw8PR7du3eDk5ASZTIa4uLgCx/Dz81Mv0qJ6DBs2TKNNSkoKgoKCIJfLIZfLERQUhGfPnmm0uXv3Lvr06QMbGxs4OTkhODgYubm5Gm0uXLgAX19fWFlZoWrVqli4cGG5W45dG9UiecnJycjIyJA4DRFR0SmVSowaNQo5OTno2bMnRo0aJXUkKgdq1KiBU6dOYf/+/Ro3OCuVSglTFS4rKwvz5s1DgwYNsG/fPqxcuRKpqalSx6JXCAgIwM6dO1G1alWN7e7u7qU21ayudJ4Vqnbt2liyZAkSEhKwe/duWFlZYcSIEXjnnXfeKEBGRgaaNGmCNWvWFLq/Q4cOWLJkySuPM27cOCQlJakf69at09g/fPhwxMXF4eDBgzh48CDi4uIQFBSk3q9QKNCrVy9kZGTgxIkTCA0NRVhYGKZPn65uk5aWhi5dusDNzQ2nT5/G6tWrsWzZMixfvvyNXntZ4uDggIoVKwIA4uPjpQ1DRKQDExMTfPzxx6hXrx5++OEHDoEivalQoQK6du2q/vzSpUto2rQpYmNjJUxV0N69e9GgQQMsXLgQOTk56NKlC06fPg25XC51NHqNgIAA3L59GxEREdi2bRsiIiIQHx9vkEUFgKKtvK1NSkqKWLNmjWjWrJmQyWTivffee9NDqQEQu3bt0rovPj5eABDnzp0rsM/X11dMnjy50ONeunRJABAxMTHqbdHR0QKAuHLlihBCiP379wsTExORmJiobhMSEiIsLS3VKw1+++23Qi6Xi+zsbHWbxYsXCzc3N51WpC5rK2+rtGjRQgAQu3fvLp0TcuVtItIjhUIhdQQq53r27CkACEtLS/Hjjz9KHUfcvXtX9OnTR2PF5h07duh0zUKky3Wrzj0Whw8fRmBgINzc3DBnzhy0bNkSp06dwvr16/VX7byBrVu3wsnJCQ0aNMCMGTPw/Plz9b7o6GjI5XK0adNGva1t27aQy+U4deqUuk3Dhg3h5uambtOtWzfk5OTg7Nmz6ja+vr6wtLTUaHP//n3cvn27hF+h9HifBRGVJfn5+UhOTlZ/rlo9mKikbNmyBb1790ZOTg7ee+89jB07FllZWZLlUSgUOHLkCMzMzPDRRx/h8uXLGDRoEHvtqMQU6a/s7du3MW/ePHh6eqovpL/77jskJSXhhx9+QNu2bUs65yuNGDECISEhOHbsGD799FOEhYVpdBElJyejSpUqBZ5XpUoV9T8d1TL1L3NwcICFhcUr26g+f/mf17/l5OQgLS1N41EWvfXWW+jbty+qV68udRQiotf66quvUL9+fezYsUPqKGQkHBwcsGfPHnz++ecwMTHBhg0b0KFDB9y6davUMpw/f179saenJzZs2IC///4bS5Ysga1qCneiElKkBfK8vb1hZ2eHoUOHYsyYMahVqxYAIDs7G9nZ2QXaOzo66jfla4wbN079ccOGDVGrVi20bNkSsbGxaN68OYCCd9QDL6Zbe3n7m7QR///G7VdV/4sXL9aYfaGsCg4ORnBwsNQxiIhe68KFC5g/fz7y8vK0/p8iKikmJiaYM2cOWrdujcDAQJw7dw4tWrRAVFQUGjZsWGLnvX37NqZMmYI9e/YgMjJSPQ3pvyezISpJReqxEEIgLS0NP/74I9q3b4/KlSu/8iG15s2bw9zcHNevXwcAuLi44MGDBwXaPXr0SN3j4OLiUqDXISUlBXl5ea9s8/DhQwAo0JPxstmzZyM1NVX9SEhIePMXR0REr5SXl4dRo0YhLy8Pffv2fePJRYiKo3PnzoiNjUXbtm3RuHFj1K1bt0TOk52djUWLFqFevXrYs2cPzMzMtM6gSVQaitRjMW/evJLOoVf//PMP8vLy4OrqCgBo164dUlNT8ddff6F169YAgD///BOpqalo3769us3nn3+OpKQk9fMOHToES0tLtGjRQt1mzpw5yM3NhYWFhbqNm5sbPD09C81jaWmpcV9GWSaEwOPHj1GpUiWOVyYig6FQKBAVFYWkpCQcOXIEsbGxcHBwwPfff8/x5CQZDw8PHD9+HM+fP4eZ2YtLrtzcXKSlpcHJyanYxz9w4AAmTZqkvvfR398fa9asQf369Yt9bKI3UrL3kb/e8+fPxblz58S5c+cEALF8+XJx7tw5cefOHSGEEE+ePBHnzp0T+/btEwBEaGioOHfunEhKShJCCHHjxg2xYMECcfr0aREfHy/27dsn6tatK5o1ayby8/PV5+nevbto3LixiI6OFtHR0aJRo0aid+/e6v35+fmiYcOGolOnTiI2NlYcOXJEuLu7i4kTJ6rbPHv2TDg7O4vAwEBx4cIFER4eLuzt7cWyZct0es1ldVYopVIpKlWqJACovz8lirNCEVERhIWFCXd3d/XMN6rHlClTpI5GVMCkSZOEu7u7iI6OLtZx/vOf/6h/1l1dXUVISAhne6ISoct1q+SFRURERIF/BgDEyJEjhRBCbNy4Uev+efPmCSFeTKXWsWNH4ejoKCwsLIS3t7cIDg4WT5480TjPkydPxIgRI4SdnZ2ws7MTI0aMECkpKRpt7ty5I3r16iWsrKyEo6OjmDhxosbUskII8ffffwsfHx9haWkpXFxcxPz583X+RS6rhYUQQtSuXVsAEEePHi35k7GwIKLXCAsLEzKZTOv/CZlMJsLCwqSOSKSWlpYm6tSpIwAIc3NzsWbNmjcuBrZs2SJMTU3F9OnTRVpamp6TEv0fXa5bZUIYwbLRBiYtLQ1yuRypqamwt7eXOo5OevTogYMHD+LHH3/E2LFjS/ZkGRmAagaL9HTAxqZkz0dEZYpCoYCnpyfu3bundb9MJoO7uzvi4+NhampayumItEtLS8PYsWOxc+dOAC8W8P3hhx9gY2OjMaTP1dUVPj4+6p/d33//Hbm5uejTpw+AF0OTb968iZo1a0r2Wsg46HLdykHypBNvb28AXMuCiKQXFRVVaFEBvLjwSkhIQFRUVCmmIno1e3t7bN++HcuXL4epqSm2bduGNm3aYPXq1fD09IS/vz+GDx8Of39/eHp6Yt26dRg0aBC6d++O999/Xz1lvUwmY1FBBqdIN28TqXCRPCIyFElJSXptR1RaZDIZpk6dipYtW2Lo0KH4559/tE7nfu/ePYwfPx4AYGpqisDAQE5GQAaNhQXpRNVjUZqL/RARaaOawU9f7YhKm4+PD06fPg1vb2/k5OQU2s7S0hJ//vknmjRpUorpiHTHoVCkE/ZYEJGh8PHxgbu7e6H7ZTIZPDw81AuFERmi69evv7KoAICcnBykpKSUUiKiN/fGPRYPHz7EnTt3kJWVVWBfx44dixWKDJeXlxd69+4Nb29v5Ofnq+flJiIqbaampli1ahUGDhxYYJ9quMjKlSt54zYZNA7po/JE56vCpKQkBAUFISIiosA+IQRkMhkUCoVewpHhsbGxwW+//SZ1DCIiAEDLli21bnd3d8fKlSsREBBQyomIdMMhfVSe6FxYTJw4EefOncOXX36Jxo0bl5sVpYmIqOzZtGkTAMDX1xfz58/XOk0nkSFTDelLTEyEthUAVNMmc0gflQU6FxbHjx/HsmXLMHr06JLIQ2WAEAJPnjxBXl4e30EhIskolUps2LABAPDee+/Bz89P2kBEb0A1pG/QoEGQyWQaxQWH9FFZo/PN26qb4ch4ffHFF6hcuTLmzp0rdRQiMmJ//PEH7ty5A7lcrvU+C6KyIiAgADt37kTVqlU1tru7u2Pnzp0c0kdlhs49FoMHD8bevXvRuXPnkshDZUC1atUAcGYoIpJWRkYGvLy80K1bN1hZWUkdh6hYAgIC0K9fv0JX3iYqC3QuLIYMGYJx48ZBqVSiT58+qFSpUoE2zZs310s4MkyccpaIDEH//v3Rt29fZGZmSh2FSC9MTU05pI/KNJnQdqfQK5iY/N/oqX+v/shZoYomLS0NcrkcqampsLe3lzqOzpKTk+Hq6gqZTIbs7GxYWFiUzIkyMgBb2xcfp6cDNjYlcx4iIiIi0kqX61adeyw2btz4xsGofHB2doa1tTUyMzNx+/Zt1K5dW+pIRGREhBDYv38/OnfuzJkJiYgMiM6FxciRI0siB5UhMpkMXl5euHjxIm7dusXCgohK1dmzZ9G7d29UrVoV8fHxMDc3lzoSERHhDWaFetm1a9cQHR2N69ev6ysPlRHe3t4AeJ8FEZW+n376CcCLtStYVBARGY43Kix27NiB6tWro169enjrrbdQt25dVK9eHTt37tR3PjJQffr0QXBwMBo3bix1FCIyIpmZmdi2bRsAYOzYsRKnISKil+k8FGr//v0YNmwYGjRogIkTJ8LNzQ2JiYnYsmULhg0bht9++w09evQoiaxkQPgPnYiksHPnTqSlpcHLy4uz5xARGRidZ4Xq0KED7O3tsW/fPo0ZooQQ6NGjB54/f46TJ0/qPWh5UtZnhSo1nBWKiP7F19cXkZGRWLRoET7++GOp4xARlXu6XLfqPBQqLi4OH3zwgUZRAby4ofeDDz7A+fPndT0klVFPnz7F6dOnoWNtSkT0Rq5fv47IyEiYmJhg1KhRUschIqJ/0XkolKmpKXJzc7Xuy8vLK1BwUPmUm5uLypUrQ6lUIikpCS4uLlJHIqJy7tChQwCA7t27o2rVqhKnISKif9O5CmjVqhW++uorZGVlaWzPycnBsmXL0KZNG72FI8NlYWEBDw8PAMCtW7ckTkNExuDDDz/EpUuXsHjxYqmjEBGRFjr3WCxYsACdOnWCl5cXBg8eDBcXFyQlJSE8PBxPnjzB0aNHSyInGSAvLy/cuXMHN2/eRPv27aWOQ0RGoF69elJHICKiQuhcWLz11ls4dOgQZs2ahbVr10IIARMTE7Rp0wYhISG8wDQi3t7eiIiI4FoWRFTiMjIyYMMJHIiIDJrOhQXwYlaO6OhoZGZmIiUlBQ4ODrC2ttZ3NjJwXl5eADgUiohKVlJSEmrWrIk+ffrg559/hoWFhdSRiIhIizcqLFSsra1ZUBgxrr5NRKVh8+bNyMzMREJCAosKIiIDVqTC4ueff0avXr1QqVIl/Pzzz69t/+677xY7GBk+FhZEVNKEEPjpp58AcGFOIiJDV6QF8kxMTBATE4PWrVu/djpZmUwGhUKht4DlUXlZIC81NRWffPIJvL29MXnyZMhkMv2egAvkERm948ePw8/PD7a2tkhKSoKt6m8CERGVCl2uW4vUYxEfHw9XV1f1x0QAIJfLsXr1aqljEFE5puqtGDp0KIsKIiIDV6TConr16lo/JiIiKimpqanYuXMnAOC9996TOA0REb2OzgvkeXl54fz581r3Xbx4UT1TEBmHtLQ0nD17FteuXZM6ChGVMyEhIcjKykL9+vW5+CoRURmg86xQt2/fRk5OjtZ92dnZuHPnTrFDUdmxePFiLFmyBB9++CHWrFkjdRwiKkcCAgKQkZEBFxcX/d/DRUREevdG080W9gf+1q1bsLOzK1YgKls4MxQRlZQqVapg+vTpUscgIqIiKlJhsXnzZmzevFn9+YQJEwrcFZ6VlYXz58/D19dXvwnJoKkKCy6SR0RERGTcinSPRWZmJh49eoRHjx5BJpPh2bNn6s9Vj7y8PAwdOhTr1q0r6cxkQFT31MTHx3OaYSLSi+zsbPUq23l5eVLHISKiIirSOhYvq1GjBnbv3o0mTZqUVKZyr7ysYwEACoUCVlZWyMvLw+3bt/U7axjXsSAySqGhoQgMDISHhwfi4+NhamoqdSQiIqOly3WrzrNCxcfHs6ggNVNTU9SoUQMAh0MRkX6o1q4YPXo0iwoiojLkjW7eVnn06BGysrIKbK9WrVpxDktljJeXF65du4abN2/C399f6jhEVIbFx8fjyJEjkMlkGD16tNRxiIhIB29UWCxatAjffPMNnjx5onU/x9obl9GjR6NLly5o166d1FGIqIzbuHEjAKBTp07w9PSUNgwREelE58Jiw4YNWLJkCWbNmoW5c+fi448/hhAC//vf/2BlZYWPPvqoJHKSARsyZIjUEYioHFAoFOrCYuzYsRKnISIiXel8j8XatWsxZ84czJ49GwAwYMAALFq0CFeuXIGdnR0eP36s95BERFT+HT58GPfu3YODgwP69+8vdRwiItKRzoXFjRs30LZtW5iYvHhqbm4uAMDKygrTp0/HDz/8oN+EZPDy8/Nx7tw57Nq1S+ooRFSG2djYwN/fH++++y4qVKggdRwiItKRzkOhzMxePEUmk8He3h737t1T73NyckJiYqL+0lGZkJOTg+bNmwMAnj59CgcHB4kTEVFZ5OPjg6NHj0KpVEodhYiI3oDOPRa1atVCQkICAKBVq1ZYv3498vLyoFAo8MMPP/BmOyNkY2MDFxcXAJxyloiKT9UjTkREZYvOf7179uyJyMhIAMDs2bNx9OhRVKxYEY6OjggLC+PN20ZKtQL3zZs3JU5CRGWNEALff/89kpOTpY5CRETFoPNQqLlz56o/fvvtt3Hq1CmEhoZCJpOhV69eXMfASHl7e+PUqVMsLIhIZzExMZgwYQL++9//4uHDh7y/goiojCrWAnnAi+FQrVq10kcWKsNUPRYcCkVEulKttN2/f38WFUREZRgHspJeeHt7A+BQKCLSTXp6On755RcAwHvvvSdxGiIiKo4i9VjUqFEDMpmsyAflu9bGh/dYENGb2L59O9LT01GrVi34+PhIHYeIiIqhSIWFr6+vRmFx9OhRJCcno3379nBxcUFycjJOnToFV1dXvP322yUWlgxX/fr18dVXX6FWrVpSRyGiMuTHH38EAIwZM0anN7CIiMjwFKmw2LRpk/rj//3vfzh58iSuX7+OatWqqbffuXMHXbp0ga+vr95DkuFzcHDAzJkzpY5BRGXI5cuXER0dDVNTU4wcOVLqOEREVEw632OxZMkSLFiwQKOoAIDq1atj3rx5WLJkiU7Hi4yMRJ8+feDm5gaZTIbdu3dr7A8PD0e3bt3g5OQEmUyGuLi4AsfIycnBpEmT4OTkBBsbG/Tt21dj4T4ASElJQVBQEORyOeRyOYKCgvDs2TONNnfv3kWfPn1gY2MDJycnBAcHq1cWV7lw4QJ8fX1hZWWFqlWrYuHChRBC6PSaiYgIiI2NhaWlJXr27AlXV1ep4xARUTHpXFjcvHkTcrlc6z4HBwfcvn1bp+NlZGSgSZMmWLNmTaH7O3To8MqCZcqUKdi1axdCQ0Nx4sQJpKeno3fv3lAoFOo2w4cPR1xcHA4ePIiDBw8iLi4OQUFB6v0KhQK9evVCRkYGTpw4gdDQUISFhWH69OnqNmlpaejSpQvc3Nxw+vRprF69GsuWLcPy5ct1es3l1a1btxAeHo5z585JHYWIyoARI0YgKSkJK1eulDoKERHpg9BRnTp1REBAgNZ9/fv3F3Xq1NH1kGoAxK5du7Tui4+PFwDEuXPnNLY/e/ZMmJubi9DQUPW2xMREYWJiIg4ePCiEEOLSpUsCgIiJiVG3iY6OFgDElStXhBBC7N+/X5iYmIjExER1m5CQEGFpaSlSU1OFEEJ8++23Qi6Xi+zsbHWbxYsXCzc3N6FUKov8OlNTUwUA9XHLi2nTpgkAYtq0afo5YHq6EMCLR3q6fo5JREREREWmy3Wrzj0Ws2bNwq5du9C6dWusWLECISEhWLFiBVq3bo1ff/211FfePnv2LPLy8tC1a1f1Njc3NzRs2BCnTp0CAERHR0Mul6NNmzbqNm3btoVcLtdo07BhQ7i5uanbdOvWDTk5OTh79qy6ja+vLywtLTXa3L9/X+eemvKIU84SUVHdvXtX6ghERKRnOi+QN2rUKADAJ598ojFMyNXVFevXr8fo0aP1Fq4okpOTYWFhAQcHB43tzs7OSE5OVrepUqVKgedWqVJFo42zs7PGfgcHB1hYWGi08fT0LHAe1b4aNWpozZiTk4OcnBz152lpaTq8wrKDi+SVPQqFAlFRUUhKSoKrqyt8fHxgamoqdSwq5+7du4caNWqgVatWiIiIgJWVldSRiIhID95o5e1Ro0Zh5MiRuHr1Kp48eYJKlSqhTp06BjVVoBBCI4+2bPpoI/7/jduveu2LFy/GggULih6+jFL1WNy6davA140MT3h4OCZPnqwx0YG7uztWrVqFgIAACZNRebdp0yYolUpYWlqyqCAiKkfeeOVtmUyGunXrokOHDqhbt65kF5EuLi7Izc1FSkqKxvaHDx+qexNcXFzw4MGDAs999OiRRhtVz4RKSkoK8vLyXtnm4cOHAFCgt+Nls2fPRmpqqvqRkJCg46ssG6pXrw4TExNkZGRo/XqT4QgPD8egQYMKzJ6WmJiIQYMGITw8XKJkVN4plUps2LABADB27FiJ0xARkT4VqbCIjIxEenq6+uPXPUpTixYtYG5ujsOHD6u3JSUl4eLFi2jfvj0AoF27dkhNTcVff/2lbvPnn38iNTVVo83FixeRlJSkbnPo0CFYWlqiRYsW6jaRkZEaU9AeOnQIbm5uBYZIvczS0hL29vYaj/LIwsICHh4eADgcypApFApMnjxZ6zTJqm1TpkzRmFWNSF+OHTuG+Ph42NvbY9CgQVLHISIiPSrSUCg/Pz/ExMSgdevW8PPzK7R3QjX8RZcLkvT0dNy4cUP9eXx8POLi4uDo6Ihq1arh6dOnuHv3Lu7fvw8AuHr1KoAXvQcuLi6Qy+UYO3Yspk+fjkqVKsHR0REzZsxAo0aN0LlzZwBAvXr10L17d4wbNw7r1q0DALz//vvo3bs36tSpAwDo2rUr6tevj6CgICxduhRPnz7FjBkzMG7cOHUhMHz4cCxYsACjRo3CnDlzcP36dXzxxReYO3cuh/38f15eXrhz5w5u3rypLtrIsERFRRXoqXiZEAIJCQmIioqCn59f6QUjo/DTTz8BePH31NraWuI0RESkT0UqLCIiIlC/fn31x/p05swZ+Pv7qz+fNm0aAGDkyJHYtGkTfv31V40bwocNGwYAmDdvHubPnw8AWLFiBczMzDBkyBBkZWWhU6dO2LRpk8ZNqFu3bkVwcLB69qi+fftqrJ1hamqKffv24YMPPkCHDh1gZWWF4cOHY9myZeo2crkchw8fxocffoiWLVvCwcEB06ZNU2cm4L///S8+/PBDtGvXTuooVAhVkf46L/feEelDSkoKwsLCAHAYFBFReSQT2sZDUIlKS0uDXC5HampquR0WpRcZGYCt7YuP09MBGxtp85RxWVlZ2Lp1Kz7//PMiTY8cERHBHgvSq++//x4TJkxA48aNERcXx55eIqIyQJfr1jeaFYqIyg6lUon58+fju+++w+PHjwG8mHzhVe8peHh4wMfHp7QikpEYM2YMKleuDAsLCxYVRETlUJEKi4ULFxb5gDKZDJ9++ukbB6KyLSsrC7///jsSExPx4YcfSh2HAJiYmCAmJgaPHz9G9erVERwcjMqVK2PkyJEAoLXAGDlyJNezIL2zsLDAwIEDpY5BREQlpEhDoUxMij4rra43bxuj8jwUKiUlBY6OjgBe3JhvU5zhSxwKpTOFQoHffvsNa9aswc8//6xeSf7UqVNISkpCv379YGb24v0EbetY2NraIj09HU5OToiLi0PVqlUleR1ERERkGHS5bi1SxaBUKov8YFFh3BwcHNSroHPK2dKTlpaGlStXolatWhgwYAD++OMPfPvtt+r97du3x8CBA9VFBQAEBATg9u3biIiIwLZt2xAREYHk5GQ0bdoUjx8/xvDhw5Gfny/Fy6FyJisrC82aNcPChQuRlZUldRwiIiohb7xAHlFhvLy8ALCwKA3x8fGYOnUq3N3dMXXqVMTHx8PR0RGzZ8/GhAkTXvt8U1NT+Pn5ITAwEH5+frCxscH27dtha2uLyMhIo1gxnkpeWFgY4uLisGHDBlhaWkodh4iISggLC9I7b29vAMDNmzclTlK+ZWZmonHjxli5ciWeP3+OunXr4vvvv0dCQgK++OKLNx7GVKtWLaxfvx4AsGnTJjx//lyfsckIqdauGDNmjE5Da4mIqGx5o1mhIiMj8c033+Dy5csFurVlMhkvKI2cqseCPwf6lZubi0OHDqF3794AAGtrawQFBeHmzZuYOnUqunbtqreLtmHDhuHp06cYPHgw7Ozs9HJMMk43btzAsWPHIJPJMGrUKKnjEBFRCdL5KuTEiRPo1KkTUlNTcfnyZdStWxdVq1bF3bt3YWZmho4dO5ZETipDVD0WHAqlH48fP8bnn38OT09P9OnTB3/++ad63+rVq/H777+je/fuen8n+IMPPkDlypX1ekwyPhs2bAAAdO3aFdWqVZM4DRERlSSdr0TmzZuH0aNH4+DBgwCARYsWISoqCrGxsUhPT0dAQIDeQ1LZwqFQ+nHp0iW8//778PDwwCeffIKkpCS4urpqrIhdWlPCbtmyBV9++WWpnIvKj/z8fGzatAkA8N5770kbhoiISpzOQ6EuXryIGTNmqBc3Us0C1bhxY3z66adYuHAh+vTpo9+UVKY0bdoU27dvR61ataSOUiYlJydj5MiROHTokHpb8+bNMXXqVAwZMgQWFhalmic6OhpBQUGQyWRo1aoV3n777VI9P5VdBw8eRFJSEpycnNC3b1+p4xARUQnTubDIzMyEra0tTExMYGlpqV7JFwDq1q2LS5cu6TUglT0ODg4YPHiw1DHKFCGEulh3cnLClStXIJPJ0L9/f0ydOhVvvfWWZCsVt2vXDmPGjMGGDRswYsQIxMXFwdnZWZIsVLbUqFEDY8aMgZubW6kXxEREVPp0LiyqVauGBw8eAADq16+Pffv2oUePHgCA48ePo1KlSvpNSFSOJSYmYu3atdi/fz9Onz4Nc3NzmJmZYdOmTahevbr6RniprV69Gn/++Sf++ecfvPPOOzh48CBX5qbXatCggXpGKCIiKv90vsfCz88Px44dAwCMGzcO3377LTp16oSePXti0aJFCAwM1HdGKoNiYmKwYsUKnDp1SuooBun06dMYMWIEPD09sXjxYpw/fx6//vqrer+/v7/BFBXAixmotm/fDmtraxw5cgSLFy+WOhIREREZmCIVFo8ePVJ/vGDBAgQHBwMAxo8fj2XLluHZs2d4+PAhPvnkEyxatKhkklKZsmXLFkybNg2//fab1FFKlUKhwLFjxxASEoJjx45prESfn5+PsLAwvPXWW2jdujW2bduG/Px8dOzYEbt27UL//v2lC14E9evXx9q1awG8mMTh+PHjEiciQyWEwKeffoqzZ89CCCF1HCIiKiVFKiyqVq2KQYMG4cCBA6hUqRJq166t3jdt2jScPXsWZ86cwfz582Fubl5iYansMMYpZ8PDw+Hp6Ql/f38MHz4c/v7+8PT0RHh4OADgwoULGDRoEE6ePAlzc3MEBQXh7NmzOH78OPr3718mhhaNGjUK7777LpRKpca0t0QvO3nyJBYtWgRfX19kZGRIHYeIiEpJke6xGDx4MHbv3o1du3bB1dUVo0aNwujRo9UXj0T/ZmyL5IWHh2PQoEEF3p29d+8eBg0ahJ07dyIgIAABAQGoX78+PvjgA7i6ukqUtnjWrl2Ld999F506dZI6Chko1X0VQ4cOha2trcRpiIiotMhEEfup09LSsG3bNmzcuBGnT5+GTCZDx44dMXbsWAwaNAgVKlQo6azlRlpaGuRyOVJTU2Fvby91nBJx8eJFNGrUCBUrVkRKSsqbHSQjA1BdlKSnAzY2+guoRwqFAp6enrh3757W/TKZDO7u7oiPjy8TvRK6enlGK6K0tDS4uroiMzMTJ0+eRPv27aWORERExaDLdWuRb962t7fH+PHj1TPDTJ06FVeuXMG7774LFxcXTJgwAadPny52eCofatSoAQB49uzZmxcWZURUVFShRQXw4sI7ISEBUVFRpZiqdNy+fRtvvfUWTp48KXUUMhChoaHIzMxE3bp10a5dO6njEBFRKdJ5VigAqFevHpYtW4Z79+5h9+7d8PPzw4YNG9C2bVs0btxY3xmpDLKxsYGLiwuA8j8c6uWVsPXRrixZvHgxTp06hWHDhuHJkydSxyEDoBoGNXbsWPZkEREZmTcqLFRMTU3Rt29frFu3DhMnTgQA/PPPP3oJRmWf6h6c8l5YFPVeibJ6T8WrLFu2DLVr18a9e/cwatQozgBk5C5evIi//voLZmZmePfdd6WOQ0REpeyNCwuFQoFdu3ahb9++8PDwwIoVK9CoUSOsXLlSj/GoLPv6669x+vRp9OrVS+ooJcrHxwfu7u6Fvjsrk8ng4eEBHx+fUk5W8uzs7LB9+3ZYWlpi7969WL58udSRSEJ3796Fm5sb+vbtiypVqkgdh4iISlmRb95W+eeff7BhwwZs2bIFjx8/hr29PQIDAzF27Fi0aNGipHKWK8Zw87ZelJGbt4EXs0INHDiwwHZVsaGaFaq8+v777zFhwgSYmZkhKioKbdu2lToSSSQ/Px8pKSmoXLmy1FGIiEgP9H7zdlpaGr7//nu0bt0ajRs3xsqVK1G/fn1s3rwZSUlJ+Pbbb1lUkFELCAhAWFgY3N3dNba7u7uX+6ICAP7zn/9g6NChyM/Px9ChQ/H06VOpI5FEzMzMWFQQERmpIvVYWFtbIycnB66urhg5ciTGjBnDNSyKwVh6LFJSUvDzzz/jyZMnWLhwoe4HKEM9FioKhQJRUVFISkqCq6srfHx8yuUUs9qkpaWhRYsWsLe3R3h4OKpXry51JCpF0dHRaNWqFczMirQ8EhERlRG6XLcWqbAICAjA2LFj0aNHD5iYFOt+b4LxFBbJyclwdXWFTCZDdnY2LCwsdDtAGSoszpw5g7p16xr9YmDx8fFwc3ODpaWl1FGoFN25cwc1atSAm5sbLl++DDs7O6kjERGRnuh9KFR4eDh69erFooJ04uzsDBsbGwghcPv2banjlJi8vDz06NEDzs7O+Pvvv6WOI6kaNWpoFBWZmZkSpqHSsnHjRgghULt2bRYVRERGjJUClRiZTAYvLy8AwK1btyROU3KOHDmCx48fw9bWFvXr15c6jkFQKBSYO3cuGjdujGfPnkkdh0qQQqHAxo0bAbxYu4KIiIwXCwsqUarCojyvZRESEgIAGDJkCMeX/3/p6enYsmULbt68ibFjx3J9i3Lsjz/+wN27d1GxYsVyP0kBERG9GgsLKlHlfZG8zMxM7Nq1CwAQGBgocRrDIZfL8csvv8Dc3Bzh4eFYu3at1JGohKhW2h4xYgSsrKwkTkNERFJiYUElSlVYlNehUPv27UN6ejo8PT3Rrl07qeMYlFatWuGrr74CAEyfPh2xsbESJyJ9e/z4sbqw5jAoIiJiYUElqrwPhdq2bRsAYNiwYYWuvG3MJk+ejH79+iE3NxdDhgxBWlqa1JFIj/bt24e8vDw0a9YMzZo1kzoOERFJTOeVt6n4jGW6WQBITU3F1atX4e3tjUqVKun2ZAOfbjY9PR1OTk7IycnB+fPn0bhxY6kjGaSnT5+iWbNmuHv3LoYMGYLQ0FAWYeWEEAKxsbFIT0+Hr6+v1HGIiKgE6HLdyjtNqUTJ5XK0bt1a6hglwtbWFleuXMHBgwfRqFEjqeMYLEdHR/zyyy/o1q0bunXrJnUc0iOZTIYWLVpIHYOIiAwEeywkYEw9FsVi4D0WpJtnz56hYsWKUscgPcnPz+csaERERkDvC+QRFcfu3bsxZcoURERESB2FJPRyUfH06VM8f/5cujBULBkZGahWrRrGjBnD7yMREamxsKASt2/fPqxatQrHjx+XOorefP/99+jduzcOHTokdZQy588//0TTpk0xfvx4rm9RRu3cuRNJSUmIjIyErapXkYiIjB4LCypx5XHK2c2bN2Pfvn24fPmy1FHKHIVCgfv372Pbtm3qNRCobPnxxx8BAGPGjOGN+EREpMbCgkpceZtyNj4+HjExMTAxMcGQIUOkjlPmtG/fHp9//jkAYNKkSbhw4YLEiUgXV69exYkTJ2BiYoJRo0ZJHYeIiAwICwsqceVt9e3Q0FAAgL+/P1xdXSVOUzbNnDkTPXr0QHZ2NoYMGYL09HSpI1ERbdiwAQDQs2dPuLm5SZyGiIgMCQsLKnGqHosHDx4gIyND4jTFp1oULzAwUOIkZZeJiQk2b94MNzc3XLlyBR9++KHUkagI8vLysHnzZgBcaZuIiApiYUElzsHBAQ4ODgDK/n0WFy9exMWLF2FhYYGAgACp45RplStXRkhICExMTPDzzz8jJCRE6kj0Gvv378eDBw/g7OyMXr16SR2HiIgMDCchp1Lh5eWFs2fP4tatW2V6MTnVxW+PHj3UxRK9uY4dO2LhwoU4c+YMunfvLnUceo1WrVph4cKFsLGxgbm5udRxiIjIwLCwoFIREhKCihUrwsnJSeooxdKwYUN06NABI0aMkDpKuTF79mzIZDLOLlQGuLm54dNPP5U6BhERGSiuvC0BrrxdRFx52+gIIXD8+HH4+flJHYWIiIjAlbeJqAwSQiAoKAj+/v7YsmWL1HHoJUqlEmPGjMHOnTuRl5cndRwiIjJQLCyoVNy/fx/Tpk3D+PHjpY7yRvLz8/Hjjz/i8ePHUkcpt2QyGWrVqgUAGD9+PK5cuSJxIlKJjIzExo0bMWbMGOTm5kodh4iIDBQLCyoV+fn5WLFiBTZs2ACFQiF1HJ1FRERg3LhxaNSoEZRKpdRxyq1PPvkEb7/9NjIyMjBkyBBkZWVJHYnwfyttDxs2DDYckkhERIVgYUGlomrVqrCwsEBeXh7u3bsndRydqWaD6tevH0xM+GtTUkxNTbF161ZUqVIFFy5cwJQpU6SOZPSePXuGsLAwAFy7goiIXo1XSFQqTE1N4enpCaDsrWWRnZ2tvrAaPny4xGnKPxcXF2zduhUymQw//PCDeqVzksa2bduQnZ2NBg0aoHXr1lLHISIiA8bCgkqNt7c3AODmzZsSJ9HNgQMHkJaWBnd3d7z11ltSxzEKnTt3xscffwzgxf0WqampEicyXj/99BMA4L333uOUwERE9EqSFxaRkZHo06cP3NzcIJPJsHv3bo39QgjMnz8fbm5usLKygp+fH/755x+NNn5+fup58FWPYcOGabRJSUlBUFAQ5HI55HI5goKC8OzZM402d+/eRZ8+fWBjYwMnJycEBwcXuFHxwoUL8PX1hZWVFapWrYqFCxeCM/YWjZeXF4CyV1iohkENHTqUw6BK0bx58zB06FDs3r0bcrlc6jhGRaFQ4NixY1i8eDFiY2NhZmaGd955R+pYRERk4CS/SsrIyECTJk2wZs0arfu/+uorLF++HGvWrMHp06fh4uKCLl264Pnz5xrtxo0bh6SkJPVj3bp1GvuHDx+OuLg4HDx4EAcPHkRcXByCgoLU+xUKBXr16oWMjAycOHECoaGhCAsLw/Tp09Vt0tLS0KVLF7i5ueH06dNYvXo1li1bhuXLl+vxK1J+qXosytJQqLS0NPz2228AOAyqtJmZmSE0NJRrWpSy8PBweHp6wt/fH3PmzAEAmJubIzIyUuJkRERk8IQBASB27dql/lypVAoXFxexZMkS9bbs7Gwhl8vF999/r97m6+srJk+eXOhxL126JACImJgY9bbo6GgBQFy5ckUIIcT+/fuFiYmJSExMVLcJCQkRlpaWIjU1VQghxLfffivkcrnIzs5Wt1m8eLFwc3MTSqWyyK8zNTVVAFAf11js3r1bABAdOnQo2hPS04UAXjzS00s2XCEOHz4sTE1NRe3atXX6HpP+Xb16VRw8eFDqGOVaWFiYkMlkAoDGQyaTCZlMJsLCwqSOSEREpUyX61bJeyxeJT4+HsnJyejatat6m6WlJXx9fXHq1CmNtlu3boWTkxMaNGiAGTNmaPRoREdHQy6Xo02bNuptbdu2hVwuVx8nOjoaDRs2hJubm7pNt27dkJOTg7Nnz6rb+Pr6wtLSUqPN/fv3cfv2bb2+9vKoS5cuSE5ORlRUlNRRiqxz585ISkrCli1bOL5cQrGxsWjevDmGDBmCa9eu4dixYwgJCcGxY8fK5PTFhkihUGDy5Mlah3aqtk2ZMoVfbyIiKpSZ1AFeJTk5GQDg7Oyssd3Z2Rl37txRfz5ixAjUqFEDLi4uuHjxImbPno3z58/j8OHD6uNUqVKlwPGrVKmiPkdycnKB8zg4OMDCwkKjjWpmo5ezqPbVqFFD6+vIyclBTk6O+vO0tLTXvvbyyNraGtbW1lLH0FnlypVRuXJlqWMYtUaNGqFJkyY4deoUGjZsqLH6s7u7O1atWoWAgAAJE5Z9UVFRr5wKWgiBhIQEREVFcXgaERFpZdA9Fir/fqdYCKGxbdy4cejcuTMaNmyIYcOGYefOnThy5AhiY2MLPYa247xJG9U7ea96N3vx4sXqm8blcjk8PDwKbUuGgysMGw5zc3OMHDkSADSKCgBITEzEoEGDEB4eLkW0ciMpKUmv7YiIyPgYdGHh4uIC4P96LlQePnxYoHfhZc2bN4e5uTmuX7+uPs6DBw8KtHv06JH6OC4uLgXOk5KSgry8vFe2efjwIYCCvSovmz17NlJTU9WPhISEQtuWd2vXrsWAAQNw6NAhqaO8VteuXdGxY0ecP39e6ihGT6FQ4LPPPtO6j8N09MPV1VWv7YiIyPgYdGGhGt6kGtIEvHgX+fjx42jfvn2hz/vnn3+Ql5en/gfYrl07pKam4q+//lK3+fPPP5Gamqo+Trt27XDx4kWNd+MOHToES0tLtGjRQt0mMjJS453sQ4cOwc3NrcAQqZdZWlrC3t5e42Gs/vzzT+zevVt934qhSkhIwPHjx3HixAlUqlRJ6jhGT5dhOvRmfHx84OjoWOh+mUwGDw8P+Pj4lGIqIiIqSyQvLNLT0xEXF4e4uDgAL27YjouLw927dyGTyTBlyhR88cUX2LVrFy5evIhRo0bB2tpaPfXnzZs3sXDhQpw5cwa3b9/G/v37MXjwYDRr1gwdOnQAANSrVw/du3fHuHHjEBMTg5iYGIwbNw69e/dGnTp1ALx4d7p+/foICgrCuXPn8Mcff2DGjBkYN26cuhAYPnw4LC0tMWrUKFy8eBG7du3CF198gWnTpvHG3iIqK4vkqVZ77tixI9zd3SVOQxymU/KioqIKXYhQ9fdt5cqVMDU1Lc1YRERUlpTc5FRFExERUWBqQwBi5MiRQogXU87OmzdPuLi4CEtLS9GxY0dx4cIF9fPv3r0rOnbsKBwdHYWFhYXw9vYWwcHB4smTJxrnefLkiRgxYoSws7MTdnZ2YsSIESIlJUWjzZ07d0SvXr2ElZWVcHR0FBMnTtSYWlYIIf7++2/h4+MjLC0thYuLi5g/f77O05Aa63SzQgjx888/CwDC39//9Y0lnG62WbNmAoDGtMYkncL+Tvz7ERERIXXUMunSpUuiYsWKAoBo166dcHd31/i6enh4cKpZIiIjpct1q0wILhtd2tLS0iCXy5Gammp0w6JOnTqFDh06oFq1ahoze2mVkQHY2r74OD0dsLEp+YAArly5gnr16sHMzAzJyckcCmUAFAoFPD09kZiYqHU6VJlMhqpVq+L27dt8R/0NXL16FT169ICLiwv++OMPWFhYICoqCklJSXB1dYWPjw+/rkRERkqX61aDnm6Wyh8vLy8AL+5hyMnJ0VgTxFCEhIQAeDE8jkWFYTA1NcWqVaswaNAgyGQyjeJC9bm9vT1yc3NhZWUlYdKyqU6dOoiJiYFMJlN//TilLBER6UryeyzIuDg7O8Pa2hpCiNf3WEhACKEuLFT38ZBhCAgIwM6dO1G1alWN7S4uLrCyssKlS5cwbNgw5OfnS5SwbFEoFBpTclepUoXrtRARUbGwsKBSJZPJ4OXlBWtr6wJT9xoCpVKJuXPnom/fvujXr5/UcehfAgICcPv2bURERGDbtm2IiIhAQkICDhw4AEtLS/z66694//33tQ6XIk0zZ85EmzZtsHnzZqmjEBFROcF7LCRgzPdYAMCzZ88gl8tfP5OWRPdYUNm0e/duDBw4EEqlEjNnzsRXX30ldSSDtXr1agQHBwN4MQPa0KFDJU5ERESGSpfrVvZYUKmrWLEip+clvevfvz/Wr18PAFi6dCmWLl0qcSLD9Ouvv2LKlCkAgMWLF7OoICIivWFhQfT/nTlzBkuXLjXqldHLujFjxuDLL78EAMyZMwe3bt2SOJFhOXPmDAIDA6FUKjFu3Dh89NFHUkciIqJyhLNCUam7du0aZs+eDRMTE+zYsUPqOGrr16/HDz/8gCtXruCnn36SOg69of/+979IS0tDmzZt1LOQEXDnzh307t0bmZmZ6NatG9auXcueQyIi0isWFlTqZDIZwsPD1bNDGcLFTW5urrrICQwMlDgNFdeiRYs0PjeUnzMpbdiwAQ8ePEDjxo2xfft2mJubSx2JiIjKGQ6FolJXvXp1mJiYIDMzEw8ePJA6DgDg0KFDSElJgbOzM/z9/aWOQ3p069YttGzZEnFxcVJHkdT8+fOxbNky7Nu3zygnjSAiopLHwoJKnYWFBTw8PAAAN2/elDjNC6q1K4YOHcoVhsuZ2bNnIzY2Ft27dzeYn7fSIoSAQqEA8KKncPr06XB3d5c4FRERlVcsLEgS3t7eAAyjsMjIyMDu3bsBcBhUefTDDz+gadOmePDgAbp06YKkpCSpI5Wazz77DAMHDkRGRobUUYiIyAiwsCBJqG6qNYRZe3777TdkZmaiRo0aaNOmjdRxSM/kcjkOHjwIb29vxMfHo3v37nj27JnUsUrczz//jHnz5mHPnj3Yv3+/1HGIiMgIsLAgSRhSj8W9e/dQoUIFBAYGGv0NvuWVs7MzDh06BBcXF/z999/o06cPMjMzpY5VYiIiIvDee+8BAD766CMMHjxY4kRERGQMWFiQJLy8vFChQgUolUqpo2DGjBl4+PAhpk+fLnUUKkFeXl74/fffIZfLceLEiXK7hsOlS5cwYMAA5OXlYciQIfjiiy+kjkREREZCJoQQUocwNrosjV5e5efnw8TEBCYmr6htMzIAW9sXH6enAzY2pROOyrWoqCh88skn2LlzJypXrix1HL1KTk5G27ZtcefOHbRv3x5//PEHKlSoIHUsIiIqw3S5bmWPBUnCzMzs1UVFKbl7967UEaiU+fj44NixY+WuqBBCYNiwYbhz5w5q1qyJPXv2sKggIqJSJf2VHZFEkpKSUKNGDTRr1qxcj7engl6+l2b9+vX48ssvJUyjHzKZDF9++SXq16+P/fv3w8nJSepIRERkZFhYkGRmz56NZs2a4cCBA5Kc/5dffoFSqYS1tTWsra0lyUDSOn36NN5//33MmjUL69evlzpOsbVp0wYXLlxArVq1pI5CRERGiIUFSebWrVuIi4vD5cuXJTm/alE8rl1hvFq1aoXZs2cDAMaPH4/w8HCJE+nup59+wtmzZ9WfG8IQQyIiMk78D0SSkXLK2Zs3b+Kvv/6CiYkJp+I0cp9//jnGjRsHpVKJwMBAHD16VOpIRbZnzx6MGzcOHTt2xPXr16WOQ0RERo6FBUlGVVhIsUheaGgoAKBz585wdnYu9fOT4ZDJZPjuu+8QEBCA3Nxc9OvXT6MHwFCdPn0agYGBEELgnXfeQc2aNaWORERERo6FBUlGtfp2afdYCCGwbds2ABwGRS+Ymppi69at8Pf3R3p6Orp3744HDx5IHatQt2/fRp8+fZCVlYXu3btj7dq1XNyRiIgkZyZ1ADJeqh6L27dvQ6FQwNTUtFTOe+HCBVy6dAmWlpYYMGBAqZyTDF+FChWwe/duvP322+jfvz+qVKkidSStnj17hp49e+LBgwdo0qQJtm/fDjMz/iknIiLp8b8RSaZq1aqwsLBAbm4u7t27h+rVq5fKeevUqYPdu3fj5s2bkMvlpXJOKhvs7e1x8uRJWFpaSh1Fq9zcXAQEBODy5cuoWrUq9u7dCzs7O6ljERERAeBQKJKQqakp6tati7p16+LZs2eldl5LS0v069cP06ZNK7VzUtnxclGRnp6OmTNnIiMjQ8JE/ycvLw9WVlawtbXFvn374O7uLnUkIiIiNfZYkKTi4uI4NpwM1pAhQ3DgwAFcvHgRe/bsgYWFhaR5bGxssGfPHly+fBmNGjWSNAsREdG/sceCJFXaRcUXX3yBTz/9FLdv3y7V81LZ9Omnn8La2hoHDx7EqFGjoFQqJclx4cIFCCEAAGZmZiwqiIjIILGwIKORn5+PlStXYtGiRbhy5YrUcagMaNeuHcLCwmBmZoaQkBBMmTJFfYFfWiIiItCiRQuMGzcO+fn5pXpuIiIiXbCwIEmdOXMGLVq0QKdOnUr8XH/88QcePXoEJyenUjkflQ/du3fH5s2bAQCrV6/G559/XmrnvnTpEgYMGIC8vDykp6dzVW0iIjJo/C9FkqpQoQJiY2MRGxtb4ucKCQkBAAwePBjm5uYlfj4qP4YPH45vvvkGwIvhUevXry/xcyYnJ6Nnz55ITU1Fhw4dsGnTJhYWRERk0HjzNklKtUjes2fPkJKSAgcHhxI5T1ZWFsLDwwG8uEgk0tWkSZPw6NEj/PDDD2jVqlWJnisjIwN9+vTBnTt3UKtWLezevRsVKlQo0XMSEREVF9/+IklZW1vDxcUFQMmuwL1//348f/4cHh4eaN++fYmdh8q3BQsW4Pz582jatGmJnUOhUGDEiBE4c+YMKlWqhP3798PJyanEzkdERKQvLCxIcqoVuEuysFANgxo2bBiHk9Abk8lkcHZ2Vn9+6tQp/PXXX3o9R0xMDPbu3QtLS0v8+uuvqFmzpl6PT0REVFI4FIok5+XlhZMnT+LWrVsldg5XV1dUrFiRw6BIb6Kjo9G5c2dYW1sjKioK9erV08txO3TogL179yI9PZ29a0REVKbwrVuSXGn0WKxevRoPHjxAkyZNSuwcZFwaNWqEhg0b4smTJ+jatSsSEhKKdbyX18jo3r07Bg0aVNyIREREpYqFBUmubt26qFOnTomPI7ewsOAq36Q3tra22L9/P+rWrYt79+6ha9euePz48Rsd6/Tp02jevDlu3Lih55RERESlRyZKe7UnQlpaGuRyOVJTU2Fvby91HMOVkQHY2r74OD0dsLHR+RBPnz7FjRs30KpVKxYVVCLu3r2LDh064N69e2jdujX++OMP2Kp+bosgPj4ebdu2xcOHDzFixAhs2bKlBNMSERHpRpfrVvZYULkWEhKCNm3acFgJlZhq1arh0KFDqFSpEv766y8EBAQgJyenSM9NSUlBr1698PDhQzRp0gTfffddCaclIiIqOSwsyKDouwNNNRvUW2+9pdfjEr2sXr162L9/P2xsbGBjY1Okn+Pc3FwMHDgQly9fRtWqVbFv3z7Y2dmVQloiIqKSwcKCDMKIESNQqVIlHDx4UG/HvHPnDk6ePAmZTIahQ4fq7bhE2rRu3RrR0dHYsWPHaxezE0Jg3LhxiIiIgJ2dHfbv34+qVauWUlIiIqKSwelmySBkZmbi6dOnep1yNjQ0FADg5+cHNzc3vR2XqDCNGjVSfyyEwJEjR9ClSxcoFApERUUhKSkJrq6uiI2Nxc8//wxTU1Ps2LEDjRs3ljA1ERGRfrCwIINQElPOqoZBBQYG6u2YREUhhMDYsWOxceNGjB07Fr///jvu3bun3u/m5obatWtjxowZ6Natm4RJiYiI9IeFBRkELy8vANBbj8WlS5dw/vx5mJubY+DAgXo5JlFRyWQyeHp6AgB++umnAvuTkpIAAJUqVSrNWERERCWK91iQQdB3j8WuXbsAvFhozNHRUS/HJNLFnDlzCp12VnVz95QpU6BQKEozFhERUYlhjwUZhJd7LIQQxV5zYtasWWjfvj2sra31EY9IZydOnEB6enqh+4UQSEhIQFRUFPz8/EovGBERUQlhYUEGoXr16jAxMUFmZiYePHgAFxeXYh3P1NQU/v7+ekpHpDvVcCd9tSMiIjJ0LCzIIFhYWKBjx46wtLREZmam1HH+X3t3HtTknbgB/HkJEhEhihZCBAR3bD0r3lpEWBF1q3a6FB0vpNrO1q2oqNuVXV3xVqxFXBmlblva6uBRC2hrawWH4oXKigceVbcLKiqFUQwRy5nv7w9/ZBu5DfCG+HxmMmPe95s3T76T1jy+F5HJXFxcmnQcERGRuWOxILORmppq8jYqKysxZMgQ+Pj4ICIiAh07dmyCZESN5+PjA1dXV9y9e7fGG+ZJkgRXV1f4+PjIkI6IiKjp8eRtsihpaWmGewTY2dnJHYdeYAqFAlu2bAGAaucMVT2Pjo6GQqFo8WxERETNgcWCzE5ZWdlzv7bq3hVvvfUWbGxsmioS0XMJDAzE/v37q91V29XVFfv370dgYKBMyYiIiJqe7MXi2LFjmDhxIjQaDSRJQlJSktF6IQRWrFgBjUYDW1tb+Pn54cqVK0ZjSktLMW/ePHTu3Bl2dnZ44403jG5GBQCFhYUIDg6GSqWCSqVCcHAwHj16ZDTm9u3bmDhxIuzs7NC5c2fMnz+/2o/crKws+Pr6wtbWFl26dMGqVatqPMyBGi8lJQWdO3d+7ivklJaWYv/+/QCAadOmNWEyoucXGBiInJwcpKamIj4+HqmpqcjOzmapICIiiyN7sSguLka/fv0QExNT4/qNGzciKioKMTExyMjIgFqtRkBAAHQ6nWFMWFgYEhMTsWfPHsMlHidMmGB0ffhp06bhwoULOHz4MA4fPowLFy4gODjYsL6yshLjx49HcXExTpw4gT179uDrr7/G4sWLDWOKiooQEBAAjUaDjIwMbN26FZs2bUJUVFQzzMyLp2PHjnjw4MFz3yTvhx9+wKNHj+Di4oKRI0c2cTqi56dQKODn54epU6fCz8+Phz8REZFlEmYEgEhMTDQ81+v1Qq1Wiw0bNhiWlZSUCJVKJWJjY4UQQjx69Ei0adNG7NmzxzDm7t27wsrKShw+fFgIIcTVq1cFAHH69GnDmPT0dAFA/PTTT0IIIb777jthZWUl7t69axize/duoVQqhVarFUIIsW3bNqFSqURJSYlhzPr164VGoxF6vb7Bn1Or1QoAhu3SU4WFhQKAACB0Op0Qjx8LATx9PH5c7+unTJkiAIiwsLAWSEtERERk+Rrzu1X2PRZ1yc7ORl5eHsaMGWNYplQq4evri1OnTgEAzp07h/LycqMxGo0Gffr0MYxJT0+HSqXC0KFDDWOGDRsGlUplNKZPnz7QaDSGMWPHjkVpaSnOnTtnGOPr6wulUmk05t69e8jJyWn6CXjBdOjQwXAVp+zs7Ea99vHjxzhw4AAAHgZFREREJAezLhZ5eXkAAGdnZ6Plzs7OhnV5eXmwsbGpdlnRZ8c4OTlV276Tk5PRmGffp2PHjrCxsalzTNXzqjE1KS0tRVFRkdGDava73/0OAPDzzz836nUlJSWYM2cORo4ciUGDBjVHNCIiIiKqg1kXiyrPXqpRCFFt2bOeHVPT+KYYI/7/xO268qxfv95w0rhKpYKbm1ud2V9k3bp1A9D4YtG5c2dERUUhLS2t3u8GERERETU9sy4WarUaQPW9Afn5+YY9BWq1GmVlZSgsLKxzzC+//FJt+wUFBUZjnn2fwsJClJeX1zkmPz8fQPW9Kr/1t7/9DVqt1vC4c+dO3R/8BVa1x+J5T+AmIiIiInmYdbHw9PSEWq1GcnKyYVlZWRnS0tLw2muvAQAGDhyINm3aGI25f/8+Ll++bBgzfPhwaLVanD171jDmzJkz0Gq1RmMuX76M+/fvG8YcOXIESqUSAwcONIw5duyY0SVojxw5Ao1GAw8Pj1o/h1KphIODg9GDajZgwAAEBASgZ8+eDX5NWloaUlJSjK4CRkREREQtrHnPI6+fTqcT58+fF+fPnxcARFRUlDh//ry4deuWEEKIDRs2CJVKJRISEkRWVpaYOnWqcHFxEUVFRYZtzJkzR7i6uoqUlBSRmZkpRo0aJfr16ycqKioMY8aNGydeffVVkZ6eLtLT00Xfvn3FhAkTDOsrKipEnz59hL+/v8jMzBQpKSnC1dVVhIaGGsY8evRIODs7i6lTp4qsrCyRkJAgHBwcxKZNmxr1mXlVqAZq4FWh/Pz8DN8dIiIiImo6jfndKnuxSE1NNVxi9LePkJAQIcTTS85GREQItVotlEqlGDlypMjKyjLaxq+//ipCQ0OFo6OjsLW1FRMmTBC3b982GvPgwQMxffp0YW9vL+zt7cX06dNFYWGh0Zhbt26J8ePHC1tbW+Ho6ChCQ0ONLi0rhBCXLl0SPj4+QqlUCrVaLVasWNGoS80KwWLRYA0oFrm5uUKSJAHAUEaJiIiIqGk05nerJARvG93SioqKoFKpoNVqeVhULXQ6HZQVFbBxdHy64PFjwM6u2rioqCgsXrwYI0aMwPHjx1s4JREREZFla8zvVrM+x4JeTN7e3nBwcDDcY6Qu8fHxAICpU6c2dywiIiIiqgOLBZkdlUoFoP6b5N28eRPnzp2DQqHApEmTWiIaEREREdWCxYLMTtUlZ+srFrt37wYABAQE4KWXXmr2XERERERUOxYLMjtVN8mrr1icPn0aAA+DIiIiIjIH1nIHIHpWQ2+Sd+jQIfz73/9Gjx49WiIWEREREdWBxYLMTtUei5ycnDrHSZKEwYMHt0AiIiIiIqoPD4Uis1NVLB5ptTWu1+v1KCkpaclIRERERFQPFgsyO+3atcOkSZMwe9asGtefPHkSzs7OCAsLa9lgRERERFQrHgpFZmnfvn1AcTEQF1dtXXx8PIqKiqCtZY8GEREREbU87rGgVqW8vBxfffUVAF4NioiIiMicsFiQ2SouLq62LCUlBQ8ePICTkxNGjRolQyoiIiIiqgmLBZmlffv2wcnZudryqpviTZ48GdbWPJKPiIiIyFywWJBZcnV1rbbsyZMnSExMBABMmzatpSMRERERUR1YLMgsVd0k77cOHTqEx48fw8PDA8OGDZMhFRERERHVhseSkFlycnKCXbt2wJMnhmWDBw/G8uXL0alTJ0iSJGM6IiIiInoWiwWZJUmS4OnpCVy5Yljm4eGBlStXypiKiIiIiGrDQ6HIbHl6esodgYiIiIgaiMWCzFa3bt0Mf46MjERCQgJKSkpkTEREREREtWGxILM1fPhww59Xr16Nt956C/fu3ZMxERERERHVhsWCzFJCQgIWL15seC4A2NjY4MKFC7JlIiIiIqLasViQ2UlISEBQUBDuPrN3oqysDEFBQUhISJApGRERERHVhsWCzEplZSUWLFgAIUStY8LCwlBZWdmCqYiIiIioPiwWZFaOHz+O3NzcWtcLIXDnzh0cP368BVMRERERUX1YLMis3L9/v0nHEREREVHLYLEgs+Li4tKk44iIiIioZbBYkFnx8fGBq6srJEmqcb0kSXBzc4OPj08LJyMiIiKiurBYkFlRKBTYsmULAODZalFVNqKjo6FQKFo4GRERERHVhcWCzE5gYCD2798PjUZjtNzV1RX79+9HYGCgTMmIiIiIqDaSqOu6ntQsioqKoFKpoNVq4eDgIHccs1VZVASFSgUAOPbdd/AeM4Z7KoiIiIhaUGN+t1q3UCaiRvttiRg5ciTAUkFERERktngoFBERERERmYzFgoiIiIiITMZiQUREREREJmOxICIiIiIik7FYEBERERGRyVgsiIiIiIjIZCwWRERERERkMhYLIiIiIiIyGYsFERERERGZjMWCiIiIiIhMxmJBREREREQms5Y7wItICAEAKCoqkjmJmSsu/t+fi4qAykr5shARERG9gKp+r1b9fq0Li4UMdDodAMDNzU3mJK2IRiN3AiIiIqIXlk6ng0qlqnOMJBpSP6hJ6fV63Lt3D/b29pAkSe44Zq2oqAhubm64c+cOHBwc5I5jkTjHLYPz3Pw4x82Pc9z8OMfNj3PcOEII6HQ6aDQaWFnVfRYF91jIwMrKCq6urnLHaFUcHBz4H38z4xy3DM5z8+McNz/OcfPjHDc/znHD1benogpP3iYiIiIiIpOxWBARERERkclYLMisKZVKREREQKlUyh3FYnGOWwbnuflxjpsf57j5cY6bH+e4+fDkbSIiIiIiMhn3WBARERERkclYLIiIiIiIyGQsFkREREREZDIWCzJL69evx+DBg2Fvbw8nJye8+eabuH79utyxLNr69eshSRLCwsLkjmJR7t69ixkzZqBTp05o164dvLy8cO7cObljWYyKigosW7YMnp6esLW1Rbdu3bBq1Sro9Xq5o7Vqx44dw8SJE6HRaCBJEpKSkozWCyGwYsUKaDQa2Nraws/PD1euXJEnbCtV1xyXl5djyZIl6Nu3L+zs7KDRaDBz5kzcu3dPvsCtUH3f49967733IEkSoqOjWyyfJWKxILOUlpaGuXPn4vTp00hOTkZFRQXGjBmD4uJiuaNZpIyMDOzYsQOvvvqq3FEsSmFhIby9vdGmTRt8//33uHr1Kj766CN06NBB7mgWIzIyErGxsYiJicG1a9ewceNGfPjhh9i6davc0Vq14uJi9OvXDzExMTWu37hxI6KiohATE4OMjAyo1WoEBARAp9O1cNLWq645fvLkCTIzM/GPf/wDmZmZSEhIwI0bN/DGG2/IkLT1qu97XCUpKQlnzpyBRqNpoWQWTBC1Avn5+QKASEtLkzuKxdHpdKJ79+4iOTlZ+Pr6igULFsgdyWIsWbJEjBgxQu4YFm38+PFi9uzZRssCAwPFjBkzZEpkeQCIxMREw3O9Xi/UarXYsGGDYVlJSYlQqVQiNjZWhoSt37NzXJOzZ88KAOLWrVstE8rC1DbHubm5okuXLuLy5cuia9euYvPmzS2ezZJwjwW1ClqtFgDg6OgocxLLM3fuXIwfPx6jR4+WO4rFOXjwIAYNGoRJkybByckJ/fv3x7/+9S+5Y1mUESNG4OjRo7hx4wYA4OLFizhx4gRef/11mZNZruzsbOTl5WHMmDGGZUqlEr6+vjh16pSMySybVquFJEnc49mE9Ho9goOD8cEHH6B3795yx7EI1nIHIKqPEAKLFi3CiBEj0KdPH7njWJQ9e/YgMzMTGRkZckexSP/973+xfft2LFq0CH//+99x9uxZzJ8/H0qlEjNnzpQ7nkVYsmQJtFotevToAYVCgcrKSqxduxZTp06VO5rFysvLAwA4OzsbLXd2dsatW7fkiGTxSkpKEB4ejmnTpsHBwUHuOBYjMjIS1tbWmD9/vtxRLAaLBZm90NBQXLp0CSdOnJA7ikW5c+cOFixYgCNHjqBt27Zyx7FIer0egwYNwrp16wAA/fv3x5UrV7B9+3YWiyayd+9e7Nq1C/Hx8ejduzcuXLiAsLAwaDQahISEyB3PokmSZPRcCFFtGZmuvLwcU6ZMgV6vx7Zt2+SOYzHOnTuHLVu2IDMzk9/bJsRDociszZs3DwcPHkRqaipcXV3ljmNRzp07h/z8fAwcOBDW1tawtrZGWloa/vnPf8La2hqVlZVyR2z1XFxc0KtXL6NlPXv2xO3bt2VKZHk++OADhIeHY8qUKejbty+Cg4OxcOFCrF+/Xu5oFkutVgP4356LKvn5+dX2YpBpysvLMXnyZGRnZyM5OZl7K5rQ8ePHkZ+fD3d3d8Pfgbdu3cLixYvh4eEhd7xWi3ssyCwJITBv3jwkJibixx9/hKenp9yRLI6/vz+ysrKMls2aNQs9evTAkiVLoFAoZEpmOby9vatdJvnGjRvo2rWrTIksz5MnT2BlZfxvZAqFgpebbUaenp5Qq9VITk5G//79AQBlZWVIS0tDZGSkzOksR1WpuHnzJlJTU9GpUye5I1mU4ODgaucWjh07FsHBwZg1a5ZMqVo/FgsyS3PnzkV8fDwOHDgAe3t7w7+MqVQq2NraypzOMtjb21c7Z8XOzg6dOnXiuSxNZOHChXjttdewbt06TJ48GWfPnsWOHTuwY8cOuaNZjIkTJ2Lt2rVwd3dH7969cf78eURFRWH27NlyR2vVHj9+jP/85z+G59nZ2bhw4QIcHR3h7u6OsLAwrFu3Dt27d0f37t2xbt06tGvXDtOmTZMxdetS1xxrNBoEBQUhMzMT3377LSorKw1/Dzo6OsLGxkau2K1Kfd/jZ8tamzZtoFar8corr7R0VMsh81WpiGoEoMZHXFyc3NEsGi832/S++eYb0adPH6FUKkWPHj3Ejh075I5kUYqKisSCBQuEu7u7aNu2rejWrZtYunSpKC0tlTtaq5aamlrj/4NDQkKEEE8vORsRESHUarVQKpVi5MiRIisrS97QrUxdc5ydnV3r34OpqalyR2816vseP4uXmzWdJIQQLdRhiIiIiIjIQvHkbSIiIiIiMhmLBRERERERmYzFgoiIiIiITMZiQUREREREJmOxICIiIiIik7FYEBERERGRyVgsiIiIiIjIZCwWRERERERkMhYLIiKq08WLFyFJEq5fvw4A2Lx5Mzw8POp93cKFCyFJEn766adaxyxduhSSJCEzM7NJskqShBUrVjT6dTk5OZAkCZs2bap37Oeffw5JkpCTk9P4gEREFozFgoiI6pSRkYEOHTrg5ZdfBgCcPn0aQ4YMqfd177zzDgDgs88+q3G9Xq/Hl19+CS8vLwwYMKBJsqanp+Pdd99tkm0REVHjsFgQEVGdMjIyMGTIEEiSBKDhxaJPnz4YMmQIdu7ciYqKimrrjxw5gtzcXEMBeV5CCPz6668AgGHDhsHV1dWk7RER0fNhsSAiojpVFQsAyMvLw+3btxtULICney3y8vLw/fffV1sXFxcHpVKJ6dOno6SkBIsXL4aXlxdUKhUcHR0xfPhwHDhwoNrrJElCaGgoYmNj0bNnTyiVSnzxxReGdb89FKqgoADvv/8+evXqhfbt28PJyQmjRo3C8ePHa8yr1+uxdu1auLu7o23bthg0aBCOHj3aoM+akpICf39/ODg4oF27dvD29q722oKCAvzpT3+Cm5sblEolXnrpJXh7eyMlJaVB70FEZM5YLIiIqBoPDw9IkgRJknD+/HmsWbMGkiTBxcUFAODr6wtJkvD222/XuZ2pU6eiXbt21Q6HKiwsxIEDB/DHP/4RHTt2RGlpKR4+fIi//OUvSEpKwu7duzFixAgEBgbiyy+/rLbdpKQkbN++HcuXL8cPP/wAHx+fGt//4cOHAICIiAgcOnQIcXFx6NatG/z8/PDjjz9WGx8TE4PDhw8jOjoau3btgpWVFf7whz8gPT29zs+5a9cujBkzBg4ODvjiiy+wb98+ODo6YuzYsUblIjg4GElJSVi+fDmOHDmCTz75BKNHj8aDBw/q3D4RUWsgCSGE3CGIiMi8XL16FWVlZUhOTsayZctw8uRJWFtbY+XKlSgoKEBMTAwAwNHREe7u7nVu6+2330Z8fDxyc3Ph5OQE4OkP+Hnz5iE5ORmjR4+u9prKykoIITBnzhxkZmYandwtSRJUKhWys7PRsWNHo9dJkoSIiIhaT+Cu2u64cePg4OCAhIQEAE9P3vb09IRGo8HPP/+Mtm3bAgB0Oh08PDwwYMAAJCcnA3h68vasWbOQnZ0NDw8PPHnyBG5ubvD29sbBgwcN76XX6zFgwAAolUqcOXMGAGBvb493330XmzdvrnPOiIhaI+6xICKianr16gUvLy/cu3cPgwcPxqBBg+Dl5YUbN24gICAAXl5e8PLyqrdUAE8PhyovL8fOnTsNy+Li4tC1a1f4+/sbln311Vfw9vZG+/btYW1tjTZt2uDTTz/FtWvXqm1z1KhR1UpFbWJjYzFgwAC0bdvWsN2jR4/WuN3AwEBDqQCeFoGJEyfi2LFjqKysrHH7p06dwsOHDxESEoKKigrDQ6/XY9y4ccjIyEBxcTEAYMiQIfj888+xZs0anD59GuXl5Q36DERErQGLBRERGamsrDT8OE5LS8OIESNQUVGB/Px8XLt2Dd7e3qioqKj1h/azfHx88PLLLyMuLg4AcOnSJWRmZmLWrFmGE8ITEhIwefJkdOnSBbt27UJ6ejoyMjIwe/ZslJSUVNtm1SFZ9YmKisKf//xnDB06FF9//TVOnz6NjIwMjBs3znDC92+p1eoal5WVleHx48c1vscvv/wCAAgKCkKbNm2MHpGRkRBCGA7J2rt3L0JCQvDJJ59g+PDhcHR0xMyZM5GXl9egz0NEZM6s5Q5ARETmxd/fH2lpaYbn58+fR2RkpOF5QEAAgKfnWdR0nkJNZs+ejfDwcJw9exbx8fGwsrIyOj9j165d8PT0xN69ew1lAwBKS0tr3N5vx9Rl165d8PPzw/bt242W63S6GsfX9AM/Ly8PNjY2aN++fY2v6dy5MwBg69atGDZsWI1jnJ2dDWOjo6MRHR2N27dv4+DBgwgPD0d+fj4OHz7coM9ERGSuWCyIiMjIxx9/DJ1Oh+TkZKxevRqpqalQKBRYtWoVtFotPvroIwBPDxNqqJCQECxbtgwff/wxDh48CH9/f3Tt2tWwXpIk2NjYGBWGvLy8Gq8K1RiSJEGpVBotu3TpEtLT0+Hm5lZtfEJCAj788EOjcyy++eYb+Pj4QKFQ1Pge3t7e6NChA65evYrQ0NAGZ3N3d0doaCiOHj2KkydPNuJTERGZJxYLIiIy8sorrwAAtm3bBn9/fwwdOhTA0z0X4eHhGDRoUKO3qVar8frrryMuLg5CiGr3rpgwYQISEhLw/vvvIygoCHfu3MHq1avh4uKCmzdvPvdnmTBhAlavXo2IiAj4+vri+vXrWLVqFTw9PWu8t4ZCoUBAQAAWLVoEvV6PyMhIFBUVYeXKlbW+R/v27bF161aEhITg4cOHCAoKgpOTEwoKCnDx4kUUFBRg+/bt0Gq1+P3vf49p06ahR48esLe3R0ZGBg4fPozAwMDn/oxEROaCxYKIiKrR6/X49ttvsWbNGgBPS0Vubi4mTpz43Nt85513cPDgQTg6OuLNN980Wjdr1izk5+cjNjYWn332Gbp164bw8HDk5ubW+aO+PkuXLsWTJ0/w6aefYuPGjejVqxdiY2ORmJhY42FcoaGhKCkpwfz585Gfn4/evXvj0KFD8Pb2rvN9ZsyYAXd3d2zcuBHvvfcedDodnJyc4OXlZTjkq23bthg6dCh27tyJnJwclJeXw93dHUuWLMFf//rX5/6MRETmgpebJSIiIiIik/GqUEREREREZDIWCyIiIiIiMhmLBRERERERmYzFgoiIiIiITMZiQUREREREJmOxICIiIiIik7FYEBERERGRyVgsiIiIiIjIZCwWRERERERkMhYLIiIiIiIyGYsFERERERGZjMWCiIiIiIhM9n8h69pRZWieSwAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "##\n", + "# PLOT results\n", + "##\n", + "import matplotlib.pyplot as plt\n", + "# Assuming 'val_err' contains the validation MSE values\n", + "\n", + "# Find the index of the minimum validation error\n", + "min_index = np.argmin(val_err) + 1 # +1 because index starts from 0, but variables start from 1\n", + "\n", + "# Plot the validation errors\n", + "plt.figure(figsize=(8, 5))\n", + "plt.plot(range(1, 16), val_err, marker='o', linestyle='--', color='black')\n", + "\n", + "# Highlight the minimum MSE with a red vertical line\n", + "plt.axvline(x=min_index, color='red', linestyle='-', linewidth=1.5)\n", + "\n", + "# Label the axes\n", + "plt.xlabel(\"# Variables\", fontsize=12)\n", + "plt.ylabel(\"Validation MSE\", fontsize=12)\n", + "\n", + "# Title for the plot (optional)\n", + "plt.title(\"Validation MSE vs Number of Variables\", fontsize=14)\n", + "\n", + "# Show the plot\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression.ipynb b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression.ipynb new file mode 100755 index 0000000..45e4b27 --- /dev/null +++ b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression.ipynb @@ -0,0 +1,196 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fb0c424f-1667-4fb2-baab-2d88d8abb387", + "metadata": {}, + "source": [ + "# Preliminary setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "de6396ca-e17d-4c95-8f96-1f78a09e9ce2", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from ISLP import load_data\n", + "from matplotlib.pyplot import subplots, show\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "# Load and preprocess data\n", + "Hitters = load_data('Hitters').dropna()" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "# Task" + ] + }, + { + "cell_type": "markdown", + "id": "0ce8adda-23e7-498f-9ff3-26c138903b88", + "metadata": {}, + "source": [ + "1. Use the final model (tuning parameter) obtained from 10-fold CV and fit the model again using the full dataset and display the corresponding coefficients." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ac884445-bc95-4659-b656-d9c5f821bf52", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "05635216-4afb-4d0d-982a-a2af35d6bf3a", + "metadata": {}, + "source": [ + "2. Multiply the feature Errors by $1/1000$ and again fit the model from Task 1. Display the coefficients and interpret. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "70bc0da8-6134-4d4d-ad1f-e43ea26fae3c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "b6e19093-51bf-4e68-aba6-01c34905b5e4", + "metadata": {}, + "source": [ + "3. Redo Task 2 BUT without the normalizing (standardize) the data. Refit the same model again and display the coefficients. Interpret. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a38add3-642e-41a8-8b80-c3d01a63e538", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "df85262d-8a38-4bf9-9dfa-0a001e117d33", + "metadata": {}, + "source": [ + "4. Split the dataset into a training set using $80\\%$ of the observations and validation set using all other observations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0a152a8-395e-49e2-973d-252b88cd379c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "e1e3e60e-0d5a-4340-ae29-9153ffdad7c8", + "metadata": {}, + "source": [ + "5. Set up a grid for the tuning parameter $\\lambda$ and fit Lasso regressions for all tuning parameters using the training data. Make sure that you choose the mininmum and maximum values of $\\lambda$ so that it allows you to determine the optimal $\\lambda$ parameter in the next task (you might need to play with the grid size a bit). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5e0cff0-6782-40a3-8d7f-891c19bb5f4d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "21ba53c0-def1-4059-9872-27e6b437b8af", + "metadata": {}, + "source": [ + "6. For each model (tuning parameter), compute the mean squared prediction error in the validation dataset. Plot the validation error as a function of $\\lambda$ and find the best model which minimizes the validation error. Display the estimated coefficients for the best model and check whether some features are not selected in the final regression. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8323ce02-17fe-4f54-820d-030f198a34fe", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "19f07912-bffd-4a19-9a92-aa1a2dc48c75", + "metadata": {}, + "source": [ + "7. Finally compare the best Lasso model obtained from the validation set approach from Task 6 to the best Lasso model obtained by 5-fold cross-validation. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e0166113-9d31-4e42-a8df-69f2048b65af", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "8fd306c8-2247-4343-8c30-5dd99393c9d0", + "metadata": {}, + "source": [ + "8. Compare the best model from Task 7 to the best ridge regression obtained from 5-fold cross validation. How do the coefficients of the two models differ?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c70e9bd-78d9-4a91-a28f-588fca65c616", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.ipynb b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.ipynb new file mode 100755 index 0000000..9b3c346 --- /dev/null +++ b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.ipynb @@ -0,0 +1,550 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4ef176ca-44e5-472f-ba91-dbf3c808423f", + "metadata": {}, + "source": [ + "# Preliminary setup" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a8bae312-073e-4e8e-947d-c72022422fb2", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from ISLP import load_data\n", + "from matplotlib.pyplot import subplots, show\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "# Load and preprocess data\n", + "Hitters = load_data('Hitters').dropna()" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "# Task" + ] + }, + { + "cell_type": "markdown", + "id": "0ce8adda-23e7-498f-9ff3-26c138903b88", + "metadata": {}, + "source": [ + "1. Use the final model (tuning parameter) obtained from 10-fold CV and fit the model again using the full dataset and display the corresponding coefficients." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "ac884445-bc95-4659-b656-d9c5f821bf52", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ -2.02860796 7.58424738 4.03379342 -2.32240494 -0.88451987\n", + " 6.19542148 -3.22976069 -0.17077862 0.10671085 -0.20456668\n", + " 1.49604977 0.81815031 -0.80943149 0.28390582 0.37371839\n", + " -3.20449556 36.02559023 -98.31856376 -1.03497201]\n" + ] + } + ], + "source": [ + "from sklearn.linear_model import RidgeCV, Lasso, LassoCV, Ridge\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.utils import shuffle\n", + "\n", + "# Construct feature matrix and outcome variable\n", + "X = pd.get_dummies(Hitters.drop(columns='Salary'), drop_first=True)\n", + "y = Hitters['Salary'].values\n", + "\n", + "# Task 1: Ridge regression with CV to find best lambda (alpha)\n", + "alphas = np.exp(np.linspace(0, 8, 50))\n", + "ridge_cv = RidgeCV(alphas=alphas, store_cv_results=True)\n", + "ridge_cv.fit(X, y)\n", + "best_alpha_ridge = ridge_cv.alpha_\n", + "ridge_model = Ridge(alpha=best_alpha_ridge)\n", + "ridge_model.fit(X, y)\n", + "coef_task1 = ridge_model.coef_\n", + "\n", + "print(coef_task1)" + ] + }, + { + "cell_type": "markdown", + "id": "05635216-4afb-4d0d-982a-a2af35d6bf3a", + "metadata": {}, + "source": [ + "2. Multiply the feature Errors by $1/1000$ and again fit the model from Task 1. Display the coefficients and interpret. " + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "70bc0da8-6134-4d4d-ad1f-e43ea26fae3c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coefficients after rescaling + standardization:\n", + " [-120.75620416 141.98271425 -10.7355903 23.13998844 16.78667849\n", + " 79.16269699 -46.75097671 -13.02193553 93.80996664 57.58064435\n", + " 110.86292201 89.70452309 -86.55162346 74.72391629 27.29818898\n", + " -24.87620768 27.59197633 -61.81228093 -10.31249136]\n" + ] + } + ], + "source": [ + "# Task 2: Scale one variable manually and fit ridge with standardization\n", + "X_scaled = X.copy()\n", + "\n", + "# Rescale 'Errors' by 1/1000\n", + "X_scaled['Errors'] = X_scaled['Errors'].astype(float) / 1000\n", + "\n", + "# Standardize (if required by the task)\n", + "scaler = StandardScaler()\n", + "X_scaled = pd.DataFrame(scaler.fit_transform(X_scaled), columns=X.columns)\n", + "\n", + "# Fit ridge model\n", + "ridge_model2 = Ridge(alpha=best_alpha_ridge)\n", + "ridge_model2.fit(X_scaled, y)\n", + "coef_task2 = ridge_model2.coef_\n", + "print(\"Coefficients after rescaling + standardization:\\n\", coef_task2)" + ] + }, + { + "cell_type": "markdown", + "id": "b6e19093-51bf-4e68-aba6-01c34905b5e4", + "metadata": {}, + "source": [ + "3. Redo Task 2 BUT without the normalizing (standardize) the data. Refit the same model again and display the coefficients. Interpret. " + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "5a38add3-642e-41a8-8b80-c3d01a63e538", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coefficients after rescaling WITHOUT standardization:\n", + " [-2.08316424e+00 7.83574168e+00 4.03538434e+00 -2.46707401e+00\n", + " -1.01184803e+00 6.30012470e+00 -2.72891307e+00 -1.63751994e-01\n", + " 4.96433825e-02 -2.72096047e-01 1.55164973e+00 8.48452938e-01\n", + " -8.20932977e-01 2.79014031e-01 2.72444155e-01 -1.43983852e+00\n", + " 3.27987035e+01 -9.84477207e+01 1.27421956e-01]\n" + ] + } + ], + "source": [ + "# Task 3: Same variable but no standardization\n", + "X_no_std = X.copy()\n", + "\n", + "# Rescale 'Errors' only\n", + "X_no_std['Errors'] = X_no_std['Errors'].astype(float) / 1000\n", + "\n", + "# Do not standardize\n", + "ridge_model3 = Ridge(alpha=best_alpha_ridge)\n", + "ridge_model3.fit(X_no_std, y)\n", + "coef_task3 = ridge_model3.coef_\n", + "print(\"Coefficients after rescaling WITHOUT standardization:\\n\", coef_task3)" + ] + }, + { + "cell_type": "markdown", + "id": "df85262d-8a38-4bf9-9dfa-0a001e117d33", + "metadata": {}, + "source": [ + "4. Split the dataset into a training set using $80\\%$ of the observations and validation set using all other observations." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "b0a152a8-395e-49e2-973d-252b88cd379c", + "metadata": {}, + "outputs": [], + "source": [ + "# Task 4: Shuffle data and split\n", + "Hitters_shuffled = shuffle(Hitters, random_state=2)\n", + "n = len(Hitters_shuffled)\n", + "nTr = int(n * 0.8)\n", + "train_data = Hitters_shuffled[:nTr]\n", + "val_data = Hitters_shuffled[nTr:]\n", + "\n", + "X_train = pd.get_dummies(train_data.drop(columns='Salary'), drop_first=True)\n", + "y_train = train_data['Salary'].values\n", + "X_val = pd.get_dummies(val_data.drop(columns='Salary'), drop_first=True)\n", + "y_val = val_data['Salary'].values" + ] + }, + { + "cell_type": "markdown", + "id": "e1e3e60e-0d5a-4340-ae29-9153ffdad7c8", + "metadata": {}, + "source": [ + "5. Set up a grid for the tuning parameter $\\lambda$ and fit Lasso regressions for all tuning parameters using the training data. Make sure that you choose the mininmum and maximum values of $\\lambda$ so that it allows you to determine the optimal $\\lambda$ parameter in the next task (you might need to play with the grid size a bit). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53b4d5aa-87a2-4cd2-95a0-427d5e29e9c0", + "metadata": {}, + "outputs": [], + "source": [ + "# Task 5: Lasso grid\n", + "grid = np.linspace(0.001, 100, 100)\n", + "val_errors = []\n", + "\n", + "for alpha in grid:\n", + " lasso = Lasso(alpha=alpha, max_iter=10000)\n", + " lasso.fit(X_train, y_train)\n", + " y_pred = lasso.predict(X_val)\n", + " val_errors.append(mean_squared_error(y_val, y_pred))" + ] + }, + { + "cell_type": "markdown", + "id": "21ba53c0-def1-4059-9872-27e6b437b8af", + "metadata": {}, + "source": [ + "6. For each model (tuning parameter), compute the mean squared prediction error in the validation dataset. Plot the validation error as a function of $\\lambda$ and find the best model which minimizes the validation error. Display the estimated coefficients for the best model and check whether some features are not selected in the final regression. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "b5e0cff0-6782-40a3-8d7f-891c19bb5f4d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHFCAYAAADv8c1wAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaa9JREFUeJzt3XtcVGX+B/DPcJkBRhi5DcNNBBVQwUtoXDQvqeCVzFpvhbqZ1pqaqV3cts12NSstu22X9Wea6cbWqpVaKJqaJqCRlCgi3rgow50ZQBhu5/cHcnJEa1DgMPB5v17zWuecZ858z8mazz7Pc54jEwRBABERERH9LgupCyAiIiIyBwxNRERERCZgaCIiIiIyAUMTERERkQkYmoiIiIhMwNBEREREZAKGJiIiIiITMDQRERERmYChiYiIiMgEDE1EHcDmzZshk8nw008/SV3KXfv6668hk8nw0Ucf3bZNfHw8ZDIZ3nrrLZOPO2fOHHTv3t1oW/fu3TFnzpw//OyhQ4cgk8lw6NAhk7+v0bFjx7By5UqUlpY22TdixAiMGDGi2ce8W5cvX4ZMJrvta+XKlW1eE5E5sJK6ACKiG02YMAEajQaffPIJnnzyyVu22bRpE6ytrRETE3NX37Vz5044ODjc1TH+yLFjx/DKK69gzpw56Nq1q9G+Dz74oFW/+48sWrQIM2fObLLdy8tLgmqI2j+GJiJqV6ysrDBr1iy88cYbSE1NRVBQkNH+0tJS7Ny5E9HR0XB1db2r7xo4cOBdff5u9enTR9Lv79atG8LCwpr9uWvXrsHOzq7J9rq6OtTW1kKhUNxxTbc7NlF7wOE5ok6iqqoKy5Ytw4ABA6BSqeDk5ITw8HB8/fXXTdp++eWXCA0NhUqlgp2dHfz8/PDYY4+J++vr67Fq1SoEBATA1tYWXbt2Rb9+/fDOO+8YHefo0aMYNWoU7O3tYWdnh4iICOzZs+cPa507dy6Ahh6lm33++eeoqqoS6/nXv/6FYcOGQa1WQ6lUIjg4GG+88QZqamr+8HtuNTx39uxZjB07FnZ2dnBxccGTTz6JsrKyJp+Nj4/HAw88AC8vL9jY2KBnz5544oknUFhYKLZZuXIlnn32WQCAr6+vOPzVOMx3q+G54uJiLFiwAJ6enpDL5fDz88OLL74Ig8Fg1E4mk2HhwoX47LPP0Lt3b9jZ2aF///7YvXv3H553c4wYMQJBQUH44YcfEBERATs7Ozz22GPiEN8bb7yBVatWwdfXFwqFAgcPHgQAfPPNNwgPD4ednR3s7e0xZswYJCQkGB175cqVkMlk+Pnnn/Hwww/D0dERPXr0aNH6iVoSe5qIOgmDwYDi4mIsX74cnp6eqK6uxv79+zFlyhRs2rQJs2bNAgAkJCRg2rRpmDZtGlauXAkbGxtkZmbi+++/F4/1xhtvYOXKlfjb3/6GYcOGoaamBmfPnjWat3P48GGMGTMG/fr1w8aNG6FQKPDBBx9g0qRJ+PzzzzFt2rTb1urv74+hQ4di69ateO2112BtbS3u27RpEzw9PREVFQUAuHDhAmbOnAlfX1/I5XL88ssvWL16Nc6ePYtPPvmkWdcoLy8Pw4cPh7W1NT744AO4ublh27ZtWLhwYZO2Fy5cQHh4OB5//HGoVCpcvnwZb731FoYOHYpTp07B2toajz/+OIqLi/Hee+9hx44dcHd3B3D7HqaqqiqMHDkSFy5cwCuvvIJ+/frhyJEjWLNmDVJSUpoEzj179uDEiRP4xz/+gS5duuCNN97Agw8+iPT0dPj5+f3h+dbX16O2trbJdisr45+G3NxcPProo3juuefw6quvwsLit/+//e6778Lf3x/r1q2Dg4MDevXqhf/85z945JFHEBkZic8//xwGgwFvvPEGRowYgQMHDmDo0KFGx58yZQqmT5+OJ598EhUVFX9YN5FkBCIye5s2bRIACCdOnDD5M7W1tUJNTY0wd+5cYeDAgeL2devWCQCE0tLS23524sSJwoABA373+GFhYYJarRbKysqMvjMoKEjw8vIS6uvrf/fzjee0Y8cOcVtqaqoAQHjxxRdv+Zm6ujqhpqZG2LJli2BpaSkUFxeL+2bPni34+PgYtffx8RFmz54tvn/++ecFmUwmpKSkGLUbM2aMAEA4ePDgLb+3vr5eqKmpETIzMwUAwtdffy3uW7t2rQBAuHTpUpPPDR8+XBg+fLj4/qOPPhIACF988YVRu9dff10AIOzbt0/cBkBwc3MT9Hq9uE2r1QoWFhbCmjVrbllno0uXLgkAbvs6cuSIUY0AhAMHDtzyGD169BCqq6vF7XV1dYKHh4cQHBws1NXVidvLysoEtVotREREiNtefvllAYDw97///XfrJWovODxH1Il8+eWXGDJkCLp06QIrKytYW1tj48aNSEtLE9sMHjwYADB16lR88cUXuHLlSpPj3Hvvvfjll1+wYMEC7N27F3q93mh/RUUFkpKS8PDDD6NLly7idktLS8TExCAnJwfp6em/W+vUqVNhb29v1Fv0ySefQCaT4c9//rO47eTJk4iOjoazszMsLS1hbW2NWbNmoa6uDufOnWvW9Tl48CD69u2L/v37G22/1WTp/Px8PPnkk/D29havpY+PDwAYXc/m+P7776FUKvHwww8bbW8cQjxw4IDR9pEjR8Le3l587+bmBrVajczMTJO+7+mnn8aJEyeavAYMGGDUztHREffff/8tjxEdHW3UE5ieno6rV68iJibGqEeqS5cueOihh5CYmIhr164ZHeOhhx4yqV4iqTE0EXUSO3bswNSpU+Hp6YmtW7ciISEBJ06cwGOPPYaqqiqx3bBhw/DVV1+htrYWs2bNgpeXF4KCgvD555+LbVasWIF169YhMTER48aNg7OzM0aNGiUueVBSUgJBEMThqBt5eHgAAIqKin63Xjs7O0yfPh1xcXHQarWora3F1q1bMXz4cHHeS1ZWFu677z5cuXIF77zzDo4cOYITJ07gX//6FwCgsrKyWdeoqKgIGo2myfabt9XX1yMyMhI7duzAc889hwMHDuD48eNITEy8o++9+ftlMpnRdrVaDSsrqybXzNnZuckxFAqFyd/v5eWFQYMGNXndGHQB3PKf4+32NdZ4u3/29fX1KCkpMfn4RO0J5zQRdRJbt26Fr68v/vvf/xr9KN88wRgAHnjgATzwwAMwGAxITEzEmjVrMHPmTHTv3h3h4eGwsrLC0qVLsXTpUpSWlmL//v3461//iqioKGRnZ8PR0REWFhbIzc1tcuyrV68CAFxcXP6w5rlz52LDhg3YsmUL/P39kZ+fjzfffFPc/9VXX6GiogI7duwQe3kAICUlpTmXRuTs7AytVttk+83bUlNT8csvv2Dz5s2YPXu2uP38+fN39L03fn9SUhIEQTD6Z5Sfn4/a2lqTrllruDnE/d6+xiB3u3/2FhYWcHR0NPn4RO0Je5qIOgmZTAa5XG70A6XVam9591wjhUKB4cOH4/XXXwfQMBR2s65du+Lhhx/GU089heLiYly+fBlKpRKhoaHYsWOHUa9HfX09tm7dCi8vL/j7+/9hzaGhoQgKCsKmTZuwadMmqFQqo6GcxnO58RZ3QRCwYcOGPzz2rYwcORKnT5/GL7/8YrT9P//5j9H7W30vAHz88cdNjtnYxpTen1GjRqG8vBxfffWV0fYtW7aI+9u7gIAAeHp64j//+Q8EQRC3V1RUYPv27eIddUTmiD1NRB3I999/j8uXLzfZPn78eEycOBE7duzAggUL8PDDDyM7Oxv//Oc/4e7ujoyMDLHt3//+d+Tk5GDUqFHw8vJCaWkp3nnnHVhbW2P48OEAgEmTJiEoKAiDBg2Cq6srMjMz8fbbb8PHxwe9evUCAKxZswZjxozByJEjsXz5csjlcnzwwQdITU3F559/bnLvwmOPPYalS5ciPT0dTzzxBGxtbcV9Y8aMgVwux4wZM/Dcc8+hqqoKH374YZPhH1MtWbIEn3zyCSZMmIBVq1aJd8+dPXvWqF1gYCB69OiBF154AYIgwMnJCbt27UJ8fHyTYwYHBwMA3nnnHcyePRvW1tYICAgwmovUaNasWfjXv/6F2bNn4/LlywgODsbRo0fx6quvYvz48Rg9evQdndftZGVliUOKN3J1db3jW/8tLCzwxhtv4JFHHsHEiRPxxBNPwGAwYO3atSgtLcVrr712t2UTSUfSaehE1CIa7zS73avxzq3XXntN6N69u6BQKITevXsLGzZsEO9garR7925h3LhxgqenpyCXywW1Wi2MHz/e6I6qN998U4iIiBBcXFwEuVwudOvWTZg7d65w+fJlo7qOHDki3H///YJSqRRsbW2FsLAwYdeuXc06t4KCAkEulwsAhOPHjzfZv2vXLqF///6CjY2N4OnpKTz77LPCd9991+RuN1PunhMEQThz5owwZswYwcbGRnBychLmzp0rfP31102O19jO3t5ecHR0FP70pz8JWVlZAgDh5ZdfNjrmihUrBA8PD8HCwsLoODffPScIglBUVCQ8+eSTgru7u2BlZSX4+PgIK1asEKqqqozaARCeeuqpJtfjVud0sz+6e+6RRx4R2w4fPlzo27fvbY+xdu3aW37HV199JYSGhgo2NjaCUqkURo0aJfz4449GbRr/7hUUFPxuvUTthUwQbug/JSIiIqJb4pwmIiIiIhMwNBERERGZgKGJiIiIyAQMTUREREQmYGgiIiIiMgFDExEREZEJuLhlC6qvr8fVq1dhb2/PxwIQERGZCUEQUFZWBg8PD6MHTd+MoakFXb16Fd7e3lKXQURERHcgOzsbXl5et93P0NSCGh+LkJ2dDQcHB4mrISIiIlPo9Xp4e3vf8vFGN2JoakGNQ3IODg4MTURERGbmj6bWcCI4ERERkQkkDU0rV66ETCYzemk0GnF/Xl4e5syZAw8PD9jZ2WHs2LFGT2MHAIPBgEWLFsHFxQVKpRLR0dHIyckxalNSUoKYmBioVCqoVCrExMSgtLTUqE1WVhYmTZoEpVIJFxcXLF68GNXV1a127kRERGReJO9p6tu3L3Jzc8XXqVOnADTMZJ88eTIuXryIr7/+GidPnoSPjw9Gjx6NiooK8fNLlizBzp07ERsbi6NHj6K8vBwTJ05EXV2d2GbmzJlISUlBXFwc4uLikJKSgpiYGHF/XV0dJkyYgIqKChw9ehSxsbHYvn07li1b1nYXgoiIiNo3QUIvv/yy0L9//1vuS09PFwAIqamp4rba2lrByclJ2LBhgyAIglBaWipYW1sLsbGxYpsrV64IFhYWQlxcnCAIgnDmzBkBgJCYmCi2SUhIEAAIZ8+eFQRBEL799lvBwsJCuHLlitjm888/FxQKhaDT6Uw+H51OJwBo1meIiIhIWqb+fkve05SRkQEPDw/4+vpi+vTpuHjxIoCGYTcAsLGxEdtaWlpCLpfj6NGjAIDk5GTU1NQgMjJSbOPh4YGgoCAcO3YMAJCQkACVSoXQ0FCxTVhYGFQqlVGboKAgeHh4iG2ioqJgMBiQnJx829oNBgP0er3Ri4iIiDomSUNTaGgotmzZgr1792LDhg3QarWIiIhAUVERAgMD4ePjgxUrVqCkpATV1dV47bXXoNVqkZubCwDQarWQy+VwdHQ0Oq6bmxu0Wq3YRq1WN/lutVpt1MbNzc1ov6OjI+RyudjmVtasWSPOk1KpVFyjiYiIqAOTNDSNGzcODz30EIKDgzF69Gjs2bMHAPDpp5/C2toa27dvx7lz5+Dk5AQ7OzscOnQI48aNg6Wl5e8eVxAEo9sGb3UL4Z20udmKFSug0+nEV3Z29h+eMxEREZknyYfnbqRUKhEcHCzeIRcSEoKUlBSUlpYiNzcXcXFxKCoqgq+vLwBAo9GguroaJSUlRsfJz88Xe440Gg3y8vKafFdBQYFRm5t7lEpKSlBTU9OkB+pGCoVCXJOJazMRERF1bO0qNBkMBqSlpcHd3d1ou0qlgqurKzIyMvDTTz/hgQceANAQqqytrREfHy+2zc3NRWpqKiIiIgAA4eHh0Ol0OH78uNgmKSkJOp3OqE1qaqo47AcA+/btg0KhQEhISKudLxEREZkPmSAIglRfvnz5ckyaNAndunVDfn4+Vq1ahcOHD+PUqVPw8fHBl19+CVdXV3Tr1g2nTp3C008/jZCQEGzfvl08xl/+8hfs3r0bmzdvhpOTE5YvX46ioiIkJyeLw3jjxo3D1atX8fHHHwMA5s+fDx8fH+zatQtAw5IDAwYMgJubG9auXYvi4mLMmTMHkydPxnvvvWfy+ej1eqhUKuh0OvY6ERERmQlTf78lfYxKTk4OZsyYgcLCQri6uiIsLAyJiYnw8fEB0NBrtHTpUuTl5cHd3R2zZs3CSy+9ZHSM9evXw8rKClOnTkVlZSVGjRqFzZs3G8172rZtGxYvXizeZRcdHY33339f3G9paYk9e/ZgwYIFGDJkCGxtbTFz5kysW7euDa4CERERmQNJe5o6GvY0ERERmR9Tf7/b1ZwmurUKQy0y8spQVVP3x42JiIioVTA0mYHhaw9hzPofcD6/XOpSiIiIOi2GJjPg6WgLAMgpqZS4EiIios6LockMeHVtCE1XShmaiIiIpMLQZAY8ujY8f+8Ke5qIiIgkw9BkBjyv9zRdZU8TERGRZBiazICnox0ADs8RERFJiaHJDIjDcwxNREREkmFoMgNeXRt6moorqlFZzbWaiIiIpMDQZAYcbK3QRdHwxBv2NhEREUmDockMyGQycTI4QxMREZE0GJrMBJcdICIikhZDk5loXBWcyw4QERFJg6HJTHh25bIDREREUmJoMhONPU0cniMiIpIGQ5OZ8ORaTURERJJiaDITjcNzWn0VauvqJa6GiIio82FoMhNqewWsLWWoqxeQV2aQuhwiIqJOh6HJTFhYyKBRcdkBIiIiqTA0mZHGBS657AAREVHbY2gyI1x2gIiISDoMTWakcdmBHA7PERERtTmGJjPSuOwAh+eIiIjaHkOTGeHwHBERkXQYmszIjauCC4IgcTVERESdC0OTGXG/vuRAZU0dSq7VSFwNERFR58LQZEZsrC3h0kUBgPOaiIiI2hpDk5nhHXRERETSYGgyM17XF7jkZHAiIqK2xdBkZjy47AAREZEkGJrMTOOjVPj8OSIiorbF0GRmPB25VhMREZEUGJrMjCfnNBEREUmCocnMNIam4opqVFbXSVwNERFR58HQZGYcbK3QRWEFgL1NREREbYmhyczIZDIO0REREUmAockMNS47wDvoiIiI2g5DkxlqXBWcazURERG1HYYmM+TZlcsOEBERtTWGJjP02/PnrklcCRERUefB0GSG/FyUAIDz+eUQBEHiaoiIiDoHSUPTypUrIZPJjF4ajUbcX15ejoULF8LLywu2trbo3bs3PvzwQ6NjGAwGLFq0CC4uLlAqlYiOjkZOTo5Rm5KSEsTExEClUkGlUiEmJgalpaVGbbKysjBp0iQolUq4uLhg8eLFqK6ubrVzvxs91V1gIQNKrtUgv8wgdTlERESdguQ9TX379kVubq74OnXqlLjvmWeeQVxcHLZu3Yq0tDQ888wzWLRoEb7++muxzZIlS7Bz507Exsbi6NGjKC8vx8SJE1FX99vCjzNnzkRKSgri4uIQFxeHlJQUxMTEiPvr6uowYcIEVFRU4OjRo4iNjcX27duxbNmytrkIzWRjbQnf671NZ7VlEldDRETUSQgSevnll4X+/fvfdn/fvn2Ff/zjH0bb7rnnHuFvf/ubIAiCUFpaKlhbWwuxsbHi/itXrggWFhZCXFycIAiCcObMGQGAkJiYKLZJSEgQAAhnz54VBEEQvv32W8HCwkK4cuWK2Obzzz8XFAqFoNPpTD4fnU4nAGjWZ+7Ugm3Jgs/zu4WPDp1v9e8iIiLqyEz9/Za8pykjIwMeHh7w9fXF9OnTcfHiRXHf0KFD8c033+DKlSsQBAEHDx7EuXPnEBUVBQBITk5GTU0NIiMjxc94eHggKCgIx44dAwAkJCRApVIhNDRUbBMWFgaVSmXUJigoCB4eHmKbqKgoGAwGJCcnt+r536neGnsA7GkiIiJqK1ZSfnloaCi2bNkCf39/5OXlYdWqVYiIiMDp06fh7OyMd999F/PmzYOXlxesrKxgYWGB//u//8PQoUMBAFqtFnK5HI6OjkbHdXNzg1arFduo1eom361Wq43auLm5Ge13dHSEXC4X29yKwWCAwfDbnCK9Xn9nF+IOBGocAABpuW33nURERJ2ZpKFp3Lhx4p+Dg4MRHh6OHj164NNPP8XSpUvx7rvvIjExEd988w18fHzwww8/YMGCBXB3d8fo0aNve1xBECCTycT3N/75btrcbM2aNXjllVf+8DxbQ6B7Q0/ThYJyVNfWQ24leachERFRh9aufmmVSiWCg4ORkZGByspK/PWvf8Vbb72FSZMmoV+/fli4cCGmTZuGdevWAQA0Gg2qq6tRUlJidJz8/Hyx50ij0SAvL6/JdxUUFBi1ublHqaSkBDU1NU16oG60YsUK6HQ68ZWdnX1X598cnl1tYa+wQk2dgIuF5W32vURERJ1VuwpNBoMBaWlpcHd3R01NDWpqamBhYVyipaUl6uvrAQAhISGwtrZGfHy8uD83NxepqamIiIgAAISHh0On0+H48eNim6SkJOh0OqM2qampyM3NFdvs27cPCoUCISEht61XoVDAwcHB6NVWZDIZAhrnNeVyXhMREVFrk3R4bvny5Zg0aRK6deuG/Px8rFq1Cnq9HrNnz4aDgwOGDx+OZ599Fra2tvDx8cHhw4exZcsWvPXWWwAAlUqFuXPnYtmyZXB2doaTkxOWL1+O4OBgcfiud+/eGDt2LObNm4ePP/4YADB//nxMnDgRAQEBAIDIyEj06dMHMTExWLt2LYqLi7F8+XLMmzevTYNQcwW62+OnzBJOBiciImoDkoamnJwczJgxA4WFhXB1dUVYWBgSExPh4+MDAIiNjcWKFSvwyCOPoLi4GD4+Pli9ejWefPJJ8Rjr16+HlZUVpk6disrKSowaNQqbN2+GpaWl2Gbbtm1YvHixeJdddHQ03n//fXG/paUl9uzZgwULFmDIkCGwtbXFzJkzxWHA9qpxMvhZLSeDExERtTaZIPA5HC1Fr9dDpVJBp9O1SQ9VcmYxHvowARoHGyT+dVSrfx8REVFHZOrvd7ua00TN4+/WMKdJq69CSUX7fOQLERFRR8HQZMbsbazh7WQLgItcEhERtTaGJjPHeU1ERERtg6HJzAVeX3YgnT1NRERErYqhycyJj1NhaCIiImpVDE1mrvFxKue0Zair542QRERErYWhycx1d1ZCYWWBypo6ZBVfk7ocIiKiDouhycxZWtz4OBVOBiciImotDE0dQONkcM5rIiIiaj0MTR2AuOwAe5qIiIhaDUNTByAuO5DHniYiIqLWwtDUATTOacosuoYKQ63E1RAREXVMDE0dgHMXBdT2CgDsbSIiImotDE0dRG/3hnlNqVd0EldCRETUMTE0dRADu3UFAPycWSJtIURERB0UQ1MHcU83RwBAchZDExERUWtgaOogBnTrCpkMyC6uREGZQepyiIiIOhyGpg7CwcYa/uqGu+h+Zm8TERFRi2No6kDu8ekKgPOaiIiIWgNDUwfSOK+JPU1EREQtj6GpA7nHpyE0/ZqjQ3VtvcTVEBERdSwMTR2In4sSXe2sYaitxxk+h46IiKhFMTR1IDKZ7LchOs5rIiIialEMTR3MPY2LXHJeExERUYtiaOpg2NNERETUOhiaOpj+3l1hIQOu6qqg1VVJXQ4REVGHwdDUwSgVVgjUNDy8l0N0RERELYehqQNqXOQymUN0RERELYahqQMK8eEil0RERC2NoakDapwMfvqKHlU1dRJXQ0RE1DEwNHVA3Zzs4KyUo7quHqev6qQuh4iIqENgaOqAZDKZ+EiVnzNLpS2GiIiog2Bo6qD48F4iIqKWxdDUQTWuDP5TZgkEQZC2GCIiog6AoamD6u/dFdaWMhSUGZBVfE3qcoiIiMweQ1MHZWNtiX5eXQEAxy8VS1sMERFRB8DQ1IEN7u4EgKGJiIioJTA0dWD3+jZMBj9xmaGJiIjobjE0dWAhPk6QyYDLRdeQX8aH9xIREd0NhqYOTGVrLT6898QlLj1ARER0NxiaOrh7u3OIjoiIqCUwNHVwg305GZyIiKglSBqaVq5cCZlMZvTSaDTi/pv3Nb7Wrl0rtjEYDFi0aBFcXFygVCoRHR2NnJwco+8pKSlBTEwMVCoVVCoVYmJiUFpaatQmKysLkyZNglKphIuLCxYvXozq6upWPf+2cO/1O+jStHroq2okroaIiMh8Sd7T1LdvX+Tm5oqvU6dOiftu3J6bm4tPPvkEMpkMDz30kNhmyZIl2LlzJ2JjY3H06FGUl5dj4sSJqKurE9vMnDkTKSkpiIuLQ1xcHFJSUhATEyPur6urw4QJE1BRUYGjR48iNjYW27dvx7Jly9rmIrQitYMNfJztIAhAcibnNREREd0pK8kLsLIy6l260c3bv/76a4wcORJ+fn4AAJ1Oh40bN+Kzzz7D6NGjAQBbt26Ft7c39u/fj6ioKKSlpSEuLg6JiYkIDQ0FAGzYsAHh4eFIT09HQEAA9u3bhzNnziA7OxseHh4AgDfffBNz5szB6tWr4eDg0Fqn3ybu7e6EzKJrOH6pGCMD1FKXQ0REZJYk72nKyMiAh4cHfH19MX36dFy8ePGW7fLy8rBnzx7MnTtX3JacnIyamhpERkaK2zw8PBAUFIRjx44BABISEqBSqcTABABhYWFQqVRGbYKCgsTABABRUVEwGAxITk6+be0GgwF6vd7o1R41zms6wXlNREREd0zS0BQaGootW7Zg79692LBhA7RaLSIiIlBUVNSk7aeffgp7e3tMmTJF3KbVaiGXy+Ho6GjU1s3NDVqtVmyjVjftXVGr1UZt3NzcjPY7OjpCLpeLbW5lzZo14jwplUoFb29v00++DTXOa/o1R4eqmro/aE1ERES3ImloGjduHB566CEEBwdj9OjR2LNnD4CGgHSzTz75BI888ghsbGz+8LiCIEAmk4nvb/zz3bS52YoVK6DT6cRXdnb2H9YmBR9nO7jaK1BdV49fskulLoeIiMgsST48dyOlUong4GBkZGQYbT9y5AjS09Px+OOPG23XaDSorq5GSYnxBOf8/Hyx50ij0SAvL6/JdxUUFBi1ublHqaSkBDU1NU16oG6kUCjg4OBg9GqPZDKZ2NvE9ZqIiIjuTLsKTQaDAWlpaXB3dzfavnHjRoSEhKB///5G20NCQmBtbY34+HhxW25uLlJTUxEREQEACA8Ph06nw/Hjx8U2SUlJ0Ol0Rm1SU1ORm5srttm3bx8UCgVCQkJa/DylMPj6IpfHL/MOOiIiojsh6d1zy5cvx6RJk9CtWzfk5+dj1apV0Ov1mD17tthGr9fjyy+/xJtvvtnk8yqVCnPnzsWyZcvg7OwMJycnLF++XBzuA4DevXtj7NixmDdvHj7++GMAwPz58zFx4kQEBAQAACIjI9GnTx/ExMRg7dq1KC4uxvLlyzFv3rx223vUXPf6OgMAfs4sQV29AEuL2w87EhERUVOS9jTl5ORgxowZCAgIwJQpUyCXy5GYmAgfHx+xTWxsLARBwIwZM255jPXr12Py5MmYOnUqhgwZAjs7O+zatQuWlpZim23btiE4OBiRkZGIjIxEv3798Nlnn4n7LS0tsWfPHtjY2GDIkCGYOnUqJk+ejHXr1rXeybexAI097G2sUG6oRVpu+7zLj4iIqD2TCYIgSF1ER6HX66FSqaDT6dplD9WfNx3HwfQC/G1Cbzx+n5/U5RAREbULpv5+t6s5TdS6wvwahugSLjRd0oGIiIh+H0NTJzKkpwsAIOlSMWrr6iWuhoiIyLwwNHUifdwdoLK1RrmhFr9e0UldDhERkVlhaOpELCxkCL8+RHfsfKHE1RAREZkXhqZOZkjPhtD043nOayIiImoOhqZOJuL6vKbkrBI+h46IiKgZGJo6GT8XJTQONqiurcdPXB2ciIjIZAxNnYxMJkNE4xDdBc5rIiIiMhVDUycU0aNhiO4Y12siIiIyGUNTJ9Q4GfxUTil0lTUSV0NERGQeGJo6IXeVLfxclKgXgKSL7G0iIiIyBUNTJ9U4r4lDdERERKZhaOqkGuc1/chFLomIiEzC0NRJhfs5QyYDMvLLka+vkrocIiKido+hqZNyVMrRx90BAJDAeU1ERER/iKGpExvSk0N0REREpjI5NI0fPx46nU58v3r1apSWlorvi4qK0KdPnxYtjlpXRI/fnkMnCILE1RAREbVvJoemvXv3wmAwiO9ff/11FBcXi+9ra2uRnp7estVRqxrc3QlySwtcKa3ExcIKqcshIiJq10wOTTf3RLBnwvwpFVYY7OsIADiUXiBxNURERO0b5zR1ciMD1ACAQ+n5EldCRETUvpkcmmQyGWQyWZNtZN5GXA9NSReLUWGolbgaIiKi9svK1IaCIGDOnDlQKBQAgKqqKjz55JNQKpUAYDTficxHD1clvBxtkVNSiYQLRRjdx03qkoiIiNolk0PT7Nmzjd4/+uijTdrMmjXr7iuiNiWTyTAyQI3PEjNxMD2foYmIiOg2TA5NmzZtas06SEIjAlzxWWImDqUXQBAEDrsSERHdwl1PBM/MzMSZM2dQX1/fEvWQBMJ7OENu1bD0wPn8cqnLISIiapdMDk2ffvop3n77baNt8+fPh5+fH4KDgxEUFITs7OyWro/agJ3cCmF+DQtdHuRddERERLdkcmj66KOPoFKpxPdxcXHYtGkTtmzZghMnTqBr16545ZVXWqVIan0j/F0BcL0mIiKi2zE5NJ07dw6DBg0S33/99deIjo7GI488gnvuuQevvvoqDhw40CpFUusbGdiw9MCJy8Uo59IDRERETZgcmiorK+Hg4CC+P3bsGIYNGya+9/Pzg1arbdnqqM34uijh42yHmjqBD/AlIiK6BZNDk4+PD5KTkwEAhYWFOH36NIYOHSru12q1RsN3ZH64OjgREdHtmbzkwKxZs/DUU0/h9OnT+P777xEYGIiQkBBx/7FjxxAUFNQqRVLbGBHgis3HLuPgWS49QEREdDOTQ9Pzzz+Pa9euYceOHdBoNPjyyy+N9v/444+YMWNGixdIbSfMzxkKKwto9VVIzytDoMbhjz9ERETUScgEQRCkLqKj0Ov1UKlU0Ol0RvO/zMmfNx3HwfQCPDc2AAtG9JS6HCIiolZn6u/3XS9uSR3L/dfvoos/kydxJURERO2LycNzfn5+JrW7ePHiHRdD0ovsq8FLX5/GyaxSaHVV0KhspC6JiIioXTA5NF2+fBk+Pj6YOXMm1Gp1a9ZEEnJzsME93bri56xS7Dujxazw7lKXRERE1C6YHJpiY2OxadMmvPXWWxg3bhwee+wxjB8/HhYWHOHraMYGafBzViniUhmaiIiIGpmceKZOnYrvvvsO58+fR0hICJ555hl4eXnhhRdeQEZGRmvWSG0sqq8GAJB0qRglFdUSV0NERNQ+NLubyNPTEy+++CIyMjLw+eefIykpCYGBgSgpKWmN+kgCPs5K9HZ3QF29gP1pnBBOREQE3OHdc1VVVdi6dSteeeUVJCUl4U9/+hPs7OxaujaS0NjrvU17T/PROEREREAzQ1NSUhLmz58PNzc3vPXWW5gyZQquXLmC2NhYKBSK1qqRJDA2qCE0/ZBRyAf4EhERoRmhqW/fvpg4cSJsbW1x5MgR/Pzzz1i4cCEcHR3v+MtXrlwJmUxm9NJoNEZt0tLSEB0dDZVKBXt7e4SFhSErK0vcbzAYsGjRIri4uECpVCI6Oho5OTlGxygpKUFMTAxUKhVUKhViYmJQWlpq1CYrKwuTJk2CUqmEi4sLFi9ejOrqzjufx9+tC3xdlKiureez6IiIiNCM0JSWloaqqips2bIFI0aMgJOT0y1fzdW3b1/k5uaKr1OnTon7Lly4gKFDhyIwMBCHDh3CL7/8gpdeegk2Nr+tHbRkyRLs3LkTsbGxOHr0KMrLyzFx4kTU1dWJbWbOnImUlBTExcUhLi4OKSkpiImJEffX1dVhwoQJqKiowNGjRxEbG4vt27dj2bJlzT6fjkImk4kTwuNSOURHRERk8pIDmzZtap0CrKya9C41evHFFzF+/Hi88cYb4rYbF9nU6XTYuHEjPvvsM4wePRoAsHXrVnh7e2P//v2IiopCWloa4uLikJiYiNDQUADAhg0bEB4ejvT0dAQEBGDfvn04c+YMsrOz4eHhAQB48803MWfOHKxevdpsH4lyt8YGafDR4Qs4eDYfVTV1sLG2lLokIiIiyZgcmmbPnt0qBWRkZMDDwwMKhQKhoaF49dVX4efnh/r6euzZswfPPfccoqKicPLkSfj6+mLFihWYPHkyACA5ORk1NTWIjIwUj+fh4YGgoCAcO3YMUVFRSEhIgEqlEgMTAISFhUGlUuHYsWMICAhAQkICgoKCxMAEAFFRUTAYDEhOTsbIkSNvWbvBYIDBYBDf6/X6Fr460urnqYK7yga5uir8eL4Qo3q7SV0SERGRZCRdmTI0NBRbtmzB3r17sWHDBmi1WkRERKCoqAj5+fkoLy/Ha6+9hrFjx2Lfvn148MEHMWXKFBw+fBgAoNVqIZfLm8yrcnNzg1arFdvcagVztVpt1MbNzTgQODo6Qi6Xi21uZc2aNeI8KZVKBW9v77u6Hu2NhQWH6IiIiBpJGprGjRuHhx56CMHBwRg9ejT27NkDAPj0009RX18PAHjggQfwzDPPYMCAAXjhhRcwceJEfPTRR797XEEQIJPJxPc3/vlu2txsxYoV0Ol04is7O/v3T9gMRfZtCJPxaXmorauXuBoiIiLptKtnoCiVSgQHByMjIwMuLi6wsrJCnz59jNr07t1bvHtOo9Ggurq6ycKa+fn5Ys+RRqNBXl7TBRoLCgqM2tzco1RSUoKampomPVA3UigUcHBwMHp1NPd2d4KTUo7SazU4er5Q6nKIiIgk065Ck8FgQFpaGtzd3SGXyzF48GCkp6cbtTl37hx8fHwAACEhIbC2tkZ8fLy4Pzc3F6mpqYiIiAAAhIeHQ6fT4fjx42KbpKQk6HQ6ozapqanIzc0V2+zbtw8KhQIhISGtdr7mwMrSApP6uQMAvjp5ReJqiIiIpGPyRPDWsHz5ckyaNAndunVDfn4+Vq1aBb1eL046f/bZZzFt2jQMGzYMI0eORFxcHHbt2oVDhw4BAFQqFebOnYtly5bB2dkZTk5OWL58uTjcBzT0TI0dOxbz5s3Dxx9/DACYP38+Jk6ciICAAABAZGQk+vTpg5iYGKxduxbFxcVYvnw55s2b1yF7j5pr8kBPfJqQib2n81BhqIVSIelfGyIiIkk0+9evrq4OmzdvxoEDB5Cfny/OPWr0/fffm3ysnJwczJgxA4WFhXB1dUVYWBgSExPFnqQHH3wQH330EdasWYPFixcjICAA27dvx9ChQ8VjrF+/HlZWVpg6dSoqKysxatQobN68GZaWv90ev23bNixevFi8yy46Ohrvv/++uN/S0hJ79uzBggULMGTIENja2mLmzJlYt25dcy9PhzTAuyt8XZS4VFiBvae1mHKPl9QlERERtTmZIAhCcz6wcOFCbN68GRMmTIC7u3uTidLr169v0QLNiV6vh0qlgk6n63A9VO/sz8D6/edwXy8XfDY39I8/QEREZCZM/f1udk9TbGwsvvjiC4wfP/6uCiTzMnmgB9bvP4cfzxciX18FtYPNH3+IiIioA2n2RHC5XI6ePXu2Ri3Ujvk4KxHi44h6Afjml6tSl0NERNTmmh2ali1bhnfeeQfNHNWjDmDyQE8AwE7eRUdERJ1Qs4fnjh49ioMHD+K7775D3759YW1tbbR/x44dLVYctS8Tg93xj12ncfqqHufyyuDvZi91SURERG2m2aGpa9euePDBB1ujFmrnHJVyjAhQI/5MHr46eQXPjQ2UuiQiIqI20+zQtGnTptaog8zEgwM9EX8mD1+nXMXyyABYWNz+MTNEREQdyR2vUlhQUID09HTIZDL4+/vD1dW1Jeuidur+QDXsbaxwpbQSxy8XI8zPWeqSiIiI2kSzJ4JXVFTgscceg7u7O4YNG4b77rsPHh4emDt3Lq5du9YaNVI7YmNtiQnBDY9V2Z6cI3E1REREbafZoWnp0qU4fPgwdu3ahdLSUpSWluLrr7/G4cOHsWzZstaokdqZh0MaVgTf9etV6CprJK6GiIiobTQ7NG3fvh0bN27EuHHj4ODgAAcHB4wfPx4bNmzA//73v9aokdqZEB9HBGrsUVVTz94mIiLqNJodmq5duwY3N7cm29VqNYfnOgmZTIZHwxqeD7g1MZNrdhERUafQ7NAUHh6Ol19+GVVVVeK2yspKvPLKKwgPD2/R4qj9mjzQE10UVrhYWIFjF4qkLoeIiKjVNfvuuXfeeQdjx46Fl5cX+vfvD5lMhpSUFNjY2GDv3r2tUSO1Q10UVphyjye2JGTis4RMDOnpInVJRERErarZoSkoKAgZGRnYunUrzp49C0EQMH36dDzyyCOwtbVtjRqpnXo0zAdbEjIRn5YHra4KGhUf4ktERB3XHa3TZGtri3nz5rV0LWRm/N3sca+vE45fKsbnx7PwzBh/qUsiIiJqNSaFpm+++Qbjxo2DtbU1vvnmm99tGx0d3SKFkXmICfMRQ9PC+3vC2rLZ0+SIiIjMgkmhafLkydBqtVCr1Zg8efJt28lkMtTV1bVUbWQGovpq4NJFgfwyA+LP5GH89YUviYiIOhqTugXq6+uhVqvFP9/uxcDU+citLDDjXm8AwGcJmRJXQ0RE1HqaPZayZcsWGAyGJturq6uxZcuWFimKzMuMe7vBQgYkXCzChYJyqcshIiJqFc0OTX/+85+h0+mabC8rK8Of//znFimKzItHV1sM9294YPPuX3IlroaIiKh1NDs0CYIAmUzWZHtOTg5UKlWLFEXmZ2I/DwDA7l+vSlwJERFR6zB5yYGBAwdCJpNBJpNh1KhRsLL67aN1dXW4dOkSxo4d2ypFUvs3pq8b5DsskJFfjnN5ZfB3s5e6JCIiohZlcmhqvGsuJSUFUVFR6NKli7hPLpeje/fueOihh1q8QDIPDjbWGObviv1pedj9y1UsjQyQuiQiIqIWZXJoevnllwEA3bt3x7Rp02Bjw9WfydjEfu4NoelULp4Z43/LYVwiIiJz1ew5TbNnz2Zgolsa1VsNuZUFLhZU4Ky2TOpyiIiIWlSzQ1NdXR3WrVuHe++9FxqNBk5OTkYv6rzsbawxMuD6XXScEE5ERB1Ms0PTK6+8grfeegtTp06FTqfD0qVLMWXKFFhYWGDlypWtUCKZkwnX76Lb82suBEGQuBoiIqKW0+zQtG3bNmzYsAHLly+HlZUVZsyYgf/7v//D3//+dyQmJrZGjWRGRgWqYWNtgctF13D6ql7qcoiIiFpMs0OTVqtFcHAwAKBLly7iQpcTJ07Enj17WrY6MjtKhRXuD2x45M7uX7nQJRERdRzNDk1eXl7IzW34MezZsyf27dsHADhx4gQUCkXLVkdmaULw9SG6U1c5REdERB1Gs0PTgw8+iAMHDgAAnn76abz00kvo1asXZs2ahccee6zFCyTzc3+gGrbWlsgursSvOU0fuUNERGSOTF6nqdFrr70m/vnhhx+Gl5cXjh07hp49eyI6OrpFiyPzZCu3xKjeauz+NRd7TuWiv3dXqUsiIiK6a80OTTcLCwtDWFhYS9RCHcjEfu4NoenXXKwYF8iFLomIyOyZFJq++eYbkw/I3iYCgBEBatjJLXGltBKnrujQz6ur1CURERHdFZNCU+Nz5xrJZLImE3wbexLq6upapjIyazbWlhgZqMaeX3Px7SktQxMREZk9kyaC19fXi699+/ZhwIAB+O6771BaWgqdTofvvvsO99xzD+Li4lq7XjIj44PcAQDfpXKhSyIiMn/NntO0ZMkSfPTRRxg6dKi4LSoqCnZ2dpg/fz7S0tJatEAyXyMCXKGwskBm0TWcydWjr4dK6pKIiIjuWLOXHLhw4QJUqqY/fiqVCpcvX26JmqiDUCqsMOL6s+i+O6WVuBoiIqK70+zQNHjwYCxZskRc4BJoWCV82bJluPfee1u0ODJ/44Mbhui+5RAdERGZuWaHpk8++QT5+fnw8fFBz5490bNnT3Tr1g25ubnYuHFja9RIZuz+QDXklha4WFCBjPxyqcshIiK6Y82e09SzZ0/8+uuviI+Px9mzZyEIAvr06YPRo0dzLR5qwt7GGsP8XbA/LR/fnsqFv5u91CURERHdkWb3NAENywtERkZi8eLFePrppzFmzJg7CkwrV66ETCYzemk0GnH/nDlzmuy/eSFNg8GARYsWwcXFBUqlEtHR0cjJyTFqU1JSgpiYGKhUKqhUKsTExKC0tNSoTVZWFiZNmgSlUgkXFxcsXrwY1dXVzT4nampc4110nNdERERmzKSepnfffRfz58+HjY0N3n333d9tu3jx4mYV0LdvX+zfv198b2lpabR/7Nix2LRpk/heLpcb7V+yZAl27dqF2NhYODs7Y9myZZg4cSKSk5PFY82cORM5OTnikgjz589HTEwMdu3aBaBhbakJEybA1dUVR48eRVFREWbPng1BEPDee+8163yoqdG93WBtKUN6XhnO55ejp7qL1CURERE1m0mhaf369XjkkUdgY2OD9evX37adTCZrdmiysrIy6l26mUKhuO1+nU6HjRs34rPPPsPo0aMBAFu3boW3tzf279+PqKgopKWlIS4uDomJiQgNDQUAbNiwAeHh4UhPT0dAQAD27duHM2fOIDs7Gx4eHgCAN998E3PmzMHq1avh4ODQrHMiYyo7a0T0cMHhcwWIS83Fwvt7SV0SERFRs5k0PHfp0iU4OzuLf77d6+LFi80uICMjAx4eHvD19cX06dObHOPQoUNQq9Xw9/fHvHnzkJ+fL+5LTk5GTU0NIiMjxW0eHh4ICgrCsWPHAAAJCQlQqVRiYAIanpenUqmM2gQFBYmBCWhYe8pgMCA5ObnZ50RNjQ9uCL7fcoiOiIjM1B3NaWopoaGh2LJlC/bu3YsNGzZAq9UiIiICRUVFAIBx48Zh27Zt+P777/Hmm2/ixIkTuP/++2EwGAA0LHUgl8vh6OhodFw3NzdotVqxjVqtbvLdarXaqI2bm5vRfkdHR8jlcrHNrRgMBuj1eqMX3dqYPhpYWshwJlePy4UVUpdDRETUbCYNzy1dutTkA7711lsmtx03bpz45+DgYISHh6NHjx749NNPsXTpUkybNk3cHxQUhEGDBsHHxwd79uzBlClTbntcQRCMJqbfapL6nbS52Zo1a/DKK6/c/gRJ5KSUI9zPGUfPF2L3r1c5REdERGbHpNB08uRJkw52t0sOKJVKBAcHIyMj45b73d3d4ePjI+7XaDSorq5GSUmJUW9Tfn4+IiIixDZ5eXlNjlVQUCD2Lmk0GiQlJRntLykpQU1NTZMeqButWLHCKFDq9Xp4e3ubeLadT/QADxw9X4ivUq7iqZE9uUQFERGZFZNC08GDB1u7DgANw11paWm47777brm/qKgI2dnZcHdvuIU9JCQE1tbWiI+Px9SpUwEAubm5SE1NxRtvvAEACA8Ph06nw/Hjx8UVy5OSkqDT6cRgFR4ejtWrVyM3N1c89r59+6BQKBASEnLbehUKBRQKRcucfCcwNkiDv32VivP55Th9VY8gTz6LjoiIzIekc5qWL1+Ow4cP49KlS0hKSsLDDz8MvV6P2bNno7y8HMuXL0dCQgIuX76MQ4cOYdKkSXBxccGDDz4IoOF5d3PnzsWyZctw4MABnDx5Eo8++iiCg4PFu+l69+6NsWPHYt68eUhMTERiYiLmzZuHiRMnIiAgAAAQGRmJPn36ICYmBidPnsSBAwewfPlyzJs3j3fOtSAHG2uM7t0wv+zrlCsSV0NERNQ8zV4RHABOnDiBL7/8EllZWU0WgNyxY4fJx8nJycGMGTNQWFgIV1dXhIWFITExET4+PqisrMSpU6ewZcsWlJaWwt3dHSNHjsR///tf2Nv/tqr0+vXrYWVlhalTp6KyshKjRo3C5s2bjdZ72rZtGxYvXizeZRcdHY33339f3G9paYk9e/ZgwYIFGDJkCGxtbTFz5kysW7fuTi4P/Y4HBnji21NafPPLVbwwrjcsLThER0RE5kEmNPMpqrGxsZg1axYiIyMRHx+PyMhIZGRkQKvV4sEHHzRaiLKz0ev1UKlU0Ol07KG6DUNtHQav2g99VS3+83goInq6SF0SERF1cqb+fjd7eO7VV1/F+vXrsXv3bsjlcrzzzjtIS0vD1KlT0a1bt7sqmjo+hZUlJvRrmDf2FYfoiIjIjDQ7NF24cAETJkwA0DARuqKiAjKZDM888wz+/e9/t3iB1PE8MMATQMOz6Kpq6iSuhoiIyDTNDk1OTk4oKysDAHh6eiI1NRUAUFpaimvXrrVsddQh3dvdCR4qG5QZanHwbP4ff4CIiKgdaHZouu+++xAfHw8AmDp1Kp5++mnMmzcPM2bMwKhRo1q8QOp4LCxkmDSg4ZE1HKIjIiJzYfLdcykpKRgwYADef/99VFVVAWhY3NHa2hpHjx7FlClT8NJLL7VaodSxTB7giY8PX8TBswXQXauBys5a6pKIiIh+l8l3z1lYWGDgwIF4/PHHMXPmTKhUXJjwZrx7rnmi1v+A9LwyvDYlGNPv5U0EREQkjRa/e+7HH3/EPffcgxdeeAHu7u549NFH22ylcOqYHhjIIToiIjIfJoem8PBwbNiwAVqtFh9++CFycnIwevRo9OjRA6tXr0ZOTk5r1kkd0AMDPCGTAYkXi5FVxJsIiIiofWv2RHBbW1vMnj0bhw4dwrlz5zBjxgx8/PHH8PX1xfjx41ujRuqgPLvaYuj1xS2/TM6WuBoiIqLfd1fPnuvRowdeeOEFvPjii3BwcMDevXtbqi7qJKYN9gYAfPlTDurqm7U4PRERUZu649B0+PBhzJ49GxqNBs899xymTJmCH3/8sSVro05gTB83ONpZQ6uvwg/nCqQuh4iI6LaaFZqys7Pxz3/+Ez169MDIkSNx4cIFvPfee7h69So2bNiAsLCw1qqTOiiFlSUmD2xYIfy/JzhER0RE7ZfJ6zSNGTMGBw8ehKurK2bNmoXHHnsMAQEBrVkbdRLTBntj04+XsT8tD4XlBrh0UUhdEhERURMmhyZbW1ts374dEydOhKWlZWvWRJ1MoMYB/b274pfsUuz4OQfzh/WQuiQiIqImTB6e++abb/DAAw8wMFGrmDaoYUL4f09kw8T1VomIiNrUXd09R9RSJvV3h621JS4UVODnrBKpyyEiImqCoYnaBXsba0zo5w4AiD3OCeFERNT+MDRRu9G4ZtOeU7koN9RKXA0REZExhiZqNwb5OMLPVYlr1XX4JuWq1OUQEREZYWiidkMmk2Hmvd0AAFsSLnNCOBERtSsMTdSu/CnEG7bWljirLUPixWKpyyEiIhIxNFG7orKzxoP3NKwQ/umxy9IWQ0REdAOGJmp3Zod3BwDsO6PFldJKaYshIiK6jqGJ2p0AjT0iejijXgA+S8iUuhwiIiIADE3UTs2O6A4AiD2RhaqaOmmLISIiAkMTtVOje7vBs6stSq/VcPkBIiJqFxiaqF2ytJBhVrgPAGDTMS4/QERE0mNoonZr2mBv2FhbIC1XjxOX+Tw6IiKSFkMTtVtd7eSYPKBh+YHNxy5JXA0REXV2DE3UrjVOCN97Og9ZRdekLYaIiDo1hiZq13q7O+C+Xi6oqxfw8Q8XpC6HiIg6MYYmaveeGtkTAPDlTznI11dJXA0REXVWDE3U7oX6OiHExxHVdfXYeJRzm4iISBoMTdTuyWQyLBjRAwCwNTETpdeqJa6IiIg6I4YmMgv3B6oRqLFHRXUdPj3GR6sQEVHbY2gisyCTybDg+tymTccuocJQK3FFRETU2TA0kdmYEOyO7s52KL1Wg8+PZ0ldDhERdTIMTWQ2LC1keGJ4w9ymDUcuwlDLB/kSEVHbYWgiszLlHk+4OSiQpzfgf8k5UpdDRESdCEMTmRWFlSXmD2vobXrvwHlU1bC3iYiI2gZDE5mdR0K7wUNlA62+CpuPXZa6HCIi6iQYmsjs2Fhb4pkx/gCADw6eh+5ajcQVERFRZyBpaFq5ciVkMpnRS6PR3LLtE088AZlMhrfffttou8FgwKJFi+Di4gKlUono6Gjk5BjPdSkpKUFMTAxUKhVUKhViYmJQWlpq1CYrKwuTJk2CUqmEi4sLFi9ejOpqLqLYXk25xwv+bl2gr6rFh4f5TDoiImp9kvc09e3bF7m5ueLr1KlTTdp89dVXSEpKgoeHR5N9S5Yswc6dOxEbG4ujR4+ivLwcEydORF3db3NdZs6ciZSUFMTFxSEuLg4pKSmIiYkR99fV1WHChAmoqKjA0aNHERsbi+3bt2PZsmWtc9J01ywtZHguKhAAsOnHS9Dq+Ew6IiJqXVaSF2BlddveJQC4cuUKFi5ciL1792LChAlG+3Q6HTZu3IjPPvsMo0ePBgBs3boV3t7e2L9/P6KiopCWloa4uDgkJiYiNDQUALBhwwaEh4cjPT0dAQEB2LdvH86cOYPs7GwxmL355puYM2cOVq9eDQcHh1Y6e7obo3qrMcjHET9lluCdA+ewZko/qUsiIqIOTPKepoyMDHh4eMDX1xfTp0/HxYsXxX319fWIiYnBs88+i759+zb5bHJyMmpqahAZGSlu8/DwQFBQEI4dOwYASEhIgEqlEgMTAISFhUGlUhm1CQoKMurJioqKgsFgQHJy8m1rNxgM0Ov1Ri9qOzKZDC+Ma+ht+u+JbJzPL5e4IiIi6sgkDU2hoaHYsmUL9u7diw0bNkCr1SIiIgJFRUUAgNdffx1WVlZYvHjxLT+v1Wohl8vh6OhotN3NzQ1arVZso1arm3xWrVYbtXFzczPa7+joCLlcLra5lTVr1ojzpFQqFby9vU0/eWoRg7o7YXRvNeoFYN3edKnLISKiDkzS4blx48aJfw4ODkZ4eDh69OiBTz/9FMOHD8c777yDn3/+GTKZrFnHFQTB6DO3+vydtLnZihUrsHTpUvG9Xq9ncJLAs1GB+P5sPuJOa5FwoQjhPZylLomIiDogyYfnbqRUKhEcHIyMjAwcOXIE+fn56NatG6ysrGBlZYXMzEwsW7YM3bt3BwBoNBpUV1ejpKTE6Dj5+fliz5FGo0FeXl6T7yooKDBqc3OPUklJCWpqapr0QN1IoVDAwcHB6EVtL0Bjjxn3dgMAvPR1Kqpr6yWuiIiIOqJ2FZoMBgPS0tLg7u6OmJgY/Prrr0hJSRFfHh4eePbZZ7F3714AQEhICKytrREfHy8eIzc3F6mpqYiIiAAAhIeHQ6fT4fjx42KbpKQk6HQ6ozapqanIzc0V2+zbtw8KhQIhISFtcep0l56LCoRLFznO55djw5GLf/yBTib1ig4vfZWKv311Cj+cK0BNHYMlEVFzyQRBEKT68uXLl2PSpEno1q0b8vPzsWrVKhw+fBinTp2Cj49Pk/bdu3fHkiVLsGTJEnHbX/7yF+zevRubN2+Gk5MTli9fjqKiIiQnJ8PS0hJAwzDg1atX8fHHHwMA5s+fDx8fH+zatQtAw5IDAwYMgJubG9auXYvi4mLMmTMHkydPxnvvvWfy+ej1eqhUKuh0OvY6SWDHzzlY+sUvsLG2QPwzw+HtZCd1SZKqravH3tN52HzsEk5cNu6NVdlaY0wfN4wL0mBoLxcorCwlqpKISHqm/n5LOqcpJycHM2bMQGFhIVxdXREWFobExMRbBqbbWb9+PaysrDB16lRUVlZi1KhR2Lx5sxiYAGDbtm1YvHixeJdddHQ03n//fXG/paUl9uzZgwULFmDIkCGwtbXFzJkzsW7dupY7WWp1Dw70xBc/ZSPxYjFWfnMa/zd7ULPnw3UUcam5+MeuM7h6ff0qKwsZJvRzh1JhhX2ntSgsr8b/knPwv+QcdFFYYWSgGmP7ajAiwBVKheQrkRARtUuS9jR1NOxpkt75/DKMe+cIauoEfBwTgqi+t18DrCMSBAEfHLqAtdfvJHRWyjEztBseDfOBm4MNAKCuXsCJy8WIS9Xiu9Rc5OkN4uflVhYY1ssFkX01GN3bDU5KuSTnQUTUlkz9/WZoakEMTe3DG3Fn8cGhC3BX2WD/0uGdpuekurYef915Cv9LbniM0JyI7nhhXCBsrG8/9FZfL+CXnFLEndZib6oWl4uuifssZMDg7k6I7KtBZB+3Tj/cSUQdF0OTBBia2ofK6jqMWX8YOSWVmB3ug1ceCJK6pFZXeq0aT3yWjKRLxbCQASuj+2JWePdmHUMQBKTnlWFvah72ndHi9FXjxVoDNfaI7OOGyL4a9PVw6LRDn0TU8TA0SYChqf04lJ6POZtOAADenzkQE/s1fW5hR3Hmqh5P/ednXCqsQBeFFd6fORAjApou6Npc2cXXEH8mD3tPa3HicjHqb/gvhbvKBqN6qzG6txvCezhzIjkRmTWGJgkwNLUvr313Fh8dvgA7uSW+fmoIernZS11SixIEAVsTM/HPPWmorq2HZ1dbbJwzCIGalv+7V1JRje/P5iP+TB4OnytAZc1vD8RWyi1xXy9XjOqtxshANVy6KFr8+4mIWhNDkwQYmtqX2rp6xGw8joSLRfBzVeLrp4bA3sZa6rJahO5aDZ7b/gv2nm5YuPX+QDXW/al/m0zcrqqpQ8KFIsSn5eFAWp7RRHKZDOjv1RWjAtW4v7cafdw5jEdE7R9DkwQYmtqfwnIDJr57FFp9FcYFafDBI/eY/Y940sUiLP3iF1wprYS1pQzPjw3E3KG+kpyXIAhIvaJHfFoevj+bh9QrxvOgNA42GBnoipEBagzp6dJpJuUTkXlhaJIAQ1P7lJxZgun/TkBNnYAXx/fGvGF+Upd0R0oqqrHmuzR88VPD3XE+znZ4b8ZA9PPqKm1hN9DqqnAwPR8H0vLw4/kio2E8uaUFQv2cMNzfFSMC1OjhqjT7AEtEHQNDkwQYmtqvLQmX8fevT8PSQob10wYgur/5TAwXBAH/S87Bq9+moeRaDQBg+mBvvDihd7sebqyqqUPixSIcPJuP79PzkV1cabTf28kWI/zVGO7vivAezuyFIiLJMDRJgKGp/RIEAS9sP4X//pQNmQx4fUo/TB3sLXVZfyg5swSvx53F8UvFAIAAN3usfjAIg7o7SVxZ8wiCgAsFFTiUno9D6QU4fqkY1Tc8/87aUoZBPk4YHuCKYb1c0dvdnr1QRNRmGJokwNDUvtXXC3jxq1R8fjwLALByUh/MGeIrcVW3djKrBOv3Z+CHcwUAAFtrSywZ3QuPDfWFtWW7es72Hakw1CLhQhEOncvH4XMFTXqhXO0VuK+nC4b5u2JoLxfekUdErYqhSQIMTe2fIAhYvScN/3f0EgDgubEBWDCip8RVNRAEAT9lluBfB8/jUHpDWLK0kOHhe7ywaFRPeDl2zBW5BUHA5aJrOJzeEKASLxYbzYUCgD7uDrivlwuG9HTBvb5Ov7vKORFRczE0SYChyTwIgoD1+zPw7oEMAA3zg5ZFBsDVXprejHJDLXaevIJtiZk4qy0D0BCWHrrHEwtH9kI3544Zlm7HUFuH5MwS/HCuEEcyCpqsTC63ssDg7o6I6OGCoT1dEOSpgqUFh/KI6M4xNEmAocm8fHz4AtZ8dxYAYCe3xLz7/DBvmB+6tNGE5LRcPbYmZuKrk1dQUd3Qs2JjbYHJAzzxlxE94OOsbJM62rvCcgN+PF+IIxmFOJpRCK2+ymi/g40Vwns4Y0hPF0T0cEYP1y6cD0VEzcLQJAGGJvOTeLEIa747i1+ySwEAzko5FozsiQcHerbKQpFVNXXY82sutiVl4uesUnG7n6sSj4b64KEQL6hs2+8dcVJrmFBejh/PF+Ho+UIkXixCWVWtURtXewXC/ZwR0cMZYX7O8HG2Y4giot/F0CQBhibzJAgC4lK1WLs3HRcLKwAAFjIg1NcZY4M0iOqrgUZlc8fHL66oRsKFhh/5b0/lQlfZsGyAlYUMUX01eCS0G8J7OPOH/Q7U1tUj9aoeP54vRMKFIpy4XAxDbb1RG3eVDcL9GgJUmJ8zvJ1sea2JyAhDkwQYmsxbTV09vvgpG/9Jymoyj6aHqxKBGgcEaOwRqLFHD3UXdFFYQWFlAYWVJRRWFigz1OJqaSVydZW4UlqFSwUVSLhYhLRc42N5drXFzNBu+NMgL6jt7zyMUVOG2jqczCrFsfOFSLhYhJTsUtTUGf8nzl1lg1BfJ4T6OSPU1wm+Llxkk6izY2iSAENTx5FdfA1xqVrEndYiObPkro8X4GaPiJ7OGBGgxtCeLpy43EauVdfi58xSJFwsROLFYvya0zREuXRRINTXCfdefwW42cOC/3yIOhWGJgkwNHVMBWUGpF7VIV1bhnRtGc5qy5BZVIGqmjrU3/Rvj6OdNTy62sJdZQsvR1vc4+OIcD9nye7MI2OV1XX4OasESReLkHipGClZpUaLbAINE8tDfBwxqLsTBnd3Qj8vFZc4IOrgGJokwNDU+dTW1cNQW4+qmjrYya1gK+ePqzmpqqnDrzk6HL9UhKRLxUjOLMG1auM1ouSWFgjydMCg7k4I8XFEiI8jF9sk6mAYmiTA0ERk3mrr6pGWW4YTl4vxU2Yxjl8qQWG5oUm7bk526OelQn+vrgj2UiHIU9VmS1UQUctjaJIAQxNRxyIIArKKr+GnyyX4KbMEyZnFOJdX3qSdTAb4ONkhQGOPAI0Demvs0dvdgcsdEJkJhiYJMDQRdXy6azX49Uopfs3R4decUpzK0eGqruqWbe1trBDkoRJ7o4I9VfBxsuNEc6J2hqFJAgxNRJ1TYblBvEngbK4eZ7VlSM8rQ/VNa0YBgL3CCn08HMQQFeTpAF+XLryjkkhCDE0SYGgiokY1dfXIyCtH6hUdfr1SilNX9Dibq2+y+CbQ8BifPu4NQarv9UDVU90F1pYWElRO1PkwNEmAoYmIfk9NXT3O5zcEqdQrOqRe1ePMVT0qa+qatJVbWSBQY4++Hg7o49EQpnprHHiHJlErYGiSAEMTETVXXb2AS4XlSL2ix6krOpy+qsPpq/omz9QDGh7v4+faBYN8HDHM3xVDerhAZcdnFRLdLYYmCTA0EVFLEAQB2cWVSL3a0CN1+qoep6/qmyx/YCED+nt3xbBerhgZqEY/TxUnmRPdAYYmCTA0EVFrytdX4dccHY5dKMIPGQU4n2+8/IFLFzmG+6txf6Aa9/m7wMGGvVBEpmBokgBDExG1paullTiSUYBD6QU4klGIcsNvQ3pWFjIM7u6E+wPVuL+3Gn58MDHRbTE0SYChiYikUl1bj58uF+P7s/n4Pj0fFwsqjPb7ONthZEBDL1SonxMUVpxQTtSIoUkCDE1E1F5cLqzA92fzcTA9H0kXi40eTGwnt0REDxfcH6jGyEBXuKtsJayUSHoMTRJgaCKi9qjCUIuj5wtx8HqIytMbTyjv7e6AkQGuuD9QjYHdHLnQJnU6DE0SYGgiovZOEAScydXj4Nl8fH82HyezS3Hjr0BXO2sM928IUMN6ucJRKZeuWKI2wtAkAYYmIjI3xRXVOHwuH9+fLcDh9Hzob1gfykIGDOzmiPsD1RgR4Io+7g6cTE4dEkOTBBiaiMic1dbV4+esUhxMz8fBs/k4qy0z2u/moMDIADVGBKgxtJcLuiisJKqUqGUxNEmAoYmIOpIrpZU4lJ6Pg2cL8OP5QqPHvVhbynCvr5MYonq4ckkDMl8MTRJgaCKijqqqpg4nri9pcCi9AJcKjZc06OZkh5EBrhgRqEa4nzNsrLmkAZkPhiYJMDQRUWdxqbBCvBvv5iUNFFYWiOjhjJGBaozwV6Obs52ElRL9MYYmCTA0EVFnVGGoxbELRdeH8vJxVVdltL+HqxIjAtQYGaDGYF9HLqxJ7Q5DkwQYmoiosxMEAefyyhsCVHo+frpcgtr6335m7OSWGNLT5fpcKFd4dOXCmiQ9hiYJMDQRERnTV9Xgx4zChrlQ5wpQUGa8sKa/WxeMDFBjeIArBvk4QW5lIVGl1JmZ+vst6d/OlStXQiaTGb00Go3R/sDAQCiVSjg6OmL06NFISkoyOobBYMCiRYvg4uICpVKJ6Oho5OTkGLUpKSlBTEwMVCoVVCoVYmJiUFpaatQmKysLkyZNglKphIuLCxYvXozq6upWO3cios7AwcYa44LdsfZP/ZG0YhR2LxqK5ZH+CPFxhIUMOJdXjo9/uIiZG5Jwzz/j8cRnPyH2eBa0Nw3xEbUHki+y0bdvX+zfv198b2n521i3v78/3n//ffj5+aGyshLr169HZGQkzp8/D1dXVwDAkiVLsGvXLsTGxsLZ2RnLli3DxIkTkZycLB5r5syZyMnJQVxcHABg/vz5iImJwa5duwAAdXV1mDBhAlxdXXH06FEUFRVh9uzZEAQB7733XltdCiKiDs3CQoYgTxWCPFVYeH8vlF6rxg8ZhTiUno/D6QUoqqjG3tN52Hs6DwAQqLHHiOvDeCE+jrC2ZC8USUvS4bmVK1fiq6++QkpKikntG7vP9u/fj1GjRkGn08HV1RWfffYZpk2bBgC4evUqvL298e233yIqKgppaWno06cPEhMTERoaCgBITExEeHg4zp49i4CAAHz33XeYOHEisrOz4eHhAQCIjY3FnDlzkJ+fb/JQG4fniIjuTH29gFNXdDiUXoBD5/KRctPjXewVVg1zoQJdMdxfDY3KRrpiqcMx9fdb8p6mjIwMeHh4QKFQIDQ0FK+++ir8/PyatKuursa///1vqFQq9O/fHwCQnJyMmpoaREZGiu08PDwQFBSEY8eOISoqCgkJCVCpVGJgAoCwsDCoVCocO3YMAQEBSEhIQFBQkBiYACAqKgoGgwHJyckYOXLkLWs3GAwwGH4bn9fr9Xd9PYiIOiMLCxn6e3dFf++ueHp0LxRXVONIRgEOpRfg8LkCFFdUI+60FnGntQDYC0XSkDQ0hYaGYsuWLfD390deXh5WrVqFiIgInD59Gs7OzgCA3bt3Y/r06bh27Rrc3d0RHx8PFxcXAIBWq4VcLoejo6PRcd3c3KDVasU2arW6yXer1WqjNm5ubkb7HR0dIZfLxTa3smbNGrzyyit3fgGIiOiWnJRyPDDAEw8M8ER9vYBfr+hwKL1hYc1fckpxVluGs9oyfHT4gtgLNSLAFSMC2AtFrUfS0DRu3Djxz8HBwQgPD0ePHj3w6aefYunSpQCAkSNHIiUlBYWFhdiwYQOmTp2KpKSkWwahRoIgGC3nf6ul/e+kzc1WrFgh1gk09DR5e3vftj0RETWfhYUMA7y7YoB3VywZ7Y/iimr8cK4Ah9Lz8UNG4S17oYYHuGKEvxqDurMXilqO5MNzN1IqlQgODkZGRobRtp49e6Jnz54ICwtDr169sHHjRqxYsQIajQbV1dUoKSkx6m3Kz89HREQEAECj0SAvL6/JdxUUFIi9SxqNpsldeSUlJaipqWnSA3UjhUIBhUJxV+dMRETN46SUY/JAT0we6Ik6cS5U016ojw9fRBeFFYb0dMZwf64LRXevXcVvg8GAtLQ0uLu737aNIAjiPKKQkBBYW1sjPj5e3J+bm4vU1FQxNIWHh0On0+H48eNim6SkJOh0OqM2qampyM3NFdvs27cPCoUCISEhLXqORETUciyv90ItGe2Pr54aguS/jcE70wfgwYGecFbKUW6oxd7TefjrzlOIeO17jHnrMFbvOYOjGYUw1Nb98RcQ3UDSu+eWL1+OSZMmoVu3bsjPz8eqVatw+PBhnDp1Ci4uLli9ejWio6Ph7u6OoqIifPDBB9i6dSuSk5PRt29fAMBf/vIX7N69G5s3b4aTkxOWL1+OoqIioyUHxo0bh6tXr+Ljjz8G0LDkgI+Pj9GSAwMGDICbmxvWrl2L4uJizJkzB5MnT27WkgO8e46IqP2orxeQelUnTiY/mVWCGxYnh621JSJ6OGNEQMMdeXxGXudlFnfP5eTkYMaMGSgsLISrqyvCwsKQmJgIHx8fVFVV4ezZs/j0009RWFgIZ2dnDB48GEeOHBEDEwCsX78eVlZWmDp1KiorKzFq1Chs3rzZaL2nbdu2YfHixeJddtHR0Xj//ffF/ZaWltizZw8WLFiAIUOGwNbWFjNnzsS6deva7mIQEVGLsrCQoZ9XV/Tz6orFoxrWhTqSUYjD5xpCVEGZAQfO5uPA2XwAp+HnosQwf1cMD3BFuJ8zbKz5jDwyxseotCD2NBERmYf6egFpWj0On2tY1uDnTONn5CmsLBDq54zh/q4Y7u+KHq7K370xiMwbnz0nAYYmIiLzpK+qwbHzhWKIyr3pMS5ejrZigIro6YIuinZ1HxXdJYYmCTA0ERGZP0EQkJFf3rCkwblCHL9UjOq6enG/taUMIT6OGO6vxnB/V/R2t2cvlJljaJIAQxMRUcdzrboWiReLcDi9AIfOFSCz6JrRfrW9Avf1apgLdV9PFzgq5RJVSneKoUkCDE1ERB3f5cIK/JBRgMPpBTh2oQiVNb8tXSCTAf28uopDeQO8u8LSgr1Q7R1DkwQYmoiIOhdDbR1+ulyCH67fkXdWW2a0X2VrjaG9XDC8lyuG+bvyES/tFEOTBBiaiIg6N62uqiFAZRTgyLkC6KtqjfYHuNljmL8Lhl9/xAuXNWgfGJokwNBERESNauvq8UuODofPFeCHcw2PeLnxF9fG2gJh15c1GObvCj8XLmsgFYYmCTA0ERHR7ZRUVOPo+UJxKC+/zGC038vRtmFCub8rIno6w8HGWqJKOx+GJgkwNBERkSkEQcBZbRl+OFeAHzIKcOJSidGyBpYWMtzTrSuGXZ8LFeypggUnlLcahiYJMDQREdGdaFzW4IdzDT1RFwsrjPY72lljaC9XDOvlgmH+rnBz4ITylsTQJAGGJiIiagnZxdfwQ0bDXKhj54tQZjCeUB6osccwf1cM6+XKCeUtgKFJAgxNRETU0mrq6pGSXdowlHeuAL9e0RlNKFdYWeBeXyfc18sFQ3tyhfI7wdAkAYYmIiJqbcXXJ5QfuT4fKk9vPKHcpYsCw3q5NKxQ3ssVTlyh/A8xNEmAoYmIiNpS43PyjmQU4khGAZIuFjdZoby/V1cM83fFcH8X9PfqCitLCwkrbp8YmiTA0ERERFIy1NYh+XIJDt9mhXJ7hRUiejrjvl6uCO/hzLWhrmNokgBDExERtSdaXRUOn8vHDxmF+PF8IUqv1Rjtd7VXINTXCaF+zhjc3RE9XLvAuhP2RDE0SYChiYiI2qu6egGpV3Q4klGAIxmFOJldiuraeqM21pYy9HDtggCNPQI09gjU2CNA4wAPlU2H7pFiaJIAQxMREZmLqpo6pGSXIuliMRIvFuHUFR3Kb1raoJG9jRUC3Ozhfz1I+bs1/G9Xu44xyZyhSQIMTUREZK4EQUBOSSXStWVIzytDWq4e5/LKcLGgArX1t44KantFQ6+Um73YO9VLbQ9buXmtG8XQJAGGJiIi6miqa+txsbC8IUxpy3AurwxntWXIKam8ZXuZDPBxsoP/9SDV2CvV3UXZbudLMTRJgKGJiIg6i3JDLc7lleGctiFENfZQFVdU37K93NICfq5KsUcqwK0hUHl2tZX8uXoMTRJgaCIios5MEAQUlBuQkVdu1CuVkVeGiuq6W35GKbdELzd7cc5UQ5jqAld7RZtNPmdokgBDExERUVP19QKulFaKIaoxUF0sqEB1Xf0tP9PVzrphiO96mPJXN9zV1xqTzxmaJMDQREREZLqaunpkFlUgXVuO9OtDfefyynC5qAK3mXuO7X+JQIiPY4vWYervt1WLfisRERGRiawtLdBTbY+eantMgLu4vaqmDufzy3Eur2GeVONw35XSSvR07SJZvQxNRERE1K7YWFsiyFOFIE+V0fZyQy26KKSLLu3z3j8iIiKim0gZmACGJiIiIiKTMDQRERERmYChiYiIiMgEDE1EREREJmBoIiIiIjIBQxMRERGRCRiaiIiIiEzA0ERERERkAoYmIiIiIhMwNBERERGZgKGJiIiIyAQMTUREREQmYGgiIiIiMoG0jwvuYARBAADo9XqJKyEiIiJTNf5uN/6O3w5DUwsqKysDAHh7e0tcCRERETVXWVkZVCrVbffLhD+KVWSy+vp6XL16Ffb29pDJZC12XL1eD29vb2RnZ8PBwaHFjkvGeJ3bDq912+B1bhu8zm2jNa+zIAgoKyuDh4cHLCxuP3OJPU0tyMLCAl5eXq12fAcHB/4L2QZ4ndsOr3Xb4HVuG7zObaO1rvPv9TA14kRwIiIiIhMwNBERERGZgKHJDCgUCrz88stQKBRSl9Kh8Tq3HV7rtsHr3DZ4ndtGe7jOnAhOREREZAL2NBERERGZgKGJiIiIyAQMTUREREQmYGgiIiIiMgFDkxn44IMP4OvrCxsbG4SEhODIkSNSl2TW1qxZg8GDB8Pe3h5qtRqTJ09Genq6URtBELBy5Up4eHjA1tYWI0aMwOnTpyWq2PytWbMGMpkMS5YsEbfxGrecK1eu4NFHH4WzszPs7OwwYMAAJCcni/t5re9ebW0t/va3v8HX1xe2trbw8/PDP/7xD9TX14tteJ2b74cffsCkSZPg4eEBmUyGr776ymi/KdfUYDBg0aJFcHFxgVKpRHR0NHJyclqnYIHatdjYWMHa2lrYsGGDcObMGeHpp58WlEqlkJmZKXVpZisqKkrYtGmTkJqaKqSkpAgTJkwQunXrJpSXl4ttXnvtNcHe3l7Yvn27cOrUKWHatGmCu7u7oNfrJazcPB0/flzo3r270K9fP+Hpp58Wt/Mat4zi4mLBx8dHmDNnjpCUlCRcunRJ2L9/v3D+/HmxDa/13Vu1apXg7Ows7N69W7h06ZLw5ZdfCl26dBHefvttsQ2vc/N9++23wosvvihs375dACDs3LnTaL8p1/TJJ58UPD09hfj4eOHnn38WRo4cKfTv31+ora1t8XoZmtq5e++9V3jyySeNtgUGBgovvPCCRBV1PPn5+QIA4fDhw4IgCEJ9fb2g0WiE1157TWxTVVUlqFQq4aOPPpKqTLNUVlYm9OrVS4iPjxeGDx8uhiZe45bz/PPPC0OHDr3tfl7rljFhwgThscceM9o2ZcoU4dFHHxUEgde5Jdwcmky5pqWlpYK1tbUQGxsrtrly5YpgYWEhxMXFtXiNHJ5rx6qrq5GcnIzIyEij7ZGRkTh27JhEVXU8Op0OAODk5AQAuHTpErRardF1VygUGD58OK97Mz311FOYMGECRo8ebbSd17jlfPPNNxg0aBD+9Kc/Qa1WY+DAgdiwYYO4n9e6ZQwdOhQHDhzAuXPnAAC//PILjh49ivHjxwPgdW4NplzT5ORk1NTUGLXx8PBAUFBQq1x3PrC3HSssLERdXR3c3NyMtru5uUGr1UpUVcciCAKWLl2KoUOHIigoCADEa3ur656ZmdnmNZqr2NhY/Pzzzzhx4kSTfbzGLefixYv48MMPsXTpUvz1r3/F8ePHsXjxYigUCsyaNYvXuoU8//zz0Ol0CAwMhKWlJerq6rB69WrMmDEDAP9OtwZTrqlWq4VcLoejo2OTNq3xO8nQZAZkMpnRe0EQmmyjO7Nw4UL8+uuvOHr0aJN9vO53Ljs7G08//TT27dsHGxub27bjNb579fX1GDRoEF599VUAwMCBA3H69Gl8+OGHmDVrltiO1/ru/Pe//8XWrVvxn//8B3379kVKSgqWLFkCDw8PzJ49W2zH69zy7uSattZ15/BcO+bi4gJLS8smaTk/P79J8qbmW7RoEb755hscPHgQXl5e4naNRgMAvO53ITk5Gfn5+QgJCYGVlRWsrKxw+PBhvPvuu7CyshKvI6/x3XN3d0efPn2MtvXu3RtZWVkA+Pe5pTz77LN44YUXMH36dAQHByMmJgbPPPMM1qxZA4DXuTWYck01Gg2qq6tRUlJy2zYtiaGpHZPL5QgJCUF8fLzR9vj4eEREREhUlfkTBAELFy7Ejh078P3338PX19dov6+vLzQajdF1r66uxuHDh3ndTTRq1CicOnUKKSkp4mvQoEF45JFHkJKSAj8/P17jFjJkyJAmS2acO3cOPj4+APj3uaVcu3YNFhbGP5mWlpbikgO8zi3PlGsaEhICa2troza5ublITU1tneve4lPLqUU1LjmwceNG4cyZM8KSJUsEpVIpXL58WerSzNZf/vIXQaVSCYcOHRJyc3PF17Vr18Q2r732mqBSqYQdO3YIp06dEmbMmMFbh+/SjXfPCQKvcUs5fvy4YGVlJaxevVrIyMgQtm3bJtjZ2Qlbt24V2/Ba373Zs2cLnp6e4pIDO3bsEFxcXITnnntObMPr3HxlZWXCyZMnhZMnTwoAhLfeeks4efKkuKyOKdf0ySefFLy8vIT9+/cLP//8s3D//fdzyYHO7F//+pfg4+MjyOVy4Z577hFvjac7A+CWr02bNolt6uvrhZdfflnQaDSCQqEQhg0bJpw6dUq6ojuAm0MTr3HL2bVrlxAUFCQoFAohMDBQ+Pe//220n9f67un1euHpp58WunXrJtjY2Ah+fn7Ciy++KBgMBrENr3PzHTx48Jb/PZ49e7YgCKZd08rKSmHhwoWCk5OTYGtrK0ycOFHIyspqlXplgiAILd9/RURERNSxcE4TERERkQkYmoiIiIhMwNBEREREZAKGJiIiIiITMDQRERERmYChiYiIiMgEDE1EREREJmBoIiJqpu7du+Ptt99u9udkMhm++uqrFq+HiNoGQxMRmbU5c+Zg8uTJUpdBRJ0AQxMRERGRCRiaiKjDeuuttxAcHAylUglvb28sWLAA5eXl4v7Nmzeja9eu2L17NwICAmBnZ4eHH34YFRUV+PTTT9G9e3c4Ojpi0aJFqKurMzp2WVkZZs6ciS5dusDDwwPvvfee0f6MjAwMGzYMNjY26NOnj9FT2Bs9//zz8Pf3h52dHfz8/PDSSy+hpqamdS4GEd01K6kLICJqLRYWFnj33XfRvXt3XLp0CQsWLMBzzz2HDz74QGxz7do1vPvuu4iNjUVZWRmmTJmCKVOmoGvXrvj2229x8eJFPPTQQxg6dCimTZsmfm7t2rX461//ipUrV2Lv3r145plnEBgYiDFjxqC+vh5TpkyBi4sLEhMTodfrsWTJkib12dvbY/PmzfDw8MCpU6cwb9482Nvb47nnnmuLy0NEzdUqjwEmImojs2fPFh544AGT2n7xxReCs7Oz+H7Tpk0CAOH8+fPitieeeEKws7MTysrKxG1RUVHCE088Ib738fERxo4da3TsadOmCePGjRMEQRD27t0rWFpaCtnZ2eL+7777TgAg7Ny587b1vfHGG0JISIhJ50JEbY89TUTUYR08eBCvvvoqzpw5A71ej9raWlRVVaGiogJKpRIAYGdnhx49eoifcXNzQ/fu3dGlSxejbfn5+UbHDg8Pb/K+8Y66tLQ0dOvWDV5eXrdtDwD/+9//8Pbbb+P8+fMoLy9HbW0tHBwc7vq8iah1cE4TEXVImZmZGD9+PIKCgrB9+3YkJyfjX//6FwAYzRuytrY2+pxMJrvltvr6+j/8TplMBgAQBOG2+xolJiZi+vTpGDduHHbv3o2TJ0/ixRdfRHV1tWknSERtjj1NRNQh/fTTT6itrcWbb74JC4uG/3/4xRdftNjxExMTm7wPDAwEAPTp0wdZWVm4evUqPDw8AAAJCQlG7X/88Uf4+PjgxRdfFLdlZma2WH1E1PIYmojI7Ol0OqSkpBhtc3V1RW1tLd577z1MmjQJP/74Iz766KMW+84ff/wRb7zxBiZPnoz4+Hh8+eWX2LNnDwBg9OjRCAgIwKxZs/Dmm29Cr9cbhSMA6NmzJ7KyshAbG4vBgwdjz5492LlzZ4vVR0Qtj8NzRGT2Dh06hIEDBxq9PvnkE7z11lt4/fXXERQUhG3btmHNmjUt9p3Lli1DcnIyBg4ciH/+85948803ERUVBaDhrr2dO3fCYDDg3nvvxeOPP47Vq1cbff6BBx7AM888g4ULF2LAgAE4duwYXnrppRarj4hanky41eA7ERERERlhTxMRERGRCRiaiIiIiEzA0ERERERkAoYmIiIiIhMwNBERERGZgKGJiIiIyAQMTUREREQmYGgiIiIiMgFDExEREZEJGJqIiIiITMDQRERERGQChiYiIiIiE/w/PTbX1CM5hP8AAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Task 6: Lasso grid plot\n", + "plt.plot(grid, val_errors)\n", + "plt.xlabel('Lambda')\n", + "plt.ylabel('Validation MSE')\n", + "plt.title('Lasso Validation Error')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "060f3ffb-5c85-4d26-ab5a-03eff6cc34c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "52415.86383077253\n" + ] + } + ], + "source": [ + "print(min(val_errors))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "19d25e18-0763-41cb-b65c-2b884a99d523", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best lambda: 100.0 \n", + "\n", + "Lasso results: \n", + " AtBat -2.015511\n", + "Hits 6.056399\n", + "HmRun -0.000000\n", + "Runs -0.000000\n", + "RBI 0.000000\n", + "Walks 5.565911\n", + "Years -0.000000\n", + "CAtBat -0.303844\n", + "CHits 0.521263\n", + "CHmRun -0.000000\n", + "CRuns 1.402914\n", + "CRBI 0.900971\n", + "CWalks -0.753718\n", + "PutOuts 0.292351\n", + "Assists 0.362418\n", + "Errors -0.000000\n", + "League_N 0.000000\n", + "Division_W -0.000000\n", + "NewLeague_N 0.000000\n", + "dtype: float64 \n", + "\n", + "Non-zero Lasso coefficients: \n", + " Hits 6.056399\n", + "Walks 5.565911\n", + "CRuns 1.402914\n", + "CRBI 0.900971\n", + "CHits 0.521263\n", + "Assists 0.362418\n", + "PutOuts 0.292351\n", + "CAtBat -0.303844\n", + "CWalks -0.753718\n", + "AtBat -2.015511\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "# Find best model\n", + "min_index = np.argmin(val_errors)\n", + "best_lambda_lasso_cv = grid[min_index]\n", + "print(\"Best lambda: \",best_lambda_lasso_cv,'\\n')\n", + "\n", + "# Refit model with best lambda\n", + "best_lasso_model = Lasso(alpha=best_lambda_lasso_cv, max_iter=10000).fit(X_train, y_train)\n", + "best_lasso_coefs = pd.Series(best_lasso_model.coef_, index=X_train.columns)\n", + "print(\"Lasso results: \\n\",best_lasso_coefs,'\\n')\n", + "\n", + "# Display non-zero coefficients\n", + "non_zero_coefs = best_lasso_coefs[best_lasso_coefs != 0]\n", + "non_zero_coefs.sort_values(ascending=False)\n", + "print(\"Non-zero Lasso coefficients: \\n\",non_zero_coefs.sort_values(ascending=False))" + ] + }, + { + "cell_type": "markdown", + "id": "a200cb80-d1c1-4ff5-a2fd-bf9742a5e913", + "metadata": {}, + "source": [ + "## Extra code (not same! 10 folds!)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "31de56c7-a6e1-45ef-85a6-16656320feae", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAHUCAYAAABME1IbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW2dJREFUeJzt3XlYlPX+//HXsC/iBJIi7rZQBplLuRZugHse61hRqGmWx8oMbTGPpZVammbZKTt+S0stOx2Xk3oicEkzcAmjJE1bXEuyEkFAAeH+/eHh/jGyOCjDjPh8XJdXzfv+zD3vuW8YXnzuBYthGIYAAABwWXNzdgMAAABwPkIhAAAACIUAAAAgFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIVAtVi0aJEsFou++uorZ7dy0f7zn//IYrFo/vz5FY5JSkqSxWLRnDlz7F7v8OHD1bx5c5ta8+bNNXz48PM+9/PPP5fFYtHnn39u9+uVSE5O1pQpU3TixIkyy7p166Zu3bpVeZ0X68CBA7JYLBX+mzJlSo335Ejl7fvp06dr1apVZcZe7PfSlClTKt22Bw4cuKD1Otrw4cNt+nR3d1fjxo01ZMgQpaenO7s9XCY8nN0AANfSr18/hYSE6N1339Xo0aPLHbNw4UJ5enoqLi7uol5r5cqVqlu37kWt43ySk5M1depUDR8+XFdccYXNsjfffNOhr30+jz76qGJjY8vUGzdu7IRuHGfy5Ml67LHHbGrTp0/XnXfeqUGDBjnkNRMSEmS1WsvUGzZs6JDXqw6+vr7asGGDJOnMmTP68ccf9eKLL6pz587as2ePGjVq5OQOUdsRCgHY8PDw0NChQzVz5kylp6crPDzcZvmJEye0cuVKDRw4UFdeeeVFvVabNm0u6vkXq1WrVk59/aZNm6pjx45Vfl5eXp78/PzK1IuKinTmzBl5e3tfcE8VrftiXHXVVdW6Pnu0a9dOwcHBVXpOZduvOrbLqVOn5OvrW+FyNzc3m6+Hrl27qmnTpurZs6fWrl2rBx988KJeX6qerxHUXhw+BmrI6dOnNX78eN10002yWq0KCgpSp06d9J///KfM2I8//lgdOnSQ1WqVn5+fWrZsqREjRpjLi4uL9eKLLyosLEy+vr664oordOONN+q1116zWc+WLVvUs2dPBQQEyM/PT507d9batWvP2+vIkSMlnZ0RPNeHH36o06dPm/384x//0G233ab69evL399fERERmjlzpgoLC8/7OuUdPv7+++/Vu3dv+fn5KTg4WKNHj9bJkyfLPDcpKUm33367GjduLB8fH1199dV66KGH9Mcff5hjpkyZoieeeEKS1KJFC/PQXMlh6PIOHx8/flxjxoxRo0aN5OXlpZYtW2rSpEnKz8+3GWexWPTII49o8eLFuv766+Xn56fWrVtrzZo1533fVdGtWzeFh4dr8+bN6ty5s/z8/DRixAjzEPTMmTP14osvqkWLFvL29tbGjRslSZ988ok6deokPz8/BQQEKCoqSikpKTbrLjnUunPnTt15550KDAysMMBlZ2fLw8NDs2bNMmt//PGH3NzcZLVadebMGbM+duxYXXnllTIMQ1LZw8cWi0W5ubl67733zH1y7n44efKk/va3vyk4OFj16tXT4MGD9euvv17MprRR2farbLucPn1aEydOVIsWLeTl5aVGjRrp4YcfLnN6QvPmzdW/f3+tWLFCbdq0kY+Pj6ZOnVrlPktmOz09Pc3a77//rjFjxqhVq1aqU6eO6tevrx49euiLL76w+z3a+xmCywszhUANyc/P1/HjxzVhwgQ1atRIBQUFWrdunQYPHqyFCxdq6NChkqSUlBTddddduuuuuzRlyhT5+Pjo4MGD5mElSZo5c6amTJmiv//977rttttUWFio77//3uYH06ZNmxQVFaUbb7xR77zzjry9vfXmm29qwIAB+vDDD3XXXXdV2Ou1116rrl27asmSJXrppZdsfiAtXLhQjRo1UkxMjCTpp59+UmxsrPlD8ptvvtG0adP0/fff6913363SNvrtt98UGRkpT09Pvfnmm2rQoIGWLl2qRx55pMzYn376SZ06ddIDDzwgq9WqAwcOaM6cOeratat27dolT09PPfDAAzp+/LjmzZunFStWmIcOK5ohPH36tLp3766ffvpJU6dO1Y033qgvvvhCM2bMUFpaWplAvXbtWu3YsUPPP/+86tSpo5kzZ+ovf/mL9u7dq5YtW573/RYXF9uEqRIeHrYfzUePHtV9992nJ598UtOnT5eb2///ff7111/Xtddeq1deeUV169bVNddcow8++ED33nuvoqOj9eGHHyo/P18zZ85Ut27dtH79enXt2tVm/YMHD9bdd9+t0aNHKzc3t9xe69atq5tvvlnr1q0zg/b69evl7e2tkydPavv27ercubMkad26derRo4csFku560pJSVGPHj3UvXt3TZ482Vx/aQ888ID69eunDz74QIcPH9YTTzyh++67z+b7oDIlM2KllZyrV1p522/r1q3lbhfDMDRo0CCtX79eEydO1K233qpvv/1Wzz33nFJSUpSSkmIzA7dz507t2bNHf//739WiRQv5+/uft++SnksOHz/xxBMKDAxUv379zDHHjx+XJD333HMKCQlRTk6OVq5cae7fcwN2ee/Rns8QXIYMABdt4cKFhiRjx44ddj/nzJkzRmFhoTFy5EijTZs2Zv2VV14xJBknTpyo8Ln9+/c3brrppkrX37FjR6N+/frGyZMnbV4zPDzcaNy4sVFcXFzp80ve04oVK8xaenq6IcmYNGlSuc8pKioyCgsLjffff99wd3c3jh8/bi4bNmyY0axZM5vxzZo1M4YNG2Y+fuqppwyLxWKkpaXZjIuKijIkGRs3biz3dYuLi43CwkLj4MGDhiTjP//5j7ls1qxZhiRj//79ZZ4XGRlpREZGmo/nz59vSDL+9a9/2Yx7+eWXDUlGYmKiWZNkNGjQwMjOzjZrGRkZhpubmzFjxoxy+yyxf/9+Q1KF/7744gubHiUZ69evL3cdV111lVFQUGDWi4qKjNDQUCMiIsIoKioy6ydPnjTq169vdO7c2aw999xzhiTj2WefrbTfEn//+98NX19f4/Tp04ZhGMYDDzxg9O7d27jxxhuNqVOnGoZhGL/88oshyfjnP/9pPq+8fe/v72+z70uUfN2NGTPGpj5z5kxDknH06NFKeyx5T+X9u+qqq8xxFW2/0us4d7skJCQYkoyZM2fa1D/66KMy77lZs2aGu7u7sXfv3kr7LTFs2LBye27YsKGxZcuWSp9b8lnSs2dP4y9/+Ytd79GezxBcfjh8DNSgjz/+WF26dFGdOnXk4eEhT09PvfPOO9qzZ4855uabb5YkDRkyRP/617/0yy+/lFnPLbfcom+++UZjxozRZ599puzsbJvlubm52rZtm+68807VqVPHrLu7uysuLk5HjhzR3r17K+11yJAhCggIsJnte/fdd2WxWHT//febta+//loDBw5UvXr15O7uLk9PTw0dOlRFRUXat29flbbPxo0bdcMNN6h169Y29fIuxjh27JhGjx6tJk2amNuyWbNmkmSzPatiw4YN8vf315133mlTLznEvX79ept69+7dFRAQYD5u0KCB6tevr4MHD9r1eo899ph27NhR5t9NN91kMy4wMFA9evQodx0DBw60mcndu3evfv31V8XFxdnMKNapU0d33HGHtm7dqry8PJt13HHHHXb127NnT506dUrJycmSzs4IRkVFqVevXkpKSjJrktSrVy+71lmRgQMH2jy+8cYbJcnubbtu3boy27W8q53P3X6lnbtdSmYpzz3l4a9//av8/f3LfH3ceOONuvbaa+3qVzp7oUlJr9u2bdOKFSt07bXXqm/fvmUO/c+fP19t27aVj4+P+fW/fv36cr/2y3uP5/sMweWJw8dADVmxYoWGDBmiv/71r3riiScUEhIiDw8PvfXWWzbB67bbbtOqVav0+uuva+jQocrPz9cNN9ygSZMm6Z577pEkTZw4Uf7+/lqyZInmz58vd3d33XbbbXr55ZfVvn17ZWZmyjCMcq+0DA0NlST9+eeflfbr5+enu+++WwsXLlRGRoaCg4O1ZMkSRUZGmudXHTp0SLfeeqvCwsL02muvqXnz5vLx8dH27dv18MMP69SpU1XaRn/++adatGhRph4SEmLzuLi4WNHR0fr11181efJkRUREyN/fX8XFxerYsWOVX7f064eEhJQ57Fm/fn15eHiU2Wb16tUrsw5vb2+7X79x48Zq3779ecdVdsXsuctKeqxo3xcXFyszM9Pmogl7r8gtOadx3bp1atKkiQ4cOKCoqCgdOXJE8+bNU05OjtatW6eWLVuWux+r4txtW3JY1t5t27p1a7suNKnqtvXw8ChzgZXFYlFISEiZr4+qXuns5uZW5ushJiZGTZo0UXx8vBkM58yZo/Hjx2v06NF64YUXFBwcLHd3d02ePLncUFheH+f7DMHliVAI1JAlS5aoRYsW+uijj2xCx7kXMEjS7bffrttvv135+fnaunWrZsyYodjYWDVv3lydOnWSh4eH4uPjFR8frxMnTmjdunV65plnFBMTo8OHDyswMFBubm46evRomXWXnKxvzw/MkSNHasGCBXr//fd17bXX6tixY5o9e7a5fNWqVcrNzdWKFSvMWTpJSktLq8qmMdWrV08ZGRll6ufW0tPT9c0332jRokUaNmyYWf/xxx8v6HVLv/62bdtkGIbNPjp27JjOnDlT5atZq0tF5+aVt6wkTFW0793c3BQYGGj3+kvz8vJS165dtW7dOjVu3FghISGKiIgwz5/8/PPPtX79evXv39+u9bmCqm7bM2fO6Pfff7cJhoZhKCMjw5zlt2fd9vLz89NVV12lb775xqwtWbJE3bp101tvvWUztrwLsirq43yfIdV9BTouDRw+BmqIxWKRl5eXzQd0RkZGuVcfl/D29lZkZKRefvllSWcP1Z7riiuu0J133qmHH35Yx48f14EDB+Tv768OHTpoxYoVNjMrxcXFWrJkiRo3bmzXYa0OHTooPDxcCxcu1MKFC2W1Wm0OqZW8l9In1xuGoQULFpx33eXp3r27vvvuO5sfgJL0wQcf2Dwu73Ul6e233y6zzqrMMPXs2VM5OTllDjO+//775nJXFxYWpkaNGumDDz4wr/6Vzp5SsHz5cvOK5AvVq1cvpaamavny5eYhYn9/f3Xs2FHz5s3Tr7/+ateh46rMqLqKkv2/ZMkSm/ry5cuVm5vrkK+PnJwc/fjjj6pfv75Zs1gsZb72v/322zKHmO1V3mcILk/MFALVaMOGDeV+oPbt29e8PcWYMWN055136vDhw3rhhRfUsGFD/fDDD+bYZ599VkeOHFHPnj3VuHFjnThxQq+99po8PT0VGRkpSRowYIDCw8PVvn17XXnllTp48KDmzp2rZs2a6ZprrpEkzZgxQ1FRUerevbsmTJggLy8vvfnmm0pPT9eHH35o9yzGiBEjFB8fr7179+qhhx6yuc9aVFSUvLy8dM899+jJJ5/U6dOn9dZbbykzM/OCtt+4ceP07rvvql+/fnrxxRfNq4+///57m3HXXXedrrrqKj399NMyDENBQUFavXq1eV5baREREZKk1157TcOGDZOnp6fCwsJszgUsMXToUP3jH//QsGHDdODAAUVERGjLli2aPn26+vbte9HnyZ3r0KFD5pWupV155ZUXfG8/Nzc3zZw5U/fee6/69++vhx56SPn5+Zo1a5ZOnDihl1566aJ67tmzp4qKirR+/Xq99957Zr1Xr1567rnnZLFYKjz/sbSIiAh9/vnnWr16tRo2bKiAgACFhYVdVG+lpaamlnvz6latWl3wDdOjoqIUExOjp556StnZ2erSpYt59XGbNm0u+mbuxcXF5tdDcXGxfvnlF73++uvKzMy0+Ss3/fv31wsvvKDnnntOkZGR2rt3r55//nm1aNGi3KvZy2PPZwguQ868ygWoLUqumKzoX8mVry+99JLRvHlzw9vb27j++uuNBQsWmFc6llizZo3Rp08fo1GjRoaXl5dRv359o2/fvjZXpM6ePdvo3LmzERwcbHh5eRlNmzY1Ro4caRw4cMCmry+++MLo0aOH4e/vb/j6+hodO3Y0Vq9eXaX39vvvvxteXl6GJGP79u1llq9evdpo3bq14ePjYzRq1Mh44oknjE8//bTM1cL2XH1sGIaxe/duIyoqyvDx8TGCgoKMkSNHGv/5z3/KrK9kXEBAgBEYGGj89a9/NQ4dOmRIMp577jmbdU6cONEIDQ013NzcbNZz7tXHhmEYf/75pzF69GijYcOGhoeHh9GsWTNj4sSJ5hW3JSQZDz/8cJntUd57Otf5rj6+9957zbGRkZHGDTfcUOE6Zs2aVe5rrFq1yujQoYPh4+Nj+Pv7Gz179jS+/PJLmzElX3u///57pf2WVlxcbAQHBxuSjF9++cWsf/nll4Yko23btmWeU96+T0tLM7p06WL4+fkZksz9UNGV/Bs3bqz0CvRz31NF/5KSkgzDqHz7VbZdTp06ZTz11FNGs2bNDE9PT6Nhw4bG3/72NyMzM9NmXLNmzYx+/fpV2mtp5V19XL9+fSMyMtJYuXKlzdj8/HxjwoQJRqNGjQwfHx+jbdu2xqpVq8ps58reo72fIbi8WAyj1PEFAAAAXJY4pxAAAACEQgAAABAKAQAAIEIhAAAARCgEAACACIUAAAAQN6+uccXFxfr1118VEBBQLX8CCQAAoCKGYejkyZMKDQ2Vm1vlc4GEwhr266+/qkmTJs5uAwAAXEYOHz6sxo0bVzqGUFjDSv601uHDhy/4Ty1VprCwUImJiYqOjpanp2e1rx/2Y1+4BvaD62BfuA72hWuoif2QnZ2tJk2alPunPc9FKKxhJYeM69at67BQ6Ofnp7p16/KN7mTsC9fAfnAd7AvXwb5wDTW5H+w5ZY0LTQAAAEAoBAAAAKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAABI8nB2A0Btc/LkSeXk5OjMmTPKy8tTRkaGCgoKlJeXJ0ny9fWVv7+/8vLyqrVWWp06dRQQEFBTbxkAUAsQCoGLUBIAS/vqq6+0c+dO8/G+fftqui21bdtW7du3r/bgSUAFgNqLUAjYyZ4AWJG77rpLhYWFKiws1OrVqx1Su+mmm5SWliZJ2rlzp1191QRHBFSLxWI+Lq9W+nnZ2dk6fvy4fv75Z9WtW5ewCwAVIBQC5biYAHj//ffL09NTp06d0uLFiyVJLVu2lJeXlwoKCswQV921W2+9VbfccosKCwu1cOFCSTUTRi+VgHro0KFqXZ+zZ2OZBQZQ3QiFuOxVRwAsHcRCQkLk5eWl3Nxch/RbkTp16igoKEgFBQVmrSbCqLMC6oABAyTpvM87deqUdu7cqSNHjlz0a7pi2HWmqgbjklnb9PR0BQQEuFzgJQTjckcoxGXFUQGwdBBDzQTU8PBwSTrv8ywWi/bv32+GQlcPu65eq45gXN2ztjWlNs0Oe3t7Kzs7W+np6fLw8HC5/qq7VpVTTmqy5uXlpby8sxckenicjWTO/OWDUIjLSmpqqjZt2nTecQRAlMeVZmMvxVngO+64Qzt27FB4eLj++9//Vum5l3IIdmU///yzs1uAbC9IjIyMVLdu3ZzSB6EQtVZ5s4JNmjTR4MGDbT70CYCA/S4mGLdo0UI//fSTWrVqZYZCVwq8l9vscPPmzXXjjTfKMAyn91ITNXtPOXFGLS4uTr6+vpLOfo85C6EQtcLFHBYmAAKoSG2eHQ4ICFB4eLhNKHSl/px1yokzag0aNChzDqszEApxyanu8wIBAAChEC6OC0MAAKgZhEK4DAIgAADOQyiEy+DKYAAAnIdQWAuUnmE7c+aMS93zqCJcGQwAgGshFNYC5c2wuco9jySuDAYA4FJAKKwF2rVrp7CwMJvZtDvuuEOGYUg6exf1o0eP2jynOmYPywt75d29nSuDAQBwfYTCWiAgIEABAQE2s2m//vqrUlJSKnxOdfy5JnvDXnk4LAwAgGshFNZSrVu3VkREhE3oqok/11TendoJgAAAuD5CYS1Vp04d+fv724Su6v5zTeWFvfLu1E4ABADA9REKLyPV/eeaCHsAANQebs5uAAAAAM5HKAQAAIBzQ+HmzZs1YMAAhYaGymKxaNWqVWXG7NmzRwMHDpTValVAQIA6duyoQ4cOmcvz8/P16KOPKjg4WP7+/ho4cKCOHDlis47MzEzFxcXJarXKarUqLi5OJ06csBlz6NAhDRgwQP7+/goODtbYsWPLHBbdtWuXIiMj5evrq0aNGun55583b/sCAABwKXNqKMzNzVXr1q31xhtvlLv8p59+UteuXXXdddfp888/1zfffKPJkyfLx8fHHDNu3DitXLlSy5Yt05YtW5STk6P+/furqKjIHBMbG6u0tDQlJCQoISFBaWlpiouLM5cXFRWpX79+ys3N1ZYtW7Rs2TItX75c48ePN8dkZ2crKipKoaGh2rFjh+bNm6dXXnlFc+bMccCWAQAAqFlOvdCkT58+6tOnT4XLJ02apL59+2rmzJlmrWXLlub/Z2Vl6Z133tHixYvVq1cvSdKSJUvUpEkTrVu3TjExMdqzZ48SEhK0detWdejQQZK0YMECderUSXv37lVYWJgSExO1e/duHT58WKGhoZKk2bNna/jw4Zo2bZrq1q2rpUuX6vTp01q0aJG8vb0VHh6uffv2ac6cOYqPj5fFYnHEJgIAAKgRLnv1cXFxsdauXasnn3xSMTEx+vrrr9WiRQtNnDhRgwYNknT2z7sVFhYqOjrafF5oaKjCw8OVnJysmJgYpaSkyGq1moFQkjp27Cir1ark5GSFhYUpJSVF4eHhZiCUpJiYGOXn5ys1NVXdu3dXSkqKIiMj5e3tbTNm4sSJOnDggFq0aFHu+8jPz1d+fr75ODs7W5LM27tUp9LrK1n/uTWLxUKNWq2plVbZ8+wdR61m9pmr9HK510rqpU+DcqX+nPmZ4Yzauf1Vl6qs12VD4bFjx5STk6OXXnpJL774ol5++WUlJCRo8ODB2rhxoyIjI5WRkSEvLy8FBgbaPLdBgwbKyMiQJGVkZKh+/fpl1l+/fn2bMQ0aNLBZHhgYKC8vL5sxzZs3L/M6JcsqCoUzZszQ1KlTy9QTExPl5+dnx5awX+lD5hs2bJC7u7tN7bPPPqNGrVbVSqvsefaOo+bYWsnn0oYNG5zeC7WzkpKSXKIXV/vMcNb3hiOU/DUye7hsKCwuLpYk3X777Xr88cclnf2LHMnJyZo/f74iIyMrfK5hGDazA+Ud2q2OMSW/XVV26HjixImKj483H2dnZ6tJkyaKjo5W3bp1K3zehSgoKNCuXbskST169DBvXl1Si4mJMe8rSM3xtdzcXJfppbbWJJ13jMViUUJCgkq42nu4nGo9evTQpk2b1KNHD6f3Qu2sqKgoGYbh9F5c6TPDWd8b/v7+coSSI5T2cNlQGBwcLA8PD7Vq1cqmfv3112vLli2Szt48uaCgQJmZmTazhceOHVPnzp3NMb/99luZ9f/+++/mTF9ISIi2bdtmszwzM1OFhYU2Y0pmDUu/jqQys4yleXt72xxyLuHp6SlPT88Kn3chSh8CKFk/NefVSu9fZ/dSW2ulVTTm3F/aXO09XG610v91di+Xe62k7gq9uNJnhjNrjlCV9brsfQq9vLx08803a+/evTb1ffv2qVmzZpKkdu3aydPTU0lJSebyo0ePKj093QyFnTp1UlZWlrZv326O2bZtm7KysmzGpKen6+jRo+aYxMREeXt7q127duaYzZs329ymJjExUaGhoWUOKwMAAFxqnDpTmJOTox9//NF8vH//fqWlpSkoKEhNmzbVE088obvuuku33XabunfvroSEBK1evVqff/65JMlqtWrkyJEaP3686tWrp6CgIE2YMEERERHm1cjXX3+9evfurVGjRuntt9+WJD344IPq37+/wsLCJEnR0dFq1aqV4uLiNGvWLB0/flwTJkzQqFGjzEO8sbGxmjp1qoYPH65nnnlGP/zwg6ZPn65nn32WK48BAMAlz6kzhV999ZXatGmjNm3aSJLi4+PVpk0bPfvss5Kkv/zlL5o/f75mzpypiIgI/d///Z+WL1+url27mut49dVXNWjQIA0ZMkRdunSRn5+fVq9ebXPC5tKlSxUREaHo6GhFR0frxhtv1OLFi83l7u7uWrt2rXx8fNSlSxcNGTJEgwYN0iuvvGKOsVqtSkpK0pEjR9S+fXuNGTNG8fHxNucLAgAAXKqcOlPYrVu38/5FkBEjRmjEiBEVLvfx8dG8efM0b968CscEBQVpyZIllb5O06ZNtWbNmkrHREREaPPmzZWOAQAAuBS57DmFAAAAqDmEQgAAABAKAQAAQCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAACQk0Ph5s2bNWDAAIWGhspisWjVqlUVjn3ooYdksVg0d+5cm3p+fr4effRRBQcHy9/fXwMHDtSRI0dsxmRmZiouLk5Wq1VWq1VxcXE6ceKEzZhDhw5pwIAB8vf3V3BwsMaOHauCggKbMbt27VJkZKR8fX3VqFEjPf/88zIM42I2AQAAgEtwaijMzc1V69at9cYbb1Q6btWqVdq2bZtCQ0PLLBs3bpxWrlypZcuWacuWLcrJyVH//v1VVFRkjomNjVVaWpoSEhKUkJCgtLQ0xcXFmcuLiorUr18/5ebmasuWLVq2bJmWL1+u8ePHm2Oys7MVFRWl0NBQ7dixQ/PmzdMrr7yiOXPmVMOWAAAAcC4PZ754nz591KdPn0rH/PLLL3rkkUf02WefqV+/fjbLsrKy9M4772jx4sXq1auXJGnJkiVq0qSJ1q1bp5iYGO3Zs0cJCQnaunWrOnToIElasGCBOnXqpL179yosLEyJiYnavXu3Dh8+bAbP2bNna/jw4Zo2bZrq1q2rpUuX6vTp01q0aJG8vb0VHh6uffv2ac6cOYqPj5fFYnHAFgIAAKgZTg2F51NcXKy4uDg98cQTuuGGG8osT01NVWFhoaKjo81aaGiowsPDlZycrJiYGKWkpMhqtZqBUJI6duwoq9Wq5ORkhYWFKSUlReHh4TYzkTExMcrPz1dqaqq6d++ulJQURUZGytvb22bMxIkTdeDAAbVo0aLc95Cfn6/8/HzzcXZ2tiSpsLBQhYWFF75xylF6fSXrP7dmsVioUas1tdIqe56946jVzD5zlV4u91pJvfRpUK7UnzM/M5xRO7e/6lKV9bp0KHz55Zfl4eGhsWPHlrs8IyNDXl5eCgwMtKk3aNBAGRkZ5pj69euXeW79+vVtxjRo0MBmeWBgoLy8vGzGNG/evMzrlCyrKBTOmDFDU6dOLVNPTEyUn59fuc+5UKUPmW/YsEHu7u42tc8++4watVpVK62y59k7jppjayWfSxs2bHB6L9TOSkpKcoleXO0zw1nfG46Ql5dn91iXDYWpqal67bXXtHPnziofmjUMw+Y55T2/OsaU/HZVWX8TJ05UfHy8+Tg7O1tNmjRRdHS06tata8e7sV9BQYF27dolSerRo4f8/f1tajExMfLy8qJWQ7Xc3FyX6aW21iSdd4zFYlFCQoJKuNp7uJxqPXr00KZNm9SjRw+n90LtrKioKBmG4fReXOkzw1nfG/7+/nKEkiOU9nDZUPjFF1/o2LFjatq0qVkrKirS+PHjNXfuXB04cEAhISEqKChQZmamzWzhsWPH1LlzZ0lSSEiIfvvttzLr//33382ZvpCQEG3bts1meWZmpgoLC23GlMwaln4dSWVmGUvz9va2OeRcwtPTU56enpVug6oqfQigZP3UnFcrvX+d3UttrZVW0Zhzf2lztfdwudVK/9fZvVzutZK6K/TiSp8Zzqw5QlXW67L3KYyLi9O3336rtLQ0819oaKieeOIJcwq4Xbt28vT0VFJSkvm8o0ePKj093QyFnTp1UlZWlrZv326O2bZtm7KysmzGpKen6+jRo+aYxMREeXt7q127duaYzZs329ymJjExUaGhoWUOKwMAAFxqnDpTmJOTox9//NF8vH//fqWlpSkoKEhNmzZVvXr1bMZ7enoqJCREYWFhkiSr1aqRI0dq/PjxqlevnoKCgjRhwgRFRESYVyNff/316t27t0aNGqW3335bkvTggw+qf//+5nqio6PVqlUrxcXFadasWTp+/LgmTJigUaNGmYd4Y2NjNXXqVA0fPlzPPPOMfvjhB02fPl3PPvssVx4DAIBLnlND4VdffaXu3bubj0vOvRs2bJgWLVpk1zpeffVVeXh4aMiQITp16pR69uypRYsW2ZywuXTpUo0dO9a8SnngwIE290Z0d3fX2rVrNWbMGHXp0kW+vr6KjY3VK6+8Yo6xWq1KSkrSww8/rPbt2yswMFDx8fE25wsCAABcqpwaCrt161alvwhy4MCBMjUfHx/NmzdP8+bNq/B5QUFBWrJkSaXrbtq0qdasWVPpmIiICG3evNmuXgEAAC4lLntOIQAAAGoOoRAAAACEQgAAABAKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACAqhAK+/btq6ysLPPxtGnTdOLECfPxn3/+qVatWlVrcwAAAKgZdofCzz77TPn5+ebjl19+WcePHzcfnzlzRnv37q3e7gAAAFAj7A6FhmFU+hgAAACXLs4pBAAAgP2h0GKxyGKxlKkBAADg0udh70DDMDR8+HB5e3tLkk6fPq3Ro0fL399fkmzONwQAAMClxe5QOGzYMJvH9913X5kxQ4cOvfiOAAAAUOPsDoULFy50ZB8AAABwoou+0OTgwYPavXu3iouLq6MfAAAAOIHdofC9997T3LlzbWoPPvigWrZsqYiICIWHh+vw4cPV3R8AAABqgN2hcP78+bJarebjhIQELVy4UO+//7527NihK664QlOnTnVIkwAAAHAsu88p3Ldvn9q3b28+/s9//qOBAwfq3nvvlSRNnz5d999/f/V3CAAAAIeze6bw1KlTqlu3rvk4OTlZt912m/m4ZcuWysjIqN7uAAAAUCPsDoXNmjVTamqqJOmPP/7Qd999p65du5rLMzIybA4vAwAA4NJh9+HjoUOH6uGHH9Z3332nDRs26LrrrlO7du3M5cnJyQoPD3dIkwAAAHAsu0PhU089pby8PK1YsUIhISH6+OOPbZZ/+eWXuueee6q9QQAAADie3aHQzc1NL7zwgl544YVyl58bEgEAAHDpuOibVwMAAODSZ/dMYcuWLe0a9/PPP19wMwAAAHAOu0PhgQMH1KxZM8XGxqp+/fqO7AkAAAA1zO5QuGzZMi1cuFBz5sxRnz59NGLECPXt21dubhyBBgAAuNTZneiGDBmiTz/9VD/++KPatWunxx9/XI0bN9bTTz+tH374wZE9AgAAwMGqPM3XqFEjTZo0ST/88IM+/PBDbdu2Tdddd50yMzMd0R8AAABqgN2Hj0s7ffq0/v3vf+vdd9/Vtm3b9Ne//lV+fn7V3RsAAABqSJVC4bZt2/TOO+/oo48+0lVXXaURI0Zo+fLlCgwMdFR/AAAAqAF2h8IbbrhBx44dU2xsrL744gvdeOONjuwLAAAANcjuULhnzx75+/vr/fff1+LFiyscd/z48WppDAAAADXH7lC4cOFCR/YBAAAAJ7I7FA4bNsyRfQAAAMCJuPM0AAAACIUAAAAgFAIAAECEQgAAAIhQCAAAAF3An7krKirSokWLtH79eh07dkzFxcU2yzds2FBtzQEAAKBmVDkUPvbYY1q0aJH69eun8PBwWSwWR/QFAACAGlTlULhs2TL961//Ut++fR3RDwAAAJygyucUenl56eqrr3ZELwAAAHCSKofC8ePH67XXXpNhGI7oBwAAAE5Q5cPHW7Zs0caNG/Xpp5/qhhtukKenp83yFStWVFtzAEopKlKz/fsVkJMjy6ZNUo8eF1cDAKCUKs8UXnHFFfrLX/6iyMhIBQcHy2q12vyris2bN2vAgAEKDQ2VxWLRqlWrzGWFhYV66qmnFBERIX9/f4WGhmro0KH69ddfbdaRn5+vRx99VMHBwfL399fAgQN15MgRmzGZmZmKi4sze4yLi9OJEydsxhw6dEgDBgyQv7+/goODNXbsWBUUFNiM2bVrlyIjI+Xr66tGjRrp+eefZ8YUFftfEAvftetsECsquvDav/8tz2uu0fD33tMdy5fLMzpaatBAno0bX1iteXNZVqyovv6qUgMAuKQqzxQuXLiw2l48NzdXrVu31v3336877rjDZlleXp527typyZMnq3Xr1srMzNS4ceM0cOBAffXVV+a4cePGafXq1Vq2bJnq1aun8ePHq3///kpNTZW7u7skKTY2VkeOHFFCQoIk6cEHH1RcXJxWr14t6extdvr166crr7xSW7Zs0Z9//qlhw4bJMAzNmzdPkpSdna2oqCh1795dO3bs0L59+zR8+HD5+/tr/Pjx1bZNcAmwZyYuK0u+48Zp+C+/nH3O8uVSvXryNAwNP3686rXy/PnnhdeOHJHHPfdoeMnji+3P3lrjxrLMmlVtM55Gp07nf96ttzJ7CgB2qHIoLPH7779r7969slgsuvbaa3XllVdWeR19+vRRnz59yl1mtVqVlJRkU5s3b55uueUWHTp0SE2bNlVWVpbeeecdLV68WL169ZIkLVmyRE2aNNG6desUExOjPXv2KCEhQVu3blWHDh0kSQsWLFCnTp20d+9ehYWFKTExUbt379bhw4cVGhoqSZo9e7aGDx+uadOmqW7dulq6dKlOnz6tRYsWydvbW+Hh4dq3b5/mzJmj+Pj4Cm/Nk5+fr/z8fPNxdna2pLMzoYWFhVXeZpUpvb6S9Z9bs1gs1KpSO33aDA5F69frTFaWPCZMsAl7RlCQPCWb8GNIOvcrwignnNldK2d9usjaBfdyMbVywmi528/empubhpfcK7WCMcVBQepXUCDvnJzK19WokYpfeslmfxd2767CggLXqZWaaXX698YF1kr/19m9XO61knrpI16u1J+jvv5coY/yauf2V12qst4qh8Lc3Fw9+uijev/9980bV7u7u2vo0KGaN2+e/Pz8qrpKu2VlZcliseiKK66QJKWmpqqwsFDR0dHmmNDQUIWHhys5OVkxMTFKSUmR1Wo1A6EkdezYUVarVcnJyQoLC1NKSorCw8PNQChJMTExys/PV2pqqrp3766UlBRFRkbK29vbZszEiRN14MABtWjRotyeZ8yYoalTp5apJyYmVvu2Kir1A2PDhg1yd3e3qX322WfUSmqlfuCmzp6tzPBwFZWaOUqdPVs+OTkKf/ddDS8JN/8Le2WUBItznBvEHB3qqsrR/VVUK7MNy9t+9tbOuXl+eWMsx4/Ly551/fKLvOPibAJrfp068pA0vFSgdFbtVL162jV8uJr98UelX7cuVyu1iUs+l0r/kQOnfxZcxjVJSkpKcoleaqpWmiv1VvK94Qh5eXl2j61yKIyPj9emTZu0evVqdenSRdLZi0/Gjh2r8ePH66233qrqKu1y+vRpPf3004qNjVXdunUlSRkZGfLy8lJgYKDN2AYNGigjI8McU79+/TLrq1+/vs2YBg0a2CwPDAyUl5eXzZjmzZuXeZ2SZRWFwokTJyo+Pt58nJ2drSZNmig6Otp8H9WloKBAu3btkiT16NFD/v7+NrWYmBh5eXldfrVTp5T9yScKyMlRn1tukWdWltwmTJDbObN90tkAYdYq2M4XGqZwliPDaHUHVq+SUOYCNZ8//1SH2bPVsaRQ0detK9UaNVL+Sy8p+39BMbpdO60vKFCPyEib70mP7t1VUFDgOrWiItf5/HJgTZKioqJkGIbTe6mpmiSX6OPcWsnPbEcoOUJpjyqHwuXLl+vf//63unXrZtb69u0rX19fDRkyxCGhsLCwUHfffbeKi4v15ptvnne8YRg2h3PLO7RbHWNKptwr+6su3t7eNrOLJTw9PctcuX2xjDNnzN/SvVNS5BkdLaPUa5S8ZulDBbWuVmobeCUnyzMrSx7nntunsj/8LcePl62pLMJe7eas2VN7a3Z93bpSrZzZ19516sjLy6vM+ace5ZyT6pRa48ZSqfNevZKT5dmjhww3t1pXC7ZY5Nm3rwzDuPD1XWI/Y0pztd6qOxOUXre9qhwK8/LyysyqSWdn3qoyRWmvwsJCDRkyRPv379eGDRtsZtdCQkJUUFCgzMxMm9nCY8eOqXPnzuaY3377rcx6f//9d/N9hISEaNu2bTbLMzMzVVhYaDOmZNaw9OtIKnd71LgVK+Q5dqxt+GncWJbZs53bV3Wx8+IOz3ICYHkIfLgUuVpItad2rvJmQS/qoqnqrjnrIiwn1YzXXpMkl7hwrCZqdl2cVlM1F1TlUNipUyc999xzev/99+Xj4yNJOnXqlKZOnapOnTpVa3MlgfCHH37Qxo0bVa9ePZvl7dq1k6enp5KSkjRkyBBJ0tGjR5Wenq6ZM2ea/WZlZWn79u265ZZbJEnbtm1TVlaWGRw7deqkadOm6ejRo2rYsKGks+f8eXt7q127duaYZ555RgUFBfLy8jLHhIaGljmsXONWrJDuvFM69/Y4v/wij7vu0q3duimzXj3X/EK80LBn7xW6qj1hr9yLVy6iBtQEe2ZfK6q7SpB1qdBa3bXyzq+txQH63IvTnNbbOYHabfNmKTpactB5hfaqcih87bXX1Lt3bzVu3FitW7eWxWJRWlqafHx8ypzEeT45OTn68ccfzcf79+9XWlqagoKCFBoaqjvvvFM7d+7UmjVrVFRUZM7UBQUFycvLS1arVSNHjtT48eNVr149BQUFacKECYqIiDCvRr7++uvVu3dvjRo1Sm+//baks7ek6d+/v8LCwiRJ0dHRatWqleLi4jRr1iwdP35cEyZM0KhRo8yZydjYWE2dOlXDhw/XM888ox9++EHTp0/Xs88+W+nhY4crKpIee0wyjLIfbv8LiT0+//zs48p+s7vIHi7oN6WLCXvlfUDJtYKPw0NcvXpn93HpD3V7aw7ojzCK2sKVAqqjaxcb0stwpcBbXu3ci9NcaUa6cWPptdekwYPLjq8pxgXIy8sz/vnPfxrx8fHG448/bixYsMDIy8ur8no2btxo6OzPDZt/w4YNM/bv31/uMknGxo0bzXWcOnXKeOSRR4ygoCDD19fX6N+/v3Ho0CGb1/nzzz+Ne++91wgICDACAgKMe++918jMzLQZc/DgQaNfv36Gr6+vERQUZDzyyCPG6dOnbcZ8++23xq233mp4e3sbISEhxpQpU4zi4uIqveesrCxDkpGVlVWl51Vo40bDOPsj3+5/xefWGjc2Cj780Fg4bJjx7zvuMAoSEw3jzBkjPy/v/LWPPzaKGzWyXV+9ekZxUND5a+X1UkHNlf7Z23OZmr3bpbxakyYXvo+qe79dTO1itl85NXvHXIpfZ/zjH/9q978yn0EWy9l/y5dXTz74n6rkDothGIZT0uhlKjs7W1arVVlZWdVz9fGHH0qxsVV6iiE7ZnTq1ZNhGP//SsKKavaur4Kaq7vgbdWkiU5Pn65l69YpICdHAx96SJ49eqigoEAf/O1vF1YrKtKMGTMknb2qveTqtQuunTp14b1caC0rS8a4cbKUzA5XtP3srBnu7rKUvsVGeWPq1VNBfv7/v09hReu3d387sQaglrNYzs4Y7t9fbYeSq5I77Dp8/Mknn6hPnz7y9PTUJ598UunYgQMH2t8pLt7/zoGsimo9BFDB+lz9Qo4L/iHcpInOzJyppQkJNuGnsJxAVHT6tA7+9JMkaUBk5NlvcHd3Hfzf7YuqXKvuPxF3Mb1caM3LS4X9+pXZVuVtP3tqRqdO+uCRRyodo1tv1drVq5W9dm3l68/KksaNk84JrDKMCztEX901uVZAJcgCDmAY0uHD0hdfSN261fjL2xUKBw0aZN7vb9CgQRWOs1gsZW6MCQe79dazv1X88svZL6YLdCkGO3vZ9YOqvB/CFQRAo6hIB/fulXSeQITyVWfIlM47xmKxOCWwVnvN1UOrnUG25FPKVUIrQRYu6ehRp7ysXaGwuNSJmcXnnqQJ53J3P3ti6p13yrBYZLnMzwao7tm+cgMgv/jUXs6YPXXSLKuzgmxBQIC8PD1dI7TWohnZC61dbEiHg1zAUcDqUOWrj99//33dddddZW7IXFBQoGXLlmno0KHV1hzsNHiw9O9/S2PH2s4i1CLVfbjX7tk+AiBciasE1AsMsn1HjlTiqVPq1auXPh471vmhtbbMyBKg7a65Sh8VKjmn8NZb7Rld7aocCu+//3717t27zJ+OO3nypO6//35CobMMHqzCPn3MD7f+110n7+nTz34huvDs4QV/81zs4V7CHlAzSgXF3rfdJq1b5zqhtbbMyF5g7cobb1SnJ5+UYRiXT4A+9/PflQJ1ye3t5s512ilIVQ6FhmGUe1++I0eOyGq1VktTuEClP3wnTJB327blzh5W9yGAav1NqQphj8O9ABzCVQKqg2sR4eFna4Zx2QRoey5Oc9qMdOPGZwOhE+9TaHcobNOmjSwWiywWi3r27CkPj///1KKiIu3fv1+9e/d2SJO4QOfMHlb4hagaCHaOCHsc7gUA53KBcFvdF6c569QK30vpL5qUXHWclpammJgY1alTx1zm5eWl5s2b64477qj2BnGR7PnN7mIOAVQh2BH2AAD4n3NPrXByIJSqEAqfe+45SVLz5s111113mX/3GJegaj4EYHewI+wBAOCyqnxO4bBhwxzRB5ztYqbFCXYAAFzyqhwKi4qK9Oqrr+pf//qXDh06pIKCApvlx8+5ugYAAACuz62qT5g6darmzJmjIUOGKCsrS/Hx8Ro8eLDc3Nw0ZcoUB7QIAAAAR6tyKFy6dKkWLFigCRMmyMPDQ/fcc4/+7//+T88++6y2bt3qiB4BAADgYFUOhRkZGYqIiJAk1alTR1lZWZKk/v37a+3atdXbHQAAAGpElUNh48aNdfR/f6j56quvVmJioiRpx44dZf70HQAAAC4NVQ6Ff/nLX7R+/XpJ0mOPPabJkyfrmmuu0dChQzVixIhqbxAAAACOV+Wrj1966SXz/++88041btxYycnJuvrqqzVw4MBqbQ4AAAA1o8qh8FwdO3ZUx44dq6MXAAAAOIldofCTTz6xe4XMFgIAAFx67AqFJX/3uITFYpFhGGVq0tmbWwMAAODSYteFJsXFxea/xMRE3XTTTfr000914sQJZWVl6dNPP1Xbtm2VkJDg6H4BAADgAFU+p3DcuHGaP3++unbtatZiYmLk5+enBx98UHv27KnWBgEAAOB4Vb4lzU8//SSr1VqmbrVadeDAgeroCQAAADWsyqHw5ptv1rhx48wbWEtn/8rJ+PHjdcstt1RrcwAAAKgZVQ6F7777ro4dO6ZmzZrp6quv1tVXX62mTZvq6NGjeueddxzRIwAAABysyucUXn311fr222+VlJSk77//XoZhqFWrVurVq5d5BTIAAAAuLRd082qLxaLo6GhFR0dXdz8AAABwArtC4euvv64HH3xQPj4+ev311ysdO3bs2GppDAAAADXHrlD46quv6t5775WPj49effXVCsdZLBZCIQAAwCXIrlC4f//+cv8fAAAAtUOVrz4GAABA7WPXTGF8fLzdK5wzZ84FNwMAAADnsCsUfv3113atjFvSAAAAXJrsCoUbN250dB8AAABwIs4pBAAAwIXdvHrHjh36+OOPdejQIRUUFNgsW7FiRbU0BgAAgJpT5ZnCZcuWqUuXLtq9e7dWrlypwsJC7d69Wxs2bJDVanVEjwAAAHCwKofC6dOn69VXX9WaNWvk5eWl1157TXv27NGQIUPUtGlTR/QIAAAAB6tyKPzpp5/Ur18/SZK3t7dyc3NlsVj0+OOP65///Ge1NwgAAADHq3IoDAoK0smTJyVJjRo1Unp6uiTpxIkTysvLq97uAAAAUCOqfKHJrbfeqqSkJEVERGjIkCF67LHHtGHDBiUlJalnz56O6BEAAAAOZncoTEtL00033aQ33nhDp0+fliRNnDhRnp6e2rJliwYPHqzJkyc7rFEAAAA4jt2hsG3btmrTpo0eeOABxcbGSpLc3Nz05JNP6sknn3RYgwAAAHA8u88p/PLLL9W2bVs9/fTTatiwoe677z7+0gkAAEAtYXco7NSpkxYsWKCMjAy99dZbOnLkiHr16qWrrrpK06ZN05EjRxzZJwAAAByoylcf+/r6atiwYfr888+1b98+3XPPPXr77bfVokUL9e3b1xE9AgAAwMEu6m8fX3XVVXr66ac1adIk1a1bV5999ll19QUAAIAadEF/+1iSNm3apHfffVfLly+Xu7u7hgwZopEjR1ZnbwAAAKghVQqFhw8f1qJFi7Ro0SLt379fnTt31rx58zRkyBD5+/s7qkcAAAA4mN2hMCoqShs3btSVV16poUOHasSIEQoLC3NkbwAAAKghdodCX19fLV++XP3795e7u7sjewIAAEANszsUfvLJJ47sAwAAAE50UVcfAwAAoHYgFAIAAIBQCAAAAEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAMjJoXDz5s0aMGCAQkNDZbFYtGrVKpvlhmFoypQpCg0Nla+vr7p166bvvvvOZkx+fr4effRRBQcHy9/fXwMHDtSRI0dsxmRmZiouLk5Wq1VWq1VxcXE6ceKEzZhDhw5pwIAB8vf3V3BwsMaOHauCggKbMbt27VJkZKR8fX3VqFEjPf/88zIMo9q2BwAAgLM4NRTm5uaqdevWeuONN8pdPnPmTM2ZM0dvvPGGduzYoZCQEEVFRenkyZPmmHHjxmnlypVatmyZtmzZopycHPXv319FRUXmmNjYWKWlpSkhIUEJCQlKS0tTXFycubyoqEj9+vVTbm6utmzZomXLlmn58uUaP368OSY7O1tRUVEKDQ3Vjh07NG/ePL3yyiuaM2eOA7YMAABAzbL7bx87Qp8+fdSnT59ylxmGoblz52rSpEkaPHiwJOm9995TgwYN9MEHH+ihhx5SVlaW3nnnHS1evFi9evWSJC1ZskRNmjTRunXrFBMToz179ighIUFbt25Vhw4dJEkLFixQp06dtHfvXoWFhSkxMVG7d+/W4cOHFRoaKkmaPXu2hg8frmnTpqlu3bpaunSpTp8+rUWLFsnb21vh4eHat2+f5syZo/j4eFkslhrYYgAAAI7h1FBYmf379ysjI0PR0dFmzdvbW5GRkUpOTtZDDz2k1NRUFRYW2owJDQ1VeHi4kpOTFRMTo5SUFFmtVjMQSlLHjh1ltVqVnJyssLAwpaSkKDw83AyEkhQTE6P8/Hylpqaqe/fuSklJUWRkpLy9vW3GTJw4UQcOHFCLFi3KfR/5+fnKz883H2dnZ0uSCgsLVVhYePEbqpTS6ytZ/7k1i8VCjVqtqZVW2fPsHUetZvaZq/RyuddK6qVPg3Kl/pz5meGM2rn9VZeqrNdlQ2FGRoYkqUGDBjb1Bg0a6ODBg+YYLy8vBQYGlhlT8vyMjAzVr1+/zPrr169vM+bc1wkMDJSXl5fNmObNm5d5nZJlFYXCGTNmaOrUqWXqiYmJ8vPzK/c5F6r0IfMNGzbI3d3dpvbZZ59Ro1araqVV9jx7x1FzbK3kc2nDhg1O74XaWUlJSS7Ri6t9Zjjre8MR8vLy7B7rsqGwxLm/5RuGcd5DteeOKW98dYwp+e2qsn4mTpyo+Ph483F2draaNGmi6Oho1a1bt9L3UVUFBQXatWuXJKlHjx7y9/e3qcXExMjLy4taDdVyc3NdppfaWpN03jEWi0UJCQkq4Wrv4XKq9ejRQ5s2bVKPHj2c3gu1s6KiomQYhtN7caXPDGd9b/j7+8sRSo5Q2sNlQ2FISIiks7NwDRs2NOvHjh0zZ+hCQkJUUFCgzMxMm9nCY8eOqXPnzuaY3377rcz6f//9d5v1bNu2zWZ5ZmamCgsLbcaUzBqWfh2p7Gxmad7e3jaHnEt4enrK09OzwuddiNKHAErWT815tdL719m91NZaaRWNOfeXNld7D5dbrfR/nd3L5V4rqbtCL670meHMmiNUZb0ue5/CFi1aKCQkRElJSWatoKBAmzZtMgNfu3bt5OnpaTPm6NGjSk9PN8d06tRJWVlZ2r59uzlm27ZtysrKshmTnp6uo0ePmmMSExPl7e2tdu3amWM2b95sc5uaxMREhYaGljmsDAAAcKlxaijMyclRWlqa0tLSJJ29uCQtLU2HDh2SxWLRuHHjNH36dK1cuVLp6ekaPny4/Pz8FBsbK0myWq0aOXKkxo8fr/Xr1+vrr7/Wfffdp4iICPNq5Ouvv169e/fWqFGjtHXrVm3dulWjRo1S//79FRYWJkmKjo5Wq1atFBcXp6+//lrr16/XhAkTNGrUKPMQb2xsrLy9vTV8+HClp6dr5cqVmj59OlceAwCAWsGph4+/+uorde/e3Xxccu7dsGHDtGjRIj355JM6deqUxowZo8zMTHXo0EGJiYkKCAgwn/Pqq6/Kw8NDQ4YM0alTp9SzZ08tWrTI5oTNpUuXauzYseZVygMHDrS5N6K7u7vWrl2rMWPGqEuXLvL19VVsbKxeeeUVc4zValVSUpIefvhhtW/fXoGBgYqPj7c5XxAAAOBS5dRQ2K1bt0r/IojFYtGUKVM0ZcqUCsf4+Pho3rx5mjdvXoVjgoKCtGTJkkp7adq0qdasWVPpmIiICG3evLnSMQAAAJcilz2nEAAAADWHUAgAAABCIQAAAAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgAiFAAAAEKEQAAAAcvFQeObMGf39739XixYt5Ovrq5YtW+r5559XcXGxOcYwDE2ZMkWhoaHy9fVVt27d9N1339msJz8/X48++qiCg4Pl7++vgQMH6siRIzZjMjMzFRcXJ6vVKqvVqri4OJ04ccJmzKFDhzRgwAD5+/srODhYY8eOVUFBgcPePwAAQE1x6VD48ssva/78+XrjjTe0Z88ezZw5U7NmzdK8efPMMTNnztScOXP0xhtvaMeOHQoJCVFUVJROnjxpjhk3bpxWrlypZcuWacuWLcrJyVH//v1VVFRkjomNjVVaWpoSEhKUkJCgtLQ0xcXFmcuLiorUr18/5ebmasuWLVq2bJmWL1+u8ePH18zGAAAAcCAPZzdQmZSUFN1+++3q16+fJKl58+b68MMP9dVXX0k6O0s4d+5cTZo0SYMHD5Ykvffee2rQoIE++OADPfTQQ8rKytI777yjxYsXq1evXpKkJUuWqEmTJlq3bp1iYmK0Z88eJSQkaOvWrerQoYMkacGCBerUqZP27t2rsLAwJSYmavfu3Tp8+LBCQ0MlSbNnz9bw4cM1bdo01a1bt6Y3DwAAQLVx6VDYtWtXzZ8/X/v27dO1116rb775Rlu2bNHcuXMlSfv371dGRoaio6PN53h7eysyMlLJycl66KGHlJqaqsLCQpsxoaGhCg8PV3JysmJiYpSSkiKr1WoGQknq2LGjrFarkpOTFRYWppSUFIWHh5uBUJJiYmKUn5+v1NRUde/evdz3kJ+fr/z8fPNxdna2JKmwsFCFhYXVsp1KlF5fyfrPrVksFmrUak2ttMqeZ+84ajWzz1yll8u9VlI3DMPpvbjaZ4Yzauf2V12qsl6XDoVPPfWUsrKydN1118nd3V1FRUWaNm2a7rnnHklSRkaGJKlBgwY2z2vQoIEOHjxojvHy8lJgYGCZMSXPz8jIUP369cu8fv369W3GnPs6gYGB8vLyMseUZ8aMGZo6dWqZemJiovz8/Cp9/1VV+nD4hg0bzG1W4rPPPqNGrVbVSqvsefaOo+bYWsnn0oYNG5zeC7WzkpKSXKIXV/vMcNb3hiPk5eXZPdalQ+FHH32kJUuW6IMPPtANN9ygtLQ0jRs3TqGhoRo2bJg57tyZAMMwytTOde6Y8sZfyJhzTZw4UfHx8ebj7OxsNWnSRNHR0dV+yLmgoEC7du2SJPXo0UP+/v42tZiYGHl5eVGroVpubq7L9FJba5LOO8ZisSghIUElXO09XE61Hj16aNOmTerRo4fTe6F2VlRUlAzDcHovrvSZ4azvDX9/fzlCyRFKe7h0KHziiSf09NNP6+6775YkRURE6ODBg5oxY4aGDRumkJAQSWdn8Ro2bGg+79ixY+asXkhIiAoKCpSZmWkzW3js2DF17tzZHPPbb7+Vef3ff//dZj3btm2zWZ6ZmanCwsIyM4ileXt7y9vbu0zd09NTnp6edm0He5U+BFCyfmrOq5Xev87upbbWSqtozLm/tLnae7jcaqX/6+xeLvdaSd0VenGlzwxn1hyhKut16auP8/Ly5OZm26K7u7t5S5oWLVooJCRESUlJ5vKCggJt2rTJDHzt2rWTp6enzZijR48qPT3dHNOpUydlZWVp+/bt5pht27YpKyvLZkx6erqOHj1qjklMTJS3t7fatWtXze8cAACgZrn0TOGAAQM0bdo0NW3aVDfccIO+/vprzZkzRyNGjJB09nDuuHHjNH36dF1zzTW65pprNH36dPn5+Sk2NlaSZLVaNXLkSI0fP1716tVTUFCQJkyYoIiICPNq5Ouvv169e/fWqFGj9Pbbb0uSHnzwQfXv319hYWGSpOjoaLVq1UpxcXGaNWuWjh8/rgkTJmjUqFFceQwAAC55Lh0K582bp8mTJ2vMmDE6duyYQkND9dBDD+nZZ581xzz55JM6deqUxowZo8zMTHXo0EGJiYkKCAgwx7z66qvy8PDQkCFDdOrUKfXs2VOLFi2yOalz6dKlGjt2rHmV8sCBA/XGG2+Yy93d3bV27VqNGTNGXbp0ka+vr2JjY/XKK6/UwJYAAABwLJcOhQEBAZo7d655C5ryWCwWTZkyRVOmTKlwjI+Pj+bNm2dz0+tzBQUFacmSJZX207RpU61Zs+Z8bQMAAFxyXPqcQgAAANQMQiEAAAAIhQAAACAUAgAAQIRCAAAAiFAIAAAAEQoBAAAgQiEAAABEKAQAAIAIhQAAABChEAAAACIUAgAAQIRCAAAAiFAIAAAAEQoBAAAgQiEAAABEKAQAAIAIhQAAAJDk4ewGcPFOnjypnJwcFRYWmrXffvtNvr6+NjXUHjk5OcrPz7fZvz///LMKCwurrZaRkSFPT0++hgDgMkEorAVSU1O1adMmm9rixYud1A1KAtupU6fMWnUHti+++EJpaWk2r/vRRx+V6eViagsXLixTI3gCQO1FKKwF2rVrp7CwMEnSmTNntGXLFrVt21YFBQUqLCzU6tWrJfED+GLZOztXE4Gt9Prbtm2r9u3bKy8vT3l5eZIkX19f+fv7X1Ttq6++0s6dOx36Pi4meKanp5/3eRkZGbJYLDYBHQBQPkJhLRAQEKCAgABJUmFhofz8/HTkyBFt2bLFZlx5P4AJitUf9kqPCQoK0qBBg1RQUFCtga20OnXqmPu/OnXr1k3t27e3qblS8Cz5ZaeyMTUx28msKIDaglBYS7Vt21atWrWyqZX3A9iVfmg6q3YhYa+y2bkSZ86c0bZt2xQSEiJPT88y63N1pX/ZcJQLDZ4Wi8V8XF6tJmc7XelwPGEUwMUgFNZSderUUWBgoE2tvB/ArvRD01m1qoY9yb7ZucLCwksyDNYkRwfPbt266aabbtKWLVvUtWtXeXh4VPtspysdjnelMFpe7bffflNeXp5+++23Mj0BcD5C4WWkvB/ANXGI0NVrpTnqUCycIyAgQD4+PvLz83P6jK2zvtdc6Re/kgvg9u3bZ9Y4nA+4DkLhZa4mDhECcN73miv94rd9+3aHX4R1Kc6gElrhKgiFAFCLudIvfrfddpvy8vLMQ/mS8wKqK82gOiu0njx5Uunp6TIMo1rWR5C99BEKAQA1ok6dOi5xKF9yrRlUZ4XWAwcO6MCBA9W2PleffbX3NlaXc7AlFAIALjuuNINaHkeHVm9vb33++ecKDw+Xh4fHJRNkL6bmyrexKvkrZJJzz20nFAIA4GIcHVoLCwtVt25dhYeHV9usrSvPvrr6baxK/xWyyMhIdevWrcyYmkAoBAAAF83VZ1/tUdPB1svLSzt37rQ5z7ZOnTo18l7LQygEAABQzQfbwsJCff/99y5xnq0kuTm7AQAAADgfoRAAAACEQgAAABAKAQAAIEIhAAAARCgEAACACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAAAARCgEAACAJA9nN3C5MQxDkpSdne2Q9RcWFiovL0/Z2dny9PR0yGvAPuwL18B+cB3sC9fBvnANNbEfSvJGSf6oDKGwhp08eVKS1KRJEyd3AgAALhcnT56U1WqtdIzFsCc6otoUFxfr119/VUBAgCwWS7WvPzs7W02aNNHhw4dVt27dal8/7Me+cA3sB9fBvnAd7AvXUBP7wTAMnTx5UqGhoXJzq/ysQWYKa5ibm5saN27s8NepW7cu3+gugn3hGtgProN94TrYF67B0fvhfDOEJbjQBAAAAIRCAAAAEAprHW9vbz333HPy9vZ2diuXPfaFa2A/uA72hetgX7gGV9sPXGgCAAAAZgoBAABAKAQAAIAIhQAAABChEAAAACIU1jpvvvmmWrRoIR8fH7Vr105ffPGFs1uq1WbMmKGbb75ZAQEBql+/vgYNGqS9e/fajDEMQ1OmTFFoaKh8fX3VrVs3fffdd07q+PIwY8YMWSwWjRs3zqyxH2rOL7/8ovvuu0/16tWTn5+fbrrpJqWmpprL2Rc148yZM/r73/+uFi1ayNfXVy1bttTzzz+v4uJicwz7wjE2b96sAQMGKDQ0VBaLRatWrbJZbs92z8/P16OPPqrg4GD5+/tr4MCBOnLkiGMbN1BrLFu2zPD09DQWLFhg7N6923jssccMf39/4+DBg85urdaKiYkxFi5caKSnpxtpaWlGv379jKZNmxo5OTnmmJdeeskICAgwli9fbuzatcu46667jIYNGxrZ2dlO7Lz22r59u9G8eXPjxhtvNB577DGzzn6oGcePHzeaNWtmDB8+3Ni2bZuxf/9+Y926dcaPP/5ojmFf1IwXX3zRqFevnrFmzRpj//79xscff2zUqVPHmDt3rjmGfeEY//3vf41JkyYZy5cvNyQZK1eutFluz3YfPXq00ahRIyMpKcnYuXOn0b17d6N169bGmTNnHNY3obAWueWWW4zRo0fb1K677jrj6aefdlJHl59jx44ZkoxNmzYZhmEYxcXFRkhIiPHSSy+ZY06fPm1YrVZj/vz5zmqz1jp58qRxzTXXGElJSUZkZKQZCtkPNeepp54yunbtWuFy9kXN6devnzFixAib2uDBg4377rvPMAz2RU05NxTas91PnDhheHp6GsuWLTPH/PLLL4abm5uRkJDgsF45fFxLFBQUKDU1VdHR0Tb16OhoJScnO6mry09WVpYkKSgoSJK0f/9+ZWRk2OwXb29vRUZGsl8c4OGHH1a/fv3Uq1cvmzr7oeZ88sknat++vf7617+qfv36atOmjRYsWGAuZ1/UnK5du2r9+vXat2+fJOmbb77Rli1b1LdvX0nsC2exZ7unpqaqsLDQZkxoaKjCw8Mdum88HLZm1Kg//vhDRUVFatCggU29QYMGysjIcFJXlxfDMBQfH6+uXbsqPDxcksxtX95+OXjwYI33WJstW7ZMO3fu1I4dO8osYz/UnJ9//llvvfWW4uPj9cwzz2j79u0aO3asvL29NXToUPZFDXrqqaeUlZWl6667Tu7u7ioqKtK0adN0zz33SOL7wlns2e4ZGRny8vJSYGBgmTGO/JlOKKxlLBaLzWPDMMrU4BiPPPKIvv32W23ZsqXMMvaLYx0+fFiPPfaYEhMT5ePjU+E49oPjFRcXq3379po+fbokqU2bNvruu+/01ltvaejQoeY49oXjffTRR1qyZIk++OAD3XDDDUpLS9O4ceMUGhqqYcOGmePYF85xIdvd0fuGw8e1RHBwsNzd3cv8BnHs2LEyv42g+j366KP65JNPtHHjRjVu3Nish4SESBL7xcFSU1N17NgxtWvXTh4eHvLw8NCmTZv0+uuvy8PDw9zW7AfHa9iwoVq1amVTu/7663Xo0CFJfE/UpCeeeEJPP/207r77bkVERCguLk6PP/64ZsyYIYl94Sz2bPeQkBAVFBQoMzOzwjGOQCisJby8vNSuXTslJSXZ1JOSktS5c2cndVX7GYahRx55RCtWrNCGDRvUokULm+UtWrRQSEiIzX4pKCjQpk2b2C/VqGfPntq1a5fS0tLMf+3bt9e9996rtLQ0tWzZkv1QQ7p06VLmtkz79u1Ts2bNJPE9UZPy8vLk5mb7Y97d3d28JQ37wjns2e7t2rWTp6enzZijR48qPT3dsfvGYZewoMaV3JLmnXfeMXbv3m2MGzfO8Pf3Nw4cOODs1mqtv/3tb4bVajU+//xz4+jRo+a/vLw8c8xLL71kWK1WY8WKFcauXbuMe+65h1s+1IDSVx8bBvuhpmzfvt3w8PAwpk2bZvzwww/G0qVLDT8/P2PJkiXmGPZFzRg2bJjRqFEj85Y0K1asMIKDg40nn3zSHMO+cIyTJ08aX3/9tfH1118bkow5c+YYX3/9tXmLOHu2++jRo43GjRsb69atM3bu3Gn06NGDW9Kgav7xj38YzZo1M7y8vIy2bduat0aBY0gq99/ChQvNMcXFxcZzzz1nhISEGN7e3sZtt91m7Nq1y3lNXybODYXsh5qzevVqIzw83PD29jauu+4645///KfNcvZFzcjOzjYee+wxo2nTpoaPj4/RsmVLY9KkSUZ+fr45hn3hGBs3biz3Z8OwYcMMw7Bvu586dcp45JFHjKCgIMPX19fo37+/cejQIYf2bTEMw3DcPCQAAAAuBZxTCAAAAEIhAAAACIUAAAAQoRAAAAAiFAIAAECEQgAAAIhQCAAAABEKAQAAIEIhAFxymjdvrrlz51b5eRaLRatWrar2fgDUDoRCALgIw4cP16BBg5zdBgBcNEIhAAAACIUA4Chz5sxRRESE/P391aRJE40ZM0Y5OTnm8kWLFumKK67QmjVrFBYWJj8/P915553Kzc3Ve++9p+bNmyswMFCPPvqoioqKbNZ98uRJxcbGqk6dOgoNDdW8efNslv/www+67bbb5OPjo1atWikpKalMf0899ZSuvfZa+fn5qWXLlpo8ebIKCwsdszEAuDwPZzcAALWVm5ubXn/9dTVv3lz79+/XmDFj9OSTT+rNN980x+Tl5en111/XsmXLdPLkSQ0ePFiDBw/WFVdcof/+97/6+eefdccdd6hr16666667zOfNmjVLzzzzjKZMmaLPPvtMjz/+uK677jpFRUWpuLhYgwcPVnBwsLZu3ars7GyNGzeuTH8BAQFatGiRQkNDtWvXLo0aNUoBAQF68skna2LzAHAxFsMwDGc3AQCXquHDh+vEiRN2XcDx8ccf629/+5v++OMPSWdnCu+//379+OOPuuqqqyRJo0eP1uLFi/Xbb7+pTp06kqTevXurefPmmj9/vqSzF5pcf/31+vTTT81133333crOztZ///tfJSYmqm/fvjpw4IAaN24sSUpISFCfPn20cuXKCs+BnDVrlj766CN99dVXF7o5AFzCmCkEAAfZuHGjpk+frt27dys7O1tnzpzR6dOnlZubK39/f0mSn5+fGQglqUGDBmrevLkZCEtqx44ds1l3p06dyjwuuSJ5z549atq0qRkIyxsvSf/+9781d+5c/fjjj8rJydGZM2dUt27di37fAC5NnFMIAA5w8OBB9e3bV+Hh4Vq+fLlSU1P1j3/8Q5Jsztvz9PS0eZ7FYim3VlxcfN7XtFgskqTyDgCVLCuxdetW3X333erTp4/WrFmjr7/+WpMmTVJBQYF9bxBArcNMIQA4wFdffaUzZ85o9uzZcnM7+/v3v/71r2pb/9atW8s8vu666yRJrVq10qFDh/Trr78qNDRUkpSSkmIz/ssvv1SzZs00adIks3bw4MFq6w/ApYdQCAAXKSsrS2lpaTa1K6+8UmfOnNG8efM0YMAAffnll+Y5gdXhyy+/1MyZMzVo0CAlJSXp448/1tq1ayVJvXr1UlhYmIYOHarZs2crOzvbJvxJ0tVXX61Dhw5p2bJluvnmm7V27VqtXLmy2voDcOnh8DEAXKTPP/9cbdq0sfn37rvvas6cOXr55ZcVHh6upUuXasaMGdX2muPHj1dqaqratGmjF154QbNnz1ZMTIyks1c9r1y5Uvn5+brlllv0wAMPaNq0aTbPv/322/X444/rkUce0U033aTk5GRNnjy52voDcOnh6mMAAAAwUwgAAABCIQAAAEQoBAAAgAiFAAAAEKEQAAAAIhQCAABAhEIAAACIUAgAAAARCgEAACBCIQAAAEQoBAAAgKT/B70yjvVijhLxAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.linear_model import Lasso\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.utils import shuffle\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Create lambda grid\n", + "grid = np.linspace(0.001, 100, 100)\n", + "val_errors_mean = []\n", + "val_errors_std = []\n", + "\n", + "# Repeat train/validation split multiple times\n", + "n_runs = 10\n", + "\n", + "for alpha in grid:\n", + " run_errors = []\n", + " for seed in range(n_runs):\n", + " # Shuffle and split each time\n", + " Hitters_shuffled = shuffle(Hitters, random_state=seed)\n", + " n = len(Hitters_shuffled)\n", + " nTr = int(n * 0.8)\n", + " train_data = Hitters_shuffled[:nTr]\n", + " val_data = Hitters_shuffled[nTr:]\n", + "\n", + " X_train = pd.get_dummies(train_data.drop(columns='Salary'), drop_first=True)\n", + " y_train = train_data['Salary'].values\n", + " X_val = pd.get_dummies(val_data.drop(columns='Salary'), drop_first=True)\n", + " y_val = val_data['Salary'].values\n", + "\n", + " # Align columns (in case some category levels are missing)\n", + " X_val = X_val.reindex(columns=X_train.columns, fill_value=0)\n", + "\n", + " model = Lasso(alpha=alpha, max_iter=10000)\n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_val)\n", + " run_errors.append(mean_squared_error(y_val, y_pred))\n", + "\n", + " val_errors_mean.append(np.mean(run_errors))\n", + " val_errors_std.append(np.std(run_errors))\n", + "\n", + "# Plot with error bars\n", + "plt.figure(figsize=(7,5))\n", + "plt.errorbar(grid, val_errors_mean, yerr=val_errors_std, fmt='o', ecolor='gray', capsize=3, color='red')\n", + "plt.xlabel('Lambda')\n", + "plt.ylabel('Validation MSE')\n", + "plt.title('Lasso Validation Error with Error Bars')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "8bfc8cbd-3441-4129-8c56-5c63c057f6ae", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "117142.78701588386\n" + ] + } + ], + "source": [ + "print(min(val_errors_mean))" + ] + }, + { + "cell_type": "markdown", + "id": "19f07912-bffd-4a19-9a92-aa1a2dc48c75", + "metadata": {}, + "source": [ + "7. Finally compare the best Lasso model obtained from the validation set approach from Task 6 to the best Lasso model obtained by 5-fold cross-validation. " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "e0166113-9d31-4e42-a8df-69f2048b65af", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-1.66927222 5.71591888 0. -0. 0. 4.64628557\n", + " -0. -0.23063656 0.35464977 0. 1.26847803 0.74243336\n", + " -0.57932076 0.28981039 0.26073614 -0. 0. -0.\n", + " 0. ]\n", + "\n", + "Lasso-MSE: 96459.01482992568 with alpha 113.82860789196029\n" + ] + } + ], + "source": [ + "# Task 7 & 8: LassoCV and RidgeCV\n", + "lasso_cv = LassoCV(cv=5, random_state=1, max_iter=10000, alphas=alphas)\n", + "lasso_cv.fit(X, y)\n", + "y_pred_lasso = lasso_cv.predict(X)\n", + "mse_lasso_cv = mean_squared_error(y, y_pred_lasso)\n", + "best_lambda_lasso = lasso_cv.alpha_\n", + "lasso_cv_coefs = lasso_cv.coef_\n", + "\n", + "print(lasso_cv_coefs)\n", + "\n", + "print('\\nLasso-MSE: ',mse_lasso_cv, 'with alpha', best_lambda_lasso)" + ] + }, + { + "cell_type": "markdown", + "id": "8fd306c8-2247-4343-8c30-5dd99393c9d0", + "metadata": {}, + "source": [ + "8. Compare the best model from Task 7 to the best ridge regression obtained from 5-fold cross validation. How do the coefficients of the two models differ?" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "3c70e9bd-78d9-4a91-a28f-588fca65c616", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-1.92090495 6.39400133 0.35386008 -0.66701689 0.47113815 5.2897077\n", + " -0.31582864 -0.2195458 0.30632354 0.07691325 1.38722192 0.68697756\n", + " -0.67956448 0.29499384 0.35765861 -2.07935974 0.90188371 -2.38262927\n", + " 0.65171112]\n", + "\n", + "Ridge-MSE: 92141.38240788862 with alpha 2980.9579870417283\n" + ] + } + ], + "source": [ + "ridge_cv_5fold = RidgeCV(alphas=alphas, cv=5)\n", + "ridge_cv_5fold.fit(X, y)\n", + "y_pred_ridge = ridge_cv.predict(X)\n", + "mse_ridge_cv = mean_squared_error(y, y_pred_ridge)\n", + "best_lambda_ridge = ridge_cv_5fold.alpha_\n", + "ridge_cv_coefs = ridge_cv_5fold.coef_\n", + "\n", + "print(ridge_cv_coefs)\n", + "\n", + "print('\\nRidge-MSE: ',mse_ridge_cv, 'with alpha', best_lambda_ridge)" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.pdf b/Machine Learning for Economics and Finance/04_Subset Selection & Shrinkage/04_RidgeRegression_solved.pdf new file mode 100755 index 0000000000000000000000000000000000000000..0968a430b089f1169da6bded51c950f1e1b99439 GIT binary patch literal 97641 zcmcG!bzEG_moEwgf=kd4JOly+cZcBa?(W{W26qVV?(V@Mf#B}$(ntvI_BJ_ZX3po% z%zMAN@7{l!-9>fnU8`z+Wz{B=6B40epk+ZI+detEL117drYE*Fut4DErV}x@ax`|J z6S2~FG!`;8v^6rOlQOn3bu=SpWM*ODz6^fef%0r5qfaotlZGbqc(q3YJx=>mVXn={m3vN{yjRq z%}huHq(z$I7P{gh8f`@`ie8^^0%pHpRGp1$Jp3~xH!gtS07a;Yll zlR8WijSrX!ClK%_VVH%Rto`TAxUiV{tTnGX-@n}xBk=ItIvFJ?;FLfmRY9LYp!M&# z;@_-@^lM{NIl+@7(RxVTO{zJue5yabpwfG^Ow}pemyEG-{IMT*nCochNM#3)gO=p* zN(1kE)Q(leq&S5h)2fpnc|WlkRHsR`(_$J*gu$El?rX?h`We}uns6Lnk-Z_Y*t( zr4&joGPMaB=w0D5y8RLc4ypQ?%#KSkd_qPh_fl?iQ*Sbd*-trMH1(wHb1UpHkVjzaVLm%P2w`o&6gjzKTt*_YfN z%F-kk^mD2jXf1DxZLo~RRh_emIQGE~0?Vh3FSG^3i>5QVVIv!}ihgf1sgut2#@p;X zqus`NrY#=JAwb)P2?JSoIttVLG)7cr)MoX+Elu0rR7IY-?+mbun)9l-MZjXdm4=5A zo$5V~@26_ltFn#4p+PPCK=zQMYO&J51y%a$U4J`1JkRD!_3IWG5&&a$zh-DK!Ji(0V2~q z-W*xZ8j8jDfn@L$)KpUaKIpHI1iEh~Y)E3_6k;pd#{I-5eoV%t%Z!WG6WOv}a!+_$K)z175r#p`Vw(Lm1O*<4~k z&0OlWWJFbeVlE@;f8VE&y6}!G!m2Z~W}sp^K`nU>p;?#BqTzZ7q|xQrV@og9I7g`Q zLI0vF_3bv!MQnL?d1$?7v=L0iP!76{@#U>XYQnDWpzQ6VOY_2X+SH^=JBLegI|mM7 zUS$XB?mBkC8@Df64X+!_^7JC)@Vrfp2db6TweXjC6z7glf54rW%x_Afp7xO&V!)*u z)ObSsVkK;|lJbZc%i+C=DcLVZy+oeU_!@eV!$M@v@P%{VIt7HHah8xdSjp7MVpJ7? zcaQ$sT|XG(hch_VPHG^N zT2z=9_Ql#j`$a|7usH5VdfOoP#a9bVph1P6Wl31xAi*AtlNmr!-zy@@&SI*6kSAIq zw$_Lga>KHJBzYyhfd`#%ll`j}ms7J|#y_}6WKEiDa&TY)p`e(gB0V)jZk?uBy9_@c zd%{&y9xvch950zAAFqieeu;vo-0rOCP!xoVAvIDR6j``R4JC!t>tX;TuL)G0v*W8q zX9v9e;7fz2Dd)V_nRCI$yoL;dpw4yTFZ-2v6%%ZME_-62Nunu)4esq_VlHFH5KMYW z=moVmeyU;wP`tez2eB2eoGXys27AByD2*F4btg#44-Or<09D2JWBhn-73t~VTWeARmC(GUA73%1} zZ3LrD#G_=KIb1tk-b?7KY<~@h8QgYBF7ch7e|wu_GU(P6nR3QZ$)qS#MpulUMOC)T zyQI}{$UxsPhhLIW!!61v8o@N+L+Icp#5q~&6m3x?jE3kjtjN*d!#m6Afo)@y{)nc! zNWOKYmb$ZJHkl!%5U?C#(Dv(_m;|-V#TO^WQM3^#KJ||kUf=4ftiJyUN0Yr9O#UdB zany2|`OO@q`DV~B3-4@^V$Fy8;ERyUu=dtP#Mkf=7ancIecXql)m)&JUab+q`HJ+{oA@h9QpZ; z#`tsgD$yHOrd2KBpB1#@5}c0|G_)DNKe7K5(J2|+eRbEgF%2QA-1pe``XM&Oti4dY ztj^MdO{W-_^#px(;I*uMp{F@LzU=N5u9TLC`V6P}TDz(D zhH6RfYhceg78nr@{%;wV8fkXZ#!tP55euy@HMs}bj_G%A9r9lpt0sJC>i&woiN~a! zmRDLlcxD961};APX=f1?7JcIul$K0KKv!2RU%}QiWpRU4hmFmURzBB$=hY|zpCuhD zdddAmxa_Xw!`F6!Y)~$CW3B&UEt-XtesSZ3GR@(wUYUU|vM`d9dc8UymT>}>&V1Bz zs)ro*1_`u9^JmSMTaQCDLCuglWRJ-{Li=_; zk_+B#MVC(rA3OR#UG>P^5v_eP*(WASaQE*mkunKsoC}%u)?Zex^e<1-&y;ZP`8K8| zH=&N(@kT4|l%-j3p&gfEp`p|#n5lBbH!Ct&iw>V|hOuZFW%3Gbaeq2yj?U+nuTWa~ zJ%X`~(ckI}xO&lZjEw(^uw$a9=lG|v+tHGY-flwf0IS}h#)}@qj#EG*8o|ylL4!1Z z{g|2I;kcl!O%r_b789Qya!$}zURjW$-?C4^rVPt1hV48(x&IFP+UG_O=E1o8yz1lv zx6-!m9#uD3mT%CvZh~nnxT=buXFcw!d+vNpHUi#-+bm}z$si&H!*G$o#Or~EY}v^@ z2~gPWnbtk*W8zoFHHqBLTJtJ_;>k0pS;vaO$&e3rih9W5(9m2Yeo zUpibA^R1Xtq9@nLxUK)}2jPULlYQ)4cVeF4-j<$sawLqn-#%6sA};!U)62k>D|PM} zoQ`_H$3z}1Dc53tMTJf+d|f)$pms!^b{`j}V9kVKw3hxp{IUlghgu{`#6^L&Hh7ol z!YnY7b$kH2#uA5m@6(u_xsZ@89Lt^!T7f~n*~!-uLg($oe9LJ%+_;wT#caG+3T!c6 zX}`re4RJRFnVzp2B9S|ykjI@VZ|$l*FJeUm-+q~M3nU0kps5l_7_;jm&(byL}co2SOf3fK7cSX91Xi6_dGZ6y<-tB zr#S;(0@c%$hf$*8zvC~hPT1Dx&+>UyQmIer3Ou$T0xIbGvaS=ccuPwSr+}FvFYXa0 zRLGj628`7U*l^dq(^Tp95luFMl$YU)E z(3RTF{A7s(T~8U9=^Qo;+Xk7iU@Co(x)13+#lKzl;&QaoEzWw7YFVy{Sy*eCp`@cE z(vse^Ad&k*>}wmFqV)pWjHK({ix7sOZ8m3R%F#dMX+3;Y znwKkPU80Lj3!DBVJ=xnJ&nhpQKot`aFRb`d>gn@&b^5!BmINV&LjaQ)8jt<^`5&N*{3#^Y42O=D}8pyOi9JLl8+ z>NN)AE%YkuOhXb!xQ+o(*DkAOuYuUkewJQJki$Z7s>bCI_v-Qo9-0)*{ZEoh!P9%U zX8FylnJ_ZR*pUYuWzs#P_CNG_ovXj^<8|u0b}@Pl*c=}r;ybe%8#BysOM`=ANXa?B_4QxfxUjzuLDTBc_TtRYPo^lJ%BR2`ly%h!~@ zSc_CrNSfiC`%ULAz?-k28&2NLcwkya?((TkZV;+^zeaK@;ftu{*}$fN8RM_nN>%C> zFU`J0IEg8Zq7^K|vAIS{>IAZW64~U-m>>6*#{qJA0VEB!UULrmR!!O%8YNDQYyq@= z272Zkr%gfFvl~JKLV~cZ85ChWiy3DR-#T&KejnU*B~}RU`RF!m;a~PKGFJsM(R+E3 z&&jE!pZ80D+O+F;jZ(D?BKTNtgH^v*{>L`DRk1m>7jdZ=|oJf@RN*4nbV1;oU{g* z{aF)iQ|r&v%+$cxtF79_QK~}+e#1GVcx(u?D8VwZ9k!^Sl$VX16vm<#WGDUV6KD%( zvza*;)8z+n5(G!|p3-p-=FT6@-X9Jst|H#tM>8eKCLw2P2wty`QfL(Ae093ml&N5f z*5G7mukkP+bFT17QbUf|OtBnJQcofso9qqwO;%Q&DPg9Fp*xv%aou=fh%+yYpf!1grk5Z_n{d%L%u|r703BM4B z_O_#J6{{S9#4|V2#5pHu5rHp$LMFa9)j@DyIXZ*{hRLXCUZjNsDg68A0Oinz5j|R( zY0-K;{94)KJ0(ML#%8MZOfmOa_MD(p9TH}>aF)1+w2ZLh>2fR$ z3a+Y8)+IIK(_gTlF*nAHtg&ZM$lPTp*k)!V42iE>OTTj~hC5DS?Mjdf@+lWL4ia(B znn25ty+*?h;eJy#@Bb=xHKLZ-x6n&0J28z>T>sTrG%OZ&TR0pxN!I(YPl<1eA3+pp z6xO4R1jK0H$pUhnHNgIydJ8x%`CR)RO)!)^u;5jE#hfM3XHpcM~_8~oZ zMVxZmIKWBK*Kb%!cMCow37<0(5pAIX#B4u zyHchTGB9$OK)I~0*-{lJ+|7Q8D!8|;J+GAWz&?GY2s<@mGOINuQCAP0@FeM0`a^QssonrAu zMF$&tk(g4g_2D|Oo^Q30klJ6h3W{uU4-zq=7fl(Xq8Ax^!G4gLW4R`_Z!uYo{%H=w zixxU%e#a|@PeaVe!I5T;7B4qTj(^($Au;A4IhSqk$?+L-m>YTTGL2OoV_ ztL{#^owfS2(Cza6Doe)eL$y9zwW)@5%iHCd+oK;qYo=!x-O6S39mnu-mR>TZN+At_?VPbl1-t`8W=pmveY~osEhXZ+Hy%^^(0why0 zBpipIXeB_oe@BY?q3AZM&%Mkd4{g&I0^{3La*xv$x6r5L*SMvoS*`GwrXsdqY4+l9 z&wW8037_1Sr`{p98iUW+NZe-u8-PkJd7SfK*Z`J)$p$bovH#Nstl*D~E;k*m7M&nQ z9Y>h|HZR2C=7Lp>l`@4TGvl1gk zz`Mii5aeYcvZT#e?}4rEeH|AcA*nBVOxjP(L}6e1J>PD}o)&|Nit?}5k?M5tiHGUE_)O2773iP zA@($|oZrRuqpVJ}zCCiPwzh@@LE3xZ*n2$lez=sn;|P)O(+hq^f$QZm{5pBRa7}db ztJTNH>;CZ2lmlwl=R`gm8HuVIqBB9VOq8-sp_>ir`y>MXTR7nx7&NZ1w_e3f$Y-2L zz0LAs$eR}Hws2Q@@tjvTy@79x4O-;g-%69oSFAJcH4=(}Ec4cvmy}KriqU9w$e$Ro zb#`T23q>Ihv${`Mk%+<_^AKgmI&cc`@)Ug~o4z!~waRXQtzwbP}mq+zV@BC}?vigY{3bSz>II z_ms!cX9>=|eHP7CN11721~+auJE}J=5Ua2^p4!<(qRaN#9?laBQH;c(!EAC4;~*bT zHHfF0?I_vBC=~p-#&tta26ie;7rcqqA7H10{I9eRh5}C?Bm0P%laFCB;_QdcPY@ z46k2FGWddHnr0%f6x0;&Y(3ql>L?ttU*nE=+ z!VpB}LJw>&|73e|O?B)tg3pC+-}MyrUm+-0Grs>QKl+=1`sm+{c}T|IJf>G0td zJiTA2$!+s+c1Q%Pi}DQfa!*y{MHSrX`nX0phwG( z%S24BM40EPwqsnQS(w1yONvw5S!u#Z)qM%WB@LQ{mG=4)t;@mB#@u&clWeG%Rmf;P ztac$Yq%c77(iunA?V8yicm3wr1y?Gld1N~~%ZzC?FAm+&LH{PtIYr5)cLBpC*)iAZ z0Lvy(PCK*}w{)>xH$O>|s-~x0@;H2yQ3?A}t6$id#g>9vhRXMI_wtZ*{^_YB|fpv}>5&ex0qcMLc^E)LHs6{X!Wb4ZBkk00XtHsmrOk+Xz#ev_ex;n^h93d)SYX6^g_mKlA`bsa7iI>6kYl( z;k0H8$FXZ2e%9nuGz>*_Nq>!Umy%BY@mUF{%8Pfh!oL0s!p93ojm=`zCRYpxG47Nh z>>+FE*(tn(@7ml;cDJp{N|j0SuIjsnw~9|sWe-iWgVj3As>va8@gd)#26<+@qB6n= zlo-F&#z$2A_#|w6dx7}KN~KIII5lN zH1@>ZeEXwdd$29uyT%ihk8D=z9^twmtFsgBm|by8(~Y8ssP>Hb%t{OaGe^!o1M8wn zENEs9HAX62m>~x!$QLq!cb?#;tQWS%7ZWHJ7d2$oQSm9ved6){(hDdOcC(1;+g^Sr>T;A9&7EGvr zJrml;RaY>G(@N8o-^AcyRo7CG+sFA?V(hxl={(6K4T)j0*_+h7`>}A-wth+Mz`8Q1 zJ$pObkSV}|`lXgyt$k_#~+n)>+OB#-|N8j4|PLQ$|0oly+9a= zUl9$R#a$~Ee>nbj%bP9Qf2-Ymm0$nPX?r2A1-hB8?`s}i_}*TWDh+JqTCryEX(BO` zWoFi=dESdLa-y%^`hBSKeIYjzqNuL}R8mb{E-2U#-bfV_@T@Q7!%cjPA`J9muC=T* zM_aW}_|cYEV4Yhwj&DoOhij zUDtfRyj%Dh)f5ri!tE)w^InO$j4O6abR>i^^WGFwdX&r_fecaUc=gx2VlejSqCC;F zoMf%p!6=Dd0%R>Zrg81GCBmz1$Ez|pv^7Avv?MpB?Jw27@ z%xm$P3ZA7HL`yA)zR~OpsIypf)`8PW@}QAJf4^(ws9?k~{M18JW+N`!1Y38r!tm>a zx&!j~*vo5VbTz35JipkEdZD5+XzO-8iJfgMyC21o#BH&6=0-_#^e8#!(-@yRDr+Ss ztvJBkIieE20j^a^S}fKztNoztXGc>yraePya6H>IGo0e{99hRZc`ICQN~WBFUMrx=K9|~> ztVmNC_6GEbQ`2g6I5|x)R>+9AjHs!?%`vpqt7_~oR%5pOw#2VX(%t|5^+-{=;s9^tSixynsE?bc#7)e{p^oZ-O`Um z*Cc!6C;<`+kL%yDL$WOoxNhD=70N6BM9{+pBN(SVB3Ossa`MCGay;0Xd(o~Sgey!p zI@YK!an9XTK+x*?)dqM6e)HsxG5spj#%IOYxkUGjTDAA?#Og;gEluK65rT&+YZhvK z;)pCp6JMHc_BKR#&Pwc7V^?=c8{e-2(88;cf!ha`9K3H}_#{)IXK_Jy5{J|bOK`rl z=@6}D?jqzRJfqy^D3fafWcNj30bDh^G+`Yb<*$9$Zp>bzDA+b~F(1|dVByOjyvGoax$rhJWN{ThQ=ov&$m}xdZ+!~T^ovyzfIm$_GgC|!% zqE3=hnOD?!=AAqENw^C&W)+CigElS*c?^<2fG-Gkdxm%v3h+;iqD1#6BF>!p+_Id_ zIfiiY^NdL<5w}FF9sJzu*xj;&63}degBYaTg>lIah7jpdO&MBm&a0^lyPiKFUCz4k z1<5Ui^2vhlPU)Ussm3`o{1;w_{Xe{plAE0|otmtHg|VR{ouZS00dq%?oUwzTt+k!4 zjj@d*0z2^EmltE?^c}20z$-KVYX@TXzeWNPGrU|lS=)gA+)2*C*vQ<_(bj>Ok(c+s zf6)ekjf3@{KI~}n^BV{Vq^{~)wh^fl(wK2e6p8ncCS6j=@WTNq^cW^kO#0-*(0>}3 zeE+>6AmuyI?+ZmE`Y1npcfvDW%5N*|ibX28(|fnwjg(<7 zrT{huU7t8NQ+A001y~3Oe#!k@Lw2O4 z;r86;;k3`s4{BF`t;4G?5>M3Um`Amc<<+ZKvYFiChukO41%-v=WMnkD9m~_x@!I`X zV)t&pv_Jd!#l=mn46XS*KPs20Z15oUb9~V;KieKa58XZ=2A`9@fA2kq z^89%0la`#!od_1;Xmr1{7?dALUup)KCOP-(KAk0TfOgGjYwGH{@1cRowO_5_MY919 ziHyf;WMt&(;ZZkaX<_DYq7C4Hm)#>W4G^)Zvu}MKwup4SZ^?LkgMwb0 znwplL=y)8lP+k6RZj|YxF)!O0O3LE(O648N^7!2>Ge*L};no*LkVLCpT3()CYyNO^ zYB^WgP+gr}2*g>QL6qrNjnJ-{Y0*~V%*@Pj+xcjYU@#RGl^JTC>6rI%`}KVOh8??P z67A*XWkD1bHTAExPQD{P;BR!h!bRD>o5E*ty77chs(XBpM4l&*Jng7_57h+)WUQ>; znwoC*Ch~G}a)MEbbUM8s={g?-=qL(ypC8wrZ}0D!xb&ZB@8b3;C&DYMs&q9p!hB$W zZD?I6N3qwirV$kHv z-U2=3pcQiE-t;nOa5`CZ1;D?0jg*b5dpBMby-TTBDCaog{o5O=va&KyBr+^Ix=7ZV zwS5nM{2U%0KIc}m(PkutDVTR01`5*4Sy5^H*r4|6X>f3`H;O>=KL4Yhv2laX^OLHs zmof-ukqPE|*3-qu962>PxoYDfY(phxnhqzP|Ms z5-4|uW9b}%`vUOs$;thdg6BB2TG{#gQ$?tk^B4P5AO{DE3ZFxcsb|7s@hwV67GZvGK z+jB4z6W`-STy!+5M;LURI1&~6@bGZ)UJj~@yBHQyf+J=Dlj&$aIyjSTMUt*vr~$4A zf(Pi4ZLGdzyMHzZ!dbw0c(yb23Kk_l7~`W%zN}9v z?*i659n8Kh5*%DMx1FQo!_)n7iBj%n1eFrOrLSD+o8#tZulpMRZdfj~>&tnp@)F~5Vy zvUFPHCB1Sac40w5g>Gl2#QQ-!s`b5BUV$3Y(j%c5AD`~#I)efNFmZ4cM?Uum71iNU z$n1Rth4t~sw>NoQ|88nxS5;M|s+$KXP#Bl+=hHhoIvOQvH9PE(JTnizMUWXGOGRa3 zWGoI?X?3v$_Eg>W?nqi^*`e99QnNyFown#$TSdhYug@-N3s_!vBv7h+b>;RV%#3ii z9qhfn?|Yc@eJYUm3>pgZ{)ecz-QIXkt7@J=fCY8wyyG-1I!l_Av^0R^9Hlj-Wo3v6 z2*vbg01z7)AmUJwQ%IL6c`oqzGxy{U0qr6VcMK@lSIA})i?xQfVb|L zO7fD)E;ojB*n$`tMIy#navf{)ZQ9T#*#@=loh|bUs`)Iv9``g zOB*UbS@k$hh>stKWh=m(u?CiW>--keb(-0D5L2R1zdIV&qZwQ!uAFx3-yerUU=Xq8oRZ_>&d-ME@ZP?qM>OZF4_>Gd~1uu*`EzvIVDT~L$8Q|#Yg3q5n``oYqESTG( z4uW^01HoPAJY`juwE`1p27xDsBv!o@77`XH<$tSi}%N!d_GT}RJ*TH@Ld5!f{nrp4++U$Tb-QjLP|573h^G|I&NbE zh%rWt*>n_tunXACyu)jfV}J%x97?3QKhJuWni&QN#^u-i4;1A5B8df&ig;LV!sxF3 zpP?AT9ElP3TfG&)RtAKc(&tHC`|Fvmi_1&%4M5pQs|!2|24e1TKF&m+y|Y#YAT~#M z=A`@BwVuV^)DB_)(oN=i!gj{B4G@tCh(`2*6@YO!9N7;Sw9 z2I31XpAE2%PMbgBO)`ge4vJ+XQdq6uWsUJU?tKjn9Z00n^z-wp)a|q}GRn{EXzY(6 z6-7r!7kV%6=;)}XHeVo_l#ERIT|z=4ihxVxJRFBE3Rq+o^N#j*FF^Vl)ZF}9s8d!} zj){r6_{6CVO#lIrDWmPZ9NV`g{^Xw(CGmb1b-43zaSMD1CZtA>UC#lXO7dNzP-Jj5d0RZl9!ND`1LE=9aeo=YZekslI8ayREX@$ zma8VR9tAC}^s+Kbb@hc*7E357C`Klxm6a6&0s_@at!B$PT2j(H8qIHF1(TDL3L04^ z6z72QnCGe1-Jg(^l$0FFn0mQ^VbauYJw{G1vyH;Tr`uh6T*4BD@ zjDZdQNu`|K^<*88+yHcxBm+R&GIkW3AVKC)YE}diA*vO}2>kTuY?6s<>+ABeZ-1X= zPexACvau!Y2BQ$T?+hj^E-oe}V%Mli8Lw6Acbhc}z0VGgK`=@!rkGyV z7Z!$5?3Gt^cjs(PXSKDqo+&?3bGLAvfrQ8;Tw(K;$&oWMHdfcvtdk57APK}LTk8qO zDU!(;+$PEzla-M%QK6ur8R_rWbBG%JJlJy%9%GWmw7U3eoja3En#FlAr9d%krt0bh zWQXNpb8>Prpl#XN+2z!~nT)(^)*{5k6(8z+y0esE*YG}CY%m^51ngQQ$8|ug?M7GN z#Kgq=nEvJEbk-ttdJ2k=RBmo=0YO0=8jX4&*aVkNe%00VY;0_)MbZf;M&k_@xqTIT@FtGLP!Y_~f)7 ziQ~(F6@~`i5A*s2#bE(QJtc#W(uXYwSZv_NNPqoZjA;IV5QP0=v+J3`QVjJkSXgv) zi65m2_0ram*^S2e=V8F<2TcV^tIM;izN;@j+#FBRkcT&EYBh(tOfj47&!BT&E%>2m ze~*mlLi4Ae%c#B?;Nu-+!a*`T_1VyUG>|V3pfOg`k=1PvAmeuWx7~lcA3OL7B#v32 z5c>B$EP)j-oOM<={NxT`H%F26#jRF2uRG^W7=YTq-0cR*UWQIv*r?q66G0RI93a#{ zD0{W;5R;mqU!K%_G({f{044{S!$Xc2%zt^7%9fmhk^+Ku$d|~llD}@_b?1)%6SSkB z8+LYke_}h5oCCwY^XD=nSu$7euTdmHC@x^gmyx}ARNq?)ss0Jy*Sf$rk8SEY(XHc< z5Em3}v@7?efPbyh8R4x5HlsuVv!br<^Q@+=*Zol=fS7=lhztw614wYVJWr0oz`y_n zpM89Kn%Vo|1|Xlsg#`v_AbDrGJ#Xkof`fx?*E&{!a)dd+`5G;b<`NQNzP>-wIY6w| ziyzS7TIz`I)vqRY_WIvx4jp2ukl(o)LPBt3afr6HwaKKj{}={p04BQ)b2?mZXGWf$ z+<{sO3NPx&%F3!xCPPAcD2a~GVOvZd8kM8ykU2i8?hlphgn?0BIQ;MkVp%_b*W|-noIUJr!ZWZ}lhuqmF|dZ|x<4 zmvwGY!`_>00J4N45>O`L+q$`EC(kW-Hoji74sU|@!SCIn z7P4kzbiDEiAiV(;eAy;Ns*oGXcDWCodldM~b?RhDK^k z%#UsS1pkJH2Ec!rrc%uBkt_+7O$96Zl?n!Ev;oh@R)h! z$Tit*bnWe##fTZ%*vOnO5ApkC5d3o84mz{lnYKrOo zdxNdsNT32$k5zFsZ}>~UNfS?(I(|b56XHt|85mGVfDzSJSEs}de|&fV^Z>=YnVWz> z*I>dY@Mwl)jgaJQrS?5g`=C#=T4_n>+Zsvdh{OHZ;c~3wJiYStc%PS>n_S1x-QE2n zhZFrnLqmb}#pQ7Lz$Nn#dO;3qV$=*%ln3-xRC*qFE7&1asMd5W(}Q*Y@X%JZwKbHg z4e$;gHo|0E6M3RpuD0%KTTNsT{9}GoP(&Y9KPiuj?~K$2VPCv{0l=lVhv!El%51dX zRsRCLfU3P03}4Iul?oejf#((XOd_?tPAo#_j*_;3dQCQ9a?KO($!s04rtF~Cw2 z#ITAeqD4(DCAl*H#!eVs9c2XvvM)KpY2*vw2sNZ8?Z@2se(SXfeA zY_>mHKuJmY`t@tj?l1sGas0%4`Y+2=oA2NTDhuT$I_8Feu#D=|nF1qFv+^9-rFZLao0LeLfB z=Ro~D?xQSrcn^?I6{V$N5fMsM3GseBrFk^c7X-pVfy$9d2*$oPiLL|7K}Ga&qJUpPmLlwMoDbm>Vw!u;!1HDAOig*LM*5 z$^-ehm;`EWZf0d={dXoioYqiLNlZ=_yTm{LD$zJQJG;KFw@YHZcXX7InksP)L=~v5 zbaZq`#bsp?@ff9xaM^TRnH z1r81mpJxf<0edqkQBgc z_B!lgL_|d5oq_25iUrEP+uPd@`?5X;Nn#&j0qc|UtJA+^XlN)!Bl6$P&QiX5`^4W= zB`GUACM3vq%_2;vIH`|G0PzKTH(em7e{it&+c%S>pS`^(1e}iR-+h0fyZ3|7lwpYFQtHh zSjh)8LhsL?QYnl*KYsWQ*0Na6_V1ka_lp&V?gIAb5Kugpm2{X0K&AaH0Ratq=|1}V)iO*I8fBEGjBmNJ&ESxkO39 zvPk-y&C1}`smW;iKm^8Gs|y|1fz9*NqrANQ@Ivy&#s-)3FTKPmgnzP7o2heS+Ru5l zEY-Q?L}jY$Z&;g;z(TizqPl)Hrec?^v}@_=`m`>tNGomh0L~UAOa@e7Be8=~&SA8L^Q5`HjlOeONyH*^ryU_)%`Vxh|4OsR&5 zoK6$L8PB=z_7^!VhTMjs1k?VpF{z+~sy**6Gy50JS2=URwrA&T-nra4Gx_`1$++;` z70PV>Ji&hvtVU?F3nU7_EZjBeX+V|I`lu>tMz_`3T3Q;JNmp5UXMaERw}%iUZKuwj z0&x5Q&_X8vC;^|hR*oF~Ig$5`zLOIR(;9H_6c^_YbnL!QMQmzmv`jst!W+i}6do~{ z`4DLuKRP3Z(6%WKcjO^i@r4szp*Uc*X~stsGC(_f2oPUBeg)yPj0Er1_F1NLf+x>Q z@i47{7=P)Da(Ol>P~ZScdw|1EwY9N%IY*6%h%n21oJ1jv37_vD9nKb-b^NWO{Iv*+ z6B;606GRJmfDE709vqf5ptc9+1%fP(1+ZZ`= z{li3D&Q@cYJofhXK(f)ZumA@*EG@_OxL~T;9~7KG*Rf{6768Y`5h*}XOwQHy1~|J4 zM#8PNS!n^{4Y_jN1l>|5f}=%IT-mn=?4aMn&Ar7U;j|4GZ!2#aebKRdLOD!oc2P#AOEEbq`=>kzanefp?`Q3qlnrr#~ zYE&=!71jJr%y2tql8y+6s z%OPH<&>5g^>xO*p_KSd2&$}liTlvSm&9i=P-B_(GI0^^f{9i5z>3un!nO?H16 z=8S<~H-)@pqEQklkcosi%T?L1ZX#Z@#%Gs|fY{<^n*oiEj$WIO3=IjQ@{0V>iFH9W z)}bwpnPrs>xO<5$Pyqps&w&~#P-#@t(8#T8NlgfSLW7;k3b%-@lmy>i3kUxx#gKjY z08|G}fm$zc#HLlP_ak3C&e6%fxDGMUU6KMEW&Cou-$Dj9DP8IC@;F{?uWG+q-0TSl zkEAsM`us%`AGZjEBpI!^EbQOT0OFO26cX5R>u-3J>`g2!@2{3@!MnSJ>~_RFJV04a zn>;S(xWzB8zrTAizg^JnJ)&tI@F1$A`^C28ghWK0FX!;h;4Gij@o_Y-IbnhJ4;SaI zFyAb?ve&Y0i}_WF6k0Mx)i0m8>G8K`W?6bXYIAt-p}60I$l5c!2`VKyyi8p5$Eq5 zcYIu2+I;ncj@Dsa(hvx`kCMzpzcfMtNvTC5aJ9JE( zE>c25f?UM&(-KqxP_o)sShRB!5D>8HRddtQ{%UM|oxBOU{dM2z)5Vy4HA;GnjPrJX zO2_u58>6$r=t#YO{8Hw?4}ey5{ENt7a!OlI@1oJ*5%H^kwSPIeDr}}mcq|4XOJYRz z6QjBy^tvzz2m;jM96G-sHB(102nYy(b`IOI(;xpiEiElH!UmLPc6q3&eTP4v9336C zMbZcTngj7&T}=(@ET(8_>F@fdAMN-OZ?m`2XWNi>gi|9P>_Y?)v7giMx+U`I{UpNr zi=&B1I=S&LhS&DP$wTyYbYLIL#F60Ri{n7|7m_eWx+h{{3>b{Rp?dQ4^2#-bw%q0A zB|kquyzUTZ;f!EsV=FIF%KQPx3>1kCuQs)hLdELjb1ImY+Hk`fcui*)&|$GNrR{v)e0(HZZZ zm=NUQi5?bm*&cT$JOWcs>V}l$o)g*y9>>Ow5ggm-rT)wYqHECB^MX zI%(e&8_LR0vJ;}`g$s5bq9U#2C3=YC%fQhCy1ucovE^{Vt(!MnL7cvyUtD|z!i-s4 z0Hya+weetLF8O33{#P5CxvEUJZ*uoI8aDK2q$Cx!iT!Ox=*cGx$Zxrkj{eg^9yMBB z%fr^&l4IqIp^|_q=wLE2fzO_r3l?&IdwU!9FZ7GFN=^Dc=Bi}ZAB|gba{;!&)PXn@ z+pB7hQ{A}A(_gQ{@&?1_(-V%OS&MV zz&h;h?=!|EgH&0i+nqRy(3X8p7Gt5oRPVOG1o}oO8UNRpZMfQO|B;s=@EP5D&l7l= zKI4Y-AAhu{@9piC2qMhP?UU8i{FIPD%7coArs90}&Yi~zz5WL>x!;bHt=i%rj;c#J z8%BM-AwfEw3rqOL%Joz9_{0QkXqh|8`ufv-ec#y>o;|C&@`pDJUZtXf0{oy~-rn9( z3bIoVy-p7lL{45_oE}0x7Nv%UL-99qv<(;PxCu?eVH0ORci=Im-m9Z}w-8Z>yX6l^UsaFVQ<4W|wA zpLdW$W&{_a>*RD$Zao1N!0Gz4D5tzqrOS{~NUAQw0|ac`;N*ak%=_x%SYKb?QzS+2 z5{Q6Qv>NSCVTV`bZJo6=4NB_E7RJHY$Vjf|{H7Kb0$!(1PQ!SHCim|yo5Xq6ZA^4j z%-nRAf}>jKGSTCphOjZ?lgMa{!&Yy!Ajfx`>S{8ln@Ek&B$I?w7j|7hlfAPuLC~+2 z8k_y#n#>ZB?N@RGC%zVev+G@4N$kk4R#OT?B+i)p$Ne(wL&L)sY`OXQ8GbAE^go&hpBLn>35-km zFiJp~A>^N^!W2!`eKm=l_4%_n1Ah8ha?}^(hk1!L?r3_*NOnFrcQqck?mQ12hqZL8 zHPEoJwe9KY!NJ0Uq>&M?w&42A%2Le8Jl#C3QIun6Tnuz#AsizZtWw2$w+}Waj>k+> z5I;lqd`K+8y6|5w^y@x9_mNs4q@_>mQ-3 zd?k>FiG)-TaOw?-Ixf}7K=APw{2ix#CX%n2&WL9(s@cNUD$kPtc_@NB*YAGr2Z>a6A5=r?TSLu#a1NK8u7GtXU% zEQ4bP5(I9?-#<_x);P`J@s3G(t?Z4HlT}|ws>}`$z%f2OSQS0rd0Sk(4M!mKYRO4S zbyQUk#x0A}&XW1^mNEZK&aGwT(|&_y-rtRLe_7@}06s^#R2aW=>Y&;=(wi|8NR zwrlawq^Q%5cP+$++6Go%J~D+wplJCf>GQ(&s{Bl5`f4M@^=-FS%~Xf*VbJO+Jm~J~ zS8S})8*tiuwTUE%P?~U(9OEnQWQ#rCmqp96X$12wikAp)@6^Y&s_mj@i2d0>vphQS zK84SI4h}!v3Y(;c22onTpR8oq_&tC^pD`;z-KiR$l-%hP!wT-p7g}fOV$=jeC(wObFq5QVC zwz07>RW?_5_Zz6FzdZveerY-f*azWhEzamMBNChQ`osYxoclM`&-4(<^$`5hSb(~^ zx^nIs#%JioY)@2#>1~0WKYj5iO%eD*GCsT1+*|}jD(JFRR$6Kl|B_QnRTZBrj~!Iq zv!l(dtcGMs1==OZaG?cqeS%R{8bw~kxj z)Yq6&!(3*cYu@90=Z04hSU9mcT%{{CBIr2%mxou470q=bGwv{>%rN=Qis z`1$EoJAD`nM=ALHc>zc>ZUqGvL>4`$gfpKYf_cyyjp756N-4J2NpO&O_Z5C(==fLV-GBvQ8IJv#mu)ogiKy zxLrlX+rrRrgR(gL6Xva3ZSC#p?=rrI1&UgX*LhSlH2BENhbAQG{L^?03JS8eQYG4+ z0R&?x2#{MI4!7#9udLh)XqB3Y)k^j(83#kAr}JG{NIS0+J9>Jyx%bfk=TJUZ%u^Bp z^}Ks*EKchZNNa5nZ{p)2fr{b$uw+gZZ3Dv4MxWAuq|pvrP*97dh2P>QKQw;0O2wnp zt%O(D{EjRwngAVjlj*^O9di$U`je*&%k?#Mh==~bsm5vhZ{7?=e)gUWQ}m7N*HzWj z`t~3)YysX&OY3J*4A8gGekWIytiakG43syGot?o`*Uq9TE?#~Om-x@D`BRqsN<}M= z*-QujcazJtGTfWJshOKk|Vmt zZCc& zc?+Lyl;X?4f#P$qZotaIlBJLWFq731RGk?a0OCeeRYCKZ_MYQbWo#+pbtXyPt?MI&Pc+Ut(vkjr^nGod%JXr=Em|eM4F|QmC?aLCtyx0D=XvUNdl`I z8ykW5?jQX#BIEjxB&Q_Y@;_~co|}6sWn+KMOcXrtNUET7w{x}!W+2=V2NZ_~w$noB zpB5Hgp2j64Fh@(rp>Mn)ovsT{UxDb~@a@C@PK_YCq(F@rB_@oDr)bb=d|p;VJt%z? zfYdm!k=9I5pi>dr&Vr8n=Fu0(&k71y@+v-A3OvF2+%hjuk$Rf9H^E#1ar1Se#}@#b z^5hyMgPY$*L@o|goD9NvoWl!4PhUB86>dVvf7C7fx~j@ePmjE7bbK5t zt6rcu<&2DIs*77lph%OHfqq zKjktbaeVl4;KrD8cT#6jjns;IUNALVNlI?i_~JJGP$Q| z{AX7?Uv|OPS#ZA=ja~n3B%w@-or_5Y(F<{ zgco4Cr{7>nmBwM$SPtc>;nB(d*{a#@eJdPSnEO4)o6yvOxuIT_jC{i%8~Js1?{>{q zVo*?rj&0o`w5GuRF}WO1*XvmOK-XEpznDFy%!L8*pxn2-<&y*sPnJ_CgeZ+j_HU2{og_M=M05B?dS^J`S}r^@6+C zGhSKehwZUMfzi^5A#i2O0#=ws@-mIC@Ga145+mi#@x8aVd zexKereHf8mCqVRs_Axk(bJBCK$+`vdC|uD)8{By$ zBBcQ3kRPMdT-CH&U{#N0T_NHH*AVT|QP$h?R(8fo*)$D-MSel@T~BlK># z63MU@Jt0Z8e(S5>bT-4+5LY7R=tXYz?o=5-xj~eF-PX!}Rk561W?T}z?eN3$^e0G< zEO)A%wgF?+hIaZ{FC4T?(H2EJKtdzh(eTpf0o`9J{{KqJ27fmNn2Y>JQkEsFqNLRK ze+kAQNCVZRX7#_cU?W06{1thQ zpns+EExU^IZ@vWqv-8P+WL!%1Zq-Jl5gl(RcK>K)kZ4LBhKsMuFzkc1>DI4+h;CBF}auNjD zA#<<4ElLFFO8dWfCgXqPP>1ovSN*F&kD5;p*LfP)-_>BPTT(0-x>4tQ4(ui>Q2WEq zLE?82MKm`|JUuoa;eH~gif^&?B|Y7jaXyDpSU3q>w`#GXAO65A$FbbU%{9}*xgB7TpTj)8ln65-^J7(^viG~^dpg! zl*B|K$0b>J&_;l1Dlu%j5ufewrM&zI>~l~)r3N5)*$%dOM8<=d0y&2e^id}imU@5#7KYA3qld~mmYkcxt~>?h63 z)B%1Ln%E8+8X5_U4FRwTg@ZWWSF6aNTWLoX?Na9ZuVf1^kb;5&oNj=pK`@IAb=Q3i z4vA7VJG(F0+4O#kK;}WgZ_cdU_4DWT;w?%#?u9Gok1c`4-ebuhNkw{_rzgK?T=83P zlDBYm9AzyTFobi+%nbyBLVGJ&9j}fy<5UMCl4~DwxTB9aK!YItFf%j%dQp;+0?xVk zjEwmU-mz+D=CGCw_t5_<_{5S;fQyG0%c8{zZ}6)`KK*eiZm%z!8bm<@dwCk<-RCS0 zqfMT1<6Pt&3>OVFBin-y^QX6}6Wgv8gdDg&i|cPcjq%ZAO3MwSVDFvc9F*bgmXnop zT}3X#l*&~VN%G+*h*cEXa>!TIHN>4PKh;LPvcO&vdt zv45WVc}X+tz}3GjHE&m3onNk+Ea|sb7vqkvaH0DdhYlR`-!IM=<1Pbys#K^g$L&}= z4qAWkENWRUiWh}uJ~zm=N`sI59#WTXIUXC%uZuopX3>+UEZ$xvaS2uj(#5+SHf5P1`RX@r#&hA z%%rC)yRSNlg}S@;49n9oL09Z8W6ANccQ)EP{5l`k534fPFAy&xU1iQXNV#nYB`my^ zKirrRv4kQDuQ=HGWMQz7_tJT&tG%)z+CI!HPdbxRq;SXfgBGhbd3n~2lKlWBn~OIW zqY0#JcNfJY3({z5YZ5uP2SWn;$Cv(;QO5^gpX|H%73KD3D~8bP0T~{It~vwRFYD~T zc$W9_^g|n*%vPTod3ob_e*6|vXiIj!=$f_m0tLE7HtycD87VR^OzykB$|0A7^mo}t zjn*{!B3w$r7?+d3=X-E<6>OavTYmAJHc^2fm zCMIMCjoy@?fG6r60&U`Lf46!UhW)ojW9niTJ8u;JBm!1_QY=HeUf=PNr@X&Ot7&s4 zd803>MU__UVvL5&%)-W6p(9@)PA~bRioWiY6J5o}ES?WqM@u*6by*qr&-KI^_8<%D z#Ss6)Z!#U@<5uFT^Zj3ZkZ?hW(gHFpd_X$R$|0AhlQTb} zEo{GIVI(tg9w9$=eBRnxJ6EYXlxHi~6Q zHEM_RA$uykObk2Si)wub-;c*$7}fP%uryZ&N*z`-uExW@T(M_Z7?wMJh-)V*n9#7+ zde}UCL_1$S?|(x&bMHmk1|_|%axVB`QrjG#Y+Q2IrzC0N)aieSpkQwu2&8jg0!l91 zLG?{+jD{W%N=tjz@n+--mXUoItdd8icYnVua;qXlytH^l+SAD!hB+-~D*=;OEe?Ts zBpGj~a%5N24K#|)&W;x+&IZs+Go59B2n+r^8fv`6rf!<<*8_?`o={%(jA?wFouFNQ zCPyezC&Eq2yH1s7Qy>ZY*x1{agtIR=@>2XN3d1iYYrEjV?7S1L(U7&v%(J;T9=k;p zh;!v&+Gn;5o9j$yxRmv)^y03$-;91e_ydYEPDx~4#_vsthB?~f6Cd__56s&$cAB|c zrh6FI&1EO#ajADNsY@?*iB1)yo6ql(;dv!D1icTeMIwp_s>G@9yoR{B{XNatH%D3c z&JFk@R%cYPoaWD-H>|$3rnG z3|{AORypaRG3G;j2UA=1tVOl9go#ko7>;Yxxza~2gi5m~{6SMM ztg!@>k$~DQ8p}t}-OGB;*??Xtr{exk8R|Q0qUS|~&v;Z{XLqC} zbsjpWo=OIZ&JCFs-yOgw?yV@SqnQs)ToYOg#6Zns-_KFc`k-D)xOSGmUGgZht_qnG z2hNtMV-DfI7J=4*wfvx8SF-HwwKS&Pte#hPS-`*Oy_lopcoloMM)PPjqh(-zb#1ru zpj5u^Rd&_~l+9Oij@}a23RBdWOpnbiEgrOt{5~;!71MmGFe3W2XzQMbN<7p9DrMgc z*z%rbc7o2JtgE6u(V5&R7Pq|qa%-I>Jw=}IZV2}4#J5E)%WK_-&YyEDt0UTLjNySBUhz;`?%}o1#Q*Ko0fq(8(USJt6P%KjfjD9`SsgblZpk@o|0(WhhfD*RGC_Y$1gR1ZrLAboSxxS(QIw zsotbx3OsA_QeNHNLm$WYPt*YRP<_;qFaexOqACstzMXTOwH(7f!-?6CPfm}zk)1k7 zL-S?u*pB{GD*kFFEAdpj@OfX*Uk#y%2qV8|xg)3htSZM}*mUUoWH?jpn^##Puf%M1 z3@K}`1O50~|Jdi|l0G_yBtK(xd-_^)5bD<;zppZWL%i*4t5kAQ#d+Aa4txTkOa3;v zM!X+B1pFLr8o&OQ5HhOOehL*7Xgr`tGmdRvHI>)W({m){B3T$2 z9hi3;|MVbk+1hgMWgl9016aS2+_6B>c5g>1OzBV(&+*CQz`BIRyipZ7mxYn- zR@fu#gn9LAM#DrqPLL7k=gFzIEmLuP&n-o)&osUV2tC}wqOt@YkoKHQ2MV8joA?&z zV)k)_ry{puEq|zwF^j;7U!Z$V1i(JT$y%*>6YFH<34G|I;_pKjhkFUon^?=Sy{@S{ z6=g4_wyCt#r>a$)dK#AX4g&%?h%7A!5Epf@zYxs5Bt-lkd(&?_GI4)yxxEsTn5d3~ z+;W*ZHD`ee-~KHJB`moK@78ZCGVu5A1M?COn!($v+Y2R**+H_&S#46nKk z0T=9{f?>vqpJP)f|AuIVt(=e~wdL!#?z3aVLk<0F4BRzq zW(WV?f~~R5eUQIHv&xS`fzy&-ic(36Wi71vTs`1x1qVDc-cSgpnoHca?VE{P2qfHn zGvJO!Y*p-ZLfRJKh2E;D`o9!-nL8E&;rT)6CbKZ+?2!oGz4iBkI)(?I7ZuYW(kr6D zc|7mV+}2{NKdUALa+bKIWSv;orhd*(vR))foO%W;AdI&M@==DJ*rABwEAX~Ory~imY_V-$t=`m=suYwhx)~RKRe9`jGEza*zBgH&IdQi5sz1gcy*V~RlD!ADwA#0P(BKK_W6r98|o5Gg@Nazr6>L< zTdm%NYqonoA7vllaI&6MlZmifyTGP0;aaFI4r4bOAqxe1vCRFr9YGP#zBI zv?lNF11U#joQeR6Zeg4M-ud9{z{ACbHXSO;cWAi7w2gI8r2ZeauKyYOj<-o%%+@&2 zB%UJL*Akxj<3;B_#n}>ZytyL|}|4W%VTfgI| zp)mrzS3W^Ol~2}F)jWKBe*l|$QSvE1hTXt>q4kdRh85sJ3}|c>pkHDnDa8wW+UNFM)SUvQ5^L_ng)PlLw!XZJtKV=$JCo`56?v^8kR z(Rmf)6rG4riv~&vgcYz7c~McLFeZ7 za#)Kg$!jgW=|mLfjJTq+3&(4S^GvL|x;ii@Fal>UD3xClzzZIqm4BmTeHn;U%Hh~|s3Kz*Z5&Wpz$)X-G}j7W zlQ!y<+mnYc4LLE2Q;t_$pjy7X7nu2XcEbqRzX1;iwCSaZNuW5jg#fhL!O#q32k2

    uZnoSc26fh zr?n=JX;1ZSuMgv@?t;?n?*#bzueWlEd=dXm=9&R4-|QBF4iE=GsZQ2;9D`IeFfbta z>+X|W)vp@It4?t#2%*biQF^I@3&H0LPa`8KI7aZcPDf=eJ}y!nO{#w^p?|VE*)A_J zt%)wA(P8MN1oues^Iy7Gtk|7#vt-r9!Z8msE9*as$7pXKP7x51h8102SHpu-omxWLWpC(I??tdHm56O#D z&Gq05aPKrUMqozyPkdi0`0isIMsSzmy%{V6f>3*Gd_0~4CO#>B>MPn=LuuUpbumL7 zc0v~>E!;K0bEb2YR+iD(IvpR0(l%eoaez^MX-GDDg#ZUY-T)5J0+m zM6ZMj{|(uWGDxlm)L|EN?DO)hj%)3U z)LJ%f!g4h|3($2(W}~Ltw{z~w=3ZuK{NK!HWaQ)t2?>BDA8$@bbujk$<4}4pbrQ3) zvzz>5d=|=E{$xJ~4try%DZn#CnV16kNh4o40PWduc@@+lCo8K9Fx)>VnX5VStbO0m zBIXyaOh$`Z3)$(oNon+2l{Jjw^Kd=+$WZyLQop{t8oQdj95!h?PK&w#l}%y5KqiD5 zH#7cDyCQ#T{z`pm2_dge21+*rS2nkJ{dJLv1;Z!KUXws~S^XGQZ)xWv>0e-EsBOOy zf0RYIvg_oPBw@t3uluV~A^B*T4E!2I(7F(dj|pCb%D#`M66Tb??ze;HvSzbTQ4Pa1=ShjjYg^u{|^-mvn4w0{!Ng|pI zU;SfBd70y`B`i9l4+-x(FgXoA!B;gc&hck>FMDvZ!u@xhUYZ=N^EqWI$FUZwVEyVS ztPE#oj^H8ZGZ4qqh~@hE-6{AqL5NZ(jjdb%F=B}%!F%2`{thDSrGWVF11zyPDVDXqssE7@&8p)mV2qghSik}ftx3|h) zERQoo@F~hEu6t3?g0VuMj@~mPalnn)@dVbyj9!?6H#J3~(Wj`+VNDWodZyT@4|A7O z^sr=n7`{Wgej*TeCJ^L*%;R|H__w7|QUK&Cz23NKml#dtmko7-$QEfUf^m0&MiR`(!wt-)|^5Tx~?(@bwg%W0)e68>CSp$vDEQi!B z3r}x*sM`v;5CZ!2Y7smTnmsf2?GAatid+tda zE$vy9%-a{)M~@?GGiJ5D-mG1b4iM}xtR)t_<9>E_8Tga#hW3MT#O>L=f8FC)%8|+F zx%BC%DEZ?!+SOLg^WKYofw=UH1b(x~y3*c9Ep5sxIf24b9rX=al5e-46T)*sk|JI~ z&*D3Oo7GBX6eYd5xfH-la(ZdmwRaj5ShJUxrS9h8q9n&9xABDK-Kp0#5g9734N@a2 z?m>^Co*~3XKbk>id1xZZeNw5(DI-whk-x=w`my-2e2LV&5c&^EH#E7tNWxE2SS4Is z4ywN>xMm|i;dl*sFCc!mQDtRyCsUm|ev~#a)CRp4eaI!DvvvD;xO--+qR%OB14feE z`h(pRz?mUTKNOKdBa3CQuL~B<`0ToaeB0a*3QX>?*7B3`~z$N4E5$%ja!5P=`&Ol9t znU>OVjpFQ)3XNV%OWU$ppUb;t4B=YD-bcFjw#VmyCZ%FOgYu->-Q9AlV%kh`Qqk-8 zv$o@ji(xctJ-?xbfuABfqYXlIqga3M?Oq1+Y*_j2{srEj@ml@ULyo0NN@>+50{cny zSjbX1yv?q#iOb%+DQa|ncS~*qAf}3vOAJgJ5yZF!_C5@(zvC0k{{D@)awzQKFL+VF z{R9sVdXMlI;^O|zKS7xQ1{Rzx{aEP3_s;-sxp5r{=`G2?N3KEvhb`I85V51=C2D-0BDhYcDi2`|>u*Ig50TNR0k`k6QT%We=ZA!{8CNq7J zH_w3y1iJ$RYTg^)RFa(Ld@Zc$6!P~lNF)_?rw&F-{P&xD-GCE%)TgVhJq}qQWcUy( zYrryUK9FT^Isty5FiO$O_2LE+5)yY;*ZZ`zU|itHkCHZqU{_ghl72Ju*K26v$Pj1o=%qf}f+KuD}dU=1OX5X~ASjK!3oiehmfXvod4pIdKBzojbdW zu?8^x!7m^HG&@C6Mi!RfRWh?1GddOwK%7h?m})3!2A0Q~o9RHb6HM>{++i)Qe|fm8 zi`PIijWaWB-p9Rl*uuEarxOmNBw01TH1_m_Ntd|p&VhpoWKa7%5}-N=jqh4#o&GSj zs+Xn9c%D&I3hvgL8o^9Gb8|-Lth0Sv7z*NBO+Q#Lz}CT*b^;?V97;*b4EhbSn)LPb zrh0oD)&1Q~5fcN6m`W{%m@GP0BHP%0TQPz)0Wp;mfXRs;KYYg-+r8O{Uc#WP85mUq z6MMSAG}{CAwVgw-7H;iMCcTLtE-GSs6|KpVb#KGec;_sUZfmM$WMII^+`Nq~&CPv+ zPZNDDwotDoMx?Whyej+9Uv%3i$94 z6EeTOfbn9JEKi-BxSg+OD(61BmnvxlI|t?w{6>7b0$L$BFN_+9h{J~o__O&BF-{d7 zi+2ybZhYI>*#VMJi9NbBIv3o~!ND+gA?nQ=NVL zx=PKf(*yHYx4Mq^lkV!~1W3?S&9{Vs;rtjJQ5z2N*;7%4n4852!uXX&^Tb3=Sy|Zv z2TA+&8#nrc-@d&zBK>{m;NT@^GB`R6O-)<6yxx|5`<6?|@btonWZR*f#3wTi2A;yq z5Ir?;(ZYM=t$t&f!0hRLTPF!9Y#Hw@#ynBb~=6OoLIk2&s(n-Zc#sStBu*Bu3(06}V#>dBpCIJHW zt?&W@%h1qpV+2W;`MoY%Hnu(ZLI78DMhB_*tJ}WGlB`Oo>O6p^U|Ux-z$GK|+?oAu zYUSB@(vg&) zmiZ(;dlZ6e5anubQ&CZYD=i0s)WCR?6FWVM*N^W(%?Go<^77g{JFPCyPXKHN3w_x+ zcsbzs>~3!lgojaB2o+HmfD>I^Q(ujPWa)Iut;UjtJz%ur{(XlkPndiF`x-2G;QR+p zSW90^i8Gr6;S82RiCj$<=*nPWU}Pj5^t%c^5BKs^ zM0u@2`Kt#k0N^Sz?M|$6ULS@E?`wW_bv2w6V9l(nttDjF_XNrfCP4sz*_pr_M&WR@ zp>+h9XEMBvp`oGNA2U2)e;T6j^eO`2}d%V&t z8tHBia^vf?%Jl0@%*+{78ZIs_fXBjETlgjO=!l5E9Hop;HCo!*%5)qC=9~!2>=?b< zde4PdK8^Rb&&VvwY^y0^Tt z$x8PV5fK4a2#)Zm4DiQTbjBgLFD`NC`}C-q5VXO^dmpzA_8K%hIwpO- z`=TP8jW{^q;NIEapC~g|feBO7$A`Q z=lpf92md*LUDDjj$=HEi(#p`u_@6Q9?6Sr-rtq~39J~)7{MVu8Q`%h)lMgZLj~V}< z$VARw${cgUF_@=o=N~O zyMFm}3F!*sXosNKX7`W7(SF?S>nl&y2Z>viw_g>|iDW&BZdr+vnIFTh#I&$!HqCnM z_}g#9J_@BHlVJFPqHZa9-t1#i68HTHjql!~i1tQ@D5Dq(&1wWUdrkaH^SH0o!N z!nO!`7BHfIoyg*KP%4&Pga~c!Gl9S;6zZK$wF??0yxGSB*meYx8EcroHtd5VKYwt< z6)s6neQIGxvKx`(5)pE%UdDsk=jW82cS|DK{ZYZAT|93xyGd3G1CxW_>dkuoZl)&R z17sAs-(<0TO&trEAf__uP;l8;($FajlccB1{r+DSH{Tecd_pdH zHrt1G7q#kXH3N}-(|tAFwp4k}7@jwmHf=AHFPO-r+1LB z^2@6q)VHqI7oOz~yj3m=pb^k!H#M>#L(4uri4w8B?;CuLx8&dvOYJa;LL5?^eCfTH z)4k@RANe9Hl{P2t>Nn@wAL+$CW_r1*__0`Pzm`vgc{=;7>}g+kpKwCU&ku^&9-L;@ zqxav}28OqeOlx^`#EFX1DkgLX+-+D-OS_n7uU zsF!s3n!a8}k@e@RWR0W%*4Gj2-nZ|)x#V*z1W&T$^7(6ZjKZP>qEnV9g`<56*#ioB zZ?4wb$UUCmSLs?dzs(wP$Ap0C?dSRk{KG6I+vm8b!WtLFWz$SWAtJUHlfB_3-^jIV z{Jyc6eO;*d%E|T)HgggW1!H@S-BvVyG%>WSJbRJ(L!Bd^ zx~n(@iEyt&ee=by=KBI>1S&zY)^@_(0orcS40S5T8iFD3?SX!buuS}ytTKFKGGuPqxtYglFx`#XVhtsLl?I=sp=#SJ{y1Cb6__;oZm$sxZ zsTszxf6UfHW(Y^lyqD>hkBn-0dT)~Hk-0za^XDFp)=J}yhcauoCU8o>s;{`K()3x> zV|!m4k1Zejb&172jh*!Q$MTKdhwCR%zN+ZD$&AufgQ(x0gl%UJJrro5`$}+TLPP3N z_r%5+Th7NttK&uZt#2iyWh_ZqA=)wW>&>h(`Ci&CQRTGd)8X1NuE*iA_dc&z4I9f1 zCGDhhSajs+yy&+y>Xvd24ON}CD0B|6eDt*MaywXl!%ctgGU;|s+Ok~94Ve>C_*>e9yU!52F^g?elUt>bNY zT{Xd%DxTW?n<&ZkKZ=q(-0(d?|M}G)UD{nXG`xr?d4Mv!c7?{^oBoLOxhregJ=^x?~<{k-5zlL46OlHo4`^56xACI-Ng4{42!s8b8-4rz)Eipu^ zx=IzdfAR)l`F5n0xtN3v^Ez}t$RF({Ztg(g z*R-1CsG;BXvvBmx=u&VSoWLxBO2fd6-8+Wr{ze1C8HqDc3&V8oua_AyoE+ zxj=f{H`Dq8F9jxU2wO>9)NWXRRoFYg`&I2Xb-y;|u9ZKFopPrNa{t4ctcfnG-pIwl zTe3*oUMSX)7AwK)*5z8#4{k0`)!blK!@l>FY{Nu#TGyBB2Rdhx@9wGIhY0-A4$_^q zg{7zc#L5pUGJ1qvf5mqa?0a_ikDDgyJiAkPeOhFyf+_M&f6)^qm9pHcKbeoL_uX~h zrboI)uV(40b$YL+_nMAV^vGWoU*GzHIYAT9U|2^d_5DB%xx}!B?k=1#M3#-iGGA>QcBY6hPB9-unqJi9r+!w4I9U36}1d};B(WPW{Ac4 zU5&9<;~z9b;rNU?E=uv8rkXS^GZwF}c({5hvMQL<($Xl?|*RFY>t zZ6EiHQEvYr?wmLLkg-!!QGf8G|I%-DWd;o60duxqGV4tB7bthI`cT@La+>Q)RbOYK z2j40(`m$l*|MJ`)jj=AJcINq3c0&qI!$$J`fat4P)!8m1)!FV5&g(VicM?t6#TCu? zb0d^ge_WGj!p|N2Qm*_en0UD|oa9`qjs58n+07C?+j~gqRdO_$nGsAM)*rEn8E8|l zs%NHdsS%JN6KMxEl{M6&2b|;@#iQq6zT9XWeNtlMglyEeB5XNzHwnGz?Au34^`f88 zuZ@O~W;lKQKu9;<+$~N#7T3xiXO(o6MU|oU?)|g|v2ZR2SH!dY*krSN7AumiBwVo< zFEJwJI5SE@B!?-qxRE_0d&J!`2X-DD(1a#^`X%A(WnxhO!xCqG>$h9-?`-~LPPCgJ zO0n)#vduk=dd$pkJW6@Y^|PWXrcF|3>;84dYhs_%`0iR9DcM(kc%+&06%~z!{@EhU zZbe3nY!Au4L0*Hbqh2W9(d7D4N?A(i-tf`eUP-Mxe;(xfBP0E6dpMx?(%^7+OH5cj z?&lL2v=r*prqOIUK_$IamQebZC$@6b-DVPJZcd(Pkc#%Fm-T_3)smV?8dK58vZT$C z?%P&kot!3Gn-k}R`q@p< zsUvNbx82FvnQrB@r*=14r>Cjf5xmJX%Ix-w!=wGtwG}}vLXm&Hs$Z3wGP8OsydfJ~ zesd=2TF>3tEp}1D!F%mbF}3nC$ij3zxN2r zjz@Zp^E4t}z8SqNsr`_YrLUu%yN;|Q{hJaV%j(y{5TS9Ct?VIIW-sic6_n`?L7W!l z75+uX?*i)Q4>ct9?1mVf68cSA&s8iJu3mER*n5l0G7Q@B4_CS|h%O!%?-@>JKND!) znl+DO7wq<+5W9Q%O04=$P(aG%wQ)SN^>}c~+5G41wni{X7@^ zyC1%bifAEUjUAk#d0wIv+u9vq)YeCDA8J1oCf+h(m94z&VbmunP8wyY8yL9Cf;mKS z1Z^MRUeKZV$1Y89d2<8v#VbhAUc$9qiA z{@lMmtS5$L+CQQ^%Uhm5 z=stZQmidlMoy)B2Y5x0o)|ED$iOJ8xF@A1I@fqS>htH!5rmy+g@+5`cw$6T%g2&lN zqb9MiLonrX8q$0jH7w;F#5}(~HRKriUampD;R4&%Hb_nDq>aCTuQwBW!8N&yI!CbGuMVvZ(Jp+&}ib!VMQkTt;j2vGlCmp1ADatBE6hIWEyt zy#556M$1SIp%z8$oZg(-EvUV(P5UFxz}x52`Si>&f?JwOkTELBFs~F}W5rZW-`@3b z{g|idN0(%L^0#XCP+y*#DGX`uMzZ-zTHI(Z>4GuiQ?U{gTAE`Wb02MdWhLPqvU)EQ z&t53CxX}5g>DAOl0nU%C<3C!HM2Rx9sb^F{6^3n57%3hE=usAL#lI`CEFHcUA1;zx zqxeu8U-(5B4UaLUU5o9v2*tARVl>*m;q-uKz&Bj|_~jnzB$e1|@1Y$&VTJY9*ZcD( zEdq10bbff!$i5gU0q-^5QLVkX)9m8&Q-&|8vz_TCvxnsJCQHcL&4lj~S~t8nO;a78 zPYW7fL=aV4kaHzt1wP0Ta>DUv;;tH8>;M1Qd+VUC+pT*TM6s}y5TbrMN(QC zq$LzVx(!qir9nVIC6tzw29p+PK|-Zly5U`4@AEsq=bYy}HS@lIyfe=|!;FsH-|r`` z>)Ly-z4lrk7N4u}?CTF+?rRP6;$fZ*XC}3n4HFdjK_zgO0Wwct<~a(iORhgN2)9|5 zqMUeUY(G3lTPs65KN@N?L$tf6g7k-UfAl$e#qQMezFKy-jkE<;S6vU&Q}GXY-=a%D zxoz~N^r8LC55F{fkF~4++qaXD4aI0zC zYuQwb_mh7-p_%_BJfy9?MCM`cr>^^@4$Ap=Et)-lX75pa#MLD%Z{)1}z_;%(-J%}P z>Gg+mXWR59_mWHp%JF{Om^n6e|C$$-Rr@77#tmrL-JK+VZ~cx!+qC&a!rOkbwwqSZ zUf!2z`y#(Ln8NRLRLQlQb2q2_ryT?Icac~rr#~r6oAo>Sj>6PbP|1qsuo2__n`Cx( z$4)rJQ}A$&+@ASh@%^CQR~Oa2iznC03^k6BQ#MK^49n5j)}2w;y3f^b{ZuSX_UUlJ zbC&WgJJuJjNr^Bjo-X-PD0|hH@5ngIj=uME^1KFNc6Sd+Y&P!^YH-;(zSSpZtW0|bF5?kK}x7<3cTBmZi*~C@jq#s*i0`suX zaDU$Dr+Zp&e(?BVP_2k3Hr}`JjiaOdW0S#9fvZnQf=beE*0fAy>6|_+f5JmB{$VfI zG84}y`JR!iF%_1all|e-J2_pmPlZ3r+giGPnIz@WsSkpEqM^&=?zRn5Klma8z19x7 zgfR5l7zJKtnqtn1pkFn6e^%Ubj>}eC;&IzE`&uP^P2OLNd%WxX)K_^-Lb48bXzm&q z`B21hIYU17E4Q49cyA`pkoy*YlXPDe!@(29qF1G&{WTmNAyh`-H(8i5e`T&l?Y;Hvxukb@ZuL|%kIK{g?KXjmuvE0Gt0(-)!z7)ZPvk!7s$cl^IQK_!m@Cak z`ZcHJfbB9@9DRrPhs4{O$Zx%_Ite}6)5VR-9}CW_jm7>Op<3HumU z-}=DL#MD`nel=p?V;(W_s~2jgqt*%R@H;}YpQ=1+tgO53VlFnlXHdFHFfZW~Uy z(XK~Y)23hYGyR298aY}u8GaXyB>9(V2yt3({C?7(BGq?1^P3=vCdO%nU;R)T@|rl^ z%gsKitJ>7VXf$vus(lO=s~wFITJW|yVb*7V=!i<{^3oydo#giJ z-3wBdvcBHu&4wP`;1i0>8_G^eI}@B6n%B59>s4>!(ZaJ`-zBJ`#KdGm=PGUq6T8`; z?zk&H?!NMHBmdIqtYpw6qk0`2?v?hF?GZqZG0!mZYvi0!dKS05w$V?FNDy_fk_Cd|28 z&M(L*v^TH~5?#He(nD9dD=~WhJh73o@5ALb5pRhsbpURqA0_Jzlef-h4^Zv#RNtL- z-d(1cbLgqSzSWSZb2UjW->&RDQx?E$N$hQ7x^ZP8=t=iUB0lp=^4dE>PIsSH={o+g zIiYpp0+DG8hYuaG(!Hh>?WH{xJ8K;|&(bzp4=+!eh*k^yraDk_Y_Yr8!0=RMo7{q} zx%k`ceX@QmM-@Xn9vn(%w6E0`He$NRC*JiyYiHQBHT#LK`pVeK@>V%dv!J*xFI$@` zVZXD-SUZ(n)~0wns6QTLx?lHD>19-3vCf8g<^Hv5#a;)#SW~IpUuw4)j6C~hsvB(Z zowF#r*nZyi#El8AJ)}|`Ufrr=)XCK%R7{-v45Gq}8eQ@&pYAHG^iEf)@oayd)%=*# zeko)}=v2?%(`j2B`}l-uMb0QkE>}j8hRU!^k7Qjf5Slv3b=3X0Q|xGfxZdUf^NO5` z!EE{3X7BQcypphoQzKV)DNcUedTz|Guc{}x!9XyS!FKGA!gwP;c*(e!(!d!DIpk$A%fnwUc4S*uRb7b!ug}~S zxjhG}1SuvDs@{^zX_4pXVoTI5Qa>Caf9oBKd^7oB!MDLmTZwP?zA7w>>9wdZJSOfU zw)w+0<5r9a|E>Bu7lSzd-Qgf!!Tam^g)n1y(j5;#i{1s|H-w)mB7DsW^N9@8A&(Jjxb(+@PnGt*iknK`66;rT`gGh4FU{ z4bUR?098P>9y2OVBTW}4ZJr#h4WFEx#QZ_nb-U8*P&|hyg@(AeI4DhdVWW4lfwl6eKVODc zPN>ROE3T5DYdPj!vND*7HTi^F1kEmV}UvGH8bcG z$A%kNV-!b@Fzt4l>RE@dQ?L81f^UEGE5-I?)dw0}E@YxNGqZ+>1{x^Af^{cI> zy)tE@GgSLU&~Sa3evQ#Y*6_Eicu@gxy1wJpfMYl7 z7O?C0S8q|NNC*kWK+p-Ih0I)B8Scw7(58kiw=3MX^7cS1tQjQ4)k-=qc}2wt?R=0S zRld}$Km#WE!P$+aK3MFEe64D<1RF&=&mJ5rDB{tGxvD+6peQ2&R|Z$g{p4|1TP~iEvkh1KRP* zYpmV=HzZ9=`oV~Sd?APR{FCd0<$6%fGG@Kr04f7C}F5s%-T#t&&VAK|=-%G}SZ8i*l3MU5qYY+0|a( zT%Ivq&+962X>M#(=Gp+2P)0Q)OX@MTdWzaIWD!kf7_C6e9cV0coQUc=v%YL;QPV3( zn*9|v@Yh4}iV05GRfkyF+2z`5pPmsBIdXMt3#&)`>ME$fCgqoA`h&v2Q!TI`36>v$ zUVl*gms?dK7fyQ3jJtx#l+Y7q{?Okfqdh~`al)55pg{D)z}cEvgIK+6$->W=V(a{< zFh4WHHyupu;-3xuQuXspr%n|>c?|Y9rEX53hcO;Yv<~ZmF=zSJr z*T=^DNvkGCdP<8qHlYKBy<=yela&?ZA4HO>8xeKrspI^py2wiH*#Xj)G_6~Bo}hfT z+8lQaf4pzcywa z+S81m8CetWHRT5l;8SGiK|0iu8i!QtnOlSYb!?Lk(Wc=HKB0}QTd!*c4?@8E8IR!| znzlq&RrX$&p<`5%k^FFRmFv%hR25dS-EahP#CDAgwL7|ZWGAEY>0BOS0&oepQG2*@ zn6&D0tm`PN3-xQ!@ZB{GEVtQIQ$eJzr5+jW%uAIu5OYbXa-|9c5j=VQnjYU%zC*!B zPi8R|hZR2;dnB(GqOF=CcamJYd3ZyX_GmYQjK|Kag#*yH4)+SNUWVVEp&+p;BMk=CwPG3W9`} zOSUFB7V*3J$z2r&P&zrZbEOBSanSS+FW|$iriNr>63ENoIRiB(3pzoSj$~aQcJE`DfY;K`?bST2$*szoMk=*zA|=p`))NXh z($084r>9eJ^TlCaoD$dZauUIhR+M4I91><7(+AGVeya+~#bD>=YVT&kT&R&o4aM#c zJAb=*1WWId5NY$8sb(hZrbJfN{e|VY=g@4O@Vr|u4qjC;sF{H!F{{H1Ywo^Vncqbl z#ml9P^dG5I6D9L8E#%V6Z`6od;PA3!V~}ilA-UZ}w_pEt#bj%0J41jd{c32X-1k?R znKn=8qE%oUYU0dP%T(I`x%SN(wD_`*OET_0Xbe7KgC{HN#{p`%!+MtK$vVoMoZzZ* z{{@YygT{+R#8P^8t4w?Ik~TI5odX=HrI(UfeMHH*xVZQz)`sH)r2Hvgx7Giw;3vwOzOp!#nI2T_*QLN3oGTjcs_c^$ zNUir|5X@@ftOj^5%PhY(h^OO?ymQSkEl4Nz*tF@rfieuLUTe(}-G%VAhRK0>o3tA0 zLvJMpO+af;lK<5IS&pn6p)-O@FW5FDD>!M_xVzZ9xxVG4zJOW-s;!4yIND!sibgD0 z*LivguDB)m*Rl4i~9wwywfeD{<+U zLQR{*T~e8LL|>-Igd^)Uqc6M8mq`9s&@5Hamn*cGyRA9z`4b$=puX#Y&nTfJ96F*R zB!&>1-GI2A+OSJTgk3PJh2Bme^tAfkdI-54<2Unfi7D(6EIb`=vwwtNd~dc2mz*n} zzd{OmA$PWvWpT;4*7x#pC4*_Xt{S4zsU)@8l}FN_EL=BLBBGZpm7dV?w`Hnn#CZH3 z$f)jnIgm9Hz%F-;Lr0cHR*O|Iu8tF~+yy4p!3hbBS{(?aH02SdcRcsEP#HJhJ+8`f zC~l~x_IOqN^G(L*qEa)`BXkiZ?pJjN1y(B0*Jx1%Lgf?(d}^~02%$*NW{%pFoOpXh zf6L5;;Ob|-(XN>hWS36NP%b^9IoAKX2;(K38oAYFGikTe)&`?(FjmURl+^#SZgL=y z;@WR`r_>m_VuZu4qUh$&J1sZuj`OdC27ZiP6SNHsTXBO{8=c2okQ%2-zGd7*aEJHd zE@~Aqzv?K&ukQidnh3pz_h{g%1VmhO2|u>u1y$Eo6Nk}6Vo+=Ol@!= z=iRoDz7EfI*)aEx?FO_5)<@Q97BK*jH9|;ilK4adDMPCLTtB!WwNx=8Uz)x4No2KgDD|XS^81IXRx*&}E==_rShhimR$7GVh&VDqMu|LX zX+M4u=jwOeAF0k4K8%k3Zb`Cz`}T>s_#(s3%A5TaY*{gt#e=(S17J zIB|oW1x~BNMYT!ng~$M8s#*9+uRpG1ZdnO-70}bu8*52sa8f0eO%Lj*gT%ebMrh{U zGKl2b+vn;k#YBZy<{~dtp_j{zKBX07HE$r=vQ(>jS%<;t!si!(0gpu6_>7x-&V>&J zY*f!e5Zj=JozTVq;2x8C-1MrzWPdjBJ zE?xoqlW%z8@IP1eC|f~}(c*ek(2{ZB3xQ)?gfV7_(x-S?X-Vs`cnxsL5pynTzr5_m ztO;w7;o_+>_ENr->}g0XN=izaO3$t?r0Bc5m#kF0k-9HDWiT6d+8N&mnbYtG>i2o! z*3?ttGE*@yuqrAQ6dn|GqV>(fQFXglFkL?paCJfW%{;?N!Ce0YQ6G~ulaITEcJLkH zSrH37sSwq_-hIX8i*&b$?XQo~!Zwb>UnM-sir@sYyndZ3@={9W`BJa7FK4EzZYiz` zg!{iK(KKn8u?u9L@Io9U-9t_3A=LBGH-fCnIFwV0t}BmcjqE3aEkTZWvDeGsWvbza z`@xC_D>^T!Ct8bnt`+G1My&hpc;so{NMU?1Cwl|6p-j(sPpOVak~RhtY6+)iU;=%F zThO|O5VGIn?C>>Wi)8L&@JX&a*RM}8$g6Gi+<@U{3irGnlO*Fnn!K;R^UrPb>&Asa zqp7kk%p>z(CHJi(C+X}uKaiCs?0QL8aga-8b`Q-d9uX0(&Go*u(Z=`(jnt8B10LZF zA@>P~_Z`Bl(&+AinU>&W6;H1xl9nD5@j5Ex!Z*53(bJz_o#%Dw8n}_6ohN%zoKG)M zBXBONtoEcnA4_D;-A)%qA|fRf=S|8#^(#?eB_sJzG z!?vtFgo#`SjCxQv)mB%_tS++k+fFk2L!%OE`QnX)GY>|OF3&VZ&3Bl#>{{Meh4BWb ziOzw6flrD(JWBotNj`~(O)D3<%qFS1N}anUM>}*rCMjQ-rJqDA%jjaqPDLkDKV_rm zlq^!!@B24re$DC<5rvAPx+YZE|NaX5c`;gvA3|~d4+Z+%(&l9r8Eg(P_lw*XZ$RNY zj9ml9NhT6)-#a=`g0OZxzp607#-@>B{fq7yF%gP@qZQh-kf3J1{7k79gNuTdf*2zR zN!QL}lg~Z0hN54ziuhUgZtjx68*ebeab76S`Iqn0r<7W!43)?ha|7SmSXd;7KaT1Q z$KXi`5(Ly=mTwMWB}Rxr_dV|ggx*qM_d(S%645hWS=5TjaQ?a~>! ziqVcZX%J)jd1d7!#(({4$}~7PQ6Nbaucp9CEpY93EqA$qMbm|WX%F59EXigV@FL7| zz$k2W*u;0_twUW44WG%wmip1;s%6X29{#4SJU8QF!(Xc;`eAZ3ymIkV^}%MFv8Ty! zby8S2--44QoJff6Au-m6>~U|_hs0Rc#ANu}q>eiaHBnU`pSG{%=E)b7Wd-3@5_Jz= z;upA@!>&!c+t%ONcaa1*PbmNdjObV<4$U^4iwg@gHC*b5Kzy=_KJr{wNLDwVF7&5l zBLJYj%~Yf3VX2b_HH{}F281>-2gn6pfApVx!wtQ5rtZF zPz3F+`IM*;tXTv@YQhB1n>Xmu2p3X8*d$2wN;zSGenfdoT;`X$x-Ni6h}lI>QyX|% zLf5`tg;V&b8uW+lU0sVJA|g6fMzyOOB_Hgq4#y;-x_m+pB3 z6Fvs@OtlOGrud`8Zou#HV+9z7KbT zcq$ui$#m0DQoe4jL|v(p1eIcnr5m{CPoF>6oQHN)>(uSnNiD;pXFdw#4PyCG?P<;B zao@sQ$>q{h)31J}`9t%dzJkjq$hH{#xfGvQuU^qm(mjpvU5-_=qvSSONaoK>WDlTo z9X^3-2jC>OP$5atvSVnA)jpGP+5s@s(?4T{?)ckLA zRDSwYeIBVEM>)*xkeS1(Y5@5{iTy|u>ggx6V%lxcfF`3mE6T!hjj)+KS0^5Emwijq z;@`J#pStAYaHBDXYI`ZG?!Ybu%E$H?dzHx(GpX8-9m;d+l%{KIvKbv6U9}k$w0Dlf zbr;re6&2!TUSvcp*X!KMRuD;nNLgx?60`u0l9MlV-D)U>*A^@e78VyH(h&$_%n<-dJiWd=aVe0FPy9;i|@g($9CU}iM z=UTR=V0+&t6&)q=&JL@DnM`4OgvSFa69a=6=Y5z+JBpDX!z%Jtmktt^x7WXi8%L;p z!x{P`h?FSQY|T^fKS&<_6}taF%s>8r@DW|TX>~=5m^a0+Dfj8qD*!7nISw;f!Op8K zuazMxu32!?P+Z(w8>7qrDv&t9z;tPK6ZbT4of0AhUp{CKOw z?4W|8qGF*R0sHinyUeZm#{1GSBBlJ90_1f7V$6W8&!+@lC6Dxo+*J*t|Wg>Pn|h|rfY z8VO$SExg6d!GRHGg&UtkSydSWauQq8@!3xepO$m|4s+()oWr-vDQ7eWf0)(?D_u#-g z=SbvAPft~O*2*cQ@_%|6Xi}{~yMN zcM;E?>5k55vbBGDL;)`^dhWQ?VBhHc$i{_j!z#@cG?^NsgE&{x&pO)L2JvqO&F_Ej{76&W?^0}BxpzW-pJKF|;J}f$ zfa#ZOul08xMowXO)%~je$w4=jYQqwQr!OVp8KN6N%`^0huOM|we?qov7bd_P3vUhK zlwn#t2h%F{Ak$g`s(r^^uhdn&JPzIjsjeDDaK(I?9`Oh<#!4?mscj)iy;{n8&zw~n zUW0I+s<`Dj0R@3PTQdQFaE-avMT2kGI8eH%3?wGEiAr-H$`RTf=}|cOV(W}E(jX)% z+Nwz>vIi3*^n(YGe%5e4@%N{}(I~);IdfzexS|?6Br6aZK_8~G$id1&mPk(ZVxBz` zOgSOkK>q0lj%v1I6+J@2;;&)g_3r{i6Cy!cI1+y&BO@GXs)iEre%JElR z(5*4;5YH#uyZ1(0TI8-NG?V@o5|IB!45DKO#lP0Xl9Cd5T++Wdi+Tr9rYg~d-yx-= zvXYsR@nb`SqRKM*EW7sXL5h01_Z$x0bkVaY-iwQiwXaNlfg2L+RU!+jV0?sm{e-hu z%D2-WwVHaFsaM?A+iT#lQluDnwzECT^e)0Y?zRYtR41Z8*G}i;d_oHgixjVC8})Cf z4b)trMemfUoqIL*jML@bG^H2s58fTuk^MwNOB>sFIbpB|t*a+`Du#5YZhBv$CQ^!; zUTyuSg7-fxC;#WiIg1kQB2+|pd6hXEq6EkA#MNq1&|E?*k@74Nksm_1?1dygA|f6)+SQd6%UaC4zbvyF{`!K9j)>?}P$hI0%>41sZ{59O z$IyHRJOMEVlW`&B zqU}&Hz^iAFp@G*1suAoF%e-t@Y<>U&VcS0q<2h(TqW;ze9tZ0qHJwcWJo~5x9{%kM zkO|pPQl__?^W)ALH_8tY5ha$LMGy9cZx5kbJ+PIiV%)_Y)vD|KD8d&);oWyzh@P9w zIHQ8WjiU;YK*sc7&(Svg&2He-C;0YE4^9)^MR^O*_A%W#sD}n&t-`B%seEIe`}1BR z@0Y=^jNamYRbO3Rhd@YMrhylJ3Gg3+D32pvxvEDR_VyQZm_NcxM3$D&AVRuLZ;bnz z9?07I8;f1&M%PjmLjcU!tr0-bkv0B-nyz2>hv{YsnT`1ca6T53Gi!6N=>#kwHNR z$jS2&JRx6WYG!6R2KiUQy6|HSsC;~s*`*7`8>%EZIXNj9W*)5SgGPfpdRe8e^F}3D zbq_>Ky{wImXK^Kbnt*gnXt!_M#;IR&3M!_!)(V;#bgZEUg6d?wcXOj1xgjK!uCJp6 zq>>1IwKmw3SwcC09|VJe72QiPuVCCbli zJ~6R%ym~^f71BW(K%WuU-}bl?kSjgt-$3xy88r?oD=V@?NR3274sujhTKf0mVlU)J zI2K2m&8vf%>^`Vzz=`E4uQ61i#-Wnq?%spe9uzZLkHB0ODGj7Nppx|j#^FF6-5Dp| zRkwV+Fy>8EE*G)US)HUn-kPdoZn~W8btc@Zxue6br{s>gh|Ip{OS1(Pn*$?=DfQ99 zUf_(xdTqE|Hw9D$*B(ZSL^*mP6wdGGkw~X#M4=Je{l-ud=+NCecS=f2nZDp8=0*_> z9J(vZ_yGq}COd?X?8Ki}V;g}P13K0mT{^e1^r5|77)|sh?INUDBlvG}(i4do_Ug*= zGLSGC$668tzk|ZOjTse@mi+sev=jGfIX?sclxX z5LGvz>x2UL@vKV5wHdphSW+qW#FL0rEl~%b5&CsoaIr;j62~4~L1QcNT6o6q-!~~J zB4E}_pnzaq27e@wK#&C{SRtoEE*0{>kC^%ui&P{kq(d(BD!J(t-?!7*TGqV zh|VE$av0l>K}RR31P=6Q-i$NZrQFsIKdj+U!t%SyGD2Z9x-Hbo>vy!%&cTga&m1~Q!UM5I{!4UBr~phFa0+9IE6=B3^GRs&xQ0XZA9G&XCHc1 z_A4%(y}2>VNjvJgipm#?G*#x=^tZXZicU_7igN5pW>QiXZlu(uM71B;GsIDNuUday zx1*R7F8h{|%VQh39!?<|kXT3XQ#-dZ%rI|!TqS+)vD0dHxkjJ-eBusBlh$@$F^^3= z9Ii7yFpyZpXuxz~-?7t-F78Xe4R_id`TP=zUsEVowed)BeJ+1bb{1pmxNMElA9Ube zR+}IU4RKTmUi(@xY*rU5c7~Dh0(!w^JWf1)Q+L(W)I$BAwjnDVB57J%eNH3h<#{Js z=W}mflmI&;Q=!Mwi#SIxgsoX7pZRxfoR^*qwKp;AE&D&2e*Za-0mt_&5jJVyH!grvNmts-Fccf zOZVnY5xwfvEwD%YqBtW)>Bl&-n}6pUWfzMLGoN!C*Z93Wb-Js)y+jZBrE9&qJgQ^U zE$}f%qc+^Fsj0|uGEGb`y{mhmT35c_-+y&DkyBI*ReV|b-b>{7_mLhM3QPImd}813 z(K;)`S!W#5IL@`u>s8A^;Ba(w1eJirgjSAK^yUxolg{JW#bx3$$ zncA(1Mx@{Ne4Hn7drGgZyV!E(hTGDcyam4j%C%Whm{MnY2@c^e(S8yu6y1RjEUjg*ch%b$c)O+ z%RxiGzWxCRXS&;bFoow?E}dO_O{Ff47!~jFarYT4dLTNGrPi^sMXfcdFubSmeioyv zuC6W?)|LBUwaE=KAX(7%b;qv7>6My+I7nR@mwqG6{+Ni}1s!gRh?u`8!-IJ)IeF!q zn~L1#=C#YSa(yR6r|9&AT;`bVBe#b-H(xjqSH5rMNRma_zMWC&k$KKpK9hHMFfFIw zqhJ2kx4w4KS9HJ@2``#Z(-3)5f2|}Dg)H%(C;s0i~%lOg8I_KQEIJ=SH*4^Bq-HCGN=SM%S^H40+o-aJ+D7UjO;O@XHUp_n6 z=Lt#MJ_+vwuWQl6Bsa4z@#`nwm{FdrAl}W*{pftTkM35N5{Tu&$rAE>$WFSN zn)pthl)9s}nY2<0Ekr`iYpEq`Soj=8A)^s`Pm0e@W#Jg`_a{>?uW|L2hub``Wo#Q6 z>Ds6tKYoC&lH8z;fUbGt!@~m%&@8`UxKtMM7h1#N=Hen~(PV;n0OYyYw(q{KtdOeU zTj=r0A6r{nV+>>3KuZwl?~R@*I&%|E|D()?*7jT0Go6kvOcW2%nk zM;MbM^2A$n{}hI=H#D1cx$_|H2#9l?+Q6U};lph6RM_E~(e;rtPLm}7so>$;?78nF zRG+3Sy7sJ3-R96MQrmPpjyKn~N&65oOxD)ph{6ePGOna|qFwMTLbMEhq&l*M4X&!8 zLPq;dmxx=6$IXZ4TxQ!QznwVIY2LyzmZ6vU++eYWT}1fMp`0ySIMhE<^9^PS*E$5v z2AC!LK6bwsIpSv0Vs9%GcSbl-YC-*t<{T}f2*=>iM@d%SZ|>WEpQAh$pR?`e6{*k5{N|HX zX8U5dm>2qdDlOV@jr$}T;(cCF&XV@3op#_@p-0j-mV(-d`dnjGmuJh1ZiA64!VN*+ zZ!cvouB|R^jvf8Fxa>yk!|L*wKyIENdPLq1J*o32<(#76Hsx8Yp8^AJQB zCv$c_*jQ4v4%s)qJbLj_-6FY8?2P8-Y)B1Y4_Jbq+R{HVyr0H;wLe5^z|Qb8@sW=9 zTOvbbqJieSXS%Eh2NyK>*~d1bZa!W57EjgSC~eANX#Hi1ZYa2tQ#<#Kz;Ii7bXe== z^=C-bDJYna@N<`L39S_ots7k3=D&85Yv>tq=*G^<(sK*f%7i7xW!Dx9TbNTJ#fIJm zg05*^6T&X?I@GD64Ru@2`aT|fx_o+DsLsdW0wSf{%8Bxxt-PDU5_Z*nV6;{l$n;X^ zJ4>uP3)ay#`1ot0RW&K;;<`zwC4$&4zVd#kNyHNEf~(28`SZQv*=0u19XUA_bi6(c z)7?djc?)Yq#AC1=$T>85u2y*Cghnoh?+5sF16pc-YE}(800E9j4xzapew7yd2oTw3 zkWPBd)(b;o(Em6JTQxd^Lc2sX{j!yC8>~U5@4kO`gBa(ZPl%{QD=T78`SW$GjLFVC zIdW92Nt?^^=zCMToHkeoBu&_CNJG);KZ9|SUDn{6o9u%=r(8M; z))TCu%R}gpAGV?$%M-jxD87{g{GA-cLCdgYvcI*bj?MmF@GuQ(}EttlNQ zA{zYC2ZC_k8x%Ll?C;;dpKsNEId}<`EE>c`0#pP%;6iNK)ZzX6-yle!M}?+`MzYF9 zay*`jfZMp*G?z6Td8baD8g7@KMQZoA+fx*q4-KsvWtQL|JJ){X@ZlEVL4-1!KIqld z83LJ`P#>WN8*NKxuLmw$2|_A*ndVD>%0|z*#!G~%9?sNgw(_DE0-;(!P@@cOsJ5TZ ze0%?U8#6b_eKI0%qxwFl9v5?ztVh_?0)1$Ne-M7>saOCw!KZM-R~u_pWf`3WR)N|Q z%?Bz@OflVJsoaliPZ{e2fY(exXx}mHAo6yZUHWcQF4$PR7=z1rBHB~z#7(l5NSyb_ zI*LzOCyz8Ilqaa&1^%{Z3c+8K+K-D!2>>w~kL>|Ugo_t0B)oc6dmc$iqnA6Hq=WT+ zXhHbwrhpo6{pZhS=z=4@(GuDUy$Ao?&r*be=LnJo4yb$flzDt_YO-5fnkKks{`EZ2 zw<`hti36bS5cnL~1U}bEW@df@BI7IS5j%#$9Yv0HTUv)VF$oq7fzn=&N{9C^%mxnV zqSGG_0R||&HS|OPop%s~JV2kt!p0JN{1*bTRLvY`-T3m8*TyXRCv+C!Sn_v>N&b}i z)9rvDQ2rw$W@TZKw)};V544Qm^3R%k%kMlC<3!*jw5DpfIXkxiM8F|eR#t{({x_J% zFD51?^Bwx{^vNY?BO%a2s~7-L1Yx)MM3nbtdiDohLeERUVN?z3pTLj!2v=|5kv862 zz6mx~7iw>0Pus~TdEA$75>}H@O&@wR_oxt@5yU-F6d(KySi$HIb|eZ{22}r3_&-JM zhra@=2VTu*f{%2f1=9jJb~WT)aVcb&rC=c)n;j-$2H#u3>3udGjWLAf&3I0(DaYSsn8StxQK(S65Tx z$i^^J5X>Z(awR>bh_KoHsSX`EVrp(a)Ymr)E-Wl^UuQtq8C`FrYb}k9wt#@}xjB$& zy}g|%^u@~3UnRRik$rOG3d$@3E4z*EjAI(?egQ6{_EpgXlos3toQAMDR8)fBzIB2u z?P&1x$G*NDhR1hfwnBN#^e!|aYaOaD_TNDryldAk6+NVep)ugPS05qtEo$dy{z5hv z$2)N5^^Uh^#(5?lu7pWx)Mg)5{jp?$2UsEiXqi-nvC{ETBTDQ?|ZfXiXSx*za zGNib`sj%48vX3D?C?ZKaK8$7G=h~0*_3uAQEa>QK&uG5a+<@7ust!Xf7`hsI=sDqO zG&?0v4A?+@du}x-sV%WLT36Tcr9*3`fkC-&9-kX6ki5Uj=bA|vy^t^6uzb}4Y^x@M zJ5vw{txU*ZX;kMdbLF3}F8|ff9Uo++dO=F+>{aeVvtr4+B0VsJlE@WsWZlHT%zSah zKdh|wTJ#qCWQ(g$+L;_~UA_AJ3SDtQfpp{z8ykZkXP*9ZkxH$Xv|C`l9xYCO>J$sZ zrL9I!^kz!Bf#^6UJ$O}L8a3lb&?sIr6|lR$3r#H%p0hlEzPg`Bzp6#mTwhLuwjDLu zkz~BOD^_@=No*P;!K-nBfzQLLnp(>|+*%zlS+MSjS(6OCQ9$>du7%FvC$uH*GQDmi zm00+>O}zYb=X3B2&TLCqkZiu7demI%!|=$fsip=7s@J*?f|%9yqb%$1&hhbD2MEP)=T66ugnqV50D(Hm2z6 z&z&x2GFLjnMhWC)U7xlAwD`{51$=68wMXb-56bqt5=WzX-)_YiWzvUE!m<-$xG{rffzAVe4}{`&&$fz zpal=!fpmvMy`niF znFJ1uuuUu@*7@L_ZMzf35IWEmnVFj-WD}#icI*H$9qVr*f$e{Si=T}M*L+joKb zM1XMtgXp0d6#RIA-cF*hU=AGMknOZc+d}J>N0Befdbp#cC1j2u6o>p$H_~iFf(PyA zi@&t41C9NT2nbvcM=Tp)a4|8xF*`fE;EM1J z^Ci`F-oabGYfeGTBcf5rWxOd`)Wz=aQGxSMR9O8NQDJcF-=hMn*HkN0!*}$;u9>?! zcXp++W)=WYtu>HhXitJ{erWtJl34=PN_KCb4_TRRFB@m1sOLmpJ0Z;j(5OY|;i^@r z#LE5^De?%BLPx*YQQ=5I6O&}fKSzoUth9fK6lF$j->8S%HIE)%I&1mLyT$Wb)HTb# zx@(lE{`FQ|7)ip$cxDo6*-1c}U7 znB=8@40Xxa)lI7-7V(x^04bz)`hbCyU3g7%R ze}gDL7;DIPFmO7DIzsQw)pyuiErkQ#-rgtxyr`epy7$rF#upPFE|4 z=G~4%n!oetI5yh+;-W@e8R47((f#8dC{Z@_Ph?&kTErSn8M7Q4{=gv+nQ56_J1ft% z=}Ld!k^KrXGOX?oJ<;_5ud_225ASvPOLswhSh~%@3GiT7RlqsL6o=_g91Y-t5*ma^ z@A@C&oNVKB_7>91CpUa(xf(=lgUl`aw!p;rIGcJ(XeMD27I>)gTB9d&MYrp$ibv6D zy#8wo26iV?z)_=-$JRyZd{Jh=?bvfVZ)Yy~UzUVO3OZAmuiR}(weRKt5?YriGy%pl zHs+aST`Z2uiYzvH^?W-By0SHS1R9`1Jc)hQG4uNNI^$o1n)xXiNS=KaI2X9TZ zlu~zg32uO~lF6X8fgdC@l*^~YDSjq523rm?*(xu+ zQt;VzgzZY&waJ_vgKp=^zqhD*+?fFlb8xRGn`dBUi(9l zTC{B|)`jQCTarUQ=A6#5Y5T#QEFA53llCUCRe<5}jp5}4OaA#ob<_Zqm&bKNyP_2? zp4xZH{H9k7Ezf#h#j2|xK1Dn^W2s(XALgmM-`d21UJVwwhrR3b3uWZ5JZv;| zm4n6WSdHGS@5LJE*MQ`Fnzg#PR(=sxKka`uTK^xf>%`rgHoV(0j4`u_RnRU~6m0LPT^inj3rujQhce2o1*< z;828zhxugb36)HJOxiTfXAxRJ^ku^NBv{@kaXCwKnBmEZ1O#87Tak;u^w4lDTY|oe&8d_W#%Zy;xcyjw7%I`oDu=a9kQvYI|M~@v~ z{d)&}CJpN=nr8G-KXU>)5QWzGK9tPC!sxOTd9J%EDSZXC^x8_LR?QZw#{dZGpYlpd z8H4VEQk4$d>+$2q_Vt2+=9>Uru+672SSK5io_<}6HUk7c#IR(XO{g|-?rx7axv)1B zEoK6WVUo>f`2OCjSXY$t+Su%5Y71K3I9OrT$x6)dg5FsDFM>Cp(l0=YKH;|e*pgpzk z-lIE#uBEXiy8b6_-4dY}u<3C}M;?X=o4n_?U13Ve_T4S86 z0>A-8?q5L`68(l>)|Ia}Oe0)0h%pT5D0i5j2|r0#H?SUb3p)sy0L%PTZ!gSh(fTI~ zZNda`wKf&;y6ho_kf%>sh&l4WO}qpUfHBP2*f_C>WsUPhK>c|$orC-{3GHoFGeF2F zsl;5gYYo)v0oo99wWGX|_Xr~x{sG@mi1ZV&Wx8D76K`UI6B!lB3YLUkywn~MzM3wd z+cnCd_yBUa1p^YTjmhGvy|kjRx#A|R*?Ne9p%Q?PeL8_fv87m=^zmXq{V&XDA^Unw z$hf4!2O3RH=9(J-`H9F^scJ=8-t?Cm2jR%n(Ot;;+f9rr;H8de@X1PfBB~H(QDdb+ zRTDv>h!ToM7>GiRI922++n4fQ7$s0Eb9WIDz|#aiAR!tr&%?{tWNK_2ACt%S{=*p; zYpE5lc9v3NVZTPk0?c#+L9KfUkV z+VN=)mpXB(4%ms}?c-pG61q+e66pT@$JJvpGr39B87qIkq!yU@#z70Fc;tgob9sDN zvtnLNfrf#H1D+iA#n-c;ni$IwoKDj#7GfYjc8t@>z~i!}v;>239=02S(1o|X7mK(t z>hV$Go?MGVim%4?-6ryYwPLhODLh)x>ZC&t4tJ&is@HDNU1$o!G4%JGZ1ueX>l9tI z4>k#nJOcwmo?x~vQ3bOaNfr=!0%s5e98-5q=#S)}2E%xEU3E2UwfNpWGyVCw zxuI-IgX0+a&fb6cFrGvrggQd&xnEb6X1vJ3w5QB3tWqojK+{JL9yBsFWx8002-$ya z;qy@&QLvTBLW2NXWoqR}NlD6X6CuY*h7py@=H`&w**xw+KXEZCyTFPp0rZE?dT^Ot zT3LHl)roZobikB};C+m@X#ngKIRxxkUj6QM`n7rHucP%#40{eU>L$R&j-xHUyww|A zkK|R+8Rgj6SST%F!~jcbfa?oDxdh#gjYV-vrh3#%ClzA}9cLMdLzI-Kj6Uv|kS8Na zgq=@#=yq_Yu{uJMfB#KqqinH39JIv-uyxBngMkB5@W(0wDI>34Kg2g1Om>VnT)gSb z2+W+twgj~K|4>=x|Aaq3CGeG6xgQSHG&Ri-VEm8x7nWvRH3ordPyGQ?c|LERBfXjh zatw0bO`PC37crk&hi^vB$1(Qd{d*{hV7wbFA};v9p>>a<$sOt@aE6kWmj{|cLBXj_ z*mZd!;2ePgXWfzgsi%jKd1aQZq-byA0qj9hiqjY*FWnO7tPNL;%uyaVU<=3{nb00u zQD;obLP1892I)qqGBPhW0N11KnRFBs!mw{fy3B!TSO+F%X1R9o{}^wqQeg&Z9xaa0 z-=3Hv!#-Ymznl9t=Mbn-rZu6cQ*n0P0$PtU6NNQAhe98TV(^?W1cYB<>Yi`c0W{<5 z&dmG@*e#B5Y1NFV2PCF*rd9ii0-xGDIoaU+z#Hmy?t6@e)P*rwMMbZv(nSKz7pFE_ zJanSYH<5Q@t4=R0gg+YZF4p*-jmnmw{sN{`0$(^Mx*aU+ATWX3I1+#cw=Z*SpxC|p z_eV1qK{Z2rw6u;SfhFRgu2(71Jg+z3B_s9V8Nxz+k5hdSYy>crGr&!;S5MQN4!T6E z9Nh}UGFvsK=1M)v1B){j?HMtiS{_~6?+dVj0qb|XJ%FGPX}y5=&CJA9J>U8L`>ZBr z*_5PW&Uuv~xdzsst@atOS%nx@h`KdKt*Ks;?HDV3jhf3Pvs*UP=Vx!Xxj`}>l`!c3 zWIJ~fL`d%5#fflqupzGD17-uosT_cOB`YxPt_@oq+mp5>P9WU9m0Q@dMVcH8--C2? zo2a#rD9Ox%pWZ2iHiZNFN&p~I6m~mvAZcWgB={a08RZV56Tsn8f@uKrSQjb28O&L8 zf4eb|4VVP`!3J|dAO#nBtU79q0OuMV#iX)Q^(uzQEJxUBJ?4~sEm}CVC@k;uu&q?)M9QDre!Ri z?!7R%{BKX3id)QV5;1L`eE%<`xOkzlWn*NyOH`EmKQUoCCHPM!Ox3WL*k3xtzC`k} zklWjEtHeQuThSG7-_bD2+3j^asJM4|T`h=%tDDm*%e~6K8*?^o3!03nRfd`Je8lI1 zUAC3q5i6_sE~cw^X)4qI(h^0m_e#O9^9A~3LWjx(?ri^*=wzL^MOc<|#Le_G)s1@( zJA~4Y1zbK=89GQEnwI;fOD3RBxV%()Vb)-LR=!RrbWn&gO|M^BCv>4kC8Xv4PBpWR zaLQb7wP{wtw+@!&*fu9hx_uSmMf~rBfYS>-Ix`^y$Y7+X||x z-pN!vp=AFVL`?r=cd~+Yi+O@8S4g0&AlKFHJDLyMGiINVNo#pIRmdEyuCR@|yRJew z@O;Tq6iuz}QdH)`Wrf>g`#vv_6*0t9>)mv9G`Jur_3HgY>l1s1$+dqpSp@8*ju$99 zbHKxz=#b&or>`3#Epy0T(jVU+^>s?!6Qu8q7TOYN+qP}nHqN$f+qP}n#y#_Cx?|ou(enptMO0;FR<3*iC~UC@a|B!_ z7cT?YGhtM)wP4Q9Yq(>KbcOu+fNHC?*BN$cA&_&zK7oI8b#OFj!hf3FPwqHTw|k2o zjzGi5Q}iv#yXpG+2cdMoTYO^ZMoK~OCG0hW7EhiAvf=WWQ>HuJ+cK1JPtv$zd7WT9hCHaVoTm!!{yi3zMr=7y_Pm zTr3`Ft{tbZv?14BLnBA!ClvGE%M$*Nde|!V!FjSbJO7CPr?&6JZSL{@9AWd8RlfrU ztVh|yv2>4;{aU<*=4of#vDa9WuwGiH&Jf#6BuSMn=D<9}p9e;iYY8j%nQCq|UAgvV zt9enL;50Wkgm17xpQKNSPtZeTEdxIb5gP2b;#cANvBFz@pB@^VYDN6Ckr8ynja@) z(|-=`A?}EXn9Xar7M4z>+#3yKJHVjrItX!9(v%dsfOlS?5<(*eB=qg=s#%B0` ze$wNAi9>)xn%>7N_$V3a6Espz?+xI{D)PzNi^;Ul`|}=HbCdR|GIdFm;EE`RZ#IL= zq)L?CV^7S^fKW#AqO>8LfayU8GcZgIkj7-Xk<_oBH?=JG%B21tf^qUR-r);#)O+U^ zD@G(D<1jpX_uG;(W54QIj(0yOsj3`~M(~nq>V{^gu70*i3u@XEP)kaB_wZ6fO=|H3 zjZ`34U~hHwKNv$|PT^Rh5wd3{aI>6$%B>AdAetG2kqo zjOeEESg1Zj-^d`!L|vF(kzZs|8o>0)sG;2OPS{;wQNg?t>dtWxojQAkq{2n*SbskB zh-@sl$_$Lj1ie40+ngn4L)dN`E&3pGP4L6tc~wK!a-!wI?Y%)9GT58U0%}Vph24#P z2pj^I>^J#GPsm~-s0U8zXlI4GnSdZnVkp^riE_S}Zh*DB@0Z`hFbN>+N5@9=@Uz(a z%J=>uM+(ZM=sYI)`mZm;eGE0QeqcA3Ox1Q4}S^9jX zkrHix&y0tzPLQin*K2}!tM^`Ouf25buXETo205H^=~iYBQ*1=ERo(E;*y(K@495h61Uv&{$H*DiF<;IA%&VZ2$hx7GlxX4#+Yv{5G}ZZ8VbsWj zPDV(V%P1@Yw|WAL=jj|ET`5GIRV_72a+QDLd@{W$&amg{LlZ3$Fi1 zB!HFQmew2EaqWKNyq_ZTX|7i<5$QQS;d0vrbFGo7K=|TN2#JJ754~CZO-X9*jxH^X zPTmuK_H_F*?elos&Qw8>IAh827i1}@WnjE*E0=di+#)FXLO`m|Ki|ur)x8 zZwois8R;({&^jPTKeE$$KNtV{xggt|>9os|@3c+C>=tg8D?VhrR8%(MD6$e_WJt>l zA?l=d(8B%w=oZndpj{fG``^i6Nwy|sv2a_yZ9jG2ZammzPhbk7XobmsO~e>lRl$7P zo|&qkxqj>P=lXP)Y0rfA{vpv_+-OKP>!6&1epyb#*E#upm{Clv%_3^|P>P=D2+YYV>A=PpX^na5W4l6x4o{)$*(*ul(*HAs%7I3&9*6%%Kpn5#-0gAIr!NWkX5yB9Od758p@exeK6exq&A26HU z@8|dP)38FMzIQfO&~-wR>#c`k6d9x$P=q&a2vw-t0tRw&3k?5)yojchW+dFyVNbdu z#=Rp+A5lvLC}Fp$6|sPijhe7nRfG5`Nm?G>SK*OmPJu00h*W;4N5cf?Np1BhIVvZm zy$>UeoYdnQb=LQ@=^LJAYf0VF`Hm1~%{GL7FiFt}>=jEPkkhJ#?39cK2BxH3rgaZw zYcbJA@eIK;&U5p^e5!UfXCkDg70AL{n{0}pZl-e&13+mDQOq$qbw48ms23qzykilf z!x~x)x|p0_{3)2jRFJh^S;M zevw&vIbdv?; zC|M|*F5g9JHa}cyG`((E8?!rn|8mbB^<|;8<=HqPh3@Z{saw_7a|7OW;U~8M@x@IJ zffwhdP2W$McDf$>Fd}0}vBsbT4tENL+N11et&>eF8)Y<6OO-0U?mDH^TDVIkX$OlB znqoSmdWcAP1pkaejzk>N_=mDUA-bGt*w%n12EL1Gn>cMnUl2;Z4%(PX^@alA+FUK9 zfU^6NP3&alzKC|nAk5n6)k%mUUggHM_bQlx=kUps&d2y`WJmPukelwY^^eIGU)=Z< zFtDIQhtt5DIV5@>4|AX}QWIu%$CWbZ8swK4EeFTY3mwS0-D5fcS()l_WPRn-;jB># zdMD$MS3Ik6dKqA!;$Hl4#U9D`IraMKe|OG}Lsk_JAamE+ba;a+}sM}x|g_shm<(9J*>&L?%#iFfR$>%KdeAFmsf$khxiv(U6cBF_BKzS zw^NMG#-@(TWK+9(%jhjCW;SZ5rLEDa%eoxRQl`7S4i`P@MM}d>(9mY)QvK+L)KfN^L zc#H=bMm*PBO}anN^(?lz|ATig`~RqIWMXCiuT@JYQN}8WA0hPiCz7WnIj=^KB7Dxg zD4>LfA>ZsUwj5#AgeC0j^P)!zPDg!z{oQ>u!{Je(Cw)|jh~+2xNDywi!pg4@dzX($s9ot>U${LN7aPxiw^moi&%%~DcU`l)e- z#A#uRDFSmv2Z7EcG)FmGZglanH)B}Qo7t&VaQ5a&>q=B-?(9tt`scc!H!u`G2{|*$ zTj&79kU=8~#=#g8aoupJ;N?41qyW|&W^z!KCmbYAYE_5YWvv9^IxIIZH%m4Y-U}yZFyfs*u|C`{yPO^g4 z0Y6H}?lGhN|(_-IE4NqPCj17W7`q|*HK$=}t2Plc?4jNYze zkDt@e$xExvrtyOxH*Q_NsGoln7rCzTgMeYXR@zMEuFV^}Qz`E2Od+e($qa_a{3>3( zkH76&YS&_4tUs@fwT60ZVot9;>vF$WwK}gDa`o-$!`982EmHDoEh^k@A{d_q93$(F z4Bo1y9O08{jcdxkJn*RvaYFB{XQRjCi*?@hV~NYcepm) z#LS_q%Nr5CyTW}{aax`>`Dd3*asA2RO(_1K(Knq^$PfjZ8Cx zmI|=WWOYR71vOZ8)?0r30IM&uG5?1+`yW}B{$G>Bo|v-?f3PT(xKXb(Z94{z62Z-c zCEWY#vQHW|B{?@2Q|;|lboP-2ZAZkqp5zM2zvLiXXr9cbg8VNzAg5l|msFAoeQ3Qd z>#s{Fz~ZUMP5JVX?3Nyw=%FZ%eIIdFW_Phx9uhclSe1#~?DHZ#!kk)o;E`Q8%}b(* zpc%c)QuD}O%;e}|d6b+UUn#K^aXJ{tjTSAD9ozi*mmSj6jfU$}oeXMHVPk|;k}8Hm zs>U*M(?!<5hR`BT^tLwhuC`WsQ#2R0jb+`iZ$_X!tm45RSU@4o!`3j91H5Id;8FbB zNOOY(hhQ*Lp*$B+_TagJ^LzUM^LytIn0b~Q zz!|nc!X*87IJ`qc<W;A#??|CaopR2BgA&2C8wBGsYMjOcrsYRCkjz!E09) zYL^(lW#^2Hz&WT@KE8oJX**y3!=e3;8WCnThX0n)llyH8=}|;py+hJ)R8#;)U8zLG zDJ(?AlQL%JY)!@bBoZ+BgQ*{0k-c*|(#0d3?;bl>(R-;M43(U(i_mI~^wNA4!&uD#V?$6nm< z&N;Z+}Ok||YQUnhz5Sp8_RW!iiSeJjK` zc|3Si#T}X?f=&QytE`Co?_^vrYV%&$2&R9H2(5y@s! zPoy`tk=TKB5NdiFDn)ZqbnIfF;#IIeP!iADAC{mc-oHB#AJ`vuxXjuLWRDKmdiB6R z;rPKk{9uf2t%n-K1#``*Zh6%E1sCF*>Ku5*lLY+T{136g@;@mY%pCvt5dYhPSSNYY z^6+15{3{%uSMrgyiAWG&qp|(;Hen^-0Hdmmp&x+<+()-oR(6c^p&+R)MUCFE#C)}p zmS?8>zx75=%#G}BLRQl*UF##^N$t)-=%NMJnHfhve|vJc`TVL&TmQL+)i!*8?q9#Z zUXHG<3jOKwPM^H)Y@yT3H7OIenhF2uk`om^s$k!#Z9K2s=Z@T-K_1X6aamp88CF_} zC402;d9~Ft>f9&H>3Jyha_W*<_5X@LjJ1Hj)6CNeOyjF;$ zInordXQh6Lgnfj94rtmR9fdL4dGL@LbEFF-C)D)eDR8C;TS{e#q_YT^%pBs(evwAW zvM5m<=8FP@5+;OK=!9g-V@vy;-Es+9*E;Ew?)Nz!jpF9oV?a{C15_Y-P8A zHY$Cd>TP{ow<%`XOX}B8z{Y1p@c$4p|1+ym4yOMaGBygEmcjH0KCe_K4pJJ-v|be9 z`fLz_Hd5Q){?^#reV9Vg@IO9D=Eccy#P+2BbV)LTPXo~u|3L7$%u+GWL1o^5r=BpH{$y}#+KuAr%87=!VyqcMk;=MjYP+r=oO}tFuh)*w;TqYUq2@%0WYmh zWlk0$9Dt%XWr79i5d6hWBnE(}mWC0Ps~f-g36-OL&9_k@&|1@;O_^0LRD{2h#|#f- zem)-CB5tLDiF8_1iVtc(HQFwV2~mcSRogS}t@nT(~`Mg^u<< zUxh~ez>GAz;cf71=P;#9Lqn=zN&~^cDdf3vZDHH(x87#DU9+n4s9?p_@QctZ&DI*< z_LFguqV)a<+xwjY{2z9j{eNFhB^N_y4|@|jAqinoJ6q@few|pL= z2Ca;&hM5yTDjdDU2*ya=bAzE{|zS@{g8GQV*Uv{FMFKrW6i?(ZMy{{Y1%;32L| z38s9MkoqvD-`uR)>Dgh~tl7D(TD|>}+@k4LS^axvGP{oTWNp)G<~B1Ov6AUm-{$Pbr3wf_&z8b99ghx`iw1h7ybzXK$5w8%J z#ht6qkcmc;uE>#n|tbLoo%7j)rxRM8j(3n5Zu< zgMbzWEj1Wof`-+eNgUl=1SP6e(BGw7SB0*ceh@5ONwH07E#7KeqA?l*O@)+H6*!%k zLmhwXoV0FSmx&ZSwFIKn5uad=RG>CegHS+Sjv*+m*hR5yi9{-k0#Z3nOl)dgG#wc} zHnxReE3u1EpHo#YnvO@?Ao}(q^G`=)Ju-qJ>V!@kt&^Uch)YP_P68cC8Y7grk>#s3 z{pS=zl!{3xt&SvMC?b%=kccx0eqTY&7Z0>WvB`1VzFX*8xOW$4t%4ZJcM3Pu5jOmK@-+obEZB%<<7hcgCCsxJe=bo6fg&uAQ83 zZsbp1<;ys(c7QG2Em~NcG#7ucf_^<(l0=aj zAmz5=F7DpoNm@xSg23T^2vTg0YyW)uri-R-kd)2qV{eW1l`ZG&{g`R+ZJf?H-9hJL zN$h5XN`@G*F9bj%{eOE@86GuGETr)8+9#>t$31sio>>EyR8=rvl$E(H?7&1HD~ld z{4Pgzd&?wi&?|p9FH_4L;xJVRN4O&0HvLQ^y4lO4mJ$^z#fR_G@B9*WWmm1@PcOih z`W9UM^j#KNUCI$t2l_K(u0#e%XLoy?V@&2#cfvr8P*XW5_hqgv-1 zff-GmT@Dd7M=ft}M@MgOEk`vqEiH8Pxz^ykCw`DhF|diwU4Kp5>BOJn>zzFvgotC( zsuRK7RlR=rf~Tg&dnM;|o1VxkaCZkvZh(|<@SXhIoZ81F&dKW(ZQK2pX^oDzmMkII zYcH?x>zJVy;frt7U=Ux(e085R4hS2814W8xQ{KMW_eh_P-hZCxo4w(gYlCM0Kne!6 z;(S(}Nt!YvM=_8iY*RSfHaW5bg=z8T+;Bl6>cj(>cqunKCYHsM!6I7LV+wtzD#@xS z{~VC~J^q0F6m1<>RJV^sHu)sMR-3U66Pkh5mg;~{w4|Y>ZCrEfMvGCA@JuK3iFWt! zC7GwU!yg)K$)G26C!iPdi>Ja|R8SeR5B0e|1xt9g;NEo+r-A00<+@WpZN;%Q9>uiy!fWUE=zN z&P|1Y=MOI{Td>voVv(Sh@!E(V$XZiv7KbW20Iy(NiR z5F>KocYf^X?O2XwP4AcRY2NeQBy)aK+e*M6jKV#|uP)LWkuaE|D%TJJK#fOVY zs-2s1NuH!~#~qU=O|Pt0?r^#wE5O_alo5k=fy`y&@blS2WE5vcq6r6`wy zS`NT+Ctd#KKiXHV(>=EC3ENnI@fzEiit4XJ&neu`xV7Edcd(x$WX2J*PY*-xs}!#{ z6a7ROt`vrN7Pp*Vz;#dK*M!70t#ihy(%c*9?Z0|p*K*{3#hu>r%;H}Dg*}DheAJiw zz(5n->4YovsDd2Ge>_Y*dxjO8##Wx6iZ`;$F1s|I&DM<#L!9M1nAU&~&jeVeO8dHZ zy@orQ+8H$fC4Z^|Ks(z@anr{n=O1s^h8u;;rov0HZY->l!G`O1W{&NrJF}k>!GSSvnCAMb9iota< zD=lsQJ2s^EnG%NZkK4nQX9{8wD{K{4%iDFbUPLa0Yfz#s@?k%6oAHhnpe4;@#G^tF z3TE#CD)QIKS#e}NNc8fjFYx67244P`)Z5)YRIOZ_RZRqX?_C??xHg*<%ZU=u*+w= z(DTF)(QTp6m4y2O=-|7*qu^sLq}s1&iQXTWq}|z6!zNb7(H|C3lfe+lS}0?dWj6fa z?u}O#xW!8RVMq$s;_$(u+TJ{ZB2Uhj%6rsAW&#?)Dw;d8c#JOkvB|B(FN3<5U;~zJ za+2jQ!jH0qAU1sAAp!)eyvflT46YXG?u4fom8}Y>o>Yf-$=Px$Z2%xYcId&ls0Jl^ z?9@So_M>29#+b>5$kbD`il~-Z(RS)s`2<6F<-o6xkV7_?Jv!}y!8*sUM99jat&tVi z*G=8V&8{G?&dVV#hUv{6=Jj4 zP?`68WqKM2VzU~Z)-PKNL1Y}Jf3}J;PDXFh7L0f$yWRGnIw&1uH7HGOf7uBal}LS% zh-r)Nt>=O;L#f>N~*5( z>?1>RvKrwZHtN zMT59s<-;3Ne#bKsj4#r$D8Jz!8Zg$QXB9-M&Ke|SHIlbuy$u%MPk?Rftj2X&u#PHVew zYERct!Yqc2J$OhAwj~w1B~6q<0bk9+vXqGl+fHzOyTGUXg$@~*#*5L5MSrrzw3zWm zClPu+*#W&MZH7Do1`>Fb=da!1Jf3I*?Q&a5(xQq4Ui;mzC}M1%H$*ihcA!t<(2&S3h5BZhXPm<$J$*3zK<-CXKIK=BcZ1x{Zd{~v zWVr1Vb+zN{s&i!iJ3@MT{kQ6f!7(CNne_fX#S1i4So6EnYII{pQKL)^B0$gZ3JsDW zDP3fWNSELQ89F>nj{r*G6Ho-@_@wmNtoE>pyi1mPGAY@Ip4T&o}duVfr){w0}?GB$i!Y3GgU*-*=Cm0Wr9|TE2m>y9u z7|9?w8G?)u0s~QEEP|XcGn~K>b_>>_>uxf@eoka2Je=$&Y!nj$CJ;swriam)RT<0I z+Sv5S=!wIR?iZy!IyuPom1p z!@TkB_;Zq9PJ_(^suPnF`Xj_6GFl^bAWdX>v-0B7v{Egk8KhOns&4wL;6@Y0VnYc} z{gzFJ`TOEiHX)Hh^_r%)+sFyVZqM1B;eFI<-$?ZGSHZrn;+^K+^zELE5N)B3dX5Ku zx&O>$xFPb8Ia28fo~%lR;E=(6l^taeDeUrniX$smki^WGxCBZFYvb~hoUshi=1#u; zcSfk*TV0}c`tYk-9YKDKHS8m@#`aVTlQ~Zpjd1Ewn0<_0YQDpAA8gF9muC2?B7?R{ zSe?!Yse3WXQSm$iVO#wn^wUGndX)vG5UWZ4 zcqdwTnQ7KT?>IB79Rx^u_STdteY}vOdf zI|u~gz)>+@SJNgDD{(v+xPaJ5KmUfScLlOgNKs(S4ewCJU-Q}>qw;LSJ)d71`RHwE zXjTquO}x83W*;g0^MiJHTfHV7*}v5bU%XO-z!~cwy41Ssa5-tEL}vJZNX%*0WJeI;;bAhGodDnwMDfNPiS-+_gGV5YCS(TcMqRltIG5a z9_{zn2evJ;(*Q(ehJOW(n3NWn&aZ&2T??k#Sj=lbY#5LTiHHT^%&GR|+ySF|F}>NZ zMmjNfXlR7tFdcpSkXu6QG43hWBb_-Jh)m;R+>fzVdpWkDfDl%@CrcOsD>O|C+v;mN zu2-m6fHis}OsR!RBD@>MmPXZ^x;pq*MLt#?cS{KPLnQzcz?C;n`fA z=gt!6{j?W(O1(^D3Ak;LEWLN0x9H$uUu=?GP|?aAqs~A|dF~~^qm>#AnNSOYC)zG% za%X}7eWeE}Sh_wn%lc;`Lmmaydw@;~&zT=^qr6F!_==)2?E=^!7jgYTRQLJ{A?@_d+Hj?gtFTR=V3 zu91m$0z<+L%ea}3_rG>O;#!)T7m^$KD!B!B2`e+5|87C)A}elh@~GOZy`9AL-`41L z`xe`ER@(9)6a&h|fXZH4Y#?v&XkNh6ma4Inmzi7w1FxBb+Jr43fG&dUSaZ)De`tQ( zpLM(2Vafo@C0>MFWgEj_xrnDBvloZa;AHZXp1tJFfL;qt%sGVF!$@F6AL)jMc7NTQ zq*v7E4RGYnJBQ0mMoN_K#%?4~qH1aNzN&Bon~im7wt$aS^W~w>4S_n%8;4#9nDWg4 z5~$~Rt_j-(X9y}w?Nqcq{kYt(1Flb!bPR=R!(J_`W3P5t<^%RBKyz@cLEW-zHKFe2{`*5^DrZ3^t9NiBaWPiV?FdsKe^ypQ#zxA`l(Xw+I%{h1a{&L1e9a0Bx`?7nU zQItO!0RwfcF@pWzPj;-?g3&Nvz!@f)KY?eU1m8ZN^_^2_%m>|O)X%nQf{F&t!t7JB z;d7s6=Vo5`=#%LLBR$R$`vzBJ(4hAwsd*Epje}$LTv-2no(c<@h*m2+D_STgD{JB{ zZ)oc6a$@h|Z`0k9(MNTxCinRX+)gY5(UcW zpY#Ewp9|!yQ#|ajwEP2D9xPVdmJLJ=1YFPcLBZYzpgG?0!T_T0$6@*MlLF?PE9@}0 z@ptHdy?-E%2{#9-tL|td>Dkw%-&mhlx0Cny4XhYkkFe<_+0yvxO`xElpqGo-JXD+o z&nf4s=vf01(ffTMz=WxZn75%jh}*uxKVdmq)OmsAt`623t9d%$(~uA`IiWcoJ>G5hNzy2j#w*lD{ynX}kY2cKLEV zHHd5u|EZ2bYcVIH#hvSMNyrqm56LR7BPcNvYw(iY)6HZgkURvoe2ql6Y0_=4z;?ldHltV3k94kjax=j-vY-bRb-OaFtJ^&5JelH++i z{LfD)ZS+lH1erBq))tS~sYdXFGzNv2sC~EKviaX(fkleKAOqSJzge2X%?a%WQKh2IxTMY;`xfO-r zM>me%4a2fW76n6Vlo#hSGOGvEi^E5pQ~N1CK~ZUpT&tEEjl|E{b`GS)sEE7&yv31{ zc^X6~FhIwJ{eoWk$l`$bA}s{p4Y`d2?$rV@W$n3Yg)PSXhSC z^pv(H?SLmEmQSG_B^>2qrXsTPgh_KW!%Q?l$6zTLS1ES+tdYSiqbZKME(l2q*fV1d z$b)irp3h5^TM-$Fm4Os{)#9&y4H zBHP&3O?^v0h{_82bCF@t)hBp#3mCNE+K}@3tJw_u1*|J?^9ydMf1$+#z{5_cY2MX( z5B5xj4x<(l9{|$~ov@#!Vva z3mk!jDO)n5P-9H>Dx<&qM;tYv5vdJd zZX6OkHj_1X-&C_rKdW8$q`#eAMbsmpq-%T2YqtohC8wjQ`&(~@bkg8N^NoXj{%2Sn z6;0&5ipp8#u@FL^@g$T2$Z|a!-BB$(Zf0JEZSDLz(HNIFRrG$t(V)n$yfE%@JwqwIQWFr~$QPf7A!1P=PE7Z(N^s>oJ^VEzHuxBII8lr>L=@fqmW)%2#aZ_7h z-S@-dFU2j}oKD9RkXUEZY@uImT@i^2*VP5`DdbLq`o+k+Ffaa~T+#kH&2BCX*-*Rz z&5!!LSZ0M=#pCU$`F@&-fPGmznB7B(Gisw6Q1S>EjyOoKGoIxx!S;ASR`!^$J}3#y zv_uV3?eFosqGyED9zgw_=k_3RtrR3Mazr&5OTnvE6lsmvRCZCJJn>Ml3!ozPs!mgl zne@ESs(GoeLza3);lRoiDmD2WmRL_Z<<*Z;!a6Hr^~i2mO8?kwIp*eNN8yA(G<4-s)t1BJ z_n&G_pgph3dggt*Vf&cPZi|cJ>sRV`liFlJAqUIIG6x4szhSnjX?!t$PD=ACx~g;P zT)r6dz1onz_hbLwTK}jF?2)t(K%`&x&%WNE#P(g-dQUta;K7i+q1vO+6H_+-)O zH3q-6=tN2tIgIOFH`-1W7%473zUg$F=o4B?_t9qbPzRf2iuqGx6;bNHq;STChJWb# z!?P-Fit{stS;rUpMu7K-b=!S3RtVB$dloBL}!N>`y+KU^@cxS#p*?*ko? zlS_*OhK%GiG~xBA+-i-d`XBKNGVoy5Pr?i}{WQ-hcA;>K9v#Yhkv^Tk)WIy)I{fmo z&e+$~tMAUa*ky=Ox>&0y2^=Izld1A|w4(+#Q97 zU|NJfXFPs!bHV<1iMbh2nUG0X8n#_bI@ zm!UMzPu}lQ%D*)@PvIDaNH0}upR8nRRxngkHF7kCbE~+Q?|a^Uw!0@;+j~uJC-NYU zrsQNM$CM+T#afwF0OG_a-rgDhIaG6LijUk>pWK|ojnttbT`(|u3QAsWZ@F@2eWSz5 zZGiq^=iCSjIHc>&Ni=_0jmqWu{6Lg0*|+G_e+#!hLa^ok1+fK7q4x!1D@poMoCHl& z-mSDs3|y_($!2E$D&-U=IRdgds@~ZNs^(#CCR0}#T?rS1Kc1S?%>EKe{l))X;5|0R zjKZ`RZtS~9wlBJI^f0o@o2YCpyAR7q4a{``fuuW29qu(jX5ITVD`)MAN@&bxpQcoUoTwd1& zoT?Pp9>mGKKx37SOO=pwR>^$o+=@-1t3Hy#vzMb}z7b2w z_8$TC;rQJHQfx@7+ThL&p7B;6G(Q6hSo>fXHwz`X$b)D=Zc#LWe%r3 z@RQ?fAL52RYIJH-uAsaQNIZR%PcSy>VcxjXOzY2Ij@sWbyBfS^IGI0?<+7+a1pOe> zLP~Q`KfZ~Up1wGw(Z>F=$bO(n;Pb{k&QsLhwFM%#(ft3=rK92YD{ECTQ_{&*+>KzW z#Y-}FRd}ycYj9wRF(OP?f?790 zI9CP2zcxYL0YJ##jE0Ls&RiX=&9vPsPzyAFe|%eA;@e<;vU76>OzR0%Uo;D%OBM#T zzZ;Pqqt^oy9T82oQM7{SaG~R(V(vJbdT-Yu>!_#A^ch+|-*d2IQEKI&yVuATboYnv zZvng&x&dkg@p@&eCo0i!A`OkqpWK7#Ut^I?nU0|5RF+2LRF8~@BY-Z~H8cN8ub?+v zOfaCn=b-HjABLSP7d=|1hr-0qZ|&PfX88#&)-5r4f)U#1T}y_T=KwQm^zHyk>*G$% z^LG1Oeo&dy+JsWa-N)hu<;Lw}n)V=kfU;PtC^KWBixn=OnXy-|-k=Ag8MiEE0j}%H z`>&RL>IG3`tvSy`fe2L1f8X+lh&WQbic(b3P1BKBAQP#TpM$J87mNsV-P^0=OTJRd zpQ2}Gx~?9dpqE>!fX}+&FlP@f%YCQa`2nUi7uEcS3CaHm56k%9XnFspFY#-4y+03! zKEE}+pTD;N!0-Hk082OlAoS^gw5{R96v*Xv&qY_F2DWG=k|^v_L8~ATrR?yuq3r~6p{p{-v`nc< zof4IN-^7^{n`&E{˴H(zdPLpc3oSu9yDP8L&`q~f4RQ=KMt zK1TDm@EoF9Qm$4_yofS884jwzB3oH<^4W7bF&@FEfm*#fC1j|Pu>;|_ES@&liF+z^@<8P^unv zO_CZYYN(*jWex0#$C?Q(#%9!z0g-g%C>>}ssJsrv4Nc}HJyhn<{<)8_4xBqPZ34?R z%AV^GcaQgqVYe_{?g917)SHPHKb=q>+Bf%z%c7U;dj0tLu=uXyn1zu8w&srGEZn}2 zH|(~ZKyXmm6=G8vt&p-X4Q@O-_ zok9t8nKd!?lDfl|U)!8hQ`IIPiHoxlOXBQhQf@9z^NP=Jd!%`P!p^JDe{WIlgSYcR z;z)7t(RO07K^eC&969w!6CNGd`SBd+r+y1qMWSdXJu^!sStDMk|L?C(->#mrWf_?j zRizCrI-kRvuG0X=%#henZ8XrqfNDF*XdRzi8tBVuN#shxWC86quhuV!Y<{=|-rqN* zD4Onord8Eu`Jq}iJ*sd4D%Jvv$2n;D5+R_T`4277KOtRVQ8=oc(^sRjVQZu68dtCC zFF+Vcv2h|ixJ(bDR>}9HMZ}JOQNx2#6#PrR=r7}bVlOzk@L4M!IBpN57*&T({7 zJ+a!z>M|}!7KF|X{khk*LVNeeQ;TYBrF3BTu3R{C*xl(3$FenMvygSQ)9tjotWUKO zxYYFJkH?K;s$RUxm{8bm7{(8DS}5-(l&Y$E(1=i>xbneu`!iPRN)p7tefPZ;h{njd zYivoaFe$aj@rtm51%Ppa=q=}3_d5*B?9Xm&HeCkbjba&p20E4&|1ug$Pw4bnN|VQt zoK|V$lJX|F6Q*#+r)F2d$){dOF#_BxnGVrDW={Fnjb5sMec|bKY#OllPQyjMMp!$I zLu{odYGufpXvnCX_ybKQd>O{;taR08cisN!GMlv(uPv2DNkdhCBqK>#I#D0L2yIY> z5+Raq%I4mVnpJr6tOy}7#LS|y0g&&k^jKKTDA`=@2m!ewb2?Y3>(Hb%E?+qP}n zwr$%O-L`G>AKyNjEB1^Pu`Zz1VZ9YC^U1W=fFLMj5*pm>oQm7PrmkSpig>5ud8~d@HoLj{h^wjt=xpP&2w(R|0v%lSPz=?IQ&&ag z1s0;js2VaSc}JjL&l^O~pjzev92GFf3IK&W9(mZZ5xH`c`879rH+4Ddvg9yX51O^0 zrRWklg`HzTYntGreNg6ekWr40a50`9qpkbt{6g%n5MKanL<`*9k(o&sV6YpsRb_NEULt7N6S`Yxr|B51550Sn6)KpyD-R`+;E*AhZ2ry2sksna?FiXpZs@3qg>dz_)OG4rIjf+kKofxNUsCU=Vd> z8tuEEi}CT-y6v9t^GXQ_AZ!s7 zk--ZvWe*2x>@&H$eMHuB^wXkPphAj8Tt0?ES5(mf-r*=u39`?F4fvaOOc-(nH-C2C zxp$>@TVazSAvQ)dvB-BAD<6(f=EqggF#hE1BVSaz<0QAKi$nBvo%RK(0}>3nu#SFw zWKNRpC7qYM_0Pa@ObmRUt;A@Vv|ZSCFjKv?-X&g5_a6S)DxuU>?Wlf0tx(x{GWc`5 z&YXs)7F-eeM{)l?TeERfQA`0qpU1mUcbJ4!p-5{yN+v*5WFD*QOIu}`N>g65HVe0LXNAjVFd)iSw`s^*Y(h;NV<$ZUy&BH z;<~6;$Dp8cvS})*si_e@04ibFnk1rb{^1C;F@LP$mAO0@XY6Mi5URt};p$}pkhdOp znzxi>ge)f(%CSRP)4-M!F4^bX1C~U4?yK&{ET?z{(t-S_35TD@U_o}E1ibN}+Z!s}v0;fKER%30Xt?l(Ogmw7W)HNfzq7t}Za(WA0F! zSGu{G^z@~X59S!BX4f9o7jM1b-%0hhM#x|OlZ##akB`t_OT2rhZ_sU-#dTp3<-XI@=!Bl&CDUaR^Rnr7i zx<)ijhrMIOnwJ+AFF99tPV(1f6wUUc^2)pLw$~Q#sFHLYl{9t9ZasZ#Uq6Un@GmGy zy#I3j{|8j@zj&|y2fgzDyjSrE%4p)bNb`4l7{~yab|BjS|Dzch{=?Vxe?9!!7@7VD zom->f;f~y3?i9%`4LjX{ONPUGZhovVB%TaeF z9Ox|%cCt&qgVFiAkrCm8QGWTkgwMS1?O?tz0-8hm!aDfezp8R}EWNvd4EVVPO_^1Vp+V-f8WI}ce0SyK^NHZ}Ro9HrUg(^LD^+qK+j zoiXZTCwA1UDaxAheLC&&W7VT0`^WdMMm2Q$6X*xD`^iVNQzj!SH1s&QN_Ctb+x^ZO ztweO&je67T)N3pBd+PTsZCy@w?yx)!dF_TXd;s4kSLnKKk|qoTI2;c&54enoZvSa9 zG=ix3k@2W;#UoN<&IhPQAdQIb(C&cli0+VTp%vm=0_=pDaa9sX5BT+15@PQ7oN+u7 zSP3zvcxe*o2~o#*Z4!LSKTruo#UT5HCgPlfV!`61M6m{i{Wwzz$Mf#dVj$zZE6)yf zaoi|F5$lMH?7q)$b#ppr4BTNpet`_Gw$``9Ze*!4#kmkNg5)NnGSSd7vw1j?aS`;9 zzj=Dqzah^PkaD%251(aB$hnf`a@z50sc*~4#gynARvdY}wC*1_%;!q?6|1Ew28;DD z?OeGqzogPK=nWK7;foD4Zvdh+erHrWx9uSue~gsT>)Owp^N9~lAxu1vynN&9ecyeY6|168G1EV|gC zd7&B%FPbpR@MaFxthAs!L50GwRL=|7MB2)W)^3>@_y`_24BDs_P(ltI`^q4#qBp`wb&9Y17PE*hej@Pg-VM)gy45O2$y213 z31}$u)i?uQpbelYlp|UVxa5!EUAQ*2o)vP{%PVIs{>dB{4QPJb`rPI8tmxzQD(6p< zp7=4goo^CzKDDnX;yjeL7s@Srr(UzT7AY^c33pG0KnLtAadz1wxV=~@S@IRmP@JPy ziY#wl+GTXTs|{8sOkA$A8A8TPflJ8;t4j6nZo0uz1qX26zokF3MiCj z>Cfo@>~)G(96om*OU8`cwCXur1o3Chjh6X}@uDFtY|8Q1yFrW8XUEQLIih2FIYV3C zJ34RE;LlKL`I>@ItRTF6cDd~kdKr%+Y11D7+R%q#o=t3sL`E@a)Yl}}zHuExfOrn4 z9S}5MbfK1?$;jo_@yb@sV7v%XP##Yl+RcI8;2Qit&$2#$=$(+Uaujs}QdlR0bOu&} z@UJ*KLr>-)S!9tV27ImK)oJ(=>M*QEnd9x^9v17rONgrwFN8pHO6l-abwP6xE#`0ia%!wT30>&nUk z-mNj@CgyI}8Ac`eGsJk%c0kCyzxFB!9PR~Jcn+znHtUQcUgt`nP| z#MZZ$oZ{_V<*s0?^5I|OX842m!LO|Wxt-l+MxhHvdZqWW!@(N-%A$5nUI;ph6Y4btsR#F2 zC$!_TZhs(A32W-eC(GGdgr{BgyZvrgpM}kzEx<1pm({{_uDzqc>0aSI(CM)zm1q0S zEKU>pcZdVym6tHcCVQsN*3ac~7TAp5*YzGdo&$$ZsWE9y7Ju(+Y@rRUH^bBV>?E!2 z2Lfqqm$Ti;F4?=D;bSV(F{@Kf#qkHQJ(zKCLo{IX6$2K%fj385#Y`0G{K}~wA%p{& zEk`*>WwWxAYx)JAr~ja_EmNmKwXSC*6coiJP_f999r>SvA@BtB$R9$NTMMJaYw)I= z&U#1twZDmRf#njssE44*Db?#62W1XrGjLJ7<~C~jLiox1kw(EQp!_n3r(M9Du^hZ? z+xk{t3#Fz~VeeLaq4Lln#b$6@OhnMw9)mk&;FnkeV)3gZ`=3wO& zlRJ0m;ux)`x4gB2bQOVC2k!?gfYFO%y4?%ig=xtmM0q-Ooi|G-y{c*&h-?oHCDB^< zy-#~i)+#TWY98)(W~xk29OEf%f!_8`ld6e+_XhT1ceonF&3rnme&20ea~zm`x3co_ ztu9rf7f(*P^NK&j?dK0NtPhht3DBtK{>!##fBA(|$3w7U5e-H=7cSz-NLR z1#MvGmS@iZ@EOe0L!tpzEK#hG@viBVS2>QUl{QOW;%?{WZhkhU&VgBb9V{i*Wt<{S zw;X_uSAS-h`N>EBuTWdf(6Oz3z@lX>yC0Q9+I24nPjOw0<+8I1yP5Oppu&^Vf<>RG zj|bsyg>_SaUpsVV?V6Qu>$#{WFI*I%7cF#k5OS5snB=~%JWb6(AExEI;f5x4a@ccD zFZsB<{~VG<(#eA1b)hw@fKN^eexOJ}xq#j?$8`J$wAqolPP#qZIp*#2S+0bZ-N*?`4TBE|(p_xSk? zc@>~fQVj*cNqhz7V5@r~R3wn71 z77MZU(ftS94=Yg4IY`)+>lvx6W`UdnIr)*gCoopu%SWv_M$r;%^e+)MahYEphBu6O zhB|oh$7D-KyQIDe!xxW!mBkpJ?D^U;sO{>QTFr{nDc3ZhlC_FV%mBaIOb}?9 z-&H_AEMALBNt{uu>wrXSn2(S~KGr#N=De;)#YsU2} z&lM63295e4N6HATsKW&+fvL1W%);H_3V znisfTYb0pM7yA=aU|%d|!A}O_L-SyWuu5eD{pe1+xaOwyOs!aFq$XO#J2>4{D&!+b z`-;AshxT=>=-|3H4w<*VPxfLTsZSmUJ33C<$%@L}`)5dqp`aqoX6;}h%5`%)X2(g> z+YsQEO{F5W<&!9DL+Xt$&ye+V*>?WE>Qv6nR6|%$j~Up#Xj>%%ZIZ8GriA$jR|SI9 zH5EoXHYZUS%H(^O^_NMX;oHxzijDg{)Dy2&(PJian)N#6iPY)L7kn$Qdi9$ zOm^tcyXVKhXjjDfj+;I2I} z)o~PO8nfLzM1IMytdYR1xn1-LW}Xj_t>Au=b@*C19S?c4n52 z?40#$HuOPEsbkK-I07YAUWxgR`pv+*QIdpFUSOAeQ3dxY4O~Ls06IZhxMsRvg>D0vWK=R!##ZU;M8tmai<;iR**WzY z?USn~PCQetT;POuKy4)qkXgVrhp-Q53tWCqq}QdzfiZ-@o#iWkRQ@u5)4A#pjmpY ztj?Y~FIg0@6&m=PMy7TM;?V+Sd4PmAZmDy4R#uH|AM6(iD>4Pm0)hrR&#~))Ud185 zFgxNB6Q@Q2SczrFpTMeUHoKmVS+7)k+?J*H`X&z@QRcVq+v%99wVE0sdH~Nwj0T`0 zWoj&9{A`xet4dMjbG0k#-h=PP3+tZX__72h%$HH{)uF$VD;35-p5=$}-l>+3nKgV*t5+&%y9dS2K(J=wqWajJB3NjYa# zHP~nUR@l!xv`V$b!=9bExJnX5DOEWQulc8Q(_+mKI6P^ z<0M0Bd;zFxMil&8Lzp{WmTCCYHX@5UUR$U2QtW*1mU}`YPy~#Ytm+ov=NKw8;QQ5M zU(PA2IyIo0DXJApqj++=mdE=~M;g$lGhe*F^^xtGA$WCsx;>y;|H|tdV=l4z8ZvxN zxc+2bry??!q9qx^5;UEeSW2Ixu)kl=YH~AV@XDZhSzm;37vqO5`ud;24;KlxFv9FY zj>#KxWIfJge<+i$-AuYT8@9yG$^*Q0!6ndbZOTYyLBx#8*Zg}zTxv&M|6Se{JzVRnVx@B)_SHR)M~pN(q{Vc4Cfj=AK2sHoV3O3ZU>>aF;}R7ohmt*%6ohaPl|Y>C zBAvB7A!kev5~Q>2|BA7OFQ2rPr%<49$*NLX*fgwT@a{gL-MYXX+GZ%85k_hNCGc+= zlT6_g8W^pdKB5}3%w;Kgbwg9wD|vBW(E3od!}!`!ZhF2%s+TY9JL}6UEyKju7U+iQY08#dfxQiguL|P_O1forCNJ> zQ0>n_XnTqQiX!x`-+}mG%NRoN!7nX2{?e;AnwMNegZeH(UR*Y*d#C*A;=Cq^K#d4U7-sET{TSSfHDqgkPHg)k&$oeg9a z?>SJE$)M8o(EWqI7}ICmC-j<6DYn3Gstp)@i?Kef6lx%l{`}6sgV@06@XkuQx3%FO zf+yDZcJjrm0M)Fa1IXRJ@U2#z=We`mx@I-FiGzSY}+O zq2sY7lBgP$VSbk+Lvq-kDaEveX;KGwYv9S~{Z2fNJ9|^{5KtF~*X0^fFrqR!y@bmA zxMyV#TGlX0S*y%+09uWDGrJXpe$s^tWGE9gsI1S)>0I$_?nC2!z~W5?<8bwtIxIti zPDk2F$yioHD<=G3cs{c8 zDr-{9TR;$#2{$39x4JJ#n4E6FqL;7aK^jq<9pc2BCc%P4o9Y2m&@L}lKvliT@Suj6 zE4K$$?kEJ)*)oM*me^lkWP15FHy6&&xPb_eBFk*ND{tGeUJ(rzF$~&dTvhlavNRxC zT!AfvWhxZUlGe!a47&9ObS(!qyYjNJMHhhZ3(fbiyPuU8ReHoLr@S_!dptsy+zj2H znDo!Z3VKoQt!jnRmc$v5Z?5mWgRMa~QqDz7>GEd)j~fCo{=7Y+OH1v1kLVD7odrP@ z*?J!J;M%NsD8Oa;c^~G)l7b-Kod6*}kciDI->fn~?wrlEMtyW#H6$JPq(ucg;5_!%_pkQV zf(pfD4AvB3L$e#6`&wn|burAgy-V`_GGJmhYJudtZv;+|I=|tyo)s?~xxbWT4C#41 zS-3u}qt&dJ0yXI<7xhctT&m=Nw@~jI9dDnRLN+q7vR?7!+ya@Gv0$~bEi0=p>I`** z)ccpg(w5zFWd%e!jNisgy%{(#IQAg8&%&EB&9zf_XQQ@uOjS`zBq}$QlS5HdSzbIX;McSuix4?FXl<+fGq><7O!@B3iqwQ^6{Lv?s_LtD9o`mp zdJnxghc#5HMa(Jco}w#jqVvc%Srax4+fy5L zs$_)HN{ltp4@9&X9I(s45E9)DK}1;wO>x@B^jR;x^o_{vqwX7KENTfPzmb}TbQH`V zzRx_Xj|VW4*RmVV+c@?LkSqH;Mx-tsI(AgaO254c>Jj!jpF)ci`giuuT->Wi@Vy4C zxNe;;Qw0jk+mdZ}GUM96W_&P{PTz%e}+0+eIUaRE9uw`vRY69o9@NKD;nQ(O! zcSxWO?zdanOY+}~x7FMA$6*k9Mrh6kBqjA~i~cQ2n*-u98m;i)AIz}FqzQP}@5vRS zH(@bfnVvCW_k&#>im>0t4}~M61-&QUHBxln%05K^@nHSfKD-XT;Ia&Yt##Crw!RyF zGuGV_X0la$ix@8k%%k*FmvNER(%u41S~fM^(Ub-h+cK`SnB<-P1=>Jfz58!k!hdkw z|BFt+`k%b^|8prJ*3m^lB3MJYxDQeA1a zm5-1F994mHwCZ%tr?6!Ou}srynaVupBD|?E+5k@ohzQ64f@GaUnrR#dA_yEr*gp5P zp!uSu2QEdG-cs*!Zezpe?4y_CJ@4Q^ECQlW_|LHZ0qz0fJ$-`m(c73ntuG>9 zq=;{%y-GZlZR6B%1pahPc(f82C`jc|(!atXrr8fZotqOPy{l_%Bt&dnB$8LS*Ccw^ z1bUYQ`lxW!T(Ai-k>DvGlz^Rrp9cuPcgqpa4ld1t=u~hD;-!T7BAufu;Gn|e2E<8( zj=MTV#LBx^)whY|eP5^&ZPfC3di5sD7H?nScFA6naWzD|n)o<;`ZO_Wl!relR1b%c z$jTQ0X%Hs;AbtiiPr-BOQHA8{zqVgr$5X0tdX45cWmBp?7lj*@iJxK=$G%W0Zt~{M zQ+fG5-})NCOw-)S2)?06LlJHfjKk`NJo|#u1Z0Rw5tPGW!z>5HhFpw6Z^7v@(}dcP z?1p>|{_5g1WPHS_NYs#S|37$KsG4*IIST@QFzJq{8xnsoP97mZ7y(f_7@Ry@92`s0e7;{txclmt8s>SpshqB{u z{d&hf*h7!wwjk+4gHGe(q{@+Gi7Ilo0|7Pxd?RivShK%sA1rBB`uQU-T8N5uRRwib zIiO%@-}9-tz;k1cVO3R2vhxZp&UhXwX}?k%nH zqew($yU&ms%*ErB5s4B1Wb*rET9_SR0b}GIE6i~pX?`bZrc8NoDHGOv{4qmQK1jAL zZ;ILsj(M!2auX{bnH&B_#irhjOWdh&S>Am@*YNhCLLd$P37KU++d9BqSH;7*`Y_GV zrCX8F8HZ-uClHd0%rG(a8VK>ywXtM=MWV=rG3E5Kv2lN~a{YkH!d2hTnK~H#n9@DU zRfx}gm^+eYXeqBKjUz&~Zb3u-Xc#Tp{Eck$O+k8I;K%qwQURSvUcoYO+TDo6&-4c6 z=bSRjwd`jEZW;`rOm&9c0s0%Iy$+4-oGOR_VrwwIZ3`7n{GG=UVx0dp? z`l0%w3{hCcCP-C2jYkOhemG=Nh})++BZP=-I06UGE(q9!ePc?joW~jy_D33gW?#X? z^Cg$Y=h)ED`umkNrCF2cc6teY_8ilbbdR4}$)0J1Mr?$u%8Gy|?b~jpwP$ zlfX&5jA@tI&U2+x-7B6=`*&`@NZ%$B7cKY@T4V$~G6L^#A#l)A%#Gtsmnta>fm_XT zv>$fgq-n6l0sbM95+)fLb_43g7l4aQ4Z8H=t+9bZGBnJaME;XLsQ%`oy#{@%$ppnB zz2JU@$We7w1NlL&0;l*xQk;*yO`ax*bvK@Fa?$PWZ)4h@7%Tp7`)daOiHw4_J6Ojk zFglO|lEh3BFL;4%-P9;TooCP)nhz`q&Mj!p_+K7x_r3~@Qq-X0=yqY!8mfqz8v5FD zFt+4`?Zbu~^B~Ocn#aX4L>ER=rRv9daz-6|K7mF$OMO3I*bN#XpHlvjVY0fnegOZK zgk+(T)+i0C}dDr0ElPyVjw&i3%LYZsK6d0vL z4e#LSpbBoMn9^(-dBr)$2ket}6DMsvtpmG%ncLul$MZY=^c(z^%!enw2U~2ZnapGQ zOqfvVql!{4&umimg8Cb#sg*c9&yyI&aX7v|hzhFw!3^^_b+M=g$g9KN5Ses`JE!ak zs0`$MB4)>|-o51FNRgBL^z7Pq40Khtbx-iT^+t%ga`_rrAK9YuIDgk7g1j_e zvidpCb&TQ58fCXBfx^)_n?FI*aBh*@ykHLsC*-R8@0N|58uq}-Pl`MLsFmxZIOS8u z!`6`5bi^UwJ0!oQN&V#OR8*W(w}-7ivM#YU)WQ83Ipd)7y+jJI4Kc)cNVH7YMlEg^ z)H%flsnsb9?t-Dw6xj*UHfN@gfv8oVkbcz0L->m|C#QHZpXJl`KOTbR z?k^%Wu2-AW>s_HA!`%;QSDnC7&}IIvp#VsQT;$oT?TVIGLy|Msr^}XEpkwIlhJY?I zyVN5*u51szq`sX;*?!Buc;XA|G4-_IlVeI2-uU4vbyxG8I>SD^4#nGy87=p>$3ldt6310u9szImdL_-4%?++d1v`Uu2EA-MkAh{OZeD?M%sfFM_@! zaudq!2N08;j8y`i4&j5*r$O%&)%oL><(aVrR*67l)f&!Sj%NJ4VT$~_OX6~T-5M3* z{>%4aVt(vW-VR6VNBpDnm5S8gRID(EkT!Y{p8LoV%}>k-O;TidSH0TvM@&>O4spfD zD?^^1nv8g_Kr_{DmL%at&oy!Q>MGg0v_Dxbp42(yrZ;gq*J@#PV)vnBjz_c4zY`6x zqR!f3DP7OB_m111!ln50NUylh5ZjA>phX}0@MOP*CGb0?xOZUaCtZZ<*M?ADY)2RB zx6iR*`5e1c@%gt`Tu;mO_}4du3qFCvp3-Wp_&I{g6ee$dd8WWN23QHr2VRvf$)e#M*w;%kF=^l0hCXR3pA9Wz<7jH-6{JTQC&KX z1u|Hj`WtU+>Z-@A%6YT7wG2$>AUi8}psUo(e3|*8&DKko+KcBR?+w>K@7F`vhg+>Q zUxUO^c$i&o9WjU}pFvCxP?-U&{9=S*l~hD&uRccgWY~(6Wp)~VABkr6Z(V+(Y~`<% z57P-`Yu@p7MJy=p5p`jAYSpu`7m(hem7QQBe<4HCmcXc4TiyGZ)jAWz>$h`eRb62r zEfRzwX;Yx+JPGTa`gg*I(eyL4QoV4!0Yq%nyN_4(*@On;2U^*L^jv$5GJ^6rCrFL( zp~X=vct?S+IRFJ!uqbj)mcasxh{{H;@{{Hg(^YilZv#O>~#2H4` z4`m0@N!7jPI<+rn5g95nsY?W3nkmDY!5an-1iU*75~sG!rkb7UeIR>0YH7k|V|+V= z3yZioOvID^R;ml6kV9Toj^4KIuYS#*9)VWLy9)l5r(6sEG)!p4rA(TCg|JBLoK5;o`wufgcpK5^YQ>wILD z9o%<04LBNvB~!^v!0AP>QOb;%im_ffePp{aot?GzPVe!ei!5~81%AWxwl^RDK6m1Q zin~?H9q$=Qw^i$=hbol60wfv>a6y@CynqbOggqD^t&{*RH2K%buINrpPqMgC%U>w# zUuSXm6#gUS@|vK~Gi3VHbz!K}KE`x&|8r78eC@kunaFWerfy`B$)GAu*U{2PhD%^C7q{U`%hj%YTm zl=mz_gp{x#ol+M=-Wz1hf`HPPFY}OXSqatxqYcGXo0f~NCCl&J%A&{M;ERuJ(>Z8- z+@Ir`^$*22jRot3yYWyi(nQixMh)N{u%)O+rdZI9fGj4gxc~xN$NqF+&z;{G>yUQ< zG3)BH@YHU$Jkj28Rd7o91$Zp-u0+;qii8lhcTn3tgtbxd(OPlk|3SYN69cbLOFxrwr2H7hWnNMiQ$^8n+Pgp-(G>hF5B4-paq1XeO^TZ zI^4i)8dgygSeG=}kYD4T~9i4y6MqgP(e zOk0ls($?bPV-w1x%N}F{t1ENdUiE}w9Pzt_2y!JiO2gjvRdV28G_yBviB~@nUn}qg zJUt@jEc-;;(7<#g2uNrP@_q=H6+w$x_}7)1r$FXgDxp(=kz zt0zwukT%TrX(Jlb*%bJS?H2qrGEXiSTcr>B5qir*A%yK5-*v6Teg!C6rsI*}=j`W` zQQmNC(~o@j%31cRx?Mj&TX?{7<|C?se^_h@KFRT@w?7Pu4(R(V{h zhoWQ$WTWKFJ$i=_z4G!?tyy+{Rp+tbSbvX8d)yq@xY-3QO4+Japf3$M7~K(U(v2Jj=!Ivqd{783V*TDd z^wR1oe)_P;9GZ=t$1Y{?I&v>@o82cWd9^ zXC9Syfe~;0?fen>{0+&nGiD~1J>KlFYlR?TEo0uAQq)w)GJ^zJr1LBb7-W{25*izG z#3)gH5{YrfQglWU4eo~!fiJtWli11yAKXEU?VmvlqS|!i6ql~ZF0~#GIb2(Wr=I6- z(;!Z|>=i*DPong2w`io;DGC;hrt=L|bwZriT3IBtpM&O9Bp*Y*tQuN~sckOQGI+c& zDw1=ced8WY>U7i1NAm)@;&_qSH+BiZR!S9ysdQrhJ7mir%r?YHn>t&;sa9Sv9%G23a*>&Hz-^M-@d1Ms2Q)MOA z@hkw6Z$c2NZCKCT8df|eH??1ASsrtgrI;R` zH8h-MplN>j3wX8RfJ20_7Ks&WTV(*Hu%eCYjUbShb{-8!m?HX|Dmr z=v#6)m0;(1d|QtcXBwuFMkDk9X}|smNZ<7ge|ZI-s7X59CS%B5_3!N{4&TQn;)1Ts zp_UAC_}59Xx>xoO^PeWS5paV^l(ZL=)scvl|2lIKs@21}NY-eZ-{4uJwYV1Y2o$&% zTsCf=w*mJ7@!RI=9?a0VMLFIZ2%VJu%@p`Mk-5Z%?cIIrd4+g##82h7_Loh2qSqtp zr(B*5oNmq=Y}CdLesl1xrv3|K%yM=p?DTA^UdY_ET<(39n?~A5Y^&Un%?~xZN7&q~ zO-~!pI7?)F2{0sWP6Vg(b0QPitxj{lVq6@YcE75TIKyGh0GCXi=6lyI(hwQxm+^b| z&(H6EZ^Dti-O(RcTt4T$n%5YP3SG3iD4FQ|mW;^_lzgdRN(mM+2ZY4eiFrK{92nT^A3*>IEx?9WH)s+Bzo;Jcf zxY|kTx+*G-ms=OEtCTmrn}>grCc6xQnekpV<3xVv7ybL*teHF**yqDWRP1zd_kg#f zr{(gHaHXoC52qFa7~a64b$NSMJ!?BDc?;3H701FaEL&xZ&Ugv&mMAyX!0NgOXDJii zgLVMU*|m#2eq=gm9!&de>Ck1?F2$&_4WQ;l|i0U1lxw*H&m@gGR` z|3OXJV_=}~{c@Muo@Vz`^8o~4K7g?LZ`1#SDfz#uDU8hjvjEmb*+*JQ4aM*8!b=4z zi0UDeb=@fClr>_8!(OyLs&OCz%6c{zw9i~^%g75Vg_B}Dk^LEZ^D}Uea~0D(WCIg~ z5+-6BrgfwA*V@)vAPF7UuRfz!9omd8>t-S?_v^`4meVY6-=l+*Jq;Dqkb}2DY@p($ zyw9teoSUs+NfG?L-3 zT!ve<8zPvYAVx$!)GP!oQuRUI4wt|Z#EG~-HO3zrm@&f!&~ykdT)oJ;5vQM+w1TCy z_;pD|u?osZ*9Cp$OBV`_%uX(q(mDq0rDH0n8qJJuNg{)H>~d+lKYxkE=mo_P^(f?W zBP6HIgHZnc5?Ma0ipF||N~RYHNiGOoN?l236)#W{C3&|Dx#_?oZR8*=mMowZ`d}g< z-xVMuhK`$r^;8PEXQfQ6S`t+*VK+zc!V;&gU`UiSUTCNfS4^O&DwmICdgg*UE|-$X zNf1VYWJ)AaR8SVtR75hNO1pqPmN2P~V3hbA98E{@Ae)%pq)Iz7o?^41-6AQetT^?c zl#nb~!7BM(%=j&iX&4?lX?l(s(mlzGs5z=1F^%XC7hf-`_u?4jzMIg%cR+K<9AYmz z{|@2fx&p?xd6oG%sMRil{&Lm~9)s5sTqn$#)4FX9zsPSG*toM@If;a=hjjdY*uOYT z8DsfVz1vR4!_9Lmx>0jKPst?-BW6(U_~yA@GOF7So93krSJ+}wdS=1Y_5;8I;6I{t z3kbi4bFCZL5LT_7wrL8E&dB(f#PDMVJ@Yqj>y5sw5EC_t!uSxgLx|CmqHj3-;cT|O@~u1F6WeC^GC864+|>`4r%|~%+XegnMHtEed}4* zUMOpEM|N&e?r2LDdu>2en4bAv5ZdSM9kSCWaOkRFEX2O;zV_mzHmm{{YCH(`Q?fX7 zdeo&JZ2@-zeZ?=AP1gl69I<_y^=@yvZT5B_{9tBCP&|xgD)pNh>g5KE^yqU2o>p(j z=M8FZp7$Vq{+csMJ;9l z191Z`mVZZH{q`wEs9?wMnwV*w&BijZP z*DicA{Dl`a_(fReHu&a6KhX0tjg^H>DB57t_aUwsD&M!n;W^a-Wn7vL3ldChG{^{G z?&|f6=m!nmamlzbB_+G@>o6gno!v5Dk;HF6;D$mQuI5^ATlZNf_{OHS?W_FiA2<4W zZVm*DYv&Cd*%xlnEZ&rYC%SA*YsA2w^_8RYN6k3aY=S|rbb_`A%lU+yKP-3vQvz#>ka)}l|_B2NPj zZ1v;hZJyiXxORdB_HX%LmJgjfa%k7Gh3Vr#6#jx}w)^-0mkrJMA7tMDvj6`_`ni>% z`(8i8fV9S3Q{U5vk|FtsF%NbfKIor_760mdr>t}LwawcG77ef$u7RZUML~&F|&X?WW zb3k!_5`w6S4Xu{O{Q>FMr{n1XY2ZftXy%G^`A~_e;v{LvQV)GeW}|ry(;!n#COM#? zz|(1lfgqDiNJ3y{pc;i~4zl79z6>X@$MiW}#<7fgK}OgP)!x;$e8W1)w8&Q0kF_(_EVu00J?DBgBB=FbUa<_ed9fe!71T zobDeQF;F?vht@ZL&c9rH+q>~&oERd(LLW5%dk8_XKT-6$2}e`hgc~2|xJI_;6@F(7 z`Ff|Lntx3huJn%cqJGx5&&c>`vyvJ)r($D$*T|z=UQ@`0MYA{Hj8V6K?FjmMe(r9) zr5m!h12PI687N4V7}&J_OAhW%Fl{mi=j z9GL;9h>IlBoBjy;T6E6t^YKum{&M0$;*I^h505A+a{Ti4WT#C%AJFIH6P}AA;^d%y z=*pFC{HdDP=_Oo95GV;0Z?5uUn(w`-5Dx1sLq>L*WaAahkbt{M0IROqRyh=1L9-5Q zvfg%zn0NV0PFC32Xk;B#N0F35uk~3u8dFDGJ{ATQhp2-^9bMoS;!z`U{~6HCKjWe<5HmG$5h&C1Es zgV$GQ_rtBLfSabU&CRPY<>1n3tX1IV8m1CucyKe)Bu^vVJKl9VCheF00@aLz)-cDS zM9MzGq{gttp2YJQl{*2Y2b6^N z(RQF(iRF`aVM?*(Nz(I5#Z?RKrH7&)Mr+*{z1g~xZ-JnX=GPds_v-v|ihi}Vuks^n zSm7i_Jh2&m!t_ib#0ecyT6{?EkN@a}Q^FVc_^%VIh}cCN(4^oaSeZ5pxM4Gncm<*K*lh zVlK^y&3Z*LAxgQ-W#pE6+E5~+A=hwFQe^H4AN)7&MH#D&=(r?&|cUBK!6E@#!8DOd_e}dD~O& z*DLN7+WflDG#-r9;KPgz8;yE==4kRSosTGuanrwYd=EsRMGUpc_<6uwe4t zr^CCqdzB6MfRiwG^FTmn#FMV8y2`aMopZr9dDNA4;p=e8Yb$RAA_~ zVXt^^z|-)3>f2%=MlVBzQBRWac%jEDjb~OpHx^gYevIHmEv~j=#bUh5y93YGsVAnT zC$8eOOZhrV^;Mbc&)WU%%2|U;;6B%SFKF3!NOmQ@#2t^zC$%#^ynEs<7z{j^{Vr5` z(8JM7_WGOh^AxvUaNoQ1lvnxXNq>aiTB4*KUbNN*ix%(XeQt-s_w$1Oh|sSZ`leU`v>pCIKK z`vkd4t5627Te$k^hguAKehjwdC(fLVpf_u{Cv;6|mM1$NdG$O0)uMAk=fE%&Nd!RB zZcS+n&kBN}TnW+`TDcr3$yV0g#*3U$cR-_eSk=SVhg!8Etb_ymtLoajoak8Y23bYv zH~OvYim+>Lx}#~u(*9L8NA~$#NRly-o;4S_XkA^b>cIEjz9qY^MJFfS%|Knq)tk9+ z$i+r>Mu?!Fc7O!a-BJS@BqwbSj-rue%RvF|1*r87ZVUOlW4pv=h#5s@RnQ%nd+zhg zA`xgCbf6zT(a*C+9FxM%*UJvEf7G#(tzbob{$Gnw>QDw&z7S4pv}4Zh?3Tv?;-v?OX29@@mH`y8?cs zr&8yA?}O93jDwBTlpKMT^2Lbw@x6Q4F!X)9&LYAD<^)RQ$?D*UD2$%0c%q+?i0}!2 zE5`5~F>Px=z?26FgsUApZDWHH7s8wsB$qBZs+x8NA@kvD3*>JzTO9*V*~$emuzzI5 zpxAw^dl!U3mTL*Z6Iq+FDTOuq$=Y2~)Ww#Zv;|q6vn{~IR^(yM9$hP^W_jsSAGH9( zC_wyNd}9=-FSxc%twvi$0!4korb5a}gmbBTXl%mhtgRzqdqp9Pm+(Qv%w#q;n)0ewV`#=APsa zMPt?xV}9J~!%rK{r@_9-CxWSkbV)e3)N5wdyGklO9ZNU4rG4{kmXoD9TLJLs^Yrg(lZMLNE1Ejd25 z(MoYGS_?AfR;d8Xd+2o3^K6t#U9p7~Nlt46TuywiS@0d%P-4*FyE$q1V3+;Dmo)0T z5zza3Ztk*f3<<4Oj@Y(i<#^quWpJ|)gnR_Gy7668?TcqWmko7tA0F?HwCArE$?0&D zk$N@OQ8n}0DE)?7rx`I8Hgo621Il5wXlx}UbMHWxF>C1mAR++#=g9NljQFcF4iC4r z^f31G^FOWcuZuwVA^}|h;fFIo>H6ReZ~%b!@i#!}qyJvv1$Pb$BZ~cL;S9GW;KNk@ zY>qm^U4mk9DgdAdcl7{N5Gs0Jf5o8xjiA2_*2ArR6mIetMs_MFu{`$X#F=CA^0iD| z8pjv$!M44qEkrsc+ooMj<`|im9k4amvpY|x8+5)|=E3`Q-it7m^K~IE;WC{OA{F6E z0TH6maL5CkJWz@;D%>P=NO;~YYu-K;l5J&5PHEG3>vLI_7+F;?=6)NFS-#^%-^#jP zP}3WCNrvS?GEppKf0ArA-3gM}=t6IjZ97zNU)G<$e5%|>Y2HsxoT)I(5<1U1)XUnB zV9Hc86|XR*5rFs=7I=xdZ;2)4!GyhJx^Boy)C<_+R8DL{tf)pi=&s0*FS5>G(>9Cm zMNgZ+mO#8?RV%%54#8Z$(*2ugHneOC!vhB`^~9- z4^jmYF|bqF-sd~Qzv>c8$)MP5mRG(6H|H_Q#*5K z3j!u)4n{scs9(-briQjq?weQGQ+6b*x3lVx@Wpo@grda3Ak>c9$=C<=NoJ|S0`)kr zK9x3Ux~^_>a*f>3f<-1wJ1ed|I<;xsOL+<_uTa`&Fd{Xq*%Nw<0FG!A1NE@4-orI0=y1k1aQNGmw} zH!~4$G-YRCMCe5R1kEr6%A48-MA4}q1!@QcTcW$y$nAUgrp`-hO!jk(PXTHW#`a+)S2xLYNpLLWUX z9iv~}tr7?$NypDT7%cR~H;l;dNK;mXq9GZ?_~;p*n;(lpudeokg89yeORb{NT3Pbzs~HG?Bw?Hph=`9Z+T$lA{n3m$ z7h)v_$~)}?TWNv`#*tI5ons!B6I_^8W`^8=`hSnwp-SAncJU@eTC+VREzjGrOM@Fn zot}-S$2F-LQ{=tg<%7@J9Q_k4L;8JYqyGGx4tf#EUUjp^`VXau* zo|#62=BaM`E6TwXytfnmn^Ia~`kw)EK!5JZ_n;KfqLGh>0%ro@FPy*Il54SG7(Qw=B zA|=mw!Yqv^%v;PZcu~hHrt`jlt%45;Z*N9x6wyrZC`RzyZFH}*(oL3WQD{kTDU7nI zr?8ZMEDl3vz&`_RacP6DzH+smvizwBNvp~W3H0W%JsMI-jx{2U;Cyxsvk`LBC9(w% zoq3LJXb=TZr6f{^5MFg6fn%H*S#BHuCHvPE<(3zvIf`=v99Q_&+Zl%irfda%$3T3> z!+bUgL>8|TZoUok`=+eZt%{Pirq_|-bIG}m){&!YKb`e9QvS^rQu9q5a`IDm1OPB1 z{7>JBd)W>Ubkj8N)go5dyQ&C&Rv_d&b$Y&!es+F!jqEFCx$^B#E9I=~bk$iTa$lP3 zh<b|3(Qo?X9x6)?qQl#_O5s12nfnEz23tns_WY zu-CCT45UE8Zw_lM3q-oZizg-M;r0x==oDmi3An}6hY~_&DdyF4(7CJU(+lQEhOWqU z*v?V^-Kc9cXM4dHG-rCKPMfjr$b9KfJ=Qa(5*@-bE>>{u55SvTZ0D}?%?1N&o{&K2 zktuB5_t5n$_BYkM5I8sKb}cQ@Od#n&#oc_a#=@|bF;c1iv;M$FI^5vEAR+h8!{a2X z5raWJQg^$K6XD7nQ);>u#xdHQBZrdkqo;Q5b{<(bkeY6KS~}C3V6p`>2V5seB}py@ zN~21H(D)64&lFZ28dO_LCmYDJz+Qp&=p5*>z@4Lhlxs@2iNnnfXrb%3eP~kRWO4*) z9?=PjdrpKW8w;HoxYTDZ9A)_lu+g;DdSn$0y+&KoR;RK6lTtAiA051$%lu}(5sS$Z zbVnom>lHE7d5J7Iad$6>NR{Sgz3B!_u4-*nHD9O;h3{TUB4>Hak7hb(?#7L)>*_c5 zt)Ap@FD6wv8|jQzfXJ57N8fi-R5Go*RNtM&I_-BC#rKiF_?PGl->oXum!Zt#|7zTv znO*bln5&ye9yT+)`py|#$I)(<3xnT)FH+|JTD< zaM&;RiTUw;=$4q5W$(>}m`tJ;EjdjANo9jggfglNZQFc*SaLY{V?Rog-U84%?hI&SCz zIe3oZ{zJt9GI$9JBqZ#tRbFITMXAfDO5k~HGNE_ti%SbV% zT2F7dGp`tc$92n^ezt7LAP4&6)|GpiE8bx$dS9eQa-54=(lOUq z$YN|O+I618djGca@}nEd)XwDp=&HX?|D(j1*#4CyW8`4|n71#>c-LWM)#%(ZnU>1+anqcMgVxn68E-8ds_sdBq=6gk+~lu%HR zm(%SJvINl?cQWBABuK~jyOS7e&d9Neh3F60@p0PPZn0TXVb(V{Vuo)<(JG;iuHR5A z|L4cY@mw9fr`YU|f-(wk8OW?`U-A}%mu+_L?@6ERAU4V<$^60Mr9X;ZyBOH}E}7LY zO^aYL8|C&QuuZcr_N07_ zD~&Nzq`(wkX`SB!SuolaO9HqVsaL$pt)#J;P3xJHewR|^D|I@8-G{EAr_Mls_Q#2I z9F^@`Ka66-Ps`%5esO#~GV9HbKZEk`st;#m;4$gA+Mz0$;ab`lSR#7VFYWeKBluA} zAd+a|5X>-UmeO?*3WS~ccZ25h2dt6)p{euX*fPeDxo`PQ`SDAk_XD5_$`urLDS8&H z$7$a$0a6c0`4z(PSh7mL<6P$Nu#}+%*yw(=ncDp);#kdIrUrtoJtSDPy}m9K`9+Da zamx7Y%3qqn#)g7no6;AR%(PEh!?-e-wY1-|Sph#JS!A!{2GwyZrB@&r0U(5A{nx%n?Kdk*bLXm z#rI@k+TI|oBJb{DgGjl^Ri!u*qpRbJ^~=a34gRD z`)Ciw5p%9D^%GKd4-9$zlcONS{T3_BS~hRfyBWjNr$+nIRPU_oT@*0^xz6PVXYxTc zcd2eXZ!Pybbt`Bn;%>>Nf|J!lwW4U*CZ;W1fXpa6nMjT#eFIxy&D?142|nkM?F)Df zgFa9&WR|BIC`AEx*j{$CJWbU)KT5g5vMw8$a6~g0z*gu(2w_P&5uS`=a7xrw8yF7r z@v*y=wmh{nHG|^`VeHM;06tt7(A8i!zz6*K!@q~0F%Nh>suv&n&khAXz@Lfyq_q`X zUoVt(aMxEg9)_d)T=Tk#-W7Lj|`pcXUAe#rR`4qB<)FlB=3H1jE8qF{m+y|F6!qx>B>x+cqmY!9{8 z0zQG1B^pZ-tR1lAtp&6)Nc%XW5Ua&ZdB&``+Ek;;nH~;~5oP3v3C)pr8p5+H2b;T` z;GUXO)z=KY+sQO$LOt5JwjUu^6jO_9js_8zbcue#6BMt-S787Hl-~k}UA4Y8p%4ax zHUn3LgLp)L2nTfu1Ko}IM8g%HzUC1GF^<24f*Hi8Vc_=|`l4D(4T6Qw2Ph0t9GlW% ztkPW&-P_Ddp98EF-HiiXvrBdZR}Yfo$e`$7 z83@|riiGGaTT?)y{#9}90+35+jifpE^WrZ5@Oj!x8LxQ5EqKfm;gfhw<}7VFp8FYi7#peLYBS zsct=Pti+qF-2C0ORapn*<+EgKK9S|s+o{6Vf$vvy?k@?21-ZJQviR+o%x*`dgJdtUUKys%s7d>QC(Or^t-b{P0 z?bDlj=bf2Z*6(EDOwXg z_1@Ny%ga`VlnQM}Y_yN6E1mbfQRbA_aB_SkKH7VW)N3`kvA0ge?cdWEryFx$FdA!) zID`<%kJjcR-J8p=T8lT`AU#jH4&t?0r-eC!e#y_j7P!r>(p^roy1pXbaO$qneE6St zcI=X0hG-Zv3CF;L>(=!&xoA_q-^+dg_m}pR{w(QhwZH-CjD5IRyS)V>l7@k@EeuCb_`)!n!J|$=1kFBTP zAw-PI;NHA^D6vjM$|N)~LSh{B!W4HYZyyKK*8~^H|e4Lm*mnDQrza{ z%CSx;B!o@&yZ0Kz!r)48FFdhpik0U$6MTQ(&=Er>H&0LGcjVmavndExg_e6K3ajRY z^# z35Qd&V>4+aIu}Aso5-bT$FF1#Phu&cLKdf^WXnI}$J^DoSK0Q2FGHmyQaSW+DMVsQ)2%WK$b3kTrIr{fUhVl6b5G2njvBw-XKlOvs1mdTCl}8A1 zvl3)fP%e$QMSar$2RVFU(#y2FudCrn(i6mY2VLaB>63TIMQ#Pdrd~tV^|YP63*sn2 zy>8Xz27w4X-GddL*dOT?D+wg{e*MiOhD}U1@&asc#|C=pd8w6wlT=ld3NqvC^&%|7 z+r{KsXmt-AXdIYBi;RnT=|Izxc$$mIWnt3qV|Z)zrF(rdU6*v)6+wisiXsZ~NT$La z?uF|Z3qPXGQ<1x|%&2fU#)bX%MaLP?;=Q}nr2`pn&vA0=w1{!b`^gwmR6hP8i^EQf zA3$rjAg6zTm-FAi%gppQ!&G-s{(s;Fxb@-_jm0gpXug0Vs_qQ5*~#0~^OR09CtoHJ z@j7eEn@GYVqxekh?mprTYOJ+diD7wd)nZ{-Y*k(y%(qtq;2kPa4i;5$HOfBjD?AMa zIgZVe{|yZLTmE>?^5wH(>oS)bjh6kLDs5~iwM0cIN*dk`m?cwJeZ~i)piZ^QG8b7Y z=&SjGVUt_8TgoStoc-C9bX`vO>_CIfx3~lIR|wv+gs>8dFL$UpveuwMJHXTms05yz zyx_ytBMM0JC;J=|40qc>ns!@u%F;c9jOIRyc=@n3t96W&BK9(LrHHKpYNb$*2Wh)> zG-l#DHKZbS9ZX7SIYfw~X7r%9GQa@wTZd*kZ|)(3SE$?g?efNEnsIL%b+q+qQPzRk zm5Sc(uU!uHL%D&&Hipf1il1*l;?wp!qw!YEYVbsxJp}*66>f~ z%1GTx%Wxg8YST$a(r>Ev43?P>^~-Akk@=A2$K%V>mpi98zP076)T|TL%8Rp%%^Y=Q z-MjZ?I6I|@qz|6hC8L}aS~!UDS8B^p`L)fj@}rd8)E0Qv1S`=Ywlt14>bK<=_6v#V zX{JJntqlqF$;i-N3Q5#LLgMBV#0G{Oag+G+?=LqFleNxI+U3Tb*wd@jkt++rF;LF@ z9I_wKW^hu1vu$9C1r~ZMsr>^>C){}W`~09NujQjFfhxG8noeE_O%AzR2RweOds_vl zLC65m`vjO=KJbC1u(GC3f+%E*12mmmBpgj3^x!lI2mV+Z!0WO717hj=3n1O-r%ni zDy4<-xCBMO-tI;fj**b#(DbSP7y~)@xt^}P1Pobqb=}SHgBL4a^Ee>t+_41T(XBTb zjtogV+tUq$z}7`|v9_0Ar&1-E2^Jj8Z+t$mfv#y&(mOE5;@XO2Q+93QIAhJP#2@1! z06&R{Ws*UUzJCy$%8)MRZ@Y{em>erFw&>*D2$1}VZjQ2KSMzH7hlO`?>^%9NB5PQU zB9uz8VU0@Av5wK9H`|*%UD*g(1F%EGO{O8QzOX`uMA^I z^;b1hDR?_7epZX%ek{i~ucj9%PRkuQd)~Zru=43{47$AanAq#(zBZ3bk@9V?pjZ~= zRG%L$e96u~5W@6t2w~#n{Ci*C{i}*0jO~6=->)-9Mzo{`KxD}woUoaFfDa%20b+$@ z^f~k6PonnGAPAV-@u7bquIVaWnoN4!!esO(Pg-0YFshXUz}&BP9%Ld)xpj-IOYe|f z>^yx=niE*`#mFr6_&)P0f-TybeTYKZT52!_O<*wmb7vM{;&z?6-|C*u&5Nm&3Q2fA zm+5(TEyh;27=4Rkqc0bz{4T>*<{6&4Z*>J~HlI6RTxrA=Is!>-*r4No_zoi}xu%@Z zs4Ji1pZfD@ZLG*9caYYFFnht8y%?w((8ykls}z+izG*7)A@N42q({tp<|Qtq8>;yX z<3p>2cP>DTib5$oh!0mztrvg4KHhUMue3gFjCgRd&6VC>%W=sxOzpp5K(Q9iCSO4&>#VnGB9*NU%i#*`Y)#r`FP-r*x3 z;_dmhPveDPAwP?&ykf6Yn#Wz=YOTc@UJpO4Zp0j|Iybwd{hm^g#og>WDH00pDict? zt6FgiMW2=6>P#<(4{jfBF5?b9>eAYJX}d^#y?>ovil5`d--sHCT*-y|_QA?Y+|%vu z(iK^|?Np#wsgevEX|3vr`60t+b@F%GKdjs9bMHEv-#Lsw8=CmxhQhCP+Mzf$>xDT( z{!#V0q7&BS)OR&UuQ@o^j#6dxxg2+SO7kFY_~Tyro$@XHDk90Ih?7MUpB$hBsgzD^ z%TOkuJ)Lkbzy!=o%mj)W4pIT~3k!r-I55`}2vY`EZ!YEhpwlH2Oo0!nwGe5#p10c$*w z<=G$C@-w;M?Y3}18<;*7#3kectDM?-L_od>9!$4^BpYvp z=C-gLoE~e3r96YQz!(cEl~3{!lK!u6HPVIAzH$*Anrb6Sdn-1=98#qsFRG$gSk<7t{>BMf>XyM1rwLza`DQf1Z45-2>pygS#4_HXCwZ#LL3hB~Oe zAKf4vp?|nVEdS;fF>$i}J!=*JPu8Nm{FSw%MwWsg5!CH7E>&0H5{H(+tf3hApU+W} z=LX=ApLA|%KRY4KG*Xl>!MmP&tXLKyHY~A2#hinv+=ReL!o=+!@m(HsDhP{_74)mb z!T675e7$|XOvEOvEaj#n)3!c?cAd;Uz1i?4(6Ft1r##fbuLGuvb43Ha$yWfDSOCFn zve9C5^^;lqk@QhF<+iGX+#0$TS3FO}%eY?2V1)!zI-CchPSl1f(M4vBLj*C^rtx^y zrhti@E*>u>Zq{ zRdz9Q_HZzz7nT$ev$u0r`RmLe{C`=PGqQ8A|0f4Ns@4kFYp8kw#U+Aj;jTwyT3&8B z1&#+G0lGSUnH-F)kSB`K1F<<^2n6wg^V$T44-TgDhf)#{5Amjk5Hx58S?Nd&Ga4xa zj^(`36Ec6=W4LRy%MK;6<91eirPHRJS6sKJo0mQg|Ku>6&%MpM^?AX=?>`{o#gR`; z(J!u0HeTs3%4*6;6-87sUeI_hNjp_)l&~qnav9T(_{2!XC>biL zDWch?EJ|dkN?pt(`i!Ww%2}7*FQ-V=NJ^HJC?-o*6swpu`FeSFZYUA2VOlR%bzmrW zp6CmfKEC={Zt&Al$W2X6Z0gqAw{6?7Dz9)6tCp}(FJmQr_Lch_P|RaqqF@DUTgS_e zs~xeLpeM#86QhPhDH3Z9r;a0z)u@hFa)fvfM=^9S1mi;TMr0vde*1ot3Pu{_5J1d@ zXEZK=Y9Myu%9%)AOP$(^S_J(5tpn)GDBQ2&jF_z~gJfPg)wS{pA9eq$Qd~F3=f*7u zul1RQYjekr+{0y0=@rMpbo~yTmmt503w!D2%-+ z+mI3^N{^@g(AM!P7Aqiad68G;oA9UJqY;UaE1(}XV0QmCL2Nmd7Tf^_eg*XtEFMt< zNb$-Ih(PF$drnblfJvDmw#Ch}R}Ub+qoH@{50US6X~>Qy^z&+uv>Ha$#nfGPo0un5&G4o%E57BTDV-_L`_!6SK{5*cDF7DT!mV&7cwZMpQB=g#;tEUV z4isJdw8x_myatiQa>))nOS>8Wt(7Ej=Q6OA#;$4 zTCYpZGG z|5Es+z{FFK=MRglf!7VJT&(yd@rz!Oy%dU~GcnT34IJIX+2MNNaQ3N1uW;wk&24W? za7+^EUXh0M&vP^9_BAnW@Y3B$8n*MH!+wGWE;#&TBp2qL`j7o-@pP;=2|Y zEh|$<1qrWm(66eg@i^d=B&U;frya???nI z@ch(SctC2ubQDHQG^6RFm<2-hHUe8Cn4ktk+Y2bMLaed$K7@l?!k65z$e9bJLoLtfw!5QoaMD)G0r~pQoC3*9oXFj=*xGTfZd_&)$qsw$! zm(fa(WFrt<(-7vQwELbfmllDIBdEiG~Bz?Gi6?7Q<-VKUI zW3tKdCEQz8Ba!^cx*U7--qRoy7JLk;?1*p<2K$oUVTwXyn)A4h#G2cRrW`B zgiR07_4JfofVB_w@Xh<_xuiE$>F%ohGpfh$O+w@`a|@`TD7`&0!bVO$)R@E}LNj&x zWfxFkp#w_a2DwLE0;$qGDDu2pcOKukwXF?CM;#KVFfZ=zob9Z`hd0rxZ$Owhd8~hE ztN+fPV)@VZX>DMzXJDXUp=4xWpy3cc00@9$0Ce-eW3&HypBkg>#GnV55{0o++89@W|po_Kz`vwd_iWPiqDGfvspaPTS z$nzOK@i2mZW$7yeA}7=Qnm9SwPW-y#=9yMAYW!+=i97XqIP$qClmE>FM8boE2m#Vq zY{IG?KT@rOT2uOjCYu-4@<0`F+fCx_3H)>Hop47= zujNkwG?vA@{*IO`g%(1#K%O|l94y}m5&CU!sVrp%j%3R+PKl5zPF231H) z$U2V|=9I#Qvt6p7cmtP|@J#^?*``I|qu8pFg%+N$rPG5ZLc3Z147hae@()-z*`BE1UetMug1HEFWr zXgbf2S`=Alr9dlfsm)f5rX87c4dRlL8BGr`<>{a5uQUn67*I_x5|xJp3lrSL@FQZi zVhxN&Y8Aw~7-(^wab7?OFZyZnXjHJbzLMBILF&g>dA^MLiP`P2jkZyF16!Pjrq51N zSk){lDNBZJ839yJ*hlkRV!2Z@7Sn^vBv*2#@5R{J)YMr(-q-BU%0nk>e&0K=p2TUv zH=h+pYj)~-c=j)&ZjTS4A5;DSmzx^i68zyU@k}xa->Z0Uk5BWDr6w=>ArFUN#&uco zaz&qEYV98#0F|4;w}(`3ZL7buM(rr69<_Td__S_nh6#md`rgX%WSJpbJ zQR3)@y^Oz7h(K1bD!e{!Dwo>@9j(`v+2pU1eK6mO@70a1ZyVAeHu-$q5?u@8Squ^8;u;HV z$Nh!D!8JjU1xg1hemfsJB&E(Q3U0-d%KH_ut*s+ASXEgm!P--%x{6L2kxlH+bvl3` z4+mg2ZZXPs7=50gqJr!3Mv>$#jX4rGj+0Z;Hc>5I#e6buI0b(-7$`>`4V?4#XKxiV zkQZbTfs4;s2vA`|+$#j1(OBb(*DSESm-@rGT~{8hTVSTuLG91xi1urouy%^|Vq3Xe zqBod5Y6b@&)v@WP+~tNNol7?4LI*X~Zfyl6 z3G+QLFKPlodE2|Q>H<1RWRyM4B(YY@7Q&vq1zvIE<|0LOI( zx+9j`0`J8;4SqQpvnsjb!wT&T7p_EED(Mr%k;wPg-!&rJ9bTn`pJi3T#Da}((_bIq zM74_Fh~eDHLbry`Bwlp6dFxQ1uJ`lo2A|*~$PAvJV2)+Sm&!q}8;B29{2nr}Y*z{r z<_Evv!lY9}g%CD4ki$WlthvjqLaXZvbY-UD*6I^A1&}baeW(|2oWk&$YFCf1?NcS> zKr**o^y0R3wbiLTg19-{E^y!Yhimlw|DlBcJ7ek}+Jm8mfr5d70fK=O005jjpx-~l z{*Uqbzikgp3`~EU=t9&W6;RZ%t_{;IhZE8*LkBI-?UW2y#v9UgjSm8p2AwD&MJ6sT zrpF10fr*)ciJ_n-S$V*Y5KxHV#1R}|0vFwj5nR~S(CSvs%&3Q1O|2&EBv!B~H*Bohs@`2*yngP!c7J~A@`7(4Nl1_;pd%#hGa6es`@&&#&6!HO%8WungaDKn zfP^8cMfP}t1uFI~BZ^QLv!LcOcHAuryeEX_bTk13CGPbd;;!fibw;EQveuf3#(5oO z5M|==f`e~~P7tYtWItm7An&#(Hl35?@Y8DN8nCKC6ATd%>%_8L(bHkMnQL@RM1~tn zt{p+!=%S<6uE&`+Xf(m(vXW*;!W<u5w`?_$MoY}FXtHNaW)FtTH0_tIY2Tgc=*e~MPpUIK>7K8WRp>^OjgOIFxgR;v zc+s&Y9npGnr<%3g`tb1VX0|ZRm~LR^5KL+IM>Pqh+qLOg%nn1B=ZD+Rp0Jfx!!%zs zI$)AAq}Q}tz=}x!@N<5BM$eIh7G`AcsA zE6oQ4bJ4>zS7n1MA|`3XXmKwakdUwX1OqGAyS+JGRRmuD#yb_zKELacl_{!1ZdquX zJ6EsgmcWTfvmIN6xNY2dI|?e;N2W?XKm=UNNt16p`_ zG8_eWOMViTg0FU^{15<)BAW+!iijtdYDFn*^ifUum`Z=$ZvUiZfvW|2$AVTrT5iL2 zDX(gK9I&Tv6y8iOvR~vlP#@5U=paW#03tl?^Gbsa1Eum-xaLsjJ^S;*wesxCEicb* zG{U`7JvU7^9Mo?u#ur9#tWSX9C9A0GFc~M0BqVX+=Ke&O5&Bt=SJLzv$B4DK;0W%r zL_QYZlT`A#i`c80!~A&eqS>|RQWgVzD%Sxv!th(9+YaR90by(iZK2u8D$)w+`t9zB z54)1iEXs{+TwmcAT5OI4AoMepHp;2$dpMmF>f1 zrMDSEr?PEAcjJsE_?fW!>CVO=8z?SdU|+B4Wi*mIZxz(yW4elUAGKRC@WD~VE?us7 zLERfADAJ-pTjuuqiJf0_1`80)iOA<^4X1@Q4VoY6f6dq0NN4dglG^thRJZZUL+&dt z&w0pR@HxfuzMniWK^EX7hiN|!rM&j2L0x`w2Y%HbdlKw}`1@OAXupaWIHUgDbi&t* zJ1dzb2Y7^@O#Q^27!&Z};&LB0SHEG}6NRyUrpp3}5+p&f@#BF*9Gb-8nleIKH=rCZ zc(K^tzldMP=9-#s{#9MpkK*4@A~3YU43g6X5EL8`flB1rAxWtSQuzj{(=$pkZ_LPm zS)Ih^ST4#w$`X3Qj)4n6)sk*U)8caLIp*o%Xvg+p%nVU9I?~fn8?N{6$nXMn1JUg- z)a4=;)&c@E>3Kk+pwjE<8FI4CrZxw3$SNlAPdoPeh~-HiIzwmHEFsc;A)+*@Z-)jJ zEFrOEKSYUvpGc0q&ZjLd349KRO#aY&elIoIAxY+CdIIU8kXIv0tc;%|X{%uwHH#8$ zDRpRQ*L@{lffvr@I=U&})d}%P(z>n;F{KZopr&2ZDqQM#b#?08DnfmYqoLxlaiG7=D0nlZc> zqAdNiCukCQO15Kmf(5vNZbB=i+t9a4#Va!=I_|M{#GMO+JrfxwL_S{|mpmQIEd>gNTjlLGIz&*SP=wc6p&t#YKMS2rKiX z&HB2Unrf;Odz`Nf&mnpns(N;9!$inANzphR)n?Jb#Tk3|z@nVT;Al2ebCH_z>No-} zBh^KnZ5{$wjT}uesoq1YhF4E>wcGf71O9^Zld&r+Y|#sR*M~FS0ctcza}>i;j_HRr zJo7Xp?1Rt9;+ea7AD2!aG5LKbifK@=D$ zb3`gcC@KLPn#RJ{M%BAX3wDV|JhGX);@V}^wxYJRbNze4dTs+VKG0<+ho9_i=cDVz z_vOQ19U_gLcWOSaI}wN->1Y3 z6bhY^gf8Uqj_b^`+{+}j$DhDr!{p9q0D2s?cd#u&fKeKUqar<~y^D~72{9x36D%WO zTbO`Kko?n0$s&?Y6E&l7lF0(*ZD2A#|82@y`$1DSbF&`=9JJ?xz89UrP>PJoQaW_D zd~TjWQj=09IWamf&6tonI^IhOdB9Tu)2OXh-jEv5}<*4yCechpiaIU}jLW4}yRASNMX;NRA z8*A)reVT-ph=(~oV_fIRbQm8}04Tx0gs&0A0~bJ|do|O{o~CBWhMKX`XEP812~1?L#b)vV#;hB~=Q40&P5Y0-zPb3wbMG zC#mV4zpL*$_s=&*u;;b&DCa=_(nmBjO6M)l??qAP#%#)p;?l}wAgwop&oqbClMNjW zGwuBVGq0W@nJd;T?H7fU(zXuI`*+SOC#+EQ{t4_)@7pWHv_fBJm}Qro!rKz9%k#;h z;+;vC1&2F+2;j7=MEQMt^kPzn5)EYU?}gsb`D7LQo$4IFMhBXV_|$qb)Ha zO46>z^ZoQl*H%+;3I&dCad6Ui_I@5@&iLtKhdnPY zx-8}4+yf-`LIP#`rGfZPOM;1;c!fu-S}JljcEW6Rby5DL@iCLtBCky+_hTXsXqbv#V=@$vZ956SH_TIwt)T0u0e z4|7os+(34-vk{t1+_MI?-RSmsKOOe2bKIF+A3Q}FR4!rfPL=^A*PA*I@+3Hyk-1 z%oc9PY>#8*4Ca)dg>=dx7>M|u0bLFRq2d-N>Ax3kbp*P_sLF>W6JV8a_iR<5S1>!w zwA?x*a-{*nGuEUT2enF{id_mEL&kKJmm;p@kpobq_cs7Vi0BXgs{bCgrbcG*@IVQF zqc@_L!inmy(opVl$gEG61KD2>vJRWewO_0$$Y&Jg%XU$ihQgS|;&bWuxC&sO=YjaO zFXvn2V8v!$=shrlNGhN|olI+Bi*8R81njVQrYYo&WsT-G5R^}EPx^;bEr*U=ysYVD z{YtG$cfKNt9!ZN>zFlq;S#G~sF$S^|OPKe{5s_qcgndi{6G7#YR|e|)` z(-Q*a{v1rX7Iam!_QiY2^t(WPph|h*VSupSy`?m;E-N#9UT!UB<^wYhT-9NCmRTcSy5F%OoH-+AM zQXwoPK@`f8=X6Q(mNg5jfNVkM`QPYaNV>Lrn#vC#?ERD|j}O4ZcT~bn^&Jc2i(b(& z4037~Y^SdAxF>8;9@U=&{h%at*LCg)`r}>*H6vrft96t5xZ=2phj}sO6Smc5cKrb% zhg{W`8YP9*mK1<`7<`vo-(ChtCG361%?Yb&Qv(Zueg`15a*%lt-Qj*hg|tPXS_>3Y zm3j;A!(}~Pm)GdB85^o90Uq*#=o?clEsJy=Ax)+iQ&E$y%C->^I(U%im}teI-zv8+ zM4fey^joX%#iga-wvo24*(F-8DeNXmR&;9;eMIy}>$9Fw8w(O8PdU4`BzjEWV)_rFy5#37BrtuY< zEO^=sKu_FAZO=AiklXUofBM}|^8&I)v;CTP^DYQsLtkdJHL~xp)|O-g-11uRG~(Vm z9)-tZubQ|iyp=;cVyp@CJ~7+}MFXj;_MHpWX}N9))T+_4+ti(p1*;p>oqyk7?o}hV z_{Z!9#vt{E=E*u=ba+EeHhA|a^tyF?Ipeni=BB6`9baw9q2d4POV(e=CzHN!&%SaN z-9VE_!QP>6aM`P_hPUPu*HTTN`0^l%%K>tJN|1g{Wd%4B%_s2T_uiV1Q6JSytZ=@Es zk$#-D!AI-tR^f@PRZ|%T*P?x`td$lLLJDUlL?%$IuU4Ru1QEeg`VBAXE?U`lv{40gToD7MLp@_bweUjev&EFp}>d{I3m!24S*;)XC2=(}M`NcKO_l?=`ZF zID$gqKJ;APUk3SqOuzN}tsB)t;IA6j5GwGAgv^Kq$8|&kctmm|KJ&UF)Rn1b#9BgG zE@xIn6&V>DtSO6Diq|fthYQowM-T^@V>OUPZInt)l{%bDa}^S;jFeFtNF&#!j_>uK zL@-2=sAA+SCCJO2iA0;S#!FerGUqePZHRI4M2pWJSrVi(m>|Dx7cp3*w2H_YC0j;C z(p|8K9L1fW8ghwdL=yRAg%`1im=XyrVnXLLW=4+}7EWwzQU2Q4l|67dHybKN#G*Zm z*7{jnOPMT=wm@npAs0@gF(=4nK(vfjFJqsT@Ah-i5`AWdbq9(NODDLSz$S*<2(S@r z$6rY>B?kTxQ$i#y6nY#7BpJ&SkJEP&q1&SnyH5xsN;#|4_s{!n-+za#4eqNvWR#FlIKvj}=(>_MK{xkVu zf3a1K`^2kyiqrpFSBss?WK#{Q{k2GEZ#G<^+F<8tn7l`wIy(qJ+t!9(f3fV$lKW(| zLpJUht&5Zx-rzXwQOc`;h;(O#`!-IFqYdX2cPMIFn5=!$8b9t~u-j2)1~0T2XEx$3 zK|*$_j2R$0r8CNEv7ZYisv*AB*|w|(&rSZQpgD*Sx?a9ZZkdhqcG_3IKpODN_njSP z;P8a*cel$D*U%cUfz12DaRD_u9eFK4k|rF)wL#F@?2k}j{g4f7-ZkKuV7}?YJf--O zU3-T`6=9E9(cb4EF$ZUCiqkK=;2)mt-Q{bLb+wE2JD@lt7+Yt~cLzIA9hxyuw<+IdF%fn6ujj}b(2v&A@R~+zw!09D>5{d^k!n^=t^03& zX`+(!9@ql^eW7N3a6)qSKa60n8pO-kHkJEEYx=?FzV|hCK z2Cq8eHSze`!1Zx5#C8u-<;!FnbdkgMV=3@94y}^QL*v6dMWuiYr3xSQY>;37QZ6Oh zKOf zXdn9CYmrS`J9E;EEx;CMget7qMYq=g{$QJES?JCcR3{r*%1X=VOJOde@>`!Ydq7;0 zlg1y~+c#Ke`4MxlACeTELHHZU*5NDB4hZ@4rD2R6KQ3f?D0E|#&m*ox2RdJLQwPXg zTro2c2B{qmi=Tl);&8Xx4CkY>Wc;9>3Wg7d2`kDY)T>xa+A*{>irp98_ROK(3ogal zv0W$<*3ZQ=zpvq5foYGzGImBO8?(}7^J1VzvLz_VO8*J&ku@h>Wzwfsg`C1=Hu}Nq zhOch*BM1GVUR4?Mk|5&S?NmU=DRV;z*haXkrd+IM4^rl?_@a4bf8E?}wkRujj=T@P zNU^#|&j57dmn8V%{0F-ycvz(@H((h*!P5YV3DD32SDsg|2t9LQTz9>SzgD>{%>lXG zpd`^CM>Mp@Bl#Kp7d~$whK3rU{=KV^(ZLq`jnA*E&GEC9w$%6WzUTllvBw_tOpou= zdg^2TYTy1DFdWXAffGp6Ss1FBj1yZp9WX@{FmJ~nLjARyVp~lZqWp8h_p6NJ9(M$D zgZ#jNQ=ix9A5$HExS_EIbn{09)m}8~c_OTumxUK& zKn%Q%77H;yzXf|wsD6fmnmy*NNZeWUfgFck{?C*Dr?PJf(yU3h?y_y$w$){uZ`n4x z&}G}UZQJOwZQHK;d(PE2aVF-EbGu_l?u#9fYvr?$!5`Ma$|bC4j~0B!*CBW%^6x)5 zhs^_j7^Gqhe~pT#Oiv}Zbn>*iUq5x~bO=_Vl6X~;DOfip(a!Fs(rj8-ff{9+;aQS- zgt|k8pv~uYP6_)5ZFD@)iAVu8N82`Kb1$yVfcZnGD#OZ{?$C-k-%eHWG`X!^zci3) zlM&2j^LQbbPGQohu~%BVD=Jr=zcD)Be6+<;Jk}X=jZ*VyE);W~n_CU#X|I_(S)BHN zRQ}wNT34=8v5)6S86k%!-zsvTWS5dd`)%>*bh6c$WhGl?LZ=mb#=B-$k+Eppz*d1q z&0{mn)wZxlxJj49HYFA7awPSo3I^NySo6-$j%P+m{=x!|Z&GVh2|bl0aHwlONeKai zO{zH(wOEyhIlH##nnFO*Vrk(-m3>Y*d6^M;367v@6sDY_<6d|}S*l*VS_OR}eKmPO zwl+%9CUCG1BKoJ}UHFmPNc-%noQcKUqo#E@S7Fs0JLVxsMb++_3kp_vfD8}1weUS> zpgVTzKI_1RVbH_p%Aa90GCJ|Z;2F)_b5!1~hb zIe$|BlDe#BCzIFZ+8$!IHY0t#Wn@|)HJuax>p=WvZS(lhQwAS!n86X^t9DWr#AeAD zkZ5a55Dv!>!$62)BS+!uGA+K%0Css4K3iK?x$ga$L{|dT98+yx&jyV$Iwqe>IK|qI z1nkO#;`PL|G_tmmQo>CV4n25xTMDn!zZl%7H74oIjpy7x&|DC^lZ{U|DoHu&Bbi{u z2tbXlFP}sB$y7j7lE$jxIQn_DARQC3E4^s)Be)@h%tje+(M`x0tsd+n2wsz3`)bc0 zrhL_8(O%O4~SA?7-~x z8z^ABTIxU0o`2|I|0hPJZ)_})i9CDL8wB+OtpOzZKP>%^+1US;Q895a{+p~gP#U*(*=&~b2u%;pR;R9k74F0;7gmCQ<%-)gnQRO-jVj+j#iH@t(u$j;7% zv+lKu831Qt4GI5ho?L4ZOCH6|QHDNWRn;!AB$~BgJI8Hdd8hj>wl)<@yWV(F!$;BO zc75%A?VY`S{}_%K28t9Wq9@>ff>>eHqpYiCpwwiEz51M$b_wNIVjnZ!S|Q*R>5DP}9#7M*{IPBLe7vZM$Q z`@t&`$m>5EYex)vXLcYhG}Qk7mThNzo)#`9W;T~jyN-HzD1UAGh#t@^X_ViRl=Azz zY@;<`t0)(t6kAK9p-xn~!a3>z2+UhTNWI<^XmM`a(8ZarK(VRZLQR$?jl{VljtTRW z9Av$k!v`Ql!=^=IV+u#tc*D+E6*)f2I(OMFHY}LI3fuL4Xi3%;vzT@gum&z>W_&WI zl+Ml!Tg8<2z%wx}b14hGG^0|C{)9Q9wakt+;rN|&#iLzD%coK2X=n1N8&ozgQlSa5 zIhv}nrdF^g@ZtGeYYaQOTnkBvosdids~&DO2KOgCiE1da2V9wWqhX(!KPqt$*R>=f z#~p=Y%88u^!;v>VKh>A^UgAwDOczLYN*l}0XC&moHtM~dFU5hM(MVI}vO{Cc#e+u0 zWZ>(HjQI)!??Q(@E}RJ0HzEFYv~wEXrW}JudlA=+q@Xd%26S2cVY!~(`)kmw;y6-f zSu>5K`A&uy z7de;b)(u?*3nq>R#u!F{iA|vV9xn$g=A*hGD)rxXIY`SRmtk##=Ox=8W7Dp}T(th6 zh2_X__f^INuM-=%b+s2bJrc5@>hTs{vJiq`Y@)!^Mc-p6mHSqTdNTyjyHv>y2|P>{ z*;b~?+JWt%Otq+=0&&AExe|<_e}L7Wh&tWue|T&jXXMYVjPsDxH7s1q!Rg5F*b!)M zfDxcc2!OY!44o&~9LQr}v^9K-c|br;JX^bZ#qfrEH{N7OFNZ3#=-4DiPTVv{hF(XF zfBJDLAPy>XPffxl8 zM$8DcpEWqsMSU%4K-j2wUZMRwsA!HZcJ04}ixLw{5O%P1KO(05h0@d4si?WEuUIh_ zq4t;>H`D0C3Mjo&12myr!=xUYLJX7`aqg&`T}spsscn&rl)?%s}!cS5&lD|w^DAC}$d;a0~@G@t{B~0ntKhgW9dGn<8 z3J2uo!m5lqjqtWvu6+`F(86r|1b!D%^6A)HLofi+M&J;Va3 zcQeV70_D2_4giw9ycZ~h&&TUj0QG87cqQ-`7`MBUysqyYRPB<HPm z$um@ET@pl56dW@w)AE9~uqIW=kl2jDGh0M^Y&RU|IQMK$?C3P3R|Q>Imp`9DcEn4c zl=bzEiooXB;|f?Va_Uh5;Y1fHU%$+$kHL(s>S=4($a1jc&d~x#(HL%d)VM}w>q--7 z&MTIblT_m6sf6A`&-OP8(SG7Wmz2%V*a|1Dxr*oP1RVs!I2S%=!Cu zeM@FYj?Zm5E>pHVz_zkis4B~bqd4E%?P^Izcg-?DE1<8VY& z(bqSA)YsVg@dKtC=;VK|%=M2^$o~~x+1c3sEs`3g38jIezMPF1FC?lmtdUj6(z?*D zvQg2jg;phf-pw$I|Ku$WN{lGsD7j*+2Lj|EC_UDi?5wA5@#qb9KM^{K4|@C?@N z{(hwpvgzsZ`TQo8-$`q0d+t2We9yk$ibGsl3KSu()9W_0k%;xYNgP92ruNPU-W-@z z$AB3K;)tW8sSWIv1cjh62voteh#FauLRisy=G+Y!Fj?EKyO8ydErdhtsd|G&{(D@% z6_B&xS@RMyd`CAh5|s$`85A_6yd}R4eMu3aulqF01JfnKA2-n*-;wAUZ7qvVppe(Y zM8?LrI^M@QWpueau((d`G2`Ln;`TbY!a_twLE1Uq!M`}Xi7Oa@77s}xV%k#`2&p6L zgU6TBdls|{L9`2b9G`?&L>j+=gvhyxEu9H3E?DFlI5$B= zy&{cug?L)wtWj^U`730Is4otF;*&S24@oK{3dvtW>nOrtJ^3DMk>N)Lz zE;=j~b%lr0F#gpI1*1l*&1dh<1V%u+?MirLbVUNe?0bv z@LBMu7aWBcazW_rAgCenu7nJ6F`{yq#bC#vj3GKxhI`J7Z>sno3UoxdK|@2Ry2O`M z4WUX>H59ARra^8)zB<1Z32X9Zq^UrhT{(9|-N5)8vJc4L#J-TE{-KD(iI61yVG_jQ zq2z{PoQ4oc@}v?z3E_E2dIX3BsR72a7s;JeWwrG!(9LT!suI#w5Sk+z-z~Iat^i$< zYogzcl1;Db1n>N|-tfq`@g6wDDS9c2;h1rGTkk zl&&hPDJsV<)$#>cRq`e4P2=*MvnAb=b6D{&&?3~QU1M~QB^9e&^FjA)IK1@6IVL;a z{i$>j=vUFDeTyEr&QVanx~6?_T0NU}|BwMt{FySnZ08`s=Z>7|Uk6!+I>zVXD_ZN| zdeLyOds^1e>gA{I`E^M1wpF<94!LfGra{+}r~Ycsw^$gX_6UT7Lsvh@I08^qT$s7;l1GXj>8wX`E02XrYxtgMWFFi#|JuL4sF{42HC4RCaUx z@k5_DgMN%SV!hdGNU%o_KfpgDDeq>f8rszWq#)@F2XlOVsHC0CU%FHzm>HXQ)G;wm zuit0Rk-R0{!VX$l&4~>^xCy^er^O9*n=dZK>rMu8ljbt}uZ@v6F`@M5nGQF4%wNSl zitLY6rw2i%Z$hobwrH%g?647aD=6O_DihhL!dM@DJ?dfU+`OU^bccyw<(TLFEflP7 zklBvK3Y=$uhdXp-U|NhH2oBPNWfBxNK6?h~JGa5Sa2X@q8`YgFk!(G?PL&B>fPmDU zDZ3mGB#ZvhWwUYz!?_nW7eW*_WgI+B#HzBgV*B&G2OYtVPy(YL#9p8Lus__)qkhK7 z8c@u!_(1S6vW97*zg6&_lt@L1owm7#hK0GZgQBZ0e?<;T{oLZJSk=<$-04E)L#02U z#TPY!80K~pSr_d`}vKvHhutC-+;FAXba!JsIJ1Rxjv7{ zYB|zi_(2S?BCmzKSN1WtSSm`<8c^Xjohl93tKJjX-HpWb;IEz3eGu`0C_*g{xj6`- z;u_)H#fYbVRi1GmTt&T5Yw+vy7LOi)mf^#Pxudy!Ka<^Hj!#E`KIbe{z0@yDwh^LN zw2h3ApZtQPuT*tvPO@FnE44Cv9sh(YNgHm?qUTNN0kPO0+?hsu?gRUxM_>`%80gTi zfFe(YCAVk+IiTr3Tw&s!gPJzGsl{jmIOKRG65P<6`PbXO!m94LyFwRsOLzp~k}p+{ zXhWIBhX^KC9{1CPsCGN9sNZefK&bjBDAt#t#PjG53W(+;SE`nnug-QW&-`_H9d8{; z(4SDAndj%}+Op=3Q{dq53ayyVncrr7x$ws7FT>9{+G4>f@8~#Urg)Du#&{%$U@nIv>5OSSQNzLRIVQ8~Zj_GO-e|TXsxcYWn<<_oW~62ZNJJ0_c6Vz>SqD0JJ8WHoGV~L} zEYW>XnyF}Qxj)o7#>!xY_hlFQ8~Fv($)les%9^fo`^Dg$-Nt?&b;0)j(fLAI!HT6T z8Ga1zRfFG`J!b^;ul9Ki!Z70(Z;!D_^|tTt@=-avAtE zB*u%CbY^3Xo?45&T#wWe3PdtfMr?71RQcpE9M)=!asX5oIq4I$(+h zonA1pLX^TCAA&Drnn`SmBBGJ_DK8iP{P9Qa#tvqE z6gm+vr;_O&yL)Dz0w(b8^oWp7zX0SgcqySY%7Q0|wW=o5HAZ`ordA9dJ1<5i6Wvp# zZ_Vjal}y#QJih$GU~O5#3n96jQi*I3$_TAU@==$m+7iJnxxXCT%}p3}zt#P3>_)7J zDqVU5>-bt40-gF5({(ZW2Z#Kx-GoPd2=Cuq4h>AZgGYQ9*-=(AQsf(OCWVebX|rB@ zSz+Z;G%K;mYO-AS1B(?L>H8T26|LT~vYIBakHOG~gaOg2MI~kNCwM`UWFCiHs06M6_zY#5wf^0qN=fgrsE$@2wiw%eyZ{UL&2he;V4b7y@lP+ z$q?8Jk5`>qF&55_E92R)6!(?o2{MX~!cAM@7sxx12BSdBddZyM0aZtb*xO(dW0c1v z0Sp)#vRaM=6nhD=FD=4fxjJomw=|78tKV#Mtd0yAzJ{D(5qdl#g#ZT@SWlrQeHXMu z^|JGyU87AI{j<7w5a**Ep$OK7(kLG^ON=Z!>aT-N+%J-Hd~Z&hbly#x#^AL}qwbDn z&`nOYnIDI16zcTHb{Z3VfdWx+t9?2eE^_e*CQ79Ns^Lzp)^HXO-@g>igWV)|uMqho zGYdR+iG;uCnulS3M?-E~MT7akc}&~@cZ;!wz_A#0kQrLFne>5oniN1Z`yI4>KKFDj z3#I)C8%-`UYqIxGESxfg_?vEVs~Dm-^fJj#5?Wd*UA){c%{vduL2Zg-6Y?>{z|%r& zcGDZePiUo(>4HTzbzQrUuHn(*E|nuv&s^hy&Qfwr^(SM_;-^~|G}G;fO_|W;pDnKW zQ@blEYflVq;H7rLg4`-tubomNRcM49ucV~O3%ouSC=qYz)ul%UUi<5C+3X;Rr5=Z5 zZE0w>j%Utj@);_ivRbaB3ME07oE#t%$@mCX_cI~vO{LX@3Sd`;JcwKunnqVb{;am! zb-=IkK(gLDQC5eYGd3Dg8+Q1Bs&{f z`oRValj-$!;SsQ}y`h1SBJupnivJMfpzmGRbg7MoBe*xHxW0U`lDmyDjz3;Sb4U_i zuon>Dm7M+bf{#kf0w40jc20PRw&!+UBkppqrC`EOTbqU3Cz3xZT7|t~#OfJ?ojC;O zLtBb#JeU%4RJ&WJa{f?}ZL>k>Mh4uMENS4A4<8AB^{33i!!ppVngM6?}!A-PdlmV7IyCuXXEwA#jsH z>+`kT{rm`;3F{D zpa+^PYoQk--|Pd$ns0fNjXL;}P_O>F3Ac%6dHbMB|G z{WpRc{f&xRV{m;w@OWu1k$)k0PAQL?n}3^+19oy4JM4hNY|nLM94{9|5D%xSf#4fn zQN9$&`wtBe6bt(`1UbeZ;B`S@5_Y*xb8u%m%E|hcY#msDzaCPVU$*>LzriOocz60Y zWA0KfWQ3=3$b;P-j@TI~ZOe1Nf5nE`?3QEYTp2E$o?61qC6747jAWyM#m5idcMbvb zBCa=tNlH}YEvB8WdOQn2obh@BS3(Q^3SnoNa~j(`R?_$_rHG-3hl`7ZgsY9GsIIP~ zV|H|gfsbd0q)Mh<^pkC?)Ll}`tU%(>cr{xjX5yM<#q_|P7Zl+aE4X#HIiH5v!A-n? zhnlrRw<_phkcen4R2Wd+ROI|Peck-kv*@wHmksmpv4Qbp zKu(SK$-1O0X`n^FS-4X+#|@`UrN$kSG+fTLdXj<(`pxAPr61o=4vnpmpntNvLt=)d zi=QfCWEZ$?1oEJB^i0zK5t=#46X~s zSF)S?Hp*DZ$Jg=>ll?g$Brqmbf8VV|bKo0u;hIIRnJP zrUO(BeSCg3$!PGec{SNo(a$z-@j_KpS3ew zUZr8CXQSAv-1?}kq;j(-C8jXeZ6byQG-2iD^9x1P61r))bc`CrPyJk(SLE89v+N`# zY*5t+n#Dg&{NY?SQ+;@Rh`LsnovvhZ8n#F3gRpgusxgw`n>5ms;uLkK&K@Q7)NJ>C zN_Eu7et5hzFidL6V$f}LDKcE8i6RvJ)P7a~lS?t;u`%%A#-M*5!Dmj`P^f=*H1Lyk zosv}<^)0~#?3dM3rQVKg03PTM9A6kMr;X%e&0x(Ow6^6$p|sU8(auQ*2MFVIGt4rYxBe8X<2>`YZ=`NgCb%Yki< zLhB!_yWBWBQi1GAlCwo;uCwL1D&zR^+qSyQ@CbUi7ia7}51kClslzzW^RjtpeMmr1 z)d{~fz>#Y`Z+6Tgd^&DVz-hl8DYm{|YGQtiB9v~6Zl02|2UrM|Rd=|q6&BJ9E5hnh z|NfEzPw?xqf1`rCquMs)p#?BnoVD+dDy(VDXrZX@XXJ}=!@XN9o*p^<2?)5JJSvsn z-exxYghsC!`C?9jwjeS0OH`K2-wWFdlKzO(?PKXU$6}DmwuOjubI^mkqKKz@h2;uy ze4z>xkN*9QXST5nYNcr~vkjB=MT!r^u91m4`YzzxnaHM+y9r_5D#xDtWOfm;Ur@k{ z`;n0QIy%>*2_N%A;*8Me9pMZhBe&f=Xkq#mmq2R*vz?$~b-kG(!ICtvKh|c>+<8Bi z$Cq-pLPg4^2U;9)<&%<<=w_GT3IRa00O4~nfKAR2%34qj7M-KQZc>}vi}B3AkTqS-imt(W$Y`ul8_nm}5h$(v&io$%@6sTxJJ0 z+S$>cd@K(_`5Ud7W$?5I`mErZKb!fhVyXUYWTlMt;n+L5sh;-1J2Y*>h<1DY3AvZ; z^j^J2S~%KX>_Q9xb`g@X+u)y9eHodvlnuw)d%;KG)saX%Wo}y4eAsd-9R_v?!^+R{ zU}ZbECcC5Bi6k(rHUr8gDmCT~pdYzet1IcAlDVhf>1`_kBwI6HP#cFoa0TUuH3ZSR z*HFA~(}x#!$+eR309+Ysf{@099})r?j>t?lVG1|TfAOKARYn-%PC9X%MmqF0Vq453 zua3DtYs@O1f^mDJ>#X}zi|~k97z_1v`B>7=k{>x}o_*wIu3&N6obV_RNu!i8-ydqs zmL+q=V3-4oSY6)Q)d$iFho2~TH)D3^@L-9@-<_ zK7suNFG7MIx+qk$3!PsUbxaKg^L)M*P}55rqFc6pEH{u8tR~7)+kqCjhz|I|C{T|+q+?4cCLuFm#^*jK%3*P z!D}{Mx3pV5022Q-|nQFP(>TAI6XMX%HvL+dnlh+ zL(g)xyH*Sq&EIaLxs3Kn`p$zTpQN{-3yV@LLz!R1&5okEW#*)oMvI!rr;$y&Ot$AC zVgN@#8cB}JIWF&);=CCa7{4hN;65p~Dh;w|Gv(TjAQhN7XtJ;M3xvB#yD+?e{qt*h zW1$Ua;)<|fXM8eEZY88id;tWV00fhEm#39pL|A|XlCp)|2kK5~Henpd=*EuUv|dXQ*8@9JSX z3Km&DSH<59AuaXaqo;~Hj9S`s$UC`shanF5a}o%{%DC%s#(fDR*ihX|yLOOSXwb#+ z#hq!bp&ilb=S0r)c7cCq*QJKFp7WrOra znyQ>ZG`@E4USr$!{5?xavD&zjIj8|iX*)pUV4l61$g%*-^M7jRPT)6V2ehe zO*;f-y4Q0R;Idps-Y6qr*(8YhT0cWJb*J`YTVA>dJobx7$ToEL^F2W&e#E;k_=5Xa z;b#*?8E2UsQcaj7Y~CW)ZqryLIT9JgZ0ev7Aql~z?fb(@w#HyLuilR{g8;?5P7tp@ zIeo61mo-xqg@q}m#^Ew0i}|2T^n?ilZJs-GTg5tYXq6#qc*yea%cRNbs!11oJ>52a zjZN7+`zyl|&*5}`L^jM=l0R}JyuXgNRPOBM@*zShzPu>?*E_I+QrNkOgQKZK8KjLw zA9oq@fBmXC^l~xMlAwFPqXjOlCU;^%unW7*ozlP$?i2~SOfb3Su7aQa?JxHDfyXJn zArCtErRS?_)mYjRc-n;!pNvzqL$sl)9cu38`AS-rPszZOF*$S2f;dM}I1f|?lTxFf zKzla%Awku1k8?7ymPXKofQq@!WQPpOH1KiLIm$myNlP2F^I=_(d1=+fKiG^=e>w8p zwKkoa$046uu#7{$wwA61xB6xs&=;GOWwHMK`^SXt)%t&seEwlk{V!tDzxDL}OH5*9 zWa$2IU+clL`|5u07ev+v{;`t?h5R2r@DDS{|5a0BVq^U`$A*ilr#*@&Zudli=C~#( z?4Cvf3ZjCAB^tzxK{%mm;f#{hVH~lA)8Fm4??5WUpG;Qz*J+IhyR0-7U0z)k5RH)s zC*)5v)J#QFL{SKr^8FW6FP5t$;St$cfdvP*V>gZt&+X^;?$1qHSt?Xi*?ATixX#7y zVS|IrCpPe{c;)^yt8%!hhc#*@Kqm}lRB4_F9bG;1t!*2pGSMm4D`dfo5#c*_0^ecE z1)y7TOH}b8i0brZa>1HBAx%`51=LjT*AdGRz7$!3xg|AQz?{PKywi#JY5(tgK2v8E z`-;fStd_eg=Bd+q?hET|+pz&@HO}UaEVYIpGXgKd>%L4}WQ=<9kc6z!%&s)ZsM9bahousYJD@ya&KHW*yID)3-?Fe7p_N^h)KfkGnE2u)PQoF;a zD7t2!!WoNeOTWtX^y}F8izI{C202OcBP-ceBduzIIpJW?evY~9PvaxBlssOM(wx zUuwTANCCXka{-Al=w%X}XoRXRJzJw3R8wMqli6eGvT2 zf{>6v-!;+<#c}9zgmkpA4-F}ApFTjKgw6(#g1K}v!6rt_bDD<*m2GTcw`ovsNlY93 z&_?)+!c@eub zH%M9=Wx*ylfo6}@U}V#_U?iv%o9cYWyH=bKb^}3Av%0*m0UF3N2CX|+S=)8^cX_c2 z!cx5P`L|CKjt;YtiLyx)gE8hq9IBs)J8V{J0-)@Ii{s7>QPZ*AU8@9aeU4e*2b8mB&DNMh7#oH6E zEk7uvyvK7zbtt0k($6)_yrqt|C&|*lyV5T~G3M8zT3sNO2w&rUUVLu5m!v~-7 zus%Vj1nWCDyQWbY`^jqs<0f{P)3a$H8gZqjmU3X4!2$ce#d-o82^ZHj@@jl`7WBVg z_PjOnhE9$v+}qhcj95A+Xm}AA8$j>TW&eV)2x>Ma=P` zr2PBc(T*PA%Tfe#Y=o!<;hw#k9MJ`BJr0YGajAdSQp$8 zSTX|+p@2SEGH|Mb=0E3_w}NzY2mm=BPta+bW#dhnq@o*tD0wB}mp4zxIv|9K9=f*J znpIH1AJyUESsMtM-=~fMobWFyn9YSn5YPE`_r7_h7}B9AmvQono>wfv4nBotR9lN> z_+ABjMEC(|;Ie#sjE5nd-B($}D2u#%OkGr2*Hs9*ngn2Bck1kjV+-|61!0GzLPw{i zBtW@LEj0Ep;m=UvJ~?M-I~6eqaPVh0gp%NVzQX)>I)%vk!PRBik%Q%d{gj2<;uTw2 zkVbcJeCLAmm=@BC6*@!`u)o{FVbBx!X07@F~=?&_wu|H($ zV2>JaYbR;!Tb>y&UG3yV)hB(fp$MiDXg1Wc#rX?;GU3c=y)yV?GK2kj3TB-Bj3f!- z#Gb;t5|pT6BEo;@dW}D!dg?)s{sYGR!xi{nK#cL<60;H#hK86Mz6l1LAP_%p!GZpR z+mQJm;P|gjMh1C9OJ!#p2021@uD|V!j!w>mY|L!`rKj<4WcJ@|7+o4xPV-X8pWQu% z-J7kY8uvcdie<8fu$svD4jNaY>I8vRn5taK6KWbS&z`2F>-9!Oh_PV(=Ea`v^3S-B zjr~}8fjIq%M9>K762zq>{wPGCNXZg@Y?6tMB8vG*5~1Q=7{tg*guBorSqgxjUZDE#329)HBS|tzAXoO0fizF3jQfP-tp=g^%(!lEfMh`Uk28BK0woW`LGqqF z{6&qE90|ynK^qxKz@9aQY#IGLEq*`|7P0Y59b|&!{*3H3M5=fQ2{xLQ_#w=Q9@Y@c z^TQ6J$F2fZcKUlmc;AjIZF#jD3{K8M`LoN&XJg-s zP2XTEPVX#vwK~XLFR+II*tR>gTD1s}@ssHuek2vJT})(|qvrp8;iZlqKM=1RW1ZfAIHOoN0)B)D2)gMuqXW@En zV-uQBAM71nMJl`P!s(^M0r>kPyJku;SUwtL9H~wqq?G%PSlH4#uE3-Txa%jx_n=p?NqIv+PdY@hGO#FXRD(ZE^=;s&L z*evh(ns24fxdCX;6AsP&c-Vy;+Zb3f@(oemI@jqbsnv#ZIM)V79j|?t?RDM-U0Ma@ z+ZQ*~>edqZ71r@3WW{9snm_goRuLOx-vlX~qI>z_& zu^;I+1D!I!4;6;-q6BKI>+g=q(@2t(zq%K1EzcJxnO^mmC82h6N=&$Eio5k4aHJ2B zMU5m~@|{yH@U1A2tBi7`VU5+ukFxy*EpfpG^Dnx5w4;mHpvPmq07v zgEnPiVQ!xKE7L0vTUVx*H5=&KD9^dGhJ$?rgM83XpbS)`g=f`*6loQC1 zF(x&eEY>oisMs7%jainmw_74*+3~eUSqxK8hDcb+EXq_&!VfgZoFNh-T?fqaAU^A> zjIH?*iheNCC2cpc?BkQ?k!`He7lrkPDYBkRQN)jcchw7w3X()9Cntf5huW&YAs}8T z>JyjJmp;u~j)7Tm5~9lVl)TvriNo{wDU=@M3bCoyp%M40^@$i-SV!srNVYU<{gSZ+ z_$_>LjQS!$`#w8%-HQ%*Z_PV{ktISoKaQIEuu<>EseN|~Aijl=BDhzoz})%FwL`*# z@uQk96LvSVoptAAFMOyWURTp{tgMKAIt$ex=up zA3hh%OWtywi`u0mSf@>wh-09r9Cdzd1(XaKCU3sB%Q_6Wzqj&_OnCVbpZBDCEn<5O zx)DY3zai9Jsy2&tEXK&G8`(kS*nT0yPmla5GY6IV7J84FYjICHoM%XyI$b^;@$!eR zE`=(d@|qMF?vjY+(n2PmIb|~D38PnFzP~;7;+}wv3T|+2C&qT|+5bD|$L3*BTXkyx zDmaJWv4>SOs*+kJ z1q2o-YNOrz&z8_o3|}A(eIhE_PuPa_bLpidkjr<n-fI{bQi8p^=_ zV*Wg`$_%$0NHxVkeIdf9KcB(V@K)0{`x%(Q~@yv(==v zRZ4!L6|&e%4StBJ8uR^n#_H0AjmMsAy5@3GnoYx28WlpjCY?`y2H$UiU+>puDHdtd zpVw!}_Z5vFcg|i8o;FqQMa^n+OVw%<;Ch%z8`~nS`D8;$go(vEm;)e2BA(Lk?&vt3 ztEV`5!j@_+cWBxgCrh+3`A$uuSMc?RYqB^_Pq^j)sjnMpXv{_!zVo@RZ{(NG=|>_#mB literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.ipynb b/Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.ipynb new file mode 100755 index 0000000..839e3ca --- /dev/null +++ b/Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.ipynb @@ -0,0 +1,725 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "67cd5699-6111-4576-9386-0fe46130f060", + "metadata": {}, + "source": [ + "# Preliminary setup" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0ea9c10a-5919-467d-8aca-efa3f2bc05e3", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from ISLP import load_data\n", + "from matplotlib.pyplot import subplots, show\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "# Load and preprocess data\n", + "Hitters = load_data('Hitters').dropna()" + ] + }, + { + "cell_type": "markdown", + "id": "ce3b15bc-bebb-48cb-b0ab-8754b5004796", + "metadata": {}, + "source": [ + "# Task 1" + ] + }, + { + "cell_type": "markdown", + "id": "a277a01e-5932-4376-9771-ca735b510eab", + "metadata": {}, + "source": [ + "1. Use the Hitters data and remove all rows that contain missing values. Create a new\n", + "variable that is the log of Salary and provide histograms for Salary and Log(Salary).\n", + "Interpret." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bcc5d1a2-c5b8-401d-b854-dd0ff5837704", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATJhJREFUeJzt3Xt8VPWdN/DvIBgIAoppEqKAqY0SRSmVFqFWUCsrrW6VXmwVCrvbrRd0pdS1orVGV6HiU5fu2tLVx1VcpdrdauvWeqEVcLdIi6j1FpCuaKgacbhfYrxwnj98mDUmXIKZMyR5v1+v83ox55z5/b7nMvHnZ86ck0mSJAkAAAAASFGXQhcAAAAAQOcjlAIAAAAgdUIpAAAAAFInlAIAAAAgdUIpAAAAAFInlAIAAAAgdUIpAAAAAFInlAIAAAAgdUIpAAAAAFInlIK9zG233RaZTCYef/zxFpefeuqpccghhzSZd8ghh8SkSZNa1c+iRYuipqYm1q9fv2eFdkJ33313HHnkkdGjR4/IZDLx1FNP7XDd2tramDBhQnz0ox+N7t27R0lJSXziE5+ICy64IDZu3NjqvrefFy+99NKebwAA7GWMe/ZeuzvuWbBgQWQymfiP//iPdAv8/0466aQ499xzm8zraOOwCRMmxOmnn16QviHfuha6AODDu/fee6N3796tes+iRYviqquuikmTJsX++++fn8I6kDfeeCMmTJgQp5xySvz4xz+OoqKiOOyww1pc98knn4xPf/rTUV1dHd/73vfikEMOiWw2G3/84x/jrrvuiosvvrjVxwsAeI9xT/61ZtxTSL/85S/jd7/7Xdx+++25eR1xHFZTUxODBg2KRx55JE488cRClwNtSigFHcDQoUMLXUKrvf3225HJZKJr1/bxZ+iFF16It99+O8aPHx+jRo3a6bqzZs2KLl26xIIFC6JXr165+V/60pfiH/7hHyJJknyXu0tbt26N4uLiQpcBAK1m3JN/rRn3FNL06dPjjDPOiIMOOig3ryOOww499NA45ZRT4vvf/75Qig7Hz/egA/jgZezbtm2La665Jg4//PDo0aNH7L///nH00UfHD3/4w4h479uWv//7v4+IiMrKyshkMpHJZGLBggW598+cOTMGDRoURUVFUVpaGl//+tfjz3/+c5N+kySJ6dOnx8CBA6N79+4xbNiwmDdvXowePTpGjx6dW2/7Zd3/9m//Ft/+9rfjoIMOiqKiovjTn/4Ub7zxRpx//vlxxBFHxH777RelpaVx4oknxn/913816eull16KTCYT119/fVx33XVxyCGHRI8ePWL06NG5gdOll14aFRUV0adPnzjjjDNi9erVu7X/7rvvvhgxYkQUFxdHr1694uSTT47HHnsst3zSpElx3HHHRUTEmWeeGZlMpsn2fdCaNWuid+/esd9++7W4PJPJ5P49b968+MIXvhAHH3xwdO/ePT72sY/FOeecE9lsdpd17+57a2pqIpPJxBNPPBFf+tKX4oADDohDDz00/u3f/i0ymUyTbd3u6quvjm7dusWrr766yzoAIE3GPXvXuGd3Pfvss/GFL3whDjjggOjevXt8/OMfjzlz5jRb77nnnosxY8ZEcXFxfOQjH4nJkyfH/fff3+SYRbx3RdQf/vCHmDBhQpP3d9Rx2IQJE+I3v/lN/M///M8ua4P2pH1E9dAJvfvuu/HOO+80m7873+7MnDkzampq4rvf/W4cf/zx8fbbb8eyZcty91H4xje+EWvXro1//ud/jnvuuSf69esXERFHHHFEREScd955cdNNN8UFF1wQp556arz00ktxxRVXxIIFC+KJJ56IkpKSiIi4/PLLY8aMGfHNb34zxo0bF6tWrYpvfOMb8fbbb7d4ife0adNixIgR8ZOf/CS6dOkSpaWl8cYbb0RExJVXXhnl5eWxefPmuPfee2P06NHx29/+ttkg6Ec/+lEcffTR8aMf/SjWr18f3/72t+O0006L4cOHR7du3eJf//Vf4+WXX46LL744vvGNb8R999230301d+7cOPvss2PMmDHx05/+NBobG2PmzJm5/o877ri44oor4lOf+lRMnjw5pk+fHieccMJOL/seMWJE3H///XH22WfHOeecE5/61KeiR48eLa77P//zPzFixIj4xje+EX369ImXXnopbrjhhjjuuOPimWeeiW7duu2wn9a+d9y4cfHVr341zj333NiyZUuMHTs2LrnkkvjRj34UI0aMyK33zjvvxL/8y7/EGWecERUVFTvdfwDQFox72u+4Z3csX748Ro4cGaWlpfFP//RPceCBB8Ydd9wRkyZNitdffz0uueSSiIh47bXXYtSoUdGzZ8+YPXt2lJaWxk9/+tO44IILmrX5q1/9KvbZZ584/vjjm8zvqOOw0aNHR5Ik8etf/zouvPDCXe90aC8SYK9y6623JhGx02ngwIFN3jNw4MBk4sSJudennnpq8vGPf3yn/Vx//fVJRCQrV65sMr+2tjaJiOT8889vMv/3v/99EhHJZZddliRJkqxduzYpKipKzjzzzCbrPfbYY0lEJKNGjcrNmz9/fhIRyfHHH7/L7X/nnXeSt99+OznppJOSM844Izd/5cqVSUQkQ4YMSd59993c/FmzZiURkfzlX/5lk3amTJmSRESyYcOGHfb17rvvJhUVFclRRx3VpM1NmzYlpaWlyciRI5ttw7//+7/vchvefPPN5PTTT88dr3322ScZOnRocvnllyerV6/e4fu2bduWvP3228nLL7+cRETyy1/+Mrds+3nxweO1O++98sork4hIvve97zV735VXXpnsu+++yeuvv56bd/fddycRkSxcuHCX2woAH4ZxT/sf9+zOul/96leToqKipK6ursn8sWPHJsXFxcn69euTJEmSv//7v08ymUzy3HPPNVnvL/7iL5KISObPn9/kvYMGDWrWV0cehx100EHNzkFo7/x8D/ZSt99+eyxZsqTZtP1y6p351Kc+FX/84x/j/PPPj4ceeqhVTxmZP39+RESzp9p86lOfiurq6vjtb38bERGLFy+OxsbG+MpXvtJkvWOPPbbZU3K2++IXv9ji/J/85CfxiU98Irp37x5du3aNbt26xW9/+9uora1ttu7nPve56NLlf/90VVdXR0TE5z//+SbrbZ9fV1e3gy1971u7V199NSZMmNCkzf322y+++MUvxuLFi2Pr1q07fP+OFBUVxb333hvPP/98/OM//mN89atfjTfeeCOuvfbaqK6ujuXLl+fWXb16dZx77rnRv3//3LYPHDgwIqLF7X+/1r63pf1/3nnnRUTEzTffnJt34403xlFHHdXsm0cAyBfjnvY77tkdjzzySJx00knRv3//JvMnTZoUW7duzf2EbeHChTF48ODcVWzbfe1rX2vW5quvvhqlpaXN5nfkcVhpaWm88sorO60L2hs/34O9VHV1dQwbNqzZ/D59+sSqVat2+t5p06ZFz54944477oif/OQnuUubr7vuuhbbfL81a9ZEROQubX+/ioqKePnll5usV1ZW1my9lubtqM0bbrghvv3tb8e5554b//AP/xAlJSWxzz77xBVXXNHif9D79u3b5PW+++670/lvvvlmi7W8fxt2tK3btm2LdevW7fENwaurq3ODxCRJYtasWTF16tS44oor4mc/+1ls27YtxowZE6+++mpcccUVcdRRR0XPnj1j27Ztceyxx0ZDQ8MO296T97a0nWVlZXHmmWfGv/zLv8Sll14azz33XPzXf/1X/Mu//MsebTMA7AnjnvY/7tmZNWvW7LDf99e2Zs2aqKysbLZeS/u4oaFhh/s+omOOw7p3777TuqA9EkpBB9S1a9eYOnVqTJ06NdavXx+/+c1v4rLLLou/+Iu/iFWrVu10sHHggQdGxHu/6T/44IObLHv11Vdz91XYvt7rr7/erI36+voWvzV8/40lt7vjjjti9OjRMXv27CbzN23atPONbAPv39YPevXVV6NLly5xwAEHtElfmUwmvvWtb8XVV18dzz77bES8d8PPP/7xj3HbbbfFxIkTc+v+6U9/2mV7e/LelvZ/RMRFF10U//Zv/xa//OUv48EHH4z9998/zj777N3dNAAoKOOe3ZPmuKelvnfUb0Q02c872scfVFJSEmvXrt2t/jvKOGzt2rU7vDIP2is/34MObv/9948vfelLMXny5Fi7dm289NJLEfHepc0R0ezblu2Pmb3jjjuazF+yZEnU1tbGSSedFBERw4cPj6Kiorj77rubrLd48eLct4q7I5PJ5GrZ7umnn27xSSRt7fDDD4+DDjoo5s6d2+RGqlu2bImf//znuSfTtFZLg66I9wZeGzduzH0ruH1w8sHt352rlD7Mez/omGOOiZEjR8Z1110Xd955Z0yaNCl69uzZ6nYAoNCMe3YsX+Oe3XHSSSfFI4880uypvrfffnsUFxfHscceGxERo0aNimeffTaef/75JuvdddddzdocNGhQvPjii83md9Rx2DvvvBOrVq1q9tNGaO9cKQUd0GmnnRaDBw+OYcOGxUc+8pF4+eWXY9asWTFw4MCoqqqKiIijjjoqIiJ++MMfxsSJE6Nbt25x+OGHx+GHHx7f/OY345//+Z+jS5cuMXbs2NxTaPr37x/f+ta3IuK9y8anTp0aM2bMiAMOOCDOOOOM+POf/xxXXXVV9OvXr8m9Cnbm1FNPjX/4h3+IK6+8MkaNGhXLly+Pq6++OiorK1t8Ck9b6tKlS8ycOTPOPvvsOPXUU+Occ86JxsbGuP7662P9+vXx/e9/f4/a/eY3vxnr16+PL37xizF48ODYZ599YtmyZfGP//iP0aVLl/jOd74TEe8Npg499NC49NJLI0mS6Nu3b/znf/5nzJs3b5d9fJj3tuSiiy7KPfb5/PPP36M2AKAQjHt2T77GPdstXry4xfmjRo2KK6+8Mn71q1/FCSecEN/73veib9++ceedd8b9998fM2fOjD59+kRExJQpU+Jf//VfY+zYsXH11VdHWVlZzJ07N5YtW5bbhu1Gjx4d//qv/xovvPBCk6cfdtRx2NNPPx1bt26NE044YY/6gL1W4e6xDrRk+9M9lixZ0uLyz3/+87t8Cs0PfvCDZOTIkUlJSUmy7777JgMGDEj+5m/+JnnppZeavG/atGlJRUVF0qVLlyZPNHn33XeT6667LjnssMOSbt26JSUlJcn48eOTVatWNXn/tm3bkmuuuSY5+OCDk3333Tc5+uijk1/96lfJkCFDmjxBZmdPZWlsbEwuvvji5KCDDkq6d++efOITn0h+8YtfJBMnTmyyndufQnP99dc3ef+O2t7Vfny/X/ziF8nw4cOT7t27Jz179kxOOumk5He/+91u9dOShx56KPnrv/7r5Igjjkj69OmTdO3aNenXr18ybty45LHHHmuy7vPPP5+cfPLJSa9evZIDDjgg+fKXv5zU1dUlEZFceeWVzbbn/U992d33bn/qyxtvvLHDmhsbG5OioqLklFNO2eX2AUBbMe5p/+Oe7evuaNq+n5955pnktNNOS/r06ZPsu+++yZAhQ5Jbb721WXvPPvts8tnPfjbp3r170rdv3+Rv/uZvkjlz5iQRkfzxj3/Mrbdhw4Zkv/32S2bOnNnk/R11HHbFFVckJSUlyZtvvrnDdaA9yiTJ+67dBPiQVq5cGYMGDYorr7wyLrvsskKXw276z//8z/jLv/zLuP/+++Nzn/tcocsBgHbBuCcd3/zmN+OnP/1prFmzJndT94iICy+8MH7729/Gc889t8N7NrUHuxqHvfvuu/Gxj30szjrrrLj22msLUCHkj1AK2GN//OMf46c//WmMHDkyevfuHcuXL4+ZM2fGxo0b49lnn93pE1HYOzz//PPx8ssvx0UXXRQ9e/aMJ554ol0P6gAgX4x70nH11VdHRUVFfPSjH43NmzfHr371q/i///f/xne/+924+uqrm6z7+uuvx2GHHRa33HJLfOlLXypQxXtud8dhc+bMiYsvvjhWrFgR+++/f/qFQh65pxSwx3r27BmPP/543HLLLbF+/fro06dPjB49Oq699loDs3bi/PPPj9/97nfxiU98IubMmSOQAoAdMO5JR7du3eL666+PP//5z/HOO+9EVVVV3HDDDXHRRRc1W7esrCzuvPPOWLduXQEq/fB2dxy2bdu2uPPOOwVSdEiulAIAAAAgdbv3mAgAAAAAaENCKQAAAABSJ5QCAAAAIHV73Y3Ot23bFq+++mr06tXLDXcBgIJIkiQ2bdoUFRUV0aVL+/oOz1gKACi03R1L7XWh1Kuvvhr9+/cvdBkAALFq1ao4+OCDC11GqxhLAQB7i12Npfa6UKpXr14R8V7hvXv3LnA1AEBntHHjxujfv39uXNKeGEsBAIW2u2OpvS6U2n6Zee/evQ2kAICCao8/fzOWAgD2FrsaS7WvmyQAAAAA0CEIpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNQJpQAAAABInVAKAAAAgNR1LXQBhVJXVxfZbDavfZSUlMSAAQPy2gcAAACF4/8tYc91ylCqrq4uBlVXR8PWrXntp0dxcSyrrfXHAwAAoAOqq6uL6kGDYmtDQ177Ke7RI2qXLfP/lnQ4nTKUymaz0bB1a3zlmtlRWlmVlz5Wr1wRP/vueZHNZv3hAAAA6ICy2WxsbWiI28aNjeqSvnnpoza7Nibd84D/t6RD6pSh1HallVVxUPWQQpcBAABAO1Zd0jeGVpQVugxod9zoHAAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAFIye/bsOProo6N3797Ru3fvGDFiRDzwwAO55UmSRE1NTVRUVESPHj1i9OjR8dxzzxWwYgCA/BFKAQCk5OCDD47vf//78fjjj8fjjz8eJ554YnzhC1/IBU8zZ86MG264IW688cZYsmRJlJeXx8knnxybNm0qcOUAAG1PKAUAkJLTTjstPve5z8Vhhx0Whx12WFx77bWx3377xeLFiyNJkpg1a1ZcfvnlMW7cuBg8eHDMmTMntm7dGnPnzi106QAAbU4oBQBQAO+++27cddddsWXLlhgxYkSsXLky6uvrY8yYMbl1ioqKYtSoUbFo0aICVgoAkB9dC10AAEBn8swzz8SIESPizTffjP322y/uvffeOOKII3LBU1lZWZP1y8rK4uWXX95he42NjdHY2Jh7vXHjxvwUDgDQxlwpBQCQosMPPzyeeuqpWLx4cZx33nkxceLEeP7553PLM5lMk/WTJGk27/1mzJgRffr0yU39+/fPW+0AAG2p1aHUK6+8EuPHj48DDzwwiouL4+Mf/3gsXbo0t9xTYwAAdmzfffeNj33sYzFs2LCYMWNGDBkyJH74wx9GeXl5RETU19c3WX/16tXNrp56v2nTpsWGDRty06pVq/JaPwBAW2lVKLVu3br49Kc/Hd26dYsHHnggnn/++fjBD34Q+++/f24dT40BANh9SZJEY2NjVFZWRnl5ecybNy+37K233oqFCxfGyJEjd/j+oqKi6N27d5MJAKA9aNU9pa677rro379/3Hrrrbl5hxxySO7fH3xqTETEnDlzoqysLObOnRvnnHNO21QNANAOXXbZZTF27Njo379/bNq0Ke66665YsGBBPPjgg5HJZGLKlCkxffr0qKqqiqqqqpg+fXoUFxfHWWedVejSAQDaXKuulLrvvvti2LBh8eUvfzlKS0tj6NChcfPNN+eWe2oMAMCOvf766zFhwoQ4/PDD46STTorf//738eCDD8bJJ58cERGXXHJJTJkyJc4///wYNmxYvPLKK/Hwww9Hr169Clw5AEDba9WVUi+++GLMnj07pk6dGpdddln84Q9/iL/7u7+LoqKi+PrXv567B0JrnhrjiTEAQGdxyy237HR5JpOJmpqaqKmpSacgAIACalUotW3bthg2bFhMnz49IiKGDh0azz33XMyePTu+/vWv59ZrzVNjZsyYEVdddVVr6wYAAACgHWvVz/f69esXRxxxRJN51dXVUVdXFxGxR0+N8cQYAAAAgM6nVaHUpz/96Vi+fHmTeS+88EIMHDgwImKPnhrjiTEAAAAAnU+rfr73rW99K0aOHBnTp0+Pr3zlK/GHP/whbrrpprjpppsiIjw1BgAAAIDd0qpQ6pOf/GTce++9MW3atLj66qujsrIyZs2aFWeffXZunUsuuSQaGhri/PPPj3Xr1sXw4cM9NQYAAACAJloVSkVEnHrqqXHqqafucLmnxgAAAACwK626pxQAAAAAtAWhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFAAAAACpE0oBAAAAkDqhFABASmbMmBGf/OQno1evXlFaWhqnn356LF++vMk6kyZNikwm02Q69thjC1QxAED+CKUAAFKycOHCmDx5cixevDjmzZsX77zzTowZMya2bNnSZL1TTjklXnvttdz061//ukAVAwDkT9dCFwAA0Fk8+OCDTV7feuutUVpaGkuXLo3jjz8+N7+oqCjKy8vTLg8AIFWulAIAKJANGzZERETfvn2bzF+wYEGUlpbGYYcdFn/7t38bq1ev3mEbjY2NsXHjxiYTAEB7IJQCACiAJEli6tSpcdxxx8XgwYNz88eOHRt33nlnPPLII/GDH/wglixZEieeeGI0Nja22M6MGTOiT58+ual///5pbQIAwIfSqlCqpqam2Y03339peZIkUVNTExUVFdGjR48YPXp0PPfcc21eNABAe3fBBRfE008/HT/96U+bzD/zzDPj85//fAwePDhOO+20eOCBB+KFF16I+++/v8V2pk2bFhs2bMhNq1atSqN8AIAPrdVXSh155JFNbrz5zDPP5JbNnDkzbrjhhrjxxhtjyZIlUV5eHieffHJs2rSpTYsGAGjPLrzwwrjvvvti/vz5cfDBB+903X79+sXAgQNjxYoVLS4vKiqK3r17N5kAANqDVodSXbt2jfLy8tz0kY98JCLeu0pq1qxZcfnll8e4ceNi8ODBMWfOnNi6dWvMnTu3zQsHAGhvkiSJCy64IO6555545JFHorKycpfvWbNmTaxatSr69euXQoUAAOlpdSi1YsWKqKioiMrKyvjqV78aL774YkRErFy5Murr62PMmDG5dYuKimLUqFGxaNGiHbbn5pwAQGcxefLkuOOOO2Lu3LnRq1evqK+vj/r6+mhoaIiIiM2bN8fFF18cjz32WLz00kuxYMGCOO2006KkpCTOOOOMAlcPANC2WhVKDR8+PG6//fZ46KGH4uabb476+voYOXJkrFmzJurr6yMioqysrMl7ysrKcsta4uacAEBnMXv27NiwYUOMHj06+vXrl5vuvvvuiIjYZ5994plnnokvfOELcdhhh8XEiRPjsMMOi8ceeyx69epV4OoBANpW19asPHbs2Ny/jzrqqBgxYkQceuihMWfOnDj22GMjIiKTyTR5T5Ikzea937Rp02Lq1Km51xs3bhRMAQAdUpIkO13eo0ePeOihh1KqBgCgsFr9873369mzZxx11FGxYsWK3FP4PnhV1OrVq5tdPfV+bs4JAAAA0Pl8qFCqsbExamtro1+/flFZWRnl5eUxb9683PK33norFi5cGCNHjvzQhQIAAADQcbTq53sXX3xxnHbaaTFgwIBYvXp1XHPNNbFx48aYOHFiZDKZmDJlSkyfPj2qqqqiqqoqpk+fHsXFxXHWWWflq34AAAAA2qFWhVJ//vOf42tf+1pks9n4yEc+Escee2wsXrw4Bg4cGBERl1xySTQ0NMT5558f69ati+HDh8fDDz/sxpwAAAAANNGqUOquu+7a6fJMJhM1NTVRU1PzYWoCAAAAoIP7UPeUAgAAAIA9IZQCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVCKQAAAABSJ5QCAAAAIHVdC11AR1dbW5vX9ktKSmLAgAF57QMAAACgrQml8mRT9vXIdOkS48ePz2s/PYqLY1ltrWAKAAAAaFeEUnnSsGljJNu2xVeumR2llVV56WP1yhXxs++eF9lsVigFAADQgfkVDh2RUCrPSiur4qDqIYUuAwAAgHaofvOW6JLJ5P1XOMU9ekTtsmWCKVIllAIAAIC91Po3G2NbksRt48ZGdUnfvPRRm10bk+55wK9wSJ1QCgAAAPZy1SV9Y2hFWaHLgDbVpdAFAAAAAND5CKUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAFIyY8aM+OQnPxm9evWK0tLSOP3002P58uVN1kmSJGpqaqKioiJ69OgRo0ePjueee65AFQMA5I9QCgAgJQsXLozJkyfH4sWLY968efHOO+/EmDFjYsuWLbl1Zs6cGTfccEPceOONsWTJkigvL4+TTz45Nm3aVMDKAQDaXtdCFwAA0Fk8+OCDTV7feuutUVpaGkuXLo3jjz8+kiSJWbNmxeWXXx7jxo2LiIg5c+ZEWVlZzJ07N84555xClA0AkBeulAIAKJANGzZERETfvn0jImLlypVRX18fY8aMya1TVFQUo0aNikWLFhWkRgCAfPlQodSMGTMik8nElClTcvPcBwEAYNeSJImpU6fGcccdF4MHD46IiPr6+oiIKCsra7JuWVlZbtkHNTY2xsaNG5tMAADtwR6HUkuWLImbbropjj766Cbz3QcBAGDXLrjggnj66afjpz/9abNlmUymyeskSZrN227GjBnRp0+f3NS/f/+81AsA0Nb2KJTavHlznH322XHzzTfHAQcckJv/wfsgDB48OObMmRNbt26NuXPntlnRAADt2YUXXhj33XdfzJ8/Pw4++ODc/PLy8oiIZldFrV69utnVU9tNmzYtNmzYkJtWrVqVv8IBANrQHoVSkydPjs9//vPx2c9+tsl890EAANixJEniggsuiHvuuSceeeSRqKysbLK8srIyysvLY968ebl5b731VixcuDBGjhzZYptFRUXRu3fvJhMAQHvQ6qfv3XXXXfHEE0/EkiVLmi3b2X0QXn755Rbba2xsjMbGxtxr90EAADqqyZMnx9y5c+OXv/xl9OrVKzd26tOnT/To0SN3r87p06dHVVVVVFVVxfTp06O4uDjOOuusAlcPANC2WhVKrVq1Ki666KJ4+OGHo3v37jtcr7X3QbjqqqtaUwYAQLs0e/bsiIgYPXp0k/m33nprTJo0KSIiLrnkkmhoaIjzzz8/1q1bF8OHD4+HH344evXqlXK1AAD51apQaunSpbF69eo45phjcvPefffdePTRR+PGG2+M5cuXR8R7V0z169cvt86u7oMwderU3OuNGze6QScA0CElSbLLdTKZTNTU1ERNTU3+CwIAKKBWhVInnXRSPPPMM03m/dVf/VUMGjQovvOd78RHP/rR3H0Qhg4dGhH/ex+E6667rsU2i4qKoqioaA/LBwAAAKA9alUo1atXrxg8eHCTeT179owDDzwwN999EAAAAADYlVbf6HxX3AcBAAAAgF350KHUggULmrx2HwQAAAAAdqVLoQsAAAAAoPMRSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQuq6FLgAAAIC9S11dXWSz2bz20djYGEVFRXnto6SkJAYMGJDXPoA9J5QCAAAgp66uLqoHDYqtDQ157adLJhPbkiSvfRT36BG1y5YJpmAvJZQCAAAgJ5vNxtaGhrht3NioLumblz4eWLEyauYvymsftdm1MemeByKbzQqlYC8llAIAAKCZ6pK+MbSiLC9tL8uuzXsfwN7Pjc4BAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASF3XQhcAAACQlrq6ushms3lrv6SkJAYMGJC39gE6EqEUAADQKdTV1UX1oEGxtaEhb30U9+gRtcuWCaYAdoNQCgAA6BSy2WxsbWiI28aNjeqSvm3efm12bUy654HIZrNCKYDdIJQCAAA6leqSvjG0oqzQZQB0em50DgAAAEDqhFIAAAAApE4oBQAAAEDqhFIAAAAApE4oBQAAAEDqhFIAAAAApE4oBQAAAEDqhFIAAAAApK5roQsAAACAfKmtrW2XbUNnIJQCAACgw6nfvCW6ZDIxfvz4QpcC7IBQCgAAgA5n/ZuNsS1J4rZxY6O6pG9e+nhgxcqomb8oL21DZyCUAgAAoMOqLukbQyvK8tL2suzavLQLnYUbnQMAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEAAACQOqEUAAAAAKkTSgEApOjRRx+N0047LSoqKiKTycQvfvGLJssnTZoUmUymyXTssccWplgAgDwSSgEApGjLli0xZMiQuPHGG3e4zimnnBKvvfZabvr1r3+dYoUAAOnoWugCAAA6k7Fjx8bYsWN3uk5RUVGUl5enVBEAQGG0KpSaPXt2zJ49O1566aWIiDjyyCPje9/7Xm5glSRJXHXVVXHTTTfFunXrYvjw4fGjH/0ojjzyyDYvHACgo1qwYEGUlpbG/vvvH6NGjYprr702SktLW1y3sbExGhsbc683btyYVplAgdTV1UU2m81b+7W1tXlrG+D9WhVKHXzwwfH9738/Pvaxj0VExJw5c+ILX/hCPPnkk3HkkUfGzJkz44YbbojbbrstDjvssLjmmmvi5JNPjuXLl0evXr3ysgEAAB3J2LFj48tf/nIMHDgwVq5cGVdccUWceOKJsXTp0igqKmq2/owZM+Kqq64qQKVAIdTV1UX1oEGxtaGh0KUAfGitCqVOO+20Jq+vvfbamD17dixevDiOOOKImDVrVlx++eUxbty4iHgvtCorK4u5c+fGOeec03ZVAwB0UGeeeWbu34MHD45hw4bFwIED4/7778+Nsd5v2rRpMXXq1NzrjRs3Rv/+/VOpFUhfNpuNrQ0Ncdu4sVFd0jcvfTywYmXUzF+Ul7YB3m+P7yn17rvvxr//+7/Hli1bYsSIEbFy5cqor6+PMWPG5NYpKiqKUaNGxaJFi3YYSrnkHABgx/r16xcDBw6MFStWtLi8qKioxSuogI6tuqRvDK0oy0vby7Jr89IuwAe1+ul7zzzzTOy3335RVFQU5557btx7771xxBFHRH19fURElJU1/cNYVlaWW9aSGTNmRJ8+fXKTb/YAAP7XmjVrYtWqVdGvX79ClwIA0KZaHUodfvjh8dRTT8XixYvjvPPOi4kTJ8bzzz+fW57JZJqsnyRJs3nvN23atNiwYUNuWrVqVWtLAgBoNzZv3hxPPfVUPPXUUxERsXLlynjqqaeirq4uNm/eHBdffHE89thj8dJLL8WCBQvitNNOi5KSkjjjjDMKWzgAQBtr9c/39t1339yNzocNGxZLliyJH/7wh/Gd73wnIiLq6+ubfJO3evXqZldPvZ9LzgGAzuTxxx+PE044Ifd6+/2gJk6cGLNnz45nnnkmbr/99li/fn3069cvTjjhhLj77rs9NAYA6HD2+J5S2yVJEo2NjVFZWRnl5eUxb968GDp0aEREvPXWW7Fw4cK47rrrPnShAAAdwejRoyNJkh0uf+ihh1KsBgCgcFoVSl122WUxduzY6N+/f2zatCnuuuuuWLBgQTz44IORyWRiypQpMX369KiqqoqqqqqYPn16FBcXx1lnnZWv+gEAAABoh1oVSr3++usxYcKEeO2116JPnz5x9NFHx4MPPhgnn3xyRERccskl0dDQEOeff36sW7cuhg8fHg8//LDLzdkr1NXVRTabzWsfJSUlMWDAgLz2AQAAAB1Bq0KpW265ZafLM5lM1NTURE1NzYepCdpcXV1dDKqujoatW/PaT4/i4lhWWyuYAgAAgF340PeUgvYgm81Gw9at8ZVrZkdpZVVe+li9ckX87LvnRTabFUoBAADALgil6FRKK6vioOohhS4DAAAAOj2hFAAAnVZHueek7dg9tbW1eWsbgNYTSgEA0CnV1dVF9aBBsbWhIa/9FPfoEbXLluUt0LEdALRXQikAADqlbDYbWxsa4rZxY6O6pG9e+qjNro1J9zyQ13tO2o7d98CKlVEzf1Fe2gag9YRSAAB0atUlfWNoRVmhy/jQbMeuLcuuzUu7AOyZLoUuAAAAAIDORygFAAAAQOqEUgAAAACkTigFAAAAQOqEUgAAAACkTigFAAAAQOqEUgAAAACkTigFAAAAQOq6FroAAADan7q6ushms3nto6SkJAYMGJDXPiAfamtr22XbAGkTSgEA0Cp1dXVRPWhQbG1oyGs/xT16RO2yZYIp2o36zVuiSyYT48ePL3QpAO2CUAoAgFbJZrOxtaEhbhs3NqpL+ualj9rs2ph0zwORzWaFUrQb699sjG1JktfPxgMrVkbN/EV5aRsgbUKpDiDfl/C6dB4AaEl1Sd8YWlFW6DJgr5PPz8ay7Nq8tAtQCEKpdmxT9vXIdOmS98uDexQXx7LaWsEUAAAA0GaEUu1Yw6aNkWzbFl+5ZnaUVlblpY/VK1fEz757nkvnAQAAgDYllOoASiur4qDqIYUuAwAAAGC3dSl0AQAAAAB0PkIpAAAAAFInlAIAAAAgdUIpAAAAAFInlAIAAAAgdUIpAAAAAFInlAIAAAAgdUIpAAAAAFLXtdAF0D7U1tbmtf2SkpIYMGBAXvsAAAAA9h5CKXZqU/b1yHTpEuPHj89rPz2Ki2NZba1gCgAAADoJoRQ71bBpYyTbtsVXrpkdpZVVeelj9coV8bPvnhfZbFYoBQAAAJ2EUIrdUlpZFQdVDyl0GQAAAEAH4UbnAAAAAKROKAUAAABA6oRSAAAAAKROKAUAAABA6oRSAAAAAKROKAUAAABA6oRSAAAAAKSua6ELAAAA2ofa2tp22TYAeyehFAAAsFP1m7dEl0wmxo8fX+hSAOhAhFIAAMBOrX+zMbYlSdw2bmxUl/TNSx8PrFgZNfMX5aVtAPZOQikAAGC3VJf0jaEVZXlpe1l2bV7aBWDv5UbnAAAAAKROKAUAAABA6oRSAAAAAKROKAUAAABA6oRSAAAAAKROKAUAkKJHH300TjvttKioqIhMJhO/+MUvmixPkiRqamqioqIievToEaNHj47nnnuuMMUCAOSRUAoAIEVbtmyJIUOGxI033tji8pkzZ8YNN9wQN954YyxZsiTKy8vj5JNPjk2bNqVcKQBAfrUqlJoxY0Z88pOfjF69ekVpaWmcfvrpsXz58ibr+HYPAGDHxo4dG9dcc02MGzeu2bIkSWLWrFlx+eWXx7hx42Lw4MExZ86c2Lp1a8ydO7cA1QIA5E+rQqmFCxfG5MmTY/HixTFv3rx45513YsyYMbFly5bcOr7dAwDYMytXroz6+voYM2ZMbl5RUVGMGjUqFi1aVMDKAADaXtfWrPzggw82eX3rrbdGaWlpLF26NI4//vhm3+5FRMyZMyfKyspi7ty5cc4557Rd5QAAHUx9fX1ERJSVlTWZX1ZWFi+//HKL72lsbIzGxsbc640bN+avwAKora1tl20DALvWqlDqgzZs2BAREX379o2IXX+711Io1dEHUuw+g04AeE8mk2nyOkmSZvO2mzFjRlx11VVplJWq+s1boksmE+PHjy90KQBAnuxxKJUkSUydOjWOO+64GDx4cETs2bd7HXUgxe7blH09Ml26GHQC0OmVl5dHxHtjqn79+uXmr169utn4artp06bF1KlTc683btwY/fv3z2+hKVj/ZmNsS5K4bdzYqC7pm5c+HlixMmrm+1kkABTKHodSF1xwQTz99NPx3//9382WtebbvY46kGL3NWzaGMm2bfGVa2ZHaWVVXvpY/rvfxrwfz8hL2wDQViorK6O8vDzmzZsXQ4cOjYiIt956KxYuXBjXXXddi+8pKiqKoqKiNMtMVXVJ3xha0XIg92Ety67NS7sAwO7Zo1DqwgsvjPvuuy8effTROPjgg3Pz9+TbvY4+kGL3lVZWxUHVQ/LS9uqVK/LSLgC01ubNm+NPf/pT7vXKlSvjqaeeir59+8aAAQNiypQpMX369KiqqoqqqqqYPn16FBcXx1lnnVXAqgEA2l6rQqkkSeLCCy+Me++9NxYsWBCVlZVNlu/Jt3sAAJ3J448/HieccELu9fYrxidOnBi33XZbXHLJJdHQ0BDnn39+rFu3LoYPHx4PP/xw9OrVq1AlAwDkRatCqcmTJ8fcuXPjl7/8ZfTq1St3D6k+ffpEjx49IpPJ+HYPAGAnRo8eHUmS7HB5JpOJmpqaqKmpSa8oAIACaFUoNXv27Ih4bzD1frfeemtMmjQpIsK3ewAAAADsUqt/vrcrvt0DAAAAYFe6FLoAAAAAADofoRQAAAAAqRNKAQAAAJC6Vt1TCgAAAGBP1NXVRTabzVv7JSUlMWDAgLy1T9sTSgEAAAB5VVdXF9WDBsXWhoa89VHco0fULlsmmGpHhFIAAABAXmWz2dja0BC3jRsb1SV927z92uzamHTPA5HNZoVS7YhQCgAAAEhFdUnfGFpRVugy2Eu40TkAAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJA6oRQAAAAAqeta6AIAAACAwqutrW2XbdN+CaWgjeX7j21JSUkMGDAgr30AAACdR/3mLdElk4nx48cXuhQ6GaEUtJFN2dcj06VL3v+Q9ygujmW1tYIpAACgTax/szG2JUncNm5sVJf0zUsfD6xYGTXzF+WlbdovoRS0kYZNGyPZti2+cs3sKK2syksfq1euiJ9997zIZrNCKQAAoE1Vl/SNoRVleWl7WXZtXtqlfRNKQRsrrayKg6qHFLoMAAAA2Kt5+h4AAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJA6oRQAAAAAqRNKAQAAAJC6roUuAAAAOrra2tp22TYA5JNQCgAA8qR+85boksnE+PHjC10KAOx1hFIAAJAn699sjG1JEreNGxvVJX3z0scDK1ZGzfxFeWkbAPJJKAUAAHlWXdI3hlaU5aXtZdm1eWkXAPLNjc4BAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUdS10AQAAAADtQV1dXWSz2bz2UVJSEgMGDMhrH3sLoRQAAADALtTV1UX1oEGxtaEhr/0U9+gRtcuWdYpgSigFAAAAsAvZbDa2NjTEbePGRnVJ37z0UZtdG5PueSCy2axQCgAAAID/VV3SN4ZWlBW6jA7Bjc4BAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUudE5tEO1tbV5a7ukpKRTPOUBAACAwhJKQTuyKft6ZLp0ifHjx+etjx7FxbGstlYwBVAgNTU1cdVVVzWZV1ZWFvX19QWqCAAgP1odSj366KNx/fXXx9KlS+O1116Le++9N04//fTc8iRJ4qqrroqbbrop1q1bF8OHD48f/ehHceSRR7Zl3dApNWzaGMm2bfGVa2ZHaWVVm7e/euWK+Nl3z4tsNiuUAiigI488Mn7zm9/kXu+zzz4FrAYAID9aHUpt2bIlhgwZEn/1V38VX/ziF5stnzlzZtxwww1x2223xWGHHRbXXHNNnHzyybF8+fLo1atXmxQNnV1pZVUcVD2k0GUAkCddu3aN8vLyQpcBAJBXrb7R+dixY+Oaa66JcePGNVuWJEnMmjUrLr/88hg3blwMHjw45syZE1u3bo25c+e2ScEAAB3dihUroqKiIiorK+OrX/1qvPjii4UuCQCgzbXp0/dWrlwZ9fX1MWbMmNy8oqKiGDVqVCxatKgtuwIA6JCGDx8et99+ezz00ENx8803R319fYwcOTLWrFnT4vqNjY2xcePGJhMAQHvQpqHU9htwlpWVNZm/s5tzGkgBAPyvsWPHxhe/+MU46qij4rOf/Wzcf//9ERExZ86cFtefMWNG9OnTJzf1798/zXIBAPZYm4ZS22UymSavkyRpNm87AykAgB3r2bNnHHXUUbFixYoWl0+bNi02bNiQm1atWpVyhQAAe6ZNQ6ntN+T84FVRq1evbnb11HYGUgAAO9bY2Bi1tbXRr1+/FpcXFRVF7969m0wAAO1Bm4ZSlZWVUV5eHvPmzcvNe+utt2LhwoUxcuTIFt9jIAUA8L8uvvjiWLhwYaxcuTJ+//vfx5e+9KXYuHFjTJw4sdClAQC0qa6tfcPmzZvjT3/6U+71ypUr46mnnoq+ffvGgAEDYsqUKTF9+vSoqqqKqqqqmD59ehQXF8dZZ53VpoUDAHREf/7zn+NrX/taZLPZ+MhHPhLHHntsLF68OAYOHFjo0gAA2lSrQ6nHH388TjjhhNzrqVOnRkTExIkT47bbbotLLrkkGhoa4vzzz49169bF8OHD4+GHH45evXq1XdUAAB3UXXfdVegSAABS0epQavTo0ZEkyQ6XZzKZqKmpiZqamg9TFwAAAAAdWF6evgcAAAAAOyOUAgAAACB1QikAAAAAUieUAgAAACB1QikAAAAAUtfqp+8BAAAA7I1qa2vbZdudlVAKAAAAaNfqN2+JLplMjB8/vtCl0ApCKQAAAKBdW/9mY2xLkrht3NioLumblz4eWLEyauYvykvbnZVQCgAAAOgQqkv6xtCKsry0vSy7Ni/tdmZudA4AAABA6oRSAAAAAKROKAUAAABA6txTCkhdXV1dZLPZvPZRUlISAwYMyGsfAAAA7DmhFJCqurq6GFRdHQ1bt+a1nx7FxbGstlYwBQAAsJcSSgGpymaz0bB1a3zlmtlRWlmVlz5Wr1wRP/vueZHNZoVSAAAAeymhFFAQpZVVcVD1kEKXAQAAQIG40TkAAAAAqXOlFAAAAMBepLa2Nq/t7y0PhhJKAQAAAOwF6jdviS6ZTIwfPz6v/RT36BG1y5YVPJgSSgEAAADsBda/2RjbkiRuGzc2qkv65qWP2uzamHTPA3vFg6GEUgAAAAB7keqSvjG0oqzQZeSdG50DAAAAkDqhFAAAAACpE0oBAAAAkDr3lAI6rM7yGFUAAID2SCgFdDibsq9HpkuXvD9GtUdxcSyrrRVMAQAA7AGhFNDhNGzaGMm2bfGVa2ZHaWVVXvpYvXJF/Oy75+0Vj1EFAABoj4RSQIdVWlkVB1UPKXQZAAAAtMCNzgEAAABInVAKAAAAgNT5+R7QTD6fWpfvJ+LRedXV1UU2m81rH564CAAAbUcoBeSk9dQ6aGt1dXUxqLo6GrZuzWs/nrgIAABtRygF5KTx1Lrlv/ttzPvxjLy0TeeVzWajYetWT1wEAIB2RCgFNJPPp9atXrkiL+1ChCcuAgBAe+JG5wAAAACkTigFAAAAQOqEUgAAAACkTigFAAAAQOqEUgAAAACkTigFAAAAQOqEUgAAAACkTigFAAAAQOqEUgAAAACkrmuhCwBoz2pra/PafklJSQwYMCCvfaShrq4ustls3trP93GgdfJ9vCM6zmcDAKAzE0oB7IFN2dcj06VLjB8/Pq/99CgujmW1te36f77r6upiUHV1NGzdWuhSSEFax7sjfDYAADo7oRTAHmjYtDGSbdviK9fMjtLKqrz0sXrlivjZd8+LbDbbrv/HO5vNRsPWrXndV8t/99uY9+MZeWmb1knjeHeUzwYAQGcnlAL4EEorq+Kg6iGFLqNdyOe+Wr1yRV7aZc/5bAAAsCtudA4AAABA6oRSAAAAAKTOz/cA9nL5frJcY2NjFBUV5a19T8bbfZ5aBwBAZyKUAthLpfWEv0yXLpFs25bXPtg1T60DAKCzEUoB7KXSeMLf9qfWeTJe4XlqHQAAnU3eQqkf//jHcf3118drr70WRx55ZMyaNSs+85nP5Ks7gA4rjafWeTLe3sNT69jOWAoA6OjycqPzu+++O6ZMmRKXX355PPnkk/GZz3wmxo4dG3V1dfnoDgCgQzGWAgA6g7yEUjfccEP8zd/8TXzjG9+I6urqmDVrVvTv3z9mz56dj+4AADoUYykAoDNo85/vvfXWW7F06dK49NJLm8wfM2ZMLFq0qNn6jY2N0djYmHu9YcOGiIjYuHFjW5eWs3nz5oiIeKX26Xhr65a89PHGSyv0oY9210dH2AZ96CNvfbz8PxERsXTp0tx/R9rS8uXLI6J9b0NEutuxefPmvI0XtrebJEle2t+Z9jSWeuK112PzW2/npY/aN9boQx/tro+OsA360Ed77aMjbENafbywZm1E7CVjqaSNvfLKK0lEJL/73e+azL/22muTww47rNn6V155ZRIRJpPJZDKZTHvdtGrVqrYeKu2SsZTJZDKZTKaOMu1qLJW3G51nMpkmr5MkaTYvImLatGkxderU3Ott27bF2rVr48ADD2xx/ffbuHFj9O/fP1atWhW9e/dum8JpM47P3s3x2bs5Pns3x2fv1hbHJ0mS2LRpU1RUVLRxdbsvjbFUR+Uz2px90jL7pTn7pDn7pDn7pDn7pKndHUu1eShVUlIS++yzT9TX1zeZv3r16igrK2u2flFRURQVFTWZt//++7eqz969ezvoezHHZ+/m+OzdHJ+9m+Ozd/uwx6dPnz5tWM3uK8RYqqPyGW3OPmmZ/dKcfdKcfdKcfdKcffK/dmcs1eY3Ot93333jmGOOiXnz5jWZP2/evBg5cmRbdwcA0KEYSwEAnUVefr43derUmDBhQgwbNixGjBgRN910U9TV1cW5556bj+4AADoUYykAoDPISyh15plnxpo1a+Lqq6+O1157LQYPHhy//vWvY+DAgW3aT1FRUVx55ZXNLlln7+D47N0cn72b47N3c3z2bh3h+KQ1luqoOsI50Nbsk5bZL83ZJ83ZJ83ZJ83ZJ3smkyQFeNYxAAAAAJ1am99TCgAAAAB2RSgFAAAAQOqEUgAAAACkTigFAAAAQOradSj14x//OCorK6N79+5xzDHHxH/9138VuqQOr6amJjKZTJOpvLw8tzxJkqipqYmKioro0aNHjB49Op577rkmbTQ2NsaFF14YJSUl0bNnz/jLv/zL+POf/5z2pnQIjz76aJx22mlRUVERmUwmfvGLXzRZ3lbHY926dTFhwoTo06dP9OnTJyZMmBDr16/P89a1f7s6PpMmTWr2eTr22GObrOP45M+MGTPik5/8ZPTq1StKS0vj9NNPj+XLlzdZx2eocHbn+PgMEfHeuZLJZGLKlCk7XGfBggXNzpVMJhPLli1Lr9A82tX4rCULFy6MY445Jrp37x4f/ehH4yc/+UlK1aantfulo58n273yyisxfvz4OPDAA6O4uDg+/vGPx9KlS3f6no5+vrR2n3T0c+WQQw5pcfsmT568w/d09HMkovX7paOfJ22l3YZSd999d0yZMiUuv/zyePLJJ+Mzn/lMjB07Nurq6gpdWod35JFHxmuvvZabnnnmmdyymTNnxg033BA33nhjLFmyJMrLy+Pkk0+OTZs25daZMmVK3HvvvXHXXXfFf//3f8fmzZvj1FNPjXfffbcQm9OubdmyJYYMGRI33nhji8vb6nicddZZ8dRTT8WDDz4YDz74YDz11FMxYcKEvG9fe7er4xMRccoppzT5PP36179ustzxyZ+FCxfG5MmTY/HixTFv3rx45513YsyYMbFly5bcOj5DhbM7xyfCZ6izW7JkSdx0001x9NFH79b6y5cvb3K+VFVV5bnC9OxsfPZBK1eujM997nPxmc98Jp588sm47LLL4u/+7u/i5z//eYoVp6M1+2W7jnyerFu3Lj796U9Ht27d4oEHHojnn38+fvCDH8T++++/w/d09PNlT/bJdh31XFmyZEmT7Zo3b15ERHz5y19ucf2Ofo5s19r9sl1HPU/aTNJOfepTn0rOPffcJvMGDRqUXHrppQWqqHO48sorkyFDhrS4bNu2bUl5eXny/e9/PzfvzTffTPr06ZP85Cc/SZIkSdavX59069Ytueuuu3LrvPLKK0mXLl2SBx98MK+1d3QRkdx777251211PJ5//vkkIpLFixfn1nnssceSiEiWLVuW563qOD54fJIkSSZOnJh84Qtf2OF7HJ90rV69OomIZOHChUmS+AztbT54fJLEZ6iz27RpU1JVVZXMmzcvGTVqVHLRRRftcN358+cnEZGsW7cutfrStLPxWUsuueSSZNCgQU3mnXPOOcmxxx7bxpUVVmv3S0c/T5IkSb7zne8kxx13XKve09HPlz3ZJ53hXHm/iy66KDn00EOTbdu2tbi8o58jO7Kr/dLZzpM91S6vlHrrrbdi6dKlMWbMmCbzx4wZE4sWLSpQVZ3HihUroqKiIiorK+OrX/1qvPjiixHxXkJeX1/f5LgUFRXFqFGjcsdl6dKl8fbbbzdZp6KiIgYPHuzYtbG2Oh6PPfZY9OnTJ4YPH55b59hjj40+ffo4Zm1gwYIFUVpaGocddlj87d/+baxevTq3zPFJ14YNGyIiom/fvhHhM7S3+eDx2c5nqPOaPHlyfP7zn4/Pfvazu/2eoUOHRr9+/eKkk06K+fPn57G69O1ofNaSxx57rNk4+i/+4i/i8ccfj7fffjvfpaaqNftlu458ntx3330xbNiw+PKXvxylpaUxdOjQuPnmm3f6no5+vuzJPtmuI58r27311ltxxx13xF//9V9HJpNpcZ2Ofo60ZHf2y3ad4Tz5MNplKJXNZuPdd9+NsrKyJvPLysqivr6+QFV1DsOHD4/bb789Hnroobj55pujvr4+Ro4cGWvWrMnt+50dl/r6+th3333jgAMO2OE6tI22Oh719fVRWlrarP3S0lLH7EMaO3Zs3HnnnfHII4/ED37wg1iyZEmceOKJ0djYGBGOT5qSJImpU6fGcccdF4MHD44In6G9SUvHJ8JnqDO766674oknnogZM2bs1vr9+vWLm266KX7+85/HPffcE4cffnicdNJJ8eijj+a50nTsbHzWkvr6+hb/tr3zzjuRzWbTKDkVrd0vHf08iYh48cUXY/bs2VFVVRUPPfRQnHvuufF3f/d3cfvtt+/wPR39fNmTfdIZzpXtfvGLX8T69etj0qRJO1yno58jLdmd/dKZzpMPo2uhC/gwPphIJkmyy5SSD2fs2LG5fx911FExYsSIOPTQQ2POnDm5m8vuyXFx7PKnLY5HS+s7Zh/emWeemfv34MGDY9iwYTFw4MC4//77Y9y4cTt8n+PT9i644IJ4+umn47//+7+bLfMZKrwdHR+foc5p1apVcdFFF8XDDz8c3bt33633HH744XH44YfnXo8YMSJWrVoV/+f//J84/vjj81VqanY2Pps6dWqL72npb1tL89uz1u6Xjn6eRERs27Ythg0bFtOnT4+I967geO6552L27Nnx9a9/fYfv68jny57sk85wrmx3yy23xNixY6OiomKn63Xkc6Qlu7NfOtN58mG0yyulSkpKYp999mn2Debq1aubJbTkV8+ePeOoo46KFStW5J5msrPjUl5eHm+99VasW7duh+vQNtrqeJSXl8frr7/erP033njDMWtj/fr1i4EDB8aKFSsiwvFJy4UXXhj33XdfzJ8/Pw4++ODcfJ+hvcOOjk9LfIY6h6VLl8bq1avjmGOOia5du0bXrl1j4cKF8U//9E/RtWvX3X5wyrHHHps7Vzqa94/PWlJeXt7i37auXbvGgQcemEaJBbGr/dKSjnae9OvXL4444ogm86qrq3f6sKiOfr7syT5pSUc7VyIiXn755fjNb34T3/jGN3a6Xkc/Rz5od/dLSzriefJhtctQat99941jjjkmd7f77ebNmxcjR44sUFWdU2NjY9TW1ka/fv2isrIyysvLmxyXt956KxYuXJg7Lsccc0x069atyTqvvfZaPPvss45dG2ur4zFixIjYsGFD/OEPf8it8/vf/z42bNjgmLWxNWvWxKpVq6Jfv34R4fjkW5IkccEFF8Q999wTjzzySFRWVjZZ7jNUWLs6Pi3xGeocTjrppHjmmWfiqaeeyk3Dhg2Ls88+O5566qnYZ599dqudJ598MneudDTvH5+1ZMSIEc3G0Q8//HAMGzYsunXrlkaJBbGr/dKSjnaefPrTn47ly5c3mffCCy/EwIEDd/iejn6+7Mk+aUlHO1ciIm699dYoLS2Nz3/+8ztdr6OfIx+0u/ulJR3xPPnQ0r2vetu56667km7duiW33HJL8vzzzydTpkxJevbsmbz00kuFLq1D+/a3v50sWLAgefHFF5PFixcnp556atKrV6/cfv/+97+f9OnTJ7nnnnuSZ555Jvna176W9OvXL9m4cWOujXPPPTc5+OCDk9/85jfJE088kZx44onJkCFDknfeeadQm9Vubdq0KXnyySeTJ598MomI5IYbbkiefPLJ5OWXX06SpO2OxymnnJIcffTRyWOPPZY89thjyVFHHZWceuqpqW9ve7Oz47Np06bk29/+drJo0aJk5cqVyfz585MRI0YkBx10kOOTkvPOOy/p06dPsmDBguS1117LTVu3bs2t4zNUOLs6Pj5DvN8Hn7536aWXJhMmTMi9/sd//Mfk3nvvTV544YXk2WefTS699NIkIpKf//znBai27e1qfPbB/fHiiy8mxcXFybe+9a3k+eefT2655ZakW7duyX/8x38UahPyorX7paOfJ0mSJH/4wx+Srl27Jtdee22yYsWK5M4770yKi4uTO+64I7dOZztf9mSfdIZz5d13300GDBiQfOc732m2rLOdI+/Xmv3SGc6TttBuQ6kkSZIf/ehHycCBA5N99903+cQnPtHkMdHkx5lnnpn069cv6datW1JRUZGMGzcuee6553LLt23bllx55ZVJeXl5UlRUlBx//PHJM88806SNhoaG5IILLkj69u2b9OjRIzn11FOTurq6tDelQ9j+mNEPThMnTkySpO2Ox5o1a5Kzzz476dWrV9KrV6/k7LPP9mjT3bCz47N169ZkzJgxyUc+8pGkW7duyYABA5KJEyc22/eOT/60dGwiIrn11ltz6/gMFc6ujo/PEO/3wVBq4sSJyahRo3Kvr7vuuuTQQw9NunfvnhxwwAHJcccdl9x///3pF5onuxqffXB/JEmSLFiwIBk6dGiy7777Joccckgye/bslKvOv9bul45+nmz3n//5n8ngwYOToqKiZNCgQclNN93UZHlnPF9au086w7ny0EMPJRGRLF++vNmyzniObNea/dIZzpO2kEmS/38HMgAAAABISbu8pxQAAAAA7ZtQCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDUCaUAAAAASJ1QCgAAAIDU/T/c5hQW7sKSsAAAAABJRU5ErkJggg==", + "text/plain": [ + "

    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Task 1: Load and preprocess data\n", + "Hitters = load_data('Hitters').dropna()\n", + "\n", + "# Add log of Salary\n", + "Hitters['LogSalary'] = np.log(Hitters['Salary'])\n", + "\n", + "# Histograms\n", + "fig, axs = plt.subplots(1, 2, figsize=(12, 5))\n", + "axs[0].hist(Hitters['Salary'], bins=20, color='skyblue', edgecolor='black')\n", + "axs[0].set_title('Histogram of Salary')\n", + "axs[1].hist(Hitters['LogSalary'], bins=20, color='salmon', edgecolor='black')\n", + "axs[1].set_title('Histogram of Log(Salary)')\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5ce10e96-7257-4e74-b4dd-61eadc98090a", + "metadata": {}, + "source": [ + "2. Split the sample into a training dataset consisting of the first 200 observations and a\n", + "test dataset containing the remaining observations." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e1c39b34-4e4e-42bb-a915-ff7d9edc2bb5", + "metadata": {}, + "outputs": [], + "source": [ + "# Task 2: Split the dataset\n", + "Hitters_dummies = pd.get_dummies(Hitters.drop(columns=['Salary']), drop_first=True)\n", + "X_train = Hitters_dummies.iloc[:200].drop(columns='LogSalary')\n", + "y_train = Hitters_dummies.iloc[:200]['LogSalary']\n", + "X_test = Hitters_dummies.iloc[200:].drop(columns='LogSalary')\n", + "y_test = Hitters_dummies.iloc[200:]['LogSalary']" + ] + }, + { + "cell_type": "markdown", + "id": "2cffb0ba-7e62-4cff-b79d-ef5e027a62ec", + "metadata": {}, + "source": [ + "3. Fit a large, unpruned regression tree to predigt Log(Salary). Which features are used\n", + "to construct the tree, which features are the most important and how many terminal\n", + "nodes does the tree have? You might want to plot the tree for this exercise." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "425892e5-ba65-4be4-b103-5d1968973cf5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAKQCAYAAAAsdeUFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNXDxfHvppEQCL13kA6hSAgdQu8dQs1EEKWIohSRogKKiFhAUJRihhA60jtIr6EFpEnvvQUC6fv+wc+8RiyogUk5n+fJAzu5O3N2UZicvTPXZrfb7YiIiIiIiIiIiEii4GB1ABEREREREREREfl/KuxEREREREREREQSERV2IiIiIiIiIiIiiYgKOxERERERERERkUREhZ2IiIiIiIiIiEgiosJOREREREREREQkEVFhJyIiIiIiIiIikoiosBMREREREREREUlEVNiJiIiIiIiIiIgkIirsRERE5LkKCAjAZrOxd+9eq6MkiE2bNmGz2eK+HB0dyZIlC82aNUs2r/FZ/Prneu7cuRd+zL/7yp8//wvLJCIiIvI8OFkdQERERCQpGj16ND4+PkRFRXHgwAFGjBhBzZo1OXjwIIULF7Y63nPXpEkTdu7cSY4cOV74MX+rcuXKtG3blv79+8dtS5Uq1QvLJCIiIvI8qLATERGRJM1utxMeHo6bm9sLPW7hwoWpVKkSANWrVyd9+vQYhsHMmTMZMWLEC83y6NEjUqdO/UKPmSVLFrJkyZIojpktW7a4P4s/EhMTQ3R0tIo8ERERSTJ0SayIiIhYLjw8nP79+1O2bFnSpUtHxowZqVy5MkuWLHlqrM1m44033mDy5MkUL16cVKlSYZomANu2baNy5cq4urqSK1cuhg8fztSpU//w0s25c+dSuXJl3N3dSZMmDQ0aNODAgQP/+jVUqFABgOvXr8fbfvLkSTp16kTWrFlJlSoVxYsXZ9KkSU89/8iRI9SvX5/UqVOTJUsW+vTpw4oVK7DZbGzatCluXK1atShVqhRbtmyhSpUqpE6dmm7dugEQGhrKgAEDKFCgAC4uLuTKlYt+/foRFhYW71jz58/H29ubdOnSkTp1agoWLBi3D4DY2Fg++ugjihYtipubG+nTp8fT05Px48fHjfmzS2KnT59OmTJlcHV1JWPGjLRq1Ypjx47FG+Pv70+aNGk4deoUjRs3Jk2aNOTJk4f+/fsTERHx7G/6Hzh37hw2m42xY8fy0UcfUaBAAVKlSsXGjRsB2Lt3L82bNydjxoy4urpSrlw55s2b99R+rl27xuuvv07u3LlxcXGhQIECjBgxgujo6P+UT0RERORZaIadiIiIWC4iIoI7d+4wYMAAcuXKRWRkJOvXr6d169b88MMP+Pn5xRu/ePFitm7dyvvvv0/27NnJmjUrhw4dol69ehQpUgTTNEmdOjWTJ09m5syZTx1v9OjRDBs2jFdeeYVhw4YRGRnJZ599RvXq1dmzZw8lSpT4x6/h7NmzABQpUiRu29GjR6lSpQp58+bl888/J3v27KxZs4Y333yTW7du8cEHHwBw9epVatasibu7O99++y1Zs2Zl9uzZvPHGG394rKtXr9KlSxcGDRrE6NGjcXBw4NGjR9SsWZNLly4xZMgQPD09OXLkCO+//z6HDx9m/fr12Gw2du7cia+vL76+vnz44Ye4urpy/vx5fvrpp7j9jx07lg8//JBhw4ZRo0YNoqKiOH78OPfu3fvL9+CTTz5hyJAhdOzYkU8++YTbt2/z4YcfUrlyZYKDg+NdKhwVFUXz5s3p3r07/fv3Z8uWLYwaNYp06dLx/vvv/+P3//cmTJhAkSJFGDduHB4eHhQuXJiNGzfSsGFDvL29mTx5MunSpWPOnDn4+vry6NEj/P39gSdlXcWKFXFwcOD999+nUKFC7Ny5k48++ohz587xww8//Od8IiIiIn/JLiIiIvIc/fDDD3bAHhwc/MzPiY6OtkdFRdm7d+9uL1euXLzvAfZ06dLZ79y5E297u3bt7O7u7vabN2/GbYuJibGXKFHCDtjPnj1rt9vt9gsXLtidnJzsffv2jff8Bw8e2LNnz25v3779X2bbuHGjHbDPnTvXHhUVZX/06JF9+/bt9qJFi9pLlChhv3v3btzYBg0a2HPnzm2/f/9+vH288cYbdldX17jXMHDgQLvNZrMfOXIk3rgGDRrYAfvGjRvjttWsWdMO2Dds2BBv7CeffGJ3cHB46n1esGCBHbCvXLnSbrfb7ePGjbMD9nv37v3pa2zatKm9bNmyf/k+/Prn+uv7evfuXbubm5u9cePG8cZduHDBnipVKnunTp3ithmGYQfs8+bNize2cePG9qJFi/7lcX8PsPfp0yfu8dmzZ+2AvVChQvbIyMh4Y4sVK2YvV66cPSoqKt72pk2b2nPkyGGPiYmx2+12++uvv25PkyaN/fz58/HG/fre/f7PSURERCSh6ZJYERERSRTmz59P1apVSZMmDU5OTjg7OzNt2rSnLqcEqF27NhkyZIi3bfPmzdSuXZvMmTPHbXNwcKB9+/bxxq1Zs4bo6Gj8/PyIjo6O+3J1daVmzZrxLj/9K76+vjg7O5M6dWqqVq1KaGgoK1asIH369MCTy3w3bNhAq1atSJ06dbxjNW7cmPDwcHbt2hWXvVSpUk/N7OvYseMfHjtDhgzUrl073rbly5dTqlQpypYtG+9YDRo0iHdZrZeXFwDt27dn3rx5XL58+an9V6xYkZCQEHr37s2aNWsIDQ392/dj586dPH78OG6W2q/y5MlD7dq12bBhQ7ztNpuNZs2axdvm6enJ+fPn//ZYz6J58+Y4OzvHPT516hTHjx+nc+fOAE/9eVy9epUTJ04AT95LHx8fcubMGW9co0aNgCd/XiIiIiLPkwo7ERERsdyPP/5I+/btyZUrFzNnzmTnzp0EBwfTrVs3wsPDnxr/RyuT3r59m2zZsj21/ffbfr3HnJeXF87OzvG+5s6dy61bt54p86effkpwcDCbN29m6NChXL9+nZYtW8bdg+327dtER0fz9ddfP3Wcxo0bA8Qd61mz/9Xrv379OocOHXrqWGnTpsVut8cdq0aNGixevDiutMydOzelSpVi9uzZcft67733GDduHLt27aJRo0ZkypSJOnXqsHfv3j99P27fvv2n2XLmzBn3/V+lTp0aV1fXeNtSpUr1h3/e/8bvc/z65z5gwICn3qPevXsD///ncf36dZYtW/bUuJIlS8YbJyIiIvK86B52IiIiYrmZM2dSoEAB5s6di81mi9v+ZwsQ/HbMrzJlyvTUgg/w5H5kv/XrDLwFCxaQL1++f525YMGCcQtN1KhRAzc3N4YNG8bXX3/NgAEDyJAhA46OjnTt2pU+ffr84T4KFCjwj7L/6o9ef+bMmXFzc2P69Ol/+Jzfzjxs0aIFLVq0ICIigl27dvHJJ5/QqVMn8ufPT+XKlXFycuKdd97hnXfe4d69e6xfv54hQ4bQoEEDLl68+Icr0mbKlAl4cn+937ty5Uq8478Iv3+Pfj3+e++9R+vWrf/wOUWLFo0b6+npyccff/yH43LmzJmASUVERESepsJORERELGez2XBxcYlXsly7du0PV4n9MzVr1mTlypXcunUrrpyJjY1l/vz58cY1aNAAJycnTp8+TZs2bRLmBQCDBg0iICCAMWPG8Prrr5M2bVp8fHw4cOAAnp6euLi4/GX2cePGcfTo0XiXxc6ZM+eZj9+0aVNGjx5NpkyZ4orAv5MqVSpq1qxJ+vTpWbNmDQcOHKBy5crxxqRPn562bdty+fJl+vXrx7lz5/5wUY7KlSvj5ubGzJkzadeuXdz2S5cu8dNPP9G2bdtnfi3PQ9GiRSlcuDAhISGMHj36L8c2bdqUlStXUqhQoacuvRYRERF5EVTYiYiIyAvx008/ce7cuae2N27cmKZNm/Ljjz/Su3dv2rZty8WLFxk1ahQ5cuTg5MmTz7T/oUOHsmzZMurUqcPQoUNxc3Nj8uTJhIWFAU/uZweQP39+Ro4cydChQzlz5gwNGzYkQ4YMXL9+nT179uDu7s6IESP+8etzdnZm9OjRtG/fnvHjxzNs2DDGjx9PtWrVqF69Or169SJ//vw8ePCAU6dOsWzZsriVWfv168f06dNp1KgRI0eOJFu2bMyaNYvjx4/Hy/5X+vXrx8KFC6lRowZvv/02np6exMbGcuHCBdauXUv//v3x9vbm/fff59KlS9SpU4fcuXNz7949xo8fj7OzMzVr1gSgWbNmlCpVigoVKpAlSxbOnz/PV199Rb58+eKt9Ppb6dOnZ/jw4QwZMgQ/Pz86duzI7du3GTFiBK6urnEr4lrpu+++o1GjRjRo0AB/f39y5crFnTt3OHbsGPv3748rd0eOHMm6deuoUqUKb775JkWLFiU8PJxz586xcuVKJk+eTO7cuS1+NSIiIpKcqbATERGRF+Ldd9/9w+1nz57llVde4caNG0yePJnp06dTsGBBBg8ezKVLl565PCtTpgzr1q1jwIAB+Pn5kSFDBrp27UrNmjV59913SZcuXdzY9957jxIlSjB+/Hhmz55NREQE2bNnx8vLi549e/7r19iuXTu8vb354osv6Nu3LyVKlGD//v2MGjWKYcOGcePGDdKnT0/hwoXj7mMHTy6x3Lx5M/369aNnz56kTp2aVq1aMXLkSAzDiFvI4q+4u7uzdetWxowZw/fff8/Zs2dxc3Mjb9681K1bl/z58wPg7e3N3r17effdd7l58ybp06enQoUK/PTTT3H3aPPx8WHhwoVMnTqV0NBQsmfPTr169Rg+fHi8hRx+77333iNr1qxMmDCBuXPn4ubmRq1atRg9evSfFn0vko+PD3v27OHjjz+mX79+3L17l0yZMlGiRIl4i5PkyJGDvXv3MmrUKD777DMuXbpE2rRpKVCgQFzBKyIiIvI82ex2u93qECIiIiLPS/369Tl37hy//PKL1VH+sddee43Zs2dz+/btv7ykVkRERESSF82wExERkWTjnXfeoVy5cuTJk4c7d+4QFBTEunXrmDZtmtXR/tbIkSPJmTMnBQsW5OHDhyxfvpypU6cybNgwlXUiIiIiKYwKOxEREUk2YmJieP/997l27Ro2m40SJUoQGBhIly5drI72t5ydneMuv4yOjqZw4cJ88cUXvPXWW1ZHExEREZEXTJfEioiIiIiIiIiIJCJ/v+SYiIiIiIiIiIiIvDAq7ERERERERERERBIRFXYiIiIiIiIiIiKJiAo7ERERERERERGRRESFnYiIiIiIiIiISCKiwk5ERERERERERCQRUWEnIiIiIiIiIiKSiKiwExERERERERERSURU2ImIiIiIiIiIiCQiKuxEREREREREREQSERV2IiIiIiIiIiIiiYgKOxERERERERERkUREhZ2IiIiIiIiIiEgiosJOREREREREREQkEVFhJyIiIiIiIiIikoiosBMREREREREREUlEVNiJiIiIiIiIiIgkIirsREREREREREREEhEVdiIiIiIiIiIiIomICjsREREREREREZFERIWdiIiIiIiIiIhIIqLCTkREREREREREJBFRYSciIiIiIiIiIpKIqLATERERERERERFJRFTYiYiIiIiIiIiIJCIq7ERERERERERERBIRFXYiIiIiIiIiIiKJiAo7ERERERERERGRRESFnYiIiIiIiIiISCKiwk5ERERERERERCQRUWEnIiIiIiIiIiKSiKiwExERERERERERSURU2ImIiIiIiIiIiCQiKuxEREREREREREQSERV2IiIiIiIiIiIiiYgKOxERERERERERkUREhZ2IiIiIiIiIiEgiosJOREREREREREQkEVFhJyIiIiIiIiIikoiosBMREREREREREUlEVNiJiIiIiIiIiIgkIirsREREREREREREEhEVdiIiIiIiIiIiIomICjsREREREREREZFERIWdiIiIiIiIiIhIIqLCTkREREREREREJBFRYSciIiIiIiIiIpKIqLATERERERERERFJRJysDiAiIiLJy6NHj7h586bVMZK8jBkzkjZtWqtjiIiIiIgFVNiJiIhIgrDb7QwePJixY8daHSXZMAw/pk2bjqOjo9VRREREROQFUmEnIiIiCWLy5MmMHTuWd43mVC5dBJvN6kRJl90OR85cZPjkmeTOnYePPvrI6kgiIiIi8gKpsBMREZEEsWPHDiqWKsyw7q2tjpIs1KlYiuCjp9m5Y4fVUURERETkBVNhJyIiIgkiPDyctG6pnmlsVHQ0QyfNJSY2lqjoGOpX8qRp9fKs33OYQROC2BPwMU5OjnQZPpGZo94AoNZrI3i5eEFu339A50bVqOft+dR+fzv+z0RERpHKxflvM+48fJLJC9aRK2tGRvfpAMCArwJ5+DiC8IhIpgx7jUUbg9ly4Bg37z6gZ5u6VPEsQt/PAnBweDK9cNKgbjg6Plnjy263M+CrmTg42PBwd2P4q23+NkOa1G7cuPv4b8eJiIiISPKiwk5EREReOHP5FmpXLEnDymUBiIyKBmD++l309W3Iyh0HqVC8IL9cuMpYcykdGlQhd7ZMfP52Vy7fuMOk+WupWqYonwUu40HYY4rlz0XjquXijc+bPXPc8aKjY9gQ/DOrd4aQIa077/f4+7KscunC5Mycnu9+3BC3bVy/rgAMnjib0LBw2terTPt6lbn7IIyhk+bgU6Ek3w/tAcCg8UFcvXWX3NkyAbDr51MUyp2N3u3q8+6EIC7fuEOurBkT5P0UERERkeRFhZ2IiIi8cEfOXKJFrQpxj12cnbhx5z6pnJ3pUL8KPUdPpXmNlymSNweDjOYAXL5xh3cnBHH49EWGv9oGm82G3Q7p07ozf/0uXm1ZO974X01fuollW/bi37QmY97oGDe7buGG3ew5cipuXAaPNAz2b/GXuS9dv82nM5YS9jiCtKld47aP+WExPVrViXt87OxlwiOj4sq6X5/76+M82TNz+aYKOxERERH5Yw5WBxAREZGUp0SBXBw4fi7ucWRUNIErt3Lt9j0Gfz2Lo2cvcf7qzXgLV+TKmpFP3+zMsi8G8c38NazdGUKRvDkY1r01sXY7wB8udNG4SllqvVySdXsOM23JRq7fvgdAVEwM4ZFRcV8RUVF/mzt3tkx8PfAVSr+Ulz1HThEbG8vgr2fRtHp5yhXND8DBE+f4ZsFaxvXrEu+5ubJm5PKNO8CT8i5n5gzP/oaJiIiISIqiGXYiIiLywhlNazL0mzms2RlCrN1OHa9SbNl/jMWfD8Bms7HnyCnM5Vsonj8XQ7+Zw6sta3Pp+m36fxnI44hIfF4uiWeRfLw/eR7X79yPu6T2t+ML5MwKQPbM6XmrYyMAjpy+yLz/XXbboX4VOtSv8qcZj5+7zGczlnHs3GWmLNpA27qVGDllIQ42Gw8ehfN66zp8FriMXYdP8jgikuPnrtCxQVVaDfycxlXLMXD8TAZ0bcaBE+eIiYmhZS0vFqzfxeCvZ+Hm6hJv9p2IiIiIyG/Z7Pb/fSQtIiIi8h+0a9eOu+ePs/jzAVZHSTZ6jZnGmbtRbN+x0+ooIiIiIvIC6ZJYERERERERERGRRESFnYiIiIiIiIiISCKie9iJiIhIomaPW1DiD1aUAL5buJ4SBXNRvVzxZ9pfbGwsDg4OT/3+r8Y9i8Wbglm3+zARkVGM7tOBrBnTxe2nx0ff4+bqwuPwSCYPeZVFG4PZHnKCSzfu8K7RnJyZM/DR9EXExMSQJUM6Rvfp8MzHFREREZHkR4WdiIiIJLgFG3axad9R3F1T8d4rLZm7dicnzl8h1m4nawYPqpcrxtEzl3m9TV1eHz2Fz/t1ZevB42wPOcGtew8Y1as9x89eZvyc1VQrW5TWPhX5atZKHBxsZM+cgQFdmvLWuAA83FNz9OwlShTM9VSGKYs2cOriNe49fMTArs2Yt24noWGPKZo/J7sOn6Rgrqy8lDs7Dx6Hc+D4WcIeRzC0eyu2h5xgy/5jlH4pL319Gz7za174024CR77BwRPnMJdvZqBfcwAehUfi5OTIxEHdeHdCEHdDw2hfrzLt61Xm4Ilz7Dj0C73b1Wfye68C0GX4xH9cFoqIiIhI8qLCTkRERBLc2cs3KFkwD02rlyd9Wnc27z/GrI/7snnfUbaHnPjD57g4OWG324mNtbN6Rwj5c2TGu2Qh+nVszPBv5+GayoU0bqk4duYSR89cInP6tAx/tQ0jpix4al8PH4Uza/V26nmXxsnJkQMnzgHQopYXlUsXZtfhk3RtXIOcWTLQYch45ox+i9OXrjN18U8UL5CLOl6l8P3dCrLvTZxNbGxs3OO63qWp5+0Z9/jXGYD5cmbh0o07cdtTu7rg7ORIl+ETcUvlTJYMHgB8PnM5G4J/ZtxbXeLGbtl/jKL5cqisExEREUnhdDYoIiIiCW6gX3OqlyvGqKk/cujkeX5/NauzkxNRMTEAPAqPAOD7RRv4uHcH6lcqzaPHT7Z5uKcGINYeS8cGVRjSrRXT3u+J3W4nlbMzAK4uzk8d346dnFkyMKRbKz7u3YF2dSsBkM7dLW6Mx/9+72B7cjr020tuPdKkfmqfEZFRhP/mKzomNt73f7109+K1W+TKkjFu+8FfzpM7ayZmjnqD0i/lZefhkwD079IU88PeTJi7GoD1ew6zdvchhnVv/SfvqoiIiIikFJphJyIiIglu2pKfOHXx+v/uyfbkEthB44OIjI4mawYPPAvn5bsf1zNx3hrOXr4JQLH8ORlrLuXMlRuUK5I/3v56tqnHh9/NJ3vm9Dg7OfHha22ZsWILk+atYc/Pp6niWSTe+LSp3fAu9RL9vwzEwcFGm9ref5q1rndpBnwVyP2Hjxjs35Kdh3/5w3FfvOP3l6+5Va2KvDUugEfhEXzUy5d9x86w49AvdG/hw9dzV/POFzO4fuc+fk1q8M38tZy+dJ17D8J4pXktzly+QY+Pvqd5jZfp97nJ6D4dcXdL9QzvtIiIiIgkRzb7rx8Hi4iIiPwH7dq14+754yz+fMCfjjl65hKLNwUzpFurF5gs6eo1Zhpn7kaxfcdOq6OIiIiIyAukGXYiIiLywpQomJsSBXMn+H6v3rrLD0s3xT2u7FkEnwolE/w4IiIiIiIvggo7ERERSfJyZM7wh7P2ugyfyMxRbyTYceat28mWA8e4efcBPdvUxadCSSYvXMcv56/yKCKSL9/x40HYY4Z+MwdnJyfqV/KkZS2vBDu+iIiIiKQMKuxEREQk0ViwYReb9h3F3TUV773SktU7Qzh08gIPHj1m3FtdmL9hF5v3HcXdzZWMHmlwdnJk77EzTH+/J5PmreH+w0dkTp+W9Gnd6dGqTtx+x5pLuRP6kHsPH/Fx7w5MnLeasEcRZEqfhneNFs+cr329yrSvV5m7D8IYOmkO1coWJfjIaaa935Mlm/eydPNeLly7xZsdGlH6pbx0Hva1CjsRERER+cdU2ImIiEiicfbyDUoWzEPT6uVJn9YdB5sNZydHbtwJZffPpwCoW7E0vvWr0OCN0ayZOITpSzay79gZAFrU8qKKZxH8PpgUV9gdP3eFrQePU7l0YaJjYjhy+iKXb9yhYeWy1KlYKt7xF27YzZ4jp+IeZ/BIw2D/pwu9MT8spkerOty+95BM6dICkD9HFtbvOczF63fInS0TAI6ODgn/JomIiIhIsqfCTkRERBKNgX7N+fn0RUZN/ZE32tdnwYbdzBvTj89nLicsPAIAjzSpAciSwQMAFxcnIqKiAYj636+R//sVwG63U7Jg7niXzFb2LMyuwyd5ZcS3zPukH05Ojk+eHxNDeGRU3LiIqP//PUBsbCxDJs2hafXylCuan8ioaG7ffwDAheu3yJU1IzExsVy+cYcMad2JiYlN0PdHRERERFIGFXYiIiKSaExb8hOnLl4nJiaGLBk8yJYpHV/OWsmeI6efabGKRZuCWbZ1HzXLl4jbVrxALpycHBn89SwioqLp064+0/+3QEWOzBniyjqADvWr0KF+lT/d/2eBy9h1+CSPIyI5fu4KPVrV4eXiBRk4fiYPHoXzxdtdeRD2mOGT5+Hq4kKb2t7//s0QERERkRTLZrfb7VaHEBERkaSvXbt23D1/nMWfD7Dk+KOnL6JlLa/nsgqtVXqNmcaZu1Fs37HT6igiIiIi8gJphp2IiIgkC3+0SqyIiIiISFKkOyGLiIhIktZl+MQE3+f5qzep0m04b40LIGjVtnjf23bwBH4fTOLNzwLYuPdI3PYflm2iYd9PEjyLiIiIiKQ8KuxEREQk0XrnixncuHMfgE5Dv+ZReAQjpixgwFeBTF38U7yxvxZ356/eZMikOcTExDL0mzm8OyGIt8YFEBEZ9dT+/0pq11Q8jogkX47M8bYv2RzMx707MH6AwfeLNgBw4vwVQh8+JnP6tP/2pYqIiIiIxNElsSIiIpJota1biXnrd1G1TFHKFcuPzWbDbof0ad2Zv34Xr7as/afP3RD8M+ev3qJEgVyE3brL2Ss3KZY/JwAHTpxjzprt8ca/69+CjB5pAMibPTPrvxlGZFQ0vu99RbWyxeLG9WxTj3GBy0iXJjWhDx8TFR3NtwvWMe6tLviP+PY5vAsiIiIiktKosBMREZFEq4pnEb5dsJZLN+7Qp1191u4MoUjeHHRqWJV6fT6ON9Zme/Lro/BIAGLtsVTxLELvdvWf2m9MTCzhv5tx99tluGz/25mLs1O8VWQBCuXOxvgB/oQ9juC1j7/n6JnL3Lr3gP5fBXLo5HmWbAqmRS2v//rSRURERCQFU2EnIiIiiVqJArk5cOIcebJlIjomhvcnz+P6nftERkXHG1fP25MPvpsfV7bV9SrN29tmMGTSHB48esyonu1Jn9YdgAolClKhRME/Peb2kBPMWr2dqOgYmlQrD8Cwb+fSq009btwN5Yelm3j4OJzB/i0o/VJeZo56A3hyWa7KOhERERH5r2x2+28/TxYRERH5dzp27MjlEyGsHP+u1VGSje4jJ3MtwpnNW7ZYHUVEREREXiDNsBMREZEEkSVLFn5ceJJlW/dRuXQRHBxsVkdKsux2OHL6Iqt3hlC3QSOr44iIiIjIC6YZdiIiIvKv3b9/n3nz5mGaJtu3b8fF2ZnIqH+2Gqv8uVQuzkRERlGuXDn8/f3p2LEjWbJksTqWiIiIiDxnKuxERETkH4mJiWHdunWYpsnixYuJjIykXr16GIZBo0aNOHLkCNevX7c6ZpKXKVMmPD092bJlC6Zpsnz5cux2O02aNMEwDJo0aYKLi4vVMUVERETkOVBhJyIiIs/k6NGjmKbJzJkzuXLlCiVKlMAwDLp06ULOnDmtjpfs3bp1i9mzZ2OaJvv27SNTpkx07NgRf39/ypcvH7fYhoiIiIgkfSrsRERE5E/dvn07riTau3cvGTNmjCuJXn75ZZVEFjly5AimaRIYGMi1a9coWbJkXHmaI0cOq+OJiIiIyH+kwk5ERETiiYqKYtWqVZimybJly7Db7TRu3DjuMsxUqVJZHVH+Jzo6Ot7lyVFRUdSvXx/DMGjRogVubm5WRxQRERGRf0GFnYiIiABw8OBBAgICmDVrFjdv3qRs2bIYhkGnTp3ImjWr1fHkb9y7dy9uAZAdO3aQLl06fH19MQyDypUrazakiIiISBKiwk5ERCQFu379OkFBQZimyaFDh8iWLRudO3fGMAw8PT2tjif/0i+//MKMGTOYMWMGFy9epHDhwvj5+eHn50fevHmtjiciIiIif0OFnYiISAoTHh7OsmXLME2T1atX4+joSPPmzfH396dBgwY4OTlZHVESSGxsLJs2bcI0TRYsWMDjx4/x8fHBMAzatGmDu7u71RFFRERE5A+osBMREUkB7HY7e/bswTRN5syZw927d/H29sYwDHx9fcmYMaPVEeU5e/DgAQsXLsQ0TTZt2oS7uztt27bF39+fGjVq4ODgYHVEEREREfkfFXYiIiLJ2KVLlwgMDMQ0TU6cOEGuXLno2rUrhmFQrFgxq+OJRc6dOxf338Xp06fJly9f3CWzL730ktXxRERERFI8FXYiIiLJzKNHj1i0aBGmabJ+/XpcXV1p3bo1hmFQu3ZtHB0drY4oiYTdbmfHjh0EBAQwb948QkNDqVq1KoZh0L59e9KlS2d1RBEREZEUSYWdiIhIMmC329m6dSumaTJ//nwePHhA9erV8ff3p23btnh4eFgdURK5x48fs3jxYkzTZN26dbi4uNCqVSsMw6Bu3boqekVEREReIBV2IiIiSdjZs2fjVgM9c+YMBQoUiLu0sWDBglbHkyTq8uXLBAUFERAQwLFjx8iZMyddunTBMAxKlChhdTwRERGRZE+FnYiISBLz4MED5s+fj2mabNmyhTRp0tC+fXsMw6BatWpaPEASjN1uZ+/evZimyezZs7lz5w5eXl4YhkGHDh3IlCmT1RFFREREkiUVdiIiIklATEwMGzduxDRNfvzxRx4/fkydOnUwDINWrVrh7u5udURJ5iIiIlixYgUBAQGsWrUKm81Gs2bNMAyDRo0a4ezsbHVEERERkWRDhZ2IiEgiduLECUzTJDAwkEuXLlGkSBH8/f3p0qULefLksTqepFA3btxg1qxZmKbJwYMHyZIlC507d8YwDMqWLWt1PBEREZEkT4WdiIhIInP37l3mzp1LQEAAu3fvJn369HTo0AHDMPD29sZms1kdUSROSEgIpmkSFBTEjRs38PT0xDAMOnfuTLZs2ayOJyIiIpIkqbATERFJBKKjo1mzZg2mabJ06VKio6Np0KAB/v7+NGvWDFdXV6sjivylqKioeP8Nx8TE0KhRIwzDoFmzZqRKlcrqiCIiIiJJhgo7ERERCx0+fBjTNJk5cybXr1+ndOnScbOTsmfPbnU8kX/lzp07zJ07F9M02b17NxkyZIibJVqxYkXNEhURERH5GyrsREREXrCbN2/G3f/rwIEDZM6cOd79v1RmSHJy/PjxuPswXr58mWLFiuHn50fXrl3JnTu31fFEREREEiUVdiIiIi9AZGQkK1aswDRNVqxYgc1mo2nTpnErbLq4uFgdUeS5iomJ4aeffopb6Tg8PJy6devGrXScOnVqqyOKiIiIJBoq7ERERJ4Tu93Ovn37ME2T2bNnc/v2bSpUqIBhGHTo0IHMmTNbHVHEEqGhocyfPx/TNNm6dStp06alXbt2GIZB9erVNctUREREUjwVdiIiIgnsypUrzJw5E9M0OXr0KDly5KBLly4YhkHJkiWtjieSqJw5c4YZM2YwY8YMzp49S8GCBfHz88PPz48CBQpYHU9ERETEEirsREREEsDjx49ZsmQJpmmydu1anJ2dadWqFYZhULduXZycnKyOKJKoxcbGsm3bNgICApg/fz4PHz6kRo0aGIZBu3btSJs2rdURRURERF4YFXYiIiL/kt1uZ8eOHZimybx587h//z5VqlTBMAzat29P+vTprY4okiSFhYWxaNEiTNNkw4YNuLm50bp1awzDwMfHB0dHR6sjioiIiDxXKuxERET+ofPnzxMYGMiMGTM4efIkefPmjbuEr3DhwlbHE0lWLl68SGBgIKZp8ssvv5A7d266du2KYRgULVrU6ngiIiIiz4UKOxERkWfw8OFDFi5ciGmabNy4EXd3d9q0aYO/vz81a9bEwcHB6ogiyZrdbmf37t2YpsmcOXO4d+8elSpVwjAMfH19yZAhg9URRURERBKMCjsREZE/ERsby+bNmzFNkwULFhAWFoaPjw+GYdCmTRvSpEljdUSRFCk8PJxly5YREBDAmjVrcHJyonnz5hiGQYMGDXTPSBEREUnyVNiJiIj8zqlTpzBNk8DAQM6fP0+hQoUwDIOuXbuSP39+q+OJyG9cu3aNoKAgTNPk8OHDZM+enc6dO2MYBqVLl7Y6noiIiMi/osJOREQEuH//PvPmzcM0TbZv346Hhwe+vr4YhkGVKlWw2WxWRxSRv2C32zl48CCmaRIUFMStW7coV64chmHQqVMnsmTJYnVEERERkWemwk5ERFKsmJgY1q1bh2maLF68mMjISOrVq4e/vz8tWrTAzc3N6ogi8i9ERkayatUqTNNk+fLl2O12mjRpgmEYNGnSBBcXF6sjioiIiPwlFXYiIpLiHD16FNM0mTlzJleuXKFEiRIYhkGXLl3ImTOn1fFEJAHdunWLOXPmEBAQwL59+8iUKRMdO3bEMAxefvllzZ4VERGRREmFnYiIpAi3b99m9uzZmKbJ3r17yZgxI506ddIP7SIpyJEjR+LK+qtXr1KiRAn8/f3p0qULOXLksDqeiIiISBwVdiIikmxFRUXFXRa3bNky7HY7jRs3jrssLlWqVFZHFBELREdHs379egICAli8eDFRUVHUr18fwzB0ObyIiIgkCirsREQk2Tl48CABAQHMmjWLmzdvUrZsWfz9/enYsSNZs2a1Op6IJCL37t2LW3Bmx44dpEuXLm7BmcqVK2v2rYiIiFhChZ2IiCQL169fJygoCNM0OXToENmyZaNz584YhoGnp6fV8UQkCTh58iQzZsxgxowZXLhwgcKFC+Pn50fXrl3Jly+f1fFEREQkBVFhJyIiSVZ4eDjLli3DNE1Wr16No6MjLVq0wDAMGjRogJOTk9URRSQJio2NZdOmTZimycKFCwkLC8PHxwd/f39at25NmjRprI4oIiIiyZwKOxERSVLsdjt79uzBNE3mzJnD3bt38fb2xjAMfH19yZgxo9URRSQZefjwIQsXLsQ0TTZu3Ii7uztt27bFMAxq1qyJg4OD1RFFREQkGVJhJyIiScKlS5cIDAzENE1OnDhBrly56Nq1K4ZhUKxYMavjiUgKcO7cubi/h06fPk2+fPni/h566aWXrI4nIiIiyYgKOxERSbQePXrEokWLCAgIYMOGDbi6utK6dWsMw6B27do4OjpaHVFEUiC73c6OHTswTZO5c+cSGhpK1apVMQyD9u3bky5dOqsjioiISBKnwk5ERBIVu93O1q1bMU2T+fPn8+DBA2rUqIFhGLRt2xYPDw+rI4qIxHn8+DFLliwhICCAdevW4eLiQsuWLTEMg3r16umDBREREflXVNiJiEiicObMmbjVGc+ePUuBAgXw8/PDz8+PggULWh1PRORvXblyhZkzZ2KaJkePHiVnzpx06dIFwzAoUaKE1fFEREQkCVFhJyIiT+nTpw/37t3jyJEjVKpUic6dO1O9enViY2MT9AbrDx48YP78+ZimyZYtW0iTJg3t27fHMAyqVaumm7mLSJJkt9vZt28fAQEBzJ49mzt37lChQgUMw6Bjx45kypTpmffVqFEj8uXLB8C7775LgQIF4n2/bdu2LFiwIEHzi4iIiPVU2ImIyB86d+4cEydOZNy4cZQsWZJu3brRoEEDPvzwQxYsWEBAQACZM2emTJkyjBkzBgcHB3LmzMl77733l/uNiYnhp59+wjRNfvzxR8LDw6lTpw6GYdCqVSvc3d1f0CsUEXn+IiIiWLFiBaZpsnLlSmw2G82aNcMwDBo1aoSzs/NfPv+3hdyRI0cICgrixo0b+Pn5UaNGDdq2bcvkyZPp06cPuXLlokGDBpQoUeIf/b0sIiIiiY+mLoiIyN/KmTMn/fv3p1SpUk99b+LEibi5uZEpUyZ+/vnnP93HiRMnGDJkCPnz56d+/frs3buX4cOHc/78edatW0eXLl1U1olIspMqVSpat27NkiVLuHz5MmPHjuXMmTO0aNGCXLly0a9fPw4ePPinzw8LC6Nnz5707NkTV1dXIiMjyZkzJ9OmTYsbc//+fRwcHGjTpg3169d/5r+XRUREJPFysjqAiIgkfr9d8dBmswFPfojMnDkzsbGxdO3alTJlyjz1vLt37zJnzhxM02T37t2kT5+eDh06YBgG3t7ecfsSEUkJsmbNSr9+/ejXrx+HDh3CNE2CgoIYP348np6eGIZB586dyZYtW9xz3N3dmTx5MgB9+/Zl4MCBuLi48MYbb8SNKVSoEBMmTGDZsmUsWbIEu93+p38vi4iISNKgwk5ERP6RXLly8dlnn7Fnzx4Mw6Bv376899575MyZE2dnZ0aOHMmaNWswTZMlS5YQExNDw4YNmTdvHs2aNcPV1dXqlyAiYjlPT08+//xzPv30U9asWUNAQADvvfcegwYNomHDhhiGQbNmzeI9x8fHhzFjxpA7d+542w8dOsSUKVOw2+14eXnh4+MT7+/l0aNHv8iXJiIiIglA97ATEZEE8dvZItevX6d06dL4+/vTqVMnsmfPbnU8EZFE786dO8ydOzferOSOHTtiGAYVK1bUrGQREZEURIWdiIj8azdv3mTWrFmYpsmBAwfInDkznTt3xjAMypYtqx8uRUT+pePHjzNjxgxmzJjB5cuXKVq0KIZh0LVr16dm2ImIiEjyo8JORET+kcjISJYvXx5vxcOmTZvi7+//TCseiojIs/uzlbX9/f1p1aoVqVOntjqiiIiIPAcq7ERE5G/Z7Xb27duHaZrMmjWLO3fuUKFCBQzDoEOHDmTOnNnqiCIiyV5oaCgLFiwgICCArVu3kjZtWtq1a4dhGFSvXl2zmkVERJIRFXYiIvKnrly5wsyZMzFNk6NHj5IjRw66dOmCYRiULFnS6ngiIinWmTNn4i6ZPXv2LAUKFMDPzw8/Pz8KFixodTwRERH5j1TYiYhIPI8fP2bx4sWYpsm6detwcXGhZcuWGIZB3bp1cXLSAuMiIolFbGws27ZtwzRN5s2bx8OHD6lRowaGYdCuXTvSpk1rdUQRERH5F1TYiYgIdrudHTt2YJomc+fOJTQ0lKpVq8b9wJc+fXqrI4qIyN8ICwtj0aJFmKbJhg0bcHV1pXXr1hiGQe3atXF0dLQ6ooiIiDwjFXYiIinY+fPn4y6pOnXqFHnz5o27pKpw4cJWxxMRkX/p4sWLzJw5k4CAAH755Rdy585N165dMQyDokWLWh1PRERE/oYKOxGRFObhw4csXLgQ0zTZuHEj7u7utG3bFsMwqFmzJg4ODlZHFBGRBGK329m9ezemaTJnzhzu3buHt7d33KJBGTJksDqiiIiI/AEVdiIiKUBsbCybNm3CNE0WLlxIWFgYPj4+GIZBmzZtSJMmjdURRUTkOQsPD2fZsmUEBASwZs0aHB0dadGiBYZh0KBBA92jVEREJBFRYScikoydPHky7pLXCxcu8NJLL2EYBl27diVfvnxWxxMREYtcu3aNoKAgTNPk8OHDZMuWjc6dO2MYBp6enlbHExERSfFU2ImIJDP37t1j3rx5mKbJjh078PDwwNfXF8MwqFKlCjabzeqIIiKSSNjtdg4ePIhpmgQFBXHr1i3KlSuHYRh06tSJLFmyWB1RREQkRVJhJyKSDMTExLBu3TpM02Tx4sVERkZSv359DMOgRYsWuLm5WR1RREQSucjISFatWoVpmixfvhy73U7jxo0xDIOmTZvi4uJidUQREZEUQ4WdiEgSduTIEUzTZObMmVy9epUSJUpgGAZdunQhZ86cVscTEZEk6tatW8yZMwfTNNm7dy8ZM2akU6dOGIbByy+/rNnaIiIiz5kKOxGRJOb27dvMnj2bgIAA9u3bpx+iRETkudKHQyIiIi+eCjsRkSQgKiqKlStX/uFlSk2aNCFVqlRWRxQRkWQuOjqa9evXY5omixYtIioqinr16uHv76/bL4iIiCQwFXYiIonUX90IvGPHjmTNmtXqiCIikkL9foGjdOnS0b59ey1wJCIikkBU2ImIJDLXrl0jKCgI0zQ5fPgw2bJlo3PnzhiGgaenp9XxRERE4jl58iQzZsxgxowZXLhwgZdeegk/Pz/8/PzIly+f1fFERESSJBV2IiKJQHh4OEuXLsU0TdasWYOjoyMtWrTAMAwaNGiAk5OT1RFFRET+UmxsLJs2bcI0TRYuXEhYWBg+Pj4YhkGbNm1IkyaN1RFFRESSDBV2IiIWsdvt7N69G9M0mTNnDvfu3cPb2xt/f398fX3JkCGD1RFFRET+lYcPH7Jw4UJM02Tjxo24u7vTpk0bDMOgVq1aODg4WB1RREQkUVNhJyLygl28eJHAwEBmzJjBiRMnyJ07N127dsXPz49ixYpZHU9ERCRBnTt3jsDAQEzT5PTp0+TNmxc/Pz8Mw+Cll16yOp6IiEiipMJOROQFCAsLY9GiRZimyYYNG3B1daV169b4+/vj4+ODo6Oj1RFFRESeK7vdzo4dOzBNk7lz5xIaGkqVKlUwDIP27duTPn16qyOKiIgkGirsRESek9jYWLZu3YppmsyfP5+HDx9So0YNDMOgbdu2eHh4WB1RRETEEo8fP2bJkiUEBASwbt06XFxcaNmyJYZhUK9ePX2QJSIiKZ4KOxGRBHbmzJm41fLOnj1LgQIF4lbLK1iwoNXxREREEpUrV64wc+ZMTNPk6NGj5MiRgy5dumAYBiVLlrQ6noiIiCVU2ImIJIDQ0FDmz5+PaZps3bqVtGnT0q5dOwzDoFq1arq5toiIyN+w2+3s27ePgIAAZs+ezZ07d6hQoQKGYdCxY0cyZcpkdUQREZEXRoWdiMi/FBMTw08//URAQACLFi0iPDycunXrYhgGrVq1InXq1FZHFBERSZIiIiJYsWIFpmmycuVKbDYbTZs2xTAMGjdujLOzs9URRUREnisVdiIi/9Dx48cxTZPAwEAuX75M0aJFMQyDLl26kCdPHqvjiYiIJCs3btxg9uzZBAQEcPDgQbJkyUKnTp0wDIOyZctis9msjigiIpLgVNiJiDyDO3fuMHfuXAICAtizZw/p06enY8eOGIZBxYoV9cOCiIjIC3Do0CFM0yQoKIjr169TunRpDMOgc+fOZM+e3ep4IiIiCUaFnYjIn4iKimLNmjWYpsnSpUuJiYmhYcOGGIZBs2bNcHV1tTqiiIhIihQdHR33b/SSJUuIiYmhQYMG+Pv7699oERFJFlTYiYj8TkhISNyn9zdu3KB06dL4+/vTqVMnfXovIiKSyPw6C940TXbv3k369Onp0KEDhmHg7e2tWfAiIpIkqbATEeHJ/XFmzZqFaZq6P46IiEgSdfz4cWbMmMGMGTPi7jPr5+dH165ddZ9ZERFJUlTYiUiKFRERwfLlyzFNk1WrVmGz2WjWrBmGYdCoUSOtQCciIpJE/bqSu2ma/Pjjj4SHh1OnTp24ldzd3d2tjigiIvKXVNiJSIpit9vZu3cvpmkye/Zs7ty5Q4UKFTAMg44dO5IpUyarI4qIiEgCCg0NZcGCBQQEBLB161bSpElDu3btMAyD6tWr4+DgYHVEERGRp6iwE5EU4fLly8ycORPTNDl27Bg5cuSga9euGIZBiRIlrI4nIiIiL8CZM2fiLpk9e/YsBQoUwM/PDz8/PwoWLGh1PBERkTgq7EQk2Xr8+DGLFy/GNE3WrVuHi4sLLVu2xDAM6tati5OTk9URRURExAKxsbFs27YN0zSZN28eDx8+pHr16hiGQbt27fDw8LA6ooiIpHAq7EQkWbHb7Wzfvj3uBDw0NJSqVatiGAbt27cnXbp0VkcUERGRRCQsLIxFixZhmiYbNmzA1dWV1q1bYxgGtWvXxtHR0eqIIiKSAqmwE5Fk4dy5cwQGBmKaJqdPnyZv3rxxl7gULlzY6ngiIiKSBFy8eDHuFhonTpwgV65ccbfQKFasmNXxREQkBVFhJyJJ1sOHD1mwYAGmabJp0ybc3d1p27YthmFQs2ZN3URaRERE/hW73c7u3bsxTZM5c+Zw7949vL29MQwDX19fMmbMaHVEERFJ5lTYiUiSEhsby6ZNmwgICGDhwoU8evQIHx8f/P39ad26NWnSpLE6ooiIiCQj4eHhLFu2DNM0Wb16NY6OjjRv3hzDMGjYsKHuiSsiIs+FCjsRSRJOnjyJaZoEBgZy4cIFXnrpJQzDoGvXruTLl8/qeCIiIpICXLt2jaCgIEzT5PDhw2TNmpUuXbpgGAaenp5WxxMRkWREhZ2IJBp2u51ly5ZRv359XF1duXfvHnPnzsU0TXbu3ImHhwe+vr74+/tTuXJlbDab1ZFFREQkBbLb7Rw8eBDTNAkKCuLWrVuULVsWwzDo1KkTWbNmJSYmhmXLltGkSROcnZ2tjiwiIkmMCjsRSRTsdjsDBw7k888/Z9KkSWzZsoXFixcTFRVF/fr1MQyDFi1a4ObmZnVUERERkTiRkZGsWrUK0zRZvnw5drudRo0a0aJFC3r16oWvry+maereuiIi8o+osBORROHNN9/k66+/Jm3atDx48IASJUrg7+9P586dyZkzp9XxRERERP7WrVu3mDNnDqZpsnfvXtzd3QkLC6Ndu3bMnTtXVweIiMgzU2EnIpYLDg6mYsWKAKRJk4bChQuzaNEi3ZtOREREkqS7d+/StGlTfv75Z0JDQwGYMWMGXbt2tTiZiIgkFVrSSOQZRERE8Prrr/PTTxt4/Djc6jhJmoODAwULFmD69B8oXrw4ABUqVOD7778nIiKC69evc//+fV36KiIiIkmWi4sL3t7e1KxZkxw5cmCz2fD19Y37/uXLl+napQvHjh0lOjrawqRJX6pUqahY0ZsA08TDw8PqOCIiCUYz7ESeQdu2bVi+fAVvdOtMhnQ6EfgvoqKjmbtkFXdDH7J3715y585tdSQRERGRFyY0NJSXy5cj4sFdOtcui4uz5lD8F4/CI5myag8lS5dh2/YduuxYRJINFXYifyM6Oho3Nzc+GtyPd3q+YnWcZOHy1esU8KrN3Llzad++vdVxRERERF6Ybdu2Ub16ddaPfZ2Xi+iDy4SwYMshenwxnytXrpAjRw6r44iIJAh9nCPyN8LDw4mOjiZ3zuz/eh9RUVG8O2ocMTExREVH07B2De7dv8+PK9aRKWN6CuTNzbC3eydgaoiIiCRVKpe/Hbdg+RqWrt6Aa6pU9OnemYzp0zFi3ESio2PIliUTnw4fGDd28449fDjua0oUeYnGdWvSpG6tf5UtV45sAHH3dBERERFJKX49/8mZ+d9ftdFr/EJGGg3wcHelRLfP2PvNW7i6OPP6lwuYMbhjvLGzNuwno4c7d0LDyOjhTkOvov/4eJFR0c88E3Dc/E0cPnMV892OrNv3C4Hr9uHk5EDb6p409i4eN67tyBnkyZIegC97Nf/HmX4rZ6Yn72VoaKgKOxFJNlTYibwA02cvpG7NKjSuUxOAyMhI5ixeQY+u7WlStxa+r/UDwPe1fsz9/is279jDkRMnKVm0MOOnzqBmZS9On7vAhI+H02fwCFxTufBSgXz08u8U7zjh4REsX7+JDVt2ULxIId581e9vsy1cvoYZX39KZFQUvQZ9yIyJY5n6xcdxeWJjY3FwcADAZrPh7ubG4/Bw8ubSyq0iIiIiVqhRuiBbfz5L1nRpaFvDk62Hz+Lh7op38bzM3XSQn89e48GjCD59rclTz5276SCXb93Hu1heZqzbR+Z07rzayJsCOTLGG/fLpZss3HqIy7dCGdi+FvmyZfjbXNsOnyVv1gwcPnMVgF3HzvN+13pkTufOR0Hr4xV2bi5O2O12cmRM+x/fDRGR5EmFncgL8PPxX2jdpH7cYxeXJzPfps1awLhvptGxVdM/fW7ll8vyVg8Do++7REZGcvXGTbp1bEOdapXjjRv1xTccOnqCVzu3ZeIn7+Po6AjAdzPm8Mvps3HjCuXPS+9XOsc97t/zFfoNH02WTBkJffgwbvum7bspVrhgXFkHUM37ZWpU9uJ+6ANefWcY86eO/5fviIiIiIj8WzU8C/LZvE1ky5CGt1pX59tlO3B2dKRVtVIcv3ADJycHbtx/yJ7jF+I9b9qq3TStVIJ32tZk7qaD5MmaHt9aZeKVdWeu3uatSUvwKVsIv3oVyJU5HQDnr99l8rKd8fbXo4k3BXNkAuD+w8cs332UMa82YcWuowA0q1SCNyctBmCkf4N4zzUHdcDBwYFx8zax9fAZqpcumKDvkYhIUufw90NE5L8qWbQw+0KOxD2OjIwEoHuntqyaNZWtu/YSGxsbd5PcsMeP48a6p36yWqqTkyORUVEETRqHo4Mjfn3fjXeMTq2bUrZUMRavWo85dxH37of+71hRhEdExn1FRkXFe16FsqWZNOYDunVqQ46sWQBYu2kbqzdu5cMBfeON/bW8S5vGnVh77H9+X0RERETkn8uVOR1Xbody6/4jcmbyIDIqhiPnr1Eqf3Z+3HaYD7rWx6toHsLC45/3FcyRiRMXb2C32/GtVZaOPuX4YXUwq/YcjxuTO3M6XmvizaVb95m8fCd7f7kIQGysnfCo6HhfsbH/fzv0XccvcOt+GG9/u5RDZ66y7fBZvly4hcUj/Fk2qhsTF2+Pl+XX88os6dPw4HHE83qrRESSLM2wE3kBunVsw7ujxrFqw2Zi7bHUr1Ut7nuurqmoV6sqsxetwLNEUT6Z8B0XL1+lVLHCT+3Hbof+H44hjXtqXiqQN973CuXPy9B+vQDYte8gC5at5tUu7en7ate/zLZ20zaWrvmJ0AcP+ei9fpw+d4FX3nqPlo3q8sZ7Ixn7/kB+mP0jFcqW4ur1m6zdtI0HYWF069gmAd4ZEREREfk38mZNj+v/7iuXPWNaboeGYbPZyJY+LeN/3ErwiYsUz5st3nN8yr5E6lTOvDtlBZVK5GPfL5e4HfqIPFnTx41xcXaiWeWSNKtcknsPH7No+8+kc3elcK4sf3mvuQYVitKgwpP74xmfzqZa6QJcvRNK34mLcXRwoGaZQgB0/3we0/q3p9f4haRO5UJYeAQT+rRM2DdHRCQZ0CqxIn/j4cOHpE2blpnfjKN980ZWx0k2XHKXZMqUKbz66qtWRxERERF5YVauXEmTJk04On0gOTL++4Un5P/tOHKOJkOncfz4cYoW/eeLaoiIJEa6JFZERERERERERCQRUWEnIiIiIiIiIiKSiOgediIW+vWK9F8Xm/i9b34IomTRwtSsUvGZ9hcbGxt3A9/f/v6vxj2LhcvXsHbTdsIjIhj7/kCyZckMwMOwMAaN/IzH4RG4p3Zj4ifvM3vRcrbt3selK9cY8lZPShZ76akxIiIiIpLw/u7c8vsVuyiRNxvVShd4pv09r3PLJTt+ZsP+U4RHRfHRK43Imj4NAA8fRzDsh9WER0aR2tWFL3o257vlOzl2/gbX7j5gaOc6FMie8akxIiLJkQo7kX9o7pKVbNy2C/fUbgx/pw+zflzG8VNniI21kzVzJmpW9uLIiZP0fqUz3d8ewviPhrJ5ZzBbd+3l1p27fDK0P0dPnOLL7wKoXqkCbZs15PNvp+FgcyBH9qy8+0YP+gwegUfaNBw9cYqSRZ9efGKyOZuTZ85xL/QBg/u+zuxFywl98IDihQuxY+8BCubLQ+GC+Xn4MIx9h47wMOwRHwx4g22797Jx+x7KlCxKv9f8n/k1z1+2mjnffcmBw0eZPnsh7735OgBp3N355tMPAej+9hBiY2Pp2KopHVs15cDho2zbvQ/vl8s8NeafnNCJiIiIJGcLtx5iy6EzpE7lwuAOPszdHMIvl24Sa7eTNV0aqpUqwNEL13mtSSV6j/+Rsa81YdvP59hx5By3Q8MYYTTg+IUbfL1kG1VLFqBl1VJMWLQVB5uN7BnT8k7bmrz97VI8Uqfi2IUblPjdQhQAU1fu5vSV29wPC6d/u5rM3xxC6KNwiubJyu5jFyiQPQOFcmXm4eMIDpy6Qlh4BEM61mHHkXNsOXyG0gVy0KdF1Wd+zYu2/UzAoA6EnL7CjHV7GdCuFgBp3FLxVe8WAPQe/yOxsbG83rQyAIfOXGH1nuMM9PV5aoyISHKkwk7kHzpz/iKlihWhecPapE/nwcbte5g/dTwbt+9i6659f/gcF2dnsD/59HHl+s3kz5ML75fL0L9XN977+HPcXF1xT52aI8dP8vPxk2TOlIERA99k+Kfjn9rXw7AwAucvoYFPdZydnNl36GcAWjepTxWv8uzYewB/39bkypGNNt37snDa15w6e57vZ8ylRNFC1KtZlU6tm8bb56CRY4mJiYl7XL9WNRr4VI97/OuntPnz5OLSlWvxnhty9DhffWeS3iNtXBE3duIU1m3ezpejhv7pGBERERGBs9fuUCJfNhp7FyddGje2Hj5D4OBObDl0hh1Hzv3hc1ycHLFjJ9ZuZ83eE+TLmgGvonl4s1U1PjDX4ObijLurC8cu3ODo+etk9kjN0M51GTVz3VP7evg4gjkbD1K3fGGcnBw4cOoyAM2rlKRS8XzsPnaBznVfJmcmDzqPDiJoSGfOXL3NtNV7KJ4nK7XLFaZ9zTLx9jls+ipiYv9/bcM65QtTt/z/fwj96/y/fNkycPlWaLznHj57lUlLtpPO3S3uvDEqOobJy3bxXqfafzpGRCS50d9uIv/Qe2++To3KXnz42dccPHKM319x4OLiTFR0NABhjx4D8K05mzHDB9DApzphjx4BkC7tk6n/9lg7ndo04/3+fZgxcSx2u51ULi4AuKZyeer4djvkypGN9/v3YczwAXRo2QQAj7Rp48ak83iybwfbk//Ff3tZxK/f+63wiAjCIyLjvqJ/U949OeaTE67zl6+QK0f8T2XLlCjGD+M/ITommvOXrgAw6I0eBH37OV99H/CnY0REREQEBrSrRdVSBRg9awOHz1zFRvyTS2dnR6JjnswiexQRCcDUVbsZ5d+QuuULExb+ZJtHalcAYu122tcqw+COtZnyTrsn55bOT+ZpuDo/PV/DDuTM5MHgjrUZ5d+QtjU84+3vye9TAeDg8CTbbzP+dtyvwqOi4339mv+3xwS4eOMeuTLFXym3dIEcTO7XluiYWC7cuEd4ZBTvfLuUN1pWJU+W9H84RkQkOdIMO5F/6PvAuZw6e57o6BiyZspEzcoVeef9T4iMiiJr5kyUKVmMST8EMX6KyZnzFwEoXrgQo8dP5sz5i5QvXSLe/np368SwT74iZ7asODk78dHgfgTMWciEqTPYvS+EahVfjjc+bRp3Klcox1tDP8LBwYH2LRr9adYGtarSb9jH3At9wLC3e7EjeP8fjpvw8fC/fM1tmjagz+ARhD16zJhh/dl78DDb9uyjaT0fJkydEVfo5cmZna+nBnLq7Hnu3g/l1c7tOHX2/FNjREREROSJ6av3cObKbaJjYsmc3p1qpQoweOoKIqNjyJouDaULZOf7Fbv4ZukOzl67A0DRPFkYN28TZ6/doUyhnPH291qTSowMXEf2jGlxdnTk/a71mLl+P98u3cGeExepXCJ/vPFp3VJRsVheBn6/HAebjdbVS/9p1jrlCjPo++XcDwvn3Q4+7Dp6/g/HjXu92V++5hZVSvL2t0t5FB7JSP8G7D95iZ1Hz9OoYjG+WbqD/502kjuzB29NWsKFG/eYsnI31UsXoGyhnE+NuXTz3l8eT0QkKbLZf/0pWkT+0MOHD0mbNi0zvxlH++Z/Xo79fPwkP65Yy/v9+7zAdEmXS+6STJkyhVdffdXqKCIiIiIvzMqVK2nSpAlHpw8kR0aPPx139Px1lu44wuCOtV9guqRpx5FzNBk6jePHj1O0aFGr44iIJAjNsBNJIKWKFaZUsacXiPivrly7wdSg+XGPq1YsT53qlRP8OCIiIiKSeJTIl40S+Z5eIOK/unonFHPN3rjHlUrko1aZQgl+HBER+W9U2IkkcjmzZ/3LWXu+r/Vj7vdfJdjxVv+0lWVrfyIqKprjp86wZUkQk6YHceL0GR49Dufrj4fj5vb0vUpEREREJPHLkdHjqVl7xqezMd/tmGDH2HXsPN8v30WuzOkY9UpDAAZ9v5yw8EgeR0bxXb+23H34mOE/rMbFyZG6LxemRZVSCXZ8EZHkQIWdyAs2d8lKNm7bhXtqN4a/04cV6zdz6OhxQh885KtRQ5m7ZAU/bdtNGvfUZMyQDmcnZ/YePMyMiWMZP2UG90NDyZwpIxnSedDT+P8Tq9HjJ3Pn7j3uhT7g0+ED+ep7k7CwR2TKmJ6h/Xo9c76GtavTsHZ15i1dReUKZYmKimL3/hBmTBzLopXrWLRq/VOrzIqIiIjIi7Nw6yG2HDpD6lQuDO7gw+q9J/j57DUePIrg09easHDLITYfOoO7mwsZ06bG2dGBfScvM+Wddny7dAf3w8LJlC416d3deLWxd9x+x83bxJ0Hj7gfFs4o/4ZMWrqdsPBIMqVNzUBfn2fOV6l4PnJm9GDKyt1x28a+9uT8cej0VTx4FMGMdXt5o2VVShfIgd+Y2SrsRER+R4WdyAt25vxFShUrQvOGtUmfzgMHBxtOTk5cv3WbnXsPAFC/VjU6tW5K7TZ+/LRwBlNmziP44GEAWjepT9WKL9Ox5ztxhd2xk6fZsjOYKl7liY6O4fDRE1y6co3GdWtSv2bVeMeft3QVu/cdjHucIX06hr3d+6mccxavIHDiWG7duUfmjBkAyJ83N+s2bXseb4uIiIiIPKOz1+5QIl82GnsXJ10aNxxsNpycHLhx/yF7jl8AoE75wrSvWYbGQ6aycvSr/LAmmP0nLwHQvEpJKpfIxytj58QVdicu3mDbz2epVDwf0TGxHDl/jcu37tOgQlFql4t/25cftx0m+PjFuMcZ0rox6G8KvUs37zNu3iYehkeQxs2FSzfvx6366uhg+8vnioikRCrsRF6w9958nUNHT/DhZ1/zZg8/5i1dxaIfJjF24hTCHj8GIJ1HGgCyZMoIQCoXZyIiIwGIjIqK9ytAbKydUsUKx7t0tmrF8uwIPkCX3gNYFDAJJ6cn/7tHRUUTHhEZNy4i8v/386vjp86QJ0d23FOnxtnJiVt37gJw4dIVcuXQKq8iIiIiVhrQrhY/n7vG6Fkb6N2sCj9uO8zsoV34cuEWwsKfnNt5pH5yC5Ms6dwBSOXkSERUDABR0U9+jfzfrwCxdjsl8mWLd7lspeL52H3sAt0/n8ecoZ1xcnSMe354VHTcuIjf/P7P5M6Sjq/6tGD8j1sJPnGR3JnTcenWfdKncSMmVusgioj8ngo7kRfs+8C5nDp7nujoGLJmykT2LJkZ9800du0PoeQzLFqxcPlalqzagE+V/798oWTRl3BycmLAh2OIiIzkzVcNpgbNAyBn9mxxZR1A5zbN6Nym2V8eY+rMeXTr3BYAFxcXvMqW5u3ho3kQFsaEj4f9m5ctIiIiIglk+uo9nLlym+iYWDKndydb+rRxRVjxvH+/UMXiHT+zfNdRangWjNtWPG82nBwdGTJtJRFRMfRuXoWANcEA5MzoEVfWAfjWKotvrbJ/uv/jF2/w+fzNHL9wg6krd9O2hiejZq7HwcHGw8cR9GjizUu5MvOBuQZXF2daVdPlsCIiv2ez2+36OEPkLzx8+JC0adMy85txtG/eyNIsIz+fROsm9Z/LarQvmkvukkyZMoVXX33V6igiIiIiL8zKlStp0qQJR6cPJEdGjxd+/DGzf6J5lZLPZQVaq+w4co4mQ6dx/PhxihYtanUcEZEEoRl2IknIX60WKyIiIiLyd36/QqyIiCROKuxEEhnf1/ox9/uvnsu+ew36AI+0afh0+MC4bVt37eWbgFlkSOdBm6YNqFO9Mm8OHUVMTCy79h1kzLABuKd2Y+L0IPLkzB7vuSIiIiKSuBmfzsZ8t2OC7/fbpTs4e+0O6dxdGdq5brzvPXwcQdOh0xncsTYNvYqybt8vrNv3Czabjf7tarI55DTbfj7LzfthvNakErXKFErwfCIiSZ2D1QFEUpI3h47i+s1bALR79S0ePX7M8E/H02/Yx3w3Y068sb6v9QPg3MXLvDvqM2JiYhg8ahz9P/iEPoNHEPGbhSOexcwFS6lcoexT239csZZPhw9g0pgP+DZgNgATPh7OpDEfkDNbVupUr0wVr/KMHvLOP3/BIiIiIvLcDPhuGTfuPQSg65hZPIqIZNTMdQz6fjnTVu2JN9b49Ml53oXrdxn+w2piYmIZHrCa96au5O1vlz7TwhG/Onz2KtuPnMPJ0YEs6dI89f1x8zfTunppAGJjY/l+xS6cHB1I5exEOndX2tUsw/g+LfnmzdYs3HLo3758EZFkTTPsRF4g3xaNmbN4BdW9K/BymZLYsGG320mfzoO5S1byul+HP33uus07OHvxEiWLFibs2nXOXLhI8cJPPo3cf+gIQQuXxhs/tF8vMmZIDzwp/c6cv4hf+5YcOXEq3rg+3Trz6ddTSOeRltAHD+K2b9kZTGWvcjg4qNcXERERSYzaVPdkwZZDVCmRj7KFcv3v3BLSp3Fj4dZDdG9U8U+f+9PBU1y4fpfiebPx6E4o567doWierAAcPHWZuZtC4o0f5FuLDGlTA/DLpZvky5aBj7s1YvDUFZy9eocCOTICsGznESoWy8O9B48BuHk/jFv3w5g3vCvLdx1l/uYQutR9GYBP52z8y4wiIimZCjuRF6hqxZf5etpMLl25Rt9Xu7Lqpy0UfakAXdu2oFarLvHG2mw2AMIePTnZibXHUq3iy/R9tetT+42JiSH8dzPufruazE9bd3Lh8hXe/3Q8R385xeFjv1C6eBEAXiqQj0ljPiDs0SNeeeu9uOdMn71Qs+pEREREErHKJfLx3fKdXL51n57NKrNu3y8UyZ2ZDj7laPjelHhj484t/3fOGGu3U7lEfno2q/zUfmNi7YT/bsbdb5cqzJU5HWev3QEgQxo3HoZHxH1v28/niIyO4dTlW7i6ODHzvU7kzOSBzWYjY9rUXL4VSmxsLMN+WE0T7+KUfSlXgrwXIiLJjQo7kResZNHC7D98hLy5chIdHcOQ0V9w/cYtIiLjF24Nfaoz9JMv406u6tesSt81P/HuqM8IffCQT4b2J326JyuLeZXzxKuc558es1untnTr1JZzFy/zbcAsShcvwuCPxvFGty7cuHWbqUHzefAwjKFv9wLgxq3bREVHkzP7k09Zj/5yijETvufoL6eYbM6mp5Hw90ERERERkX+ueN6sHDx9hTxZ0hMTE8uHM9Zy/e5DIqNi4o2rW74wIwLXYuPJuWWdci8xYPdyhv+wmgePIhhh1CddGjcAXi6Sm5eL5P7TY1Yqno8ftx5m2PRVhEdFU7pADt4PWMPrTSvxaY8mAMzasJ+MHu6kcnaiVtmXeHfKCu48eMQn3Rvz+fzN7D5+gceR0Ry/eINXG3s/p3dHRCTpstntv/2sRER+LywsjDRp0mB+/SkdWzW1Ok6yEBMTg1s+T6ZOnUr37t2tjiMiIiLywqxatYrGjRtzeMoAcmdJZ3WcZGHb4bM0Gz6dEydOUKRIEavjiIgkCN2cSuRvpE6dmnTp0rFo5TpiYmL+/gnytxauWAtArly6BEJERERSll/Pf5bs+NniJMmD3W5n8f/eS51bikhyohl2Is9g3rx5dOrUiXQeafFI8/RKWP+WHTvRUdHYsePk5ISDLXF06HbsREdHY7fbcXJ0StCFJ6Kio7ly7TodOnRgxowZODnpynwRERFJOex2O/379+fLL78ke6Z0uDj/t3Mhu91OTHQ0djs4Ojkm+gXDYmNiiImJwWZzwMnJEf53+5d/61F4JLfuPeDrr7/mjTfeSKCUIiLWU2En8oy2bt3Kli1bePToUYLs78yZMyxatIg0adLQrl07MmbMmCD7TSjR0dGsXr2aQ4cO4e3tjY+PT4KcADo6OlKwYEG6dOmisk5ERERSJLvdzrx58zh69CjR0dF//4Q/2ceuXbvYtGkT2bJlo2XLlonufPLPXL58mSVLlvDo0SMaNmxIqVKl/vW+UqVKRcWKFWnYsGECJhQRsZ4KO5EXzG63M378ePr370/Dhg2ZNWsW6dIlzvuX2O12JkyYwDvvvEODBg2YPXt2os0qIiIiklJcuXKFrl27snHjRgYNGsTIkSNxcXGxOtY/EhoayhtvvEFgYCCdO3fmm2++wcPDw+pYIiKJhgo7kRcoIiKC3r17M336dAYOHMgnn3yCo6Oj1bH+1tq1a/H19SV79uwsXbqUwoULWx1JREREJEVaunQp3bp1w8XFhcDAQOrUqWN1pP8kKCiIXr16kTlzZmbNmkWlSpWsjiQikigk7hsciCQj169fp06dOsycORPTNBk7dmySKOsA6tevz+7du7Hb7Xh7e7NhwwarI4mIiIikKI8fP6ZPnz60aNGCqlWrcujQoSRf1gF07tyZgwcPkjVrVqpVq8bHH3+shd5ERFBhJ/JCHDx4EC8vL06fPs3mzZvx8/OzOtI/VqRIEXbt2oW3tzcNGjTg66+/RhN0RURERJ6/w4cP4+XlxfTp05k0aRKLFy8mc+bMVsdKMAULFmTr1q0MHjyY4cOHU6dOHS5evGh1LBERS6mwE3nOFi5cSNWqVcmaNSvBwcFJepp/+vTpWb58OW+99RZvvvkmr7/+OpGRkVbHEhEREUmW7HY7EydOxMvLC5vNRnBwML1798b2H1dWTYycnZ356KOP2LhxI6dPn6ZMmTL8+OOPVscSEbGMCjuR5yQ2NpYPP/yQtm3b0rx5c7Zs2ULu3LmtjvWfOTo68vnnn/PDDz9gmiZ169bl5s2bVscSERERSVZu3rxJ8+bN6du3Lz169GDPnj3/aTXVpKJmzZqEhITg4+NDmzZteP3113n06JHVsUREXjgtOiHyHISFhWEYBgsXLuSjjz5iyJAhyfKT0B07dtC6dWtcXV1ZunQpnp6eVkcSERERSfLWr1+Pn58fUVFR/PDDDzRt2tTqSC+c3W5n6tSpvPXWW+TLl4/Zs2dTtmxZq2OJiLwwmmEnksAuXLhAtWrVWL16NYsXL2bo0KHJsqwDqFKlCsHBwWTMmJEqVaqwaNEiqyOJiIiIJFmRkZEMGjSIevXqUbJkSQ4dOpQiyzoAm81Gjx492L9/P66urnh7e/PVV1/pHsoikmKosBNJQNu3b6dChQrcu3ePnTt30qJFC6sjPXd58uRh69atNG7cmNatW/PRRx/pREpERETkH/rll1+oUqUKX375JWPHjmXNmjXkyJHD6liWK1asGLt27aJ37968/fbbNGnShOvXr1sdS0TkuVNhJ5JApk+fjo+PD8WLF2fPnj2ULl3a6kgvjLu7O3PnzmXkyJEMHz6cDh066F4jIiIiIs/Abrfzww8/UL58eUJDQ9m5cycDBw7EwUE/qv0qVapUfPnll6xcuZJ9+/bh6enJ6tWrrY4lIvJc6V8Bkf8oOjqat99+m+7du9OtWzfWrVtHlixZrI71wtlsNoYPH87ChQtZvnw51atX5+LFi1bHEhEREUm07t27R8eOHenWrRvt27dn//79VKhQwepYiVajRo04dOgQ5cuXp1GjRrzzzjtERERYHUtE5LnQohMi/8Hdu3fp0KEDGzZsYPz48fTu3TvZ3q/unwgJCaF58+ZERESwaNEiKleubHUkERERkURl+/btdOrUifv37/Pdd9/h6+trdaQkIzY2lgkTJvDuu+9SokQJZs+eTbFixayOJSKSoDTDTuRfOnHiBJUqVSI4OJg1a9bQp08flXX/U6ZMGYKDgylcuDC1atXCNE2rI4mIiIgkCtHR0YwYMYIaNWqQJ08eQkJCVNb9Qw4ODvTr14/du3cTHh5O+fLlmTJliu6jLCLJigo7kX9hzZo1eHt74+joSHBwMHXq1LE6UqKTNWtWNmzYQNeuXfH392fAgAHExMRYHUtERETEMufPn6dWrVqMHDmS999/n02bNpEvXz6rYyVZZcuWZe/evXTt2pXXXnuNdu3acefOHatjiYgkCBV2Iv+A3W7niy++oHHjxlSrVo1du3ZRqFAhq2MlWi4uLkyZMoXx48fz5Zdf0rRpU+7fv291LBEREZEXbt68eZQpU4aLFy+yZcsWPvjgA5ycnKyOleS5u7vz3XffsXDhQn766SfKlCnD5s2brY4lIvKfqbATeUYRERF069aN/v37M2DAAJYsWYKHh4fVsRI9m83Gm2++yerVq9m1axfe3t6cPHnS6lgiIiIiL8TDhw/p3r07vr6+NGjQgJCQEKpWrWp1rGSndevWhISEUKhQIXx8fBg+fDhRUVFWxxIR+de06ITIM7h+/TqtW7dm3759TJ06lS5dulgdKUn65ZdfaN68OdevX2fevHnUq1fP6kgiIiIiz82+ffvo2LEjV65c4euvv8bf31/3PH7OYmJiGDNmDB988AFeXl4EBQVRsGBBq2OJiPxjmmEn8jcOHDhAhQoVOHv2LJs3b1ZZ9x8UKVKE3bt3U6lSJRo1asSECRN0c2ARERFJdmJjYxk3bhyVK1fGw8OD/fv388orr6isewEcHR0ZOnQo27Zt4/r165QtW5ZZs2ZZHUtE5B9TYSfyF+bPn0/VqlXJnj07wcHBeHt7Wx0pyUuXLh3Lly+nX79+vPXWW/To0YPIyEirY4mIiIgkiKtXr9KwYUMGDhxIv3792LFjB0WKFLE6VopTqVIlDh48SPPmzencuTN+fn6EhoZaHUtE5JnpkliRPxAbG8uIESMYOXIkHTt2ZNq0abi5uVkdK9kxTZPXXnuNihUrsnDhQrJmzWp1JBEREZF/bfny5bzyyis4OTkRGBhI3bp1rY4kwMyZM+nVqxdZs2Zl9uzZVKxY0epIIiJ/SzPsRH4nLCyM9u3bM2rUKEaPHk1QUJDKuufEMAw2bdrEyZMn8fLyIiQkxOpIIiIiIv9YeHg4ffv2pVmzZlSqVIlDhw6prEtEunTpwsGDB8mcOTNVq1blk08+ISYmxupYIiJ/STPsRH7j/PnztGjRgtOnTxMUFETz5s2tjpQiXLx4kZYtW3L8+HECAwNp3bq11ZFEREREnsmRI0fo0KEDJ0+e5PPPP6d37966V10iFRUVxYcffsgnn3xCrVq1CAwMJFeuXFbHEhH5Q5phJ/I/27Ztw8vLi9DQUHbu3Kmy7gXKkycPW7dupWnTprRp04aRI0dqMQoRERFJ1Ox2O99++y0VKlTAbrcTHBxMnz59VNYlYs7Oznz88cds2LCBX375BU9PTxYvXmx1LBGRP6TCTgSYNm0atWvXpmTJkuzZs4dSpUpZHSnFSZ06NXPmzGHUqFF88MEH+Pr6EhYWZnUsERERkafcunWLli1b0rt3b7p3705wcDClS5e2OpY8Ix8fH0JCQqhRowatWrWiV69ePHr0yOpYIiLx6JJYSdGio6MZMGAA48ePp2fPnkyYMAFnZ2erY6V4ixYtomvXrhQpUoTFixeTN29eqyOJiIiIAPDTTz/RtWtXIiIimD59uq7KSMLsdjvff/89b7/9NgUKFGD27Nl4enpaHUtEBNAMO0nB7t69S+PGjZk4cSKTJk3i22+/VVmXSLRq1YodO3Zw584dvLy82LFjh9WRREREJIWLjIxk8ODB1K1bl2LFihESEqKyLomz2Wy8/vrr7N27FycnJypWrMiECRN0axYRSRRU2EmKdPz4cby9vdm3bx9r166ld+/eVkeS3/H09CQ4OJiiRYvi4+NDQECA1ZFEREQkhTp16hRVq1bl888/Z8yYMaxbt06LFSQjJUqUYPfu3fTs2ZO33nqLpk2bcuPGDatjiUgKp8JOUpzVq1dTqVIlnJ2d2bNnD7Vr17Y6kvyJLFmysH79egzD4JVXXuGdd94hOjra6lgiIiKSQtjtdkzTpFy5cty7d48dO3YwaNAgHBz0Y1Ry4+rqyldffcWKFSsIDg7G09OTtWvXWh1LRFIw/UsjKYbdbueLL76gSZMmVK9enZ07d1KoUCGrY8nfcHFx4bvvvmPChAlMmDCBpk2bcu/ePatjiYiISDJ3//59OnfujL+/P23btmX//v14eXlZHUues8aNG3Po0CHKlClDgwYNGDBgABEREVbHEpEUSItOSIoQERFBz549CQgI4N133+Xjjz/G0dHR6ljyD61fv5727duTNWtWli5dSpEiRayOJCIiIsnQzp076dSpE3fu3OG7776jQ4cOVkeSFyw2NpavvvqKwYMHU6pUKWbPnk3RokWtjiUiKYhm2Emyd+3aNXx8fJg9ezYzZ85kzJgxKuuSqLp167J7925sNhsVK1bUZQoiIiKSoGJiYhg1ahTVq1cnR44chISEqKxLoRwcHHjnnXfYvXs3jx49onz58kybNk0LUojIC6PCTpK1Xy9dOHfuHFu2bKFz585WR5L/qHDhwuzatYuqVavSqFEjvvrqK504iYiIyH924cIFfHx8+PDDDxk6dChbtmwhf/78VscSi5UrV459+/bRqVMnXn31VXx9fbl7967VsUQkBVBhJ8nWvHnzqFatGtmzZyc4OJiKFStaHUkSSLp06Vi6dCn9+/fn7bff5tVXX9W9RURERORfW7BgAWXKlOHcuXNs2rSJESNG4OTkZHUsSSTc3d2ZMmUK8+fPZ926dZQpU4atW7daHUtEkjkVdpLsxMbG8v777+Pr60urVq3YsmULuXLlsjqWJDBHR0fGjh2LaZrMnDmTOnXqcP36datjiYiISBISFhZGjx49aNeuHXXr1iUkJITq1atbHUsSqbZt2xISEkL+/PmpVasWH3zwAdHR0VbHEpFkSotOSLLy8OFD/Pz8WLx4MaNHj+bdd9/FZrNZHUues127dtGqVSucnZ1ZunQpZcuWtTqSiIiIJHL79++nY8eOXLp0iQkTJtCtWzedN8oziYmJYfTo0YwYMYKKFSsya9YsXT4tIglOM+wk2Th37hxVq1Zl3bp1LFmyhMGDB+ukK4WoVKkSwcHBZM2alapVq7JgwQKrI4mIiEgiFRsbyxdffEGlSpVwd3dn//79dO/eXeeN8swcHR0ZPnw4W7Zs4erVq5QpU4Y5c+ZYHUtEkhkVdpIsbN26FS8vLx48eMDOnTtp1qyZ1ZHkBcudOzdbtmyhefPmtGvXjg8//JDY2FirY4mIiEgicu3aNRo3bkz//v3p27cvO3fupGjRolbHkiSqSpUqHDx4kCZNmtCxY0deeeUVHjx4YHUsEUkmVNhJkjd16lTq1KlDqVKlCA4OplSpUlZHEoukTp2aWbNm8dFHHzFixAjat29PWFiY1bFEREQkEVi5ciWenp4cPHiQNWvW8Pnnn5MqVSqrY0kSly5dOoKCgjBNkwULFlC+fHmCg4OtjiUiyYAKO0myoqOjefPNN+nRowevvvoqa9euJVOmTFbHEovZbDaGDh3K4sWLWb16NdWqVePChQtWxxIRERGLhIeH069fP5o0aYKXlxeHDh2ifv36VseSZMRms+Hn58eBAwdInz49VapUYezYsbraQ0T+Ey06IUnSnTt38PX1ZdOmTUyYMIFevXpZHUkSocOHD9O8eXPCwsJYtGgRVatWtTqSiIiIvEBHjx6lY8eOnDhxgs8++4w33nhD96qT5yoyMpIPPviATz/9FB8fHwIDA8mZM6fVsUQkCdIMO0lyjh07hre3N/v372ft2rUq6+RPlS5dmj179lC8eHF8fHyYPn261ZFERETkBbDb7Xz33XdUqFCBqKgo9uzZQ9++fVXWyXPn4uLCJ598wrp16zh27Bienp4sXbrU6lgikgSpsJMkZeXKlVSqVIlUqVIRHByMj4+P1ZEkkcuSJQvr1q2jW7dudO/enbfffpvo6GirY4mIiMhzcvv2bdq0aUPPnj0xDIO9e/fi6elpdSxJYerUqcOhQ4eoWrUqLVq0oE+fPjx+/NjqWCKShKiwkyTBbrczbtw4mjZtSs2aNdmxYwcFCxa0OpYkES4uLnz77bdMnDiRr7/+miZNmnD37l2rY4mIiEgC27hxI2XKlGHz5s0sWrSIb7/9ltSpU1sdS1KozJkzs3jxYr755humT5+Ol5cXhw8ftjqWiCQRKuwk0QsPD8ff35+BAwcyePBgFi9ejIeHh9WxJImx2Wz06dOHNWvWEBwcTKVKlThx4oTVsURERCQBREVFMWTIEOrUqUORIkU4dOgQLVu2tDqWCDabjV69erF3714cHBzw8vJi4sSJ6FbyIvJ3VNhJonb16lV8fHyYN28eQUFBjB49GgcH/Wcr/16dOnUIDg7G0dERb29v1qxZY3UkERER+Q9Onz5NtWrV+Oyzzxg9ejTr1q0jV65cVscSiadkyZLs2bOH1157jb59+9K8eXNu3rxpdSwRScTUfEiitW/fPry8vLhw4QJbtmyhU6dOVkeSZKJQoULs2rWLatWq0bhxY7744gt9yikiIpIEzZw5k3LlynHr1i22b9/O4MGDcXR0tDqWyB9ydXVlwoQJLFu2jF27dlGmTBnWr19vdSwRSaRU2EmiNHfuXKpXr06uXLkIDg7Gy8vL6kiSzHh4eLBkyRIGDBhA//796datGxEREVbHEhERkWcQGhpKly5d6Nq1K61ateLAgQNUrFjR6lgiz6Rp06YcOnSIUqVKUa9ePQYNGkRkZKTVsUQkkbHZNa1EEpHY2Fjef/99Pv74Yzp37syUKVNwc3OzOpYkczNnzuTVV1/l5Zdf5scffyRbtmxWRxIREZE/sWvXLjp16sStW7eYPHmyrsKQJCs2NpYvvviCIUOG4OnpyaxZsyhSpIjVsUQkkdAMO0k0Hj58SJs2bRg9ejSffvopgYGBKuvkhejSpQubN2/m7NmzVKhQgQMHDlgdSURERH4nJiaGjz/+mGrVqpE1a1YOHjyosk6SNAcHBwYMGMDOnTsJDQ2lfPny/PDDD7pVi4gAKuwkkTh79ixVqlRhw4YNLF26lEGDBmGz2ayOJSmIt7c3wcHBZM+enapVqzJ//nyrI4mIiMj/XLx4kTp16jB8+HDee+89tm7dSsGCBa2OJZIgXn75Zfbv34+vry/dunWjY8eO3Lt3z+pYImIxFXZiuc2bN1OxYkXCwsLYuXMnTZs2tTqSpFC5cuViy5YttGzZkvbt2/PBBx8QGxtrdSwREZEU7ccff6RMmTKcPn2ajRs3MmrUKJydna2OJZKg0qRJw7Rp05g7dy6rV6+mTJkybN++3epYImIhFXZiqe+//566detSunRp9uzZQ8mSJa2OJCmcm5sbQUFBjB49mlGjRtGuXTsePnxodSwREZEUJywsjNdff502bdrg4+NDSEgINWvWtDqWyHPVvn17QkJCyJMnDzVq1GDEiBFER0dbHUtELKBFJ8QSUVFRvPPOO0ycOJE+ffrw5Zdf6pNSSXSWLl1K586dKViwIEuXLiVfvnxWRxIREUkRDh48SMeOHTl//jzjx4/n1Vdf1e1SJEWJjo7m448/ZuTIkVSuXJmgoCCdi4qkMJphJy/cnTt3aNiwIZMnT2by5MlMnDhRZZ0kSs2bN4+7CbCXlxfbtm2zOpKIiEiyFhsby1dffYW3tzeurq7s37+fHj16qKyTFMfJyYkPPviALVu2cPHiRcqUKcO8efOsjiUiL5AKO3mhjh49SsWKFQkJCWHdunW8/vrrVkcS+UulSpUiODiYEiVKULt2baZOnWp1JBERkWTp+vXrNGnShLfffps+ffqwa9cuihUrZnUsEUtVrVqVkJAQGjRogK+vL927d9ftWkRSCBV28sKsWLGCSpUq4ebmxp49e6hVq5bVkUSeSebMmVm7di3dunWjR48evPXWW7qXiIiISAJavXo1np6e7N+/n1WrVvHFF1+QKlUqq2OJJArp06dnzpw5/PDDD8ydO5fy5cuzb98+q2OJyHOmwk6eO7vdztixY2nWrBk+Pj7s2LGDggULWh1L5B9xcXFh8uTJTJo0iUmTJtG4cWPu3r1rdSwREZEkLSIigrfffptGjRpRvnx5Dh06RMOGDa2OJZLo2Gw2/P392b9/Px4eHlSuXJlx48YRGxtrdTQReU606IQ8V+Hh4bz22msEBgYyZMgQRo0ahYODemJJ2n766SfatWtHxowZWbZsmS7XERER+ReOHTtGx44dOXbsGJ9++ilvvvmmzhNFnkFkZCTDhg3js88+o27dusyYMYMcOXJYHUtEEpj+RZTn5urVq9SsWZP58+cza9YsPv74Y52ESbJQu3Zt9uzZg4uLC97e3qxatcrqSCIiIkmG3W5nypQpvPzyy0RERLB792769eun80SRZ+Ti4sLYsWNZt24dP//8M56enixfvtzqWCKSwPSvojwXe/fupUKFCly6dIktW7bQsWNHqyOJJKhChQqxc+dOatSoQdOmTfn888/RhGUREZG/dufOHdq2bctrr71G165d2bt3L2XLlrU6lkiSVLduXQ4dOkSlSpVo1qwZffv2JTw83OpYIpJAVNhJgps9ezbVq1cnd+7c7N27Fy8vL6sjiTwXHh4eLF68mIEDBzJgwABeeeUVnSSJiIj8ic2bN1OmTBk2btzIwoUL+e6773B3d7c6lkiSliVLFpYuXcrEiROZMmUKXl5eHDlyxOpYIpIAVNhJgomNjWXo0KF06tSJtm3bsnnzZt1LQZI9R0dHxowZw8yZM5kzZw4+Pj5cu3bN6lgiIiKJRlRUFMOGDcPHx4dChQoREhJC69atrY4lkmzYbDb69OlDcHAwdrudChUq8O233+rqD5EkTotOSIJ48OABXbp0YdmyZYwZM4aBAwdis9msjiXyQu3Zs4eWLVvi6OjIkiVLKF++vNWRRERELHXmzBk6d+5McHAwI0aMYPDgwTg6OlodSyTZevz4MQMHDmTSpEk0b96cadOmkTlzZqtjici/oMJO/rOzZ8/SvHlzzp8/z+zZs2nSpInVkUQsc/nyZVq2bMmRI0f44Ycf8PX1tTqSiIiIJWbNmkXPnj3JnDkzs2bNolKlSlZHEkkxli5dSrdu3UiVKhWBgYHUrl3b6kgi8g/pklj5TzZt2oSXlxePHz9m165dKuskxcuVKxdbtmyhVatWdOjQgeHDhxMbG2t1LBERkRcmNDQUPz8/OnfuTPPmzTl48KDKOpEXrHnz5hw6dIjixYtTt25dBg8eTGRkpNWxROQfUGEn/9rkyZOpV68eZcqUYffu3ZQoUcLqSCKJgpubGzNnzuSTTz7h448/pm3btjx8+NDqWCIiIs/dnj17KFeuHIsWLSIwMJCZM2fi4eFhdSyRFClnzpysXbuWMWPG8Pnnn1O1alVOnTpldSwReUYq7OQfi4qKok+fPvTq1YuePXuyevVqMmXKZHUskUTFZrMxePBglixZwrp166hSpQrnzp2zOpaIiMhzERMTwyeffELVqlXJnDkzBw8epEuXLlbHEknxHBwcGDRoEDt27ODevXuUK1cO0zS1IIVIEqDCTv6R27dv06BBA77//nu+++47vv76a5ydna2OJZJoNWvWjF27dhEWFoaXlxdbtmyxOpKIiEiCunz5MvXq1WPo0KEMGjSIbdu2UahQIatjichveHl5sX//ftq2bYu/vz+dO3fm/v37VscSkb+gRSfkmR05coTmzZtz//59Fi5cSM2aNa2OJJJk3L59m7Zt27Jt2za++eYbevToYXUkERGR/2zx4sV0794dNzc3AgMD8fHxsTqSiPyNOXPm8Prrr5MxY0ZmzZpF5cqVrY4kIn9AM+zkmSxfvpzKlSvj7u5OcHCwyjqRfyhTpkysXbuWHj168Nprr9G3b1+io6OtjiUiIvKvPHr0iJ49e9KqVStq1KhBSEiIyjqRJKJDhw6EhISQM2dOqlevzqhRo4iJibE6loj8jgo7+Ut2u51PP/2U5s2bU7t2bbZv306BAgWsjiWSJDk7O/PNN9/wzTffMHnyZBo2bMidO3esjiUiIvKPhISEUKFCBWbMmMHkyZP58ccfdT9jkSQmf/78bN68maFDh/Lhhx/i4+PDhQsXrI4lIr+hwk7+1OPHj+natSuDBw9myJAh/Pjjj6RNm9bqWCJJXq9evVi7di0HDhzA29ubY8eOWR1JRETkb9ntdiZMmEDFihVxdnZm7969vP7669hsNqujici/4OTkxIgRI9i0aRPnzp2jTJkyLFiwwOpYIvI/KuzkD125coWaNWuycOFC5syZw0cffYSDg/5zEUkoPj4+BAcHkypVKry9vVm5cqXVkURERP7UjRs3aNq0KW+99Ra9evVi9+7dlChRwupYIpIAqlevTkhICHXr1qVdu3b06NGDsLAwq2OJpHhqYOQpwcHBeHl5ceXKFbZt24avr6/VkUSSpYIFC7Jjxw5q1apF06ZN+eyzz9A6QCIiktisWbMGT09PgoODWbFiBV999RWurq5WxxKRBJQhQwbmzZvH1KlTmTVrFuXLl2f//v1WxxJJ0VTYSTyzZs2ievXq5MmTh+DgYF5++WWrI4kkax4eHixevJjBgwczaNAgDMMgPDzc6lgiIiJERETQv39/GjZsSJkyZTh06BCNGze2OpaIPCc2m43u3buzf/9+3N3dqVSpEl988QWxsbFWRxNJkVTYCQCxsbG89957dO7cGV9fXzZt2kSOHDmsjiWSIjg4ODB69GiCgoKYP38+tWrV4urVq1bHEhGRFOzEiRNUrlyZr7/+ms8//5xVq1aRPXt2q2OJyAtQtGhRdu7cyZtvvkn//v1p1KgR165dszqWSIpjs+v6qxQvNDSULl26sHz5csaOHUv//v1182ARiwQHB9OyZUtsNhuLFy+mQoUKVkcSEZEUxG63M23aNN566y3y5MnD7NmzKVeunNWxRMQia9euxc/Pj9jYWAICAjTLVuQF0gy7FO7MmTNUqVKFzZs3s3z5cgYMGKCyTsRCXl5eBAcHkytXLqpXr87cuXOtjiQiIinE3bt3ad++PT169KBTp07s27dPZZ1ICle/fn0OHTqEl5cXTZo0oV+/frp9i8gLosIuBdu0aRMVK1YkIiKCXbt26dMSkUQiZ86cbNq0iTZt2tChQweGDRume4eIiMhztXXrVsqUKcP69euZP38+U6ZMwd3d3epYIpIIZM2aleXLlzNhwgQmT56Mt7c3R48etTqWSLKnwi6F+vbbb6lXrx7lypVj9+7dFC9e3OpIIvIbbm5uBAYG8umnnzJ69GjatGnDw4cPrY4lIiLJTHR0NO+//z61atUif/78hISE0LZtW6tjiUgiY7PZ6Nu3L3v27CEqKooKFSrw3XffoTtsiTw/KuxSmKioKHr37k3v3r3p1asXq1atImPGjFbHEpE/YLPZGDRoEEuXLmXDhg1UqVKFs2fPWh1LRESSibNnz1KjRg1Gjx7Nhx9+yMaNG8mbN6/VsUQkEfP09GTv3r0YhkHPnj1p3bo1t2/ftjqWSLKkRSdSkNu3b9OuXTu2bdvGpEmT6NGjh9WRROQZHTlyhObNmxMaGsqCBQuoWbOm1ZFERCQJmz17Nj179iRjxowEBQVRpUoVqyOJSBKzePFiunfvHndliI+Pj9WRRJIVzbBLIY4cOYKXlxeHDx9m/fr1KutEkpiSJUuyZ88eSpcuTd26dfn++++tjiQiIknQgwcP8Pf3p1OnTjRu3JiDBw+qrBORf6Vly5YcOnSIIkWKUKdOHYYMGcL/sXfXcVXdfxzHX9INAhZ2FyFiIdZsZ9cUZ8zZOefs3uzuRlHAmIrYHRjYooCKjQF20X3v7w+Uyc85CzzE5/l48Jj38j3nvDm7HM793G/Ex8crHUuITEN62GViO3bsYNOmTbRr144OHTpQuHBhduzYQaFChZSOJoT4SvHx8QwaNIglS5bQv39/KlasiI+PD8uXL1c6mhBCiHRq/fr1lCtXjsjISJydnXn69CmLFy+mU6dOZMuWTel4QogMLjExkZkzZzJ27FjKly/P+vXrefToEZGRkTRs2FDpeEJkWFKwy6TUajVly5YlW7ZsBAYG0rx5c9zd3TEyMlI6mhAiFSxbtowBAwZQsmRJrl69yuXLl7Gzs1M6lhBCiHTm6tWr2NjY0KZNG7y8vChXrhwbNmygWLFiSkcTQmQy586dw9nZmefPn1OnTh2OHDnC3bt3sbCwUDqaEBmSDInNpLZv305gYCDXrl3DwcGBtm3bSrFOiEykbt261K9fn6CgILJly8b48eOVjiSEECIdGjp0KLq6umzevJnOnTtz8uRJKdYJIdJEpUqVuHDhAjVq1GDbtm1ERUUxceJEpWMJkWFJwS6TGjZsWPK/w8PDiYuLUzCNECK1qdVqQkNDSUhIQK1Ws337dmJiYpSOJYQQIh05ePAge/fuTf774ObmRmhoqMKphBCZ2e3bt9m9ezcACQkJLFiwgEePHimcSoiMSUvpACJtzJo1i5CQENq2bYulpaXScYQQqax48eKcPHmS2NhYTpw4wdmzZ9HT01M6lhBCiHQkT548VKxYkUaNGlGhQgXs7OzImTOn0rGEEJlYxYoVuXHjBleuXOHkyZOcPn0aAwMDpWMJkSHJHHZCCCGEEEIIIYQQQqQjmbKH3enTp1myZAnPnz9XOkqGZ2lpSc+ePalRo4bSUYTIdF6/fs3YsWO5e/cuKlWi0nEyNH19A2rXrk3//v1lxUMhsrDIyEjGjh3LzZs3SIhPUDpOhqanr4+joyPDhg2T66oQWVhsbCzjx4/n6tUrxMfFKx0nQ9PR1aF8eQfGjBmDllamLMWIVJbpetidOXOGevXqYZU7J9alS8kNxjdQq9UE3rzFvQfB7Nu3T4p2QqSi0NBQatf+gbu3b1Otgg3a8kf7m7wODcf77CXGjBkjkxsLkUVFR0fTsEEDLl44Tw27YuhoaSodKUOLiI7l8MXr9O3bl8WLFysdRwihgPj4eFq2aMGhgweoaZ0fPbmufpOouESOXrlPu5/a4bFundQqxCdluoLdL7/8gs+J41w4th9DQxkr/62io6NxrNMEa7tybNy4Uek4QmQa27Zto2XLlhzfuJgKNqWUjpMpDJ++BJfNe4iIiEBDQ9ZUEiKrOXbsGLVq1cJzUi/qVCitdJxMYeb6A0x220NkZKTMQSVEFhQQEICtrS0r+jaklWNJpeNkCqsP+TFsrTchISFYWVkpHUekc5muS8eLFy8oXbL4Vxfr4uPjGTZ2IomqROLjE2hUrzav34SydcduLCzMKVKwAGOG/Z6qmWNjY9HV1f1kux179uOydh0N6v5Avx5deRj8iAlTZ5GQmECuHDmYMXFsctvo6GgGDB2Dnp4upUoUo3/PX78qm76+PmVLl5ThxUKkshcvXgDgYP1lNz83gx5Sv8sgfHe4Ym5m8p9tL165QdDDR7Rp9EOK53uOms6c0QMxMtT/7OPGxsWhq6PzyXZ/LXTlyfNXPHv5mvnjfuPZy9cs37CdmJg47EoX4/df27HY3ZPrdx/w4NFT7EoX469B3ZO3r96uL+XKFMfczIQ/f+v22fkAKtiUYqGbJ1FRURgZGX3RtkKIjO/ddbV8yQKpts8TfrcIvP+Ens2qA9B5kituY7oyduV2JvZonvz4S8TFJ6Cj/d+34Gq1mj8WbUalUqOro82Uni0IuBvC9HX7MTHUo3KZwvza2Cm5fZ9Z69DS1ERLU4OxvzTG3MTwy3/Yf1G+RH4g6dwWKJB651UIkTG8u67aF8n11fuIT0hk/IaTJKpUxCeqqGtXiNDIWHacv4WFkT4Fc5oytGVlNhy/xo7zt8hvYUJETByLetZn5razNKtYjNL5P76IYlxC4mf1qB7h5k1kTBzRcYks7V2fBJWa6Z5niI6Lp3zR3PzkVIqha46iUqvR09Zi4s/V0Xz7AfCD52F0nrcTh2K5qVgsD+2rl/nq81Hu7bl8/vy5FOzEJ2W6gh3wTV1LV7lvoF7tmvxYvw4AcXFxbNiyjZ5dO9G4QV3adekJQLsuPfl77QqOnTzFlcAbWJcuyfylLtRwcuRO0D0WzpxM38Ej0NPVpVjRwvTt/kuK48TExLBr3yEOeR+ndMkS/Nan+/9H+UCzHxtgamLMlcAbAOTPZ8WqxXOS86hUquReJV679tLsx/o0+7EBHbv3o1fXTmhra3/VOZGuukKknS/9/VrjuYfpw/qybvsBBnRpw8K1W7j78BHaWlpM/qMnPUfPIIe5GQ7WJcmT04Lnr0I5cd6PNZ57sMxuSpfWPxJw8y5zVm+kRb0azF39d3L7dk3qpDhWWEQk2w6e4JRvADUrlcO5ab1P5hs3IOmN6/ZDJzl29jIdmtVj2cShALQbOA6Afp1aAzBo4nw6t2yYYnsDfT0SEhOxyvnlq1vLtUoIAZCNtL8W3H/6iuv3n3Dr4VNmrj9Awyplmfv3IXKbm9CmlsMHRcOHz17j6X2Rmw+f0aNpNexL/Hfx601EFLHxCSwe3AGXnSfxvnSD4Odv6NG0GrXsS9B75roUBTs9HW0SVSoM9HQw0v/0h8CfS66rQgj4tmuBu/dVatkUoH65wkBSgc3z1A1+qW1DA/sidF2wO7ntu+d+X3WYyNi4j+4z+EUYW8/c5NajV/xa1+6zCorTOtcCYMy644RHx7H51HVi4xNIVKnJk92QN5GxxCUksqBHPVYf8uPYlYfUti2YvL2BrjbRsQnkt/zvD8w/5Xv8jRKZR6Ys2H2LK9eu07pZ4+THOm97lKxyW8/M+Utwbtvyo9s6VnJgUN8edO41gLi4OJ48fcavnZypU7NainYTp8/B/+o1unf+mcWzp6KpmfSJwLLVbty8dSe5XdEihejX49Of2nqf8KFUieIphoA9DH5E/Tq1AMhhacHLV6/JnSvnp0+AECLdiouL58Gjp0wZ0ou2/ccyoEsb7j96QvmyJWhQozIxcXFEREXTqWUDalQsxynfAACCnzwjf55cdGhWjxKF82NTogiDf22PGnWK9u/rN34OsXFxdG3zI51aNEi+UZu+fB0vXr1JblfBptQHhb7wyCg89x1l0YTByc9t3HWIuk4Vkx9HREbz5MUrihXMl2LbvatnoaGhQd9xswl6+IjC+eWTRyGEsryOXSLw3mMAomJik58vVTA3xfPnYmiH+vgE3MHMSJ+falegXPH8yW3ehEfRdepa7Ivn5+f6lSmaNwcAoZHRTHXfm+I4bX9wwKFk0pvD7MaGlC1sxYhlWwmPikFHW4ua9iXoO3s98zcfoWfz6im2nd2/DRoaGvx9+AKbjl6kY/3KaXIuhBDiSwUGv6BZpWLJj9/1hnP3vsrCXRdpXfWf0Sbu3lfZfymIyNg4jPQ+HNnxJjKG7ov2Uq5wTpxrlKFo7goAhEXFMn3rmRRtWzuWpHzR3MmPQ16GM2vbuaR96+tw89Er6toVpkG5wnSat5N1g5tRJr8loz2OER4dl6LXXn5LY/aM+4m4hEQ6ztmJU+mU969CpBWZ5Of/lC1dkouX/JIfx8UlVfa7de7Avq3rOXnqDCqVKvnNa2RUdHLbd3N7aGlpERcXzzqXxWhqatC514AUx+jwUyvK2VjjtWsva9b9zZvQ0ORjxcTGJn/FfcYqPAcOe7Pv0FEmjBqS4vl8efMQHPIIgOcvXmJhnv1LT4UQIp3ZfugEL169YcCfc3ny/CUnL/gzY3hfShYtSP8Jc4iKjmHVtBGEhkXQb8Kc5O2cm9ajY4v6uPy9k91HT5HtbXHf2NDgX9sD9Pm5BVa5LNmw8xCb9xwlKjoGSBoaG/PeV3xCylUYX70J47e/5jF1aG9MjJKGZLl77ePZi9f0aNc0ud2GXYf46cfaH/yM7z54yGFhRsR711chhFBKy5r2zB34E3MH/oSBXsrea+/6STjZFOWP9vU56nuDFTtOJH/fxFCPAa1/IDw6lpU7T3Ds8k1UKhVqtZrYuIQUX4mJqhT77tuyFtN6t6JQbkuK58vJYs+jLB/ake3T+rL+4LkUbd9dO3NmNyYiKibVz4EQQnyt0vksuBz0LPlxXEIiAJ1qlWXL8JacvhGCSqVOfm7Or3WwL5yLszcffbAvE31d+v1YnoiYeFYf8uf41YeoVGrUaoiJT0jxlahKOVV/Xgtj5narg3WBHJy/9Zi85saYG+mhoZENLc2ka2jvhvZM7liTgjlMKZbnn/fP797762hpJrcV4nuQHnb/p1snZ4aNm8ieg4dRqdQ0eNtLDUBPT496tWuxYYsXttZlmDp7AQ+CQ7Au8+GE8Wq1msGjJmBkaEixIoVTfK9o4UKMHjoIgNPnLrLZayc9funIwN7/PSz25OmzzFuyktdvQslhYYGDvS2/9PmNFk0a0e+PkcycOI7VHhuoYF+Olk1+ZOCwMRw+doJKFey/ejisECL92Lz3KFsWT8bIUJ+Qp8/5c/5qTvkG8Do0HGNDAxISExk7xwU9XW1KFv6nh8fW/cc4e/kqL9+EUsAqF1XKlWH07BW0b1KHjbsOf9AewLpEEaxLFEGlUuF99hK7j56i7Y+1k4e8fkzHwX9hZKjPtGUetKxfAx1tbf5atIaGNSozdOpiZo7sB8DOQyfxXDIZgCfPXzF39UZG9O7EkKmLMNDXQ0dbG5uSRVP5DAohROrKmd2Y8at2UKFUIU763yYqJo6WNcolf19DQ4PaDqWo7VCKqJg4dp3y58L1+1QqU5i5A3/6z31Pcd/LizfhGBvo4WhdhLiEBMav2oGRvi42RfIC0G3qWlaN7MKo5V7ExifwKiySOQPapuWPLIQQX6RjLWvGrz/BwctBqNRqatsWSv6eno4WtW0KsuV00pRPa44EcDTgAc/DonCuUYZjVx+m2JeGRjZ+sCnIDzYFiYqNZ/eFO1y884SKxfMwu2vKER/vexMZw+TNp9DIlo2ImHi617OjhJU5EzaexPPUDWqWTboPnuZ5mhdh0Rjr61ClZF52X7hNQqKanGYGbDwRSEKiikYORVL/JAnxEZluldgmTZqgqU7A02OV0lEyjY7d+/H8TTiHDx9WOooQmYaLiws9evQg6qr8XqWWLXuP0nnIJMLDw2XRCSGyIE9PT9q0acO9zVMwM5YVTVPDkYvXaTV6Gffv35dFJ4TIgo4ePUrt2rW5MPsXCuU0VTpOpnDp7lPqjd/I5cuXsbOzUzqOSOekP6cQQgghhBBCCCGEEOmIFOyEEEIIIYQQQgghhEhHZA67z/Ru5PDHlrRevNIV69IlqVmt6mftT6VSJU8Q/P6//6vd5/Dcvov9h72JiY1l5sRx5MqZtBrZw+BHTJg6i4TEBHLlyMGMiWPZsm0X2/fsQ09Xl/69ulG0UEGGjv2L6JgYDA0MWDx76mcfVwiRPnzqWrV03TbKFi9EjUrlPmt/aXWt8tp/jAM+54mNjWPq0N7ksjRP/t6fC1wJi4gkMTGReWN/Y/+Js6zZshdtbU3a/libprWdgKQVa/0Cb7F+3oTPPq4QQnyNT11bV+w4QemCualuV/yz9pdW19btJy5z6MJ1YuPimdSzBTmzGwMQ/Pw1U9z2kpCoImd2Yyb1aM5U973cfPgUMyMD+rWqRW4LU8as2EZ0XDyGejrMGfDfc+wJIcS3+NR11eWgH6XyWVDtM1dkVanUaGhk++Df/9Xuc+w4d4vD/veJjU/grw7VyWmatKhayMtwpnmeJkGlJoeJAX91qM6ei3dwO3qFunaF6F4vabjrJp/rXLz9GC1NDca3r/bZxxUCMnnB7m/P7Rw5fhJDAwPGjRjMuk1buX7zNiqVilw5LKlZzZErgTfo16Mrv/b7nQXTJ3HM5zQnTp3h+YtXTPtzNNeu32DOouXUqFqFNi2bMmvBUjQ0smGVOzfDf+9P38EjMDUx5mrgDaxLl/wgw9JVa7l1+y5vwsIYOXgAGzZ7ERoWTumSxTl17gJFCxWkeNEihEdEcPGyPxGRkUwYOYQTp85y9IQPdtZl+b1fz8/+mTd77WTjmuX4+gWw2n0DI/8YCED+fFasWpy0CmS7Lj1RqVR4bt+F24qFxMXF0/v3YbivWMTSudMB+LXf7198kyiE+Dqb9xzh6JlLGOrrMbpfFzbsPMSNu/dRqdXktMhOjYp2XL11jz4/t6DnqOnMGT2Q4+cv43PBn+evQ5n8R08Cb99j3ppNVK9gR+uGtZizaiMaGhrkyWnB0B4dGPDnXEyNDLl6+x5lixf6IMPyDdu5fS+Y0PAIhvX6mY27DhMWHkmpogU5c+kKhfNbUbxQPsIjo/C9epPIqGjG9v+Fkxf8OXbuMrYlizLwl8+f6HzLPm/WzR3PpWs3WeO5l+G9fgYg+MlzoqKjmT2qPwvWbOa07xVO+V7hr9+7YZndjD8XrKZpbSeOn7tMwby58Au8lVr/G4QQmYynty/HLt/EQE+HER0bsunIRW4+eIpKrSKHmTHVbIsReP8JPZtVp8+sdczs14aT/rc5FXCHF6ER/NWtGYH3H7PI8yhONsVoUaMcCzYfIZtGNvKYmzC4fT1+X7AJE0M9Au89oXTB3B9kcNl5ktshzwiNiGaIc302HblAWFQMpQrk5szVuxTOY0mxfDmIiIrl0q2HREbHMqpzI3wC7nDc7xY2RfLSv/UPn/0zbz12ibVjunL51kPc9p1miHN9APLlyM6SPzoA0HmSKyqVCi1NTbS1tNDQyIalmRFG+rrM+60dAH1mrUOlUn30OEKIrGnr6Rscv/YQQ11thrWswuZT17kZ8gqVWk0OUwOcSufjevBLutezo//yA0zrUgufwGBOX3/Ey/AoxrevxvWQVyzec5GqpfLRonJxFu66iIZGNnKbGTKoWUX+cD2Mib4ugcEvKZXP4oMMqw/5cefJG0IjY/m9eUW2nLpBWFQsJfNacO7mIwrlMqVo7uxExMRxOegpkTHxjGjtyOnrIZy49hDrgjno26j8Z//M287cZPXAxvjde4aH91UGN68EJK06u7Bn0jW264LdqFRqfnQoiomBLteDXwLwIiwKz1PXKZYnO6YGuuhoaabC/wWRlWTqgt3de/exLlOK5o0bYmZqivcJHza7uXD0uA8nTp351210tLVRq9Wo1Cp27z9E4YL5qVLRgT8G9mHkhMno6+lhZGjAlcDrXLl2nRwWFvw5eihjJ03/YF8REZG4b9hMw7o/oK2txcXL/gC0atYYpyoVOXXuAr/83I68Vnlo3bEbnh6ruH03iOWr3ShTqiT1a9ekQ9tWKfY5dMxfJCYmJj9uUKcWDer+cyP37hOKwgXz8zDkw6WwvU/4UKpEcTQ0NBg8oDe/DR9LTksLwsMjAPC7co25i5djZmoixTohvpO7Dx9jXaIwTWs7YWZixLFzl9g4/0+8z1zi5EX/f91GR1sbNaBWqdh77AyF8uamsl1Zfv+1HWNmr0BfTxdDA32u3brH1VtBWGY3Y/zAroyf/+GCPBGR0azbfoD61Suhra2F75WbALSsXwPH8tacuXSFzq0akjdXDn4aMJZNCydy534IK//eSemiBanrVIH2Teqm2OeIGUtJTPznzV69ahWpX71S8uN316pCefMQ/ORZ8vMhT56RL3dOAArmS/pe87rV6TtuNgCTh/TiTVgEOw6fZNbI/uw4dPIrzrgQIisIevyCMoXy0LiqLWZGBhy/fAuPcb9y7PJNTgXc+ddtdLQ0394Hqtl37ioFc5lTsXQhBratzfhVO9DT1cZQT4fA+0+4du8xFqZGjOnyIxPX7P5gXxHRsWw4dI66FUqjranJpZsPAGhezY4qZYtw5updOjaojJWlGR3+dGH9+O7cffScVbt8KFUwN3UcSvFT7Qop9jl6xTYS3yuk1a1QmroVSic/Tr625rYg5PmbDzId97tFify50NDQ4I/2ddHQ0OD0lbss8TrGqE6NCLgbwiLPo5ga6st9oBDiA/eehVImnyU/OhTB1FCXE9cesva3Jhy/+pDTN0L+dRsdLU3UqFGp4cDlIArkMKVisTwMaOzAnxtPoqejhaGeNoHBLwl8+AJLYwNGtnFk8uZTH+wrIiaOjScCqWNXCC1NDS4HJd1DNqtUnMolrDh38xE/1yhLHnMjOs3difvvTbn79A2uh/0pldeCH2wK0tapVIp9jl1/HJXqn3U4a9sWpM57K9m+u64WzGFCyKvwDzKduPaQElbm/9pr796zUPR0tJjcsSZL9vpy/OpDjPV1Pn2ihXgrUxfsRv4xEP+r1xg/ZSa/9elBNlL+Emlr6xAfnwBAVGQUkNQjbuu61fztuZ0Xr14BYGKSNJxApVLxc7vW2FmXASDgWiC6ukm/cHq6uh8cX61Wk88qD+NG/JH83F/TZmP6dn8ApiYmAMm/4O93CX73vffFxMamKNglvPfvd8cEuP8whHxWeVJ878Bhb44cP8nUCaMBqFi+HBXLl+NBcAhTZs0HwM66DGuWzqf/kFHcfxhMwfyf1wVZCPH1hvf6mYAbd/hroSv9O7f54Fqlo61NQkLStSoyOgZI6hG3edFENu85wovXYQCYGCV10Vep1Tg3rYdtqaIAXLl5F10dbQD0dD68SVCjJm+uHIzp1yX5uUmL12JibJj82PTtqqvv3sC9f616d9z3xcTGpXhT+bFr1YNHT8mbK0fy83lz5SD4yTEAHj56SvmyJZi1cj27XWaiqalB5yGT6NiiAS9ehTLgz7n4Xb/N8XOXP3uIrxAi6xjiXJ8rdx8x2W0PfVvW5P9HXeloaxGfkHRtioqJA2DlzpNsmNAdT29fXoZFAmBiqA8kDaNqV6cCNkXyAnA16BG62km30u/++z61Wo2VpRkjOzVKfm6q+97k/b2/b41sb6+t713/32/3Tmxcwv9dW1P2gku+tj57hZWlWYrvHb4QyLHLt/izW9OkY769nufMbkxEVNLfFpsieVk+tCN/LNrMg6evPji+ECJrG9y8ElcfPGeq5xl6N7Tn/0tUOpoa/1xXY+MBWHXIH4/fm7L19A1eRSRda0wMkt47q9RqfnIqhXXBpHvBaw9fJPdC09X+sDeaWg1W5kYMb1Ul+bnpW89g8l4RzNgg6d/J76/f297E4MP74Ni4RBLVn76uPnwRjlV24xTfO+J/n+NXHzK+vdMH+4WkrBbGSddycyM9ImLipGAnvkimLtgtd3Xn9p0gEhISyGlpQY1qjvw+Yhxx8fHkymFJOZuyLFnpyrwlK7lz7z4ApUsWZ8qs+dwJuk/5cjYp9tev56+M/msqVrlzoa2tzaSxI3B138j8pS6cOX+Rao6VUrQ3NjbCsVIFBg4bjYaGBj+1bP7RrPVr1+K34WN4ExrG2GG/43Pm/L+2Wzhz8n/+zK2bN6Hv4BFERkUx/c8xnPe9zMnT52j2Y31+6fMbLZo0ot8fI5k5cRw+Z86xfc9+wsLDmTxuJLfvBjF/qUvyRSl/XqtPnmMhxLdb+fdO7twPJiFRRQ4LM2pUsmPI1EXExSeQ0yI7tqWKsnSdFwvXbuHuw6Ses6WLFmTaMg/uPnyEfZkSKfbXp0MLxs1bRZ6cFmhpafLXoO6s9dzLIjdPzvpdw8kh5bXN2NCAKvZl+H3SAjQ0NGjb6OPDr+o5VWTw5IWEhkcwqk9nTvkG/Gu7eWN/+8+fuVWDmgz4cy5R0TFM/qMXFwKuc+piAAN/aYu+nh7Dpy8hJjaefp1a8fDxM/qMm4WmhgY/OJanUc0qNKqZdKPWYdAEKdYJIf7V6t0+3Al5TmLiP0Nghy/dSnxCAjnMjLEpkpcV24+zeKs3QY+Thi+VKpCLmesPEPT4BeWK50+xv57Na/CX6y5ym5ugraXJuK5NcN9/hiVe3py/fg9H6yIp2hsb6FGpTGGGLt5CtmzZaF3r40Ow6lYoxdAlnoRGRDOiYwNOX7n7r+1m9W/znz9zixrl+H3BJiJj4pjYvRm+Nx5w6sodGjva0GvmOpo62TJ44WYm9WzOsm3HCXn+mpehkUz4tSl3Hz1nydZjqEm6D8yXw4zbwc/+83hCiKzF9bA/d5++ISFRhaWJPk6l8zHK/RhxCYnkMDXAumAOVh70Y+leX4KehQJQ0sqc2dvOce/ZG+wK50qxvx717Ji46RS5sxuiranBmJ+cWHfsKsv2XeLCrcdUKZk3RXtjfR0qFrdi+NqjaGTLRssqKe+B31fbpiAj3LwJjYplaMvKnL3x4egzgBm//Pe0A80qF+cP18NExSYwoX01fO8+4cyNRzQqX4S+y/bTuGJRhqw5wl/ONfC//4yle30JjYzFwlifllVKkNPUgDHrjvMmIobZv9bm2sOXn3OqhQAgm/pddSaTaNKkCZrqBDw9Phz29c6Va9fZumN3ip5v4uM6du/H8zfhHD58WOkoQmQaLi4u9OjRg6irH/+9unorCK8Dx1P0fBMft2XvUToPmUR4eDhGb3sECiGyDk9PT9q0acO9zVMwMzb4aLtr9x6z/cTlFD3fxL87cvE6rUYv4/79+xQoUEDpOEKI7+zo0aPUrl2bC7N/oVBO04+2C3z4gh3nb6fo+Sb+3aW7T6k3fiOXL1/Gzs5O6TgincvUPew+xrpMKazLlPp0wy/06PETXNauS37sVKUSdWpVT/XjCCGyhrLFC1O2eOFU3++jZy9Yvfmf+ZaqlremtqNDqh9HCCHSozKF8lCmUJ5PN/xCj1+GsmbPP3MuOZYtQq3yHy5IJoQQmU3p/JaUzm+Z6vt9/DoCt6NXkh9XKWFFTWv58EBkHVmyYJdWrPLk/s9ee+269OTvtStS9ZgREZHUbtqG8SP+oHGDuvw2fAwREVHExMSwZtl8tLW1U/V4QoiMzyqn5X/22uswaALr501IteP9veswx85d5vmrN/T5uQW1HR0YNHE+iSoV5y5fY/KQXtR1qvDpHQkhRDqWx8L0o732Ok9yxW1M11Q71uVbD5m+bj8mhnpULlOYXxs7sXz7cW49fEZUbByz+7dBX1fmSRJCZGx5shv9Z6+9rgt24zqwcaodb8Pxa2w/e5O8lsa0r1aGisXzsPLAZW49ek10XDwzfqmNvo6UUMT3I6+2//C353aOHD+JoYEB40YMZvf+Q/gFXCMsPJz50yey8e33jQwNsTDPjraWFud9L+O+chHzl6zkTWgYOSwtMDMzpU+3f94cT5k1n5evXvMmNIwZE8cyb8kKIiIisbQwZ/TQQV+Uccrs+bRr2Sz58fzpkwAYMvpPwsIjsDDPnirnQgiRfm3ec4SjZy5hqK/H6H5d2HvsNP7X7xAWEcWc0f3ZtPsI3mcvYWigj7mpCdraWlwIuM6aGaNY6OZJaFgEluZmmJkY0cv5n7k2py3z4NWbMN6ERzB1aC8WrN1CZFQ0FmamjOzT6bPztWtSh3ZN6vA6NJyRs5ZR29EheY675r1GUNvx4/M6CSGEEjy9fTl2+SYGejqM6NiQ/WevEXA3hPCoGGb0ac0W74scu3wLI30dzI0N0dLSxPfGA1aO6MSSrd6ERkZjaWqEmZEB3ZtWS97vzPUHeBUeSWhENJN6NGfxVm8iomOxMDFk2M8NPjuf3+1gejStRi37EvSeuY5ODapw4fp9Vg7vxI6Tfuz08f9ghVkhhFDa1tM3OH7tIYa62gxrWYX9l4O4cv854dFxTOtck62nbyZ/39xIDy1NDXzvPmVF34Ys3XeJsKikueHMDHX5te4/w0lnbzvHq4howqJi+dO5Okv3XSIyJh5zYz2GtKj82fk0NLKhp6NFQoIKK3Mj4hMSuXD7Ccv7NmTX+dvsOn/7g1VmhUhLUrD7D3fv3ce6TCmaN26ImakpGhoaaGtr8ez5C06fuwBAgzq16NC2FT80bs3R3Z6sWOPB+YuXAWjVvDHVqlTCuWvv5IJd4I1bHPM5jVPliiQkJhBw9RoPQx7RuH5d6tepmeL4m7bu4Mz5i8mPzbObMWbY78mPvXbuwbFSBV69fpP83MPgR0yeNY/IyEiM/2XlRiFE5nP34WOsSxSmaW0nzEyM0MimgbaWFs9evubMpasA1KtWkfZN6lKv8yAOus3DZdNOLgRcB6Bl/RpUdbCh4+C/kgt21+/c58R5PxzLW5OQmMiVG3cJefKcRjWrfNAbbsveo5y9fC35cXZTY0b17fxBzilL3OjZ/p+C4InzfjjaWyevVCiEEOlF0OMXlCmUh8ZVbTEzMkBDIxvamho8ex3O2cAgIGmhiJ9qV6DRkAXsnTUQ190++N54AEDzauVwtC7CL5PXJBfsbjx4wkn/21QpW5iERBVXgh4R/Pw1DSuXpbZDyjeAW4/5ci7wXvLj7MYGDP+5YfLjmvYl6Dt7PfM3H6Fn8+q8DI3A3CTpvq9gbguOXLyelqdHCCG+yr1noZTJZ8mPDkUwNdRFIxtoa2rwPCyKc7ceA0mLRbR1KkWTSZvZNaYta44E4HvnCQBNKxajSsm8dFu4J7lgdzPkFT7Xg6lcwopElZqrD18Q8jKc+vaFqW1TMMXxvc7c5MLtx8mPzQz1GNryn4Je26qlaFetNA9fhDF96xlGta2avMprgRwmHA24n6bnR4j/JwW7/zDyj4H4X73G+Ckz+a1PDzZt3YHXeldmzFtEZFQ0AKYmJgDktLQAQFdHh9i4OADi45KWso6Lj0/ep0qlwrp0qRRDZ52qVOLU2fP83K0v2zasQUsr6X9LfEI8MbGxye3e7fedYz6niYuL5+btO+jr6VG3VnXy57Ni2bwZzFqwhDPnL1LDyTG1T4sQIp0Z3utnAm7c4a+FrvTv3IbNe4+yZfEkZq3cQGR0DAAmbwv4OczNANDV1iY2+RqV8Pa/712r1GrKFi+cYuhs1fI2nL50hc5DJuG5eDJaWpoAxCckEPPe9Sn2vf1A0nVvxIxlNK3jRPmy/6zmtcZzDxMH90it0yCEEKlmiHN9rtx9xGS3PfRtWRNPb182/tmDuX8fIiom6XpnYpj0Ji6HmTEAOtpaxL67niak/C+ASqWmTOE8KYbNOpYtwpmrd+k2dS0b/+yBlua766qK2Lh/to2LT0yRb7HnUZYP7Uj+nNn5+a9V1KtQmldhkQA8fPYKK0uz1DwdQgiRKgY3r8TVB8+Z6nmG3g3t8Tpzk3WDmzF/53miYpPuH00Mkobz5zBJWjxIV0uT2ISka2Bcgurtf/+5JqrUakrns0gxdLZKCSvO3npMj8V7WTe4GVqaSR8OxyeqiIl/79qakPLaqqGRDQBzI32i4xIwN9LjZXjS+/7gF+HkMTdOvZMhxGeQgt1/WO7qzu07QSQkJJDT0oJcOXO8LYT5Urb0p7vCbtm+i22791KretXk58qWLom2thZ/jJpAbFwcv/Xpzso1SQtVWOXJnVysA/j5p9b8/FPrj+5/3rSJAKxdvwlLC3OioqP5Y/SfaGhkIzwikr7dU2+uFCFE+rXy753cuR9MQqKKHBZm5LI0Z86qjZz1u0aZ4oU+uf3WA8fYcfgktSrbJz9XplghtLU0GTZtCbFx8Qzo0ppVm3YBYJXLMrlYB+DctB7OTet9dP/Tl6/j9KUrRMfGEnjnPr2cm/Ps5WviExKwypn6ExQLIcS3Wr3bhzshz0lMVJHDzJhc5ibM33yYc4H3KP0ZC1ZsP3GZXacCqGFXPPm50oXyoK2pycjlXsTFJ9C3ZS1c3y5SkcfCLLlYB9CuTgXa1fn4kNYmTraMX7UDI31dbIrkRUdbi/IlCzBsiScR0bHM6tfm6394IYRII66H/bn79A0JiSosTfTJaWrIgl0XOH/7CaXyWXxy+x3nbrHn4h2ql8mf/FypfBZoa2oy2uMYcQmJ9G5oz9ojSQtV5M5ulFysA/jJqRQ//ceQ1jVHAgi4/4w3EbH0+7E8OlqalC+ai5Fu3kTExDG9yw/f8NML8eWyqdVqtdIhUlOTJk3QVCfg6bFK0Rx/TZtNq2aN02Q12u+tY/d+PH8TzuHDh5WOIkSm4eLiQo8ePYi6quzv1aTFa2lZv0aarEb7vW3Ze5TOQyYRHh6OkZGR0nGEEN+Zp6cnbdq04d7mKZgZGyiWY6r7XppXL5cmK9F+b0cuXqfV6GXcv3+fAgVkZUYhspqjR49Su3ZtLsz+hUI5TRXNMn3rGZpVLJYmq9F+T5fuPqXe+I1cvnwZOzu7T28gsjTpYZdG/mu1WCGESC/+a7VYIYQQX+5jK8UKIYT4ev+1WqwQmZUU7L5Buy49+XvtijTZd+9BwzAxNmbGxLHJz0VHR/PntNlERUdTsbw9Hdu1pv+QUahUKvR0dZk1eTxxcXEp2nRqL0MihBDQYdAE1s+bkKr7vB/yhJ8GjKOSXWkq25WhY4uUKxxGREZT/5ffGdOvCz/WcmTpOi9u3H1AVEws88f+xsUrN1i2fhtmJka0alCT2o4OqZpPCCHSUudJrriNSf3pR5Z4eRP0+CWmhvqM6fJj8vObj17khN8tnr+JoFez6tQqX5KhSzyJjI4lJi6e5UM7su3E5Q/aCCFERtF1wW5cBzZO9f0u23eJe89CMTXQZWSbf+Z497v3jJleZzHR16Fi8Tx0qFGGwauP8HYqO+Z1r8vZm49ZddAPU0NdmlcqTk1r6W0svh9Zmu8jBgwdzdNnzwFo27k7UVHRjJ00nd+Gj2HZarcUbdt16QnAvQcPGTZ2IomJiQwfN5HBI8fTd/AIYt9bOOJzePy9BcdKH85bsnLtOmJiY0lMVJE3T25ev3lDbGwcS+dOp0Txohz2PvFBGyFE5jdo4nyevngFQPvfxhMVHcP4+asYPHkhKzbuSNG2w6AJQFKxbeTMZSQmJjJq1nKGTl3MgD/nfrC4zacY6usRHRNLwbwfXm+mL/egbaOkuT7i4xM45xfIvLG/8WMtR7YfOoHXgeNMHdKLheN/Z/mG7V/xkwshRNoYsmgLz16HA9Dxr9VExcQxcc1uhi7xZNWukynadp7kCsD9Jy8Zs3I7iYkqxq7czohlW/l9waYUi0d8SsDdEHwC7qClqUEOs5RD+9v+4MCCQe1Z+kcHtnj7AjCzb2uW/NGB3OYmhEfF/GsbIYRID4atOcqz0KTFcbrM30VUbDyTN59ihJs3qw/5p2jbdcFuAB48D2Pc+hMkqlSM33CC0R7H+MP1cPICP5/jyv3nnLoegqZGNixN9FN8zy/oGd3q2rKoZ33O3nyErrYWi3vVZ2HP+hjr6/LkdSQ7z93iT+dqzO5am1X/l1OItCY97D6iXevmbNiyjepVK+NQzo5s2UCtVpPd1JS/PbfT+9fOH9324JFj3Lv/kLKlSxLy+Al37z2gdMmkSYcvXvZn3d+eKdqPGTYI8+zZgaSi392g+3Tu8BNXA2+kaHf95m0a1atN4wZ1ad2xG17rXbEpW5rBI8cTFh6Bro7OB21q16yWymdGCJHe/PRjbTbtPoJTBVvKly1BtmzZUKvVmJkYsXnPEXq2b/bRbQ+dusC94MeUKV6YyKcvCHr4mFJFCwLge/UmG3YcTNF+ZJ9OmJslrY5dwCoXR9YtIC4unjb9x1K94j/zcGw7eILK5cryOjQMgBdvQrHInrRdoXy5OXTyAn1/bsmMlesxMzYiLDwyVc+JEEJ8i9a1yrP56EWcbIpiXyJ/8n2gmZE+W7x96dbk4/dXR3yvc//pK0oXzM3jmFDuPXlByQJJH2pcvvWQjYfPp2g//OcGZDdOWsn75oOnFMxlzpReLRm+dCtBj15Q2CrlfE3T1u2je9Ok4wc/f83M9QeIjI7FSF/3X9sIIUR60MqxBJ6nbuBYKi/lCudMvl81NdRl65kb/FrX9qPbHg14wIPnYZTKZ0Hk63juPwujRF5zAC4HPWWzz/UU7Ye0qEx2Iz0Abj56RYEcJkz6uQaj3I8R9PQNhXOZAVCzbH76rzjIwt0X6V7vn/vY68EviYlPIK+FMT0alGPuzvOYGugSFvVlHXGE+FZSsPuIalUqsWjZKoJDHjGwT3f2HjxCyeLF6NS+DTUbtUzRNlu2pD6zkZFRQNLS0k6OlRjYu/sH+01MTCTm/3rcvb/sx2HvE9x/GMLYSdO5dv0mAdcCsSlTGoD8ea0wz54dDQ2N5BUaf+uTdIwps+ZTonhRnj57/kEbIUTmVtXBhsUeWwl+8oz+nVqz//hZShYuwM/N61On428p2iZfr6JjAFCp1Dg52NCv04crUicmqoj5vx53av65YL3bl46ONtr/d705cd6PuPh4bgU9RE9Pl78X/MnL10nFuwePnpI3tyVFC+Zl4fjfiYyKpvvI6d94FoQQIvU4Whdh2bZjhDx/TZ+WtThwPpDi+XPiXLcSDQfPT9H27cgpomKSrpcqlRpH6yL0aVHzg/0mqlQf9Lh7/z4wbw4zgh6/ACC7sQERMf/cM6pUKkav3E5jRxvKFU9aITFfjuzM/61d8gq2Va2LfNBGCCHSgyol87Ji/2VCXkXQu0E5DvkFUdzKnHbVStN44qYUbZOvq7HxQNL76yolrejVwP6D/apUamLi//+6+s+FNa+FMfeehQJgZqhLZEx88veW7PVlae/65LM0ofO8XfzoUBS/e89YcziA6V1qAVAklxmzu9YhMiaefsv3f+tpEOKLSMHuP5QtXRJfvwAK5MtLQkICoyZM4emzZx8MGWtQ9wdG/zU1+c1r/do12bFnP8PGTiQsPJxpf47GzDRpVZ1KDvZUcvjwQvNOt84d6Na5A/cePGTJyjXYlCnNiPGT6N/zV7p17sDw8ZPY6LmN2jWrA/Dn1Fk8e/ESE2MjqlWpRImiRT5oI4TI/MoUL8ylqzfJb5WLhMRExsxZydMXr4iNi0/Rrn71Soyb65J8J1TPqSK/HTnFyJnLCIuIYvIfPTEzSRqGVdG2FBVtP77Stc9Ffzy2HyAhPoEmtasCMHrWcvp0bMXsUf0BcPfah0V2U3R1dKhgU5I/piwiPDKKeWMG4nv1Jqs37yIiMpqRfTqlwVkRQoivV7pQHi7fekj+nNlJTExk/KqdPHsd/sFQrLoVS/Pn6p3J94F1KpRiz6ItjFm5nfCoGP7s1hQzo6RVax1KFsShZMGPHrNK2SJ4HrvE6BXbiI1LwKZIXsa57KBX8xqsO3CWs1eDiImN58aDp7SpVZ6Ja3ejkS0b4dGx9GhanVkbDqZoI73shBDpSal8Fvjde0Y+SxMSVGr+2niSp28iiY1PTNGujl0hJv7tw9vLKrVtCjL04l3GrT9BeHQcE9pXw9QwqVdx+aK5KV/041NBVS5hhdeZm4xdf5zYuESsC+ZgwoaT9GxgR+MKxZiw0QcjfW2sC1gSERNHuxnbaFC+CCPdvfm9aUVehEfjdvQKETFxDGlROa1OjRD/Kpv6/fJzJtCkSRM0VPFsXbda6SiZxs/d+vIiNILDhw8rHUWITMPFxYUePXoQeeVQ8ps88W027zlCl6GTCQ8Px8jI6NMbCCEyFU9PT9q0aUPQ5snJQ0zFtzl8IZDWY5Zz//59ChSQidaFyGqOHj1K7dq1OT+rS/IwUvFtfO8+of74v7l8+TJ2dnaf3kBkaZlu0QlLS0sCb9xKHp4qvk10dDRXA2+QI0cOpaMIkalYWibNSXTxyo1PtBSf60LAdfT19TEwMFA6ihBCAe+uq743HiicJPPwvfkQ+OfcCiGylne/+5fuPlU4SeZx+e25lPfX4nNkuh52Z86coV69eljlzol16VLSc+UbqNVqAm/e4t6DYPbt20eNGjWUjiREphEaGkrt2j9w9/ZtqlWwQVtLZij4Fq9Dw/E+e4kxY8YwceJEpeMIIRQQHR1NwwYNuHjhPNVti6GrLXP5fouI6FgOX7xO3759Wbx4sdJxhBAKiI+Pp2WLFhw6eIAaZfOjL9fVbxIVl8jRK/dp91M7PNatk1qF+KRMV7ADOH36NEuXLuXZs2dKR0GlUnHsmDf58uWnePHin2x/584d7t27R61atdDUVP6CmCNHDnr06CHFOiHSwOvXrxk7dixBQUEkJn7+8vTfKuhuELdu36ZSxYqYZTdL1X1fv36D4OBgqlSpgpHR9xuSZmBgyA8//ED//v3l5keILCwyMpKxY8dy8+YNEuK/33U1ODiYa4HXsLcvT45U7o12584d7t69S6XKlTA1MU3Vff8XPX19qlatytChQ+W6KkQWFhsby4QJE7hyJYD4/5sbOS09efIEf39/bGxsyJMnT6ru+8GDB1y/fh0HBwcsLCxSdd//RUdXh/LlHRgzZgxa8mG9+AyZsmCXnuzatYumTZvi5+eHre3Hl6p+5+bNm5QsWZLNmzfTpk2b75BQCJGVXLp0iUqVKjF06FCmTJmS6vuPjo6mfPnyGBgYcPr0aXR0dFL9GEIIkZ7cunWLcuXK0alTJ5YtW5bq+4+Pj8fJyYk3b95w6dIlDA1lfj4hROYWEhKCjY0N9erVY+PGjan+oYFKpaJBgwZcu3aNgIAAzM3NU3X/QqQWKdilsZ9//pnLly9z5cqVz77QODg4UKhQITw9PdM4nRAiK4mJicHBwQEdHR3Onj2bZsW0ixcvUqVKFUaMGCHDU4UQmVpCQgLVqlXj5cuXXLp0Kc0WvLlx4wb29vZ07dpVhqcKITI1tVpNw4YNCQgI4MqVK2lWTAsODsbGxoaGDRuyYcOGNDmGEN8q0y06kZ5ERUWxfft2nJ2dv+hTAWdnZ3bv3k1YWFgaphNCZDWjRo3izp07eHh4pGnPNwcHB8aPH8+UKVM4ffp0mh1HCCGUNm3aNM6fP4+7u3uark5dsmRJZs6cyZIlS9i3b1+aHUcIIZS2ZMkSDhw4gKura5r2fMuXLx9Llixh48aNUrAT6Zb0sEtDmzZtol27dty6dYtixYp99nYPHz6kQIECrF27ls6dO6dhQiFEVnH48GHq1q3LnDlz+P3339P8eAkJCVSvXp3nz59z+fLlNH0jK4QQSrhw4QKOjo7frTexWq2mUaNG+Pv7ExAQ8F3nXRJCiO/hXW/iX3/9lUWLFn2XYzo7O7Nv3z4CAgLIly/fdzmmEJ9LCnZpqGXLloSEhHDu3Lkv3rZGjRoYGhqyd+/eNEgmhMhK3rx5g42NDcWLF+fQoUNoaHyfztW3b9/Gzs4uzeZ1EkIIpURFReHg4IChoSGnT59GW1v7uxz30aNHWFtbU6dOHTZt2iSLQQghMo1383WGhoZy6dIlDAwMvstxX716ha2tLaVKleLAgQPf7T5ZiM8hr8Y08ubNG/bs2YOzs/NXbd++fXsOHjzI8+fPUzmZECKr6d+/P2FhYaxZs+a73oQUK1aMOXPmsHz5cnbv3v3djiuEEGltxIgR3Lt3D3d39+9WrAOwsrJi2bJlbNmyhXXr1n234wohRFqbPHkyvr6+uLu7f7diHYC5uTmurq4cPnz4u/XqE+JzScEujXh5eREfH89PP/30Vdu3bdsWgC1btqRmLCFEFrNp0ybWrVvH4sWLKVCgwHc/fs+ePfnxxx/p1q2bfAAhhMgUDh48yMKFC5k+fTqlS5f+7sf/6aef+Pnnn+nfvz8PHjz47scXQojUdvbsWSZNmsTYsWOpVKnSdz9+vXr1GDBgAMOHDycwMPC7H1+Ij5EhsWmkfv36xMXF4e3t/dX7aNiwIVFRURw/fjz1ggkhsoyQkBBsbGyoW7cuf//9t2JDp548eYK1tTU1atTA09NThnAJITKsV69eYWNjQ5kyZdi/f79iQ6eUmupACCFSW2RkJPb29piZmeHj4/Ndey2/791UBwYGBpw+fTpNF2gT4nPJX/c08OzZMw4fPvzVw2HfcXZ25sSJEwQHB6dSMiFEVqFWq+nWrRt6enosXbpU0SJZ7ty5WbFiBV5eXri5uSmWQwghvlW/fv2IiorC1dVV0SKZmZkZa9as4ejRo8yfP1+xHEII8a2GDRtGcHDwd59i4P8ZGBjg7u6Ov7//d1lISIjPIQW7NLB582Y0NDRo06bNN+2nZcuW6Orq8vfff6dSMiFEVrF06VL279/P6tWr08VKgq1ataJLly4MGDCAe/fuKR1HCCG+2IYNG9i4cSNLlixJFysJ1qlTh0GDBjFy5EiuXr2qdBwhhPhie/fuZcmSJcyaNYuSJUsqHYcKFSowbtw4pkyZwpkzZ5SOI4QMiU0L1apVw9TUNFUmWW/dujX379/nwoULqZBMCJEV3LhxA3t7e7p27crixYuVjpMsNDQUW1tbChUqxJEjR9DU1FQ6khBCfJbg4GBsbGxo2LAhGzZsUDpOsujoaCpUqICOjg5nz56VIVxCiAzj5cuXWFtbY2dnx969e9PNlCkJCQlUq1aNly9fcunSJYyMjJSOJLIw6WGXyh48eICPj883D4d9x9nZmYsXL3Lr1q1U2Z8QInOLj4+nU6dO5M+fnxkzZigdJwVTU1Pc3Nw4ceIEc+fOVTqOEEJ8FpVKRdeuXTE0NExXH4IA6Ovr4+HhwdWrV5kwYYLScYQQ4rOo1Wp69+5NbGwsq1evTjfFOgAtLS3c3d159OgRQ4YMUTqOyOKkYJfKNm7ciJ6eHs2bN0+V/TVu3BgjI6N09WmuECL9mjJlCr6+vri7u2NoaKh0nA/UrFmTP/74g9GjR+Pv7690HCGE+KTFixdz6NAhXF1dMTc3VzrOB+zt7ZkwYQLTp0/Hx8dH6ThCCPFJ69atY8uWLSxfvhwrKyul43ygePHizJ49m+XLl7Nnzx6l44gsTIbEpjJ7e3uKFSvG5s2bU22fnTp14sKFC1y7di1dffoghEhfzp07R9WqVRkzZky67mkRExNDxYoVyZYtG+fPn0dXV1fpSEII8a8CAwMpX748PXr0YMGCBUrH+aiEhARq1qzJkydPuHz5MsbGxkpHEkKIf/XgwQNsbGxo2rQpHh4eSsf5KLVaTePGjfH19eXKlStYWloqHUlkQVKwS0XXr1+ndOnSeHp60qpVq1Tb7549e2jcuDGXLl2iXLlyqbZfIUTmERkZib29PWZmZvj4+Ci6ytbn8PPzo2LFivz+++9Mnz5d6ThCCPGBuLg4HB0diYqK4uLFixgYGCgd6T/duXMHOzs7nJ2dWblypdJxhBDiAyqVirp163Lr1i0CAgIwMzNTOtJ/evz4MTY2NtSoUQNPT0/pPCO+OxkSm4o2btyIiYkJP/74Y6rut169elhYWLBx48ZU3a8QIvMYNmwYwcHBuLu7p/tiHYCdnR2TJk1i5syZHD9+XOk4QgjxgYkTJ+Lv74+7u3u6L9YBFC1alLlz5+Li4sKOHTuUjiOEEB+YP38+R48eZe3atem+WAeQJ08eli9fjpeXF25ubkrHEVmQ9LBLJWq1mlKlSuHo6MiaNWtSff+9e/dm3759BAUFSWVfCJHCvn37aNSoEYsWLaJfv35Kx/lsiYmJ/PDDDzx48AB/f39MTEyUjiSEEACcOXMGJycnJkyYwNixY5WO89nUajXNmjXj3LlzBAQEkDNnTqUjCSEEAFevXsXBwYE+ffpkuMXHunTpgpeXF/7+/hQqVEjpOCILkYJdKvH19cXBwYF9+/bRoEGDVN//sWPHqFWrFj4+PlStWjXV9y+EyJhevnyJjY0Ntra27N27N8MV9IOCgrC1taVt27asXr1a6ThCCEFERAT29vZYWFhw8uRJtLS0lI70RZ4+fYq1tTVOTk54eXlluL8LQojMJy4ujsqVKxMXF8eFCxfQ19dXOtIXCQ0NxdbWlkKFCnHkyBE0NTWVjiSyCBkSm0o2bNiApaUlderUSZP9V69eHSsrK1ktVgiRTK1W06dPH2JiYli9enWGfFNWuHBhFixYgKurK15eXkrHEUIIhgwZwqNHj3B3d89wxTqAXLlysXLlSrZv346rq6vScYQQggkTJnD16lU8PDwyXLEOwNTUlLVr13LixIkM1ztQZGxSsEsFKpWKjRs30rZt2zS7sdPQ0KBdu3Zs2rSJhISENDmGECJjWb9+PZs3b2bZsmVYWVkpHeer/fLLLzRv3pyePXvy5MkTpeMIIbKwPXv2sHz5cmbPnk3x4sWVjvPVWrRoQdeuXfntt98ICgpSOo4QIgvz8fFh+vTpTJgwAXt7e6XjfLVatWoxePBgRo8eTUBAgNJxRBYhQ2JTwcmTJ6levTrHjx+nevXqaXac8+fPU6lSJQ4cOEC9evXS7DhCiPTvwYMH2Nra0qRJEzw8PJSO882ePXuGjY0NlSpVYseOHRmyt6AQImN78eIF1tbWlC9fnt27d2f461BYWBh2dnbky5cPb29vGcIlhPjuwsPDKVeuHLlz5+bYsWMZstfy+2JiYqhYsSIaGhqcO3cOXV1dpSOJTE562KWCDRs2kC9fPpycnNL0OBUqVKBo0aIyLFaILE6lUvHLL79gbGzMokWLlI6TKnLmzImLiwu7du3CxcVF6ThCiCxGrVbTq1cvEhISWLVqVYYv1gGYmJjg5uaGj48Ps2bNUjqOECILGjx4ME+fPsXNzS3DF+sA9PT08PDwIDAwkHHjxikdR2QBUrD7RgkJCWzevJn27dujoZG2pzNbtmw4OzuzdetWYmNj0/RYQoj0a8GCBRw9epQ1a9ZgZmamdJxU07RpU7p3787vv//OnTt3lI4jhMhC3N3d2bp1K8uXLydPnjxKx0k11atXZ+jQoYwdOxY/Pz+l4wghspAdO3bg4uLC3LlzKVq0qNJxUo2dnR0TJ05k5syZnDhxQuk4IpOTIbHfaP/+/TRs2JCLFy9Svnz5ND/etWvXKFu2LNu2baN58+ZpfjwhRPpy9epVHBwc6NOnT6ac9Pbd0IlcuXJx/PjxTPFprBAifbt37x62tra0bNmStWvXKh0n1cXGxlKpUiVUKhXnz59HT09P6UhCiEwus091kpiYSK1atQgODsbPzw8TExOlI4lMSnrYfaMNGzZQokSJ7zaBZpkyZbC1tZVhsUJkQXFxcXTs2JGiRYsyZcoUpeOkCWNjY9zc3Dh79iwzZsxQOo4QIpN7N8VA9uzZWbBggdJx0oSuri4eHh7cvHmTMWPGKB1HCJHJqdVqevbsiUqlwsXFJdMV6wA0NTVxc3PjxYsXDBo0SOk4IhOTgt03iImJwcvLi/bt23/XC1H79u3ZsWMHERER3+2YQgjl/fnnn1y5cgUPDw/09fWVjpNmnJycGD58OOPHj8fX11fpOEKITGzu3LkcP36ctWvXYmpqqnScNGNjY8PkyZOZM2cO3t7eSscRQmRirq6ubN++nZUrV5IrVy6l46SZwoULM3/+fFxdXdm2bZvScUQmJUNiv4GXlxetWrUiMDCQUqVKfbfjBgUFUaRIEdatW0eHDh2+23GFEMrx8fGhRo0aTJw4kVGjRikdJ83FxcVRuXJl4uLiuHDhQqYuUAohlBEQEECFChUYMGBAlliUITExkTp16hAUFIS/v3+mLlAKIZQRFBSEra0tbdu2ZfXq1UrHSXNqtZqWLVvi4+PDlStXMnWBUihDCnbf4KeffuLWrVtcunTpux/b0dERS0tLdu7c+d2PLYT4vt7N65Y7d26OHTuWZeZ1y+zz9QkhlJNV53W7f/8+NjY2mXa+PiGEcrLqvG6Zfb4+oSwZEvuVwsPD2blzJ87Ozooc39nZmf379/Pq1StFji+E+H4GDx7M06dPcXNzyzLFOoCyZcsybdo05s2bx+HDh5WOI4TIRMaNG0dgYCAeHh5ZplgHULBgQRYuXIibmxuenp5KxxFCZCKzZs3Cx8cHNze3LFOsA8iZMycuLi7s2rULFxcXpeOITEZ62H0lDw8POnXqxP379ylQoMB3P/6TJ0/Imzcvy5cvp3v37t/9+EKI72Pnzp00a9aMFStW0KNHD6XjfHcqlYp69epx8+ZNAgICMDMzUzqSECKDO3HiBDVr1mTq1KkMHz5c6TjfnVqtpk2bNhw7doyAgADy5MmjdCQhRAbn5+dHxYoV+f3335k+fbrScRTRo0cPNmzYgJ+fH0WLFlU6jsgkpGD3lRo3bkxoaCgnT55ULEPdunVRq9XS80SITEq62Cd58OABtra2NGnSBA8PD6XjCCEysLCwMOzs7MiXLx/e3t5oamoqHUkRL168wNramvLly7N79+4s+/dFCPHtYmJiqFixIhoaGpw7dw5dXV2lIyni3RQ2uXLl4vjx41lqVIxIOzIk9iu8fPmSAwcO0L59e0VzODs7c/ToUR4/fqxoDiFE6lOr1fTs2ROVSoWLi0uWfjNVoEABFi9ezLp169i0aZPScYQQGdigQYN48eIFbm5uWbZYB2BpacmqVavYu3cvy5cvVzqOECIDGzNmDDdv3sTDwyPLFusAjI2NcXNz4+zZs8yYMUPpOCKTkILdV/D09ESlUtG2bVtFc7Rq1QotLS15AytEJrRmzRq2b9/OihUrZMUpoEOHDrRt25bevXsTEhKidBwhRAa0bds2XF1dmT9/PoULF1Y6juIaN25Mr169+OOPP7h165bScYQQGZC3tzdz5sxh8uTJ2NjYKB1HcU5OTgwfPpzx48crsjClyHxkSOxX+OGHH9DW1ubAgQNKR6FZs2Y8e/aMM2fOKB1FCJFKgoKCsLW1pW3btqxevVrpOOnGy5cvsbGxwcbGhn379mXpXodCiC/z9OlTrK2tcXJywsvLS64fb0VERGBvb4+FhQUnT56UIVxCiM8WGhqKra0thQsX5vDhw1m61/L74uLiqFy5MnFxcVy4cAF9fX2lI4kMTHrYfaGQkBCOHTum2Oqw/8/Z2ZmzZ89y9+5dpaMIIVJBYmIinTt3xtLSknnz5ikdJ12xsLDA1dWVAwcOsGTJEqXjCCEyCLVaTffu3dHQ0GDFihVSrHuPkZER7u7unD9/nqlTpyodRwiRgQwcOJDXr1+zdu1aKda9R0dHBw8PD+7cucOoUaOUjiMyOCnYfaFNmzahra1Ny5YtlY4CJPWwMzAwYOPGjUpHEUKkgtmzZ+Pj44ObmxsmJiZKx0l3GjRoQN++fRk6dCg3btxQOo4QIgNYtWoVu3btwsXFhZw5cyodJ92pUqUKo0aN4q+//uLChQtKxxFCZACenp64ubmxcOFCChYsqHScdKds2bJMnTqVefPmyQKR4pvIkNgvVKlSJfLmzYuXl5fSUZI5Oztz9epV/P39lY4ihPgGfn5+VKxYkUGDBslktf8hKioKe3t7TE1N8fHxQVtbW+lIQoh06s6dO9jZ2dG+fXtcXFyUjpNuxcfH4+joSGRkJBcvXsTAwEDpSEKIdOrx48fY2NhQo0YNPD09pdfyR6hUKurWrcutW7cICAjAzMxM6UgiA5Iedl/gzp07nD9/XvHVYf+fs7MzAQEBXL16VekoQoivFBMTQ8eOHSldujQTJ05UOk66ZmBggLu7O76+vkyePFnpOEKIdCohIYFOnTqRK1cu5s6dq3ScdE1bWxt3d3fu3bvHiBEjlI4jhEin1Go13bp1Q0tLS6YY+AQNDQ3WrFlDeHg4/fv3VzqOyKCkYPcFNm7ciKGhIU2bNlU6SgoNGjTAzMyMDRs2KB1FCPGVxowZw82bN/Hw8EBXV1fpOOlepUqVGDNmDJMmTeLcuXNKxxFCpEMzZszg7NmzuLm5YWxsrHScdK906dJMnz6dhQsXcvDgQaXjCCHSoeXLl7N3715WrVqFpaWl0nHSvQIFCrBo0SLWrVvHpk2blI4jMiAZEvsFrK2tsbOzY926dUpH+UC3bt3w9vbm9u3b8kmHEBmMt7c3tWvXZsaMGQwZMkTpOBlGfHw8Tk5OvHnzhkuXLmFoaKh0JCFEOnHp0iUqVarE0KFDmTJlitJxMgyVSkWDBg24du0aAQEBmJubKx1JCJFO3Lp1i3LlytGpUyeWLVumdJwMQ61W065dOw4dOkRAQAB58+ZVOpLIQKRg95kCAgKwtbVl586dNGnSROk4Hzh06BD16tXj7NmzVKpUSek4QojPFBoaiq2tLYULF+bw4cOyytYXunHjBvb29nTt2pXFixcrHUcIkQ5ER0dToUIFdHR0OHv2LDo6OkpHylCCg4OxsbGhYcOGMnpDCAEkTTFQrVo1Xr58yaVLlzAyMlI6Uoby8uVLbGxssLGxYd++fdLBRnw2GRL7mTZs2ED27NmpX7++0lH+1Q8//ECuXLlktVghMpiBAwfy+vVr1q5dK8W6r1CyZElmzpzJkiVL2Ldvn9JxhBDpwKhRo7hz5w4eHh5SrPsK+fLlY8mSJWzcuFEKdkIIAKZOncr58+dxd3eXYt1XsLCwYPXq1Rw4cIAlS5YoHUdkINLD7jOo1WqKFi1K3bp1WbFihdJxPmrgwIF4enry4MEDeeMvRAbg6elJmzZtWLNmDV26dFE6ToalVqtp1KgR/v7+BAQEYGFhoXQkIYRCDh8+TN26dZkzZw6///670nEyNGdnZ/bt20dAQAD58uVTOo4QQiEXLlzA0dGRESNGyMJo36hfv364urpy6dIlSpYsqXQckQFIwe4znDlzBkdHR44cOcIPP/ygdJyPOn36NFWrVuXo0aPUqlVL6ThCiP/w+PFjbGxsqFmzJlu2bJGu8d/o0aNHWFtbU6dOHTZt2iTnU4gs6M2bN9jY2FC8eHEOHTqEhoYMJPkWr169wtbWllKlSnHgwAE5n0JkQVFRUTg4OGBoaMjp06fR1tZWOlKGFhkZSfny5TE1NcXHx0fOp/gk+cv7GTZs2ECePHmoUaOG0lH+U5UqVShYsKAMXxAinVOr1XTr1g0tLS2WL18uxaVUYGVlxfLly9myZUu6XBhICJH2+vfvT1hYGGvWrJHiUiowNzfH1dWVw4cPs2jRIqXjCCEUMGLECO7du4e7u7sUl1KBoaEh7u7u+Pr6MnnyZKXjiAxA7mY+ITExkU2bNvHTTz+l+2Gm2bJlo3379mzZsoW4uDil4wghPmLFihXs3buXVatWYWlpqXScTKNt27b8/PPP9OvXjwcPHigdRwjxHW3atIl169axePFiChQooHScTKNevXoMGDCA4cOHExgYqHQcIcR3dPDgQRYuXMj06dMpXbq00nEyjUqVKjFmzBgmTZrEuXPnlI4j0jkZEvsJR44coU6dOpw5c4bKlSsrHeeT/Pz8KFeuHLt27aJx48ZKxxFC/J9bt25Rrlw5OnXqxLJly5SOk+nIkDghsp6QkBBsbGyoW7cuf//9t/RaTmXvhsQZGBhw+vRpWchDiCzg1atX2NjYUKZMGfbv3y/3U6ksPj4eJycn3rx5w6VLlzA0NFQ6kkin5DfvEzZs2ECRIkWoVKmS0lE+i62tLaVLl5ZhsUKkQwkJCXTq1AkrKytmzZqldJxMyczMjLVr13L06FHmz5+vdBwhRBp7N8WAnp4eS5culWJdGjAwMMDd3R1/f3+ZcF6ILKJfv35ERUXh6uoqxbo0oK2tjbu7O8HBwQwbNkzpOCIdk9++/xAXF4enpyft27fPMDeA2bJlw9nZme3btxMVFaV0HCHEe6ZNm8b58+dxd3fHyMhI6TiZVu3atRk0aBAjR47k6tWrSscRQqShpUuXsn//flavXi0rRKehChUqMG7cOKZMmcKZM2eUjiOESEMbNmxg48aNLFmyRFaITkMlS5Zk5syZLFmyhH379ikdR6RTMiT2P+zcuZNmzZoREBCAtbW10nE+2+3btylevDibNm2ibdu2SscRQgAXLlzA0dGRESNGSA+F7yA6OpoKFSqgo6PD2bNnZQiXEJnQjRs3sLe3p2vXrixevFjpOJleQkIC1apV4+XLl1y6dEk+eBIiEwoODsbGxoaGDRvKiK3vQK1W06hRI/z9/QkICJAPnsQHpGD3Hzp06EBAQAABAQFKR/liFStWJH/+/GzdulXpKEJkee/m/zE0NOT06dOyytZ3cunSJSpXrsyQIUOYMmWK0nGEEKno3fw/oaGh+Pr6yvw/34nMwypE5qVSqahfvz7Xr1/H398fc3NzpSNlCY8ePcLa2po6deqwadOmDDOyT3wfMiT2IyIjI9m+fTvt27dXOspXcXZ2Zs+ePYSGhiodRYgsb8SIEdy7dw93d3cp1n1H9vb2/Pnnn0yfPp2TJ08qHUcIkYomT56Mr68v7u7uUqz7jooXL87s2bNZvnw5u3fvVjqOECIVLVq0iMOHD+Pq6irFuu/IysqKZcuWsWXLFtatW6d0HJHOSA+7j/j7779p3749t2/fpmjRokrH+WLBwcEUKFCA1atX88svvygdR4gs6+DBg9SvX5/58+czcOBApeNkOYmJidSoUYPHjx/j5+eHsbGx0pGEEN/o3LlzVK1alTFjxjBhwgSl42Q5arWaxo0b4+vry5UrV7C0tFQ6khDiGwUGBlK+fHl69OjBggULlI6TJXXs2JFdu3bh7+9PgQIFlI4j0gkp2H1EixYtePz4MWfPnlU6ylerWbMmenp67N+/X+koQmRJr169wsbGhjJlyrB//35ZZUshd+7cwc7ODmdnZ1auXKl0HCHEN4iMjMTe3h4zMzN8fHyk17JCHj9+jI2NDTVq1MDT01OGcAmRgcXFxeHo6EhUVBQXL17EwMBA6UhZ0ps3b7CxsaF48eIcOnRI3jcIQIbE/qs3b96wd+9enJ2dlY7yTZydnTl8+DDPnj1TOooQWVK/fv2IiorC1dVV/ugqqGjRosybNw8XFxd27NihdBwhxDcYNmwYwcHBMsWAwvLkycPy5cvx8vLCzc1N6ThCiG8wceJE/P39cXd3l2KdgszMzFizZg1Hjx5l/vz5SscR6YS8g/wXW7duJT4+np9++knpKN+kTZs2ZMuWjS1btigdRYgsZ8OGDWzcuJElS5aQL18+peNked26daNp06Z0795dPsQQIoPat28fS5YsYebMmZQsWVLpOFle69at6dy5MwMGDODevXtKxxFCfIXTp08zZcoUxo0bR4UKFZSOk+XVqVOHQYMGMXLkSK5evap0HJEOyJDYf1GvXj0SExM5cuSI0lG+2Y8//kh4eDgnTpxQOooQWUZwcDA2NjY0bNiQDRs2KB1HvPX06VOsra1xcnLCy8tLhnAJkYG8fPkSGxsbbG1t2bt3r/z+phOhoaHY2tpSqFAhjhw5gqamptKRhBCfKSIiAnt7eywsLDh58iRaWlpKRxJAdHQ0FSpUQEdHh7Nnz6Kjo6N0JKEg6WH3f548ecKRI0cy/HDYd5ydnTl58iQPHjxQOooQWYJKpaJr164YGBiwePFipeOI9+TKlYuVK1eyfft2XF1dlY4jhPhMarWaPn36EBMTw+rVq6VYl46Ympqydu1aTpw4wdy5c5WOI4T4AkOGDOHRo0e4u7tLsS4d0dfXx8PDgytXrsjCSkIKdv9v8+bNaGho0KpVK6WjpIrmzZujp6fH33//rXQUIbKExYsXc+jQIdasWYO5ubnSccT/adGiBb/++iu//fYbd+/eVTqOEOIzrF+/ns2bN7Ns2TKsrKyUjiP+T61atRg8eDCjR48mICBA6ThCiM+we/duli9fzpw5cyhevLjSccT/sbe3588//2T69On4+PgoHUcoSIbE/h8nJyeyZ8/Orl27lI6Satq0acPdu3fx9fVVOooQmVpgYCDly5enR48eLFiwQOk44iPCwsKws7Mjb968HDt2TIZwCZGOPXjwAFtbW5o0aYKHh4fSccRHxMTEULFiRTQ0NDh37hy6urpKRxJCfMTz58+xsbHBwcGBXbt2Sa/ldCohIYGaNWvy5MkTLl++jLGxsdKRhAKkh9177t+/z6lTpzLNcNh3nJ2duXTpEjdu3FA6ihCZVnx8PJ06daJQoUJMmzZN6TjiP5iYmODm5sapU6eYNWuW0nGEEB+hUqn45ZdfMDY2ZtGiRUrHEf9BT08PDw8PAgMDGTdunNJxhBAfoVar6dWrFwkJCbi4uEixLh3T0tLCzc2Np0+fMnjwYKXjCIVIwe49GzduRF9fn+bNmysdJVX9+OOPGBsbs3HjRqWjCJFpTZw4ET8/P9zd3TEwMFA6jviE6tWrM2zYMMaOHcvly5eVjiOE+BcLFizg6NGjrFmzBjMzM6XjiE+ws7Nj4sSJzJw5UxY7EyKdcnNzw8vLixUrVpAnTx6l44hPKFq0KHPnzsXFxYWdO3cqHUcoQIbEvqdcuXKULFkyU8731qVLF86ePUtgYKB8kiJEKjtz5gxOTk5MmDCBsWPHKh1HfKbY2FgqVapEYmIiFy5cQE9PT+lIQoi3rl69ioODA3369JHFDDKQxMREatWqRXBwMH5+fpiYmCgdSQjx1r1797C1taVly5asXbtW6TjiM6nVapo1a8a5c+cICAggZ86cSkcS35EU7N4KDAykTJkyeHl50aJFC6XjpLp9+/bRqFEjfH19sbe3VzqOEJlGREQE9vb2WFhYcPLkSVllK4MJCAigQoUKDBgwQIbHCpFOxMXFUblyZeLi4rhw4QL6+vpKRxJfICgoCFtbW9q2bcvq1auVjiOEIKmYXrt2be7du4e/vz+mpqZKRxJf4OnTp1hbW+Pk5ISXl5d0wMlCZEjsWxs2bMDU1JRGjRopHSVN1KlTB0tLSzZs2KB0FCEylSFDhvDo0SPc3d2lWJcB2djYMGXKFObMmcPRo0eVjiOEACZMmMCVK1fw8PCQYl0GVLhwYebPn4+rqyvbtm1TOo4QApg7dy4nTpzAzc1NinUZUK5cuVi5ciXbt2/H1dVV6TjiO5IediR1My1RogTVqlXL1L8Affv2ZdeuXdy7dw8NDanVCvGt9uzZQ+PGjVm6dCm9e/dWOo74SiqVijp16nDnzh0CAgLkRlYIBfn4+FCjRg0mTpzIqFGjlI4jvpJaraZly5b4+Phw5coVcuXKpXQkIbIsf39/KlasyMCBA5k5c6bSccQ3+PXXX9m8eTP+/v4ULlxY6TjiO5CCHXDx4kUqVKjA/v37qV+/vtJx0szx48epWbMmJ06coFq1akrHESJDe/HiBdbW1pQvX57du3dL1/QM7v79+9ja2tK8eXPc3NyUjiNElhQeHk65cuXInTs3x44dk17LGdyzZ8+wsbGhUqVK7NixQ/5OCqGA2NhYKlasiFqt5vz58zJfbwYXFhaGnZ0d+fLlw9vbG01NTaUjiTQm3axIGg6bM2dOateurXSUNFWtWjXy5csnw2KF+EZqtZpevXqRkJDAqlWr5E1IJlCwYEEWLlyIu7s7W7ZsUTqOEFnS4MGDefr0KW5ublKsywRy5syJi4sLu3btwsXFRek4QmRJ48aN4/r163h4eEixLhMwMTHBzc0NHx8fmXs5i8jyBTuVSsXff/9N27ZtM/3NoYaGBu3atWPz5s0kJCQoHUeIDMvd3Z2tW7eyfPly8uTJo3QckUo6depE69at6dWrF48fP1Y6jhBZys6dO3FxcWHu3LkULVpU6TgilTRt2pTu3bvz+++/c+fOHaXjCJGlHD9+nJkzZzJp0iTs7OyUjiNSSfXq1Rk6dChjx47Fz89P6TgijWX5IbHvhomePHkSJycnpeOkuawy/FeItHLv3j1sbW1p2bIla9euVTqOSGUy1FmI70+GTmZu74Y658qVi+PHj2f6D8iFSA/CwsKwtbWlQIECHD16VIZOZjKxsbFUqlQJlUolQ50zuSzfw27Dhg0UKFAAR0dHpaN8F+XLl6d48eIyLFaIr6BSqfjll1/Inj07CxYsUDqOSAOWlpasXr2avXv3snz5cqXjCJHpqdVqevbsiUqlwsXFRYp1mZCxsTFubm6cPXuWGTNmKB1HiCxh0KBBvHz5krVr10qxLhPS1dXFw8ODmzdvMmbMGKXjiDSUpQt28fHxbN68mfbt22eZVVOzZcuGs7MzW7duJSYmRuk4QmQoc+fO5fjx46xdu1ZWEs3EfvzxR3r37s0ff/zBzZs3lY4jRKa2Zs0atm/fzooVK2Ql0UzMycmJ4cOHM378eC5duqR0HCEyNS8vL1xdXVmwYIGsJJqJ2djYMHnyZObMmYO3t7fScUQaydJDYvfu3cuPP/6Ir68v9vb2Ssf5bgIDAylTpgxbt26lZcuWSscRIkMICAigQoUKDBgwQCZ5zQIiIyMpV64c5ubm+Pj4yBAuIdJAUFAQtra2tG3bltWrVysdR6SxuLg4KleuTFxcHBcuXEBfX1/pSEJkOk+ePMHGxoZq1aqxdetW6bWcySUmJlKnTh2CgoLw9/eXDgWZUJYu2HXp0oWzZ88SGBiY5S5m5cqVo0SJEmzatEnpKEKkezJPRNZ05swZnJycGD9+POPGjVM6jhCZSmJiIrVq1SI4OBg/Pz9MTEyUjiS+g6tXr+Lg4ECfPn2YO3eu0nGEyFTUajVNmzbl/PnzXLlyhRw5cigdSXwH9+/fx8bGRubXzqSyxjjQfxEdHY2XlxfOzs5ZrlgH4OzszK5duwgPD1c6ihDp3vjx4wkMDMTDw0OKdVlIlSpVGD16NH/99Rfnz59XOo4Qmcrs2bPx8fHBzc1NinVZSNmyZZk6dSrz5s3j8OHDSscRIlNxcXFh9+7duLi4SLEuCylYsCALFy7Ezc0NT09PpeOIVJZle9h5enrSpk0bbty4QYkSJZSO893dv3+fQoUK4eHhwc8//6x0HCHSrRMnTlCzZk2mTp3K8OHDlY4jvrP4+HgcHR2JiIjA19cXAwMDpSMJkeH5+flRsWJFfv/9d6ZPn650HPGdqVQq6taty61btwgICMDMzEzpSEJkeLdv36ZcuXJ06NCBFStWKB1HfGdqtZo2bdpw7NgxAgICyJMnj9KRRCrJsgW7Nm3aEBQUxMWLF5WOohgnJyeyZ8/Orl27lI4iRLoUFhaGnZ0d+fLlw9vbW1bZyqKuX7+Ovb093bt3Z+HChUrHESJDi4mJoWLFimhoaHDu3Dl0dXWVjiQU8ODBA2xtbWnSpAkeHh5KxxEiQ0tISKBGjRo8ffoUPz8/jIyMlI4kFPDixQusra0pX748u3fvzpKjCDOjLDkkNiwsjF27duHs7Kx0FEU5Ozuzf/9+Xr58qXQUIdKlQYMG8eLFC9zc3KRYl4WVKlWKGTNmsGjRIg4cOKB0HCEytDFjxnDz5k08PDykWJeFFShQgEWLFrFu3TqZT1mIbzRjxgzOnj2Lm5ubFOuyMEtLS1atWsXevXtZvny50nFEKsmSPezc3Nzo0qULDx48IH/+/ErHUczTp0+xsrJi6dKl9OzZU+k4QqQr27Zto2XLlqxatYpff/1V6ThCYSqVioYNG3L16lUCAgIwNzdXOpIQGY63tze1a9dmxowZDBkyROk4QmFqtZp27dpx6NAhAgICyJs3r9KRhMhwfH19qVy5MsOGDWPy5MlKxxHpQO/evXF3d+fy5csUL15c6TjiG2XJgl2jRo2IiIjgxIkTSkdRXP369YmPj+fo0aNKRxEi3Xj69CnW1tY4OTnh5eUlXcoFACEhIdjY2FCvXj02btworwshvkBoaCi2trYULlyYw4cPS69lAcDLly+xsbHBxsaGffv2yXVViC8QHR2Ng4MDenp6nDlzBh0dHaUjiXQgIiICe3t7LCwsOHnyJFpaWkpHEt8gyw2JffHiBQcPHszyw2Hfad++PceOHSMkJETpKEKkC2q1mu7du6OhocGKFSvkzYNIljdvXpYsWcKmTZvYsGGD0nGEyFAGDhzI69evWbt2rRTrRDILCwtWr17NgQMHWLJkidJxhMhQRo4cyd27d/Hw8JBinUhmZGSEu7s758+fZ+rUqUrHEd8oyxXstmzZAkDbtm0VTpI+tGrVCm1tbTZv3kxgYCBZsMOlECmsWrWKXbt2sXLlSnLmzKl0HJHOtG/fHmdnZ/r168fDhw+VjiNEhuDp6YmbmxsLFy6kYMGCSscR6UzDhg3p27cvQ4cO5caNG0rHESJDOHz4MPPnz2fatGmUKVNG6TginalSpQqjRo3ir7/+4sKFC0rHEd8gyw2JrVmzJvr6+uzbt0/pKOnC9evXGTx4MMHBwQQEBBAYGEipUqWUjiXEd6VWqxkyZAgNGjSgVatWODs7s3LlSqVjiXTq9evX2NjYUKpUKZydnTE1NaVNmzZKxxIi3Rk3bhxVq1alY8eO1KxZky1btkivZfGvIiMjKV++PKampgwaNIj4+Hi6dOmidCwh0p3p06djbW1N7969KVGiBAcPHkRDI8v1wRGfIT4+HkdHRyIjI5k8eTKPHz+mX79+SscSXyhLFeyCg4MpUKAArq6uchPwVr169fD39+fZs2cAPHnyhFy5cimcSojv68WLF+TIkYMSJUoQFxfH5cuXMTU1VTqWSMf2799Pw4YNsbW1JWfOnBw8eFDpSEKkK3Fxcejr61O6dGmeP3+Ov7+/3F+I/3Tq1CmqV6+OnZ0dGhoa0itEiP+jVqsxMzOjSJEi3L17Fz8/PwoVKqR0LJGOBQQEULFiRcqWLcvr16+5e/eu0pHEF8oSBTu1Ws3KlSt5/fo148eP59mzZ5iYmCgdK124f/8+tWrV4t69e2hraxMbGyuffoss5/Tp01StWhWA3Llz07hxY1xcXBROJdKr+Ph4LC0tyZ49Ow8fPiR37twyD6gQ/+fGjRvJPfatrKyoXLkyW7duVTiVSK/UajUFChRAU1OTBw8eYGBgQHh4uNyTCvGeZ8+eJX/wkT9/fooUKYK3t7eyoUS6ZmtrS1hYGPfv30dDQ4Po6GiZ7zCDyRL9Z588eUKvXr1wcXHByckpeR47AQULFuTEiRMYGxujr68vN0YiS3p/lWRHR0dGjx6tYBqR3mlra+Pu7o62tjYqlYpHjx4RExOjdCwh0hUfH5/kf9va2jJ58mQF04j0Llu2bLi6umJsbIxarSYyMpJHjx4pHUuIdOXcuXPJ/y5cuDBz585VMI3ICJYtW5Y8J7dKpSIgIEDhROJLZYmCXc6cOdHW1ub27ducPn0aT09PpSOlK/ny5ePmzZscP35c6ShCKCJv3rwUKFAAb29vtm7dSuHChZWOJNK5Zs2ace3aNUaOHEn+/Pll1Ush/k/u3LnJmzcvO3bsYO/evZQuXVrpSCKdq1u3LpcvX2bq1KlYWVmhp6endCQh0pUcOXKQJ08ePDw88Pb2xt7eXulIIp2rWrUqZ8+eZcmSJeTJkwczMzOlI4kvlCWGxELSsvGvXr2iatWq7Nu3D2NjY6UjCSGEEEIIIYQQQgjxgSxTsLO2tiYyMpIrV65gaGiodBwhhBBCCCGEEEIIIf5VlinYQdKEtultjraLFy9y8OBBwsPDlY6SoWXLlo38+fPTuXNn9PX1lY6TKfn5+bFv3z7CwsKUjpKhZcuWjbx589KpUyeMjIyUjpMpXb16ld27dxMaGqp0lAzPysqKjh07yqrJaez169esW7eOx48fKx0lQ9HU1KR48eL8/PPPaGhkiVleFBcWFoa7u7vML/eFNDU1KVKkCJ06dZIpFNLY3bt38fLy4tWrV0pHyfBy5sxJu3btyJ07t9JRMqUHDx7g6enJixcvlI6S4eXIkYO2bduSN29epaOkuixVsEtvjh49SuPGjdHW1sI8e3al42RoiYmJhDx6TO3atdmxY4cU7VKZj48PDRs2IJtajbmZvHH/FomqRB4/e4lT1ars3rNHinap7Pz589SrV4/EhAQszc2UjpOhqVRqHj19RoUKDuzbt1+Kdmnk9evX1KtbFz9/P/JYZpfC0xeIi0/g8fNXdO3aFRcXFzl3aSwsLIyGDepz/vwFcluYyPn+AgkJiTx68YYOHZxxc3OXol0auXnzJj/UqsnrV6/IYWYE6ayjRoaiVvPkVRhFihThyFFv8uTJo3SiTCUoKIhaNWvw7OlTcpgaykv1G6jV8OxNBPny5+eo9zHy58+vdKRUJQU7BZUpUwaL7Kbs89ooE+umgmMnT1G3SWtcXFz49ddflY6TqTiUL49mYjR7lk/F0EBeq9/qrF8g9X4dxrx58+jXr5/ScTKVatWciAx9zcG/XTAxlmLot/L1v0at1l2YNGkyQ4YMUTpOpjR58mQmT5rIoUXDsSmWuW4yvwf3PSfpN2Mtx48fp3r16krHydTmzJnDyBHD2Te1O/bFMl8vhrS2+ZgfPeduYf/+/dSvX1/pOJlSu3btOHPsEAemdSOnmdwDfKu7j19Sb8QqfunWkzlz5igdJ1Pp0qULB3d5sX90M/Jkl+m6vtWDF+E0nLyD1s6dWLp0qdJxUpXWt2y8ePFidmzfRoQM5/yobNmykb9gIaZOnUqhQoVSfC8kJIQuzm2kWJdKalarSs4cOQgODlY6SqYTEhJCj9b1pViXSirblSZvLnmtpoWQ4BDaNq4jxbpUUt62DIUL5JfXahoKCQmheP7cUqz7Si1qVaDfjLWEhIQoHSXTCwkJoWBuCynWfaWW1azpOXeLvFbTUEjwQ6qWzi/FulRSJI8FtoVyyz1AGggJfkjFIjmkWJdKClgaY1/IIlO+Vr+6YDd9+nRGjBjBDyUsyGeknZqZMpVElZrj+/yp5XOSk6dOky9fvuTvqdXqVOsSHx8fz7Axf5KYmEh8fAKN6tfh9Zs3eG7fhaWFOYULFWTs8D9Yu24jntt3UTB/PsIjIli9dAETp8+mdfMmWJcp/dH9x8XFoaOj88kcA/4YQWKiijPnLzDtr3G8fPUK7+M+PHvxgn49u1H3hxrJbX/tMxAtTS20tLSYOG4EFubm33weNDU1kE6jqS/ptfr1Q19u3gumfteh+G5bgbmpMT3HzmbOyL4YGejTvO9YiuTLQ0RUFNUr2NK5xYefOr/f/mPi4uPR0f68a1FiYiKtBkygYfWK9HFuxhzXzWzedwyXSUMoW7wQx8/789diN0oXLUijGpX4sWbl5G0nLfXgxt2HmJkYMbBTS4oXyvcfR/o4ea2mDTVfd129ceceddt2xe/Itk8O+77od5W79x/StlnDFM93HzyWeRNHYmRo8NnHjY2NQ1f309fWP2cv5snTFzx98ZKFU0aTN3cuFrh4cPfBQ8xMjJkwpP+/tnnHqWkHylmXxiK7GX8NG/DZ+UBeq2nta6+vtx48oeFvMzi/diLmJob0nrqaWb91wMhAj1bD5lPYKgcR0TFUL1eSjo2cPtj+/fYfExefgI72p28VL924z9pdx3kZGkEth9J0a14LgP1nAhi2YAN+66cQHRvHH/PWo6ujTcmCuendqk7y9lNcd3DzwWPMjAzo91M9iuf//PmSNDWSxhHJazTtqdXq5PP9JeITEhm7Zh+JKjXxCYnUdyjBm4hozE0MaVixJBHRsQxbsZslv7Vi7Jp9TPylIV2mb2DtcOcvOs7nvl7te82hVrliFLOyoF9zJ7b5XGH32UD0tLXo2aQKNoXzMHndIcKiYklUqZjVq2nyticDgpi8/jClCuSkQYWSNKxY8rPzab4dQiyv1bSjVqm/aKh20mtzPyqVmvjEROqVL8GbyGgsjA1o8Pa1OXzlHhYPbPmf+3HoM59adkV49iaCRQNaYGr4bVPzxMYnoPsZr+XJ6w/z9HUEmhrZ+LNLfS7cDGabz1VCI2NoXKkUP9WyS247beNRbgY/x8xQn77NHCmW1/KzsmhoZJPXbBr4kuupz/VHTN92kcI5TdDV1mRGp2oftOm/yptpPzthpKeNz/VHrD9xAyN9bdRq+Kt9FfT+5fX0/jafKzY+EV3tT99nT/O6wNPQKJ6HRTGzU3WM9LTp7+KNubEe2poazOhUjTtPQ1l56ApqtZrWVYpRqdg/f/tXHrrCrcdviI5LYEanaujrfPr3QVMjG2q16rN/loziqwt2ixbMw7lCHma3KpWaeTKlR6ExVJ55ht27d9OrV680OcaqteuoW7smjRvUA5IKbBs2b6Xnr51p0rA+P3Xqltz23XO9Bw4hIiLyo/t88DCYjVu8uHHrNn26d6VC+XKfzLFw9jQAGrd2pu4PNdDQ0MC5bStev37DsDF/pijY6enqkZiYiIGhPsYyj1emtmbrPqYP7cm6HYf4tXUjAm4GMcd1My3rVcdQX5e5o/oSH59Ar3Fz6NyiPlOWreN1WDgWZqYM6NgyRXubEoWT96tWq/HxvcL2wz5Ex8SxaNzAz8qzwN2Lpj84Ep+QAMDgrm2JiolN/n62bGCgr0dMbCwFrHKm2FZLUxMdbS00NLKRQ+ZIyzRcN25l5rihuG/ZwW/dOzHfxZ279x+iraXN1FGD6P7HOHJYmFPBrix5cuXg+avXHD9zAdcNW7G0yE7Xdi0JuH6T2ctcadmoLrOXrUlu377FjymOFRYegdfeQ5w6f4majhXp0KrJJ/ON/yNp6PT2fYfx9jmHTekSnDh7gYL58pLDwvxf2/zc+p83mQb6+iQmJmKVO+eHOxcZ0trdJ5jarx3r95+ia5MaXL0bwryN+2lR0wFDPR1mD+pAfEICfaatoWMjJ6at3cnrsEgsTI3o17ZeivbWRVN+mHjK/xY7jvsSExfP/D86fTKLfcmC2JfsRGKiigGz3OjWHF68CedMwC1s3/Yc3HHcl8ZO5WhcrRxd/1pBt2Y10dZKug3V0tRAW0uLbBoa5DAzSZsTJhTjdvAiP5QrRoMKScWtuPgEthz3/9e2D56+5uz1B9wMecGsTd44limI28GLWJoa0r1RZQrnSfnh7s3g53ie8CfkRRhDf6pFwVyfnhNaX1eb2LgE8uVI+nBmu88VVgxuS1xCIoOWbGdC5/pExcYzvUdjFm/34UzgfaqULggk3R8Y6mkTExdP/hwyr2dG537oIrXLFaN+hRLA29fmiYB/bVv99yXUK1+ce09f41S2EOeuP6SpYxmaVCmNdeHczO7dlCU7ThH44Dnefndo5liGMgVz0WXG36wd1o6GI11o6WTNpdshjHSu/cFr9UVoJF4+V/C785gWTmWpW774J/MH3n+Gx0hnDl68ydYTAfzSoCK1yxUDoPO0jSkKdlqaGuhoaSbdv5pJr66MplnFwnSvY02XhQc4fi2Em49f072ONf1XeTPFuSrXHr5k0V4/mjgUZsl+f9wHNEBDIxsnAkNwOXQV+8I5CAx59dFtFu3zw9JYD/vCOWldpViKY4dHx7HzQhBnbz2hWmkr2jp++rU5omUFAHZfDOJEYAgORXNR3MqMMa0r0WfFEVQqNYv2+pHdUJfw6DjyvPeajE9QcfHuM5b1rM2ui0HsvhhEm884Zmb11QW7l69eU9pehm98DitTPbIb6vHy5cs0O8aVa4G0bvHPm753veFWrV3HzHmL6dC2VfL3Vq1dx+69B4mIjMT4X4aNvX79BueuvXCwt+OXju0pXrQIAKGhYfw5dWaKtu3btqSSQ/kUzx07eYqqVSql+IRr4vTZ9O7+S4p2i+ZMQ0NDg3V/b2H9Jk9+6fhln6SKjCEuPp4Hj58xZXB32v72JwM6tcSmRGEGd22LkYE+kdGxDJ2xjJv3QujSon7yas5GBgZsP+zDkF9/StH+nZ1HT7Nk3XY6Nq/LuH6dMX7bq+nwaV/2nTiXIsPMYb2T/30+4AYG+nqUKJSPq7fv/Wtmp/LWVK9gS2h4JL3GzWHj3LHJ3xvWvR0aGhqc8r3CQg8vxvb99JtZkb7FxcXzIPgx00YPpnW33/iteyfuP3yEg21ZGv5QjZjYOCIio+jctjk1HSvgc/4SAMGPnlAgnxUdWjWhZNFC2JQqwR+9u6JWq1O0f1+f4X8RGxvLr86t6dy2efLK5dMWruT5y9fJ7SqWs/6g0BceEcnmnftZMm0c+46eoFD+vMwcN5TB46dz595DihbKn6LN+/ZvXImGhgZ9hv3J3fvBFCn4dT1DRfoQF5/Aw6cvmdSnLe1HL6J/23qULZKXQe0bYGSgR2RMHMMXbuTWw6d0+tHpveuqHjtPXGJwh0Yp2r+z++RllnoeokPDqozp1gLjt987cuEa+0+nLLBMH9A+xePtxy6yZtcJOjR0TPq+2y7GdmtBv+lrAAh+9oq6lawByJHdhFehkeSySCp4DOn4IxoaGpz2v8XiLQcZ3bV5mpw3oYxr95/SvGrZ5MfvesGt2nuW/RdukJiYskdE5VIFKJHXkiE/1eJv78vkz2lGu1p2KYp1dx+/5LfF2/mhXFE616tAXsuk19L9p69ZtvN0iv31aFyZInkskh+fnNePbNmy0WHKOuo7lGRAy2oMW7mbHKaGhEfFEvIiNHl/BXNlJ+TFPyuOO5YpiJN1F0IjY+i/cCvuIzqk0lkSSrh2/xnNHP/ltbnvPPsv3CRB9c9r09LUkHGd6vGX+0HKFspNx7rlGbBoG02qlObqvSf0W+DFo1dhdG9UCW+/Ox8cy1hfl15NqnD08h28/e7Qpf4/9wftJ62jQE4zOtYtT48f/xnVMcY1qWfqO3Xsi6Uo5DVzLMPwlbvR1NTAUO+f3vrzPE/wcx37FMcf3Lo6GhoanLl2nyU7TjPSufbXnDKhkF0Xg7ge8poaZfJ+0DNPQyMbZfJb0L+RHdFxCeQ1N0LjbZsKRXOx0ecm9oVzfHQb1GoiY+JxdiqBUymrFO0GrzlObHwiHWuWwrlaieT71jk7fXkZHpPcrnyRDwt9EdFxbDt/hzldaqClqcHtJ2/4ZdEBiuQyRUMjG753n7F1aBNUajUTt5xlwa+1AHgZEYO5UdL9RwFLY45eyXzDXL/Ety3vJMuZfLa0PlVlS5fiwiW/5MdxcXEAdOvyM/u3/c2JU2dQvf2j063LzyydP5MK5cvhc+bcB/syNTVh8IA+REREsHSlK0eOnUSlUqFWq4mJiU3x9f83WQCr3dbT9W3xTaVSMXjkOJo1boiDvV2Kdu8Kejlz5CD8P3r6iYxt+yEfXrwKZcDEhTx5/oqTFwOSL/YAhvq6zBzWm+1LJrJprzeXAm+jVqsZ378zOczNiImLS9H+nWoO1rSsXw0f36ss3bCDe8FPAEhITCQmNj7F1/sO+lwg4MZdFrhvxXP/cR49+7CQ/u61aWyoj+r/hgEkv24tshMRGf1tJ0ekC9v2HeLFq1f0GzmRJ8+ec+LsRWaNH0qpYoXpO2IiUdExuM6bTGhYOH1H/JW8XYdWTejYpikrPTaz66B38s2RsZHhv7YH6NfVmbx5crHeaxebduwjKjrpNRQbF0dMbGzyV3x8QortXr0JZcDoSUwf+wcmxkbky5Mbi+xmAJibmRIZFfVBm/e9e93msDQnMioqVc+f+P52HPflxZsIBs1258nLUHz8bqb4kMxQT4fpA9qzdcZvbDl8jss3H6BWqxnbrQWWZsbExMX/67CxqnbFaVGrAqf9b7N862HuPX4OJF1XY+PiU3z9v+Y1HfCaOYi/D57l6ctQ7j9+wbhlW/C7/RDXncfJm8OckGevAHj+Ogxz038+TU9+fZqbEBEV88G+RcZWukBOLt3+Z962uLfXt26NKjO3TzOmdGv0wTbv/u63q1UO5x/scd13nr3nrid/P5+lKT0bVyb4RSjLdp3mws2HQNLq1jHxCSm+VKoP/45ny5YNYwNd4hISKV88H3P7NKNTPQdyZzfGysI0uUj38NkbrCxMU2wLYKyv88F+RcaT9Np8lPw4+bXZsCJz+jRlyq//TH1h8vYDDB1tLUwMdNHV1iI2PhGAsoVys3hgS6qULsD1h8/R0dIk4e17pOi396EGbwtq2loaxCUkpsjxe5vq6Ghr4n7wInvPXU/OERuXkOLr/993/VTLjuk9GlOuiBXFrZKGuM71PE7+nGY0+L/h2snXWTMjIqLjvvaUCYU0cSjMrM7V6VanLNpaGsmvr6i3r693NTxLYz1CXkUkD2P2DXpGqbzZ/3MbI30dlvT4gdDoOAavPZ7iuN3rWpPH3JAtp2/hdfYOUbFJr824BBWxCYnJX/H/99p8HRHDUPeT/NXOEWN9HQ76P6BRuUKs6V+f6LgEHr2KoGAOY0z0dTDR1yEm7p/fCXMjXV5FJN0LBL+MwMo8a/cI/aZFJ9LCuxfXv71BB1h9OphSuQypWuTTXd4h6Q/3uzdR7//7v9p9jl0Bzzh66xWxCSrGNypGDuN/PtWYcfAuYTEJJKpgavMSn73Pb9Gty88MG/Mne/cfQqVS0aDuP5+a6OnpUb9OLTZs3grAitVuHDzszbPnL+jSoR2HvVP+YmpoaFC/Ti3q16lFVFQU23bt5ewFXxwrVWDJvBn/mePZ8+fEx8djlSdpDPqUWfM4deYcMdExBF6/SZ8eXfn5196sW72MP0aNJzYmhpevXrN4zvRUPiMivdi8/zhbFk7AyECfkKcv+HPRWhztyzJ67iq6tGxAZHQsv09ZQkJiIrYli1A0vxUBN4OYt3YLT9/2OKpSrkxy+/Jlkj5ZzG5iTM+fknqVBgU/ZsPuI4zs1YEG1SrSoFrFj+YZ1ftnAI6f9+fq7XtY5bRgzdb97D1+jht3H/LHr225F/KUg6cuEBEZzS8tGwDQZfg01k4fwQyXjQQ/ec7LN2FM/K1rWp468Z1s2rGfrasXYmRoQMiTp4yfsYhT5y/x6k0oxoYGJCQmMHraMvR0dShR9J8h2Z67DnDG14+Xr15TMJ8VVRzKMXLKXJxb/MiGbXs+aA9gXao41qWKo1KpOOpzjl0HvfmpWaPk4awf49x7CMZGhkyZv4JWP9ajTvUqbNq5j2ETZxETG4dtmZI0aN8jRZuyJYsxe5krowb2YvD4aRgY6KOjrY1N6e/zd0mkHc8j5/l7Sn+MDPR49Pw1f7l44WhTnLHLPen8YzUiY5Lmi0tMTMSmWH6K5M3BlTvBLNi4n2evkgoRlcsWTW5vXzJpuF92Y0O6v51/LujRc/4+eJbhnZtQv7IN9SvbfDTP/jMBHDgTQFx8AnUqliWXhSmbpibNldhp3FK6Nq1BVEwsQ+Zv4OjFQCqWKYK2lhZd/1qB67iezPLYTciz17wMjWBCz1YfPY7ImDrXc2Dsmv0cuHgTlUpNnfLFPrmNtpYmE9wOUK6oFedvPORlWBT5c5olf19HW4umjmVp6liWNxHRePlcwdRQj+J5czC3T7OP7vdm8HPmbz2BpoYGJfLmwNRQj8OXbrH7bCDhUbGM61SPfDlM0dfVZvTqvcTEJdC7qSPLd53Gvlhenr4O57DvbcJjYulUr8JHjyMyhk51yzNu7QEOXryJSq2mjv2nX5v/pU8TRwYu3s4fbWuwbNcZShfImVwk+S+VSxWgcqkCxMUncND3Fsf8g6jnUJyZvf57yozlu85wK+QFKpWa6T1+5G9vPzYe9cOpbCHuPn7J0J9q0X32Zlz+aMucLccJeRHKy7Aoxneq900/p1CWdX5LXA5dZdkBf+49CwOgYrHc/LX5LD9XL0nv+jYMWH0MU30d4hIS+au9I2o1H92mdZVieJ65ja62JsXzmKU4Vpl85pTJVwmVSs2JwBD2X75Hy8rFkoe8fky3pYcw0tNm9k5fmjoUpnLx3Izw8OHi3WeERceR09SAfg3tGLz2OCqVmm51yvI0NIpFe/2Y2N4R+8I5GLnOh4iYeKZ3/HDOvqwkm/orZ5E00NdjZN0CdK+aj21+Tzl55zUGOpr8UacQnpefcutZFGq1GksjHaoWMeP600h+dczHoC2BTG5anFNBbzgT9IaXkfGMbViUG88iWXbiIVUKm9HMJieLjz9AIxvkNtFlQK2CDN92A2M9LW48jaBP9QIfFOzWnAnh7osowmISGFirIFsvPyU8NoESOQ05fz+Ugub6FLHUJyI2Ef+QcCLjEhlatzBngt7gc/c1ZfMY0atagc/++Xuuv8KKDtb4h4Rz9OZLfvuhEJA0X92Kkw+Z0Lg4y08+wD6/CZUKmmE37QyDho9h1KhRyfswMTFh3Ig/+L1/748cRXypAqXK0bNXb8aPH690lEwlV86c9GnXiOE9ZNhyarFu2p22zh2ZNm2a0lEylUKFCuLcrAF/Du2vdJRMo3z9NtSp34j58+crHSVT6tOnD2e993Ns2ahPNxYfiIqJJXfD/qxfvx5nZ/kblZYGDx7M3q0bOD3/vz9gEP9OrVZj3nIcq1at4tdff1U6Tqbk5OhIIYNYFg1ooXSUTKP1n+5YFCvH5s2blY6SqdSp/QOmkQ9Z0bvOpxuLz9J54X40rMqya9dupaOkqlTpYXf/VTSlchvRsIwlpvra+Nx5zaqONpy885ozQW/+dRttTQ3UgFoNB2+8pEB2PRwKmNC3RgEm7buDnrYGhjqaXH8ayfUnEVgYajOsXhGmHbj7wb4iYxPY7PuYH0pYoKWZDb+QcAAaW+egUkEzzt8Ppb1DHvKY6tLVPQDXTjYEvYxi7dkQSuY0pFZxc1qVS7ki2Z97bqeYM+CHEub8UOKf+S/e9cUrYK7Ho9B/Jqt/FBqLlenbMdfZ9Xn0JhYKfsVJFUIIIYQQQgghhBBZUqoU7H77oRDXHkcw82AQPZzyfTCcVVtTg4TEpOJX1NvxyWvOhLCmkw3b/J7yKippHLWxXlIclVpNG/vclM2TNAdP4JMIdDSTxt3ran0454oayGOqx5C6/ww9mnUoCBPdf348E72k5YffjXrNxj8Z3x33fTHxqhRzVyX83zwV7x4Fv44hj4lu8vN5THR5FPp2zPWb/7F332FRXGscx7/03hEQsFcUe+8FKyoqCuyk937TizHFxPTeY2JiepyliRV7RUWx946IgAiKgvSye/9YF8US2y6zsOfzPPfJBWfP/Fxfht2z551TSscAl6vGNrYbtRX/MHMW7YPaMnhAv5saT6PRVN/34PL//1/H3Yz4uQtYumI1pWVlfPbBO/j6XLoZ5tvvf0JBQQFVVVV898XHLF6+kt/+nI2NjTWqyRMJGzOKf6Pj2LxlG9bW1nw8/a3qjTaEuuNGtTpDnk/7lk0Z2KPjTY1nrFpNWJ7Esg3bKCsr56OXH8XX69IK33e//4uCwiKqNBq+nqpbdZBxOpcRD75K7DfTaN6oIU+/+w1Ojg74eLmLTSrqqBvV6o9/yLRv05JBfa7fjn05Y9XqnEXLWbZ2A6VlZXzy5sv4Nrj0QdM7n39PfkEhVRoN374/FfXcRJI2byPj1GmmPvsYHdu15snX3sXJ0RFfby/efumpmz6vYHpuVLM/z1lFu2YBDOjS5pp/fiVj1ezcNdtYkbKX0vIKPnwqEh9P3S6xGTl5fPDbPCqrNPh4uPLBUxEAZObkMfq5z1B/8Aztmgfc9HkE03WjWp25aBPtGvvSv0Oza/75lYxVq/M27mXl9qOUVlTw/oOj8XG/dK/QZ75LYPuRDDZ+q2sFj16zk00H0jl/oRgrK0t+fSnyps8jmJ4b1egviZsJauxD/2Cla3QfK3ccpay8kvceHFmjRj+YvZILxbr7j3/2+FjO5BfxRdw6qqo0hHRpSftmfnwkr6KqSkMDd2fee2DkTZ9XMB03qtVfV+4lKMDzqs0lrsdYtxebvzWVVXtOUlZRxbtRvfFx020emJlXyMcJW6nSaGjg6si7Ub1ZvCONv9YeIKRDIx4JCaawtIJp0cmUllfhaGfNZ/cNuOnz1kUGmbD7a3Mmx8+WUKnRtcD2aebOWwuOUFGlwdvZlvYNnfktOYOZ60+Slqe7wXZrH0e+XpVGWl7JVZNaD/UJ5KOlqfi62mJjacHrI1sgbz3FLxtOsi09n15Na26j7mxnTffGrkydfxhLCxjf0fe6WYe09uKN+YcpKK3kxZCmpKTlX/O4G917bmywD6/NPURxeRVvjW7BzowCNqed5/H+jXGwseKdRUcoq9TwSN+b24kvOm4uq9Ym4eTkyNtTXubfmDgOHjqCRqPBx6cBg/r3Zd+Bgzz92MM89OSzfPvZR6xZv4GkDZs4c/YsH09/i30HDvHldzMY2K8PERPD+PybH7C0tKShnx9TXnqWp55/FVdXF/YdOEj7oLZXZZjxy+8cOZbK+fx8Xn/5eWbHxJNfcIF2bVqzcXMKzZs1pXWL5lwoLGLbjl0UFhXxztRXSdqYzOp16+nUIfiW2ntj5swj+q9f2b5zN7P+/JeprzwPQEZmFkXFxXz96Qd89f1PbNiUwobkFD54ZyoNvLx4+/2P6dOrO7Nj4mnTuhXubq5isq4WxS5ew+qUXTg52PHGE/cgL1rFoeMndbXq5cHA7h3ZdzSNJ6UwHnvrC758/SnWbdnNhu17yc3L54MXHuLAsXS+/jOeAd07MGnEAL78Iw5LCwsa+njxysNR/O+973BzdmTfsRO0b9n0qgw/Ry/k6IkM8i8U8eojKtSJqykoLKJt88Zs2rmfZoENadUkgAvFJWzfd4Si4hLeevpe1m/by9qUXXRs05xn77v5+yTFLV3Hv5+/wY4DR/ljzpLq1uCM07kUl5TyxZQn+favOSTv2Efvzu346vc4Jo3Q/fI4ePwkLZsEMPWJu3njq1kcTsugdVOxQ2dtiJm/mNXrU3B0dOCtF55gdsIiDh49jkajwdfbi4F9urPv0FGeekDikRff4uv3Xmdt8hbWb97Ombw8Ppz6AvsPH46RjHYAAI2GSURBVOOrn/9kQO/uTB47gi9++gNLSwv8fXx49ZmHefr193BzcWbf4WO0b3P1vW9++iuaI6knyC+4wGv/ewR1QiL5FwoJatWc5K07ad4kkFbNmnChqJhtu/dRVFzM2y8+zfqUbazZkELH9m14/tH7bvrvHLtgKfJPn7NjzwF+V89hyv8eBSDj1GmKikv4avoUvv7lLzZu2YFqQiiqCaHs2HOA9SnbsbWxoVWzJrzx/BO8/sFXHDqWRpsWTQ31zyHchLiVKazdfhBHe1tefyCM6OWbOJR+Cq1GSwMPVwZ0bsP+45k8Hj6UJz76jc+fu4uknYfYuPsIZ85f4L0nJnPgeBbfRi+lf+c2TBzcna/VS3TXV293Xro7lOe/+BtXZwf2H8+iXbOrJ7x+mbuaoydPk19YzMv3jiFm+WYKikpo27Qhm/YcpVmADy0DfSksLmXHoTQKS8p446HxbNx1mLU7DtKxZSOeiRxx03/nOau38Ne7T7Dz8An+XJTEK/eOASDQx5MZU3T3Cb337RloNBosLCz4Wr2UiYPFvcOUFp+0m3W7U3G0s2WKagjRa3dxOCMXjVaLj5sz/YObsT/9NI+N6c1T38zh08fGsH5vGhv3pXG2oIh37x/JwfQcvpu3nn7tmzGhXzDfJiRhaWGBn6cLL04exAsz5uPqaMeB9BzaNb76tf2viZs5lnWW/KJSXooYROzaXRQUl9KmkQ+bD6TTzM+DFgHeFJaUseNoFkWlZUyVQti4L411e1Lp0KwhT4+/uQ+vARLW7+WPV1XsOpbFX8u38nLE4Oo/+/5/E7n/E7n666jBnYka3Jmv56yjSwsxsayE+KQ9uhq1t2WKajAxa3dz+KSuRhu4O9M/uCkH0nN4NLQXT3+bwCePhrJhbxob95/gTEER7943goMnc/h+7kb6tm/CxH7BfJuwHktLXY2+MGkgL85YgKuTrkaDGvtclWHW4hSOZp2loKiUFycPJHbdbl2NBjYg5eBJmvp50MJfV6M7j2ZRVFrO69IQNu4/QdKe4wQ39ePp8X1v+u+sq9Eodh3L4u/l23gpYhAAmWfyKS6t4ONHQvlh3kY2HUgncfMBHGytOV9YSoC3G4Hebvzwv4kA3P9p9C1PFgq3L2HzUdYdyMLR1ppXJ3QjNvkIh7POo9VqaeDqQL+2/hzIzOORkGCembWGj+/ux8aDWSQfPsWZC6VMi+jFoaxz/LBkN33bNGR8j+Z8t3iXrlbdHXl+TBde/isJVwdbDmTmERTgeVWG31bt41h2Pvkl5bwwtgvxyUcoKCmnjb8Hm4+eplkDV5r7uVFYWsGutFyKSit4bUJ3kg+fYv2BLIIbe/HkyJtbYAEwN+UYvz01nF0nzvDPuoO8OK4rAAGeznz38GAAHvxhORqNltFdmlZnB3T3xrt/IADPzFpzy5OFdY1BJuzu61XzF9HDFyepDmYXsnBvLo62VsxQ6bbMfqx/IwCmjmxx1Tj6+9IFutvzQ1S7Gn82fazuRvOP9mt0zQxPDKh5/7keTS5N6n09Oaj6/9/Ts+ZscjMvx+v8rf5bWEcfwjpeujD7uNjROVD3qfBrI5rf8njHjqcR3D6I8WNG4e7uxuq1G4j79zdWrV1P0sbkaz7G1sYWrVaLRqNh0ZLlNG3SmN49uvPyc08z5e33sLe3x9nZiX0HDrJ3/wG8vb2Y/uZrvDn9o6vGKiws4i85hlHDh2Jtbc22izvOTho/ln69e7JxcwoP3iMR4N+Q8LseYM7sPzh67Dg/zfqD9kFtGBEyhLsiJ9UY8+U3pqG57EarI4YNYdRlm2HoZ/6bNWlMRualHZpOZmbRKMD/0p9lZDFxXCiP/e8lAD55722OHT+Bg70DX340na++/4lVa9czdJB535CytqRmnCK4ZVPGDe2Du6sza1N2of7qLdZs3sn67Xuv+RhbG2u0Wi1arYbF61JoGuBHr05teeGBybz51Swc7GxxcnRg/9E09h1Jw9vDjWnP3Me07/64aqzC4hL+nb+CEf27Y2Ntzfb9RwCYOKw/fbq0Z9PO/dw3YQQBvt5EPj+dmK/f5lh6Fr/ELCKoRROG9e2KakzNreynfP4LVZpLuxMN79edEf0uvSHU12rTAF8yss9Ufz8z+wyBfrqVoU0CfMnIzmXG7PncHTaMxLWbAejUpjkLVm3ktc9mcjI7h8zTuWLCrpaknsigfduWhI0cirubK2s2phAz8ytWb9jM+s3br/kYW1sbtGjRaLQkrlxH00YB9O7WiZeeeICpH36Fg70dzo6O7Dt8lH2HjtDAy4N3Xn6Gtz/97qqxCouK+SduPiMH98fGxprtu/cDEB46jL49upC8dSf3R00gwM+XyY88T9yvX3M0LZ2Z/8TQrnULhg/qizRxTI0xX33v8xq7xI0Y3I+Rgy+94ayu1UYBnMzKrv5+RlY2gf66Wz80axRAxindn332wyyWr9vIV9OnENSqBfOXreKV6Z9xMjObzFOnxYRdLTuelUu75gGM7d8ZdxdH1u04yL/vPcXa7QfYsOvINR+jv75qtFqWJO+miZ83Pdu34DnVSN7+OQ4HW1ucHOzYfzyT/amZeLm78NbDE5j+a8JVYxUWlzJ7aTLDewZjY23FjkNpAEwY1I3eHVqyac9R7h3dD/8GHkhv/ID8wdMcy8hh1rw1BDX1J6RHe6KG964x5tQfY2rU7LCewQzvFVz9tX4RQJOG3tW7yF5u3Y6DtG7SEEtLS2bEr+SukX1ZvHHXrT61goEdz86jXRNfQnsF4ebsQNKeVP6echfrdqeycV/aNR9ja22lu75qtSzdeogmPh70aNOIZyf2Z9qfS3GwtcHJ3pYD6TnsP3Eab1dH3rh7GO/9s/yqsQpLylCv3smwrq2wtras3oU2rG97egc1YfOBdO4e1g1/L1fu/vBf/p16N6mnzjJrSQpBjXwY2qUVkYM61Rjzzd8W17gdTkjXVgzr2qr6a/3bwSa+HmSeKbjhc6TValm/5zjPTazfqz9MVdrFGh3Tqy1uTg4k7T7OX1NUuhrdf+Kaj7GxsdK9XtVoWbr1ME183enRJpBnJ/bnnb+WYW9Xs0a93Bx5464Q3v9nxVVjFZaUIV+sURsrS3Ye073XCevTnt5BjUk5eJK7Q7ri7+XKPR/J/PO6ROqps/y2ZAttG/swtHNLIgbVnAB58/clNWu0S8uaNXrxgnpljWaeKSDA2/WyP8tnf3oO7943nBb+Xjz+9Rz+fDUKgKQ9x2kd6C0m62rR8ZwCggI8Ce3aFDdHO9YfyOKPZ0aQdCCT5EOnrvkYG2srtOg6E5ftSqdJAxe6t/DhmdGdmB67GQdba5zsrDmYeY4DGXl4OdvzengPPohPuWqswtIKojccJqRDI2ysLdl1XLdD/LjuzenVyo/NR09z14A2NPRw4r7vlvLX/0aSejqfP9bsp42/B0OCA5ncp1WNMd9WJ9eo1aEdGhHS4dI8jr7bsYm3C1nniq7KtP5AFq0bul93Im5v+llmLN2Nq6NtvZ6sAyPvEtvWz5m2fs43PvAWZReU8U/KpQmenk3dGNjy6pniumTqK8+ze+9+pn3wCc899fhVy1htbW2puLjFd1FRMQAzfv2dBPlPouPmcibvLABubrrVihqNhntUEXTqoJso3bPvAHZ2ulVo9vZ2XEmr1RLo78+011+p/t67H32Gm+ul1Y9urroLvaWF7gJ+eUZX16tbf8tKy2q8SK+srLzqnAAnTmYQENCw+vuB/g2JuziBd+JkBt26dOKTL79l2bwYrKysuOvBx/nio+k08Na1enl5elBYWHjV+QXjeO1RiT2HjzP9h7945p6JV9eqjTWVF7erLyrRtYf/HL2Q2G+mEbt4DWfO615AuDrrtujWaLVIY0Po2EY30b33yHHsbG0AsL/GykmtVkuArzdvPnlP9ffen/FP9XgAbi66/295MdvlES8/Tq+0vPyKWq2q8ef6Wk3PyiHA17v6+wG+3mRk636pnTyVQ9d2rUhct5kDqels33+Ek6dy+Hn6i7z9tG6F1DPTv6VFo5tbgi7cuSn/e5Q9Bw7z7uc/8Owj91yjVm2ouHhdKirWrf7+6c9o4md9Q8z8xZzJOw+Aq4vu95hGq+Xu8LF0bKdrIdx78Ah2F2vU3u46tdrQl7defLL6e+99OQM310u/F91cdNdO/YuNy2/XoD/v5UrLyqmqulSf17uupmdmEdjw0oqUgIa+ZCzSTdKdyDhFt466D8Veefph7o+awBsffc0vX7xXvVvtU1Om06LptT8gE4znlXvHsPdYBu//No+nJw+7Rs1aUXHx37+4tBzQrYhTf/AMcStTOJuv+13o6uQA6FpUVCN606Gl7t9yX2oGdja6l3766+zltEBAAw+mPnhpl80Pf59fPd7lY1fX7OXX18uO0ystr6jx4V1l1ZXXV91/T2afxb9BzQ3FVqTsZe32g0x/XPeB4NYDqRxKy2LHoRNk5OTx42sPXHU+oXa8HDGYvWnZfDh7JU+N61vj2gW6iQ/97pjFZbpa/XXxZmZPvZv4pN2cLdC9lnV11N33WaPVEjm4Ex2a6V4P7kvLrq5Ve5ur365oAX8vV6ZIlz6A+1heVT2ebmzd691rXl8vO06vtKKyxhvMK3f31P/JyZzzBHi5XutpqWHljqMM7Njiuq1pgnG9FDGIfWnZfDh7FU+G9eGKEsXG2ooK/evVi9fTWYkp/Dv1LuKT9pB34WKNOl2sUY2WqEGdCG6m+/Br/4nTl11P/6NGVUOqv/exenV1XcJlNWpxrRq9+v1aWXnNGq26skYvXlBP5p7H3/tSjfp7u5K5saD6z7q08CfAyxUPF0fsbW3QXhxz5Y6jrNudyjv3iV1ka9OL47qy7+RZPkrYwhMjOlyjVi0vu57qbiX226p9/P3sSBI2H+Vsoe79lquj7rWoRqslok8rghvr3ivvz8jD1kZ3e7BrXU/Ramno6cSrEy4tVvh07lZcHS69tnW5+P8vvbe6rFYdrn4NXFpRVeP2YlfV6sUr6smzF2joUfO92aq9J0nan8nbEb2uznpRcGMvfnh0CK/+vZ6TZy7QyLv2b0NWW4w6YWcsfq52Ne5Xp/fov3v55e7gazzi9qScOM+sjZn4u9kxLfTOtvm+kZ9n/cmR1FQqK6vwaeDNoAF9eOG1NykvL8fHpwGdO7Tnh59n8fUPP5N6XPepUFCb1nzw2VekHk+ja+ean8A88/jDvPHuhzT088XGxoYPpk3l979n882PM9mUspX+fWr+ALi4ONOnV3eeffl1LC0tiZw04bpZRw4bwnOvTOV8fgFvvfYSGzZtvuZx333x37tfTp4wjqeef5Wi4mI+ee9ttmzbwfrkzbzwzBM4Ojjw0tRplJWW8uyTj3IyI5NHn3kRKytLQgYPJDDAH1/fBrw0dRrnzp1jxtef3cSzLBjCLzGLOJaeRWVVFQ083RnYvQMvf/IT5RUV+Hh50LFNc2bI8/nu7wRST+o+FQpq3piPZ8qknjxFl3Y1f5aelMJ4+9vfadjAC2tra6Y/+wB/Jizl+38S2Lz7AP261vyZdnFypHenIF748EcsLS2IGDXoulmH9+vGix/9SP6FIqY+cTcbd+y75nH6e89dT/jwAfzvve8oLinlgxcfZuveQ2zcvo9n7wvHwcGO1z6bSWl5OU/fPYG+F/O+P+MfJg7Trfp84cMfKa+soHWTQBr7X79lXzCsmX/HcDQtXVerXp4M7N2dF6d9QnlFBb7eXnRq34Yf/5D55te/SU0/CUBQq+Z89O1MUk+cpEuHmiu9n3pA4q1PvqWhbwNsrK1577Vn+V2dwLe//sOm7bvp17NrjeNdnJ3o3a0Tz731IZYWlkSGjbpu1hGD+vH82x+Rn3+BN154go1bdlzzuG/f/++dRCeNGc7Tr79HcXEJH73xIlt37WV9ynaef/Q+HB0ceGX6Z5SWlfO/h+/mu1n/cjTtBOfzL/DwXboJkefe+pDy8kpat2hCk0AxuVzbZs1bw7HMHF3NerjSv3NrXv1OTUVFJQ08XOnQshE/zVnF97HLOZ6l+7CgbRN/Pv1rIcezcuncuuYuV4+HD+WdX+bQ0MsdG2srpj0azl+L1vND7ApS9h2jb4ean4i7ONrTq30LXvp6NpaWFkweev17Mg7rGczL38wmv7CEKfePY9Oea68A/PL5u//z7zxhcDee/+JvikrLef+JyWw7eJzk3UcI7deZxz78jbABXXjhy3/44KlIZr2pa/H+8Pf5TBjU7YbPp2A8vy1JITXrLJVVGrzdnegf3Iwpvy6ivLIKHzdnOjTzY+aiTfw4fyPHs3UrJ9s0asDnMWs4np1HpxY1ry+PjenN9L+X4+fpgo2VFW/fO5x/VmxnxvyNpBw6SZ92TWsc7+JgR8+2jXll5kIsLSwIH9DhullDurTi1ZkLyS8q5TXVEDZdZ3XV54+P+8+/8/i+7XlhxnyKS8uZ/sBIth/JIHn/CZ4e349pfy5ld+opXpgxn/cfHIWTvS2zV27n08fG3sSzKRjD70u2cOzUWSo1GrzdnOgf3JQpvyZSUVlFA3ddjf6yaDM/zt9I2ulzwMUajV3L8ew8Ol9Vo72Y/s8K/DxcsLG24q17hvH3iu3MWJDMlkMZ9GlX8/qrq9FGvDpzEZaWFkzsf/33qEO7tuS1XxaRX1TKq1GD2XQg/ZrHffb4f9fT+H7teXHGAorLynn3/hFsP5J5sUb74mhnwxu/LaGsopInxvbGy82J9/9ZgbW1FRGDOnL8VB5Pfj2Hsb2DeOmnhbz34Eic7MUth2rDH6v3k3o6nyqNlgYuDvRr48/U2Rt1terqQHAjb35dsY+flu0mLUc38dra34MvFmwnLaeATk29a4z3SEgw78en4OfuiLWVJW9O6sm/6w7y07I9bDl2mt6ta2626exgS88Wfrz2z3osLSyY2OvqTki9ocGNmPLvBgqKy3g5rBubj2Rf87hP7/3vzrew7s15+a8kissqmBbZmx3Hc9h0OJtRXZry9C+rGdOtGa/8vZ53o3qz+8QZZizbzfmicrxcHOjUxJuflu2pHivA0/ALxEyJhVZ72dTnLXB0sOf1YY1v+h5t1zJ312nWHzuHo60VL4U0ZcXBs+w9VUhhWSXvj2td/edOtlZ4ONpgbWXBzowCfohqz8z1JykorcTLyQY3Bxse6B1QPWH39ao0zpVUkF9SyduhLZm5/iRFZVV4OtnwwtCmt5Tx5LkSfkvOvOMJu04fb+L5195k6tRLb7ZcXV15e8pL/3nft737DxA/b2GNlW/C9TVu25nHHn+CadOmKR2lXvH18eHJqNHV9267ln1H0khYsb7Gyjfh+oLHPUKEdA8ff/zfE9vCrWnatAlS2EjefeWZ6x6z79AR5ixaUWPlm3B9XUdMJmTEaL755hulo9RLTz75JJvXLGXtT9efjN2fmsnctdtqrHwTdIpLy/Ab9QyzZ89Gkq7/O0q4cy+++CKL58gkf3P9D7n2nzjN/I37aqx8E3S0Wi2eE99m1qxZPPTQQ0rHqZf69elDU8cyvv/fhOses//EaeYn76+x8k24vknv/o1Xy87ExsYqHaVeCRk6BLeik8x8IuS6xxzIyGPB1tQaK9+E67vvu6VY+rdn4cJFSkcxKEVX2J3IK6GtnzOj2nnj5mCDhYUFNlYW5BZWsPWEbjOIIa09Ce/sx8SZ20l4rCt/b85kx0ndzPKY4Ab0aurO47P38kBv3X30juQUsfH4eXo2caOySsuBU4Vk5ZcyrI03g1vXbJudt/s029Iv9fe7O1jzYsjN7e5TW4LbBRHcLujGB96irFPZ/PLH39Vf9+vdi2FDBhr8PIL5aN+qKe1bNTX4uFk5Z/ktfnH11327tGdo7y4GP49gPtq3aUX7Nq1ufOAtysrOYdbs+Oqv+/boQsiA3v/xCEG4Oe2aBxhlR9RTZ87z+4J11V/36dCSId3b/ccjBOG/tWviS7smhl9JfiqvgD+Xbq3+une7JgzudP1VIIJwPUat0WXbqr/uHdRY1KhwR4ICPQkKNPxtv7LPFfHX2gPVX/dq5ceg9uL+2qZK0Qm754Y0Zf+pQj5bfpxH+wUyb/dp/ryvI9+tPUFxhe6eAi72uojeTrolubbWlpRf7IGuqNItDiyvurRIUKOFID+nGi2zPZu6seVEPk+q9/HnvR2wttLdg62ySktZ5aV+6svHqe/8G/r956q9yHsfJubvWQY9Z2FhEUNDJ/L21JcZPmQQTzz3cvUNTWd+9yVWVlYGPZ9QP/j7eP3nqr27Xnqf2V+8abDzRSeuZu2W3eTmnedJKYyhvbvwxlezWLAqmY3R3+HsePU9mgQBwN/P56ZW7akefwn1z18Y7LwlpaVM/2IGxaUl9OjUgXsm/3dblyDoNfR2v+aqvXvfnsHf0w27ArWwuJTQ5z/j9QfCGN23E2/9FMfC9TtImvkWzte4n5ggXK6hp+s1V+3d/4nMn68ZbmXlyh1HWLT5ANl5F7gnpCuje7blpZ8XoNFosbe15oMHR2NlJW7GL1ytoafrf67au//T6OqNHQxh04F0Zi7aRIC3G+89MBKA5duOsGL7YSwsLHhx8kB83Ot3q6Bwe/w8nP5z1d6DPyzn96cNdx/DVXtPsnh7Gtnni7lrQBtGd2kKwN9rDxCbfJT5U8Tr1v+i6ITdX5szOX62hEqNFm9nW3xcbPlh3Qm2pRfQ1vfqG8NfaeGeHBbvy6Vfi0s3KW7j64S1pQXTFh2hvFLDo/0a8ffFDSr8XO2qJ+sAJnXxY1IXv6vG1Tt8uohv1pzgUE4Rf2zKrF7FZ4qi4+ayam0STk6OvD3lZRYtXc7O3Xu5cKGQbz77AHVcAqvWrsfZyRFPT09sbKzZsm0H//w6g69//Jn8/AK8vbzwcHfjyUcfrB73g8++4mzeOfLz8/n0/Wl89f3PFBUV4eXlyZuvvnhLGT/47CsiJ40HwM7Ojt9/0u2q+MJrb5J1KptGgab7/AqGE7t4DatTduHkYMcbT9zD4nUp7D50jIKiYr6c8iQxi9eyZvNOnBzt8XR3xcbamq17D/HHR6/x3T8J5F8oxNvDDXdXFx6PunQvj49nyuTlF3C+oIiPXnqEb/+eQ1FxKV7urrz++F03nS8qdAhRoUM4V3CB17/4laG9u/DBCw+Te3EDAsH8xMxfzOr1KTg6OvDWC0+QuHIdu/YfouBCEV9Pn0L0/MWsXr8ZJydHvDzcsbG2Zsuuvfz17Ud8++s/nC+4QAMvD9zdXHnivksv1j/6diZnz+WTX1DAx2++xDe//E1hUTHenu5Mfe7xm87367/xlJbpNvnx9/O58QOEeiduZQprtx/E0d6W1x8IY0nybvYcPcmF4hI+e1YibmUKa7YfxNnBDg9XJ2ysrdh2MI1Zbz7CD7EryC8sxtvdBXcXRx6dcOkN56d/LSSvoIj8wmLefzKCH2KXU1hShpebM6/dd2v35vrs70VMGtqz+uv3nphM7rkb77Qp1C/xSbtZtzsVRztbpqiGsGTrIfYez+ZCcRmfPDaG+HW7Wbs7FScHWzxdHLGxsmTbkUx+eTGCGfM3kl9UipebI+5ODjwSeul+zJ/HrCHvQjH5RaW898Aofpi/gaLScrxcHHkl6uZbH0O6tCKkSyvOXSjms5g19GnXhPKKKr7/30R+TdzMmt3HCOli+BXagumJT9qjq1V7W6aoBrN0y2H2pF2s1UdDq//cyV5Xq9bWlmw/kskvL0zmxwXJ5BeV4u3qiLuzAw+PvnTt+zx27aVavX8kP87fSGFpOV6ujrwSOfim8/UOaoy/lwu/JOp2/dRoNPySuJmWAV7YWFnh5iQ+CDEXCZuPsu5AFo621rw6oRvLdqWzN/0sF0rK+ejufszZfJSkA5k42dng4WyPjZUl24/n8PNjIfy0bDf5xeV4udjj7mTHQ0PbV4/7xYLtnCssJb+4nHejejNj6W6KyirxcrbnpbCu/5GopqHBjRga3IhzhaV8sWA7o7s05cip8xSU6M4r/DdFJ+zu61VzguaziW2ve6x+M4mobrrdo3ZlXOCB3gE1dqHVH/PW6Jr3m7vd+8+19nXih6i60Rpy7Hgawe2DGD9mFO7ublhaWmJjY8Pp3Fw2bt4C6DaLuCtyEoNHT2DN4rnM/O0vUrbpbmwePn4s/fv0QnX/o9UTdgcOHWZt0kb69elJVWUlu/fuJyMzkzEjhzMipOaLn5j4uWzacmkZuIeHO2+99lL11wnzF9G3Vw/yzp2r8bh9Bw5SWlomJuvMSGrGKYJbNmXc0D64uzpjaWmBjbU1OWfPs2mnbnn28H7dUI0ZyvAHX2H575/xa2wiW/ceAmDisP707RrMPa98WD1hdzA1naStu+nTpT2VlVXsPXyczOwzjB7Yk2F9a96YPG7JWjbvvrQM3MPVhalPXH1T9A9/+pfHosTNogVIPZFB+7YtCRs5FHc3V9311dqanDNnSd62E4ARg/shTRxDyOQHWRn3O7/8E8uWnXsBCA8dRr+eXbnryVeqJ+wOHEllbfJW+vXoQmVVJXsOHCYjK5vQkIEMH9S3xvlj5y9h0/bd1V97urvyxvOX7n168Ggqo4YMYMywgUx+5HmG9r/+rlpC/XQ8K5d2zQMY278z7i6OF6+rVuScK2DzvmMADOvZnqjhvRn17Kcs+fZVfpu/lm0H0wCYMKgbfTq24v53fqqesDt04hTrdx6md4eWVFZVsS81g4ycPEb16UhIj/Y1zh+/agspF88D4OHqxJT7L31iPn/ddnoFt+BcQZGRnwnB1B3PzqNdE19CewXh5uyApYUF1taW5OQXknJQd6P9kK6tiBzUidCpv5L44SP8vnQL249kABDWtz192jXhwU/V1RN2h07msH7vcXoHNaGySsO+E9lknslnZPc2DL1icm3O+j1sOXiy+msPFwdevWJC789lW4lP2s2rkUPwcHGkfRNfXv81kQslZdW7ggr1X9rFWh3Tqy1uTg6666qVJbnnC0m5WEMhXVoRMagjY974jUUfPMQfS7ew7UgmAOP7tKN3uyY8+FlM9YTdoZO5bNibRq+gxlRVadh34jSZZwsY0b01IZ1rvl+ds34vWw5dVqvODrwaNfi6eXPziziTX0T0m3ezcNMBYtfu5p5hNz+pItRdx3MKCArwJLRrU9wc7XTXVStLcgtK2HL0NKCbNJvcpxXjPp7Pgilh/LlmP9uP5wAwrntzerf24+EfV1RP2B3OOsfGg6fo1cqXSo2W/SfzyMorYninxgwNblTj/Akpx9h68TwAHs52vBxW8/3X32sPMGfzMV4O60pFpYaZy/fw0d392HpspTGfmnqhzv7WudYuseZs6ivPs3vvfqZ98AnPPfU40fFzmav+i0++/I6i4ovbkrvqtjv28dZt8WxnZ0tZeRkA5eW6LaLLKyqqx9RoNAS3D6rROtu/Ty82bErhroceZ17031hb60qoorKS0tKy6uPKyspr5Fu7fiPl5RUcOnoUB3t7hg8ZxL4Dh5j52198+/mHhn46BBP22qMSew4fZ/oPf/HMPROJXbKWuG/f4fNZMRSVXNyW3Fm3wraBpxsAdrY2lFXXaGWN/wJoNFrat2pao3W2b5f2JO/cz32vfUz8t+9gba1rua6orKK07FKdl11W87qxNEz54hfGDelL13biU3QBpvzvUfYcOMy7n//As4/cQ8z8Jcz57Vs++2EWRcUlALi66D48auClu9eI7vqquw7qr6uXX1+1Gg3BbVvVaKHt16MLG7fu5J5nXiPht29rXl/LLru+ltes2Ub+fnh56D6o0de5YF5euXcMe49l8P5v83h68jDiV20h+sNn+PLfxRSV6GrH1UnXzt/AXfdawM7G+tJ1tVJ/Xa2qHlOj0dCueUCNltk+HVqyac8xHpz+CzEfPlPjunp5XV5+fQZI2nmIiopKjpw8jb2dDUO7t8PO1sbQT4NQB7wcMZi9adl8OHslT43ry5z1e5DfuIev4tdRVKqrIdeLLdIN3HSvBeysrSi7WJsVlbr/lldeVqtaLe2a+NZome0d1ITNB9J5+IsY1G/cjbXVZa8BLqvPsitqFeD+Ed25a2gXHvhUTf8OzXgyTPchyucxa2gZ4H3V8UL99FLEIPalZfPh7FU8GdaHOev3MnvqXXwdn0Rxqe73u6ujHQDeF2vV1sb60uvUypo1C7paDWriU6N1tndQYzYfTOfhL2KR37irulYrK6soK79Un1deV6/k6eKIv5crFhYWeLo4knkm/06fAqGOeHFcV/adPMtHCVt4YkQHElKO8s+zo/hm0U6KL77ncXXQ3V7M20X3WsDW2qr6d35FVc3/wsVaDfSo0Trbq5UfKUezefSnlfz73MjLbjOmoeyyOi+77LWE3r2DglD1a8PDM5bj4mDLmQulTPl3A3vTz7Bgayrjujc35FNSr5jkhJ1+t1dDSjtbwowk3Sd3Kw6dZc1zPavvj1dSUcXnK45TUqGhS6ArEV39WHXoLCsPncXCAp4b3JR9py6wZP8Zsi+Uo+rmx6h2DQya7079POtPjqSmUllZhU8Db/x8fPjs6+/ZtGUr7du1ueHj4+fOZ97CRIYMvLQFc/ugtthYW/Pi629TXlbGc08/zszf/gIgoGHD6jeTAHdHTebuqMnXHf/rTz8A4M9/1Xh5eVJRUcmYSRLjRo/k+VffZMpLz9K4kbjZpTn4JWYRx9KzqKyqooGnO77eHnz5eyybdx+gXcsmN3z8nOVJzF+1kcE9OlV/r13LJthYW/PqZz9TVl7B/+6ZyKy4REB3D7zLJzGksUORxl5/97pPflGTvGM/JaXlHEhN5/Gosbp8uw7wyqc/M/Xxu2jUULQdmpOZf8dwNC1dV7Nenvg28ObzGb+zaftu2rW58Qru+EXLmbd0FYP79qj+Xrs2LbGxtubldz+jrLycZx+5h1//jQMgwM+nxvX1rvCx3BV+/dWeD0nhvP7BV6jnLWZof7HJhTmaNW8NxzJzdDXq4Yqvpytfy0tI2X+MoGb+N3z83DXbWJC0g4FdL3U6BDULwMbaiinfR1NWUcnTEcP4fb5ugwp/b/ca11XViN6oRly/9j57VnePsX8Xb8DTzRk7W5uL+VKZ8n00r90/lka+Xrf71xfqkN+WpJCadZbKKg3e7k74urvwzZwkthw6SVDjG28EMHfjXhZu2s/Ajpfe3AU19sXayoqpsxIpq6jiqbC+/LFU113i7+laPQECEDW4M1GDO193/Og1O9l6OIOiknImD+wIwEfySnLzi3BxsKNPuxu/ThHqh9+XbOHYqbNUajR4uznh4+7MtwnrL9bqjV8Hztu4j0WbDzCgw6VFJkGNfbCxsmLqb4spr6jiyXF9+GOZbjOVhl41azVycCciB3e6aly9gydz+DJuHQfTc5m1OIWHR/dkcKfmTPk1kbwLxXz40Og7+NsLdckfq/eTejqfKo2WBi4O+Lg68t3inWw9dpqgAI8bPn7+llQWbU+jf9tLHW9tAzyxsbLkTXkj5ZUaHh/Rgb/W6DqUGno41rjNWESfVkT0uf4ih9jkI2w9dpqiskrCe7WkYxPv6nvkPfjDcjFZdwMWWq32tnZacHSw5/VhjXmk761Nsrw+7zAvDm1KAxdbHv5nD99FtuPbNSe4UFpJax8n7u8dUD1hp//vyXMl/JacyZujWvDB0mPVm0VMH9sKO+tbu/FrdkEZHy9L5evJl3Ze/XXDSdLySqis0jImuAH9mntw31+7adHAEWtLC14d3rz6POeKK/h6dRrvjrm1lTedPt7E86+9ydSpU6u/5+rqyttTXuKFZ574j0ca37sffcak8WONshttbWvctjOPPf4E06ZNUzpKveLr48OTUaN57VHD3dj5drw/4x8mDutvlN1oa1vwuEeIkO7h448/VjpKvdK0aROksJG8+8ozSkcB4L0vZxA+ZphRdqWtLV1HTCZkxGi++eYbpaPUS08++SSb1yxl7U9Tb3ywEXz4+3wmDOpmlF1oa0NxaRl+o55h9uzZSJKyv6PquxdffJHFc2SSv3lakfN/LK8irG97o+zwWRu0Wi2eE99m1qxZPPTQQ0rHqZf69elDU8cyvv/fBEVzfKxeTVifdnW2Vi836d2/8WrZmdjYWKWj1CshQ4fgVnSSmU+EKJrj07lbGde9uVF2o61t9323FEv/9ixcuEjpKAZV6yvsJnTyIWHXaXo3c6dToAsWFrpfYG4O1szdfZr7/2Njh7VH8jiZV0obXyeyC8pIzyuhlY9uCfLuzAvE7ciucfwLQ5vi4Viz5eLfLVlI3RvW+N6R3GKGtvFieBsvHvxnD218nThTVMHf97dk8b4zzNl5Gql7Q/7dksXcXad5YWhTwzwZJuK/dosVBFPyX7vFCoIpupldYwVBSdfaJVYQTNG1dokVBFP0X7vFCoIp+a/dYgXTUOsTdr2aujNrYwZZ+aU80q8Rqw6dpWUDJyK6+jH+5+01jrWw0P23uFwD6HqpezV145F+ja4cliqNbtXd5a5cOlil0bI1PZ+XQmre/87fzQ4PR2ssLS2wtrTAw9GGhq52WFhY4OFoTVa+7r5ad/fwJ7KrH4/N3kff5jdeXmpKIu99mJi/Zxll7CeefRkXF2c+++Cd6u+VlJTwzoefUVJSQo9uXYgMH88Tz72MpaVupeLM776kvLy8xjH3SpFGySfULXe99D6zv3jToGOeyDxN5AvT6dmhLb06teWesEtblf89bznxy9bRyM+He8KG0atTEG98NYsFq5LZGP0dzo4ORCeuZu2W3eTmnedJKYyhvbsYNJ9QN6kefwn1z18YdMy0k5lEPPoCPbt0oHfXTtwbcWky5XTuWaa8/wW2tjaMHNyf8DHD6TfuLjoHB+Hl4c70V/+Hem4iazduIedsHk89IBEyQLTICnDv2zP4e7rhJ49/iF3B8awc3JwdeevhCdXfz8kr4I0ZsdjaWDG8ZwcmDO7GWz/FsXD9DpJmvoWzoz0bdh1mZsIq3F2cmDCoG0O6141NvgTjuv8TmT9fM/xKyRnzN3I8Ow83J3veuHtYjT8rLClj7Bu/MUUayqgebQh55Sc6NvfH08WBt+4ZTklZBR/Jqygpr6BbqwBUQ8RrAAHu/zSaP1+NuvGBt2jGgmTSsvNwdbLnjbtqrr4qLClj3Ju/M0U1hBHdW/PyzwvRaLXY2VjzwYOj2JuWzafRa3B1sqdnm0Y8OKrHdc4imJMHf1he3YJqSD8t20NabgFuDra8Hn6p1jYeOsWslftwd7IlrHtzBrUPZMq/Gygtr+R8URlfPziIxTvSmLcllUAvZ6L6tqZHy7q/GtVYbq2f1EDa+Dpx/GwJge72BPu7sPzgGX5Yd4LyKybchrT24sOlx5izU7dybnArTw7lFPFu4lFeSThIfsmlGxx3aeTKJxPa1Pif5xWr65YdPENI60v3SHlv8VGy8ku5u4c//6ac4vV5hxnQUtevPbClB28uOMw/W04xsZMv8TuymTr/MK8kHGJiJ9MqqP+9NIXTObkATL77IYqLi3lz+kc898pUfvr1jxrHRt77MABpJ9J55Y13qKqq4tU33+XFKW/x1POvUnbZjc1vxj/qWPr0unpm/pc//qGsrIyqqir8GzbEzs6O33/6jlk/foOriwtZp7KvOkao/57/8AdOn9XtFKx64T2KS0qZ9t0fvPjRj8yMWVjj2Lteeh/QTba9/sUvVFVVMfXLX3nl05/433vfVd/Q/2Y5OdhTUlpGE/+aP7+WlhY42NlRUVlJgK/uZtIfvPAwvTtfahGPCh3Cj9OeY+Z7LxKzeM2t/rWFOujZNz/kdO5ZACIfe4HikhLe/vQ7nn/7I37+O6bGsarHdTtip53M5LX3v6CqqoopH3zJS+98ytOvv3fVJjw34uTgQElJKU0a1bz32O/qObzw+P38/Nm7RM9fDICjg4PuGuqnu5+OakIoMz6dxq9fvEfMxWOE+u3Fr/8lJ68AgLvf+pHi0jKm/5rAy9/M5td5a2oce+/bMwA4ceoMb/wYS1WVhjdnxPLad2qe/+LvqzY0+S97jp5kw65DWFtZ0cDDpcaf/bkoiWejRvDDqw8QtyoFgPeemEyv9i2qj5m7dhvvPxnB1y/ewy9zV9/OX12oY17+eQE55wsBuPfj2RSXlfPeP8t5deZCZi1OqXHs/Z/IAKSfPsdbvy+hqkrDW38s4fVfE3lhxvxrbhZxPXuOn2LDvjSsrSxp4OZ81Z9/HruW8AEdqr92sLWhqkpDQ09XQLdrbFlFJVWaS98T6rdXfl5YXav3faymuKyc9/9ZwWu/LOK3JVfU6qfRAKTnnOOtP5ZSVaXh7T+W8vqsxbw4Y8Et1ere49ls3JeGlZVl9aYrl/sidh0T++vu836+sISyiiq+ejKMVgHerNmdys5jWTwc2pMf/jeBTQfSb/evL9Qhr/69npx83QaTD3y/jOKySj6IT2HKvxv4ffX+Gsc++MNyANLPXGBa9CaqNBreidnEG7M38vJfSdfcLOJ69qafJfnQKawtLfB2dajxZwu2pvJuVG8+v28Av63SZTh9vpivHxxE79Z+HM/Jx9LCAntbKyoqNfh7Xl3rwiW3vcLO0tKSyirNjQ+8hstXuDXxdGDmXboLz9MDdTdy1W84cWXrKsBnE9te9b2bNfqKjSLeGn3pZuHfRNS8f9uDfWrem29SFz8mdfG77XNXVGmqV5cZWtTkicixcxjQtzfdunTCwsICrVaLu7sb6vi5PPHIA9d97LJVa0g7kU77dm0pKsomNe0EQW1aA7Btxy7+jY6rcfybr76Ip6dudWHaiXSOHU/j/rui2Lv/YI3jDh46wugRIYwZNZzwux4gZPAAAPYdOEhpaRmNAgOue4xQf0WOGkRM4hr6dQuma/tWF2sV3F2diV28lscir39j/RXJ20nLzKZdy6YUlZzleEY2bZs3BmD7/iPIC2tuC/7643fj6aZ7E9nY34dVf35BeUUFk599lwHdO1YfJ40Zyt3jhpGedZr3fvybn6e/eN0MH/70L49FXT+jUH9EhY1CPS+RAT270a1j++rrqoebKzHzFvP4vddfEbx8XTJp6Zm0b9OSrOwSUtMzCGqlu6Hu9t37+XdOzcnpN55/HE933Y7ITQL9WZPwJ+XlFYQ//CwDe1/6QCQ98xSN/HW/F60sdTemXqr+BUtLS5589V1ST2TQvInud9f7X//E4/ca/pN/wfREDO1JzMrN9OvYmi5tmlx6DeDiRNzKFB4ZP/i6j125dR8nTp0hqFkAp86cJ+3UGdo00dXYjkMnUC9LrnH8a/ePw9NV98L60IlTNGnozUdPR/Hqd2pSM3NoHqCbOM7IySPQV3c/HCtLi2ue+4nwEL74JxE3Z0cKikru9GkQ6oBJAzoSt243fds1oXOLACy4+BrA2YH4pN08PLrndR+7audR0k+fI6ixL8V5BaRl59Gmka7edh7NJHrNrhrHvxo1GA8XRwAOZ+TSxNeDDx4azZRfF3H8VB7NGurqc0HyPnq2bcT5C5dqcP57D2JpaclzP8wlLTuPQxm5DO/WilHd23D3R7MZ1KkFQv02aUAHXa22b0rnlv66WgXcnByIT9rLQ6P+q1aPcSLnPEGNfThVWkBa9jnaNNK9B915LOvqWo0cVF2rhzJyaezjwQcPjWLKr4lX1Op+erZtxLlCXa16uDjSvqkvr89azIXiMmxtrBjcqQVPf5vAdwkbeDS0lxGeGcHUhPdqyZzNR+nTuiGdmjbQ3W4McHe0Y87mozw45Pqr11fvzeBE7gWCAjw4db6YE7kFtPbXvc/flZZLzMYjNY5/OawrHs66XbyPnDpH4wYuvKfqw9TZGzmeU0AzH90HGo8OC+brRTtwdbCloET3oXXbAA/u+24p5ZUaHhzSnk5NGhDVrzUnz1zgk7lb+fahwYZ/cuqJ256wa9qkCXP3nCKqW8Or7hMnXKLVapm3O4fzRWU0bdrUKOfo36cX3834hZOZWTz35KMsXraStq1bcq8UycCRNe9NY3Gxz7ioWDcTr9Fo6N+3N88++ehV41ZpqigtrbniTntZo/HKNUmkn8zgrfc+Zv/BQ+zZd4AO7XUTn4EB/nh6emBpaYm1la7Mtu/czczf/uLbzz+87jFC/da3azA/zJ5HRnYuz9wzgaXrt9CmWSB3jxtGyP0v1Ti2ulZLdC3pGo2Wfl2DefruCVeNW1WlobSs5sqQy/fT0Y9la2ODzWU7GwLVE+le7m6UXmcllEajYcoXvzBuSF+6tqu7mwcIN69fz658/9tsMrKy+d/D97Bk1XratGjGPZPHMST8/hrH6uuruFj3Ilqj0dCvZ1f+9/DdV41bpami9IqVzNesVVsbbKxrXhcb+fuRcSobD3dXqjS6T0H19dvA25Oi4mI0Gg2vvvcFYSOH0LWjaDE0B306tmJG/Eoyc/J4avIwlm3aQ6vGftw1si8jnvmkxrHVtXrxd7tGo6VPx1Y8NXnYVeNWaTRXrbi7vFYDfTw5nqVb3e/h4khRyaW6DmjgQWbOOTxcnKjSXHtvsxaBPnz90r0UlZTx+Ee/3cbfXKhr+rRrws8Lk8k8k88T4/qwfNthWgd6oxrShVGv/1Lj2OrXABd/L2u0Wvq0a8oT4/pcNW6VRkvpFauYLt9SL8DbjePZeQB4ODtQeNlr2/V70yivrOJo5hnsba0Z0rkFdja6a6+3mxOFpeUEeLvi6eJ48fWqIs1JQi3r3a4JPy3cROaZAp4c15vl24/QKsAb1ZDOjH695i2G9B9JFJXqrpdarZY+QY2vXatVGsrK/7tW0/S16uJAUeml16Ub9qVRXlHF0awz2NvaMLhzC568eI7PY9fSyt+bH+Zt5Kfnwwls4M69H8uE9rr9hS5C3dC7tR8zV+whM6+Ix4d3YMXudFr5uRPVrzVjPpxX49jq241dfM+k0eoe//jwDlcOe/F2YzVX3F3+29zf05njObrV/R5OdtX1D9Dc143P7xtAUVkFT/+6mrMXSsnMK+Sv/41kwdZU5m9Nrd5V1tPFntLym1/ZZ45ue5bkz7//YVjIUNq/vx47G6sbP8BMVWm0VFZpuPuuu4iIiDDaedq3a8v2nbtp3CiQysoqXp/2Htmncyi/4o3hqOFDmfrOB9UvhEaGDOGZRVN45Y13uHChkI+nv4X7xZUePbt1pWe3rtc958P3383D999N2ol0fpj5Gx3aB/HaW9P53xOP8MgDd/PaW9NRx84hZPAACguLGDNJYtzokTz/6ptMeenZq44RzEO7lk3Zsf8IjRr6UFlVxZtf/8bpM+coq6j5xnBEv+68/c3v1b9dhvftxnMfJvP6F79QUFTMB88/jLurrrWlR4c29OjQ5rrn3LB9L//MX0FlZSVjh+he3Lzx1SyevCuMJeu2sOvgMc4VXOC5+yYB8OXvsWzedYBXPv2ZqY/fxT/zV5C8Yz8lpeUcSE3ncbHKziy0b9OS7Xv20zigIZWVVbzx0ddk5565ahJj5JB+vPnxN9XX1RGD+vK/ZR/y2vtfUHChiI+mPo+7m+5Txx6dO9Cj89UvjPTWb97OP/HzqaioZNwI3U2rX//gK55+6C4eVIUz9cOvsLe3I2LsSM6dL+DFaR/j6OiArY0NHYJa8+E3P5O8dQclpaUcOJLKE/eJVXbmIKiZPzsPp9PI14vKKg3Tfo4nJ6/gquvq8F7BvDNzTvWL9mE92vPihp288WMsF4pLmP74ZNwvrvToHtSM7kHNrjxVtd4dWhK3KoWpP8ZQWl5Bh5aNeOunOJ4IH8r9Ywbw1s9xONjZEj5Et0r0a3kJKftTmfJ9NK/dP5Yz5wv5Y+E6LhSX8tp94ppqLoIa+7DzWBaNGrhTVaXhnb+WcfpcIeVXtGIN69qKd/9ehsXF6ZCQLi15efNC3vp9CReKy3j3/hG4OevasLq1DqRb68CrzqXXO6gJc5L28OZviymtqKRDs4a8/cdSHh/bm08eHQPA7JXb8XR1oqSsgme/n4ujvS221lYEN/XD192Zt/9cSty63QzqKFbXmYugJj7sOnaKwAbuVFZpeOev5eScL6S8suaE27CurZj+9/Lq1wBDu7QgMeUgb/2x9GKtDsfN6WZrtTEJ6/fw5u9LKCuvJLiZH9P+XMZjY3rx8SOhAMxetQMvF0fsbKz5SF7FmfwiXBzt6N2uCeWVVUz7aznO9rYEN7v9zjChbgkK8GTXiVwCvZyprNIwPW4zOQXFV91uLKRDI96LS6l+DTA0OJBX/05jWvQmLpSUMy2yF26OdgB0be5D1+Y+1z1nr1Z+JKQc4211MqUVVQQ39uLdmE08OiyY3IIS/lp7gMLSCl4e1w1PZzssLSx45a8kTucXMz2qD3+u2c+e9LOcKyzj6VEdr3seASy0l39ceouOHTvG+vXrKSwsNGSmesXCwoJGjRoRGhqKlVXNiU1XV1fenvISLzzzhELp6p/GbTvz2ONPMG3aNKWj1Cu+Pj48GTWa1x41/I2gzVXwuEeIkO7h448/VjpKvdK0aROksJG8+8ozSkepN7qOmEzIiNF88803Skepl5588kk2r1nK2p+mKh2lTiouLcNv1DPMnj0bSRK/o4zpxRdfZPEcmeRvnlY6Sp2k1WrxnPg2s2bN4qGHHlI6Tr3Ur08fmjqW8f3/Jigdpd6Y9O7feLXsTGxsrNJR6pWQoUNwKzrJzCdCbnywcFPu+24plv7tWbhwkdJRDOqO+hBbtGhBixbik6bb5erqSkbWKaVj1BuFhUWcO5+Pq6u4IbChubq6knn6jNIx6o3iklLyzheIWjUCVxdXMk+dVjpGvVFWVk7umTxRq0bk4uLC6bx8yisqsbURt4e4VZm5uo2MRI0an4uLC2fyiygtr8DeVtwO51ZlnMkHRK0ak4urK1mnj6HVaqtXvAm3r6pKQ/a5QpqJmjU4Vzc3sjIPiVo1EI1Gy6nzJQS1dVM6isGJV4YKCg8P59vvv6eqspKGfmLZ8p2oqqpiweKlWFtbM3y44betNnfhkybx6aefYmlpSaBvgxs/QLiuKk0VS9dvpbyyilGjRikdp96ZNHky77zzDra2NjQNDEC8Brp9Gq2W5Ws3UlBYxJgxY5SOU2+NHTuWb775hvBXv2Fwt7ZYWoh7ZN2s8spKopdvJjAggB49eigdp94LDQ3l008/IfydvxjapQVWRtpMrT6qrKwibv1e/Hx96NPn6nubCYYxafJkHnvsMR79Mo72TX2rW6qFW6fRakk5eJJDJ3P4ZMIEpePUO+Hhk7hv7jwenrGCjk28Ra3eAS1adqTmsistl6mfTFQ6jsHdUUuscGc0Gg0vvvgi8+fP58KFC0rHQaPRUFBQgJOjIza2tjc8/sKFC1haWuLkpPxWzBYWFgQGBvLDDz+IF0JGoNVqmTJlCnGxsRQUFCgdB61WQ35+AY6OjtjeRK0WFhZiYWFhMrUaEBDA1998w6BBg5SOU+9otVqmTZvG7Nn/kp+fr3QctFot+fkFODg4YGd3M7VaBICzs2nUasOGDfnss88ZMWKE0nHqtUWLFjH19SlkZZ2i5m2da49WC/kF+TjY22NnZ3fD44uKitBqtTg7O9dCumuzsrKiVavW/PHnn6Ljo5asWLGCl158gVOnTqHUWwitVktBQQF2dnbY29vf8PiioiI0Gg0uLi61kO7arKysaNasGb//8Sdt24qNAIzp22+/5cfvv+ds3lmlo8DF66qdrS32Dg43PLy4uJjKykqTWYXp6+PLG2+9JW43YCQ///wz33z1JblncpX61V9DfkEBtjY2ONxMrZaUUFlRYRq1agE+DXx45bUpPPDAA0qnMTytIFz00UcfaR0cHLQXLly4qeM//fRTrb29vTY/P9/IyQShpq+//lprY2OjzcvLu6njv/vuO621tbX2zJkzRk4mCDX9/PPPWktLS212dvZNHf/rr79qLSwstFlZWUZOJgg1/fXXX1pAe+LEiZs6/p9//tEC2rS0NCMnE4SaYmNjtYD28OHDN3V8fHy8FtAePHjQyMkEoaaFCxdqAe3u3btv6vjExEQtoN2xY4dxgwnCFVasWKEFtJs3b76p41evXq0FtBs3bjRyMkGsZReqybLMuHHjbvrT8qioKEpLS5k3b96NDxYEA5JlmVGjRuHh4XFTx0dERKDRaIiPjzdyMkGoSZZlhg4diq+v700dHx4ejrW1NTExMUZOJgg1ybJM//79ady48U0dP378eBwcHFCr1UZOJgg1ybJMt27daNWq1U0dHxoaiqurK7IsGzmZINQkyzLt2rUjODj4po4fNmwYXl5eolaFWifLMs2bN7/p20sMGDCAhg0bilqtBWLCTgBg//797N69+5aWPDdu3Jh+/fqJH1ShVqWmprJ58+ZbqlVfX1+GDh0qalWoVZmZmaxdu/aWatXDw4NRo0aJWhVq1ZkzZ1i+fPkt1aqzszPjxo0TtSrUqvz8fBYtWnRLtWpvb8/EiRORZVmxNl7B/BQXFzN37lwkSbrpTQVsbGyYPHkyarUajUZj5ISCoFNWVkZ8fDwqleqma9XKyoqoqChiYmKorKw0ckLzJibsBADUajVubm6MHj36lh4nSRLLly/nzBmxg6hQO6Kjo3F0dCQsLOyWHidJEmvXriUrK8tIyQShptjYWGxsbAgPD7+lx0mSxObNmzl+/LiRkglCTfHx8Wi1WiZPnnxLj1OpVOzatYsDBw4YKZkg1DR37lzKysqIjIy8pcepVCoOHz7Mzp07jRNMEK6wcOFCioqKUKlUt/Q4SZJIT09n06ZNRkomCDUtW7aM8+fP3/K9CiVJ4vTp06xdu9ZIyQQQE3YCupv3yrJMeHj4Td1o+nIRERFotVrRaijUGlmWCQsLu+UNJMLDw7GxsRGthkKtkWWZ0aNH4+7ufkuPCwsLw9HRUbQaCrVGlmVCQkLw8fG5pceNHj1atBoKtUqWZQYMGECjRo1u6XEhISF4e3uLWhVqjSzL9OjRg5YtW97S4wYMGEBAQICoVaHWyLJMcHDwTbdu6/Xo0YMWLVqIWjUyMWEnsG3bNo4ePXpbOwD5+PgQEhIiflCFWrFv3z727NlzW7Xq7u7O6NGjRa0KteLYsWOkpKTcVq06OTkRFhYmalWoFZmZmaxbt+62atXe3p7w8HDUarVoNRSMLjc3lxUrVtxWrdrY2BARESFaDYVakZ+fT2Ji4m3VqqWlpWg1FGpNUVER8+bNu61atbCwQKVSER8fT1lZmRHSCSAm7AR0s+o+Pj4MGTLkth4vSRLr1q0jMzPTwMkEoSZZlnF3d2fkyJG39XhJkkhJSeHYsWMGTiYINanVapycnBg7duxtPV6SJPbs2cO+ffsMnEwQaoqOjsbW1paJEyfe1uMlSeLIkSNs377dwMkEoaa4uDiAW27d1pMkiZMnT7Jx40ZDxhKEqyQkJFBRUXHLrdt6kiSRk5PD6tWrDZxMEGpasGABxcXFt9y6rSdJEufPn2fp0qUGTiboiQk7M6fRaIiOjiYiIgJra+vbGmPChAnY2NgQHR1t4HSCcMmdtG7rjR07VrQaCrXidlu39UaOHIm7u7tYZScYnSzLhIaG4ubmdluPHzp0KD4+PqJWBaOTZZnhw4fToEGD23p8v379CAwMFLUqGJ0sywwcOJCAgIDbeny3bt1Eq6FQK2RZpmfPnjRv3vy2Ht++fXuCg4NFrRqRmLAzc0lJSWRmZt7WMlg9d3d3QkNDxQ+qYFRbtmwhNTX1jmrVycmJ8ePHi1oVjEq/Mu5OatXOzo7w8HCxq6FgVEeOHGHr1q13VKvW1tZEREQQHR0tWg0Fozl58iRJSUl3VKuWlpaoVCpiY2NFq6FgNDk5OaxcufKOatXCwgJJkpgzZ45oNRSM5ty5cyxevPiOahV0q+zmz59PUVGRgZIJlxMTdmZOrVbTuHFj+vTpc0fjSJLE1q1bOXr0qIGSCUJNarUaX1/f227d1pMkiX379rF3714DJROEmtRqNR4eHrfduq0nSRKpqals3brVQMkEoabo6GicnZ0ZM2bMHY0jSRIZGRmsX7/eQMkEoabo6Gjs7OyYMGHCHY0jSRK5ubmsWrXKMMEE4QqxsbFYWFjcduu2niRJ5Ofns2TJEgMlE4SaEhISqKysvO3WbT2VSkVxcTELFiwwUDLhcmLCzoxVVFQQGxuLSqXC0vLOSmHs2LE4OzuLVkPBKKqqqoiOjiYyMhIrK6s7GmvkyJF4eHiIVXaCUWi1WtRqNZMmTcLW1vaOxhoyZAi+vr6iVgWj0N9mYPz48Tg6Ot7RWH369KFRo0aiVgWjkWWZMWPG4OrqekfjdOnShVatWolaFYxGlmVGjBiBl5fXHY3Trl07OnbsKGpVMBpZlhk8eDD+/v53NE7z5s3p1auXqFUjERN2ZmzFihWcPXv2jpfBAjg6Ola3Gor2LcHQkpKSyMrKMkit2traMmnSJLGroWAUKSkpd9y6rWdlZUVkZCTR0dFUVVUZIJ0gXLJnzx72799vkFq9vNWwoqLCAOkE4ZLDhw+zfft2g9Tq5a2GpaWlBkgnCJekp6ezYcMGg9QqXGo1LCwsNMh4gqCXnZ3NqlWrDFqrixcv5ty5cwYZT7hETNiZMVmWadu2LZ06dTLIeJIksX//fvbs2WOQ8QRBT5ZlmjZtSu/evQ0ynr7VMCUlxSDjCYKeLMs0bNiQQYMGGWQ8SZLIysoiKSnJIOMJgp4sy3h6ejJ8+HCDjCdJEmfPnmXlypUGGU8Q9NRqNS4uLnfcuq0nSRIFBQUsXrzYIOMJgl50dDT29vaMHz/eIOOpVCpKSkqYP3++QcYTBL3Y2FisrKyYNGmSQcaLjIykqqqKOXPmGGQ84RIxYWemSkpKSEhIQJIkLCwsDDLm8OHD8fT0FMthBYMqLy8nLi4OlUplsFodNGgQfn5+olYFgzJk67Ze7969adKkiahVwaD0rduTJ0++49Ztvc6dO9OmTRtRq4JB6Vu3J0yYgIODg0HGbNu2LZ07dxa1KhicLMuMGzcOFxcXg4zXtGlT+vTpI2pVMDhZlhk5ciSenp4GGa9hw4YMHjxY1KoRiAk7M7Vo0SIKCwtRqVQGG1O0GgrGsHz5cvLy8gxaq6LVUDCGtWvXkp2dbdBatbCwQKVSERcXR3l5ucHGFczbpk2bSEtLM1grDFxqNUxISKCkpMRg4wrmbdeuXRw8eNCgtQq6VXYLFizgwoULBh1XMF+HDh1ix44dBn0NALpVdkuXLiUvL8+g4wrmKy0tjeTkZKPU6urVq8nOzjbouOZOTNiZKbVaTdeuXWndurVBx5UkibS0NDZv3mzQcQXzpVarCQoKomPHjgYdV5IksrOzWbdunUHHFcyXWq2mWbNm9OrVy6DjSpJEXl4eK1asMOi4gvlSq9X4+/szYMAAg44rSRIXLlwgMTHRoOMK5kuWZby8vBg2bJhBx1WpVJSWlopWQ8FgZFnG1dWV0NBQg44rWg0FQ4uOjsbBwcFgrdt6kyZNwsrKitjYWIOOa+7EhJ0ZKigoYOHChQb/tBJg4MCBNGzYUCyHFQyiuLiYuXPnGrR1W69Xr140a9ZM1KpgEMZo3dbr2LEjQUFBolYFg6iqqiImJoaoqCiDtW7rtW7dmq5du4paFQxCo9GgVquJiIjAxsbGoGM3btyYfv36iVoVDELfuj1x4kTs7e0NOrafnx9DhgwRtSoYjL5129nZ2aDjenp6MnLkSFGrBiYm7MzQ3LlzKSsrIyoqyuBjW1lZERUVRUxMjGg1FO6YvnXbGJPLotVQMKRly5Zx7tw5o9WqJEnMnTuX4uJig48vmJc1a9aQnZ1tlFoF3Sq7hQsXUlBQYJTxBfORnJxMenq6UWt16dKlnD171ijjC+Zjx44dHD582Ki1unr1ak6dOmWU8QXzceDAAXbt2mXUWk1OTiYtLc0o45sjMWFnhmRZZsCAATRq1Mgo4+tbDdesWWOU8QXzIcsy3bt3p2XLlkYZX5Ikzp07x7Jly4wyvmA+ZFmmffv2dOjQwSjjS5JEYWEhixYtMsr4gvmQZZkWLVrQvXt3o4wfGRlJWVkZc+fONcr4gvmQZZmAgAD69+9vlPEnT56MRqMhPj7eKOML5kOWZRo0aEBISIhRxg8PD8fa2pqYmBijjC+YD1mWcXNzY/To0UYZPywsDAcHB9RqtVHGN0diws7M5Obmsnz5cqPNqgP06NGD5s2bi+Wwwh3Jz88nMTHRqLXaoUMH2rdvL2pVuCPFxcXMmzfPqLXasmVLunfvLmpVuCNlZWXEx8cbpXVbr3HjxvTv31/UqnBHKisriY2NJSoqCktL47xd8fX1JSQkRNSqcEcub922trY2yjk8PDwYPXq0qFXhjuhbt8PDw7GzszPKOZydnQkLCxO1akBiws7MxMXFAbpPFY1F32oYHx9PWVmZ0c4j1G8JCQmUl5cTGRlp1POoVCrmzZsnWg2F27ZgwQKKioqMcpuBy6lUKhITE8nPzzfqeYT6a+nSpZw/f96ok8ugWxG6fPlyzpw5Y9TzCPXX6tWrycnJqZVaXbt2LZmZmUY9j1B/bdy4kYyMDIPvuHkllUrF5s2bSU1NNep5hPpr27ZtHD16tFZqdffu3ezfv9+o5zEXYsLOzMiyzLBhw2jQoIFRzyNJEufPn2fp0qVGPY9Qf+lbtwMDA416HpVKRVFREQsWLDDqeYT6S5ZlevToYbTWbb2oqCjKy8tJSEgw6nmE+kuW5eqVxcYUEREBXPqQUBBulSzLtGzZkm7duhn1PBMnTsTGxka0Ggq3TZZlAgMD6devn1HPExYWhqOjo2g1FG6bLMv4+PgwdOhQo55n9OjRuLm5iVV2BiIm7MxIRkYGSUlJRv+0EiA4OJjg4GDxS0W4LTk5OaxcubJWarVly5b06NFD1KpwW86fP8/ixYtrpVYDAwMZMGCAqFXhthQVFTF//vxaqdUGDRowbNgw8WJduC1lZWXMmTPHKDvEX8nd3Z3Q0FBxXRVui751W6VSGa11W8/JyYmwsDBRq8Jt0Wg0REdHG7V1W8/Ozo7w8HDUajVardao5zIHYsLOjERHR2NnZ8fEiRNr5XySJDFv3jyKiopq5XxC/REXF4eFhYVRW7cvJ0kSiYmJnD9/vlbOJ9QfCQkJVFRUGL0dVk+SJFasWEFubm6tnE+oPxYsWEBxcbHRW2H0JEkiKSmJjIyMWjmfUH8sXryY/Pz8WplcBl2tpqSkcOzYsVo5n1B/rFy5ktzc3Fqt1T179rBv375aOZ9Qf6xfv57MzMxardWjR4+ybdu2WjlffSYm7MyILMuMGTMGV1fXWjmfSqWiuLhYtBoKt0yWZYYPH463t3etnC8qKoqKigrRaijcMlmWGTRoEP7+/rVyvsmTJ2NhYUFsbGytnE+oP2RZpnfv3jRr1qxWzjdhwgRsbW2Jjo6ulfMJ9Ycsy3Tq1ImgoKBaOd/YsWNxcnISK5eEWybLMq1bt6ZLly61cr6RI0fi7u4uVi8Lt0yWZRo3bkyfPn1q5XxDhgzBx8dH1KoBiAk7M3HkyBG2bdtWa7PqAM2bN6dXr17iB1W4Jenp6axfv75Wa9Xf359BgwaJWhVuyenTp2utdVvP29ub4cOHi1oVbsm5c+dYvHhxra2uA3BzcyM0NFTUqnBLCgsLWbBgQa3WqqOjI+PHjxe1KtyS0tJSEhISaqV1W8/Ozo5JkyYhy7JoNRRuWkVFRa21butZW1sTGRlJdHQ0Go2mVs5ZX4kJOzMhyzLOzs6MGTOmVs8rSRKLFy/m3LlztXpeoe6Kjo7G3t6e8ePH1+p5JUli5cqVnD59ulbPK9RdsbGxWFpaMmnSpFo9ryRJrF+/nvT09Fo9r1B3zZkzh6qqKqPvun0lSZLYtm0bR44cqdXzCnXXvHnzKCkpqdUJO9DV6r59+9izZ0+tnleouxITEykoKFCkVlNTU9myZUutnleou1asWMHZs2dr9QNm0NVqZmYmSUlJtXre+kZM2JkBrVaLLMtMmDABBweHWj13REQElZWVzJkzp1bPK9Rdtd26rTdp0iQsLS1Fq6Fw02RZZsSIEXh5edXqecePH4+9vb1oNRRumizLDB48mIYNG9bqeceOHYuzs7NoNRRumlqtpk+fPjRt2rRWzztixAg8PDzEKjvhpqnVajp37kzbtm1r9byDBw/G19dX1Kpw02RZpk2bNnTq1KlWz9u7d28aN24savUOiQk7M7B7924OHjxY67PqoGs1HDx4sHixLtyUQ4cOsWPHDkVq1cvLixEjRohaFW7KiRMn2LhxoyK16urqypgxY0StCjclOzub1atXK1KrDg4OTJgwQbRvCTclLy+PpUuXKlKrtra2TJ48WexqKNyUCxcusGDBAkVq1crKqrrVsKqqqtbPL9QtJSUlzJ07t1Zbt/UsLS1RqVTExcVRUVFRq+euT8SEnRmQZRkvLy+GDx+uyPklSWLVqlVkZ2crcn6h7lCr1bi4uBAaGqrI+SVJYsOGDaLVULghpVq39SRJYvv27Rw+fFiR8wt1R2xsLFZWVrXeuq0nSRIHDhxg9+7dipxfqDvi4+MVad3WkySJ48ePk5KSosj5hbpj3rx5lJaW1no7rJ4kSZw6dUq0Ggo3lJiYyIULFxSZXAZdrZ49e5YVK1Yocv76QEzY1XNarRa1Ws3kyZOxsbFRJMOkSZOwsrISrYbCf9K3bk+cOLHWW7f19K2GYuWScCOyLDNu3DhcXFwUOX9oaCguLi6izUC4IVmWGTVqFB4eHoqcf/jw4Xh5eYlaFW5IlmWGDh2Kr6+vIucfOHAgDRs2FLUq3JAsy/Tr14/GjRsrcv7evXvTtGlTUavCDcmyTNeuXWndurUi5+/UqRNt27YVtXoHxIRdPZecnMyJEycUm1UH8PT0ZOTIkeIHVfhPO3fu5NChQ4rWqouLC+PGjRO1KvyngwcPsnPnTkVr1cHBgYkTJ4pWQ+E/paWlkZycrGit2tjYiFZD4YaysrJYs2aNorVqZWVFVFSUaDUU/tPZs2dZtmyZorVqYWFR3WpYXl6uWA7BtBUUFLBw4ULFa1WSJBISEigpKVEsR10mJuzqOVmWCQgIYMCAAYrmkCSJ5ORk0tLSFM0hmC5ZlvH29iYkJETRHJIksXPnTg4ePKhoDsF0ybKMq6sro0ePVjSHJEkcOnSInTt3KppDMF1qtRpHR0fCwsIUzSFJEidOnCA5OVnRHILpiomJwdramvDwcEVzSJJEdnY2a9euVTSHYLri4uLQarVEREQomkOSJPLy8li+fLmiOQTTNXfuXMrKyoiKilI0hyRJFBYWsmjRIkVz1FViwq4eq6ysJCYmhqioKCwtlf2nDgsLw8HBQbQaCtek0WhQq9VEREQo1rqtN3r0aFxdXcUqO+Ga9K3b4eHh2NvbK5olJCQEb29vUavCdelbt52cnBTN0b9/f/z9/UWtCtclyzKjR4/G3d1d0Rw9evSgefPmolaF65JlmZCQEHx8fBTN0aFDB9q1aydqVbguWZYZMGAAjRo1UjRHq1at6Natm6jV2yQm7OqxNWvWkJOTo9gNUS/n7OzMuHHjxISdcE3JycmcPHnSJGrV3t6eiRMnivYt4Zp27NjBkSNHTKJW9a2G0dHRaDQapeMIJmb//v3s3r1b0VYYPX2rYUxMDJWVlUrHEUxMamoqKSkpJlGr+lbD+Ph40WooXCUzM5N169aZxGsAfa3OmzeP4uJipeMIJubMmTMsX77cJGoVQKVSsWjRIgoKCpSOUueICbt6TJZlWrRoQffu3ZWOAuiWw+7atYsDBw4oHUUwMbIsExgYSP/+/ZWOAuhq9fDhw+zYsUPpKIKJkWWZBg0aKN66rSdJEunp6aLVULiKWq3G3d2dUaNGKR0F0NVqTk4Oa9asUTqKYGL0rdvjxo1TOgqgq9Vz586xbNkypaMIJiYmJgYbGxsmTpyodBRAtBoK1xcXFwegeOu2XlRUFGVlZcydO1fpKHWOmLCrp8rKyoiPj0eSJCwsLJSOA+haDd3c3MRyWKGGyspKYmNjTaJ1Wy8kJIQGDRqIWhVquLx129raWuk4gK7VMDAwUNSqUMPlrdt2dnZKxwGge/futGjRQtSqcBVZlhk/frzirdt6wcHBBAcHi1oVriLLMqGhoYq3buu1bNmS7t27i1oVriLLMsOGDaNBgwZKRwGgUaNGDBgwQNTqbTCNd8eCwS1ZsoT8/HyTaC/Qs7OzIzw8XOxqKNSwatUqcnJyTKpWra2tiYiIQK1Wi1ZDodqGDRvIyMgwqVq1tLQUrYbCVbZt28bRo0dNqlb1O8XFx8dTVlamdBzBROzdu5e9e/eaVK2CbuXSvHnzKCoqUjqKYCKOHTvGli1bTLJWExMTyc/PVzqKYCIyMjJISkoyyVpdvnw5ubm5SkepU8SEXT0lyzIdO3akXbt2SkepQZIkjh49yrZt25SOIpgIWZZp1aoVXbt2VTpKDZIkkZGRwYYNG5SOIpgIWZZp1KgRffv2VTpKDZIkkZuby6pVq5SOIpgIWZbx9fVl8ODBSkepQZIk8vPzWbJkidJRBBMhyzIeHh6MHDlS6Sg1qFQqioqKWLhwodJRBBMhyzJOTk6MHTtW6Sg1REVFUV5eTkJCgtJRBBMRHR2Nra0tEyZMUDpKDZMnTwYutesKN0dM2NVDhYWFzJ8/3+Rm1QGGDBmCj4+PWA4rAFBaWsqcOXNMqnVbr2/fvjRq1EjUqgBARUUFsbGxqFQqk2nd1uvatSutWrUStSoAutbt6OhoIiMjTaZ1W69du3Z07NhR1KoA6Fq31Wo1kyZNwtbWVuk4NTRv3pxevXqJWhWAS7cZmDBhAo6OjkrHqSEgIICBAweKWhWqybLMmDFjcHNzUzpKDQ0aNGD48OGiVm+Rab3rEAxi/vz5lJSUEBUVpXSUq+hbDcWuhgLA4sWLKSgoMJkdjC6nbzWMjY2loqJC6TiCwlauXMmZM2dMslb1O8XNmTOH0tJSpeMICktKSiIzM9MkaxV0K5fmz59PYWGh0lEEhaWkpJCammrStbp48WLOnz+vdBRBYXv27GH//v0mXasrV64kJydH6SiCwo4cOcK2bdtMulaTkpI4efKk0lHqDDFhVw+p1Wp69+5Ns2bNlI5yTZIkkZmZyfr165WOIihMrVbTqVMngoKClI5yTZIkcebMGdFqKKBWq2ndujVdunRROso1SZJEQUGBaDUUUKvVNGnShD59+igd5ZpUKhUlJSUsWLBA6SiCwtRqNX5+fibXuq0XGRlJRUWFaDUUUKvVeHh4MGLECKWjXNPkyZOxsLAQrYYCarUaZ2dnk2vd1ps4cSJ2dnbExMQoHaXOEBN29UxeXh5LliwxyXZYvT59+tC4cWOxHNbMFRYWsmDBApOu1S5dutC6dWtRq2autLSUhIQEk2zd1gsKCqJTp06iVs3c5a3bplqrzZo1o3fv3qJWzVxVVVV167aVlZXSca7J39+fwYMHi1o1c/rW7cmTJ5tc67aet7e3aDUUarRuOzg4KB3nmlxdXRkzZoyo1VsgJuzqmTlz5lBVVUVkZKTSUa7L0tISlUolWg3N3Lx58ygpKTHZJdtwaVfDhIQE0WpoxhITEykoKDDpyWXQrbJbsGCBaDU0YytWrODs2bN1olaXLFlCXl6e0lEEhaxbt45Tp07ViVpduXIlp0+fVjqKoJDNmzdz/PjxOlGr69evJz09XekogkJ2797NgQMH6kStbtu2jSNHjigdpU4QE3b1jCzLDBkyBD8/P6Wj/CdJkjh79iwrVqxQOoqgEFmW6du3L02aNFE6yn/StxomJiYqHUVQiCzLdOnShTZt2igd5T/pWw3nzZundBRBIbIsExQURMeOHZWO8p8iIyOpqqpizpw5SkcRFCLLMs2aNaNXr15KR/lPkyZNwsrKitjYWKWjCAqRZZmGDRsycOBApaP8pwkTJmBvb090dLTSUQSFyLKMl5cXw4cPVzrKfxozZgwuLi5ild1NEhN29cipU6dYvXq1yc+qA3Tq1Im2bduKH1QzdfbsWZYuXVonarVNmzZ06dJF1KqZKigoYOHChXWiVps0aULfvn1FrZqpkpISk2/d1vPz82PIkCGiVs1UeXk5cXFxJt26refp6cnIkSNFrZqpqqoqYmJiiIqKMtnWbT0XFxfGjh0ratVMXd66bWNjo3Sc/+Tg4MCECROQZRmtVqt0HJMnJuzqkZiYGKytrQkPD1c6yg3pdzVMSEigpKRE6ThCLYuPj0ej0RAREaF0lJuiUqlYuHAhBQUFSkcRatm8efMoLS01yV23r0WlUrF06VLOnj2rdBShli1atIjCwkKTvs3A5VQqFatXr+bUqVNKRxFq2bJlyzh37lydqtWNGzdy4sQJpaMItWzNmjVkZ2fXmVqVJIkdO3Zw6NAhpaMItSw5OZkTJ07UmVpVqVQcPHiQXbt2KR3F5IkJu3pErVYzatQoPDw8lI5yUyRJorCwULQamiG1Ws3QoUPx9fVVOspNUalUlJaWMn/+fKWjCLVMrVbTr18/GjdurHSUmxIZGYlGoxGthmZIlmW6detGq1atlI5yUyZNmoS1tbVoNTRDarWadu3a0aFDB6Wj3JTx48fj4OCAWq1WOopQy9RqNc2bN6dnz55KR7kpo0ePxsXFRdSqGVKr1fj7+zNgwAClo9yU4cOH4+XlJWr1JogJu3ri+PHjbNq0qU60bem1bt2arl27iqXbZiYrK4s1a9bUqVpt3Lgx/fr1E7VqZs6ePcuyZcvqVK36+voydOhQUatmJj8/n0WLFtWpWvXw8GDUqFGiVs1McXExc+fOrROt23rOzs6MGzdO1KqZKS8vJz4+vk60bus5ODgwceJE0WpoZiorK+tM67aejY0NkydPRq1Wi1q9ATFhV0+o1WocHR0JCwtTOsotkSRJtBqamZiYGGxsbOpE6/blJEli2bJlotXQjMTFxaHVautM67aeJEmsWbOGrKwspaMItWTevHmUl5fXmdZtPUmS2LRpE8ePH1c6ilBLFi5cSFFRUZ1p29KTJIldu3Zx4MABpaMItWTp0qWcO3euTn0QArpaPXToEDt37lQ6ilBL1qxZw+nTp+tkrZ44cYLk5GSlo5g0MWFXT8iyTFhYGE5OTkpHuSVRUVGUlZUxd+5cpaMItUSWZUaPHo27u7vSUW5JREQEWq2WuLg4paMItUSWZUJCQvDx8VE6yi0JDw/HxsaGmJgYpaMItUSWZQYMGEBgYKDSUW5JWFgYjo6OoiXGjMiyTI8ePWjZsqXSUW7J6NGjcXNzE7VqRmRZJjg4mODgYKWj3JKQkBC8vb3FilAzIssyLVq0oHv37kpHuSUDBgwgICBA1OoNiAm7emDfvn3s2bOnzs2qAzRq1IgBAwaIH1QzcezYMVJSUupkrfr4+BASEiJq1UxkZmaybt26Olmr7u7ujB49WtSqmcjNzWX58uV1sladnJwICwsTtWomzp8/T2JiYp2sVTs7O8LDw0WroZkoKipi3rx5dbJWbWxsiIiIQK1Wo9FolI4jGFlZWRnx8fF16jYDepaWlkRFRRETE0NlZaXScUyWmLCrB2RZxt3dnZEjRyod5bZIksTy5cvJzc1VOopgZGq1GicnJ8aOHat0lNsiSRLr1q0jMzNT6SiCkUVHR2Nra8vEiROVjnJbJEkiJSWFY8eOKR1FMDL9qt/JkycrnOT2SJLEnj172Ldvn9JRBCNLSEigoqKCyMhIpaPcFkmSOHLkCNu3b1c6imBkCxYsoLi4uM61butJksTJkyfZuHGj0lEEI1uyZAn5+fl1cnIZdLWak5PD6tWrlY5issSEXR2n1WqRZZnw8HDs7OyUjnNb9G8yRKth/VdXW7f1JkyYgI2NDdHR0UpHEYxMlmVCQ0Nxc3NTOsptGTt2rGg1NBOyLDN8+HC8vb2VjnJbRo4cibu7u1hlZwZkWWbgwIEEBAQoHeW2DBkyBB8fH1GrZkCWZXr27Enz5s2VjnJb+vXrR2BgoKhVMyDLMh06dKBdu3ZKR7kt3bp1o0WLFqJW/4OYsKvjtm7dSmpqap2dVQdo0KABw4YNE28s67m9e/eyb9++Ol2r7u7uhIaGilqt544ePcrWrVvrdK06OTkxfvx4Uav13MmTJ0lKSqrTtapvNRQ7xdVvOTk5rFy5sk7XqrW1NREREURHR4tWw3rs3LlzLF68uE7XqqWlJSqVitjYWNFqWI8VFRWxYMGCOl2rFhYWSJLEnDlzKCsrUzqOSRITdnWcLMv4+voyZMgQpaPcEUmSSEpKIiMjQ+kogpHIsoyHh0edbd3WkySJLVu2cPToUaWjCEaiVqtxdnZmzJgxSke5I5IksXfvXvbu3at0FMFIoqOjsbe3Z8KECUpHuSOSJHHs2DG2bt2qdBTBSGJjY7G0tKyzrdt6kiSRkZHB+vXrlY4iGElCQgKVlZV1tnVbT6VSkZuby6pVq5SOIhjJ/Pnz63Trtp4kSeTn57NkyRKlo5gkMWFXh1VVVREdHU1kZCRWVlZKx7kjEydOxNbWVrQa1lNarRa1Ws2kSZOwtbVVOs4dGTt2LM7OzmLlUj2lv83A+PHjcXR0VDrOHRk5ciQeHh6izaAeU6vVjBkzBldXV6Wj3JEhQ4bg6+srarUek2WZESNG4OXlpXSUO9KnTx8aN24sXgPUY7IsM3jwYPz9/ZWOcke6du1Kq1atxHW1HpNlmd69e9OsWTOlo9yRdu3a0bFjR1Gr1yEm7OqwpKQksrKy6vQyWD1XV1fGjBkjflDrqZSUlDrfuq3n6OjI+PHjxU5x9dSePXvYv39/vahVW1tbJk2aJFoN66kjR46wbdu2elGrVlZWREZGEh0dTVVVldJxBANLT09nw4YN9aJWL281rKioUDqOYGDZ2dmsWrWqXtTq5a2GpaWlSscRDCwvL48lS5bUi1oF3Sq7+fPnU1hYqHQUkyMm7OowWZZp0qQJvXv3VjqKQUiSxLZt2zhy5IjSUQQDk2UZPz8/Bg0apHQUg5Akif3797Nnzx6lowgGJssynp6eDB8+XOkoBiFJEqmpqaSkpCgdRTAwWZZxcXEhNDRU6SgGIUkSWVlZJCUlKR1FMDC1Wo29vT3jx49XOopBSJLEmTNnWLlypdJRBAPTt25PmjRJ6SgGIUkSBQUFLF68WOkogoHNmTOHqqqqOt+6radSqSgpKWH+/PlKRzE5YsKujiovLycuLg6VSoWFhYXScQxizJgxODs7i1V29Ux9at3WGz58uGg1rIf0rduTJ0+u863beoMGDcLPz0/Uaj2jb92eMGECDg4OSscxiN69e9OkSRNRq/WQLMuMHTsWFxcXpaMYRKdOnWjTpo2o1XpIlmVGjhyJp6en0lEMom3btnTu3FnUaj2kb9328/NTOopBNG3alN69e4tavQYxYVdHrVixgry8vHqzDBbAwcGBCRMmiFbDembdunVkZ2fXq1q1tbVl8uTJotWwntm8eTNpaWn1qlb1rYYxMTGi1bAe2bVrFwcPHqxXtWphYYFKpSIuLk60GtYjBw8eZOfOnfWuViVJIiEhgZKSEqXjCAaSlpZGcnJyvapV0K2yW7hwIRcuXFA6imAgp06dYvXq1fWyVpcuXUpeXp7SUUyKmLCro2RZJigoiI4dOyodxaAkSeLgwYPs3r1b6SiCgciyTLNmzejVq5fSUQxKkiTS0tLYvHmz0lEEA5FlGX9/fwYMGKB0FIOSJIlTp06xbt06paMIBiLLMl5eXgwbNkzpKAYlSRJ5eXksX75c6SiCgajValxdXetN67aeJElcuHCBxMREpaMIBhIdHY2Dg0O9ad3Wi4qKEq2G9UxsbCzW1tb1pnVbLzIykqqqKubMmaN0FJMiJuzqoOLiYubOnYskSfWmHVZv+PDheHl5ieWw9UR9bN3WGzhwIA0bNhS1Wk9UVVURExNTr1q39Xr16kWzZs1ErdYTGo0GtVpNREQENjY2SscxqI4dOxIUFCRqtZ7Qt25PnDgRe3t7peMYVOvWrenatauo1XpElmXGjRuHs7Oz0lEMqkmTJvTt21fUaj0iyzKjRo3Cw8ND6SgG5efnx5AhQ0StXkFM2NVBixYtorCwsN4tgwWwsbERrYb1yLJlyzh37ly9rFUrKyuioqJEq2E9sWbNmnrXuq13eatheXm50nGEO5ScnEx6enq9rVVJkpg7dy7FxcVKxxHu0I4dOzh8+HC9rFW41GpYUFCgdBThDh04cIBdu3bV61pdunQpZ8+eVTqKcIeOHz/Opk2b6nWtrl69mlOnTikdxWSICbs6SJZlunfvTsuWLZWOYhSSJHHixAmSk5OVjiLcIVmWad++PR06dFA6ilFIkkR2djZr1qxROopwh2RZpkWLFvTo0UPpKEYhSRLnzp1j2bJlSkcR7pBarSYgIID+/fsrHcUoVCoVhYWFLFq0SOkowh2SZRlvb29CQkKUjmIUUVFRlJWVMW/ePKWjCHdIlmXc3NwYPXq00lGMIiIiAo1GQ3x8vNJRhDukVqtxdHQkLCxM6ShGER4ejrW1NTExMUpHMRliwq6Oyc/PJzExEZVKpXQUo+nfvz/+/v5iOWwdV1xczLx58+p1rfbo0YPmzZuLWq3jysrKiI+Pr5et23rBwcG0a9dO1GodV1lZSUxMDFFRUVha1s+XcK1ataJbt26iVuu4y1u3ra2tlY5jFI0aNaJ///6iVuu4y1u37ezslI5jFL6+voSEhIharQf0rdtOTk5KRzEKDw8PRo0aJWr1MvXz1V49lpCQQHl5OVFRUUpHMZrLWw0rKyuVjiPcpgULFlBUVFSvJ+z0rYbx8fGUlZUpHUe4TUuXLuX8+fP1tr0ALrUazps3T7Qa1mGrV68mJyenXtcq6FaEJiYmkp+fr3QU4TZt2LCBjIwMs6jV5cuXc+bMGaWjCLdp27ZtHD161Cxqde3atWRmZiodRbhN+/btY8+ePWZRq5s3byY1NVXpKCZBTNjVMWq1mgEDBhAYGKh0FKOSJImcnBzRaliHqdVqevToUW9bt/UkSeL8+fOi1bAOU6vVdOjQgfbt2ysdxahUKhVFRUUsXLhQ6SjCbZJlmZYtW9KtWzeloxhVVFQU5eXlzJ07V+kowm1Sq9UEBgbSr18/paMYVUREBFqtlri4OKWjCLdJrVbj4+PD0KFDlY5iVBMnTsTGxobY2Filowi3Sa1W4+7uzqhRo5SOYlRhYWE4OjoSHR2tdBSTICbs6pDc3FxWrFhR72fVAbp3706LFi3Ectg66vz58yQmJppFrQYHBxMcHCxqtY4qKipi3rx5ZlGrLVu2pEePHqJW66iysjLmzJlTL3eIv1JgYCADBgwQtVpHVVZWEhsbi0qlqret23oNGjRg2LBholbrKI1GQ3R0dL1u3dZzd3cnNDRU1GodpW/dDg8Pr7et23pOTk6EhYWJWr2ofv8WrWdiY2OxsLBg8uTJSkcxOn37lmg1rJsSEhKoqKio163bl9O3GhYVFSkdRbhFCxYsoLi42KxqNTExkfPnzysdRbhFixcvJj8/3ywml0FXqytWrCA3N1fpKMItWrlyJbm5uWZVq0lJSWRkZCgdRbhF69evN4vWbT2VSkVKSgrHjh1TOopwi7Zu3cqxY8fMplYlSWLPnj3s27dP6SiKExN2dYgsywwfPhxvb2+lo9QKSZLIz89nyZIlSkcRbpEsywwaNAh/f3+lo9QKlUpFcXExCxYsUDqKcItkWaZXr140b95c6Si1IjIykoqKChISEpSOItwiWZbp1KkTQUFBSkepFfoPJ0X7Vt0jyzKtW7emS5cuSkepFRMmTMDW1la0b9VBsizTuHFj+vTpo3SUWqHfrECtVisdRbhFsizj6+vLkCFDlI5SK0aOHIm7u7tYZYeYsKsz0tPTWb9+fb2+gf+V2rVrR4cOHcQPah1z+vRpVq5caVa12rx5c3r27ClqtY45d+4cixcvNptPKwECAgIYOHCgqNU6prCwkAULFpjVddXb25vhw4eLWq1jSktLSUhIqNe7bl/Jzc2N0NBQMQlSx1RUVBAbG1uvd92+kqOjI+PHjxfX1TqmqqqqunXbyspK6Ti1ws7OjvDwcGRZRqvVKh1HUeZxdaoHoqOjsbe3Z8KECUpHqVWSJDF//nwKCwuVjiLcpNjYWCwtLc2idftykiSxePFizp07p3QU4SbNmTOHqqoqIiMjlY5SqyRJYuXKlZw+fVrpKMJNmj9/PiUlJWY1YQe6Wl2/fj3p6elKRxFuUmJiIgUFBWb1QQjoanXr1q0cOXJE6SjCTVqxYgVnz541y1rV7zYq1A1JSUlkZWWZZa2mpqayZcsWpaMoSkzY1RFqtZoxY8bg6uqqdJRapVKpKCkpEa2GdYharWbEiBF4eXkpHaVWRUZGUllZKVoN6xC1Ws3gwYNp2LCh0lFq1eTJk7G0tBS7GtYhsizTp08fmjZtqnSUWjVhwgTs7e2JiYlROopwk9RqNZ07d6Zt27ZKR6lVY8eOxdnZWayyq0PUajVt2rShc+fOSkepVSNGjMDDw0PUah2iVqtp0qSJ2bRu6w0ZMgRfX1+zr1UxYVcHHD58mO3bt5vdrDpAs2bN6N27t1i6XUekp6ezYcMGs6xVf39/Bg8eLGq1jsjOzmbVqlVmWateXl6MGDFC1GodkZeXx9KlS82yVl1dXRkzZoyo1TriwoULLFiwwCxr1cHBgQkTJoj2rTqipKSEhIQEs9h1+0q2trZMnjwZtVotarUOqKioIC4uzqxuM6BnZWVFZGQk0dHRVFVVKR1HMWLCrg6QZRkXFxdCQ0OVjqIISZJYsmQJeXl5SkcRbkCtVmNvb8/48eOVjqIISZJYtWoV2dnZSkcRbiA2NhYrKyvCw8OVjqIISZLYsGGDaDWsA+Lj482ydVtPkiS2b9/O4cOHlY4i3MC8efMoLS01u9ZtPUmSOHDgALt371Y6inADiYmJXLhwwSwnl+FSq2FKSorSUYQbWL58uVm2butJkkRWVhZJSUlKR1GMmLAzcVqtFlmWmThxIg4ODkrHUURkZCRVVVXMmTNH6SjCDciyzLhx43BxcVE6iiImTZqElZWV2NWwDpBlmZEjR+Lp6al0FEWMHz8ee3t7s28zqAtkWWbo0KH4+voqHUURoaGhuLi4iFV2dYAsy/Tr14/GjRsrHUURw4cPx8vLS9RqHSDLMl27dqV169ZKR1HEwIEDadiwoajVOkCWZYKCgujYsaPSURTRu3dvmjZtata1KibsTNzOnTs5dOiQ2c6qA/j5+TFkyBCz/kGtCw4ePMjOnTvNulY9PT0ZOXKkqFUTl5aWRnJyslnXqouLC+PGjRO1auKysrJYs2aNWdeqg4MDEydOFK2GJu7s2bMsW7bMrGvVxsZGtBrWAQUFBSxcuNCsa1W0GtYNxcXFzJ071yxbt/UsLCxQqVTExcVRXl6udBxFiAk7EyfLMl5eXoSEhCgdRVEqlYrVq1dz6tQppaMI1yHLMq6urowePVrpKIpSqVQkJyeTlpamdBThOtRqNQ4ODoSFhSkdRVEqlYqdO3dy8OBBpaMI1xETE4O1tTUTJ05UOoqiVCoVhw4dYufOnUpHEa4jLi4OjUZjdjvEX0mlUnHixAmSk5OVjiJcx9y5cykrKzPb2wzoSZJEdnY2a9euVTqKcB2LFi2isLDQbG8zoKdSqcjLy2P58uVKR1GEmLAzYRqNBrVaTUREBDY2NkrHUdSkSZOwtrYWO8WZqMtbt+3t7ZWOo6jx48fj4OAgWg1NmCzLhIWF4ezsrHQURYWGhuLq6ipW2ZkwtVrN6NGj8fDwUDqKooYNGyZaDU2cLMuEhISYbeu23oABA/D39xevAUyYLMv079/fbFu39Xr27Enz5s3FddWEybJMt27daNWqldJRFNWxY0eCgoLMtlbFhJ0JS05O5uTJk2a9ZFvPw8ODUaNGiRdAJmrHjh0cOXJE1Crg7OzMuHHjRK2aqP3797N7925Rq4C9vT0TJ04U7VsmKjU1lc2bN4taRddqGBERQXR0NBqNRuk4whUyMzNZt26dqFV0rYZRUVHExMRQWVmpdBzhCmfOnGH58uWiVrnUahgfH2+2rYamLD8/n8TERFGr6GpVkiTmzZtHcXGx0nFqnZiwM2GyLBMYGEj//v2VjmISJEli06ZNHD9+XOkowhVkWaZBgwZm37qtJ0kSu3bt4sCBA0pHEa6gVqtxd3dn1KhRSkcxCZIkcfjwYXbs2KF0FOEKarUaR0dHxo0bp3QUkyBJEunp6aLV0ATFxMRgY2Nj9q3bepIkcfr0adasWaN0FOEKcXFxAERERCicxDRIksS5c+dYtmyZ0lGEK8ydO5fy8nKioqKUjmISJEmisLCQRYsWKR2l1okJOxNVWVlJbGwsUVFRWFqKfyaAsLAwHB0dxcolE3N567a1tbXScUzC6NGjcXNzM9ul26ZK37odHh6OnZ2d0nFMQkhICA0aNBC1aoJkWWb8+PE4OTkpHcUk9O/fn8DAQFGrJkiWZUJDQ3F3d1c6ikno3r07LVq0ELVqgmRZZtiwYTRo0EDpKCYhODiY4OBgUasmSJZlBgwYQGBgoNJRTELLli3p3r27WdaqmAkyUatWrSInJ0csg72Mk5MTYWFhZvmDaso2bNhARkaGqNXL2NnZER4eLnY1NDHbtm3j6NGjZn/z3stZW1sTERGBWq0WrYYmZO/evezdu1dcVy9jaWlJVFQUsbGxotXQhBw9epQtW7aIWr2Mvn0rPj6esrIypeMIF2VkZJCUlCRq9QoqlcpsWw1NVW5uLitWrBC1egVJkkhMTCQ/P1/pKLVKTNiZKFmWadmyJV27dlU6iklRqVTs2bOHffv2KR1FuEjfut23b1+lo5gUlUrF0aNH2bZtm9JRhItkWcbHx4chQ4YoHcWkqFQqMjIy2LBhg9JRhItkWcbd3Z0RI0YoHcWkqFQqcnJyWLVqldJRhIvUajVOTk6MHTtW6SgmRaVSkZ+fz5IlS5SOIlwUHR2Nra0tEyZMUDqKSVGpVBQVFbFgwQKlowgXxcbGArpNF4VLIiMjKS8vJyEhQekotUr0r5mYvXv3UlZWxpw5c3juueewsLBQOpJJGTVqFO7u7syePZuuXbsyfvx40YapkIMHD1JYWEhsbCwPPPCAaN2+wtChQ/Hx8UGWZU6ePEloaKhow1TIkSNHyM/PJzo6msjISHHNuEK/fv2qWw3PnTvHsGHDcHR0VDqWWUpNTeXMmTOo1WomTZokrhlX6NatGy1btkSWZSoqKhg0aJDZ7/aslBMnTpCVlVXdui2uGTW1b9+eDh06IMsydnZ29OnTBzc3N6VjmaWMjAzS0tKqW7fFv0NNLVq0oGfPnsiyjKenJ926dcPT01PpWGbp1KlTHD58GFmWGT58uGjdvkJgYCADBgxAlmUaN25Mhw4dzOI5Eu+wTczHH3/Mww8/TEFBAQ4ODpw9e1bpSCZlzZo1DB48mL/++ovJkyezZ88epSOZrc8//5wHHniAM2fO4OrqyunTp5WOZFLWrl3L4MGD+ffffwkPDxcr7RT07bffcs8995CZmYm3tzeZmZlKRzIp69atY9CgQajVasaPH8+mTZuUjmS2fvrpJ1QqFampqfj7+3PixAmlI5mUDRs2MGDAAOLi4hg7dixr165VOpLZ+u2334iMjGT//v00bdqUo0ePKh3JpGzatIk+ffowf/58QkNDWb58udKRzNY///zDpEmT2LZtG61ateLgwYNKRzIpW7dupUePHiQmJjJ69GizvKm/qYiOjiYsLIz169fTrl079u7dq3Qkk7Jz5046d+7MihUrGDNmjNmstBMTdibG39+fo0eP4uHhwRtvvMGxY8eUjmRS/vzzT5YtW0ZGRgage74EZfj7+5Oamoqbmxtvv/02hw4dUjqSSZk9ezbz58+vnsgMCAhQOJH58vf35/jx47i4uPDOO++IlvorxMXFERcXx7lz5wBxXVWSv78/6enpODk58d5777Fr1y6lI5mUuXPn8vfff1NYWAiIWlWSv78/mZmZ2Nvb8+GHH4oPpa6waNEifvvtN0pKStBqtaJWFeTv709OTg62trZ8+umn4kOpKyxbtowZM2ZQUVFBVVWVqFUFBQQEUFBQgLW1NV9++SXr169XOpJJWb16Nd999x0ApaWlZlOrYsLOxAQEBFBUVMT58+f5559/6Nmzp9KRTMrMmTPp0aMHoLtZuo+Pj8KJzFejRo0oKSkhPz+fWbNmMXDgQKUjmZTvv/+eAQMGALqbpYtdnpTTuHFjysvLuXDhAj/88IO4L9gVvvjiixrPSdOmTZULY+aaNm1KVVUVRUVFfPHFF4SFhSkdyaR89NFHNe4/1bx5c+XCmLlmzZqh1WopLS3l/fffJyoqSulIJmXatGk1nhNRq8pp1qwZAOXl5bz55pvcf//9CicyLa+99hoPPvhg9deiVpWjf+4rKyt5+eWXefzxxxVOZFqee+45nnrqqepN0sylVsWEnYlp2LAhAD/88AN33XWXwmlMj7OzM4mJiTRv3hw3Nzdxjz8F6SegPv30Ux566CGF05geBwcH5s+fT9u2bXF2dsbKykrpSGarcePGALzzzjs89dRTCqcxPXZ2dsTFxdGpUyecnJywt7dXOpLZ0k+Wvvrqq7z44ovKhjFBNjY2yLJMjx49sLOzE/eiUlCLFi0AePrpp3njjTcUTmN6rK2t+fPPPxk4cCA2Njb4+voqHclstWzZEoAHH3yQ9957T7x3uIKVlRUzZ85kxIgRWFlZ0ahRI6Ujma0WLVpgYWGBSqXi008/FbV6BUtLS7777jvGjRuHpaVl9WR8fWeh1Wq1SocQaiotLRVvmG5Ao9FQUVEhbsitMFGrN6bVaikrKxPPk8JErd6YqFXTIGr15ojnSXni3+DmiOdJeeLf4OaI50l54t/g5pjT8yQm7ARBEARBEARBEARBEATBhIiWWEEQBEEQBEEQBEEQBEEwIdZKB6hP1Go1CxYs4MKFCwYf28nJidDQUO69916Dj23Kzp49y/Tp0zlx4kT1DSYNxcLCgsDAQN544w2z2WVGb86cOcyZM4eCggKDj+3o6MiIESPM7r5258+fZ/r06aSmphqlVv39/Xn99der78dmLubPn09sbCz5+fkGH9vBwYGhQ4ea3U19L1y4wLvvvsuxY8eoqqoy+Pj+/v688sor1fe4MheLFy9GlmXOnz9v8LHt7e0ZMGAAzzzzjFnd06a4uJjp06dz6NAho9Sqn58fL730Em3atDH42KZsxYoV/P3339U7QxuSvb09ffr04fnnnzerWi0tLeW9997jwIEDVFZWGnx8X19fnnvuOYKDgw0+tilbu3Ytv//+O3l5eQYf287Ojh49evDyyy9jaWk+a1jKy8t5//332bdvHxUVFQYf38fHh6effpouXboYfGxTtnHjRn755RfOnj1r8LFtbW3p2rUrr732mlndE7uyspIPP/yQXbt2GaVWGzRowBNPPFG9oaWpEi2xBvLLL7/w2GOPERgYiKOjo8HHLykp4eTJk3zzzTc8++yzBh/fFJ07d47Bgwdz9OhRAgICDP7CT6vVcurUKfz8/Fi3bl31hh/13V9//cUDDzxAw4YNcXZ2Nvj4paWlpKen88knn/Dqq68afHxTVFBQQEhICPv27SMgIMDgL/y0Wi3Z2dl4enqSlJRkNjcEjo6O5q677sLX1xcXFxeDj19WVsaJEyd45513mDZtmsHHN0VFRUWMGDGC7du3ExgYaJRaPX36NC4uLiQlJZnNDYHnzp1LREQE3t7euLq6Gnz8iooKjh8/zmuvvcbHH39s8PFNUUlJCaGhoSQnJ9OoUSOj1GpOTg52dnYkJSXRunVrg45vqhYvXsz48ePx9PQ0yqYd+lp97rnn+Prrrw0+vikqKytj/PjxrFq1isaNGxv8DbVWqyU3NxdLS0vWrVtH+/btDTq+qVq1ahWhoaG4urri4eFh8PErKys5fvw4jzzyCDNnzjT4+KaooqKCyZMnk5iYSNOmTY0yUXnmzBk0Gg2rV6+mc+fOBh/fFK1fv56RI0fi6OiIp6enwcevrKwkLS2Nu+++mz///NMsPgypqqpCkiTmzJlD06ZNjTJRefbsWcrLy1m5cqVJT9qJCTsDadKkCS4uLkyePNkoP0RarZa5c+dy6tQpTp8+bfDxTdHs2bO5++67eeKJJ/Dz8zPKOfLy8vjhhx/45ptvePrpp41yDlPTtm1bAKKiooz2ieKCBQs4cuQI58+fN4tfKnPmzGHSpEk88sgj1bvnGtr58+f58ccf+eCDD3j55ZeNcg5T06VLFy5cuMDdd99ttFpdsmQJO3bsoLi42Cw+YV+8eDGhoaE88MAD1TuSGlpBQQEzZszg9ddf56233jLKOUxN3759OXXqFPfee6/RPv1esWIFGzdupKSkBFtbW6Ocw5SsWbOGIUOGcPfdd9OqVSujnKOwsJAZM2bw7LPP8uGHHxrlHKYmJCSEI0eOcP/992NtbZxGm7Vr17J69WoKCwtxcnIyyjlMyebNm+nduzdRUVEEBQUZ5RzFxcX8/PPPPPTQQ3z55ZdGOYepGTt2LNu3b+ehhx7CxsbGKOfYsGEDy5cv58yZM3h5eRnlHKZk9+7ddOrUifDwcDp27GiUc5SUlDBz5kyioqKYMWOGUc5haiIjI1m7di2PPPKI0X4/b968mcWLF3Py5EmjvdcwJUeOHKF169aEhYXRtWtXo5yjrKyMX375hTFjxvDHH38Y5RyGUP/fndSSM2fOEBgYaLTJCX375pkzZ4wyvinKzc3F1tbWaJN1AJ6enri6upKTk2O0c5ia3Nxco6wCu1yjRo0oKCgwSluIKcrNzcXCwoKAgACjncPd3R03NzezqtWcnByj12pgYCBlZWUUFhYa7RymJDc3F8CoL/ZcXV1xd3c3u1r19/c3aqtKo0aN0Gg0RmljNEW1UavOzs54enqaVa2ePn0aPz8/o03WwaV/M/2/YX1XG7WqX7ljTrWak5ODn5+f0Sbr4NK/mbk8r/paNWanhoODA15eXmbznIKufnx8fIz6YZr+38xcntfauK7a2dnh7e1t8ouhxIRdHWIOK5WuZI5/59ognlfjEM+r4Rn7ORX/ZsYhnlfBUMQ1wPDM8e9cG8TzWveIfzPjMLfnVavVmt3fubaI51VM2AmCIAiCIAiCIAiCIAiCSRETdoIgCIIgCIIgCIIgCIJgQsSEnSAIgiAIgiAIgiAIgiCYEDFhJwiCIAiCIAiCIAiCIAgmREzYCYIgCIIgCIIgCIIgCIIJERN2giAIgiAIgiAIgiAIgmBCxIRdLcnLy2Pt2rX/eUxGRgZbtmyppUR1n3hO/9/e3YPWWbZxAL9O06ZtPlTQttaeqEsmHbRgtaippQQdHESLShZxERwcXFwcHAQncdOtkwhBglJrBZUKdSqIQ7+riaEHU0q1HzYnxJwk5zzvIJHXRZf7Pt7x/H5LlnDdz/nn6tOH/zkkecg1PZnmIdf0ZJqHXPOQa3oyzUOu6ck0D7mmJ9M8eiVXhV2XfPfdd/Hggw/+7ffU6/VoNBpduqL1T6Z5yDU9meYh1/Rkmodc85BrejLNQ67pyTQPuaYn0zx6JVeFXZfcvHkzbrnlln/8vk2bNsXCwkIXrmj9k2keck1PpnnINT2Z5iHXPOSankzzkGt6Ms1DrunJNI9eyVVhV5itW7dGq9X6ty/jP0Wmecg1PZnmIdf0ZJqHXPOQa3oyzUOu6ck0D7mmJ9M81nuuCrsu6evri06nExERU1NTf/l64sSJ+PnnnyMiotlsxq233vrvXOQ6I9M85JqeTPOQa3oyzUOuecg1PZnmIdf0ZJqHXNOTaR69kqvCrktGR0djeno6IiIOHjz4l6+PPPJIjIyMRKvViv7+/ti4ceO/dp3riUzzkGt6Ms1DrunJNA+55iHX9GSah1zTk2keck1Ppnn0Sq4Kuy65//77Y8OGv497fn4+Hn300S5d0fon0zzkmp5M85BrejLNQ655yDU9meYh1/Rkmodc05NpHr2S6/qtGteZDRs2xOjo6N9+z7Zt27p0Nf8NMs1DrunJNA+5pifTPOSah1zTk2keck1PpnnINT2Z5tErufqEHQAAAAAURGEHAAAAAAVR2AEAAABAQRR2AAAAAFAQhV0itVotqqrKekan04larZb1jJLUarXodDpyTWwt15zWfma9kuvav/9u5NormUZ0Z1fX5vdKrmuv0301rW49A6yd1QvWXmc37gG9kmnEH7+k2zNAWt3a1V58BnBfTcszQB7uq+l18776T39p9t9W9tWtI/V6PX744YdYXl7OMn9lZSUuXLgQu3btyjK/RPV6/c/Xncvs7GzMz89HvV7PdkZpRkZGYnp6OlqtVpb5q6urce7cudi2bVts3Ngbf4h6ZGQkIiLOnDmT7YxGoxE3btz486xeMDIyEjMzM7G0tJRlfrvdjnPnzsXw8HAMDQ1lOaM0a/tz+vTpbGfMzc3FtWvXempX77777vjpp59icXExy/xOpxNnz56NzZs3xx133JHljNJ0Y1cvX74cv/76a8/t6sWLF2NhYSHL/E6nE6dPn46+vr7YuXNnljNKs/YMmXNXf/nll7hy5UpPPa/ec8890Wg0otlsZplfVdWfP7NeyXXtdZ46dSrbGVevXo3Lly/3TKYRf9xX5+bm4ubNm1nm//+u9sr/V924r16/fj0uXbpUfKa1KnfF3iO+/fbbeOqpp6LdbsfAwEDy+b///ntERBw5ciTGx8eTzy/RyspKTExMxNTUVAwPD0dfX1/S+Z1OJ5rNZoyPj8fhw4djy5YtSeeX6sSJEzE+Ph7Ly8tZdnVpaSna7XZ88skn8fTTTyefX6J2ux0vvfRSfPTRR1l3dd++ffH555/H4OBg0vml+v777+PAgQOxuLgYAwMDyd9VXFpaitXV1ZicnIznnnsu6exSdTqdeOWVV+LQoUMxNDSUvFTvdDqxsLAQe/bsia+++iqGh4eTzi/VqVOnYv/+/dFsNrPsaqvVilarFR9++GFMTEwknV2qqqritddei/fffz/rrj7wwANx7NixuO2225LOL9WFCxdibGwsbty4EYODg1l2dWlpKQ4dOhQvv/xy0tmlqqoq3njjjXj33Xez7up9990X33zzTc+U9jMzM7Fv3764cuVKDA0NJd/V5eXlWFxcjA8++CBeffXVpLNLVVVVvPXWW/H222/H4OBgbNq0Kfn8ZrMZo6Ojcfz48dixY0fS+aVqNBoxNjYWly5dyrqr7733Xrz++utJZ5fsnXfeiTfffDMGBgaiv78/6eyqqmJhYSHuvffeOH78eNEfilLYJXTy5Mk4duxYlneChoaGYv/+/bF79+7ks0u2srISk5OTcfHixeQfia3ValGv12NiYqJnyro1Z86cia+//jrm5+eTzx4cHIyxsbHYs2dP8tkla7fbMTk5GbOzs1l2ddeuXfHiiy/2TFm35vz58/Hll19meddyYGAgHnvssdi7d2/y2SXrdDrx8ccfx8zMTLTb7aSza7Va3HXXXfHCCy/0TFm3Znp6Or744ov47bffks/eunVr7N27Nx5//PHks0tWVVVMTU3Fjz/+GKurq8nn79y5M55//vmeKevWzM7OxtGjR+P69evJZ2/ZsiUefvjheOKJJ5LPLllVVfHpp5/G+fPns+zqnXfeGQcPHozbb789+eySNRqNOHLkSFy7di357M2bN8dDDz0UBw4cSD67ZFVVxWeffRZnz56NlZWV5PN37NgRzz77bGzfvj357JLNzc3F4cOH4+rVq8ln9/f3x+7du+PJJ59MPrt0R48ejZMnT2bZ1e3bt8czzzxT/KfBFXYAAAAAUBC/ww4AAAAACqKwAwAAAICCKOwAAAAAoCAKOwAAAAAoiMIOAAAAAAqisAMAAACAgijsAAAAAKAgCjsAAAAAKIjCDgAAAAAKorADAAAAgIIo7AAAAACgIAo7AAAAACiIwg4AAAAACqKwAwAAAICCKOwAAAAAoCAKOwAAAAAoiMIOAAAAAAqisAMAAACAgijsAAAAAKAgCjsAAAAAKIjCDgAAAAAKorADAAAAgIIo7AAAAACgIAo7AAAAACiIwg4AAAAACqKwAwAAAICCKOwAAAAAoCAKOwAAAAAoiMIOAAAAAAqisAMAAACAgijsAAAAAKAgCjsAAAAAKIjCDgAAAAAKorADAAAAgIIo7AAAAACgIAo7AAAAACiIwg4AAAAACqKwAwAAAICCKOwAAAAAoCAKOwAAAAAoiMIOAAAAAAqisAMAAACAgijsAAAAAKAgCjsAAAAAKIjCDgAAAAAKorADAAAAgIIo7AAAAACgIAo7AAAAACiIwg4AAAAACqKwAwAAAICCKOwAAAAAoCAKOwAAAAAoiMIOAAAAAAqisAMAAACAgijsAAAAAKAgCjsAAAAAKIjCDgAAAAAK8j89dGT2NzyL2wAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Task 3: Fit a large tree\n", + "\n", + "from sklearn.tree import DecisionTreeRegressor, plot_tree\n", + "tree_model = DecisionTreeRegressor(random_state=1)\n", + "tree_model.fit(X_train, y_train)\n", + "\n", + "# Plot the tree\n", + "plt.figure(figsize=(16, 8))\n", + "plot_tree(tree_model, feature_names=X_train.columns, filled=True, rounded=True, max_depth=3)\n", + "plt.title(\"Large Regression Tree\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "451ea8d5-4ac9-4aaa-86fa-0b4ede003663", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CAtBat 0.614032\n", + "CRuns 0.105176\n", + "Walks 0.082480\n", + "Hits 0.039794\n", + "CRBI 0.030783\n", + "AtBat 0.022928\n", + "CHits 0.019713\n", + "PutOuts 0.018320\n", + "CHmRun 0.017818\n", + "RBI 0.014231\n", + "Assists 0.013396\n", + "Errors 0.005891\n", + "HmRun 0.005503\n", + "NewLeague_N 0.003566\n", + "CWalks 0.003453\n", + "Years 0.002096\n", + "Runs 0.000610\n", + "Division_W 0.000177\n", + "League_N 0.000033\n", + "dtype: float64 183 0.39152675958676264\n" + ] + } + ], + "source": [ + "# Task 3: feature importance\n", + "important_features = pd.Series(tree_model.feature_importances_, index=X_train.columns)\n", + "important_features = important_features[important_features > 0].sort_values(ascending=False)\n", + "print(important_features, n_leaves, mse_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "70fd73f6-dc16-4fd9-80a1-243cf080b685", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "183\n" + ] + } + ], + "source": [ + "# Task 3: number of terminal nodes\n", + "n_leaves = tree_model.get_n_leaves()\n", + "print(n_leaves)" + ] + }, + { + "cell_type": "markdown", + "id": "0c19dc38-6d3d-4d83-8e77-eab071883a1e", + "metadata": {}, + "source": [ + "4. Compute the mean squared prediction error for the test data." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "eb73ed7b-6730-4a98-b04e-0d12c0c7125d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.39152675958676264\n" + ] + } + ], + "source": [ + "# Task 4: Test MSE\n", + "\n", + "from sklearn.metrics import mean_squared_error\n", + "y_pred = tree_model.predict(X_test)\n", + "mse_test = mean_squared_error(y_test, y_pred)\n", + "print(mse_test)" + ] + }, + { + "cell_type": "markdown", + "id": "dbae3448-f484-4fe2-afd1-40a741b8ef9e", + "metadata": {}, + "source": [ + "5. Let’s try to improve predictions using k-fold CV. Set the seed to 2 and run 5-fold cross\n", + "validation. Plot the mean squared cross validation error against the tree size and\n", + "report the tree size and the pruning parameter α that minimize the mean squared\n", + "cross validation error." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "31280859-0b4f-4b8d-9aeb-4e9c83bd008a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min CV MSE: 0.2644 at alpha = 0.01155\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import cross_val_score\n", + "\n", + "# Task 5: Cross-validation with cost-complexity pruning\n", + "path = tree_model.cost_complexity_pruning_path(X_train, y_train)\n", + "ccp_alphas = path.ccp_alphas[:-1] # skip the maximum alpha\n", + "trees = []\n", + "cv_results = []\n", + "\n", + "for ccp_alpha in ccp_alphas:\n", + " tree = DecisionTreeRegressor(random_state=2, ccp_alpha=ccp_alpha)\n", + " scores = cross_val_score(tree, X_train, y_train, scoring='neg_mean_squared_error', cv=5)\n", + " cv_results.append(-scores.mean())\n", + " tree.fit(X_train, y_train)\n", + " trees.append(tree)\n", + "\n", + "# Ausgabe der besten Ergebnisse\n", + "best_idx = np.argmin(cv_results)\n", + "print(f\"Min CV MSE: {cv_results[best_idx]:.4f} at alpha = {ccp_alphas[best_idx]:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "37322a0e-a542-4b10-88e3-eb88d7b1f2ac", + "metadata": {}, + "source": [ + "6. Use the pruning parameter from the previous task to prune the tree. Plot the tree and\n", + "report the most important variables." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b8bf40b3-8cba-4335-92e2-686ba0a93185", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAH2CAYAAABEPRDdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XVYFWkfxvEvJWBid7cCYid2d65dq7vu2u3a3S12Ynfr2t1ri92dqCgoKHDm/cPXs8uCrXtE7s91cV3MzDMz9xzxHH48z8xjZRiGgYiIiIiIiEg4ZW3pACIiIiIiIiJfQoWtiIiIiIiIhGsqbEVERERERCRcU2ErIiIiIiIi4ZoKWxEREREREQnXVNiKiIiIiIhIuKbCVkRERERERMI1FbYiIiIiIiISrqmwFRERERERkXBNha2IyDfi6emJlZWV+cvW1pYkSZLQuHFj7ty5Y+l4n61Pnz5YWVm9c/vOnTtDXPf7vsIjKysr+vTpY14+e/Ysffr04fr166HaFi5cGGdn52+eqVGjRqRIkeKz9n37c3rkyJGvG+ozXb16lapVq+Lk5ETUqFEpUaIEx44d++j9jx07RvHixYkaNSpOTk5UrVqVq1evhmo3ZswYqlatSsqUKbGysqJw4cJhHu/27du0bduWQoUK4eTkhJWVFZ6enmG2LVy4cJg/56VLl/7o/CIi8nlsLR1ARORHN2vWLDJkyIC/vz+7d+9m8ODB7Nq1Cy8vL6JEiWLpeF9dtmzZOHDgQIh1VapUIXXq1IwYMcJCqb6eAwcOkCRJEvPy2bNn6du3L4ULF/7s4lLeePToEe7u7sSMGZOZM2fi4ODA4MGDKVy4MIcPHyZ9+vTv3f/8+fMULlwYNzc3lixZQkBAAL169cLd3Z0TJ04QN25cc9vJkycTJUoUihYtytq1a995zMuXLzN//nzc3NwoW7YsCxcufG+GVKlSMX/+/BDrnJycPnzxIiLyRVTYioh8Y87OzuTIkQOAIkWKEBwcTP/+/Vm1ahV169YNc5+XL18SOXLk/zLmVxM9enTy5MkTYp29vT1OTk6h1v+TYRgEBATg6Oj4rSN+kfddg3yZ4cOH8+jRI/bv30/y5MkBKFCgAKlTp6ZXr14sXrz4vfv36tULe3t71q1bR/To0QHInj07adOmZcSIEQwdOtTc9uzZs1hbvxm49r5e9YIFC/Lo0SMAjhw58sHC1tHRUT8jIiIWoKHIIiL/sbe/9N64cQN4M4w0atSoeHl5UbJkSaJFi0axYsUASJEiBY0aNQp1jMKFC4cYOvl2+O/ChQvp3r07iRIlInr06BQvXpwLFy6E2n/r1q0UK1aM6NGjEzlyZPLnz8+2bdtCtVu/fj1ubm7Y29uTMmXKr9rjamVlRcuWLZk8eTIZM2bE3t6e2bNnA3Dp0iXq1KlDvHjxsLe3J2PGjEyYMCHUMZ4/f07Hjh1JmTIlkSJFInHixLRt25YXL16899wTJkzA2tqahw8fmteNHDkSKysrWrRoYV5nMpmIGTMmHTp0CJH77VBkT09PatSoAbz5o8Xboaf/Hqp6+PBh3N3diRw5MqlSpWLIkCGYTKYPvkYTJkygYMGCxIsXjyhRouDi4sKwYcMIDAz84L5vX98pU6aQLl067O3tyZQpE4sWLQqzva+vL7///jtx4sQhduzYVK1albt374Zos3jxYkqWLEnChAlxdHQkY8aM/PHHHx98vT/WypUrKVq0qLmohTd/KKlatSpr164lKCjonfsGBQWxbt06qlWrZi5qAZInT06RIkVYuXJliPZvi9oP+dh2IiJiWXq3FhH5j12+fBkgxLDI169fU7FiRYoWLcrq1avp27fvZx27W7du3Lhxg+nTpzN16lQuXbpEhQoVCA4ONreZN28eJUuWJHr06MyePZslS5YQK1YsSpUqFaK43bZtG5UqVSJatGgsWrSI4cOHs2TJEmbNmvWZVx7aqlWrmDRpEr169WLTpk24u7tz9uxZcubMyenTpxk5ciTr1q2jXLlytG7dOsTr8vLlSwoVKsTs2bNp3bo1GzZsoEuXLnh6elKxYkUMw3jneYsXL45hGCGud+vWrTg6OrJlyxbzuiNHjuDj40Px4sXDPE65cuUYNGgQ8KYIPXDgAAcOHKBcuXLmNvfv36du3brUq1ePNWvWUKZMGbp27cq8efM++PpcuXKFOnXqMHfuXNatW0eTJk0YPnw4zZo1++C+AGvWrGHcuHH069ePZcuWkTx5cmrXrs2yZctCtW3atCl2dnYsWLCAYcOGsXPnTurVqxeizaVLlyhbtiwzZsxg48aNtG3bliVLllChQoUQ7QzDICgo6KO+3vL39+fKlSu4urqGyubq6oq/v3+Y98r+87Xy9/d/5/6XL18mICDgg6/Zl7py5QqxYsXC1taW1KlT0717d/z9/b/5eUVEIjxDRES+iVmzZhmAcfDgQSMwMNDw9fU11q1bZ8SNG9eIFi2acf/+fcMwDKNhw4YGYMycOTPUMZInT240bNgw1PpChQoZhQoVMi/v2LHDAIyyZcuGaLdkyRIDMA4cOGAYhmG8ePHCiBUrllGhQoUQ7YKDg40sWbIYuXLlMq/LnTu3kShRIsPf39+87vnz50asWLGMT/34SJ48uVGuXLkQ6wAjRowYxpMnT0KsL1WqlJEkSRLj2bNnIda3bNnScHBwMLcfPHiwYW1tbRw+fDhEu2XLlhmA8eeff743U5IkSYyff/7ZMAzDePXqlRElShSjS5cuBmDcuHHDMAzDGDhwoGFnZ2f4+fmFyN27d2/z8tKlSw3A2LFjR6hzFCpUyACMQ4cOhVifKVMmo1SpUu/N92/BwcFGYGCgMWfOHMPGxibE69awYUMjefLkIdoDhqOjo/nnzDAMIygoyMiQIYORJk0a87q3P6fNmzcPsf+wYcMMwLh3716YeUwmkxEYGGjs2rXLAIyTJ0+GOubHfL11584dAzAGDx4c6lwLFiwwAGP//v3vfH327dtnAMbChQtDbRs0aJABGHfv3g1z38yZM4f4//Quhw8fNgBj1qxZYW7v3r27MXHiRGP79u3G+vXrjZYtWxq2trZGwYIFjeDg4A8eX0REPp96bEVEvrE8efJgZ2dHtGjRKF++PAkSJGDDhg3Ejx8/RLtq1ap98bkqVqwYYvlt79XbYc/79+/nyZMnNGzYMESvmclkonTp0hw+fJgXL17w4sULDh8+TNWqVXFwcDAfL1q0aKF6575E0aJFiRkzpnk5ICCAbdu2UaVKFSJHjhwiY9myZQkICODgwYMArFu3DmdnZ9zc3EK0K1WqFFZWVuzcufO95y5WrBhbt241vy4vX76kffv2xIkTx9xru3XrVvLmzftFD/lKkCABuXLlCrHO1dXV/G/yPsePH6dixYrEjh0bGxsb7OzsaNCgAcHBwVy8ePGD+xcrVizEz5mNjQ01a9bk8uXL3L59O0TbD/3swJsnFtepU4cECRKY8xQqVAiAc+fOmdtVqFCBw4cPf9TXv73vadkf8yTtL93/SwwYMIDff/+dIkWKULZsWTw8PBgyZAi7d+9m9erV3/TcIiIRnR4eJSLyjc2ZM4eMGTNia2tL/PjxSZgwYag2kSNHDnFf4OeKHTt2iGV7e3sA81DIBw8eAFC9evV3HuPJkydYWVlhMplIkCBBqO1hrftc/34tHj9+TFBQEB4eHnh4eIS5j7e3N/DmWi5fvoydnd17271L8eLFmT17NpcuXWLr1q1kzZqVePHiUbRoUbZu3UqdOnXYv38/3bt3/4wr+9u//03gzb/Lh4an3rx5E3d3d9KnT8/YsWNJkSIFDg4O/PXXX7Ro0eKjhre+79/v8ePHIZ7u/KGfHT8/P9zd3XFwcGDAgAGkS5eOyJEjc+vWLapWrRoiT6xYsYgRI8YH8/1TzJgxsbKy4vHjx6G2PXnyxHzcd3mb/137W1lZWeTpxPXq1aNjx44cPHiQKlWq/OfnFxGJKFTYioh8YxkzZjQ/Ffld3tWT5ODgwKtXr0Kt9/b2Jk6cOJ+c5e0+Hh4e73xya/z48QkMDMTKyor79++H2h7Wus/17+uOGTMmNjY21K9fP8RDnP4pZcqUwJtrcXR0ZObMmWG2+9Dr8/YBXVu3bmXLli2UKFHCvL5Hjx7s3r2bV69evfP+2m9t1apVvHjxghUrVoR4mNKJEyc++hjv+/cLq+B+n+3bt3P37l127txp7qUF8PHxCdV29uzZNG7c+KOOa/z/XmhHR0fSpEmDl5dXqDZeXl44OjqSKlWqdx4nderUODo6vnP/NGnShBh98F/TQ6hERL4tFbYiIt+xFClScOrUqRDrLl68yIULFz6rsM2fPz9OTk6cPXuWli1bvrNdpEiRyJUrFytWrGD48OHmgsDX1/e9c35+qciRI1OkSBGOHz+Oq6srkSJFemfb8uXLM2jQIGLHjm0udj9FwoQJyZQpE8uXL+fo0aPmh0CVKFGCZs2aMWrUKKJHj07OnDnfe5x/92x+LW+L/rfHhzdF4LRp0z76GNu2bePBgwfm4cjBwcEsXryY1KlTh+it/dw8AFOmTAnV9u1Q5E9VpUoVxowZw61bt0iaNCnw5mduxYoVVKxYEVvbd//aYmtrS4UKFVixYgXDhg0jWrRowJue7x07dtCuXbtPzvM1vH3St6YAEhH5tlTYioh8x+rXr0+9evVo3rw51apV48aNGwwbNizEE5U/RdSoUfHw8KBhw4Y8efKE6tWrEy9ePB49esTJkyd59OgRkyZNAqB///6ULl2aEiVK0KFDB4KDgxk6dChRokQxDw39FsaOHUuBAgVwd3fn999/J0WKFPj6+nL58mXWrl3L9u3bAWjbti3Lly+nYMGCtGvXDldXV0wmEzdv3mTz5s106NCB3Llzv/dcxYoVw8PDA0dHR/Lnzw+86RFOmTIlmzdv/mAxBX/PgTp16lSiRYuGg4MDKVOm/OQe0X8rUaIEkSJFonbt2nTu3JmAgAAmTZrE06dPP/oYceLEoWjRovTs2ZMoUaIwceJEzp8//84pf94nX758xIwZk99++43evXtjZ2fH/PnzOXnyZKi2sWPH/qzr79ixI3PnzqVcuXL069cPe3t7hgwZQkBAgHmKpbfSpEkD/P2UcYC+ffuSM2dOypcvzx9//EFAQAC9evUiTpw4IaZsgjdPvL5+/TrwZtoowzDMT4vOmTNniF7yt+vfPpX5yJEjRI0aFfh7WP+ePXsYOHAgVapUIVWqVAQEBLBhwwamTp1K0aJFv+q96SIiEgYLP7xKROSH9fbJsP9+au+/NWzY0IgSJUqY20wmkzFs2DAjVapUhoODg5EjRw5j+/bt73wq8tKlS0Psf+3atTCf4rpr1y6jXLlyRqxYsQw7OzsjceLERrly5ULtv2bNGsPV1dWIFCmSkSxZMmPIkCFG7969v9pTkVu0aBFm+2vXrhk///yzkThxYsPOzs6IGzeukS9fPmPAgAEh2vn5+Rk9evQw0qdPb0SKFMmIESOG4eLiYrRr1y7E04DfZfXq1QZglChRIsT6X375xQCMcePGhdqHfz0V2TAMY8yYMUbKlCkNGxubEK93oUKFjMyZM4c6RlhPMQ7L2rVrjSxZshgODg5G4sSJjU6dOhkbNmwI9RTmdz0VuUWLFsbEiRON1KlTG3Z2dkaGDBmM+fPnh2j3rp/Ttz9T/zzP/v37jbx58xqRI0c24saNazRt2tQ4duzYe58U/KkuX75sVK5c2YgePboROXJko1ixYsbRo0dDtUuePHmYr+GRI0eMYsWKGZEjRzaiR49uVK5c2bh8+XKodm+fRh7W17+v5V3t/vn/4NKlS0bZsmWNxIkTG/b29oaDg4Ph4uJiDBw40AgICPji10VERN7PyjDeM9GfiIiIhEtWVla0aNGC8ePHWzqKiIjIN6cnGYiIiIiIiEi4psJWREREREREwjU9PEpEROQHpDuNREQkIlGPrYiIiIiIiIRrKmxFREREREQkXFNhKyIiIiIiIuGaClsREREREREJ11TYioiIiIiISLimwlZERERERETCNRW2IiIiIiIiEq6psBUREREREZFwTYWtiIiIiIiIhGsqbEVERERERCRcU2ErIiIiIiIi4ZoKWxEREREREQnXVNiKiIiIiIhIuKbCVkRERERERMI1FbYiIiIiIiISrqmwFRERERERkXBNha2IiIiIiIiEaypsRUREREREJFxTYSsiIiIiIiLhmgpbERERERERCddU2IqIiIiIiEi4psJWREREREREwjUVtiIiIiIiIhKuqbAVERERERGRcE2FrYiIiIiIiIRrKmxFREREREQkXFNhKyIiIiIiIuGaClsREREREREJ11TYioiIiIiISLimwlZERERERETCNRW2IiIiIiIiEq6psBUREREREZFwzdbSAURE5PPcvHkTb29vS8eQ71icOHFIliyZpWOIiIh8cypsRUTCoZs3b5IxYwZevvS3dBT5jkWO7Mi5c+dV3IqIyA9Pha2ISDjk7e3Ny5f+zOjTkvQpEls6jnyHLly/Q5M+4/H29lZhKyIiPzwVtiIi4Vj6FIlxy5DK0jFERERELEoPjxIREREREZFwTYWtiIiIiIiIhGsqbEVERERERCRc0z22IiIRXFBQMMNnr2TJ5n3YWFsTbDKR3y0jA1rWxSlaFAB2HjlN+Zb9md67JbXKuJv3nbBoPTVKFiBerBgAzFu3ky5jZpMsYVwADMOgx68/Ub5gzvdm8PF9waxVW2lXv9I3usqw+b0MoG7XkRw/fw2Am5umm7e98A+gXIv+BLx+DUCCODEZ27kpyRPFI+DVaxr1HMv5a3dwdIhE/NhO5m0Avw+YxMFTF3Cwj0S0KI6MaN8Y13QpwsywYe9RunnMIzg4GOc0yZnaqwVRIzt82wsXERH5wajHVkQkgms+aDLHzl5h+7T+HFk4kqMLR1I0lwtPn/uZ28xZsx33bJmYvXZ7iH0nLNrAo6fPQqwrnNOFA3OHcWDuMMZ3bUaLQVM+mOGZ7wtGz1v7Wfm9fZ5/1n4AdrY2tK1XkXUePUJtc7SPxFqPHhycN5yD84ZTIk8W/hg7x7y9ceXiHF8ymgNzh1E6fzZaDZlm3la+YE4OLxjJgbnDaFevIg26jwnz/H4vA2g+cAqLhnbk1LJxJIgTk+GeKz77ekRERCIqFbYiIhHYlVv3WbntIJN6/k7M6FEBsLa2pmqxvKRMHB9405u6+cAJPPu34dy121y9fR+AwTOWcc/7CfW6jSZv/c6cung91PGfPvcjZrSo5uXuHvMo2Lgreet3ptTvfbh88x4AbYZN55nfC/LW74x7o64fzP3wyTOmLNtE8V960mLghwvnd7GPZEeRnC7EiBo51DZra2uiRXEE3vQ8P3/hj7X1m49NB/tIlMqXFSsrKwByOafl+t0H5n3LFcyBra0NADmd03Lz/iNMJlOoc2w+cJxsGVOZp2z6pVpJlm7e/9nXIyIiElFpKLKISAR24sI1UidNQByn6O9ss3jTXormciV+bCdqlirAnLU76fN7Lbo2qc7ctTuZN6gdmVO/mSf11MXr7DzsRd76nfEPeM3dR0+YPaCN+Vjt6ldkYKt6ACzdso8/xs5h2cgujO3cFPfG3Tgwd9g7c/i+8Gftrr9YsnkfN+49onKR3Izr+iuZUiU1t6nbdZS58P63pSM6kyR+nE94dd4o37I/Z67cIk7MaKwZ2z3MNpOWbKBMgexhbpu4eAMl82U1F8X/dPu+N0kT/J0pecK43H30BJPJFGZ7ERERCZsKWxERea85a7bTt3ltABpUKELltoPo+etP2NiEXXgVzunC/MHtAThz5SYVWg1g3+whJIwbi+2HTjF56UZ8X/pjMhn4vvD/qAz3Hj3BtXobMqRMwsiOjcnlnC7Mdm/P+zWtG98Tk8nEMM+VDJ21gjGdm4bYPtxzJVdu3Wdsl19C7btowx5WbjvApsl933n8t72+IiIi8vlU2IqIRGBu6VNy5dZ9Hj/zJXaMaKG2n7p4nTNXbtFqyDSseFOAPfbxZcvBE5TOn+2Dx8+cOhlJE8ThwKkL5Myclo6jPNk1cyApE8fn9KUblG3Z/6NyxovlxOwBbVmyeS9Neo+nRF43apTIRx7X9CEKw2/RYwtvhiU3rlSMLDXahChsx85fy5qdf7HWoweRHexD7LNsy34Gz1jGuvE9zQ/X+rckCeKw6+gZ8/KNe49IFDeWemtFREQ+kQpbEZEILHXSBFQqkpsWAyczuWdznKJFwTAMFm7YTR7X9Hiu2U7rOuXp16KOeZ/JSzcye812SufPRrQojjz3e/nO4995+Jgrt+6TNllCnvm9JJKdLfFjO2EYBpOXbTK3ixYlMv4BrwgKCjbfm/pPNjbWlHXPTln37LzwD2DdrsOMnLOaizfu0KhiMdo3ePM05a/ZY/vgsQ92trbEivHmHuFlW/bh/P8h1wAeC9axdPM+1nr0MD89+q3lWw/Qf8pi1nr0CDHU+N9K5HGj/YiZXLh+h/QpEjNt+Waql8j31a5BREQkolBhKyISwU3q8RtDZ62gSJPu2NjYYBgG+bNmpFjuLCzdvJcNE/uEaF+9RD56TVjAg8c+/P5TaX4fMBlHh0hM6dkcwHyPrWEYBAWb6P1bLVzSpgCgStE85KzdgSQJ4lA0p4v5mLFiRKVmqQLkqtuRKI4O7PEc/M68URwdqFnanZql3Xn8zJdDpy5+0fXnb9CF+4998PH1I12F3ymYPTPT+7Tk7qMntBw0haBgEwYGqRLHZ3rfVsCbgr3ruLmkTByfsi36AWBvZ8fOmQMBaNLb4809yZ2Hm8+zbnxPYseIRv+pS0gYJyZNq5YgWhRHJnRtRq0uIwgODiZT6mRM7dX8i65HREQkIrIyDMOwdAgREfk0x44dI3v27Oz1HIxbhlSWjiPfoRPnr1KgUVeOHj1KtmwfHjYuIiISnukmHhEREREREQnXVNiKiIiIiIhIuKbCVkRERERERMI1FbYiIiIiIiISrumpyCIi8p+7cfch7o27cXPTdEtH+Wpmr9nOqDmrMRkGhXI4M6ZTkzCnLrp6+z6thkzjyTNfAl4HUjpfVga2qoe1tTVTlm1ixsot2FhbE2wy0ahiMZrXLAO8mRd31NzVBAYFYWVlReNKxfj9pzL/9WWKiIh8l1TYiojIVxEcbMLG5r8fCBTW3LefkuVdc+d+iut3H9J/6hL2zR5CvFgxqNlpOLPXbqdJlRKh2nbzmEc59xw0r1mGgFevKfhzNwofPEmpfFmpVdqdZtVLAfD8xUty1elIwWyZcE6bnMTxYrFydFfix3bimd9L3Bv9gVv6lOTNkuGLsouIiPwIVNiKiPxA/ANe06z/RM5cuYmdrQ3xYjmxZlx3APpOXsTyrftJGDcW2TOmZs+xs+zxHMzuo2fo7jHPPHfsmSs3qdFhGGdXjScoKJhqHYbw5Jkf/q9e45o2OeO7NSOygz3z1u1k2db9xI0ZnfPX7jCiQ2NsbazpOWEBvi/8MZlMdGpUlcpFcwMwZdkmJixaT/zYMSmQNeMHr8X3hT9dx87B6/INAl4Fkts1HSM7NMbO1pbSv/clj2t6Dp+5BEDt0u6hsjz3e0mfSQsJCjbhFD0KYzo3JWPKJOw+eoYuY2aT3y0jx85doWXtclQtlveLXvdV2w9SoVBO4sd2AqBJ1RKMnrsmzMIW3hStAP6vXhMYFEyC/+8XI2pkcxv/gNcEBZvAygogRAEbI2pk0iVPzI27j1TYioiIoMJWROSHsuXgCXx8X3B00SgAnjzzA+DPPUf5c89R9s8ZhqN9JGp3GfFRx7OxsWZmv9bEjhENwzBoO2wG05Zvpk3dCgAcOHmefbOHkiZZQnx8X1CuRT+Wj/qDBHFi4u3zHPdGXcmbJT2PnjxjuOdK9s0eQvzYTrQd9uEhyF3HzSV/1oyM79YMwzBoOWgKU5ZuomXtcgB4XbrOqjFdsbO1Zd66nSGyPHzyjBy1O/DnhF44p0nG4o17aNB9NIcXjATg9OWbjOzwMyM6NA7z3MV+6cnLgFdhbtvrOSRUb/Ct+94kSxDHvJwsYVxuP/AOc/9hbRtSo+Mwpq/Ygo+vH10aVyNL+pTm7Su3H2TgtKVcvX2ffs3r4JwmWahjnLt2m7+8LuLxxy/veQVFREQiDhW2IiI/EJe0ybl44w5th02nQNZMlMqXFYDdR89QrXheokZ2AKB+hSIMm7Xig8czDIPxC9ezaf9xgoKDee73kvxuf/e25s2SgTTJEgJwyOsi1+8+pEq7wSH2v3jjLl6XblA6X1Zzj+bPlYuzYtvB95573e7DHD59iXEL1gEQ8Oo1dnZ/f2zVKuOOne3fy//McuTMZVzTJjcXhTVLu9N+xEzuez8FIE2yhORze3dP57Zp/T/42vyb1f97VuHNdb/LzFVbqV3Gnbb1KvLwyTPKtexHTue0FM7hDECVonmoUjQPN+4+pPYfIymZLyvpkicy73/n4WNqdRrOmC5NSRg31ifnFBER+RGpsBUR+YGkTByfIwtHsevIaXYc9qLnhPnsnzMUg3cXWrY2NgSbTOblV68Dzd8v2bSPvcfPsWlSH6JFcWTi4g3sO3HOvD2Ko4P5e8MwyJwmGZsn9w11jlOXrn/ytRiGwaJhHUmZOH6Y26P+49xhZflnofnW23X/3vffPrXHNmmCONy498i8fOu+N0nix/n3rgBMWrIBr+UeAMSLFYOSebOy9/hZc2H7VvJE8ciROQ0b9x41F7b3Hj2hfKsBdG5c9YuHT4uIiPxINN2PiMgP5M7Dx1hZQbmCORjUuj6GYXDnwWMK53BmxbYDvPAPIDjYxPz1O837pEgUjxt3H/L4mS8ACzfsMW976utH7BhRiRbFEd8X/iH2+7fcLum4cus+O4+cNq87dfE6rwODKJQtM5sOHOfhk2fAmycIf0g59xyMnLOaoKDgN1me+3Hl1v2Peh1yuaTj1KXrnL92G4ClW/aRKF4sc4/xh2yb1p8Dc4eF+RXWQ6kqFcnN2l2HefDYB8MwmLFiC9VL5Avz2CkSxWfLgRMAvPAPYNeR02RKlRTAnBfg0dPn7Dp8Guc0yQG47/2Uci37075+ReqWK/RR1yEiIhJRqMdWROQHcubyTXpNXIBhgMkwUat0QZzTJsc5bXIOeV0ib/3OJIwbiwJZM3Hn4RMAEsWLRes65SnYqCvJEsYl/z8e7FSnbCHW7z5C9lrtSRQ3FvncMnL30ZMwzx0zelSWjuhMd495/DFmNoFBwSRNEIdFQzvinDY5HRtWofivPYkfy4lS+bN+8FqGtm1IzwnzydugM9ZW1tjZ2tC/RR1SJ03wwX3jxozO9N4tadLbg2CTiRjRojBnYLuPfBU/XcrE8enetAYlmvXCZDIolD0zDSsWAd70slZtP4QDc4cBMLVXczqMmMm4BesIDAqiQqGcVCmaB4DJSzey9/g57GxtMAyDFrXKUjS3KwADpi7h9oPHTFy8gYmLNwDQvGYZ6pcv8s2uS0REJLywMt53I5CIiHyXjh07Rvbs2dnrORi3DKk+ef9/PwlZfjwnzl+lQKOuHD16lGzZslk6joiIyDelocgiIiIiIiISrmkosohIBFQwe+bvorf21MXrNOs/MdT6umULmaf1EREREfkQFbYiImIxrulSmO89DUvp3/vSpm55yhTI/h+m+lufSQtZs/MvItnZYh/Jjr7N65ifXmwymeg0ypPNB05gZQUta5Xj1+qlzPsOnbmceet3AVCjZH56NatpkWsQERGJCFTYioiIvEO+LBno0rgajg6R8Lp0nTLN+3F53WQc7COxaOMezl+/w4klY3jm95ICDf+gUA5n0qdIzN7jZ1m6ZT8H5w3D1saG4r/2Il+W9BTP42bpSxIREfkhqbAVEZH38g94TbP+Ezlz5SZ2tjbEi+XEmnHdefDYh0Y9x+L7wp+A14EUzuHM8PaNsLKyYuC0pVy6eRe/lwFcvHGHLOlT0rFBZbqOm8vNe48oXzAnQ9o2AN70yrqmS86pizfezNNaKCcDWtYNNQ+t7wt/uo6dg9flGwS8CiS3azpGdmiMna0tQ2cuZ/GmvdhHsgNg8bBOJEsY94uvvWS+v5/enDl1MoKDTTx+5kvieLFZvvUATaoUx8bGmlgxolK1WB6WbdlP919qsHzrAeqVK2SeW7d++cIs3bxfha2IiMg3osJWRETea8vBE/j4vuDoolEAPHnmB0CMqJFZOqILUSM7EBxsombn4azaccg8dc3xc1fZ7TmYqI4O5G/YhV4TF7BydFeCgoPJXLUVTaoWJ22yRACcv3aHtR7dCQwKptRvfVix7SDViucNkaPruLnkz5qR8d2aYRgGLQdNYcrSTdQtV4hxC9Zxed0UHB0i8TLgFdb/KooBdvx1im4e88K8xlL5stHn91rvfR3mrttJyiTxSRwvNgC3HniTLMHfxXOyhHE5fv4qALfve1MgaybztuSJ4rFqx6H3Hl9EREQ+nwpbERF5L5e0ybl44w5th02nQNZMlPp/L6bJMOg5YT4HTp7HMODR02e4pE1uLmyL5clCjKiRAXBOkxyXtMmxj2SHPXakTZaI63cemgvbumULYmdri52tLbVKF2DHYa9Qhe263Yc5fPoS4xasAyDg1Wvs7GyJHiUyqZMmoEkfD4rldqV0/mzm4vOfiuRyfe/9vO+z47AXg2csY824HiHW/7N+/vfceSG2aWY9ERGRb0qFrYiIvFfKxPE5snAUu46cZsdhL3pOmM/+OUOZumwTT575snPGQBzsI/HHmDm8eh1o3s/h/8OCAWysrc3DhN8uBwUHv/OcYXS4YhgGi4Z1JGXi+KG27Zg+kINeF9hz7CxFmvRgVv/W5HfLGLLNZ/bY7jl2lt8HTGLpiM6kS57IvD5p/DjcuPeI7JnSAHDr3iOSxI8DQJIEcbh575G57c17j0j6/20iIiLy9amwFRGR97rz8DFO0aJQrmAOSuR1Y93uw9x58Bgf3xfEj+2Eg30kHjz2YeX20MOHP9bCjXuoVjwfgUHBLNm8jzZ1K4RqU849ByPnrGZMpybY2trw9LkfT575ES9WDPxe+pPfLSP53TJy7uotTl64Hqqw/Zwe273Hz/JL3/EsHtYJl7QpQmyrUjQPM1dupVLh3Dzze8nybQdYObqreVuHkTP5pVpJbG1smLtup56KLCIi8g2psBURkfc6c/kmvSYuwDDAZJioVbogzmmT8/tPZajffTR563cmUdxYFMnp/NnncEufkvKtBpgfHvV2OPM/DW3bkJ4T5pO3QWesrayxs7Whf4s6ONjbUa/rKF4EvMIKK1InTUDdcoW+5JLNWgycwqvXQfw2YJJ53bTeLXFOk4zaZQpy9NwV3H5qC0CbuhXIkDIJ8Gae4KrF8pK7bicAqpfIR4m8bl8lk4iIiIRmZejGHxGRcOfYsWNkz56dvZ6DccuQytJxvoil56r9UZ04f5UCjbpy9OhRsmXLZuk4IiIi35S1pQOIiIiIiIiIfAkNRRYREYvaOKm3pSOIiIhIOKceWxEREREREQnX1GMrIiL/qWb9JpI1Yyp+q1HaYhlu3H2Ia402ZEqV1Lxu/uD2pEqSIFTbB499aDtsOldvP+B1UBBNqxSnRa1yIdo8evqcXHU6ks8tA/MHt//m+UVERCQkFbYiIhIhxYga5aOm/+k6dg6Z0yRj4dCO+L0MoNgvPcnjmt48fy1Au+HTKZXPDd+XAd8ysoiIiLyDhiKLiMhnGTpzOR1GzDQv+70MIGnJn/H2ec7pyzcp0aw3+Rt0IXut9oyYvTLMYwyctpRu4+aalycv3UizfhPNy2Pnr6XQz93I36ALVdsN5vYD7293Qe/gdfkGpfO9eapw1MgOFMiakYUb9pi3L964h3ixnCiQNdN/nk1ERETeUI+tiIh8lnrlC5O/4R8MbtOASHa2rNx+APdsmYnjFB17OzvWefTAPpId/gGvKfZrT4rmciVbxtQfffwlm/Zy6eY9tk8bgI2NNQs37KbDiFksHt4pVNu6XUdx9fb9MI+zdERnksSPE2q974uXFGzcleBgE+UL5aRzo6rY2IT+e2/2jKlZsnkv2TKmwtvHl22HTpEueSIA7j16gsfC9Wyc1IdV2w9+9LWJiIjI16XCVkREPkvieLHJki4F6/ccoUrRPMxdt5N29SoC4P/qNe2Gz+DUpetYW1lx5+FjTl28/kmF7drdhzl+7ioFGv0BQLDJhI112AONPvW+1gRxYnJhzSTixYrBk2d+NOwxhnEL1tKufqVQbQe1bkB3j7nkb/gH8WM7UTBHZryfPgeg5eCp9G9Zl6iRHT7p/CIiIvJ1qbAVEZHPVq98Yeav34Vr2hRcvf2AknmzAtB30kLixYrB/tlDsbW1oXaXEQS8Dgy1v62NNcEmk3n51T/aGIZB58ZVaVChyAdzfGqPrX0kO+LFigFArBhRqV+hCEs37Q2zsI0VIyqTevxuXm49dBoZUiYB4K/TF2kx8DYAfv4BBLx6TaU2A1k9tvsHM4uIiMjXo8JWREQ+W8VCueg0ypNRc1ZRu7S7eSjvU98XZEqdFFtbGy7euMuOw14UyuEcav+USRKwdflmTCYTAa8DWb3jEGmTvRnmW849BxMXb6B8wZzEihGVwKAgzl65RZb0KUMd51N7bB8+eUbM6FGws7Xl1etA1uw8hGsYxwV4/MyX6FEcsbO15cT5q6zbdZj9c4YCcGvz3/cYz1u3kw37jumpyCIiIhagwlZERD6bfSQ7qhTNw7Tlmzm6aJR5fZfGVWnadzyLN+0lWcK4FMoeuqgFqFwkN6u2HyR77Q4kTxgXl7QpCHj1GoDaZQry5JkvZZr3xcoKgoJNNKxQJMzC9lMdOHmeAdOWYGNtTVCwiULZM9O5URXz9rz1O7Ni1B8kjBuLo2cu03HULGxtbIgWxZE5A9uSIE7ML84gIiIiX4+VYRiGpUOIiMinOXbsGNmzZ2ev52DcMqSydBz5Dp04f5UCjbpy9OhRsmXLZuk4IiIi35Sm+xEREREREZFwTYWtiIiIiIiIhGsqbEVERERERCRcU2ErIiIiIiIi4ZoKWxEREREREQnXNN2PiEg4duH6HUtHkO+UfjZERCQi0XQ/IiLh0M2bN8mYMQMvX/pbOop8xyJHduTcufMkS5bM0lFERES+KRW2IiLh1M2bN/H29v7s/b28vBg6dCjnzp2jQoUKtGrVitixY3/FhPKxDMNg+/btjBw5kidPntCwYUMaNWqEo6PjFx03Tpw4KmpFRCRCUGErIhLBPHz4kD/++INZs2aRNWtWJkyYQN68eS0dS4AXL14wePBghg8fTsKECRk9ejSVK1fGysrK0tFERES+a3p4lIhIBBEUFMT48eNJnz49q1atYtKkSRw+fFhF7XckSpQoDBgwgNOnT5MpUyaqVq1KmTJluHjxoqWjiYiIfNdU2IqIRAB79+4le/bstG7dmho1anDx4kV+++03bGxsLB1NwpA2bVrWr1/P6tWruXDhAs7OznTt2pUXL15YOpqIiMh3SYWtiMgP7N69e9SvXx93d3ccHBw4dOgQU6dOJU6cOJaOJh9gZWVFxYoVOXv2LN27d2fMmDFkyJCBJUuWoLuIREREQlJhKyLyAwoMDGTUqFGkT5+eDRs2MG3aNA4cOEDOnDktHU0+kaOjI7179+bs2bNky5aNmjVrUrx4cc6ePWvpaCIiIt8NFbYiIj+YnTt3kjVrVjp16kT9+vW5ePEiTZs2xdpab/nhWcqUKVm9ejXr16/n5s2bZMmShY4dO+Lr62vpaCIiIhan33JERH4Qt2/fpnbt2hQpUoTo0aNz5MgRJkyYQKxYsSwdTb6ismXL4uXlRd++fZk4cSLp06dn/vz5Gp4sIiIRmgpbEZFw7vXr1wwbNowMGTKwfft2PD092bt3L1mzZrV0NPlGHBwc6NatG+fPnydfvnzUq1ePwoUL4+XlZeloIiIiFqHCVkQkHNuyZQuurq5069aNpk2bcvHiRRo2bKhhxxFEsmTJWLZsGZs3b+bBgwdkzZqVNm3a4OPjY+loIiIi/yn95iMiEg7dvHmTatWqUbJkSeLHj8/x48cZM2YMMWLEsHQ0sYASJUpw6tQpBg8ezIwZM0ifPj2enp6YTCZLRxMREflPqLAVEQlHAgICGDhwIBkyZODAgQPMnz+fnTt34uLiYuloYmGRIkWiU6dOXLhwgaJFi9K4cWMKFCjAsWPHLB1NRETkm1NhKyISTvz55584OzvTp08fWrRowfnz56lTpw5WVlaWjibfkcSJE7Nw4UJ27NjB8+fPyZEjB82bN+fJkyeWjiYiIvLNqLAVEfnOXb16lUqVKlGuXDmSJ0/OyZMnGT58ONGjR7d0NPmOFS5cmOPHjzNy5EjmzZtHunTpmDZtmoYni4jID0mFrYjId8rf35/evXuTKVMmjh07xpIlS9i6dSuZMmWydDQJJ+zs7GjXrh0XL16kbNmy/Prrr+TJk4e//vrL0tFERES+KhW2IiLfGcMwWL16NZkyZWLw4MG0b9+e8+fPU6NGDQ07ls+SIEEC5syZw549e3j9+jV58uThl19+wdvb29LRREREvgoVtiIi35FLly5Rrlw5KleuTPr06Tl9+jSDBg0iSpQolo4mP4ACBQpw5MgRPDw8WLZsGenSpWPSpEkEBwdbOpqIiMgXUWErIvIdePHiBd27d8fZ2ZmzZ8+ycuVKNmzYQLp06SwdTX4wtra2tGjRggsXLlClShWaN29Ozpw5OXDggKWjiYiIfDYVtiIiFmQYBsuWLSNjxoyMHDmSP/74g7Nnz1K5cmUNO5ZvKl68eMyYMYODBw9ibW1Nvnz5aNSoEQ8ePLB0NBERkU+mwlZExELOnTtHyZIlqVGjBm5ubpw5c4a+ffsSOXJkS0eTCCR37twcOnSIyZMns3btWtKlS8fYsWMJCgqydDQREZGPpsJWROQ/5uvrS+fOnXF1deXatWusW7eONWvWkDp1aktHkwjKxsaGZs2acfHiRWrXrk27du3Ili0bu3fvtnQ0ERGRj6LCVkR+KG5ubri5uZEpUyZsbW3NyzVr1rR0NAzDYOHChWTIkIHx48fTu3dvTp8+Tbly5SwdTQSA2LFjM3nyZA4fPkzkyJEpVKgQdevW5e7du1/l+ClSpCBDhgzm/5e//fbbB9ufPn36q5xbRER+bFaGYRiWDiEi8rVdv36dHDlyhDmdSVBQELa2tv9pntOnT9OyZUt27dpF1apVGTVqFMmTJ/9PM4h8CpPJxOzZs+nSpYt5TuU2bdpgZ2f32cdMkSIF69atw9nZ+Zu0FxGRiEs9tiISIaRIkYKBAwdSpEgRGjZsyM6dO8mRI4d5++nTp0mRIoV5edOmTRQoUIDs2bOTO3fuzx6S+ezZM9q2bYubmxv37t1j06ZNLF++XEWtfPesra1p3LgxFy5coFGjRnTp0oUsWbKwbdu2r3qeBQsWkDt3brJmzYqbmxt//vlnmO0GDBhAxowZzb29N27cAODw4cMULVqUHDlykC1bNpYvX/5V84mISPjw33ZZiIhY0M2bN9m+fTtWVlbs3Lnzne2uXr1K37592bhxI9GjR+fy5csUKlSI69evf3RvlWEYzJ07l86dO+Pn58fAgQNp164dkSJF+kpXI/LfiBkzJh4eHjRt2pSWLVtSvHhxatSowciRI0maNOknH6969eo4ODgA0Lt3b0qVKkXt2rWxsrLi+vXr5MuXjxs3boT4v/b06VNGjBjBvXv3cHR05OXLl1hbW+Pj40OzZs1Yv349CRMmxNvbm+zZs5M/f34SJEjw1V4DERH5/qmwFZEIo3Hjxh81hc7GjRu5fPkyBQsWDLH+1q1bpEqV6oP7nzhxgpYtW7Jv3z5q1qzJiBEjSJIkyWfnFvkeZMmShd27dzNv3jw6depEhgwZ6NmzJ+3atcPe3v6jj7Ns2bIQQ4uPHDlC3bp1uX37Nra2tnh7e3Pjxg3SpEljbhM9enTSpk1LvXr1KFmyJOXKlSNJkiRs376dq1evUqZMGXNbwzC4cOGCClsRkQhGQ5FFJMKIGjWq+XtbW1uCg4PNywEBAebvDcOgdOnSnDhxwvx1586dDxa1T58+pWXLlmTPnp2nT5+ybds2Fi1apKJWfhhWVlbUr1+fixcv0qxZM3r06IGLiwubNm367GPWqlWL3377jdOnT3PixAmiRo0a4v8jvHlq88GDB2nbti0PHz4kT5487NmzB8MwcHV1DfF/9ebNmxQqVOhLL1VERMIZFbYiEiGlTJmSa9eu8fjxYwDmzp1r3layZEk2btwY4mmsf/311zuPZTKZmDFjBunSpWPOnDkMHz6cEydOULRo0W93ASIWFD16dEaNGsXJkydJnDgxpUuXpkqVKly/fv2Tj/X06VPz/e3z5s3j6dOnodr4+vry4MED3N3d6dmzJwUKFOD48ePky5ePS5cusX37dnPbEydO8Pr168+9NBERCadU2IpIhJQ4cWI6duxIjhw5KFKkCE5OTuZtadOmZd68eTRt2pQsWbKQMWNGxo4dG+Zxjhw5Qt68eWnatCmlS5fmwoULtG/f/oueHCsSXmTOnJnt27ezcOFC/vrrLzJmzEi/fv1C9bi+z9ixY6lSpQoFChTg5MmTJEuWLFSbZ8+eUbVqVVxcXHB1dSUwMJCGDRsSM2ZM1q5dS//+/cmSJQuZMmXijz/+wGQyfc3LFBGRcEDT/YiIfAZvb2+6d+/OtGnTcHFxYfz48bi7u1s6lojF+Pn50b9/f0aPHk3SpEkZO3Ys5cuXt3QsERGJINRjKyLyCYKDg5k8eTLp06dn8eLFjB07lqNHj6qolQgvatSoDB06lFOnTpE6dWoqVKhA+fLluXLliqWjiYhIBKDCVkTkIx08eJBcuXLx+++/U6lSJS5cuECrVq2wtdUD5kXeypAhg3m+Zi8vLzJnzkyvXr14+fKlpaOJiMgPTIWtiMgHPHz4kJ9//pm8efMCsH//fmbOnEn8+PEtnEzk+2RlZUXVqlU5d+4cHTt2ZOjQoWTKlImVK1eiO6BERORbUGErIvIOQUFBeHh4kC5dOlatWsWkSZP466+/zAWuiLxf5MiRGTBgAGfOnCFz5sxUrVqV0qVLc/HiRUtHExGRH4wKWxGRMOzZs4fs2bPTpk0batasycWLF/ntt9+wsbGxdDSRcCdNmjSsW7eONWvWcOnSJZydnenatSt+fn6WjiYiIj8IFbYiIv9w79496tevT8GCBXFwcODQoUNMmTKFOHHiWDqaSLhmZWVFhQoVOHPmDN27d2fMmDFkzJiRJUuWaHiyiIh8MRW2IiJAYGAgo0aNIn369GzcuJHp06dz4MABcubMaeloIj8UR0dHevfuzdmzZ8mePTs1a9akePHinD171tLRREQkHFNhKyIR3o4dO3Bzc6NTp040aNCACxcu0KRJE6yt9RYp8q2kTJmSVatW8eeff3Lz5k2yZMlChw4deP78uaWjiYhIOKTf2kQkwrp9+za1atWiaNGiODk5cfToUcaPH0+sWLEsHU0kwihTpgynT5+mb9++TJo0iQwZMjB//nwNTxYRkU+iwlZEIpzXr18zdOhQMmTIwM6dO5k9ezZ79+7Fzc3N0tFEIiR7e3u6devG+fPnyZ8/P/Xq1aNQoUKcOnXK0tFERCScUGErIhHK5s2bcXFxoXv37vzyyy9cuHCBBg0aYGVlZeloIhFesmTJWLp0KVu2bOHRo0dky5aNNm3a4OPjY+loIiLynVNhKyIRwo0bN6hWrRqlSpUiYcKEHD9+nNGjRxMjRgxLRxORfylevDgnT55kyJAhzJw5k/Tp0+Pp6YnJZLJ0NBER+U6psBWRH1pAQAADBgwgY8aMHDx4kAULFrBjxw5cXFwsHU1E3iNSpEh07NiR8+fPU6xYMRo3bkyBAgU4duyYpaOJiMh3SIWtiPyw1q9fj7OzM3379qVly5acP3+e2rVra9ixSDiSOHFiFixYwM6dO/H19SVHjhw0b96cJ0+eWDqaiIh8R1TYisgP5+rVq1SsWJHy5cuTMmVKvLy8GDZsGNGiRbN0NBH5TIUKFeLYsWOMHj2a+fPnky5dOqZNm6bhySIiAqiwFZEfiL+/P7179yZTpkycOHGCpUuXsnnzZjJkyGDpaCLyFdjZ2dGmTRsuXLhA+fLl+fXXX8mTJw9//fWXpaOJiIiFqbAVkXDPMAxWrVpFpkyZGDJkCB06dODcuXNUr15dw45FfkAJEiTA09OTvXv3EhgYSJ48efjll1949OiRpaOJiIiFqLAVkXDt0qVLlC1blipVqpAhQwZOnz7NwIEDiRIliqWjicg3lj9/fo4cOYKHhwfLli0jffr0TJw4keDgYEtHExGR/5gKWxEJl168eEH37t1xdnbm/PnzrFq1ij///JO0adNaOpqI/IdsbGxo0aIFFy9epGrVqrRo0YIcOXKwf/9+S0cTEZH/kApbEQlXDMNg2bJlZMyYkZEjR9K1a1fOnj1LpUqVNOxYJAKLGzcu06dP59ChQ9ja2pI/f34aNWrEgwcPLB1NRET+AypsReS7df78eX755RcMwwDg3LlzlCxZkho1apA1a1bOnj1Lnz59cHR0tHBSEfle5MqVi4MHDzJlyhTWrl1LunTpGDt2LEFBQQBs2rSJAQMGWDiliIh8bSpsReS7FBwcTMOGDdm/fz9+fn506tQJV1dXrl27xvr161m9ejWpUqWydEwR+Q7Z2Njw66+/cvHiRerUqUO7du3ImjUru3fv5tmzZ/Ts2ZP169dbOqaIiHxFVsbbrhARke/I2LFjadeuHb1792bq1Kk8ffqU7t2706FDBxwcHCwdT0TCkWPHjtGiRQsOHjxI7dq1uXv3LlevXuXMmTOa31pE5AehwlZEvjvXr18nU6ZMxIwZk7t371KtWjVGjhxJ8uTJLR1NRMIpk8nE7Nmz6dKlCy9evCAwMJBff/2V8ePHWzqaiIh8BSpsReS7kyFDBi5cuICjoyPJkiUjKCiIgIAA1q1bh5ubm6XjiUg41LhxYzZv3oyTkxPPnj3jzp07AKxcuZLKlStbNpyIiHwxW0sHEBEJS4oUKXBxcSFu3LjEjh2bhAkTkiZNGkvHEpFwqmHDhiRLlozHjx/z+PFjrl+/zsWLF7l7966lo4mIyFegHlsREREREREJ19RjK+HSzZs38fb2tnQM+Y7FiROHZMmSWTqGiHxj+jyQ99FngUjEocJWwp2bN2+SMWNGXr58aeko8h2LHDky586d0y80Ij+wN58HGXj50t/SUeQ7FTmyI+fOnddngUgEoMJWwh1vb29evnzJnGkTyJAuraXjyHfo/MVLNPilBd7e3vplRuQH9ubzwJ8pHX4ifZJ4lo4j35kLtx/SbOQSfRaIRBAqbCXcypAuLdncXC0dQ0RELCx9knhkSZPY0jFERMSCrC0dQERERERERORLqLAVERERERGRcE2FrYiIiIiIiIRrKmxFPiAoKIj+Q0eSOUcBXHMXJHOOAvzWuiM+Ps+4fuMm9rESk71AMbLlL0q2/EVZv2mLpSN/kRcvXtCkeRvc8hYmU/b8dO09gLfTXW/ftZe8RcvgksudLHkK0aPfYN41FfbPv7cmecasZC9QjOwFitG5R9//8jJERL66IQu20sZjhXl5r9dVYlboysGz183rWo1bzrCF2957nJgVuuLn/woA1yZDOXvj/jfJ+zW0HLssRF6AbccuUritBwXbjCNvizEs3HY0zH33el0lUbVeuLceZ/7yfxX4X0UXkQhGD48S+YBfWrbjyVMf9m5ZR8yYTphMJlasXseTpz5YW1vhFCMGR/e++SXmz81bqfvzb3jfuICNjY3FMj9+8oTYsWJ91r6DR44D4Pj+HQQFBVHxp/osX7WW6lUqEtMpBvNnTCZVyuQEBARQstJPLFq2kto1qoZ5rM7tWtLi1yaffR0iIt8Td5dUtPJYbl7e63WVHOmTstfrKnkypTCvm9C2uoUS/u3xsxfEjhHli46x4a9zWFlZhVhnGAa/jFjEmoG/4JwyITcfPCXX76Mon9eZaJHtQx0jfbJ47Bjd8otyiIh8DPXYirzH5SvXWLZqHTMmjiFmTCcArK2tqV6lIqlSJg/Vvoh7fnx9/Xjy9CkAtjES4Of3wrw9fspMXL9xE4DULjnoN2QEBUqUJ41LTgYOH21uN3D4aJxzupt7O2/cvPXBrOcvXqL3wKFkzlGAWXMXfvY1nzp9htLFi2JlZYWdnR0lihZi3uJlAGTN4mK+bgcHB9xcMnP1+o3PPpeISHiSI0My7j/25Y73M+BNEdupVlH2el0F4PYjHx488SVHuqRMWLWHou3GU7DNOIq1n8CRCzc/ePwpa/ZRuvNkvJ/5cfj8TQq39cC99Zte0Rl/Hvzg/s9fBrBg61Gq9pxBlV4zvuhanzx/wbCF2xjQpFyY25+9CDCfM1a0yNjbWe6PuSIioB5bkfc6fvIUaVOnJE7s2B/VftmqtRQpWIC4ceJ8VHufZ8/Zu2Udj7y9SZ81L43q1iKyoyOjPCZx+8JJHB0defnyJdbWYf8N6vaduyxevooly1dhFykSNatVZtv6FSSI/2Y+Rx+fZxQrH3Zvary4cdmwclGo9TmyubF05RoqlS/Dq1evWbVuA76+vqHa3X/wkOWr17F26fx3Xt+Y8VOY7jmPpEkS06/HH7i5On/MyyIi8l2yt7MlZ4Zk7Dl1hSrurtx9/IySOTLQdeo6XgcGsdfrKrkzJSeSnS01i2SlRWV3AA6fv0mrcSs4MKFtmMc1mQy6TVvH7Uc+rOzfBEd7O1p7rKBFZXdqFHYDwMfPP8x9XwUGsfnweZbtOsmpq3cpkysj3eqVIEf6v+dt7TJlDfvPXA9z/9EtKodo+1bHyWvoUrsYMaI4hFhvZWXFrC51aDBoHpEdIvHMz5853eoRyS7sXykv33lEoTYe2FhbUad4dpqWyxtmOxGRL6XCVuQL+Tx7RvYCxXjy1Afvx0/YsnbZR+9b5/9DeOPGiUOq5Mm5duMmeXPlIG2qlDT4pSUlihaibKniJEmcKNS+K9es56cGTalVvQpL5s4gebKkodo4Of09TPpjdW7bkm59B5G3aBmcnGKQN1cOduzaG6LN8+e+VK5Zn45tWrxzLuH+PbuSMEF8rK2tWbX2T8pXr8P5YweIGvXLhsaJiFiSu2sq9p2+RpK4TmRP9+Z9N2vaJBy5eIu9Xlcp4JIKgFNX7jJyyU6e+L7E1saaC7ce8jowKMwCsNW45WRNmwTPP+qY/5Dp7pKKkUt2cO3eY9xdU5M3c4ow86StN4C4MaIy7LeKFHFLE+YfQoc2q/hJ17hqrxeRbG0onStjqG1BwcGMXrqT+T3qkydTCo5dvEW9gfPYN74NMaNFDtHWNXUiTs/qSowoDtzxfsZPfT2JHT0KVdw1B72IfH0qbEXeI2sWVy5dufbee1bf3mNrGAYDho2i7s/NOHN4Lw4ODtjY2BAcHGxuG/AqIMS+Dg5/349kY2NNUFAQNjY27Nv2J/sPHWbX3v3kL16OeTMm4Z4vT4h9ixcpxJRxI1m4dAWVatanWuUK1KxWmXRpUpvbfE6PrYODA6MG9zMvDx3lQcYM6czLvr5+lK1Wm/JlS9Gu5W9hHhsgcaKE5u8rVyhLtz4DuXDpMtmzZnnnPiIi37sCLqmYt2UJiePEIL/zmyI2v3NK9p66yp5TV2lQKievA4NoOGQ+awf9iluaxDx/GUDymn15HRQcZmFbwDkVO05c4tGzF8SPGQ2A3ysVoEzuTOw6eZn+czeRMVl8RjavHGrf+d3rs2zXSTpMXEV+51RUK+hKoSxpsLH5u8D91B7bPaeusOfUFVybDDWvy9tiDIt6NeR1YBD3n/ia7ynOli4pCWJF4/S1e7i7pg5xnOiR/+7tTRwnBtUKZuHA2esqbEXkm1BhK/IeaVKnpGrFcvzSsj0zJ47FySkGhmEwb9FS8uXOFeIXBysrK3p0bs+6PzcxecZs2rZoRuqUKTh05BglixVm5Zr1vHjx8oPn9PX1w9fPD/d8eXDPl4ez5y5w4tTpUIVttGhR+blBHX5uUId79x+wePkqGvzSAsNkomfXjpQvXfKzemyfP/fF1taGyJEjc+36DabM9GTFgtkA+Pm9oGy12pQsVpgendu/9zi379w19zQfPHyUx0+ekiZVyk/KIiLyvcmeLinez16wbNcJFvVqCLwpdusMmMPj5y/ImiYJ/q8DCQwykThODACmrj3w3mPWLp6NbOmSUKn7dJb0aUSyeDG5dPsRaZPEJUWCXCSOE4P+czaHua+7a2rcXVPzOjCIrUcvMm/LEdpOWEn5PJkZ9Et54NN7bEc2rxyiiI5ZoSsHJrQlqqM9D5/6ctf7mTnf1bveXLv/hNSJQ9+Cc//Jc+I5RcXa2hrfl6/YdPg89Uvk+KQsIiIfS4WtyAdMnzCagcNHk69YWWxtbTAMA/d8ealQphQ+z56FaGtlZcWwgX2o07gZvzauz8gh/WjdsStx48ahsHv+j3pS8bPnz/mpQVNevnyJlZUVaVKlokHtn967T8IE8WnbohltWzTj0pWrPHj46LOv9+r1G9Ru9Cu2tjbY2toyclA/872x4yZN4/DR47x8+ZLV6zYAUK1SBbp1asvde/epUKOuuZD++fc2PHz0CBsbGxwcHFg0eyoxYkT/7FwiIt8DO1sbcmdMzpnr90mTOC4AaZPExfflK/JkSo6drQ12tjZ0rVucYh0mkCSuE2XCGNL7b1XcXYnsEIlqvWaysGcDpq7bz95TV7Gzs8HG2poBTcq+d/9IdraUzZOJsnky4ef/im3HLn6V6/23eDGjMapFZRoOmY+1lRUGMOL3SiSK/aaIbz1uOaVzZ6Rs7kys2X+aWX8ewsbGmuBgE5UKuFC3ePZvkktExMp41ySUIt+pY8eOkT17dv7atfmd93dKxHbsxClyFSrJ0aNHyZYtm6XjiMg38vbzYOfolmRJk9jSceQ7c/LyHQq3G6/PApEIQtP9iIiIiIiISLimwlZERERERETCNRW2IiIiIiIiEq7p4VEiFnD9xk1yFy7Ng2tnLR3lq5k5ZwHDRntgMpkoWsid8aOGYGsb+i2mR7/BrNuwCRsbGwC6tGvFT9UqAzBx2kymzpxjniapScN6tPqtKQCr1v5J38HDsba2JjAwkIrlytC/5x9YWVn9Z9coIvI13XzwlCLtxnNlQU9LR/lq5m4+zJhluzAZBoWypGbE75Ww/f/7/T/1n7OJDX+dw+b/8+62q1GYqv+fBmjKmn14bjqMtbUV1lZWIbatO3CGwQu2Ym1lRVBQMGXzZKJH/ZL6LBARFbYiX0twcLC5WPsvBQUFhSogPyVLWPt/qmvXb9B74FCO7NlKvLhxqFK7ITPnLODXnxuEatuxdXMG9OoKwN1798mcswAlihYmZkwn6v5Unea//Ay8mXYoS97CFCqQD1fnTBQrXJCK5UpjbW3N69evKViqIrlzZKNC2VJflF1E5GsKDjaFmAruvxIUHByqgPyULGHt/6lu3H/CoPlb2DWmFXGdolJnwFzmbj5C4zK5Q7VtXbUgPRu8ef++9/g5uX8fRdGsaXGK6kiG5PHZOOw3YkRx4PYjHwq3HU+O9ElJFi8mhbKkoWzujG8+CwKDKNNlCtnTJ6Vs7kxflF1Ewj8VtvJD8ff35+ff23D67Dns7OyIFzcuG1ctBqBn/yEsWb6KRIkSkCOrG7v37ufQrs3s3LOPLj36cmjXmzkCT589R6Wa9bnidYSgoCAq1KjHkydP8A8IIIuLM1PGjSBy5MjMnr+IxctXEy9ubM6dv8iY4YOwtbGha+8B+Pr6YjIZdO3YhqqV3swjOHHaTMZOmEqCBPEpmD/vB6/F19ePjt16c/L0GV69ekXeXDkZO3wgdnZ2FC1XhXy5c3Ho8FEA6tWqHirLs+fP6dl3MEHBQTg5xWDCqKFkypCenXv20aFrL9zz5eHwsRO0a9GM6lU+bY7Df1u+eh2Vy5chfrw3U1/8+nMDRoydEGZh6+QU4+9r9PPDysoKk2ECCDEd0Et/f4KCgsx/hY8WLap5W0DAK16/fo2Vtf5CLyKh+b8KpMWYpZy98QBbG2viOUVlRf8mAAyYu5kVe06SMFYMsqVNwt7TV9kxuiV7va7Sc+af7BjdEoCzN+5Tq99sTs3oQlBwMDX7zuaJ70sCXgXinCohY1tWJbJDJBZsPcqKPSeJEyMqF249ZGizCthaW9Nn9kZ8X77CZDLo8FMRKuZ/M23atPUHmLR6L/FjRie/84fn9vZ9+YoeM9Zz+to9AgKDyJUhGcOaVcTO1obyXaeSO2Nyjly4BUDNIllDZXn+IoD+czYTZDLhFMWRkc0rkSFZfPZ6XaXrtHXky5yC45du07yyO5ULuHzR6756/2nK5clMvJjRAGhcJhfjlu8Os7CNEdXR/L2f/yuwApPpzWdBoSxpzNuSxHUirlNU7jx6RrJ4MYkW2d68LSAwiFeBQVirt1ZEUGErP5hNW3fw1OcZXn/tAeDJk6cArN2wmXUbNnF07zYcHR2oVrfxRx3PxsaGeTMmEjtWLAzDoGX7Lkya7kmH1s0B2HfwEEf2bCVt6lT4+DyjRIXqrFk6j4QJ4uP9+DG5CpUkX55cPHzkzeARYzmyZyvx48WlZfsuHzx3p+59cM+fhykeIzEMg2atOjBh6kzatmgGwEmv0/y5YiF2dnbMnr8oRJaHjx7hkqsQW9ctxyVzRhYsWU7tRr9y8uAuAE6dPsvY4YMYM2xgmOcuUKI8/v7+YW77a9fmUL3Bt27fIVnSJOblFMmScuvWnXdem8fk6UyaNovbd+8yffzoEPP7Ll+1lr6Dh3P56nUG9emOS+a/53/cf+gwLdp15uLlq/zWtBHlSpX4wKsoIhHRtmMX8fHz5+DEdgA89X0JwIa/zrHhr3PsHtsax0h21Bs076OOZ2NtzbSONYkVPQqGYdBh0mpm/HmQVlULAnDw7A12jW1F6kRxeObnT8Xu01ncuyEJYkXn8bMXFG43ntyZkvPIx49RS3awa0wr4sWMRoeJqz547p4z15M3cwrGtqqKYRi08VjBtHUHaF65AABe1+6xrG9j7GxtWLD1aIgsj3z8yNN8NGsG/ULmFAlYsvM4jYcu5MCEtgCcuX6fYc0qMrRZ2H/cLNlpEv6vAsPctnN0y1C9wbcf+ZA0npN5OVm8mNx+5PPOa5uyZh/T/zzIXe9neLSpTqzoUUKf58Rlnvn54/aP6ZwOnbtB+4mruHLHmyZlc1MqZ4Z3nkNEIg4VtvJDcXXOzIVLl2nZvgsF8+elTMniAOzcs48aVSoRNeqbD83G9WozaPjoDx7PMAzGTJjKhk1bCQoO4tlzX9zz5TFvz58nN2lTpwJg/1+HuXrjBuWr1/nH/nDh0mVOnT5L2ZLFzT2aTRvVZ+nKte899+r1Gzh05Cijx08GwN8/gEiR7Mzb69WsgZ3d38v/zHLoyHGyuGQ2F4V1fqpGq45duXf/AQDp0qSmQN7Qf0F/a++WdR98bf7tn/c3fWh67Fa/NaXVb0056XWGhr+2oFiRgubitlrlClSrXIHrN25Sve7PlClZjPRp3/z1Pl/unBzfv4NH3t5Ur9eEPfsPflTvt4hELM4pE3Lx9iM6TFxFfpdUlMieHoC9p65QpYArUR3f9PrVK56dEUt2fPB4hmEwcfU+Nh85T1CwiecvAsj3j97WPJmSkzpRHAAOnb/B9QdPqNHHM8T+l28/4vS1e5TMkcHco9modC5W7fV677nXHzzL4Qu3mLBqLwABrwOxs/37j4s1i2QNsfzPLEcu3sIlVUIyp0gAwE+Fs9Jp8hruP3kOQJpEccibOcU7z715+O8femlCCflZ8P62zSrmp1nF/Hhdu0ezkYspnCV1iOL2zPX7tBi7jBmda+No//fnXe6Mydnn0QbvZ37UHzSf/Weuf1Tvt4j82FTYyg8lVcrkeB3azY7de9m2czd/9O7P0T3b3lto2draEhxsMi8HBLwyf79w6Qp27zvAjg2riBYtKh6Tp7Nn3wHz9qhRIpu/NwwDl8yZ2LlhVahznPQ688nXYhgGy+d7kipl8jC3R4kaOcTyP7NgGGE+SOPtuhBtw/CpPbZJkyTmxs1b5uUbt26TNGnif+8aShaXzCRKmJBde/abh2y/lSJ5MnLlyMb6jVvMhe1bcePEoWzJ4ixftVaFrYiEkiJBLA5ObMfuU1fYdeIyvWdtYM+41u8ttGysrQk2/f1Z8Op1kPn7pbtOsu/0NdYPbka0yPZMWbOP/Weum7dHcfh7eKxhQOYUCfhzSLNQ5/C6du+Tr8UwYH73+qRIECvM7VEcIv1r+Z9Z3v9ZEMUxUqht//SpPbZJ4jpx88FT8/KtR09JEtfpvecAcEmZkESxo7PX65p5yPb5mw+o1W8241tXe2fxHSdGVErmSM/qfV4qbEVE0/3Ij+X2nbtYWUGFsqUYNqA3hgG37tylaKECLFu1hhcvXhAcHMzsBYvN+6RMnoxrN2/y+MkTAOYvXmbe9tTHh9ixYhItWlR8ff2YM39xqHO+lS9XTi5fucr2XXvN606cOs3r168p7J6fDVu28fDRIwBmzV3wwWupUKYUw0Z7EBT05perp099uHzl2ke9DnlyZeek12nOXbgIwOJlq0iSKCEJ4sf7qP33blnH0b3bwvwK66FUVSuWZ9W6DTx4+AjDMJg6cw41q1YO89hvMwFcuXqdE6e8yJghXahtj7y92b5rDy6Z3zwQ5MKly+b7r3x9/Vi/aYt5m4jIP93xfoaVlRVlc2ei/89lMQyD2498KJglNav2nuJFwGuCg00s2HbMvE/yBDG58eApT56/AGDxjuPmbc/8/IkVLTLRItvj+/JViP3+LXfG5Fy9+5jdJ6+Y13ldvcvrwCAKuKRiy5ELPPLxA2DuliMfvJYyuTMyZtlOgoKDAfDx8+fqXe+Peh1yZUiG19V7XLj1EIDlu0+SKHYM4v+/x/hDNg//nT3jWof5FdZDqSrmc2b9wTM8fOqLYRjM2vAXVQtmCfPYbzMBXLv3mFNX75E+WTzztp/6ejKmZRWKZE0bYr9Ltx/9/Vnw8hWbDp8390iLSMSmHlv5oXidPUf3PgMxDAOTyUTdmtVxdc6Eq3MmDv51lGz5i5EoUQIK5s/LnTt3AUicKCHtW/1O7kKlSJ48aYihxvVr/cSa9ZtwyeVOooQJKZAvN3fuhv0X95gxnVi1aA5devWjY7deBAYGkjRJElYsmIWrcyb+6NAa9xIViB8/HmX/P0T6fUYN6U/X3v3JXqAY1tbW2NnaMahvD9Kk/vBfpePGiYPn1PE0aNqCYFMwMWJEZ6Hn1I98FT9dqpTJ6d21EwVLVsBkMlGkYAF+bvBmSPbde/epUKMuR/duA6Bbn4FcuXoNOzs7bG1sGDd8EBnTvylsJ0yZwe59B7Czs3tzL1nzXylRtBAAy1atZdHSFdjZ2REcHEzVSuVp0rDuN7smEQm/zl6/T9/ZGzEAk8mgZpGsOKdMiHPKhBw+fxP31mNJGCsG+Z1TcvfxMwASxY5BqyruFGk3gWTxY5LvH72ENYtm489DZ8nTfDQJY0cnb+YU3Hv8PMxzO0V1ZGHPBvSatYFu09cRFGwiSdwYzOteH+eUCWn3U2FKdZ5EPKdolPyIe0MHNS1PH88NuLf2wNraCjsba/o0KkOq/w83fp84MaIyuX0Nfh2xmGCTiRhRHJnVpfZHvYafI0WCWPxRpzilu0zGZDIo6Jqa+iVyAG+efPxTX0/2jGsNQN/ZG7l29zG2tjbY2lgzrFlF0id9U9j+MXUtz18E0MdzI308NwLQp1FpimVLx+p9XizbdRJbG2uCTQaV8jvToGTOb3ZNIhJ+WBkfuhlO5Dtz7NgxsmfPzl+7NpPNzfWzjvHvJyHLj+XYiVPkKlSSo0ePki1bNkvHEZFv5O3nwc7RLcmS5sO3P/zbv5+ELD+Wk5fvULjdeH0WiEQQGoosIiIiIiIi4ZqGIkuEVNg9/3fRW3vi1GmaNG8Tan392j+Zp/UREZFvo4BLqu+it9br6l2aj1kWan3totnM0/qIiMj7qbAVsSA3V2fzvaciIhIxuaRKZL73VEREPo+GIouEE0XLVWHdRsv1Mv9UvwnZCxQzf9k5JWTtn5sAMJlMtOnUjXRZcpPeLQ+Tps2yWE4RkR9N+a5T2fjXOYudf96WI+RrOYY4lbozdd3+ENumrT9AvpZjcG89jnwtxzBlzb4Q20cs3k7WX4aT9ZfhDJxn+ZFSIvLjUo+tiHyUJXNnmL8/cuwE5arVoWSxwsCbKZLOnr/IuWP7efbsOTkLlaBIoQJkSJf2HUcTEZHwIkuaxMzqUofRS3eG2vZT4az8Uu7NfOLPXwaQr8UY8rukwjllQvadvsbyXSfZ69EGWxtrSneeTJ5MKSiWLd1/fAUiEhGosBX5BP7+/vz8extOnz2HnZ0d8eLGZeOqxdx/8JC6TX7D97kfAa8CKFrIndFDB2BlZUXfwcO5eOkKvn5+XLh4maxZXOjSvjWduvfhxs1bVCxfhpGD+gJvemXdXJw54XWau3fvU7FcaYb274WVlVWIHL6+fnTs1puTp8/w6tUr8ubKydjhA7Gzs2Pg8NEsXLICe/tIAKxY4EnyZEm/6uvgOW8hdWtWw97eHoAlK1bT7OcG2NjYECtWTKpXrsji5avo3bXTVz2viIil+L8KpMWYpZy98QBbG2viOUVlRf8mPHjqS9Phi/B9GcCr10EUzJKaIb9WwMrKiiELtnLpziP8Xr7i0p1HZEmVmHY1CtNj5npuPnhKuTyZGNi0PPCmV9YlVUK8rt7j3uPnlM2TiX6Ny4R+/3/5ih4z1nP62j0CAoPIlSEZw5pVxM7WhhGLt7N05wki2b359W5+j/okixfzi6/dJWVCAKz/lQUgRhSHEK9RsMlkzrxyzylqF89OFIc3n0d1i2dn+a6TKmxF5JtQYSvyCTZt3cFTn2d4/bUHgCdPngLgFCM6qxfNJWrUKAQHB1OldkNWrF5HtcoVADh6/CSHdm4iatQo5CxYgm59BrJ++QKCgoJI45qLZj83IF2a1ACcPX+RTauWEBgYSJEylVm2cg01qlYKkaNT9z6458/DFI+RGIZBs1YdmDB1Jg3r1GSUxyRuXziJo6MjL1++xNo69B0HW3fspkvPvmFeY5mSxRnQq+s7X4OAgAAWLVvFjg2rzOtu3b5DsmRJzMspkiXl6ImTH/GKioiED9uOXcTHz5+DE9sB8NT3JfCmsFvYswFRHe0JDjZRZ8Ac1uw/TaX8LgCcuHSH7aNbEtUhEoXaetB39kaW9mlMULAJt6bDaFwmN2kSxwXgws2HrOzfhMCgYMp1ncqqvV5UcQ85rV3PmevJmzkFY1tVfTPft8cKpq07QJ3i2fFYuYfzs7vhaG/Hy4DXWFuHLkR3nrhMz5l/hnmNJXOkp2eDUp/82qze58WQ+Vu5eu8xvRuWJnOKBADcfuRDfue/515PFj8ma/af/uTji4h8DBW2Ip/A1TkzFy5dpmX7LhTMn5cyJYsDb+4x7dq7P/sO/oVhGDx85E0WF2dzYVuyWGFixIgOgEvmTLg6Z8Le3h57e3vSpU3D1es3zIVtgzo/YWdnh52dHXVqVmfbzj2hCtvV6zdw6MhRRo+fDIC/fwCRItkRPXo00qZKSYNfWlKiaCHKlipOksSJQl1H8SIFP/uhVSvWrCdN6pS4ZM4YYr0Vf/8CZaDpsUXkx+KcMiEXbz+iw8RV5HdJRYns6QEwmQz6eG7k4NnrGIC3jx8uqRKZC9ui2dKaezUzp0iAc8qE2NvZYm8HaRLH5fr9J+bCtlaxbNjZ2mBna8NPhd3YdfJyqMJ2/cGzHL5wiwmr9gIQ8DoQO1sbojnakzphbJqNXEyRrGkpmTMDiePECHUdhd3SfPUHVVXK70Kl/C7cfPCUeoPmUiJHetImeXNN/+xxNvTRICLfkApbkU+QKmVyvA7tZsfuvWzbuZs/evfn6J5tTJw+i8dPnrJ/2584ODjQoVtvAgICzPu9HbILYGNjjYNDyOWgoKB3nvPfw9AADMNg+XxPUqVMHmrbvm1/sv/QYXbt3U/+4uWYN2MS7vnyhGjzJT22M+cs4Of6dUKsS5okMTdu3iJn9qwA3Lh5m6RJEr/zGCIi4U2KBLE4OLEdu09dYdeJy/SetYE941ozff0Bnvi+ZOvI5jhEsqP79HW8ev33e7qDnZ35extra+wj2f5j2YqgYNN7zhrW+z/M716fFAlihdq2ZURzDp2/wT6vq5TsOJFpnWqRL3PKEG2+RY/tW8nixyR7uqRsOnyetEnikiSuEzcfPjVvv/XwKUniOH328UVE3keFrcgnuH3nLjGdYlChbClKFS/C6vUbuXXnLk99fEgQPx4ODg48ePiI5avWUqNKxc86x7xFy/ipaiUCAwNZuHQFHVs3D9WmQplSDBvtwfhRQ7C1teXpUx8eP3lK/Hhx8fXzwz1fHtzz5eHsuQucOHU6VGH7uT22167f4PCx46xY4BliffXKFZg6ay5VKpbj2bPnLF25mvXLF37y8UVEvld3vJ/hFNWRsrkzUTxbOtYfPMvtRz74+PkTP2ZUHCLZ8fCpL6v2naZqAdcPHzAMS3Ycp6q7K4FBJpbtOkmrqgVDtSmTOyNjlu1kxO+VsLWxwcfPnyfPXxDXKRp+/q/Ilzkl+TKn5NzNh3hduRuqsP3aPbYXbj0kfdJ4AHg/82P3yStUzOcMQOUCLnSavIYmZfNga2PN/K1H6V6vxFc7t4jIP6mwFfkEXmfP0b3PQAzDwGQyUbdmdVydM9GqWVNqNvyF7AWKkShhAooVdv/sc2TN4kLJSjXMD496O5z5n0YN6U/X3v3JXqAY1tbW2NnaMahvDxwc7PmpQVNevnyJlZUVaVKlokHtn77kkkOYNW8RVSuWI3r0aCHW16tVgyPHTpAxWz4AOrRuTsb0ejiIiPw4zl6/T9/ZGzF4M/y4ZpGsOKdMyK8V8tF4yALcW48jYezoFM6S5rPP4Zo6MZV7zDA/PKpSfudQbQY1LU8fzw24t/bA2toKOxtr+jQqg30kOxoNmc+LgNdYWVmROmFsahXL/gVX/LfFO47Tb/ZGfPz8+fPQWcYu28XCng1xTZ2IqWv3s//0NWxtbTAMg98r5adI1jdPxC/gkooqBVzI33IMAFULZqH4/4dwi4h8bVaGoTseJHw5duwY2bNn569dm8nm9nl/Ff9eFS1Xhfatfqd86ZKWjhKuHTtxilyFSnL06FGyZctm6Tgi8o28/TzYObolWdKE79sfynedSssq7pTOlfHDjeWjnLx8h8LtxuuzQCSCCP24VBEREREREZFwREORRb4j29evtHQEERGxgHWDf7V0BBGRcE09tiLf2M+/t2bC1BmWjgG8eZpyiQrViZ8y0zvbPHj4iOp1fyZrviJkzlGAsROnmrcNHeVB9gLFzF8xk6ShQ7feAFy/cZOi5aoQK2lachfSUGoRkX9rPnopU9ftt3QMbj30oVa/2eT8bSS5fhvF1LXvz3Tp9iMSVetFzxkhn6a8z+sqRduNJ2/z0eT6bRR/nb8BwO6TVyjeYQJ5mo8mb4sx9J+zCd35JiLfmnpsRSKQCVNnkCJZUk6dPvvONh279cY5cwaWzZ+Jn98L3EuWJ1/unOTMnpUu7VvRpX0rAF6/fk3S9G7UqVEVgOjRotGvxx88e/6cfoOG/yfXIyIin8YwDOoPmkvb6oWpXMDlzdzrPn7vbB8cbKLdhJWUzRPyD6L3Hj/n9zFLWdqnMemTxiPgdaB5miOnqI5M71SbFAliEfA6kMo9ZrBs10lqFHb7lpcmIhGcemxFPtLA4aNp06mbednP7wVxk2fA+/FjvM6co1DpSuR0L4FLLneGjBwX5jH6Dh5Op+59zMsTps7g59//nnZh5LiJ5ClSmpzuJShfvQ63bt/5avkvXbnK4uWr6fz/wvRdTp0+Q9lSxQGIGjUKBfPnZf7iZaHarV63gSSJE5I9axYAYsWKSYG8uYkSOfJXyywi8j0asXg7naesMS/7+b8iZe1+PH72gjPX71OmyxQKtfEgT/PRjFq6M8xjDFmwNUQP6NR1+2k+eql52WPFboq1n0ChNh7U6DOL2498vkr2XSev4BDJjsoFXIA3c6XHjxntne1HL9tFqZwZSJM4Toj1M/48yE+Fs5qn+nGIZEeMqI4AuKZOZJ5n1yGSHS6pEnLjwZOvkl9E5F3UYyvykRrWqUnOgiUYPrAPkSJFYtmqNRR2z0+c2LGxj2TP5tVLsLe3x9/fH/cSFShepCA5srl99PEXLl3BpctX2bd1PTY2NsxbtJTWnbqxcuHsUG1/qt+EK9euh3mcVYvmkDRJyKeDmkwmmrXugMeIwdjZvv+/fY5sbixaupIcWd3wfvyYzdt2kj5d6OkrZs5dSOP6tT/6+kREfhS1i2WncFsPBvxclkh2tqze54W7Sypix4hCJDtbVg1ogr2dLf6vAinVeRJF3NKQNW2Sjz7+0p0nuHLXm83Df8fGxppF24/RecoaFvRoEKptw8HzuXrvcZjHWdizAUniOoVYd+HmA+LEiMLPwxZy+c4jksWLyYAm5cyF6D+dvnaP7ccvsnbgLwxfvD3kcW49JHn8mFTuMZ3Hz1+SN3MK+jQsTWSHSCHaPXjqy5p9p1nSu9FHX7+IyOdQYSvykZIkToSbqwtr/9xEtcoV8Jy/mI5tmgPgH+BPyw5/cNLrNNbW1ty6fZeTXmc+qbBdvW4DR4+fJNf/708NDg7GxsYmzLZL5n7aPbsjx03EPV8e3FyduX7j5nvbDh/Qh849+5KzYAnix4tHkYIFeOQd8pemW7fvsO/gIebPmPRJOUREfgSJ48TANVUiNvx1jkr5XZi/9SitqxYEIOB1IB0nrcLr2j2sray44/0Mr6v3Pqmw/fPgWY5fvk3hduMBCDaZsLEOe5Dd7K51Pyl7YLCJXScvs3l4czImj4/nxr9oMmwh20a1CNkuKJi241cwvk11bGxCnzswKJi9XldZNaApUR0j0XLscoYs3Ea/xmXMbZ6/DKB2v9m0rlYw3E/HJCLfPxW2Ip+gUd1azF6wmCwuzly5eo0yJYoB0KPvYOLFjcORPVuxtbWlet2fCXgVEGp/W1tbgk0m83JAwCvz94Zh0K1TWxrXr/PBHJ/aY7tn/0G8zpxj3qKlBAUF89THh9QuOTiyeysxYzqFaBsrVkymTxhjXm7etjMZM6QL0cZz/iIqlClFrFgxP5hVRORHVKd4dhZsPYpLyoRcu/eYEtnTA9B/zibiOUVj99jq2NrYUH/QPAICA0Ptb2tjHeLz4O39qQAGBh1rFqVeiRwfzPGpPbZJ4znhkioRGZPHB+Cnwm50mLSK4GBTiAL2/hNfrt17wk99PQF49iIAwzDweeGPR+tqJI3nhGuqRDj9f/hx1YKujFu+27y/78tXVO89izK5M9KisvsHr0NE5EupsBX5BJUrlKFtl+4MG+1B3ZrVzT2qT32ekTlTBmxtbblw6TJbd+6iSKH8ofZPnTIFm7ftxGQyERAQwIo160mfNjUAFcqWwmPSNCqVK0OsWDEJDAzk9NnzZM3iEuo4n9pju2bJPPP312/cJHfh0lzxOhJm28dPnhA9WjTs7Ow4duIUq9dv4MierebthmEwZ/5iJo0d8UkZRER+JOXzZuaPqWsZs2wXPxXJai4Kffz8yZg8PrY2Nly6/YidJy7h7poq1P4pEsRi27FLbz4PXgexdv9p0iSOC0DpXBmZsnY/5fJkIma0yAQGBXPuxgNcUycKdZxP7bEtnj09fTw3cvfxMxLFjsG2YxfJmCx+qF7ZpPGcuLKgp3l5yIKtvPB/Tf8mZQGoXsiNPp4beRUYhL2dLduOXsQ5ZULgzT3H1fvMoli2tHSqVeyT8omIfC4VtiKfwN7enuqVKzBpuienD+8xr+/WqS2NmrVk4ZLlJE+WlCIFC4S5f9WK5Vi+ah0uuQqSPFlS3Fwy4x/wpme3Xq0aPH7ylGLlq2JlZUVQUBCN69cJs7D92rIXKMbapfNJlDABfx09TttO3bGzsyNq1Cgs9JxKwgTxzW2379qLYRgUKxzyL/CvXr0inVseXr16xbPnviTPmJW6NaszqE/3b55fROS/Zm9nS6X8Lsz48yCHJrYzr+9YsyjNRi1h6c4TJIsfE3fX1GHuXzGfM2v2nSZP8zEki++Ec6pEBLx607Nbq2g2nvq+pHy3aVjx5snE9UrmCLOw/VRRHCIx4vdK1Ow7G8MwiBHFkWkda5m3u7cex5LejUgYO/p7j5M7Y3JK58pAwdbjsLGxJmPy+IxqXgWAyWv2c+ziLV4GvGbdgTdP4a+U34WONYt8cX4RkXexMjSxmIQzx44dI3v27Py1azPZ3FwtHUe+Q8dOnCJXoZIcPXqUbNmyWTqOiHwjbz8Pdo5uqXs4JZSTl+9QuN14fRaIRBCa7kdERERERETCNRW2IiIiIiIiEq6psBUREREREZFwTYWtiIiIiIiIhGsqbEVERERERCRcU2ErIiIiIiIi4ZrmsZVw6/zFS5aOIN8p/WyIRCwXbj+0dAT5DunnQiRiUWEr4U6cOHGIHDkyDX5pYeko8h2LHDkyceLEsXQMEfmG3nweONJs5BJLR5HvVOTIjvosEIkgrAzDMCwdQuRT3bx5E29vb0vH+Cw9evRgz549LF26lHjx4lk6TigPHz6kRo0aFCxYkP79+1s6zmeLEycOyZIls3QMEfnG/ovPg2fPntGnTx92795NvXr1aNmyJXZ2dt/0nD+awMBAPDw8mD9/PgULFqRPnz7EiBHjm59XnwUiEYcKW5H/0KpVq6hSpQqzZ8+mQYMGlo7zTrNnz6ZRo0asXr2aihUrWjqOiIjF7N+/n1q1avHixQs8PT2pUKGCpSOFa2vXrqVhw4ZEixaNRYsWkTdvXktHEpEfhApbkf+It7c3mTNnJnfu3KxevRorKytLR3onwzCoWLEiR44c4fTp08SOHdvSkURE/lMmk4kRI0bQrVs3cufOzcKFC9Xz95XcvHmTWrVqcfjwYQYNGkSHDh2wttbzTEXky+hdROQ/0qpVKwIDA5kyZcp3XdQCWFlZMWXKFF69ekXr1q0tHUdE5D/16NEjypcvT5cuXejYsSM7d+5UUfsVJUuWjF27dtG+fXs6d+5MhQoVwu3tRSLy/VBhK/IfWL58OYsWLcLDw4OECRNaOs5HSZQoER4eHixYsIAVK1ZYOo6IyH9iz549uLm5cfjwYTZs2MCQIUN0P+03YGdnx9ChQ/nzzz/566+/cHNzY8+ePZaOJSLhmIYii3xjjx49InPmzOTPn58VK1Z89721/2QYBlWqVOHAgQOcOXNGT5YUkR+WyWRi8ODB9OrViwIFCrBgwQISJ05s6VgRwp07d6hduzb79++nX79+/PHHHxqaLCKfTO8aIt9YixYtMJlMTJ48OVwVtfBmSPLkyZMJCgqiZcuWlo4jIvJNPHjwgNKlS9OzZ0+6devGtm3bVNT+hxInTsz27dvp2rUrPXr0oHTp0jx8qDloReTTqLAV+YaWLFnC0qVLGT9+PPHjx7d0nM+SIEECJkyYwOLFi1m6dKml44iIfFXbt2/Hzc2NU6dOsXnzZvr374+tra2lY0U4tra29O/fn02bNnHy5EmyZMnCjh07LB1LRMIRDUUW+UYePHhA5syZKVy4MEuXLg13vbX/ZBgGNWrUYNeuXZw5c+a7nH9XRORTBAcH079/f/r160eRIkWYP38+CRIksHQsAe7du0fdunXZtWsXvXr1okePHtjY2Fg6loh851TYinwDhmFQrVo19uzZ88MUgg8fPiRz5swUKlQo3BfqIhKx/bNw6t27N927d1fh9J0JDg5m4MCB9O3bl8KFCzNv3rxw8/BFEbEMDUUW+QYWLVrEypUrmThx4g9R1ALEixePiRMnsnz5cpYsWWLpOCIin2Xz5s1kyZKF8+fPs23bNnr16qWi9jtkY2NDr1692LZtG2fPnsXNzY0tW7ZYOpaIfMfUYyvyld27d4/MmTNTokQJFi9ebOk4X13NmjXZunUrZ86c0bA9EQk3goKC6N27N4MHD6ZEiRLMnTv3h/nD44/u4cOH1K9fny1bttCtWzf69Omj+6BFJBQVtiJfkWEYVK5cmYMHD/6w0+N4e3uTOXNm8ubNy8qVKzUkWUS+e7dv36ZOnTrs37+f/v3706VLF00nE86YTCaGDBlCz549yZ8/PwsWLCBJkiSWjiUi3xG9q4t8RfPmzWPNmjVMmjTphyxqAeLEicPkyZNZvXo1CxYssHQcEZH3+vPPP3Fzc+Pq1avs3LmTrl27qqgNh6ytrenWrRs7d+7k6tWruLm5sWHDBkvHEpHviN7ZRb6Su3fv0rp1a+rUqUPVqlUtHeebqlKlCrVr16ZVq1bcu3fP0nFEREIJDAykc+fOlCtXjjx58nDixAkKFChg6Vjyhdzd3Tlx4gS5c+embNmydOnShcDAQEvHEpHvgIYii3wFhmFQoUIFjh49yunTp4kdO7alI31zjx8/JnPmzOTMmZM1a9ZoSLKIfDdu3rxJrVq1OHz4MIMHD6Z9+/bqpf3BmEwmRo4cSbdu3ciZMyeLFi0iWbJklo4lIhakd3mRr2D27NmsX7+eKVOmRIiiFiB27NhMnTqVdevWMXfuXEvHEREBYM2aNbi5uXHnzh327NlDx44dVdT+gKytrenUqRO7d+/mzp07uLm5sWbNGkvHEhEL0ju9yBe6ffs2bdq0oX79+lSsWNHScf5TFStWpH79+rRu3Zo7d+5YOo6IRGCvX7+mXbt2VKpUiYIFC3L8+HHy5Mlj6VjyjeXNm5fjx4/j7u5OpUqVaN++Pa9fv7Z0LBGxAA1FFvkChmFQtmxZTp48yZkzZ4gZM6alI/3nnj59SubMmXFzc2P9+vUakiwi/7lr165Rs2ZNTpw4wfDhw2ndurXeiyIYwzAYN24cnTp1ImvWrCxatIiUKVNaOpaI/IfUYyvyBWbOnMnGjRuZNm1ahCxqAWLGjMnUqVPZsGEDnp6elo4jIhHM8uXLyZo1K97e3uzbt482bdqoqI2ArKysaNOmDfv27ePRo0dkzZqVFStWWDqWiPyH1GMr8plu3ryJs7Mz1apVY9asWZaOY3GNGzdmxYoVnD59mqRJk1o6joj84AICAujYsSMTJkygevXqTJ8+nRgxYlg6lnwHfHx8aNq0KcuXL6dly5aMGDECe3t7S8cSkW9Mha3IZzAMg1KlSnH27FlOnz6Nk5OTpSNZnI+PD87OzmTOnJmNGzeqx0REvpnLly/z008/cebMGUaPHs3vv/+u9xwJwTAMJk6cSPv27XF2dmbx4sWkSZPG0rFE5BvSUGSRzzBt2jS2bNnC9OnTVdT+n5OTE9OnT2fz5s1Mnz7d0nFE5Ae1aNEismXLhq+vLwcPHqR58+YqaiUUKysrWrRowcGDB3n+/DnZsmVj8eLFlo4lIt+QemxFPtH169dxcXGhVq1aTJs2zdJxvjtNmzZlyZIleHl5kTx5ckvHEZEfhL+/P23btmXq1KnUrl2bKVOmEC1aNEvHknDg+fPnNGvWjEWLFtGsWTNGjx6No6OjpWOJyFemwlbkE5hMJkqUKMGlS5c4ffo00aNHt3Sk786zZ89wcXEhXbp0bNmyRT0pIvLFLly4wE8//cTFixcZN24cTZs21XuLfBLDMJg2bRpt2rQhXbp0LFmyhPTp01s6loh8RRqKLPIJJk+ezPbt25kxY4aK2neIESMGM2bMYNu2bUyZMsXScUQknJs3bx7Zs2fn1atXHDp0iF9++UVFrXwyKysrfv31Vw4dOsSrV6/Inj078+bNs3QsEfmK1GMr8pGuXr2Kq6sr9erVY/LkyZaO89377bffmDdvHl5eXppLUEQ+2cuXL2nZsiWzZs2ifv36TJw4kahRo1o6lvwA/Pz8aN68OXPnzuXnn3/Gw8ODyJEjWzqWiHwhFbYiH8FkMlG0aFGuX7+Ol5eX7uv6CL6+vri4uJAqVSq2bt2KtbUGiIjIxzlz5gw//fQT165dY+LEiTRq1MjSkeQHYxgGnp6etGjRglSpUrFkyRIyZcpk6Vgi8gX0m6bIR5gwYQK7du1i5syZKmo/UrRo0ZgxYwY7duxg0qRJlo4jIuGAYRjMmjWLnDlzYmVlxZEjR1TUyjdhZWVF48aNOXz4MIZhkCNHDjw9PS0dS0S+gHpsRT7g8uXLuLq68vPPPzN+/HhLxwl3WrRogaenJ6dOnSJ16tSWjiMi36l/Dg9t0qQJ48aN0/BQ+U+8fPmSVq1aMXPmTBo0aMCECRM07F0kHFJhK/IeJpOJQoUKcefOHU6dOqUPus/g5+eHq6srSZIkYefOnRqSLCKhnDp1ip9++onbt28zZcoU6tata+lIEgHNmzeP3377jaRJk7J48WJcXV0tHUlEPoF+wxR5j3HjxrF3715mzZqlovYzRY0alZkzZ7Jnzx48PDwsHUdEviOGYTB16lRy5cqFvb09R48eVVErFlOvXj2OHDlCpEiRyJ07N1OnTkX9PyLhh3psRd7h4sWLZMmShV9//ZWxY8daOk6417p1a6ZPn87JkydJmzatpeOIiIU9f/6cZs2asWjRIn777TdGjRqFo6OjpWOJ4O/vT7t27ZgyZQq1atViypQpmuJPJBxQYSsShuDgYNzd3Xn06BEnTpwgSpQolo4U7r148YIsWbKQIEECdu3ahY2NjaUjiYiFHD9+nJ9++okHDx4wbdo0atasaelIIqEsWrSIX3/9lfjx47NkyRKyZs1q6Ugi8h4aiiwShjFjxnDw4EFmzZqlovYriRIlCrNmzWL//v3qAReJoAzDYMKECeTJk4fo0aNz7NgxFbXy3apVqxbHjh0jWrRo5MmTh4kTJ2possh3TD22Iv9y/vx53NzcaN68OaNGjbJ0nB9O+/btmTRpEidOnCB9+vSWjiMi/xEfHx+aNm3K8uXLadWqFcOHD8fe3t7SsUQ+KCAggE6dOjF+/HiqV6/O9OnTiREjhqVjici/qLAV+YegoCDy58+Pj48Px48f11QT38DLly9xc3MjduzY7N27V0OSRSKAw4cPU7NmTZ48ecLMmTOpWrWqpSOJfLLly5fTpEkTYsWKxeLFi8mZM6elI4nIP2gossg/jBw5kiNHjuDp6ami9huJHDkynp6eHDp0SD3iIj84wzAYM2YM+fPnJ06cOBw/flxFrYRb1apV49ixY8SJE4f8+fMzduxYDU0W+Y6ox1bk/86ePUvWrFlp06YNw4YNs3ScH16nTp3w8PDg2LFjZMqUydJxROQre/LkCY0bN2bNmjW0a9eOIUOGEClSJEvHEvlir1+/pkuXLowZM4ZKlSoxc+ZMYsWKZelYIhGeClsR3gxBzps3L35+fhw/fhwHBwdLR/rh+fv7ky1bNqJFi8b+/fuxtbW1dCQR+UoOHDhArVq18PX1xdPTk4oVK1o6kshXt2bNGho1akS0aNFYvHgxefLksXQkkQhNQ5FFgGHDhnHs2DFmz56tovY/4ujoiKenJ0ePHmX48OGWjiMiX4HJZGL48OEULFiQxIkTc+LECRW18sOqWLEix48fJ3HixLi7uzN8+HBMJpOlY4lEWCpsJcLz8vKiT58+dO7cmVy5clk6ToSSO3duOnXqRJ8+fTh9+rSl44jIF/D29qZChQp07tyZ9u3bs2vXLpIlS2bpWCLfVPLkydm1axft27enc+fOVKxYEW9vb0vHEomQNBRZIrTAwEDy5MnDq1evOHr0qKaesICAgACyZ8+Oo6MjBw4cwM7OztKRROQT7dmzh9q1a/Pq1SvmzJlDmTJlLB1J5D/3559/0qBBAxwcHFi0aBEFChSwdCSRCEU9thKhDRkyhJMnT+Lp6ami1kIcHBzw9PTkxIkTDB061NJxROQTmEwmBg0aRJEiRUiVKhUnTpxQUSsRVtmyZTlx4gQpU6akcOHCDB48WEOTRf5DKmwlwjpx4gT9+vXjjz/+IEeOHJaOE6HlzJmTP/74g379+nHq1ClLxxGRj/Dw4UNKly5Njx496Nq1K9u3bydx4sSWjiViUUmSJGHHjh388ccfdO/enTJlyvDw4UNLxxKJEDQUWSKk169fkytXLkwmE4cPH1Zv7Xfg1atX5MiRA1tbW/766y8NSRb5ju3YsYM6depgMpmYN28eJUqUsHQkke/Oli1bqFu3Lra2tixYsIDChQtbOpLID009thIhDRo0iDNnzmgI8nfE3t6e2bNn4+XlxaBBgywdR0TCEBwcTN++fSlevDgZM2bkxIkTKmpF3qFEiRKcPHmSDBkyUKxYMfr160dwcLClY4n8sFTYSoRgMpnYvXs3AMeOHWPgwIF0796dbNmyWTiZ/FO2bNno3r07AwYM4Pjx45aOIyL/cO/ePUqWLEnfvn3p1asXW7ZsIWHChJaOJfJdS5gwIVu2bKFnz5706dOHkiVLcv/+fUvHEvkhaSiyRAhbtmyhZMmS3Llzh9KlS2NjY8OhQ4eIFCmSpaPJv7wdJm4YBocPH9a/kch3YMuWLdSrVw9ra2sWLFhAkSJFLB1JJNzZvn07devWxWQyMX/+fIoXL27pSCI/FPXYSoRw6dIl7OzsGD9+POfOncPT01MF03cqUqRIeHp6cvbsWQYMGGDpOCIRzvXr1ylWrBg+Pj4EBQXRo0cPSpUqhZubGydPnlRRK/KZihYtyokTJ8iSJQslS5akZ8+eBAUF4ePjQ7Fixbh+/bqlI4qEaypsJUK4du0a8ePHZ9iwYbRu3ZoRI0bQoUMHS8eSd3Bzc6Nnz54MGjSIo0ePWjqOSITSt29fzp49i7e3N0WLFmXw4MEMGDCADRs2EC9ePEvHEwnX4sePz8aNGxkwYACDBg2iWLFiPH78mLNnz9KvXz9LxxMJ1zQUWSKEqlWrsnHjRmLEiIGPjw9OTk5MnTqVChUqWDqavENgYCC5c+fm9evXHD16VA/5EvkPXL58mQwZMtCkSROWL1+Og4MDCxcuxN3d3dLRRH44e/bsoXbt2rx69YqqVasyY8YMzp8/T5o0aSwdTSRcUo+tRAgHDhzA39+fp0+f0qFDBy5e/B97dx0VVfMGcPxLh6AiIIoCii2CgQUitq/d3fra+bO7u7u7E7sT7EQEuxDEAqSbjd8f+7qKrCLWEvM5h3PYvXPvfe46PuzcmTvzVDRq0zgdHR02b97M06dPmTx5MgDu7u74+fmpOTJByLgmT56Mvr4+a9aswdHRkQ0bNmBpaanusAQhQ7K0tGTDhg2ULl2aNWvWYGBgIHptBeEXiB5bIVMoUKAAJiYmuLm5YWNjo+5whFSYPn06EyZM4Nq1a/Tp0wdnZ2eWLl2q7rAEIcO5efMmFSpUAMDU1JSQkBDkcjkNGzbk8OHDao5OEDKeRo0aceTIETQ0NMiRIwcfP34E4MaNG5QvX17N0QlC+iMatoIgpGkSiYSKFSsSExND/vz5ATh27JiaoxKEjGflypX873//w8HBARcXFxwcHLC3t8fe3l48CiAIf0BcXBz379/Hx8cHb29vLl++jLe3N4sWLaJPnz7qDk8Q0h3RsBUEIc3asmUL06dPp3v37owdOxZ7e3tiY2N5+PChukMTBEEQBEEQ0hDRsE0D/P39CQ4OVncYQhplZmaGtbW1usNQi/fv39O3b18OHDiAtbU1/v7+6OnpERsbi4aGhrrDE75D5DXhezJzXhPSL5HXhO8ReU39RMNWzfz9/SlWrBgxMTHqDkVIowwNDXn06FGmTpYXLlxg8ODB3Lt3D4CAgADy5Mmj5qiEb1HktaLExMSqOxQhjTI0NODRo8eZOq8J6Yu/vz/FihYlJlbkNUE1QwMDHj0WeU2dtNUdQGYXHBxMTEwMW7dsoljRYuoOR0hjHj1+RMdOXQgODs7UibJatWrcuXOHWbNmsXTpUvG8XxqnyGuxrB3dhcLWudQdjpDGPPV/T4+ZmzJ9XhPSl+DgYGJiY1nZ5x8KW+ZQdzhCGvP0bQh9Vp4SeU3NRMM2jShWtBhlypRWdxiCkGZpaWkxduxYxo4dq+5QhB9U2DoXpQqJP/CCIGQchS1zUDJ/TnWHIQiCCmIdW0EQBEEQBEEQBCFdEz22gpCJiIkvhO8RE18IgiAIgpBeiYatIGQSYqIyISViojJBEARBENIr0bDNZCQSCTNmzmLnrl1oaWkhlUqpXLkyc2bNpGmzFnTv3o327doBMGnyFObNX0BIcCC6uroAFCxclA3r1uLqWlnl8d3dPRg+ciS3blzn1atXlKvgRNCHd3/t+n6Uj48PAwcN5kPgB2QyGTOmT6NZ06bJysXExNC9R09u3b6DpqYGM2dMV1kuPfg0UdnGBVMpWjC/usMR0pjHz33pOmR8hpr4wr79OHZP60vx/JbK9+oPWciAVjWpU9Ge6ZuOUNQmN82rleWS11MSJBJqlC2uxog/u/P4FaNX7iMqJg5NTU2m925OldJFAHj5NohBC3cQGhFNXEIi/1QowdSeTdHUTP50UbaafbHLb6ncNqd/K5ztC/7VaxEEIfUkUhkLD9/C7eoTtDQ1kMrkOBXNw6Q2LoTHxFNu6CaK5TXl09ImY1s6U7u04m/7zosPGbvNA2uzrADIgZHNK1LPsQAAjabto1/9MvxT2vavXEt0XCJNZ7oRnygFwCJbFuZ1q461uSK++EQJE3Zc4ry3H7raWtjbmLOqbx0APF+8Z9y2i0TFJaCpocGU9q642lklO4d/UITyM/lk46D65LfI/ucvUEgzRMM2k+neoychISFcvXwJExMTZDIZbvv3ExISQtWqVbjg7qFs2Hp4XMS+RAlu3ryFi0slAgICePfuHRUqlFfzVSgaaWZmZj+1b0xMDE2bt2TThvW4uFRCIpEQGhqqsuy8+QvQ09Pj2ZNH+Pr64uziSrWqVTExMfmV8NWqaMH8lC5RVN1hCILaje3SUPn75XtPiYqL/20N25i4BDQ0wEBPN9X7yuVyOkxaw+pRnXEtVYSn/u9pMnIJdzZNwkBPl/Gr91Pf2YHeTasRl5BItb6zqVK6CLUrlFB5vNNLhmFkoP+rlyQIwl80aO1ZQqPjODmpFdmz6COTyTly6zmh0XFoamiQzVAP9xntATjj5UuPZSd5saYXWv/dxKpiZ83GQfUBReOw7bzDyobtz/gYGYupscFP7Wugq43bqGYYGyjy4aqTdxm//SKb/9cAgCm7r6CpocHNeZ3R0NDgfWg0oMiFnRcdY0Wf2lQubsWztyE0n3WAG/M6Y6CbvAnz5WciZE5i8qhM5Pnz5+zd58aG9euUDTNNTU1atmiBra0t1apWxcPjIgDx8fEEvHlDt25dcffwAOCCuzvOTk7o6enRsVNnylWoSMnSZWjYqAmBgYHfPXdCQgIdO3Wmd99+SKVS1q3fgJ29A6Udy+JQqjQ3btxMMX5/f39mz5lLaceyTJ467ac/hx07d+FUsQIuLpUA0NbWxtzcXGXZPXv30rdPHwDy58+Pa2UXDh0+8tPnFgQh7egzZwtrDrrj/fw1G45eZteZG7j0msHsrccJDoukycglOHWfhnOPafSduyXF40mkUk7fuE+PmRsp13Uyb4PDfiqukIhoQiOjcS2l6KEtbJ2LbFkMOXPzgbJMRLRiLc3Y+EQSpVIscmT7qXMJgpD2vHwfxuGbz1jasxbZsyhuSmlqatC4QiHy5Uz+f92luBVRcQmERsWpPF5oVBzZsqR+mbzImHh2XnxIi1kHaDHrQKr3/0RTU0PZqJXL5UTGKnpfQdGbu/PiQ8a2ckbjv/dymWQBICQqjrDoOCoXV/TQFrLMQTZDPc7de/XTsQgZm+ixzUQ8796lUKGC3+zprFixAm/fvuX169e8ePGSCuXLUcW1Mn37DWDc2DFccPegatUqACxcMF95nFmz5zBl2nSWLVms8rihoaG0aNmaWrVqMmrkCACGDR/Bw/veWFpakpiYSHx8vMp9g4OD2bvPjV27dhMRGUGrli3Zv28v+fN/HkpbycWVmFjVz43evnkDLS2tJO89fPgIPX19GjZqQsCbABzs7Zk3d47Kxq2//2tsbD4Py7SxscHf31/luQRBSHs6TVmLvq6O8vXLN0HJyjgUtKJbAxei4uKZ3qs5AMv3ncPawpSDswcCisamKnK5nOv3X7D3/C3O3HpIheK2NK/myPJhHdHVUfyJ3Xn6Osvdzqvcv3O9SvRoXCXJe6bZjDA3ycqhi3dp7Fqa2498ef4mEP8PIQDM7NuCNuNWsv7IJcIiYxjeoS4lCyUfmvdJ/aGLkEikVCldhLFdGpLFQKwDLQhpmferQGxzZf/hHtLDN55RuXhezLIaKt/zeOBP1THbiUmQ8D40irX96/7QseITJZzxeoXb1Sf4+AXxT5n8jG7hhGPBz2uSj97izrXHb1TuP79bjSRlv9Rs5n4evQ7GNKshe0c2AeBVYBg5jAxYcPAmHg9eY6CjzYhmFXAtYY2psQHm2Qw5cvMZDcsX4s7z97x4H4Z/UITK40fGJlBz/E6kMjn1yhZgSONyyh5sIXMQDVtBSVdXF2cnJ9w9PHjx4iVVqlShcOHC+Pn7Ex8fj4fHRbp36wbA9h072bZ9O/Hx8cTGxpHLwkLlMePi4nBxrcLYMaNp17at8v3q1arSuUs3GjSoT906/1C4cOFk+966dZtKlRVDf1euWEbx4qqHCF65fDFV15koSeT06TNcu3IJS0tLxo2fQP8BA9m9a6fK8p/uIALI5SqLCIKQRm2Z0CPZM7Y/olzx/KxwO8/YVW5UcihEjbLFVJZrN2E1l+49ZXKPJkzv3Vzl0OO2tSvStnbFVMW9c0ovJq49yLwdJ7HLb0nFEgXQ0VJ8Qdt49DKta1ZgUOtaBIVG0nD4IsoVy698BvdL97dPw8oiB9Gx8QxevJPxa/azYFDbZOUEQUhfwmPiqTpmO6HRcYRExnFgTLMk278civzodTDNZx3g3LSc5DYx+u5xi/Zdi1lWA2Z3rkbVEtZoamokKzOzU9Wfinn/6GbIZHIWHLrJgoM3mdu1OolSGa8CwymSx5QJbVy47xdE81kHuDK7A2ZZDdk6uAFTdl1hwaFbFLcyo0Lh3OhoJ2+sWmQ3xHvJv5hnMyQ0Ko7uy46z/LgWAxuU/alYhfRJNGwzkTKlS/Ps2XM+fvyIqampyjKfnrP1fenL6lUrAChX1pG9+/YRGBhIuXJluXz5CstXrOTKJQ/Mzc05fOQIU6dNV3k8PT09nJ2dOXr0GK1atkRbW1Hl3Pbt5c4dT9w9PKjfsDFTp0yiTevWSfZ1cLBny+aN7Ny5i6bNW9CkcWPatmlNqVKlkpRLbY+tjbU11apWIU+ePAC0b9eW+g0bq9zf2tqKV6/8lL25/v5+1K37Y3c9BUFIv8oXt+XS6jG4ez7m8KW7TNt4mEurxqCllfQL1eQeTdh19gYr91/g5DUfWlQvSz3nkhgbfn6mNbU9tgAlbPPiNrO/8nW5bpMpYpMbgNUH3Lm3dQoA5ibG1CxnxxXvZyobtlYWOQDIYqBH90auDFqwI5WfhCAIf5tDvpy8fB9GSGQsOb7Ra/vpeVK5XM68gzfpsewE1+Z0Ql/Fs6fFrMzIY2rMzafvaFyh0HfPvWVwA9yuPmH4xvM4F81DM+ciuNpZJen5/NkeW1AMS+5YrQTlh21mbtfqWJllRVNDgxaVFPmrhI051uZZeRwQgktxQ+yszdk9oolyf6cRWyhimSPZcfV0tDHPprh2EyN92rna4XbtCQMbfPdyhQxGNGwzkYIFC9K8WVO69+jJxg3ryZ49O3K5nK3btlHJ2ZkCBQpQrWpV1qxdh7a2trIXtUqVKkydNh2XSpXQ0dEhNDSUrFmNyZEjBwkJCaxZs+6b59TQ0GDNqpUMHjqM5i1asme3YjbmV69eUbasI2XLOhIcHMzNm7eTNWz19PRo07o1bVq3JjQ0lL373Bg8ZBiBQYEMGzqUrl06A6nvsW3VsgUbNm4kIiKCrFmzcvLUaUo62Kss26J5c1asXMnGcuvx9fXF4+IlVq5YnqrzCYKQ9hlnMeBtcLjy9at3wViaZadZVUdqlitOwRYjiYqNJ5tR0i+Zha1zMaFbYyZ0a8zNhy/Ze+4W0zYeoVRhGxYMbIO5ifFP9dh+CAlXPje76dhlDPX1lA3XfLlNOXPrAe1qVyQ6Np6LXk8Y3OafZMcIjYxBT0cbQ31dZDIZ+93v4FAwb2o/GkEQ/jLbXNlpUK4gg9adZVnP2mTLoodcLmfP5ceUL5w7SSNTQ0ODYU3Kc9LzJRvPedOnbplkx3v7MZKX78MokCt7iueuXNyKysWtSJBIOXvvFdvcHzBk/TnqlS3A9A6Km3Cp7bENDI9GR0sLEyPFDb8D159iZ6V4nM3U2ABXOyvOe/tRq1R+XgdH4B8UQcHcirlgPoRFY5Fd8cztlgv3MdTTobKKWZGDwmPInkUPHW0t4hMlHLv9HHsb1fOnCBmXaNhmMuvXrWXa9BlUdK6EtrY2crmcypUr06ihYnbQcuXKEhoaSoP69ZT7VHGtTJ++/ejapQsAdevWYfuOHRSzsydvnjw4OVXk9Jkz3zynhoYGixbMZ/yEiTRo2Jh9e3fT7d8ehIaFKiZuMjNnw/q1343bxMSEnj2607NHd968ecPDh49++jOwtrZm1MgROLtURltbmzyWeZS902/fvqV+w0bcvXMbgOHDhvJv9x4UKlIMTU0Nli1dTI4cye8UCn/eq4C3VGrckTd3zqk7lN9m4+6DzFu1GZlcRjXn8iyZMlI5quFLMbFx9Bo5hTs+D9HU0GTaiP40qVMdgI+hYfQeNRVf/zckSiSULWnHsmmjMdD/3GMY9DEUxzqtqVSuFDtXzPlr15eeNKhUUjl5VEOXUuQxN2H5vnNoaWkilcqY2rNpskbt18oXt6V8cVtm9W3JBc/HyPn5Zxc2Hr3MnnO3kCOniHUutk/qqXwsYuWIzgxftptle8+SKJVS37kkTVxLA7D+yEXefwxnbJeGPHv9nv8t3IGGhgYSqYyShayY1bflT8ckCMLfs6RHTeYfukntibvQ1tJELgenopbUKWNLeEzSeUk0NDSY0q4yPZadoHN1xY36T8/YylEsHTS2lTMlUtHQ09XWop5jAeo5FiAqLoHz3n4/fS1vQ6IYvO4cUpkMuRzyWWRjZZ/PN+PmdavOwDVnmLLrClqaGizoVl05gdTm8z7su/oEuVxOYcscbPlfA2UunLnvGrlMstC1hgM3nr5lltt1tDQV+a5ycSuGNC730zEL6ZOGXC6eGlQnT09PHB0duX3zBmXKlFZ3OEIa4+l5l7LlK3Dnzh3KlEl+FzZ1x1LUtWuHt6WZ5X6kUmmyoeLf8jsbthKJJFkDMjWxqNo/tXxfv6F6y3+5fmQ7Oc1y0KLnEOpUc6FHu+bJyk5fshbf129YN3cSvq/fULV5N7zO7MUkW1aGT52PhoYGc8YNQSqV0uTf/9Gghiu9On5uwLTrN5IshoZERUd/s2F79/5jnBp1+K11zWPlKEoVyhhr4gq/j9czf6r0mfVb6pog/C2f8tq5qW0pmT+nusMR0ph7voHUGL9T5DU1Ez22gpDJxcbF0WP4ZO4/eY6OtjY5zXJwbItiuPXE+SvYe/Q0lhY5KetQnIvX73D18FY8rt9m9IzFXD28FYAHT57TtPtgnl46gkQiocm//yMkNJzY+HgcihVm5cxxGBros2XfEfYePY25qQmPn/myYNJwtLW0GDtnKZGR0cjkMkb27UbTujUAWLVlD0s27iCXuRmVK6T8hyIyKpoR0xfi8+gpcfEJVCzjwMJJI9DR0aZW2544OZbk5t37ALRrWi9ZLBGRUUyYtxyJREr2bFlZOnUUxQrZ4nH9NsOnLsClfGnueD9k4L/taV6v5i997gdOnKNR7WpYmCued+/Rrjnz12xR2bDdd+wMa+dMBCC/VR5cypfmyBkPOrVQjLSIjI5BJpORkJhITGwceXJ//tK18+AJcprloIx9cU6cv/RLMQuCIAiCIKRVomErCJncaY9rhIZH4HV6LwAhYYrnDI+du8ixsxe5eXQHBvp6tOo97IeOp6WlxeZF0zA1UTzDPXD8LFZv28vgHh0BuHrbixtHtlMwvzVhEZHUad+bA+sXkzunGcEhYTg16oBT2ZIEBYcye8UGrh/ZjoW5KQPHz0rx3CNnLMKlfGlWzhyHXC6nz+hprNyym4H/KhZs9374lCOblqKjo82WfUeSxBIYHELpf1pyavtqShQtyM6DJ2g/YBSeJ/cA4PP4GQsnjWDBxOEqz121RTdiYlWvIXjt8NZkvcGv377HOs/nCTZs8lry+u0Hlfsryub+omxuXr99D8DoAd1p03cENhX+ITYuntaN/qFBTcVzUG8/BLFkw3bO7FzD/hMZZwi3IAiCIAjC10TDVhAyOftihXjy4hUDx8+icoUy1KlaCQCPa7dp0aAWRlkU6+J1btmYWcvWp3g8uVzOkg07OHnhMhKJlPDIKFzKf+5tdS5bioL5FcNTr9+5h6//Gxp3HZhk/6cv/fB59Iw61VyUPZr/tm2K2/FvP8sNcOSMOzfv+rB43XZA0Rutq/N5DdN2Teuho/M57X0Zy61793EoVoQSRQsC0LZJXf43cTbvAoMBKJTfmkrlSn3z3O77NqT42Xwt6VJS338q5FvLTrkdP4t90UKc2LqCmNg4mvccwpZ9R+jUoiF9R09j+siByn9DQRAEQRCEjEo0bAUhk7O1zovX6b24X7vF+Ss3GTNrCTeP7fhuQ0tbSxupTKp8HRefoPx91+GTXLrhydldazE2ysLyTbu4fNNTud3I8PMEPHI5lChaiHO7k08e5v3waaqvRS6Xs2f1PGytVc/8amRo+NXrL2ORo5F8uT7le1/v+7XU9thaWebCL+Cd8rX/m3dYWapeD1pR9i3mpibKsv/8dwNi5ZbdrJ49AS0tLYyNstCsTg08rt+mU4uG3LjrQ+9RUwGIjokhNi6eBp37c3Tzsu9eiyAIgiAIQnqTfIVjQUiFV69eYW6RO+WC6cj6DRspXLQ4BQsXpWfvPkgkEpXlxowdR/ES9pQq40iFis6cP39Bue3Dhw80b9GSkqXLUMyuBIsWL1FuO3DwICVLl6G0Y1lKOJRk7LjxKfbW/UkB7z6goaFBg5pVmDX6f8jlcgLefqCac3ncjp0lOiYWqVTKVrcjyn3yWVny6vVbPoaGAbDj4HHltrDwCExNsmFslIXIqOgk+32toqMDL175c+HqLeV79x4+ISEhkSoVy3LK/QqBwSEAbNpzKMVrqV/DlXmrNiv/zULDI3jx6vUPfQ4VSjvg/egpj5/7ArDnyCny5M5JLnOzH9rffd8Gbh7bofJH1aRUTepU5/DpC3wI+ohcLmftDjdaNait8tjN6tZg1TbFUHHf12+4dMOTBjVdAcUzt6fcrwKQmCjh9MVr2BUuAMC7u+d5eukITy8dYebo//FPFWfRqP0Bfu8/kr+Z6iHn6dWWE1co3XkiJTtOYOCC7UikUpXlJq8/RLluk6nUczrV+s3G4+4T5baZm49SoMUIXHrNwKXXDLrP2KjcduSyF849puHSawYV/p3KlA2H1JrXBEFIyj8ogsK9V6s7jN9qm/t9yg3dRNkhmxi8/hwSqUxluWm7r+A0YgtVxmyn1oRdXHzw+XvB6bu+1Bi/E8suy5iwI/k8FFceBVBz/E4qjdxKxeFbuPXsXbIyQtohemyFZFIzO+zvlCZmqvX1ZcLESXjevknOnDlp0rQZ6zdspFfPHsnKVnZxYfy4sRgYGHDv3j2q1ajF2wB/9PX1GTpsOCVKlMBt316ioqKoVNmVSs7OlCtXlpo1atC4USM0NTVJSEigsmtVKlQor1xy6W978OQ54+YsQy6XI5PLaNe0HvbFCmFfrBDX73pTrn5bLC1yUrlCGd68CwQgT66c/K9HB5wbd8Imb25cyn0eaty+aQOOnLlIqdotsbQwp1K50rx9H6jy3CbZsuK2diGjZy1mxLQFJEokWFnmYu/qedgXK8SIPl2p2rIbFmam1K3mkuK1zBs/lLGzl1K+QTs0NTTR0dFm2ogBFMiXfM27r5mbmrBh/hS6DB6HVCojW1Zjti9N+bnen2VrnZdx/+tFtVb/IpPJqepUli6tmgCKZ2ObdBvEzWM7ABjSsxO9Rk6heLUmaGposmjyCHJkV6xxOm/CMAaMm0mZOq2QyeQ4OZakX+c2fyzu9EoqlaGl9ffv5UqkUrS/ymGpiUXV/qn16l0w0zcd5dKq0ZhnN6bthFVsOXGVbg0qJyvrbF+QER3qYqCni8+LAOoPXcjTPbPQ11UM6W9TqwLTeyWf4KxqmaLUd3ZQ5LVECf/8bz5li+annrPDL8UuCMK3SWWyJGva/i0SqQztr3JYamJRtX9q+QWGM3PfdS5Mb4t5VkM6LDjCNvcHdKlhn6xsxaJ5GNq0Aga62tz3C6LxdDceLOuOvq42trmys7h7TQ7ffEZcYtIbfu9Co+i/+jS7hzehcJ4cxCVIiE9UfVNQSBtEwzaNio2NpWu3f/G5fx8dHR0sclpw6qSiV2zc+Ans3rOXPJaWlC1bFo+LHty6cR13dw+GjxzJrRvXAbh//z4NGzfF98UzJBIJDRo25mPIR2JjYylVsiRrVq/C0NCQTZu3sHv3HnLmNOfho0csWbQIbW1tRo0eQ0RkBDKZjDGjR9G8WTMAlq9YyaLFS8idKxeursm/GH0tMjKSIcOG433Pm7j4OJycnFi6eBE6OjpUq14TZ2cnbty4CUCHDu2TxRIeHs7Y8eORSCSYZDdhxfKlFC9eHHd3DwYPHUrlypW5fes2gwcPomWLFr/0ue9z20+TJo2xsFAMCe3Vsydz581X2bCtW7eO8nd7e3ukUinBwcHkzZuXe97eDBwwAAAjIyNcXV3Zun075cqVxdjYWLlfXFwc8QnxaGqob/DEP1UrKYe1fm3KsH5MGdYPAI/rtzl14Ypy2+j+3Rndv7vy9YTBvQDIltWIE9tWqDxepxYNlTP5fuLoUJzTO1TfRe7dqRW9O7VSvh7Rt+t3r8XYKAtLpo5Sue3MzjUpxlK7ijO1qzgn27dKxbLKGaB/p3/bNOXfNk2TvW9pYa5s1AJkMTRg29KZKo+R3yrPD/XCqrrevy02PoE+c7bw0PctOtpamJsYc3C24vnqqRsO4+Z+B0uzbJQuYsPle8/wWDGKS15PGbdmPx4rFP+uD33f0nrcCny2T0MildJyzApCIqOJi0/EvkBelgxpj6G+LttPXcPtwh3Msxvx2P89c/u3QktTk4nrDhIZE4dMJmdYuzo0/m/917WHPFjudp5cObJSyaFQitcSGRPHmJVu3H8ZQHxCIuXtbJnbvzU62lrUH7KQCiVsufXoFQBtapZPFktEVCyTNxxGKpWS3diQBYPaUtQmN5e8njJ65T6c7Qvi+cSPfi1q0LTKry0dcejiXRpUKklOk6wAdGtQmcW7z6hs2NYqb6f83S6/JTKZnI/hUeQxN/nuOYwNP6+bHJeQSEKiBE1NFWP7BSGDiU2Q0H/1aR69/oiOtibmWQ3ZN0qR12fsvcqBa0/JlcOI0rYWXHkUwLmpbbn8MICJOy9xbmpbAB69Dqbd/MPcXdQNiVRG23mHCImKIy5BQgkbcxb+WwNDPR12XnzIgWtPMctmwJM3IczqVBUtTQ2m7L5CZGwCMpmcIY3L0bC8IoetP3OPVSfuYpE9C87F8qR4LZGxCYzffpEH/sHEJ0ooVyg3szpVRUdbi0bT9lGhsCW3nyt6LFu5FEsWS0RMPNP2XEUqk5Etiz7zulajSB5TLj8MYNw2D5yK5uHuyw/0qVuGxhVSzrPfc/jmc+qXLUDObIr1brvUsGfp0TsqG7Y1S+ZT/l7cygypTE5IZCyWpsYUzK3IbcduvwCSNlo3nvWmZaWiFM6TAwB9XW30dUXTKS0T/zpp1MlTpwgNDeOBjzcAISGK4ZhHjhzlyNGj3L1zCwMDA5o1/7GGnJaWFtu3bcHU1BS5XE7f/gNYsXIVw4YOAeDylSt43r5JoUKFCAsLo0at2hw9fIjcuXMTHBxM2fIVqeTsTGBgIDNmzsLz9k0sLCzo239AiuceOnwErpVdWLt6FXK5nB69erNs+QoG/28QAPfueXPi+FF0dHTYtHlLklgCAwOxsy/J+bOnsbe3Z/uOHbRu2w6fe14AeHv7sHTxYpYsWqjy3JVcXImJjVG57fbNG8l6g/1fv8bG+vO6m/ny2eD/OuWhrBs3baZAAVvy5lU821mubFl27NpF2bKOBAcHc/r0aYoWKaIsf/XqNfr068fTp8/o07s39evXS/EcgpDenb31kLCoGG5umABASEQ0ACeueXPimjeXV4/GQFeX9pN+bLiclqYm68d0JUc2I+RyOUMW72LdYQ8GtqoFwPX7L7i0ajQF8uYkLCqGhsMWs3d6X3KZZuNjeBRV+syiYglbgsIimbfjJJdWjSanSVaGLN6Z4rnHrnKjkkNBlg5tj1wuZ8CC7aw56E6/FoqlqnyeB7B/Zn90tLXYfupakliCQiMp/+8Ujs77H3a2edhz7iZdpq7j+rrxANx/+Ya5/Vsxp38rleeuNXAusfGJKrd5rBiVrDc4IDAEK4scytfWuUx5HRiS4jVuO3WNfLnNkjRq3c7fxv3OY0yyZmFEh7q4lvqc1248eMHgRTt5HhBI90au/FOhRIrnEIT07vy9V4RHx3N1jmLm/9AoxVwLJz1fctLzJRdmtMNAV5tOC4/+0PG0NDVY3bcOOYwNkMvlDN90gQ1nvelf3xGAG0/fcn56WwrkMiE8Op4mM9zYOawxuUyy8DEylhrjdlK+sCXBETEsOHSLC9PbkjNbFoZvPJ/iuSfsuIRz0Tws6l4TuVzO/9adY92Ze/Spq7i55uMXxJ4RTdDR1mLnxYdJYgkKj6HSyK0cHNuc4lZm7L3ymH+XnuDyrA4APHgdzKzOVZnZqarKc9edvOebee3ctLbJeoPffIwkr9nnjgJr86y8+RiZ4jXuuPiA/BbZsDQ1TrHskzchWJtnpdnM/YRExlKxSB4mtKmEoZ5OivsK6iEatmlUSQcHHj95Qt/+A6jiWpl6desCcMHdg1YtW2JkZARA165dmD5DdU/Ol+RyOQsXLeb4iRNIJBLCwyNwrfx5aKdLpUoUKqS4e3b16jVevvSlXoOGSfZ/8uQp97y9qVevrrJHs2f3f9m7d993z33o0GFu3LjBgoWLAEVvtK6urnJ7hw7t0Pli5tovY7lx4yalSpbE3l5xB659u3b0HzCId+8UdwwLFy6Ei4vq3kaAK5cvpvjZfC01M9UCnDt3nilTp3H65OfnTOfNncOwESNxLFeeXBa5qFatGsFBQcrtzs5O3LvrSVBQEM1btOLSpcs/1PutTn+q1zK17j18Qo/hk5O936FZfeWyPkLaVMI2L8/8PzBk8U4qORSi9n8Nn0teT2la1REjA0WvX4c6TszdfjLF48nlcpa7nefUjftIpTIiomNxdiio3F6xRAEK5FWs6XvzwUv83gXTYszyJPs/e/2B+y/fULt8CWWPZpf6Lhzw8OR7jl29x+1Hvizbp1hGKTY+AV3tzzfKWteqgM4Xr7+M5fZjX+wL5MXOVtGD0qpGeYYt2c37j4qltgrmzYmT/efr+NqZJal//leD1OU1d8/HzN5ynINzPs9Y3q1hZYa1r4uOthbX77+g/aTVXFg+EmsLxczlFewKcHXtOILDIukwaQ1XfZ7/UO+3IKRndjbmPHsXwvCN53EullfZO3j5YQBNKhbGSF/xfad9FTvmH7qZ4vHkclh18i5nvF4hkcqIiI3Hqcjn3tYKhS0pkEtxs+nms7f4BYXTZu7Bz/sj5/m7UB74B1OrVD5lj2an6vYcuvHsu+c+cecFd56/Y8VxRf6LTZCgq/25QdnKpWiSvPZlLHdevKeEjTnFrRTzUrSsVJSRmy/wPlRxA7NALhMqFvl2r/GJiapv5H1P0ryWcvmL9/2Ze+AG+0Y2+6HjJ0plXHn0hv2jm2Kkr8vAtWeYs/8Gk9qm/GiUoB6iYZtG2dra8sDnHucvXODsufOMHDWGu3dufX+mWm1tpF9MCBIXF6/8fcfOnVy8eAmPC+cxNjZmydJlXLr0+SF5I6Msyt/lcjkO9vZ4uCe/u+d1716qr0Uul3PAbR+2trYqtxtlMUr6+stYkCdpaH7y6b1PDfxvSW2PrbWVFa/8/JSv/fz8sbb69vOZHh4X6da9B4cP7qfIFz2yOXLkYMO6zzP99u7bj2LFiiXb39zcnHr16rLXzS3NN2zTipLFiyQZpiukH/ktzbixYTwX7z7F3fMxE9ce5NLqMd/9QqKtpYn0iwlB4hI+39Hfe/4WV7yfcWLhEIwN9Vl14AJXvJ8rt2cx0FP+LpfLsbPNw4mFQ5Kdw+dFQKqvRS6H7ZN7k99S9eRiRl+cO3ksfCOvJS+rSmp7bPPmzIH/h4/K168/hGCVM8fXuypdvveUfnO3smtaHwpZfZ6p2yJHNuXvFUsUwKGAFXef+Csbtp+YZTemdoUSHPTwFA1bIcPLlzMbV2Z35NKDAC4+8Gfyzsu4z2iHnO+tLKCBTPZ5+5fPdu67+oSrj95weFwLjA10WXPKi2uP3yi3Z9H/3BEglyuG1h4d3zLZOe77BSV7LyVyOWwZ3JB8ObOp3P7luVXF8r2VBb7e92up7bHNY2rM6+AI5evXwRHk+U4v7JVHAQxYe4btQxpRyPL7j1Z8YmVmjL2NOdmzKG66Nq1YmKVH7/zQvoJ6iFmR06iAgAA0NDRo1LAh8+bMRi6X8/r1a2pUr8beffuIjo5GKpWyefMW5T758+fD1/cVHz8qvsBs3b5duS00NAxT0xwYGxsTGRnJ5i1bkp3zE2dnJ549f55kll8vLy8SEhKoVrUKJ06cJDBQMRnQ+o2bUryWhg0bMGvO3M8z1YaG8vz58xT2UnCqWBGve/d49OgRALt27yZv3jzkypXrh/a/cvkid+/cVvmjalKq5s2acvDgIT58+IBcLmf1mjW0bq36LuLFi5fo1KUrB/fvo2TJkkm2ffz4kcRERYL29LzLoUOH6dunNwBPnjxBJlN8UY+MjOTYseM42Cd/JkT4PWq17cnxc8lnOvxbxs9dTslaLShXry0uTTolmQF6yOS5lK/fTvmTragzyzftUlusf9qboFA00KCeswPTejVDLpfzJiiEKmWKcNDDk+jYeKRSGTtOXVfuY5PbDP/3HwkJjwJg99kbym1hkTHkyJoFY0N9ImPi2P7Ffl8rb1eAF28Ck8zy6/38NQmJEiqXKsyZm/cJClUMY9t64mqK11LXyZ6Fu04pZxcOjYzhxRvVk6Qli6V4fnxeBPDETzHyZN+F21iaZ0/ScPyeM0uGc3n1GJU/qialalS5NEev3CMwNAK5XM6Go5doVs1R5bGveD+j16zN7JjSG/sCSZfNehMUqvz9RUAgPi8CsLO1BODZ6w+f81pMHKeu31f2SAtCRvb2YyQaaFDX0ZbJ7SojR86bj5G42llx6MYzouMSkcpk7Lz0ULmPjXk2/ILCCYmMBWDv5cfKbeExcZgY62NsoEtkbAI7Lz5Mds5PyhfOzcv3YUlm+fXxCyJBIsWleF7O3ntFULji5v529wcpXkudMvlZfOS2cnbhsOg4Xr4P+6HPoVyhXNz3C+bpG8VjDvuvPcEyhzEW2bOksKfCiYmtcJ/RXuWPqkmpGpYvyLHbLwgMj0Yul7PpnA9NnQqrPPbVx2/ou+oUWwc3pISN+Q/FA9DcqQhXHgYQn6j4/nre248S1j++v/D3iR7bNMrH5z6jx45VzFQrk9GhfTscHBxwcHDg2vXrlCpTljyWlri6VibgjeJOXp48eRg6ZDDlKjiRz8aGyl8MNe7UsQOHDx/Bzt6BPJZ5cHFx4e2bNyrPbWJiwuGDBxgxchRDhg0jMTERaytrDuzfh4ODA6NHjaRS5SrksrCgXr26KV7LogXzGTl6DKUdy6KpqYmOjg6zZsygYMFvD7X7xNzcnC2bNtKhU2fFJCvZsrN755/rrbO1tWXSxAm4uFZFJpNRrVpV/u2mmLDo7du31G/YiLt3bgPQvWcv4uPj6db988RSWzZtxN7enps3bzHwf4PR0dHG2MiY3Tt3kDu3Ylmkvfvc2LlrFzo6OkilUpo3a0b3f7v9sWsS1MulXCnGDPgXA319vB89pXbbXry6cRJ9PT0WTPw8pPR9UDBFXRvTvH5NNUb7Zz30fcukdQf/m4FbTuta5Slhm5cStnm5+fAllXrNwNIsG5UcCvEmOAwAS7PsDGhZkyr9ZmNjkQPnL3oA29SqyLGr3pTvNoXcZtlxti/A2+Bwlec2MTZk19Q+TFiznzEr95EokZI3Zw52TOlFCdu8DG1Xh1qD5mFhkpXaFexUHuNLs/q2ZOLaA7j0moGmhgba2lpM7t6UAnlyprivWXZj1ozsTPeZm5DJZGQzMmDT+O4p7vez8luaMbpTfWoPmo9MJsO1dBE61VU8wvEuOIyWY1dwefUYAPrP30Z8ooR+8z4/drB6ZGfsbPMwdcNhvJ75o62lhaamBvMGtqZgXkWP7kEPT/aev4WOthZSmYzGlUvTud63HxMRhIziYcBHpu6+8l9eg1aVimFnbY6dtTm3n72n6pjt5MphhHPRPLwNUdygy53DiH71HKk5YRdWZllxKmqpPF5rl2KcuPMS5xFbyZ0jC05F8vAuNErlubNn0Wf70EZM2nmZ8dsvkiiRkdfUmC2DG2Bnbc7gRuWoN3kPObMbUqtU/hSvZVqHKkzZdZmqY3egqQHaWlpMbFMJ21zZU9zXLKshK3rXpteKk8jkcrIa6rF+QMrfEX9WvpzZGNm8IvUn70Uml+NS3IoOVRS5+11oFG3nHsJ9huLxpEFrz5CQKGXgmjPK/Vf0+YfiVmZcfhhAn5WniIxNQI6cA9eeMqdLNeo62lK+sCW1y+Sn6tgdaGtqUjSvKfO7Vf9j1yT8Og25WGhOrTw9PXF0dOT2zRuUKVM61ft/PROykLF4et6lbPkK3LlzhzJlfm1m1E917drhbZQuUfQ3RfhjYuPi6DF8MvefPEdHW5ucZjk4tmU574OC6TRoLJFR0cTFJ1DNuRzzJwxDQ0ODqYtW8/SlH1HRMTx5+YrSdkUZ3qcLI2cswi/gHY1qVWHOOMWw0lpte1KyWBHuPXrC2/dBNKpdlRmjBqKhoUGttj0Z3L0j9WpUJjIqmhHTF+Lz6Clx8QlULOPAwkkj0NHRZuaydew6dBK9/57/3rtmPjZ5fu8azTKZDItS1bh7ag95c1sk2TZ/9Waue3qzd/X833rOH3X3/mOcGnX4rXXNY+UoShWyTnmHr3w9E7KQsXg986dKn1m/pa4Jwt/yKa+dm9qWkvlTvoH1ta9nQhYylnu+gdQYv1PkNTUTPbaCIPxxpz2uERoegdfpvQCEhCl61bJnNWb/2oUYZTFEKpXSoudQDpw4R7N6il5LT59HXD20FaMsBlRs2IFxc5ZxeMMSJFIpRas0oke75hSytQHg0fOXHN+ygkSJhJqte+B2/Cwt6tdKEsfIGYtwKV+alTPHIZfL6TN6Giu37KZji4YsWruNVzdOYqCvT0xsnMqlSs5dvsHomYtVXmOdapWUSyN9y+a9h7G1zpOsUftp28zRg1L4JAVBEARBEARVRMM2natatUqa6K318vKi67/Jh9J16thRuayPkHnZFyvEkxevGDh+FpUrlKHOf+vmymRyxs5eytXbXsjlcoI+huJQvLCyYVvLtSLZsiomCCtRtCAOxQqjp6eLHlAovw2+r98oG7YdmjVAR0cbHR1t2japy/krN5M1bI+ccefmXR8Wr1M8fx4bF4eujg5ZjbJQMJ81XQePp0blitSt5qKy8VnDpcJPT1x1/spNpi9Zy/Gty5Ntu3rbi8ioaOXnktlVLlU4TfTWej9/Td+5yWcCb1urgnJZH0EQhB/hUjxvmuit9fELYsDq08neb125mHJZH0FIr0TDVvgtSpUqpXz29EdUq16ToUMG06BB/T8YVcrc3T2oWfsfFi1cQP9+fQFYvmIlq9esQUtLC6lUSvd//2XggP5qjTO9s7XOi9fpvbhfu8X5KzcZM2sJN4/tYNXWPYSEhXHpwCb09fQYMW0B8fEJyv309T7PDqulpYW+nu4XrzWRSJIupv4lVbMzyuVy9qyeh6113mTbLu7fyLU73ly8cYcqzbuyedF0XMonfTzgZ3tsL964Q88Rk9m/biGFbfMl275pzyHaN2ugckIzQX0cClopnz39EfWHLGRAq5rUqaieyeBevg1i0MIdhEZEE5eQyD8VSjC1Z1M0NTWRyWSMXL6X0zcfoKGhQb/m1enRuIpa4hQEQX3sbcyVz57+iEbT9tGvfhn+Ka16ZYs/rf/q03jcf42psWJm4iolrJncTrGKhEwmZ8xWD87ee4UG0KduabrVKvmdowkZnWjYCplWZGQko0aPoW6dOkne79C+Hf369gEgIiIC+5KlqVrFFQcHB3WEmSEEvPuASbasNKhZhdquzhw+7U7A2w+EhUdiYWaGvp4eH4I+4nbiHC2/6mX9UTsOHqdlg1okSiTsPnySwT07JStTv4Yr81ZtZsmUkWhraxMaHkFIaDg5zXIQGR2DS/nSuJQvzaNnL7j38Emyhu3P9NheuulJtyET2LdmPg7Fks/YGBUdw4GT57l2SP1rBAvp2/jV+6nv7EDvptWIS0ikWt/ZVCldhNoVSrD77E0e+7/Hc9MkwqNjqdJnJlVKF6Gw9Y/NMC8IgqAugxqWpXvt5A3WvVce8+TNR27M60RETALVx+2gsp0VhSy/vZyZkLGJhm0mFhsbS9du/+Jz/z46OjpY5LTg1MnjvH//nnbtOxIRGUFcXBzVq1dn8cIFaGhoMGnyFJ4+fUpkZBSPnzyhTOlSjBo5gmHDR/LKz4/GjRqxYP5cQNErW7JUSe553ePN27c0btSIObNnJlu/MTIykiHDhuN9z5u4+DicnJxYungROjo6TJs+gx07d6L3X8/dwf1u2NjY/JbrHzJsOMOGDeHYseNJ3s+W7fOSGzExMUgkEpVrTgo/7sGT54ybs+y/WSNltGtaD/tihejbpQ3t+42kfP12WFqYU925/E+fo5RdUep27KucPKpZ3eRDReeNH8rY2Usp36Admhqa6OhoM23EAPT0dGnXbyTRMbFoaGhQMJ8VHZo1+JVLVuo9cioJCYn0HDFF+d6G+VMoUVQxK/jeo6cpWbwIBfOnfpIlIbnY+AT6zNnCQ9+36GhrYW5izMHZA/kQEs6/0zcQERNHfIKEKqWLMLtfSzQ0NJi5+SjPAgKJionj6esPlCxoxZC2/zB2tRv+7z/SoFJJZvRpASh6Ze0L5sXneQBvP4ZR37kkU3s2TZ7XYuIYs9KN+y8DiE9IpLydLXP7t0ZHW4u5206w5/xN9HQU6zrumNIr2VqwPysiOva/zyGRRKlUuYTQfvc7dGtQGS0tTXJkzUKTKmVwu3Cb0Z1/Tz0XBOHPiU2Q0H/1aR69/oiOtibmWQ3ZN6opH8Ki6bn8JJGxCcQnSnC1s2JGxypoaGgw2+06z9+FEhWXwPO3oTjky8mgRmWZsOMSr4MiqOtYgGkdXAFFr6y9jTk+fkG8C42inmMBJrV1SZ7XYhMYv/0iD/yDiU+UUK5QbmZ1qoqOthbzD95k39XH6GkrRh5tHdIQK7Osf/RzOXD9KV1qOKClqYmJkT6NKxRm/7WnjGxe8Y+eV0i7RMM2Ezt56hShoWE88PEGICREsfZY9uzZOXzoAEZGRkilUpo0bY7b/v20aN4cgNt3PLl14xpGRkY4livP6DHjOH7sCBKJBNuChendqweFCyt6ph49fMTpUydITEykSrXq7N23j1Ytky4kPnT4CFwru7B29Srkcjk9evVm2fIVdOncifkLFvI2wB8DAwNiYmLQVLGW2dmz5xg+cqTKa6xXty7Tp01N9v6JEycJDwujRfPmyRq2APvc3Jg0eQrPn79g5ozp2It1Zn/JP1Ur8Y+K50dt8uTm8kHVayqP/1+vJK/XzZ2U5PWZnWuSvHYq48DU4cmHAn9ZztgoC0umqn528+L+TSrf/1UPLhz47vaurZvQtXWTP3LuzOjsrYeERcVwc8MEAEIiogHIZmTIrml9MDLQRyqV0XbCKg5duksTV8UzZXef+uG+fBRGBnq49pnJpHUHcZvRD4lUhkPH8XRrWFm5tM1jv3ccnDOQRImUukMWcMDDk2ZVk64LO3aVG5UcCrJ0aHvkcjkDFmxnzUF32v3jxNK9Z3myZyYGerrExCWonKjswp3HjF+zX+U11q5gx4RujZO9P7NvC9qMW8n6I5cIi4xheIe6lCxkBUBAYCjWFp97MawtTPF66p/aj1cQBDU4f+8V4dHxXJ3TEYDQqDgAshnqsX1oQ4z0dZHKZHRYcIQjt57TqLxiWTQv3w+cm9qWLPo6VB+3k6m7r7B7eGMkUjmOQzbSpYY9BXObAPDkTQhuo5qSKJXRcNo+Dt14RpOKSUcZTdhxCeeieVjUvSZyuZz/rTvHujP3aOtanOXH7/BgWQ8MdLWJiU9EU0WHgMd9fybuUL2ufK1S+RnbylnltpUnPNlywYc8psaMaemM/X9r0b75GImVmbGynLWZMV6+P7aeuJAxiYZtJlbSwYHHT57Qt/8AqrhWpl5dxXpjMpmMkaPHcOWKYl22wMAgSpZ0UDZsa9eupezVdLC3x8HBAT09PfT09ChSuDAvX/oqG7adOnVAR0cHHR0d2rdrx9lz55M1bA8dOsyNGzdYsHARoOhJ1tXVJWvWrBQqVJCOnTpTq1Yt6terS968yZ+NrFmzRqqe7w0LC2P02LGcPnnim2VaNG9Oi+bNefXqFc1atKRe3ToUKVLkh88hCIJ6lLDNyzP/DwxZvJNKDoWoXaEEoHgWa+Lag1y//0IxUVlYFPYF8iobtjXKFiebkQEAdrZ5KGGbBz1dHcVEZXktePU2WNmwbVe7IjraWuhoa9G6RnncPR8na9geu3qP2498WbbvHKDoSdbV1iKroT62eczpMXMT1csW458KJchjbpLsOqo5Fk3V870AG49epnXNCgxqXYug0EgaDl9EuWL5qVJa5C5BSM/sbMx59i6E4RvP41wsLzVL5gNAJpczZdcVbjx9i1wuJzgiFnsbc2XDtrqDDVkNFSPeiluZYWdthp6ONno6UDCXCX6B4cqGbevKxZR5rWWlong8eJ2sYXvizgvuPH/HiuOegKInWVdbE2MDXWwtstNn5UmqlrChdql8WJoa87UqJaxT9XwvwNiWzlhkz4KmpgbHbj2n9ZyD3JzfGSN93WRlxfqlgmjYZmK2trY88LnH+QsXOHvuPCNHjeHunVssX7GSkI8fuX71Cvr6+gwZOpy4uHjlfvp6+srftbS00NdP+loikXzznKqG9Mrlcg647cPWNvnEBNeuXObq1Wu4e3jgVKkyO7ZtpXJllyRlUttje//+A969e08FJ0UPYnBwMEeOHiMoKIjJkyYmKZsvXz7Kly/P0WPHRcM2Dfu691bIvPJbmnFjw3gu3n2Ku+djJq49yKXVY1h3yIOQiGjOLRuBvq4OY1buIy4xUbmfnu7nP4dampro6+okeS2Ryb55TtV5DbZP7k1+S7Nk284tHcGNhy+5fO8pNQfMZf3YbjjbF0xS5md6bFcfcOfeVsWQd3MTY2qWs+OK9zOqlC5C3pwm+H8IwbFoPgD8P3wkb87kDWpBENKefDmzcWV2Ry49CODiA38m77yM+4x2rD/jTUhUHKcmtUZfV5tx2y4Sl/h5UkU9nS/zmgb6X7zW1NT4fl5T8Z5cDlsGNyRfzmzJtp2a3JqbT99x5VEA/0zaw5p+dXAqmidJmZ/psc2dw0j5e/1yBZmy+wrP34VSKr8FeUyNeR0cSZkCirkCXgdHkkdFg1rIPETDNhMLCAjAxMSERg0bUueffzh06DCvX78mNDQMi1y50NfX58OHD+xzc0vWy/qjtm3bQetWrUhMTGTnzl0MGzYkWZmGDRswa85cVixbqpjQJzSUjx8/YmFhQWRkJJUru1C5sgsPHz7krpdXsoZtantsXVwq8eHdG+Xrrt3+xdHRUTkr8qNHjyhWrBgAQUFBnD9/geZNm/7M5Qu/oPvwSTjaF6NPp9Zqi+FVwFvsqjXFrnAB5Xs7V8yhgE3ykQOfPH35igoN2tOrQ0tmjfmf8v2Zy9axZd8RAFo3qsOkIYoJymQyGWNmLeH0xatIJFKcHEuydOpodL9oWAk/7k1QKNmNDKnn7EDNcsU5duUeb4JCCIuKwSJHVvR1dQgMjeDgRU+aftXL+qN2nblJs6qOJEqk7D1/i4Gtkk94VtfJnoW7TrFgUBu0tbQIjYwhJCKKnCZZiYqJw9m+IM72BXn06h3ez18na9j+TI9tvtymnLn1gHa1KxIdG89FrycMbvMPAE2qlGHj0Us0cilFeHQsB9w9cZv5/XWXBUFIG95+jCRbFn3qOtpSo6QNx++84M3HSMKi47DIZoi+rjaB4dEcvpl8+PCP2nv5MU0rFiZRKsPt6hP610+eH+uUyc/iI7eZ26Ua2lqahEXHERIZh3k2Q6LiEnAqmgenonl4/CYEH7+gZA3bn+mxffsxUtn7e/v5O0Kj4rC1yA5A4wqF2HzehwblChARk8DB60/ZM6LJT12/kDGIhm0m5uNzn9Fjxyom9JHJ6NC+HQ4ODgwc0I9WrdtS2rEseSzzULNG9Z8+R+nSpahVu45y8qhPw5m/tGjBfEaOHkNpx7Joamqio6PDrBkz0NfXp2WrNkTHRKOhoUGhggXp3Knjr1zyD1m6fAUXL15ER0dH8QzJoIHUqlXzj59XSJuyZzX64ZmQpVIp/cbOoGGtqknev3TTkz1HTnP7+C60tbSo1vJfKpUtRS1XJzbuOYTP42dcP7wdHR1teo+ayrJNOxmiYlZnIWUPfd8yad3B/yYqk9O6VnlK2OalV1MDOk9Zh0uvGeQ2zUbVMkV/+hwlC1nRePgS5eRRTVxLJyszq29LJq49gEuvGWhqaKCtrcXk7k3R19Wh0+S1xMQloKEBtnly0rbW75noZOWIzgxftptle8+SKJUmia1NzQp4PvGjTJdJAAxsVZMiNrl/y3kFQfizHgZ8ZOruK//lNWhVqRh21ub0/EePbkuOU3XMdnKZGFHFzuqnz+GQz5xmM/crJ49qVL5gsjLTOlRhyq7LVB27A00N0NbSYmKbSujraNF1yXFi4hMVeS1XdtpULvYrl6zUf80ZgsJjFD3OutqsH1hPOby6lUtR7r78QIVhirk6+td3pHAeMSNyZqYhl8vFkHQ18vT0xNHRkds3b1CmTPIvR+lZWlmrNj3z9LxL2fIVuHPnDmXK/NrC6Z/q2rXD2yhd4ue/1KfWzGXrCAwOYeGkEYBieZtCLg3wObef94HBDJwwi5jYWOLiE2jXpB4j+nYFkvbYTl20muiYWGUP6Motu7nj80g5odTCtVtxO3YGiVSKhZkpy6aPwcry15cxeRXwlkqNO/LmzrkfKj9r+Xr0dHWJio5JEu+gCbOxyZtb2VhdvXUvt7wfsG7uJP43cTZWlrkY2qszAAdOnGP6krXcPrHrl+NPjbv3H+PUqMNvrWseK0dRqlDGmu1Z3WvVZgRez/yp0mfWb6lrgvC3fMpr56a2pWT+nOoO57dS91q1GcE930BqjN8p8pqaJZ9iVhAE4Tfq2Lwh+46dISFB8Tyj2/GzVKnoiFmO7Njkzc2JrSu4fmQ71w5vxe34Ge54P0zV8XcdOskzX3883DZy/ch2WjX6h8GT5qgs27bvCMrXb6fy5/Xb9yr3iYiKplLjTlRs2J7pS9YilUpVlvN59IwzF68zsFu7ZNtev32PdZ7PvWM2eXMrz+foYMeRsx5ERkWTkJDI3qOn8XvzLlWfgSAIgiAIQmYnhiILf8yF82fVHYKQBuTNbUHJ4kU4etaDZvVqsmXfEYb+13MZGxfPwAmz8H74FE1NTQLefeDeo6c4OhT/4eMfOePOHZ9HODVSDFOXSqVoaWmpLLtzheoG77fkNjfjxZXj5DTLQUhYOB0GjGbRum3K3tVPEhMl9B0zjTVzJn7z3F9OMPTlOJkOzerj/+YdNdv0wNDAgOqVyuN+7cefGRf+rmMLBqs7BEEQhN/q8LgW6g5BEH4L0bAVBOGP69SiIVvdjlKyeBFe+r3mn6qKmQ8nzFuOhZkpN45uR1tbm9a9hxMfH59sf21trSQ9pXHxCcrf5XI5o/p1o0ur5LPEfq1t3xG88AtQuc1t7YJkw5f19HTJqad4XidH9mx0btmI3YdPJWvYvgsM5qV/AI27DQIgPCISuVxOaHgEq2dPwMoyF34Bb5Xl/d+8U55LQ0ODsQN7MHZgDwD2HDlF0YL5U7wWQRAEQRAE4TPRsBVS5esZhNVJLpdTq3Yd7nl7E/Th20M33fbvZ/KUqchkMuRyOceOHCZfvnxER0czYOAgbt+5Q0JCAk0aN2bmjOnKnjUfHx8GDhrMh8APyGQyZkyfRjMxO/JPaVy7GkOnzGPuqk20a1JP2asZFh6BXeECaGtr8/TlK85duUFV57LJ9re1zsuZi9eRyWTExSdw8OR5CtnaAFC/pivLN+6iUe2q5MiejcRECQ+ePqeUXfLniFPbYxsYHIJJtqzo6GgTH5/AoVMXKGmXfNkn6zy5kjyH+/Uzwc3q1WDwpDn06tASbS0tNu89zKShilmR4+LjiYtPIHtWY4JDwpi3ajMTh/ROVZzCr+kzZwulC1vTs0lVtcbx+kMIw5bu4nlAIBoaGvRo5EqvptWSlVt14AKbjl1GU0MDTU1NBrepTfNqiv83Ry57MXPzUTQ1NUmUSKlfyYHxXRuhoaGBx90nTF5/iKiYODQ1Najn/HmbIAgZS//VpymV34LutUuqNY6A4AhGbHbnxbtQNDQ0+LeWAz1ql0pWLiQylkHrzuIXGE6iVEYZ21zM61YdA11tDlx/ypIjt0mUytAAOlUvoTyGTCZn0q7LnPf2QyKVUaFwbuZ2rY6uturRU0LGJhq2Qrq1bPkKbPLZcM/b+5tl7t69y/gJEzl7+hSWlpZERESgra2o9jNmzgLg3l1PJBIJDRs1YZ+bGy1btCAmJoamzVuyacN6XFwqIZFICA0N/SvXlRHp6enSrG5NVm/by70z+5Tvj+r/L92GTmDXoZPY5M1NVafkjVqApnVqcODEOUrVbolNXkscihUm9r+e3fZN6xMSGk7ttr3Q0NBAIpXSpWUjlQ3b1Lp624spi1ahpamFRCqlqlNZRvXtptxevn47Dm5YjKWF+XePU6ViWZrXq4Vj3TYAtGxQm9pVFL3W4RFR1GrbEy0tRa/0gK5tqV/D9ZdjF9IXuVxO+0mrGdzmH5pWKYNcLicwNEJl2aI2uTm1aBjZjAwICAzBtc8syhXPj7WFKVXLFKW+swOampokJEr453/zKVs0P/WcHchuZMj6Md3Ib2lGXEIijYcvYd/527SsUe4vX60gCJmBXC6n06JjDGpYlsYVCinyWniMyrLzD93ExjwbWwc3RCqT0XbuYXZ6PKBbrZJY5jBi1/DGWGTPQkRMPDXG7cQhX04qFLZkm8cDHvoHc35aW3S0NPnfurOsPunFgAY/t5ybkL6Jhm0mNW36DD4EBrJ08SIAoqKisMlfgCePHvDu3Tv69R9IdEw0cXFxdGjfntGjRiY7xqTJU4iKimbe3NmAoqF5584dNm5YD8C8+QvYu3cfEqmEXBa5WLVyOVZWPz8V/ZeePXvG7t172LhhHYcPH/lmuQULFzFk8GAsLS0ByJo1q3Kbt7cPHTu2R0NDAx0dHWrVqsm2bdtp2aIFO3buwqliBVxcKgGgra2Nufn3Gy/C9y2eMpLFU5LWo1J2RfE8uUdl+U8zHgPo6uqwa+Xcbx57QLd2DFAxadOvalKnOk3qfHu5q28tAzT+f72SvfflcOMvWZib4n3W7eeDFJTmbjtBYGgEcwco1j6Oio3Drt04PDdN4v3HcIYu2UV0XALxCYm0rlmeoe3qJDvGzM1HiYqLZ3ovxdJkaw66c/epPytHKJ4LX7LnDAc8PJFIZVjkyMqi/7Ulb85fX17C3fMJBrq6NK2imE1TQ0MDixzZVJb9cqmivDlzkNPEmDeBoVhbmGJsqK/cFpeQSEKiBE1NRY9syUKf86++rg72BfPy6l3wL8cuCMKfM//gTYLCY5jVuSoAUXEJlBq0gRvzOvMhLJoRGy8QHZ9IfKKUVi5F+V+j5DeqZrtdJzo+kSntKgOw7vQ9vHw/sKxXbQCWHbvDoRvPFHktuyHzu9Ugz39rx/6Kiw9eY6CrReMKhYD/8lr2LN8sHxWXgEwmJ0EiIyYhkdw5FDFUKGypLJPVUI+Clib4BUZQobAlD/yDcC1hpeyhrVkyH3MP3BAN20xKNGwzqS6dO+FYrgLz585BV1eXvfvcqFa1CmZmZujp6XHm9En09PSIjY2lUmVXatWsSdmyP54kduzcydNnz7h65RJaWlps3baNAQMHcfDA/mRlW7ZqzfMXL1Qe5/DBA8kawzKZjJ69+rBs6WJ0dHS+G8fDR4/Inz8/VavVICIygvr16jFp4gS0tLQoW9aRvXv30aRxY+Lj4zl48BARkYoekocPH6Gnr0/DRk0IeBOAg7098+bOEY1bQUjD2v1TEdc+M5neuzm6Otoc9LhL5ZKFMc1mhK6ONofmDERPV4fY+ARqDZxHNcdilCli88PH33vuFs8DAjm7ZDhaWprsOnOD4Uv3sHNq8qHjHSevxfdtkMrj7JraO1lj+In/O8yyG9F12nqevf6ATS5TpvVqTn5Ls+/GdOHOY8IiYyhV+POySjcevGDwop08DwikeyNX/qlQItl+H0LCOXTxLntnqP+xEkEQvq1t5WJUH7+TKe0ro6utxeEbz3ApnhdTYwN0tbVwG90UPR1tYhMk1Ju8hyolrClta/HDx9939TEv3odxclIrtDQ12XP5ESM3u7NtSMNkZbsuPobvhzCVx9k+tFGyxvCTNyGYGhvSfdkJXrwLxcosK1PaVyZfzuQ37YY1qUCXxcco3n8tsQkSmjsVoa5j8uWHnrz5yO3n71nwbw0ASue3YMuF+3St4YCejhYHrj/FPyjyh69fyFhEwzaTyps3L6VLleLwkSO0aN6cTZs2M3zYUABiY2Pp138AXvfuoampyevXAXjdu5eqhu2hQ4e5fceTsuUrAN+fqXbvnt2pin3e/AVUruxCqVKlePXq1XfLJiYm4ul5lxPHjyKXy2ncpBmr16ylb5/ejBwxnNFjxlHByRmT7CY4OVXk/IULiv0kiZw+fYZrVy5haWnJuPET6D9gILt37UxVrIIg/D15zE1wKGDF8WveNHEtw/ZT1xjUuhYAcfGJDF2yC5/nAWhqahAQFIrPi4BUNWyPXrnH3ad+VOmreIxBKpWhpaV61bytE5P3zn9PokSKu+djzi4dTrF8lmw8eplu09dzYXny0TKfPHj5hn7ztrBx3L8Y6Okq369gV4Cra8cRHBZJh0lruOrznEoOhZTbI6JjaT1uJYNa18pw6wwLQkZjaWqMvY05Jz1f0qh8IXZcfKjsjYxLkDBi0yXu+wWhqanBm4+R3PcLSlXD9sTtl3j5fqDGOMX3G6lMjpam6ufuNw6qn6rYE6UyPB74c2pSa4rmNWXzeR96LDvBmSltkpU9dOMZdlZm7B/dlJh4CR0WHGHnxYe0df28SsLbj5F0WHCEeV2rk9vECIDWlYvx+mMkjabtw1BPG1c7ay49VD1JpJDxiYZtJtalSyc2b95KqZIlef7iBXXrKobljRk3npw5LfC8fQttbW2at2hJXFxcsv21tbWTzlT7RRm5XM7YMaPp1rVLinGktsf20qXLePv4sHXbduWzr/kLFMLz9k1MTEySlLWxtqFp0yYYGBgA0LRpE27dugV9eqOvr8/CBfOUZWfNnkPxYsX+28+aalWrkCdPHgDat2tL/YYpz7orCIJ6ta/jxI5T17EvkJeXb4OoVc4OgMkbDmFuYsyl1aPR1tKi/aTVxP+3tvKXtLW0kEk/r8cU90UZOXKGt69Lx7rOKcaR2h5bK4scOBS0olg+xZC71jXLM2TJzm82nh/7vaP1uJUsG9YRJ/uCKs9jlt2Y2hVKcNDDU9mwjYyJo/noZdRzdqB/ixopXocgCOrX1rU4Oy8+pIS1Ob4fwqlZMh8A0/ZcxTybIRemt0NbS5POi44Sn5h8rXVtLU2kMpnydVyiRPm7HDlDmpSnfRW7FONIbY+tlZmiUV40rykALSsVZfjGC0hlMrQ0k+a1dWfusaRHTbQ0NTE20KVR+YJcfhigbNi+C42i2awDDG1cXjm0GRTDm4c3rcDwpoqOlP3XnlDE8tcfDxHSJ9GwzcSaNmnCoP8NYdacuXRo3+7zTLWhoZSws0NbW5snT55w5uw5qlVLPjNngQK2nD59RjFTbVwc+/cfoEiRwgA0bNiAJUuX0aRxI3LkyEFiYiL379+ndOnSyY6T2h7bI4cPKn9/9eoV5So44fvimcqybdu25siRo3Tp3Am5XM7Zs2epXFnxjMmniaQMDQ3x9fVl1eo1HNyvmNioVcsWbNi4kYiICLJmzcrJU6cp6WCfqjgFQfj7GlYqycjle1i46zSta5ZXNgrDImMons8SbS0tnr3+gPudx1QplXyG6/yWZpy7/VCR1xIkHL7kRSErRe9HPScHVh64QP1KJcmRNQuJEikPfd8meXb1k9T22NYqZ8fEtQd5GxyGpVl2zt56QPF8liobtU/83tFyzHIWDW5HdcdiSbY9e/2BAnnM0dTUJDImjlPX79O2tuILX1SsolFbo2xxRnSol6r4BEFQn/plCzBmqweLj9ymlUtRZaMwPCaOYlamaGtp8uxtKO73/alcPHk+ypczGxe8/ZDJ5MQlSjh66zkFcys6AuqUsWX1KS/qORbAxEifRImURwEfcciXM9lxUttjW8MhH1N2XeFdSBS5cxhx3tuPYlamyRq1ADbmWTl77xVlCuQiUSLlnLcfTkUUnQvvQ6NpNnM/Axs40sY16Tr3cQkS4hOlZMuix8fIWJYcuc2oFk6pilPIOETDNhPT09OjRYvmrFy5iof3P88sPHbMaDp16cqOnTvJZ2ND9WpVVe7fvFkz3Nz2Y2fvQD6bfJQsVZK42FgAOnbowMePIVSrUVMxU61EQreuXVU2bH+30o5lOXbkMJaWlrRp3Zrbtz0p4VASLS0tKleurFyq6OXLl7Ru2w5tbW20tbVZMH8upUqVAsDa2ppRI0fg7FIZbW1t8ljmYfWqFX88dkEQfo2erg5NXMuw7vBFbm2YoHx/ePu69Jq9iT3nbmKdyxRXFY1agEaVS3Pw4l3K/zsVawtT7AvkVfbatqlVgZCIaBoMXfjfDNwyOtZ1VtmwTa0sBnrMH9iGVmNXIJfLyWZkwLoxXZXbXXrNYO/0vuQ2y86I5XsJj45l0rqDTFp3EIBJ3ZtQs1xxDnp4svf8LXS0tZDKZDSuXJrO9RST4K3cf4E7j18RE5fA0Sv3AGjsWprh7ev+cvyCIPw5ejraNCpfiA1nvbk2p6Py/SGNy9N31Wn2XXmMtXlWlY1agIblC3Lk1jOcR27F2iwrJWzMiUtQ9Nq2cilGSFQcjafvU+a19lXsVDZsUyuLvg5zulSj7bxDyFFM/LS67+dJ+6qO2c7O4Y3JbWLEjI5VGLbxPC6jtiGTySlfODc9/1EsVTTL7RpvPkay5pQXa055AdDzn1K0q2JHRGw8jaa5oaWpgVQmp1edUtQpk/zZXCFz0JDL5fKUiwl/iqenJ46Ojty+eYMyZf58o09IXzw971K2fAXu3LlDmTJlfvFYirq2ccFUihbM/5siFDKKx8996Tpk/G+tax4rR4lnOIVkvJ75U6XPrN9S1wThb/mU185NbUvJ/L/e6BMylnu+gdQYv1PkNTUTPbaCkEmYmZlhaGhI1yHj1R2KkEYZGhpiZvb9WXgFQRAEQRDSItGwFYRMwtramkePHhEcLNatFFQzMzPD2lr0sAqCIAiCkP6Ihq0gZCLW1tai4SIIgiAIgiBkOKoX4BMEQRAEQRAEQRCEdEI0bAVBEARBEARBEIR0TQxFTiMePX6k7hCENEjUCyE9e+r/Xt0hCGmQqBdCevb0bYi6QxDSIFEv0gbRsFWzTzPVduzURd2hCGmUmKlWSG8Uec2AHjM3qTsUIY0yNDQQeU1IV8zMzDA0MKDPylPqDkVIowwNRF5TN7GObRrg7++fLmeqlUgkdO3alZiYGLZv346+vr66Q0oiLi6Odu3aYWRkxIYNG9DWTp/3ccRMtUJ6JPLanyHymiCoj8hrf4bIa8Lvkj5rTgaTXmeqnTlzJo8fP+bq1atUqFBB3eGotGvXLipVqsT58+cZNWqUusMRhExD5LU/R+Q1QVAPkdf+HJHXhN9B9NgKP+X+/fs4OjoyePBgZs2ape5wvmvkyJEsWrQIT09P7Ozs1B2OIAhplMhrgiBkNCKvCZmJaNgKqZaYmIiTkxOxsbHcuXMnzQ1p+VpcXBxlypTB0NCQa9euoaOjo+6QBEFIY0ReEwQhoxF5TchsxHI/QqrNnj0bLy8vNm3alOaTJIC+vj6bN2/Gy8uLOXPmqDscQRDSIJHXBEHIaEReEzIb0WMrpMq9e/coV64cw4cPZ/r06eoOJ1XGjBnDvHnzuH37Ng4ODuoORxCENELkNUEQMhqR14TMSDRshR+WmJhI+fLlkUgk3L59Gz09PXWHlCrx8fE4Ojqiq6vLjRs3xBAXQRBEXhMEIcMReU3IrMRQZOGHzZgxAx8fHzZv3pzukiSAnp4emzdvxtvbm5kzZ6o7HEEQ0gCR1wRByGhEXhMyK9GwFX7I3bt3mTZtGmPHjqVMmTLqDuenOTo6MmbMGKZOnYqXl5e6wxEEQY1EXhMEIaMReU3IzMRQZCFFCQkJlC1bFk1NTW7evImurq66Q/olCQkJlCtXDoBbt26l++sRBCH1RF4TBCGjEXlNyOxEj62QoqlTp/Lo0SM2bdqUIZKKrq4umzdv5uHDh0ybNk3d4QiCoAYirwmCkNGIvCZkdqJhK3zXnTt3mDlzJuPHj6dUqVLqDue3KVWqFOPGjWPGjBl4enqqOxxBEP4ikdcEQchoRF4TBDEUWfiOjD4rXXqfNVAQhNQTeU0QhIxG5DVBUBA9tsI3TZ48madPn7J58+YMlyQBdHR02Lx5M0+ePGHKlCnqDkcQhL9A5DVBEDIakdcEQUE0bAWVbt68yezZs5k4cSL29vbqDuePcXBwYMKECcyaNYtbt26pOxxBEP4gkdcEQchoRF4ThM/EUGQhmbi4OMqUKYOhoSHXr19HW1tb3SH9UYmJiTg5ORETE4Onpyf6+vrqDkkQhN9M5DWR1wQhoxF5TeQ1ISnRYyskM3HiRF68eMHmzZszfJIExRCXTZs28eLFCyZNmqTucARB+ANEXhMEIaMReU0QkhINWyGJa9euMW/ePKZMmYKdnZ26w/lrSpQoweTJk5k7dy7Xr19XdziCIPxGIq+JvCYIGY3IayKvCcmJociCUmxsLKVKlcLExITLly9nirt/X5JIJFSqVInw8HDu3r2LgYGBukMSBOEXibwm8pogZDQir4m8JqgmemwFpfHjx+Pn58emTZsyXZIE0NbWZtOmTbx69YoJEyaoOxxBEH4DkddEXhOEjEbkNZHXBNVEw1YA4MqVKyxYsIBp06ZRtGhRdYejNsWKFWPq1KnMnz+fq1evqjscQRB+gchrCiKvCULGIfKagshrgipiKLJATEwMJUuWxNzcnEuXLqGlpaXukNRKKpXi4uLCx48f8fLywtDQUN0hCYKQSiKvJSXymiCkfyKvJSXymvA10WMrMGbMGAICAti0aVOmT5IAWlpabNq0idevXzN27Fh1hyMIwk8QeS0pkdcEIf0TeS0pkdeEr4mGbSZ38eJFlixZwowZMyhcuLC6w0kzihQpwvTp01m8eDGXLl1SdziCIKSCyGuqibwmCOmXyGuqibwmfEkMRc7EoqOjcXBwwNLSEnd3d3H37ytSqZQqVarw/v177t27R5YsWdQdkiAIKRB57ftEXhOE9Efkte8TeU34RPTYZmKjRo3i3bt3bNy4USRJFbS0tNi4cSNv375l9OjR6g5HEIQfIPLa94m8Jgjpj8hr3yfymvCJaNhmUhcuXGDZsmXMnj2bggULqjucNKtQoULMmjWLpUuX4u7uru5wBEH4DpHXfozIa4KQfoi89mNEXhNADEXOlKKiorC3t8fGxobz58+jqSnub3yPTCajWrVq+Pv74+Pjg5GRkbpDEgThKyKvpY7Ia4KQ9om8ljoirwnif0gmNGLECIKCgtiwYYNIkj9AU1OTDRs2EBgYyMiRI9UdjiAIKoi8ljoirwlC2ifyWuqIvCaI/yWZzNmzZ1m5ciVz5szB1tZW3eGkGwUKFGDOnDmsWLGCc+fOqTscQRC+IPLazxF5TRDSLpHXfo7Ia5mbGIqciURERGBvb0/BggU5c+aMuPuXSjKZjJo1a/LixQt8fHzImjWrukMShExP5LVfI/KaIKQ9Iq/9GpHXMi/xPyUTGTZsGCEhIaxfv14kyZ/waYhLSEgIw4cPV3c4giAg8tqvEnlNENIekdd+jchrmZf435JJnD59mrVr1zJv3jzy5cun7nDSrXz58jF37lzWrFnD6dOn1R2OIGRqIq/9HiKvCULaIfLa7yHyWuYkhiJnAuHh4ZQoUYKiRYty+vRpNDQ01B1SuiaXy6lduzZPnjzBx8eHbNmyqTskQch0RF77vUReEwT1E3nt9xJ5LfMRPbaZwJAhQwgPD2f9+vUiSf4GGhoarFu3jrCwMIYOHarucAQhUxJ57fcSeU0Q1E/ktd9L5LXMRzRsM7jjx4+zYcMGFi5ciLW1tbrDyTBsbGxYsGAB69ev58SJE+oORxAyFZHX/gyR1wRBfURe+zNEXstcxFDkDCw0NJQSJUrg4ODA8ePHxd2/30wul1O3bl18fHx48OAB2bNnV3dIgpDhibz2Z4m8Jgh/n8hrf5bIa5mH6LHNwAYPHkx0dDRr164VSfIP0NDQYO3atURFRTF48GB1hyMImYLIa3+WyGuC8PeJvPZnibyWeYiGbQZ15MgRNm/ezKJFi8ibN6+6w8mwrKysWLRoEZs2beLo0aPqDkcQMjSR1/4OkdcE4e8Ree3vEHktcxBDkTOgkJAQ7OzscHR05MiRI+Lu3x8ml8tp0KABd+/e5f79++TIkUPdIQlChiPy2t8l8pog/Hkir/1dIq9lfKLHNgMaOHAgcXFxrFmzRiTJv0BDQ4M1a9YQGxvLoEGD1B2OIGRIIq/9XSKvCcKfJ/La3yXyWsYnGrYZzMGDB9m+fTtLlizB0tJS3eFkGnny5GHx4sVs27aNQ4cOqTscQchQRF5TD5HXBOHPEXlNPURey9jEUOQMJDg4GDs7OypWrMjBgwfF3b+/TC6X07hxY27evMmDBw8wNTVVd0iCkO6JvKZeIq8Jwu8n8pp6ibyWcYke2wxkwIABSCQSVq9eLZKkGmhoaLB69WoSEhIYMGCAusMRhAxB5DX1EnlNEH4/kdfUS+S1jEs0bDOIffv2sWvXLpYtW0auXLnUHU6mlTt3bpYtW8bOnTtxc3NTdziCkK6JvJY2iLwmCL+PyGtpg8hrGZMYipwBBAUFYWdnh4uLC25ubuLun5rJ5XKaNWvGlStXePDgAebm5uoOSRDSHZHX0haR1wTh14m8lraIvJbxiB7bDKBfv37IZDJWrlwpkmQaoKGhwapVq5DJZPTv31/d4QhCuiTyWtoi8pog/DqR19IWkdcyHtGwTef27NnD3r17WbFiBRYWFuoOR/iPhYUFy5cvZ8+ePezZs0fd4QhCuiLyWtok8pog/DyR19ImkdcyFjEUOR378OEDdnZ2VK9eXfxnTIPkcjmtWrXiwoULPHjwQPwhE4QfIPJa2ibymiCknshraZvIaxmHaNimU3K5nObNm3P58mXxXEAa9ul5msqVK7Nv3z4x9EgQvkPktfRB5DVB+HEir6UPIq9lDGIocjq1a9cuDhw4wMqVK0WSTMPMzc1ZsWIF+/fvZ/fu3eoORxDSNJHX0geR1wThx4m8lj6IvJYxiB7bdOjdu3fY2dnxzz//sHPnTnWHI/yANm3acObMGR48eCCm9xcEFUReS39EXhOE7xN5Lf0ReS19Ew3bdEYul9O4cWNu3rzJgwcPMDU1VXdIwg8IDg7Gzs4OJycnDhw4IIa4CMIXRF5Ln0ReE4RvE3ktfRJ5LX0TQ5HTgYSEBEqVKsWtW7fYtm0bR44cYfXq1SJJpiNmZmasWrWKQ4cOsX37dm7dukWpUqVISEhQd2iCoBYir6V/Iq8JQlIir6V/Iq+lb6Jhmw68evWKe/fu4evry8CBA2nfvj2NGzdWd1hCKjVt2pR27doxcOBAXr58yb179/Dz81N3WIKgFiKvZQwirwnCZyKvZQwir6VfomGbDrx69QqAVatWoa+vz4ABA9i1a5d6gxJSbdeuXQwYMAA9PT1Wr14NfP63FYTMRuS1jEHkNUH4TOS1jEHktfRLNGzTAV9fXzQ0NLhw4QLlypXDxcWFWbNmIR6PTj/kcjmzZs2icuXKlC1blgsXLqChoYGvr6+6QxMEtRB5Lf0TeU0QkhJ5Lf0TeS19Ew3bdMDb2xu5XI6uri7u7u5MmzaN69eviwfa0xENDQ2uX7/OtGnT8PDwQFdXF7lcjre3t7pDEwS1EHkt/RN5TRCSEnkt/RN5LX0TDdt04PLlywC0bduWZ8+eMXLkSPT19dUclZBa+vr6jBw5kmfPntGmTRsALl26pOaoBEE9RF7LGEReE4TPRF7LGEReS7/Ecj/pwP379wkLC8PFxUXdoQi/0eXLl8mePTslSpRQdyiC8NeJvJYxibwmZGYir2VMIq+lH6JhKwiCIAiCIAiCIKRrYiiyIAiCIAiCIAiCkK5p/60T+fv7Exwc/LdOJ6iRmZkZ1tbWf/Qcoj4JKflT9VDUPeFv5DgQdU0QeUxQn99V90RdE1LyW/Oc/C/w8/OTGxroywHxkwl+DA305X5+fn+2Phkaqv06xU/a/jE0NPzt9VBR9wzUfm3iR911y+CP5jhR18TPn6xrom6Jnx/5+R11T/H9X9Q18fP9H0OD35fn/kqPbXBwMDGxcSxtXpBCZgZ/45SCmjwLjmWA23OCg4P/WI9GcHAwMTExbNu2jWLFiv2Rcwjp26NHj+jQocNvr4eKuhfLugl9KJLP8rcdV0g/nrx6S/cpK/9ojoPPdW310NYUyZvzj51HSLueBATSa/7uP5bHVg9uSREr8992XCHjePI6iF4L9/5y3VN8/49lZY9qFMqd/fcFKGQYz96F0Wfthd+W5/7aUGSAQmYG2Fsa/c1TChlYsWLFKFOmjLrDEDKhIvksKVUkv7rDEDKBInlzUrJgHnWHIWRARazMKVlA1C3hzyuUOzslbczUHYaQCYjJowRBEARBEARBEIR0TTRsBUEQBEEQBEEQhHRNNGwFQRAEQRAEQRCEdE00bAVBEARBEARBEIR0TTRsf9Dr0DhKzL6l7jB+q513PlBp8V2cF3ky4vALJFK5ynKxCVL67n1KpcWeuCy5y/GHH/9ypBnPq1evMDPLWBMprF+/nkKFClGgQAF69uyJRCJRWS4mJoa2bdtSsGBBChcuzP79+5XbPn78SJMmTXBwcKBYsWJ07tyZ2NhY5XYPDw/KlSuHnZ0dRYsW5dq1a3/8ujISv3dB2NTrre4wfqvNR9wp1XooDi2HMGD2eiQSqcpyk1btxrHdCJw6j6Fq9wl43HmQrMxTv7fkrN6NMct2/OGoMz7/DyEUaDdF3WH8VltP38Kx51xK95jD/5btRyJVXde2nbmFc/+FmDUew5qjV5NsG7n6MJUHLlb+5Go2jtWHr/yN8DMU/w+hFOgwXd1h/FZbz9zGsfcCSveaz/+WH/hm/YqJT+Dfebsp02s+Zfss4Mi1pLns8NX7OA9cglP/xVTstwj/D6EA7L/kjev/luE0YDHOA5ew5qj4+/kj/IMjKTJoi7rD+K22XXpM+dG7KTdqF0M2X0IilaksN83tFs7j9lJ1ohu1px3k0qM3ym2n7/lTc8oB8vRaz8Td15Psd8zTlyoT3ag6yQ2X8XuZvv8WcrnqNsbv9ldnRU5rpDI5Wpoaf/28Eqkcba2k501NLKr2Ty3/0DjmXnjNqd4OmGXRoevOJ+z0DKRjOYtkZVddfYuutiZXBpXBPzSORuvu45w/G9kNMnX1SUYqlaKlpfXXzyuRSNDWTvpvkZpYVO2fWr6+vowfP567d++SM2dOGjduzPr16+nVq1eysvPmzUNPT4/nz5/j6+uLk5MT1apVw8TEhGnTpmFra8vBgweRSqXUr1+fjRs30rdvX96+fUvnzp05ceIExYoVIy4ujri4uF+KOyOQSmVoaf39e5QSiRRt7aR1LDWxqNo/tV69DWTa2n1c2TQdc5OstB65gC1H3enWpEayss4lizKya1MM9HTxeeZHvQHTeXZoGfp6usrYB83dQANXx1+KKSNTW12TStHW+oW6pmL/1PJ7H8KM7afxWDQQ8+xGtJu2ha2nb9O1boVkZUsWzMPGke1ZuPdCsm2zezVS/v4hNJJS3WfTpLLDL8WWUWTq+vUhhBnbz+KxqD/m2bLQbvo2tp65Q9c65ZOVXXbgMno6WniuHorfhxBqj1hNZXtbshsZ4P3yLdO3n+XglG7kNs1KREwc2v9dh6VZNvZO7IyFiTHh0XFUG7IchwKWVCxm80uxp0dSmQwtTXXUNZny3+NnYlG1f2r5BUUw68Adzk9sinlWAzouPc32S0/oXDX58pkVC+diaMPSGOhqc//1R5rMOcr9Be3R19GmgEVWFnV15fCtl8QnJr0JU6VYHuqWyoempgYJEikNZh3B0TYndUr9+bqm9pZJbKKUwQde8DgwBm1NDcyNdNjZqTgAs8/5c/h+MLmMdSmZx4hrryI40cuBq77hTD3tx4leij8Gjz/E0HnHY24MLoNEKqfT9keExkqIS5RhlysLcxvZYqCrxe67gRy+H4xpFh2eBcUytV5+tDU1mH7Gj6h4KTI5DHTNQ/3ipgBsuvGetdffktNIl4r5sqZ4LVHxUiaffMXDD9HES+Q4WhkzrV4+dLQ0abHxAWWtjPEMiASgeUnzZLFExkmYde41UpmcbPpazGxgS+Gchlz1DWfiyVdUtMmK15soejpb0tDO9Jc+92MPPlKnaA7MjRRf6jqWtWDllbcqG7aH739kYdOCAFib6FPBJiunHofQunTaW1sxNjaWLl264OPjg46ODhYWFpw+fRqAcePGsWvXLvLkyUO5cuVwd3fn9u3buLu7M2zYMG7fvg3A/fv3adCgAa9evUIikVC/fn0+fvxIbGwspUqVYu3atRgaGrJp0yZ27dpFzpw5efjwIUuXLkVbW5uRI0cSERGBTCZj7NixNG/eHIDly5ezcOFCcufOTZUqVVK8lsjISIYMGcK9e/eIi4vD2dmZpUuXoqOjQ9WqValUqRLXryvuknXs2DFZLOHh4YwZMwaJRIKJiQkrV66kePHiuLu787///Q9XV1du3brFkCFDaNmy5S997vv27aNp06ZYWCjqT+/evZkzZ47Khu3u3bvZtGkTAPnz58fV1ZVDhw7RpUsX5XXLZDISEhKIiYkhb968AKxYsYIOHToo1y7W19dHX1//l+L+XWLjE+g9bTUPXr5GR1ubnCZZObRoFABT1uzF7ew1cpvnoEwxWy57PuLihqlc8nzI2GU7ubhhKgAPX76m5fD5PHBbhEQipcXweYSERxEbn4BDIRuWjvoXQ309th27iNu5a5ibZOOx7xvmDumEtpYmE1bsJjI6FplcxvBOjWlcTfGFaI3bGZbvPoGFaXZcSqe87nNkdCyjl27n/nN/4hISqVCiEPOGdEJHW5u6/adR0b4wtx48B6DNPy7JYomIimHy6j1IpDKyG2dh0bCuFM2fh0ueDxm5eBuVShXlzqOXDGhTl6bVkzcKUuPghZs0rFKWnDmyAfBvkxos2nFUZcO2tlNJ5e92BayQSmV8DI8kT05FLl2w7Qh1nEsTHRtHVGz8L8X1J8XGJ9Jv0V4e+r1HW0uTnNmN2T/1XwCmbT3F/kve5M6RlTKF8nL5/ksuLBzAZZ8XjN9wnAsLBwDw0O89baZswnv9KCRSKa0nbyIkMoa4+ERK2FqyuH8zDPV12XH2NvsveWOWLQtPXgcyu1cjtDU1mbT5BJEx8chkcoa2qkajSvYArD12jZWHLmNhYkylEikvhxUZE8+49Ue57/uOuEQJ5YvaMKdXI3S0tWgwejUViuXj9hN/AFpXK50slojoOKZuOYVEJiN7FgPm921CUWsLLvu8YPTaozjb5efuswD6NnGhicuvNR4PXfWhfkU7cpoYA9C1bgWWuHmobNja51esca2p8f0b0LvOe1K9dGEs/jtmWhAbn0i/xW6K+qWtRc7sRuyf3BWAadvOKOqX6X/1y+clFxb047LPS8ZvPMGFBf0AeOj3gTbTtuC9driifk3ZoqhfCRJK5M/N4v5NMNTTZcc5z6T/pj0boq2lyaTNp4iMiUMmlzO0ZVUaOZcAYO2x66w8fAWLHMZUsvvB+rXhOPdfvSMuQUL5otbM6dlQUb/GrqNCUWtuP30NQOuqpZPFEhETx9StpxW5zMiA+b0bU9Q6J5d9XjJ6/TGci+fn7vMA+jauRJP//g/8rENXHlC/YnFyZlcsidm1TnmWHLiksmF74LIPywcpvlfYWOTA2S4fx288ol2NMiw7eJl+jSuR21TxnTWr4ee/kV82YLNl0adQXnP8PoSqrWEbmyBhwAYPHgWEoKOliXlWA/YOrQfAjP23OHDrJbmzG1I6nzlXnrzj7ISmXHn8lol7bnB2QlMAHgWE0H7JKTzntEUildF28UlCo+KJS5RQwsqUBZ1dMdTTZuflpxy49QJzY32evA1jZjtntLU0mbLvBpGxicjkcgbXL03Dsop6tf78A1aduY9FNgOcC+dO8VqiYhMYv/s6DwJCiE+UUq5ATma2q4SOtiaN5xylfEEL7rwIBKClU6FksUTEJjB9/y3F939DXeZ2dKGIpQlXHr9l7K5rOBXOjZdvEL1r29O4nO0vfe5H7vhSr0w+cmYzBKBz1WIsO+mtsmFb095K+XvxPDmQyuSERMZhmcOIArmyA3Dc81Wyhq2Rga7y9/hEKQmJUv5WP6LaG7buz8MIj5Pg3r8UAKExiQCcfhLCmSehnO5dEn0dTf7d9eSHjqelCctaFCKHoQ5yuZzRR33ZfOsDvSsp/tDc9I/kVG8HbE0NCI+V0GrzQ7a0L4qFsS4h0YnUWe1NOStjgqMTWXIpgFO9HTA30mX00ZcpnnvKqVdUyJeVuY0LIJfLGX74JRtvvKens+LcD95Hs71jMXS0NNl9NzBJLMFRiVRd7sXeLsUpZpGF/d5B9N77lPP9FJ/Low8xTK+Xn6n1VCfzRut8iE1UPZTgZC+HZL3Bb8ITyJtdT/naKrseb8JVf5l7Ex5P3mxJy779Rll1O3nyJKGhoTx8+BCAkJAQAI4cOcLhw4fx8vLCwMCApk2b/tDxtLS02LFjB6ampsjlcvr27cuKFSsYNmwYAJcvX+bu3bsUKlSIsLAwqlevzrFjx8idOzfBwcE4OjpSqVIlAgMDmT59Onfv3sXCwoK+ffumeO6hQ4fi6urK2rVrkcvl9OjRg2XLljF48GAAvLy8OHnyJDo6OmzatClJLIGBgRQvXpwLFy5gb2/P9u3badWqFffv3wfA29ubZcuWsWTJEpXndnZ2JiYmRuW2O3fuJOsN9vf3x8bm8x/HfPny4e/vr3L/75UdP348zZs3J1euXMTGxtKuXTsaNVL0cDx8+JD8+fNTs2ZNgoODqVy5MrNnz8bQ0DDFz/JPO3P9HmGR0dzePgeAkIgoAI5f9uT4ZU+ubJqBgZ4ubUcv/KHjaWlpsn5SX0yzGSOXyxk8bxNr959lULv6AFzzfsrljdMpaJWLsMhoGgycwb65w8hlZkJwWCSu3cZR0aEwQaERzN18iCubppMzRzYGz9uY4rnHLNtBpVJFWTaqO3K5nP6z1rF63xn6t6kLgPczPw4sGIGOtjbbjl1MEktQaDhl24/k+NKx2BWwYvepK3Qav5Sb22YBcP/Fa+YN6czcwZ1UnrtGr8nExqnOLZc2TEvWgxLw4SNWuT4P6bfJbU7Ah5Qfldh67CL581goG7X3n/tz9oY3x5eOZfamAynur07nPJ8QFhXL9RVDAAiNVPw/PXHzISduPuLi4oEY6OrQYcbWHzqelqYma4e1IUfWLMjlcoauPMj649cZ0MwVgOsPX+GxeCAFLM0Ij4ql0di17J7YhVw5svIxPJqqg5dSoXg+gsKiWLDnPB6LBpLTxJihKw6meO7xG47hZJefxQOaI5fLGbTUjbVHr9K3SWUAfHzfsm9yN3S0tdhx9naSWILCoqjYdwGHZ/TELl8u9rjfpevsHVxbrsiPD169Z06vxkl6SL9Ue/gKYuMTVW5zXzggeV0LCsMqp4nytXVOEwKCwlO8xu/ZfuY2k7vV/aVj/G7nPJ8SFh3L9eX/A76sX48U9WtRf0X9mrn9h46npanJ2qGtyZHVUFG/Vh1m/fEbDGiq+De+/sgPj4X9Ptev8evZPb6Ton5FRFN1yAoqFLMhKDyaBXvd8VjUn5zZjRi66lCK5x6/8ThOdvlY3L+pon4tO8DaY9fp27gSAD6+79g3sYuifp3zTBJLUFgUFfsv5vC0f/+rX150nbuTa0sHAfDg1Qfm9GzI7J4NVJ679ojVxCYkqNzmPr9f8voVHIZVzuzK14r6FaZy/4CgMKzMP5e1+qLsk9eB5LPIQf0xa4mMieefckUY1aZGsvM99g/k1hN/FvVt8o1P7887f/814dHxXJmmuLEeGqUYgXXKy49T9/y5MLEZBrpadF525oeOp6Wpweqe1clhpI9cLmfEtitsvPCQfnUUN7VuPHvP+YnNKGCRjfCYeJrOPcaOQXXIld2Qj5Fx1JxygPKFLAiOiGXhUS/OT2xKzmyGjNh6OcVzT9hzA6fCuVnYxVXxN3vzJdaff0Dv2oobHvf9P7J7cF10tDXZeflpkliCImJxGb+XA8MbUDxvDvZdf073lee4NLUFAA8DQpjVvhIz2zmrPHe9GYeISVD96Ne5CU2T9QYHfIzCytRI+drazJg3H6NSvMYdV56QzzwrljmMUiwLcPP5B4ZvvcyL9+F0rVaMWg7WP7Tfr1J7w7a4RRaeB8cy+uhLKubLSo1Cij8cV30jaGhnShY9xRfoNqVzsvhiQIrHk8th7bV3nHsailQmJyJeSkWbz72t5a2NsTU1AOD260j8Q+PosO3R5/2BFx9jefg+hhqFTJQ9mu0dLTjy4PtfmE4+DsEzIIrVV98CEJcoQ+eLIcMtSpqj80Vy+TIWzzeR2OXKQjGLLAA0czBn7DFfPkQqEqOtqT7lbb7da3y4e+rvFn7Z1E1p5PuXN57/1jj5n1GyZEkeP35M3759qVKlCvXqKe7+XbhwgdatW2NkpPgP2a1bN6ZNm5bi8eRyOQsXLuTYsWNIJBLCw8NxdXVVbndxcaFQoUIAXL16lZcvX1K3bt0k+z958oR79+5Rv359ZY9mz5492bNnz3fPffDgQa5fv878+fMBRW+0ru7nu2AdO3ZER0dHZSw3btygVKlS2Nsr6kX79u3p168f7969A6Bw4cK4uLh889xXr1795rZv0fiikqRUR75Vdu/evTg4OHD27FliYmJo1KgRmzZtokuXLiQmJuLu7s7Zs2cxNjamW7duTJo0iTlz5qQ61t/NvqANT/3fMXjeRlxKFVP2Dl70fEjzGhUx+u+ueccGVZi7KeUvZHK5nOW7T3LqqhcSqZSI6FgqlSyi3O7kUJiCVrkAuOHzjFdvg2g2dO7n/YFn/u/wee7PP86llD2aXRtVZ//5G98999GLd7j14DlLdx4HFL3Rujqf/1S0reOCzhdD17+M5daDFzgUssGugOIub+t/KjF0wWbeByue8SpolQvnL67ja+dWT0zxs/lakjz2A7nJ/fZ9Zm08wKGFIwFIlEgYMHs9K8f0VMswyNQqkT83TwMCGbriIJXs81PLsSgAl71f0tTFASMDxU3IDjXLMm/P+RSPJ5fLWXHoMqdvP0YilRERHYfzF72tFYvno4Cl4ubBjcd+vPoQQstJG5Ps/zwgiPu+76hdtqiyR7NLnfIcvOz93XMfu/6AW0/8WX7wEgBxCYlJ6lbramXQ+WK4+pex3H7qj72tJXb5FHWvVdXSDF91iPchEQAUtDTDyS7fN899em7KNxe/lvTvYKp3T+L6w1dExsZR+79/v7RCUb+CGLrqEJXs8lPLUfH/9bKPL01d7L+oX47M25N8qPXX5HI5Kw5f4fTtJ0hk/9WvL/5dKhaz+aJ++fPqQygtp2xOsv/zN8H/1a8iyh7NLrXLcfDy/e+e+9iNR9x68prlhxQNk7h4CTo6n+tT66qlk9avL2K5/fQ19vlzf1G/SjF8zZEv6pcpTsU/X8fXTs9JPlopJRpfZDN5Ct/KvvU3NFEqw+vFG/ZN7IIcOe2mbWPjqZt0r1dRWeZNcDjtZ2xjQZ/Gyp5ddbCzMuXZ+zBGbL2MU5Hc1Pqvd/Dy47c0LmeLkb7i+007lyIsOHo3xePJ5bDqtA9nvF8jlcmIiE3A6Yve1gqFclHAQvG38ObzD/gFRdJm0YnP+yPn+ftwHrz+SC0HK2WPZscqxTh0+/udWyfuvuLOy0BWnFbkvLgEKbpf/D1p5VQIHe3Pr7+MxfNlICWsTCmeNwcALSoWZOS2K7wPU9xUKmCRjYqFcn3z3MfHNE7xs/laar/TX3z4hnmHPdn3X4/6jyhf0AKPyc0Jjoyly/IzXHv6HuciKfd+/yq1N2xtcujj3q8UV3zDufQynOmn/Tjdp+R3/2hoa2oglX0uEC/53FN5wCeY668i2N+tBEZ6Wqy//o7rfhHK7Ya6n5OYHChmYcj+biWSnePBO9W9Vd8jl8P6NkWwyaF6eOSX5072Wp70C9onn97Lovv95zdS22ObJ5sur8M+94wEhMWT54te2aRl9XgdFo9pFkWSCQhPoHqh7N+NR11sbW15+PAh58+f5+zZs4wYMQIvL6/v/sfV1tZG+sUkDV8+t7ljxw48PDy4ePEixsbGLFmyhIsXLyq3f2oogyI5ODg4JNn+iZeXV6qvRS6Xc/DgQWxtVQ87+fLcqmLRUDEM7tN7X+/7tdT22FpbW/Pq1Svlaz8/P6ytVd+d+1TW3NxcWfbTDYilS5eyYcMGtLS0MDY2pkWLFly4cIEuXbpgY2ND6dKlMTFR3Pxq06ZNmmjUAuTPk5Nb22bjcecB7rcfMH7FTq5smvHdO0ZaWlpIZZ//z8Z90Xu058xVLt99xMnl4zDOYsDKvae44vVYuT2LweccI0eOXQErTq0Yn+wc3s/8Un0tcuTsnDmY/HlUP2rw5bmTxSKXJ/ly9omy3hl8f+h4ants81qY4v8+WPna/30weS2+/ZjG5buP6DNjLXtmD6GwjWIkzfvgMF6++UDzYYobA+FRMcjlcsIio1kxusd341WHfLlMub5iCBe9X+Dh9ZyJG09wacnA7+Y4Lc2kdS3+i7v7ez3uceW+L8dm9sbYUI/Vh69w9YGvcnsW/c830+RysMuXi+Ozkk9A5uP7NtXXIpfD9rEdyZdL9b/Zl+dWFYuqkb6f6loWA93kG7+Q2h7bvObZlZPwALwOCiWvebbvnuN7tp25RZvqjmnuZkq+XDm4vmwQF71f4nHvBRM3n+LSov7fr19amkm/kyV8/lz3XvTmygNfjs3ooahfR65y9cEr5fYk/6bIsbPJxfGZyf/f+fi+S/W1yOVyto/pQL5cOVRu/7qOpKp+6adQv1LZY5vXLDv+gV/Ur8Aw8n7RK5ukrLmirFk2RUdIQFCY8gaElXl2GjoVx0BP8X2tgVNxPJ997hR69zGCphM2MKxV1V8ePv2r8pln5fLUllx+/BaPh2+YsvcmFyY1+26TPlld+2KyQLcbz7n69B1HRjbAyECXNWfvc+3pe+X2LHqfOwLkciieNwdHRjVMdo77/qmfIFUuh839a5HPXPWNgiz6SZtbSWKBb3xfS15WldT22OY1NcI/+HMP7euPUeQx/fZ3witP3jFwowfbBv5Dwf+GH6eGmbEBtRysOXz75V9p2Ko9o74Nj0dDA2oXzcH42jbI/3vPxTYbRx58JCZBilQmZ49XoHIfKxNFQyvkv2HLbveClNvCYyWYGGpjpKdFVLyUPV5BX59SqayVMb4f47j88vNwovvvokmQyHDOn5Xzz0IJjlKcY5dn4LcOo1S7iAnLL79Rzi4cFivB92NsCnspOFoZ8+B9NM+CFI2JQz7B5M6qS07j7yfPTw53t+dMn5Iqf1RNSlWvuCknH4cQFJWAXC5n6+0PNCqh+stFAztTNt1UJAf/0Diuv4qgdhETlWXVLSAgAA0NDRo1asS8efOQy+W8fv2aGjVqsGfPHqKjo5FKpcpnPEHxnKevry8fPyqS2datn4fwhYaGYmpqirGxMZGRkUn2+5qzszPPnj3j/PnPvSReXl4kJCRQrVo1jh8/TmCgoh6tX78+xWtp1KgRs2bNUs4uHBoayvPnz3/oc3BycsLLy4tHjxSjEXbt2kXevHnJlevbd/2+dPXqVby8vFT+qJqUqnnz5hw4cIAPHz4gl8tZtWoVbdq0UXnsli1bsnz5ckAx6ZSHh4dyuLGtrS0nTijuoCYmJnLy5ElKlFDceGrXrh0XLlwgPl7R8Dl58iQlS5ZUcYa/703gRzQ0oH5lR6b3b4f8v/eqlLVj//kbRMfGIZXK2H78knKffJbm+L0L4mO44rn7Xac+D3cKi4ghRzZjjLMYEBkdy/bjyW+WfFKhRGFeBLxPMsuv91M/EhIluJYpzulr9wgKVeS4LUfdU7yWei5lWLDtiHJ24dCIaF4EvE9hL4XyJQrh/dyPx68UMyfuO3sNS/McWJhm/6H9z62eyNXNM1T+qGoANK5aniMetwkMCUcul7P+4Dla1HBSeezLXo/pMXUVu2YNxr7Q56HwVrnM8Du+igdui3jgtoi+rf6hc6NqabJRC4reFg0NDepVKM7UbvWQy+UEBIXjWrIgBy97Ex2XgFQqY8e5O8p9bHKZ4PchlJCIaAB2X/BUbguPiiGHsSHGhnpExsQn2e9rFYpZ8/LtRy7e+5yHfF6+JSFRgot9Ac7cfkJQmOIL09YzKa8iULdCMRbt81DO/hoWFcPLt8Ep7KVQvqg1Pi/f8eS1Iqe6XbyHpWm2H35e9fTcvlxaMkjlj6q61si5BMeuPyAwNBK5XM7GEzdo5vpz+ScqNp7DV+7ToVbZn9r/T/pcv4oxtWsdRf0KDse1ZAEOXrn/uX6d/1yHbCxM8AsMJSRC8f1lt7uXclt4VGzS+vXFfl+rUNSGl++Cuej9Qvne5/ply5k7X9Svs9+up5/ULV+MRW5f1q9YXr77sUZL+aLW+Ph+Wb+8sTTN+uP1a04vLi0aoPJHdf2y49j1hwSGRSnq18mbNHNR3fBsXAWS2VQAAD9SSURBVKkE644r5tfw+xDClfu+1C2v6Plv4VqS83efI5PJkEpluHs9p0Q+RWPifUgETSZsYFAzV9pWL/ND1/EnvQ2JQkMD6pSyYXKrCsiR8yYkCtdilhy+9ZLo+ESkMhm7rjxV7mNjZox/cCQh/w1b3nP1mXJbWEw8ObLoY2SgS1RsQpL9vla+oAUvA8OTzPLr4/+RBIkUl6K5OevzmqAIxff37Zcef+swSv+UsmbJ8XvK2YXDouN5+eHHHlUoWyAn9/0/8vSt4sbGgRsvsDTJgkW2H3vM6viYxrhPaq7yR9WkVA0c83Pc8xWB4YqbuJvdH9G0vOoOlKtP3tFv3QW29K9NCasfn9vn+fswZP/dgIiK/X979x1Y4/UGcPx7V5bIDhlEElum2CLEnrVqj5pFFbWpvarqh9qlrb333itau1aE2JuYEZG97v39cbnojRKjRJ/PX973nnfdPM59n/ec95xktofewCvHu40N9KY+eovtufvxjN6hf79Oq9Pxpa8jhZyyUMgpC8duxlD5l1CcsuoHb7rzRP/0y9nKlI6lXagxM4wcNqYvdTVu4O/ItvNRBE89iVNWE0q4ZeVOTPpPzWzM1cxtVoCR268zbOs1UrU6XK1NmNWkAIWcstA1KAd1ZoXhaGli6CL9T4ZX9+CHHdepMiMUpUKBWqlgQGU3PJ52N/4n9lk0TK6fhy6rLhkGj5rRMN+bfIVvJZedGb2Cc1J31mm0Ogj0sKZpgL6F5u6TZFouOsuOb/Q/2t8EutBz7WUCJx1HoVDwQ00PbC3++QnSxxIWFkb//v3R6XRotVpatmyJr68vvr6+HDx4ED8/P1xdXSlXrhy3bumfYrq6utK7d2+KFi2Ku7v7S12Nv/rqK9atW0ehQoVwdXUlKCiI27dvp3tsW1tbNmzYQJ8+fejRowcpKSm4ubmxdu1afH19GTBgAKVLl8bJyYmaNWu+9lomTpxIv3798Pf3R6lUotFo+Omnn8iTJ89rt3V0dGTBggU0b96ctLQ0bGxsXtv1+V14enoyfPhwAgMD0Wq1VKhQgXbt9APaREREUKNGDUOrdZ8+fWjbti158uRBqVQybdo07Oz0T9QnTZpEp06d8Pb2RqvVEhgYSLdu3QD9g4MvvvgCf39/1Go13t7ezJgx44NdU0acuXyLoTOWPY07HU2qBuKdxw3vPG4cOX2R0q0G4OxoRxn/AkTc17/37eJoR7emNSjXbghuTg4E+j/vkti0ehk27TtG0eZ9cXGwo7RffiIeRKV7bFurLCz/qReDpi2h/+RFpKSmkjO7PUt+7IF3Hjd6f1WbSh2Hk83ehqql/F97LT91a8GQX5ZSuvVAlEoFGrWKEd80IXeO1z8UcbS14rfBnWg/fLq+HrO0YP7Irm/2Jb4FD9dsDGj/JZU7DUer01E2oBBffaEfmO3Ogyi+7P0/DswbDUCXH38jKTmFb3741bD9b0O+MXSbzizCr91l+Lwt6ACtVkfj8gF4ezjj7eHMX+duENRtEs52VgR6exARqb+xcrG3pmu9IMr3mIpbdltKvzDwTuMKRdh8+CwlO0/A2d6KUl7u3Il8ku6xbSwtWDK4FUPmbGbA7xtJTdOSw9GGhQNb4u3hTI9G5ana9xey2VhSpdjru9iObv8Fw+ZuIajbZH2sqVQMa10NT5fXT4XmYG3JjJ6N6DBuKWlaLdZZzJnTr9mbfYlvwd3Jnv7NKlOt3wy0Wh1lfT1pWbkYoG8FazR8Dn9O1r9/uWzPCUbM28Lj2AQ2Hw5n0soQlgxuhW9uVwDW/HkKH08XQ7fXT0n49bsMn79dX5fpdDQO9sfb3Qlvdyd9fH03BWd7KwK9PIh4+EJ81S1D+V7Tcctm81JX48blC+vj69uJ+vgq9E/xZc6SgS0ZMncrA2ZtJjU1TR9fA5rj7e5EjwbBVO03k2y2WalS9NWvNDwzul1Nhs3fSlD3qSgV+rps2FdV8XR+/Q22g3UWZvRoSIcJy/V1WRYz5vRp+mZf4ltwd7Kjf7OKVOs3U1+X+XjS8umDjzuRT2g0ch5/TtTXpV3rBdF18moCOo5HqVTwv461sc2qT4K+DPLh5KXblOqq/z9V2sudr2vquyH/uHgXtx48ZsbGA8x4Og1Vp1qlaV7p44wEH347ilErjxjqsoal8uKV0x6vnPb8dfk+wcNW42xjQen8zkRE6R/KOdtmoXNVHyqPXENO+6wvdTVuXCofW09cJ3DQCpxts1AyrxN3Hqff88wmiymLulVl2PLDDF56iJQ0La72lszvUhmvnPZ0r+lPjR/Xk83K/I3eDf2hSSlGrDxC+WGrUSoV+gEdGxTHM/vre3U4ZDVnWvtgOv22B61Wh5WFCb9/YzwA4vvi7mhFvzpFqDlmAzqtjjIFXWheRl9f342Ko8mkrYQM0w9O1n3uHySnauk2Z69h++nty1Mohx37z0Xwze8hxCQko9PBmr+uMLZFINX8c7HuryusPnwZzdMW9i+KetCi7Ov/z74PCt2/8MLk8ePHKVKkCFs7+uDj8mYvHf/d30dCFp+msIhYqs0M49ixYwQEfJgngs/i6V2O8feRkMXn5X3EyD/t98/ZI/HP//pROf/u7yMhi8zn5PmrBLUd/EHrOHgeayE/d8Uvj2uGt//7SMgi8wm9dJvgHlM+WD0WMqEzfrkzHluA0UjI4vMSevk2wT2nv3PsPYu1nUPq4Zfr7R7k/H0kZPF5Cb3+kEoj1ry3eu6jd0UWQgghhBBCCCHexUfvivymSntYfxKttafvxNFjrfF7jg39HA3T+ohPX3Bw8CfRWnvy5EnD/K0vatWqlWFaH/H5CAoo9Em01p66cJ1OP8w0Wt+sepBhWh+RuZXxyf1JtNaGXYmg88QVRuubVggwTOsjMp8yPp6fRGtt2JUIOk9eZbS+afkAw7Q+InMLLODySbTWht2IpOvsEKP1TUrnM0zrIz6+TJPYfiq8nbMY3j0V4l35+/u/1YjJQrwL33y5DO+eCvEh+Xi6GN49FeJ98/F0Mbx7KsSH5ONmb3j3VHy6pCvye9Zgzhl2nE9/kJd/w9Lj96k47SRuww8y53DGh8cXn67g4GA2btz4sU+DkJAQVCoVU6dONaybPHky3t7e+Pr64u/vz7Jlyz7iGYp3Vb3LKLbsf/28gR/an8fDsQ5qycyV2w3rth44Qdm2g7EPbs2AqYs/4tmJ96HW9zPZeuTs6wt+ICPnb6N0l58J6jaJoG6TWP1nqOGz+1ExtBy9gMCuEyneaTy/rNv3D3sSn7paA39n61+vH+H2Q1m48yilu03God5gft100Ojz9QdOU7rbZEp1mUTJbye+NL2UyFzqjN3I9tCMT7f3vvyw+i/KDllJ8LBVBA9bxZojl43KXLr7GLdvZjN02aGPcIYfjrTYfmZ8XLIwo1E+pvyZ/si9QryLmJgY+vXrR/XqL3dX9fLyYv/+/VhbW3Pz5k0CAgIoWbIkuXLlesWehPhnMXEJDPllGZVLvtxDJncOJ6Z93541e46QmJz+PKRCvKlu9csy+KuqgH702RLfjKdC4bzYWFowcNYmCuVyYsGAlsQmJFG17y+UKJiLgHyZayRt8Wnwy+3KnD5N+HnlXqPPTl2J4IdFO1k7oi3O9lY8iU9E/YnNcSwyjy7VfBlYXz9q+92oOEoNWkF5rxzYZDEFIE2rpdf8fVQv7P4Rz/LD+CwT24SUNHqsucy5+/GolQocLTUs+aoQ92OS6bzyIrFJaSSlainjac2I6u4oFArG77nJ5YcJxCancflhAt7OlnQNcmX4tmvcepxE1QJ2DKvmDuhbZQs5WRB+N547T5KpVsCWQVVyGU2wHJuUxvCt1wi/F0dSqo4iObMyqoY7GpWSiXtvsebUQ0zU+m3mNC1ADhvTd752Lyf9hN3K9GYWF+8sISGB1q1bExYWhkajIXv27Gzfvp27d+/StGlTnjx5QmJiIhUrVmTSpEkoFAqGDRvG+fPniYmJ4dy5cwQEBPD999/Tq1cvrl27Rt26dZkwYQKgb5V91j359u3b1K1bl7FjxxrFVkxMDD179iQ0NJTExERKly7NlClT0Gg0jBo1ikWLFmFqqo+ndevWvbcEs2fPnvTp08eo5bhixedD0+fMmZPs2bNz8+ZNSWzfQUJSMp1GzeTMlZto1Gqy2VqxbmJ/7kU+ps3QacTEJ5CYlEJwUS/Gdm+JQqFg9KxVXLxxh5j4RC5ej8Avvzu9WtZmwJTF3Lj7gJpBRRjTrQWgb5X1zZOLU5euc+dBFDWDijDq26bGsRaXwPdTFnH60g0Sk1Mo4Z2XcT2/QqNWM3buWpZtP4CpRv9TsvSnnrg5vZ8pTL6fsojvmtU0ajnO66af3mHDHx//HfnPRUJSCt9OXEH49buoVUqy2WRl9ch23IuKof3/lhATn0RScgpl/fIwpsMXKBQKxizewcXbD4mNT+Li7Qf4ebrQo2Ewg2Zv4sa9x9QsWYgf2tcC9K2yPp4uhF2J4E7kE2qU9GJEm+rGsRafxKBZGzl99Q6JKakUL5CLsR1ro1GrGLdsFytCTmLyNNYWDfoKt2zvPp+6teXz6fhiE5JAgWH+xdNX79Cptv49TUtzUwK9PVi254Qktu8gISmFbyet0seaWkU2G0tWD2+jj7Vxy4hJSCIpOZWyvrkZ83VNfawt2aWPtYQkLt56gF9uF3o0KMeg2Vu4cT+KmiUK8UO7GoC+VdbHw5mwq3f0sVaiICNaV0s/1mZv5vS1OyQmp1K8gBtjO3yhj7Xle1ixNxQTjX7O9kUDWryXWPPx0NddSqXx/dnUtfv4tk4gzvb66SutLMze+Xj/dQnJqXSdvZeztx6hUSlxtDJnRa8a3IuOp+PM3cQkppCUkkpQQVdGNy2FQqFg7LpjXLobTWxiMhfvRuPrZs93NfwZuvwQNx/GUr1wLkY20c+VXmfsRrxz2nP6ZiR3ouKoUdidoQ2LG+cCCckMXnaIM7cekZSSRrHc2fixWSAatZLxG46z6vBlTNT6hxgLulQhp8ObzZX8T6wtnucTsUkpKBT6KVWfmbQ5lCq+bsQlpRCX+Hk9IP4sE9uQS4+JTkwlpIs/AFHx+j+alZmaec0KkMVURZpWR5sl59gU/ohaXvo5zUIj4tjS0YcsJiqqzjjF6B3XWdiiIGlaHSUnHqdl0ezkdtD/CF58kMCSrwqSmqaj/pwzbDgTSW3vl2/oRmy7Rgl3K/5XJzc6nY4+668w5/BdGhXOxswDERzvXQRzjYqE5DSj/wgAf1x+zMjt6XdlqJjXlv6VXj+3lni/tm7dSlRUFOHh4QA8eqSfk9TGxoYNGzZgaWlJWloaderUYdWqVTRo0ACAo0ePcvToUSwtLQkICKB///5s2bKF1NRUPDw86NSpE/ny6ectDg8PZ8eOHaSkpFC2bFlWrFhBo0aNXjqPXr16UbZsWX777Td0Oh1ff/01U6dOpXXr1owbN447d+5gbm5OfHw8ynQm6N65cye9e/dO9xpr1qzJDz/8YLR+y5YtPH78mAYNGvxjl+idO3cSFRVFkSIfZ268z8WOQ6E8jonj6KKxADx6EguAtaUFy8f2wtLCjLQ0LY37T2BdyF/ULV8cgBPnrrJ31kgszc0o03YQQ39ZxurxfUhNS8O7QU/a1a1oSA7PXbvN+on9SUlNo1rnUazZfZj6FUu+dB4Dpi4m0L8AU/u3R6fT0WXM78xcuYPmNcoyeclmLq6firmpCfGJSek+UNvz12kGvqLLcNXS/gzt2Mho/faDoUTHxlO3fPFPokv0527X8fM8jk3g0PSeAETF6Od+tM5ixpLBrbA0NyUtTUuzUfNZf+A0dQL1A6WcvHiL3T93xdLMhHLdJzN83lZWDGtLapoW//Y/0aZ6CfK4OgJw/sZ91oxsT0pqGjW/n8nafWHUC3p5QMjBszdRysuDSV2/RKfT8d2UVfy28QDNKhVhypo/OTdvIOamGuITk9NNDkJOXmTw7M3pXmOVogUMLbN/N3P9fn7ffJCIh9FM+a4Bdlb6B8QBeXOwcu9JCudxJfJJPLuPXyRvDse3+IbFM7uOX+BxXAKHpnUH/hZrg1o+j7XRC1l/4Ax1Ar0BOHnpNrvHd9bHWs9pDJ+3jRVDW+ljrcM42lQrTh5X/T3Y+Zv3WTO8DSlpadT8/jfW7j9NvTIvD+4zeM5mSnm5M6lLPX2sTV3Db5sO0axiAFPW7uPcnP76WEtKTrdeCzl5icFzt6R7jVWK5GdwyyoZ+l7O37yPe3Y7ag74jZj4JKoWy0//JhVRSavtW9t9+ibRcUnsH9UQgKjYRACsLUxY2K0qlmYa0rRaWk7ZzoZjV6ld1BOAk9cesHNwPbKYqak4fA0jVx1haffqpGq1FO23lNbBBcntZAPAhYgoVvasQUqalto/bWDd0SvULZb7pfMYsvwwpfI583Prsuh0OnrM+5NZu8/QJDAf07eFcXpCc8xN1MQnpZLO7Rp7w28zdHn63YUr+7oZWmb/7tedp5m9O5w7UXFMbFMWO0v9w5IzNyPZc/oWa/vWZPyGz+/39bNMbAtlz8Klhwl8v/EKJd2tqJhX/6RNp9Pxw47rHLkRA8DDuBS8nOIMiW1wHmuszPRfScHsFng5ZcH06VOU3Pbm3IhKNCS2Df0d0aiUaFRQ39eRfVeijRLbrececfxWLDMPRACQmKJFo1KQ1VSFh50Z3VZdomxuGyrms8HF2ri1tmxuG3Z8Y/P+vyDx1vz8/Dh37hydO3emXLly1Kihf0qs1Wrp168f+/btQ6fTcf/+ffz9/Q2JbdWqVbG21k/U7evri5+fH6amppiampI/f36uXLliSGxbtWqFRqNBo9HQokULdu7caZTYrl27lkOHDjF+/HhA35JsYmKClZUVefPmpUWLFlSpUoWaNWuSI0cOo+uoVKlShgatevz4Mf3792fHjh3/WC4sLIw2bdqwbNkyzM3N/7Gs+Gc+eXJx4cYdeoybQxn/glQppe+Sq9XpGPLLUg6euoBOp+NB1BN88+YyJLYVi/tibWkBgHfunHjnccPURIMpGvK6OXEt4r4hsW1WPQiNWo1GraZx1UD2HD1jlNhu/OMYf525xJQl+oQhISkZE40aqyzm5M6RnfbDf6FicW+qlvbHNZu90XWUL+adoYGqHsfEMXTGMtZP7JfxL028FW8PZy7cuk+v6WsJ9PGgcpECgL7lctjcLRwKv4YOePg4Fh9PZ0NiWyEgH9ZZ9DdLXu7OeHs4Y6pRY6qBPK6OXLv7yJDYNqkYgEatQqNW0Si4MHtDLxkltpsOneGv8zeYtvZPABKTU9Co1WQ1NyO3swMdxy+lfOF8VClWAFcHa6PrCPbP+1YDVXWsHUjH2oGEXY2g4/hlBPvlwc4qC6Pa1WTw7E2U6z6F7LZZCfLNTWR0bIb3L57Tx9oDes1YR6CXB5WL5Af09dqweds4dPY6Op2Oh9Fx+Hg4GxLbCoXzvBBrTni7O70Qaw5cu/fIkNg2KV/4hVjz18fa3xLbTYfP8tf5m0x7+t50YlIqGo2KrOam5Ha2p+PPKyjvn4cqRfO/ItbyvNdBq1LStJy8fJuVQ1ujQ0ezUQuZs+0I7WuUfP3GIl1eOe25ePcxfRfso1R+Zyr76HtaaLUwYuURjly8iw548CQB75z2hsS2vHcOrCxMACiUww6vnPaYalSYoiK3kzXXHsQYEtvGgfnQqJVo1EoalMrDH+ERRontlhPXOHblPtO3nwIgMTkNE5WSrOYaPLNb8c1veyjvlYPKvjlxsbM0uo5yhVzfatCqDpW86VDJm9M3I+n82x7KFXIlq5kJPef9yeS25VCll0V/Bj7LxDaXnRkh3/qz/2o0f16J5oft19n+jR9zj9wlKiGVjV/7YKZRMmzrNZJStYbtniWxACqlAlO14qXlF4q+EZ0OZjXJTy474y4lG7724ejNGA5cfcIXv59meoO8lMhl9VIZabH99Hh6ehIeHs7u3bvZuXMnffv25eTJk0ybNo3IyEgOHz6MmZkZPXv2JDEx0bCdmdnzGFCpVEbLqamprzxmeq35Op2OtWvX4unpafTZoUOHOHDgACEhIZQsWZIlS5YQFPTytBoZbbE9ffo0d+7coXhxffL08OFDNmzYwIMHDxg+fDigb2muVasWs2fPpkyZMq+8HvFmPFyz8dfCn9h77AwhR88wePoS9s8dzW+rd/AoOpY9vw7DzNSE/pMXvvSuqampxvBvpVKJmcnzZZVKSWraqyuy9N5g0KFjyY898HDNZvTZ7l+HcyjsAvtOnKVCh2HMHvYtgf4FXiqT0Rbb8Cu3uPvwMcHthwIQGR3Dlv0nePg4hoHtZUTKD8HdyZ5D03vyx6nL7D15iaFztvDn5G78vukgj2Li2Tn+W8xMNAz8fSNJyc/rKjPN81sIlVKBqcnLy/8Ua+nR6WDRwJa4Oxk/INkxrjOHz11nf9gVqvSexm99mlLay+OlMm/bYvuMj4cLLvbW7Au7Qu1AH2yzWjD1u4aGz3tMW0N+t+wZuibxMncnOw5N/Y4/Tl1hb+hlhs7bxp8Tu/D75kP6WPtfJ32szdpMUsoLsfZiPWYUa/9cr6VXsel0OhYNaIG7k53RZzvGduLwuRvsP32FKn1n8FuvxpT2cn+pzPtusc3paMMXpQph/rT+rlWqEMcv3srQPsTL3B2t2DeyIfvORbA3/DYjVhxhz7D6zNp9hqjYRLYOqoOZRs3gpQdJSkkzbGemVhn+rVQqMNU8X1YplaRpM/gbqoN5XSrj7mhl9NnWgXU4cukeB87fodro9czsUJ5S+ZxfKvO2LbbPeOe0x8k2C/vP3aGwhyPXHjyh6cStAETHJ6NDx+P4JCa1KfeP+8ksPsvENiI6CRtzNVUK2BGcx4at5x4REZ1EdEIqjpYazDRKHsQms/FMJLW9jX9A38Sq0AfU9nIgRatlbdgDOgW6GpWpkt+WaftuM7qmJ2qVgscJqUTFp+BoaUJsUholcllRIpcVFx7Ec/pOnFFiKy22n55bt25ha2tL7dq1qVatGmvXruXmzZtERUXh5OSEmZkZ9+7dY8WKFTRu3PitjrFgwQIaN25MSkoKixcvpk+fPkZlateuzZgxY5g+fTpqtZqoqCgiIyPJnj07MTExBAUFERQUxJkzZzhx4oRRYpvRFtsyZcpw//59w3Lr1q0pWrQoXbp0AeDs2bPUqFGDX3/9lcqVK7/VdYuX3b4fiU3WLNQMKkLlkn5s/PMYt+9HEhUTR3Y7a8xMTbj/KJq1e44YtbK+qaXb9vFlxZKkpKWxYscBvmtW06hMjTIBTFi4gZ97tUatVhH1JI5HT2LIZmtNbHwigf4FCPQvwNmrtzl18bpRYpvRFtvSfvm5umm6YbnjqJkEFPCgY4OM3SiKN3f7YTQ2lubUKFGISgH52HToDLceRPM4NoHstlkxM9FwPyqGtfvDqF/m7eaTX77nBPWDfElJ1bJy70m61i9rVKZ6iYJMXLmXcd/UQa1S8Tg2nkdP4nG0yUpsQhKlvTwo7eXB2Rv3CLscYZTYvk2L7fmb98mfU//Q5uqdSE5diTAkr4+exJHVwgyNWkXopdtsPnSGvZO6vdX1C73nsVaQSgF52XQ4nFsP/xZrj2NZu/809YPebm7Q5SEnqR/ko4+1P0LpWs94vuTqxQsycdVexnWq/TTWEngUE4+jteXTWHOntJc7Z2/cJ+xKhFFi+75bbBuU9WPLkbM0qxCATqdPnP8e3yJjIh7FYp3FlGr+uajgnYMtJ65x+1Es0fHJZLO2wEyj5n50POuPXqVuMeNGgjex/OBF6hbzJCVNy+rDl/m2qnH9WNXfjcmbQxnbIhC1SsnjuCQexSaSzcqc2MQUSuVzplQ+Z87djiLsRqRRYvs2LbYXIqLI56LvrXr1/hNO34gkv4sNOewtOT/pK0O5seuOEZeYwvDGn0/PgM8ysT13P57RO24A+u4tX/o6UsgpC+1Kqum4/DyVfwnFKasJQZ7G3UvelLezJU3mhxsGj6pVyPip3/DqHvyw4zpVZoSiVChQKxUMqOyGqVpJh+UXDO/WetiZ0dD//by3syr0AaN33iA6IZXt5x4xdV8E85oVwNs5y3vZ/39dWFgY/fv3R6fTodVqadmyJb6+vnTr1o2GDRvi7++Pq6srlSpVeutjBAQEUKlSJcPgUc+6M79o4sSJ9OvXD39/f5RKJRqNhp9++gkzMzMaNGhAXFwcCoWCvHnz0qpVq3e55DfSrVs3oqOj6devH/366buQ/vTTT1St+s8tJOLVzly+xdAZy57Gmo4mVQPxzuPGNw2r8tWgyZRuNQBnR1uCi3q99TH88rnzRfcfDYNHPevO/KKfurVgyC9LKd16IEqlAo1axYhvmmBmoqHFwMnEJyahUCjIncOJZtWNbyDftz+Ph9N+xC/ExCWg08GqnQeZ0Ks1NYPkne63FX7tLsPnbUGHvvtx4/IBeHs40+GLQNqMWURQt0k421sR7JfnrY/hm9uFuoN+Nwwe9aw784tGt/+CYXO3ENRtsj7WVCqGta6GqYmG1mMWEpeYrI81Z3uaVHw/f+/h87ZwNSIStVqFWqVkbMfahkT32IVb9Pt1PRqVEktzU2b3a4aTnXGri3hz4dfvMnz+dn29ptPRONgfb3cnOtQqRZuxSwjqPgVnOyuC/XK/fmev4JvbhbpD5hgGj6pT2tuozOh2NRk2fytB3aeiVOjrtWFfVcVUo6b1T0uIS0pGAeR2caBJhYB3uOLnloWcZMT8bTyOTWDz4bNMWvUHSwa1xNfThS+DfDh56Taluupjv7SXO1/X/HySjY8h/HYUo1YeMdRrDUvlxSunPV9XNKHdjF0ED1uFs00WyhYybph6U75uDnw5frNh8KjaRY0fRvzQpBQjVh6h/LDVKJUK1ColQxoUx0yjou0vu4hPStHnAtmsaFI63ztc8XMjV/3F1fvRqFVK1EolPzYrbUh0P3cKne6FYbI+kOPHj1OkSBG2dvTBx8W4/3hm02DOGTqWdqFy/v9GkGREWEQs1WaGcezYMQIC3s+Pwd89i6cPeYyPJTg4mN69e1OrVq2PfSqZ2oeKkWf7/XP2SPzzZ+6n6dW7jKJb05pUDyz8sU8lUzl5/ipBbQd/8PrnWayF/NwVvzxvf+P1Kaj1/Uy61CtLteIFP/apZCqhl24T3GPKB6vHQiZ0xi935o6tv6s18He61C1DtWIFXl9YvFLo5dsE95z+zrH3LNZ2DqmHX673M2L+p6LO2I18W9WHKn4y+8O7CL3+kEoj1ry3eu7zfHNYCCGEEEIIIcR/xmfZFflDW9nm7bv+CfFPQkJCPvYpiP+ILVMHfexTEP8RG3/s+LFPQfxHbPyh/cc+BfEfsa6v9Kz7FEmLrRBCCCGEEEKITO0/22Lbfc0l/Fyy0KaE8+sLfyB/n84nMk4/YvK2TumPOrkpPJIJe26i1YEOWNC8ADlt9dPGHLwWzcht10lI0ZKm0zGhbh6K5szK0ZsxfL/xCgCpaTqKuWVlZA2Pl6Y2Eh/W30cQ/ph0Oh2VKlUiNDSUhw8fvrLcqlWrGDZsGFqtFp1Ox+bNm3F3d2fZsmWMGTOGlBT9YAcdOnSga9fnI0OGhYXRtWtX7t27h1ar5ccff6R+/fr/xqUJPp0RhG/efUjPCfO4dOOOPk7qV6ZTQ+Nz0mq19J24gO0HQ1EooEuT6nxdXz+q9rGzl+k7cSFhF69TpZQfC3/47qXtBk1fys5Dp0hNS6Okbz4m9m6DieY/+5P2r+v883L88+agQ63SH/U8bt5/TJ8Za7kc8RAFCtrXLEmHLwJfWf7irQeU+24y7WqUZGQ7/Sjgi3ce5fvfN+KWTT9uho2lORtGdzBsc+baXfrNXMeDx7H6eaS/qsYX6QxIJD6MzpNW4p/HlQ41S33U87j54DF9Zq7n8u1IFApoX6MkHWq9+pwu3npAuR7TaFejBCPbVAcgLjGZvjM3cOLybVJS0qhZshBDv6qCQqFAp9MxZO5Wdh67gFKpwC6rBZO61MPT+e1m7xAZ12VWCP7ujrSv+HF7Zt6KjKXfov1cvhuNQgFtKxTi64rGdc796Hj6LtzP1ftPSE5No1VwQTpV1g/Ml5iSSu/5+zh1/SE6HeRyzMqkNuWwz2rG/nMRNJ20Fc/szwfR3TKgDuYmmf83NPNfQSb29+l8vlp0ltLu6Y/UfPpOHGN33WRZq0I4WZkQk5iKWqmfMOvuk2S6r7nMwhYFyOtoQWKK1jA/r1d2CzZ38EGjUqLV6uiw/AILj96jXcmPl9CLj2fq1Km4u7sTGhr6yjInTpxg0KBB7Nq1CxcXF548eYJara8qcuTIwZYtW3ByciI6OpoiRYoQEBBAYGAg8fHx1K1bl3nz5lGmTBlSU1OJior6ty5NfCJ0Oh3NBkykZ4svqFehBDqdjvuPotMtu3Tbfs5du82JpeOIjosnqM0gyhbxIn8uF5zsbfjpuxacunCN3X+dfmm7eRv3cubSDfbNGYVGreLbMb8zfflWujeXrmH/JTqdjpajF9C9QTnqlvHVx9rj2FeWT0vT0mPaamqULGT0WbBfHuZ938JofXxiMi1+mM/07o0o5eVOaloaj2MT3ut1iE+fTqej5Y+L6P5lWeoG+rxZrP2yjholXx4wbcKKEAD2T+pKapqWJiPns+7AaeoG+rDlyFkOnrnGHxO7oFGrGLd8DyMXbGdO36Yf8tLEJ0an09Fq2g66VfejTjFPfaw9Sb/OGbLsEAVd7Zj7bWViE1Oo+eN6SuRxorCHI/NCzhGXlMre4V+iUCjoMfcPpm4NZWjDEgDkc7Zl55B6/+al/SsyfbPdxL23GLTpqmE5LikNrzFHeBSXwtl7cdSbdZqqM04RPPUkU/64ne4+xu+5yYht1wzLcw7fofuaS4blGfsjqPnrKarOOEXLhWe5HZ303q/j7pNk9l99QgO/9Kf9mXkggo6lnXGyMgEgq5kacxP9pNHz/rpLfV8H8jpaAGCmUWJtrk9EzE1UaFT6P3Nymo7EFC3KdCaQFq83atSol1onY2NjsbOz4+HDh4SFhREUFERAQACFChXixx9/THcfw4YNo3fv3oblqVOn0rp1a8PyuHHjKF68OAEBAdSoUYObN2++t/O/ePEiS5cupX///v9Ybvz48fTq1QsXFxcArKyssLDQx1ZgYCBOTk4AWFtbU6BAAa5e1f//W7x4MaVKlaJMmTIAqNVqHB3fzzRW/zVj566l94R5huXY+ETcqnXk4eMYzly+SZVvRlCmzUCKNu/LuPnr093H6FmrGDB1sWF55srtdBw107A8afEmgtsPoUybgXzZ63/cuhf5Xs495OgZzExNqFdB/+OpUCjIbm+TbtlVuw7Rrm5FVColdlaW1KtQglU7DwLgms2eooVyY6LRGG13+uINgot5Y6JRo1AoqFrSj6Xb9r+X8/+vGbdsF31nrjMsxyYk4dF0OJHRcZy5dpfq/WZQ7rvJlOw8gQkr9qS7jzGLdzB41ibD8q8bD9D55+WG5Smr/6Biz6mU+24yDYfN4daDx+/l3PeGXsLMRE3dp3PrKhQKsttmfWX5n1eGULVYQfK4vvnorCv3nqRYATdKPZ3HVK1S4WCd+Wd3+BjGLd9D3183GJZjE5LwaD6KyCdPY+37XynXYyolv53IhJV7093HmCW7GDxni2H5100H6TxppWF5ypo/qdh7OuV6TKXhiHnvMdYuY2aioe7TaapeG2ur9lK1aH7yuLwca6ev3aVSkXwonk4xVL5wXpbtOWn4PCk1lcTkVHQ6HU/ik3Cxf/tpKf/Lxm84Tv9Fz38TYhNTyNt1PpExiYTfekStMeupMHw1gYNWMHHTyXT3MXbdMYYuO2RY/n3XGbrMCjEsT9t6iiqj1lJh+GqaTNzK7UevftCREX+cjcBMo6LO07l1FQoF2a0t0i175uYjKvvmBMDSTEOpfE4sP3jR8HlCciopaVpS07TEJaXibPv5T/2Z6VtsG/k7Um3mKYZUzYWJWsnG8EhKu1tjl0WDiVrJ0laFMFUrSUhJo87vpymb2xo/1zf/UVpz6gFXIhNY394HlVLBytAHDNp0lTnNjIeS/3rZea49Skx3P3ObFcDV2vSVx1lx8gEV8tjgYGl8Ewdw4UECbramfDn7NDFJaVTKZ0uv8jlRKRVcfJBAThtTGs8L51F8CiXcrBhY2c2Q+N6MSqTtUv25VcxrS/Mi2d/4+sVzrVu3JiAggPHjx2NiYsKKFSsoX748Dg4OmJqasnPnTkxNTUlISKB06dJUrlyZokWLvvH+Fy9ezIULFzh48CAqlYoFCxbQpUsX1q1bZ1S2QYMGXLp0KZ29wIYNG8iZM+dL67RaLV9//TXTpk1Dk06i8KLw8HA8PT0pV64cT548oVatWgwbNgyVSmVU7uDBg/z666+GZTMzM2rVqsWtW7fw9fVl/Pjxkty+heY1gijTZjCjuzbHRKNmzZ7DBAUUwsEmK6YaNRsmfY+piYaEpGQqdRxOhWLeBBR88wnml28/wKWbd9k1cxgqlZIlW/fRa8I8lv3U06hsi4GTuHLrXvr7GduLHNlf7iZ37tptHGyy0nrIVC7euIObswOjuzTHwzWb0fa37kWS0+n5jV8uZweOn7tqVO7vAgp6MGf9HtrXrYipiYaVuw5x486D124njDWtWJTg7pMZ1bYmJho16/aHEeTjib11Fkw0ataOao+pRk1CUgpV+06nvH9eCufN8cb7XxFykssRD9n+v86oVEqW7j5O35nrWDzIeH7tVj8u5Mqd9B+wLBncihyONi+tO3/jPg7WWWg7djGXbj/ALZsto9rVxN3JuOvm6at32H3iAht+6MD/lu0y+nz/6asEdZuEhZkJneuUMcyze/7mfcw0ahoPn0tEZDRe7k6MaldTktu30LRCAME9pzGqTfWnsXZaH2tWWTBRq1k7ou3zWOs3k/J+uTMWa3tD9bH2Uyd9rO05Qd9fN7B4YEujsq3GLObK3VfE2sCWxrF28z4OVha0/d9SLt1+iFs2G0a1rYG7k53R9qev3WX3iUtsGNWO/y1/+WFQQF5X1u4Lo2aJgiSlpLHxUDgx8fr7xmrFCrAv7CoFWv+IpbkpzvZWMhjWW2oamI+KI9YwonFJTNQq1h+9QmABZ+yzmmGqVrKqV01MNSoSklOpMXo9wV6u+Lu/+b3KqkOXuHwvmi0DaqNSKll+4CL9Fx1gQVfjV27aTN/J1fvp91pa1K0qrnYv1yXnI6JwyGrG1zN2celuNG4OlgxvXBJ3R+M5tP09HFl1+DL+7o5Exiay58wt8jrZANAquABHL9+jYPeFqJQKAjyz0b7C8y7Wl+5GU2H4alRKBU0D89O2gnFPlswo0ye2LtameDtlYfv5KGp52bPsxH2+CdTPy5aYouX7jdcIvxuHQqHgzpMkztyNy1Biu/VcFKciYqk28xSgn+RZ+Yomz98a53/r61h28j7Dq7m/8vPUNC2nIuJY2LIg6KD1kvMsOHqP1sWdSEnTcfDaE5a2KoSliYqe6y4xPuQWg6ro59bKaWvGjm/8iEtKo+vqi2w5+4g6Pp/XfGL/hhw5clC4cGHWr19PgwYNmDNnDn379gUgISGBzp07c/LkSZRKJTdv3uTkyZMZSmzXrl3L0aNHKVKkCABpaWlGyeQzK1euTHf9q4wbN46yZcvi7+/PtWvX/rFsSkoKx44dY+vWreh0OmrXrs3MmTPp3LmzocytW7eoU6cOM2bMMLTspqSksG3bNg4dOoSLiwuDBg3i22+/Zfny5a86lHgF12z2+OXLxeZ9x6lbvjgLN/1h6GabmJxMz/FzOXXxOkqlktv3Ijl18XqGEtuNfx7lxLmrBLXVj4ycptWiUqbfgefFd1vfREpqGiF/nWH3r8Mo6JmD2et202boVEJ+H5FuecUL1embzqrerHoQN+9GUu3bUViYm1K+qBd7j4Vn6DyFnquDNb6eLmw5cpY6gT4s2nmUbvXLAZCYnELvX9YSdjUCpULB7YfRhF2JyFCysfnQGU48nY8V/jnW0usK/E9S0tLYG3qJ7f/7loK5sjN362HajV3Crgkvj2eQkppG96mrmfpdA1Qq42NXLVaQumV8sTAz4fzN+9QfMgsXe2uKFXAjJS2NXScusmNcZ5ztrBi1YDt9flnHnP7NM3Su4mmseTiz5cg56gR6s2jXcbrVDwKextrM9YRdvfM81q7eyVisHQ7Xx1qvaQCkaXWoXnG/Nq9/swyde0qalr2hl9n+v04UdMvO3G1HaDduKbvGdX65XGoa3aeuYWq3L9ONte/ql2XE/O1U7PMLNlnMKV7AjT9OXQYg9HIEF24/IHx2P7JamDJs/nb6/rqB6d81yNC5CnCxs8TbzZ6tJ69Tu6gnS/ZdoGt1fc+OhJQ0+i7cz+mbkfpYexRH2I3IDCW2m09cI/TaQyqOWAP8c24wp3OlDJ17apqWveERbB1YmwKudszfe5YOM3ezfVBdo7IjGpVg6PLDVBixmmzWFgQVcOFhjP5ByR/ht1EoFJz5uTlKhYKus/cybsNx+tYpgm8uB06Na4aVhQkRj2JpOmkbdllNqVssd4bO9VOU6RNbgMaFs7H85H28nCy49iiRCnltABiz6waOlhq2dfJDrVLQful5w7unL1IpFaS9sDop9fndlU6n47uyOWgSYNza8Hdv22J76NoTElK0BOexeeW+XW1MqVHQHnONPtGpXtCOk7f13R5y2Jjg7WyBzdPux3W8Hfhlf4TRPrKYqqjj7cDqUw8lsX1Lbdq0Ye7cufj7+3Pp0iWqV9cPCDFgwACyZ8/OiRMnUKvV1K9fn8RE41hQq9WkpaUZll8so9PpGDRoEG3btn3teWS0xfaPP/7g1KlTzJ8/3/Duq7u7OydOnMDW1valsrly5aJ+/fqYm5sDUL9+fY4cOWJIbCMiIqhUqRKDBg2iYcOGL21Xvnx5XF31D5aaN29OjRo1XnstIn0tapZl4eY/8MnrxpVb96hS0g+AYTOW42hnzf45P6BWq2j2/USSklOMtlerVGhfqNgSXyij00GfVnX5qla5159HBlts3Zwc8M2Xi4Ke+hvSJlUD6TFuDmlpWqMbvRzZ7blx5yFFCup/TG/cfUjO7K8fKEWhUNC/bT36t9W/H7Ry50EKuLu8djuRvmaVirJ45zF8PJy5eieSykX0D2lHzt9KNhtL/pjUDbVKRcvRC0hMSTXaXq1SkqZ9HmtJyc/L6IDejcvTonKx155HRltsc2azxcfThYK59L2QGgUXptcva41i7e6jGK7eiaTR8DkARMclotPpeByXwJRuDbC3ft49L3/ObFQukp/DZ69RrIAbOR1tCfLxNHQJbRjsb9iPyLhmFYuwePdxfDyfxlpAPgBGLtiuj7Wfv9XH2o+LXh1raa+INR30bhRMi0qvf6Cc0RbbnI42+lhzexZr/vSasd441qJiuHr3EY1G6l8lMcRabAJTutbHzETD6PY1DeV/XrmX/Dn195eLdx8nyMcTa0v9b2/TCoVpNGL+a69FpK9ZYH6W7r+Ad057rt5/QkUf/X3RD6v/wtHKnN1D66NWKWk9bQdJKWlG26uUCtJeeNr6YhmdDnrUKkzzoNc3aGW0xTaHvSU+bvYUcNX3BmhQMi99FuxP96GgraUZk9s+/x3vPf9P8rvo7+nmhpylUem8mD0dVPHLEnmYujWUvnWKkNXcxLCNi50l9Yrn5tCFu5LYfiqqFbRj8JarTNsXwZe+joYndNEJqeTPZoFapeDSwwT+uPyYQA/jpnx3OzP2XrqLVqsjKVXLpvBIcjvoK5YqBeyYdegOVQvYYmuhISVNy/n7CXg7G/dTf9sW26Un7tPI3/GVTxYB6vk4sP18FI38HdEBf15+TIlc+mup6+PI6B3XSUrVYqpWEnLpMYWy6/vjX3uUiKu1CRqVkuRULZvPPqJg9vT76ovXq1evHt26dWPMmDG0bNnS0KIaFRWFt7c3arWa8+fPs2PHDipUqGC0fe7cudm2bRtarZbExERWrVpF/vz6uKlduzaTJk2ibt262NnZkZKSwunTpylcuLDRfjLaYrtx40bDv69du0bRokVf2XLbrFkz1q9fT+vWrdHpdOzYsYOyZcsCcOfOHSpWrEi/fv1o1erlroSNGjVi1qxZPHnyBCsrK7Zu3Yqfn1+GzlM890XZovT5eQETFmygSbUyhpunxzHxFPLMiVqt4sL1CPb8dZpyRYy7EHm4ZmPn4VP6WEtOYV3IX+R10w8aV6NMAL8s30atskWws7IkJTWV8Cu38MvnbrSfjLbYVi7py5DpS4l48AgXRzt2HDpFIc+c6bZe1CtfgtnrdlO7XDGi4+JZvesQqyf0fe0xEpOSSUxOwSZrFh4+jmHCgg0M+lpaNd5WrVJe9P91PRNXhtCofMDzWItNoGAuJ9QqFRdvPSDk5EWCfI1vfNyd7Nl1/OLTWEtlw4HThvdYqxUvyMwN+6lZ0gvbrBakpKZx9vpdfHO7Gu0noy22lYrkZ9jcLURERuNib82u4xco6JbdKNZyZrPh8uIhhuUxi3cQl5BsGBX52fYA96Ni+PPUZeoH6Vt36pbxZeGOv3gSn4iVhRm7jl/A20MGX3xbtUoVov/vG5m4ci+Nyvs/j7W4RArmyv5CrF0iyNe4F4q7kx27TjyNtZRUNhw880KsFWDmhgPULFHoeazduIevp/FDr4y22FYqko9h87e9EGsX0481RxsuLxxoWB6zZBdxicmGUZGfxCeiVimxMDXh+r1HzN56hMUDmhuubffxi3SuHYhGrWLrkXMUdHt9o4pIX40AdwYsOcDkLaE0KpXHkBQ+jkuigKstapWSS3cfE3LmNmUKGMeIRzYr9uwJR6vVkZiSxsZjV8ntpK8nqvnn4tedp6lROBe2lmakpGo5e/sRvrmMG40y2mJb0ScnI1ce4U5UHM62Wdh9+iYFXW3T7enyKDaRrGYmaNRKQq8/ZPOJ6+weqp+JIpejFXtO36JOUf3/ox2nbhiS5buP48lmZY5SqSA2IZntp27QvMzb9zr9lHwWia2pWkmtQvbM++see7v4G9Z/Vy4H3VZfZM2pB+SwMSXQI/2X8GsUtGPTmUiCp50kp40pXk5ZSHzastvAz5Go+FQaztV3c0vT6mgSkC3dxPZtxCalsTk8kh3fGCcAlX8JZUHzgjhZmVDH24HQiDjKTwtFpYQSuaxoU0I/iE8xt6xUzm9LlV9OoVZC/mwWjPlCH8gHr0bz2yF91540rY5AD2u6l3vzrj3iZaampjRs2JDp06dz9uxZw/pBgwbRsmVLFi1ahLu7e7pJLcCXX37JypUrKVSoEO7u7vj7+5OQoB/trmXLlkRGRhIcHIxCoSA1NZV27dqlm9i+b/7+/mzevBkXFxeaNGnC0aNH8fLyQqVSUbZsWcNURUOGDOHGjRtMmjSJSZMmAfDdd9/Rpk0b3Nzc+P777ylVqhRqtRpXV1fD+7ci40xNNNSrUJzfVu/k6OKxhvV9W9fh6xEzWL59P27OjpRNJ6kFqBNcnLV7/qJo837kcnbAN28uEpKSAWharQyPomOp0eWHp7GWxldflEs3sc2oLOZmTOjdmga9x6EDrC0tmD30eXe90q0GsGpcH5wdbWlarQzHz12hcBP9gGrfNatJAXd9wnPl1j2qdxlFQqI+ic1ftyu9v6rN1/Ur8yQugWrfjkKl1LcUftuoGjXKBLzzuf9XmWrU1An0YdbmQxye/vw9696NK9BxwnJWhJzELbttukktQO3S3qzfH0bJzj/jlt0Wb09nEpP0PQSaVAggKiaeWgN+RYF+tNgWVYqlm9hmVBYzE8Z9U5fGw+ei0+mwzmLOb72fjyAb1G0Sy4e2wdne+IH2i37fdJAth8JRq1VodTq+qVOGsn55AH1S3KNhMFV7T0elUuJsb83ELjKF2dsy1aipU9qbWVsOc3had8P63o2C6fjzClbsDcUtm226SS1A7VJerD9whpJdJuGWzRZvD2dDb5Qm5QvrY23g7ygUCn2sVS6SbmKbUVnMTBjXsTaNR85HpwPrLGb81quR4fOg7lNYPrjVa2Pt+t1HtPnfUtRKJSqVktHtauDz9Pza1yjJhZsPCOw2GY1ahZNtVn7uXPedz/2/ylSj4ouinszZE86BUc97l/WsVZhvfw9h1aFL5LTPSlDB9OOjVhEP1h+9SuDgFeR0yIq3mz0JT3sINCqdl0dxidT93yYUQKpWS/My+dNNbDMqi6mGn1oE0nTSVtCBlYUJMzqUN3wePGwVS7+rhpNtFo5ffcD3iw+gUSmxNNPwe6eKONnoG6/61g6g5/x9lBm8EoVCPwry+K/0g3tuPHaVuSHhqJVKUrVaahf1pFmZfO987p8ChU73pm81vb3jx49TpEgRtnb0wcdFBlz4nIVFxFJtZhjHjh0jIODD3Gg+i6cPeQyRuX2oGHm23z9nj8Q/v8d726/IPE6ev0pQ28EfvP55FmshP3fFL8+7J4Ei8wl9+m7yh6rHQiZ0xu89PGAQn5/Qy7cJ7jn9nWPvWaztHFIPv/eQ9InPT+j1h1Qasea91XOZfrofIYQQQgghhBD/bZLYCiGEEEIIIYTI1CSxFUIIIYQQQgiRqUliK4QQQgghhBAiU5PEVgghhBBCCCFEpvavTvdz8WHCv3k48RH8m3/jF6fbEeJFHzo2zl+L+KD7F5+uf/tvf/7W/X/1eOLT8aH/9udvPvig+xeZ1/uOjYt3Hr/X/YnPx/uOjX8lsXVwcMDC3Iyuqy79G4cTH5mFuRkODh9uWHcHBwcsLCxo0aLFBzuGyPwsLCzeexzqY8+c9iN+ea/7FZmLhYX5B63j4HmsdRy/7IMeR3zaPkSsGWLr5xXvdb/i8/I+Yk9//2/ON7/teU9nJT5HFubvr577V+axBbhx4wYPHz78Nw4lPjIHBwfc3Nw+6DEknsTrfKg4lNgT/0YdBxJrQuox8fG8r9iTWBOv8z7ruX8tsRVCCCGEEEIIIT4EGTxKCCGEEEIIIUSmJomtEEIIIYQQQohMTRJbIYQQQgghhBCZmiS2QgghhBBCCCEyNUlshRBCCCGEEEJkapLYCiGEEEIIIYTI1CSxFUIIIYQQQgiRqUliK4QQQgghhBAiU5PEVgghhBBCCCFEpiaJrRBCCCGEEEKITE0SWyGEEEIIIYQQmZoktkIIIYQQQgghMjVJbIUQQgghhBBCZGqS2AohhBBCCCGEyNQksRVCCCGEEEIIkalJYiuEEEIIIYQQIlOTxFYIIYQQQgghRKYmia0QQgghhBBCiExNElshhBBCCCGEEJmaJLZCCCGEEEIIITI1SWyFEEIIIYQQQmRqktgKIYQQQgghhMjUJLEVQgghhBBCCJGpSWIrhBBCCCGEECJTk8RWCCGEEEIIIUSmJomtEEIIIYQQQohMTRJbIYQQQgghhBCZmiS2QgghhBBCCCEyNUlshRBCCCGEEEJkapLYCiGEEEIIIYTI1CSxFUIIIYQQQgiRqUliK4QQQgghhBAiU5PEVgghhBBCCCFEpiaJrRBCCCGEEEKITE0SWyGEEEIIIYQQmZoktkIIIYQQQgghMjVJbIUQQgghhBBCZGqS2AohhBBCCCGEyNQksRVCCCGEEEIIkalJYiuEEEIIIYQQIlOTxFYIIYQQQgghRKYmia0QQgghhBBCiEzt/z6bbYEDWL4jAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Task 6: Plot pruned tree\n", + "fig, ax = plt.subplots(figsize=(12, 6))\n", + "plot_tree(optimal_tree, feature_names=X_train.columns, filled=True, fontsize=8)\n", + "plt.title(f\"Pruned Tree with alpha={optimal_alpha:.4f}\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "67496351-580b-4e9f-9b17-2776f2c55843", + "metadata": {}, + "source": [ + "7. Compute the test mean squared prediction error for pruned tree and compare to the\n", + "results from Task 4." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "c3104831-7607-4eab-a0a2-861adde2658d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test-MSE (unpruned): 0.3915\n", + "Test-MSE (pruned with α = 0.01155): 0.3079\n" + ] + } + ], + "source": [ + "# Task 7: Compute MSE on test set with pruned tree\n", + "from sklearn.metrics import mean_squared_error\n", + "\n", + "# Pruned MSE\n", + "y_pred_pruned = optimal_tree.predict(X_test)\n", + "mse_pruned = mean_squared_error(y_test, y_pred_pruned)\n", + "\n", + "print(f\"Test-MSE (unpruned): {mse_test:.4f}\")\n", + "print(f\"Test-MSE (pruned with α = {optimal_alpha:.5f}): {mse_pruned:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "f0b3321f-62b3-46c1-a819-a3bb3064924f", + "metadata": {}, + "source": [ + "8. Use random forest to improve the predictions. Fit $500$ trees using $m = \\sqrt(p)$ (round to the nearest integer)." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "83942e1c-32a9-4333-9a59-4490d19feded", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Random Forest MSE (500 trees): 0.2122\n" + ] + } + ], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "# Random Forest with m = sqrt(p)\n", + "p = X_train.shape[1]\n", + "m_try = int(np.round(np.sqrt(p)))\n", + "\n", + "rf_model = RandomForestRegressor(n_estimators=500, max_features=m_try, oob_score=True, random_state=1)\n", + "rf_model.fit(X_train, y_train)\n", + "\n", + "# Evaluate\n", + "y_pred = rf_model.predict(X_test)\n", + "mse_rf = mean_squared_error(y_test, y_pred)\n", + "print(f\"Random Forest MSE (500 trees): {mse_rf:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "a081e559-4e29-435d-b7db-552e28060c50", + "metadata": {}, + "source": [ + "9. Do you think it was necessary to fit $500$ trees or would have fewer trees be sufficient? Determine the number of trees that provides the lowest OOB error." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "73057916-bdd3-4c98-92f3-a7810d0b1dea", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.13/site-packages/sklearn/ensemble/_forest.py:612: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.\n", + " warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lowest OOB Error at 490 trees: 0.2531\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaXNJREFUeJzt3XdYU9f/B/B3CCFhCCIoQxBwD5xQFa3iqKDW2aXWaq36bS1aB9ZWtHVXlFqrbdXaarVbv63f9tfhou46WgfWPWpVHCBuVAyE5Pz+SBOMrAST3ATer+fJ8yQ35957kpOQD59zzzkyIYQAERERETk9F6krQERERETWwcCOiIiIqJxgYEdERERUTjCwIyIiIionGNgRERERlRMM7IiIiIjKCQZ2REREROUEAzsiIiKicoKBHREREVE5wcCOKrw9e/bg2WefRVBQENzc3BAYGIhnnnkGu3fvfqTjzp49Gz/++KN1KvmQvLw8jBgxAkFBQZDL5WjWrFmR5bZu3QqZTGZy8/X1RatWrfD555/bpG7mCA8PL1Qvw61Dhw6S1UtK586dM74Hq1atKvT8tGnTIJPJcO3aNQlqB8hkMowaNUqSc1vKnO9HUd+N4m5EzsRV6goQSenDDz/E2LFj0bJlS6SkpCAsLAzp6elYtGgRHn/8cSxcuLDMP2azZ8/GM888gz59+li30gCWLFmCpUuX4sMPP0RUVBS8vLxKrUvHjh0BANeuXcMXX3yBIUOGIDs7G6+99prV62eOtm3bYt68eYW2e3t7S1AbxzJ58mQ8/fTTUCgUUlfFKZnz/WjRokWhf9769u2LWrVqFfm5JHIWDOyowtq5cyfGjh2L7t2744cffoCra8HXoX///ujbty/GjBmD5s2bo23bthLWtLAjR47A3d3d7KCzTp06aN26tfFx9+7dsXfvXnz77beSBXaVK1c2qZO5cnJy4OHhUeRz9+/fh7u7e5nrpNFoIJPJTD4L9tatWzesW7cOH3/8sWRtIxWtVov8/HwolcpHOo453w9vb+9Cnz+lUlnq51IIAbVa/UifMyJbYlcsVVjJycmQyWRYsmRJoR9yV1dXLF68GDKZDHPmzDFuHzJkCMLDwwsdy9BNZiCTyXDv3j18/vnnFnUxqtVqJCUlISIiAm5ubqhevTpGjhyJW7dumRx72bJluH//vvHYK1eutOi1u7i4wMvLq1BGaNGiRWjfvj2qVasGT09PNG7cGCkpKdBoNCblhBCYPXs2wsLCoFKpEB0djdTUVHTo0MGqXamG9/XAgQN45pln4Ovri1q1agHQd+f26NED//vf/9C8eXOoVCpMnz4dgP6HvXfv3vD19YVKpUKzZs0KdT0buuK+/PJLjB8/HtWrV4dSqcTff/9dqB4ajQbVqlXDoEGDCj1369YtuLu7IzExEQCg0+kwa9Ys1KtXD+7u7qhcuTKaNGmChQsXmvWaO3XqhPj4eMycORN37twpsWx4eDiGDBlSaPvD7WB4rd988w3efPNNBAUFwcvLCz179sSVK1dw584dvPzyy/D394e/vz9eeukl3L17t8hzLl26FHXr1oVSqUTDhg2L7DbOzMzEK6+8gpCQELi5uSEiIgLTp09Hfn6+sYyh6zklJQWzZs1CREQElEoltmzZUuzrtdf340GGLuiPP/4YDRo0gFKpNH6WTp8+jeeffx7VqlWDUqlEgwYNsGjRokLHyM7Oxuuvv25S77Fjx+LevXsm5b777ju0atUKPj4+8PDwQM2aNTF06NAy150qJmbsqELSarXYsmULoqOjERISUmSZ0NBQREVFYfPmzdBqtZDL5WYff/fu3ejUqRM6duyIt99+G0DpXYxCCPTp0webNm1CUlIS2rVrh0OHDmHq1KnYvXs3du/eDaVSid27d2PmzJnYsmULNm/eDADGYKc4Op3O+KN6/fp1rFixAkeOHMEnn3xiUu7MmTN4/vnnjT9Af/31F9555x2cOHECn332mbHc5MmTkZycjJdffhlPPfUULly4gOHDh0Oj0aBu3bpmvUdCCJMfegO5XF7ouqannnoK/fv3x4gRI0x+DA8cOIDjx4/jrbfeQkREBDw9PXHy5Em0adMG1apVwwcffAA/Pz989dVXGDJkCK5cuYI33njD5NhJSUmIiYnBxx9/DBcXF1SrVq1QnRQKBV544QV8/PHHWLRokUlbfvvtt1Cr1XjppZcAACkpKZg2bRreeusttG/fHhqNBidOnDAJPkozd+5cNG/eHO+++y5mzJhh9n6lmTRpEjp27IiVK1fi3LlzeP311zFgwAC4urqiadOm+Pbbb5GWloZJkyahUqVK+OCDD0z2/+mnn7BlyxbMmDEDnp6eWLx4sXH/Z555BoA+qGvZsiVcXFwwZcoU1KpVC7t378asWbNw7tw5rFixwuSYH3zwAerWrYt58+bB29sbderUKbLutvx+lObHH3/Ejh07MGXKFAQGBqJatWo4duwY2rRpgxo1auC9995DYGAgNmzYgNGjR+PatWuYOnUqAH2GOTY2FhcvXsSkSZPQpEkTHD16FFOmTMHhw4fx22+/QSaTYffu3ejXrx/69euHadOmQaVS4fz588bXQGQ2QVQBZWZmCgCif//+JZbr16+fACCuXLkihBDixRdfFGFhYYXKTZ06VTz8dfL09BQvvvii2XVav369ACBSUlJMtq9evVoAEJ988olx24svvig8PT1LPeaWLVsEgEI3FxcXMXny5BL31Wq1QqPRiC+++ELI5XJx48YNIYQQN27cEEqlUvTr18+k/O7duwUAERsbW2q9wsLCiqwXADFz5kxjOcP7OmXKlCKPIZfLxcmTJ0229+/fXyiVSpGenm6yvVu3bsLDw0PcunXL5L1p3759qfUVQohDhw4VagchhGjZsqWIiooyPu7Ro4do1qyZWcd80NmzZwUA8e677wohhBg4cKDw9PQUGRkZQoiC9+Lq1avGfcLCwor8jMXGxpq0g+G19uzZ06Tc2LFjBQAxevRok+19+vQRVapUMdkGQLi7u4vMzEzjtvz8fFG/fn1Ru3Zt47ZXXnlFeHl5ifPnz5vsP2/ePAFAHD161OT11qpVS+Tl5ZX29tjk+/GwsLAw8eSTT5psAyB8fHyMn3+D+Ph4ERISIm7fvm2yfdSoUUKlUhnLJycnCxcXF7F3716Tct9//70AINauXSuEKHh/DJ9PorJiVyxRCYQQAGDVkXH5+fkmN8M5DP+ZP9y19uyzz8LT0xObNm0q9piGjJzhptVqTZ6fO3cu9u7di7179yI1NRVvvPEG5syZgwkTJpiUS0tLQ69eveDn5we5XA6FQoHBgwdDq9Xi1KlTAPSjiHNzc/Hcc8+Z7Nu6desiu6mL8/jjjxvr9OBt2LBhhco+/fTTRR6jSZMmhTKEmzdvRufOnREaGmqyfciQIcjJySl0wXxxx35Y48aNERUVZZJxOn78OP7880+T7rKWLVvir7/+QkJCAjZs2IDs7Gyzjv+wWbNmQaPRGLuXraFHjx4mjxs0aAAAePLJJwttv3HjRqHu2M6dOyMgIMD4WC6Xo1+/fvj7779x8eJFAMAvv/yCjh07Ijg42OQz2a1bNwDAtm3bTI7Zq1cvswaJPMr341F16tQJvr6+xsdqtRqbNm1C37594eHhYfI6u3fvDrVajT179gDQvx+RkZFo1qyZSbn4+HjIZDJs3boVAPDYY48BAJ577jn897//xaVLl2z2eqh8Y2BHFZK/vz88PDxw9uzZEsudO3cOHh4eqFKlitXOrVAoTG6G63WuX78OV1dXVK1a1aS8TCZDYGAgrl+/XuwxZ8yYYXLMh7ueatasiejoaERHR+OJJ55AcnIyhg8fjvfeew8nTpwAAKSnp6Ndu3a4dOkSFi5ciB07dmDv3r3Ga4bu379vrCcAkx94g6K2FcfHx8dYpwdvQUFBhcoWta247devXy9ye3BwsEn9Szt2UYYOHYrdu3cb37MVK1ZAqVRiwIABxjJJSUmYN28e9uzZg27dusHPzw+dO3fGvn37zD4PoL9+LiEhAcuWLcPp06ct2rc4D3+O3dzcStyuVqtNtgcGBhY6pmGb4X29cuUKfv7550Kf80aNGgFAoelazH3/H+X78ageruP169eRn5+PDz/8sNDr7N69O4CC13nlyhUcOnSoULlKlSpBCGEs1759e/z444/Iz8/H4MGDERISgsjISHz77bc2e11UPvEaO6qQ5HI5OnbsiPXr1+PixYtFXmd38eJF7N+/H926dTNeX6dSqZCbm1uorCVzi+3du9fkcUREBADAz88P+fn5uHr1qsmPlxACmZmZxv/oi/Lyyy+bZGPMGVXYpEkTCCFw6NAh1K9fHz/++CPu3buH//3vfwgLCzOWO3jwoMl+fn5+APQ/WA/LzMy0KGtnruIypkVt9/PzQ0ZGRqHtly9fBqAP6s05dlEGDBiAxMRErFy5Eu+88w6+/PJL9OnTxySb4+rqisTERCQmJuLWrVv47bffMGnSJMTHx+PChQvFjugtyltvvYXPPvsMkyZNMgZGDyrp8/jw67SGzMzMYrcZPhf+/v5o0qQJ3nnnnSKPYQiwDcx9/x/l+/GoHq6jr68v5HI5Bg0ahJEjRxa5j+F77e/vD3d3d5NrVB/0YDv17t0bvXv3Rm5uLvbs2YPk5GQ8//zzCA8PR0xMjJVeDZV3DOyowkpKSsK6deuQkJCAH374wWRwhFarxauvvgohBJKSkozbw8PDkZWVhStXrhizU3l5ediwYUOh4yuVSmOW60HR0dFF1qdz585ISUnBV199hXHjxhm3r1mzBvfu3UPnzp2LfS3BwcGFfjBLYwjYDIMFDD9eDwaFQgh8+umnJvu1atUKSqUSq1evxlNPPWXcvmfPHpw/f94mgZ0lOnfujB9++AGXL182eU+++OILeHh4lGmKFQNfX1/06dMHX3zxBWJiYpCZmVniqMXKlSvjmWeewaVLlzB27FicO3cODRs2NPt8fn5+ePPNNzF58uRCIygB/efx0KFDJttOnTqFkydP2iSw27Rpk8lnX6vVYvXq1ahVq5bxn6MePXpg7dq1qFWrlknA+6ge5fthbR4eHujYsSPS0tLQpEkTY4azKD169MDs2bPh5+dnDPZKo1QqERsbi8qVK2PDhg1IS0tjYEdmY2BHFVbbtm2xYMECjB07Fo8//jhGjRqFGjVqGCco/uOPP7BgwQK0adPGuE+/fv0wZcoU9O/fHxMmTIBarcYHH3xQ6Jo2QH9N1tatW/Hzzz8jKCgIlSpVQr169YqtT5cuXRAfH48333wT2dnZaNu2rXHUX/PmzYucasNcp0+fNl7zc/v2bfz2229Yvnw5oqOj0a5dO+P53dzcMGDAALzxxhtQq9VYsmQJbt68aXKsKlWqIDExEcnJyfD19UXfvn1x8eJFTJ8+HUFBQXBxMe8Kj1u3bhnr9CClUonmzZuX+bVOnTrVeJ3XlClTUKVKFXz99df49ddfkZKSAh8fnzIfG9B3x65evRqjRo1CSEgInnjiCZPne/bsicjISERHR6Nq1ao4f/48FixYgLCwsGJHfJZk7NixWLRoEdatW1fouUGDBuGFF15AQkICnn76aZw/fx4pKSmFuiutxd/fH506dcLbb79tHBV74sQJkylPZsyYgdTUVLRp0wajR49GvXr1oFarce7cOaxduxYff/xxsSPRS2LL70dZLFy4EI8//jjatWuHV199FeHh4bhz5w7+/vtv/Pzzz8ZrAseOHYs1a9agffv2GDduHJo0aQKdTof09HRs3LgR48ePR6tWrTBlyhRcvHgRnTt3RkhICG7duoWFCxdCoVAgNjbWrq+NnJx04zaIHMPu3bvFM888IwICAoSrq6uoVq2aeOqpp8SuXbuKLL927VrRrFkz4e7uLmrWrCk++uijIkfFHjx4ULRt21Z4eHiYPVr0/v374s033xRhYWFCoVCIoKAg8eqrr4qbN2+alHuUUbGenp6iYcOGYurUqYVG9P3888+iadOmQqVSierVq4sJEyaIdevWCQBiy5YtxnI6nU7MmjVLhISECDc3N9GkSRPxyy+/iKZNm4q+ffuWWq+SRsVWr17dWK6okaAPHuPhEYwGhw8fFj179hQ+Pj7Czc1NNG3aVKxYsaLI9+a7774rtb4P0mq1IjQ0VAAocmTxe++9J9q0aSP8/f2Fm5ubqFGjhhg2bJg4d+5cicd9eFTsgz755BPj+/Pge6HT6URKSoqoWbOmUKlUIjo6WmzevLnYUbEPv9YVK1YIAIVGbBb1vgMQI0eOFIsXLxa1atUSCoVC1K9fX3z99deF6nv16lUxevRoERERIRQKhahSpYqIiooSkydPFnfv3i319RbH2t+PhxU3KnbkyJFFlj979qwYOnSoqF69ulAoFKJq1aqiTZs2YtasWSbl7t69K9566y1Rr1494ebmJnx8fETjxo3FuHHjjKOMf/nlF9GtWzdRvXp14ebmJqpVqya6d+8uduzYYfHroIpNJsS/Q/KIiB7B2bNnUb9+fUydOhWTJk2SujpERBUSAzsisthff/2Fb7/9Fm3atIG3tzdOnjyJlJQUZGdn48iRIxaNjiUiIuvhNXZEZDFPT0/s27cPy5cvx61bt+Dj44MOHTrgnXfeYVBHRCQhZuyIiIiIyglOUExERERUTjCwIyIiIionGNgRERERlRMVbvCETqfD5cuXUalSJasu7E5ERERkC0II3LlzB8HBwaVOAl/hArvLly8jNDRU6moQERERWeTChQulrtxS4QK7SpUqAdC/Od7e3hbtq9FosHHjRsTFxUGhUNiievQI2D6Oje3juNg2jo3t49js0T7Z2dkIDQ01xjAlqXCBnaH71dvbu0yBnYeHB7y9vfnlckBsH8fG9nFcbBvHxvZxbPZsH3MuIatwgR0RERFRsXQ6ID1df79GDaCUa9ocDQM7IiIiIoP794GICP39u3cBT09p62Mh5wpDiYiIiKhYzNgRVSA6nQ55eXmSnFuj0cDV1RVqtRparVaSOlDRnKltFAoF5HK51NUgclgM7IgqiLy8PJw9exY6nU6S8wshEBgYiAsXLnAOSQfjbG1TuXJlBAYGOkVdieyNgR1RBSCEQEZGBuRyOUJDQ0ud4NIWdDod7t69Cy8vL0nOT8VzlrYRQiAnJwdZWVkAgKCgIIlrROR4GNgRVQD5+fnIyclBcHAwPDw8JKmDoRtYpVI5dPBQETlT27i7uwMAsrKyUK1aNXbLEj3Esb/BRGQVhuum3NzcJK4J0aMz/HOi0WgkrgmR42HGjqgC4TVJVB7wc0w25eoKJCQU3HcyzldjIiIiIltRKoFFi6SuRZmxK9YGtDqB3Weu4/8OXsLuM9eh1Qmpq0RExZg2bRqaNWtWbs5DRBUbAzsrW38kA4/P3YwBn+7BmFUHMeDTPXh87masP5IhddWInNKFCxcwbNgwBAcHw83NDWFhYRgzZgyuX79u8bFkMhl+/PFHk22vv/46Nm3aZKXalt3WrVshk8lw69YtqatisdzcXDRr1gwymQwHDx40eW7Tpk1o06YNKlWqhKCgILz55pvIz883KXP48GHExsbC3d0d1atXx4wZMyAE/yEmiQgBXL2qvznh55CBnRWtP5KBV786gIzbapPtmbfVePWrAwzuiCz0zz//IDo6GqdOncK3336Lv//+Gx9//DE2bdqEmJgY3Lhx45HP4eXlBT8/PyvU1j6kmmC6JG+88QaCg4MLbT906BC6d++Orl27Ii0tDatWrcJPP/2EiRMnGstkZ2ejS5cuCA4Oxt69e/Hhhx9i3rx5mD9/vj1fAlGBnBygWjX9LSdH6tpYjIGdlWh1AtN/PoaiYnvDtuk/H2O3LJEFRo4cCTc3N2zcuBGxsbGoUaMGunXrht9++w2XLl3C5MmTjWXDw8Mxc+ZMPP/88/Dy8kJwcDA+/PBDk+cBoG/fvpDJZMbHD3eRDhkyBH369MHs2bMREBCAypUrY/r06cjPz8eECRNQpUoVhISE4LPPPjOp65tvvom6devCw8MDNWvWxNtvv232qM1z586hY8eOAABfX1/IZDIMGTIEANChQweMGjUKiYmJ8Pf3R5cuXQAAx44dQ/fu3eHl5YWAgAAMGjQI165dMx5TCIGUlBTUrFkT7u7uaNq0Kb7//nvj8zdv3sTAgQNRtWpVeHp6IioqCitWrDCrvg9at24dNm7ciHnz5hV6btWqVWjSpAmmTJmC2rVrIzY2FsnJyVi0aBHu3LkDAPj666+hVquxcuVKREZG4qmnnsKkSZMwf/58Zu2IyoCBnZX8efZGoUzdgwSAjNtq/Hn20TMMRFZz717xN7Xa/LL375tX1gI3btzAhg0bkJCQYJy7zCAwMBADBw7E6tWrTX783333XTRp0gQHDhxAUlISxo0bh9TUVADA3r17AQArVqxARkaG8XFRNm/ejMuXL2P79u2YP38+pk2bhh49esDX1xd//PEHRowYgREjRuDChQvGfSpVqoSVK1fi2LFjWLhwIT799FO8//77Zr3W0NBQrFmzBgBw8uRJZGRkYOHChcbnP//8c7i6umLnzp1YunQpMjIyEBsbi2bNmmHfvn1Yv349rly5gueee864z1tvvYUVK1ZgyZIlOHr0KMaNG4cXXngB27ZtAwC8/fbbOHbsGNatW4ejR4/ivffeg7+/v3H/Dh06GIPL4ly5cgX/+c9/8OWXXxY5P2Jubi5UKpXJNnd3d6jVauzfvx8AsHv3bsTGxkKpVBrLxMfH4/Llyzh37pxZ7x8RFeCoWCvJulN8UFeWckR24eVV/HPduwO//lrwuKRuidhYYOvWgsfh4cAD2SPg3/8ib940u2qnT5+GEAINGjQo8vkGDRrg5s2buHr1KqpVqwYAaNu2rbGbr27duti5cyfef/99dOnSBVWrVgVQsBxVSapUqYIPPvgALi4uqFevHlJSUpCTk4NJkyYBAJKSkjBnzhzs3LkT/fv3B6APpApefjjGjx+P1atX44033ij1tcrlclSpUgUAUK1aNVSuXNnk+dq1ayMlJcX4eMqUKWjRogVmz55t3PbZZ58hNDQUp06dQvXq1TF//nxs3rwZMTExAICaNWvi999/x9KlSxEbG4v09HQ0b94c0dHR0Ol0qFKlCry9vY3Hq1GjRokrOwghMGTIEIwYMQLR0dFFBmHx8fFYsGABvv32Wzz33HPIzMzErFmzAAAZGfpLUzIzM43ZU4OAgADjcxEREaW8e0T0IAZ2VlKtkqr0QhaUI6KSGTJ1D85pZghiHny8YMECi4/dqFEjkxUYAgICEBkZaXwsl8vh5+dnXNoKAL7//nssWLAAf//9N+7evYv8/HyTQOlRREdHmzzev38/tmzZAq8iAvMzZ87g9u3bUKvVxm5bg7y8PDRv3hwA8Oqrr+Lpp5/GgQMH0KVLFzzxxBMm5b/44osS6/Thhx8iOzsbSUlJxZaJi4vDu+++ixEjRmDQoEFQKpV4++238fvvv5usGPHwvHRFtS0RmYeBnZW0jKiCIB8VMm+ri7zOTgYg0EeFlhFV7F01ouLdvVv8cw8v1fRAEFPIw8tQFZG90el0wL8rYJijdu3akMlkOHbsGPr06VPo+RMnTsDX19ek+7AoZQkOFApFoWMUtU2n0wEA9uzZg/79+2P69OmIj4+Hj48PVq1ahffee8/icxfF09PT5LFOp0PPnj0xd+7cQmWDgoJw5MgRAMCvv/6K6tWrmzxv6PLs1q0bzp8/j19//RWpqano06cPEhISzK7z5s2bsWfPHpMuVEAfhA4cOBCff/45ACAxMRHjxo1DRkYGfH19ce7cOSQlJRkzcYGBgcjMzDQ5hiFgNmTuiMh8DOysRO4iw9SeDfHqVwcKPWf4WZnasyHkLvwPlBzIQwGDTcvqdEB2ttmH8PPzQ5cuXbB48WKMGzfO5Dq7zMxMfP311xg8eLBJ4LZnzx6TY+zZswf169c3PlYoFMbl1axp586dCAsLMxnMcf78eYuOYVjuzZz6tWjRAmvWrEF4eDhci5gZv2HDhlAqlUhPT0dsbGyxx6latSqGDBmCwYMHIzo6GlOnTjU7sPvggw+M3aoAcPnyZcTHx2P16tVo1aqVSVmZTGYcNfvtt98iNDQULVq0AKDPqk6aNAl5eXnG92Djxo0IDg4u1EVLRKXj4Akr6hoZhCUvtEC1Sqb/wQb6qLDkhRboGln89SpEVNhHH32E3NxcxMfHY/v27bhw4QLWr1+PLl26oHr16njnnXdMyu/cuRMpKSk4deoUFi1ahO+++w5jxowxPh8eHo5NmzYhMzMTNy243q80tWvXRnp6OlatWoUzZ87ggw8+wA8//GDRMcLCwiCTyfDLL7/g6tWruFtCNnXkyJG4ceMGBgwYgD///BP//PMPNm7ciKFDh0Kr1aJSpUp4/fXXMW7cOHz++ec4c+YM0tLSsGjRImMmbcqUKfi///s//P333zh69Cg2bNhgcj3j4MGDS+xmrVGjBiIjI423unXrAgBq1aqFkJAQY7l3330Xhw8fxtGjRzFz5kzMmTMHH3zwgbEr9vnnn4dSqcSQIUNw5MgR/PDDD5g9ezYSExPZFUvScHUFXnxRf3PCJcUY2FlZ18ggrBvTzvj4q2Et8fubnRjUEZVBnTp1sG/fPtSqVQv9+vVDrVq18PLLL6Njx47YvXu3ccCBwfjx47F//340b94cM2fOxHvvvYf4+Hjj8++99x5SU1MRGhpqvNbMGnr37o1x48Zh1KhRaNasGXbt2oW3337bomNUr14d06dPx8SJExEQEIBRo0YVWzY4OBg7d+6EVqtFfHw8IiMjMWbMGPj4+BivDZw5cyamTJmC5ORkNGjQAPHx8fj555+NXaBubm5ISkpCkyZN0KFDB8jlcnzzzTfGc6SnpxsHODyKdevWoV27doiOjsavv/6K//u//zPpWvfx8UFqaiouXryI6OhoJCQkIDExEYmJiY98bqIyUSqBlSv1t4cuNXAGMlHBJgrKzs6Gj48Pbt++bfGFzRqNBmvXrkX37t0LXW/zILVGi/pvrwcAHJkeDy+l80X8zsjc9qmI1Go1zp49i4iIiELTT9iLTqdDdnY2vL29TQYmWEt4eDjGjh2LsWPHWv3Y5Z2t28baHOHzbE/82+bY7NE+lsQujv8NdkJu8oK3NVdj/et5iIiIyEaEKJh70wlzXwzsbMDFRWYM7nLzdRLXhoiIiMyWk6Of49PLyymXFGMfoY0oFS7I0+qgZsaOyC64SgERETN2NqN01Y/4YsaOiIiI7IWBnY2oFOyKJSIiIvtiYGcjSlf9W8uuWHIkFWwQPJVThhU/iKgwXmNnI+yKJUeiUCggk8lw9epVVK1aVZKJX3U6HfLy8qBWq51iSo2KxFnaRgiBvLw8XL16FS4uLsaVKoioAAM7GzF2xTJjRw5ALpcjJCQEFy9elGyQgRAC9+/fh7u7O1cUcDDO1jYeHh6oUaOGQwehRFJhYGcjhoydmhk7chBeXl6oU6cONBqNJOfXaDTYvn072rdvz0lWHYwztY1cLoerq6tTBKDkpORy4JlnCu47GckDu8WLF+Pdd99FRkYGGjVqhAULFqBdu3bFlv/666+RkpKC06dPw8fHB127dsW8efPg5+dnx1qXTsmMHTkguVxuXKNTinPn5+dDpVI5fPBQ0bBtiB6gUgHffSd1LcpM0jz26tWrMXbsWEyePBlpaWlo164dunXrhvT09CLL//777xg8eDCGDRuGo0eP4rvvvsPevXsxfPhwO9e8dCpeY0dERER2JmlgN3/+fAwbNgzDhw9HgwYNsGDBAoSGhmLJkiVFlt+zZw/Cw8MxevRoRERE4PHHH8crr7yCffv22bnmpTNk7DgqloiIiOxFsq7YvLw87N+/HxMnTjTZHhcXh127dhW5T5s2bTB58mSsXbsW3bp1Q1ZWFr7//ns8+eSTxZ4nNzcXubm5xsfZ2dkA9NeUWHqtkaG8OfspXPTXf9zPtfw8VDaWtA/ZH9vHcbFtHBvbx87u3YPC1xcAoLl5E/D0LLG4PdrHkmNLFthdu3YNWq0WAQEBJtsDAgKQmZlZ5D5t2rTB119/jX79+kGtViM/Px+9evXChx9+WOx5kpOTMX369ELbN27cCA8PjzLVPTU1tdQyVy65AHDBkeOnsPbeiTKdh8rGnPYh6bB9HBfbxrGxfexDrlajx7/3N2zYAK1KZdZ+tmyfHAvWrJV88MTDI5uEEMWOdjp27BhGjx6NKVOmID4+HhkZGZgwYQJGjBiB5cuXF7lPUlISEhMTjY+zs7MRGhqKuLg4eHt7W1RXjUaD1NRUdOnSpdQLjA+tP4kdV84jNKImusfXteg8VDaWtA/ZH9vHcbFtHBvbx87u3TPejY+PNytjZ+v2MfQ2mkOywM7f3x9yubxQdi4rK6tQFs8gOTkZbdu2xYQJEwAATZo0gaenJ9q1a4dZs2YhKCio0D5KpRJKpbLQdoVCUeYGMGdfdzf98/k68ItoZ4/StmR7bB/HxbZxbGwfO3ngPVYoFCaPS97Ndu1jyXElGzzh5uaGqKioQqnL1NRUtGnTpsh9cnJyCk1IaZi6wdGWSlJx8AQRERHZmaSjYhMTE7Fs2TJ89tlnOH78OMaNG4f09HSMGDECgL4bdfDgwcbyPXv2xP/+9z8sWbIE//zzD3bu3InRo0ejZcuWCA4OluplFIlLihEREZG9SXqNXb9+/XD9+nXMmDEDGRkZiIyMxNq1axEWFgYAyMjIMJnTbsiQIbhz5w4++ugjjB8/HpUrV0anTp0wd+5cqV5CsYwTFOczY0dERET2IfngiYSEBCQkJBT53MqVKwtte+211/Daa6/ZuFaPzjBBsVrDjB0REZHTkMuB7t0L7jsZyQO78ooZOyIiIiekUgG//ip1LcpM0mvsyjOlq2GtWGbsiIiIyD4Y2NmIUvFvVywzdkRERGQnDOxshBk7IiIiJ3Tvnn5SYk9Pk8mKnQWvsbMRTndCRETkpCxYwsvRMGNnI5ygmIiIiOyNgZ2NMGNHRERE9sbAzkaM19hx8AQRERHZCQM7G1EpCiYodrR1bImIiKh8YmBnI4YJigEgT8vuWCIiIrI9joq1EUNXLKC/zs5wzR0RERE5MBcXIDa24L6TYWBnI25yF8hkgBD6kbHeKoXUVSIiIqLSuLsDW7dKXYsyc75Q1EnIZDJOUkxERER2xcDOhjjlCREREdkTAzsb4iTFRERETubePaBqVf2NS4rRg5ixIyIickLXrkldgzJjxs6GOEkxERER2RMDOxsyTFLMwRNERERkDwzsbIgZOyIiIrInBnY2ZFh9gtfYERERkT0wsLMhlathvVhm7IiIiMj2OCrWhpixIyIicjIuLkB0dMF9J8PAzoYMGTsOniAiInIS7u7A3r1S16LMnC8UdSJKTlBMREREdsTAzoY4QTERERHZEwM7Gyq4xo4ZOyIiIqeQkwOEh+tvOTlS18ZivMbOhpTGUbHM2BERETkFIYDz5wvuOxlm7GyIExQTERGRPTGwsyHjkmK8xo6IiIjsgIGdDRkydhwVS0RERPbAwM6GCrpimbEjIiIi22NgZ0PGrlgOniAiIiI74KhYGzJ2xXLwBBERkXOQyYCGDQvuOxkGdjakZMaOiIjIuXh4AEePSl2LMmNXrA2pON0JERER2REDOxsyZOw4QTERERHZAwM7G+KoWCIiIieTkwM0aqS/cUkxelDBqFh2xRIRETkFIYBjxwruOxlm7GyIGTsiIiKyJwZ2NmQI7PK0Ouh0zhf1ExERkXNhYGdDhq5YgFk7IiIisj0GdjZkyNgBnPKEiIiIbI+BnQ25yl0gd9HPWs2MHREREdkaR8XamMrVBffytFBzZCwREZHjk8mAsLCC+06GgZ2NKRVy3MvTMmNHRETkDDw8gHPnpK5FmbEr1saMU55w9QkiIiKyMQZ2NmYYGavm4AkiIiKyMQZ2NsaMHRERkRO5fx947DH97f59qWtjMV5jZ2MFq08wY0dEROTwdDpg376C+05G8ozd4sWLERERAZVKhaioKOzYsaPYskOGDIFMJit0a9SokR1rbBmloSuWGTsiIiKyMUkDu9WrV2Ps2LGYPHky0tLS0K5dO3Tr1g3p6elFll+4cCEyMjKMtwsXLqBKlSp49tln7Vxz8zFjR0RERPYiaWA3f/58DBs2DMOHD0eDBg2wYMEChIaGYsmSJUWW9/HxQWBgoPG2b98+3Lx5Ey+99JKda24+pas+Y8fpToiIiMjWJAvs8vLysH//fsTFxZlsj4uLw65du8w6xvLly/HEE08gzDCRoANSKfRvMScoJiIiIluTbPDEtWvXoNVqERAQYLI9ICAAmZmZpe6fkZGBdevW4ZtvvimxXG5uLnJzc42Ps7OzAQAajQYajcaiOhvKW7KfQq6ftTon1/LzkWXK0j5kP2wfx8W2cWxsHzvTaKAw3tUApbzv9mgfS44t+ahY2UPLdQghCm0rysqVK1G5cmX06dOnxHLJycmYPn16oe0bN26Eh4eHRXU1SE1NNbvslcsuAFxw5NgJrL1zvEznI8tY0j5kf2wfx8W2cWxsH/uQq9Xo4u0NAEjdsAFalcqs/WzZPjk5OWaXlSyw8/f3h1wuL5Sdy8rKKpTFe5gQAp999hkGDRoENze3EssmJSUhMTHR+Dg7OxuhoaGIi4uD978NZy6NRoPU1FR06dIFCoWi9B0ApK09gV1X0lEjoja6x9Wx6HxkmbK0D9kP28dxsW0cG9tHAk89BQCIN6OoPdrH0NtoDskCOzc3N0RFRSE1NRV9+/Y1bk9NTUXv3r1L3Hfbtm34+++/MWzYsFLPo1QqoVQqC21XKBRlbgBL9nVX6stpdOAX0k4epW3J9tg+jott49jYPo7Nlu1jyXEl7YpNTEzEoEGDEB0djZiYGHzyySdIT0/HiBEjAOizbZcuXcIXX3xhst/y5cvRqlUrREZGSlFti6iMo2I5eIKIiIhsS9LArl+/frh+/TpmzJiBjIwMREZGYu3atcZRrhkZGYXmtLt9+zbWrFmDhQsXSlFliymNo2I53QkREZHDu38f6NZNf3/dOsDdXdr6WEjywRMJCQlISEgo8rmVK1cW2ubj42PRRYRS4wTFRERETkSnA7ZtK7jvZCRfUqy8Uyk4QTERERHZBwM7GzNk7DhBMREREdkaAzsb45JiREREZC8M7GzMsKQYAzsiIiKyNQZ2NmbM2LErloiIiGxM8lGx5Z2SGTsiIiLnUsYlRx0BAzsbUzFjR0RE5Dw8PYF796SuRZmxK9bGjBMUM2NHRERENsbAzsaMExQzY0dEREQ2xsDOxjhBMRERkRNRq4Enn9Tf1Gqpa2MxXmNnY4aMXb5OIF+rg6ucsTQREZHD0mqBtWsL7jsZRhk2ZpjuBGDWjoiIiGyLgZ2NGTJ2AAM7IiIisi0Gdjbm4iKDm5zrxRIREZHtMbCzA+PIWGbsiIiIyIYY2NmB0jgylhk7IiIish0GdnZgyNipNczYERERke1wuhM7MK4Xy2vsiIiIHJunJyCE1LUoM2bs7MC4XiyvsSMiIiIbYmBnB8b1YpmxIyIiIhtiYGcHHBVLRETkJNRq4Nln9TcnXFKMgZ0dGNaLZcaOiIjIwWm1wPff629cUoyKwowdERER2QMDOztQcvAEERER2QEDOztQcfAEERER2QEDOztgxo6IiIjsgYGdHRRcY8eMHREREdkOAzs7MIyKzeWSYkRERGRDXFLMDpixIyIichIeHsDduwX3nQwDOzsoWCuWGTsiIiKHJpPp14t1UuyKtQPjBMXM2BEREZENMbCzA2NXLDN2REREji03FxgyRH/LzZW6NhZjYGcHnO6EiIjISeTnA59/rr/l50tdG4sxsLMDTlBMRERE9sDAzg6YsSMiIiJ7YGBnB8ZRsRw8QURERDbEwM4ODBk7NQdPEBERkQ0xsLMDTlBMRERE9sDAzg6MS4rxGjsiIiKyIa48YQeGjB1HxRIRETk4Dw8gK6vgvpNhYGcHBYMndBBCQCaTSVwjIiIiKpJMBlStKnUtyoxdsXZg6IoVAtBohcS1ISIiovKKgZ0dGLpiAa4XS0RE5NByc4GRI/U3LilGRXGTu8DQ+8r1YomIiBxYfj6weLH+xiXFqCgymYxTnhAREZHNMbCzE05STERERLbGwM5OmLEjIiIiW2NgZyecpJiIiIhsjYGdnXCSYiIiIrI1BnZ28uAkxURERES2IHlgt3jxYkREREClUiEqKgo7duwosXxubi4mT56MsLAwKJVK1KpVC5999pmdalt2qn8HT3C6EyIiIgfm7g6cPau/ubtLXRuLSbqk2OrVqzF27FgsXrwYbdu2xdKlS9GtWzccO3YMNWrUKHKf5557DleuXMHy5ctRu3ZtZGVlId8J5pkpyNixK5aIiMhhubgA4eFS16LMJA3s5s+fj2HDhmH48OEAgAULFmDDhg1YsmQJkpOTC5Vfv349tm3bhn/++QdVqlQBAIQ7yZuvZMaOiIiIbEyywC4vLw/79+/HxIkTTbbHxcVh165dRe7z008/ITo6GikpKfjyyy/h6emJXr16YebMmXAvJl2am5uL3AeWBMnOzgYAaDQaaDQai+psKG/pfgDgJtcvPZGTm1em/al0j9I+ZHtsH8fFtnFsbB87y8uDy5QpAADdjBmAm1uJxe3RPpYc26LATqPRIC4uDkuXLkXdunUtrtiDrl27Bq1Wi4CAAJPtAQEByMzMLHKff/75B7///jtUKhV++OEHXLt2DQkJCbhx40ax19klJydj+vTphbZv3LgRHh4eZap7amqqxftcu+ICwAVph4/C9/qRMp2XzFOW9iH7Yfs4LraNY2P72IdcrUaP+fMBAOtatoRWpTJrP1u2T05OjtllLQrsFAoFjhw5Aplh4VMrePhYQohij6/T6SCTyfD111/Dx8cHgL4795lnnsGiRYuKzNolJSUhMTHR+Dg7OxuhoaGIi4uDt7e3RXXVaDRITU1Fly5doFAoLNp3549Hse/aJdSsXQ/dO9S0aF8yz6O0D9ke28dxsW0cG9vHzu7dM96Nj48HPD1LLG6P9jH0NprD4q7YwYMHY/ny5ZgzZ46lu5rw9/eHXC4vlJ3LysoqlMUzCAoKQvXq1Y1BHQA0aNAAQghcvHgRderUKbSPUqmEUqkstF2hUJS5Acqyr4dSXz5fgF9MG3uUtiXbY/s4LraNY2P72MkD77FCoTB5XPJutmsfS45rcWCXl5eHZcuWITU1FdHR0fB8KJKd/2/6sjRubm6IiopCamoq+vbta9yempqK3r17F7lP27Zt8d133+Hu3bvw8vICAJw6dQouLi4ICQmx9KXYFScoJiIiIluzOLA7cuQIWrRoAUAfVD3I0i7axMREDBo0CNHR0YiJicEnn3yC9PR0jBgxAoC+G/XSpUv44osvAADPP/88Zs6ciZdeegnTp0/HtWvXMGHCBAwdOrTYwROOomCtWI6KJSIiItuwOLDbsmWL1U7er18/XL9+HTNmzEBGRgYiIyOxdu1ahIWFAQAyMjKQnp5uLO/l5YXU1FS89tpriI6Ohp+fH5577jnMmjXLanWyFaWC050QERGRbT3SdCcXL16ETCZD9erVy3yMhIQEJCQkFPncypUrC22rX7++U44MMnbFcoJiIiIishGLlxTT6XSYMWMGfHx8EBYWhho1aqBy5cqYOXMmdDpmo4rDjB0REZETcHcHjhzR3xz8Mq+iWJyxmzx5snFUbNu2bSGEwM6dOzFt2jSo1Wq88847tqin01O5ckkxIiIih+fiAjRqJHUtysziwO7zzz/HsmXL0KtXL+O2pk2bonr16khISGBgVwxDxk7NjB0RERHZiMWB3Y0bN1C/fv1C2+vXr48bN25YpVLlkZIZOyIiIseXlwfMnq2/P2lSqUuKORqLr7Fr2rQpPvroo0LbP/roIzRt2tQqlSqPVMzYEREROT6NBpg+XX9zwvV5Lc7YpaSk4Mknn8Rvv/2GmJgYyGQy7Nq1CxcuXMDatWttUcdygRk7IiIisjWLM3axsbE4deoU+vbti1u3buHGjRt46qmncPLkSbRr184WdSwXOEExERER2ZpFGTuNRoO4uDgsXbqUgyQsxK5YIiIisjWLMnYKhQJHjhyxeOkwYlcsERER2Z7FXbGDBw/G8uXLbVGXcs04QTG7YomIiMhGLB48kZeXh2XLliE1NRXR0dHw9PQ0eX7+/PlWq1x5YpigOC9fB51OwMWFWU8iIiKyLosDuyNHjqBFixYAgFOnTpk8xy7a4hkydgCQp9VB5SIvoTQRERFJQqUC/vyz4L6TsSiw02q1mDZtGho3bowqVarYqk7lkiFjB+jXi1UpGNgRERE5HLkceOwxqWtRZhZdYyeXyxEfH4/bt2/bqj7llqvcBfJ/u1/VHEBBRERENmDx4InGjRvjn3/+sUVdyj3jyFhOeUJEROSY8vKAd9/V3/LypK6NxSwO7N555x28/vrr+OWXX5CRkYHs7GyTGxVPZRwZy4wdERGRQ9JogDfe0N8qwpJiXbt2BQD06tXLZLCEEAIymQxaLYOW4hgydpykmIiIiGzB4sBuy5YttqhHhcBJiomIiMiWLA7sYmNjbVGPCkHFSYqJiIjIhsy+xi4lJQX37983Pt6+fTtyc3ONj+/cuYOEhATr1q6cKeiKZcaOiIiIrM/swC4pKQl37twxPu7RowcuXbpkfJyTk4OlS5dat3bljNKVGTsiIiKyHbMDOyFEiY+pdEoFr7EjIiIi27H4GjsqO0PGjqNiiYiIHJRKBRgGipb3JcXo0RgzdrzGjoiIyDHJ5UCHDlLXoswsCuyWLVsGLy8vAEB+fj5WrlwJf39/ADC5/o6KpuI1dkRERGRDZgd2NWrUwKeffmp8HBgYiC+//LJQGSqeIWPHrlgiIiIHpdEAn3yiv//yy4BCIW19LGR2YHfu3DkbVqNi4ATFREREDi4vDxg1Sn9/yBCnC+wsXiuWyo4TFBMREZEtMbCzI05QTERERLbEwM6OOEExERER2RIDOztSGScoZmBHRERE1sfAzo4KJihmVywRERFZ3yNNUCyEwJYtW3D//n20adMGvr6+1qpXuVQwKpYZOyIiIrI+szN2t27dwosvvojGjRvjP//5D7Kzs9GuXTs88cQT6NmzJ+rXr49Dhw7Zsq5Ozzgqlhk7IiIix6RUAr/8or8plVLXxmJmB3avv/46du/ejX79+uHw4cPo2rUrtFotdu/ejT/++AMNGzbE5MmTbVlXp2ccFcuMHRERkWNydQWefFJ/c3W+lVfNrvG6devwzTffIDY2Fi+99BJCQ0OxefNmtGrVCgAwd+5c9OrVy2YVLQ+4ViwRERHZktmB3ZUrV1C3bl0AQPXq1aFSqRAaGmp8vkaNGrh69ar1a1iOGLpi85ixIyIickwaDfD11/r7Awc63coTZgd2Op0Ocrnc+Fgul0MmkxkfP3ifisYJiomIiBxcXh7w0kv6+88+W34DOwBYtmwZvLy8AAD5+flYuXIl/P39AQB37tyxfu3KGU5QTERERLZkdmBXo0YNfPrpp8bHgYGB+PLLLwuVoeJxgmIiIiKyJbMDu3PnztmwGhUDJygmIiIiW+LKE3ZkuMYuXyeQr2XWjoiIiKzLosAuPz8f7777Llq0aAEvLy9UqlQJLVq0wLx586DRaGxVx3LDMCoWAPIY2BEREZGVmd0Ve//+fXTp0gW7d+/GE088gfbt20MIgRMnTuDNN9/ETz/9hI0bN0KlUtmyvk7NzbUgjlZrdPBwk7AyREREVO6YHdglJyfjwoULSEtLQ5MmTUye++uvv9CrVy/MmTMH06ZNs3Ydyw25iwwKuQwarUBuPq+zIyIicjhKJfDf/xbcdzJmd8WuWrUK8+fPLxTUAUDTpk0xb948fPPNN1atXHmkMg6gYFcsERGRw3F11c9f9+yzTrmkmNmBXXp6Olq2bFns861bt0Z6erpVKlWeGZcVY8aOiIiIrMzswM7b2xtZWVnFPp+ZmQlvb2+rVKo8M05SzIwdERGR48nPB777Tn/Lz5e6NhYzO7Dr2LEjZs+eXezzc+bMQYcOHaxRp3LNkLHjXHZEREQOKDcXeO45/S03V+raWMzswG7q1KnYuHEjWrdujf/+9784dOgQDh06hFWrVqFVq1bYuHEjpk6danEFFi9ejIiICKhUKkRFRWHHjh3Flt26dStkMlmh24kTJyw+r1S4rBgRERHZitlXBTZs2BCpqakYNmwY+vfvD5lMBgAQQqB+/frYsGEDGjVqZNHJV69ejbFjx2Lx4sVo27Ytli5dim7duuHYsWMlLk928uRJk27fqlWrWnReKXFZMSIiIrIVi4Z7tG7dGkePHkVaWhpOnz4NAKhbty6aNWtWppPPnz8fw4YNw/DhwwEACxYswIYNG7BkyRIkJycXu1+1atVQuXLlMp1TaobVJ9gVS0RERNZWpiXFmjdvjk6dOqFz585lDury8vKwf/9+xMXFmWyPi4vDrl27Sj1/UFAQOnfujC1btpTp/FJhVywRERHZikUZu1u3bmHy5MlYvXo1bt68CQDw9fVF//79MWvWLIuyaNeuXYNWq0VAQIDJ9oCAAGRmZha5T1BQED755BNERUUhNzcXX375JTp37oytW7eiffv2Re6Tm5uL3AcufszOzgYAaDQai5dBM5R/lOXT3OT6Luyc3Dwuw2Zl1mgfsh22j+Ni2zg2to+daTRQGO9qgFLed3u0jyXHNjuwu3HjBmJiYnDp0iUMHDgQDRo0gBACx48fx8qVK7Fp0ybs2rULvr6+FlXWcK2egRCi0DaDevXqoV69esbHMTExuHDhAubNm1dsYJecnIzp06cX2r5x40Z4eHhYVFeD1NTUMu0HANezXAC4IO3QEfhcPVzm41DxHqV9yPbYPo6LbePY2D72IVer0ePf+xs2bIDWzKVSbdk+OTk5Zpc1O7CbMWMG3NzccObMmUJZthkzZiAuLg4zZszA+++/b9bx/P39IZfLC2XnsrKyCh2/JK1bt8ZXX31V7PNJSUlITEw0Ps7OzkZoaCji4uIsnndPo9EgNTUVXbp0gUKhKH2HImzPPYID1y+jVp366N4+okzHoKJZo33Idtg+jott49jYPnam0SB/2TIAQHzPnkAp77k92sfQ22gOswO7H3/8EUuXLi0y6AoMDERKSgpGjBhhdmDn5uaGqKgopKamom/fvsbtqamp6N27t7nVQlpaGoKCgop9XqlUQlnEWm8KhaLMDfAo+3q46ffT6MAvqI08SvuQ7bF9HBfbxrGxfexEoQCGDSvDbrZrH0uOa3Zgl5GRUeJ0JpGRkcVeG1ecxMREDBo0CNHR0YiJicEnn3yC9PR0jBgxAoA+23bp0iV88cUXAPSjZsPDw9GoUSPk5eXhq6++wpo1a7BmzRqLzisl46hYLilGREREVmZ2YOfv749z584hJCSkyOfPnj0LPz8/i07er18/XL9+HTNmzEBGRgYiIyOxdu1ahIWFAdAHkw+uP5uXl4fXX38dly5dgru7Oxo1aoRff/0V3bt3t+i8UjKuFcslxYiIiBxPfj6wYYP+fnw84GrROFPJmV3brl27YvLkyUhNTYWbm5vJc7m5uXj77bfRtWtXiyuQkJCAhISEIp9buXKlyeM33ngDb7zxhsXncCQqTndCRETkuHJzgR7/Dp+4e7f8BnbTp09HdHQ06tSpg5EjR6J+/foAgGPHjmHx4sXG6UeoZAUZO3bFEhERkXWZHdiFhIRg9+7dSEhIQFJSEoQQAPTTlXTp0gUfffQRQkNDbVbR8oITFBMREZGtWJRfjIiIwLp163Dz5k3jkmK1a9dGlSpVbFK58qhgrVhm7IiIiMi6ytRx7Ovri5YtW1q7LhWCIWOn5uAJIiIisrIyrRVLZWeY7oQZOyIiIrI2BnZ2plLwGjsiIiKyDecaw1sOGCco5qhYIiIix+PmBnz0UcF9J8PAzs6M050wY0dEROR4FApg5Eipa1Fm7Iq1M+N0Jxw8QURERFbGjJ2dGaY74VqxREREDkirBXbs0N9v1w6Qy6Wtj4UY2NkZM3ZEREQOTK0GOnbU3797F/D0lLY+FmJXrJ0pH5ig2LB6BxEREZE1MLCzM0PGTicAjZaBHREREVkPAzs7M0x3AnCSYiIiIrIuBnZ2ZhrY8To7IiIish4GdnYmk8k4STERERHZBAM7CRSsF8uMHREREVkPpzuRgEohR7Y6n1OeEBERORqFAkhJKbjvZBjYSUDJSYqJiIgck5sbMGGC1LUoM3bFSoCTFBMREZEtMGMnAdUDkxQTERGRA9FqgQMH9PdbtOCSYlQ6Q8ZOzYwdERGRY1GrgZYt9fe5pBiZo2BULDN2REREZD0M7CSgUvx7jR2nOyEiIiIrYmAnAWPGjhMUExERkRUxsJMAM3ZERERkCwzsJMCVJ4iIiMgWGNhJgGvFEhERkS1wuhMJsCuWiIjIQSkUwNSpBfedDAM7CTBjR0RE5KDc3IBp06SuRZmxK1YCSgWXFCMiIiLrY8ZOApygmIiIyEHpdMDx4/r7DRoALs6VA2NgJwFDxo5LihERETmY+/eByEj9fS4pRuZgxo6IiIhsgYGdBDgqloiIiGyBgZ0EOCqWiIiIbIGBnQS48gQRERHZAgM7CbArloiIiGyBgZ0E2BVLREREtsDpTiSgdGXGjoiIyCEpFMDrrxfcdzIM7CSgUvx7jR0zdkRERI7FzQ14912pa1Fm7IqVgHGCYmbsiIiIyIqYsZOA4Rq7vHwdhBCQyWQS14iIiIgA6JcUS0/X369Rg0uKUekMo2IB/XV2Dz4mIiIiCd2/D0RE6O9zSTEyhyFjBwC5XC+WiIiIrISBnQRcXWRw+bf3levFEhERkbUwsJOATCbjJMVERERkdQzsJMJJiomIiMjaGNhJhJMUExERkbUxsJOIcZJiXmNHREREViJ5YLd48WJERERApVIhKioKO3bsMGu/nTt3wtXVFc2aNbNtBW3EkLFTc1QsERGR43B1BRIS9DdX55sVTtLAbvXq1Rg7diwmT56MtLQ0tGvXDt26dUO6YWLAYty+fRuDBw9G586d7VRT61MyY0dEROR4lEpg0SL9TamUujYWkzSwmz9/PoYNG4bhw4ejQYMGWLBgAUJDQ7FkyZIS93vllVfw/PPPIyYmxk41tT6V4Ro7ZuyIiIjISiTLMebl5WH//v2YOHGiyfa4uDjs2rWr2P1WrFiBM2fO4KuvvsKsWbNKPU9ubi5yc3ONj7OzswEAGo0GGo3Gojobylu6X1EUcv1EdvfUeVY5Hlm3fcj62D6Oi23j2Ng+diYEcO2a/r6/P1DKsp/2aB9Lji1ZYHft2jVotVoEBASYbA8ICEBmZmaR+5w+fRoTJ07Ejh074Gpmv3dycjKmT59eaPvGjRvh4eFhecUBpKamlmm/B92+4QLABfvS/oLi8sFHPh4VsEb7kO2wfRwX28axsX3sQ65Wo0f//gCAX1atglalMms/W7ZPTk6O2WUlvypQ9lAkLIQotA0AtFotnn/+eUyfPh1169Y1+/hJSUlITEw0Ps7OzkZoaCji4uLg7e1tUV01Gg1SU1PRpUsXKBQKi/Z92IY7f+HIzSuo26ARureu8UjHIj1rtg9ZH9vHcbFtHBvbx87u3TPejY+PL3WtWHu0j6G30RySBXb+/v6Qy+WFsnNZWVmFsngAcOfOHezbtw9paWkYNWoUAECn00EIAVdXV2zcuBGdOnUqtJ9SqYSyiIsfFQpFmRvgUfY1ULnp33qNDvyiWpk12odsh+3juNg2jo3tYycPvMcKhcLkccm72a59LDmuZIMn3NzcEBUVVSh1mZqaijZt2hQq7+3tjcOHD+PgwYPG24gRI1CvXj0cPHgQrVq1slfVrYITFBMREZG1SdoVm5iYiEGDBiE6OhoxMTH45JNPkJ6ejhEjRgDQd6NeunQJX3zxBVxcXBAZGWmyf7Vq1aBSqQptdwacoJiIiIisTdLArl+/frh+/TpmzJiBjIwMREZGYu3atQgLCwMAZGRklDqnnbPiBMVERERkbZIPnkhISEBCQkKRz61cubLEfadNm4Zp06ZZv1J2oHRlxo6IiIisS/LArqJSKThBMRERkcNxdQVefLHgvpNxvhqXE4aMnZqDJ4iIiByHUgmU0mPoyCRdUqwiK8jYsSuWiIiIrIMZO4kUXGPHjB0REZHDEAIwrPTg4VHqkmKOhhk7iSj/ne5EzYwdERGR48jJAby89DcLlvJyFAzsJKLiBMVERERkZQzsJKJUsCuWiIiIrIuBnUSMS4qxK5aIiIishIGdRFTM2BEREZGVMbCTiDFjx5UniIiIyEoY2EnEOEExV54gIiIiK+E8dhIxTlDMjB0REZHjkMuBZ54puO9kGNhJxJCx02gFtDoBuYtzTYBIRERULqlUwHffSV2LMmNXrEQM050AzNoRERGRdTCwk4hh8AQA5PI6OyIiIrICBnYSkbvIoJDru1/VzNgRERE5hnv39OvDymT6+06GgZ2ECiYpZsaOiIiIHh0DOwlxkmIiIiKyJgZ2EjJk7NRcVoyIiIisgIGdhAxTnjBjR0RERNbAwE5CSk5STERERFbEwE5CXFaMiIiIrIkrT0iooCuWGTsiIiKHIJcD3bsX3HcyDOwkZFwvlhk7IiIix6BSAb/+KnUtyoxdsRIydsUyY0dERERWwMBOQkpm7IiIiMiKGNhJSMXpToiIiBzLvXuAp6f+5oRLivEaOwkpFYZRseyKJSIichg5OVLXoMyYsZOQca1YZuyIiIjIChjYSahgrVhm7IiIiOjRMbCTUMFasczYERER0aNjYCchTlBMRERE1sTATkLGCYp5jR0RERFZAUfFSsiYseOoWCIiIsfg4gLExhbcdzIM7CSkVHAeOyIiIofi7g5s3Sp1LcrM+ULRckTlypUniIiIyHoY2EnIOEExB08QERGRFTCwk5CSGTsiIiLHcu8eULWq/sYlxcgSnKCYiIjIAV27JnUNyowZOwlxgmIiIiKyJgZ2EmLGjoiIiKyJgZ2EjNfYcboTIiIisgIGdhIyTFCs1mghhJC4NkREROTsGNhJSPnvkmI6AeTrGNgRERHRo2FgJyFXF5nx/o7T16BlcEdERCQtFxcgOlp/45JiZK71RzIw7edjxsdDV+5FkI8KU3s2RNfIIAlrRkREVIG5uwN790pdizJzvlC0HFh/JAOvfnUAmbfVJtszb6vx6lcHsP5IhkQ1IyIiImfGwM7OtDqB6T8fQ1GdroZt038+xm5ZIiIishgDOzv78+wNZDyUqXuQAJBxW40/z96wX6WIiIhILycHCA/X33JypK6NxSQP7BYvXoyIiAioVCpERUVhx44dxZb9/fff0bZtW/j5+cHd3R3169fH+++/b8faPrqsO8UHdWUpR0RERFYkBHD+vP7mhFORSTp4YvXq1Rg7diwWL16Mtm3bYunSpejWrRuOHTuGGjVqFCrv6emJUaNGoUmTJvD09MTvv/+OV155BZ6ennj55ZcleAWWq1ZJZdVyRERERAaSZuzmz5+PYcOGYfjw4WjQoAEWLFiA0NBQLFmypMjyzZs3x4ABA9CoUSOEh4fjhRdeQHx8fIlZPkfTMqIKgnxUkJVQJshHhZYRVexWJyIiIiofJAvs8vLysH//fsTFxZlsj4uLw65du8w6RlpaGnbt2oXY2FhbVNEm5C4yTO3ZEACKDe4Su9SF3KWk0I+IiIioMMm6Yq9duwatVouAgACT7QEBAcjMzCxx35CQEFy9ehX5+fmYNm0ahg8fXmzZ3Nxc5ObmGh9nZ2cDADQaDTQajUV1NpS3dL+Hda7njw/7N8WstSeQmV1QN1cXGfJ1AusOZ6B3kwDIZAzuLGGt9iHbYPs4LraNY2P72JlGA4XxrgYo5X23R/tYcmzJJyh+OHgRQpQa0OzYsQN3797Fnj17MHHiRNSuXRsDBgwosmxycjKmT59eaPvGjRvh4eFRpjqnpqaWab+HvdkQOJMtQ7YG8FYAKrnAgiNybD55FZNWrEe7QOe7aNMRWKt9yDbYPo6LbePY2D72IVer0ePf+xs2bIBWZd4177ZsnxwLRudKFtj5+/tDLpcXys5lZWUVyuI9LCIiAgDQuHFjXLlyBdOmTSs2sEtKSkJiYqLxcXZ2NkJDQxEXFwdvb2+L6qzRaJCamoouXbpAoVCUvkMZKEPP4521J/HzBQWGPtkadQK8bHKe8sge7UNlx/ZxXGwbx8b2sbOcHIgGDQAA8V27AqUkgezRPobeRnNIFti5ubkhKioKqamp6Nu3r3F7amoqevfubfZxhBAmXa0PUyqVUCqVhbYrFIoyN8Cj7Fua4e1qYeeZG9h68ioSvz+MH0e2hUoht8m5yitbtg89OraP42LbODa2j534+ADH9Et+WvJu27J9LDmupKNiExMTsWzZMnz22Wc4fvw4xo0bh/T0dIwYMQKAPts2ePBgY/lFixbh559/xunTp3H69GmsWLEC8+bNwwsvvCDVS7A6mUyGd59pCn8vN5zIvIM5605IXSUiIiJyEpJeY9evXz9cv34dM2bMQEZGBiIjI7F27VqEhYUBADIyMpCenm4sr9PpkJSUhLNnz8LV1RW1atXCnDlz8Morr0j1EmyiaiUl3n2mKV5auRcrd51DbN2qaF+3Kv48ewNZd9SoVkk/HQpHzhIREdGDJB88kZCQgISEhCKfW7lypcnj1157Da+99podaiW9jvWrYUibcKzcdQ6jV6XBXSFH1p2CLucgHxWm9myIrpFBEtaSiIionMnJAR57TH9/795Sr7FzNJIvKUbFm9itPqpXVuGOOt8kqAOAzNtqvPrVAaw/kmGyXasT2H3mOv7v4CXsPnMdWh1H1hIREZlNCP01dseOcUkxsi6F3AW5+boinxPQT3A8/edj6NIwEHIXGdYfycD0n48h43bBOrPM7BEREVUczNg5sD/P3sC1u3nFPi8AZNxW48+zN7D+SAZe/eqASVAHFJ/ZIyIiovKHGTsHlnVHXXohACnrj+N01j0UlTAuKrNHRERE5RMzdg6sWiXzZrtOu3Abd3Pzi33+wcweERERlV8M7BxYy4gqCPJRoaQcWxUPBXo0Me/6OXMzgEREROScGNg5MLmLDFN7NgSAQsGd7N/b7KcaY2CrMLOO92AGkKNniYiIiiCTAWFh+lspa9c7Il5j5+C6RgZhyQstCo12DXxgtKtWJxDko0LmbXWR19kZfLnnHCL8PXHwwk2OniUiIiqKhwdw7pzUtSgzBnZOoGtkELo0DCx25QlDZu/Vrw5ABpgEd4bHMgBrD2di0/GsIqdQMYyeXfJCi0LBnVYnuOoFERGRE2Bg5yTkLjLE1PIr9vnSMnuhVTzw1g+HkXbhdpH7Fzd6lnPjEREROQ8GduVIaZm9CfH18fyyP4rd/8HRszG1/Ixz4z3cvVtSdo+IiMip3b8PtG+vv799O+DuLm19LMTArpwpKbN39W5ukdsfNm51GpqE+GDn39c5Nx4REVUsOh2wb1/BfSfDwK4CMXdevMzsXGQeyyqxzMPZPYDX4hEREUmNgV0FYpgXr7jRszIAVSspMffpJvjl0GWsOXCp1GMa5sbjtXhERETSY2BXgZQ2ehYAZvRuhI71q0GlkJsV2H24+TT2n7+JL3efN/taPGfJ7DlLPSsiW7SNJcc0tyw/Q0RkbwzsKhhz5sUDSs/uGfyddQ9/Z90r8rmirsWzVWZPqxP44+wN7L8mg9/ZG4ipXe2RfmiZgSydpYGQtdrH0rax9jHNLWvJMaUMKs1tG1ucm4isTyaEqFBLDmRnZ8PHxwe3b9+Gt7e3RftqNBqsXbsW3bt3h0KhsFEN7cPcH7tXvzoAoOjs3pynG+NA+i2s3nuh1PN9OKA55DIZRn5TeJSt4XhlnUPP2j+0xY0GLq6eUv6ISRUQSBUIWdo21j6muWUtPaZUQWVFDmhtcUxbnXv331nYuOMPxLVr9cj/tDrL65bUvXuAl5f+/t27gKdnicXtERtYErswsLNAeQrszFXaH+n/O3gJY1YdfOTzyKDPGv7+ZieL5tCz9g+tVifw+NzNJucsqZ62yB6ZW84Zgitrtk+XhoEWt401jwnArLKbx3dAx3lbkZld+jFTj2VKFlRW5IDWFsfkua13bkDiQPXOXejCwqETAge3pyG6UWiJ5zYn8H5UDOxKwMDOciV9GXafuY4Bn+4p9RguMsCc5Wjff64p+jSvjg1HS//BM+dHOcBbhZ9fexxPfrADWXeKn+7F10OBpO4NcDwjGyt2niu1nt/+pzVu38+zevbI3HLOEFwB5gVC2yZ0RPt3tyCzmHIAUNldgd7Ng/H5rvPFljHo2SQIIVXc8eXudNzNzS+2nJdSjvZ1/LH2yJVSjxnu54E8rQ6XbxVfR0tF1aiMYxl3cF+jLbaMr4cCc55qArkLMOH7Q7iZoym2rL+XEiuGPIaXVv6Ja3fziizz4Hse++4Ws9pRqxNol7IZV7KL/v6U5ZhSBrS2OCbPbb1zG8qWt0D1UTGwKwEDO+syZLhKGmkb6KPC63F1Mf67Q2YdM9BbiVv3NVBrip8/qLK7AnGRAfjv3otlq/gj8vNU4E6uFnlFLM8GlC17JEVwBQD+Xm74oH9zjPwmDTdzig4IAH0g1K6OP9aZEQi1rlkFMpkMu89cL7Wsm1yGPG2F+jMkOYVcBo0Z77ncBdCaOY1XVS83XC0moHzQ8Hbh+H7fJdy6X1KQ6oaVL7WE3EWGQcv/KDZQNZRdPDAKr361H9fvFV+usrsCE7rWQ75Wh/c2nkK2uqSg3xUvtQ3Hip3nSvznwNdDgYXPNcO47/4q9txl/WfHnCDZkmDaGc4tddBvq0DVGhjYlYCBnfWVdi3ekhdawMfdzazMniU/JNbWILASvN1d8cfZm1Y7ZoC3EgHeKpzIvFNsEAiY/0OidHVBuJ8HTl65W+q5ZQBkZmZKnUGtqp44c7XogToP6tEkCHfUGmw7da3Usi1CK+PAhVullpvYrT4ULjLM/PV4qWVfj6uLeRtPlVoutq6/WXUMq+IBHQQu3Lhfalmlqwy5+eWkwcsZfy83uLm6mJX1rVZJWWIPg0GNKu5IN+Nz0bi6N/K1Ascz75RaNthHhcsl/CNoEOHvgbPXckot16KGL1xkwL7zpf9d7R4ZgG2nr+FebvFZbB93BSZ2qwcXmQyz157A7RL+QfDzdMNHA5pj1LdpJQbeAd4qbHm9Azq9t7XU4HPT+Fjk5esQ9/72YtuoqEuLHpUlsYuLVc5IFZphpG2gj+kEyIE+KuN/LYZRtsV9xGXQp7D/mhKPkR1rmXXeegFeZpWb1L2+WeWm9GyEb/4TU2o9q1VSYmQH8+p4JTsXhy7eLjGoA4C7ufn4cPPfJQZ1AJCbrzMrqAP0Qba5QV0lpdysci1qVDar3IsxYRjcOsyssglmvpczekWa9Rla2L85RsTWNuuY4+PqmXXM/7SriSFtI8wq+3L7WmaXM8ecp5sg5emmZpV9I968z7q537GPBjTHJ4OizCo7sFUNs8qF+3mYVa6SUg5PMz+X5paLDPZGkxAfs8rWrWbe3xcfd/Mml7h2N8/srnxzgjoAZgV1AHD4UrZZQR0As4I6AGYFdQBwIP2mWUEdAKw9cqXEoA4Abt/XIOl/R/DmmsMlBnUAcP1eHgYs+6PETK4AkJmtRoMp641BnVKTi1XfTMSqbyZCqck1lsu4rUbDKRvQbEZqiW304AT+UmBgR1bRNTIIv7/ZCd/+pzUW9m+Gb//TGr+/2cmYijbMoQeg0A+e4fHUng3hpXLF47WrmnXOKT0amfUDOqSNeT/IhmsHS6vnjN6N8Hgd8+o4rWdDDG8XYVbZOmb+kHRtFGBWuSUDW2DJwBZmlR37RF2zyo3vYl4gNKVnI0ztZV77jH2irlnlWtfyM+szJHeRmf2PhCXHNPcz7ObqYla51jX9zP5cmvt6BsWEm1VuTGfz3vNujYPQuUGAWWWn9jSvvd/p27iYEqY+GfwYlg1+zKyyiWZ+fic/2RBJ3RqYVbbfY6FmlRvdqY5Z5Wb0boS3njTv3M+3NO/cT7UINqvcyI61MLqzef/sPBcdYla53k3NO/fwxyMw7PFws8q2CK1sVrlGwd5oEFTJrLKVVJbP6uYiBFpfOILWF47A5RE6NQ0T+NsbAzuyGsM6tb2bVUdMLb9CKWhzMnsArP6jbO4PraG+1sxADooJR+f65gVi/c38IRnU2rwf77hGgYhrFGjVgEDKQEjuIjP7M2TuuS05JmD+Z9iccpbU0drvpSXveXkKaG1xTHPLDWwVhpfMzPpOMzM7PeeppmaVS+xSz+xgflafxmaVe/dZ886d1L0BJnVvaFbZ8fH1iilh6q0nG2JKj0ZmlR3b2bzA+/Uu5v1zsPzFaHw+1Lx/OMxdxtPaGNiRXZWW2QNs86NsyY+3OfW0pI7W/iFxluAKsG4g9OAxS/sM2eqYlp6/tHJSvpcVMaAtb0FyeTu3lEH/y7HmXULRoV41PF67qtn1lAIHT1iAgyfsy9I5j6w9iac162jOAJMHR2WVVs6Sc1taT1vNMyVF+9jqmNYm9eSy5s7DVR7mYbTVMXlu65zb0r+B1vy7aijnnqfGsfefAQA0GPc91G6qMp/bWjgqtgQM7JyLJT94UrWPtZcpc5ZJPC3F74/jcvTvjiVlpQ6SufLEo59b6kB17pr92DKtJwB9YFe5amXOY+fIGNiVX87QPlIHV1JyhvapqNg2jq0ito/UK0/IvfWDM/44dN7pVp6wfLgIEZWZYYCJtcoREZVHlvwNtPbfVbmLDPDQT8vTqqaffumkEsq2iqiC68cFWjnIP+AM7IiIiIgMPD2Be6VPhu6oOCqWiIiIqJxgYEdERERUTjCwIyIiIjJQq4Enn9Tf1NKsHvEoeI0dERERkYFWC6xdW3DfyTBjR0RERFROMLAjIiIiKicY2BERERGVEwzsiIiIiMoJBnZERERE5USFGxVrWBo3Ozvb4n01Gg1ycnKQnZ1dYdbrcyZsH8fG9nFcbBvHxvaxswdXncjOLnVkrD3axxCzGGKYklS4wO7OnTsAgNDQUIlrQkRERA4tOFjqGpi4c+cOfHx8SiwjE+aEf+WITqfD5cuXUalSJchkli3Wm52djdDQUFy4cAHe3t42qiGVFdvHsbF9HBfbxrGxfRybPdpHCIE7d+4gODgYLi4lX0VX4TJ2Li4uCAkJeaRjeHt788vlwNg+jo3t47jYNo6N7ePYbN0+pWXqDDh4goiIiKicYGBHREREVE4wsLOAUqnE1KlToVQqpa4KFYHt49jYPo6LbePY2D6OzdHap8INniAiIiIqr5ixIyIiIionGNgRERERlRMM7IiIiIjKCQZ2Fli8eDEiIiKgUqkQFRWFHTt2SF2lcm/79u3o2bMngoODIZPJ8OOPP5o8L4TAtGnTEBwcDHd3d3To0AFHjx41KZObm4vXXnsN/v7+8PT0RK9evXDx4kU7voryKTk5GY899hgqVaqEatWqoU+fPjh58qRJGbaPdJYsWYImTZoY59aKiYnBunXrjM+zbRxHcnIyZDIZxo4da9zG9pHOtGnTIJPJTG6BgYHG5x2+bQSZZdWqVUKhUIhPP/1UHDt2TIwZM0Z4enqK8+fPS121cm3t2rVi8uTJYs2aNQKA+OGHH0yenzNnjqhUqZJYs2aNOHz4sOjXr58ICgoS2dnZxjIjRowQ1atXF6mpqeLAgQOiY8eOomnTpiI/P9/Or6Z8iY+PFytWrBBHjhwRBw8eFE8++aSoUaOGuHv3rrEM20c6P/30k/j111/FyZMnxcmTJ8WkSZOEQqEQR44cEUKwbRzFn3/+KcLDw0WTJk3EmDFjjNvZPtKZOnWqaNSokcjIyDDesrKyjM87etswsDNTy5YtxYgRI0y21a9fX0ycOFGiGlU8Dwd2Op1OBAYGijlz5hi3qdVq4ePjIz7++GMhhBC3bt0SCoVCrFq1yljm0qVLwsXFRaxfv95uda8IsrKyBACxbds2IQTbxxH5+vqKZcuWsW0cxJ07d0SdOnVEamqqiI2NNQZ2bB9pTZ06VTRt2rTI55yhbdgVa4a8vDzs378fcXFxJtvj4uKwa9cuiWpFZ8+eRWZmpkm7KJVKxMbGGttl//790Gg0JmWCg4MRGRnJtrOy27dvAwCqVKkCgO3jSLRaLVatWoV79+4hJiaGbeMgRo4ciSeffBJPPPGEyXa2j/ROnz6N4OBgREREoH///vjnn38AOEfbVLi1Ysvi2rVr0Gq1CAgIMNkeEBCAzMxMiWpFhve+qHY5f/68sYybmxt8fX0LlWHbWY8QAomJiXj88ccRGRkJgO3jCA4fPoyYmBio1Wp4eXnhhx9+QMOGDY0/Lmwb6axatQoHDhzA3r17Cz3H7460WrVqhS+++AJ169bFlStXMGvWLLRp0wZHjx51irZhYGcBmUxm8lgIUWgb2V9Z2oVtZ12jRo3CoUOH8Pvvvxd6ju0jnXr16uHgwYO4desW1qxZgxdffBHbtm0zPs+2kcaFCxcwZswYbNy4ESqVqthybB9pdOvWzXi/cePGiImJQa1atfD555+jdevWABy7bdgVawZ/f3/I5fJCkXZWVlahqJ3sxzBKqaR2CQwMRF5eHm7evFlsGXo0r732Gn766Sds2bIFISEhxu1sH+m5ubmhdu3aiI6ORnJyMpo2bYqFCxeybSS2f/9+ZGVlISoqCq6urnB1dcW2bdvwwQcfwNXV1fj+sn0cg6enJxo3bozTp087xXeHgZ0Z3NzcEBUVhdTUVJPtqampaNOmjUS1ooiICAQGBpq0S15eHrZt22Zsl6ioKCgUCpMyGRkZOHLkCNvuEQkhMGrUKPzvf//D5s2bERERYfI828fxCCGQm5vLtpFY586dcfjwYRw8eNB4i46OxsCBA3Hw4EHUrFmT7eNAcnNzcfz4cQQFBTnHd8fmwzPKCcN0J8uXLxfHjh0TY8eOFZ6enuLcuXNSV61cu3PnjkhLSxNpaWkCgJg/f75IS0szTjMzZ84c4ePjI/73v/+Jw4cPiwEDBhQ57DwkJET89ttv4sCBA6JTp06cEsAKXn31VeHj4yO2bt1qMi1ATk6OsQzbRzpJSUli+/bt4uzZs+LQoUNi0qRJwsXFRWzcuFEIwbZxNA+OihWC7SOl8ePHi61bt4p//vlH7NmzR/To0UNUqlTJ+Hvv6G3DwM4CixYtEmFhYcLNzU20aNHCOK0D2c6WLVsEgEK3F198UQihH3o+depUERgYKJRKpWjfvr04fPiwyTHu378vRo0aJapUqSLc3d1Fjx49RHp6ugSvpnwpql0AiBUrVhjLsH2kM3ToUOPfq6pVq4rOnTsbgzoh2DaO5uHAju0jHcO8dAqFQgQHB4unnnpKHD161Pi8o7eNTAghbJ8XJCIiIiJb4zV2REREROUEAzsiIiKicoKBHREREVE5wcCOiIiIqJxgYEdERERUTjCwIyIiIionGNgRERERlRMM7IiIiIjKCQZ2RFShnDt3DjKZDAcPHpS6KkYnTpxA69atoVKp0KxZM6mrQ0ROjIEdEdnVkCFDIJPJMGfOHJPtP/74I2QymUS1ktbUqVPh6emJkydPYtOmTYWel8lkJd6GDBli/0oTkUNiYEdEdqdSqTB37lzcvHlT6qpYTV5eXpn3PXPmDB5//HGEhYXBz8+v0PMZGRnG24IFC+Dt7W2ybeHChSblNRpNmetCRM6NgR0R2d0TTzyBwMBAJCcnF1tm2rRphbolFyxYgPDwcOPjIUOGoE+fPpg9ezYCAgJQuXJlTJ8+Hfn5+ZgwYQKqVKmCkJAQfPbZZ4WOf+LECbRp0wYqlQqNGjXC1q1bTZ4/duwYunfvDi8vLwQEBGDQoEG4du2a8fkOHTpg1KhRSExMhL+/P7p06VLk69DpdJgxYwZCQkKgVCrRrFkzrF+/3vi8TCbD/v37MWPGDMhkMkybNq3QMQIDA403Hx8fyGQy42O1Wo3KlSvjv//9Lzp06ACVSoWvvvoKALBixQo0aNAAKpUK9evXx+LFi02Oe+nSJfTr1w++vr7w8/ND7969ce7cOePzW7duRcuWLeHp6YnKlSujbdu2OH/+fJGvk4gcAwM7IrI7uVyO2bNn48MPP8TFixcf6VibN2/G5cuXsX37dsyfPx/Tpk1Djx494Ovriz/++AMjRozAiBEjcOHCBZP9JkyYgPHjxyMtLQ1t2rRBr169cP36dQD6DFlsbCyaNWuGffv2Yf369bhy5Qqee+45k2N8/vnncHV1xc6dO7F06dIi67dw4UK89957mDdvHg4dOoT4+Hj06tULp0+fNp6rUaNGGD9+PDIyMvD666+X6X148803MXr0aBw/fhzx8fH49NNPMXnyZLzzzjs4fvw4Zs+ejbfffhuff/45ACAnJwcdO3aEl5cXtm/fjt9//x1eXl7o2rUr8vLykJ+fjz59+iA2NhaHDh3C7t278fLLL1fY7nIipyGIiOzoxRdfFL179xZCCNG6dWsxdOhQIYQQP/zwg3jwT9LUqVNF06ZNTfZ9//33RVhYmMmxwsLChFarNW6rV6+eaNeunfFxfn6+8PT0FN9++60QQoizZ88KAGLOnDnGMhqNRoSEhIi5c+cKIYR4++23RVxcnMm5L1y4IACIkydPCiGEiI2NFc2aNSv19QYHB4t33nnHZNtjjz0mEhISjI+bNm0qpk6dWuqxhBBixYoVwsfHx/jY8HoWLFhgUi40NFR88803JttmzpwpYmJihBBCLF++XNSrV0/odDrj87m5ucLd3V1s2LBBXL9+XQAQW7duNateROQYXCWNKomoQps7dy46deqE8ePHl/kYjRo1gotLQedDQEAAIiMjjY/lcjn8/PyQlZVlsl9MTIzxvqurK6Kjo3H8+HEAwP79+7FlyxZ4eXkVOt+ZM2dQt25dAEB0dHSJdcvOzsbly5fRtm1bk+1t27bFX3/9ZeYrNM+Ddbl69SouXLiAYcOG4T//+Y9xe35+Pnx8fADoX+Pff/+NSpUqmRxHrVbjzJkziIuLw5AhQxAfH48uXbrgiSeewHPPPYegoCCr1puIrIuBHRFJpn379oiPj8ekSZMKjex0cXGBEMJkW1GDAhQKhcljmUxW5DadTldqfQzdjDqdDj179sTcuXMLlXkwsPH09Cz1mA8e10AIYfUuzQfrYnitn376KVq1amVSTi6XG8tERUXh66+/LnSsqlWrAtBfozd69GisX78eq1evxltvvYXU1FS0bt3aqnUnIuthYEdEkpozZw6aNWtmzIIZVK1aFZmZmSZBkDXnntuzZw/at28PQJ/J2r9/P0aNGgUAaNGiBdasWYPw8HC4upb9z6S3tzeCg4Px+++/G88FALt27ULLli0f7QWUICAgANWrV8c///yDgQMHFlmmRYsWWL16NapVqwZvb+9ij9W8eXM0b94cSUlJiImJwTfffMPAjsiBcfAEEUmqcePGGDhwID788EOT7R06dMDVq1eRkpKCM2fOYNGiRVi3bp3Vzrto0SL88MMPOHHiBEaOHImbN29i6NChAICRI0fixo0bGDBgAP7880/8888/2LhxI4YOHQqtVmvReSZMmIC5c+di9erVOHnyJCZOnIiDBw9izJgxVnstRZk2bRqSk5OxcOFCnDp1CocPH8aKFSswf/58AMDAgQPh7++P3r17Y8eOHTh79iy2bduGMWPG4OLFizh79iySkpKwe/dunD9/Hhs3bsSpU6fQoEEDm9abiB4NAzsiktzMmTMLdbs2aNAAixcvxqJFi9C0aVP8+eefZR4xWpQ5c+Zg7ty5aNq0KXbs2IH/+7//g7+/PwAgODgYO3fuhFarRXx8PCIjIzFmzBj4+PiYXM9njtGjR2P8+PEYP348GjdujPXr1+Onn35CnTp1rPZaijJ8+HAsW7YMK1euROPGjREbG4uVK1ciIiICAODh4YHt27ejRo0aeOqpp9CgQQMMHToU9+/fh7e3Nzw8PHDixAk8/fTTqFu3Ll5++WWMGjUKr7zyik3rTUSPRiYe/mtKRERERE6JGTsiIiKicoKBHREREVE5wcCOiIiIqJxgYEdERERUTjCwIyIiIionGNgRERERlRMM7IiIiIjKCQZ2REREROUEAzsiIiKicoKBHREREVE5wcCOiIiIqJxgYEdERERUTvw/KHQb1pOirIMAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Task 9 – Find best number of trees via OOB error\n", + "oob_errors = []\n", + "tree_counts = list(range(10, 501, 10))\n", + "for n in tree_counts:\n", + " model = RandomForestRegressor(n_estimators=n, max_features=m_try, oob_score=True, random_state=1)\n", + " model.fit(X_train, y_train)\n", + " oob_errors.append(1 - model.oob_score_)\n", + "\n", + "best_n = tree_counts[np.argmin(oob_errors)]\n", + "print(f\"Lowest OOB Error at {best_n} trees: {min(oob_errors):.4f}\")\n", + "\n", + "# Plot OOB error\n", + "plt.plot(tree_counts, oob_errors, marker='o')\n", + "plt.axvline(x=best_n, color='red', linestyle='--', label=f'Optimal trees: {best_n}')\n", + "plt.xlabel(\"Number of Trees\")\n", + "plt.ylabel(\"OOB Error\")\n", + "plt.title(\"Out-of-Bag Error vs Number of Trees\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2695a6c8-ca39-4181-95c2-a31bdd59dfb0", + "metadata": {}, + "source": [ + "10. Compute the OOB estimate of the out-of-sample error and compare it to best pruned model from CV of Task 5. Interpret the outcomes." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "aa4c0e8d-406a-4f17-8fbf-69e116cddd53", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min CV MSE: 0.2644\n", + "Lowest OOB Error 0.2531 at 490 Trees\n" + ] + } + ], + "source": [ + "print(f\"Min CV MSE: {cv_results[best_idx]:.4f}\")\n", + "print(f\"Lowest OOB Error {min(oob_errors):.4f} at {best_n} Trees\")" + ] + }, + { + "cell_type": "markdown", + "id": "6356f562-4211-45f5-860d-b761a83d7056", + "metadata": {}, + "source": [ + "11. Which are the most important variables used in the random forest?" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "f6adfc99-cf37-4b7f-abeb-3c7b82f4cef2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Feature Importance\n", + "7 CAtBat 0.173027\n", + "8 CHits 0.147864\n", + "10 CRuns 0.134998\n", + "11 CRBI 0.108832\n", + "12 CWalks 0.097070\n", + "6 Years 0.048685\n", + "9 CHmRun 0.048505\n", + "1 Hits 0.043583\n", + "4 RBI 0.038223\n", + "0 AtBat 0.036723\n" + ] + } + ], + "source": [ + "# Feature Importances\n", + "importances = rf_model.feature_importances_\n", + "feature_names = X_train.columns\n", + "\n", + "# DataFrame overview\n", + "importance_df = pd.DataFrame({\n", + " 'Feature': feature_names,\n", + " 'Importance': importances\n", + "}).sort_values(by='Importance', ascending=False)\n", + "\n", + "print(importance_df.head(10)) # Top 10 Features" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "5654d92d-69c5-451b-94d3-b3c75e5afd81", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYKNJREFUeJzt3XlcVHX////nyDLsAyiKC4KKuJOWl6ZWiEuYy3VVmmZlmtr1UUkzl9TLzKXUtMyl0spcMsultCwrdzHLXcMs0TQl7UquygVckeX8/vDHfBtZBOQ4gI/77Ta3m/M+73PO65w3w/jkfeaMxTAMQwAAAAAAoMiVcXYBAAAAAACUVoRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AMJnFYsnXIy4uzvRaFi1apEcffVS1atVSmTJlFBYWlmvfCxcuaPDgwapUqZI8PDzUsGFDLV269Ib7eO2112SxWLRz506H9szMTAUGBspisejw4cMOy65evSovLy89/PDDkqSFCxfKYrEoMTGxQMfXq1cv+fj43LDfpUuXNG7cuBzPeWH3nV/btm3TuHHjdO7cuSLb5nPPPSeLxaJDhw7l2mf06NGyWCzat29fkezTYrFo3LhxBV4vMTFRFotFr7322g37mj0WeenVq1eer4+iknWMWQ9XV1dVrFhRjz76qI4cOWL6/nMzbtw4WSwWp+3/enFxcbn+7uzSpYuzy8vR7NmztXDhQmeXAaAYcHV2AQBQ2m3fvt3h+UsvvaTNmzdr06ZNDu1169Y1vZYPPvhASUlJatKkiTIzM5WWlpZr34cffli7d+/WK6+8ooiICH300Ufq3r27MjMz9dhjj+W6XnR0tCRp8+bNatq0qb19//79Onv2rLy9vbV582bVqlXLvmznzp26fPmyfd0OHTpo+/btqlix4s0eco4uXbqk8ePHS5JatmzpsMzsfW/btk3jx49Xr1695O/vXyTb7NOnj2bMmKH58+dr6tSp2ZZnZmZq0aJFatiwoe68884i2ef27dtVpUqVItlWcTRmzBg9++yzt2x/CxYsUO3atXXlyhV99913mjhxojZv3qxDhw4pICDgltVR3E2aNMn+eyJL2bJlnVRN3mbPnq1y5cqpV69ezi4FgJMRugHAZHfffbfD86CgIJUpUyZb+62wdu1alSlz7SKnjh076scff8yx31dffaX169fbg7Z0LUz/+uuvGj58uLp16yYXF5cc123UqJH8/f0VFxenkSNH2tvj4uJUqVIlRUVFafPmzerXr5/Dsqx9SNfOUVBQ0E0fb2E4c9+FVb9+fTVp0kQffPCBJk2aJFdXx7f3devW6bffftOIESNuaj+GYejKlSvy9PR0ys/vrVSjRo1bur/69eurcePGkq79ISgjI0Njx47VZ599pqeeeuqW1lKc1axZ05SfvcuXL8vDw6NYze4DKD24vBwAioEzZ85owIABqly5stzd3VW9enWNHj1aqampDv0sFoueeeYZvfPOO4qIiJDValXdunXzddm3JHvgvpFPP/1UPj4+euSRRxzan3rqKf3+++/ZLh2/fh/33XefvvvuO6Wnp9vb4+Li1LJlS0VFRWW7rDsuLk5BQUGqV6+epNwvK16zZo1at24tm80mLy8v1alTR5MnT85Ww9GjR9W+fXv5+PgoJCREQ4cOtZ/LxMREe6geP368/RLVrNmonPZtGIYmTZqk0NBQeXh4qHHjxlq/fr1atmzpMFOemZmpl19+WbVq1ZKnp6f8/f0VGRmpmTNnSrp2ye7w4cMlSdWqVcvxowXLli1Ts2bN5O3tLR8fH8XExOj777/P9Xxn6dOnj5KSkvT1119nW7ZgwQJZrVY9/vjjunLlioYOHaqGDRvKZrMpMDBQzZo106pVq7Ktl/Xz9vbbb6tOnTqyWq16//337cv+fnn5n3/+qQEDBqhu3bry8fFR+fLl1apVK23dujXHejMzMzVx4kRVrVrVfk43btx4w+OUpA0bNqh169by8/OTl5eXWrRokW3drMujf/rpJ3Xv3l02m00VKlRQ7969lZycfMN95HR5edb5WLBggX2MGzdurB07dsgwDL366quqVq2afHx81KpVKx09ejRfx5OTrAD+v//9z95WmLH74IMPVKdOHXl5eemOO+7Q6tWrs/X98ssv1bBhQ1mtVlWrVi3XS/+vXLmiUaNGqVq1anJ3d1flypUVGxub7aMSYWFh6tixo1avXq1GjRrJ09NTderUse974cKFqlOnjry9vdWkSRPt2bOnsKcpm2+//VatW7eWr6+vvLy81Lx5c3355ZcOfbJe4+vWrVPv3r0VFBQkLy8v+++I/LwGjx07pkcffVSVKlWS1WpVhQoV1Lp1a8XHx9vPwU8//aQtW7bYX+e34uMKAIonQjcAONmVK1cUHR2tRYsWaciQIfryyy/1xBNPaOrUqfbPOP/d559/rlmzZmnChAn65JNPFBoaqu7du+uTTz4pspp+/PFH1alTJ9uMaWRkpH15XqKjo3XhwgXt3r1b0rWA9c033ygqKkpRUVH6448/dPDgQUnXPs+9fft2tWzZMs9Zpnnz5ql9+/bKzMzU22+/rS+++EKDBg3Sb7/95tAvLS1N//znP9W6dWutWrVKvXv31vTp0zVlyhRJUsWKFbVmzRpJ14Lq9u3btX37do0ZMybXfY8ePVqjR49Wu3bttGrVKvXr1099+/bVzz//7NBv6tSpGjdunLp3764vv/xSy5YtU58+feyhpG/fvho4cKAkaeXKlfZ9Z13yPWnSJHXv3l1169bV8uXL9cEHH+j8+fO699577ecrN927d5eXl5fmz5/v0H727FmtWrVKDz30kAICApSamqozZ85o2LBh+uyzz7RkyRLdc889evjhh7Vo0aJs2/3ss880Z84cvfjii1q7dq3uvffeHPd/5swZSdLYsWP15ZdfasGCBapevbpatmyZ42fn33zzTa1Zs0YzZszQ4sWLVaZMGT3wwAPZPo5xvcWLF+v++++Xn5+f3n//fS1fvlyBgYGKiYnJMbR37txZERERWrFihUaOHKmPPvpIzz33XJ77yMvq1av13nvv6ZVXXtGSJUt0/vx5dejQQUOHDtV3332nN998U++++64OHjyozp07yzCMQu3n+PHjkqSIiAh7W0HH7ssvv9Sbb76pCRMmaMWKFQoMDNRDDz2kY8eO2fts3LhR//rXv+Tr66ulS5fq1Vdf1fLly7VgwQKHbRmGoQcffFCvvfaaevTooS+//FJDhgzR+++/r1atWmX7A+H+/fs1atQojRgxQitXrpTNZtPDDz+ssWPH6r333tOkSZP04YcfKjk5WR07dtTly5fzdV4yMzOVnp7u8MiyZcsWtWrVSsnJyZo3b56WLFkiX19fderUScuWLcu2rd69e8vNzU0ffPCBPvnkE7m5ueX7Ndi+fXvt3btXU6dO1fr16zVnzhw1atTI/lr/9NNPVb16dTVq1Mj+Ov/000/zdYwASiEDAHBL9ezZ0/D29rY/f/vttw1JxvLlyx36TZkyxZBkrFu3zt4myfD09DSSkpLsbenp6Ubt2rWN8PDwAtXRoUMHIzQ0NMdlNWvWNGJiYrK1//7774YkY9KkSXluOz4+3qHf3r17DUnGoUOHDMMwjAoVKhhvvvmmYRiGsWXLFkOSMXv2bPv6CxYsMCQZx48fNwzDMM6fP2/4+fkZ99xzj5GZmZnrfnv27JnjuWzfvr1Rq1Yt+/M///zTkGSMHTs22zau3/eZM2cMq9VqdOvWzaHf9u3bDUlGVFSUva1jx45Gw4YN8zw3r776qsP2s5w4ccJwdXU1Bg4c6NB+/vx5Izg42OjatWue2zWMa8fv5uZm/O9//7O3vfHGG4YkY/369Tmuk56ebqSlpRl9+vQxGjVq5LBMkmGz2YwzZ85kWy+383f9dlu3bm089NBD9vbjx48bkoxKlSoZly9ftrenpKQYgYGBRps2bext14/FxYsXjcDAQKNTp04O+8rIyDDuuOMOo0mTJva2sWPHGpKMqVOnOvQdMGCA4eHhkefPkWFcO5fXvz4kGcHBwcaFCxfsbZ999pkhyWjYsKHDNmfMmGFIMn744Yc895N1jDt27DDS0tKM8+fPG2vWrDGCg4ON++67z0hLS8t13RuNXYUKFYyUlBR7W1JSklGmTBlj8uTJ9ramTZvmOhZ//2/imjVrcjyfy5YtMyQZ7777rr0tNDTU8PT0NH777Td7W9bvhIoVKxoXL17Mdv4+//zzPM/T5s2bDUk5Po4cOWIYhmHcfffdRvny5Y3z5887nKP69esbVapUsY9P1jl/8sknHfaR39fgX3/9ZUgyZsyYkWfN9erVc/j9AOD2xUw3ADjZpk2b5O3tne0OvFmXO18/e9e6dWtVqFDB/tzFxUXdunXT0aNHs8363oy8Zp1v9LnHyMhIlS1b1j7DGRcXp+DgYPvN0+677z5t3rzZvkxStpsj/d22bduUkpKiAQMG3HDfFotFnTp1ylbPr7/+mud6udmxY4dSU1PVtWtXh/a777472+WiTZo00f79+zVgwACtXbtWKSkp+d7P2rVrlZ6erieffNJhFs/DwyPHS/Jz0qdPH6WlpemDDz6wty1YsEChoaFq3bq1ve3jjz9WixYt5OPjI1dXV7m5uWnevHlKSEjIts1WrVrl+0Zeb7/9tu688055eHjYt7tx48Yct/vwww/Lw8PD/jxrRvKbb75RRkZGjtvftm2bzpw5o549ezqco8zMTLVr1067d+/WxYsXHdb55z//6fA8MjJSV65c0R9//JGvY7pedHS0vL297c/r1KkjSXrggQccfjaz2vP7c3f33XfLzc1Nvr6+ateunQICArRq1apsV5sUZOyio6Pl6+trf16hQgWVL1/eXtPFixe1e/fuXMfi77Ju/Hj9TcEeeeQReXt7Z/s91bBhQ1WuXDnb+WjZsqW8vLyytef3PE2ZMkW7d+92eISEhOjixYvauXOnunTp4vANBi4uLurRo4d+++23bN+a0LlzZ4fn+X0NBgYGqkaNGnr11Vf1+uuv6/vvv1dmZma+6gdweyJ0A4CTnT59WsHBwdnCZPny5eXq6qrTp087tAcHB2fbRlbb9X0Lq2zZsjluK+sS4sDAwDzXt1gsioqK0nfffae0tDRt3rxZUVFR9uVRUVHasmWLDMPQ5s2bFRwcrNq1a+e6vT///FOS8nW3bC8vL4cAIUlWq1VXrly54bo5yToPf/9DR5br20aNGqXXXntNO3bs0AMPPKCyZcuqdevW+frMatZnd//xj3/Izc3N4bFs2TL99ddfN9zGvffeq4iICPulwT/88IP27dunp556yv7ztXLlSnXt2lWVK1fW4sWLtX37du3evVu9e/fO8Rzl9y7ur7/+uvr376+mTZtqxYoV2rFjh3bv3q127drleOlwbj/HV69e1YULF3LcR9Y56tKlS7ZzNGXKFBmGYf8ZzXL9na2tVqsk5fty5utd/7Pv7u6eZ3t+f+4WLVqk3bt3a9OmTfq///s/JSQk2G9imKWgY5fTXb2tVqv92M+ePavMzMw8f6dkOX36tFxdXbPdZNBisSg4ODjb7wuzzlP16tXVuHFjh4fVatXZs2dlGEaOP6+VKlWyH8PfXd83v69Bi8WijRs3KiYmRlOnTtWdd96poKAgDRo0SOfPn8/XcQC4vXD3cgBwsrJly2rnzp0yDMMheP/xxx9KT09XuXLlHPonJSVl20ZWW1F9dU6DBg20ZMkSpaenO8y0HThwQNK1Oy3fSHR0tFauXKmdO3dq69atDjc8i4qK0l9//aW9e/dqx44deuihh/LcVtZ/9ItyJj+/ss7p329olSUpKclhttvV1VVDhgzRkCFDdO7cOW3YsEH/+c9/FBMTo5MnTzrM8F0va5yzPqdfWL1799bIkSO1a9cuffTRRypTpozD7OTixYtVrVo1LVu2zOHn7frP5GbJ792cFy9erJYtW2rOnDkO7bmFkNx+jt3d3XP9rvWsc/TGG2/kegfrnP44UhLUqVPHfvO06OhoZWRk6L333tMnn3xivwqmoGN3IwEBAbJYLHn+TslStmxZpaen688//3QI3oZhKCkpSf/4xz8KVUNRCQgIUJkyZXTq1Klsy37//XdJyva79Pqf7YK8BkNDQzVv3jxJ0s8//6zly5dr3Lhxunr1qt5+++1CHweA0omZbgBwstatW+vChQv67LPPHNqzboz098uCpWuXm/89AGZkZGjZsmWqUaNGkX1v8kMPPaQLFy5oxYoVDu3vv/++KlWq5PD927nJulx8+vTpSk5OdrjLd7169VS2bFlNnjzZfiO5vDRv3lw2m01vv/12oW9M9XcFme1s2rSprFZrthsx7dixI89LYv39/dWlSxfFxsbqzJkz9ruh57bvmJgYubq66pdffsk2k5f1yI+ePXvK1dVV77zzjj788EO1bt3aIUBYLBa5u7s7BI6kpKQc74BdEBaLxX5sWX744Ydcb4y2cuVKh9nN8+fP64svvtC9996b69fRtWjRQv7+/jp48GCu5yhr5rSkmzp1qgICAvTiiy/aL10u6rHLunt4bmPxd1m/hxYvXuzQvmLFCl28eDHb76lbzdvbW02bNtXKlSsdXluZmZlavHixqlSp4nBTupwU9jUYERGhF154QQ0aNNC+ffvs7X+/qgDA7Y2ZbgBwsieffFJvvfWWevbsqcTERDVo0EDffvutJk2apPbt26tNmzYO/cuVK6dWrVppzJgx8vb21uzZs3Xo0KF8fW3YwYMH7XfgTUpK0qVLl+x3Pa9bt67q1q0r6drnU9u2bav+/fsrJSVF4eHhWrJkidasWaPFixfnGor+rl69eipfvrw+/fRTBQUF2T+7KV0LD/fdd5/9br43Ct0+Pj6aNm2a+vbtqzZt2ujpp59WhQoVdPToUe3fv19vvvnmDev5O19fX4WGhmrVqlVq3bq1AgMDVa5cuRy/0icwMFBDhgzR5MmTFRAQoIceeki//fabxo8fr4oVKzp8DVunTp3s37ccFBSkX3/9VTNmzFBoaKhq1qwp6dpVBJI0c+ZM9ezZU25ubqpVq5bCwsI0YcIEjR49WseOHbN/rvd///ufdu3aJW9vb40fP/6GxxYcHKz27dtrwYIFMgxDffr0cVjesWNHrVy5UgMGDFCXLl108uRJvfTSS6pYsaKOHDlSoPN4/XZfeukljR07VlFRUTp8+LAmTJigatWqOdxhOouLi4vatm2rIUOGKDMzU1OmTFFKSkqex+jj46M33nhDPXv21JkzZ9SlSxeVL19ef/75p/bv368///wz20x7SRUQEKBRo0bp+eef10cffaQnnnjClLF76aWX1K5dO7Vt21ZDhw5VRkaGpkyZIm9vb4dL9du2bauYmBiNGDFCKSkpatGihX744QeNHTtWjRo1Uo8ePYrq0Att8uTJatu2raKjozVs2DC5u7tr9uzZ+vHHH7VkyZIbXrWR39fgDz/8oGeeeUaPPPKIatasKXd3d23atEk//PCDRo4cad9egwYNtHTpUi1btkzVq1eXh4eH/fUP4DbjxJu4AcBt6fq7lxuGYZw+fdro16+fUbFiRcPV1dUIDQ01Ro0aZVy5csWhnyQjNjbWmD17tlGjRg3Dzc3NqF27tvHhhx/ma99Zd3TO6XH9najPnz9vDBo0yAgODjbc3d2NyMhIY8mSJQU61q5duxqSjC5dumRblnV358qVK2dbdv1dq7N89dVXRlRUlOHt7W14eXkZdevWNaZMmWJfntO5/ftx/92GDRuMRo0aGVar1ZBk9OzZM9d9Z2ZmGi+//LJRpUoV+7lYvXq1cccddzjcmXvatGlG8+bNjXLlyhnu7u5G1apVjT59+hiJiYkO+x41apRRqVIlo0yZMoYkY/PmzfZln332mREdHW34+fkZVqvVCA0NNbp06WJs2LAh23HlZtWqVYYkIzAwMNvPkGEYxiuvvGKEhYUZVqvVqFOnjjF37twcz1HWz1tOrv+ZSU1NNYYNG2ZUrlzZ8PDwMO68807js88+y3YX8Ky7l0+ZMsUYP368/Zw2atTIWLt2rcM+cvs52LJli9GhQwcjMDDQcHNzMypXrmx06NDB+Pjjj+19so7nzz//zNc2r5fb3cuvPx9Zx/Pqq686tGfdbfvvNeUkq57du3dnW3b58mWjatWqRs2aNY309HTDMG5+7EJDQ+0/61k+//xzIzIy0v4z+8orr+S4zcuXLxsjRowwQkNDDTc3N6NixYpG//79jbNnz2bbR4cOHbLtuyDn73r5PZ9bt241WrVqZXh7exuenp7G3XffbXzxxRcOffI654Zx49fg//73P6NXr15G7dq1DW9vb8PHx8eIjIw0pk+fbh8nwzCMxMRE4/777zd8fX0NSbl+WwSA0s9iGEVwnR4A4JawWCyKjY0t8Mwuit7x48dVu3ZtjR07Vv/5z3+cXQ4AACimuLwcAIAb2L9/v5YsWaLmzZvLz89Phw8f1tSpU+Xn55ft8m0AAIC/I3QDAHAD3t7e2rNnj+bNm6dz587JZrOpZcuWmjhxYom9WzYAALg1uLwcAAAAAACT8JVhAAAAAACYhNANAAAAAIBJCN0AAAAAAJiEG6kVI5mZmfr999/l6+sri8Xi7HIAAAAAALkwDEPnz59XpUqVVKZM7vPZhO5i5Pfff1dISIizywAAAAAA5NPJkydVpUqVXJcTuosRX19fSdcGzc/Pz8nVAAAAAAByk5KSopCQEHuOyw2huxjJuqTcz8+P0A0AAAAAJcCNPhrMjdQAAAAAADAJoRsAAAAAAJNweXkx1Pnu5+Tm4u7sMgAAAADAKb46MMfZJRQZZroBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMEmJC91JSUkaOHCgqlevLqvVqpCQEHXq1EkbN2506Ddp0iS5uLjolVdeybaNli1bavDgwQ5tiYmJslgs9oe7u7vCw8P18ssvyzCMAtVosVj02WefFfTQAAAAAACljKuzCyiIxMREtWjRQv7+/po6daoiIyOVlpamtWvXKjY2VocOHbL3XbBggZ5//nnNnz9fI0eOzPc+NmzYoHr16ik1NVXffvut+vbtq4oVK6pPnz5mHBIAAAAAoBQrUTPdAwYMkMVi0a5du9SlSxdFRESoXr16GjJkiHbs2GHvt2XLFl2+fFkTJkzQxYsX9c0339iX9erVS1u2bNHMmTPts9qJiYn25WXLllVwcLBCQ0P1+OOPq3nz5tq3b599+e7du9W2bVuVK1dONptNUVFRDsvDwsIkSQ899JAsFov9OQAAAADg9lNiQveZM2e0Zs0axcbGytvbO9tyf39/+7/nzZun7t27y83NTd27d9e8efPsy2bOnKlmzZrp6aef1qlTp3Tq1CmFhITkuM89e/Zo3759atq0qb3t/Pnz6tmzp7Zu3aodO3aoZs2aat++vc6fPy/pWiiXrs20nzp1yv4cAAAAAHD7KTGXlx89elSGYah27dp59ktJSdGKFSu0bds2SdITTzyhFi1a6I033pCfn59sNpvc3d3l5eWl4ODgbOs3b95cZcqU0dWrV5WWlqZ///vfevLJJ+3LW7Vq5dD/nXfeUUBAgLZs2aKOHTsqKChI0rU/AuS0/b9LTU1VamqqQ+0AAAAAgNKjxMx0Z93MzGKx5Nnvo48+UvXq1XXHHXdIkho2bKjq1atr6dKl+drPsmXLFB8fr/3792vZsmVatWqVw2fC//jjD/Xr108RERGy2Wyy2Wy6cOGCTpw4UeBjmjx5sn0bNpst1xl3AAAAAEDJVGJCd82aNWWxWJSQkJBnv/nz5+unn36Sq6ur/fHTTz85XGKel5CQEIWHh6tOnTrq2rWrBg8erGnTpunKlSuSrn0mfO/evZoxY4a2bdum+Ph4lS1bVlevXi3wMY0aNUrJycn2x8mTJwu8DQAAAABA8VViLi8PDAxUTEyM3nrrLQ0aNCjb57rPnTunkydPas+ePYqLi1NgYKDDsvvuu08//vij6tevL3d3d2VkZORrvy4uLkpPT9fVq1fl4eGhrVu3avbs2Wrfvr0k6eTJk/rrr78c1nFzc8vX9q1Wq6xWa77qAAAAAACUPCUmdEvS7Nmz1bx5czVp0kQTJkxQZGSk0tPTtX79es2ZM0cxMTFq0qSJ7rvvvmzrNmvWTPPmzdP06dMVFhamnTt3KjExUT4+Pg4B/fTp00pKSlJ6eroOHDigmTNnKjo6Wn5+fpKk8PBwffDBB2rcuLFSUlI0fPhweXp6OuwrLCxMGzduVIsWLWS1WhUQEGDuiQEAAAAAFEsl5vJySapWrZr27dun6OhoDR06VPXr11fbtm21ceNGzZw5U4sXL1bnzp1zXLdz585avHixrl69qmHDhsnFxUV169ZVUFCQw+ex27Rpo4oVKyosLEz//ve/1b59ey1btsy+fP78+Tp79qwaNWqkHj16aNCgQSpfvrzDvqZNm6b169crJCREjRo1MudkAAAAAACKPYuRdYcyOF1KSopsNpva1OktNxd3Z5cDAAAAAE7x1YE5zi7hhrLyW3Jysv3K6JyUqJluAAAAAABKEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmcXV2AchuxY7p8vPzc3YZAAAAAICbxEw3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACZxdXYByK7Lwy/LzdXq7DIAAACAYufLNS85uwSgQJjpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQujOp169eunBBx90dhkAAAAAgBKk1IfupKQkDRw4UNWrV5fValVISIg6deqkjRs3SpLCwsI0Y8aMbOuNGzdODRs2tD+fOXOmFi5caH/esmVLDR482NziAQAAAAAlmquzCzBTYmKiWrRoIX9/f02dOlWRkZFKS0vT2rVrFRsbq0OHDuV7WzabzcRKAQAAAAClUame6R4wYIAsFot27dqlLl26KCIiQvXq1dOQIUO0Y8eOAm3r75eX9+rVS1u2bNHMmTNlsVhksViUmJios2fP6vHHH1dQUJA8PT1Vs2ZNLViwwIQjAwAAAACUBKV2pvvMmTNas2aNJk6cKG9v72zL/f39C73tmTNn6ueff1b9+vU1YcIESVJQUJCeffZZHTx4UF9//bXKlSuno0eP6vLly7luJzU1VampqfbnKSkpha4JAAAAAFD8lNrQffToURmGodq1a9+w74gRI/TCCy84tF29elV169bNsb/NZpO7u7u8vLwUHBxsbz9x4oQaNWqkxo0bS7r2efG8TJ48WePHj79hfQAAAACAkqnUXl5uGIYkyWKx3LDv8OHDFR8f7/Do169fgffZv39/LV26VA0bNtTzzz+vbdu25dl/1KhRSk5Otj9OnjxZ4H0CAAAAAIqvUhu6a9asKYvFooSEhBv2LVeunMLDwx0egYGBBd7nAw88oF9//VWDBw/W77//rtatW2vYsGG59rdarfLz83N4AAAAAABKj1IbugMDAxUTE6O33npLFy9ezLb83LlzN7V9d3d3ZWRkZGsPCgpSr169tHjxYs2YMUPvvvvuTe0HAAAAAFByldrQLUmzZ89WRkaGmjRpohUrVujIkSNKSEjQrFmz1KxZs5vadlhYmHbu3KnExET99ddfyszM1IsvvqhVq1bp6NGj+umnn7R69WrVqVOniI4GAAAAAFDSlOrQXa1aNe3bt0/R0dEaOnSo6tevr7Zt22rjxo2aM2fOTW172LBhcnFxUd26dRUUFKQTJ07I3d1do0aNUmRkpO677z65uLho6dKlRXQ0AAAAAICSxmJk3XEMTpeSkiKbzaa2rYfLzdXq7HIAAACAYufLNS85uwRA0v/Lb8nJyXnen6tUz3QDAAAAAOBMhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAEzi6uwCkN0nK1+Qn5+fs8sAAAAAANwkZroBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMImrswtAdv/sO0Wubh7OLgMAAADF2IYPxzi7BAD5wEw3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGCSUhG6k5KSNHDgQFWvXl1Wq1UhISHq1KmTNm7cKEkKCwuTxWKRxWKRp6enateurVdffVWGYTi5cgAAAABAaebq7AJuVmJiolq0aCF/f39NnTpVkZGRSktL09q1axUbG6tDhw5JkiZMmKCnn35aV65c0YYNG9S/f3/5+fnp//7v/5x8BAAAAACA0qrEz3QPGDBAFotFu3btUpcuXRQREaF69eppyJAh2rFjh72fr6+vgoODFRYWpr59+yoyMlLr1q2zL7dYLPrss88ctu3v76+FCxdKuhbuLRaLVq5cqejoaHl5eemOO+7Q9u3b7f1//fVXderUSQEBAfL29la9evX01VdfmXr8AAAAAIDiq0SH7jNnzmjNmjWKjY2Vt7d3tuX+/v7Z2gzDUFxcnBISEuTm5lbgfY4ePVrDhg1TfHy8IiIi1L17d6Wnp0uSYmNjlZqaqm+++UYHDhzQlClT5OPjU+B9AAAAAABKhxJ9efnRo0dlGIZq1659w74jRozQCy+8oKtXryotLU0eHh4aNGhQgfc5bNgwdejQQZI0fvx41atXT0ePHlXt2rV14sQJde7cWQ0aNJAkVa9ePc9tpaamKjU11f48JSWlwPUAAAAAAIqvEj3TnXUjNIvFcsO+w4cPV3x8vLZs2aLo6GiNHj1azZs3L/A+IyMj7f+uWLGiJOmPP/6QJA0aNEgvv/yyWrRoobFjx+qHH37Ic1uTJ0+WzWazP0JCQgpcDwAAAACg+CrRobtmzZqyWCxKSEi4Yd9y5copPDxczZo104oVKzR9+nRt2LDBvtxisWS7m3laWlq27fz9kvSssJ+ZmSlJ6tu3r44dO6YePXrowIEDaty4sd54441caxo1apSSk5Ptj5MnT97wOAAAAAAAJUeJDt2BgYGKiYnRW2+9pYsXL2Zbfu7cuRzXCwgI0MCBAzVs2DB70A4KCtKpU6fsfY4cOaJLly4VuKaQkBD169dPK1eu1NChQzV37txc+1qtVvn5+Tk8AAAAAAClR4kO3ZI0e/ZsZWRkqEmTJlqxYoWOHDmihIQEzZo1S82aNct1vdjYWB0+fFgrVqyQJLVq1Upvvvmm9u3bpz179qhfv34FvtHa4MGDtXbtWh0/flz79u3Tpk2bVKdOnZs6PgAAAABAyVXiQ3e1atW0b98+RUdHa+jQoapfv77atm2rjRs3as6cObmuFxQUpB49emjcuHHKzMzUtGnTFBISovvuu0+PPfaYhg0bJi8vrwLVkpGRodjYWNWpU0ft2rVTrVq1NHv27Js9RAAAAABACWUxrv8gM5wmJSVFNptNUY/8R65uHs4uBwAAAMXYhg/HOLsE4LaWld+Sk5Pz/KhwiZ/pBgAAAACguCJ0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEldnF4DsPn9vhPz8/JxdBgAAAADgJjHTDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJXJ1dALJrM2yKXN09nF0GAAAoAba9OcbZJQAA8sBMNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmua1Cd1JSkgYOHKjq1avLarUqJCREnTp10saNGyVJYWFhslgsslgs8vT0VO3atfXqq6/KMAz7NhITE+19LBaL3N3dFR4erpdfftmh37hx49SwYcNbfYgAAAAAgGLE1dkF3CqJiYlq0aKF/P39NXXqVEVGRiotLU1r165VbGysDh06JEmaMGGCnn76aV25ckUbNmxQ//795efnp//7v/9z2N6GDRtUr149paam6ttvv1Xfvn1VsWJF9enTxxmHBwAAAAAohm6b0D1gwABZLBbt2rVL3t7e9vZ69eqpd+/e9ue+vr4KDg6WJPXt21dz5szRunXrsoXusmXL2vuFhoZq/vz52rdvH6EbAAAAAGB3W1xefubMGa1Zs0axsbEOgTuLv79/tjbDMBQXF6eEhAS5ubnluf09e/Zo3759atq0aVGVDAAAAAAoBW6Lme6jR4/KMAzVrl37hn1HjBihF154QVevXlVaWpo8PDw0aNCgbP2aN2+uMmXK2Pv9+9//1pNPPlmgulJTU5Wammp/npKSUqD1AQAAAADF220x0511gzOLxXLDvsOHD1d8fLy2bNmi6OhojR49Ws2bN8/Wb9myZYqPj9f+/fu1bNkyrVq1SiNHjixQXZMnT5bNZrM/QkJCCrQ+AAAAAKB4uy1Cd82aNWWxWJSQkHDDvuXKlVN4eLiaNWumFStWaPr06dqwYUO2fiEhIQoPD1edOnXUtWtXDR48WNOmTdOVK1fyXdeoUaOUnJxsf5w8ebJAxwUAAAAAKN5ui9AdGBiomJgYvfXWW7p48WK25efOnctxvYCAAA0cOFDDhg1z+DqwnLi4uCg9PV1Xr17Nd11Wq1V+fn4ODwAAAABA6XFbhG5Jmj17tjIyMtSkSROtWLFCR44cUUJCgmbNmqVmzZrlul5sbKwOHz6sFStWOLSfPn1aSUlJ+u233/T1119r5syZio6OJjgDAAAAAOxuixupSVK1atW0b98+TZw4UUOHDtWpU6cUFBSku+66S3PmzMl1vaCgIPXo0UPjxo3Tww8/bG9v06aNpGsz3BUrVlT79u01ceJE048DAAAAAFByWIwbXTeNWyYlJUU2m03/ePo/cnX3cHY5AACgBNj25hhnlwAAt6Ws/JacnJznFc+3zeXlAAAAAADcaoRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABM4ursApDdhtdGyM/Pz9llAAAAAABuEjPdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJjE1dkFILv7JrwiF6uHs8sAAKDE2zvxRWeXAAC4zTHTDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNCdh3Hjxqlhw4b257169dKDDz7otHoAAAAAACVLiQndSUlJGjhwoKpXry6r1aqQkBB16tRJGzdu1KOPPqoHHnjAof/XX38ti8WiMWPGOLS/9NJLqlSp0q0sHQAAAABwmyoRoTsxMVF33XWXNm3apKlTp+rAgQNas2aNoqOjFRsbq+joaH377bdKT0+3rxMXF6eQkBBt3rzZYVtxcXGKjo6+1YcAAAAAALgNlYjQPWDAAFksFu3atUtdunRRRESE6tWrpyFDhmjHjh2Kjo7WhQsXtGfPHvs6cXFxGjlypHbv3q1Lly5Jkq5evart27fbQ/eIESMUEREhLy8vVa9eXWPGjFFaWlq+69q7d6/Kly+viRMnSpL279+v6Oho+fr6ys/PT3fddZdDTQAAAACA20uxD91nzpzRmjVrFBsbK29v72zL/f39FRERoUqVKtlntc+fP699+/bpkUceUY0aNfTdd99Jknbs2KHLly/bQ7evr68WLlyogwcPaubMmZo7d66mT5+er7ri4uLUunVrjR8/XqNHj5YkPf7446pSpYp2796tvXv3auTIkXJzc8t1G6mpqUpJSXF4AAAAAABKj2Ifuo8ePSrDMFS7du08+7Vs2VJxcXGSpK1btyoiIkJBQUGKioqyt2ddcl6jRg1J0gsvvKDmzZsrLCxMnTp10tChQ7V8+fIb1rRq1Sr985//1Jw5c9S/f397+4kTJ9SmTRvVrl1bNWvW1COPPKI77rgj1+1MnjxZNpvN/ggJCbnhvgEAAAAAJUexD92GYUiSLBZLnv2io6P13XffKS0tTXFxcWrZsqUkZQvdrVq1sq/zySef6J577lFwcLB8fHw0ZswYnThxIs/97Ny5U507d9b777+v7t27OywbMmSI+vbtqzZt2uiVV17RL7/8kue2Ro0apeTkZPvj5MmTefYHAAAAAJQsxT5016xZUxaLRQkJCXn2i46O1sWLF7V7925t3rxZUVFRkq6F7t27d+vMmTMOn+fesWOH/a7nq1ev1vfff6/Ro0fr6tWree6nRo0aql27tubPn5+t77hx4/TTTz+pQ4cO2rRpk+rWratPP/00121ZrVb5+fk5PAAAAAAApUehQ/cHH3ygFi1aqFKlSvr1118lSTNmzNCqVauKrDhJCgwMVExMjN566y1dvHgx2/Jz585JuhaGQ0JC9Pnnnys+Pt4euitWrKiwsDBNmzZNV65csYfu7777TqGhoRo9erQaN26smjVr2o8jL+XKldOmTZv0yy+/qFu3btluvBYREaHnnntO69at08MPP6wFCxbc5BkAAAAAAJRUhQrdc+bM0ZAhQ9S+fXudO3dOGRkZkq7d1GzGjBlFWZ8kafbs2crIyFCTJk20YsUKHTlyRAkJCZo1a5aaNWtm7xcdHa3Zs2crPDxcFSpUsLdHRUXpjTfeUPXq1VW1alVJUnh4uE6cOKGlS5fql19+0axZs/Kclf678uXLa9OmTTp06JC6d++u9PR0Xb58Wc8884zi4uL066+/6rvvvtPu3btVp06doj0ZAAAAAIASo1Ch+4033tDcuXM1evRoubi42NsbN26sAwcOFFlxWapVq6Z9+/YpOjpaQ4cOVf369dW2bVtt3LhRc+bMsfeLjo7W+fPn7Z/nzhIVFaXz5887fD/3v/71Lz333HN65pln1LBhQ23btk1jxozJd03BwcHatGmTDhw4oMcff1xlypTR6dOn9eSTTyoiIkJdu3bVAw88oPHjx9/08QMAAAAASiaLkXWnsgLw9PTUoUOHFBoaKl9fX+3fv1/Vq1fXkSNHFBkZqcuXL5tRa6mXkpIim82mO4aOkovVw9nlAABQ4u2d+KKzSwAAlFJZ+S05OTnP+3MVaqa7WrVqio+Pz9b+9ddfq27duoXZJAAAAAAApY5rYVYaPny4YmNjdeXKFRmGoV27dmnJkiWaPHmy3nvvvaKuEQAAAACAEqlQofupp55Senq6nn/+eV26dEmPPfaYKleurJkzZ+rRRx8t6hoBAAAAACiRChy609PT9eGHH6pTp056+umn9ddffykzM1Ply5c3oz4AAAAAAEqsAn+m29XVVf3791dqaqqka99bTeAGAAAAACC7Qt1IrWnTpvr++++LuhYAAAAAAEqVQn2me8CAARo6dKh+++033XXXXfL29nZYHhkZWSTFAQAAAABQkhUqdHfr1k2SNGjQIHubxWKRYRiyWCzKyMgomuoAAAAAACjBChW6jx8/XtR1AAAAAABQ6hQqdIeGhhZ1HQAAAAAAlDqFCt2LFi3Kc/mTTz5ZqGIAAAAAAChNChW6n332WYfnaWlpunTpktzd3eXl5UXoBgAAAABAhfzKsLNnzzo8Lly4oMOHD+uee+7RkiVLirpGAAAAAABKJIthGEZRbWzPnj164okndOjQoaLa5G0lJSVFNptNycnJ8vPzc3Y5AAAAAIBc5De/FWqmOzcuLi76/fffi3KTAAAAAACUWIX6TPfnn3/u8NwwDJ06dUpvvvmmWrRoUSSFAQAAAABQ0hUqdD/44IMOzy0Wi4KCgtSqVStNmzatKOoCAAAAAKDEK1TozszMLOo6AAAAAAAodQr1me4JEybo0qVL2dovX76sCRMm3HRRAAAAAACUBoW6e7mLi4tOnTql8uXLO7SfPn1a5cuXV0ZGRpEVeDvh7uUAAAAAUDKYevdywzBksViyte/fv1+BgYGF2SQAAAAAAKVOgT7THRAQIIvFIovFooiICIfgnZGRoQsXLqhfv35FXiQAAAAAACVRgUL3jBkzZBiGevfurfHjx8tms9mXubu7KywsTM2aNSvyIgEAAAAAKIkKFLp79uwpSapWrZqaN28uNzc3U4oCAAAAAKA0KNRXhkVFRdn/ffnyZaWlpTks5yZgN6f5rEly8bA6uwwAedg/bLyzSwAAAEAJUKgbqV26dEnPPPOMypcvLx8fHwUEBDg8AAAAAABAIUP38OHDtWnTJs2ePVtWq1Xvvfeexo8fr0qVKmnRokVFXSMAAAAAACVSoS4v/+KLL7Ro0SK1bNlSvXv31r333qvw8HCFhobqww8/1OOPP17UdQIAAAAAUOIUaqb7zJkzqlatmqRrn98+c+aMJOmee+7RN998U3TVAQAAAABQghUqdFevXl2JiYmSpLp162r58uWSrs2A+/v7F1VtAAAAAACUaIUK3U899ZT2798vSRo1apT9s93PPfechg8fXqQFAgAAAABQUhXqM93PPfec/d/R0dE6dOiQ9uzZoxo1auiOO+4osuIAAAAAACjJChW6/+7KlSuqWrWqqlatWhT1AAAAAABQahTq8vKMjAy99NJLqly5snx8fHTs2DFJ0pgxYzRv3rwiLRAAAAAAgJKqUKF74sSJWrhwoaZOnSp3d3d7e4MGDfTee+8VWXEAAAAAAJRkhQrdixYt0rvvvqvHH39cLi4u9vbIyEgdOnSoyIoDAAAAAKAkK1To/u9//6vw8PBs7ZmZmUpLS7vpogAAAAAAKA0KFbrr1aunrVu3Zmv/+OOP1ahRo5suCgAAAACA0qBQdy8fO3asevToof/+97/KzMzUypUrdfjwYS1atEirV68u6hoBAAAAACiRCjTTfezYMRmGoU6dOmnZsmX66quvZLFY9OKLLyohIUFffPGF2rZta1at+WYYhtq0aaOYmJhsy2bPni2bzaYTJ044oTIAAAAAwO2kQKG7Zs2a+vPPPyVJMTExCg4O1tGjR3Xp0iV9++23uv/++00psqAsFosWLFignTt36p133rG3Hz9+XCNGjNDMmTOL/HvF+Sw7AAAAAOB6BQrdhmE4PP/666916dKlIi2oqISEhGjmzJkaNmyYjh8/LsMw1KdPH7Vu3VpNmjRR+/bt5ePjowoVKqhHjx7666+/7OuuWbNG99xzj/z9/VW2bFl17NhRv/zyi315YmKiLBaLli9frpYtW8rDw0OLFy/Wr7/+qk6dOikgIEDe3t6qV6+evvrqK2ccPgAAAACgGCjUjdSyXB/Ci5uePXuqdevWeuqpp/Tmm2/qxx9/1MyZMxUVFaWGDRtqz549WrNmjf73v/+pa9eu9vUuXryoIUOGaPfu3dq4caPKlCmjhx56SJmZmQ7bHzFihAYNGqSEhATFxMQoNjZWqamp+uabb3TgwAFNmTJFPj4+t/qwAQAAAADFRIFupGaxWGSxWLK1FWfvvvuu6tevr61bt+qTTz7RvHnzdOedd2rSpEn2PvPnz1dISIh+/vlnRUREqHPnzg7bmDdvnsqXL6+DBw+qfv369vbBgwfr4Ycftj8/ceKEOnfurAYNGkiSqlevnmdtqampSk1NtT9PSUm5qWMFAAAAABQvBQrdhmGoV69eslqtkqQrV66oX79+8vb2dui3cuXKoqvwJpUvX17//ve/9dlnn+mhhx7Se++9p82bN+c4A/3LL78oIiJCv/zyi8aMGaMdO3bor7/+ss9wnzhxwiF0N27c2GH9QYMGqX///lq3bp3atGmjzp07KzIyMtfaJk+erPHjxxfRkQIAAAAAipsChe6ePXs6PH/iiSeKtBizuLq6ytX12qFmZmaqU6dOmjJlSrZ+FStWlCR16tRJISEhmjt3ripVqqTMzEzVr19fV69edeh//R8b+vbtq5iYGH355Zdat26dJk+erGnTpmngwIE51jVq1CgNGTLE/jwlJUUhISE3dawAAAAAgOKjQKF7wYIFZtVxy9x5551asWKFwsLC7EH8706fPq2EhAS98847uvfeeyVJ3377bb63HxISon79+qlfv34aNWqU5s6dm2votlqt9qsGAAAAAAClz03dSK0kio2N1ZkzZ9S9e3ft2rVLx44d07p169S7d29lZGQoICBAZcuW1bvvvqujR49q06ZNDrPReRk8eLDWrl2r48ePa9++fdq0aZPq1Klj8hEBAAAAAIqr2y50V6pUSd99950yMjIUExOj+vXr69lnn5XNZlOZMmVUpkwZLV26VHv37lX9+vX13HPP6dVXX83XtjMyMhQbG6s6deqoXbt2qlWrlmbPnm3yEQEAAAAAiiuLUdy/9+s2kpKSIpvNpnovjZCLB5edA8XZ/mHcBBEAAOB2lpXfkpOT5efnl2u/226mGwAAAACAW4XQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASVydXQCy2zboP/Lz83N2GQAAAACAm8RMNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmcXV2Acju/g8nyNXT6uwyAOTh214TnV0CAAAASgBmugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwidNDd1JSkgYOHKjq1avLarUqJCREnTp10saNGyVJYWFhmjFjRrb1xo0bp4YNG970/i0Wi/3h4+OjO+64QwsXLrzp7QIAAAAA4OrMnScmJqpFixby9/fX1KlTFRkZqbS0NK1du1axsbE6dOjQLaljwYIFateunS5evKhly5bpqaeeUsWKFRUTE3NL9g8AAAAAKJ2cOtM9YMAAWSwW7dq1S126dFFERITq1aunIUOGaMeOHQXaVq9evfTggw9q0qRJqlChgvz9/TV+/Hilp6dr+PDhCgwMVJUqVTR//vxs6/r7+ys4OFg1atTQf/7zHwUGBmrdunWSrv1hwGKxKD4+3t7/3LlzslgsiouLkyTFxcXJYrFo48aNaty4sby8vNS8eXMdPny40OcGAAAAAFDyOS10nzlzRmvWrFFsbKy8vb2zLff39y/wNjdt2qTff/9d33zzjV5//XWNGzdOHTt2VEBAgHbu3Kl+/fqpX79+OnnyZI7rZ2RkaPny5Tpz5ozc3NwKvP/Ro0dr2rRp2rNnj1xdXdW7d+88+6empiolJcXhAQAAAAAoPZwWuo8ePSrDMFS7du0b9h0xYoR8fHwcHpMmTcrWLzAwULNmzVKtWrXUu3dv1apVS5cuXdJ//vMf1axZU6NGjZK7u7u+++47h/W6d+8uHx8fWa1WdevWTYGBgerbt2+Bj2nixImKiopS3bp1NXLkSG3btk1XrlzJtf/kyZNls9nsj5CQkALvEwAAAABQfDktdBuGIenajcxuZPjw4YqPj3d49OvXL1u/evXqqUyZ/3dIFSpUUIMGDezPXVxcVLZsWf3xxx8O602fPl3x8fFav369GjZsqOnTpys8PLzAxxQZGWn/d8WKFSUp277+btSoUUpOTrY/cpuBBwAAAACUTE67kVrNmjVlsViUkJCgBx98MM++5cqVyxaCAwMDs/W7/pJwi8WSY1tmZqZDW3BwsMLDwxUeHq6PP/5YjRo1UuPGjVW3bl17iM/6I4EkpaWl5Vjn3/eV9ceE6/f1d1arVVarNdflAAAAAICSzWkz3YGBgYqJidFbb72lixcvZlt+7ty5W1+UpPDwcHXu3FmjRo2SJAUFBUmSTp06Ze/z95uqAQAAAACQG6fevXz27NnKyMhQkyZNtGLFCh05ckQJCQmaNWuWmjVr5rS6hg4dqi+++EJ79uyRp6en7r77br3yyis6ePCgvvnmG73wwgtOqw0AAAAAUHI4NXRXq1ZN+/btU3R0tIYOHar69eurbdu22rhxo+bMmeO0uho0aKA2bdroxRdflCTNnz9faWlpaty4sZ599lm9/PLLTqsNAAAAAFByWIy/f1gZTpWSkiKbzaams4fK1ZPPegPF2be9Jjq7BAAAADhRVn5LTk6Wn59frv2cOtMNAAAAAEBpRugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkrs4uANmte/xF+fn5ObsMAAAAAMBNYqYbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJO4OrsAZNd//Si5e1mdXQZQoi144HVnlwAAAAAw0w0AAAAAgFkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQnQ8LFy6Uv7+/s8sAAAAAAJQwt33o7tWrlx588MFs7XFxcbJYLDp37py6deumn3/+2b5s3Lhxatiw4a0rEgAAAABQIrk6u4CSwNPTU56ens4uAwAAAABQwtz2M9358ffLyxcuXKjx48dr//79slgsslgsWrhwoaRrM+BVq1aV1WpVpUqVNGjQIOcVDQAAAABwOma6C6hbt2768ccftWbNGm3YsEGSZLPZ9Mknn2j69OlaunSp6tWrp6SkJO3fvz/PbaWmpio1NdX+PCUlxdTaAQAAAAC3FqFb0urVq+Xj4+PQlpGRkWNfT09P+fj4yNXVVcHBwfb2EydOKDg4WG3atJGbm5uqVq2qJk2a5LnfyZMna/z48Td/AAAAAACAYonLyyVFR0crPj7e4fHee+8VaBuPPPKILl++rOrVq+vpp5/Wp59+qvT09DzXGTVqlJKTk+2PkydP3sxhAAAAAACKGWa6JXl7eys8PNyh7bfffivQNkJCQnT48GGtX79eGzZs0IABA/Tqq69qy5YtcnNzy3Edq9Uqq9Va6LoBAAAAAMUbM92F4O7unuPl556envrnP/+pWbNmKS4uTtu3b9eBAwecUCEAAAAAoDhgprsQwsLCdPz4ccXHx6tKlSry9fXVkiVLlJGRoaZNm8rLy0sffPCBPD09FRoa6uxyAQAAAABOwkx3IXTu3Fnt2rVTdHS0goKCtGTJEvn7+2vu3Llq0aKFIiMjtXHjRn3xxRcqW7ass8sFAAAAADiJxTAMw9lF4JqUlBTZbDY99skAuXvxWW/gZix44HVnlwAAAIBSLCu/JScny8/PL9d+zHQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASV2cXgOzmtJ0sPz8/Z5cBAAAAALhJzHQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJnF1dgHIbvr2p+Xh7ebsMgBTjLhnsbNLAAAAAG4ZZroBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQuq/Tq1cvWSwWWSwWubq6qmrVqurfv7/Onj1r7xMWFmbv4+LiokqVKqlPnz4OfeLi4mSxWHTu3DknHAUAAAAAoDggdOegXbt2OnXqlBITE/Xee+/piy++0IABAxz6TJgwQadOndKJEyf04Ycf6ptvvtGgQYOcVDEAAAAAoDhydXYBxZHValVwcLAkqUqVKurWrZsWLlzo0MfX19fep3LlynryySe1dOnSW10qAAAAAKAYY6b7Bo4dO6Y1a9bIzc0t1z7//e9/tXr1ajVt2vQWVgYAAAAAKO4I3TlYvXq1fHx85OnpqRo1aujgwYMaMWKEQ58RI0bY+1SpUkUWi0Wvv/56gfaTmpqqlJQUhwcAAAAAoPQgdOcgOjpa8fHx2rlzpwYOHKiYmBgNHDjQoc/w4cMVHx+vH374QRs3bpQkdejQQRkZGfnez+TJk2Wz2eyPkJCQIj0OAAAAAIBzEbpz4O3trfDwcEVGRmrWrFlKTU3V+PHjHfqUK1dO4eHhqlmzplq1aqUZM2Zo27Zt2rx5c773M2rUKCUnJ9sfJ0+eLOpDAQAAAAA4EaE7H8aOHavXXntNv//+e659XFxcJEmXL1/O93atVqv8/PwcHgAAAACA0oPQnQ8tW7ZUvXr1NGnSJHvb+fPnlZSUpFOnTmnXrl0aPny4ypUrp+bNmzuxUgAAAABAcULozqchQ4Zo7ty59kvAX3zxRVWsWFGVKlVSx44d5e3trfXr16ts2bJOrhQAAAAAUFxYDMMwnF0ErklJSZHNZtO4NV3l4Z37V5QBJdmIexY7uwQAAADgpmXlt+Tk5Dw/KsxMNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEldnF4Dsnms2V35+fs4uAwAAAABwk5jpBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkrs4uANl9ved+eXkzNCiZOjX91tklAAAAAMUGM90AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmKTUhu5t27bJxcVF7dq1c2gfN26cGjZsmK1/WFiYLBaLLBaLXFxcVKlSJfXp00dnz54t0H5btmypwYMH30TlAAAAAIDSotSG7vnz52vgwIH69ttvdeLEiXytM2HCBJ06dUonTpzQhx9+qG+++UaDBg0yuVIAAAAAQGlVKkP3xYsXtXz5cvXv318dO3bUwoULJUkLFy7U+PHjtX//fvusdtYySfL19VVwcLAqV66s6OhoPfnkk9q3b599+enTp9W9e3dVqVJFXl5eatCggZYsWWJf3qtXL23ZskUzZ860bz8xMfEWHTUAAAAAoLgplaF72bJlqlWrlmrVqqUnnnhCCxYskGEY6tatm4YOHap69erp1KlTOnXqlLp165bjNv773/9q9erVatq0qb3typUruuuuu7R69Wr9+OOP+ve//60ePXpo586dkqSZM2eqWbNmevrpp+3bDwkJybXO1NRUpaSkODwAAAAAAKVHqQzd8+bN0xNPPCFJateunS5cuKCNGzfK09NTPj4+cnV1VXBwsIKDg+Xp6Wlfb8SIEfLx8ZGnp6eqVKkii8Wi119/3b68cuXKGjZsmBo2bKjq1atr4MCBiomJ0ccffyxJstlscnd3l5eXl337Li4uudY5efJk2Ww2+yOvgA4AAAAAKHlKXeg+fPiwdu3apUcffVSS5Orqqm7dumn+/Pk3XHf48OGKj4/XDz/8oI0bN0qSOnTooIyMDElSRkaGJk6cqMjISJUtW1Y+Pj5at25dvj8zfr1Ro0YpOTnZ/jh58mShtgMAAAAAKJ5cnV1AUZs3b57S09NVuXJle5thGHJzc7vhncjLlSun8PBwSVLNmjU1Y8YMNWvWTJs3b1abNm00bdo0TZ8+XTNmzFCDBg3k7e2twYMH6+rVq4Wq1Wq1ymq1FmpdAAAAAEDxV6pCd3p6uhYtWqRp06bp/vvvd1jWuXNnffjhh3J3d7fPXN9I1qXhly9fliRt3bpV//rXv+yXrmdmZurIkSOqU6eOfZ2CbB8AAAAAULqVqtC9evVqnT17Vn369JHNZnNY1qVLF82bN0/Dhw/X8ePHFR8frypVqsjX19c+23z+/HklJSXJMAydPHlSzz//vMqVK6fmzZtLksLDw7VixQpt27ZNAQEBev3115WUlOQQusPCwrRz504lJibKx8dHgYGBKlOm1F3FDwAAAADIh1KVBufNm6c2bdpkC9zStZnu+Ph41ahRQ+3atVN0dLSCgoIcvvLrxRdfVMWKFVWpUiV17NhR3t7eWr9+vcqWLStJGjNmjO68807FxMSoZcuWCg4O1oMPPuiwn2HDhsnFxUV169ZVUFBQoT/vDQAAAAAo+SyGYRjOLgLXpKSkyGazaenGpvLyLlUXIeA20qnpt84uAQAAADBdVn5LTk6Wn59frv1K1Uw3AAAAAADFCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTuDq7AGT3QON18vPzc3YZAAAAAICbxEw3AAAAAAAmIXQDAAAAAGASQjcAAAAAACbhM93FiGEYkqSUlBQnVwIAAAAAyEtWbsvKcbkhdBcjp0+fliSFhIQ4uRIAAAAAQH6cP39eNpst1+WE7mIkMDBQknTixIk8Bw0lV0pKikJCQnTy5EnuUF9KMcalH2Nc+jHGpR9jXPoxxrcHZ4+zYRg6f/68KlWqlGc/QncxUqbMtY/Y22w2fjmUcn5+foxxKccYl36McenHGJd+jHHpxxjfHpw5zvmZLOVGagAAAAAAmITQDQAAAACASQjdxYjVatXYsWNltVqdXQpMwhiXfoxx6ccYl36McenHGJd+jPHtoaSMs8W40f3NAQAAAABAoTDTDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN1FZPbs2apWrZo8PDx01113aevWrXn237Jli+666y55eHioevXqevvtt7P1WbFiherWrSur1aq6devq008/ven94uYU9TjPnTtX9957rwICAhQQEKA2bdpo165dDn3GjRsni8Xi8AgODi7yY8M1RT3GCxcuzDZ+FotFV65cuan9ovCKeoxbtmyZ4xh36NDB3ofX8a1VkDE+deqUHnvsMdWqVUtlypTR4MGDc+zHe3LxUtRjzPtx8VPUY8z7cfFU1ONcbN+TDdy0pUuXGm5ubsbcuXONgwcPGs8++6zh7e1t/Prrrzn2P3bsmOHl5WU8++yzxsGDB425c+cabm5uxieffGLvs23bNsPFxcWYNGmSkZCQYEyaNMlwdXU1duzYUej94uaYMc6PPfaY8dZbbxnff/+9kZCQYDz11FOGzWYzfvvtN3ufsWPHGvXq1TNOnTplf/zxxx+mH+/tyIwxXrBggeHn5+cwfqdOnbqp/aLwzBjj06dPO4ztjz/+aLi4uBgLFiyw9+F1fOsUdIyPHz9uDBo0yHj//feNhg0bGs8++2y2PrwnFy9mjDHvx8WLGWPM+3HxY8Y4F9f3ZEJ3EWjSpInRr18/h7batWsbI0eOzLH/888/b9SuXduh7f/+7/+Mu+++2/68a9euRrt27Rz6xMTEGI8++mih94ubY8Y4Xy89Pd3w9fU13n//fXvb2LFjjTvuuKPwhSPfzBjjBQsWGDabrUj3i8K7Fa/j6dOnG76+vsaFCxfsbbyOb52beT1FRUXl+J843pOLFzPG+Hq8HzuXGWPM+3Hxcytey8XlPZnLy2/S1atXtXfvXt1///0O7ffff7+2bduW4zrbt2/P1j8mJkZ79uxRWlpann2ytlmY/aLwzBrn6126dElpaWkKDAx0aD9y5IgqVaqkatWq6dFHH9WxY8du4miQEzPH+MKFCwoNDVWVKlXUsWNHff/99ze1XxTOrXodz5s3T48++qi8vb0d2nkdm8+s1xPvycXHrTrXvB87j5ljzPtx8XGrzndxeU8mdN+kv/76SxkZGapQoYJDe4UKFZSUlJTjOklJSTn2T09P119//ZVnn6xtFma/KDyzxvl6I0eOVOXKldWmTRt7W9OmTbVo0SKtXbtWc+fOVVJSkpo3b67Tp0/f5FHh78wa49q1a2vhwoX6/PPPtWTJEnl4eKhFixY6cuRIofeLwrkVr+Ndu3bpxx9/VN++fR3aeR3fGma9nnhPLj5u1bnm/dh5zBpj3o+Ll1txvovTe7KraVu+zVgsFofnhmFka7tR/+vb87PNgu4XN8eMcc4ydepULVmyRHFxcfLw8LC3P/DAA/Z/N2jQQM2aNVONGjX0/vvva8iQIYU6DuSuqMf47rvv1t13321f3qJFC91555164403NGvWrELvF4Vn5ut43rx5ql+/vpo0aeLQzuv41jLj9cR7cvFi5rnm/bh4KOox5v24eDLzfBen92Rmum9SuXLl5OLiku0vMn/88Ue2v9xkCQ4OzrG/q6urypYtm2efrG0WZr8oPLPGOctrr72mSZMmad26dYqMjMyzFm9vbzVo0MD+l1kUDbPHOEuZMmX0j3/8wz5+vJZvHbPH+NKlS1q6dGm2v6jnhNexOcx6PfGeXHyYfa55P3a+W/V64v3Yucw+38XtPZnQfZPc3d111113af369Q7t69evV/PmzXNcp1mzZtn6r1u3To0bN5abm1uefbK2WZj9ovDMGmdJevXVV/XSSy9pzZo1aty48Q1rSU1NVUJCgipWrFiII0FuzBzjvzMMQ/Hx8fbx47V865g9xsuXL1dqaqqeeOKJG9bC69gcZr2eeE8uPsw817wfFw+36vXE+7FzmX2+i9178i29bVsplXW7+3nz5hkHDx40Bg8ebHh7exuJiYmGYRjGyJEjjR49etj7Z30FzXPPPWccPHjQmDdvXravoPnuu+8MFxcX45VXXjESEhKMV155JdevJ8ltvyhaZozzlClTDHd3d+OTTz5x+NqC8+fP2/sMHTrUiIuLM44dO2bs2LHD6Nixo+Hr68s4m8CMMR43bpyxZs0a45dffjG+//5746mnnjJcXV2NnTt35nu/KDpmjHGWe+65x+jWrVuO++V1fOsUdIwNwzC+//574/vvvzfuuusu47HHHjO+//5746effrIv5z25eDFjjHk/Ll7MGGPej4sfM8Y5S3F7TyZ0F5G33nrLCA0NNdzd3Y0777zT2LJli31Zz549jaioKIf+cXFxRqNGjQx3d3cjLCzMmDNnTrZtfvzxx0atWrUMNzc3o3bt2saKFSsKtF8UvaIe59DQUENStsfYsWPtfbp162ZUrFjRcHNzMypVqmQ8/PDDOf5yQdEo6jEePHiwUbVqVcPd3d0ICgoy7r//fmPbtm0F2i+Klhm/rw8fPmxIMtatW5fjPnkd31oFHeOcfg+HhoY69OE9uXgp6jHm/bj4Keox5v24eDLj93VxfE+2/P/FAwAAAACAIsZnugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAIBSolevXnrwwQedXUaOEhMTZbFYFB8f7+xSAAC4pQjdAADAVFevXnV2CQAAOA2hGwCAUqhly5YaOHCgBg8erICAAFWoUEHvvvuuLl68qKeeekq+vr6qUaOGvv76a/s6cXFxslgs+vLLL3XHHXfIw8NDTZs21YEDBxy2vWLFCtWrV09Wq1VhYWGaNm2aw/KwsDC9/PLL6tWrl2w2m55++mlVq1ZNktSoUSNZLBa1bNlSkrR79261bdtW5cqVk81mU1RUlPbt2+ewPYvFovfee08PPfSQvLy8VLNmTX3++ecOfX766Sd16NBBfn5+8vX11b333qtffvnFvnzBggWqU6eOPDw8VLt2bc2ePfumzzEAAPlB6AYAoJR6//33Va5cOe3atUsDBw5U//799cgjj6h58+bat2+fYmJi1KNHD126dMlhveHDh+u1117T7t27Vb58ef3zn/9UWlqaJGnv3r3q2rWrHn30UR04cEDjxo3TmDFjtHDhQodtvPrqq6pfv7727t2rMWPGaNeuXZKkDRs26NSpU1q5cqUk6fz58+rZs6e2bt2qHTt2qGbNmmrfvr3Onz/vsL3x48era9eu+uGHH9S+fXs9/vjjOnPmjCTpv//9r+677z55eHho06ZN2rt3r3r37q309HRJ0ty5czV69GhNnDhRCQkJmjRpksaMGaP333+/yM85AADXsxiGYTi7CAAAcPN69eqlc+fO6bPPPlPLli2VkZGhrVu3SpIyMjJks9n08MMPa9GiRZKkpKQkVaxYUdu3b9fdd9+tuLg4RUdHa+nSperWrZsk6cyZM6pSpYoWLlyorl276vHHH9eff/6pdevW2ff7/PPP68svv9RPP/0k6dpMd6NGjfTpp5/a+yQmJqpatWr6/vvv1bBhw1yPISMjQwEBAfroo4/UsWNHSddmul944QW99NJLkqSLFy/K19dXX331ldq1a6f//Oc/Wrp0qQ4fPiw3N7ds26xataqmTJmi7t2729tefvllffXVV9q2bVthTjUAAPnGTDcAAKVUZGSk/d8uLi4qW7asGjRoYG+rUKGCJOmPP/5wWK9Zs2b2fwcGBqpWrVpKSEiQJCUkJKhFixYO/Vu0aKEjR44oIyPD3ta4ceN81fjHH3+oX79+ioiIkM1mk81m04ULF3TixIlcj8Xb21u+vr72uuPj43XvvffmGLj//PNPnTx5Un369JGPj4/98fLLLztcfg4AgFlcnV0AAAAwx/Uh1GKxOLRZLBZJUmZm5g23ldXXMAz7v7PkdNGct7d3vmrs1auX/vzzT82YMUOhoaGyWq1q1qxZtpuv5XQsWXV7enrmuv2sPnPnzlXTpk0dlrm4uOSrRgAAbgahGwAAONixY4eqVq0qSTp79qx+/vln1a5dW5JUt25dffvttw79t23bpoiIiDxDrLu7uyQ5zIZL0tatWzV79my1b99eknTy5En99ddfBao3MjJS77//vtLS0rKF8woVKqhy5co6duyYHn/88QJtFwCAokDoBgAADiZMmKCyZcuqQoUKGj16tMqVK2f//u+hQ4fqH//4h1566SV169ZN27dv15tvvnnDu4GXL19enp6eWrNmjapUqSIPDw/ZbDaFh4frgw8+UOPGjZWSkqLhw4fnOXOdk2eeeUZvvPGGHn30UY0aNUo2m007duxQkyZNVKtWLY0bN06DBg2Sn5+fHnjgAaWmpmrPnj06e/ashgwZUtjTBABAvvCZbgAA4OCVV17Rs88+q7vuukunTp3S559/bp+pvvPOO7V8+XItXbpU9evX14svvqgJEyaoV69eeW7T1dVVs2bN0jvvvKNKlSrpX//6lyRp/vz5Onv2rBo1aqQePXpo0KBBKl++fIHqLVu2rDZt2qQLFy4oKipKd911l+bOnWuf9e7bt6/ee+89LVy4UA0aNFBUVJQWLlxo/xozAADMxN3LAQCAJNnvXn727Fn5+/s7uxwAAEoFZroBAAAAADAJoRsAAAAAAJNweTkAAAAAACZhphsAAAAAAJMQugEAAAAAMAmhGwAAAAAAkxC6AQAAAAAwCaEbAAAAAACTELoBAAAAADAJoRsAAAAAAJMQugEAAAAAMAmhGwAAAAAAk/x/oNx5onctZKwAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Optional / Extra: plot\n", + "import seaborn as sns\n", + "plt.figure(figsize=(10, 6))\n", + "sns.barplot(data=importance_df.head(10), x='Importance', y='Feature', hue='Feature', palette='viridis')\n", + "plt.title(\"Top 10 Wichtigste Variablen im Random Forest\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "cb226b9a-1ea4-46f2-ae46-10b9c42f24aa", + "metadata": {}, + "source": [ + "12. Let’s try to improve the random forest by trying out different values for $m$. Set up a grid for m going from $1$ to $p$. Write a loop that fits a random forest for each $m$. Explain which model you would choose." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "66b21c8f-6fc8-4e1b-bb3e-653d94e29eff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best mtry based on Test-MSE:\n", + "mtry 3.000000\n", + "Test_MSE 0.207397\n", + "OOB_Error 0.249531\n", + "Name: 2, dtype: float64\n", + "\n", + "Best mtry based on OOB-Error:\n", + "mtry 2.000000\n", + "Test_MSE 0.212309\n", + "OOB_Error 0.248776\n", + "Name: 1, dtype: float64\n" + ] + } + ], + "source": [ + "\n", + "n_features = X_train.shape[1]\n", + "mtry_range = range(1, n_features + 1)\n", + "\n", + "test_mse_grid = []\n", + "oob_error_grid = []\n", + "\n", + "# Grid-search over mtry (max_features)\n", + "for m in mtry_range:\n", + " rf_model = RandomForestRegressor(n_estimators=500,\n", + " max_features=m,\n", + " oob_score=True,\n", + " random_state=1,\n", + " bootstrap=True)\n", + " rf_model.fit(X_train, y_train)\n", + "\n", + " # Test-MSE \n", + " y_pred_test = rf_model.predict(X_test)\n", + " mse_test = mean_squared_error(y_test, y_pred_test)\n", + " test_mse_grid.append(mse_test)\n", + "\n", + " # OOB-error \n", + " oob_error = 1 - rf_model.oob_score_\n", + " oob_error_grid.append(oob_error)\n", + "\n", + "# results as DataFrame \n", + "results_df = pd.DataFrame({\n", + " 'mtry': list(mtry_range),\n", + " 'Test_MSE': test_mse_grid,\n", + " 'OOB_Error': oob_error_grid\n", + "})\n", + "\n", + "# Finding best mtry-values\n", + "best_mtry_test = results_df.loc[results_df['Test_MSE'].idxmin()]\n", + "best_mtry_oob = results_df.loc[results_df['OOB_Error'].idxmin()]\n", + "\n", + "print(\"Best mtry based on Test-MSE:\")\n", + "print(best_mtry_test)\n", + "\n", + "print(\"\\nBest mtry based on OOB-Error:\")\n", + "print(best_mtry_oob)" + ] + }, + { + "cell_type": "markdown", + "id": "0d5022fe-6175-4f6d-87f6-d039738a99e5", + "metadata": {}, + "source": [ + "13. For the best model, compute the test errors and compare them to the best pruned model from Task 7." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "14c87bcb-4a30-44e4-9a7a-d24e43d230f4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test-MSE for best Pruned Tree: 0.3079\n" + ] + } + ], + "source": [ + "# Optimal alpha-value\n", + "optimal_tree = DecisionTreeRegressor(random_state=1, ccp_alpha=optimal_alpha)\n", + "optimal_tree.fit(X_train, y_train)\n", + "\n", + "# MSE for Pruned Tree\n", + "y_pred_pruned = optimal_tree.predict(X_test)\n", + "mse_pruned = mean_squared_error(y_test, y_pred_pruned)\n", + "print(f\"Test-MSE for best Pruned Tree: {mse_pruned:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "9dbe4978-fa74-486c-8bb2-8b05b662b9ec", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Test-MSE best Random Forest Model: 0.2074\n", + "Test-MSE best Pruned Tree Model : 0.3079\n" + ] + } + ], + "source": [ + "# Compare with #12\n", + "print(f\"\\nTest-MSE best Random Forest Model: {best_mtry_test['Test_MSE']:.4f}\")\n", + "print(f\"Test-MSE best Pruned Tree Model : {mse_pruned:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "02c02b24-1440-42f0-a876-423a47bab017", + "metadata": {}, + "source": [ + "14. What is the OOB error obtained from bagging (you can infer the answer from the previous task)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a88354d-416c-4cc1-b581-7bf901786882", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.pdf b/Machine Learning for Economics and Finance/05_Tree Based Methods/05_Trees_Hitters_Task_solved.pdf new file mode 100755 index 0000000000000000000000000000000000000000..08c541329cf4b4b89da4259de1a7a5c13479ff49 GIT binary patch literal 284892 zcmeFZbyQVr*FL;KF+jusk;Xteltw}UNu@glM7q0C2@wftq(nqYq&o!x=}rZtySu-+ z@SNwI^E~Ig<9&YP8{hZOZw%co*lX{#)_vden%BJMbxR>7C`5moffbWte0gCT^9~a^ z6SB1 z5;dBRv#rKvwBaaS9KQMZsxOA^>2D_J!_SF7F3j}5$mwe$UENE$u8iy3yr_^y(Rwp; zB1}vjrzeWSVcX?G^+`T$^GmKtBNOa}yQsSGnz$opQrG>0s~$v&Opf-v=lL7jiP*W7 zZW|JLP4#M$Ce?cy$hf|p*W=g^wnF7xu6)Av>ERYGF=49!*JznRc|akld5!pUgQyX6 z)01i^aM*c7_ae+ER%Uvq;=J5=7*%};J+8jEeM#{;C8x?Y@6%|M_oqv756<@UiK;!% zk;D;uTbIkR^GfmC0BJ|iimbz>YuQXM+7de0vLoCJ6?B$wU1ncB+xO^lY^w5uLOMBL z-tpGnPtU0ve@dMaZxC!*#!m2AGdBE5RYsKl!03qg>qOlKPG_=|Ki{d7V=?VmBR}e= z6t@=xj`l3~>l!IQ2pZ4k(@_2H}(-&|wF9tId zGLP$C&BegvpOJbteBqq62PSKIzWviTG9xn8A|WDq?#!J9gd*9^YEqlZxTWYc9=_og zE@!bAJ8x@tDx%HtRhtug1t^z%aZHooEg8W6BG$?peP6ASx$P>>ee8?LiLb=a;wgh7{5w)v{Hk{QW0m`R%uZeyO@0{oGdpG&*R@|i( zsmpOH*nC44w;EtvDWTBq(_#;+#VocsEESM+(MsNy;7i>LI`=`yH~-f#zATME{B zBNk1{YOiuboJP)R?%KE*FAb^!r}%iql|Cea&S8L z(vzp`G-*!7(;J+=&2*Gl)+rd$43TX4vfgFkCt0~28N%-;I9+q|c4>2p=)QLvDB}d=$d#BUc{wP&NJQH@eIg z5A9;q#v;VNoRV_GuSs~L%YK^PqIEmnO6qn>?DBA%fL0QrI2r!5i&$KytYV%r77w<_ z4>|p~LqW8w9(`xpxfrZ1(ckqe`{Q2Bx*EFvsI3U=+L;DHB0DZ&ZinQjBthjapHb0R z^A1OEm=F7XMB`a!Ed^Pd!Uz3cuyI;3vF#S?Cwld~?DZx6!JhM}olo$Pxdi)u@g=Ny z;e#k(Iqs!sFUDdgq7EBLIddMbas-|}+9(=Qzzf?wEC-{0; zaTWcRZVq1TR`(Qpr?J`L?W6JGqsd_3wF+B~B#$&Nt4%2{s~$d#n#n*8k4}TyQ_aigCtkChqEI7zJ>c9HC`a=0{I{nM zDK6UH5AnM{gQJq5K9S_0`@vJ$DTmj();36}oYm#SJ7$de+`u?7*JmY$829hLSP6bW zyCWk0g|_?cZGNhh+KC4urIr{1O<1~C+KDPUw~Pm`-eSCWuxl!u< z?d}}t5li;i`-FtZR z+LgW7LCH-T6}~|Sw3g}Aq{kvxeVQd%0zY(au~1PESeRm6Z%e(B##~e`P3U-Ouuc7f z+d8qIj)oJPT!9$-N6d+il8b)HmZGUrW%AGEdmFT^&pVfIR|oanvU@<8?e0BOyQGgf zG1=dWX+TjPU~ia8!N9J^@p-*lA=*ksr$%=mSZwNf;Twv?{33G8LAo<21BtQPuqRs= z%yMoIM&GrcDUyHDAHl&am0wC!a_{HiaF%;=1k28+DKR3`U&fwR{{{t?^Rm zefvS_dE8pmBTLt6(fU2gxb@GnH`b>7 zC>f*oH|WQBf^+i{PPVTlJRmZoQN^a&h_`lCa!^7^4el~a06pPZ3u(yDJhJ-Mj))OVRt~=(G zcS-VKoArc`p6Kw8)!jJXzJIHYjpx!y1>-NKTgDV7h8Zo9HjCoyOQI<`-|L!aB69iq z>YAkT9VLoYHEF7|yMEl4{}^s7t|?ZK#S-O0!<;GQDzE!Af=KQu+*oL&R=JUCgYHl% zz3zB#eq!UW>36Ee(Y2VXIEuMeS_1>`WYWY6l+zrK1kNYVQIm|^5J)sN|8hy_T(BC$ zt;wwFm+9z{6@Xt2q9~CSpHybat`LYj7pN)hPpb|jIuV`*2vGICR%#B zjEV+NfV|zl&B4hiqHCb1Z%xj^$;2pNW^86DYp$iE%P6R8YoMbmY^mkI$Zue6C8cXA zU}j=&W~ysyjmZJ;A{n|Kj-fn?*kR-yHwnhx^aj{V!(gc(DKb**abs|C-&Ku*81*;lG)> zKTq}loyPyar}6)jnfuv_%D*{%>u-RW^$%eF51f?|=4X_Bq-A9U^)#F&!}#AoHzoqz ze}lpQTaae{2av|R&H6u~H2G~-4)(v){tJUn&T<*@QWpNUq>#UK^C2d%Bw-V)O25rv`QLX-&}<*4{f5e zDhwoO)f8TalUoks&UUW-?pH+vBbS{I-_%7i>+y0<@#syuXjpLuUkRv_gyit>ePFwO1b*dOG9ORTScw9dU}d+WRnlyvKag*v}mu% zY2liy!PhLEO-=LX9VoV$yF#b5EP1ppnG|EIa)MzXA%NHMV54`~rdNGy$jK~Ow8VD7 zkWNZYj>UC+F?XMy`D#NA78XLW*J zHGjXdhQBwO%f_&}g~sh@Z&-l2aDTOt%yBxtEwb2lK}F{o-{DFCzNWKUN5xhmjp+PFs4h4wKo93~S{4 zLt{5PO6-=NDEYbVkC7P|7(99#{Y|((?r481lkkSn>#H2*KQH1_QBmo4CAZIZr>W-Z zUu@nP#jn^-H*=vS4Io>xxof}tIOl2e{AUzbulKB4UH5AO=FjE3v*$^;J_v?$Peoht zGaYUgRM0P7Te7g^ocok>3Y#!jzx_Rvy0S7sY>C@$XIxlV*vF)#sqt~=jWkV?ySDQo z)UqEXVhFEHcO;5ir|HGHu>GK+JBnFyo*F(n7#0^3Q^_;LixsMFhI6mdUydEtYl+?& zBRjI6YKh@-+C10UnIy@VIGaP!J}k~yX1y|6!&tsO3SU-WHhegnmJw@FOEA1Y$zCn5 zg;90cu26ovB5r@2G67A~?O-DlJx8zg{E^*Ise@KuxyxQl93Nj(DXf8Nsnh3)&q$7r z@a3C)-#p0Q@}Z19W3-yYcaUN+R(r6!QF3&+x3{%KHaRslg@5IWm(N_9M=e3Ro{d@A zhC*W)y(HhkI^mi?MZhhEbd`;tFK|qM6yCn#>&bPFl$*oY^6Asbi@oF1Si-D0y095%2-*_znhlOv$(f)@Xuk!Oyan03#?lctB6cX zvJX42WolK!7+yJbR;On>x&EuqdAwNP-g{`fMBc7&n%?auywlJKU<<1WJ zG$Rh&hV*ZWtfn-~zhI1*DHYsZDqU-!%{W)K)+H;6-F%lj9tqVEGS43Suh?qYPwJOP zs=d#X?5@QfmA-#}-PnxfkRn{|lEUG8Uj{r#WxkC~3%0SZx`0yF%2#S>wwRcQA$G=@CRUas<@ zncNZ>6t z+MSza7i6pNj8u5Pm#^5#a66a_6n<94Gj(F&749*LytDi zj;^qo*Sx}OZ_X$jeU*uBH|%29x6E{r1Tz{|jWC_c1(j7S#?s|An)rIpNfM!}5Vnze zu>|xNR3t{*ZnCsz4#anj47(hz#ql}k4$yI1j(?lpm=T$NH*)VLE}J6(2l3ba1v9s_ zc6T&b^=WMU?Eo+9^Es`yvt87LoL}49tobv}UZm~1d2%w(s8{Id`iGQ8#tLp@mC?y# zxIIcgG}TzOt7obZ@ID`Jy-K=Did{Ea<7;JQmDXA`=6@GfqwQBu#^UMslyS~?SgIJE zN3i0nNe)7*+OA2Y>@taNM0p==d>=k!vu@s)>s6GKQ?nbi>E5$@KXyyas+pB_a(`Nw z53_k2mH{?(*4oXe+Y*tl~Hssdoy8l-RRO zB>CYPxoh7%_3<6m{Bj&!XT&uz7Z@#We^T;mefLo?{M_9BWR#g>2!y}62SZ1aWZbM3 z!0d*ry4C1cpXMlbxA8Z^RXJAc*Zh=oo^}^HR6&^I9SV^JiGFKo87j6h8Xfrb>CI}liW$f- zpT6$2IiKRv+mvo8)=le=fq^kr7l1>%~}7+uXNYl2)oYmsoFOf za&B&?#NAQ1lMVsFI{0QCPn<&m$aoLdJA-dMIu0q7`HOcO2=t;Y#JZ>UE^Asr8tE>d zroGUfch_$5lWQ=fr!M<=mKBmk5&gawr?B6$n`vmbK$@5}n!7}+=JHf&1VGGXUWe?i z7g}}0utgoo*09?VtVUtyBwp>Qv2hz6(QTcPEOUC{0xl=XiPuiB*bT=YHV2 z;;TsvsAjM7n)eggfsEls_}BNH1m3*i5jk4bUhm((|MKFr_YB;pR}}Z|bb^mjZ-ypW znY-iqkkkRCvZmuq;_$(u-A11DAW)&U`05}E@k_&deC9tZbpm*LD%_4#$^}&t7=_Za zK7FEdyw5Vr)!lnUWmfKz?3q@wT!nS|+*Kx{o=d1{Zm|M9o z>z00lXsga_S44vxdX>L7Eu;Kxq3ujZVz=24%s|EAMn+0E#V}AAlkfQ?NpZ1B&q_T$ zoMbUp)Ns&kjpf-}pRt0a>~&sIN~#UAfK@9GyPD16&Xjk>@X_Ixus^ZGY)X=Cn&nzE z`_ZyDpK({Rw1$R;by$u>4A&q`LXw<|jPCyS3bS6zeqSB0?MAm^#Y!!aY?6e@aJkDU z(HY@&NRErDuv*zGcADFsvY8DzA02Gj!9CV05BMKoL<#vlg*$QHUS8IODVCR(Ua35R zGe20e1+ZXCFMQ@ZQCP*~TO%d0cP;~`%zS;i-B#t^R7Vl7)S1t$lOB24bNh3eN4p)sVIcOa z^1a>H$Acxk+ z0n-EMl*Lu1^(bJwj6ZCF%#v;Pdiale5t*Jz!&SIr{d`*Sb(I&am3Lw66$hK&$z0ak zrJf;_pz_&?k-qnCM~A-njQ$#!*q)f!)VYyuK~XFQt1}QAGf8p&E$8hDaq`Tu71eFz z9UUDDbKajIM8$|taTPDQZk4c33U(_2T7D1>u6<1)tDzAa6-AWKWpO8JetsUo(=NM4 z`T`cC9=el1FYNPMO3002X>M1+7XwKSIQm|3pqgr3uX(r{9vK-4d19k-m)!X_ z^3?`fZ?^!3vnAsIep@R6ZrtNjfwO~ArDRJ>U%Z!rJ5sZF0aM5|?zdcvQ3gYKG!u77&B!QuA7%Y{Z0c}tskNnrcW*vtYialhSs|2sJM}zUKZ4IV z-7hS(Um2|5whsFt@W~D2&B}?T94QzoTZN4w78~;q` z4&=6cAQvIiK|lqxOacyP)RrA2pc?b4U%Cy|+Bc`)U!s-BW_DC)Xlajt+2-lDS1A*q zI3z|_wgHr~b8-R>eLD!rP?Q2=dm?KZ(+)9QHkRQi^HRWrbe%eXN@rFUUX+CK@w>iP z=-quXRTS zZiVoc0}cvxZ|KC|zXWcc8-1Vn!F4__?MWl!ViD`P>3DQh8yg$3I#=wSXS-6?rdo${^dtdMp%NqdEYE-nirm^l{XClP%Ni@FI9R|> zRkQ8ag{Z^VaF_^Xa@(Bmx0-BnSpIUF-MFvqvwF!j0k8S*1(HR`B#`T>!AXj077u!9 zkctk{G?KLf>aZ{|Z%M{-8~0@blf81~3Msd}d3_K?0|uf2q)e4<4XGAe&pbPEdKbzE z8JTQYKk)+ILW+q=NjStD=8)o2Pu{z;cEE#525$f8+87dKNpY^bs}qf_P*_k6=<4cH zgq`h#_~Y5n$CH0QlbwC1<|GV^`^^r3I;8T32m&PS`}XEW?e4hH zMsQk9cBRO6UvLkpcQPyAnFO(*OuOdQ>gp;yA%jxpPY6Qpn#cx}{=2tqCc6kMJcKaR ztM^6o{$!ua?bq}BWVCoRS+pCtc&H-6do|+kZ|QbZGH=gLtO3* z5ZY*nd%^ufixZUaFnyf>=m-Y}ZNvzY1{CiST}Q|ldFge05QWnF=m1ic*+4FJZc%rd zA`TfZH$A-x$SKTEo0Q6(cYx(Y$HfhQQqCbVExccZ5_w9t@6bXSYd^{yx6_o@t5E{i z2I~HrlxNpSb5AAW$W@Pqh}AG88$GbtcJYV9m>;|8aCsTrD!!We7v!m)d<$f9tMWKI zF)2o+_WM^kf#__^^pXmht;R?%)e;><%v3>uNIO)nmT?yG! zfCC>KGN7gf9;-2`4MGcK&MUVD@{H`n=v(9_S#%+UD8HVL%a|DTWdyarYIGDyyDc$y zy?s<-Q<@AK;DjKSC4_#=^=8D~)~PkhD9e9RAGEVJ6+pl|8Ime#$t6nwNYt_Wv(?IV z^m5!8A5)lUV2p0z4C+v2dEtJKnG z?&8hWMn=s-b1jy^Tm#t&bn?g@Zc5ZXnIzAKoU5yA04WbhcX;pB4Gd;#{fI92f<9HS zrwN6N^zV@7QU>&8#B4*Y0M3N+5vpa!pOw!5r*Jx1O=YAh-ZIeA$_gOqLWB#@5x8f# znx!Z($OKN1YJmNlz)}G%YZ2h8k)gzRtkw@S#BMWI0K^p8q*PK=%A2i^4?AaF^2?O#}|43cT@XZ0kI zH6iv8BCp@h{|HSV1&YKbgtGR+Kpqr9+@t6V-wSXY%s|&-olH`czK06BpWf07I1&8S zuCtYUtw}a@=m#woRRk2Kp!Ya#&MPY^*#oRlh=);8p;8#u3qc|>>Ce`MlOMuzA2Q1V z@?`Wq-{jgx%2kwTn!?f&yiIZU?p+?9GPB`wm`)C0JuqgrpnE`7sQ=8o8+c=Hx+=S2 zS2AJ2MxG5yrZM8SP8gl?DsVcu_3OKs0zkI!+_|&4G|Z>l5MuPX=+=``$X_mSt3dPs zH1l4e1y(sQJ}Is7#kX4+uz`7jtU$!{xRN%b^wLHJFy*h>T8;p#-orn7d(cGafvRD- zoyH~%iO4Y@soLM)hed+G;`&!a7yD*6lNinmRaW^o)IGzgveMF0{n7ok)}`T!BhIO4 zStX^u49yBAN_u+wEG2Hz4AI=nKA92T%glA*ph5a)P7)$wx(5xgSzkXGaG-0=rJ_YpXO5A3*6r^J;8N zOu)c94oiOQL)#tU<+#2zEikR1N2P04l!G9pbqESrLt~?G04d4A&~8I0t&1KBz)|Sx z5NNFd9DI-*#PA+~axcQ~7Xr8NkHq318Q1X}f6$h{JNhRUb4+jk@ruW9{Lhyq%)KRc zftrRUHQWO93oA>@uFD8Flqhw{iZSpb^t*cdy@pVue$S`EWRY>;ljCKVGn_S*OS4yt z4b}#1ISc#+7HIlceVt7GYP1pPBSRyT5g1Afy|BqOz9|DO3z;hagVThGiQT>4U2k=t z;Ns!?IwL2Vk1n_*y}v`M$wJ4-p7V&ro95L*i)Mb6cNa1M@Siwa%`sWeANFG1 zQBEN2fLcw;W~>A_h=qlPL&{zFr2Z1#33vwguC>kYX5JM5vS;1?i1F#v_4Re2a-UTT zBtqft$QJjUpoouVG3e;a(g7wYvBG)^MVQ+*SsOs+R!?a^XG+^FKErCoCXFuu#(j)?0Z##hn0ys_>LBe9ugShS9_i#FkOUR#B7j;7dt zx-A|`U8KOSZ59wPR`zp5H%ITDJtzZQI2^%o>&w&<*oZv-9u~-sfW_QU{emR*@~!$W zoP<*5KcRr;)IH3pGRSg%fc+BZ2l&9j=uYCMRC zNC;wBg2M9p?qIwKAapCo*lT_N45SMEU_NvgQ&R_yfcu$k%y#=29RDPu^8XGl1*u%7 zfWUMJ2@9*$&T=G3g^mN{EDf)QrlzL)dW$85AysC1m;G2A#0d-UZPfSc=%5)}fisnb zgrqI9zIh`p%sMLQ24xoLD`}WMje-JDTf9C*ueZBV>Ot1vPNRZ{P4E^1S??tH`R8I{ zLg(kYoUq7qSW=|%s08hFgi{vcq-N6}P|0F24=e%)+wKrm#%;NXN<1O2?41E}AByXYsb^D@NW(}SEtqBAi59t@8Gk|T15=M>a?KwogUmn&h3L$ZXLWi{<{ zG0oe!xHwHEr3j@@@H^n@iVVlRjR3?-1jH1}S3`j}e5{oZ*L2+hNK2Uc_$VqB524E+ zf=X$GOKD)Xp;8k&dGAEM(^_gNa4@Z6$cwOGHM`KqR<@xYoNA4$0I3A3Iw%p?)zaRf zSd7yYGfaW-0JVTiak%WRGpXx5dqsnwK;$cnAS!x#$Q?FhNy*6~w?}R?J3;jAgM4yu zTrz@6<2nKo7IZ$Zz8{?L&jHmv2U@EDFA`B~Cf@?DMX{Tiw!im$i{2&$1(dqeLSD>W zI|gd%BIxfimds~E$_HkvsQGlVDH5bmd0L75%<%7JdtX*96WzNSoe=d^+i`b&2Es`d zQUR#-Aiy#~rvXIe2b@f_v_?>OL)%V97Dbpkmr=p{cDg@DFOJuRf7uD-u>^$(CX3Op zD`R!Soj_ti(~)5(ELEbrQZ@8m%b_UJWR|1r6+MM)ta{Ri<@Sj(52WwNcR0oegV6?} zb5KwaJn=aaE|y{#VHe=nFj9B9mv)q}P}nkin+pO%-?Mea{dQ*LyS#&?&N!9jv&A6f!v(>6HVZ0`u#JmOj&3Tf6|=awMx!*mLwY)Hy;Hs`ZlUsiR5u3Ta{# zq1+JYsxqLELoKigL>?ppDCqehbp!lDB@zY2YLR@EAn*m#!jV%L5LqITr3FCxh|EeY zVBjI!6hi{#?}MBv62YfctIq6ty&jv8*02$!&BgeHUaD> za7*OMwRxLw3yJ4{K_0e(rE5lsRt5<2Z%A+eAKk}DH!c4vuYGnZ(reeWp$%QsV#HY$1Z? zYDR*R5rDy@yOI_j|BF9{guF{mrV>4c1}u)lp<2UqYw>hr=S4g&0*RC|bXTzcUG;m#^sdw{==+|;16^(n#=G6W2N3yE4DRgQ4QyWH6Zf!3 z3QO&5!?*&C@5&?5@VvBldBJz#p;1?IIWPX3_D{+d(r>;&%K7F*sj*X@ZLd3F(>a;9 zU};L?Js_Vwfxq=*wwetw)r1T3_ss=<7YAbRez|c8Zt72(?!RRg1hapcbW$pp(kb(x z?c_*6$;`}5Nh!<&06#SL^*jFe$e!f(mlto$>gK+F+WgA*l^`!Ns~js0TcI_yv>8!s z87ARYa~xftgXk*?r+Sp=Zox&}ONFz~9P6Ama1H-wYkBa`zg_;1ACGSY+i!UI1d8J= z+{H}-M7u*Jlil4U(+>$_)BbuU5kYwOQ@Trc@j_R&e_sy&LL)@_2t*$J_dF|qX?vPe z6YI}Dqd(-4dkY+Vl&G#;+l7JCr1p;?fW8-)fpK9+UQr#dIiPL~z%_=??GWV3-OUB) zB>n(_feIfb+PLS0lIjF{3nBvI2ssAgMrrsAV8DUK=HwGbu$B? zhKie(fuZHwx2sU0g4Tw3m((Y8B~XMPN@-Z1dVT%_qCI^*Jw2h~7Z0N&0GSQy+-TnI zgEC-$aSi$>KB7FZ@>=83t99(1t-g9hg|m- zmJ2{zNGd&QjAmWcNX;!fC8>Ej86QH$XU3je<3Rh#uVnOS_Gj_$bfAzOZM;l2)h-V* zi6)q>z~sZ7*u!Xb%k8_-@@9?gM^?iR87I1=0RZ1`_9D7z3nanRtuNoeTOv^M`Zv`y z#F!|1E9O;$z4Pxnx?xRN5OwRWAnm;u-<(MU)Xfi)9bbf1oXIj>Ye~xVc2!=vLtsFtP_8d zyFylmJ9qSu5n%KvJ6}{b%kd4?Jk8nYbD&im4H#uS=%k>a0PB)AWOGYP%m1Y14HyV5 zx929U8UpEBF+*bzX#UrImGY*uDC$2Y5m}lW!v1PtyZTeXexV%-cBIr%L+CM5XF$)F z)NOyIt>gXDe4b%9&5av3=;@nba#=*6)BUP$%)1q*%uEcA0{z{y@iL(84`LW^>y1=- zLb<0^1?L@$l>Xc3dS8!!5KVh?=`T?lErl>oR5D{?Vq%ukr^T@+$L*5jB!v9l6z^+X z7&>_D;4tWI81_b5PK|E09=b>OWM0;2Uz?{V3=5Cy|Hv?gTVp%LsCrQ-c17qd+tXdU9c$hdX_r>{qIqJ&Q6wXFJc=Mn!M(_2oseYfJYJ`i?GFwXS#$g_&?L?6N2wH@6;CuUayH@3KgK-?zB0OIziR%*Z_i+3jq5L<>j$u8@&Biq7yn z^*%W{dGW=EA2_K91Pcq~Gv+g=OD90B(B+c+dm{OH@G$a@E_5<{d;#@($D$jKF zlFetQN&7(N1S|!gjcd2O;)AuZ6?=WBzqG8rCkW%PPTWu^&!E##cKD5egj@VZKtA@s z#mUOrW@24;XY`A~^oNOluVJd}#Od?vv)yyFP^Gf=s>!+>{tr|0MOG-llK z0jh>s)V=C@CkJ`Mrq^|2e@G;SN>Gu6hUP)TKsrH)nihrK9Y(JTt@TCG=Xrg^_}XN(tY3Zt6u--WO7o3P3B|JlM|Y)1)m> zGRLmQx9Xyz^+)@yN6uh@p`)cG;)+&COMJlNBOnn$0Dr3gB9S&(*si~c9O zWyN?G?+C4@^7TZ<8tp7FtmJ4`xI!7Y^rI*TzH7i?=?^|$9r>S7daQjOY{SF%0Sm`N zbN33{0-GxcH8^qLZe>e+#Rc{G&8UBD*+|hI1EUE4g9i^p@4Q3;MvCt*AOyjM-7sWF z1ERsdVhB%F>?3!H1jI5*|i;X)fLOD-s9z3{ChOoG3`+sOhQ$eJYFWvuxj{Ow0D8B+x=~WMG28GI# zhlRyB=FBoR9*nfpdHa5;oWBH9qhn}yF1>LK3(H?N%Vnhr0vLaxyT1V5F}kl@j1HDW zo+~;17%LMS2DlLJb+7v7zX<4u^TWe0a06A64loc2l((11CF+(7Wyav#9_omc)8IDU|0<=DMzWG#Bx zt*bGTX>QK?ZS=igIZMOKQbi7~_u}#=*H#bFRPVBXHTWfbF=0H-pLdT%GO_a=eV4~+ zmh0%k^R40Uv-OUaUl9HM#Q51^`#>LeS&h%===8{xVUh>B>bA_#W~z` zhf9lcNaHXi{vRc4Q5${I9?Fvej{TL*tw*-q0?Z4{WV+44R!QhELLwAUVu0;{X!}`z z^=IuQboWz#@*K!`w_2gsC6`NRD??cp8ym|#7n~b?_A)ZwW1n3mHwe65DJrDSp7!F= zt2zm(?q^|Iove$HUX`^>GtT(K2vns{y%P@4dfN#c?o2=n;LEtUxX!D=adHYA1YI!1 zF>-4OpEwcEM?i6G#zea?842)FX!9Ly*YSCIg@=bLs;H!bjw^?pBRv!as%YMnq>pV#@xUFXaD1ANxa|7lI zt)RuZGH@v^Z#BOUKTpCfRTqDFxO+u_KrH^8O{v$wZul}gx4clRN}Vx$cYVHColbfc zO?R2F;Ek_iD`V}flJ;YJ)tfPUI0p%^+7Axsk3Xt=#GNH@u#-MW_GnBzOiD(Y!jO!O?XIp|Z96XIee!8i8oq)xjHqcm0+?yBBb+nOXNB)RgzlTwVO%h}k zd8u`^dcAp^`QIk{h@)hMh0UC88k}Isfm$>Kb%8d*tpU?h8G|(_EV7^nOU7Z`NaJtG zOZVHC`Q{pS&vK;KTNpaqsz>Sg8v8eAaoSjf)G8*e<*|VA6Z{Wqd4}@Z5)l&4UolXG zS7H3SWO`ez{K@zZVOzvJv{6A?0mV#HMa2V7(X0j?UtJPRXFr-i&u6Fe&4z~(gae*Ge=g~|8oU_)81|OH(s`uT z)X?zCb(Wnpz#AI+e>T3%UZIzjmbQTWbg)0g$H>S?1_l)><2rv5NiP*3BW&~hMC_*L zoZ5l3XB5w->K|rx)6ng2fDs(oQ_zXn2oO^}+w0*+pIruFQwj7+F8g|RK;ung@Y2(k z=py6(Y;fVfe*GG(98GUo5vQ1KQE^u@L-|N8O{@LjXtOF9`za8RAaM)IgJSE-A91iCJM2t zWsZx=7ySHFlfUz;vyE@@AT)=0S9~N(_ZCZ#P85W@eUIT#X_5M3#N5;HyCZDIeN1kL z`&bNxKdBl$Vv3;4(!LI6^+}nu_ARG15etAApEC?R z_4+dBDbaO@7IWkE?hMzBk5Q%#&CT>wRMX(ef%Z!7&{23J2zFZ)?+?Jz<4xl!kO%_o z2Jpp@o^7tLyp-qb)-kT z8ArRYcZV|1|D?>;5Gaxg98Fj_N4^Zj)1Pu$2)XT-p(!3*{QDqf+EMf{amRR>5OA13 z{$qT?^a5@w2Y@Zp)Ah*D%=yM`J!o}-Oxx*l1G?k&EiLE0?*oFxfNu>dv;(;+s zpu2K?3sIZF)jkLgWmaCa&?c9hT6C>e(Ru0nec`ah?1F6$VrzO(K;^j@19pn*xcgA( ztLHp@1O!(ofb<|Q!)0N)MrMLHbz<^E8%YQU2V%U3-X^k5Y8EFB=g0ey5<8hYOTbhS z6`z)t_V&~PuZi0w%+`4jh!+R)=AgeIfJ6G5e*rH^sOG&SrFRC9urS z)%NKywY6TM7VHUam0Wg<#OO`Xm2>LX4fm{GG|!DUWrd8@#>Y@J9&~~Kx0(0J1ErX6 ze*_2ADUOCapd816tOe{?3GC3FafjBh8n4B<&C14!`II|A_;%@Ivyy&5_7ZUrp8Xy{ zBaF_PPbI$?^Ap+hf^-h6-N1)YadfbRc)-2AkM|)}f439+A)NOk8n^hxb!1->q_3#B zIJd7i(r_KOyPo>WEDnj*m*S_y=2u%(?s+Z+KjJ{Wy43>iRiONFRxO+$dm-wUOAYQ? zpP{@?WN_wd#PY#%@q8WPi}9~QHvQaionO0|@!h0ga1%V%V4$_KE#m5FX0Us24B{3z zTxk_QbHf%a|7@iKXvs_qk0=c9wAckL2Ts3qVJ7w`D`O-sXH4w5lGspoSx!O0>-09{ zBZ(A8VTvccf#K(IL{cotx-G3_rq90u&n@}9eSd#{9_J^q$z#l%Sd77;P%f_kyKz6H ztl5ljFn4LYw5J8Zr%M_;S76-V0hw0zaLdGl5D!a{1i%W~=C24i^Hn_4z%Hlk5{(QT zr4<3Fjb!J`tILy2S$_aek>p7j(Fm;rDTJ>gKYoj zX|3xPK`(C1f@RA3bfVxecPVR^eW2Gu`ij4@p@}r+;N6jS7g)&@43m?Su=Yr^T#~-J z$Tc>LrhB)7hXCx7Gr*;04*WmKERI;M(~H$m7C_Gksw`}ir`@UYNGS>2#nBuadVEmW zj6{Ms#W3T9ZziJmh_ZYavF+c6sn3A6;gM zZPIm~OD_PI)fE>xfx+u5_WSwYO(E?2k9Y`u`}ue1`f4P*^80fR7$H35rgA7$&t9)y@8pmy`WVpGx`B7-O zvWqG&T*CYG3~Uez4GvyQ14BEquOgb$Dz!p9*itowW=rCNA+ODB*R4lyJp^WxVjXFS zeZ6*tE6{^p9j5`$#dom34184}@5u2{i_h{Nr%CH2;ukk}4~I5-HOV%k_LeH#VC8@o zybl>BW1y7F^3EAyCe7WBaP2H5j!!ea8N<69a|sQ9vLoPdWvCV1*|o_apHCTam@1z8 z?CTm~4=jYTI$#L{_NeiXI*YaA6AAef6R-idz&kIB;F7Q;Hp0oOvnGL6fba=mPtA=7 zTOZliGczk;t8l7m_k#)oX4rc%%Sa}qd9t99L|~AgWZqJgie=)fcPE%$ai7;knUzPr zc>`Ut0N7==`il0mNIWuJh|1y5vIsjj!PECtPw(jGX+Dujvf;GmV`KpXV;s0^9XJNg z3%iW?pYa~3_Qv6Jb`uZXOAd<)=C^C>l;k5(*wZ}P&>UV$AqOs&*Z&^3*v|jH$~v|< zuv@~2e^efh3(P+nCx3TDnRtZrJRVEsZ??U2{ITu*fB0YISeZHh{2zV{s)`5PD8eqE zQtTo#_Y*98cK^nipmW&;8tW!m-nJz?oa;9u>#w=-b-i#5H4blF)R@<hoh}?<=L((Mmn)P^Ytz-Ff$UTt-?&g=CKPg+33m=+>SA1HFYNKN5?5Ugbo+r$s&q zSQt6F=i=@)1^F1%`9*|U#BO);m1oUl9L1928;?Hckca0n5R{3^Aw7vx``k{^LQneLBP|^|msr&4$OWUKZYW zHybI(*xSJ>FJNRz?3Hb-J`o|9#$hqa7k|qlRSItHUG1o&}tE%I{lqQTG--J!9uh)gbcA5z%JFecO)d^f??Z`^Jf0wQ7(N}jBOuoHz(hROIDw9DPb$@sjJLKjEc za$eRROfk;XDUo(EpWG;oFx+x^ew!iWtvZJeaeKJ=%%j&iIo&>a4nuL;JbeR}lMii( zuas0SnQC<`>OQ(zc7LzkN$}p=+u;pM0;SfnPR-%T z8^V=0PiHj_E*yS(?z32K**Ns1K7RzKX5?*I{n*Hdg#GO@>W4BvgaU1xg7a+ziho2! z=~k1oy)A$0ZnQ~J@R`y({QL7W`FI(Z+;Uf)A6|IF-iRSTNGK@vx}$2%Kzq*F#jC47hjr>?SI!*YIEjQ91q4v$`g@5Ew*%SKwy74ph^p*mU5 zUgBMomfH;MPtBa!ClcaOB7b@QE4@>ji&DWkh4}{@mCg+J`aXu|OVZc{)=bsdeJym? zzE<(@?Irw-q>!@(ERxQ5vguIs;_AK}>i6Pb2V@SFxIZ`Io}*Fwsdhhp!5CLegNCZ@ zw!SjHl$1bJUs6xL^K+H7w=cQ*2ZglvM;a)(JW|?QD%)O2@0{c{nqj)iKrSopeTTJR z;&M?@s@uEUvmZ}Q@)_?4=GnR8Ph7rq;!>KfJm0k+2XmAI(hOImxO*{hZH#eM?H5&R zg={Py=yI^%8YrE8Rj8Plmrt~Bvzo4ieP(@weY!A-eg)WZfifRalnFo8H!5Hxh&5iH1S4WTue) zpexIQEg6N(9ayPqVI!mbai2w!3p!`y9t+)SGD`E7J%@L{$kSW)J@&d}=wS?dP_-o= z1{0A&Z-Xb1VZp&BU8-fBU9&Eipt=dQL41`&dP{cvozIKncZd2^ZMFX&_TD-!>b+eT z9>oS>2`bVmAPoZ2ASwznbc2-AjdX{JNVhafNlOkrC?MUPgQSFX$8he^wfA$*d7ks` z{eJd)-oLhgtj}7miQjzVuIsw5yJRo^udGZW%SzrQqg<<8;iYS?IV$FvL=JKnd}3G3 zg|zCfc;>~v&3*s+?f6{53X<0~qALTnHY5}}uweGgYf;3hosH?EvHbQ0k7m*;w)rEe z^m_{?Y9lXHEj5aRSM0$dpD52yKWFb2U?n@N^}xmQXOta3TdleI)N4_<=K2NFYd`r9_qn%XpBJ+v?-3G&bF%%A4YRw5J+}m8_pz?_*#1L>9{HNlkRg zcOSD{t!68W9SL>1{MC_*dO1wE2fzKU8&~xZzY`+UPGIKk%;b*)q^X^6KmBdl6g45P z3-sASm&8Z!7k1~2o@p~<WdRZmmoU&6T|;>+0MyJ^bK97|J) zSfc#vKhFGfz{t({kAU$%Rzc$8z5Q;x<@}%H* zyTjNsG$|2Z^e@(+kqBoh?|~El+dp*9PB8Sp{+t&ZytpC1Q z|7_d52mbqJ{VO~4ug=Q9wrvv*|EHT3M~;dQ2>KTumg^rL_WwbN@V6uW&nOZ8!v|l$ z`QZO=lnDP9Z~Gr95%S;R;{!$6e@r1*8au0ed1tu6X1P~Z`Wzx05J1HAM9_%AET zikP6kCHmaCbIu39P(hRe-OvTw&1(((UK=MTwQ?RF9%ul?$(w*?RKz!pqo6B+K|y&> ziWj&Omy+MAW+=`8JnUY10`XcMfzT;}o?v8nTStc|VEQ07(gU<#pjYt=3RW|3U;w3h zb(Uy&c=&EmQ)VLcJ@nSr>H~eTSxH1hVS_#+kLF>4(j5n*UzvfIj_Su%+K!J^D|Cj5cOy;Q|3moNWi{`+BS%w-?U z@2*Wjt(=U8CNDJ=(7rp+*``zFnjz8I*}3~OIS4p--0(}G;NJ!?FLa&ZI^}rGdV#>3 zlb!vRfJ`wJ8396JsOkEmj~_n*vkTf0!z%$1nuSJ(EL}8~q&?L3hK-_PXnDsQd{U4U z%z{>s(F&)IuU~&m1&Ky#C=x;GcL^90?1csf2GcV$eE?TOO%{Y1DgcDwQl<_I3j;wv zHH}v(B_cMKQ5z z6g=FA9vk3G@BkDG`iI1%I7A5AYCG;8WVhC`Gekx`uGiDor{~5s8S1EKsj?XcqtVCk zQbQvg*bRUrG(9(3w46IuIaTGpS5Q@T1VRrR>+4rJbmD@8zW`bRU>%K!tMXNu%o{e^ z<2Jxv;Ii4uvKp^siWr6EfSqMl{(Rl;rn#+_;KZecuSBc1cMx;JQ5|_Z1_) z40Z4W5RZa3kH;eIQ1qs~c@t{ubiVE1zl(n|1!xiaqc2^%#(3TmI>^6%{YszCL)!es@rF%8*i57X!uZ7JpMSGh}&KlorsjK@!5=!6AZx)z5K% z(^SLJcl0a~^(Ol^l<*f97j*%MftJ8#d(Yh;XXlyl0X1T2LWSBYDJjvEp99^jD(TUN z1_{CC(K6aRv*Dt7=!NMeecaMQFDnK0Hoe!=gFuJ*5FOoQafr&YZjTdCWb_?POH1Rj z@m&tp9~&JtNNqetpWE`XaUH3yLX2y&Pd&LV4&M_-4{*6PJweODtlystt#gssp_fcN zRS|cL;2go3WG2(&=HjB8f=y(UgFfz}q9VZEOf4<7({`O=+1c3_LP&^->2#2x;qIxM zA$2T!3sB=ffAOM6uLaO`u3o;(i1v-pVz6<7W~}BUpmKk!t1|$EE3_v(Lvl5N*D~gz zMs#YT7gpmz>GVDN8z49JNO2SoB@}uI*U3|2sX3ETscP#C7uU8~?W)GfN*|vFz`>?x zLPA0SQ$wCp{;o!x1UjAGtQmBQGp5jIKwZunYC#_k9CHT{U_#=o!Q<1@Z=h{JY5#Fa z)JtbqS7vTdn^GX#V|tKXXCb*IC@9#h6nzZR7E%kUvboKa$l)k{HglzdtXA)At@FPk zSkzR<2Wo1bLLU@hQLf*PIsRD0N_XN_y5a<37ie%%q6$C;USE@oe_9WcUa3K$Pg^cy z6xH=|1cxQlLiw39B&qw9%t6@_T5*!Qh~&=aLNrtLqB}@0JN*ePEAjm*1v!M-k+%=B{(`Z_G@XWSIp3b zz7BcueEx6CI??w9L|M;U0M8AUhgr9}vZQ1iz_+x+Q$+@utb3bq$DwJKWhi}GX$F;z zyv!a$JM~tP*6|+%y3;NwA7PnyGANBEG!~AABFPjZ56i1 z8WPg4WE5iXNG$p?`{0&CzaOoDFp$|`uR$Cp>M83hxS7TV2A3%*g}t!u;9tm;j1CfI zPBgI|ZOG6IzV-3RN<`k`*h@UAq3F9Pm%op!_EX#osi!VC;d%hN1j$z^|NNpW*F&Tq zJT)=-{PykJZi&zlys6J;nSlL<9Cyf&UJGLD8*3&ThL$lka8pgjwO_y9mwXjUaFKxE zmh^|~87kjC00Lk42$VTOoop2uhql(ZH#+yC1j13y*FR^?X>Bs!a^ScB8BDhT{3T^* zCIdqlx{79ujEN}+-Ugt-1+eeu&z~n6T~;@OZzQsj+OG6GDtF!QkZ*dVl*S=h0T3vW zKd3FG_)jb>?1LE>xvhMXR~O_4a3<0$_;L#DX#0au1V{_5?nV`XKnL7`rluyO88a&@ z@XsP#KTivucLV7O0KqXmZQa0V!aI2qT06HvV=MNFn|10LR|S-kY;G)d{{3?zJfe9+Nd(dzwLee3%C{Er_YA3pGdUR+BQ zhv;**Tz{q;0{r~ydreuTuwQ`ePt$ies2~*`?Cn7!BZYM=`Kp#GJXRl4hw_h|mq$tl zx=sX2AkFVUci<7gtn_;HbacRRukY{QhCbAw=yveKwcozM)n%Xx?Vs&P%sc#`TK2Tm ztS=MzO_BF)Y;2(AGqN%~JluYF^%*T~GK0mAiiCuO-iN5D0k}8}uwOxdGn)(*%$%ih zzfJ-SAhh$^r&jNET1DRwU>1P_o?oRY!~u~Uy3`~jO0)TD94%7NcijV|8Bh$2ILOnAJmDwKpcE;pKLU$PW%B{>Ta~ZQ!GCdG^34v7 zgzaW~1-6F%h#k}-+1O;RW&-tzSoL_1L@D(oFE1~M#DJTLm`9oRi0kc%PAzjY*g5a6 z{s5+p>;<5EY6CAQBcVKA9Zamoos4PFZDlkcs;jFTAJ^HFz{3zCYPdf_^T@+12t=wb zFcYCY)*WJl?%UiTRG0924w}@2H`k$Me)aJAt*Z!mqz7>NK>9RKIYSYNY%VZtfyF1~ z&^atHGJ=T8(b18RkPs*d(5eK73D;=!_{*Poc{diB3aZ=Ppe4g|=T2OF{HvEQ-90>X z`&)nh{K+`b0A3QJSnOtx9Q5{+EuKSolLoc;{*JTr2>y#v_)uK=|cCXUiS(A%hR$|W-Q!bB6(F~?OI?Fc@sw5w@Ay?+I=UOfp zjfuaF#h`H9Sya z^Q&EEQPN4r^M!Eku+2}Bm3GaWa(A+4o?{mRXioBNuk>c?31mel9?*{?qfrYTvkvi| z1Q(<_T5~mu9}LWH^-U?WTjxj@CfzIEXpFWzEBEBXH5u2Pkn@EZe#!C0dn@Kn%yPyA zJ7Ep^c4{exv(64C%wA4C+zlQ0HrDEHUw54hJAV$fSkYl31VWa@jM-JQ)R)CN0`+HE z!^%SGS~E}mdD^4+fQtSs8L?DNHHib&W)Tspcq~=y#n|%C##v{0m`4JsN0rV<%7>Ra z?<;<*bJ~YE>hhHcPCm}i(gWF*k_DT~QoPION1S@mZi}Wg2aM^@2A2E<-M2q+^?vJh z&i2alX>Te{5$cJuYHe-j;p|o0mp;%xs_+|_3xox+!x0pyzMYq$;rvHEFP@18U>*9lMTru^ zCj_6FU>-CT7&Z$(M}N+3TPQY_7dl*>ucvTi7?X^+yT=?cEjPmf9Ty6AH$QGhDOgu1 z=dt>tzI>6N{pi+$S`bo+xX+-+aa_LNL00S0M+@F4SG7AkzWDUwC4_hPTW;J_={?`+ zpYpmmW1-l@q|be?{RCopM6|a_?Lp+=4n{*CX6UXaMpG*NUFA7TUM*oDqZ5> zRv2k+S8wOzj%F9Mbp_3bDTht$(yKyJtX zK2!JG=HRk__|rj-_C1ZLqqgJv@!2F+25-wBpYjV;%Hg*q@t zWM;pK?%sxP!c|9fB(t2ThwWI0AM09=j#P;q3tw}aaebx`67a^fWuGT`iWsvpfIZ5< zHzwTiP}!8vb_i;4 zXFwooAwqO*`EYkgr;vr&WW527#96ChA+ye-x9$bD>qW)Ivw_rHM(qU^rqM{h0jA;xU31ToJZkvhbB@ZgBezg zW74ZwKf2bb{HRp9Jl=qqa(?8yt;ONy-0Vlk9L7G(oa}}soh*7N6 zd`@rbWK%1uVx`XVsikTP;Az$8E)`Fnad`c)IybN+vQ8OKB);HkTDP&$YFfNRd+YAf z${A-mY9W<;`mZMutG4+JXAp;S;ujZ&3Ow7G{Q48hpQlczeia-Z-eXpYJ}~CDo3Z&? z9*^-DMC+48WiK7b$pjG0V8+-;Wj038vDFo-$6_N5MLh?aJMDRt7V(M~C%Eo2^T0=(j&j z%$+PIhbv@gnL!N}9I`h$!ouHpHB$7^R%)yp$$D(#TnPP{!%9VSs2dk}>sYcEJgA`|@aFtGMs)4?63^{qInssW* zqxdq$SHpacYs-V#Jq=2zjw9Qqw_^?M^$|=~$n0MZ>Zwyb zvpOUdRCc7=4(9A3 z>JYNuf8c1P1Iq*ZG>{Zo3r=NTLqODHIVvGq#0HD>&>r*Q#Wh+YZ^R6qKnMpk+{xdN zmewxFb&3@~p3)9Xq{03Dgy9cqIAwQSt74;}4lWmffkTNTg|O^6DoVG^reY}AH?i%U zdWi$Nd=5*J|EfA>XFljeMNopu{^6yP^bH1#lI8EH5OHX%dswsy@yPtO+t{e=xKZn? zxzqwICSCj5L=QD2Q*_($6*4X~9Fv17=JHL0(C*k~^6kFsP??L0MNXdw?~=&+n9q@M z5M|}lFpEg-?33G6<;p^J@K*ZgcC4HRVFciq0WST#L>-=0oS-L?E1JaCy=y@g2LIOAfOS zOm@G5^FMM~H3(=ffe@ID)h6%$#ejn#4FQ*Rb#-ONDKCMPj?pf$@Kc&;r3#b|uLRfA zJu}4DSR5RR`kdIV_Ay7sigbImPUy_udfR2=+mta+Yjirk{JCLm0&O-l!|Jfb{r2YV z+gE}bbaIv3Gw(s3k*)bvA5&%eez5dAsuqkpUjj7(EwJJ}+pCDnCif{7-Isamg0 zEml1H9PW$nzmJjYNg&VV#jtiZCKAPERCUpaG3(fHJp)_ONKTz^8u}M ze*FEAETpAd^vJMX2RZ1tYH%Q{y?YIkkx3ie!s+6~mY_(6hld9u%}H6wVNr?4 zM*a8Y)EM|UKznK*i^ak>63_2h{3$+$UuBM978cejScFm-l+*?7f8GXtQFiU}I1x8q zCZ>6rthXRao|Ux-f*>i^Au$aVF@+jH%JucnSy?UVaFB5sPpWTVVC3hkl$7pA`wqCI z-wbLGkj^TLhs4EI>eXLh>dMz|pc~!a-Q7JnKyUSHHnU|wFonxtZjP4ONi-RO&{uI$ zk#d0s$YeAc1=)hsDHDjWbV9}piF{6q2PEOlaLI6QshpmhvmPr~`G)K6U%C#{oHDiO zv(nQgY!V*czyD&t+?>e>((zR9D%UNp+qaXz<76R$xZUx zPrU;IE=ITrW@KbEQ+>HfOWW4kT3J<l;uboNK}HXx0ly3 z)Nf49dpvjT6x7vAjXS8Bb^+@sEG!%w8-u$3Xr8Vph=#oX`=>rHXcKkc{qis)I5-$I zsmjaBB*WLYw@ZqOQusNb92vywh7JsNd$r}C+JZoa1@Bvk3htP1yVn62P zVL*tdDHnP;`ntP6@u$96dIL`gRX){REs%8Vhn_TnGUlApbFB$j88-~(AW2?Cp{=-2+B4aDf9@Q=(=wDm;`8$IQZ(SS{e3KSXh8cH z#CR?c5R9U%6Z7-)p?{e!@haPs=M_n6;Y;zLNX*P)4_%p10Sh4K3B59m_VR+C3X65U zj#%%+gi5MnhU3aOn}RVY+(Dla{4?w`w9(R#Te( zsuU>|71i%gfPkG0zBE)DYBNxogpQMoUS3{+=O81P6`}|F0EL2+$IfyDdOFY&NyYy> zDP;%_p#rE^!>N{c9jkKVyL0Ex_3PJ}nVUyPE1^L!)L?XU6#kB}onjK&vWX2rz4=yt ze_x-ona4rNI$k4`%;92Yc_AdZz9vIyj8Qa9R$3amV`r1@zk=oyX4UM+ ze;%=BBQz=s8b6GDZ>}@C6vG^(<{T3T2L~p?gxAPaD85G7)-J@w#o?-XeA&Er?xg(v zfJ4DDYhXRX#qWcbM9-IJVyO!9=H}+_U!{k^(6c*Kl$S0&)6<)Tk|Iqev=Z5J(fmf5 zg{z>@h67}~-vtJi6c=x8ZAGMjx{)RGD`R?gb}Q5T-CgIiXMOJ1Fa7$JLGbsDg=qQD%CMR9R4JgCpNZ{I-0J5O9cc9gnLK{{*v!lf z#`VxOySlk)s;kQbVgW~R{4yX8urU!&zreX{ZIyO%ayow|^l3mq0K7dNHs{NiFW%nX z(6R^{02HOz zRGgqMafVg|^vj`ys`%&GbyWU%GQv%0#!G~{{712~U~B=kBD;1?p0bj9`c;*~qUv5S zXiQ56k^%C6%T$&6_xbz1^?Ck3f0_tn6A=oXCq(t(%_oC8|jPoReeN>t?)6$fBGD};L8y0!>d%;iL9ha^LPSKg_oNt@ z07^<>f4@H*j49N&=^BRMCthJzUftLTn_9v-F|rAbG9U!3vsL`<#jG{p`ToAkaxf+Z z=fqB&I01F|-hqLY5mX+f3bi(mc!T!6rf6k$s)qS(lRpe)AbCDjjad2+yHY80hF2=3PP`So~6!@ zc*hS;{@y5EP!|Y4Nc-N;Khp<97n#T->>S!@FCG&{D$x+S)xiftm<0O?~|-+fp1Td1EM651<%dRT~7s( z@TWM^P#1_(03OLf1+9+0)9TvVV}L=ali|Q#oW9|kH4dQV&UArN|#sMvn7`W8{xq&bLyi7aq1pU0kx-fEtPOMMUAFPR@3c~r~ zbA1Lx9^DpG%%3O%OfR6);T*aN&4|1#Ku$Y5<+o0gLh=!61QAN>X;Pe%_U>K;6V@Cw z1DYjPmX;#VC+-Qn&r!>xmdLM(rM-1a+?11rle4R-Ns{*@$SBZvK+22@5JN$U7y3sf z3l_oQ)8#?THU?VO5T-?gWmIF7h>FsC8uMW4VfA2B}DZ7?DJ4LnYmKm7!nP7-_@*tLmrEb9u z`hpnx^qDgWcRk9r%51?-hRcLyWwC&7eZcC?r)Flh0A6n98YdT5cW-a+$cSd(CBV7G z4+0QiD*qA$A8L_C*LjP90j!QLuM&7{M$Hn|`af@fgG{|ZL=^Sv8{{c-AmqI?s6cqZ zZEL~s>C<~Qh;Z40d>D6}Wl;*eAUX*NIBO9X)xd832`AvUSC+IVh_Lv0!|FoR{M^wo zQtY0tt}cw>V8)wJfuxv{nD}OF0dz4xdGZ7-&plqli{y7Eh>3Cgt4E1(~Zg20~LHsc-=D^h7?;MyiQ7vd7pK4t18)ho*02@^a)^Rc zf?NpB4u_8g4M?O+|HTG`K^~qy=xfJdFyIHjeS0~H@P;&7%r@JC8GNRtfdQR>YPSW{ z767RDb3H4s!^s5G4L2HM&z#>U69Wl_8E_5_5fcjRy49?jvXX^BJIT~4E3n|DZv&B@ z_-33DgghfUy3A@!P~hYU#MsrMRmt#(n@aVKB63Wi0@P{*#Vt!-~_H;eF6QBp!YCCmax4FXI;0s{YkPf6~8gumsV z`zFT>%u1Ype|Y8JQyK|n;FV19(jivk8ZQk%8U#To1ezhCp+JQdOMPScCx3+%CrXFp z_17@Hk33j|mZm0COm!9IgRS|VhR)95Nd(-t*w_l7b=B0=z;tZ*>Gmt*+Pw8}cKf=z zAbG(Z71W0h*94xz%p|0=w7souDBi8V(^oQtvj%QxGECrt_#Yzia5hax5T+=w$yLis zpws-l=@S;NnSe zXRx_o#^BIgx^xLlAd&0K*pKP@y_Zg(3 zaE#&W!nI$4OUuY$sy~6-Z`;NJ+|bD86G*rRU{Yrg^)QL9wbdU&@5_JtmH7I9_!S|) zfA=f6JKhNH6N(+v@1{Yr5l3)jzhY-^pTdRkmViuE-qV(tf`BX71BAHn@4~{u)4RzKjExonZ18%zlO0@&BmKX-lmZsGM8E4@zuz7Jv6W;F ztRgt3rsif_Cnv~$aG`yEJ|`G&VTko0OT8^w2oWQwq%RB=rl$owk zEH0*}r2((6d94n@IjFc*!QLDlff396`0@Tnz==)y>?iBa4{be8l983g-I9kx5D`7j zR>@E<@PPp`v4MevZ%*QNVdrBlOwI;HG69%W1axOmD7z~vs(Uhr@*ZfSw$#*k6Q4ln z_(N_2<{cRW)3(Bv5>VlNvS{ z=$2rApnf1LOL+c#$OO!lQGh@LGJF8OAu?mfKPlgA>H&KD$|sz211Sa8mn&9~KDoJ8 z5IO-h4w3=p7m;vHb#97@)xw3AdL96o(Y;uh4oXF(4fYXYT}Z@J$x!LFc61fBxan(f z9fpPktb1RYo0$pn4{~U%OTY`KO~G=K0(q zIJ>#A9FdTa9JzaR#QU)`GCC(;_>`VLP@1oK?`aa8UmBt$`$=0pVF_yLBXGipYr!wB z8d>*ST}LNfx3BH5FeQVF3XbC@FllPC=pnrLs<~y?vqEU0DW^8qCO8)o5r%rc_+yye zVTb13bh8QMqY$EKzl=(xs=rKavRV-n)7V@ShU47LO{{<*=bp1>;mQ`mCIJ`0{1D zrDp1Q1_g@j(ig-9<7q|G?+*Vvj|uUn9alVpYGesip0T4!MI&bRMPQv7zyiuGZtN zuS+~(XPvlsx}B)kr@C}Sdj|Skj_3NM8umX+s8?@rNGTJXK6pb z-Y0;OIW$?~+jlMR`<3NBA)55?efwCEen-1UNU@pn!DjsZAlDwA*b|jooltWi!YM>q>(qp^nw2KQK+shMQ6a7O<-KP3~-MD)+Tx^m_EjW{|EBC0O zn!8hfc_$3m@F^WDQey48@73O_WQ1CNF zv-ywyB$XcVo$hYTp5C|2M}-5V> zIUg!z^!AvQ6=8{Lw+#oao09TokyE+l-OFrpZg*_3_T#SeAC@qZBDNDhu?2jI`L=R( z^QDpOgxRzc#rNI%86TMm2~Z2UsLn^4Fb9d9b+*v1W}NKo0@FP+djXn-n$L;9-C0@7 z%E^g{N<>?X6R^qT+)wmZkTbi7S>9Uc)j~T+JpEbT>ty)41%Ut~GB(8xtfbImS_%re+FI1& zt85Ep`_|2O60yyB`n2iDXo2J54djIYnNrZ%ogPa|2y#0TEuk86lU7TjRL2`J9*gKTqF642<$V}s z{k0{ABHehd;HCG#d1F0=_XKP6d`8XwIYK)~t);=VH{D9Qx_M%;vn>6Vjt-9dp6x5= zefbu8?OFF=-VqmVb%K$Ff%;f=LAh~pW<&$g@dQ?OdC<4-*~s|X*8VgV+NU}rr9WWA zDK*vDUC3%TwM7kswa{8&|0PPzx9207j8)Gsc~&LJ7i!hQKOY^<<(5s0Kv1U^1eAHM z$*H$!#*9j~^mcYK8e4I>S=NONzJ3zXk|AN2r#2=pXWaU&O(rgjQpoF<>=RXb3OmE# z+(5^mwBi{K9$L4t7u-hT`+--Q?{1Rj#FGm)CE61tRDXKocN7p_BsZHo(A{gHjf&Z% z6ttU}yre_Zs-yooJvKT_XfAm?8@i?+kO(>JzzjiYY3Y|<@jv_Kgc!c6lMsYL(Q z)~+zG*7hbIt~(zNj#92H^8N}Ebo{m7#vw|fT4A&m`bymifpDB88uR5CbZ;!PExXFT z-QmDcePg|~9nC&FJ?C}cNJ?Qhbs)61Gr20VyGdc5)h|O4A5gXWV+7B~6FakH z-LN9!Ob54RI=liCM01JCZEX&N_k`CJD$5(Kn5*VyCc}{^vW>M0nt-G4y>;quk?+{{ zu5RF|X}zn6i;29u9kxTSnUrmslR=+h?arhBnban%-_g&aZ~YjDc9!0O^c zB;_WJQ!Z>3asR`(VJGHxc{wKwubs{+h7R2dZFOY>eWTG&fgYQEDLdsnd(XFrX~q{z zj$3CM3!_$23_ZC^m0J5W(H4W4$`X&2S%=wdzs}xHMr+gcHxi2-ULz)EpPiN$*yf0L zT!{Tj9%`3+&gmGnpX=z)+D?#eX|~BUAaPjE^l^6qwK9PKoSZVKJy4w|!V7a_fcX89mV^B)a;H{zDk>}0<+eZBRit1m_ zTN$l)V7KQXo@OL*qW>t{MlK?R;^E_tK$MwvL7ODuBTB(-pri>38opmXc5`S6tWsf7 z30CKye05{0I@UBP&)UGmnRoVE^auQY)vFl)ef!BxFY`PeKzdC2-pVesITSer#tYJV z>^m+FW_M{4>m5}cfY%fl|_1KmZ+x#;1W4mmhV3F0`q!sjV0+q<#*$8B+y^}@H zgS2FOmSf>afilOVG}q~{F3v(vqC0#%3VI7fcBF4tL{>M#*N!P6#xcK+HF|FsVXHl6 z7EMO+FfI_ET<9KG&g-VLPLsn=9vQx;!&r%uYu11N6rz+WcTlv;{Ji2tZeU1t?x}&F zERy|cZ{fTq5>sNWaYs6MjA0l(^EoHSU{Y0-}OEu*+ zr>XWyOCNKU0#i*)SC)hJRtp2`Q0D%zqtkHJ3}eq8jKw)rPmOz|XB*=>-Lu9wYsvrA z$RKGc0~pF1wS)l_o!g185aCAdQfoK;4>pffWhgw3rZ^bd6IfhSLUMCuJ@3D;H!vEr zKH5UnTcB+e66dyOcWHo=jRuYavmaMp*oxZKg4`seAOzwBKJ^9tWesQB_=$Tv|6q+nDX#?%Z{VeDP>SM(*V4i#qJJ_t@~=X+AXP$W2aG zNh{<3J5tmt8VI||@p2I3BiFvq$OE31NEvqM%;Gw+$yx??^n zUUXDUyuy`*hk@hR55wy@TH%sfFiS+Bmx`B4X{@()ll9z%s%u`4w%K@9RdZr_v3lJ* zE_-{t{i+V;193YI1w;6FQ@Nwoot2UL#TkWjQahUL?F$2*{023zSB!@u3cLEdu#QWs z-oZR}SJ?st9Sa^!odGtVe?Sax_VLiJHDHKUt|BRq5@ju8h!R(|&7SPP?ht(^ygq;@ zHs{W__OWm*&n-RZyC>}lx8c{9B;?}8y>``i2$$EFk)=5XYS^ep_Y1U~R#L0DJCy{H zgz(@99U`d`s=x|QiSGE~G6g@uZGBS9_AsjQ=zKqqz0a{^Y&nviR4<(lw?@7<*5;p=iO<5CGgu`Jlp4(_;PaZAnQU6l zuXm7{s9|h2U&`!o*?r%1620s(^Wr1-_{v)6&~jh)_8i)>wYe#F2{WIEKR_t1JKtTJ z)|%5@YVgRsr(@PKxU&4Yl(H1*fotCqlCaz{mJ&bQtcb*KZf5OQU4n1f7srjnFmd-y zay4&9AerQSZa|Sxc+i{bPY>nawbUKJaS)Tjr=(eR0tI=fW>&nSziq{$uCi&S+Vfc- zs#ZkGWH1BS#~beMA9f=0$;5Ut(urh_*>XWOITNy8=cAzrl*>nXHNM-N!GRV%s4)svC^d=hhQ!NiohBDi!FzXQW7 zKHk!r&&7R*kIOkdE0*gG8Ou&eim~J|6E=R%Quw+?Z*$%AaMZyR1|^xp>=>Dbk9x=? z=jFVD#kwAb=BzJE)ds;uD)X!Qm1N2S#R;fFRU>(uk~1$Z$c(%R+R0;ElQA`;jiw1+AH1G!Mf6qKJKNejM#A znF3_sLN%*fw=j#nof(!#UPtRDzpykHXUEV%UOJxD`wGyF z+m|uVZ(1i&SWSgVD;s%97G{~v>LE(0AwL=y)Y!oxkID#(jnZAu(P#gzQoshD(Zujs zWSp(qzE+iE)k`)fiZh4_8~CBLFE&`vfdO&MhO?uXCgy<2a31b*^h$q!a~m2HqwV?i zsG;&DTC;?Ol{u6^xIg_D(Taoh{N!p&gGX}=8Bu(h;@D=qf1VYRfe$^QP^gffJ(L~f z3IPDMugqr?OGmc7giU2WI{b;PnrQWKar)S4Cf$D5?|FViM-Bzs$=0Wejd~I(N|x=d zw|BN47sqD;pCRbbHRj={9EPmYWT=^I$4g98)|Hu-U}-=MOD&l3=qrm4!6u^}`l9BT z_?Fh)M1CF-Zo76T5_Kj>!Ni*)otvX$TXiUIa2BY}NQ@twdQ3;l_={Ud}kfPvWOGzBo1r1mV2IfzkjCC>Kp&4msN9K6~8WXHg=V znkSK9lA|T0I^ua+_9ogCy&OMWY_UJT%fzhmfnJ1sF}QA?uwedE<^+RdZr9Q_|J+k6a8iBMUdFHgu>Y{!1y z$xGbUE?l|1c-pxQ_^YXbPIfTMH zT@kcV=(fmdo+(i5X2(cF1WhXN8|?5e<{8#%if+TDPi<>_ zic6L&D5bv~S1qPuA{2X8P`b|#bd1)kS|dn~c&Xm&6z`;1ADrp7b8TGqspbK|XqA=6 zdUPVH{_8+4<`A;foQiD$71Ykg&%U&vJl9h|+0CgkG#bO`LxNsnGJ5YjtH9|9WQ5XW zcJ}_bVZ}{C9hu6zru$1jH%R3Yg;o@^-fm`F=^Bm~<#81jjAJe0xQ0WonDd{&N7N{p zfc4vvIZG0@a&fWi&f(x5`IVf5ih&hjs~@j~)+Wd7p$AQAE|Y5({i_b&&lVXMp@Ml) z^s-n3PU-xY+q{j9O)9R-qILp#_Z&DmHFVX4oJSEtEK1SUslLzjY@Yzt;8$>S;rNo9Ixrd22XL zPd9fpjp(=0C9KS4iaw_Zw3n=7BZ6qJA})AWv&L5Pi#|GjZS60NW|I@d01*ix0@w{A z14@?|UHPYKSghzP`bF8;!h6(nXLGOd4*G1JMAUdGXBD*hN)50?@Tg^6KpGc)JwuUn@@5Tt{P8Tqb+%XjYkkP5Yve-mJSuKW4)>vsZi^j$vx*)iRXNsA!S0J-K85Q~oZHhSXZ1iVLb0 zuC6~C-y61#*VJRY1gjhBaD)sHFPW%Cgg-c3AnNb~av`X;m$UsKo`V_d@{{g4J{^8CEazdJ4n@~RzA%74hf&rY3?~q)&Ct%h2VwyXhld-Z z0cRZ?uobnBhI}%YS0r0ZOwFsZE9kCfF86eH_V)KPD;*vrGekv%Ma9KnL5AZR8QGd7 zE+Ct7c5wliW_bh!!vhwXbf`&50Uif^}n0K&D#2`Fv90wz#_ru+J?E6ig6L6&ep=>Zw#u*Dq70SN&JiH*pP zp8yI20-JF72KX;9MkZ2ijT84MV#Tc6m}=zqOWfoP5W`q{0FauM(e@{=U|MStnDP#a z84nz5pbOi1jT;);q&o6}d?j}m3()q_;UV4EKwyDD_c7p@93GcoM8#bgW}cLEorEMz z*XyXSw>P}+LM3%kHFn=T(_4`qP`#raOw=_2+v!H&6Hr{cRv9kh1YANGjj+GbA?ow` zHLleh#=5BBA!@{6V0k`3TJURd_!+3Y!}wnn@>!&uTprBu4Gatv1&J3xk3ePw=p~KK zC!wm!4ftR$RDpnT1{2^PK3HnmXAAfQ+A@HRXy@zIL&rTV$-E&ynKFz<|(F-+wutLx`|tQ_ewmKrEkB_$<4 zD_q>%l9!&SsBCqVu*1;Rx|fovFj-ntvm!P1bl)Au2r437--w95rlxrShN!8jflme# z66ucfy@2+Qcv`^B&dz)Lc4Kohz^p)->MZ?r{(RpA3~d2U@%rXwYg-%Ou`fg~oIpsj zB1G>)=?iWN@K6=B8E@R+^sK&iHvr%RDmu^!aGVQLQlG7J2)cZPI|C)*+>al)VVZEQKr6?N z5_R9Qwa(}tQH_m_NyF@PbklI0;jwUN z-99|~U$OrF1bBF_aAXW1-~ixC!hSv_Ev+O!|GqCOF_C8fJWy7(w6wlFIpIxr)!X__ z<~wYTxA$;z`Pr!f$W(M%W6;)MbrKG~5 zq7sutPZjfZM(KWedLpwEC_KO$kAT6#9r%drzNaUSE8KQ+0h}ZB0VEV^r5_k|V?lAg zsVSqVsCR4(07l^bQ)S}DONQwf8m8vwuK~A}h+3Fm;JcQgzP_D}jj6RYFznzrLluJ^ z7;)JqzdzXz+Wm8Ka$t%#j2}FG>eQ|NsPv?yF9iiahX8soK>6I9oG-k3;gdgPuR0&X zNF*TU1ZAS9rwx=n&{d?1lX1__v0B=z|5IcVn#t~6(hMgT}{ z$)7&m`uR~y*$bdIq@*OMG1WIT0Gugid<36;E0KuiF6Y+Q9V?E6@S6EIofG1;|BzrfvJ8{L~E`jnh(_x$-&BO~#7S1m2dX8obT!KcvX z5UP$y163{fLS+>d;2^g2_dD8Z`2(A3=I753At67ernoJK?*M?U-i3Smau7=4;K&2x z(-9}YEh3_=qT;)bav*4!BK06j=(G+ zC5?Lf_Dt^sPwZhCY%EknEQk^Ji1FVMQU{5GJ)ErfQ*exmi-S8Xa^8uK3z#w7%5BM1 z3t*p2V&1>MpbCe^`}`c-om;nVsk8FlxbYQ~)6NmKD9Zm2rrt8F%I*6C-H4Q=pa{|m z0!oK;2qMy=fOMB2-Q6H1f`qhybc1v^qO^oGNOyzeo%{U$_da)jJO}st?zPs;HO82) zzPf5kOFw2{U|?dB)z0=?A9BwtGc!!A3wr|6WzH3Q^W}G-J`EeRRCs`mDTLX$kOui@p3Pj zxVU&VIt(Xk=7qT)0)T`CX*Gx}FP=ZQwzd|Py|Ms}HP~42VWPdu>+5D5`gT#r-Ubn16YvPd6yatIt(8ldB!guv$Bp2 z4!Zo?Hv;?*Fx74@PTJVo0?rlKRzRowN~`kX1-d?j|GBr$dkX=8g6Sy+Wf(a4^S8e0 z_=A!T_))N&9IfQk)Z*-HjAIzdM;)nm2!Rz~*6?=(pJ#!&*azeq2=HB9 z^uog0aJ*oZ|8p>N{g9xuJ$)*#pwI*y34j{U?T@8O04Z^3Xdl3(k{`(d!|InG0pISP znwCZr%?n_?m$I@b_T-5SgxeeYPhKf10=)?qzq+Po zWMl-e#H~%H$al{GgT{ssL~WkP8CoDP8?9pq;EM)~h?ZyQ{6|#lWtkyMTHL zt_NP|*?(^A!mwDoK`dA4*|QcXfdE2!%WLo=IZHm-%*5m#71hql3V@m))6k%>gMJbl zF?ILC#)2kSm!TK@peNJu{AJ`5+z5tF71g)Qcze3v?72n!TnXoj~`g<@eDwag(MfK zD~i}4fTtoUiP0%~1Gy$dK*)tSwY3o96sO%SYu6dE9i;93CN2nLS$03e20Kmx*`$FG^0F$oEe>FChdMs9BE+vqc zG#;D+coFpuaN_{SWP3@7OarW%H1C?xqXp%!)= z0uI34^j;3_HP%H%f>$mnFVB$PhEaTQi^4`r4Vj%j7;lcR=iY(@D7C`sQT#83=F`tZtv_&SBeFdDGfq@49bB-}FcL@oRHro7cZ+}S!%2B`0|o#M8L<{=}uC1#Z8y!u*g&zpR!@Yy^GcpW7w+{k31R-b|eX1hh1L!Wi1W+W?DqR&6 zA|N2)Kv_>)+Kw622CPUcNcDe>ruAff(!2$2^QZ6L!2o-hFs)Qt>avJn3PRRe`YQc6luS{gXA4Dhv(AsRsE zj+8Wb!YU^uE;7P0CpE@I|N0aU;o1V{Ie~d?-gGi-CSIdbrH^E6zbprTF0oLy}c5o zOpJ{0jE%Fvux=Wb>FeqO8KS75z~0HJ>+fDdLW1>o$XzIWL~Q~K`)V!925_FdeCp)1btyt?g)@JrH1PiHc#;0K#ZGe^bmly z227F#zBU2T?$)b{Muz|vO=R;{GD~ppytw@Remf^@9jY^^$i#F= zkj2(~Ol&Mz4V>Xew6v;fYR^PJ5J4II`STk`$I7ZI9y6qH=QBwC=kU$mzyDrZ$_LX3 zL68yB+*YVE*il6EVTv%6LttBQ>S41X&D^DWfK1VI2#JWo!@_{C2I(S%Y#QqJFu2-j zX@M?o%k*?ZVPW_{(>-Kx@N9zi5p;5pEx#sD4*(ED9uMpB7ZM>j&{+zplmr9>q@;W% zedO>IOl)LjLF+6?c~=kU9ugz8(nj+HtRypSKe~Zv2@O+0A)%e=x}Ypz7(wob*qziZ z9S2*3j7VEcO9=R`|0Tel58%9hS4>laqIw>ZfSlO3FirI5Zxl$P^?~FjzP16L7My|| z6s{yfIANJEy*w)mh^6+h!;mJD1QEc?M?fF}h%>x090E{LMTQvJ=Hlj_o?1w+!A1Qp zX>!^Dky^_4?~!W`O|KKYkw|dOpyLSV;vu;w>h&WK2{1BpKw_tZ@PBr9V`5{ABbR-w z?LV(fw*WFDnb$#koMP0Au~|;R6(1@a{>j7pJ9_ zm5v}cYG#(_+ z`vIdV{Oi}bbcs+*2jH#mC=%Vi@?hjy+ z>7hWxv_T1KtEsKEocInSg;}0Hjg5~d)xXh*#>kip1`gAff%ftG%^S#|AV4EcX!kFK zVt6Q$AO7S?BCz@k3UJs_ylz4U0wkiEnt%W6Rl}Kv<-?8BL4g2AHTvfdz+1_Pi34wC zH8+dmprf**Tn9r|-`IEsR1+Xzft_^p_Toa=_ohjewmTy&&8GwzK~ojqyn#ww1Cmv!RC^xr7NIxdL*pqqSxZa|siXle z0mzQ+HxYn6kCv9ECU`={Td&mA zK$BWVLIUl-bx$q$_U*Zb#yK1(xL1Ke-|)6NLC{WstPOf&laoMb(9qVVMAp;S)(6XS z(2Iden5z`{<-BD$kI13t0>u~5D=38BPk~7SaT~6dAV@=w`wkosY`CIXWK0Yl=%b*Z zG~I{mD%d?>OCovkCp$pTOp5@>HudV-ni@nTAisj#GpGwdKLVCz0aDHHRaHnX!2bS& zi&9K8cjOlzAbT%Q;-h^SSTwHgq z@}Y|ZZGH!bBk+I{&!5BFmX?g zl#0+zf|SQP_`fVM0vLpl!GXrKW}~|ca6ewX@fDE}6>XlFfar1t9X~KW=>H&-mr@YD zFRQ4KklF+~Ns)E~3~&eI{fsXnat*Cjkl+EX5HN2*r$Dz}2)Q!&(Bo2U85|jjfkX#- z8z?AV#86N`#M9HGdCUOWF|sWtsSGdv5L!{q&4`LM=!wB4g90#N;H&R)bAz%6H{_&H z<0vUbLl>L84C%wH2q8jwUAaSK29^x?Jxojz{Qq;1=jXsB1YK;1hhIrC5MK^UR5u~F z00oE8gniIRfCx!I#I^?QKoDnDQ&WQu;s!({NJHVcSnuA4{G}0@FM=5YlN0X1pj3b? z8vad@88_? zbnrnAQ;T!w&z}$xQsE@*&OK8~m6DbggA?=lg@(o?SPEP!HrEk zg#80S1+XQkBhjwuZ@|jyL5&4Jg#_mjNTtBD2?*G(z%2{#@ijQ_wN6iaSX&b)zq4LM zL$F~XYwi0r_4OBUg9um7zC~&%qNeZO0o@Wp1;li#sp_=cTrBZz2pGZB$cw0&uj%Pg z2?@7?+*)q>w&-GxO{57PuMI<)ku@-ZijdU=_maa5+AFUiTEX;MC0020Bobm`>EFI_ z0X+-aD*w*U%S%gt{QTLrXAXyu9sD6urUQlwKwqC#s}`z5s5FU+q`|REjHv4B>cSl! zEa2e_bi|hraEk?d4Jnszf;jXsUPYtqs=*}~WL;3Ln<}_K4-=9L(4;`-xiZf|FF*ty zo5*7YwhvddQBhH1vduT?9z5`Ux(uW0(J?TdFfz)e3R56AQWSy$Bu&tN1z!Z;`t=3+ z+!HnuoCzJMV1Z-r394G~0rniy^kW$ySpG^DsDhjwSoT9hgg0(H;)e$O?|sPJkB*O* z7ZyOXCkP6-&L-&aLu&x^r=aun6^GbW8*PpZd}x~MH8?TIhg6wV;6TBpLhB9c;N&DA zivmYK0776`7?h{LM1!1_hDq1vM zaDQ?5U;i4yrr-SqxEvxNMKn@CecEFHSs+mDU@8gNEqH{Uo*sXHe`;Pt)c6n7h%OCv zbx;n18>*@Cab9-zNIyT+)*FwM`NUor>+3_33-6>1{GF&MeJIc<#S9UMzZhmF8B-Ox zx$mI%g+4OGLa>^Et9OV~JSg8_yI|p=NyP7dY7N)>;J83uV=kf$`M`&;YtT4>WFGQL zNL~Xrm|F~?sDyhgX!Ju*~D4?q9US)Y5b5ap zG0rePtOvb$^&0$Y9oWL>HoE*z?VfQUn+6&Ffwj%ckkH%8624u3v8hBj!op#^i;p1j z1tWBTpt(50s-4rDA|YY8o3e#f5$5iGy({(R@Gt2iXH?0$^f#U!S5ZAVo;NMBBTDr)7pP+`hWl4a*i_ zd5(4yeSdeixf3C^=`}hu^nm5@#TMx%?D0nrZSm?f5I=b+v{i|}Ra!*|Mt}2PcFp$q z#k3A;Xb1E!J=aDwq;gGIpOdWiY1K_-Zud@JHv0I9`z38|UTL4d7#=*D)XL3a=y>iw zTBy1oP9-fTC-g=$8nZY9{jV9u^OOCk>!#zpg4|)9@4369e1IeC?|ZddpPsc{7&ACE zXri*YCs6N%O2K?|{pbAb9B%&_5A#;`>~MPv<#r~0r=F&tzfrV-zU|P0SYq6GO7)#L z+Rz@Hd~rBnH_Xv`v0iCzNb5fscQ{^sczwkXT}#zO0@p+0&=Ms>rJf)ZmA9WbX%O0Z zr>tht7UHsQ>Y8>^6I#S_-q-HJ%tJ4GJzI5xkMmkrc=kDzT^fEFHoSs#Xv@tZ|2jsF zJa6aXd{>etydfj2gmqAW7e-D0@FD%f>8f%60H0%l#-=1pDjG~=J2D)FzygcyS9^Zub{-^OG(^=tf2mJ-c#PlOJ6EQ7chXasEU4>^UUvie z$d4CzqD_|Ds?J>6+8<<|eVCNjTA1_-{nd>xxn=!QpC-m}RwhPsL^!*=d)Rs{`EU!c2wm*wi^iJ{+Y*K0MIx8`ldN+QGh zaS(Pi_+I|!Xpy~5r!HI5LKW&R#!1ToyOgKE==1i>LLEbgi`Jv{+A0!T+tk7*Dw{_p zCVFD;*my9^?abY@uikLclX3n{N9*i}83}4D{xvqtOXwNH7Ezenw|YaMw$>_ZW%>!z zs8Vz(&+z%sN^K#P<*hEGsUIGyi);$4zs=8gXR2Cor;8o5y|;N>(3roUav4+La*xan z5a45wZF(cz&9T^)vbQiR!V8xwaFrdxQ6k?3_HagM_Ri_+l?+8uCDM;^S9C1iQ5xlD z=6Un^?mzeA)3kgH0XAp-(6&FP0(=UOXSlpXIn95B6x{kiBB!6rz?MTNCob_!QtlsF z0u_S5j!gG=W)fkc+VG*#P0V1^UkxE06XiIDXj&iX2#u))r^sXfgkS#p^w~kR@pS$(KGJS zh>~`8C~$Xh=*(w#eN#=}V0gN38~oYk+@%I4ele}#YTjdlth!n^GIjNU)9jCZN#v9t z9Di|J2AQqT+}dp^RYrIglGP~mXg7!x33;fta_V1bwz?-xQXK9OHyNg9R1T&vKm2vV z&b_s1v)4fV-gO15FAW#za}<~?E7rG7Z)&Lyn>QxHqIvLVh+(N@6qL0m+*@Q+?}x+?jgzseoi zt^5hHk4C&2j6*_+1zpbGwz-~?^bZB#F_uO;Z3{KeTljUFwgqH|q}=X@ za{BJ>mx^KnwG0?!GVy9rJcLpGlA4!n9JKuEx>Uq6)kj`6ah2bHB}IpAUbieQ z4oqA|5${W$@!Zc-$QH*k;ZZW_9XHEP)l#)NQ=y!9L08W^!d`Yf*6(j$St3?WS0{_; zGC0SOv;xq_U_e3X0DpClE&sj5U8Rpi?0>Q=1v)4+iQ=zTsRRTtI6dAfP=OGyC;nb; zfdsc4)#SWio8Nt2^WOT#;RR0#p@}pse0J|cS^Mc5ehvBC2V zE8||3w%NePGNXP^esy)4XFh}UCYZ9bbsj_s)z>-HXD=@HJLJh!Jg!0(1Wu?ZaruUi z(~^^8l(kjN_SVA>}W|RfSXf<{fUn6AED&iQwCJPo1;qo^qe)DgHRe-x_x2jWMD>W60ToylJasJI3Prd(++dWw|$Cf)ts<>U?|l|MIW205b$(cnzC@xnj)!#jd* zgTrH1X*8S(j%GhY)5u&o=4Z;gmMTIBZ!n--ZHnP(N?ZOLkWvuOe84y^!ux^vrKB96 z%qOR6x;ZzR_b2H>*_OH(=o$jG_{CL$Ur=}5c;89YN-k&K8~IABq+xc}<;aUxbIf$L zaS{ZyMd5tjx>E-`$%ux)=ay2_t7MAA{7%FowMV)bgj7vT&VRmA|MKXTSed2TORMXr zKci&C!s>C3TayaiE!k|crC-(#SpGGy(%$mroSCBG@b{gb^!nfk9UQ!QzAvUli!o`m z<1e)dR0e3pIot~j>N&W%>Dur+HSrz}mFfPOSjJBV$(53LUy%jC$iTp>9Y&fV=3Q6Y z<5r6qC<6vciKykFRR9=);&gnrK_Y{bdNs7AST}J<=z*ajngmHER7F%&>VnCBk(gdr zpVwaqojd^uHMCet*uxa8Eh+xrY#p$l|MzL`e<57sMLDm(=5>Pax$uim%0^MHf=|a~ zXO)C6gDBPG=!yOU;cHI2vyyQHE06rg`9|Vv_D`EfiC8vLj7rhb8!9Zx?8#o|!u>Oi z!s_=Eh=SbphHrj$#tvrs<{I>cF*t=>m*wmxeL{cuiSr%~xYg9`WG?p9zIeo+P!X%HSrAr~ZFPK% zKk!mK zqhFaom6pbXqK??NjiMFz=miq95_%5GLMnc0#THDv|LPYw*}klI!%xsq$9LUiW-jI> zcb7K!SQZnYHdp%DRD5NAVWP%mI)S;4gmhKrMPSIKMn3U54NRc`ljj~JI0zE55rHNtSHJq4XJ!vsxNt3E^oGT24 z6zttSOoh~mKhtkiU;mjNuCtn65Qs=!5`G*-m|Uv2cfD4;syIDURYUrF2z(}gSeu3l+9L^ z6BQVuANP5_qQJLjESy*HV{)*zoODh>rCx{N(TLA&6!XGuK{uP?QzIF-xRoInqlz70 zgED0ktlqIte8kBTV$!X>ttB1uRtKf#P(c_K-+x7TUiHG_BKh8t+?H0uGQs<^?)`|^HC0@hnU9n-Fp0c^VEoJKY7S$B<#!3zv{_$m-x$2+Y^^oV zj;$enb?IMt*h{N!OEE`rt&*lDE{Sd#D=P~ySTb=6(9xA0kD>j$2 zyfs_-AH;SYj1Ps#sC3vh?^Kh^JbzbGdVzy}U;2<}fRmX*i2bA|pgNxP9fPFgDl}cM za@OBg!1V)Y^~;8ZL4umWn$p|oac?RA`b+o?Kd9nzjOAo|3FcPbsC=5O)jQh06#lKG zWdEJ3|7TBXTx@xHnd|0sWB;VpCKevU_}y?*ApHu`rGE`p6>TNbHKlDePc zpZZzinfn>Kxy4C|hEg<%`r}*C+p&$VT|F;XYP-ib+!tnV`Dnja>U=o;XMu#Hj6SA# zkaO8=sD~3xk#NKCYkOPg;+)OXArG~q$>kFNI!NRB_w}Dnl*8+v9QLL)4at8eus_$J zY3@*;z0lk2N+VbGk04U6(Acscyu4f)q2aMT;U&BKb}XYkF*5ePnI59kb>ue-drYsY z_NT~LLb^})o+iw&5PX;aJ-c~Wf~6ylo{d&`e-tgM#! zscXWt%46ZdlPi@QhetX;o(xB($jiTwCi!NPl3o&pi7%~B!EJ0?KEOv6-1PlVLG4~! z%`X%E`T{$XJ&k>Oz~=S)m;thUI{ZC2?&?3P^oea>E?f*i^QMbvnz?#U=_zqIr;{>}HA4M~PQ*%o+yX(S{hlw4)mbtXOC ze}0dD*v)6RVJ<9Or9o}mtq|uW?;CXV`Tp%@0t*Xs#y9dAhFk{5E*2`~+BYuM(~cH& zf`@|6A8ZyIFdw3}MMpL^Wrx*}`|d902s1fy1yfv@>-Xr~Q~W(Tk`WLg93LD1+2Q=- z&Q*h{`ZIa-Y3-(55dso_%5+wjE5m_W3pcZkncahy55IKl$7_a4s~0k%Z?i$H9zKnt zILgn8I%QjY&NJ{{s@OMAvwi%J+PXpFH*WzlryhT(o$d7C+D7bn4a z_*3Yk^_izVy?3w#iQ=7~>NV!7u2EiHayTZw2P+-Xj6f~H>!?Vvx#E43LuKE2MMIIhH>$meZ^#vz&SxkX z3$y%W&f8Ztd%C34_5+s8tZsO8ZgniYuw)2@q@qK!bkU*Q>X)B#V3`4@$Ssbc2s(r# zVmio3u&(|O)3K+7`PeRAhp4!eDf)O$h}1s*+xAQcX8+Gg(IjO}afmn0s;iFbkBKPH zI)rskp9Fo&PCNaLcWv&8em?~Mx48HzYb?TnIa%=6A-s!Fz62k<`MQYb!?PO&hiz!s z*c5lA^JoBmbG*XqusswS$DLF2tEDq9Evw8WPUE^60oll}f_NH}J_=mEgMDS@1UXG5 z5+grWbF(Ew}u=niD(PeTKzR? zs?79xBrWacdhT9XJUkkSjD zLzW=9a~eOiIjUBooyGzy%KK-|SbKe+OHuv&Oz#_cWdF5H{m`51!s9NKGS1cK-Tghm ziJ7A{^@XRlUeUY@i%)0(in#ppvc4KHxkE2opEnw4MM-z;DF7RVv{kT!s zulXQHK;ymJOIf$KJ1q2m=l%KDduDU|`Td?-|L$`nMrdtpZ=9$vzA@vQTaK~0 zQPOx+UIN*>D#`w2d1*FzCTd$9D*DR9k-F;o^g+Aq&-h_P*dM0Gx`LVW&1+(=^$(}k z7E%AUfAk`%aMG8;Vz)n!q^tKBvpyEPsi&^2rYI>xQHhRd9F)~Vu|H3vD9NQ0Jo}rv zu-q+WmftO|gz`m{Hp?z!GJFWx#6j8eI-9hV@ zr~DTc;`za7{|pIl-l%b^uD0HzKSVXqxz%j2KC8PoIWkgcVZ796o*(S9-I-hjC?~kf zToLz!n>^q)x=*0+jSIUy7}FcR+M%3ZHWM@6&PZP##fQ8+qrmy|+W`W+lboF2CX>=y zBYz0&5S@1|RXV*=yR}w5w$t-}o-mi>X>_6B@q~-zdmo zoZqoPgq0I|$8VR@+d@+_Wm0$F<7Zf{*8P)`sJQSMc{#CXU(RLK6-Op3XRc7LJ0^bL zStPJ~sZZ}+D!xyfWh}_d0>+KAe^AS@FG#`6`~;gbFiEhfWOXQh?&~K`stJMdKdSLx zNZztuj^_yzkQ_Ev;0o>RRP2~`zl%;ND=mX0ZtdFh&`11PCGi2~@H5YuRnJN7h>wtT z1(#HyJYaWxnX))_-ru9+Xn#aLQ@5?IuLA9d?_9r`!f;4%{{3CpKe%%Hs1x>XXI0+- zhJ$?7cz3-=wT2{IUwcU)f4+;eo{_Y5qO~$YTn}bY%R>4fM_h4eVZ|2Gmo7-ULEn$jDTE+wV zhs*_*f(@O!hCQD@rp$X~atyv^8N77f+D=Q1P_J_xJfJ*YHx1lwL?L#~vp9%pysCj_ zl+v9=KR;ed;#!}Uv@X{B@`dcO-CjPH25y|_pV~j_7z8cS(9ucsE@dspo<~qBkdof$ zYMHPt`r*6T{$+TDb>-fjGV<=!s^EQ zhUrI^YxT`SjDKkU?}&{bjZq|G4f8B~R=Q)7u^6{ovfZnZ+MEHGeTQBu!x@<;AqBtyf_uEb^NWIkmsWZB~B%&Po znVkH-tG1%n?7;hPxq`<^>qm>5K@yq%??9tY$ej3UOZ0Vj$6ZIN&-3$3-O{b5q=*Z7 zgRZ~NETnNr-@VaTX)8-$e0a&3=00RPS-RMayF$2=F6h{^Ys$~@ILbHFqmL+RJY)>l zDW&063L_h@znk{Kv7B9E+K{ZpKLy-@@u^lxqhjG$#37de1uoWbLfHdzJPC9OlR~z) zUb8bDt!$bH`*x+qcca^+QRbZP3((>-{nq?nCHr4^eyyJv_gWbBz?7dYX4&v z_dnh#TyF?o6EA7G3I=~_R~fCEVfM6gte<;g2 z_}ZfC^vjfb|Lt;RqGI#4-B6E`E?2y?s`+=DIDa}SN?t!o{qd)AvcbVGDhA6}2hVZ(({BFj)`S)vE~<47fbR;@Q;Md9Ya{fEV~>EvKjVV!Uep z-Hj-l}|e-GGi?$IQFC2_pe-txQidTMp6Br3(fM!3>}o&r z2g6ipIF$~DUs7wEB8pLgAXfS1NnXgoS*IXFk;MzF6=4l!G#ZvxHbMVEn{m>>y3h<- z`nHe1H!uCFBhS+YjlEBmMw4TEFz%V<%Iu;s4;vYLRr7q{Vt<BB#{Zg1Nn{OP04xQk0yL2(#ouzpncNNke?e6>A*TJFjACor! z*6@%ivnTdzQMwD~S65fAiQjW9EG0+di=V>jn}&9QaZE|Nkrf zey9hV!n0M3bN;I}-4Dro__gZ^95on;Xu3&>Q+~ZS5RI0E5nR}aQ{vCgC2DY|uW;bk zwn9)a@!iiSWoFi#YF-ae3SBMYLJbYKY|G>;u}3W?fe4wyz=-NG1ygq&Tn$&>c7tztz3ejdk zo-!t44aHAyeR?VDvkR2da!zGUn22uvSx0*b%mBg4#m7 zjrF6P(coqNn1jHv3qYf`><=c&COvv%wN#mouURhkM>ZaZc%47#i^sn0p}ILh@G&ki zf2$3Hsq%X9w#e;y(s(`>107%FIhWIZ7S3E~+G?5MreKxo_G+9s^>23Z)cwRBLXM$n zlr&SSDI#aHx}D%7O36;g&&PD%e=9Y3sCv#cZN2f#X3-$Sz5WYBAa)0b%b;zY{{AV; z!<`os7PA&lBI>M!@7~4OK=Yn8(AYi7s+8xNUnHFw9@}vczD*aahvn3nRn|r)+U7RK zX_FH&<@Ct%t?A~n!C1+qpN@{Ljl<>iLLBsxH)T^<_N!8!c)kBT{i6_X%RPM zSS7!8DVzQA;pJaCM6*@NUw6kh=hjtbp}vH!C8*HEaMb#R)$jcDX^g~4aiYM~gM&b8 z-jkeqxLvGD`AK_tczn0tJaH#x>~myP3Hz%E;eX$=-sKi4?cTZ!ih)9SkzQq;N+(T0 zLGI7MD8+S7Pn-7Er%=c7FA5l+J81=p%^ci_KKwiKrCM2r z_{wb=G-uvcIDjA8nB`V#a%E=WpDKO+Y_R-8K6}PN_4ass>o3`Ew|sN6d;H_k(aK?s z>e~NWUn)$ti#quX50OQ#828?hWVDeqxkrcAF&_7wdqme9^?7Tj>bbgp?D~7gn)nB_ zv~6DXCi-7P<$Kiicy?wvO{Ux~)_Vo8^dL))O{jI!=L|d_U}ee;tBn!n@82HjW0GyV z3{m(y|0{%dbXG*S!ZNkCwW}$2O1A$^RQ#XO8J{c-;qT=f`2BnykKcACcbStjU-Uoc z7#w!6cWiS-nLAPaN_Q_=>np!`U;!po8nJPD#*250uZR18`>6#i0mfkALUZSALWleN z2YE7KVPz#{Cpu0q`;_F5=)VrzC=%Z`S}v{_@|6tfulyKKsA9e$n0ocxiS0oEn^=G1 zawU|5+uBSN+)Ejd*gq%0_A_cL}p?~|HOy3-l+=gkw&S!{4QqFYIZ3&q)*-xtBO#&Z%Z;`?kh zy>|FF813hwaOJI@+4>zal0~CT9ZPCETH(~lz_JVs>}@9wLG^?4sN*w0Q+a~gfSXQh0%12;c5T&oo*T(e)w%QCcdKtgb2bY$n? z_z80{6AN=99nHs-#lK6>7+HXzl(z9ZJU{5312x;r=guz--W-g_A*c!M7EO|?$Sx z(qdwD9{uXlE6z8qrdxf3#b&EOVviAnFufW%;J#M5F=uVi-}7;_wSH5Udq+Jh34&rW z!(VOs`Hw6Y9JW&Fn!7&;+C|x0pV&Vju`$>i=DpL0>-_2 z%vaxNlG;nRQYY*bt&cKf(bTmfuP^IA6bh^(%$0_DIy) z#Hn9#3^#x-W_}P$Yr3KCtpGA{uDYGtr=_Ia)zu=%#kELDJo|f;?^x`a7Me}OuCo|( z0jCBN<7w?ie05)na73oDtbLmh&Ck&Nj7gLGU7TnJwyB#!9z>bd6Q1-SNB|I8NH%>Chz)A`3=$ zmHjt7gXKWGLrM(|z^O=V=C=20bSbzVN4udtX7VWXMmCp)MjJ-_w`q@>W2-t%pN>JaXkwvOC94Mp9IyMwpcbx9| zlZ!$PqdQ;Fi5eMo%rz^ppbVsFsH*^ZyXy)yn_n>#bb<fM*2IY#XQIL^Y8V*^#DLKvEo`3v+Sr$A6x1N~G&6H`y)AE= z0*GheJYe2O%mPJB2p;zQ$BF`<6Ub-mY;Plnjl%H|e~&_P4V>05si_fB{i#DcRXI7P zqN1X}x09B>)qd=?nT(~0J5APgy>;HWLl;AyKD8abZY^QdBxa=5sfOtx&QD z0#fPzVt1r6CCD-*&MmG}CyyR!yD~FZZ691}dUQ_JaGIp7#M|{*E&sAZc<(-Yy8+`t zKb?}tnq-6gifIs#iFf_6o-;)v2bltA4_HFiQ?|eb0rCfoMn%s+X{P#=lmv5WJz!7^ z5E14lvO&lL6tjT(0*AP{6(QO!2tpPhjQ|W*7>L?d(GQORgf?6v{T>4%WS$CK+Z@!0bsrESC}I1cnvUw%@++Rx1eD*dYchccI(NrFJsfujMSaa}_MwJNZDfM^1Y0vLE5WK#unRQ`+L<4`E}0kfO_v zIAsRiq{M`T2M-@cfhW(x937b>)73nkBd72Su~ij z1sVssCJ1U-FgGAGzQSeObnM{~V}k%uGx`iGbPD7^CR7Wteo?zDR@;!)snH9Fvoi z!!G;X?m+BrD5>~9#01vigc67% zc2lXh5`gJXObo(3PlviDO7z-5uK)%EO3TQ!>?1@mVNHO;0Q5fK|3n;?0u6NR;8?8q7e>=y8z}^P3 zh2C>^&`1H9GdQ9!>{Sy)0$0fg$HwA-(j@f<_%tOVh%jbQyja~I8yGm9zOCSev)%+c z2(6#Q5Y#t8HUbtGXeMxA+4&`b-*64CT6a_ko|FV^E+C_bn5zvIr-*oItEytM-$aNQ zEbg!2qYx1RDP2ijJptI&)xeVZ1XMa`)${Y$0t#PIfC1=KK)kcG+y?4#GZ2;nL6jjr zA;Hn!9+(&5t3RLnwe;7%RaQnT-}d>C+zpavz&S0}sM^N&%+JdMkwkoa0~B3M*stAx zhl;F@ToHAksRM8?XpMoo+3pQQ*xi?Pz(M8_6ikYVao~y&0IvQwUEov!*Rlm0!KMPb z4It`*frbWLlaI?bz)k^C1fP#?V1m0hK8y!rMSTUjjj^uosoyN{JqvW2D7R4dzusuZ z2YD-d8yi0Bxn|6zVXFJ~rr@?LEVjUwchL}G!a$t>Jw#At018fqm%Y6y@V0>8vb=2k z-~R>!0oFSh%V|8LBq>Ng0DB0SQXs17%PQI~&o$HNaSlp#O)fGRm&9AN0s>^Mn25%V zii*2f-Eg#l_Z=pM0%5~IUw_~(kmoVC5#EYf<>f>p2w)2WAH?7_0-_>h4j|hF)LLr{ zL>LD!gTQq`Tmy44c-EE-Wkzj8vG7xW8ux~*C5sf zn7yt%9AG8_?Gb4h8Xh*Iz~TBY0IBm&U|;2B`C4fXYJ)FSHsZvSZ~;N;|lZf`}!v3v$^;1aA&>_It z5`2V&h;^|)g;Q~VuK})nM6Ie9RHr78efhmZA zq+woHD+Yt;SC^Jv-(1|;+jCPqf@ORHH7FjQN*F(=zWD|k(8I#+ni3)-$Ok1R!E+P& zl6Bjk3c~C}*YUjV?QMt*zTQUovB9x~Qwm2I`s&@^kux&pKrbOo?L_@>W0nj-tOuX?G@Y|w&RSy@RHj+ljul0dou z$jAPZWq6Bxd@$pC*l?!i0_M`sK12|68BJG_K#M<6G2!N91MLtXi=YYjnoaQj{SE#b z&cP4)_@){gkyl2+7vf810LvjeD+}y2Oe00*zk$b7V*@T&Sh#s6@NtXVAq;>F`TqSz zJ<4q^1ybOMW;%D_WKNYN#*GK2J`sD$L&WJN% zU7_ce1ZHSMc({Kz8Wqtf2^+0H2dXJ>i4tX(u3iK9w19quqYpj0I6d&|fLrjZqJmUa z_urql3pb$wu0G3-@?$GYx_9;0Iai2*X;-$RdGxPm#6$BUij@`OBeaY&!BRhX@DXco z1-Bb!e8Q1}@Dz+4%H<8`xyRhxq{VKq-(lCgE4~7d8AJ*Ipt-GWh3>4m3>y}@MW?5y zp&JqY3?};S-Mi3tTvWuieb;N$L=?^~w4iz#JY^v-Dh2xlXF`w{sY%qxC|;v=@oVrM0B(VzB?UWu8?Idk2b+ND z|9T&Rg?TK03vf3Or`@bd2jdRg24WE4w;)=P>hfR|WhqRnmBodo!`ri&C~j1M`f_jv zylS`wuF(21^i~0T1EP7Xv(KJ~HZWok;^mvP&ZE!mkGFxcb&DqM@^@QjCk!m?g`RU@ z64|38oB~Trt>Ej!AXMo1oePr#5+g(?ot?bj zndtTaeN%4*FOvWecJKkD)A>!v4@#=5$yOBLq3O^Z2;ISNxPQijv+4#P1a>GDpjz|H+JxlfPXG@B_5*x%3Z~DmQvl){ z1E@%7;u$8#u^=HTLu?EERA*hj(fC}(@p4>2ICFe_}%io=$ih7iCICDh9OEG_{lGTB5X_`CFL>+rq4%|?knwnW%1jqAhyb(uXPt@I~$GW z)i*W$foOSF0&%PgH?o1uRA#lM28U!v!SUZNv4*>hum><9-u!(DY>lv|iZ>qmAbkWJ z3EI%5dz_S0dPU$5HeTMU^766C$@}*)5VgWGG6eW8>7vE?`6Ov+FThe05(-I58UdpN zjP-13-N$^0;GjDg`g9kLp8ktn7Tlm=7!1GPq?Q6N#G0VTeO102KI)fry=qUMK(0W1 z@1EV|xy@I4#5p&#dO{EhAt6Ne@DcDHz!)1(Rd@_OJ%%cH42)O?z8EY%aOC`F3Z4JG z7+glRDzDQ?h@c+Y{(zp!ppX#3Z^YrFLPA2YVIMz#Zmk0DH4?y+iTd?}gGB`e_`H~i z+6LIUjg5^ED*;}h<*YpY*Dr_|6_l0l5)rxTAkE6dKO*2SCvlQ}gye32@2#22zqik2!)*z3Ua2@~y#AUHc2<`oVOu?c> z0gOgP#rWu`H8h;2FbHh@JUgU4U*b#X5UzdvNk0eUU4As@b4Pyi|(=3CzD zy?Xz-hL#qqBv^faI3kc01_VgT%ildFMO;ci-!$}aCnU^)KcJo-6@DJM**yQSZV2zJMT+K&Sa56d>9`abE!m{ z@#2IN708QB85fN0?1kAzV#3%dTv;k4^ zmkr320I|PCj_zE4pT`ndjSuPQd|X^K6JwJg=YdQQP!R9m<6GZHpaIR$9Hbr)yJ3R6 zw`~9fR}fkLOMh8 z`47gcf{VC1TmEoEO>G*CpVV=P$MxaGzYV}y50B3Pmr1gpd@TO+tBJ`=TN;fU%sb#O z{K3V65rm8jGGgp$bcCJV88~#v>wseM@wvLAqoesr($c-@TQ?9*eMxVC)<{Z5CIS8E zSj(L)Esz+XU1v39TJWmg@j#ZC+GlJlZRG@Gh5_cawzA?viQK|Ozzz;^eX?8zLae&F z_?#S^kD!jhZU!Ilj!6z+6xKa3ZC(bji9^Vcz}-ehudyw`=-;E zD6C~_4&MU|4sjrgpA6dW3M5++*UxI~?DUo71)3WN2azihrR4wQ4S*VZZ%jf@Hkd#l z86e-dL5Yu;Z-N*RLL_ePNZ4khJu#4I{c}y)kbXuBI61OUi-)dGf&-|_spoR;@aeA39sNTZ)wU0G6I9zgwkh+$Jm zym*0t0|N%t%fF*T3|`E+!~KsXZV-+G#Q?yDlYVGk7=u>A*fS8P!w>cz!}%B8=0m9P zHj+&bPN0^8Cxl?YZh-Js!~Uf#e0fhm1;Y|Qe%uUf4dd z=xm4sB_#s@P=|u{f)`FTxGIlt-w5U)1_R#!K^_u>jsQUz1P?xeMogwEBeMs>Wjdqt zJLDEj$QOk|rJQtsGOEJCDtEfN1hQNn+6%1zN2x#?4uTXKo?~VP0_rUVWJ)w<;^{$ZJ9T_x&NoK7fURN20tZ2Nez!F-Xr|6(OPEus{wK33(8p zAVwP-7l5&>fvu4^zq%S38hWkh`Jx(Ny?*<49Uyhr$!-otcpVA~3d}kNqY28JD?1u& zc{`Y#{V&Y%G6QuJwnPJ7K0IS{ef_P7h_f#8O_J-x7Xm?$Ex}VjOb-v44~~ei`O_8* zF@~SvD`w@J#1x#ZgB4B?2G_$@ZT>I*#RdFfI__Sv%l%Q;C#~0Fp&Ll6%ZBONUspf?8RSlZf4 z|G)EE7cqgX9+ZA~D+IC`V9SNTUQtls!c!>WDI+XwY$}D?{=va`lOZ>#v0zDFht-0o zhD2LIOP9lF5*URBnwru|N*M4UG)Mz2p+sVC{v$LL-km?dz5Xc$D3uEkmqUVu@_`Px zlCY%LVf*zHN+}_50u2c=%j?BJgM15qJs=6w$q@$U7+~~4#)Hx7V84+J5DPJo-hk)> z{{^Kc+VJt6e;fE=0|*a*?0XaLU?Teqz~T*Svxt{{6BC)axiB0B^JL$N43;2S3vwEO zoZ}25TG$~H1Xc+|u^=UbpsW$3?&9rD3pRm)p?hNDUKWy{6@*#<4TC8Hu<-SywKp7x zs{zl^cy0N=g@B3@^!+pqxCcD`0u{48GiT!u}OPduYS-us?P31X&Qol4~R;ElLaR z|0FT@pTZwizW!;$`=6o)k0L+WUkQQe>eq+NYtd@>SoPmxHnxMwpy0C=YTG(UC;$Y~ z0|5bw1{`8DI6GjgDB~_E8r#}nD2T^uH28Kmc4w0}a8C#{Ph@04u+|C-xR6%_fZ6Em zgpGg#FD(FyGa$%;O@u9J9Xg9k3DqG7XVB69?Q&*dmqW3r5LVHZ;ri>m3q%SfxPByX zY9UCZio2WvcA|!XfgQ-+P_J-hci!=ci&KZVKu8D$W*#Uk^j-sg?_{K<=_o0YDj*Z9 zQzHF@huy#51zOASF)I)UL8}A73Ak-&!w9@Hd5B5b4Ti4?(qC=`x5$CVUvy7Sts4a! zNFXmS-M>j?@Xv0E}o5F*atp zK5mD-^%~6Zc`!TU(Y7faE$uZ-4dN`U>u33b%g0BCOa!ts4Q%IaE*J>|**0X(pd!FW zK~)WMePck}T_^jbh`EK0jq6hfFTA2#!@m}?WMo)A5SFPF(_v;De6LwyU|YVEmk;#y zUEA33m_>da2L>1o6%{DUH^7NMgvya(mGusMV+ax8GpRyiV>jpKOpdqb!1}wgdtw5X z1%g|Wd-q`J-C)8OHPG>(WH3HXTCAwyKlc$VdpiDTwVjoyC^$-?^{wF0&;x)SHBgBA z!QM#%Bo~B)x9#hmz`7Y|XygI!9<+_TmalRUWP?&5Qm>?-;LMJ2O#z}5JVa8mXLy(> zi^UJ1iYVylNw#%>&4fA#iunJj24&#;6|}6Okn+#pU*3WMEF{DX?BzmY5gdQ;wBPWW z>z=R%NeKYN4t^)kf0;kLRQQizZJD7c^eZPPz{kf`{+1`%AiSkp<&GEJrwxPr%{Sd~2G|OF+Z? z2~e^*Ibp*K(_v<@yn>~R=68VT5pL()zFs?FaPM`pw>A8OuR~D)#REIX=shyZwV1Gq zc&bwN8(wG@i|KP7o_}W42^k9wbb;r<_cf7S0u>&jjd}>u%&+;90|RdMr%4DN9y z_Nypxb@1w7rw4rxNF#VTbrZfZfVAqfNi_(!4-X|JB!si?f`EW3m#y>}QcFWa|40^y z+iw0(UkHb7k;T&gKTT}~ka)1Hx8eBR#Kk?@+ath(rd~fbXn}`^!8wC66S{%37nu(% z^6=0Q6&}x~SU|_*;2>mr3^!kD2!Uz`1D2|xk_R<(1ugUE5D-Jv8cg_2m;YB~aAAM_ zP4F9zL==YvOn(B=4V)AMFxCJBd`-rOms&@f)Cizt&=pXwQ=to7NZ`P^X@h3ADRzB5 z3Mi2eeO&N9gB1r&4E{M98JViN`98#wQ1b!HLkwCjFi1NAv%0W=JWR~~KT!>e!w^3b z_m7O|fZi!4Mtc7~RxZ9DDa1Q4%m5-(P^)gh@4R3E`W0++(0>;8JA@tsb<)<%j8%w= z`4w>4Kn{M%f6?~_jvpNFv9S|ygb*cVJvW&bf=UW(S%~%(wAg@{#%;Tw9vCQPYWfW9 zIXxUL;QqT@ngZ;U{WSp`mh{bQ=X7lhaAAT2^?T<9dQeQ@CP@%ZErdkyKzxwP$apNf zfHl0k5_k)!UC}IBo}e&*MTgIH_)ma|1Nj#2;(#7LNlq@rRU{Zm~;L>I{T*P-(*$d2G=!k~gWQmq@P zsKRgGc7aPh+L%BeM!Y6@N|XsYJQShV*Rh6)qo(iB>cQRuN_#nUuOkzG1}L~R1q^QJ z1i>zgh5Fh&p`yarhyM=D?>DfXr^gOhzUZL>EG+quzuv$jR)cCL6zM>UhZjry>~qHt z;Aq0UCom!C@H41EO@^$@3+Q=d1uL++N(Z&zVPa*d;l2|z*4I~3RJ;XC@C|sNP$-A$F{q|_Eu)FQe(3}L-q27L zYMs}<85Iky5J=WYNG>LZ4iLCOX#m1StcRdcgLn`6h+xC5ES5v|r?h(3)&Pt>18|+j z3p{2FsQVZ}tOz+WcpNx{T(J4mBx4d&Q(*#{Gbw@?^_>}v3j*r9zxh)Ix7+_DMMptM zx!=Fb4A)X>^$1pxuvP-xts(;yrzHjoF65_Iz_u@{u!{-F*& z1#3Kn40||vtk%g10xV$d!54;42fTVX2Zd9KZo}{HgT86Wrf!&}9 z2_A^8la*G+j*k4W?p)U@hJyo?XW%zu3{&2R;uoA+NH2h!36}768THZdSrMbg9D#+biT!-IEF#M2Dv;G=fE$+RJ?>7{89Jc3KiyhVCCSL zg8wuzVcBPPo@?&w%TG#btgF+2>HkTQmBT_dDc=bXzi$@V_dE#oT)NS{Vjd{C69TS^` zWDN4@gex&;$_-L-@_lN@JRfdPRFDd63(UO7XO zY&cz|C?fI~u)iSfBe@|OZ>|zw^DUQ_;2mv^<|AXh3MUJPaR~rdy}m03%*5@(+suCU zr~9|sq3-Xwtu=VCz8h6AHpYf1tk~ z#C6y)vxi*UIv^{~-d*aA+nSw4pi#YmvkzHJpZX&XNEz}Jo{pjrGlHGp!GwD-Ru&eh zuzcwbFaYL_A>a30&;--*5mAUnVQp<{$CpAvO^^=3*9A{cdX{9D)e?Roj z3AqK*Otqc7qN2Byf&hzsU2m^CL=&p2*mF0}Nq|!fb_RCrH8s@W_EQj{Rm)9NfRzg; zn+$UnGYV*0F(Vr}uzWYs{e47wPi9LD**WU;xyv8Ti6+Z=*nkiYrqkbiU>ROHl4O|$yk4krV_=xdJ%~DoQdU~Qs-V67Ib1vRR&0g; zovV=Ws(+-l1Fk8Z#7@WJvRjxCclk$g!e99vPGuDp%hM{OVnWN*)K@k(GJoYj>;;Mh zp83=Fc^#cUKQDjU%PV|qtv50@bTKExr+)@k=LPUFNAJ*eg7n(b-ST|SuzzYw=EE5m z?F!)C+5V2g`+n@>dvA4(D}3eZjqFzB;ekVzF}K6&pXwiHP`eenhXB*)<9l~VR^E)c z4=>{CN`9~Waor5l;w9j#k#6TN-~jP|A*fz+_DRP4Y&=9T;_O`&tAqvEu(A8gJLg^ZKg{e|^@CYe)5ya`}O(*>{%4e{!jr0~n_xujMoO&^DX zV{zh$PKD6$ux<|UyATM4c7~GjJJnb(a`W8F^ve5P?=T#kZ}PYH)s6FR1_sTva}{36 zFDj+Bg5*8=jp%pEek4`$ zIWL2uAx6P~#fX!cmYqfvMOjUz@Ar@CnApN2Xug8J%!qH@3pQ!M`fY|J|cU|C6@ldhFr4f$(q>3XI zOY`TpKCEwFx@ylbYOBv9vsqI`3-XzHCX`+vunTo&Jqf0K{lW8Y$cK5i^ zv?Hx)d%}4m!n(i2oGRSzwTm56=N zmhphzrDIPW=>-PTcJo2C!xfiv)y#@_b=wLbUq@k+Kxs)K%kN+NJPtDvQ7)B(j>nl} zJoa}!Q_sErqLihRcvc-&!d+33;Yd#0);EOB@Z=+|vGQeB{Jg2Hkrut2#U`|>JUhmo zTzHQ`$Imj*x30qD^o-){Hag5sbdj9>J>qyeK^NHBEBu@!<4Ie<%G3Mjp*DXVtQc$n zUQ^UPR%CBWit$NY2b*iv*nu-|%!#WSoorrbrhQSokmPg|J&dz@M6Z*DJ`7_62;nf6@YSntzDTYU>1 z{ln(Q=ADchs)P2zuU(HVIfyP8^mC_)qMwuHl$efr58xdevJK~wj%v!7i8o|d2FBJX z@H+JjV`n;9s?ZorYHZP$hHRzjh>828edZ;YUlz1G+oaF-S3fN%Vq;5}oLyW(3G+t@ z=IjrMG~|jp7I8XAoSYYnD{DIN)fteMiOrkzVH_gc#Dm}dM$JH1|Fc#ir;I%LsCMMv z5uUU_Q;ghHZB3p^`)mtGI*mu}+G2kp6j8b#_)O)fcD%P+O6`v1mXn;HV@%wQ7t@&&EW$$hK>P|nDmgb`9j`7s$s5>5Ij*)?Go<505g;8ORTh`*J+VLjnhDstz( z0|ROfr7jJzA#l3HGVlFKac7(=~8SaVP%b_V^je7@pL=>`XBr1Za|O4`>^zf(e+wGc#YK)Xuk z*{k=^WH*&V}YFk6dD z&aXttX*DaE;M;mj=3#a25n0t_pM3uEd~a-RdRq1^i*B#}v7rx#2`$|nA`VBIm}Kn9 z;=v`!X(@V!TcdXC<}dXYOAb1B%8OU@^n%|OvyAfQVLRfEyeE(It4^#oib#rJ6ud&N z_|vLbI`9k~XHL(+N8S3Aj)L}siRR^`Rm#jALC0Y>)Ug%+?rag(RvU_@+#>dI*9UXb z!vPg1)5qQUIZ9*0X4kHsPG%s*EdNa?vL)p_F;rW*Io z$&GmJZC2-}vgwKLGpqFeuHBt3AK+@W9P;t(*73 zR~9*$+Ao`IMRoNJ3Nxb}&7K4d9OIcmGZf2&Xe~5ce{+#_{BIji%jYUn9;B>nIZfl+ z(m&i$bd>5HNh8@yz3H=;Kk-G5*Xk+-L9<6B9D#(Ye4b!rH5>YvRmdXr^U0`5fSvl( z*VFL@ml@K`o~WiqPj$z?TAm;EGL_eN$MA{tF%5esXEhQHjMmb#44bZqRw#=6W{7WT zpXg1HD(5d_JPEUWxge57NyBq zA@*b;EL2;PJg8U%cZ9c;|H?E;hMl?0M zAI5!9G1J>xovz^zJH`?~7LJZIs4wVW7{B|{((}j2f?e6M@zPk--}Z9Pwe#dhX}os9 z7gFe@1Q+a+siD>kxCBk2v~*@$_j_$e($T$zVsvb8ur!zL|;)lvMBdNF4<7lGNF zZNGzkX3GnyqbZJ?tPT?VMzfLC^)}nk(5?2A5&!w9VjtRU+1#SOzTCz#Q71tk#Tw~AAtu@;Lt@S& z{J5}yjR2`0d&PI2`iMu*$0A7bVpM1RWmPC2mZ(V|n)Fo0i?^px@Xr}I2lV8)^v?Q& z1&Nu}vtgu7s>s>7_@>l4urs#R(U_aEYmz57Je!JqGWffxL+HqVMv+8$Ja0B5Snz$& zUUOxKOB88YiQ^*g7MZ~mmb~M{K%MFtM7Fw&5hRXhE7@J8#|P)@Zzn!1e;DM5t+_l_ zd}-s4N$9dkf2>F8qZzZ~CNTySp3eI$PXFau(U+Y{tTC^zQ0D zLEl0m=1-G%SlGW~R%MxG!g{>BdsFKQn>N{)L=UD8v;{w{Kfw1WN4Cmn7saSyxDpbT z9G;pfHrO&=)H`dYLFJ;|U9Xcq{PI3NnbKF%HXsqz=|@1%Cj9W&Ic;GQT&*FJ5bI`Z z6G4w^rc{it&oZ${1us)LG*aIbpidqhWyLa>s>s*B6U8XU+G;Iv6qtX^z=Le@*#Xm0 z)>2Nin~?t}h0$v%L7RSSQ7yZ)51&@+V*P(gENG_qI;n&Q0Z7lq%vQ(B_>C3r-Uml9V88SOP#@vIlqkY<~1~u6ND(fEQfvln3DF(xSk#5js-(i z*204oAxp~Ynb1ZFtdI>ttj98U#QA$Sv6K4f9OoY+Xeq>a6)mg78E!uu$ zz&~U(QStc1adox>)zFO}#Ky4PnGWlp>`poBqH$URykgyHQgC;uinokq)2P*foUgs9 zL~C!FXq|a@m~P`t zrKa|ePv^I8JktM^D*hJ#&aA_Sck=`!>Qh&;5=Jeu=NyHp^P33;%+J2e_}MwDzu!SJ zTbOnX$)>|xj_<7v{A~Qo<1&@MyWK&)qqCjJgmyzt5x)G+j?C0Db=cJDY=-9Y`B0O%=Ho3Tdd zM+1YhKjstFJ$==y9G6AqI4T}_9NR2v_l|BYWtThNS=#NcpP)>Yz!Rj9wM$Occ~D+y zvmtgqI_s3Ar|Ot&jJu$RsNHXu_0nxW6wVMHJrD zx>J$fz{HrJN>0PNBS#sHEcn?K$^<371wU|?PBFC3+{!G-1Hq+4=Ay3-c4`SRJ$x0~#%cT_u-i?f! z>Ykx(54I&_@}6l3&BrXGrb{KV8SM6QBvI1v5L)PXKG_;L->pdHNM_ky3+_>5RmX7P zFD;@;t_9!$(Za%u)%_W}C+Ww3>}dV{e#k}#A{+iZPuza}TFp%PTT;L?0dxZFJ060g z3}19gS0Ybdj!^VQcgauvj*dRaA(==>dWva8s%HMP+tjZr#65a?B#q5%*Z9J+b@in3 zMy^686Su>~E&RqQJ^_cTuhWDt_g{wDzn7bHi^g9Z`xr|t;Mo1>?`cRwhZ3O+c}r%` zRBwQI`_C|Z#>;o5R)vXu-k4Owt7RhFl1{rNG>mT=V* z(Y0YuB`E%~!MwakcodnMv;$&z9sd)NTNiePkTf#!+q@BeN!_w{5R;p6o+Wd#{6Ic+ z@dI_u(+^RcBm!TK(GwR2Rc-Zs2u2EqyNDuaS`6=oTvnB(W>klScn^Q^z`}3Qr4iAV z=PW^;?6B+$7m#t+a{6M6S<)$JH&<42Vq8@uAud?$6cOKdZ-Y7&CJ_oLKQ=Kj z-5f12jbjN8Xo@Xq5mA+yn3{^wMSh{6AYzu?F;~6RWOG{h)A+qo4b&~e+A68x&QDue z-0^G?UvM!e!6FrI!Z+T_yl;-=cm};$~n}+x?jnv1Pky5F- zRCSin7;n!9)#+5S%A|TqkEm-W{9OHta-A9`lh3(d60MH8`tjVoMP9BdB=J)0ji~3J z&51yUFXn_L9U+rjgt(WQ25*i$vT((l#@gCN3g}G+PSPb8USJS-EBKG`^1hWl?aOVj zNETlmf51xj`1uN9vjS(=air1CcDEJs)~%;_I>Kisi6c7=exVh=cEmC67u9tR3NS`{ zq^_E^Ub)BTqy3*!PN{n-)U>Jg;CxBYSLeNVKJV3Re!WPs<^ zEzLuA#(Fl#S?2b;il?7@ku@r9(WlYY$@fpu9WxSAX)kPobp#jN^x50NGth~MndB0fT_a-W{qSBigg#xS$|*u z*8-LzmF=MX$%u*km4y(E2zGV_NkJ#OZ*$kzAs=H`!0dA5G?T8LK8q^m-&_RafG(#6`zctVzz249$*9?P~^vt1)i`U0d-x zrB6c0vmHqz?TTA@s;Y1H<#FEH=x@daeNfnG!{xkvF?kUtwcEkZSqepaPX%K%Cx6$q z-pQ^Y!apj{4U<*lqR!`4fspQ7)8V|P+Dpw@I)|TS9hsG5_=OKI&gUoO5LJ|cY0rIpqJW-eaw?5D->~~3A9rWQ?!$E7keRjbeHsErRo%}HzIF|) zgGjR)$-?x;)ld9wgVG)`Xe6^`qfRWEZ?cpWe*5V&DI>4h;4_-;*YUl=G8uPlg?8DO znW9Q=bZEf$XD}PKoeJK0UR4o!n72@L$ndfntrB?_F80zMg~ZdPkIBiDkH>N!_}CoI zy|q2rD`>H4P#>rnkO}U@cs8!i@M2n#GiGfDRpCL;(%0hnTN8#UkD?XFkEcon>?$n| z*m@ko_JZs9%iiyQ7M6Lvq7&lb3KM6(84+5VACWQ;(@8IvA9o&+C&T3)?(wmv*g&T! zb+2Eza77rD`#($7>=Q=1d0Js{%YA3K0|WhWKt86z3y%uhT6EG6KDW0hE^c)|mR4^9V?Hb_fhfU6j%ckuIP(j!^tJcOI$?%g|@P>AJo%7>8um-}&&Uzg~EhWW%0VD`t= zwi)Re@_jOnI{a%Qwkk-nqIbpBb8?Y1S=|g;j0OAIL*M zx3z68`)Yq^;`?sO3N$ay56jTJh zo$pfT(o*e2Mw)lr{z3gh8ZK*r{@U8q`cW0_lU*Di*`ScABHI%X9@F#Z7XK8nbFxir zH8j15Q-0?zv_2~s9l$NGa89mzeD>6D9^Z(Aqg2F4!uEW9@e!3H3tqy~aLF=P`QLeq zqGxvDC+Ci~OXjq<#I>fbye161!v|W`t2!_PD?jOI`e8cb4n6UyirKL55#qBweWi6l zxBv1UZ&z1ha{LQ)(>%7Rt<@NHSvo2@EXS)$SFs-Zpo5=3BTZ|k$IV2gc02j^4-QT8 znCZHLtYzNo6=>2rPLC9Yoq%F#Ai!A}Zqz}avC9)y_SMrpGBHbP(olu3uIEd3amTI@ z+e5zYsPA--KGv>`t4Z3(t4)peYbPby^3x_|6g&7Z_lC%C2^~MD*)uCH(p3KgvwEza z6KC1|P~Dzwo>&P%?c!v*3bZ4kl}f^is(ETnVe`;1H-Jv5vA5l}1Lw%LDqw+@usz*v zks!=V>?Y%7;8}wnR|Z#ek?apkQt=+XHpcYh!HJR9cA>!Jwy1*DjbElb4oqYdIj7qe zD@l|66{*9G6SC7khmO^4o-jQwP;-n_e?^LcFp@*dl<+-@uILaE50#g56I$m~oroe4 zh5=jI3I+$wcga6-7Hd96dCt1qAylR)bTS&ere2k)-)uQ*K$jqxTtoMhXpTjh=8D3K zm7*pfZ>Wv&myejOc2bU)I*CR?NjI{a`gG!RWCwf3lpaD4Wnuxd3;O7_jNr99y#j5t zPg={#y{kP2+=B`H<-1w;#J8E%LIYH;mK+#Nt2cK`7uk`*C>Vn9-#3&s)~9_|^IGn?`;^&Bvn>CEfs zU=-DL>sM}!ma9v*2?@VysT{1LQxY?sI4ES|Wqg``>NiM>{t)|p0`lHsnL)dNt@1(H zte_$5u&9HY;|Ianjc8PS-nFH-yS1VImSX3Zae?BGm5143!r!dJ<=G{I48L{kUzNEz%~hWcGSTCUQe%sv4H7Dpgu@QQ!=OhS7>>c9>b=}M`6lF zJ(H`^apUMvtMgza4q{YEz1dwqV|A}6?^ZQo^X=U2+^Stx8FZrv?!0~*cE&jW{PQE$ zqi{NVhkA>E-*+9>3Ptg2E#?_x5j;}=jbyHvZ6dze1SV>iFe3GnwVkj-T z!baO}@rxcBIo^{ex3+pt*=^tUZr|caN{$!O^k=-hR~q8(fwH*NHoneLXl9-OZTV?w zf(-`;QM{Ix9LvaOIL|4_&KrOJ9DdSua;HNa?u5r3rLj+!85LJesyzC5P|SW}ZNu?p zsM4HcURAn%<@ZfmQSU`D@e-ry=i6rY(9@=!c9EW{mwaj#$VlEkaujk$3ASv`rOnO4 zpIx{pC`c4D?EbYuH2k-goH0Q7@s?h?UR411LkHg;qm_A&cZS&SRCYASKh3d=FSD}t zKSUx~cGz}o>HMacdvyo#$KkoHaf&v^o=I;=M8O;50i>;Wq;z83N|BsfVrH1)V~XL? zT^2Ft4{L5YmmH2}T7@zFNTH0@wV)s?XR&mS zEh?Sx8B<#?-Lc!x*y{YP)K*xPS;uZc=i+B{bZ2G?`Q}!o^T>|C;`7Neo!wVup>dKi z)xU}@$GXu;bp8FBk`0c?H}wK0a@hzskf4Mh-O2g7_1-`Y2ucV`iAO1KGji4jx%n>!`Ij%STp8bp zFJ_>={N*$M3Ik&|E1FZc+w(&wQCEbw(0U2O+DTbC2Z>_Kx8o{$2Fw61fe$LOHaj;Y z*oR!=CMxbzv`Ln$NUI4;Uq&Hr&(i0fda27u9|XtUJ=*o~LZ~;RPm1-{{Z1ZyBQh-J zV0W}I87W3$-Wfjb0uxFke}(lSDh<(Q)DyIw?{&KqWR_Mj`;tc-aGWTC&KI67Ro zPi1si{ywpiUG~1)yxtR9@UlUZ4l*k3EnQ!Kf2}qXX(&BF9DbSCS}Y%cEpUB_zM~^*hLYG7grGMT#F288sL)Od#L3`0=;PMvo zq&gM3rTy?c(r;QX%$@k0)ePTu*xzAELIPc}h z-7^FwP2&)@9^9HmZ`kKbXx90rvA z21nODzx|=zh#hr%7ngR!s(Q7G_N_Ua9@k@OOVZ~fwKi8% z+JuCkE>sbJPH#{#E^*M@cMyerYj0AW=xLL#~&VICKg&v7n~xKj1esY){gS6Wv$3a zd9q4~jpaClS^>l;$uH8Hh$NI4*XOupioUy}ohdSm8S?H)($-?NtM`rY_Gj zjSMen^J#u;;B$Q)DW@!``kItxOMP)kT6&J$^u3IX!-(Vd-Yz!~{I0g3-1XK^om`!j zW&YQ__xSx+*rY*qZO7fS%KHi$85c%Vqy9TFv{0wR+WKUw z+%(qD?@MM)yLVF0eQ4kR_9Y9hsxrLO!Pbt;U&?gFU#@#%W>{=|!`Zc}Qs9=O0gsW2 z?eFrnyY?}RlNIV`BqJKk{R^gHNvm(oiu=uPO>TT2@pvrzgRl&7e5lB|OZfg5x~1;I zmE9j%tjp3eghu=tF5>$YcH|BHS!LeQo}QOTzxPxTKRyh_$1IG*qb94Gl(O;AXA_9{zpJ(LN|5zR zNxq4#Bwn?X+k)jLZc+!nzDcX`}9Hqvr+4d#?Qciy}euSW(Ieh%YRH{;;>inP z(qw*zd%m|JaPVTJZmMfDw*KJ76C0hd9fHa3-#RwUCn+D8c4y=V z2jeEw&;u?>I97df#RV#2B&N%?>+71m!Wgf*B3v+?gOo{hHi{Wj7YEtrxY3SDhK zXeYD7fPXKa<#K)SyLy!}o9d5GiBd_&tsvj^G?!ma2Ndt2+mO>JRct#rUm6JPYinm+ z4EyTku11}yO1<%~JuH3tGlJT+(#}h0U0~!gP$f72kMG*T`)%^8Rom}dDpwK|_?(?R z0yz}CQ#duZo?PumgkAWq^}Sk5qCW44NUVDDNP$>4gO>L6)G43=;k_qV5mbC^mo?ng z!H~-nxjkrJzF&&8-EGgMd1RVomGS6PRpwe;BU;AG^Wt27^)Hc>Ic^uJiR8t1uWAm1 zGp!X?zKl58+%Q?+WqlpV6ocY<>EXofa)pAxUMwAP?5(r=F@y5rYDise#P8E~U58z6 z=fJcq_pjcwBfZ2|XrxT}{*DT26Hn`UUK~48(FB=(Wqprbh2q=#{P2JzThFPawCgBN zkmAGcGik2uNZzN-m>B*~pEADQbq;ZJ$Zt63JHr8h35XzFK|e9DFb-~E(J|If1%>>$ zZFR8E$VeN*zOY92%#1+rTcZ*0qzc@D&5=Bu>(gioIWdg_6JrP6pwNij@y;di*4pIh+b zTS|pX8pjzh1%;V0H=T{66j&S|-m5hAwstl*yVU6G>ONmwxMeY{(Gy)OEi317>Ty4- z%lA`?A+MyBrG-gBKBb;5hS`t+cS6~HD?v%q@9}obXbip4r|jF7x;Ym6n9Fk-4{2zu zrc>@l1QFj32?`FO5m+;@X8qmQ(Jr!S!sC7VWR;%isuIz$TbLaX`{j#KG3Su&{)3}R z;~nGD%P8y)3?jx$!wm&_`bM4HJ&MnZoBdNS1OPdlC23df&Kx>?CO z_iQqnP&vL-V+4EQn$%lM&(Mg9xVQFzOOc)imk^<{{^i+we42;MHB^1gpUXta9ye2y z9bhs#s`Ja7u33k~*hZrBom-bZhX6qJa04Syd>hl-=6mR#(_s(tQ=iPWg`$+BX`Y); z;^S{Tpp&r8U1^W{xVtF9>dnH}SHzimL@Y5NvQ_OydD92Oi*2R)=(?@G=UJIi)(-~O z&I`V?W6G|cp6R_Ao@D{EL-Mm2IZjkcT1^APlm5!Mo7d+VknOg@q8~ z+TAZJ9-XD<2bF=FRbP#Q!q)bT$sdR4@H?E%Hvh_ed?!rJ@l-k-Nlm~M%YF+}ihuv2 z-6^NEIM82;|Aca?s}8BFTiPERF1Pl5@Z6`OF+sau0HY- zKkiEKt)v0&1xB!U!0ED6T0^h0zi|$cHRbOWx0(4N!cSCd4p%F6wF6>~e(l-mhSQ%N z_w>0Rg>Xb+t6eN%bs^VFS{>IEb@njiI@oF3>o09<@h=+~RU@Adb>dF#+!|#+`4j+knVL|+GR`s*s9-(xWmBL7*t5t zA+|o9Xmu<^YK{JxMAVFLXhCn;NsQ5OBWY%BIyq%u*qrM8i{95gvwgp?jbItBU%T%g zy{tbXH{px1TUq|o@8c=S!#Wjp<2J#VUgE{+j;x3RGTG*DrFNUBzJ!I0g@Hn2cb?eV z4UXBn==Ph|qmGpvwYz4|Y%Dk17L39oD>`zD1-5jqF4Yx>7^=6=0%O01-M+&gVzsiT zQzh-S)j|<*H`4A~23uqzmb==~wzv6qj#$C|@2j73I0?pU6skB5Z}Hq6*J@uGoBc7* z`4vrQe>meXx=85GpR)c+Ff1mbr&ci6;;%KS{UNgD4Ap@}!87}XQns5H33(37YurXB zYg6MJ$79C)$7UE2&yMD_&Y0LOm^>WAo>wEwP=Ag+%__}y^=o>QX6E6JB6z4&bQr*U zBvDnGy^>j*OzzMi@&7UP-houUfBgS_j=eLo5-NMk&R&^??CcRrc4p$(2_ZW&DoL4@ z6>(HZgjC4hBYR|z-|O`Le80c%pDy<~=RWs!U9Wka=R<|=Ug;87D7~fY0vl1$OAbz_ zCat4VvBEnj&A5?XlQuJ}6*v{R_O`I>{8XKujK>~NnToNArKbM)ll&(qIi)9@^|LBI zO{MGKIB#;cMEWzoZ1j4MuW*2pB=kRpr7!(-l9SDDXuVk_HcUav<|FtMiR_?o>2W3TIf32R`IP(=MuM5F)0lP zlW6Z$HFIX{5m%Gj9jB1s=>6QHbGJpVm?vehf0%rJcPwLt<;mWMlDk!0elvo8W!A6b zbhK{_%g$)&$340GZlKuhmd+PJyZ?8<<$+$u|G8pjQQzOA(xV;ol8h+Mt)v90fYYTnr2gBS*DT}2N zmRTn`IJC>5eB4~T7q`4sn8}i`aL)_<&_+9;^^Z~D&dk+)3G#A5ZOQjn+vAl$l)U4TQR#^{rL)6W8Dce}k=5x3-SBja!brv^jQ zS(SrbpX91gd3&LEKeLHC1*6_u9)1g;H_$gV{4kX;+@p~jui)$bt^NtfDQ=Jltd{m$ zp50M6=ye^a*-Q*QNz2b?eBlZ!yDlXtQ%^DOos_tGjEdLOfJ@fQUjO z*T69K!_4KC3#&)Lf4&T^uIVK^%iAby&rUV6)(easaY|NAd#|tibDkW{XyHG^XBWQL zkucnL%&^{n#mj`PGG(u zMI{%o+E1~0C$eq+^K`aNE<$^-&aX!)R4NiVPTH9e*t^+fV&$5dnR7h*WrAmawZkq1 z(=GR9T;D`SguK$HLEf+csBkDW1ssI@&XboP75=2mjRlrcdX{F&40OJa%2qk5BN+ zP44Z@@6HiK8r=HQ(p0#Qh@&vIIN)keJ&~U}?O*-=<$HA%T{CO#91b4+-#?Frnv?QU zblQrXPdk3T!TC9N!_rz{DsKK`vew1Jz zTe&#D5R+M8DUYBKKkxSQwvCvbxXh|MuM539+&;bn_)B9_wA;AM15_ zH`d!hAwj1Z9)6K#{vy4GoqKzV)i19qhX8MuPc|O-z}<6XN4Px4~BQZGg2=w@&<$1X&^WjBQ@uZ7TagFBpKO zomjB7&kkzia+<$8`^(FzJobirtB(M7dYhu6F#BW4!s1`xqlHg6mUzb>Em$RH+uX9+ zW3Wsx=Eyv==gA5y5{*W4&=iMyR=hhzkM+`Ap^7G4-dq#z)Ra3u7(1P|C2<{n)Zjn# zJ5q65+{u2CnK|x(&hoOKkbdzm({f*5e}Go6_%{Y_KX|Ak7iw2Wst&)L8D(9fl`BY?Q&CpT;uN;h<=@BU)(<*4y!xQTpcJ~Z_W5|ZwabDc3*Ymv z$|nkxW;n89>rT{G6w_MtY&4MPZ?KiF!QW3pCOkqp*{ICx8$Hg*DeULYsKukqZt`le zjXeRGnTl1LsD5nQhM>gHN(qyD8%37zIot8+eLI7U#rikn`Y&k&U4CIDSTzwVb;VnK zv!(EZAc@kn#8~#;MDf%2yBo9p!KJgs@1|rV#&d)v=g!e~__>=u$?OrSnT~y+qZ@yC z5NdNz@rw0z?|a3v4>zufouQ_-`^rKPl9~Oi{F}U#Vxs($%g@4yoaoL(G|BrnPBx#g zXg;{a$)QH|TP}^XkM4l~#?33C@lPLJ8!-O#chUao)3S$mT^E_L+@U)y+%75;BAtSP z_7~&qn-0d~Qofs=VJ(q;_(<-p1l*-Z3pkr|fb4Jo!ZD-);rr?NYC?wzzxa+ppI{M$n0VkM@)!}9Qc z8OtP^WfVgkSj{2>v7hf7c$2$VZ%wAfoE%*KxH>kHL&PIB8&;QnvFDnpandszg-<`j z$K^V|1z)jXpvlr#(bed-Ws^2Lnh(1qB$_+*YFM6}nf+~d8G`?#5?ePCF|nPUdnlu!tsCIty}hP5SLR1vXn7lz7q7b%WUe>GvfolV zk(C#>(0|eAOf;FzVC=n0Kc|q1xZ%F6z(L6?3#a&h9Y#+yMB9agG-hls^le{tvOe=C zJBO^s#8=92a$v~Oz5Us%lHjFmwl166+Q4Fi>9esqx>vQY_z%BrxV-ITNc$+Mr&($& z`$$)Nh+v-^vo zs;bAdRfY)m`)T#M^5grwlb!YCwd;cPso5)`Bd^}~E1vu<#iP1aT=4bU)lb8j z8tPi>ad{`wp~Zu@e^~KrPxg90db6>!e0`-9Z4pjxeXz!8W?9k9eH>fZjrZzneBgMq zl1IRBW8R6}somK&8x5`-(#x0Q)V+wn;PP$sj;T4CSh`C7s&}1w`uXG6)X9#!CFzT4 zx_`wrRl;LJ@1sLEg70^*wQr^6{XBhxNen7p7Pz-_5bkZ#+0$#431rgptk5YRLLUT9 ziFyd0CZJ<@*bITDy2+oR-AOWvCocy5t%!Ikw{HE}bG<8&{#JK@rs1mv_m6Y(M~Y)s zp-$gBYJbiYM!A=`QCEBL%ejx~8BL_cC0P9s^J%_2fA3f!;maA8ymT5`yOr7SaRiJ( z>J82&9UgNUtX20%t-`9CGrp9wK~nhnx@gp4E{bwahOJ)l?Sf8dG4C*)(!7EW?tb^X z!piNt`~1msJ6{I$I?O5P9DU;M)!=H+J8Z-IZwVWu)1N3zeQlWyF{G%gcgqVd;9R~o z?rR-7aT1t^?BbCHKS;al?^jjqY>jMd`G6PL!3_1S8 z6bfCpTGL%FO}cTMzjIPWw9mzpccUhlwxL0KE!O9W+Xb--B1jUq_q`L3t=#fCggCIF zUyRv?hIj&xv%{;YKCFa#+=4{c>`P1@E7``T_1yKgC8TPgP9yFteR$PPtN-Wkbf2x) zd3YZz`|2h|U6lp>L{`4r$8g$GT<@>@DoO?e|1w>(kIvM4jrEe{KE)RFklTvX!dsb; zvcJLhcabZiZ887ST}rY&x%KmzoxWwhos^O;ac4tyW+GpOSjd~}T;UA~*^lJ8z?Et? zax(Cw&y4RD^8!oO$n*24zIP6et(sZZ_68&JOn3L3#Kuf>?#z7lNLN4dDVPgez7>BW zN%823ByX+zwSdVx6id!7LB~HGqM52x*G>2B#0I1*Uxjj(-l!w+kjhpcW*Bvsj59me zFyc+`MHNu;O~Aft%`Dse^D6@Ek8e)YJ5e>+-)Oo&56*wh6%>!Ff1{^mg8W$qC!Z#ik>74_h#?sKHY$UiY&yA9>2PTLBE90z#q-{iDroc} zWJ%+`zn-h_?oAM#lSXzIRb_vwmKx>B7}o39JY4+rp=(=)vAc2iacb&xWuhYXSXNAI zvzfbXeC%xBkP6;W=FlI|Mif2X`hr)Wxnk)ozwCqAUODbDeYhkpRaq$>IN%>hux+R% z5Vy-of_^Fhq{^hm67E;Ibo! z+E~b!sP&FwrUyGiO%Y6fW0mcDe{BS|e$5nq9=$i<8-4NQrrL4ma6?t{<=P9E2*#C= zMVGv{0+`e{)s56QPhlgvI?-!^b5tUq4rsyyW+Y8W3NfUUc_TQuvMhC`Iz zo5xe-J*!nKVvjr+Gmk}%_7_S1PKkB!8{hu%=s53$t5r33LGrfWQPSJ>4gb3joh*rp zNG1Q~Js6crVLnT~pgw(N_Jne7acnosnI8<+^23TE#ESTe zTWlAz4!e@|Y=VwTZLS`+-@dW1=W@4g(IXV(Gd<^@P*Jgl?3`FDsMS?o?vR&0%jDp^ zS?(&?bQJhl#iOV)zwAYH)i0U7A2q$#uE~G6*BPqfL(~?qm%?@svp}X6)8w5hCw6eW z6UutHRW$XzxYLB*=ebA7-Wj#I((VW239) zn5+Fuzd(3o9g^QccPpVQRGW7W7mhL>vdJ?(F}OeZQPetkj#eanOK)GSJjvN<^x*Iy zW9(q7-|+i?9}>L9Nj$#RX7gdcd9J%DFf}l_x}Hqwwv&^I#^P)Z|H=LM&>5^l6YGHp zpG-vJ@dql=eT|Ufx~sKKAg0|EI@$5;yH2QzXLQ8aAzmv@NWlC^-j}zj7r1Gx54JmF zpQ||W>*S$=Vn&a7o$SK4ySha^g4y;qGKw-y=iXnC=$Gv_mLMh}cL9$8ACq zt3>3pR^wA)@2ao5^@d2uGfdL%%DzxI7$SSm#4K>ls`@2|ZC zA|m@MdFH1|c8)uPHXU1=^9)z`F|SMS6;`>0-$5O|Hl4{3b;k4ik&(@WCo9{u_SdKJ zGV_C|UxKEO@8)g|?@f^%Lt#kYQo6OkkP~leE6tMaQ`=_5{H8}9@4e;KNsDxs_YugY=nm$fDE!^ig)NLtx^)8^cA3iziI)y@^+IEh zMK2DRS~&db3-dySgc#U02l8F9vJU5t2|Dd>4;n_cLY5P)@v?=NHtgHjo`=569aFV2 zMJ#^B)-h(T3XS-$L=*kk*NrEX8;c%3R9T?)lWMBETXXr1ze7k^^hm2Em0dH6T6CSV z{&s1N`NrmtCSL)5ep;rC-6g}su|_YykaM-azd3RJ_;F9rZTUrZ{6t1t#_QwQ2RCkS zb`?ZyY9RZoU2f2-$Tki2cGswOfr$|TgEk6O|k zeZ!+_@96O{ar2!yY--HO&Z7!hSB+VwAFyFt^A7sbR`{&wWL~c*MBY2*>c^K;lrbcm zzKOcp{sTAN+$x!}QGoD#mU59&&O7GT{hYTq+|G``ZwR)xzP-D1CyV*JsZFiXz2&^! zY*YEskUdO;z&#n)vseCpjBEli8oaz5H@=gMx` z>D#nK`Qx0x8#5 zMc-w``}$Fqap!pB&inZ1yPvnnVY?7}SKODk_|T#2{5p(KajchD>6$=U?c?w0 z)T~4P{^oCwZ@o^^;DTT5N#6YK5Hu6yZ)ErDTaNVYyqr|&!=3?&m(R}ctcS``=4rYv zpZ#w5tWCbK#IGo}Z(!Q{eoCSON(`%`$n|lQ`8}akX~J-gN6`EavAcp4`YzI(h|haO za?xGFsE7=csCO9+`LN=OKb?}#0XDO^+Iv-i*!E5ey?hJ7=AJMra-{_yLH#lzMAfn> zBzJLOT-h<-dEX=R_tNedV`=mr@qXlJh6;9fXvW&Tk99@z2IUf6)GiK;HX$QjX5X%v z#vVV>R!}haqTc;R`_P{!hPQU`mxA=oSLga=FT1nlh?o>P9~iqud@sBrRUWr@y;i&+u4`zxLKqu z{_sToKI2b$m%81`>V|d-RH^^#v~oeJ&3Fa+l3s z4LvS>TR&Ggm)rHFOH5QUcsi^{-d(Ec@8>3?s|mit1>arj{eL&^4*%%9YnCr4a%sLN zarv^mueBX;Rr~8T6zfgK^bIYX8?)R;BqV+|PxcPoB<_6{xS%cZth7rIXML?qEJEZ` ze*Ti$9g8`7t1Wc9_XmE;!r{Q{8dBThDawRu7muo$y_n-F_s<{E3E!28Xt_6OqqI0^ z3>WE^-o%BMbS}B=tn0U(EwgR<@h4`i`_A934{Ot(vi3N$$+uW3x4p=Nm*`PR89~cR z@wNvHxxw>&OqgP!DH9Y19qAtOwCbmEebB+QW8s83xjYZ=*H7elvWj=MbZn$F_{og4 zzskU2kdTKRi>!=$O|}_Jn-Z4?Us1hZ9y}R48R5eeYOy*Y1FY4DHHb^6{|zQ|k5RhE zGSla4#wB)C`2`&P@*;fPoRv!TzFC*?uFQB?-@~t#TU%I#@(C>_tE;^D#)#@v_x`|) zktDM#U$m^dPv~Zig&s;rOw!HkdzUT)?w#qKv)sRm_Kp42PrbQ(X2RkY#U5Lc4dJQqYIWQz)T1oc*p1h8g5>6%fuzugJZk{^>7U(ZQ&>nh~B zKyeCdk|^a7l15%X7+GZ*u2=Jq|Kn|k^Px|bo6ja$|6L{I z`8^AYT#Lb945I3n|2$CSN;}^0&IfGzg*^3u!OZ*~PfeutRhy6NdyN-VwU6ga{27bC zhNo=pbHv^x%s+|q9S*yBraDH@BMZfN_Rel*qhYa-Fv)0|5JEz&tB7fQ&VG+O;c{*?kPG| zt9<#b@d%JqUK|^85~CGK8NB}3=+DRORkr0twoC_Ytr4pyqx<6yOX9P$OS@z5K9x5e zHBV3fbk-P6vwA=F=Eoo@bQ!kW+gQUjEbg`?wuKTA9kkYKSO;tu7qNyChun{k^&g!R zk&uAcG-glF<@yANQ}p|ca*3P8yoL<)qkFSE#{~wn?qvtdHBCFqYy;x6?>qJj^}dcC zZq&ry+-MV4{RpPKCJy z^hS5*J7U`x^u~hBO`=2WeA`TXApL}c@;XIRkLKoz6%H22!W#D0`@2u(nz=vXjqOjn z0$bsfN6q)j*of6oE+HX8h5q56yD1)_g7pD`PJU2Wo%yZt{hL{r-K(OI!b(*gb<|b< z)e~kZk&Df8c(sGK_r?R{(%Wj627=dy(`rH=WN~z}$ea?WzteQ1zL-^RCFxAonbuj; zhQEeeOT!Iy1%35RpB2u`Z)IkDs&8t25KBySsn?@RtmYRJbN0U2-zAQ~?F5bQZFz6e zJtmF4!_Nvi$lRwRn%*906wPLm5?GbQE6AmNYnr~1Q^V9~lDogcmX+f8H70R6Bl)>0 z$@Md?AEzkMBEMpV%L3TKm=|}20=#*q_ zZ~`He4%#yxa1?j;ZIK+jvZ;ifQ%HqoU;KQiOE7Z? zzOcN8RlvzAi zz+jHsd3KblD%t$jh1-SYwiDAcKp3`_>tZ%it1Un;_{mtp7yh=Pu~~+ z-s=x8nc-B&-`%r0sjm&q3FhcrDgWpyarVJE!2s_ZQ)uA<3<`umfeAO+95z1J z-`l&fwM9qQaPzy&4|}4Te0tfOo0Sn3`f+EkRu43vgMKq%y~WZv#ZUV=`hgL9A`iHN zT>AgLG@!KQVKdDc?hsr1`k)}G7k))AUTCzn+TlxXkdTjt_@DH&2Cq(M{Z6ioO%OtO z7gk1(6ZS@VQ|p=wk|~4`a-dBfC$HB9z7n~q8Z7+mt|wjgk^Vdrnvpp#_enOxX)d?O zogoSFhxipNK{pq2kDWaK4p{x5X!(dP^|+($5iy5cyeL0HamEl4AGBW`h%b&M&!wWd zXS`vJPe>TD^NEVg=+)ytt*<_VSh8mO7tl2H_VpdS^_fbJz- zkTikZW~Z25=;?ZM)2KWTyeD|$bovHkzk6iX6hluE1Tes+(4b9$+GM|qhLyetx{tl zAXGa_A%xi(3xzX%p+NJKS-Z}T0N;o@`7W_7^Kn}0bR+_-qlae?>;Wn}uZDoo>W9Cx z6RbgYUFV1Ju~G`6LR@@&=g)iBxWO@cWp0qMUAkKY@^B#28+!b=KN=um!ayP_XALf_ zsmZvby{UlOE$LaSD&uZ9quodkA)ol8t-9eI~eKR{TwM0%i%|b z>g?2?o0B<*gectLoarBvKHQy3yg(aQtC)9h`!~qpg6{lEay}qhmOku^F0QU>_$oBC z)r^H4!279s&P-3QRDYvVJY4(AUk>Wmz|P61o)Ue?rg%K;(+%RgFJBH<75@dT$-I#L zg_RX|iJyB}bJD>7dX}g#I67KZT6(X>?Ral4FNQ6o7Qic@jhw)kNc~S|vll0fd8fZ+ zdTMGaB0LN=ivJ4M_sp47ArklXVpI5Sc|;F9-{Fx3m;C zGz0_U#DC}ofHOdl^W8hT)7rNA#{KImYHE>*iQONBD`TRfzIAnhlyt$wq!y~SzJBae zGdgLq$K_pZt+cqM94`V5^}Ev0#}k$&CLvMR(0GQsaB1|z0V^f_8ps;c(#FNdt9@!o zK?8TAF(zWhg6}ryY(xuw_gsID0MWDh_HXY*H|#XXO|qlbULo+1R*&Q<0eb*61P;W} ze!T^lS^ywjwWvnzC4BfG|44ZCJ7}g`TZh=7FrQF)5%}1c*JVmorJ8%B8XH%dyhkzbV7^#ci+E?;zfb(dX05|R|#LI&>ur~{h`8qcH|tPFX3M#f9f1uZT%FF>$! zO7wB~SRHXGDN`e(5`6?L>bOHP5)ccs1v=7Y`nX963k!p%|1v+-nGrPjzkRbRKr}h7 zfkZYR&kQG66gYih%7ehv8R>s@04NbRCugZX0*96WZUq{;bfg3nXD?O`6Kxn&ya0F! z|1fJLB@@-OyvuyRWyJQ%$nda<5V9sW9^BKjPMDM!E&(D?)^!LdcHeS!{SITGI||rN z_yB$eB}2m>g*q9yE8$76t!h7LXF|^}Ex}22b=9^rpb^{&43FoTIp;8N+khn&ztf-$ zeC8}&Yb{Y3Rm8!;0nj-v^GUHY7hyeJ%!K(kcdp>HLd)1#p4$25w>|Ug$ZI~XHl!wk zR68&>jUmOMwyqA4ichmE8#oXk6anq?wEODx^z)LEczAYbPhVf-YuBz%z|Y&aK`0v* zIR{4m?l$PRmU!L;C1>1IK@ZgV6g4&;lh%wi1a77aTHvN;MxmvpWn^UJ^(}6SJ$^?y z&Blgi5QYb}I1^4-r_dmS_d@yU`5L27QB#wUldJKkZV-aJEs$y~)8J@CB*=Ke{OBw5 zQuX})O>z_a3ZI>w{S+%JD=jVV?s1O*I330$n7ll;>cqrE4T3^BENmCB+^_JlHFv}$ z!QTW0F=v_KOU1^=|Lp6tb{n!!5}uZa6{CUo1rH6lHuFH-gBuSnv;OdaFo_5sfDbhr z_TJG5+^8*$5}xKAY#h)Vf&v3eO%M&Ac0BG zg<`utendNphy;?5l9v669S_9rKyCQu%>`q5SCE$m#Zh?3=P;ni%g@78^2Z#wv!GG@Z|vT| zcJb@i<$ufpLIso?P2|gG?-Y<$hx`0xLX9M?+Y%JM%uVV6$=98&trBJ6bioas){ecZ zuHJGhu3Z$wzCmFcl)T{`dqik5V0D0SZmBX7AKtsS7bqV8xe(OIffVR^3VD_fXS(Sr zE_f}>&r5?6G&4TdAI5IoBE^j@E_Q$(?^_6uE?(BqNRCzaB=Rf(U>ewL*A!t##U#7} zJC1hMR8QJX!3_(+!q1WhEE+LF3V zmQP@E!EM4{wk^|O;9m=JwGF)YUBuyT5n@4vI1kX-nVAF3x$gG%Xl5leyZ9*uHa0eh zF(u?cw7S2mi;@I0kM{KOiEs>|=r%Sq1Qh5PAp>%;(((d8pWv&{Bow%#PN&j5$;rt9 z6DC21;QoLw*4Wqxe=G*Do;f2cB^5)MavvaBjise-Zc&c#6Mk)48X8y#J+?H-pt20p zFF}U!Sa73kSG zlOLE9pcY;Px6w^Pu7C$Z>MkNAdk+MFOJ^!_LGlcp<+)k zWGZO(^NRvpZQxKLMOKHul7e8ZL99_)3bO?g$X~ybl3?yblmYNTFq<^7?`EI4xVnOz z!v)kS>XJ-3c6KErqdVVZ4UCNeg{6jO=P?tl1N8ah9d=>i)!EtVWCDz?fIot#TALlje3F@|q^d0d@MyrRnVrV~wrpa;PW<`jNf7u=NJtQ%RswSX^7gpb!dfvlZlOV8 z9eexwqTy-yfJVQxw6x33o2535NhHb&keI&63Xc`n& z7a6cWe*&kQ88-&VSA;9fcZFMAJXNKDgNy6wInEqJTwENeKp(n}fIjl$zbNc^BrOIa z<+pD)FYV9*NR5Mo?(EqF+y{Z?_4?YH*<1)vpaE3{Kb^qs=lie)V3q#0!Jq&nUQk}1 z_(1D^%kC~vr7!8=BSORtr)ZE$_LO#jF$z#)3JT6Kp5s95QPs4TZI@sQ0Xf-Bd=7Pr zj4zED>?}P!7kkAhi>|slK|Jn-wsa{GCzf+%AR~|ccNt8Vh={(Ln&XrDN2#g!Z1r}y zxna1UkT7HM9`pX#%8sBgiAvcdk}w_aodeu{RCM$kM-K>F)L@pBK$aZGAKV(L13=Z^%=>hN$AWt>1bP4yVK#dTLgFGKB3Km^5R!fU{hx(#k^){2e8r-9 z`gXdZ60idR?S#9~+#Dz3O;4Kt{{23nEWdm{FAcKgk-#4TOwa49w*R{&B{YbM_x$|n z`0J41A#pG@vl*Ji7VvtD!r-~Z zZ)$+dMH34vFP0P0L_k^J{Ed{2jg6PrI)#P4wmyo7pI=r+rqa;^oGBRHGn-BV7b|g+ z$**f`GmSHB!vuBm_u_aU$O0l`r9P5G9(DnC5GlkL5P%BMAsni(cQp|;JD5KinXD+Z z{iU|sKDIOJq}j!6}P00d?MHwYoY?yfXhxxFnKu;@6< z^ryH`@D#RXPX9L)Tbs;-B@O9NI@vftN+7U=`5DlG`2ivlpoqwJNcK)Ss>AZ&`4<%# z897cUG*gEOs}K~bQDcEV3K6w=ZTG)`;5cD;J;w}PQB?(W7>5akBcP2&MS-*IS))-w zz_CFdD==IHjA1y3^`1e44h6hfkD=;>r~`oPrKF{)&oHV{V}J$s*L4rfw`9 za6?Id6UyQvE5vd%%#Lz+&cf2Z%GJ%3sMOR{U~}aww~7II2oO{y*Ru}kQAQ>vk`fXH zFbW0$)ba(SDl-v?j{)u8!#+Ze+Qu!Uijt=Pgl@%c& zq03zK&GZ$m`Vf@?qC;RT5JLDg?I?1R1hHH@4N)1w-SeIrFZ1b6&;w1OO%OYG>?}e2 z1Z$8~dtDfV3x|q}D}%cM&JAA)E}T=sfE$9K!@SWs(+o^Y&o{F}GFyOpKo9}nS62Yo zZ<@%iBEjv!ckR8sk7n*x!*uucjk=(fxYB)$z>D|yznwypk6lyd)wSb^XcnWOpn#Ov zDFwkYDAPpXW1I(vhIDjvesdrYzd_{2fyn*n?>E)g$8wje;gtM|3mxlE9^+7m_yNs9jCUD2kR(&Q%ZEbJ6zYD*H zPR`9$kdbMB@tQFc0U{{i_P`fZWWqjQ69I?7K@)pL7*$8@s0mNI1`RYXU`*KJrpiSB z!Ai>n{V5DY^#BjZ-dElP-6-=zGK%91ZjqL92RfhN0)yasD2LQb6yo5yB2pV$)AO$Ezu+zrb zaweJMepDzeUGdjgsWFLLxjK@NB?b+25{R0eY7i`Mn2ieFLsb;iSO7~}VS&Ip%16Q5 z;WZQj2p)jv^#nbmqm<6Lu?v?jUDwp)5fMomLC-HP0tOdeD}}XyJrW%m2`>h25ik~A zuuSp>))Q%>>iq(c>acOq%myz*P4k zij^dX<~>uKRE53w7aY#>_r3~zQ@|!_BGUN$T;QE-7hgj?1|Ixb5+o0e*)umWNiQvb z1L-`}Dd2gMBD2oG{Htz!0EQc4ZyH2_V0?TW_IFF4DF6fCR9BBm7ZE<@bgDb{;hgjwxK}X8w*@&q zVM(>YI2If6G5a0%Kn=&hpc#dN4Pj(v{@UI? zfkBXfG^j~{@d3|Na_;>3kHC*P*j{D{5R|?G7+qWq#jY(45topFO5`^tTn#1MRprw| zeiU$7D(i7u1VA1}`VaUa5`u3G39-xtT;}@mql)-aEe!^yFENqI8D9k8wojfUM4weu z)6huKd=4JGi`Z5bBKq)w0khqV5pa|MfTSbkgyJTokYtD`xVOq;(Vxo!0Ra%R=G)U8 zDivOX1tzTzb99yDkcI{cfyjuAgv4un1|m49ih$8)V{DlQkINEJ2PhYy+pwd?Nr_`1 zg|3G7=DlV8!6)LxA!L4K!CK z78W%w`bul89#DZYv$DLdH71EE&qflmaic|G0lj%M`5dwB#b5n50`m?Ff`OX=aV|eR z3>M#&rp7#Y@U`*Yfiy4j#Rkmg_wgw;Tp~S*#aZqsuY%a{28ghzQL?C)g;D%y%-imP0Y-Q+ zJh3{zWoA=+#5oV(HgxEfUPvy?&D&3-u)l$;L7Qdvc@Ro55Y9tbG_|&7bS7j(1cd>oU@tv{cxX-xCOiuq10A}IOv%_dEd@45 zK|ujLRM^o}=%kdCp{7v97#k^RX^0R*FVLk<+92T7b07l*9|QHK*oO}xV5o!w$z}G~ zX-`2>!fD;X!NHfAk@YZx$~17t7+3UaBtF*4$=UfFTp}tH4PURYkdp@Sx1&q(vBni0 zAU@MXhHu!}q4>EN=;)@`bRdR~@VSg07cvu-+10vApW?v7$LF3Del3R#foo`Kr`EvX z>)Z_tTyKCX*^LVj26<9O&@wVi^06aXv`}>v`Y#5`5xy`{U#Y??%>y+y_1+&pxVgA$ z|K%RIRGkzqJP*bb2)dSZO2Em56-0_(BYk)KHe`kj1i)qO9~(fbw0_iXvDbbvk zwl|egzk83*x zl@tyRNEPcO@Nl~-JKJZS5vtn|>5OaY<6aM7wI{Ov-s_A|!iT&Vo*X9v>|+Q-g;*nC zxx)lek%5h=24rRskg0@BXzU@Gu`o9;u&3#Q^0}dz*%x0FCIZbCg^vw{KoIDibwUW- zC)_Ou(j}&#kei;~>WhPP*VWg;=faaaT!6K?kr6HwH98aF3%x zJT2Ttd};Nt`8jBKrKK5l1j5AXZS}gSa)Dy-Es9`IC$yd=BBPZ!QnahBsX`~o%5V3Vhn{J zUtb=c9Kgc40yugxqf!I~#Su$rn!q7>?9G~{Ch$Hku>bh^Rbhs%fuF@TYinwH9%-`2 zJ=N!d*qn!lg&qS?a3BlzC*lXw)$;ya&)GzK`uPEcdv-q=TEUMrIdWG6Al$>1ac^AL&Mk;>gfLoou%J+kojU24EG zZ{UN5mbo6Rfh$)iScR~-%67i3c&OJSDE~n4okR0O{AzpNdy;gtWHA`@x|%mS<>NLDUCE9mhg zB#okh3H$3oD=;L73j1FxEA4@BRInKC!k9U7Zib;9-j_q`0&9%nKy<24A!fcFYl*JdHt8MOF78!{;xLz zSFxNu3nc`2hP)WqKH#;drUM`;f$Ah~41r__qK+JvM95OWRqEjuF1^qCWD5X{4=pjc zJQ&Nm#gBYqCo}37De}K#R@+HoPprGIhsU(a7uM)~J&?C$h;AuGnTa=fVx0VKh5&(-H z1S(M~%3Snb!Z5?|(BXS{`5Lj?e0dG0?esCy>0}t zhEaS^UlKZYKRgp<078$Av3a1O*3t;@Q_@rQsMkm?N)gu{QNopr!qK1Ip&^ImpDfB` z!P8y(ua5%PX4bU!rJ5NA%NkALM#~V)2VN=|7DU; z3l$lxy(9uF$J1oqnuQ1-{QJbe*2u%xc<`K4Qc_fB99a;B8&If#B&YTgpN578m>&*= z5{YOCJqZCOqUG5%SR~cel9vcPFC!4*8-j=YWdIuiDqaOl7_tA=az6bs04r&3X111# zbKjg0goC52eRUp-i6`CQ6A!J-hCS7AI>iA~gm#Xif9WU%Qw~7EPX$P1R1`#U5EIw` zSHk&RfJ+zuZxcm7a{%tEt7giuZj!7-)Nog$z za9Qr3KM(X!kk`QU=8IGsBTxi_X8kT5oMX@fTqb-f5SO8v`FC^kQxO8>CRj{xcTmP= zrK5|~LqWkEV7lMrW_u#&BSWsfiwkkd$fiDo zUpqWSOM3x)d$+xJJRn=4{s;wk$YW2!b-5sx{K$mPtNP3c&9Wp1@YH^oO}GxS2r#SX zP!)L6qL7GAK?(5_)PeN$z|5S5^khv0jxci2kkk;}glzQItq1s6N|;J;$MEsPtj}== z1kz3el@k;8cYQrMHTCl{HO%AEU=7z-te=FPBoy&zN4fX(RXdcIsLTHLS1Aqt`a{(43 zM@l=4&HUFMk!C=~62f~SxuLt*ckN$)M4cD~wP*?|s%J@+=}@u)N-nJm0=phy)=(RB zr=g~SLX~q4b-;pjg!SYZk^>JCYT!ab zlu_|BMYswqROsPiTig7kBz;gPx>$Mt#((Dz&dFd;3RE5z;sEVhW@K5q(K(n?Xe6T$ z`Y8C=>+HOdImjGDK^E1wMa9Ha(YAs{e5bw96+~!sfMOvt6O*}x#RXIaJ%qN7G17`g zplhdzmxP#+JBFT&~F27EFo)By)}ceNTYh1(-r!$$K&ox72`xS7 zDxJeM(_Bg|5ABoX56d6TS8x+I|+e85)LgrZl?ZU%o2vL zZ*4saR8r_}U3GMP4u$>~FSrb*$@b{^cy5#;&`}CI!8LcWUa-CUNU_7i!O+}_lpX{p z2ZcG95;|!UNN`YWp-@s*VR8E}k%#IRDGQnNe;pDMuXivZ5C^~t=J6Du!$1WA=*H(B zN8R~`hWf( zcVWV1JVmAZ5cXDBfVI#>O3?gVROIBJLm?xD=E1Jn=qWICiv(TPN%hd7qn*K22C0Bm z;{)$HJ2yvSpxcG;^APMreXIdJv}@3FoWO@3ih`tMG>ky|2NoI0ozr-EcDA7>{W z+lL}RL^4MX0zLJ5aQeG_dRkf}VGs_%!6c|BKF-cI*zM~EoV*J1=5n#E~9+Zt*KP?+J%kWP4@gby?Zf5?aPxAx|5gU}*3`7ZWUS*h3j{@jGyO z0)oq^L{4-C)MX_kID14LOsx#$&%MUCy?wjEZAcP*_AMlf(7E;aNjs^GK=ZAmE z={CvJFJCkPNJFdyXA-`DPgZJMnw{n1=kLIia!8J~Vu0ii&TB-PeUD*+U<)jVk?xz2 z{ey!|K5aA zePM4znq}p{)lA?jr|tT>p_&Al?Ku-J=gXFs!w`;rLl&L?Pd$L6$1d*veF*8p5s1%{ zV@GN+eqa@#8ARego#Y4Uk1AnwcrEMr5A5g~FUECI*vn%6o#U_zCq*m_ z8Q`M-&TyPELSW}J2w5s|`Avb{T9}#Pgsi&uLQDynx3H1^`w-O9Sd)#ia+s$EWn-Ln z;nVQmzht&!jrZWNL8L6sU&AS-cPa~)V4f@9zWwp*7w2#?5US%IJlN3fxGU6!Sk$=V z&UOwbL(-|EtqrG&puY?*TL~{x)?3pGnkY#~pD+URVh^5Q`qCu`pif!B(UY<#&{@^V z5Tag3lLL+1+0`}ffmWaDf8h`@A1>kaw9!Nsp>-^*sF;_JhNdfqgOJ2l9_m7X7D`zbR5iot|Nkxu-PbDcgyOQYI-hZ73Qj)2(Lw{B{>wo@ z`*7kyx!itjgog(>;z|XUXTZbb3vxLV!&4}#t!2y_pdjjFt7R z_Y)Fh+uAg=wIAfSvC+}tvyzwUzh_0^j&pT%&~EL*(H1!1Vj%N72!9-ob3J{k(lZ4I zc_J6cM&hj!|JNTO2|5J-5Ag*&Hfju5;L1u-<-|}Rjlh)u8-pAR9*A<{7#wIZHO=UO zqP$-MWW0q11!1)ewz#Aif>!a+(gZ+>_89b7K}w|sq(i!;8w3kQ1eNX%Y3T+9>27JHyF2&I_kC-x^`EuQ zIctw`#yIC}#+YNibMnqP-*}!ouKT*~hYBet5UdwKF5(z)Cd^b+Kvu~MgbEe7QE?2g zut~4`xH%s@0P3NPIntK&LxwV-13&N(BFxV+u}XzoG((i39h*4EaCv@X|>GFTrQNQjF+zJEJu>amg%?wo=7tG2;73#Fg?4Li>baaoFT>s3>yoTL`uJH*9;*~+@_4DUL zsG-Cm57GKU7=QJa5zuFWvSW^_5rfFd%?Bcz}|CqsE`7=SHKP(Pj*vyPBsr@lK z)ip;~*GF{U2OWUT11^&S7vaW!g{JrpI;@YDtgKj4;Q9gvCnko-qSFD}zycH=Au6B_ z;DhhDb4MzrS4l%%;crv`IB&p;hM*5ZA8=IfoaZsIumF78@Kme9o^YfKSYx?!e*9GOeo53D%RH#WM z4rkP`ArgB0_ygKx5I{44o@dc&@oPMAhgb}Xk~r1mFxJ44-1mKk)G!a3B{lWWYnvu; zLVqzLv+wxA-2^}fr#j-_YAQKu2ngBP9d~|sjub)=V0l&ELU7XIR1-p!8F?K{nz5m} zJdnvCTEJ1g^<0bsRfM2ZpJ{Qt!V%zEp?e5B!|CQ8^fac7!onTkBS`9Zy?O%N0{O^uCD>GAQ$!w@&cAgAlT;cIK* zOnG&a;-U5mc&OfOM0EsI*0;CqjSbx?A0I+dF*hg2&Eg{KZ(!voP+_kMTkE5ZvdF&0 znAODS8|WxkOT8~GwOqZk2FFTY&V&yPrL~LmQ}-tbfKZ?U1n*Hph63=!*jP-&b;Pli zsVOb`hRlbLA8!*79DqrtK?2YyBQ-T~I`1vO5VdLVp1LoP0|%$8vy4@!$B0e?Y?YeXlwiVPAFjAmF49h0s>MrroKW^3m8XR z>|biP`kH@1cmZ{<>+B#$aNX2P&adbcfhxVHhX=&QdMAZd+8lVgORl%L*j06gPhwIltE|Qy{-%YCTKc{{2@%jxa9-f14(aYkp zGF~1Y>4MsO`ab9T+O{==!`B!zAH)R zG-+@^(PXxMq2(Cr$In(`*jr4qLdK7Q8xUGejq%9j_kgh~`-2GH9krqgE`QAX3Volf z?8K(Yu-{La#h?G)#M$Td4Ep2Pb-Ld?GV(h8Qz0FegbFf>$Ddf%8YSiy~k+xz>S-QA-0GjGR! zIqxm?=4zL<#lRJOKH@+!}tdJwxF-RwWNaWE&oB$gUw=6gG*Rvw0e;~UQ$CchFS>WF?sTK-^EK~#hm)T9#qNdO?X9i$pEIoZa&@a*=*iHh z7f`733(>3355_PES)F3a)pE5;+_nwTr!O67n_rZf85>t0j9R^bW#&xU^?c5q7dy%K z84=OHwWrVGbJz3%KbT<1`|$%f9x@E$5UIMJI!?mi+{WXG(CR`*?k)wQh^ao%JA0MBq|7y7FRyfSVP@h+@2aC2oStBSS zqR04ZN@DUC%rdro$n5|J+`x~>&)@8d6NDO6+HJ^=_sXak){f8SD&I zE_!}`&B-m#`fSUOT%%e9{!1wldjoBcWDt(_gi z{bU5+FA8nM3rcc^WW?iJC}JPS83dv=uGUWTIG-*>=F_;0DAZXX^hK7Q;r8^~LH>a7YZqjexa0-(z5TVT}8s$YBd6OD2p4}ncC zpsK7qQ_WB&gCrNjv);)&1@FS;Dl94jme`t0RU02flkMRwF?{yPE+_ze?zhqVY%c3r zc5zk0hu9-X?jh__VfF_cIdqMzb1_N9fghxdZM1SiFtoB7G8M61(uS8%hs z$YotCu)fY?-_pTh2Vg@JY`A<7@U@Y~$MNUW&PJlIx7cnIqr{CIV(TjVsSL-!+Zp#y=hlYI=2O&`5i zRQdh0dyj%3jLx>MO}jFOx~xmV|KZ3|t|ndjceb{Ey{X=1&=?&;tivM#%)I_=|FHd2 z&?`Zp-si)JJvce3r=&z>Chp-;DNWqc*%`(%3_;6ae!QBh>SLrFjRNtM?=7VGBzJs^$@-jH>r?a)Q(n8B;LV0}G*f!R+(zu<1)ME=lcnGj zFgXBP1ydS~X|9R@P+Iv6W|UH$7pqx68l~5lurL#LBBz^|Ag1GUS&JO-v9`{cQG&{? zG6M8>nQ~bqcYgR`ks2Rsm)k*lyTbY{E6WnbQ6c*E>(`fVUnq*6J8exr)I_56SfXxB zf}lp^WGMwI&j39HqKk>-I|IbacdK8CaKOJ@VGEbl}&-zsf@7RJ@mS?G^sA_eQdQB4tC3dZwm{i>l}$kiY?TD z1s8r+Ka(D+qpS_hGZypy)|>JOVje4X#Lg?-X9$jKE%#Zq-D}XF|MHb+F3^QgMy!yp zDUs~A`4%B`cFq|>TJKL(1)<;)5G({UeeU8~(Lk_9A$^ht&hdwiZwA zQ7{v4ZDE!(dZGJc+Mz3z8T)btBLxDB$6Ka$Um9a$pZ8H((hDcYh{&}gAuhdAoHrKirH#K{0Tv-r@LnC`#(3i3P{+aH@#K7IDk=Wq<5$Y_1V9F^6Cox^Xsrlw4f+Ei+*)Id(!7=QLZ-r z)5WJ~Y;U&$PCShSKN&W$eAU*xQ3z55=Db{r9a0TVR;CXnwpyNnF1D19Q4n7QyLjW#&sd(Gy8~Pzq(PYPap=PE!@KjJmqZ zVSSJufP|8v|lSHGHJGlL@|%UQ@hR@hE|Fo7L< zv6$e4t$svt^5IG&WESsk+Te!;mRyw>Xz1#Cfa~s|`wZo1La7ZzRbicFIkk+dWjRP- zfA%2%N>xWi$H163vK=pfT7XE!2$1!e0Oo+7hewMIUs z^;jtj14FAOf{{=u4YB5O8ZYd*SBV}I8F{qR&IV)-N`42)`I7*A-(n<{36M z^NjMe%UC%%cfn3FI!568c3er$p#$aZ5AC%|NpX&gUF0HO8ruS~s`!BQ7v0Di6S zG6@+rBUCszMIoi*<{kv>q6$-|-0q^Sg%1D84ZU*wHlX+r3V5A5t~si*mL%xkx(Dfq9-)p@P8a_&qAC+ijSYFiwf*{ zz~5l8SXI;qQF0D@Ao?oC&=0?W0R}?x&KG6bpEzHPmlNs%4zkocY9eM@2QonrBxGaW zwVJy3S%|~?#EBeZx}B{q)IzBM(G)}uPMpKEgJ_-OIZq4>7sy}XyGa58^MQy(fZ$5# z0*UY%>a(VsI5-KMW(vT}bRh;D=St@e9JFVsU$K?6e2FCfVu;j|Gy8rpa zKVS2o?9E@__OGA#*B}13PyFi-|MQ7|J=C6G!GAf8|4$#}f9HC>2)RVuVnEVFH+f;~ z=;UBxU~{!)YiNni$w|ddb+sWR#3pTF?PTJ>CT(rtWFl!|WNU1~CTH@(%*mYU0Vg+5 zz0m*psM~0#M(d0FQn)p{caE>cb#;6gzi&)^U8AG(-juZCQll`L^$)x0L;seN(mYn) zH)0zOCQ@eBY^6B_w&EC4K3Z-Plr%y4dwXKT5uJy;)V)bJpC~~K5*D|D{!!VzmrvGW zKD5cEIJM9w^4|XRkskB0DwT`$BMb583snjFB}adFxB2jP%c;swQh#AHKNf4}n3Nn1 zKDa?cjmmU!TW-PDm`eM6?E-DR=JdS%xN25UcIGUkEZCYjr9iEEp?R7{125T)q5EMn z%6Dd3l6k2Q)+mNX)^AgAmts{(*j-jIRB8rDW_*ctzsT^v)BWkIYV-IuQ^|@a@$Kwq zx+tU*ozrx|%I?Px_`@rX9_XJ}yr9X`f6Iq~E-TGlIsM#4Uy@t8If_$~C!}eKM@uyk zYyA<|58p5IqprS82AFnfwZ>V_(*-KTxM_DAYg#G4q9W8+ZcHo4NjqZ=u2DBdan$pN z=tMykIWzGqOUx#AD$|$er7*nc?0^+1r zesmGfF*~3(Hor%?YtnwGII}@lA10*!G$4a>j3F+a_Li8y{ICAy{xX>;G2)kr?R^4$ z&efM^dk@c!xOy!3$cT38Qtc!&M~f-4R8-{MYNs@fEao3)i1bb14sx%ESgJ5J$d}16GwS$IO+fuaRy{7KBepm;HPL8b7o7w#+_reOg+`c~6 zwqquuJ#qAZXG+O|)sS0D^n=E_?8s2*NdTw5n&Y&)Rj}!$dmVpZ-|0Zjfm`-4E{pRG zM_K8wgVphc9xX#d<}|j!HD#k8zU4onIc)iiW72yPbVscZ*PfaFabS=KdF#P|Lp)3(^0!tKTIL4rHfdzfAG0zu(-=nuTDnU zyeE~vAz^5Z=o@-@8b9(hsQ@Nw%S=C#i!(Id?K69whp^&ifA zKae-XIhJYS6tJU7k4VzI-CdAVo?4!#X`3`a%b8U>nNIsAq(EB?xKkaMKf1O^?!!awANA<8oO@ObGGac6K z6r0n_b%)7zTybIa&5Y{LQ)gIzT*Zd}3v{-ndRL()xqWi(g^xM><{hN3R zL}#-hceWDb^Xq<2JUTk7EFUVh7GU7iP8Z*u%J_YkC+atIO@Dt~1_HaTBgoN;aM-rz z;Jwd<$NBCmp@>Ac&%1PAj{`k(;q&kpVbLsv;)?paHGUiQJHAaArWwE9F`aK+IKR#} zHPvC%_tn4F(-kYL@5wl8+JuRjMrAAZSae2${`To8GSj2S)EqjIH(Y&DPW{ICz6~&q zrz_Spr}wOG_B+L;D{3ZB^4%jGPLizQt$&(HiyLO`x2#EYD=jnh%b!V(43jWcd1#+)w`4QmGN~?RuSf#VOQxcRhLD)$JFxygR>$^XVoUdfuOvKf5P8?TeHdbuV8m z`LpA-rHOtedPPOkrLCNEFFB8mj)lvMQ!J>i{uyEbe<|Xz&{QUd*mO!4BJ9(XTSHVA zS^Q$w%gft`1A6`gqCHA^jYKE@RxemiUa>Z!7=3YANMv%ye3f11%l+pDKC||8%(G)j zi@~u!spcY9X@bhi6J|K2*GCy1*BigQt7!Y=?t1ydyJ*LA$h4COTqRZA^n~e@ll+cL zoDsY<7^-5zC7GeWF)>6P;_6;%N7Yrca^^EyJsHBC-P~mzw@zKYwT#6a(2vF+k%tH(x$14OG4wVKs1vcY$m2tfTG~>I=z)}QIgv0 zvlqTs`Pa9f7ue`7sBMIf)ni80TY|d_$))zC%@fIvcbBzH9xcQQva1c%6!p*VF=Jt( z#<7~2nnZ>)^4q(FYq>oYAV6$mpobpmqG;)6h$kXZ<4ncPN~LK(kAK6`k$0m-!qRBP z4a2vMFzMGOW6ugdwFk1ruhWT2-A<3=goCQocr5Fr#G0b8#F)jA6{N0h%~{){xfXK0^-HFoN-rN-kkGktST+v=qLIxXsS z`xhZChc=1Z*STkVAC+VJxksR`X{!B>Z|YNe@zZ25=Xs4&x#}u^K~tdH~Mv z2Q*nMiU;;Fj*VDEJilAjnj+=A9g2pqyiejtHq4W+9jnk#|Li=7dd;0l=!_lY(e%UX z$Yn;Wvu}NCx_6(Bd}<`X4BHE3xOaT6(UE)lAl&oLxG~f2*{!l~<;@u%OX4V<6bS2{iPj8JzSeq9GwK^t|$gyRA zea7BE?V_T#z}KsjB8H3Cyj_y=;|BA-_;~}L9ha74(@?o@OgJ-L0_zQb$J(y>3e7(5 zJHI?)8uW@EzGe-`y@{dS+lUksxf-15EJ;!Sr19iCr#QhMdrMa)p&%C2js`ZN-E7`% z($_kd2Ig-#!+PlEyza7&n*;grso?J*`sd&C-j#+#j?Kqw)x;)W@VtCN@m#`zOCRIJ z>v00xlH=rOy3(H}A*unaegkyHKQuoQk?P}cCT7wYy-Sdz>qNhpTzF`2z*dniwDXl< zyGjfH6sv^(U?NSbpt(mTsGmkFE9w=s$CQ)*cU-hLowp*{ZVh$ma39|`Fu+lx9&gIK zBYyV;ot7a4Jx}wqcq$6@y(!(k)DU|V%S|eZ?uxfmc)D88Pyt)caL zMho>D_x*ZL{;ulFTNVM|$!2c@%I=S-|LObW)h7is)lliPcxyAbbAP;WST#R-%2FV4N)<1jntD;y2j2Xya9f*0L@wy}`Xbl&DjNlh+eZ8; z`-cKg+PReNKRec$L>mue-H)|X`Z+S(`QqyIGA{AK5uxRVviAxJ3p%BURH;ZmO1klllm-wJT>O+L zf6EJ&yJ)GT6OKt5?>acBWqJFO z{rT8YY3Fu}4ez73`NDpuOf?_duQ!XNvV@ectbfsL4px_1PCGvpDKn8BYqgn-xILWV zurx&Up7qw=^q)5~xZmBYcDG&~+_oKzQA?&xlUW$-9sE{=N8KG4jp2d&)Ovx2lFc|E zNRLS^e@-hdWh11Nfvke=nBs+Nx6l^gN-(Sn+wpWa+KpzaaU3*lWG{UyXJ#g(%x-)heyFtAE zO``SY!3`&`?qxg05AKNg%Yi+Fc+>CmwRbB8t7VJNc|CZh6PT^$pj~zi9&_675UnS75BFnt3rwT-uC+`M;4mgZzQx4^y@*WaCggBggSiPpB*$4 z5=+W??_4g6UE%loKt~@-HZR5_yrDw7lgf~Vo1WXXy}QH#8K=9yf!!p#=HPQv=zEiB zquJ<`u=3Z1U4BE6uO!~fyzpd~4q*Q_6Xk52Qq%6zk@bi!yl<3*qgU@KC643k3;M; zZ=_gByQAry8Ev7dD4ci3^N`$xk423qLs6^cC>A4tfq|*s+FhDS{lG<+m(fU0abo{t+y*R{JF56*&g+fJIs$!y*EqxE0W>YS4jrR2diQLO6_jfnJ+$AB&N)&3ecdKNk28%_ zs!ZPBh7@J^y_uAXv?OJGuCo9}ahfXkP*w(OGLxVb4&f}_pwLvQvWDerw&zElb!U>O zcY`7#626TP-C9LBZl|LfWTxj7BTfz-@6&r<-V|>gQ@H&K^{vpEPekZUi8m7Z*B9;# z=xB;%_@VVRe!1=HNcViviIVnE=x@;23O+d^#l6KY9z)VY@GaD!IDW6zSGIuOD)lSw zexJJ~l0}hp{4+62G2Y4CmjgeBQshpzSV*$XM7?AgCcJn3Uj#bV(R>b={(e$B?Lu52IsHJnwuH7IyAJ}gDJAZzVt)+h4U^47-VnVxteG_;u4<7pPz zY%CTuW5NPE=2!zSe}*$=C?Gc%ooSp7P~(qbPgDSzCw(HuXrRVSNF#DgK6LWS(2S5& z+=NoJ+)E4bo!Irpy!{EKpo^TVL6$$fU<*Jnx*^DhDZUGEN^}-0tgVk+D-h|unhxcnr z`eZHR9AfdQ)sUmwdHQh`T?Ds78U1&TX4A;@n>;==^Kzr`2-w^|{8d0$p!Gqr4Xf36 zYbWhhFiRm)0_rp3)@IG!FttKNjTP5NXNi^j=r<4S7uy0*KR%QsOSssh#14>H{4Y{5 z{(n!!RNd`N*fbOkElrG^*i@ViovvO#u`w_+VN@Fo1}@0g^|f42LpFDaSJC$B@+h;TN^vu7bY*9(D~rMS1_BBfrE`B0C4}u z9jN&J{w7DN2Ui=;HZL6i`Xwa?6JrY_CtC+94iS<6bJ!030XsL(f6Not`;o8^2+aEL zr@WocVp=z4!>?6JBHOV{YyBv>diYxXga^{_Yj_~%pfu1Xqu%9sl>;nF;BC z;SB9q{`cKE4Dt8P{%@V(zm1Il9e0*N{Kv8Xe{+WaI#K@rwKJ{Iq01i0e>Q_y3hWq=L@!T>Ssh zAg)cI=_s61qHV2M1RUHA3l5c$^=wsm*Ab4(!EyI%9Qw$JXa0TViV^YBoG(!_93-Q% z!sm6do(Y$Zq%Xz;Hul|txN{<0w<|b%9M`<;__E6p+ZLqSIDZwP&R*f@{m+xWN;Gjm5z&lbkI?Nlu}F0S4BC^z(e_4GV7X%7dUv3+`; zR>{gtV*qpoO>%{zrL1j~=VV8RoTZ}5CMZLdl&+cpuMljY4lIInWjb%UH>KGhkIqgE zfsizY?ptlRz_|v&eai0w^WM8MIKav8jOMm#8WPuRtSVLSj8${#7IaKMu4bt6jiW+6CrY?;5B|(6GtAx!%Dq&%|0x18r8&wZHC{ z50E7rKHYQK7_X?T6aZDffWYX)M2%X}U)_j$X$w19w2Ij|IcKYZcb^>EpxbcO#p(gH zo}0_CHmix*%hs%PVn~}~QqKc@N{=kmbp;ZVreQ77r?#Hal7d{&9N>VXh6}hQJw1uL z380kfYDEPe$Zl`0U=`>~bA!;!UQAfh-|b&SszOEJenpyIy{iko`??n|OGLenwt&Q! zp%5oi#}L$G3v?Di!K$m452i^GLJ9d^)5o(X@1Zs<>b7;&g%A|a&;Sj{RB3o(+00LF;Mr1oY#p!}-uL2`(u#JkZ)y5~zv0iAP)Q zeX6FQ5Tpmp!11XmAD~94DzX79thjjZ!>xPY;@_`|V{~z|#I8z|vmp{EBRNcDl$C>D zzph{EO}U1Q9C<@ybCf|-4LNAUt^p@)jPy0|q>~_n5@>6X_s~ zSo>W7ja8jk4Xmty-=($UZhAY{9Qx|Q7z0vhF)Z@6419rD+oR2QKxYG%IOlOBe+_VE zfrE$R4UNC7E*~Vzpf^jr$2Qq{kVKr>Z%!TiVO(jE%ajp;xXXd?Dgo|9zirp0xw@K~ zfS};%(Gf7W-W1B-Bjj*gkdu{d2ZpHfMy!Z;C5REF^aui^LO@O@yZpX>2wI)c|F#(| z&V2Nlf=)5sSow$;U|{g==u2Kzf80 zS`5s}Sh@Byzx+XQ6sqqog7Za102-2|vJCh4dme33cRud@vcr|up(VR9TEdj}WE2|O zsnc$QpbZWuI?7{phy^`#Abm)u#`93G+>V+hfrHhNm=#6M^mdw!tE;O3PEueJ6%h!d zsKY!mCl96kr#d@xeYB~1K9x-KtQZ`5VDk7|MRE8&Ri=OTkgBtD}kiEd@7lE=9J#c-5rZZ z+G=XjW8*+M-gq+5stU@0QMgW(wqIzUzR_CGeBa*Q4rIN{uigB)QXriYNeHc5jx_*5 zxajI7F#>Um7!gg6E`aaD-~+r2>ihRofzgQ{5cPyo^kwSzmSY+Hd(ikz1>dwS^b;Bu ziPP?aJO~SAl0#_a9h{s}saoXHu1mXreLV|I!R7fJ%_8VF!+`nV$%npOUj0&S9UVDh zbr_EBaHkYK^g-R!@!J??CNvTxVAGR(7&V%sS91bViejt|6uQu1?Gj5V{+(a`cr_mT zStZ86{Q*lQ(}d5vjQ{#IAIsYrBhVj6*=1!c*%}$CSg{JM0zvh;K*o^I_Ts|A#le^@ z%v8Axg~yK*e~cJ=EGs5~zk0R=R$K#E=I4;?2hSe!`2;uLGz_DZ2Skd)oV2RUI0 zSQ2ewqs@|Los}Nwzw5fjZ*oG^V-X2_GhjGdVmV*CvIJ*+R~_1* z|6O;tqGr|*J-LZY7fn(i9Sch*1L)PZy)LF)PC9kCe+s{Cg=S31xG|lk^~A1TXQjN2 z=hDzrnc+0=I7h7rdLx=P#Ebgq9e&g^wbTW6ecJTJ+6X85FA%0UI5>p1WP(OkI>{ZZ z^VGPm+~)@q&(x)*{XoBxo^A@_V-!Jwh;sYcCg2j0TI!cwi;5VyvROS{jI6Bb&b^HE zN~KoAK_WNv^=hEw>z^EudCKVMoUu)j$9?OG&*gsJF?XsZ(KtS)0z+X=aKaT>@o(;O z#4%If{rf~I=V$#kK54s-2XUyt{mLa{xOcBV^3H=!`i!BPC`8)sXG+n&mC0J~c3u5d zlUaLP{xmLv0O(Pvd3fpr_RfGuPEs;;<4z4$4ckJSMcXeRT5k;HlB#gR7yt>Z^5Q@Z z?s39xa&ld0N;}tbt4n>VmVHvk7L9|=>fMe9cs5q>prGLz8Vb*B?e1QD(bIy#^34c_ z0(8^p5cbzo7Cy`k;s;ihh4REf@fV*J@i~t_j2H+pNmO6kjI1n=%M0(WcKBTp_np+Q zw?@E^i;K?y#}&jb&KV%5jE;;{y3huvjpqlFo0XdF^1o@6Fe*dzP(sWjdT!hdN%Q z)d0Os=g@^fD4}ldk!(6Du!b!rtNFVZp+)FoH|VLnGd^=U(%@_$p&>rBAhyyF3g zy^1K@A*cc~XgW?f@v;cI>cNG#vRZ|4uiTaqdT@5^*f!O1P7H)TIrrhFCO-$FMsuDR z`GU29OqF6{{qm-WN$@u}=3mBlr}VxxwV*%VKC{Q0f>={!C&dwAIThKf^J0J#e;X7) z;N78*M`phW#541nOKXjjlkpXrV?f#loa=m{VQ0A-u9rMikr%DZM* zQGz0gHCZRfXX3Bma0*!IEO1poKm*k6#EwS{fynZ+W*Kgv#gqFv+T8r!ficY(+GcjG zzhXcJ!4imbJ>hI%l;QtsZ)>ZyJjUuB8iH1aJW_UAN2iCIAfN;OD6FOtnTb!y!2i@K zrFd^=UKYK!_$!!$^ZIixb4DrSj}x(%=NZuuo_WF0Zu^z3mYe+jg_+qSI)pRjr?ZIB zGF!!`@sqCu0x%j?MhR8Ypd3f+`9uaR^ex;3-Lb8 z2ydV))}9S4`Sm=(cVBzJv}}w%L&CRPrTfpq4I5B$T#{_&KiWM2u53 zsIso)!cHq30iW}uJ4*+K(YKu=%qKt5(u{jdFOgO|$8Ubo8js=Jut|RVWSc#uvDu9#PB}i-#DDj`OUs$p;aTnt5mu*uf2>`uXWH_brQXY3_a4rU zZ$%*?jwbCuX@4firdK2EaWLw~Z^S_9BXECvyTa*#ZNE(X;%?7oX11#~85k7w)3WUF-jm+nq;OwB7vV%8 zL=n=Ej+#}T&ZT)+z4Lfvb5DVGG-jz)Ru*%^phS?z;Nmy+tI2Bzzi8KVmxdpn_n&(+ z(9n&`rB7?C=|zRbl`$FL=1fV*a9p~M!zdYFD|FB6@XvgI!!>CwoCJ60?%+x*21bT} z8oSw^%=Ts5!c!L>U2;Ax?ObloR$)67yv_AocjCUiqG)ri0 z`0%IN+rFvIpL{slAV8IiUuf})k(g)*eTHwcY@_U#HwY%>DwkF-5M0pd;ZtYCbY2;E z-KpnKK`YQGNugd84|vbU5lj14XR<`&soKi;{we7_Mf|Yvf)Vae-@5M~c}LtmuF;m* zrWB9+l=~}GX{kif_!O0wIMR2qj<|DKH-CMGbdP^u)|JA0d&TBx@9B6TPLsZX$H7W# z;6vw#227!Af2EOUjC`LxWF_3gV1R0|7)akVaG8EFO* z?aPUI<5~|FR?g|-1k8`}f4duan#ZW^;KZj19-;aetUD;*t`euE6bM@qwzc7PJbyL8 z+_A^S|8>tc=X1D~sPTG=f-ZLmW<`pa` zDSxT>viF4{qptM@1JgTdFnU)|&1V(c+@6f0<)fZJ(#209=94+F+?&{$R9mK?QJ1`v zqYnGUVSc*JC!qqS1v05Qn7Zfzva76%`=>e|M@iZ~qBN$xMn2o=yIuS(@Vz33N(?U^ z3sXL*rA+fq=ARcFk>vy~Wu)c^ZPa(pSA7Xb(+FsQrD|nbNZ9u#0kZoc60x zq0i8uY_cLu9e*x~q z7?i7_dKDB+l^GmFekXq<;Mr|hpb=`tf>m4@>GDY^jHvFVNCuWvL&fTW${v~Ex5eLI z0`Jzpj#>DW;<2D*9G#sNEo|F?tBdt4Yt77dsMR?u`1L1mI$cv2nd~>78d2q^ym+^2 ziyfa%*d(6(6wY0yD@$BDInU59IS-e}sO#+PW@CJ@$TigTtzqc6R&&I?7K68!c5rLp zTS@Q~3D>Ke+pn?@i!Eq2*b(q<8U(^;3Sc$pE^*tHwGUjtq`C5j zh(ZYo0j$ViY;OKx5`i$s)an1rr~a3a^QFEnDZ&tnF0G=73f%|X6nxIDDN7}xf~ShQvFb`X zYELsWk_uhYKY#n)Gg)o8q5ZMlw@!peuQbX zXv?SctTWua*ZSFy$GJQ*#hu`K3kQZP<96zYOUh&kck@@GmK=v;tp%Uvr4^RRmW6p5 zT1pwyqWP>ed~EytY!E#``(uE=gFrZs-{P(cg8x-ydZ~&j22$@y5?{gaA9PyY{J5?A+3^dlo0XU1xuCl|Zz0>0WRTY5FKS||Kh@+UpL z+|@O-O{BCOHn%a7)jE{EeC=puE2bbYpM1(GnE!maD<#5}C4G*fqsB!7rhIaFWuDOyEK?`bxN{i5MU(vrHZW9X$@czj{9^+Hvw)_R280m)LG@#@$9 zW2wge_lKL`M*K2GJvOwK!dnJ9$}pNLdJpWngLgP~rFZ(dIi>%+LHqk6MCAFk_3sVi zKg-1|_S7I!>TFDXe_jir;^%0hzfy-o*-9|q; z!iVE3g-R> z5tj&*cNz=SF5lj6m(zMVx7^M$pE{RD6Q5f1;+r>|;;9qQ`U0nI(}#=VxUryEik{A7 zwQGanI~nW9`JtcdD84k^AWo!bGBHU!Kk=sEPU+$A?d&zxNGwdw znWvm8aCH1G{Bk?I_X`7yNgDHBNnzoxC5uksJB_(QUrnonE{&2^qi4=mC{b?=E{eT; z@?Yvc>i!xLykua})8qF}{vf*OMZ$3pLPSpl>80A1TN#_Av1TiQ_TsTex3)^BX#lTn zso=oo=Aj%!8b#9BYYUtaop}Y^E7SAiQH#6Jzr&3>5_y#$_{H&i?|6?QE(Hqq$AL;5V5oc(cPS&E{Za%jR ze$JU$)HJcUQItK^c)T_3FZ;P)Z%Vj03!F}ym0xZ_P`YLIFTu}u74<7hU2lp83_9=W z1O!FvcJB4Q`pf?z_P?E;t+-YkH!Qp*4C@K~?9wD4n}G>k9Iz&CA2Z*}E-yZ_I9Uyf zwmEx$fTdGIH!EM7BA?M1@_xsQf_=y;!{O56B;yoq%muQx#oBKB8k`jDF^W6(98VuB z`I1O7N2TY`pO%nLP0SpgS~w}G=jE9$65y8vhXe^Y4p!-_69g#A=yaq7jQr_WHw`3t z97a)N6E()}DKIJ(U-|kU2cc9~*_}^7h!?2CqbsKxDZV)Eo7TIS&*>^r6%y$VYjBy9;4dD}UAyhZ9vDZM^9 z=CXfLzGxpK`4&aCo$2V}Z2ZeE??$&yQQ1&Bq$IJTE{|(A4Hb37Nom~MnpI!!vp&-N zb66~2aN0Gi%4l5MS-{a_$_SZcZ%ln2+FwY)H~oo4b?7UxkTd4GKRFvs62FFnGT`gq zqT3;$?2-OjLHkY?{%w5RnOli=u?Hu@cwZ;TtzkjyWwXbM*}J?U755w_-ajofr_Gww z`ssNQ&6@5Z%z_o=)ZRNHnLim2vnsW!RlIK3u`&`%qA-Sww_7&*2#?4BdF)u2g>U{%OJ#i3iJZYuean zh)E}J3H2)LuU>|b2!E6-`iwP#Tfyw>F2`lTa=Bd5FFk6LdA1_Yvpa49>rj3YrI40? zH{?tq4Sb%fl)o+;e)uf;HYCw-orF9#6o+NKMqc4XoVb=8X*}~@8km2wp)ek@BJxQ~ zL8iLA_>cx>MUNOnEF}b_%!j+z3fP3{ zdXC&rtL~xXin657EVE7dwR?Qg!>ZdMKaug&U5pn)fbs|2>7(T>geBt0%xnGHH=oE& zZ;ZKg9GpZ{#F3U8g8K^N_>nLz4nZu`DhwzDz!cP?L#}%DkBjRmkPA@G6+N$c6+RmI zO1N%{v9D-y6)QG1cPQGu!nPNmn+9bA6_O4*wvp)Qee5mVBc3`!@)ad`7q2c&+f!qSFf2R; z2k9#1L|lY}RoUD{4?q2!$T6>wTRXc!rnS#QH)XqA+E=&(v2wM3Z?9jU8R{Uo zjZe>%zsBJaRO26?6n+vB;kaZxQ}l^MqnhRa+Vs2i`ClsTt{qL~~t z#d7cKsw!J@3VpAPUN;|Ocpizt66l%rHT)z=#UDTe{$nY#eCU=`aQHvydJCW|w=RD4 z6$GS@pdhV?h=d?0A*qy-(%njzq%?>k-6dVpA>FC8ba!`m!(Hh2zjyA;z08?8j`6!Uz&eub-cN=R+c~Eu?4d zP#V<>6`;aeTN?RRS>NErua`5z|6N^OxuL0yzw_Jc%zd>Yj^QB)V)q>I|9yY_%#42N z)-eh<_CWt1+ldbBbZY%yH`+23Y`*U76{@B&(&e2Wr|FRT1iWUF$vxJQhF)Hsc|@W_ zEQzux6ajF#tY0k~h)1|*wMuHooG&ksdWv1x%)H>Gr4p&PGVy8K%2A*Cu6KJ|J00zr z7zQ^14`$`vf8RaEF%~7Jl5g3#sXr7q_~$D&g||r2fQk%{b5xx5rEWpaPCU8TgwWd= zvHmA;x!!X!e6j{XHP>d@#H5OcaV`a%e%!Wo*-P9v0n(nSi zW6}PM6nDDFsFh!8LZ~@@?BCO~X^f0gWU`#5I#YX=a*4_%zA~EFdd#e01*qscYu8rd`5!*-quTo&yk9uKqPBu%+4fyJyYQBt(aBZsV zgEJ)jT<@y?zyDpbj_+e5F5gP_swdo%4`|jPHxLN|Wo|`?niDX~?&y}l) zk`l+Gg^v;v5_5VWKZb*e30k5bEi9s#v_4;}KIW@KH3Nto6;KQU5ihW6`Kk2_d^>9n zZ+h7LXO9Q>+1tziA&$`}!Nx|X$@kjy;oiM$5Q_rkIj7wSXt{xWP!VV#fbK1*27!nH zG&cz+kPzG4KNq{=1Jn_&6sfSe0s8_ngpzSwi7}-g=Y)JsS%U%UQ(b)#_<$cY*}-Zk zPpwi{Tl;gO?Y}!3TQI;~?@Q}~ra5$fK;g~A*!cL^Tq8D*|NAh=Pk=KlSb>5HB-kmy zwSH(^&;Ra47@?yQ4Q)ffMS#2%D5+UNn*_RA%i(6f+S{`-GQbc0mv%nL&Xj=CHng!p zOGef9U-ZAifesB8E-nR=W*w-NC_rn`bmC>3<#KqfBp+WLc#BO;TtI&b1VjMGu-cyy z0!mf(aQATCt}g;vG9IT>P_CUC8#@D(2dMeoTRGPQy=~CPfJPjQE9g;_f#E!e9)eX1 z_digMxP-25Dmcy;8T5^om^iEtKl5(UaENEt=K?b&Xyt*V8ly&yBj8-1(*mEwPIBYl z;U}q}Ao%krs3U3AI>U2TfXFnwRgy{#8{nEiMg>GA0FeP5ALznPf_E2~5dZHhc}Jk} z0WJgJ=G5#r@77vAd zBRMQ}zu}N+YimPCB=CuB|Tw1^@STj<&TIhtVM+ebA<(mWTnJ zQv+jT-=4PAWI-PSWK=8wfN|RI)1WK>918qm<{U!)UBXlY@(YKA6$BFPpw|qF7@(A0 zHl)~>0$T5e{WRBhRDk-?sExxYYB#6;Hw#xO@XVk~#l}_&{?-6?c?!}Yuwy2AQvwd? z!vV~)J@c!tw-;6_NO(bmY&cVn?*9yn8tfwY8rWv=z+=!d#3g%~0-ESMEiRbQq;v+a zRY04uvW9=QfVl=4+qj!Jf6I-jO#onk94%nrK;tho9~GMz?1Vi{PllxA;6`s&jNo)kopU?l@w==(FBCO2fX?e}w6z92es0E+^aJg8{g357QW zFIo^A@BX)~x)T6I0AmA)E)|tAP|5_=6wqL{YIpI4?OR%E3!)@!#=~HW{*;#15N2uZ z>GiIFePMX5)6Jp>tkEf9MyGoOJK1TDRUq@>Sr zH(WIc7%wjP84=ILL0WCU5~N4r=|HJpcCf$S*VFSjm+ps71K^85!WwX6On_0Mo#yDR z4Fx^wow;V%5fdF9CLs3)+x&d=5!}sUxCnhs0c|{&9W(T$p)JO| z50>N*)rbq{!MO;7A8;aa(8_#dwKYjrebElu$|O9FpFs2);W0x z=9myfUqC6axxF16R^Qozz_KCOj02Pr*4Ykp!a*RVtwVzx>3uFM&aGQCU<`nbeE*L`0;Suh(T>o*7t)03@!=@nlzM@}6m(>y1BO39Kdul7(@hBYXP0SGcF4fs&g$ zcFzsKIln+H5w_z)N=opH5b5FK<(+D7UIJ(bbXOrJfEFl3ONej7WPe9cgBg0~jN_Jm z4bL9wYzEE2vINA-i~dWPsXML!gW&=QAO;}kWx^5!HE@k z=3b*w=akq8dwG0f0?<*A5uO}K3z&i$5Q~?@JhZ04|DXb5N2RUV>2c2rMeO3i>VS{s z<>7oQK5UljE1TN7auWs=e^4k+RaIB-^tuCJhjGA}X*^v56zd&ZR^ws5@+FYp0d=Qk zm2|?`U{LBlTb#p5r5ePrjqhNl2E7s`%(qkJ)-^X;(YUL}!09INoh`fIN z`TO?~*oVu=*&xJ}NIHS@cbXXBW%j^H0)nuC!3umYQy9Dc&yWm^~U=S-}p&(mWxL|kT$3dhMwJ}i{ z(Ka69%~N=}KJ)9_HRhEb&^d+Iz_ul07!$CMZ3^T4I~jfh5b8jV5x+VdYmatVq~n$o71l-|oOUM`pc>)yN=e{I6!)bGH0_WVhQLx4L=6oM3{W5- z-@NH~QsN5h7m9-9fGp571W&P}6hPwv+76VMK|Zoqc&NQyR8X7va+sGk&yEC(H#pRhk?W~6eA_36H%{!!nQlTiMSNq zw&HfZssYJ!*s(`zLttQH*BbmNG=Y*bew-G~V6UH&*Sy7V9J@FE9PB>Bq+3p%Whh z7{p_-NQfg@>FM`C$r`0|f(dc?1o9@Jm3er005cOB{Dcnvw8(7g60?;0=HKs&Pk^Ec zM)Y6Nqy!S6fPOJ@633X1e*|KgpxC*(3buCu)3rEQm4oaJI)jjn;68^hO%P9MKJ^iHnT}b z*kK@Q3Es-!M)`|_{O_2S(l9b=fG8ZSw`)|LBE3op)|Djo)gUhyeK=r8p;!mB6zH`{ z#PgVFYP!;W{ac6Dbi!1?fCi9pvO;D8UkZ2$--`NLH6H>7$O2OUAO~eq9STiIuppt@iTI12Tm`f+ z0UqA$;v&dc76Cp93bUD3%dtbgNK2Wn?5Aj9u{ z3;qO5Qeex1dzwIL9U~~t+rhH}xX_5#XtJstw6p7j$!{{>ThMkV)D=SA`&Opq^ zv&BGzXyNKo4aY~Q0hN?SKuZu(Z!?sN8cxp6=Po#P8ZzM42AeT6a~0~Nm3V15L4di+ zDjVv1jzeD$0~>Rio=cP-6Y~|b7@^3{=|};w_LtY zM{p2?nMA#OBl8xgy2pyE)p4uv{68E4SQ51~ZOtC1_RDbPS58A=YdnT=0l<^n6cyJe z{=eJz|M_3SM?f?=G6D<2C;S_QFISuPj+{ba4#OV;#>fzjcL@fXxyci8&RD7{wX;p)$J*0hp|nV|o>SehrR7u(D!E?NPhFzY2rW>K^Bg zal<1bgD14M`Grb&%(xB|2`h?KSAU|%8@AD(%1VeySVxsV;`!4orV^$up-48MEKgZi zEILt66^o=n7R5+SnX*J?W1bsP(iY%+Gu7;P#z`+Y(j*~5&x{v)(kWO?W-s5HyQguq z*ypybj=hHa;+Cx0qhD2A#a7v#fe0IJI8r_rOm@83<(YpR=N}Rp3XpJN|Hd9sP`F0_ zxRdg`uz$K#MsHl$xAm<{gLZz+l&7P3~3V(FHiOmX7w`g;45b$2OA zzjmA|@iR1$1^8v<5s}sQw$zZ@(_&q$?L9KyQ4&tF1oVPIx#*wN-uRFFUa0h$QB%rj zP0ZhzazM7g6iI1}b{e4HVUsSCY=m1IAqLKS_%B7${Ir`YajA6_*rV2-6W*PT6O>Wf zJQvYeH-&AW-y2u^$&UTy=E5(P(14Xk5N$q))295;Gat1oDWRvO?L6ClB`@Tmq59zJ z0P|VCq>JGEn7)Q2dtzo%cCOL-0?&N^$QKB9*c7X*Mo|>v*lHEKb%_t5B$VYTa7pvF zShHuF-s#grqYNPBA?6(K8*u487BW4&K*Qz!hLut)2I+NT-Q-A!G_`|uIlWyBY{~|Q zHUgu<{Vy=L8MVjNPfSdE)?z-(GtY*4rD5l5P{c0t4)d^ZUa6@EeXJZ@OJWpMD^qCH z#r&zL#Us%abucw#Ec0g}*{jt-&#uZbgw13w-_S-}?uEm9GZr(nLi;ho@bG3eyHCdr z6EO|JJ~Q|vwe@yiABp0`_~8(hAMG=2o_-Ft(9M?)^+!=0E`$uYy=A#H>4bg2%G}$l zp>N6lvZT=O?!p{nQ7a>j7#CSYY)GhdickSNBj~JsKimhsSMnRD z=ff%jZ!~A49`-vY#9pT9h<@Bii;;EAerdh8GlO}wnWlTd+!M9Z;}=q%X69YK%akL3 z7B+V_h_P@<2HEEZb``7qyMgE+QZmAkr z7G(BTa)txJl{-C=bM7Agq|6CZiQHp`eosZ;oI6`LN1%uu#u62EkJk_ur&-6=2DW^c zRaES^{h4-^vSV#VM#lB{oz$ziU3;r_Gk@f9@~N6OtZ&GC_*yw>HYfF>kCf1pZQ}j0 zP>DrK<7$#TjelebF>ckiC_B?U$V(56Z#;eA8R zNSy9yW@&uQ?yU(2yA7(=#iSTi`&9;t^;;>j7cbK^-*ro@5Ogd%BF@O*;vtIE-QT`T zy(;_YrRJjYJf!fzM|9)D$6Qt4X@Cc)oe#!G-%%ItF2po7G}LMsH$!lhlanfJ*K?_~ zxLEx9n=V|(b$=**FceNvpRY zrt_6fiMF5onT=R^diro;ZB{ZrF7MPc>nY=`aBs21ypUgiP7)>KxY?MOJ-ZNmeXpcG zZLRR zeD9BxnioCN=njapy|>rvc%JEQS*`zYYVq!~AxV-Fqn!H#=k@Juce*(&i~qZDYWY5? z;}Y$!K=A{J689ddsys3(bYM%*MbB`YVz-9aE_8Q(^8#)BcDbEp{%!t=<)w}> z+uKq-{K9^DT7^qDPdN|QCtIZE;nu*}IUJk;+KcwZ$85<*YJF&Zd_-v|`bv6Ghd31$ z*XVV*&PF>@#;b5m21cim5#1^Gij87r-dP+ssCh?=Y1?3q#HuK2cgtsF@6I*TvOW^c zoFa87o*YrDBqlDAS!FR=OFa1%xze<|C~HObwxG0+$t`!vIKHd&KG|NaXw{~Cy~TUy!@?b=HSvx%yA##`%RP*yv8vY` z=+Ag~YLa@rL)a)BY*?Bk(D(#As14UD!V*Oll&wA{bichlGTJbnp%8HX8A$?Jq*e6w zQYH2g5%;*|$t()~1v1bK*RvUF&5^x7H#EHB7luob-YS!Uevb;A%+l{kpSc=MPwfsV z4<^pmo6IZ?l`GbM_7v5FOLjZqQ_Wmj^=hs5jug(KUY(CS`voo(Y2W*(^{VaGo_EK3 zO+0Lpu#b=J(9Q?W$+_mAu^PIggEAwCLxMLFx5aMtYX?)a#Hx0Qx*tNRJBhG!{%^#%&cG1;G@m9(<# z+4YSy7t6B+s_49XQ$t2Okjp2D$>TogoE3#$hORu$^w6?u4W*wUx zwBPVqbYXXFGuCFb{%d;G(d>4tn@ha{#)7+PiZfY_*V^U5d!#wBN zyxbOypN?9ONuFeP9qAsD=r8S_u$o6}Ki%T83ke8_2#AP~A+kM~NxINWhla^$y_iFZ zp6$QNbSWXSMcXL?EnQwt?jzb@t*TVcq2CTOgOj@caE_?n{QD25<@QplBetKNh&3> zOsw6tk)IY$zsjITJe7X(hB-Qh`D3jSDW)(pT^i2E4P|Wr*sjV};rBDZ|*WArtv`fu;Gz+cz@dC~?WM zG~uxQGbyQIJVoZX_uc60v&joEG|Qb5OF|{*M>Wq&Pxxsr(VdjJN()RlYr2M_F{55q zN$eOS6D^y)L$%r+9^_LF7r8D0GM}}zVNvzXzKLWSQbtS-1v<(;Z|AB0S#2O6+h9kx z#YESKg@;L9F}XkQi1v9F20kaD!FDH17RcL6$Wo2XJ6V(zKWgXnc3R(hlA#}_wgqyh z`Kwl>(L6FuPYgZ2e{e1`^?SabW6UKPN!%&)(x&CJ+EJ-^+BgThz5>8W0f$NUqS0J~ zP)e)*LN8cfo#P>z-S-J->dWlg#51hG+VS*O*dwBFinZ_3CSmk6)~ zEzF%3DTJq);Edzx^}IUhEd2A)Dd$Xi#aXV4v~oA0R0*xTOOl0Xvi-evf1~nkB~`I6 zPwqs>ZEx@X9Eryf2=(|b0tH3eU|u064J8}l#l-{heRWzM`5moWM3B#Grsu!!QS4#{ zo2e#Qs86Dul99O3KD~S|J*xyB+n1ZaYMB^)8b>Qls*6Hp#l`)$LRUyiHe+6XBpuMG zvAG!h!9u)hcyfX=5rg_$U{g*uu&cG>MgE4VmhLVOr(REixgp<5$fBYCOrLH?Y02}k zB3%xKalM9q>*!KR@-6;@qhN}2n|Vazhql?6yVYHtgD>*A@d| zfzjGU`g!7VpXJwCvy|?x#%(Xk&q(B$N6ssJzne=NU4F{?=vrk*R?G~SOy!E3=O>;T z1@tn0k$h+NMCP69BA1cTZ!SiZ41#i$M>ftz;>B_Wdp-)JFI`}Bd;7}_39}V#bBqN< z+rGoThMmM0Ew+T0WzC%`OF8Yfvwd^-kWo#g?^L?Y&}Tf}7Wp;#WjZaXNEr*)dfk9^ zNXE{uqSDZuH6G~{AP-xazRP0P`oVbg&Po@)iUU1W>{*2R;6#h~vxw458wR>G&5o2C z{kSg5qZ3Q}hX+?><&y`Y`%l)AHL5yyY?wBBGPrp@!5O0aK6fk*luv2thB^k5Sq?*z z-}*%(&<@ugQXj6cbB_PAp6Lz4?htihkh#xOkFL>`3C{9qye?gbOsBfe(^$)ZEbMZ7-=6+kNkvU zNV(@g#rEZ@jplCpSi&X#Ir3DMlkkF#$w1B@@wKO1J65VXFTYtPs`J|t#53tqU5tx5 zFTb#NjOb()6WN>^@^bF&WkD?qSRSbMNo`7-A;s*Iu+5F>>TD&No^e`fD`v!sM?U{- zHA=(N@#k`%OHZxXR46L`GHBAJr%OaqY`(89O;{oM!?#YC8NQ;+;RTseas|0UOwl%m z%X@gNee#LJrz^+X?A#k_lXWMY92@a^y1buGQY$|?!0RbWhAjV{wlRS>=;EE>krKJqkW_3)@RO(jT;3{%Iyr&mBc0TY@V12)Ar=_k+=QEzyG$FHzm~2~ zeOWR_$-#~nvnM`YdiYN}BMD=yR*b7Z2FAzNRz!7#wztzoHn_DsBxKa!rl6RpDj$X| z!Kik5k)NyGA;96{ZN;ho`1h5;7Z0QlI;_5nexs!!taAbPYJPgK2uJX5Q>nr)a^+Ozqsq0F5>$=)(Mm!*5Qtuxrc|mayxtq0)yI+tfK46kOEL|a}y(_xN9NbK_Zuv7#!Znq8T{ znBU$Cx5lvK6aEY-1>?<1-~fhU!*TuCOChgt-6Urbl`-zQY3R?N+qoCF#R^$z+Zb7x zE%tU(exw`HBLlDctL&7HV^<4N#7W=cBgTss>&)zs52gXMqCFa<>3tO__Cri~hKaq?xG$`?5 zC(Y@XmU^YW36~Ps#b$qK3VaHaO(d5_`qJ83+l(h`9Da&UDPuHQG z$}l5EcR{`C=yUkV6VfzYgOc#VUO5#q>t~#`it?|GyH-@NO%xera^$|@!#mCsM)YJ3 z@ZjDXYEP-&{XHNYS7k5R9#HWq??+Kt)%!iY?<4=-u<)xy-U^$y{Rpt zVpiHcq_hz$+oZS^W1Sb;%W3U`1(Q|Q#LID^pTgT%mcG@zae4yYzb>2#jA|`ZbJo!% zYE_P5w7hEN?50+14l0>kq+||EySL=PoVRlS_X|h?mN0QEMARg6^G{kM|2V*Gnao)O%+G>U-)BJ!;il-m{wiNV3A* z!^t$Wz%*irX*hD@;9uJGj4ywYn;DfuMOR}R{+MCPEKn`L725)@qms>0ZnGiCf6ul_ zMN;)wb2DAtY&3875FurOZ`p9u6J%jVpLE^A#%Qng$j#Fu2M@d}tkPWWG_#br{2rO3 zb=^OECyRGOT^V!Y-h5asjZi8-Kc{yln8Ksbqkh^oOsb+N&Ev9!ewrAu_w8U^dw6qr zVg484rc@zZk5P!mCQfhy_o8mBJ1lftwA|^eBq*rI4>Jwx;DDF|^T>~WnsYO%@<`mc z62K2c#M-K8&S5%I4I)$iCMqvdxv&4iS^3dnzuMOUKovM{u+Ogd+70p0SHmIiKZXJ1(#Ot zCJN$M$!b8ES>Xr?E?etr-JQ0aVS!n%k6dsvxCEvh`9v6qom{#L!veChSgzMCyh!cx z=d})xh_K!L6rZ2$p(Bhq|4fR^c6L~}X^?af8(s@XV~0|?19$3BJ&+pd#c_YAg{yW>p6W(GGZtIsN}x3q;9 zoNj-k;C7C(I1_pGO6&2MX{<@kXlWmx#*I4OES)iV&eX~rU$NspyUN)5^vU?mICVv3 z(`U|MKXRiaNE+L5)rHi`BFc2}czyEp>V#NK2A+Csbh}-L&J;M*zy4{|7t z;P>1%o2s@wBA1a>1h$o_nNc+}{g;RcHvOL7v@Z2KcL{mzPRA3HH}{|5r*%Zd$L+L@ z`z=6hgmy-Cg6(q_LlUa6^}oEmF)TwQW<>c7tl^YT z&Tb{}X1TB9Bw&3iBWe6JdaALr8f_fyh!F2||Gq2iyA$7gZQA+ZNsP8{?eFOwN63!N zNu2P6+=Z6MU*qlx%>~&9VGi{ChxLEW#YqPDi8 z->hsstwf%9x_VDc+(3c`Jq`RP!WQW&;_23V@BX9vwD%c0Hrd*DKi;0Rs8&F6bm_7? z{2m(%eJ@Tu-AfiuJt4UU%b-@h14-MdI3G5Vtf>PWELxu(awXHZuf?pMud0g)J$Qni z8;dnat^i@)A4(%_k^6CQgvI(1)Bay!R_|}??}bW zG*TYoTw9z|O~po1uA*%2@T#Y;hgwkmM`|i`cca#piQ}y%21k)jmhRr+ZY^^^4=cj9 zA=|FGO~}K}PD7RByPxj)pQ+XrVP4x7l@Kl#*7A47W@@UjF-1RhlobO8>;cOg%|8{_ zcZ;LDVru7CpKpEQd*`Hd8wEws)|TzTjNV#l%2d~A&5(|&v^dt%r;V|b1%~~@L!l<> z$*U`MSL*{aJG=6o&F@uQc3%Yp+YwA0<HbzHG{h)KeBc|R zpuhV|nhyKPyvFhA2KUvA{`r)bBuHGj&^9FI6jZtDl>R%+EHJKt~&u|yHIt4r4>c|xOhEl0hlB}-v_Vmm)N$Ad$Jb6GO zB%qj{xrnV!S;@{3h&A`TYtvNdP|+*KYHlz@&+am$8YbDu@# z=omi#7VTqcoVmDcAbBoWcRWw>`t!MT;bj!a{OY9C|LSxNYrLVkOWE2br9M@}!6d~m zQpfkos_e3!yv*@z$A?(fDtfFUfdLFTxLcD{j~`D}8M&C5G4fD36C;22^bCwSXFLMbNkk8x9LPm5k19C z_KV}yC)=%kf6#DWEJmtT-g{ngGUe;S?(O*Gx#Q03w4OY!aaA+Jwa`2BfoI|-+@~1j zScs62@9Vw+$ZWcI6?6&Y*Ky0gep&fS5}^FDvM(Tq^6{e)rx|;Vt2YO)C0;X2Fa3uX z9E5i@CC%)?|3`?qYSL)9kwCPq4X zI)bOi{5mqK+TItc?dU?*49tV|O@^A9_bI8J+biUBTnd<;y_}^mKP_W?_UxmP5lQg0 zaW;Ldn%WzJVuJ}8Z7H^!wDa#_ z>DF^`8oc!?Zl72xe=67AzcjBoG&B(PN!Ef{+C%>Ec<5l;l0}GP)4_b{(w#;Ez$$p! zcoYHL^Yia$%zGg2^ z9IWHA`;m>;{3Lv^0`dAa5*}p(vMKfZ6e`mit$6!0sf&j#_0KglX3+2`tZVD`+DuZ) z&3NoSGPAO1=VcY$Upfi>hAWx{T43*fRP>7QOX8Hq_@{=}sfs`Gd+|7MOh`qyb2}6d zQ0>?^6(fsp{)r5VkIzd;2#o$t%SgvY<)L)gMR%Pg<^)cfo;wt2iYzq$}k~MobAn5KQ@x=DY zW2vFxk^^Ju5Bx0kSV*=k10M)9%E#AEsbddrh>FSKK7H1B20Lk^+RE}%-+${X*d=Y+ zj!J@Iafzjs_U0jR;&Q)_=%168jsnpWo>=pB42R1{YDV1P7LCiI4@1taO4|8a5fv3Y z21HR=Su{_cw3tj45s)npU0ynqODR2eAem47k+?Hnm|UIwtFIYX3`U3fQVRbp<$x~zNnAT2D z$Lu3j-wyhMp)eFoWW<~Iz!TkAni?Lq>g_@+589lM|FO-?yEJju^dj2U%4KzPV@-{z z%ei^6i-32Reg50)Q#*>f_7R}Mi@r(=JR8oai~KU5SpNV3%nA6;yd}gtYi*h7WhtVs z9*3Asp6m|I_AVJIR6Im`@gl6mLs?Ol-g!rd>+O))N6U{iEv@$fa^{{IB_d>l^Zpq^ z4BcO7f*%ChEynRe)VQ6beQD^Hw^mckQKHYYD@++Lw^mx~`(=t%BhOJ4Q&1yIy; zyIg3^td+WvYy@%M=b_tq)jIv3N0{5F%YmwCxJ%WokGfLV@W~Aw}qWhCa`a)`+(P^XNZMJQOeE8<@7+#9wT%j^pBEL zu0199xs@JpXl-saYu?c;ovt3G3|K^9*-Nm?*Tmd))$LL* zqI(VR3FJ~vbMTgQDjhj(TZ23+n-#7O)~35X`gYQW#va_g98q%T#}&!Ms~*pI@@6Q; zch9eEt-R&tm5i`$Uh-0yb;)RmNj?_>;e~~m`fXBwPB$aPEFBysH$aVg+M*ZG{6L;y zQEy}gkYhHO1V@Jl&WG>t@RL2zwl+65esMz4nVUmG;5UL|Pl`_@*y(&+HhJQS3xh)y-VUzt@rQC%olG?RvZ3e{g_{Sc(a_8z(7m;3lg6PQr(?K1OL~b z?Bnk63LjJkp#F+BBE_oyB_bJO-RmFesh`+YJn81vwMt3Z&{Lsr6>qqXwH|I)7>j+U z);i3~mvZlCuPC}XrIT+~rPT*Ev`0ADT0$s0XW^ZzwhTDr5kZv~GK`rQqdW&UvkL|F z9)w9sio;If_1w=Wqjx;++~ldectA}%o0U_1KjLp8`Qc{?)5uS!quW=mD0}PM$+bBq z8--NA1MfU_Pz#C+%1BFo##(j%>Q8?q(LJox(o!~_6OZ(t_jik!USQn9C}C!KMQII| zwEK;897GxUdgAZzaB!RwPfG2j$_oya70i#6At+Ro^$qmjym_;W=@Vi){+iNRHsPCx zAWAG3Mmah{hS0KDiL)~;#rB6}mT(ym#MGhU6xXrCTF~W?;w-dFAB}i(X10xCT>6Gd5aA&K4EnBT> zOoYk0>$Bj7uo;J)&HTN@4XgJ(N>0e`@2P&9_-IH zMaC|TxfmM^u$4ZzfBzmSscKQTL5#p98;$;I+V3wPEq*R7-ZdVsAbI=V&@j`peTidu zWc$YE2Od6JyLI&uP-LSl$XqV0P7aY&#mR7qN3ML3cSBQpNRaBcJh3#P8ILnw+3l^u z50mQ)&B;2<7U^Im*{682U<2Dk#~(zO$llWt8iQ*7lGZ_4gFv*A#W=EeP>?9|JqPp#g()7$rE zghJy5pnkfG02>Axy=fDbpC#QI6<>~4=J@lAQ zNQfF>8Xyi00N|vQlrN+=T%Vw!x`R=>rHxH^VBi~3Q5kvp%RYLrmtI|72E_F$$dJBz zKS2Geb~DCIn&{ za7h4@2|OuaBwdMdcK7s@mz9CkWPOI;lw0ATl5`qI_q zq@{r?{l0}z@P7F(0t@boFc;FAoz6?Am1q2WB& zKg%^vi`wAU;|h( zi{;o`&X@?v1~XHw&W-uy4S{0N6Rc$SVeR8!$CN za`T-i*GNvqy{*nR2qunl9F4%g8?Wu@JQWP2oT$qAloaMUMPbzw z&@1wZh^(%x*ntKs40mMSzev+nY&7KP7dVqczCaKJb^h^g?AHC`xSUu z#6(2aHa38!Cqw64&c1wnp9QEfz>Pa=_=*YOn7lMfntkx^JZCDS=|@|Vw;ZW-o0S}^@GNIP;ez&JOev#c)s>)KmhK5G3a0l1}8xE zs-SR$I~Dog-;YG2Cji;v{{H?@@X`Kyn9JYM1pj__Zx3RW)=f-=Gd76u0@nhj2)GVB z)~k2uYmYBUbd`Xz}gtvjqNO)%`vT8j~ zPwnBI`$so`Ez$Of{KY-kgpVa+6hR8RY6uCz8vv|2VD=dg|EzCmS%#p*^y)C8{@1U$ z)m7zp@1|#Ffc27?mWCGc6jlvlyRTk5AGi``1_rR?5)%?4y-O3avPeit&-Yhk9zTA3 zuMf#J{uNk;!zRjnp_EXR8tqKkDk}Ad~e>Au(41`3fRE zFq0%=*sq5On02~0V2;ezmeSCOhspng1c}o13J+#^dK$uSP)rO= z3(tVr^&$X+13>)?(Gm%jBc`Whq@=WrjU9no2-?1692W11`|-gKGq>i9?zPzjt^qiF*V<^r(+1rEuviN0=BtkP7A2_otL8QBetMF2OA=EvbDuE6dBk&Yqv2r&lfeuc;a_9shYh92zvhi$Fp~hNPaRbis7N zNA$&>IVL6s_;TN-TyVK7;_dv#kss0~l3c-ykuu;B_6gw>g2wP>`Rm1PmWg z22NYR2KHl(%N6;HyZ-+EKdopGVqbtYwa^~11!y>66T-IvT~RY60|i1sbTmokWYCxN ztSlBLCfB!we|I68Ceyu?02n>U9H~1R=|JHC@$%NrPLJy_R?6jaISz3dYM1)@dUA5| zl#~?sv|DZLz?%cuBG4I|o0@=GQSkGp>)+XCdH~EKCy=B+KK=wOW&_9QHy0ou00c+i zP0_;0*C5v^z|M+b)DWuh4hnh(4BEOngfa6EC}RUdLimY@@$s+8O+*7`SU44gAo0>ON$7 z`9WY80blL`hm@L{pFPiZ*Y(LAQG<@^o?lV|_j3@hT;5n`Bqv(}j}!94Lli_G145G? zctmeFxb1eSsHon9XfczSb(9-(e_NXf(EK23(b9^js6>N1#lMY{XATP-?s9+s7Px&o zh<83*N)k$_roO(ApdcwZxx2u@j(o;djwFWy5$z4jkF>P4l@&MfR61af&?Ljy<52MY zX=|f}>o0edzZ2uTyK4bX7NCKhqnJM%P_YAn1biZnPfj@4*_oa_s}Dh(&sbSm(JL3V z3=P==eGkawu!1#1RBg}R)Co*XOnmX6R{)FXTkBnyTQtcao&daV2y*_k{0s~Xz##fJ zGrGrTXAq029zBA^f8kadV2=We91WK|B{>-?DtGumWSDI?H#dk5uoPETR???#v7YpS zzPtb~pM}M4BLBC@$Vh9BK_N9rHD(?I36dsly=>J_vzCy#1&63uX<`1=H(kq za6J_qynA$ni;WFT>!sOQr0dP?#)|`tDL`dWKYomP>(=>9Dj)Yv6qK*v7yxCg7#MP3Ws6l@XIPj27(uj~*X0sO zn}m$&Sc81PjRXqf$?56n@NivCcHMsJj~^&ra}afNG-`RcxJVZXZ_H_GYMNVHo0ypi z2PcC{1WYi*j=zgCl^5O`GBW70!ys)Bt!xLqKByICnro(4f2^!kBy1F{Z-Ky30VW3-Lj3jmw zq#}SyCi{%?Bq$<6PhbBHcr5&#>^?uJ)j)wlc0o`;pze-OUQ$K|5ebO{NR&e;sCVhE z+rJOhW?fxENeKb>7}(N$K_fZVYjgL!#mx)(6nejKy5PeB%;n!T9w~o(d@LX+2<{$a zv}I;)_BiP`whs@fA3Sj5zT=vKgX+#%^P$VG_9;>`#d<{z3V`C)6Xdo#9kBadOLQ5Ox>ckUTT3DN{EiJC% zu2%&A_bCAuJ(P1G7PRbsr1*MuDoPE&s;UB(?0{+*mI zz?KP4fBA)l-#k1TV%%K5cz6KxMOs^%5_Wm&O*nRdat;JDVB(pYnlk-FJD1&dDS+R; z_En&vc>_z4j}P&0`yhbe{z{x0f@QBA@NMT|>qnm#?g|NjB*-cp9viixc&oc#_dYol zBw+`k7Q?uE?WM$^QA2vL24Mh}c0GGto?Cpp3rr>y#rxaaa8m>4q|N1Ja7^m!>2YHd zfWTZw_2}hG;^KriG_V=T4HiHN9r(9Q?Yy7i#OP#iXO~DE4-Pt5NMf|CrsK!J+JwC{ zHaz_0+qY!212}nXyRdEhyb2hH11anSFg}3l3t;c?m5{w%Uz%x>PDk9hin?*-3JV-c zIY`$)N=;2m`(>oZ+XO^Ts0P7=;Oz9Yj<{|ug5nd3=r>X8qs5ri3W!?a z*#Gd7nsK?mq))uUrLw1o153|CjPM)IL`>dT=g1&z&^mv%0#vA};xEI&*?Yk}%#p)OQe=;LrdI!`&jbw{d712S5}_EJpm+E2wHX2bz2`6m^9HerC&)%yd1Faw1Eu&05zJyrJcp?wonx^QgL{5%m5 z{w{yh^qxojmq($q3+)QssQl=63GvrFc-yG8(0?R+I>8X3c{A^FWA%*E$??U0L0Kfb zqR#I2?m+w3r=~Qvsa89KeSP3V1ZG!ok>ffY$fe3{R)VSo&87&U-I`1Mbn9$bNKH{aOu7n7KtfM(xyIgB`Gb;8=xkdR2- zKa05jtvBzdr$8uW*|LR=k{Q|@5G~-IYRz*iv78m;1bhhDIT8_QTwDR$ar4a$??rx>KJ4L#?OOWpFkZzD}5Tv^s z4&8Z(gXFva@4fc}oafB!nb~`-^{a~IMnP|AQ(>W)q-e##-&TEh9Pnt5=4>A(ZeRZF zx^?qh^y;9dn)-Droy_l@BrYLgH_*RqGG&Dq=KIXDefyP}*vAc%60M4+6vujr*Bn9+ ztM!|5$TIPbAmvlpBE@q(s$+y|K^tRH$c6pFA+-rk5)2LXkXGu!zh}F>bP*48d3IGA zB-yohtBK2Dx~s9XRlv|}Pi|+H1;6E!xZ5r2Tpcac?(deT^^S+a_-gvT>Po%K;`vtE zkRy!yyj^6EHXQN}A&5zXow@S$CHr#geFBF*_MS;MYVe|Ul?_#J**0m7-f>6L;IK^i z%6`#FLunzR|A6%YR_l_?nuOfCpbP-O{F;L|@8E)B(j%h|_cs^Y=$ejhP>@fN#yiv> zf)Y|B!lHMMX$-eh_5b;d*OynW`2c)+{O!_Gty`a%>hg?VC&9yf%(cmb)m6;(=hz}a z30_dT@_EI8Qvb)5v5ptt9gxyF3X)>w@{{Lo5c4`)sn4Aqc)MO&qTbQDP~j@xGDY# zTsFZdC~qt2vfFikbJ86R!8vZQPkAD2buuDd#sT&m*rPU&K)s8P(4AY~IS-+eN`iUwIDNg{ z(TS5+H$DIIG$#`iTTh<^eDiA=>C&}E^1TiQzGmEmtqqQZKT@LLN57BEaAgs)D%YOo zD)mgXhN|~ShxD*iaRn9dKHP4?)za2JIo`v=9a*gQ z#=mPZK5D=z=mp~gFbtG%iADmIc0_`Qk&%kHY4Fc>Z!at4shZntHn#d!&p!EC@1%QR zR$_K_1l$(}2L|csDvls?($bOy*SsupN{OVc4c)oJ$yQ`yYs*uGUT*DCMJs*W z?fu(#TT*1ZH5k&qw-sIG8o>7! z(U1IUrOL!g-)o@GuPdnsoCc}|2^=Ofzp-q(E`4KK*ph6Pz`mzX<7WyeF}K3m`M$)d zUwb8sA@ya50w8%EAS+Z_S z=R*xH8I(<2Pww>kC=8UTEX>T2_XvUn%`K&OD~n%rgv*NGW8j0rw>UrlcKz#E>Yra3 z$1>R1N!tktKlRqO#>h!YL0T$kPlJB8^D{FuXm5Qt1oN}lU5?t{Jp1n7p4!}fQ9LB2 z1N9I>K@y~;rKz>?4wr9MdHL~v6~Nhdw{~WyXS-}u+WriF(EYCC2K+74(l~E(c9xbn zfyYeD^&cYtnt(4i&ANF1s^V&q+Jxe2$4^N}?#eENH@R3IB^4eXm!qYQO=#0fhbI)G zM$obbs91!Qe(;`7qky_N9X}vJlqXMv$l@w} za^3%zIQ<88*pUTCwlJjBDPC-C8Nv3-+oL`R0LdFKr9 z$2z7k*31ZDzpX3>_??*<@SPP;H2Lxj8!?DPvzYm|zUO4+Lz8GFNG_SC(b3;8n6D4z zkr5#=BAt}oVap;6X|~ZRE|*_y%r*pu`E=ZW282l@0)`9ZnQghH+D*d53fABe_)xyp z55O<3KJ}=>Npqke9N=@sO#1CEvckH$3JMDH>M*bKw`6t~KRdt_Q3BD@!VF-Vbqx(* z#>K?Kasz{93;J#hn<2b=HUCHZdA`t0x^FYl?09%sWC(zt*~ z(9Br+{Z!x@Q8E^5gSW#*Ag%%9ljzgLR8+Qw*T25kQVuL_m|25e2{%{G@i~V@Ssmrw zHIbK*eOXgWi;-G7QVvSUa2VOKl=M9)ns73TZx#+l69eY-B?Q|?Vxq#3>vJa2^r*w_ zA}lm#KH5~Pb!6&eIW)Qzggz`d;tRNtxYG|jjTR8sk-1Gw3UVdrsW{Sa{VNQ2mBo77 zo@wtr19%vm4ZbAABtp5^%@~BqWUzG0kF7RJ#KDF#dEft~?qpqY&5G@H* zPj2m!2d^;}kdaQ_d5MM>-q?81s91#F0X%}QEN0WtuN*$~LEP>_=y!5sbZHBm(%)h? zOLKEgt@X8V5br6HHoG!{NhBk#ZMjoA8@{pc2T%wzV<9!pEq08=RVJP+Mtr8lg*Ofb(T1M@B{-PHM^90>*k^s+Dm|5B%9q7dm8h zm63YKdj|uFZfwlVm}-C14R{8vXg6BvZFZ<=sC;rRl!wm{*(8KMmd(s?nrYB`rMtR1 zP%x6wT;?jx9>;6mFb9o@b%yWWWF+fgJ)uH||KPD`fKU!`r4qO^qE{74omsvu< zHcK-!!gEp|@9$-lPq3U2q%rQK1j{DD zxRj9h;h8xUedctG6KkuS4eVD=Q(7K(Nk>*I=O{i5EG};KO{=JfalVwClA)n8SZ^jL zXP2Y%PkJ!sCZ_5yx>t#j;R-A$@O3AKVzUk>du!)2lF~{WSC0!QCeHahv5c_n~Rlt$0wq1-&X~{K*A91l=kuI05QY0 zE0q5=W|4yljBmq+Xh0tdc2B{Woanf!$23t0n4R>=Df~kthk{YJM%P^<&PN;{5|#P( zOzX~VdnsI6*1Xjk**=dn=}fDBxN`xlh;E&8-X8+a);KtYy-X96HvDeLv)AG`Rzi|B zdNo}-`kw!~KYZP-^WeoIH=Zw&*O%J%pHjC-8WYUON&U)e6lgFWD=D&Zq?MW20WRZD zot5wzp;N+!>03(~!mv{OYna#eeF_Rx)B9`(GJW z7CF>Z(@04h@sD|?c(Gqz)Mg4$#=d^MYb*a=dEW;;#?0r9MYJ-vK07#y$Hqb6sSA$t z=VRk|n>pOwbAIT2eeqg5G&ID82x0&DA)xDfLzNcaya-XR9S7T;iUb!gQf<-@XIar$ zrTlW+qqJTU;Bu7>N#7GKhzSWy^C;XY3zlxv47%8l1 z5DlkAN=mCRoZ$31W=wt+5T$&-{c0^r4mZr#jgV*y9HC_-w?ES3;B)?;p7=$|OumVL zh4mSgOyt+oB#srQDSX#jn|#w9J+z|Fl#UwJJG^`7A3o@EZ}j&3NLTK#sXA-6WX4Zs z5P3q&#uAW3z}VcgKH6u~`%SX3DT%7KyPL$pE^W##np(I!_t!6(uqc4|I&|z#ZF|{U z?(=G>5oeg!j$GBR2`VzjSl^3qXu|MI2?kPn0gs%%U2JaBdtQS*vfh9gT;1O;;!h`L zm`&TWmiZOYXAm9+2i?|QiO#4?uLLjWV+AMOzn*%Pv7CyxP25Kx1tO3HKmFKxe#teV zzP->q=lxV_?L{NT-|l@$7df)GUU-(}qZeyAQ)^ zBpOKix7uA$D>AJQF9@KW!zdnP49T>fll z`xMHb=t=re<`9z-;`WX;z!kiITLiI#jkVd^MdEPN3d)(ypZ4 zCgy$9Vg#N`C>b)W@TNJB%6;phgqpg)Nt`i&{4*}4UOznHu!vZ!JJ%v)rt@#BC8T3( z<5TBHnB5OJYzjE97kL|~VhUz6&42F|_y#CA`tDMrvx!3=@_!liM*ZBMmtWnl@!qYp ztkma587KVjvH`GT3upj}N{W_u=Qa)$XPX5vf5jh|a7T_8J^YGZ_q7u>Si-V;^2xxo zmPM&XSYV9`8Ty|GZ0W2e4Gk>-D3ckr8w~hu{;(4>U;GHBBqrVf!-T|wg88rV{`RlV zJM*4a;o*3+F1dMvmJSC?@UBsau4WQpL`XWV1ECoaR~9;m0t+&PV`(ix(G}J*$X6So zoEKTvCj>IcP7+8iF5W`K|JuM@{K5r=VJFnaih%yfK1io=n!HUjCv$nD^ zFg9uXlzCMVka}QA#P9jGGfKqLQ(W4zbzLUQ_N`iMyx7MpRnhvC_r6X;1PrKZF4(&@ zLus~w*#lHH^%qv&@GxD=RYjhkf44r3p!C1}%{(dSNx$nqQhwOdSX}mgz233!yltBo z4=vG%3?2?nxt7qJW^2vSTb-$9#n#MfsKRq`+Ez4NajosSxOJ$JXU!HIk5_6@zD6`~ zKWAex_&aWdj+G_f3`N1Kd zk4ogJ37v<_sF1kbHFjs5HU|VlC@s%0o7#%}Til6fb)RREk}u@@``y%Rbo0V-nv~+s zO7KHfaR$D7Vt$Xv{sOPOu%}yQ(~SS&--~GdId3PF7nUo@8R%& zk9?6#dF?<%2A$cpohQFF@acW^Zg%$mhG@Vy3B_x>4lrv*^LQSAoc+uPUM2LLg1Gjq%0GFoctvB`PyAzb!95}cOiN2SG7Tl2m5 zczldy3y#|$bGi2$vz()BK~Lc1Mbj^h!I9YbNL6Xkr;}DO%!u$z=f6s(&a^lJHmI@% zu?Sd5yJ}qeJYwo_M|GZ7z8Pn79W14iY+^Qib_04~e$i zgfFI~%3QH^CjQRzdmDd>Ar{!M>S!_badG zcH=j0%`hvC%DvxjsA+WBMLFSDXkaKrY2`RoTIrq zK!D4(WGAB-0a4NYNMpASOIASMrL>-jNZ9?qV_t~hxbH@|IvR{lY9^F;h~%4-E>>ip zYx&_-dYd@LRdYU*Gk8xM?GV5o>Ug=St6%UwO2W7Yo2xwGgT#b8EKjr?8Q3k#>fhlQ z+CG1Sq+|m|j9@Gv{D_7F_Iy%YOw8}w*dVhN}4=a?!8ro6E_Hf#uI-(MuVS;~rncwXg^{Bpr#r0Td^z-GGgQ1-8x7l9IO>e11yB zoSsp@I5VEInd(RFrGGV!h3$VjP(~^A*ZjiksV@M4marQM+(pgJ`91Hfw)(DbTwI<9 zSgP$W=H}F_{-zr;>Nkv>?N{5QFZT4{p2Yxa*2nhdW?(npTHNHex>P?9pOywDLH8CK zxN!r38+jW8=p^2c-V%O~ZOH6Xvwz0l5n zLqLCBVd=Lu=3HI-hw=D__*X3w_J@@wCR&|O6Mn9?+V%To2zfb$JkECgT;p{imynj2 zoG2ciKDaqW)gH#Ki@$WKf;a?*-U_BKs-i!rBw)_JLXG4N%nm-{ji>4>_*axL(each zE~Kx*8S@^anrVWJu@-ufn)sMFZX&9CfEslCci^yjy|4lLl zXDaii^_4b{;PnlP1cF2MQr(ZZ47TI3yrz41x~rKg3&?$i{g;!?C#2BK)%Iev-@Sti z7H)4h*YihM?O_Xe=Ir@_oti?ep000u6V+y6*JxDZ=;zw3Xay5i@ttA$f2Nb!xyX6M z-H!u#T0Hm|$n)ZayT@J66H%w=jU5=|+N)6F4&BquR{}Qz! zi;@>Bh>RbA8>&5z(tOC+KNVk;bT2KHDR#< zDeuj@76_U?_EGK{bmuv^h*@yIY{*Eyc17b6a8v9QB*6!SZre{MPIS%dJ>TZEmBkBHE{t7l;@w4!D0m<13<}NBI zqLmsI_OMUFugE}=u**NsGTYOHSSnD?7W+I$=mR0)ZtRv(j7daov|vH+e>s2IC%Mhd z!g_&kv0?tb@EvY*Yy@HB@aGrk|4i-g$1>;U z8urM02Ue%1`~{SiDvNYF^frx4JI?C8bwH+-21J z_Iz?^wrqGamQI#Mi^}E7e3y zGm9g>k3RU|W*w&oLu^Gm?yWL{>JYFz^HoxIn4YXhNt;XZ6SoQ3Ko<6oG*c9M?3e) zQ{nR|)azM&&>+vXDF0(*Dih1>rVx6yV`LS8bX>tisKV_yT%CyIJv<=GA4zP8}7t@flXyW7Gm58CBb|%2yngDnhZ?MC}U7o{fDsWudLsv09OX?)7Br zbFcMHF>l>V`_99dG8z?xne17jP2Pt#p%V7T|O z8He8C@`n4W!cnp7QqUf{TcHhjGbbkm5|f*c?CfkYR=r2vz*t?`F?{me*my^@w-?aG zZzmUxPo)9xyHh|UA>jc~WwxFu&q3{Pf50%E6c<>bJy z*B6F5FOB`-0|=zJWr2nsOYs}NLi)T;6W9vlL-QzDBTOChoH-jvvR=kYNLXB401Sh) z^tAIQkR>4c_8(wUG`OHHE~0g?dOa!sgT1cC$k`WNoT?x+^vv97$nAoYa= z%puDUaqxLH569!CR7)xb|G;o%A+ZCRq^x)*xT!{lxoM&rkABAjty9*fR1q?L@J1LN z@O9?8GTDrcHP*n^HnZ0J=C2g8&3pK5MX)wA8Kn_7e2A_qxXUwbnI{u1!&gJ;B6Gv> z1@17NK+^n~R*Z@&&R!o{IM{t{D`-Dk&?Bs(36=X!RrQMY^=#t}@55j8 zyHO_1f_fhW`R|R(UX)pW#4=;UjTgLoBxRLIa=hrz+duLs_&h(y`tkre%(!&e>1t=T z4{Ys*pcN6C<>USG&G*fmoM*-#6TCIdCT=1kYHBXKkDj0|D0(GlY8ri<^9682mu!HE zv9XEQ+$cRAO`1gaL^FbY_5bhON{XKyqV>$+Tvm?QZ>!vLp2`0kW$$d1xU<%%@1=9r z?;j;!7@3&RyXdE7;4a|GoFRnNIgg}yyv(qyUChpoozBppxCg85 z$Ba$HHbJbni)PfqHCS(P@l_>_AA6+sBbcJGz@Ka)N`2(flhj|$9PJk37=k+C)^9nwfp%!JuZauz}pkB>8Gk|SUg zjV$v%U)2$nal}V2`?_t8bn|Oa^t3wXH%bbUKi|Y2#7!6b1n4|(q1I4B-j9e=m#&CJ z?H;^Jb_0@PNT_iY^Dv)=UXO$HLWHD=iAe1KmQkFP$Tg>mfrO3YT!VroY@}C2d47di zNhqDSse?n}zjnsjPHTZe+CVPoYy}C8H4>8ui66^G=UZi|#Gh-BE%Jrr84>VX0JENs zo-QKtzl@us!^11nqm#u(+rM|tfJqFvW>Iz153FTnmI6Kx13f)X>~zRyfTP^k(-U%K z5407D6ACYVp6p`*C#$`(xXJZQz^6XAyITm^o#_uhcQDhCIQslB^Z(R zQY-F3ao$w+I{z|HD@dY_5jZ_QMQOcsqv&_zF5{E_4Yk%V`HBZtW;2Y3Spbz@Gd5n) z93WkE$ZYDi{10l~GBf!Pq-X13WloN54))Qv?{<^ghR`1@qjYIKFXa-VNpGH5<*+@- zRENR)NBaO?Mf&>f2u{M~j){c8tlg<=D}4UIi{7@|YX=DJMiy=Uo96x{48g73nvM_7 za3(+%2|H>*^VgvRwZf|Bo_$GP4q}4BH-9#-i=#Gi*D!$vs1)} zBey~9FG-DlM1lf#3#aVKf4~kKCNrAe2LE!aC!X0rEV#>q=mC$5f(%vcjbaZ-(sdhZ z=aTSXI)x&Gm@LBS4}5polT|vW1OvSB&O|0d_osO3@$(~zI`990JFIU-&uZVu4Q^0y z(uN@oA$H7tf;3x3`38AK9;*{~73W}605B-aWyB(jdTL-26uKJMY(cX1iqGrXWpmkNM(2{9qBs@q61MkGEruy?%$QaE7v-$(!BM;8~PT^!-=zd zFce|A;cTJKco8PRNoyy(Jw_o7ZdYVjOfS%K3PBDDbUg@&^g@}gfMOZ53%-rimv zq_LVB8bXZ0T&+!;dT_aU(P6h}K}NzO29`XL476Z$zO?)1{&Io8y^9)IPLTQr^p|sA4qiij}Svx?3bgMI>m;R_>oS zyVib}`+Y^`#E{(=bHscWlO|V=HdFJE0?3vv`N*(lKP%Ml^wdtsA8+3eBB;N`i=LXA z#9|k?0sXUFoRw2R*4i|;4bg_9ega%36GCPxIavfkQvw}h|I^7yM(V%toM$%Pc3RJW zCR#2@TV>x?vc;_%_?+kZ7*7z)nEo02L%~NQxLFw7LNr8@5d?kM*9$>F=xs`kqR&D> zTSNPDo{4Avf<#bI|LfNc%~K3u=o1=1)Ee{lob|Hci=rkV1O)Q#l^xyk9=4XoR`UVf!4H zyhA0Y>Tdr0dRYN}YvKSYR$jdL7KHPsF4|?I=-d8@v?2TsIb-9i8~&*VV;+ znbfx`)5yw-+m1Ljoi^m~HTdS&)5%b#-q##Oq!T*1H~MAn4(Z^FY%OwKLDX?2;#+jz z-v&lTN9OD5_4jeK%!9AmbPTVV*DfczzWpg0hO{Cg`r0NT;;B(IzPvf=K) zTk^FZkdTBXJ5A%!mi7)U8ff2NOL{}5h1KBKgaWi84h;Y?tP6MtOpVOSrY1MnA`&n$ z;;?auNlD4mnT1obt6EO!^+XS_$uxa+oUw;$Ce4hQH?s`NDijiJptKd)OnKR8w;_?aQ1ZV(XeQaW4@A&B> zsz>df)mq);%F1z3AsH#DV^q#0!t<7;T2&fzTkl}=f25~N1494jzMnq!_^$IhIH z-M+?M$D{;RZr!o#bY9cLpX}j=UO1KP>uuRJ_24>K+%c518104y9K!e(9lQ> z4jdesNlQO}U7nijy#Mn>+)_ZiUqPFnn?0{%Ls;9B5}%b7y@x1Gpl`LsQqY9y_CA1e zt&Wou7xzagjQl>R-ysEha-w~`pl&&CA7&zrn0fR%D(O5FIn+qx z?J&7{Iejk*y{q@4CBuDhK041Aodzt!2+4H=;e9NsVLEN8EmvX99)N*V!Bb93X;Dmq zmzZ^5dgJ}H^ZF#)!%2-$D2t@+_!}+oyD4u}aN>NBdDFk$M&o&ZF{qdvb^5gE*N5;O#5IV#7d*F4KNHzFSBXVnyUycI2>9vanZh`McB zThV;&^GmR9*r4AJBdwO6ikiyYta!E22I!OOHO^+jEQL`R=oxC9PLI!uA3hefXJ+2c zYOjVo>+u~Ik_C^3pnt+EC}q;p5^^G=ahlMYOLUH;z0tMmu6K2EA@+6u_V{XM_x?4B zqjag3-N{)Pt!jZN2V++CU(WpET$hH*(ta(gX4$+^@x+3_X{gkY1%8B+3apX?|JTGg zy^QzyP&>Z7-sCmIo#X6ik`vA5#`Mh6oF}FmpWl~^wOh3j{PaZ(K&0o^OqHQ54HoHK zv*E^<>-_^Mo%m|0sm@VXDd67OTv7WP5;#iUXhkx$j@-BHQUPCoBX3nbXwn!LO5FRqFUV9PfV`Fgm*PzNqV7%~1S7{r%%T2OU zF1Q^cgt4Y6tC*9Uzx}O{b26^|dNXsn?c%-J?*Y=-E=$eY+FA%Inz4xq#rt=KCYM4W zI8V@)P|Ej_g8E_yDWMXeFRhnjt*#_7FB21zbPZdj)Ub~(hlfVOJnYb-`{gs(xNmny z1Caz|GX&fWENF*!f}=mt(^7x`_U(&aQk>DDLl0275M*Wylv;3E&I!QU^QmE{tF~5V zUuH?`2SU<`i3g_lcG@9l)zM8JkO6}rztaf6*Dk#QZ#KIbVvU!tv#p7zhpXxvAEG&a)`Bj3FaQT zsslpL0&x-&^vekLYHEUbK^1|u)|AjJ6X=+wXH~zxE879dm6_E|ZCWlJ{SVpuOl2*c zno(r={j4n?)(7LtgIjsQLKM9ekLr%@!B$%qFE!=~r7fQGgx9=3zfXtX=y;2%&6-=F z^I{*ykY{xyJ5lqlq*ua^`OFqPskbMp$ivN|z$X{pMH zwT!|Kw#`C?#+eosHY?-L0Hhnlu)_bhGl zJq{-xdz;?&)fJGMBGOxz_t$~Wiv%hMB<*FxSx?9y6B9(>#JZmPi$0-Bw8r~E2EZSV z2lvmh*9+V%O36!adEJ@tcG!w)@+@^YQe%;mdzAUMmbH4~B0i3E&qT{xd8eilB|~iv z`+nlMEbLSHYQdSMv=4OTFjFU28?f?yqEqgt?kn0Q38xzwR#ed}A`VUs%^lLZVidu< z^~7sSx(*C3ai%{((-}E1FLBj#U+Q#VhxQPuN`8H|$6uTtr*&HI%+^i0^DFyT=DKsC zNzSTclc6gJTAt$P3WFOGBs&%i&WJwAR^8}v+A8(<^&{P%EtjZ%+qRVFkJ9fL6AMAye}?wGtm8pn<2SzKoE%<*Yz^j*1puUp}; z$?@Ru>8XvW{8@3)cx%hMrH`eQH#S9&W-p)J;i`;RC;Ydzj6^A#N;{~J&Er!2`k2BI zJ#H;3{op#n-#?H|+HCwN;`r|q8}3^2w-j%{ZLdKbQoan6q=zzj#`eB#BBU_UkRgIB z&0Vl@_xnsDCz$alt};SXtFyEWEw#;Llm?!ze~GW38H0sFsW|bniWneLXKz^ZVgJ_F zlZ+5G%z@7sPU#fPH@^6d?aTa6oWflLLo4$$k^lZm`e+KV?0^1BaVKL2I(P})x+Et_t{wzMNY8r8AFIW1w(!96e)XOF@R)29frPMd zyUDU1(X(Yb{MhdcG*+J|v;7-CgLJf;PU-Z2q z0G127ct3I`cw_VP9H9mLomU$7?Bt0JIZK>K-oh*X)-*$YXN1Pg1&pjFiF z^z9Q$VQCmf@Mjol_vqb3`SmFAf& z4^)8-^^N!=Ab+W-ASd^H$HBk*Y|n=(4CMka6cCZy4bL{6FONS=A&1Xfd+Tcm-IT;Q ziVtKsDNC1C4mt>N8jP|1v_7&Pzx4M$+r(tPQQMko>;jwiT|{E9>c3M7%(Q z-QTvhtzUqN9tUZ%yj`tUpB#*Jv(9mbMm|>B= z{%fQ=nu1eBJO@EEcLjc2z8~{f2VcCv#(UwzH@r9A{0TiY!okPj0{Qjv#?ET69Ms;i zJ>oxO9}fMkg~>_gFFrF1QmZ{DH_?{Lu&XO8ZCk_o38Uh6A3&<+wl2x1u}f(<4$E=^1KUnCIQ5dS0}ysVXlON#(z39w%VF)Jl=b-d=avU&r%BQWpLWZ!K&X zpIeRz?LUJe5%zboP2fqV=_{$+ZcM+Kks2ThUiBp*4Xv;@V^e+3*N?eydcAFPaSMW> z+%3Xh6C&ZuF*>Nq62RlrqM$g7i<{p5G*j(;seBfSc#+)UF0(>GfW|*>7uFu0d@}WR zMn&aiSEKHyxf>4{stUi0S`y&837fvUvC?}TM`l$U3A1Nj`vgo(5Yv1UUO1i};5|*U83%(G$;I@->5@=4POfLZvpQb> zG>^1F-{c}Cg(#faA@Yvo9IdvCQ%cr9+NxxaNKR6AdhSOGZ0A}+fwr)uJgrjf&PLa9 zx$rU?vFzhTfQ_@{lQ2g-o>_@7#+ti$n;5l(-!LWZ2SNYJYKE`&@=8dp?^d;HUcpyT zPAe&YecuJ_jPSDKi+Xx`V?+rb=71-K>&e2&I!CR=Wukp3$>~jPEh9RbrE^k4_BrzMH71L%6)F>3POoKD<*yiWsDW+POXP zES@aj(MZv#yjnVIaOUW7k|hoQ9p3-;pPRsa2^e0Fv1Sx9BY7?ucO4&0Q+_Adh?J$D z#;y{J%Kq}%s!q>}O_V4Bdh``mAg$wdf-}mLUK~|Hs{#>8`YI>0-c?O+HG)j8>U?L( z-%l+O0=3609>zN;{v5s%dX{zp*{F6vAHb+(W!1B5h<(3pbJmm2aP@p9f$*(7wfw6W!lp#j#KC`Dn^Y49U$MQ0%Z$yKp<~?>EaQgw4O$ZJS z01cfklx=q)f3LY+Ht%28Z%OPM;oV+b0?g9HR5YSnxpUN?I|o)NRy)5Y75Pq@1EaQI z)9~;(HIsd>+Mlv5QpPeO^nOmm%fA+H`N)y$D4P4 z-ufgAn>YSJm&O90pzWvDGA}RB#jY|t0Ug|kM6KZGnu2!2Ykc zH{6fuGot&uTSojhknaX-wpjzz6x6|fN!b6k6x)UMZ@Cr+Sgyvu1S9V4e53BgPTT!% zaI9_euGwHaE)+=yenjU%I$NgAys7?8i8JwpSC#Zr>*>v7~N%3IJP^jS2_m@Mt z!>}u=2(K5pPGx`yMxBspZbzsxczT*OR%xR{srLh8`7KLNPooCjLH=8A#IiI6DKW+R zj<|Q#dv2wrw_Ov--(tH+qPfcHk}V^qdAugVlae@YO$Nw*h614?7@VQyo#u4{U$hpC zt0LJ<9+zYFI{WLTde`RW@vUrNI-=X*V4SyF_O}N6;2b8R+)Y&Bhq?gEC1j7=sf(USOHX)YHO*a*Q(;Z^#UlTkN@C|JZqc2U zj9EWh)-rMFC>%G{DzIl1jxq}Wpt(@utl8kqD60IwYrD0w!nCFUe;zM)v@o#nq z%8dqmHQbXJwtP%>+fmwb9KwL?nonw3(dUug?jH@p4e67U3XRS#cr9xw#bi8Uac9Fj zD_&WT9l0AF!$LGtL-_WZaxaBMv3JN^V#)Np3TMqFehn{yl@_{To{wUo%1+hb7VAT>2O0D61L&9*>A!1r)- z#3^aWUN45i{8H#V@<_j8BTPrv|!t8{ro3+&e;9`g|-P~b1UZLIE zXI{4DvX`l~#PjL+)6&vbwurbPck8*LBAR}WAOzfM$QLR2j3 z*j7d*+3VTYL~RR3QS_nnYkschs8YkUIr;fiC6)4?`cT#IPk7nT8{Lf_=d5Z~=$0G&?7iXrUhoFoIixpaMwg47TV<=w++neXbBo~H9^ z&!z`~vl2OA@bTZW{98ME*hWiKcKJR}E#!)ZMgDKXt5a4?U!5w4mm_cAFT6Q}N&QcJ zovHwApwJZ6H?@qa+uO1guQJc_AU4EOo)zZ^Hfp1ywj7~^swt1X{wFD)Bm1+y&a&09 zPkd~YmcHVZrU^pNM>?oP&ya=tmp{hrsWDMLd~C$j%GeuQDzVsKpKx3Koz5++DQxh(pU;Ma+>%@RAWg1+-lVNpUyxaYCYk&vTr-y3^IB_XMw z1ni1_hy`R$t}tp$$ZXZbXknT(1r2I_^2QZOxSgR7!9T;}v@+VgeVj-a5z&8=IeSEf zZdGYvN*cIkk?aLqEYcy^&21gVm8Qi%Ln-WI`ij@=KSr5o{Z}ux58%rLLqRqQ*r@xwnzmA5VeeW~M78#X@sP%<)pl^S(kmCr{k4 zY8tl3r!hL-9>4C%9JzB1cY69`ZAN`?E zx~fI-oKbM1#OhL4c_^b?Z|%Pt1v-Y)8m<}1tKc)Kh6H?uZOx~q2=TVs2ude?=xV7# zu2+={7Q;U%b*N$4XnmJTG;}Ba8UwsPEG+w;V}XgYZ0{Uu1*Jy5IDfwE=MLOK%8)0l zZA>Y@FsIj1k)$Rj1kC*HP$IH?#;hpa|3}ta$5pkwf4m|pQi9Sg-5`y0BLdQ0BHhw# zQo2j&?(S}+ySux)8}8`ud+t5wb@yMeS*$fPYx0Tr$3|`TgBvitwN7UGAb(pf?ldfj zINO+Bds~dL+w=Cpkhn-g(+gf@Wxnh-<~$7+4!VMDun#>^b$VgJ^WIYTTT;cdNknEj zjnOOqvQ!^b7$$C6Lq)N|0CxJFY@e|}E@9z$T8gHIBH5HMqXej^hVk5GjmT4=%X%nOAiZJxHBxq?f~3U7AYRR1TOezAdgEnDXHRR!e^X zIvhymJv!fEirsPf^=be6V$*!@?QW&X>bGyd$g#pUlG*IdKXuaz>!DdPSSqkgT(X)j zEbEC!Pfkus#xbJBKTFN;>zs}2Cwk%y8o_iTU#&_>Sthau!d$;1p*28q z-OV@nUCj_&o}4TnNo8Uxs=5KA{E)>L5fmg8>rR`fFR-uG&_0XnI&a`u)_orj&NCehdA;(CW|{Q<81LqO=c$&}F0Ek=c>Z$7Lx@jdRSc7#^XLF7)Z| zgsH5r{BGy7pEe(9#mgS%rov%rgKRZL_FtHCdt4QwEbA{hGS-w<4s1AMI;Pr0M`i&F zoL2|gOJ1>z)GQ(!`*;aV9V0((A*WkKu+}|ScQVj*hP#~-azo&t0MnxqRfNwhm>5^n z$1ybf{3zoknWqx{>#&k(d)q#5hL*-_O78fztK((&rOg+7{>IfE^lgE|@f6tb$nMPF zq1EZ85ycAQM+xj0H58E1@}Mq`-R&nH)iuFD5EGz_KgPZO{=tbRzNX{If3b?XJH@0I zt{};MfNu-yG_9iQX5UlyT;QoFDOI0ArZl&(ZJOIF;HSs%f)1w~;zx(q=SLoC*=}!X zm#qPh&dAWP!SzB`!v&$DGZ{6y8Z2RePMZ#3@pw=doMjkMzpvA~2k*W%LZ<9tm@m&+ zG3D+=!xPk)Eep5oU!Y!-7pI0^(J4kQdrw|lf4Y%o(VJqC-i~(H)cva40tiw7&O49E z+>!h$06ySN#a~R#pMxz++TR2O7M2ef`^gSh9%;}AfBeutfX{qs?Pp8CUq1EmONvz3 zKVSd((ELNHMu0`Az(iM>Q5k-X{B}8XLqp~z^K+pW*VfHQdbWSQE9rj1ZihvVqOJDG zx*q!hi~J)LPEWaVi6CxuNR9%U0`)g)@9&b!b7;c=-Y=;LDZ|Cj&WPL+L5X;EpL-P* z(E(^9?i&nD%uiBMPkonji;L#k+AaP4&L^wF#=E>5Rd8f{&-hYPq@SU}!M*f;BuT-z z*}MOU@_v7*nHNNn0qB&fs%o>t6aahy0GLz~*G!cejx*^qX$lI|KmR!FhU1`qR7}Xt zy#VluBO@nMCO8bP_t&&)RRB^&PD~8_4eA-V{WEV5fj{Ru0xopj(dpN(UxXshC{X{un@)|)%mCb2ZcdKh z`a|}F+16kpfUe~@=KMsa{M+pRR3?zGItB##0cLGQMTMK{f^;N^9c5%<8bRa`g8S2e zP=7BEM7W0o{kq)k=@HQ4a&vPZVp)XH1g}~EtP?Z`GW~yUY7LmCB^4Eb2RPH@a+jz8q#yL_*VvM*!Jj7s z;;THw@BM!s-;#o}1n5Hso3F>$fn;t66VkwyRWd>um*lXCEUHuD64m|RkR0zESbj}sm5IR~;I z*?&p^1(;{~0I0aM^hAFP@k5n2lfMC;CxDU`WQO{u!%LTR|9%p8cD@fM76shxjrH}% z#q_Y~=q13f0~B_^J9xwJ^6!ZHUzcA3e(XO5;B{>POv@!#8i3^m$7BIt&o^*H@PGRI zKYg?b1w@1X{Q1t!&5epGulYfFm@oyJ64;?ibzp?h|NRD>kpQsy0`N7Dj{)5Cfi1-F ze0v1Yc{#zz13cRIP5bJ-b4@OsLRkMU07CTkwjrPmLc_cPxUDBAQ83ci0ONYK-5-#J z{aF6ft{ea#3K*y;Z-@^R6v9z=S*cd>b01Y!E(LCBebLu~|lT`A>hrsxqCCRZ_AC_&&GmtyHL`lEvhJ zVM0z04uSK3x7D+c;IIpZGAAHGf^h2YkH$770D{WpbVYqMvJKX?by0!YlKlJeUmVw8~u?~pTY|PB; z?CihUp#EL0uk&Cs1Ds~i5NK#K1p>OpyccK$CO%ae72!RSc3ak8=U%e0;5i47RF?ldJshkZ6ZuLwSXe3`uEGSlw5*JgnOSJS z0~PVjJW z0w!TZBqTQX*C&6_p1!_n7n2LlNT!s3z)iTjhPJ*|K0GseE{)XUtbRf zHzF^R3);Al!C(UaK&5uutN&iu+!Kt$2AKL%i5wkWT`+|VxYB}&T#!={`eE$9L;p`x zrGWSTgbfrf!H`lb`Pu@Y@u@66NXA8AQBThjM11|fI#HmiLZiZ=-z)(Vy1~J0B`^hS zyS`Cfiw7bC>;UR+%#rbZJZSj+|85Khf%3YW7x*I}&yHnFogE+ZnK)DDjD)pXfOL4XlpBpz7k{@v|>c6tW)5GgH);>@nD7w*Ap-&e zK>bUwho1zcq(VWfgWQb%SSB!TWOUL*d;s3`|8`_Q1l$-tpx@j92@Y`yiHyulT1ra( z0f)zX2tbe-Mm@n~7*JDF1K1^yHb{4aec=JH%BiV@|G#>Y1A_d61|W!oP1V=jeu9_W z+>KyHeRl&o2E9hz`Th)(AiccZc>H3qeSUPz76w+>S~t+D}puPM&ji zu2-`os~*Ei&E5$fWs&CDZhrE2(7StIc~oOCW-qT^RAlsC9$!3ZMK)c+iv%9?IX$Yh z&=ys3W8W9H99;04Wh+VkeEZdx^}ako7Sc9rJ+hQNNx-{%Kr&NGT?O>6B$9aFa1s`@mpk=l zi7$MQuPF6sQBhF`<%AK@YDC7B%7IU1f4bCdpZOPHARnKf?*m&gqh4>WTy{<_%qLji zHUJ|hVqgdd8xy^FfXw|2$eF_aH#av9T$*xnXQ1CAAWYBGmzI_St35vfA@XZiS647+ zKiTQR_vK$G?Nc>4Z4MP^@(J~iP`_PR;6~}9!nZ9+17aR7Qycvke%Thlh6^HQG^XOD z#-;b&_B6C(lP(4$t+O3XOE6_*Y4Zx=b&t*-cMo~X9i!9Vg)Ri`9PY&CP`MZu!m>>K z_@N1jaiHQl)Ud4V%A3hI*h5B1bhh9fy5^f7q|LRfjMFnI;C#NS%-gdven-vuILyxD z>_W3ni7txPBWM!Tv+B3EJ?}ttZe|WkO4^aM!L(_31$%aRW;2vR&b_U}&CO<~7I11g z?-&)(+k*0XyVaP*Wqx<&Y5%4wCkryWIGnK7_td|u0f{FhulEb@~9XWIYR|O2K zgZer$x-CRH$aPLR6qK$aJsMv4vTe5$c;OoalT+1A4_|FgJXxsbC736ttcpk#XmPqk z<5v357*&mXuO)XWvQKVo@L*Z(eB8F8Ud{05xo_1Fpw}1C{c{h1op+uF%xK_M1F#=S z35hU`s>({zf$!VHgd7}yVAc^RDvM&j$Up*bO?|!i=g&SsnurRh^boQ&039N*bc>7k zfn!upUtjgr>6K_zd_chImQWO*v2t@AaoK%a9Rqc~6|X(hq8kAcOn&WHxOg}NYnI$6 zrtO^Gk1FvD!y{Q6=-B4-(Kv^KQljDo{aKzE274y=P8hSvn9|SP$G4riQ=rd~_FN0n z28lmVUB=)cah7}EW%kJw7aACa>q|$XpIWP0F|)@ppZq9fuuLy&QZd_r8iS=m?png_ z`i$BoTH3{WT*9ETUvG7@g0mMJmx1Lhu(oZO^V1nmdT>Y0g`7gXjEN~@Gx`AD8Ff>i z_;<&wmkD{?2Y&OaW$q|vT$FF=+Zt4aZf0e!I0<;`xqu4_b86Wn#pl$#)s~Aj@ZVOJd-+;x78?Tz-IZF zfU@DOpX;BlmOe<=YC7~9QEV~Rn3pDncfqQ11@TBRx0Z>~@hZL)@ZRdi8P;%rh2Pu@u>B>_3W z7u5>e<$ri_6J}0`q|&8#_~=zO?@>5=zi4&mROe4T>2=h4F>311o~#xKDj>MDU%2w? z>zRluh5Eb>tWRY}MB8v~4k{(05hER-Xya1AAH`#-wukW0iPVD>qgh@x*{JBZ6Of?? zkCSf&J(;xmwlB6QT-E505`$)AtrEEUr!Q=0l$*v*^mNg0>>Lkdn2ah2d-;n=J8$3D z4?6eLC%&pIEc_D)2Ayk59e!{0GRvJC&T#~ORy&Y!PUD}o6dN!4%Y(| zBRJpyZZ}^OO6_lug(UA67dH!JX)v*{fU#i2AiNM5y16V@Uod6?vNuSd1!}5*ydJ}5 zflsvpa(4ghmXVQT*ezG3(M-(E!9m&@c(oZLz=0@-LS7I+IW;sEKvGNrcQh^Wf(+2| zDlccsdv}@(0vi>jrTJ_hkD8y(FD^g^yo?MyI?Z)f6xa-A0TjD2N=2jo05%}wGX^?? zZIDfgp&-CXACLlUeQb0vmBN z$WV%l_GG!AW{udkV`X0-frrBXVhic1$tcLixZ)A-onNs=G)u8(Is;&1{K3~BeVn(P zy98~6X>*X#uu4(p6hDlPY1E!Eub;r_ z$$h!C>ja&cGNTd`VpbaU3t7O{j>A=0N%Bxq@v&35yr0a(MXt|FxH*o=l7^lfXI4|2 zV`F;a6JsEkhFWAzDg~)W0iT&pIWj%jJ+Tsz{%(+wnThDZ=^lNQ8Q%3pmj@F(wRGQE zS^4~I{qsGa+WY0na(SpPindrQHRt!+={Reni$`@17-nCgXbY6rHiymzU zYA)Y2{LENBLA1u&F)HS94Cd(@=!}q4_r51$A%iXmMseyXOH@A*8FSz(r>YN;L z(J?XiC@wk~R?ZI`c)p-(bkKL6tS+2;SjpF9CFD%)epJS_Pni0N;_^_08JOOJIf_Tf zTX$uJN+zN2(`F*EE(DQDtk$YYPk(>HTCAJsUu1Now2iZhnXJvM2~`P;-W40Sm^#!= zV`Zp5+ao!RCKMDZCn|G)*hdpcxyz$%xhH8OGnQ(j*x4j!(oCqYlNSAUld_=T34#t{ z)lJqqrVD;@tkZ>IAlQ8n^2e`!Cx~+PavH14@2q_*f_K&oJz1k_t5dwfeNi|z+JX1e zscMj_#mULt1ufnu&d)^ZqBIvE7NWSL5nj@Hs7)YQZn9)a0OsZR!DinkD;Hc&<4DX$ zozmBu4nHk7wK)iIJVOe8hdpK&T2Ebg1%W5CbcvlDRu5;UW-*@xj7MxboizbFY6`7j zT{-}|x>UbocxwCP^gVXbkpGSR79Kx+h2BfxTrZ9-GG+X78m~&WIshYRYpKa9QW4x= zI`kk9I<8Y9-5BOfsZb1xgaiyiD~#9oAfvGq+=Z?Nw+%TkRB65 z)1!cy6rZX+ONWAduIxkYFD~QQ3Xa&lX#5|wu4(FMPh#oYdOnQ-6(jCbLB4Mr*c$sb zmw7oiE!b#cbUvL`Mcz=c(NWzerNfhzs|L4OAt>6pMjcMP)cjasck}qMyz(pNNN^SH zDoAmkQd{vXw(c4W_*gMA4dg3c(ftzDGFqgy9tB=8gaXwpY~vxBz7SD4?y9x8(%U4wsjIIFpwx;1^m5*VVGZ ztEC2r;4GSkygUinq`e{<28QU<&nKbdT7-JL1A%I&`}_Otsup0nn8w`86&MIKJs;1N zlOdLf`LOca9eP`H)j;%8Ti~;x_1+#IJx!S;?X(y<9c<(312^WjA%+F-ZAZ7P=698@ zj!qBkrN^+RTD4GC70lFgjNGHu`%AIF%z^sH2sCH*Z2w3*%8EKjJF zlgGQTy9(ZQHu;r79;NX5i%y(mizCr z>&fljS35rN-=AubYigXdAC4_z5X_oFhLi5MIw-4(%nsIx9PLIDE4uPC$`rktEmY+g zpzzO+q!k*Sw{pFZ2}THrrJlC+sPcNCo`#o3lh4^Hvr{u^SH|`CndgFBKo(DL!xh!u zjwRqbQ8<-$LiaV6D>Y3D@wpijGQG zw{#25Oj$~JQ#0RdE(}|(cmA5zvFmo>NPxr1JJ!HBGNk^DyTp!!*0dwkUE962CqbTa zUV)^?rePK~AfVacCYsZKvKKOcsa!}g=tjI*c;TK;|K(fVAVtn`8OzSm%!5t+sskM4 z^C|Vz4DobCWY-_+4##FzuzUI>Hl4LJ)OtO8L&t^^k93pl)m} zdA<;DS$D4vVX`^SrBP<+>0>C6ZldC;8Qh*dza?n|Zad;dygiRxixyWx=P>o__n8!q zL+Y z(f{dvxsn!2-*eVXUuqA=!$PQ~cwMXPdF)Q8a?jM$0uh*1R($YRY6j^}k1oxbMvJz8 z&Z569YI?~mRIBpYM9n8}cj6k?5?^sWw0T&u_>>BdzN@j=up)_sS5o*KM&vkKP4^{F zRzn=Cu0mH}`IqpPFA77v%mXs(-_qI;y3!aLx{{+1E@qOFWVSRTcwLo34+-NqUaxiB z)_JiAtAv>e;}i$R2ky>AYxeB+@fwfc%~tip;m*D-wYT$sr6tt4MQ?RgzW4L9s&jI5 z>Vcgz+d!B0yE6rdAx~b8o2XdkK)}63H$nPAEfp8%p>vLDCkbtja53d&Y{>2$wXbd9 z{86-%PcPrd5-NA|V;v9%iAzijF4%4NM?pj^ozv1~2Cl)_*i!oZ;NV~&`!QU)_tEj3 z!s<83!~oxPkGvZLNS83Pj;2>b$y-}nLvbwmyl!A`3bZJIun{OFP$2`(t7~T^Es*Rk z&u zpk>SozBg|R#P~d!Z=pwKZ=ekf%Mf1ldS*arQ;7F5GlVqe|Al;^IUAC6t zwG4Sh@X_w9!*Z+9)&%d4(*8;c3E^>32Aqn5hMvC>w$*f_p>b1e5*!n>U1+1t?zA9V zk~3jScI#T2rh)z2x_H$&TOK>uP$gthI~aIFJ8gcwh36Q}z<5SFu|v?C9UA$k)C1!P zf#MJM7J9H)-QEcZPCkkHoF@n42Uo&LuT}2$|^4+oeil|F*PJQ-P%K*h{dMW4SGI z9=+OvYOKTgTlgz#S0v3s=6#&ss;Xl(?Q6Z^m1ONao5@~jua(S&q091S(_dy? z*add#MaKsH(#`5Bl0$b)4;5;9@Ob)&5_$QdGUmtg*~#38QgLN*AA%XhGb4{Cl zO}FxO1!jHJsV{PG2`>lf;wcCoZ_gUNt`^Z7dWt#FB4?>3o*#5sPYIY|t%vs5MMP+2 zlC*l?Gw6qPigRlC7aRUQTpF%l)4PVjaGjc2$MOD{!I-Qcg`dUV)N-_FV>WPZ$T2oGIPGw%Q8KUuLIMbXLrPU4j#ZN#! zg)B8?Co1?I6W)Zk*Qr-4**6YiT7{>LTMVCkD=zc z(OwpXsc2g?I+Nj2UkLUcT3gg#;H~}T?Z0Ak?0LOz`i%nx+T|%0du9?Q+b$eE zGER-XpgUx@wrUCgf33qQ5RP|I+s)|gTGIR7G2Hv6CV=WT30W9td#Pn3rA-T@@pifo zlzp2%`hv!Sc#|1|MKCS9e7?`-q}-g+!{^+9Gi%a>*?Z;-7gMW6{AQ=2h65gI z1*%>tsDtb20TkT$cgc?{gO4mUK{id*Yj*^4I%(Mlyb471)>GDqMlwbOy*`jQ#Q9PL zg;1^(0(kPdw=)hf-}quN4SChB{}c)`9Z0q3Ki4sF(aL4oW-&pHgn}VCc^zrbvwEKZ z%M+iJwb_-`u!M5FJX4C897>F~k=>_fpauVeS2B3$`g@lSSkV2phM3^G<1t|6f}Rc^ z6`1F~M-bR6&4F{!EG}ghB zu(gdxRL$M}O})?Hq~fREgS}AdVl&1$7t1~YPYb-GlL4p=?cllkXEUqQ{j$}|N+WdE zPCnO0A?;7+8WMt4x3jS!SeDQRtW7M-wYNIhiDy7%DzTk-Tj*d{^L&5FKu zOcs&jo$ce2Zg?Ly=QLJMcAq8or}CwtBEhF!u`)ad^@`7GKSJU_j=jPXJuz+!UP0T+ zM=T=&**t&$U^5Nepz&^kY8zy85~V<^u=s9Z7$Pv9TRX*(iJgv4Z%~Nx!*-enUSpr+u%&EToLvy0oRZrt5&&HfH=n*$ARy zcxF87)61KnsVn%Bt~_w(@>MG^aYkz?VN-`|3F}i^-8AR1>yv57FNK(+aTz@APIv;- zWSA`zD{In6YqGKo5Pl+;B{5T~)8+Q`APU0ma7{S#>}w7{1f8*o3D6d&(>lBpt8Qw- ze+X>&YHiKb`*C`Z2%s|J1MjbZVaR_|nV(;KG()VLSW!XYMKc!!XoNWRd)xlyT&cq+vc=zm2 zJ!Rm01EP>4?&(qd)o>I@CsAu4Py|dC4qT6q4|nZJwm`&~oID#S8~`g+L{47bEj*E$ zszTpjt1dIY&aA^kw}HiQGq9W2B_e88e}BbIYqq>#;Id`UpVWG~JKL#G#~PIa0dzDZ)&EO(B2p=fS5ef zZz&&L3g=i&nDF0B!fS_aNfElua?^cunpkAwPrB@7bb&S!x~{!5*gCF39vz)L*)yo1 zC^XVF(El(l8RSWbE-abs!R%=uz2b(4a?juSDh z?)GbTxO{0`OK`N9()r2TS$ZIcn@r+=h8U2ZpzI2vs0$rc3McYU&$ucKwRAq$?`Ajd zC4l!Q9V8wZ9#xzQ`h~iDD~s!54yKa4_ZTJ?xcR<8YablLgKbd_%sA_9M|AO7$(rwq zH+RFev?XmK2bUz-D~(*W_3-L8ILpxYx)X|v9gh^EI&^Kd6^_yQ8=BQt&@jliacl&-?5sinHQuv&3Kv&Gxy-No+X@KY^Bqi#T1d8MrJphQel%oW`L%kw4iV% zD(z_agZtb29rTa&a9bzHIDRt=V@y)sqVCDCjf<#kQk;pcLmu2;loq`fc;HG#XLes> z-)6ycZ8g*zAUp85D)-?GD7&+dk5(6X2BmobOo5&?qK9;w3>hl zCT^|f`Jopq%4c!$9yrlWP9maKka@Vch_5070#epnWo`iQq??-U0B`^|eGLcsGhvomWxBBLd|wR=2#k+At1pY|>*|22Raz83I)TdfeN$yc zeM7@f`>#d2^mKGQjlGTi8W_pR?P@tdh*2Di3D^J)XAc`3?C<+k!&z_k^LKgd^Ed_? zX1TFq9f@Bi)Gp%8BndOwL}mz&>?t@Fg=CgLL&{EyQ&&M_J;#mxQs3c&qO^~`u{Ei% zcUKEJp=so_wCJRpq3RyUP3Nd9s7vB1E0AD&!@kc2F^ji<-;^)z6}mU;>LmXdwb3bO zrU9v)HZaUbR49eE6Sq%(Gg><9K4{N8E^lsv;nG4xjNxQH6&G2Q{Xv0|NptoNdOpYt zx%jLXGB#P0c7|4V(YN(=C@4y4YG}^t81e&VcCqA1U6kDQpsBq5e#@?yH01ocQ5Rjl z=GFWjfA-8F{+ZbBXCM(08Kc46a#-_>Jiq9tkP0p9D~#B|V0{#_nLCiMwe9T8+UH!> zxe%?gHih?g`P+mdDt)mT5$^yf!<=62+)>flO*frD^#`Q8NW4Djn@f1|foaFM=tRhE z4WTcQLqWpYs+)yJA{)9i6%|H)tX4_)ylKAyE4{i4h2QYPKxg~%);aVcbNfwgm5N0C zj?Jsepr(NJGNU!WL_c_qha`v&v~ICzvn_m$uj$f4bZnPJX9}@Gcq@YFcDcNs7=Lc6 z$(`J)vhs=}B^-*rRA{Yx+)s91M{Ub_o9Du!N-}8$n>x6X7i1q3-fid|5lCwT+c$dG zMOO(sl{0Gy!jv7&+=1KDP3uAt-E(x&Ez%t4yPH=`3C@s@%2}a!+`70*n6>J4yeqr} zHnl>nHYz-8@aVDe!8<_@9uuPGUt4w4uB_GX1#hRSRU~3})&pVXusSSFwQ#RqaqTq* z^K0z~FIJD6A*EZ)@~i2*K{w54X@KqRfn?6&lok^h=O~CwQv^OJ5k$+gCHOmsXl^gD zl-ov0JgA_I=tfP}FF6aNZaz1|5`If}{@GbeZ`n%xN1}{D1)quw^`;wp%;bP{QWcxL zS74?apLcE5{zJ8Q9jE8WpEF1wPPf~fu0a}nMf{4@+D1{z3$9c(zrdSOAETUmK)yn_ zTH4gpyKc>ycL}UmFmH-mw}P)kxU{)&9-vp&HAnaPMU6O_5GW$r()-ED^&o;^wE0js zO?w^7y=l+!)I*{Wi{1@2JggL@r9-m!@3_DkO8DL!H1>;X5z0E*TdB*Fto`8g6 zYWIMgdkMq5xhxN`bh!HS~oE-V)z5Ez@OWoc-}RQe?7~! zK%`?x3AKyQ4M4oA3a}x9UnYN5QKFxxwtbb0ra1M#7=<5D_nVm%HYC%o{1{e_kbDxvO_5C`@|25o=wc7SknA4|@j(E|>c%y_!`POCS>Ijr+As|Ln4P z^|WEsVN7yew1HS`IorY2Y(>A_qs{rz!cbuw3s)1~Bk=UtNyvCdyO{VdJi>NFRZ;d$fNfz;AYZS{b#v6IJZ z;@<)sAp|5CvX_Gn^*z!95^{M@g$)5dJw??8h^XoVT_Aq~VsGIgVSwJ7_EBk^Qq0*B{%Vy-Dhh>Wq934nQLKT zKjbx{ARV09YqKf2O`T$;J8rQJt2#NHVq)3pcj93jQuv){*=bIWPBQ518PP%*Y*pSG z<~KiApd{q&5*D@S{7IJeU(bDZmPc34BQ|Tl{0sv|yjWIRlY*1MF^RCY9hvEKEdl%L zw#*t8o%W~o-lrY(T12T5B$s3j@ARyUW$momD)rR7TI+>@`KUJnqDs{uVrGuU5~xwM zjdUED%&Kz0ZWsT2cGd|iP=o~c8Jk1D+p?~|{rQI_dO`POhVti1i{l^VLUgul7)EnT zWQ>Zg;2EjaIO`n2DQ6zB10>Xjc0_q)O%BWI%-o~*UC^U*JEPu|8ue3BQi#+DfJhl2 zW)H&E3=Iu|>Np6TqN1Wgr`MbxA0J;_{IZ`YyaKT2z_G&b%FM}$b2A9^wK&i%p<>j%P;B`bm~{u4H73!=3SUhK^kx_nA6)r&GHM(N*1ll zu%;##-Pthnw=b3$QL#he32TKnfY)`tm2qNZ^-W(;qLeyqUJh$q%8F674Jc7*K!vig zrZ&Wu`?HN!vjZRK1XaneC5EU4suaY0KaSNYGNw(3a=n!j-9D%Jf4#$DXUlp9wUze5dM;Os_czB5pE(%6N6V}p( zT*W;7w1q}3w(C)f`Jdrt=|461_0Xg&qP8{(suiHZ8=7Fl`+7bGdl3p)q3hZj`fmmVmD%F+Hd_S zfjL8Zlc3U-a)5=Z`}}SyeJO+@FzDsE!)tVDV=7I%O|_y)Wj-Vg3v)rJ18@L1RoC-+ zc|NN{lVXNfOFEG!>v4HTe%RnpoRhcsNnCpg&a^UphI5cw{B?#4Mc4B@(j$GAUtB2| zM_CvV)%IyW0vrpIJYSxR*nBsIGdntUavv0LCQdO7owogD_1kugoW{J-pU#q$OHt(Z zZT9eBQ80#1`RCm*rWI|y*LEKYOxtH}d5p}v?3e4wy5S)-lOm}naBjbpMy5v>W7S4- zhM5>DyC7?D9KON%{Eub*1fLT~e5g?36os z(67}6i&SwzNeDX;<@$!x>>}wEoka{?>%i#%oLl=@$p5=}VbPKFemk3*qbN!ZAH9pdkq%-A#T=~I70Va|%ETr5}6 zPs@z6B%4^%UWv>+rD(g>5$o$b6|>aY8lK;+GU?l>f6Z$W8X6MZ z-JyKjWMtoLJ2-%teXx1})|swug~bxjD5^Y=uzw}bEgLAI`kI3o5i$5J+ORJyCE`F~ zF?6Z-v%NS~M>DuJM0yx~5y$7LbIx<&$1y@CP6bL2`bbu@%ppV%iV$W3D5ovz2#( zE=MNz))sd_w{3Nnv)h~}9c9e^TAeh17Xh!5y9!=RE=@CoxoTPZ;uG!Z>n%&!FM{G~ zt+@l!Mpanxu93n1kF#{*>+~{wwDa@}u1V&j^>0+H%zJ*NLBh?*BZ7=yEJy zymXXWb+eD0g|)1sxAe zuQQAaR7%#6i`6o=auL&{9AT@@z5DXW_CAF(`r_sITJOOY7FpeNUIo}^O1&v=dtP^w zVe;D(M1d*uDG`(<2mslPu8hmqGgFM6u9$NwrxVutIB>Uh*h+!z2S`vOfy zo)2}s;48OG>6*%yQYU%E;2v@)3*q=ZoU+NpAE})}QbCAA}s8J|=N- zwH=!F+%wfb#U>`&A9~Td65C*Z{z>$UEt$V*-rTFx!hG$xU_AVuxv`?Qk=nHyp3D%( z|B&-zk;BZ1K(-}3}V2YxW`O4J}M_EePGO_h~oeO0Sw zk~^w1zM;sxsA?jWC5`v^x;b8Xn|ZZZ8)?o%D;Dt=&%U|$3k~a&o7!wF^Ubz%u>7nqiOVGd6C&2Ac_0i(7Dx_G&EKEhRsD5xo2U&eo~ zkA$yoWUx8P3)hNciy;K=f1?Od{hDLBS3r-iG~I6+PF#+&7+Fau6*Nl180lxQwbf1? z_#NWCu9gcIj6+5;#>>I1dhHO4jPrpV1S^2BW)O4U6@=CHx3TY%p;Kgp?j`o z{rx-02FS_JPftK0li*ua0x48C1)ZS;PaPOg;U7i5;KiOw6@lYF2%N96TzgfvOhcNJ z6!*k3U8%2KY%{A6w=3iqXwl zTFrmbSa;DQy?sevf|YvLarG2dzT~?!OfbQJa_Hzg-$FKSch}VO4b0$ z9)qgxD-_1X^@xPm9pBh~*7ba{aW$t?Fe=T2@iYzck;F`;q@JXAaIZ|geZTaiw)-`N z$4D4W9BHwHRa%e^a@E??9UiLUA|V^IB&$`~R2zKpqEN$rx2QIRkr&_fK0bh zl%=AmRzpf9PCL8{JJ$sn6<+R?U%GU4_mz*ZT{*+;`y4_tieJJ_PgHx7Uv~WKmFFd8 zm5{>ywzf9qBhfV+ud{+vXJ4QMhrUp_+XOEsQ=E>XxpE<~QzX9fuGibQ7-J^BEF^{F zG!3F4xfs3H&zxa)vA)9+VYXE`ReY8wjaX>5GaiYdr>u*k@evB2X1E$4c4h;9`EBX8 z<$s1npQ>V{Ih8om7JB~1ML#B&yRYDDRrg!54hwjbdxFeS6AEwW(6ueHyiag6oG51L z#0L5F^u(j|>m8V8GyF}jYjhjvZZo1Mos#@T)K07|3mUKQw>=mf=A|vR5NrbrC|c3V z=RY*%+(5L?l0=UPXqjF+YfMbfSX-3hW4zr$QJJ3*)LYke`1S(7Yf$X#k+_@kll`!v z>DD~+aA^#N5B;P#jhTzgIOBzB-4nuvOu+Nuz_C5C_kDdwau)8LE|(l)xrbQ%$X2r|XS~+hqi$++Z@Vg?5XT#dFHO&kePw zqWg0}G3`N155-+Dhuqe8mV(x5=SBo{UqY5bG-WF4La=<;$nLK}}tVWooYe?ELv& z4=U4vJw&g7G^d7do-Vp(KVZ85G?7h9^o~8*DQ;w1Bw&8mFK_*bpT533LX#i%8Yx=c z?h8?qlr)?za#+ttIk5}p(b;6 zN7`$oLNK-YVG*h@cnpk@*l~(?`HP5s# zkZIN1nYH;K_U8{jf}GN$qa&&J$it7}FM;lyDM*IQ_yv-JA|l#N!(qk(gZ3>XB@u}a z0CDl#x7L^uB5LZs#l^?-oiUJ!L_=W+k!(cfJ<{!4smgkFmDDW!#9CD)9`KsTO?_+_ z7yBWumg)Kk))AAU2!}Nn!P}%He zR@E0VZP)c=V{A3SwXp=+SDa2R-)(-DXY$ngI#RPjGRx7<^2E|BLgoW5G&Vo|UW=dQ z0MZKW-q%1*BaBugx!~t+g$JB|AXm5MdIHdDgcRT@$g3o)Dz|)ZL!>>p=j!HKmOJeu zAkl5Vg_LHbsICQ195wgSOT|R5`Z_f^}b)Voh&Hr?CvDYAGqh#eo2Kr`vUTj z9Gfa+A~Nt36`h5l;GnDk@}2(_v%ME7`o~~ttb!E!GiiNBZ^t`@7OQ&Ki`hZxm2J-m zXzPAh2X#3oB|#i9fgkn3LLya|E@gczIlVxH$~W*fAPb+@a%!;6V}-`{sucT?eDm@iOR0a`F5&SpMYq~GJoM3(4r(y@(?g46jC2a}X&QC&YP%luqcmMd)1FVh zG6ofD$_pBsEDxHxz|>*7ovt^`lltnFIVB?@&9&I&LPQQT;_?(}C(A~bQ;{=QV?k+c zvnh;rk%Q-bxCax(@nQdTZoVuyyUou5mw;{SCb&F9=!Np`&-j}rtO`3=x+A_#Zg=1)Nh3Ks0QkWzo8xd+!o6Qs>%k!Jww!nb;;!50BGGErj z9yDCcc5bm!>B`4f4Pf>Nx6`v@O}IDecNNhPF0(pLvnAXYg|P{<3>f;pz%^eg7(uAN ze|pY&&^G72ghVU?S(oMJ#%fBvP?ory@Vfc^s;|@IKaBExJOb z@G5@p_)m^t3c*uXV|V`1I!^boW6;k>i0{{=`NAf=_|4UoV(6v)reqa2in@r;I_agQ z8cBte^g)semt{4OskW;`T`F%8&h-p^qM>Bv*}5G~Le&Yu)L`l5CB5Q#HgUY)KOnt+ z$#B6UIJ~aTfJ_4tIJ!(g>V>njbB;V!@8xm}G!U}EVKWC%i)4vTO%>%b-JagaMtZ&M z%*<3EFU!)~0M6e4jDQ>->!#o9H=0*h=}Wg6E&pwoeeQ90^yvF1>?7i6f<_5#0|T`c zR-;lTR_LC&g6BuXN~5QXQXiOV$_x~=1`8kgrQXRpQJ~5_Xp2rdeMg3UPsEhu>xnqA z5ha23VEwYtX!bi*MM_#oVzA4I?ii`u0Po;0B}GpCi4pJ1ta|is?(Po39bV@@`|N%8e*4~g z&Z~M=uO5~9z7<%#RUs&W*yr{KUi(ep6iBQ z$h2t$nN>=VCO>NOnJ2Tn4nU2a$>ON*U3Tb0sgi+f-0tMRmuvb&n&G`5wzT|mO$>6& zfWfe`;Offtz3h=N`lh9Cl+5z>y3HZc!zV95+9(?8_hqn{4P8Hq2!Mm(W96=J4Y;)=bUR&SfvJ2{N*UZ5g@px3^%)ym+uU>j z%qMVgp@6HRyIYui)*H`ZCZ*=Kcb;7#FANtXx|y2bMH24ndN|p-%12t;y9ej=C>O19 zV1+QqXYzX&e~Kax>VYmTfPk0nUs1<>%yVt(RrYRn#(>Y!6CY2f2Db*b7YpA74V%)$}&~9`8hoO zzO?j*)s{i&wX@%kW^?Pi8I2#oR^91sr(RU<Lxz~hMIfA*_|FIHZ#A~ER;c}-hqNgPFX0*9SLYM4#!MNit) zQbgv|<1jg?_WtJ3#h~9QL5}?Vqv;wj00>(roSW2VQL~keEN91kvqjfOTCq{VE8IG! zic8Zix7u>hOIFe|=sKoTC#b9bV>w4lv6fEa{zZmx;`QlcI zkJAc?7I^rVReUwAJ>&)mdwgT?A)E76In=Rk^<%ep_Gtz~tqW5wyCQjvI*jIfGLXb= z>@TF(m!vWXR~C83_q~$<{RZ$E@Hw5}bAYxeSogNGw+CUZz-eDtSP&x_2P_4wmh+v> zUqLc{|K7pDKzS8lApu)6Y>&3A?A!S@a8Vv@_us4S zjtA3#RB{{wqUF61p}?T%8(3H~Gcz<))Qk^+B!ZEVQNI&`Pg-3wMTuw;?+v_=^rSNl zi@&x8wAg~{R1?7ph~{T*MduLJ%C@RZPVKsLMI1~%0qAu=Vbi1H!BL7Uq zVls6y|Hvt$LwHX_LA1Hk!Yh4NbRVFH%vjIH4jw)$I64XimrcV}RPh%-8MSiBmlyc` zXlI*S+kq2?9|Xt9n(~`<>{-h?-2!N{c4mhsKd%IGQtL%|S_=|x*nKV_CN(imSoVAT znl}xIx=VR5Lo|)h8+xX?O-e!$&PngfxU5bNjV@Myv|bajmkoL&prvii9vNrY7W7Vw zzB$L&=9ZFvC?bo9km}o6Ctw@P)9rqZy8X;HvZg`rL|i>DrnQUnWTaB37b9XqnK-ty z^I$Q&8nY-Cov zlTvh!+hCLB&u3G2GEPlf{AleTNcrIE*}h0$>^*Z+nTQsreud(Ad9hdWtxL&@MfmWd zVbkKI>MVP<5PN{CDxGG zLl4c!x#(I;4u@f>TXE0>PA@F_Lb>RW#1|$p1o{q(wT6j_sAQ>h^jv{777Rk*&jXJ z%+U=WKCU^kobB4U)})^Cr!dkPu{cDEP`t6IQ2KncF)lprM{t>U}wFIRGLVXKPCl`jB%72F`7GD`GeQ;va=QAts;`y1xO_&7)sM=_Wl zTT7hDe9z{2$3#5T)fIRa8y5!#VHRC45v^-&OHN?ViMz_Mu+^FL1(k%pB|V{+G!fyV z^?NetimD>_hjCnekzFivPhHCURS~)~iK0vhS(uGdk?s;shtqC+^CZT>xpfs)WiFed zR|koy4oP$-1|+*nH%t;-sB(PTv4~48Z~Ervglf;P>gW|&}Kf3XHpaRonP<;B^?+WK#Y>d%8cDGKTxLL`HW?^NYh ziUDK1Qx_5KZ9+x&w7JaTRiYp|6YhIOp9Fv2H%kraDx+a9S)dAa&`{Kbk9(ra^$ca*E#X$BhqB!qy`J*|mnm`WSq7Ogv8C+p9F$?FaZT%{`Ynzs* zt*c?1t|{J=Oo$m2_m`%9!=A%zdrB<8ql%Um(qCq#{B}ct)`ORcTfp!%QU!9?V1Ge$ z4AXG`B7f$*g!w&OVU4m5A5@>Jklxtrat473nZEO)Fq}92jOs^aZ0fUwsCS!_aqFJ3 z6Kp~v7sB#G3~m^okdpuwv^7FSdzD$4LzPwd7>dTu&_s`#%)%CD_06O{qS10>a1!G| zZAr9rj$UqWV=JFIUVY5VuoMkDZ0ON#c&pRwI!fLE_Q=o{?(D(?=cdN_9H~3jGSx>) zfShjd(j|${9o=y2sQF7Vln58Sa{jWNot?0-u&%Cd?=KJ@+P<)WZ7%EN1c)+7$;dWr z>VZ^!>`kT+A_4*!UpU-2aJ0M`vWcnY)_G$k8al^1r-lEK?Q!#wknrVW6PTyA1`?p5p{xATE0Hsy zI#BRCTfn}o>(&#aunJW{llxKo&&lR%(b2Pgw?B1gz5YZ`(bQ}AlBEDLP+Umm=q2Wz zFw8T;CZ70U^0&M^&uYcZ;T6yQibt2hxztx@7m#X?_Y|wfQkB#tg=zI3tVpbRVPB;W z7bMXdUJiu7>=*S4HV^X;pY6v8((TYY@bw+Y1m&VCt zgTe5^aNif$@KHtHrV#Od_rn7U8lv+1vn&L%6YU#ImZCR>)VQY{3uBtsW|N$B#sk`X zuYQe(P`X3X6h2g@mod=u&7`KoiFbHAAhp~q6!X0i7m~goOKUTu5QXCQXc=WC@1Ln^ zOLq=;m%=C5r8F)|O~4CVu#x|g;GUiPt7;O0#iDUNWbtf%@ErTrmCciui$6YfZ0a#h zL^wc3g%9LRwfKMSzpP)3izzpz2Il=b?&f0LO>#8osyh0PPJI(vtc#+{vDeaj7)9&% zgB=FlrmG$!6;U0VNq>lD$dEen?~5^IvTb-yEfGs3FJ`A5OBg;p38|z;MES1 zx^Ep-V{@gS@DH$`h8Jw>TQgM)PpDtwg@**y>OA0u{I=%^lf^X)&SDIYBNK=^~8Tj}%MZ?}hXP-CIR1RrvFB;Nt(=~Tt2 zv*GT`pTV$VCAS^j-?*ke8&{WIDE)M<&pwL!PzO0N3Tc(+Dj#(koi4E9-1Sa?60*+qulS{LIgLx!=^H^h?sw8MfwcMbXzwg%wnP%sgA?@qj+^da_$csU z#Pu~!%(#pnj5+C`CPJy{XafKp;@e4^rGj!VKbBfFCFc6$#+!t6%hVoa4tv|T*R=Zx zBHlO3)Wmv3cfz8weB4%UG7V7&!xGda`3=Id9;KztCUQ~(Y+Q%owL4eXwl9zK7E+^} zj>+(xqbOcUjRn*Cwknylf2R zh?T6EHIh}mv*hXz7400o;RCRCZ%^xw@%H_Tp=iYLrVEwBYBYk~hf`S2(qZy#-+51p0kM#KZ{j@TwxC1;Bc>fGPZa_E-74|*g#lVTCcMJkytaXc!lUIA zA8HK(!#YvKd-*YT_}%dDMvVIpOL>U;!c29}i{aw+p1t?>O+=24SrhNqcS_97gmf$q z)-j8TcTpHqSEPe+8&EgQ^cSg2H1gszQ7RQ&4Qs#-c>LX?m6o`CrrgQduHRKao2W`m zm-_vC5i`hu9vPOYciTIJ*Rqw%Dtp%v*sO`#o2MPj9uUNo`^ix?VQvYb#i&*3XUP1J zGqv>NgBux`w{n@e6_>7NzEvNlhqeteythu1;}N4@AfeC4l~yuQ!4v|d?k-~0)i{rF z1v@Xzj}U?6x2>^Xbb+o&Liv@Jyn*b&up63>`PDBSNxYmTDig7q){w!OE20Q|?!le$ z4sbRCilS!zYJa>oUsAUK@l@pb#@eQf&XNuH*=5a86(-s3h1QQefA%P!2#?f~9D;TZ zzjQA$-*iFcpV%_8H7j}ww4!&lqiaw zB$*UHJ(4Ufi@s}6wL@YqYUXS6Cin^LB(Z<%!Sq3Yx09*va^7B!dgZTIKhT-0qi*Eh z2m464>Rc1-aWR~#Mnu>1I=Cfe!CV!&r>Ot3nFX35$PkNcIPMz8*IAR%b7)us<(t8o zLc+s#A+@_*tWyiG!akyvWQLML5DBwRA`){-gEj!Z`*ui8waN)(vXu}Art zah>(xWo3`fzk_|K#rpMLIv3f-qId2jE##3}8;v?fXGMhu^h?j;607*HuGDZsn~ zrc*%f_3Z=5pc8Vs-JdD~)55C<`sw}@Zrocf;H6YgkB*jCy>~Z8+bSz71B8)A#>OXm zdusJIYcE0{xYD!!Xs`qFw4osydU`n#5ok5n%?M1!QNUtZlAYZdfp}%ES<~OqApkOa zz!(M`e7(B^{rwD3TIp$GR%?z?b*>`z9nGjJjQ89(c-OD@8`^ zJX|ds*Ms$U#M31L8rpB+XS7YDy_Q_0i^YB4#S=}bsEdA7>p7FboOfbLQ_YOns~%b` zj4!j>-dZ^{?kMR2;!-Q|U?ck9#pPk?$wt8*P<^=m$cau)@Ua+HEt*j#SeKL>>(+1moadw{G@Z8kt4hPbn^xNq3-DrQaCQj=>iqY{KK}$tG z?PJCR_dM$Ii!-?8V?r9r-+d*+%ifq#kzdtKK*T{(R$!bjR)ipFx z)ZyX}yCzHa@5;1ORhOvpi!R4ISgpHr$wl9QiX^5Rap=-9NUGdq)a28&yG(8v=?B0x zZc!IzB&OGPK&x)H!!}OpZkI|hVI>pL%_KRNw)mBDqdnX|jKJKr7PfDU5I`UXS1&Y; zYDai23SH$k=Bu*ZeZTywfVyAJ55hh-bt0p-iQ*3cU@3G38eZC%6R zLwdG0cvs&!&yIcRlSB<27!XM*tEhtz+M|26u^!~^^*YHTGz;^{I(ncUJjTo0r%hMT zTpwcQA0xG1^2DDc1XTp@>^NhZkqfv!QIYJRsL|d$icHZ3rPBwiVCDDm&plCPkBVq{ zdzXA;-!x5!B|@aPh3hYwx$`cmhv!SPNH$6*hcaZVe(kBl>a~+$du^8Z_I zxPOrJHQk=Zv~Eo~@>e`DKK#x+PL4&u;CLXHvkRe0|M*PfCA_v1JH^}nWbXHr{%eGy zB=8rG-MUvWxoe!1tdGDjg=a81VC)P1`t{Vtz68DxTI`8l);CM<{U1O7y~g{0>0&^!>o0b2P?f)P zg8zTFw*RhX|K@kUuOE;eUR$Zd8d@3HJJ=cOTK+k*)-!`;q9^!B@aN#uCpuwM3kO3x zI$;Z42SY(aeQN_lI!Qw-V+Rug21a@YZf@AW6?K_k!XB_&6h3a%X~)NC#C|NbE2yoF zcC@rwo}!8K&;HsB&9257{NUx|RSk&|BhlKKjVOQ{F>NiwF^2~B=YAdvgr z5>cQ*DS8ytpuzHOZd@`artK<5bs=qROE=)%Z$@Lzc zzvJcY>BpOuFBeWZl25&*cA=enE$>71D)Q@Bc!esbbeixPtVu_R+Nz5FJ?)=}LMSQb z7o4)X8@l`Hl0OkJlFS%UYTYr(-o)5La7hL7`ZBG3{2erj9vuejB~BVeH-^Q{ZTu14 zw)3LnVnfD-z3i|&NL#@Fi1l=&GFLfT}@C`Ngi2ugR;kSGOS^6wR!;r`skn z22UY}^u3V+8%96nJczd9akNDiXwd~Kn^ebw8@*OIX5coS9Q=F>EmEkrS6v=zeyftNp>lvg>c(S|u^aXAPNMUxHI ztH^^}tsfTBM9fWL?NOicL@1gzpVtz@Ag!YcwbkIy@Vebxhp=L0tHz4B*hCNF-n>dy zFM4{RK{Td@3GAVnCF|l{A z$=fq%uSo}b(6S2K@Y~(wN%;4;=<0L4$3R;7>12)0F~WPta71TQ|6Vb{Jlo+?B;3sL zD^J@1syEpP!iEE~nY^RB+QW|2mJgnp64oIdA6Qd_JJqO|8mQ~7kE!fb_PSh!?nbex zcEdsm3xh9W6OP+TGM%4czSp1hyrXLgn5T3T7Y^SNN{Lg;Y##0s-D9^(7Im^P%eO3= zxE2-QgI8w7WAGLfSvU(?{H*Z8hD=H%GUSVyF9c{v=1o-u@S&;2QsJ&_QQR@O{jmeU& zl}nF$2WIMHSaHBLez^!K%*sI6E3-Pmxo+bxM?t{*uBMccEX$Jxn#AGC(yjGs7)JU?>j1IwUOp zL*8y!U_MrvGF~=!#NUvcQ-q@72IoN20Es3~0jAS5E;iFbObTH&?rfnZ5c&K#mfkiu z-PEd|Rkgn*iCBV4o{&*nU+hyp|AO@Q@q0dGMaCy{1a*B#5i!H21#z|vH-Wbu) zF4d&Yx#|={sM!v*32n7mmnc|l?&n4y9et=I_^6 ze|sjeKYflcqnB8oSX;4x%_ZGm%HD2B!h--B-ncDBo>$9DZ6e7VUJ z)r9doRcuucAPW9E_`I3n`TBA(ti!(w|&K4hkJw;eT3q(yUCuaq8eKaifsg+RH0%b4wjOJK$o# z6}MIIdUe&+K%=DHF=i^VF28W}OR0bP{9|a&Ih4pihlhHm1kbSOjl^7~jvN6wM3v+R z$RsoE=FTex27X7Llx2);V>mAVsQc{k6Uy5ZWX6|u4GsB^c$^2mnYf`w0$p?L=HTh&Fyhj6KkTH&B;TR?$-bLaT z_GP)PAms3!_Ng4l+{SnK*w4@wW6z^xEG$pfILAJeAj%Fue2OnfD1>#C7FXQ==(vJN z);r4b-A9>1(fhtziZ_<_&Hncty!1TWlST`SVP0AEtW~8K<`PQe=Fdtd2g|5;xY;(p zpO@~aW=b!63^jCzGcglrG5TMP_SLOmD!)ju_N^?{39QZ4${FEJ^?|ECn7HIEDOu%e z+kw=?cFT+rCaR7d&X8&y<_|YJQ=1I?t*phZKV+e}ve_gN)*42-@)VDn^|0emi~(mo zQLd-ZT&mLr2}Q$Dl=9Mta?v|EeoEeN#<}RsmI!@%gIqv-u7`tFd_y8%?_{;UI}Qe8 zM0e>c-nsg@3g_@PtzjE(?Xmmtc582q;dJ-0*%!4t$h@K!1y9E!QBu#%iz_Daewk}F zqm?&>rt}{>nli(xRFA^BmFd;O)x6Y1HM=GV#G@XkDnnCc8uXByK;-%!bwn0_?@{HM z+Y;@8!NFloN`itc{F0ocMpNtc&$<*zJ2yJ^qp+sI@;(CjjQjcRBfn$BqxNRfJ(dp5 zonsLjinzhTJ3W>hyE!-ZwB*tpkNE5vWAu(^v9T>qY!QNi3nN9v4L5xy%hcqSGTOY- zx~KAMYws7dJfz0|22C;jchD3gJ@Y@KDV%|D;=0oxWxM!^EGtN#KfZw=fxD^gUWUgP z&Klb;N7UPiT#-4IBMFs~s#B*~pm(Z?&M(z#QB^7?a=tTMfA7!ZQ3>%>xp!oI^8ll* zqkHkbxi$XeQjLYn*2<{e!{sS~f*UI>b(XqiV!}J`BaT-R?#?vrvUi|y+x_*-fX<5c zEqvrNOa#R7oO{OQh5b|i6m`9V-CfWtxA;X@ytl6HhbS;>gG~?`BFnjAn2e0Han?a? zfx4Xbw4QKf-;yyIC7G+L^+m-y)q~EnSLXS$ONNn6%CZBjeIRu^W_oq}V09*nym~}l z?x#&SB;}5%H7>Ieqn`-uxmgEfArA}uEM4sQ(DdVlA=7SgG%44jvQVr zlQnDJ0roM}T{s8v7;cd}U*-4O++6sr0}9v4`6K43zaf8UsD3~`{;1O#m&U4Bh7(X* zh3cgAmUV;KPFelZ1y_GMc&0HuP`@fFw}W7qPDXuqhZ4G|GQ}bqwZA(>g1% z?}9ElL-9@ESIELwHBtQO!{2)qf@w;U@VU2;1p0lBekZM?-#KP996!QZm6CD!cQCxH zOKyPZlTfYt>E3CfBQx`n&eZ>7r*7)|*JG+1>v3wY(=lw#(EGGMU~*v(HSIyMz+*V9 zS@tp8WS0Hd&OI7^4Hu-rOjRDH)VCOd zK23U^tMVJF!UkHIR1wLPXj9=96<*XIlA8g7JQc0hj({jIpxzPfqr=;uylMPMNXrZ2 zjl)@`LetI_e&u&%TyciT?C+zH5}v*eMnzQyxuT1f1Z4}PA2h61BfmDWpUUxhN94i3a zXm>fDoLi5#SBKv?4?89sT`F|_w8lGBZo2);I-)*PNDwK?aP7l=E)ddD_FZ&TU7H<ALF%e53?>qxb9d2@EjkF3D4MfsK2i>=L_V)%+=82F&UaCCFL6TY?gi)4SQt9kkD%QS&U;R_TC=9|tXoH-~Ta*Hpf zUtthk*pTQvQecNihWpMg7U`b;GEU>qr?{PnTP^rzJJ_zRNd6Ua@8jnbh0=G7;SPG;y7GQy9W_DPWTrjp z^v{^$zdK&66#qc-Jtl9T$^OELE&_FX%>!zvfw#3f3gKiA zY^jSH^XZIJ^TPQPIX>SZtffVk&&g~kEFl!c86de8$)NWJF>zhbUsDxGU9HT>e~<1r z7#WnXn{beD*Y#!N+$|mGNXAegO-C zOe@KSr>&*YzqjQGb=LIL5J4FPI0nJ{T{xJ&pc_^+1om4ePKZ}SJkWT_^i<8 zsy2a>W@TLGn72X>>e$~l6?^c`#W+l^>n=&nSwaPK>634BOGz=e1y$RpQ(>$e{Yl}{ zo?~2byF2*pRTjSHAGYfe@-LVq>ZgPbrFtkgn@ip|nYie8nu;Qko6#HhSi$ z>sYXlhBylPXd$&6dm3;x!aWJF;B+ghElH$E^`M_UtnWEuPm5t~iSt`}SL0w^>4u#{eO3L$l~lbCyd8nxg2$+*c)WP{r#?9{{OmJg37)%60d|WA z423x5>=!NDjl$`0X%3xz-Q@`J%C!B@>Us+HT_Z=!0xE1%+_&-BSzb3`iZM*V}+$o;d1wrF?YGPnaJDBG_6M+J&y z4x%!5L^4=ixk_bu&gLcT2TWZaC=MYnPp^&$U}~BUlX>+_X`RM3-QNexAzmIkT(plxjGfU<<7ktxSR*Wr~HL}z_cwo7V99}=J65M)DtdiP?g}&SU z^)@-gmZ?Kgl}|x1CzxOIMr+xYN8*!s3A4BR7j=o8ADJo^idVDjLSp#V%BBrkEb>Le zW(dnrGpA2?u)GnQ9` zK6)$bqUC&(eA}_G-XD&FHpVHtIw0w)h)XgfmBVnBA1|wIezA}C4cz#&0=lflc?jGm}*zdm$~}Tf3^8wnLz(eRMHJkPcpVUE9|S@iaZWiw*i5` zmx4Vkca=sZT#WCbyGS`WCRCJ*TNCaUfxLPi5hsY(w%2noPV$^s5tVTtwioLoK7Djx z+^gyp5!p0t`Dvx*u6z-(+Aj{z$I@nkRjFn=rL3;7$#+Vw8LdOXf9pQo$BFUwZO-w z;3-n@HErT#SL8P$otulta-!RXjSInq61U*bl7p^ZH_P#6=DL6mUtVbnins}dIo7JD zT`p_s;OU6zDSMx}3Fa&L%{);;4yHOU;qbzKQaR_!Ih7h!w$lW27#6^%P>Ff4T3!mIYV(`y2YJD9L|$ zMgOz1f8O=q-|nBHsjvU>djAji{nxU8D)FB^qZ2aHM zfV>Dlor09Ey*aQF;52!<|AAqF{bN}EjfME{nh?f+Z$e<{ng4e-gn)s8ogMHY{bLvF zFcn%8MdZ2rnyvpOESeynsa%v1E9I47JDP@MW(5@~R#U#*B>88)3bK$g+^{fjJ<0c| z(I$s-@2IYzfnIE1I`!c3_-y4=yJ(%@x(&!6P+}>&zpr9ZjbF#B%XJ<|H+aP>DpKbPmoUP(wx?y`Q)W-Y}zlL-0II*E8t@lO zP$u@$vIZ(fK$~@r3HK^TBB3|NR7S6l%D!oX4CERA`jshbF zPj^091~NsDBi>J0E$OC6Uj?Jn(yWb)ati<)k?h||s4d?A7L$q^+LgnR`~n%Skb{tr zP%%$|QKvyY&p}l+F*I}lFw}b8AF=imR=I$71PX~ZhO^5;wb)^`ylu`@pIw^d3!*b? z5b-|UfXGVlk|PhaYArC8%oc^~J4>~iO!6L}tqlwWa|P$ZqMpOQe5tqJkv1~g1`-jh zK%_p2(bx`h*JSTLIs>p)1|}q+=a`;+%d9Jh&(J4+`~JN^_uUB3Gs;&%kck7{eDxLx zXQNT8+yvpylO7ou@~AT1r$B2XyB;v3If!cRuq?=lIX!?Lgn~BDuc?U>Cx^BKBqOg6 z=g#j>+IAR#kcYmp@%5C7PKj2NGG*NO%hBE%IErM!TD&Ond1;BH;?xK5-o*uz3E~#p2v&#aeFgm z_-ft!UQxeVjfTDhp{Hmm&1#bEUfznb zqa+$=D&pXH0Kv5@QSQeJ1rB5&i0rfno`4rEsZ@re1a!x&pFjrdea%}EGz`*B80i$Y zv0SNSCb>D5@w z*@1yf0%h1_w>^?3lb39eNMdt!IG5)A#7?0HB9Zrg>gns7Qha6g)G2)^YkLwmj&~Ay znK6y6@f0J&t$SGmtj0x`nDbutgkibEp8Py@s-~6WJW47lGFb@kMt4|^tyaPMPMS9u z*i5+C6hx_5W-rF(vYp_W(aCqf^Mfcd2`Q-@u1YS<$<~MK6>ka%U@t*r$2^gP#6pETvonIFS z3kk`^2}XZ39>%%b-PjP|mu5yx%Ajk#@te+}8Fjj0<==|aqAnmU8Q6*}+K5dw(}-po zCoDuTpDqT%s^;qAMKP&*1CgABx*G|zy}iBs*VF~Aq+A=^(fA*pvo(E+F_bzNjl`sT zedSPPbmHY4tYTh|Qv!0Dau85AAloAIBs@hws-jwFh1+0%oE%*%_bT6XBKKQnQ5v$M zc~xldNxaLl7+e7%|5zfEDe|5mW+~1%k~DZ5f}JA^h0?Zxw4@jSwdwVn7IAv zk^x~KA{o10acW%lR4jSoahki?7I$YbWTGt_MFETL?37sKZoi!4xhnBY93@EH6eZrf z)8&cw&7JN5#$|RJ@ra6y%(yEA_2RMs-qR5I#{20u_9l3GH6g=;%W8#li)5Iz$rQbMcfdv_h4>AJ zaY0R-O8!XL5l5rpy+KB=OyqvE+hxeYB)I5&jXBVMhNQfmGftzZgHK6Ky=@Z$6NTt< ztbP8t;uD+8@72t+Eb4`el7d3R%eW%d2s|!vj!s7xw52Z$+36(tB&HUzy+jHV!ICsh zvDB+TCtQ>o8Xkj}28vlkKT3f_jw}b*GkZ+wV-bAM&K#gmx91FmkK*imAEMZ7J-bj| zD(lRJ`d&mhNm-Tg`9rlmKXGE}xx2d``w=n|eSHMxhW+c&N*m9}YO%bQN=_gxi?mLc z9=+vxQCVwcdHHI1ygEFXIkSsG5tCctYVg#nP1kif|VoQ>?mLxkTM?q24aFcliae0LY(}jQ1PJn-A7R*+SRi zVq;6R4+at@ipKzDaDkdl6tJO6gJ7xgEU`-h{VcPyFYYcD;yZ#u8|YC%w{Mx zSD(1Jz~uikRpiB2$RMbxUIPNap4@#0vn3P@)cypdtf#r7HRW>B3!$jvfs(YXX)PU) ze4bYn0I0>Lh7fZrJDa4|QRfR?+e37f_$Ok~K8A7OQk^#Gd4Wq6FnP-GJPJk+(kgjD zL|+Xn`}G%1EK4v|KA2HKglfvK{eeI$*?c!Bj3HpOeD&g{UowKbpsbN_UI0*#2% zt41Y{?hR>h@O-lo0VJGb?8QYz$vK)E-ol~Ng0OV5xV%Pf_O@Ajtzi)(ieVw1O5=c9 zNwO$hXXR?bOlc2sN3FP>2l>Ih72VC=sQ!)Q*fN_tTA)KLB=XUA3_IQDmqaNm35mgM zxvs-)-2O`k&Omqf2$U~aJq>2)4z1ycM%rl`dc8iXQ5ld5DNJvh0f4H&T zI*Np?G>Xc~kJ<;^_9iCew7tPte4q$|Ogb(CD^ z%dIs@!eTb_03dJV2UjvZh^Fu=O^6do+8$1o5Dvl4?@Bc{tF*yC0ZG1qtItmS5KIq! zTAv&o$J9(_%Lx|>vw{>23`jgTu@DTul;6!Lxu#bMOO4OYs+zqomu`7`p%qW3Bkili z-0FL8yfS8qZHe}U^-vD2S$}QKxCYpO#tVx0${w`3J3~%Kg-pCTy*Js zLlG~aJRfc0dk5_SAVajUIM92JGF_<9hcN@8UHMlk^zVt?T07NgZacsfcCVbNGfq z@29Ti4~>+IFrGnq-5!r1zYE~X?_}#%T@jQOkf5;I?thrMy1EK9*&4?IR1r=m=0X0GY?zTHarGdyI7)QCy|J&+upn8all5O@&tpW8tT@f?rU+y>wj2Lq!X;1a`u zc)1#hID(ox3Fep=xUZ7a`@dHQm|1dQOnWyqG{`~L0X%b7ut@?cE*$E1eLPe$z?~uL z$cp;{l@x&#sfU}ZAOtuRXbhMjdnqqO{_z#*92=OJa9P|{W|x*)6eEo6B8xfLKvD?F zC_NP`oM`i&22jCEeVwb_;+D;d@}Ak)ibz8^Zv(heio@CUQ9DLig6mRpluQPV@E0d5 zD-#nj(gAdxKqHxV6RYIIaq{O0zSkl`<9 za_iUl_}SUk08m>ysqDXzsRbA_RRk- zB}w-o{(l<4zA|l=SXFcb7g7n~S0)(8&wzg5v4=4BZ zgn#^MA3oo3J=v{D@tlT+2K9LtZS5aG09%!s_Ci`SeSnXVo?dsw^bK%VeJTak?`}@@ z<<)2`bx31?ED#;Y=R~qRP#HCw%;)Rzse%HIdTa}&jHDz<+xqJ2=j_ysw{qTv`|5w1mFPvwvKzkh6`LiUNw-To!1W-f|mgup}QHMuo?+6pWY?82{7mv z$%@m{(`a1Xy#DEEFO=R~DW?HU&;Js(y|(e}?CdSb7}^vi~MC^3ntfZ*j{ z56={ogjr=8bBrUcbV434YPf^n`mnXncqe75nZ|qa1|HsGEHlu`3c&|#fES%5@HjEj z@7C3KGST0U4Xanzr-{(f!Bf0Ob4*Y9>{AoE))mnEDNObfJ7w3?g%|3YY3*cR4n0R47YS3K+i zJU5#v36Un0Zkr&RaDU%z_2)};^aPN9GL*y^ym|F25RT+k&b%Ts zWZb>uAD#)jw{tT(-j>$ZGROm4nr&V!U=ag|{?39C5B`x#r;ta90)KOed^vC(AonAG zfD6F1V?CHi5BSNdjD~&*nIsw*(%06W2?|5$o5Fl8!6A{yyq)2H{B;pE|0(ulLr%sd zK$v!v2($vJR7gmO9zMFQgM$TlMBqn?k+4`VOR@tW8i=X`^Zj%=qf=5`3;_Y5S|omZ z;SSa$E`aLhpUK4_@J~Axsg%hh?)89`kNH~5CfyFGN;gL1;cSHQMldwX%gf&&BH{r= z?Eb=jXZQov1HgjQMJm=ezt;@XU6(od-3h;f*xv8Vd)I&_prfM$I5yi`TS6;-ibE3< z=iuz{&`@Ft&;3b?@sBz>D_~(|E;2^;lS?CbG0zV>JOIQ@781O_?ITN*<#yF$NI(hr z_6kQvgX?p4#Nrz2=D;42UG*4+AVjjp7))4 z^tk0fR2lbU!6E24kB^VK1}{mJH8edQLJsh0vnyj|BwDbiySwB*^bS&!Dv%op6174I z3xDIs3Z+QzZk7X!0Dq(^fPlteL)b@nD#v&4-hsSrizAsz!9oF8@jx-^rNzbGuqf23 znwllBDg_FJc>0|Kr_pRQ{pH>wfF5EMfSPaxcr<^Uk6Ov)@LDjz{Uq0Jlq?kZcCr0^PJ9K6ELM zO-upL04N#B`K93ZVI=V*iz1V4FIjkZS*2|5FIcxRGccF|r6fREuB?o<$FvnwTC7^( zSIg+IE3169jN5u%tX3uJ<4O`=opRKg`%0k|UBWBMsXe!kuhwkJ3{XuR_JFmC=#Mdm z#X4==UujKCfJWL@8}KE-$|LCcaDCby9-myVSuE#8bL8i_ukVb{F1m&*1^I}Rr4b<2 z1DWJq-@)tv9EOC$#@qNKHnti#^Zg`Kc`FxDHBZ!_Um7w3LycTSV^I{^-;DBth7b7{ zIahk08FB(CjGQqsz+8(sVkBf>&Pb7*F4am-C5^lRAk@?!AQIq11M|AGS)v#@X=_^f z4J_l3JE+_Ml4ny>Qv>n>+nMg!#`=1_TsyV%@nV5m6{-7kCAnFl z-x-aPdd{fG)gv@IttJ5-Hh_WKBlGkB7kh6RQ03Zoi(+7af^>->-5nB2DBUS3GHC>) zlm?ZMQo6evoHR%nOpp>3P#Ptq8$|kC6V_Va`+fV}XYU{9{Coef7BYEw>b_!(agBQq zUP!f2!j!(w+kUq$ZCYJNf2j{Cp;stkEY|p8d|R*HGEoC?65cjIrH5t`2N(o(!T?p(1cTqU*Oath=+j^;dLFZzSFT>uy{$H2}oLxn|1?U`}q(J zlTfxp=hFI`QUPDbxt3G+t~Ehdib&k+C;^4YQK*c5mvUL9mXz4a%3hLt40-;OK{@T4 zPuk_a9_<})9B*)HU&@s|>Rjtcf%~O?&j0Bc04eG#@cLHlLdgRgA@!f7&N8SlSMtHE zJ$sdymp8W-ITz#qtZ}!@C_68&uUSb?FHzWp56U2zrQY9~*H|*~nG_8g5o}{};LW$- z=j|FSwj13dMC!l>7A7PlBr_L9`9h#0S&S;}a%_rwRlINoQ|l+9PqWwgVECO_!B14l zJ?_ElUd)ZRLSA>Q2H5h=E$ zEG9)|QFf)5zau_@bVfcKQLB@#5WUR6iXmQOa9#4DIh$Vyx-1SF5Tzk-CWL)eAYhxKfSe1}6V!UB zM!c~r9MubMx*6Y&4lO%jM?IQ|OZXw_&*jDG5Z-?zTySLGHqt;2ht&@I=}FkwumwGW zY&$hIg&iXV-FCiO7VPJ3H&(y>5m(Hh-q{MCACbGXJtq)g&&K7@MTDG)91oyv?H`~U zvl(xwQ%wNm$0*{Xm+uP7NOT48U^o`jasP70p2$O2rtBrUFJ-Z^8JP|UKNR;m+xbLGFxT3zEysz zocepEXP%b6^(wX9CGyE!CsXsp{$gg_&c*MA4}KTFuZ^k2W0$wFwl2I!Q=nhN5qEbU zo@FNfTWAz--VF#uO~SRoR)Ib{V=huP#Q6C5goN421Vlt;#>N@H-rtjvDbm}TB&*ZO zN~&3vG9Q1xUEn>6F&U74)2=>1mF-A20{rr7{dRKX$b5dyxWAgI!)O?j) z>%FuxPohF;FuvH=M?{jp=Ws5N;zdC1e0qr4amPei@i5Ao#m*+qdPcSwwn0{9(yT6l zJJpdJTaia8@|4aj#~FeM8#}v*%Sr;x#TT`T(8;{5}F%~7dpT*aIk00{#DF((nRVFL-kHP0DQSt6*`j?KF z1I-1~X_wIv<1WMh!O_k{$iev$32{Rgk0EPAWRGOPl=u{rUPcN(ZhaRx`QkM~+Ce0? zkrV!oxR`AgUSHKCiL>}c*zs7e&YzWLh{9#5#{XFr0;f|GpTx_kvJgHw6?*CX*{(b2 z1|Q0TwNYsJF<$w;MhMXmWL4Un{J>q=oMCE-O-0o0#bv^uXhzyHx?gilh}fC10zYJk z5q<-zSPYT<^Cu7TS<8ph%U|$sNqmEkjlOC)w%WbcB|g;2&E>lwP52Q$^X&bgG%cj$ z7w74;^9qGQxQU6wbtoN?h*9*dZj@#)Nxj1^JBKmHWKRG0eZ(eIOb_%xKU!+!u>EPgKwoi? z|6ie-%eC+H+VN1wPmqW!F7Ox{rKy=*Ennh?>ljAp)aqbhaAB~q#p~C=lkQbxlkr18 zIrO#9{&jj+;R*P+oS+b-7`nP$`>UMJ=dY(vY?2YtD~o}?o8nQEFRr}_41LAp zMDIETXFbP#_RQ3@X85y~1srn*$;gv)?KOdOWmGvi*8^q5(CkyL_XKcQ*Xk4t(><$~YkwL$ADETyE0#8mjzT zNL-xzY%~OJOkAh$PX_AsWPiVA&^`4UJ423_U%?5fu!E6-0Y2*t1q+I!TkTzLUtiz6 zOX>@JTwit#gd9PJCrfzo^{Q%JB2`{Hj1!P&7LVN0e58UkYkm{oqRtAw-P&h#U z7DHsG_CD}*d8Lz8dT>4k2p*X2D>yjH0IKbVhK8ETVE4&H>X+*1=?!PxeF?mjYS42o zR#LT4^m-G2-2U0zeJ7Uj^^FpI0w!g3RVH3hQG?wqs8E6gUsZ7+Pa^0RWkK}r{^|=q zoM(c|gzuWHE^4U23x86WAr>y5EU#AzY$uCQwwU-KqpBZTcLP6fLuF>6BWl1q)}aZx zlTVOhSgRCc2bJ8qcd{y0b@X@=66&39%`qKOk+25*6+zy#lxwJ*g#O-Zb4(l<=s);u zoR*l^_hKi(OC0V7&I;ca?H3{4aUC1<>Lxe4zz<>WCjMmtGTrdrGwJlnEm%Y6L(x$| zw)mGJ+ld&6PP^|p7k)ezw-Wcszkdt;`;>F(s~@Uz|9$=j#kX+L8ROZ7cXvfPIEX9I zfBTM!Rr@DXdt`m!rLxe|0yQ-R6^MW%k)NSN$>WFMpJ+c4HV0>ct?IHq@wpboVkKtouf%%UkyEn{z|1 z`0~lepe9cYAu_2w4Sc!(CLQpdNey9NLU3ooGv6Y@#%2(z1AKLWJ&2ujg)Rn`^mB|e z@b_-}7On_CISr;p5TO%7+oL{R1F0#7Ju=Y=*@}4;$DygEpY#R+pj^F z6%`pt&SweRS-${5kCyzcdrPb)+@tX7Z{ayP{aT-T;rCv_=H9)QP%>UwGXNZGfnI@M zYeS*H(~y|uH*o5WuImV>ETOxTS62R9)-ao})&Xg-*CaHQ)WU*N_k6812G2x1NnTX88>~OL*U<3>iYnhj(|RloP6(aXF^|3@AvA2546U= zq(r@6pA|>}@~wH3Fxr*WhU|$v&&K7{={^y&ndw5^@n_6he-+Wf5_Y9uGNrcelV9(O zPqY@Xqql3(Nl^;tvl}W$4GdIi?kg)P#mLg3T^b#kQlg_Z^9Rw@WU>$~eh?1T9mOKW zM80_d|KWbJX|e%z!Neph#K^+ZA-VjW2vC=zCtaMMzEPmYYqd6Klnja%+WzVkurHw| z!@iZ~w0x&7Zfrt5{M~|ex)Eof( zYBO9}5FT;$(xo*EMi=c`9Y8+ty}>v6N#Z3!c`7QZJsNuAJNug@odrGPkNUG!YIb_X zwZ;BUM%27fha(jhDy?7DM;uJvYIf2iTOjN{T^d9pP{HcUBVa4bM94DoZF<_&OrsNF zVR66N+e_Q%GUQnGNucFw;05VGbrBMN_1-?0ZElRs>z3e2=BrSBMdHFqpP=P_tM(07 zgYg$x$agRF@RO2~-a-i-c?g)F4oemGHLzD;M9`*a*B7 zITe+d!{j~bFN^yie!K1QTh$$~6NOkdP#)Q+s;XLBFTlo50LEB6kPG8$Ov)mq4Tklq z8Q79~%OTT7pNhxyQ)e8fudgr20va0{07*zmPG(BG6FFLL_NgKAZHn*{7G?){i^cYr zDgZv#*1pxHxYi40)ibPUo!4-C;<_Fk?rjeknMJ;kOaPj{g9^ZCXH!)J2^sF(R9KCw z-1w|9^6k2%fb!AO`rd&y*$d=qz&&vB@KiFtMz3k{Fm6E$yKy$zxsaB~#B$nTSaD2I z?a;$ekdiVHhs43wqz^4*{C3cV@sVU}PoGAQ!4g2zfTfH#`}q7e0mT$F=3-V~={`p3 zd_$cSZWx-OEluv*9o^kZLND*A=l=Bnc;zH?$Bi18?>f36jy$ypn6&c?wDYbFeS1YA z$THh2)4|tJLHh!owGQby!!Bb*9?!M*cU#vD_V)GyntueyDo|BtpZ@?1016n`edVNV z7q6qM1`-zNL|CDH(4(313;{XvVG64Ns}dpjO?<#7ksj}v?X>| zNyL2tF~hjH zt$}}Zm$Bohu#P!+iN8mK1W88{ymUaOq{hd`m-~ zXnRfpK0eqnG)XB9-bMg1m7ooN3ZVUkB?QXtfjYwY%>5%7*ZDAD7WpPrq4`SRt+;2>AI zQcTcyE{+-rB8)Kr9e{ttg^UI}NQQ@p19II6MKhcS;3JX7@@&6OUVc2(tkJ1$DFA2J-MTrel6PVg3Aw2YFu)R z3K60h9XG{|oN~|0C$(isosP5v_EXT?f=sE_Wi?ft8Vw%5G5(mVl4h5A&Ly(y3{>-< zVq{XGzC}hqXahp6ogL8rDeT zhpy1w=3`c9+v%PCZiu?tLqzufMPoPKfc6@MeW4!b&&q0YO)@henPnKRry6!0cH*EyELA^mKLU85v2sRpjL}r7o}{mzD@l9;wmvEU(xB z^>K#Zio()GDo;?$Z)ENQ06+JwB+2-#jwm_w+3wQHIGaNj8&vXeQd`=b4;pHri2;Sf z&dv_VBeRlgYips1__7MfWPXJ&5Vl%H+Vl(z;4lqBvLbS&RY#3JWDAC8|4~`8Lwb zec!*wd6((eytXj>*S@_*gALxA36L6mIe7LA!^g+xGYVksUhe!&8;&X-rfAr6cA>fE zhvw&QR?aj*o274gAqrY{)Nul*C0>m@uKdyO<*gcvX7AA8H%EiK@9`;<}=E zYV8$>1fSL3v<%eGdFi{pS@Z?~TYr4ISg+J7OV|MG{+G9fQa2}rV2%K4Jy#Ep$7A&{ zOq1%DP?ZgWJ}5hJvq-Jr*(!R#i$j0xE-NvUng#JTUK|hds}Pd}0$ia}McuxpOZZCe zhEa)WTUf4#-@N;v$&>8*bwzch!s}#Y^V8EUEP{e4ZstV@%5n~%dXlpQA^%s9_shrX z{I1hcOa~#+o|N|;r-NG2FBN$l4VTmXXy*oszJq6VW>%Jx(((R6KfGCJ{))Ju!uK!q z)@iFJ25oAp_fb0=wr#z!c!`kHj4$T@Z4g zMSMBo6CUA@z*%q3_C#HU+8nY_=;Y1oR8(nDN5SJGEj~p$d#hXU!5`{@N~7K23`p=%BG;L_WntAnWElO9Z5h)eQPaMWqd6t2Tg&GY^w*Uq3w zZ>r89)_I^a?B!KdN_a(q4frEvj7~!&T)`F|0fG63DbzI1gd~dyB1#nL3K|&Y(5`rc zyZrDq^!B~HbojrvtlTo4ETozILQe3_^qVb+U%t50V$r>4sF5hSrMCr)gO^L-7XfQv zFf7(=ot8TpL4qbTdho@Yhrdq|5_UN@yS7tU1n0TNHd&pkoIxW$qPrBmXdRtIw9Nuu5J z)9e^+Vppks%PSqTdh;h@*MN;d6)wk%MkHx{Bl1{P^5Q=*w>I?&`E**;paB(hLw^bv z!)aXwEdAvC*y~TxY$je;4(*teH|JRs+^?=wLo^@)AY}uZ{o1;!pnR4Brs9eM&N2_~9%DJE)$bGedG;Nbz? z5(*lDme$tDT9Dd^qzm6G5U<#G*zG+UCEHUT3X z|4IQ4MgrwWDqs^|Q&R)KhUdX~@-)SV6svv<0EJ3HK*0NWT$H2j`}ZAaU8EFNhN~7q z2Lg!(ik5=Hk{PClee?74TOy}~pIV;jO+~+rizd9NIy0T`7)(y1g||-oT?QVqs6-YO zD1=#lH4U7gyu|bZ{QO!p5&b3lah(~?>gwtl2*|jMWH5bF$^H1do2;y?s%p5SGRPW1 zJCS&ifRfU1cuK`Xig;qqafv@__I}aQj9x(P8Q7%g?kEd(hR(s4-i+u!hd(5OWV4si z`9v$RrJSiJ!^m0Q>+28Wj{y-+>+9<`9y3x?znhpyb3)?a;7kXBq^#e{OchP-Da!Be zy_`av+PT9^F~^jm;c5vVxxzCDUZYj=bF?q5(#3@Hu= z+reYA?o}ZMA%+1ZsVFp~LrD!4?mFZuc)Vgz}EjVO6(;$2R z_jaJJ>5`#W1^g>og-Yu-b&<$v5nRuTY@x&S=K+OW2>bPXaf`o#0FFZOk@^~s$jRGB zp~P!09mXLmj(C#rB5ueSjTp`;p=?|8=jcla*K$+v4cUazz`{F}^?TIhNj9M{P+04+&r zDtII*x+wiOWA^c%Bv7x@U;{)8u#r>$(0Nyb{zfI?qT=tOb3GYA&-AB|`rJjyn|*mI zX!3E25RgwaYqh8LDCCqS?Nu`<4?+EPPZDEKbD$X}CCW4K1b3OkOGpSUDG`lGF2*Kc zl0@tpvWaApqT9iAMpLu-&&c$w`1^<52pCN)H)#4)52muJ$P5>_4|?MFT^*-=5;e-wgiBC>MIw zx>!%CF&R^Hp3k2*TA~=ynG1+nI6I5%+y(U6)tdg(-kv-|z{cB7-x+41L=#LAF(E?388u(*U<>k`^OkZ*7oiR!#{w=_q{|-h) zV0gm=G5~Cg3Iedp1PqYkD;#|z53~(_<-nm?t|o-K?Nw46ui>92fGg@lfCmHqngb#% zm?Vb&x5EtN1bK=HUyF5l<-)YFa_j*A?ld1)ShXvx0x>yC7Bx&DIdf$jcPE~y!4ij4?FWU)Du>eY?>&BJ*}owvbSEO zkW*ZS);miO{~})z>owA*j#&1;O8Sng|ARtgE{afO(4bd_lK1ncPoO#d04fKx4u5wx zjfCae|B#UwgN!8Z=Z{%;F5EuMdAHD*%e43%-zEr;o(P&9m71h1YQ@Yx?I8ZUw5KKv z5mTpoP4zdm7}?7HNDW-vjO8)%RKkKWmtHGsSB z3qt*vm>A)I*hM*^=7@xkeP$6ZJ_=l9-)p?4>IbegJufb()#5jKe%en&#Lzpr@jl~f?w@1Vso8c)so=QtqynIcAv%vHVQV_x4<`misdzq8zv;m0fDQ5y#U>|E zECDQm&T8Ot4#)r+H`4nGN_C_e^eUv-$w7nA5^F7Q#`(K7jxBt@)<`t# zwAVqn!*U}?^XbvgPNUL0Sre{qaC}S31VwMoSnon$^8$i{dYKrF^!{|Q&AQbca?VGK+%ms zS1qrxROEU-IBkYXkaGO99OcE(^;QU0#^=wrw#yx5QE)zb-#EzgwX@R>#Qq&70gH_k zyo&B}Hw2lL42o^MeSQXoyqX#C`%d~8P-61d4=>y{?z!Mx#MkGD*j>rviOBA)*co zgeG=4K_!ki1nFsCTEryaA-l)kh>%a{jKjvaM`~R=vapW&>J&K{8Df}i z<3u)EfQf;T0%!i^O;0~D!mJO9Js?0QkWro?hvSp&sTY@x8g!xl#PtNIYerDsSRIqHn!bVt0giX4ExdV=dNYei97Oi#bFehKHR54<MWVHDtxLm5x0Mw zZE{I$XL_)kZZB8NK-p5Y&mbko#=o<|;pnWWg4+lD%`N^EhJ?_c%v>EKZd;`as3y<( zuETzk$0&;%4VpxiZOmkXsg1f`2M`Ah6puD!Vh{{VQU_BLtgh z(0Nho54cW*kKR8kfnKZ2^4+8{OE7i zRjMGW)*bgrdbuG!LZfvcOVem}rr}0MvwO^#YtZqJnSwJ|u`7-BqeT;~0>0i25yjS1 z9vm%39%fq_OPiUPd>qo@I%6nVYWsYtOiQWeSK~@nwniV5IYPQ7t%wg^^ji)o#6G5Y@&BlYMVf{%C7GXZI0P?BsaR z+Oqrg5leNKD8ErlnwB&9BIC`0%o82LVV~m>F)Gtv`38qSP=81sJ880acXVeBpmtH#$DKG= zZ6BEbQoemnf9a>%b7CC+!{b#wZHMpY4wEzm1z*4Np*+wxQ1(VHrxMnOONNcH|1MVR zYss?PF2fyTs(0Adw-L1s!PmbLQ|n+`ai}SPO<(n%Uaz?N(zKzRe{I`j*=IwCw&^$LOE5wzAG@ zcSF{SdhJXRxyMc+Mb(7~WMRv54U0=r2==%HWQ3D#$XiYxO*TVq2rtW-W%FdU} zEM^;7=1(7^+LLxcEZJ(@-n7HbJ?#PM4V5%AAgQ=p>DRWMeI)8Q=mwdyfPHxOvRAF|98Z>yR>Lg&xY-XianB)35vci{(0}>49Pb*XNI6<8KK#kM1uDlY*QJ-zQN9%5!`;b2WqleuZ?*?L5 zk3S73KR&N$EzJ?u#IwOTwVV5L>dXDf)(YnvUi7Y8F+boN`GZIB4b9^w)d6;ia`Lsl z?z)$DghgfNnHOhAj+qO~mV8{)>j%BQaBCZNZ#d$tq{)ayKOBE`Zd=E>LCW44nK6|M zyB=E55h|!?#U>hFY_e=Nw#0^k!l!)C3rU9Xqm7hIM+?*_?<5?2ipu*y+4sDx+`Nr4 zf7oLUqeuDG?o-Oa9urRslGL-W+=@ybq&{(rwYxDM?CpxxHTScF(d3RNkF;$F>Tq{b znqpRWxXIWyRYUsb%wqw_Wykaq0YMg4`#aW~X%0sw6!Xhn70&K1O>egBtiO*na;Q8< z9sWTy*{Euy64XEG-ye}_?9q6aw&SkT`<*tuMnvWL%~g>#wv^w-CQS_AF?#&Hb_MPf zvrn{&*_riB6eoO3DMS6%O}ZeeaFK6zoQu3znXl3u^Y)gjD97eX#z^_V_k#g$k1J+R2Q?{O zT&AMhGa3fIefsTLRaa(ldylz-)KaU}((p*5wRs)?KIeMm4_&><(#}nk!j+KE0yrIY z!pC2KE+@BcJQY2^@zkUEPpwdox=$Lz0ee!;xugv?!)@k?)^mHcJ*!jiH6CjBFo+(1 zz}|OPB}gly98D>+;u(2ard4U;oHRD|hg|Dmb2zprv(=vQ!qdDqQ^g+2L{S? zf0I9)dZWFhZX$OSjeRV$o75oINkU$s;Cspgot3aW(C6Ur?M8_lN$yi$J9a# zTVhQqBQZYggu}Yb*Vx`OU?CHY~iTkrXsuUr23O45})Vt zSFrP=7aNkl-*waGJZ>GS>vwn4|5kb{qHleD$frcQ1YAO!ZzBh%+ON8L( ziAR~b)JXB3LaBUe49lH0HZ!*AFqE(%r=T=ol=K#_-1u-+AY+y}$i&>^uO zKDD=hHv_nKI_c6ft9m4;Y_G~7VAz%bAHVQ^8Hef=eSLoiHFxgDLc=Z&wcQCedehEY z@+f9&;6YXLVonP=85zH2Z@OlY4)ePzEj^gwMuVHz1aD~Wem`3!nU2235>iP&^qKcw z`0(zX_{ZZ&Nn;T9guddw$vYWiY*iuA4%#Qv`DSan7w4afiVbGQ&4V++W!z2fWd7{OiUOy*oGN@Ad%5>GSn->=%^@OkKaq@F5;M4 zSO5x7z@aVV@UbVQK?-AyxaK0`9ds^^Tb9*^1wtN9ObY@YJAQPxFKZ)>WJvonVBj;)HqcxzHU>A8SB9@T}kS*C~!O zSHuDYcNaO%Z(9C!aChmD4y8$mi)&*quc^sntzx+tb;LXG0-kW!1h*q(=|Irj)z!82 z`?qv&|8qqhm;oyI-6mGBH`?rz)+CZ}1kdD-`&PcAulc7P1Wd!v8`Z+%!)*0v{gWbmU-Lg7Q=%tY@A78}bIuk_ z=93`{uXizP%J^l zK^Z^?KY8>!>mE&pf*nlMz%r2oU}&qN5Hl*VX4=SSZ$1xgnuhSNjS&hJ5)!&Z zE;jbor5Tip11_q4rZ5B_?Yi2yb4`#xqjL!^lddSn6-oBzt_THm6)U*%l3&JHYAy~WZ9TQ$UA4q`tkZiCp4Q)VDmvw>rFqfqi z|B=8)pR3|JI;4kU8Y3;8osZ!D0(teki6=O(?arSc=Vp?@ssTh=6}XmtQth|XyI;=% zxw{S;$T_1F5Al)r?=$2vOXeuat&y+Dcmv#a9*RtAvjJp@o_0ON)zjA(eDuu*?CL;s z01*xJF8U$F?9q9t;-kT4bG;c5Q00}BN?^gk^~JI2PX7F<79{a8=_xvbmpl_fb0B{? zQl7X_oF=8yd~_16!SDk8(GxH`9T$u$fdoGFj|_VC$`*vVm`f`VZGjc6bKfom*6vXH z04A)@s#=9pFON5hfU6O_2R5I<_C?gPm-=>!qV4)53Jeal9eJ$u7sIHQ^j9+Ywq&|5$I%)t*mmgcq^UoU?$OAUWe*=`CL-#GqP|cHe?&-7{oE@T??5KvUS>?|8d(kx0~S!>_6tmYvl|^)fs} z*izp7b8;PMs-Hc329t3*Iy&bsUWDCnUyr~wxxh5G^Grt!e9#UQy`YA*@rHRlkTk&b zrPMc2hq%Dw6c7*yMXjFIFvw232NdedPrDS@Mmwa3>L1`hT_Y5pW~yHur2cWB=(}SVBt@ZVv56zHv4Mi2Y$QJ zcmdgN%t-ynWl2huXs@@`qwHeX2p05Rw6^254z#vHFk}7tRizK48E{#l@?4Vu9%8j>yo~CV|S7*opeX`WT3XHx7&jb-L z!gaKje$7{-b&RUi)zhgshK6ItgszwNlu6VRz*4x_J z!I2S8-EzO_*hAUo_Qa@gjRf#$icGYdXleupzb$szFaWIEn{#3F>6{#|tuHdupPAEI z2ETm4iz5Kg72^OmTZ;NP)AR9dLE!=vwy^t_V*)(w0wL+%&oFo|L=d-spPaY)x@Zm#Q z*-sEjR>t;^pRTA%J!ir?$EDv*93{cl6d;k5UPi5R@4OV1_?t`8zTMV+f~t5~@2jQG zM?L&PU48q_!_hajogLmri9%dmDaJpVXK{E}-;Qwz_y4pf-L7SCH!as>DbX%E^lsK+ zn+$E6;;yDO5KQX+X&<=WrlxY)pFv`2W4NDer@i~7827&OEf*N_<0h%@3ay#?RgW5Wp4 z!GLez=g*Gk&+*vBQ~VqMYN7w~um0a}ZOSdg$M>(M&|`WEkFN_}Y1+9zhg(de)^p~C zlv?H0#3byA7uOMGg12wkrrg-uQCKJ;D{*lV#p!J!>j@U|49t{Wpr~MENO(upe*K5f z`<3P&bCeI#ddAa8)7H{(&vvv?l6(m&L~MKDT2-4yS0^a!Ub`Vu!cQiFkLzJSblm=U$T^0Q(Df}5 zi{2)dme`7m?UnwA#cxR&^WU$v`**LmNG1n}o1NWxEx2SPZMqlW!JMK$+B{kD_~^*< zVErg+`qM7%?cj2Um*?D96t1(h=U}c5nvkEnSY)q~8GqUDqhV(bw;oZeWUYmwey6{t zdttv!rZ7iNBDwi1k3iAfq89HGf`$qUUxb#L_g=~|eLx-%B*j7ATJ(A| z>(ll{6PbV^diN*gqbFv%t_ zN-ouOyu_equtU=fQwg8@KfjM54J{-uA1Vo>&DnIKyIsyktx@PCym7g#N0j2MC&|ve zdjB!|zUcV%*KV1+|ELn7#EC7LXq{+w_mO_P%a-R$kQrv1!o%9i8Qe3 z5e`N-8ligR>%PR6HxcjL%6irRMc4RRGRcy`40RRl?M3ROu8g$46b~Q#S~;=#O2HDjP*L`HT#J|Ye$D)>^**^n=neVC~=vn8dg@%uG9 zK19ENbLH67OnK>*RrJF7Dz(BuF8wvF3;sB2^kn!LNRzxh`{9R?hCgeG$JH-ybyQbh z?ij`WNf*M+R_SeaOO9OX(S`7JIxD`5KbJJcNvy8?8fw?NmaZ<`k`*bUSP)53oNsAm zH59#yqn+qhhhO3_Y+mf2Oyke@sr9cMho1>1li0 zE|~Y?o9z(v;$!7{quPuljAhz~vy)?5A4G9TsSd@*Y$&`6$JBVCY*y};^QNl~FUmD{ zq3aP}EJyD-HYF- zPwsl>&fUAZGIZ(Qjjqordi_}E41YawzY~vSE&RploT}xV&sp=JI@FAtkiO&gd%A8#n*531^Z++4o3Gx=~~%ZNykl2JEwd2;w2 z9?K0&3rWt)*MHI`f2l|{Y6-08Yg>LIex_x!Xx%ljcjnsq8@wwK)NK#;c;Ou{$$5~R z&=*M%M{PIxnm3hgyU;Xf^rfx#C#?1YL+=!#g&d=ATs9`p1>?F`x0F|eSaIylEXq4K zg#9oKaCILfkeXg$V&zY(Y-Hf9jsM~P86#alBO~2Oh&`KJ<7n`Gi&MG2?cp@dhwmeA z6w4Qho9Ma|oNiR(r{O>1Jkk$%D$&`~ZC`odXnOlP_`q3TvzVr7##48BbiWZ}$s+D> z%j2chrGlRG!wh!D)7uvI%Ly{y8`L^4cE>fVCCTwjl;af|k5f3v1-En7cxXQbN*kmJ3r5VW%vK%-V;K%g#O;thF|Fa z*G+BEf9d~rQyXsH|Gp3Ca^D%WAo~N?e%!Yk-=qrO|4J4AFB=)1WR(Al zjg0;)nP8!l$^R!C8U44k@qgUNh>MR;@Lzk@r7;hKo}J@khj~BO`_WqW)Re#Qw9Y*W zW_vl5hwQe&5we>O@7Iggie%r(ZS6FYukg@J~&BK;{I)dw{b278d~Er5rX7S^*4Q#QVS%%o4wT z{Ti%U>wV}B_7;i!k6<4P`1%{Bkzp&9B>K{YsW35|OP65ITLqBon8cEPtJ$%u&~Y(E_7&UNPY&K&f6n^CzzO3ljVq8qa&!VJCGlqzAX#ca+sj4KH0wdb9c&pE*9m$lVI?p%?Jv(;)=}*#c1xzG>b_=nh;@}Sz z8`IeW!f>?dAxXmi7(i~vhdc7u??>*yodf?P@IA>Z1HVW|*cOMr4vdDTfGxc*Z#vxC znhP{lWb(Mzj$xJR)%95a8|oBy`eWjZV5HV;kamiyUH`&`<9!!z_#S}rt5>cx6ji~i zEPJB_fV#U2xVQ$uXi-T=!K}A7S-{N9j29SR15|jwEK3YL<0)4+r#otE^s21Qj?*YG z;QTLA)6&x3y7dQq|C_)i4=5;lZj}Tc6pUXcu=<3;zz%$v9}N52dn1EQ?W|lvOc5cU~j`_Ks3*y9|DgJ{XPeNU`~GB zYqB&)($^GD&Z>bO0ZVYk5;D+E~iSiZXG4eOi zrs^E7z{SCIa19lK!O;FftZ-Y7p2u(By=x*X-Y(xd3`fb3bC0@9v5c$Gpo)&9_u4!1 z{bhy2aAERx6&;E~zq*4}zvS910hWgWfXQZ=k4FI*qX(MpN7>1BKW$Y)b9<~#w>*im zp7oSp8+I}9WUBr-tc5J^kPy1v8j4j19tBTPzGdp?^n=`}e~1P+(`!>FG!l{(TFEVF zD@MEQy`s?SBb=lRwoMs(GxsKC)!YCHX=ED)R~}O~kdOyN*|{<+H3|xRUznAZEKIi| ziYVRhHM6e+VyqI$uOOjF;xP$ZAhm~i@S5gi)zlx+UR+AIAK&e&HnVR9f~e}A`)dGT z(^j+WJuWJ`G})jU6uWuv@qOo{(kH5fI_0m295Fk8{=k08TZIYT&BiW6OoE5U(!jzO z=sKCjD>{uC8Yhl&FSZPsI_57f!q7PHCwJ zyf{p?gYKJcVa=h0%NV^wi0Cn-ynz>h0)>wGX+_!{!3dXyIfvcK73C+hQiqMiX+2mk zC@2O`9H4216A-h%MEqZ9b!t+ihe%VX{7T zRTmf|vSFW9y>O2-hXE-!>z@6t9>>H9iUeVao_#QAJIlMcCDz+-Rb!)`;f*SiRV5B) zam^Yknds-+CPuBv>4k+xBCna169!-jUo*Q=2T1}44V$!D#TXa}9g!k?rrBJn>&Aln zZJN4P;1!7!1;~XW{qJni=81mup`oA0Dv#B$dAMPa9(%>t4%=BY zyw0jG;YY>3Nhqt2)fB~oI`+>qaqFg!t>L^p!(xMo=SyY`uchb>f}A9KN{-m zO*`%F@&VRmAA% z=<#dc@7%Gi@aZ{SZ~GOuD)8im(6>HWLH3C@7|6)!V^UyW(cG;2@q(?0qQULGJ}kOD zi$uUw^VZ-yt9darnKzL}(U=r`puzSs=;QI58rCI2Vq9)H^3tgr$kvo!GFi`T2W{)o zADO5LJBQOBgZt%9iRAmPH`V_%`2Bm<<+=mrPauIvDdRL~UWg4oU?2aAaG6DC&tOcH z+pKBDk7C7dMwhZK?shL4`^aGNlJe$hd*L8AhbX)BHuEra>9E zp>+tcI5>Pwb=L70>~C#tHL#t<6+iB^ot=1gXPm>U=2^griSaUGWZ}%Tz#H0kI_B#t z;R6Qm{2(S%mVKEJYLJ`7S%np*$H&I%it~%^A!bzQvVav_Op z-`{h13BBNleITQwE9T7524R9CG55{EtH9?*Uwz`>hyavd$q4;o5DV;0($MH0^dK06FmV}!HH!1Jg9os2AQ~QKFw(aqp@oo}xKMxAG_Z!?_%(}qGhG!T; zOAf7>dVOur*=>5+l9=}<)clY)xt_(0wG(03FExlp= zdgL3)zqYSRqcdhp*Kl+z$c_%Y8qe_D_u)g<&0(eOAzPCSQhw`D)6&wPSemz6mq+Vt zx^MqjO7?HhP#1<6q!kBx%S3#u4xD6}Z0 zTcq!9CURvY97rNJ+?VS&)7`xh8U&^HS~aQ8RR%&!p)W3;xeYJ3)oM91e3pSCA6&dl zWv1pV1En8{-mo5P-9>g1p5GRrmcgRiXN3lAe4sG9IA2zBLwF*ukPsZVvPpPiKTgg@qN80>d+0ZF1hPK>~f*!h)mXE0g=X9zT+m z+1*6H;i^tPDYmieD$iy^DYNkUM52wreB6(wa^n`)+~8K&ku6oPf`5# zuoSfi144>Un#0wrg!C0=lB;ihcT!>9R)q8c>+5B9w$^Zxc744MPf3bv=<{qtW7uY+ z2blPPer8AtYs4lhp@|{J)56NI?Zp|q6)UeUZ8%E;OrMlC(9QNKvQJJ-1mC=AdVIH4 zl(-Ab<}1H^(J!7zfToMA`NAxhH4_IkWqqhgpq90L%&|*;{DpCG=kR&VdSJMRj93B+ zRaEX~(R^DG2!g0}nV#w$fR;m86BgloqiQ8%sg8*8thNuC#PvU}LXH`M*a6XOR~ZG* zXj4`rT%KxCZzI1Wm$bCD4s`58`s-&Z99qAYwr@Ge#<31Rjq<|JkORrjWv1m+dLYT_ zK2n}GJoSq#z2^iQ+t1>ej^E#Xc;KpYHTEInnY2~Qn>L0V~)lfCK8w_|S6%`Lx=CJvB4^}OsF8R1#AW!4b-&5?1ZBSR-N$iq*ven1W9 zg!(V>E(Mc-S`V@I*KC%*OG4tmwH09qH#GEG{0W4YQLW$;!L7MAq!YOS7XnhWAmf}B z<@zR>Tg{nSbl}@@RG+B(aY7oS0WR>c*iZeJ7av+nXvSQB@_W@tkgcg5v`vBbMA!BG zm1bg_jK1~u9!k@;;npoTsOZUhXC@Y@U;h*y@OSnr{Gc^vHISD)a*1-}Ocu+&eUg3) zPz#bLC_Y+ns0vUUhjlYYDLp&8rk|4Acs5H6)TkePb}DrTQE}~-rxpx)8~QG=dxkiR z^t0uq(#Pj**#qNz?l_olZFzEJ9NBeRX|&eI749fk_~b{&$2B%!dWG%SciEN~d3nbb zq-gy^&PmU@c zh1ty6cGD^yS50i%5MNe7W|P|nHVlxac6je1>O0S6<^~pnXIMMV+r%)_>LWe z%M@%U4;(naQFH7R6;r-jw~?Rn^p>!fb;_;?JK*9P!_uKmTV?A#MwPbNNqC^2f(~gEBB%gR&D5v?f|q z7pC5r0)kmr_?R5T$a73zIIyF`W68~78{B47=@}W*i z#f!6qxOQND|G)?>UA)O_&1ed%MqxogWJH9ltSkg%KYDwy=vvCke!!np(d*Z*UzmZ! z!_BQCL?T^AsD#!O#T{Z^^XRvC>FMd1(EL%DXxzx3uRi6^l%AYS3JEbqgbk5@#RMx{ zz6IbO@YX}T=0Q;aAtT_PCv?s(E=zis@jS)}!cR))? zevkDuH#1^`xu2PQ>D{*XyC4R%gb=ga!O7Cx+zGQ8+dshBh9}N-^y?dPD-Np)d)TX= z#zZ0HBr$M6%fu4to`RLz$Feena3d3w*bcm#XEHx27Otz0A3uigB5QS%MGn9al$Bw9 zC?N6*3ZRG6jjs!jj6~Z=Q;NEDzDPztHYdcGc2L&Z*~#Igg621|2uGJiG)~~~M~{dJ zs=)uURy&(*R5KNSYT(rv9ao5V`&v=iLrYGhbDzz6pKsziCJRTQ7`N#&5!bI>3+zLh zrSO&e$`xb=cxd@|#*q#oPNKhP{1=T1-%o#`o>&Ky4N$VwZO9n!j-v=JgOqYnM~3M&|44{6@{0FMNn*PEMIz)h1tR+(Iqc-GrtJhM_>yuctw+P z)G$|XL_`EJTMK(1p&`Lf{};}jMVuHY?fCil$P^0ag{rx^Ie_J1^IZA!7>N-Hj2JrI zL_?k5$Q@IgFz|??=YMU#Gr=3jj2d#Y@S=s}1@bJMrMp7Vy95&V)O{d57fNd% ztzj%@Q`2q?SneJfIRR)A(@l`er`0G-j*g}PKWh8(r2q>rOC?c^o7)=mxzeHNtbP0j z!cfyQ4qgy*BE2xkzN`-9$5G_~-k0M+%y^YjTcA!F>?WozOEju=-Xp@9<7u}WY_HBw zbfY2&brE@xLe3`w3di2%F!bNxD*h6HfcWB9|NQya=*F>gRpi$UmcfYhy353X0xB^* zq-*&4KMQ-0$G^@u-#`XQfWxUo5rNC?% zDCY4hTxLr5MkW%YvZ|{8y?dYGj)#N@L&68J`UeJDF?$cv-%cruDk$aAGs1lQs$|lS z$_Pz0wZ|ct!CIjKdL+sLFB3o+k;VL`w6rvkE=Yl2zO=Kp9)^1hU~p`6jp@iW?;T*?2 zh{XhjVDF8)rHJ)Lm0x6voF0q@rVm-L>4rx{gnF>Tw2@Kt6Q&D}j$S1~oG@k$0-Ch> zl3nrkE&4jPgZKDAD$tgX_+*h|zY{MbR-A7rWq0!AN#weUXD@vy!Tc3Uf3t z1d8Cw5mf~&8lPunX(+11N+69MKrA6=M@JjoxAemp#SI(cNq8YoLu1+5?@8dc%y)pT zfWK8!E-x=H;Zf3MA@^`k6ZUX-cQ?t{xq?DTgI)HAfz@l)0D)(3&`-ydtS}~=ww`yt z@j9v?n8e>14+#mW=Rn)R@t-N!%uYH4V2Ngp*}1tG__HEbFD@>A7}&+YU};}#gbNs* z?6s|E`4e3VuXTA_J7KuBQF>WfxUWQNO>RA99%e#l(K-9?z--Fn+)R zI(`_>z&8dVkaqj_21JQM{rl0;?O-T?h@n!=#IPgOHUxVCua#dl9*Zvlh2k+c5I#C; z>P*N_FrMe|;lpw=GMH2}2HRXTb6{={+ChrbLVx}KjUj#n-i(KUBnkHwx1F{Dak~Qy z55joepBI{JjD085lC7VP$rrg9E4-;cX5(yi^b|a#lDI7f3V+;N*qJPXlwNs-`A%K^=kbeM^h5kkAbrPpFu2LM3^{npHxFC_5+61{6_3+Vm_e(7DsHnX#G({Ac9Bc{R zOe|Sjr%?0`q7(Gqy|n@%X~G6GS5BUM1Gl;Gpr8Z7g<@&Z;Gkevek9cF3F-i>)uTs` zj*g85%D|{srR5VY3K+M74PFZQnoUqRs~sApo@KAUdGjXR<${v!?Cg*k<6h>CKl{|# zSqi|NZyP;*Z+AC~L7;M!gj)gHjeso&jblV=Xx`U!DRQ<>THnIYW0ksGeI&+*H^@Ur{kleD-v zF{Au8%+Zl@LZ6UxvLh~mezO-gY4?=ZPU8TrbQves22SKs4kSK)eyu|x?~!hpB#v%& zP*trV3MGEhyf`>F%;lkPG5q&z1kiCGFJ9hp7f1611-F>%j1&5>gsj_YxoWTsG#b!Z zbv_%bgtm-}i;D*UPo)Tmd7!vXf`^3(W)|^i2*DKN54DPJ!BOxOO*>3)s8nUSccLk- z2F+~1D5Ruru?!-JVI*qLIu2PR(R;<6wVqbkgCmic?G8pTL_eugqYh61=?xmDu<8&M zvKkRx0d}Ym&qq==)xJg{J2#i~nCQ0!&e0?d)ZzQuQyU@#n#Ocv;{`z3tzcovpI$g)o!s5&9lmfMP z)8$PFCUNPUQkPe2E&d5IHUSxmtB5tX!*5x|@IQ+J|4bYa>a#-ms&2`dy(#~Kw88K0 zk{tD^CZr#d=GQ%Fr4CZ%(fn_ckiW__{>jHwYuP1s-6aaK0}VQ8&jjh-ly1=c;lqdK z=3G4S>({TNr!Z(el6=e0&%c49#>gT>hXfXcn2rwPGi|lC&%s*bs0YrY)9dZ+jW(`D z;Mxw3-Mf2a7gChr)?2r3VJl-2;I2J;!t!E>Ma+hX zAfC*O_Y8gCWnVmx%@LIUNWfA@-|O}3*O=LalAx`v4e$<8ncT2O9R`!trU!p-3?>2Kc45aviaFWh3(LKMY9p9h<1Vm4B1sB@}n$jXP9wOF?pBuEsmqub#Zn^-_i&w@PZ!P2w98B zM~{eftFzN2|GjZkNy#D_(NNxzJD&V|Oz0jjt%CJF4^Ji@4=w;TrK*Ag(zZT4iLprH zobhK0wXmr8Q+;5A7DB>KkSQWjBGbAPb;+eftB@ zpuel3{=ED@*=&D(VU8{CBNM|#yCjS{^Y#n@Z~2_LP4n_j(>#>y5HYnaNEEGMw1;39(`aH3y%IHD zJ=cAXgp#SLDeXg28`v9=MmM#$0YeDwgWrbj-0}etG9y8cR$n;2{0t)oY~i_Q@54vD zxt8fK@7S_O&M_(2Hpg<=Byb z>~>V>4%$MzzR%2Lw*BM(ED?f?s|C{mAV_{%A7Bt z`|||iDLr@}+>ruSn7cePDimCPdTphmohFzGnxUJb5PZmjAEiejZeZa^iPE3fIzR&5 zxRZ`AZNK6D}2dz00G?I6L+CTpGqN_Rsm1o%r5)K=Xg)S%|^P#`6b}}|*T7C>| z$>S3Kto!zzh2#lU5qkA;R$bH63rBf^2lj6_9;yNzsaea+;)`d`*5c&E`H2iDUGK#$ zdIFkeGUBc&FMpn!3w@n*{%OklrG?I=p|&{~^i}w1=$B!Z+ z>XsMo0_Vt#1VOa{-v=a*V*@9GB_INX1_-R^|J(s=0azKCy=`w_0N?Q&i~(qP5Mh72 zhuowzf(?1R^$M}3#rh3nNF?aHvQ*R(3&-?Cji6Umbg*v$1g! z0W0bR@!`3Ml6(vXPJH{neI}Fpk?3Rjq8xVaOC&M9S*$p^PeQ^SXa){jHAM|g%~h*b z0W`HcQKR;w+7Yjy#c`v=Kk@Nn$>@%3b4`HZ2Rmd93=9;$ffx=9^c;Ub2}X;UzJ?5f zko5BM29AUEG0@YK?*Zlk;ngUHEjBkdkJQH9J_6MC0=w!m&1Hh1H9tEsGuVQxxD^B7 z&m?a=3a-U8hv1KQ)bGcet0~wyneSdu-y`NY3N!{-YCTSbiZ;mTEn$0dZ`(n5F@?f# zWY?}=i0xLbuaqr1@~*wBsR0k9!^dkz4$+0|1QnZh+Tu*GcSJbsCP5iFIsT*o0LKg@WfSw1$C2)g== zf8bn}o&x_5z?DFFB*D#PcDQf^I*b%TX8QZ`b&&K0h;D@45)?NDFxFc4T{hz?p$|qb z71#`qFc`J`Exv1T&lW!hin0VXO*!(){+|K9gG@pS z{|dmDq;rQsODKtP^!S$^#*+uJ;mofU6CE=D8ouc-1*W9gh0*6i0sj>iQ{vSa85b7^ zO63GVGNW`8RaMo9qrAL?#tK;}2nylMZG5s_m z9JXf&C0LFJ@(sOLqoanPynTFpDuZ(1-34@|y{hU8;sa#xSZnCuAcUM+0j8Y@qJNeV zS-PlH3|$$#yme(|a+`WAe7S4BV1wxiV>thWjvi&ZlCn>FW%}j`FkZ zio^1bh zT0>YuI2)kLI*r3L)cpQect7O>SJt-KGFr|UH>EoUN-Ux(?Q zIR{PIgT_E!&u5wh)&t?kAC7wCmN5x>&5LFVjG3pMZlQ1r>J-;9~zTEjiQB_Ti zZYLD>72okJQ0id@c?}@-C5h*6PiOjWl0h~Wn4ZR|b!u|~r`GO&XQzJk{3AOh{pCr* z1SIxoWU0tbOiU~yv^5b9x&9_Z<`WZO$lY5L8%rV~co#x)1od@tLIO@fgsgAht^f|c zkK$qoc0J&b76ELXj+Iz|A_M1UV{sseR4T^;+x+5UH(T2*u-Wf>kZ@cd_%sCW8nX)B z91W}>w?b`-=MVZ_EAfuS%3X2W` zf1%#MMIbuB_n0ni7h zHE21`0BlCH3)i7T-UOsiWjia4!JDO>9!ui9yw?zL#xbO5632Wbj&!7+fMCIr5oh%G zTe<5A)-`OH$W(2eQi;j)FE1)j!O+S$a6J?Qr1jL))F3<*E3kXbz5sgu16@O5%z3Q} z$t>B6!1Fu}-D$83059}IGd{C<*U`s=vc?#Gg!Bb9mjm)Zq;dF{utwt|{ePrj_K`@H zSk7g~*; zaZKwXN_=;u#9-6^Mx$s z@VDFdj-aTaX(}izymav*1V1Pvl)-od4z71XOd|4Q}z7!DOX)D3k+0x!w!K~->L1bLtb@@1fF1gr>oIIIZC&(MAX zaH6}X2ke9uv@=i}860?>kJ~;d}Z1y$mqY?=NwD=7Q=6l417;a1k?arm$XZhP0H2X9UQ~_;o;&{m+)E zjSnEw}%1*n}5?d{@Fa&vN8!s8JKIfLl+XCj=yW?EYdA3y$z!yo4*j8B{K zW&^kO?03|n4LQpS7~c+@9XD>dBN{+ed1zbWIcm_ z+-Q!wV!D5jJWwEFH;uvC*QZ8FyDW!GOing| zR02mKt`tIRq~?=&3{+aw)T-0pfB|jV&Bt=|s9I7oUC=tnod9nUEmN8Bv-|sPKRsjK z^B{M9g^a$wzPS?mbPY%zvVX`rjXWT7uM}9y_4|Xa@j-8Vwe) z9IXGAyn5=F{ZTP^_#b5B03sK#TNl{fwTi0O)O5FIXAZM+$n_q17HoH zgbKhoCTefkvW1!VybQ8E(BY?`N&>qNNYd^Weudan`0ESQqUf-}Bj;OHd=EYS zp_e$cx-kc}1AR}2uw5{_k99kc0|-iMaj1j{z(~`nGMpD!h$a***mH-KBOB3w%}z>m zKf({wOs7YYkrtOO$=$`pLAA7+&?)L)e(kveiwToy`>-AV3?0XaVV%^o78d%ZfuL5e zKn04+A-AG6n&7*!%Hr#+(C7;!pJ*Y>|Etz1^`g1?8P|co9BYI^6CRW@wE3s)M>-Jw z2Z%0rXzs=R@=O*YF^fC%v$LDyJoFezxp@-xG*n|OB$A%+Ki$%-sX!OqaO)s{ z)y(jC6doR8M*}VuvLb>J0KBf`k5_-KNuoe-X^Z%V!;RgB)sA7$9%HmLz9$m`h|Qb% zzWw~Ui;=M%N)sGpO7~(x76MC6OhD-wR1Wfwpdj;Cef0XtiW~0eY?se6jxt{1sXHK= z#&bfga>*4EYTZiz;T?umlkh zk$5A6;OUu1(V4~5U!bl9fC`Lf%iiN^xC7u%*-6>pIm2RNGTO?$TZkv&hhLp=RhrcfDMP_nkZP_hu$1pW$E!hzE%uF{$%e zRcEIMus_K1fn)Xx-^c5xND{Dewv^N59R1xa&*tLXHf>*}zv@B9(2Y94$6qtX3C*Oy z9_6w8wq?zvme}%s|0^T;f3efKi3rtKcirc|h)|&`W-yTWw7CHKn%W$HkLeR1@ zy%78jB`rOjOPN@SF1T+3K*b3$J7BY-80`1=*Wce}R3!fb>~>6S&O0e7^`vG)cer#y<6MXo}pjGeiPgNiUH(qi|3it1$Kc>% z^+;6v?4V7ldrkGZHCMaLp}CVk_xPN74jOw79WtDkZj{;dmsMpyiQw$%vGU-;s#}0YAvli}aUeG|97BXey9ikr+A4I3R3QZJ#e&?v zT{pupwUg*kf=mY%9Mw%tQ{XR&W0JGU(@RJ#Zu<=Y-~voRpoNjahgL z+pMl!!IoBTl=g$%%n^N--p5esszPf(KP})d!ongWxVt(E#V$02XPTsa^aVeZl{Ggt z2?zTQlHlGipWL9}mYI^`*c~WmVPS#oN$rRaqV)v| zH!uxgfi>)*Ov6+|P9s04(6ZuPKN9R-TeC&ZDPw2v-BZe>B?hmgq(cj)ZgH2+nY0q~ z0NSBfJdOA?F*bH4?`oX8oX*tQ_>!yNZkaxciYkH<#<);3L)#}(KV84E(L$g>r__+4 z%i##x>QR;ZJa~XE;h?A;?blmTU0xXw_z|jW9GI*8io7>s7Ls=`$0u7@ZbPZ1pr|-L zIvUUlh-^SLo!WN!$_der9` zPB*Udcg6uR7XVHF2?$@_N!2`MvT8)jekFxs0MIpb$&0B+KPM%%>8Y%8y3VmHQ-_XuBxha=$e9rX0q9ULMeBgskV)On|@7{~lIP{Bpb zoIz#a=g)wXvjIQlpaVgGtE{S8wQ?oQTCC9~`GiTO@kdQ8P*T)KVIGDKBGIw2%o~0? zXIkurViwLT=e4&8_q(h8xo;O68~Yiuo;R^KpPF%Vvb0P)Vg^urK|YqWx zy!-*K_|^00YuB$2dhqUTNk-ZnN-QjCpfq#abf&gG8K(L7ds4E0gF%k%m4wnV6y1|E zki2YUHooHbP5wmTmhSQd@s#WxfOa%)Bb29?25|H9+e0LPs!?Mh^u${>cJ}@K`{jtD z4cbJE4+oVqK5mP!jl(p;%gspF;oP}zKpQ4Kn980q*)~eIMr*rWiN_AuE|4?leZ;B> zzL!%y$de%n9<}PjvF80lV?9m^V><{eVF~`1o1g>0b^pPGU2viqot_?^xDURy`(>Q# zCCSEj_vcC-&NZeK4i_j@1bewfKN~R@00mDTox8NWOdE7rqc#h zwpZ-k@*^S$tQPI~naqK|u~UkZprUKI>ZcWf8klpZw{gBgi<_t1p`nwBTp-XKM2yVL z5;qzT-A4;(?dQ*zZERHW#$QGmyyoVdSykz$9Uc@E6&ZfIA|tap%{g3s=C8gC+_`i6FHOVv`kcCY9lAx((5k4U6l#*|U}s0EthBPU z#L@0N(|#lI6U2i66VC`%_#t{Bo{%Pkn0S{K32qREfU~_o(M32&?OFtfQFFl_J0v{?2;E9iE=T1y2phvF-45#}% zy3SN*lgZ?SPZUuun+{a=AtvvJew2T-3O9!rO3urd6S&Gx%vVA7lPkKx!_hG@b$t24 z!5jmjY~!a-dz`+!^PNL`h|!DlUUW&A%JFM}eh&kvapRPF5#7}?ntcBn%`8JoPZ6i^)m0A<5MMn@mTjNhmfO8dmi?WUzw>yx z`$2N~JGINr3xB>t98AsHAiF?NX}i~lh0#AerD&C{%(Ts*30RTWE(blLK@vMOA!TbL$%1sEA%=8@`rl3S!K$0c?d+;Tw14zk; zeo4mA+k-%9&u~Ld4thiI4B!Khw{7FthXZy*Tut9b7}T%L&TqX!I3x9yxM4@(Z3X5?55~ zh$pNpEUsX(ko8wpR)W8TwS@R#@dD`Im6Uw=hwCMk28vLfK-n0v1fE?{+C*3P@PyeH z;F$?0!Vbzaa1CXNDFJ!a)^398-i*imJ+sRouXzqK(@}I3q3JaqQvCYw6mFs;zl5>? z?SlB&`|TKzkYxi>UChYJ>RFLDaCc+^5LS@6A#Zt!S^yPR)GqmnD;F*tR6U$)YZ`HI zsIU@grmv6BOYl#|)KtDyhGi?M4#olo1_(Zq*X0MXrMYWjnGu9PVi;C)#nSRO^gxrx z5^cgZcTgxw&XbS>XlZGcpH)$*CNlTK*KgeL_w@~-7DpmpN)exFI~ZNiYDSoCY{RkJ z7Y^<%+3F$0fA(j<1|#w#_n-Vtu7eklSsBzE=;!W2Q0HT7UxE<`?kwai+%)O%LL1u&=N%`esKON4Te1L_|+zDPY zRJ2}ONvQ4fXSSK1>6mZa8u3MQoSzqKIfl? z!)8lQNt-b&_ANv?wnOL;BD&t`@^Lx+e)kv=K0Xb7i@q+%L;z1DjtI?9)Ee`gc4Ead z)n$@v(Na^}x^?SgW-XPC*gs!I=&4?JT3A|!ilQM4h0F|cir=8UGg4FQY6!!k!a|o= z@fVPAw&BJP$f3V`@AmD-AbbKt)JMThSQ@d!krGynkg$;kLQzIW#?qxl7ok;%RYhi0 z#CASdi;^C-)X_8d5P5M*G8i6jR8kWNOc9FB%auLAoN!=>ih++d`J>%>f9kP)*u zi%n$;ejqdzzj!eQBHsv_h}cfA8CvMDfSf@2;RaR_A2Z8EQ#05X^ATVc)Z5cjK_O;Y zAejQC?MR{W-9@arU#%N>ibfkXRTYE=ySkt~Wa{}n0t6w9L`qIdQna*&g0Z;Je#mVp z{`~nY6wwj;f}tsZ#@NJVC2#d(l%uG!U)8m9puUx?>gg5B1a|WD+6S%oqh>cDD zBdm+i)QOuP9Ugw!%nbHmI~W)!2GnQY*G?9k-b!^gDx{MKVo7G``^~95=kojrG5nv% z_u7Hb>%2a(qH{SM{v}T*o<08i^PS~L`sX`;jjf|KW6ZI6p)LOhKSTb1_cQ#jjO_*f zgRwobZ0l}87~8W?uIvg;@i@DcPPX;23*|uW2d0aB5kvc11^ePMO*Ebyp@apWxkP{e z!Xx?<>MXJv8t-4KNqzUHWg69eaM$M7b)V+u4+|uhv2QncLiRrKRcwp(8o#}M-*uTR z^|n}vk;KN$JOLWw@_h%44;Qi2SwD}v|M@*zk)MYCZPJsPU*@rowm&*afBaAw&kXan z(#d!lOT`n_`+}$FnZJ3umQ`-K&@3b>X*E9>Xtl~%($JBSuZnT|dWZd&zUuq8tkXMI~9Lqq?Ud8bf?2maqDb{0hkjL>IhGKz`UMoEvn zY|r)+4yC5?cCEO%E!JA}J<0fcr@83y^&A~>LLz<~TaS~^xl*lX-@G^|? z>2oN4mvRo-#>jfV%3rqQ_)ekkS5L3&XVEhlvHw;#9(+PUcvFv=esJK;m-~Lz?zrGP z|M19W3->ifJ#VyrNjPz9C_kS(PGaw2{8cxnrjf~h$1*d5N~tt?_X9TG$e{3+bB8|d zt#o7!92lTj3QTSkD&pEG`N@ou>NYLp78TZU@A9S2eJ6e&{nTQRz#|g9?pz1GNrk7v zi6f`1g(y;eyQ@TK?z|XuHDbDIr*r&Dn5+v~*G}>hPr$pM8FI%99L2RFPji;}G21xE zx<0=c%qbW}XRNrp^VFw7zpEK(GE>jB`%|cs+lxk&#E#CLyzq^;YmjDO_AQ;cztie3 zHqE);caOHOFVl~3D`uQ>qHU`gi8#H_sChSc)amz4FV+k5s&G`l>aYsiY-eEe>muu2 zwna@l`M77V3s*dEF`O&oeADV>OcFhiR=9s;*qGwj@>ArQMcjmyigd5NK~<{2WYmy; zZ{sds(Qkdk*M~0KF1s-ginLRUJB~i8+;!mM;RfCwUx7>(iS}`66Ti!%A6L2Ph1CqX zt=Vg|(MM*)=;=-xGx?W$nl;rgUG_MhadIZB?{Px({)FQS)1Qrh?c2M$^mTDq*>`;% zu7r}XcY6#k?9nSWtRuqsw zQ?y=e>v-x{Qq;|;Sfc3^(2;3sEb9=iZ7`UYvUTFz8~vy4;}HYD(=v-{_p03G>al)z z=GDG>@epm@P-`EZ^dDO7WXA%(sy2+uxo=%{yztliTS|f-I_$dl?P=Y?T2q)cWSg;p z>R5{%+ZW!hz16ZapMN-M%tkqBUYb|D`Lt2qyyP8cA$uo-qh_ONkMm~l%%z*0i@T)XGBMxK+nCZv&n@^;{Ts&t z0gC@NaUW6;Rc-628@=(HeYg3}TwirjvTOB0$%ZlC&u4r~C0Kg5c(@+>-drl0Wg=DK z6&3U4-If(f1<{F&lATOPGWKN4Qu%pt-5I;^N%xY(y+*~60eYScr9*USKdUO~=gfVi z+C5bx#;M;*l<}r}&W_hR%LFZ~4GlDpP2V0DzLS5ZD=a8WODmFz(k#+*YISw{;_F|w zzRBzIU%h{!SC~1a&h6|I_Bc==Vqa5d)%TB^%hgp5aE&xnUb)?Imp;(Jeb`qeDCK0UrB5=x1>()EsIESl23ke=X}#?pT48P0a>A%zdQ8$Udw+{ zXZyKX;4B;Sl)B+ln!CYVBDw-MhTpbm3FJiHMoYuW!88@ci&b4L#XZSIsopl{Of+vW z*~l^5&1xuE!1CGNY ztSv0F`FUTr+11u~QP?&p?w;Pe^1;fRLba#QdNk~L*C&?wt&*{6DCLnAZ+Wd*Nzl=X z;D+Weyf=gddsanI&hJYXWnU}ezrvxiZGOxC?Hz@&i!`GmA^HD@b6)7bbI$Ye9{&$! zz*PoSer?O={QSzUeiQnwt7UHrO4_hb>r4i;v?y$8eWJX@Z6PR#{eISs`C~EJ@qH?7#)^Y`*giDSf-VL6fSS5@~{IepK<19mjvML><-UabUPlo3C-qVNPEt$SQGX zNb$W}s;|8+kMZ`CQbu`=dLoS1JnbwP{^GzaH$W|PTs*%02g}=^a44N$pSz*f&C{~_po70L&Bmc; zG&8o6JzA3tG|`Lm=aROmO)O~64EdkctuCD<1~)J46YT5N z6gzh()LNZ>hYM4EEZb(w{r3~Bk~wbr2R&&Fb(QjX>fl|-*2TE6DrU#2Tc>Z*Pjqt~ z_)YKQGHdjxBdZ# zWa}xtgm&4J&CVQq(cRdS;Qf8A)Aa|}r$4-m*EQT8*CPI|mw(k0g|+8a zbyw&fPb{X-Q4D~eWyzR4n6hHlW>F<{<{&Lk=#qc-wbRvW9ttxJ#?ZXJAV=W| zzaV-+=+=W{-fO?DGNw#_lJc)Tf26Tz=xctJ+lWwP;11*Fvnkg#_jc}=vss4o}wL>c3mi}(D$88%Gs)PC++9n2bnLQ%{BW|X;>&&(Y^fMhTT6GrhAYZE@LY$s-9)8=AEf$oZCe0`Nu}xn`M@Y z=DHL7Plofqi*nP^7D-uO7a({@po@k7u5j46?;>l?-jgTTrL=rrU7)^SBok3f6MsFy zDXKn7>Cnm4GpAds+2?D=bbsDRJEoaS!}+Yrzb?;uJ?7$g40xg z|Fa2Nr{izw$J7qd8vFSgthktPbe(}tf>J77R#JSCguVH>tC<(3>X$lbsYgZ@eZ8d4 z#osL;*|0b8emrHBn#NmC^FfazO^{mewrd+p#M8W}pBH}bQhgXxp<80TBGor!vY5eJ zxkNQb^OQ4Xrupaf+@%cx<>4J$+#|CZH%xCha987!^TFy>vkJu_YiK%Numwy!3uU#W zE8ATBDZ_jG+13iSZJ!o1o{A6HPe;hyocECH$OC5@BGXXdwi zUF0&croO@R`&@bI0)?M#_`5_H`S?uI6DN69trmm&3*Pm~5BXHijA&-GPRGe=#19;v6x5;=uJryPHaWa!ZVO{*{5MQ5$ zE3*T?gI!7IJI@{5adw5kPq~M5Ka5#J)p_zmw1x-7TU}4)GSr2uC)H)mBr+x&p2<|q zCo>-lWng^$^_Yu72FE=^$|bkz;M|KF>RO89vsaJO9ix6K`(k`NJ+)o0^4rq~ZAZSh z?s6!njd)fq^Eqp#Y%TMn(C!DT2keYuxGpBh_8ri#F>khwo}4!=;~o*>R(@#cAAjCQ zdnm=#Yq#VIrt?gtj~gB`G7YaO+?FmI{&IMI$mJHrlP;Bcp?4(0DNn9f(tH%3mlsY= z%N+Yo%R6H9sq3a_=3Bq`by4GQBu=kU=;%wj#d3IIq)5*VGc$!^-N6z}FR?>rYO?d96NJ^fJU*S63I zQ8fn>^Q69$Ts(TOoI6Z&rBz4{cb%9&-MmEY@^FS-T=Yqyr0AmHSE^cDmFue3$2~qC zZKsUTbu3<6x%A>)*;wbVCI7K^2BjjAx&FtBId*u`cv_p~?QD2wqP)reh{`&$&53jU zl80-*4163*^D=8x$j`pQKiQ=3)_yi#N`(Y2V?uQ|8i?>Ju}~ zcWS6O9n|XIIltiyUv1StCNzRa|62*oQNI6>(6sNNSnm}Y?8ppf){}kG;dzd3%@?Zt z{86s*H`C4yw>A0u;z~_4XyxjCKNT9Q*7HBVbjkZ*Al(NNn{w=70fl+ZV48VS!@I+- zEZ=#I}u&ZQFJ_X2-T|+fH_W z*MIV^z1P35_dA*M>^``wW?|Hbs6)ZA)Xd9xih(7KMJc>Kjij7O2)Z|u8%hb!+P zJbgff^3cSpRBJXb;xh(KAQ(u4)C~w1yq??ei%Yd69*Eu`6jz8W@EDIM)$c}q?SQ*) zlFVFj{Z+*#DEv@0l_m)D2mr%Q5nG)V&gS|OL8-6s4iUB$3M9?{fd}oGOIcJxy62P6 zxUZ)?v7I`AQk1D|*{e4Xb{P(fKbqi((vGWKqDGqp;S$whb`TFiaZebYUIZM9I)_cg zVgZYoq%n`301SYn2qYUDn$(l2gkB^e)Lrn}1(4R>{3WMIXf#d`8rCoMBL|tsL{7T% zb@>jk+5ULEy}9qtMp?PHvy5mJjrzrQSKdh_5GiiswddB5XO5Z!h2j%KoST=G*`YSl z&w_Ovq=HSR&?^u21mZB*+~Xh^=Pn~$9E>i9GKZyQ&etShT8%=qME&z2M5C3yt7P|3 z_aUS9ZA!L&nPA>Itt69p{V$qP`L59X7tQGMhAm5E>}NqBx5Un8%tHkN)FMQuVKpEz z2j()Za9zrRl9v-&UgHqcR-xa+*$nFVhyRueOt&M;CdzJPKCv(agDWRK`y+1L6KALN z1Za+RlumJAexEj4y0`wx*_FBF_h%jdy=(A%A1D{Y*rCkF^+#ba3=0QCku<`@!}~h$ z%{WEGbtAeQk=+;!n$RsVl2jB)Dy}k%)&Pu96hHYvu1H-V18Z@Lq_FrX?ok>=Btelm z{OUQ`F>b4aEn6!(vwVU1CGnh>4_9 z7(=5YhjRj~sB#_id+wZuKO31VIr)Sc2?O$mi}RG5O{F}6vXXdW8t;@G%&o+Wre_f@ zDb7MtsUAlPtfw~J&`nYq{7{*D1eE~f881YwWUvGBQmmSFiH zYR7fkSAc?3Y0UA99~V+h6`sG^psD0L7(>pZ@(T;2AJUDEz1P4>X6`MDQ?1touj){* zE$Jjq({=m3xAluSmlD$>X`8Rdr;gw{aZIhePgns0Re5o%&l8F^G?c9RuS|Tq zl+~vt%b7jVV9?nlqz-S#k^A>V>T*q=Na%8q6NJBmKqaB}vg1)r_%QoU9jLM}#}S!g8~AmvHU33(b; zCRtBr8-H;N%Q8G58h zP9T_m3P;vZNAGw6wDI*6o?sU;@6^A(X%Oivz(IE^@G$4MgDF$!okp9{{L5EVVR|bK z)fxIcU&aRMjDpmGQX&DPvA{<_O?jj|B~(uQzSl4ea2FLia8;reSRSB;Z~Qvpm8sVL zn!pGXI@i5!^nr`2?Qkc9<1;m#tio0vmP6aWxPZS~2dgb+_+oz-fX?Qcbpc}4?->PuHcdCx zIO!2s%{aOkrbj*SY`ChN%Lx2d8Lpm6V`-54tysBYRMz-xlLQ_8Z#=R!tYhtrWto<9 z<)f_^7Na{M2bQZjqXOcqTC|*gpoe@J?X!mVBC#^uS1;iXW$glsZ*Ghb(^vW>=@J$MW$`YcKP2T^!T4>-G$A;iJ~LNojdB8JG)*P8`ifKUB@=8?0VxCka_1 z=O4cqj1vphs%WPQvK%CQ7=mdh3pUcn9|T!M$*3Xn_Et(0xp4j#r4*rdrZs>qfMvj_|lCfaLjxx8QM@Yp}b$>7FS5IIPKy2PR?71eVb|S>9%{@nqHY78fA6oTWL9_ z|AS-hHN^J(G(q2TDGoJx%QXj!h~;-l66@GGv|zjBt{KZ&6zI>Owz-1uK_c$(P?s4K zR{^c}T9=6_XQ7SQ0lq73Q=R1!*|$rPS!fG)606VH$bT|4Q_?sLhK+Q8vybO=UZkxr zSmw=Bo#oiCqa;R9`3q|XHZA`XnLUI}mFNHXP95u?A;a!-Y(f#_fSM0SWcwJMeUu%O zbP`q}b6!}f5DWkZ&KaIO|)S%I=*~7*eUVeNn z)#i`XV*Mm*t$lGuRGT28rEyN8iN;jvKJ?}v{Z^oHRYm3uosKAe)p z>X$=T=;wRRjeA3WZ8WqZJSsQ|WQ$lBbv(rmUdtA-?l{9aobbCnT=dr>5Ol9HQbNUK zQc^`-5wmpZ{Vgg_FA>#*CMlVMk(qvoD!ukb!}MLFAj1Y%TM7hh@g`?gD)$dqu}m`9 zYyOFhYjKZe{Fyka{Y;Z++c*pzqX1la)Ksk-lBNCBgTI@YaQAH~!H@aFW#3s6#OR9lY_t1gGh1)kzKbw&bFe#3s zIg3~jCi^->v{IkH(=!FQq|q)4B88S0Qv8fyD%j+ny^1#XBVIcexgE}k3`1a?-EEz7 zm;^7{xlNhhlkxT(`Dv9JK4Nh<7EOlE$KP+h-){a5Y~>c{_;2^i`rlN=%uI~`xZgSX z|G8hF8!tZ57`#IB#xoe=s`dcu&D=FzPw7Onp9`cSUMDTNqlx(B6dwtlod>*u4KL82Z7U`ZeB(@b#OEqkfjEm_I) zcMLL`yJ+HN16Hh7(Nc;y3$PU;HVWt!LR}tYt!48^HecsAI zy(F(~nrXZ_`wU(oZX-7ft81x7-7VBnR>y^zd#0Bvy4z0M9P0aWz56W;YpoRDU%(_w z*+Kti2Dbmk46Of@>;xpq+U+r*i9Ub8&~sy}#&I-jLlY@dkQAMI&)S+|qV$VUNuufZ z_T-WtS44_|oDS4)cP&3<)-<2n000vY>dR;y?u?-obRF)tH2~yEKKx40grbtFh)DAf zdN~j7^cvl}Cvo2h)AqHCFW>ji$Me;XMs%z=|o$k$fZ}T_jHOK$%cTi5CfB zqF2h%QXUgINYAGcF2&5BSDMbJ*_Yu+@<1M=G3$#r<2N9^gCh>*-{9gYs`z!5bQZ&- z{K2ULsXEi`G=E#_!M3$H6-@NU=!uFZj z|1rV`By2|fO>Du}J`p;uni1a)u*51hf+y1r&4~Ig7ci{x=Jan*m7MvQI0`RJPUL0@ z^}mVfMc5hNwMW~F!ke+Os95NVC>tr$*xrAx;qde$#C$Fsj_ zJWW*)ErxSz1AZ%ACrul;E65uf#w3%rXTdr(S)1clWT=o`84pf%qF`JfCu@*q_&IF* zUo0*4Bx}uWTFbfNUXjCk@Qr|iXY|1hu!>SrfE?zbaS;S%d|@<-)65)r68j1;q4A0|9_?doc||qL^Rc9B1T|!%$!FgSLbrgSJS7%T5J{@doUraaDyL zrgoW`zyM)eX7^mCP`bn$1J;seebUBPo`nRnolAFF<7nNXb-q-rh{5=(ytd=U&H-EV zJR=5*r`L!C=Dni-W;>4mCQ`8cb1VZ$Qj9EQKnvdfMEA%t!Lp2!wn$pwd)Tf$!aXtohs|wkJ3iRjvL0)%_+*Hjyk>BX&K&f(@v(2Y{o5_cT`|3g zm=+MUr=$6GSaFkO-mS>-uUDdG8qKSyK7J10a=a;)Oh0b;B5d9dzYAi|b}$=m6C|Qy zwbf({+qf>T<%-v@lL=XW(UjXcxrded@aJr_Jg(QybTGU`y1!9mz7)5~&zE*^@kg>y zMx@F0>99Xtu{CAGR`;|Tr_#w2xrQE6q8z_}FFj(c%N<|Y;Vjv|wg;73&_zm^kb;ge zRhbY5v(DjL!35ES1kqR`dI}pOa1o*ukuI@7d4?pBNP{zlu@FW|%wfcDJcAT~_-G;d zB%D~o7BDO1h>hjt%pb#s@k!d7>I&MYq!My4lX@D+c@nASu_I+sQvJ~kIkV)@<`WBG z77kzz{<3hkUPXd_Y$T1&;;0_NVmh(l_&ovQ65Wkcrj4?|nuYcE^&YB)b3*Anp@3Ke zUr{v682F`$Vp)=gI)%2V$Q;>?vmirKS}cE}$rXq>F12%kp-VGm`+6O&n&5b8nj(cB z8m|01X3-PJ8vwD%8)U+b1D_{v&ziNSPCwQ42ful8%@kDq?0kf4klNik%+!wzJu-{m7Gnu^(Ot;&Qt!nnR;*s5A71s?Q~z zuqLOTs~KkX-l=w^Dx=T&h|6QD2TA>fd&O7sm-LH>B%2~`CTU!fzY?@k8i@@UIC>aZIhYeR7_V?Zjwc9~2zHz(=_z!)P79c#{}fG_Zd#(QfCbz#XV_E< zAs0z+HfO^s_{6U(Vf-*>Y z>`j)kbh3OSY?u^2$p>iqzt1X^Gs9iwLOKl92GZ7M9HeQK3M+OVm*>Cxg~x-g-C{gA zY~NAPB$ABBsSXWrm$tfgrKxC8niG04flw?AR;w7=;gAs{%&JSI(r08*TEUs6^{ff3TXFjA^$NPF zeyQQtBiL?Bw&Z6qU&vX%zk}>J?VG%FU#VwhS$WIuS0x!>uNiye(z>8tM2IT^7C2ct zFrP%n@L`FdAz4T+1l5xCTFD`P0D80Ka^K$xhyB{-=kq+#QIKoX%h^q6u0RN#=^cZvAHU8f^ zAIAUCm{)c&boQ_}p%<1E5wo*({vXMC24VXDdr!*5_|H$;N6kw?SslB_pEOk}#j>V8 zqw-m|LjypI2x#YPudc3AIZzb!<|h;&jE{5smB+&ZA}J>% z6y;o^<#sN2UbAUn?c(D0sN;D$vE|HN&D=46|5u{H`#$^n_1(wG9V$2W#+}E(P$`03 zzC^c;i&!+rNNMx|*ar7^oFNhcaDdCU94rPA zRPEm4uZv93evw)yKO%aOUEo2=Srk%Is9mD`5o=?<2B=qv*O;FN;l3~rzA5Cw__<{2 zILTu76(c7nX&TW>Rq96+Q419(Cwe_taaQH<@e8J!rZpvh;wp=b&uA>2NR!bd$*f>F zsuQ$I6qT_YgJqIsEgH&IUg^e+uzk@bi>ZU^}R&`T9@%0)~{bZp|3k&)3%;>Ib1XUhPX=q4 zB*H2?x*{8)qvgoqxAi!QEjCds7}(|3(K%xYI3`lbM0b8#?}fygh0}@UNLMr>1#zk) z*arY(P?S(>p=RP!35WuLq%iDR;v@YU|Bdv(3FyXzSPl=695!=@nc$te9p>Kc8`M`n zqyy+H=v0_xDEY!j1G^uIuAXqFQ5(etYPcvIZgM%H7DpOIzI6Ts4?y|MQhOo@^A3JmY93Ar3XO-?x zJH#MhVI_F#)2MBA!o|nwy<$c=N#I%kibJQ<{e*a@;=Z1ZIF93g>0C4d-bve3(~|Vo zmr}hNn4e#VY$_T;&AyoAu`ok97H5_|gye zw=aa7r@??m_A-Dl$I@pBCK&aH?ocNo~MNc#70s9dV&Ed(3ToCumJGFDXV)Qd>2UL_PPl0|_PJs&pBa%0gSVTx{l#Gc4=2 zfZQ%C!{y_EYLE9(I3G1%F8m&gmz?wgE%A#Q>`Yj@iyLP*j3rELL`*9~^1|Hj`&(fO zqW+S7VECUF?(s*x%j9`}#O_*svLrQdaPbo!&Sm&AC@hxB*FaP{O`sf$MF`ndkdP8f zV{iG7W^krcg^*(cxcS1_0FpeMYkc5lx;x0_I=r{lr*AVPh)STzAjg|uPG7`dd%gt( z=f5C9f$CMCg^9p!|^Ui|fAnWQm&EQ9lMQ%3?vf;ut}FtK&1d zGUvxc2B_@L$0PuqIm0q~s>GzJ)oE;-pWdr;p5rYuzbnGo(WkwI)-S_EepLT2K9Eq} z$k_1PJB}c?Xh`Pzn>?_o=nu$oBae9L)wU{kOYj51t%YR;8PWxb25SP#XOwr=(_lw$ zy`yqpl5&EE7z8PLF8+ehur1V2USIE%PTg5K*K5#QDvKZ9y@J7yAnkqBSKaU*NL|sB zA&6-n2{{|6V~>#A>bOJ~aX$yzSK@Mid??lQ{~GG}__H+X0=kZ@js2%r>*3tL_R5pT zwK5c_#E7dr|4_n7IP(|{8A3A>6M+Tz8r4oRv9(Zs9TN7fPUHn>D&?gqn+#q=x22Dy z5?az`Wrc;jIJ1V=N3n}#SyF{#@vlK(d((jw z;<5t%g!YG-vUb$OlZ?XJE`h-(!VJWUPw+{+)cN(twhig9+X?SCzMGs)p!)sP|2x!5 z36P{HVSu&SjY#gP55^U$m;WBiLB;?{K@_&lX>$nOX$GQxyaiF(d#Brqa+I-{Fe|Xo z#Y;q=C`&g%!Io`=zC#2t0~Ys3&{i&&^F&)2i-cwiyEGNv4a@69<^aq+>CWJ;K!&j7 z4L4EkusA#&Yx`ID2T7YE_3m1RR%6tUIo2sk{nqg2^}zO%|jPc&ig4OBekW!T~n^Im0=dfo>mS!<#-Hi|HsU!SY{ zvu?^37`e5hOEIFI;Ef%VS*9d zUl+D;L$IgU0IW#C*M?GG6bU9EN$zJJ!w3G4K&MPSWnk1K8mG~ty^Vy=TW+2SHN%F_ z`sdhVpZf!!J97Cg9uQI5qu4I?wH~)@Gml_+-$3m4A6<1CQFDcjg z-DV%CWYK(Lq*16_4ttrF6tXN$ei%jP`Cfx2>#P)DsV%kE{Nwkg%&7)Raq*<42ZZv( zchzUAgh4d8CIqR2;%18=c| z#Z0B7Oab%0WPMcZJ6iGk-a>RGObEXEEIL@RQ`aG~e;RgrybFDs@cX-5SMwGV46KW1 zkW2Vp#(8^un7z;c_M-3iuy-=5&5V;P{0LQReQyJ*SPQz@r+RH!a?%>IrKEb$?l$Ms zx~?YS!Dk2h12|K-pjk_9i!H0DaZsbg)eU_fd7%)2E@xGEd00~}vkg30sVTM2TOxmF zz7gN49bVZmpo6|j>>r7y$0%oxwnheaQn1EQ;#yI5LJKW`Oq6Ysvm*-+Cdz|JQb#Un zl&_4mr@@t6SzprsS-Dek^HQj>_$Hd1-l(PdwW7Vt;xim>SoE3#mG@G=Keg@1 zrF9F)u-vQpUK`YYi51pPwwh}xb4&1sutQJh0H!)L`H(wbb)a*}f*$)Y(uZ4$HDH?R zrA>xZ{HY9ccMETe9Qec;n-+I?pA|ePR6uSu4unpJKcpVL6%DT2zfB# z?PaT4WTVZigy^HRQkX=r!ENI6J&d?U@e4VOJ4xuq;EB|WE+=;d2Hf>-hF$*yauAil z^8>=6^zd9c@MRVG-jd%#2A=IwLBed$2_aNEB}52ml>;>loXLv2)H0;1HXk4}fv{Yc zpecZYmE}V{ckLL8|GQ@C@X9VlLJllr!$miC9iXjF?Geb$;dX}i%0E!8`|ICg_Fj|xre zXaWgJ-09iJUefpJ3`*~1E;ka7@H)sK%f#Ua1>F!IAyWy-enbO7-)@YqIVZ{yq}EK= zV^@L48z3XsieAu z8^Jb4JPf~^H~u?T>HSOTySXX!OL`SlX~sW@iyp4AG7C}>IZ-28i+e$z^yiXK5U6sU z+pFVcdBD{c{;`1e>1~&+OkpKz(`?K1sd^o^1a5e$&F~!5O~dBvL16waDot{VKg+ki z*ufOU!qna*gE)G7C*e6e*K%+V$n5i@!4RZd(xb2xVwEf9y8v(``3%@&c-&8^X0(C^ zAJydd@wAtX)(=`1gc^`HY*_V!g%&)QvdWf+UOV~*;kBefyE%?M^$tnWu$71DC zge1<~+#iY3Lq6*8i+{hwGGfooIzYP2{~V6%N-X}^M($S4W_~zz(d?LWDUAj_mTQ9; zWY`kvv;{l5M;h+Om~C{ljIczxdc8g1!>OP%jkKh)jELQ3|8s&kW@r4Di39t3hR0&M zDIboD9h|eOD#ZG#ibq9J&7kEs2R?lQGnXU8?67v%Wx zuMBG&Th29K+@oD6KdOo^qzVzsiq--0lACm)W7!s=+Yv@%f(&@QG-o5QRWug}h|ia_ zQX0w4*K%s{VSr-od(C<@Vo+q!Un#lUz|PfTG-*+gbu&A?g!a#A{aL8S1k}^i`s0G? zdd>GV@pnUQl#{qgN$tB;s+&0Fe)q-ar(9Go#Oxw@-wz(RKyyga{nT&!5?(v>zz#pT zJ-@2=9SQb6g57m;45vZ{&d7`FcEmbyXC>1le~*x(@$c9pBSJnrJnsF*s#h#K;!xI) zG+7W)!bBK0etbx%edAa>6GmvOdbGn?FBY4-XYuox922v(ztLsoAnp|{{KwyQ-lS9k zBn5k9kYaguXfi6o6uv&{wDjVPYg2MiR!8w^mb23L()g~>L(qJ1wZxmD)YzOljv0Cc z+TmR|Qv)=OwzO3A`m3E=a{K^50H)oUx?K3|vVTAZJr7tUOj;d1Lw1(w_*$8 zaocVWi9FeTd&uOn1yq_ZRHR1LO@HsK1vIwoyC@0hBk7^n>4f+uE~pYW{5egR*RJ+3cgx~=SAV1ifXD|sZ-*~Y8Z(Jf0=lct_7-praiA2 zrytkm?LVlx*JEMS@u?c}@?a#sncZNv5c-|Y^9mJ=L69~0b6L`CM8d0~rIl40Rqwyj$I3@3{E3Do2 zFc>*uSz^MRido`14c{$0QOzuH!NxE%%B(sdY``pghN+D=1djNQU$uD*y^?luBS=?? zfY9tsEYjgP3Z;@DS+-uUqpB!4rxJecS0`P(-(N(zJJjZ!&wifem{#ebD=iqH#jtaM zW_Oq5mMH3zCDI_X%?*JmD)c)=TAU$k)B|X0s;Q3daK11+1?#S=>e{vp5Tj-%M&Y(q znMMT_rSIH7B$OvwLj_YuSSD1O)((lkhWjVGebkl-uHwmo^cq}Vpbu^2uXQ#w?&w~uB;4D zR=zB=Ewl5?Q-E94HRro9uc~!mS)w|EUiQg#t@wgZfuwN#w>siKF!ui+H2oh9<^Sno z74#J{414Q#U{HZjFhSw}?d<>PkpH(e3L6XaKMJF0EodFo<)vJp^gJcBAqw&*1WUkK zz*6-Uc!dg*c_jrpI@oH91XK|1#e0w{*y=L?nfj`A52d0uTFs}4c5}dz{qk+9G4=Vg z8wVtzyZgDDejte3>3GX&`i}qDPeC9(O##IJPv7dGC4X?J1W9}R}9S2@>iCIWtOy&ikfIAYiG$po@-z0}Lt zWJqu@s;X2v%?9iIE2pNWuIQ%3=We8QCMMF6HSUe&wb7xq!J#$P5>oZRs^ihVYM&2~ zF5%B=ldmOP-)jwV(YH~OYS4p*vd?(>b&U>i2vIF+lRG4GL z&%iYqPDO1Bv$0^u;;n+Ml4hlK3U*8Gra;foHOb3@Cxx6O%%;@45^oBdkUb;Sru{E#k@0gM1sE$$lojjmh#{ic1t^g36ewpAYH;?;Ca z;)&7>C)8;2A(>8oNuE)^In~Hz8YS8qZJq`lb4}A%P7=cyx#kRSIcs{lOhe8=U#Ug3 zv`^={tQZY-)%k(Rr&yC0&dR+lxV?@`ZtRqZ#eql;;fA*e0_UP9r z*W3JwK*?YVev%03xIN4lt=)Q+WG)qK{OQ-?hL_-cu6(K9L*u$pEG)|KggVn2m`@RP zcE?LRDY{=aFQQP?ry-hsKxCNMOCzek`Daxpb+{v!`?(FRMZe*Y*ZGI(FS93CLl+0x)f!WrD`$b5+Sw4x#}OUK=6dwt zHb?ekSKarfz){FocX>;5+utL(r-+Bx8ozX|7%i-LmjzuvG^=(Be2kEtDCqtqN+-6z z;Ci$?kK3jJ{v;#{H$w2Rrs!D_33f=2XB`z9RBLpcFJ)jm|NdGS^c@8(16xPgvs6dy z^a*9QN;R8EH08#mCML2v9nu`kMS%pdLlD%}3dFAb9B|FOn)f=h5^Ay9_wT^meX&6o?6ZzX=9x14m^vXC>3TEPdY$wEq$u`1~sdd|k z<*+`E>BwCPhdrq`PD+O`geQ8XKdcU3MO@&b74?d`a=DaM=uM8Lo9hbqbjJY#7JsQ# zMPxB%X~uRz0?6Eh&Gke_B*E7(5`J?_2jGe9>Hy_r2Re742CDcx+FX{RSG9+6Z&P`Y za*e6tR*RsEPnY9_#^$YmKWiF0an9B|hNj_C;_n9cOa}xzi=sMcFqzhq;AQ1t_kB4< zQZ!N=LV*nLdQIo5T14+gw7fjidS=F*LObrkM-SlW@A8}N216K$zu7xT{(w+urZx70OW+~9wPtyg+_|rF~Sd<}_!X zmwEU{4qG^D_qFGxa!~L~(o!w{3Z z+amFMzjN-{xuu97%Rq82xSPe)na(GMptTX{H8wewY}VfQQ#)=gcAMR+9h0(d_+fLu zQil@2o>eX_E^TS=A#>MB@X;3S9|iq&8c{fRw88?)i3#X(M4Wx#J((Qow;*@RcSM=wkFcn5$z)fEZvpMc?^oT|+56~W*rLru>`#cw?`v1~;5Z2ua?mNw(M*K8G7UbNp7uzLlT??uI!7(~@9!O8sQfE>_wc~V4OgJK?R z4e8eQ{T#D79rS&bCgU0o;eo%H)ySD^x5)SRW`OkoUx~ct2DDTP=Qd_tbx~nyyaLJp zF|Do9{{1*H6-$ETG|c8XuHBsQDxZQp-QfLkXgb;V@Y-wt8NN-~qw_Q5{YX-Kb@KNQZDYdt z${R;;0?_E1&!JC{5q&^rqsd&koD;rL0=8tYPODI=ykLFj`kW2X1H{6;L)=w-R5n+2lexAl+re>K#C)IWpv4_6EJ%Mxr&12%1=6BDv64xZ_1~kDZS4)`1Ai!76 zK;c^wrHaT?SfhWp?n3hL%~11>LH4RiU`F%m)k1RVkVG7!WiNsULn7u)rR1Dh&H2wi z$yu>?zgAd}`%^PD*WCy>R2RuAVr3(xoOPVt%j$z*$P@VA-jq|oe-|hLJ-@xZN4>JF z6pJrD-cb8+dBq39%R`R5@i(>Z$|jFcPPuk`Bt^2{67 zvEC*ca>PEkNu0qQ-U8~VRJZ+O^>?*LqZtr6YrEKIYBSJ8bGg2pCW)pupdF55$kqJQ z>j2_XaKgQUg|E&u)_GQJJ=v==fZ9+)On_{-R4iB$Wc-j!GE6ep_;|D{o<{Swl3FHY zwCBms{|EQ^)yn;KW8R*~^_zN8=1HRn9euRy$j(@zhN-EeqlYc;Ps$N$dX6y1yI4xk z;@E3nju9qln|0;&JuO9mrcp0Z)9F`1$V1>hFFWB{4v#8eZdEgqDpRVpV@?psky^uv52+>+u{gN|jpT#u1zK8V z^-RUWTPA@xL`T+am&0}7AeVuYmyuSipiHuYW>h^jiR8yGpT2|wVMt5T>2d5{buB1T zy7=`P_P8u{R;-t~p!%xCAYKPT_pjG0Ct+6j@&gFdOa?Y-IjIZ*Tw3-KKU6WLpX?xA z?QcWTP>Mo9ai~O{g#KT**@@?DUJ!!=g!Z58CNX2!l^E&iUO%t5{!luc4SQP z6vAnHsshoXczmWv(F<`f$`JcT{r4I^&f8w5(1Oz!O;I7+tPLwNKW2WS^UUv15?u|` z{}34C{G^&d;YqB;Y!O==H&#?+()3ZWvhwjcr*M@a45;x3tiLt)){M@-_Qlf*S$r^E z{0b*TamA9bVKyzY#jYKI4Zf+=?UFNsIKxx&_>ndaw8q0%%-;rydSmFb$!C3jJB`R) z#o~{_NY0``(LOPXkMQ^BX`FDX zL(6EaZ*(bS&0~h{3p|gQ8ZbK;smfc5oRiexy9Hul`Kz5NgO-AZrXqo5Xi01&*};Hl z5l2$0p4h+w7~lL;+_2?RTfKVq_N%M*>cPjoK{dZhB+8=HPI5wQ6pH&~UI-T2UqC2) zN5q-hwU=)8{Z`Vuz?Q%Dmy-`{mH+~oA*QX-oogd4C$VR_b9(2MH%g|n|NB`)QSN)* z16;drS)sLnXAkvabpY-9l~CleM4qMZT+M5V0|#LZC}Wg zk$es7eM2j=W5@5&hNO&`k`noy_Gu1o zq7im3PBuy6NF_71rDsG;wvez@O4tySXm8p)w-uom2j)Q>8G2{+OZX-UjnH2XvoTGi zSR(Bo9H>I@C2j<~M1x;3T?nu$yG{P$Kvj!_1Ic%0Gut`4G}g4S5K(bLa=SQz4YxFKjHy2X-<2f@)3 zK+~I$cirim`^en;($(8tiQlE4TUezsVXYA3qFj>V#`PqJ0-(L{!E?mj+*Y1Mr4F&i z8iVE@`m8b33M|20VqmyOsJ$5qGKg&E7BX)2b||~j7?uXC{4RXP-E*u z-W&G=9H^$VCOYbbqcO%Tu+wPKWMk>>7}*2huJP8IA^I2-Xs4*hVL8|Eztvtbo z<%DrVTgfZh8?;f-4)e38-lcFj7_bsiR8_Ekg*|i)_27|s`sWVf=h)E;)(YQ*vM|5AENFKO zF`!^r^lFUz^wR9^ze4Y=6`@vct)iS?gv5lU#Xd+bn8O9~4}My~DfzYuj_OxgsdPO| zK3?yDqm|bvu}Pj=QEQ8}W2Ru*aav4U`Y*n18VW)G)*$J|vL`-8y5sEbarb%5u%y0b z>Z$pi0NZtZ_2(r*G+&g0s)yw-aY(oU>&8IXL=>#FFo17;oTqqY#dULR(hQeB(pa!j zZ$zch)VoB7&SCp~i7Q=PaGdX8Gr@(pWv!8ly@gApqHvU^8D-Gv?&+=IZVCm>RR`5i z8K&efGbZk(hj*F3Wi;b8IL4k{T`OG?QkNn*9KCzt1whitY`7&iIaKtZki$h+CsdcJ zTDOcw)f1uO{%+5($i3Ro<I&qa;N zRKi3f0Pdkd(E8vC|9C%KU+k3~6tP&GDv=p>bz)*7N<-4PsiCdBxuT1G=gymkh@U=g zjSpPrBKPk|3(EHecLFM>+J57$J<+aKEL;iu9($bZlYQ#@b6z_0GLG~5`(4MuMJSnx zikFBnFzX-}q3_{EhfWqn8(CdjPsgDQs@JTC8!D1|aRYc%qWq@&iSaePGh&*Ba6yTS zgO)a}36r;UAXR@YZfp|>;sP#>wY;|)?$jv+VIG`IT~Ern1CM5KQ3s%JZ|jWfIJ%ip z5NEqX$5tN)QwaxkRRR3w5oz*x#~AU6WHt}W2i59zJ)aoZU&MJ$?ru&a58ut{ZjLl$ z^=y%Tvr9LWy}69HuDCtBRGCWle6c-DY~5^;Dr}!v(Oi>X(ZsW_@5*;}(%PRa!Ouak zgO!5R${ztA9(N3OkY+n6wbMt|9+=O};&gKwJZaZq>!jOYCw#gJ)mIi7X-O8%*yJdx zA~Z60y-n`Yw?L22k0sZ#O1cCgSOdSzwCZgh+v-tNjYJ~Mk!(s1=(*YaOdOU?|9SnG z-S!#|HgU8ueB}PozDWJ4omlA{kZgi4MJr}THRY-kkKo;Cwn`q`g14!G>kkMnx4=rL z3a@dCP7`vMVJ?~GP9i1SUKV0fv_ta1 zXR!aUSW?E8|FFFMZKlT?5)PHq92wGK^!BCQV{mW7mB_H zqC)b_wLaN0xlQ?QyYvWnx0bugu;4^x!RsxyAjt*puk0ajw(mJ8i6|V5WAxmAoTIn0g@t0sAGE?SJl>VpNaQ z#v(J@3@tQCmQ_c5N0wovwVmfoKk?|y!IJCFaaK$wFz24MXF`d?UupD~PR3rWrz_A&K)LT|r}| z4<@j9!!TkaT4IM24Z&v_<=wOJNe)S-)n=ONT%Gma6#+T|#CZ6n9OW@+c%_ECIiVE0 zX#GB{3lAUMQ43ywV^I8{P#|wb@@-UTooYLW^2GB<9z6=f9hOgOqAz5!s@m%y)QT5n zt*ZzYCN01gk^FC6h_;9^KCM|Si>%g!26S5Kt8g6MaSI*6r5WIQq>Wc$d2Ww@9sXuV z9SDE}&N(UP1W10q8O9u2xyvaVdz{_U!*yYGAi3$yb$s&3Bbzf_TZ}(@avl7-7_~EqH-Pt9sRx|XXK!+7_3X{gor!-F|0Pa>HE{6 z>zAEiZC#C8wmumb^3V|Bhe$5ta}?R6*(l1ccB?vO_2g7cBG{5MTUf5d3Wj47S|ROS zC;ArIdFZ)D(YZ}pM0DNQ#;yQz+gDI2a)tRFEa^@VuGElw4hnvcZx>2bs0X9?`@`1e zI>Ub3D6V!kY8E$?KrSiUq&L$;ctzWInFT#P{I2thIj1?}6-qFgSu@F2m>mNxsrlk3 zL8xTsqRn(9s%SM40Shf{qV(&Ew4slsAXW5mX6xAGu%j6Y>wXhTj4FD$OKtyJ05QwI zn)c2BBbVs6ox=ghDZQO@if`eMo-677{}NNo#QYx&;r}A-aQ&zA=||d$WBk(h`MmA+ zTiO2ncKhq^od*O|UIMN6-vpljAYA^h0uM9S|1@ZrszYg@tf1#0G7qR}VHwfQ@hmKB zHQCs?oc>#G|7(rWXVsK~D1`h=QUZh&S_)W@e1I5QYBi`XNOn0QuX?Sv+J`%QtH zj^lBS(~v$Pb5gec6&T(Cmu$}h;mU&v<7DhDeAZjwHZJ%0=KbVceE1tcrpzeQxNo`Z z>jd)f=;i`-ISh#htE&(6Q)zN4O^@}ffoM8s$39~a=v%6l>gAK;Mv6=ox3!<@W{=r zR-R(LZ|TE}SG*xonwBJnQq6p(3|oSg|0hYyxM1O7SR~{7XF;hpNi6Zwlf5LdwJNoF zq&b{|lVs2AbiGPNN*8i6JY=B-^5O)w%&8DjL&GCf)v~QJ=*VMJ8N)RsBIUF?dXq!# z^FpEJ8m(rd&k(eHv&i(A6`WJfV$GVl454qJa{%Ig?HC{upkjml#QX$}9u;i(uU@_W z6`*t>YeRiceytJNWbP-`WKEow2cz7`iIM?xe()tAUFXY18;#S9JE|2plhpWs-mHDf%}&H<{UlWmK|H4LojsyGD< zygLx{iakc%j2#fu+dgat0|)ezSsy{~;DkTtKIAkryYd2sDz7E!*rkQI2_xMs4w`K= zRXX<_wzo5O2aO^)UTT8GXW{_FaXtQRRMpC&wt7q#*-kN&h*(Rrq_z ziDfs(bX#Fol5mD8HzHeAjuB_B^_09)r(&e;)+`LcclCt=p#(!Qt@+RQ(diPw#~_Z= z#c3xJhJr*7^vk}OpIRQpF@y8;YomdW3`p05Ro;p4x$w*+eJmp-K{ZP=O}LNdJDXxv zRmaLQZne_Nit1Zb4nXNG%D9T=o-G{~k1t0(3U-n%G`#yOU{~Zb=c;-tudusw2_I~m zOs>w2McecpTPlO+(dNua#4dM00alB6Zq1e4^e^lbI=N~}c2;7M(*Z%=#bj4!07BPn zWl+lJP7->Wz$@=@+Jyqj`m6cGjWjCrjud}s+bLr;FHAbvPmAjg7)0XVy;Or66X z5?&~{R&9dSijAl6e)E7W_*wIuE-2ZLEHfLspj;miMT6vtVLy=1v1}bI`9)G!9tFqK z7fR9LUjgKME^9BKQdoCCWMdJkW*GSg@BZ_?F59E*U!7V8K;|kP&R``T@B9fHr??dU z7V7(3gzDUJs4utI+eWHSCI^gb{K9znY_~L9x#gjG0+z5G7pCg)XU)+m8_HR%BpXb@eStj?W3T%e)We+ z7|)K3pdB-(^!Yxd0tA%U7Ddt3(8H2?q^xjtE&zOvIyyCkn6N!>Gi6t0sBIZIN4Qpr zVE&|ZEcj@qpUEqtykVl3=jt0bA>iDV|G=ZsNn*14Fh+7_nxT$fr_&TYEL~LN&ntCu z;EFGbOX&VGsTkUIvue0H+kJC_1`Qf~M?QrfRT}$ENxV6R?~zD7s0k|GV$1j$cIDd7 zRiqP#@{rD-QWXsdGp9QqV=0CEv^$=GyYzh-wvOU5B!Qm42|$=Iw{7%y)^_V<6^QP> zq=Ub1&hM74T%Hv^i0}T~Jzw)J%!8{JwoL#G~xvE20sx$(|T*# z(o@)4>j2@+?|!}4)z>?A;8@eHyk3@{T+KrWwbbTaeNC>CvH_+FQ~SZKw>0Y7cuA?Ic*7RJ`{m=Mum1RjhXXW^QXWOd z!4x*qjI4u=w9Zfb^tszTo#8_wWEmSw4VHg&>-)90cBa(k>lDAKb9xf9q!9Y;WxU-F z2mNmdY;@E!1R*(!;g@I5=9CP$sPBS*`x41b+lZF|rX0H(^uyvUu<}6g%M?uLJLGs2 z4)8oFl3iL*b}yED@OozlWrSRtK|WB^Z1Lz$heQBr-vUxN$aN>kkb?IyJZWD5@@c1= zx`;@p*X?lALg`HQ_gVF;-5Z^QP@(ceBuvJuh|D3nw0+kt%N>LSM+$6c$YJ?DC!Zm$ zztS#9*#7MC-PF2wsF!}d9sIA5;q{kTKI;~RFNyOYW(wZ3Ve^wfqAA2ICJ{O86`bVs8j6k66k`iTG4)QT3mL!-+)Yw

    %b*{7!2Ak_JOaN88tV zd-&9Loch@C#0@PK zZZ(|GY-&zw4jO9YoURi>DvdrBeG=PhSCCgKI3M?({m3Awjf#_sWgKCpN?1Zw8(Dr+ zVVEZD*r1U)CPPGJXy}61^p3!K2|326Z{kfB$e;Sq15+b^$O#f}+6$p09F!@aEHK68<3RddxNPpPI( z)AYd2LUNo}bu_S18%sq$#(AZgFnX8& zm}7jWbGe7WPe<~CKCB}z==deaQPvWq=7W+ZMoW&@lEw#-AY}y6*ie(VhR4x~5^Foa z6=o5&FI6{gulyU|Tg`LSEOmsbgcWhhW?Cv)bnOj6kr5mMMLsES$NpBUB!?l2oJHe_ zdw1G2pHN?P{q__i`KKll@6+SKVRkC<3|Ak$x&7rXc{;g07J}!m)Ctb2_ZMtP(`Mg~xoyLY#@5)HQkJ--j*tCac5*P82ZJGSIS#-)D4J|9|P=bG?VkpsF* z)jBMo>^>G$85`y$+ku;;IKqtY1T+*d?&ey+x za3`IiB~h=>4|?=E8z_N_)tRejuZT*x58XEb_<0Yc|8ja~`45Erf0+;df9O|Sii(*; z4)Wa14kii^mI0Xhe_Q)Mu(JQ_WWdhE#r~f&Nwub>hVn}L7Sc018W*%|rB{pf$m;&z zWv$94eCz6e8s&fj;$O^xU_?YvCP2*n)3`z)Q1`UJeNZ-d6-uJkXr*gy%L}ECuAF>b z$BourDQ*BFtyaF$=QaVm9VioX)7qx3>(8G@%^h$uhZ#GP*-FN<$<6Iu{UK5LETx z^JTpbC|xyAL+k~KD)y){K;>Zz%VuB0><87igO>WJjZ?G`m6$acJqe{|ec1{0!@MHt*h6dd?FPy+%`gJ&Ml!^R&v4sB@nyI6ivMO@+}5N3@Xwq*5gvn3ljGHza~(5`)Df z1yl<`xv}Xoil@;@$jC{LN+JDH2AdmW0&&!HvdbZ4Q>UCBdp8au7?_Unx_8_xmYFW_uA&|@!$kn2Qfp`?eE>R4&0uPOdX$cZx#t7z)LHH*I7H)tM~*TJtqRKM(au=>%5Wmk|XAM!!u zDGs<|YktE4Q~1IJcIOw@1rwljIdP{6W(7EMW{GSVvzMP{pAh;@g+$MQpvpZAc;oU5 zd+$Z@{)T*lceHz#*AFb{BUFP~fBi=P{2G5i71e{_gizlRs~j^U(GHG67C{`hu^U&j z8}~KBdIM26XGSLDawa^3fDPeGpRN4YnmN;k zkn35hb%=_A#{7zn9W9qlGEtO5;djTS0}iYMBmCZh+%lUm&rFxTISk;nQ~ntcVlG(% z8TWDE*Vesj8%ydW3fWHlWfF))3Mt2!k1$5xcdzx;ydI%3s^@<2q0uZYQ(Z6Jg?zUk z`%K^qC9GmtOvU<2JopnH-$0|XZfSIKSL29h*N}J!vjg(RFN)wk8BBc8fdR(v8eDYHO|wo<&jTU2`;@i)fAjK;{MS zR~IWMx-1YS3F0k8Ng#fNn=9d#?~NfXaB43XBluO3KHZM<;=rsYEBGXd0cB-x4~an> zsH_Yg))r&TX6cu@>j0C@#;8FLC$Bz3d=&c5x4a4lLa)1BM+$ZK>Ka7gWs$OeHW@2w zX{BJF8153{aXx0KJaRF1S3?kO^CICL1DvhB zgp06W@P;WYh}O*5))oYgpGs{lpcXT5#Zxs}0Yg@w|Gx>kqWEnY}=uM9)n!B{?eIw`Ii5HzU1IWU9ZjAwCs z4Yq%Yi6UOH%l&SP|HJEuZnhJ*N1T^vJxXjX=v6uP6oZqN-Atay0#LHFZcNZq4d(1n z>57a55$)Xn{(G8RfEZB(YI6*f#oBxRj_v#Hg6I{^H!hHHrOhwg=IaJEYoc);Q4qiZ zTYI6q=kkCQGc4hBbXB6lT_`E5ZA0#iwwiNHJ31{8hqpr0>GTc|x0T!By1H(Ff%1``7K6|6-?L z1L*K$re!-P9jP{%{4a_F4Lnvs#o-*CB42#1!ISj~Tp92RO_~y)rcEN7divC%+)m9I zk5g*9-m_T$h2_MTM(eV-o}_w8su!vJ)htM~OhKyRICJ6Z#o0f$`DXMLC>}@$)oulS%xa)J%92J-Ls4Nj$r6%Q zV!gr9@|qa`udkWFU9i?>IC^;0qMwlY8c=6~I|X#)3seY}24br6KVw$7=>L|0v$h6g zXqJx5B05eXbj1~;*|F%ds!~~sA(ZwMJ-d?8;Mg6&==&yYnj5IcUjr|HP342<;{5Fb z?d*Z?$H7%I&yU&87`TOsCa4j}9t?OGmDMh5(sbkBD@qH(A#@$M9rrg1Ov?{ldTGh1 zrP`xZD4<(T0$UkZ$}FU6L=<(1+zuq~Zn>#Fe$%qXK2g~e92SI|3%?4)xebKV0e`-S zuEG4f0?}Us#~irpXPT=&7Ako0gmkD$u0Hy(BVks+7b|3p7z6fevb*&%rFMN2APIvM zQ~8k2K!mTVF_;EzQMhX1>OfF6HH8%ZkA2(NbGHgcAj=UH;{(#~?EaTNX#erx@pE=a zC&O+TPATvD^Bf7Z8`rVwho%~$!cHLY+ri7}{jX9nyGiZtd-5FtfLKc=# z7LXVMGdICJ_fjXxgjn;>g*3x1gg`%hS{&GxFX~q=&tetGt+->82rAX`0o}edoy$Kj zpLZoKgx|a#G|e3NE86VM~V*m^A|h&cz^4RC+r^8ME+l|?d*CP_0??LxP7>5I@`(H7>- z*y?d}(6Z}7VpI@!`d5cRH&ZA%j82D>|3Pa)YxLPjYr6`J{@6>MF6E!Owyd79gP>-5 zA5aq65Hwc0y0V7fxKn;PLyxokM$JZayn%d_1hv|x|1tS@j{3XoLB(dx+wY2Zsq1p% zv72@wT}^x}59-eYglxpt-hD>uR9G}iS)j8C5!HKRWClEVDQ!Zz z+ktpv3Pk+pLgWemzQA`bsxhx1;TpN(*+B1VlS@6Rj)@IR)2I|FY~+iYco`9SSo;%e zp&JLb8U~X^EvL)qEEWM5;rV;_IfN3vqiMSW!q`=Y!qUPYUaWyu^Dc>bF9XwRTqZ9Z z)EI{hcB3J<97==sw64ep9k2#0Hg1YRGZ-Bllo8L#m3Zim9@~UzYKyvH_RtK934)Rt z!(395s2l}`{mclH`gz{*0$hn@L=!5+7U_6%b>jBmEE^iDuenFf2%N1ru^1N}<0(&2 z#-;A}iprG+$Uw|=BILtycbVUxTkQTs76slkiOXn8(x9MXo_(KH$}*IacKYjX%udWI zywtK}!J`h%Tny=gynCnXl{Gm+(Z#U&|ND)j2DJX56X-0q;iKqCp z45wvXPhkmGUOm*p@no@zN0heIy6xc;M1!7Ub|TrBv=)dsQ`7bqPU|E63ryC*-+Qmo zN42j6RfeCv?6vW(l;C=^=Tff)CTRI^0HbC=b7fZv>YCmf&IqAT*OyP(-(n9pD>#=- zM^`3Qf5(Ez@#VU;I)Z6!)T&KAp)@|}q)(0&JonSfzVk){N%z5n7<;O}5K488B;1BX zN`wlDTIoVnjbp7+7u^9{uFvlyRb2p~j0!p!=k;rS5?^br5d9((VF#fl5CAf||IXhI zot+!+=BAeCXtCVwEyz2%+6te{K$O~5d@u=qQu%et8P+kJn@PVl%xx=5}B_^xl*BO zRp+bMsHcHVOQ$-KR5Y#zQ1V#ZaDkq5f1%~K7ty!D8t=&$>M{kw=A>TPczDj${Fs1p zLxhO?@Uw;`^lNPm3qx^$fu}%@djk*o5UP#8UFm5zB2N?334-`A-!s;~pr1}XfbR_! zW>kUg_jAxR_TT&v7}4`!W0y>$0V@@CBqvLbqv6fVD^8E#hyal^bZX-M9XRFF98xji1HQnZ~(i`$Dc~bs@noEO=qgi2-flxBbbWT~qyv(20ysd!+Wy z39_dFV8`eW>Ow=`w@RAjiy_ueISQ(JC|4QUczy;yScpQ2oxQ5oR&R|XVZ;5dg|lQ+ z{cj=mY9QwD>R+;MZ%>}Pz$FN0M#sJpI~kQ4Ws;gtazZ!K(%l{mX+}G&t?2q3B_RXV z99jZ&X+bka&fmEkSWJH;?~Hv(rU>Y=M^_O3f$m^!YOKWI2TEP1aJ3wrUs{9jnZ}g# zv4LEW9GiZNvvZeL{36$4JU8m%z5i$kt1|(O+gyI`8~DNX2L@9+?KtuqaNj)Z?_J+f zlGO^#9#(PHY7sEy2};(cP2~l5u$R1MHD$yzMa`)hy`h_>_IhO3oy!6kd34`yJxA9? z-GntNrg#ddWT!BernrR)ag|$CRv^32_AXnMg)8-fAEQk;$AN6Zx{I=V3xT&#e=Jn_ zCm!={b~ywu@Ltfq*DAZ!O=?*bd3ps+#iViB7%-;hAyJof?F&05Xx_BS@3guUCdSIL z^kTJc49y7?7SU_0yOun;TWi}2k5Lc#b*O8Ko4Av?-9{Bv-gQdxbLV<7wn9DB12qsf zrh4j+FFE)OTv70^H!iuQ^*Ud_Fnq2nQvCasszWC2OfUT9u79ph``0immPEDk4y(Fq zI9oZs*dpVEP|Rr4SU$Dqc9Gw#fVZ?4wHuRlT09>Urp~RmS~4nR(Ec*5P70d?TVatb z0FfinDJBlVYj%wsQMLdVj_KMrgOB8VC)_GHj6WlOf2ohH@&a+dg4Hu~CVn4lF4e== zZKfO9lT2LN@-y5tJ~PTyGz7-4EMQ0Hm!-+rFK}6FSH$FmUuMLbmC#EeCKFhULDC`D z?uIbGM?Gvv8Q=V)me^94>9mHKn7P%##l-xz zx8eFfjB&f#@k| zfxy-$ls7VepCl*va`Nprr=Q~BU4lIK1Rg~cxghfY zk_f@`}5gS&tsH!4wS^0{#1$6n&0LIQu%NFgx_65ay8u5?PQvlJ7S{ot>VsDuNRNOwZC%2Rpp!)Pq)BwAQcCq06%{y@ z1wDViho6Ye?`-$UxtHhG9HfwD_|@b+;57c;_ZtXaCX2(pJ1Ux^?Nx8^XrY;IUi+3@ zkSX-i6^I&EZ`FHtHb5eFkMV$XSY9HOD172ru@0F}P^g zeZw=X`ARE5k9rr!@eoc&TLpA(4;VN{0yj)WZ{KH4HAZ zC6jqY@7jkhR7ZIfYpSkHt)&Xq!j%1^z74k;9_&bVkUZS)h>zz(j#g26y)ZB)=+J_; z{(;3+VBCfK>qqgj%Fp*@TD|nYz2|>a?6NGhO&C`)s%UVzyDQ6#&T#Vz3;d}{;qjGF zTV{hp5oltS9QM#So9%{**r$g$!*vJSByc7PMJp&n zKNT#sN@PZub;}f2YOk&1iN_4ovmX26+TH0$op*N21x0g;Q@nT8Q zak9L|dzsh1aotuh#v+G$ugN_PU14y9vs+;Bb~|3jjVlV}N<7HbHlELT$kQ1W!{N~Q!UEL$~$*;O{s~iXBo(#jdZG0Xje?|Oqmo{G$<5J9G6`PRK=Y%%nn*m zCvY9|S=9bhUzlpSiEzzq3GD0`Dw?LAFn|?vj0EN!&oW&t646)5f|I&iG^%Fh?3ANZ zExsl*-$EkbS-j$!hjnerT4YsFZ=ZhV;DvuHeKwro7%&vbQ>XqzDAmrxl02To{-=Ec zVHMl5#(`^Xszz!CHMX=S3v{SDS=+)iyuHq$?2jrglYVz=DUYXqgGdsLHy744tks$4 zp!7rGs*$6r*2#oRsg_StEjNds^XfS*fpQTCRlTHJvtm3H?4r z30LZj?z9LhKD`CStxd;RSN0C?ri0hP<{%HR*`f_1B`3BaXgT$!KP^gj(u#`pg1TAK zrITtGF(epz(-+r|OPRC=u3zoN=Ve04)l$+cs!Y+aSp2i3)yS!&n9X933?(92VJ;38Te*dlIf#pBE=>Ln@@jr@8 z{$CiXZu;xP{av8XZCj0t(EvycXxtTY?Y}7=|3O>*pA`=_w*S#C5v}>dLaDFhASMWk zstjvn*R!-PwySJZHfy0(OP_Z$jN(7}h=UO$N;pXZO!Ps49e@7@8}cddC~jJAwxUrJ zSp53b(bDz`(d+(xr4Y33>GA#iCY9ewZ)Xih8q%jOq!L*DX0Z1VLw4OP40|!jkw(Bos1LBI{ z5PPcMV3Ff4C2j@eYW%M6 z^o+Ka$0Sn7>tiBgV_Y5Y%Tuzxf53dlOeS8|D}Tf9~^1jB6y+4~je3 zvpfE~*ehs$f`}R*jdg{1TKPw#!En{eUheJPj4VLur)o>V|?*tJUVacV`MCpwo6GJTeN9fV_@#fMhT&>d-d` z+Sk{4KkFZlyCHo3E#wVHA%wUe3Akk zQEt%42&z8mB~3%Hic}57I;?4s+la5;A0S~v-i$OIgtIH>j;I%ua6|U-%a8c)FVcW8 zMB=1hB>mwM#1UcSM&X=BkVx{R626HM`AGT%hy-bYCbAbPomAy@4K2{kYc#47($$cf zBO2c=v|_H>dL-9GevOh%uj&Nv{B}O@&zp-a)z|yJ!OgDCP0h1@&fm~H<2AikrNGh< zl#n`jtu8yOf{ssx7i^2asng$_>YQ%eA|4}}iR|IVe2j;17#nQ?UIX-VwAnLNnEakE z`MZ3x1{4-5!+5+&8v<61wLQQ&>b03=B19$9w~{a1PO`09hq+rhLjf$SAzI!UtLU|K zWb0|Gk=d!>suyLe%4&+ram#glf!0-gDf%3D>v;FI! zD^SPyTztiA9b7LOj`mM08d|;l)IFYuG;do)>+ZkSjnOpddh*p@9r%`tV$~jjagZos zQFfVr+VMX{Mw|s%=rms<4sB| z6FSr7MvwhT5Q!$6l#$oiXDXSppJ_eXZvn7S2=ZyuG2Y*b;akG=u*uxx%oQ3<-k z)W2%X>;4uBRxj9m#}WYN)!*R`T@{ob>ko>9^k9_?g^kaiN&3!hxFB542=_*H=Sn2o zz^+?uiWev#b!Wyd$McKD;OMehxr5={8=DIunwv5no+fftSy{3D`QC$$U`H^K(I0ZJ zPkuN6ZuZe2b7T!T_E>x%qtvFf2JK)dBHY9cYr?IyAw$i=3yJkf1=qZi5_Dg!z*1L&ORH`cm@0bBz^+Nz^1 z{D9*6O7G@|d?xFaD8u0gF>Qdn7V=*C$NW;6C`D^vrQ1xJwDw-jp1|&I6s8A%-IU&g zhzDdbYDMVHK`0g12V?`r|306eQy8=iA3n?-&E@-<>;`i}1_Jas zXOZfqL3xU;AibhpRHXdW*Dv}iRp;hpyJh_{YxCFfPq@W;fB zbWyj2M=&n=a?OYilzBqv@1&~Zewt9#ZYO~H-PR4HYCxi5Ln%rEkKUkwXl_cCYN^HQ zT(|P)HuKAcH_l)Me%{Fr3s!kY*9kM# zXQVOKBPA4zfoY6Y(W@OYjnsC8CN}V>RRsX=j4E53QFP?60H4X$$FdwW>?O0;?B?&Bx7V zG>L}HG*oA>eH=Y?V-g&xpj{juX8sw|GzMNSo?Wh~Ee9shm^K+Rv@ zf4N3RncAJT2r!uv<0VSEb8%WTy?+_-QO&Fyl(;Go{8=ew2gpZkqBX}A)PjzmvZT!E zhvH%oWiJUjV2THwUof#kl_H!TLM~*QNqb%&+$JR#o?3Nk2DPu7f}cbyi8nNBe_hvI zMlGxX_2V`Z|?y;SM_+=A-JXVS3tPA z38U_}y5B<9h!s<1NN->rUrR%xQ@>)mF2w+G$b0T4J{my!_;ES@W7-`&;=9O+ww{$D z-+(hMasp1D^XAJAuaKev#HFaoa@`LsRdQtPXAV@h`pC*^n!-MYKpzqY#;6vTmM5Ix z1xu279CE4B>IFfGmeCuSb7m$XW9^N}h|5=6v7AN9;<|{c#%VVl134pf;f?vL$_osI zh-wceh*|aCTgo%!Q}A16C%;C_0KZ?Sx-`-GTly4zg;H%=HVb zK03tS2A3G4JSGWbz|fG@aw4GEON@JI5&p{4ZOgxyW}9bqV!-%o#2Fr`&m&T# z?Z^V_CD>%(f|jISelFBC+LYNpr-ui5KH3q6U}GeW@o&2mw;fZR2HZj;oNEiX9@Z3 zsb~@6Cb@fs$RCwe=&?&A{6*J14C@#3Yuh>o+!xMc;s&H!j4c$7#khma$hyt652Dkw z5VG0-pzZUyr)xzp9VmP>rP#d5At0$}+6eL|uh*?|h}y{8G$&bb8Bn%#xnGul9-NEX z6wfB;YlMNPh1Tq*KZKvyN+Ht)i)`k)b{|vAqs3h&N2H#$#si(L>3#YN=F_F>->Ek|r<6`dE-ef|YldJ{d%v z=i!R^K{87N4$0c`&|E#wyz$gCRA5z&Txm5*qAWSNwoDY`BY3?~V)&a%t0|SXeL3KL6Iny|?c)y@?e?Wmh!R@SCkkV8+xqMQ35 zflJSw06Ct^#iQl(x3ug;&P!ss%BJ5IVl8dQ+jnEtl|T(OdQ?fMTLpdQtZ+9m9_P)-B212UD^D8UcR9@EGX9?W{YFCVO`GAl?kf{@Z)qzilj%2+j{MiM zpri1C#`to1+$w<2iZ4C*pz^^C{Pz1h7eDgRT&<=b(l*S=RJTAUu!YgCCOK5N?MC>- z2xT)sPMyFAVFkaOw-=Wi^H6PIsWqQXYE7vj$m}aZqh6>d0h%TB2KWF~)|Z7Mi=;B1 zKjG7Th!wRLECKCUaZ0jAyhu!T9+kaUhTwS?_^6i;#^>h<_{rvw-eT_^a)q7K*KWRO zzquTsb?bg1aFa>v`?b>j{0No>>nvFZzSmK@aY8gLVKY61_+pG+;mI>d&m|*F(wuRM zX@9VbSI8J8&$uek15K8_*o#qM{()k{x3bAb9db#i-*DZ8+eEXn|4toW1xNT!vUwEO zG4@i`47c4mFC^^njbKiHqoURr(og_0UY17`Py~@%#-rvI(B|uiof6ItJK#9ia~&1W z%S92)!>MZc`wg$SKnnC7NCOnb(qRojju8l=J{VlWKF@g`?o3xX#lVWK155iS6Hms| zj{nLJVnTy=r++i{F6}}_csiFn#NF|TosrV6BJbNXF5Gsv0xS2*Xz}#a3T{4S#4&ax z2Ms(SVfemt2!t1L{a?7GL}mU``su32vjF57uNO!a^l#5lc9wbPvCU&84L>PG3`IO# zTqGo19Xv&KbzNQaqcaSAJbNTnGWB91wyiRENiFk2i9?gs9Ff?GYZidnfjci4f+s74 zO}7P~hWWuwf`Esbjbpbe*kG`TXdP5IaQ<}E!Z>~X!qv0rvHEti>^9{djL3{%Ob7`= zGvCXG#rN32__20wtF06nDp@Oe+^}9Ua^b8^gt-!An@FE7+#gZ%8&3#*Ctd!$xd4{zH2eX^bDr1~gwo*3rKeFr|?WjeD$ck3Dq1j`2 zlxzYN!nwHv#KL9+RLikFdkaIqbL|NNlQAjPOczsONX9R5Vgg3yMhh2dPyG8Llm)#K zp*6leYjvJ=GF@J!VP@u{*{a?8sI8^)a;7AvG1hG(hXgcXjdq9%%^1);+4hNP%zC$ViS? z)SEtgl+ahR+xIQgRUZTLc=^XLr6r3&x6!4@aFs5KP%NbLtN<>TYRqG6=)sLa|2%@v zoVcOT@a|;jFY7ujt1|kx6jyt{yn!n1c4R~Qf&Rehh0$upSU%1i*4#<{U%INO8-gwf z#4`LQo!$1&j^Pm$ubPbjpJokD+e+Y+dxj((lPSTi{2g8_-N|7eX;>*a8saZYQL(=0 zE9P2C;RIE+Wl6i*(Qz1XKBwuE&Oi ziDa!7NEkb$NUW2lsImcslGcD-G__B?5KoOThuhYioXXvnT0VQKrlne%#uLax*h9}ik~t9_;ylN$!iRM!|M+9kNCHHJ_ar* zbzOWSNCm?iwRcPD44jKkzcK~?bGElb5mowlZk3CH{D@opV>{DC(^YYe4d^|gK6zgt zO9aCuAim{GL*3+(cl3IlQcS+MTyxgnD6p4*H|bCFs62YbF+P8RHr{kJZ%pJHc0*-n zsx~huA+=lyYI71?|6twa#?h4uVo#QwD?W3btH4zm$4}U{(_@B5(8s+vWAAzBWLQZX z#(7?l%}47)0*0zd^wWSquJgLtF^}}^xIKZO{d%O>`g*C2^%F%X+ZNqCC1nq^6fCdl za9t}Zq8C<#)uZMiM;YnO-*vMPjrRUMzjRwb1{TX$rQ|9R1FcGr^0Sh zo7#)@D!AnqWKhP)ml0XX7A03p0^*Mp)k$NH{c6OeisS^W-gnTlQ%Eb1CY}9@Xy6P( z>}Ig4seb1*PSfbQD+rd{^ArkD8ATS$T#1BT7G++TLSa3>BQZWTvGr_^@PRotvMx(4 zhncEeYRqGHWTTxM72;!g5G>ee%_@hdJuqN}&=hLsua2Xd+{jKH>%(zyc2hm=gLiD& zh7s-dm<+v_?etl_Mp``DUg|;&1aT3RvESfdP<%yM>t0LozD*xd)FszS!lUiVSR0HqCj5{X#BfArx(QRXdG5)FhE^46ggfQT zaT?{=*NAPofV?{9{;V;lcnZ$#gRZ+CKrO-}W@#eW*X3(PKSzG#sCo90mj%G$v_0Wb zAd*HYXTCqwm@7}=ip8)15wX6!wf}(^g(FTBe3~)4bMsEkH)xejwdk>E`L95?lktvW zaOjXkI}aU@ZlAz~Ac~Qohc1fL?86pTM4i$?z`dTY1=Ms|qU^2c_>I(lY!rk{eF5xe zEXbnwl%Z0#c1FB-Jv2;?6A+Q?blN=;#Z>?IDr+4cnb`6RK##m8S;> z+4(rD2W z1vIkhmnjZBL<|rJNFyonxyKd#Qk*x#0^>I&0^BDh)@8w#ZDw5Ck)#5%2Tcxj{y}gz z=@&-#ualm`8;fl?6IXu928f9%PbW~DzfpjLSa!cij!#i0mKU0c8SmV zJKFoqayY~k`j>cd&uRhS3 zVW8q&C#d&iZlCMsW$iRYQBkUyNrX)4QUMqfJz=6io7c|#R*7yrT2-hT9#K44hlIf8CdWW$^#6z{gGJDF66Rid68YGhqUtDsw<@&cD(8N#D+kex1{=@(Nzlciz zUx)n;BO^oihx=L&mi<@vd;f1_0}!B{Bq-$n@&?xb@aX(sRV5~NE{^~7(YUDEI-rbT zrO=LXUqn(V6#qGsP?vzRtk;2L{>>Z(2QQ~1bAh>kLj-AZ{$PlOCt*IpJUE&VPu8_u zYPyO!(p+bR^ZyifRzYz9*&0SO1PBZe+$KPfAcIYC4H6jK2ZBv-26qh}2o~JK0zn6Y zyF&&iI0PLeIKczKFMFSMYj5p+=<2GjuG5d_udeg|-x^g>NV>~gX);pLB;Sa{aU#|J z-{XR+W;P2EyI&rYBP6EoZN%o6eU7ZWj(pJD&DNeMrcxaiifDa38(5MhTR}lZYL4No zfrct=W>%e^c}4c{_7@DTK@RzB<9>kj|AnFr|_?_qo;KXDQObS~>Ux|HKAU;SSq68)__?^Iiz8N3X4(wr@jV z52vrMo3Vm(=_L4`)n-96dWn#OW)`K^frjTQGMI6+>=N$_DL9K6Qq-Or=vb;!>mL21 zp|mvDmUbj&+3IygLD}>)&+LMN5Ts6IBzZQU%&JVqaClv`o?^SSICgNsEKZK z7eqoJ^V8^4>-+cyyvCRLbmd2`GUl)jm6uXbo&>W&mtpcv{B@{2%>=GXUen9{Qm&-0 zs@I9<1oMXXdJImt_6i~QU9Hc7=ePmEGmXQapNv0QzjUQ@0*%f!Vh2kDLx2}y606v` z=BCW$^AO{1v1&uy?J*Sf^f0JV@HOdGKoEGe5cKgF%4PCy3#v&2EPW~77S9E(B zNzQ-?HvGTSXQd~4%k87ZbsA3>f?pKD-&MZM^Z^aFMv<1)IFE@M9Q_k@f+ioAlLp;^C|0zv$W$e16V6FtEM=_ z3lw`ppMHu@*rz!gppzht&N8|`G`%R+*th1q@BXdefuG!Z#cA?&i5L)16NBTcE9nof zIpYG_>{d!1#e4VWyaI-uEEwM$fMu|!EadY0T4f^H*qSsZR_VHzU zCBhZDz-_wh5KN)*@pX@ePUW^9#uT6U9J6XndNyP1ae&jg+{aez0D%OSguh8#iIFTl z#ZmWOme{4pTy!`TIQ53vK#cnGMabGy*vFL*Ju^Qoy)y2x6GGnBY;(EL=X}P!sbnIJ zT62iZ>cW^Ylw35~ukjG+Rm`vY`z6AxKwz0)RF=(!N2TvZo@V~6HKJzU-RV0PFQqWF8yVAO%Uwo-*M>dkxAmEARSM2X)<@q`( zL${E!g4sZM=5u>To%`K&JoJHGc<=LFWJQMUbj^*ZUH4Hx2$cSebBgTQcenua)W&wC zTUyc7TtrW>1{G6N#|*)BbYl4Nt*ZPIz1TOzN1n8PCGmrYEy}j2{a?D%T@zW<)7Q@L zQhTm1h)9;)JL=>qe)n&ye;yz^>^X9l0?n=NtJLW>Ehwjs5eKBTR@$gJ7lsaCotz*# zI*h)JB+T;uN@RcZaX5;ykq~^84OqidDsr1jNXm0&dHzW*|HUaE=7|?=-{^an)H6fG}sAJ{GQ|pEJQsvub13Xy&>occF+mb zU|E=m<$jFYPP@JFqxj0A%<7?KxSePtZB`u(XeAE9rRJcr=I1r1)6V1=%y3olL)BU6 z<@1jC3=>+*5U6v_}XW%#YHv?*qS&j48>&)nc-q* z#U&omDwPPuv21f?CDawFq;)Np_U@0hRPerF4Mg&swZIvoUy&O(I1oc9}a}t=tCy8|>W6Ia&S# zfSKa1O@qtKpV$c}W}EK{LxPczV2AN75!&_iALc=oRQLEj5n6Ul%)Eude`KQg$Xjf8 zGkT;{B{zVdrIcoryX)k4Ii6!pOa@aYGf<2x`gl)t!8N93)-f;E=tgZtRg!wmvEt0I ze%6H~cKxc4Sj2@1;iY_j(uEFcYCQMr?sCzPQ-OzXV~zz$hRoKMxBkk@XwN zoADI5Rg}XHAr93r6BQ1{#%kG|kc&WBP!jSW#B&<8%bZZzOZ3uAcaV6KmnTxd+qaM~i*~KD1Eh4In z{!!G6Y}+YzYHdFkebD-9eHprVTgRm~w9X|adTmbW+-Vwk>m|wJZ+!{+TKWVAHz9oY z(EwmIKxyBVOU}g3DFizFv@g=$L_a+A5yC|fgvNx10y1-Oxjd}jFP|N4e(UoNIKmBz z9X+bSpaBJ%DnpKKmKFcNY$J?s9-f}~@w6(0eAu5oclJBuZM}>95t=_>om7|gfr0qU zt5Qvm{$7MGlBoa8x$FCc=6s-J2P5U#y^NQr_;*4pc~@t>UzhZGiCh5!O=EKwuR|(* zS@dS?#H(BM!l$Rp_^TWAbf3Bs>ePAw3pMnCOZeTgK`|D#a;$NccCTFEx>Hfe7m&wQ zABDv9h!Svk>+gDu!PvVX3d|L5tO1fzZWvsUM-kN1sEeEGTCStYib%owkR0zB43;4k zSKfXaYIQc=>hD@nZ7}NUs77Qaw9RP7f8AdA%{nxjpqJ^Xe}xRI%rr(jL;O|%Ew{!x zG(0}=YhB~stp29LpMJoQi!KmPJWG6K*;49!Gm~)F4xole<{%R_AWl)qXc@6vOc-Ti zmQ!pT2s@$gq*J?UQ6ZR;Nt|O(TJrkrugBjmiEAz9S!&&*9Dy_56lbcM_if7=*Jq)l zl&NvxIhskp$fCozs4=G4p>-sZo4++nRcqS+_4JP+Vc3`my!O-6QWC@<~pni(j)uA;MUw<0zqzl*>}xfu?C zok8f5S8lg*99|{RJ>*b_+J@pwDdl+cvsVF-_Af=t3$lg1=DfpfxXVp=tF+lf?gaKv z@{!#(LGhbr%5_v}>am?Uo4LDXje;w*V_WhwiC>7fqVrt#BxF@n+gCQvb~g~|V=kAm zllzs#A}Z)D=uO^a=JS#tH;Ho%S(&~+HJ9h6)7rNQbfERF`bwficZ zuFaA)wlaraGhVURdIu#=S1Wm(UebDw-$oD~IjeXHYoUX!rPhuZj!Az zw(_Ng<(Ydb@u%H`Re$H4hadL>Jd)MwR93Htok*2672|vTJ&!HVeQtSMnjd=Z#XrBJ zLGT`qv2fH^SGp(AFuFgG$e*V{D{j@_-49&FD~XJ6zL6A(%hIUdzvz>vuy*64-`sUN zyFIOLqE+W@PJb9TV&7}9F?Q4!dQ2@rN_Y(Q;h#0t2egGXaInWM=$(X`j;|f8VV_(Hy32e*J2ME!ci@OkDiB~X1E1#s&2hhdl$aM#ao7j zY{;&%t6Btx^t^WqQ^N*7p6gLmB_DpSD{y4-vSw)jmjpO;`!3 z)tStwN(hWKVh-PudQq%vz%(kD;V$QM`@VB9p~WPqU&bask!g6!J3E@TEZchDn1skR z(=&4`{md-2Po(*8vi(Kgck;tpLL(>m#|9!dYmcELvE}2gqj3#)#Vi9c2SRRUrPh`o zz*stGiyTj)OS0~TU zx@n~4a_^qKF#n3}1uIBjKQ|9aQ+;6=+W46+kx2WKNg9E#uBmUdBrv_k?%Jeuhl5OY zT-oK^xS+1jrpg98P5L&H<}2mhW=5Z+yb(Q*XSMctVdpD$7jOdqD=?wnKURq~vBIe7 z!0CC(DYfEA92Z+1ZImXG%A9->XaF=(V0Sj#0k1x7qi}r^AWn~ZcY(8U)qp0TuN$DYo6yZSl5?n#i~>0qVWU0dVn zEGEm=2k$vsQ~l^87S`O@#t|)OIm$Q}4`7tiFX#V@yON^dE6$k6J@#x_V*M-+kF_1E z>;vDL%cR6@cD$2RN{zRgkDz9Q)O`~L4jZh@VnJ6GdPyzhCRmqSmL7ISAW7ra9c6IoyH7 z4R!PAH10JHqw{-&&)wSj95E$CkZr1U!cF5PLZh%P_yeb|Gf{&J3O-fpf`Y9p-!2^5 zh}o}ws?(xcQKsq)=N;uKua-ZBG`wvF7}3NYK~r4yO}9VI=W-UeBZ(^maZ{srEnfW< zaO9dn_R$!Ps3E$qTH(>juGQ7kgR%j3{lLm3T*~=3;VAmfFgNq8=JkdH&b$;>hZQ85 zd?gv`P$rq;%uichqVUsl?knqlwlpwW$L0sYs!vgXe2Z#P*z#irek@0iu8NF(EJsN_ zzkDdiKpy>F8s4{_RAYI>yzav8{jgsm+9V5JOQpK?pI5Wd`O3e-w%q5w$>rb|NBnNP?Cd!&pXnRUar5naaJ; zrVxhLG7t_@$ifd>l53sYz87%}ycOA&%({6;lHe{%I+#F&=ob}_Ej||UG-te6#pvjI zLHAvgu8$>djio~?AqMiJ%6?+SFLG@kj&1$Cr5JHE-H9K z|MVJV2_v-bvKiHi@Zkl&VT-n;0`_xsxUD}ErOJ0v8t;HCX zR{eg8(7fauW@W3^T`tajJ=itu&ET}E%7x+=58X@;r{tvt!-=-mVI#f%TwPFuNO^;p z?PGisl)X1Svyxt%d@-yPu&lsof46cCyZu7hi)6?k5y2^7R{KAYb8hbDuI}Eh VmR9)u!h-y-h4Ej$lvh{4{~udu9Z&!O literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/06_Deep Learning/09-Deep learning-Hitters.py b/Machine Learning for Economics and Finance/06_Deep Learning/09-Deep learning-Hitters.py new file mode 100755 index 0000000..e425a99 --- /dev/null +++ b/Machine Learning for Economics and Finance/06_Deep Learning/09-Deep learning-Hitters.py @@ -0,0 +1,62 @@ +import pandas as pd +import numpy as np +from ISLP import load_data +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import StandardScaler +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import Dense +#from tensorflow.keras.optimizers import SGD +from tensorflow.keras.optimizers import Adam + +# === Setup === +# Load and preprocess Hitters data +Hitters = load_data('Hitters').dropna() + +# Convert target to binary classification (Salary >= 500 as good income) +print(Hitters[["Salary"]].describe()) +y = np.where(Hitters['Salary'] >= 500, 1, 0) + +# Convert categorical variables into numerical variables (if needed) +Hitters = pd.get_dummies(Hitters.drop(columns=['Salary']), drop_first=True) + +# Extract feature matrix after one-hot encoding +X = Hitters + +# Standardize the features +scaler = StandardScaler() +X_scaled = scaler.fit_transform(X) + + +# Split into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) + + +## Build the Neural Network +model = Sequential([ + Dense(units=64, input_shape=(X_train.shape[1],), activation='relu'), # Input and hidden layer + Dense(units=32, activation='relu'), # Hidden layer + Dense(units=1, activation='sigmoid') # Output layer +]) + +## Compile the Model (Adam optimizer and binary_crossentropy loss) +model.compile(optimizer=Adam(learning_rate=0.001), + loss='binary_crossentropy', + metrics=['accuracy']) + +## Train the Model +history = model.fit(X_train, y_train, epochs=50, batch_size=16, validation_split=0.1, verbose=1) + +## Evaluate the Model +loss, accuracy = model.evaluate(X_test, y_test) +print(f"Test Accuracy: {accuracy:.2f}") + +## Visualize Training Progress +import matplotlib.pyplot as plt + +plt.plot(history.history['accuracy'], label='Train Accuracy') +plt.plot(history.history['val_accuracy'], label='Validation Accuracy') +plt.title('Model Accuracy') +plt.xlabel('Epochs') +plt.ylabel('Accuracy') +plt.legend() +plt.show() diff --git a/Machine Learning for Economics and Finance/06_Deep Learning/Model_Accuracy.png b/Machine Learning for Economics and Finance/06_Deep Learning/Model_Accuracy.png new file mode 100644 index 0000000000000000000000000000000000000000..a31e8db8fe5c7d0f583cd089d0a4136ef4694296 GIT binary patch literal 33846 zcmd?RWms14_BFadkZx%N1OyeNk?vGd1VKVlx}>G0krokAN-$}pr5mM0=?(>vmhLl` zd!KXtulKy?d^sPF*U!CGo@d3q<~`?_V~n|?v^127@agao1R=VqqM(f+m_Z1FF@t*^ z{za&N;wSu{n7g9B`yFR1cP}&72Z*|vyNiRfyMwJcv*!a>H(O^X0d78CZV@hK8+UgX zH!&U_$N%dS+|I7nJWYlky>Jvf7nOT%2ts0p{>Jzq{oWQqLb7iv$m)2ftxkG*-+6F^ zv*G-*Vu`WrZAd@H1NqS$2iYt_S;Z$s4p_HoDFd@3vt}CG5|;9`U9t#i=Qx?=cN6a2 zrG4+uO?OKM{=Nef5Sg+^~UI2I>F1$)vLAFVAW;s!GZMZ&NA@Yw2e z%q;NhhdHK-f`WqOgBJ)n85!9+L4^(e8)*m( zjOxIal{q=wxs<5#Ek~IoB*Ty;aV95T>if~7O6Tct1(v3lLiX+fy%#H+aqc&j6ms@{rISOWl-LucFKChgrC|2+QpT<=oxN zs^zc!NaE0B#tp7+Va~P-Mh~$3E5+nIa=bh4{L*o0X=$X)mZCkDUhj_^qohx$@RavC z_-=4rour(c9IyQl*UyCoyH$>qEdu0%SHSJ>`e&9fK3as}6-J*NLS ze=T6T+@2b)7>9|8NkmlilCUuKaFI#JNQng*9UVRg2gg9JEt zW{ql+ViD5vV@aPK3rqzZIXaAf!oDc(iSC*xi}v>RY~vcwD(_7eDlYw?vy=5e8eUW6 zokseTYPZF^hvfwZ<@o%mghjP~@zGn1Qqaz>smaPhV6*M-&&Tt*%*dbzv>(cs_4XE- zo1Ygtilr4e|Kpvye2wR7alnaBzF{SCpX45c({#P@(mr|+adGkETELg3Q2EQO~uBs9#+vEki?87scEg2lMoV`g%G$Wm33}H>S@{sVzF<+Te3huz*xV zbb>N+a+qx7c<vOg|~+oq@QkG-_rzz2L2Wm(zB2`MQYq2b~9&UHJ_t&VCRZDAqJ zYm+ryeuYNd)UbKOY=6A7b#(szChA+Mbsv78y2A75>p==Sui-;E_v?Hj7))T$1gkVC99{lnSSUp7unF;-Mm6jxR%!`9_Csn4gp16$==jn_JV z{Q93iPf9F0%ptqM5izq4&!S^v+kSpYB04mPR53#LL>N5&_PC4DCIJVEKVnB9325)B ztE-1)W-_snM-A;lrfY^^`uOqV%M%Aj$Jt-M-j-)(W|~CJQ(m}Wy7c{RacSv~&*+^X z2~VG94=>-omaJcDMTCio`R$!L{hPOMFTsAT^W6(CEiJt(?BeRm4?i-sxU-wt_4B8t z%G>YcC3?vX4S`XP=-yiyE#FB2iAB<~moF`#)sG^or$hNRwLn1r*V_*ZhEp#_kP6tFot}W|6sjaQu zSZ_F!BgHCUYhvb?#}e4i@y|kA|7xoVs2s4|K=ve{{H^V#%v2buLtaprKF^^u3S)2Q{xh{y_59C z@-n^|V)Jxv?g>XfvH?lNbl}77{gu+bvWoX_-ZZwf$aB7f7)hp$Hh{DXY2YzzSXLGm z%<&4xmWgV&OUbu5{kX~QaaSPZi5gHx!n~#);h^ac@^05ekzUdL&hGBkp#sD5ioC^< z<-t5^Bnxsbl4biy`)Fs_q&&dW)m5%9L-OJ7%Dpn1eoRQY*B^3TkK*jh)y*@tum~wI ztTcy>XHW^LfEE!{WxeRb9P}De(Al zz5mhk(Vl9XewJg%3NNGsrS1nDJb(;Bm&C5#4B4>1)LQdO@~vaY7HDk?Ct-?%s51ZA znYjNmNpoXkR-TYSgcR~MENEC#5(Q*NOa$VA&8jaWR@7}F3!Ypg?4eH&x@Oka3f+#+ z;SjgN9{Kj+HY>W+?=>^q^-TPAvulK}UBibf?3if^*_`rSe+|jg`|nRYVt@pX&*9jS zyCB|h>u4~cxq?+GMh14NM_fcC*R$$8tw@!$CwDPY-g{FPGvmtH+2!)uerIc%o;E2i zFQ>#jcP=bdz#1QNhr!X?w{P+0+hZvtBqXq)RL+iCXHpg#RcqUoufSsteK_Ba2j!o9 zWn~2m%IhTw2_y7Q%XVe4bsHg-Qz5v9l}^{)m^?0Ty;FaMB}*F0p_zdTyN66pULM=m z*SD#wOVxWJ)jBjsIo>WKN9#(cVl)*VTr9=P>MFLEm)Gk%?=_myFc{?!7S?;gXA!RT zUgKg@fB$W?D3DT6+_9o`u^m3$obPDf-<%JF<-*s{(2#?g6e=GQPFJ}(soOBOXGDl&fn)(#T8 zCSaA>782>!giG?>7s<&|achF2P^e7!{_!OM%AferPosaQkU@bnXA4#W{I&CIF@6>P zvs;%LCA<+mywn_#OerP2HxQ3M1AJaIfE0A_yw<0# zm&9b3n_}u?7Zw&GIt?;TPEJ;F;c!s*ODSEqVbOXPtAxzq=YO0`goTCwA#s$*fC@9d4&$-0% zNr5U6v3l^}5};5NKScA?>(8E6I!(%*ot~f|^7wBTkBI9}+$ryQBFKz38G$P!dDLf`a4zC1l$srv_z=dESEUc`sa8Tihd!!(j zhP;2z5pc9BoNk`j^~=S}OWDWAC+eChz|g8H5lBmLZBQ;V3fOcCaD#(tYbDq?IOJbz zF$)R~*m3AwX6e$NTC6NDj--;NSo%T??FRW601sdBl2i zuI&LMJS1uWz%Mg@xjsrgTKM%#_M=X=M!Fc3x!ehYOXQ-;%E}|7qqA_uon2ia@T*!L zg5{!4SJ84*RMf`K&fwU>@^W-=Fy@;#Z=Tg?nwy)acBDhznwXpv5;nezVHS<6>vepQ zgXNRN;4Y8X=Gt8kO|Smdx2t#V3$J#k3M6J^6jo2x`3?t>Q9y*GDwVHb?rv>y_CHN| z_6*C=&=8_LxkhvIZd0};KdmKy>g>6~1)uHTkDp&Rd_G>M0ipTs&UHgX+~ZFuY(#s< zalqnZ6^;br;x(>&cqAmk_tMN+6IH&}0V;i`-7#7FNI>dz-y)>dd;9loSk&$1;XdXL zs9&FysQNKqq^3qe*0T?&_gJQao6*WqA{r<#q!zI5Z9O^K+XU!`p{0AwZCF8wmitgV z3KxhKSm0ZEpS@uB{~ju!M}Z?DqXbRh@g~mh%4kSS1j(!8ohU^)x!{FUKt+7ky$nWm zKDwnnkYeluJ!I7t0os`r)8ypj@ICl?;drBkBr-l;84?MRr-T2};UR3})^-*HL^EA1 z>~4XB&+5rw6Kj$D1AcpDd$> z7=mYKXZ0(cF5WG=A4_%Jz!b8denUWA(*jba5D*aX@>NZZIKZU^6ygC5N+2PUAE6ro>Umg5$hq3Oy3J++9vjB4o}M;JE2Cq-`H3p2=KS%XW!qdlF`uM61;jF75PCf znA!9w3`@;~DddBPHD~Q=?F+3<*_+M~5+hJIT%~bURk1#Mt;aziJoBA+EgxYHcv+W7 z(>j=W=4Snp9@fLMBsvG;X0K^~Y62>*M(8>&C4EUqN(#B*I5sosH68Zq75(YqGEWSH zDEXyJmwvJTKtI;O6c__Ik*VSARQ!J6iHH005K%0h(6ud5h(cv}4E@Ds@-Z}gn0MZ( zH37I3Dp~~u0jpLUbg$HEb}=(h>Hd92^te4+%CU4|kXFpTJiUxdK+po!Q&4yI^XGsQ zu^SE}LF%t=$X-jv)Vll*0#_N(OCmfTKm;>@Zj{y32pt?85+L}|76C$Rq{5N@`1sgm zp_>-q1{OBFaozIu>+vrd{_PD?IhP!i|_T=RO zJ>RuuOENrDk4-j{$LwyWHx3?IEbfFQ)tQ~<jxErv|84!1!W?$O>lk1&Q&xgDia3=M{ikgb=M75nbmWb{;>?>R*3Wcv>K zklhx02PHTlxg##n)jNz7V?gsTw8BJAp53R4ll5|X6P77FK0e;caC6WWZVs*BEH`dY z!7gZl)qDatK2740_K%DA8v^`$PK)XfuR&)L3N4Zxd(tdG+Q_J=riGqYJ8|)mD*3y{ z>di6JeXOFa)Y|lTN?!PKLCS4z5f!=1w!y#iNhoB#tM=c$h5)4Ahr(0>4e&%mpoze} ziqcZI>JHof?68IU&v~L(uYT-4DY{?xgn~oE<|zwgI;c1-VqykK-`ZMRO`AjU-bzWc zv!B=gcmeX-@RG;#%e=f=oCoJnM#dEK3bb7!+S=M#I@d6e&CN}lp?q3MSl<95^LNM* zL%$C+OFLvqUcY@81!d(NK!mvX__^Bo3JT^4$%a9il_u>)XSv~agIf>Vvpb*L+#YYK zeSA-pJ&66M4Ts`NZM~If(d!GED=04jkjV@xhRsy1Xj*zY86{;HbR@3vcWS-mSQ2f> z-+xDI3^XMlbn~8Dy<)~iYt4K|{Or=wy=;}YAO13)(@CPGX0l3v*2}!%JNdY5$obc> z5BE=x*2zdo5vXyH9&8I`6&EWiD?2(9SxbC&>}off3HBjFA zeQKE1I4AjVfBiAN7QReS&AIx3tAw*Vbv+m9Bz5aPk?~hUO|XCl1W2bV5|WZ7F0*oM z?Cf-c7{|bPM0CV6Ssd?g0vs6jae$no54(X~Gb0AbIMOqXO==D6b z7bs^CLocjx2g`M__afWn%Vq#y;LGO#scgWKTYPpzR0BhoK1%Hg8_> zU_zvdUNts8L&E{?0rrEvPc+&Ya#5Fk=Up!IokKRvm&f)us@YxKX3FlFH)AE_T0#t0 zL6tq+T_u33qLwB?CLc~H>*MpesTb(SYuk{D6#n9TFhHb_Rs_;S-OfYBX$1OcbF+hK z9$;AnWYo_d%kM_Letk{$K0DdlY^QfdYZZ`>ZO|Z*$O!4pLfr~R`%m=teD>C2Y;O{Sk z4m#-oi8w~dC(xMa&f1ZYQIca}I2Xh>?GijFa&zVqN?Y9=-RkKtO3nPzr%suKn`V>$ z9q1^)LjZM%0dN&`xVpN!EDv4B!og{2dOdfIBO7}B3(G?VEs$}#FFv`yU!%cxzac%c zqq~RNlp{IIR^|&&e>=Is4{U)$q2TyDkrd7A>s#Xn#n=g*-TVRq4-fu6;4=O^V5+)6 zM%E_T-8do5gMnCWJBH#-Zf71o$>oXG#|!-+_DbRr|7Z85U|87Fqm)QO77mlgR~yn5 zHR{PH>GnQjM z0X;*ml4plhYkbEVfCmCbK-*8U^qqq=wA5E35k(qtHV(onB0N#)6z`w&|l2M{B? zukCq#1oLh4NxwAnp$8$yd#l};+fw;0@QYbm)d}w6`rG*fO66ipX9oNWzxw9iYvsQ4 zdz6+QZ&g0Ap)vhw_%6pk0e}s2kI{NwTAHDw<1AY7{$p}UxAuiFg8h z35A~uborfD;yBHW^yr9;s+L%KbB>JvWzG27&O!<(Rsf#dtKNx@3CEO#L_j$stmrJ$7MPy1I_}{Osi1;t^QLWXVM_ve5(aQN5b^kT! zbmc{Fgg@z7w^41w0j6i06c$p3x7`|?(oFhuHGkCFrOUvE$>^LwfONe4!>jwh`}9|; z(?WS7DrABpSififwD{v}{aOp3W`ZB#sVICDJFoZWVT$x;7jJqh8orYhH=KN^TJ^v=|sdP znzGYvI3>SUB)i94G4_6BWN8p7`|-b_Wh2)(kfXF9V74Ws6U5cbkZ8(~^t~kkv>hK1 z-t*f_KWyN9_d6sX{bfr_S3Q-@dxGvDKxB$)YB58*ARKu6_|R<|J$MA<05D@9D7c)R z`iqE(z5H3L@FtUpV|}i5Rhe>4?}u(Up0WJQl7q>T+ob=q*g<6{`HUo!wSbSQ)gxX) zw8*#4K1za!a)qRzzbR~`C5fgw@0r~{uE$p1NNcICvGumE%bgn@QVPD@V%Rj;RQSCl z$pge5Iw&(8C>|2`T4RO^xm@!5w@sPDsP_6#5(JVsA*FfP@v&Ov?|q;LzUAK&fYzz! zmGFGB-hIB&>Sziq4E!+6iV8nf3Q7-A**Mx)z00*{>+jcRqhDYDcBgOY4xr5TAA7v( zefpLQRKK?wqOe|!T*vy6>4>Bj=q$R0?N^!pc%z|Tau%K|rhnDcC-c0G?y#Uqz(*fb zYF=BEjsYOcRdP+y)APnqkx4wz2(14%K+Vu_vTIn~aeWG#ftotPY4S6WcNpp~1)E^6 zs!A*ZepCboZRY3C(1Zli?hHx#gM(b>0U+I*0G>Qtn-GP_fdACH+iHS%jH-gHGaj9f zi;LU%`?t9@iXt)fp1z_m05((x0C_+N5M1J|gg>lI zH!vZ^foB2m=VPGvQ5Fo4I`KuZP!zUo%rrsI7#1B(0GzpAwj$bpLTfLRF6IGR2q_)i z6Xs&+oo5t~RdMM%% zAdk`Ud{_WV8{&Z(I1OrUqef^TXW(CG1+17sMMF6s=xBt##MadKMp;-|Tj!WG1pFQ; zVFhI&>dhOr+QUD2FC-p)y8E=od0J}!=*R+S&?-Rqz$Bm@9}t(XyN97P5itM(@JiS@ zoEbOr$&+RXcrx;A1BVmn4AB-9ZJ+~B4{(6ML5UB1d>y7Mz*Dute&2+C0A+JQ(10JQ zgbf!}!PU(y7d4<=7qE0L&|9I3Ri@uxJhVXslEnO5mTZ;J&b2>7y1EzQ=!EbAiL^Yu ztV&8n6%MK5(&fw8z;OXeXo1FIGw^IL@TD6HNdZND(2Hl{wY=xVW<6I#fQJNChrG%z z2|O^)w-Cpf?Ml}p^Z!W|a3ahYF|S?hqE9n+e(=hcXrRfh)}vQE%tD+bp4xctq{m4q zYQkjfvfmEV?SIaGT$FdSS8 zbPdCMHjH{^X$enLQ?uZwDZrwUYB!D>P7@#QU{+c8F&fqT(V}cGs6`kEiiV(WlXX6420kAzZdnij-4DFRGMI)pxAT(^+>35fhN&5TyQK}O`x>9%|pg{-5 z9F()c7in-Pn~bwB9GNo!P}<9Ee+Z7F+i7-((`l;q5lYJnN&7x}1bmm;vIKC4O%;yg zypR4`8r670Kkm>7Ii#S=PJQsVUA+_KX z-S$pk5Bbo(dHspQ#~+U(TZ4=n-@Lt@ql8OBq6{en(N!IW4Z`a*A%X5gxdIF>b z+Q4&jbAyCK4Jx9C*eS>gD4C%C7YBj-aIIt-1dupxNUz3$;xbUjc=}=@^$XLz3l+%Ar|C(#LcI)& zgDpTk^T9*pGO1_C(<@Q}Wsv>ey<$@gSh~=*XzH9tTMI6po=Q487a%{mi&Ze=Uap|b z{4@jK1JO}rp*KAmW}C{v8RA)b2FU{i99* zkhy%2I=G;NN3Yby(^W~5Ui)!MFjF8y(I>x1UGVlt%mmCUhbxhx$ zMEBiKPAv7md#*>HNB9ajlcYcCt05n;sHv$@x*Fl;`?X-9J(Z()40)dJB4qfKLki{|pz!@9%q~J&~}}L?fhcpyH_t{Gpvh zyOq|~R%XcKz!qQb-GS=Y2ml3`v33Z(5~xL}tjVezHxP67Lk~34)8j2oR4D_B<;Uk( z_ydT8^6>A_xe`_z#m%-v%ny9L6B!-d0t#6ElF#YyocLnXCQP&id-(97h}#0;b8cgN znZaAbB^Jtlrw5CuYSk2iQ{Jxd{C&X5;Rx`!@Q_>p`W!DxpY_}I5aQ#b3L_t+6~M@p z!0$IhESH$IobQo>L@(rw=L;&Qno-^XN;QL|&jnEDhsGA$s7(~$ zs!&M>82)Esl(8V(ot_>!OZaS~HiZ_5>i#@E9;g^<4bitlKWDuu+w=upH#9GgGvM^V z8Wn>6qjIvN6eUVHLi;=HE*uXF4;oqf6H3l+Wwv(!i)!Uv77`Pq12q6eW`Ky_UFH7R znXMQNH85&p!v*aEK=l1BY*_)sH;F=G>c>(RcK6@GlieQOwa!-aBx-J`$j= zKnFos<-5m?J_56raNW;&X`Kw;OSd++O5PU)_J#5vuwKIfF-&D11ax^IQK9pW10vx2 z#4PF3gP#8J&hG0ntkQbhc5kM&ofL+`!5r}hUf|HZ;BnV?tYtS(Gz zMdFaX=kr+?g_FNoE0GTiC#8J-w-^+jKS3>L$u~byO=vT6Z?@I7BgQ@gG_fO0i zV}J6qB`xaGL*W}Y%U5_h)|pRkO3C@9k@a^^|6XMMmC2rsUN}BxsGu zZ^NlU$>meZ^8*Hq#=efV-{l!jx{_b+%tXiwV<67EADlmVct>&3Qpm7cBnqLzN>Kpx zCs1$syv8qE{-kQ`*LZU89Nl~}v4_XC{1*Zr@O*?nMtR-H;PH|)mcQr4&v-TU(T6)N zWPRm=Ek4T%RFR6zO4%9f*Tu!hyAw%iQx3gq%RJ)0{C#7&Fjt)5Xt;zMSTZW(3oQT>IlQrl$&Qx0H+Co3@?OBSFsLmCbHu?VQX0>--O6@dqyA=f7&RddSzse6B(%@olxE_fqsh>W{U0n)|n*5Xc(?~%_ z?71pD%n~pe%iw4{Z%Q@$*GmCm-CY5BBSLR zTnr(~_uNa2KckMO|8noc(zO;np0J0(J}jJV|E|@cAt7j5VV==4Q; z_~D;ki>gkCe@xKL>kFFFWVBI=YR6?j(kmz`nzcQl{5?@EfHJ&*^D#?GN56f4v#TpCxNZiB-PeD3;Sv7i z(2rOLLmU%AN3)+FBDu~viwT>ohZ^fM&M&*!QKU=X(FsMZj&q zhB8Y_GkJP?B0=5VYFOvb%e~gh0-+7H_x0!Ma?aNRTXybCFK6R`hc#LlXe6d~82||MH5X!$TH6zLJ5(?bUH=>En%aD2WW!5+#&S z{VpIt3Zx6r%;S|}>C6Bmpy&w7ME$`6z5Ch(EdUdF8ylOC9X&lgicU_23)a;}PF2*m z6yD@ikDEUf5GAO0;`b93jQLSbnmEN}#pbg4RWQ4nSz4P=c6n1>(0;!dY3BuhYrsh1t{oGG)+lg&d^x(C7yevSb)hIr>7gb=f7C; zS5;TrPDXZ$NvQY+ht(9$9oGq#rZvdCZY_g{mS`9>DT*J-@DIB7L~+|i}pTJ$MfX;t^~z?XGFE5rBd%C?o7Yg zTJkRyCbpjYF>|f7P59pece0Q-c6O?OL)RQySQQl&8Q|oL{f|5$95E5Fg^;59w#jQP z)23i-lxhG!5DJ)36eTMw`_ljW_wT$QXn=6iJUMw0;CeIQt^Rs{-#ZNwEaV>tx{ZMO zBopWP7@oCXEy{d5BLtL*;`LkPREpuR1Jw0$Iv%blU3@ zuGU>C$Yp%+>(bn-5brB}zu@tnZ|-wu57KQmVb1=;AyA1hozX_`yw_2@PvmC|#D=P1 z-mk(@4n9d7fg9-^P4-`qAdO4+_kHwf>>i2G2~t5qpMC#h#O>e`V2I6ztHv{y&SV#b z6|&p=oC&UAUSi=-4s?E(Jv|rl()KR9CqYxi7vr+0(#VFJS7W@z_-xXpo*5gCHh>ww zD}OWJNUz6{4|soiuzzu-`j~WAo1Tky>d6--GFrm3m!yePC>Yf8XOc27u_l(d}t{Pabg%YliG%cdP=g}>MX6|sHAE#~dhf!Yr*PP(DGMv-LW{{V$JQzCl#VM^Y z3I*Ko>&!M*O8w-Tf4(ZocRv3UQ6v8s7zoW!#SOr3n0h$k=@}+|$7b>-ddFg~<&zC5 zqEzUm8%CkF-CY@LAw+96f`TvITc=<|3=)SHoE9aOSTJs+eU6B9CZ3&s^^sDlvTQRV zP;IUIXMAJ~U>w~>XHtddoS>sLb;Zs6X(4oXo(UPW7^8K+mIBXXZZ&q%Wqp%Eg{?8q zIC#@DGu)*(>3O8ZtkX$56Z!4IjjdMzJuTl#ohu$ez8I2n@#FTsJWKXha{^P!4SKA^2V)*r$tVJ)h>-n< zM!s+r76V%!*^{N>pLI)&+`Jt5XA(h*z59fqee|vwu{b5TzTrS&lG84$aP9bbL6BF$ z5_Le#FZt^G|GdHOLDDqyyj+b@Uha^hd&HeF$Sy6tBuN_iJ=sbfIK2Aq-rY4oK6Z@D z;{(IYKiWyjme4_fR0UThZY!tyAjuTnA33#KM~?)z-4t1+fA}BWy`p=k{>_8MoJZHa zj!iPd*~KeUq6s;Hd3|2Gw>is{f*?$i!xwnU3bCVFMY=ixR)@h6X(xN5qr3yVuqD2J z4XGPAFFU1CwaZI!CqOdVF{!4p|GvSdETL&z{qp|a5Ua?zYRS)EcZ(~9R(Wlr6oRP@ zhKF?MYdZHiUPN|>C^9Qp3jR&=tF4=5U_WuCi~sZ&)f?bh#+Y!phsNg-KD?Q_zh9)E z)arWJ%gQxHkMmFC39d_5cb)nUpds~`Eb$%+p>jlgBo)i0)>3_o6Op354-wMrUP=~$ z!rnEV#Wwn?@UV-{+AS8_uyWd;p0Y9B3591HD|_Ef;-;HSsL4(3S(~1w7%tUv(UaZwXb152H5snmt)q9APyGDgxK+M29f>qn#}Zp^Qz&MtwEO~9?tEua*cZ#3n<^${o?kQ&&!YtrLmCx zhI*p@PjL~laq0?|OQ=yhHO@%0Nu0iKR@R5ufvvH)!ehp`$3aP4AJY+cyyA&MrKH@N$J$GMYJQ&MJ8ZA~Y#6J=SZic9Zvj_90r+IP@A^fG_;& z&5M+BB|x+)!zrkU3FODKaxXtqP#7cvujF^vH7B}v&XN5w^Yr~C+<=8?G2Kb$uX`fIJ)zoRNN?^Ud6hz@Z62O(KJ6JlIT^xi^1Ag?V4=lm z{j$~->;XTqxFTij`F+ARMXTtyJeBPPobjd|Z3@SpbKIvtUOR>LacW&D@tY>%I^iJ3 zz9lPky3t1Ud$d#VAqCkz7I0DyPOLuTdSmtLd5xxL2Byi0KP5<|=aBOi8yy_-FPmC! zRzCC#|6W@mj_SUsw*y4r*YENOGkPC*VM~9xGnZ$q_YiIj0hLsD;&Yrd^a6LG3C%6> z*Gu9J=(%}?^TlVyp2>bED+`oro)5R*7~n zk=<^ChpKz$=3j>6>2NnK{Gg&&gmIp~iYmv;o{L+N*kDR~;ZP{*i_z2LQ4!lmeQC&O zl7FNTb|j4F(z5bceP(^lCir(`WG)VRYYEy{XCPH39J-%O7C3u`%VXnZz1Xk%T6|ir zu|OOW`C)8M+eKmU+g^mzoR$$j!-_-kigW?jwF5wU^U$B@^q_HFbXt#(?AvJF87Nw^ zgJvR9#R0uWR$9@67oXR-@SkCx7u-{}tPw+-kVu6{Jm%X%{EP9bRY@;n4H)ClvY#J$ znI&5rHhC`ljm+wZ>(=WnN|=5EwU;L@?wH()1vBkAm@BcH@w`O^@-Qv}c{Rv>nw;!* zHJs^QRW0V_cZK57`4ZS;IKz#vB$r=_qY^h*Y80rPnz#qaoftJd_pQ8DRUAdu;v*x! zc3>rR24Adw9&^T6i-+vbwNV)ng#bWnPL_#OxU&10AuuB_2s7-{#7RY(KZ4LeI3C{E z5l{q`K!*rqXYxeMFmj+t8ijr5wX!a_`)Hgqq4wj=ib`Z8 z!bHf1TFy({9gnMfqMk53m_#U1W>*?si5fUmlQnJKNxElU*(D<%Soa>(Q zA^V$#+3DcOE0B!}=fOnpAA%*B6&{tPd3@>LjV31Q&EW$q1f_SlXokpl?4L_d!Gd&Z zp_lTlKJTXY-rg4UuVDj9!5{lV=VCK!h?voNZShsmid3eah$qY($h zxarvEQW1*GcRx;hceVXQK3u(TXZT9B8gA*zJvGcK^EQ0cD2<|HunU!VZ<@nIL3#JT z{ulbS+1=G~=vTQ>QXAA3+tpIrAMB`B40Nsx*n~Eg-e=B%x+lD=dWoRaeA?sKcbP10 z<*mMGHqivb*T8WsU-6cfFH;KrV8mVO14IrSGAoP$pglKqWSi&!7W@d9SVi!rs;)G+ z{<_tjCQ30KcqRz~R0MRAsBdj!d%HDDHUvR{&6Wr9AGO<}4EV^W2L$0n^x?px=YVhi zT|g9@Hu{j}>K-CN@i@ZrKyz5d!NPs`!xqepyFi@H0yAJTV2mk&6ZKR;i*M1Ha0#X& z0-{b@T3Y(6-K^2|cDcQ>Eh;=x6;L$cq{N}{OL49^GO*8&3Aqzn#J&wYD(k>x|u~`=EI%$Afvb(Zrei3 zs%-BI!yPW$zx%Z_lU}_dfI-0mN9g~+LWT8rYYPKBO3_TEzyv>FOv;aD#`O-|!k*Cd z4gM^Ywy~LD1>6m!Fj9Za7f+vJhRI==n3xo-f)0p|-0X+~-P#6bt{|{w%9CQHiFx3I z@CQVbGW633GmP~VSzzY2YQw15q{>7gyA{d>Zi;Yf7A-o8cu)r#s{|FqVyWJD!q)4Z zR)!K5`I|zfe6D~enEBZ#i-7O014uY%=ZjkMV3-5tIgub8gR0}_QXN=9sIzNw(%3Bz zd{CE7h-hCy6tU};>%z#Tz zKd8C}!b6nB+E{tsgvHnY_RT61z@m-?u4kP+l}9Z;MwS)(hi`e0j{)?z;8450%2zv7$C&LCA!n6GM^(J{S3Y0L zl^!XcdCNQC?sjFz2qNNn@Bi11ySb&M#A#B@Z=(qZq}UrEyhcF2a3hu>*lyS&*=QPy zR_W@Es4E~s5v@f_$gQ%eu;H!t-pbErYZdwqVs0d8;i~7nsV`A`St5O96DkV^GB1Xc zW1aJI!TTy)B)b{e7V?C0k&HiMd&O@;wTs(}=`A_hmO6;d})jM4neaU4C2ryJ3V7^B(C{pk3cR2h&;)@;_ zdOpTt0ka-)wNB2AW6)9GzQHQMhT?Zr>Z?ABzF%w;D!suu=@(#wwL#MtnJdX2#70N* zOVoRDZ%f2mT_~<7yi{`K%`a**EN>C>-bQwC|J+&MI;i@(aq^*J#N`infK&huoFM*C z$oLwiI3)ASfLpUS7DeGQwmA+GBrkRdzk3GgjXhC?bhMD0WjxvF&PzxcpP`OfB|lG( z7!5RP&eZJK6e{`^r)#evvJwHy z#!#;#q2L@zPG^8gYS4$J4t!4XdMI!iCEd6fhRD;Geg6R)mb{jxyO#XWIChQtB0-ft z!lr*A16i`eRau%-{6u@T-HIELHfzpnE|Ayrso-K#uUoI3Lwtk_@w}9wl*+^B>s}yF zZ(g|aY=3^qD6p?G*Abm9kIbisPe-u|YbT~95@>RWqfPC94nv3j;JUR=8&gO#rm1t6 zi8$0yw>b_zTI0J;7^n5yq{xO}p22@cli=9>;O39yIKYScmUCI}2wo$=FAlfuZrGcf z8<^>=OF$mg+TBkI%LNC{ZQW*Is7}NTnrwg-HV51j^C$kr5h+%daRSGm0T+HR5%_m3 zR`wv^ozTf~Fe}7*;D18GCL7X@AVO5QVxA-QC%fZ7pGuRGlLy13D-{$mdEhZiG?ZD~ z!DYr7MO&OQW{RW)z%w8x%DEhb`uib)JcNQH2x>KCWJ$ukm{G@!y9`Gf6^4A_S*f8S@bJx;zfu!&t**09T@9O zq@lfz0Ta&bFf-US*)cjw3n#sC7uS*^7g$@+;L_x0+#^ z!qEH({x=%dkroyY^Hrwj8S(6QXIOx2%QCEu9^vU$s1vFV4S{D;Q+`|O7U|Esxo&2J zunt#m)5CdRz5#{dAKSp?Aj~iu02pE) z03CV&-nZH^+lhwzf7kOsqxrL)2Az8IkI|{lLmS`Xd~n5SXa zNVDm_lRySm%4yB%mI-MK5Jyo1trd|?jGoxQuQJp(G8ojK#|O)XTFPNqtzZ>i0+3ds zsh*thG&MT)6_2S`es0iv4`UKEr^rs_|Go^Blso1#c_%t^M?lRj!;&aNs?&Dv4;34X z_2u8Wb9wdivq<>ne~n++KEjP})^?c7&GI1E-S#jqvo!@tI~-JH3BP?(n9;0qUm_=F zl!ye6hdJ0R+QqKx$|-3`O^tdJ16dY3kS`&)?a?+QEI!|pu>%ATBusfFdkpZu(tzcF z2_3j=Z$A$&TKN6_Ex|%xW<01cb1;U}E+(`DHpQ4HQjbeFZBhAeQjYgz^nAkTEwJ^& zVQ8cJ$z=fQQB&)-eE{WvQNlY2urCWQFDcAF3k})c)b!=yn04@@OIv-bFIgc84I?j% zctSR`glKvtWFNk@*vHDohK0Tc0j&6VFkFa^RpH{{@xixAAn7ilcF5bavM9Wa%n$7+ zZzPf0M_}|A3DT50zyh5>0c>cf&lBo0{c_oxh?e0yEdJX_Gr>SbNJwMH{JMpddHwI#>n}G=KD)q_j+#mvcd{cY-XuvFXjzza~ z&L>GH?(bP$)0ptV^8HA}?rD)C0sBXY?-r&Fe5|oirgw+KyelK_gnq2z#_{CEp8p)` zY5xMoG5F|s-4@i~q@DWjvu-`9eiaT5>4Y(r4WB)q1>y*}F|}?R3nYc>UN8(qv4U$7 z;@`z{=>Dx0Fmu3T&@~blF&;L#C{{x$ZgRX0CC!Rc zxQBbJkZsX-Ho>lPm`jWl5NoZRl~X!}S3>0tNr zQ^Oe{h5&~?nA%1Mf>5n-DF2>_?=IJ8&($Z9k+`iL9VwsBz!rnLO=Fm(8DY4%85$n+ z1p=t))8Gg^4=^?+ySy+nqqQ{5<;l4_8N`g#(H~`(G`#wkmste(45&9?;-@U2x38}Q zgs^|ksI`e|pNsah&0#ds0k!Op4QsvmP;*JXQ8hV)7*EL=m|Dm#TnL5G#zerBu{ma6 zGz(LI17n&jiQu){* z4%5!00O1sU97@hBL584Q$HAL+_{a#v`ts`HH;9JtU| zrJ!?k&?lnaQSfeufnCsccL{8}|23kaga2T>lmQEO+0)iJNF*dMcivL~15iE<#BTd* zGwMIDK0{{&RzvLnd#3_99vHqpK6aOFz%;?idJeMLKD;N#T`KN>6(Zp&Dx>XrulPEG z7?jyyz?((TGol7vFnX&>bU+RRqJXm!8|L{^Ur70XM)g$gLpENRVQWa&qU=(e9f3B6 zC76t&5hj{!|Ap(u=B6z8+rSv~aqA(B%KulGqzA)RtraRxs$R6lMMg(Qi^~TCZ2x?< zkR`q49|wNps3=(&FYJm@WKWW1Pg-KAp~)BXBM?2f6*{;nlX5uqpM9;+2)h(~vxJ`c z|NF-2CHEw%xr2vmABYQh=@h&{0_@Vozy+YHGMMbZ*(?XS3!NWBUi?3akxg?qDvxY6 zH?~T~k)SV<%PFG|(4pa>HaI=>EMVCU2EXP_`y<$GiRtOF{W;3Ze)<2eT4dP*7K4Bl zAwNHVvBM~TEkHf6vos3yNrZsGSFTjkz<>@aWMpfrLRC!-I-@J%y}>*NgV=3)+{9pQ zm@=Ra0gezXkTOL|LOn3MPev9Ms&FMwv+N1o4Tnhd+p6FC z9}EV?aO>CTJ);(wEOSX5oh$liOp4+WXmcVJWVgdiH7|S_^HUs*SMZxZpbYg z(0tE*{%`V|C6Uhn6XxJu)Y8Q$VeLcYUZWOX>9gYycs&)K9y&jae(`9v)p(`q1+Mr|Glgi{p|=$C|m#! z-J_^gus-WXRbza#TX1fO0ieF&S<(SEBxv|&A`^Uhbv+yb=!F1pTbE(+!rPo68C|XzA035v{y;6hdl{8_1Eg^f z?{Za`i27-VVsjlnI5s+!3KM~<4kkcaycD!Ghhr0kX*U`!TWpAkGxgY2&!z_u{U>Vf z;pR|2MkziBJQk;ks>kTu2LfjD`^SgNMdx%;IO&w5 zxsKttR=rpZ@5Vx(0Qz~<$qUw5m|T^BxYl;2-afne*q2OJf+l9A~QEVWu6%P5m31)zI;q~~V zQwzh=Mwq=SK=_0R?$F4T z%rdHsp_jRVRSc~KI=z|*?|~S;?@NSscu=`u9Jj=G&k2r0bNKA8vN6WWF9#AF@!m5u z7!LUiD2u_|38^LmSkQTRA(;2kY9%^ykpp|s8=gfBJg+QnWYZc07j}$paR2+q7$|a_ zgNob=uOZqPcWy|Xdp2m$`~#CzT9_&b`kus7wWnaQd#jC(_kht>;FoP)dgyy><}^(7 zq-rzCQhWn7)Xkb9Qt&rS=^$nAf`&2T?8DzRUP`AW5dC>pvI}6{Dz>CJz@^Swgy>C&|ED8xl`nAOysWU>MVNEzP5A$g%m4>LZI=-9x@yRE!bJpxl7C;8#ri)g zJM(xb!+!tISh5z`C6O!{TgVb6G0Iw&8T(R}%903Cp;3{2A6xc}7`yCyWtWOfWJ|VC zQ6wSyeea&-3KlbI)A&bzjT(`h4D>GwMQC2)U#n99}jS*61)d#%iPN z{=pMLY93PB8kQf0-~6okU4~q<_Y&8oGs<)b|BsgnKF#yL*N~%uYdqj=gKId_!|(h9 zkJ8QR*3XYxJa0o|KTt%Nb)p{2NAWVuM`M2aREY`NIPD`7<0{C0tQE<|`Zm6%h}N<@z7vL#YyPR=l#$mVb9psX}%4qi)~D zRnLr{rvAOgU>NHVTdrR^C!tYQ0>PuuP$@;$mV5c&Rn3?U$kyj;sqS4W$obVzedmBr6r zuQnjy5moa%k5cBrdW>=HlNK(Nc8oUljDM=UK=5$M@s(pamWnTNsE2oo^v; zDdma1xg2Ssxxcz-ENJaBQyDig(Vz4!uovH_gNo?P@Tc5hQ!lA2!4dx}-h+WLzaj2fLY`(T@X9%nipI z4F8<=Q<7BOq-Ol%eyV|iW0qGbKXB4`30THiC#u!$`RKFhRhD_BiOpFf94orj9373NMeOUJzZXue z#21~uxWY)!I5n{MZ9DFFpi|5YUZ6bAR7#X=3cWk@K@~ivNl+aArI_7K>&B0YX@Hj- zcl(Oh5j5OUbK6VuOU@&`anX62T_;sNXUr|GWr>2L3l7n+&Xzr3_LCT6kIi+sp=bIK zp0J~C=&C6i!<|c?_JmcM0e%a(Sj>dHFui~+C0#p|UUvfpi zx*?C+Y<`~g)C7lrMhRA_r;tX}n`2}@ByV0IRH+7^{**_Zs^hd`cPPM?&w?{T2W3`l z9t7KKWo6}TsJDaJ-mreV%%+j+(xpqljJXFTD+I=d5Xk~ShW-G`I_jbcIj|mv!=DIQ zI}Kt1dmBp6mKHk^j2ozRGd2<=}At7WqCP>$Z)8K+gShahU|&%nNTDdbrdFFYjlV zg6R`M6d;5Q*sL$W(icWEP>|Uz?LK4?=me72vB2Mc*5Go4v$1x7vwa6sn9I)-uyiK`*Z0+Q9+Q=soTbJB) zJh=l_(uB}*q^??&Q;W+IckL+WO4+9U<@R8J!Z&I9IqC{0T#1*n;0I>_k<|ga-vMBD zA;)j9l6nrJJcA$PACH~URSVJ=1KBAN`AjJc7a6pQdYYvcRER&HxkFQ$PFwbehzfJx zx~8b&FHHUuNa`$P9E&_7Z=HXJ(s}T*Fjf5xipvSx^}XBzcqY&zg4F*XM_`Xn(HZ~i z2n^X`A(J$$|5$0zECOonh%*aW5+F@z9_9dhyxNxzX$f$wpJPo#ZCSW*mkWAGhPO0n z;{RNJLS-R7AEo6ME^3^AHBL4$H>^lR#8~S?Bjwsvjqpq<$ILTiaXjMu(u^9avbGg{I#{^a&2RMT?@P*g|7kk(**~S`+0eh za>=jF&1WxOPy<1V@+Bc9rC?YVjkq%YZu1yH$JcE}4+0(q8>t@#l6O(FP6hdjMlsGg ztM65*moF5NiuxXwdtkVKe1x&L- zd~KU9KOQgdu6tHb>10zrU|k;+Rc{I9ZhU>0>SUnh z`$EnQ8$p>de@}d#V68{gI5gnzL$QyXTk4oeS6v^K4)x^9P9|$b7&q~8h(00~@?4?P zo?{JA{P^|j-a?#Zu9GytN3cwpqo6cK4pE!dUa4Lk$fX4mLjWEY(?7Qdc} zpVdm{^ZIGjv23ncEroCAd|9Z38#bLUwX7W}48a7p$u*SqJ;rhEsx7Y7>SRbBmyK0`X=kL1yEfD90QCd7lE2-IR-|_DA;bnL2O3G-beQL zZ;^~COzCLerSoi<6D}K)w1D#ivS9K4HWA^q!TxzF<}PQBoywxS`ZT z!&K)7gCI&jON}2qcrIc!&zKfS~z$Ep?HKwwiZbJ1+YgbP!YUIWA^}BVRv_T8}I-T zFDsm?Q@=jB#*84W`qlmkjZ*tHMUCt+0Pu-yOa^i^=@MF7!f`QN>VfPf9P0w^n*kIT zW;wI9&LewBQSU1sVC#oieqwNbX}ZoUHV!v~(&Ae<+gxndaVABxy?B$7x=lXm{K1gE ztGB6sz=Ity;j*@}huAB`rjGKPiBkFo9FN4U5m4~!x;>I}Vg!hx@vo$*eq-HNrEhX-X=b+LtOF7cuvwtV)b~6%6C6+YQxz_YNg>vIfJ#>EE#H5 zmLHKZm-O(&>EjNO_a!Y8jV-y$)i`H*NL9-0oX=QF}mb{C?WXJ1Wh6> zp;_;elW;aUsmjY3e?hI~TFtj!+`AhN%hhPrD->5_u^Ri;e=iV%$82`ccZQ!3hm~G( z*%IkB<{Ak>fAQN5Js`6ri#=XvQz@b-RDvY5I)D6P?F%>CfY9PeICGpVDXoiOVH-@0nsn+Jo%6E~bRUWVOp4wi7Sk8W&&2SNXmN#-EA zay=(-$D)TUZpNI`L{$B;nVY>E;DroI%WJvpHOdbe#bo= z_8T3WjMmO0pI8ZBqo>J}!xKG5`QLV#;X}+bx?^VqBe+O@50m`IOOnW2Hp$`NS1r@S zGVQ63-Uv&>t4mffrF_8deGx0QH%WIVXP(n?tJ20;HT!JylkM;Y6@1lr%1})?BVJ#s zX=%efinZ-s%j}Gzai96Uvg0Qf)z98r3dH9>k(+%mvgDA6PZSc5=P~tePDRD1XOL2-!j|o0c`*_oaY)>pU z+1u7*sdor<2pu<%P%N9|cMO;Otoy@J&hZAv$m_QGq+DN%5u zxLb-)(|G{hhLjtQQ>gIKF~z+vG_9I5mgIb?QmtM1q`Y1oHM#wm*je$tCCUd>ihNH=u=%Qv}yY- z>SCzX^~ZeBPeSv}6*ZlHx;%PI-Gp@>SJC|M5nEN05uS{XRylSW9Yb@(mt21=2~CGxiQQIJkyDwgViXz_nkd>X|BoxNJngDPS>hIVK^_eI^TyUhICf@qaU!@yv{jT zZdJvG7Ha7xi(edSKi>J&m?4aw&E1Bl;mUIf*Sx-Ov{Td}vq-I~RLuG*rYy*pQP}2*O$4MNgL^-(Mrr+MG$_vAImb_fA ziT%*SaVms;;W?|T&u97eoCWUS=~L)*U*ZoK^Ya)vbWbLpHb6;L&>F5898ZKdsiO~T zwbj`QG9%BMGA892bnFo&TWih%-+EaeqQ|`Elup{fbF!g(h|7+>dh6$m3@XRda<MtH>PpW>1T!kC`O58x-09&iUzJeJkwmmEz^SayU>{d<;!Ck{)bV1KAb!$yU3k zhHq*1mv9MsmH6E~$AVW7F;o_uJUHa}xnVrzKHt=q_uL*Y(O*kms>3(~Z|nVcuCz5r zFSU%^mEok-3d!dwS1!SnWET$O*GMXU3#N(o(4Sh$eyz`se$E5Qu+X}o0cGpc=lP4N z3F>Q)3Ovo12CeW$sVoWt`#D5$BJN(I#>87Imb!<#XRHWv0_9#*<1T#5b$DJn3vd6T zQY~@P4*#1p$&9$hVL~j0}f_@^Iq&V5jih1gmTuWb?pav67nkV6MWTSCd zQD~=3l30DW>r>gOuB^)?%gT6ky4nxk4`kC(?%+u5gs7g_Z76hU7fKMMDp3zUV582R zIxne;ueQ9eP@qrA=fRjHNW^J}U5dOyVl&%cWxe#=T+`&_eVj=d$LvC@sjri%i1=5g zXcf;5X6d_?-nma;bV_Vs8i9J)91G5b2;({_x7*`O2EIrhHNE04pV(XMmc2{h)`Ufd zRI)wKj72KV8{-hs1^J0^HMhKAyH`JU28~i>`qHW&N2EvCHRxP`Pm3|yt)hLy#;(3j zXBWi^1Cpb;y*8V^hzyfZP4$7_aEYOdZm@}1EZY3tJ~ImoFQwUDRoId zXjuP1bw?WZ8^2(`A@_p88=vYKYpEr^B|NSr(J27rI0nJRP-q7WZ>Eb*maN*o?-Eh@ z?Pyk%m`vMyy^T-xLpb~-WAAeoa}#43rF>VXCuvWWrpz_h$8qwwV^1axZRAt=rk0*; zucf%r!7*)#46M;tZhf0EWJtLa=%mZ1vU+;1If}5FT?r&t95mdMjr1Iad?d~nccT`w80?hJk&OG^D?PAhx^frNs0{Krm*okN`M~MFp|spQ^&NB)^O*UduN>lu`b;Is)kd()xg7&;&NAu;n`-)+d+fvu5AaFRsX44y&AiH-wO4n1vxkI0P(1RwDzC?~ZHTHK& zTII2C{xSV}j{Eu`mjZjGW>fsa}8(L%eRve z%Q^G89lHMa=c(H=X$f!wBr8xDIGsiIBz-;U5cQ@2@Ol76F% z$5)uA=X(KluEhv1nk2H8vt)PkPg=+Y&8bNp zD1EnWuFps3$KI!V^9jzOV-!3h^kV23Gf_~C-EY1*GenPea|>$HpGxNL6L4FZ+IMnW zc52CLbB)u+y;zQz;gWfVFl6hq_gzatgB=&0@6`KSTO|`#>Hl03t4G}?o{m13O%AUU zJm=GVO-n9rr`d#j*Wi0?&y)QgGXhiHY*S0ogBwN|f>;ciL;P1EvrmVgt>~ZS_(@O^ zy2GKs`1q5t7IaA@A5$Ss)t*XKTVrj zFKA|e9wVO45?#jNZc>qlzX;^(e!KqL6@v9(tBA)& z-SS--{f<{X$E66>qXoMG-jAmjJ^UY;mK@a*GTLcw4xlffG^}r>`Egl`M$;o`F&WCBiM?ll3~M8&HrZaoB{UpY-JKQ0w~b1COY83-;NkrA z%TWx>u#I<8wyWX>Nt zv|56(sAm)8K=6K;?Mzaf?baRQ@E~X9?9-u>W5aEzHZv&SPEj~`yZ7Cpt19i|MpwN& z%tQ$I5~`A3%Z85n;XRfyl6M8V4v=Zy7<%#v#oZ{|TXn!_SM8PB1@<Ib&*dYu2Uw0zY>xlND+!&dpnrhLKNPt#-8UQ4`{`PCE|ZDm7(Ov3C|p|q)ZTcN zOL`^t16qtvt_xKv0u#qRFO0}$ZePoNqLJ?gM|B_XLFV?5L+Ds%!eU8aQPJkT3uk9Au=w@bQJSNoF ziLd0VgI

    {4(?~s;axvlNhDS*?rz<;uB5?YYIk4cm?*P`1Lo%bXGl{&S_4K_Y72{ zwDF(t$0;`)Itt5tow{VmS)XjV%Y7B~^|8XYk+%!n|A2z7IK0YX*|*%$n67JW&p88d zKJS%p{$aBa0sc(OZ!z^zeoDYibb>TFJvPPfU`CoR-U>wtD+-$_U8?j9F|U6RDhYaD zj2+ZA{B8Fw6Z8zc&S@sKSv@3`_d1kvT`>^yslLJaa{hosQDIYyX>}d=Umfw1qG;<1 zd)j~SSO^F`27oh8%c@`$0DwJPElBEIenKtXpm2M3b~a^t&OCZnXu^^$?3TmfzHDh- zzg7Bf-GM)w^Gj4e$t>!*nAvXKckpeRZbwlj`J$-VK1boDKmH~cY&5aC7ytY6yxmq6 z-3R}*z2Npfj`#v{feqldNJ_5y>E-41c2oumSRmQS_tQzbPb-)w153uorAsX>6NMKJ zahHl;Tav!0dX7?sA?$i`XGl&ANjcY4KJRr6=#rVg%yItC3pf-kvWKg~p{p!Z{}ELc z!m#C%v5f?|{zYKOl9pGNm-hifr2i{;1Q2mP9A*?%XJLf~Mqj@!V~i*?GfP`OEK10u zThWcyGpRjWPm$}dwCTX#Jei^5&V8EV!CM4=yt%_ zHP8X6flpiY(xLx97rxgmB|B%v{<%6Y+H@6pL3Y!yUp}#jc~s|;Z!GIOPW;j^&wWy; z=*Sk$8=xo}7gk|i?EoARX8LRzj){RKcQ*PUl=`=CY*bfNoPp9WD>t{34b|dKEDa+n|h1ANlhI=REjqoEm5?(PxyjZ41 zkNVFe6IoYEPjH8If5HAKbpJ1E&o{E}fH23pHIN_Jqh;Stf;gmG$(?&i#y^uWQnxJBN8ife=eIJvJm{>caT`7v-70@~!;Xvd;a2lh zbrjQy;c7~?AU7QB`edzm{{8H%f0Hmkvxo*&H-ey^y!}}U6oU?MoPfefc|p|~^Sue_ zOW-L14!A{F7eadj{WG7^^+_zi-8*9hVp39g`ehmBt=<#JbOFN!24U2KsPndjr^&GC zi;c--w|HVpCy3g2i0oqNHBif^ydL5b?+fejUS8JF;;4lPbrgcA1PC@FdWUBeVX3-7 zq?ZZhQEaTC{rNUPT!2c00Ulw4!Y+M1y%z|1G$n-|q;6F%6h?@)!orDB)b4G`kov}% z?#j*MH0}a}0VgxelZ4mY>Bq;*?o3-&q1w|ENZasVUntFUl~>X9Vz7#pGIKP8&329w4+@^gKVBL4o-fVAzpX+orD%tV zxCdBSC!A=%-<@WG(bb@HO8AZb36aGwC1m>$Lr>bL zDWZD5WVG_FqU9&1thL5QzeZp3EA3CEg`u3ki_QqIBi!IieY%0+C==?AS({YbuL|Nh zAvoK$KI6MIV-=i0DtdBBR?Ma`NZ`XBj(S1~^_0=@!lnIjzmB2v1}pA_GM^c~$Jqa% zJ!iT=d;Og!hR2}Rr$AX$Z&<;7eS1uTqde|_lBf`y$o}6QLIe9B2ubjjGo_H*tUw@A z5&78Ut&fg!1qY#Ear8#d;X_!{7zRONA`xm!%wUB*EJ&90(a3cb5~-mv{Djq&ge5de zLbncS>`_^CUi^?i=OL&7iLG^NBpGDH=GmHY>L+TwrIn1w>hhmk^1%n`TC^i7f3y9^Z^5`Rc*! z28G@tH9^jSr9_o3smh+gW(l6wg4EelH09Mw1~8|CNwrY;CQIC5d}3^9^>kBi((#Ju z$7_WbF+44;VIW5-tUGuj_Pe@|otuE0W2*Q0JZw@d?s#yNc~`HCrL@FV^z8PdZZh~n zuPvD#;6B|p@S-@!P{GLCUFFQt%{p_dyyKo-g^X(9?4NO%rFLnB^VPFfp7v3XLiK@4 z<~&1F;doU+1I1@0D8nB6VK`8qwS6ppo|i`ZYtU~u!JX2d4)+8nla9X@#Gf%ZbAFLH z>>tCvKLus%Y5z6)NS{cx2`qkk+^1eXRCiYqtT5sX3JrtGuWrq+Umdv#q&pFAmEL^L zm-IUtgPsbY-;0yC?e(m~y7OR}tXOfgE6&M8jIV=T+(%=9mwBXDpD#hW_dsjGZtg79 z`%k1PirQQ)^{uF*l)Zp^yW%#Q5~__ue$_xr6!t8F2A4D{dWSgT?tXj|NiCVF9p*L{ zKYiSlm-|AUmZhfwRupX0jC0()^1|;}6f5;PMTFs9|B!x6Yxve!`e$9AcHQQ#XeF|& zGFCQHl@LWo%O*be8X6~7YE~_g(xGNrQ{3wc5~=|c_}SR}I|XqrI^sf_-`!E_ zRE|%`j7NvsCuzUn?eN+0340txxZSz8aTqwp^8C~r6xsg#t9=Z#Hw2Gz4tldx_z;+1 zPBMHec-&BSUL*6QDIQHdy_50OOVT>ae1}$CjK5pkaDv-aFRer$Z%)n8nenL5vXzH* zWnEM#0ann#?UVfHl1hH{9$5191}#Kt(JlKytpWFo>I$;Qv(qFeo=u#TUCh0zEBRaPcm9$Ro4;4r_-8`+xi-3!WnE;D8LYEFa5gd4p6A$9V!)mI}8ms$XL9 z=unb3x`=(K*pb5KVQJRV*4FlG9AT40+m3py?Ua=l9fYr6PkGEv(k;#V0%+-w#dXC;!3ixQe%4pX`|a z>3o$pfy5m%))?f}Zh$=tT?(hCCE^uMFNa=VNxrRNUlH@z#H7plyXV@D0T!c=V$g1- zo4tZog!8qFu&kz7e5az()5{x@B+XU&jUSvogS`Ob-Sg!S2i8%A8MhpAmP)WfPKOzE zzCU2BK6&?I>NyvhCfRQR)kwK14OLxuibJlOuB6cTft0?5A6KXl(@h_X5~evP70kc zHLt$HSi6tB>$Jg|dhY`D)FcCirY{K>2mF`N)A`|J@uGSg?x^t-RDQu!ipKCUAPknq zFf!ggh>1`CuI-;=Z?h7LWA5rreUVXD*Yi4;n?*=!OBKL>w~B|qIHS=1ciD|#1#FL7 z;iX9K=Fj4@IPW-w&cD;j{=)VD`!KWr-G4`x)Kix`-V;Qj zW^dG|9sx6(kWJy~T1wW;yHH3x1Jx!9g#f_*N>{b*AP^0hU`oC`mk;kRKCx3G1TiH@ zSSe7xz%rQKmDD#^VDe<&@?$BzJZ5RNJ5((H75q>_l~A4rEo3N?;uaU* za^*Z`Q2XjxvN;y}PmLtHD6e`(H4DJanb2^{ic z0;j4K<0B)P4`r@r3gat|HW=HO&s$X z;q(Fl&Bf+Us(uJKG}cD>v~S;5L1n`Z5arh&r33slAU8leXaMoeuOw;~X(SM`L)_~1 zlCMpZo%HRf`Rl-ViLzbktyJ(u;g0^l`^=Q9`31%Ix3-dQeq9-_cZiN9 za{{IesB+$mgR~$up>A_^X9mc&dx}P^x2q0QP2~v9{NF%NjYj&A@Z zKN_TWIY^oyaP0uM94_ zqWXMj^qDVTknkahFOF{gKy0Tm#QxiE^DhpdJ2bW?kS{@$RaF`Qpm>@}DZKJXBrD>oB33!wlkO?k^gxUe>gA;T~G~g&g=pys``lp>79qAzli1StE zDG3xS&HpSojO=k*D!Kli?YlAQ^ZZO`H3AXlXa>TV@q9%TR!D1Xj96^S@|2Dk}O z?YBaJVs^dLl`F14Kf;|u@<3r|$r8^E? zLW=&L3nmDx(uQCTV~0dRB(xRmaZK}jNAD4DmY@-6`Mba41SA%`{XGFjsQu82B%NKF zpyAPxa4|yDWC$lOuQ;?C6JRqn)YS9SroiO^GG4dwI-}2a0E(Y zuU@@M>jHlkGb|~fzd?!`uvzF9AmX=P7Rd4%ULU~g4l%3Ry1G;-#IxcDGC@xmEx~3; zhvZ~Iy^Ulmu|MuG(yt;uefeUYt5+igF&il8eDi_M+YrICyrT&9Tc z3Q0c(_vC#T?mi-;KeR!K*-JpyK9_}v@UQ$}5^aAClNuEYvDLs^MrO^EfgoZ;)-4d* z=J9XZJ&6Ybb`ab=lAvl1#?qGUx{L*zsoq}8ENNVYsO$05LYWK9sCkbvZ1B5+cuY62Sw)*o=wG+<7FK*p2nL}8&%|6r02rGpwM;T)a~N{5=M$l5X!bA0MV5Q z8$Dy@DTLL56x$Q1{?Oh?EF7R_GSIds_8ZNC#fbGKKh6HQ3P7VHGauYGSqS;X=01a_ zhCimTb%YNTNBjughWt*sH#oFF`2V|hL!5LLynqz@&#wR*Nch&#>8~+rzeVaFx{Qs` VHjVkv0u=nw(K?SU)wp=?{{VxqMV$Zu literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.ipynb b/Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.ipynb new file mode 100755 index 0000000..47d20a6 --- /dev/null +++ b/Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.ipynb @@ -0,0 +1,3688 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "7453d213-ab6c-40e8-9e70-6170eccc7b9d", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{Problem Set 1 - Solution}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{July 29, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "2c3a2d4e-1e5a-4fe3-88be-abd9b9152def", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "markdown", + "id": "040dc2a4-910e-4cf5-9d1e-62fe7d0a8efd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Important Instructions\n", + "\n", + "- The purpose of this tutorial is for you to practise some of the key concepts we covered in the first weeks\n", + "- In case you struggle with some problems, please post your questions on the Canvas discussion board\n", + "- For this exercise, NO write-up of your answers or submission is required. However, I recommend you already begin developing clean programs that you can use later in the take-home exam\n", + "- We will discuss the solutions for the problem set in the lecture on `DAY MONTH`" + ] + }, + { + "cell_type": "markdown", + "id": "baac6966-d67a-4a66-acec-8ef6411c4f66", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Setup\n", + "\n", + "**The main task of this problem set is to forecast the return of the US stock market.**\n", + "For this we will use the dataset `stockmarketdata.RDS` taken from Welch and Goyal ($2007$) which is available on *OpenOlat*. The dataset contains quarterly returns of the US stock market ($ret$) as well as several other variables that have been proposed by finance researchers to predict stock returns. A list of all variables together with a description can be found in the appendix. For example for quarter $1999Q1$ (date = $19991$) it contains variables like the return of the stock market ($ret_{t}$), the dividend-to-price ratio ($DP_{t}$), the credit spread ($CS_{t}$) and so on. As the goal is to predict returns in the subsequent quarter, we are interested in models of the form\n", + "\n", + "\\begin{equation*} \n", + " ret_{t+1} = f (DP_{t}, CS_{t}, ...) + ϵ_{t+1}\n", + "\\end{equation*} \n", + "\n", + "Suppose you are an asset manager and it is the end of $1994$, that is, you have all the data before\n", + "$1995$ available to train and validate your model. Your goal is to build a model that not only works\n", + "in-sample, but can also predict returns in the future (after $1995$)." + ] + }, + { + "cell_type": "raw", + "id": "156ee566-f0eb-4206-a443-34a63bc6dbd8", + "metadata": {}, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "c53eedac-cd76-4649-aebc-dc0c0d26c63e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Preliminaries\n", + "\n", + " - Laden notwendiger Pakete und Einlesen der `stockmarketdata.rds` Datei" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "44ad3d11-abe5-4366-91dc-ac319197b93c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Loading the necessary packages for this exercise\n", + "import pyreadr # Package for reading RDS files - https://github.com/ofajardo/pyreadr\n", + "import pandas as pd # Package for processing, analyzing, and visualizing data\n", + "import numpy as np # Package for handling vectors, matrices, or generally large multidimensional arrays\n", + "import statsmodels.api as sm # Package for investigating/estimating\n", + "from statsmodels.formula.api import ols\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression # Package for various classifications-, regressions- and Clustering-Algorithms\n", + "from sklearn.model_selection import cross_val_score, KFold\n", + "from sklearn.metrics import r2_score, mean_squared_error, accuracy_score\n", + "\n", + "\n", + "import matplotlib.pyplot as plt # Package for creating data visualizations\n", + "import seaborn as sns # Supplementary package to \"matplotlib\". (Modernizes design & simplere syntax)\n", + "\n", + "# Defaults for the following matplotlib figures:\n", + "plt.rcParams.update({\n", + " 'figure.figsize': (10, 8),\n", + " 'font.family': 'serif',\n", + " 'font.size': 11, \n", + " 'axes.titlesize': 14,\n", + " 'axes.grid': False,\n", + " 'lines.linewidth': 2\n", + "})" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fafaf60e-c76e-45ae-aeed-8c8404bfb4b9", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "

    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    dateretDPCSntiscayTSsvar
    019291.00.050490-3.3676880.0103570.079805NaN-0.00830.007982
    119292.00.087235-3.4128510.0111050.116197NaN-0.01130.008405
    219293.00.091067-3.4683920.0125170.121390NaN-0.00830.008056
    319294.0-0.268418-3.0961840.0121550.163522NaN0.00370.100171
    419301.00.165884-3.2523450.0105540.145496NaN0.00400.004662
    \n", + "
    " + ], + "text/plain": [ + " date ret DP CS ntis cay TS svar\n", + "0 19291.0 0.050490 -3.367688 0.010357 0.079805 NaN -0.0083 0.007982\n", + "1 19292.0 0.087235 -3.412851 0.011105 0.116197 NaN -0.0113 0.008405\n", + "2 19293.0 0.091067 -3.468392 0.012517 0.121390 NaN -0.0083 0.008056\n", + "3 19294.0 -0.268418 -3.096184 0.012155 0.163522 NaN 0.0037 0.100171\n", + "4 19301.0 0.165884 -3.252345 0.010554 0.145496 NaN 0.0040 0.004662" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Setup of the data set\n", + "df = pyreadr.read_r('stockmarketdata.rds')\n", + "df = df[None] # Extrahieren des verfügbaren pandas DataFrame Objekts.\n", + "\n", + "df.head() # Showing the first five rows of the DataFrame." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6d3ccd77-5c88-4a7a-9225-efd36768d36d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    dateretDPCSntiscayTSsvar
    3602019-Q10.137489-3.9434000.010258-0.023230-0.0393360.00170.004651
    3612019-Q20.042688-3.9600330.010006-0.012562-0.033844-0.00100.003271
    3622019-Q30.017042-3.9516890.008505-0.010862-0.029529-0.00190.005517
    3632019-Q40.090143-4.0158960.008410-0.007222-0.0336090.00320.002319
    3642020-Q1-0.193794-3.7699920.012252-0.007731-0.0501410.00580.079049
    \n", + "
    " + ], + "text/plain": [ + " date ret DP CS ntis cay TS \\\n", + "360 2019-Q1 0.137489 -3.943400 0.010258 -0.023230 -0.039336 0.0017 \n", + "361 2019-Q2 0.042688 -3.960033 0.010006 -0.012562 -0.033844 -0.0010 \n", + "362 2019-Q3 0.017042 -3.951689 0.008505 -0.010862 -0.029529 -0.0019 \n", + "363 2019-Q4 0.090143 -4.015896 0.008410 -0.007222 -0.033609 0.0032 \n", + "364 2020-Q1 -0.193794 -3.769992 0.012252 -0.007731 -0.050141 0.0058 \n", + "\n", + " svar \n", + "360 0.004651 \n", + "361 0.003271 \n", + "362 0.005517 \n", + "363 0.002319 \n", + "364 0.079049 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Definition of a custom function for reading and reformatting the \"date\" year-quarter time data.\n", + "def convert_to_quarterly_date(numeric_date):\n", + " \"\"\"\n", + " Converts a numeric date representing year and quarter into a quarterly date string in the format 'YYYY-Q'.\n", + "\n", + " Parameters:\n", + " numeric_date (int or float): Numeric date representing year and quarter.\n", + " The whole part indicates the year, and the decimal part indicates the quarter (e.g., 20191.0 for the first quarter of 2019).\n", + " \n", + " Returns:\n", + " str: A string representing the quarterly date in the format 'YYYY-Q', where 'YYYY' is the year and 'Q' is the quarter.\n", + " \n", + " Example:\n", + " >>> convert_to_quarterly_date(20191.0)\n", + " '2019-Q1'\n", + " \"\"\"\n", + " year = int(numeric_date) // 10 # Extracting the year information\n", + " quarter = int(numeric_date) % 10 # Extracting the quarter information using the modulo operation\n", + " quarter_str = f'Q{quarter}' # Converting the integer quarter data to string format\n", + " return f'{year}-Q{quarter}' # Returning the desired string\n", + "\n", + "\n", + "# Applying the function to the \"date\" variable.\n", + "df['date'] = df['date'].apply(convert_to_quarterly_date)\n", + "\n", + "df.tail()" + ] + }, + { + "cell_type": "markdown", + "id": "84ad3eb5-0717-4848-b531-268affb4bed4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Exploration und Visualisierung des Datensatzes (extra)
    " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9be0a727-8bb6-4c51-992f-de30090b33ba", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 365 entries, 0 to 364\n", + "Data columns (total 8 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 date 365 non-null object \n", + " 1 ret 365 non-null float64\n", + " 2 DP 365 non-null float64\n", + " 3 CS 365 non-null float64\n", + " 4 ntis 365 non-null float64\n", + " 5 cay 273 non-null float64\n", + " 6 TS 365 non-null float64\n", + " 7 svar 365 non-null float64\n", + "dtypes: float64(7), object(1)\n", + "memory usage: 22.9+ KB\n" + ] + } + ], + "source": [ + "df.info() # The last column \"Dtype\" is of particular interest here.\n", + " # The variable \"date\" is of type \"object\", therefore not a numerical variable." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6ca834d5-7d59-4f87-a6f0-0325a0ed0295", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    countmeanstdmin25%50%75%max
    ret365.00.0279510.112073-0.388075-0.0211580.0355690.0836770.893713
    DP365.0-3.3910560.470778-4.493159-3.797300-3.373817-3.042370-1.903915
    CS365.00.0106210.0065450.0032430.0065020.0085240.0123060.051673
    ntis365.00.0154320.025043-0.0518310.0050410.0164890.0266950.163522
    cay273.00.0019980.022772-0.050141-0.0170830.0076320.0187960.042897
    TS365.00.0172200.012820-0.0350000.0090000.0175000.0261000.045300
    svar365.00.0088140.0151530.0003700.0024300.0039840.0078870.114436
    \n", + "
    " + ], + "text/plain": [ + " count mean std min 25% 50% 75% \\\n", + "ret 365.0 0.027951 0.112073 -0.388075 -0.021158 0.035569 0.083677 \n", + "DP 365.0 -3.391056 0.470778 -4.493159 -3.797300 -3.373817 -3.042370 \n", + "CS 365.0 0.010621 0.006545 0.003243 0.006502 0.008524 0.012306 \n", + "ntis 365.0 0.015432 0.025043 -0.051831 0.005041 0.016489 0.026695 \n", + "cay 273.0 0.001998 0.022772 -0.050141 -0.017083 0.007632 0.018796 \n", + "TS 365.0 0.017220 0.012820 -0.035000 0.009000 0.017500 0.026100 \n", + "svar 365.0 0.008814 0.015153 0.000370 0.002430 0.003984 0.007887 \n", + "\n", + " max \n", + "ret 0.893713 \n", + "DP -1.903915 \n", + "CS 0.051673 \n", + "ntis 0.163522 \n", + "cay 0.042897 \n", + "TS 0.045300 \n", + "svar 0.114436 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe().T # Descriptive Statistics of the Data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b84929c4-7915-4f63-88b7-9200cec362c9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[, ,\n", + " ],\n", + " [,\n", + " , ],\n", + " [, , ]],\n", + " dtype=object)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAJdCAYAAAD0nnyNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeEBJREFUeJzt3Xl8VOXd///3EGJICEM0aQwJgbCDaCWghMYkBEWWAN8KoljEgkqVrbIGiVADyuLGXVzAQFG01oVWAalN8RabhTRqBWvrjQjkRk2aEHEQmWwMgZzfH/wyt2MSyDKTmcm8no/HeTw411znyuccMlfmM+c612UyDMMQAAAAAPiIdu4OAAAAAABaE0kQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAwOMMHDhQP/nJT2QymXTZZZcpIiJCV155pX7yk5+ob9++uvPOO/X222+rpqbG4bi9e/cqIiJCwcHBMplM6ty5syIiIhQREaHAwEB17dpV06dP1//+7/+66cwAeJKjR4/qgQce0FVXXaWoqCiZzWZFR0dr7NixWrNmjf7973871D979qw2bNigYcOG6fLLL9eVV16pqKgoXXfddZo1a5Z+//vf6/z58246GzQFSRA8yldffSWTyaQZM2a4OxQAbnTw4EF9/PHHkqT4+HiVlpbqm2++0bfffqtdu3YpJiZGv/jFLxQXF+eQ0IwcOVKlpaVasmSJJOnpp59WaWmpSktLVVZWpo0bN+rPf/6zBg8erM8++8wt5wbAM/zXf/2Xrr76anXs2FHvvfeeiouLdfr0aeXm5qp///76zW9+o2uvvVavvvqqJKmmpkYpKSlavny55s+frxMnTuibb77RsWPH9OCDD+qPf/yjpk+frqqqKjefGRqDJAgA4FWuuuoqrVmzRrm5ufriiy80fPhw/ec//7nkce3bt9fPf/5zpaeny2q1aunSpa0QLQBPtHHjRi1evFhPPvmk1q1bp6ioKEmSyWRSjx499Nvf/laPPvqoJKm6ulqS9Oc//1nvv/++HnjgAf3iF7+Qv7+/JCkgIEC33XabnnnmGfecDJqFJAgA4JWuu+46PfHEEyouLtb8+fMbfVxSUpIkad++fa4KDYAHO378uJYsWaK+ffvq17/+dYP1Fi9eLLPZbN8/dOiQJKlLly711h8/frzuvPNOe3IEz0YShGarHXsfGBgok8mk//mf/9GCBQvUu3dvXXbZZTKZTMrOzpYkvfnmm0pISNDll1+uyy+/XD/96U/12GOP2b9dkaRZs2bp+uuvlyRt377dPo7/pz/9qTtOD4AXuPvuu9WxY0ft2LGjUXeDJNmfI2rXjj+BgC964YUXdObMGU2aNEkmk6nBeh06dFBOTo7GjBkjSYqMjJQk/eEPf6h3yFtISIj+8Ic/KCAgwDWBw6n4C4Bmqx17P2XKFEnS3LlzddNNN+nIkSM6duyYOnfuLElKT0/XbbfdpltuuUWlpaWyWCxKT0/XI488op///Of2DyQZGRn2ZwCmTJliH8f/44cSAaBWhw4ddN1110mScnJyGnVM7ZczycnJLooKgCer7SuuvfbaS9YdNGiQIiIiJF240xMaGqqPP/5Y/fr105o1a/TFF1+4NFa4DkkQnObGG2/UhAkT1K5dO3Xt2lWbN2+WyWTSI488onHjxmnJkiUKCAiQn5+fbr31Vs2dO1d//etf9eabb7o7dABerPYDSklJyUXrVVRU6I033tAjjzyi0NBQPfnkk60RHgAPU1xcLEm64oormnTcFVdcoXfeeUf9+/dXUVGRVqxYoQEDBqhnz5564IEH9M9//tMV4cJFSILgNDfffLPD/pQpU7Rr1y5J0rhx4+rU/9nPfiZJ2r17t8tjA9B21d5Nrm9Yy/z58+1Da7t27aqVK1dq2rRp+vTTT9WvX7/WDhWAB7nYULiGDBs2TAcPHtSePXv0q1/9SlFRUfryyy/17LPPavDgwbr//vtlGIYLooWztXd3AGg7ar+N/aHDhw9Lkh566CGtWrXK4bXz58+rY8eOOnHiRKvEB6Btqr0DVDte/4eefvppptwH4CAqKkqHDh3SyZMnm3V8u3btNHr0aI0ePVqS9Mknn2jbtm3KyMjQli1bNGzYMN19993ODBkuwJ0gOE19DxnXfhuyadMm+zM+tdu3336r8vJy/fd//3drhwqgjaisrNQnn3wiiWd8ADTOiBEjJEn/+te/nNLe4MGD9eyzz+q3v/2tJGnPnj1OaReuRRIElxowYIAkqaioqN7XP/74Yx4qBNBsW7ZsUVVVlSZPnlzvnSAA+LF77rlHHTt21M6dOy86dK2goEDXX3+9/uu//kuS9Nprryk+Pr7B+rXJVUVFhXMDhkuQBMGl7rrrLplMJm3fvr3OaydOnFBiYqLDqu0dO3aUJIepsx966CEeNgRQxwcffKDly5crKirK/g0sAFxKRESEnn76aR0+fFjPPvtsvXUMw9CyZcv02WefadKkSZKks2fP6sCBA/aJFX6sdjbbYcOGuSZwOBVJEFwqNjZWK1eu1CeffKKHHnrI/u3I0aNHNXHiRA0fPlwTJ0601//JT36iiIgIHTx4UOfOndPnn3+uJ554Qn5+fu46BQAe5tChQ1q2bJluvPFGDRgwQDk5Oeratau7wwLgRe69915t3LhRDz74oB566CH7s4WGYeizzz7T5MmT9de//lVvv/22YmJi7MedPXtWt9xyi/7+97/r3LlzkiSbzaY333xTDzzwgAYMGHDRBVjhOUwGU1igmf71r39p9OjROn36tM6cOaOwsDD5+fnpww8/dOgwJGnXrl3asGGDPvvsM3Xo0EGXX365pk6dqgULFigoKMih7n//939r0aJFKi0tVXBwsObNm6clS5a04pkBcLeBAwfqxIkTslgs8vf31xVXXCHDMHT+/HmFhIQoLi5Ot912m/7f//t/Ds8j7t27V9OmTVN5ebkqKipkNpsVGBioO++8U+vXr3fjGQHwRAUFBdqwYYP27t2r06dPyzAMXXnllRo1apTmzp3r8Hnmu+++0+7du7V37159+umnslgsOn/+vKqrq9WnTx/9v//3/7RgwQJ16tTJfSeERiMJAgAAAOBTGA4HAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8Cnt3R1AS9XU1KikpESdOnWSyWRydzhAm2EYhsrKyhQZGemwDosvoX8BXIP+hf4FcJXG9i9enwSVlJQoOjra3WEAbVZRUZG6du3q7jDcgv4FcC36F/oXwFUu1b94fRJUuypvUVGRzGazm6MB2g6r1aro6GifXvma/gVwDfoX+hfAVRrbv3h9ElR7C9lsNtOJAC7gy8M06F8A16J/oX8BXOVS/YtvDsQFAAAA4LNIggAAAAD4FJIgAAAAAD7F658JQl2FhYWyWCxOay8sLEzdunVzWntASyQnJ+vMmTPq0KGDQ/mBAwe0ePFirVy5UitXrtSuXbsUEhLiUGfZsmUaM2ZMK0aLS3Fmf0VfhbaIv+mAa5AEtTGFhYXq13+AzlRVOq3NDoFBOvzFITpNeIw33nhDMTEx9n2LxaLo6GhNmzbNXrZhwwYlJye3fnBoNGf3V/RVaGv4mw64DklQG2OxWHSmqlKh4xfLP7Tl6w9UnyzSyXfWy2Kx0GHCI2zbtk1RUVF1ypKSktS7d283RYXmcGZ/RV+Ftoi/6YDrkAS1Uf6h0QqI4AMh2p4ePXo47BuGoS1btuipp55yU0RoKfor4OJ4jwDOx8QIALza+++/L5vNpvHjxzuUv/zyyxoxYoQSEhI0btw4bd++/ZJt2Ww2Wa1Whw0AALQ93AkC4NU2b96s++67T35+fvaymJgYBQUFafPmzbrsssu0b98+jR8/Xnl5eXr22WcbbGvdunVatWpVa4QNAADciDtBALxWaWmpMjMzNXPmTIfyGTNmaOnSpbrsssskSYmJibr//vu1ceNGlZaWNtheWlqaTp8+bd+KiopcGj8AAHAP7gQB8Fovvviixo8fr4iIiEvW7dOnjwzD0LFjxxqsHxAQoICAAGeHCQAAPEyTkqDs7GxlZGTo+PHjMgxDVqtVt956q5YsWaLAwEB7vczMTK1cuVIdOnRQWVmZpk+frgULFtRp78knn9Rrr72mTp06yWazafXq1br55ptbfFIA2r6amhr97ne/00svvVTntTvuuENvvPGGQ1ntXZ0fzyyHtuXQoUNOa4v1VACg7WpSEjRz5kzdfvvtev3112UymXT06FHFxcXps88+0x//+EdJUm5uriZOnKi9e/cqMTFRpaWlGjx4sGpqarRo0SJ7W2vXrtXzzz+vAwcOKDw8XFlZWRo7dqxycnIUFxfn3LME0Oa8++67CgoK0vDhw+u8tn37dk2cOFFTpkyRJBUUFGjz5s2aPHmyunfv3tqhohWcLz8lmUwOa0W1FOupAEDb1aQk6JprrtHSpUtlMpkkXRheMmXKFG3ZskXl5eUKDg7WihUrlJycrMTERElSRESEZs2apVWrVmn27NkKDAxUWVmZ1qxZoxUrVig8PFySNGLECMXHx2vFihV67733nHyaANqazZs3a/bs2fW+tmnTJmVkZGjjxo0yDEOVlZVatGhRvXek0TbU2Molw2A9FVzSrl279Otf/1o33XRTnTvJK1eu1K5duxQSEuJQvmzZMo0ZM8ahjNEsgHdrUhK0c+fOOmWBgYEymUzy8/OT1WpVXl6e0tPTHerEx8crPT1dubm5Gj16tHJyclRZWan4+Pg69R577DFVVlYqKCioGacDwFfs2rWrwddmz57dYIKEto31VNCQyspK3XnnnQoKCtLZs2cbrLdhwwYlJydftC1GswDer8Wzw+Xk5Gjy5MkKDAxUQUGBDMNQZGSkQ53aMfhHjx6VJB05ckSS6q13/vx5HTt2rKVhAQAA2FVVVWnu3Ll69dVXHZ5jbqra0Sxz5sypdzQLAO/Qotnhtm/fruLiYv3lL3+RJFVUVEhSndmVavfLy8ubVK8+NptNNpvNvs9ihgAA4FJCQ0M1cuTIFrfDaBagbWj2naADBw5o6dKl2rNnj3262eDgYElySFJ+uF/7emPr1WfdunXq3LmzfYuObvnYbwAAAEl6+eWXNWLECCUkJGjcuHHavn27w+vNHc1is9lktVodNgDu06wkaP/+/brzzjv19ttva9CgQfbyXr16yWQyqaSkxKF+cXGxJKlv376SLkyoIKneen5+furZs2eDP5vFDAEAgCvExMRowIABevfdd5WXl6dly5bpvvvu069//Wt7neaOZuFLXMCzNDkJys/P11133aUdO3bYE6AdO3boyy+/lNlsVkJCgvLz8+scYzab7TPGJScnKygoqN56I0aMuOht5ICAAJnNZocNAACgpWbMmKGlS5fqsssukyQlJibq/vvv18aNG1VaWiqp+aNZ+BIX8CxNSoKysrJ0yy23KD09XZWVldq/f7/279+vbdu26euvv5YkrV69WtnZ2crLy5MklZaWKiMjQ+np6fYHEYODg7V8+XJt2rRJJ06ckHRhIdb8/HytXr3amecHAADQbH369JFhGPZhbs0dzcKXuIBnadLECFOmTNG3336rX/ziF3VeW7x4sSQpKSlJO3fu1MKFCxUYGCir1arU1FQtXLjQoX5aWpr8/f01atQomc1m2Ww27d69m6klAQCAW9xxxx164403HMpq79jUznT7w9EsP1ysuTGjWQB4jiYlQbV3bS4lJSVFKSkpF61jMpmUmpqq1NTUpoQAAADgEtu3b9fEiRM1ZcoUSVJBQYE2b96syZMnq3v37pIcR7Pce++9Cg8Pt49mycnJcWf4AJqgRVNkAwAAeIuZM2eqoKBApaWl2rNnj5KTkzV58mTNmzdPkrRp0yZlZGRo48aNMgxDlZWVWrRokRYsWODQDqNZAO9HEgQAAHzC1q1bL/r67NmzNXv27Eu2w2gWwPs1e50gAAAAAPBGJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp7R3dwAAAO9RWFgoi8XilLYOHTrklHYAAGgqkiAAQKMUFhaqX/8BOlNV6e5QAABoEZIgAECjWCwWnamqVOj4xfIPjW5xe1XH9uv0vj84ITIAAJqGJAgA0CT+odEKiOjd4naqTxY5IRoAAJqOiREAAAAA+BSSIAAAAAA+hSQIAAAAgE8hCQIAAADgU0iCAAAAAPgUZocDAADwIc5cqDgsLEzdunVzWntAayEJAgAA8AHny09JJpOmTZvmtDY7BAbp8BeHSITgdUiCAAAAfECNrVwyDKcteFx9skgn31kvi8VCEgSvQxIEwKtkZ2drxowZiomJcSgfM2aMli1bZt/PzMzUypUr1aFDB5WVlWn69OlasGBB6wYLAB7IWQseA96MJAiA15kxY4ZWrlzZ4Ou5ubmaOHGi9u7dq8TERJWWlmrw4MGqqanRokWLWi9QAADgkZgdDkCbs2LFCiUnJysxMVGSFBERoVmzZmnVqlWqqqpyc3QAAMDdSIIAtClWq1V5eXmKj493KI+Pj5fValVubq6bIgMAAJ6C4XAAvM6HH36olJQUlZeXy9/fXyNHjtSCBQsUGBiogoICGYahyMhIh2OioqIkSUePHtXo0aPrbddms8lms9n3rVar604CAAC4DXeCAHiVkJAQdevWTa+88opyc3O1bds2bd++XQkJCaqurlZFRYUkKSAgwOG42v3y8vIG2163bp06d+5s36KjWz57EgAA8DwkQQC8yqBBg7RlyxaFhoZKkrp166a1a9fqk08+0c6dOxUcHCxJDnd0frhf+3p90tLSdPr0aftWVFTkorMAAADuRBIEwOv16dNHklRQUKBevXrJZDKppKTEoU5xcbEkqW/fvg22ExAQILPZ7LABaFt27dql6OhozZgxo97XMzMzNXToUCUlJSk2NlYbNmyot96TTz6p2NhYJSUlKS4uTu+9957rggbgdDwTBMCrpKWl6b777lOPHj3sZbV3bLp27Sqz2ayEhATl5+c7HJefny+z2WyfMQ6Ab6msrNSdd96poKAgnT17tt46jZ1ef+3atXr++ed14MABhYeHKysrS2PHjlVOTo7i4uJa65QAtAB3ggB4lQ8++EDr16/X+fPnJUllZWV69NFHFRMTo0mTJkmSVq9erezsbOXl5UmSSktLlZGRofT0dAUGBrotdgDuU1VVpblz5+rVV19tsB9ozPT6ZWVlWrNmjebMmaPw8HBJ0ogRIxQfH68VK1a0zskAaDHuBAHwKg899JC2bNmi+Ph4dejQQWVlZRo6dKhef/11+/M+SUlJ2rlzpxYuXKjAwEBZrValpqZq4cKFbo7ePQoLC2WxWFrczqFDh5wQDeAeoaGhGjlyZIOv106vn56e7lAeHx+v9PR05ebmavTo0crJyVFlZWW90/A/9thjqqysVFBQkEvOAYDzkAQB8CqjRo3SqFGjLlkvJSVFKSkprRCRZyssLFS//gN0pqrS3aEAHq2x0+sfOXJEkuqtd/78eR07dkxXX311nfaZgh/wLCRBANCGWSwWnamqVOj4xfIPbdmU31XH9uv0vj84KTLAszR2ev3mTsO/bt06rVq1ynkBA2gRkiAA8AH+odEKiOjdojaqTzJlONquxk6v39xp+NPS0hwmV7BaraxFBrgRSRAAAPB5jZ1ev3ZK/pKSEvu/a+v5+fmpZ8+e9bYfEBBQ5+4RAPdhdjgAAODzGju9fnJysoKCguqtN2LECCZFALwESRAAAIAaN71+cHCwli9frk2bNunEiROSpOzsbOXn52v16tVuix1A0zAcDgAA+ISZM2eqoKBApaWl2rNnj5KTkzV58mTNmzdPUuOn109LS5O/v79GjRols9ksm82m3bt3s1Aq4EVIggAAgE/YunXrJes0Znp9k8mk1NRUpaamOis0AK2MJAgAgAY4c4HYsLAwdevWzWntAQCajyQIAIAfOV9+SjKZNG3aNKe12SEwSIe/OEQiBAAegCQIAIAfqbGVS4bhlEVmpQtrLJ18Z70sFgtJEAB4AJIgAAAa4IxFZgEAnocpsgEAAAD4FJIgAAAAAD6FJAgAAACATyEJAgAAAOBTmp0E7dq1S9HR0ZoxY0a9r2dmZmro0KFKSkpSbGysNmzYUG+9J598UrGxsUpKSlJcXJzee++95oYEAAAAAJfU5NnhKisrdeeddyooKEhnz56tt05ubq4mTpyovXv3KjExUaWlpRo8eLBqamq0aNEie721a9fq+eef14EDBxQeHq6srCyNHTtWOTk5iouLa/5ZAQAAAEADmnwnqKqqSnPnztWrr76qwMDAeuusWLFCycnJSkxMlCRFRERo1qxZWrVqlaqqqiRJZWVlWrNmjebMmaPw8HBJ0ogRIxQfH68VK1Y093wAAAAA4KKanASFhoZq5MiRDb5utVqVl5en+Ph4h/L4+HhZrVbl5uZKknJyclRZWVlvvaysLFVWVjY1NAAAAAC4JKdPjFBQUCDDMBQZGelQHhUVJUk6evSoJOnIkSOSVG+98+fP69ixY84ODQAAAACa/kzQpVRUVEiSAgICHMpr98vLy5tU78dsNptsNpt932q1OiFqAAAAAL7C6XeCgoODJckhUfnhfu3rja33Y+vWrVPnzp3tW3R0tPOCBwAAANDmOT0J6tWrl0wmk0pKShzKi4uLJUl9+/aVJPXp00eS6q3n5+ennj171tt+WlqaTp8+bd+KioqcfQoAAAAA2jCnJ0Fms1kJCQnKz893KM/Pz5fZbLbPGJecnKygoKB6640YMUJBQUH1th8QECCz2eywAQAAAEBjOf2ZIElavXq1br75ZuXl5SkhIUGlpaXKyMhQenq6fVrt4OBgLV++XJs2bdK9996r8PBwZWdnKz8/Xzk5Oa4ICwC8QmFhoSwWi1PaOnTokFPaAQCgLWlWEjRz5kwVFBSotLRUe/bsUXJysiZPnqx58+ZJkpKSkrRz504tXLhQgYGBslqtSk1N1cKFCx3aSUtLk7+/v0aNGiWz2Sybzabdu3ezUCoAn1VYWKh+/QfoTBXLBAAA4CrNSoK2bt16yTopKSlKSUm5aB2TyaTU1FSlpqY2JwwAaHMsFovOVFUqdPxi+Ye2fOKXqmP7dXrfH5wQGQAAbYdLhsMBAFrGPzRaARG9W9xO9UkmjwEA4MecPjECAAAAAHgykiAAAAAAPoXhcB7CWbNBMRMUAAAAcHEkQR6A2aAAAACA1kMS5AGcORsUM0EBAAAAF0cS5EGcMRsUM0EBAAAAF0cSBMCrZGdnKyMjQ8ePH5dhGLJarbr11lu1ZMkSBQYGSpJWrlypXbt2KSQkxOHYZcuWacyYMW6IGgAAeBKSIABeZebMmbr99tv1+uuvy2Qy6ejRo4qLi9Nnn32mP/7xj/Z6GzZsUHJysvsCBQAAHospsgF4lWuuuUZLly6VyWSSJPXp00dTpkzRW2+9pfLycjdHBwAAvAF3ggB4lZ07d9YpCwwMlMlkkp+fnxsiAgAA3oY7QQC8Xk5OjiZPnmx/JkiSXn75ZY0YMUIJCQkaN26ctm/f7sYIAXiD7OxsxcTEKDk52WF77LHHHOplZmZq6NChSkpKUmxsrDZs2OCegAE0G3eCAHi17du3q7i4WH/5y1/sZTExMQoKCtLmzZt12WWXad++fRo/frzy8vL07LPPNtiWzWaTzWaz71utVpfGDsDzzJgxQytXrmzw9dzcXE2cOFF79+5VYmKiSktLNXjwYNXU1GjRokWtFyiAFuFOEACvdeDAAS1dulR79uxRRESEvXzGjBlaunSpLrvsMklSYmKi7r//fm3cuFGlpaUNtrdu3Tp17tzZvkVHt2zdLgBtz4oVK5ScnKzExERJUkREhGbNmqVVq1apqqrKzdEBaCySIABeaf/+/brzzjv19ttva9CgQZes36dPHxmGoWPHjjVYJy0tTadPn7ZvRUWsuwXg/1itVuXl5Sk+Pt6hPD4+XlarVbm5uW6KDEBTkQQB8Dr5+fm66667tGPHDnsCtGPHDn355ZeSpDvuuKPOMbUJTVRUVIPtBgQEyGw2O2wAfMuHH36olJQUJSUl6aabbtK6devsd3gKCgpkGIYiIyMdjqntV44ePdpguzabTVar1WED4D4kQQC8SlZWlm655Ralp6ersrJS+/fv1/79+7Vt2zZ9/fXXki48J/TDiRAKCgq0efNmTZ48Wd27d3dX6AA8XEhIiLp166ZXXnlFubm52rZtm7Zv366EhARVV1eroqJC0oUvTH6odv9i0/Qz3BbwLEyMAMCrTJkyRd9++61+8Ytf1Hlt8eLFkqRNmzYpIyNDGzdulGEYqqys1KJFi7RgwYJWjhaANxk0aJC2bNli3+/WrZvWrl2rcePGaefOnerTp48kOUyg8sP94ODgBttOS0tzmDjBarWSCAFuRBIEwKucOHHiknVmz56t2bNnt0I0ANq62sSnoKBAY8aMkclkUklJiUOd4uJiSVLfvn0bbCcgIKDOHSQA7sNwOAAAAF24W1P7bGGt2ucJu3btKrPZrISEBOXn5zvUyc/Pl9lsts8YB8DzkQQBAABI+uCDD7R+/XqdP39eklRWVqZHH31UMTExmjRpkiRp9erVys7OVl5eniSptLRUGRkZSk9Pd1iwGYBnYzgcAACApIceekhbtmxRfHy8OnTooLKyMg0dOlSvv/66/XmfpKQk7dy5UwsXLlRgYKCsVqtSU1O1cOFCN0cPoClIggAAACSNGjVKo0aNumS9lJQUpaSktEJE3uHQoUNOaScsLEzdunVzSlvApZAEAQAAoMnOl5+STCZNmzbNKe11CAzS4S8OkQihVZAEAQAAoMlqbOWSYSh0/GL5h7Zsuu/qk0U6+c56WSwWkiC0CpIgAAAANJt/aLQCInq7OwygSZgdDgAAAIBPIQkCAAAA4FNIggAAAAD4FJIgAAAAAD6FiREAwAkKCwtlsVha3I6z1tuAZ2I9FQDwDCRBANBChYWF6td/gM5UVbo7FHgo1lMBAM9CEgQALWSxWHSmqtIpa2VUHduv0/v+4KTI4ClYTwUAPAtJEAA4iTPWyqg+WeSkaOCJWE8FADwDEyMAAAAA8CkkQQAAAAB8CkkQAAAAAJ/CM0FoFGdO28vUrgAAAHAnkiBclLOndZWY2hUAAADuRRKEi3LmtK4SU7sCAADA/UiC0ChM6woAAIC2giQIAAAAHoFnkNFaSIIAAADgVjyDjNZGEtRMhYWFslgsTmnLmd96AAAAeBueQUZrIwlqhsLCQvXrP0BnqirdHQoAAECbwTPIaC0kQc1gsVh0pqrSad9WVB3br9P7/uCEyAAAAABcCklQCzjr24rqk0VOiAYAAABAY7RzdwAAAAAA0JpIggAAAAD4FJIgAAAAAD6FZ4IAAADQJjlrGRIWXm17SIIAAADQpjh78VUWXm17SIIAAPBCzlxom2+50dY4c/FVFl5tm0iCAADwIs7+hlviW260Xc5cfJUvHtoWtydBR44c0fz583Xq1CnZbDbFx8fr8ccfV3BwsLtDA+DF6FvQVjnzG26Jb7mbg/7Ft/DFQ9vk1iTo5MmTSk5O1rx58/TQQw/p3LlzSklJ0dSpU7V79253hgbAi9G3wBc48xtuNB79i+9x1RcP+/bt04ABA1rcHneVmsetSdDTTz+t8vJyLV68+EIw7dtrxYoVGj58uP7+97/rhhtucOrPKywslMViaXE7zrwdCsD5WrtvAdoCZtFqHPoX3+WsLx58bdIGZ33+lpzbv7g1CcrMzNSQIUMUEBBgL4uLi1O7du30zjvvOLUjKSwsVL/+A3SmqtJpbaL5+GPbdJ7aiXii1uxbAG/nax/IWor+BS3likkbnHVXSXLuZwRnf/52Zv/i1iToyJEjmjBhgkNZQECAwsLCdPTo0XqPsdlsstls9v3Tp09LkqxW60V/1ldffaUzVZUyXz9Jfp1/0qK4z5YcUcXnWbKVFqjm7JkWtSVd+AWW5JT2nNmWK9qzlVxIfpz1x/aygA76wyu/15VXXumU9tq1a6eamhqPa+ubb77RtLt+qbO2lv8fSFJAh0Ad2P+xoqMb7nxr31OGYTjlZ7am5vQtUvP7l/Ly8gvHt/H3MLF5Rnsu6ZcNwyl/H8+f/lbWj3foq6++UkhISIP16F8a1784s2+RfOv32htiq6m2tbi9c2UXvhx15vNKzvxsdfjwYad9/nZ6/2K4Ubt27Yy77767Tnl0dLQxevToeo9JT083JLGxsbXSVlRU5OquwOma07cYBv0LG1trb/QvbGxsrtou1b+49U5QcHCww7citWw2W4MzrKSlpWnRokX2/ZqaGn333XcKDQ2VyWRyWazexGq1Kjo6WkVFRTKbze4Ox+NxvepnGIbKysoUGRnp7lCarDl9i9S2+hd+rxuPa9U0zrhe9C/e3b+4C+/VlvOFa9jY/sWtSVCfPn1UUlLiUGaz2WSxWNS3b996jwkICHAYhyvporfEfJnZbG6zv+CuwPWqq3Pnzu4OoVma07dIbbN/4fe68bhWTdPS60X/4v39i7vwXm25tn4NG9O/tGuFOBqUkpKiAwcOOHyj8tFHH6mmpkbjxo1zY2QAvBl9CwBXoX8B2ga3JkHz589Xx44dtX79eknSuXPntHr1ak2YMIHZVQA0G30LAFehfwHaBrcmQaGhocrOzlZubq6GDRum6667Tr1799Zrr73mzrC8XkBAgNLT0+vcdkf9uF5tD30Lv9dNwbVqGl+/XvQv7uPrv3vOwDX8PybD8ML5KQEAAACgmdx6JwgAAAAAWhtJEAAAAACfQhIEAAAAwKeQBHmZI0eOaOzYsRo2bJhiY2M1d+5clZeXN+rYl19+WUOGDNHw4cM1ZMgQn3iIs7nXa8aMGRo2bJiSk5Mdtk8//dT1QQMu9NFHH6l9+/aaMWOGu0PxWG+88YbGjRun4cOHa/jw4Ro4cKDmzJmj06dPuzs0j3Lu3Dn9/ve/180336ybbrpJN9xwg+Li4vTqq6+6OzR4OFd+likuLtaKFSuUkJCgESNGaMiQIbr99tt16NAhV5yK27Tm58G5c+fKZDIpOzvbCZF7EANew2KxGF26dDHWrFljGIZhVFdXGzfffLMxYcKESx776quvGsHBwcbhw4cNwzCMzz//3OjYsaPx5ptvujRmd2rJ9Zo+fbrx5ZdfujhCoHVVVFQYV199tdGxY0dj+vTp7g7HYw0ZMsR47rnn7Pvffvut0b17d2PKlClujMrzFBUVGSaTycjMzLSX/elPfzIkGRs3bnRjZPBkrv4s8+ijjxpXXXWVcfLkScMwDMNmsxmTJk0yQkJCjOLiYhecUetrzc+D//3f/22EhoYakoysrCynnYMnIAnyIr/5zW+MTp06GWfOnLGX5eTkGJKMvLy8Bo+rqakxunfvbtx3330O5XfffbfRu3dvl8Xrbs29XoZBEoS2ac6cOca6deuM7t27kwRdRH5+vnH27FmHsokTJxqDBg1yU0Se6ZtvvjFuv/32OuX9+/c3rr/+ejdEBG/g6s8yL7zwgvHKK6841Pnwww/bVHLeWp8HT506ZfTr18/43e9+1yaTIIbDeZHMzEwNGTLEYW73uLg4tWvXTu+8806Dxx08eFBff/214uPjHcrj4+NVUFCgw4cPuyxmd2ru9QLaovfee0+ffvqpUlNT3R2Kx/vZz34mf39/+352drb27dvHtfuR8PBwbd++vU55YGCg2rdv74aI4A1c/Vnmnnvu0bRp0xzqBAYGSlKb+b1src+Dc+fO1fz589W7d2/nnoCHIAnyIkeOHFFkZKRDWUBAgMLCwnT06NGLHiepzrFRUVGSdNFjvVlzr1etJ598UsOHD9cNN9ygiRMn6r333nNVqIBLff/995o3b55eeukl+fn5uTscr7FmzRpFR0drypQpeu655zR16lR3h+TxTp48qYMHD+qXv/ylu0OBh3LHZ5mcnBx17NhRkyZNam7YHqU1ruGbb76pb7/9VrNnz3ZW2B6nbaTEPqKioqLeFX4DAgIu+jBcRUWFvd6Pj5PU6AfpvE1zr5ckDRgwQOHh4XrmmWfk5+ennTt3auzYsXr88ce1ePFiV4UMNMrp06d1/PjxS9br0aOHAgICNHfuXD3wwAPq06dPK0TneZp6vWotX75cy5cvV25uriZNmqRDhw5p5cqVLozU/Zp7rWqtWLFCN9xwg+677z5XhIc2oLU/y5w6dUqPPfaYnnvuOYWFhTU3bI/i6mtYWlqqZcuWtb2JEH6EJMiLBAcHy2az1Sm32WwKDg6+6HG19X583A9fb2uae70k6cEHH3TYnzhxoiZNmqRHHnlE8+fPbzO31OGddu7cqbvvvvuS9f75z3+qoKBAJ06c0Jw5c1ohMs/UlOs1aNCgOuVJSUlKTU3VQw89pLvuuku9evVyQZSeoSXXasuWLfroo4/0t7/9Te3aMdAE9WvNzzI2m0233nqr7r///jY1I6arr+HMmTO1cuVKde3a1VkheyR6KS/Sp08flZSUOJTZbDZZLBb17dv3osdJqnNscXGxJF30WG/W3Ot1sfasVqtOnDjhrBCBZpkxY4aMCxPbXHQbNGiQduzYoe+//14jRoywT/VeWlqqPXv2KDk5WQsWLHD36bhcU66XYRg6e/ZsnTauueYa1dTU6N///rcbzqD1NOVa/dALL7ygbdu26f3331dISIhbYod3aK3PMlVVVbrlllt000036eGHH3ZG6B7DldewpKREBw8e1NatW+1/M2r/TixYsEDJycnas2ePE8/GfUiCvEhKSooOHDjgkMF/9NFHqqmp0bhx4xo8buDAgerevbvy8/MdyvPz89WnT582mwQ193qdOHFCDzzwQJ3yoqIidejQQaGhoS6JF3CF1157TR9//LGys7PtW0REhMaMGaPs7Gxt2LDB3SF6lK+//rreu0G1HxKuuOKKVo7I8z333HN6+eWX9e677+ryyy+XJK1fv97NUcFTtcZnmfLyco0bN06jRo3S8uXLJUlffvmlduzY4eSzcQ9XXsPIyEh9+eWXDn8zav9ObNiwQdnZ2RozZoxLzqvVtc4kdHAGi8ViREREXHJe+IcfftiIiYkxjh8/bi/z1XWCmnO9vvzyS8Pf39/Yt2+fvc5HH31kdOjQwViyZEnrnQDgIkyR3bAvv/zSkGS89tpr9rLCwkKjd+/exqBBg4zq6mo3Rud5nnjiCaNnz55GTk6O8fHHH9u3Ll26uDs0eChXf5b5/vvvjfj4eGPmzJkOv5MZGRltpt9r7c+DWVlZbXKKbB5s8CKhoaHKzs7W/PnztXv3bp05c0bx8fF64oknHOrZbDZVVlbq/Pnz9rKpU6fq7NmzmjJlijp16qTy8nJt3rxZt956a2ufRqtp7vWKiIjQmjVrtHTpUl122WU6d+6czp49q6efflozZ850x6kATpGenq6cnByH4XDz58/XxIkT3R2ax4iIiNCTTz6pZ599Vs8884zat2+vsrIyTZw4UcuWLeN5wB/4/PPPtXTpUknS8OHD3RwNvIWrP8usWbNG+fn5ys/P19atWx3anD59umtPrpW01ufBqqoqjR07Vt9//72kC8PhQkJC9Ne//tU+7bg3MxmGYbg7CAAAAABoLTwTBAAAAMCnkATBrVatWqWwsDB99tln7g4FAAD4gOTkZHXu3FkRERH2rXPnzjKZTAoODnYov+KKKxQTE2M/dteuXRozZozCw8P1k5/8RF26dNHAgQM1depUPfvss/r222/dd2JoEpIguNRLL70kk8mkl156qd7XT506pbKyMlVVVbVuYAAAwGc9/fTTKi0ttW9PP/20JGnJkiUO5T+cUe6RRx7RxIkTNWTIEB05ckTffvutiouLtXXrVh06dEgPPPCAPvroI3edEpqIJAhutWHDBp0+fVpDhw51dygAAAD1OnnypB599FENGzZMa9assa+H1a5dO/3sZz/T22+/LZPJ5N4g0SRMcwO369Chg7tDAAAAPuL3v/+9Onfu3Ki6Q4cO1fvvv6+jR4/q3Llz6tKlS731unXrpsWLF6tr167ODBUuxJ0gNNrevXsVERGhwMBAmUwmffbZZ7r//vsVExOjkJAQjRw5UocOHbLX/+lPf6r58+dLkubPn28fXztr1ixJUr9+/XTFFVfIZDJp5cqVDj+rqKhIs2bNUs+ePdWlSxd1795dY8aM0aZNmxwWBwPQ9lRXV+uJJ57QT3/6U4WHhysyMlKDBw/WsmXL9Pnnn9vrHT9+XL/5zW903XXXKSoqSiEhIRowYIBWr16ts2fP2us9/PDD9vH+nTp1UkREhL777jtJ0ltvvaWIiAi1b99eV1xxhbZt29bq5wugdXXr1q3RSVBQUJB69eqlyMhISdL777+vY8eO1Vv3ySefrHexZXgody9UBO8zffp0Q5Jx0003GXl5eYZhGMbRo0eN6OhoIyoqyrDZbPa627ZtMyQZ27Ztq7et2gW40tPT7WU2m83o0aOHMWLECOObb74xDMMwKioqjEWLFhmSjC+//NJVpwbAzc6ePWvcdNNNRseOHY133nnHMAzDOH/+vPHGG28Y/v7+xs9//nN73T/96U+Gn5+f8fvf/96oqakxzp8/b/z5z382goKCjNtvv92h3YMHDxqSjLFjx9b5mf/5z3+M4OBg49tvv3XpuQHwXLWfV374eeTHRowYYUgygoODjXnz5hn79u0zzp0713pBwqm4E4RmGzNmjG644QZJUu/evTVt2jQVFxfrww8/bFG7n376qb788kvdcsstCg8Pl3Thm5innnpKsbGx8vf3b3HsADzTs88+q/fff19paWkaN26cpAtj7qdMmWK/i1wrJCREM2fO1F133SWTyaR27dpp/PjxmjNnjv74xz/qiy++sNe96qqrNHz4cO3Zs6fOt7ibN2/WpEmTFBYW5voTBOC1XnvtNY0ZM0bl5eV67rnnlJiYqJ/85CeaOnWq3nnnHRksvelVSILQbAkJCQ773bt3lyT95z//aVG7Xbt2Vfv27bV+/Xrt2rXLPqzFZDLpk08+UVRUVIvaB+C5XnnlFUnShAkT6ry2bNkypaen2/dHjhypjIyMOvUGDBggSfr3v//tUD5nzhwZhqHnn3/eXlZdXa2tW7dq7ty5TokfQNsVERGhv/71r/r000+Vlpama665RqdOndLrr7+uCRMm6IYbbpDFYnF3mGgkkiA0W+1dmloBAQGS5DAWvzkiIyO1bds2lZWVaeLEiQoPD9dtt92mt956S9XV1S1qG4BnO3z4sCQpOjq6zmuRkZGKjY217587d04vvPCCkpOTFRMToyuvvFIRERFauHChJKmystLh+IkTJ6pLly568cUXdebMGUnSjh07FBkZyQyVABrt2muv1dq1a/Xvf/9bX3/9tR577DGFhYXpgw8+0OLFi90dHhqJJAjN1q6d6359pk2bppKSEv3pT3/SuHHj9O6772ry5MkaOnSoTp486bKfC8AzNGYClHvuuUczZ87Utddeq08++UTffPONw3ofP+bv76+ZM2fqu+++0xtvvCFJ2rRpE3eBADRbt27d9OCDD+pvf/ubJGnPnj1ujgiNRRIEj2MYhs6fP68OHTpo8uTJevXVV1VSUqJ7771Xn376qZ599ll3hwjARfr37y9JKi4urvNaRUWFvfz06dN69dVXFRQUpN/+9re64oorGtX+fffdJz8/P23atEkHDx7U//zP/+iOO+5w3gkAaJMKCwsVEhJin1nyx6655hqFhYWpoqKilSNDc5EEwaU6duwoSfZhbN98843mzZun8vLyBo/JycnRwIEDHcqCg4P1wAMPSFKDHRAA73fXXXdJknbu3FnntV//+te6/fbbJck+QYrJZKrzMPJXX33VYPtdu3bVhAkT9PHHH+v+++/XPffco8DAQCdFD6Ctqqmp0enTp+13fH6spKREFotFw4YNa+XI0FwkQXCpq6++WiaTSf/6178kSbt27dL27dvtyVFDDh8+rCeeeMI+bt9qteqZZ55R+/btNXXqVJfHDcA95s2bp5tuuknPPPOMfVjJ+fPn9cILL+iNN97Q6tWrJV2YMXLSpEmqqKjQkiVLVFVVJUnKzc3VM888c9GfMWfOHElSfn5+nRnnAOBi5s6dqzfeeMPe59TU1OiDDz7Qz3/+c3Xq1EmPP/64myNEY5kM5vNDI/3rX//S6NGjdfr0aZ05c0ZhYWGaOnWqnn76aV1//fU6cuSIrFarzGazIiIi7A84P/XUU3rmmWdks9kUHh6up556SqNHj1a/fv307bff6tSpU+rYsaOCg4OVl5en8PBwvfjii3r77bf1v//7v6qurpa/v7+uu+46LV26lG9ZgDbu7Nmz2rBhg1555RV988038vf319VXX63f/OY3DrNSlpeX69FHH9Wbb76p48eP68orr1RSUpJ69eql9PT0On1RLcMw1L9/f/Xq1UuZmZmtfXoAPMgnn3yilJQUVVVVyWq12j+PbN68WT//+c/t9aqrq5WZmam9e/fqgw8+0PHjx3Xu3DlVVVUpMjJSN954o5YsWaKePXu68WzQFCRBAACfM3DgQD3xxBP2tYgAAL6F4XAAgDbv1KlT9n/v27dPlZWVGjt2rBsjAgC4E0kQAKDNi42N1ccff6yzZ89qxYoVWrp0qUun+QcAeDb+AgAA2rx+/frpxhtvVExMjAYOHKj777/f3SEBANyIZ4IAAAAA+BTuBAEAAADwKSRBAAAAAHxKe3cH0FI1NTUqKSlRp06dZDKZ3B0O0GYYhqGysjJFRkb67APk9C+Aa9C/0L8ArtLY/sXrk6CSkhJFR0e7OwygzSoqKlLXrl3dHYZb0L8ArkX/Qv8CuMql+hevT4I6deok6cKJms1mN0cDtB1Wq1XR0dH295gvon8BXIP+hf4FcJXG9i9enwTV3kI2m810IoALeOIwjTNnzmjdunXKysqSyWRSYWGh+vfvr5dfflnh4eH2epmZmVq5cqU6dOigsrIyTZ8+XQsWLGj0z6F/AVzLE/uX1kL/ArjWpfoXr0+CAPgWwzB0yy23aMCAAcrOzla7du1UVFSka6+9Vt999509CcrNzdXEiRO1d+9eJSYmqrS0VIMHD1ZNTY0WLVrk5rMAAADu5JtPIwLwWq+99po+/fRTPfHEE/YHHqOjo5WZmekwvn7FihVKTk5WYmKiJCkiIkKzZs3SqlWrVFVV5ZbYAQCAZyAJAuBVXn31VSUnJ8vf39+hfNiwYerYsaOkC+OB8/LyFB8f71AnPj5eVqtVubm5rRYvAADwPAyHa4MKCwtlsVic1l5YWJi6devmtPaAlvjnP/+p2267TatWrdLf/vY3nT17Vn369NFvfvMb9enTR5JUUFAgwzAUGRnpcGxUVJQk6ejRoxo9enSdtm02m2w2m33farW68Ezg6ehLAbiKM/sX+pbmIQlqYwoLC9Wv/wCdqap0WpsdAoN0+ItDvMHgEU6ePKmMjAytXr1a2dnZOn/+vObNm6fBgwfrs88+U0xMjCoqKiRJAQEBDsfW7peXl9fb9rp167Rq1SrXngC8An0pAFdxdv9C39I8JEFtjMVi0ZmqSoWOXyz/0JavP1B9skgn31kvi8XCmwsewc/PT6GhoUpNTZXJZFL79u311FNP6YUXXtCGDRu0YcMGBQcHS5LDXZ0f7te+/mNpaWkOkybUTrMJ30NfCsBVnNm/0Lc0H0lQG+UfGq2AiN7uDgNwuu7du+vyyy93mPoyODhYV155pY4cOSJJ6tWrl0wmk0pKShyOLS4uliT17du33rYDAgLq3D2Cb6MvBeAq9C/uxcQIALzKyJEj7clMrerqalksFnXp0kXShXU3EhISlJ+f71AvPz9fZrPZPmMcAADwTSRBALzKkiVLdPr0ab300kv2sieeeEImk0kPPPCAvaz2maG8vDxJUmlpqTIyMpSenq7AwMDWDhsAAHgQhsMB8CoxMTHKzs5WamqqNm7cqMsuu0whISH64IMPdO2119rrJSUlaefOnVq4cKECAwNltVqVmpqqhQsXujF6AADgCUiCAHid2NhY7d2795L1UlJSlJKS0goRAQAAb8JwOAAAAAA+hSQIAAAAgE8hCQIAAADgU0iCAAAAAPgUkiAAAAAAPoUkCAAAAIBPIQkCAAAA4FNIggAAAAD4FJIgAAAAAD6l2UnQrl27FB0drRkzZtR5beXKlRo0aJCSk5Mdtj179tSp++STTyo2NlZJSUmKi4vTe++919yQAAAAAOCS2jf1gMrKSt15550KCgrS2bNnG6y3YcMGJScnX7SttWvX6vnnn9eBAwcUHh6urKwsjR07Vjk5OYqLi2tqaAAAAABwSU2+E1RVVaW5c+fq1VdfVWBgYLN/cFlZmdasWaM5c+YoPDxckjRixAjFx8drxYoVzW4XAAAAAC6myUlQaGioRo4c2eIfnJOTo8rKSsXHxzuUx8fHKysrS5WVlS3+GQAAAADwY00eDtdYL7/8slatWqXq6mp17txZv/zlLzVlyhT760eOHJEkRUZGOhwXFRWl8+fP69ixY7r66qvrtGuz2WSz2ez7VqvVRWcAAAB8SXJyss6cOaMOHTo4lB84cECLFy/WypUrtXLlSu3atUshISEOdZYtW6YxY8a0YrQAWsIlSVBMTIyCgoK0efNmXXbZZdq3b5/Gjx+vvLw8Pfvss5KkiooKSVJAQIDDsbX75eXl9ba9bt06rVq1yhVhAwAAH/fGG28oJibGvm+xWBQdHa1p06bZyxrz3DMAz+aSKbJnzJihpUuX6rLLLpMkJSYm6v7779fGjRtVWloqSQoODpYkh7s6P9yvff3H0tLSdPr0aftWVFTkilMAAAA+Ztu2bYqKiqpTlpSUpN69e7spKgCu0GrrBPXp00eGYejYsWP2fUkqKSlxqFdcXCw/Pz/17Nmz3nYCAgJkNpsdNgAAgJbq0aOH/P397fuGYWjLli2aM2eOG6MC4AouSYLuuOOOOmW1d2xqv2FJTk5WUFCQ8vPzHerl5+drxIgRCgoKckVoAAAAjfL+++/LZrNp/PjxDuUvv/yyRowYoYSEBI0bN07bt2+/ZFs2m01Wq9VhA+A+LkmCtm/f7tAhFBQUaPPmzZo8ebK6d+8u6cJwt+XLl2vTpk06ceKEJCk7O1v5+flavXq1K8ICAABotM2bN+u+++6Tn5+fvSwmJkYDBgzQu+++q7y8PC1btkz33Xeffv3rX1+0rXXr1qlz5872LTo62tXhA7iIZk2MMHPmTBUUFKi0tFR79uxRcnKyJk+erHnz5kmSNm3apIyMDG3cuFGGYaiyslKLFi3SggULHNpJS0uTv7+/Ro0aJbPZLJvNpt27d7NQKgAAcKvS0lJlZmbaJ3SqNWPGDIf92ueen3rqKS1fvlwRERH1tpeWlqZFixbZ961WK4kQ4EbNSoK2bt160ddnz56t2bNnX7Idk8mk1NRUpaamNicMAAAAl3jxxRc1fvz4BpOaH/rhc88N1Q8ICKgzIy4A92m1iREAAAC8QU1NjX73u9/VOyFCY557BuD5XLZYKgAAgDd69913FRQUpOHDh9d5bfv27Zo4caJ9Afj6nntG21NYWCiLxeKUtg4dOuSUdtAyJEEAAAA/sHnz5gaH9Tf2uWe0HYWFherXf4DOVFW6OxQ4EUkQAADAD+zatavB1xr73DPaDovFojNVlQodv1j+oS2fzKLq2H6d3vcHJ0SGliAJAgAAAC7BPzRaARG9W9xO9ckiJ0TjyJlD7MLCwtStWzenteepSIIAAAAAL3S+/JRkMmnatGlOa7NDYJAOf3GozSdCJEEAAACAF6qxlUuG4bShetUni3TynfWyWCwkQQAAAAA8l7OG6vkS1gkCAAAA4FNIggAAAAD4FJIgAAAAAD6FJAgAAACATyEJAgAAAOBTSIIAAAAA+BSSIABe6/vvv1d0dLRiYmLqvJaZmamhQ4cqKSlJsbGx2rBhQ6vHBwAAPBPrBAHwWnPnzlVlZaU6derkUJ6bm6uJEydq7969SkxMVGlpqQYPHqyamhotWrTITdECAABPwZ0gAF7pzTff1MmTJzVhwoQ6r61YsULJyclKTEyUJEVERGjWrFlatWqVqqqqWjtUAADgYUiCAHid0tJSpaWl6YUXXqjzmtVqVV5enuLj4x3K4+PjZbValZub21phAgAAD0USBMDrzJw5U6tWrVJUVFSd1woKCmQYhiIjIx3Ka+sePXq0VWIEAACei2eCAHiV3/3ud+rQoYOmTp1a7+sVFRWSpICAAIfy2v3y8vIG27bZbLLZbPZ9q9Xa0nABAIAH4k4QAK/x5Zdf6oknnlBGRkaDdYKDgyXJIZn54X7t6/VZt26dOnfubN+io6OdEDUAAPA03AkC4DX+/Oc/q0OHDpo8ebK97IsvvtD333+v5ORkSdLu3btlMplUUlLicGxxcbEkqW/fvg22n5aW5jB7nNVqJRECAKANIgkC4DUeeOABPfDAAw5lM2bMUHZ2trKzs+1lCQkJys/Pd6iXn58vs9lsnzGuPgEBAXWG0QEAgLaHJAhAm7N69WrdfPPNysvLU0JCgkpLS5WRkaH09HQFBga6OzyvVlhYKIvF4rT2wsLC1K1bN6e1BwBAY5AEAfBKO3fu1NNPP+0wHG748OFatWqVkpKStHPnTi1cuFCBgYGyWq1KTU3VwoUL3R22VyssLFS//gN0pqrSaW12CAzS4S8OkQgBAFoVSRAArzRx4kRNnDixwddTUlKUkpLSihG1fRaLRWeqKhU6frH8Q1v+rFT1ySKdfGe9LBYLSRAAoFWRBAEAmsQ/NFoBEb3dHYZXOnTokFPaYRghALQMSRAAAC52vvyUZDJp2rRpTmmPYYQA0DLNToJ27dqlX//617rpppv00ksv1Xk9MzNTK1euVIcOHVRWVqbp06drwYIFdeo9+eSTeu2119SpUyfZbDb7A80AALQVNbZyyTCcMpSQYYQA0HJNToIqKyt15513KigoSGfPnq23Tm5uriZOnKi9e/cqMTFRpaWlGjx4sGpqahzW4Fi7dq2ef/55HThwQOHh4crKytLYsWOVk5OjuLi45p8VAAAeiKGEAOAZ2jX1gKqqKs2dO1evvvpqg1PNrlixQsnJyfb1OCIiIjRr1iytWrVKVVVVkqSysjKtWbNGc+bMUXh4uCRpxIgRio+P14oVK5p7PgAAAABwUU1OgkJDQzVy5MgGX7darcrLy1N8fLxDeXx8vKxWq3JzcyVJOTk5qqysrLdeVlaWKiudNwUrAADApWRnZysmJkbJyckO22OPPeZQLzMzU0OHDlVSUpJiY2O1YcMG9wQMoNmcPjFCQUGBDMNQZGSkQ3lUVJQk6ejRoxo9erSOHDkiSfXWO3/+vI4dO6arr77a2eF5LGctQOismYcAAPBFM2bM0MqVKxt8vbFD/gF4NqcnQRUVFZKkgIAAh/La/fLy8ibV+zGbzSabzWbft1qtTojavVyxACEAAHC+iw35nz17doOPCgDwLE5PgoKDgyXJIVH54X7t642t92Pr1q3TqlWrnBewB3DmAoRVx/br9L4/OCkyAABQq3bIf3p6ukN5fHy80tPTlZubq9GjR7spOgBN4fQkqFevXjKZTCopKXEoLy4uliT17dtXktSnTx9JUklJif3ftfX8/PzUs2fPettPS0tzuN1stVoVHd3ylcs9gTNmDao+WeSkaAAA8D0ffvihUlJSVF5eLn9/f40cOVILFixQYGBgo4f816ctjmQBvFmTJ0a4FLPZrISEBOXn5zuU5+fny2w2228fJycnKygoqN56I0aMUFBQUL3tBwQEyGw2O2wAAAAtFRISom7duumVV15Rbm6utm3bpu3btyshIUHV1dXNHsovXRjJ0rlzZ/vWVr7ABbyV0+8ESbIveJqXl6eEhASVlpYqIyND6enp9rGywcHBWr58uTZt2qR7771X4eHhys7OVn5+vnJyclwRFgAAQIMGDRqkLVu22Pe7deumtWvXaty4cdq5c6d95EpTh/JLbXski6di0ilcTLOSoJkzZ6qgoEClpaXas2ePkpOTNXnyZM2bN0+SlJSUpJ07d2rhwoUKDAyU1WpVamqqFi5c6NBOWlqa/P39NWrUKJnNZtlsNu3evZuFUgEAgEeoTXwKCgo0ZsyYRg35r09AQECdO0hwHSadwqU0KwnaunXrJeukpKQoJSXlonVMJpNSU1OVmpranDAAAACcJi0tTffdd5969OhhLysquvCsbdeuXRs95B/ux6RTuBSXDIcDAADwNh988IHKysr09NNPy8/PT2VlZXr00UcVExOjSZMmSWrckH94DiadQkNIggAAACQ99NBD2rJli+Lj49WhQweVlZVp6NChev311+3P+zR2yD8Az0YSBAAAIGnUqFEaNWrUJes1Zsg/AM/m9CmyAQAAAMCTkQQBAAAA8CkMhwMAAABg58y1kcLCwtStWzentecsJEEAAAAAdL78lGQyadq0aU5rs0NgkA5/ccjjEiGSIAAAAACqsZVLhuGU9ZWkC9OLn3xnvSwWC0kQAAAAAM/ljPWVPB1JEADArZw19txTx50DADwPSRAAwC2cPfbcU8edAwA8D0kQAMAtnDn23JPHnQMAPA9JEADArXxh7DkAwLOwWCoAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8ChMjAADghZy1vpLEGksAfA9JEAAAXsTZ6ytJrLEEwPeQBAEA4EWcub6S9H9rLO3bt08DBgxocXvcVQLgDUiCAADwQs5aX8nZd5a4qwTAG5AEAQDgw5x5Z6n2rpLFYiEJAuDRSIIAeJXs7GxlZGTo+PHjMgxDVqtVt956q5YsWaLAwEB7vczMTK1cuVIdOnRQWVmZpk+frgULFrgvcMDDOevOEgB4A5IgAF5l5syZuv322/X666/LZDLp6NGjiouL02effaY//vGPkqTc3FxNnDhRe/fuVWJiokpLSzV48GDV1NRo0aJFbj4DAADgbiRBALzKNddco6VLl8pkMkmS+vTpoylTpmjLli0qLy9XcHCwVqxYoeTkZCUmJkqSIiIiNGvWLK1atUqzZ892uGPkCwoLC2WxWFrcjjOnZAYAwJ1IggB4lZ07d9YpCwwMlMlkkp+fn6xWq/Ly8pSenu5QJz4+Xunp6crNzdXo0aNbK1y3KywsVL/+A3SmqtLdoQAA4DFIggB4vZycHE2ePFmBgYE6dOiQDMNQZGSkQ52oqChJ0tGjRxtMgmw2m2w2m33farW6LuhWYrFYdKaq0ikPvVcd26/T+/7gpMgAAHAfkiAAXm379u0qLi7WX/7yF0lSRUWFJCkgIMChXu1+eXl5g22tW7dOq1atclGk7uWMh96rTxY5KRoAANyLJAiA1zpw4ICWLl2qPXv2KCIiQpIUHBwsSQ53dH64X/t6fdLS0hwmTrBarYqObvlilGg9znpuieefAKBtc0kSlJ2drRkzZigmJsahfMyYMVq2bJl9nylsATTX/v37NW3aNL399tsaNGiQvbxXr14ymUwqKSlxqF9cXCxJ6tu3b4NtBgQE1LmDBO/g7AU/AQBtm8vuBM2YMUMrV65s8HWmsAXQXPn5+br33nu1Y8cOXXXVVZKkHTt2KDY2Vj169FBCQoLy8/PrHGM2m+0zxqFtceaCnxLPP/mqxqxDtnLlSu3atUshISEOxy5btkxjxoxxQ9QAmsNtw+GYwhZAc2RlZWnKlCl65plnVFlZqf3790uStm3bpiuuuEI9evTQ6tWrdfPNNysvL08JCQkqLS1VRkaG0tPT6VvaOGct+MnzT76pMeuQSdKGDRuUnJzsvkABtFg7d/zQ2ils4+PjHcrj4+NltVqVm5vrjrAAeIEpU6bo22+/1S9+8Qtdf/319u2dd96x10lKStLOnTu1cOFCJSUlacyYMUpNTeUuM4CLamgdsrfeeuuik6oA8D4uuxP04YcfKiUlReXl5fL399fIkSO1YMECBQYGqqCggClsATTLiRMnGlUvJSVFKSkpLo4GQFtyqXXIALQdLrkTFBISom7duumVV15Rbm6utm3bpu3btyshIUHV1dUtnsK2c+fO9o2ZmwAAgKv8cB2yWi+//LJGjBihhIQEjRs3Ttu3b79kOzabTVar1WED4D4uSYIGDRqkLVu2KDQ0VJLUrVs3rV27Vp988ol27tzZ4ilsT58+bd+Kihi3DQAAnK92HbINGzbYy2JiYjRgwAC9++67ysvL07Jly3Tffffp17/+9UXb4ktcwLO02sQIffr0kSQVFBRozJgxTGELAA0oLCyUxWJxSlusdwM0T33rkEkXZr/9ocTERN1///166qmntHz5coe6P8Q6ZIBncUkSlJaWpvvuu089evSwl9XesenatavMZrPXT2HLhxQArlBYWKh+/QfoTFWlu0MBfFZD65A1pE+fPjIMQ8eOHWswCeJLXMCzuCQJ+uCDD1RWVqann35afn5+Kisr06OPPqqYmBhNmjRJkrx6Cls+pABwFYvFojNVlax3A7jJpdYhu+OOO/TGG284HFP7RW/tBE8AHDnrC/+wsDB169bNKW25JAl66KGHtGXLFsXHx6tDhw4qKyvT0KFD9frrr9uf9/nhFLaBgYGyWq1KTU3VwoULXRGSU/EhBYCrsd4N0Poasw7Z9u3bNXHiRE2ZMkXShWH+mzdv1uTJk9W9e3d3hg94nPPlpySTSdOmTXNKex0Cg3T4i0NOSYRckgSNGjVKo0aNumQ9b5/Clg8pAAC0HT9ch+zHFi9eLEnatGmTMjIytHHjRhmGocrKSi1atEgLFixo5WgBz1djK5cMwyk3DqpPFunkO+tlsVg8NwkCAADwNo1Zh2z27NmaPXt2K0QDtB3OunHgTC6ZIhsAAAAAPBVJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp7R3dwDwDocOHXJaW2FhYerWrZvT2gMAAACagiQIF3W+/JRkMmnatGlOa7NDYJAOf3GIRAgAAABuQRKEi6qxlUuGodDxi+UfGt3i9qpPFunkO+tlsVhIgtCmFBYWymKxtLgdZ951BQAA9SMJQqP4h0YrIKK3u8MAPFJhYaH69R+gM1WV7g4FAAA0AkkQALSQxWLRmapKp9wxrTq2X6f3/cFJkQEAgPqQBAGAkzjjjmn1ySInRQMA3sVZw4olhhbj0kiCAAAA4FYMK0ZrIwkCAACAWzlzWLHE0GJcGkkQAAAAPIKzJmJiaDEupZ27AwAAAACA1kQSBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ/iU7PDOWsRLhbgAgAAALyXzyRBLMIFAAAAQPKAJOjIkSOaP3++Tp06JZvNpvj4eD3++OMKDg526s9x5iJcLMAFeL7W6lsA+B76l//DKBt4K7cmQSdPnlRycrLmzZunhx56SOfOnVNKSoqmTp2q3bt3u+RnOmMRLhbgAjybO/oWAL6B/uX/MMoG3sytSdDTTz+t8vJyLV68+EIw7dtrxYoVGj58uP7+97/rhhtucGd4QIs469uxWmFhYerWrZvT2mvL6FsAuEpr9y+e/LeEUTbwZm5NgjIzMzVkyBAFBATYy+Li4tSuXTu98847fFBpw5x129vZiYGz/tgcP35ct06+TbYzVU6I6oKAgA5666031aVLlxa31dYTKvoWAK7Smv2LK+60OPNvSe3fckbZwBu5NQk6cuSIJkyY4FAWEBCgsLAwHT161E1RwZXOl5+STCZNmzbNKe05szN3ReLijG/HJOnMfw7q+79t1fjx450QldQhMEiHvzjUZhMh+hYArtKa/Ysz77RIzv9bAngztyZBFRUVDt+k1AoICFB5eXm9x9hsNtlsNvv+6dOnJUlWq/WiP6u2PVtpgWrOnmluyJL+79sKZ7Tl7PY8OTZJspUckgxD5usnya/zT1oW27dfqfxf7zq9M3dGbGdLjqji8yzVVNucct1qKk877bqdP/2trB/v0FdffaWQkJAG69W+pwzDaNHPc4fm9C0S/QuxeUd7Hh3bd/+RdOE9cbH3Df1L4/qX2vY88W+J9H9/69r87zWxeUR7Tu9fDDcym83G1KlT65SHh4cbt956a73HpKenG5LY2NhaaSsqKnJ1V+B0zelbDIP+hY2ttTf6FzY2Nldtl+pf3HonqE+fPiopKXEos9lsslgs6tu3b73HpKWladGiRfb9mpoafffddwoNDZXJZHJpvO5itVoVHR2toqIimc1md4fTpnGt/49hGCorK1NkZKS7Q2my5vQtUvP7F35vPB//R56F/sVzPr/44nuDc27b59zY/sWtSVBKSoo2bNggm81mv7X80UcfqaamRuPGjav3mICAgDq3oS82pKctMZvNbf4X11NwrS/o3Lmzu0Nolub0LVLL+xd+bzwf/0eeg/7Fsz6/+OJ7g3NuuxrTv7RrhTgaNH/+fHXs2FHr16+XJJ07d06rV6/WhAkTmL0JQLPRtwBwFfoXoG1waxIUGhqq7Oxs5ebmatiwYbruuuvUu3dvvfbaa+4MC4CXo28B4Cr0L0Db4NbhcJLUr18/7dmzx91heLSAgAClp6fXOxsNnItr3Xa0Zt/C743n4/8IztSWPrv44nuDc4YkmQzDC+enBAAAAIBmcutwOAAAAABobSRBAAAAAHwKSZCbHTlyRGPHjtWwYcMUGxuruXPnXnTF6R96+eWXNWTIEA0fPlxDhgzhocxLaMm1rqio0JIlS9S+fXtlZ2e7NlB4nMzMTA0dOlRJSUmKjY3Vhg0bGnXc2bNnlZaWptjYWCUkJGj48OE6cOCAQ52vvvpKERERSk5OdtgWLFjg/BNpA1zdZzbm/wzwVK7sqz755BPNnDlTiYmJGj58uAYNGqTFixfr1KlTDvVeeukl9e/fv06f9tJLL7Xo3DzlvX/8+HFNmTJF1113na677jpNnTpVJ06caNG5NcSV51xcXKwVK1YoISFBI0aM0JAhQ3T77bfr0KFDDvXa9N+olqyajJaxWCxGly5djDVr1hiGYRjV1dXGzTffbEyYMOGSx7766qtGcHCwcfjwYcMwDOPzzz83OnbsaLz55psujdlbteRa//3vfzeuvfZa45577jEkGVlZWS6OFp4kJyfHuOyyy4zc3FzDMAzj+PHjRpcuXYz169df8thf/epXxqBBg4zy8nLDMAzjpZdeMjp37mwcO3bMXufLL780pk+f7pLY25rW6DMb838GeCJX91U33XSTcddddxlnz541DMMwSktLjV69ehlDhw41ampq7PW2bdtmbNu2zYln5jnvfZvNZlx99dXGfffdZy+7++67jdjYWKO6urrF5/lDrj7nRx991LjqqquMkydPGoZx4dwmTZpkhISEGMXFxfZ6bflvFEmQG/3mN78xOnXqZJw5c8ZelpOTY0gy8vLyGjyupqbG6N69u8Ob0DAuvBF79+7tsni9WXOvtWEYRlZWlnH8+HEjKyuLJMgHJSYmGqNGjXIoW7VqlWE2m43KysoGjzt69KhhMpmM1157zaG8Z8+exsyZM+37bfkPjLO5us9s7P8Z4Ilc3VfNmTPH+Pzzzx3qPPbYY4Yk4+DBg/YyVyRBnvLef+GFFwxJDknC119/bUgy/vCHPzT7/Orj6nN+4YUXjFdeecWhzocffmhIMjZu3Ggva8t/oxgO50aZmZkaMmSIw3SFcXFxateund55550Gjzt48KC+/vprxcfHO5THx8eroKBAhw8fdlnM3qq511qSkpOTFRER4eoQ4YGsVqvy8vLqfa9ZrVbl5uY2eOyePXtkGEadY3/2s59d8ncO9XN1n8n/GbxVa/RVGzdu1IABAxzqBAYGSpLat3ftiiue8t7PzMxUTEyMIiMj7WXdunVTVFSU0/sIV5/zPffco2nTpjnUaa3/T09BEuRGR44ccXgjSRfmcQ8LC9PRo0cvepykOsdGRUVJ0kWP9VXNvdbwbQUFBTIMo1nvtYu9T0tLS1VWVmYvO3z4sCZNmqSkpCQlJycrLS2tzjh7uL7PbMr/GeBJWquv+rGcnBzFxcWpb9++DuWZmZkaOXKkEhMTNXr0aD3//PM6d+5ck87pxzF6wnu/vjhq6zn7s4Q7PiPm5OSoY8eOmjRpkkN5W/0b5RupnoeqqKiod9GqgICAiz74VlFRYa/34+MkNfqhOV/S3GuNtuf06dM6fvz4Jev16NGjRe+1iooKmUwm+fv713tsRUWFOnXqpA4dOigmJkZPPPGEoqOjdfLkSd1xxx0aNGiQ/vnPf+qKK65o0vm1Za7uMxv7fwa0Bk/rq37sgw8+0HvvvacPPvjAoTwiIkIxMTHatm2bOnbsqP/5n/9RSkqKMjMz9ec///mS59NQjJ7w3q+oqFBYWFi9cTh7coTW/ox46tQpPfbYY3ruuecczrEt/40iCXKj4OBg2Wy2OuU2m03BwcEXPa623o+P++Hr+D/NvdZoe3bu3Km77777kvX++c9/tui9FhwcLMMwVF1d7fCH9cfHRkRE6PXXX7e/HhoaqqeffloDBw7U1q1btXTp0kaeWdvn6j6zsf9nQGvwtL7qh7766ivdeeedevPNNzVw4ECH18aMGaMxY8bY96+++motW7ZMc+fO1T/+8Q8NHTr0kudUX4ye8N5vzc8SrfkZ0Waz6dZbb9X999+vGTNmOLzWlv9GMRzOjfr06aOSkhKHMpvNJovFUufW8o+Pk1Tn2OLiYkm66LG+qrnXGm3PjBkzZFyYFOai26BBg9SrVy+ZTKZmvdcu9j7t0qXLRf+I1R5bUFDQrHNsq1zdZ7bk/wxwNk/tq44dO6Zx48YpIyNDo0aNatS5tLRP85T3fn1x1NZz9meJ1vqMWFVVpVtuuUU33XSTHn744UbHJnn/3yiSIDdKSUnRgQMHHLL1jz76SDU1NRo3blyDxw0cOFDdu3dXfn6+Q3l+fr769OnDh/p6NPdaw7eZzWYlJCTU+14zm81KTExs8NixY8fKZDLVOfaDDz5w+J3bsGGDPvzwQ4c6RUVFkqSuXbu29BTaFFf3mY39PwM8TWv0VdKFZ0PGjx+v559/3p4A/e1vf9M///lPe517773XPiSrVkv7NE9576ekpOirr75ySDAKCwtVXFzs9D6iNT4jlpeXa9y4cRo1apSWL18uSfryyy+1Y8cOe502/TeqdSahQ30sFosRERFxyTngH374YSMmJsY4fvy4vYx1gpqmJde6FlNk+6batTf27dtnGEbDa2/ceOONxk033eRQVt+6E2az2WHdienTpxu33HKLfRpUm81m3HHHHcbll19uFBYWuvLUvE5r9JmN+T8DPJGr+6rPPvvMiIyMNJ577jnj448/tm+/+tWvHKbE7t69u/H444/b90tLS42rrrrKGDp0qHH+/PlmnZunvPdtNpsxcODAVlsnyJXn/P333xvx8fHGzJkzHf4/MzIyHKbEbst/o3gmyI1CQ0OVnZ2t+fPna/fu3Tpz5ozi4+P1xBNPONSz2WyqrKzU+fPn7WVTp07V2bNnNWXKFHXq1Enl5eXavHmzbr311tY+Da/QkmtdUFCgmTNn6vvvv5ckLViwQCEhIdq6dat69+7dmqcBN0hKStLOnTu1cOFCBQYGymq1KjU1VQsXLnSoV1lZqXbtHG+uP/fcc3r44Yd1ww03qGPHjmrfvr3ef/999ejRw15n9uzZ2rhxoxITExUUFKTy8nL17dtX//jHPxQdHd0q5+gtWqPPbMz/GeCJXN1X3XPPPSopKdG8efPq/OwfTsf8+OOP6+WXX9auXbvUvn17lZeXa8KECUpLS6vzcxvLU977l112md577z0tWLBA1113nQzDUN++fbVnzx6nTyvt6nNes2aN8vPzlZ+fr61btzq0OX36dPu/2/LfKJNhGIa7gwAAAACA1sIzQQAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEC6ppqZGzz33nGJjYxUZGamoqCgNGTJEy5Yt07///W9FRETIz89PJpNJERERevDBB+3H/uxnP1NISIguu+wyDRw4UJJktVq1bt063XDDDeratasuv/xy9erVS0uWLFFZWZnDz/7Vr36liIgImUwmJScn65NPPtHNN9+sqKgomUwmxcTEtOalAAAAQBvAFNm4pBUrVui3v/2tMjMzNXz4cEnSe++9p8mTJ2vhwoVauXKlbr/9dv3pT3/SP/7xD11//fUOx8+ZM0eBgYFav369JGn//v26/vrr9fjjj2vRokXy8/NTfn6+Jk+erJiYGP3973+vs5aAyWRSz5491b9/f2VkZCg6OlrPPfecnnrqKX311Vetch0AAADQNpAE4ZKuuuoqdejQQZ988olD+apVqxQaGqp58+YpKytLN954o+6++269+OKL9jrl5eWKiorSxx9/rL59+0qSPv/8cy1btky7d+92aG/jxo2aN2+e/vrXv2rMmDEOr5lMJvn5+enIkSPq2bOnJOnUqVPauXOn7rnnHlecNgAAANookiBcUkpKiv7617/q4Ycf1uzZsxUREVFvvf79+6uwsFAlJSUKCQmRJGVkZOhPf/qT3n///Uv+nL/97W+66aab9Pjjj2vp0qUOr5lMJvXp00dHjhxp8fkAAADAt/FMEC7pueeeU1xcnB555BFFRUUpPj5eTzzxhEpLSx3qzZo1S1VVVXr55ZftZRkZGZo1a1adNt98802NGTNGvXr1Unh4uCIiIjR58mRJUmVlZb1xNJR8AQAAAE1BEoRL6tmzpz788EPt379fDz74oCwWix588EH17t3bYUjb9OnTFRgYqIyMDEnSBx98oG+++Ua33HKLQ3sPP/ywbrvtNnXu3Fn79u3TiRMnVFpaqh07dlw0jh8/JwQAAAA0B58qcUnnz5+XJA0ZMkRr167VkSNHtGvXLlVXV+uBBx6w17v88ss1ZcoUffHFF8rKytLzzz+ve++9V/7+/g7tbdy4UZL0zDPPKDIysvVOBAAAABBJEBqhV69e+vDDDx3Kfv7zn2vgwIH67rvvHMpnz54tSVq7dq3eeust/epXv6rT3o+TolrM8gYAAIDWQBKERnnooYf09ddfS5IMw9Dbb7+tgwcPavr06Q71hg4dqsGDB2vv3r0aMWKEunfvXqetu+66S5I0f/58ff/995Kkf//733rkkUdcexIAAACAmB0OjZCZmanXXntN//jHP1ReXi7DMNS1a1fdc889uu++++Tn5+dQf+vWrfrVr36lP//5zxo/fnyd9qqrq/XUU0/p5ZdfVmFhoX7yk59o8ODBGjlypObNm6eOHTsqODhYR44c0WOPPaYXX3xR33zzjfz9/XXFFVcoLi5Ob7/9dmudPgAAANoYkiAAAAAAPoXhcAAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKe0d3cALVVTU6OSkhJ16tRJJpPJ3eEAbYZhGCorK1NkZKTateP7EgAA0HZ4fRJUUlKi6Ohod4cBtFlFRUXq2rWru8MAAABwGq9Pgjp16iTpwgc1s9ns5miAtsNqtSo6Otr+HgMAAGgrvD4Jqh0CZzabSYIAF2CYKQAAaGsY6A8AAADApzQpCfroo4/0y1/+Uj/72c80YsQIXXvttbrlllt08OBBh3qZmZkaOnSokpKSFBsbqw0bNtTb3pNPPqnY2FglJSUpLi5O7733XrNPBAAAAAAao0nD4f70pz+purpa+/btU/v27XXu3Dnddtttuvnmm/Wf//xH7dq1U25uriZOnKi9e/cqMTFRpaWlGjx4sGpqarRo0SJ7W2vXrtXzzz+vAwcOKDw8XFlZWRo7dqxycnIUFxfn9BMFAAAAAEkyGYZhNLby4cOHFRISoiuvvNJe9swzz2j+/Pn6/vvv1blzZyUlJSkwMFDvvvuuvc4jjzyi9evXq7S0VIGBgSorK1NERIRWrFihtLQ0e70bb7xRfn5+TbojZLVa1blzZ50+ffqSzwQVFhbKYrE0uu2LCQsLU7du3ZzSFuCJmvLeAgAA8CZNuhPUr18/h/1jx47pxRdf1Ny5c9W5c2dZrVbl5eUpPT3doV58fLzS09OVm5ur0aNHKycnR5WVlYqPj69T77HHHlNlZaWCgoKaeUr1KywsVL/+A3SmqtIp7XUIDNLhLw6RCAEAAABeplmzw/3lL3/R0qVL9b//+79avHixHn30UUlSQUGBDMNQZGSkQ/2oqChJ0tGjRzV69GgdOXJEkuqtd/78eR07dkxXX311c0JrkMVi0ZmqSoWOXyz/0JatK1R9skgn31kvi8VCEgQAAAB4mWYlQePGjdO4ceP01Vdf6bbbbtM//vEP/fWvf1VFRYUkKSAgwKF+7X55ebkkNbpefWw2m2w2m33farU2KXb/0GgFRPRu0jEAAAAA2o4WTZEdExOj5557Tnv37tUrr7yi4OBgSXJIUn64X/t6Y+vVZ926dercubN9i45u2V0dAAAAAL6lSUnQj5MWSbrmmmskSZ9++ql69eolk8mkkpIShzrFxcWSpL59+0qS+vTpI0n11vPz81PPnj0bjCEtLU2nT5+2b0VFRU05BQAAAAA+rklJUL9+/XTixAmHstoE54orrpDZbFZCQoLy8/Md6uTn58tsNisxMVGSlJycrKCgoHrrjRgx4qKTIgQEBMhsNjtsAAAAANBYTR4O98gjj+jcuXOSpKqqKj344IPq1KmTfvnLX0qSVq9erezsbOXl5UmSSktLlZGRofT0dAUGBkq6MNxt+fLl2rRpkz2pys7OVn5+vlavXu2UEwMAAACA+jRpYoTHH39cv//97xUXF6fg4GBZrVb1799fH330kXr06CFJSkpK0s6dO7Vw4UIFBgbKarUqNTVVCxcudGgrLS1N/v7+GjVqlMxms2w2m3bv3s1CqQAAAABcqkmLpXqixi7o+Mknn2jIkCGKmL6hxbPD2UoLVPryAh04cECDBw9uUVuAp2KxVAAA0Fa1aHY4AAAAAPA2JEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ/SpCQoOztbd9xxh4YPH66kpCQNGjRIjz76qKqqqhzqZWZmaujQoUpKSlJsbKw2bNhQb3tPPvmkYmNjlZSUpLi4OL333nvNPhEAAAAAaIz2Tak8c+ZM3X777Xr99ddlMpl09OhRxcXF6bPPPtMf//hHSVJubq4mTpyovXv3KjExUaWlpRo8eLBqamq0aNEie1tr167V888/rwMHDig8PFxZWVkaO3ascnJyFBcX59yzBAAAAID/X5PuBF1zzTVaunSpTCaTJKlPnz6aMmWK3nrrLZWXl0uSVqxYoeTkZCUmJkqSIiIiNGvWLK1atcp+x6isrExr1qzRnDlzFB4eLkkaMWKE4uPjtWLFCqedHAAAAAD8WJOSoJ07dyokJMShLDAwUCaTSX5+frJarcrLy1N8fLxDnfj4eFmtVuXm5kqScnJyVFlZWW+9rKwsVVZWNuNUAAAAAODSWjwxQk5OjiZPnqzAwEAVFBTIMAxFRkY61ImKipIkHT16VJJ05MgRSaq33vnz53Xs2LEGf57NZpPVanXYAAAAAKCxWpQEbd++XcXFxfaJDyoqKiRJAQEBDvVq92uHzDW2Xn3WrVunzp0727fo6OiWnAIAAAAAH9PsJOjAgQNaunSp9uzZo4iICElScHCwpAt3a36odr/29cbWq09aWppOnz5t34qKipp7CgAAAAB8UJNmh6u1f/9+TZs2TW+//bYGDRpkL+/Vq5dMJpNKSkoc6hcXF0uS+vbtK+nChAqSVFJSYv93bT0/Pz/17NmzwZ8dEBBQ5w4SAAAAADRWk+8E5efn66677tKOHTvsCdCOHTv05Zdfymw2KyEhQfn5+XWOMZvN9hnjkpOTFRQUVG+9ESNGKCgoqJmnAwAAAAAX16QkKCsrS7fccovS09NVWVmp/fv3a//+/dq2bZu+/vprSdLq1auVnZ2tvLw8SVJpaakyMjKUnp6uwMBASReGuy1fvlybNm3SiRMnJF1YiDU/P1+rV6925vkBAAAAgIMmDYebMmWKvv32W/3iF7+o89rixYslSUlJSdq5c6cWLlyowMBAWa1WpaamauHChQ7109LS5O/vr1GjRslsNstms2n37t0slAoAAADApZqUBNXetbmUlJQUpaSkXLSOyWRSamqqUlNTmxICAAAAALRIi9cJAgAAAABvQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADAp5AEAQAAAPApJEEAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnkAQBAAAA8CkkQQAAAAB8CkkQAAAAAJ9CEgQAAADApzQ7Cdq1a5eio6M1Y8aMel/PzMzU0KFDlZSUpNjYWG3YsKHeek8++aRiY2OVlJSkuLg4vffee80NCQAAAAAuqX1TD6isrNSdd96poKAgnT17tt46ubm5mjhxovbu3avExESVlpZq8ODBqqmp0aJFi+z11q5dq+eff14HDhxQeHi4srKyNHbsWOXk5CguLq75ZwUAAAAADWjynaCqqirNnTtXr776qgIDA+uts2LFCiUnJysxMVGSFBERoVmzZmnVqlWqqqqSJJWVlWnNmjWaM2eOwsPDJUkjRoxQfHy8VqxY0dzzAQAAAICLanISFBoaqpEjRzb4utVqVV5enuLj4x3K4+PjZbValZubK0nKyclRZWVlvfWysrJUWVnZ1NAAAAAA4JKcPjFCQUGBDMNQZGSkQ3lUVJQk6ejRo5KkI0eOSFK99c6fP69jx445OzQAAAAAaPozQZdSUVEhSQoICHAor90vLy9vUr0fs9lsstls9n2r1eqEqAEAAAD4CqffCQoODpYkh0Tlh/u1rze23o+tW7dOnTt3tm/R0dHOCx4AAABAm+f0JKhXr14ymUwqKSlxKC8uLpYk9e3bV5LUp08fSaq3np+fn3r27Flv+2lpaTp9+rR9KyoqcvYpAAAAAGjDnJ4Emc1mJSQkKD8/36E8Pz9fZrPZPmNccnKygoKC6q03YsQIBQUF1dt+QECAzGazwwYAAAAAjeX0JEiSVq9erezsbOXl5UmSSktLlZGRofT0dPu02sHBwVq+fLk2bdqkEydOSJKys7OVn5+v1atXuyIsAAAAAGjexAgzZ85UQUGBSktLtWfPHiUnJ2vy5MmaN2+eJCkpKUk7d+7UwoULFRgYKKvVqtTUVC1cuNChnbS0NPn7+2vUqFEym82y2WzavXs3C6UCAAAAcJlmJUFbt269ZJ2UlBSlpKRctI7JZFJqaqpSU1ObEwYAAAAANJlLhsMBAAAAgKciCQIAAADgU0iCAAAAAPgUkiAAAAAAPoUkCAAAAIBPIQkCAAAA4FNIggAAAAD4FJIgAAAAAD6FJAgAAACATyEJAgAAAOBTSIIAAAAA+BSSIAAAAAA+hSQIAAAAgE8hCQIAAADgU0iCAAAAAPgUkiAAAAAAPoUkCAAAAIBPIQkCAAAA4FNIggAAAAD4FJIgAAAAAD6FJAgAAACATyEJAgAAAOBTSIIAAAAA+BSSIAAAAAA+pb27A/Bmhw4dclpbYWFh6tatm9PaAwAAAFA/kqBmOF9+SjKZNG3aNKe12SEwSIe/OEQiBAAAALgYSVAz1NjKJcNQ6PjF8g+NbnF71SeLdPKd9bJYLCRBAAAAgIuRBLWAf2i0AiJ6uzsMAAAAAE3AxAgAAAAAfApJEAAAAACfQhIEAAAAwKeQBAEAAADwKSRBAAAAAHwKSRAAAAAAn0ISBAAAAMCnuD0JOnLkiMaOHathw4YpNjZWc+fOVXl5ubvDAgAAANBGuXWx1JMnTyo5OVnz5s3TQw89pHPnziklJUVTp07V7t273RmaWxw6dMgp7YSFhalbt25OaQsAAABoa9yaBD399NMqLy/X4sWLLwTTvr1WrFih4cOH6+9//7tuuOEGd4bXas6Xn5JMJk2bNs0p7QUEdNBbb72pLl26OKU9ZydVhYWFslgsTmnLZrMpICDAKW1JJJAAAAC+wK1JUGZmpoYMGeLwITYuLk7t2rXTO++84zNJUI2tXDIMhY5fLP/Q6Ba1deY/B/X937Zq/PjxTopO6hAYpMNfHHJKclBYWKh+/QfoTFWlEyKTZGonGTXOaUvOPVdnc2bySLIHAAB8mVuToCNHjmjChAkOZQEBAQoLC9PRo0frPcZms8lms9n3T58+LUmyWq0X/Vm1zxnZSgtUc/ZMS8JW9ckip7X1w/Zqqm0tbq+m8rRkGDJfP0l+nX/S4tjOn/5W1o936N1331W/fv1a3N7hw4d1pqrSKfGdLTmiis+zPPZc27Vrp5oa5yRo33zzjabd9UudtbX8902SAjoE6sD+jxUd3XDSXfueMgzDKT8TAADAU5gMN37C8fPz0/Tp0/Xiiy86lHfr1k1XXXWV9uzZU+eYlStXatWqVa0VIuDzioqK1LVrV3eHAQAA4DRuvRMUHBzscFenls1mU3BwcL3HpKWladGiRfb9mpoafffddwoNDZXJZKr3GKvVqujoaBUVFclsNjsneHBdXcRTrqthGCorK1NkZKTbYgAAAHAFtyZBffr0UUlJiUOZzWaTxWJR37596z0mICCgzoPwISEhjfp5ZrOZD+suwHV1DU+4rp07d3brzwcAAHAFt64TlJKSogMHDjjcDfroo49UU1OjcePGuTEyAAAAAG2VW5Og+fPnq2PHjlq/fr0k6dy5c1q9erUmTJjgMzPDAQAAAGhdbk2CQkNDlZ2drdzcXA0bNkzXXXedevfurddee82pPycgIEDp6elOXU8GXFdX4boCAAC4lltnhwMAAACA1ubWO0EAAAAA0NpIggAAAAD4FJIgAAAAAD7Fq5KgI0eOaOzYsRo2bJhiY2M1d+5clZeXN+rYl19+WUOGDNHw4cM1ZMiQeidfOHv2rNLS0hQbG6uEhAQNHz5cBw4ccPZpeBxXX9f+/fsrOTm5ztbWteS6VlRUaMmSJWrfvr2ys7PrreOrv68AAAAtZngJi8VidOnSxVizZo1hGIZRXV1t3HzzzcaECRMueeyrr75qBAcHG4cPHzYMwzA+//xzo2PHjsabb77pUO9Xv/qVMWjQIKO8vNwwDMN46aWXjM6dOxvHjh1z8tl4jta4rsOHD3d63J6uJdf173//u3Httdca99xzjyHJyMrKqreeL/6+AgAAOIPXJEG/+c1vjE6dOhlnzpyxl+Xk5BiSjLy8vAaPq6mpMbp3727cd999DuV333230bt3b/v+0aNHDZPJZLz22msO9Xr27GnMnDnTSWfheVx9XQ3DN5Og5l5XwzCMrKws4/jx40ZWVlaDSZCv/r4CAAA4g9cMh8vMzNSQIUMc1k6Ji4tTu3bt9M477zR43MGDB/X1118rPj7eoTw+Pl4FBQU6fPiwJGnPnj0yDKNOvZ/97GcXbd/bufq6+qrmXldJSk5OVkRExEXr+OrvKwAAgDN4TRJ05MgRRUZGOpQFBAQoLCxMR48evehxkuocGxUVJUn2Yy9Wr7S0VGVlZS07AQ/l6usqXXi+5f7779fw4cN1ww036J577rEf31Y197o2pX3J935fAQAAnMFrkqCKigqHb9VrBQQEXPRh84qKCnu9Hx8nyX5sRUWFTCaT/P39661X205b4+rrKklXXXWVfvnLXyonJ0fZ2dkKCwvTNddco/z8fGecgkdq7nVtSvu++PsKAADgDF6TBAUHB8tms9Upt9lsCg4OvuhxtfV+fNwPXw8ODpZhGKqurr5ovbbG1ddVujCD3A033CBJ8vf317p163TFFVdo9erVLY7fUzX3ujalfV/8fQUAAHAGr0mC+vTpo5KSEocym80mi8Wivn37XvQ4SXWOLS4uliT7sRer16VLlzb7odLV17U+fn5+6tmzpwoKCpobtsdr7nVtSvuS7/2+AgAAOIPXJEEpKSk6cOCAw7frH330kWpqajRu3LgGjxs4cKC6d+9eZ+hVfn6++vTpY/9AOnbsWJlMpjr1Pvjgg4u27+1cfV3ff/99/e53v6tz/H/+8x917drVSWfheZp7XRvLV39fAQAAnMK9k9M1nsViMSIiIi657srDDz9sxMTEGMePH7eXtWSdILPZ3KbXXXH1dd22bZvRo0cPh+OeeeYZw2QyGbt373blqblVS65rrYtNkW0Yvvn7CgAA4Azt3Z2ENVZoaKiys7M1f/587d69W2fOnFF8fLyeeOIJh3o2m02VlZU6f/68vWzq1Kk6e/aspkyZok6dOqm8vFybN2/Wrbfe6nDsc889p4cfflg33HCDOnbsqPbt2+v9999Xjx49WuUc3cHV13XkyJE6ePCgJkyYoI4dO+rMmTPq2LGj9u7dqxtvvLHVzrO1teS6FhQUaObMmfr+++8lSQsWLFBISIi2bt2q3r172+v54u8rAACAM5gMwzDcHQQAAAAAtBaveSYIAAAAAJyBJAgAAACATyEJAgAAAOBTSIIAAAAA+BSSIAAAAAA+hSQIAAAAgE8hCQIAAADgU0iCAAAAAPgUkiAAAAAAPoUkCAAAAIBPIQkCAAAA4FNIggAAAAD4lP8PugsswhEV0ZoAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(figsize=(10,7), edgecolor='black', grid=False) \n", + "# Graphical Overview of the Distributions of Individual Variables in the Data\n", + "# The variable \"date\" is not included as it is not a numerical variable." + ] + }, + { + "cell_type": "raw", + "id": "587b42ca-c325-4d67-918c-2ede5360bf62", + "metadata": {}, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Question 1: Preparing and analyzing the data\n", + "\n", + "1. First we need to align the data such that a row that contains the features for date $t$, contains the return for date $t + 1$ (instead of the return for date $t$ as it does now). This ensures that we are actually predicting **next** quarters returns. For this we need to lead the return time series by one period. (Hint: Use the `shift()` function to add a new variable to the dataframe that is the return led by one period. Afterwards remove the old return time series from the dataframe.)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f3725bbe-1708-4559-b7b9-fa975a09083f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    dateretDPCSntiscayTSsvar
    3602019-Q10.042688-3.9434000.010258-0.023230-0.0393360.00170.004651
    3612019-Q20.017042-3.9600330.010006-0.012562-0.033844-0.00100.003271
    3622019-Q30.090143-3.9516890.008505-0.010862-0.029529-0.00190.005517
    3632019-Q4-0.193794-4.0158960.008410-0.007222-0.0336090.00320.002319
    3642020-Q1NaN-3.7699920.012252-0.007731-0.0501410.00580.079049
    \n", + "
    " + ], + "text/plain": [ + " date ret DP CS ntis cay TS \\\n", + "360 2019-Q1 0.042688 -3.943400 0.010258 -0.023230 -0.039336 0.0017 \n", + "361 2019-Q2 0.017042 -3.960033 0.010006 -0.012562 -0.033844 -0.0010 \n", + "362 2019-Q3 0.090143 -3.951689 0.008505 -0.010862 -0.029529 -0.0019 \n", + "363 2019-Q4 -0.193794 -4.015896 0.008410 -0.007222 -0.033609 0.0032 \n", + "364 2020-Q1 NaN -3.769992 0.012252 -0.007731 -0.050141 0.0058 \n", + "\n", + " svar \n", + "360 0.004651 \n", + "361 0.003271 \n", + "362 0.005517 \n", + "363 0.002319 \n", + "364 0.079049 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['ret'] = df['ret'].shift(-1) # Shifting the Return by the Time Period t+1.\n", + "\n", + "df.tail()" + ] + }, + { + "cell_type": "markdown", + "id": "73330b81-0e43-43ac-911f-4086a9f9788f", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "2. Remove all rows that contain missing values from the dataset. Google will provide many different ways on how to do this. If you struggle with this exercise, do the following: Use the `.isna().sum()` function to determine all rows that contain missing values. Find the missing values for these variables by eye inspection. Start and end the sample such that these rows with missing values are not included. Use the `.isna().sum()` again to make sure that you got rid of all missing values (`NaN`'s)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5c083b5f-f0d4-4fe5-8824-604a073c1215", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "date 0\n", + "ret 1\n", + "DP 0\n", + "CS 0\n", + "ntis 0\n", + "cay 92\n", + "TS 0\n", + "svar 0\n", + "dtype: int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isna().sum() # Enumeration of all NaNs (per variable)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2c0b17c8-a060-4687-8047-83abcf22ae46", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "date 0\n", + "ret 0\n", + "DP 0\n", + "CS 0\n", + "ntis 0\n", + "cay 0\n", + "TS 0\n", + "svar 0\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df.dropna() # Discarding all rows where variables have a NaN cell.\n", + "\n", + "df.isna().sum()" + ] + }, + { + "cell_type": "markdown", + "id": "80e4160e-374a-43e1-a159-45077703658e", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "3. Split the sample into two parts. Data before $1995$ for *training* and *validation* and data after and including $1995$ for *out-of-sample* testing." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b27a4ab6-fb98-4d05-ad9e-340731f68d68", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train_data contains 172 observations.\n", + "test_data contains 100 observations.\n" + ] + } + ], + "source": [ + "# Creating variables with the information \"1994-Q4\" and the position serving as the intersection.\n", + "split_date = '1994-Q4' # Variable with split value\n", + "split_ind = df.index[df['date'] == split_date][0] # Variable with split position\n", + "\n", + "# Division of the data into \"train_data\" and \"test_data\".\n", + "train_data = df.loc[:split_ind] # In-sample dataset (all rows up to the split position)\n", + "test_data = df.loc[split_ind + 1:] # Out-of-sample dataset (all rows after the split position)\n", + "\n", + "print(f\"train_data contains {len(train_data)} observations.\")\n", + "print(f\"test_data contains {len(test_data)} observations.\")" + ] + }, + { + "cell_type": "markdown", + "id": "03d19235-25ee-4c3b-b7bf-97cdf27d41b2", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "4. Compute the mean quarterly return and its standard deviation in the training and test data. Is there anything worth noting?" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "a6833298-ab95-4596-85cd-5c4d9666037c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train data:\n", + "Average quarterly return: 0.0306\n", + "Standard deviation of quarterly return: 0.0763\n", + "\n", + "Test data:\n", + "Average quarterly return: 0.0252\n", + "Standard deviation of quarterly return: 0.0823\n" + ] + } + ], + "source": [ + "train_mean_ret = train_data['ret'].mean() # Average quarterly return (train_data)\n", + "train_std_ret = train_data['ret'].std() # Standard deviation of quarterly return (train_data)\n", + "\n", + "test_mean_ret = test_data['ret'].mean() # Average quarterly return (test_data)\n", + "test_std_ret = test_data['ret'].std() # Standard deviation of quarterly return (test_data)\n", + "\n", + "# Output of the results\n", + "print(\"Train data:\")\n", + "print(f\"Average quarterly return: {train_mean_ret:.4f}\")\n", + "print(f\"Standard deviation of quarterly return: {train_std_ret:.4f}\")\n", + "print(\"\\nTest data:\")\n", + "print(f\"Average quarterly return: {test_mean_ret:.4f}\")\n", + "print(f\"Standard deviation of quarterly return: {test_std_ret:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "79732a93-d610-4d49-9bf0-a03b3f4edf22", + "metadata": { + "user_expressions": [] + }, + "source": [ + "5. Compute the correlation matrix for the training data (including both the outcomes and the features). Is there anything worth noting?" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1b390010-0b60-4bb0-873f-786c93fc34e5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correlation matrix (train data):\n", + " ret DP CS ntis cay TS svar\n", + "ret 1.00 0.23 0.18 -0.19 0.17 0.16 0.13\n", + "DP 0.23 1.00 0.38 -0.12 -0.21 -0.14 0.11\n", + "CS 0.18 0.38 1.00 -0.31 -0.02 0.21 0.22\n", + "ntis -0.19 -0.12 -0.31 1.00 -0.40 -0.07 -0.12\n", + "cay 0.17 -0.21 -0.02 -0.40 1.00 0.46 0.04\n", + "TS 0.16 -0.14 0.21 -0.07 0.46 1.00 0.08\n", + "svar 0.13 0.11 0.22 -0.12 0.04 0.08 1.00\n" + ] + } + ], + "source": [ + "# Calculation of the correlation matrix for the training data\n", + "\n", + "# \"date\" column excluded (Only numerical columns)\n", + "train_cor_matrix = train_data.loc[:, train_data.columns != 'date'].corr(method='pearson')\n", + "\n", + "# Output of the correlation matrix. Values rounded to two decimal places.\n", + "print(\"Correlation matrix (train data):\")\n", + "print(round(train_cor_matrix,2))" + ] + }, + { + "cell_type": "markdown", + "id": "dd530aab-33af-4c70-bfce-193e32d49aed", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Graphical representation of the correlation matrix (extra)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e2727ae0-ab97-4ae4-b7cb-8b3e957ccda5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAJwCAYAAACgS1ZyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV8k8cfB/BP0qRpmyr1FqhABYoUirtLkWFjw3WDbUWGbMDw4e4b7jJsDIoOKVBguGsLFEpL3SV+vz9CAyGpBNqk4fd9v155QS53z3N3ffI8l3vu7uEwxhgIIYQQQgghRcI1dAYIIYQQQggxJtSAJoQQQgghRAfUgCaEEEIIIUQH1IAmhBBCCCFEB9SAJoQQQgghRAfUgCaEEEIIIUQH1IAmhBBCCCFEB9SAJoQQQgghRAfUgCaEEEIIIUQHRteAjoiIwMiRI1G5cmW4u7vD2toa5cqVQ/v27TF79mzcu3fP0FnUWbt27eDo6AgOh4OBAweW6L5mzJgBBwcH3L9/v0T3UxRisRguLi6qsnM4HPzzzz+Fprt9+7YqvouLC2rWrKmH3Obv1KlTsLGxwebNmw2ajzwSiQSTJ09GhQoV4OTkBBcXF7Rv3x4pKSk6b+v06dNwcXGBubk5OBwOoqKiij/D+WjXrh1cXFzA4XBgYmICFxcXfPfddyW2P4lEgmXLlqFevXqws7ODs7Mz3N3dUatWLQwfPhzbtm2DXC4vsf2XlO+++05Vj82aNSv27ecdI5aWluBwOLCxsYGLi4vWl76PIVI0rVq1go2NDTgcDvh8PlxcXLSei//44w+4uLjAxMQEdnZ26NevX7HnZfPmzbCxscGpU6c+KX1OTg5cXFxU5dmyZUuhaWbOnKkql6en5yftl/wfYkZk8eLFzNTUlE2YMIG9efOGMcaYQqFgL168YKNHj2YcDocBYDt27DBwTnX38uVLBoANGDDgs7azefNmBoBt3rxZ6+ejRo1ipqam7OrVq5+1n+KUV3YArEaNGoXG79y5syr+5yqsvoriwIEDjMPhsKVLl352forDb7/9xgCwkydPMsYYi42NZc7Ozuzly5f5pmnatGmB9TlgwAAGoMBtlBQAzMPDo0T3IZfLWcuWLZmFhQXbtWsXk0gkjDHGRCIR27t3L7Ozs2MAWGZmZonmoyQBYE2bNi2x7U+bNq3Q75KhjiFSuHv37jEATCgUsoyMjHzjxcTEMFNTUxYdHV0i+Vi6dCnjcDjswIEDn7WdTzm3e3h4lPi5hnw5jKYHevXq1Rg7diwWLlyIuXPnwt3dHQDA4XDg5eWFpUuX4vfffwcASKVSQ2a1VFu2bBnS09NRp04dQ2dFQ40aNXD79u0Ce6Fv376NGzduwMXFRY85K1i3bt2Qk5OD0aNHGzorAIDjx4/DwcEBbdq0AQC4urri/v37KFeunIFzVnodOXIEZ86cwciRI9GrVy/w+XwAgEAgwNdff40VK1YYOIeElKyqVauiVq1ayM7Oxp49e/KNt3XrVrRq1Qply5YtkXyMHj0aOTk56NatW4lsn5DiYhQN6Ldv32LcuHHw9fXFiBEj8o03duxYWFtb6zFnxsnMzMzQWdBqypQpAJTDTPIzffp0jB8/HgKBQF/ZKpLSVKfJyckQCoVqYY6OjjAxMTFQjkq/x48fA1D+2NCmY8eO6NOnj6phTT6NVCqlW+Sl2JAhQwAAGzduzDfOpk2bVPFKSmk6nxKSH6NoQG/cuBEikQjdunUDh8PJN56ZmRnOnz+Pdu3aqYVnZmZi8uTJ8PPzg7OzM5ydnREcHIzz58+rxft4rOCtW7fQunVruLu7g8PhwNPTE5s3b4aLiwtMTU3B4XCQmJiIgQMHwsvLCyYmJmpj/BhjWLt2LYKCgmBnZwc7OzvUrl0b69atA2OsSGV/+/YtpkyZglq1asHd3R22traoVKkSZs2aBYlEoha3WrVqGDVqFABg1KhRqnGHw4cPBwD4+fmhTJky4HA4mD59usa+Xrx4gUGDBqFs2bJwdnZG2bJlMWjQILx8+VItXkBAgNp2tm7disDAQNjY2KBSpUrYsGFDkcr2sS5duqB69er59kLfvn0b165dw7Bhw/LdRnHW18fl3LNnD4KCgmBvb68arz5o0CCt40tr1qwJCwsLcDgcWFtbq/bTr18/2NjYqMYZPn36tNB6kUqlWLBgAapVqwYnJyc4OjqiadOmOHTokFq8vHF80dHRiI6OVpWnoJ6cc+fOwcXFBZcvXwYAtfGq586d04ifmZmJYcOGwdPTE7a2tmjVqpWq8fmxW7duoVu3bnB0dESZMmXg5eWFn376CfHx8YWWuTAfj1l89uwZ2rdvDxcXF7i6umLQoEFIS0sr8vbc3NwAADt27EBubq7G57a2ttixY4faDzepVIoVK1agZcuWKF++POzt7VGuXDl89913GmX8OL8RERFo3769aoz6mDFjIJVKkZGRofoOuri4YNCgQUhPT1dt5+nTp2rjjQ8fPoxRo0ahQoUKsLW1hbe3N+bMmaPTWG2JRIJ58+ahSpUqKFOmDOzs7NCkSRPs37+/yNsojKenJ8LCwsDj8QAAcrkcLi4uEAgE4HA4sLOzw6JFiwAAzZo1g6WlJczMzODi4oKcnBzVduLj4zFy5Eh4eXnB2dkZrq6u+Prrr3H37l2t+z1w4ACCgoJgZWWFcuXKoVu3boiIiACHw4GpqSlcXFzU5i4UtS4+nrdy9OhR1KlTB3Z2dqhYsSLmzp0LhUKhkZ+ifpf79eundV7MX3/9VeBY3RMnTqBly5YoW7YsXF1dUalSJQwdOhRhYWEF/XlUevXqBXNzc1y9ehUPHz7U+Pz8+fNIT09Hp06dACi/4z/88AMqVaoEV1dX2NjYoEGDBvjrr7/U0mkbl7xq1SpUrVoV1tbWqnNsq1at8p0PFBERgbFjx6JatWpwc3ODjY0NatSogTVr1hR4PWWMYenSpahcuTIcHBxQtmxZjB8/Xu24Kowu1/Lo6GgMHz4c3t7ecHV1hYeHB9q1a4c1a9ZALBYXeZ/ECBhy/EhRtWrVigFgu3fv1jlteno6q1q1KnNzc1ON+83KymIhISGMy+VqHR8FgHl7e7Pg4GD2+vVrxhhjK1euVBsblTdmNDg4mF26dIkpFAp2584dZmJiohrjN2DAAMbn89n27duZVCplYrGY/fHHH4zD4bDvv/9ebZ/5jYHet28fMzExYdu2bWMKhYLJ5XJ25MgRZmFhwXr27KmR98LGfZ07d44BYNOmTVMLv3XrFrO1tWVNmzZVjS+Pjo5mjRo1YnZ2duzu3btat1OtWjU2ffp0JhKJmFgsVo2VPXr0qNb9a5NX9rzyIp+x0J07d2aLFi1ijCnHqmk7fEuqvgIDA9lPP/3EMjMzmUwmYz179lT7W0HL+NLw8HBmYmLCqlSpwnJychhjjEmlUla/fn22evXqolQNk0gkrGXLlszKyoodP36cMcaYWCxmc+fOZQDYzJkzNdJ8yji+oo6BbtmyJQsPD2eMMfb8+XNWvnx55u7uzsRisVr848ePM4FAwHr27MmSk5MZY8pjrGLFiqxcuXIsLi6uyHlDAWOgPTw8mL29PevSpYtqTOaxY8cYl8tlX3/9dZH3kZyczOzt7RkAVq5cOTZr1iz2+PHjAtMkJiYyAGzkyJGqv++9e/dYpUqVmLe3t9bx0nn57dGjB4uNjWUKhYJt2rSJAWDjxo1jP/zwA3v69CljjLGTJ08yDofDhg4dqrGdvPHGZcuWZX/88QcTi8VMKpWyZcuW5TuXQtsxmnd82djYsGPHjjG5XM5ycnLY5MmTGQA2Z86cItZgwWOgPTw82Llz5zTCd+/ezQCw1q1bM7lczhhTnrMrVqzIQkND1eK+fv2alS1blgUEBLAnT54wxpR/t+7duzMzMzN26tQptfjr169nAFifPn1Yeno6UygULCwsjFWvXr1Y6iLvvBUQEMCGDx/OsrKymEwmY1OmTGEANL7jun6XC5oXo+07furUKdVcDKlUyhhj7MmTJ6xatWo6jX3v27cvA8B+/vlnjc/69+/Pxo4dq3r/008/MRcXF3bjxg3GmHLOwKxZsxgAtmbNGo30eefbwMBANmfOHJabm8tyc3NZw4YNVdek/Mq9cOFCJhQKVXM7pFIp27hxI+NyueyXX37Jd18BAQFs2rRpLDs7mykUCrZnzx7G5/NZixYtVMdcnvzOnUW9lovFYubl5cWaN2/O4uPjGWOMZWdnszFjxtD4/y+QUTSgK1WqpDYpShcjRoxgANj69evVwqVSKStbtiwzMzNjsbGxap8BYCYmJuz58+eqsJSUFLZx40bV+7wGx5YtW9TSrlu3jqWnp7MDBw4wAOynn37SyFOPHj0YALWJfPmdNP799182bNgwjW2MGzeOAdC4yH9KA1qhULBq1aoxDofDnj17phb/8ePHqhOetu0EBASohT99+pQBYIMGDdK6f20+bEArFApWpUoVBoAdOnRIFefWrVvMycmJZWdnM8byb0CXVH1VqFCByWQyVfi9e/fUjkdtF2TGGJs6dSoDwAYPHswYY2zs2LGsY8eO+dSEpsWLFzMA7LffftP4rG7duozD4bBbt26phZdkA3rBggVq4ZMmTWIA2Pnz51VhOTk5zNnZmTk5ObGsrCy1+KGhoQwA++GHH4qct8Ia0ADY9evX1cLr16/PTE1NVZMBi+LKlSvM399fNUEVAPPy8mIjRozQqGPGGEtNTWX16tXT2EdeGf/4449885vX4MhTtmxZZmJiwvbv369RDnNzc43t5DVWe/furfFZu3btGAAWFhamFq7tGM07vhYuXKixnVq1ajE+n6/6QV2YvDxZW1szZ2dntReXy9XagGZM2Sj7sAHZo0cPFhISohGvU6dODAD7999/1cJTUlKYubk5c3FxUf2QSU9PZ1ZWVqxMmTKqsDzr1q0rlrrIO2/Z29uz3NxcVXh2djYzMTFhzZs317r9on6XdW1A//DDDwwAS09PVws/duwY69evn8Y28pN3znNwcFD7YZyens4sLCzYw4cPVWFz587VuLYypqwvFxcXjfC8822zZs3UwsPDw9mVK1cYY/mXe+vWrWzGjBka2+zRowfj8/ka5c7bV4MGDTTSDB8+XOv1W1u96nItv3r1KgPAli9frhZPoVCwGjVqFPm7RIyDUQzhyFPQ8A1tGGPYuXMnAKBr165qn/F4PHz11VcQiUTYt2+fRlpvb294e3ur3tvZ2WHw4MEa8Vq3bq32/rvvvoO1tTW2b98OAOjQoYNGmvr16wMADh8+XGgZWrVqhT///FMjvFKlSgBQLMv23bt3D/fu3UNAQAB8fHzUPvP390dAQADu3LmjdV+NGjVSe+/h4QEAePPmzSflhcPhYPLkyQDUx0JPnz4dY8eOhYWFRYHpS6q+WrRooTaGuGrVqqpJegWZMmUK6tWrpxo3uGvXLmzatKnI+807jj4+fgGgR48eYIyp4uhD48aN1d6XL18egPrf+9SpU4iPj0ezZs00xmLrcuwXlZmZGWrVqqUW5uHhAYlEgsTExCJvp169enj48CFOnDiB7777Du7u7nj58iVWrlyJmjVrYtiwYWq3a21tbXHlyhWNcdGFHWtmZmYICgpSCytXrhzkcrnW71Nubm6+5fh4uBoABAcHA0CRhmAUdp6SSqU4fvx4odv50PLlyxEXF6f2KmgC66pVq+Dt7Y0ZM2Zg0KBBePz4MRYuXKgWJzU1FUePHoWVlRVatmyp9pmdnR1atGiBuLg4/PvvvwCUx2BmZiaaNWsGc3Nztfht27bVmo9PrYtatWqpjdm1sLCAo6OjxjmwpL/LeUM6Bg0apDb8on379ti2bVuRt9O0aVNUqFABSUlJat/T3bt3o3r16qhcubIqbMKECRg6dKjGNipVqoS4uDgkJCRo3cfH182GDRuiXr16Bearf//+mDp1qtZ9SaVSPHnyRGu6kv6OAO/PZ2XLlgWPx8PixYtx6NAh1bBBDoeDW7duqRY/IF8GnqEzUBTu7u54/PgxkpOTdUqXmJiIlJQUCAQC2Nvba90uAK3jUIu6ykN+8fK22a9fP9W4vzwymQxCobBIY0FlMhm2bt2K7du3IyoqCrm5ueBwOKpxmrqM48pPXl7z+3K7u7vj4cOHePr0KapVq6b2mZOTk9r7vDGiH4831sXXX3+NGTNmqMZCly9fHpcvX1b9GCpISdXXp676wePxsHPnTgQGBmLTpk3Ys2cPHB0di5y+oL9NQcdvSSnK3zsvP6GhoVrrTSgUIj09HTKZTOO78Sm01ae2fNWuXRvR0dFq8eLi4tTec7lctG3bVtXIunXrFjZv3ow///wT69atQ7169TBo0CBV/NOnT2P16tV4+PAh0tLSwOVyVeOP8zvWtOXX1NRU62d55cjOztaaLm/s9ofyVkeIjIzUuv8P5f2tmjVrptFBIZFIIBQK8fbt20K38zmsrKywc+dONG7cGFu2bMF///2nMYksIiICCoUCbm5uWjtSPv4u5JVd20oR2ursw7S61sXH3wlA+Xf7+BxY0t/lESNG4P79+9i1axcOHjwIX19fdOrUCQMGDEDVqlWLvB0Oh4NBgwZh8uTJ2LhxI3r06AFAOXnw+++/V4ubkpKCVatW4ciRI4iJiVGN+84bt5/fd+BTzqc5OTlYt24d9u7di+joaEgkEnA4HGRlZRW4r+L6jhTlWu7m5obNmzdj5MiR6Nq1K2xsbNC6dWt8++236Ny5M01C/sIYRQ908+bNASDfiSL5yest0rXnGlBeSD8nXt6+jxw5otEbk5SUhKysLKxfv77Q7Q8ePBhDhw5F9erVcevWLcTHxyMuLg7Lly8vemEK8WGvmq6KWk+6bvPDXujp06djzJgxsLS0LDRtSdXX55TTw8ND1bO/ZcuWz6pvQytKPeSVr2/fvhrHflxcHLKyspCZmVksjeei5gkArl+/rpGXwtSsWRMrV67E0qVLASgnaeXZtGkTWrdujbS0NBw7dgwJCQmIi4vD9evXPzm/xfF9EolEAHQ77925c0ejblJSUpCVlaVaHedzREVFFfgQl4CAADg7OwOA1gcSfep3RtsP+cLqRde6KIlzYGG0TVA0NzfH9u3b8fLlSyxatAiOjo5YsmQJqlevrjqfFtXAgQNhYmKCU6dOITo6Gg8fPsSjR4/wzTffqOLk5uaiQYMGmDlzJkJCQvDixQtVfX0YT5tPqbP27dvj559/RufOnfH48WPVuX3cuHE6b0uX74iu1/K+ffsiNjYW+/btQ4cOHXDy5En06NEDderU0bkTkJRuRtGAHjx4MIRCIf7+++8CT6SRkZGoXbs2lixZAkDZM1CmTBmIRCIkJSVpxM+7xebv71/sec67jftxj1eeCxcuFPpErvT0dOzcuRMWFhZYunQpypQpU9zZBPA+r/kNuyjJesrPt99+C19fX9y+fRvh4eEICQkpNI2+6ktXM2fORNmyZdGvXz+cOHECK1euLHLavDrX9rcxxN+lKAo79iMjI3HlyhV9ZqlQu3btQoMGDfL9PO9HfHZ2tips9erVAIB58+ahYsWKJZvBfGjrEY2NjQWAIuUp79jR9rdSKBQ4c+ZMsayaUpiQkBB07doVTZs2xdq1azWG+Pj6+oLL5SImJkbrNeDj70LeD9aYmBiNuHn187GSrgtdv8t5vZXanmugbWiEQqEAYwzly5fH2LFjER4ejvv378PT0xOzZ8/WWE2pIO7u7mjTpg0UCgW2bNmCjRs3omfPnmqdGKdPn8bTp0/RunVrDBgwoESXnrt//z4uXLgAf39/TJgwoUidKXk+9zuiy7WcMQa5XA4zMzP06NEDO3fuRGxsLIYMGYI7d+7odO4npZ9RNKBdXFywfPlyPH36NN8DkDGGCRMm4P79+6pluzgcDvr27QtAuZzRh2QyGf755x+Ym5urblEVp/79+wOAxnI+gHJsZNOmTQsdn5l3AuVwOBoXjfwa33ljTvNOuvHx8QgJCVHd5tKmatWqqF69Oh4+fKgxjuzJkyd49OgRAgMDdboN+Lk+7IX++eefYWVlVWgafdWXLi5duoTNmzdj06ZNWL16Nby8vPDrr78W+VHqeY/K/fj4zQv78Bj/HB/Xw+HDh7WOJS+KNm3aqJbB+/gYZ4zh22+/xY4dOz4vw8VMIpHg5s2bWhtcwPvxzB+O08zvdqw+H1V98uRJjbC8JdGKcl4r6DwVGhqKdu3aFevjyytWrKixfOiePXtw584dLFq0CNu3b4ednR2GDBmi1vCxs7NDx44dkZWVpfGI59TUVNVyjHlja9u0aQNra2ucPXsWmZmZavG11RlQ8nWh63fZyckJpqameP36tVrca9euaV0ObfDgwZg/f75aWEBAALp06QJAWU+6yFvredOmTdi+fbvG2s8FDUco7u/A5+yrJL8jH1/Lz58/j4CAALU4lpaWGDlyJADlkBfyBdHzpMXPsnr1amZmZsYmTpzIYmJiGGPK2a337t1j3bp1YxYWFuzEiRNqafKWsXNxcWH//fcfY0x9GbuPZ+EyVrRH3ha2agFjjA0ePJhxuVy2YsUK1WzmmzdvMj8/P9WqDHnym3mcN8t39OjRqtnk58+fVz1a+OPVIx49esQ4HI5qxvCff/7JHBwcmEKhYIwVvIydjY0Na9y4sWqm8Js3b1jjxo0LXMbu4+0wpvsjgz9cheNjecsxfSy/VTj0VV8f01bmtLQ05u3tzU6fPq0Ku3z5MuPxeKxKlSpqM/fzk7f0laWlJTt27BhjrGSWsZswYYJqNQuJRMKaNGnCxowZo/o8v0d557eKycmTJ5mZmRlr37696ruakpLCvv/+e1auXDmdZqOjkFU48lt2Slt+85NXjlq1arHw8HDVcScSidi+ffuYg4MDq1SpEktLS1OlWbVqlWpFgbyVfF68eMGCgoJ0Wj2BsfzPJ/mVI2/Fi8DAQLZu3TrVMnbLly9nANjAgQM1tqXtGJVKpaxNmzbMzMyM7dmzh8lkMqZQKNjZs2eZs7Oz1uMrP0V5lPfHy9lFRUUxV1dXtZUd9u7dq1raLu97yNj7ZewqVaqkWk0nJSUl32Xs8pYH7NOnD8vIyGAKhYJduHBBtSzq59aFrqtkfMp3uXv37ozH46lWHnnz5g3r1q0bs7e319j+gAEDmJubm+o6xxhjDx48YJ6enqx69eoaS7YVRiKRMEdHRwaA+fv7a3yemZnJvLy8mImJCdu5cydTKBRMJpOx1atXq1axKer54kPa6lUul7M6deqoVkmRSqVMoVCwAwcOMFNTUwZAY5WXvH25urqyGTNmsJycHKZQKNhff/2l8zJ2Rb2W510v5s+frzq/p6ensyFDhjAej6daaYR8GYyqAc0YYxEREeynn35ifn5+zMXFhTk7O7Nq1aqxcePG5XuxzMjIYJMmTWI+Pj7M0dGROTo6snbt2mks8zRx4kTm7OzMADA+n8+cnZ1Z586d1eIcOXKEOTs7Mz6fzwColmn6cImzD23cuJHVqVOH2dnZMXd3d1azZk22evVqtfht27ZlDg4ODAAzMzNjzs7O7OzZs4wx5Unql19+Yd7e3szc3Jx5enqy/v37sxkzZqiWjPL19VXb58KFC1m5cuWYk5MTq1KliupHha+vr6ohKRQKmbOzM4uIiFCli4yMVJ2EnZycmJubGxswYIDacn6MKS/2H28nb78f11/eeqf5qVy5sqrszs7OrGXLlgXGHzhwoGpZLG1pirO+tJVz3rx5WvPzYZm3bt3K+vbty2xtbZmJiQlzdnZmL1++ZOnp6czZ2ZnxeDwGgJUpU0atkZofsVjM5s+fz6pUqcIcHR2Zg4MDa9KkCTt48KBavBkzZqjqhsvlqo7ND//G+UlMTGRfffUVs7e3Z66uruyrr75iiYmJ7M6dO8zZ2ZmZmZmplrYaOXIkY0y5VJW1tXW+9Xrnzh329ddfMycnJ+bi4sIqVKjAhg8frlpbvTBt27ZV1W1eefLWRF6zZo1GWffs2cNev36tkV9tjcmPJScns82bN7M+ffqwgIAA5uzszBwcHJiNjQ2rVasWmzlzJsvIyNBIt3btWlatWjVmYWHB3N3dWcuWLdnOnTvVvssPHjzQmt+tW7eqGmcfnk9mzZrFIiIiNMrRt29f1X7zGqsnT55kkydPZj4+PszGxoZ5eXmx2bNnq51fhg4dqvUYzSORSNjChQtZ1apVVeepBg0asJ07dxbp73Ts2DEmEAiYiYkJA8B4PB4TCARaXx82dJo2bcqsrKyYqamp6hz64MED5uzszDgcDgPAHB0d2dKlS1X7iouLYyEhIczDw4M5OTkxZ2dn1r17d3b79m2teTt48CALCgpilpaWrHz58qxPnz4sJiaGAdBYZk6Xuujbt6/GOfv169dsz549Gn/ndevWqdIV9bucJyUlhQ0YMEB1rQsODmYRERHMw8NDtf1Zs2Yxxhi7e/cuGz16NKtatSpzdXVlzs7OzM/Pj02cOFG1Fruu8tYv/nj5yjzPnz9n3377LXN1dWVWVlbM19eXTZ06VdWR8eH3z9vbW+184ezsrFGvLVu2zPdaGB8fr/oBLhQKWYUKFdiIESPYTz/9xAAwOzs71rJlS5adnc2cnZ1V+1q3bh2bMmUK8/HxYWXKlGFubm5s7NixqiVRGdN+7syr1zxFuZanp6ezpUuXsmbNmrFy5coxFxcXVq5cOda1a1dqPH+BOIwZ8YwmQgj5PzR9+nTMmDED586dK3ByHtEUGxsLd3d39OzZU+tteUIIKQqjGANNCCGE6GL16tVa58xcuHABgHLNeEII+VTUgCaEEPLFefv2LWbMmIHw8HAAylUqLl68iF9//RV16tRRTQ4jhJBPQQ1oQggxEk+fPoWLiwsWLVoEAOjWrZvGw42IUvfu3dGlSxcMGTIErq6uqtU9+vTpg7Nnz6oeUkMI0Y9Dhw6hXLlyGDhwYJHTbN26FUFBQWjatCmCgoKwa9cujTgSiQQTJ05EjRo10KhRIzRt2hQ3b94sxpxrZxRPIiSEEAL4+fkV6QEwBKhRowY2bNhg6GwQ8n8vJycHffr0gYWFhU5PKd61axdCQkJw8+ZN+Pr64vHjx6hduzYEAgG6d++uihcSEoLr168jPDwcQqEQW7duRcuWLXH79m14eXmVRJEAADSJkBBCCCGElIjk5GTcvn0brVq1gqenJ5o1a4YtW7YUmIYxBi8vL7Rt2xZr165VhQ8ePBgXL15EREQEAOWDuXx9fbFz50706tVLFa9ChQpo0aJFkZ74/KloCAchhBBCCCkR9vb2Ok/affjwIV69eqXxhNgGDRogMjIST58+BQCcOHECjDGNePXr10doaOjnZbwQ1IAmhBBCCCFFIhaLkZGRofbS9nTMz/Hs2TMAgJubm1q4u7s7AKh6oAuKFxcXp/Ek0uJEY6AJIYQQQozYUb6f3vZ1/bdemDFjhlrYtGnTMH369GLbR3Z2NgBoTPbNe5+VlaWKx+FwNB73nhcvOzsbVlZWxZavD32xDWh9Hkxfgg7Sp8j677Chs2FULOt1Rsatfw2dDaNiXbM1LjzMNnQ2jEqTACHSbp81dDaMim2NFki7E2bobBgV28BmSH5w2dDZMCr2VRoUHukLNHHiRIwZM0YtrLhXtbG0tAQAjZ7tvPd5n1taWoIxBqlUqtaI/jheSfhiG9CEEEIIIf8POHyO3vYlEAhKfBlIHx8fAMonh34oJiYGAODr66sRz8PDQy2eq6triTagaQw0IYQQQggpNQICAuDh4YHLl9Xvily+fBk+Pj6qBnT79u3B4XA04l25cgUdOnQo0TxSA5oQQgghxIhxeRy9vUrCtGnT4OXlpVrnnsPhYM6cOdi1a5dqouDjx4+xd+9ezJ07V5WuQoUKGDp0KBYsWKAaN71161YkJSVh0qRJJZLXPDSEgxBCCCGElJihQ4ciMjIScXFxOHHiBJo1a4YePXogJCQEgHLMck5ODuRyuSpN7969IZFI8M0338DKygpZWVlYu3at2kNUAGDVqlWYOnUqGjZsCKFQCB6PhzNnzpToQ1SAL/hBKjSJUDc0iVB3NIlQdzSJUHc0iVB3NIlQdzSJUHelaRLhSfsAve2rbfJDve2rNKMhHIQQQgghhOiAhnAQQgghhBixkhqbTPJHPdCEEEIIIYTogHqgCSGEEEKMmD7XgSZK1ANNCCGEEEKIDqgHmhBCCCHEiNEYaP2jHmhCCCGEEEJ0QD3QhBBCCCFGjMZA6x/1QBNCCCGEEKIDakATQgghhBCiAxrCQQghhBBixGgSof5RDzQhhBBCCCE6oB5oQgghhBAjxjGhHmh9ox5oQgghhBBCdEA90IQQQgghRoxLPdB6Rz3QhBBCCCGE6IB6oAkhhBBCjBiHSz3Q+kY90IQQQgghhOiAeqAJIYQQQowYx4T6Q/WNapwQQgghhBAdUA80IYQQQogRo1U49I96oAkhhBBCCNFBqWxAy2QynDx5EgqFwtBZIYQQQggp1Thcjt5eRMngDegWLVpohEmlUixduhS9evUyQI4IIYQQQgjJn8HHQDPGNMLMzc1x4sQJNG3a1AA5IoQQQggxHjQGWv8M0oC+d+8e7ty5AwCIj4/H9u3bNRrSSUlJiIuLM0Duis65c0sELJuCpHNXcG/IxCKlce/XBV4h/SDLygHP0gIvlm5G7J5QtTgcPh++00bAsW1jyLNzweRyPBo/Dxm3HpZEMfTiVVwiFu34Bxk5uZBKZajm44GRPTvAwkyQb5pcsQRHwm/g9LW74HK5yBVLYMrjYVDH5mhQzV8VLytXhG1Hw3D9cSTMTPnIFUsglcnxTauG6Nyktj6KVyJevY3H4q0HkJmdA4lUhmq+XhjRu0uBdZYnVyTG2v1Hsed4GFb/FoKgyr4acR4+f4U/94YiPSsb5gJTiCVS9OnQEq3r1yyJ4uhVWkoi/tq0CInxbwAAzm4e+GbQOFjblik0rUwmxb+HdyB073r0/n4CGrborBEnIy0F/+xegzevIgAAcrkM7boORK0GrYu3IHrwOjYeS7buRUZ2DqQyGar6eiOkd1dYmJkVmjZXJMa6faH46/hZrPxtFIIC1I+z0LAr2LA/FK6O9mrhCalpkMvkOLRqdrGWRV+UdfYXMrI+qLM+3XSosyP469gZrJw8GkEBflrjXb79ALtC/wUDQ3JaBvg8HgZ1C0aLusb5/XwdG4dlm3YhMysbEpkMVf0q4se+X8PCvGh1tuGvv7E39F8snzYeNav4q32enZOLHYeO4eaDxzAzFSBXLIZMJkP39i3RsUXjkioS+T9nkAb033//jRkzZgAAOBwOBgwYoPY5h8OBq6srZs8unSdXrrkZamxbBHmuCFxTfpHTuX3bEVWWT0V43W7IjoiCpb83Gl7ZD4VYgri/T6niVVkxBTa1quJK096Q5+TCvV8X1Du5BRdrd0Vu1JuSKFKJSsvKxvdz/8Q3rRpgcKeWkMnlGLl4I377YxeW/jwo33RPXsVg+Z5QbJz8E/w93AEA24+fx8glm7B09CA0DqwEAIhLTsOBsP+wfdpIuDkqG0inr9/Dr6u2w8HWSq2xbSzSMrMwfOZy9GzbFIO6tIVMLsfo+X9g8srNWDJ+eIFp7z57gfmb/kIlr/KQ5zOPICsnFyFzVqFdw1pYMeFHcDgc3I94iaHTlsBaaI661SqVRLH0QiaVYtnMn1DBrxomL9wJANiyajqW/x6CSQu2wcQk/9NeXEwUNi6fAs+KlSGRiLTGEYtyMW/iQLiVr4DxszaAx+Pj+dO7WDj5O/B4fATWaVYSxSoR6ZlZ+OH3pfi6TVMM7NoeMrkcP89bjakrN2HR+B8LTHvv6XMs2LQH/gUcZwDQoWl9fPd1R7WwXxevhXc5t2Ipg76lZ2bhh5mL8XXbZhjYNfhdna3E1BUbseiXnwpMe+/pcyzYuAv+3h4F1tmJi1ex+e/jWDV5NBzL2EKhUGDKig14/DzKKBvQ6ZlZCJk6H93bt8SA7h0hk8sxdvZSTF+2Fgsmjiow7f0nEVi0fjv8vD3zrbO4pGT8828YNs6fBlcnBwDA2SvXMXnRGjjY2aJejarFXqbShkM90HpnkDHQ06ZNg0KhgEKhQJMmTVT/z3vJ5XK8efNGo2FdWpiYmyHqj524038c5LnaL7La+P3+M2L2HEF2RBQAIOvJC7zdfwL+s8eq4lhUKI9yg7/Gi0UbIM/JBQDEbD8ESXIaKk4YVqzl0Jfdp8KRKxKjbzvlkByeiQmGdm6FC3ce4c6zl/mmE5oJ0K1ZPVXjGQD6tmsCAZ+H0PAbqjA3BzusGjdU1XgGgHpVlD1hUXGJxV0cvdhzIgy5Ygn6dFDOEeCZmGBw13a4eOsB7j59XmBamUyGFRN+QnDj/Hvf38QnISsnFw0DA8DhKE+8VX28YCW0QPht473TAQD/XTiKmNeR6PTN++9Lp2+G4fXLJ7gefqqAlIBYlIPvfp6Ntl3yP/fcvHIGifFv0LZLf/B4yh/QFfyqw79qbRzataZ4CqEne46fQ45IjN4dWwF4d5x1a4+LN+8XepxJZXIsnxiC9o3r5hunae3q6N6miVpYUmo6rtx5iC4tG31+AQxgz/Gz7+pMebdB+d0MxsWb93D3SWSBaaUyGZZPGllgneWKxFi0eQ9+6t0VjmVsAQBcLhcj+32NDk0bFFs59Glv6L/IEYnQq3NbAMo6G9i9E8Jv3MG9JxEFppXK5FgyeSzaFVB2V0cHLJ0yVtV4BoC61asAAF7FvC2GEhCiyeCTCNeuXWvoLOhMmpKG5LNXdEpjGeADC8+ySL1yWy089cotCH08IfT1AgA4tm0MDperES/t6h04BTf7rHwbyqW7T+DvWRam/Pc9f1UqlAeXw8HFO4/zTedb3g1j+6jfPudwODDl82DywVOXLMwEqORZVvVeJJFi05GzcHcsg7Z1A4uvIHp0+fZD+HuVgyn//R2OKhU9lHV260GBaYMq+8LB1rrAON5lXeDj4Y5j4dcglkgBAOeu30V6Vjac3l20jdX9m5dg7+QG2zKOqjB7R1fYlnHCvZsXC0zrUaEynFzLFxgnPTUJAGBj56AWbmfvjJjXkchIS/7EnOvf5TsP4O9VXu04C6joCS6Hg/Bb9wtMGxTgC3tbmwLjWAktUMZG/Vj85+wl1AusDGd7u0/PuAFdvn1fs858vIpYZ36F1tml2/eRlZOLOlXV7wI529vB093l0zNuQFdu34O/t6d6nfl6g8vl4NKNOwWmrVnFH/Z2BdeZhbkZ/Lw9Ve/FYgm2HgiFm7MjWjfK/8cKIZ/D4JMIfX19kZOTg927dyMxMRETJkxAeHg4qlWrBmvrghsBxsTSxxMAII5NUAsXxSjfCyt6IPvZSwjfxRNpxIuHmasTTCyFkGdll3h+i9PruEQ0rlFZLcyUz4OtlRDR8Uk6bSsi+i0ysnPRsWGQxmdyhQJDZ6/Bs9exCPAuhz9+HQZ7G6vPyruhvI5LRKOaVdTCTPl82FpZIroYetVN+XysmzoaM9fuQNvhE2FvY4Xo+CQ0r1MdX3/UY2hs4t++gq2do0a4nb0TEt6+/uztO7spG9hJ8bFwcimnCk9JUs7ZSE58C2tbe61pS5vXbxPQuKb67W1TPh821paIfpuQT6pPp1AocPjcJUz8rk+xb1tflHVWTS1MVWdxn19nT19Gw8ZSiNuPn2HPsTPIyRXDwlyA4Kb10bZhnc/eviG8jo1Do1qBamGmfD5srKyK9TiTyxX4YcocREZFo1JFL6yYNh5lCvnB8qXgcA3eH/p/x+AN6KioKDRu3BgxMTHw9PTEhAkTcP78efTv3x8nT56Ej49PgenFYjHEYrFamEBQ+CQrfTMRWgAAFGKJWnjeexNL5ec8oQWYQgEmk2mNxxOaG10DOm/y38f4PB5yPvrbFWbl3mPo2ChI67hmEy4Xm6eEQCqTYf2h0+g3fTlWj/sOlbzKatlS6ZYrEmuvMz4POSLd6kwbkUSCH2evRBlrKxxdPQtCczO8ePMWl24/VOvdN0YSkQiWVrYa4Tw+H5npWZ+9/Wq1GsPdoyJC962DZ8XKsBBa4e6NC4h4rLxrJJfLP3sf+iISicHnax5npjwecnX8bhbF5TsPwefxjHqMfYF1Jir6kL78pGdlITMnB5v/Po6F43+EjaUQ1+8/xui5K5GYkoa+ndp89j70TSTOp874xVNneUxMuFg3ZzKkUhk27fsHQ36diaVTxsK/gmex7YOQPAa/Uo4bNw79+/dHXFwcPDw8AAC//fYbNm/ejPHjxxeafu7cubCxsVF7zZ07t6SzrTPZu0YvV2CqFp73Xp6V8y5eDjhcLjgfNZ7y4snexTMm5mYCSD76QQAoxwNa6PBjZ9W+41AwBSYP6lFgPD6Phx+6t0UZa0ss2X1E5/yWBvnWmVRWpFU4CvPP2ct4/OI1RvftCuG7WfDeZV1xP/Ilpq/Z/tnb15cHty5h4ZTvVK9LZw9DYGYOmVSqEVcmlUJgZv7Z++Tx+Bj/+wZ4VKiMFbNGYP5vg/Hw9hV0fjfm2tLa9rP3oS/mZgJIpZrHmUQmg3kJdET8ffoiurVurBp3b4wKrLMirMJRGBMuF3K5AoO7dYCNpRAAULtqJTSvWxNb/j7+2ds3BHMzM+11Ji2eOvsYn8/D9726wc7GGiu27Cn27ZdG9CAV/TN4D3R8fDz2798PAGon1aZNm2LWrFmFpp84cSLGjBmjFiYQCHB69u7izehnyo58BQAQuDmphZu5K9/nTSzMjlT+a+bmhNzXsR/Ec4YoNgHybONrQJd3dkBiaoZamEQqQ1pmNsq7aN5q1+bPgycR+eYtlowaBP5HPy5kcjk4HA5MPriFxeFwUMHdBVcePPv8AhhAeRdHJKWmq4VJpFKkZWahvKtTPqmKLio2HgBQ9qP6L+fihB1HTmPKsD4w++jHXmlUpWZDVKnZUC3s3o2LePVCc2x9anICfAOKZwUDoaU1vhk0Vi3s8J4/YWYuhJOz8dzxKOfqhEQtx1l6RvEcZx+KT0rBrUfPMPXH0jk5vKiUdZamFlacdebioBz+4+qovuRiWWcHZGbnICU9Q2NceWlXztUZSSlpamESqRTpmZko7+b82duXyeXggKN294zD4cC7nDuu3i14zgghn8rgPdCyD3rZPl4LuijrQAsEAlhbW6u9SuMQjqyHEciJegO7+jXUwu3q10TWs5eqBnTiiQtgCoVGPNu6gUg4Hqan3BavhtX98STqDSQf9EA8eP4aCsbQqHrhS8wt/ysUL2ITsHDEANVExO3Hz6s+33j4DHZ88D5PYmo6bISf3+NoCA1qBODJy2hIPuhJfRD5SllnNQI+e/suDsqLc2KKeuMpITkNJiYm4JmYfPY+DKVqUEMkJ8QiLeX9WPHkxLdIS0lA1ZrFs/LDwzuak4gf37+GOo3agmtEddcgsAqevHytdpw9jIyCgjE0rFm8S38dOnsJzevWVPWqGqsGNapq1lnES2WdFcNyaXWqKs+JCcmpauGJqekQmPJh9W44oDGpX6ManryIUq+zZy+gUDA0CKr+2dvfsv8Idh85oRGemJIKayM/3oqKa8LR24soGbwBbWFhgT17lLdY8nqgZTIZZs+eDVdXV0Nm7bP4TB2B5s/OQOD8fqb+0ylL4f5tJ9VEQUt/b7j2aIenk5eo4uS8iEb0pn3wHjcUJhbKxp97vy4wdbBD5DzjW7EEAHq1aQQzgSl2nFA2cmVyOTYcPo0mgZUR+G71EUDZy9xp7BwkpSl7qxljmL/tb9x4/Bz92jdFRHQsHr2MxqOX0fjr9CW1fRw49x8SPmgMnrhyG3cjX6FnK/XeSWPxbbtmMBOYYufRswCUdbbp7xNoXLMKqvtVUMVbu+8ovho5TVVnRdWuYS1YCc2x7sBR1dqqT6Pe4Nz1O2jbMAg8nvE0Aj9Wr0kHuJWrgCN/vf++HPlrLcp7+aN2o/fjRy/++zfGDW6DN1G636XYtGIq7t8MV72/dPYwUhLj8FWvHz4v83r2bfvmMBeYYlfoaQDvjrODx9E4qKracbZu3xF0GTEZyWnp+W2qQHKFAkfOXUL31sY9QRUAvm3f4l2d/Qsg77t5DI2DqqG6f0VVvHV7D6NLyCSd66xSBU80rlUdO46cUjU4o2LicPa/m/imfUuNO3DGoGfH1jAXCLD78EkAyjrbcuAIGtUKRDX/9/OcNuz5G91/GI/kVN2Ps0OnwpD4wY+OUxf/w/2nkejevuXnF4AQLQz+TZw7dy6aN2+OyZMnIzU1FXXr1sXz588hFotx/rxmr2JpUXXtLAgrlIfAxRGObRqj3ulteHvwJF6tUT64gSswhYmFGfDBLaXYPaHgmvJRY9dSyDKzwbO0wP0fp6k9RAUAHoz8Hb7TR6L+hd3KJxHKZLjadqBRPkQFAGwthVg3cTgW7fwH528/gkQqRbWKnhj1TQe1eBKZHCKJFAqF8k7EpXtPsPfMZQDAwJkr1eK6OrxfAqtN3epIycjCyCUbYWluBtm7SVyzhvdG+4968o2FrZUl/pwyCou37seFm/chlkpRzccbI/t0UYsnkckgEkug+OABA9FxiZi1bicy360jvnjbAVhZmGPy931Q7t2QDWd7O6ydMhp/7gvFoMkLYWrKR3aOCAM6tUa/zq30Vs6SwOPz8fO0Nfhr0yLMGt8HjDE4u3lg1JRVag9RkcmkkEhEapP+RLk5WDlnFKQS5QS6E39vweVzR9Cl94/wqfT+WKpeuwl2rp8H2/0O4HC5cHQphwlztxjN6ht5bKws8cfUn7Fk6z5cmDz/3RMvvRHSp6taPKlUBpFEArni/V3C6LgEzFm7Q3WcLd22D1YW5pg0rC/KuagPZQi/eQ/2djYIqOhZ4mUqaTZWlvhj2lgs2fIXLtyYpzyf+VZASN9uavGksrw6+/C7mYA5a7cj891QvKVb98JKaIFJw/qp1dnvI4Zgze6/MWjSXFhamEMqk2Fkvx74qoVxrp1tY2WJVTN/xbJNuxB+/TYkUimq+FXET/16qsWTSDXPZ2/exmPuH5uR9a7Olm/eBUuhBSb+MAhlXZXDP1o1rIPU9AyMnb0UQgtz1TVg+ujv0aZxfT2V0rBobLL+cdjH4yb07PDhw4iOjsbVq1dx8+ZNAECtWrXw66+/onLlyoWkzt9RvvbHoxLtOkifIuu/w4bOhlGxrNcZGbf+NXQ2jIp1zda48NC4VpExtCYBQqTdPmvobBgV2xotkHYnzNDZMCq2gc2Q/OCyobNhVOyrlJ4H29xtp7+7O9VPXNDbvkozg/dAd+3aFT/++CO2bdtm6KwQQgghhBgdWgda/wxe4w0aNMDKlSsLj0gIIYQQQkgpYPAGdPny5ZGdrf2W7sCBA/WbGUIIIYQQI0PrQOufwYdwtGvXDp06dUL//v3h4eEBkw+WgLp3754Bc0YIIYQQQogmgzegBwxQLqofFham8ZkxP62KEEIIIUQfaH1m/TN4A7pu3bqqdaA/xBhDr169DJAjQgghhBBC8mfwBvS4cePg4eGh9bPff/9dz7khhBBCCDEuNDZZ/ww+ibB79+75ftaqlXE/0IEQQgghhHx5DN4DTQghhBBCPh2tA61/VOOEEEIIIYTogHqgCSGEEEKMGI2B1j/qgSaEEEIIIUQH1IAmhBBCCCFEBzSEgxBCCCHEiNEQDv2jHmhCCCGEEEJ0QD3QhBBCCCFGjHqg9Y96oAkhhBBCCNEB9UATQgghhBgxepCK/lEDmhBCCCGElIhnz55h1KhRSE1NhVgsRoMGDTB//nxYWlrmmyYqKgqBgYEIDAxUC8/OzsaNGzfw4sULeHl5AQD8/f3h4uKisY2wsLDiLIYGakATQgghhBgxrknpHAOdnJyMZs2aISQkBJMmTYJMJkNwcDB69+6Nw4cPF5g2MDBQoxG8YsUKmJubqxrPAODi4lLijWVtqM+fEEIIIYQUu+XLlyMrKwtjx44FAPB4PEyePBlHjhzBpUuX8k3n7u6OzZs3a4SvW7cOP/zwQ4nlVxfUgCaEEEIIMWIcLkdvL10cO3YMQUFBEAgEqrC6deuCy+UiNDQ033R8Pl+tlxkALl68iMTERHTv3l23yikhNISDEEIIIYQUiVgshlgsVgsTCARqjeQ8z549Q6dOnTTiOjg4ICIiQqf9rl27FkOGDIGpqalaeHZ2NoYNG4YnT55AJpPBz88PEyZMgK+vr07b1xX1QBNCCCGEGDEOl6u319y5c2FjY6P2mjt3rtZ8ZWdna21YCwQCZGVlFbl8ycnJ+PvvvzFs2DCNzypXroz+/fvj/PnzCAsLg4ODA6pWrYrLly8XvQI/ATWgCSGEEEJIkUycOBHp6elqr4kTJ2qNa2lpqdFbDSh7sQtaheNjW7ZsQcuWLeHh4aHx2datW9GwYUMAyqEfc+fORZkyZTBr1qwib/9T0BAOQgghhBAjps8nEeY3XEMbHx8fxMbGqoWJxWIkJSXpNMRi3bp1WLZsWZHimpiYwNvbG5GRkUXe/qegHmhCCCGEEFLsgoODcfPmTbVe6KtXr0KhUKBDhw5F2sbZs2chk8nQrl07jc/OnDmD9evXa4S/efMGZcuW/fSMFwE1oAkhhBBCjFhpXYVj1KhREAqFWLx4MQBAJpNh1qxZ6NSpk2rYBQBMmzYNXl5eiIuL09jG2rVrMWzYMHA4mvuOjo7G3Llz1dKtXLkS0dHR+Pnnn3XKq65oCAchhBBCCCl29vb2CAsLw6hRo3D48GGIRCI0aNAACxYsUIsnFouRk5MDuVyuFp6QkIDjx49j9erVWrffqlUrPHz4EJ06dYJQKIRIJIJQKMTp06fRokWLEisXQA1oQgghhBCjxuGW3gEFfn5+OHHiRIFx5s2bh3nz5mmEOzk5ISMjI990ZcuWxcKFCz87j5+i9NY4IYQQQgghpRA1oAkhhBBCCNEBDeEghBBCCDFi+lzGjihxGGPM0JkghBBCCCGfJvrH7nrbV7k1B/S2r9Lsi+2BzvrvsKGzYFQs63XGUb6fobNhVDpIn0L0zypDZ8OomH0VgpvPUgydDaMS5FsGYQ9yDZ0No9KsijmuP00zdDaMSm0/WyQ+vGrobBgVx4C6hs6CSmmeRPilohonhBBCCCFEB19sDzQhhBBCyP8FLQ8ZISWLeqAJIYQQQgjRAfVAE0IIIYQYMVqFQ/+oB5oQQgghhBAdUA80IYQQQogRo1U49I9qnBBCCCGEEB1QDzQhhBBCiBGjMdD6Rz3QhBBCCCGE6IB6oAkhhBBCjBiNgdY/qnFCCCGEEEJ0QD3QhBBCCCFGjMZA6x/1QBNCCCGEEKID6oEmhBBCCDFi1AOtf9QDTQghhBBCiA6oB5oQQgghxJjRKhx6RzVOCCGEEEKIDqgBTQghhBBCiA5oCAchhBBCiBHjcGgSob5RDzQhhBBCCCE6oB5oQgghhBAjRo/y1j+qcUIIIYQQQnRAPdCEEEIIIUaMHqSif9QDTQghhBBCiA6oB5oQQgghxJjRGGi9oxonhBBCCCFEB9QDTQghhBBixGgMtP5RDzQhhBBCCCE6MEgDWi6X45dffoGbmxs8PT2xaNEiQ2SDEEIIIcTocThcvb2IkkFqYtGiRViyZAkcHR1hbm6OX3/9Ffv27TNEVgghhBBCCNGJQcZAb926FceOHUObNm0AAOvWrcPmzZvx9ddfGyI7OnsVl4hFO/5BRk4upFIZqvl4YGTPDrAwE+SbJlcswZHwGzh97S64XC5yxRKY8ngY1LE5GlTzV8XLyhVh29EwXH8cCTNTPnLFEkhlcnzTqiE6N6mtj+KVKOfOLRGwbAqSzl3BvSETi5TGvV8XeIX0gywrBzxLC7xYuhmxe0LV4nD4fPhOGwHHto0hz84Fk8vxaPw8ZNx6WBLF0IuoxFQsOHwBGbliSGRyBHq4YnRwA1gITAtM99flezj94DkYA+QKBdJyRGhW2Qs/tq4LPs9EFe9BdDxWn/wP6TkimJvyIZLK0L9JDbSt7lPSRStxqSlJ2L5+GeLjYgAArm7l0O+70bCxLVNoWplMhmN/78LBPZsw6IfxaNqqg9rnWVkZOHviH9y+fgkmPB5EOTmwsrFF915DUNEvoETKow/pqYn4a9NCJMa/AQA4u5ZHz8G/wNom/zqTy2W4dvE4rp4PhYIxyCRiyBVytAjuhbpNOmjEz8pIxf6tS3Al7Ahm/3EUDk7uJVYefUhNScKODUuREKesMxe38ug79OeiH2eHduLQno0Y+MMvaNKyY4HxQw9ux54tq/D9qCmFxi2NXse+xfKNO5GZlQ2pTIoqfj74od83sDA3KzRtrkiMjXsOYl/oSSyd/itqVqmkNV5cQhKWrN+KyzfvIvzgtuIuQulGY6D1ziANaAsLC1XjGQC+//57bNiwwRBZ0VlaVja+n/snvmnVAIM7tYRMLsfIxRvx2x+7sPTnQfmme/IqBsv3hGLj5J/g76G8aGw/fh4jl2zC0tGD0DhQeUKIS07DgbD/sH3aSLg5Kk/Cp6/fw6+rtsPB1kqtsW1MuOZmqLFtEeS5InBN+UVO5/ZtR1RZPhXhdbshOyIKlv7eaHhlPxRiCeL+PqWKV2XFFNjUqoorTXtDnpML935dUO/kFlys3RW5UW9KokglKi07F0P//BvfNqyKoS1qQyZX4KdNhzFh1ymsGFTwxXPNqav4/ZtWaFLJCwDwJjkdPZftBmMMo4MbAgCyRBIMX38IwTX8sGZIZ3A4HNx7FYcBa/bD2lyA+r7lS7yMJUUmlWLe1FHw8a+K2Us3AwDWLp+F+dN+xu9LNsLEJP/TXuybV1izZAYq+FSCRCLWGufO9cs4/s8ezFy8AY5OrmCMYdu6pZg54QfMXLwBnt6+JVKukiSTSrFs5g+o4Fcdvy3YBQDYunoaVvz+IybO35FvnWWkJWPrqqkImbQSVWo2AgDcvPIv1i0aj9ycLDRr940q7t3rYTi8ew1cy3qXfIH0QCaVYv60kfDxr4rfl2wFAKxb/jsWTB+NmYs3FXqc/bl0OrwLOM4+9Ob1C5w4vKfY8q5v6ZmZGDFlLrq3b4X+PTpDJpdj/KzFmLH0D8yf9HOBae8/icDidVvhV8ETcoUi33j/nDqHf06dg4OdTXFnnxCtDDKEw8rKSiNMKBRqhE2YMEEf2dHJ7lPhyBWJ0bddUwAAz8QEQzu3woU7j3Dn2ct80wnNBOjWrJ6q8QwAfds1gYDPQ2j4DVWYm4MdVo0bqmo8A0C9KsoLclRcYnEXR29MzM0Q9cdO3Ok/DvJcUZHT+f3+M2L2HEF2RBQAIOvJC7zdfwL+s8eq4lhUKI9yg7/Gi0UbIM/JBQDEbD8ESXIaKk4YVqzl0Jed4XeRI5Ggf5OaAACeCRfft6yN849f4nZUbIFpl/QPVjWeAaCsvQ3K2dsiKjFNFRadlIZMkQSN/D3A4Sh7Lqp5uMDaXICLT6KKvTz6FB52AtGvXqB7ryGqsO69hiLqxTNcuXimwLQiUS5Cxs1Ax259841jaWWD4C694OjkCgDgcDjo0nMgZDIpLp8/lW+60uzqhaOIfR2Jjj3ff1869RyO6JdPcOPSyXzTmfD4qFm/tarxDABB9VvDxd0LV84dVovL5Zpg3KxNqBxYv/gLYACXwo7jzavn6PbtUFVYt97f4dWLp/jv4ukC04pFOfhx7Ex06Jr/cZZHJpNh7bIZ6DVwxGfn2VD2hZ5CrkiEb79qD0B53RzQozMu3biNe4+fFZhWKpNh8ZRxaNu0YYHxbK2t8OfcKfCr4FVgvC8Vh8vV24soGaQm8i7YhYVdu3ZNH9nRyaW7T+DvWRam/Pe9C1UqlAeXw8HFO4/zTedb3g1j+3RWC+NwODDl82Bi8v7PYGEmQCXPsqr3IokUm46chbtjGbStG1h8BdEzaUoaks9e0SmNZYAPLDzLIvXKbbXw1Cu3IPTxhNBXeaJ0bNsYHC5XI17a1TtwCm72Wfk2lPAnr1DJ3QmmHwy5qFreBVwOBxceRxWYNsj7/Y80xhhO3YtATGoG+jSqrgqv4GIPP1cHhN56CrFUBgA48+A50nJEcLK2LN7C6NmdG1fg6OQKO3tHVZiDkwvK2Dvi9vVLBab1rugPF7dyBcYJrFUfnbqrN3z4AuXwLa6JibYkpd6DW+Gwd3KDbRknVVgZR1fYlnHC/RsX801nbVMG349doBHONxVo1EXVoMYwtzDuY+tDd25e1jzOHF1gZ++I29fDC0zrVbFSocdZnoO71yOgWm34Vqr2Wfk1pCu37sKvghdM+e/vPlb2rQAul4PLN+8UmLZmlUqwt7MtdB9N69VS2z4hJc0gQzjCwsJg8tHJlTGmEVYavY5LROMaldXCTPk82FoJER2fpNO2IqLfIiM7Fx0bBml8JlcoMHT2Gjx7HYsA73L449dhsLfR7Ln/kln6eAIAxLEJauGiGOV7YUUPZD97CeG7eCKNePEwc3WCiaUQ8qzsEs9vcXqVlIqmldR7Ukx5JrAVmuF1UlqRtjHnUBhO3Y2EhYCPxX3bo3aF9z/MTHkm2Di8G6btO4MWv29EGUsLRCenoWWVCvimQdXiLIrevY19DTt7B41wO3tHxMVGl8g+Hz+4BQ6Xi0ZN25bI9ktafOwr2No5aoTb2jshPu61TtvKykzD2+jn6Dn4l+LKXqkUFxMN2zKadVbG3gnxb4vnOIt8ch93blzCjEWbkJai2/WlNImOjUPDWjXUwkz5fNhYWeFNbLyBcvVloXWg9c8gDWgPDw8MHDiwwDiMMWzbVvgkALFYDLFYfQyZQJD/ZL7PlTf572N8Hg854sLHsn1o5d5j6NgoSOu4ZhMuF5unhEAqk2H9odPoN305Vo/7DpW8ymrZ0pfJRGgBAFCIJWrhee9NLJWf84QWYAoFmEymNR5PaG50DehciUxtwl8eU54JcsTSIm1jUpdmmPhVU5x7+AIjt4Ti185N0K2ucpKbSCrDsPWHUMbSHKcmDYLQzBTP41Nw8XEUeEZ+i04sEsHK2lYjnM83RXpaSrHvTyaTYd/2dej6zSCU9TDO8b1icS4stdQZj2eKzHTd6uyfXatRwT8QjVt3L6bclU5icS6srDXH2/J4fGSkZxXD9kXYsGoOhv88HXx+wROHSzuRWAw+X8t1k89DjqjoQ/oIKU0M0oCuXr06pk2bVmi8O3fuFBpn7ty5mDFjhlrYtGnTMK5dzU/NXoHMzQSQfNRQA5TjtCx0aLiv2nccCqbA5EE9CozH5/HwQ/e2OHvzPpbsPoL1k37QOc/GSvau0cv9aNWJvPfyrJx38XKUY7N4PLVGdF482bt4xsRCwIdUJtcIl8jksBAU/TYlh8NBiyoV0CnIHwuOXES7QB9YCExx8NpDPHyTgEPj+kBopqynCs5lsPrkf3j8VwLm92lXbGUpSXdvXsHh/dtV75u07AAzM3PIpBKNuFKpBGbmFsW6f8YY1i6fBW8ff7Ux16XZg9uXcPLvTar39Zt1hpmZhdY6k8kkEOhQZxdO7cfLiPsYM2MduEb+Q+xDd29ewZED7zt08o4zqVTzx6xMJoWZufln73P35hWo17g1PCv4ffa2DM3czAxSqZbrplQGC7PCV+EgpDQySAP60KFDqv+np6fj6tWrSElJQZkyZVC3bl3Y2NhoxMvPxIkTMWbMGLUwgUAA6e38J758jvLODkhMzVALk0hlSMvMRnkXzdt52vx58CQi37zFklGDwP+oN1sml4PD4cDkg4sPh8NBBXcXXHlQ8GSLL0125CsAgMDNSS3czF35Pm9iYXak8l8zNyfkvo79IJ4zRLEJkGcbXwO6vL0tEjLUe80lMjnSskXwcLDNN51CwSBnCvA/Gg7l42KPXIkUr5LSUcndEVEJqQCAcvbq2yrvYIOt529j+tdSmOuwWoqhVA+qj+pB6pPSbl+/hJeRTzTipiYnwj8gsNj2rVAosH7lHAgEZhj84y9a53GURlVqNESVGuoTsu7fvIhXLx5pxE1LToBP5aJ1RoSf/huXzx3Gz9PXwUJoXSx5LS20H2fhiNJynKUkJ8A/oIZGuK7u3rwCO3tHPLh7HQAgfbdax5H923DhzFE0adnBaJazK+vqjKTUNLUwiVSK9MxMlHNzMUymvjT0gBO9M1iNSyQShISEwMnJCe3bt0efPn3Qvn17ODk5YcSIEZBINHtDtBEIBLC2tlZ7leQQjobV/fEk6g0kH/yafvD8NRSMoVH1wpeYW/5XKF7EJmDhiAGqiYjbj59Xfb7x8Bns+OB9nsTUdNgIP79Xw5hkPYxATtQb2NVXvxjZ1a+JrGcvVQ3oxBMXwBQKjXi2dQORcDxMT7ktXo38PfA4JgGSD3qh77+Og4IxNK7kmW+6my9jMHrLUY3wvMa4jYXyu+Fia/UuXP1Wc3x6Nky4HPBMjPdkHFirPhIT3iI1+f2qNUkJcUhJTkRg7YJn8heVXC7DmsXTYW4hxNCQCeByucjOysS5U4cLT1wKVanZCMkJsUhLeT+PICXxLdJSElA1qHGh6c8d24MrYUcwasoaCC2Vjed/D3/Z6/AGBjXQPM4S45CanIjAWp9/nC1d/zemzluHyXP+wOQ5fyBk/CwAQKce/TF5zh9G03gGgPo1q+Pp85eQfNBj/+jZcygUDPWDqheQkpDSy2BXyS5dumD9+vXo1KkTFixYgHXr1mHevHlo37491q5di65duxoqawXq1aYRzASm2HFC2ciVyeXYcPg0mgRWRqDv+0lffx48iU5j5yApTdlbzRjD/G1/48bj5+jXvikiomPx6GU0Hr2Mxl+n1VcGOHDuPySkpKven7hyG3cjX6Fnq+K5+JdWPlNHoPmzMxA4v58A9nTKUrh/20k1UdDS3xuuPdrh6eQlqjg5L6IRvWkfvMcNhYmF8keGe78uMHWwQ+S8tXotQ3Hp06g6zE352HbhFgBAJldg3ZnraFrJCzU83VTx1pz6D+3nbkVS5vve6quR0bjxPEb1PjIuGfv+e4AmlTzhZqds3HSo4QcrcwH++Peaam3VJ7GJOPvgOdrX8NPowTYmjZq1Q9ny3jiwe6Mq7MBu5frM9Ru3VIWdO3kYP/bviNcvI3XavkwqxYr5k5GTk41GzdrhRcRjvIh4jCeP7iD83IliK4c+1W3SAW7lKiB07/vvy5G9f6Kclz9qNXw/MTL89EGMH9IKb6Le3w07eWgLTofuwFe9fkJ87CtERT5EVORD/Ht4O75kDZu1R9ny3ji45/0zDA7uWg8Pbz/Ua9xKFXbu1D/4aUAwXr+MMEQ2S4WvO7aBuUCAPf8cB6C8bm7dfxgNa9VAtUrv103fuOcgvh4+Bskf9VaTwnG4HL29iJJBhnDs3bsX9+7dw61btxAQoP7krvHjx+Pu3bsIDg7Gvn37St3TCW0thVg3cTgW7fwH528/gkQqRbWKnhj1jfpTtyQyOUQSKRQKBgC4dO8J9p65DAAYOHOlWlxXBzvV/9vUrY6UjCyMXLIRluZmkMmVPZCzhvdG+/qff1vQkKqunQVhhfIQuDjCsU1j1Du9DW8PnsSrNTsBKMcsm1iYAR/0fsbuCQXXlI8au5ZClpkNnqUF7v84Te0hKgDwYOTv8J0+EvUv7FY+iVAmw9W2A43yISoAYCs0x8Zh3TD/8AWEPdoLiVSO6p6u+Dm4gVo8iUwOkVQK+bvjzM/VAUNb1MLi0HCY8kzA4QA5Ein6NQ5E38aBqnTOtpbYNLwbVp/8D31X7oMp3wTZIgkGNauJgc00V4UxJjw+HxN/X47t65fht58HgTEGV/fy+HXGUrWHW8hkUkgkYsjl73v5Rbk5WDhzHKTvxgMffne7/Ou+w+AfoOwpO3fqMK5fUf6AvnPjstq+K1Uxzu8oj8/H6Gl/4q9NCzH7l94AY3B29cDIKWs06kwqEUGhUNZZbPRzHNy+DACweGrBY8AjH9/GP7tXIT01GQCwYckE8E1N8dPElcU+Nl0feHw+fp25Ejs2LMWUMQPAGIOLW3n8Mn2ZljpTPqExjyg3B4t+H6sxLOPrvsPgVzlQY19LZo1TTYDNi/v9yClwcnHTiFsa2VhZYeXvk7Bs4w6E/zoDEqkUVfwq4sf+36rFk0ilEIklUHzwwJQ3b+Mxb81GZL0birdi005YCi0w4cchKOvqrIp37vI1HDh+GnEJytVKQqbMgYWZAAt+GwtCSgKHMcb0vdNOnTphxIgRak8j/NiJEyewatUqhIaG5hunIFn/GeetVEOxrNcZR/nGP1lFnzpIn0L0zypDZ8OomH0VgpvPin8ljC9ZkG8ZhD3INXQ2jEqzKua4/jTN0NkwKrX9bJH48Kqhs2FUHAPqGjoLKhnLxhQeqZhYj15SeKT/AwYZwvHmzZsCG88A0K5dO8TExBQYhxBCCCGEEH0zyBAOa+uizdAuajxCCCGEkP9XxrIK0JfEID3QRX3ioDE8mZAQQgghhPx/MUgP9O3bt9GiRYtC4xXlQSqEEEIIIf/XvqAHFxkLgzSgAeWyboQQQgghhBgbgzSgAwMDce7cuULjNW/eXA+5IYQQQggxXrQ+s/4ZpM9/8+bNxRqPEEIIIYQQfTFID7Snp2exxiOEEEII+b/FoTHQ+kY1TgghhBBCiA4MNomQEEIIIYQUg1I8BvrZs2cYNWoUUlNTIRaL0aBBA8yfPx+WlpYFphs4cCCePHkCMzMztfBly5YhMDBQ9V4ikWDatGk4ceIEhEIhTExMsGTJEgQFBZVEcVSoAU0IIYQQQopdcnIymjVrhpCQEEyaNAkymQzBwcHo3bs3Dh8+XGj6PXv2FDqcNyQkBNevX0d4eDiEQiG2bt2Kli1b4vbt2/Dy8iqmkmiiIRyEEEIIIUaMw+Hq7aWL5cuXIysrC2PHjgUA8Hg8TJ48GUeOHMGlS5c+u9yRkZHYsGEDfvnlFwiFQgDAgAEDYG9vjzlz5nz29gtCDWhCCCGEEFIkYrEYGRkZai+xWKw17rFjxxAUFASBQKAKq1u3LrhcLkJDQz87LydOnABjDA0aNFALr1+/frFsvyDUgCaEEEIIMWZcjt5ec+fOhY2Njdpr7ty5WrP17NkzuLm5qYUJBAI4ODggIiKi0GItXLgQTZs2RcOGDdG1a1f8+++/GtsHoLEPd3d3xMXFITMzU5da1Ak1oAkhhBBCSJFMnDgR6enpaq+JEydqjZudna3W+5xHIBAgKyurwP1UqlQJtWrVwtmzZ3Hp0iX0798f7du3x+LFi9W2z+FwwOfzNbaf93lJoUmEhBBCCCGkSAQCgdZGsTaWlpZah3eIxeJCV+H49ddf1d537doV3bp1w8yZMzFq1CjweDxYWlqCMQapVKrWiM7bZ2H7+BzUA00IIYQQYsQ4XK7eXrrw8fFBbGysWphYLEZSUhJ8fX11LqePjw8yMjKQkJCgeg9AYx8xMTFwdXWlBjQhhBBCCDEuwcHBuHnzplov9NWrV6FQKNChQ4d80yUkJGDkyJEa4dHR0TAzM4O9vT0AoH379uBwOLh8+bJavCtXrhS4/eJADWhCCCGEEGPG4ejvpYNRo0ZBKBSqxi3LZDLMmjULnTp1QsOGDVXxpk2bBi8vL8TFxQEAcnJy8OeffyI8PFwV59q1a9i3bx9CQkJUQ0gqVKiAoUOHYsGCBarxzlu3bkVSUhImTZr0WVVaGBoDTQghhBBCip29vT3CwsIwatQoHD58GCKRCA0aNMCCBQvU4onFYuTk5EAulwMAXFxcMHv2bPzyyy8wNTWFTCaDRCLB8uXLMXToULW0q1atwtSpU9GwYUMIhULweDycOXOmRB+iAgAcxhgr0T0YSNZ/hT/hhrxnWa8zjvL9DJ0No9JB+hSif1YZOhtGxeyrENx8lmLobBiVIN8yCHuQa+hsGJVmVcxx/WmaobNhVGr72SLx4VVDZ8OoOAbUNXQWVHK2zNDbviwGTtPbvkozGsJBCCGEEEKIDmgIByGEEEKIMdNxbDL5fNQDTQghhBBCiA6oB5oQQgghxIjpuj4z+XxU44QQQgghhOiAeqAJIYQQQowZh/pD9Y1qnBBCCCGEEB1QDzQhhBBCiDHj0ioc+kY90IQQQgghhOiAeqAJIYQQQowYh8ZA6x3VOCGEEEIIITqgHmhCCCGEEGNGY6D1jsMYY4bOBCGEEEII+TSivxbobV9m3/yit32VZl9sD3TGrX8NnQWjYl2zNUT/rDJ0NoyK2VchOMr3M3Q2jEoH6VMcvKYwdDaMSrc6XEQ8f2XobBgVnwoeyLx+zNDZMCpWtYORee2oobNhVKzqdDB0FogBfbENaEIIIYSQ/ws0iVDvqMYJIYQQQgjRAfVAE0IIIYQYMw5NItQ36oEmhBBCCCFEB9QDTQghhBBizLjUH6pvVOOEEEIIIYTogHqgCSGEEEKMGa3CoXdU44QQQgghhOiAeqAJIYQQQowZPcpb76gHmhBCCCGEEB1QDzQhhBBCiDGjMdB6RzVOCCGEEEKIDqgHmhBCCCHEmNGTCPWOeqAJIYQQQgjRAfVAE0IIIYQYM3oSod5RjRNCCCGEEKID6oEmhBBCCDFmNAZa76gHmhBCCCGEEB1QDzQhhBBCiDGjdaD1jmqcEEIIIYQQHVADmhBCCCGEEB3QEA5CCCGEEGNGy9jpHdU4IYQQQgghOqAeaEIIIYQQY0bL2Okd9UATQgghhBCiA+qBJoQQQggxZrSMnd5RjRNCCCGEEKID6oEmhBBCCDFmNAZa70pdD3RmZiaysrIMnQ1CCCGEEEK0MkgD+vz58xgzZgxmzZqlCsvNzUWHDh1ga2sLW1tb9OjRA7m5uYbIHiGEEEKI8eBy9fciAAw0hGPz5s24efMmJk+erAqbPn06jh8/juHDh8PPzw+bNm3C7Nmz1RrZpcWrt/FYvPUAMrNzIJHKUM3XCyN6d4GFmaDQtLkiMdbuP4o9x8Ow+rcQBFX21Yjz8Pkr/Lk3FOlZ2TAXmEIskaJPh5ZoXb9mSRRHL6ISU7Hg8AVk5IohkckR6OGK0cENYCEwLTDdX5fv4fSD52AMkCsUSMsRoVllL/zYui74PBNVvAfR8Vh98j+k54hgbsqHSCpD/yY10La6T0kXrcQ5d26JgGVTkHTuCu4NmVikNO79usArpB9kWTngWVrgxdLNiN0TqhaHw+fDd9oIOLZtDHl2Lphcjkfj5yHj1sOSKIZeZaQlIHTHXKQkRAMAHFw80bHPRFja2BeY7u6Vo7h96TAkohwAQHZWKrz8a6NdzzEws7BSi5udmYpjuxbgVvgh/LLkNOwc3UumMHqSkpKM9Wv/xNu3sQAAd/ey+G7YcNja2hWa9vr1a9i1cztM+Xzk5uaiZavW+KpLN9XnWZmZOHHiGK5duwqeiQlyc3NhbWOD3r37ws+/UomVqaS8epuAxdv/RkZ2LiQyGar7eGLEt50KvAaIxBIcuXAN/169AxMuF7liCUz5PAzs1BINqmvWwdukFMzfcgDhdx7hxo6lJVkcvXj1NgGLdxxCRnYOJDI5qlf0xIhvOxZeZxevf1BnYpjyeBjYuSUaVHtfZwkpadh/5jJuPnkOngkX2blilHWyx7Bu7eDl7qyP4pH/QwZpQN+7dw9nz56Fo6MjAEAul2Pz5s1o164d1qxZAwDo2bMn2rVrV+oa0GmZWRg+czl6tm2KQV3aQiaXY/T8PzB55WYsGT+8wLR3n73A/E1/oZJXecgVCq1xsnJyETJnFdo1rIUVE34Eh8PB/YiXGDptCayF5qhbzfguNmnZuRj659/4tmFVDG1RGzK5Aj9tOowJu05hxaCOBaZdc+oqfv+mFZpU8gIAvElOR89lu8EYw+jghgCALJEEw9cfQnANP6wZ0hkcDgf3XsVhwJr9sDYXoL5v+RIvY0ngmpuhxrZFkOeKwDXlFzmd27cdUWX5VITX7YbsiChY+nuj4ZX9UIgliPv7lCpelRVTYFOrKq407Q15Ti7c+3VBvZNbcLF2V+RGvSmJIumFTCbBpvlD4eFTAyEz9wMA9q//DZsXfocfZ+yFiUn+p72LxzcjqHFX1G/dB4Cykbxqag/kZqWjV8gSVbxHt87i3/0r4OReoWQLoydSqRRTfpuISpUrY9mK1QCAZUsXY9qU37Bk2UqYmJjkm/bB/XuY/fsMzJozD1WqVEVqSgpGjfwRCoUCXbv1AABcv34Vhw4dxJIlK+Dk7AzGGNatXYNffxmHJUtXwLuC8dRjWmY2hs1ejZ6tG2HwV60hk8sxauE6/LZ6O5aOHZpvuidRb7B8zxFsmDIC/p5lAQA7jp3DqEXrsXTMEDSqEaCKe/DsZRw8ewUOttYlXh59SMvMxrA5a5R11rmVss4Wrcdva3Zg6Zgh+aZ7EvUGy3cfwYYpIR/UWRhGLdqgrLPAygCAwxeuI+zmfayfHAIbSyGkMhkmrd6OwTNXYO+8X+BoZ6OXchoSozHQemeQvnhra2tV4xkALl++jKSkJAwYMEAV5urqCjMzM0Nkr0B7ToQhVyxBnw4tAAA8ExMM7toOF289wN2nzwtMK5PJsGLCTwhuXDvfOG/ik5CVk4uGgQHgvPtCVPXxgpXQAuG3jbNncGf4XeRIJOjfRNmDzjPh4vuWtXH+8UvcjootMO2S/sGqxjMAlLW3QTl7W0QlpqnCopPSkCmSoJG/h6rOqnm4wNpcgItPooq9PPpiYm6GqD924k7/cZDnioqczu/3nxGz5wiyI6IAAFlPXuDt/hPwnz1WFceiQnmUG/w1XizaAHmOcqhUzPZDkCSnoeKEYcVaDn27c+kI4t9EoGXXn1Rhrbr+hNhXj3Hvv+MFpu3U7zfUad5T9V5oZQd3z8pIjItSi8flmmDYlB3wrdqoWPNuKOfOncGrV1Ho1bufKqx3n354/jwSFy6EFZh2+7YtqFqtGqpUqQoAsCtTBu2DO2L3rh0Qi8UAACsra3Tp0h1OzsreQA6Hg57f9IZMJkVY2NmSKVQJ2XPyAnJFYvQNbg5AeQ0Y0qUNLt5+iDvPXuSbzsJMgK7N66kaggDQp30zCEz5CL14XS2unZUlNk0bhUpe5UqmEHq259S7OmvfDMC7Ovuq9bs6e5lvOu111hQCvnqdOdpZY2CnlrCxFAIA+DweBnRogcycXITdfFAyhSL/9wzSgOZ+NIYmNDQUPB4P7dq1UwsXCoX6zFaRXL79EP5e5WDKf98jWKWiB7gcDi7eKviLGlTZt9AeBe+yLvDxcMex8GsQS6QAgHPX7yI9KxtOZWw/O/+GEP7kFSq5O8H0gyEXVcu7gMvh4MLjqALTBnm/vy3OGMOpexGISc1An0bVVeEVXOzh5+qA0FtPIZbKAABnHjxHWo4ITtaWxVsYPZKmpCH57BWd0lgG+MDCsyxSr9xWC0+9cgtCH08IfZU/RhzbNgaHy9WIl3b1DpyCm31Wvg3t6d0LsHNwh7WdkyrM1sEN1nbOeHInrMC0Hj41YMJ7/91+8fgaop7eRJPgwWrx/AObwszceI+tj924fg3Ozs6wt38/xMXJyQn29g64fu1qvulycrLx6NFDVKpUWS28UqXKyMnJwYMH9wEAtWrXQY+ve6rFEbwbvlVQ73ZpdOnuo3fXgPd3MqpUUF4Dwm8/yjedr4c7xvbtqhbG4XBgyuNp1EHz2tXUtm/sLt19DH+vsvnUWf4dQ8o666IWxuFwYMo3gYnJ+3bEV03rIrhhLbV4gnd37Uz+X8bscrj6exEABhrCkZWVhbS0NNja2kIkEmHHjh1o0aIFbGze32YRi8XIzMw0RPYK9DouEY1qVlELM+XzYWtliei4xM/evimfj3VTR2Pm2h1oO3wi7G2sEB2fhOZ1quPrNk0+e/uG8CopFU0/6EUGAFOeCWyFZnidlFakbcw5FIZTdyNhIeBjcd/2qF3hfY+EKc8EG4d3w7R9Z9Di940oY2mB6OQ0tKxSAd80qFqcRSn1LH08AQDi2AS1cFGM8r2wogeyn72E8F08kUa8eJi5OsHEUgh5VnaJ57ckJMVFqTWe81jbOSM5/lWRtnHunz9x9exfkMuk6Nx/MqrVCy7ubJYqsTExKFNGc3y4vb09YmNi8k8XGwvGGMrYq6e1t3d493kMgoJqaUuK+/fvgcvlolnzFp+Rc/17/TYRjWsGqIWZ8nmwtRLitY7XgMjoWGRk56BDI+119KV4/TYRjWvkU2fxSTptS1lnuYXW2c0nz2EuMEWL2v9f1wCiPwZpQHft2hWNGjVChw4dcO7cOcTFxWH9+vWqz+Pi4jB58mR4eXkVsBUlsVisuk2YRyAofDLfp8oVKScxfIzP5yFHJNaSQjciiQQ/zl6JMtZWOLp6FoTmZnjx5i0u3X6o9ovbmORKZGoT/vKY8kyQI5YWaRuTujTDxK+a4tzDFxi5JRS/dm6CbnWVJ2SRVIZh6w+hjKU5Tk0aBKGZKZ7Hp+Di4yjw/l96H94xEVoAABRiiVp43nsTS+XnPKEFmEIBJpNpjccTmhttA1oizoWFpebENx6fj+yMov0ob/7VcDT/ajhePrmOHctHIiH2BVp1CynurJYaIpEI1taad8f4fD7S09MKTJcX7+N0ACDKZyUlmUyG7du24ptve8PDw/PTMm0guWIJ+PlcA3JFEi0p8rdiTyg6Nq6tdRLhlyRXLAFfS4+6ss50u26u2BOKjo1qq00i/FhGdg62hp7BL/27wdbqy7lTVCDqGdY7gzSgx44diydPnmD16tWwtbXFggULEBys7OGJiYlBo0bKcYVFmUA4d+5czJgxQy1s2rRpGNO5YfFnHIC5mQCSjxodACCVyoq0Ckdh/jl7GY9fvMa+RZMhNFeOAfcu64o/94XiyZpozB456LP3oW8WAj6kMrlGuEQmh4Wg6JPjOBwOWlSpgE5B/lhw5CLaBfrAQmCKg9ce4uGbBBwa1wdCM+Vt4QrOZbD65H94/FcC5vdpV8iWvxyyd41e7kerm+S9l2flvIuXAw6XCw6Pp9aIzosnexevtHt67yLOH3n/4zuocVeYCiwgl2k2ZGRSKUzNLHTavpd/bTTpMBgn9y5DjYadYe9snBNSP3TzxnXs2/eX6n2rVm1gZm4OqVTzx6xUKoWZmXm+2zI3N1fF+zgdAJiZa6ZljGHZ0kXw8fFB7z79ND4v7czNBJDmcw0wNyt4VaEPrf7rKJiC4bchPQuPbOTMzQSQSvOrs6JfN1fvPQrGGH4b8nW+cSRSGX5ZvgXdmtdHpyZ1Pim/hBSFQRrQpqam2Lp1K7Zu3arxmbu7O16+zH9SwccmTpyIMWPGqIUJBAKIH1747HxqU97FEUmp6WphEqkUaZlZKO+qedtYV1Gx8QCAsi6OauHlXJyw48hpTBnWB2aFLP1W2pS3t0VChnpvpkQmR1q2CB4OtvmmUygY5EwB/kfjA31c7JErkeJVUjoquTsiKiEVAFDOXn1b5R1ssPX8bUz/WgpzHVaxMGbZkcohCgI39WPRzF35Pm9iYXak8l8zNyfkvo79IJ4zRLEJkGcbRwPar1pj+FVrrBb25E4YYl5qjqvMSI2Hl3/+t30ZY5DLpeDx1L9fzmV9wZgCcdFPv4gGdFCt2giqpT6R+dq1//A8MkIjbnJysmpyoDaurq7gcDhISU7+KJ3ytry7u/rSfgqFAiuWL4WZmRl+/GmkatKvMSnv4oDE1Ay1MIlUhrTMbHi4FO0asPbAcUS+icXiMUO09mZ/acq7OCAx7ePrZl6dOeaTSt3aAycQGf0Wi3/Ov85EEgl+Wb4FtQN8MOSr1p+db2NCq3Don0H6/JOSkjBz5kzMnDkTDx5oTrwbP3480tLSirQtgUAAa2trtVdJDuFoUCMAT15GQ/JBj8uDyFdQMKa2DNGncnEoAwBITFE/2SQkp8HExAQ8I5twAwCN/D3wOCYBkg96oe+/joOCMTSu5JlvupsvYzB6y1GN8LzGuI2F8u/sYmv1Llz9CZbx6dkw4XLAM9KhL58i62EEcqLewK5+DbVwu/o1kfXspaoBnXjiAphCoRHPtm4gEo6H6Sm3JcOvehOkJsUgI/X9+O60pFhkpMbDr3rTfNOlJcVi5W/dNMIzUpU/as2FX+5SWLVq10F8fDySP2gIJyQkIDk5CbXq5N+LZ2EhROXKAXj8WH3y3OPHj2BhYYGAgPeNb7lcjsUL58PCwgIhI0aDy+UiKysLp04WvDJKadOweuV314D3PaoPniuvAQ1rFD4UY/nuw3gRE4+FowarJtXtOHauxPJbGjSsXglPXr7RXmeBlQtIqbR895F3dTbogzoLU4uTIxJj9KINqFvFT9V4jklIxtnr94qvIIR8wCAti0OHDmH69Ol4+vSp6hbgh86ePYvGjRsXuRGtT9+2awYzgSl2HlUuvSSTy7Hp7xNoXLMKqvu9X8t07b6j+GrkNCSlZeS3Ka3aNawFK6E51h04qlor+mnUG5y7fgdtGwaBp2UscWnXp1F1mJvyse3CLQCATK7AujPX0bSSF2p4uqnirTn1H9rP3YqkzPe91Vcjo3Hj+ftJTJFxydj33wM0qeQJNzvlmM0ONfxgZS7AH/9eU9XZk9hEnH3wHO1r+Gn0YH9JfKaOQPNnZyBwdlCFPZ2yFO7fdlJNFLT094Zrj3Z4Ovn9OsY5L6IRvWkfvMcNhYmF8jvo3q8LTB3sEDlvrV7LUNwCG3aCs3tFnPl7tSrs9N+r4eZRCdXqtVeFXQ/bhzkhjfH29VNVWELsc9y58v5HW1ryW1w4uhGuHpXg4Wu8DzIqTPPmLVHewwO7d21Xhe3auR0VKlREkybNVGEnTxxHvz7f4uXL98u19es/EPfv3cPDh8rOkNSUFBw/FopevfuqOjOkUinmzZ2F7JxsNG/eEhHPniHi2TM8fHgfZ8+e0U8hi8m3bZvATGCqavTK5HJsPHQKjWsEINDXWxVv7YHj6Pzz76prAGMM87cewM1HkegX3BzPXsfg0YvXePTiNf46ddEgZdGXb9u8q7N3P85lcjk2/vPvuzp7P9dp7YET6PzzLM06exyJfsHN8Ox1LB69iMajF9H469/3dZaVk4uQBWtR1tkeNfy8VXH+e/AUF76AB0OR0skg945CQ0OxYsUKhIRon5Rz8+ZNjB49GgsXLsTs2bP1nLuC2VpZ4s8po7B4635cuHkfYqkU1Xy8MbJPF7V4EpkMIrEEig8emBIdl4hZ63Yi8926u4u3HYCVhTkmf98H5d7dxnK2t8PaKaPx575QDJq8EKamfGTniDCgU2v069xKb+UsTrZCc2wc1g3zD19A2KO9kEjlqO7pip+DG6jFk8jkEEmlkCsYAMDP1QFDW9TC4tBwmPJMwOEAORIp+jUORN/Ggap0zraW2DS8G1af/A99V+6DKd8E2SIJBjWriYHNgvRZ1GJXde0sCCuUh8DFEY5tGqPe6W14e/AkXq3ZCUA5ZtnEwgz4oJc9dk8ouKZ81Ni1FLLMbPAsLXD/x2lqD1EBgAcjf4fv9JGof2G38kmEMhmuth1o1A9RAQAezxSDJ2xE6I65WDW1BxhjcHDxxKDx69UeoiKTSSGViqFQKHvFLG0c0P7b8bhyagcun9oOEy4PYlE2AoJaoWmn79TSRj29iVP7lyMrXTlUYffqMeDxBRgw9g8IzErf8puF4fP5mDV7Htav/ROjR/4EBgZ397KY8ftstSXWZDIpJBIx5PL3d5OqVK2G36ZMw4Z1f8LU1BQ5uTno1v1rdOnaXRXn1MnjuHL5EgDlknkfqlK1WgmXrnjZWgmx9rcQLN7+NwbeWgaJVIpqPl4Y2auTWjyJVP0acOnuY+z7NxwAMHD6MrW4rg7qk15PX7uDvafC8TYpBQDw/axVsDATYNm470qoVCVLWWc/vauzB8on+Pp4YuS3H9WZTAaR5KM6O608bgbOWK4W98M62/jPadyLiMK9iCgcClNfdrFjo/yfu/BFoUmEesdhjDF977Rhw4YIDw8vcPybSCRC8+bNceWKbuvg5sm49e+nZu//knXN1hD9s8rQ2TAqZl+F4Cjfz9DZMCodpE9x8Jr2p3AS7brV4SLiedGW3yNKPhU8kHn9mKGzYVSsagcj85rmkDmSP6s6HQydBZWcC3v1ti+LJrpNfH327BlGjRqF1NRUiMViNGjQAPPnz4elZf4rpOTk5GDLli3Yu3cvTExMkJ2dDYFAgIkTJ2o8M8Tf3x8uLi4a2wgLC9Mpn7oy2CTCwiaPmJmZlconERJCCCGElCqldBJhcnIymjVrhpCQEEyaNAkymQzBwcHo3bs3Dh8+nG+6W7duYfz48QgPD0eNGsq5OosXL0ZwcDCOHDmCDh3e/3hxcXEp8cayNgbp8y9qp/eHtwkJIYQQQojxWL58ObKysjB27FgAAI/Hw+TJk3HkyBFcunQp33RWVlb4/vvvVY1nABgzZgzMzc21ruBmCAZpQFtYWODx48cFxnn48GGpfJQ3IYQQQkipwuXq76WDY8eOISgoSG11tLp164LL5SI0NDTfdNWrV8fSpUvVwjgcDgQCAXilZOlHgzSgf/zxR3Tu3BnXrl3T+vnVq1fRtWtXjB49Wr8ZI4QQQggh+RKLxcjIyFB7ffxE6DzPnj2Dm5ubWphAIICDgwMiIjTXni/I/fv3kZqaiv79+6uFZ2dnY9iwYWjatCkaNmyIwYMH49mzZ7oV6hMYpAHdsWNHdO7cGfXq1YOfnx+6d++OAQMGoHv37vDz80ODBg3wzTffoG3btobIHiGEEEKI0WAcjt5ec+fOhY2Njdpr7ty5WvOVN/nvYwKBAFlZWVpS5O/XX3/FgAEDNCYRVq5cGf3798f58+cRFhYGBwcHVK1aFZcvX9Zp+7oyWD/44sWLUatWLSxatAiHDh0CYwwcDgc1a9bE3r170b1798I3QgghhBBC9Ca/J0BrY2lpqbV3WiwWF7gKx8cmTZoEhUKBdevWaXz24ZhoPp+PuXPnYvv27Zg1axaOHSu51XgMOpCkV69e6NWrF3Jzc5Gamgo7OzutD1YhhBBCCCH50OM60AKBoMhPfPbx8UFsbKxamFgsRlJSEnx9fYu0jWnTpuH+/fv4559/YGpqWmh8ExMTeHt7IzIyskjb/1SlYuVtc3NzuLm5UeOZEEIIIeQLERwcjJs3b6r1Ql+9ehUKhUJtKbr8/PLLL3j06BEOHjyoarQvXrxY9fmZM2ewfv16jXRv3rxB2bJli6EE+SsVDWhCCCGEEPJpGIert5cuRo0aBaFQqGr0ymQyzJo1C506dULDhg1V8aZNmwYvLy/ExcUpy8MYQkJCcO7cOYwbNw53797FjRs3cOPGDaxcuVKVLjo6GnPnzlWlA4CVK1ciOjoaP//88+dUaaFKx1oghBBCCCHki2Jvb4+wsDCMGjUKhw8fhkgkQoMGDbBgwQK1eGKxGDk5Oarnfxw/fhyrV68GANSrV08troeHh+r/rVq1wsOHD9GpUycIhUKIRCIIhUKcPn0aLVq0KNGyUQOaEEIIIcSYldInEQKAn58fTpw4UWCcefPmYd68ear3wcHBRXroXtmyZbFw4cLPzuOnoCEchBBCCCGE6IB6oAkhhBBCjJiuY5PJ56MaJ4QQQgghRAfUA00IIYQQYsxK8RjoLxX1QBNCCCGEEKID6oEmhBBCCDFmNAZa76jGCSGEEEII0QE1oAkhhBBCCNEBDeEghBBCCDFijCYR6h31QBNCCCGEEKID6oEmhBBCCDFmNIlQ76jGCSGEEEII0QH1QBNCCCGEGDEGGgOtb9QDTQghhBBCiA6oB5oQQgghxIgxGgOtd1TjhBBCCCGE6IB6oAkhhBBCjBn1QOsd1TghhBBCCCE6oB5oQgghhBAjRk8i1D/qgSaEEEIIIUQH1ANNCCGEEGLEaBUO/aMaJ4QQQgghRAccxhgzdCYIIYQQQsinSbkfrrd9lanaSG/7Ks2+2CEcFx5mGzoLRqVJgBA3n6UYOhtGJci3DA5eUxg6G0alWx0ujvL9DJ0No9JB+hSbzxk6F8ZlUHPgQWScobNhVKpUdKFrgI6CfMsYOgvEgL7YBjQhhBBCyP8DGgOtf1TjhBBCCCGE6IAa0IQQQgghhOhA5wZ0REQEtm3bhtjYWADA8ePH0aVLF0yePBlSqbTYM0gIIYQQQvLHwNHbiyjpPAb6999/h1QqRYsWLRATE4Pu3bujWrVqePPmDXJycrBkyZKSyCchhBBCCCGlgs4N6JcvX+LixYsAgHnz5sHFxQWXLl2CQqFAgwYNij2DhBBCCCEkfzSJUP90bkCbmpqq/r9//34MGDAAJiYmMDExgbW1dbFmjhBCCCGEkNJG5wZ0eno6nj9/joiICNy+fRu7d+8GACgUCmRn09rLhBBCCCF6xaGxyfqmcwP6xx9/hI+PDzgcDr766iv4+Pjg4cOHmDZtGnx8fEoij4QQQgghhJQaOjegBw8ejOrVq+PNmzcIDg5WboTHQ6dOnWgMNCGEEEKInjFalVjvPulJhEFBQQgKClK99/Pzg58fPZ6XEEIIIYR8+T7pJ8vhw4fRuHFj1K5dG4Byabv9+/cXa8YIIYQQQkjhGIejtxdR0rkBfeDAAXzzzTewtraGWCwGALRo0QKLFi3Czp07iz2DhBBCCCGElCY6N6CXLl2K69ev4+jRo7C3twcANGzYEKdOncLatWuLPYOEEEIIISR/jMPV24so6VwTPB4PVapUAQBwPujKt7a2BpdLFUsIIYQQQr5sOk8iTEtLg1wuh4mJiVp4eno64uPjiy1jhBBCCCGkcAw0NlnfdO4ybtCgAbp06YLw8HCIxWI8efIEBw4cQOvWrdGmTZuSyCMhhBBCCCGlhs490AsWLECHDh3QpEkTAEBAQAAYY2jWrBnmzp1b7BkkhBBCCCH5o7HJ+qdzA9rS0hLnz5/HmTNncOvWLQBArVq10Lx582LPHCGEEEIIIaXNJz1IBQBatmyJli1bqoVdvXoVdevW/exMEUIIIYSQoqH1mfWvWPv8J06cWJybI4QQQgghpNQpUg80l8tVW7KOEEIIIYSUDrQKh/4VqQHt5+eHCRMmFBiHMYb58+cXS6YIIYQQQggprYrUgO7RowcGDBhQaLznz59/doYIIYQQQggpzYrUgP7999+1hmdlZYHD4UAoFBYYjxBCCCGElAxaxk7/PqnG165dCy8vL9jY2MDa2hpeXl5Yt27dJ2Xgxo0bmDlzJiIjIwEAGzduRGBgIPr27Yu0tLRP2iYhhBBCCCElRecG9Jw5czBq1CjUrFkTv/zyC8aPH48aNWpg5MiRn/Qglblz5yI7Oxt2dnaIiIjAsGHDULFiRWRlZWHs2LE6b48QQggh5P8JA0dvL6Kk8zrQ69evx9WrV1G9enW18Dt37qBr1646L2WXnJyMAwcOAACWLVuGypUrY//+/WCMoV69erpmjxBCCCGEkBKlcwPa3d1do/EMAIGBgXBzc9M5A1zu+07w/fv3Y8iQIQAADocDS0tLnbdHCCGEEPL/hMZA65/ODWhXV1dkZmbCyspKLTwjIwMODg46ZyAnJwdnzpxBZGQkIiMj0atXLwCAWCxGVlaWztsjhBBCCCGkJBWpAX3hwgXV/zt06IDg4GAMGjQIHh4eAICXL19i3bp1GDhwoM4Z+O233xAcHAyZTIZhw4bB3d0dV65cwZgxY1CzZk2dt6dPaSmJ+GvTIiTGvwEAOLt54JtB42BtW6bQtDKZFP8e3oHQvevR+/sJaNiis0acjLQU/LN7Dd68igAAyOUytOs6ELUatC7eguhRakoStq9fhvi4GACAq1s59PtuNGyKVGcyHPt7Fw7u2YRBP4xH01Yd1D7PysrA2RP/4Pb1SzDh8SDKyYGVjS269xqCin4BJVIefchIS0DojrlISYgGADi4eKJjn4mwtLEvMN3dK0dx+9JhSEQ5AIDsrFR4+ddGu55jYGah/gM4OzMVx3YtwK3wQ/hlyWnYObqXTGH0xLlzSwQsm4Kkc1dwb0jRhpW59+sCr5B+kGXlgGdpgRdLNyN2T6haHA6fD99pI+DYtjHk2blgcjkejZ+HjFsPS6IYepWVnoDTe+cgLfE1AKCMsxdafj0JQuuCj7MPxb68i+0LeyGgTmd0HDhP4/Orpzbg4fVQmAqEkMskaNJ5NLwqNyy2MuhbakoyNq1bifi3sQAAV/eyGPz9CNjY2hWa9ub1/7B312bw+aYQ5eagWct26Njla9XnD+7dxtL5M+FerrxausyMdLyNjcG2vaEwNRUUb4H0gK4BJYPGJutfkRrQzZo1A4fDAWNMFXbp0iWNeDdv3sSPP/6oUwY6deqE6OhovH37VjU0xMPDA/PmzUPlypV12pY+yaRSLJv5Eyr4VcPkhTsBAFtWTcfy30MwacE2mJjkX7VxMVHYuHwKPCtWhkQi0hpHLMrFvIkD4Va+AsbP2gAej4/nT+9i4eTvwOPxEVinWUkUq0TJpFLMmzoKPv5VMXvpZgDA2uWzMH/az/h9ycYC6yz2zSusWTIDFXwqQSIRa41z5/plHP9nD2Yu3gBHJ1cwxrBt3VLMnPADZi7eAE9v3xIpV0mSySTYNH8oPHxqIGTmfgDA/vW/YfPC7/DjjL0F1tnF45sR1Lgr6rfuA0DZSF41tQdys9LRK2SJKt6jW2fx7/4VcHKvULKF0QOuuRlqbFsEea4IXFN+kdO5fdsRVZZPRXjdbsiOiIKlvzcaXtkPhViCuL9PqeJVWTEFNrWq4krT3pDn5MK9XxfUO7kFF2t3RW7Um5Iokl7IZRL8tXwI3CvUwMBJBwEAR7dNxN6VQzFgwj5wCzjO8kgluTi+fTJ4fO2NusvH/8TtC7sxcOJBCK3t8erpf9i78jv0GbsDbl6awwJLO6lUipmTx8KvUhUsWK5chWr1snn4fep4zF/6Z4HfzYcP7mLBrMmYNnsxKlepjtSUZIwf9R0UTIHOXb9RxQsMqoMRY9R/AG5evwpeFXyMsvFM14D/T8+ePcOoUaOQmpoKsViMBg0aYP78+UUaprt161asWLEClpaWqsUlevfurRZHIpFg2rRpOHHiBIRCIUxMTLBkyRIEBQWVVJEAFHEVjrp16+LFixd4+fJlvq8XL16gTp06n5QJJycntXHVbm5uaNq0KQ4ePPhJ29OH/y4cRczrSHT6ZpgqrNM3w/D65RNcDz9VQEpALMrBdz/PRtsu+T+c5uaVM0iMf4O2XfqDx1M2BCr4VYd/1do4tGtN8RRCz8LDTiD61Qt07zVEFda911BEvXiGKxfPFJhWJMpFyLgZ6Nitb75xLK1sENylFxydXAEox9F36TkQMpkUl88X/Dcpre5cOoL4NxFo2fUnVVirrj8h9tVj3PvveIFpO/X7DXWa91S9F1rZwd2zMhLjotTicbkmGDZlB3yrNirWvBuCibkZov7YiTv9x0Geq/3HqTZ+v/+MmD1HkB0RBQDIevICb/efgP/s9ysBWVQoj3KDv8aLRRsgz8kFAMRsPwRJchoqThimbbNG48HVw0iMfYaGHd4fZ406jkB89CM8vnGsSNs4d2ABKtfpBHOhZu+rWJSFK8f/RM2mvVU92h5+9eBeoQYu/LOsWMqgbxfOncLrVy/Rs/dAVVjP3oPw8nkELl04V2Da3ds2IKBaICpXUV737MrYo037zti3ayvEYmXjsKKvP3r3H6qWTiIRI+zMSbQN/qp4C6MndA0oOYzD1dtLF8nJyWjWrBkaN26M//77D9evX0dERIRGI1ibXbt2ISQkBLt378b58+exY8cOfP/996qFJ/KEhITgxIkTCA8PR3h4OAYPHoyWLVvi5cuXOuVVV0WqiXHjxsHDw6PAl6enJ8aNG1ekncbExCAjIwOAcnhIfq+1a9d+eslK2P2bl2Dv5AbbMo6qMHtHV9iWccK9mxcLTOtRoTKcXMsXGCc9NQkAYGOnPq7czt4ZMa8jkZGW/Ik5N5w7N67A0ckVdvbv68zByQVl7B1x+7rmHY0PeVf0h4tbuQLjBNaqj07d1U+ufIGyl4ZrYvKJuTasp3cvwM7BHdZ2TqowWwc3WNs548mdsALTevjUgAnvfS/si8fXEPX0JpoED1aL5x/YFGbmX8aEXWlKGpLPXtEpjWWADyw8yyL1ym218NQrtyD08YTQ1wsA4Ni2MThcrka8tKt34BTc7LPybWgvHlyAjb07rGydVWE2ZdxgZeuMyPthhaZ/+egS4qMfo26bIVo/j352HVJJLty9a6iFl/WugVfPrkIqyf2c7BvErRtX4eTsgjL278/Rjk7OKGPviBvXLuebLicnG08e3Yd/pSpq4X6VqiAnJxuPHtwFAJiZmcPewVEtzuXwMDg6OsHvo7TGgq4B/3+WL1+utiwxj8fD5MmTceTIEa0jGfIwxjBp0iT07t0bvr7KOweVKlVCz549MWHCBFW8yMhIbNiwAb/88ovqoX4DBgyAvb095syZU4IlK+IQju7duxdpY9evXy9S3Bo1asDf3x8XLlzQOjwkD4dTesf0xL99BVs7R41wO3snJLx9/dnbd3ZTNrCT4mPh5PL+pJGSFAcASE58C2vboo9NLA3exr6Gnb3mRFM7e0fExUaXyD4fP7gFDpeLRk3blsj2S1pSXJRa4zmPtZ0zkuNfFWkb5/75E1fP/gW5TIrO/SejWr3g4s6mUbP08QQAiGMT1MJFMcr3wooeyH72EsJ38UQa8eJh5uoEE0sh5FnZJZ7fkpCS8BKWNprHmaWtM1ITogpMK8rJwL9/zUSPH9eCy9XeSEl5t42P92Fp6wymkCMtMRqO7sZ1ez02Jhp2ZTTPZ/b2DoiLjck3XVxsDBhjsCujfv62f3dufBv7BjWCtN/N/ff4EbQx0t5ngK4BJam0joE+duwYgoKCIBC8H3JUt25dcLlchIaGomFD7XMgHj58iFevXqFBgwZq4Q0aNMDmzZvx9OlT+Pn54cSJE2CMacSrX78+QkPV57AUN51X4QCA6OhonDp1CrGxsWoN371792LePM2JIx/bvHkz7OyUt/nq1q2LPXv2aMRhjKlW5CiIWCxW3fLK8+EfqqRIRCJYWtlqhPP4fGSmf/7qIdVqNYa7R0WE7lsHz4qVYSG0wt0bFxDxWNn7JZfLP3sf+iYWiWBlbasRzuebIj0tpdj3J5PJsG/7OnT9ZhDKengX+/b1QSLOhYWl5i1xHp+P7IzMIm2j+VfD0fyr4Xj55Dp2LB+JhNgXaNUtpLizarRMhBYAAIVYohae997EUvk5T2gBplCAyWRa4/GE5kbbgJaKc2Gu5Tgz4ZkiJ7Pgu12nds9AUPP+KOPsWcD2lRNZTfimGtsHAMm7z42JWCSCtbWNRjiPz0d6elq+6UQiZW87n68+Rp/3rm5Eudp741+/eonXr16iSXPjnURO14AvQ37tLm1tr2fPnqFTp04acR0cHBAREZHvPp49ewYAGssju7srJ7hHRETAz8+vwHhxcXFaV40rLjo3oM+fP4+OHTvC0tIS6enpcHZ2hlgsRlxcHFxdXYu0jQ4d3s+czRseok1RhoTMnTsXM2bMUAubNm0aWnw9vkh5KYoHty7h+N9bVO8bNO8EgZk5ZFKpRlyZVAqBmfln75PH42P87xsQum89VswaAQ6Xi3Kefuj8zTAc2L4CllpOQqXJ3ZtXcHj/dtX7Ji07wMzMHDKpRCOuVCqBmblFse6fMYa1y2fB28dfbbxdafb03kWcP7Je9T6ocVeYCiwgl2nWmUwqhamZbnXm5V8bTToMxsm9y1CjYWfYOxc8jOj/hexdo5crUG/c5b2XZ+W8i5cDDpcLDo+n1ojOiyfLMo5G4IuHF3DlxPvjrGr9ruALLCDX8t2UyyQwFeR/nD25eQI5mSmo2bTg8Yx8gfLW6sf7yDu2C9pHaXD7xlX8vX+X6n2zlu1gZm4OaT7XAPMCrgFm5srPPk6bd27M+/xjp479g2Yt2sCsGK4v+kDXAP1ierxjn1+7a/r06Rpxs7OztTasBQJBgUsVZ2dnq+J9nA6AKm12djY4HI7GD9K8eNnZ2aWnAT116lQcPHgQrVu3RvPmzXHunHKyxNmzZ3HqlO6D9PMq6UNZWVlo3bq1xh9Im4kTJ2LMmDFqYQKBAFcjZfmk0F2Vmg1Rpab6bYZ7Ny7i1YvHGnFTkxPgG1A8y+8JLa3xzSD1x5kf3vMnzMyFcHIuWyz7KCnVg+qjelB9tbDb1y/hZeQTjbipyYnwDwgstn0rFAqsXzkHAoEZBv/4S6keCvQhv2qN4VetsVrYkzthiHmpuURaRmo8vPxr5bstxhjkcil4PPVGoXNZXzCmQFz0U2pAv5MdqRwKI3BTH15g5q58nzexMDtS+a+ZmxNyX8d+EM8ZotgEyLONowHtHdAE3gFN1MKe3w9D3OsHGnGz0uJRzqd2vtt6dudfiHIzsGtJf1VYdkYiXj66iJ2L+8G5nD9a9fwNZZyUnSRZ6QlqPdVZafHgcE1g61jw2FZDq1GrLmrUqqsWdvP6FbyIfKoRNzk5CZWrVMt3Wy6u7uBwOEhNUe/ZT05Wzntxc9esC7FIhAvn/sXsRas/JfsGQdeAL1d+7S5tLC0tNXqrAWUvdkGrcOR99nHavPd5n1taWoIxBqlUqtaI/jheSdD50TUcDgetW2veQmrRogWePtU8mRRmy5YtGmFCoRBLlizBlClTCk0vEAhgbW2t9tLHEI6qQQ2RnBCLtJREVVhy4lukpSSgas3iWc3g4R3NyVCP719DnUZtjXJCRGCt+khMeIvU5Pd1lpQQh5TkRATWLp61YOVyGdYsng5zCyGGhkwAl8tFdlYmzp06XCzb1ze/6k2QmhSDjNT3427TkmKRkRoPv+pN802XlhSLlb910wjPSI0HAJgLNW89/7/KehiBnKg3sKuvPsHNrn5NZD17qWpAJ564AKZQaMSzrRuIhONhesptyfCu0gTpyTHITItXhaWnxCIzLR4VquR/nHUeshgDJx5An7HbVS+htSO8KjdGn7Hb0arnbwCA8r51wDc1R8wL9QmYb17chodvXfBNjaNX9UM1a9VFQnwcUt41fAEgMSEeKcmJCKpdP990FhZC+FeuiieP1X+wPH38ABYWQlQK0Gx8h184A0/viihX3rPY8m8IdA0oOYxx9PbSpd3l4+OD2NhYtTCxWIykpCTV5MD80gHQSBsTo5xfkJe2oHiurq6lqwH9IalUipwcZa+LQqHAkyeavyw/BYfDQd26daFQKIpleyWhXpMOcCtXAUf+er9SyJG/1qK8lz9qN2qjCrv4798YN7gN3kQ903kfm1ZMxf2b4ar3l84eRkpiHL7q9cPnZd5AGjVrh7LlvXFg90ZV2IHdyrU56zduqQo7d/IwfuzfEa9fRuq0fZlUihXzJyMnJxuNmrXDi4jHeBHxGE8e3UH4uRPFVg59CmzYCc7uFXHm7/c9T6f/Xg03j0qoVq+9Kux62D7MCWmMt6/f/4hNiH2OO1eOqt6nJb/FhaMb4epRCR6+pfshRSXJZ+oINH92BgLn95OZnk75X3v3HRXF1YYB/Flg6VLEAmLBhihYQVEEwRK7xhajxl5i+TSWxF6wazT2aDT2EjWJUaPGXlARYosau6KgCGKhSN0+3x8rqytFNsIuq8/vHI6Zu/fOvjPZcvede+8sgWu3dpqJgrYeFeDSpSXuTnmzXnb6w2hEb/gdFb4bCFNrdYfPtVcHmBdzRMT8wrtiUF54+bZHsVKVce6vN6+z0AMrULJMNVT1eTPp9Fro71gxzh/Pn+j2WW9uaYMGrYbgn9PbkZaszrw+unseMQ+uoNHno/LlGPStUePmKFOuPH7bvklT9tv2jShfsTIaNmqsKTt+5AAG9OyIqMgHmrLuvQfi5r9XcfvmvwDUN2Q5emgfvujRJ9uOyLFD+9GijfFOHszE74BPT+vWrXH58mWtTPL58+ehUqm0hvO+y9PTE+XKlUNYmPaKNmFhYahcubKmA92qVSuIRKIs9cLDw3Pdf37QeQiHqakplixZgmHDhsHLywtdunRBp06dcOTIkTz39JctW4Zly5YBAOLi4lChQtbB/YmJiYX6ToRmYjFGB6/Crxt+wOyxX0EQBJQsVQ4jp/6otRi8QiGHTCbRmvQnyUjHirkjIX+9GPzhPZsQdmo/OvQYhspV32S3atZthF/WzofDrmIQmZiguHMZTJi3yehW38hkJhZj4qxl2Lp2KSaP7gdBEODiWhbjZyzJ5pxJs5yzhTO/g/z1+Ll9u7bgzIm/8EXPwfDwVK+leuroPlwMPw0AuHpJ+81U1Us7a2gszMzM0X/CehzYNg8/TusCQRBQzNkN/cauzXLO5HIpVCr10CVb+2Jo1W0swo9uQ9jRrTA1MYNUkgZP72YIbDdIq23U3cs4umsZUl+pM2k7Vo6BmdgCfb79CRaWNvo94HxQfc1s2FQsCwvn4ijePAD1j2/B091H8GiV+oZHJhbmMLW2BEzf5A9idx6AibkYtbcvgSIlDWa21rg+LFjrJioAcOObWXCf/g0anNmhvhOhQoHzLfoa9U1UAPVkvm4jN+D4b3OxaW4nCACKlnBD1xHrtG6iolTIoJBLoFJlncR8dv9yPL53UWsIh0+T3qhSW33FskHLwTA1NcOvy/vD3NIWSoUMXYb9ZJQ3UQHUkwCDZy/Chp9XYNzIr19/npXG1JkLtd+bcjlkMhlUb32eeXrVxLgps7Fx7Y8wN7dARno6Pu/UDe06ds3yPJEP7uPFi2fwbdAoy2PGht8BBUf4sHxogRk5ciTWrl2LRYsWYdKkSVAoFJg9ezbatWuntQJHcHAwtmzZgvDwcDg7O0MkEmHu3LkYPHgwvv32W7i7u+P27dv47bffsHnzZk27ihUrYuDAgViwYAHat28PGxsbbN68GS9fvsSkSZMK9NhEQnbrx+Xi0KFD2L17N6ZPnw6ZTIaAgADExsbC1tYWe/fuRZMmTd67j9OnTyMkJASAegjHu7cANzExgYuLC7744gvY2/+3S81nbhrnbHhDaeRpg8v38n8W9MfM270odl8ovFdJCqNO9Uzwl7iKocMwKm3kd7Ex9/ty0Dv6NQZuRMQZOgyj4lXJmd8BOvJ2f//tx/Xl/oO8LWuaHypXzH7hh5zcvXsXI0eORFJSEiQSCfz8/LBgwQKtpOuECROwceNG/PPPP5qVNgB1H3HZsmUoUqSIZj3pr776Smv/MpkM06ZN09yJ0MzMDIsWLYKPT87zhPKDzh3od0kkEty+fRsVKlT4T53dSZMm5bjY9c6dO9GtW7f/FBc70LphB1p37EDrjh1o3bEDrTt2oHXHDrTu2IH+tP2ndaDfZmlpidq11ZdGZsyYgeDgYJ3az507FxkZGYiIiEBSUpLWutILFiz4zx1oIiIiok9BYb2RyscsTx3oS5cuoWjRoqhQoQK2bNmSY71ff/1V5w70n3/+ib59+yI5OTnL3Qi59AwRERERFTZ56kC3aNECVapUQVhYWJbxym/7Lx3e8ePHY9KkSWjevDns7e01+8jrnQiJiIiIPmXMQOtfnjrQJ06c0NzJJTAwUHPzlHc1btw42/LcODk5YezY7O8a+P333+u8PyIiIiKigpSnDnStWrU0/z1nzpwc7y0+e/ZsnQMoV64cpFJptmtfvrswNhERERFpYwZa/3SeROjv749atWrhn3/+yfLY22v65VXLli3x+eef46uvvkLp0qVh+tYd9jiJkIiIiIgKG5070J6enrh8+XK+BZA5pvro0aNZHuMkQiIiIqLcMQOtfzrfuqZChQo5dmyXLl2qcwC+vr6IjIzM8vfw4UPUq1dP5/0RERERERUknTvQo0ePxtixYxEVFZVl2bl9+/bpHMB3332HcuXKZflzc3PDrFmzdN4fERER0adEEER6+yM1nYdwZN6qe/HixfkSQOfOnXN8rFmzZvnyHERERERE+UXnDnSVKlUwYcKELOWCIHDZOSIiIiI94xho/dO5A92lSxf06dMn28devnz5wQERERERERVmOnegcxuX7OPj80HBEBEREZFumIHWP5070JlkMhmePXumNZFw0qRJCAsLy5fAiIiIiIgKI5070PHx8ejbty8OHz4MlUpVEDERERERUR4xA61/Onegx40bh6JFi2L//v2YOHEili5dColEgh07dqBYsWIFESMRERERUaGhcwf65s2bCA8Ph0gkwoIFCxAYGAgAaN68OTp16pTvARIRERFRzrg+s/7pfCMVGxsbzZ0I5XK5plwkEiE+Pj7/IiMiIiIiKoTy1IH+999/Nf+dkpKC6OhoAIC9vT02btwIuVyOvXv34vHjxwUTJRERERFlSwWR3v5ILU8d6KFDh2r+u2nTpqhZsyYePHiAgQMHYsCAAbC0tETnzp3Ru3fvAguUiIiIiKgwyNMY6OvXr6NatWro0aMHhg8fjnnz5gEAKlasiD///BPHjx9HjRo1MGDAgAINloiIiIjI0PLUgfb29sbu3buxbds2tG/fHs7OzhgwYADat2+Pdu3aoV27dgUdJxERERFlg8vY6V+ehnCcOHECjo6OGDFiBC5fvoyZM2fi+PHjqFatGr777jvcvn27oOMkIiIiIioU8pSBNjHR7md7e3vD29sbEokEv//+O4YOHQq5XI4BAwagf//+BRIoEREREWXFZez0T+dl7N5mYWEBJycnODo64sKFCxg0aFB+xUVEREREVCjpfCMVAIiKisL69euxadMmxMbGwtzcHF26dOEkQiIiIiI94xho/ctTB7pLly7Yvn07du/ejfXr1+PUqVNQqVSoWbMmxo0bh549e8LR0bGgYyUiIiIiMrg8daBPnTqFUqVKISEhAQ4ODhg8eDAGDBiAOnXqFHR8RERERJQLjoHWvzx1oJOSkhAUFIQBAwagc+fOsLCwKOi4iIiIiIgKpTx1oBs1aoQTJ04UdCxEREREpCOOgda/PK3CsWXLloKOg4iIiIjIKOQpA12mTJmCjoOIiIiI/gOOgdY/kSAIgqGDICIiIqL/5sKdV3p7rnoe9np7rsLsP60DbQySrpw0dAhGxaF2E4TcyDB0GEYlyMsK9x88MnQYRqVyxXLYeMrQURiXfo2Bv8RVDB2GUWkjv4v0zTMNHYZRse4zDY/v3zZ0GEalbOWqhg5BQ2XoAD5BH3QnQiIiIiKiT81Hm4EmIiIi+hRwDLT+MQNNRERERKQDZqCJiIiIjBjXgdY/ZqCJiIiIiHTADjQRERERkQ44hIOIiIjIiHESof4xA01EREREpANmoImIiIiMGCcR6h8z0EREREREOmAGmoiIiMiIqQRDR/DpYQaaiIiIiEgHzEATERERGTGOgdY/ZqCJiIiIiHTADDQRERGREeM60PrHDDQRERERkQ6YgSYiIiIyYgJX4dA7ZqCJiIiIiHTADDQRERGREVNxFQ69YwaaiIiIiEgHzEATERERGTGuwqF/zEATEREREemAGWgiIiIiI/YxrcJx8OBBTJ8+HZaWlkhJSUGfPn0watSoXNvExMTgp59+QkhICMRiMZKTk1GxYkXMmDEDVatW1dSLiopC/fr14eHhodW+Vq1aWLp0qU5xsgNNRERERAZ35swZdOzYEcePH0dAQADi4uJQp04dqFQqjBkzJsd2GzduxJ49e3D27FkULVoUMpkM3bt3h5+fH27evIlSpUpp6rZs2RKbNm364Fg5hIOIiIjIiAkQ6e2vIE2ZMgVBQUEICAgAADg7O2PIkCGYMWMGMjIycmxXqlQpTJw4EUWLFgUAmJubY9y4cUhKSsLevXsLJFaDd6Dv3Llj6BCIiIiIyICSk5MRGhoKPz8/rXI/Pz8kJyfjzJkzObbt378/evbsqVVmZWUFADAzK5jBFgbvQHfv3h2pqamGDoOIiIiI3kMqlSI5OVnrTyqVfvB+IyIiIAiC1nALAHB1dQUA3L9/X6f9nT59GjY2NujUqZNW+d27d9GpUyc0atQIQUFBmDhxIhITE3WO1+BjoOPi4tCgQQMEBARg2LBh8PLyMnRIREREREZDpcdJhPPmzcOMGTO0yoKDgzF9+vQsdV+9eoWnT5++d5/ly5dHWloaAMDCwkLrscxtXZKtiYmJmD9/Pn788UcUK1ZMU25paQk3NzcsWLAAZcqUQXx8PLp164ZatWrhypUrmiEgeWHwDnS3bt2waNEiHDhwAN999x2kUimGDh2Kzp07w9TU1NDhEREREdFrEydOzDKh791Ob6Y9e/agX79+793nlStXYGtrCwBZstmZ25mPv49UKkXnzp0xePBg9O3bV+sxZ2dn7NixQ7Pt5OSEZcuWwdPTE+vWrcO4cePy9BxAIRjCsWTJEpiYmKB9+/Y4fPgw1q5di5CQEJQtWxYzZszI0y8XIiIiok+VIIj09mdhYQE7Ozutv5w60H379oUgCO/9q1WrFipWrAiRSITY2FitfcTExAAA3N3d33seMjIy0KFDBzRt2hTTpk3L07mrXLkyAPUQEl0YPAN98+ZNeHp6AgAePXqEdevW4ffff0diYiIuX76MDh06oGLFivj+++9RpkwZA0er9jj2GRZv/g3JaemQKxSo7l4Bw3t0hLWl5XvbZkik+Pn3A/j10EmsmDwS3p7aL4gDIeFYt+sAXIo7aZU/T0yCUqHE3h/n5Oux6NurxBf4dcNCvHj2BABQ0qUsuvYfBzv7nC+bKJUKXDh7COdPH4BKEKCQSaFUKdGkdXf4NmqTpX5qciJ2bV6M8JD9mPPTXyhWwrXAjkcfEhLisXbNajx9qv5QcXUtjUGDh8DBwfG9bS9evIDtv2yFuViMjIwMNG32GT7v8GY8WGpKCg4fPogLF87DzNQUGRkZsLO3R48ePVHFo2ouey7cUl89x/Hf5iLpxWMAQNGS5dH0i0mwsXN6T8s3YiOvYevC7vCs1x5t+87P8vj5o+tw8+IBmFvYQKmQoVH7UShfrWG+HYO+lWzfFJ5Lp+LlqXD8O2Bintq49uqA8sN7QZGaDjNbazxcshGxOw9o1RGJxXAPHoHiLQKgTMuAoFTi1tj5SP7nZkEchl48ik/GgmOXkCKRQaZUoaZrMYxsUhvW5uI87+PY7ccYt+csBvtXx5BGNbI8HvogBlvP3wEEAS/TJBCbmmBgQy808yibn4eiN09iYrDq5/VISU2FXC5HtaoeGNS3t2aiV26OnjiJvfsOwNLKCpKMDHTp+DmaBAXmWH/5T2uw/69D+GHuLNSsUT0/D4MKkJ2dHfz9/REWFqZVHhYWBjs7O83KHDlJTU1F+/bt0a5dO4wePRoAEBkZiStXrmjGQS9duhT169dH/fr1Ne2io6MBAKVLl9YpXoN3oIcPH46JEydi5cqVOHjwIBwdHTFo0CAMGTIEZcuqPyhCQkLQvXt3hIaGGjha4FVKKobOWoIvmgeib8dWUCiVGD1/Jaat2IAfxg7Lte2/dx9gwYad8ChfFkqVKsd6bQIbYNAXbbXKxi9agwplSuXQwjgo5HIsnTkUFavUxOQF2wEAm1cGY/msYZj4/TaYmmb/ckxOisfmH6dh+KQV8KrjDwC4HH4MP/8wFhnpqQhq+aWm7rWLIdi3YxVcSlco+APSA7lcjqmTJ6JqtWpYunwlAGDpkkUInjoZi5euyHWY043r/2LOrBmYPXc+vLyqIzEhASO/GQaVSoWOnboAAC5ePI+9e3dj8eLlKFGyJARBwM9rVmH8uO+weMlyVKhYUS/HmZ+UChl+XTYArhVro++k3QCAv7ZMxG8rBqLPhN9hksPr7G1yWQYObZ0CM3H2WZWwQ6tx5cwO9J24GzZ2Tnh092/8tmIQvvp2G0qVr5mvx1PQTKwsUXvLD1BmSGCiQwewVLe28Fo2DaG+nZB2Pwq2HhXQMHwXVFIZ4vYc1dTzWj4V9j7VER7YA8r0DLj26oD6RzbhbN2OyIh6UhCHVKCS0qUY+MtxdPN2x4CGXlCoVBjx6ylM/PMcln0RlKd9vEzNwI+nr+b4+MEbkVh37gZW92iKEkWsoRIETNwbiptP442yA52cnIxvJ07B521bo0fXL6BUKjFp+kzMXbgYs6ZNzrXtyZDT+HH1z1i1dBFKu7riUXQ0ho8eC7FYjICGflnqX75yFafPGr6voG8fy41UZs+ejc8++wyhoaHw9/dHXFwcVq9ejeDgYK0fW02bNoVIJMLx48cBqMdat27dGtWqVUNAQAAuXboEALh8+TLCw8M1HeirV6/i9OnT2LlzJywsLCCTyTB58mQ4OjrmaajJ2ww+hOP06dNo1aoVnj17ho0bN+LJkyeYO3eupvMMAEFBQUhOTjZglG/sPHQK6RIperRtBgAwMzVF/06tcPbydVy7+yDXtnKFEssmDkerAN8c6wTWrYnOzRtplb1MfIXwqzfRoan/hx+AAZ0/8xdiH0egbdfBmrJ2XYcgOvIOLp07kmM7UzMx6jT4TNN5BgDvBp/B2bU8wk/t06prYmKK72ZvQLVaDfL/AAzg1KkTePQoCt179NKU9fiqFx48iMCZMyG5tt26ZROq16gBLy91BsaxaFG0at0WO7Zv04wpK1LEDh06dEaJkiUBACKRCF2/7AGFQo6QkJMFc1AF7Mb5fXgRew8N2/xPU+bfdgSeRd/C7UsH87SPU38sQLV67WBlkzXLL5WkIvzQatQJ7KHJaJerUh+uFWvjzJ9L8+UY9MnUyhJRP/2Cq72/gzJDkud2VWaNRszO/Ui7HwUASL3zEE93HYbHnG81dawrlkWZ/l/g4Q/roExXr+Eas3UvZPFJqDRhcHa7LfS2X7yDDJkcvXzVV2jMTNSZ4TP3Y3A1+nme9jHr4HkMDciadQaADJkC849ewjeNa6NEEWsAgIlIhDFNvdG+unEmBnbvOwBJhgRdOnYAAJiamuKrL7vi7wsXcePW7RzbCYKADVu2oUlgI5R+vRJDuTJlEOjfEOs2bc1SPzU1FSvXrMWAPr0L5Dio4DVq1Ah79uzB6NGj0ahRI7Rs2RJjx47NMuY6PT1da13oOXPmICwsDOvWrUPdunU1f0OGDNFqN3ToUBQpUgQBAQEICgqCn58fRCIRLly4oPMoB4N3oCtUqIALFy7g77//Rs+ePWFubp6lzuTJk2FnZ2eA6LIKu3oDHuXLwlz8JlPjWckNJiIRQv+5nmtbb093ODnY51qniI01itprH+ufJ8+hfq1qKOn0/kv2hdmNf0LhVKIUHIqW0JQVLe4Ch6IlcP3S2Rzb2dkXxdffLshSLja3gMk7Gdjq3gGwss7bRANjcOniBZQsWRJOTm+GHpQoUQJOTsVw8cL5HNulp6fh1q2bqFq1mlZ51arVkJ6ejhs31K9Vn7r10OWLrlp1LCzU70FjncT78MYZ2Du5oohDSU2ZfdFSKOJQEhHXQ97bPvLWOTyLvg3f5gOyfTz63kXIZRlwrVBbq7x0hdp4dO885LKcF/svjOQJSYg/Ga5TG1vPyrB2K43E8Cta5Ynh/8Cmshts3MsDAIq3CIDIxCRLvaTzV1GiddAHxW0ooQ9iUdXZCeZmb94f1UsVg4lIhDMRMe9tv/tKBCzMTNHS0y3bx89GxCBVIoNveWet8pJ21ihfLPfvj8LqwqXLqFypotb3pkcVd5iYmOD8hUs5tot69BjPnr9Atarat12uVtUDsU+fIvqJ9vle8dPP6Ni+LVxdtM/dp0AFkd7+Clrr1q1x8eJFnDlzBlevXtUMx3hbeHg4zp07p9lesGBBjuOr377roK+vL7Zs2YILFy4gJCQEly5dwvbt21GpUiWd4zR4B3rJkiXw9vbO9rHMm6zMmTOnUAzfAIDHT5+juKP2h5i5WAx7O1tEP81b9kEXKpUK+06dQ6dmjd5fuZB7FvsIDo7Fs5Q7OJXAs7jHOu0rNSUJT6MfoH5gu/wKr1CKjYlB0aJZx+06OTkhNibnL+vY2FgIgoCiTtptnZyKvX4857bXr/8LExMTBDVu8h+jNqyE55GwtS+RpdzWoSQSn0fl2laSnoxjv85Emz7zYWKS/Q+IhNf7ePc5bB1KQlApkfQi+j/FbUxsK7sBAKSx2p95khj1tk2lcup/X9eTZKn3DJYuJWBqa1OwgRaAxwnJKF5Ee9yuuZkpHKws8DghJde2MUmp2Hz+Fia1rJdjnTvPEmBvZYF/Hj/H/3aeRN8tR/C/nSdx6GZUfoRvEDExsXB6Z3kwc7EYdnZFEPPOhLG3PXn92Lttizmpt99ueyY0DEnJr9Cudav8CpsoVwYfA92uXc4doGHDhuHkydwvI0ul0ixLnuQ0GzQ/SCRSiMVZT5u5mRky8mEh8XeFXb0JsZkZfGsY74SuTFJpBmztHLKUm5mZI+VVgk77+nP7SlT0qIWAzzrnU3SFk0Qiyfbqi1gsxqtXSbm2y6z3bjsAkORwS1SFQoGtWzbjy249UK6c238L2sDk0gxY2Wa9WmNqZo70lPhc2x7dMQPejXujaEm3XPafrt6fWPtqmamZelv2+vGPmamNemiBSirTKs/cNrVVP25mYw1BpYKgUGRbz8zGCsrUtIION19lyJUwN82aezI3M0GGXJFNCzWVIGDa/nB827QOHKxz/o56lSFDqlSG9eduYMkXgbC3ssD5yDgM//UUXqSko3f9ajm2LawkUmmWzyJA/XmUIcl52ND7PscyXg85SkhMxPrNW/DDvNn5FbLR+VjGQBsTg3egMzIyMH78eOzZsyfL0iV5kdOC3qM+L5iMrZWlBeTZfEjKFApYFUDHfc/xs+j0WQBEooK/bJKfblw5hyN7Nmi2GwS1h6WlNRRyWZa6CoUMFlbWed73maO7EHn/OsbM+BkmJga/iJJvLl+6iN9//1Wz3axZc1haWUEul2epK5fLYWmZ8+z1zMkW77bN3LbMZua7IAhYuuQHVK5cGT2+6pXl8cLo4c0zCD+8VrNdvUFHiC2soczmdaZUyGBukfPr7M7lw0hPSUCdwB65PqfYQp01ffc5lAr1dm7P8bFQvO70mlho/4jI3Fampr+ulw6RiQlEZmZanejMeopU4/uxYW1uBpky6yRwmUIFq2ySK5m2nr+NskWLoFHl3Gf6m4hEUKgEDPKvDnsr9XeKb3lnNPUog3VhN42yA21paZnj55hVLqtXWVnm/jlmZaVuu3j5SvTq0Q3F37phBlFBM3gHesqUKbh16xamTJmCpUuXYsKECZBIJPjjjz9Qvnz597bPaUHvjFvncmjxYcq4lMCLxFdaZTK5HK+SU1HWJetl4w/x7GUC/rl1D9OG9cnX/eqDV+2G8KqtvaTX9ctn8ejhrSx1k+Kfo3K1Onnab+jxPQg7tQ+jp/8Ma5vCMS4+v3j71IW3T12tsgsX/saDiKy3L42Pj9dMDsyOi4sLRCIREuK1M67x8S8BvLk1aiaVSoXly5bA0tISw/73jdH8YKvg2QgVPLV/LD+4HoK4xzey1E1NeoYyletmKc907+oxSDKSsX3xmwlIackvEHnrLH5Z1Asly3igWdfJKFpCPTwh9dVzrUx1atIziExM4VC8cCy3WZDSIh4BACxKaX/mWbqqtzMnFqZFqP+1LFUCGY9j36pXEpLY51CmGV8HuoxjEbxI0b6CI1MokZQhRTmnnD+TTt9/AoVKwMBtx7TK911/iEuPn8GvQin09/OEi736B1rmv5rndbBFikSGhDQJitq8f8nUwsS1lAviE7SvMsrkciQnp8DVNefVpVxLuQBAlrYv49XbpV1L4WV8Ah49foxDR47h0BH1uU19fUe7VWvXw9bGBt2+6Iy63nn7jjFWgmAcn9kfE4N3oENDQ3H27FmYm5vj119/RZ8+6s5i//790b179/e2t7CwyHbIRkFN4/Gr5YWdh05CJpdrJkTcjIiCShDQsE7+rje59+Q5NPatA3sjHCeYHa86/vjn7+NISniumUiY8OIpkhKeo7p37us7AsCpgztxKewoRk5dpZkoeGzfFnzW/uOdce1Ttx7CzoUiPj5eM5Hw+fPniI9/CZ96OY+jtLa2QbVqnrh9W/sHy+3bt2BtbQ1PzzevVaVSicU/LIC9gwO+HjwUgHo2e9i5s2jewvjGE1bwaoS7V44gJemZZiLhq4RYpCQ9Q0WvnNeObT9gUZayVZOaoKx7Pa11oMu614PY3AoxD6+grPub/wdPHl5BOXdfiM3fv66tsUu9eR/pUU/g2KA2Yrbu1ZQ7NqiD1HuRmg70i8NnIKhUcGxQW6sD7eBbC88Pheg36HziX7EUtl+8A5lCqZlIeD32JVSCgICKOXcGN/RqnqWs9txf0L56Ba11oH3LO2NFCPAsOR1ub3XIX6RmwNLMFEUs877UYGFRz8cbe/7cr/W9eefuPahUKvjW9cmxnVu5sihZojhu3b6D5k3fzMm4dfsOXEuV0qzMsXX9z1rtrv17Hd9NmophgwZwHWgqMAa//m1ra6tZeUPx1iU+sViMxMREQ4WVo26tGsPKwhzbD6jXHlQoldiw+xACvKujZpU3a+b+/Pt+dBgxBfFJr3LaVa6UKhX2nzqHzp8Z/+TBTL6N2qBUmYo48NsaTdn+31ajTHkP+DRsoSkLPb4bYwc0w5Ooe5qyI3s34fiBbfi8+//wLPYRoiJuIiriJo7ty7qU0cekceOmKFuuHHZsf3Oc23/ZiooVK6FRoyBN2ZHDh9Drq26IjHyoKevVuy+u//svbt5UZ2MTExJw6OABdO/RU/OjUy6XY/682UhLT0Pjxk1x/9493L93DzdvXsfJkyf0c5D5zMu3PYqVqoxzf63UlIUeWIGSZaqhqk9rTdm10N+xYpw/nj+5o9P+zS1t0KDVEPxzejvSktUZ/kd3zyPmwRU0+nxUvhxDYVN52gg0vncCFiXfXCK/O3UJXLu100wUtPWoAJcuLXF3ymJNnfSH0Yje8DsqfDcQptbqHxauvTrAvJgjIuavgTHqUdcDVmIzbD2vXn5NoVJh3bkbaFTZFbXKvMnI/3TmX7RZuRcvU3VL53i6OCGwcmlsOX8LMoUSABD58hWO3XmM7nWrQGyEq+N0at8WlpaW2LVnLwD1j/Zffv0N9evVhVe1N/N7Nv+yA70GfI2E19/9IpEI/Xv3xMnTZ/Dk9aTpR9HROB16DgP69NT7cRRmKkF/f6Rm8Ax0cnIykpOTYWdnB0tLS5w4cQJNmzbFP//8o/NtFfXBvogtfpo2Gos3/44zU76HTK5ADfcKGP5VR616crkCEpkMyrdebdFxzzF3zTakvF4PdcmW31HE2gqTBvdEGWftS6Ghl/+Fk6M9PCu5Ffgx6YuZWIxRwavx64aFmDOuByAIKOlSDt9MXaV1ExWFQg65TAKVSv3lERv9ALu3LgUALJqW/dJimSJuX8GfO37Eq0R1x2bd4gkQm5vjfxNXwFKHcdaFhVgsxuw587F2zWqM+uZ/ECDA1bU0Zsyao7XMnEIhh0wmhVKp1JR5Va+ByVODse7n1TA3N0d6Rjo6df4CHTq+mXh59MghhIephztdunhB67m9qme/Tm1hZ2pmjm4jN+D4b3OxaW4nCACKlnBD1xHrtG6iolTIoJC/eZ297ez+5Xh876LWEA6fJr1RpfZnAIAGLQfD1NQMvy7vD3NLWygVMnQZ9pPR3UQlU/U1s2FTsSwsnIujePMA1D++BU93H8GjVb8AUI9ZNrW2BN6aPBe78wBMzMWovX0JFClpMLO1xvVhwVo3UQGAG9/Mgvv0b9DgzA71nQgVCpxv0dcob6ICAA7WFljb8zMsPHYJpzcdhlShQs3SxTCqifayhjKlEhK5EqpsZnfNPngeUQnqextkDuEYEVQLNUurVyma93lDLA+5ip4bD8PWUgy5UoUxTeugYy3dl9oqDOzs7PDDvNlY9fM6jDg/DjKZDJ5VPTCon/bwRLlcDolUCtVbY8ybBAVCrlBg9vc/wNrKChkSCUb9b2i2N1GRSqWYFDwzyxCOuTOmFejiAvRpEgmCYeduDh8+HAcOHMCZM2dw/PhxDBo0CC4uLnj27Bm+/vprrFy58v07yUbSFeO8CYShONRugpAbxrV+raEFeVnh/oNHhg7DqFSuWA4bTxk6CuPSrzHwl7iKocMwKm3kd5G+eaahwzAq1n2m4fH9nG9qQlmVrVx4VsfacyFrIqCgdKxnfFdBCoLBM9ALFy7ExIkT4ezsjP79+yMtLQ3Hjx9HjRo1MGXKFEOHR0RERESkxeAd6Js3b2L79u3w8fFBjx49MGLECDg6OkKhUPCSCxEREdF7CHq4QyBpM/gkwsWLF+PevXtwd3fXlNWoUQNbtmzBihUrDBgZEREREVFWBu9AP3z4EHv37oWPz5ulbGrUqIGDBw9ix44dBoyMiIiIiCgrgw/hEIvFMDPLGoalpaXWKgNERERElBWXl9M/g2egU1JSEBUVlaU8MjISycnJ+g+IiIiIiCgXBs9A9+/fH/Xq1UPv3r3h7u4OkUiEu3fvYtu2bZg8ebKhwyMiIiIq1Ay7IPGnyeAd6G+++Qbx8fFYuHAhJBIJAMDKygrjxo3DiBEjDBwdEREREZE2g3egAWDGjBkYP348bt68CQDw9PSEtbXx3TWOiIiISN+Ygda/QtGBBgBra2vUrVvX0GEQEREREeWq0HSgiYiIiEh3KoE3UtE3g6/CQURERERkTJiBJiIiIjJiHAOtf8xAExERERHpgBloIiIiIiPGDLT+MQNNRERERKQDZqCJiIiIjJiKGWi9YwaaiIiIiEgHzEATERERGTGB60DrHTPQREREREQ6YAaaiIiIyIhxFQ79YwaaiIiIiEgHzEATERERGTGuwqF/zEATEREREemAHWgiIiIiIh1wCAcRERGREeMkQv1jBpqIiIiISAfMQBMREREZMWag9Y8ZaCIiIiIiHTADTURERGTEuIyd/jEDTURERESkA2agiYiIiIwYx0DrHzPQREREREQ6EAkCf7cQERERGas1R/X3XIOb6++5CrOPdghH0tUQQ4dgVBxqBeHi3SRDh2FU6lZxQMrFg4YOw6gUqdsaNyLiDB2GUfGq5Iz0zTMNHYZRse4zDX+Jqxg6DKPSRn4XcXeuGDoMo+LsUdvQIZABfbQdaCIiIqJPAccS6B/HQBMRERER6YAZaCIiIiIjxgy0/jEDTURERESkA2agiYiIiIwY70Sof8xAExERERHpgBloIiIiIiOm31t6iPT4XIUXM9BERERERDpgB5qIiIiISAccwkFERERkxLiMnf4xA01EREREpANmoImIiIiMmEpl6Ag+PexAExEREVGhcPDgQUyfPh2WlpZISUlBnz59MGrUqPe28/DwgLOzc5bykJAQre2nT59i1KhRePDgAQDA3d0dS5cuRYkSJXSKkx1oIiIiIiP2sYyBPnPmDDp27Ijjx48jICAAcXFxqFOnDlQqFcaMGZNrW2dn5yyd5XfJZDI0b94cfn5+uHTpEgCgf//+aNmyJS5cuAAzs7x3izkGmoiIiIgMbsqUKQgKCkJAQAAAdad4yJAhmDFjBjIyMj54/9u2bcONGzcQHBysKZs+fTquXLmCX3/9Vad9sQNNREREZMRUgv7+CkpycjJCQ0Ph5+enVe7n54fk5GScOXPmg5/j4MGDcHNzQ6lSpTRlZcuWhaurKw4cOKDTvtiBJiIiIqI8kUqlSE5O1vqTSqUfvN+IiAgIgqDVuQUAV1dXAMD9+/dzbZ+WlobBgwcjMDAQDRs2RP/+/XHv3j2tOvfu3cuy/8zneN/+38UONBEREZEREwT9/c2bNw/29vZaf/Pmzcs2rlevXuHOnTvv/ZNKpUhLSwMAWFhYaO0jczs1NTXXc1CtWjX07t0bp0+fRkhICIoVK4bq1asjLCxMUyctLS3L/jOf4337fxcnERIRERFRnkycODHLhL7sOqUAsGfPHvTr1++9+7xy5QpsbW0BIEs2O3M78/GcbN68WfPfYrEY8+bNw9atWzF79mwcPHhQs4/ssuVSqfS9+38XO9BERERERkwoyMHJ77CwsMixw/yuvn37om/fvnmqm5ycDJFIhNjYWK3ymJgYAOrl5nRhamqKChUqICIiQlNWuXJlXL58OUvdmJgYNGrUSKf9cwgHERERERmUnZ0d/P39tYZcAEBYWBjs7Ow0K3Nk58SJE1i7dm2W8idPnqB06dKa7datWyMqKkqrk/748WPExMSgTZs2OsXLDjQRERGREfsYVuEAgNmzZyMkJAShoaEAgLi4OKxevRrBwcGwsrLS1GvatCmaNWum2Y6Ojsa8efMQFxenKVuxYgWio6MxevRoTVnPnj3h6emJGTNmaMqmT5+O2rVr48svv9QpVg7hICIiIiKDa9SoEfbs2YPRo0fDysoKycnJGDt2rFYnGADS09NhYvImB9ysWTPcvHkT7dq1g42NDSQSCWxsbHD8+HE0adJEU8/c3BzHjh3DqFGj4OPjA0EQ4O7ujsOHD+t0ExWAHWgiIiIio/ax3IkQUA+zaN26da51wsPDtbZLly6NhQsX5mn/Li4uOt80JTscwkFEREREpANmoImIiIiMmEqPq3CQGjPQREREREQ6YAaaiIiIyIh9TGOgjQUz0EREREREOihUGehHjx5h3759MDExQceOHVGqVClDh0REREREpMUgHegFCxZg/vz5qFixIi5evAgAuH79Ovz8/JCWlgYAmDx5Ms6ePYvq1asbIsRcPY59hsWbf0VyajrkCgWqu1fA8K86wdrS8r1tMyRS/Pz7fvx68ARWTBkFb88q2dYLu3ID2w8cgwAB8UnJEJuZoV+n1mjiWye/D0evEhNeYtu6JXge9wQA4FyqLHoOHA17h6LvbatQKHBw7y/Yu3M9+g4dh0ZN2+Za/8Durdi56Ud8PXLqe+sWRo+ePseirXuQnJYBmUKBmpXdMKJbO1hb5nwLVYlUhv1nLuDY+aswNTFBhlQGc7EZ+rZrCr+aVbPUf/oyAd9v+gOhV2/h0rYlBXk4epWYEI8NP6/As6fqu025uJZG/69HwN7B8b1tL1/8G79t3wix2BySjHQENW2Jth2+0Dx+498rWPL9TLiWKavVLiX5FZ7GxmDLbwdgbp6329wWBo/ik7Hg2CWkSGSQKVWo6VoMI5vUhrW5OM/7OHb7McbtOYvB/tUxpFGNLI+HPojB1vN3AEHAyzQJxKYmGNjQC808ymazN+NRsn1TeC6dipenwvHvgIl5auPaqwPKD+8FRWo6zGyt8XDJRsTuPKBVRyQWwz14BIq3CIAyLQOCUolbY+cj+Z+bBXEYehEdE4vl6zYjNTUNMrkCXh7uGNynB6yt3v+9efjkafxx4DCsLC2RIZGg6+dt8Fmgv1ad2/cfYMMvv+FVSgqsLC0glcrQtUNbNPFvUFCHVKhwCIf+GaQDHRISgiFDhmDatGmasokTJ8LExAR///03PDw8MG/ePMyYMQO7du0yRIg5epWSiqEzF+GLFkHo27E1FEolRs9fgWnL1+OHcf/Lte2/dx9gwfrt8KhQDkqVKsd6h8+ex8Y9h/DjlFEoXtQBKpUKU5evw+0HUUbdgVbI5fg++BtU9qiOWYs3AwB+XjYLC6aPwsxFG2BqmvPLMfbJI6xeMh0VKleFTCZ973M9efwQh/ftzLfY9S0pJQ2D56xE18/80f/zz6BQKjFy4c+YvHIrlnw7MMd2d6KeYNnO/Vg3dQQ83NS3L9128BRG/rAWS8YMgH9tT03d3SfDsPtkOIo52BX48eiTXC7HzCnfokpVLyxY9jMAYOXS+Zg1bSy+X7I619fZzRvXsGD2FATPWYRqXjWRmBCPsSMHQSWo0L7jm7tU1fKuhxFjtDtMG9f+iPIVKxtV5zkpXYqBvxxHN293DGjoBYVKhRG/nsLEP89h2RdBedrHy9QM/Hj6ao6PH7wRiXXnbmB1j6YoUcQaKkHAxL2huPk03mg70CZWlqi95QcoMyQw0eGHRqlubeG1bBpCfTsh7X4UbD0qoGH4LqikMsTtOaqp57V8Kux9qiM8sAeU6Rlw7dUB9Y9swtm6HZER9aQgDqlAvUpOwcjJs9CxTXP0+qIjFEolxs+cj1mLVmDelLG5tj12OhRL12zE2sVzUca1FKKiYzDku0kwF4sR6OcLAEhLT8d3wXPQrJE/FgRPgEgkws279zF8wjQUsbVB3VpZf9QRfSiDjIF++fIl5syZA8vXGduEhAQcOXIEAwYMQL169WBnZ4fZs2fj7t27hggvVzsPnUS6RIoebT8DAJiZmqJ/x9Y4e/lfXLsTkWtbuUKBZZO+QasA3xzrZEik+GHjTvyvR0cUL+oAADAxMcE3vb5Am0C/fDsOQzgXcghPHj1Ap25vOoCdegzCo4d38ffZ47m2lUrSMezbmWjTsed7n0ehUGDN0hno3nfEB8dsKDuPnEGGRIqerRsDUL/OBnRojrNXbuLqvYc5trO2tEDHxvU1nWcA+KpVECzMxThw9qJWXccittgQPBJVy5cpmIMwkDOnjuLxo0h07dFXU9a1Rz9EPriPc2dO5dp2x5Z18KxRC9W8agIAHIs6oXmr9vh9+2ZIpeofbpXcPdCjt/aPGJlMipATR9Ci9ef5ezAFbPvFO8iQydHLV311wsxEnRk+cz8GV6Of52kfsw6ex9CA7DsoGTIF5h+9hG8a10aJItYAABORCGOaeqN99Qr5cxAGYGpliaiffsHV3t9BmSHJc7sqs0YjZud+pN2PAgCk3nmIp7sOw2POt5o61hXLokz/L/Dwh3VQpmcAAGK27oUsPgmVJgzO1+PQl137DyFDIsGXHdRXAs1MTdG7ayeEXbyM67dz/p4XBAHrtu1Es8CGKOOqHtLpVsYVQQ0bYM2WHZp6MU+fITUtHfV9akEkEgEAPKtURhEbW/x96UoBHlnhoRIEvf2RmkE60DY2NpoXOQAcOXIEKpUKXbp00ZSZmprCwcHBANHlLuzKdXiULwtz8Zusg2fl8jARiRD6z/Vc23p7VoGTg32udc5duY7U9AzUq659ub2kkyPcXJ3/e+CFwNXLYShewgWOTsU1ZcWKO8PRqTiuXAzNtW35SlXhXCpvHb3dO9bCs0ZduFc13qzDuWu34FG+DMzFb7KlXhXLqV9nV27l2M69nCu+7dlRq0wkEsHczAympqZa5Y3r1tDa/8fin0vnUaKkM4o6FdOUFS9REkWdiuPShbAc26Wnp+HOrevwqOqlVV6lqhfS09Nw68Y1AIClpRWcihXXqhMWGoLixUugyjttC7vQB7Go6uwEc7M3r43qpYrBRCTCmYiY97bffSUCFmamaOnplu3jZyNikCqRwbe89mdXSTtrlC+W+2dhYSZPSEL8yfD3V3yLrWdlWLuVRmK4docuMfwf2FR2g417eQBA8RYBEJmYZKmXdP4qSrQO+qC4DeX85atwr1he63uzqnslmJiIEH7xnxzbRT5+grjnL+Hl4a5V7uXhjpincXj8RD1Ey61saVQqXw5HT52FVCYDAJwJv4BXKSkoVvT9wwOJ/guDfHsK7/yC2bNnDxwdHdGggfZYpXe/8AuDx0+fI6COdsfMXCyGvZ0touPylrHJzd3IaNjb2uDK7XvYefAE0jOksLayQOvABmjRsN4H79+Q4mKi4VC0eJbyok4l8OxpdL48R8Sd67h66Rxm/LABSQkv82WfhvD46QsE1PHUKjMXm8GhiA0ex73QaV8R0bFITktHG3+f/Ayx0IqNiYZj0WJZyp2ciiEuNudOYVxsDARBgGNRpyztAOBp7BPU9s7+PXjs0H40N7LsMwA8TkhGo8qltcrMzUzhYGWBxwkpubaNSUrF5vO3sLl3ixzr3HmWAHsrC/zz+Dm2X7yDNJkcNuZitK1eAa1y6HR/rGwruwEApLHa3xOSGPW2TaVySLsXCZvX9SRZ6j2DpUsJmNraQJmaVuDx5qfo2Kfwq6s9/NBcLIZ9ETs8iX2aY7vMx5yKas9dKOak3n7y9CnKli4Fc7EYy+YE4/sVq9Gxz2A4Otgj5ukzNGpQDx3bNM/noymchJxHhVIBMUgH2tzcHEeOHEGLFi1w4cIF/Pnnnxg0aJBWVvrBgwdIT09/776kUqnm0momC4uCG4MokUghziZrZ25mhgxJ3i/l5eRVaipS0tOxcc8hLBw7DPa2Nrh4/TZGzVuBFwlJ6NnOeD8MpNIMFLHLmnUyMxMj+VVqPuxfgnU/zsWQ0dMhFpt/8P4MKUMqg9gs6+tMLDZDhkSm076W7zyAtgF1s51E+DGSSiSwy+51Jhbj1aukHNtJJOrL5WKx9phWs9evJUlGRrbtHj+KxONHkWjU+LP/GLHhZMiVMDfNeiHS3MwEGXJFju1UgoBp+8PxbdM6cLDO+fP2VYYMqVIZ1p+7gSVfBMLeygLnI+Mw/NdTeJGSjt71q+XLcRgDUxv1EBaVVPv9m7ltaqt+3MzGGoJKBUGhyLaemY2V0XWgJVJJlvcVkPl5lvOclszvVPN32mZuZ2So20qlMoyZNhuO9vbYtX4VrK2tEPX4CcIvXYGpSeFLxNHHwSAd6LFjx6Jly5YoVqwY4uPjYWdnh/HjxwMA0tLSsHz5cqxZswYdOnR4774yJxu+LTg4GKM6BBVA5ICVpQXk2XyxyBQKWOVhFY73MTUxgVKpQv9ObWBvawMAqFu9Khr71sGmPYeMpgN97XI49v+xRbPdqGkbWFpaQS6XZ6mrUMhhaWX1wc+5Y+Ny1A/4DG4Vs1/ZxJhYWVpArsj6OpPLFbCyzPuPg5W//gVBJWDygK75GV6hceXSeezZtV2zHdS0JSytcnidyeWwssz5dZb5Gny3rUIu03r8XUcP/omgJs1hmcu+CytrczPIlFlTVzKFCla5DO/Zev42yhYtkiV7/S4TkQgKlYBB/tVhb6XuaPuWd0ZTjzJYF3bzk+pAK153ek0stN+/mdvK1PTX9dIhMjGByMxMqxOdWU+R+v7EUmFjZWmZ7XtS/XmW8w+wzO9U2TttM7etXr+mDhw7ibsRD7Fl5SJYW6vfh25lS2P99t8wd1kkgr/7Jl+OozB798o+FTyDdKA/++wzHD9+HH/88QccHBzQv39/lCmjHt+qUCggk8nQr18/dOrU6b37mjhxIsaMGaNVZmFhgYzbuo1Py6syLiXwIjFJq0wml+NVcirKupT44P07F1NfPnYprj1uq3TJYkhJS0fCq2QUtS/8qybU9G6Amt7aQ3KuXAxFVMSdLHUT4p/Dw7P2Bz/ntcvhcHQqjhvX1JPl5K9X69i/awvOnPgLjZq2MZrl7Mo6F8OLxGStMplcgaSUNJRzztvrbM0fhxDxJBaLxgzINpv9Majt44vaPtqTci9fDMfDiKwTk+LjX6KaV87j4p1dXCESiZCYEJ+lHQCUcs06Bl8qkeDMqWOY88PK/xK+wZVxLIIXKdqZdZlCiaQMKco55fw5c/r+EyhUAgZuO6ZVvu/6Q1x6/Ax+FUqhv58nXOzVSYDMfzXP62CLFIkMCWkSFLX58MSDMUiLeAQAsCil/f61dFVvZ04sTItQ/2tZqgQyHse+Va8kJLHPoUwzvg50aRcXvExI1CqTyeV4lZKM0q4uObcrpX4s/p22L+PV22VeP545FtrVRXusfWkXZ+zcux/jRwyGZQFemaZPk0G+Va2srODi4oJRo0bhm2+0fxna29sjODg4z/uysLDIdshG9hdbP5xf7erYefAEZHK55jLSzfuRUAkCGtb+8DWr61X3wKodwPP4RJQr9ebD4EXiK1iYi1Hk9WVAY1TL2w8Xw04hMf6FZiLhyxdxSIx/gVo+DT94/0vW7tHafvEsFqMHdUS7Lr2NpuOcqWHNathx+DRkcoVmot+NB49ev87ePxRj2Y59iH2RgIUj+8Ps9QSxbQdPaVb1+JjV8fHF3+dOIyH+pWYi4Yvnz5AQ/wLedXNeE9ba2gYe1arjzu0bWuV3b9+AtbUNqnpms77xmRNwq1AJZcq65esx6It/xVLYfvEOZAqlZiLh9diXUAkCAirmfCOrDb2yXgmrPfcXtK9eQWsdaN/yzlgRAjxLTofbWx3yF6kZsDQzRRHLvC8BZ+xSb95HetQTODaojZitezXljg3qIPVepKYD/eLwGQgqFRwb1NbqQDv41sLzQyH6DTqf+HrXwq79h7S+N2/fi4BKJaCBT85Ls5YvWxrOJYrhxp17aNkkUFN+4849lC7lrFmZo2RxdeLpZXwCnEu8mWfzIj4BpiamMCuE86nyWy4r41IBMcgqHPXr18fDhw+zdJ6NQbdWTWBlYY7tB9SZF4VSiQ17DiLAuwZqelTS1Pv5t33oMHwS4pNe6bT/qhXdEOBTE9v2H9VcpoqKicPJvy/jy1ZNjTqT2DCoFUqXrYDdO9dpynZvX4tyFaqgfkAzTdmpo3/if31a43HkfUOEWSh0a9EIlhbm2HZQveyaQqnE+r1HEVDbE7Xc3yz/teaPQ2g/ehZeJqmz1YIg4PvNf+DyrQj0at0Y9x7H4NbDx7j18DF+PXrWIMeib40aN0eZcuXx2/ZNmrLftm9E+YqV0bDRmx8Qx48cwICeHREV+UBT1r33QNz89ypu3/wXgPqGLEcP7cMXPfpk+0P92KH9aNHG+CYPZupR1wNWYjNsPX8bAKBQqbDu3A00quyKWmXeZEp/OvMv2qzci5epuqUmPF2cEFi5NLacvwWZQgkAiHz5CsfuPEb3ulUg/og7NpWnjUDjeydgUfLNhNa7U5fAtVs7zURBW48KcOnSEnenLNbUSX8YjegNv6PCdwNh+no4gmuvDjAv5oiI+Wv0egz5pUu7VrC0tMCve9U3jFEoldjy22741fVG9apvhtxt2P47vhw0AvGvr/KKRCIM7NkNx0+fQ3SM+sdEVHQMQs6F4+te3TXtmgX6w9bGBht37ILy9ZCk+w+jcCb8Apo2aggzI/7epMLLIK+qtycL5ub8+fPw9c15zWRDsC9ii5+Cv8XiTb/izKX5kMnlqOFeEcN7ag83kSsUkMhkWjdMiY57jrlrtiLl9SW4JZt/QxEba0wa3Atl3rosP2vEAKzasQf9Js2DrbUV5AoFvunVBZ830b7zkrExE4sxfuYKbFu3BFPH9IEgCHAuVRbjpi/VurmFQiGHXCaFUqXUlEky0vHDrG+zDMv4oudgVKlWK8tzLZ79HV4lJWjV/fqbqSjhbBy3h3coYoM1k4dj0dY96PvPUvXrrHJ5fNO9nVY9mVwBiVQG1evX2blrt/H7MfWSgH2nL9Wq61JMeyb78QtX8dvRUDx9qT5PX8/+EdaWFlj63aACOir9EIvFCJ69CBt+XoFxI7+GIAhwcS2NqTMXar/O5HLIZDKolG9eZ55eNTFuymxsXPsjzM0tkJGejs87dUO7jlnHkEc+uI8XL57Bt0EjvRxXQXCwtsDanp9h4bFLOL3pMKQKFWqWLoZRTbSHVMmUSkjkymzXgJ198DyiEtQ/4DKHcIwIqoWapdWZwHmfN8TykKvoufEwbC3FkCtVGNO0DjrWqpRlX8ak+prZsKlYFhbOxVG8eQDqH9+Cp7uP4NGqXwCoxyybWlsCb03SjN15ACbmYtTevgSKlDSY2Vrj+rBgrZuoAMCNb2bBffo3aHBmh/pOhAoFzrfoa5Q3UQEAe7siWDZ7Glas24yhF6ZAJpfD08MdQ/p8pVVPLpdD+tbnGQB8FugPhUKB6QuXw9pKfSfCb4cO0txEBQBKFHPC8rnTsP6X3zB07BSYm4uRlp6BHp3bo3vH9no7TkPiGGj9EwkGOOtNmjTByZMn861edpKuhvyndp8qh1pBuHg3ydBhGJW6VRyQcvGgocMwKkXqtsaNiDhDh2FUvCo5I33zTEOHYVSs+0zDX2Ljn0ysT23kdxF359O46Uh+cfb48Lk7+WXaZt1WZ/oQM/sY9ypX+cUgGejw8HBUqPD+u1DFxfGLloiIiCg3Kiag9c4gHWgHBwcEBgbmWkcQBBw9ejTXOkRERERE+maQDrSHhwc2btz43nqNG3/8KwYQERERfQiBKWi9M8gqHHmdRLh79+4CjoSIiIiISDeFem0XR0fH91ciIiIi+oRxEQ79M0gG+uHDh6hQoQKWL19uiKcnIiIiIvrPDJKBjoqKMsTTEhERERF9sEI9hIOIiIiIcqfiJEK9M8gQDiIiIiIiY8UMNBEREZER46289Y8ZaCIiIiIiHTADTURERGTEBJWhI/j0MANNRERERKQDZqCJiIiIjJiKY6D1jhloIiIiIiIdMANNREREZMS4Cof+MQNNRERERKQDZqCJiIiIjBjvRKh/zEATEREREemAGWgiIiIiI8Yh0PrHDDQRERERkQ6YgSYiIiIyYgLHQOsdM9BERERERDpgBpqIiIjIiPFOhPrHDDQRERERkQ7YgSYiIiIi0gGHcBAREREZMU4i1D9moImIiIiIdMAMNBEREZERYwZa/5iBJiIiIiLSATPQREREREaMCWj9YwaaiIiIiEgHzEATERERGTGOgdY/kSDw9jVERERExmrI94l6e67V4x319lyF2UebgY6/EWboEIyKk5cfXtw8b+gwjEpxT1+kXPjL0GEYlSL12uDyvQRDh2FUvN2L4vH924YOw6iUrVwVcXeuGDoMo+LsURt/iasYOgyj0kZ+19AhaDAXqn8cA01EREREpIOPNgNNRERE9ClQcQy03rEDTURERESFwsGDBzF9+nRYWloiJSUFffr0wahRo3Jts2nTJkyfPh1ubm5a5TExMZDL5YiKigIAREVFoX79+vDw8NCqV6tWLSxdulSnONmBJiIiIjJiH8sY6DNnzqBjx444fvw4AgICEBcXhzp16kClUmHMmDG5tu3bty+mT5+uVdapUyd4eXlplbVs2RKbNm364Fg5BpqIiIiIDG7KlCkICgpCQEAAAMDZ2RlDhgzBjBkzkJGRkWO7Dh06YNiwYVplT58+xaFDh/D1118XSKzsQBMREREZMUEl6O2voCQnJyM0NBR+fn5a5X5+fkhOTsaZM2dybOvg4IASJUpola1btw4tW7ZE6dKlCyReDuEgIiIiojyRSqWQSqVaZRYWFrCwsPig/UZEREAQBJQqVUqr3NXVFQBw//59tGjRIk/7UqlUWLduHdauXZvlsbt376JTp054+fIlTExM0KBBA4wbNw6Ojrqtb80ONBEREZER0+edCOfNm4cZM2ZolQUHB2cZfwwAr169wtOnT9+7z/LlyyMtLQ0AsnTEM7dTU1PzHOOhQ4dgYWGBzz77TKvc0tISbm5uWLBgAcqUKYP4+Hh069YNtWrVwpUrV1C0aNE8Pwc70ERERESUJxMnTswyoS+n7POePXvQr1+/9+7zypUrsLW1BYAs2e3M7czH82L16tUYMmQIRCKRVrmzszN27Nih2XZycsKyZcvg6emJdevWYdy4cXl+DnagiYiIiIyYSo+rcOgyXKNv377o27dvnuomJydDJBIhNjZWqzwmJgYA4O7unqf9REdHIyQkBJs3b85T/cqVKwNQDyHRBScREhEREZFB2dnZwd/fH2FhYVrlYWFhsLOz06zM8T5r165Fly5dsh2OsXTpUvz9999aZdHR0QCg82RDdqCJiIiIyOBmz56NkJAQhIaGAgDi4uKwevVqBAcHw8rKSlOvadOmaNasWZb2SqUS69evx9ChQ7Pd/9WrV/H9999rhoXIZDJMnjwZjo6OeRpq8jYO4SAiIiIyYvqcRFiQGjVqhD179mD06NGwsrJCcnIyxo4di9GjR2vVS09Ph4lJ1hzw/v374eLignr16mW7/6FDh2LlypUICAiAtbU1UlNT4e7ujgsXLqBMmTI6xcoONBEREREVCq1bt0br1q1zrRMeHp5teYcOHdChQ4cc2/n6+sLX1/dDwtNgB5qIiIjIiH0st/I2JhwDTURERESkA2agiYiIiIyY6iMZA21MmIEmIiIiItIBM9BERERERuxjWYXDmDADTURERESkA2agiYiIiIwYV+HQP2agiYiIiIh0YPAMdO3atWFjY6O5bSMRERER5Z2gUhk6hE+OwTvQz549w6VLlwwdBhERERFRnhh8CEedOnVQqlSpbB8LCQnRbzBERERERkalEvT2R2oG70C3bt0a27dvz/axmTNn6jkaIiIiIqLcGXwIx++//44rV65g0qRJKFeuHExNTTWPXb161XCBERERERkBrsKhfwbvQN+5cwcdO3bM8TEiIiIiosLE4B1oHx8fbNy4MdvHevbsqedoiIiIiIwL70SofwYfA71///4cH/vxxx/1GAkRERER0fsZPAOdm06dOuHkyZOGDiOLx7FxWLphO1JS0yBTKFC9SiUM6/kFrK0s39s2QyLFul/34LcDx7AseCzqeHloPZ6WnoFtew/i8o3bsDS3QIZUCoVCgc6tmqJtk4CCOqQC9zj2KZat/wUpqWmQK+TwqlIZQ3t9medztn7nbvx+4AiWTB+POl5Vs60X9/wlFq/djLDL1xC6e0t+H4LePXr6HIu27UVyWjpkCiVqVnLDiG5tYW1pkWMbiVSG/Wcv4tj5qzA1MUGGVApzMzP0bd8UfjXenLfnCUnYdSIMl+88gJmpCdIypChdwgmDO7VEedeS+ji8ApWY8BJb1y7Fs7gYAIBLqTLoNWgU7B2KvretQqHAwT3bsXvnBvQbOhaBzdpoPZ6amoyTh//ElYvnYGpmBkl6OorYO6Bz9wGoVMWzQI6nID2JicGqn9cjJTUVcrkc1ap6YFDf3rCysnpv26MnTmLvvgOwtLKCJCMDXTp+jiZBgTnWX/7TGuz/6xB+mDsLNWtUz8/D0KvomFgsX7cZqalpkMkV8PJwx+A+PfL0eXb45Gn8ceAwrCwtkSGRoOvnbfBZoL9Wndv3H2DDL7/hVUoKrCwtIJXK0LVDWzTxb1BQh6Q3Jds3hefSqXh5Khz/DpiYpzauvTqg/PBeUKSmw8zWGg+XbETszgNadURiMdyDR6B4iwAo0zIgKJW4NXY+kv+5WRCHQWT4DrRKpcLSpUuxZ88exMbGag2Ej4uLM2Bk2XuVkorh075H51ZN0adzWyiUSnw7ZwmmL12DBRNH5tr2+p37+GHtVlSp4AZlDouex72Mx5/HQrD++2C4lCgGADgZfhFTfliFYo4OqF/b+L50XqWkYMTUeejcqhl6d2kPhVKJsbMXYcaSn/D9pNG5tr1+5z4W/bwZVSrmfM4A4M+jp/Dn0VMo5mif3+EbRFJKGgbPXYWun/mjf/tmUCiVGPnDWkxetQ1LxgzIsd2dqCdYtmM/1k0dDg+30gCAbQdDMPKHdVgyZgD8a1UDAOw7cxEhl69j7ZThsLe1gVyhwKSVW9F/5nL8Nn8cihvxeVTI5Zg/bSQqe1THnCXq4WFrls3G98GjMWvxepia5vyxF/vkEVYtnoGKlatCJpNmW+fqxTAc+nMnZi5ah+IlXCAIArb8vAQzJwzFzEXr4FbBvUCOqyAkJyfj24lT8Hnb1ujR9QsolUpMmj4Tcxcuxqxpk3NtezLkNH5c/TNWLV2E0q6ueBQdjeGjx0IsFiOgoV+W+pevXMXps8Z/w6xXySkYOXkWOrZpjl5fdIRCqcT4mfMxa9EKzJsyNte2x06HYumajVi7eC7KuJZCVHQMhnw3CeZiMQL9fAEAaenp+C54Dpo18seC4AkQiUS4efc+hk+YhiK2Nqhbq4Y+DjPfmVhZovaWH6DMkMDEXJzndqW6tYXXsmkI9e2EtPtRsPWogIbhu6CSyhC356imntfyqbD3qY7wwB5QpmfAtVcH1D+yCWfrdkRG1JOCOKRChUM49M/gQzjmz5+P9evXw9/fHyqVCn369EG3bt1gY2ODdu3aGTq8LH47cAzpEgm6t28BADAzNUXfzu0Qeukq/r1zP9e2coUSi6d8i5aBWb9cMrkUL4YlU7/VdJ4BwLemFwDgUczTfDgC/fv9wFFkSCTo9nkrAOpz1qdLe5y7dAX/3r6Xa1u5QoFFU79Di8CGudZzsCuC1fOmokrF8vkWtyHtPHoGGRIperYKAqA+ZwM+/wxnr9zE1XuRObaztrRAx8b1NZ1nAPiqVSAsxGIcOHtRU1bc0Q592zWFva0NAEBsZoY+bZogJT0DIZdvFMxB6UloyGFEP3qIzt3f/NDo3H0goh7eQ/jZE7m2lUgyMPy7GWjbKef5F7ZF7NG6Q3cUL+ECABCJROjQtS8UCjnCTh/NsV1htHvfAUgyJOjSsQMAwNTUFF992RV/X7iIG7du59hOEARs2LINTQIbobSrKwCgXJkyCPRviHWbtmapn5qaipVr1mJAn94Fchz6tGv/IWRIJPiyQ1sA6vdm766dEHbxMq7fvptjO0EQsG7bTjQLbIgyrup7H7iVcUVQwwZYs2WHpl7M02dITUtHfZ9aEIlEAADPKpVRxMYWf1+6UoBHVrBMrSwR9dMvuNr7OygzJHluV2XWaMTs3I+0+1EAgNQ7D/F012F4zPlWU8e6YlmU6f8FHv6wDsr0DABAzNa9kMUnodKEwfl6HESZDN6B3rt3L8LDwzFv3jy4ubkhODgYc+fORVhYGExMDB5eFuFX/oVHBTeYi9/8gvZ0rwATExHOXbqaa9s6Xh5wek9mz9rKElUquGm2pVIZNv9xAKVKFsdn/r4fErrBhP9zDVUqltc6Z9XcK8LERISwy1dzbVvHqyqcHB3e+xyB9X209m/szl27DY/ypWEufpMt9apYDiYiEUKv5HxJ0r2cK77t2UGrTCQSwVxsClPTN++nzwN90bqhj1Y9i9dZIdNC+L7TxdVL4ShewgWOTsU1ZcVKOKOoU3FcuXgu17YVKnnAuVSZXOvU8mmAdp21O9hiC/WwGpO3luE0BhcuXUblShW13jseVdxhYmKC8xdyvkNs1KPHePb8BapV1R6CVq2qB2KfPkX0kxit8hU//YyO7dvC1cU5fw/AAM5fvgr3dz7PqrpXgomJCOEX/8mxXeTjJ4h7/hJeHtpXKLw83BHzNA6Pn8QCANzKlkal8uVw9NRZSGUyAMCZ8At4lZKCYkXfPwSpsJInJCH+ZLhObWw9K8ParTQSw7V/OCSG/wObym6wcVcnTIq3CIDIxCRLvaTzV1GiddAHxW0sVIJKb3+kZvBvShsbG9jZ2QFQD+fIVKRIESQlJRkoqpw9jo1DsaIOWmXmYjHsixRB9NPn+fY8SqUKX0+ajVb9RuDm/QdYHjwWRR2M87J6dGwcir3TCc48Z09inxkmqELu8dMXKP7O/29zsRkcitjg8bOXOu0rIjoWyWkZaOPvk2u9y3cewMrCHE3qGt8wobc9jX0MR6diWcodnYojLja6QJ7z9o1/IDIxgX9giwLZf0GJiYmF0zudMnOxGHZ2RRATG5tjuyevH3u3bTEn9fbbbc+EhiEp+RXatW6VX2EbVHTsUxQr6qhVpv48s8OT2JyvEmY+5vRO22JO6u0nT59q9rVsTjAUSiU69hmMr4aOwrTvl6BRg3ro2KZ5fh5KoWdb2Q0AII3V/m6VxKi3bSqVU//7up4kS71nsHQpAdPXV9qI8pPBx0CnpaVBLpdDLBbDxMQEN27cgJeXFx4/foxbt269t71UKoVUqj1W0cIi50lWH0oilUIsznrazMVmyJDk/bLU+5iamuDnuVMglyuw4fc/MWD8TCyZ+i08Krrl23PoS07nTCw2Q3o+nrOPSYZUluM5y5BkPzY3J8t3HkBb/7pakwjflZyWjs0HTmBc705wKGKrc7yFiVQiQRE7hyzlYrE5XiUl5PvzKRQK/L71Z3T8sh9Kl6uQ7/svSOr3ZtYrN2KxONfPM8nrx95tm7md8foSfUJiItZv3oIf5s3Or5ANTiKV5HDOcn9vZp7Pd6+UmWvOmbqtVCrDmGmz4Whvj13rV8Ha2gpRj58g/NIVmJoY1xWOD2VqYw0AUEllWuWZ26a26sfNbKwhqFQQFIps65nZWEGZmlbQ4RoUx0Drn8Ez0J6enmjYsCHi4uLQrl07+Pn5wd/fHzVr1oS/v/9728+bNw/29vZaf/PmzSuweK0sLSGXK7KUy+QKWFm+fwa2rsRiM3zdvRMc7e2wfNPOfN+/PuR0zuRyBawL4Jx9DKwsLXI8Z1a5rMLxrpW//QVBEDB5wBc51pHJFRi3bBM6NW6Ado3q/ad4DeXa5XDMmjhM83f6+F+wtLSCQi7LUlcul8HSyjpfn18QBKxZNhsVKntojbk2FpaWlpDL5VnK5XJ5rp9nVpZWmnrvtgMAq9erUSxevhK9enRD8WJZrwgYK6scz1nu783M8yl7p61Mc87UbQ8cO4m7EQ8xrH9PWFurz7Nb2dK4de8+5i5blS/HYCwUrzu9JhbmWuWZ28rU9Nf10iEyMYHIzCzbeorX9Yjyk8Ez0PPnz0dERATs7e3xzTffICYmBsePH0fbtm2xbNmy97afOHEixowZo1VmYWGB1PuXCyTeMi4l8TIhSatMJpfjVUoKypb68OW/FEolRBBpjVcViUSoUMYV568Z5+Su0i4l8TIxSass85yVKWX8YyILQlnnYniR9EqrTCZXICklDeWci+fQStuaPw4jIvopFo0eALFZ9m91iUyGccs2oa5nZQz4/LMPjlvfano3QE1v7aW9rlw8h8iIrHcxTYx/AQ/PWvn23CqVCmtXzIWFhSX6DxunmfBlTFxLuSA+QTsrL5PLkZycAtfXE91yagcgS9uX8ert0q6l8DI+AY8eP8ahI8dw6MgxAEBqmrpDtGrtetja2KDbF51R17tOvh2PPpR2ccHLhEStMvXnWTJKu7rk3E5zzrTbvoxXb5d5/XjmWOh3x4uXdnHGzr37MX7EYFgW4FXWwiQt4hEAwKJUCa1yS1f1dubEwrQI9b+WpUog43HsW/VKQhL7HMq0j78DzQy0/hk8A3379m00bNgQVlZWMDMzw6JFi3Dt2jVs3boVRfMwYcLCwgJ2dnZafwU5hKNB7Rq48zBKK4tw895DqFQC/LxrfvD+N+3ajx37D2cpf5GQCDsjHcfVoE5N3H0QqXXObt17AJVKQIN8OGcfo4Y1q+JO5BPI3spC33jwCCpBQMPXS9HlZtmO/XgY8wwLR/bTTETcdjBEq066RIpRP6yDr1cVTec55nk8Tl78N/8OxABq+TTAi+dPkRj/QlP28nkcEuJfoFbd3FdzySulUoFVi6bDytoGA4dPgImJCdJSU3Dq6L582b++1PPxxv2IB1rvzTt370GlUsG3bs5j5t3KlUXJEsVx67b2D5Vbt+/AtVQplHZ1RTGnoti6/mcsmj9H8zdskDpLP2zQACyaP8foOs8A4OtdC/fe+Ty7fS9C/Xnmk/PxlC9bGs4liuHGHe2Vh27cuYfSpZw1K3OULO4E4M2PkUwv4hNgamIKMyObqPohUm/eR3rUEzg2qK1V7tigDlLvRWo60C8On4GgUmWp5+BbC88PhegpWvrUGLwDPXToUERERBg6jDzr2vYzWFlYYMe+IwDUGeNNf+yHv08t1PCorKm3bucedB46FvGJr3LaVY72Hg3Bi/g3WYqjZ//G9bsR6Nyq6YcfgAF80bY5rCwssPPPQwDU52zzrn1o6FMbNaq+mZG+fudufDFkDOLfyVZ/iro1bwRLC3Nse/3hr1Aqsf7PYwio7Yla7m+W6lvzx2G0Hz0bL5OSAaiHFHy/+Q9cvh2BXq2DcO9xLG49jMath9H49dhZTbvU9AwMX7AGpUs6oXaVCpo6f9+4izNGfuMB/6CWKF22Av7YsV5T9scO9frMDQLevIdOHdmHYb3b4nGkbp8/Crkcy7+fgvT0NPgHtcTD+7fx8P5t3Ll1FaGnsv74Lcw6tW8LS0tL7NqzFwCgVCrxy6+/oX69uvCq9mbM/OZfdqDXgK+RkKj+XBKJROjfuydOnj6DJzHqFTceRUfjdOg5DOiT8xKAH4Mu7VrB0tICv+5V38hDoVRiy2+74VfXG9WrVtHU27D9d3w5aITm80wkEmFgz244fvocomPUWdKo6BiEnAvH1726a9o1C/SHrY0NNu7YBaVSPbH+/sMonAm/gKaNGsIsh6tJH4PK00ag8b0TsCj5ZsjP3alL4NqtnWaioK1HBbh0aYm7UxZr6qQ/jEb0ht9R4buBMH097MW1VweYF3NExPw1ej0GQxEEQW9/pGbwd6JEIsHXX38NExMTDB48GB07dizUHxD2RWzx48zxWLphO0IvXoFMLodXlUr4X6+uWvVkcgUkUpnWyiJPnj7DvJ82IvX15aRlG7fD1sYaE4f2Q2kX9fCPZg3rIfFVMr6dswQ21lZQKJUAgOmjvkbzAOO8C5V9kSJYMWsSlq7fhtDxMzTnbFjvblr1ZHJ5tuds/qr1mnO2fMMvsLWxxoRhAzTnDABOhV3AH4eOI+65eoWK4VPnwtrSAgsmfwtj5FDEBmsm/w+Ltu5B339uQCZXoEZlN3zTTXttdJlCAYnszTk7d+02fj+uXqqt7wztIVAuxd7M/l//53H8ez8K/96Pwt6Q81r12vrXLYhD0hszsRgTZy3D1rVLMXl0PwiCABfXshg/Y4nWTVQUCjlkMimUr99jACDJSMfCmd9B/noM9b5dW3DmxF/4oudgeHiqr5acOroPF8NPAwCuXgrTeu6qXtoZsMLOzs4OP8ybjVU/r8OI8+Mgk8ngWdUDg/r10aonl8shkUqhUr55bzYJCoRcocDs73+AtZUVMiQSjPrf0GxvoiKVSjEpeGaWIRxzZ0wr0CuGBcHergiWzZ6GFes2Y+iFKZDJ5fD0cMeQPl9p1ZPL5ZC+83n2WaA/FAoFpi9cDmsr9Z0Ivx06SHMTFQAoUcwJy+dOw/pffsPQsVNgbi5GWnoGenRuj+4d2+vtOAtC9TWzYVOxLCyci6N48wDUP74FT3cfwaNVvwBQj1k2tbYE3hrCGLvzAEzMxai9fQkUKWkws7XG9WHBWjdRAYAb38yC+/Rv0ODMDvWdCBUKnG/R95O4iQoZhkgw8M+JuXPnYtKkSbhz5w7WrFmDw4cPo0OHDhg0aBAqVPjvM9rjb4S9vxJpOHn54cXN8++vSBrFPX2RcuEvQ4dhVIrUa4PL9/J/JYyPmbd7UTy+n/NNTSirspWrIu6O8d50xBCcPWrjL3GV91ckjTbynG+co2/tBuvvM2L/mpxXdPqUGHwIx6RJkwAAHh4eWLJkCa5evYqyZcuiZs2aaNmypYGjIyIiIiLSZvCxEidOnEDTpupxidevX8eaNWuwbds2yGQyzQ1WiIiIiCh7XIVD/wzegZ46dSpiYmKwevVqnD9/HuXKlcP48ePRv39/lCz54cvCERERERHlJ4N3oP/++29cvHgRbdu2xcGDB9G8eXOjXE+ViIiIyBAEQfX+SpSvDN6BrlatGo4dOwYXl5wXoCciIiIiKiwMPomwa9eumDx5Mq5fvw4ACA4OhoODAxo2bIjHjx8bODoiIiKiwk1QCXr7IzWDd6D//vtv1K1bF5UqVcKVK1cwa9Ys9O/fH97e3vj2W+Ncw5eIiIiIPl4GH8IhlUoxdOhQAMC2bdvQoEEDLF6svsNQgwbGeeMQIiIiIn1hZlj/DJ6BVigUmv/etWsXevZ8cxtYa2trQ4RERERERJQjg2egAWD9+vV4+PAhnj9/ji+//BIAkJSUhJSUFANHRkRERESkzeAd6Hnz5qFdu3ZITEzE7NmzUbRoURw9ehRDhgxBp06dDB0eERERUaGm4jJ2emfwDrSfnx9evHiB5ORkODg4aMpOnTqF4sWLGzY4IiIiIqJ3GLwDDQAmJiaazjMA2NrawtbW1nABERERERkJTiLUP4NPIiQiIiIiMiaFIgNNRERERP+NoOIYaH1jBpqIiIiISAfMQBMREREZMY6B1j9moImIiIiIdMAMNBEREZERE7gOtN4xA01EREREpANmoImIiIiMmIpjoPWOGWgiIiIiIh0wA01ERERkxLgOtP4xA01EREREpANmoImIiIiMGNeB1j9moImIiIiIdMAMNBEREZER4zrQ+scMNBERERGRDtiBJiIiIqJCQS6XY/78+bC2tsamTZvy3E4mk2HixImoXbs2/P39ERgYiMuXL2ep9/TpU3z55Zfw8fGBj48PevTogefPn+scJzvQREREREZMUAl6+ytId+/eRcOGDREdHY2MjAyd2g4fPhyHDx9GaGgoQkND0b9/fzRt2hSRkZGaOjKZDM2bN4eDgwMuXbqES5cuwdLSEi1btoRCodDp+diBJiIiIiKDS01Nxfbt2zF27Fid2kVERGDdunUYN24cbGxsAAB9+vSBk5MT5s6dq6m3bds23LhxA8HBwZqy6dOn48qVK/j11191ek52oImIiIiMmKBS6e2vIHl7e6NSpUo6tzt8+DAEQYCfn59WeYMGDXDgwAHN9sGDB+Hm5oZSpUppysqWLQtXV1etennBVTiIiIiIKE+kUimkUqlWmYWFBSwsLAwUEXDv3j0A0OoYA4Crqyvi4uKQkpKCIkWK4N69e1nqZNa7f/++Ts/50Xagnbz83l9Jz6RSKebNm4eJEyca9IWWk+KevoYOIYvCfs6K1Gtj6BCyKOznzNu9qKFDyKKwn7OylasaOoQsCvs5c/aobegQsijs56yN/K6hQ8iisJ+zwiJ0f6Denmv69OmYMWOGVllwcDCmT5+epe6rV6/w9OnT9+6zfPnyH/T/Ny0tDSKRCGKxWKs8c59paWkoUqQI0tLSUKxYsSztLSwsdJ5IKBIEgbev0ZPk5GTY29vj1atXsLOzM3Q4RoHnTHc8Z7rjOdMdz5nueM50x3NW+OiSgd60aRP69ev33n1euXIFtWrV0mxHRUWhfPny2LhxI/r27fve9iNHjsTy5cshk8m0OtHjx4/HggULkJKSAltbW9SsWRO2trY4d+6cVntfX18olUpcunTpvc+ViWOgiYiIiChPLCwsYGdnp/WXU/a4b9++EAThvX9vd57/i8qVKwMAYmNjtcpjYmLg4uICW1tbTb1362TWc3d31+k52YEmIiIiIqPVqlUriEQihIWFaZWHh4ejTZs3Qy1bt26NqKgorU7048ePERMTo1UvL9iBJiIiIiKj0bRpUzRr1kyzXbFiRQwcOBALFixAWloaAGDz5s14+fIlJk2apKnXs2dPeHp6ao3hnj59OmrXro0vv/xSpxjYgdYjCwsLBAcHcyKEDnjOdMdzpjueM93xnOmO50x3PGefltTUVAQFBaFbt24AgPnz5yMoKAihoaFa9dLT07PcaOXHH39EixYt0LBhQzRs2BAbNmzAiRMnUL58eU0dc3NzHDt2DElJSfDx8YG3tzcyMjJw+PBhmJnptq4GJxESEREREemAGWgiIiIiIh2wA01EREREpAN2oImIiIiIdPDR3onQ2EyfPh0dOnT44LUQjUVkZCT69euHq1evAgBq1aoFlUqFV69eoXTp0ujduze6du0KkUgEAPj8889x7do1PHr0CIGB6jsupaSkID09HX369MF3332n8wQAY3fgwAGsXLlScwcmmUyGEiVKoG3btujQoQOKFy8OqVSKxYsXY/fu3bCxsYEgCEhOTkaNGjXQt29fNG7c2NCHYTAhISG4evUqRo0apVV+4MAB9OvXD//88w/KlCljmODI6Li5ucHNzU2zfefOHSQlJaF+/fqasr///hsSiQTHjh3DggULIJVKYWJigtTUVBQvXhxBQUEYP368AaInIp0JVCgAEDZu3GjoMPQuMDBQCAwM1Co7fPiwUKpUKaFly5ZCRkaGpjw4OFh49yV7+PBhwcTERPj222/1EW6hMWbMGKFChQrC9evXNWUKhUJYvny5AEAIDg4WBEEQevfuLVStWlV4+fKlpl5cXJzg6ekpjBw5Us9RFy7BwcFCuXLlspSHhoYKfn5+QmJiot5jIuP17mupT58+WcrKlSsnnDhxQhCJRMJff/2lKVcoFMKECRMEe3v7gg+UiPIFh3BQodOiRQscOXIEJ06cwJgxY95b19PTE9u2bdNTdIa3Y8cOLF68GNu2bYOXl5em3NTUFCNGjNAs/wMAu3btQps2beDk5KQpK1myJCZPnoyiRYvqNW5j0bBhQ5w7dw4ODg6GDoWMyLtXMnKq88cff8DJyQmtW7fWlJuammLatGmoWLFiAUZIRPmJHeh8sGvXLtSvXx8ikQhbtmxBjx494O/vDxMTE+zduxfnz59HkyZN4OvrC39/f3Tu3BmRkZEAgLt37yIoKAjAm/UOM7c/ZV5eXmjXrh3Wrl2LxMTEXOvKZDKYm5vrKTLD++GHH1CpUiU0aNAg28dnzpyJTp06AQAcHBxw6tSpLOtldu/eHdOmTSvwWA3h7ffj5s2b0b17d/j5+aFKlSrYs2cPAGDixInYtGkT4uLiNO+5TZs2abUNCQnR7HP//v3w9fVFUFAQAgMD0alTJ1y4cMFAR1iwli9fjpo1a6Jhw4aoV68eunfvjgsXLiA9PR3Dhw+Hj48PGjdujLp162LMmDGamxbs27cPFStWhEgkQmBgIK5fvw5A3Wl0dnZGzZo1cevWLUMeWoHKawfawcEB8fHxOH/+vNZjVlZWuHz5cgFFZ3hhYWFo1KgRAgIC0KRJE7Rq1QozZsyAp6cnRCIR6tevj2PHjgEA5syZAzc3N1SpUgUnT55EXFwc+vXrh7p16yIoKAg+Pj6YM2cOlEqlZv9t27aFs7MzgoKCsHLlSrRp0wYuLi6fzLBIMgBDp8A/FpGRkQIAITAwUHj16pUgCIIwbNgwYcWKFYKVlZWwbds2Td2JEycKrq6uQkpKiqYMHMKRxcKFCwUAwqFDhwRByH4Ix5o1awQAwvz58ws61EIhLS1NEIlEQocOHfJUP/Mcuri4CGPHjhVOnz4tyOXyAo7S8DLfj5999pmQnp4uCIIgfP/994K9vb2QmpoqCELOQzgy2546dUoQBPWQF7FYLBw5ckRT57vvvtMMk/mYTJs2TXBychIiIiIEQRAEqVQqtG7dWhg5cqQQHR0tlClTRkhISBAEQRAyMjKEJk2aCP/73/807S9evKj1nhUE9fCEatWqCUlJSfo9GAPLbgiHIAhCRESEYG9vL4jFYqFLly7CL7/8ojXE6mOkUCgER0dHYc2aNZqyH3/8UejTp4/w5MkTwdTUNMv3X2BgoHDnzh1BEATh7Nmzgre3t2ZIX2JiolC1alVh4cKFWm369OkjFClSRNi6dasgCILw5MkToUGDBgV4ZPQpYwY6n/Xq1Qt2dnYAgJUrV+L8+fNwdnbGV199pakzatQoxMTEYMeOHYYK0yhkXkJPSEjQKs/MGNatWxe7d+/Gjh07PpmJN4mJiRAEAba2tnmq/91332H//v3w8vLC4sWLERgYCBcXF4wbNw7p6ekFHK3h9ejRA1ZWVgCA5s2b49WrV4iIiNBpH0+fPoVcLseDBw80ZePGjUOPHj3yNVZDS0tLw4IFC9CrVy/NUAJzc3MEBwfDx8cHJUuWxJkzZ+Do6AgAsLS0xBdffKHJ6gOAj48P6tWrh5UrV2rKDhw4gICAANjb2+v3gAqpihUr4tq1axg4cCBOnDiBr776CiVLlkSbNm3w77//Gjq8ApGcnIzExERERkZCeH3vtr59+2L06NFwdXVF27ZtsXr1ak3927dvw8TEBFWqVAEA1K5dG/v27YOlpSUA9XdD+/bttV57mRwcHNCzZ08AgKurK8LCwgr68OgT9WktW6AHb8/CBoDLly8jMTExy7CMcuXK4cWLF/oLzAhldpzfHav79qX1T42joyNEIhFSU1Pz3KZt27Zo27YtEhMTcfjwYWzevBkLFy7E9evXcejQoQKM1vDeXkUjswOXlJSk0z5q1aqFwYMHY/jw4Vi2bBm6dOmC3r17w93dPT9DNbibN29CIpFoOi2Z6tWrh3r16gEATp48iR07diAjIwNmZmaIi4tDbGysVv3hw4ejb9++iIyMRPny5bFq1SosXLhQb8dhDMqVK4dVq1ZhxYoVCA8Px65du7B+/Xo0aNAAN27c0Lr18MfA0dERs2bNwqxZs/DLL7+gS5cu6NmzJ+rUqQMAGDJkCFq1aoVr166hZs2aWLNmDQYPHqxpb25ujp07d2Lfvn1QKpUwNTVFVFSUZpWmt5UrV05vx0WfNmag85mpqWmWskqVKiEkJETrLyoqCpMmTTJAhMYjLCwMZmZm8PX1NXQohYa1tTXq1KmDGzdu5Kn+kydPNP/t6OiI7t274/DhwxgyZAgOHz6MV69eFVSohcLb78fML9vMDJguVq9ejaioKPTv3x979+5F1apVsXbt2nyLszDJrlMCACtWrMDAgQMxduxYhIaGIiQkBBMmTMhSr2vXrihatCh++ukn3L9/HxKJBDVq1CjosI1GUlKS5gewqakp/P39sXTpUhw/fhzp6enYt2+fgSMsGFOmTEFMTAzGjx+P8PBweHt7Y+rUqQDUV4fc3NywZs0aSCQSHD58GB07dtS0nTBhAqZNm4Zly5bh7NmzCAkJQd++fbN9L2f3HUxUENiBLmA+Pj548OABZDKZVvns2bNx5swZzfbbX1rp6emQy+V6i7EwunbtGv766y8MGjRIc8mY1CZMmICIiAiEh4dn+7i3tze+/fZbAIC/v3+WDCEAeHh4QCQS5dhZ+hSYmLz5+FOpVEhJScm2XkxMDMLCwlCmTBmMGzcO169fR4cOHbBixQp9haoXnp6esLKywt27d7XKr127hq1bt+LYsWNwdnZG8+bNNY9JpdIs+7GwsMDAgQOxYcMGLF68GEOHDi3w2I3J0qVLsXz58izlHh4eALRflx+LlJQUHDlyBMWKFcP//vc/hIeHY9SoUVi2bBkA9TEPGjQIv/zyCzZs2IDPP/9ca2L4sWPHUKNGDdSsWVNTlt1rj0ifPr53aiEzfvx4SKVSfP/995qy06dPY926dVpZGRcXF7x8+RIA0LFjRxw/flzvsRYWhw8fRqtWrdC0aVMsXrzY0OEUOl26dMHkyZPRq1cvrUx0RkYGRo0aBYlEonV1Y8qUKZBIJJrtp0+fYv369fj888814/U/RS4uLkhMTIRSqcT58+fRrFmzbOvdv38fY8aM0TqHCoUCnp6e+gpVL2xsbDBu3Dhs27YNDx8+BABIJBKMGjUKcrkcNWrUwLNnzzQrRchkMuzatSvbfQ0ZMgSJiYnYu3cvOnfurLdjMBarV6/WGouvUCgwf/58FClSRCvz+rGIj4/XvCYyvfse6t+/PzIyMjB27FgMGjRIq32NGjVw8+ZNPHr0CIC6Q75//379BE+UE8POYfw4HD16VPD19RUACDVr1hR69eql9fjFixeFpk2bCtWqVROaNGkitGvXTrh9+7ZWnY0bNwqVKlUS/P39hc6dO3/0KyU8fPhQCAwMFOzt7QV7e3shMDBQCAgIEGrUqCG0atVK2LFjh6BSqTT127dvL5QrV06z0snYsWMNGH3hcPDgQaFFixZCw4YNhcDAQKFevXrChAkThPj4eE2dLVu2CJ07dxbq1KkjBAYGCnXr1hW8vLyECRMmaFaj+Ni8+3785ZdfhJCQkCxliYmJQlBQkFCnTh3Bx8dHOHTokPD7779r1Vu1apUQFxcnfP3114KPj48QFBQk+Pj4CH379tU6zx+TpUuXCtWrVxf8/PwEX19fYcmSJYIgqFfdGDJkiFC6dGkhKChI6NixozBw4EDNe/LmzZta+2nbtq0wdepUAxyBYcXHxwuBgYFCyZIlBQsLCyEwMFAICwvTPH7t2jVhxIgRgre3txAQECA0bNhQqFatmtCxY0fh6tWrBoy84KSmpgqjR48WvL29haCgIMHX11fo1KmTEBkZqVWvc+fOQrNmzbK0f/HihdCtWzehdOnSQvPmzYWuXbsKXbp00Zzf+Ph4oUePHkLJkiU13ycnTpzQ09HRp0okCP9hQCAREVEu6tWrhz179sDV1dXQoRAR5TsO4SAionyROXQoJCQEFSpUYOeZiD5azEATEVG+aNiwIV69egU7Ozvs2LGDS4oR0UeLHWgiIiIiIh1wCAcRERERkQ7YgSYiIiIi0gE70EREREREOmAHmoiIiIhIB+xAExERERHpgB1oIjKIx48fIygoCCYmJihatCg6deqk9bhSqURQUBCKFCmCBg0a4OrVq//5ua5cuYKiRYviwoULeW6za9cu1K9fHyKRCCEhITnWmzJlCjw8PCASif5zfEREZFy4jB0RGVSTJk1w9epVxMbGwtLSUuuxhIQE+Pn54fbt2x/UQY2IiEDPnj2xbds2VKpUKc/toqKiUL58eZw6dQpBQUE51tu0aRP69esHfpwSEX0amIEmIoMaMGAAEhMTsXv37iyPbdu2DT169Pjg7G6lSpXw999/69R5JiIiygk70ERkUJ07d4aDgwPWr1+f5bHMzO7EiRNRt25dNG7cGL6+vujfvz9evnypqff2MIpTp06hffv28PLygkgkQmhoKIKCgiASibBp0yZNm4MHD6JJkyZo1KgRAgMDERAQkONQjcjISHTp0gUNGzaEm5sb5syZ897jSklJwbBhw1CzZk0EBgbCz88Pu3bt0qqzYcMGeHt7o3HjxvD390evXr1w9+7dvJ04IiIyHIGIyMCGDh0qiEQi4cGDB5qyixcvCi1bthQEQRDs7e2FyMhIQRAEQaFQCL169RLatGmjtY+NGzcKAIQxY8YIKpVKUCqVQs2aNYWkpCRBEAQBgLBx40ZN/QEDBggLFy7UbB85ckSwsbERoqKiNGWRkZECAMHPz0+znytXrgjm5ubCqlWrsjx3JpVKJTRq1Eho3bq1IJVKBUEQhGvXrgkWFhbCnj17BEEQhEuXLgkAhLt37wqCIAhKpVLo2rWrVoxERFQ4MQNNRAY3YMAACIKglYVev349BgwYAAC4ePEi3NzcAACmpqbo0aMHDh06BIlEkmVfw4YNg0gkgomJCa5evQp7e/tsnzM4OBjDhw/XbDdv3hy2trY4evRolrp9+/bV7KdWrVpo06YN5s+fn+PxnDx5EmfOnMH48eNhbm4OAKhRowaaNGmChQsXAgCio6MBAA8ePAAAmJiYYOHChWjWrFmO+yUiosLBzNABEBF5e3ujZs2a2LRpE2bOnAmZTIZjx45h2bJlAICbN29i1KhRSEpKglgsRlJSElQqFZ49e4Zy5cpp7Suzo/0+crkcI0eOxI0bN2BmZgaRSISkpCTExsZmqfvuPt3d3bFnzx4kJyfDzs4uS/3Lly8DAMaPHw8LCwtN+cuXLzUd6tatW+Pzzz9H69atUadOHXTp0gW9evVC6dKl8xQ/EREZDjvQRFQo9O/fHyNHjsShQ4eQkJCA9u3bw9zcHPv370fHjh2xdu1aDBw4EAAQEhKCxo0bZ7vqhamp6XufKyMjA40aNYKXlxeOHDkCW1tbAOqOcnb7fFdmnfdNbly3bh08PT2zfczc3Bx79+7F3bt3sX37dvz888+YOXMmdu3ahTZt2rw3BiIiMhwO4SCiQqFnz56wsLDAunXrtIZvHDt2DADQq1cvTV2pVPpBz3X79m3ExMSgU6dOms5zbvuNjIzU2r5//z7Kli2LIkWKZFvfx8cHAHDr1i2t8nPnzmHmzJkAgDt37uDGjRuoUqUKZsyYgXv37qFGjRpYs2bNfz4uIiLSD3agiahQKFq0KDp06IADBw5AJpNpMrc1atQAoF41AwBUKhV27NjxQc9VoUIF2Nra4siRI1AqlQDU45bj4uKyrf/zzz/j1atXAICrV6/ir7/+woQJE3Lcf+PGjREUFITvv/8eSUlJAIDk5GSMGTMGVapUAQD8/fffCA4O1jw/ACgUihwz1kREVHhwCAcRFRoDBgzAr7/+iv79+2uVRUVFYeTIkVi0aBGcnJxQsWJFAEC3bt0wd+5cXL58WTMBMSgoCO3bt8eYMWMAAKGhoZgyZQoAYP78+YiMjMSMGTOwZ88ejB8/HtWqVYOHhweqVKkCZ2dnbNq0Cenp6ahXrx5++OEHAOpJhL169cLLly8RExODqVOnYsiQIQDUS+hlLk8XFCMnP/IAAACzSURBVBSEefPmoUGDBti/fz8mTpwIX19flCxZEiqVCv/73//w5ZdfAgD8/Pxw7NgxNGjQADY2NkhOTkZAQACmT59e8CeaiIg+CO9ESERERESkAw7hICIiIiLSATvQREREREQ6YAeaiIiIiEgH7EATEREREemAHWgiIiIiIh2wA01EREREpAN2oImIiIiIdMAONBERERGRDtiBJiIiIiLSATvQREREREQ6YAeaiIiIiEgH/weSbsvpkPJWZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(9, 7))\n", + "s = sns.heatmap(train_data.loc[:, train_data.columns != 'date'].corr(),\n", + " annot=True, \n", + " center=0,\n", + " linewidths=.5, \n", + " square=True,\n", + " vmin=-1,\n", + " vmax=1, \n", + " xticklabels='auto', # automatic X-variables\n", + " yticklabels='auto', # automatic X-variables\n", + " fmt='0.2f',\n", + " cmap=\"coolwarm\")\n", + "s.set_title('Correlation Matrix of the In-Sample Exogenous Variables')\n", + "s.set(xlabel='Variables', ylabel='Variables')\n", + "plt.show()" + ] + }, + { + "cell_type": "raw", + "id": "7ff4dcdb-7e30-4870-b7ae-d52ae5867112", + "metadata": {}, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "e715dd42-7021-466d-a9c1-0c0b4efeee78", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Question 2: Predicting returns\n", + "\n", + "After having cleaned the data, you are ready to build the first model to predict returns\n", + "\n", + "1. Use the training data to fit a linear model using all features (make sure to exclude the date variable). Which features are useful for predicting returns?" + ] + }, + { + "cell_type": "markdown", + "id": "5460537b-6fde-422f-854a-d36e9cc36375", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Regression with all predictors: `ret ~ .`" + ] + }, + { + "cell_type": "markdown", + "id": "75c4236c-352c-4c28-8eaf-6687771426ae", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Solution Approach 1: `ols()` \"formula\" function from `statsmodels.formula`\n", + "\n", + "- Advantage:\n", + " - Formula function, as known from R.\n", + " - **Extract**:\n", + " - `np.log(Variable)` Apply logarithm to Variable\n", + " - `np.sqrt(Variable)` Apply square root to Variable\n", + " - `np.power(Variable, 2)` Variable to the power of $2$\n", + " Example: `np.power(Variable, 3)` Variable to the power of $3$\n", + " - `C(Variable)` The C declares the Variable as a categorical variable\n", + " - `Variable1 * Variable2` Interaction term of two variables (with additional inclusion of individual variables)\n", + " - `Variable1 : Variable2` Interaction term of two variables (without separately including individual variables)\n", + " - Provides a summary statistic directly.\n", + "- Disadvantage:\n", + " - Often not flexible enough for more complex tasks..." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "593160b7-045b-4754-aed8-2119e37c0b93", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    OLS Regression Results
    Dep. Variable: ret R-squared: 0.129
    Model: OLS Adj. R-squared: 0.097
    Method: Least Squares F-statistic: 4.063
    Date: Tue, 01 Apr 2025 Prob (F-statistic): 0.000793
    Time: 21:31:56 Log-Likelihood: 210.80
    No. Observations: 172 AIC: -407.6
    Df Residuals: 165 BIC: -385.6
    Df Model: 6
    Covariance Type: nonrobust
    \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    coef std err t P>|t| [0.025 0.975]
    Intercept 0.2968 0.097 3.063 0.003 0.106 0.488
    DP 0.0839 0.028 3.031 0.003 0.029 0.139
    CS 0.4750 1.739 0.273 0.785 -2.958 3.908
    ntis -0.3945 0.410 -0.961 0.338 -1.205 0.416
    cay 0.4215 0.306 1.379 0.170 -0.182 1.025
    TS 0.6310 0.482 1.309 0.192 -0.320 1.583
    svar 0.8027 0.828 0.969 0.334 -0.832 2.438
    \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    Omnibus: 26.211 Durbin-Watson: 1.810
    Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.178
    Skew: -0.823 Prob(JB): 1.89e-09
    Kurtosis: 4.701 Cond. No. 1.10e+03


    Notes:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    [2] The condition number is large, 1.1e+03. This might indicate that there are
    strong multicollinearity or other numerical problems." + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & ret & \\textbf{ R-squared: } & 0.129 \\\\\n", + "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.097 \\\\\n", + "\\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 4.063 \\\\\n", + "\\textbf{Date:} & Tue, 01 Apr 2025 & \\textbf{ Prob (F-statistic):} & 0.000793 \\\\\n", + "\\textbf{Time:} & 21:31:56 & \\textbf{ Log-Likelihood: } & 210.80 \\\\\n", + "\\textbf{No. Observations:} & 172 & \\textbf{ AIC: } & -407.6 \\\\\n", + "\\textbf{Df Residuals:} & 165 & \\textbf{ BIC: } & -385.6 \\\\\n", + "\\textbf{Df Model:} & 6 & \\textbf{ } & \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{Intercept} & 0.2968 & 0.097 & 3.063 & 0.003 & 0.106 & 0.488 \\\\\n", + "\\textbf{DP} & 0.0839 & 0.028 & 3.031 & 0.003 & 0.029 & 0.139 \\\\\n", + "\\textbf{CS} & 0.4750 & 1.739 & 0.273 & 0.785 & -2.958 & 3.908 \\\\\n", + "\\textbf{ntis} & -0.3945 & 0.410 & -0.961 & 0.338 & -1.205 & 0.416 \\\\\n", + "\\textbf{cay} & 0.4215 & 0.306 & 1.379 & 0.170 & -0.182 & 1.025 \\\\\n", + "\\textbf{TS} & 0.6310 & 0.482 & 1.309 & 0.192 & -0.320 & 1.583 \\\\\n", + "\\textbf{svar} & 0.8027 & 0.828 & 0.969 & 0.334 & -0.832 & 2.438 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lclc}\n", + "\\textbf{Omnibus:} & 26.211 & \\textbf{ Durbin-Watson: } & 1.810 \\\\\n", + "\\textbf{Prob(Omnibus):} & 0.000 & \\textbf{ Jarque-Bera (JB): } & 40.178 \\\\\n", + "\\textbf{Skew:} & -0.823 & \\textbf{ Prob(JB): } & 1.89e-09 \\\\\n", + "\\textbf{Kurtosis:} & 4.701 & \\textbf{ Cond. No. } & 1.10e+03 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{OLS Regression Results}\n", + "\\end{center}\n", + "\n", + "Notes: \\newline\n", + " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. \\newline\n", + " [2] The condition number is large, 1.1e+03. This might indicate that there are \\newline\n", + " strong multicollinearity or other numerical problems." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: ret R-squared: 0.129\n", + "Model: OLS Adj. R-squared: 0.097\n", + "Method: Least Squares F-statistic: 4.063\n", + "Date: Tue, 01 Apr 2025 Prob (F-statistic): 0.000793\n", + "Time: 21:31:56 Log-Likelihood: 210.80\n", + "No. Observations: 172 AIC: -407.6\n", + "Df Residuals: 165 BIC: -385.6\n", + "Df Model: 6 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "Intercept 0.2968 0.097 3.063 0.003 0.106 0.488\n", + "DP 0.0839 0.028 3.031 0.003 0.029 0.139\n", + "CS 0.4750 1.739 0.273 0.785 -2.958 3.908\n", + "ntis -0.3945 0.410 -0.961 0.338 -1.205 0.416\n", + "cay 0.4215 0.306 1.379 0.170 -0.182 1.025\n", + "TS 0.6310 0.482 1.309 0.192 -0.320 1.583\n", + "svar 0.8027 0.828 0.969 0.334 -0.832 2.438\n", + "==============================================================================\n", + "Omnibus: 26.211 Durbin-Watson: 1.810\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.178\n", + "Skew: -0.823 Prob(JB): 1.89e-09\n", + "Kurtosis: 4.701 Cond. No. 1.10e+03\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The condition number is large, 1.1e+03. This might indicate that there are\n", + "strong multicollinearity or other numerical problems.\n", + "\"\"\"" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit in-sample multilinear regression\n", + "Fit_lm = ols('ret ~ DP + CS + ntis + cay + TS + svar', data=train_data).fit()\n", + "Fit_lm.summary() # Outputting the model statistics.\n", + "\n", + "# Option 2:\n", + "## Concatenate all predictor variable names except 'ret'\n", + "#predictors = [col for col in Auto.columns if col != 'ret']\n", + "#formula = 'ret ~ ' + ' + '.join(predictors)\n", + "\n", + "## Fit linear regression using all predictors from Auto data\n", + "#Fit_lm = ols(formula=formula, data=Auto).fit()\n", + "#Fit_lm.summary() # Outputting the model statistics." + ] + }, + { + "cell_type": "markdown", + "id": "9ef0f8dd-b4cb-4f50-a3e8-4672e32d23a0", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Solution Approach 2: `OLS()` without the \"formula\" function from `statsmodels`\n", + "\n", + " - Advantage:\n", + " - Provides a summary statistic directly.\n", + " - Disadvantage:\n", + " - An \"Intercept\" must be added independently to the list of exogenous variables.\n", + " - Often not flexible enough for more complex tasks..." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "2c357768-0756-4523-a44d-0ccb87cb9c2a", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    OLS Regression Results
    Dep. Variable: ret R-squared: 0.129
    Model: OLS Adj. R-squared: 0.097
    Method: Least Squares F-statistic: 4.063
    Date: Tue, 01 Apr 2025 Prob (F-statistic): 0.000793
    Time: 21:31:56 Log-Likelihood: 210.80
    No. Observations: 172 AIC: -407.6
    Df Residuals: 165 BIC: -385.6
    Df Model: 6
    Covariance Type: nonrobust
    \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    coef std err t P>|t| [0.025 0.975]
    const 0.2968 0.097 3.063 0.003 0.106 0.488
    DP 0.0839 0.028 3.031 0.003 0.029 0.139
    CS 0.4750 1.739 0.273 0.785 -2.958 3.908
    ntis -0.3945 0.410 -0.961 0.338 -1.205 0.416
    cay 0.4215 0.306 1.379 0.170 -0.182 1.025
    TS 0.6310 0.482 1.309 0.192 -0.320 1.583
    svar 0.8027 0.828 0.969 0.334 -0.832 2.438
    \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "\n", + " \n", + "\n", + "
    Omnibus: 26.211 Durbin-Watson: 1.810
    Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.178
    Skew: -0.823 Prob(JB): 1.89e-09
    Kurtosis: 4.701 Cond. No. 1.10e+03


    Notes:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
    [2] The condition number is large, 1.1e+03. This might indicate that there are
    strong multicollinearity or other numerical problems." + ], + "text/latex": [ + "\\begin{center}\n", + "\\begin{tabular}{lclc}\n", + "\\toprule\n", + "\\textbf{Dep. Variable:} & ret & \\textbf{ R-squared: } & 0.129 \\\\\n", + "\\textbf{Model:} & OLS & \\textbf{ Adj. R-squared: } & 0.097 \\\\\n", + "\\textbf{Method:} & Least Squares & \\textbf{ F-statistic: } & 4.063 \\\\\n", + "\\textbf{Date:} & Tue, 01 Apr 2025 & \\textbf{ Prob (F-statistic):} & 0.000793 \\\\\n", + "\\textbf{Time:} & 21:31:56 & \\textbf{ Log-Likelihood: } & 210.80 \\\\\n", + "\\textbf{No. Observations:} & 172 & \\textbf{ AIC: } & -407.6 \\\\\n", + "\\textbf{Df Residuals:} & 165 & \\textbf{ BIC: } & -385.6 \\\\\n", + "\\textbf{Df Model:} & 6 & \\textbf{ } & \\\\\n", + "\\textbf{Covariance Type:} & nonrobust & \\textbf{ } & \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lcccccc}\n", + " & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$> |$t$|$} & \\textbf{[0.025} & \\textbf{0.975]} \\\\\n", + "\\midrule\n", + "\\textbf{const} & 0.2968 & 0.097 & 3.063 & 0.003 & 0.106 & 0.488 \\\\\n", + "\\textbf{DP} & 0.0839 & 0.028 & 3.031 & 0.003 & 0.029 & 0.139 \\\\\n", + "\\textbf{CS} & 0.4750 & 1.739 & 0.273 & 0.785 & -2.958 & 3.908 \\\\\n", + "\\textbf{ntis} & -0.3945 & 0.410 & -0.961 & 0.338 & -1.205 & 0.416 \\\\\n", + "\\textbf{cay} & 0.4215 & 0.306 & 1.379 & 0.170 & -0.182 & 1.025 \\\\\n", + "\\textbf{TS} & 0.6310 & 0.482 & 1.309 & 0.192 & -0.320 & 1.583 \\\\\n", + "\\textbf{svar} & 0.8027 & 0.828 & 0.969 & 0.334 & -0.832 & 2.438 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "\\begin{tabular}{lclc}\n", + "\\textbf{Omnibus:} & 26.211 & \\textbf{ Durbin-Watson: } & 1.810 \\\\\n", + "\\textbf{Prob(Omnibus):} & 0.000 & \\textbf{ Jarque-Bera (JB): } & 40.178 \\\\\n", + "\\textbf{Skew:} & -0.823 & \\textbf{ Prob(JB): } & 1.89e-09 \\\\\n", + "\\textbf{Kurtosis:} & 4.701 & \\textbf{ Cond. No. } & 1.10e+03 \\\\\n", + "\\bottomrule\n", + "\\end{tabular}\n", + "%\\caption{OLS Regression Results}\n", + "\\end{center}\n", + "\n", + "Notes: \\newline\n", + " [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. \\newline\n", + " [2] The condition number is large, 1.1e+03. This might indicate that there are \\newline\n", + " strong multicollinearity or other numerical problems." + ], + "text/plain": [ + "\n", + "\"\"\"\n", + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: ret R-squared: 0.129\n", + "Model: OLS Adj. R-squared: 0.097\n", + "Method: Least Squares F-statistic: 4.063\n", + "Date: Tue, 01 Apr 2025 Prob (F-statistic): 0.000793\n", + "Time: 21:31:56 Log-Likelihood: 210.80\n", + "No. Observations: 172 AIC: -407.6\n", + "Df Residuals: 165 BIC: -385.6\n", + "Df Model: 6 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 0.2968 0.097 3.063 0.003 0.106 0.488\n", + "DP 0.0839 0.028 3.031 0.003 0.029 0.139\n", + "CS 0.4750 1.739 0.273 0.785 -2.958 3.908\n", + "ntis -0.3945 0.410 -0.961 0.338 -1.205 0.416\n", + "cay 0.4215 0.306 1.379 0.170 -0.182 1.025\n", + "TS 0.6310 0.482 1.309 0.192 -0.320 1.583\n", + "svar 0.8027 0.828 0.969 0.334 -0.832 2.438\n", + "==============================================================================\n", + "Omnibus: 26.211 Durbin-Watson: 1.810\n", + "Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.178\n", + "Skew: -0.823 Prob(JB): 1.89e-09\n", + "Kurtosis: 4.701 Cond. No. 1.10e+03\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The condition number is large, 1.1e+03. This might indicate that there are\n", + "strong multicollinearity or other numerical problems.\n", + "\"\"\"" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Creating the model matrix:\n", + "\n", + "# Removing the endogenous and qualitative variables.\n", + "X = train_data.drop(columns=['date', 'ret'])\n", + "X = sm.add_constant(X) \n", + "# Option 2: Inserting an intercept term at the beginning of the matrix.\n", + "#X.insert(0, 'intercept', np.ones(train_data.shape[0]))\n", + "\n", + "y = train_data['ret'] # Setting the endogenous variable.\n", + "\n", + "model = sm.OLS(y, X) # Filling the Ordinary Least Squares (OLS) model.\n", + "fit_lm = model.fit() # Fitting the univariate linear regression model.\n", + "fit_lm.summary() # Outputting the model statistics." + ] + }, + { + "cell_type": "markdown", + "id": "a058bafc-8a68-4a80-820b-9f164ffca056", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Solution Approach 3: `LinearRegression()` without the \"formula\" function from `sklearn.linear_model`\n", + "\n", + " - Advantage:\n", + " - No need to add an \"Intercept\" to the list of exogenous variables.\n", + " - Comprehensive and flexible enough for more complex tasks...\n", + " - Disadvantage:\n", + " - Does **not** provide \"out of the box\" summary statistics.\n", + "\n", + "For solving the following tasks, LinearRegression() is the best choice. Proceeding with Approach 3 from here." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "bbd38561-e89e-4dc6-926b-d333b44e3eb8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Establishing y and X based on the training and validation datasets.\n", + "X_train = train_data.drop(columns=['ret','date']) # Exogenous: all variables except ret and date.\n", + "y_train = train_data['ret'] # Endogenous: ret.\n", + "X_test = test_data.drop(columns=['ret','date']) # Exogenous: all variables except ret and date.\n", + "y_test = test_data['ret'] # Endogenous: ret.\n", + "\n", + "# Setting up and training the regression model.\n", + "model_all = LinearRegression()\n", + "model_all.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "2d4dfb67-cc08-4d9e-9a1d-5128827d6fe4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Coefficients
    svar0.802650
    TS0.631040
    cay0.421456
    ntis-0.394479
    CS0.474950
    DP0.083873
    \n", + "
    " + ], + "text/plain": [ + " Coefficients\n", + "svar 0.802650\n", + "TS 0.631040\n", + "cay 0.421456\n", + "ntis -0.394479\n", + "CS 0.474950\n", + "DP 0.083873" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Feature_names = model_all.feature_names_in_\n", + "COefs = pd.DataFrame(\n", + " model_all.coef_, # Coeffocient values\n", + " columns=[\"Coefficients\"], # New Column name\n", + " index=Feature_names, # Predictor name list\n", + ")\n", + "\n", + "COefs.iloc[::-1] # \".iloc[::-1]\" reverses the order of the dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "2b3de871-d80c-482b-bea5-d5d77badb011", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAGOCAYAAABfUCHXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARMZJREFUeJzt3XlcVdX+//H3ARUQmUQZRAVzypzTcFYcMqcGp1LTUMuysNIGc8oxv9rkUA7NWTl0u97ModRKRS3NbppUlqamZQ6VhoAyiLB+f/jj3I4g4uEAG3g9H4/zCNZZa5/PXhzk3d5r72MzxhgBAAAAFuNW1AUAAAAAOSGoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAhbXrVs3hYSEyGazyd3dXSEhIQoJCVHlypVVo0YN9evXT0uXLtWFCxeyjT1w4IBCQkLk5+cnm82mChUq2Md7e3srODhY/fr10549e4pgz3J29uxZzZw5Uy1btlRYWJgqVqyooKAgtWvXTk8++aQ2bdqkjIyMbOM++ugjdevWTUFBQapcubJCQ0NVv359DRo0SC+//LL++uuvItibgtWlSxfVr19faWlpRV0KcnD06FHZbDb771zWo1y5crLZbKpcubJDu5eXl6ZOnWofn5SUpGnTpqlJkyby9/dXcHCwqlWrplatWunRRx/Vhx9+WHQ7BxQWA8DBkSNHjCQTHR1d1KU4kGTCw8Md2n755Rfz7LPPmoCAAFOrVi3zzTff5Dj27bffNpLMlClT7G0ZGRlm69atpnr16qZs2bLms88+K8Dq82bz5s0mMDDQ3HbbbSYuLs7efvr0aTN//nwTEBBgJJn77rvPYdy0adOMJDNhwgQTHx9vjLm0fzt27DBNmjQxkszatWsLc1dcIjo62kgyR44cyfH5xo0bmypVqpjz588XbmHIk6x/Sy7XoUOHHH+u0dHR9t/Rc+fOmQYNGpigoCCzfv16c/HiRXv7q6++asqVK2cCAwMLeheAIscRVaAYq1GjhsaOHatvvvlGKSkp6tSpk+Li4vI01s3NTe3bt9dLL72k9PR0Pfzww07XMXToUEVERDg9XpK++eYb9ejRQx06dNBHH32kRo0a2Z8LDAzUI488oo8++kju7u5KT0+3P3fmzBnNmDFDLVu21MyZM+Xv7y/p0v61atVKq1evls1my1dtWUfGlixZkq/tuNru3bt19OhRlS9fvsBfy6pzUNBiY2Nls9kUGxtbqK/7xhtv6IcfftD06dPVrVs3ubu7S5K8vb11//336+mnn873a0ydOjXfvxtAQStT1AUAyL/rrrtOr7/+unr06KF7771X//3vf/P8B6h9+/aSpP379+v06dOqVKlSQZaaI2OM7rvvPl24cEHz5s27Yu3t27dXp06dHNoOHjyoixcvKjQ0NMcx1atX1+OPP66qVau6vO6i5u7ubg8wsJ6wsDD99NNPee4/a9YslS1bVpLs4670vr7rrrt0/Pjx/BcJWBxHVFFsff755/Z1XTabTT/88INGjx6tWrVq2deA/fMoyMqVK9W2bVsFBAQoICBAjRo10uzZsx2Ozo0cOVI33XSTJOlf//qXfe3YP4/uWVX37t1Vs2ZN7d69Wzt27MjzuMzMTPvXbm5F80/Cl19+qbi4OEVGRqpatWq59n3ttdc0btw4+/dVqlSRJG3atEm//PJLjmOef/55NWnSxGX1Xqvp06crJCRE7u7uioiI0M8//6zu3bsrJCREoaGhGjZsmM6ePWvvf+jQIYWEhOhf//qXJOmmm26yvxffffdd7du3TyEhIapQoUKOR/u++uor3XbbbapevbpCQ0NVu3ZtDRo0SKtXry7Evc7ZH3/8oUceeUQ1atSwr7ls37695syZoz///NPeb8+ePXrwwQdVr149hYaGys/PT61bt7bPSZYuXbrY/w0IDAxUVFSU/bnHH39cQUFB9nWiBw4cKKzdlCSVLVtW119/fZ77h4aG2v9HMet9/dZbb+W4Jrt27dpavHixawrNh6u914YNG2Z/n/r7+zuceZk3b559/X3lypX1+eefS7q03rx///667rrrFBQUpEqVKum2227TN9984/Da1/o3AMVUUa89APIrax1f+/btzZo1a0xGRoY5duyY8fPzM1u2bDHGGDN58mQjyTz//PMmNTXVXLx40axcudJ4eXmZ7t27m4yMDPv2itMa1ctlzcUzzzzj0J7TGtUsK1euNJJMw4YNna4tOjr6qrXl5plnnjGSzAMPPODU+I4dOxpJpkKFCmbUqFFm+/bt9jV9rpD1nnj77bfztZ3w8HATGBho7rjjDnPs2DFjjDGffPKJcXNzM/3798/W/2prVKdMmWIk2d/nxhizb98+U65cOfP444+blJQUY4wxv//+u+ncuXO+fkaumIPffvvNVK1a1dSrV8/8+OOPxhhjzp8/b8aOHWskmblz59r7xsTEmJCQEPu669TUVPv7ZNGiRQ7bXbhwoZFknn322Wyv+f7775tmzZo5XfOWLVuyzXF+XWmN6j/9/PPPply5ckaSqVevnpk7d645evSoy2ow5n/vH2fl9b328ccfG0nmoYceyraNXbt2meDgYHPhwgV7W/369U379u3N8ePHjTHG/PHHH6ZPnz7G09PT7NmzJ9s28vI3AMUXR1RRYnTq1Em33nqr3NzcVLVqVb366quqVauWdu/erenTp6tnz5564okn5OHhIXd3d/Xt21cxMTFav369Vq5cWej1GmNcvs2QkBBJ0okTJ67aNzU1VRs2bNCjjz4qLy8vLVy40OX15FXWKcyKFSs6NX758uXq1q2bzp07pwULFqhdu3aqXLmyBg0apHXr1hXIXDvrzJkzmjhxon0pQvfu3dWiRQutXr3a4ei+s9atW6cLFy7onnvukaenp6RLp6DnzJmjmjVr5nv7+RETE6Pff/9dr7/+uurVqydJKl++vJ599lk1bNjQoW/VqlU1Y8YMNWvWTJLk4eGhiRMnqnnz5po+fbpD3yFDhsjHx0evvPKKwxkCSVq4cKFiYmIKcK8KRu3atfXhhx+qatWq+umnnzRmzBhFRESofv36GjdunA4ePFjUJeb5vdatWzdFRETovffe07lz5xy2sXjxYt177732JQ+SdP3112v+/Pn2o8pBQUF6++23lZ6ermefffaK9VzpbwCKN4IqSoybb77Z4fu77rpLVatW1dKlSyVJPXv2zDamVatWkqQ1a9a4pIaUlBRNmTJFERERKl++vBo2bKjRo0dry5Yt9hCSkZGhTz/9NFu9rpD1R/pKazxfeOEF+ynk0NBQPfTQQ+rSpYt2796tdu3aubyea+XshR0hISFav3699u7dq/Hjx6thw4aKj4/XihUrdOutt6pNmzY6ffq0i6t1jqenp5o3b+7QFh4ergsXLrjkFlpZp1Yffvhhff311/b2Ro0aadOmTfnevrPi4+P18ccfq2LFimrTpk2255cvX67evXvbvx83bpzuu+++bP3q1aunU6dOOSwT8PHx0eDBg3XkyBGtX7/e3v7DDz9o3759GjBggIv3pnD07NlTv/zyi/7zn/9o8ODBqlSpkn788Uc9++yzqlevXrbAXtjy+l5zc3PT/fffr6SkJC1btszeHh8fr3//+9+6//77Hba7cuXKbEt1fH19VaVKFX333XdXrOdKfwNQzBX1IV0gv7JO+xw+fDjH57t3724kGX9/fxMcHOzwqFSpkvH29jY333yzvb+zp/5Pnz5tmjZtaiSZ4OBgExYWZtzc3IwkI8l4enqaGjVqGB8fH/utlK6F8nDq/+677zaSzMyZMx3aczv1f60un8Pg4GDj6elp3Nzccnzut99+u+o283vqPye//vqrmT17tqlUqZKRZO655548jXv++edzfJ9IMr6+vtmee+SRR/JcU3h4uKlWrVq29iud4nfm1H9mZqYZM2aMKVu2rJFkqlWrZkaOHGm+/PLLPNdZEHOwa9cuI8k0atQoTzWcOXPGTJs2zTRv3tyEhoY6vNdympPvv//eSDLdu3e3t40cOdI8/vjjed7vRx55JNu+Zd0SLSAgINtzzz//fJ63/U95OfWfk4yMDLN9+3YzePBgY7PZjCSzefPmPI1t3rx5tvq9vb3t/15d/sjL++Va3mt//PGHKVeunGnSpIm9be7cuaZHjx7Z+v7000/m/vvvt9+eK6smNze3HP8NvNrfABRvBFUUe1f7Y96tWzcjySxfvjxP23M2qMbGxprhw4ebAwcO2NtOnz5tli5dagYMGGCqVatmPD09TWRkpFP39LxaUM3MzDQRERFGktmxY4fDc64MqjnJ7xrVL7/80kgyLVu2dF1R/993331nJJmgoCCnt+HKNaq5/aF1RVDN8ueff5pFixaZrl27Gnd3dyPJDBkyxOna8zsHX331lZFk6tate9W+ycnJpm7dusbd3d0sWbLEvv7RmNznpF27dsbNzc0cPnzYJCYmGl9fX3Po0CGn6s1SVGtUr+bxxx83kszYsWOd3kZ+16hmyet7bcCAAUaS2blzpzHGmLp162b7t/D777835cuXN1WqVDFffPGFw1rza/39QcnAqX+UeFlr4Y4dO5bj8//973+1f//+fL9O+/bt9eabb6pOnTr2tsDAQN19991asWKFfvvtN6WkpGjXrl3q1atXvl/vcqtXr9bRo0fVvHlztWzZ0uXbL0itWrVS8+bN9fXXX1/x5yRdWjZxyy236O6777a3/fbbb/L399fff/+d45iGDRuqUqVKOn/+vMvrtqLMzExlZmaqcuXKevDBB7Vx40b98ssvuummm/Tee+8V2VXQderUkZubm06cOJHjmuG///7bvjzj888/14EDB3TzzTcrOjravv7xah566CFlZmbqlVde0bvvvqs2bdoU+bpcZ82ePTvXJQsdO3aUpCJ9X1/re23kyJGSLq1L3bx5s1JSUtSjRw+HPm+//baSk5P1yCOPqE2bNtx+DaxRRck3ZMgQ2Wy2bLe1kaQ///xT7dq10/fff29v8/b2liSHC1smTJigb7/9NtfXKcobZ//8888aOXKkfH199eabbxa7m3jbbDa98cYbKl++vMaMGXPFi58WLlyoTz/91CHoZ2ZmKiEhQZs3b85xzIkTJ3T69OliF96l7O/FL774QjNnzsx1zPTp0/XQQw85tFWvXl2DBw+WpCsG+oIWEBCgXr16KSkpKdtaWWOMIiMjNXfuXElyuLDmckePHr3ic3379lVwcLDeeustLViwoFheRJUlNTVVsbGx2S4+ypK1VrMo39fX+l7r0KGDbrjhBn3wwQeaNWuWRowYke2WeFf62aelpenUqVMurB7FBUEVJV7Tpk01depU7dmzRxMmTLAfgTh48KB69+6tDh06OFzEkfX52/v27dPFixf1448/6rnnnrPk/9kfOXJEs2fPVosWLVShQgVt3ry5WNzzNSeNGzfW+vXr9cUXX6h3794O//Nw8uRJTZo0SWPGjNH06dM1cODAbONjYmL0/vvvKyUlRdKlALtz507dfvvt8vHxyfVqYavK+lnGxcXJGKPFixdrz549Vx23bNkybdiwwR74f/31V7333nsKCwtTly5dCrTm3CxYsEBVq1bV6NGj7fc0TUpKUkxMjC5cuGD/dLS2bduqRo0a+uyzz7R8+XIZY5SRkaFFixZp69atV9x+2bJlde+99+rMmTNKTU1V9+7dC2W/Csoff/yhfv36KS4uzn6h5Llz5/TGG29o+vTpat++fZFfKHat77WRI0faQ/i9996b7fk777xT5cqV0/z587V7925Jl94jI0eOVFpaWsHuDKypCJcdAPmyd+9eh4srKlWqZIKDg6+4TmnVqlWmQ4cOpmLFiqZKlSqmfv36ZubMmTl+TvrGjRtN/fr1TWBgoAkPD3f6oglXuOWWW0xwcLCR5HDBUsWKFU14eLjp06ePeffdd01aWlq2sfv37zfBwcHG19fXSDLe3t4mODg4x3t25kd+16j+U3x8vHnmmWfsF38EBQWZOnXqmLvvvtu+tu2fLly4YD766CMzatQo06xZM1OlShUTFBRkfHx8TN26dc2DDz6Y74ss8rs+c9GiRfaLQbJ+hu+//7757bffsr2Hhw4dah+XkpJioqOjTVBQkAkJCTEdO3Y0hw4dMj/88IPDxTABAQH2++AePnzYTJgwwT4XwcHBpmbNmiYmJiZPF7YV1BxkOXXqlBk1apQJDw83wcHBpnr16iY6Ojrb7+3hw4fNgAEDTGhoqPHx8TF16tQxkydPNv369ctxrrL8+uuvxt3dPcd7qjrDlWtUx44da4KDg+0XH1WqVOmKvzfHjx83ixYtMn379jV169Y1QUFBJjAw0AQEBJg2bdqYefPm5fg7fy3yu0bVmffa2bNnTfny5U3fvn2vuN0tW7aYqKgo4+/vbypVqmSaNGli3n33XVO9enX7789rr712zX8DUDzZjLHQDQYBAMiHkydPqk6dOjpy5EiRfBwwANfi1D8AoNjKWqOc5Y033lCfPn0IqUAJwRFVAECxdfToUbVs2VKHDh3S2bNn1axZM23atEkNGjQo6tIAuECZoi4AAABneXl5qXz58goLC1NAQICeeeYZQipQgnBEFQAAAJbEGlUAAABYEkEVAAAAlsQa1VxkZmbqxIkT8vHxKXaf9AMAAGBFxhglJSWpSpUq2T6d7HIE1VycOHFC1apVK+oyAAAASpxjx46patWqufYhqObCx8dH0qWJ9PX1LeJqgOJjwYIFSkpKko+Pj0aNGlXU5QAALCQxMVHVqlWz56zcEFRzkXW639fXl6AKXANPT0+lp6fL09OT3x0AQI7ysqySi6kAAABgSQRVAAAAWBJBFQAAAJbEGlUAAADkSUZGhtLT06/4fJkyZeTu7u6y23oSVAEAAJArY4xOnTqls2fPXrWvu7u7goKC5Ofnl+/ASlAFAABArrJCalBQkMqXL59jADXG6OLFi0pMTNTJkyeVkpKi0NDQfL0uQRUAAABXlJGRYQ+pgYGBV+3v4+MjDw8PnT59WkFBQXJ3d3f6tbmYCgAAAFeUtSa1fPnyeR7j7e0tY0yu61nzgqAKAACAq7qW9aauupiKoAoAAABLYo0qgAJzKjFVEeM+LuoyAAB5cHR2z6IuIRuOqAIAAMCSCKoAAACwJIIqAAAALImgCgAAgKsyxhRI39wQVAEAAHBFZcuWlSQlJyfnecz58+dls9nsY53FVf8AAAC4Ind3d/n7++vPP/+UpDx9hGpiYqL8/f3z9alUEkEVAAAAVxESEiJJ9rCaG3d3d4WGhsrPzy/fr0tQBQAAQK5sNptCQ0MVFBSU68eililTRu7u7i77ZCqCKgAAAPLE3d0936fzrwUXUwEAAMCSijSo7tixQ+3bt1e7du3UqVMnde/eXdOmTVP9+vVls9nUsmVLffbZZ5KkmTNnKiIiQnXr1tXmzZt16tQpDRs2TDfddJOioqLUvHlzzZw5UxkZGfbt9+rVSyEhIYqKitLChQvVs2dPhYaGqkmTJjnWk5aWZl8AnPUAAABA0SiyoJqRkaFevXpp8ODB2r59uzZv3qxevXrpyJEj+vTTT+Xu7q6RI0fq5ptvliRNnDhRERERWrNmjTp16qRDhw7p+++/1/bt2xUbG6vPP/9cy5Yt09y5c+2vsW7dOnXr1k179uyRn5+fPv74Y33zzTcqX758jjXNmjVLfn5+9ke1atUKZS4AAACQXZEF1cTERMXHx+vIkSP2m8IOHTpUY8aMUVhYmHr16qVXXnnF3v+nn36Sm5ub6tatK0lq2rSp1qxZI09PT0mSv7+/brvtNq1atSrba/n7+2vw4MGSpLCwMO3YsSPHmsaPH6+EhAT749ixYy7dZwAAAORdkV1MFRAQoBkzZmjGjBlatmyZ+vXrp8GDB+vGG2+UJI0cOVLdu3dXXFycGjdurFdffVUPPPCAfXy5cuX0/vvva82aNcrIyJC7u7uOHj2a41Vm4eHhearJw8NDHh4ertlBAAAA5EuRrlGdNGmSjh8/rqeeeko7d+5Us2bN9PTTT0uSunbtqoiICL366qtKTU3Vhg0b1Lt3b/vYcePGafLkyZo/f7799P/QoUNz/Miuwrw6DQAAAK5RZEE1KSlJGzduVKVKlRQTE6OdO3dq9OjRmj9//qXC3Nw0YsQILVu2TG+99ZZuv/12lStXzj7+s88+U6NGjdS4cWN7W1paWqHvBwAAAApGkQXVM2fOaOTIkYqPj7e3Xbx4UfXr17d/P3z4cKWkpOjJJ5/UiBEjHMY3atRI+/bt06+//irpUvBdu3Zt4RQPAACAAldka1QrV66s3r176+abb5aPj49SUlIUFhamFStW2PuEhITotttuU0JCgmrVquUwft68ecrIyFDbtm11ww03yN/fX/Xq1dPatWsVFRWlDz/8UA8//LA2bdqk1NRURUVFafLkyerUqVNh7yoAAACcYDM5LeqEpEt3JvDz81NCQoJ8fX2Luhyg2JgzZ46SkpJ03pTVB6mNrz4AAFDkjs7uWSivcy35ik+mAgAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCUV2e2pAJR8Ib6eOjq1cK4iBQCUPBxRBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCWVKeoCAJRcpxJTFTHu46IuA0Apc3R2z6IuAS7CEVUAAABYEkEVAAAAlkRQBQAAgCURVAEAAGBJBFUAAABYEkEVAAAAlkRQBQAAgCUVm/uoRkREKCIiwv79/v37dfbsWbVs2dLe9tVXXyk1NVWfffaZnnvuOaWlpcnNzU3nzp1T5cqVFRUVpaeeeqoIqgcAAMC1KjZBVZJiY2PtXw8dOlSxsbEObREREdq8ebNuueUWrVu3Tj169JAkZWRkaNKkSZo1axZBFQAAoJgoNqf+R48enac+//nPfxQYGGgPqZLk7u6uyZMnq2bNmgVYIQAAAFypxAVVf39/nTlzRrt27XJ4zsvLS7t37y6g6gAAAOBqxSao5tXw4cPl6+urdu3aqX///lq+fLnOnDmTp7FpaWlKTEx0eAAAAKBolLigWrNmTcXFxem+++7Tpk2bdPfddys4OFg9e/bUd999l+vYWbNmyc/Pz/6oVq1aIVUNAACAy5W4oCpJ4eHhWrRokf766y9t375do0aN0rZt29SqVSsdOXLkiuPGjx+vhIQE++PYsWOFWDUAAAD+qcQF1bNnz+rcuXOSLl1E1bZtW82bN0+ff/65kpOTtWbNmiuO9fDwkK+vr8MDAAAARaPEBdV58+bppZdeytZ+/fXXS5Lc3ErcLgMAAJRIJTK1vfLKKzp06JD9+4sXL2r27Nny8fFR7969i7AyAAAA5FWxuuG/JP3999/q06eP/ZOpoqKiNGvWLLVq1UqS1KdPH/39998aMGCAypcvr8zMTMXHx6tu3bravn27qlatWsR7AAAAgLwodkG1YsWKDp9GdblGjRrleOofAAAAxUuJPPUPAACA4o+gCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsqdrenAlB8hPh66ujUnkVdBgCgmOKIKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsKQyRV0AgJLrVGKqIsZ9XNRlAIXu6OyeRV0CUCK45IjquXPn9NFHH2n//v2u2BwAAADgXFCdMmWKAgMDtXPnTqWnp6t169bq06ePGjZsqFWrVrm6RgAAAJRCTp3637Rpk7777juFhYXpgw8+0KFDh7R3716lp6dr1KhR6t27t6vrBAAAQCnjVFD18vJSWFiYJOmDDz5Q//791ahRI0mSp6en66oDAABAqeVUUE1ISJAknTlzRuvXr9eHH35of85ms7mmMgAAAJRqTgXVhg0bqn379oqPj1dQUJC6du2qzMxMrVmzRpmZma6uEQAAAKWQUxdTzZ8/X02bNlWtWrW0cuVK2Ww2rVmzRvPnz9dDDz3k6hoBAABQCjl1RHXz5s265ZZb1KNHD3vbHXfcoTvuuMNVdQEAAKCUc+qIau/evbV+/XpX1wIAAADYORVUW7durZdfftnVtQAAAAB2TgXV6tWr6/z58zk+N3To0PzU4+Cll15S48aN1aZNG0VGRmrgwIH6+uuvlZycrFGjRql58+bq2LGjbrrpJj322GP2mtasWaOaNWvKZrOpQ4cO+v777yVJo0ePVkhIiBo3bqwff/zRZXUCAADA9Zxao9qtWzfdeuutuueeexQeHi53d3f7c999951LCpsyZYoWLlyoXbt2qWbNmrpw4YJ69+6t5cuX64knntCaNWsUFxengIAApaamqmfPnnrqqae0YMEC3XbbbapSpYpuuukmjR8/Xg0bNpQkvfjii/rss8+0bds2+fn5ZXvNtLQ0paWl2b9PTEx0yb4AAADg2jkVVKOjoyVJsbGx2Z5zxX1Uz58/r+eee04jR45UzZo1JUnlypXTlClT9PPPPys4OFjbtm1TQECApEsfMtC/f3/NmDFDCxYskCQ1b95ckZGRWrhwobp16yZJWrdundq1a5djSJWkWbNmadq0afmuHwAAAPnnVFBt0aKF3n///WztxhgNHDgw30Xt27dPqampqlu3rkN7ZGSkIiMjJV2688CKFSuUkpKiMmXK6NSpUzpx4oRD/1GjRmno0KE6cuSIatSooUWLFun555+/4uuOHz9ejz32mP37xMREVatWLd/7AwAAgGvnVFB94oknFB4enuNzM2bMyFdB/3Slo7Mvv/yyHn30UW3YsEFdu3aVJC1ZskTDhg1z6HfnnXfqscce0+LFizVixAilpqbaP+o1Jx4eHvLw8HBZ/QAAAHCeU0G1b9++kqSUlBTt27dPNptN9evXl6enp7p06ZLvourXry8vLy8dOHDAoT0uLk7fffedPvvsM4WEhNhDqiSHtaVZPDw8dN999+n1119XUlKSHnzwwXzXBgAAgMLh1FX/kjR9+nRVrlxZLVq0UGRkpCpVquSyo6ne3t4aO3asli5dql9++UWSlJqaqtGjRys9PV2NGjXSH3/8od27d0uSLly4oJUrV+a4rZEjRyo+Pl4fffSRPWADAADA+pw6ovrSSy/ppZde0ogRI+zrSH/66SfNnz9f/v7+evjhh/Nd2NSpUxUQEKA77rhDPj4+ysjI0IABAzR8+HClpqbqzJkzuuOOO1SrVi0FBAQoIiJCkhQVFaVFixbphhtukCSFh4erR48eatq0qcqWLZvvugAAAFA4bMYYc62DmjRpov/85z/2K/KzHDp0SH379lVcXJzLCnSFyMhIrVq1SmFhYdc0LjExUX5+fkpISJCvr28BVQeUPHPmzFFSUpLOm7L6ILVxUZcDFLqjs3sWdQmAZV1LvnLq1H/58uWzhVRJqlWrlry9vZ3ZpMtNmDBB0qVbaF133XXXHFIBAABQtJw69Z+UlKT4+Hj7fUyznDlzRklJSS4pLL+2bt2qBg0ayNfXVytWrCjqcgAAAHCNnAqqt99+u1q3bq1Ro0apdu3astls2r9/vxYtWqQ777zT1TU65csvvyzqEgAAAJAPTgXVqVOn6ujRo3r44Yft9zo1xig6OlqTJ092aYEAAAAonZwKqmXKlNHSpUs1bdo07dmzR9KljyytUaOGS4sDAABA6eXUxVSffvqpJKlmzZrq37+/+vfvr+DgYA0cOFDffvutSwsEAABA6eTUEdXZs2c7fCqUdOlToG677TY99NBD2rlzp0uKA1C8hfh66uhUbtMDAHCO059MdTl3d3cNHDhQbm4u2yQAAABKsTwfUX3nnXf0zjvvSJL27t2rTp06Zetz+vRpeXp6uq46AAAAlFp5Dqr+/v4KDw+XdOnjUrO+zuLm5qbWrVtrxIgRrq0QAAAApVKeg+rtt9+u22+/XZI0fPhwvfXWWwVWFAAAAODUglJCKgAAAAqaU0H1gw8+0I033qinn37a3vZ///d/Gjp0qFJTU11WHAAAAEovp4LqG2+8oX79+umpp56yt40aNUphYWF6/PHHXVYcAAAASi+ngmpKSoomTJigChUq2Nt8fX01c+ZMxcXFuaw4AAAAlF5OBdULFy5c8bn09HSniwEAAACyOBVUy5Ytq7Vr12Zr/+STT1SmjFMfdgUAAAA4cCpVTp48WT169FDjxo1Vt25d2Ww2HThwQHFxcVq/fr2rawQAAEAp5NQR1a5du2rDhg0qX768Vq9erY8++kje3t7auHGjunTp4uoaAQAAUAo5fZ6+S5cuhFIAAAAUGKeOqOamd+/ert4kAAAASqE8H1F9+eWXVbVqVfXu3VvDhw+/Yr9du3a5pDAAAACUbnkOqnPmzNH111+v3r17a9WqVWrSpEmO/fhkKgAAALhCnoPqgQMH7LeeatKkibZs2ZJjv44dO7qmMgAAAJRqeQ6q5cqVs3+9bt26K/bL7TkAAAAgr5y6mMrb2/uKzw0cONDpYgAAAIAseT6imtsFVP/0zTffOF0MAAAAkCXPQfXyC6i++eYb+fn5KSIiQpJ09OhR/fnnn2rbtq2rawQAAEAplOeg+s8LqObPn6/o6GgNHTrUoc/bb7+t48ePu7RAAAAAlE55Dqrr16+3f71hwwaH77MMGzZMt9xyi2sqAwAAQKmW54upPD097V8fPnw4xz7GGB05ciT/VQEAAKDUc+qq/7CwMEVHR+unn35Senq6Lly4oH379ik6OlpVq1Z1dY0AAAAohfJ86v+fFi1apO7du2vp0qUO7dWrV9eGDRtcUlhpFDHu46IuAXCJOz1T5W0r6ioAAMWdU0G1Xr16OnDggJYtW6Z9+/ZJkho2bKiBAwfKw8PDpQUCAACgdHIqqEqSh4dHnu+tCgAAAFwrp9aoStK3336rIUOGqHfv3pKkV199VTt37nRZYQAAACjdnAqqsbGxioyM1J49e3TgwAFJUlBQkIYOHaqNGze6tEAAAACUTk4F1WnTpunjjz/Wvn37FBwcLEnq3bu3tmzZomeffdalBQIAAKB0ciqoGmPUtWtXSZLN9r9Le6tUqeKaqgAAAFDqORVUk5KS7F8bY+xfX7hwQSdOnMh/VQAAACj1nAqq9erV04MPPqjff/9dNptNqamp2r17t/r27auWLVu6ukYHsbGxmjdvXrb2devWqXLlyjp27FiBvj4AAAAKh1NB9YUXXtDmzZsVHh6urVu3ytvbW5GRkfrll1/0/PPPu7pGB1cKqgEBAapTp458fHwK9PUBAABQOJy6j2pISIj27t2r5cuXa8+ePZKk5s2ba+DAgfL09HRpgXnVpk0bffnll0Xy2gAAAHA9p4LqY489Jg8PD82aNUv33nuvSwpZuXKlXnjhBe3atUtLlizRhg0b9Ouvv+rMmTOaPXu2evfurfHjx2vFihU6deqUoqKiJElDhw5VhQoV7GO3bNlif27t2rV65pln5OXlJWOMAgMDNW7cOEVGRuZYQ1pamtLS0uzfJyYmumTfAAAAcO2cCqqvvfaa3nrrLZcW0q9fPzVv3lw1atTQsmXLtHr1anl5eem5557TsGHD1LVrV82aNUseHh5asmSJYmNjHcZnjc3yxx9/qG/fvlq3bp39DgVPPvmkPvnkkysG1VmzZmnatGku3S8AAAA4x6k1qq1bt9add96Z43Nnz57NTz2SpEGDBsnLy0uS1LVrVyUkJOjQoUPXtI2TJ08qPT1dhw8ftreNHTtWgwYNuuKY8ePHKyEhwf7gwiwAAICi41RQbdCggQ4ePJjjc3369MlXQZJUrVo1+9d+fn6Srj0AN2nSRA888IBGjRql66+/XpMmTVJ8fLzq1KlzxTEeHh7y9fV1eAAAAKBoOHXq39PTUx07dlTnzp0VEREhd3d3+3NHjx7Nd1H/3F7WBwr8836tefXKK69o4sSJWrFihd59913NmjVLr7zyikaMGJHvGgEAAFCwnAqqc+fOVUhIiLZt26Zt27Y5PPfHH3+4pLArcXP730HgzMxMnT9/PsdbUh0/fly//vqrWrdurbFjx+rJJ59Uv3799PLLLxNUAQAAigGnTv23bNlSR44cyfHRokULV9foIDQ0VPHx8crIyNCuXbvUpUuXHPsdPHhQjz32mFJTU+1tFy9eVP369Qu0PgAAALjGNQXVjz/+WIMGDVJYWJh27tyZY59///vfThXy2WefacCAAZKk0aNHa/ny5dq6dWu2tv79++vGG29UZGSkHnnkEU2bNk0rV6506Ld48WLVq1dPjRs3Vrt27dSxY0dFRkaqYsWKWrhwoVP1AQAAoHDZTB4Xf65atUp9+/a1f1+2bFl9+eWXat68eYEVV9QSExPl5+enhISEQrmwKmLcxwX+GkBhuNMzTt62dPn4+Oixxx4r6nIAABZyLfkqz0dUn332WU2cOFFnzpzRiRMndPfdd+vFF1/Md7EAAABATvJ8MVVycrJmzJhh/37x4sVq3759gRQFAAAA5PmIasWKFR2+9/DwsN+U/5/ef//9/FcFAACAUi/PQfWft4XKre21117LX0UAAACAruHU/7fffqtOnTo5tO3duzfHNgAAACC/rumG/5ffIKBx48ZOfWIUcnZ0ds+iLgFwiTlzDigpKb2oywAAFHN5DqpNmjTRli1brtqvY8eO+SoIAAAAkK5hjerbb7/t0n4AAABAbvIcVCMiIlzaDwAAAMjNNX2EKgAAAFBYCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwpDJFXQCAkutUYqoixn1c1GUAJdLR2T2LugSgwHFEFQAAAJZEUAUAAIAlEVQBAABgSQRVAAAAWBJBFQAAAJZEUAUAAIAlEVQBAABgScXuPqrr1q3TwoULdf78edlsNl24cEFBQUHq1auX7rjjDlWuXFlpaWmaM2eOPvzwQ3l7e8sYo8TERDVq1EhDhw5Vx44di3o3AAAAcBXFKqg+/vjj+uijj7R69Wo1aNBAkpSRkaFFixbp/vvv1/HjxzV16lTdf//9+u9//6vt27crMDBQkvTHH3+oc+fOCggIIKgCAAAUA8UmqK5YsUJz5szRjh077CFVktzd3fXwww9rx44d9raVK1fqoYcesodUSQoODtbEiRN18ODBQq0bAAAAzik2QfWFF15QrVq11KpVqxyfnz59ulJSUiRJ/v7+2rJli1JSUuTl5WXvM3DgwEKpFQAAAPlXLC6mSk5O1rfffutwJPVytWvXVqNGjSRJY8aM0e7du1WzZk2NHTtW27Zt08WLF6/6OmlpaUpMTHR4AAAAoGgUi6AaHx8vY4wqVKiQp/5PPPGE1q5dqwYNGmjOnDnq0KGDQkNDNXbsWCUnJ19x3KxZs+Tn52d/VKtWzVW7AAAAgGtULIJqQECAbDabzp07l+cxvXr10qeffqq//vpLy5cvV7NmzfT888+rb9++Vxwzfvx4JSQk2B/Hjh1zRfkAAABwQrEIquXLl9eNN96oH374IU/9f//9d/vXAQEBGjhwoDZs2KCRI0dqw4YNSkhIyHGch4eHfH19HR4AAAAoGsUiqErSuHHjdOjQIe3cuTPH55s1a6bHH39cktS2bVudOHEiW5/rr79eNptNNputQGsFAABA/hWboNqvXz9NnDhRQ4YMcTiympKSotGjRys1NVUTJkywt0+aNEmpqan270+ePKk333xTt99+O0dKAQAAioFic3sqSXrmmWfUpk0bPfHEEzp37pzKlCmjlJQUderUSdu3b1fFihUlSTNmzNDq1avVpk0b+fj4KDk5WSkpKerVq5cmTZpUxHsBAACAvChWQVWSunfvru7du+faZ8iQIRoyZEghVQQAAICCUGxO/QMAAKB0IagCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkord7akAFB8hvp46OrVnUZcBACimOKIKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsqUxRFwCg5DqVmKqIcR8XdRkOjs7uWdQlAADyiCOqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsCSCKgAAACyJoAoAAABLKhb3UT1y5IiGDRumvXv3SpKaNGmizMxMJSQkqGrVqrrnnnt05513ymazSZJuv/12xcXF6ddff1WHDh0kSUlJSUpOTlZ0dLSeeOIJlSlTLHYdAACg1CoWaa1GjRqKjY1VVFSUJCk2Ntb+3MaNGzV8+HAtWbJEq1atkqenp1avXq2pU6dq2rRp2fr26NFDp0+f1gsvvFC4OwEAAIBrUuxP/d9yyy3auHGjNm3apMcee+yqfevXr6+lS5cWUnUAAABwVrEPqpLUoEED3XrrrXr99dcVHx+fa98LFy6oXLlyhVQZAAAAnFUigqoktWrVShcvXtSuXbuu2Oe1117TgQMHFBMTk+PzaWlpSkxMdHgAAACgaBSLNap54e/vL0n6+++/Hdqz1rWeP39egYGBWrFihQYMGJDjNmbNmqVp06YVZJkAAADIoxITVLMCasWKFR3a/3kx1dWMHz/eYZ1rYmKiqlWr5pL6AAAAcG1KTFDdsWOHypQpoxYtWji9DQ8PD3l4eLiwKgAAADirRKxRjYuL08cff6wRI0YoICCgqMsBAACACxT7oLphwwZ1795dnTt31pw5c4q6HAAAALhIsTj1f/knU0VFRdk/mSosLExz5szRXXfdle2TqbL6RkZG6rnnniuq8gEAAOCEYhFUsz6ZKq9Wr15dcMUAAACgUBT7U/8AAAAomQiqAAAAsCSCKgAAACyJoAoAAABLIqgCAADAkgiqAAAAsKRicXsqAMVTiK+njk7tWdRlAACKKY6oAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsqUxRF2BlxhhJUmJiYhFXAhQvqampSk1NVdmyZfn9AQA4yPq7kJWzcmMzeelVSv3++++qVq1aUZcBAABQ4hw7dkxVq1bNtQ9BNReZmZk6ceKEfHx8ZLPZCuQ1EhMTVa1aNR07dky+vr4F8hq4hLkuPMx14WGuCw9zXbiY78JT2HNtjFFSUpKqVKkiN7fcV6Fy6j8Xbm5uV036ruLr68svYiFhrgsPc114mOvCw1wXLua78BTmXPv5+eWpHxdTAQAAwJIIqgAAALAkgmoR8/Dw0JQpU+Th4VHUpZR4zHXhYa4LD3NdeJjrwsV8Fx4rzzUXUwEAAMCSOKIKAAAASyKoAgAAwJIIqgAAALAkgmoR+OSTTxQZGan27duradOmmjdv3jVvIyYmRjabTbGxsS6vryRxZq6PHz+uSZMmqW3bturYsaOaNWumO++8Uz/99FPBF1wM/Pzzz+revbtatmyppk2bKiYmRufOncvT2HfeeUfNmjVThw4d1KxZMy1fvryAqy3enJnr5ORkLVq0SFFRUercubNatmypDh06aMOGDYVUdfGUn/d1lpUrV8pms2nq1KkFU2QJkZ+53r9/v/r376+OHTvqpptuUu3atTVlypQCrrj4cnauT506peHDh6tx48aKiopSs2bNNH36dF28eLEQqr6MQaHaunWrKVeunNm2bZsxxpiTJ0+a0NBQ8+KLL+Z5G59++qkJDAw0ksyWLVsKqNLiz9m5njFjhrnhhhvMmTNnjDHGpKWlmT59+hh/f39z/PjxAq/byk6fPm1CQ0PNzJkzjTHGpKenm5tvvtnceuutVx27bNkyU6FCBXPgwAFjjDE//vij8fb2NitXrizQmosrZ+d6+/btpnz58mbPnj32thdeeMHYbDazbt26Aq25uMrP+zrLyZMnTe3atY0kM2XKlAKqtPjLz1zv27fPVKlSxWzfvt3e9vLLL5sWLVoUWL3FWX7mumPHjqZZs2bm/Pnzxhhj/vrrL1OtWjUzadKkAq05JwTVQtauXTvTtWtXh7Zp06YZX19fk5ycfNXx8fHxpm7duub1118nqF6Fs3P95ptvmvfee8+h7auvvjKSzMKFCwuk1uLi6aefNj4+PiY1NdXetnXrViPJfPHFF1ccl5mZacLDw83999/v0D5s2DBTq1atAqu3OHN2rvfu3WtGjx7t0JaZmWnKly9v+vfvX2D1FmfOzvU/9erVy6xYsYKgehX5mesuXbqYMWPGOLQlJyfn+WdU2uRnrn18fMwTTzzh0Na3b1/TuHHjgig1V5z6L0SJiYn64osv1Lp1a4f21q1bKzExUdu2bbvqNmJiYvToo4+qVq1aBVVmiZCfuR4+fLgGDx7s0Obl5SVJKlOmdH/q8CeffKJmzZo53GuvRYsWcnNz07p16644bt++ffr1119z/HkcOnRIBw4cKLCaiytn57px48aaO3euQ5vNZpOHh0epf/9eibNzneX111+Xl5eXBgwYUJBllgjOzvWpU6e0adMmde3a1aHdy8tLbdq0KbB6i7P8vK/vvvturV27VqdOnZIkHTx4UFu3blVYWFiB1pwTgmohOnTokIwxqlKlikN71g/+4MGDuY5fuXKl/vrrLz344IMFVmNJkd+5vtzWrVvl7e2tPn36uKzG4ujnn3/ONqceHh6qVKlSrnP6888/S5LLfh6lgbNznZPvv/9e8fHxuueee1xZYomRn7k+cuSInn/+eS1evLggSywxnJ3ruLg4GWN0/vx5DRw4UG3btlWHDh00c+ZMpaamFnTZxVJ+3teLFy9W//79VatWLTVo0EDXX3+9wsLCnLqmJr/43+t8SkhI0MmTJ6/ar0aNGjp//rwkZfvkh6zvc1vgfOrUKY0bN65UXzxVWHN9ufj4eM2ePVsLFixQpUqVrqHikuf8+fM5fnKJh4dHrnPqyp9HaeHsXOfkqaeeUnR0tLp16+aq8koUZ+c6MzNTQ4cO1Zw5cxQYGFiQJZYYzs71mTNnJEmPPPKINmzYoIYNG+ro0aPq0qWLdu7cmacj36VNfv4NiYmJ0fr167V3717VqlVLp06d0rvvvitfX9+CKveKCKr5tGrVKg0bNuyq/b799ltVqFBBkpSWlubwXNb3Wc/n5L777tPUqVNVtWrVfFRbvBXWXF/ev2/fvnrggQc0dOjQayu4BKpQoUK2OZUuzVNuc+qqn0dp4uxcX27ChAnKzMzUa6+95sryShRn5/rFF19U7dq11atXr4Isr0Rxdq7d3d0lSdHR0WrYsKEkKSIiQk8++aRGjhypvXv3qkmTJgVSc3Hl7Fx///33WrRokRYvXmxfZhgSEmJfZhEXFydvb+8Cq/tynPrPp6FDh8pcuigt10eTJk1Us2ZN2Ww2nThxwmEbx48flyTVqVMnx9c4ceKE9u3bpzfeeENRUVGKiorS6NGjJUmjR49WVFRUqbj1TGHM9T+lpKTojjvuUOfOnTV58uQC2afipnbt2tnmNC0tTadPn851TmvXri1J+fp5lDbOzvU/TZkyRd9//71Wr16tcuXKFUSZJYKzc7127Vrt27fP/u9yVFSUJGnJkiWKiorS7NmzC7LsYsnZuQ4PD3f4b5aaNWtK+t/yIvyPs3O9f/9+Scp2LUzt2rV1+PBhbd++3fXF5oKgWoh8fX3Vtm1b7dixw6F9x44d8vX1Vbt27XIcV6VKFR05ckSxsbH2R9Y6kXnz5ik2NpZTepdxdq6znDt3Tj179lTXrl01ceJESZfWon344YcFVnNx0KNHD+3evdvh/9J37dqlzMxM9ezZ84rj6tevr/Dw8Bx/HrVr1yao5sDZuc4yduxY/fjjj/rwww/tp/9efPHFAqu3OHN2rrdt26adO3c6/NssXfqf6tjYWI0bN66gSy92nJ3rG2+8UQEBAfr9998d2rOCWGhoaMEUXIw5O9fVq1eX9L8DCVmy5r58+fIFUG0uCvUeA7Df2zPrPnBXurdnp06dTOfOna+4nS1btnB7qqtwdq7Pnj1rWrdube677z7z3//+1/545ZVXTHR0dGHuguWcPn3ahISEXPW+fJMnTzYRERHm5MmT9jbuo3ptnJ3rzMxMExMTY5o3b26++uorh/dweHh4Ye9GsZCf9/XlxO2pcpWfuZ4zZ44JCwszv//+uzHGmISEBHPjjTea1q1bm8zMzMLbiWLC2bm+ePGiadGihWncuLH9fuKnT582DRo0MPXq1TMpKSmFuh+sUS1k7du316pVqzRmzBh5eXkpMTFRTz75pMaMGePQLzk5WW5u2Q94p6SkqHv37jp79qykS6f+/f39tX79evstlHCJs3M9c+ZM7dixQzt27NAbb7zh0Dc6OrpQareqwMBAxcbG6tFHH9WaNWuUmpqq1q1b67nnnnPol5aWpuTkZGVkZNjbBg0apAsXLuiuu+6Sj4+Pzp07p1dffVV9+/Yt7N0oFpyd6/Xr12vhwoWSpJYtWzr0vfy0KS7Jz/s6ywMPPGC/zdqSJUsUGxurWbNmqVWrVoWyD8VFfuZ6zJgxKlOmjHr27KkKFSrowoUL6ty5s55++mnZbLbC3hXLc3au3d3dtXbtWk2dOlWdO3dWhQoVlJCQoMjISE2dOlWenp6Fuh82Y4wp1FcEAAAA8oA1qgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAAAASyKoAgAAwJIIqgAAALAkgioAAAAsiaAKAP/fwYMH1adPHwUFBcnPz0+dOnXS/v37i7osACi1CKoAIOn06dPq2LGjzpw5o7feektLly7Vb7/9pvHjxxd1aXarV69W06ZN1aFDBzVq1Eivv/56ju0vv/yyKleurGPHjl3T9tetW+fUuLzYu3evpk6d6vLtAijZCKoAIOmVV15Renq61q1bp169eunWW29Vt27dlJSUVNSlSZLS09M1aNAgjRo1Slu3btUHH3wgb2/vHNsTExNVp04d+fj4XNNrBAQEODUuL/bu3atp06a5fLsASjaCKgBIWrt2rXr16mUPaenp6dqwYYMiIyOLuLJLTpw4oeTkZNWsWVOSdP3112vQoEE5tk+cOFFffvml/P39r+k12rRp49Q4ACgoBFUApd7FixcVFxenyMhIJScn65tvvtHtt9+uxMREjRo1KtexL730kho3bqw2bdooMjJSAwcO1Ndff21/3hijuXPnqlGjRmrZsqUaNGigp59+Wunp6Q595syZo6ZNm6pdu3Zq2bKlZsyYYe+zcuVK3XXXXZKk0aNHKyoqSv/617+u2N6yZUvZbDbFxsbmudaVK1fmOC4vtWWNe+eddzRw4EC1bt1adevW1apVqyRJ8+fP1+zZsyVJUVFRioqKsn8vSTt27FD79u3Vrl07derUSd27d9fGjRvz/PMDUIIZACjl9u7daySZr7/+2tSqVctIMjabzfz73//OddzkyZNNYGCgOXTokDHGmLS0NNOjRw/z6KOP2vtMnDjRVKpUyRw+fNgYY8yff/5patWqZaKjo+19Jk2aZKpWrWpOnjxpjDHm77//NjfccIPDdo4cOWIkmS1btjjUkFN7Tm15qTWncddS280332ySk5ONMcY8++yzxs/Pz5w7d84YY8zbb79tcvqTc/HiRRMQEGBeffVVe9uCBQsc5gdA6cURVQCl3rfffqsyZcqoYcOGevPNN/XWW2+pefPmuvvuu7Vnz54cx5w/f17PPfechgwZYj/tXq5cOU2ZMkXNmzeXJJ07d04vvviihgwZouuuu06SVLlyZcXExOidd97R4cOHde7cOb3wwgsaMWKEQkJCJF1aKxodHa0FCxYoJSUl3/uXl1pzcq21DRo0SF5eXpKkrl27KiEhQYcOHcq1tsTERMXHx+vIkSMyxkiShg4dqjFjxji9vwBKjjJFXQAAFLU9e/aoXr168vT0VPv27dW+fXv169dPlStX1rp163TjjTdmG7Nv3z6lpqaqbt26Du2RkZH2da0//vijUlNTVadOHYc+WWN2796tiIgIpaamasWKFdq8ebO9z7lz51S1alUdO3Ys2/hrlZdac5JVf15rq1atmv1rPz8/SdLZs2dzrS0gIEAzZszQjBkztGzZMvXr10+DBw/Occ4BlD4EVQCl3rfffpstGHl4eMhmsykoKCjXsTab7arbv1Kff7aPGjVKMTExeajWeXmpNSd5rc3d3T3ba2UdJc3NpEmTNHLkSP3rX//S0qVLNXfuXE2aNEkzZsxwql4AJQen/gGUasYYxcXFKTg42KH9ww8/VFpamm677bYcx9WvX19eXl46cOCAQ3tcXJzee+89hz6Xf2jA/v37ZbPZ1KxZM3ufH3/80aFPfHy8Bg8e7HDRlbPyUmtu41xRm5ub45+bhIQESVJSUpI2btyoSpUqKSYmRjt37tTo0aM1f/78PG8bQMlFUAVQqh08eFBJSUl6+eWXNXfuXMXGxmru3LkaOXKkJkyYoCpVquQ4ztvbW2PHjtXSpUv1yy+/SJJSU1M1evRoe4DLqc9ff/2lRYsW6Z577tF1113n0OeHH36QJGVkZGjSpEny9fVV2bJl872Pean1auPyW1toaKikSx+scPLkSfuSgTNnzmjkyJGKj4+397148aLq169/zfsJoAQq4ou5AKBIvf/++8bNzc0MHTrU+Pn5GW9vb9OkSRPz6quvmoyMjKuOnzdvnmnYsKFp3bq1adGihZk7d262PnPnzjUNGzY0LVq0MDfccIOZOHGiuXDhQrbt1K9f37Ro0cK0bt3ajBs3zt7n3//+t2nRooWRZBo3bmw6dOhwxfbL2xYtWpSnWq827kq1ffrppw7jli1bZmJjY7O1paenm969e5uGDRuaZs2amSVLlhhjjDl37pwZM2aMadasmYmKijItWrQwffr0MUeOHMnLjw9ACWczJg8LiACghHrqqae0evXqbKfnAQBFj1P/AEq1nC6kAgBYA0EVQKlGUAUA6+LUPwAAACyJI6oAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALImgCgAAAEsiqAIAAMCSCKoAAACwJIIqAAAALOn/ASkb/Joc85qoAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "COefs.plot.barh(figsize=(10, 4))\n", + "plt.title(\"ret ~ DP + CS + ntis + cay + TS + svar\")\n", + "plt.axvline(x=0, color=\".5\")\n", + "plt.xlabel(\"$\\\\beta$ coefficients\")\n", + "plt.ylabel(\"Predictors\")\n", + "#plt.legend([\"zero\",\"$\\\\beta$\"])\n", + "plt.legend([]) # Remove legend\n", + "plt.subplots_adjust(left=0.3)" + ] + }, + { + "cell_type": "markdown", + "id": "8d9da5e3-293b-47da-89ee-ea4d8762cfe2", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "#### Relevance and Effect Size of Variables for the Model (extra)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "4f5b3610-98e3-4596-a0cf-bf5c7c532200", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.compose import make_column_transformer\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "from sklearn.pipeline import make_pipeline\n", + "from sklearn.linear_model import Ridge\n", + "from sklearn.compose import TransformedTargetRegressor" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "517f1333-0502-4278-ac43-dec75f6422d0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5-fold cross-validated MSE: 0.008093899166081891\n" + ] + } + ], + "source": [ + "# Initialize and train the Ridge regression model\n", + "# Alpha parameter controls regularization strength (1=ridge)\n", + "ridge_model = Ridge(alpha=1e-10, random_state=1)\n", + "ridge_model.fit(X_train, y_train)\n", + "\n", + "# Optionally, you can perform cross-validation to evaluate the model\n", + "mse_cv = -cross_val_score(ridge_model, X_train, y_train, cv=5, scoring='neg_mean_squared_error').mean()\n", + "print(\"5-fold cross-validated MSE:\", mse_cv)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ba50c4ab-a93d-4406-ada7-8c066b90019e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [], + "source": [ + "X = train_data.drop(columns=['ret','date']) # Exogenous: all variables except ret and date.\n", + "y = train_data['ret'] # Endogenous: ret." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "2139b8ff-3870-4a39-a72b-58f1f8e24bc1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [], + "source": [ + "# Setting up the train test split\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "d889850d-6aa7-48c4-b7bd-6e5bb4ea9cb7", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code", + "remove_input" + ] + }, + "outputs": [], + "source": [ + "train_dataset = X_train.copy()\n", + "train_dataset.insert(0, \"ret\", y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "fad01b44-299d-48ff-9c6d-4136ce1b4001", + "metadata": { + "tags": [ + "hide_code" + ], + "user_expressions": [] + }, + "source": [ + "In the following section, we will interpret the coefficients of the model. While we do so, we should keep in mind that any conclusion we draw is about the model that we build, rather than about the true (real-world) generative process of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "460b38c9-201f-41ac-80f3-8b83200bdc08", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    Pipeline(steps=[('columntransformer',\n",
    +       "                 ColumnTransformer(force_int_remainder_cols=False,\n",
    +       "                                   remainder='passthrough',\n",
    +       "                                   transformers=[('onehotencoder',\n",
    +       "                                                  OneHotEncoder(), [])],\n",
    +       "                                   verbose_feature_names_out=False)),\n",
    +       "                ('transformedtargetregressor',\n",
    +       "                 TransformedTargetRegressor(func=<ufunc 'log1p'>,\n",
    +       "                                            inverse_func=<ufunc 'expm1'>,\n",
    +       "                                            regressor=Ridge(alpha=1e-10)))])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "Pipeline(steps=[('columntransformer',\n", + " ColumnTransformer(force_int_remainder_cols=False,\n", + " remainder='passthrough',\n", + " transformers=[('onehotencoder',\n", + " OneHotEncoder(), [])],\n", + " verbose_feature_names_out=False)),\n", + " ('transformedtargetregressor',\n", + " TransformedTargetRegressor(func=,\n", + " inverse_func=,\n", + " regressor=Ridge(alpha=1e-10)))])" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "categorical_columns = []\n", + "numerical_columns = ['DP', 'CS', 'ntis', 'cay', 'TS', 'svar']\n", + "\n", + "preprocessor = make_column_transformer(\n", + " (OneHotEncoder(), categorical_columns),\n", + " remainder=\"passthrough\",\n", + " verbose_feature_names_out=False, # avoid to prepend the preprocessor names\n", + " force_int_remainder_cols=False # Enable the future behavior for remainder columns\n", + ")\n", + "\n", + "# Create a model pipeline\n", + "model = make_pipeline(\n", + " preprocessor,\n", + " TransformedTargetRegressor(\n", + " regressor=Ridge(alpha=1e-10), # Ridge regression model\n", + " func=np.log1p, # Apply log transformation to target variable\n", + " inverse_func=np.expm1 # Inverse of log transformation for predictions\n", + " )\n", + ")\n", + "\n", + "# Fit the model\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "id": "4c9d3cc1-a61c-4165-9377-2014b377369d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "**Normalization with the Z-Score**\n", + "\n", + "The Z-score (or normalized value) is a standardized value with a mean of 0 and a standard deviation of $1$. It is calculated by subtracting the value from the sample mean and then dividing by the sample standard deviation.\n", + "\n", + "\\begin{equation*} \n", + " z = \\frac{(x\\, -\\, Mean)}{Standard\\, Deviation}\n", + "\\end{equation*} \n", + "\n", + "When applied to numerical values in a vector, it results in a standardized vector." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "d0667ffe-bf1f-4aad-8dd5-a2cb6a5519e2", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAGOCAYAAABfUCHXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAARBxJREFUeJzt3Xd4FOX+///XJkBCAimUJBBCgiBFumDoScBGs1BUQBRE8aCgRlGUIp0PoB6KCtYjqBSPh4NSFBCBKAIHj5QIiAhSBcsBQxIgBZL794e/zJclhc1mQybwfFzXXldyz33Pvmdnl7yYuWfWYYwxAgAAAGzGq6QLAAAAAPJCUAUAAIAtEVQBAABgSwRVAAAA2BJBFQAAALZEUAUAAIAtEVQBAABgSwRVAAAA2BJBFQAAALZEUAVsrnPnzgoLC5PD4ZC3t7fCwsIUFhamqlWrqlatWurdu7cWLFigzMzMXGP37dunsLAwBQYGyuFwqEKFCtZ4f39/hYaGqnfv3tq+fXsJbFneTp8+rSlTpqh169YKDw9XpUqVFBISog4dOui5557TunXrlJWVlWvcp59+qs6dOyskJERVq1ZVtWrV1LBhQ/Xr10+vvfaa/ve//5XA1hSvW265RQ0bNlRGRkZJl4I8HD58WA6Hw/rM5TzKlSsnh8OhqlWrOrWXL19e48ePt8anpqZqwoQJatasmYKCghQaGqqIiAi1adNGTz31lJYuXVpyGwdcKQaAk0OHDhlJZsCAASVdihNJJjIy0qnt4MGDZvr06SY4ONjUqVPHfPfdd3mOnTdvnpFkxo0bZ7VlZWWZr776ytSsWdOULVvWrF27third8369etN5cqVzZ133mkSExOt9pMnT5rZs2eb4OBgI8k88sgjTuMmTJhgJJlRo0aZpKQkY8xf27d582bTrFkzI8msWLHiSm6KRwwYMMBIMocOHcpzedOmTU316tXN2bNnr2xhcEnOvyWXio2NzXO/DhgwwPqMnjlzxjRq1MiEhISYVatWmQsXLljtb731lilXrpypXLlycW8CUOI4ogqUYrVq1dKIESP03XffKS0tTZ06dVJiYqJLY728vBQTE6NXX31V58+f1xNPPOF2HQMHDlRUVJTb4yXpu+++U9euXRUbG6tPP/1UTZo0sZZVrlxZTz75pD799FN5e3vr/Pnz1rJTp05p0qRJat26taZMmaKgoCBJf21fmzZttGzZMjkcjiLVlnNkbP78+UVaj6dt27ZNhw8flp+fX7E/l11fg+KWkJAgh8OhhISEK/q87777rnbv3q2JEyeqc+fO8vb2liT5+/vr0Ucf1Ysvvljk5xg/fnyRPxtAcStT0gUAKLrrrrtO77zzjrp27aqHH35Y//3vf13+AxQTEyNJ+vHHH3Xy5ElVqVKlOEvNkzFGjzzyiDIzMzVr1qx8a4+JiVGnTp2c2vbv368LFy6oWrVqeY6pWbOmhg8frho1ani87pLm7e1tBRjYT3h4uPbu3ety/6lTp6ps2bKSZI3L731933336fjx40UvErA5jqii1Pryyy+teV0Oh0O7d+9WfHy86tSpY80Bu/goyJIlS9S+fXsFBwcrODhYTZo00bRp05yOzg0ZMkQ33XSTJOmf//ynNXfs4qN7dtWlSxfVrl1b27Zt0+bNm10el52dbf3s5VUy/yRs2rRJiYmJio6OVkRERIF93377bb3wwgvW79WrV5ckrVu3TgcPHsxzzMsvv6xmzZp5rN7CmjhxosLCwuTt7a2oqCj99NNP6tKli8LCwlStWjU99NBDOn36tNX/wIEDCgsL0z//+U9J0k033WS9Fz/44APt2bNHYWFhqlChQp5H+/7zn//ozjvvVM2aNVWtWjVdf/316tevn5YtW3YFtzpvv//+u5588knVqlXLmnMZExOjGTNm6I8//rD6bd++XY899pgaNGigatWqKTAwUG3btrVekxy33HKL9W9A5cqVFRcXZy0bPny4QkJCrHmi+/btu1KbKUkqW7as6tev73L/atWqWf9RzHlfv/fee3nOyb7++uv1xhtveKbQIrjce+2hhx6y3qdBQUFOZ15mzZplzb+vWrWqvvzyS0l/zTe/5557dN111ykkJERVqlTRnXfeqe+++87puQv7NwClVEnPPQCKKmceX0xMjFm+fLnJysoyx44dM4GBgWbDhg3GGGPGjh1rJJmXX37ZpKenmwsXLpglS5aY8uXLmy5dupisrCxrfaVpjuqlcl6LyZMnO7XnNUc1x5IlS4wk07hxY7drGzBgwGVrK8jkyZONJPO3v/3NrfEdO3Y0kkyFChXMsGHDzMaNG605fZ6Q856YN29ekdYTGRlpKleubO6++25z7NgxY4wxn3/+ufHy8jL33HNPrv6Xm6M6btw4I8l6nxtjzJ49e0y5cuXM8OHDTVpamjHGmF9++cXcfPPNRdpHnngNjh49amrUqGEaNGhgfvjhB2OMMWfPnjUjRowwkszMmTOtvkOHDjVhYWHWvOv09HTrfTJ37lyn9c6ZM8dIMtOnT8/1nB999JFp0aKF2zVv2LAh12tcVPnNUb3YTz/9ZMqVK2ckmQYNGpiZM2eaw4cPe6wGY/7f+8ddrr7XPvvsMyPJPP7447nWsXXrVhMaGmoyMzOttoYNG5qYmBhz/PhxY4wxv//+u+nZs6fx9fU127dvz7UOV/4GoPTiiCquGp06ddIdd9whLy8v1ahRQ2+99Zbq1Kmjbdu2aeLEierWrZueffZZ+fj4yNvbW7169dLQoUO1atUqLVmy5IrXa4zx+DrDwsIkSSdOnLhs3/T0dK1evVpPPfWUypcvrzlz5ni8HlflnMKsVKmSW+MXLVqkzp0768yZM3r99dfVoUMHVa1aVf369dPKlSuL5bV216lTpzR69GhrKkKXLl3UqlUrLVu2zOnovrtWrlypzMxMPfjgg/L19ZX01ynoGTNmqHbt2kVef1EMHTpUv/zyi9555x01aNBAkuTn56fp06ercePGTn1r1KihSZMmqUWLFpIkHx8fjR49Wi1bttTEiROd+j7wwAOqWLGi3nzzTaczBJI0Z84cDR06tBi3qnhcf/31Wrp0qWrUqKG9e/fq6aefVlRUlBo2bKgXXnhB+/fvL+kSXX6vde7cWVFRUfrwww915swZp3W88cYbevjhh60pD5JUv359zZ492zqqHBISonnz5un8+fOaPn16vvXk9zcApRtBFVeNW2+91en3++67TzVq1NCCBQskSd26dcs1pk2bNpKk5cuXe6SGtLQ0jRs3TlFRUfLz81Pjxo0VHx+vDRs2WCEkKytLX3zxRa56PSHnj3R+czxfeeUV6xRytWrV9Pjjj+uWW27Rtm3b1KFDB4/XU1juXtgRFhamVatWaefOnRo5cqQaN26spKQkLV68WHfccYfatWunkydPerha9/j6+qply5ZObZGRkcrMzPTILbRyTq0+8cQT+vbbb632Jk2aaN26dUVev7uSkpL02WefqVKlSmrXrl2u5YsWLVKPHj2s31944QU98sgjufo1aNBAv/32m9M0gYoVK6p///46dOiQVq1aZbXv3r1be/bsUZ8+fTy8NVdGt27ddPDgQf373/9W//79VaVKFf3www+aPn26GjRokCuwX2muvte8vLz06KOPKjU1VQsXLrTak5KS9K9//UuPPvqo03qXLFmSa6pOQECAqlevru+//z7fevL7G4BSrqQP6QJFlXPa5+eff85zeZcuXYwkExQUZEJDQ50eVapUMf7+/ubWW2+1+rt76v/kyZOmefPmRpIJDQ014eHhxsvLy0gykoyvr6+pVauWqVixonUrpcKQC6f+77//fiPJTJkyxam9oFP/hXXpaxgaGmp8fX2Nl5dXnsuOHj162XUW9dR/Xo4cOWKmTZtmqlSpYiSZBx980KVxL7/8cp7vE0kmICAg17Inn3zS5ZoiIyNNRERErvb8TvG7c+o/OzvbPP3006Zs2bJGkomIiDBDhgwxmzZtcrnO4ngNtm7daiSZJk2auFTDqVOnzIQJE0zLli1NtWrVnN5reb0mu3btMpJMly5drLYhQ4aY4cOHu7zdTz75ZK5ty7klWnBwcK5lL7/8ssvrvpgrp/7zkpWVZTZu3Gj69+9vHA6HkWTWr1/v0tiWLVvmqt/f39/69+rShyvvl8K8137//XdTrlw506xZM6tt5syZpmvXrrn67t271zz66KPW7blyavLy8srz38DL/Q1A6UZQRal3uT/mnTt3NpLMokWLXFqfu0E1ISHBDBo0yOzbt89qO3nypFmwYIHp06ePiYiIML6+viY6Otqte3peLqhmZ2ebqKgoI8ls3rzZaZkng2peijpHddOmTUaSad26teeK+v99//33RpIJCQlxex2enKNa0B9aTwTVHH/88YeZO3euue2224y3t7eRZB544AG3ay/qa/Cf//zHSDL16tW7bN9z586ZevXqGW9vbzN//nxr/qMxBb8mHTp0MF5eXubnn382KSkpJiAgwBw4cMCtenOU1BzVyxk+fLiRZEaMGOH2Ooo6RzWHq++1Pn36GElmy5Ytxhhj6tWrl+vfwl27dhk/Pz9TvXp188033zjNNS/s5wdXB07946qXMxfu2LFjeS7/73//qx9//LHIzxMTE6N//OMfqlu3rtVWuXJl3X///Vq8eLGOHj2qtLQ0bd26Vd27dy/y811q2bJlOnz4sFq2bKnWrVt7fP3FqU2bNmrZsqW+/fbbfPeT9Ne0idtvv13333+/1Xb06FEFBQXpzz//zHNM48aNVaVKFZ09e9bjddtRdna2srOzVbVqVT322GNas2aNDh48qJtuukkffvhhiV0FXbduXXl5eenEiRN5zhn+888/rekZX375pfbt26dbb71VAwYMsOY/Xs7jjz+u7Oxsvfnmm/rggw/Url27Ep+X665p06YVOGWhY8eOklSi7+vCvteGDBki6a95qevXr1daWpq6du3q1GfevHk6d+6cnnzySbVr147br4E5qrj6PfDAA3I4HLluayNJf/zxhzp06KBdu3ZZbf7+/pLkdGHLqFGjtGPHjgKfpyRvnP3TTz9pyJAhCggI0D/+8Y9SdxNvh8Ohd999V35+fnr66afzvfhpzpw5+uKLL5yCfnZ2tpKTk7V+/fo8x5w4cUInT54sdeFdyv1e/OabbzRlypQCx0ycOFGPP/64U1vNmjXVv39/Sco30Be34OBgde/eXampqbnmyhpjFB0drZkzZ0qS04U1lzp8+HC+y3r16qXQ0FC99957ev3110vlRVQ50tPTlZCQkOvioxw5czVL8n1d2PdabGysbrjhBn388ceaOnWqBg8enOuWePnt+4yMDP32228erB6lBUEVV73mzZtr/Pjx2r59u0aNGmUdgdi/f7969Oih2NhYp4s4cr5/e8+ePbpw4YJ++OEHvfTSS7b8n/2hQ4c0bdo0tWrVShUqVND69etLxT1f89K0aVOtWrVK33zzjXr06OH0n4dff/1VY8aM0dNPP62JEyeqb9++ucYPHTpUH330kdLS0iT9FWC3bNmiu+66SxUrVizwamG7ytmXiYmJMsbojTfe0Pbt2y87buHChVq9erUV+I8cOaIPP/xQ4eHhuuWWW4q15oK8/vrrqlGjhuLj4617mqampmro0KHKzMy0vh2tffv2qlWrltauXatFixbJGKOsrCzNnTtXX331Vb7rL1u2rB5++GGdOnVK6enp6tKlyxXZruLy+++/q3fv3kpMTLQulDxz5ozeffddTZw4UTExMSV+oVhh32tDhgyxQvjDDz+ca/m9996rcuXKafbs2dq2bZukv94jQ4YMUUZGRvFuDOypBKcdAEWyc+dOp4srqlSpYkJDQ/Odp/TJJ5+Y2NhYU6lSJVO9enXTsGFDM2XKlDy/J33NmjWmYcOGpnLlyiYyMtLtiyY84fbbbzehoaFGktMFS5UqVTKRkZGmZ8+e5oMPPjAZGRm5xv74448mNDTUBAQEGEnG39/fhIaG5nnPzqIo6hzViyUlJZnJkydbF3+EhISYunXrmvvvv9+a23axzMxM8+mnn5phw4aZFi1amOrVq5uQkBBTsWJFU69ePfPYY48V+SKLos7PnDt3rnUxSM4+/Oijj8zRo0dzvYcHDhxojUtLSzMDBgwwISEhJiwszHTs2NEcOHDA7N692+limODgYOs+uD///LMZNWqU9VqEhoaa2rVrm6FDh7p0YVtxvQY5fvvtNzNs2DATGRlpQkNDTc2aNc2AAQNyfW5//vln06dPH1OtWjVTsWJFU7duXTN27FjTu3fvPF+rHEeOHDHe3t553lPVHZ6cozpixAgTGhpqXXxUpUqVfD83x48fN3PnzjW9evUy9erVMyEhIaZy5comODjYtGvXzsyaNSvPz3xhFHWOqjvvtdOnTxs/Pz/Tq1evfNe7YcMGExcXZ4KCgkyVKlVMs2bNzAcffGBq1qxpfX7efvvtQv8NQOnkMMZGNxgEAKAIfv31V9WtW1eHDh0qka8DBuBZnPoHAJRaOXOUc7z77rvq2bMnIRW4SnBEFQBQah0+fFitW7fWgQMHdPr0abVo0ULr1q1To0aNSro0AB5QpqQLAADAXeXLl5efn5/Cw8MVHBysyZMnE1KBqwhHVAEAAGBLzFEFAACALRFUAQAAYEvMUS1Adna2Tpw4oYoVK5a6b/oBAACwI2OMUlNTVb169VzfTnYpgmoBTpw4oYiIiJIuAwAA4Kpz7Ngx1ahRo8A+BNUCVKxYUdJfL2RAQEAJVwMAAFD6paSkKCIiwspZBSGoFiDndH9AQABBFQAAwINcmVbJxVQAAACwJYIqAAAAbImgCgAAAFsiqAIAAMCWCKoAAACwJYIqAAAAbImgCgAAAFsiqAIAAMCWCKoAAACwJYIqAAAAbImvUHVBo3Fr5OXj55F1HZ7WzSPrAQAAuNpxRBUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALZVoUN28ebNiYmLUoUMHderUSV26dNGECRPUsGFDORwOtW7dWmvXrpUkTZkyRVFRUapXr57Wr1+v3377TQ899JBuuukmxcXFqWXLlpoyZYqysrKs9Xfv3l1hYWGKi4vTnDlz1K1bN1WrVk3NmjXLs56MjAylpKQ4PQAAAFAySiyoZmVlqXv37urfv782btyo9evXq3v37jp06JC++OILeXt7a8iQIbr11lslSaNHj1ZUVJSWL1+uTp066cCBA9q1a5c2btyohIQEffnll1q4cKFmzpxpPcfKlSvVuXNnbd++XYGBgfrss8/03Xffyc/PL8+apk6dqsDAQOsRERFxRV4LAAAA5FZiQTUlJUVJSUk6dOiQjDGSpIEDB+rpp59WeHi4unfvrjfffNPqv3fvXnl5ealevXqSpObNm2v58uXy9fWVJAUFBenOO+/UJ598kuu5goKC1L9/f0lSeHi4Nm/enGdNI0eOVHJysvU4duyYR7cZAAAAritTUk8cHBysSZMmadKkSVq4cKF69+6t/v3768Ybb5QkDRkyRF26dFFiYqKaNm2qt956S3/729+s8eXKldNHH32k5cuXKysrS97e3jp8+LAcDkeu54qMjHSpJh8fH/n4+HhmAwEAAFAkJTpHdcyYMTp+/Lief/55bdmyRS1atNCLL74oSbrtttsUFRWlt956S+np6Vq9erV69OhhjX3hhRc0duxYzZ492zr9P3DgQOvo7MW8vb2v2DYBAADAM0osqKampmrNmjWqUqWKhg4dqi1btig+Pl6zZ8/+qzAvLw0ePFgLFy7Ue++9p7vuukvlypWzxq9du1ZNmjRR06ZNrbaMjIwrvh0AAAAoHiUWVE+dOqUhQ4YoKSnJartw4YIaNmxo/T5o0CClpaXpueee0+DBg53GN2nSRHv27NGRI0ck/RV8V6xYcWWKBwAAQLErsTmqVatWVY8ePXTrrbeqYsWKSktLU3h4uBYvXmz1CQsL05133qnk5GTVqVPHafysWbOUlZWl9u3b64YbblBQUJAaNGigFStWKC4uTkuXLtUTTzyhdevWKT09XXFxcRo7dqw6dep0pTcVAAAAbnCYvCZ1QtJfdyYIDAxURPzH8vLJ+5ZWhXV4WjePrAcAAKA0yslXycnJCggIKLAv30wFAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyqx21OVJrsn3H7Zq9IAAADgWRxRBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC2VKekCSoNG49bIy8evpMuQJB2e1q2kSwAAALgiOKIKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALClUnMf1aioKEVFRVm///jjjzp9+rRat25ttf3nP/9Renq61q5dq5deekkZGRny8vLSmTNnVLVqVcXFxen5558vgeoBAABQWKUmqEpSQkKC9fPAgQOVkJDg1BYVFaX169fr9ttv18qVK9W1a1dJUlZWlsaMGaOpU6cSVAEAAEqJUnPqPz4+3qU+//73v1W5cmUrpEqSt7e3xo4dq9q1axdjhQAAAPCkqy6oBgUF6dSpU9q6davTsvLly2vbtm3FVB0AAAA8rdQEVVcNGjRIAQEB6tChg+655x4tWrRIp06dcmlsRkaGUlJSnB4AAAAoGVddUK1du7YSExP1yCOPaN26dbr//vsVGhqqbt266fvvvy9w7NSpUxUYGGg9IiIirlDVAAAAuNRVF1QlKTIyUnPnztX//vc/bdy4UcOGDdPXX3+tNm3a6NChQ/mOGzlypJKTk63HsWPHrmDVAAAAuNhVF1RPnz6tM2fOSPrrIqr27dtr1qxZ+vLLL3Xu3DktX74837E+Pj4KCAhwegAAAKBkXHVBddasWXr11VdztdevX1+S5OV11W0yAADAVemqTG1vvvmmDhw4YP1+4cIFTZs2TRUrVlSPHj1KsDIAAAC4qlTd8F+S/vzzT/Xs2dP6Zqq4uDhNnTpVbdq0kST17NlTf/75p/r06SM/Pz9lZ2crKSlJ9erV08aNG1WjRo0S3gIAAAC4otQF1UqVKjl9G9WlmjRpkuepfwAAAJQuV+WpfwAAAJR+BFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLBFUAAADYUqm7PVVJ2D3hdr5OFQAA4ArjiCoAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALClMiVdQGnQaNwaefn4lXQZxe7wtG4lXQIAAIDFI0dUz5w5o08//VQ//vijJ1YHAAAAuBdUx40bp8qVK2vLli06f/682rZtq549e6px48b65JNPPF0jAAAArkFunfpft26dvv/+e4WHh+vjjz/WgQMHtHPnTp0/f17Dhg1Tjx49PF0nAAAArjFuBdXy5csrPDxckvTxxx/rnnvuUZMmTSRJvr6+nqsOAAAA1yy3gmpycrIk6dSpU1q1apWWLl1qLXM4HJ6pDAAAANc0t4Jq48aNFRMTo6SkJIWEhOi2225Tdna2li9fruzsbE/XCAAAgGuQWxdTzZ49W82bN1edOnW0ZMkSORwOLV++XLNnz9bjjz/u6RoBAABwDXLriOr69et1++23q2vXrlbb3XffrbvvvttTdQEAAOAa59YR1R49emjVqlWergUAAACwuBVU27Ztq9dee83TtQAAAAAWt4JqzZo1dfbs2TyXDRw4sCj1OHn11VfVtGlTtWvXTtHR0erbt6++/fZbnTt3TsOGDVPLli3VsWNH3XTTTXrmmWesmpYvX67atWvL4XAoNjZWu3btkiTFx8crLCxMTZs21Q8//OCxOgEAAOB5bs1R7dy5s+644w49+OCDioyMlLe3t7Xs+++/90hh48aN05w5c7R161bVrl1bmZmZ6tGjhxYtWqRnn31Wy5cvV2JiooKDg5Wenq5u3brp+eef1+uvv64777xT1atX10033aSRI0eqcePGkqS///3vWrt2rb7++msFBgbmes6MjAxlZGRYv6ekpHhkWwAAAFB4DmOMKewgL6/8D8Q6HA5lZWUVqaizZ8+qSpUqGjJkiGbOnGm1f/vtt/rpp59033336fjx44qKirKWvfnmm5o0aZKOHz9utbVq1UohISFasWKFJGnZsmVatWqV3nzzzTyfd/z48ZowYUKu9oj4j+Xl41ekbSoNDk/rVtIlAACAq1xKSooCAwOVnJysgICAAvu6dUS1VatW+uijj3K1G2PUt29fd1bpZM+ePUpPT1e9evWc2qOjoxUdHS3przsPLF68WGlpaSpTpox+++03nThxwqn/sGHDNHDgQB06dEi1atXS3Llz9fLLL+f7vCNHjtQzzzxj/Z6SkqKIiIgibw8AAAAKz62g+uyzzyoyMjLPZZMmTSpSQRfL71uuXnvtNT311FNavXq1brvtNknS/Pnz9dBDDzn1u/fee/XMM8/ojTfe0ODBg5Wenm591WtefHx85OPj47H6AQAA4D63gmqvXr0kSWlpadqzZ48cDocaNmwoX19f3XLLLUUuqmHDhipfvrz27dvn1J6YmKjvv/9ea9euVVhYmBVSJTnNLc3h4+OjRx55RO+8845SU1P12GOPFbk2AAAAXBluXfUvSRMnTlTVqlXVqlUrRUdHq0qVKh47murv768RI0ZowYIFOnjwoCQpPT1d8fHxOn/+vJo0aaLff/9d27ZtkyRlZmZqyZIlea5ryJAhSkpK0qeffmoFbAAAANifW0dUX331Vb366qsaPHiwNY907969mj17toKCgvTEE08UubDx48crODhYd999typWrKisrCz16dNHgwYNUnp6uk6dOqW7775bderUUXBwsHVhVVxcnObOnasbbrhBkhQZGamuXbuqefPmKlu2bJHrAgAAwJXh1lX/zZo107///W/Vrl3bqf3AgQPq1auXEhMTPVagJ0RHR+uTTz5ReHh4ocblXJXGVf8AAACeUZir/t069e/n55crpEpSnTp15O/v784qPW7UqFGSpISEBF133XWFDqkAAAAoWW6d+k9NTVVSUpKCg4Od2k+dOqXU1FSPFFZUX331lRo1aqSAgAAtXry4pMsBAABAIbkVVO+66y61bdtWw4YN0/XXXy+Hw6Eff/xRc+fO1b333uvpGt2yadOmki4BAAAAReBWUB0/frwOHz6sJ554wrrXqTFGAwYM0NixYz1aIAAAAK5NbgXVMmXKaMGCBZowYYK2b98uSWrZsqVq1arl0eIAAABw7XLrYqovvvhCklS7dm3dc889uueeexQaGqq+fftqx44dHi0QAAAA1ya3bk/VqVMnrV+/3qktKytLH3/8sV599VVt2bLFYwWWpMLcPgEAAACXV+y3p8qLt7e3+vbtKy8vj60SAAAA1zCX56i+//77ev/99yVJO3fuVKdOnXL1OXnypHx9fT1XHQAAAK5ZLgfVoKAgRUZGSvrr61Jzfs7h5eWltm3bavDgwZ6tEAAAANckt+aoDho0SO+9915x1GMrzFEFAADwrGKfo3othFQAAACULLeC6scff6wbb7xRL774otX2f//3fxo4cKDS09M9VhwAAACuXW4F1XfffVe9e/fW888/b7UNGzZM4eHhGj58uMeKAwAAwLXLraCalpamUaNGqUKFClZbQECApkyZosTERI8VBwAAgGuXW0E1MzMz32Xnz593uxgAAAAgh1tBtWzZslqxYkWu9s8//1xlyrh8xysAAAAgX26lyrFjx6pr165q2rSp6tWrJ4fDoX379ikxMVGrVq3ydI0AAAC4Brl1RPW2227T6tWr5efnp2XLlunTTz+Vv7+/1qxZo1tuucXTNQIAAOAa5NYN/68V3PAfAADAs4r9hv8F6dGjh6dXCQAAgGuQy3NUX3vtNdWoUUM9evTQoEGD8u23detWjxQGAACAa5vLQXXGjBmqX7++evTooU8++UTNmjXLsx/fTAUAAABPcDmo7tu3z7r1VLNmzbRhw4Y8+3Xs2NEzlQEAAOCa5nJQLVeunPXzypUr8+1X0DIAAADAVW5dTOXv75/vsr59+7pdDAAAAJDD5SOqBV1AdbHvvvvO7WIAAACAHC4H1UsvoPruu+8UGBioqKgoSdLhw4f1xx9/qH379p6uEQAAANcgl4PqxRdQzZ49WwMGDNDAgQOd+sybN0/Hjx/3aIEAAAC4NrkcVFetWmX9vHr1aqffczz00EO6/fbbPVMZAAAArmkuX0zl6+tr/fzzzz/n2ccYo0OHDhW9KgAAAFzz3LrqPzw8XAMGDNDevXt1/vx5ZWZmas+ePRowYIBq1Kjh6RoBAABwDXIYY0xhB+3du1ddunTRsWPHnNpr1qyp1atXq169eh4rsCSlpKQoMDBQEfEfy8vHr6TLuazD07qVdAkAAAAFyslXycnJCggIKLCvy3NUL9agQQPt27dPCxcu1J49eyRJjRs3Vt++feXj4+POKgEAAAAnbgVVSfLx8XH53qoAAABAYbk1R1WSduzYoQceeEA9evSQJL311lvasmWLxwoDAADAtc2toJqQkKDo6Ght375d+/btkySFhIRo4MCBWrNmjUcLBAAAwLXJraA6YcIEffbZZ9qzZ49CQ0MlST169NCGDRs0ffp0jxYIAACAa5NbQdUYo9tuu02S5HA4rPbq1at7pioAAABc89wKqqmpqdbPF9/dKjMzUydOnCh6VQAAALjmuRVUGzRooMcee0y//PKLHA6H0tPTtW3bNvXq1UutW7f2dI1OEhISNGvWrFztK1euVNWqVXPd2xUAAAClk1tB9ZVXXtH69esVGRmpr776Sv7+/oqOjtbBgwf18ssve7pGJ/kF1eDgYNWtW1cVK1Ys1ucHAADAleHWfVTDwsK0c+dOLVq0SNu3b5cktWzZUn379pWvr69HC3RVu3bttGnTphJ5bgAAAHieW0H1mWeekY+Pj6ZOnaqHH37YI4UsWbJEr7zyirZu3ar58+dr9erVOnLkiE6dOqVp06apR48eGjlypBYvXqzffvtNcXFxkqSBAweqQoUK1tgNGzZYy1asWKHJkyerfPnyMsaocuXKeuGFFxQdHZ1nDRkZGcrIyLB+T0lJ8ci2AQAAoPDcCqpvv/223nvvPY8W0rt3b7Vs2VK1atXSwoULtWzZMpUvX14vvfSSHnroId12222aOnWqfHx8NH/+fCUkJDiNzxmb4/fff1evXr20cuVK6w4Fzz33nD7//PN8g+rUqVM1YcIEj24XAAAA3OPWHNW2bdvq3nvvzXPZ6dOni1KPJKlfv34qX768JOm2225TcnKyDhw4UKh1/Prrrzp//rx+/vlnq23EiBHq169fvmNGjhyp5ORk68GFWQAAACXHraDaqFEj7d+/P89lPXv2LFJBkhQREWH9HBgYKKnwAbhZs2b629/+pmHDhql+/foaM2aMkpKSVLdu3XzH+Pj4KCAgwOkBAACAkuHWqX9fX1917NhRN998s6KiouTt7W0tO3z4cJGLunh9OV8ocPH9Wl315ptvavTo0Vq8eLE++OADTZ06VW+++aYGDx5c5BoBAABQvNwKqjNnzlRYWJi+/vprff31107Lfv/9d48Ulh8vr/93EDg7O1tnz57N85ZUx48f15EjR9S2bVuNGDFCzz33nHr37q3XXnuNoAoAAFAKuHXqv3Xr1jp06FCej1atWnm6RifVqlVTUlKSsrKytHXrVt1yyy159tu/f7+eeeYZpaenW20XLlxQw4YNi7U+AAAAeEahgupnn32mfv36KTw8XFu2bMmzz7/+9S+3Clm7dq369OkjSYqPj9eiRYv01Vdf5Wq75557dOONNyo6OlpPPvmkJkyYoCVLljj1e+ONN9SgQQM1bdpUHTp0UMeOHRUdHa1KlSppzpw5btUHAACAK8thXJz8+cknn6hXr17W72XLltWmTZvUsmXLYiuupKWkpCgwMFAR8R/Ly8evpMu5rMPTupV0CQAAAAXKyVfJycmXvXDd5SOq06dP1+jRo3Xq1CmdOHFC999/v/7+978XuVgAAAAgLy5fTHXu3DlNmjTJ+v2NN95QTExMsRQFAAAAuHxEtVKlSk6/+/j4WDflv9hHH31U9KoAAABwzXM5qF58W6iC2t5+++2iVQQAAACoEKf+d+zYoU6dOjm17dy5M882AAAAoKgKdcP/S28Q0LRpU7e+Maq02T3hdr5OFQAA4ApzOag2a9ZMGzZsuGy/jh07FqkgAAAAQCrEHNV58+Z5tB8AAABQEJeDalRUlEf7AQAAAAUp1FeoAgAAAFcKQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2VKakCygNGo1bIy8fv3yXH57W7QpWAwAAcG3giCoAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJZK3X1UV65cqTlz5ujs2bNyOBzKzMxUSEiIunfvrrvvvltVq1ZVRkaGZsyYoaVLl8rf31/GGKWkpKhJkyYaOHCgOnbsWNKbAQAAgMsoVUF1+PDh+vTTT7Vs2TI1atRIkpSVlaW5c+fq0Ucf1fHjxzV+/Hg9+uij+u9//6uNGzeqcuXKkqTff/9dN998s4KDgwmqAAAApUCpCaqLFy/WjBkztHnzZiukSpK3t7eeeOIJbd682WpbsmSJHn/8cSukSlJoaKhGjx6t/fv3X9G6AQAA4J5SE1RfeeUV1alTR23atMlz+cSJE5WWliZJCgoK0oYNG5SWlqby5ctbffr27XtFagUAAEDRlYqLqc6dO6cdO3Y4HUm91PXXX68mTZpIkp5++mlt27ZNtWvX1ogRI/T111/rwoULl32ejIwMpaSkOD0AAABQMkpFUE1KSpIxRhUqVHCp/7PPPqsVK1aoUaNGmjFjhmJjY1WtWjWNGDFC586dy3fc1KlTFRgYaD0iIiI8tQkAAAAopFIRVIODg+VwOHTmzBmXx3Tv3l1ffPGF/ve//2nRokVq0aKFXn75ZfXq1SvfMSNHjlRycrL1OHbsmCfKBwAAgBtKRVD18/PTjTfeqN27d7vU/5dffrF+Dg4OVt++fbV69WoNGTJEq1evVnJycp7jfHx8FBAQ4PQAAABAySgVQVWSXnjhBR04cEBbtmzJc3mLFi00fPhwSVL79u114sSJXH3q168vh8Mhh8NRrLUCAACg6EpNUO3du7dGjx6tBx54wOnIalpamuLj45Wenq5Ro0ZZ7WPGjFF6err1+6+//qp//OMfuuuuuzhSCgAAUAqUmttTSdLkyZPVrl07Pfvsszpz5ozKlCmjtLQ0derUSRs3blSlSpUkSZMmTdKyZcvUrl07VaxYUefOnVNaWpq6d++uMWPGlPBWAAAAwBUOY4wp6SLsKiUl5a+r/+M/lpePX779Dk/rdgWrAgAAKL1y8lVycvJlz3KXmlP/AAAAuLYQVAEAAGBLBFUAAADYEkEVAAAAtkRQBQAAgC0RVAEAAGBLpeo+qiVl94Tb+ZIAAACAK4wjqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJbKlHQBpUGjcWvk5eNX0mUAAAAUi8PTupV0CXniiCoAAABsiaAKAAAAWyKoAgAAwJYIqgAAALAlgioAAABsiaAKAAAAWyKoAgAAwJZKxX1UDx06pIceekg7d+6UJDVr1kzZ2dlKTk5WjRo19OCDD+ree++Vw+GQJN11111KTEzUkSNHFBsbK0lKTU3VuXPnNGDAAD377LMqU6ZUbDoAAMA1q1SktVq1aikhIUFxcXGSpISEBGvZmjVrNGjQIM2fP1+ffPKJfH19tWzZMo0fP14TJkzI1bdr1646efKkXnnllSu7EQAAACiUUn/q//bbb9eaNWu0bt06PfPMM5ft27BhQy1YsOAKVQcAAAB3lfqgKkmNGjXSHXfcoXfeeUdJSUkF9s3MzFS5cuWuUGUAAABw11URVCWpTZs2unDhgrZu3Zpvn7ffflv79u3T0KFD81yekZGhlJQUpwcAAABKRqmYo+qKoKAgSdKff/7p1J4zr/Xs2bOqXLmyFi9erD59+uS5jqlTp2rChAnFWSYAAABcdNUE1ZyAWqlSJaf2iy+mupyRI0c6zXNNSUlRRESER+oDAABA4Vw1QXXz5s0qU6aMWrVq5fY6fHx85OPj48GqAAAA4K6rYo5qYmKiPvvsMw0ePFjBwcElXQ4AAAA8oNQH1dWrV6tLly66+eabNWPGjJIuBwAAAB5SKk79X/rNVHFxcdY3U4WHh2vGjBm67777cn0zVU7f6OhovfTSSyVVPgAAANxQKoJqzjdTuWrZsmXFVwwAAACuiFJ/6h8AAABXJ4IqAAAAbImgCgAAAFsiqAIAAMCWCKoAAACwJYIqAAAAbKlU3J6qpO2ecLsCAgJKugwAAIBrCkdUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2VKakC7AzY4wkKSUlpYQrAQAAuDrk5KqcnFUQgmoBTp06JUmKiIgo4UoAAACuLqmpqQoMDCywD0G1AJUqVZIkHT169LIvJK4OKSkpioiI0LFjxxQQEFDS5eAKYb9fe9jn1x72uX0YY5Samqrq1atfti9BtQBeXn9N4Q0MDORNfY0JCAhgn1+D2O/XHvb5tYd9bg+uHgDkYioAAADYEkEVAAAAtkRQLYCPj4/GjRsnHx+fki4FVwj7/NrEfr/2sM+vPezz0slhXLk3AAAAAHCFcUQVAAAAtkRQBQAAgC0RVAEAAGBL10RQ/emnn9SlSxe1bt1azZs319ChQ3XmzBmXxr7//vtq0aKFYmNj1aJFCy1atChXn8zMTI0cOVLNmzdX+/btFRsbq23btnl6M1AIxb3P69evr7i4uFwPlKyi7PezZ8/q2WefVZkyZZSQkJBnHz7r9lPc+5zPuv24s8/PnTunuXPnKi4uTjfffLNat26t2NhYrV69OldfPuc2Y65yJ0+eNNWqVTNTpkwxxhhz/vx5c+utt5o77rjjsmMXLlxoKlSoYPbt22eMMeaHH34w/v7+ZsmSJU79Bg8ebJo1a2bOnDljjDFm/vz5JjAw0Bw8eNDDWwNXXIl9Hhsb6/G6UTRF2e+bNm0yTZs2NYMGDTKSzIYNG/Lsx2fdXq7EPuezbi/u7vONGzcaPz8/s337dqvtlVdeMQ6Hw6xcudKpL59ze7nqg+qLL75oKlasaNLT0622r776ykgy33zzTb7jsrOzTWRkpHn00Ued2h966CFTp04d6/f9+/cbh8NhFi1a5NTvuuuuM4888oiHtgKFUdz73Bj+eNmRu/vdGGM2bNhgfv31V7Nhw4Z8Qwufdfsp7n1uDJ91u3F3n+/cudPEx8c7tWVnZxs/Pz9zzz33WG18zu3nqj/1//nnn6tFixZO901r1aqVvLy8tHLlynzH7dmzR0eOHFHbtm2d2tu2basDBw5o3759kqTVq1fLGJOrX5s2bQpcP4pPce9z2JO7+12S4uLiFBYWVmAfPuv2U9z7HPbj7j5v2rSpZs6c6dTmcDjk4+OjMmX+37fJ8zm3n6s+qP7000+qXr26U5uPj4+qVKmi/fv3FzhOUq6x4eHhkmSNLajfb7/9ptTU1KJtAAqtuPe59Nfctr/97W+KjY1Vu3btNGjQIGs8Soa7+70w65f4rNtJce9zic+63Xhyn+/atUtJSUl68MEHndYv8Tm3k6s+qJ49ezbPb6Hw8fEpcPL12bNnrX6XjpNkjT179qwcDofKli2bZ7+c9eDKKe59Lkk33HCDHnzwQX311VdKSEhQlSpV1LhxY23evNkTmwA3uLvfC7N+Puv2Utz7XOKzbjee3OfPP/+8BgwYoM6dOzutn8+5vVz1QbVChQrKyMjI1Z6RkaEKFSoUOC6n36XjLl5eoUIFGWN0/vz5AvvhyinufS79dWeAdu3aSZLKli2rqVOnqlKlSpo8eXKR64d73N3vhVk/n3V7Ke59LvFZtxtP7fNRo0YpOztbb7/9dq718zm3l6s+qF5//fU6ceKEU1tGRoZOnjypunXrFjhOUq6xx48flyRrbEH9qlWrxpu6BBT3Ps+Lt7e3rrvuOh04cMDdslFE7u73wqxf4rNuJ8W9z/PCZ71keWKfjxs3Trt27dKyZctUrly5XOuX+JzbyVUfVLt27apt27Y5/Q9s69atys7OVrdu3fId17BhQ0VGRuY6vbN582Zdf/311geiS5cucjgcufpt2bKlwPWj+BT3Pl+3bp3eeeedXON/+eUX1ahRw0NbgcJyd7+7is+6/RT3Puezbj9F3ecjRozQDz/8oKVLl1qn8//+979by/mc21BJ3nLgSjh58qQJCwu77D3Xxo4da6Kiosyvv/5qtRXlPqoBAQHcc62EFPc+nzdvnqlVq5bTuFdffdU4HA6zfPny4tw0FKAo+z3H5W5VxGfdXop7n/NZtx9393l2drYZOnSoadmypfnPf/5j/vvf/1qPyMhIp7F8zu2lzOWCbGlXuXJlJSQk6KmnntLy5cuVnp6utm3b6qWXXnLql5GRoXPnzikrK8tq69evnzIzM3XfffepYsWKOnPmjN566y316tXLaezrr7+usWPHql27dvL391eZMmW0bt061apV64psI5wV9z6/5ZZbtGfPHt1xxx3y9/dXenq6/P399eWXX6pTp05XbDvhrCj7/cCBA3rkkUd0+vRpSVJ8fLyCgoL07rvvqk6dOlY/Puv2Utz7nM+6/bi7z1etWqU5c+ZIklq3bu3UNzIy0ul3Puf24jDGmJIuAgAAALjUVT9HFQAAAKUTQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFAACALRFUAQAAYEsEVQAAANgSQRUAAAC2RFAFgFJu//796tmzp0JCQhQYGKhOnTrpxx9/LOmyAKDICKoAimTnzp2Ki4tTUFCQatWqpT///DPf5a1bt9a0adNKqFLXvf7662rWrJkcDocOHz5sta9cuVJVq1bVsWPHivX5x40bp/r168vhcFy278mTJ9WxY0edOnVK7733nhYsWKCjR49q5MiRxVpjYS1btkzNmzdXbGysmjRponfeeSfP9tdee82t17g4983OnTs1fvx4j68XgAsMAHhAbGyskWS6du1qsrOz81x+6NChK1+YmzZs2GAkOdX8zTffmLZt25qkpKRif/558+YZV/6JnjRpkgkJCTEpKSlW29ChQ83NN99cnOUVSmZmpvHz8zPvvvuuMcaYvXv3moULF+bZPnnyZLde4+LcN67uCwCexxFVAB4zfPhwff755/q///u/ki6lWLRr106bNm1SUFBQSZdiWbFihbp3766KFStKks6fP6/Vq1crOjq6hCv7f06cOKFz586pdu3akqT69eurX79+ebaPHj3ardfYjvsGQNERVAF4zLBhw/TAAw9o7NixWr9+fYF9jTGaOXOmmjRpotatW6tRo0Z68cUXdf78eUnSkiVL1Lp1azkcDn3wwQfq16+f2rdvLy8vL6dl8+fPV79+/dSiRQu1bNlSu3bt0ubNm3Xvvfeqfv366tWrl1JTU52e+/PPP1enTp0UExOj2NhYdejQQQkJCQXWe/Fz5vQ9fPiwwsLCFBcXZz2uu+46ORwOrVixwtrOGTNmqHnz5urQoYNat26tSZMmWdsp/RUu4+PjVbNmTcXExGjgwIE6derUZV/vCxcuKDExUdHR0Tp37py+++473XXXXUpJSdGwYcMuO/7VV19V06ZN1a5dO0VHR6tv37769ttvXd5HrmzfkiVLdN9990mS4uPjFRcXp3/+85/5tl/6GrtSa177xpXX/eJx77//vvr27au2bduqXr16+uSTTyRJs2fPtqar5Ozji6evbN68WTExMerQoYM6deqkLl26aM2aNZd97QG4qESP5wK4auSc2j937pxp1qyZCQkJMcePH8+1PMfo0aNNlSpVzM8//2yMMeaPP/4wderUMQMGDLD6HDp0yEgysbGxJjk52RhjzOOPP25WrFhhLevatavJyMgwxhjTs2dP07RpU/PKK68YY4w5e/asCQ8PN1OmTHGq9eGHHzYvv/yy9fuaNWuMv7+/OXz4sNWW16n/nOfcsGGD9fvF9f75558mKirK3H333VbbmDFjTI0aNcyvv/5q9bnhhhvMU089ZfV57rnnTGhoqDly5IgxxphffvnF1K1b97Knm3fu3GkkmW+//dbUqVPHSDIOh8P861//KnCcMcaMHTvWVK5c2Rw4cMAYY0xGRobp2rWrU12u7CNXtu/S162g9rzaXKn10nGu1HXxuFtvvdWcO3fOGGPM9OnTTWBgoDlz5owxJv9T/xcuXDDBwcHmrbfestpef/11p9cHQNEQVAF4xMVB9ODBgyY4ONi0a9fOnD9/Ptfy1NRU4+vra55++mmndcycOdNIsgJJTojImcN4sZxl77//vtX2+uuvG0lW4DPGmF69ejkFR2OMOXr0qElLS3NqCw0NNW+//bb1uytBNTMz05w4ccIYY0x2dra54447TK1atax5kjnbOWHCBKfnmj59uvH29jbnzp0zZ8+eNT4+Pmb48OFOfUaOHHnZoDpv3jxTpkwZk5aWZr766ivz3nvvmZtuusmUK1fObNu2Ld9xZ86cMb6+viY+Pt6pfevWrebDDz90qr2gfeTK9uX1uuVwJai6Uuul41yt6+Jx8+bNs9p27NhhJJmdO3caY/IPqn/++aeRZF544QVrXvaZM2escQCKrswVOWwL4JpSq1YtLVq0SN26ddOIESM0Y8YMp+U//PCD0tPTVbduXaf2evXqSZK2bdtmzVuUpKioqHyfKzw83PrZ398/V1uFChV05MgRpzHnz5/XU089pd27d6tMmTJyOBw6ffq0Tpw4UajtLFu2rKpVqyZJeuWVV7RmzRqneZI527l48WKnqRBnzpxRjRo1dOzYMaWnpysjI0PXX3+907pr1ap12effvn27GjRoIF9fX8XExCgmJka9e/dW1apVtXLlSt144415jtuzZ4/S09Ot1ztHdHS0NbfVlX0UFRV12e27dHxhuVLrpVx53S+tKyIiwvo5MDBQknT69OkCawsODtakSZM0adIkLVy4UL1791b//v3zfd0BFB5BFUCx6Ny5s8aPH6+xY8eqXbt2efbJ7/ZLl7Z7e3vn+zx5Lbu0zRhj/ZyWlqaYmBg1atRIa9asUYUKFST9FYYv7lcYmzZt0qhRozRz5ky1bNky1/Jhw4Zp6NCheY79/vvvc9Xoqh07duQKRT4+PnI4HAoJCbnseFduf+XKPipo+zzFlVovVZi6Ln7P5DyXK/tkzJgxGjJkiP75z39qwYIFmjlzpsaMGaNJkyYVul4AuXExFYBiM2bMGN1xxx0aNGiQ0/0tGzZsqPLly+e6Kf2PP/4oh8OhFi1aFFtNe/fu1fHjx9WzZ08rpEpSRkaGW+s7efKk+vTpo7vvvtu6gCk5OVlHjx61tvOHH35wGpOUlKT+/fvr/PnzqlOnjnx9fbV//36nPocOHSrweY0xSkxMVGhoqFP70qVLlZGRoTvvvDPfsTl17du3z6k9MTFRH374oVOfgvaRK9tXVK7Umt8YT9Xl5eX8pzI5OVmSlJqaqjVr1qhKlSoaOnSotmzZovj4eM2ePbtQ6weQP4IqgGLjcDj04YcfKiQkRAcPHrTa/f39NWLECC1YsMBq/9///qe5c+fqwQcf1HXXXVdsNV133XWqUKGC1qxZo6ysLEnS+vXr9dtvvxV6XcYYPfDAA/Lx8dE//vEPq33Hjh167733nLZz9+7dkqSsrCyNGTNGAQEBKlu2rPz8/PTkk09q4cKFVpg/fvy4Fi5cWOBz79+/X6mpqXrttdc0c+ZMJSQkaObMmRoyZIhGjRql6tWr5zs2r9c/PT1d8fHxVohzZR+5sn1F5UqtBY3xRF050ztOnjypX3/91Zo2cOrUKQ0ZMkRJSUlW3wsXLqhhw4aF3k4A+SjJCbIASr8dO3aY2NhYExgYaFq1amWmTp2aq8+uXbuMv79/rhv+z5w50zRu3Ni0atXK3HDDDWb06NEmMzPTGGPMF198YVq1amUkmaZNm5oHHnjAGnfpsqVLl5q5c+eaevXqWXcJOHjwoHn00UdNaGioCQwMNJ06dbLGr1271tx4442mbt265s477zTPPfecCQsLM5GRkea5554zr732mmnatKmRZFq1amWWLl1q/vWvfzk959y5c82SJUuMJFOzZk3TqlUr69GgQQMzbtw46/lmzZplGjZsaFq1amXatm1rXnjhBWs7jfnrKvannnrK1KhRw7Rv397ce++9ZvLkyda2bNy4Mddr+tFHHxkvLy8zcOBAExgYaPz9/U2zZs3MW2+9ZbKyslzad7NmzTKNGzc2bdu2Na1atTIzZ87M1aegfeTK9l36usXGxubbntdr7Eqt+Y273Ot+6fto4cKFJiEhIVfb+fPnTY8ePUzjxo1NixYtzPz5840xf1049fTTT5sWLVqYuLg406pVK9OzZ89S9cUWgN05jHFzUhYAoMQ8//zzWrZsWa5T8wBwNeHUPwCUQnldSAUAVxuCKgCUQgRVANcCTv0DAADAljiiCgAAAFsiqAIAAMCWCKoAAACwJYIqAAAAbImgCgAAAFsiqAIAAMCWCKoAAACwJYIqAAAAbImgCgAAAFsiqAIAAMCW/j8hYlQpm7uI0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "feature_names = model[:-1].get_feature_names_out()\n", + "\n", + "X_train_preprocessed = pd.DataFrame(model[:-1].transform(X_train), columns=feature_names, copy=None)\n", + "\n", + "X_train_preprocessed.std(axis=0).plot.barh(figsize=(10, 4))\n", + "plt.title(\"ret ~ DP + CS + ntis + cay + TS + svar\")\n", + "plt.xlabel(\"Normalized $\\\\beta$ coefficients\")\n", + "plt.ylabel(\"Predictors\")\n", + "plt.subplots_adjust(left=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "040113f9-626a-45df-baa4-839ea2e48563", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DP 0.228184\n", + "CS 0.003674\n", + "ntis 0.017305\n", + "cay 0.023599\n", + "TS 0.014240\n", + "svar 0.007801\n", + "dtype: float64" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X_train_preprocessed.std(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "aa62b411-b18d-4c19-8e4c-76f2bd19c7d7", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "remove_input" + ] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8MAAAN3CAYAAACm9/vXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiTxJREFUeJzs3XmclmW9P/DPADoqe6CChOCCy1FzAZVNGXcF9bjkRp4jxzpSScfSNCESXBKzJE2PSVpix7BM04RMMw1BQXJL00y0BBUl02QZlgFxfn/4Y2pkcXgYHOae9/v1el6H57qv657v5Xl4nr585r6fsurq6uoAAAAAAAAAQIE0a+gCAAAAAAAAAKC+CcMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAAqnRUMX0Ji8//77eeONN9K6deuUlZU1dDkAAABsRKqrq7Nw4cJss802adbM756vD/03AAAAa7Iu/bcwfB288cYb6dq1a0OXAQAAwEbstddeyyc/+cmGLqNR038DAADwUerSfwvD10Hr1q2TfPAftk2bNg1cDQA0vOuuuy4LFy5M69atM2zYsIYuBwAa1IIFC9K1a9ea3pHS6b8BAABYk3Xpv4Xh62DlrdnatGmjGQeAJJtttlmWL1+ezTbbzGcjAPx/buu9/vTfAAAAfJS69N++xAwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhtGjoAgAAAKChrVixIsuXL1/rnE022STNmzf/mCoCAAAA1pcwHAAAgCaruro6c+fOzbx58+o0v127dunUqVPKyso2bGEAAADAehOGAwAA0GStDMK32mqrbLHFFmsMuaurq7N48eK89dZbSZLOnTt/nGUCAAAAJRCGAwAA0CStWLGiJgjv0KHDR87ffPPNkyRvvfVWttpqK7dMBwAAgI1cs4YuAAAAABrCyu8I32KLLeq8ZuXcj/p+cQAAAKDhCcMBAABo0tbl+799VzgAAAA0HsJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAoEmrrq7eIHMBAACAhiUMBwAAoEnaZJNNkiSLFy+u85qVc1euBQAAADZeLRq6AAAAAGgIzZs3T7t27fLWW28lSbbYYouUlZWtdm51dXUWL16ct956K+3atUvz5s0/zlIBAACAEgjDAQAAaLI6deqUJDWB+Edp165dzRoAAABg4yYMBwAAoMkqKytL586ds9VWW2X58uVrnbvJJpu4IhwAAAAaEWE4AAAATV7z5s0F3QAAAFAwzRq6AAAAAAAAAACob8JwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAonBYNXQAA0PjNXbA03S/8VUOXAcAGMOuKQQ1dAk3Y7qPuT7PyLTboz/AaBwAAKC5XhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAOAjzZw5M0cddVR69+6dvffeO2effXYqKys/ct3cuXNz5plnZs8990xFRUV69uyZSy65JO+9916tecuWLcvw4cOz9957p3///hkwYECefPLJDbUdWEWpr/EkueWWW9KzZ88MGDAgPXv2zIQJE1aZU9fX+G233ZZ99903/fv3T//+/XPEEUf4uwAAAFAiYTgAAABr9c4776SioiIHHHBAHnvssTz++ON56aWXMnjw4I9cO3jw4Dz77LOZPn16Jk+enPvvvz833XRTLr744lrzhg0blvvuuy+PPPJIHnnkkZx55pk55JBD8sorr2yobUGN9XmNT5gwIcOGDcttt92Whx9+OLfeemvOOuus3HnnnbXm1eU1/vDDD2fw4ME5//zza+YdfPDBOfzww/PWW2/V+74BAACKThgOAADAWl1zzTWprKzMeeedlyRp0aJFRo4cmYkTJ+bRRx9d69onnngiBx10ULbYYoskSceOHbPffvtl4sSJNXNefvnl3HTTTbngggvSsmXLJMkZZ5yRDh065PLLL99Au4J/KvU1Xl1dnREjRmTw4MHZaaedkiS77rprTj755Fx44YU18+r6Gl95BfigQYNqxgYNGpR//OMfmTZtWv1tGAAAoIkQhgMAALBW9957b3r27Jny8vKasf333z/NmjXLpEmT1rr2M5/5TCZOnJi5c+cmSV566aU8/PDD6dKlS82c++67L9XV1enbt2+ttX369PnI80N9KPU1/vzzz2f27NmrvHb79u2bl19+OS+++GKSur/Gjz766LRt2zY33nhjkmTFihW5+eabk6TW3xkAAADqRhgOAADAWs2cOTPbbLNNrbHy8vJ07NgxL7300lrXfv/7389JJ52UHXfcMbvvvnt22WWXdOnSJVdffXWt8ydZ5Wd06dIlc+fOzcKFC+tnI7AGpb7G1/baTVKztq6v8Z122ilTp07N+PHj88lPfjJdunTJ9ddfn4svvjj77rvveuwQAACgadqowvBp06blwAMPzAEHHJCDDz44Rx11VC6++OLstttuKSsrS+/evfPAAw8kSb75zW+me/fu2XnnnfPQQw9l7ty5+a//+q/su+++qaioSK9evfLNb34zK1asqDn/0UcfnU6dOqWioiL/+7//m0GDBqVz587Za6+9GmjHAAAAG79FixbVumJ2pfLy8lRWVq517dlnn52f/OQn+cMf/pDnnnsuc+bMyeDBg9OmTZta5y8rK8smm2yyyvlXHqd+6b9rK/U1vvK1+eG1K5+vXFvX1/jzzz+fQw89NMcdd1xeffXVvPHGG/n5z3+eXXbZpcSdAQAANG0bTRi+YsWKHH300Tn99NMzderUPPTQQzn66KPzyiuv5De/+U2aN2+ez3/+8znssMOSJF//+tfTvXv33HPPPTn44IPz8ssv549//GOmTp2ayZMn57e//W1+8pOf5Lvf/W7Nz5g0aVKOPPLIPPXUU2nbtm1+9atf5Yknnqj57roPq6qqyoIFC2o9AAAAmppWrVqlqqpqlfGqqqq0atVqjev++Mc/5vrrr88FF1yQHXfcMUnSqVOnbL755unXr19NANiqVatUV1dn+fLlq5x/5XHqj/57VaW+xlce+/DaD7926/oav+iii9K8efNcdNFFadasWZo1a5ajjjoqX/rSlzJu3LgSdwcAANB0bTRh+IIFC/Luu+/mlVdeSXV1dZJkyJAh+cpXvpIuXbrk6KOPzg033FAz/4UXXkizZs2y8847J0n23nvv3HPPPdlss82SJO3atcuxxx6bu+66a5Wf1a5du5x++ulJPrgl2bRp01Zb05gxY9K2bduaR9euXet1zwAAAI1Bjx498sYbb9Qaq6qqyttvv52ddtppjev+/Oc/J0lNEP6v5/vLX/6SqVOn1jxPssrPmDNnTjp37iwMr2f671WV+hpf22s3Sc3aur7G//znP2f77bdPs2b//Oea5s2bZ7vttqv57nAAAADqbqMJw9u3b59LL700Y8eOTbdu3XLuuefmxRdfzJ577pkk+fznP58ZM2bkmWeeSZKMGzcuQ4cOrVm/6aab5qc//WkqKipywAEHpKKiIj/96U9XaTSTpFu3bnWqafjw4Zk/f37N47XXXquHnQIAADQuAwcOzJNPPlnr6tcZM2bk/fffz6BBg9a4btttt03yz2Bwpddffz1Jaq4SPuqoo1JWVrZKUDp9+vS1np/S6L9XVeprfLfddku3bt1Wee1OmzYtPXr0qAnD6/oa33bbbVf5+5J88HdoTVfVAwAAsGYbTRieJCNHjsycOXPyta99LdOnT0/Pnj3zjW98I0ly+OGHp3v37hk3blyWLl2a++67L8cff3zN2gsvvDAXXXRRrrnmmppbtQ0ZMqTmt9z/VfPmzetUT3l5edq0aVPrAQAA0NScc845admyZa666qokyXvvvZfLLrssxxxzTPr161czb9SoUdluu+0yd+7cJEmvXr2y//7757vf/W7+8Y9/JEneeeedXHPNNdl1112z3377JUl22GGHfO5zn8uVV15Zc+v0W265JW+//XZGjBjxcW61ydB/11bqa7ysrCyXX355JkyYkJkzZyb54Er622+/PWPGjKlZV9fX+LBhwzJr1qz88Ic/rBkbN25cXn/99Zxxxhkb7j8AAABAQW00YfjChQtz//33p2PHjjn77LMzffr0fPnLX84111yTJGnWrFn++7//Oz/5yU/yox/9KP/+7/+eTTfdtGb9Aw88kE996lM1v8merPqdXQAAAKy7Dh06ZPLkyZkyZUp69+6dXr16Zccdd8yECRNqzauqqsrixYuzYsWKJB8EoRMnTky/fv1yyCGH5IADDshBBx2U/fbbL/fff3/NbbaT5LrrrssRRxyRfv36pV+/fvnRj36UBx98MNttt93HutemQP+9qlJf40kyePDgXHvttTnllFNy4IEH5jOf+UzGjRuXE088sdbaurzGBw0alLvvvjs/+tGP0rdv3/Tu3Ts//OEP83//93/CcAAAgBKUVa/uV7cbwKxZs3LQQQflqaeeSvv27ZMkX/rSl/LEE09k+vTpSZK5c+dm2223zSabbJJnnnmm1vfOnX766Zk4cWKeffbZdOvWLQsXLkyfPn1SWVmZWbNm1cwbMmRIZs2alcmTJ69zjQsWLEjbtm0zf/58V4kDQJKxY8dm4cKFWVS9SW5fuudHLwCg0Zl1hduU11Vj6RkbU//d9cu3p1n5hr09uNc4AABA47Iu/XeLj6mmj7Tlllvm+OOPz2GHHZbWrVtnyZIl6dKlS2677baaOZ06dcqxxx6b+fPn12rEk+Tqq6/OihUr0r9///zbv/1b2rVrl1133TUTJ05MRUVFfvGLX+RLX/pSHnzwwSxdujQVFRW56KKLcvDBB3/cWwUAAIAGo/8GAACgqdhorgxvDBrLb/kDwMfFleEAxeeq2brTM9YfV4YDAACwJuvSf2803xkOAAAAAAAAAPVFGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABROi4YuAABo/Dq12SyzRg9q6DIAgIJ57uIj0qZNm4YuAwAAgEbKleEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCadHQBQAAjd/cBUvT/cJfNXQZAKs164pBDV0CUKLdR92fZuVbNHQZ68z7DgAAwMbBleEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAIAmYebMmTnqqKPSu3fv7L333jn77LNTWVlZp7V//vOfc9JJJ+Wggw7Kvvvumx49emTUqFE1xxcsWJCRI0emb9++OfTQQ9OnT5/07NkzN99884baDtAIrM/7zi233JKePXtmwIAB6dmzZyZMmLDaebNnz87RRx+dsrKyjzzn8uXLs88++9RpLgAAQBG0aOgCStW9e/d079695vmf//znzJs3L717964Ze+yxx7J06dI88MADufLKK1NVVZVmzZqlsrIyW265ZSoqKvK1r32tAaoHAAA+Tu+8804qKioybNiwjBgxIu+9914GDhyYwYMH55577lnr2j/96U857LDD8rOf/Sz9+/dPklx33XW59dZbc/HFFydJXn311YwbNy6PP/54TZ9yxx135KSTTkrnzp1z5JFHbtD9wYak/y7N+rzvTJgwIcOGDcuTTz6ZnXbaKS+88EL23XfflJeX58QTT6yZ94Mf/CDjxo1L586d61TT6NGjM3v27PXaFwAAQGPSqK8Mnzx5cs3jyCOPTKdOnWqNderUKQ899FCOOOKIfOUrX8mUKVMyefLkzJgxI3vttVfGjBnT0FsAAAA+Btdcc00qKytz3nnnJUlatGiRkSNHZuLEiXn00UfXuvacc87JKaecUhOEJ8lnP/vZXHXVVTXPu3fvnvvvv79WYHj44YcnSV588cV63Ak0DP33uiv1fae6ujojRozI4MGDs9NOOyVJdt1115x88sm58MILa83dcsstM23atPTq1esj65kxY0Z+/etfZ+jQoeuxKwAAgMal0YbhX/7yl+s0584770yHDh0ycODAmvHmzZvnoosuyg477LABKwQAADYW9957b3r27Jny8vKasf333z/NmjXLpEmT1rhu7ty5efDBB2uC7ZU233zz9OvXr+Z5q1atss8++9Q8X7JkSS6//PJsv/32OfXUU+txJ/Dx03+XptT3neeffz6zZ89O3759a4337ds3L7/8cq1fsDn++ONrnX9NFi9enM9+9rO5+eabs+mmm5awGwAAgMap8GF4u3bt8s4772TGjBm1jm2++eZ58sknN1B1AADAxmTmzJnZZpttao2Vl5enY8eOeemll9a47plnnkl1dXUWLVqU0047Lf3798+AAQPyzW9+M0uXLl1l/ooVK9K3b9907Ngxjz32WH77299m6623rvf9wMdJ/12aUt93Zs6cmSSrrO3SpUuSrHXtmpx//vkZPHhw9txzz3VeCwAA0Jg12jC8rs4888y0adMmBxxwQE466aRMmDAh77zzTkOXBQAAfIwWLVq02qsny8vLU1lZucZ1K3uH//mf/8mIESPyyCOP5JZbbsnNN9+cT3/606vMb968eaZNm5Z33303/fv3z7777tskQ0CaJv13baW+7yxatKhm3ofXJVnr2tV54IEH8tRTTzW572wHAABImkAYvsMOO+SZZ57J5z73uTz44IP5zGc+k6233jqDBg3Ks88+u9a1VVVVWbBgQa0HAADQ+LRq1SpVVVWrjFdVVaVVq1ZrXNe8efMkyRlnnJE99tgjyQffD37++efnV7/6Vf7whz+sdt2mm26aSy+9NFtttVXOPffc9d8ANAL679pKfd9ZeezDa1c+X9vaD5s3b17OPvvs3HLLLTXvZwAAAE1J4cPwJOnWrVuuv/76/P3vf8/UqVMzbNiwTJkyJX369Mkrr7yyxnVjxoxJ27Ztax5du3b9GKsGAADqS48ePfLGG2/UGquqqsrbb7+dnXbaaY3runXrVuv/rrTy+49X3s74vffey4oVK2rNKSsry+67777GwByKSP/9T6W+7/To0SNJVlk7Z86cJFnr2g976KGH0rx585x11lmpqKhIRUVFxo8fnyQ1z+fOnVvn8wEAADQ2hQ/D582bV3MLsebNm6d///65+uqr89vf/jaLFy/OPffcs8a1w4cPz/z582ser7322sdVNgAAUI8GDhyYJ598staVljNmzMj777+fQYMGrXHdPvvsk/bt2+f111+vNb4ypOrcuXOS5LLLLstVV121yvo5c+bkE5/4RH1sATZ6+u/aSn3f2W233dKtW7dMmzat1vi0adPSo0ePdQrDTzjhhLzwwguZPHlyzWPIkCFJUvO8U6dO67YxAACARqTwYfjVV1+d733ve6uM77LLLkmSZs3W/J+gvLw8bdq0qfUAAAAan3POOSctW7asCazfe++9XHbZZTnmmGPSr1+/mnmjRo3KdtttV3Ol5KabbppvfOMbufnmm2uuylywYEGuueaa9O3bN/37969ZO27cuJo5SXLbbbdl2rRpGTZs2MexRWhw+u/aSn3fKSsry+WXX54JEybU3H3ihRdeyO23354xY8Z8/BsBAABoxFo0dAEfhxtuuCEnn3xydtxxxyQfNKBXXHFFWrduneOPP76BqwMAADa0Dh06ZPLkyTnnnHNyzz33ZOnSpenbt2+uvPLKWvOqqqqyePHiWrc8/8pXvpIWLVpk0KBBadWqVZYtW5ZDDjkk3/jGN1JWVpYkOeWUU/LWW29l4MCBadu2bZYvX54k+clPfpLBgwd/fBuFBqb//qf1ed8ZPHhwli1bllNOOSWtW7dOZWVlxo0blxNPPLHW2jvuuCPXXXddZs2aleSDW5+3atUqkyZNWqWe6dOnZ/jw4bXm7rzzzhk3blz9bhwAAGAjUlZdXV3d0EWsj3/84x854YQT8uc//znz5s1L7969M2bMmPTp0ydJ8uyzz+amm27KtGnTssUWW+T999/Pu+++m5133jmjRo3KnnvuWeeftWDBgrRt2zbz588vxG+pA8D6Gjt2bBYuXJhF1Zvk9qV1/0wF+DjNumLNtyOG+lT0nrEh+u+uX749zcq32FBb2mC87wAAAGw469J/N/orwz/xiU9k8uTJazz+qU99arW3aQMAAADqTv8NAABAY1P47wwHAAAAAAAAoOkRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcFo0dAEAQOPXqc1mmTV6UEOXAQAUzHMXH5E2bdo0dBkAAAA0Uq4MBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwWjR0AQBA4zd3wdJ0v/BXDV0GbFRmXTGooUsAaPR2H3V/mpVv0dBlNCo+fwAAAP7JleEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAGADmjlzZo466qj07t07e++9d84+++xUVlau0znuuOOOlJWVZfTo0bXG58yZk5EjR6Z///456KCD0rNnz5x88sl54YUX6nEHADRG6/P5c8stt6Rnz54ZMGBAevbsmQkTJtQ6Xsrnz/Lly7PPPvukrKxsvfYFAACwLoThAACwgbzzzjupqKjIAQcckMceeyyPP/54XnrppQwePLjO55g7d25GjBix2mM333xz7rrrrtxzzz353e9+l+nTp2fFihXp27dv3njjjfraBgCNzPp8/kyYMCHDhg3Lbbfdlocffji33nprzjrrrNx55501c0r5/Bk9enRmz55db3sEAACoC2E4AABsINdcc00qKytz3nnnJUlatGiRkSNHZuLEiXn00UfrdI7//u//ziWXXLLaY9tss02GDx+eT3ziE0mSTTfdNBdccEHmzZuXu+++u172AEDjU+rnT3V1dUaMGJHBgwdnp512SpLsuuuuOfnkk3PhhRfWzFvXz58ZM2bk17/+dYYOHVqPuwQAAPhownAAANhA7r333vTs2TPl5eU1Y/vvv3+aNWuWSZMmfeT6G2+8MZtvvnlOPfXU1R4/88wzc/rpp9ca23zzzZN8EHwA0DSV+vnz/PPPZ/bs2enbt2+t8b59++bll1/Oiy++mGTdPn8WL16cz372s7n55puz6aabrte+AAAA1pUwHAAANpCZM2dmm222qTVWXl6ejh075qWXXlrr2ldeeSXf/va38/3vf3+dfubDDz+cli1b5oQTTljnegEohlI/f2bOnJkkq6zt0qVLkqx17Zo+f84///wMHjw4e+655zrtAQAAoD40qjD8e9/7Xvbcc8/069cv++23X0477bT8/ve/z+LFizNs2LD06tUrBx10UPbdd9+ce+65WbRoUZLknnvuyQ477JCysrIMGDAgf/zjH5MkX/7yl9OpU6fsueee+dOf/tSQWwMAoIAWLVpU66q8lcrLy1NZWbnGde+//36GDBmSsWPHpkOHDnX+ee+++26uuOKKXHfddenYsWNJNQMk+u/GrtTPn5X/f/zw2pXP17R2TZ8/DzzwQJ566ql87WtfW+c9AAAA1IdGE4aPGjUql1xySX7xi1/k0UcfzSOPPJIFCxZkwoQJ+cc//pF77rknDzzwQH73u99l6tSpeeaZZ2qarWOPPTY/+9nPkiTDhw/PHnvskSS56qqr0qFDh0yZMiX/9m//tsrPrKqqyoIFC2o9AACgrlq1apWqqqpVxquqqtKqVas1rrvqqqvSo0ePHH300XX+WVVVVTnxxBMzdOjQDBkypJRyAZLov4ug1M+flcc+vHbl89WtXdPnz7x583L22WfnlltuSfPmzUvZBgAAwHprFGH4okWLcuWVV+Y//uM/ssMOOyRJNt1004waNSq9evXK1ltvnSlTpqR9+/ZJks022ywnnXRS7rrrrppz9OrVK/vtt1/+93//t2Zs0qRJOeCAA9K2bdvV/twxY8akbdu2NY+uXbtuwF0CAFA0PXr0yBtvvFFrrKqqKm+//XZ22mmnNa6bOHFinn/++VRUVNQ8kmT8+PGpqKjIFVdcUWv+kiVLctxxx+WQQw7JRRddVO/7AJoO/XcxlPr506NHjyRZZe2cOXOSZJW1a/v8eeihh9K8efOcddZZNZ9l48ePT5Ka53Pnzi1pfwAAAHXVoqELqIvnn38+S5cuzc4771xrfL/99st+++2X5IMm67bbbsuSJUvSokWLzJ07d5XmbdiwYRkyZEheeeWVbLfddrn++uvz7W9/e40/d/jw4Tn33HNrni9YsEBDDgBAnQ0cODBXX311qqqqam4xO2PGjLz//vsZNGjQGtdNmTJllbGysrIMGTIko0ePrjVeWVmZY489Nsccc0y+8pWvJPng+8affvpp3xsOrDP9dzGU+vmz2267pVu3bpk2bVrOOOOMmvFp06alR48etcLwj/r8Wfn4V6NHj87FF1+cyZMn1+NuAQAA1qxRXBm+UllZ2WrHr7322nzuc5/L+eefn0ceeSSTJ0/OhRdeuMq8k08+OZ/4xCfy/e9/Py+99FKWLl2aT33qU2v8eeXl5WnTpk2tBwAA1NU555yTli1b5qqrrkqSvPfee7nssstyzDHHpF+/fjXzRo0ale22226dr5CbP39+jjjiiOywww454IAD8sQTT+SJJ57Ib37zm9xzzz31uhegadF/N26lfv6UlZXl8ssvz4QJEzJz5swkyQsvvJDbb789Y8aMqVnn8wcAAGgsGsWV4bvttls233zzvPjii7XGn3nmmTz77LN54IEH0qlTpxx++OE1x1b33Vjl5eX53Oc+lxtvvDELFy7MF77whQ1eOwAATVeHDh0yefLknHPOObnnnnuydOnS9O3bN1deeWWteVVVVVm8eHFWrFixyjmGDh1a87+Dx48fn8mTJ2fMmDHp06dPvvnNb2batGmZNm1abrrpplrr/vWKPoC60n8Xw/p8/gwePDjLli3LKaecktatW6eysjLjxo3LiSeeWDNnXT9/pk+fnuHDh2fWrFlJPrhN+s4775xx48bV464BAABWVVZdXV3d0EXUxejRo3P99dfnsccey/bbb5+lS5fmqKOOyn/8x3/kr3/9a8aMGZPf//736dmzZ5YtW5ZBgwblt7/9bT68vdmzZ2f77bfPVlttlVdffTWbbLJJnWtYsGBB2rZtm/nz5/stdQBIMnbs2CxcuDCLqjfJ7Uv3bOhyYKMy64o134YWKKai9IwbU//d9cu3p1n5FvW9xULz+QMAABTduvTfjeLK8OSDZrx9+/Y57rjj0rp166xYsSKnnnpqzjzzzCxdujTvvPNOjjvuuOy4445p3759unfvnuSD3za+/vrr82//9m9Jkm7dumXgwIHZe++916kRBwAAgKZA/w0AAEBRNJorw+vTfvvtl7vuuitdunRZp3VF+S1/AKgvrgyHNXNlHjQ9esZVrW//7crwdefzBwAAKLp16b+bfUw1NbgRI0YkSSZPnpztt99+nRtxAAAA4KPpvwEAANhYNJrbpK+vhx9+OLvvvnvatGmT2267raHLAQAAgELSfwMAALCxaDJh+KOPPtrQJQAAAEDh6b8BAADYWDSZ26QDAAAAAAAA0HQIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACF06KhCwAAGr9ObTbLrNGDGroMAKBgnrv4iLRp06ahywAAAKCRcmU4AAAAAAAAAIVT72H4lClTcvfdd6eysrK+Tw0AAAD8f/pvAAAAWLuSw/B77rkn22+/fQ477LCasSFDhuSggw7KiSeemN122y1z5syplyIBAACgqdJ/AwAAQGlKDsN/9rOfZYcddsjYsWOTJNOnT8+Pf/zj9OrVK1dffXW23nrrfOtb36q3QgEAAKAp0n8DAABAaVqUuvCJJ57I5MmT07lz5yTJ//3f/6VFixa5884788lPfjLHHntsrd9aBwAAANad/hsAAABKU/KV4ZWVlTWNeJL86le/yiGHHJJPfvKTSZJu3br53jIAAABYT/pvAAAAKE3JYXiLFi2ybNmyJMnjjz+e1157Lccdd1ztkzcr+fQAAABA9N8AAABQqpK75b322ivf+MY38txzz+X888/Ppptumk9/+tM1x++///5ss8029VIkAAAANFX6bwAAAChNyWH48OHDc80112TPPffMlClTMmzYsHTo0CHV1dX5whe+kJNPPjlHHHFEfdYKAAAATY7+GwAAAErTotSFvXv3ztNPP51Jkyale/fuOemkk2qOderUKeeee27OOOOMeikSAAAAmir9NwAAAJSm5DD8xz/+cZLkmGOOyS677FIzXlZWllGjRq1/ZQAAAID+GwAAAEpU8m3ShwwZkssuuyyzZ8+uz3oAAACAf6H/BgAAgNKUfGX45ptvnieeeCJt2rSpz3oAAACAf6H/BgAAgNKUfGX4tttum5YtW651zqOPPlrq6QEAAIDovwEAAKBUJYfhp512Wm699da1zjnppJNKPT0AAAAQ/TcAAACUquTbpPft2zcjR47M1KlTc+ihh6ZTp05p1qx2tr5s2bL1LhAAAACaMv03AAAAlKbkMPzwww9Pkvz+97/PzTffXG8FAQAAAP+k/wYAAIDSlByGt2zZMl/96lfXeLy6ujpjx44t9fQAAABA9N8AAABQqpLD8FatWmXUqFFrnTNu3LhSTw8AAABE/w0AAAClavbRU1bv4Ycf/sg5f/rTn0o9PQAAABD9NwAAAJSq5DB8p512qvX8nXfeyTvvvFNrrH379qWeHgAAAIj+GwAAAEpVchieJIsWLcq5556brbbaquax9dZb56tf/WoWLVpUXzUCAABAk6b/BgAAgHVX8neGL1q0KAceeGCefvrpJEl5eXmS5O9//3vGjh2b3/3ud5k6dWq22GKL+qkUAAAAmiD9NwAAAJSm5CvDr7jiirz55pv5/ve/n7///e9ZsmRJlixZkrfeeivXX3993nzzzVxxxRX1WSsAAAA0OfpvAAAAKE3JYfgdd9yRX/7ylxk6dGg6dOhQM96xY8d8/vOfz1133ZXbb7+9XooEAACApkr/DQAAAKUpOQyfN29e9t133zUe33///TN//vxSTw8AAABE/w0AAAClKjkMr66uztKlS9d4fPHixXn//fdLPT0AAAAQ/TcAAACUquQwfJ999smIESNSXV29yrHq6uoMHz48vXr1Wq/iAAAAoKnTfwMAAEBpWpS68IILLsihhx6au+++O8ccc0y6dOmSJHn99dfzy1/+MnPmzMmDDz5Yb4UCAABAU6T/BgAAgNKUHIZXVFRk3LhxGTZsWK699tqUlZUl+eC30jfbbLP84Ac/yIABA+qtUAAAAGiK9N8AAABQmpLD8CT57Gc/m4EDB+bnP/95XnzxxVRXV2fXXXfNSSedlE6dOtVXjQAAANCk6b8BAABg3a1XGJ4knTt3zv/8z//UGlu8ePH6nhYAAAD4F/pvAAAAWDfNSl34xS9+cY3Hvva1r2XrrbfOb3/721JPDwAAAET/DQAAAKUqOQy/++6713jsG9/4Ri655JKcd955pZ4eAAAAiP4bAAAASlVyGL42W221VYYOHZq33nprQ5weAAAAiP4bAAAA1madvjP8xz/+cc2flyxZkv/7v/9LdXX1KvOWL1+eZ555JuXl5etfIQAAADQx+m8AAABYf+sUhg8ZMiRlZWW1nq9OdXV1ysrK8u1vf3u9igMAAICmSP8NAAAA62+dwvCbb745yQfN9le+8pVcffXVq53XsmXL7L777tlll13Wu0AAAABoavTfAAAAsP7WKQw/44wzav783e9+t9ZzAAAAoH7ovwEAAGD9NSt14TPPPFOfdQAAAACrof8GAACA0pQchldWVuaee+7JPffck7fffrtmfN68efnhD3+YpUuX1kuBAAAA0JTpvwEAAKA0JYfhEyZMyHHHHZfPfe5zmT17ds348uXLc+6556Z///75xz/+US9FAgAAQFOl/wYAAIDSlByG33nnnfmP//iPzJkzJz179qwZ33LLLfPGG2+kW7duufTSS+ulSAAAAGiq9N8AAABQmpLD8JkzZ+Z73/teNtlkk1WOtWzZMjfccEMmTpy4XsUBAABAU6f/BgAAgNKUHIYvXbo0bdu2XePxLbfcMosXLy719AAAAED03wAAAFCqksPwFi1a5M0331zj8TfeeCPNmpV8egAAACD6bwAAAChVyd3yoYcemlNPPTVz5sxZ5dhf/vKXnH766Tn88MPXqzgAAABo6vTfAAAAUJoWpS686KKL0rNnz3Tv3j177rlnunbtmqqqqsyZMyfPP/982rRpkx/+8If1WSsAAAA0OfpvAAAAKE3JYfh2222XBx98MEOGDMlTTz2Vp556qubYnnvumZtvvjnbbbddvRQJAAAATZX+GwAAAEpTchieJHvvvXeeeeaZPPvss3nxxRdTXV2dXXfdNXvssUd91QcAAABNnv4bAAAA1t16heErfepTn8qnPvWpVcb/+te/Zvvtt6+PHwEAAABNnv4bAAAA6q7Zhjx5//79N+TpAQAAgOi/AQAAYHXqfGX4888/nyVLlqRXr15JkksuueQj11RWVpZeGQAAADRB+m8AAACoH3UOwysqKlJZWZn58+dn0003zejRoz9yTVlZ2frUBgAAAE2O/hsAAADqR53D8GHDhmXevHnZdNNNkyTt27fPL37xizXOr66uzqc//en1rxAAAACaEP03AAAA1I86h+GjRo2q9XzLLbfMgAED1rqmY8eOpVUFAAAATZT+GwAAAOpHs1IX/vnPf66XOQAAAMCa6b8BAACgNCWH4XUxcODADXl6AAAAIPpvAAAAWJ063yb91VdfXacTV1dX58knn1znggAAAKAp038DAABA/ahzGN69e/eUlZVtyFoAAACgydN/AwAAQP2ocxi+2Wab5ZRTTqk1NmPGjLz++uvZd999s80226SsrCxvvPFGfv/736dVq1Y58sgj671gAAAAKDL9NwAAANSPOofhbdu2zc0331zz/L777su8efPy6KOPpn379rXmvvvuu/mv//qvHH744fVXKQAAADQB+m8AAACoH83qOvG2226r9fySSy7JjTfeuEojniTt27fPjTfemO985zvrXyEAAAA0IfpvAAAAqB91DsMrKipqPX/11VfTsWPHNc7fcsst8+abb5ZcGAAAADRF+m8AAACoH3UOwz9s8eLF+eMf/7jG488++2yWLl1a6ukBAACA6L8BAACgVCWH4YcddliOOeaY3HnnnamsrKwZnzdvXsaPH59jjz02RxxxRL0UCQAAAE2V/hsAAABK06LUhVdeeWX233//nHzyyUmSNm3aZNmyZTW/jd6pU6d861vfqp8qAQAAoInSfwMAAEBpSr4yvFu3bnnqqady+umnp3Xr1pk/f36WLFmSNm3aZMiQIXnyySfTtWvX+qwVAAAAmhz9NwAAAJSm5CvDk2SbbbbJLbfckurq6rz11ltJkq222iplZWX1UhwAAACg/wYAAIBSrFcYvlJZWVm23nrr+jgVAAAAsAb6bwAAAKi7km+TniRLly7Nd77znRx44IHZbbfdkiR/+MMfctVVV6WysrJeCgQAAICmTv8NAAAA667kK8MrKyszYMCAPP3000mSVq1afXDCFi0yduzY3Hbbbfntb3+bdu3a1UuhAAAA0BTpvwEAAKA0JV8Zfvnll+f111/PddddlyeeeCItW7ZMkuy+++7561//mq5du+Zb3/pWvRUKAAAATZH+GwAAAEpTchj+i1/8Irfffnu++MUvZp999klZWVnNsfLy8vzv//5v7r777vqoEQAAAJos/TcAAACUpuQw/O23386AAQPWeHybbbbJwoULSz09AAAAEP03AAAAlKrkMLy6ujpLlixZ4/F58+Zl2bJlpZ4eAAAAiP4bAAAASlVyGN6rV6+MHDlytcfee++9nHfeedlvv/1KLgwAAADQfwMAAECpWpS68Gtf+1oOO+ywPPTQQznyyCOzePHifOtb38prr72Wu+++O3/729/yu9/9rj5rBQAAgCZH/w0AAAClKTkMP/jgg/ODH/wgw4YNyzPPPJMkGTFiRKqrq7PZZpvlpptuSv/+/eutUAAAAGiK9N8AAABQmpLD8CT57Gc/m4EDB+bnP/95XnzxxVRXV2fXXXfNSSedlE6dOtVXjQAAANCk6b8BAABg3ZUchv/4xz9Okuy33375n//5n3orCAAAAPgn/TcAAACUplmpC4cMGZLLLrsss2fPrs96AAAAgH+h/wYAAIDSlHxl+Oabb54nnngibdq0qc96AAAAgH+h/wYAAIDSlHxl+LbbbpuWLVuudc6jjz5a6ukBAACA6L8BAACgVCWH4aeddlpuvfXWtc456aSTSj09AAAAEP03AAAAlKrk26T37ds3I0eOzNSpU3PooYemU6dOadasdra+bNmy9S4QAAAAmjL9NwAAAJSm5DD88MMPT5L8/ve/z80331xvBQEAAAD/pP8GAACA0pQchrds2TJf/epX13i8uro6Y8eOLfX0AAAAQPTfAAAAUKqSw/BWrVpl1KhRa50zbty4Uk8PAAAARP8NAAAApVrnMPzNN9/M9OnTc+655+att97KVltttca5f/rTn9arOAAAAGiq9N8AAACwfpqty+RLL7003bt3z0knnZQLL7ww3bp1y3e/+901zm/fvv16FwgAAABNjf4bAAAA1l+dw/A777wzo0aNSvPmzbPHHntkt912S5J89atfzQMPPLDBCgQAAICmRP8NAAAA9aPOYfi1116bgw46KLNmzcof/vCHPPvss/nLX/6SPn365Nprr92QNQIAAECTof8GAACA+lHn7wz/wx/+kKeffrrWd5Rts802+f73v5+jjjpqgxQHAAAATY3+GwAAAOrHOn1n+HbbbbfK2O67756lS5fWW0EAAADQ1Om/AQAAYP3VOQzfYostVjteVlaWTTfddLXHtt1229KqAgAAgCZK/w0AAAD1Y52uDF9Xy5cv35CnBwAAAKL/BgAAgNWp83eGv/POOzn44INXe+wf//jHao+9++67pVcGAAAATZD+GwAAAOpHncPw5cuXZ/LkyWs8vrpjZWVlpdQEUBjdL/xVQ5cAG9TJmy1NSx/3AFCv9N//tPuo+9OsfPW3jS+CWVcMaugSAAAACq3OYXjHjh3z+OOP1/nE1dXV2X///UsqCgAAAJoq/TcAAADUjzqH4VtttVW6deu2Tiffcsst17kgAAAAaMr03wAAAFA/mtV14nPPPbfOJy9lDQAAADRl+m8AAACoH3UOwwEAAAAAAACgsRCGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwoLDefPPNnHLKKenVq1d69eqVwYMH56233vrIdT/96U8zaNCgDBgwIAMGDMhuu+2WL37xi5k/f36teW+99VaGDh2aPn36pE+fPunVq1d+/vOfb6jtAAAABTVz5swcddRR6d27d/bee++cffbZqaysrNPaW265JT179syAAQPSs2fPTJgwYbXzZs+enaOPPjplZWWrPT5kyJDstddeqaioqPXYcsstM2TIkFK3BgAA0KAafRg+efLkXH311auMT5o0KVtuuWVee+21j78ooMEtW7Yshx9+eNq1a5cnnngiTzzxRDbbbLMceeSRee+999a69jvf+U4GDhyYhx9+uOZx7733ZujQoTVzFi1alD59+mTu3LmZMmVKpk+fnmuvvTaDBw/OL3/5yw29PQAA+NjpvzeMd955JxUVFTnggAPy2GOP5fHHH89LL72UwYMHf+TaCRMmZNiwYbntttvy8MMP59Zbb81ZZ52VO++8s9a8H/zgBznhhBM+8nxXX311Jk+eXPN44IEH0rx58/znf/5nyfsDAABoSIUNw9u3b5+ddtoprVu3/viLAhrcrbfemueeey6jRo2qGRs9enSefvrp/OxnP1vr2muvvTZnnXVWzfOOHTtmn332yYsvvlgzduedd+avf/1rzj///GyyySZJkj59+uSQQw7JyJEj63k3AADQ8PTfG8Y111yTysrKnHfeeUmSFi1aZOTIkZk4cWIeffTRNa6rrq7OiBEjMnjw4Oy0005Jkl133TUnn3xyLrzwwlpzt9xyy0ybNi29evVa4/m++c1vZt999601dvfdd6ddu3Y5+OCDS90eAABAg2r0Yfia9OvXL48++mjatWvX0KUADeDee+9N9+7ds80229SMbbvttunSpUsmTZq01rV9+vSpCbiTD/7Rb+rUqTn//PNrxt58880kSefOnWut/eQnP5nnnnsuf/vb3+pjGwAAsNHTf6+fe++9Nz179kx5eXnN2P77759mzZqttXd5/vnnM3v27PTt27fWeN++ffPyyy/X+mXe448/vtb5V6dLly5p2bJlrbEbbrghX/jCF9ZlOwAAABuVjTYMv+OOO9K7d++UlZXllltuyWmnnZa+fftm5513zl133ZUkGT58eMaPH5+5c+fWfJfV+PHja62dPHlyzTknTpyY/fffPxUVFRkwYEBOOOGE/P73v2+gHQIb0syZM2sF4St16dIlL730Up3O8c1vfjNdu3bNKaeckuuuu67WbQpXXnnxyiuv1Frz6quvJvng+/gAAKAx0H83rNX1LuXl5enYseNae5eZM2cmySpru3TpkiR17nvW5KWXXsqMGTNyxhlnrNd5AAAAGlKLhi5gTT796U+nV69e2W677fKTn/wkv/zlL7P55pvnyiuvzH/913/l8MMPz5gxY1JeXp7x48fXarqT1Kxd6W9/+1tOPPHETJo0KYcffniS5Pzzz8+9996b/fbb7+PcGvAxWLRoUTp27LjKeHl5ed566606nePrX/96vv71r2fKlCk54YQT8sILL2T06NFJkqOPPjp77LFHLrnkkvTq1Svt2rXLpEmTMnXq1CT5yO8lBwCAjYX+u2EtWrRotVdtl5eXp7Kycq3rVs778Loka11bFz/4wQ9y6qmnuuIfAABo1DbaK8P/1eDBg7P55psnSQ4//PDMnz8/L7/88jqd480338zy5cvzl7/8pWbsggsuqHWl54dVVVVlwYIFtR7Axue+++6ruTpl5RUqrVq1SlVV1Spzq6qq0qpVq3U6/4EHHpjzzz8/l156ac17yCabbJKHH344vXr1ysCBA3PAAQfk/vvvz8UXX5wkqw3iAQBgY6f//viV2rusPPbhtSufr2vf8+FzjB8/Pl/84hdLPgcAAMDGoFGE4V27dq35c9u2bZMk8+bNW6dz7LXXXhk6dGiGDRuWXXbZJSNHjsy7775bc6vj1RkzZkzatm1b8/jXOoCNx5FHHpnJkyfXPIYMGZIePXrkjTfeWGXunDlz1vr3vrq6OsuWLVtlfI899sj777+fZ599tmasffv2GTt2bKZNm5apU6fm2muvzeLFi9O6devssMMO9bM5AAD4GOm/P36r612qqqry9ttvr/W/WY8ePZJklbVz5sxJkrWu/Sh33nlntt9+++yzzz4lnwMAAGBj0CjC8ObNm9f8uaysLMkHgdW6uuGGGzJr1qyceeaZufvuu7PrrrvmxhtvXOP84cOHZ/78+TWP1157bd2LBxrEwIEDM2vWrFr/MPTqq69mzpw5GTRo0BrXzZ49O3vttdcq4yv/QekTn/hEzdhvfvObVeY9+OCDOe2002q9bwEAQGOh//74DRw4ME8++WStK7xnzJiR999/f629y2677ZZu3bpl2rRptcanTZuWHj16rFcYfsMNN7gqHAAAKIRGEYavTbNm/9zC+++/n4ULF6523pw5czJt2rR07do1F1xwQf74xz/muOOOy7XXXrvGc5eXl6dNmza1HkDjcPrpp2e33XaruW15kowePTp77713TjnllJqxm266KZ07d651xfcLL7yQ2267reb5a6+9liuvvDJ77bVX+vXrVzP+n//5n7n33ntrno8fPz6zZ8/OJZdcsqG2BQAADUb/vWGcc845admyZa666qokyXvvvZfLLrssxxxzTK3+Y9SoUdluu+0yd+7cJB/8ssLll1+eCRMmZObMmUk+6GVuv/32jBkzpuR6XnjhhfzpT3+q1TcBAAA0Vo0+DO/cuXPefffdrFixIjNmzMihhx662nkvvfRSzj333CxdurRm7L333stuu+32cZUKfIw23XTTPPDAA5k3b1569eqVnj17ZsmSJbnvvvvSokWLmnnLli3LkiVL8t577yVJOnXqlG9/+9u59tpr06dPnxxwwAE55phjcvzxx+fBBx+stfbYY4/N2Wefnb59++aAAw7I5MmTM3369Gy99dYf+34BAGBD039vGB06dMjkyZMzZcqU9O7dO7169cqOO+6YCRMm1JpXVVWVxYsXZ8WKFTVjgwcPzrXXXptTTjklBx54YD7zmc9k3LhxOfHEE2utveOOO1JRUZHx48cnSSoqKnL00Uevtp5x48ZlyJAh2Wyzzep3owAAAA2grLqU+519DB544IF84xvfyIwZM7LnnnvmggsuSJcuXfK1r32t1tjAgQNz/PHHZ8GCBWnWrFkuvfTSVFZW5jvf+U7NvKFDh+aEE07IRRddlKeeeiqtWrVKZWVldt9991x11VW1bnu8NgsWLEjbtm0zf/78JvVb6kDpul/4q4YuATaokzd7Ji3Llqd169Y599xzG7ocAGhQjbVn3Jj7765fvj3NyrfYwP8FGs6sK9Z8G3QAAABWb1367402DN8YNdZ/2AAajjCcohOGA8A/6RnrjzAcAACANVmX/rvR3yYdAAAAAAAAAD5MGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwmnR0AUAFNmsKwY1dAmwQY0d+2IWLlze0GUAAAX13MVHpE2bNg1dBgAAAI2UK8MBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAAAAAAAAAFI4wHAAAAAAAAIDCEYYDAAAAAAAAUDjCcAAAAAAAAAAKRxgOAAAAAAAAQOEIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKJwWDV0AAND4zV2wNN0v/FVDlwFNzqwrBjV0CQAb1O6j7k+z8i3qNNd7IgAAAB/mynAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMIRhgMAAAAAAABQOMJwAAAAAAAAAApHGA4AAAAAAABA4QjDAQAAAAAAACgcYTgAAAAAAAAAhSMMBwAAAAAAAKBwhOEAANDIzZw5M0cddVR69+6dvffeO2effXYqKyvX6Rx33HFHysrKMnr06Frj48ePT/fu3VNRUVHr0aNHj3Tv3r3+NgFQT9bnPfGWW25Jz549M2DAgPTs2TMTJkxYZc6yZcsyfPjw7L333unfv38GDBiQJ598co3nXL58efbZZ5+UlZWVvCcAAABKIwwHAIBG7J133klFRUUOOOCAPPbYY3n88cfz0ksvZfDgwXU+x9y5czNixIg1Hh8yZEgmT55c67HHHnvkP//zP+tjCwD1Zn3eEydMmJBhw4bltttuy8MPP5xbb701Z511Vu68885a84YNG5b77rsvjzzySB555JGceeaZOeSQQ/LKK6+s9ryjR4/O7Nmz62V/AAAArJtGH4ZPmjQpRx11VA488MAMGDAgffr0yb//+7/nxhtvzN///vckSVVVVcaMGZN99903FRUVGTBgQPbee++cccYZ+d3vftfAOwAAgNJdc801qayszHnnnZckadGiRUaOHJmJEyfm0UcfrdM5/vu//zuXXHLJao8dd9xx+eIXv1hr7M0338yvf/3rnHXWWetXPNCoNIb+u9T3xOrq6owYMSKDBw/OTjvtlCTZddddc/LJJ+fCCy+smffyyy/npptuygUXXJCWLVsmSc4444x06NAhl19++SrnnTFjRn79619n6NCh9blNAAAA6qhFQxewPs4777zcfffd+eUvf5ndd989SbJixYpcf/31OeusszJnzpyMHj06Z511Vh5//PFMnTo1HTp0SJL87W9/yyGHHJL27dvnoIMOashtAABAye6999707Nkz5eXlNWP7779/mjVrlkmTJqVfv35rXX/jjTdm8803z6mnnprTTjttlePt2rVbZeymm27KkUcemU9+8pPrXT/QODSW/rvU98Tnn38+s2fPTt++fWuN9+3bNzfffHNefPHF7LzzzrnvvvtSXV29yrw+ffpk0qRJtcYWL16cz372s/nJT36Su+66q552CAAAwLpotFeG33bbbRk7dmxuvfXWmkY8SZo3b54vfelLOfXUU2vG7rjjjgwaNKimEU+SrbfeOl//+tfziU984mOtGwAA6tPMmTOzzTbb1BorLy9Px44d89JLL6117SuvvJJvf/vb+f73v1/nn/f+++/npptuyhe+8IWS6gUan8bUf5f6njhz5swkWWVtly5dkqRm7drmzZ07NwsXLqwZO//88zN48ODsueeeJe4GAACA9dVorwz/zne+kx133DF9+vRZ7fFLLrkkS5YsSfLB1Sy/+93vsmTJkmy++eY1c1Z35QsAADQmixYtqnUF5Erl5eWprKxc47r3338/Q4YMydixY2uFVh/l17/+dcrLy3PYYYeVVC/Q+DSm/rvU98RFixbVzPvwuiQ1axctWpSysrJssskmq523aNGitG7dOg888ECeeuqpfO973yt9MwAAAKy3Rnll+OLFi/P000/X+o30D+vRo0c+9alPJUm+8pWv5Mknn8wOO+yQCy64IFOmTMl77733kT+nqqoqCxYsqPUAAICNSatWrVJVVbXKeFVVVVq1arXGdVdddVV69OiRo48+ep1+3g033JDPf/7zKSsrW+dagcansfXfpb4nrjz24bUrn6883qpVq1RXV2f58uVrnDdv3rycffbZueWWW9K8efOS9gEAAED9aJRh+Lvvvpvq6uq1NrL/6qtf/WomTpyY3XffPWPHjs2AAQPSuXPnXHDBBVm8ePEa140ZMyZt27ateXTt2rW+tgAAAPWiR48eeeONN2qNVVVV5e23385OO+20xnUTJ07M888/n4qKippHkowfPz4VFRW54oorVlnz2muvZfLkyRkyZEh9bgHYiDW2/rvU98QePXokySpr58yZkyQ1a9c2r3PnzmnVqlUeeuihNG/ePGeddVbN++v48eOTpOb53LlzS9ofAAAA66ZRhuHt27dPWVnZWm9x9mFHH310fvOb3+Tvf/97JkyYkJ49e+bb3/52TjzxxDWuGT58eObPn1/zeO211+qjfAAAqDcDBw7Mk08+WetqxhkzZuT999/PoEGD1rhuypQpmT59eiZPnlzzSJIhQ4Zk8uTJufDCC1dZc+ONN+bTn/70x/K9v8DGobH136W+J+62227p1q1bpk2bVmt82rRp6dGjR00YftRRR6WsrGyVedOnT685/wknnJAXXnih1vvryl8iWvm8U6dOJe0PAACAddMow/Atttgi++yzT5577rk6zX/99ddr/ty+ffucdtppue+++/L5z38+9913X+bPn7/adeXl5WnTpk2tBwAAbEzOOeectGzZMldddVWS5L333stll12WY445Jv369auZN2rUqGy33XYlX424YsWK/PCHP8wXvvCFeqkbaBwaW/9d6ntiWVlZLr/88kyYMCEzZ85Mkrzwwgu5/fbbM2bMmJp1O+ywQz73uc/lyiuvrPme8VtuuSVvv/12RowYUVLNAAAAbDiNMgxPkgsvvDAvv/xypk+fvtrjPXv2zHnnnZck6d+//yq3MEuSXXbZJWVlZb7vEACARqtDhw6ZPHlypkyZkt69e6dXr17ZcccdM2HChFrzqqqqsnjx4qxYsWKVcwwdOnSV26R/+H9nT5w4MZ07d85+++23wfYCbJwaU/+9Pu+JgwcPzrXXXptTTjklBx54YD7zmc9k3Lhxq1zRft111+WII45Iv3790q9fv/zoRz/Kgw8+mO22226VeqZPn77KbdKHDh1a/xsHAABgtcqqq6urG7qIUo0cOTI//elPc/fdd2f33XdPkixZsiTDhw/PAw88kClTpqRDhw7p3r17Dj744Fx//fXZbLPNkiRvvvlmjjjiiOywww6566676vTzFixYkLZt22b+/PmuEgeAJGPHjs3ChQuzqHqT3L50z4YuB5qcWVes+Za/wMevyD1jQ/XfXb98e5qVb1GnNd4TAQAAmoZ16b9bfEw1bRCXXXZZ+vXrl69+9auprKxMixYtsmTJkhx88MGZOnVqzXcZXnrppfnlL3+Zfv36pXXr1lm8eHGWLFmSo48+OiNHjmzgXQAAAMDGTf8NAABAY9Sorwz/uBX5t/wBoBSuDIeG5SpI2LjoGeuPK8MBAABYk3Xpvxvtd4YDAAAAAAAAwJoIwwEAAAAAAAAoHGE4AAAAAAAAAIUjDAcAAAAAAACgcIThAAAAAAAAABSOMBwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAAAACkcYDgAAAAAAAEDhCMMBAAAAAAAAKBxhOAAAAAAAAACFIwwHAAAAAAAAoHCE4QAAAAAAAAAUjjAcAAAAAAAAgMJp0dAFAACNX6c2m2XW6EENXQYAUDDPXXxE2rRp09BlAAAA0Ei5MhwAAAAAAACAwhGGAwAAAAAAAFA4wnAAAAAAAACA/9fenYdXVd374/+EKSizqARQAUGqohWKVgQHWhyh1KkOpRacbR+teuusFdSKY23RotcBL1isVK+CU5VbB6BainW+jqAVFBT1qggCEoas3x/+cr4eEyA5SUjYvl7Pw/OQtdfeZ23W3ouz1vtkHzJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMwRhgMAAAAAAACQOcJwAAAAAAAAADJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMwRhgMAAAAAAACQOcJwAAAAAAAAADJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMwRhgMAAAAAAACQOcJwAAAAAAAAADJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMxpUt8NAAA2fh8uWRFdz/9rfTejgnlXDanvJgAANbDTqP+JRsWb1nczAACAAliboyHwm+EAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOACQeXPmzImDDjoo+vXrF3369IlTTz01li5dWqV977jjjujbt2/ss88+0bdv37jrrrsq1Hn22WfjwAMPjN122y0GDhwYu+++e9xzzz21fRoAAAAAsNEpZG1u+fLlcdNNN8XAgQNj0KBB0a9fv9hnn31i6tSpefXef//9+M1vfhN77rln/OAHP4i+ffvGkUceGW+88UaFY06aNCl222232HPPPWPPPfeMAw44IJ5//vlaPVcano0yDJ87d24MHDgw2rZtG23bto2BAwfG3nvvHbvssksMGTIk7r777kgp5eoffPDB0bVr1ygqKoqBAwfGwIEDo2/fvrHDDjvEVVddFatXr67HswEA6tKnn34aAwcOjL322itmzZoVzz77bLz11lsxbNiw9e571113xWmnnRaTJk2KGTNmxJ133hknn3xy3Hfffbk6S5Ysif322y+6d+8e//rXv2L69Olx/fXXx09/+tN47LHH6vLUAKDOmX8DAAA1Ueja3AsvvBDnnHNO/OEPf4gnnngiZs2aFT/+8Y9j8ODB8de//jVXb/z48TFlypR48MEHY9q0afHPf/4z1qxZE/37948PPvggV2/GjBkxbNiwOOecc+Lpp5+Op59+On74wx/G/vvvHx9//HGdnT/1b6MMw7t16xbTp0+P3r17R+/evWP69Onx97//PV5++eU4/fTT49e//nUMHjw4VqxYERERDzzwQBx77LERETF9+vSYPn16PP/88zFmzJi46KKL4vzzz6/HswEA6tL1118fS5cujbPOOisiIpo0aRK/+c1v4qGHHop//OMfa90vpRQXXnhhDBs2LHr27BkRETvssEMceeSRee8d3n777Vi8eHEMHjw4ioqKIiKiX79+0a5du7w35gCwMTL/BgAAaqLQtblWrVrFySefHH369MmV/frXv45NNtkk7rjjjlxZp06d4oILLojNNtssIiKaNWsW5557bnz++edx//335+qV/wb4kCFDcmVDhgyJzz77LGbOnFkr50rDtFGG4etywAEHxP/8z//EE088Eb/+9a/XW7dXr15x5513bqDWAQAb2iOPPBJ9+/aN4uLiXNnuu+8ejRo1iocffnit+7322mvx7rvvRv/+/fPK+/fvH2+//XbMnj07IiJ69eoVu+yyS0ycODEXBEyZMiU+/fTT6Ny5cx2cEQA0DObfAADA+hS6NrfLLrvEH/7wh7yyoqKiKC4ujiZNmuTKjj/++DjmmGPy6m2yySYREXn1fvSjH0WbNm3itttui4iINWvWxPjx4yMirOFlXObC8IiInXbaKYYOHRq33XZbLFq0aJ11V65cGc2aNdtALQMANrQ5c+ZEp06d8sqKi4tj8803j7feemud+0VEhX3L3xyX71tcXBwzZsyIVatWRYcOHaJnz55x+OGHx2GHHRannnpqbZ4KADQ45t8AAMC6FLo2V5lXXnklFi1aFMOHD19nvRkzZkSLFi3isMMOy5X17NkznnrqqZgwYUJstdVW0blz57jpppvi0ksvjd12261a7WDjkskwPCJijz32iNWrV8czzzyz1jq33nprzJ4920I1AGTYsmXL8j55Wq64uDiWLl26zv3K631zv4jI7fvll1/GvvvuGytWrIgFCxbEnDlz4tVXX41+/frlffoUALLK/BsAAFibQtfmKnPeeefFiBEj4sADD1xrnUWLFsVVV10VY8eOjc033zxX/tprr8W+++4bhxxySLz33nvxwQcfxH//93/H9ttvX602sPHJ7Apt27ZtIyLis88+yysfOHBgRHx187Vv3z4mTZoURx99dKXHKC0tjdLS0tzPS5YsqZO2AgB1p2XLlnn/n5crLS2Nli1brnO/8nrf3O/r28eNGxfPPfdcvPHGG9GqVauIiNhxxx3j4osvjhdeeCEmTZpUK+cBAA2V+TcAALA2ha7NfdOFF14YZWVlceutt661TmlpaRx++OFxyimnxLHHHpu3beTIkdG4ceMYOXJkNGr01e8KH3TQQdGpU6dYtGhRnHLKKVVuCxuXzIbh5ZPwzTbbLK98+vTpVT7GlVdeGZdeemltNgsA2MC22267+OCDD/LKSktL45NPPomePXuuc7+IqLDv+++/HxGR2/fNN9+MiIgePXpU2P/aa6+N22+/PTbddNOanQQANGDm3wAAwNoUujb3daNGjYpXXnklHnjggbV+9dKXX34Zhx12WAwaNCguuuiiCtvffPPN2HbbbXNBeERE48aNo1u3bjF+/HhheIZl9jHpM2fOjCZNmsTuu+9e8DEuuOCCWLx4ce7P/Pnza7GFAMCGMHjw4Hj++efzPoH6zDPPRFlZWQwZMmSt+/Xq1Su6dOkSM2fOzCufOXNmbLfddrk369tss01E/L+QvNyCBQuiSZMm0bRp09o6FQBokMy/AQCAtSl0ba7cueeeG6+//npMnjw597j16667Lq/O0qVLY8iQIbH//vvngvC5c+fG5MmTc3W22WabCut3EV+t6flFlmzLZBj+8ssvx1//+tc46aSTol27dgUfp7i4OFq3bp33BwDYuJxxxhnRokWL3Jvk1atXx+WXXx5Dhw6NAQMG5OqNGjUqunXrFh9++GFERBQVFcUVV1wRd911V8yZMyciIt54442455574sorr8zt97Of/Szatm0bl1xySaxZsyYiIl566aWYPHlyDBs2TBgOQKaZfwMAAOtS6NpcSilOO+20mDZtWpx99tnx8ssvx3PPPRfPPfdc/PGPf8ztt3jx4jjggAOie/fusddee+Xq/O1vf4sHH3wwV++0006LefPmxe23354ru+WWW2LBggUxYsSIuv5noB5l7jHpU6dOjeOPPz4GDRoUv//97+u7OQBAPWvfvn1Mnz49zjjjjHjwwQdjxYoV0b9//7jmmmvy6pWWlsby5ctzgXZExLBhw2LlypVx1FFHRatWrWLp0qVxyy23xOGHH56rs9VWW8WMGTPi4osvjt133z2aN28eS5YsifPOOy/OPffcDXaeALChmX8DAADrU+ja3KOPPho33nhjRET069cvr26XLl1yfx89enTMnDkzZs6cGePGjcur9/WQe8iQIXH//ffHNddcE7fffnuUlZVFWVlZTJw4MY455phaPWcalqKUUqrvRlTX3Llz47jjjouXXnopIiJ69+4dZWVlsXjx4ujcuXMMHz48jjrqqCgqKoqIiIMPPjhefvnlePfdd2OfffaJ73//+xVusqpYsmRJtGnTJhYvXuxT6gAQEb///e/jiy++iGWpadyzYpf6bk4F865a/6OWAKC2ZHHOWN/z763PvCcaFXtkIQAAbIyszVFXqjP/3ih/M7xbt24xffr0Ktd/4IEH6q4xAAAAkFHm3wAAAGzMMvmd4QAAAAAAAAB8uwnDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5Teq7AQDAxq+kdfOYd8mQ+m4GAJAxr156QLRu3bq+mwEAAMBGym+GAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMwRhgMAAAAAAACQOcJwAAAAAAAAADJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAAAAAAACAzBGGAwAAAAAAAJA5wnAAAAAAAAAAMkcYDgAAAAAAAEDmCMMBAAAAAAAAyBxhOAAAAAAAAACZIwwHAAAAAAAAIHOE4QAAAAAAAABkjjAcAAAAAAAAgMwRhgMAAAAAAACQOU3quwEbk5RSREQsWbKknlsCAA3DihUrYsWKFdG0aVP/PwLwrVf+f2H53JHCmX8DAACwNtWZfxcls/QqW7BgQWy99db13QwAAAAasPnz58dWW21V383YqL3zzjvRvXv3+m4GAAAADVhV5t/C8GooKyuLDz74IFq1ahVFRUX13Rziq09+bL311jF//vxo3bp1fTeHWqJfs0m/ZpN+zSb9mk36NZv0a8OSUoovvvgiOnXqFI0a+Vaymvj888+jXbt28d5770WbNm3quzkQEcZcGibXJQ2R65KGyHVJQ+S6LFx15t8ek14NjRo18un+Bqp169YGigzSr9mkX7NJv2aTfs0m/ZpN+rXhENzWjvLFjDZt2ri2aXCMuTRErksaItclDZHrkobIdVmYqs6/fVQdAAAAAAAAgMwRhgMAAAAAAACQOcJwNmrFxcUxatSoKC4uru+mUIv0azbp12zSr9mkX7NJv2aTfiWrXNs0RK5LGiLXJQ2R65KGyHVJQ+S63DCKUkqpvhsBAAAAAAAAALXJb4YDAAAAAAAAkDnCcAAAAAAAAAAyp0l9NwDW5ZFHHolLLrkkmjdvHl988UWMGDEizjzzzHXuM2HChLjkkkuia9eueeXvv/9+rFq1KubNmxcREfPmzYt+/frF9ttvn1evd+/eMWbMmNo7CSoopF8jIrbffvsoKSmpUD59+vS8nxcuXBhnnnlm/Pvf/46IiJ49e8aYMWNiyy23rI3msxaF9Ov7778f//mf/xnTp0+Ppk2bxpIlS6J79+5x6aWXxg477JCr536te3PmzIkzzjgjFi1aFKWlpdG/f/+4+uqro2XLluvd94477ogbbrghWrZsGUuXLo2zzjorhg0blldn5cqVMWrUqJg6dWq0aNEiGjduHL///e+jb9++dXVKRGH9unz58pgwYULcc8890bhx41i2bFkUFxfHBRdcEAceeGBe3aqOy9SuQu/XY489Nt58881o3rx5XvmYMWOid+/euZ/dr/WjkH6dN29e9O7dO6//IiKWLVsWzz33XLzzzjvRrVu3iHC/Un+8x6Ahquvr0phLIWpyXS5btixGjRoVY8aMiccffzwGDhxYoY7xkkLU9XVpvKQQdb3WYbykENbgGrgEDdSMGTNSs2bN0t///veUUkoLFy5MHTt2TNddd9069xs/fnwaNWpUhfJDDz00XXzxxbmf586dm0aMGFGbTaYKCu3XlFLaZ5991luntLQ07bTTTunkk0/OlR133HGpT58+adWqVQW3m3UrtF9/+9vfph133DF9+umnKaWv+u+www5Lbdu2Te+//36unvu1bn3yySepY8eOafTo0SmllFatWpX222+/NHTo0PXu++c//zm1bNkyzZ49O6WU0uuvv55atGiR7r333rx6J510Uurdu3daunRpSimlCRMmpDZt2qR33nmnls+GcoX261NPPZU23XTT9MILL+TKfve736WioqL08MMP59WtyrhM7arJ/TpixIg0d+7c9dZzv254hfbr3LlzK70Pr7/++rTXXnvllblfqQ/eY9AQbYjr0phLddXkuvzHP/6Rdtlll3T88ceniEjTpk2rtJ7xkuraENel8ZLq2hBrHcZLqssaXMMnDKfB2muvvdL++++fV3bppZem1q1bp+XLl691v0WLFqWPPvoor+yDDz5IzZs3T/Pnz8+VCdfqR6H9mlLVBvzbb789RURekPruu++miEh33nlnQW1m/Qrt19tvvz1NnDgxr2zWrFkpItKNN96YK3O/1q2LL744tWrVKq1YsSJXNmPGjBQR6emnn17rfmVlZalLly55Hz5J6asPoPTo0SP381tvvZWKiorSXXfdlVdv2223TSeeeGItnQXfVGi/vvTSS+nMM8/MKysrK0ubbrppOuKII/LKvRHf8Art15SqFoa7X+tHof26cuXKShdkevXqVaEP3a/UB+8xaIjq+rpMyZhL9dXkPd60adPSwoUL07Rp09YaOhovKURdX5cpGS+pvrpe6zBeUghrcA2f7wynQVqyZEk8/fTT0b9//7zy/v37x5IlS+Lvf//7Wvdt27Zthcdhjxs3Lg488MDYaqut6qS9VE1N+rWqHnnkkejatWt06tQpV7bNNttE586d4+GHH67x8amoJv16/PHHxzHHHJNXtskmm0RERJMmvsljQ3nkkUeib9++UVxcnCvbfffdo1GjRuu8b1577bV49913K+37t99+O2bPnh0REVOnTo2UUoV6e+yxh/uyDhXar7vsskv84Q9/yCsrKiqK4uJi92UDUGi/VpX7tX4U2q9NmzbNPQa93FNPPRX/93//F4cffnidtReqynsMGqK6vi6hEDV5jzdw4MBKH5v6dcZLClHX1yUUoq7XOoyXFMIaXMMnDKdBevvttyOllBdoRkR07tw5IiLeeuutKh+rrKwsxo0bF7/85S8rbJs9e3Ycdthhsffee8fAgQPjggsuiEWLFtWs8axVTft12bJlccopp8Q+++wTAwYMiOOPPz7mzJmTV2fOnDkVjl/+GtW5bqi62rxfIyJmzJgRLVq0iMMOOyyv3P1adyq7b4qLi2PzzTdfZ/+V33/r6/t11fvwww/jiy++qNkJUKlC+7Uyr7zySixatCiGDx+eV16VcZnaVdN+vfbaa3P9deihh8Zjjz1W4fgR7tcNrTbv11tuuSVOOOGEaNasWV65+5X64D0GDVFdX5cRxlyqrzbfC6zt+BHGS6qnrq/LCOMl1VfXax3GSwphDa7h89ECNpjFixfHwoUL11uvW7dusWzZsoiIvE/SfP3npUuXVvl1H3300SguLo799tsvr7x58+bRtWvXuOaaa2LrrbeOTz/9NI4++ujo3bt3vPjii7HZZptV+TW+zTZkv+64444xfPjwGDBgQKxatSouuuii2HnnnWPatGm5T+stW7YsNt988wr7FhcXx8cff1ylc6L+7tdFixbFVVddFWPHjs3rR/dr3Vq2bFmF/ov4qg/X1X9V7ftly5ZFUVFRNG3atNJ6y5Yti1atWhV+AlSq0H6tzHnnnRcjRoyIAw88MK+8KuMytasm/brDDjvElltuGTfccEM0btw4pkyZEgcddFBcffXVcdZZZ+WO737d8Grrfv30009jypQp8frrr1fY5n6lPniPQUNU19dlhDGX6qvN9+5rO77xkuqq6+sywnhJ9dX1WofxkkJYg2v4hOFsMFOmTInjjjtuvfVefPHFaNmyZURElJaW5m0r/7l8e1XcfPPN8Ytf/CKKioryyktKSmLSpEm5n9u3bx/XX3999OrVK8aNGxfnnntulV/j22xD9usdd9yR+3vTpk3jyiuvjIkTJ8bll18ejzzySO4Y3zx++WtU57r5tquP+7W0tDQOP/zwOOWUU+LYY4/N2+Z+rVuF3jdV7fuWLVtGSilWrVqVN5koZEyn6mprPLzwwgujrKwsbr311grbqjIuU7tq0q/nnXde3s+HHnpoHHbYYXHZZZfFGWecEU2aNHG/1pPaul8nTJgQgwYNii5dulTY5n6lPniPQUNU19dlhDGX6qvrtQzjJYXYEGtsxkuqq67XOoyXFMIaXMPnMelsMMcee2yklNb7p3fv3tG9e/coKiqKDz74IO8Y77//fkRE9OzZs0qvOX/+/Jg+fXqFYG1ttttuu4j46rHPVE199Gu5xo0bx7bbbpvXX9ttt12F45e/RnWP/222ofv1yy+/jEMOOSQGDRoUI0eOrFIb3a+1p7L7prS0ND755JN19l95H6yv79dVr2PHjiYSdaTQfv26UaNGxSuvvBIPPPBAhUcuV6aycZnaVRv9+s3jLVmyJPf0FPdr/aitfr311lsr/Wqgyrhf2RC8x6AhquvrsjLGXNantt/jVXb8COMl1VPX12VljJesT12vdRgvKYQ1uIZPGE6D1Lp169hzzz1j5syZeeUzZ86M1q1bx1577VWl49x2223xk5/8pNJHKI8ZMyZmzZqVVzZ//vyIiNhqq60KbDnrUpN+feKJJ+K2226rUL5gwYK8/ho8eHDMmzcv7z+f9957L95///0YMmRILZwF31TT+3Xp0qUxZMiQ2H///eOiiy6KiIi5c+fG5MmTc3Xcr3Vr8ODB8fzzz+d9gvGZZ56JsrKydd43vXr1ii5dulTa99ttt13uzd5BBx0URUVFFer985//dF/WoUL7tdy5554br7/+ekyePDn3qKfrrrsut72q4zK1q9B+/fjjj+P000+vUD5//vxo3rx5tG/fPiLcr/WlpvdrRMSTTz4Zq1evrvAotQj3K/XHewwaorq+Lo25FKI23gusi/GSQtT1dWm8pBB1vdZhvKQQ1uA2AgkaqBkzZqRmzZqlp556KqWU0sKFC1PHjh3Tddddl1fvhz/8YRo0aFCF/VevXp06deqUnnnmmUqPP2LEiHTIIYekFStWpJRSKi0tTUcffXRq165deu+992r5bChXaL+OHz8+devWLS1cuDBXdsMNN6SioqL04IMP5spKS0tTr1690sknn5wrO+6441KfPn3SqlWr6uq0vvUK7dfPP/889e/fP5144onp2Wefzf25+eab04gRI3L13K9165NPPkklJSVp9OjRKaWUVq1alfbbb780dOjQvHojR45MXbt2zbsP//znP6eWLVum2bNnp5RSev3111OLFi3Svffem7fvSSedlHr37p2WLl2aUkppwoQJqXXr1umdd96py1P7Viu0X8vKytKpp56adt111zRr1qy8e7NLly65/ao6LlO7Cu3XuXPnpqZNm+bG6ZRSeuaZZ1Lz5s3T2Wefnbev+3XDq8k4XO7II49MV199daXHd79SX7zHoCGq6+vSmEshauO9wLRp01JEpGnTplX6GsZLqquur0vjJYWo67WOlIyXVJ81uIbPd4bTYO29994xZcqU+I//+I/YZJNNYsmSJXHOOefEf/zHf+TVW758eTRqVPEhBw899FB07Ngxvv/971d6/F/+8pdx4403xl577RWbbrppLF26NHr27Bn/+te/Yuutt66Tc6Lwft13333jtddei6FDh0aLFi1ixYoV0aJFi3j88cfjhz/8Ya5es2bN4rHHHoszzzwzdt1110gpRc+ePWPq1KnRpIkhr64U2q+jR4+OmTNnxsyZM2PcuHF5dUeMGJH7u/u1brVv3z6mT58eZ5xxRjz44IOxYsWK6N+/f1xzzTV59UpLS2P58uWxZs2aXNmwYcNi5cqVcdRRR0WrVq1i6dKlccstt8Thhx+et+/YsWNj5MiRMWDAgGjRokU0adIknnjiiejWrdsGOcdvo0L79dFHH40bb7wxIiL69euXV/fr30Nc1XGZ2lVov5aUlMTo0aPj3HPPjWbNmsXq1atj5cqVcf3118eJJ56Yt6/7dcOryTgc8dVv/n/93v0m9yv1xXsMGqK6vi6NuRSiJtfl22+/HSeeeGJ8/vnnERFx5plnRtu2bWPcuHHRo0ePXD3jJdVV19el8ZJC1PVaR4TxkuqzBtfwFaWUUn03AgAAAAAAAABqk+8MBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOYIwwEAAAAAAADIHGE4AAAAAAAAAJkjDAcAAAAAAAAgc4ThAAAAAAAAAGSOMBwAasnixYvj7LPPju7du0ezZs2ibdu2sf/++8dzzz1X300DAAAAMsp6BACsnTAcAGrB4sWLo3///nHddddFly5d4owzzogDDjggnnjiiTjwwAPjyy+/rO8mVtvEiROjT58+seWWW0aHDh2iX79+8c9//nOt22bMmBG9evWKfffdt+DXLC0trfExAAAAsqCsrCwmTJgQAwcOjPbt28eWW24ZnTp1il122SWOO+64uPXWW2PZsmX13cx1evvtt6OkpCRatmwZRUVFMX369AbXhoYwD63Jv5P1iK+21UY/NoRrAYDaJwwHgFpw6aWXxuuvvx6/+93v4sknn4xrr7027r777hgxYkR8+umn8eabb9Z3E6vl8ccfj+HDh8fgwYPjo48+infffTdat24ds2fPXuu21157LT7//PP45JNPCn7dNWvW1PgYheratWt07dp1g78uAABAZU488cQ44YQT4vDDD4/58+fHxx9/HO+9915cc801MX369DjllFNi7ty5efs0tHlNjx494sMPP4yzzz67wbahPueh5Wry72Q94qtttdGP1iQAsqlJfTcAADZ2a9asifHjx0ePHj3irLPOytvWtGnTiIho165dfTStYI8++mhERAwbNiyKioqiefPmce+990aTJk3i4osvXuu2k046KRo1KvyzdptuumnMmzevRscAAADY2L388ssxfvz4OProo+NXv/pVrrxJkyZxwAEHxMSJE2OvvfaqxxZmx8Y8D7Ue8f+21UY/bszXAgBrJwwHgBp66aWX4vPPP4/jjjsur3zVqlXxwAMPRJcuXTa6T/d++umnERHRokWLXFnr1q3Xu602lE/YAQAAvq3eeOONiIjo2LFjpdsHDBgQxx13XLRt23YDtiq7NtZ5qPWI/PWI2ujHjfVaAGDtfMQJAGro+eefj4iI3XbbLVe2YsWKOO644+Kjjz6KM888s0rHWbVqVVxzzTXx3e9+N/ddcN/73vfi/PPPj9dff32ddbfYYovYZ5994v7776/02CtXroyrrroqdtppp9hss82iXbt2sffee8e9996bV+/xxx+PkpKSuPvuu3PnVFJSEiUlJevcNnXq1CgpKYlNNtkkioqKYt68edU+t/Udo7rnUH6cV155JU455ZTo2rVrtG3bNvbdd9/cwlJExJ/+9KcoKSmJ+fPnx/z583PnVFJSEm+//XZEfPVdfWPHjo0+ffpEp06donPnztG3b984//zzY86cOevvXAAAgGro1KlTRERMnjw5Pvvsswrbi4qK4r/+679iq622ioiqzWuWLFkSV155ZQwYMCC22mqraNeuXXTv3j3OPvvs+OKLL3LHru6c6us++eSTOOmkk3Lf59y7d++YOHFipXWr2p7K2vTqq6/GmWeeGT169IhmzZrlfc92ddqwrnlo165dY4sttsj7tywpKYlGjRpFUVFRPPTQQ7m6VZ2vFvLvtC61tR4RUf9rEoWuR0Ssfz1hQ61JFHLvWJMA2AASAFAjv/jFL1JEpNmzZ6dJkyal4cOHpy233DJFRBoxYkRas2bNeo+xcuXKNGjQoNSiRYv08MMPp5RSWrNmTfrLX/6SmjZtmg4++OAKdVu1apUeffTRlFJKpaWl6corr0wRkS677LJKj92mTZv0yCOPpDVr1qTly5en3/zmNyki0hVXXFGhPSNGjEgRkebOnVvjbdU5t/Udo5BzGDRoUHr66adTSim99dZbaeutt06dO3dOpaWlefW7dOmSunTpUuE4KaV00UUXpU033TRNnz49V/a3v/0ttW7dOo0aNarSfQAAAApVWlqaevbsmSIibb755un8889Pzz//fCorK1vnfuua1zz77LMpItLVV1+dVq1alcrKytLTTz+dSkpKUr9+/SrMXas7p/riiy/S9ttvn9q0aZOefPLJlFJKn3/+eTrxxBNTr169UkSkadOmFdyer7dp7733Tg8++GBas2ZNmj9/fmrTpk2aNm1atdvwzeN+fR7apUuXCvPeO++8M/dvUt6+6s5XC21jZWpjPeLr59AQ1iQKXY9Y2/b6WJOo7r2TkjUJgLokDAeAGvr+97+fWrVqlcrKytL3vve9FBEpIlKzZs3SJZdcklavXr3eY1x33XUpItLll19eYduvfvWrvMlZed2LLrqoQt3dd989FRUVpRdeeKFC/WuvvbZC/V133TU1bdo0LViwIK+8NsPw6pzb+o5RyDl8c58LLrggRUSaMWNGXvm6Jp477LBD6tOnT4XySy65JP3xj3+sdB8AAICaePPNN9Puu++em2NGROrYsWM64YQT8kKxr1vXvOa1115LQ4cOrVA+duzYFBG5YLNcdedUI0eOzIXbX7dq1aq0zTbbVAh5q9uer7fpkksuySv/y1/+kubPn1/tNnzzuF+fh5522mnp448/zv38xhtvpJYtW6aOHTumDz/8MFde3flqoW2sTG2sR3z9HBrCmkRth+H1sSZR3XsnJWsSAHXJY9IBoAbWrFkTr7zySvTu3TuKiorimWeeiYULF8aUKVOiV69ecckll8TIkSPXe5zyx6ENHTq0wrbzzz8/Ro0aVaHuoYceWqHuT37yk0gp5T1erfzvQ4YMqVB/jz32iFWrVsWjjz663jYWqjrntr5jFHIOe+65Z97PXbp0iYiIBQsWrPd1y3Xt2jVefPHFGDVqVHz44Ye58lGjRsVpp51W5eMAAABU1Xe+852YNWtWPP3003HGGWdEjx49YuHChXH77bfHwIED4+CDD44vv/yyysfbcccd48EHH6xQvsMOO0RExP/+7/9Wul9V51T33XdfREQcdNBBeeVNmjSJQYMG1Vp7IiL222+/vJ+POuqo2GqrrardhnX54x//GFtssUVERCxfvjyOOOKI+PLLL2PSpEnRoUOHXL3qzldrq421tR7x9XOwJrHuY1T3HGpjPSLCmgRATTWp7wYAwMbsjTfeiC+//DL69u0bEV9NXktKSuKQQw6JAQMGRElJSTz00EMxevTomD9/ft73eEVE9O/fPyZPnhyzZ8+OiIitt966wmt06tQp931xEZGr27lz5wp1y8vK63z97wMHDoyioqK8+itXrowWLVrEwoULq33uVVWdc1vfMQo5hy233DLv5+Li4tx+VTV27NgYNmxYXHbZZXH55ZfH7rvvHoccckgMHz489x1lAAAAdWHAgAExYMCAGDNmTMyePTv+9Kc/xfXXXx8PPvhgXHXVVXHppZdW+Vj33ntvjBs3Lt5666344osvolGjRrm50fLlyyvdp6pzqvLvNy7/HvOvW9u8r5D2RMRa52GFtKEqTj311Hj11Vdj9OjRsc8+++Rtq+58tbbaWJ31iIiwJlEPaxK1sR4RYU0CoKaE4QBQAy+88EJERHzve9+rsK1t27bRpEmTaNWqVUR8NfH6+id4K1NaWlr7jfz/vfTSS9GxY8c6O/761Ma5FXIOjRrV/EE42267bcyaNSuef/75uO++++Lee++N8847Ly677LK466674sc//nGNXwMAAGB9vvOd78To0aNjjz32iKFDh8bUqVOrHIaPHDkyfvvb38aRRx4ZTz31VC4EnD59evzgBz9Y635VnVOVh4SVBX3fDBBr0p51tam6baiKCRMmxIQJE+Kggw6KCy64YK31qjpfra02Vmc9IsKaRH2sSdTGekSENQmAmvKYdACogfLJZ58+fSpse+yxx2LlypUVPjVeme233z4iIt5///0K25YtW5ZXXl63ssdqlZeV1/n63+fPn1+hfllZWTzxxBPx0UcfrbeNharOua3vGPV1DmvWrImIiL59+8YVV1wRc+bMifvvvz9WrVoVp59+ep29LgAA8O309NNPV/qbrOXKw+Jly5ZV+Zg33nhjRETccMMNNfot6bXp0aNHRFQ+9/vggw82SHuq24b1efXVV+PUU0+NrbfeOiZOnFhpWF3d+WpttbG21iMirElU9RjWJAA2TsJwAKiBF198MSIiJk2alFf+6aefxllnnRXNmzePk08+eb3H+fnPfx4REVOmTKmw7Ve/+lUceeSRFeqWf8/Y1913331RVFQUxxxzTK5s+PDhERFx9913V6j/8MMPx4EHHpibWNWF6pzb2myIc2jRokWsWrUq9/P48ePjnnvuiYiI7t27x6xZs/LqH3zwwdGrV6/47LPPavS6AAAA37R69epYsGBBPPfcc5VuL/8+7X79+uWVr2te07Rp00qPNW/evFpoccQRRxwRERH3339/Xvnq1avjySefrFC/LtpT3Tasy9KlS+OII46IVatWxd133x3t27fPbbv55pvj5ptvjojqz1drq421tR4RYU1ifaxJAGzchOEAUKCUUrz00ksREXHFFVfEwIED47zzzosTTjghevbsGXPmzImbb745unbtut5jnXbaaTFo0KC44YYbYurUqRHx1Sd/b7/99vjLX/4Sl19+eYW6Y8eOjUcffTQivnq82lVXXRXPPPNMXHrppXmfDD/ttNNi//33j5tuuinuvvvuWLNmTaSUYtq0aXHyySfHyJEj6+S3Ago5t3Udo67P4bvf/W58/PHHsXDhwli6dGlceeWVeZ/svvDCC+Pdd9+NiK/6/oEHHojXXnstRowYUaPXBQAAWJuf/vSnMXXq1NwjtVevXh1/+9vf4uc//3l07NgxLr744rz665rXlIeCZ5xxRnz++ecR8VWoftlll9VKW88666zo1atX3HDDDTFt2rSIiFiyZEmceuqplT6iui7aU902rMspp5wSb775Zlx11VWxxx575G378MMPc48cr+58tTbaWJvrEeXnYE1i3cewJgGwEUsAQEHmzJmTIiL9+Mc/Tj/60Y9S69atU+PGjVNJSUn6yU9+kmbNmlWt45WWlqarr7467bTTTmmLLbZInTp1Svvvv3966qmn1lt38803T3vvvXeaPHlypcdeuXJluvbaa9POO++c2rVrlzp37pz69++f/vznP+fVe+yxx1KHDh1S8+bNU0SkzTffPHXo0CHdcccd69z26KOPVtg2ePDgap3b+o5R1XN46aWXKhzn9NNPTymltOuuu6bWrVuniEitW7dOPXv2zO3373//O/3gBz9I7du3T506dUrDhw9PK1asSCml9Ne//jX97Gc/S9ttt13q2LFjKikpSbvuumu66aab0urVq6vaxQAAAFWydOnSNGnSpHTCCSek7373u6ljx45pyy23TK1bt04777xzOuecc9JHH31UYb91zWtWrlyZrrjiivSd73wnbbLJJmmbbbZJhxxySBo7dmyKiNSiRYvUoUOHgudUKaX0ySefpJNOOiltscUWaYsttkg77rhjGjNmTBo1alSKiNSuXbu04447Vqs9ixcvrrRNHTp0SHPnzq3wb1CdNqxtHvrqq6+miEgRkYqLiyv8ady4cRo1alTuNas6Xy2kjZWp7fWIlOp/TaLQ9YiU1r+esKHWJGpy71iTAKg7RSmltMGSdwDIkHvuuSeOOuqouOWWW6r86DEAAACAmrAeAQBV5zHpAFCgF154ISIi7/FfAAAAAHXJegQAVJ0wHAAK9MILL0Tjxo1j5513ru+mAAAAAN8S1iMAoOo8Jh0ACrTFFltEhw4d4tVXX63vpgAAAADfEtYjAKDqhOEAAAAAAAAAZI7HpAMAAAAAAACQOcJwAAAAAAAAADJHGA4AAAAAAABA5gjDAQAAAAAAAMgcYTgAAAAAAAAAmSMMBwAAAAAAACBzhOEAAAAAAAAAZI4wHAAAAAAAAIDMEYYDAAAAAAAAkDnCcAAAAAAAAAAyRxgOAAAAAAAAQOb8f8d03G/Rf3jTAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create a figure with two subplots arranged horizontally\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(20, 9)) # 1 row, 2 columns\n", + "#fig.suptitle('ret ~ DP + CS + ntis + cay + TS + svar', fontsize=12, fontweight='bold')\n", + "\n", + "# Plot the first horizontal bar plot\n", + "COefs.plot.barh(ax=axes[0], width=0.3)\n", + "#axes[0].set_title(\"Regression Coefficients' Magnitudes\")\n", + "axes[0].axvline(x=0, color=\".5\")\n", + "axes[0].set_xlabel(\"$\\\\beta$-coefficients\", fontsize=14)\n", + "axes[0].set_ylabel(\"Predictors\", fontsize=14)\n", + "axes[0].legend([]) # Remove legend\n", + "\n", + "# Place the beta values next to the horizontal bars\n", + "for i, (v, p) in enumerate(zip(COefs.values[:, 0], COefs.index)):\n", + " if v < 0: # If negative coefficient, place to the left of the bar\n", + " axes[0].text(v, i, f'{v:.2f}', va='center', ha='right', fontsize=11, color='black', weight='normal')\n", + " else:\n", + " axes[0].text(v, i, f'{v:.2f}', va='center', ha='left', fontsize=11, color='black', weight='normal')\n", + "\n", + "# Adjust x-axis limits to provide space for negative coefficient values\n", + "max_abs_coef = abs(COefs.values[:, 0]).max()\n", + "axes[0].set_xlim(-max_abs_coef * 1.2, max_abs_coef * 1.2)\n", + "\n", + "# Plot the second horizontal bar plot\n", + "sorted_featureWeight = (X_train_preprocessed.std(axis=0)).sort_values(ascending=True)\n", + "#sorted_featureWeight.plot.barh(ax=axes[1])\n", + "X_train_preprocessed.std(axis=0).plot.barh(ax=axes[1], width=0.3)\n", + "#axes[1].set_title(\"Normalized Variables: Z-scores\")\n", + "# Standardized betas (beta coefficients) are normalized based on the scales of the predictors.\n", + "axes[1].set_xlabel(\"Standardized $\\\\beta$-coefficients\", fontsize=14)\n", + "axes[1].set_ylabel(\"Predictors\", fontsize=14)\n", + "\n", + "# Place the beta values next to the horizontal bars for the second plot\n", + "for i, (v, p) in enumerate(zip(X_train_preprocessed.std(axis=0), X_train_preprocessed.columns)):\n", + " if v < 0: # If negative coefficient, place to the left of the bar\n", + " axes[1].text(v, i, f'{v:.3f}', va='center', ha='right', fontsize=11, color='black', weight='normal')\n", + " else:\n", + " axes[1].text(v, i, f'{v:.3f}', va='center', ha='left', fontsize=11, color='black', weight='normal')\n", + "\n", + "# Adjust x-axis limits for the second plot\n", + "max_abs_value = abs(X_train_preprocessed.std(axis=0)).max()\n", + "axes[1].set_xlim(0, max_abs_value * 1.2)\n", + "\n", + "# Adjust spacing between subplots\n", + "plt.subplots_adjust(wspace=0.2)\n", + "# Tighten the layout to remove oversized margins\n", + "plt.tight_layout()\n", + "# Save the figure\n", + "#plt.savefig(\"2.4.beta_coef_results.png\")\n", + "\n", + "#![This plot shows that...](2.4.beta_coef_results.png)\n", + "#plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3069027d-f53f-4348-8c0c-0885483dc8d9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "2. Compute the in-sample $R^2$ as well as the mean squared error. Do you think quarterly returns can easily be predicted?" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "69ae4d7d-16a9-436a-9cfc-1b087a563db8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample (all) R^2: 0.1321\n", + "In-sample (all) MSE: 0.00441\n" + ] + } + ], + "source": [ + "y_pred_train = model_all.predict(X_train) # In-sample predictions.\n", + "\n", + "r2_train = r2_score(y_train, y_pred_train) # Option 1: calling sklearn r2_score function\n", + "print(f\"In-sample (all) R^2: {r2_train:.4f}\")\n", + "\n", + "#model_r2_train = model_all.score(X_train, y_train) # Option 2: calling LinearRegression.score function\n", + "#print(f\"In-sample R^2: {model_r2_train:.4f}\")\n", + "\n", + "mse_train = mean_squared_error(y_train, y_pred_train) # In-sample MSE\n", + "print(f\"In-sample (all) MSE: {mse_train:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "581f7631-9c99-4143-b87e-11b43c243dd0", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "3. Use $5$-fold cross validation to obtain an estimate for the out-of-sample mean squared error. Compare this estimate to the in-sample mean squared error from *Q2.2*." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "642f6798-71ac-479e-bd0f-be0f7ab2ce49", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample (all) cv.MSE: 0.00521\n" + ] + } + ], + "source": [ + "# Perform 5-fold cross-validation and calculate the in-sample MSE\n", + "train_all_cv_mse = -cross_val_score(model_all, X_train, y_train, scoring='neg_mean_squared_error', \n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()\n", + "print(f\"In-sample (all) cv.MSE: {train_all_cv_mse:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "18a9a179-4226-4734-8bcf-554671ce85e9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "4. Based on your findings from *Q2.1* select only a subset of the features to improve your model. Which features do you choose and why? Compute the in-sample $R^2$ as well as the mean squared error for this model and use $5$-fold cross validation to obtain an estimate for the out-of-sample mean squared error. Compare your results to the model using all features." + ] + }, + { + "cell_type": "markdown", + "id": "95d24155-d7b1-48ba-9567-2574ebc63fb7", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Regression with DP as predictor: `ret ~ DP`" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "c1761dc0-3714-457d-89e4-d19d00214aaf", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample (DP) R^2: 0.0541\n", + "In-sample (DP) MSE: 0.0055\n", + "In-sample (DP) cv.MSE: 0.00556\n" + ] + } + ], + "source": [ + "# Setting up a new regression model.\n", + "# Pre-selecting the exogenous variable.\n", + "selected_features1 = ['DP']\n", + "\n", + "# Establishing y and X based on the training and validation datasets.\n", + "X_train_DP_selected = train_data[selected_features1]\n", + "X_test_DP_selected = test_data[selected_features1]\n", + "y_train_DP = train_data['ret']\n", + "y_test_DP = test_data['ret']\n", + "\n", + "# Training the regression model.\n", + "model_DP = LinearRegression()\n", + "model_DP.fit(X_train_DP_selected, y_train_DP)\n", + "\n", + "# In-sample predictions.\n", + "y_pred_train_DP_selected = model_DP.predict(X_train_DP_selected)\n", + "\n", + "# Determining the in-sample R^2.\n", + "r2_in_sample_DP_selected = r2_score(y_train_DP, y_pred_train_DP_selected)\n", + "print(f\"In-sample (DP) R^2: {r2_in_sample_DP_selected:.4f}\")\n", + "\n", + "# Determining the in-sample Mean Squared Error (MSE).\n", + "mse_train_DP_selected = mean_squared_error(y_train_DP, y_pred_train_DP_selected)\n", + "print(f\"In-sample (DP) MSE: {mse_train_DP_selected:.4f}\")\n", + "\n", + "# Perform 5-fold cross-validation and calculate the in-sample MSE\n", + "train_DP_cv_mse = -cross_val_score(model_DP,\n", + " X_train_DP_selected,\n", + " y_train_DP,\n", + " scoring='neg_mean_squared_error',\n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()\n", + "\n", + "print(f\"In-sample (DP) cv.MSE: {train_DP_cv_mse:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "fd8b3ab2-6b1a-4bf8-9db3-e19d4d4a2c01", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "### Regression with DP and cay as predictors: `ret ~ DP + cay`" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "d7512923-949c-4733-be03-24cc6c7ce71c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample (DP+cay) R^2: 0.1040\n", + "In-sample (DP+cay) MSE: 0.0052\n", + "In-sample (DP+cay) cv.MSE: 0.00529\n" + ] + } + ], + "source": [ + "# Setting up a new regression model.\n", + "# Pre-selecting the exogenous variable.\n", + "selected_features2 = ['DP', 'cay']\n", + "\n", + "# Establishing y and X based on the training and validation datasets.\n", + "X_train_DPcay_selected = train_data[selected_features2]\n", + "X_test_DPcay_selected = test_data[selected_features2]\n", + "y_train_DPcay = train_data['ret']\n", + "y_test_DPcay = test_data['ret']\n", + "\n", + "# Training the regression model.\n", + "model_DPcay = LinearRegression()\n", + "model_DPcay.fit(X_train_DPcay_selected, y_train_DPcay)\n", + "\n", + "# In-sample predictions.\n", + "y_pred_train_DPcay_selected = model_DPcay.predict(X_train_DPcay_selected)\n", + "\n", + "# Determining the in-sample R^2.\n", + "r2_in_sample_DPcay_selected = r2_score(y_train_DPcay, y_pred_train_DPcay_selected)\n", + "print(f\"In-sample (DP+cay) R^2: {r2_in_sample_DPcay_selected:.4f}\")\n", + "\n", + "# Determining the in-sample Mean Squared Error (MSE).\n", + "mse_train_DPcay_selected = mean_squared_error(y_train_DPcay, y_pred_train_DPcay_selected)\n", + "print(f\"In-sample (DP+cay) MSE: {mse_train_DPcay_selected:.4f}\")\n", + "\n", + "# Perform 5-fold cross-validation and calculate the in-sample MSE\n", + "train_DPcay_cv_mse = -cross_val_score(model_DPcay,\n", + " X_train_DPcay_selected,\n", + " y_train_DPcay,\n", + " scoring='neg_mean_squared_error',\n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()\n", + "\n", + "print(f\"In-sample (DP+cay) cv.MSE: {train_DPcay_cv_mse:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5a7e1a79-340c-4b61-9e74-e06b4f455904", + "metadata": { + "user_expressions": [] + }, + "source": [ + "5. Now suppose you use the two models you have build to predict quarterly returns in the coming $25$ years. Compute the out-of-sample mean squared errors for the test data. Compare these errors to the estimates for the out-of-sample errors obtained from k-fold CV. Interpret." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "4f75d9ee-5a4a-4c8b-8a43-61846329db6f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [], + "source": [ + "## Perform 5-fold cross-validation - calculate the out-of-sample (all) MSE:\n", + "test_all_cv_mse = -cross_val_score(model_all, \n", + " X_test, \n", + " y_test, \n", + " scoring='neg_mean_squared_error', \n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()\n", + "\n", + "\n", + "## Perform 5-fold cross-validation - calculate the out-of-sample (DP) MSE:\n", + "test_DP_cv_mse = -cross_val_score(model_DP, \n", + " X_test_DP_selected, \n", + " y_test_DP, \n", + " scoring='neg_mean_squared_error',\n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()\n", + "\n", + "\n", + "## Perform 5-fold cross-validation - calculate the out-of-sample (DP+cay) MSE:\n", + "test_DPcay_cv_mse = -cross_val_score(model_DPcay, \n", + " X_test_DPcay_selected, \n", + " y_test_DPcay, \n", + " scoring='neg_mean_squared_error',\n", + " cv=KFold(n_splits=5, shuffle=True, random_state=1)).mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "1830488d-ddb6-4dd0-beda-aeb0d0647f59", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "hide_code" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Model In-sample MSE In-sample cv.MSE Out-of-sample cv.MSE\n", + "0 All predictors 0.004414 0.005213 0.008361\n", + "1 DP 0.005479 0.005560 0.006735\n", + "2 DP+cay 0.005190 0.005294 0.006587\n" + ] + } + ], + "source": [ + "# Define the data\n", + "model_data_table = {\n", + " \"Model\": ['All predictors', 'DP', 'DP+cay'],\n", + " \"In-sample MSE\": [mse_train, mse_train_DP_selected, mse_train_DPcay_selected],\n", + " \"In-sample cv.MSE\": [train_all_cv_mse, train_DP_cv_mse, train_DPcay_cv_mse],\n", + " \"Out-of-sample cv.MSE\": [test_all_cv_mse, test_DP_cv_mse, test_DPcay_cv_mse]\n", + "}\n", + "# Create a DataFrame\n", + "mdt = pd.DataFrame(model_data_table)\n", + "\n", + "# Display the DataFrame\n", + "print(mdt)" + ] + }, + { + "cell_type": "raw", + "id": "ee76d361-883a-4e74-9352-df110c6f093b", + "metadata": { + "editable": true, + "raw_mimetype": "", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "df4f7f10-2779-43ab-a7b0-3bd1b3f15b0c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Question 3: Predicting the direction of the stock market\n", + "\n", + "Instead of quantitatively predicting returns, assume now that you want to predict the direction of the stock market, that is, whether stocks go up or down. Based on these predictions you want to either invest in stocks or not.\n", + "\n", + "1. Create a new variable in both, the training and test data that is $1$ if the return is larger than zero and $0$ otherwise." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "b28e213d-9ca8-4e33-a15f-feae07d73a18", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    dateretDPCSntiscayTSsvar
    921952-Q11-2.8426960.0053280.032094-0.0105950.01040.002102
    931952-Q20-2.8457110.0054250.0277310.0000550.00890.001660
    941952-Q31-2.8287410.0055210.031038-0.0006950.01060.001076
    951952-Q40-2.9361930.0052310.026535-0.0159500.00700.001753
    961953-Q10-2.8868190.0043540.024013-0.0190210.00930.001574
    \n", + "
    " + ], + "text/plain": [ + " date ret DP CS ntis cay TS svar\n", + "92 1952-Q1 1 -2.842696 0.005328 0.032094 -0.010595 0.0104 0.002102\n", + "93 1952-Q2 0 -2.845711 0.005425 0.027731 0.000055 0.0089 0.001660\n", + "94 1952-Q3 1 -2.828741 0.005521 0.031038 -0.000695 0.0106 0.001076\n", + "95 1952-Q4 0 -2.936193 0.005231 0.026535 -0.015950 0.0070 0.001753\n", + "96 1953-Q1 0 -2.886819 0.004354 0.024013 -0.019021 0.0093 0.001574" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_data_class = train_data.copy() # Continuing with the copy of \"train_data\"\n", + "test_data_class = test_data.copy() # Continuing with the copy of \"test_data\"\n", + "\n", + "# Overwriting ret column.\n", + "# ret ist 1, wenn die Rendite größer als Null ist, sont 0.\n", + "train_data_class['ret'] = train_data_class['ret'].apply(lambda x: 1 if x > 0 else 0) # Applying onto In-sample data\n", + "test_data_class['ret'] = test_data_class['ret'].apply(lambda x: 1 if x > 0 else 0) # Applying onto Out-of-sample data\n", + "\n", + "train_data_class.head()" + ] + }, + { + "cell_type": "markdown", + "id": "e2c9d767-2c2a-4937-85f4-823ff387e11f", + "metadata": { + "user_expressions": [] + }, + "source": [ + "2. Compute the proportion of positive stock returns in both, the training and test data." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "340c54c5-8db6-4fce-ab35-8a782ad501c7", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample proportion of positive stock returns: 0.686\n", + "Out-of-Sample proportion of positive stock returns: 0.730\n" + ] + } + ], + "source": [ + "# In-sample proportion of positive stock returns\n", + "positive_proportion_train = train_data_class['ret'].mean()\n", + "print(f\"In-sample proportion of positive stock returns: {positive_proportion_train:.3f}\")\n", + "\n", + "# Out-of-Sample proportion of positive stock returns\n", + "positive_proportion_test = test_data_class['ret'].mean()\n", + "print(f\"Out-of-Sample proportion of positive stock returns: {positive_proportion_test:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "26f00d13-9110-4011-b896-cb1e0e3edd08", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "3. Fit a logistic regression using the training data to predict the direction of the stock market (make sure to exclude the *date* variable and the old quantitative *ret* variable.). Which features are useful predictors? Compute the in-sample accuracy and error rate. Do you think you have build a good model to predict the direction of the stock market?" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b72adcc7-0cd5-4d9d-8c65-1bad74c6dfcb", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train data:\n", + "In-sample accuracy: 0.6860\n", + "In-sample error rate: 0.3140\n" + ] + } + ], + "source": [ + "# Aufsetzen eines neuen Regressionsmodells\n", + "\n", + "X_train_class = train_data_class[['TS', 'svar']] # In-sample X \n", + "y_train_class = train_data_class['ret'] # In-sample y \n", + "\n", + "# Regressionsmodell trainieren\n", + "model = LogisticRegression()\n", + "model.fit(X_train_class, y_train_class)\n", + "\n", + "y_pred_train_class = model.predict(X_train_class) # In-sample Schätzungen\n", + "probs_train_class = model.predict_proba(X_train_class)[:, 1] # Wahrscheinlichkeiten der vorhergesagten In-sample Schätzungen\n", + "\n", + "pred_train_class = np.zeros(len(train_data_class))\n", + "pred_train_class[probs_train_class > 0.5] = 1 # Compute predictions using a threshold of 50%\n", + " # Extra: Ab threshold ~70% flippen \"accuracy\" und \"error rate\" Werte.\n", + "\n", + "print(\"Train data:\")\n", + "accuracy_train_class = accuracy_score(y_train_class, pred_train_class) # In-sample accuracy\n", + "print(f\"In-sample accuracy: {accuracy_train_class:.4f}\")\n", + "\n", + "error_rate_train_class = np.mean(pred_train_class != y_train_class) # In-sample error rate \n", + "print(f\"In-sample error rate: {error_rate_train_class:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2c1bbcad-b760-41b5-a455-01f063e6036e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "4. Now suppose you use the model you have build to predict the direction of the stock market in the coming $25$ years. Compute the out-of-sample accuracy and error rate for the test data. Compare these outcomes to the in-sample statistics. Do you think your model work well out- of-sample? Interpret the results." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "055822b9-d17f-47be-ada6-f3fa45f4554d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Validation data:\n", + "Out-of-sample accuracy: 0.7300\n", + "Out-of-sample error rate: 0.2700\n" + ] + } + ], + "source": [ + "X_test_class = test_data_class[['TS', 'svar']] # Out-of-sample X\n", + "y_test_class = test_data_class['ret'] # Out-of-sample y \n", + "\n", + "y_pred_test_class = model.predict(X_test_class) # Out-of-sample Schätzungen\n", + "probs_test_class = model.predict_proba(X_test_class)[:, 1] # Wahrscheinlichkeiten der vorhergesagten In-sample Schätzungen\n", + "\n", + "pred_test_class = np.zeros(len(test_data_class))\n", + "pred_test_class[probs_test_class > 0.5] = 1 # Compute predictions using a threshold of 50%\n", + "\n", + "print(\"Validation data:\")\n", + "accuracy_test_class = accuracy_score(y_test_class, pred_test_class) # Out-of-sample accuracy\n", + "print(f\"Out-of-sample accuracy: {accuracy_test_class:.4f}\")\n", + "\n", + "error_rate_test_class = np.mean(pred_test_class != y_test_class) # Out-of-sample error rate\n", + "print(f\"Out-of-sample error rate: {error_rate_test_class:.4f}\")" + ] + }, + { + "cell_type": "raw", + "id": "2419d990-f478-4bda-8dbc-3144fbdfc917", + "metadata": { + "editable": true, + "raw_mimetype": "", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "81cbfae3-7385-40a2-8d0d-d7db7ae9a9f5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Appendix\n", + "The dataset contains the following variables:\n", + "\n", + " - **ret**: the quarterly return of the US stock market (a number of 0.01 is a $1\\%$ return per quarter)\n", + " - **date**: the date in format $yyyyq$ ($19941$ means the first quarter of $1994$)\n", + " - **DP**: the dividend to price ratio of the stock market (a valuation measure whether prices are high or low relative to the dividends payed)\n", + " - **CS**: the credit spread defined as the difference in yields between high rated corporate bonds (save investments) and low rated corporate bonds (corporations that might go bankrupt). CS measures the additional return investors require to invest in risky firms compared to well established firms with lower risks\n", + " - **ntis**: A measure for corporate issuing activity (IPO’s, stock repurchases,...)\n", + " - **cay**: a measure of the wealth-to-consumption ratio (how much is consumed relative to total wealth)\n", + " - **TS**: the term spread is the difference between the long term yield on government bonds and short term yields.\n", + " - **svar**: a measure for the stock market variance\n", + "\n", + "For a full description of the data, see *Welch und Goyal* ($2007$). Google is also very helpful if you are interested in obtaining more intuition about the variables.\n" + ] + }, + { + "cell_type": "markdown", + "id": "db90f03c-18a4-4e7f-a31c-56f206baf5cc", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## References\n", + "\n", + "Welch, I. and A. Goyal ($2007$, $03$). A Comprehensive Look at The Empirical Performance of Equity\n", + "Premium Prediction. *The Review of Financial Studies 21* ($4$), $1455$ – $1508$." + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + }, + "latex": { + "header": "\\usepackage{etoolbox}\n\\AtBeginEnvironment{Verbatim}{\\fontsize{6}{8}\\selectfont}" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.pdf b/Machine Learning for Economics and Finance/Problem Set 1/ProblemSet1_solution.pdf new file mode 100755 index 0000000000000000000000000000000000000000..8f565fee97421d12e76fae7fce1ace9cdf70a7ce GIT binary patch literal 285455 zcmdqIWq2G-mM$o;B#UJ+lf`H;gKaT0lPzXuW@bijDQd=104$t>CVOJ0}LYr;TJ;7pC&Ne-1I`mW_J2E^g?Do z?DPfnbuIPu=_T|n4DE~v8JSpFd3j-M?QHaan8P?N)u|1ae`Z5i9anyUDiz7aC+)oW z>80nj2yvhp^}EiJt3-9=-BO5HFt|A8bQup0d3%XUZ0q_$*8S;xFx~8NJRLdi{q*qd z*VVE1?)Cip={a9Vy2s;ax(4Hh51+ehn%o!lzGhnZ)E4xhs{B)3H2M8!{8MiVdj&1 zsPb#m&*?I5JewYdD+?u}$K^J-ZcI7)Uw@!{{XtyP9=)TCCg|h4GUs1Ug-=v`MJrP* z>wLbjegESd_3yYSzd&hsT`QDnB_I1jhdqw&kBlc8<)m0GZY>=`U`_Eo!?=yOPT`@Y zEK&S-W6w@3i`2%6KS!>#VXU)vF6Nre+!W=N*9B1AEF2_8f68{F{b+9YcX(l-_w^yF zZ+VY&T5OHY$$Ua)Mnh6!-M%yeME0z*AiR|TB1;RXswz=5st_?9s;N<%m}q48zlxWZTYwy zv|aq34txjYOGy6;`Nr4k(e~_44WHxaJx^$<-3K2ul zYwHl~FH-aaX)@7*71Sv~G<+&y#f~xsm?tIH7?~fJ9)zWAhEsP;vSn;!{a+=sGy5)z z;iwRhw84^OB*eO)?-L=4*0|7cq@`Rl=&AhU(Ap&WDDC+;_}8#BNaTkA}-OrF+`TF&WBHE8(C&>ApVJcaoTx;aJ#7op|^U`sfW zbJfV#ku@iZ*=f4e;${&_(+zwa@}2de)(TERP$a+(VxlwPml4%J8gBayI%NKkSvDVN zNDw$JXJa3|+z6T25(|eY>7!zqVu}7WbPF-R$SU9Z2$G++fTx$pSLBYIf`yC_GVY+= zW8sWeEWoy@R_}Ug41o`RC?qNfqutotqX*{jHJ~2bufNSDz~m0YKLrUNmsao{wyr4~ zCUwS~+UOM(P2v2LB?+RQBANntywA~!7xMh~JIQqJ(=NpLn9tMqkimC;ghW9oJ?$W0 zea0%Oziw(g)9`?ct@KL~Y*k)Vy6SUC(y&?TbWnbc#B}i3KI_L;c=4U$DE8qAixa^SE|97fRcR%PT2D>LK{SJ9as zp9A?RN$euo6g9dg=39)=uX{Jxm|ATZ(E05#!dm!e6vNKSRY{^mP=T_xism?V0qC_&qa5zfk{Xwz2}0W ztyD6Ngn`ih;mtgbiHW`%MxJ|+DvA|F&M8)LC_|4}sG@oZOJW3`sryc)*`BRdB1XFOYOC%YWOz$#iDp+FafE!k@G2u5s(dX<&>S~KD497Rw z8C4o&GZiW_^xrR%Z5vrX$;Tk3?Wi`G3FWENX`GxsyZ#zTsOe%Rp_Wnbrd}|oRQpo- z_$ywLJ$dM?tLZpxh`LdY!o^26`GI>9cCAk@ZWx}6CCyo^_)b&qRO>32f`s1RYi}d> z+yLICl7ht>|2v{xjOa)S75bB;yn0aPg!m|jju78#_UB?*>Qo4XsfX0QjD8B#ZDtCh zkFLb+7T3#3$4I7CB%prsi$Ci9_=1F?)@d+SY1g)&%Jsx@IGl@~wV+Om)=+2uBup z8ty>;q43;1Y@MoSjU8u3Bve>+e9b7JHf=q>P5vG&W6%PFg>kBfJo^~D5?!oqtk&fm zGupD*YXjwjCUZFKl95k|*XLs`t-8U(Yz>?G z)6BKhitZv%O%30N*OUt!OjFKi(d2?+MInS8HS_0&r$#e#NfcPN)Ab*QZopTWgY2?L z*Bb8}+Z*o@8|YE<;J9a6&K9{uJg!g`oW;Inf0#v;NJTWR=qQfJguvbcjYyPZMsbC^ ze0pOMf9f1ucbYD!y{{%#ZG8tvDnL;j2a`2aVBDq3slP%{l8hSjC0F$|`P%#uuY*2>GTA&9 zLum729Npu+{~d%glG*}B-$L&{gcNZ0M|v@R`FAuJ6EidOKWea54fTp;R%DNL?JPbk zg*AG9BpUPu$OH9|Ry6m@$nCT5%?kzucjxqhJ5jhPoC)TGqM^OQQ$e^0fjyB-twv9} zTPU#a4|;+R9>s();}Gn>5^yhtr3Nj$y`wNk76w zyOL}+q2_hlGcdO+4tco0V}D+Ie>yBU{PoKS%K@x>#FoN$SXGR-O@!C9$M$Q*or};9 z!yo#IvWq1C?1q%m=i0fb=P_<6P{}W@KYD7=&i!2ji{v6G?iq&1z7!--LR~24?=j++ zCk>@VAI&VUJC=MO=q zeO@gnaiD~supPcJ@A_S8M=9Y}4wpTV$5EmRfg($$0>`AI<|$Ft^)pn`EMe{N&=VzU zbM%D0;cn}RCHHj`P@wN`E*rK3kJ=*GPUCB^Wd-ZgIa>~M+yjpgzceSp<`Ev8y38^k zqI_`VtCfb1nJIM*`tq*eA7P_TN1ATTJ@i-Ln&l)ZX=%lglZnxWU#5^ljq;)>T%tc@ zfMJZlMpn5{VsPhcyZ7Z1&3EJ!WWzD*TT=of*FXVCfvACJt4 z%sfBEVj?6~U_jz2s%M_72#;0UozzfInVVN znE0F4gnPld(FuK#=Z^RZ76EJm?QI4dQx&j8iP}B8s8{YEJJumzcHnsE4&)HMJ@yc& z$Wa$!KAAi{_IN$8qey(~?fwWMzV*Rh zML7s2sMvq(0AV2TW8?u(g-x~&A=dI`1~0v+p$KNdwph#7rg|~ zJ}9;P?8EL@#h}wPHlH zADQ<0GY}OyWRjJz-!h<~-FWd3dX@Rj9~UH?ja*k4!8{w!6=hDqUt+Cc@4#{quCD{# zn3$dOelRQ4GG`&)E9{9iX-K&sh!|vQu-WS8W9%E^2Slk9^Wd_{5h;6@&ft8w5s39bb`?F7-%x~3cEd1Ij6xp4o9b>G zdCQQi6ZUPbV%;N)ZOwwRL2s=-&xJx(Me3f&3a9#nI8-e~ivWo{Iank5IB&msN)wKK zK+L|4^BK|nsV%yI_SAU*rS&S=wFBb@=??rPxUthDY&v2IEwH-trgDX@6*eDrDWe!J*HXItLLFn8O3 zgv)!Ex(NN~8>^o;D8s%cfz%8Ep+S!dx&O6jX?1XPG@>O#J*`pxbY;1G0f*t+LNuy0 zh<3S#P+zEnLjUMwBKFzY!7}>2z)hV^!q{m*JMA;*6Y&&r`_IJQWQUWKvI2t9=D{pw$E~2e` z(<|3QkcDnA{7fSu+Ar%XQf0Bx+KbUOQYbeW!6mP{&h}wD>v-65nXM41iav?6Nddi8 z%5l-h+Bhl4f5lh@vr@*OchZc6^_Otl6GwgEwki2xdVT*YDK%Gl?HF44!x){e%Z(C_ zHrMxHv%S&KbytnyDuu1DhFK-MYhz%PXU=0j8!iah=esn(;u>}_Hv1E{^VFdX%8p_Z zvxJAsk7wJWOqBlQoJ+w-8Da62;7BZp=p_O_ElQyXa4M4r&%35+<7Um#V_L)$9tree zAbKe+d+zI$^jm;!6eWrTWBb8s*Tl=_%7&XxjhQ(rj~gU)B#ifQND8;)RHp-kbiv>V zES?zKHNmc104k*DOoWTT(^t`V8y)*~S&ik>Px=xve{PdmKdiA&x3@(vQWgFdlUW5A7pIOr(Jt*_1w?3o#>+JX!( zQ@bC1BQTzFKE`SsGjnh(Uf#+$Q1G1$S)Jqi`0OoD8)0|iN zzlLdj&;$$(a<#)Kx%zVB*Y+JpIww5Zk?Mq(jB`iWcxvWMavSQYabuMMV~$q9s%q{bu#cn|mxSFJR4)h50F+Y5RO=+tF9Il5Onh zODYCi_bSDQ z@&T=)O+wuWU(r6uT!Is7SBh4Lf&?zk+1;7U)xz2-K?_B5)z3N2s{;vWH8rcS4$#-p zwCCQHjpxr|qmWp){G?^@>j6I&NDFblj0B;DN90TUFBVTi{1W65Xt6IrIXjrn-p@}x z^*Ok&!@s5TJ*|W3@J3)he%7riE|Yw%omgVV(`(ZE?)&=~ zo4B?yp;;|*jg85E&V54Q&WJ0wi={71;9T9VPIG)#g@`6%7X}yyl2+l)f_v7S?scA5 zfFI+_F2bt(sX@v|oj(6gl!MJhhA$i0IwUd>pW|^G>1SMY+Al0c1iCyIx9=n)ALVfy zl*dN97w=lzmfl)qnWM(|S)eq&Ro1hMb7;v>ZDwdgw5CAh#6dWXlkm3M z(nVjznf%uHiLYfmhDIKGo+f-U)bs;CdapI=#CEMYlOT<})4L7Dt|S-?_oZdY?0Gk} zKfQe7`*zF%3oTr=k0rFVTp|kx8vQOy;@5Ex_2Ye)1gUl1R}#Y*NRUGVVa-Dg=Wdy{ zxx)|^DVIYU1)BGb0Bty7&P^D?Znkv7%x+Bu>#CC#x66>(bFN!)l~>iCq&Y?+cit?T z!}^>d-AxtGn%Wt)7G^vB9G_}~BGmZr-wv3ZCiLLPn78-Iga(<+K4qAGpxl$N8DfIq zR{3Jgefvz)J^KG*iog`?Ns#qo>bY`LWF#o7F zlLzdi(wUPF;>N8dGuTdXVA#k*6aKVCt#oFha`8bE6Q%D- zh<=N6)R4s^L!Q;m?^*-Tg8L#*b(6$z#aSyStM8GYG9nO02It5^F2h{YepQZ|{ab=W zY=k*3-$vM5orer&QlB{QBaIEeT$|jJj|Bm&R0@8jpjGy_SKpttn8M_A0ffZKO8nD7 zK|IzBoZgd{f>1nM+e(7uiDo{(Pzp{s>GT%4Y(R}U3s{AbMsd8j)0Jpg+_2?l*a9Dt ziJfB85$8NMyXU1HFTV)1m-LHVaT2gYjFMxnBC~y7Vxk#Lj@8<~b}nNwbf<(h$eZ1- zHODIFl%8f0Eftn4s99a!jgvxmIl-?XE3xiVie9zHr3VC>U5%76|tM2CHJ%prQ8bxiPXZfB8q}Hmfcgc~bwWeP8(ik$Kb|6t3rE6nAF>!=Ayz z7oO=;+&-Zb+^hQ@V$~Iax*3yOkSGhY} zM_bGfc zQ3Gd=!O4VWC{FO#JEboDoY%z_!%Ggh8!)-=TKpZ~+1Xzx`$U@k51drPGgIRaZl-UB zE8gxlkKM25DTpDw3$Nb_0zOG3`S)2vujMwSdAzX_x>P(qAK$F&)?Sj*apVv7R{ z$rqVqKI&U@Z!?{gP78$$KCY{fZ}cXsA{h`|q$S7Q4Vs5g#l4ZN0I~C4UN6FnmeAOI!zXi!c^BjL!X`C1WcCN$yhJ(K z0;IfsF$C#Pu2=%T7RWO^8-m2*o?@!GVeSZ*GhtSC93Q8hXjN=0khc3N$FdgJERw>< zr#BhnKHt+xMGlG&Ug5|Ui$I&EwJuevONAe2QBZS)j4s!m#lW5}$Fic4%MH#U_tZ97 z?Bf|vs}Z~1sY|7{w8BmsjPf|99FUgTf7Wlx!FIG;{K;z-Zc-7Iu)fvuRn48o0(08K zkNgX_pmoAV6ed#qHvhFSczXZLg)TK;b?@ewW)ZD!!BJ3QAV2BP?#e+SDjSjDPp9{9 z@A0r1nb8`@xT@F|IYFZF$>R;rSgXD8d)uQ#NkbjGK9#q{@F!4w}e+1>yp z*-9dvsga&|$f`1cf1KBs%zt^AC79u)EX({`ORPJV@!96KpNJ< zK!jzWtx8%=C0%+vFOhHXbkG*su*pEr75p8^k1pb+*@kkEG!Zp$+XSgl1 zsosXSJ(ib(w<%Wu6So8AyiO{qZh!TPJO2@H z^W+kevE6QY+d~?xlU1efZ*?Jx`4aiFT~eeo5?O;*DFr1Yy>_2~UF)Q5)a%cuztDLqOfEW>{{X-hQQEZux~1F?gbF z3MFO&gAdNl)3rQXYDTz&6r48 z@{OMjFLT;^*fVu}aTFI0tCt>LWqCgHT{?v*@%PVc)9$d%o{RaIz=gu8HpWH9uR}a5 z#zp11cWKs7cu(L6j{6)r zcQSs?m*H!7#;4Tw(Djy6r>7dEp)#~S<+uU$1vls?ei3g64S9mgtOfSaZpRJ`8bq11`4lS?WJ6SkZVZlRtP^$y!9Q<#$-ti>T4>oFTXZEf z;jeRqa-CrnDju)aqTGFQLwGx;LUt82 zd9Qri0z5EdoA8*iYYQZI_UHE-#vhQZ2sk(`X%MFB+E<@G-!&JMVg*JX*I%};vRBP4 z)P8zKNc)1r!eWhLG_cS5llfsF=8S&UPRCf;u|@oa^i}-*U4)MnZ+_w%lK$_2ZEOw6 z-3xyAFW)&SIq*kx`lN9SF9~yfu|^Q-;*n@hNbf}+5GEPBDfb!YY2)m)_!;)(Wr+&f zUOmcpB{c?SjYDbjvh@|4eX(SX9KU=%Qp(-v3M&-jP5N}a=ZjUP#E~SMQFZX5)Av#M zkS3NkA$VphIS75^N6!xoZBR(8jGu*iXt}`?L@9+%D&LsY6(M7?`xL=oiUd)LSdxMR zIMF~09m5TCnUjR%xJ{7R35!XE{NV#>oa`77Ee51{ ztS?{uE2Hw^aD_jmBIvAOy3}gyr4t%4rFz_3Zg2-6dlyR_Tp86ttJYkQ1?S%02_@d6 z+~7`Q`vgNX!8;k%;f&kzFceduM)btTR??lmd%5d1LgsyiK)V;ogBd2swvE16>Ld0B zr{QV&SWS~kWaI`*>isFs%din=en23A0^=+*@MA&=)*NY;0Mf5B{hayI9d!kwI0Q-j z5TQ%XpF$X&#Zf9?;=cmHKA4mdtC%mFRA$SD+&!I=sWcU;`4HApe=Sy=vBE0VA&)L? z{%AV6L8gU<8R|sKhL~2O({P}15K-K?>Er*sWrFYyT}#CUqQX{|=uN9fT+3qnwmu{g zvmXJqYl~sUL{VU#`^Tq})KA_XQ8ey3<~qe2Yx}fs{&XHa3JlGrl?s9JN#t~`^TDR& z(8M8+)CPsouKr3zexA+fTR6TnP)p8ebjcqs^J2Q|S@Cu@&5DxfN~E&V!8^sIRGWfc z!O%61(G99K82LMGOxtmB*t;ieWQRrd7R*{G?df-to7onTGGQkJE&MJ9hJ8^|Ojhjo z{qnI^>_UTS##-tadY4YHYe+W}J6;iCQiQwzg<@p=w-h5A3*$d3##43iNL)6A_VbED zz6rE8g3fLgnkbg2RPc2l+~$JSwI01HQH1CFL{z~xu~{CT>4@mgO4H&{QrQ{u5LC+9 zt7Bpe(D$7!v=@xwY5I#B{POYCXFfi<^;hvB!4Q@Zio{3^LV}CIzTNG|f)3cMJfyXc zKQz8@Fb8*6|h4sn3sBkp(##S$pRys45i&oze|3MUphVh9pmlVtA&K+ub4QEb-3Yx9(8*@@;g-X{*F~X-T|8 zksdy1G}7_rOUcr@<(BZ;$`;<9>o?I12ZkBhbsdhnhZu!P`Qs}R-wqh0XvWJ!OX|k; z8PfaAqG^)dTrl1y7tR@5QlWu zbvVFPh&VvD%R6B=(7=qsi`r7fq*^}rX&7->ny=>+Zg#Eb*121%g1swF!#qsBr*6or zO&)Ug(EFao%X+|K|0y{G(Dq)U-%f1>CZtD;{KN+RF z6*Z*TkPaSgE095hf7qU^soku{L?-(w^Ib63JnK#`cJfFOHV`C>#QTlpk`qRp!hJag z=M$68d|9>8{Nxzf@d#?|(I8CDZMcMD!O7=u_2=YQ7&mhngW2T6rvuZOW%YS}gZ12r ziO|*_j7@^Fub=7@mwp%v3{yIXs_;Z8<+MIcb*v%`;8c!G@3JOn&158>tj6VQ&B{Ty ziJv2C2WUh(0yEA_xDp}Z*0nfZnInk)IhwOiEV!roDM9*_YYuv^S6AfN?~`ja8ejW3 zU;g!w3IxjVjS;o0+bH{*k@C^+a-AN$dK@L=6`PMR6ai|t{nNg+!YPU{%eEa^r1GnH zX9OwuXN$XIBc22ASMTpT1j-o6Iq>if_TJAr#Nm#HJjFsD#WgFnOBpW8z^9F6xq+>H zx}#$HsqvrJ>Qdu;8K2T*zH8?zn>sO=(JR8GhvKOI-XhJXIy#N8+T3D7-JVJ!#Ajyx zYH#znAjL$@_OhkW+3q=iY8hCy8$iXHA5v;*`%PM&n}Q}XjzHkMJb9V4Mue>=$P#Vk z4oV=Z6|{?it(N~!GTbkj)`M{MYb2ufM!i&!Di?~W7&XUz$LjO(M=e2F2w#4t`+GXd zOk5T@R29)Kq`RKj{BH99b=*oNhiVD!)Ae({T@WlS3s>4^yquz*OOa**|3Co-3^lSu zlWqoD7oTi|sDUZS?gVvdu!0Pkx~3ea2R#4-#8NSdD-iaPiFGmBRXHBAZWPH!Tfx{& zarHt`xG+SoSfu!NP1`L9feFReL0`j>Tv)-apLhO*MWX&?-yxnuljkRMwwM4T0(y(~ zbffJ|^2vP)Dx&LJ-*Co3HAhm-Z&z$1g(Bk^Vc3yiKl-#?Z~jqHb5cWR5+lK}Oc_>z zzS*yannfxfHHoujS_GuCSfOz(GKs3-Jewq>BQ5f~h`D!VY_7mF(t~)FypkutM`q}z zhwytReiI$hs*yvw7nXQkpIigw zdWLj5O0qfT`(X|1_YZeT3oXe`j*#nkIHueZ%@1IaP~IMOJ!O_mpGM%GS@V7%!-_>r z*QmAy?1GL-fpmiZ20K4cEK;Lfd{Tp+t0gitEvgI6B2vasR5vzOjp^!7~(J`9C!nE}Xf0X|n z6tiTHj+Ue&Ph_x@pR9)s*-Da; zkn)-o>6^+BvGrx*MfXqjMWJa`pJgC4e?9?1Wgu$Z6_Ty6PA#UW<~IB)_DN+<3|aqkz?dc-VKVD*5S+a{GFCpM z&3%=2Z2t8E(m}7Qwg{cSPA(BsO-vCi_nmNpGXlo0S9uo;7Hl77_;2H4g_+19$^JC$ zMM{SeCaOKuS$m6It(M<05s-V0%Mg8m>@ENLt$rL!Ov27E9u$Ic=g+BVN=fa zR~n5zuESOZDn5kdf>GOJz2X$A8L7so1t~LnBMSoQ#eG`d!TMkKia^`w`-{f71#AiO zeLTHR&nVw=4q9WI500GKKvjexIP3{A zpjX(m7E73Ybr_jS(r>j~Lqo|_g({blZr8?o`I$X3D^vo}qIEJ5(oU^@S)QU8GEWBu zVLG?4M=)JFJPbu+Wx6Y~l3XrDMJk}!y^*54%iT7R!K1Kh`o!Wnz+{ybs< zD19TA^gWnfE;8jTqeGtAeu|qGCFM$y#s1YM-co^k-OeV&Hl@-CL>c3|s2kT%nmu#v zGSAJ)wC(~pTn$I>{@D~3w}f*O6iWfIx!cOoXl^kp*HPc|^J)9!Zr%4HjkJ`2Q!6k; z@qUU&!^M+B4i~2Mi*gU%Ed@iFJEn|p;|2q%(n2|!2$djl*0w3i1gVx15_Qp|MM`VZ z$gKqNk=)F}V6U1jQf2TKj$o_KFLH*Sd?h?116=xKI9^Y?QqkKsuP4Ulq~xC3Ev9!z zmz#Cn^X%qrJhvkS>Nkyc!!z7FH}f2)z= z&~~^6K_CL_^@mRoz^o!MX>e36)PJtJu%v{Ku}_QvPYf^!Lup=aa)XX&rKViM8}2pk z-K&z7o_!KNRp1PY+{Rcg^82AWyPTboAo$oPY}Fi046m2ozWHt3I(z$mSw4((8m&Zg z+DT@8(%IAg2yw6Gx5RnI68$F=^e-K^4|V)4*-tqnSrS`9Fdyb7tfPsx?}Z2LbD3Du zHL75(Sv_=b2waOhw%LRvrI&V|?JIL-`kgxhkdA^6X;5k&E*jp!o%x3O|Ah+X_%9W# z;B2K&uOj`^L|@mAUf%wv-Jicj&3_o`(<>Y60S_Ou15b5{=o=dv*%7jSVWIzSX=Z67 zZ}mf0pI$)U!B|&c*ye{b{WoJfTN!z_xMWq#P0+X4?a|Mv?B z+5gs)Eg{376MJ(D+rQpP#ztSySl7+1;TI&#k8mIUydc5AL4lXIcPGCN;h)!^roS~qg8kL}r^)ND<}XP9 z?M`oRkpFh)KXv-|JO8QEzu)<9bo%$<{O3sj-s#_m^PeOAA3Oa&nBzZn`uFJk`*Zx? z2;BcT$A3R?|MMKdMM3^!jsHI*_kZyu|33f!^Ev+iX$M68U$f0KoxHfz{zX}W`5zuZ z{3n2w6aGdoFZsjPl#uBUZp+dCZ$LK8AISa}*!%B-Gt<8YXBY;S|2K3dWMpAs;`m2+ zK3R3vh`W7z_Y~qs|0K#TMDYQOPM@4*m>6ROFA+t^M9lbb5FTZop9gBd--dEhfm!@@ zXQ}E7Q-nPYy69={qCuh6$cC5R_n}JYkJqj&^ZTyudr%^b1FYAL?+gw1b?_su<@feH z6;0*G?#4GRZD=4MASvuQz0b0D^pg=(Q1Hgg5|GI{( zDhmcgCGPpW<9#TeTCHquZm!;Zx!$F%Jv)0Vg6qubVKcBl0*}jNrVyR>?SA9#U^1tx zs|x}G!r$M2Y-|hx0fCW`o_>6G)_$YY+w=W-oy*}w#J#&aFE7u0q4FzsD0BGB%L}Xd zlHKuKne;E-skpb7eLm{zxP%0YrCQ_lcK7}9UzUs2dEw!snvScpCCc=Cd>z3kBP1RUs``8ZR&V3HaV$u6K8LDJdxtxi3I&p+j$VxKAkVw;&NNu z%S%p9ZZgH3CJq5o@_g1}`8xz{aBy&cEIroje*OLJ-oSQgVc}($-ZMBTXyVW=6rDEv zNT-U`VujuF?FE>ou&}VWS1bc|xKKpIj*8J@wLYVYk`h@3f&0y*;V<{QDRFw9>k%g8 z4ZX1R^wnu;K3dsGPLdwb&eO>fxz9$gTP)~25O6uD;pN@`qZ*Zu&GIhth6V>F!>1o?;Kj^8bICMt$ryJmUZJ6i# zb3U7$Ak?Kg)B9D&b=eZHs{LP{z%v5=1a22yf6@T~k8{PWJ|rY$9nnYK3KI_Y_HNm7 zIKyZp37C5Rk%Fu1b8aq)qoX6GtCQ2fak*y8+tYjp6-GRjhK7b735#ez4XQ6B{LtWF zGPm>9SUQ*CXbNdRe?`Zei-UthgT<suUx2^=N-uYL?9aRnmp!^Wt= z!CG63943cNZb`|pvbOtdlkL9obUx4RjJ#&ET^87&75Zr~c?KqnNgOJt-9e@PFggcv z3<%rL-jC1@LvT}4QW@M$2BRt9PzYgoTnX6V7SUJR-ne**Ty>R|7derDw`Ja9l$z!5Gt;UKKJqJ>Obe>9kte zsi?&8RJF9$iWN(!mCI!`JImxfyyfY(WPkVeQn-hLApO~9l9HpNqiw$*)oYCyX84D+ zJzsC{PM1mB%vYNgw^pym`J~-rHfhB3LW|;o&&AD`Zbq2KWjMSBft1jL(*0d$!5hSV#S*KZF@D(+)+wsJsq&TD&W4!Pc)TwY(7 zutKO|(S6Bd9JER}TQvMNYs3s>FdM$}?ofQY`?JUU>-|t>EnCU^{9$(dX76z_lVKqz zzdf*DNW~LsE!W?|+14^yy|5cwTKao?)A&3+dII3%$wZ4`fv{_iCo$-j!XYkkxC9w?>m$sth?O3ORXs{fg^e6luHDB^FA`;8Zj(K4$%)xNsb{_Lr;S>UG(2;`ke~ zNm>eugJ172`+)==2dAfHBa{qhgXF(nwnFLk&UN)084fzV!Rgy>Vwf9DT0ZvCZaEi? z4mPZNaM>Nmml8!BeR z-x+ZMu7cRqp!z#e{VOutP-1S{&r?!R&@(gykU%YG^5QmA_TcvE<;4vVF;WaM&s@kz zI1_I&Lg((Za8RG!_)A7chMT#OU2<~rXhV(1(kCO~+RsVuTqZVHQis*5Z<>aNhV87( zFzHg{IA;c{uI#5DYdDElrS2L)!%PS5Wnl4>edtwVlD`V;D3?^IK+c^ohF0TOY&zGuxubY7EDu#&K z^fK748Rw;@q{IS%k<$R!pt7>E00)^b)jFRw?e~S_D4+U}LW-#tOv}dpkr)$J^=6A# zKo$Z_PVKw4wiXc)!C0+7oB&W&tXX1AO!beRfMQr7fCp!Cz(4_Il9{!;v(ww(k0V?= z7)xHV3v5ZLR95rR6c+IW8f!<#idr)#r-xSO>$vJGC-ftfKe`6Ho9n!l$!2Gu_)%i_ z__$>Lm|m+@#U7sv{0IqXf2U?(U|?mvyV@PD-jDKqF34~(>GFX9WXsSD0DuDnA^-sa z0tL_({s95l^Z>OV@wndATC6tb=IT9O?E>qQ-{+lLR9NVAT-M-lvhai31^}t&yHj~6 zCMKrc*#|PEnO`$A3e)Jh_w*o=#66Pfoc1RRRj&7E0K6C*8@IXMzr8)5ue+Y}B*&$t z;bLMs0bmErZEt4>z+-ubZ%2!1@zlx|YpstrhtsD^b>bo-n7nRIa&j>=QhDIBPdl;F zxOjK~Qdx4_yuZCp4aGfU0^rtQwup?1Y6lRnyyk6j>qc?BP>#c-vii*%M5d@-BNV=q z&SbVA@ZfhkrdANLC8##ZWF{ zuC78c=;aPUK&DYKFve3@Oaak&q`%nkje~_5U`?@tfI?{%nSkXEPfsPK1l$9Wrpn5R zAuH-MPDM%#RMeNv88P6;PUt}i1Z396-X4$HCx1*0M*g?w3A*?H4`MzN*TdM=0; zXYpnhS%Zg3&^oG)1=iWa<+gmj#N&o9;#tc%FIL>QNPHeZMm*gdevS<@v~_S$vXH;M zzfY_u(VdAv&gItW^a37R%(RpP;m4c3kcn02W9hYoF%o)vaB1}O^CSP|#z;(@U08S! z_XjsT-yRKDjCR^GsOoG(Ha7>Sh-xIiqQ_021{zMpbr!T zp5MJNIDWE-$o^FZ}s-Ui+8x9@cjB_5OI`JRm@S|NcFi z&ZTUVid#XW(I_+2C(Kk|Uk^}5v;mW74@uGi@*W~B$soQa zkSA?yY$9+uw$9J# zztWPB^d3dx|4Gq5;B6$aTyI|D;5LfLvN?k^A`M#%;QC*N3FHqQ{mn)F7Z3gAqW;TN z{q36nGF~fW+}HU0@`=&WS+gdRDqmPw;+MdId%XIft9dheo_95YyNuYfADyJjSd_9J`W6J zVnX7~YY9+f!^5F4AO1`mQc=rlRxAe^0fE)r+7+t*dS5Qs`p>W@GO5I1N^e}Io6G2i zM@M*Cl}ct~Hi5oV{CazP0RVP&buG~aNC_PsJwI-Hd;9a}&!?xS*VotNk}0Uz*ka+J zqv^)0O5l3znS;@A08vr$cs6j(RyWShk=>zHPw$`Sa$feb6 zo>^bl21|=uU0p4Z{)LZ*rl_GIG5S|5Q1Ye^<>cf5K%QZcONa&xl>!2Y3j0_dm}ECF zB5*J;7#J8cb8{$oY+wXO8yis>8RhfGJlxzfi%Sib^c4W!eh)+_yFnm@GJ16HS-ZoDi1^$|DZt|Kr~3s4c06o_^78Ty=@=N~w>lh5bS*A60Y17vl0bPst~yM? zLLP!fMpkyRHy8yE4^LcNoLaKD>2t=vCKS2zwYEQCwUP+K+>SynRjS!i-`c7%^!WHV zoIrbhcZbhp5C#XBNN#{ONl68Vs?`Cw4-X2mva-qq>}5!3DB!>90B$QT%M6Hc%2h2> zsrtD$k_^~XtN&mOzT04f@byivz6PhuEnrSVQi2>%Hv^v|PgYx$n+^b%?E!=m5b*Il z2~q{>jaFH4sfYa|f2pN9&7mD(-yWK#=4J$J=E5VVywCU?-Lm~6zA;@uZe@KBBqJpS zGD`6%e}7h4J3boF6f;zS43J>%-7t^`hf8@jj02f(5}!Z*E$Fsdh{)pDYrEMEL8+Xg zrlsX^x%C?$cB~FW_nSZa`kha$ObILvdi;^D-HGaafsP7^r38qb`gwjJugjnPXOeW0 zc3!)ZD;T&dcC?lZAA z+Z90gYm{w;x!>O2fMLexBVc~<*z}#VwNb48AB} zr?3Fo4w4dEBwvtUP#`YG1+Ym+hbLfhL_~sS3G91O@bN87O}X?2kPHp?V`5@}e4p&1 z|5M^&P6M3es+k-xCZj)ys6Yt(*DIB=$@C|n@&Tnzh4cqCuoaxU6sdvl#j`K`U0IU$ zfdY`g?^{ekSvhqqc`&*#G=ZgcwppiEmH-F!CsyH|ersW%nMw!hAO0B>_cGD%nQ{M< z`B$oR11|w}^-uCjTC>gNHiO4it-(T5POcgtlP+H% z6tpHXzbf`0+cn3`)+eLPEBNffyMD!Oj1tI*1q?8j6_*#KT}oMMXvH(EpNv(oRl| zF4QGb1=lw>JE1_?ukdSnc_5$w0J%4Qx!phe2V95Di~k`r`Gu5R2)MYo3_rV31MkIB zQ?z|0*3br&%#inhrTD3<`425jqL_q4 zSa^7w+hes>#r&b2G*A`tfq;$MPY3KhKDX1v@85#y95gg$3za_WF&YG5Y=6;vP@ z+pxpQ0PX5{zP1k3UjYAAAfee{k>1h4SN8$ri_khT|F-LfHxxRp8VRV>5I{D7PI3im z60k5Zg;*e+qZeGb6AxQkTVYUmxVR+asz8O52?Wp`6J{i&q(DiQa=s@xoy$>3P!O=w zb;i?sfK>c{NP7#gD$}*?AH+hjFc2hE6eR?uOTqv_x*L^l1VKu{!UB|TL8McF`t{Xvben!Qs15b?ql=4gq3n;A@I80_e8L%|uyz@A8g-SGi}StD{6$-i@bU9o zLZAKJxE+NG@BUn8RK6p?Lr*$BHxefhC$-H7XJ-@g(JhO-jU!}&nr>AH5=QjTE+J**S zrcHhW&wYHz_w0G;1@*`Gj})RHj93@%+xzjEY%qKOyTVj(AI*-W zl?p*6{y+~Eoh|L}-C5v$9;;5l@i>yiCUl_4!%POGwvh3t&s@8pr4@#t;oq}`+fF8C zw69NTMmmpy7^Q8tHI%SW>5!`;`-!t-F693D^$Sfp%Inclb2|mJMn(20qK6f_4lM6B6oTOt}dg2o*C`0~GzQsoI)4I;{Pu?(m(VVmzbd z5ZfHcru!l&D9Fd>Xg^}hw{PDbJ=)5DK-BhQz7mlepIVW_B!q~SHzX9TA{(WCTG zW_5y$qN}CV4yE*X?$C__w0V-jR3wCQ_XE%GLZG_WH#Rmli zx|^gzC2ei}nzX7_fcJ%Ppri*qYGF5b6?ug#G0la9DqN#bMz+$1!**9%lWDd-FQK|N zrY7$mZT}fV`{q^x0>nR>fYV!0ma9d1c#x&2Xtu>jjrecdp;(7D9J?vV)or9bW@P63 z(Zr~Pmrw}sUY;02#UK3nz0%}+MaPf!@^@w)c9s%?#WL~Uf*_wrkz%fzw9RgtzQ5Rv zpY~Vt5&vYQCxp|t&?YhvLH(1p@kYC$Yj2+D;8lmqU&;ryzjxbTOhzzx&i6(U;y$6+ zcw=+jlWYCkpU~2ib~o#ka{iRNziweO5vT3%e?jc^(1nDEg|b=AwId)pGc zn=+M;_U=TO6*6KYe3*Y+%4!c0(HpwcDWRwMw=fXy;RpG^)jLDfL8uny^#mnIXUh8i z{4)vR&o%fnUzYI)%JH`kwxjLNcbYMkka!#s(Pfra3^n9JF$w3PT$M)}DZlWCL zuBxd)!@7%rzfXZLNbel-uIM0l(ys+EO>Fs=2dR+ zX8X27d#-F2xZLX9lGN+DFLuREHBkG!_SEBwvH05@?O2s!o>VbAC6~NgB`#l1;?#V6 zN1?W=%2zd9Ms@6vPQeWcrcVn!XTDmjDkZH&b1t3hc}9AiZ)kr^v)K}(-(XD0>*R{< zU$3|LjCM7InrQX~*v}Sru0%laYPfG;5UPf%|M~XSsVcUzIw4gJn~wViW1}=O5sQ@# znIS3nG8Tts7Gqx@DSR)clw_|YC->Py#iVNCmFLW^wUYOrN2I@{1`MtwE)A2kuoULy zsc8tX=kNLAWtwe%QC-3!u-H3|%W;=lV0ib!^q_Rr2|E*<7t({4si~JXyZ>ZTNjge3 z^h>>Gn#R@Fe$wBXxnr_c*CgA?xsVxDWd3Sd-dBQ_O29t(ICY=D7TY*>@eYo@!NFXV z4qw*lG|ewCWW5^5mef@0weWNO);DGfY3o!Djd~;1Tbb9SIj_CgHxSC4~d-fkoE z+!{$kY$sPrX;~Y_m!graQD~py2lp`@HLm$V7m~nG+yNIco)3Yye-8YmG_+Hgd&m$fPX5AJ9!l2;8jg?9`#jL{Bu{QJDEcWTrn*S7>#<7Y;9M+|!xQa;&;aZg$;LbtH0A zNgC@ab-i)pM#B(8iWi)ybfY@j1vfNf_~gK{KpiI&sB_8n0|k1Om6feUj<(mXMM1BU zi5o$iq@?6$Qg_6{Yw5dsrXeI_#v@0{y1F9Bj9%E-+V;2YSl{C5=3lVG^_6+yOk{IZ z4ag1%-denYM+7GXPR>;UfkNoFm0?1!G7h0vHS7?{#%hR_2{#R!s;NK~@xpc0vE>&t zWvXhLPU*^QXx7&0`5SzEd^XQ#;R5fX6Vlqei<)7F%cEQA+- zykaYvj~WhhD%SaWN2{71wJf?n1P*7__*wh%CM%EALSzC6| zaxUFUcd2g4G$NQ_`n()}1gV5NLs&33AwKTJm$Z}NvtL*kjOafsMnm6^93ETxxOAp& zYopXoi_(RGLyxZyEE3Z>kDk%g)QkxW3UV0zcE)z`HI(P1Usd<--6NqnA2R7R^ngNV zD^#P^0{{E^v+EBIe)C|b^G}QKx||kisjOOgr%fAA+R3RL=9`y6fU}qBe=SDSP;$%J z(LY$==D0a+gnT*#b%G0rN+{!f1QsXES#{Y+>Q?vr_dlsLwYIhv2@gSZMuUM{-vvJi zCRp&u$Lg9I|BkCtQe-1J4@OZP_`uiWGORv0z4~d(PU?B6hep*wM;>0qJy2CsGhTMn zH)xViHBRM^V{dYhaZIrvFkGZeAuGLn`G#ic?c&k6-tXVtchRl3nx!$8T9tbM2hc8Y zSuj+*g(^7Q`+OS~a7A--vxo321)Xcp!@^jc3mY37oo-RfymAqFk0(uF4QATUR6BpX zF*6MD;g<5w%OL{~cIS@J5BBxlfAD~7<(HUy;aOBMje{qd^0@ z?G&t9$bRr%+R*%QEV*gsTCO1G6W(>;R35{}<(pFMQweb|LQqNfRruB{(aVPOEAK3T zH7(+vxfN{$V&jLTyDCY_seZ})aYa;hVFYElskU88STDP3wU=(~dHBt}MbAiczv$ni zGE~bpZGwFVS2mKYvTWR&UVItd^MPc|+*&~)g6_}E%yE0$AjvL4=uVTc{kfi!%{`=( zBRKnr7c00_+w0e__VX;!C|2)u#ulHZiwkE|c1juep1t<&QKBuus73&qL(>Y?G1|jBBUwsXxV&T0$S*ku zv2|voIZ2P5g9E~(wzjsqGD|z;1&=Mo#lDu-Fw96#OKBiIlEQK68cIu2diedAB|lvSSkMn`DjbL{z$_dS^%g zd))5z+s)D24c(m3Ose}aK3;O| z{gaDN4`iFSC}?=Qd_!H1<~8Gm$nirBpfqN*5|dTY;SEfF(O(ICl!?{=_rLAiH>C9{ zad_Yyp-)9!mnX$dIuw3%l?t0>93KtRcfQ>&!j~H_=UT$vdyCNDO!Sm{*2Sz&N31Co zsF)~lIu*ZYB8Vf7>vpfmba}oK2gUyV+4y+e7}!{Dtwcoa2apquYQyAZ*$z-pK$THR z(MafU1V+R!AfSs<3MX>VqBCCs*)!u*?CB|uU`~KgKGHgy!?1H*Y>0@LVh@YKF8T;6 zp%jgsq&5jsC6}o+5O)_0zzx7bl2&(5 zX=FK!rhgP#o;dF*c7COCPic9uFjRIXVh9r}b!*GAXy8nPdc4JH7e+Jd>g(%~X0JDE z-&776?(gSIMwN?(XiQq9Qaxt}pFMe4Vd>cQKiSruCG5+J#;QOztJbU`{HVBn1VQ~H$Mx?Q zV$!IC7qPa_f~SgWKn6xg8U9G;Y7X@VteLRcSC$l&k|H47s{K0_L5%Zs_Xvo z1EqpEvJ&IvphBp}XXo1W1j~n;k`g}fXIQfC(#uiHsAp4qefaFzl{TwV2yEw!jenpA zrro#iSeng2fC<+uEY9kEAZuxH0lDVWrayRWnpyQ=HDD;nF33s0cwVz>=`;1D6%{Ri z@}?&rjg=0aE#D=)JZ9zUOZJh&_6jMnCG<}!v z^Lg}RmrT3y*k%$nw)i{Ote=2Ql<)^FJ z42X^!uhY}jQTql4szNG(r(mEvgIukc`+6fpmee9IDy~WgeKoajY^BRlep@IH$||#} z&cm-PxG@yv;jI+t=a=O;ZP+g*r>@=t@(ymvrI`&)HaBms4GOO<02>+aD%Fi@BhYHi z-RU1`L9y)KA`C+6<+4Mp9IGxf1hyst2L}gpWTKcroo!@f<_)nms5;=72s`~UzWwmt zaUgg_MNUpmDyI9+F?Qu$*8|N!KEtYAprob6BF-yWDtPhY#o^_8`*ARHH#;4TP^r(( z&LW)LVW~~&5~-o(RLi$95EFCXn8#)IHH`QAHT0VG-{Yy-!!G8XYTmtZ%a$#hHdU0# zL8Kt;f3T5=7Ia82O-=q(?#E9uGUm5LQ|LH|ZV039yToqRmXp%7HZoJ`K+D%1%x{;t zF%R)c`h}n)eAP_Dnkbb!ntlEKGsyc}Hf~&AsB;yv>D#(rAx=qTzuLZH9bFwAODik3 zGnPmn$o2#qcp%h@+x(kI|C>?9!Sh%?9^&xvnDk(UN6Yi_^Os;xOS%;XQ|P*UfhAwx zhQ#bT-?OFv_EsWg1ATo&f@S1${|~|wZ%8aHE$bKKkFrxEFPRz`34(uJ!(EOEDo6w!ArfAr$EZRXsFZi90q=HW0;lJPFs}~CKtdc)1tc;P3&2?!k zcMb}i%YqGaxkanq2M)+X27cRrM*L5D_Vv1wsY;SLSC&7X&9AE!24I0z^6eLR!So4rJeBOis+3e`>XU+ye zL%$S?@)dzjLOnoXXspQNoYa<+dySj|yh01rYpuY~QFLFZ10c?O911y?69z)jJ7IEi zvXP0U1>_se?%h|GtCvn`=3Kg<7+dKj*7^yS%JE!@%!2E^?$tv*J(B>;K9woN=(vi) z@N&0?-khe9EjeTgqlk7;fw)@*rj0TqH9GnDcwO7bQBrXjFYN_mUCONPDDh+PxSFFX=-sackC|++-=Ey#SqvNT?X)JD*NRZ z14BayjxU2(r?cokdl`$LUb1iOV-KUAJh_&dnaQDhi0Xk%obQg@3?^>H|9HieZ+0fJ zE-lq9W%JXxd(XVQWG-ELUK;A{{RK)91oRxUW|?3rIyyQ^N)sz9T!*kpeKe|70xmZC z>`KqrqmqkmAL5!vB9Ko(tfDf^G5&JSYl%>AK%9`Su>S8-crmft@!k@p$jPym%t3Vj z>e;6LHcg3faYimKMNUU*|HZ5V8PRxX-Ajl?lXqD%Gdo-Pqabz#goX@uEi!K(pYMZ% zaWXy`9#S$gv7JP3e6F)*-^MOB&emuMu(P$Do|=lT8k?Kv ztX!8uiz=hx(iH39e!r}3C-iU9moF36_GGBv!IK80j*Uz^=w4Ub>+^X&B2z6L(H&&f zPNSd*&dDpj*SlbwU|w@d6fwfwd=#A3-o1OPs;bVPJLfbzy09|Wg#w4-z=29K;JU-r zlKIfO>q9R9`q~!FZZhxoAeX+%PfV@23oQzDGqPsfEd8w-jfF8V14J3@b5KUFzrl4RX9ve|<$1xGc;b zzcK*Ykj>FlN>D1L`d*fh@V0@Ph0DKifzV;kY$giuuuTx@g^m&6mjj6a@+Nq>`uFeq z;pBruj%3gN%PDVhp;2kYj6Szbp87%IKvbYuV#5fi~N{=Jz9f-ixj_}?Dw zUz+um5Dme&9%MumEwsGWk&8;=dnhRxd$qN+8qYwrD0knXxCO;wF(eQ|N$cmwqFdrJ z(Oss*56S7geje-$2patS`~d+0D&Yl|9sD30O(}p$^uz1{oX~+yfzlmvDcsVT@s3a@ zxM%TCHTeTIw6p}xz9wTC3-I!`FKQ0{iwTQ(5>pTPnd)fy9~?lARk)v@l9JM~d}#<8 z_wR3{lqkmcYwSO!6zPNG_Cs=#nB;~b0?3u! z|MRCS@&*>DUG-2y9O^JS6S?V_Hn-!3yl~3I#Xll$W&vVE@}d{_l9G^Ud42Vs6cY=J zpDL_UJHr?)*z!ZtQLkPd-!x@FL^OO2^9&iP3YBm{8yYxxdDSSBd+IIToa1OmXWnFk zzeOy}0UHjU7!a`lAD=qqZ9PRJxynihJy=&DWfUv}g?MS^pl6lpg((+%RtP3A5UwHaA$}oh-O2^nZzCa1KHmtYjN6sU^ z_J0}xHVB89@X1L}o;~C7GUn1M&^A#|t#hX|%!5&^EO6VstR|q|m~;D%cw-`watD;z z_$umL5ebc#bCYWIj6`Un)VqV{h=`^E1x%vcS1t&>igxkCy$^wwBsGCMu(eMgLY#m6 z>eVYJw(uzT%enGt?Ck7W8Y!gP;V>yUV`I5(@^(>~*%lGP)*-gCDX&($K!s`MWx^}snnUS-FRf(o7qWfZ9krUTSH9U(olOf zz9Q~gM|(ROJObB2wBrxDQ|Lr)&geP{Y{7cQi!jPlec__S9e*9GR?_y2_UiU>vuur1 zgwKoI6J)<3x8E%d8zjAZz605Z>&0} z;!b$3G_R_k2LyfYjES~wQi9#LVdOT;z>(_ERW22*uXV#O>@Oml>ml03d zfcPkK7H7yuKtmwF{fWM~06%L(>c+-Nf21byix=f1)_>}5)SmPpgd-yl8%)4$gvm4w zf^rHV5+{{3Ve8rcX^JiZ)=HX78ot3VD=RyEfPf1QS6$vb+>NcjcZXk@(5*#k;oDl_ zOa_3=`?;GWN6F%4300A?3wmfe&@+;fPwwaAQhuADXd#{^-d{Hr%~~^%UUhVIk}s`) z>}BW>;1HZxvt8F#v2ejt_)ZdJD?*+)z^Zl9;PUoAAVdAu@3T9-2J2$TdkOctF%XbX zF9{h-js{lnM&4%cX$x($TMu-x?11}B?ZleJe~mY;`<>a(cZG(8n7&mAi9X2x z$r4^wucac<&kNRi?GBQE*YlxY)Ha4gw)aB)0+ACz+^jFq|@}TuB zz(fcsDJce)WF;ksI|_Mbb`tUE$)E5d4jK)3@wZH)I`-wtP<;&aBS|aeKappj1%uPV z!mdzeIE-rjh)&!i*-SP8NMIr129hU#0R~F6w6y^mD%lmSuSuvtavv{A{trd)8$_!( z*qe}6vY6-rVpb115zF{5auwfew`)$!i{Xsm9VZi8isvnoaB<_IzU5nswSc0 zt9OOA#{peI|C{C%%#=i&Q6X$gFK=IYNtvqm(F=qMdM=v(L63b@b#-+e{SzcbgG~_~ z>dww7IYmrNSkLfSn3w~4lzts6m8Y1@!sE+DMnqNpuZX7Hw1KdH=gY?t6dNox-Tw(8 z{cOT>0rtTji={l=NKCR>srV&$3pNs>E9?{$6l`p1KYkdisy2Igc%XBkkM$Wwdv?5W(p8Ko9R23oRA8h(?&fk8nhDOoW?Be{jB z-5%9PSAkuULcr-;oC1WDV8@^|o;rE#4jmDAJ zZdX3kotK{GXhg_Nfb`r%vwfpmSU4l2h>2#H1O=DhQ|SJhoRr_p!QonZG#^wS9{N4u zcb>Ougb1{*ADYmk!otD~3?I<1Z~F_^RQ3#9={|5>j}CF)%_;pibh)^&z_?4#q0d`< z7J{#+VHx5^3y_j$a*+eLWIfVslHsD{L#-_Z6 z<^*Uhq+yvj=i!9711xG#P$Q*0pFMl#;gOY_TUS>X!D*skY+L-!r1=@M?f8EI)h^RD;iU`R<$uDh=< z>&B3RtE(&KEGqs)60vRNTw~0{){6@Zi$M1LQZmB5h}VT^{^6ca-8%8L&LjH4WU%u= zV@ieuxr>HBtL2ZPgZ2B!X57##FQ7O;nmJYx6B|1`=~nj7bo>d4%ytt>IB)1ktGst|A*lR&ZIwJ zro_aT5f_=Z=;sZG3p%nNJ}lDu_)qN2zzDplCHJkPL^ER;+vbuY^nq?69mx?FO*i8m z{|$JrPLth8B*GCjn;B0w-kz^$&-sr5E`{Y-qV1K||0_U#DtiuKY(IV=5!Jox!cX5~ zi0#Xl>j*;VkOVOm1t}el76ivPR@+|xAX9xz-T^S~A)LL4t!@iv#)9KieucPiR!WGt z$b5c{bhr^_%3rfx@jpn^yiF1&<^l3Sxd)Iz@Kl>{*eHLwo83FYZ;%j(BhC zYWaC&hJsBeIizP^n)rZUk4zY^cSHo;-o1Jj7N;Kk#g{Q~B?#^LHb-P&Ec19jF}?Ck%v zGejw3>!`C^+XJ13&zw!4>%RX<@%`s8mPwxW@RT*h?^z4!N7wCYtk08Ka%U&ZJbqKM zg{WG2#|jH(-x;~N?cu@!8zApQ-Rv++Z^`CMH-40oer^I>dfQe)xQ>m)>NGkicQM{7 zc11})<3J;#wMgc9LYx1OIJw^S|BmMCy4rf@@YiduFgoa%`Uaq!YrTta${=`_g3t=c zo#@}Bn!*{<-F>CuK<-UzL04A)g9yEpJ9i{TMZb|uyGg^>^|dK8rz)V|aDY}PsmZj$ zIxiSysrq@-Lca=OG7uV(I)R?nVd?YWpKWCpx9pyx--ZZtth*a;988edyD_5eX~vOu$rGuoAkzMH*# z&t8k<=I$ZRdS%$*#Y_2MbES2Dem<&^BS(&aB`vw$D<&fH=053O*cwV7bNlgn>Y2tz zM6L3+=Hg)<=gJN8Ao(K7LV;de4Kz0gv)Wqfx&|8LJ7|-*Vfl~ck`LDL!$3;aot|5b zL&oCexwU@36?FVVTBlF7wK9~Li}-`ws2-0a4w|iU)IREMqM3!RKzRSJ8x=Fx8dl@O z!&jDm(&a&Zs^(h$^2m+ho7eEXb5O-0R)g}|ij$ld2!-U^c==ZzUo`|;uA{V+|M|yI z;9hF#_UD=b{92F+vC+9V(Hg3P5pbO>{_gecLe?k zdhOe{Pbnk?fI5ho3J~QIOQwZdZ@u>RuAO?0{OXUNmkr`HhGuGaJxjNo zj%!`{qRY15Wl2IihlOGJOa18f2f_?We*Qrd63kDgq?V%l9ZQEx7Q4|Eva+%&$1x>E z=%iU~lm2z!(4MhRf>c%geUE)Dg1D_ ztW>wUY@d2Qve%dK%ynET4`}zIGTSRHz+U>nOoIUb{VzuB04=SMRcF!KS&@YJdDu|s z4Y;U0l^Ym_)LQK^nuDaWzdHV0-y?Ag|88Ol=@?09tY)3xCKb;Ubi-AN(W>Tx0!JyJ&&EJ5>27zIj`~Y!tQsR--h7ZgPca*t znhwKIHa9YwYgCj~H-CVx-vu$K-UG6@dLWg~`eaLF^dM5;?-Ah4sHk&eMOowvG6bp% z%}mQ`<*dx?Uf>RBr{!aJVw%i;Kj*Zt`2d$Hy|Ehu=NrOzbZ~H4T^RJ?xQ!(QZ(Yj} zfO>T6n6;XkTFN=i^0a00pYCLoMu6l&kI@R*Y?d7dkwX{oMQJzr@P1kK|H-#Zpo)>M8YC#OXiy85a|4(U>c zahmwxa1GQhCIi`~0|#_GmLJuh=BWJsjgKcEJ;m6BYH z00#wyFcK)*(&-6MKB=kFU4gsCCM!|L>pX{Q=mMPzmO?C-h#p3t$kja}elguKggyl` z7VWgG&_bUsZlR{^ksX;+RgIF*mi!XzTCO)Xq^b|+AP8inD1PKzSzpvR$;aPmgI^g^ z8Llgqs*VwCm^tbGyH5Urfj2P&A1XaFIhoM3jgbT9T))2OWHq}^PAN1V8?s`YRUs=| z2W9|-76^+Kzy+10TSM|SlCV^nPwn`ewb@v35Ox6=O4o`c{tsvmLIyD&dfa6hj}*`s z`4GY2WyqeYO43i3bj1Jyv$Scm%WuYR2K0f_T9aY=5Pf;myNU{lot7RSKV8Y@DLqN= zX{1ug)y}Bbi7UmCA9KsobzSC(<_4zO=PED36IW4*wY=+T6cGN7P`^zg7GgmYzyX`F z?KSOrQKqS4pNXW++!7H|q{Db8F%w!()Z|@G=4S&L1|u@i>1Tert}TJbG2v%kv*^0s zKC7MS;ez%N)QF+W%}bfzetGwpe*X;=FLObC?WIfi9Q0G|4Tj~OOvWRR6&9(pa&?Xv zs{YQWR@WaWHFsjxLo<9KwQxMqJ~X~M?8OTijx?pD>_l9SSrZY8PhK3i1QGDadH2R5 zcIKMt0~}iA$;<3Bm@ohElR*&&{xn~(uYoNH6PuFPx*KDJmNAy0jftPm?%*Qby7f7i ztmg!rV*^OCkM__f)-q0NeeJ-&OOjqRi!M0SP|dX6oUE81#0FK;IARcO6R33@N?PCw z9_|U5FuBsN7*a>$p%CsD9L$)8^br}XYWh3;V9ha?E33m1X)kijB<~gii3kntq;ITL za8wv8XNn_tbtRi?KeD^&bDV?Oc`e#|E^UPb^|pbI@s+0Dtn zU{AhxFS-wWwI|eNRTRLrY^z!2 zKt@)UQqBz+gW@|*_^{*zH*5XQCtx8So_OJK4Q?a0Qydvq>>ScQlcF$!9K1TFeu6Wv z(ko8uc;UOAuf_r(o#U5*jWFJW{t0jVAdjWitK1ey_z;ULh1ps(654=RDUBJWs+%u5 z46M*SCpoOHjof0to|%Q!#hbcvfkVRdSp_n~JeRLVSy1iu_^}BD_j&!N?b zQLYNh$akD5+XBZ9A=MsgM1}%a(EPlELGDZ7+0r4LH^;T?>h+$T{Tg*~d$#!TmUAm0 zbW|7Ba?{hjJ@w%2HR@@#NQ4R8l(9dOajj}{1Scq6GwkXe!!uU;9ak#!b#Kim$J`9C zQ{W3ObX~hmDwQ!@sgQ9FBYMXK1&fevr7ikZBN`5SpU*im#bDArbdqn`v1RW+&fFp}d0rIMB zgl%hEA1#qqJR9QQBQpa&H!A9=u5K5M%;6gacq+6)F7qJXSTTSH{O`(@D_B5_zluu{ ze2~7pi)=AtK&U7J@$ir`m7H2iZVZw8?;;Y}YeYjyDRGKZ+I6X|E8vvoESMxq4Do^M znQOPL!`K=$_hZ2llD?n(G5JX;6YL1*3ImTguxB1Z#mReJKww}A!}!Lq2^}qMCyp|6 z zQ6u@DkR|Lc|J6!Z{4A7T8X6QUG3dR#)U_s4LjqId-cV6-aa|bSUQERa6-!p4+fg`p z`ik4TLO3~CjMBlF>P!Vim{8}2K(*Ak#r-4{Hl{R4DcUimHqY)Tl=OND=s5IjGNna> z`V1pUsXSdSgtNg2STht6kgF>=vqT6t4sv^CBfQl*U==WGG4$hI_U)TmzjtvW3N$>V zQ}_?cQq(hmQrR<5ZPn|_ccFQE-eY|TH~uV+Cc+fJFQ{&8cSgb61qkNCmxdIqN%>+Z z2a@??OCLh_KUoE&%yq28Sx#wY?c??42R}EkCOzhR6sSPLVs|4e>XJppW%^-1VJqL} zU}m z=0!H`r?{XJ@l04~nlGYmFswsp&||QPww8~4Dr_VbSQKa>+#W#k0GB4(5ijsF?Q4CfG_ZFm@y-=KZ zhdYS*up`VW$(Xv#Qlj4Z5o!e--f@?pM}#RT7#nbkY4-1*c|)=*FO?U}B%|K7Ykr}$ zgmMz+({V%qy5&+L-x>7aD+9Sp*(bH7P3BCVZv zZb89fN^WN>=A{ULZ0XwV$4>NO9%^~kR{@a1ar$Dcg?EFHsErW*IWj_kaiL}Qm)ZOQ zEV#AZHT#zdyT4?Nbu;r#M?zEabf;x5aN8}LHzz7F+3y_9I_C9SQ4->Nu=xzFRQr2=B^lVOgVpN&RH~Z!YHFPfRKwFQXCO zM@(cKK5t8h(Dl=Hx~m6W3woEYzeNNT3^SuGw&)q~2$Y?W>XCtBs;;G1V+aLj?xc<& zbR0Q*_U!4?pA9o9$=t!vv-jeoPI>nbFwx=RVIZ zdxDeoxN9CY9L9QRlfQu*1rqR@GM<@)cfh2TO=$hK}ZmUP?xb9$nQS(!F@WROnIWoqLYIMnTXDP^t$ zDuGmokZ%R+23&}DKz+T!!}2}k1J4E?NhAfDnr0${e29U3>~<_&D4Vw6i`QSBIwC*8KX>$Npm>9 zVZ%plH^^hOOKm=+9aqNcFPWXSGZWwNbCJW~SzIrHN%-&D&wQ$|!T9-xt`dR<|HJ^Efcxb#K-GziKqMYET-kI4Vc=hdl0F@m$yJo1SvJ&S2 z{FFz`eY2jRR7 z=^N8#3Fv}#bIgM`@+LfVcb5rfH^31C2+#*`Ru6nG{A(Zte{6WHkqqN>HPqMwuB$Gj z))@z}!wJw=@O3QafKS$_WKiT=vl31Qd!d-rgmn-ZDdH2Hd3m@#C?bMw28C>5B2#WB zCR>)V1I{hq&-vt z1u=raFxv5VfI5n`|;`f7yEnLWM#K9WNXaERx zqnVz$d9oikf~rrSFoKfa$DP?y1n)3G;3K{{N(9g~l5q_!<~cyQXu(1eeLhDivv6e0 zDQblCTZ}?Nz}Kq*$PXbDKZ~HF|09k5Z8!a!WAN8b`PW^!zJ2~Lulc|1xb^G#x7WA{ zl*dh;2dzB^!WbisE)X_S$JEu;p=LtBJ@C{3eHo@5ZN@rYUp)_!|H_rf8bgkQWN1p) z7pKP2a%3U&6Q>Rz?uN8ysSPy+4KP?woS7P5p-+Vq+&V0EGxQ(VhlYg}Ax(m6gc^!b zK8%6!LmXj<2joF!RJJ)?dCkfo`EXK;0KB8f>h40LY}`88+FA8z^S`4Peq&<7GOzp@EU)Jfa5b*uG==aVNs zV!30+oK)ezH@ii(_1piQkWM~3{KYgIqmJ!pU*XW`%dcl7DFR=*mupsI7(@|t;Nvj} zNte=^WieoZol-9Zj~E!p`==C_EjdDKP=)yy*rw#=@uCI9koC|F{?M9$;NS|9+gS1% ztmWt^w9}XiWbSD*`J0;1Fu*&Cq@1jE#y3_0_Ac*s#>#OJ7&pOt{`E)yb$R15xho6S7{g#-7(lbe9eRqL z-3A01j(S>O@5PkkfMuPE38y%teTYv;cNDBN)$vOs@-E}U;{#PI0RBV$a6A!-*fmpd+}HYE*ut*r=~ptqPAwOv^zc_RB_ z;_!Zn|0yV6xFjZ89C}#%pwwE?AxuRg3=g*5j?(i3W{CMHj#pPa&cqzNMNo>D!W!~; zG-qhd4oe&tv?|c4WLj!J6Hp?7+xa5phgP$WMPZZOnDW}C`G&Kzy2G<`UBeH*u1*Io z6xI>O{eUNGYUkpVgbiU^BAip&)fP(mPOUvS-qJSqVk6GftCNj5GaWLPxMjq2dHHF{ zTB`HhW}AGQc|Pi$t9MZBzM@Rc$fzHC8^*%KSN(e*`j}n5XQUEWrE57ky5vxFP4TP0 ze(&T%#GvM0yR)n90y7UZgT{va3GD9`xA)h8jGbK*!wq{+7T07NF8q3B?Qw%)lB=#M zhK!&9`W19omLfOE$vu~hv8g*?n5kd*TNrV+wK_v`ii2e5!}A-oE?wHXCW24-LPkMF zrJyU8#w1?H)&?^z5Fw^uEBP#WK%?55x)5@EjS95H!_hDKXSsc)Ha z9Mq?M;Vqoty&i=|YOJBFq8Dnzsi2K!rlw?@%OR2%jl?P;^r>75$AI}#4(;yUhhL6i z@U{(y9$?pFy7)P&tBAGbkJD*MDkC#an3{FI`S1+M+%oFM!%Bi8*u-x}CjPNqT)`fY zNm0S60BtzZb@s`v&srRxQ6-?LXfA`TbF+&~Nkyg7>oySKjLb~bPiBF0w1|`r>h2gt zj0$r{jh=_`*pQGA2#=)4afI-WoigCVydnC*+=6OK81CexszE2{##TjuFqI@5#TC^Q&%Hc5KJoG*wP0YoJb2xYiFov&hE=z3)7xT%J zC;9mDXMVa3gb@F1nx`~YoV(nHmeQ~~NWQen`5EqP5nDNmp&c+x7NSzH@9;(~kVa!2*8lywD8GbbKrH)73VRkZ4ZtG)^U4 z*u!hkZKfc7VC6&`z-^e(l^$v0ux=Q07&?Omv}Jtar!~2NR+oKR*xM8pvwQUZI?dh+ zO!s0`V-!#U70fW1WgFITk$i_tAIxWK2u#+}GWA^~^bX9Or$Tzb%*~j-C1_i}Bag_;?(TcX6bP7+(bM^)Fyo zC<5hQp8>?M&}6e^_4+~*jI`mUzBzjc2kTa;FB2{dr~1I83%eIiQ5wLeTY{^^Se$4+ zvEnESF|2G%kXP<~kK8fPUW;7`2s=jbRoBOl;_PKO9DjKKQlz?JH(=}f7onldYYQ1P zj5zRb0msI-8*s>JXfTONi><=z0k4au;Jk)L>-k-0`^E^xe`jD1{%M``|JHLFv#xE~ zeZ@ilfBzCG&NF}g5-Bkg^BV>>Y+~kDZy5ak)go+C29`$n?NMBO+<*T)AjQfRmTjkZ z7tb*dY`L)OCi%&`QO1Wjc}Pk&@p0OW(T?Vb?OIt8O7;03t-dpd<@xk4!=8rcQF|q> zY55erjW7|scH7f=*DtEMlD55pCe|#;WRGu0RaYxrd#U&OS0H)Vi>(HGOBRc}ZXGPW zGkxOD)}vCKVqemOxVNc%xX6D)K+TY(Jpa=Ro05}-x|!lfd#MNNhj!AE|9J3~)qN)w z#m3C@)wC|e{>ywi=QT6Rsm=FGQ!11x?x{HEHxOD~6#w17+D6v?)!UIRU%ZU9v!6aQ zF}n8LFhTdu>&;0@pO0&oy>^%l(cWh0;S%aKsz1R&Q~Y|gcV8iW@m+5Q>m%3RYj7$4 zQkl^Dc$X!MMNa3+m(Mv^P`{2%dBS_QSj$=5Lk$O^6erOt>Tam8~gi<>gp-A4lx>O10N`iUo-m; z@)*bN*Dy}t%ur%U;hapaN*A)K6;f`Xb#dxFH9J|LGqaW{6Vhzk`}o2;w!Y7|_`9F> z42Dv1)=9oU$EhifuVM@t^qZL&jP8RuQyyI!zc5)vzBQ6iMw826v zPSI0=hZm|Rr#Zw;82y^%DxLS7i)WL3`0#C7*9r;Ii|q1$S(u#ve-dlN-c+Enratnxj{p3|pNiHn-FqNu%@LcU)4rNtmPe-i~rh zRSM0hPqO%OB$~STPnoQ{-S3D?2E4*4V!* zV5ng_O+04#l|qj?quJD6p{EM0!o{_9gAea{(rOqyadhH!i0Q5wuz#}X5a)M0>gJC@ zx8}!7Wo#m62EFgrMJrX)=(P@S_xZ-*@phjrtKO*zm-(>8hE&8ILmgs(=c;Ot9mf`^( zF=B^SMbV<1q*i)^&q9hd>6eJNMpVul(MIseMQ~rE5q){=8*@liadm>m#+(zBt;r9R zU40H6%kn;brA1UD=Y?GMJ(bhv~qc8l?l6SoBu*@@_9L^EL`r4<` z?P8Soc{^kGSqpr7U&sHx$a-{?hAm7+e(>2j#+S!rPOi2x{&;J#jn#gqqyP4mogX$- z50jSk+z&YwF8zr{Pr21O;lM75@>dp7j}E`^R1TLZo3Pv0$l6aSrD}M(R{lXESw?ca zfR4MD_C^*qU$3`s<)}Uvw>YoTe%?bpwMf!IZZhJbZ+YDCRR=l4ij(NQGiRz*TFS1x zIe%<+_jNw*(#QM!HVpPQ?oM4LK6`wQB%;bE=qSe=`R%Ok6oH}|_O@=OfYIovr0>rH z{0v6|4JG0jD4oi#N%ZYee`|612sN>71hrGcLw&Eerq{?HeGL}T=U;oGm%PmES-ra7 znbW@b)J&g*hpQX-j=&u<%t#8!rVh>l;)2zuLVTfonPZ5 zXz9AxIN%pL&7>#ta?8+_2k*v@2_}&1cxt3@UgYy_?9Ui4chVcKZH>}(d~40}=t!}y zW+7F;$c*}yH;MU!4(Xe^-c&v0b9_{~7Ixa_ot%wArZ)S6>)z)*fqW)ALMJDdnR8c$ zgd^%)U7Z?j#}{;sL)7c4u4P!Ph^E!n$RFyBW9#o29A_}Sl6i3d35u!lpj^4}k3VG< zSE&sB1N#&n>$)8@N*SwnDtK-v*UmL?_gyc&aO~6--DBwz@8~1nC~tMB(#m5iic)CY zt~1oonQt;av&0!5H>4+egOu@GlkMIw2BZu#@#G2OIiHu!?}~DUSB;-7756W)_`&}2 zVPJypqv3m=sq)0TV*&&R{Ywwq5piUbdodN}pQeb?`?;fK!8lDcz$OPSXDD3KBrR#6sYKOaW# zmRcoz(m=drpZwr^|LRX2r5;C%y$a7v*!6WT&n$U-pZc!z%Z`TI>Fz^GX7f<3%p|&f zvBj2>->c4)4jOgXNo2G=Ww@Q9E_2(Aw$m(NI-l>`M7EK7QWlqbu2kk%)}IZlD+B6> zvbnwp@Q9vo=28f~KAB{&ecLXB^20JIaXmU8uG)qNAM*2ZvK>FCSl|8W@v7)`{O0TE zC4u}bcGJM}b5^I{HQcxp^XzQal+EYRNt?STSBq#A>eH-`y1j8syLsu>Cv}I`Gd{70 zbFNQTy+8E6$x9?O^2Yu&?vNrAXW`dH6=9BR&uIz^(;8`}qF4Nl+EVA{epptmsjd2z zuCeOQrltt6a&Ng*(N1nSD0Yg-k2qV?#-*G%+pA?>sd~5HBaIVW&SqSjH&Z?`Pm`z< zqwF>95@Wm`(agUk%v0+-r&+nrM)eETcKbw=qR7g)cJOa(KBjr-!96qbn9a?Nx%gkw zrslEm(A0Y)r>Hx8vPRNbqG{{SNu8!4wHzC0Cw38u?Q3v9@ch7AH{+K!-G{n|vlZ_6 zJxhCfFw)zJGnlE2g)<;w#~Yi=f{*L3N*?29JG_M<+eo&nY~JE!mfD`5doC9yyKZJ! z>aDrLfAyXDr+4gmKf=VmTb@qg$_v@pEV;Vl%Z(jNPBJ6g4WAnegzYH}qL>)FbZSy} zWmElCDp$tym7xlqPv4rdBKMxo!?{Ijy^{D>b zp}EbwzuAsk@9U` z`sr*F{gayCUq2foCA+C18AJY>aME2s@7V2eZDYAI|FesZg@XwI;5Ln z@S8kri(e@J;7=Ycb37AZHQzOGv%tSHK2ZL8y8ct^RDc^}_l~=HamcKhw0yl*n0677 zfZxEiDvyLK7q*wiouGk9I09wNpF4Y#gD^z_cM(fmUrzI-TUSl z3go|Q%-$44u>SZun&;|+iFD|KL#YMF@qyWP-`211$w@;|7ZPxSuN2MWwD>bRM(s@V zgH^#$*7cxo1>t-8itiBzDA7(IbP&SQKdoGorh0u(_5Kwd6uZ!m!Z>Ny)oBy8=E!O< z1PRYP7@35iz%o$C1`br3e-~tY-MH+Hx=p1_7{@iDqwN7TAa(F&i#%Q@tIovh)4X9> z`f4kA$i~FW$&Ag9pCM}jQlYQ`Y)zf5J1w(nv|N(Je6b1GOFZ~$O^q-H zYJwb~!>f;(FElw$ED%Zr9iudce;%2oXF7Yo=S8l|b)+}Eb*PvpHB%^qn9*6W+D2z9 zDVks&3dLW(OHIL?dG%Tj{aR$sAZ`e^*HI5yLLFv3qVV_5eCmnr>*RV3G+LW>O~O1O z`KD4X(Yh@inBH#qyABt+=rlK=Ba}ubyLOIXwJ?mRSoMubfokXjLH(Dljc>oFOt&z3 z8)fNJwdh}VBs8Q-eRh0BvGh&Kejf`zlr>Q)V=g45YsQ+}BC<4(k#3PkPnEn@ID9&yrBgaSR?%jctfDmk;#WZ}t1P=+ z{WXZ$m5-qR%+bPd-l>3*7HgV2wF~!a9hvpGrj@iN<3PlXS{Z}0wVnsg&mtr;S#W?R ztx4qQ_FTlu^1wju9J7yfnlQ?zI>fN(kSRduR%7X_6pLOc-%cSvxyEcnRI?iyUuG-( zMde?&J)4N3lV4k9>4-BkTZ{o;`@<57&szQ{5^s-3Jlp$Vx9YiPgBxqq6@NSqv1!GO z^tTaK{`R~1D{Aes%+i@79`EQpx1fEtOOCL}4+SKQS&RV%Q)S(`>RZwt1Y*lUcm%CY zgkMOPBowQA_oLL^VpoE6PKz3!L4rx&<-2jyBrp_7CH+~B{OY-BjC;J1q-mIr9he_I zv|;G$bGuHExZ$X?l4^T=@vgov|KuS_u*!x#zTeiX^gE>bCY)e4JtB zDHp%ZVvh zE}!Lm1vMR&vpEOQ@DiG#lM{#8mAjmLp6Wh$R-!Lg4Z(cHYvC4+xb?%nc%s{GYrG4e zK4&Jb2{bUbII6f7(>aZ9v3Pf07xadodVOj5q=dx49dR0j+*SCtU z;@}^gr&H;v?_?ApvURefuchfkUD9{-)%D-{_%bw+JE?<2iwk5gC6 z!`}zruRfL~vV8qwtZcgU#u}n{DSQI!m43a5bSd06($fAgan>TXa?#n+ejtIp#=KJM z(*9Q8G)(ACktVfo{ME+FBN{Bby4k;Qg?RrhSBQ<1^FKT3OL~f*iFh$vPs(>i*=$?M z{Mq4gXYu=o1MJ07Ipem3l>(!#EByRE+2f{`+SL{em>UhnDGV1GSKgdaHqB3xVWq*} zXMHh0{i^hRWp#np!$-IItIfcrRB}4P+VO8u8o!Ti<}W$xWnMicf17>a;N06Jd%QY2 z@7jYcyRF9xOw@i$F?*?dKe)+6zvkqn2*vHpk`Q38pq>5wow{Yh0`7oSO0arn0E5BD zm2Yo@NX?X~aR=LJrKQaB5~;PCe=@M@ilfdq6>ixg(wTbxNME8~=I_IxQdje2(u z`I^$m*DtZhsY;;<%?8SiDQ*q=xa3szg8HwyE#KeS#rtJ5`;d6tr zjzU46_{xxF66-5x9&$5hHPpcE*U!OhlHsPSts$ewu3nEm`{NBk&WoOZ}Fc6w0wg`>CeNK0WMNfEHYTG^q2%{y!$ z#^2JA%oj!qzq6pjYFc$h*jO_ChBlsmGYX28>!TyJF1st`s`m`K9=(LO5qU=LHROu! z>Xkh2)Dimk>$u_rgb1uh=XKLWFz#uxWwm4d2H=(6()z}rU;3R zQ&@E-(NT@oD*6LvR*+sXG$v;dCOisA?SCMjO}7x`}w;Ady|VYhk$c`sgUA2 zm7K}jps2g!Z(*@}NeM7s)*s9@Dp-%u$2`(LDTq}QC)1V@n9|vplTHk3b1x7}@qM4> zf2-3C|CuTVN&e6lnx3k~j2vM|>y8m?HTHDL${|C`T%r&5ZCMmHouGI3TY~hl4KGYe zsl1WT zF^tJaLg@!D*BVoK8ukgusWu1g+A1K%<-#C*)XMfFyDc#vgFoLhC)vz6bXKv}+exBL zWm!!BP}iw>T)22{_bxB7kvhXX%3Gi(x+V4WGjBN60O2%JsE#h?*X~du;Yi{d1G$$x zeZ`2^h;5Cdk+f{c$m|9Km<ZP3ZK~PxMJYB2@8IBAHvAc_(Vv+i+Jm-4j2_n!N1c*obiUP}X^$V;qdCG> zpTPOvoMGw`Mn4%vt)s-(lO*28{~ntL`Hdg-bHqxzH8<1eX#ET)w(iD}gUO0IM?`E} zAu}^Qq|Ef`(!RIHiRDWe!Q5GueLWlz^WvmYPad^$6VoNIxuNfChssTAh{Dw0XZg6= zMO7javm7ea3A)mq@l^^xJl_vi3?1S|UwBp_{gNc*90H|n*LOwoU5K;VXEvC1aGa+H z!)D}{vcYUQVipgL{j$1V^ea7r>%Q4#r*pUb=49@%Px*O4SY@BRzI>;gXn1iF=|Z-U zNGX&I$}QP_*DFM>6@-6pVAC!AaG%-)NK^4|;d*S-~DIW$Vn}EM{v!m}yVe`}>zkxrXlXYMY&tl|NBWG|-wRN&_8mweI=Tlw0QAF^fzx<=BtAKRO_!RX#0F- zkMFj{Rl}z41~xGzbAm8rgYpV0^WODfg6acESrC$kRuh{)CqBlA)<{v`@RL++Ws7bB zj~#!gwMkmNs_kM`kAI)7HixFI-pTtB``0C|?)ceAF@C}nu-_Y1yeTe!6IekgmAN0Nzf-o>B$n3HMk#qY(RX6=4F0CGwrscX zCHL2bN>}y(T&|Q&pC%g?^D?R8+Q8-}w`R8N=h79UJL2;uM{qw|zr4$zyVZf?8y;IM zsy@+T$!KVLqH;OKl6MN_wN&s@GY`WmYUfl>I{wV$&NnkwGw_}07e>#MiK9^*voQzV zMbi43o9v`8VcpVETH=;ZrXB}JH_3>r-WadBgnj7wad&x~g(zarT>`W!ybWQ9gxrAx zcBjZ^8H!w=7d<{&Fmc(ucGu+Sdnj|t@bQK3z9hnAt2M))z_TS7%EB<9bsC(Gn4Z zYPJuKH$Kq@rMF5rIZ)@&bs-3qN47XQKWZ6K&wRUm;sw4|nZMEzAfq~-f339s>P^t= z*3h4>u$KD`L3CRDkdG3umRovwmV_@<&y4x{omO{2 zTxEFidH4H2R`zi|A#$&!$n<@-UhqVm-t>;Kgg^Qa!-)JuH~&X93KI;iknjOGTuq}_ z>qR#exQJQsET)U7&SmOUno5D$JTj7uc*O*qMNVqsp|i3HEQo#^iQIXgjsqfy(o;JW ze!hh=P!BBevfCcH6Q2zerk#BABEMzy4tMN?rAGQz1Wm{82{2}b3=y^RBL`f&W&O4w77u(KJt2? z;z55F|0Ln$!kdpLUjyg8FENkIuB{g@A<-m1zW)?}3mr5q;}oOZZ;;2}hrg!3!LoAJlyZh=POY&JH8Fe~B79ylUn&E5JLCAofI#$b#}N%ox0 zc_H`kD%4Xjk&bN%FrF(005JQc%~B_UGI^IhCS*<&Fle7( z8=reA#_EoDrSc|U#<0{abv-`dP^)2@c?xZeE2gr<4MbXfc}X9UE5|=+kCl=1)J4m9 zZ^+Z~xbN3?oiR%Kd)ZH9=ir8 zlz8?>2?ni9!)MkOBYDL!3EJkp$Qow;P=i7+5%4`{ty5x~Maa*U@OV}SHN^FPAO}h_ z{fNwPiu&wTVwk_jp-dL{CQUn1&&R!X{~HF<^m`ajqvUt#L##0Q%y^HEdBH;YhMYE( zrA1dZEur5s+^AH@V?WLm24Y^}zFRFs_E(xAj7HDig8$7y@jMuN8vQhMgs27X!Z!lx zrB6uhsgZqyUXRfv8bBG}m0wun;5s>lQg27Sf)-eQ(RDWQO0;!Uw1xkEW8-p3bg8?= z0dlst0UL_zo8T4n=<&EmVxkjp#*rWV^zFeO6#ey)<)4U}584nKCr5EHQ>0;7AnkAN zk*$VHG)BsAeJl(usA1;q3um-9f7I$a^F((%YMGxv=OuO-!1s&t!ufhbW?3`O>HcPhAYOz&v`eQFOL}?-?Q_iIAK@73&wLGLI*HzD zVE&A(QuBZkU*qS7D_(V{Y-OuY!Z?^!dlygLlcnZ+o8Oro}2u^Acvis_Jp8td3T>aE;U!b znOZhUxiR^-yETdyISn1j-x?7jpH%S}_(CW+i*HL3?BLiGb>28yY5F4iV0nMmA^FDa z=z3UC5j3C~b|=}JcX(JG`Mg&e0fmD_!o@`>ml!QNESOKUhb~MFu|zI?^|uQCL}5-fg=wexEJHm5*7f`wox7gHHK0ZIP| z;V$^hH_r(nlx4I>NTlw<@nhsOlHt*A!tom&Wnt(~Pl`PsZ`||NUptc2U%6TRa3U!t zN(?oLQyI4NCS=LB$&`q6(srBE=hedWh-j!nEa8iH>UKj3jOP-`72P{&oA|7roVlVe zYgsyzTIQtM2)j5SnU%iY((u^WAmi29XeoDUYcNq?cB{Uks+LKM-A#?snWftKy9WUB z$E-KezA@m#A|Fk0X4yOE=SDi^C0j2AQuCL6%ezF4)op`yM$EZ~n)+2466G6h{OK#z zHN6?9Mf}mNymd6imbzp&{W^>=m6iAlVSO3o%xHIZ!z#q%h?wu>El2DhxM}VaX>+BN z@f~YfMxjpHi{)`8tYG#wFTT8udoCptbDvUrs-#X(1Y3_lBdV!XC0S@Pn2D}UK%0V5 zrfu69FG^1>-XIi3O`R3V=Rxaq#>AAANw0#5Beyydaq~LebV}j}(rC6FVp-T$yGnMn z?0M+U@{hCbjt+J+ZnyLwqt*PAfjhsD#lBrAK2ziLuaV)1uSw^q*{9pWu*R=C`)VV? zO~@j4WFmPy;IH0X$Sz((Ou@)4%Vs5x<1j5V7^M0(Z?{c?s3^5svv`MLLehs0;&2Pq zi2(c4G&n-u4(V{aVYze|4)I(9G8Bh2kDel>BpZBSj{>6VS9hbIr~M(&8{PGz+)?)BbSLSgUc`LV(6n zB12c$$OD!cJ1sa@u@suEUC|3JOXqv=$9&DKW~Z`jn~7q+HE+WmXv&?(VswUz5~vpR)9B!oG#U#zUgfn68S|2e}^Q4@1^oy8RnF2vCv?SA#CBWEVI;g$>zITiTQM< z-;?C$3i)mvnmCT^IVp`aKclay_NE=wLkiX=NYeS54vF4G&WX0Fh*p&+eo6OHH}Q`d z6~(a}{jFpnpL;lDRa$9tudn?T@q8ilk%2gLX}a*xlOiU>>;r!hnW&z{q8d-jO|$r5 z;%~Yy2Dlj}W#PrvqJ8RA>l^c(FZ?|qnY+t zQTE#jMf_z8B%V^3JMF4yX{W!RoAW>&c zRE6IC@k1H5S=nS+OPLb_K9~@G^0n^>z0;@pSQ<9vWZB_QZT6EX$9?KMOQ4!h#c_~f zqkf)D6p{C_{FPIbkMsUg07lJhXKWc`Fs=`U!TLS7MCKdbA4@T%UHe10#g&3T)6B$n zm3`~Oex~f#ku2t|<8}77W;$KGdT(by&??A0t)MuRQ@irv5GtW%_}ca-gT8xga9QR7 zZ_ZccJ17a>)YItq)}N7%?JWSjrJpyhIWP^rKet6H3w)zWG`9Jzl*U{85mn&OkfC>m~=;^UB=w{m!p{}c~@ z+1q~7?ir|lfYx#6Knbgo#6!6>CO5v-xg-eWHHM*>Jg!5qXHS;W*GVsYd%V!diqE3pE{zOu=TaG56=7W*88t+j%|=m(9VB`_Q3{2UYL2U%nfEVo#3K!h@;{g0!*`!d_lg z{3Mf1FNo1tz3pk)iRsy^&64^BKv@#BQb>9%c~$XCl@A7w0bHE;BQNijKEIWlGllPI z($e_JKoMlkUZp1Qv9ub$fEIR9dkI(T)?2P6I3ico_A(gf!?y~nkNdh)sTLnIx3A`G z0y87X7MRR&h_<(-lg=3OgY75a=wh?8Xew^C?`%uPjJDL0_Z#gRu&V$y$ zjNXo4F^Vf(A6ZZ3x!0#B%*iUePnm1&kEZ>kz+GWFxP6e!LEzC$k9EGGoE+mPsIeTo zo+7RoK$iaFvF$X0@T7O`V_oio=a*60K756ew6D|_(wLq@C$LXPej=-< zi2q`H&-u^o{cBGLGuF2%#@1#gF02}^#x8%J%i9`Rn6YYEnSvYjcsbZu<;<)sEM3TX zIJj6P?cduwX*d{}n6XNkxmlT*$vPQ%vPxLFIIEgDN!r^w*xQ-exghd^S553q%~Xw? zY@LOK{>K62e1CfjHPx;5$XVozO^&Dj1Uhv-k`t*ONMe6pypZ>o#*)jTm(IV6H|F&mu zKR)ok(<0{oHj@8n@}Cpozs;S0)nelRKlT20sr~)>`ez^ge`V@r%|heW+Lr$dcRy&i=cGnDbv7VnlZC|C1#q=jP$( zVgJvj_%Q9oTP#JqP*_YajTCsqaBQ3=101GVoF1F&`Kx)H59PB9nujg!Ol`1gl{wi3 z;qUAV$Rp%1a^d3IpQu0CAU{{bLhx7)3$t*ys7mJCg78*XVIQLfrsgoFD-MMfdya&UJC0x#BCwB?|90Msu6x-6*vS^x)^uQ&kmNX0cMPSq@W zt!6pM$-z-lQW7jdf%$pz4@3l1!g81ZQMRcPZLAmO=H_OD@eS@L>FesQ0Fwgh6#sBA z+WntLurxs+5WrC*5%NI4Qqa__1vSz(nXMfVvo( zbJaM$_RamHzypf*UuRPBop%on*#H&`sG9jBIS~>f?dHZ~{Raa9;8ENFcLEAaJM?kw z5P^bq3>6VkD%k`16vFSR#Um;TisuhxI9hcZd8W=Q^;M^?v-p&pSAPQds|0|D8c*J^&yDl_d-f!=id@RZudZ_DL6m8}UgK zlxS^{0U`xJa)B}%P-OfwPZ5vhD^ls+#s()4R&^l-wK)^h)6AENBjF5h9}Ze5BjC7k zuRH;8tATO3+^;7Cj%yL%DcBo>`r1zc%U*@U1r#uy5}i_nn^;-hG8%Rx)2}^8#5dH{ zB{Cc4OZLtl#+AhU0@LUIw$1keR6nh9gIe`r0i>xzpnph6L?r2OdV9bAbq{}$Rl7<` zL*v5Tm;U!WP>%w@lF7~c_~V#b%3eSywngCvF2<<-?Eo7SgC8eSktXC5cHec78U|7A=X zNAv|nYW@9WS*&No6Cdal_A1UOXU@FxJ& z8zrd$?a|cGHHrk9^C_@#r}k|aH8VORVqcvD6+3*lYOT00Uw~Ya7oYiuALKe_kyan=Apa>dLy$p;7 zv#~*&ZC3E=nmW7*v1?3(BHJ z1$em%t4W#{FTwy}3`nWuM)<@$Kb;0f0!&~i%#Wl1b%YD*2F)`zUYF?+79>-*+9$humy@0@qYqQFa-l1h5Vo6<7aJ8k4R`}vX9pXGicfo zL<%DP<=WNT;Ozjn>gw_mRQ*+e@*w0vpt=g=4M8!ls(OEA^KYEZF2KXd&dE^=OkmI? zIhQ2!~vv)&+*0%=5~5D92#XkK34__XBYIW+DU13P0tYppKgHq{)Wq2kp3>{ZLn^^|WJ5K3-(tcRm6k@OQf|Fhr=IjL;sYFMP%o&dIStSa z*?U=$F${Wm@GwBUOgto@@@5M3p;`(g8*%X-%x0jw8sn9xkRY)or3f+H1Zq{;9WT=? zOX*~hYtLGMOxG>K*TA}Fn;8}@EiK|4Ch((*;OMv66-mI!)+~+=cP1xVmf1t`LLq#{ zn@R5n`ZBa8YA+apcYq~n$rR`QxB^&?mgCugg1j08IOXDY?{b6P5Q)HZh|4R#u634A_2cBv}Rk4Ux9(~}1PeoEW@ zFerZ%P(URbK+&+Luzeu0Jq6zkkerk>0XCmehh-kB3Tgaw`VVr!Sb@1gEMd0UlT!~y z2VGAbkWB%VA`iEV0&A6Bwa|g&>IIoB3BYoB*sXjj5vyBWSnC=WB(Lq4%!j#HZ;BS? z;J}prydBEbRhp#_nk1z@7nC*h!?up|S+<9JVBGHjg^z$HZYm@8qFv;J3`!{F56=r4 z9Xz2W0Jc-T5*8B5q%G1akA^RxbD%2-JhcNV&r&Vj04KvPQUz4oVLH&V_j8!Du2>9P ziBa$!S24!0*H{5jqRw<64(QU6(-cu!3pFa`M?J4$aS6V8SvQw+M^Tg(jnT6c ztbeIZ<~uLLQwx!Z0(}T5EF?uxsD$;#5ePoe7ndX-#YMJ{fyO9A#eif{TyO< z%^mzMsp;_UW!2TrW?y03k?f@O)R((H8=G3=b2`8~iJ4GBpSHguAgn>!)dzCZ|o7NkpMVzZ!Ss*F%M&`A?9V&kmD z7NjaUqTszqNC^_Kj7d-lC9q!fJH%s)guvfmH|kz0?Y?FU7BfzIg=Y~_=zYV6h(RxImx(4uB(7@-C~P7$Iip=OYa>b*K(VJ6$J`5gCHi%il^Emd8*rJ+ zHp$GR67xNSKGTPEqqU;C;zW@ILc?BzV#M`lAN!;M%XPaB@ZcnQKbJIl-*NV(axeWlTdFYypZcO6d#jfxKSa6_vQ@_#} zb_!tvP79JxrX3N_Ch~kM8nRMp@}dY45lI26Po18X!aycMH>*=@?8x=|uALG6e4V7x5nn;stznD1$iE)%5z)SD|Scg-1V$>Jucs>q*J2Sq@emTl0To8-j!ahw>hC;$jNVCf3G6M3)&MBg4>T9k<9M-#>|3_-0kQOKm$4t2$mguGxde&X(G*5w zW4myw(UE@rWZu$N2=7{72m3wVeg}xIU7v9c4i%J`Tu@P6g+U&jC97r%ks@@$R7QKV zp#iC~Lv|gj=9syG3B?*?j*yPi9me~EK_g~+4o)^u=z&bFY%h17p>lCqn`};VSuZ)#ogTf?BGxSSPWKIW#Od9igx6Rui`L@g?EE??5QF75HR3)0laFn5s zu2nw3+4$&f#XjMFk zfpITL3^)*Hpn{jSoQm6inRr8VfDyta*!w~>1sbjU9TOwJTEGaj))-Z;-E5{f^sm{$ zLByvu7NqoPhj41DH%^()Rg%~!%B=oI~P+-ROH>580m8odh;iS&FO$xeWJ-o~k6 z9e4E{)K$Z3ZfO}TeEGPkn(8?BK0QO!kCaj$te^u4FIP&1R($$VXj!xePah%GS>9sD z!oK(TCfrlj{ck+fUG#xeYxj>RpF21oF~Ez-6&)@Xi-pVAFtSk1bjjN%{k^eR7`Ly* zwmWKwwKM&jykaC>_-?5=@LN=(KY_ViCE%Iy!AyD5eFxT8!bJYn?Kcr09YB22iD-fU z9^mz!0Dc)86cXt`sVKC8lnG=xHLMg00)Ipq!@`+%H?5J(7Z zSST2eE-I1eh5lu<)G3UEtdB390FezI2FitESMj_N?WLGV&a1Gnu&#^je2$GQfG8## zenIoR!G^!AU7P&16DOujBqtjh;asJh_&ZWk&M(Bff&hn3@BEE{mFR*Msj!1rUA@K2 zRSpFR=XtDU^m8R&t<4P3jwYX+UtJ|sVJGZ>Jw(6QfP$u2?)$I5dj(wg<)SyJ4VgOI z8xxW+*Da2KICHQ;w+Cu#x=-;bAdvhq>@5JZCFR`@pA5^80Jk0RX;Yd;6F7hB?8(zq zOb{VufVzI%3P09!T77O38=%hlRTSkCrU>`-2H5!6Ej3a%Se^kw0@yOkRZmsOR=s5Z z_|;2Xau7nsAyp;7&QCuVyro$w8%20^x+ZDqj(iDZE98 zk*qJ8C_4(kgb2?^+S{KY?g1t4KMapy2W*v&@mzVVAK=c8lbobB!7jDz_VO7;mNo`C zI%j7t3YmM{7yuK+6J}>%oaf~H`ndG9=c2wWQ$xL|jf+0yb64u+{xnh*bXNy}F7H&2 ztj^fpXH6N80pxgCI_AnmsV?uHtA&@cI?4Uy3 z`ePL?VS4S1uhOvWn|P@X2AOwXo2wHOaS2a=77}oso$hZOS=j;m$`GhwK3?wuKHm55 zJ3u2L>lvVWr3-m>viNp-bj{5X_y}#nvv5o>m$z6WTABkWKNz$>Ku@4n(~HM0SaR<* z%@A%PI}}pZ>Hl0iI0>w#JxMQG;->l&V^W=+Vve~%-uk^Uda&3CW(v? z04)I$H6-QZ$~zPBBwl+`8D_}Kdk_-YCQBZ`EmYD_jed~Y5n~`3e1{I*S~bk7xpUKaJSj=sRNqU%xkpXQ?fb-Oqw+C6oc4vmGF+TJC}UY)xHV z=%dHQw(=taP^Yn+tD+V`T|zT@zBd{zKZYd=#H@kK22Ajmp@mX8oJFR?6mWI9U+3SA z7hUQ1Mc-o}hOoh;K)0gu1`~&w-j`iaMC7j0={JH|RIC={jK@|4RYYE7^8HmBJ^>QF zj>NrF%I4-Q@Ixs!{f{QFh50N9h199{zB?6TZ8wN);H|o> zUYXieY5@agJzWHh?%VT9>S*>l|HZ_+Upo-07pT2aM6|Vend|TGS$ORh+jp@f9b6*t zomG-KVDmCmyv;=!2Y$DItJ2&Gi>ZMkiJKZs@biZIm_j~1WaGWb}?$M%Sd ziaOFV7^nTMLqud$Sc~b}CljD$X+6CFh7NO`8eVkjH{1IArAF?HA3L;Sv{VgB(+dkk zE&U)G#=Z`s4^#p;bqAeR07j~6!k%fdK}$uIDW+BeVSvG|Y;Ao6#sbh;FE})!L$Py> zO`heKl|BAC(&gy{_*$ULlpE^&2Rij_!^i+Rz;#6#y4nRh3WJ}f;UN@afzqZP;=3E_ zRHzddO_CsWeq=~TYW^g@P3@We0|7PPJSRx}gah#KWhy(hbH0mn3xE*EB}`Mm=>6@* z_|-@<=N~FMBopOim!BgC?h$$v)-+yYSTbLW`w6LwFiX`*k$ixoXgvA^o8!8a zxi<9c3lM6`%?3cw4&}u*zYHtVg5Pn9NYvjglIwYaBw6Pr!OdqA4@v36;$c2+m$Jyi zex%#^BvG(#hPsQ<;1dwAt1M>G0P@EGBxRf1-1cY59N?TL;ds*VAup=&ZjYo5HRs<* zvK5=YgRL?HYI%U@!L<5-KKmU}V zXo6v~G+~A(fBeh``OYsbJpfHx;3JzZ!q!M1 ze}Cp+8Ceg5KMF(|h@puF>ccOxLC6lQ*t<7TQBl+uBLEcV-_Z^rWx&H|S3+xF_BIgz z%>v-}03(g(MCuenUkkz$Srw)-z951IgnU*%p&tRYf&QI8gcHt2x^R;|2X`PKADJN! zB9KvA4t$<1O0xF?45BsuV&cIeAzAXAqRXL|Ny*7sd(p)F>efwSHEuP+15s_O0(0Qk z3dI0>zquQjbTp=Y1b`4}%=2hmS1X2C?3N;24O~ zEu^ymo)BJyq?PDwP2JYk7SL$f@jGY3^_N3JgB6fZK8qtn>(*NL*xiRj6QmH5CMV-a zIsbX*H-sESewF15KN=e)QmZq7yov!!XstVlw{aK>1qI9QgmqKKqQ8g?i!%nX-cvg{ zO`yqTT9Z+y#!!2@Jr*Cg(nCX3Ncr+l9$1{bF-+Avrgb7CmaN^cCg<#0q z+2yyM#SemYX6+AS)`(*ewN`DL2n(6RuQ}@BBNI)>jlhkUH)SeZWKVJnu2WFs(Z)uQ zdY7#ck{8r#S0LGYN!*V$;8_B^f3fwP9`O;dNOa!*+MoVZI18e3f%)-D&EbT1+J*zTc~yQ?cLAHsfGn3;vt zWqh8LeGsS5@oHD9iC=7r$YRK@w)oW`P8Otr{|QREFSL~yLDDwBm5$PU6pqRYFm&aJ zsyR~TZWN15WbC6}%6z2U0>o9Rb!H}TiGhFxq<3Hi-K~p-ramYz&~CYT;QegRCeJ)! z^>>d)oYb^X@oEV>N+= z#upC@BYux~__;m-{b?dBFK)x@ zP(fo51qNYy6F&+S8bCZUs5Xx(D`U|)1~F_ZEoBh017t~{q{vQm3L>-e$AU_MLFC~Q zT^$|bPF<7hVBg3MoIDv=WjcPx!a2;!7#d`F$)4Ccm) z02{DOzzu~*-Nm&03Zx{H1z{fPF6Bc0q;w*LfTryqMTIuMw#}2rO`yX00R*=}fXdYO zQzh8ugV0hcU}|9z;^M-23VWWLng;~|G919R0^YtH3q94}Qbf|EbU}ekrXX_X2+;SN zsEm;4E69gOu-#Loipv6~@cQbC`frE!WPtE16+$jg;sXUp6RE8)kad~(lEloNs+wE6 zxYTUEY7#{$UHdBo<>{1iK)yl*H@r)6o9YGv(;%~P+n~!XT1M5dnapqg(}(gkz@RzJ zc>emHb#Y4{xlYNqY2c(Fr~7yjuPf5CthD5H^yOHe?w9%g%zMWpN9#)7YBjU8?wBF) zS{I=*mgK{yw&ZF34YDPsU*?4T{CMN>Dqu?p0+H%3S7{$AZrsnQcI1*wwgn!6d@iSM z`8F!^BN&c9eTUAVhjY8EDjBI~*K_}@YLk_evu&-Xgu+a+w4`KK73f(uz@zGP{gov1 zLj*gk&?FE)H7|&NG0x;ZxvG(?MFr0&1#qxjU*Mf!AwhH>MPw*x;_V%ny zOu7!gLJL=dfGYskvmHnRNSYT&ivSoUCp$2&fTs?W!a2+f|A<9ytgmlgEzJDK*g}sX z0ze!(E*J$MLIOg+XQ!uh6b50jiHS7Wh{={Q2m?I(+w092Em4XPQUGsM3nhx z`qBD22oQ9wIk4zAQhn8L`&;ra_?y}q?#N_Nb6vOoOPO;8KXwkv;$nbHWX0Q!Mf~fV zB8Hjs{mCUtlu3F?KGfnS&bJ!{zWS|+$n1@ z&;Nd2mcxI%n?U?`0@UO=32m`I%>-v>{q1wa&@vQpbx}a4{B7z|l2XiM3ANFfd}$gWne@QGTDC)od3?mz0 zIbTz_NuM!l*x+OaHX;Qwe=@J#89|+}vOvsvvk(Z{XJi<~SFU7#te9z6x@EU}Z>%Cjpt$5NbZiJa2Kc^_xX-(-idgEv(^el@~;xMZoRL z(Ph655(IOaedfqG(JEtz+XPpk@Qp;bHGO9SrNcFL-xO31mr;XyhuB|3q zDlM(cmpQiFBS`)Zb!^b=Y^bS;)3;AN;_s&Xtyq8~i+-brKG#gGk#VW?g2l zofV1_Lj{nJrt7pn{pL<6{Yc{*AzWkPdD!Qkji}dKbm#x^cWB;u1QYrx>&@YXaC7ZW zOd*T%f+8F>wXcAuLswJyS3X=s*iyk?gRmp`a?Xu$Hb7mou^7Mv~!|A;b z=IH`1+Y|H2CN`RGF^DY$=ezzVA%~cAXCLMDxRzhpDIffNO~{#}b;K9*EiMItlY}91 zcS%#1QIxZuM8J3Uy3=}8o;!_r?x4_W@9xz%1mDZo8v2yNlweZ0*iDw`Plo22$T{?H zgYYaM)8Sl=F)#qv>2BVrxF9Jtl~wPisl~r2(L73cC}dAa)79>gedvC2#OmtMzcEeS zF!Vqm(H%i3B_Wo;=UxbFzs5XK{D>hS>I35BM3&-y+JbA#tG>%qcZG4zyj)c6=E4uo zJAO;42*I7>jCG^49`Ck(JZ~@&`Q*_yzui7fV>qK9(gu=c8BU@?EAf ztxxM$6C_~_^YK{QIy~`liN}?e`ZizZZSteVYQ1mHhsjk~eMm|hH5nOH?yyg9i?^d{ zTnhv)+8+3pYVAh$Z%HS=9;tzVs#DHNn7yI!P@_a1L@E8XDjciNK+U7s;M^;nim0x& zRxjVDw&Wm3)d$v@PVQ4@r@_-(#-_UWi)|)E@!LPB4=l=;D!nJ*=em-1$`g-H-QqP< zGHo}02Q}51sC+M()oXoEKus?jn|$%c#dd4HEhlvrQd>Rq-cZETG~L`zboK4BLVmLE zjQxp_uiFx&k|qxsWV6jn=YCyk{)mG|P1hM?_U&=d+y1 z9RSM#;?gT_=Hb(*yA9SCJf5EPPf4g3eJ$4_u(cHXU(#D19i~Pd*I;BEEEf_P@9byB zTCuWt9De(rAT$wBGAfb$c9>-{qZ(3_rutF;&LIO`q5voBg$kn5Qm zpW5Bj`K(5i>3$%S8l855@?!`-nxmI`Mwz&~07Z3Fo+}#pbF?OA$J)_OMtbaAv8_fg z#80q}RKR}vVW+%^e|C`Y4C$v52>}Mq(FPeE&gHQQF;|%4)u1X7U#YQ0&i5P=^z*lc zFny&q-&fjDhy*_fJMS<1>`rCb20@L?*c>JbI>E8pp8g0avL^Oxqf{5~2>5C&+DgRc z#Ucgw%9f;v|4pIudV8n@9`Uk8dF~m9R~--%NlBYWPCZD_vO0(DoSqcwT=5gy^3z}_ za7?rI4)7O_QoJF?|Lx)ZWT&7Wy==kyY54tF-b5oxYSa2-b%k{_j%hOeTVWrUo4Z{N zExXNh%(tzRAAW^DsuE>8#ux4His(D4$wPz=KTt&V9gMf)n3z9}98+4bdY&GdY03&F z=k0MjOLX6%wSFyEgiTJxFaO3J06Ni*n|8c;`wmSSEQVFGj}ec7;1&7zk241gEBkHRT7-dmk*Keb}yH-tyX=Tx35QN=P0nZrQBC63P2zW+P;)92N015yH;;rEO!%4C#w{>HZrnOiuey zA-5X(;*sIxLZ_m4)EpPfl*zF+npM0!Q(p;QFIUy1CG;fw3lb!Ie=|U6eB!5`etp=N z5EjuvepU7eKDoP20qL?fK-^#*Sm0(M)ap6=ImX6?fW3M`q)S^DokE~8Z&)yoN z$axu?qs(8&#i&&wV+FVPfv$;*ae;_{upc?_EtA=4ZKjGrt6I4iHD^wof`%2DuStHI za;v$(rrCB>Oql9`pXP1RN28otX)9`WPPWYe6VHQk^ZBn@nwkxcysynSQ(i^OP@AO| zmgeoLE(^%YSePC^X4n&Oe!)fAR}WL>Bwp!QUKU|yJ_6o1$f^SU4-|NKa8E%INN_uu zhn1xjBw9%IRA_meNcRcgl&Bjvk7IvP({T-`Ua&|E%UVO4=jFuhrBt*^_YUW9miCK+rbk2SzZ9i?O<()=)fmz02k z5c}h^T7KRThn7gs$De9FeZFJ7Tnvzjd-TZ)bDRMQ_OY3$d-My&Yslc>d4rS5{HnpA zMzk?!u|g`rLzlUTAC^^SG1mEI$aS)!)gHmT4xwGtLA}$hqBbNl!cMj6H?R5r-h+!3 zVu*H^1v4Vj=aRP_=21Jj>Ym|jTQHIuad;u*d_Xe==tA5)K70T-I>AR5YnA^I5(BsL z08MR<4U2Fi6>csrUkkT_J{?m?pHdOB$dN@%!fb|43^`XB zVAMmUW!|`(EVV()u$swCoWjE5)|^hO7P^7z_=$yg2hncvU0;phNgPx)oAe}@Fn8j& z5)~Qswbbzoy>vZ^@o$)VfI` z6(hFF*1gp#$Suure>$%Hsv_AfqW|^>+_?vV-ZAh0L)u%%MY;Ctqf13p6i_K?0qO1r zY3Ud`rMo)@RJx_RyL0Fe5m36jySww;=vwdI?|%3BopU~iKOA_RdFH9RuKH&Af0yh# z&oYE#6~NC}r5wqipD;Ld;&n;sBPai5Y|I&&a$`C8lq@vWSGt2n6Z?w1tlCvPi;j^f zCT==~p0VR`UY>;tQ$!!eHk*yje55m_p`=wMESo0*PQ+azk?j?NE{K)}Y;UT-J}+}{-5aJNE{uCr_w$AK65ed>$jZF0<`Zf2Bp!9qp5^C<&f>(h zQkqQ{$0t)nU51-}N&_*~OmlWW&L(_*dS^UAO}7u-ondoz!?4|+{-GfN5&yR40TH@z zQ@>tt=v|PCZ|*t!Im-N8I1MQV=3q1jUB5dm9vESzIvx}}fM%4zJuK3~Ho$3iYJ>#( zbPwVX^Hs$;H)n+#;uq!zSl=}#P4b)1S4u?%NN$c!+g}%gaZdT2Imw-2cO;h7i;aPe z%^g=$2WQJzUf6oKRe$=x_m?=Jgf*ATvC*>w{s*gKKmvzBrTkUt+IT2C7@t?u#%F2q zyJs^sr(7$cpq6TTWMjH90f)ip*K8mEThnNINe}E3;^80+G$IKFgcjM}ZZ;MI(egY} zlALHt^YA_q7F?EX%5e90u#(mq6fiwG{3Occ)L35f_=kK?5LpC|H^LfSKtKEC3#c|;Lgss z45C@kx$hWQFD^AJv*N66OeS;sM8n0E5&9%5YNY4l;}X@2gC>xXujjvr<(3WwTk)-Q zsZKZD`EhKghkPgf`dAA-BV5gTxdQnKs!tPK^F^3g=TeOE!k*Y@NsA`AO0z*{AZyUP z-${LRQWP@RCGK61q(+%&V{fU? zY)m9nn;G*UJr^;q8@|4Xc_pRZ^qG&B@j)sV+gR>la2)NNU-$KaBh798B3W_nvv6~W zKvDszJG%P%aEa{6#MXX^L6cKbRMd`o!DQ&H;n)D=iSz|@=?f3>I;BdSdyZjNa5I9C zm655btE+1TBThg5a|{|LR#v5Cs?r4R{9l3MSO)CR&r|wTjSoUOD|qC`${L(wM*9q1 z==qFGh=?3<$a$^5##iN@!PbZPW@_}t!+XSZK7>Xi(lO1gIYwa;njO`S=eiJ|CXGvW z^wvr%qsGMk@N3R;4Vi;p=1V8E(-LJQH~9aUOAFMRYq^?>Qlr;$(P{qn^-BBIOng0= zf81TAgLmAOw3b2lwDoj}wj}8(b!U%=)E)O^1U;jNYW?u&(7@zj^H4X-Uwy4}8qW~S zSL6a)WeHnkOJt`Q^v$JlJM(ne$PAa1bNG6%FHW9!kls!mYB+r+NpUEQyP;$I#NK2* zu?8_ap5sQi!<^tXk2f;T#oup?g~WICvJ@(KQ}WIff&Xe{&%XzWEV;e)m{`RuSx386> z+E|zoP6*dqX$Zg%tj2?SKoa)s*)yQ$g`R9G2n)A^k~Yt^OKY4zhnTYm50a2jV~^I? zthJWezQPtvAkQ<&Eig8XK4*Yptn3uz_ZC@y%zDcnl~HhGO=PyYI&SXU4lWdO4-#q zY~B}>Zm9TrT@&|RH|jnE!-Uq8pr8!HlyIL6UdqR*MnA2F`<*m~WX(N2+{Pm#+v^{LK*$gESmdHMgeFjEvl?g2|MuUM>sDyFxv@Ki~JJe{eJgb=} z_UTjikMe`5Hjhp9k17Zmxk;UNIP7+IU&~HaR-dfTY!t*jZ11Le#&|{&h(BCB4ONyF zalP#4DU3T3L7cYQKmW85Xb*$!w+uk*u4gJgAI8>N%tk73BEi9Vf0H2fMIgFzn?ZQI zLOH=Q2R*NGTIxkDiz{%%>mM0NW^wzJRl9y6ZX475nuk zriwA5@3vXkWf4j(P`ILCVme=)?f_L|BB%}J3bd#|e@StUD`krt0Hv>7;gzmkfo%5- z7me|3%zEosX1n*GkKyH@yE0-cjEcUfRp0JmDjZ;9ClPYjqbslw=HS! zf!rk~o`Sm(K%pL;E?{fAa(a3`;au}#7&U@N=3t$@siWf=;3QR5RPvzCPxb)wBTw`U zym7IQZ{dsQg}IA|$DQSH3PRC5G1z4QY5wuiu{R+b(Cc+=x3+{QCCy}rAphPq_(B3! z5~)NZeSKnkYan8eJOO}^V42tH!dL(A7{LwzLOyE)cpPLDU zd4Tap?N62rB>XyHMg$r-Kzl)*c0fUnjEwZ)QiFmDb#G3^K)rD=TheNFH`mqmgoucA z0QIT3yWr;8?B779-2RnEG7k^WEcjS!t1iHmAAbJU(^CXO{lQiSA_4OcCVoI11CW1u zlSl8(e~N2=Fnm7p;{N2w1`9PCIf#k%0U4d{4~Jw3x*9+f*MTb7yRqo#=s>j**#Ok? z(F?74vk+)X0P{id#O)|h zI1$vd;Bh^bc>9u#jZFg7`k0+f{$qq7!?p1c*9SH00KTIy4R|k57Ly3`0R^Afmw6^o ze(i3my`uxno~{8g5sm?@4#U-!TA1@HZc+RXK$#sfX8ETzjhL( zCqUx^N+TPDOfM%n!BsVia6nW5F2n$6wZk!hcD4t{s#g7J5>RT;Q$2J4wI9$E$+M7ohm>vd&{_tox_dFFiOR zLCwmFj`No_XrRD`0kG-Sqp+?R+UIaz0EH>82?~J?f?tSB8eGqM2M5FdIs4{2>L^f6 zVtswRP`T`3$JbY&>?|;SI9gk4^Mk8lZe|7mWn$iPz!`ySn4jxrd-U_?PjI;_=mE(W zND1bW5#m+-L}pG$&H=?+DVzgqK(w?*P6p86K< zzAw5!=>{FqaVT9y-B!v+&;{8(`*Pm;SfrCWg_qAfag_trl`#$1nRE=zm67@G^r`zn z-gtsaS5xF x!3L+HykACP_8sI)@9q*_PY>Xp`+PY1qrHB;D=tS242T>pW8z7gx zZ|MJln{%aA%j@y~fu+G2{0(3`^IPWq^!lHuwX_kU@Bh{rfURT@aQ~lvkzxD0S2*+< zwfgDx2h9KPTMgL$^UE$mR*dOrDV6>P!~Zr835NaCytrg#(}Xhqw?i-L(dUo*eWm}c z7mE4MgPbelLR{5fLAYn^z>Nv;`I~1*?#Duk`x~r(i6A1&h{K;|1-vof@r5WUo$c?( zvRMrkfx^ddpcv1Q9wY2klmFPeI1?jtSn~WCjuOpjOOpY7C$iEfX!iV77BVC zpx0h>0<8t~HuvNp!6fD@+{pwHaB4ddUbit_QtPKoH{; z*s?vEWVSBe{OOgQd32h1itK`wo!2WwruBAvb~+21!O^LhYp|1`pvg?RD>m=>dFasJ zU?9gcSOlL>3`<1m>ZCJCcD6}tg+0b}kG(TfK|tHYrAp>pZ!kR5H8cv?W5&JodB(zJ z;2&z+Qy!IB^iE=JGU(#fUCb|LC{0Wddx45|#$01!EJUiqD>lQi{UTxbV=46~?7=x% zy(Di(J9^vMWGUvE*D10b09aWT)-sksLtLL9}XF1_tqzuUaO)?UMVM9C(vh{woF`U7wBKCv1)f{nxs259) zimw1-MspwGkmQf&<*lcq&!y=<9+*&UDb;#~1!Z9z*YROm^@?4*?2RfzLE*RKN zrID?^$G6l3i6=cx*`J;DIA0d-nfw*B=j5H_n@Ua`| zlllc{ovEquDjIuIOxeuU_^UZv$~B3+4S87#CJvHb)2-cvma|78JLF$8upj$Y zRk38Sd;_HwLFcCECrpz4{|+-Jtc3vK$$=tQ- zdIUhrZ94u9D#ua}vHUiZC^cELT<7ok2KHc+-9ORZ$*%AaH77pW;Jp1N4NA&yyNo}i zeOq%jo0G~SsIgZuh97dtPLueR2;ICZ>ZW>YYh^0+H(>AIef|Rh;!EKleD!EIN8jMo zTppqxpDz$UQhRwU`N1i&`==&!27C=w@QY3?OrH)ChMX{K|6dK=@F9xbdmM@|3PhOo zjY^FitnV+6=AV9JNv<#Sq&Uyspx#~z&7X)f5FI&f;GwKlZ4Gleel1S^tmca+gH8OS zS$85$&ExYYkE2azV)~;~*pRGc>!f{Gp6>39k5H4d!&y5!CUatIkxKL943_srm(*fv z<8Yb>7n=j}BP2BAvUx60;^QjT>%OKyr;&{mzHZ~3WKSYZ-e&uo^zNUS4VAA@R$)8i zoGBNfJq4?$>%3ylFSr(6d6GJ=*7jI}a(2eDZi4FxkdvFfV#d+FER1C?Q_#hTOY^yO zNkH$jDTR@za~A~U=eyl~uv$)-nY(2x8QuV*H+NIc=DY5JNx7s1#vrS5>YV&^8}4J{ z-PqHWPKosqO@@i{$aqyL8e>xv`O2zp>)p6(+#DLU*hmwF>bgTz(mROG^~$$B;h`e4 z9CPzHpy|;RecF(tYgnX9Ycfkxgq7|t?n5$*#B6V?5Y2P0A}I76azYy_lpjeMJlJq5 zUnP^Pz$3z`qwI0p(slMsv=K{Qw|G37#fFacwDF9~llI$2mPpC#A*bxiIWYlQly7u^p7mGsbL{ z%kDNNN3q4>ZE)pwlz@8536M}lG<;VW`^uClR^+2P*{R^CCC+%h%9>>?SC^T~^hi&* zDo=*KWKfUI!OC7bg6~u?k? zk>G}UTJ|iHK&37YuJ)^n)R@esapd8%7{11YwXC>r8P_H<;e~Rj@|S(d06q^OxN-Id zR>f7cN>F|jY?XHPWFUZmGR->?U#U&w&$UDtkZ z5zQ0cV-6>it>Xoug5k$HGpQ5@22X6MBt%hsv;C8?Y}g7{Kk`3b?B^Fz^X$TSN?f9c z;8k;;^uRYj3__}QrWyi}5KE02DK&wc@uZH>xwgdE@#iLwUYYfX74bT5ZKTC!HL7By z+n;$pf`;tshhQ_C7Ubm-&l|c!>@VWtRVR6&9zSn-3NRw8ZS}^yQ4vDRfq3}YjsTTY$w;qv^s zAP6GHby*IwXNgFIJ0T_kJx_bFoI6qQr@#(N%>ztU!@#PLra_iU^(@Snx8}y~0io7~ z>Pw_{5~4&AB4?h0+;!);(GZa{^?Ez3_-re!5Ev6{p!kQ#{mN^Q7NFl1d5co7IC;M1 zh=3$(-qr18H(qC7FyHk)u65xBCW9Uj0&i|Q_rjU@T?iB1*@&sd4CDkJUT`cKgFeTk)&rP#&on8EN^6p-H@+n zX;i~N;ccVa66S4l|7IPfig*;@u@ZDPld#s&J^8H=xpBTCN9d}lb8a_(%myi(s%P8? zN2%ndHLKQU>!5^YU3a*q1$U9Y;BKx5oI@e_|4+sGt$@2I}BTka2xp0#<(vaRQH zAlbKCDD2EQ^$i%O!EOL;jt>!zoC67 z^4f42#FsS+W?i^5xY?!GUMBh|q4{}VoEVp*&X~{~)Z^^U1w92J*Eanv&G|Obiz?(P=K%32N9 zw%5JEB8c|(RT9`$Zg;;52&7Y+3KUE6hHkb-z1~nBFVy)pKCiTFE5s< ze|W`II9spXd-Rl1UM(iD)xXB#Z!}EFm9Ca;a(c8H9k=o^m*C$c zCa6UwFgOy|OGm!{*4N$r62Vrna({5>Hi0#aR`bOIQL^sdq-(D3ipgScHz}FSyBaWW z(6iJW$n!ajWgoR2O2fUQPMk)`pX;7BIW9yDH#lT;R#72j%plalovKH8LTS*Y>G}GU zX?eNDJ_Tjbx}nFELP-O*i|`x0M(x;(^3*~-Sqn$y=uUIxV4&em(=(Mm&oNwhwdmL zP?hL2lJvje3menUJqxHQ0c{>w%ExIQM!Zn}EZ}$}HYjxhqx|FdFjfhgNJ0IXjj#<+MLEY-d6O83*cL5Hc zsj#%-DsWS#+4lAh?c~D>z=|10;EiVLPJsPPbn6v>aDW0b9WQTvYwOOA>>krW)j&9- zrppon5YELOWq!8A*5MyWiYXv|;pwwy#sJmPOuI0<7P<$3gxshAmVYhWBFldrK)yoz z8x=x8#Q`K#v(1W_W*UfUNGl}0hvJEkm&_Sthb#L)aD)d(eQzMxW|tl!@<3`x)cx0n8$NWP3f9u0&tGoTE%2m}ulAvT|?0${TM;P?SdFDxt^h)x|Y zUiEi=PZkLg5s~P_L@^;Y+f|7oRTvW!Q|u5>{{pZa9hmf00A32R1Co-OZ{Zw)R?%aT zhv6SiL20?sNB4h1-G4*p+vJhHWn~8dF+QqW0Di)=^#P*K??0NDaOnK-L#I|PJ!`pR z(C;jz2X+I12m|92Na*+@FBY^m_!DXqGmIkl3IvK|(JTV!TxfNMLb32^Qkg*y7Be#p z2w|&@hYU6bv$~hwOp6E!d3UXdK{1LWe#aL1>4f;ix)H8#Zi;amwis(#=1IgccysT9 zgdIR208WL~p!*GyuV<*9q2bYmo1!gUb=tuPV6r~~F8wq;0Tl?O zp>`%_U;w8w^z-M_4v^UaLRM-)lms@`n>S=fJb$42^wRs1%yVaN7!86#LV5$xD1j0C zDLR$%JfI>L7r%P}L%`(txS)v05*szOIf!Qgwn2%0uuulZoyCQP7OwI#7z~%ms2>dA z;Jd8rfKs@ore{zODMXQ=)g zw%&>Z%4tizju?Z!6@0hU#i*34bKg|q{!7ap5P-14XYrqOl)O9ukRSa|W=mZ*t)=0` ze<0JiT|=O;+IasRTP5_5CR+Rt_^*EM4|YFwn1Wv)p|IVveH^pdrSuBe1~}CUmQxwQFO3`)zZ|77 zJQ(jx#C81srfo2c26F%72yDFFlQq%*gKgVWPKH1FUrs}5of=I=Ci~Bo`4H6y37@3JIiLAD^gQLleV=~V*KmAjPa$e>K$&*d|dsY0Qf_)bXT zLfNw}w_;*|`6GCZ6m@shv74Iab_F@FuX+ZCYU&%tyfn}!&OT75oCq?Kjp>rr<;NFt zSNGT*U1Lg)=7{OQI5wBhP+;cNFR1^2CIQU8BK)r;Ku>q(k2iDBK;AaN#qpX-`+ChG zJH#Np_6B?>j%6Qd5?aKLJo0BOA@-_{*d=*I9l{?ZrPypgPBeZ(iD;yWW-61RVC01c z%+)y$`6A1v6IPVsaM{JCY5!^?@@gPllcULXXY(znCwFyOZzw)6r41umfBiTR``BKNghr@TM z8Opep&u-A}CdTEmVX$AJgu^^CeEdQjl986AI;9*d>nr(1fCWSt)VN)g`};o&@#ZHu z7TFptx;JzV0UQ3pxg$czkL5`1BSlBk5vTXQiVxGQwg-b5$99k7nIx*l+z(tfLIlvv zJJU#`5yV8r&y*{RVd6W?5Ru&6TrRf@gReO;O(BXi`C-f-$+r|;P~K3B6lcW1s+xa$FfT3$sZwRy29*D->HpPSlQd zD%-~Pw3~~g z)Qz^(V0ZuMi4_(16gX439N7EEWwf4k$?C19BN8%Bv0}slk$n*2)mNtp13a%dJgx3y z{0g^(pWT~LR-3leKY7m=M&t0{>p0v#f4sbGyz5o7b^4_j5e_euW!RGqNK=jKFS`XL zC4ISwR!6HnU}yv;Hu{{^)z$d;_~xMxmb@N8Xf7~w3OQvHlRF19=*?`#RiD<%!s26K zWUw<;CUxwu54G;cp&6kp@S}vFabk1h?tFTwkBPE}T$2(VH&HDsSr+&I64DQfQz#M> zFjx0LFXnG&qARyuE|PEHQZ zf$SdId?sk%rsJI_5S0)0nPmgTg1QWFMHq5=I75O0oG#}_RpP>CuDZ_)L|IprMM^Tg z?X$+$OR}=_^I7ahd9ElBBl{6GYHi2~34vdRr`xzs6RO#WQ18&AWw6}n>Y$LPie~bt zgIGMuWNCDF{xcMC?rbANLwo&cjKe-gmtsO$YG=t0AI#0&*`#5wLw8jB7Fm^)O^J+vQBK-1ZCV|gErKN@B z3udXNr@$fHyT^2B@KaYLp?q^XaiA3Pm{I`^%?RnYBEHY`SmwX$;lpBH{MN%)Mgr%L z{ZncrY?&TEn>~8b z^jA&{9tZ|mird_x82EJle_$BoQ~|?~pPMiC55XTm)9cYw_IwkX9Hn=m8;mcO6u~tH(QD4S~wYcWbkR$5O$hyn>sy;Q*nVeKD z>^Z_y=Wx#K#;7*0S=xJE9C-k7J(m`REDVHS^gqlW``ZM~y#2ttD^sM`8Lz#N=Im zHD2vnB-Da=E4i4PMoq!u-D^aFQs*hn_}N7*8Uyu`xN733o>RW|hg>#!8`nEob}*tP zlmzw(2ghQ$Ws2(JBv@{f(Erf~pzs=HF}+m<7RKnPJVc~ZSqW6sEeeMY%Q3X)kLtHH z>(xr$JZ1Ud=jVq&MxHcShI^;tQ%_Y&xS39Q=9&UMWoNWCn3r$|i&GWyfoE*%OaYZ< z5mgaR57Ub4U`~yFrR?hwaX79A-@b=`k-ib`#<-#Owh&)lSxLZ4^UBW``^;XJcg_6t9w)KteYAG_X3O;B$MdaFNvx#)MO4AG!Df!7mI6Kjje2HNCW`W!ws)0OBt?>K z+aoTCv|+QpnFj97h2LARn(tD<6OzW_0R0RaI(-*J4rJZrqNww6H# zN33d0Uk8@XAo}bO9wfZRxYS?I^AZV#XC7%Nfh4El*rJB4Lt@9|#`AOXwf0>Y+2qS5 z9_;}R7b3EYl4|d=( zOuP~`t;vHYgiYq@?{gUDOUtWCIYIB@ZePSED0!0G^>rd;#* znz1rg3-#8)n@hyEqN4O~g0e-(JOy9xuX3GoaC;a~Nt#^7bNjYVG+S1KkfXhG|8yBm zI|Q9dw#TAjenoxu%ac%~gbIVp*tr$ICG?1a@>nhQA-r05eDf0KA(7`#YcRW`p7e&S z4-It{ajF*)%%2kyhB+1E-F?8tO#%+%Q9}TRsMXn#dmuicCcl1ihY6L04F*s&CB@3B zKnhB-Zi~8pQIHAG)y11M(7VKMV(f9Nu)1=IhM#v;XEg=rh}z?NRLZJ|Fw3Cz|A3nr zuV6EKIOnMikwimC3e!;4&&!BbkZYli7h4Lt%tu&D?y!8*^YwC4jeszVCh2OOPp;lt zAi}Q3xDe4;gX1hAvqDuPkGf91o4pT;F;T~#5~+nsgisuUTU+_P%sa=>kBMkJ}Ae|%HhaNtKl zUJ&{9>$kx71x%SS-Yp&1uP>XUaGtRX<;E6A`#jvGWjw-2Y3$>L50ppEtTk1G$QHXx z=%$pmDcHYevu^ldsVJ(P5GmZ-3E4F6z|I&RYGPqVdCtbe`*f{z;u?aMR2S{#*dX+op^9js_W_$6Hx)=(~HeKEtiIr=_8xxnd0>BPZw6 z_R@8HzzQ22WKdKb#ph*VsTKq>KV#D^pLMS`ot+8Tqu{vakMu~s1w}>BW4h%SjQ*@Z zg&XqRgPX#G#{!*IoS0g}Rc1smJG%LDOeA+86dA+pDH~ip2x0L-#Fmqji$5W|+@4@mQW_i8 zMM}fw{F(Glw81Xr$^j>$jRW`m+sJHopmS@%MTf;SepP>SW%*@67v}OJ87Yzdb;^}8 z1}?dZb6T0@lRCEf1HxBUL3<-Y0Uy}#Z?l_Xx0j@KUDdEAFimtJcP_^^`&G7C%!mqa z={IUi7_qQcvM{1%oZ{9EjB|^AKtp(b^r}mV9qx6Ml1UBjL@FRA2|{f5nHlGpgVB*@EpTXjJz%LL2q~nZe9`P7 z*7a@hTes$MwQ33v-X%P|5{=e3cv`Kxk2-_DdU|lN-Ok_YEuNRf#Uav$NhLB7FWg*Z zzS~Wb5OQ|@VAany_iQ}rnP2GLq_!jHC`bX8G;z;4)EK6v%g> z5(v+J(PTk64H?-w@E0Dfv09d*V_;MRmK&sUn@^OlSZnE^@Ub_p6h*sq^ZP0`krTPR6me~h}&OVK= zbHE7ukV^z1bv;R0pOF@<%1RF!&YK`|m_|gtvP$axXiq<^y13D;B!M2)^0AD4`pSTM z1QUvT1}F6T;Pv97jvj|@y6M=nVvVvytbp>IwIH^`{S_|(RzEm@4hm>~{SB()ldwr^ z^U%jXW7ow^^79a_b`F-^7K(f)JTzVxSo#tWNWQ+RX2_m5c^UGdw7wx!1>zeMB^A5Y zw{;Te`lQOLV#3FpyS2p16-%E%7hdXBo@R4R2Wc{!`AA-B;1p5`zIX3He!LGvDRKVf zvQ00Yk}9}obylX6A{Pm-p73&@4I`B1!~8yzNfJz;c~+CrIj%x(5pRY|My(C{m-Wg| zIW9h%!}4ZgQHFFGiHDzGmg-;m>xy8|UgL`dWn^U3TOXm%)~Dvi+HnN8ndH`0lh>-2^-H8K^92Y67(NwHtbSk>%0R)KRfX1ukO{pWLxQR=Qu;v ztF%f~S}OZx#PwLH@ycn*`kk1>L}^M4pE#^+VLw92vV=E)ii%ofL*;>QmT34@Odo0# z-5DSjiefTD^4};}eZH+}hl}&&WYo@QhTtA&$un(p~&1Q`*5L!pJ)#JC1dg z{28*JO&=$xF7I4H_HcIh+uk82c%*!s zT?l0N3bWZlt8c}y6?9Zr6?X8Y&Cc`ZlQgpezo@hJ#Veh0y3^MqU$A@l;kawmJdbp^ za+z8HigS>%2IAHGjhKK48kf`IXD5Oa%vXXW1+WH}CtGCMB?Sc$k&$4GUD_k-`u?3C zun`{7rKNOX#S8CQ@wH5fh4P=2;r;d3CnOizy9(^!=%}dL`g$N)@Bjd>1j!Ki85;vx z==IdLP0mLKU|0c}J`N7k=w=|Fi!W|(rk+*rg8-9HI-<7Fo1RJ~nDiDJX~U%KU*P9D z6~vMZkB-u)wcl*ObKx}uPX(%gppX!(o1B#NKHZ#Z@_jUo1_d$k$ad7A!=UB^-^$A4 zj!^u^QXm=s@|Q-!Bd{A@WF*q%zA?BbPdM4w_Gh>3Y;3+SSn=`kQQJCf4C>D{wa;OK z1}b8^;L$lXwsXP?aQwBM9Vp-cb|vS`1O5Hu*sK?Uto)-d9N67tx<3AN&t=dDNy(GL z!^OVT{QUUn=+hBmkh>-?FE0_#FmzRd z*uU)TY%nJWa0d(q^Y`}$Q8~a!i^pd5cKbc}5{`Fij@KjQ$h#mrY2WZ$yvJcEpXYk{ z)d=z3#ahaJ#=Iqy3CL$!LQs2OiJ|TS=zp<)x^BD}v%QNQV zdjMurs;ZNh883lj#mmbJOn+bcYh4>70k4Oy?$YtGU0UR#p`Fy1#TOuA#*gKG7pL)%{Y#`~5aEqoGBC=N#2xy3sX8EQ^Da zb8osff;CDwBkY%6;gdoT^-m;H!`n9ud^ei#Ad;PG03=XlX1+r$Ox=G>{RGPEe3%KY z{!6R--KDQ7U2`?o)?NS>9ZqUe6ItBV#ieSHF{ikA7equ(Zt!}EP~5-K$Wf;C0eF3i z^2D85@uf2Pzik{TF={2aO!c{ctpD0UGGV)aP5Z)v^W~e^{iptd!@2+W{HBEn4ZOaO zW$QPRf0?^*zwv#&Cl=EEYi{a5?%Pti`)&QZfA;l~B;-xy!ppz@?C`&~o*%G${+MHqw!leo~^e-3{Uq%V&?y#F}W%CoTV z8mZ;xB}k>J?w%qP3t$57zGqhv?JrKfx8G(*2WdJ9m;pUnI_EA=O9SZ9o)WD{7qCZ?*YYG-E$>NixvU;_O7 zz^`Qhp1{35>9;RGBHka(_59jKGw=L;)VpWPIw*GF?tTjvZQzkjjENB;i2(i9bJLgL zjemWA#>T+NNJK~|qXVS>0M`Rdn;FX#Nc>d92mjswf(h&9_LJv_cRKzFtd{pYS9&sd zP78VNKU^u4kX{OiPe74@yqzB%9aoo^>GWnS^~J?Ve?FdAQ}dMm`k2w5m zSJvNeu6-XOap76&>Jqg>hjP;5KWJ*=`FaY|-ye%n1Pg2-x3EyJO!@We*A4W*&Cu4? zR(c8k>yyEJwR{uryp@9k$kjgwsj{LO0|4`h2oHDI9;g5K?Js5M{Vrarek%hGC;|bW zn%dela9f#uTdf@(=c>%He_!fU%ya6fJ!CdLeSI(j-5zfYv0Bci@&W%C5A^a|-F>t9 zME3|ONQ8U#ql83ILeWawI_&#}mD{hG6Lf27X(*aix2v=B z_F@e`avY?#0j?QP+Uz(|AXn;R=>6b#%Q=Z^1*RhVBG?~*u?mb`Qw+3wBKoqq^dJVb z>@p=WDk{ob0U5MP0njbY;adR%-pKIq&tJa|+JUU0AV0rKUy~v38r+&=7vRbg&^2OG zH8-a&bh*Dc50Q%Z_pPYt^?tsTmhJ}ksA#CXwzF1q7Nrp@Fu_8? z-6JhXC8S%cU%xt#b=;6=5E~m&e4}EA&166>T1Wq>xFGLoQ^S$u@=la%3R&KU-!MV` z!j5*Mhla7y@zq8Vcgt`b+qBWGpaC@|E#-~zT-=uez6Q}nxG!;c4`H8+3po&c+b&CW zTu&0-$#SBMC`NJBHo*=Vt5xdCeZo4{M;Hz%iu&ZfUhIA^wjP~n^p%?E<>gr&_?0>S zHa+u2ps3@KrkUOfp;(8(#Kw|u!1L!d9oZqfl`79sQKOn7*=bH!PPz=A!VyOCJDj~? zvO702b6dPRhjOxPtZy9IjLIvap)aR2;|abK`%eDhoe5j&Qi&xZ+w{x~Xw~dENGxyA z&_Q%sB!P@`yT6P(JxdsBhVwz|Ch@Pog4ACmSfsZkkd7u!Fx$?yZ#@jed}Y(# zGLmC>cc5%$?Q}yXWYIAOIlZBEq0gbEc`Q%H$k`@^&rbEj$jN9n4))CiS@Fdblh-3rh2Y1K zB*y5=63Q>pu^K#P_b$^gBa~*oiMk!YwWUJ%X$sp=;sH_Ng%gb2%+R)n9-veX(bVK+ zvb`=3oD|j&OpAR1uRAoUzZ%WLiHsxSDROE#*Wlh30u_0@TPfjwyK$Hl?%vXwH`kB^7|Qlu1y z$9zj5j&ioWISmx>F@2a`R0Kp@d-rv*u7eL4uHD_G>c;RZunE(64c7EXI)r&%$Hoa0 z_o zuaU90*N&RMY=`b?`8*AAAuZmRHGB~r9R?Ysue?-`9C3Ov|IVPK-pF7|d{_$qwOnRl zGi_s1B~BYo(HhfS!@IjpZd7xtz2_0UXtQn~%d!@P=!{XIjm8Hp5ZD^}uU^Ai^q79Z@ig!QeX9Weik@M}LDCmQ@K1bP7&;mr1>I595or;pqtF1n7$teZi#OZQ zr9*Z*0zS{AZYnp@p80yN{_n{=IP2^$r1%KsTM0r?cGn6#$_fj+K`#8r$O#CD1|diQ z5xb@rWCXM0WH54q1Tpa94pdk`A*Q|O@Uj0Ls=44ONUx0d^?g#eUhVp=%X89;Rq5qeEV=2~S-FL`JT&|t4IZIT+EYV6 zN90q84OD-T(?vliMngpHlvj%O{}FX=&%_}ZC65)5mtUM$n2wH*O-xr|P5NBYocnV` z9mnZ0)`S!K+YdID$yTpl6WVa)G(1<58wpdA>wrg7fUQI^h0pmsn~l$Qczy08_C*?B zOF!#Jt+UjUBy4>$;T>^6Q7q<4lzv}&bG+o}r2M2zH6cebYc}C!a8O=aP~0oA0z^Bs zj)n6a#r6h;GdqmDaCfm6N-_gskl}CeXpt~k4sL>N@e4*?L9{h@J1n}!iSy}UW%#6Y zT{D1LnwrHVVR;G%@YByVgvgG)@6c_{6Ohz+gqu*J)o2tKAyF)T`}L!?@z5KH>SSsd z{_D9kCjWO?>G`9|c_^4*IcU)vgDJ&#$M*yYXWpLubH@@GU|siS8x8u1vAz%>8G;2h z84f+;(kPmWs%i)(qt6*530O9QnpnWxO+4DVw)`sstmUgLW+);(%3&fDK$~l(PZ5x& z`s*Xe7uDAOtP^O^r%%_s%(@WpyaFw1_`HKGFE<8t)osg$sj~L-2V?8cbq1~0a+<0? z5b1a^Iw|w74`+%?--?I|!Hnrg0uXFGtjh3F=2Ev5OJ*MlEw58hcPaH-QB58FUob2W1;_UVp9v%MbYO5tP=rk7FC)s7kkSpF3nU^AF&H#(e%%UNn zY|Sr12_uY*(d(pOnusqCz(ONd`LgH#Yb3P99E*AH4HD^q4*RsqIfi$1t9Ati?^^!G z^`*=Cmuq$66_SqZfB+L&KKHIfqjwyJ0E6CNE99*^+Qx}jqUJ@aWqq%g&w9(5lUg!t zb$!f&1M+J@)_Qn2V(3U>VxkqBx{S=%K=C6M36P~bF);yR2pZ_g?yb2%E@W$a1m^0g z&`=K(fFussOmfc~*=&7HxLO~``10kU=DHPFO@q>99^|~2dr^^*r8-)TE-)1*@5W-n zmqmD%U#l2q+_ZN9NXsI#6fjrhMPd&{`0qP=TW1w>Fl zML?van=K7eBHhvr(%mg3pdc;X-QC^Y-QC^Yn|Gq;oafwgp8LD^<%58GueBy~u07YB zWBkV$VWobvH4{q)cvTgFROljaY^~pgQIIaAM#4TR$}YYY2=CISGgD#NKk1NBh0%J& z8ovdotz4;+JVklck!~ty&pz&i-qlH8c=Yf$PTS0yE*;NUh_q9Om}B@i{F{bf7tbEq zV;UgG^l8w=h_&?ydW$zUB}%47n~EW@2dNNNb{`If`6D}%kQ=>4R6?#$ErfOJY>2(C z`$S%!l1$2-Uf}%+8*lP! z@!DP}I5qMGe@I+p(nZvp2}^oo^h#Jie#gg1@VD z8!q4e2O!GK$uUBAPvmyv_>vggXS!a*5RNGZwjCQNwnbU`w-Sgf;|1!jpnM6`6klwO zkTQhMv~Eq6=mp}IWgQ{QG2zM(m10BDCj1f-7J$>nmG8Td{@eQEsmYo|6tly-onN~W zcvti?p<$7Vt^?1j>57kCMNM|&?)Jx0h{!Q*kml5j_3SJ*y*d3iDkn30Pgm31ZjCkO z&Ti2AbxS0$rzyyVqM6LrAPz6vwdSYLoZms%&03D>V`^sKmvvwsqcAzPm4wu%Ta#nN^oeQzJZHL8Hsl~~^vn77KolMU&0bVylHQP6?>ilv{W>ud zS%d;847C6@X;NnTg@}*A#^w)jn###di7oP5%7tI+$8D(R1u2NjM347dRo;A)47P_lrypcfnR|##yBe7 z!iW?-T+G;w3C}5eM2zc1YQXa7!^Llx7$9R=?GzIaAb=g4u)%V z#2K~*qhIxXMm?n_P8p=_=PeU5Sj}Zmi}$A{4*NDek*=%xxMKr;37aX#H9J{)BKY@* zAPV;)kkP29q+=IQms0)`G z%_d}%i0(Ek$%2%_nI~vE`k}uk40T$6-dt^m4ULYL0`qY$Pcmxiw&jkb^$;b|lGL-bJhr>#cvHi|%9=Fg3dJ34G5J*<-&JRX1nErt zQ6I!tp$1df^sB?ICj+UoN7$q%SsYI#;U$K5T1xyJ^}PxZGpf9r8gi^c86IPXZgi6y zA0|-FPK-NNfBWi@gmTay!@xjFf0xsvLH8EkE|)lDXYdJEnlo?0DvB8)58khCp}sZ| zo{W)^Mo-6@|AiIHz$c+0@3hBqZor3<{TnN`TcK0!!ksXh5&RBG>_lpOZv=DaXBkRZ z*@y9WjAS|{JP^WFiK?m$v$v20eEhz;&23R^aT!_R1sBm&AFY+uylj(qHVqm^{7-R) z2TO{rjrAvQXpY;H!s>*N>s^}hgSEdQ$DgcUtyLSE&V8~K7IopTohfW1kP@xnggJfT zm#=PG318!K3pd%c#6QO7=<~xSSdswJl}8^d8(FMUsEW6ZzpggZfYCl zfNg2E_*)~n+zKin&Yj#oGD1&76CiK)3Ki8OzofPt=@uv>KPm`=Fc}R;K{g`5h9=o|&&h)h)I4`jMhfF0HMnh?Ei+(Efx7JgnOsZ4JRXNe`A^1+F;{ESS6Fu{emB9&EAe^;TBH3`$mo(ri|P8qi}$1llO za`@9l(ZXc>k||KvJQHKwdQ2In8ljZkUykrr zQd$myGT1lbbQLS(&F9z*SSC|O@ENa!iuKziPoU^QY7MR1SZ>$wyR6Q)gWY^3+ks+p zHZiu0`=y&KsUuVOxH02Qs&e^AELO`Og2;sML%jUo?yS*!x*9}b8YFOGu$@_>mQgOa zuD&@9dxu<mp3;6+Qa>c3_w`2c%b0i z0n=y%wX&zXA8_db@v(QniBv%x6*UBtUUzr4YGh_cnVRy670UA!xfyWr@CH3flmdD~cM&1BI|Zns1>m}(F$01%#lXgU1}n0q{brbT`~tq-~1v@$FRB7 zoVFgmeON5@;|ce4qVGQu6MIn~O-f7*_Y()8Wik|F07iyGs{Q5$!WQFLtsZ0~lh4T~ z)2=}5f~BRU!T}C|zc#4hRW~2ZrOp_9I#wiKu54~zo;*Qz$s{6sPshY$s@3|PASK+{ zQw1cJ?M@cGH2>82_%S>z_TL}8zC1x5^12_#6eJ3c!>N!m0_!R$6sq1An2dz@GdMmz zpqWO^+=HN?9R7hpXf%U$sojf#2>=(Qq@={c!UBC>zcvc;Xv>HfD**%>N-mw9lXI0L z1?@3oet?o+nlsRvFMa~+W{_&~?3VbN=_!&cKoUV76a0&}4>1va!`~!Q{+t}ikfok= z(f<0Be7r;f>~M;p^_OQrPeSebiH{Ei@~o@=1d_6ZuHaEr2;s)8X0% z;uMoB7?AwU@Gfs^XXQ4|=iyB_2&3jsR*g*~Ir5MJL!9?r}xm9U?Nkg9AvuBsWsW1w3|pdpkAH53pK- zsNJ4%dNiDEY(4yygGZ%VfP@nX2R2j$z>NQXY`n&9=9KW`=3iAK0nd5C25ki7f^xv_L;>Dz5I9+*t3b>XWYA+^+!>J;SPl&-A1?8_ zbmZ@`^MNezSbAxMA#vZPS})VRUG$Fo`iRTs=Z2#?d2qr1mmets{;N60*y z8ru__ii_zcbHHW(AmTuWSHvqOCT40%BTPm{7Rze&^d}Ao!|m_ta{JRrh8A>GjQxxi zcx-StwY>(4wFh3KvojKC;Q%-+L^KRK3+PN?9sj`Q)5&H0DS$!*zGT3p8RYIgVE*s4 zG&Lq?6F>@INd4c8M=Oli8eX^Lo{o%A8P`ybi8kv}y3cK^r;zysKv3&WR zl$WQfrk0_KJy_ z0T7%9&cp8}@Fpyefl@Pt{^z)M@{2C zIwH>3vPHgo^;|#K@udrKzM6Us?@(lQQ9G=xQomjBgEXoKa3i}9{a6+_>Fn;{1zCT| zk9akk4qn>o+OZnuw7t~aj)A7)t$pR`C4Po1_t2b2(^$BFet6G2=*jc`KbXqML_B1- zf3Tf@dDO)V_&}M5<22m)Q=a^#Bp*%VjQ$~6n_>O=;oSd_od3g3dLuPRl05tShJTTm zqW>Qk`zN)kvD~Ok;r{6l^Z7rQY4xm-fpzmYy{y8q%pgPcW(Sy=4B3`F!gD?MHJ zc(uzH1A-n&&Bb*Ol6;Y$KPPU`cUymSo~^V1UBFRX^DcvX5qyD7%bmylry6){P}ER(@-TJ{Uujzn+25!sI+Sve7PaYz0Yp{3e|^H6z1{1$&Uid037B-> zJ~n0pEEGW{Md1QC@#f@Yvnj*B*Vh8QPGdq6AYTg$4@F9_Ffl=IYXl*>j=I+a_j2X? z5%9SMTm+ZXC17YNm^^t2FyFn~pRJOXkSNH_H3m;oP_*SA7}$Z^bld$M=8h74_7D&e zmFk^X5eI=}iOq6V5KK#xgrG;hmmh*U8MC>m;%|f>KA3NhW~oQx@WD)4J%t*+rkcAx zfe(dOEd~yi96H@^=0W{PADDN)8h}CrQ0Jncten8^UJ3p ztqx=$hf65DvO@H^h_6vo70~?)xC! zG5=y%N_xqkJS$V1R{XU?UH0-x*+>m1#zs=9XE-#{fN~8DcGS8^p;!JDKJ9?V zBsOx0xK@#(Ge-w&71Gjxw6dzj$?W`Qp`$Xiz92iFP^ygz0%5b*)z`qkxCGmRI9A7i zr{s+`*s&PJ+SnZ=Ntd4l20B>Nku&`wBX7|ho~y;c zQmpzVPRm%!k$X`#fVBddsYHjDPah8FN)(<#-m)F zwE3YwBeku?DDzTY6PeSi7+))H0+|2g_~ibhOLlsBc+*z}MWx!7&rhA5P+3}5-Q+y z8cVMiP!E({&z?UAQ42QmBZ_J~cu!y)?_-@~8@pT7LWcG( zyYpDHU_zU2MeN5^yMd?_uj8lpvsS$d63VIP6eJ!+t|Kad!7;K`Gon1ORk;f}8I{5i?B^eKIq0aqtz75_feE5>8@#Gw(tHIVgU%)+y>+OtR zDk>@NaoPWHe6%~W(qP&*f9D0unI|G@-=K5S{ylF7*n(1a_h3-RcIcKk^ZR9^@M;1H zb(!4(w+#{!vX|BEq`GUqO1<3zw-zd@BpHd%i+r5Od@W68oil0%`}^93Gah=9f@-&r z%jKY+e{ydNFY2DLzQc3T@mZjLQ=pwuTkE2~eyM{|=3jk#Ot+jWXuDxoLMAgiLDM*` zoQ>-ZaEiT>UJ!-2W;m1(Zcvr89JiN0+|y4|RMA*V~8mxk>EEnmA_Z0!w^^cHaD7+p&p%5z`X z>r8E?dxgL<$Z<;7P}bu4?HWW*Y8J_vO_thB%=hiUEnss!cXYYjJZd;U7#bVu>hFtd z(1rs}j5ZeQ1E?7H=MKE7lV*YpY*55!&o&ntxT@EaJ5w?Jqdw_wE&bUffO1gQGW<@s)yxOR`a zI+0({Jm6{!%GDCUIuZgg18Af|sas`DO$yE_Y3^DMev&ptpPfFJ=?`LjT9ejApx&_~ z$8;Z<5FLNqaOI&IrzE~Tm)Fzz*wkO|hfnrqg-{E}H}6pzG*p*{_oU97kyDe26OpV{ zQC$ToxaGa%ZlseJyMcUIzjy|q(I5GTlI*bTkYihqzmLeNI{GXIp}xCjU}H0iJ>WGS zw7YHf^E*8}{NNS^iRChysiOB``l2MH=uo&ZNErdq9DuB?u7YYbK;`XI7gt_Jaydnb z@+(ZzzarPw?428c%c9|ddLf;^t4?IOXz7?}%FBy#wNlv;OQ)PvER|29LXW?Y=ix?u4 zuFa=qUC3W+1c4AFfb8RitevL zZl_X_CY)={OS-7uoe(YHW(rZOWdTWk6|Q|z^j;BG;7JO0uw>}m7#4tnvR-!rUhc}c za;1()4>k@Uj2KwwDv5vA2&%2Ul~Cw`%#$d+-9kk`x{w%;dokqp?usPIx9WS1!Y-z; zoQp+|kR{#lt%qGa-`S>NT2eBRRE^AXj3Ang37?LQ@fSt0=V_>F0t}9F&3PKqU*gM* zN$=l2k$l}D&+~O>k)l|je`iu2*sf7fAfaH4j*S7bOiR7(bZcdZiZn{)Vu@#%Wue`! z8!!JP5# zUYX0Yfp<^^EIgMmS0__LDi84?+VU0uA;xlF7yBpvL@(1^EOcZYbf!u+3v@%un8KJw z^L_9-$tg>*~k9U5QGC!BMnnv ztDvb?S6*ZY^`oO?%cxu}3DeP9m?XP9>>8P^b>f)w6sYima_+Bi$N=G&U2UoF?!buS zI4TSI$LgaGvx)~I&n>bqIL4y(RBHh|Qs&20IN$i?#TjaR#(UPE#D>C%wcOV1WSu?h z=;616&{o|AB>#6q17f4+8O!d*e8h}US|5t-Ha=GMxT5m(;t$Lz0%ipZ%l0M+gF z!=aDi@Zio&5~DY$$Uap_cT-R}vC8grJnxMCeTW-JFn4o`7Ni;ehaRjV>7p={3DrjE z6(yGEsxLR_T-{@d<@H@N*IQD5qlE0$mwg+1Qxn^yBZgEZ%LwQ1Ma`HH6TYS0cn4HY z|6&{o5$~PE9m=9rw7z-~pzx7*#U8(Ni#nk+8fbG;;K+3B5$bANLzD_OvlNEfolS+F zpbXgwN`-G4r`+B?L953g9Ey@tQ=>^J2qTbCyAy==W>d^EK&|QAOlTbsE2~U zDr;$tc<~7n@b`wSWen+$IbAL+U75;I_jMEIr$kPO5bq{GGwW&jdAFyGjElU_)%<;$RDWyv7~5tO958b}fdCfB4ux8O zLGzcF8|vq&XgRkv77eK8M&@F8gLUaP#R^iag|Z4pYdpECqoTqKtye6pT_MqqhO;}9 zSj_nvTP}A`f2XFt1>B$!g$FkQLS^+=vE)m7Ed!~M_7iMmz5Dt(K(^PfkV2a^U4#(> zUCf_|%$%R%3ksJ2auhv8JoHT=W5^2bZ=>!##~VZyD(+y%lz|4aQtW*l38`y4R#{r3 zsyXx}A}lQus=jRE2?=7~74v0#cF1~TI-L<8L2@w3@)ngX=t5Zc-m8=S!+Atj+a<=w(ed z%w03h$`wz+qwMlz^f=rrUmAG`Y8f$u)9VubKwBd^*2~PJ8mHeIw`?D+2+RuI?s3FY znjDjL?Z16#VKBgp#Nq3rHBOdemB2PC7k0SKHE7vt@!H4mTSHG)HVsFN&r9f^cHY}I1`sS8R)}Acx4R~xI zX8`+dUVoscrnS3U4|JbmM(Gi;a&n*&i6lbLcVtuVo z0tQf;S&f;ZyPvbX`K#9JVm2-tpLG zKKlWrxCx4#MIJYTLa!n47U~e)VucK|pOqgckJThuT~_7~;f#7Ha;7U8&|{n-42IgS z%tN!u;-);MXQJ-;cr8y4RJpSCw3jyN4i~!plqu6MdU}N0p5o1O-Vkjr7h2p?(scF< zOMFh~u!G#9vzh)=%*K3M5dl&CK)VIR2J>I?;qg&B0{ePze<1x!%VsLe{Vy$>f=bWV z59MahGYKb>;L_95lO?32noIN~_=ugXkLAXg{HtA4HBR9EN#D11Nh(YeLy9+xJyBv0ePJ757J*K95?V+}`vr{00&_4oCNRT`fLS?O8`OVz?b~Pl9Sbgdc5Cfr7aCGM%)7 zw_YhpI)&zQ>a}VOfI0LK*D0ye%WPWryY_ zc$=_*9~>&kekPz{)EK@;8i1o(d+3Ty8xRn%-`=NeUr>^)IlRSS-ECB9JY%a?(tp2t zltOk+EZs@SAAq|*GRSm3)be{1V^+_$KueubZQX>;w{twS5%qtlxkMZp#X0j{_Ylx7 z1<{WoLxqeE1p7F>LjG$UQWm>xU9%_{$zyN0=?UbsuEXIY26JJ!nrX=R( zi_z8W*DtX{Wc&BhpE;%$H`WV;8!{kX4mv}HcSi1ZaX$;W|% zdGy1HqmbvCa>HBJMk2mZ(xfMG2ADGM{O`<^!|V6!FhzA61LlUMq~1{29Nn)o0dA5% zCGUKp^@uKfz2DG`!@yWl9(p9t4yo28NpEB&90}Z0YB(Y9u}Y5ejy*Ab!FOP@0f) zI5>+>cK`_6c_iUfO=FQV+#F+bq>k`**`Q{^9OO3i3=Bv}OIra>0Dz%nyPLCBCl6r` z;}4K6l+C3*utK%oX$m}BCMN8f+~EMGB1(dq-3DH@mcgb48kz65W(?H;y1LL<^|S}|!1rJJ7w-ZR1S^$m_yMb!)V_u5uQgBqVXADwkj{_M)BGk0l$v6sV#iftfK?t2nOOKInf!*h1F*`5N|W3l zU>`qp{2+H@2#j0ee~=QON&nqc4*&mZsx+ImIr02sx#xc=5g@q$r+jn^T?|45-`|TK zD&_vyI2274BEMgJcpo&!-NOT5>YoULz|93TFCfTi8M0PdSU5O3x{8O2j@~YUfsUT+ zKu<^aWxBW57%Wt`x3~WeJy)21`O-5Kl#8PyhvQXmP_qV{3G3=OV*1pot+N_?0oxY% z;c{r}^fAm+7B)6O<-bD`2YdqHa0}GxnpYZLOMd#Rby`ubvCXTgVe?@swAbv9Wd#ea z)GuTU)vyiJ>8Y@n3KI9SQlgUEdZ;e*pO+vR8}m z>z8kc6Au7i18C9mUUhkSWMgc zo3#}EoA<|maT7_8p7_dKrl6myDl1c(qf=7m2!)VTRaSm@>j$E&Ca0%?U%Dn5k-jA0 zGj5}XlEG~9cUWA2a?Ry7k4;(54EE_$KsTO=lyr1-04bPvonrs&ckr9n^o21#T_^cNNF8?X%^!=ksqv`3Z|6AGzw7|7 zZEbIB8UT3@D4A2+1tKqxCjmgv_0K*cxC}>p{qp5Yki&(E={?NH#|Ol+XBQU{!NJYx z;PHRDGl3$q@mIIG*7OwAk^X3>QY?nWiv6JB4g_HZVqJjm2cFT;%auS-;rDk4H!uIf zR+6*d-TlA~2^@|NHJ|+uC0Q{?vUy2%{2;VDJ`N5FN|MUjya6aDfI8aJUwgL#F)@I& zCWnTCT9zWCqB!gi7jx=dxc?03v#3s}Qm!7TO$Sz^4h8^12Qy_^F*X2@%1=+nUa(6& z4Ew)ymywgk$hkkl|3kg0vHS_n>-|4xzKat>7T}8tY9f4FmVlLJ^xgh*a1JopUg84H z#caKEjkmXuu`$&y-O+|fVU;DeZDv z4-3Cujyi8D*|>-0_)QQ*CbJ!>!E=4F-xhO9OTBWMwj;~PC`Ban&Yx5FaVpf-pr@3$;tnHBRMCdZ(&PatVX zn^N)J;I&7FZNY6qWAA}9oo#%zv4(M@W(gcN{wrF&Cp^dns=4X8ow_9xIP6!ngd(X= zkO2$R;+mB8b8o$FHenw4x+&9>AI*Ie()Y)z@h-L@PyM(#MU)t1tT+Jwdamr(1X z%v|{YUZ+JCT9jR_I~3i=$@5ecd(R`FkBix4p>|`iyo?f7z<+@70*}o~^FR*x_~p*t zvi8WMBK(-|7uT1u3}qJnuHE%}rG-V)Na&=e z>niMkdBpow_gxsf*;G0{C#q7`JxjUkN+tPo-i+_^c%CUpv`r-_<%}69crRZioHCtB zgHl~0p#)BjLVXxau1VEk!Dl|d)^xrEhj8pQbPfwjXa^1)4hpbNMQJ%@eDwhT=<25O z{q#cYby~X>+UZx7ECq&2#ogbV=9y^{T3kkpLZW^iq_#)CXp7L0z(YR8KJR&M&&m|_ zSx?k@S&nVVV)mmq2yv*W%Dd}7`$KQ^LD=7Xw7N-|cz!dPr0?Nq?BfeLGe0b6M2{0A z$LH(5z8Rho>XGan`X+wTCvsdc&jX4aCP-WuJK@}8sVYi#QqH2lV&?&bsOcOHmJiFA$q^KF zA;HK0_>r8vJV3STdkOoT(D@CgmdAKH|EANMD-!Ony6{F;Xnb%@6UUc7l<3lGOtj)^ zJ$-_c0@A_IRaihqN6SKGMhm%R8O1^a0{!1aPGyFqrP~@s%qYu?E7XLtEMwdL` zRCv4f3IVC&l8NN$Y#!!)l8!h%Oq>p?lf8$&7t!*N!54Stbcu@o+O=Ql%mrGbj0|D2 zGDX~sHb^>XWfKKzrM*HV6U459g@vUCwWf;yPsNfwFRv%C^NKmqfyxrlBT_NS{<`$^ z*906zxvu>;D283wBXX-4(*&6Qe9^(v)@&NglOnL0Rq}6gl0LJ@I_5j4`=o zS*1y)eAX*%W&cuP*}=cvqzGs^lF0LO$l2ebA<*&jb~Mt}Y-Jl!ineK9YE98vDD91k z3XzwQGSnKnWJ@E9Q&$KL>2S8z&n%ef>Rgo6hxHfV@SGbe$Tl>T2@6Z|T(p}|(^E!P z=S6?}HWL)ImFTUYvOq(i62GMtmJJu|yLdZ1+-r?ZCA%tUNQvp?x#dWpTH9lb8QO?q zO2We>b^~rSb9{!r=xZAk6gfwMl5&y|n%=trzBE$OT4$Uxi;J!9W2qtXui{I3@{UIJ zdEWA&AzkFxw`a?%=rR*QUZ<9~{s99IswEv+C@lp=HXq!R{0^X6+6)bqy|hX`Xm)33 z^IEUjT>0$?!<+ccqlU332LLTt6(nk(C57oSYWcse-*!)1(c<-sy_>X@vb3mj4_%Fk z4elxGva$Aj5%ghn+}_-`lJ~SL+VWmciF;+rJNo}kadoqH?_|oIWW{_#qNl`qRqNgy z&RP^i(e0lXBqLk7Rond8S=EGL#f=)uhKzF-#jY$QiQiB-nWtx$fDhx6ve&7>V||1Q zgG>-~dAQU9*1+}O&bC1<3@8^^m9+;Y0>8UfA$@{59ax}tr#MHMz`o z1x-eFdAX-3C+gc`qc-+84y`0kDz$rq8^_%UY6R9qU=hiBMZ#=r&z@ABeLfSx!{K1R z6HAQs3^rMCulNn{3{Oq|Qe51HjyO?$z7Mr9ndt4TmCHxdA))jsmM5?f;wK9ZeY&TrcXl6t zVjY-*yieBOwQ;v?qt;*(-+ytHH(Pgug|?` z`wEH`G~0n|Jb|&(WJ!d>rlHZz%`S*r_m{B8fWDXFR!e&NeeriEfXBdKq-A6P%Yme{ zw6d>FPY|id$R^88Vj?0Ue0_U1>N}0e(HwyGQ?J?@8py>Tmezb#ilAjxm7U-!yjEi3 zR?8j;vSbS(SxCp_#>1H+JL~XIXq?oWj#voTH%IZ?=Z3N%zG>Y{=B=paRoLU|koV9V z?74bk^X~I{OAZpI{lNgSR3^h`@(ND3;<-moE1Y(o zy}jm(v|(oCEC8Hw0n$rQBD%G?>4(QP-`dJMd13*KazGTqQ)KMRDhLg5$pLmh%kCCOQ6b9GH#HnvgS|~b zP|kCO3$u<6eqYkg-pj8hTK5oZKhwNv$v`+|D%NH_1@~K&pK5FZ(d##y*hbj}5#eE! z;W4wjweH`p)w{(Cq%kxXh|QuoxP>IA1INqEhN7Xo^S^GEEQ%6#t9m*G&5S8EMEvXB zf?{J;beYK4vEn7)qW%|b)&)qLCZ{!B|FLlVByUG?8hlb6O1!{Et1J!DU z0J405d3K%mftjo3%d*3%v8B@bK|_H2n|;w!4p$F{W?!k8$`t={^fQj`OF z`eAG(VV2*Y#Kh*REkZUiB$IzfVo1K3>|7rSq4-=76{Q>*87<`PwuklhdM=P8u4xy` zIXYInYAVU?hsWa!|7&gBA(y@&s8}!GhIwgz!M%W>|3%eLU03h0(p!S?WOot~p>n0w zTfG9rm4&U3)1)}a+Mlg)Vm2C_TAl@z`X;40aklxudWjp=pkRDXUG1o_Ej&S~es5@? zUhB7ZB7&nV$ikRdpH<|7Q~RHe6w&%e9l2Mbl~c+BEsAXJzj>%R*C<0lm?4659dq z5}FZo9qkQJiQxY((nf!%mwA(p{sto<^xK_j>)^b&6r-u>L{&vm*438Qyx&FX!u+>& zIg^jpTD4$Fc(oA8iD0JIWg3JtUP36s7iA3-62s{h!8SQFsTl1`LVrD=6c$e%`GlOB zTGjPXruAe}(z&`;RPY;a#3$Dd$U-o_7MtyshExF*p#jG4;>QB?8tGm6jsi(!z8Yfu zhhau&pHVxT(`l=o1a6)Ed8+4OWnm9SKa@dJl=aGG?emv`dYIIX##hvNvSDvf798Gk52Q{?5=J9=p+c8l=ocg-E03l+&2VGgWW<%%s26bz32c(wmE&I-y7?3( zm~G=CLf_I=s+*yUtl5A4AkB;t$1+!*#uLJ?(^GtND~=q;z`?^ZMFkAdELID1m|I?l zz;=^!(vlNVIUQ#%iFTXDO&ewA9B^$9pwd*-`S_wB-H&8xvGMWM-ae788T)H`uoNkSP9lG8Vw`a0biX!H@AM&7=c15@TniL$>9+Tt7p*~U3{!MBO)I_K~Al3tQFB{0WK z|D)@b+z_jz3Jp+oE*&}eRa9o0uVk|>Q<8A`$7+sEir>1&aICLu>-oGEjV~$BW86B01dBL=E&Qf&td7kOLI3V@Wv8rq%Hm?7`+=AP{;=p&vemJ?N%!lyel+)C& z;d&zlHNq?-^?7d0Zjq{gTCvSOQC7DYD1^5Q6uUXUrM;i%3XOTn-!38#h0-#U(@z<5 z7Em#p7{~OfFBiEU*y`wnB{w%ehVeSHy3-!$j+rPJ9-gnT-6i9Ax}BM|i!*h1L5X6D zTdB~z#!NpRGj+Cdj2F{ExqjG<^Lfz%s^*mb=?k3*#R%IBBR#sG#{{x|1@-Ds=N$&4 zg79hDlz5-&9#tv@bBw)1Ci4f`p#s$!0WT(bl(g9TQ`?Q8cg@ak5e;+Sxthd_aiUWd z@az4wT&SuP%vK3*y9us zYaUaG?9?!+{SO@-BqCbrE=CJrTwEkhqUKH_O-U&!AW)aoTQV&z z4cJk%=lx+DSfG^Sf&!0E62K$?KKvV;sj zYa1Jjzi&GH?ZcaG=t)RJ(+|A(fT+Ckfq!|F2^s+kVP{nyev!#reE8-fdO68Jf#5Lv zP$>UMhB0#K;X4H?wh7Iv-ajIP#O|gS4-NVf6}o(O8r=Bjmq*#ye_stlz;k3Fa>M)s zs>`tc^KkYwg8w>vF;&w0>t81~S!CS@C%5n2u*xh%?*DOch}7=VZ`eO?c=ToM?-7}z z=EIr1AO1MSJ$m-%Vx61{f8a(6RO5GH&;Il6A6oGLs{vo#c?kYC@Kcz_pNl5aHQ^$A zcZMy0VgSuaJdUj9%&~-2I=Y!MR#MY_XbE~{lQA99uT*X_5FML_s<9&yuYG6^dRW8 z-G6j1=ehZ(KfTLE1-t>&L24}VY3|3 z1JnS}aPbw{+S&pinV*Xf=d33muJR&eU;yQPV9}NX;#@$Ty~%tnYr+8Vv@CCJ1qL?6 zefY=7*erwN<8rHeV>uY!!LHXZgv?_-3}rZB9|rz#Z&ChS znnGQb2a|I3IRfZ1AqFB+Qs2*@Y zAp?hh=^GjzHUxTk#z>SQqNL*YTn5m&k46Gahz#Y&8-KrZyDFQna1$uJY zlg8&Do()jD4TXt>PyUSACmn*gf{X)@{PXEkW3FO}pf)J%=#OCzoK2nt2B{8L66^2X z-Q8cjcmYywW%oZ4aRUpxp(Gx7M#i$+TPG2b9#FG2(%K5^{&2%RdUE|N=q(y9t{P1% zpI}>P-p^a#d*r`uCb8$J6 z$;ru~*UNgC+s5LhIPsX12xK{1j(`pTl~jC@|DioEv1J8;<{AkJsRz#U$B)GaB0Dqu z@G33r2EOU2Vsj)TFd;#`su36jCG$R{M$%pRE1PhHPuOuM~-4uMp#40p)U(851@^Mm0*-(R}*_{J^M`6=+ zjAtj!WG1OIjciPAg)~K!Q>hQmmP=Mmj-qVET;SHC9$lVq@eIouE~Gn6u3|+hf9YI5 zj#i8m!&}d7m&%IFt^9#wy#oz%41BY?M&1yLhSqUzXE;;ZJB$)F1)bRETXm!^WPSZDN>Bu^13i}PKf3;h2aU24AC{*8NF4}qzKu7xfREoVeU6k%P@83 zTe`Zcnt;T6*W#roW-6#CWM<{j>jTt~63gJjp{mqyKL@A7)fG@ETM+IDX$gQE+J)w5 z&1eE<;Ax4Btgo-n(;DQ>=_=_qh8bH2xVV}^i@t1Ku^2%KP7)GgvlGrp39*-6Mn)#A zI=#OjqkX;;X7PyincbRbXc#D%gB6Y$=gFBE1!@OumIR~_iLf+KjD)+qJX=Z~nHz5E}SxpvH%DFX95OBWHwvsoEABkgJw(~O25 z=@3=6OuLF9kDHLF6LzM&$zr3sWW@w}tC4sQIV7S;q1Y-X59q0NSz2MI?gpBuVu_XD z#revO9U;BzT&3NS_yTnasf;Kl&VB!h{_l%ngK^#V)iVyf;~jo8;i>t2T89D8c@%H^ zYP&856C@kth#LKlr6bCUI0fd0at6h|HS=-mo3bREkTGT0onW<- zBn^%=Rwq7Bk+6!Uh}V*F=Nhb*dW*thYK?~lPpwQvdvx|YX2$Mds>&v$C}?P=wbh_x9Xyp3?UE3WuxPoQI+`gHgHzy*KS&t*46lP3B%9I%p4jA0!6?m&t`_f=4l&aC& z8bZS2(L^YMeFbFiJwOQH)#YWW*+P712hjfl{uUT0&x0qHnZc^}BIVDvww9ZVH)K?B zKZ`uB=Ufgqg-$8Gy;)V}*NLsZ*%&I*b|;q4ho@P+E#odV)unuELYgKhq!$08UUVf% z1LhmOZUE*i*Dm*J2nK{pi^OhZxQc_VEaYuYN?MiUo>b1$GjJ2&)?h2isL&PL>9zMF zz*H~zIGt~<#rTkqDNy9APJb};xU8}xMI%mIRKCD8Gf~Yex{DPw`3;a!3(_oS=wzct%tmm8Kl4*E^dZydrMJ%NC3!Fa87I6Um^MC;J6s;5#O_|M$zqx}BwAPrFCykxyDakHq>REz~ z881`7x3B6{P z#O?EQd;NExcvBY^r<%ZIObiEM zjJ7jEMpNdB5-Ub_Xs3#SVYyRYWK}O+*#Qm}RRZFfHO^#QQrs^*3jL<3>ddk97+NB_ z+OYwN$>M~BmRA`XH|8?}sHH@>-zfSdXBGnSx#7qXzH64UY)qBr>ei?n^*!h#qoir7 z9pI#jMO0g^&D#DECCteqQuB>{Irw~a(wFs)2wQ{cJsOK8m81pk@zdRRgMr)nHz&M# z%r=)_LgN&bEKg}1$g5;)R$xPcxjA_}$1kI!!^QHjoXg?K0jf8Rxg9U%IREj|W>;lkFfl$} zLa3#wFTljiTvJoinjiC~zu1kL_iKgHQ7tnwiXzYBuhKJ@$Nq3Gx9GIz!>I%7;|q&@ zu|Wh6qLgCIWX-ZK`xu5OaSm_8?(1v`KeG_s*Or9Y z&m>Cc4a~-GLM>^ytrLFYQHVo%*)Y}>;?9F<@hr?-S!&D6+te_4B0{vL{M(=Q#42;?^CY7&@kNrrnT)}5h4QIxN7qKA$@58V^_ z@u1f{K7G?J@pvZ+Sop!6@(Kz$zLLO!wY=O~K%fI~;dzsO3-$GWDGVF%enIReA(4>C zQj=&=lK*nn`U@K|=B7*?XvW`Ua53t)570>NsIk(=1vQtMk-ENpDNj+5lz;OpCq=lM zME7aE&ai#tNHdHjGAvG0&V~MV{&DQJ6B9GIH?ivm(li;ek;)_eBad`5oA!-l?@qqp zaf~!%Haene=j#+4*MA|E1JR)%b@PK}c{FyB0in|9RI2=cm4`C)|r)S7%3*Tg3%+RG8wLEnbGD zD1<<&Fearuts1Zwg|Y*DWiVuKiw#iGg6=Y5VZMGjocS^3Tz~vU=vMuu+Vc%w#(lL~ zi5Aj>qTw91a;^6YQevW;t6MVbPxPa=cfYHk0uwKaeQ`sb6ch3Xy21)k1Kws`%{E*2 z7JcZnIM@@n%q}-8*c2F?9YL2IqGeS4#&$b!l|0)Z$jK5jUqq;-e|EVG*lZ zIlNI|>0@OMHN5^}^P_;iRd#xFb9zpWm;?O}Eq!XA)mv)7OawyLQ`6I#pAAKT5C*Ud z&B(~$=H}*2@&aX0jp-@x8+8Keje<=Ub<&f1Ge0p4xsl{zHfzRf-i#_wEP#Od{ zG>4=kj=2*Pt%G`uOjKMMr4g=5)nk~aW+VqkJ|w-JbA`UTwDex1(kZ0vAuX^hk z-EGESNUfYAK`>Y;DeHkOtgNGbeR2j8_o%YznS^#YI9Rb8)&d=YlB&DW0_Sg`GUi5F zc(C{PJH4Z)$1rDZ%!Ws5ef-VJl{Jrxp zZlpAfl9CpQXn1L?oF6>IjkYh6D*L5+y=@BOCo0r)b1?+PP3a#*a&=m_k`n7sc=jki zjOOz9o2RtCaLCBZ(_b9A^B8UF{u+f3mo%}x-qW+aaIkIvf+SABV6aT;WIdKPlGe`}ez8@_XTHH%dl7ugtWm(BMLj zK!w6vI}S-I2$yS0%$gdijQ#`-*HK-e8@v61fNu+Zf4;ezZB>nCM%M_*W{zn8yi5{D z$=kt=nnwEi%#R^t^4kTAswj=-6M6Q1LC?L@WloOn^}fc}F1W@>#H*BGmHp|8ZgQF@ z4r6%E|LVT?s3@OjwNOTQ7ao{pIkJ6wGv;KK`Erg(%r;INlz4uJN`;KeQGUdu1;-yu zbD(rrAkWHL4|ev6<>vdH;}S|r(NP@(6AGksc#D;eiee{0(&-1awvY9$SnBNFI|{x@ zg5wMWFa$}qOP<&$oJI9<@ta$+BiwyMhNiUiCis`U3l)K$6C%b7OP)~~&*uAw5oK2D zbk&`1j-TdssH{Buq_P-Q#XirfPh&`%TxM;>WM*gzHh5G$uNDLNMDD$#SIW0XF4~yq zDBVWo=}k0r>4jBet@^~41a=fBR!UN(0VE8ImBu763@Fa!iMW}RZ|}#7!W#%%jFdF> z#yUzr-3GAl!8I$**1W1JA6m?teds4)UT?>Tp6(Ny)wbsmYV<+gk8P!zg~r9QqtvSJQn>3tL9JocCE|Qi34YC zdIf**IleSmO9qohmL<=6dXWXoq>fBVGdQgG>8siXk&wQ*pTF(O`&M<@pBuzT@yp2q za8Z806!Aur&HBGk((*7p$`(c)fo4(u3n`NpOUvM(C8g6~BIxzoe8!%Ro+BvHx3-~g zP#uaLHYWCM=<4z$8{UyodS8Ky6=^R&JrSwBLn1h=WNz$_71b&Xh!LQw-rCwKluB9O z-@n(U45};WxlVXncYN{7lQ$Lyt4;;|1&3J(Rnl;49l36oFx8pjWafB2i!S}w#o|d} zc17JE>+~PKdQbV9zf{!O8y!?^0dV1K>skJBH z4esh2nAi`bG};utGu*E86zv;Y@k(h+rr7O2estaMn3{a&C(2tuqn+EMFjwUg6`x$3 zTYOx5>z#%K8{vs5>^k!^doDtsAlgaap|Sgrf$^VKz49s4-YgnH(ka5_!1c>RdgJ}3 zGS?Gy&>~7VN4+hD_LZWz`5NVDr+YnZCUX=v-fQ9sXsWspnWuGocB`*%WYtiioyv<& zZxS5XJGcoK<$W;}`hm-zO|y0}0B=1rlEJ1`(R&|hQBoq@-Oc#2qjEf13HndM$5h=( zO4DU(1w_!6i1Qk$nfQaxr#!pYJIE!WEYpdKy^qv3CZTFehs(v>NrT$Y4=l{e?c%u( zi=>|my*@ZyT3Bn=4DIy2sdtr(Pe_1=4;Mk$=UuFARYIF5)xqCKlv2I~2kuz*@RT4$ zAzjOoYhI8YL69GIX^*btI4GI75)uxd>g+DyQJE(*pVw&tl$XAe(J*1_94jhY6q+p3 zzVXH_Dj{33wQc8Hsm0z;fd2$0KEk4+zzRYe1l;a!V}R@5-hR<@_Yj%Pu*gEJwOT0P z{-t^}TxLDNaWd*KwJbHP;z_JyqT?VIS%w#=F&dl+*fp2T=Ez@5zpEj3- za$)@}-%637#q8INt?d7xyCq4P$Fe&yKko*p-oO-qftlGF@GAg1`}-B>)c6ntQ|hiZ zd_4l9-+KLbK%+=UM+e9?S+S(C!y|wnDDqmRNB{=|Fzrc=kN*jJcHj#fueN|10W{7k zfnw7?Egy(>d2`^qas&E9K*$EPginAGX*}1{-|oKBhy1CnBQge3Hf&ZKkF5bTKqpde84}YTd%LR~epw102)*Kuh5jQ=N zIDj|*UsDlE6wnJ6v3`#&V7KyjBBEMlu2hZLM)UW6@G0kpX#RboM3nCVh6oVJ zFX*QKzF+zL&-6oyH2-mY;HflT7Yzkv0yMw7y1H_5aw(BNqgEq6tnmH!rt` zabnQ-z$ya9zOM3q2Vp}PEM4xr%latv0%B}FVM zlz15EQv(kffU*xmi#GVHFRhFRB}%hUx5B3Tx6Kd8Ih4aAVUu;{PsGW^b0sIydIkQ* z!vyV86G4$)P>fgQN8V735B3J&c`IVQKZo)$G?=IT{?B+IL!b)<T!Gk?(U1| zP2>0Pe4rf;=sa5M^lP8kc7Y0#EEjjT*X`*mM%jw0tpETR_0A(rKpI={M_8rlXoGQ4rpiqn2=Dae~NCl-L|4fQ(&lZ&c}Zz z3frZYGhPLyG4YALJA9Kfl-RrRrM^>Uv`R5 zGyuYC%E%mpHIwrV5WRkT4x)EGT<)O|5XjmGoRNO|^lkNhx4=K6q}3Xr^$I#mkzZKN z{^+fDg@XA8P@?;I0#rzVD;cnh>gocm=kcB%k)MS|cjsHcOhqsl>1n@Jj=cU13eG0X zPXJIRfIieeS4xj!(lNBp4|ovMh3-(1z1!H3f1731GP9XDM(681kyk(*7J^kRj`^IW0nlCkdX!MI32d7&N%r} zo=?{VQBY8nG|hXY;5Go=5rk@+i2}q85V&nX_5wx(EPyGr1=JFFczLr1?7-c`pjPwI zg#E}?!cL`9_I;Ya4oVb+z+%B1k+8j#SS40JDn%p*1W0T})bg*L9g0ql`D zpoR5iLu76s7hvN7$t6}8FdjCy&RhU3A{_{4DJUS%iA90=@Jf>tpvG&UK0H6UlaY~W zYip}x;KnDc`}tD?DaA+5g>GLaBZ7^OYdAzgdBPRCt;>L38yl^JmD15{)E^6CD_B1% zFp`wK=#ybFd4Er{TZ+alWROtb-ro--YJ<{;HIF zJ}_AL7ircXgD_?ZPR8N$`oHWseSHwR$@dka8l=iF!Ay~YvNU2|5B{Rsco3V(%;y0H zoF#^GD}tRj|BkUv!OMZF7$AJGd*1)_^=${CA=z(E2`*qE7_!K9JXakmOE zqMV$rK;f)lrKP0>!aa}*S_TL7eql5orwDVBjU-T>GuE*ChFuU*P-eB%beItpAG(DU zmnc(2lW!oh6{#T)WYWM|Ob4z-VD4!IXRHPMsfy>adxCQS#Y=cjsGE(FGK?XfAxVPS zGiee{yLWEx4s3M*8sL4poB*!@$FLatAocs#b6cWZx8V}5VEO=rjB2W@K^R!y-o9Sz zge`#prU^hrv5?gE@%9V|$`)7vA2%al8)q?~TBgP?eK%dMNp)6rZ~K}!cHrp{oHk(1 z%4Z2>FzpqB6DusN9jM0cQh`Yrm{7Kq&8n%Xu^ILt?7IkEU=bB1<$n#sorH}2y$Egq zSgRD3zG^^!D^9P)XfcnwpYHNa=vnqdGp- z9f)~Z?Dj_Dhz_&vp^1cuktsbCC2F_0B_RCW;=rj8u&R!Zj>PTcSVihUxN-yW!iWy> z31~Kf)~u-Z44@PA^XnFlL{#4b)mw&oZxVWXdLAAfEkC*I7#bxkphO3}!HdxpfZd~) zpbHoN)(mJ7IUmmQvnR*JU4ZarAzLIBdr81#_C7z`P2&3g?ylBqF19+>KBd|U#99!C zvN`2I@1(AL^=cJJ(S0Pe2i8{i)4){H+=XuiIYS&8taYeVtwCME^s0eitks=4^7Wfijyl8m2l#brJ2v;!xD$IL<}KV7MT z$@{O&O#G|%Pc=q4c&78ZCN>3No4!S-{+KZaX0&wPAdd^|Tx<4vN*m7pmv168%D_cqB# zf3p4S>b^1;Wjmsn4GH4W6iaz~dt+Y$HTO7;yaMSoiHp&Z;o*FSYmjo3L<9AsPafur z0_)3jb19C5jEAmg>(J(&H{hT^7|{T-h6xz%F1VnVLiT^-@`*%XI}H! z_2K7euL}tYK`Eo1oq^N;3J^m|^4B6J->Q_ZYMd8W_qCSrOo}%DV-PUKYA}M4`rAhLygQ@Q~qIo+yJH;Jt zZ*SQ+IL5zcQ73GtHb?-`IMJd$fFT25i@><3L*VQwPOi`oDu5v(W@0LF`Izn1GnY># z>l+&>g*#ogkR0Z4Q5KLjYUFF6C_LtBXoYM}iSvc>4Jcg6cL zyDZ2q)DEa&=F9?y;SkuF;D|HA*h8bpg1CM7_B{`~Bs-h`ZdnH|VHU&|xfLmA!Bp=% zU<4_qgUjo+2(ZPV&eZe^WwxHr$lD_#P~92;GvV*;-ADsXT1w<@+0i%ZN=UT+T(Vd;Gt%PuC2?-)&a{~hgKye4H*`|gDxgDC? zI&dTb+1{S6t`Lk#5XW^J?S*x9v*dAv#Kl8z>w)bhsZ4qU5M|r%7von+J8uTr5D3-@ zR2A#&v>9@Q&5nCO`FZ)}`G&V70w8QJFE5R}SeV%WT|PSVdT$^Pee- z2bg#GQi6B#xgw$4>_CB|s3ljvayMasX_km?108}cl8zx|a4SsbnmiCVT*T4m=zr1D!gbvWC;av+MC^A!6FljG zD6(*m6eI==?#QKxptd7Lq#5`HuGrkdLg9gUxRo84gZ4*-3EP0cu0*mkoJPjeE0Xd6 z;u?s>3{^D=cFi`@y zmzZB}R~GP~W<3Tbh(_zEGNELV*jQMRAl~l&$wrgKww@|UFe_0MX|!8|j4T2*28Dl- z)4_Z#6|>!t3K}*Q5W)*Oep5Ri7#N6paCj(%9KfKVGC+CN8}FGHA-oJM3+3L$r=>{} z_W^W~D^Ju0rtEJ@$2)i0rbOGRx0!ye2Hb_%wF3fI#>3)@F7bj-r&|&UWd(HAaKy7>oZhk)Q>Fj9{3jszCb{% zAOob0oN{t%DgemPYyZy5$|Bd|=lAUjj)@rqcli1D{6{cu18NAZZd`XjsuJWl*NtlL z-bJr?Js>u|hVWU1_^$C;zas!JpvNv@{3|O@fVsi*-Y*LpYHCnMNM|gsL&m`P z>n;LNaq_o7O&%o0yk8I1B)&dB-hnH!Z`4Aj_2BUaJ&!GPIUt`~1K7?Ww*;ji;G5Iv zG^?%C4Gj)zR_XDpsU=560mgd@5D*4el2QbI@@V#lAULx-076QZw{2hm-WC4uCGqX+ z{ZIo@Xr;xSbq@xpnqzm|AkUO*&UAGdfw23xTg1q?apnRtJz}g6xVTz^4f`N5<|o`F z(N+MC!GO3zDxC^Gtq|F;bRc;F4l*!1CbqGA0gIXM!$w=76g$+Q^ zR#$vUz|z3ouPfFCVg&llo8RAqq_U(Z7N$c~yC757>e0~qPNx z0>~|yUG0HyF~A1}l2ci3H(-!eT6zF7Q8JlyHNo4|D_ZTQcy}dben4@;pr)kUpZ$?r zUVa3kC2+OIbUh0s(@rTGwN|{kzOMW6g91a07ZmgKq@+EgqqacyI4|+>>FKYHEclC$ zZ$YiwRu3*F2E4z?%J6B$3av(gtXz>u17xrmA9LUSb~z)WpfF!;^NpDQ<`M{OBtsTK zs}VFEfuksOQUPdtUIMig2YE3yHB9rj_CP{fR9G0)JmqRX*1@s?Oa)*{C7=TNH%ffd zv6wCc7*1qd+#!>ilt!riR!g`nrfgZBEN@Uadpq(wI5@;&186ZggqQ;~KZD$NFdt~( z%gV?gv4fZnVh4L@udO4n1qbUAe9WUGBc!%AHh+hwDH+*7!Ue1j(+XL;#>KFjj{vsD zDz65BtjCZLD-hP!M<7Q5tlpvacHd^uXqXICl=TMLJ}8O6k+Fm(Akne1@)FJa+}GC! z_vTIi&=7Dg&btHw75wE(P?!NXdw`5|1E*t&GL=N5@n9kd0I^y?dKIK>5;8KRG5k4% z;AR0+*uP>Jk}>DW%$DfT1O5Fp>eT_wL*3$P$;rtG_*`tHq<^uTKqBW7^fVnD9)Nz! z9&br;F*t>+XRF%5Ck5&=fSXkVer7pD)B3LfJST`5WHY#>m0Z-dNxI?=xEi3wUPckMtk^KH=h`6EU}P zG`6P`vC?-m7BV)pH8Q4?GPW^wH2cWTz{JA?|DRX7%(tjY%Hn)}|NBODh#=(5@G%zf z0PBhti|hq)#RPU=%?rGHddN64Y>`Ps4ut+tbMV8I>v=ov2L?XBZyqnS&V+2oz3=j9 z@lwoX`ux%#TL%(qF8BjnS?>TQMrmjYDFpOq$Z%I7sQl&?cb>7uxE1Gx=mQ)Qv5R-I zBojm;)-+t36*C=f@#x2rD{wnw*eocum)~0K{B@2hU;SYxOlW6=J5k>aR3K%McH|e^ z`^2(AEU(QwS32G_`=qAEZ9!GlIsE20CZS|->1T0S_tK(9s|-mw0feT{pr4szdrHgB zr<~6mcy3BHAuN_HOr)IhM&v-`ZA@r#8_o`|1t*%=j=LSD#kNi~XTJkmWE^RcR0^pU zx@6GMqb9GDE&MneyC@b$ip&e<3{MH=2L?OZ0I_lVmSpI;F5VjqJ16PrVV!4Y2N65_ z4_nlwGiS1rYdBql_|()M?F|7!|mH{;;zY za}p*2=%;m_0;bokCuaN7<63H2tl!CP?J%{rzLzl5_=>{T3D}0{qpqgB*33RBTNu`w zUWzjA=_*1T{Uq_3>SM(=4jduM&|a-$a{ILMnydIOp3kC@14Dx?nV? z38hqb3gr*aby$2tY&OpgRbuKSj-H?3O0p2&JHxFpE>-sHM`zZNHI@__3^dR#6PunB z`Eg|6q};rK8qFGt?Ua8MvK@Fn|FbVb?2_`mbVvZvZ_J!G!)6Y~hs;dsx+(S9U7F7%F3*^d8ScM3y?>yny)Yqh#+Mc`*6?An-@myZr`LjC+ z z&z~r0xH9~9?ymIw{MDby^LbkE)8pX`^#F_9lj7p)N2i9?$*kUilt*~-Dd))P{nZW~ zFQlhFf0&U%0uN1KQqy>$o;C`+qmFP#Q%@Vt>*T3DW!PKXP57EIxH^(iJA z#FcLC^4McZ3>Yh`idlQor_dPoJy~x=GpX+2f36^S_S+$(DI&&EJoY*E9w-G4)Dsb6 z*Y;LtMkUzAC8g#%e3dn`>~My-bTUnzmw4tpK-`-q4>GpN)xL2cK3w+SNg)45W=x4Tn_X?qZ z<0l={tBI|~o}b8ykgXdK3DN>3a`{f9*B^hQ60zqoJ=dzqBsmaPFh;TGdtzN^5xy;D zCpj2&KkXpV98)H{FVQCJ`>cH&o}m*4LA&+68NC8);mie=*dLjv#t?$J1PTsc(=wA@ ze5MTYi?i`mAuKtP4*6DvVtN78yKgBqb>zGQZ|_3j0~3$w>IKHF6#ISCWULhz$q4nt zcP|G+qH?p}&v&zL8$6$5Urm|aLEso7FY|Wyyo#;){1A(s$gm|_gPcsPaPE9sy;>G? z)10JMZ$+hPdA~7NN&+MF0Oc+!HnRMv)cr0#b(;r0*PDVL^WXJlh$&0BcNT~SS;ZWy?_;9)~Dx2!%OzQkU#_sos9+L-08mi)U zcD}TE;|Lqj?)hUzhahqIibd*f{eHGq#gyq|8|Ya4Cd?cppT&B$Dy<%GY!|Aab=XJz z=D;c`*t3l`0##(s^w7X((spG-rx{~;cVxAJVrRug-`0`NqseWYBihMmGQBqKB!MGt z%hA3rCe<>v6BZ^>o#J0llv?>Au*%5Nw1R%q_);El;h?!Fem6#NgcHi2a}-?_l1IdA^FEwE;&lL9~atLMV4+EZ1Q_QaJzVO#CL9XS9AE{y{)A5 z_{9-6BZ}WyW&+EV=OJvjrS)l9cLxVLh_n;M=^3tgg>&j?_96GcGdDx-IK|D|CtfCs z6@JM!5j$fBZLK9M*+d?Jf2H{k{L=jSH0=XyR3fx@VgYXPGXdkGo~uF5ehgbC+4mBP zO+ggrR*cxec5$j^W*62=>wfA1E{%^@5@R&2bZil}LQ0eY!xyZ{51p;vjgNPi1yFp? zu!SA-azo}JJgw7}$=>WI7T&`8J z;ePL64eivt4e+QzcuN45ZHaXQ(bE8IXk8Sv`AOa?t6HGmndP#sZ%5@;p?6_1#MP*A zBlY0Uz|v+eYuZlyFF8^{7Xmh|U=iAhk7`7pn!o*dYgya>8Xp;I6jPd*N@U`6hT*XJ zO(G((W}Xxw{U;AAJx84Fh-3ehpHTrtJI%DjuUiNI%mku;j~U6+cL{!=LNX2HMa3zO zw!+IwgPp7SUdm^G_vLQS)Fu7ZG0Nj3gZe1kPYwipA{!aaNz%%r^BY-!turYe zZ)YniK3khDFOJ&sS@e4uH{Uk>u2e~_FjL0Ssg+(d5l%FfT}`e+;LB!8b$`irPyazHf8mevHXgYi$bkZoWlN_^c+tB3I}vZ$r(#-{dbYn6!dt1zWSC0 zF9pfSH@A0K%*@kp(V_-a?6Nl7W2w_eXw;G3v(=9XXEOJkev~u_=mn)mK{j`Xsi%Jm z-UW{K-oG)V5|$4??NjM%rEho&Gn`c|I4}PA-KY$HxaykE=MBr!>9+ggy{l)I4oy@> z!<8QWvW@*gvkt`=_ik?>CsiCAg|zeDVcl(IJU%bWu0RuUL}Vnqj5v>g^3$dn`QE7D zfk@!0^=l_q)&&?dlbfiEnm?4C4)1PEPDh(x1tJl<4XiHrB896nxupj82oB(5zB{o@ zG>c#8IqQ?C>k-sBynvGLP}J&a-v)_$tp z{Qyg~(($7e8@s~H?Rfd2Cr<8;;T2@V^69s%{^#S7#N?xxac4V{0Ne)CYYy>vUZSb| zxwwLwopP@~FUq+cQo**HBrBscP+MBnS_|7>TuRMLNxys22p1ik+?-cJHvX_!;dCIq z>kd8*ESb{u*t>aPWeD)MZ*;$T;VP@lY@uGM?Cza^c6d^K0SMk%!H>d2R}CYD?8xxx z)OlB{GQ}0&qnu}VECR>Zo;5tL9_vCdA)ar#-SmyR5J}cv4OWIv`Fz^rxpcaNJv6ni z*#G(GL-Cl#?R0hiio05miS#$MMkwienXLuu$7CwVP>!MdH>NZ$_~UvDzl5vagdx3K z{IZ0hU^~5ShGt~_P!3T7Skr2VTJ9={#1k)R@(9PHA2~y=Y$zM z%ch@0(;oS`xSDP1pl8q=VH~Q_z2K~`>?EfxfpIXFO)944^&7ENC*#xS<>|?aVp+%P z#_JtO;!trDnxtmRxSPiK2Q_2NQZ5$CX6_D3CbG=vlQktsgruv_@xO5II}w&D$g5Y~ zqT6E(Tz-+VsYrbO73C1cKb)rKP_`$poi;6Uh`&M7)9}>N7++8#%Db$>ytqNrKwiGs zbP`luu%Wz+-As4FLjo>*uGXQ@iv<&736*!#e*9gDq_lUP##hqL8Fb^XU+2mMTNcep zeZrQwP=0hV$uZnE_vU@{zy)h3Iz-KV4eX2tCXl zEmdj-iL5vp=~*6Qu337g-x6otNA7V%pOf-^wsgT479@#ovS*BH?#kSGEmxJX_$Eo|{$yHw{R(TX_-$_8_qEE!%+}6&+0%Qs z>*sp91=$xl3q^%bDU;V*PKwiTJ6B)DIz)bXvOnE_%;%BVo7`w8zcpZL?%3eJLtQNm zuH?ccm^N7ie~rs%R=8&NpJoX9KMxOPxm89xnF6uYPIc9Up??n zlkI@5#fwMbPd$1tK^7}g#Jj6|a(HM~;J52oXuxwsmAUIkP(J10j)i$|1B0dPpOtaM z2lw=K89pByZiqKbn1OA!&BsOlAXxsK+92ax7LOdMwKKlPOG9{q4b5o3AbmT5ZR=hc zX6tiTj|6WpQ9Hk{`Fxj!+n&`PvaevapTTTWep{YJ4LT<8fhE*7V(2tEy@C8}gMgme z>J%CzahX*%p>pvzHY}f|ZpgWj2~)_4paPeGn%xtXZL~u)v1mER&ram)O4IFV0ym_# zADCO9_}&sLLqlMdJo2CwD6GwKvg*gv#1%aLOvMXedS}lafwKYVGEVC1W8CQGZwfzQ zFtwvh^BI}L!OaNkU8Vnkd)6RkGx6&h%-bs*p(1;58JH)1z>M^1sE4jKfqG(co&SOT z%61-laxk*3mx_j0v{0rd_YbaZNUKA(!>%U0^tGK9ytEx2RviEC;rmS)Rk+CJLD6W( zNk-!ds-HI4liE-xg@tOYnvak^7H5{_4pv7$N95b{_Ni!Od%g>1ktJYIMut`+9GMJ| z2l^3heRqVwWE*@fi@tG85sVP&k-_l&-W570Rsv#7MG7~3rgxiDhR(^frHZt6el7n` zYzpl-8P9vND=}y&3PxkE^nnXb4|CWLeD(Ljta;()bVuT_#8Ogm{Ooae0;zpz4z`9{ zk32ehPV;n(R$k>l7>J5!B>*x>&2z}{M=XEYPa8C(fEEQcqTU9H*5Qn4A`8vEWJmml zYx{3V3NDo#V{Y-+DAbM9xqb zrayF_WE+Ym+g{DNuxWQzxaHias+sIO>}eB!cv_}nlTvuCP1hZNW*svjI!1!5K#&{d zGWjf~}DAJSZ@{n(OKI+VT#}E4GUSn2LIl~QA(s{pSF;9)(-*-C(ZQEn0O~nTx+0d|| zlb$876y3lTZ8{SF2p#j&VvXl6Y+cT>i0Jgpyrth&+pL;%t)Y@=COIiVxUfi+K)40$ z$1&PBcv?wGY8+w1HJYylmR=*V7J zeTaDmQwm@H41ahp;diBUNSxWo8&#xg#UkinsX1$+>`%TwRSkFhX*ivum)Aca(?F1e z7CNYnPVe_rKvTC~#j@28TJ18w%kS#`orDX?N#D5`;Y%Zhb`(=O99+CfCL84zhpEs+ zBWFHS=34gz_c$XWk4j3!?IULzy`m6vRY@`=&(B;j9WU-MYOSU+3oHE*S0y>+$PcZH zIDV+c9NNboabvM&p9k%O{f&K~d;(Hk)}i$#!L*G}!KvFap0%PY(YKMb{_%rE0JNNT z6HYu^S)N)fV-jtJ`Ur_+*equfHLXU8FZ$=25|^NAosnKo6+WR^35~`HQ$j|v3$L7= ziYbVD--Fqw0e?o34Tc@aU0`~c8t4Y8Ntt4}@ja-%iI{Sl#-e}+Bf@nRc?+A$=b2{U zNL4|qurHa?u8aY_!0)|I>g*z$$tyQGxAzh>?KS!`KkBHK(2bSE4GWML=hMMO9CFop z>n-^qwZgbuoA;=0Z2)zKUr$^(*Y|IH%Vg$QdJs(S6+@iNaa@;K-qIv1!GvY8JR%04 zCBJ6b4=Rs_SB<5u?5Mn(`hAgGwXeHy z-Nc_8|3jL`&EfiY7Yj+{Mu;tbD!q;W7|elwU^hPcXJ4jGj^x3%0DG*bM9~b^_B#0h zA&G#x5173i-&|cF8WE8-BVintH_}C6$}axYN3yQQ!2F?a_J0hZO}Qt05OF1Lz11S_ zop)H)BC5}-*Y)+UD!W3EtLwiPEP z+391C3srh54$GmpqsErZBIfgt&o6>d!5<0=wpqOMj0ijUn>G)y=W4NwEqS9Jm9iYq z`&{McM$_xZoD)eY+UU~7H*_>}{T9DmU1u_RGI&vOZx=4S63y2{f^oo^Y6`|5`{*9V zznrc!0Tq-WLq4h(;O2t(ei}o6;Wuq0vLEyE8`%e}2Og9^PVK#}BsdVh3T>BkOO5Ye zIa1X-7FC$0Ch?&!g=ubvrP1sQF3l#*K)x_J%FY-ZmYw#jKvtiBV{75w_$5va3HUS5 zgkOVVm_;$i*ESF~2OH~`e|pNv#do32FX<0?ijh#A3SDZ8qr*^d4P0OC8O|C!)zH_v z>z694VW9*&WE~5^44eeQ({)S@Xg$g{6u6-}6h$NKm^p_SP=?8QC)q2b;;3w+#A`Ob z+N~Z%a@Rr5he$k3>>T(#mZvtKv2q=ZP?uh#kNUPCM;duC)vcSik0~W9Hs>?&&K3))7r!Y;5vz1~$?pH;y-IC1&qu?u_;+go|O*b4jjkE3>2wOCf z((@gy9fCgrPL6v0spK5TGEt@;{YVNtE_C+IT7DK@73Dd8eTl^GQ!>THT3?d3AMJk? zER1m;i^G!rNN9EOo}D{NBawqx3A|PI3x2UX#k~GS>4HE-7r2ot-kiwv`pSI^i@J_t zIHG!qeV80eGSyWyBw^l4oUwEK+PxP?TiX5gwcd`W=5D7ubf+rMp6Dg^$<-T-Yq-_a zKMfbQvgpGLuonvrFC<8Ugw!KcyouJ@>`nML%}_+%zb%?L;D1N^JNFk)HIp7GT`>Gk zp7fx*4RU4gXFWc;dlty)I{Q=mC`mRF{IS)8k|5DV(;8i3@^~*%=>|#vln2h9&?U@S zKpjpD$+AZQJFsvg1DP5Mg=DG0oyEUmuyU;O)d^|t*@G!b(nC3nym7gKAg4wflK{(? zntHoH_OXUG=Zt~1uUf9HMI9|q4KK_sPdqkD%%|L3&O)n04wd2vzf0Lw^|QPi}=l#4DFJEglto**GHd)+mJ%Tkb+&KSGna{XOuvWvo@)fmWkMzOm zVP@L-CN^q+mi7FEzi5F?dx!2p^v{WI{Rv*x$VnDw?(#3vT{=9TB;Ku)*1_PGBNCm7 zkI9bhp9r@<)LpEO;6cvTi4fn&-0sr03eC3O_r47J`z{54G>CY5hdhe3$MdrFQpIfx z`@dx0O#hecn~{N)`M+o1Q<{>|IIPIOPbznLKL-8VTmOo<$)djEhnqLn=U#T75XaZp+-kZ%aQ&I0)&~vy56Owotm7h<-;{y&oDCmPZUnW!zTro-?0Kv0XSH z6Yt!rB{*f>wQy6BD6C8Vm?nk4rVid(&JYPMyzviy0MeHE7Z(+xi7_K+d>$dZ+w%5x z72Ry42{Yok_rGQRP3rbw&EY*Kg9dnv;y58_v^v8YtyE;#5pcO$2J)?@-dAI&!u9K# zBUEm!X-F4~D54{n-_)}qiJ+X>k%|Q9y{};wd#s6WV%t_19hdo;)}>47CK0AMXbz># zX%D|LFv^Uc3^#==LV_olF38l$fj{$kn?)PjU4{jvWAb9x(CNB^W=SH1Odn=RBWw4d zQ+c>eqrO z_kG;+e6y>W7T57)3~z;rOzbJry(LIK>tYLQsB#-aAa%?n`)%b3LTn(?V1;;XG1^vHLS=w~X` z?Z(+}QF#lr)W6Irc|r7RIiclO{Tk&89I9qEk(0L{av4Obq2S3`<1Z`pT2rda!8giO zk5BWpP*7Y&N!6?+m1M+x@!1N1?=6@4rmtdTQg!(|bfBI0IzUTRhEI*Wq@07_ol|5! zo9z{i+pFeLZi1Lo>CCKZMZUIL9qW*Fb-x!9x{7X?9fv&Jk=i6mOT5a&SvIO?Ibu`ZDaDy- zND;EK+n+59c)>7aAASQamhRV+8F`9QcVnQhVK)z%H8GV!LpLKO=58{`Ig#QL5tmq~ z?|20XAqFpg+WcfCnJ4uX@o+LQ=5jK&8r$~q zgqbmkoZTwy;(rbf_}W|C+z%gnmmmy&zpRMo=VSWnOXZfy`<49fwCcH^d8Y4%z9ZyskyyBgDe-+lVO2Y$ATje#5by3$G0&67 zQ6OcsnEyr!-#D7WFu|sgHK@t6H~y71C%n~-me)P@$_?lXyI!qn#Wl^nflv(*Ge{0r-5*as+Cr&w& zSa7x=!e9Khv5H)7kAPsFrv%%h<>msFSK}b)On<8^ykVcBM)iJ1XQN=FOtfcUf&Vy&HS_b2=KPr+6+wrOud}(W#X=Nb zUPbnYT{8Cg^ z^c~5Gb%&^5&l9)uU|42n={LylxkY7P(J%SbR_g0YjY%~#RfqkHZTa)Y5n}I8+y2iv zHSs*8>~MH772)sRtNH}$%VuL@QaYUN(~ibRy|TwOg_n>hO+HuEj9=r| z{A8rE=bVJfGm_4mte-S5O)LFOQ3IJtbf~HP&RRA0Tlu+$@D{d+^HTD>(`zi!EzS#R zCW8y%`fU=uzz;|(KCQMPa;3?L+nI1jChG-p>0yiaXEFOeb<;NuLY$1iZ#Ud_+a1C@ zrC#4@_w$LJWV_ZcS=!pDDhqB%s$(?bW*V}YwXu-lN5z_kV`RS9Rc}wXh%cKR=NF+4 zY5C;axq~;)0(^8{i^1-;36)vxj{dmON`?O&rroCCmV-tSC8zXWiZZtU%kM0A&yEZM zZX_(D5qR3A)n-h=T6X58f#h#|uZvas5quJkzRtN4x&>TASUz2a1c;2bl?{oEt$2mm z!TRvODSbU?jb3@8+%BP_9|G-BzyE+N$k4OtXKUrc<fi~ zK=;P4eduL9w~FO0KlcB_-FwG#-M4MvG%p%TDMU1EQp#RMWM=PBS=oh>tt6QtBO{WL zt<3C7WrggFkdRgO9^c>by{`Ki*K^-YTr`@Np~b=`lIuWz66exK)Y9_RT!j;+G| z^9K$bK1{h-zEWg5u--8!biwWq*=tXC*G2IZ1eKlgFO0Z#FK0_TnoyI}ne^Q&-OdlM zPdtZPfQimS_H_#@*=`ckJAkl^!L%gBMMxb5?KF9L@&leisqw z+&5O89&H}>b+wzqBGBhhcnz;bjPcFAeBnIuUrl1Y{T`s>rr1Cmv*|{mo#vj9z zCo9&=)>n_X(qHQXMvKaPN&SgBEMs2^H$Tt4owesF3XG3=6K2hMmR(LIY(z-VJp3k8 z!>-^(zq;e1#es%#fl~p|^JDQcuZ|qExIU@35O&U(>%^Xd$mlw$8vpc2T04_yZw+q! z0_{`%Y7R^qS*+W-TIsvJk`1jlb55j5_2zeLT~W9(w|aCpsnRRq^FKvhe-zjKVn1}@>?HeR5v^NMRY@$f;vwNS z#&vt1dVkMgN<7rxLG!(0nCm2a@oc~*{m-Q*A7dI?1iMO8L16!B?Z?^-8cn{oenR!Xr+-ZpHaJMcysks%~w)i?;OP$u?5|= zgO%S7&`<@BuW-lDeiW&;5GFG+UtCfj*!AGui-)9zxihK4cQo$oAc?G1|F${(yo4f6 z`(|s7!78U)UWR&K^cKDhtEtA$PFZdm0qS1$WBpcfMWeRd{}__3N9? zZ%(Iz=>s!*^@onPH%t~gvz{EX_%yB&9K2@r$!0u$8`-lMwsCgtQH`LnxT&QSzdux6 zxWw2M4>I<+d`vu+uurg$Tjos6_*0EL$*oHg@3*LmU(BJZ$rf4u9=y-6s8ljXd6PN9 z<22o5$0p&P7gvwRQM!D(eI?Bd-aAW&2}0*@9GmUkwpT2hukfHvTEMTe`r9+4PS5JD z$S+@udM3p4O#SggPr0N=g52+{UdTTSx-eHK$&JbI3lF!)8pDqLk&OSMAmabu6hu5{`Og0Lg6J1!je7ZJ zD-07DsJ*9l?xXhKp1Z>?=40=Dx=*cV`@HgGa(y;7vX1MV^jCG1ACDv9+pQO&p2dF1 ze}P$a<4mpWTLwX=?H(WJXOD<@JeW9pUi|$+aYd2s$N8)4RvoYx zg-qP!)cuS{RMR}~I&BWA#(aHlxNqEy?e=7F;I6!Vm!I;T-+BBfrPTeFyN1qJhtv0l zL^1PC?@8Tvsv^bLgwwS_%jKmK=|q3)JfGrYsr2UUFApziqja3fG?c+$L?!(jnBCc z>}QlYuy<>G$SPx3(f~!*$vQ5bsvo>w#g9&;#J@Cj_wF&j<`Wnj*IaY{7w3!Csq31o z`wz^D6IKNz&Wmo&oZFaIA`5*`?8o}@CI8UHdtD_0qR-q{RQ{M-{Qi!8m(peO1gc)6 zirpeH2i}Uca}PAoIzQoFacpO0Oku4&I7!7m9qwNBn*HKX$imCT$vW?4&EtDkyIt${ zEksnFBkim5F^qSQb9YW3lvR6N^_lmP>W=6Ya{49RHxzd@qVv+ULhW5P?5$5um<=zS zj^*pr+15W8&ag87?4ZU7MY3^!q0FA&hfYQA@OVy|6qn^Y#r+3a)mMu>PH(s@r6`Rb zmHe@V>JOIT+avahztmL^Z`JO5wl-enwf@>K#mI;Ab<~(sk8#ST_GVZmfsLa5x{q+; zU^`uA@4jo{&!YRMjM97uI#?s*0%SE^{F0}S270D)o9+xHiQH$p(|}L&137DUpB&kl z6bXN`jsZaluRF&=cU*n`xoV&M++9h|hARcfSR+jNEI1q9@J5(s9+K}7b}I=;wwyhC zMyAR{`@BLB)ky4ZnR@D|i){Dgd;EE}N~@T%ZWm;c^a)_(xOstm<>;5%5YKYzT>;b< zZN9?>p)~K4qAm!YkvaHB+iyB|>5>?u5vl`k9_5`erF|+^^O60~Im_wYJIoSuZ7w_v z?d|&G%54jZ?)T2Ab+&gdlRsk?QoYGVekIVk>tG0Vps@3*&6N`IQ*^!I8gD*6tG!`* zvwZ5xnYTQjKYh|YBNJfBr)$`1!M4Zsn7+LEkq5*1dp@T>-0@pPn?Bix>T*SK$-Vlg zS844XtXU(aJzs13T>iX`=7YjjP2qDlBR4xQIBRo{*d{o?F%@09>76kwx$uDJfx6K1 zQ-T_lrTg!891s!|{UE@Rwd2yG&b^mvZrtb;eEW3Qati3{Vrq92cf60>pmgxII^qs-pE6Zo4Ys{x|1F|wyo&KA57DWNw#`hzx7#V zy44)@+;giZbr<+5j3SH`cdJl|W$=`x%x2EsNew(EN%yceaJOVPi~a3OUW4He7T6|U zF^dMZX->cJZG3jfeRwi9{P@;K_S3hXo>Qs%DEEWD@IlfAs{m1Y?|Y?}c||_)=xoXc zoUSq1eog(Cd5H7T7X}57=GH&AKPn-ur_$FeGKzKR`!#z}OF65S^!ih&vY6SkC5mee z@-|rsi)-E2PmJAi%jDu6`Q z*`Xi%!f%L?n@D%ZuIlj+DoVt*?MY^caK0Xs%gJgyGMbjBZ6RevCfPw(^)0c8{NoNe zu~N~{wl__u_Y}DJvs7PED}O~dcO&)3k4MP_fe5X=XZx?}y*t!%{V982dZ0uk-TkI~ z^OJo0-n0J5Oi*lOjp-PA_42j%RBigjj(SR|rozpgKl(z%*hq<1yTP=(Bq zk#>#a_oUs5hPDGwzB|k3Z+|eja(~=SJ^VBwvp_GQ;DX-RQt;)_ejD4O*3F#6;*67- zais|_FYFIE&>jCltWEimezin(n&zuFbeVD^C+ZH1nL1|QcE3C+soqK2e|9*UbHOCJ zs<=-6WJrKZqYBA2A%kPSd6JjQOKZ%n=p9@;%u{z6%POaQpdPlwiX{>AQ^!L6du(i+v^z`yKjw6*eVf!<)airo&|jq-bhKmV)b z@8$imLc6*|TPL1&_}y}&Od6h$?n}EKUUc8&%4*= zhwAm*8%yXPRXrQD zV2Q03zU}wzzTL0!_KJ$k>I3p((i`4im!yx)>AkI9x4YNb(*4nv$=~38r0-gTDv6K& z=kI>Ooyz(%A#?>dY&KTP&mG>abHV-Qd3zdD-R)19jAEm` zJtcPbt@(2en^{qVu-~7uA^$OKLcnjO^(T{nTJpECH z?MnW$L{0g=<`Kqsi{FDA&L|iPNc2?gPC5Fq;>`7v@r_PpTKUgg+XG4rX5Q~@H4S7D zF)=@SM&{S6oKkXWgYWmegmn~o-Nf$O{9IH!aU~#ofcqQIo|)CvtmjgBg#zu&qd%9( zFJ5SL?o{!yIJo-&MNDOk%FUxw)(2xtY|`3RJBH|anZ2Vpo|GPx5J)e*mAG48=S$(f z@r3LmgVs7`of|B6x6!|>-OqMYrdayR)5#*Zp%fzia^VkPFj|>C*E7- zmzC=5c5r;Uy}FD!`&xSSp`gn{dn7yO<1eeU7N?bIblIkG>+~{j^iCF+PSbRW=1%Qz z{qCvO!PB>T!)GfZ_{PPhc&qd)>x%X-9t6zXaiP^eLKa{%v1xnr#N{DMAOE!u zwfQX4H+ego1QuMKB*mzHl*9dwsvYauNj$eUo^R6 zZe()F?wS*~gt>#gvWcCft@TY?8xtD`asm95cr--$nw_;h4vqZJ4>11Yo9r3S5Wn)a zwT=Cs|B|wuiLtqngRLDSW>NnAQ4@0hb7%er4qHgcNJw^9y;|chFQwj1NtP_Ay^riB zy8zY8`)cpf1gK)kFMmuMP`}B3c{~2**8im+$a(&oJB;=Fzw`r*E&u!u|GdKi_5V{p zp#0k^#T_P0lBy5_?*EHz{NKj9{%KpPUXtKeQ@mzx$@u4PSLOcyu+hnh8~tDG*#GU8 zKKrk?H2E2Hxc>c~W;}C_pXYBAXurNWY9BN!t-iJYU=o?;!ClfuzT5Sb_wR}Ln)vR} z8I{-k0ow2OMx1|Ce$}6A|Cvvztn3y6Cl~o&@8f9JzW(@lOKI%dWUOVs=&r%^=dWDF zJtle23YVUBX_{P*GrM!Alkvof#C;?rtTN;C4Kye>OianQclJ0{z zjx%pU#A^mJXMKlG$a%V^L zCypN%TOCb=9LdwC)KCeDQe=j3Lfv`jkfdCG*8S>QRneC#Hhwt1u^`>HIZ{V=`Gn_mPT@^ZI4(*~RzO)UFbmInO* zilZXI?Rp#BHecZ8|`qix;pLz{6Z`?@jrKP4;&(v0l$WXw6 z;1QgNTpo@zTwPvz^$}Tvti1V27+n@)vcCy6o zw)bP`I^ldI1if-}@=~DO!NbJEgQKX*nx;4c4RI13_=ofS#K}!4#W4j^I+1B=YUak_ z4vz9#sN>XYSP>rfl&fTEaj|uGzHGX+nb}Lh4V)})`4Do4ddj<#u{70LJK76}a3`iJ z3EA1N+OE*RZrstqVSTCJ12&uMGu16(!ECuF0%^`l+xU8nK6*mtZySfvow$}MioJUy3L7&DKMftTO<+s8GxC{62M74g_wup!&&t=Z z;h1&qh+WK&ruAP%{SakU>3)O*p304T;Ap)E!)KoYXmVE7TjpKcpOJqM4|XhH>T_v% z66EVkBXW0Ip3o+zOJWB{Z;i3yk(SjOA(@|IOiU&?DIfK?Fn3Ffs>)*nhzG#+`bx2# zZk|TEy7~JDWK`_xHTB_<=h#(~{%{${$So)+w;PsQoP&l^Noi@lCy&{P=ulph*aQq% zK0XK%Sb0oX#ZlDCl-*xzu49kg=Cx_xaHba8Ope_QHDw8-!TFF0z8kOur zC`f%RvNfzdIs8cc`iDpH?yIsp+?T)a9RBPIZKTchxhBV1T_K!%hYiPAK%Bs>7g$hT zpNS`i7ivAP=te>C&&S6{-p7DFVt6;ynnI#Es&H&LvWIwz{mm`O?laMOZgUO%#k%Ll zlyR&Yidxzob2v8*4;fLYPUUMQMHb&^K0d7e0mts2#l{-5gnXwEUsoP;g9AOkMO*4$ zUTF}y7%!KKg$GPVPKA)iX4#|^gtcb($)?$SD;XZ&<%ILcSnN;@dlDS1oPVR4T_fFf zb?jxXZT()hC2UtsU7r?ikHyKT&&s8Dteui`HS3Is%5pvOe3yJFnZ`S^G93C%SO}YI zQ^`Cy8cftbv205X$>ZRhdLGSdX)69$XewOP7*bo%C+H|M7}{9s$0>6Yo60?HAPMwrt%x9LQGcSGGV$PjA*3+x6y_ z(Km_p@}=-Ai__A-a4JegF(Gh@U|9t&Gr?ppS(Fj>HO2gN1G0CEP#L9+2zZ?W2) zr#Pxzli&fxn3Blf8ix1Z*#Erzgjo?Gx(KRXIhC8by2-h-xf60UCML!^%xP*?WhC!F z_%gQ{a!WiGZLGDoWqFE=JP0_Lwe+iprCNHSof^wMM?I|tA`Z!%<6PmQU6PO#n5T_D zz{Y3Odv|Tonk}qlyyfIfCA3J=vdZ=_9ZuE>b~;Kg`$M`g@;6&>!w!wYklhH`%U=>C z>(+Vl%GQ$TnPVh%S$LAon&N0^XjBcl3X%k7f5!;jPA}sP`_v#$ae*$`ejf`VqyQQV z9<#M9p+eZr!A6RZ5lMP?YD(KFv2Lvu+BGHgvm*?m&iQ5chGn9UOiZ`TEp|QW@a^rZ z^dLx`m7#zSle)9}M?Wg09jV_`YC&#tH^&7k=_He@xM<2;S7r}!>4rg40FFs5dz`E8 zkDh`OXLr7N-OfGq!gs>Xg_}NE9pCn?R!H9K{Fe3)(B2(CxP){9-LdEl4(_!f=mRko zTehb&B_i{*{1H6z%z1~CJ~R_lPVEX8)iFq$7c=SCZ2FR8D86f#KN4G7({8dZ$)TvZ z_bzI74#*p`>`)!xvFQ~clQMrHOAWaauA;-wHg<$R(}YE2Y3@Wi!|^~F^L?q}l<7z% z`9H%BP`4O|6{bvT<=%4;+;&U5Q73l&Qis^)veCjTI|KC+IXjM-96>$g%puJZot7z& zcBzxh%n-f+yyOSX9YmY8wKc5$rkoARFeAs2rf%eX?n`%Q zWG-KZ$em43Vb;7&cxsJCiJ=kGp2OzqvO7n87~F%m{)Se=ef6YnRSSBTcw33RzsKiZ zzktRY4)?pRFTb{H>v-0pPc+fu?|1z%Fu+&^OROhcF)o%zsi+DZrwpJf>Na?Si(S^i zL_1V6Cfiy~ZUr}5=6M>(5XP31ew{)f5c%)qHR4gF%Xyba;FF%5a{E77ka zHH@p{(n4M88{EC*)G3beDLBvFyLS(_qs3Q^#GUG@nfe871!zEC4j;bsAd2Dw ztG=1y{{8#yIHs%_7#J2V)|vya2-;Lg6IA>9ppL|$SC~ncIXu90Nqg*&%ybxs)^Frp zsB-3J@;i~qL6+ruTIKRmcl)EDpa`+xjt_XK8&V9vz4+V=~gK z)Oh*<*@2{Y^DlfpYc=-@*$E>bG`xLsBCSnuP0Dg3-*cA99lusW2Gd*!^Q9sF^P9I^ z^gEHjL~jX?Evuum54kTmzipYUcfDr}sl>J_2$O_ss5Z)QSYI4gg#^sD1rflg(B;UZ zm6QaY({Sjz{?X4QZzMOg<%-&4_Tllq^3sthB?a}`5XaQ~(9(<=d5G9On19UVK-8&y zA>|Lb!tzlS1|%MT3CySh3HBuBd(yKjU3V$DtE^0$C9+uPDL;3ietiFaFu9Y< z(!47-*6937IpIGPR8)!D|% zYg6YJm`0dx=Vw!)*2a^2t&4f4RzDoml?}?<*7$PTryTW4Lxel)U>pyI^T8ruBB*9Ux6g4 zrq+tvH>q&7MbL)mm3sVm@Chpihk5AWyx@(w*bVeLD`6>ZDajyw2O=^~I*oiTi&kVR z4XxCMt~1`0pNjLZL%&S57TKYJV|UUB^l-6I*^`9K;#O32;%bNzyz?)KZgdF$B6iL3 zP!wD4QBB>6%_ z`DE(q(n6o0i_6-^+LFAgTvl6FGHz8NUQEAxo1J?5s*KdEbcu3{lPc{t1k%ZltQc=^ zsfbRQN;kP{RaI3?I?3^o4ZbsP-@g6wMLD_I9!YqNt-HH>WPFN4URNts`5nMbv946~ z7S+!Xi5>Q#2Q&ndvV$rZBw%WEVa~mC+qU)9iJYkTOSu*hmjs##rBu_ zoKY_!UL~l@=2bK2T<@=NgQ;EK#fp52q+?7O`W3E3olN;N1@3>ay43Cbi5la}jF&x` z9rjA~V+IZ`K|uv!A)z|jbVsr=?fN`6dS$_z@?O$@hDhxQB6SBBnl@{Kj*)UcYlfUn zCN$Qd2|FthCT<*>H3D4r!t!MQI#X)vEub=&#mSHYxGLH}ZY}>xyGw3nd%k(=$ypQY z`fv^wCpN`)JP^x@^B-}EC$LHyM zW%iKrL;+yro$m<|R*tovSV4O_IywXAKenKtFP4|cMv8%kk?StQ!fky#mp8Y*^U}<)ccwL^ZW62ETm3_$`MB-)p-uMli!@s5w`mEDn zoMfQj+w8`6+TkI`rEsf6C<#iYK9U=# z#Tc{zgU9*|YRQgleGW&|ahLc$Tc`P2))mt*K#f|L2uxbmtgRT!oC0@ z0ZLR6TzZS^D|6BHa+)d+jjmt+nveD3wG0jL$ghiYbJ)aB1F|8lg`!CO?(|ipqDukP z$GW%=yi|<2gWv`s|ISpEA8^Kmep;~JfdfxaVF(Hd$>kB{w|VrS@D~$<@jT&&yJ>Qv zmxZcGR`|T-EjR=~DBns2te45U{9zI3iV*|$8vp6j!RvRRY*tVZ&i5`|Bg0sI1aDmq zR2b8m$s1%?ut*V;k=O8?kp&P6)O71js+xsA`q4Sn!Epz9xln}I@Sp)LlBCL^B&j2rAQ!Pg|; z<~71i=jp`0Cf7Si;^|03xDH;7a#4JJx(ZheN%513Ewnc}vmsdbY#RZU3Kqe}#zuHl zd0Cn9AS%^l9md4IzCLW#HrGPB%HR7*Jnyp|&RKsP7$^$e|1{NP>BmRiW`|^<7D$98 zQ^$85J}TsJK+zC~x_3KtNcw2L$1Gq9YbL-X$7yzgbo}9F{ zw)VPzKa99QOYZ!lrKi`=(&b%PM-gyYNy*X9Zgs$mA~Q1+qWDZ)BxYtmk+lM7&W<2p zLN=a92(=d?f8H<&Nsa%Et*L1tqzVszD|K7Dlf{-S7p_`Fkq?c|+%){0ZGD{Kf3Tj! z4IP|At+HjHp-VfuclNgeJ;|4~|H+O1d;0Wm6zaeK*nhID|MZdP!TXs=`g*ILo)pe0 zZzHX_RkSXow#}LFuPE9XCG>%aU*#F+Qr*8+q^9x^>U67kxPYVVi2%%Ua&kfrqrsJx z9uTg@s{JuIC>MF^*W~2n*jR1ERuaa_PnFQKRNDd9+4t&gTwaFmE6Gq;Ja+6DDveOK zu`%!`N8m|7mH^zpgG=LkJ(C9DqhTtjMFTB05#-i8$)3CTR)CM2GZpE!XM zB`Z!lQ~NbkU0-$KSy#`*mt()^=;{`NFNXI42%3t~>ElkT+#czg zS+qxwZh}7|@{^G2d-(7nvL`Mf3%@iHWl{nmO5)mIrza3AO;j4-JA|EPlk!Ra5@gK7 zO3_SHm9lJP13m}7po!@70GjNA!o4w@Qv5o2EFDClW9?EN@EX9Ui5c$zCFPx|zGqIR zMn*>Rd#rR3KoJW1xb;ia?d1@p2#(3S<}9UsT{l#qZ+ z%H-(i-I+ltNy#eYieiWdU&LBDyNRs3{xjYK&{b{-qP`o5{b^}wz=FhW~$AMeL{suHXwa4x_T zJ90TZUpwwsqj}KOj zEipb_Sqzt2yfig9nCn4sAKy-Lp486+bvam06>j{crq4h)p;6=FF56V1Dl5LD+vn zT4u2xn^`KEcN)coPXq6em{cm0T#{dD>{}h z9KIOZrbQ_o;Y8$tpF~1J0_<;|G((OSR_w}dMB@UcZmsMqf)1m~=Ax|Pf|(z+y}8Iq z&If(;fOagnw2>CK$Z6#HLSJ856!?a>oo0zli`2!7sV^V+_z)0AeD>1kzJ9Gjd<yB69X@9%v@iWp7GL zD~bJ&@TKYLQFN6YMgh)UMm|SjjV320S@l=wPuzo|eQ@#=z8h+w#K_wxz0R#cgIaa= z^#*(|A~o~f@XT^ z%S`=J%?TAeBw8_7fu7wYp8QD@Ih#?@(H5qa!8RowIV8iO=q4Rfb^AGu)=pkQfk_Oa zWrQ;Ug@B5RO5M^d6)I4k8LrGhB2E4BGCf?%LHzSkWBGA!0(Oj`C-eLFCK?P!sHv}% zJM%I!J_mxcy+#E-sqxMhk^%Y;l|@BM=m+9)Cc2u4pEzOk){_+ZC+W{!zkY;<#=5Tz zoIbJZ=B+ONK`&X3st)MfJ!vA@0|j_k4-np>DjVoOXwDYf|0ISQ=bp8txj8k$NyB69 zP1Co3b>D7FRY6sr^vE+Xxt43Hv5nNTVqvoYc~EYu5?DhWT~@b=4O`Wadx-RKc+j28 z#^<4Zs(b$zu6!4WK|w1-)I{AL96ixesk^>g<1zc=mnrz{^GnlqhI|VjB1!SLEq> zsdGI}(B2eKV)EB7Y{_d^ukHhPdh}=og5jUPx44P8f0&lm!oq@0ti!CVI?awo9^$41#tSC;Gry{(1jgo8WiScSEq3h-uHy3nc(0`4C9Za?HO=~o7oeBxMZ6~4nH;B&@ehbv+rUD`%Lud}%yJ+Z zPkb`{gNAM&`_T?UUwB|-B&EU<&mCJZ5f?rr%)K&cxRJ4m@Dbg`y<;yOOm9?(52E5@ zC9p2fG-?yeZ{Z;!x8_C^|MB2!-HI|R6eeJyp>|^}Of*@_30v^5G4?kvaC^YJ z2z|mgPIIOUVRGT@-VYxhik0hf`eovH!L(d4^z&}ktt6s>1lWO-zwa1|tx6PJQq(as~T&+{4-f+|19SR6-d_PeU{I^XJdOLDX$wNIXb6Lc+rJv3N}Anbv(q zAXj1jjeiBz9`Fguc~+g=B={*I&vhIR{ae~ZOV{a%+6JV{t>6I>&aQ!)4Ke8&fQ22~(3X#6A95?!=WXNGP7gf)r8 zAZRD=_!Aj)ukoKbV-6X2&;TeZU|tgLi;(BsKAgsovF;kYs2}$u00=6#l<%*(|=nR&IpgsAEX~MGycQ@B@!(|;y8|Ym+g5Ct)LT*%w zK9`1q9+>D)3S(i}wmYBLmd|G{gul-v%@=6@<4#eu5LTKzL_|a`qY81F0xT^nE5m{d zo1#fcPHxZEkKsbtKlO=#r3vpo6r4(NB3+p}XB$f0K}pabwnspwIcr+unN;d9INSw~ zp7ul#aNW5k{$5^^sH1*tk$2-kgcRA74`WR@ioKxe{`!(N z0>ocg#bZHhHkVFglLUKsh#LWn023}GO3lXr#s-#Qe}zQDQ3ByKY#GXfDqCNA*sR<( zMex~mSo*`K6xE$1&Qt^>rKWXDaSOqPJjCMxYv)=s0w|fgzg$R3&Q}C@2n&~XRvgAZ zQU6cFME}d`f=IaizlJJ!AN8?do;`iOKy1c=XyA3OFPuXfzMG6iXY z;v9mmZnu9N_-{e!tucp4Jj=eWJ@)gftEo8++h)@^z-3~%#nZs}%lb%+Ez%J$h#@#W z!IURU&<+3lM<^OwE`krj>C=#auXisz#onR`ubFT8=1@iHw}V zIKAP@)bQ|aWB`N!3q{+u)Mm6)jo;SRj-mF8c5H_U!+CGw`>6;Z00$ADAK>b^JqZ#r z{KAlWu!l5Khz%C$@b3tWpz~3h*1Rrdcs zN_Jc8KM5s!lKKCb^ZSpj`L}&{Ua72pYNNl*$sXPZNUV|HLH>z*Y>Eg8mEdimZ#9LX z67<>?rhuL9-X;3{A!VPS2@DKWl#!u6ef2HK&%l7?<}Fy5dh1$gs!W`mpS!wr9-5qw zx{EJG0fOT27Q!PlGc#;rz)6CFjXnzpvN42uBxSQTlnAu5y|o17K>4>I=jQG@WIBRo<>zw)$b5j-6up6k3qw8mK~g2T)$ws5;dip zXR3Jd;s=;A6{P%k)@goRkb{Gx7>;LY&VF{j=aFhb5MZYgx8}k=LqkK12^6w|cHrF% zAK=DBqO;#>OXXqAc=@f`k&bP^mn|d(z}+R9i{h^3>BQ?#Ec)Q9|8PNf3bZvQt#Wh0}V%%TLOa3^78YIm0mC&d~jcR zpG7D)`SA_+T6fv1`|WGo=;C{mQ`t?EacO+L#P-Mb1bixbDDr+;YCpl_g6v0964o2U z3v7nMPKBIY;sPsvgLzeDpO;ky6=3i@B@2P{zwUN^cci{C4AtDQ z(y-)!VL)nN{PFIXBp7e{efw_0BolP<7QJA^a&#_u&=g+T-;0_M!=Gs0b5vHY6D?1` z9ROq?F~e}u&|{;ZxOm0iv=0qGB4~d2=FJJ| zJOmYRYEDmEd#FE>frh3Fj);P)^4SzLJjN)`uq}~W zbQ;TuTvwtrATx2|6|536pk*K}uh{ayR<~{j2ksiM#3mE+>nK6%Vu{l!{4zwg3x&t& zT`!y-5zr4wVr*o0zVqR3@_ked#dsdr;jo_?!C)}?;ZtRpRC7|l$MuNr9FdF#N~fR~ z$_Ez4EKek}3XqJwYnH%D{B~JRCrJ><5)ZAdtfT{|6E3d#k3?Eyz=&F0T%24L1<6=n zIID`pLjX%5_$IP7g0Gofs5i_t_HB6_dClBQo)<;#3ERfc_NKo&EVqcR!&U-9of?z+t4u9k1e1aem9~T!T1d zLXi!+dppg!8^QDDZHac7T6dOQ_3r`C^IEjkV1j`rT(itUSwcdBr^yK^88$4I?c)f= zD8X0r<#DALB0!rc?GkKVhg4RVG;F`^dZCTc;xb-h@XEQQ^6k&XgU5&-{N=gl#4*qN zWj?NW%ArfDG&B_mreItwEG=V>Sbj7kbPrwSauaB%lvS4Fj!D3UME%5;S;GrK-9vNe zko1N8njlM4(+*gy;!26r$4`{RR36v4Xh#pt&gR9c32qN9*2Lw1iP4u>x_<-KV-oOz zBW!LgOp4CRZ7;?MEQZ1CQILv?`HdR{PfyRj;KyPc~3{C{VuCi_i3svBwURku5Wa@C}@9agi3 zJ3Sf?U3@|}3R7ib`&ihyqR%YMvg6##ni~<^gaXUtobAnnV`GBwBHAdOS6aF+;<4Ea z>Xz8qlaFZoQI+|7yDu7AJs^Y8D^|DrjXZ}{8(yfw_w(}nCf8Z#`B9`nbhiz3Nhr_s zyDjOT+BlzGOu91oRHyRVK zJmhOXRW8vl1 zm{TQyWPRxEUHe@k{?z{Vaz+r8n*Ho(_2|mnF1!*y2-yozdKxyoIVYb~Z(=kUJHKH@ z;d`EkH82`B8Af}Rl|rsXrCwRePQ%;|rWn+*=H8$YgZ@oNUd{~mf)t7`_PFPdW%@OqY*vC7FmvgbG3nR8hwOw*PJFZ(>s?|ii3|35L zaF)KqX7xMB_F~>MT>km4s~7T5Jq>?YaIRuus;9H$a1!k8(7{E(XrI)qwMIjj-1Gt_ zrjvg2v4#z@8g8r6xv~=P4L~UufhncT;PKWCT&QfnRPiHynU{rFMh8#U-^U3BxGNcS zPqhdvOAaH5pa5^|Sk?3hF0&}VUGwTL)$>?Fcqd3KMj*1}20niHz^Rk_ zp}ARQL-g%^&0x4@6MOd{@)5eZl1lg_$W=2mxpwaKp)=$FXLqA3m*|n6JjYJPQu+g& zL|9Pf@ngplZhj|pTFGH~z=La~mVn)m(fay4l`*EWSk%KPE*>1uzA2`WYbAXXg^0Zae{4Z8eFleSZJ`_^DGi7!yRf{3Vb75tcdsdk_`I z&p{rH)0}IXKa_tzbq|Bsl@*~>yII5TM_q(hPmdnHxR)7dy@iU8pFeUb$bkie(_CZs zi+w=If~BeM>Cqc!+#a$wd|TzLe}-U%=K6OKtK0Yf4IBIi2L3n5-R3(#fmHO?uWnut zESL{xVqw8-Ju4V!tog9*=OcD6OjR=9+cJv04dxQg+cQf`XeX@URihI6f+Sn?YII=W zDl96&C?Q~D;zYJy(q2wiR~NN}aXy-3UE)eIGBWVVy&ZM-2y&xgfkk-S#uy*U+VdSJ z=U@iLbOHTw<9W;>5gEN*_2J$C#*Rn}UOOown21yQmUT+v8|vlGw@tEg&8)4ne#CZF zSE659P77#9{s26b42xdvWwL=UU%p^ZS9%Yln}VV-0Td0-6}4e}U$k0E+UTr$%fg?e z86{BQ=t-Qc5D{@jJ0P?a9<@Y1SV1A6wA3ZytbC;_un2gu7P;Wyqx?3pV7C;SYHGAm z+&$cLL_tvz9cOIIAt&N?>McOG2nDi%lR9ueCK86SQ8zTjiyN8(h`q|qB~Ca26?YtT z8X(T?(+R#1I~G4o&Z?9wXtua3T#(lMjWG`~t38a)$0#F3 z$UWfi8c&e~kzORvjx6M_Nj}`d5V2x|N14snR|)W)1d)M!iI<~^F|p6~jX0nHCNK0^ zXemYkDWlLIQW^9>7Xbh!qO{LtsvHwzVBLswXU8>vW0qm}I{FZxS%3o(oI>BUXpW*X zCqf?ewBuFd4xQ034?aNSHb$NrFDLp_{xHrIQNwUBQ~L}WXRuH#wCuFOw!u(LfVVR`b0$szIXd(D5gJ(GxihR#X~|=@R*ae%H21dWviPoMuyO;oAmyC#b7j_~I0O92cxhM{Mg)w^ z%vc;{AFtqWgo>Fxa6V#lqF`l^8Jj`=7TvIgTK5Dn1nN7&Y{^Aj7CGy^z`E^fcP77v#K!g( zSZZYnVqQ@n!wZid{jq?x2reb3LVm9FJ`d;X?o^c%!>7iAGNxcA8!F~tVKJVOZNbM8 zJRFUQlk9>)*ADYWTks>7c0a@`N{8y&deL#c>BfS zalhNr)Xo~NnwgsN0kn>h5)c1KKM4&zxhwp9d&va2LnL(sSdXdlr8YdJiUKjPZ%9f8CjJbo$osL0*tt_u5TXxO%gba?Sd>gq=4bA7cY@v>@s zN?NmqId31JIyv}G&Y zMMcGA(eEI}QB&XUtxLp+mnB&78#liGMY~(N?`%SGRaYlR%b=@G0)acSp~XH z-&)z_cqIzMfw2>=V)11XdY`_F#|R9q9eLyDd+VCBfg#ICp#7{Z%08{=?HSVa z9?u*|3Zs46yyqim>I0vh%wMo63F$t~Ey70>7PDKOSsH7--(Vl+@lBDzo$@**QTo)u zkz_V-Fi3WPO6f+9_)VL=u^hFS*~KR*tS)5T9oN|gPVo_ zRJU@)>*+x0po*L4(@E3q7M@jEpN`5I9&;;;OqVsboT^J+jObh>P4$VZtf+PzAUjec z^rpMKwyG`d%pE^^T9>t+Z%wV0Qz@qBQZqNre|MP+I`VMBf z=cJ#r`v<;J5D2czKdVGPFU+q{xPma>X8w7eNz}P2%)41pX{C$Dx>&1*S>`wM)Keaw zn(kMWM^j|=cI`-WxY5RvB*eU}rau*mXeTtKoRJ*BtF z`5&tVUbT@kw7wLL)JkagcsX|Z-X4~$9TQo)SA2B$ypvPnjge6=4L`Ik)9hV-1o=Wj zK!J5x`1u9BR3%@FOuG^l6^7WIPZ!_EDGMzeVpp*}AswZ=Q)<+p%2y&kRz^wfnlh^* z?*rG1KhKs+&sE5B95)=)U2YSu`|j*ixSuEow6W)u%Z;V|V(~lI4_5K+&@_7(6hrpd z>j|xOjhyJl?5*?b5#O$kmJbB-d?tTW^ETj67nR&ifkWTum$&=I`wSk??T@{eZlttQ zIDPoqZ&NZ`2mMjYFK%Ps?sMCxuN~Ma!P>t{;$0$3`L^MW$5@ocol_5_v~I+hWf?e% zQ;&{aetS${Y~&errEgTLf){V&(=mP3sL2;$ZVD&H5;grq*xWBtO>wKwl$alSbG+(( zu(BU(@u?a1PamT$%IAgk-ruPEn1A~gdv2c@(*sJzIboeMU%A+&<-32;6lPEbOav+x zMSf4_ESmbETJ_7RR=-)xY=3G4dxxQXD%<{CuHdl( z7kW!R=cN9I5xRNhCn6N&zh=+m?M{2k=B>=&$Jd=E&sNvd&9;9qc{0qwF727Bsn8|o zZ@HcpPjZH@9d_>hZ6Hs1p=;0jMEAY;YmW`?k@s~U_1(v9@;K><{I8JHiLGBweqz%z zeU)Pr-~D4lq9u!O{BY(z0f{@eu9h||M(+AlR3J{gHU?bV+KJDbd|k{TsDjcFo`7E@}`0A}Q9QMi!0tOdm9xJUFZW26JMrg{4U!NhTw4Q5u zl^Fbopt%|OZ`P|9{;)|(9iUT{@GRz1q+15B~MBdGUbK-u#KpTG)a4g z_1${~9p4y)I7t~4=qQmp)=Ww$U5|92Y@ON~R1_pv70;eX}Ov* z!P2PWLU$@ARH@k={)L%8$@G)CB6mcos~tMe-*trPkZz!mfuF0`kJzCmY4x|a;(mXN zPO869_QkYO?zfA-6-VW8%ytLq9`-|B!_UluWN3?Q?lhTNQ5iQnr=?S+mhF)&m977g z;?8yO#_6&?At9&*`2?nP^!7m-VbhCo9J)(%kI{ zhis@rgc5%?=IqiDtCeO7T-m5_tg4N5IUILop)7l}=b)qh)&tci4xGDESC!W&n6#CA zjE%nd#;;#-oQa9o<{g%g2w7Imi1FqD>kh`}D%?N`*t9Oq@Bhu(;^e zo6N6IC39VBeU!-38eFdH+d)Oe|C7`D`u)S)Y_b84Ya(nlHrLzUEMEM+sQf|AG(hVq zbK8Nmk$A=SEq1czE8Glo4cdE+c0{l?Y`h-a+-86C!ov$H#zvIy9(+1R-V{)i`EBDj z^@PfoPvmz$UAt!G#T8*6xo7^sNa$WO!RzA33Fg7d2?51B4<*If^FQwVZj->nbG@r<4<_N4{rl9q0_vKA%bZs7$>kHO;7QMM|wy(09_dyIj(c!tqz>@ljLQN`#tQ;FE1ULNO;I=c9O?b_=j`0=~7MGOobIj6|UZ~s;16im$>Q5T$B>n)Ofv?>U7Bbm>)xOi$>y+GNq=wj~O_( zX356S+HfAwSaH9*-fmZ2_L@6D(z1$fX+Y%c?kujk-ktql3|PsF2lk|AZrk!$ll?*h zM?peO0Wo{rb)-JmZbN!2>fF(UA6w?$3wL{`3`jgDKc&7!T+2f8F$W>&;=y&B*FSAO zx>9`2yLC@cSe(S);Cg`Q<7daN4YrxaDhv&rU(UL)nDm)ykGa!iukqB4qD1HIib-zS zvboa^%c|W^6Gl$&FH&eY`*VzMtJMN$`-)ulTCRO!G3P>hwV|nBnJU|{*hk_oqI#se zuKuAl{>i8H#NAVoFND4srnE+wl|Q;XAvm18oq}7~G>ylha0;=5!K|8>k7o^OPl*R}@y5Hq40|H%zIsW8{(frDv4#f$Ht!VkL%c2o z-h4tO*K|GhXY=56f zmwC$m8&jQjVt?dcC5Z|A)xAk~Z=b`_mpjfx^F1T6>{fqhxk6VLxf<*4@;krZT=z)4 zOpm&SBil5S*>lcAHk-+oN=#2*-M!Ay87If{C6A{-OwEtX$U&G?gDmM>y1J^1rbWh4 z%boOTHPgQ>l+wS++5bQ6y>(QU>)Q5<0V-l4prE95N{JvP(jf>4Qew~`C@E4FDuOg3 z2+}E`ga`;&D2;STC@DxtN`wn>`}7`f4bPcJK5W;gEG`rD#NxBXceSfH zAAe36t^MUoYUH|5UaX51iHMZgi;XX8n|~HDdTx5>*z7DPHY)r|+>|At$Q6I6BSX^i}gqJfD(R%l~`pp*r2K z3X#eWS-3(kX;f%>UiuZJsrT0BSlK$cTio{*^BIF@<}D{{qHO6I2wo30KPs^wQ=6Wj z@8`PtK_Gvyr@L~L@z;bKVPkl9{j0w8hbqEdrA-SHWh4a^1KC5uV(+`gqjc z*@~b5l^y+3#tw1b-s=}vKHIVv%YT$O{At^vivbmasauUXUdwFB+4=tc^vr(mFqR%m zy8Igb80BL6)9-vU9tOVAEizd2Jl5>IC0kxPa!sa&anCU(J0+#kuN02fmZTD`*}Jm> zMy_&wqdC_~$G`t2ea&`p+ZTZjWi)!s%gJkB(^UOCDeB%(no_v8t$Z)sdtslRt8-TW z3!3-NN%ATCjve3sY(rj=u8L7#zlgd$V|4iBgz9cqI@ZqYU((!Un@N)F8!n1aN*?z# zshW@Xy>YVs{L2qpe5&b88=1Ul`b(y?4iVPa*3}3;YNqY)6OSMGx-30xSxG&{rzD+1 zRlPFARu#+CoJh)ZKXN4Q?k*=9h0$R_NqP&_ZpI1eZ{(UEn>fNF!-WDB4lDb1bh1z< z#+n_BdlbV~O5T^;ygRY?7k~cmW#_$9q>QhWwq|~`c+_KNvH3%Dj=y}HRV7=3W0U*g z@P~BouI;VQps*k1r@VKQKSYgkf7-&nGc^Z18)AZQzm})J9DCyIJ+i?RYNm@>+Yd}# zkKWJ65wEHheL~{=ZN-Jtq51dXhsKZGJ0fHrdWzRZR#PnO;o4Tg_?h6_Z84wPs#|^4 zn>ltcIr$IQ=p5qhSP9H<}Dlx9-Iu@=Cbo$K_=9ac)+0B6z)^mXr_QItUIkT_TQ|_^y-ndb0 za^&*uCse+=qY&(Xp zk9(R1cCd)+F&M^I)b?qG_Yao4_L6a>l!+c!QVngb3 zpC`ujhqywoHO_5%@82X{sFKEfWfETI;v~?X04rb9Kxf!s`9|T93zmYzok&x*zp%xbR$-0H1bL zm)<@*>d}%ZgXur09}VlaJ!ni91H!N9s{Ocq5WA$a1PSdF zZ-KEs``d)?4zkhZlyc>i&t4tWFxO={K$h!pHXvoP;^bL}vn&nu-{X#dCkr(w7*x)E z_nd!-`O;FDv%rnJYig3zgU%hL4hGZ-wR5_Hhl7g0&$gteklFdEo~b6iLw)f!O`_wQ zsF7lcE%VjZ{qv?frt-SVsPW!kUlRACsj~2KaN>A zIk_+vc_Bjb%Aps1!$0&tC>Qa$266-k<|R0?(1>NJ?QnKF*K|fxhqmGFr>r0!=Y7lv zDs#vhET<}^hV?RAU!7X;b)8_j9lR;HHi(DTWMt~W7)_(wk<_;tPxsOP7G5h)xlgu* zqfFNP**?iL+0QE+;leL~ z?~$~?V0%pduB&KE{Stk1T~M?^lf@6u$ZmAOOLClDqmhx@>LOC%=~swZt8Z| zBw1$VMDp0mo}ZG%jX}Q;U6oF-^>aA!KH2rt<7pH27+X@l=2AMn(u}+7x9Yg)W?Lv; z$GRQ6P}!l!e?K_mjzxt*(k1~756jRkI>wnpVj|}sa3r@dT9k>du(MM~YEMmkrJv>! zP~LX5D^-|h-^_kTdbXvkY$J;f_E@r&g@Bci2Z=T^?yh7<4%>g^+u$3~EY>_B)Ojm0 z*wpmri~e@P>fOHnOeo++`pF)-ve0aHC~Djx72%pwa^|#q%2v^uYh#wFWy7sp2S^&M zE#!RmC~q#{KOAV|D=_i#C26SPYmre!y>G1!Y$-E2oAuWnqEvUD(ksyuXYDSmVRrB( z$N%#bpWXd=L{I$iS;OHPDX9{>h(pz9+&`b?soiQbY;g0QJ0pt00ZyGS>eF;lEN09) zTXpt4{hq_Xc!5qk;i2-DOjgw|hVeTTJ*mk*dhqGo6>(J9>q??Xv6VZH&r_jcwR?d3 z`E^C3nA^*DE)*R6U0K|@#;#Q#BfF<#i~j1s@q_PA($XZCP^Gpsj96D!&k2<&ki=ybcnJX zJx3j}J4XCL%KDF?jlg3!&(+KiYL856o8>FhQS$z_q}E-1Lp_|{Oy?}lXRbDSjf?&5 za7O0^X=S(D-^DuB8}-O|<9NG$c+?+%_oJ=3ok-$rRf2 zp2PW$ChxBlj>KDOPD*z_4t=lTHJ8xUr0V3*_&il0p6Ibd^T9YDcfwhT;`bp1UcrK+ z9oNoPI}|k^F)WL@rk;?YtxWqEp&2VJ6W_kC4A!o6QM>-o;ZaX~qOB_{$!Ec_}TK^ZMxXhc5Y{N?sLsTnhzCg zlRj^&Vr2e9;(z>KP3Qj$6vO|GEB&9~KmXrFqW*7O>HlAGrQ-kE#(#$^CGPhBZ{SLg z9sTzS6}@i8RG8@Q#ihD`Yw4vUbd{Z@@rt}J;}u^jXy}T(Boo-TZ|fsjkxLIQO-q4S zs-|#8@R)j*APv>drcT@N_?x6#m%aE$yzAViQy!?Am^R8R3Z4)Ku(YAeJr3m3=aHeI z+S_40)STynhWPIl8hi52WErrCV_(dbEh38*i{SH|K%;;<< zE?Zfh1857Ng<9KdSFaw0z3zXTd9d^}Oy4#C*`J&BhVdJ~uWx zKuXX|tu>-nL$u5;+EfKI!yE`+DU2o%0?-}58o%`ybUkb(j?VY@96nBzsQ`xudu$f` z(?T2)5)z!8%B~i$nwWYmv_Z=oAxiWQKny(=UZwV;pdfr*(tB+QI!35IQm(^i9X(17 zKOKGyL#{~(qO2OgjSX?WmdyCc<2#@7{1awpOP zR-sr(&Yepw6LeSRcdpdM1%3DbG;tDVmXBnc3ks4~99SEwo8 z1YZaoQ9eL&IsjL?;Mt-`I>1;}K@`H$s(k+R$$NP?GIw2vXKYi|B>dlIL(!*JkE}A? zS%vHlV%KD;?wZ}onhIqe!0Nz$0`HD>HdqBIxV6TMW|oP3lT767THkW0>F!e%5gy}s~c>wMucgP|kI5P|0M@M%9&O_QK z49Bm&efREUdlw8DW}RSpnU_GNO*C?=YX>etCbl;1L*UsDElIwkML8^Za8}iabu{Cv zKn+`SVZJKl2<+NbX7x}TWpHe9w6fgID1CU}KISbqxL!Kzp92&syjTdNCHLZ9$hfeo zQW%qpyMZ4KPV!~nQUjTjl;@Jx;vBr;V027C(UVfal2iw!3{M&h%#h7_=4#fgLcNg6 zn9tMh-TNi|OcGWwR4wr1>0aR*0LKON2^pu6fPzFQ1ZqyPrj)o%KT8rA0!9;x%U*2E zILMxomG>Pw^c1#a<*$#)xYS^;XDd5J8wmx|Ilc6=&mX_h?&2AK38_)!O6WKzr0K9| zg?}#M#xgu<;RPT}En`Ky-2@y?nhrcHT6A&6UjJfG4 zQcIXs1%s2JU{eA6O|x!z&|7YvQ|ldrbnTL(fwFnw5@$wE|M@Vc8alII(e-mX@lP24x7#L2nu% zeZ-?S(AU=&KRiF(Zz`7vaSF6LkeN<_o#6fB3$uGBe)i#c=~ZZ=UMjjCnPd^KsofcJ zASGbh_i#Sc!-usqp2O^J3x$$nyql9#?SSI&UUsD-XR&C0l|bl9YTrpD1x*gKRn44< zdYm*0{RIs*HCv_kbe|N2AhdMlCLQtv8kwg;bG_GB3=Ar8a%$TWfv zq6BeV1!2R8)8Gzrz2Qlafz3}wdPI@DA{4?{O%??H?amFdd0Ln zZFnP>(p1x+Y^fiev$A(gUiH50x^h)}yWWaZ%?^q&AyreI?g(8iz1=4dKh8e@s%yEX z^s;=cUW0#)mWn;whNwOqFJVTs7S*o_8e%hW{}R2I+sBAu;fONA3O0Qo&I)mDRt}Eo zuSEh(Oc(IT9R9FMyBoU^?zxm)qoAIIgwO^~x&R`p^o&8pCshgl=8VuyU!a)d-PVKl z0%=-k^W(&Zfgf`wRqsrs79v z_+iOsQdaj}>^`;kfzJ?``Hw6vZf;fk;j+om(X@u}m}5v)21kqn1coPJSQ>*#x$2$a z?(>d!BQDN{|F(j>Y%di2>g9QD^{jtDm7}} zNsrpqMDbPNrczz3eP<#>G*~rXtogw#tYh6C*aH=`p75_BW$xja<`{S-^M(|B*jj{b!XA}62 zKqMsn_{+k~%s-sQLN|25l)@pK(s%aWm?0l51@*LTO}0F`WGk~Hp;LvFgl0YX`}lg5 zTzqkW*Tc2pdTuwJ>iu)Y?W{canf4N@c3I2V=`~0S7#5`a5H_a&i&P30*I%U4lK}zF zL?|3iKw5221pMh)QnxN6ckZaFA+0Aa(WX`W;drueFD!f}JFnJtzpldfi66|8?l*2A zb5ecD*`aG8&tnoEcQH6w7o^hmLP9%-Bn;q05?5Uj))v(BYDbkXtig~YK2I607Y%c2 zH4#(_5nq;Zv3ALSfl5mNDkXx(PQG%!*Pd(Y1It^Tn3Pz=4SmB0t)=qTr%hk5N3;n= z%qJ6J@_eje#{^<^>q{xynxA&q^i69gAQgGc;P)msCGra_eFm9bQDJUn^M~M!BPwdu zB7V{cugJ@c@>i111c~XuCMTX}wVS?m%R_jZY;%p;XOV8zzK|_5N|g6&)G_bq19Vo| zQN+IITyZy#1Dr+G&p?}J)V^W8O+x5xgcWqT$pL*sIRXFVl|}XcF{|S+?P9ZBaHG8_IZT&&5<-dp@GQQkj*`%ZVvE{K)sKQH)dJq z5rfnUw3v}3Vef3=?{QoS_04*U$O{T3>!p@OBB->$*DOU2Ru!(*SI|@=rBSg|>wdNJ z3)x9+9n8LF8|H_HnhyrC$kM1Vng*str-}WcGTuqX>A>X%MBR{HnPT17udDcBX?GoQ zwAUxB{1gx;GdOpyYP*2UTBhH`2dL7aZ2tV{P~_rl8DbhtFuCIyyT#v2L%a#6i{W#X zWGHVrW#%mkxK|L^iSCe+=U%ImMU;urX@ccT13TFQoUA^>zMsqrg|tZS(O@B>nH{p; zohi?RHCNM}HHYTM+tfa_z!7Ws;=)Pk;vbsG@%*vi>T7>e)o}a}@0QEcPH4_10Lg3S zi7ZjZuJdU9Nzd;05RzA|6mP>SKLpItuZ0CEm+|nsB|`6CdoJg}sISE06n$J*|Qg_{}OcDuT8HhnD+NuT_Whtm;G@eNs zto##IdQVH}y0*ktcs7XGE12L*IsoWTxd6ZftATk;WVPQ6RPPYFrnEQ#-b~A7Xk;|{ z%waBAO-o&&4&36dp<^CL1t zM1_}=$;40aRu|?{G84j*RDj@)=RwPh?}|_v!fUzP`f7JGbGEkCA{eC{8R76T7DU{zsEVc)f{p0h*o88s$y2!OsCwsl#8S zQj<3Pfi*~_MBMvZ6ogaXzt5z)WP2_WXk_$`4CkY?1Fj^w*ru=mClZc<3B+UID8b|; z*OS;J^lhpotr2;=$kTOOuDEqeDbl=i3C$OhD^=sTCiQQpoHO&EZ4ea^30GwKOb(qh zGLr7E5I@6SwDKq9!Ou$Rh(}O?@5JxfMOkGYv$pLfA<5VyK^;`5L~Lm@8FT}_T!ROQ zn6rC&t|7BWc69XO`>i!wCHw?7HoYalt||!Z7EH8xd5GoFBh#dtV3GZiihv2LQH0~o zhQT42VTrccFD@nSvjluk96zEk!SAV9A_E>mO-04e-=D{{+*6V8EdJ??Kv&#CKQ&CT z99SVdlZ+R}9oKk#Cin!tzJGsvd>hFdhf9|)n;*}J@^+OgO!IB= zJn*BxcN52|5dZr7W`=BzVC(k|y|0!<FRrr6_r znH3M%=@IQylas0VjXUwq5hg*3cmqQovS?V$R$!a<1d;>5u}B3X1`h`bKpCL-5lNkc zgMbDPy#!HoRuY?keXdakzzH0S`8X+w^)#0bIs?MdUsaV;)KU6s7sCI3at+36HM>Sw zjX=h5bVDtR`eg|`3&b=@$06lv?n~(NFZBn?dXV{h#Vu^MQ8W*l}4UvD%>nG;1?22R5Q83QABFAdR5qA zFokTLV0*(ZA5X<(59LX)3ck)bfTAUOR!d6@87EsYa2K3&=09L+9)0lO0k&K9YoCt~ z_SLK?Jf!M+aq-SPNoZIYyd^oN75uSe^&AM}j_gl`RTUoLi$%@|5Zz@L33!wsyxGHt z>ZpHX3lT64ch^=QWa{V6os*TlnKujby!i+^4Jk%UZU8QTzml|USK|U#^Edk8ZxI9_ z3b6h74f2LiTzi2)1ZNR`rVWR%l@+voc9N3=6?7KIjQN+`tP1QIbg8(zOgR^{r85D- z*-S%dYHAXiM`C+sik*!O1%g@>D4#!I%H>dh!n97};#IwYebL|6d4F);+Khz!g|DA@pe7>@#0n&l=XMo=FCmC(6C z0vI=vO$PXN(H27?&g_<^9@Px8mCbGt9S;&e+4{5S44BcJ6 zrt4e&MZqQd)Bmh`a;j7G-d94r>EVt_zf3}M5FhnV?f>6zl>hAa`sZHy`+fT7!yJPW zc2~UWmM&d*r0#U_REMQ=0^6oPKf>R9?LI{YpXmx!Zu1rRF41GO?|W11_#5E|&BIP4 zz_PNka&ouPz66N?%^@(HL7>S14usrhjhFzKzwhc2myGBZ?yT_fLHq)^h@PI_9F0yO zKEl8j^21rtr@#=m=H}v3Z`R~PSna1|Q|0UuprD{YyF(jmBXbuCN$evZVAcRugT42; zFxZNxpGm3|g4A_$P{s)s^}-h~tgtlVq`i=J3Ygqd*EMsq_0 z=4~L_E81!Z2ndLYiJ2QJ5;-BsuA4}d^~Ktrr^-lypfOA@1 z?H3IYU-qzn;|7`x{V>jPSFDV}STa5B0F%<3c`ENXuzNstqQe2_Hc*{2Xw{-YcMG40 z-^B-sSR3PNi*Avk`jU|6fux^HTfY^vnF4mge?KAgx|ApZ5Ap$&ht zaQh>|Q^HhUA%nOM5y~@fV*NiJRJxDT+)S{774zuU%utF8tE9 z1PT;}UF`59pfZF>TR#;X5H7&!$YZj+7YRev`->k12KM2chVLvq3ZS}hCK3{f6Dzp@ zV!||kc>jJK4B3L zJdekQUZSyy3D&A4e%r|vEmoj zHsubkkPMJ5M5cz_Mc0m5)%_!#lcR%Yv{!}3)^4Bgh2Sp$#T5{pM^GkynJA6aZyCoh6K?5 zW5p64@|Mk;lecMcE->E2`>0qRc`DZX3{X1YS#g@d+WM#WUjuppk*7g6k4E=#RDrlA zqTIh94>Wn#l4fhU81hna;o?jM7UJ0)7aXbP3$*gSxGcWuvlFH`)oP_5*3!qr9f&#y`(s8q-0+OIuyYNZy{P8UH7#^Wq;; z=UxYgX}OGk@iii6J3Bi=n1sa9dY~!$}zQ{RHzIX2QhqIX* z(9a%!0&s08RZ3sKCN|8m&9RCN;Y>xEPy7T%X>}2)1wgKxV!Uq_9ZfJDKWypL4KlRiM!qQ&zh2{#Z-?R4Equm^50pMBrJ?#Ta zzbeRPvGnW6J5Q~vl;d+g{00go5d8x5iI*1(6;@mdUc8781dgY+se%U3H`;YTXmxG_ zy3_r`=L&b!aie|`|VHCzMq;PJsFU1NghI$gfX&%$z>_@h`3%Alf|tV6Y^{nyt4sSMM% zCZnAIGqAR@QpV4u_03GQ0twZ?k00mo>M_It6T}qoKY4i&Tm1ig9VG&OVlPd{k5y@wF8>X#REP`ZP&XD_~`;3aw~H0*OgHYjYlL5H0CwYx^xHoVuTCa${}j z8u6i<_!Hi~l{GRl@*^OjZp}3{wdJb7$b*}^KM_&zvy;-*8}Pwe@m*<2-Sy`yRT4R) z;eK$S7pS$w?f@RDIO{yo`TE$^0=*Mr)NsBsA2&tqlZp0f*kA9#bncQFg4Ff`)lGbbRL2e0YvXW^ z0lMRk<9$4a2<-Ir9UlEh&1QZ6$~rOH3Sf9bAOSZTiV6yVA6CCMooWZf2i->S3jV~u zLj<|^(sOahV@XKgA6ol9jpG_v$n>@9X<}l?Af<{`A74Ae$iP743n84~T~_zv&rX~; zLA*5hYh@tGazGY{7lf$|0X;5`juIFFg+|$5FLWj@G_*P4)V8QEEiF1D;c$HqAVH2C zl;P(;J-Ll@KOzv;W6IV)ft=V=K=}?H9bXawi#A5mJrC_4v;!I+$8O)VCr;Qha3lsV z4`l#;d4IaiBurn;7yNy|n8Sd~1(X41-F0>9_NW#0vkfCmW-5R&!R3`pU_``Ov?nk+ zG=mv0op%EmMX2=Ck4R;K`3X<9+U2C*oFOQW7vR-*I3L4^tmL?1_0J+qP{pXzA+0bi~A(8az}j z3;a%A_*Br4;PS@>@ss1%E`dc_cq}AXH7fAYqZAvQ4joITXh4<5jDv6HhI9y+q1(4_ z;|h(n3V{G)BZyCOOk4T0TnXv-@88E)YHDicvF=a`Qq$38dM;eR<**4>9hh;`LmF0ZGhWe$`ZJek@xW)y6=8BSRV`TzT3kwP5eIe%UzjBhW><2NzuK?GGSh;^Dh9Lc@7+Y-p%q_#1yzx+W1oUVjRO!fO zFwLW>zu$Cf_n~6}HQ-NL4uYQFg~s7JUxdUQx^i7kFy-cm2SU9ap8cx{c_foau~8}#2fv|;MJZy-Uk1br zN?^=7ikPPTt3LHd>dmxmkXY`Z9z@lNb|a|OEynX$6=v6jA&)?8b}*A`HX)mtwZri` z-iu^3%e0~#eXo_373`j~&-^jfU-ToYtd>cF02|iD7)ZZ{zi!EPc zYR)}Uv4K4B&}Scn*Ora$AnsD{MHCuCsU4n+#HCPlo*Y@Z84<`goE^CttpM786eRz* zijjXSNd9xJ?HKj13c01BLON+D^&XN7Xo&qy8?5TUY~}9_l(h(QOY>toQc`6&g>mk= z;T9V&9&uk6$HLUF z0~mj`Y-6IMV#>_RYlnx~yyG~~%jo$R=>6lUNj0B0#js2pOserbKoGj^(D~vb>TLF( zJ>_1dU_YvwCioEb27G8fp`}i&L5y2CsYS^_I31peAQBMYAd3ghw{QfM94ov8p(ca{ z^s8+6F-WIPO@a7&mZN)#+`K{vnr-xSMuw{a5Gp|9MmC@0-6>M)xGvx@}e` z+Qo!Ykg6{CEYO+|yIKG9j=edv(*bE`r%Zj5{qY zVateTs4ib$8zh3mhwY7xd$0g;uQo9?1%!w4I^N0Kf&NdQ*fA^ux}j8axu{|^TafML zfF+1vjZz8|9DtibSc~R4E+GLpsudP|E4l~{%>A)z)8IgDT|;9JO%@@;1XN%6PD!(< zyhD}_p!Nqs?JM#rtl(x7WfAQ(eF?@XtaOJKuE22CmAUJGH72ga(F( zQ_k}w+t~Y8<(M16D6@*^gC^W(RF$}xOGlRC>@&|u zLvsw&5?p4Jl96dkA%!>m1L?%!07xg|(7zy^JR(=RMVOdwO8m9h@W)ZP7%L-(hG1~n zQY{|Se?Bgk|D2G@6@kFZwhEGv1fZw#&+g`b{*-^CeLCK=-x%>xRejilSET(8Hx0p| zH&yA%m1Y=GsudCYX{6XXMrayiw|WE(5JQfm2hNRv^T!<1^SMljFx(j>|8U95-4CT4 zkg4WXAOcT!{4g~o_;iRUFSbZK#wl>u+zL(WJo$1oyKdWC;#{-09>lq1-^wn3gKY7s zK;2si&fb0b5-gG0$>pv!L3N_whxu$avfKEuR}-k`#aCu05w&MsUcVuTvHjF3p;@}P;zv7{53CRXS3 zVn+-%sC;U|MnJ%@Zo?R;u2Q#LyrvNrI?rcRCw575JY0wN4DAz4j!r5t~AVKgfyCu76IhkpFvY|2Bk$65b8MqgyPqqT~Cg|5R(3@m9@MJ!F> zjZi=cIgSBK1$+FSV~NB{dv$;Mbgw-)sgnP`+-@In-B}_w5rT)qBS>*t_*34Es=RFZ z=9Jh8k(wwjtgP#BLmOO*r5G9k5nW%3+5yAWr`$(52#`TNr{E-XSPF^|lW^T-TnDt| zL_uVFMcFXuZg5XFwk1+p`~>N|#J&mEH<0Ja*Q$DvmPK-&Ax;Jp@jcAvI%HhUbA*9* zisJC`qmzF<49E0NWYx%Ta?C2OIyr$@7V;#m@TcP%5eRgnODI}*>X>c2x~Zv*h=>Se zosDs*XzzgyE}@i~Vjzzyq~MJSTe?VOcUM=+s$|utOG*t9Z-PU@+TAUvcS&nLq!-tn zKu-GVZlFu;ro_cXdF<^yzMI%z8@jdeLcq4XS#-&u@W9}fi-PEN^xbhk@ zxdBZo+Uo8OL>4~OCgHzIBiC%>?vur>R-V4o7<=jW{QP0b>o0DMF=m^H4OXD000uhR zX~@1L@*cOasJ>om#Iobl(9l^NZ_be{_aByNjYn=qjAGtDJ2L0wp(yQ{0GQQg0kWjMaM$@F3gT6dR#?G~wN-H*sB+bOO$e{QCeUr8ZQNhNXd@E0U6kJlQse zKhxj()4aP*>7cg<;Zv6TGYz~=&PT+tKxo!P6HCtMsX3-Y{$5yE=!SI|6WPm{(h+~R zzidcY=}u$VrL=dWRxi;R1+4cXj*yz-b*#fb8wja6$e^jZP7oB}x5brHYK)Q2joZ*W zqfsjmeuM7^L=_lHk!wsw95R5y4L1cmwg?mpm`hK-eY=+QE2J;28SR0C}aa)S+Zwn{ZypPi&5H3VFE zU?z_m5Amu1{Tm!GDS@JzG-#cwug^T%w1o^avAuzC#Vr2XJ@?`Qaggw< z;MN`c{oyLi2ka`N=RJpE-Zy5#lU$oC|zxF??)3!!^|6<5Ccsref3xZWe)p zK7(;}be`v_apK&6=!Mc^=K=n3KU`!!=h4kEj{2}_^lgt1O3mqCkuv{*6aLTJr+-T~ zn9>evZzaj=K-q^OmVo1i2L}`Nvgku}b$4s?%9dZkA*{wlV&I05jJ9EMNeMs76C?o0 zI}PXXAc?IoFvmu!r}*$&;(8YQ%+b~L6?EL<==VbF`=h_Y2bE;s`Z8A0Q1#~k+OVdC zQ|C*ORlj_B4YyLLn^4(Z2R)N3s>gj9>AW zXMT6?Y?-DTI)z*OK6Ml&sOg3mkw>Ej)Fp_h#a2LRk6Y@IwkeDSLusSr^sh!i{_ryR ztwKI7l-F_F5WW;1KM6erazTu$Y!@zP{xFoWAp|@5B0Gc{g6{5K%mhd zVU3Q~4)1Jn4&I~ywY$^_F+_+W5Xi2=h1$pjee!kl8+#cvb&6vt@XMwrJn2LqV zZvy~t-{Y<#8gg%ZYrKA*vFq3;=)qTY>PB(>gq$cB+(7I%A-+?V?xD!S+JX0nkZ%0C z?hS@KZ*A?+tVNs(=oO`Ugc|g=V|knTBCmts!FZkZ{4p=2dsu+gM@<%8QHfbSFDL*?6Su$;aBkORK#srT=@3S#>`Tn*Oljh>-(Wzj0fjbe#~!j z10RYq2)BwQNHPr7&{IETa5C>C%N!yc8YRR%AM@j%?H8O5Y)!ToFU~+j0D3mck&_l1 zv$X=K(z$TPq4*_B4SjYi*&5*nacX*UGF!6v?n^{-3@%Yub2~}aga4dsT%6Y~o&HsO zRC#x`bd@~da=0h=nE!$4p>AxZ<{MapHIMmth_jBlR8lzo3O8Dlxs)nwV2qR zMsyePXGx;}!d;-Qs%Rq2$;rveih`CELRPpk(2zX{H6?bQnFMZbdM{z%XlwZVo_l*3 z`Q6NaBB%N&GrJYIyCRPJ9)1^T_u)*|Co7NkH>;BXif@O*j-$m!m<(Qhopy?Np*b#* zhrx_~n^Z{6M_?FW$9&Y#JfTo1bAr@sna(LrhRQ}ar37ZO*_mD7j=kA2^`fw_5Ch4C z?g1P4!twUWE+g7XG zoP&}4xZ#ofAW@EvmVJRO8ZWw`+N!eR!U6&Y=R>mM+?&kv;v5X!q9$(YNm-ct!-k;6 zzd51=vuXUCy_$QiFh9td3AI|Pu@EkcByrUDDWOR~B`Gu;#(bH0874{8PPQ!*+ukz+ zz7$<;;xP0Cf5k`$ZucV?ZXIeb$Fm>$foM0jZw@`L6LQ$ScGH?-`Kk7(K7_Pn2~FOW@l~2%)M;yH`x=}0rCh>xu4F1NoiKcH)k$OKrL-kJ{0iGG_)K-IAqm~ zX`%04-gUzjDOOF(Gmc`u6sZFynJ6y(WRmMF$JaG6L*}nJ*FUX)>b_D+IdGT0X^$%0wMvN*MTENbd zNLpxltf}{qzjxj9MAXDvTQ&Ax8|`OD!v>-y-Di>5_yGHjMuQ4Zln~Qju@w2MH>=c4TpO+Il!9+wmzA4N#Lb8nmml>sQpxa*o zwJ~QLJ-+%70$fdBjk3N8AGBbfQgL8sK?o8sLi`7Q401IrY2=MMuy5a)RCQXH27I*n zXKCDR7Vz*GVNj#?Xw_vO=tt`O`NP&dTZHP&wl(K0x*D~15GuB0h3EHts;pEA%0?ru zIqEoua$rCk4t4icBG(pJVwK&rBj|#ijk;`MG4lO8^ASn&2CyeF4_CzM3)Ar2gd3|S z%R7OSp)oPMZg|^hG_Pk#YEj;R)Ln=ZH`*x@=ZW`bB}Hh&`D*8Ch3$TXnd`_D0lg&5 z#SylWl5$BM8gs33F45#S+3Ht>e4sX-c+qNa{^TbrhN%=E!{NDs%AM76Y&ybRCF+ZF z8ns8m=#||Hi#ii$#r@}tumICMwfCYXGiRaSZtk0$%sO`d*W$@%-}DJL#gf)a;(Aoy zTW^%aQH0&kN6Qm=-l(g1Y1x;Ze@~gv zHlPo+j-mkx9M74=kNDMkdwRmtK!d$i&I?6cKT^4exWKq_84@L71@#u zY@0cjQ2(>_wv{5wh)@lY=te2$Ob5A!Kr9(oH9Ebd@ZWH$R98J8>>v#myYo29=lph( zsNlos0yarn?_ug67?Qa;k>JwHNbIW2>|tX3?(ajA_Zh2&YwOJ>WMuz~rT6vzb(xcg zUN8QS7VhIm|Kb*SmY^YVBFYrk>?~*;AmnXPoq);)_nR z7scXHM!|O`Us>*XR)2aixZhNpQY|RQ-YxR0tdLcQF14EHgMm}YfD#yTu37J+*x;I3 zBJGzRSXlnH5u`crA*h=?+e}-NR&w3Dm zO{Jgn`lk#z>h|MzZEpCvyvc6VTw>O=j!T>Q{`rf4zOAsJcCnTyRq$P}Pqmz+9<4!z z$xTYE6vMY4L~X>i^DKSRMoFq0d#wwYpN+Q{AG$}A6>#zT zR`upz`!88YziQ^wraEuYe|fb)IrGVl2mzWm@9Up^dn~9O;iQ=_&=~dA>D|t2?R8wV zCU!KR_!F)wT#bDz@93Y);vwfsnvkqv_1lMhbISqR!rkA$ZEOo%|AkAoewjX7zbAyG z1ZAUCvzSv)`Euivo#I8i?MSW0=wHj<4LxHea3Oii^!n|uOhIzrOt`NwyL>yad0R%I zhLrRYr**@ZYhxFARZ~lD^0Y)URON~CvwH0J?F%L!Y_@%7`Yy44>g(^Y5o^@Th4c&u85wiLFK^J?sS+evZtbXO-=G;>%Y?V9%6hOZ>_Pg-wZ zBpAhY8EJ5AAvoCzC@$NYCKib+S`p ztgy3^i8+<-_Ab(74~oMFIVntn4zu2iIlfnW|E@!-Z>zs^MaULyEl;B?cRc8EPL6Lb z_=T}M%cP47c}S{_#p17$svRG0F6?KiKJ~8YD)~bN#@OBb;hIK#cXkLfitfBFZjyZ8 z;zYB{$bz5k3m)zdleO)%a>=6xq1W%R?$&F6o2QX{i6`=__N`IYqTC&g--q+%OMQ9l z`*k0_nR!79ux3OeSF5n7mGQE;k!oY%6}4C6&GC(7{&F_K{P%WFxC<8Si!k%LBWcI8 zzsZRvvi_31sOA;6F?+AH=}a}l?4KTqn<`Sj7L_JmyH76hVb7zTwmV<-?t4^pkn%$9 zCEB?5cK56IyhML}SqyRy>9HQYCOz%Tu}{^0b@{T_x!9mx*C?xAuimMQo>JO=nQw@7 zirce+R(s1z#j&Lewro^WjDaEN^RM)Dz4nvaO`1%b!>oKl!PZEh>PW=t{A5doEsF${5+E?j*Hax}NI$OMWH((T45k zcBn1bIc|w!yYkC&Ei-i0Hf5J1CDR?}gM(S+tm*=^ma@Z!VebXpkJt0aW}DY97JiOB zA$__|uYE)N{mILdw3hFgV-s%f)pIH8eVb&`^25M?U&|)LEAB(VrBb3+CSfy`LbUWX zuGaFRuS6N`L@CJyibdzNDAGk)kJZwb6)>C^dqUl6)^1l{T%UJ=hL{h*UKLa)_I>MA3tcaQh7936Zwj9`fX8 zv`$gW_emY=+T6BWvJqB!i0P+_SgQ*iYY*eSbiR-4>ep2&{F?3TPf5@1pNxnd7Ap!k zdM?((Yx{k#w0-%v^^M}5yxCK}{Q7j*+Huasg`b?8e$R*|$LP&uTt9k2@97oO{%Q-s zJfpBz2PbdRX38h)JWMj~f79lef9;Xb`C7ZnyF|CR^j*Bh^>){M@jesY>YQ^yX^T{b zn;nlSJl^DJR`EGI=nUPd2!3PB^6cyM2A%EERh7@jP5gB)+WLOX2>#}2_-<;fKBA{8 zs-t67w^uwdZ$DpLf3;s|uSntd;|426OC>_NZ0#Tu@Y(zIx;`ty^2R<&#H#G@ER$*%=aoe;*j?c6dU)E%(f8 zo^aWo%tJeL4)hNPZqWXmI9nYTR!YTX^|&1$ z$i0!C{*~ja>#J~xCuyfMuV2NA@}@nXJvem8ZPU0+Nm*HUa#Pb3q`bZIa_&8oz5J1F zd$h*_*1nsXW-X0Q^UTKGrpUa;u4>!s!B}`{M_RTmNA^L#@g{RAD~;yM$zu%$v`3$9 z2s%ren_Ia#)=)_7t^GAg|8jSC_6trIaoX%{S^HeViXE(4(eO7UE z&?ty?Fn(gSO^D%&zV-1VT(lg9=@Tt`SOd1kcx#8p7pmcJp`TXdOBP;#yG6pq5qDe9 z)Yi&s)2*`fi%Uc6l`m+2k}x^5HftDo)j`t8I1HfiubBtOFcE6I=WaiQb? zJ^7iWuMK1^ntYa<&e)mP$Gzzj%l2U2Z(r#=ggu`;dvB*SGv#TMhnt83g+!2{& zvYSiYZe%{CQc(3&8B(v%bY@wUk+8NPaJ2jsTm8zhx^iVs*e6n*kt!))W+xAl6> zN~~X953l1&;}Aos=7_I$wwMgTykhl(jE@Il?&r=}zM+ak*bmx`bJ zpL}Q;+%$77`6rJj=UtXJ2UC2TF3LUo9Kyq}Z-jC{Y+$V9t;~|tKJTp3?{gpMoen%u zm(i$Lv+*(J>)}|Xw3<_;S{t+GE8iVl=Q_Fe zpGp&$ZrR3fsla!wmY27q+}LM1Wbdoa!u3n02Uhz!JAQsPtymLTUr-Zdby_>%Pq3ul zBk6bNj7gy47ukXJ!EM#ahnjaOZT}vycg3dv&~IsPRnx%}Ieg*kyNi-DZ14KT8OFZy zE|KHtnG*Z$mpry(?n}VewD<3Mr*sG!X9LD(N+Uf4a=eX|j;M7md)#F6wxhpV>~O-9 zXK29G@S>tU+a-6_A>NejlH8VcIc!%9uN(4K?)%BxY#X7nQONC;VVNqJZMMCr403^n!-p*^D8eX zua88Msm6>HIEaOJQnUX$ecAoW+*I4A^c>|3^J2kIJoyumjF(e|+|s5Btm74f4amjS z@2L+&u=dfVzj#`dw=KfMT(zXNpp8I%(%hUc?4h%2;}x#7^ZAZ>wE~$7YFhXF`yUQa zQXM&Dc_uk3Lv%Dm8O{9Ag_|v#?5CA>GSlSBq!i>9+4*E`JTyFp^;|sUw~4Hiuf&U? zu;N0B0@pYGllPxbTH0g`I?sJ!{mQ1~WKr_e#oF!LGndu69sCCucq}U1M7=kt`gA+E zOalsgH#^2uM>3p|J{UP$9lbfb&4${7d*V{7ot|r2R?>K6Z9J*GZ>;~_PO&%6wNLZk zWX9B+dQt34emf^*IlU33yCs(W(q*cjRacI&2xJ?MO&=%EH>Gm>I9`8~x^JW``E2dr zxEd8nY4=dCR;{CjuI^LUE!8h(4o9swP#C>wzP)7hW*h$-my^K@87?K~Rx`8@rPpmR z9jB##XaD=wRfp~0W%-Upg;py5-bv;gnBmV>Vm)|c7xfnsJ{pN-%LhKG&Q~wJc-yD* z_KVusB?hOfV%kUEcztf!qd1xJP9eVa#8ayo`h`6`>=rl9-{sAk();!7oJAh>$h+Ch zq7#oh4aR@R@8$PBYtfbJzUyrFh2N~1!ReDRkEqW$9nd>d&c?GoFgEgz&u>2K%m)t! zx0DP%*QDDGJrBN@GFyw?tS}d5og`y2C{oPt%hjhPG4)r>pGxjHc$PuD!(vzXo!0}m ze{|R@c34PXuw~CKHacivD`#zN%aAWtw|>%QyC|ckX{p`8U4*RH@4_T*aM|!^pWl`c zbc^r2g)3QYJhMo4^`#Sc=+YONnKmy-44m3{(#X~2a-07J%h5!&10+?ON=UwaP1#Ap zdW=$H=|Z4e!>YmA<;|xE{7q?Bw(nppyq;aQFuU!Ccvqr6zm%=7_5Z=%cfj?$@Be>s ztRm|~Xc(nLgQg~uBn?T?6b(v4p#dgS zOAPh}mhL!hlu+|&5A)tsKmQw+td7_9s_0}bOwm62C3j_V>1ycNtj_tTx z+gfu({6Vwm_LVC6HU1(IEZjYVvO!+!btFIU&?TkW_uiAyXELkNR(k6E6wm&tdleZI8}_r>dDZ{8~0YvKSfe z7w(N_X>EN%PfD`p*n;binB+c_K62Z@mBC3Syu{j$Irr3Bw_%~1kEq9%i>4J#+uif~ zl=4KoO4&&NqR_aS#P%NWW*!gS| zT|Es$u+Tcs3O2DIp>>xdKD>Keq-xwtr59P7*}W<7Q*5lg;aEpWF@r_hgBG6l$x+>8 z;jIaotCn)F5b;`nvGQl_=|}w0r}RQsycIK;Q;oj8DWQ2~!IkBFdhw1QsM}rJ6@OCK zOJ@11sw{ocglAN%Y%Nb!;pw%HD`S<{x3ak@ZYa2z+*7Vv@S~=pp6UH)DTBhNk}>6u z+mBt`f6~DqYcioQyD&gKoch(7wGQB9fkB_`kdRM1JTvE@Yu_KF=oC=TU)Li!dv1 ze99xexFt87o*TUIlaSCXqYn(#zRe?}b524+?#;#Z)?0Xgpp#p+a_j8J(5-L8gm@37 z?c2v|%j@GGx^>&vo{|CjTTk$RZcj>9KXf>HK1nNPC-0$tS{6!th#MKkKYuV)v`Oa02K95f_GB5S*y-qE| z!6#8aX>$AV*+>~Zzf|E({dc2!>~g{w?u9m2d%dW!blh<`d$rb+^vAqAlq&ZBc&@)B z?BPM)yx2!iSN|Mjd1uGrbLU@s8}jZc{W)a(@LByirSKvF zHq|O+9ehuH&T;(_N4gyw43e(IS@THxyr`EfTzk|xW$xwCm20cY)wd`IA1L8tC^Db1 z?0Qd|{xY$L!)%G@y9X=pTxkuxQxzH{dOt~5zAWfoT4kL>NQA_YZz_+rHnmubgT?KY z+bUmp>D@Hxx_QE#vqfy}TbCbig>V|Ddu&UV`TY3@s@It{&!5#~G%LN$4W&EQ|CW7s z)5AW~G@9l0v_Fa!zl1eOz6G zy6w48Rf(1QVs7gks@RwDQ+q9R?muY$lS|87jS;OcZ%%hQUt17~6=9j`y} zrwre8SZU2)5x#wPW59OCGJ&0e2k$kW?Yv86@^Z9Mx;|lJMrK8dtc%h!zSJh+oe`6P z=^k$kImB1mEcl`zncn_l>nWGL+abcD?ipbxr$QSlUlSbB$l6H>_w;>S>+Qp?`h#ND z%&oYaQ6*QSk}M=Y`W$a$muRS}IvXh3#rXcfM}t%y_tLZD>#AoW83SS$iti3wd1b$7 zxW~c8k5z8BS*_gS$fxW%6eqNQ;V|th@4k<{QA>@S3SJmJGxQSSN?bmecz*6d-HrS2 z%>8e=GbGC{n;8DG|K`9)S-z5Fng^Gxic7poUCtY((Zcpva| z&ar5(Ky+k}s6~o{aeVl>d!AQq!iu~^ISjWrv5q{ip|MW8u<~qfUKHQzk)K}itv;^O zwCPx(g?Y*PxYIXZ>q_xc{~UC=dcFDS^XYdBb+>NyXE>R5(;{+;YyX=ty8VKq_OVK4 z>krW<1+U4}uHj~@hev~zH1ptWfQGtih|<?HHIciA>;$lbpBro*iCop6i7 zzMW@_cnYM24{a=zHhf5bO3vDat?K#UzO%=w^xb3yQ|n6X*L)Fd^Ilfm%RhW7KCrFWS2Kwdq0Woo~cb!hSrXe-&KCy zvrkZf>xk|J{qvW%2;yJ=N@G&WOxud<;DyWP3c6+zCPt7Fyu(N)kk zGcp$u`KvG3BKYk)nQz%c{^g31G5(GGC(;{dj)ysQ;Ud=f9{SV4?hSVgCG}{YzSc|6>o$HtcoR zJn>Ib0D<3AfWM096{QYxosiWwH{2pfGKGIYHU1At0u@OT{xTgvwEvH$13Z5t9iZBS z0d#*mAK0>Y9|TMPm=N?d*jUoGB@3KcmwjOEwq<$JR5!1&8PKk|cdF*($Ad3NC}4ass`z7jIUEZmfpNQqA);Fl)O#5CjLeI!5ZWHl&#GBPc@~+ zWti9{Q?zat{Ct0E_FR;&MI+x0eLargX?i_f=C!vZ(1HZj9j^Nk=;p(()mx>}6N^8g zlZI*!e!V$TN}BK~TMoO^kl!hL+%M1ne$y=s?RS_ZeV3VG{twQ^(oAMH6JgY7O$~65 z@7`U}zL|1u(V=Z_)#wWa(VK_oSycnaq&bBWdDg*xfVDGJ)}$u(vCIN|RY~UTNc47B zkyzCkuaR~NMJac7`jdPqdXas0A22qKl3DO+7oloCk@e4(>V~qh(xOk#s*^6ALxYpY z2ZMx%;!7zZ?4#{V9o&Par5+`>sjsGJ9ftx9dK}h!izzM0c&nGNY4+Rqelc4w;Ii=h zr)Tb*e~Z=Ie_4PByK&pEML&K19O7t3sSPJVRfcQ?+ZsIE1+oU?Lu+rnfrbGUHT8CL z(CnJf*nxL$L+3F2QLT#eH(Vl-GX%{<>N1fpXibY`YZ63TvXCr;pB?%`j3iye5e zr_cE|%cwR@2MAH7%2_Rj6>nTW74F8RR~gl<2u+DdQ~Ce!$^W}Q_itXFW8Q1=@~>6F zaEGi08i2GgkKV^e0Ho}IfPjV~b(}ghT|)Jt9A_SjY}aqoMD2h2^ju;Cn!3BeTyB5w z>k$~J0X8y-`cOPMZS}1E@!Dhl{Jj}debno2-@a{})a*1pJzX9({&+7$oVgVt938{B z<1T}6rQ;721zB>%1^0vK9EJX!>yQKFzgP_-J#+(ngM+mc6k_V~wW}b41SLrY90T;L z2H6hfV>dVR=p8dN5zMQDD*D^aCOZ21^7yemamCQDyM#`UACos}vO}kS6%XjfWZVPV zxvq4UK1M&_28atXa(SW0!ZByI&myxMDl66W;`X*^w8~!NBG|Gl97iyuy^|9MHKZ?n ztg)3NM_Y8)u5NENV=FW#H9>i}LC(HC&|>zp`0OJ{9&4xLyoLu^8$1Z8AA#oX+!uk& zjeB*DK=`D(2TKcnI%vGlvMUA@rJ2{_zY3uaf^M$r9`st`caw~XFX_ojSnD6Xp_O#h z*vSi0Dz;Es>RLrnVEDF5qI1(8XbrT~Z;U|b z>O6$A&^L6X&yPo6Zkt;k6slwisXMbnkiOoh0Nr{jQR=4$&o1kRj>I6EFeO`Oz;D@|N}awx5<2Yqyr^ki0faR1EXwR%rDuif4tVP-b1cpCC) z``QD(dIV4FK#&UnehesaSN3c@-Zn4cef@ zc{`jLu2!2Di*866Z7t*8#m>ReaO$VB6%+;9w$|1g8OGuKTr2v7c;a1FK_v^?J1%0A z9WfY4Q6{lUboee$(UG@LnptigI*VI2|7x!iMDr%Ure`X-U#DeNNuz7=DY&_2`$4ayx8D9f~XL|I}d^M=Nm~7T%dF%5&IPy#>UrQe7>F8iOLMBoDR*hfAF%@k;@+@ZK z7fdtRJ^YAB9(A(@URFF`(_J31t`f~u4q1ygOwW#G&gF91y9u44TVXf1wQa86tcq)5 zBYND>D;KB%ANK;A4i!K-BX4hSw5RY-NV*A6K)@_#@5V>rnp26HGrj0b!p45hv8G$@ z4CRKCX8q6=!8ue8^ccSWT)b&YhULnhu*2E8tG)B{2W42)^`scCC_R-nQ@OW^4}vs2 zxBzHJv`kz`p&u^w3==qCa^_evYmjA&yA0=Y*-@ypVpuE<{di!%t$w~c3;7#}WhsiD zM;j-xQ6s*}lav$}*wrB|t@$r2n-U%bN{2o-z z8h-Tqh^AENe~GLZ#md6Rhe~nn+zH+8BF7Dy4+4n3x+~gy8*Tb!XBU;CJB)Sht=m#E zVjhEcZY&W>To}F)anB|ZOVg`YM;k1f7%I^#ZC_`UIMUZJMb1$l!#*<|*kXvdtgDpY z*XD`6YQ(|B2mz~Vb;vY!FhiKlvMVCo=>uY=*#T#9(o-;`%>@-2HR36>b0V#*Ry~=u z?dS4B2ml!XG)0I`v^^v;Mfe;%gHOQ5OeHvuVeE*=P~P_Z4+@Xv#bzkfgd(bb+8?hd_D#J4>|hlJUz3|IQ)?B%QhmMypP zKLj#bFQe?gQi2D8ARG;&NK!~h2s%W#xJ;lZ6ps4`t&^dUE!xL8JM*yLiPqyvvJvOOjfOK3~h`yJuh2%AXg&T@pz}S7C!d+ zr$uD$3KoH0(LOlu(mMv9`YRPDRUEa9IVxwnqAhafcCu$MlEolrAnR3KG23vY|H+ZJTo2 zaWRi33<+Dc++q#jhkivcBF|bK_W2xva_ApV7XI@g)9?9)C*@j!fuCBt$MN*?1=qNG zXFj&KefbiJ;P|AY%|D#B{1cw!-{0c*Eb!lJ@vplUr;k$h>%OQtRXX{ly?jAwkB6}J z&V@_w$!*tq|6HR=m>Q{Jw&-8v$$yn&{moqGw~PCa9}zqdMZxhohDkw(0-*^P2girP zLdc=p%E=XNkex-i0i})%xLW9!W@l$3%YnL*^C0vS&(}#m_LvrZ4%>wwHB2CQubaV<8cM ze~65j{u)gPbNZF!aud5|pY$?0VUFa9N;MNNPtUaBQkiCzjFMV(**XO!K&%Q)+L@hC z`~xH@A%3Tbmvw+=;Dtki=IU5a4G$(5goK<)^bjBabRFJ!%p!A20}q+~1{TaV7o&a`{W@C`<1Om@LB z3m|qasd93Qjg3_^PS(XpC}i*Y9Pc( zKfzb?ZhW*9k@JW&YoMn=l&0-quF{cO2zA7$XV@k)2X@uKg9-0)JF;Rk|8BfEbeFW_ zpk9mL)1gdvLfRT~g6KqN>KdpwFYX;JR>fpNYOXZyGq104zgxTnM}U5Rv2^BWt>O06 zAZV#0H`!4)9D=vPkf8I}q!Y_1N=zhKgER~_EU>=k_uMQn8I8&+npP|u-B=l{J3=E) zakH|vW2By36woJKB!37x%XNJ;o@6T(BgknwjSgQ8Xlp_7-hlZz_TnA%KIDzzYaJs# z_e3TojdwkZ4idUzfFM)-44jROmvku(C-l%#pf#&JZDb130lBRd1v{MFhe&ZFKHzbn z_=N;btoF(m2yX*}!Koyv13naZrSf!Qlf4amaPB^&BUV;c&C5*EM=GJ;SC0{Jv`?%@ z+im8GsCaT>TUwEy-e@ys?e9Xy{l2(ZeDKXW4GlbnoZiWa1JNm6kk&$hS2wf6KFjeSBFsZWF5kY0SF9ul;+4^^!Oufe@9h1d zaMdQu&-WmKFsK_Pbp`9r}DFIdw6uG2C5&| z)^6sjQYTu6tv2hBov=Qmnt6^5vPO0a9n)FF>NoUe+@u)yAqhv5^9*v~9$ucy130Ev zuP(TD{TM=BAeVu)5T!$AV>INy%EBl>u`sN4(Q`TB5rce$6=86f*+Poo z>yy6B>5y!Ks2-FtctaWrG%z4BJn*XOfdg4Uf-L+*Agu+ZFR|ndSQCho2$dlx4uPHs zgg1~)%8DtRMGrPY_YOp+Q9PI%)(Q(_JJ}f?;ifZ6V%3 zYJG6dWuhr_{}{p?)9|qp(TiC0t%)0>)QSy=cst} zd(P2rO``9UkHb@^yHql}>Js~b2n1dSb_AXF|Eo9cn&hQ5x@4GkY0b~0QNIbsft zFaa^OTW_%j4jk$`eyj8SI2PPj0{%p9M^69n3YZfxjZ9;N`#xTScAav$bWCq)dd~*_MH~rq8 zl%Ci^f+53VLJ`*a$ybtABgqPcZ<$=iQ37$htEt^CX0%fF%Enc`2=9rs3GKR>2_GB% z5w66#d>_v{(+5JW8M`2aOv_*@J&7NbQCBo{W1U=erO}+#Pt?E)yJ)ViX56C8qM%ET*uhh*;AUGHUqfXH8O!OdIfNcQ!`D_?Fb}MUsvTJ zS$RDR?~($65rTG*po$bL;3*zwKjMl-WC)S1US2@}jZJg2V-O>Em@Erkk3xsCvbT>< zBJ`_hmqfm4uY)|>QUvh8tPszM&SC`Z?4T=5bmvjK3}7M#7-LaDLm5c$Kq+pj3FQj^ zw5h$%^>uX{%nCV(JMlNk*l3mSYCrr)%_RLwcoxDxXq62kgIU!LN4yDz3dAsQ+e&nT z1L92x5P^5$#ZVVv;)k2B2Cj$iVbw3*v>wvG+09tL*H%Xu z)2atC6o^40SeTLg$^@@ZK;_s%&bkZJkr-k0}uLX9U8A z;um%kT3(}Y%>bs$0FgIZcfWvRr=_J0#8zS_mK&Xg;C1yBpz0a5rpZdAPKY7L4WrWu zGK{%$`FA(+xQLFP3SWmP6@`#+a(%UvyIVEHn|=v-1p$COXKGGT7eaagwXsdL!vjModI-ng#RJ!B zJ2NN`#yoCw?}m2RWxoZVD3~zdF==AamH9>6w92lUwob}nP9pvNJrujKIQQFk`%Um4E1Ik+1K0EDXx7 zBOt}R$=aI5*CHSOWf36IMwnFRFp#_wF>iSuDVG4Xb!yx)l5PuOvgD43cZzTw5ZwD1 zP)~lvZC>PTCPtB7ks8rE@!3meUkP+y*h=y>F_cG6RPj?@t0dxO z$ly*-PXx(Z`OFNGb+`m^AWC-V>FPrK^T}C(eaQB)IHZ(w9?>T>AuRzt_gS|>%!w3w z@<)IXkb#Q6ORgNj5kaPg)wukht`*v+I95RA==8jmCyW+d$ zOt*dst7SIfF2&DfUgDizm{yhtWwN;(rr7~xbhe-G2^^gBNy*$Df!d@qE-$&euvd_+R1Q(r(hT0h{@VY7Y|h9UQj>am|Fqdsb# zczI2PuEp3xi-MU!SBKqfY!E@7Kj)!C2rVJdYCZH!%7;UZ6!ow;MPP5d{^^WEqlZ0m z1(G?FH25CI$F;(|*#ITS^gxp3w|LKK>vz)$T|VE{$w^9CQl?-_WUQa!A-FZ;UY$H_ydaLkBNrj|c&{o=n_e$K z0Z2$i#_G*6D76bxSsmMvt|pgJqmV?GQVhw?31e%D;CUP^ZA{flZMY(p9Js_{^D0@k z@CPB{(J8?uGlh1^#fccu+8}|d4ZA=p2f z@H}$lbCJIQW=Y8Q@I}So+Si@7N_8}Dlc+~VzlDgst%C-29^CbzT zmZ0ILnLdk9*99dJj!6b06i z)Oi-AYalVA01Kqxk8tHp`;yz)kspP5kfkksvUV(N0|vp@4SzxfMi{gn34g{)wFHB< z<98{P`+D;UmH$!ZPUM#WQdaIl)G1;H#f)T>w6T4VrLj=OV{Ef4mr;dd;!X% z1gn5wJOy(o!J(>Co4Nnpc0UFBB0s!h1m9CX(|J{SQlTnvWy3kQ`-S_1| z>yg8U-@=s8q9Rl(Pmbn=6SvyKAQLzDs?Hb!^p7JKP+r@Ie|w8JqMgo+)*XO-JpBEi z8T`6^Ta4H*$xjMo4BqSM>1pV*Mn%&LN3B%)m+!|s1I8d)rb6KLImUB|}; zFZ*EXCcwxxlJd3(n3H*>z7umN#$gP;+YD)I!W$U^Wcn2{_q2G>QLbM$)_oX1miXjU z7nDxHk@<@cBICy!TBI5RYyIO=yb*B0)#<-;l@J{M_!o!VF)e;sYQTw%=EJ z$1}w^;A|qc;{zDoCQ|c+V16hw(u-PSqS`CPg_Qk%Fhbz{SkbIS$qcv_;t_k_5fg13~7tE2k0)O%S z3xm9dK;|j~7bj;U#=Vml5t@GyBfLm3fGvE2dS+6tcM1m+MdlxI-LG9P{pBWZmU3RP z(X41+`+GmWXYf#jhOnK)&Tx6oz@^fM3U+<}^8g-=K?M?e)g73iSe%z97&h(XBXp%} zda^20towP~A0FQ0WJC?X=PU5xbKRMGePS_1?^uZdbvUn{a2gh=0iIOa;yxVMkGMR+4bYMggF2d-;x0hIuXR7zUOY0WSrY zN|{)pMe}>s6y!0Cparl~Sfxen=1pTUV+g2~zW)M<-|i3|LiAx=8YV5=`=O|)5ApGy zcl3`u@uo}W-!xN{wUfYlQNYthBd$;=XENt2wUZ}XHcR>JKK)P=tg~z1inmJJq`BDH z+1V0NMQJ5D2w0eyqw$ce+wW!!P%=4sBup_yu9NSE@LU6N6i8@O2oL|_LSw>M1~wIA zjw%rRwH`shh*3!m@OEUd+3y$T$y(`2h_m-03?{S?`u9aevlZZ{fI{{cw^Uj>9})7a zZcBVCa23D*d4v{59B-T@i5z`?OnV+zTUxw$#Y{%ihtsJBU*Aglymsx;GK&Z3ZIsYI0+ zp=-(f!BC&}^0O!^PD8Qiq!o3M^r^EX>GHsg(<92=lj;u?-i zF+BGB^~6?J?alOlbh*1y7T@&~C6t)i=qkoOX)SP?fC4hAZ?s;|Y1OnX{{;tuYn@ z!L}zpLGuGS$<2^Cb5)^?ID*LQ+FY-oALekn#6e_ z47%1y0Hh%462c(Nb=VFJKAK%BK7Qbr6EMn09<67C&G_4oNPWU82}ppzJL#-H z;eKfqk5RVy>nO&gBC-P4$tIUprTm$S3AP_u*YX)_6#EDX6H}o7aEx_M8eGLnhRgbU zA7MsT78hd$qAq6Iux%qtGXJoy&$$NuN&+!v^H47+nfpV?X4$G^`o~1Y=SgFa3ub>vg1b-K{scS#Wi`ch_SC;2%spadl<| zI}_{83gxZ?mdOP2Bqute^!SI_RW=q(?G*uYE9-g70wX+YUu}yws^M3@p>#*tSaCPi zo;znPa=Q|frBe<_9zCx1QYK%5L+zA+mr`owCP{u~FdS1&aVtoTWkak zlb9{Ib_n@r2ou+;jh1Y}Vp@QaC}MLEJ9S2X?q!Fi5LF$c6ie1VMZ%@Rz?yVoe7*kd(QBy(pn4 zdQ|u`u0GqIDO35$HB$6$7-Q8MiD}*%*r{LNy~g=l*a-0Gw)z#6E{Rw1Wd7xYurkO^ z>yb*5vTNy$R9=VY3Z*@xmHD!AW892WAXN5Y*BPUdfahjFGD zmC~Q?(+;!}%%|@kARUECR4R9yRS(_)B3=F?A0?MLH+WqtRuOg#DsA|4VZ zu9eiqLfyL)FeiMi9ytqBxmEQZvv9p&N^BkJ$%SncLH7Y_wl078eh;&&UY$ohFslYs zT|F3}`Av14e}S}U=~6;pJt$LJS_(ydrSr|$F0#A>8sDDgVRqusPN0&+A+xcNW&Kn) z!q+620=Nyw@KH%NSH}3ml57ljBl~AtMZV-r=C~iT9V+=XH8nO|T=CqfcJ6Gxc2%iq z1MN>ON$~}v$DD1i&4j6ny$J%eAGj7|o~N^9cbqx^0vE9*UC>cj%9@Z;c;6GGcH|5?LK$H^DIB|;*90wJXLeC zv;Fh=Z962EhYYI$ph31b4$m)q3?p$b4|jY71(YMU4RF`Q_-9v>#nf6QZm2~s3xW(0s`VeGJ@-6ck(l0 z+ItMb{JhH~2)~16*RE%uYN6KOXqvMUyKokD*sM0tRvg9}EO2^#Rb!Db0uhuA5Il|% zSVylb`h@B0>pQP$CAh6B=_J5tl1Z573)L~9D-Z9B2a1Hw6=C(b^qJ8*?NKncJ4-@y z09yOH9e*=x0|9>L85Z>*2G8Iy5@DeOAQ!K>Q7;iN9N<%OzyP=aTqYoxoNzB0=&NCx zwfOc53SF>+7wQIyAa@W{dupsH!B7QGA}%%-{BcbkGRMW)8(7f!+W1cJE98Va!!SG2 zqO+9cv@qDEfGjJ(F~}Q(Zn)5Nhz?n`&@>f|D_)GtC<;eCQ^HekxLMO3Sg)>#%$s`! z=A@>)kenEPvrZnfug?QA&F?`220`B8W@u{&M>7f7phqW?k^s}}k6O?h@LFpI8G=s$}~bS?;j()UBcBixQbZ<0E`F;XLvv5nqmvZQqCF~MUG&? zr>1=ellNlA6Cf`FNagq7PF||kcE*hNM|p4IAmn}?YE1zFD49Iw-cPK1H`CGe)fKSA~-6rD(TPWvdFGhPhM26<`#XM#*e z5^w^SGTFx9l;mf(HakF*RT@Jc?#PP_z5(@Urc>Sl z`K2nIIpJpmvnKHqf#Q}t(f$Gb4uJ;2ymC)S^AuQFpfzmgrHR9ecVm(ZOQ)w1iON(A z7yI03Xhp+-Yntx<3=nKDV{$IiLd4=!)WrZ&K-nDy&P+9>gi2VBJukK`#ukwvu0)&f z;6xS8TdIa5jCvkimQAU;v9Hb)4yfvUzKQrq3-IGC`vyvgQcZA^pr4l)ty8D=wiT&_ znt^R&0#H4e2&7977l9;p9yORu0eYHtzh3f$duKoZy}$3GLiDyEL}=6zO8&a5BKU-; z$nNRd;(fjGW!V)ZY#_lNQUXGc0o5)YB{>wTpi0^ZMjAx(oi(Brj;*42s=aNOWS>2= z`}C=pOM5i}+|;rXj|B)0ayd-gp;=B*i0mn5P6w8e{|44=ttL28h0%600B5aX4Z*rV zkf;t*fy;Vw==JS`ux$L6183BH7AZN~M${l=$7rIEGuPqagRj@@3nxas&F?a*X_YsL-FyI#uus}*HIqOFb zL$%!biKl|+=7CiWC}&wfe^cmc4;|;zY?jkQ??2#Z3aYy!Pr1;KDOOP{ z?h!`d!3`!r($4Rl!Z+ZXDC~ZNDA{(R%_n^H5G5plM{F)Ks~X(`NCiBk65a=kI{^H^ z?er5cv2S&gB8V?A$9#A01~k;z9W9ku;PBPIspB4n@>teUacouOfWxe`wq*(uh=Ybm z%o&zE(r#_Q7*$LVm_udJ76HWQ?0xRHFOFaP@P0w>?OjpJRCFWik`N5C4yOX;jpTVO09+M9cyo9LFqTz}U6)`Pq z&|X#W{yio$v>uqy;^qNCi8RgdWnkjv8I*u4F?3d8c5XizA&%j4`6{kXKh+@d6U6~- znR`Cqji_S_UnzzO4(G8M&4plS5}CybN;~P{f_oB#vH97M^dSMM)6>_-OjnkTdB9QY zmBTJRQ;I-1l>XyYXINDnmS`*k&PY+-xVUgX>ViO+y=@K8;~5DqVLE}`sxH~0-mQsR zrnZkX-|R%OgFT^)rtcONO^1CU96CTFcC6Nm_!;Ds2a3mXx(NgR97LaX~m9DA+6dlRL`4OpEoktlGQ| z=6v`$4nR#@4TbXhTOP3(;T?YcFHwv3dQz4t*Vjp}VRJeD$lJI!{saSM+-dzvv2Ymj zEfH|M0nERLSjxvx_Cn*Y7=)ndP-ptFhj#Ltz^?~34@DhW62DliY9vNk2WrGTM zg=`uzkc;2He?L4t4A?ILV17wm4h^Z`g7ghGQ-lbG;)n*QYkPI!@Da~;quPcb2?do3 zpeL~Ton_%tjj@2AN-XSC2V!0G)RL>CJ#0pNvvZ zMrx5?8`Jdy!6S;JdwF>9h@_bsKb9YygiowDX6(MvkM_GA)o>Ss#~@%h0!(QcnYx$f zq!7@MSQ3o-0h^{NP52@3dr6Z6_cXdG3iI9mVvi~fi)%@P4b2cF! zZkLd|5R5W9bCx6+nOz+7MNC4N<;qO^l+8W8Ov0_a2k1TW2)?U5r)Zy~)wq8C+R|Ut z9F97nIMPh`SM65_HNm94fIe#vW;@hq*6lbpj(W?Fvw_;L5UgnXFrhCKr3d%P8{nTi z+d);C5#VLq#|4yXwNA9Vu~{MM!OF-OkJq9+L~2K1`dr2Kk!X1xL2XgYN9fN`Ngy5c zSwsUvK`r};FM22bB9%cYd_0nw@WCTMHbbFanN1o^#d=va%h&Bd<-ZxcEEVknuNh%6 zuGzjcWWvalUtK8Mk-&URe6;!;_C)lXUkvo|Q86__qLwJ5@%f#?!`A&ChStq~;ex zA9=Q6X;L22rYJI(eXkAb1fa(diV8mz4zwQs*x+H0oO}))pJYIMXdB|QDg-|?1(|$3 zph+w*Lv2o0nKs2@1?3DLCPMhsI&A_M+azK@wmhOObXs~9EXXWC9+B-FfWkn5Omb|~ zyY}3sK#4*fqb%=cz6${&eosI$a;$V}Lxk=C+6el-8H$Y;Qnp0J*L!3D?!ZA_Kf$4i zi#LA|cNnL1J^^2!7hw@9)nr^TUP8rA)!5irZUH|J#ghs6CiV884lcSLW7_Wxg87P^ zyI)Z$GZgdVxjf_Fl<84F&I0rfgMld5eCg7<+!T*FjD5nj~~-cg!?TH^x<03jc|>D^L&ow42VU+sH=tQ{V@eW0##c| zQINabQ+){;7KkDFWt+cXjxjz4yr;Lp3@FTE{Tzj`Z*maqV zaIi3LOq(Fx6u>5cZL-K@U&i~mGtb~@S7yqbaz9#1`Z!w6h1zB8;r4Ct^1}*Ei^!A$JpZxI#z*xwBBH&Q!O7=jPHVwX|y<~ zKxqMG`kY}fJe^QYM(PfZ8UJZv(@$jFHJZ_1JqUh<2bN;8E4R3(NaN)+XfeM zSe)?iC(J&g30DM+4ww}gRnlmyk~vv{E_(NO5%QR*hC2XYDbZ^Ig)M{JSp@Itt?n|7 zc#nfx2B@4A!gM<>7$%n+>_$F}&r9f%5}!P-Dz(DgoTAuv4^OY!pzyA*W>VA zIyY5+fB#gRav1y#wq%Yl8T45)XO~h4f~VpmH#G5v0tCS##AYkf^o|Wqi1iksK0;bM z{v<^}c4*OPr4L&Sh9_!enpie00PXbY<|?9c0U{KZ;PUtnc8In;6+OcU%mxNP66&#} z@xnIYBkp*%DgO$;69RV$MD8%2!vyqy?GrSOdK`Wje*Ub%)>!Q4#tA3c(4m4Z>yd^<}Bv$-}UuXY2Bb)!xmg;}M z$bW!l|Ici6{hvJ4|2s(#Qt)eb3Hs#M0newJI#Zv;nldawQNX+d_^+9bMhW z%7{1B5KFxS_yj`?XSBYO@KXz*)3blMdOW=1m6kWRP<*?LiXBSI7%N|o5(Eu{5HrEt zW+2)Ff;_O(J*=$ZK#>qk7^7I-)%z`0RI*fgK%aG z3p99wn~WlGPgCX`oGMVR2VP!$;D2x1{3nTs zS(F@6lf49RGx0*1-e5~Ex-6C%;w38vUdp4oZYEKUERJ+gnARXq(D471s;nB+SBew{ zyuS4l*>6Da$PSq%dNb%trnfFd1EPdKUik`W8pm|n)j<6OR*He>2)?v7uMK%WFI#0{ z^`Iy(FA0^Z9Kp|^+W|jE1&l7~#!E>g895hGnaf_b{Yvbq4BH7{+&TFyw|*jg8ytvq zghK2qh__N$xZwq26VjRNK_|NG^D|_Fa(=u!eT@*fg8@#1*W=cRP<#xOj^MW_%F9+d ztx>U*-8-fOW@p9&0h6FfpKFRU0mFo)1W3FPc@_O+nF=2|1tyR$XiF^gv;xBq`KIpB znBf6ntn5lpxsl|htD)7!5}6+mMrn@aWuRw+7j)qP4Xev%7vVmzjO5RTkipXk{-8$m zfNFksJYP#1CheGM=(qRrla-O7?ms#s-GtUza}Y+tDzS|tA=Br@d_}Q?H2YfbBNAmk z2JmqTHD~H|oEKycUzmGTh*I4b(i9N*8EGU+)s>Aakux6$%1YK3ndfQ2?O}R3f{zeS zq8_B}#<8kk&SbjWT}Nrnd}*cm9!iG>bbhwtP0+qVoNNm~^(i;;_2lxb9|G- zk@^`j({Mm#ymvZ5lO=Xq#z0i zdwlTom?mvwBYGn+eVV!Hm`4)6w5+Tw$Iy{#ZYrXIkdBZoqmaDXujYrQghgAV<==MX zpBP<-TKixk`tvVBXyFy-{?o8{9xxv9pYET9A9n#T>N8NASq?5$7GWS6!f-K#6nML#+uvD0H z-NC(HdRE;SMMan}X*(^e188p{ZLv9>k8lJcPDs<0F>imc9a3^3(-%eKr7KA%cJrYV zFV9L!E+MRn@hC3Ub+C66hnB8V%Ccd#Lf$H&e6M7-~iABf+x%1EO~DjzB$C$1Eu{+yXBkCadd%qt zb0(*USp6lO$P5rHfR}J>ZPIzbH$a)%2@MgZojb`|xM|TUk^AxJAN~x@void4LSB^b z^av?LK`SD^cHk{?NYaat--EvdQOBd)NXIt(=!j@14p0WVh9D&&ZcxtVPZbjI3?2f% z==^Rhcmu0S*aT&-T-uN&qf1s6DP)hfbrTkq5eppY)@SYc;Xs*n|73{sjfX zSGstCd<^8HklPVtORBiED(a!LEL%8Gw&9%?#veZ-Bm^KLE6WJ2IPeV04n%tGq>4rb zPy?iYG1F+fvV=cWj#9Tmg9)K4FP=Jk2oFT+jba}@a8a7-;ZET3<5{9x%IaKq=!bI|4agypZbTmL@}{PWqqW@^LrTYkvT zfBAAjMsn{2yYlmnB&vaxEK5suVpO9@P-D8qrMS@EJp*yYKy8e+MEZhHYP@G&QzR+l z%1fR()0-Vhp7esLGC@@EdVzo#*OWA2)WV;hM4}rX&#TdFNRn)^XXRdD5v02R$imX2Z`p_=m$~{vZ4OuH@%yqO1p^hI(cb zE8kGW_20iqc!9nr{oD5Z{wNQ@-DmEcoBxMt|7Y`g{aEb!o?lZ8!uh?=J}@_OYj_y` z6NZ+}@we~u$m7?~*0sE{ypI;xaH{zuGjLL*Ve$OG{g&;1ULep`4mJb&VwD~r^+Mwp zBFtX&u2e!NxGA4H!MOCftXf<#7F$V5!u@Ce^ z!wCqnu5s#DLKLqjoN`Km+BB6j;}jxhM|aXh{9V8ttIQ;K8W9IX(BRkZ`}^0Svjrr5 zm1oMm&o&WY2OwT3>9;jWZu15VUmi&m&`=2&?Wuuz?(FP@_c1__-KRQDWzvwsM{h|G zZv~>MrUd*QEi$M>vwc}3;drOa8FqFy+F@oFy{Mv0wkFf4o!z)vgsEWEt2`gowbnzV zyEu4mIvl29GDfaN>Fk~U^jwDZ1+D8>EuD+m?#$Cen2}g_T6J9}E)%tSG0jHKQ$3$K zj~9-LaY}Q!LJH3OqvQrhp8AOJpcH)JIypgYl=lfiQH6zOai;exgw3ROYrx+lqV1|! zYNFU|`eq{X(J{eAfgm6?-y9vSGjXmlj7r{t@xcO3!z`|b(#O;nbk3^>=gZI^O-ixR{^ zpimj3H$$^?dvdbC|2jP&ev7))In&A!8O`w+A5wvb=a1Obl_PZP#4QfZ^LK=Id!}=U z0cvcT{vv=~sZX~_Jn@3V7z?;z_vj^`r@H>(sh(0qL#J9Bl-%;LcUl0mkx`M*u91Tf ztxOLe`w#_(gA@yGfG;-LtI@jHfIW(H$O{Zn=PDxh<`u(WcSV>E?!uy6N8C)h9<@{8 zy-1h<%ovXz>9iPPG&_^?^1L57^Zw*1E7GJUu*yxNq7Ue6ygO+dQgGX+kk+D?!_ z?#4FfJtrRYB7{U~$eD&AGCMcg6n7(M5C6tTKVWyw0cz(^lvZZGpnBJt)0CD?+!%IE z*)$(<9jU+Yl}iU4y*RinQBZeCiO7MVz(mUJatW^l+j@V_73*7@@ZKZLM;I|BT8dQx zK;n#EJ|&3$#`MiZ66RCfq3i`Oky8?W`(CmH{vaKp=fEq)X7VOtB~%SSQN!Lu5B!=F z=;f>t-zVSk)X`e?FN!FVqw%?SHbko@$0`iwoWB5JUu~fkAvqOhSqTUaD$k8YWFuOw z@3$XIEx)L$s%q)OIK`nXD91GWg*FPBURgFS00qJ6o@t5@mj5{aatGA{_F6?6Ayy8} z9JYw$NK^|Lx|(&C$>Nskmt;XMi|iOa`YOfdo&yt!u8vjcI2Z^pFS?a>2{!~4B}=eh zs5n<_{{&4PJ>D5nka;O(oikizENR>FZf=&~Nu#2yHtsVKLdSFy5vH~u0BoGgn|u7F;sld!Q?ct|LPC^`L5EOk!F)p z=XduukD+7~i$nH{!Pt;Y494`W5W$%&F-@n$B)haUjhO0p8V|iE?9|;gD=#9vL$OUO z;T5b*=p9yJ=`4mFX+Y%n&E_L*rQ$eoNkRb@8TQuzinriPfnh&`B3C7NStz#bkS|qe zKC29QqS;G=OVDJ06*(0kVnGzP$a!kbG|iE6Ja;CFOlI%Cg?U!Vw!Z*y5Z3Egi&_yW{zHbG7F@A*(>Tkr9V4&MaavdqaL)5-uMc z1Z?j`03xW4Ie@eWvbxAb&SAUpy55}Tq)qJ8NUDDP`rP@%t%ewS<4ewtd&M8rOqut5 zZZo)3_pY#R@g2K*76ad=cPyQ{vPnAWlU>g;4SLbB?GfEV)POmTJ=w066KFZ!>>Qoi zmtuPC7)OLkbR#r*+&clLyKdxpg5)B9`%9&yaauW1P4<9`NajYtv?a`R*xr0KDto!1 z<65bYm6DEx$^!EsEHu;`%^ID@l&6E%bJ<%W>ZT4aF3*d2;JksBQxP>@QilV}^ep2Z zrKAV6G}klBhoR?Fj&3461bUJ*AsaP0kXYvo{$n+aBx$i?s+>RYd3hhSLstYZyFE=m zWtm*tGCKI%c^|tZZGE~-R4eR&oSdAhYAq=-sm3A$8`w1W`3{Omz>nT#Du$qng#&CQ z;W)RHRxT_&eD2dy@go)7o|hpvw0QFkS0NDglq|J&r2(hG#UKK);HgcTx@B5sSv&D` z02#XdTwn2FG`qcl5xXF@A;io~s+Fdx!r>(cNDYbKNHy!-**C6q>}m3}oa2ooH-c!9 z6(XGBW|PEh?fbY^9WB8lrtFv4cRH)pYln&i7~JVuH9BY(o7?;OH|x~@Ipb1%J%r`o z{!&GG3>s<70Icr4wC-Q3Ow^)7+te9JE5VTuQK|{-X_I25c98?XMbtY!ent2$9qEKq zgo?dnSH~z|4rdPq7-l8Q;K>1ad5MoiUx4}W+_$uDpIuT&Nf{J9?oTpxqO#my6BnKr zR0;Y#H#57^v?+~TQ4&duVV|-Rz~pkm40KvKbkVjWn_b4hH*q}`o@;$Oaaa)pfKz7c znr2^pa*z28QW;S)$G%oOUq=H_KTHApxO4D#et+Or$PsMmtM3=VeR$}6-u z(P_sAa$Ly{UpsL3vfWA2>YEOskL-kZfJZ!P4qRVCfH)*{C!1STNEaR2Y31-6Ft+l< zuS6^m3IHi$>IyJq;23zAHzTV%Xhkw$_|P4O5=NW(3_OQRx!H+;GWvczOx#b$>g0o# z$1rJHy0?7d*J>K;LqK4^RMV=?A-)5<8BOk_ArSY-9+{ZC+-8>*x%CcuBCpZ?}WLV{wFJGM8 z`x?`QeLoZw)Pkx3zXx-{cpKHpUnqgU)cXV%I2X}Rb`fw;?zQ#B!CfNY=$EkOyn#xG zyTSd*vb=E;pPp!jd2q}*20{#^nCG;7g=0Vrjozv8E96*T8+=;;CEq13^FR{PO zr8Xi4HaQo#A!E@C)L(TU&{XXu;_ecIgkFKmoAmv;y#OAz(CYa#z?N3tV!kWlKQk)i z`*d?$tGB^Q;pE8NyGv`1EEYI=&!6|9+a`k@AwN`y`KsNkySr=aTJ3#5o$ov^_;kw= zC6^Y}2W$rogpw$FQ8g{Rr#QE`-@Z#7vd!SgS)%CySrO(cZc8(0sduXUj6y?=2uNqbfp?9P2YRYK5MVN_S%+PkIA>M8?6Dh zY?@bNtl81LQyH(V*$zC}9*3tLo7wCcfQc!V%72;z1D`|ApqB*1mn;vk;-jXv1dc%f zIsu9wV2OnP{%vb#w=?$nVRIHie20cA^78!4K|qS4n=URcfY#R~!15W8c>{%gWF#a@ zOH1ODCexYSP+2-29&Z2(0kU!iMn-`0x&`VA0Ao_d87%{*8n_3#>qOGxw*LsFg9Ni5R&OR04p0Hs}MJ=o=u63m6wy#H8U%Hn*baToVbNJ zJv=;CwA&m*ZO{Rw%$*tOTz)&f@sc$LXZzyUCM z1dd4I`A;j*qM0QW5|EGj}nLFoXP$(N+K zxVV9V0f42ZaN*$kB!J^8-)-za>kNwd-|@~WKSzPk`vLU(h)VICvf1O+Rm^XI!CNc7 zN@L1Oc(o~Gj%X=Mzy`si0@hT|d=x$}?HX{tQ_=y3`^>!DV#t_qtI2?dD z1DJUgKnEpj4vvnV3<#J$L+~saEv+>m@BnPJV!SZr*{=Xq1w1_b!NCC#P(njPW5iYQ(%M}FDqo3SiGiQ!5h#Lu76||@ zA84z$4+bRr)S4|dz}sW(Wp4s;HNf8=2^rbQG*iaJ6}?HotAes05VZghU4{b)i;@+} zc%s^8hzmuUD`U12_A2{FN0N)u5)z+k@=8qAy<&?V^?rzh;0JZVDILZ0KQ#wHDv5mn z3Br9F6N6X<29gp7aR($s!a_noUcU`cg0RrgV&dXJV@X(p*uOH0rO&QNAn1NJ0Rw3w zRqDdfkjPC&!9PFH5)0h#f&j;O9w0UV ztIP)IjkV$w@ z)xX-3WM-@|9$^`{KPUA-i4kBM_YV)JstQn?ZjYuBzJ3jlj!q`0ZVbtgKAZz0#_;u5 zC1CN%!eq*jJ%1wHPls8r*QR}14UIKQb`_Fb-~vjrB@i?N2WUJ2TETsFfhQOlEq{eC-mpDQqW@8KRhg|CZ>#kHUska;DDr6elsze z6sifxi57p9Nw><&%LAhE_PC57&Du|{1dB;5uQWo#0&?-`1gmV3Ub;26bFt*4jK#Gz z_j+8U6_hW!SQON^G?UFP54h)_&Iv*qp{CEz&p=zQ6tFy~C@IZ3gyL3!y-EDm4fKh8 zymbRrNgyo-=G0V5g!J_Ed^UhcvhM(W7Kf*&ZNLl$z^@aD(rys56nTFDzi`4h~Wh63iy@=o!EmPbqVE3m`I#I6a?iy~2Zn z1_5d$0=r!N;Ae@q56}ey6bRIVOBR7*GXPuZI00E8U|^P^84vI@TmTeXWvsCi#QtR= zXN~ds1S0z*3$Xhkbvm5D6rTl5Vjf_n6Lsf9+;-U-K z)4;hj`VLgkOkK;+DJfnhLI8pY%UMpF(&ogappW5S`xIaSuCAdWIa2i@TK->`0wC=E zT(Vj$N}ZJQ6aq`q&E1_=y@8yIYkgrsnYOXHx%qu37}#DV2+ajzCx+ zpAR55NRBLRHB~TxW3xI|HU>8+S}Spq5Shb`!EI9vNN|9p%md-Z@N9qIa2c>P)DUkQ zL%l7ncyvjRYANllFX6$$sbcxM(pS)AB*Vy*^A02?F;ZADB>5Fy_?@YZRou zoBgr_#HyropatgC(cv*42L}faE*r?8t$J!3zRAY}7y0$|bv!66I=Z?JtcnD<)D3ox zkO#mQNTe#@P8hG?9b*FUJTFPWDGsnC<-oQ2EI~_)N@sDYH36k&Cd&+<91n16aGd1P ziu3WwajTsj9SO+*9;ySbWw~B9Ak{;_W|0c@y;nLT#$WJNtZQmYS}yzh*<|!tzq(=i8c=(eHBceoe`3T1VqWIQ{vdDgo~fb`_p>h|l`0jM=}UxS?;B>wkt8uoAEVY{8^Yf(s&5 z4Ez!^v$8WGAt5B-{0KAx0x3%l5U~LYJFe{f{M>?ro`66XU@@swDn3t{_%RQBeSQ7U z3hdRDZ9hC998mCPKLVKX*w|P=Tnz^Yx3CpY=mn@L0Uu1P&^UX@)Cu6HBnosuKV23p zgjt4RV+hlHf;OPV0Q}d0w-VpDc|OWMyJScOA}P>Cm>8a&k^%rm2BR^QEiK0I94%9S)N@oB)$Kml%0bviIVJ`!1l1R+u-?@=h%;c=(tRSX_q#yIG zupqivfcIB2H75XIfijAY&s$?lOADaf1Y%(}w?|WXdHG9ioJu}`nD_Qb8r0O)fpD%^ zhSHy%!uprsqnVR~1HeKKfZ#ot4A^FBfJcj_rY10NFfmaX;1q~sJ>1R+u)!qyJgdvOf>8MQ_+AD8!v@H3pzg&bHY*NAnl{#1nSr;04)Jz2tV9@RfPhn zMRj$xkjXQOC-x@-Bl^L@&aRfX_sP2eiE&-s&rtKYT>#UQ)-GNpW0y;tB7GzQ?tB0? z|NGYxrXS#pZdCaAd>b2`fbH;jzE;fe&Rp8D!$D3i)@r9AL&9(gg!SCqTox7$F4B#H{YluX7C@{6f&Ik7jsR+60krAI$ENqZRsS(v(i{%NRLK<>WR@b+ z$P4-(FU@0t{28eQrX`X}Hv`EqP%7J10M^leWLzIVK99g4~tT%rf;tp9p218??U|IGQ!P5$cv z3}6F9ssHi#|NYP3!Sk&14*rLkrELH2%u*3EOGhJnIuT1fN2C9oEJ`P3WNqSTO7N5U zC&Paq1G<1c9);a{omG8|pTeT%2_C?YNX$^jN_W__+;7Tc55Gt34FCM5bS=$7(x}c2 ziPltcfuu&g*dBIw=e3L6&+GZq*JtJK1umO+?}$nOc(U-OGg!F;AuySQi2UGr&h`E~ zV7yb2_Rjh}#XFVeXo$MYXM0)p;~5}j&%S2c9r~D&?`CC!7Z%yDqKyF&ncN~#Mt~t8lpK7zWlhhxL>=t|61+qhV(q`Rj{kjw8Rdh;7gP& z0xU{Y%=XsL#$d;gVIQtuI72bUU-mUk^xQMpwHAGp9!VWEwHCYO1XQu4x;6wboR@#{ zJ9iAo_`EXr*01~|uvAi7BMA(QNj#JTmoi(-2EVaY{Gy+aPOhC`u>xx}*Oje_mjIaq z&(|m$&?P+rf2BO+8|u|*#-f8}{{#KQWwp@|d=LY(kL9m>4u&l>ybxYEWmZZ z#tg90?r|GGD(OM zrS@H}#SO=pZjGxKW|Gv^3wI^=>aPxDUSJY|DUvsmkcxLs>!TS{4J>4SBUP`Eb0?JS3B({c zenr%*-pqK@-(dV|z$=!51AeT4{1``C3~SV@XK%>gef^9$KzXj+ii1u52P@T{l9BI$ zF}!SYyU?(oH!BM=4mYTDM*l~NU)fT_v!ViWlm?U%oOsX(!;_Oze1Q;jVnu?(Y_dbE zP%Wsy-`nn%mn9U2KYl{Lrxj&*w28%(X8$@y2}!>wkB-5$o=x;?VFj^(nk9z_w0egp zQSIVwDac?h=5*Rb8>C5$277ybmOAJA3<$4EUF<=v_2K1t*68_y7r#$C9 zh_&%Mf*>m`FxmAPV`WxS;Ix_=W}tjottzw;X3k`MHZF=<6-|?B|9j^|l}LfmMY@=N zJw)BwYoTJw#)fe%-Auc?SfL*H?Z8-V-}7I^LM%0*5rP|2@%@7hiXU8Go%LbH)*te` zKO(cHq}Dbldepas<|nGXQ}bdLq@)_R4=-qqZ8z-_R)uq^y-iExKSYDnE@~2B4Vqu? zdhmJs?(NA0?G_aJFIZ;h$ByqP9t`2BB2dSFlY~6}KFB!3OlfCGIXj+p0K?wsVk`KL zq8(RP_>X}J(;O!-RitUhO-q+>cjgg0(W376e$@Ot1iO>#(f|@PO|kRg0gVb}r>h0F))mm=^xMWk#30fx2wXQrh(__L>DdF@P`IzA$ zO4EL>?!kG{p}_eXEJeS-SS#cL8LfDPyC+Hw4GSWPX_eGBtAas~@JJ@cP_s^q5!#^& z>l@$K`M&K-DY^y!VJB=m8f8E8IHBg^Nam(gX){JIv~iZgpI(iB^R)P-%_L)wkmQ}9 z4TLik+l{J~Yzp*Ut}tN;Gvf|)1nwT^csr8TAeR1 zI6HB>h6OK1$kyGxMth3m|HgVyd}<<_-nBb7vMPO^S((W*!I-ii=f8ZO+jwYrlKhAK z@lM5)VIh5$hmu$E>%>0Ea0Wawc_{xj zzrrobN^m{z+g^Ic`^zP$-O=d%I;$0@1sWKms@Z;pB`hPqPcTnyDjX@w&vQ%HQ0@r9 zij3RQi8*l9mMjqUkY8kWIv`ME{t&AgDR{VT*}UDo=G`J{z=%Qm}r?Bnn|qL*=Ed?zsx z4R`Fzg72|!Gh$7@YCgErk5$BkUk!%ur%YWstr?j?8kRkv!<0pwRNJQtXAkJB=PzCRq3R?jc?(mr6*%v zp5IwwB#5{Z;Xc=7!H$ctcI!Aw=Z`*8(2}MaleQaaBFLPLw{XELdKa zs0N)BoS?1|9Xi>Dtsd;0;gN`4l={Hp5##^~9D~E9U;n>1{t`8V4uzBv$yg36M7oea zA@(^3$_aXQGlaQHoi_jCLNHlF0g1>$RcD3%^j5pMNzuzU84~)!J}$`8Nir>Cq0=<= z(2gX!`nFQ^f6t9c|2Bl<|4`2#<99Tq6@bB9fS%Dh`t>s|4?{R@XIxag%rz}G z>(|jD>vO&qO~HzME#e>{b0phsHNAaD^NLvKm2AUza16WokQK4WuKmF#j&9SmX&&Ci z18t?TKY;#Mn55i;t1FB*s>1dxmU^XNaAM|8B%9O2BIrcR^kW7|P` zR6R#pG^bv)i8jpxDg%XDw)p~VC;v-Ony?MOo`{R%WqbVktjAp8zVoU2QrCGM9V=1L z+S!;r&-SS!QPcKAdws^mlJgopr%p|0(QZH~EZW>dOL+hf%9!xX+_UFn*b8wo`I$rL zxSN9+7ra4B3rVof?g6fU!!sfrTfhvWE8|BUDrCCd->vee;ckYUeKGjfcR9o?BevIE`ZwE zqb;070VRA_@!;T5m>TCDIXwP~S4Z1BU@Lp)7B>fY>eO7S^>q6aWp-x!bSa608A6*; zx;=T5{iWA6#O+6hhS!I0E$`de>shu=76kZ&&z>B?q(ICNb$6kpRf@An=mCw6hH-`+ z=qSYKMqJBP69HP!I9NW-p1_G*t_`%46f`Q9p%wSuy1f>eDc^u#ftXy{W#t#Nsxg#M zGkx%CU)Y^pBTd!5zVW-#B_@=b_gd=e@f#9JW>uSoQxD1o#EQF4Lu6>Q@=W?446%Aq zb`%|f*Xoi^>Aw8GRoFLRF-C5-H4C?Ve@7-4`Z229%f(k@hJHl?qgf0dpO$wwPQ-;tr6dV?mE8Bq zOW+s*1g)uc?gVA)=9#SDmvnV^mU^yF2zE)iH=>^2O~S&kFJJCJoiwf6Z3ek{Yqy1wX<((eV``6JP(u6ZT;q|;2YyY583|Fi_02e z&#iF&3f(TjeUgaw{5fWlLlr}ELiuKkajkBEne(oEu#h<|-rlcHJ;z^i4vlb-zv?4~Z+s z9-g(&VQ=F4yI9-a6InnVh5f`7NAQ;)TB7b`12xew<`6r3+@(kj4C2q$upGyfY4mC* zyNZQwO8XRtHuGjBWk-2K;6pCYK0v!$<@$|2@B@;E6h)x~RKjhu-5N7q$7)okA z$Na}FmFoBuMvc|d@O~?J1fqy0hR9Wg`4R^9Mb?9f6J_&q{~qQi4?ShiRnq3nP2j8& z&G*~J*_1tR-kuaq^8L- z=%&)YzrMlGLqA2w$jB0f84qU&w-IGmT_<1h7(0~+s~kqSLdfLTKpCZcL8op2VJ#b- zdf5+|i5;g$(6kw&d}dRWCXXy@s%|Scl$?Y9W^Ho8wxQL&$FzFw6~!i>8_`uP`Ser6 z`rpP&G*jI@2D@S0BiZO2v?4}-pbE;p6f8)}VuKxyHqk3N{68(l91TfIMAt!-;v*w1 z#nz;%ZJt6)ZoNqtLyztE2o|DKDP}pyN^?0FsNuNNTn>G%3P!0eQjAEOgS7#DN;GN)MIz?&xonGhmNGqjuCFno zgb^8&mcUYT{oic8g(lk&NPY7&=De%cmajEX1!0pZefy|L6WjA3HOtt!%OK}+EYHI0 zT21l8s_7;Qb=m$8)<14U&gCSi@eG&8<(njdd;Q`L zRQo&`4Zku>cGI@&XOEFziC9NnKInWm`XafOsI@QjVvI1*L`CNw^h?2f!R$1@gx<0c zq3f`*MdoMBax%@!i`uan5|-AtLNUp4=fh4)@ixLSU3pqC=M;JKj3vMGF8XX1GX^}s zM4C*$RxLUt9GPFS78Pn(3fsm=|pr3T||Hd5I2)kFk13xuN4S_MU#>haZUXdjK2 zB|4N&*b5zrNc<)J9lheGfs3-$Xz%PKSKv$y4Vz%_aS((#5!G8bn+aZaKs7Wg(&owxWYIkuoY^|P1LiAvl>4;PbC z`|8)oa!b*2P_76t58;(r$0^ePH!hKuT7D)muDM`?YwZT2T?q|89_q!&x@4TZ{`YCC zu}t9FFc3Bj!kU*sm#3f!Dh`IO{*0Y=V{tuHKf$$_8RJsu5dFm+A_QYLTqTRA5kh>H z8M_9nDd5NuJF?r;0*e)%Q)?kY!a!pQ5;1u6!9l5yvO=AZx<%kPy(pX678!eq$+poPy9LIl+%Nq? zL9{0JCUtY4B-BKnTbCjjJ2C6$%1yd^TWxIH>B;7LSH$5FzlB$=UwPemO}>+4rPd}i z)!K!o!pd6DhQe?}Oky>Kz#->CV{_-SRsC|?7D`^|^>V(g)E7#*^rfPKC0a%JkS`r$ z4>70WrX|QqyC;0YzYNJ{7hKKd&_h)56`~xLKzRx*>a2_Vw8?4WS1HA*C$L6TEJ)Wq zSYwnc(Dj2JB0(Va50_J=wNyxIJc-TcszKTyP5hj3_rWT;w}0|~B_w_C))=|lXo!J& zMndE=fNs09_zr^kJ2o-~=BHR{j~0HbzXer`%xoVAKXS{-M-yKq&85d^@)s?v!H!r7 zLMDlmKZkbp8d2tWdv=8o{qOI=_L%RtZU}28 z8Yjw(5rp(?6`ZvcY&6pxtPpvXmSsQK$2AE*{dXYi~sIndZnP3?3=}Fy}t^tuH9T82Jp2R7z%LheQ5v z9B@a6^Hp;5!CVUnatpAAYSSg$M%SABX}9cyIX^IPytNl9ndq2x4xt0{PKK^pPt}O# zM?Oo*`wP}|{x6X~Ct5wU&3S&wTj9T>`Z1AzQJh7PF}(b`g^vOjH++%0feIE!@mGEe zaI4HkX}OC(cSDL>TS1ym`h&2E5>nDqFSV2`*N(+)P-CmW}GLfsdkxf3T+Gd-U*Q{mu#Cg>&XGpdvNXt zx9LwInUo1EU1+?tdnJlN5~Km{W*!rAT4Pg?^WdH(%FC|`9|rhg#gJ?97>x&wPDuHs zRtUo`r`9&pghTzOuN{m|q>t~oi3qnNsz%4DYX^~~J&oE+qW`>#8rw@wD3( z`LmAuB(dT6=xIYAv21<#oA^8(Ej9CYdw%~$@PUi}Wt|$rY~n_vi#g5BLT?)z9s{jn zkB|^HuASsNk`O2jINf+&rI98%?&)ze+i40SB~#C;`%vpaTWT(@;7^qdBev-3OBXY9hDI$TaxlAzl3Ic86u%Yv*R^? zXxjqV-`}!hJ;^qdXR_n0_Nx~td9)fc!udR(&7Kc_J#ko3*X=4&t79K$g>FB2%;W32 zJU<(>LR3DDA032r_Y#7-;Hd1~YGkPU_pa7>^1R&;9f^qI9%@QHWo&bJKHcBSj_dHE zPiWxGGL~CLkD%}!=5YzXlPL&^1_x5WjW~uVwPvLmj4)%MYC550lm37rLF*E%5{@JL zovaa4>FRfOL~L{J$N0Q6Dpn60Y`AAMU!W7UTu!ahHGz6P{BLpAHOxW0(@wQ~uA!gKLYN6#D$li9$mvOZ*jTe8 zzB2u0b&AYyBd?qJJ>e&(D8)7roQ0~T_GV`Y>D@Njl0_dcGrnN72NJ#dZ;u#y1zZw@ z+P{dZ!b`_Zv_{=Il}ZU_z4=Du+{>$*b5S)(9Ee<*w{|L9WNB0RqLc_>bChB3X+?c&H(1L(g$4v ziLBhT@wINH$s(`(NT+hYW;(u?1l=L>UE@1dRb8jtfcNlE{cS$}gSN~Q%MClpFmuf2 z$){25X?_OZ9+$8kPw!b_UWVSa8yl~t6yzU|{t{3{k$59{;L>Ib)A+Z8DdV~+S9OA< zlgTv6cdy^qRm>%&0ED&J>X`qPo9Lx9 zxa+NzO9kyh_K;I5zRoSo$(dtohKoJBc==NLm|;KaWY-|hLw=$1Vs=lzD5HVWr>-=CRu# zarNVW2_O62A0y~T&SSMM4q>5b&l_fbq(v`wj~?2}6wz%lDm>ohnq#BbaF>Leqs*P4 zph3_dh+wo&IpG66@kYF2?zAsyb>F@b+Ro=UlM0WO%2M<(38Rg0?q<|M?w`VmBHz0% zq3PdTTKqT+K(YYFyBK-H`@j7Ab`g@|enOf#^vz|`HQr!lxf+&QOt)G@iHZz#&rE(? zpc+4GAUbrn11y&gvsGVfz?ga>uff$;Lt5A*SMzFF1$>{H93hvCB})nV3L3hyXYu>& zZE1f&y-J9MMa9%?)DH@uzl&Jjtd)&2V{FH%H#`sX3e^=}eBV$t*TU)G> z#w}aAAz6&31Pxl0o>q9+4~@jLMyxfFdz2D(sGw*~k}omyI9c3!a=lItI!erENo2-w zxzs_I+&z*c3#{TDRJd2m5k9t(4^m*HG6tzow6+fQLeCcu6y{$z7IR5zJTd&F=`@hI zC#7z4z>?BO7+J6}!n&}rqWqCs=*-_pCuH>{tg;gUs5!DiyFpser;Y3r)@Cdvep6a)lM{ z;$KUZk0mnfnKTncf@-f$u+F>86S*<3mbWrql<+B1+|t?fzGrOdm9iLiT6_8hVT8i3 zD2@_rC@6C(R*H(MsvuMPDg*5jypSEVY#zW4VsQcQ*o{S;`&fV}bsaTEcq1>#4)tXs%d8u5V z&CkSJu58XEkAYS^F34al2Z8-{16>h}qSnqm42<5ZDENnM7*ZneuOd=xz4Ll$j{c$g znO^>-`EEBbq+xH{Cw?`dl0!!nq?!7Cfr+zSmne$Iyg(68UyuQ_iScsH@Mw_d|2P_m;;Bv z8^{6|!5cX9(V*aYalC}DG6_+sZ{_q|geg_+)^FTCGzc#7W>A{veloJ>T_dKL`p62+ z=|6!BF@b``i9X9VKJmB80XA@oY z4UnAgnOWLcmeGp_qBjFhBsYhkH9ZcmPi0ZU zHJ#MzlUDyzq7(axLLDdm6NQ%N7NaufO-M{Jd!L62SF6CBZlLtq5ENeRE-g0=1nJC` zd(jE|o$1UuW))4Z)b+ZT8()Se!SzbWR;G*p(X@zE5Dynfkb*Uc5ws}1V5~D5qAd0x z;-puwtt!tcMwQ+y%38;6{hqI08I|W|b0qYmNv5D$@w*)PBwwIs?@fTy9v?69(umCr z70;G^Mmd+~i{8tLi7V&izuHj6Z<%nxS^N(-|M2PNTs{Uib^V|iIy1;9aO%fopkUt3 z`tR&tPQZ_3dSl+cXoH3Tyn3Vq&5o0VBMcq5(LMvW150wqPuTJ2yQpb-k$;}SODB8N zbi4ye6vmE~Q`XfN{^aQv%!Hwo`tuBEAMan<lyaIYvaiX7sGG zb`y;W{BX#KPoAlOT9P&DoCw0~B%Oyif|M(}SoA|r76<9=slf~0q_;V@+0`?}%uG@t z`Zc?^2v%2I<>QR%m-?LRbvy@|$-N^#Muhl)t1$7BtSB@bil{B_pN6_m*SftsdT8xT zKhf9{gBPX{GFCyFr5}V41T?T2??Pp!Z8b$*Vjs<`16xa-W5->kyP&EoM9 zWsW-oVo6^cIf}1KG~El;4lf=!ecIo8;L8OQl6le8{9yxjm~C3_SHxw6W~c<0i$-0U z`g&4HpYeGQ5W*+t1o{GbFqG1k+>lRRzpQLm2ls+m$Tyh?1SHAyW2KX{FYS?xI&1_Q zgQ1ZU=1Bi5=DHD1OC1{-p20K8yArGR807+iQNP~<-||3Y6=SAy=Q1Vj#KyFPuX$`j zq#n;m%AY{xA&1Dp=>bV_(8RSBIc;eF`$Nb%fK?4&ddUP^Wg?Bo4GPsTE%!p**3llB zP^r~Rg>iBYjGvk3oOr!}IS_h@a7FQUpSgA^%4!2-dX$m!!2nc+RL=IxTe@T+D$+2* zRky!XO!YR&)?s7~8zpL<*|`D{w2|8(1g_pLs~}^676XoMQ-qwKt#wdEq2Cv166m#| zd96qVF2e?XtotTp5v2Uq8kYneyyiz{zR@phW0~s$6v;WOaNVjmDveA~%g?Z>VEJgw zTJVWt`}gc0;~yWHyqfAX$z&WmYKS}HcxJj*C@rLTd%wq&&}Yf%e|o8aZoMLoa*1c_ zsbJjM{WuGdJ8r?K>)cClQf4Rb#4%>86Qe9bkvUoXStuOTf}X6}N28U64&Cf6*m5iH zJ`bl()i@c09!s>^YnrpWhhb4jL5c40kneaf3RC)>E_=xSJ8LEdiJd^An)6Q7A$qHX zn>BxDr#y`c!DgLm)<6-g!E{MMN)k!WNuuP!8az&dui{c=pt?S^^f;+tAPSH9FJcpR zJ1w>Yq~b0TvqV*v_}4#8$bZQDodpI418!ZaNOL;-4&$u(deC+ev|0J$Mq#JwR#0`t zaC6v81}qc_(~gv4ulOfXe$A|xTFfG6?%iRqYS}dqhwFC{UfyK!?WAAA5(|=fS8!gU zYRzdvRDB}D%_dq;>gEp4v7j?nt`SktiZlnws1!oo7gx-lDDFxWbb$hVNxGa%x zZzdxY)P!qO9#ucB#3;pjrJ%jkbA`eC3~qHd2IvJ3;lg8EFpzN)^w4Y*1DE-zvU_MM}%{Ij0bRLfz$JV511P1gOlZuL7ca@HDm)T$L6lBq+h@%|Uz$7BoKq}6u$ zFRheKx?~LRN99VG$>#I$FR{p4Leay`?-0Mt;zM8;JqLraAI-jo)X~D>HSqJgj#Zgv zp9y#jdGZ&1-{x6nwV_1Mzbk2!eZSXAP}5aF`E}#+6({6N650L<6Vx+g1SU4ggUoy{ z7@i<2rFXMbW^Dek4Tp5d$a4}2+OkAiVBIWn<~pl5nb4|*0uE!iMw}xFvkco7@JfIr z;{e<_D_M7o#FW56mH2#OrF35^lG6)&D98BHimp=~yx)4owMM+tSV%%G4xF86U6paC zhuSOYS;Ez}`;MO_ZtT_635WWl^)m;hvt*z3_BxpXEA&QOU48|ty|as;v7_+8yiSbU z2HHK5E#|}oSYU1Pj(w@IPsv|t?Vq9W(H^+e#tcgm2UUV&n1+grCO;0+sMn+7hO<_7 z#MVi!FI^z2aDL6!prvd?_n>ae6kI}9e6=QB;TKKV%Ea<0iVRn!z0 zIJK4ho+rtNzae-C-q}M1hizS^NpwL74*JXybZ&=gptaVmh^l3KC<+&jv=;=h^4;5y z2Gw=lY9-d4cuIb>)AoK7__d)j`ltzLA*#zq5=m9z<`~oqW}9?WM_sCnom-BEBwF7D z0?)tBL@rF&KY|F6A#Gyj&9%7%94q}r`^{r}0X_qjt3kkF)am394g=2o3L}6W7S=`lOKn;Y7$9o+AvjRvc!SEa`qQ%fOeX*%^2q{`Eg^0*im<((#d@)%I4LdM-7Zs&Ickd!_!crkConiST`{E_g zhwZhithu#1QUu^vF7uGJze{w}+UAdbt&rKzM$hTAbFV-!H+;#ELG)e(H{&%TqoYKZ zZeFW5ZhL4n;nsb?@mS3987RQ86N(5usgMh9YZbXGv{-KQ%$&kuEXqcPU zNK3?$<?2PRH9eX#bj9TOTK01Al{K1U#YY0=?F#h*zEWfpa$#3;_&)DRU_sq&DR zlLe%-+$8@(vw~zfCh5wlaTTFALrY!DR4?p`=F<}1leJF)i%&iDiaPdHi69jO?GJLk zz(s}5mFXnx@{EgrfB(q$wjRc)s8p=fsjPFf!RDLY$LM>Voe`h>%M^lAK|v9BQXu2m zdkYOQXrWUG-lshrvS;z3^@nIT0;<60Q8#s`iWz`1d>XN%!T=E&W`vj5x(F#EzM9JU zK9e>Q>bq|xBq<5pihw@pT8~P5`?NsH#{JuAl9xv3uht`#l~Q{@xB7mxz&~s(7~o@t zwTS{fXv5eE`FtLl@k?Kc;0Q@1aDT{^Ew!Y_Trm{+tKf8GI1Nw~@a_n-;#NL{mdAzS zN1pTC-j&XD)Z{Z<7k386w&$HBpoLDBME~J4ts7mzwEFR4$Z!KW7>VcBK4YM%5N4k3 zz02(wXOFP0?xJsOI?QlZFTfoURX~M43jLEQmZDq^x2yVWo+{mzqy~}EqtrBLPzg$- zf-eI{%%re*7_D{TWKigAo|4-pY!*Ys9jstKreDKq26DVEyX@|^38SZ+1$n!pTfTKv z9Bwq47#rN@_?no?pmdDLSM~M%&kdeM13NrT*mVZ_!G?J2AET*1og&rnjAb{fF?pSC zPoAVt5}hT@(q*GUoo9Jhf0YxPUGhd7YS*6~Z=Qcy%svauqc<77kAHOE`5FTl$%l02)$uj#V5j-1oIWisW-fuHH6_dZveX(NT$oJCH!jKJ;rob20 z2#tFZL!eMU4s@N4S+sp#&-wTxpaglKWH=Cwd`@H;r zFq8+awdpNlIv2QKEputQ?ULtQ`CsxP_su)2SwvLmJp>`->GDyz`B|OXq*}YWo;9&E z_BLN*@5DO%=y>12#p%BP`kyvDAfzDi2uX&07NT~yWL5@EWaYZQou<&no0oQ6&0+Lw0oJJ5BZSg6iW_VPIQ)oFhmTV&R3TK|10`{KKn}cc>#& z@{z)(Q1vXea`gf8wLz=KFh0ah`|PF6V}1c8#}waWNq?VGfoDLj??k|Nhv^g8$(d8~ zSGM7znM>YPr&dfMhnmt%h}opcU*H#Dz*(dS6M0Esfu}{^cZ9o>Qb|{iKvqZbXH;~Y z9LEvx9HXC0WE>3QW+mGqv*VWY5)Cr;$|3uoi?qg#>zLVHex_QxS zt1rN)+)@sfnUWEKLM=U3mj{&{DIh??xyP@_4EOE}stPF9H;aj9VDYA@#rn~Uf$27D zJTJg`tqu{nyE3C0AprGv|GBjy5yrG0sijGT+nzz4VBNBF(ke#N_Fb()=1;B#DH<~4 zKpItA^3j+t`Yy(=C4E7c&$z)IN z5>OeMB=0VBFVPzS6ivOQ!_&+$Pn4MiTS4Ce*_!vcm`#8M*fcGq*q7Ki;(&)uo32Z6B-&$ zvwf7pCbpHwVBabdWq!Y^FMXdq=Je;074jtz7Kd{ce$5OHsO24ej^*i_c#6^bSpB;q zq(2uuH{IPc{N-x1f2$hY-F^rY>Y+H~^>->KiVS%JDbf7h+$-qSbOYP-szy&7H@50Z z3nF6~SEUT?1u1a_MPG>4plRx@mfR*1W+nciVmA`;a;tsi;HyDM{g@Ab#SI(E$eJ3~ z!Y$!~6DXU*cI&#A{`xqrsN_R9sA?#cy3)Alzc7cp7mPDCUCn-Hx%9ql==GK-S>0Mc z#N>`hy_U>KCNCXWG%p&*FcbSbRV!a9bf$sDCKzxS_3DXGbE2>OW{k;Mw6D_AIu9$g z5Fte7;3ce^Iz7Q|3eNq*JlIL28P+H})~^fZ1820aUl1^h%>!PB9@g&eX;v7(@~~L}hxU+EM=bF0wj|H{2aG@^#lQ>w|=~Z1p!W z<{W8vL_xu%bnxtEOGJS;&H2rbkZO%>Ymk>C6PVagD$al>iz_MG3t}V_I&oh3kEDN# znrZGfStPaITS9_CZY&x<5Y$o`xX9;b^l=8~c=e#MM;@>?Yzuj5;P&xO2cen->JP=P zudN}%UtcT~BIKl_N&ju&srE%-HohdT9@JQa{5$*OAKK$` zaE&<=>EjyIz>V37h1<#wTOeb8D3%Hl>c?&@Th(k3PP!g4nyaKvJ-$szK%Za9d1*ZJ zPMe>J`pjt+BNd$Fj;-KSnenTA{!M`v;=H~dQ9Fq>YNX2gn&m=QA~ZB9(X zxyC7?Bd#PdQ0zdYzkf!9+ACgLrse^iwVk(1R(DuPzoOj6GwKbICo&S(f1R(xm>%Hp28+p%cep9Xn}QsX@R>e zONe=D$nMFu{~*;ILuaL+0~d)jzd``8ha7$zRK6W*H1U6dsn{H#AbhL zQBmqZq#)-z9Bkq~&|lfR>Ax|7R3hKR3I`7Y77#X3$;VoAeL0u$3nMPJHc~_7teEUV zMJ3i_hK*DUK{Hls({YS(*)1;I>{*4Zsn6x(5bg`o>|6^AKg`Z~(a87kKlSo?e^ajo z+XJE#3s(x_yzmtAXDb}BV?`y90-Q77I+l_RYhsqJ{v0H;Nk#T`aWY>W_ph(J8Lr5^k7gX5C2&97kFpGZeZnDvo`~^eo)g z4tgBv7WEY7xt8OpWAZsQKjhHgGze;>p?$=@i~a&$-IY^0AyJDC%RaI$I;Ulakr!N@ zcaY66jiMn@V-16DI!-J2c(`9mC+5|Uuy+$V49qO=(>LF!rcvmmw(E$moP;H*gCSgl z;5r%-jiccBOHk@-sg=20WUx??sv<&Iv6i4nakkw|0%+zZrG&n@WEvKze)CY~0){Ij zJ?S7x-LLjSO*N}RZKbw{+qF|6RnvC*8U)^3+2XkVV+GiZxtSO4+QSQH(i<5IvdEiu9BrviQP1B=Qz7M=0Hh0C z-m0%CssptH-H7M-W~ZV`iLHupj;q>gGYWaGvl_~YIlF2NRh%%X7;=)x;H4?HedP{cCC|OTi-oP~-&iD7Cu9M^l_)tionj76FI+t|36V2UMaM}%uQqa$jMZ+-lLOg< zoz6oIy>BYY%3M&PB?!(#jC`Ff%0rAm>k3){&B!yLRn2m3p%@}oUcSgPRUuGvfwVNp zGr&U!&O?qNREt=B)Qmg-#V(?s!e9(|6cI)d%H(@ssR`rka+!M*lH2| zZ1}uV(Zrp!(DfNU=>ntX`aJ+C*mV4QffKPJE9zjPuH0hx&@= zw(iOyua%QqY)OuKpkqEzX?#83=TU${qS{%|PATFKf?d|4XvwcKzq52COfV_xa}aU? z+I`YrT(i)B;#DJ3@Niehx->*DgiwZRe|Hsog`QF7%> zpfF3uC;*;wCxYc$FZQr@8Np?_?+VYWx%Fn!Thg{`C3=asE4c@32>u(!hC9q)byg>+ zYtWL`!CnZ0;Mrz>s}u+3N;>_g6Ijhj+BSr3Qo0w{;S_`(EF}!kjYzqc<+9*utDiXg zJoH#<335>Muy=e|4KZq0%i;EGhN!g&dP#zzZ)OVUsvx8$SDQC5u}hhB-#UbHwt6p@ znA08SqkGq1!dZ=HzFg;*WY|c~%}TK`9Guy3f0y%}w3BX5$Rw8OY7uT-8iXZ*X@PTFd<1K? zHgW`O`kuuIx13tF?A=R&^@03Zq(c`9b{SK_TNZJHllkP7Uh62jMX+!akVx^iq=$=TL*Mfl`7 zIfZjh$f_?P95C(dEj8v9PBYq8!gs|heUZ3G+Sx44-HEym77J9>@{@n25=-X_JewJ8 zT201JEm_~I9=b0$#1^!`+ek)^g?;3gDo|geO+#qNRyT{BnrGX3pzO2r2Kn6}RV&Nt zQ5nvdzni_|3ALw+Hd2xXt-O_WR+bN8uFrr$6~_;rHqS}=v3;DUJ^M5QW zKc}(~;ZpVqZqRirqZpP{5N}Uo;55)~sv`zrDy&&!_~Q>1GnwkNeOZm>vuO{Ii0CM< zz=_>%uRG1WlaPz^5gTK@a3d=!cmfKbc229Ol&l1BNLrLmeo6s`7LN#Z_kJ!uGNelD zlGkW^lG?DBkg-07Gmn7cKLb zKwn;N)>5^j(b7+1A;{C=3`J>3BzI7vjs#k8YfwNT{II%Ug(^+GKb1%>E_h;Yvg2=~ zmL%oCYd>zhq%p$2iZ~V^3efVvYWFhdES8x$dn?=DxF3>KZE5&yb{Qg2acSrRf_}p4 zA5vwEZfclVOH-Sax`a=I^L^*VOI?=wxA>Xmzr@cBY;6CafL&>AOmDKlcJGwjKz&qC zgX8^*0CNF(pb@@~&@uWN%jpt}w0<_w^%c(|_cXbzGYJ5W97NY_CX2}DQAkYve*@^7 zG02yR;+373|Szlz3I?7 zJ&~UAK;gCc1ruc>&GBsGZM-#&en4qKLNi$%LdntI=0Q_4)xDw$50HfXH@<13;R*Q~ z(s)6udCTMt*7!~@ZZUsLExd?kbhz!H&;~@?DfQR=>X@i{B5{z1s-gp?AR|89a$sp- znWrEyg>txCUS=_qKRj}__*+r`x0JK8InLdd7+W%|(QvMX9C4IbS*Y+O;F9z8r?YQ3 zBhhD2+wJY~N1H~tG_Q2e2PE&wP-o@CVU#0mqpacM#}^={829Up6!uduTQ+CA79I!@ z$?0X`HN`bb9pdc`j3(A&0?pU>FVTIvPAhYFd&q(C#^d{#J?K z-jLBX-%_Vs;F@3}dqyO^dSBRQ2cd@Nv-$~W980H(76m+`#8<#oY|J8-4LTRO`9R9| ztiuV{SNf;eT>K>BYIR8CKCswR;gaTz5@=!$Z(+s~EX8#) z2=T*7(Th!kM}hXAx@@2`X}>>dlyV#pdf*`F8cjK}&yDQ_c(7*Br{blILxhcFD9XgW zFuma_@Ct=)-}%9?d>)=|Kwe21$Wa2oy7yK$#8UtuU4>h=7aUNX6V4bBe<6RTb=?rc z=uZsjPS!U&FgNij`(3_K9MI6@<@?^gUk~p%V6fDW+`D=|Z-IX8^VjH!%Y~3J=k4Uj zj4Kw@ob~^OP#X4Lk#dB~11Bj`$g8GoK46d#jh(lHTr$VjPWvzO*F5*2rQGFIC48Z> z$+5HiVi+;m1^3FR*l+>xz0HuSmaY40J&DPOl}WfXz7QgCbaxcvcpj z)I+u}yoaaL~!4etx#k-N)q|uqTxiYVvNVK%4oh~L^n--J^YEc z-Z+>Y#sV9$IDj%0#MQu6{>vatJS>4;IAXZMNtyXJi{X*GT(3VZNXk7QU1jsUu%CZv z2LtX=NxQLk#5{W2bwCJ6!B9dcwPL1E&^94Z*li6obPXCU*3RGthSCt%_>eL?jk_jGc z`BJC2Fyt+R*`~O``*s7k#<&pfBs?X5`0H8BMDx8V<}xW^v7(QWFrBOS!psuxFu&GC zT>f2S$M@$jzh7lIW%U5(GjNlU;Klfs`A+gbyz8u&tEWjq0B>K zYyL)B*zUu!VaaW@8%5K%l*&d~MYf8YMDCKMm~Qg6A~^|(GUAHU(T6hhZuv7+&AG`; zgg(_Q4Xac8=Ef3hk>!cAE0m9S8(<+eO>L*xd6x5>qC>+kFsGRWhKYZ8nvdjw6@pIP zCw+e8`VMv{yRDuPldw=KIl<>E7_sWJvtMui7`r&c#O^vqjZa?_CZB6q7H%u5m5qQg zIzf~(b#YO(;=60r6{@f~SB;^*hlJ6GvAKrnJO`55X+^_M8s)F?`|Y_e(;(M?@TIRg zMg59>F?Vt9{KK=z2@jb0hZma!kuM{#-qbcvmbw1>X<*^2XHwT&3bfkNHIaBdr3 znr!pUu#sBXII33C6_*$C(_MtUc5AvgHiziFI1V5ELFuTADjO9zz%ir4Y+mGX#Xfobdb}Orng6cyiawG4l7;Pc6@1hqbe;9j z-SWb|;*;ybxCVznjFoWRLOTLK`aIQKI2iYFQeC2|5|}(LEyGE<=QQgc9eE)A{N&zJ zx-96qAdTCThj3(GFWjMKEsW2v{W97Z1(S}UF6KrL?Dmi9S#FuS7y*`?0Uy2+Rx;|a zK`FgTXh?KJK$+Q3+_FET^>8R;d702Bm|KU8wYYii$Jd>uyvb0&2xLE5y?IZ$;jr}{ zzd?^Zkqe%(oi4g-`=$x4v=ryMivPtbs)NyQ!ml>WXKXfKKiWXW75X{o)XX%}XL-M> z=GESb>X5eepC_RY_QM706sMV>u#MBX_svX!L z`sz}iAvk3Ms{k3JS%Ci&Nsxf0@Q5Y*kp65U7%}9`YDm3W%4AqNYNLm2%;r)~+kh*^ zJDzbOzKe&{a0>Iba?wDiJvV#M!_twx`^;-Vh<|;^wGg#P_vn`$dLk_7!iTrL*OOV$ zFQljb34)ktw0Wy6_x=r;uqu*4+Iv-Dd`^p3Z+1OL<%ec@z-C+1!i+LA=+m|2hD$72 zVnKiC*wq|hBd;}#t}Ne-qF!pA$#y;A@)l-kRJp-fQ+y8x+FzkQHEmT(9!UhBqF3P$ z5)dN!j@b?0TlWz#t0(eDVQRo6n2ocCI-y66u z_WIrFV6tBkV_`_&=TNFEsJk4KKeYs_UZ^C0vr@;;jzEj&)MQK}B4Av>>#X^`uHt1Y z-`b&=dq}>(&V=u;hbd_tJ*I_k%800D*fCR;%u>H`GK6#HBy{w>Ye*xev?_telGvX> z4~32@{6aT0P|A)K+gCA3kkMju6gB1`^3SMCDswcgL=W+y7n^}%wyZKa!D+6N8D*S$ zqLp+ha)tg@<+j?(x zV{7$!OyTkd18$vvrl}d}fFWbzZ_nfJ&Ri3%S?<9uas83XeI^~=LUm&{6a)Z4htW$Oe_F`Wv%TO;|EaBBA|_s|3t>=P6xL!aMH z8V0hU*wlR8aGXs7qu;zW&hWsR*X%W4s-e7FT*>6} z&5Pepyy;(GN&n`Iv;P-ooSu=M?SD^Zb*W3nZn8jkKdYX?RT9WALXidJ@^$dpU`|qx z>f@wc=_4|o<@xq3POw^7P=1|pWVH|6-tE;4f=vS?PA2A^O`n2EXA4W<1z&9H{wvPKDVOcy>^#3VaGM%2WzW`AI5yK>K{4j!k)4jni&MAx}o7r=NOp_*LSLNP>5>v)uHN z%e3=_xa;k5sa;TK!c2Z5XVHVBHEO;_dzUwG#3JY9q9Y3#@DGwC#5@r*x~ER*LME}I z-Qx11U#5tj9p57|o$rw>K@W2Bkz4H424>Z;2Ci=(9STOKcWOn@WMHQ4UlO8JhTumW zbGx}nKZ_pf=J!5RwnT4FVyuF;ZqMRie5b{KH#r@GXh8>JZ&u`68XL7AX1Ym8Xi-Kj zlTokN$@c@B^NHV>44w%xW2Y^i8&Ft!G7*ox*Bd=L=ukv5vh+tpmw?T?OS`i~J=WJ) zUANg-Ri3QDkou&=biN6;1h5$OwXSD{p?G{5ane0*PiZTJlHtrsj#EzIlCpFoC4k18 z*#})1-qG~y?&{}y-vWpHxYeKrG6=`5Ca+#bQVz!tvDA-%LMKklfu16R(SFD0au;gH z={tD+34J5|IPC*)DPpTolv1 zDor+1Re5|L5FsffDk-C*dk`-rNcXa;&wW}giuu6XwfAzRIksae~`*L&q&VqE64S9I^V40(E;9SEKI+lPGTIZX7O{KPGO)QB>rs`V1v14*h#f#gA(#N~A`r)V`ReGe5NRJx$m|r!(r{obB~b z%_l*4%OPV9sPGQcqc1)D6Bxx|!+g4}AzAnA{?O#(`AJ)s5`k7FJ!d-Dq4f4mu z$OT?>=RG7{Ul8HG@gC*AkKdkMr}ucgGbVhwC4dJY$AK0Fi;up&WH>%&6Hjx10_09g zT`Xp#qdW-)lnYru3@Bzt?1?V0fP1T5wnxzHCTX7(uN2qk6YmZDM8UrpTY857WNg|0 zHvHg$baZks*0+XqThCJOh@oVKyZ-)*d{h!BtN@|V022YtgRRnt)#-f8BoP31gpkCw zhcR$#>|^SlqQt^mVo|fcxckPEeeERFzBU$Cc#l?WkM5thc5--Sct6i&ewaW3$>O%$ zJ-}GKHf8Zt`*v$Wp;`u(%)CzVyYJ3w_%@-~9@)NTf4tVj?m%TY5eRhn*YaED3+p2~ z=5@k5>mO`#E)1x;H;m~TZQEN?npx&eN&Y0vo;_7w@o+b_2S^UfBbR$az?_A24?00QXI03VbzZ1OR28ke2F zF|xula<*pQjrFcm#}r}5yl+&D%UrD_2dpxH7NbE-mQMy~U5Ncb4kC9c_t)NjFxdmrrifmRjt$PR1?lRj@9nK{Ms! zQiiF5RU`~H7gi0DZ%P&Ljywl`(KB88FrBfIzE80?o`IHgrqv;Q0;mX70XxK^IA=ah zGMl)Z1=K=a(I7!Tnn@3&w>|b{E)*}=eKZX?NYy4;NChQ3shu5~A*?vu#mii<%Kw}& z?$Cmyz}RRM`P=c69wGE$djVFQn9G&_81O@;X&0;}docizv?c&`mu}<}VF=DZyz_G= z9+F?UT`B~bNCmkSssPwA7eO~^zrbj*!i{H7v@pL8W9k}D%AmGUIM!ZS3+WmGm`o#H z#^c9yKSMd|TcAh0`{yXHQkhpa+s#6L|G^&^J&ACtqXFzhODGLF-Mjh_C8?~Rjtjt{ zPN*9(Re%n%n;1G~i};x&;&EnKhnW_pwbH1%zJ&wx@(VE+SE1_3TFl5i!?>E_@$Qpq zd1PSlnWGppNs>|8qnPkUwc;YtGanUqBgTwCZE3){Q0~}!Y2vE#-FxvD#P6#ubyMEw zYng)+hGZb>IP>=9{d~P>@N(jblHc3;PLEZ$aMIBixORxSG~q%zau%bU)1~m5h^Gu(La{ z!FdDsXt5JY@|O?fxu;JcJ4cj6J)X9CMETMP7uBkoB7 z@oSk|PYC>B7?B|et1lm4u)iq|O$J^fe5VST);LRrBrDpEw23`iLLB4&;TT#xtgRnQAx+4?GpVO8l>Ks%rnm8Uy56}I`iSazqGt6ZY z)1ftoYOy7cV4?0+IJi&ZQ=^Acj+GhB4^t7LE7nYzSNT9ZSMOn-bY$$Ft&b0qcRtO2 zzPSl;yE!%$??i=al>n;A2ZtPwpWY^^W%kzLd49qd=4&K7G<2`f&>8?xxN-38j~4Fu zKAFi2?6F3^m|sbh5y3NLs{6Sv?0-7sbQ80c)a?si?X%48)yB9qW60)svE3~K8M(^D z6^OI@I>L%kgN~BoPR@qVCp9A3_8qxY;~S9Qyw3ACt^T2rF~pg2RIcG3`K#q?iaTb~ zn*8Ij$;-&hb{SLgFS^bbl%B{obA0PFb|L&TTq9Qvv{)Ir-ipz#3A*bE7I&Y@Gu~?_ zp&WN^-^=rt-c8cvB(;^dUEFA+JnpiK^0w}MA(&`p5KLj-qcj&>&Pw?J+BFHWMLGa} zo-)h``Z0$*kPC0rh7BH`EX^Iy+I9BAp`@ll)GM3F4=;W^H+G4eb|cLXyIt|l;`42ogx;`cWh}|-1sbP|A{9l;uHN#EsFs|MZI}#;nW}}wY8?&q zO{~?5iMYB#c#5u9iwgmM>gFObvudJ$gjSn*ZTtJ}-fFn{EBqbCY!$10 zt9oj6n4t366;@?fwYB!Aj%p$O#^NK5OCj3Qyo2#_5D)$ch^p2(@m{^Q14$d; zIP7Rkf{rI>OdPJ$=VbbEIYdKk+;}1zHryEsiLG^cGiu8G7=yUH+4MRfo9w!j0cvq@ zFi~onBM|R#xR&($!1o&n+!0vj|Nf;jF#M-v1|$7HT0m&e%UcH0{r<7*>MM-HDKe*4 zff+VyZrtAn%R3d!BPI9Z(8joZcA_j#&JO>*0o@rA-lzZpazKX( zTj(!C5gQ^T#>2iw3P^kU_!xX3z3_kG1q_vO@%Uy=3(g=(H=CXwV=``B6cy6L&+cDO zXoEmxRpfWaB0eNpfX5f(;D5!FjErrL9pi=k%wBGyCF~Vjiko7txsu?v^bW*X6auE5 zuwsuGISBNVXM_zYgY9HetBxu>axlgryQP&ul(N+LnwV_QI-YpK3o~z~@DjX|Bc`Zd zm#;93g`_`5GNckAMssvvMog@DH9&5os3Dt-bXWvZ&ecLL0d{U&KN#Der+}@D{~c^A z=F*IP-LW!UiRcZTI5SLj)nwQbsOd?C%=HD$eabws?Yq31efV!8_)qLd#($=hwBuzX z`{{lU0X~t~+o|Sx%@M)K&9(w^J0h0`a4b36!7`E?aXy|lj=|tG#r9ItIy=*%a;};= zwc#eeS*j?^^j0)fL*AbBk?NqfEUtp#D=e7V>V20IvrbGy>))v`4Zgk-PhMxj3O4Y;LiXORY!uId?)7W!7PJp6SKet6 zQdPEAF4K@5id^m2GB9WUU^?jU&UG^#u{yMt zY|V=w>==u|`LT+V86<&`?BzfOig)ph?wH9$shS4~<$&YyfE*|g4yUQ9hWv}npdk0G zARN+TK+Qlj{22ap^p#oh<0d1RMPPwS$544{G7 z#KWfMKaKYzaiwoPmI13K<{-;LbrR2a36~LDq*-}t+v<>kggE6{5LuNr_SO3=T?f7j{LioLIAJG>@MmNJMCcb?d@P|S3ZkR z^O{iwn5FbW+z&f7V`6ZaV*LqeuBm^aW@C8?difJgxXys^W&swAVf|$+GnlMDgZJiy zFOBis?lVaCcZ7;LmEh-{y7xI3x333o7#<|tzMcU#-Sk~unQ%H%m}d0vUaEYbNfY_) ze>YQ+6?l4akb-Gkxc$6q`x>htjO_81Bx`Q)<>_&}>QhmAQaeAKLq5$IgXZ+W)5~mc zDH`~c5jc@^O48gzZDo|7)z?thFJtEk-!zsppSnU?)ogS~FG>5L#s;LIjO+YmR(+XP0Q(qU-DvZtu;T5m0Z4oB=gdO{!Ik`2@PUq`v;F$J5f7wpAIPm@QK`( zX^h?|oj?|ryF}AJ?Gwew>Z!VMiZa~1=&{$c!!pz7Pff-pE;H@P<4}C&(@|5QBkk)f zZGY3nq3pc&YUy|ZSrhZ6wUj`nVyyfiu-DUicx9B{eRvi7vA@JL1?$`W`StdB)YNw9 z%;f3wc(Nh7&E3;u9H(5wYyWn&?STvhXbF99dQS27wpesvm$%?ZRbJ`tsQB9)59>3< z{>oJKt-5^X{EVABC~2U|n)hR9r7K-prNT}-s577ZvuO%y=jd@wHo0L>v&@*qt0KH+ z;`?a}tKp#RCByaL){GG=XDZ$dnGD7#kIjTOgvnFjp3ek?I+wa}SVqvTR={o6(hSo~ z4Z3lF#-HI554+A3FHs#o@r*r@&uk8b6N>#ZD2#uCdN6k=XK)uUoL|f-f_Dyrn3160 zlb{^+PbrE(8gU@RI08dl?j&TmYg+;|31=9z27aPB7g{3`dJqa_5Q=mW3_2Dxa2!9W zQCQdubh+WJ-!vK^1bSG=NbYJda8bK6fl-iF-H8L=3FB=je*r?=x-3vQtvFqUBmPaj zkqy7R>2z|(GUH>i-X zEKpMt!1J~eZEuuuJ0&UGc6EZTzUEy$E1fY%5kr_*T=4DYbq*pthgC0!K?bQF$pBL% z2W*WGMcqFecg7HtV{gMVY+`@Wt{)b>hcSG>HdemQdu+SWSfKp!2{O1Q4*4&d$oQXF zHOy@PfF-pPH!L>zkc4+Wkv*iy`;w27{pi_TfI~>go$r7mm|Vc>h>YIxeRa*3N#K}? zYMs~{R@e*DY+W|AH?-E%NRMPOlhQ=LakC27Y zIjnj_1&DD*Qs96OT;Dq6BI@iwc8nx&go#-zB`k_mByj9rKL%G6D>UfHS;Q$MP?0r> zIp(hLJO19=J@uMhq3y@7B@A>?N!N|z&|Ni`jT%Xvt~le%fZYc;wzk6#xKR}^aA3DC ztgSZQzViV(d^{*WKS3}_)u8`PBmYz9VrGW_!!~Z&6wv(+2Dn4&x+p96p>0$l;Sj1)UGu(=9eY&mzn z4u>anI0+IV&bdrUL4Hf?%FdDSE-%!yyBauFmgke<_~PsgcjFj+G~)7Zl*B$OV9d2M zCU@_Uk|NyYm0qu`J%;XaMO?8U7~D5|y>h&FxUDuFjD4!@d_Gm(Z`r}a;kqMlEB&oI zaq7Y}ffrRr;UUedLf3T7Iv;-ZXl*saq?ILUKDslC!(9K~AJ*GA+x)2dY}dL@IkL|j zr;@`N^@|6s11e2sI{;aZVj2SmpIyy)ov`l6dK#0EK10D)aLK1 zyBidYh$5qwSv=gPS=vlgs&cb%y_)mwp%mhoJjk$!F9|lzPhR>9HI>!5Yy9HJTQ=|1 z)VncW5IM5Q6bEv9pEq2+dFHbA-ZPk(ED_$nY14m#0-2cq!6DLCocmwe5F~_`nQ!T_R5ZuUxmzd}%@6B7y0h}+&`S+GX#aHHJ~b3go(TK1I=()kXLE>e+aBoQw25n| zt?5kw_ik{Kw$%jST~a^upCy~<#MT>K7ioQ{|4Y(Lh)7=KL04CK8Y3vm=y(HG4mJG5 zj|RwCu@*@g;ZXmcfCnl)0uY_1E3YKL(*85hJ4*hXs z?RUl|T*4lY7FkjN7NO_j%A^xzU}vBMAvBq%epETmj%wV8XoTV~j!j6Gk(vgF=l9bj zTIvQKg27l%Wwa9HV1!uh2L5yaj}Do^%K(8-1T@6cMCbDq0_5l!1bGoxclM8K2u`mz zP(T}+Z^|1ml%x3H22%GO{w1&D%?zWCB{OXcj6ZF5e~ck5U5`AMUdOZ}XRuUuV;I`D z?+Eq?UbnYsNLQ@8b}7C-Lw$sTto@rR{6{|7KL+M#$8W_1{EuOY&}m;o`zj*|8XRKQ z|K3FQ{y|kBNf4~md2@y8L84=YDAqmwkU8zN*{O!wjvn-G&7nMxClg%_qur4qPZZ;1 z(|7=$Z?o8I^j%)%F*3zl@l|0V-U@h?ZS(g0df9ZgF7me3fnF+-zaQ{9Ak8mEjDLR4 z7V6cioOpN6ZJsTWDJ&xl>cDKO32cj8E5D9;V7juFmM)$%rRO{>+9J30_RULvz~dsF zsLYJrD61~E)Fo#~;z>yGI2addM^`=mQ~fx06a;fnWdH`z8~GX#cH*U9 zwz!L)z{$}(4_(jU!{S014~f!N6gv3ubRG7Pxdn!Fto+}f1BY=BFX;RT^}mVmKXroq zzr2;c|M6CyzarF&6ZIqu(!_hwtk{1p6jM9bpDM%+m*M@jSX6h zrPHa2PnVr0RK{=Sr$>C9$-1j_`t0}Tx|n0)?&dA33F(DpRQb0W*(JJ+l-Q-40uEuu z?*ZC%pVSQJg`Pp$6;Iv~k{Ih}3!Cf-!FESC+>jQxh^-+ilM3Z^8bPfs)>|$mXRL~A z=IP|fGmW$(n|76kRpxK*o(3vU_GRCSTa9e%;=7^zQI+s)Xt4zaYbN~lES(+7h3=JS~IOxHs>?k%Yx3tE9DV%d?iG!&wK!QbTW@pf$E zXD4=v2~7j?F$|)2?AzF1nQwcvVNM=w9k8P8wnKZPx045CVRnah7xqX(9Nd@tMHm1b z(`?4QIdmbihI7AqKi(REY=;!ykGf^)k$yPK@&FDO3n%L{lj~*zmqN#aKsJ46 zMd$3zp7vzx-^UyETS=-0dv})4_g%glRxKhK(x{>ZZEcGM13t)-Dhm+Z@1l}ax1Bmj zv6`YQO+4rr-cRWb;>U_AlNBpauUp6rLg8|2s4o_UmKF~a=GZBF!q z%EiT+nkq(;-o<(tkCcWB%02adPM|O*F)A^O^YZci$$qVb zae+i!CwO2Qe#c>w{H1@U`6NX%1Lb4`=0S=0N_&ZaAs3SB^0V*r*Z>P;1~J62!7h10 zXOQNAm9slJWMme>sJMNjOR3dh9Y#U6NpR{Z`u=G?}bH|W~D^%jSu zZtlU0yUIM2?D-R@{O3yMzsdK11HBZT4V>KVjA;eMg+y#^oRt2a(+Sf4e+*w^VE%{L zlT@IT5LGd<`BL-Zi_`H{7&#a{VAcu*j)CIW#83vDy`7hDp$Kxc20kdEyEdm*Xc}7#^+7W z?`Pld=g*TnJRaQrTetktQZr`@ul0c1T{HK3e&m|R>1tyWI!1D!>D}LgH)!*rX-5;2 z#|Cn=F zCIY;Cy!U$9yXKiK@rw|5kK%VsT?#o}au^uxZqXdvniWzir(?l+d6CDSBSnW6y@gcVb=z#=7LK}P|gH8-vd^<8st&1+I*(gqvNTXgbh2_`1FxDtfD*dVef=;h_c z{h9vqa`&3ffVF~f=yL)3fel-#sr}Q;K?<5DAHfEiA zBYDyNTf{D$rQe`b*&0RfM(l`>4n`s~6kz8X8G(dcxLDF15Zz$ff zKgB$s@t`&=X+RIhpQ87pB5*((*LdvwmWsJZjuou}qOqc1(c?1V=AP1&+ARUbsALDm z`xi+I@Zk@9BP@}UI2Y#tPnq0e=B#bLX&z!4;89R~jaA096=r*=+w0dkpyu{}!ilLmDd5CHf) z@S#jb+5tp9i$BRoGN|AS2}ZH%;8IKQ+TqDM zig;J3p)2c0cE{+J#1TS2OnJi|G1#~s7uxEsOGX!_sH~tK3ADhb{N)2iKg@;Sux+Ih zh%P(d6~QpaAMN)t=hmP6_xQtL1+!le7BEfknR?NRi(U{&u(>N}^kj&aIB+=nsu$M!`n^*OR_LI$$klR63I#O%@pF5!cpUD zgwV%IUiOWcnC!@XcU4#;&uv=Z=62b~?v6=+=d5McfAtTBkH{bMhRz?O=WEnuGbXl$ z=E96pI4Xk!QP>i?Qap!96XB}Vsz%WMXhIwVp@$C8I!J@^56wr%hgpunvWr+3E&T$B z%+mHA$=AKOIS3j&;JQxsulXIN*Q{xVZ7N~yMK8NWu{hMZnev znGX3|#}P8)bi$hJ6}C1G8V+|=A=x*V!tysy!DNxo&fG=;rU{SJMAS~*Mv=n@$67>D z8e|Y&EU}&KZ#yL|wn?JyXba`%KlAxD(+BN>(}W;ekaCJhW=Wq{Z`z2Jprr5^dVcF2 zy6(_kS0h5Rog2MXRy7!xoL&C2vNDsR4v|FC|I8a={CTX3s&rU>#Iq@;+#*1GvVUJH zA{d1_|A&(52uzEOeNNg-0ljaX)mCyF+gr(};|dIPb350g3^4I)buonnXa}sG#Ca3+ z2;FO>HV(93AQ3*J?${%H=M`}lpuhmJ#9z^X9b%(#Vd_juLccN z!q>>1N|qyKA^240_b$+O7Qp{ktX){bB%siC#I^jO{%|#BFqwus?}`%rJn8SpDR{qW zZm%x*i^JGg<;R(A@mHye2kpYIpsJG|NmnObDE&a^Ck?bsE!!_3cOF;v+)+4m{JGy( z8v6J>)%aCmYn^tgDH#XwwDHxE*C#LQB^S&S$>&Ve^{nmA2SWv3J_Y4wPQ34CY!O*p zjN1lc;G7k!UXn(6E@3^v8C29nM!tphUF&ONMkR8Z+6@#va#XZ(t6Q=mAEGEzKm~gF z#j$2xhmyv2b-YJh9PojVz`MSkT|bc?Sl1n%!Ak3vx<^jHGhM}sJ^fTOUBOBux$j(u zAE}&TYkW{DD-B`HY(TbSR%e88iAA(wLEfTS1NxMU_g$mPJESii;8?sLgYq zf@a&62_Fw(MmO@ctve#4l@dHK~SnyvQFsA)i8qo}0lu~Dg~j`x}88SZ7%=6RcO zCSlCz_?r>%-3@4&6eCNEiWeiAsf5(F+{}~Aq<35wFce5USyZsEJdN#Sk1G(;A+QJu z15&Urgr>bq-hN1a1Por+MUWdBcN~5p5sSMIH}pJ^qFr;xU`3xkW$&`vPjmjs50yiZ z5QiyIN=$zv1w%MLlhz4mIER@ifDRY06F*}t0SBMaG1^SCiHMF7pPz(=&1PO|$f;0g z({2!Gq25llh>2Y~MJQmREVdLVu~flS99vVHGBV5;u??Fewpu}JvFwL|Pd94lGg=nP zh#KRZQY^OYH#C?^S1KUa5$u)@0S%nC3Y#Y)6+xFuFGLG8IeT;7OaERT|kcsot|1)m_-W;MocU!%bK1a*qlIroEy}~e~dTNX^vl04V%+!@tRLuu|l1e zotRv>X2WEj4=vul3VQ#r)+C!l{?k&g)>&;~qn9@IS2DZI45DFWM`IR6W zKeOa>cu#|Xr}n$0P$Jvu4MNe}>n1$*qjac!XEMDK>yT1%eE+nC@Ld@lpxArb8h6OTUSMQaHp}GmRsji9_&yq0KR=^+9 zltPcpY1G?JrrXgp;S})T?1%J#r@#Gs<6No9oh(69Ija0(=?~vCRc8pu@}54Jqf^zH z^i<4xGseVR6lC@0nxDn$HSBNTkd^4VuYFd;I!I~E z2&R6i#d_w$%gW=lqb|_W-ImWZ_{^kh#P~EDX(iy{>LL*G#)N5qL{G*4yAgaf$M8B> zxOnKoy_N4k^=Z86p@{)$==pm>8n=vHLD5^PE$`l88XcuoG=~o_wkuLub5`Tt#YR!U z$cC%K={>kz3TNERq(4{@HMU(H&7ZCz^SQ6uD}`;G*c`-G4RWB+02)X&EzrSr!)gso zE8X~{9uEZ^FZFGB$p8(kV7yub>d%x#)2*zc=db8jOz_8tk8&*9aDRtPe z2O>b6t^h32I8)XaD*)m*G$K(>FDQ9oxP-E(mZXxBR)7vb%FNca*~zX|@+s62B=Zt! zP(KKff8*@JUroYE9pC4ebT$uVaXOM<>Tdxoh;5!_d<%zw8kfyJRb}5n&o@+5n^*Vn z+O%z98d$8c)PjY!kP1_zD4w28wy1BF==X9~HGXl@~y>{(15G|*-=IAHM zQ!dUiA${5(g(mPLKr^!O(f>o)J2iYN+qQA$eOo(X z-4kd3fj*u_^lUw|<>y4@N+Y*Ebij{Qr{>;Pr0-inClWKA+WB|((RRB-$VwgiD~sCr$ zau{vsSJ_3l6Aj#`9FVHLPp!%AZk9lEL)Q;2TOa2&zBvHRbZ|BgzV6>5!0xoAS;)32 z&GF08iAhmeYjX)+t&>VN3AU|mNCuCa7D3^%`$FsS&xTmtox-_~s6>RVLtq6#w@T@9 zX;G%8Fg>_B6xpar&cB(n`gkEp?E}-2hqI zjc@&kLB$a!YqfBr`l70`cAwQ`!=~jDcw{9dtV1WQwt&h|TpFKeEz^98PrREl+ZC6g z8Y&7hifOqLY$*<(Z(B*~V5phOUxhL2SPuSa(bk!4p;q2s>=5e{ftBBAN>Wo8+-Zg= zr@ON=Dx1|^0Tpg?WW27l<^*w;q&Za@XTE0e2u%oUf}c0ht7jy^yv!fbUs7Dg`{!XU zMh-0R(zh6;k6ldtM^=N!A^nv<0qU4#zh@o39V^_qgEGCHH;a5IsITIb`BIQ<`t=py zZlLqL-^hqVx&lCl22IM?$7K2$Yfy{xCXP8j^IW3BOJ}!nP~l@EST@ zWYi$=5D&BZfpifXRaZus`O9*DP;v`1diT?K)N5heKDq&^Tji0w4m!j z?0*G+@1KZ#(4q$Hq(ZSVbE_75A=Z^rV@1BEnWAgb^ymVTOODdatpCp8Fzv_3EonJl zQF>W&b}?Db?=%zoStOhSsB7O zP@A#@QRy@4)jSMk*ojK7Us2Ivv56&8NvAk$=I+}iT^)>d?U*;icwfb4PNcv9h~6F- zs7Q`Ayqz+y#5eNP@mr}m?!yaM9LAMfly>DAT?3~J9zf-e5r)q9`#g>t_D(DIWDg(q zaSpUAFr3G&JWQcWz@J|c7qoD)HBMerGV(CI|6ok!7qQU*q5OWcEsA;Z)9MlXjVOEH z+3`?gag+Lu?+2YUk@7qY7)_*V$?|fB%s%IW{bAs|=EC)5WSO2j^R+#cjh{b^YG(Zs z`L)x#wqISI!vHmUI;egsCW|bVTZN-yBgtfP-Rkh^ecvm_+L8N$RODlJbw&suT1g1{ zM4yn=fazs4$(}hD3!i4L4e#%Mh7~t1IA7TSd=4W+@Z}2D zMQa0smJuP7mRq7O=PZ+z)0UK^X;;Mvc2Ak$ zCL^oZ5ql+etPvUA(ujzv6R%oBHU&_YYoOE}&YUSZ2(tjdzb5ZN+~tIB5)BJhsni&+ zYJ7s>v6`l?&BnCZ+lH_rTx`=099@BD{;1KifgMV0-Q^*0e%I8Zcq3Vqq}EqcPc zFyM@M5NW;LxIAK?S?>f@7hCT7^Wru5Y%&ii6k(HP=qH4ApeZ!{LySKhMC~sC1GsH?;=`5jME7Nyw8bFnmTQ{IinBuKIzbaJ>XFv%9$7Cg9@Xc~FJ>CtzCX~^8Yhw5S>t+J z?u5N`=LU|&&9ovOWW^0}UGKcA*ho?S-t$i4!Gx1;n^v^A=-@DyrJrzVVf1 z-_(Yadw=6_5qLcxvh!@geowHb6I*Q8wrNmG0ctzyCNn&f7jvU&bo}Jo z8xEEup)RoW3N+(WX&Khrs}6w69N}-wfXyGP$?f3O)RT=U$Q4zwTGK=ux$YYOe8vPJ zjMIR63nVf5;dznXMoX0Xa-bIrS5@4wIF3Hp3}eUzEClgimwlkSb&29Wj*vJfcSHMC z1T%mfyAi+70aZyoe*+S8vO&8sbsx~9=U*(?6s6sYOS_|VYt8mcq~q^F)X9o%lGtv zzmQpEV=s&NEI7Yi{mJj?Jj0nXTHmTe)3w_5*>b2j(e}9+A7iW;+>Vi4r&Ab<#R>T< z(c4AknzpPz-BP>(Sv~PZXiTAOmRw-81qwPg_a>ty4^X0*nwGUS1a+)JGkp;&9F}85 z4domW(UBK+xsQ?l8CQ$@!22h(-vxb}}A8g>z$o11TCs6poIy*ag?>+urIK+XrM+BJuppv?g9%~nQ@PqX#xI%w31je61Q zgFCov%IOJ#RR^b#caHDI2W%5~uX2LD9E!)r+l2W@gphAU_#e-o)a6H1WLDji^!YoQ zX?9;9mb9EF+k?YUuCtszl-@jjROlwiqSNGXyf+9bb8fh%ykLe0A(UfqUQ!%^c$J(o z5m%z|>wnFVsLJtT8v*M|q=WYDTJq{isRh|rvCqK3JEa8ZwIt1^iQG(^h8{V~3woQ! zuxt%E_;H376rYpu4QV)gct8fAjgC0w05G?Sb2c{*&;;W4MM_-+;urjcD0Yznlne1g zsDwP9W?UKo9sUhVA|mfCgo!M7zTAkJ$7v8CkBY{|NQ3b{Xtmw4Lgs$@0KL7XJ5k2JP7U+K0vyrP5D70CFsJ8t`2Qn>*M(#}L8 z%h=T@Mf)y=7yP@&FYD;As{BnA2fY>?9CP8Lgw2?BSkVNh)Z(0`Q!QQ%w?^!P$>PC&Sm=h)m}rT{5}82mN3c5|8z zD#>j_MlqKqs`XQm6l{O>hui+fq^!P)v+{H_|0M7|R$RKQuI}D;-}*d%c7N=rt4Hs% z<7Q?hme9#JLKzY+Fl$E1+Cb-7y_J74;}^O^9$I9X1-_jV`i7#Dj0vBb97G(S4Jk+5 zlO#$H(r>*y_IW?pkf%+<_XKvDFah(oTBD+32k)!@Va0$NEHRj^^E*`3elaa$qYT<*XY%^fVVYN1C>8ZkF)674RYV`fW~n4M-~5b-qPCF+X7%oep- zFlIt!)iN@kYR4pHFjC@d6rIh?IO@{DTq!ajBt#!6nx}6!b=rR@BX1PJDrd7SbOec| zkbKQFj)WW%salWE#7)RbzSF%Zc_o}4HYF9aGj3opb;+4Qe&<{H0V%qO0ky;-js8Oo zrWHDD1hJ-R&665wGvsRct`2D0SEU{yUMGj1R6h<#Gz@giOgqwe2bcx-q28noG88q` zjTm7p-XZfr@*%)0kmpuSe~1B#v>|NYsN=D?kvom51s%d0)q5=8y(zT3(g6Ta^Ub>K zIT%`XoxH7Z-Bf99`?u5K2$z_gV}kb9f77QAoDD7HLrnizW*Ej77h1v7+6A04oAqy! zrlGo(YSP7eH+}4j0AGIF(mqhnEn`lBgg7P_l8mUq@1HP2bVh)BS5DAS3WX44TJyJ! zO{t&Bppw(&ImbSM$U_+s_O3TCgkGc?dB?{0>R`CGS2a$43zCpf(k4XI7EvUQnFsfZ z@RW{NUXX6%TfBfr@@W(Vh}a;rvtD?KEX4KVxf!{{Kd0c>cvJOe1ozZWmu8i=6dij3 zdiFz{ot?QS!@&ni%+1mRh`B7dV?_#R^@Y$?h3W&#UI_L_`38I35>x}M_q!C|q`4Ay z&B&OX)Z4y#W~KU2z*TxavuTcRdrs`P`Qf|Vyh7s$vPMAq`XAaTwTO!WLcuo6wm~TWCbaiI{oPO!ogk`q%X!ICaJhQKfcAPt zSEQ}X?Q7j9W(P%;m+DcVou7)5p~Zeuk@x!S8wOlvv9JHcUOv3u4;_T;E4?!ov`fpE)zrw1D@WHG1J3|}ILnh}E12a*nU(x={%6=@+? zK+42K;e`tMhG7*XD-z4)4Lc$KM6ma=@Jrm)r=zQ3U0znu;mj$=8$oK3v@pqU zt4Hgj?bmQ2IBYkWiLE2jzvCl=+I=B(xUyDM?X#;%-r2eVs_Y`mWglaXxJJjLCQ$eZ7&$r+>6CiI5qGJ@trh#0=H;9! zD{n)<=LW08{_odf%CbTf)8WF(qB(ejq%^ne*lF_XW53z`Y6j&&w_q%(>WW?gfn46X z-2+{MdY932=cIM6cJbaJ-fuL37<9})1ajW;z?}F3*a)4AgmvN z>JNuo&R|^E6k<2Ew@x7*rvR$O7yvEOG$LC?_qzz?-@*kAk^FZgYRxHN376`|eAVM# zNKT3XyGSICuRX^ogtAzqRnWB*VkS-ZRD==CDeRyYZps7m#pHhDU zygBR=gOedY;?FIY7tw}(oy~)iea9Y@nsjp%{?@_(>#9m9f2{Y>YP9y2NfxCea^&jP zmzcZTxH|2!Ti!Of%Udcz4=g?|doWkNF|xEy5Ud$?tZ9-8$kJ(D*=a%B2t!iDe%kQ> zQ+c?5%h@+dc{F+B@f7Bea3IiZYtAyvSzHLoEI91fDN2wp$d<109fovy{pB4>6*C7V zh?4USqnb08Ge_Fpt~U$SwwNRLy{TL0??oeG69F#VJ%9MvfUrb?p5KcdmtIm_gE6-= z<`N`&dNXx0g)WmOmEcPtYvcI3Gc}j}R-Hq<9p5MD#d3RYKR)X$mko|J>nfz%zyl+b zqMXLRTy(?H7EMgH zoE!+2HD}A22Ydv}>3WZNW+b9!d#;JQ^$s+^W5 z$sF)`nti2B`~u}Zy*2$eh4CLziT_(D;(y8)03cLQ@E{2oXh=d?SOAm`pzZ&5^nch3 z|6B3G#>V_VQW)8q;M&Nm9l0*+ILd(&ZK7t*U{cX2UQ5D-1@$5#0#)L--89|QChLx_ zX*-t#irDb+hPT}bWegD{hRms3Ly76>Oz!Tlucl}$J!p12-EqgQeN*dBJ-5HhzifZ# znV6*U;nk}(tnd(zP`Qmhl)dQiEb_G4?k^l|iP<34=dfcOqWv3hMq^MNji%<@p$s}h zG-_!!m=udVBZLd-rQ;dG{chPj{(w`D-1Wxf8Zpec8&nO0r+e^8`@;-@84cDetQlSP zf*1x2=YrGRLp!``9-pINpQB-LEt-BjtxE|B8V!DXdlOZg$>#D}Mc(`LG*`zwTe8LZ z$Df4*@L9F$%Uv$Bu2|Vrt%e9cs(n|H1%qgHdcAjmdTNEaYuP<*7}CVtLB`d+K)@x0 zib^-t@0?wt8Q|a`;_6TTLcc;jIY!+*G^K)hd4_0-eRyir+B>hAcXJc7FL=h}hN;;H zr#&x~udE>G>aO%8B;@1C{Y9mCu7`kl%{ZB^jYvmbYb7_#ymwMc+pOMXcbTpz&aHNO zn<8Z-UD)6v{&%TR{R5}b51i1=^|aT~5_6Byz#sOKTNAT_VMWRGks2n|jjthFQ~mnH~3KpKn({qAW$bq4Gl3$NJowuD5(EO>WdmY zs28S&;0n)1fkul){vv(TxeJSD!~Hc0TgR9-4;6v37f|J^^j-X{zI4-OmpsE?g3!w> zPX8uwMEu6jp=R9!zNk1O3c7^ircy)AZ#tAIZxS zU<0eg@irMNBA^hW4CAifFm#C{$D+jbls_P8r=Rj&D}N=qU4<(RLxT<@@)q@$F;#q| zU}rQ~>Qk^Se3@f?0zQdv&VG)Wk16aNfyQHUnVP9L8vPg`oy<}08>pskCDNQbWQ~p) zzD9J)G=_$}LWqcDROYx>?o!N2@5hhZ$u(?sCuXk@13Bouz^_5Be_OE^s+LWvooD>q z|0Mh~G&-l8Aex^-HHHrkFA09okxHe{77{wZ4Urg`kI_ZYaFopGgAFBxhrOi5q8o;r zR*Ml%O#9JuWZVYaL!eFjsCG43kdL$jvEi+G&N^FNyjlJ}`LCHyWn_6JO>G6$l=*s& ze%d7r60=;Wl-rDP=MDAPY=TALBTq-)t>dK?uPhHjD{hLj6{ooe; zX&eC}Kciu3*5j|&<33XMw!JT_&3a=QT2v>pXo&tDb($TZih&;M2+;FXeivvoJoJqO|Y;!oMnrAc3HLobl7m6GDO* zUVlr6B-T>^81Sfw%ecRM8$(NZw&M-ckE8SE;cF5pi$i^yZMbApIj$R3#?2JspXdRrxBa3&Cu_NQc0dFZ=Pd3uGabR7?UE~c# zPM535*l(LiSYGq$aSf@9DPy5 zI zP|VEG8l&uVK{)KdGy-fA>4V1ic%5NLdy-zQL*Gi}@f7Sq zH=S+AuF659@ng#RUuM9C5g0^g&$4ndZ}<+nTYBgEIdnQCLGdEx_EPJ(2Cp~r+RX?q z99b~F5JSn`^^AbIYTm!8I3wt4Pt&9RQq!Em4}OOt72CCAKn`gI>R91WFzZhV6AKI_ zLCAYM?AC|^H$sx33Pos8%a0$J7ua~kH!h_(zLam{^as0;%ell?Z#2SunzvZGEjm=R zGxcYfKpyy0rZ!z^jEU`NywF0OK6u7;!L?%S83)baU)6_#CfYMJK*TkPL{Tsws5B|_ z_Tiy{cn_iLd$hU7Qrjc)0GISaGDe`wR&R!w;J0aPo=@#lJT>d~v;h z5{C;-`pB#IR|OIglZ!x;neH-N737=}O(eO=6gTyl#S6@Nv|Z3EH(agtYN9vdywM%8I)#_|@CD&Y}h^JETaQn?HJZ_g_(fQ5_F_`C< z@t*L{apLYnvKQcNG(pL}NTa;C_nRe7pvQ~9{!q(C1J2K*Y{$6|Zz9{x;!?t`(f@HaX7*>94Nw!QwM*fQkL zv+M%cD31!|SsSSPW!2>ZMP_1@^+f$<{cglNDSeSGI_bBhr>~hwLNR0++w(h97(vVe zq$1VZzhrB717y1JbdUw}@B|T8@5ub+{WM=R$J~bkvMac3YlN;kf`Uc96ut)cZ^$+% zyd$XyLyFel-H3p^3ambX2aR*zVOEJU)ZXS}XNWnw@$>7ze!gSUL_Gu&zcE(UAtYu(-@V2+U$ia?}6VM9MIyfWx7IAm^s#sxski0rlScX;NsYf zlJyL;rzaG`2$befzXc+p;aF(a6t%S-LmFQ-J}pC5Y@JH?yCiaJ5^k7?X!z|j-bYBs zn%NQsW&ezy#=HH8X5W7|cFSCryP-IzX158js&GIjfHWIoEZPujTv}d7RU)j(g`BDk zk4~>=2XhxwclyfGVw|!x{M7^>{A{U7I)Oln^e{3}>XFK^!lDVa<;;*vRr1T3_ToNB7N#;)`x0FDS_t=27X$YFgY;xG-5qs7ndQWwWZ)Eg}`fJ0g@ z$~7mX^TY8-0oQlcz#8PId|qA~W~YFrO?I`;u=o~nPsD=;j8l)a4vcM>P*PCLU}2Z` zy)i4?Wm@lXd*jB=zahip-#$%%n8G+$+MP)-+zdjk8iyEfn00Je*9wd? z|6NdPeJGvOGrjhJ%uB;lq}j54I>UqeO&sac^UQf+7!T_=xt!X*B9eaXpq>~ z7Rhfbm zU3k&bm+M9CE_EyFQE2gpVYqaTU#_?=7GdfA#zc_SAwlY@`}~fM>I4G<={BlFR%DqRmfj9;Br%0!E!%kc`|9D zCo-q&=sCB%B|I+>#NRYKj8Oa(>>6gF{e$c2~ zCT0w958>2H6&58UEiGO&XKp}tNMN7;vegFVT)Ty-nZ1u96J8Z_;~Yw4aEL@d^pPgB zG?%Z$bT>n~pFzc$p7u^TGl&Xk8`@@0IfOHg@IKcPokl}i{OpLzexsHDLfRgRjDV2L zJ@3nY(0-d}4Y&I3)Sy87%YQ6m{Df+NHV+x2`Pca1Cju#Lm!>nm)opf_bjtWcO?Si( z4o3p}g5!s+<^*MQOG;aDPkNoRy#~g>cQoR5?u_p(bmCc=Ff}DK*ruxS`&&g}Xz^ryl^fA0u=dta1ii1#WK-e5ldLd)G+|==smDbyrsCTyR=!Ws_N0d{kz;CXjDjES{y1T!!BveU7{>ur9p z+$50!0Mm7Xan5d$26L|Ep_@NcfV4FgyLUJ@EUa?#LfEA%8jI5B->zH%xF)6RSLyc2CAHg{5H$75lheJL8xCi8*{^w{k#Q0^(l39}`LkiY@uAK}KT7Rz zA*gVl*Jup3DTq7n2(|#e0s|MlO&>jIvw-={=w<*L!+m5Pwm=zX_3k!ksm_T0+P2H0 z(lP7&zfsJYHv@X5Kb0JgXeFz!F+>^Xd1rENTK=c|_Zr!;yFK|$gL7WF(>e$HD(eW6 zkHV@-5(9s-&^?Rx^LsbFofwLq9 zH@D|dVFQKE3Iy|(6F4BVxlKkOg{w+i^L)p}+0(Su{dc$mgqbm&Uv4hEDY=x=9#=-_ zb9UR2E{NHT@492;hh8^aooI{Y9YX|bKq?~DPsW3lxYeEs=Lzk4KHx-EofR47DI`2f z2)Tay)8g5M@B+Re^Y36S4$^%<9@q5VNp5?r3iZ{vt|C$G3tS6-FFrclmj3)58qOo+ z#2mWwW63AwzIPdgeeWHLz%OY)R7PH`gJ3=I!QnP@H_4SCZPE7B7+cPhNnCw@O-6pr zq^*#1?7f2snHrTA9Gr_EJzB8AdFX&Wjma^ zxL-ce%oNwrR?}EskRZI=IdBs|r&xZ>x0i;CdkFz@=UqxHJA?QZNQ8k*G{$Gqk)cca z90^t0T!{TjA0yt5>~5>JFd7aYWnr7y#`hCF;5rk+^to4UgYUNkDmkW{wb`i2Y@5FH z9}i{M-GKPY%-H6|w94h}i6lrLMI z-}nNPm*DX?g?s{x+aFua_!3!->I`NHa}Xkq34p0-;ib|+vRIo9!vF`oAiueJ7UgxL_98wq^a_=V7mTJ> z5kY|@)xL_`5&^5PVZIeq$oFuafsq#$fMbv=FpV_DpTJ|li>K)G`1P%$%jFHsoy#8M zku_6A+uioURh;v6$ITt75LW^{8BuoQvu0b-Z95Ve11?CT>#p&B$bM%+thw81;K{7% z_qfI0ax5xQx+yJ1;`VpamkI1~Hq+hINDF$LlNTm{fD}rZ^IngGb^wC(`vAwDnVJ)C z395GBZPJ;GjTX0*nOjHXK=K0Eq9n6p=Jk^Az^gJjceJZB!P0Z+_NdiC17)iZL#S_OC@Ao? z>lizidOOAxxS*qmIJLN-21pU28mY&P)_)$)>-B{JG0bF3AVsXnXj3w1kVj=jdsP-w z{Vbyd*qqp-?9=tk{A@ov`iOC`K&FLetu0j;Gp0wJ^zXMD-!~jcwKFcJcFWn2nIvX%Xz^JYS@wg`L z3S|rMDZyP~|I0l#z++cGv0TEt!kiHdPxg`r_bcr)dB47?wl<@J%`S>lL87*j7s3^9qVvt~* zsaW&xN#=2f{HV`D%w5w4i~Lkh2&kBRNvII!fMYjA+Cv`!c$9!#a%#mCSwSSj<2?h~8*gWJ%0`d)+@naT#u@hu^-Ba2XX=v^E2tBvi`Px~mT1=vl@xx!n{7i*Xd4wnp2YXEY>EA@{T_D6goSY>f? zjKeKzGcRj;GO&s$A`i~7%wB*Zaz(R-u?|+*(J^`@GAQWl{*q>e)T)(-yo?tvtuol%f@VISaD+w&Gp@W1t6h(t{$y>L3h^Yf&O!$L4O}l3 z-xMm#UusD8#Uso*)sU=Ec}I~hH^fUEqh^={Xu|!(>`phligKL(7UyJadPO%Cb@*F- zfxk_e#Jb!A9g-=3k>y58iA~1No1xHt2qmY%H>?|qh-(#vkVLxt(-o1Ai{?WgCTq=? zT*1>z#Se_Zm1SRuSgrMHBM&6}TT+*o6!|bZO%3an({z;uFR(Iad_?>{^U2jzk?F{k zl#m3Mne(p--&|}gmt{}nLOoAw>c}o)e!~?1un8_GU?R~Zkx?8$XU0{`QM$_~&p@S# zsA4d_W=z>YaZ@ly>uJUMWl%v;ndGs3NCdMU-daZ!-pi%D+d%&l|3qJc&Na`{rbH&z zV%ty0ZvHt=2Gx`|@Si`J7*!q2v{}*$m5hn!_u|v7lAZ~KdMOzaD=mSMzbF{sRQ_~$ zVM(5#`}_&Ga%Hn>TeM3>`tPigdc}Is|9chqrKH17Icg5 z9G4?9j=K5A4C(}*SviUNct_G6HEdtllVdZ1VrFAec~Q6Ydwr31575d=YFELKq`QFB znuD+Ctsf_<8lHelE`UG7X|9hs0*R=*IDR&_$E7J13Gh;EVjU{B#U%wlTJd|oOG~GAH`7C}r^M|{Wgpib zXdA0S65J}~2=hfv^gY}`C+q2awablOHfENYOoA6X(w_JZy~E-Nd*EF>;YcN?Zne#V zs^tal&5|%Ukm92_#D zT6FL!my}J%%=?+2@}Nsci+}0F?#e2-=cGr)_Eb zSo8<}!^}~)HGP~+OQqR9`0_3?OS$*;hKBYyRA{Z_B>>A0GF`Q&X#jFjMSEW#4Q2iSILrKJ@Izg=hj(c(;XlC2fEV= z23uQZzqO#Ptt{RzG5CECi#GH76$Ds)%D$S}PRWW{JN@{m_cU?vb!Dxdw`2h@M?x{? z|5#wLIyYWi8h-Qc&imA2?{k0f`yr6x6`Q^B%IQ7%^=T-+*BbcrlsOqJm~%f z%Xi}f{x8Nf%YSUA{r`L3O#h>m^#6!F4#&B!X1KiaElvU$z zNzP-&X@;<1YKlBToY^wFu#lVo=i>?kYnw;t>xDcz$tw7MK&lHA5uU`Juzy6@eO)?XsmJ^t1#FM6=_T_sZ_JeFe}}JA%c-DUwBF0 z5`-lcQ_e@uAfeoREGpajb$om4`n4ULygOyz$#f=%=hntUzinW1QObhJ?B%L`F{ajT zqbl9vu+FTuRvYE&(x#D2KR0Gj8f!Fz_41gK@zUn8g1c{IdfO^4H!NmraAe%)uZ(zI zC*j(N5&;|pw69G`Oj4R#U5sSST{FQgq#NHWPyfxQwII+-JC${^?hR`to1J4reG)ji z&5FmZ3)~;q)_)Yb5z@8o?GdSRXl-VzRK_8v677AC$)GBToa5C_a`)8x9t_vpD!0t~ znV)NwOSbCFa%iOu_c0XK&#e@%uJ1szpHj=u(aU4VUmjoNcf$xx_+bUsB@j!(XGoTe zOu=r+Zc&-y5{1Qbj3sHye`3NjJ5y-7_(b8c9CQh5N$^6(lA$?SQ?y%zrqsF|Wl7Q! z#YC*SWJUfZ8MrxBQ;b9LvfQl35krinC8W;8Q3qucmjS&kYtq8)N+B;B0RIrTW+m!TfF@)1MLwfNV{NKQo6sDy6zez6=7~YVQ$hP!K4-jhPu+El5&6c3)Q)`%i!@A z%3OS{`H639_V4a)B3A zkquKnRkCGyhFF#Fr;SJTiX?fR_1Fy|iMVy%+*jtW`@F98n){2OXB6wuV5RP{a?KZ6 zx>!B1eT^d2gr`@4hY$5PT+&bGFjbspDxI^6_W<;yqzWVnjgSzLn#6DLkjqUE51gP1 z+6T;4irKKpiKwO3va7oL!{k5#-gXpcl35B`Y(Q@a{7JA+n253RJuX zHpbj3Ee^38w~_wFFNQtu=ApE`Vu-7fJ9Ju$9B43%eFF%-=ohhjjsYxy=7OGrAV5Zy zg5j#6qZC`Mh|RrB-q!sE_)CZ_SsCQ+*Q?nRTzRVszK{TEc*xlk9;BS95cp=f>T~15 zPU!O3oExbNh=wl0^x9M9__R-X@1=O^gLOhM#ZQi($?(}=5dtNK4R~`VP=)rb?@t|6 z4iD<9h|X|2n&#FP{OLhtAJ0s7Q=sB)ehJu9fO^g0DBYL~IuExCIJh2@ z(K2DMtXLaXI&U+cGI_e&>*O)aZA{^Q6@Nl}OkzgxHT<}I&^7e70I!OIf`FTgke1We zkLFi{I%;wvtXz*WTx^ncEXb3^@Dq+dMgJky?^M~OkiUq}&6~})MjiB?xN$@zD|2RU z;}BJ|f?Y+@{I&mt?Ob+cph@*tB|&8odn&AUpx~?>LE93jSBKV1=U`mSL$rW=_PSh> zRUifaN-rsMbh$W?oWrJ(LznpeRA&Yh|9C!XW04x7_@q|~Fs)dozk?mQYLL`|0_UVo zeW5RRZ6o}`wQBOtkSN?Ua3U$3L>}_?oM`Zo#4E}tj$)p4H#u8^(V7fmkLSJ!*?21( zz3%DqmXeq1#98Aj18kjWT%hMoAA*wCT~lq*3FPo+mMn1^Wr(zbM$xfIJh+rE_s`<_ zfhOXG@sxqrhFInO@sBpu{bVGUe_zk(MwHhwm{MDt*oU`GEzI}>Ip}>3<^d1=_iTjw zM_xV8_P<#xw=sGdio09cy=(7mqgQGXRoo+5G$&94SKQ;SQqLDXT<+q zO()JX>o!N%c@v;trz8+Oya)!+ThLfLQZlLlX~1=(0cxk`e)=3N9zg3Iw|2kF`S=2} zrKF+h{zZ5Pl+F)4E;ov%CmTey59h5uSr{=I$P1k$Fq?h?`3A~#f%TVD&n+Z3S4?T{ zN2qyv`i~yN=VsPD?;%f;%)Ujna_=qAYPY1H-m9pHlxhnt4VDPUO?0#bW1JMMobq@< zB$4FnuQ#Cdn2o1EH5v~+KZb%TyLS9Q*E>B*oX}b|pKfG(g{{k2-=8gW^iOzeeO?GO z?js%Uz@cYmfo~p|16Xd@zfRq2UkME4)p@X{8yHvmC;t!%nqwsRI75{QQSldnY$&5YTG1JckoTtsBTZ^tAO5GKC0(}xwi)Y{a!-a1Utr5FlXtXr!QA_kA@CFnR)2Lf3${J5JFg!Sx8$$OKQ%3&5 zEe9qi`?yg(#0fn_oRIXi0%0Zk8osX7*o@gRS;g5-Y&hIiT|b`oXShKoJ4Pj2+pn~- zqVV}21fCeuY#50QL(lqE>_p_Ps`i5oN(0`7#CZs>6O$iRc67bVAlLUH{{++{vhgPJ ztEg~zF1XPw!0gxWNivDyn?T`=gkjTj(g{@Irnti87e>QdHK{1IZus>%0*Nt^b_*ot zo!0t#qljKsr}G==KHBitej~*750=RE6S0@T zX#Fr_6zTh1D9~s^AQiP`_2@VsAHck5mmZ{O8-WOB;<}z!$6{qc%ggAdp9dnUir;c- z*H;VYuH>5c5_{F{@#2Qk?5H=GAC6z=f)JdXJj^v?rB0UcW=IM4UEB}i%?YwoZ=aoY z05Q-|VaqvZU9x|Ve@k(-IEoM>t*zT>hNs6sU2{QyOy2rEzAbb-XOUQU-|vNrhr?GD zRpSm#-zjNc_j`FX-+^L(37|FIRb%Jau3QX`;(vkT917JmV>rz!b(F0S(!wq*--lfFKV=PCXoIaqx|}l7=A^lxrLzPpj~^2d zIC`jv3kj*H1Tob0jlL0mtOFcI_&@-NK|w71+mpwvlay-RFq3zl#^xWb-UB{7_hbHb zcck!%zmEBIxiCQPpK=Ms>tQ8XItqNcFywW-Z_s(1OQlH6fw3G1AF7-7Os_@bVdkd{w{ z95i@?t0&ErQyBMlY@YtZ$Z#w!2KJhbxdM$ng;4g{Z2?wmo@xjR1No+59WhuNcwHQ& zwqITOqgIVc7ly%#sUJgd=9sv@Jvk*VIfhtOylgQ2*C<=5+l|1KJO%Gur6(%8-tj$f zyO?*_0Gp`5kcfrghq0DW#1`7HiO5FhZMnYTy|+4Sp8lhCh7Q5VY7y1fREuXKc1P)% zvokU_?quJk*GEXau!b^}ZpxsUVs=Inh^qeTKKkr!vaugxYR_S(G_%A}}*r zFxx|4wV5@Jrkd9L=nm7Ga{KI}!{sqY=@h|<=W*fw@RSyNyB!oTq<+ce{f0s*6^~0d zwbRcJl(KyK*sf6r|Kt?u;{sHzDCGX#Vf~LE=uI#J=_RwZv3fLP^c13~JNl;416Ay@ z=xEq@@-YKR`+3I}Aqbp)EjwE!eW~_K;Cn<5t3R4U#8QbaFa?OqHNGAuYkZkiJ=6V505$Hd<(-9&8vhW|Z@B+ULSL<<1 zwA(s*kjviyhzcEWg}HX;1P1i6>MW|Ng4}Hm=NIpUFPvbNPfy^ooiTbPWP}@oCu%V)25r+ zR_U;^2SF*`PD=Q-CnuP4YgRy45tGC6x+D}gY^%vThgg%5xGfKcPtm^hq#z^na{7PP z_MGpd2#;>`VFu|9t3>LIltxL{7(Bb;*GoZpj*PO_7~<9;?eV+%ZyTUI#iz{6vob+%n_hI8~!lhhAwX6{`VY> z5de&^TnZb-FXlp_L|O&p?q6ecDa0X&j!pPz8uZdKXC zUOOH_^wx{y4GvyHDd{>NEhkwLLq>qAAT#>3ba`fo{+dYgBM~?aP)wp~>hIF$>EXrF zIV@+@ryz~iF)o}31ug{(0--t>#Cs5h^@OScMtbh`s};4RO>uVAk^+O!T1`nk)+LZ0 zQcK@6qZ3$9_e0*_(oa0!us6)H-@i`CL=UFqElDt#1gAbzIWo7w3|i?!!ECKF;^Zh8 z1_ziv9T75ecr?5Y!1_t{)4I81mpsm-h1+5#Co7e;3(g!zL}3ynZQe{K^sp#Ur)g6P&HJ-g>u;U9^lprk`WVLZNPp!xnj#= z~2thPmsvoPsSYJHtY*UNtaK9WzQja>RbpX@7! z%QI+J#~2J4&T0G^u=AHAXorU<$}$zC3T)Z$)p%i8w&fsE8DFowYlYo_^Ok087T6 ze@bX7`<9F5>@fYXgYDDnc%a=bZJjV;LyRh5WH%nSceq#c+oC7Zb1g&p;7cQE?xv>u zO8ndVJF*VvL@(%zjC_G^e1RU924q*+$)oKZSi`h%M37#M=u^?)GYJ=>|$v$CP z>fw8QQx#sua3GK}N_9f1{)JY}j^u)zC@Gp2)2%;5Uh*m=@=u|9|ENDly|W`Gz0~#f z`ReY)*VSF|wH^1S-^raGn2|!UnNsmzLp!WG;_7#oR8A^-GNpg8B$BpfjDBK9Q1RQR ziIaqZjz!0<`rZ8$Kb~g2#oM;F$!^{8NOnDy2g)6qOL>LSQ&v`U;FiQpE;Q8at7zQv zlzkc^3HY`@GI0(IGY+a}z$zFcmpt9`EbBFjQ)Zt5gUkT64wfN_c~hlNx;1J^oJ)vJ z=!kkF${qG>O-7^^U`Q;R@PN{exl78#`?eB5y)kosmq>t!JaTYwPi9N6r#qf*QI0UI z?sOZv3)vVtGBK|0BET}!-s|t7Y+jmd?4HU^3Um3Qty?LzRKBXIjXxbuc9yh&+Lr7x z*!^(+Hw@M(=ZN-u4qOY;pW&LdT~kx-HsjJd!g2K2x#hNkW8&@eUS8q3A}hlE2hU?z zN`qtI6&(S|hLTCX&Zam;mHt*efx#8X1So4`Q!aKJNM8x=BH;Pppqj>w=>lB9_ zzCEv(&%n*;ChEjRB)34Y3UMH6wUk1!_pxY$5lCJ2sV+4VHF$anb+7!MND{O-gG_R<@HZOW zU3YwN5`FE;YIHhkO3K^E5$ea)JXrGB0W7Ts79Wya-I88Y_m;9m&OCS-U5&O%nUA?Y zpO;nY8!k&7`e*mB{j?}a`2-3IYk*dp3okJ8F*orNRrcAix|+7_K4U>_6qf>sM}jDn z=25sP{2EiqcAH&BksDk9KZZ4xJXhAH$xc?brpa_Rw{lKfyNf_JH8b?f8L_YM$HWy) z#-7L8iXILx8ALNLl|FQFDgU8)>22A@c0s&^y7nDDt}+_Qr@K{c^Z2 zVY2cjsV?f!HnL`S|PR1@oXtTwXt z=AQ>ZKmOvtP_B0Yfhnz{P?+?`!u>EAzSsPC^xc`$q!35`+{Yu4{#L%EEpcg2&>&@; z^}XL)oJiTDi=7HKR#tu_<00%BAT$pelQiS=^HHYaKaJ<1&HseVX#eSHyF-Jxbql(ID@PtVB6K%$4GS6Nz8PhoHJ*3XDCJMiYD zirDY99a0(O{W%wJ5CA>~dVk5$eOX(hS0n7iX2m8}KV4zL|8?$;`StKhN^gf|Ya!#I#q%zTUMfx?7*( zfIcYd?1E@#+kKQT>KW&%<7v>vbQEG8m`>%I(XmQJby+379i{ZBjJ(9u6vwOX6M!X` z{!2+ekSNC?fp~~z$j3w(?H3^n0oog?6BK`e7c-9y3cr1GOoe5ju>S zWXg5UuPw41$BXp%yocEoQxqG$d`2*=4AZ{rh{oy~OiXeKO%WE7nw-zCtGa=s$>e7q zdHr`)2#n-wV;Nr8v20jg9AlZ-Aaqg;>-xE|J(Vd;Amp>#l-}V-br))Q@Qqg;IX{sS z9ZMP@Vk~5Y)nseC=r?o!SU$m<2f1~A_?E%@cc{Aeg6#Www6Rb64c$Ak>UY#lVlTjMzImH<7Nqm6a*Y8nD7Muie z8PyYIP_vmuO#vy>+Kif`(lA-UCapg(T>g^4Nw3v`dM)e9s!+_LGSP%NtKKKhTei|v z)Dk_{d+f~prtTh^(RQ4wHGo;$hVCOqke=%cQpkdkeSQL$4$G;VZd^TDz25)~!s%v9 z?jTc*xId4bC-;T3cq~L&y`{VOHxCgiHD6-Lk7oppPavzRJeBTp`QYZGo+C}MB$gM$ zW&Gv$&xnqRD^bXiHrk2_AVp7fqRByTdG>p#J{V~IdZ!s9&~QrE%uFQsoxzurTfwkz z{p&1hz9PajQ)m4qA;#lAB8ZvTUB^pG4ZzFaUkLf^h)IcJDD zwZUqr)K@B;Hvz^ZP1{JV*d(dI(198N?o{Xgd`BHIaTc2=@ZR&T86hVU^EtXDeHdWG zKYR1{g^_R8^wg!9x;wYw&&RUDUi)AE)0>3A;YA~yusw}iNnV4_baQKi$$>3Xe?LaKMfMg44)xTVMnL3mvX)9sriDM># z$h$(`2p4w#Za*vUSvWJuEXV197A2e`FChwfL>f!yBmWxa9)VMvA#1hglyG0+W=V$jH{&Agn42jkD@g~KH zk!{#O#h3S3{f!+@hF%F|NeBe3pGe=+z`vO-mcciq?1V{%SGeBjzQxH6qOE&mn!7c* znP3uTDv>S_Q65eY3AsZ?hRPf6={*(NM~L({H%3K~Jt>)#br#f9LTeg* zLDZk9G`co2afKu9$`jWNhX$JWBYs7kfM2DUrvZH1=s zM(+wQoqQ*L2^5`~ga0>@`yVEj|Ct#xbN#o zVHf_}h5u+`|8H3_JL~@^t=EFqMAK-lE;*%Vg_52t)6-nqiHh1wla*Bs$sZ=9rz~WL zf%#c@(LqUB}%>zV32( z;fJmC?zn0@{&*JnHlQn*oT7>pHNI>!lo~7vxRIitwnxSVm1{YQdfH<&9gD;xyF*bj zBj=VB({bS)SN7_g@1(%~^-l=a#Ia3^E3TB}VdKn}jDYexE$)D!dek}Ol)V{GYR)_* zq&^=)5k^{yuS8I|OW)MZaBwXj5j42pM8qVST*1*P^NavF6Ad2+52YgOVvpIZ^YpEH z+%Cx4ueZH6A|#_$QBBYz-}(z|DF~XnCIZZvLzRu3ShtCtlGJeDOKs3=X`awPO;=XY zHHMm#o0y(?*eb}{O42fhnuwTNR?JTV(hd$L0vbkjC=?Pxtio6%NYy3XlR<4N5-MKJ zGprgGCLUUui>E@BNl55#!s_biDJsSAFt|cQ1VV0W?qpBg}UXy6x>63UqMerm$J4+UTgkG`K0sPodiT2dhZNO>e=8jq>h#T zB5e$ZwVX0Db~QIQrO!lUCcZvJ*6xj#U7s%8PaIglBI%ugX~~M6O6?*YH}C^nb%J3> zss7fwt?m%gHN&nezEO_18y*`bhZ2&Db-Z$rC37kpOtTd;C)>_VNB|0q3xE;7LS@}j zSe26wlDbSy6ytZ(SGsBi-Mq$cCa1DjJ?y)5>5WR$2-MxW@(n|IYA6ZN@}c|;#5gY9 zO_UaAL4Y9F>mX@tT5*gy7e9Co;vui07W&Qm1ghP4@r%RBrt!MHgha6KpnhL``tLh0 z@NUk$42hHx2V#KAF~!XyD1C3NvErpl7@=%jfnh_PKgSDFVc+YhEbz=TfT{_LGW^uw z-};>i$BQzP%TiDso?9SH2E+B*Yxl1n*lndEV%um5$5qt0p!iN{!7s>{Pmoa^K;xM? zbGF#Jxu(zB5!op6YQJEu8Szjl5+I;pI{sF&1$`Hq3D0$Ql|-+kgy9e%*nM0sn69CI zL0i*k$S=omqWcs8UV6L@GGn5{!={acK3WC;ybw}H5LoJFyH6BuzxLa9#tNeniD0Ks zr%%qd^JV;^5X_cAx&Rax9W%U#+1m-Z=iPwn;aVKs)D;@rH#KPc(d*X0e4xv+;wl?Q z$cIdlKDeRmGR5s!B&d*jAfb~Dp6r~fazsg3FZ7@+sAVpJ^XsDDGx1Kon^DZ&)7X03A+RTaFZCIZ32jq`e zcwjA(sUbY80~v;CbJTJbJDp*)p&~Y17FckGgfZ)bN{XG(deTFCl~#_$;$Kk%jC&|? z_Z%TZ$fy#Ss^%1nG;+J;p;9XUp;9m}^~rD7nX^v-R(edhEl{T&D@qi-f1Tow_Xu~ zxNs)S_@yO|I~uEDbkd{A>Y^%}^l9Td^dOLx_yQI9@Ruh(VI>mpX10Hp;+C`JB)}Z0 zV4|Uj+X2)97#3X-)MUk#;cBts1QRAE6E=h4t%oHyoxk#dKsM%1fHptRls|0?T9jdD zj#aP~yuF7Y7sDuraLGj;iVDnC5}ND!C^idC9eo2j@AJTe`51p~)jJ5Se?pX1Q4tTS zl6pP8jSG1TwV%|g4+hVP(Frtx{De)^Z1wP@4o%$s)VZ(Qw9)NiImr!S<%bomZ17mP zf%?t9PJ>i8XlHDP1y&ESg~k;iaF%holiq z?eVW32+7t8SbQTMp`bd z8@fdk$I7gyk&)8hC4*sI?|;`hX>Lo7Zp3QCk*Bu%dVQhUErhV4#vyk`@lYpv6+j-| z<8Lw?f7xYZ1rxb0Um0(LV2Ja9Y58_nbE;KHth4!SpybK=yQL|Z8KF7IF5os^U=#r- z_W`abYuYMVe^e4?e&cbgEe`Vws%*K40P4(QEUth*a=BJ=x=O3%UhBT&GExq$^d0 zhCM8w-F!SRz4iUDjJr+K*Lk+lCx7K}ei^K=YVc)H&3SyJ-83*; zQ`FnDniEpW-Z)4vTn?+;%?KM!DhfCQ(h}6UhK;QKZF)C;jYyb;za3A>Nv$&4P_NSI zES-ODq$%s$kG@}dF7ao+{xL!uwQ<>n6l((bNFa(fNUpI0meY;{6E%97(h`~QDO?|E zV>myDeiM25OLO(KbaHpB8Wv2<7n@OMekIPKOTojVr~bx6z^&1YJ(Anaa7k2|T>?nV zExkX_buRIadO=VIfu>R6!A*KC7h2=uW=`C`2~Yw)y0n><_OzXUdIB@UbOJ4ePh*V5J!*214_bhopCZIjXqz+fOi3FBsps`ny#wVc9$CeuFF0s!Hd2)&D zbQmUJX2py@d0JO}!0A_EC`$+sfY7jmbF3~H9hrMP+Y@H#vO=2JW|Ijv#w&SatI{9( z3%VfkEZIYJL2`7Q!6+AF)93A(`bgb!f+r%vT4KUZCqQY%6Hao^;5u89kr*NT)L%5% zD=J@2xSS;}pY11yEZ^Nx2lB567qI#p!f$)9mGRtTa0CY2Bi}#3|Y7)K^yqvGI>G8@S-g?rkc z2gcIzOxF1>w%L*jdSq;#NqC5Ip5~5HO7B`R`~u+=C)}1B0bRDCge%oLLG`PI?xt`@ zORiSveq7Lx!c8LcZlBaZ$GFvlAiB-Kc{Yj90 zPsVDw^MC*g)=RH!tz`VBrb#dd#Kwp#(E|D#6HTLT|FT&xz|b(J;~*8Hu6U5BHRrBj%tUVu_@vgY=_ZVA(Eehtuf4?N-xx@jna|KZB+H&^TI@5(Bv;aE+D{eet)~OeAGTi#)7e~OBA^;5>6#kKK##Gi< z*hos9Nk^>~z!)CxOPq%7#bN9veowME%$(IcQqpYvXgzigx-0so8_g)TbRf7BSA&irvBm5Hrf48oVI0~USxZqLFswy$=5lnFHU zH_(z}U8bl<}(Br2Qi8 zgf0ZV6^1_|J0d;#c>=R6C;at@K_BNPqmzO%4o?1FlRH2TZlPhfCldoX5l4+Uc!dBL z6A6>$Z450Lx%lUS4b9nOH6CWBEb%%_pA0`c$LqD1Q*LO^_Y01wuP4({y}h+D(^q# zsG|Hu|MgB!Ys{d?ZSOl^m(SySoxb*{)~?Q&x*yG)F*xAuiIQ8%DS$^4sJ}VZ+~R;x zzFQ$OH?LMQk_5=2(v?pTr0x_eBIf!{eT$(N99785osu|Am&x^Wr~&$n+Vj;)NyvaO@45bXlF+o^EqPE5suHBHnUwQUaIbrrEFTJ zDhxHnX-N$qR?l2r^=PUO@BJ8q*-Vsj8H>7aU`LJ($dwku&G|dJbVN+=v+@xQVrYZ> z_`DeYoLajFCi{~m!I{Sm3$AT^&u;kPAmDLKYH(>UvTk)jC=&8=#Jt~tQ`X?sPoGRj z(UkVkj6;wfa553z1g?&Jo zo=mJ}M%g;55gh#zlE%$>&`quqd?tOIAMt6;-}m;K`zyMeHX2litY$Mo)hEmstsn39 zR(tK(SIZ*ec`J1AGbTgU@p6_8{bd?pR)s%^)x{sv?Wm9#(nxi?QTV$%OYR~l^w^M+ z^GmMv=C$rwBSARJOV5Ob^=a*wH`voRVVd2l)4D^3#HPSkei>0Ui++z?MXriP=!l&$ zX33`I%--*z)0KxdooWWV2Zoj((One$U4<9@<_7y>x-)|PNh~;*)6D|sO+Uc2 zV`t;(d4hy-Uww%v=j2|Av_1J!qIsOHym8-UPTdcAF+?dsIo@FX(g!e1z5I=N>n%JI zi9^1}HHv{`q(RWjYm-SrElV zpiWo^)uE20n15WMjoNzpM$5woowL}5=aG^lE>rA}W1y)a=6r7s*-k&ArmM1p>FWJ>c8l@sw%$YNbR-X;KfttnvSTy$i`Y;yqJVpNd zQAy@wMW1fWXxbHbFYl1C{+p61fhHDaOlQQt9~Ft9vzoe|I@1B(YOJ$ssF3Tvp(;A1 z8dWJrWU*?XTvtmSW9^QcUCP1s6=*5JHe!iOZEA#1p@hB;g^CnIJhw?3h3Vdx?|YC> z8!V)J>-vlY{**qlH`m6c^YVh{TTneJOo!O_$}FV+;Av$g-z=ton_d@u_JH`Me)gic8 zNK%9@xhIF=lf_G5kz^*QuK7R~W9abg6Zi+3KmnP@HJ4AJdQAl^ae5CkZ-KG% zgpZbi8Q;}-@muG|HCXmBp$6=%fnjbGJEP)l-CBAsE(U5HmR|LtAz}>54dspc!rL6p zNX(oz80v;^sQZ}O_VDJ*#|co!SKjRx=L|QP3F2mm5nZ_L)sJhq4;-v8L#%H+C|YC~lnP zR&qkpdH4B+(EJ@NbZ{4k&xfvZ(}>37hMierq?)Ni5Q`9G>YWT2;}$?<`yzRfZzI_N zvC4iFdxJ-#E~o3=&D`g|#5%#>SL;Ox`r)Q0F&~nXA*1m`Q+l&|IcuK+bX>)`wVjV{ zXzHRXuC3Z7=*Y{b*F*r1a6K!^6?&XBYYfRETR*1rtQ2{$)Hf*-?M5ZpSo!z%xr%Ic z4f;aHHrhhEzoIOt<@^{KO&wUrx#10VoD*_smQTQGGC4(W)bcIM!pZo8^Tq=WF;X_@!WD;HN*w$kVosm0~Iy`9@%;?1*v z8TS2bTO+$qcFbqhH#duKH!BIPPWWjqyVpBdXcxwp6ZycC()3>3Q`+^ii~o7lf6q|k zQ4fz2pd$ZbjT`*+g1{Vha~95e@meaHrkar4olVCe_Irp|HEPDR*pn-?MRT5ndT%Jv z6y!EUwNnnRTkyPa;Bl@pdMr%!YOaK&Xku;H1lD#Cj&)QX+L>1|`q1=+8UBhdt^OoQ zS#?|;4Z9-RBLktZl9qwuo7u+9VQUuC=TDbs<>J=HEN(YHvuH~ey!Pzz&{;gu6ahiU zlZOeSQ`1Exm4}7O&Gj>cf4sd*@6*fiw;2-i=rsHBp>2i5xl7dey@w;JZ*SGeaXbe{ zbo@Ov958mc0I0T9mVq@&?_T=Jxen=-f?un}+&a-%6C^#Uae;ts+0%0(lyqMp}3A(q<`{P3|X*~$5d`rW# z3yRZ&SOEofX=+yN`RX3&ol}Nyq+L)cny%FEK(Xxl{^Xt$&Iv+iLk0pjYs|vz6HK1F zfr>Z`FpC`PvqZ0}LX4e>^eRk7ak)n#rVI9mL17$ls~2p_d6CJK5-Q6caxrzv7lMDl zjTp3jLnoFLEFZ5_l{Mk(lep~JF)@l4xu6FAZLMwlRjcC)VZv>Yp`x=~wDC&?69+jL z>x8DV%kh1qxS@j+3iZ>}>{T4qxxH%+`W9EnSpsPQiUu(>xP+s8{(){42C`O@3^P31 z-3**;RI##hCEugER5N#NWJLtFS|1D@*6l7Ana^NiUL{c-5JN4@meZ_Gs6Vb@(dMa!!G&6itqB2*{2q^^zRPSups6s(u+p##K9oZLpF3O*?WWrZ8-RppgQ`n%>sO3?N?beWol&K<> z3uI5D7yMY!4&mxef5z-e3hBMR@Uq<+{hD+JeI;ET zfAhNSVWjWh9YOMos^}M#$INwYBlE4M(U)tNYjB6ndv@Svgs%{)C68ahK=l%bJjkfZ z!!jc@u`ateZqJ(75=~uIsEUf{s6$=<`(os@&xAuAVgH1lrfo}Bta=x?*H=h-O>G#@ z%VN)=;h>xgW58j+H^^$u!1#Z|G5=w&{hxsk3-kXEd>CK;bl!e<`=c6s_y?wcT zS0B?66Wt6Fh>{jU2Mv;xQ;GDGQiqThf{2nhh}cl?Y+1cR?OVOWa_MTR;xi1P>-$^G z!8@;mf98|LD8tlz+I`x4+H-~rm40L*df?DGyapysY`8iO7FsSw51%&rM&}n!E*fgi z30F%F_E_i7Emjd1ET;6t2NUtzj9vW;HwXRbmK6hQ3I1CGu9w?UA;fYGPQ0tbKGSW7 z@!3R?{Vs{*0c4j>gGV2hK5try+4zA&xI?)8*&G2UgTv|F>bH?cjF7=g1U&*29Gd8q zF^({DX_9?oG8Kv`FO%iMRu4~OQ;!f?X1no4D?dL|0TC38bV|>Xwu81alz7^)EJ6P< z`!>^E(y^!=zBwnV`IFHVG8+o1pQe#fvl)Cao{glO?1T4HYoj}>7RO|$qud=LBta(q zq)tXjy|YtEq*Pk^D7jeaXbgWirBJYtsZxsu$;4$wzXxYCW(}<@BS@*zXlW9~LZs8| zp`cP;Mux^oD~O*%hNVTw{QOX?EXzoR$)of5JnLzxe3W&KUk(_ZBVC;*?`?{b`C49I zYdkq-9hUCIWVYZnnWfUGz0EZw%V;^7#ko(nJ&y7wj}rbpf$~@a_NTB1v1J{f4xzXh z97VydcXQG?NubV*<&mywugfv_mt-CRlu-)Ml%ntjA&amn5jgT)!gDDhIAXB{|Iku7 z^rGlEttHmY@+>ET6P~Bsp6p%gY_v-{XHCGnz~_md%lp46byxG(&pQra9<$2c|Fx{xU)1QZt8}^!PI#`JCtRTpT$74dS2+71$a*OfqA+-zKGtD1z_As9rU5UkJ@)3a$L2hM)R-N zZ`M_%|3KsXP{jBPTYwaE^pnR}wu>ue$(%J1ee<+~4#lr}FsR9Z?hCTO)c}k|Nc6#o zD;vX3T1!91VxKELil#$>9!rkJ=509o%Pr_>^ku&Y5%<;w5z)WzubAO{rt2_M%g3!- zFU#!l&-!mDhwpnjKw_oCPnl{mOxOH{^9S3WOaSn*cUr;$dh`pr1OGYOYB3p}){w|S z^k7ex_yr09*^_kYS8Pke=hX?EX|V1nnZqnjllW%dvF|}5>wabt_SeM|)4ePAAB;x9 zw1xoW7zhB!bI1K4V9Dno7@bZx%zF1R%xJ;o0O+-`Vtiq?23$*4QodZm=p8?5$7}Q z4T@k>Qj#WP(vN2SN4`H7vRef{b%)axJUMH1R2iz`VpF9}Oe%^WAD5OM8)sTcC9WMI zpKtJW9m7X1`d376tgcFtSAx5J zV*R)`Lcha?q%Q#u4c)GIPU;Nk&IOfgdpBfok(5CIV)VP5xf5DrkX4bW^w`QA@(6Xa z*;3=;b~!S;gD~oS!R55$GqPXClJoSs|0vu{zemdNqMC#1Q%WBkUoBmz7TeUPi=Ys? zVe|URLSyrSFC2UAP=vgy2$=b5TK64Tf&4L~wxi}&CaHGMG9dz(2Hp4|Z|MKF zktIW^&slG>s7A`MSMa}9*gvYt{B~tmOnHO*?^}y^@!EtJ)S~(058O1k1riq>Y zH~GHnJXu^f^Z6b>NDy!f_0#cLjQ};)BJ$t9v>lkd4Net#VD_KTRTtkxq~HkH~Bm*iFCn8dn#U%t!I8J;j$TEKpevvsp9!)4xE9aTL{C#f!0) zrJbqXS`QBG;J4vZ2ulxuT##457Vz#P#W@(puUfyTBd>8*AD+nN<^AsRc|K;W*qJ#4URu*6Qca^RlHpB&=j4G5gGbS{VrMver=oeI9zz| zZppdecpHrn^v?U2zR854^IewhIe4ZbLnG45pvEIWq#NT)I;DfIA3^M8Nk8 zUh*@zsLGbG_fAqPN>1ECVJPr^W6LiUbo&UQnZ}ih47{#x%O-a8^ll6Io;-Ekpjr6; z0!ogKMrcG3zpjxkt;wpnO|OTPA$LT59~h}@wjq$3R_A@5@cKmG3z=5fd~k#@MgfXsJ}~uldy-YsZg^K6><*B?!FuPB~`4<3|)54 zkaEc&-g&`y(TI`jb!ROH>DQ0Slh;Apa`V6<8n&$}e4uYwp4$6+ zbUg5v{|VJ1MRp<7D4kFr8OM09xkuD2UInu}E2HNXgDa)E%@)}Gx;FSMxhLQaYH$FJ zHjGb0LMyv4B$omem%+ZZglY9^qqlds(dgVVnG{AQcqD%^HUI#Z{>J?RQY9j~ND-yZwm1-0xr;!)(z(FRpfT}*NS{pyTd zjvIm_h0p|o2@_2eu^S;M3B^5BdutdkQ>w-+xnWK)zYyKo>j#GT;U0CX49>kRA}**E zXD=N6ex4A~pg%gj^Jk3c<~OQwOA;y@yv{_yyjP}J#}j)sV;q{F9a>j33vT?7D+!*3 zvcD7(OfxR4r4b_0cTiLpL_ff#CFkiU$y5jRdBqK9Hpfm8GlZ^`l!^(@C?j!H^#)5=B2k7fH*!)WC$|)6xF1K1I{_}E0=zP)xGd5`wJ@p9XL&f~l_gjBgc$ZdUJ4D_#H z-aLFPVV)3uiB-xNkT*41^C)p89#q zt8qa0g2Vr}58z-p-6XNyXh0I_W=Bvd!$0?w;fqj5+^`E0%S!%TEwE=`24s_Jmw zJraH)2@mYl9`efhmHF*D-Pi4=V2vtgnJ4HJO~^FMUs6)IfB2*v43wcYM26C)sl0Z> zl!a9gJij6X5_PcOZSr!RjG9_-*w`2O5_)Xqnwh<3Q`uLtd}`m5jp{N1M)B35=2FxEh91t^&%E;S4$jLP>8_MA$V z;GBPw6V!ur2jqpUS7Zk;I{bj5rPl7LjjpXOKD17JUV!WSbc(sX<>`-kE+*odn{$I3 z@HZlc9wNC7?Uh!U8%qGP<&b(yVy#G*S6o%HorIb4^u7^03jMCBgNUG!ZO{(EB(Mvf ztJ}>4I@Lg8ybD{p0S28g^nuhasgtYO4bsWo-wlc<7ysDZ`jyTJ+%;=Pj}FQ{iW@;r zQLU+`U{TKpg!dz8C6Z7g9WW!NvpS_(jpuqA^(U}nVNWtX*(s{ErvU`9+S>gO-}1)K z^n6o{1HwGujO&n56~S-+ie09mE>h{fT&dE5bL&ugoxEh3yWoSD?tSstsO6GMBeg|; z0JcX=`0+5Hr=fc-Lt#gGFXcOY>taG0GR}R63&H+plz`ve#uj>ksMI~HZDF_Mz+zZN%k-?6eRc|u{`)AM(qSJTz2L$9MNVUrn z5~Ea~>yRAND(Uez;_vP9I$a;^ty5H$yA?DQb|C^%VQa09v7<2GGHLykETn9-c7U8$ z2tPQT#RLMIZdrdY-0KNm_Z^ucdMIhJq#E+f!TQX}?Y8$QJmQAT%QlJd&HJjF3U2p@jkNbW?cJKzwsaIV(~I<>5sJamG|IoH ze?iqC2m7~eeaCvjDJ)$U4l4?`HsN4q(UMU18`D&~;t>Q2qR#p>HFXq?r~;i`Y1=)c z4Jdik<%9_=Q69u6zSbPH5m=M7wO~y9rI$&M%j;3yYANl~sfk!%lIEU!#sCj~H0l+y_e$6|i9#L*joOl2x!Ba}zTmcR7 zGPpQIAN}fSkd9*^gbR+m+ZJzE4Z?J9pj~Yk*psOn0Ji5#17epcJ5!9fVfk-CYOO^) zF?%_MsX(R?5ahzp?I(}h9&l-8P-54yX+74hR;K)-^`i3!-?*v}OhEmMfh!WV$)hjzS&vpu_Igmn!%`Tn{A zCg1&LK{&5DHjCsUny(>C*H1Tlx!4JQjIG+wOo>HjPt$)b*tPFu3F!h-T;XqkM9h&m z@4Rjp&JE+ZuI`G`CFN*M4VUzuuK<;;w@Y$SLcsh*c~jGGHTykC_}c*)`m0b_UZ3#H z)6;>22iI=g_~wMM2d)BZBKev)L81#+fqZ3EQWjXr1?Tjh2)k*O06aTRw6*&aRwo-H z_JhRv@|7cM_gElhY>25M`aoZg^U`mhkL+VBs;`01$KQIGurs^p5}vYP!J>T7?}w4| zA*49WbX;y`X3|bSLjXJOT3qY?4VC55|9WLLZC3~BU+cPmzh5oYKCjzS%A!_A-Rmin z!QiPf-51twHx^#*>DMUKPbs^@gRjwfe9nJ$o)5?W>iUP_gnNvUU}R!K{qC(OFkNa za;9jfEcCWD7;=(7ox=Xc+**@SDQ0w);1cjp^-5eyVKY>;FuGt>NGel2hxF45o^(r+ zJh6W{!l0m%O%1U+0Y(QtHPduFdO}VL?3CqtE-tJ-t>@1Ad{Z5gg=I+GwtRs%rqxm) zTtgp?|I(Z}6S}Y-PKUc7tP$^bJ3R*vxk8-s(S>2UlILkh8g2MgzHP9%B?I5Khx<2j z13q=aO}IT`ZB6(mWRkQhnWge`Oj1qwCF5oPRzm=Sh>4Y+-cd7JvxmF0E%I>YV0*}==8|cxdCr+Etlm{z6BN} z=h~^G$M=L2!Q8l?R}G(KbjtSyIv)EU=A#}X9hf?wjiFG4h@KPvtDq$=1ygQ*3L_Up zUib1M??!|(p)eIv1eY|l=U_xvQRIxWv|Hq@xsL6Jb5Cz5<>W+e^h!H>UXSin!43(Q z^e|2d!GV@V6B~MBvT+Ahc4zFEFeh!SFr0;PchtSo|1sPD{u_j9%5bXT0B0rr+7?;> z<5=Ea#r?z<_)5*}QnqAT%5fqX55u8u$A@(hQISX>DP-Dd&|PqRcbJ0o&f>I>qq|{em^*6R?g;cngr5p8#dX!_$7C+VQxBUVC^0IUL zhB2#7@7ssd#Wumv*F-qf1^GNcwBrT~vn9Cq44X)xFA8|_%G5_u0f7B`dx4}0nGY98? z2H#bh(5|Q!N%lnASdMUkmhKyJ?ch>asJ%J6P)7a8;kYhXlj!^F81-bpG+SUj?O6Nc zc^cUS1x9zRt@2q2 z7grXZTLF=gxdsuSUctV^{>c{hNuoe}{tPh`tSoe{13x@P__T3#E;hU`zsJ7x39RHO zXGo~5a0%ge%%tEKe1X=!R`S=Aw@tEGBvp2jN(f3fslU@ff2hn#^x!M-qtO-G;r8F( z5%>&^=Q*)wHfj=BVJ99)UOJ)dkzL$@UG#w+<{^{&YbR7F2{UU>~kihf63 z51|!qE80xBo`63pZ;FW$d?A8B7@p`s3L+&skIYXj$c)UC6lzM+W()CeFFSG)?k69C z6QRH1QXDLy{HdSiBMV6TYzEt>cuiggQ^PUm?fuBcs$pT4lnwDC_9HBQG#__w{6?D?cKI* z+qP}n-Mekuwr$()-LK<~&W$*CaA!5j8e~LP{VUh{me1UZno~s-&z{Y!&G4qx1<`8_;x1n$g{#O!h2U@V%i5JjXWMJ!keEHS{ciDb1uf5wR#x*hzRWQLvrbF*C0#eZin! z85_$YpT>BFFilyorMV1Ykm~Vk3>o&dgFa&OhK(C9x@X|zdMg92j##>_D)}UKEWy;Y z*90t2Q#GEP8qdo_$kTjyLxp&poy-=f`w@xKfYqM<&7bsl#zwpwr{jR^=>x!lsHcgh z)`=OG)7&s(gsf~j6QJYsj#0`7eG#E^aDlK41DL~vki^8a?CD)xyGpp@WbD|qmY#P39Xxg(UI+gnuz3LRrR20lIIiK&7 zF|2E1a`!=Z52A?6hR``J{#aDzw~&?trU! zeluGVzU;w50I)rC5hktR+V-}cZA-@}@pDYNn}{4fNwu8%;v%*M$zWF!SROH77ou)2 z>UEu%bZ*oI8)sM;Y?mTDu5tJ<0AfqV-T4Tv{Nq6SxSwTu(l0^vEL7UJvdi4DM34|*!x82%) z5ZuhOQ%Y)l>v-b3LmQF*OI{I)VknBqUrid%C2d97u;<{S>I+81QPJz)wjICs>7b<$ zoKc2ty^jk_&*)RZt1)u6IN+={IWKPbO@MG72@oA z#A)W_3DxkEAqPosu<F^CFi#J&PIe`!SEXH~4g_jQ}) zZECn5dXe97$`7YPo;bG?d6j|&_PGa5kJ|&YC(<)kYkPSuB)Mbh-P<#kZwxALSkshT zQ}Uu0>zCHjO(I6RG%+@XT8>yoG@L&%m}rGO%V!=yzY%fX1xA&lrF1rn0>K2b5V>_Y zJsn_5WbK?V!9Q?q!0R3btA+QOzY5r$FlSn%0NMaD&%eTd{#PufY(0OLdg!I4B=?GA zL;jSQN^6pCvyOqo%vvBu8s607XeP<{{br^ptndY&FIz%;aY%J^e;z!xtDjuX;$7z6 zT{D+NNp>PJvIW>01}$n=P`kE*54G;EEc>Dx}oVk@@;_7vmdA&fN%5DGsRghKI6R4KF$s74aud zFc&a&;*hY}1Q%M=Tef7&C=TbZtNnf?y04gA5%L*{rVRRm6aL*E zj5|cB5akl$q-UGd!r5InG-PJC$9*j8+rW0~{!swaSSQ@z82D*Vn+N{SnX62oVLKvhIIXN~c?@9oecTYZ!S&8}+ zrie9EK%dEhXl0~V&b#6HYJ!x$mhSa$ZhcO|irm(TwWhSwb_y2Loi&jWN!RHmhu=Am z_0q-L9>BbzL4K{>&pMd7A7rJ}# z;w08w==#5e+rtS(3QElRzmxzzhpJ z^U|id#dE=RYF;f!NBVYswCPyGM(uWY$hO-v#y2ycnlsKg4qF)(5axZ!m*XuQ4!R*5F!O=9X$2>(+%O*z()4U7t6ZSzi(~f3M06 zgAH7f2g(x4&HD5XaqZvhw226(ilYnSA9*u#M_f0p2&7q;su>zOeyOG#+_|a!NbsI4by5t$#m2+_>N;5>5l~4`K;**Ln2%D58DT;RGw@?hA0oY@aJ1xq$JrQ zJvCd7lDFk`q1JjP{-Me{$;G;mO22OR>CBd}Q5;w{dIN{T9m9O3%)o2rR9QjHVG9;R zuCV^|26bNB0WHnlt6#35MX&al@&wCRC`R^({<+e--zQ{rmuIGhKmz)H({4k#**?+D z_p(X^Y4BLa$<45(RgLe$T#f7t5>Sw6)rj&;;Kszq!cM@@jLg%}P?uC^M(hgK+SDYdod<3|Ijl zzWqQa-mne~{1(%6+AtSXBWM$^`xZ}le-}R8rPPNl!Vvj47#f$`rAHFaNzWP>)1(AI z-yzL-w}-_+gR}##?IgH9!{aT=t%>CPJR7;?QGtkW{Tv`2895A|-Vv|O$&W~eLWOD7 zy4h3>OH`?eF|fB)Y-HS>jC2KYGxYG|UH9z=0JKj{(qAe^jcohv-$mG1pWIsSulLJPoaGKQ8dIbL&?O}tXF7pcumRFm12L{ZYK*F4 z$(u9Lm-MNZ6`7lvSEeix3RpKCrOH`WqY2J3aE}DUUV*vz6z$n99ZLteKP4 zglVY;SOiFtm6?m2XH}Fms9{{~wt}RGeoz99=C3zCvf`gRQXdcm-~SRBJvQzuT3Y1<){zzCBqzMJPP+H6q>Fy5L?EE=_fd*d5xvIQOlMuveDMH7ry zOGkFQU@6bjyba-8f#MHKXW3;%%!$|bEpzJ*F%+h7+%<>-e-TB;2fL-%*Z9L_F-Ez8N za@n{jrn=ce=QFre`PnF)yGT?P7y!3_W?u~ z7^Vj+Of9LKZkS)bVceZ(t}Xpw@k8-)^R@VWodL35^nTCqSG^Hqpc%cxemX5JL`LdrB*GZGqE@v*}|q%&MDSL!&|5jIOy#`ZJ||u5&E3zq|IB!*YHrlcyAGZ_JnQLwW>g|&jPA}^ZOYq$ zpUB|qQj$bRjXKxn6vzz#(^eJEib+=1BP)jVMaBi;cNCIw=I-oD=Xz$x;Tx})9!34M zh)Phzgta8?x6A)?RcKGVEn5I-PYo|~(ua8$*$flM{M4`I!x->k_DfzzX* zlMhTvHjD;INm=RQVSUAaL5tCcE4X1wUUBT3AxyiP*&ooQEe07;S8h&Mc#^Z@T=KeR zrAuGpx>A};Dz}XH;#F4h(#HuOkUC(&!*W77v>jj7ixu!Tde;-B6VUA?sBM9-y+VH( zw9q3#{$b$r^Y{B+Eq(Kj`xPCSe8;^a&N$z zC(oyHR%gFfIfNu^C{q&PoTD450(u36$YccE8Wwq4?pJU-V>mqVyC_+%5GWF>2b3P`W04(i2S?r%oG;`50#oV#+2 zwqCRErugeLG2A1M4-Wm$^WQsEa$8OMO#V4B(S1k zqXHr*4Vg4dCRQDF@e5eaV5Ef56hgXT+t>gu)ix=F3)c*m+sPytXl{wmGQUBzislYV zZ4nq!v;%8f{2r)~@A_!Kmb)HFZ!Znm(gqH6oPgN_)xXonM44|*P&9jGQ0LlcGQJgQ zjVM0Rmk;IoZ$!018W%K<%YFe@+q8TK`E{E6z}NjXrn?cu zcWy~J%RPto6){>n);31BBJDWeqW9*EDS^J^el8iNBI_uB6g2R(fPMo8w3MPg2@;|i ztRF;DCk4H8$~7{p|3;HQ8(uhSBD-lDIugz)?(T& z6Whvy-f?(EQOWaTtP6lYZYJkoL4Cyl6SRL;a}ATRK&TAu%<8v+*dUKGIs%D;WmeEr zZWu2?J5N$eQXGyg+oNN=_9~?k2E)qiQ;0D|+ssP9UlYwMK9NX@c`0nA zXwcN1cthfQb}L?^rc78cc5cpVI2C&wEn@n;h11disP(n&%q%r04=I`wKxJ8|joDc_ z26Yxci}O!?6Qx?T4MV3Xk4rs+HA0G$wtKTgCexJog);7be=kndNt_owiN@5VQ&gym zXc9ex>+ZT7kq-SyLWn4nNoZ>Ej(2^7*%ormZ2^l_Bs^^%aV3fkMc%jMa6p<0x|d+! z>&f#-%;>X1UP3W8JvByKf!Kg|ZNdkcErRaiviJpl#vPSBzM8N~V8b`#pA{d>aWEF| z4Pm51{~Zx>4_wVs(5d@N!K#Ndb?LfcUWt3xN-hQEq8(H+L_p?zJg|YsaUYZiKn)a~ zD3bT=N#hihG5Se^9V>ziFmYU0oI6=tviYk|=MO=P9T~BM(*-!`lWhrh(;U`2M;EA= zL#2-fI7B1;gaRA!p8cb-1fiBT#Qa(EGxp{PUFS|D&c*cYEy{*r!T;$M{E3FgQ z2E1QUGMh$|XGnoY3_~}*8;p|l+TLJE^LHCAZ&YQ{#!+ejNioY}LrF3s4etYYNUAv_ z>6olLKgHT%H4I1jT@XXh<#2JrN(n*#z=M1KMcD2E@aLSe2ieZK_xN}R$36V70q8{40nEPW56JiC>nGk8~QNCeV`QV&?^_k$Naf-x~EXm$zHmIp_T<8$q zFTI{4to!d8D{J z=Wsex3IOA%@O>JR;}-707v7|a9gC7%%d(?~qHstH&=*?GESX|Ry#iAuk$Nr8rDF0$p8u%39 zAcqZWG@!_~AfB-7XDA_aniNwj8)f#OxTNN#3X*RK84h;Urq{Qai(shpAwTtF!l zh_oijP>g%il1D7utF%lh?+A*fI6hsfu!b7Y_>2FM7L>#>02xw#M!=wL}bPWMJG{;3eG7Zy<9g z5`jJ+N-D-PY8~K7F+xJJVxr2mvvyQPtR2f|bj#X5$goEuw+tjwrb#5}!P+K`ZFaC) z9Bl!rp|QHQ^_7?|8$gX^aQKg`N~tnswEm3%%!C*u_nWq+rlwGt_X1Vi;LQ_&-5bKT zFx#hv47!SyHFY(UaehdW4Ah1p83~~Z2Toa;OMq<~2)$GLL}2kNx0;*s^B%I#ow?qW z-p9TRo2pp>qoua`ewQ5t?|hYu{mE&SR%5Dm!q3gGVHNQXHC*Slt4+@cZGNdP^IMVm zxr7F!2`ol;vO3k2l_b%eP_xh07rx_XI>e82bx~PG$^=u(0-h6syaK#tM9ZoubLIew zZxg)sMW$mz?sfDho&@E%_XE=hWv1h98;?2W{wfQzZ zXjK0uA3hG_-E!O7JDs*ylmiq;KDJJMMFu@N%ohNBz&q!a+1o8OY(t&ka)U1k!>*ho zBHeC9dKFF;?`4Cw%4i5(Tg>o(P9VJNu!j0OtQhT~8Yx`w_%t$&GOozPa+t@AX{NW2 z-nhUrti>mPhQ9V=wYXWdSNt%Ea9B)14smd(7}2DbstE5xjc(Li`t`Ry7D>u3?5^Vc z;uN-{LKJO)uuUvHK#PU;Yh1zM+=-Mo@h|8O3T(5erL))F^e?BT&8=%@2rbIpJcDHK zWVh$-SvAfV$C}7&GBPwH6&;Eus?rcPV@-Si8PVgcf*l|yW{|tXk_sv$h!fC2hG!DR zq|p9(TE^WTJI(te;!LdMdiM|J2mJs7OI9_E zb(oB84eG+-NzXl$&0`!&v9bs^dE3-!7kIq`o`%(aDJ9QVxdGchj*N-y@5%U z&tI}qK{Dci%43>xG~@%%VKld!8?Ptx>2jqhW7Xbmi=57Pn`h&3%}#88l&?Q58W`X*nW_Z}lNFv%kU9fUFiA^HsbF~{7Mn!0K!huy z5ykk+wq#US+X3E6V_BW^5}V=5Db(J&BqSi!8mOIn8-$wK-S|j1Z4f0RPU+`j!OW^( zb%pUGMOmmYl)`MQ>9{g6x#j)S9M~AZx+aT@)DnoZ#oZwQJO%;YEYx>Qa5!Qq`>L~} zfWfqlTdClZbY)}WY)yE1;vn~{-Hce)*chcgjQkWBxl;~k5G@!wyL|16Ix`=Z@IsPw z$#%pKS_eX4vxuM2t@&KoD3FPM@<#Hs~s zh$WUaJQlz!cB(&{u9;rtiyxmT8#ewZe{;Rq@!QS)YmY7LLK^ z0z1xUJiSbi-~=}_Fze`@<7}3^L&z>2x1$oA?}CRMae4rm^WusdXntxQiW$8OQbAosf5iP?cwS9k%7}b{iD2y@WJh2uykR1aUD!%D=IX3LAcyMyM!H4k?!dSj-R5Xopj+*<+Vr z?Y8r+wF1M`>l0xk%~4&z^EN(yP+^2ZDdaicY7-EV8-#! z?1GfiZh3Nc24s-~y#Vtk;_>rkn_GjQ^ehM(d{BNK{-<9x2H5rfU)yJOn%mz;P;Yz9 zw$)N1C6KRg$qEv=_G;%c3TwU=^m3Q?SAReY#%uby{$XC38Y<1z?24Wk`ooyIj8cDTPdDPWqaKlsAjJQ@?LS?2q>g&2|*!uUd^f7lvzh8 z)lsr24*25qpgo(@S?#mahhcVC!e<4|A`s(!G~D_#lt!2;Ni-0LZwjpg%myp*gZ9@} z;`BAs9j43|GL%0SA0(9>{*w^ZzO&_<^x6nKfQ3DwU7q{j`;Vg`%sQ!R8P z9`?h5?Es3S9b7gxB>en%eakg23!?lIYQg#35_(L)%OQ$xBXXXlw|QjWD2JM5fF*a( zteG1ez4Wpn+0@nGAv~n{8+PptT%=)W}Z^TxgHMXLYauOyqN775qPs~^g6GH6 zf;arr8b&t|s>_gw*ozP)5!wiJ2;m)4Zp%;X7oj7tYxAz$&bi1x^ zhgs~45&>Jrvxot*4PKTH4gj<0GZzyuopL~oHQm*+eLR_+y}cy!f#`RqQa@Ur;*y%N zyP^^?sa0g^G?DA?=O`evYAf5SL!mQagi5C-69N;fl${96 zC5wqglDBW*L%<8l$5w3f!13v<>^h8X_`!9ptoi<7A)cZ#r_~N^<<5G~R5AoZOHG-o zP_CsVC{vNJl35AMHb)xo!!&TLQ-~L8(gj zo%LIHjeO#yh2l@q!%uZf&_%a-RQlAF(MkK_aHBmyEu5DWlCOSbZ@&s6VpVV!`F3z=kGhT*vOBbYkY}{UQGl5gn^_O-*a`dR zVrv>c!?x$yQoL9@%(TIc*0NTdaM5S$;3&ydj?kI82EY-xlvM}xjCPrClQvk8(dT~*hYqSriOv7rOT#DT02nEWtkzSS!f_b ztxmX;(GWE?{n9S7B;{gh75nXeJN!YMqRnwb;#~%xIHZ@?6DwLU46PuPxKLzW1~HGw z?r#M5uemgXkFqMv63!Z{CCi!cQ zaM=K9=Lao&!vTI$?kNsumpTNDfRTzVIbPCfj2$I_y3W@A?hwP=I~kJZX`dg z^x(_z1jh?}o!!t*u6t8`1_S61uZ~o~>0Dk(M!VIKwUfm#ZuQeTFo?HZbXpC?W8j8C z{uXyh>;$e6zPf)cPLf4QGq3R<(rvs_eN?5O)mWSy>A>0-?2mn;?|VI_YkU9IlG~XC z$z!BUHV&4)nno(vU=~;x87bu^{4e^dv?rfLgDoAYmh=GK-xHbM8LM)(pskTY4Z2e8BWEUZpcz}*Iwv+Za6y^fNnQWFISz@J5Ga<^5cT9MQ*M6 z9@e9$RrRmynz;5KM{tbQV@wumr+^wSmdW{&$Egkzaci482Qnu?Qba*PEQZ@!u<>k4>~bx4_0%7+Ob z1$_)jBuPEzC0_f@Qunuv&-{;Hxa8{2h=d=~o-ACRS^cI!$BLTPB(7$}H41Pm;UVQ2 zM{wW$p;&H>)IusaMK-8n18QX4RFm9S!UDMQ&@qNBJ+5^hw2UW3pUC4bPvyUd<3UX^ zmhAy5ZH+zl{kUcpT`x@6^Qh6zYd6Wy$A4qn-LTZK6D`L|gYA(lo z(xq(xSGL@x)kHg&+}rAIcFo56ZV|>DXkCAUHkin})P2N>r-BXJ(r%Q2xhmxrE6a+` z*NyHGqA3sLh&ehGym#^ITDS3{CPf`5Bb?srl9mRoj;lrj2B z<27A0Otr-=gL=MwDq{5w7Z&xOKn0Wq^2OPpvAg;9@>JEbboeMMk+z@5QC=NLi%cX! zfadfQ&nJmWY6a;_6bD$iJ^n!*IGoE%vMp**4=^TJQ2`rax&y7{FO{f?K6kcDw&YvGM^Bxt+Je)f0_o&aNypOl zOLHyV3|X5GQRd6@)k`kU2JoKGt6kB_*HyY9LhgWe9mpig3$K6hd6oT(dd|AA{1P>a z4typNh}Xvn ze}iIlWQuncG%FY{S%9dVS{zq(4fl_`c8ac9*}&6jb>EL96>D5UVU5zyVtVS>h=ZT7)HmLJkaR z+Fdrbxg=GU*7k4Ta21oQn!Dm)z+f)HzvXdFv+6^;X&EVLO6fUz@_pOb_M6fWbL zmA^ze@TIV<$spspfj&)q51W{VoZoYI0KDUtZ#yg-`wnRnTiZDIs2?(mPc!f&U&MO& zD$CVy#?78f8wgsTP2J?6VAxtKp36sPej0v{iUY0YtLL?^bl5F-wfCo=WUL!&_vh!t zN%S6)YOSv_1)KyZLZ0SP;-V63AjSk>#_LWGz9BsX-kbG|jjW+{_W?252sSKsyEX1+ ziU(*3P^2vsf~zZxOOOEpN;&taqtdEIBpmJhGCT-RwN~^{ME{l{qsfV_i0<6*Uy~OL?1BC<>F%d3B=08yN+Z zzlh~3Us!;5=7CIzglJXcY*^N=$oZ4q28FT*X_gJoov$v(xxTm0{CYTu_x zz}auXY5M^`4s$o%r^w&dsXzQIh;eZ@yssb`$Z3X1sw0Ys~Yr;hE$qstlDm z_8GIb$NmmQ$nS@v3x~It*sFeea&uVUj_TArGxvwHTDY>p^!4M@{{8&By!`&@?d|yY0{{#h1OQBCE^ur};Q#>8 z@&cXv-(K|}p`HJ$r-PZD{eO_FOw=LOmDDzR03CtF>m4C2ZF$+5x#*NYD&$*te|uX& ztt#7=VgMKcg@7aoAhQq=j>u?;w1WK+Qp3k;AT}y;R$Qz2=u*nA5sI5#oj15#n@&IQ z|DC?u0YNc4C6SN2IXd<@?c9F%+;;El+uCA;4SF!s@MsgN1()waX8z;~p&epu_H_+U zF}MSQ>B9^g1k+97Yh&uM7omgGJ~-k&Iby$K_&h7V_oCgvz#JCKxOVMi1Ce`tCw#M% z%v+@z?NQhA8}Oh<2YKl4q~nVk%GIUetg6|nj#3m3VH*uOx>RYl5)e>OxW^DF{Ebc# zUmgGz6omf9t(6MC1%=o}7a65ysd!T_5XU3-<`=-gBiO2%t1GG>XoqTNkfcE!hl4-` z58fQ&4jHGaS0qiQKpl^$@BkdJSx`@rFOnaDUUw@|CqpYAVjM8`h*qammKq+I3$NY` zzC?9wW}soyq*03qc|3&P^m;t0|To_A_ashA-MzK7DJ`L&MAg+{<8h|0ncWa zh2P>Z-7&4T3R>1|xepkkh(W9xWoT02|KsnnHMDj~8$DoZ*jTr|hI3^zg%8~a^lR1V zTqCl^e8FqMgC1tn&#Ggf!PyM-3AY(;F+f~%{r?V(I1xi48mJ`0dUYVOQAKTy;B_lF zw$Xs!hUkFrvG;JNq2XcD!Qbz}UPoR$ zPf1>G9zEGiHp&sHy_DCHE%q6&PY-ercsbXsY*;lf{Fdt0e&4LwcR`{AMz@E}W6>O* zqB;g_0mR#^a03>v-6>*fBifGAi&6(UzH7POAu?o19H}K)_f+egL_Ea()c8X z>CzOZgOq~35X42y$_@Zvj~h-@h5ee@5DOFMz==uDtjm0fv6aykcmmosoTe45iuXA> z>#9f{Umx&iQndG4Z5EH8RwjOzpsgNh^v{02hl*!Rd*6Z+Qc0nMLnC)mPLpxT0M4%_ z5UoV7@-j%}3l@ouk0i zjfZYZmBy}$vq2(QdjlKhi$gw)^MyWt69Jb}|wOc?9}W#g!Vc&cm~B51^*ZH1Wy# zChxsFpFYV|zTg_2RZ3#*aT`YEUqZyn{=9>x=myPnu@v{cp(# z&UL@H3K~axC87;cnq3>4bImdCQs(fdVubG zV>FVzsl{FuU_0P!z&`|geb@G()HsIPZ@dnw6d1ECP8Q&qJ(@M)ikA zJ7Czv4GulcgI$7ZWU#s?gYhBuc$si>y57;qrV}hg6Bw;~x;V1mh)@O)zfSoE-1b=z z!f100zkA9DK^#k#R?lCiwrOX8&zmQ5hBRlEG31Ccfx*H(<3>yp-247>12C!~Qv1}S zn0F+Fu##`)>u1Q!MyRQPwJHkEvRgvyJr*@KZxamN5wZ<;k!sZ@hJ(-D{;HntXQA6F z-Jbu75rCsLjwlnDrK75@BidT!JBOBp?V7!-fLQ;c`=6Ww^ar+ok)=en9*y%^<`0eh zg8Xl)KZl}JATuXLgKx_fQ9gd8pLFElX-YK03?uTRQ zqQVuB9N(DiS~1r&YR$?d(f)Yu$_k!lt@ZVAJO|73G4lsqPZa(M5h*&~h!;=;E|5(}{)=j?wtV9s zk_;DR1Z$w%ca~w7!YizfmqWF>G%bPAg_6UR4L##qk{-m%0NH+>P5`zTcNQOHu65@2 z?qxUF1L#JvjJ{uBGMi}Mc$zKf$(IKeMB}ZyT9`O4JpbB4xsp?Jsu0E|mP#=F-@<&q zbq7Ve3Etkx(D-{#S3|j*(cM^r5~UTkxsN=x(-N&@|29mVV+G~Uxi{s57-z|vxW>oX z0LNuEW-VZsACi_1JOI5GD@w_7YHS*F$rRW?9NtDp>;Q*DS+~ATy~}lWe9XES1SBE2fV zOl<3?VB)-CkkNRMLU$&_*WKF9-Y6A@duELjIi ziJ`z>TQNKyq6|gb*9_%~4>!UR7mjj>b{Ob}OMU6xjHLyklfm&KUghRb);*zs!jM~R z{~ILpkgWsH{=^;h$(cTF+?2E9?Y{m*a|kFu-)psuA_cJYAb%(j^B1a$O9HmCJaE9I zl;as#J__MLoX>8S`S!u|*Ezo#Gu%20_kNicVBZA1jsgUOE>?HdM z0W%a)YAKdEsWGeA2IA*jR9)Mv-Hw~T29nFn0C%;=(>39t-yJi*#*ubamkw*ovw5_q z;exyo%~qKtPtT>52f{vRFGb7)jh6Pn&rr2`3&0Iu?kqKKV(FBZ%jLdvx0kp_AKIJx z5?Cv}(g64%YBf_MSz(xGFpbu4PJXD}GAIP@g0m2K_k-$yxavno6n{Hw_ebsQ<8d|~ zAWG_u5WgB4_WNw*ZZ1tvx6}7HNMy!Y(>h2J`}Eee%#>OOsxkY=eOYb{nBd*rfSZv> zG9$i7X=G9xN*l%j#}kgnbKs>Qu4oV)$gj*h@MjLUC5zUc37f>`E*tr~zdNWt$bN@_ z(IyZiazcIt&`^~(M}^K|kIwBtR|b*xnz+dsXd3w5(oE-V0FWEImDOF_%xuO_oJarx zPDNNoSwu@wSJjfkp3|%C&d1wHwti%&bj9uW@}+Z60z4berx*N}&0^S?Pt!^$8!J2p zpF%Y21ij%Ju$*>d(->bp3~RDf>5>ViLkL`ZS8&=BwjkHn_kx;NF0S!=AzQz@ux#~A;BONdvKRYt(?52!@E3>(jh+kKf1s8Q$CX3=Mtn>hLrWd@j!Hg6$=m zT_%q(>;nc9rm?mOy`dVJxM!8Qx%aLUC3H%<{a3$9n8Fd@8Da@#{#Jt>ZJ=2qjH)3k z8pv@E^;x&*Ss;Bg7)E$7RCx^!ybvE*MRUfV6+JMcffe2AtIUFxq*f_nE)EABvipb$ z4bF5&u;a_vkkz&8T9+v}zGL+3H6JxZ03)tB7-C>sYV_%KS_NgR4`Q~j!3FynKq3pe z-&@7K(rWu0e8T1Sj}U{%2~h|~u5^CzrW8@fB?a6P)v+Q^en@o4oiWgme1p^b0yGTq zSFfyCWo28*(gMiJiD7G72HUpDmb=+)x9ixo-%UvvME$Z#Y|Ka@sNk+QZue;S$ZXTz za1@<$ySZvUUG9G{j8|69Fe3DdPW6O(@L+9HDV&%Qp8#7q(>W$Wa!{j#g}a9K$uG>; zB5GxP&Assh=`3okRS-p6mJl#@(k0h9)|FZ$Hyon~l9VCjle0>0T}@GCNee8#nPskt zpL?8%i_2DgE|W2MY_|yVU^9e92K|1cpIiE9Gi2DDlHtl!*QF;2ex^+Yzk(gdO_J0R zw}=kOjGgb^)-R|Sw@W26Gc!32uvBOg6hnHQn>a!k|2oYa#Z5018vm>}W=CW&R(?z0MYWH{J#-yEnVLh49K432?M*=) zsyXRJTjEK`M-+J!6K3)bA~F(A;8u9WbybFj!!Zg+$!6fzSN??z7DW-NY9Rp9O-&uL zrGLgP*l&C`>(veM@B>y`guS*?sTjmc?LKpGO>pd!968%f+T-PRw=m#uaa1PwGZ#7F2KUTK;}#>+0rr8 zP}pZTJ{n%v+pzw@iYaAHRmCYOY$<4OcPWe&1Ac6o6KfOHS{d@7cGS^{LhlnDl9Kq0 zg^8Mx6XlXv^weh5=gBqNWyPcJwbYoPd^#n<2rBU@ikd3@%97w(A?lQs+Ndfe+9)bb zDNw3vjD09mNlju{=Ew}P3SD;$$_o52tusXh28|G?q9ALKRxbWT80zO``k4Qs`zRtT zLjM{te<1_GazWWB7D;ip8O@ngm6t86VRk%&t>cLK?X>3K9i)fUxDJF>jn@9 zIst^OBykW(3k*W~r}d}AeoGS-0ye&h1DSEnE4rTp8)hmV1DOL_$VM5X2nHDFa6dmL zo(d6y9ON6yoFS5`Fd;B7JzPKz5e6#hZd&3GG%8k|tf#98%nKM`Fhc|brwOf5n5e%i z{J5qgL#frDAsQ?YC>{qcMbHrp3{ut+3}HFLY-UQ3cxzCF5XH)M&=RydiNTsaItXVN zC~v3qIItrQMesQe`Z3w52YXo}h8ZoG(3BbQy=Y+cGXkOGKm+-;z5iF(R|UlZ09itC z2p%9I$iN`MeHc6tAV_c$+y>Xdg1bxb1O|uT4uRnAHh6-&yAIB9xvjgZ-MX#4s{ZJY z{_1-D(XU_ibJa#sCw8=obLD=ooF5Fxi4HW?$G}%bt!|yT8p)9~3=NQFAe{h2GK?bl z6?8!XF|IH6yBvdQ4H*@z_y@_cgm8(I30V14QF0BFMiVUqntOGi=$MMw{47C4R#ZJ4 zlK^qz7aT=Ep;n9oUPv?W0#Heq5gQDE>7Rk#{i1NfCpTtw4M({piy*<+D~VT_1Q6ij zV7{C)4&oWbooB?@%)@TMMj?wFF$;d*Cr96CMR(W9Dy0yx#+I0nz1Fya1BF$&64jEq z5TdX#up5MCr||+s>49V{Wu0VT{N_!6J36ag1r`fEGkTP_>AXSPAAXGk_(26B#+=ot z7Hq%dn|d`t#y>Z$RG<+I#rW^#D9K3VVM6ge@m7*s^0ppvHZsFW38R=w>@QL)*It^I z3E+lzzns9FV@t(GcPA3a$Hfjb&JC2~ndU!?fMiZ&VFc7ni!)55%B?lg`w6QP1lo*ugQkhF z8r9gV8>+)03+GVDO_Gaw%gds}G6Z~o@sCc-Z)wd{xXRzzw;2+WU&jVq=>+11nz|6o z4X;<066M_;eyxF&))JY-y!fAYEPUN`q2!m)Se2csgH_O_CG-mgV*2r%!CzEQ-0KRe z`g{jX=Ta6dQ-T-7{A4;_N)xmp(|1!Mr6WW`I~^}|BE>Zpw$*Jp9f#3_{8?IrO>qq* z+8^&a4*9Mnyn)r>|7_e?Cg*ULiqI`Y%ldJU^4h*B%t_yEBp*p5Lm(F7VhK@+b6uZ} zwT)e$Gbp(xLVxEm`Kh<`4wlPgr2<+g(rw}H@Z># zFsh-WX*W!0`ntzFMW(ko+nj6ABF&2V;Z`v)Rn0mUL44Zubzmo=VTI|cSQf5|7s9%X zlRMf?7FDM~Zx7^sDZKz(SzR7>{HRXma0^^HT&4*FuAH}(nM8>E@cHWL*Akz~u)pGg zbiLD1xu=PvX~mHDs<9RJNJ*{VLIPK$jtPjtVmrPkKPqNkOx1@sz(j;PwZk`F0}i#R z(9D5Mh`BE+uMbcsWXYTZ>R6UhX9};dw9~Eqb-#b7IzatYc!qTX>!!wleOf2jxm3RN zh9vyktq+(2WI@^RnjaeVtbY{VK;mdtoKL@@{;lssA@xA>Q*ekzP}c-3Bom?7=o!D~ zz(7~sU_x6sI76dWU5~Po3TC5{WY0_`c@s;s1VM9eYDeDC45cft46NcxaT{Fcr#tsD z6FzBRmqxdoowAK4)G2N0lgj_YHZ58nDL~P>nXiMYD_p`CkJ!2jYnKQM>UO|ez$sCP z*LCRtpr|?jFhK;6kj7WLa7savfJJ^%D`U)4;AVGsy2D;$R`zsPPrGPY#RAjTm0vgF zL%Ta|<5^y2VCG6KiL^T@lCQ=CBX(+qVi|SPa3{ZeE&AMt89C|EkvE;e{U3K#$Y@FX z!5^dyJ6f7`2_EY3_-c=x%~S9RmS|2jCdUEA$I)$`UtS$J=gy^VY>wKQTQE29+QVdK zugwP(s1r<4bhx2`${crM|}c zoj0z0(?{($@PFe*%DZ9udf9#LEaGrh z3id8UgrXbIXXCYuq(^XluTkbA_{YGx_O6R{MqkqoZ1r~SQFLeWk>@I7tV6p)cRX$c zPRSLeC5S*U`Gy9%`NxcGTy00GJ+NBK9%uH1>W|pB)Qz9K>nm3K1AM zg1^XItDstV1t@hwWPoFCC-GdB>mPXK$xf8|4KX2!^#YGhJa`&d9qt?^vmXUpwW+(E73;-YJRCzyucwL0&xC z>5S$%;7cA4G4l1Hz2W`6G~VVDzbHXLWBt1YsTGI1YnF{uwl$sW{9UgF7d@{NiJ09s zfwtwKeu=PA@e#ceqbJcBk;t@ES-5YftXvE<}nknv*iS}9zP2dvbFI}3rb^fr) z1mdqTlf6X=N6@-@*ileK-`$_V>$v7N(@Lio`O6AP7;~6YO^P`2u=Mgv6r&*cj(v)_9b0mZ_Q%AvUBi3K z{lanj(qMi#CU1wSgaWg4An&BR{qkwOaJPuzhf7Q0z1jgN?jU`wL9X6n*$F67MePE- zUOwA=d8VLK4G0 z22h%1StpP4k+_8gY|T4sZQDNvT!j~M_{s6$tdCBtaWlq<=uNfnQYS3$qr_P9qhuIX zb1NVjs^Wcg=3&E#5cG})boa(PIA3z9XNI$uZ><2O8Z`WX84&MfgrojMjCH}fBKlpl zoV?$HTI;yTTHKv0q;g((DD3W+!SiD8px>y`%x+2<^WiFa?}SNRTq*JWRiUB%UqQmG zD#Je#U!Gl>?h5WPyc`@3WNp%b7*UC zRg*e`{~05vsIdoih0AQmk@>$@3dCfMm&FVAHRnSc;K50lV#HSudn`e>FQD!3CX>;K z3G1T~VNG~1Z!|N(AN9n|Dz`?e?oWhwswo8oTMg9~!>4ddbVl{RFpJF$@dJALvxn51 zKzQv#ow~h>IY72peSRZBlzC-yfjMs* z{bVcT;9EXy{#9C(#wj}DEv~UkIpuuIiG|_3VFvVQ7GyFV!-o>FVTKVDD(UV`TIGE(3nX)?nJ4%~Ulw68DdQ#s%r@yf_u$C_nV@Vt;i%|efru?@wL6)ui=s7Als zVG6DxnCr}X$}{+q$#*h5(Bl0EQoNBHwg7-`9o)z2K0H_S@wGq8o3r(;?^^{AdkUw; z5nk%vQAVe8>?g624{0#IO2kXLHA@Yd_&?+V7%;3MK~?F(VC4cj`WZmZRTt`1E07%`@TqgmJy+WUlX) zsve>!M3Kx9OEh{JGR}hWE{QROn&yFYqcd`B z0;SfJcKFEps`@|uoY4BB{;aiwv_Tz#ItHu0O%6Y&s6Vm_po0-=kYkL-7PRg)0xdl= zU>Kbp%-^9(`vxy_@|i^ovkk~oo0xo`08|LXs$R~&`6WkVjPFzusGHuh-}n< z`r7(cTtwr*UdpfuNk#bgR(8&5;nXj(8IC^MDw|*e|ew<2zqT%5n6`=Y|+j zKQnXSSZDsy#+yo9bNSY2m)7bP#t$qU(`5d<3CsHcCxOmXX3{nM?pZY2F8wgifeQK3&8M7P^wFrkv=q&#&xe4crGs^Hm-t2O<>viZDC_bOH z+;1%ZISA`f@$Xokfo2(W7#1leMUO1P;irT&*;W3PaXVblvBUI{!)UDWF{ePsrn@KX zw3YU@($zCBNqz|w@k;2p1LrDaJj+nLo8#=9kc|BPj&L8&yo`VRcg3Oq@%;FWIflty zU)_w~yS&Wo?$YN{vrgIj;}pbpAD8ForV*E4qv!x*AenfiS9f$oxXYmH@p1fyn`(vK@{ivLr zJwMyt&M$pM`zcTv>`LY2{kBkS^RhbhX+7m~ylVWPDMDW>I0aS2s4L=Yvq5rIg<(ZU zM|gKj?Mx5zVcDg3jsh}4Rgx_4IzNi71fp9SF}E3Y*tqdN zFNkd=fz2oKhYFPAa#LT8K&uLp$ZdjU(oe@e2QiD|kfrTRR$C8OXIv_XlE`2+db+w= z%r<;gxMXB9q{5?6-$-Z@U8`Z%bzqo?@qij13WX_f&8Z_z$&=+D6-wvCKR=>srY8Eo z)4Ry56gTKzclGpgzMrO8b$}D!$ft1UM3d1TQqwVoBJ{va|x41@zPycHnGnd3O)-xGf}}>n_P5gWV5HXM;hfaDuH7@->_78m016ganLrhv0J^ID?f-StTwm z4sT~=I;)SMp#kJGktLHhBo_UJQRBr8dqNeVk~@7Ja?d;230txL%DwSAp8BNtEV#+p z-M?&mUH=YQM%#|u*g758N*}RZ+3RTXt66w-j{DPxFW7t%3~HABsav$ zmV4Nu;jDxAGld5J7qkC{z!U@lxB*az4X&st*MDU&!T*Q96cGBK*h~KZq8s`>qX%8! zeuZ^*WfQ@Q;H{UZf8#@iz8S^vy8oBy23q+kBOO`6fs4ZZsnME{OTMeQ?b!`1S4p z=ow}*1%P%>j{j>-A7R7-+>Ar%}egbQk350(dc{6qZ8ibMpR^bxg`M$ zlz_Qgbo=w=dB9)(u;p{qe!S#uapp-ITz@-Pnf^QQ{ih#C{{cR2b#n_Yd1*aS3llRzA#Pq1h>3+Dgc}Uz zx8UIig9P|3xP|ylElhdD|Nj*RTuvtJXnAY*;3HnWm^kh>KanFe$F|Rw-Bw2AYX3E2Z+Q`99lIoL3bAzJse_6 z6*lb%j_qWcd-ZYS-KTB~Fy+9SYepd4iD|6+m0e&h57_`j@LN~%95rb*R(*HY93E+n zV12(6n1*>x`dgno_)QUnx4x_Xb@-(dnZ?=*{SZ7S9t#KoXIDYv%UVYv3scU@&L18G zf*X`e0p5;mC!Nb4=!9z~?A@dulz4s0!*0(xL;e{WMnXvsB9=aGg`=*8D~^R?Zet@Z z79l5{A`ptlDPJ`^xBQa_Lc$Ud+bO#Z<)9*xtmHUdGhU z+{J=`k%5Vcj}OY(#mUsr7RqCzMSa>1haIN(l=1{r3{~)dEtu5kt!?t**Zs4)XYWtzEPq}qe{Vm~ zJb_0WPY=y}RYFS{aLP7a zO9M)yUBZ1ok}v35V|Am=*Oo}yDsUx-M~E1Og!}1KwxZ` zm5W7x7+MbbUE1vM{WfXjP{VA(AuItk;Y&)*`U`Zx_>TIA#7L61S~yr!&}mI3%>-&M z#Pk_SAef^YEU1@`nhY2MikI6pStDb4X#cGb_4SSiX>&^YagtNZ%bVoAbWyaMCLxIM zlJn-=b8Y$oi(T2YUYRRa_j zmh%%ND=~}s2&S1->Y$@0^vD&0+N~vDFDaEzjE=^8z*Y4RM2DFyDf-D8fr36Jh9)l( zsB?Qa9s0)6{K=e4gJMh2@2ZM3EB!6gnFaRU~}$cZKZJROQ&0$sAgM8 zbF*>F(^qcsaPKJR zn4Hn3dSYh|_d^LO_*j)%!1!Qg+0?3ETMtgo(JAqCnU=V?8CNzg##R_RdKsU4ma~(2 zc0Jv(Hv81A^VkL%$6jB>`j&HhBociCe~ zfHJi+`F|3@-_if14kng=lS7y|7})+Zhg|7M{~~6G>%FNf=QoJmfzO}U0FeM2vqkfT zcCu(YTo*P^kc9hqNlO;ttyH1w8tv(VMcEMRP(cz^OnyyJd3v-(LJsF=-mIp z&)ffSb^O}5e1A;J3^5qM;N;CIcqHK13Oze}oCH2S$#C{Q(2;CEV0Wn9w*t|T{{?;w zvl4{#cJINEJ(Lq_eh#Cadv0Y>w=dQ$@P=rq$o-W~8NM_K;X$+)`1|DkZnZ403_s7y zZ94?!o*-VgAYI8QNNh?&kcZgcudBgDhKtp@+Qw)D%wYHe+yvX7u#1J@s1~M}XCTmk z@~ic2Gm?6lZ<(9|$CXCDkpRgwOFEtist&?=9*%PmO9Q)(;WIckiO}C#gysPw4i=X4 znp=+A!PX_m#RmQDwj|7tN8%@5g1F<6BTAl&!aenOL*A5vuwNezqg z$^gp2Cj=mfa*G`myvh{-mLZGfjlf(HU$ME^`4*@H`{f{mtxQFcW1?=Z#xG=mLlwn6 zP0(9OB|x7bsjJr_MtD`RVks8KoI(+;5fZE@6sA-+WK>FJT+&G7go}YFtXPfq{^l0f zF)Nm%{s5;6V$`V?Z;3A=Uo3wmj{`U|ij^q&35j~R88NIZjTj;+xEHJ~P#dK^m05~J z^ObTp#MD;Dgwl5|N%m)blQ8!Q*!K}b{Nm)P+m2@%bEawTnW7#qJky=igW8CXETsptXNI<%3F(vrF;YRLF|itWg1gFFw?ZP z{zAj@{yw}vU&opZ7SHHvpq(@zkk;=nJ{Rez6A@>uyWS@uPzf^e`M5+3&_hinhLj!| zWE!$CsfZNvl)l4Cqaq|qQY}v~CB@d@vWRyGl&K3_yVlwgI?HtNXA@vMfT&i{ZH@*N zs5_=T?XsZP(!u1O;iPNGvF3uU|gH++bOIlRjZ9MG?pfaF6 z0Tqv|DVZX{Qi=pPejQSMl;VDtQP{oYXN$Ss~Rd-cJOP=-*!tjxm{5+Q#XCt;&GwZ(8ppn}J)&&& zw^l$n;@A)6`dT--I^x^hDs6EFlSm_~w7%6mNxI%fCV?0_?v^Z+nu0|tkwT?#T`i3# zro4w1!90)s5x1ezZbVP8s$R|*%s)9PX;j3CdrCzOP=JI2`f!1VkZ-PQW!QCXl?&(GY>;cd>(=UBPVEgnD~2uEy#pw}n;VUQ zg|@k)6)p*m-$bJiqljCty{%TIs6-sYEzXd!O^kr&B4Amhhiy+%5yz`2gQ1oyM!#B8 zDc+Tk@3h7#Q>jwrJKGX?Q|fU;QHbDO5?mC>r z)xUmq!q#V-JQfC!Ie5`UG$T&t7M>z7Bt?d4m}M85s%_y^PNx_Er+u7Cwn!)p940cK zT3wOdk49N(DUk(A0VPrDK4HYp7BT>kZH`b|QC&a`ha{49wKWbfayPFOWK8gJ&(+?+ zL5YnQ#!k##ORI@tTq=E@%9vc5D6njdg&&EMxIxWe?p^ z9nk3du5wR3Q`CGJm2j#92MkUNO4$pLullSfF?809<{?jY5iI&ayxnV22?ey-uWQjuz2DcOHr|NSPHzZ$Aa@_N zdLqQhA6|$HL-!4FLUj9V^o91ajNI~!T`1Ry<$T*k!#GA+hyzDFEfP;j zv&*DzQ*zrC2Rl~m4Hcm_aEtQw%3R}?j1Ge@+Fk{-l1WMR4% zEE(O)EDVsL%E8N;nykBs$5WQ}eEcHa&F_I-5EDvKSsR${zbSr|Z2-%V+SnX(WzLO` z;KOet?j24P)Q31_h6rB%;bIT6au4rHw$rhf;vR;CdyshLBC%56hB}%P8|}Y^<8&Kq z5RQ`_o2N;G2jq;{bq~dfRk+6P2Q5qDJlpkHXt(!eWbU|M8F52X>JdhBY7SrABuZ0? z`I&qqy3FNz?J7fuMVINZ^XS1aaKEG9I92NxJJH(O}QZ zlb5!WXt5Kv9Q{J}&UGB4SJC#&M)QrPZT`4dwqS+vJ;R&b`MG&u&>cd0)b~MatgH7c zz0Wi|cgsaUzH0={Y~u6^ePory|EyoFwqVme5Z&GkKLl3BYrTxCRsso+C9f|zL5hpa zc$`A0paYvb65RTUmHf560NE#D;b4l?o*9~WW=j|!y^K90?37?pgEDaJ)VS2Yc@Bsb zNZ+-%M@4F7wyh+^xNQpmK1JE8=CyePuH;sfOXjv_(ccJzSgNEcp?HC>2p7w;u2*B` zOvUWP{M)GGPa%hOQ97j$6g<4{w=;{qF2$%W>cm+v^Er1g za}^U-xSig}-rAwRBLg?b&cGd9TphruYljbvL-w1mzJpGvlfDDYWCCa1uE%q&{THGz z`y_6zT);2)x1Ys+xPBh9kk8sCMB+`;6hozJ%kXWttJVvs&E>xU8g~5!utoPTfW}?L zNb8>*;D_a&;haPI-_Q6iDLsV$pq>An|7QGe|9z!48D-3luzgDX2&^Vu!j8cV!UWrN zG0rCRpLaiD5Za9bt{@Ja3X9j5>5 zwcDn(4{vyAl%P3Ll9V=1y&#rFEE-pkF7ohrQjZcj#p&+$=~eR6&1VQBD8wLjM2`~s zRVR7D+{V~5h+ic5%YpNnG=mC%bVgBaM^+}#|xKp+Z9fX=jhf;3$mQ@~TE9L9LFkiS#@tLZQpL;=W!Fu1BngV# zxAW(5T_UTiLG*CfK}V8Irn1~=C~LU;ZcIrhIgt;Ln;02lCf+bN@;q1n1U>|{ez~Z- zmG*(C%LK^MT^ba&6KH4gzNCiwt(|>24H5gDG*#dSwKw`E%K_#D*AeAuy{#ch8I9+> zN}Fhi)d;s+`|tIK^Xt{(&&+BSuII6!d`%?xbKceXft|HDYHgjnCkq}n60k#}q_Rlz zz$V*=!E!(w_M}N+SE~ryhk#WyC535Cg*3MM1_2&mG>(R?yx9?tDLzqB{J{hBEkJKA zna$Q{D4e~2w8x85>w|VgJ*a5R^m#m~)iq@$g?BV-6+-SpjaKqTrVz9qm}^s~ES6&c zW*&&yfjWs(ai` z`BKR0M$O%T?QPKBX;wT)dc8-@g3jbUcxXJBk=QV7zuc;XO5jqmGq6PTtUq`-gnBKK ziebTv;qGUq%S5x|JOr2(2Y2ZL!UK2ElS(n&TwI?qEIg|C{_~@ooaRqgTbMH7e7WjBjXx|a4se0WBe3nVd%W3yUvYEIA}`jzvenefAL5X?-4zf|4CZZE`?Z6_BlR z7+{*+VTZi(S^*WgjI3G;35KqQY&l4e`Y}k>lNPNTPU5Pyb)lUk(EK4-U9oR<-4kp@ zGnS6&YuG-?LBrcgJ#T=hTL$4TUq1fwRBVyKUrIMQIM)A3h7B{^xGzetQAEuAQQI9 zg_o>O3GMh&oavjvKe`w_&_!*b^Yyyl=o1l#U-BjM0uy~jvHgDv?R_B9#gDYFJuz<= z>HUF0#jfN3cb;Nq`Zpe*k&}u2KRteqW>*|FJN)%e*)6mNVg+}-10n%rJYBz=VARvQ zdnJnJ4_TtbIaASHL#%U5i@AtYw{Q2K#~VmFuAgA#{!jh9-k zfc1PeJ>sT2M&%u7S2N=&@cAKkzob`sB>TLLs7BW0Z8{9Tcd1G8+Z6Qstc)&58SJye z01uGM#}leYLH+EHJ!cCo#oi*qbFbRZfg7p|`n)C}^6>!*<2@I*d?Oc{Z+8u(AZ$uT z3K%nC&A1^e&2r3asB!bKW{$iYo0e@05Z(ER$&JT0I%C~H8v9g656$&9lBmvul~;jz zySJ8|QS|RQKSq4@+}~CzOd&O!sK=WZ`5yB2!-y84&ZeO@>s$M37WBWDkJ@4tZf3Ro zLY?Bq{5L&m6Uh;sU(Hy9F`sM*DDXQA0i(gv&>$x)HqpKX(o$O*IiG=*Ie)sLy~?T^ zZrb-mIK`}5AA~GeCdj$F3R))nw-^q~P!c!yY9^3wB&3ImivdiH!xJ9gZlm=i4FuL{ z+9me3oY<@8HpU_MqWOnK(>fWCtE@#t@rG^}1gB_RQP&JVL83=@=GEdi>qr1xCcJs# z4J|ig#1Oj7^ltkQRHIICf3hgFMkv$>8FhUE;z6Bt(7z%;)0+BxuB~R}pwR$GLI9)sE=m)Z?9yQIJwg z#j(7^X9f-W)D_rc7b4r~`n1Nt5|=o>61@%~gAu0a$sxZoT%s zEk&U!a5+yDx0stTB15l>z*evw8dQK+W2wQ^#*^;6;er*_=cW+_*{Bo?xta(^*~5V~ z%9_Vhw)h^KBItBRmlhE9+f9?$L2ddEbolN3qFh3hr(Mw0HGo{R0cKt9QqWb(x)Ahd z=h!F8D4dBn)_vy^_MNy%Aozdj;(#y8IZf0Eye`1$>ztg?OCc{Bq=a9R$j{FK(agHCBI7( zciEog11xT4xIQ}E*^&5H8(=IVWfodc&@ruPlC_xpnfAAx)pxPr?~GnKsOCzcij6=f zX{xZW_8HjPEdySSN)TeAFm@WBMWR|VNutAxQdu?GwKtrZeb`!ld0SX=w{ARI2X#ys z!py0a-&0j_^JwzI`GF1TbCb!7)(jVUWzQU2{Hlm+KI-v}3*ZqiZ_weK&{$XSU3^#8oNmSe9{Aj=Uaq zy^4e>+R(Ue2f_ts7w5^VV$`q3Ue!jtwJ(dZE_f!rTx)&NZI@X$*P0%ls9mvkJy#rG z227F`xMyNo%%&j4Y>gtsl{STgeo*7$Jx#<&8EHFFWv(boH-@QNH)mZF0M%Y=f_>hR zbNFC;aGbRFV*&Q%Da7mU&{`xjC0se{vV>y%MylxPRftaNa0_{f1Fa}W>)5KkDVcm& z>k^Fym(Y1@=27sMov^?eZSa@v6Xx@ZR<@?H@t@$bPHpK@jBtO%k$k|1F_Ar+LHB~ z%q=0?)qA>}yd9;y(lIUx-|cre^R!ahTu+)t>&-<|t)1UL&|;><6_!zTS}rxa z1eqTI~OM!>@-4X#T&+oQ?C}kU29W$A5CU?t;E`FarX>tvkOc z9=q7QMiq9%+!@GvCx6QqfTa^x0U6=BaNm~<-J@a9AblG5VUFRtN-T~Uk{|Z4cDf|H zgrR{_^u7Sy96VD#BO-8K&sNee8E`{SgZHFZfx$0t&95bS{O}^IjNo;5EAN&gr$)KfBYqlhZG?m)F*C)>@VvDr7+5?uFXxulXN{vIib*X1tx& z8-(q)+wPM9nlN`Of>I!a{nxbNJM@ z-E@65*g_q9J-B+;ot!G4ODWEy)|Q!z4;s&~y*1&Nk1w^LPL_~{_~N8|2=WixsJ5Vc zWnK5Wigv28Gjfx6bd2Ncx|fA55#UhA#b!ruOtcpEQcEp_b|$pAj37swa^uwFk5+RJz z!hpsR+5?@qKw#E;T8+V+hFncD~j!|sBE#_?5cpTFgq4ZqzoIBv+WL?I zCG_PRRm+WnG}TrT5=7W&6(QXvtW?v*Ev}|G>^<;+=Kf}Mh10|U2GS?7_PPUpTeNl3 zU6(m(*nU+VoIA>Sad}4XBde;KV_kX?lnKdIIhN!{zvUQ#rqP$PJEaCSx{d#1cJ}aL z_RD)WH3vq2=j!-bw=?ZfoUo<*3bTy=Iv5qvGY$WGb-uOhdMo;g3&DsngLQR&dw8+* zTK;*o`+0JCg>_q$2e&C$pK~j0f3vj}TNI=p0)V*PVE4x>vI{Hi+ zcysyZ>H@^9%=t;R^R0bLZghwtp`vUm2~3oc0?5{Z32ZvI-Dh|HFY| z{x>1b#QA@OwBr9T_KY!C?~z@Q}A`@oi=V2Nt2WhEC&zX{F)?wi^X_L=cPXRYYDKWn51w3~UN5m?VoR)VO67i@ znpIc&E&9bu;HSb$SIa*uJF!HLrP4LH{0OEsUSuEYvh$pFowS|0^YIRg+p{kxhptWA zZL$Tv_L(okEozI4j#s0F#ZWV&;^IUGGfhK>E6Pb1m49iFIHU`|*}lg!V!YC3_K|7F zH#1SDhTh0Y3jX=T;ii+Cwb*-~Q_|?zN2P2d(N4Eu4CP&DW&vA{DD`5W1n%rUkN2qF zxx^2ex%1;}@7l8=F9szfAK(!TO3-?4N(m!?NWsPuEttechI;KU1)ijuRW|}m3sOcj zndiei+ELyMS|g|kJt7o@j{yrZ?{O?4HIQ3H&e>jSCd!N<6ue+yk|47X%NSAYY^28% zn#eyQG?ID6r)M1bq$mF0uS|Na&Kmh~8#cbX&cvx)Wf$X6)Y^2*B>S~w%~{8m?q;mw z^9OKE|8JdtfRFXx1Pe36f3=S3Cd^v}Gobtre9r4kQDXDYLLr6J&ehxLSHQnLngg+f zW6*oQjGCFSBI0L%_}`r4vQ9MV+QDALU8@CPShdZhiBAJ(8w&~f1f-ASLyoeB0G-h)zC=fr7v(1OstZkeX z-4RCN0<3MiSFJ*(8_uP+wNbEm$R%w!nZixTgy<=SMMZ<< zE;CXDe3+;m6;$Yd(A71YxK-6~F}>IX;sSYm@Z*%;7J z-6Sxft48>5Yf?&gV7;&`20t@waxDa=@hJA6{iJ1o%@(kw9DqgG67 z8Ll;@5Dk$cR&FX3MJaY#l5BeRB*@4$TRMVadDc{1oZLJJ^h)nq;sERO^ou{H0d$zo zxJpNr8?p{xkowAP{{dW-EVKO|5a9TK5m0tDa`AL9r5BbI5wo{*QTaP&5dQyYqhw-Y zW%y4elA;E!f~<~}E0A80Sei+w#>~a6rF}&Nh~M?9wQZGB6rc*BbrG#jk{~b^tR&$2m%P&LL@Y4r3-JT-R1kbhIgT6yL!G}Z>lRHpr+j!Q|eI}cm z`DKgy=f(f$EhkUIVrlCQ3<$(T^*{Zn(D(0Uio~ zOc>c1OZGAos^ zXPxXN#WDp;2^m(lP~*HUPANQk`-ywul`R!_R1sZf0)h$<%>Y^uUw}}-slrwH%L*LLfKdU3`O^wG$$OKE zW4c5VN2E#c>-qSeNf&;&;r`!KUK2-$EzuV(jHVN0r)3ZjdrREC)zWlv?8;L6Qed(w2q= z!->{|X_ke|hxHLDLk4((RQ;b-!9%+ErsL;#G^`~G>=;#$%~gZSUYAL?57g$g9!an! zWxKGx5M*sYM*xH-IAUc9ZmvPza`~mKIXeO~ekwD6N*BgTgYKC@9xw!RZ2JB9VVQI^ zn{y1D5xXe&7nm-eJPR&ao|m}^e?Gl$j-j|4umleU2>4mKb@L*NP%ETN9nn&swP+&% zZ-9P+A1mZ!oq!c{1XE0;LyEppV8txvgrobb(gfSHoPr75`CbHmdh*`TDbUS_E_H;j zot|xDNcTjVdU61AyT-Pqj*$joE1UL7K_?7&FxK|mvU;$^<%JE%V1%|5FCVc6VJ`wk z?5kCP^*IHuh(@^Lbw4Ux+rb1M2uDDR=Ds1VU|T-24Pup-d>~Qa@>ek!DUkVNzEVTY zLwg2#2jzOuACdQ7zFpb}B@{!^oO2=J*~gN#8`|4Pc3gy(;b z+AZGBggFnjh0VI0vgi9mtWSVM!e3QM56q{rky16XSQT=zc2I$8BjUA?bkcTEVdk!d>HLk9%Tetpjlz_{VHAc+^H{XwR%W-MqlZ^lVdQF;nL zzw-^>aO!NR6QkS7kKL}Q`JIrOTM1TOolVt%OeP(8<_kITGG0SdKB744-4a)66{I^g zcpwuMibh)qprSqs+h*sOm+`mt(Z9iFJGF!3z3j_*6&9woljlhei1e+tl*$UE3(i35 zyai^I;VoJh4H@!Ib zws;11B)PZgn7gq0x7TumANLHFzjXmZveN)?`-@BJ!j}c|+C@ucM|ZG+0mxUp zX!k%Ej$RcX@+HY~2gyeU4PW3S%;D>>L5|JMVY2UxtYY$NMjRKenE@ z2Ax~nt0RWm%~{B3&bUY1{MtR1Xd+Cs$zGx$)!1zV)hXD%4WejPU}NCC*L{G(5;vNc zLVJ#Z0(-7~QF-FYibYuv=b5O0?!2WaWPH}VGM;qv zxhk7|izg1};hD%xNB2FL$KZM2S(Iy=0a-QzpV65$n=K&y+0CQ40kyvxcS~FYum2CL z+rlE=YY4hA%-LU2=x!V*eta04O?f%upHhhE^nGo2CG3G z28fiui6@ObSK4CeA320Qz@40%K!{%s5lK@w#rC7_m4}T-YjM9*>39pSs4>q|{%%gu z$8Bq8ZPAy;u47GMg2lFAjk;vW9^xvxCi$^!ZOVlT0Hz>$uzh;PK@p|vgsS(h(vdUR z!9aQV)6aDCca^WmGB~bI_DM^FK9Q36H+FIxCo_W^dLy&g>Hi8$N+Q0Q8g|^7=en6Hb`t3W z*9O99)iit4!*Y39NK;lLid~Ba6QoNVl1(ehHtiZX?l`P0`S+4l+(j6}7w{Q>Nr)cu z@o|{HwRvs?p}rS9xF(Ss?u=#dzzxO2kUL4A46R!vQiy!=4q&SqwW@8arj#@{6(|t9 zmjNa1j%_n)>LzHtZ+HlYfsp^Lk~sd=^(GVJf2tvC1A{#S1Q|3H7DodO003B3AmM+Q z_&;uZ{{PA^W;Qm?|6DLs15yKdbt4xe5fY=q6vjx*ENHlfZtq?{ty7h{wppdZXgg5? z1O!q@Llp!@!U+PZk%Ayh)Fd*N0u$99@o9x`rKP2{r%kKtPf1%zOUgOBSNrTkUcl_` z)z1(2Y?7qeN%oZc&db-%O;&;e9$vBtk*A^OAE-k$-Ou82eqU|!Y$RSbx;v)=zG4`cJdPq9 z$$4N3$dY_8MJg%TuV^61r%$pvF|4OB(u6P%$e70@w|XOWDG^JLRUdwZ0J z+aH*jZ^*3Du31L06_O2%Sh_yNW@jR@e?+D)MpT^G#F$4g>gKTvT^+MnN2W6!ghR+U z$K%tBBc)i#$Vp;z${~NnNiGy)Ase$EanB=|&yivhv5wy*go(sbZscn|u1q+{MlkLa zYvMJHBjlOP$)xAclVHMRS|m{#nkmFna#|HKGE!MEVBeN!eCDD=5SsvUle&rEI+0d|NV+r<%#1@Sx3oe;hVLd^yre%uv zNKKasl@Bi|Sz)3|^+?v_t10a-Z7zvPNuN>hqRI{{G%Tr2kdWpl+JdkS!q$Pe|KDny@7LRum#3gpNZAjOwNue z%^q6Emkn|s??Ku!*=MI*NLV0z;qt{2fbvSDFB)0LPUHr=IZZ+&+M5uOCPW=yffi3B~AqkCVDzC_jk?Vnqo%GN_Zx( z6}H>`W#!S0#iNQ`S~A*OnSLW2i{I{^$1>9^Df@8MT@x%M8YzVzFGy%GvJbYA$mL`F}aaL~# zf7o4R(%8%>b7*p3S3_D&E3^W(n>{!C0s$3Q8|PLnTwWeNIWTcPLSG;e>XV$O{~O1d z+(uWcIybzD#m}`(Mp~avEWzhSp02at;X#j~ZG9doHSYdTXQI zb-m%TaN6A3?Os8KInaEU(|v4s&>$p(^r&}6r;KBX(h`)E28g}_LpGjbR%m^*W<}Ri zCzI3A5g{5FA%@?#0w8Q~?m#+~$D~E0+Q-lDBu=E|T0^X-=Skp0R|dT&R2a<&wDj)w zCdhzA#_I2->gjeDs2~A|aQ+bO=&xxEdH;a!BHay?kzlCj+OK9H?}YFNr<1e|B9&c}Zxdhcn}r&lTe9fj zA10&^gXtmz4Ddra{@R0JgLJ6VFQ$86ou0{vgj4d`eki-6s*TN8&4|?2Wxt@f##s0Gk~s9zLFRa9k3HhfQ>~Js zDYF(7NA5;vCZ(k;t%YAp9Mp1%Fsp6-N44@=1VzIhQ)O@0QKJk$j`O-=f{}EL3aV*4 zg^TCP3(6cL;gyTxsUr31(0NS^wJJAJ`^*aqMMX;+8`IBMI1j>VN_ORzpJ@Bhb_ZhT2;#*&{Pv}4x2N2BB&z2(D^>Wbk4}$o##PF2WVoG<3|exA!qQYP6vtHJ*5zeI*=Mr_+55h+LaR>)ie5lfT^_U6 zei`dc4*DsgYuEV%P= zO&ss9n-K&^68u2}`AEzg3d1YH(ew#baKxGYhn%+>^v;!^!hIXIL|`xHsqIcM`&bX? zD_hgeg8AH}i@!B=thJ*LK?px&N&avf)B{L^Xk37ml!a3w+b6iJ=SD#_zUG8_Lp8x2 zs1wY<`}n1%q^6~8nMl@eD$Sd@ZAzIi-)VJr)A_&TZt|EoA=oAJz~oGwfq+d$2ZQ+{FM=WLzQ_+uTa3+mqtIMixiyH_!1tNd_CM{6X;HDJ7L>5y{Y~&!T&tY3YtFN!*&w@A3WL z(-{WU2k_zr%ht;~A$LOiQk5WXK{8aOi8v4FH*>LQD3i3_sM3;c38giueT$kddnCKs z!I43RDY7R$Ni^Mss9cd6K!Jg75b=Dvq-IqCSU;q>15a@`b!$%AhsZ}JIr8x(3Ftui zKqqsz6K(o@2aW+ZNG!16j_KiYd&eP{n9*Ai2dY3ZB+FV1T)tiq#iGS(@Yi+ATfaZj zVWTBtw}0mpWnAxCdH&?>!;~dm$dmTY2K^+_8=z2b^m-fxMVM;Y%6j9R(ya*3;N4X7 z4CwWsgnfD3OnRV#G;_9bbmAWHmCc%Bz)^wA1nzS(WOrmfH8YB<22r`0Xf?TMbNbr7 z+7V~rMBByZ?)TBPCE<-o!_KD%D{>%`8~XELiSJX)?Ey&ar8}!gVpG|kHe5hrD-NtyV0C3^5#Z~9WaexPR>}9$! z>O{6NO=N3*>Dcr->5TSkNZ{RMveuT>M;S&+uUaqW5tk8X5z+U$wk7PV<8wd|uPp*u zb$_Me6&21q2pMd`P-{PiLFl&3cSHuMwCog-LIRsjy;v2u>Q`+JDsrLoDpE!E+R`Jx z*~AUigHk5uAqClyhZA?x6y}*#4{=fNj^gs_$|aIPEkKpL(3s@-F*w3=|C0cfUXW|0 ze<)vnq8Ho;`{c;d(Joi{wS&(2^|u!;p4F)mR6MB_5=%NkUcasnwaRCG4)1E$h!Nl(L-b|+^g>t;)7$qV!b(d^T;m$Rnn6tno zAHXdI6GK}GR+^7z4}TE60rhCY4ZGV?)_${-tp33H6`$TG@yQ~mRVfi_Ki|yXt7OwU zj|(a_{zyZZ+&uaPk6IqrFN0~*G6DWV?t9A)>;GE34M1w#z>kQW2db8Ndc!2)LWgl; z+%80iQFA?4Ta<1c8SM$IU3GGR0RqK=pmuF`o!VeDzDL!LVBZ;-z7Oas)ozp5?Vk1| zz73*gs1}ab2{A+f6D}@d^k((2Cx)k1^&*hFBF5OaYFI?NYXv^qeZA{w$_QU8iWmxjyBC%4{u+rgj@*@ zrCWfhzM($9zP?|rzOVffxn!Z`Mdpo9Thg(h#-z?E{`EV)%(e0dOfB?F<{u2}zp8OE z{a2sQUnd;T5U+yb(_A8SH-HKUfcFXV^AA)1M=|LCuNP)wVEwNpOVm6SP}Xs;&Em)= zIUF-`K+0OWSgj~02tBNaL3I#8T@VYS!MP_G2!!FCf$%2JaCpGX08)l91#0o^=d>JE zliPnA$6l1GHB3cOvS%3#w`awstiDRH@piU+C-6U1UbwEV?%wp=_&$B~yzi%L#O!n6 zWo9Rq(knDU8xbwAXhqA}!sJ`OR(!G$6nQ`$T4tLEy`B;Ig<+76iJY1qL>~Y7trB@h znkX~Gu=V`V?{jZUkv5Ic8`NdW3@p%QgNB9^vabQbh6z1XYB*c(f2gGMY*y56^Cc&% z)EdTmnjvjOR8)jc_6J%z#&bi585tQDmz$q~-uQqx!}VPE?VU*353k6qDZ@2EMv5e< zk{)S}$1E<_)XmCixf4e$Z>ZS1l>sej#KNdqtfyp-g*{PncAA+{)XSKUxH}drN6dD? zgc*%Z+t_5P1B;B&SedIyY&J9Fs9P6nrPz>&2xFvpo}t6cdH=qgqDd6Hg59df2_%kE z>Lt@83hK9L^?H0JUP5;At=@U*3(@qj8JW1fNh7P7Ywirn8~@5TNbz|rs1+_*30uhHYBJ5pnUI@KNHS&&)@6|zYZLeya{1zm^A*4-+s4b#M95WB@6=BI8F}#1e zjc@V%AIYat5Fla#&CYt^C9)9Li|1zK62MQvu<@qq%?R$PpDxWRZ7DkT{PpaII6FIY zPlkgIl$e{P2M}{vaL0-i(CQ1Js|wWzmc0<{kMa%nxFx6tSnqc!zDaW>?3$4=IjOh* z>Y0`5LjhOm`OKy|zU?`&-{yzya`Os}Bgh&7>5p$i`B%o7#v=IE&@3+?X$ViXL}RQ( z!wiBX?Vh~msJh%-PcUJ(ePavVN;lQ1ZT zi|W&p88kM8e#(ed`o3b7!);gYCh(&B*7p?^W5lS@&{URC^QBYa_Pw62?3O>3^KyZM zC~*?%TbKDIhb}>+yV33RX!MYx43_+*E7;mtd^NASj%0Q3MB;k|-@prhbAA(t;EH>b zrG|uz6*M5Xw(f6z{RjcwEZhD=nHk^S|CG6*BsxJq$2P2**6Th%wk{viM@Pyy&p0r*A6!YcHSag=bkGGD^w*m zs^+>UWYpy<&D?|WqXOZU|4t7&T*zWhs~NUL4mBeLr4J+>SqN*IM`G{ceW#N~&t4~K)!@9hzpu?F{jyIgtB5`4o-&T*-N87jI zLU7n_G6P#jq<_ap2DSS_=x}ANsM=>&lf1Ka14P+HmdifQq)%0_uv{3T4##$z`v0kf;x4jh|6PaESex$-{V-ejr#K(Maohdwg*HcLg>LE^q-vB<@mQo3#rTU!Ao z400T~$cEF?h}m{_e?+Q1uW^lzM@@k66EJdA0MaS-h9mA$i(4!9EzQe0RaV}HfX@w9 zhkfSPV)C*=B-7!-%Az?~gQPUK?AU42>tny!{c1YpLAPKGsp^Ve0fAiJx!nU@yn2_> zbLXUWu6FU>A>MBkfEaZ2Ksa*V^KA)q_NgS;IMFDeTf#|9%M0K#kRYrtfa(v2Th3r? z*A!wmwYN?o9;X1R#TWoB(ljDlMfbZ1WoF@mhDiQ961CW4`KfFC-_0zg+~9 zWrhq0ZD3#T#uYh-@T#wJt<^$-o=j12esGtJp%o}Cfj+!57|>Lu-%qI@0p1*TiNVQ` zFY)J=%Zq43zs}}C$-ZL`N==$M3V&;%zjak5lpognXf;}U%Os1^5jk>o>r3?AZET%( z*)4Ay+~qBmpa&Komp!N}-xyhH=O3&YcC2ZV3dquFUD;_t+i*it#D3awe^Yrl<%p*n zr97Iv@i+=|NVq@HY-`Rk%voFrNh~<**U3tdFUXdzaUF(qdHv-bN)2vWCJ-rz^ z8A6wdlS=Ri82R#o@QUE z6Td*YPj5~C1z`M#*5Ush4)s5+saE;`K&T*Kff6v#kc6_Z04NPEO7g2#STg{=$cW ztoZJX^>Ym=wJd0%VxQw-a4r9RI699M5;Pk8_W33(Rw9$jVeS9o5W6s^(>dNpK}WAS&wFCy1B}tA9~M zz9oT*iIX6cO_C%s zW-Qk;Ha^>uNF+q*c_G;EN%Vf>KuA35P9!8v_hoZPU(`$uuT-Pe?O5?B_c4|(S|TIX zzMzSGx=R&X`z2|*1ziaV0`nMS_z^J}tdpyASaY`qVnt{iB{fj0D_@hgMrFmy44fW5 zF@UNUNdrC!qZv#wqN-C_J6*H1hG~J-inZy>VnDMdYJu2{vKiE7V4K2u?Biy@I0=0> z0#wH*9Sx|1r$&Yv9HKv3nRDqN1_rTXB$=`6af`3wAs)0|_oZT`*o zz5ThmAJvb5|{|q`xSF(0)B1KpWd{O?`u$yPano*Cj0nLXffdB6Y72$mDslthI z1TAR6VQbz2`l2ufdy|46jIKGLMTjL^&3t2Qa9>y`y7`egcX*!Eaf=|{rt6UJ6{Le?&_#@9Oh)ccDIrxT zr�^=cgITdK*l(mwFf3jh3Hh#E7XgGj!?S5l0Cc0trgGPlB(No&$@hbVdVPK$<%} zI;u1VG0ndi$Mq1vG>_bdI^zk7VLrTOf0;zOc2~4cyygY>_g;8RCh(iMU4lQmN-PB;x%zTbGDBpkV<{jM} zWZcs{TWXUZ)p;OJwm(poz zDq8TYBvCuY{P`gg1_p`>!iJJ^YGS(Z`B7-4qg}IHS<{9yJtI9Q-S?Aq$Re{wy3Z9t z9k2)w+Y1m$7re8_4+pUgP{AHjQ`}8!ta6C$SyHd06Y_PLoUf4RC@UC!CX^W)c$Fa+ zR&)TJY`5Ck{3+zQuzcQ7O~w^?@OlvIXfyO*^AbVq9tD7zW!b&CAh9vVD?E-e*dblS+PV5b10!Y@Wt;F>3G>!-w0 z@yTKwQzaq<_nZxcSV61ng;|VIKuo|33F2~C6u8X2=bi#HsERcDh;Mv%Q~-MeJ79p( zlmwenK*Ern^|Hr;?wJxzVJAvv)qba$h?;w9;~~bwW$OlPRB&yXg@55{vCiUrN@ma^Xf}0Ml?1rPAz z8yYK^%lsh&{S61Xu?((h;P>y-nSc<2I86c4q7l--_}IZ&Mn}N|C9dsKgr@nu^%qau zFgRaF>yw7KP0~EPjn|il^61p5{DQz5%n|FrHR77x3{;SfQ|#ko@je>6fl5B5op^QW zo}X1LRKrqwIrKajuw`6HNn&BEXl))i)RdK%YcN%!p*WZy@k_J>5QPIYXUJ$k(tve0 z0aYOFj1})Q@N=<+mo==?RpIN7;0ItSINS!;0GTz{aohgUdp2~vdHjn0+=&7VNl8UT zc8Q;R@6t820)z3$vIBRJ*7pY#@zmct3qlQ91R6iGTBvq@cCmrK6E=gB0;<{#8_+^$ zf~~#cu#+X3iAVfm zf0DzKTkJR7{Ccl~B!Sc%>$lJ)Bn-RVnldLA14-i=`UeN|@~%>8KBuP1nM4>MIt_up z#6A3@qD!(}K|8$SBXc|XvDRK&ky{P4v0v`KtXA$rR9`J6S$xdBb_E2s4SZP7$nHs?A6$F zGLSG1MP|V2DzBVfL`p+DXr$*VX>{g#g7Zcj=ZU!SjgOFMjl}4>9vtoaOoPEZdE5h= zLzv##>=XBbg!BlonmeFO)F868dE##LfP;B8K|7D&0jTZ>rw)N7)s~vJbG(l*Xuc^* zbNlpiq;zc(5&}0dD+QxS+K2g9-tX4rwtG|99fD#G_p*r@1LN_RIt6g6QwF)rNjSnL z*Noci@$Kw=)WH&X)2G1smG>{r~83hmf*WS~@jp8#VV^WdR>p?k3W-Mj-mTAp}! zM%S~AZuR(>cf=~g!f?`Jw6pWTLU!Kxc^lnw9ry!yyFT$Wg&Kl%Fr-1u(rItf8Ubc= z$n{7KT`(dV?Mf#E?Xa&aX-QZa_~j9RrHRpEX6I2IPKTgGXB(6rxU&AE<0ZxA5Ieb_ z`l8^M$OwvH-!5J$H^~@>u}XJzGM6gbbWY{0N?ijh3qX)`i`h+^6Mty3p=|<$fs>n- zAX&ISCORZ?Abc2lNJ-Bh>E_@Qtj9~!!O=C%krK6@j%)OT%M^BT(Uif7D=YHF8y#~} z(&MkRW=vRP-|E#dL~g8T7Z$!eN!L)X_wXZVXztO-J=)llc;GyLtPOp!3VAf1=fi0W|qMQ zv2wayRH@#?j}6*XUk(j<-s2b0)<{SMM-z{%c~=8mb}zrjxzJ^c2Yh7|GcIml6tbV; z%&z=BD3}zNo}MLjjN$me_@+CztXFi|L;H7=8G3s6j;8R~D$n+W=-EaNH+h6DdA9dD z1Yxv8_B-++_1YMBgzM-!4_jw@HHg0Va0t%)Ew{S&AlLTK!CGkRfNzV=R8zN`*^;A^ zWw6eTjv|xji$WnU=+8;5pB4FHH@sN3c0D1KkR8bFH^r zkBD}!DAFNN_U174c)IjNV4XlY9dd=?0K$V4x}<9aA&Y%?)hE1uto8N*@mLchnbusj z0|#D1eQXKlTTaI9eSCbNKDWLEk!gVIja-rrHt(%ID{lEOSZ2jI$$I$H$3L!cabMKb-LE z3lQP_g`_GN=Nj#?J^n);AAg$0LI*yLW3SGaxygPhJ>E#~Ned1=iPi2^2-JdEC3Xsq zH9%-HsVijex|m}HRf$IO`_1PT=jSdoFa0@*0#ka?G;$QSSjYRCco%D^;5`7`KS{i3D`0_u=(n>8wNb4O508v2P@z$gR+G5hQ7b0v0l20v zM6);fcy`xkkS3rlC#f+v$BS?1yaASW5~7IqxXWSgr*;oR>8`KCo9N{GrW*Tm>+X@3 zTAq_o_O97mT1|xK9;63x)u*ob2fRt18?nISv@9Rtq1Ye1u&QzmhwSPUEw0$(hNrhUG z(5dcZtH=^@sWz32eJ*i4Y?Mc~?r{@kbQ49Yp8HY8QUau#KyU2`IVv@83@LBe1(wl{ zHM&p^+xb}xn&moop-dbV=Zbf=G?Kc=SysoYh^X801GF1Y9%%GKF~!;xtmZ1}t*~kw zTPpcwNCK4CLpu(;1uS)0XYoNV&rP%(v8yCJsJ&MV>@vWJ zNaik{ijEx{6{;r?t_owKEd%Sd>_wveOQFjZKd5#hTl6Kn(OS~BFOQn^ldo5?49@UH} zoB3R^#!9{d1IN6Xts;vm?0W3LnX<~w!2-HPsP~*Eu|ugm4UR#HwvEIiRp$BZpcKNS3|R{5O8}!v#moGOlgdTF zCdA`t-F#tq0$%CQi?w_7E^jKae;)?K{w+<@7G+pSDJF9tT^RDhy|)4Y=E6B>r!LK0 zG#DlIHqMQg*2=C3QkfyEHzI6u4y>C1u0P}6s(zy+%*Oj<)E`4zKBb|N%}xPDMvK+R z?EODs7enTKa^W(oR<(LJDmAP5DA*bhpFLj_#C|Vw0KV({-t1_SH#I%a5+FXUCtJ;% zN81)=BeA+?P4s=}N~0-Qmoc3II!_EO-Fe}bJk@ClWg2)VBY$ij)k3YRn@PtfMwD&| zu!zevpkRA=-kdQ`k)Kfm>DaX>qm?4-QYTA3dO00~Qy%n8R~ z(~@F)ycFxV*RBzDlhHYG>ek<)tLw2`yvF$Fqp@Q$*zWvMTU!0YHn)}6+LW?N1KVXA zPva?6?NwjR7ZV~xHADw_FUBX}0AWK8*7=%v2f70Q+g-4m#e-wA@BezVUV;0t?DX)5 zKo*-n_a|I(^6q>yg=%$J)Ip&7BCyugJ7pQU$jKiWV!w|+d2itfdu7#luKr4cce4>jQd+RRliJQhviIe zdd@9R{I*cTfna!KfLcS4lAYK=Iy2qzihrz7lDa*vNvj!H)06>aG=X?9u5ky!D0%cM zXNj#e`8n)H$t)G*?d`HMB3U5XrAsL3$hk~GC9xO*Qz94KKa%cUY4MhFSYl5rfjz8j z=J5*Nq=g{yTQjxdT0{_h@ICO?RM)cF7mCFtmY9KL05u6?mh_AsInd4;#|jFz|3!L|@4*Z$6_BfC^Cso~l__=k7a1Xjs799Ouubp$-Qto#o}+MC zsiDL2+?XDK7>OLR6hOG3zG{DO_wOO_tb{(Io82yzua6fLwBR+1NO4c{=av7v*@Kac|Vl-(fr8 z&V>+7WUOJ9;=ojsm^|8GEehL+K?6q#8>3nrd}IE^>r3%+y-|f(dw>R6r-C=1s>Hg@ zrEh5c9y0in=txw6?6KW;_lTU$SR}v4aLjR~VB6zl38lzS9djF=Y96{L^eaPU1)7GO z9JTP{=BL0Iw|!yk&3cE^UCvt6!Dtn}Fz*<5YTqQ5tBasL(RK7z>m&8rDT0TbY?R(h zj?`XbBf#URAc~?I>bxDyRv52P)<^IDQK00<@}zq6=*oMXuul7(gU4VsBo8O)m2;7< zKI#F;-7%*Ndc#R}zD{r5ty4x>$m=SNk#rSwLR~YShvQ;QK`$08tJzDqzO-%9ux2#q(4&Vx;r%1nXYa;h60(M@m!&d+gE7C0poWRbea<7T4eTPT`*lPy z77@=xt2~lI?zH%w9nbSO+OEtnoEe!rW7)&^B8qcaWP-a@0#Sj4$X{&>%<0N-fSpP- zIIS5qmXhG5uEo2!Gjm2IZT5&+Fo%v)f)TCSIGYA?*~)pK2cFfi8{gwBo{Lc~;a{#$ zUUO!;JG=o^z@y8*3ESEZM&F+bmB&*(4VTZCWUAJ8ZRu+T_1L#b+NVH9C|lew zyy*K*fD?2OKPk4yE9~%kE*<|z$e7HXPjJg-1#q5rummWC(5+qGKuWr)>4^dt&u&-% zA8$^Kv<~-YOwM{SxC}he%V;GKU6vYTmFfG z>3!P%}OMo)-#P&<9sQEQ6hv)F=sj@23JPLhYVrwd#{?(<`&$D;<4>KEe2 zfMGJ@TxgLj7o@I2&bICRT;o*w`xAnrc+IeG+uXk2@%8o05$?gXWgFl{9a>rJsn(36 znU!oG3y~pHCtRV{?AoU2H~=|s>Yyx84w(`TmOn}|L2I5&B3Esd43V;aMXOFXzAUd} zGEbnXZAkLOP9=iTVMDmpT-yYVDlW@L-GYajO^a}HB6x-oZ(str!5?r#F#L| z^g$f2l6Y8(5*F?6t!VWQ9k;nOFchp|LIWWLZ3&2^FvWg=X+}Q`h*$#S=&4#(E0f%3;r< z|583G2F1uiDMQdyERF#4z$l7OGa5(GRE@CgmoTIG$#>B$XK&AIx1G7h>AkI6@7i*T zC*j=cirE$4u1}BF8TeNKu#cPK_dO@;{-K3JIt|jI2bt!>C;Cf_g*etbL%8j`HKrn$ zROC3tc5}%{jOJmD20Bt+NpY{K17Sk$@bJA7r`9k3XC1@VDg$L4zj$ucIyT9+f+=-K zZN+xOel7G{$t#g%iK!jUchU~@iXjs%ZdZie1IQ_~>67XsZ%|0sJbGlhkLm~j^d|X`sD^+Xj zo(xTYRlWeS1heK?&OVayy(DK%p-98e`z4c0dxZKICGILnsb-@4w;sOe4azeJm={# z8UKf%pjsWmUCE?_mw*_#Oe8X$>U56-FqwkT1O?EyXW6tlzzOQNS{Q}9}^3D3=Vmx**7iOCs z?*|)^70>`*Db8Z7mw+k$m!Et@cqFO!cPB$x0n*NhQjYvs3JO(>PP@%HTU;A|ztl{; zJra#p`$6!mE1;7#qm$x2k3T7uXwNAzxO_`yeye(Z%cg+)gEkk71kq8+9b-J*LR$gT zjm?fuEoCtA$bON8FrD4Zmf6h>lrJ=sECIajsWd2cTxw>&*wJJ_IVXr}de33?cD*_C zvqPNx*mfW92*SyI>;18P3mZ2!lOQ=ljaD5$xmYZc_#A5C%*+whIEF8&5x>dy=dym& zb#}MGL1(H(hhcufn}SV-c)#SKX#8s`>ns=O>-Bb1IHBrDI*8Yla2EeD4rI*G7~=u4 z0nr0RBhs3ml}IZdXH3=@tpRO4l$cOLoG~H57~lH{o{+x*o*^MxJWiVwhStX(!4~`^ zJS>nQGC!xzSrCRPSwaTe(4?Wq1TVuGpPKt>x{fL_k*u<`Dr+MB0#**T_dSh_kg&i^ z^W{*E$JQqR4FlzUXDtd`#V-p_-`gcz0(6fFI~LSD*|bqQ^j7i6Zr^AdM6+in>h&0k5(Is?s6?Jl-YErUWXt-tmS;!i>e2P6#Q>-IxgWBi zqwz||Px11R1890Bxw9TP!!1MZ&;HScu3^#NJ7KsLJ-k%tDb2)~usnCTLVt^HX!dg( z^1rbXqyw}wt@Wcu9$(skc)dVc8mO7ez;lY(GDgao)1usxgNhj{C*I1(fX70r)f?u@ z0Nj>Q`svXZ$haShw;z}GgjvwJp}iyJ7E7Qp!s*D3Xo=Vr-RpWAu74UJ)Ntxlmx5gI z&bc?jVccCI6NZ280oz` z?k__K4h%oTTL7oH^d-yj4_xpe@*Hcw?2UBt9^Dm3O)nfGgr-YQgu5H>;qJyae>MEY zzUp*>WcerQNb?3X#QMy}q+;9Nag-UT)QN4S|2Az|j~yFZwse0nwL9RkMpi(?ZV^q1 zMVkgngvJUH!uF+FNUx>l_dJ?0tQU1`ET3c8vmokRoxEEA5FDsNwVerqEq1WZmgJ-h z4O3%kz6`TNO3Y2Ci&O)I-f6RH@4S*_f?e`bpCBPP!Uv58*wc@(vvmYXp_o!?gG&UZ{D~lAJ zs+68Nn%%JsJDjI+?yBY!X5bvVu$brd5v7VhFd}|9a^XJpHMyecpd()jxh8`te=_IA zsSn%wPpaeC-k!To=~yLvhEaDDlEEdbR8n1DT5a5g)tU&DfhWv@VBEcXP0cHw9k#*5 zAaW<#Arq6VCD6+-;6$dz3{StPq)+n}temk@$ph0{2)9|+OC*y(O37?g9~sb9z0qVb zXoIDGaTz1#>U>z=`CMhbcu0j?clU)=@bn1~X_$kCT%;9|UUHznHCpamB!M6#F~VoiuQEvl@cm7~;5U@_eVwLREz0smyFQ zE)(%B$uiKRVA$7-a=U@0Sk;i%zB0F6hGi`B*dNe;?BDeDz+hl#q`$ea--R^`i$rf5 zrOTM2@T(My{AlVWuZFz#v&8r{t{|i-Y}nSTwgxpXJ!SU>JZm92wvs9;p@4-O_S6%j z$yiI`eSDE;U4q~58I0|EBSGYHdtFtZ-wty9!Z*kh<+K7Xl2b>+^r-5AIRN%dJYd&% ze4lA`eKfs$Th{Of70(*dv>sL$!{ovl>DKCI6e3zahF2Y1C{TmU=1mAGT`J0M+Xc^V z-k)!YG6pJXA&((~GlDcsY!T7W^rLbcTE|n;Pn?@<`KCf>^+pQR0(%nGB-a^2J|>F% zYOdzzpffd0f%@noe298&$eYO+b;H$KQuXQ!5$$a`WMgFGPOO|=i;b^jiXK^d{Ne zyoHR1Vv*YMQSzu=#ZJ?W{Nk~BAgWiy1T81SZGCO?9iO_l5u{Uf4iIP4kG&gy9vAOg ztu&st?u5h&!Dh)snoFaRNxW3yqwdmdW!Aw-$w29H%>$&NXiCw%dW#)9URihHY-|?~|2f$NXYMi+6{FP~2qb%-Z)TFmhJ= z(}#_cK$FFFNhc4T#X0?#9Ncyfjx|7#h#mv^PjIx$uQCm%m$l9|&j{_5is-8%&DbX3 zRxv?2Ihkl)FbG@^} zoG-{OJw6m;n!IBUQrv39pU?(a6E!qeY?v0-Lj*kqyRBazo-9=S*d-?YrR`W?`zu%{ z=f?EI1ukdIL|Ll=qoVr)=BQky`|@xp2@%EdB>_np6otndr~RoG z*4BSTXG7^hkj`#48}!hZ{$2pOk`wGwh!jxI2Ttyh5^hE~EnFU_f7@lOmXT_kCHcBS zbjv~?Z3iUYPKn%hJN$iKW+W{s1;$5T9FjPIk^z)V{BK@TjK0nKGS@Nln61LX+)My5 zFBSpaDbXcR`A6pEO4OoDd`BG8vxbLFyBET4DW?#P4K+qaQb4t`tNrV6T%T48%$Pi1 zRS)f5Ka0Iq=e25eOLF?kEA%9%pQ3U}OE*{6pC8BD!KpOh4PJ8+YL(EXkUPPb0Rsu~ zvUeIyh3$W2AK7fbKp3M7nS^iG1ECrZiZB1=WqC$duG_e1n5pZ~^u_ADK~9xAfpWLs zC2FBKU(XZ=YYNC7W^EktJb8L{Nyp@>7JtBfO9iiAaUQfBpc#Nnnqv56#nOu*$uGfU zP!{sXqNbj(DT7URp0yA_#n4(C_I;=76WTy*>O-7{wUBj!r2a{6LCbi+NiX)aLhmi8 zD+c?%`;NWcvD54&-K=66vu_M|4qVF#0P`ho@odyk2_U;N>`wj2Ab~5Cp%45k7Xj79 zKuwx8;#V_ZuYJE%PS{#sfj?DwH?c4uT=}=#{rTbrEEFf2mCn|op^JpSlsULV4SU#V zo^{+@*abFl(WKsUtF5&v|6i%n=AuLX8M3GvI8p(9!oL?9WY;%fRF89jEzP`{!O^Dl zgGF1Ilbwo-Bn7QwN$2NW$A%Ohvul}BcUxZ`LZw1-V_i)}ew7`4u@w;uhl%c%9W7;s zvwN>6e>WIPnBHI2mO%%_m|SPSzkVN)KJAJM1_LeoPnCD?vgiz9V%Wd}2?ajW9rNW= z^OB7JQl3{A^#MY0VAlD(rv_)30)TMpvo&WI(13xfuT1((TY)oSS~Y1<<%H0)T&l`Z z9qS6O2K(}sGbGRMgIH6=H2#H=U67=CcL65@f;l`iT_2S*jU*CyX&kBq5*CEf%r;>% z#LL*xiP;di9>9}q3MxBknW}F`=RtbetJkYQJS=ZQBvK;tJA{d-YBfi*Lgvm@yNkk) z95d`GYZi>(mICS1&h33d!Pe}AhYR=|zp1+d=jd;nsCo1@w$L?l=`Y2eFo$!d&Ztv1 z2Q^!BA1TU9c=zdwxhzWB#8J(?tpt|-TpkI5#DVNJ?{RD>gAnfjoE$ob>$Ri0yLskE zBn=41?Am`XvwjI|-j((W-P&^YL}YN9y);1g))gAnT?gr*C|^8zX3rZooZIiIBIkSi zi>H-7s_lL}{iNaufm|M0T5>f5r8bnp5e1Xrt6hVt2qSIsS!-&@Bch;5-HF&qBG$dV zonVm`%B9 z=12s!eIB@*xkzX^n3DydSC?*6vY=Bf7--ViOtKVP9L}`oiaO&U)s^LGeJU=yb`N0Z zAmgB=J|S7QI*iVnvMk;E>V)8s4f6>hV_IsW@J zl&`Po42n|x*-r(!9jzDCRlvX{Mx*+#0E%JV>R_&TaDb^amX&RF->c%&`NtO>yf=3c z!+u}s`F zr()@fuwqKgCA~~huRv)($%$GpMBm_N~oAYki&UH=cl&p) zuiH1Ine{FL=1VPjtxL@Q5w}gTV|+Ov%xB%4%kX!=UIlFB=D9C*H3alJoE`Bsn+@_QNa z$m;JnN~O1GAakJyN?~@t*{M1dsv+YvFvL0@XiXBeB~pmdh^9)tU~M9V(-qcs^G% zJ!|PV(rzz1>7P4YPP-hxpPi>U?ba!^bdl4ha#8VT$QA0%$|VZJlFko(?i!k=9m0pr zB1(Wuoqa^)0V3gR$Q%(FS3)vR#cYq>oc~(Kcku2K(CB|e`r1ab+%%|PmhX4&*Ms~Z z*1IUCF3;F^ly6fnfdkI5@J8M31nH>)yCQz+ zQMiq{c=XsjEx6U*<#RIrOWkX=1^xkwcS_bqe+`7j+IiFYH4A;<&IbD$6TmxY|5PV= zM&5!EMo7+-g2_g$l~WI%!e7NzPdA$0tOY@CcrW&3?zz=`XIGQ!6Xqi_2SC>FQB(Ai z(mW``eq66PS2GdM@(a0-jOK>`0R3XfwU$4jc*&pS(UxS?tdiazaTC3T0@=f&e^c=p z>3f=l9dXT>3RSbz`ji`yB`EJe#1!<)01fJp)m7U@b1Mvn@+ybF%O#Bn=yf@B-V7PWe1+4aLd7KXt~&wCm|wh^VvOqGSMGF#X1D z%^Qz1{VyJDW|yt)ekxtA$CsDh0ZlBkZNHQyj4tugTe1zCEyV;|im(tVz9+}mR{&Ao z9k#SKx?e8*3sk$%qlK)oy}2M=T6XAV$IJQacsODifYNae6)?`}9s)K@D7|{!{^5|i zFxkQ;J1DTx3Sq?MXq;7dxX;~^Pui#T-1Tm>&+i*H9eRX2K^}Axx)}Jr?bP+FW}Kht z_O|a0RmkFYyBTj9E&^Kpbh1<5;uYsyC&mNB?0Dt#^&Chk6Tu%yD%IPy2A{-%qH^l; zB~|qNq6KvbkuiB-*@96ydc(HOdTUgiI^|}OCKOc8<5Rd)5A8b+%UN?(i)60WDG%)E z^*<+ko=@6GAW^#p0I$B+LKF^Zb4-C7Lwijp2*dgT34+3U=nDLtwm@%jiK+%+#0?AI z9aBDY(@%fT7zyN1*%}7sX**_ht`HVT`$#RBM>`$4FDPOh_FHe?Uw@nu!A`l6y9~=B zgWavy$_IfJYv8Z5)^aar}nV{KC>B3Ur*Q{?T8q%6A z;Gzgf;ZO|^SF00!K@epx-!*9Th8gFyZc)Xxw zi`!pnj*j!TMT7{>&ZHyYVhH>7P?mc&7S;(J&WHqrR;oNA>XT-CdA~~mIsNT=l_YL! zM(0Bl>~dDh!k)L=+7IKS;`<}(d@uRBI`lkwSs)w`N<$=Qa5Ugz@K^wPi(r4VcYG^L zzs0xTbdt3OOQk1eh4C{t>u`Cc33V;5xt68-y5Mr_jqn!689rAj`zF z-%ou7g_d9GHOoh}WF6T9?72@2-4~t`^WB}hiWhP?S7J}POhLndFY3*irhD1nsH2=0 zxjk-t;YlfJ&Y%$;1gNO!sFDu6AX)-DXLNS|B<;CT^;o|uBDO!a^WvH$Om~=6CN+UX zsUU!0%v9W{>kJQ@xw!}5l(_+*vMSVA2>!q-5H0hEMP-E&i&Hi{SUy9%Qs(&mA_xUS zI-05%ME30fz?7?#hwY=Ia}Sa^C@?<$L`X_|8?HlV>B~BE@|VBzzW%G>5J=ZSxFrUT^!y_7HT_AE^vdX6#z6z3nYAV z@=8)iYQFEB?FT@2u9CXCCL~DQru-Usw7%2Q1_JFcPF4+t-kg7Q$A~o771+^3u1C*_p0f`V)nkXR*Nc2}fS)V+-Iqv-102!NgS zDSB%4hGBVS%Y%Ei5mz-#ie=@nVe^W*`=Q_HFWhXMIl_MfO8+4n`2P*U49mRw=*I+v zfCtIZk^LY5^8J7g|J&^UAjkgKAdH^ze|AsGmC9>-!>a1#`#Z{waB>_RE?f|N|Ie8D$pmc|9BNB{ zV#%#k--Y)JN>%)SvOExGr}n>xzYOV+@lo^=J*QLh8viD!^VNR8VWE>!YM-5N`snvK zr{A6E(COTyo2S(Dg>j^TKaQa4LrRDH#QKAKd5n2s8kM*vidxkjsYj?)4h*h}VmwC3 zaC|zWn!32ZWx&h*!Zr#F51AOBM~j&Hz$O~Z(K}F*3JeotMh2~8la86|Gd6cbZCQ_` zO%q!wr2#dr7@NMNM}c^pBvX=Vq#BtYm&NpDKa7% zF{`J&Wl>l6SD6S3VT@EQGjc|f&=FEkDb~rEFkeGWqQ0aJI{K~~!#;kYVK#Cwa4`Q> zQg${}Y??4^re7CDDxBA3bab4q_+5EgrIR-QyGBWku4G{F&)W)|;zwd|t`3?KeqM)7 z4M&9xl>jjf_IMw58q6WW7_Z`NC3}?x!9XjEmizxTc2-eQcex*McL8Jgq&?)%R9);Z^Puf6uod-JUQd)MzlGIero z9bRKY*%!e#WcVZ3%FUY(&+Va@`F&lTJkJCe6Dn@pR->x5nv<1a^_<2^lVn7%{Nr>T zrR(8y$8_~qS46Ow-1_E4yV9j3^a;yfry6q1pQY^^zqGkFN`WQF@uQ=hpc@l09$LTt zv>u-_lr|(@SvF_MwFhYo148ji9^_rCGoi=D-L}z4+72>%W

    ZV4UOUE#TteiMHOJNZ(ufVnvD%AF`g;Kl=-PAQkjDTbwDF)bxmqCDVj(a zcQmD@{|3uz-mz$hj`d1hhSBNwEfSa)j8G5qpyRwV=yko9R>KI|7~=l)`eKaYS`F39 znu1k>O|V^(VBuIgwCsiz=Qvmgt((Z2{NN3v<|5$(J)4ljc#sS!<~b4Ywd*$b+<~Gu zYY|kpD0zHXd~Ii-uQo;7SZCUix6U74w}G$Rk-A>{#Y7bJzYb+4k)f1U5Ks9ISU#m^Ei8c>qWz*BtpBm z=D+;ec>iGYm~O~Sq4DF1>rP1Wcipcd`X`TNv4p5aXgUhEa-X;9Le|X1&By(i$EqZi z-PH`S5C()fc$AOSy?)(c&dlg4{%CS(&N#k|!0s3!&*S#n-mWq#K~%nHTmdI9pWbfH z5fqgi!440lMG!vL!<-m7_n=g6g-{mb_zJkZatoF9OaB!p4ONG^krEV>3fLV!_axu^ zthS5mylJ~vmlL(X>7|6|swS0Uezi%e^P)-(ig5te%K#U_nAfGAa-(TrQ?*GGO$@>I z)08iu>V%TYESSWHlNSQvJf-2*Xx8Ul1a3CuZ5A)?M9DcUP*u>tK|1yp$&Brr6c@QD z=8_*#EdII>5|CQHZJkb5u(@haJWOF=cL>uXTnNfHz7%fb$SFf&l8v&+AJvpfm7IYt z>*t3~XHKs}=n{Xrhl8-b#aZ!X+H?B)4m09K7p{a_KE;EluJrWbkrMJ-nH5paK4Ul6 zh;OJnEPnNPii^hoiRqH9yn=|K;OcmQrFl@WFoBhs&C_6I<1`M?t(Q@DinyH5!+ny$R+xFYpdd1cn_G3m4L5dn*K^`kP{$PE}W zmTS`0sRNj}l67wA>h<}rNPasJcWCk7B5VG944}Y6ZM5HuiQh*;ri1}0wfJnp7cn7l zP4ZxZr+pDcVEtw`#(CIajVZ*-=?aQVv9*B~u~@OAlaDYVW&-|QNC2Ta2|ZFO(qOtJ zg{s^=11QRNJ)uNqhInP)h5g8@l38 zOS@982Vc3JNgIdbn0tQ-plUW~t^8Q&ZH{+{t&WqUVG0~FvV;FnO+pjUBD&NQ)?^{h z!`jmGy?oTW<`_x^SB!*C>vINrJP=*)83ZWP4=#X`- ztyasJ9kN=*__XNt_p?ExqqjNc;vR5WF)#r!7xBV!&S<~ly0q$jD%Qfx)B`w@P*z+G*25C?C4IrPjmN!1kRCMqpbYVGuz)#_-?e zo;ZeN^?Iq4i`gpbAzfg%Kg+2%sja4Yfapm%ibok*Dwy8|_;JyLsabe>RCrWq_b{yF zc(}#*b1-dqzhWS>!PX>9JiC*&L$!w3;j+({TFngebb@UnDWe;uj_77GaX^e#Q)XJ4 z>mrtnC1}UeYDth7J5N(ndC>v<9Ril8$zDHIP7#`qvGXc@-0aN!wN9I%!5y-`skdMG z@E+8xE%Vn!zj6Eqg#Wdv{y?a({SA?Wv=dSE*jS`b!ne89zT?Ge*Ig-C)RO$;UsuLtib$sYFrCM6J zYq{s4L42uLUOeCrz0=W|c)9xS#$Al{y9xadv?u!Cvfz>xZg< zc5F-C528alUNf2oQ{qSK$#&XoVJR3g#VTKh_&dBRs>hNmeAu*;nZ8H6C%LF`AKxsk znZ3O<4Efer>LWB$f7+^2(YDWDwQT>%exEX364_Q2f4Jk5O_A}@UEOkNUOeSc0|~Rd z#xlBe)rc)g3Xsx%u(!*K^-9{(j~yN>{X>#M-3djju=MM<7_5dbjJ1SW)eQD|RTu2T z9yQEmY;|dqMrDSG7$kT{R)Da0Ocsy%`GF8fnW%y>?S4!>-OhZhn_+mIqd^JtnQ*(8 z8qGSC#R8Dwx}6=E+r-`s*=1}^*HEW^HRtYZW}hh)=O{a(xQN5)rgTJDvx*0=#5-ag ziA$q>O9HEh-OJ_Ck1fjY_0G&qxex`WRR>yiy1pAPOOK?Ek>eVgb-y_-?`Ye4UIIo) zPteInLu>ccwhcD)immWLke?L-l)LzYlzz0+x6BRmtKpxcPe%`T8<*|6-X=@mHMnYN zE=s=31x9L>)lZ3{pUiP^XpJrljD}~fkB!v4!JpNIMN`y84E(qd+|IwIuy`XOE??u@ z+r#Btm-{TewUEV3sIrsgrc_-b3~n1OC0M{CLGsC7rfxyDUH`>qRVo-4(X;xKAyx(< zTR@wzK&ckhKQye^(BnZ8d+9)_nk73^dtg{=v}O9tWh87D1TZpha!94Upo_D*wEZ@i z^yqtt_cKYsWP<2Z8_07cQSrKKW|3$Do@@T;P35uP z%;JRNQ~iC<!57$p}o!I=ho&#n?t zpesvl=Vs%%DdWhq4?ESQhp^zK!8}QdLdH|3WY4XoB(0*N6Xn{a-je`2rsMzC&$JMN ze+9|mhtud#C2b!tFAuWS$3otwyJUQc=Er!x6U>!8X0E=ERz~`aUp+3KNjSJD#(yHr zn)7_cPT(c7G^sHbx=}j&X+y+A*vZAMzad%K5Psuj6lQTmrr+j$C^YN5}ODq z$8x1M+TQ*SL>~luMlW;9N@rOesM**!+(X(nrHD?Lek#bWa~eoOE=2>J+)8o76KzQ^ z3Cx#sz6S*3_#cu%e<EVKw5Oy|L;r;rO#g@qAkBz5%5=pqC2k(s~Qh*c+zPQut@!hPB<*rpg0u)5@@ zWv*yyKP|9tA#iux)rpg=8QEH~x&4L`-qZ&Zh%xJ9I#gOje~L82jUi2Z{vLIpxJiVm zOj5SR=@L74G|kB6Oiy7on=O>dm_~tp32X9=-4MZaXmk_n|H@b0WmOCF@iAVTtm|_TOY(oy8?ty!S%T*0P$01E1OF1|u|8u}*~X*q zZ8YkE+()0@Y0dW*fu2Q~wmmyP>=v#}sBnUhTpTDTEo zr)Q8o*CZs_$Mi3T;DEcNDfe%l$n!RdULZ>6x@NXmUp`O9#Hf|;&G+-B0H5gL15+D$ zI5XkU{NE~yEflP5kXIYO{29Hwi3-*XusMI3O4*s<&iTEPRhKFYa`*SD z1^yvv+R{+Rf=Y4{!U<0Jt};8J9WZmWSz{IX?17Q^Ovd<{8dlRHC2&P_h>Q5K@85LkZ z27=9einIMh9=DQ?d-7d?XIY!P6NKMCk_w9dCk2V_3s{IXs%Ts2%} zByx;qH6kA(&~y8dF|sk;IbcKHZR|GdPvHH0C=(Jq>i*MSdl%~X!3az7PoSiw50;;= zyZ_@wrR4s)8+*YM&KA9kfB6c96oOCwo8{64jJsEol>?4s`ZIban+3FY9jtb<%*yom z^2?#DpdY=Q1ODv^eOprr`XBI@=fCr>zSajzZbca*F(E#I_k57|W<0#Ye8TU|ECq!v zErcLE5I$aru61p0s9Fy_{Ba)ROhW0lt8R&=y4?Fn@!@YO^mqymO%}<9Ckx5 z>u{RvD7P}aAc%{}Z|Y#LmO%bUO7|%&&4VE3-%<>r`3!$!CrPSc!iXN`envu^gV6U> zL7G${F6n_>2VvwprntpG0_yZ24szzbh0ATCREzP%+qy!s)Uhw1Q4VAo!a=F4yoq@& zb}r7-#Bg+L-BzdnY0fYqFK<`bxn}pYk wcdl{0Dgv+DhFo8E+Djs4FgW^u4%7|y-WBHgS2mB!58>m3;DSK1>T\n", + "Index: 272 entries, 92 to 363\n", + "Data columns (total 8 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 date 272 non-null int64 \n", + " 1 ret 272 non-null float64\n", + " 2 DP 272 non-null float64\n", + " 3 CS 272 non-null float64\n", + " 4 ntis 272 non-null float64\n", + " 5 cay 272 non-null float64\n", + " 6 TS 272 non-null float64\n", + " 7 svar 272 non-null float64\n", + "dtypes: float64(7), int64(1)\n", + "memory usage: 27.2 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7a753beb-0dfb-441c-ad2e-695ebc064bfc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    countmeanstdmin25%50%75%max
    date272.019857.500000196.64285719521.00000019689.25000019857.50000020025.75000020194.000000
    ret272.00.0286080.078468-0.252154-0.0167250.0358210.0769140.228211
    DP272.0-3.5530950.404929-4.493159-3.906620-3.498891-3.279654-2.778536
    CS272.00.0090020.0038750.0032430.0064650.0080440.0105980.031668
    ntis272.00.0118310.019359-0.0518310.0013560.0154150.0259450.048391
    cay272.00.0021890.022592-0.047607-0.0169870.0077170.0187970.042897
    TS272.00.0167100.013993-0.0350000.0067250.0160000.0273250.045300
    svar272.00.0058220.0097210.0003700.0021420.0034760.0059510.114436
    \n", + "
    " + ], + "text/plain": [ + " count mean std min 25% \\\n", + "date 272.0 19857.500000 196.642857 19521.000000 19689.250000 \n", + "ret 272.0 0.028608 0.078468 -0.252154 -0.016725 \n", + "DP 272.0 -3.553095 0.404929 -4.493159 -3.906620 \n", + "CS 272.0 0.009002 0.003875 0.003243 0.006465 \n", + "ntis 272.0 0.011831 0.019359 -0.051831 0.001356 \n", + "cay 272.0 0.002189 0.022592 -0.047607 -0.016987 \n", + "TS 272.0 0.016710 0.013993 -0.035000 0.006725 \n", + "svar 272.0 0.005822 0.009721 0.000370 0.002142 \n", + "\n", + " 50% 75% max \n", + "date 19857.500000 20025.750000 20194.000000 \n", + "ret 0.035821 0.076914 0.228211 \n", + "DP -3.498891 -3.279654 -2.778536 \n", + "CS 0.008044 0.010598 0.031668 \n", + "ntis 0.015415 0.025945 0.048391 \n", + "cay 0.007717 0.018797 0.042897 \n", + "TS 0.016000 0.027325 0.045300 \n", + "svar 0.003476 0.005951 0.114436 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Descriptive Statistics of the Data\n", + "df.describe().T" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "beb3b6e0-76d7-4584-b260-941de25b45e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[, ,\n", + " ],\n", + " [,\n", + " , ],\n", + " [, , ]],\n", + " dtype=object)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAKtCAYAAAAHJa7QAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAebFJREFUeJzt3Xl4VOXd//HPZCEETCAQawgEJCAkAdnRWqBEpSpLESgitrSiVEtdsBCLhhYCqRqrGCldoK0rWkueArLEB2pFKZRaRZBFHLAl+CRC0CRAMkgYksz5/WEzP8ckkGTOrOf9uq65dM5yz/c+M3OTz8yZ+9gMwzAEAAAAABYUEegCAAAAACBQCEQAAAAALItABAAAAMCyCEQAAAAALItABAAAAMCyCEQAAAAALItABAAAAMCyCEQAAAAALItABAAAAMCyCEQAgKDWr18/XXrppbLZbGrTpo2SkpJ02WWX6dJLL1WfPn30ve99Txs2bJDL5fLY74033lBSUpIuueQS2Ww2dejQQUlJSUpKSlJsbKy6deum22+/XUeOHAlQzwAEk3//+9+aM2eOMjIy1LVrV8XHxyslJUVjx47Vo48+qv3793tsf/78eS1btkxf//rXlZCQoMsuu0xdu3bVsGHDNHv2bK1atUp1dXUB6g1agkCEoPXxxx/LZrNp5syZgS4FQAAdPHhQu3btkiR94xvf0IkTJ/Tpp5+qrKxM69ev1+WXX67bbrtNV199tUe4GTNmjE6cOKEHH3xQkvSrX/1KJ06c0IkTJ+RwOPTb3/5WmzZt0pAhQ3TgwIGA9A1AcMjPz1f//v3Vvn17/e1vf9OxY8dUWVmp7du3Ky0tTQsXLtTAgQP1pz/9SZLkcrk0btw4/exnP9MDDzygzz77TJ9++qmKior00EMP6X/+5390++23q7q6OsA9Q3MQiAAAISsjI0OPPvqotm/frkOHDmn06NH65JNPLrpfVFSUbr75ZuXk5Kiqqkrz58/3Q7UAgtFvf/tbZWVl6cknn1ReXp66du0qSbLZbOrZs6eefvpp/eIXv5Ak1dTUSJI2bdqkrVu3as6cObrtttsUHR0tSYqJidEtt9yi5cuXB6YzaBUCEQAg5A0bNkxPPPGEjh07pgceeKDZ+33zm9+UJO3YscNXpQEIYqWlpXrwwQfVp08f3X///U1ul5WVpfj4ePd9u90uSerSpUuj20+YMEHf+9733EEJwY1ABFPUn6sfGxsrm82mDz74QD/5yU/Uu3dvtWnTRjabTdu2bZMkrVmzRiNHjlRCQoISEhI0YMAAPf744+5PXSRp9uzZGj58uCSpoKDAfd7/gAEDAtE9ACHgjjvuUPv27bVu3bpmfUskyf27o4gI/jkErOjZZ5/VuXPnNGXKFNlstia3a9u2rf7+97/rpptukiQlJydLkl5++eVGT4vr2LGjXn75ZcXExPimcJiKfwFgivpz9W+99VZJ0r333qvrr79eH330kYqKitShQwdJUk5Ojm655RZNmjRJJ06cUHl5uXJycpSbm6ubb77Z/cfJypUr3b8ZuPXWW93n/X/1B40AUK9t27YaNmyYJOnvf/97s/ap/6AmMzPTR1UBCGb1Y8XAgQMvuu2gQYOUlJQk6YtvgDp37qxdu3apb9++evTRR3Xo0CGf1grfIRDBJ6677jp9+9vfVkREhLp166bf//73stlsys3N1fjx4/Xggw8qJiZGkZGR+s53vqN7771Xmzdv1po1awJdOoAQVv/HyvHjxy+43eeff67Vq1crNzdXnTt31pNPPumP8gAEmWPHjkmSOnXq1KL9OnXqpMLCQqWlpamkpEQ///nPlZ6ertTUVM2ZM0fvv/++L8qFjxCI4BPf+ta3PO7feuutWr9+vSRp/PjxDba/5pprJEkbN270eW0Awlf9t8yNnfrywAMPuE+/7datmxYvXqwZM2Zo79696tu3r79LBRBELnS6XFO+/vWv6+DBg9qyZYvuuusude3aVUePHtWvf/1rDRkyRD/60Y9kGIYPqoXZogJdAMJT/ae0X3b48GFJ0oIFC7RkyRKPdXV1dWrfvr0+++wzv9QHIDzVfzNUf37/l/3qV79iGn8AHrp27Sq73a6KiopW7R8REaEbb7xRN954oyRpz549ev7557Vy5Ur94Q9/0Ne//nXdcccdZpYMH+AbIvhEYz9Qrv+U5He/+537N0H1t7KyMp05c0avv/66v0sFECbOnj2rPXv2SOI3QQCa59prr5Uk7du3z5T2hgwZol//+td6+umnJUlbtmwxpV34FoEIfpOeni5JKikpaXT9rl27+EEigFb7wx/+oOrqak2dOrXRb4gA4KvuvPNOtW/fXq+++uoFT2/7z3/+o+HDhys/P1+S9Morr+gb3/hGk9vXB63PP//c3ILhEwQi+M33v/992Ww2FRQUNFj32WefadSoUR5Xi2/fvr0keUzHvWDBAn6oCKCBt99+Wz/72c/UtWtX9yezAHAxSUlJ+tWvfqXDhw/r17/+daPbGIahhx9+WAcOHNCUKVMkSefPn9fu3bvdkzJ8Vf2suF//+td9UzhMRSCC3wwePFiLFy/Wnj17tGDBAvenJv/+9781efJkjR49WpMnT3Zvf+mllyopKUkHDx5UbW2tPvzwQz3xxBOKjIwMVBcABBm73a6HH35Y1113ndLT0/X3v/9d3bp1C3RZAELIrFmz9Nvf/lYPPfSQFixY4P4tomEYOnDggKZOnarNmzdrw4YNuvzyy937nT9/XpMmTdLOnTtVW1srSXI6nVqzZo3mzJmj9PT0C17sFcHDZjD9BUywb98+3XjjjaqsrNS5c+eUmJioyMhI/etf//IYPCRp/fr1WrZsmQ4cOKC2bdsqISFB3/3ud/WTn/xE7dq189j29ddf17x583TixAldcskluu+++/Tggw/6sWcAAq1fv3767LPPVF5erujoaHXq1EmGYaiurk4dO3bU1VdfrVtuuUUTJ070+P3iG2+8oRkzZujMmTP6/PPPFR8fr9jYWH3ve9/TU089FcAeAQhG//nPf7Rs2TK98cYbqqyslGEYuuyyy3TDDTfo3nvv9fh75uTJk9q4caPeeOMN7d27V+Xl5aqrq1NNTY2uuOIKTZw4UT/5yU8UFxcXuA6h2QhEAAAAACyLU+YAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlRQW6ADO5XC4dP35ccXFxstlsgS4HCBuGYcjhcCg5OdnjOi9WwdgC+A7jC+ML4CvNHV/CKhAdP35cKSkpgS4DCFslJSXq1q1boMvwO8YWwPcYXwD4ysXGl7AKRPVXAy4pKVF8fHyAqwHCR1VVlVJSUix7xW3GFsB3GF8YXwBfae74ElaBqP6r5vj4eAYVwAesejoHYwvge4wvjC+Ar1xsfLHeyboAAAAA8F8EIgAAAACWRSACAAAAYFkEIgAAAACWFVaTKsDaiouLVV5ebkpbiYmJ6t69uyltAfA/M8cDiTEB4Yl/N4EvEIgQFoqLi9U3LV3nqs+a0l7b2HY6fMjO4A6EILPHA4kxAeGHfzeB/49AhLBQXl6uc9Vn1XlClqI7e3eBu5qKElUUPqXy8nIGdiAEmTkeSIwJCE/8uwn8fwQihJXozimKSeod6DIABAHGA+DieJ8ATKoAAAAAwMIIRAAAAAAsi0AEAAAAwLL4DREAAM1gt9tNaYfpiQEguBCIAAC4gLozpySbTTNmzDClPaYnBoDgQiACAOACXM4zkmEwPTEAhCkCEQAAzcD0xAAQnphUAQAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlRQW6AFhXcXGxysvLTWnLbreb0g4AIHydPn1a9957r1555RUdPXpUl19+eaBLAhAECEQIiOLiYvVNS9e56rOBLgUAYAGvv/66Zs+erXbt2l1wu0OHDikrK0tHjhyRy+XSkCFDlJ+fr+Tk5AbbvvDCC8rPz5ck1dbW6o477lBWVpYiIjgBBwglBCIERHl5uc5Vn1XnCVmK7pzidXvVRe+pcsfLJlQGAAhHv/jFL7R27Vpt2LBBBw8ebHSbkpISjRo1SnfccYcKCwtVV1enGTNmKDMzU7t371ZcXJx725UrV2ru3Lnavn27hg8friNHjuiaa65RRUWFHn/8cX91C4AJCEQIqOjOKYpJ6u11OzUVJSZUAwAIV2+99ZaioqK0YcOGJrfJyclRbW2tcnNzZbPZFBUVpfz8fKWkpGjZsmVauHChJMnhcOihhx7SzJkzNXz4cElSr169NG/ePC1cuFA/+tGP1LNnT7/0C4D3+E4XAACEvaioC38GXFdXpzVr1mjkyJFq27ate3lycrLS09NVUFDgXrZlyxZVVVVpzJgxHm2MGTNGtbW1Wrt2rbnFA/ApAhEAALC8oqIiORwOpaamNliXmpoqu90up9MpSdq7d697+Ve3+/L6xjidTlVVVXncAAQWgQgAAFheWVmZJCk+Pr7Buvj4eLlcLp08efKC29bfr1/fmLy8PHXo0MF9S0nx/ne0ALzj80D05ptv6sYbb9TQoUPVt29fXXHFFZo1a5bHNocOHdL48eOVlpamPn36aPr06Tp+/LivSwMAALgowzAkSTabrVnbX2i77OxsVVZWum8lJfwGFgg0nwaiF154QTNnztQTTzyh3bt36/Dhw1qwYIFefPFF9zb1M7r069dPdrtdH374oSQpMzNTDofDl+UBAABIkhITEyWp0VPYHA6HIiIilJCQcMFt6+/Xr29MTEyM4uPjPW4AAstngej48eO677779NRTT2ngwIHu5TNnztRf/vIX9/2mZnQ5cuSIli1b5qvyAAAA3Hr16qW4uDgVFRU1WFdUVKS0tDTFxMRIkgYNGuRe/tXtJHn83QMg+PksEK1atUrV1dWaMGGCx3KbzabJkydLatmMLgAAAL4SGRmpKVOmaOfOne7JEySptLRUdrtd06ZNcy8bO3as4uLitHXrVo82tm7dqsjISH3nO9/xW90AvOez6xDt2LFDSUlJ2rVrlx577DEVFxcrMjJSY8eO1cKFC92fwlxoRpfXXntNTqfT/YnMVzmdTo9Bi5laAMB/iouLVV5eblp7iYmJ6t69u2ntAS21ZMkSFRYWatGiRXr88cdVV1enrKws9ezZU3PnznVvFxcXp7y8PP30pz/VrFmzNHToUB09elRPP/205s6d2+jfNQCCl88CUXFxsSoqKjRr1iy9+uqr6t+/v/bv368JEybozTff1D//+c9mz+jSpUuXRh8jLy9PS5Ys8VUXAABNKC4uVt+0dJ2rPmtam21j2+nwITuhCD6Rm5urdevW6cSJE5KkcePGqU2bNnrmmWc0bNgwSVKPHj20fft2ZWVlKT09XS6XS4MHD9a2bdsa/K1y7733KjY2VjNnzpTNZlNNTY3mzp2rn/70p37vGwDv+CwQVVdXy+l06uc//7n69+8vSRowYIAWLlyou+++WwUFBerVq1eT+zdnRpfs7GzNmzfPfb+qqorpKwHAD8rLy3Wu+qw6T8hSdGfvx92aihJVFD6l8vJyAhF8YtGiRVq0aNFFt8vIyNDmzZub1eadd96pO++809vSAASYzwJRXFycJGnIkCEey+s/hXnnnXd09dVXS2rejC6NiYmJafJ0OgCA70V3TlFMUu9AlwEAQKv5bFKFjIwMSZLL5fJYHhX1RQYzDKNFM7oAQFNWrlwpm82mxYsXB7oUAAAQYnwWiOpnktu3b5/H8vr7V199dYtmdAGAxpw6dUoLFy5scj0XfgYAABfis0A0ZcoUZWZm6rHHHtOxY8ckSceOHdMjjzyioUOHavr06ZK+mNElIiJCixYtkmEYqq2tbXRGFwBozMKFCzVixIhG13HhZwAAcDE+C0QRERHatGmTxo0bpxEjRig9PV3f/OY3NXbsWL355ptq06aNpP8/o8v+/fuVnp6ujIwM1dXVNTqjCwB82YEDB7R27domT5Xjws8AAOBifDapgiRdcsklys/PV35+/gW3a8mMLgBQ7/7771dubq46duzYYF39hZ9Hjx7d5IWfL3SqHQAAsAaffUMEAL5UUFAgh8OhWbNmNbr+Yhd+ttvtHr9d/DKn06mqqiqPGwAACE8EIgAh5+zZs5o/f76WL1+uiIjGh7HmXvi5MXl5eerQoYP7xvXNAAAIXwQiACEnLy9PI0eObHIyhYu52IWfs7OzVVlZ6b6VlJS0ulYAABDcfPobIgAw29GjR7VixYoGU/p/VWJioqTWXfiZiz4DAGAdBCIAIeWNN95Q+/btNX78ePey8+fPS/riAq3r169X7969VVBQwIWfAQDARRGIAISUu+66S3fddZfHso8//lg9e/bU7NmzPabgnjJlijZu3Cin0+kOP/UXfl60aJE/ywYAAEGK3xABCFtc+BkAAFwMgQhAyDp9+rQGDRqkcePGSfrilLlBgwZp1apVkrjwMwAAuDhOmQMQsjp27Ki9e/decBsu/AwAAC6Eb4gAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlMe02AADAf82cOVNvvvmmOnXq5LG8trZWBw8e1Nq1azVlyhQtXrxYzz33XIPtEhIS9NZbb/mzZABeIhABAAB8SW5urmbOnOmxbO3atbr77rvdF4JuajsAoYdABAAA8F8/+tGPdNlllzVY/vvf/14zZ85U27ZtA1AVAF8iEAEAAPzXNddc02BZUVGRtm7dqt/+9rcBqAiArzGpAgAAwAX84Q9/0HXXXacrrrjCY/mWLVt07bXXqn///rryyis1Z84clZaWBqhKAK3FN0QAAABNqKmp0fPPP68VK1Z4LG/Xrp1sNpteeukldevWTUePHtX06dM1dOhQvfvuu+rWrVuj7TmdTjmdTvf9qqoqn9YP4OL4hggAAKAJr776qqKiojRx4kSP5fPnz9ef//xnd/Dp2bOnnnvuOZWWlurRRx9tsr28vDx16NDBfUtJSfFp/QAujkAEAADQhN///ve66667FBV18ZNq+vXrp7i4OO3cubPJbbKzs1VZWem+lZSUmFkugFbglDkAAIBG/Pvf/9aOHTu0atWqButOnDihpKSkBssjIyNVW1vbZJsxMTGKiYkxtU4A3uEbIgAAgEb84Q9/0IQJE9S1a9cG67p06aLjx497LCsqKtLp06c1bNgwf5UIwAQEIgAAgK84f/68XnjhBf34xz9ucpvs7GxVV1dLkiorKzV79mzFxcVpwYIF/ioTgAkIRAAAAF+xdu1adezYUWPGjGl0/SuvvKLKykoNGzZM/fv3V//+/ZWQkKB33nlHaWlpfq4WgDf4DREAAMBX3HbbbbrttttavR5A6OAbIgAAAACWRSACAAAAYFl+C0QrV66UzWbT4sWL/fWQAAAAAHBBfvkN0alTp7Rw4cIm1x86dEhZWVk6cuSIXC6XhgwZovz8fCUnJ/ujPKBRdrvdtLYSExPVvXt309oDAACAOfwSiBYuXKgRI0Zow4YNDdaVlJRo1KhRuuOOO1RYWKi6ujrNmDFDmZmZ2r17t+Li4vxRIuBWd+aUZLNpxowZprXZNradDh+yE4oAAACCjM8D0YEDB7R27Vpt3ry50UCUk5Oj2tpa5ebmymazKSoqSvn5+UpJSdGyZcsu+M0S4Asu5xnJMNR5QpaiO6d43V5NRYkqCp9SeXk5gQgAACDI+DwQ3X///crNzVXHjh0brKurq9OaNWs0evRotW3b1r08OTlZ6enpKigoIBAhYKI7pygmqXegywBMU1xcrPLyclPaMvOUUivilFwACB4+DUQFBQVyOByaNWuWiouLG6wvKiqSw+FQampqg3Wpqal67bXX5HQ6FRMT02j7TqdTTqfTfb+qqsq84tEos/6g4o8pwL+Ki4vVNy1d56rPBroUS+OUXAAIPj4LRGfPntX8+fP1yiuvKCKi8cnsysrKJEnx8fEN1sXHx8vlcunkyZPq0qVLo/vn5eVpyZIl5hWNC+IPKiB0lZeX61z1WdNOBa0uek+VO142oTJr4ZRcAAg+PgtEeXl5GjlypEaMGNGq/Q3DkCTZbLYmt8nOzta8efPc96uqqpSS4v0/MGicmX9Q8ccUEBhmnQpaU1FiQjXWxSm5ABA8fBKIjh49qhUrVmjfvn0X3C4xMVFS46e6ORwORUREKCEhocn9Y2JimjydDr5jxj/k/DEFAACAYOCTQPTGG2+offv2Gj9+vHvZ+fPnJX1xgdb169erd+/eKigoUFxcnIqKihq0UVRUpLS0NAIPAAAAAJ/xSSC66667dNddd3ks+/jjj9WzZ0/Nnj1bixcvdi+fMmWKNm7c6DF5Qmlpqex2uxYtWuSL8gAAAABAktT4bAd+tGTJEkVERGjRokUyDEO1tbXKyspSz549NXfu3ECXBwAAACCM+TwQnT59WoMGDdK4ceMkfXHK3KBBg7Rq1SpJUo8ePbR9+3bt379f6enpysjIUF1dnbZt29bo7HMAAAAAYBafX5i1Y8eO2rt37wW3ycjI0ObNm31dCgAAAAB4CPgpcwAAAAAQKAQiAAAAAJZFIAIAAABgWQQiAAAAAJZFIAIAAABgWT6fZQ4AAADhz263m9ZWYmKiunfvblp7wIUQiAAAAP7r448/Vv/+/dW7d+8G6379619r1KhR7vuHDh1SVlaWjhw5IpfLpSFDhig/P1/Jycn+LDng6s6ckmw2zZgxw7Q228a20+FDdkIR/IJABAAA8CXDhg3Ttm3bLrhNSUmJRo0apTvuuEOFhYWqq6vTjBkzlJmZqd27dysuLs4/xQYBl/OMZBjqPCFL0Z1TvG6vpqJEFYVPqby8nEAEvyAQAQAAtFBOTo5qa2uVm5srm82mqKgo5efnKyUlRcuWLdPChQsDXaLfRXdOUUxSw2/WgGDHpAoAAAAtUFdXpzVr1mjkyJFq27ate3lycrLS09NVUFAQwOoAtBTfEAEAAHzJp59+qh/84Af64IMP5HA4lJ6erjlz5mjMmDGSpKKiIjkcDqWmpjbYNzU1Va+99pqcTqdiYmIarHc6nXI6ne77VVVVza6ruLhY5eXlrehRQ2ZOgACEOgIRAADAf0VGRsrlcmnWrFkaOXKkampq9Nhjj+mGG27QH/7wB/3whz9UWVmZJCk+Pr7B/vHx8XK5XDp58qS6dOnSYH1eXp6WLFnS4rqKi4vVNy1d56rPtrxTAC6IQAQAQIgz69N+pjqWUlJSdPjwYff9yMhI5ebmavPmzXrwwQf1/e9//4L7G4YhSbLZbI2uz87O1rx589z3q6qqlJJy8YkIysvLda76rGkTF1QXvafKHS973Q4QDghEAEJOUVGR/vCHP2jr1q2qra1VdXW1evbsqQULFnhMiSsxLS7Cm9nTHTPVcdOuueYavffeezp48KASExMlNX66m8PhUEREhBISEhptJyYmptFT6ZrLrIkLaipKvG4DCBcEIgAh55577tFnn32mwsJCJScnq6amRnPmzFFmZqZeffVVTZw4URLT4iL8mTndMVMdf6GyslJt2rRRbGysx/LIyEhJUm1trXr16qW4uDgVFRU12L+oqEhpaWlehR4A/sUscwBC0sKFC93f8kRHRys/P18RERFaunSpe5umpsU9cuSIli1bFqDKAfPVf2vgzc2M07DCwQMPPKCnn366wfLdu3crNjZW/fr1U2RkpKZMmaKdO3d6TJBQWloqu92uadOm+bNkAF4iEAEIOZs2bdKkSZM8lsXGxqpTp046deqUJKbFBdB6K1as0EcffeRxf8eOHfr5z3+u9u3bS5KWLFmiiIgILVq0SIZhqLa2VllZWerZs6fmzp0bqNIBtAKnzAEIOdHR0Q2WVVRUqKysTNOnT5fk3bS4AKwrKytLHTt21NSpU2Wz2XTq1CklJydr1apVHhMq9OjRQ9u3b1dWVpbS09Plcrk0ePBgbdu2rdHZ5wAELwIRgLCwYsUKJSYmKjs7W5K8mhbXm+uEAKHOzOvThOKsdVdeeWWzT6nNyMjQ5s2bfVsQAJ8jEAEIebt27dLSpUu1bt06JSUlXXT7i02L29rrhAChzOwZ6yRmrQMQGghEAELaBx98oMmTJ+vll1/Wdddd517uzbS4rb1OCBDKzJyxTmLWOgChg0AEIGS9//77mjRpkp577jndcMMNHuu8mRbX2+uEAKHMrOvcAECoYJY5ACHp3Xff1c0336xVq1Z5hKFhw4ZJEtPiAgCAZiEQAQg5//jHPzRmzBhNnjxZpaWlWr16tfu2e/du93ZMiwsAAC6GU+YAhJw5c+bI4XBo+fLlWr58eZPbMS0uAAC4GAIRgJCzZ8+eZm/LtLgAAOBCOGUOAAAAgGURiAAAAABYFoEIAAAAgGURiAAAAABYFoEIAAAAgGX5LBAVFRXp4Ycf1vDhwzV48GClpaVp7Nix2rFjR4NtDx06pPHjxystLU19+vTR9OnTdfz4cV+VBgAAAACSfBiI7rnnHr3++uvasGGD3n//fR04cECXX365MjMztXHjRvd2JSUlGjVqlPr16ye73a4PP/xQkpSZmSmHw+Gr8gAAAADAt6fMLVy4UMnJyZKk6Oho5efnKyIiQkuXLnVvk5OTo9raWuXm5spmsykqKkr5+fk6cuSIli1b5svyAAAAAFiczwLRpk2bNGnSJI9lsbGx6tSpk06dOiVJqqur05o1azRy5Ei1bdvWvV1ycrLS09NVUFDgq/IAAAAAwHeBKDo6WjabzWNZRUWFysrKdN1110n64ndGDodDqampDfZPTU2V3W6X0+ls8jGcTqeqqqo8bgAAAADQXH6dZW7FihVKTExUdna2JKmsrEySFB8f32Db+Ph4uVwunTx5ssn28vLy1KFDB/ctJSXFN4UDAAAACEt+C0S7du3S0qVLtXr1aiUlJV10e8MwJKnBt0xflp2drcrKSvetpKTEtHoBAAAAhL8ofzzIBx98oMmTJ+vll192ny4nSYmJiZLU6KluDodDERERSkhIaLLdmJgYxcTEmF8wAAAAAEvweSB6//33NWnSJD333HO64YYbPNb16tVLcXFxKioqarBfUVGR0tLSCDwAAAAAfManp8y9++67uvnmm7Vq1SqPMDRs2DBJUmRkpKZMmaKdO3d6TJ5QWloqu92uadOm+bI8AAAAD829sPzixYvVvXt3DRo0yON27bXXBqhyAK3ls2+I/vGPf2jcuHG64447VFpaqtWrV7vX7d692/3/S5YsUWFhoRYtWqTHH39cdXV1ysrKUs+ePTV37lxflQcAANDAPffco88++0yFhYVKTk5WTU2N5syZo8zMTL366quaOHGie9vc3FzNnDkzcMWGObvdbko7iYmJ6t69uyltITz5LBDNmTNHDodDy5cv1/Lly5vcrkePHtq+fbuysrKUnp4ul8ulwYMHa9u2bY3OPgcAAOBLjV1Y/plnntHSpUs9AhF8o+7MKclm04wZM0xpr21sOx0+ZCcUoUk+C0R79uxp9rYZGRnavHmzr0oBAABolk2bNikqyvPPo69eWB6+5XKekQxDnSdkKbqzd5dUqakoUUXhUyovLycQoUl+mWUOgVNcXKzy8nJT2jLrq2urMvP48fU/APhGdHR0g2X1F5afPn26x/ItW7boxRdfVFlZmWw2m6699lplZ2erS5cu/io3rEV3TlFMUu9AlwELIBCFseLiYvVNS9e56rOBLsXSzP7qX+LrfwDwp69eWF6S2rVrJ5vNppdeekndunXT0aNHNX36dA0dOlTvvvuuunXr1mhbTqfTYyKpxi49AsC/CERhrLy8XOeqz5rylbMkVRe9p8odL5tQmbWY+dW/xNf/AOBP9ReWX7dunceF5efPn++xXc+ePfXcc8+pf//+evTRR7VixYpG28vLy9OSJUt8WjOAliEQWYBZXznXVJSYUI118dU/AISWpi4s35R+/fopLi5OO3fubHKb7OxszZs3z32/qqpKKSnef1gGoPUIRAAAAF9xoQvLS9KJEyc8vjGqFxkZqdra2ibbjYmJ4aLzQJAhEAGAicycyERiAg0gEN59911NnTpVL730kkaPHu1ePmzYML333nuSpC5duujYsWPu6bmlLy7qevr0aX3729/2e80AWo9ABAAm8cVEJkygAfhXcy8sL31x+tvKlSsVGxuryspKzZ49W3FxcVqwYIG/ywbgBQIRAJjE7IlMmEAD8L/mXlj+lVdeUUFBgYYNGyabzabKykp94xvf0DvvvKO0tDQ/VgzAWwQiADAZE2gAoau5F5a/7bbbdNttt/m4GgD+EBHoAgAAAAAgUAhEAAAAACyLU+YAAEHDbrcHRRsAAOsgEAEAAq7uzCnJZtOMGTMCXQoAwGIIRACAgHM5z0iGYcoMfdVF76lyx8smVQYACHcEIgAIclY6jcyMGfpqKkpMqgYAYAUEIgAIUpxGBgCA7xGIACBIcRoZAAC+RyACgCDHaWQAAPgOgSgIFRcXq7y83Ot2QuU3AwAAAECgEIiCTHFxsfqmpetc9dlAlwIAAACEPQJRkCkvL9e56rP8ZgAAAMAkZp41k5iYqO7du5vWHgKPQBSk+M0AAACAd3wxW2fb2HY6fMhOKAojBCIAAACEJTNn65S++LC5ovAplZeXE4jCCIEIAAAAYc2MM28QviICXQAAAAAABAqBCAAAAIBlccocAAAA0ALMWhdeLBmIzLrwaT1eyAgEswZjXr8AADQPs9aFJ8sFIl9c+JQXMvzJ7MGY1y8AAM3DrHXhyXKByMwLn0r//4W8Y8cOpaene92emV/BIjyZORgzEAMA0HLMWhdeLBeI6pn1QvbFV6dAczAYAwAAeC8oApHT6dSSJUu0du1axcTEKCYmRjk5OZowYUKgS7sos786rS56T5U7XjahMgBSaI8vAIIb4wsQHoIiEN1+++3at2+fdu7cqcTERG3cuFGTJk3Sxo0bNW7cuECX1yxmfVpfU1FiQjUA6oXD+AIgODG+AOEh4Nch2r59uwoKCrR48WIlJiZKkiZOnKgxY8Zozpw5MgwjwBUCCFWMLwB8hfEFCB8B/4aooKBAknT99dd7LB8zZoz++te/avfu3Ro2bFggSgMQ4hhfAPgK4wvMZNakWk6nUzExMaa0ZXZ7Ztdm5mVDAh6I9u7dq/j4ePenK/VSU1Pd65saUJxOp5xOp/t+ZWWlJKmqqqrJxztz5swX+574j1znz3lVu/T/T3ELxvaoLfBtBXt7NSc/kfTF++JC75v6daH2iWdrx5fWjC1ScI8vwfw6NLs9agt8WxLjC+NLcLQXzLVJkvP4F0HIvMm5bJLMfC+Z2Z65tcW0jdXu93YpJaXp3/A3e3wxAuyKK64wunXr1mD53/72N0OS8dhjjzW5b05OjvHfI8uNGzc/3EpKSnw5HJiuteMLYws3bv6/Mb5w48bNV7eLjS8B/4aoKcZ/k5zNZmtym+zsbM2bN8993+Vy6eTJk+rcufMF9/OFqqoqpaSkqKSkRPHx8X597HDBMTSHL46jYRhyOBxKTk42pb1Au9j40pqxxSqvXyv0kz76F+NL4P528Zdger0FA45HQ746Js0dXwIeiBITE3Xw4MEGyx0Oh3t9U+qnuPyyjh07mlpfS8XHx/Pi9hLH0BxmH8cOHTqY1pa/tHZ88WZsscrr1wr9pI/+w/jS0fT6glGwvN6CBcejIV8ck+aMLwGfZW7QoEGqqqpSRUWFx/KioiJJ0sCBAwNRFoAwwPgCwFcYX4DwEfBANG3aNEnS1q1bPZZv3bpVqampzNACoNUYXwD4CuMLED4CHogyMzM1depULV68WOXl5ZKkwsJC/e1vf9OyZctC5nza+qtTmzmdoNVwDM3Bcfz//Dm+WOW4W6Gf9BHNES5/v/gDrzdPHI+GAn1MbIYR+Hkuz507p8WLF+vVV19VTEyMoqOjlZOTo4kTJwa6NAAhjvEFgK8wvgDhISgCEQAAAAAEQsBPmQMAAACAQCEQAQAAALAsAhEAmGDlypWy2WxavHhxoEvxGSv0EUBg/fOf/1Tv3r2VmZkZ6FJgIQSiVnI6nVqwYIH69u2rAQMGaPjw4SosLGzWvkVFRXr44Yc1fPhwDR48WGlpaRo7dqx27Njh46oDw5tj5c2+4aS1x8Fqr7VAOXXqlBYuXNiifT7++GNdcsklGjRoUINbMD4/remjFPzv4eLiYi1YsEDDhw/X0KFDlZGRoYEDB2r58uVqzk9sQ+F59LaPUvA/j/Atf/w7fv78eWVnZ2vmzJnuWfuCma+PiWEY2rJli2655RYNHTpUAwcOVEZGhn7yk5/os88+80WXvOaP18mWLVv0/e9/XwMGDNDgwYPVp08fjR8/Xv/617+8K95Aq9x6661GWlqaUVZWZhiGYWzYsMGIjIw0XnvttYvue+ONNxqDBw82jh07ZhiGYZw/f96YPXu2ERERYWzYsMGndQeCN8fKm33DSWuPg9Vea4Fy7733GjfffLMhycjJyWnWPkePHjVGjx7t07rM1Jo+Gkbwv4eff/5545JLLjHeeecd97L169cbERERxiOPPHLR/UPhefS2j4YR/M8jfMsf/46vX7/euOuuuwyHw2H06NEj6N9Xvj4mpaWlhiTjZz/7mVFbW2sYxhfjTe/evY2ePXsaVVVVPuiVd/zxOhk9erTxrW99yzh9+rRhGIZx7tw547vf/a7Rvn174/Dhw62unUDUCn//+98NScbq1as9lt94441Gr169DJfLdcH9b7zxRmPdunUey86ePWtERUUZo0aNMr3eQPLmWHl7nMOFN8fBSq+1QNm/f7+RlJRkvP/++2EbiFrbx1B4D2/evNlYvHhxg+UDBgwwBg8efNH9Q+F59LaPofA8wnf89e94TU2N+/+DPRD545iUlpYaCQkJRl1dncd2f/zjHw1JxrPPPmtSb8zhr9fJAw88YPzrX//y2G7Pnj2GJONXv/pVq+vnlLlWKCgokCRdf/31HsvHjBmjI0eOaPfu3Rfcf9OmTZo0aZLHstjYWHXq1EmnTp0ytdZA8+ZYeXucw4U3x8FKr7VAuf/++5Wbm6uOHTsGuhSfaW0fQ+E9fNNNNyknJ6fBcofDoUsvvTQAFZnP2z6GwvMI3/HXv+NRUVFmlexz/jgmSUlJOnHihCIiPP9U79q1qyQF3b/h/nqdLFu2TFdffbXHdlVVVZLk1ZhNIGqFvXv3Kj4+XomJiR7LU1NT3esvJDo6usEVrCsqKlRWVqbrrrvO1FoDzZtj5e1xDhfeHAcrvdYCoaCgQA6HQ7NmzWrV/p9++ql+8IMfaMiQIbriiis0ceJEvfHGGyZX6R1v+hiK72GHw6Hs7Gx9/vnnysvLa9Y+ofA8fllL+xiKzyPMw7/jDfnrmLRp06bB/ocOHZIkXXvtta0p3WcC9Tqx2+168MEHNXbsWN1yyy2tK14EolYpKytTfHx8g+X1y8rKylrc5ooVK5SYmKjs7Gyv6wsm3hwrXxznUGT2cQjX15q/nT17VvPnz9fy5csbfILXHJGRkXK5XJo1a5Z27dqlAwcOaNCgQbrhhhv0zDPP+KDilvO2j6H2Hs7IyFBCQoI2bdqkdevWaciQIRfdJxSexy9rTR9D7XmEufh3vKFAHZOamhr98Y9/1IwZM5r13vUnfx+TjRs3qlu3burXr5/69++vP/3pT159y2j5QLRt2zbZbLZm3S72SYbx39l6vvqJ/MXs2rVLS5cu1erVq5WUlNTaroSU1h4rb/cNJ605DlZ8rTVHa8aBvLw8jRw5UiNGjGjVY6akpOjw4cMaPXq0IiMj1bZtW+Xm5mro0KF68MEH5XQ6TexhYPrYFF+9h70dzz/88EOdPXtW8+bN03XXXacnn3zyoo8ZCs+jt31sCmOxtfHveEO+PiYPP/ywYmNj9bvf/a51BQaAr47JxIkT9cknn+jYsWNyOBzq37+/Dhw40Oo6Q+eETR+56qqrZLfbm7Vtz549JUmJiYk6ePBgg/UOh8O9vrk++OADTZ48WS+//HJYnsLkzbEy8ziHMrOOQ7i/1rzR0nHg6NGjWrFihfbt22d6Lddcc43ee+89HTx40NRPAAPRR3+/h1sznn9VmzZtdOedd+rtt99Wdna2pkyZol69erW4lmB5HhvT0j4yFlsb/443FIhj8stf/lJbt27V1q1bFRcX15qyfSpQr5MuXbpo1apVSk5O1v33369t27a1sPIvWD4QtWvXTmlpaS3aZ9CgQXr77bdVUVGhzp07u5cXFRVJkgYOHNisdt5//31NmjRJzz33nG644YYW1RAqvDlWZh3nUGfGcbDCa80bLR0H3njjDbVv317jx493Lzt//rykLy5eun79evXu3Vtr1qxpso3Kykq1adNGsbGxHssjIyMlSbW1tS3pwkUFoo/+fg+3Zjyvrq5WmzZt3Me93qBBg1RXV6c9e/ZcMCwE+/Moed9HxmJr49/xhvx9TB555BFt3LhRb731lhISEszqhqn8cUwMw1B1dbXatWvnsX+7du10xRVXaNeuXa3vQKvnp7Owt956y5BkFBQUeCy/6aabjNTUVI/pAWtra41PP/20QRvvvPOOkZKSYmzbts1j+dChQ31TdIA091g1dpxacpzDmTfH0DCs81oLtKNHjzY5JXVjz83tt99uPProow22HTVqlBEbG2ucOXPGV6W2Wkv7GArv4dGjRxuvvPJKg+U//elPDUnGm2++6V4Wqs+jt30MhecRvhOIf8eDfdptfx6TBQsWGCNGjDAqKyvdyzZt2tToVPqB5I9jcvToUSM2NtZ9XaZ6tbW1RlJSktG9e/dW108gaqWpU6ca6enp7gtIbdq0yYiMjDQ2btzosd3dd99tREREGDt37nQv27FjhxEXF2fMmTPH+POf/+xxC8eM2pxj1dhxau6+VtDaY2i111ogXSgsNPbc3H777Ua3bt08LiT3u9/9zpDU6B/YwaClfTSM4H8Pjx492rjyyiuNjz/+2L1s27ZtRvv27Y2rrrrK4x/eUH0eve2jYQT/8wjf8ve/48EeiAzDP8dk7ty5RkJCgvHMM894/Ps9e/Zs4/bbb/dtB1vB18ek/t+gBx980HA6nYZhGIbT6TTmzZtnSDKWL1/e6tr5i6iVqqurjYceesjo06ePceWVVxpDhgwxNmzY0GC7hQsXGp06dTIOHDjgXjZ48GBDUpO3cNOcY9XYcWruvlbQ2mNotddaIJw6dcoYOHCgkZ6ebkgyLrvsMmPgwIHGiy++6N6msedm//79xgMPPGBceeWVxoABA4yUlBTj6quvNlatWhWIblxQa/toGMH/Ht65c6fxwx/+0OjXr59x5ZVXGqmpqUZaWprx8MMPe3wiaxih+zx620fDCP7nEb7lr3/Hhw4dagwcONCIjo422rdvbwwcONAYO3asz/rlDV8fk3379l3w3+9gDES+PiZOp9P44x//aNx4441Genq60b9/f6Nr167G6NGjjf/5n//xqnabYfx3CgcAAAAAsBjLT7sNAAAAwLoIRAAAAAAsi0AEAAAAwLIIRAAAAAAsi0AEAAAAwLIIRAgaS5YsUWJiog4cOBDoUgAAgAVkZmaqQ4cOSkpKct86dOggm82mSy65xGN5p06ddPnll7v3Xb9+vW666SZ97Wtf06WXXqouXbqoX79++u53v6tf//rXKisrC1zH0CIEIvjNCy+8IJvNphdeeKHR9adOnZLD4VB1dbV/CwMAAJb1q1/9SidOnHDffvWrX0mSHnzwQY/l69atc++Tm5uryZMna+jQofroo49UVlamY8eO6ZlnnpHdbtecOXP0zjvvBKpLaCECEYLGsmXLVFlZqauuuirQpQAAADSqoqJCv/jFL/T1r39djz76qDp27ChJioiI0DXXXKMNGzbIZrMFtki0SFSgCwC+rG3btoEuAQAAWMSqVavUoUOHZm171VVXaevWrfr3v/+t2tpadenSpdHtunfvrqysLHXr1s3MUuFDfEOEVnnjjTeUlJSk2NhY2Ww2HThwQD/60Y90+eWXq2PHjhozZozsdrt7+wEDBuiBBx6QJD3wwAPu83Fnz54tSerbt686deokm82mxYsXezxWSUmJZs+erdTUVHXp0kU9evTQTTfdpN/97ndyOp1+6zMA/6qpqdETTzyhAQMG6Gtf+5qSk5M1ZMgQPfzww/rwww/d25WWlmrhwoUaNmyYunbtqo4dOyo9PV2PPPKIzp8/795u0aJF7t8GxMXFKSkpSSdPnpQkrV27VklJSYqKilKnTp30/PPP+72/APyve/fuzQ5E7dq1U69evZScnCxJ2rp1q4qKihrd9sknn9SgQYPMKhO+ZgBeuP322w1JxvXXX2/84x//MAzDMP79738bKSkpRteuXQ2n0+ne9vnnnzckGc8//3yjbb311luGJCMnJ8e9zOl0Gj179jSuvfZa49NPPzUMwzA+//xzY968eYYk4+jRo77qGoAAOn/+vHH99dcb7du3NwoLCw3DMIy6ujpj9erVRnR0tHHzzTe7t/3LX/5iREZGGqtWrTJcLpdRV1dnbNq0yWjXrp0xbdo0j3YPHjxoSDLGjh3b4DE/+eQT45JLLjHKysp82jcAwa3+75Uv/z3yVddee60hybjkkkuM++67z9ixY4dRW1vrvyJhKr4hgiluuukmjRgxQpLUu3dvzZgxQ8eOHdO//vUvr9rdu3evjh49qkmTJulrX/uapC8+oVm6dKkGDx6s6Ohor2sHEHx+/etfa+vWrcrOztb48eMlfXF+/q233ur+Zrlex44d9cMf/lDf//73ZbPZFBERoQkTJuiee+7R//zP/+jQoUPubTMyMjR69Ght2bKlwSe7v//97zVlyhQlJib6voMAQtorr7yim266SWfOnNFvfvMbjRo1Spdeeqm++93vqrCwUIZhBLpEtACBCKYYOXKkx/0ePXpIkj755BOv2u3WrZuioqL01FNPaf369e7TX2w2m/bs2aOuXbt61T6A4PTSSy9Jkr797W83WPfwww8rJyfHfX/MmDFauXJlg+3S09MlSfv37/dYfs8998gwDK1YscK9rKamRs8884zuvfdeU+oHEN6SkpK0efNm7d27V9nZ2bryyit16tQp/fnPf9a3v/1tjRgxQuXl5YEuE81EIIIp6r+9qRcTEyNJHufvt0ZycrKef/55ORwOTZ48WV/72td0yy23aO3ataqpqfGqbQDB6/Dhw5KklJSUBuuSk5M1ePBg9/3a2lo9++yzyszM1OWXX67LLrtMSUlJmjt3riTp7NmzHvtPnjxZXbp00XPPPadz585JktatW6fk5GRmuQTQIgMHDtRjjz2m/fv36//+7//0+OOPKzExUW+//baysrICXR6aiUAEU0RE+O6lNGPGDB0/flx/+ctfNH78eP31r3/V1KlTddVVV6miosJnjwsg8Jozccqdd96pH/7whxo4cKD27NmjTz/91ONaIl8VHR2tH/7whzp58qRWr14tSfrd737Ht0MAvNK9e3c99NBDevPNNyVJW7ZsCXBFaC4CEYKaYRiqq6tT27ZtNXXqVP3pT3/S8ePHNWvWLO3du1e//vWvA10iAB9IS0uTJB07dqzBus8//9y9vLKyUn/605/Url07Pf300+rUqVOz2r/77rsVGRmp3/3udzp48KA++OADTZ8+3bwOAAhbxcXF6tixo3uWyq+68sorlZiYqM8//9zPlaG1CETwm/bt20uS+1S3Tz/9VPfdd5/OnDnT5D5///vf1a9fP49ll1xyiebMmSNJTQ5GAELb97//fUnSq6++2mDd/fffr2nTpkmSe2IVm83W4EfMH3/8cZPtd+vWTd/+9re1a9cu/ehHP9Kdd96p2NhYk6oHEM5cLpcqKyvd3wR91fHjx1VeXq6vf/3rfq4MrUUggt/0799fNptN+/btkyStX79eBQUF7qDUlMOHD+uJJ55wn+tfVVWl5cuXKyoqSt/97nd9XjcA/7vvvvt0/fXXa/ny5e7TTurq6vTss89q9erVeuSRRyR9MevklClT9Pnnn+vBBx9UdXW1JGn79u1avnz5BR/jnnvukST985//bDBzHQBczL333qvVq1e7xx2Xy6W3335bN998s+Li4vTLX/4ywBWiuWwG8wKiFfbt26cbb7xRlZWVOnfunBITE/Xd735Xv/rVrzR8+HB99NFHqqqqUnx8vJKSktw/kF66dKmWL18up9Opr33ta1q6dKluvPFG9e3bV2VlZTp16pTat2+vSy65RP/4xz/0ta99Tc8995w2bNigI0eOqKamRtHR0Ro2bJjmz5/Ppy9AGDt//ryWLVuml156SZ9++qmio6PVv39/LVy40GNmyzNnzugXv/iF1qxZo9LSUl122WX65je/qV69eiknJ6fBOFTPMAylpaWpV69e+t///V9/dw9AkNmzZ4/GjRun6upqVVVVuf8e+f3vf6+bb77ZvV1NTY3+93//V2+88YbefvttlZaWqra2VtXV1UpOTtZ1112nBx98UKmpqQHsDVqCQAQAsKx+/frpiSeecF/rCABgPZwyBwCwjFOnTrn/f8eOHTp79qzGjh0bwIoAAIFGIAIAWMbgwYO1a9cunT9/Xj//+c81f/58n142AAAQ/PhXAABgGX379tV1112nyy+/XP369dOPfvSjQJcEAAgwfkMEAAAAwLL4hggAAACAZRGIAAAAvuTNN9/UjTfeqKFDh6pv37664oorNGvWLI9tDh06pPHjxystLU19+vTR9OnTdfz48QBVDMAbBCIAAID/euGFFzRz5kw98cQT2r17tw4fPqwFCxboxRdfdG9TUlKiUaNGqV+/frLb7frwww8lSZmZmXI4HIEqHUArhdVviFwul44fP664uDjZbLZAlwOEDcMw5HA4lJycbMkZuRhbAN8JpvHl+PHj6tOnj55//nndcsst7uWGYWj9+vWaPHmyJOnOO+/Uq6++qtLSUrVt29a9b0pKihYvXqyFCxc2+zEZXwDfae74ElaB6JNPPlFKSkqgywDCVklJibp16xboMvyOsQXwvWAYXx5//HH97Gc/05kzZxQbG9voNnV1dUpISNDo0aO1adMmj3X9+/eXJH3wwQfNfkzGF8D3Lja+RPmxFp+Li4uT9EWn4+PjA1wNED6qqqqUkpLifo9ZDWML4DvBNL7s2LFDSUlJ2rVrlx577DEVFxcrMjJSY8eO1cKFCxUXF6eioiI5HA6lpqY22D81NVWvvfaanE6nYmJiGn0Mp9Mpp9Ppvl//uTTjC2C+5o4vYRWI6r9qjo+PZ1ABfMCqp3MwtgC+FwzjS3FxsSoqKjRr1iy9+uqr6t+/v/bv368JEybozTff1D//+U+VlZVJUqNjQXx8vFwul06ePKkuXbo0+hh5eXlasmRJo/syvgC+cbHxxXo/BgAAAGhEdXW1nE6nfv7zn7tPfxswYIAWLlyo3bt3q6Cg4IL713/bc6E/vrKzs1VZWem+lZSUmNcBAK0SVt8QAQAAtFb9aTVDhgzxWD5s2DBJ0jvvvKOrr75a0hen4nyVw+FQRESEEhISmnyMmJiYJk+nAxAYfEMEIGRxrRAAZsrIyJD0xcxvXxYV9cXnx4ZhqFevXu7fEn1VUVGR0tLSCDxAiCEQAQhJXCsEgNnqp9Xet2+fx/L6+1dffbUiIyM1ZcoU7dy502NyhNLSUtntdk2bNs1/BQMwRVhNu11VVaUOHTqosrKSHybCK8XFxSovLzetvcTERHXv3t209vwt2N5b/r5WSLD1H/5n5pgQ6uOB2YLp/eVyuXT99dertLRUW7duVdeuXXXs2DFdf/31uuSSS/TPf/5Tbdq00f/93/9p6NChmjVrlh5//HHV1dXpBz/4gd59913t2bOnRf0Ipv6jefgbIXQ09/3Fb4iAryguLlbftHSdqz5rWpttY9vp8CE7A55JVq1aperqak2YMMFjuc1mc4ehuro6rVmzRqNHj3aHIUlKTk5Wenq6CgoKWnTxRFiX2WMC40HwioiI0KZNm7Ro0SKNGDFCsbGxOn/+vCZOnKglS5aoTZs2kqQePXpo+/btysrKUnp6ulwulwYPHqxt27YRasIcfyOEJwIR8BXl5eU6V31WnSdkKbqz9xfLq6koUUXhUyovL2ewM4k/rhUC1DNzTGA8CH6XXHKJ8vPzlZ+ff8HtMjIytHnzZj9VhWDB3wjhiUAENCG6c4piknoHugw0wtfXCvnqhRMbm00K1sOYAKAe40F4YVIFACHH19cKycvLU4cOHdy3lBTvPwUEAADBiUAEIOQ051ohiYmJklp3rRAunAgAgHVwyhyAkJORkaG9e/f67FohXDgRAADr4BsiACGHa4UAAACzEIgAhJwpU6YoMzNTjz32mI4dOyZJOnbsmB555BENHTpU06dPlyQtWbJEERERWrRokQzDUG1trbKystSzZ0/NnTs3kF0AAABBgkAEIOTUXytk3LhxGjFihNLT0/XNb35TY8eO1ZtvvtngWiH79+9Xenq6MjIyVFdXx7VCAACAG78hAhCSuFYIAAAwA98QAQAAALAsAhEAAAAAyyIQAQAAALAsAhEAAAAAyyIQAQAAALAsAhEAAAAAy2LabQAAACCA7Ha7Ke0kJiaqe/fuprRlJQQihI3i4mKVl5d73Y5ZgxIAAMCF1J05JdlsmjFjhinttY1tp8OH7ISiFiIQISwUFxerb1q6zlWfDXQpAAAAzeJynpEMQ50nZCm6c4pXbdVUlKii8CmVl5cTiFqIQISwUF5ernPVZ00ZUKqL3lPljpdNqgwAAODCojunKCapd6DLsCyfB6I333xTv/zlL1VeXq4zZ87I5XLpm9/8pp599ln3NocOHVJWVpaOHDkil8ulIUOGKD8/X8nJyb4uD2HGjAGlpqLEpGoAAAAQ7Hw6y9wLL7ygmTNn6oknntDu3bt1+PBhLViwQC+++KJ7m5KSEo0aNUr9+vWT3W7Xhx9+KEnKzMyUw+HwZXkAAAAALM5ngej48eO677779NRTT2ngwIHu5TNnztRf/vIX9/2cnBzV1tYqNzdXNptNUVFRys/P15EjR7Rs2TJflQcAAAAAvgtEq1atUnV1tSZMmOCx3GazafLkyZKkuro6rVmzRiNHjlTbtm3d2yQnJys9PV0FBQW+Kg8AAAAAfBeIduzYoaSkJO3atUs33XSTMjIydOWVV2r+/PnuU+GKiorkcDiUmpraYP/U1FTZ7XY5nc4mH8PpdKqqqsrjBgAAAADN5bNAVFxcrIqKCs2aNUtLly7Vhx9+qD/96U9avXq1rr32Wp0/f15lZWWSpPj4+Ab7x8fHy+Vy6eTJk00+Rl5enjp06OC+paR4N7sYAAAAAGvxWSCqrq6W0+nUz3/+c/Xv31+SNGDAAC1cuFC7d+++6OlwhmFI+uIUu6ZkZ2ersrLSfSspYXYwAAAAAM3ns2m34+LiJElDhgzxWD5s2DBJ0jvvvKOrr75akho91c3hcCgiIkIJCQlNPkZMTIxiYmLMKhkAAACAxfjsG6KMjAxJksvl8lgeFfVFBjMMQ7169VJcXJyKiooa7F9UVKS0tDQCDwAAAACf8Vkgqp9Jbt++fR7L6+9fffXVioyM1JQpU7Rz506PyRNKS0tlt9s1bdo0X5UHAAAAAL47ZW7KlCnKzMzUY489puuvv15du3bVsWPH9Mgjj2jo0KGaPn26JGnJkiUqLCzUokWL9Pjjj6uurk5ZWVnq2bOn5s6d66vyAAAAYAHFxcUqLy83pS273W5KOwguPgtEERER2rRpkxYtWqQRI0YoNjZW58+f18SJE7VkyRK1adNGktSjRw9t375dWVlZSk9Pl8vl0uDBg7Vt27ZGZ58DAAAAmqO4uFh909J1rvpsoEtBEPNZIJKkSy65RPn5+crPz7/gdhkZGdq8ebMvSwEAAIDFlJeX61z1WXWekKXozt5fnqW66D1V7njZhMoQTHwaiAAAAIBAi+6copik3l63U1PBJV7Ckc8mVQAAAACAYEcgAgAAAGBZBCIAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZUYEuAAAAIFitXLlSP/7xj5WTk6PFixcHuhzgoux2u2ltJSYmqnv37qa1F6wIRAAAAI04deqUFi5c2OT6Q4cOKSsrS0eOHJHL5dKQIUOUn5+v5ORkP1YJfKHuzCnJZtOMGTNMa7NtbDsdPmQP+1BEIAIAAGjEwoULNWLECG3YsKHBupKSEo0aNUp33HGHCgsLVVdXpxkzZigzM1O7d+9WXFxcACqGlbmcZyTDUOcJWYrunOJ1ezUVJaoofErl5eUEIgAAAKs5cOCA1q5dq82bNzcaiHJyclRbW6vc3FzZbDZFRUUpPz9fKSkpWrZs2QW/WQJ8KbpzimKSege6jJDCpAoAAABfcf/99ys3N1cdO3ZssK6urk5r1qzRyJEj1bZtW/fy5ORkpaenq6CgwI+VAvAWgQgAAOBLCgoK5HA4NGvWrEbXFxUVyeFwKDU1tcG61NRU2e12OZ3ORvd1Op2qqqryuAEILAIRgJC3cuVK2Ww2ZoAC4LWzZ89q/vz5Wr58uSIiGv8zqaysTJIUHx/fYF18fLxcLpdOnjzZ6L55eXnq0KGD+5aS4v1vPQB4h0AEIKQ1Zxao8ePHKy0tTX369NH06dN1/PhxP1YIIJTk5eVp5MiRGjFiRKv2NwxDkmSz2Rpdn52drcrKSvetpKSk1bUCMAeTKgAIacwCFTjFxcUqLy83rT2rXO8Cwevo0aNasWKF9u3bd8HtEhMTJanR090cDociIiKUkJDQ6L4xMTGKiYnxvlgApiEQAQhZzAIVOMXFxeqblq5z1WdNa9Mq17tA8HrjjTfUvn17jR8/3r3s/Pnzkr44NXf9+vXq3bu3CgoKFBcXp6KiogZtFBUVKS0tjdADhBACEYCQ1ZxZoEaPHt3kLFAEotYrLy/XueqzXO8CYeWuu+7SXXfd5bHs448/Vs+ePTV79myP3ylOmTJFGzdulNPpdIef0tJS2e12LVq0yJ9lA/ASgQhASPryLFDFxcUN1l9sFqjXXnvN4w+ZL3M6nR4zRDELVNO43gWsasmSJSosLNSiRYv0+OOPq66uTllZWerZs6fmzp0b6PIAtACTKgAIOcwCBcDXTp8+rUGDBmncuHGSvjhlbtCgQVq1apUkqUePHtq+fbv279+v9PR0ZWRkqK6uTtu2bWt03AEQvPiGCEDI8ccsUPPmzXPfr6qqIhQBFtOxY0ft3bv3gttkZGRo8+bN/ikIgM8QiACEFGaBAgDAf+x2uyntBPNMogQiACGFWaAAAPC9ujOnJJtNM2bMMKW9YJ5JlEAEIKQwCxQAAL7ncp6RDMOU2USDfSZRAhGAsMUsUAAAeMcKs4kyyxyAkMUsUAAAwFt8QwQgZDELFAAA8BbfEAEAAACwLL8FopUrV8pms3n84BkAAAAAAskvgejUqVNauHBhk+sPHTqk8ePHKy0tTX369NH06dN1/Phxf5QGAAAAwML8EogWLlzY5BXlS0pKNGrUKPXr1092u10ffvihJCkzM1MOh8Mf5QEAAACwKJ8HogMHDmjt2rVNniqXk5Oj2tpa5ebmymazKSoqSvn5+Tpy5IiWLVvm6/IAAAAAWJjPA9H999+v3NxcdezYscG6uro6rVmzRiNHjlTbtm3dy5OTk5Wenq6CggJflwcAAADAwnwaiAoKCuRwODRr1qxG1xcVFcnhcCg1NbXButTUVNntdjmdzibbdzqdqqqq8rgBAAAAQHP5LBCdPXtW8+fP1/LlyxUR0fjDlJWVSVKjF0iMj4+Xy+XSyZMnm3yMvLw8dejQwX1LSUkxp3gAAAAAluCzQJSXl6eRI0c2OZnCxRiGIUmy2WxNbpOdna3Kykr3raSkpFWPBQAAAMCaonzR6NGjR7VixQrt27fvgtslJiZKUqOnujkcDkVERCghIaHJ/WNiYhQTE+NdsQAAAAAsyyeB6I033lD79u01fvx497Lz589L+uICrevXr1fv3r1VUFCguLg4FRUVNWijqKhIaWlpBB4AAAAAPuOTQHTXXXfprrvu8lj28ccfq2fPnpo9e7bHFNxTpkzRxo0b5XQ63eGntLRUdrtdixYt8kV5AAAAACDJR4GoJZYsWaLCwkItWrRIjz/+uOrq6pSVlaWePXtq7ty5gS4PAADT2e1209pKTExU9+7dTWsPAKzG54Ho9OnTyszMbHDK3Lx58/SDH/xAPXr00Pbt25WVlaX09HS5XC4NHjxY27Zta3T2OQAAQlXdmVOSzaYZM2aY1mbb2HY6fMhOKAKAVvJ5IOrYsaP27t17wW0yMjK0efNmX5cCAEBAuZxnJMNQ5wlZiu7s/aUiaipKVFH4lMrLywlEANBKAT9lDgAAq4nunKKYpN6BLgMAIB9ehwgAAAAAgh2BCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlEYgAAAAAWBaBCAAAAIBlcWFWBExxcbHKy8tNactut5vSji+ZWWNiYiJXpQcAADABgQgBUVxcrL5p6TpXfTbQpfhc3ZlTks2mGTNmmNZm29h2OnzITigCAADwEoEIAVFeXq5z1WfVeUKWojuneN1eddF7qtzxsgmVmc/lPCMZhml9rakoUUXhUyovLycQAQAAeIlAhICK7pyimKTeXrdTU1FiQjW+ZVZfAQAAYB4mVQAAAABgWQQiAAAAAJZFIAIAAABgWfyGCACAEGfWtP5M6Q/AighEAACEKLOn9WdKfwBWRCACACBEmTmtP1P6A/C1YL1IPYEIAIAQx7T+AIJZsF+knkAEAAAAwGeC/SL1BCIAQNBgcgAACF/B+m02gQgAEHBMDoBgUVRUpD/84Q/aunWramtrVV1drZ49e2rBggUaNWqUx7aHDh1SVlaWjhw5IpfLpSFDhig/P1/JyckBqh5AaxCIAAABx+QACBb33HOPPvvsMxUWFio5OVk1NTWaM2eOMjMz9eqrr2rixImSpJKSEo0aNUp33HGHCgsLVVdXpxkzZigzM1O7d+9WXFxcgHsCoLkIRACAoBGsp1NYSbDOAuVPCxcudH/LEx0drfz8fD3zzDNaunSpOxDl5OSotrZWubm5stlsioqKUn5+vlJSUrRs2TItXLgwkF0A0AIEIgAhh1NaAPMF+yxQ/rJp0yZFRXn+eRQbG6tOnTrp1KlTkqS6ujqtWbNGo0ePVtu2bd3bJScnKz09XQUFBQQiIIQQiACEHE5pAcwX7LNA+Ut0dHSDZRUVFSorK9P06dMlffGhjMPhUGpqaoNtU1NT9dprr8npdComJsbn9QLwHoEIQEjilBZcjFmnfpl5Clko4LTFhlasWKHExERlZ2dLksrKyiRJ8fHxDbaNj4+Xy+XSyZMn1aVLlwbrnU6nnE6n+35VVZWPqgbQXAQiACGHU1pwIb449QvWtWvXLi1dulTr1q1TUlLSRbc3DEOSZLPZGl2fl5enJUuWmFojAO8QiACEHF+f0hKun+AWFxervLzclLaC+VsTs0/9qi56T5U7XjahMoSaDz74QJMnT9bLL7+s6667zr08MTFRUuNjg8PhUEREhBISEhptMzs7W/PmzXPfr6qqUkqK969TAK1HIAIQFsw8pSUcP8EtLi5W37R0nas+G+hS/MasU79qKkpMqAah5v3339ekSZP03HPP6YYbbvBY16tXL8XFxamoqKjBfkVFRUpLS2vy90MxMTH8tggIMgQiACHP7FNawvET3PLycp2rPsu3JkAzvPvuu5o6dapeeukljR492r182LBheu+99xQZGakpU6Zo48aNHt80l5aWym63a9GiRYEqHUAr+CwQMS1ueDLrlJtgPt0GocUXp7SE8ye4fGsCXNg//vEPjRs3TnfccYdKS0u1evVq97rdu3e7/3/JkiUqLCzUokWL9Pjjj6uurk5ZWVnq2bOn5s6dG4jSAbSSzwIR0+KGHyuecoPg5qtTWgBY15w5c+RwOLR8+XItX768ye169Oih7du3KysrS+np6XK5XBo8eLC2bdvW6Km6AIKXT0+ZY1rc8GLmKTecbgNvcUoLAF/Ys2dPs7fNyMjQ5s2bfVgNAH/wWSBiWtzwZcYpN5xuA29Y6ZQWTlMFAMC3fBaIuNIzAF+xyiktnKYKAIDv+XWWOTOnxZXC91ohAC7MKqe0cJoqAAC+57dAZPa0uFJ4XisEAL6K01QBAPAdvwQiX0yLK4XntULMZpUr0wMAAACt4fNA5MtpccP5WiFm4PcHAAAAwIX5NBAxLW5gcWV6AAAA4MJ8FoisNC1usOPK9AAAAEDjfBaIrDItLgAAAIDQ5bNAZJVpcQEAAACErohAFwAAAAAAgUIgAgAAAGBZBCIAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZPpt2G61XXFys8vJyr9ux2+0mVAMAAACELwJRkCkuLlbftHSdqz4b6FIAAACAsEcgCjLl5eU6V31WnSdkKbpzildtVRe9p8odL5tUGYKNWd8AJiYmqnv37qa0BQAAEGoIREEqunOKYpJ6e9VGTUWJSdUgmNSdOSXZbJoxY4Yp7bWNbafDh+yEIgAAYEkEIiDEuJxnJMMw5VvEmooSVRQ+pfLycgIRAACwJAIREKLM+BYRAADA6ph2GwAAAIBlEYgAAAAAWBanzAGAicy6jpjEtcQAAPAHAhEAmITriAGAObhIPfyJQAQAJjHzOmIS1xIDYE18uAR/IxABgMnMmgGQa4kBsCIuUg9/IxABAAAg6HCRevgLs8wBAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLigp0AYFQXFys8vJy09pzOp2KiYkxpS273W5KOwAAAAAuznKBqLi4WH3T0nWu+qx5jdoiJMNlXnsAAABfYfYHuomJierevbspbZlZGx8Ow9+CIhA5nU4tWbJEa9euVUxMjGJiYpSTk6MJEyaY/ljl5eU6V31WnSdkKbpzitftVRe9p8odL5veHgBz+HN8AWAt/hxffPGBbtvYdjp8yO51KPLJh82AHwVFILr99tu1b98+7dy5U4mJidq4caMmTZqkjRs3aty4cT55zOjOKYpJ6u11OzUVJT5pD4A5AjG+ALAGf44vZn+gW1NRoorCp1ReXu51IPLVh82AvwQ8EG3fvl0FBQVavXq1EhMTJUkTJ07UmDFjNGfOHI0dO1Y2my3AVQIIRYwvAHwlUOOLWR/A1jPj9LT6NvhwGKEq4IGooKBAknT99dd7LB8zZoz++te/avfu3Ro2bFggSgMQ4hhfAPhKqI8vdWdOSTabZsyYEehSgIALeCDau3ev4uPj3Z+u1EtNTXWvD+YBBUDwYnwB4CuhPr64nGckwzDlNDdOcUOoC3ggKisrU3x8fIPl9cvKysqa3NfpdMrpdLrvV1ZWSpKqqqqa3OfMmTNf7HviP3KdP9eqmr+s/mvdYGyP2gLfVrC3V3PyE0lfvC8u9L6pX2cYhleP52+tHV9aM7ZIwT2+BPPr0Oz2qC3wbUmML6EyvrhqnF63Z9Se90ltQfm6DuL2LFWb2eOLEWBXXHGF0a1btwbLX3/9dUOSkZeX1+S+OTk5hiRu3Lj56VZSUuLL4cB0rR1fGFu4cfP/jfGFGzduvrpdbHwJ+DdEiYmJOnjwYIPlDofDvb4p2dnZmjdvnvu+y+XSyZMn1blz52b/kLGqqkopKSkqKSlp9JMe+AfPQ+Bd6DkwDEMOh0PJyckBqq51Wju+NGdsCdfXLP0KLeHQL8aXlv/t4gvh8FpqKfoc/n1u7vgS8EA0aNAgvf3226qoqFDnzp3dy4uKiiRJAwcObHLf+jn/v6xjx46tqiM+Pt4SL4xgx/MQeE09Bx06dAhANd5p7fjSkrElXF+z9Cu0hHq/GF86+qzOlgr111Jr0Ofw1pzxJcIPdVzQtGnTJElbt271WL5161alpqYG9Q8SAQQ3xhcAvsL4AoSPgAeizMxMTZ06VYsXL1Z5ebkkqbCwUH/729+0bNkyrhECoNUYXwD4CuMLED4CfsqcJL300ktavHixRowYoZiYGEVHR2vdunX69re/7fPHjomJUU5OToOvr+FfPA+BF67Pga/Gl3A9XvQrtIRrv0JFIP9+MZsVX0v0GfVshhFi81wCAAAAgEkCfsocAAAAAAQKgQgAAACAZRGIAAAAAFgWgQgAAACAZYV1IHI6nVqwYIH69u2rAQMGaPjw4SosLDR9/8WLF6t79+4aNGiQx+3aa681sztBzZtj3ZJ9Dx06pPHjxystLU19+vTR9OnTdfz4cTO7EtL88TyE2+s9WMeJF154QQMGDNCAAQOUkZGhJ598Ui6XK6j6ZRiGtmzZoltuuUVDhw7VwIEDlZGRoZ/85Cf67LPPGrR5+eWXN+j/oEGD9PTTT5tWu6/GE2+fD3/0y1fPB0JLKL/3fdm3YB4bzKq7NfsybvyXEcZuvfVWIy0tzSgrKzMMwzA2bNhgREZGGq+99pqp++fk5BjPP/+8qbWHGm+OdXP3LS4uNhITE42f/vSnhsvlMmpqaoxbb73VuOKKK4yqqirzOxWC/PE8hNvrPRjHiRUrVhht27Y13n33XcMwDOM///mPcemllxoPPfRQM3vln36VlpYakoyf/exnRm1trWEYhnH06FGjd+/eRs+ePRu8L3v06OHz2n0xnpjxfPijX756PhBaQvm9b0Zt3u4biLHBjLpbuy/jxhfCNhD9/e9/NyQZq1ev9lh+4403Gr169TJcLpdp+4fbH4gt5c2xbsm+d9xxh9GxY0ejurravezYsWNGRESEkZuba1JvQpe/nodwer0H4zhRVVVlxMfHG7Nnz/ZYnpeXZ0RFRRlFRUUXbcNf/SotLTUSEhKMuro6j+3++Mc/GpKMZ5991mN5c/4hDbbxxIznw1/98sXzgdASyu/9iwnXseFCGDf8J2xPmSsoKJAkXX/99R7Lx4wZoyNHjmj37t0+3d9KvDlWzd23rq5Oa9as0ciRI9W2bVv3dsnJyUpPT3e3Y2X+eB7CTTCOE1u2bFFVVZXGjBnToM3a2lqtXbv2om34q19JSUk6ceKEIiI8/ynp2rWrJOnUqVMXrdXM2n0xnpjxfPirX754PhBaQvm9fzHhOjZcCOOG/4RtINq7d6/i4+OVmJjosTw1NdW93sz9t2zZomuvvVb9+/fXlVdeqTlz5qi0tNS7ToQIb451c/ctKiqSw+FwL//qtna7XU6n04tehD5/PA/1wuX1HozjRP0+X32tN7em1tTlzf5t2rRpsP+hQ4ckqdHfRz388MMaNmyY+vbtq29+85v6/e9/73G+fbCNJ2Y8H/7ql2T+84HQEsrv/YsJ17HhQhg3/CdsA1FZWZni4+MbLK9fVlZWZtr+7dq1k81m00svvaQPPvhAGzdu1DvvvKOhQ4fqk08+8aYbIcGbY93cfev/29S2LpdLJ0+ebHnxYcQfz4MUXq/3YBwnmnqtN7cmf/frq2pqavTHP/5RM2bM0JAhQzzWJSYm6oorrtD27dv14Ycf6ic/+YnmzZun22+/3ZTH9sV4Ysbz0ZLazN7X2+cDoSWU3/sXE65jw4UwbvhPSASibdu2yWazNet2sURuGIYkyWaztaqWxvafP3++/vznP6tbt26SpJ49e+q5555TaWmpHn300VY9Tjjw5li3ZF9vn9NwZ/bzEKyv93AdJ+r7FR0dLUl6/fXXg6pfX/Xwww8rNjZWv/vd7xqse++99zRr1iy1a9dOkZGRmjJliu655x69/PLL+te//uWz2n05nng77vi6X756PuB7wT6mfVWgXmvhOjaYWUtL97XiuBEV6AKa46qrrpLdbm/Wtj179pT0RYI9ePBgg/UOh8O9/kK83b9fv36Ki4vTzp07m1V3KPPmWDV33/r/VlVVNbptRESEEhISWl58GPHH89CUYHi9h8s48dXXen2/Tp8+rWuuuUYTJkzQk08+GZT9+uUvf6mtW7dq69atiouLu+Bj1LvmmmskSf/85z/19a9/PejGk6a2rb9/sWPZ0trM3NeM5wOBE0pjmj9ea+E6NlwI44b/hMQ3RO3atVNaWlqzbjExMZKkQYMGqaqqShUVFR5tFRUVSZIGDhx4wcdsyf4nTpxotI3IyEjV1ta2rLMhyJtj3dx9e/Xqpbi4OPfyr2775efeqvzxPEjB+3oPl3Fi0KBBHm3U9ysq6ovPr775zW8GVb/qPfLII1q7dq3eeustde7cucH66upqVVZWNtp/Se5jEGzjyVefj5bU05razNrXrOcDgRPsY1o9f73WwnVsuBDGDT/y44x2fvXWW28ZkoyCggKP5TfddJORmprqMVVhbW2t8emnn7Z6f0nGsWPHPLY7cuSIIcn4/ve/b1aXglZzj5W3x/n22283EhISjHPnzrmXHT9+3IiIiDAWL15sdrdCjr+eh3B6vQfjOFFVVWXExcUZP/7xjz22ffzxx43IyEjjyJEjQdUvwzCMBQsWGCNGjDAqKyvdyzZt2uTxvnz++eeNb33rWw1qXbhwoSHJ2Lp1a4se21/jiRnPhz/7ZRjmPh8ILaH83jerb6E2NlwI44b/hG0gMgzDmDp1qpGenu6+INWmTZuMyMhIY+PGjR7b3X333UZERISxc+fOVu0vyfjBD35gnD171jAMwzh9+rTxrW99y4iLizPsdruvuhdUmnOsvD3OH3/8sdG5c2dj/vz57oul3XbbbUavXr083sBW5o/nIdxe78E4TvzmN78xYmNjjffee88wDMMoKioyLrvsMuPBBx8Mun7NnTvXSEhIMJ555hnjz3/+s/s2e/Zs4/bbb3dv9/zzzxuRkZHGhg0b3Mt27txpdOjQwbjhhhta/Nj+HE/MeD781S9fPB8ILaH83jejb6E4NgS6z4wbYR6IqqurjYceesjo06ePceWVVxpDhgzxeBLrLVy40OjUqZNx4MCBVu3/yiuvGDfffLORkZFh9OvXz+jWrZsxbdo048MPP/RZ34JNc46Vt8fZMAzj4MGDxk033WT07dvXuOKKK4xp06YZJSUlPutXqPHH8xBur/dgHSeeffZZo3///saVV15ppKWlGY8//niDC+cFul/79u0zJDV5+/I/pJ9++qnx6KOPGldddZVx5ZVXGr169TL69u1r5OTkeFwAsbmP7e/xxNvnwx/98tXzgdASyu99M/oWimPDhTBu+IfNMP473QQAAAAAWExITKoAAAAAAL5AIAIAAABgWQQiAAAAAJZFIAIAAABgWQQiAAAAAJZFIAIAAABgWQQiAAAAAJZFIAIAAABgWQQiAAAAAJZFIEKzuVwu/eY3v9HgwYOVnJysrl27aujQoXr44Ye1f/9+JSUlKTIyUjabTUlJSXrooYfc+15zzTXq2LGj2rRpo379+kmSqqqqlJeXpxEjRqhbt25KSEhQr1699OCDD8rhcHg89l133aWkpCTZbDZlZmZqz549+ta3vqWuXbvKZrPp8ssv9+ehAAAAQJiwGYZhBLoIhIaf//znevrpp/W///u/Gj16tCTpb3/7m6ZOnaq5c+dq8eLFmjZtmv7yl7/o3Xff1fDhwz32v+eeexQbG6unnnpKkvTee+9p+PDh+uUvf6l58+YpMjJS//znPzV16lRdfvnl2rlzpyIiPDO7zWZTamqq0tLStHLlSqWkpOg3v/mNli5dqo8//tgvxwEAAADhg0CEZsvIyFDbtm21Z88ej+VLlixR586ddd999+mtt97SddddpzvuuEPPPfece5szZ86oa9eu2rVrl/r06SNJ+vDDD/Xwww9r48aNHu399re/1X333afNmzfrpptu8lhns9kUGRmpjz76SKmpqZKkU6dO6dVXX9Wdd97pi24DAAAgjBGI0Gzjxo3T5s2btWjRIv34xz9WUlJSo9ulpaWpuLhYx48fV8eOHSVJK1eu1F/+8hdt3br1oo/z5ptv6vrrr9cvf/lLzZ8/32OdzWbTFVdcoY8++sjr/gAAAAD8hgjN9pvf/EZXX321cnNz1bVrV33jG9/QE088oRMnTnhsN3v2bFVXV+vFF190L1u5cqVmz57doM01a9bopptuUq9evfS1r31NSUlJmjp1qiTp7NmzjdbRVBADAAAAWopAhGZLTU3Vv/71L7333nt66KGHVF5eroceeki9e/f2OO3t9ttvV2xsrFauXClJevvtt/Xpp59q0qRJHu0tWrRIt9xyizp06KAdO3bos88+04kTJ7Ru3boL1vHV3xUBAAAArcVflmi2uro6SdLQoUP12GOP6aOPPtL69etVU1OjOXPmuLdLSEjQrbfeqkOHDumtt97SihUrNGvWLEVHR3u099vf/laStHz5ciUnJ/uvIwAAAMB/EYjQbL169dK//vUvj2U333yz+vXrp5MnT3os//GPfyxJeuyxx7R27VrdddddDdr7akCqx2xxAAAA8BcCEVpkwYIF+r//+z9JkmEY2rBhgw4ePKjbb7/dY7urrrpKQ4YM0RtvvKFrr71WPXr0aNDW97//fUnSAw88oNOnT0uS9u/fr9zcXN92AgAAAPgvZplDs/3v//6vXnnlFb377rs6c+aMDMNQt27ddOedd+ruu+9WZGSkx/bPPPOM7rrrLm3atEkTJkxo0F5NTY2WLl2qF198UcXFxbr00ks1ZMgQjRkzRvfdd5/at2+vSy65RB999JEef/xxPffcc/r0008VHR2tTp066eqrr9aGDRv81X0AAACEIQIRAAAAAMvilDkAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZBCIAAAAAlkUgAgAAAGBZUYEuwEwul0vHjx9XXFycbDZboMsBwoZhGHI4HEpOTlZEBJ+jAACA8BFWgej48eNKSUkJdBlA2CopKVG3bt0CXQYAAIBpwioQxcXFSfrij7b4+PgAVwOEj6qqKqWkpLjfYwAAAOEirAJR/Wly8fHxBCLABzgVFQAAhBt+DAAAAADAsghEAAAAACyLQAQAAADAsghEAAAAACwrrCZVaK7i4mKVl5eb1l5iYqK6d+9uWnsAAAAA/MNygai4uFh909J1rvqsaW22jW2nw4fshCIAAAAgxFguEJWXl+tc9Vl1npCl6M7eX8S1pqJEFYVPqby8nEAEAAAAhBjLBaJ60Z1TFJPUO9BlAAAAAAggJlUAAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACW1aJAVFRUpIcffljDhw/X4MGDlZaWprFjx2rHjh0Ntj106JDGjx+vtLQ09enTR9OnT9fx48cbbfeFF17QgAEDNGDAAGVkZOjJJ5+Uy+VqXY8AAAAAoJlaFIjuuecevf7669qwYYPef/99HThwQJdffrkyMzO1ceNG93YlJSUaNWqU+vXrJ7vdrg8//FCSlJmZKYfD4dHmypUr9eMf/1jPPvus9u/fr02bNunJJ5/UggULTOgeAAAAADStxafMLVy4UMnJyZKk6Oho5efnKyIiQkuXLnVvk5OTo9raWuXm5spmsykqKkr5+fk6cuSIli1b5t7O4XDooYce0syZMzV8+HBJUq9evTRv3jw99dRTOnr0qJfdAwAAAICmtSgQbdq0SZMmTfJYFhsbq06dOunUqVOSpLq6Oq1Zs0YjR45U27Zt3dslJycrPT1dBQUF7mVbtmxRVVWVxowZ49HmmDFjVFtbq7Vr17a0PwAAAADQbC0KRNHR0bLZbB7LKioqVFZWpuuuu07SF78zcjgcSk1NbbB/amqq7Ha7nE6nJGnv3r3u5V/d7svrAQAAAMAXorxtYMWKFUpMTFR2drYkqaysTJIUHx/fYNv4+Hi5XC6dPHlSXbp0aXLb+vv165vidDrd4UqSqqqqWt8RAAAAAJbj1bTbu3bt0tKlS7V69WolJSVddHvDMCSpwbdMTbnYdnl5eerQoYP7lpKS0qx2AQAAAEDyIhB98MEHmjx5sl5++WX36XKSlJiYKKnxb2scDociIiKUkJBwwW3r79evb0p2drYqKyvdt5KSktZ2BwAAAIAFteqUuffff1+TJk3Sc889pxtuuMFjXa9evRQXF6eioqIG+xUVFSktLU0xMTGSpEGDBrmXDx482GM7SRo4cOAF64iJiXG3BQAAAAAt1eJviN59913dfPPNWrVqlUcYGjZsmCQpMjJSU6ZM0c6dOz1+31NaWiq73a5p06a5l40dO1ZxcXHaunWrx2Ns3bpVkZGR+s53vtPiDgEAAABAc7UoEP3jH//QmDFjNHnyZJWWlmr16tXu2+7du93bLVmyRBEREVq0aJEMw1Btba2ysrLUs2dPzZ07171dXFyc8vLy9MILL7j3P3r0qJ5++mnNnTu30ZnqAAAAAMAsLTplbs6cOXI4HFq+fLmWL1/e5HY9evTQ9u3blZWVpfT0dLlcLg0ePFjbtm1rMKPcvffeq9jYWM2cOVM2m001NTWaO3eufvrTn7auRwAAAADQTC0KRHv27Gn2thkZGdq8eXOztr3zzjt15513tqQUAAAAAPCaV9NuAwAAAEAoIxABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLIhABAAAAsCwCEQAAAADLalUgOn36tL73ve/JZrPp448/NrkkAAAAAPCPFgei119/XUOGDNG+ffsuuN2hQ4c0fvx4paWlqU+fPpo+fbqOHz/e6LYvvPCCBgwYoAEDBigjI0NPPvmkXC5XS0sDAAAAgBZpcSD6xS9+obVr12rq1KlNblNSUqJRo0apX79+stvt+vDDDyVJmZmZcjgcHtuuXLlSP/7xj/Xss89q//792rRpk5588kktWLCgpaUBAAAAQIu0OBC99dZbGjx48AW3ycnJUW1trXJzc2Wz2RQVFaX8/HwdOXJEy5Ytc2/ncDj00EMPaebMmRo+fLgkqVevXpo3b56eeuopHT16tKXlAQAAAECztTgQRUVFXXB9XV2d1qxZo5EjR6pt27bu5cnJyUpPT1dBQYF72ZYtW1RVVaUxY8Z4tDFmzBjV1tZq7dq1LS0PAAAAAJrN9FnmioqK5HA4lJqa2mBdamqq7Ha7nE6nJGnv3r3u5V/d7svrm+J0OlVVVeVxAwAAAIDmMj0QlZWVSZLi4+MbrIuPj5fL5dLJkycvuG39/fr1TcnLy1OHDh3ct5SUFK/rBwAAAGAdfr0OkWEYkiSbzdas7S+2XXZ2tiorK923kpISr2sEAAAAYB0X/kFQKyQmJkpSo6evORwORUREKCEh4YLb1t+vX9+UmJgYxcTEeF0zAAAAAGsy/RuiXr16KS4uTkVFRQ3WFRUVKS0tzR1iBg0a5F7+1e0kaeDAgWaXBwAAAABupgeiyMhITZkyRTt37nRPniBJpaWlstvtmjZtmnvZ2LFjFRcXp61bt3q0sXXrVkVGRuo73/mO2eUBAAAAgJtPfkO0ZMkSRUREaNGiRTIMQ7W1tcrKylLPnj01d+5c93ZxcXHKy8vTCy+8oN27d0uSjh49qqefflpz585tdKY6AAAAADBLi39DlJubq3Xr1unEiROSpHHjxqlNmzZ65plnNGzYMElSjx49tH37dmVlZSk9PV0ul0uDBw/Wtm3bGswod++99yo2NlYzZ86UzWZTTU2N5s6dq5/+9KcmdA8AAAAAmmYz6qd+CwNVVVXq0KGDKisrG532W5L27NmjoUOHKun2ZYpJ6u31YzpP/EcnXvyJdu/erSFDhnjdHhCMmvPeAgAACEV+nXYbAAAAAIIJgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZRGIAAAAAFgWgQgAAACAZUUFuoBwYbfbTWsrMTFR3bt3N609AAAAAI0jEHmp7swpyWbTjBkzTGuzbWw7HT5kJxQBAAAAPkYg8pLLeUYyDHWekKXozilet1dTUaKKwqdUXl5OIAIAAAB8jEBkkujOKYpJ6h3oMgAAAAC0AJMqAAAAALAsAhEAAAAAyyIQAQAAALAsAhEAAAAAyyIQAQAAALCsoAhETqdTCxYsUN++fTVgwAANHz5chYWFgS4LAAAAQJgLimm3b7/9du3bt087d+5UYmKiNm7cqEmTJmnjxo0aN25coMsDAAAAEKYCHoi2b9+ugoICrV69WomJiZKkiRMnasyYMZozZ47Gjh0rm80W4Cr9z263m9JOYmIiF3gFAAAAmhDwQFRQUCBJuv766z2WjxkzRn/961+1e/duDRs2LBClBUTdmVOSzaYZM2aY0l7b2HY6fMhOKAIAAAAaEfBAtHfvXsXHx7u/HaqXmprqXt9UIHI6nXI6ne77lZWVkqSqqqomH+/MmTNf7HviP3KdP+dV7ZJUU1FianvO43bJMBQ/fIoiO1zqVVt1lWWq2rVOf/3rX9W3b1+va5OkiIgIuVyuoGvL7PaCuTaz20tKSlJSUtIFt6l/TxmGYcpjAgAABIuAB6KysjLFx8c3WF6/rKysrMl98/LytGTJkgbLU1JSLvq4p/76mxZUeXFmt1e1a51pbd19992mtQVrczgc6tChQ6DLAAAAME3AA1FT6j+JvtDvh7KzszVv3jz3fZfLpZMnT6pz585N7ldVVaWUlBSVlJQ0GsTQOhxX8wXTMTUMQw6HQ8nJyQGtAwAAwGwBD0SJiYk6ePBgg+UOh8O9vikxMTGKiYnxWNaxY8dmPW58fHzA/8gMRxxX8wXLMeWbIQAAEI4Cfh2iQYMGqaqqShUVFR7Li4qKJEkDBw4MRFkAAAAALCDggWjatGmSpK1bt3os37p1q1JTUy01wxwAAAAA/wp4IMrMzNTUqVO1ePFilZeXS5IKCwv1t7/9TcuWLTP9GkQxMTHKyclpcKodvMNxNR/HFAAAwPdsRhDMo3vu3DktXrxYr776qmJiYhQdHa2cnBxNnDgx0KUBAAAACGNBEYgAAAAAIBACfsocAAAAAAQKgQgAAACAZRGIgCB2+vRpfe9735PNZtPHH38c6HIAAADCTsgFIqfTqQULFqhv374aMGCAhg8frsLCQtP3PXTokMaPH6+0tDT16dNH06dP1/Hjx83sSlDxx3FdvHixunfvrkGDBnncrr32WrO7EzS8Oa6vv/66hgwZon379l10W6u9XgEAAExjhJhbb73VSEtLM8rKygzDMIwNGzYYkZGRxmuvvWbavsXFxUZiYqLx05/+1HC5XEZNTY1x6623GldccYVRVVVlfqeCgD+Oa05OjvH888+bXnsw8+a4jhw50tizZ4+Rk5NjSDKOHj3a6HZWfL0CAACYJaQC0d///ndDkrF69WqP5TfeeKPRq1cvw+VymbLvHXfcYXTs2NGorq52Lzt27JgRERFh5ObmmtSb4OGv42q1QOTNcTUMw6ipqTEMw7hoILLa6xUAAMBMIXXKXEFBgSTp+uuv91g+ZswYHTlyRLt37/Z637q6Oq1Zs0YjR45U27Zt3dslJycrPT3d3U448cdxtSJvj01UVNRFH8OKr1cAAAAzhVQg2rt3r+Lj45WYmOixPDU11b3e232LiorkcDjcy7+6rd1ul9Pp9KIXwccfx7Xeli1bdO2116p///668sorNWfOHJWWlnrfiSDkzXFtLiu+XgEAAMwUUoGorKxM8fHxDZbXLysrK/N63/r/NrWty+XSyZMnW158EPPHcZWkdu3ayWaz6aWXXtIHH3ygjRs36p133tHQoUP1ySefeNuNoOPNcW3JY3y5za8+Tji+XgEAAMwUUoGoKYZhSJJsNptP9/XmcUKR2cd1/vz5+vOf/6xu3bpJknr27KnnnntOpaWlevTRR02oODT463VktdcrAABAa4RUIEpMTFRVVVWD5Q6Hw73e233r/9vUthEREUpISGh58UHMH8e1Kf369VNcXJx27tzZkpJDgrfHprmPIVnr9QoAAGCmkApEgwYNUlVVlSoqKjyWFxUVSZIGDhzo9b69evVSXFyce/lXt01LS1NMTIxX/Qg2/jiuknTixIlG24iMjFRtbW2rag9m3hzX5rLi6xUAAMBMIRWIpk2bJknaunWrx/KtW7cqNTVVw4YNk/TFzFufffZZq/aNjIzUlClTtHPnTo8fo5eWlsput7vbCSf+OK6S1KVLlwYXCy0qKtLp06c9tgsX3hzX5rLi6xUAAMBUAZzyu1WmTp1qpKenuy90uWnTJiMyMtLYuHGje5u7777biIiIMHbu3NnifQ3DMD7++GOjc+fOxvz5890XurztttuMXr16GZWVlT7uYWD447hKMn7wgx8YZ8+eNQzDME6fPm1861vfMuLi4gy73e7L7gWMN8e13sWuQ2TF1ysAAIBZLn6hkyDz0ksvafHixRoxYoRiYmIUHR2tdevW6dvf/rZ7m8suu0wdO3ZsMPNWc/aVpB49emj79u3KyspSenq6XC6XBg8erG3btjU6m1c48MdxfeWVV1RQUKBhw4bJZrOpsrJS3/jGN/TOO+8oLS3NL/30N2+Oa25urtatW+c+1XDcuHFq06aNnnnmGY9v1Kz4egUAADCLzTD+OxUVAAAAAFhMSP2GCAAAAADMRCACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACWRSACAAAAYFkEIgAAAACW9f8Axfywo7XW/9oAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.loc[:, df.columns != \"date\"].hist(figsize=(10, 8), edgecolor='black', grid=False)\n", + "# Graphical Overview of the Distributions of Individual Variables in the Data\n", + "# The variable \"date\" is not explicitly excluded here." + ] + }, + { + "cell_type": "markdown", + "id": "f9f1a13d-3c5f-4eed-9892-4c3db49775da", + "metadata": {}, + "source": [ + "Linear Model" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6031cc9b-3399-4e2d-a6ca-6f0f3d18a544", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In-sample MSE: 0.00505\n", + "Out-of-sample MSE: 0.00861\n" + ] + } + ], + "source": [ + "# Train linear model for comparison (your existing code)\n", + "model_all = LinearRegression()\n", + "model_all.fit(X_train, y_train)\n", + "y_pred_train_lm = model_all.predict(X_train)\n", + "mse_train_lm = mean_squared_error(y_train, y_pred_train_lm)\n", + "y_pred_test_lm = model_all.predict(X_test)\n", + "mse_test_lm = mean_squared_error(y_test, y_pred_test_lm)\n", + "\n", + "# print(\"LINEAR MODEL RESULTS:\")\n", + "print(f\"In-sample MSE: {mse_train_lm:.5f}\")\n", + "print(f\"Out-of-sample MSE: {mse_test_lm:.5f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Question 1: Shrinkage Methods" + ] + }, + { + "cell_type": "markdown", + "id": "7c7f6ae5-294d-4221-bfcf-c55d113c6eb2", + "metadata": {}, + "source": [ + "### 1.1 Ridge Regression\n", + "Fit a ridge regression using the training data. Determine the optimal penalty parameter $\\lambda$ using $5$-fold cross validation (set the seed to $2$ before you run the CV). Provide a plot of the cross-validation MSE as a function of log($\\lambda$) and interpret the outome." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0f2cd4e4-bc7a-4a7f-b144-af2696ecdb66", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best lambda (Ridge): 0.040370\n", + "Log of best lambda: -3.2097\n" + ] + } + ], + "source": [ + "# Set up Ridge regression with cross-validation\n", + "np.random.seed(2) # Set seed for reproducibility\n", + "\n", + "# Define lambda grid (alpha in sklearn)\n", + "lambda_grid = np.logspace(-6, 2, 100) # From log(-6) to log(2)\n", + "\n", + "# Perform Ridge regression with 5-fold cross-validation\n", + "# Note: store_cv_results only works with cv=None, so we'll use manual CV for plotting\n", + "ridge_cv = RidgeCV(alphas=lambda_grid, cv=5, scoring='neg_mean_squared_error')\n", + "ridge_cv.fit(X_train, y_train)\n", + "\n", + "# Get best lambda (alpha in sklearn)\n", + "best_lambda_ridge = ridge_cv.alpha_\n", + "print(f\"Best lambda (Ridge): {best_lambda_ridge:.6f}\")\n", + "print(f\"Log of best lambda: {np.log(best_lambda_ridge):.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "17577967-bc41-4e39-924b-341ccbf34a17", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Performing detailed cross-validation for plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJDCAYAAAAW1XcBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAArONJREFUeJzs3Xd4FNX+x/HPpocktARSgIQA0gUhiIBCKFJVlKBiQUEpcrEBKoKiIKKIomIDRCl6EeGqeG2owJWigiIBAelKiUAChppAeub3B7I/Ytouu5vJbt6v58mDO3Nm9jOsS/a758w5FsMwDAEAAAAAAKfzMjsAAAAAAACeiqIbAAAAAAAXoegGAAAAAMBFKLoBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAAAAAwEUougEAAAAAcBGKbgAAAAAAXISiGwBQoSxYsEAWi0UBAQE6ePBgof2dO3dW8+bNTUgmrV69WhaLRR9//LEpz2+vAwcO6LrrrlP16tVlsVg0atSoQm22bNkii8WicePGFXuevXv3ymKx6KGHHnJKrsGDB6tu3bqXdKw9r7/FYtGkSZMu6XkAABUHRTcAoELKysrShAkTzI7h1kaPHq2ff/5Z8+bN0/r16zV69OhCbVq2bKm4uDi9//77ysvLK/I88+fPlyQNGTLEKbmeeuopffrpp045FwAAjqLoBgBUSL169dKiRYu0ZcsWs6OUuYyMDBmG4fB5fvvtN7Vt21Y33XST2rVrp5iYmCLbDRkyRMnJyfr6668L7cvLy9P777+vuLg4tWzZ0qE8586dkyTVr19frVq1cuhcAAA4C0U3AKBCGjt2rEJDQ/X444+X2O7AgQOyWCxasGBBoX3/HF48adIkWSwWbd26VbfccouqVKmi6tWra8yYMcrNzdXu3bvVq1cvhYSEqG7dunrxxReLfM7MzEyNGTNGERERCgwMVHx8vDZv3lyo3caNG9W3b19Vr15dAQEBatWqlf7zn/8UaHNhOP3y5ct17733qkaNGqpUqZKysrKKveakpCQNHDhQNWvWlL+/v5o0aaKXX35Z+fn5kv5/GPzvv/+ur7/+WhaLRRaLRQcOHCjyfHfccYcCAwOtPdoXW758uQ4fPqx7771XkrRkyRL16NFDkZGRCgwMVJMmTTRu3DidPXu2wHGDBw9WcHCwtm3bph49eigkJETdunWz7vvn8PK33npLnTp1Us2aNRUUFKTLL79cL774onJycorM/P3336tdu3YKDAxUrVq19NRTTxXbU3+xlJQU3Xfffapdu7b8/PwUGxurZ555Rrm5uQXazZo1Sy1btlRwcLBCQkLUuHFjPfHEE6WeHwDgfnzMDgAAgBlCQkI0YcIEPfzww/ruu+/UtWtXp5371ltv1cCBA3XfffdpxYoV1uJu5cqVGjlypB599FEtWrRIjz/+uBo0aKCEhIQCxz/xxBNq3bq13n33XZ0+fVqTJk1S586dtXnzZtWrV0+StGrVKvXq1UtXXXWVZs+erSpVqmjx4sUaMGCAzp07p8GDBxc457333qvrrrtO//73v3X27Fn5+voWmf2vv/5Shw4dlJ2drWeffVZ169bVl19+qUcffVR//PGHZs6cqdatW2v9+vXq16+f6tevr+nTp0uSIiMjizxnlSpV1L9/fy1ZskR//fWXatSoYd03f/58BQQE6I477pB0/v7uPn36aNSoUQoKCtKuXbs0bdo0bdiwQd99912B82ZnZ6tv37667777NG7cuEKF7cX++OMP3XHHHYqNjZWfn5+2bNmi5557Trt27dK8efMKtE1JSdFtt92mcePGafLkyfrqq680ZcoUnTx5Um+++Waxz5GSkqK2bdvKy8tLTz/9tOrXr6/169drypQpOnDggPVLh8WLF2vkyJF68MEHNX36dHl5een333/Xjh07ij03AMCNGQAAVCDz5883JBm//PKLkZWVZdSrV89o06aNkZ+fbxiGYcTHxxvNmjWztt+/f78hyZg/f36hc0kyJk6caH08ceJEQ5Lx8ssvF2h3xRVXGJKMpUuXWrfl5OQYNWrUMBISEqzbVq1aZUgyWrdubc1jGIZx4MABw9fX1xg6dKh1W+PGjY1WrVoZOTk5BZ7r+uuvNyIjI428vLwC13v33Xfb9Pczbtw4Q5Lx888/F9j+r3/9y7BYLMbu3but22JiYozrrrvOpvNeuLZXXnnFuu348eOGv7+/ceeddxZ5TH5+vpGTk2OsWbPGkGRs2bLFum/QoEGGJGPevHmFjhs0aJARExNTbJa8vDwjJyfHeP/99w1vb2/jxIkT1n3x8fGGJOOzzz4rcMywYcMMLy8v4+DBg9Zt/3z977vvPiM4OLhAG8MwjOnTpxuSjO3btxuGYRgPPPCAUbVq1WLzAQA8C8PLAQAVlp+fn6ZMmaKNGzcWGpbtiOuvv77A4yZNmshisah3797WbT4+PmrQoEGRM6jfcccdslgs1scxMTHq0KGDVq1aJUn6/ffftWvXLt15552SpNzcXOtPnz59lJycrN27dxc4Z//+/W3K/t1336lp06Zq27Ztge2DBw+WYRiFepttFR8fr/r16xcYYv7BBx8oKyvLOrRckvbt26c77rhDERER8vb2lq+vr+Lj4yVJO3fuLHReW69r8+bN6tu3r0JDQ63nvfvuu5WXl6c9e/YUaBsSEqK+ffsW2HbHHXcoPz9fa9euLfY5vvzyS3Xp0kVRUVEFXpMLr/uaNWskSW3bttWpU6d0++2367PPPlNqaqpN1wAAcE8U3QCACu22225T69at9eSTTxZ7f6+9qlevXuCxn5+fKlWqpICAgELbMzMzCx0fERFR5Lbjx49Lko4ePSpJevTRR+Xr61vgZ+TIkZJUqJArbuj3Px0/frzItlFRUdb9l8Jisejee+/Vtm3btHHjRknnh5bHxsaqS5cukqT09HR17NhRP//8s6ZMmaLVq1frl19+0dKlSyWdnwDuYpUqVVLlypVLfe6kpCR17NhRhw8f1muvvabvv/9ev/zyi956660izxseHl7oHBdek5Ku/+jRo/riiy8KvSbNmjWT9P+vyV133aV58+bp4MGD6t+/v2rWrKmrrrpKK1asKPVaAADuh3u6AQAVmsVi0bRp09S9e3fNmTOn0P4LhfI/Jx671OLTFikpKUVuCw0NlSSFhYVJksaPH1/ofvALGjVqVODxxT3nJQkNDVVycnKh7UeOHCnw3Jdi8ODBevrppzVv3jz5+vpq8+bNevbZZ63ZvvvuOx05ckSrV6+29m5L0qlTp4o8n63X9N///ldnz57V0qVLC8yw/uuvvxbZ/sKXGhe78JpceA2KEhYWphYtWui5554rcv+FLy4k6Z577tE999yjs2fPau3atZo4caKuv/567dmzp9hZ4AEA7omiGwBQ4V177bXq3r27Jk+erDp16hTYFx4eroCAAG3durXA9s8++8xleT788EONGTPGWlQePHhQ69at09133y3pfEF92WWXacuWLXr++eed+tzdunXT1KlTtWnTJrVu3dq6/f3335fFYrH2Sl+KqKgo9erVSx9++KFyc3Pl5eWlQYMGWfdfuF5/f/8Cx7399tuX/JzFndcwDL3zzjtFtk9LS9Pnn39eYIj5okWL5OXlpU6dOhX7PNdff72WLVum+vXrq1q1ajZlCwoKUu/evZWdna2bbrpJ27dvp+gGAA9D0Q0AgKRp06YpLi5Ox44dsw4Hls4XbAMHDtS8efNUv359tWzZUhs2bNCiRYtcluXYsWPq16+fhg0bptOnT2vixIkKCAjQ+PHjrW3efvtt9e7dWz179tTgwYNVq1YtnThxQjt37tSmTZv00UcfXdJzjx49Wu+//76uu+46TZ48WTExMfrqq680c+ZM/etf/1LDhg0durYhQ4boq6++0rvvvquePXsW+JKjQ4cOqlatmkaMGKGJEyfK19dXH3zwgcNrqXfv3l1+fn66/fbbNXbsWGVmZmrWrFk6efJkke1DQ0P1r3/9S0lJSWrYsKGWLVumd955R//6178UHR1d7PNMnjxZK1asUIcOHfTQQw+pUaNGyszM1IEDB7Rs2TLNnj1btWvX1rBhwxQYGKirr75akZGRSklJ0dSpU1WlShVdeeWVDl0rAKD8oegGAEBSq1atdPvttxdZTL/88suSpBdffFHp6enq2rWrvvzyy0JrQTvL888/r19++UX33HOPzpw5o7Zt22rx4sWqX7++tU2XLl20YcMGPffccxo1apROnjyp0NBQNW3aVLfeeuslP3eNGjW0bt06jR8/XuPHj9eZM2dUr149vfjiixozZozD13b99dcrPDxcR48eLTCBmnS+2P3qq6/0yCOPaODAgQoKCtKNN96oJUuWFOh1t1fjxo31ySefaMKECUpISFBoaKjuuOMOjRkzpsDkdhdERETorbfe0qOPPqpt27apevXqeuKJJ/TMM8+U+DyRkZHauHGjnn32Wb300ks6dOiQQkJCFBsbq169ell7vzt27KgFCxboP//5j06ePKmwsDBdc801ev/99wsspwYA8AwWwzAMs0MAAAAAAOCJmL0cAAAAAAAXoegGAAAAAMBFKLoBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAAAAAwEUouj3Y4cOHNXDgQIWGhqpSpUq64oorlJiYaHasAsjoPO6Q0x0ylsZdrsEdcpLRedwlZ0nc5RrcIScZncddcpbEHa7BHTJK7pHTHTLawlOu4wIfswPANU6ePKmrr75aXbp00ddff62aNWvqjz/+UNWqVc2OZkVG53GHnO6QsTTucg3ukJOMzuMuOUviLtfgDjnJ6DzukrMk7nAN7pBRco+c7pDRFp5yHRezGIZhmB0Czjdu3Dj9+OOP+v77782OUiwyOo875HSHjKVxl2twh5xkdB53yVkSd7kGd8hJRudxl5wlcYdrcIeMknvkdIeMtvCU67gYw8s91Oeff642bdrolltuUc2aNdWqVSu98847ZscqgIzO4w453SFjadzlGtwhJxmdx11ylsRdrsEdcpLRedwlZ0nc4RrcIaPkHjndIaMtPOU6CjDgkfz9/Q1/f39j/PjxxqZNm4zZs2cbAQEBxnvvvWd2NCsyOo875HSHjKVxl2twh5xkdB53yVkSd7kGd8hJRudxl5wlcYdrcIeMhuEeOd0hoy085TouRtHtoXx9fY327dsX2Pbggw8a7dq1MylRYWR0HnfI6Q4ZS+Mu1+AOOcnoPO6SsyTucg3ukJOMzuMuOUviDtfgDhkNwz1yukNGW3jKdVyM4eUeKjIyUk2bNi2wrUmTJkpKSjIpUWFkdB53yOkOGUvjLtfgDjnJ6DzukrMk7nIN7pCTjM7jLjlL4g7X4A4ZJffI6Q4ZbeEp13Exim4PdfXVV2v37t0Ftu3Zs0cxMTEmJSqMjM7jDjndIWNp3OUa3CEnGZ3HXXKWxF2uwR1yktF53CVnSdzhGtwho+QeOd0hoy085ToKMLurHa6xYcMGw8fHx3juueeMvXv3Gh988IFRqVIlY+HChWZHsyKj87hDTnfIWBp3uQZ3yElG53GXnCVxl2twh5xkdB53yVkSd7gGd8hoGO6R0x0y2sJTruNiFN0e7IsvvjCaN29u+Pv7G40bNzbmzJljdqRCyOg87pDTHTKWxl2uwR1yktF53CVnSdzlGtwhJxmdx11ylsQdrsEdMhqGe+R0h4y28JTruIB1ugEAAAAAcBHu6QYAAAAAwEUougEAAAAAcBGKbgAAAAAAXISiGwAAAAAAF6HoBgAAAADARSi6PVxWVpYmTZqkrKwss6MUyx0ySu6Rk4xlxx2uwx0ySu6Rk4xlxx2ug4zO4w453SGjLdzhOsjoPO6SsySecA0XsGSYhztz5oyqVKmi06dPq3LlymbHKZI7ZJTcIycZy447XIc7ZJTcIycZy447XAcZnccdcrpDRlu4w3WQ0XncJWdJPOEaLqCnGwAAAAAAF6HoBgAAAADARXzMDuDOcnNztXnzZoWHh8vLq3x+f5GWliZJOnz4sM6cOWNymqK5Q0bJPXKSsey4w3W4Q0bJPXKSsey4w3WQ0XncIac7ZLSFO1wHGZ3HXXKWxB2uIT8/X0ePHlWrVq3k41N8ac093Q745Zdf1LZtW7NjAAAAAABMsmHDBl155ZXF7qen2wHh4eGSzv8lR0ZGmpwGAACUhW3btqlPnz5atmyZLr/8crPjAIBHOnXqlL7//nt17NhRVatWNTtOkZKTk9W2bVtrXVgcim4HXBhSHhkZqdq1a5ucBgAAlIVjx45JOv/lO7//AcA1goKCFBoaqlq1aqlatWpmxylRabcal88bkQEAAAAA8AAU3QAAAAAAuAhFNwAAgB3q1q2rf//736pbt67ZUQDAY1WqVElXXXWVKlWqZHYUh3FPNwAAgB2qV6+ugQMHmh0DADyav7+/YmJizI7hFPR0AwAA2OGvv/7SW2+9pb/++svsKADgsTIzM7V3715lZmaaHcVhFN0AAAB2+PPPP/XAAw/ozz//NDsKAHisjIwMbd68WRkZGWZHcRhFNwAAAAAALkLRDQAAAACAi1B0AwAAAADgIhTdAAAAdggJCVGPHj0UEhJidhQA8Fg+Pj4KDw+Xj4/7L7jl/lcAAABQhi677DJ9++23ZscAAI8WEhKi+Ph4s2M4BT3dAAAAdsjLy9OZM2eUl5dndhQA8Fj5+fnKyclRfn6+2VEcRtENAABghy1btqhKlSrasmWL2VEAwGOdPn1an376qU6fPm12FIdRdAMAAAAA4CLc0+2B0tLSlJ6efsnHBwcHMzkMAAAAADgBRbcHSkxM1Jo1a4rdHxMTo4MHDxa7Pz4+XnFxcQ4V7o4KDg6WpBIz8OUAAAAAgPKOotsDxcXFqVGjRpKk1NRULV26VAkJCQoLCyvUtqj9wcHBDhfuju6/MFNhSRnatWunFi1aFLvfURT1AAAAABxVLorumTNn6qWXXlJycrKaNWumGTNmqGPHjsW2X7NmjcaMGaPt27crKipKY8eO1YgRI6z7t2/frqefflqJiYk6ePCgXn31VY0aNarAOaZOnaqlS5dq165dCgwMVIcOHTRt2jRrserOQkJCChWLYWFhioyMLPaYf+53tHB3dP+Fnu6SMmzdulVz5swp9pqcUfiX1uNPYQ4AFc/ll1+uY8eOqWrVqmZHAQCPVaVKFfXt21d+fn5mR3GY6UX3kiVLNGrUKM2cOVNXX3213n77bfXu3Vs7duxQdHR0ofb79+9Xnz59NGzYMC1cuFA//vijRo4cqRo1aqh///6SpHPnzqlevXq65ZZbNHr06CKfd82aNbr//vt15ZVXKjc3V08++aR69OihHTt2KCgoyKXX7A6cUbg7Y39JGYKDg6093a4q/Evr8Xe0t52iHQDcj6+vr2rUqGF2DADwaF5eXgoICDA7hlOYXnS/8sorGjJkiIYOHSpJmjFjhr799lvNmjVLU6dOLdR+9uzZio6O1owZMyRJTZo00caNGzV9+nRr0X3llVfqyiuvlCSNGzeuyOf95ptvCjyeP3++atasqcTERHXq1MlZlwcXKosvBkrr8Xe0t720op2iHADKnz/++EOjR4/Wq6++qvr165sdBwA8Unp6un799VddccUV1lGw7srUojs7O1uJiYmFCuMePXpo3bp1RR6zfv169ejRo8C2nj17au7cucrJyZGvr+8lZbmw/lv16tWLbZOVlaWsrCzr47S0tEt6LriP0gp7R3vbSyvaGeIOAOXP6dOn9cUXX2jSpElmRwEAj5WTk6MjR46oWbNmZkdxmKlFd2pqqvLy8hQeHl5ge3h4uFJSUoo8JiUlpcj2ubm5Sk1NLbEXsziGYWjMmDG65ppr1Lx582LbTZ06Vc8884zd54fncrS3vbSi3ZYh7vHx8ercubODVwIAAADAFUwfXi5JFoulwGPDMAptK619Udtt9cADD2jr1q364YcfSmw3fvx4jRkzxvr48OHDatq06SU9JyDZVrTbMqldcnJysc9BTzgAAABgHlOL7rCwMHl7exfq1T527Fih3uwLIiIiimzv4+Oj0NBQuzM8+OCD+vzzz7V27VrVrl27xLb+/v7y9/e3Pj5z5ozdzwfYq7TCfPXq1Q5N9kZRDgAAALiOqUW3n5+f4uLitGLFCvXr18+6fcWKFbrxxhuLPKZ9+/b64osvCmxbvny52rRpY9f93IZh6MEHH9Snn36q1atXKzY29tIuAjCZo5O9MTwdAOxTq1Ytvfzyy6pVq5bZUQDAYwUGBqply5YKDAw0O4rDTB9ePmbMGN11111q06aN2rdvrzlz5igpKcm67vb48eN1+PBhvf/++5KkESNG6M0339SYMWM0bNgwrV+/XnPnztWHH35oPWd2drZ27Nhh/e/Dhw/r119/VXBwsBo0aCBJuv/++7Vo0SJ99tlnCgkJsfaeV6lSxSNeWFQcjk72FhwcrLS0NCZrAwAbhYeHF7jdDADgfAEBAdaOJXdnetE9YMAAHT9+XJMnT1ZycrKaN2+uZcuWKSYmRtL5e1WTkpKs7WNjY7Vs2TKNHj1ab731lqKiovT6669blwuTpCNHjqhVq1bWx9OnT9f06dMVHx+v1atXS5JmzZolSYV6+ObPn6/Bgwe75mIBE9hy33hpQ9TpDQeA/3fy5EmtXLlS1157rapVq2Z2HADwSNnZ2Tp69KjCw8Pl5+dndhyHmF50S9LIkSM1cuTIIvctWLCg0Lb4+Hht2rSp2PPVrVvXOrlacUrbD1QkTNYGALbbv3+/br31ViUmJlJ0A4CLnD17VuvXr1f37t0pugG4P0cna6MnHAAAACgaRTeAUpXWEx4cHGxmPAAAAKDcougGUKrSesLT0tIYfg4AAAAUgaIbgMMSExMZfg6gwggMDFSrVq1Y7QQAXMjb21tVq1aVt7e32VEcRtENwGEMPwdQkTRp0qTECV0BAI6rXLmyevToYXYMp6DoBuAwhp8DAAAARaPoBuByDD8H4Ek2b96sdu3a6aefflKrVq3MjgMAHunkyZP63//+p27durn98owU3QBcjuHnADyJYRjKzs6WYRhmRwEAj5afn292BKeg6AbgcqUNP5fOD0FPT08v9hwMQQcAAIA7ougGUC4wBB0AAACeiKIbQLnAEHQAAAB4IopuAOWCLUPQAaA8aNKkiX777TfVq1fP7CgA4LFCQkLUs2dPBQUFmR3FYRTdAAAAdggMDFSzZs3MjgEAHs3Hx0dVqlQxO4ZTeJkdAABscWGt7+J+0tLSzI4IoII4ePCghg4dqoMHD5odBQA81tmzZ/XLL7/o7NmzZkdxGD3dANwCE60BKC+OHz+uuXPnauTIkYqJiTE7DgB4pOzsbO3fv18NGjRw+yHmFN0A3AITrQEAAMAdUXQDcAtMtAYAAAB3RNENwCOkpaUpPT292P3BwcGFinYAAADA1Si6AXgE7vkGUFbCw8M1btw4hYeHmx0FADyWv7+/GjduLH9/f7OjOIyiG4BH4J5vAGWlVq1amjp1qtkxAMCjVapUSS1atDA7hlNQdAPwCNzzDaCspKWlKTExUXFxcdy2AgAukpOTo5MnT6patWry9fU1O45DWKcbAADADnv37lWXLl20d+9es6MAgMdKT0/X6tWrS5yzx11QdAMAAAAA4CIMLwdQITC7OQAAAMxA0Q2gQmB2cwAAAJiBohtAhcDs5gCcxdfXV7Vq1XL7iX0AoDyzWCwKDAyUxWIxO4rDKLoBVAjMbg7AWS6//HIdOnTI7BgA4NGqVq2qG264wewYTsFEagAAAAAAuAhFNwAAgB22bdum2rVra9u2bWZHAQCPderUKX3xxRc6deqU2VEcxvByAPgbM5wDsEVOTo4OHz6snJwcs6MAgMcyDEMZGRkyDMPsKA6j6AaAvzHDOQAAAJyNohsA/sYM5wAAAHA2im4A+BsznAMAAMDZmEgNAADADpdddplWrVqlyy67zOwoAOCxgoOD1blzZ48YaUhPNwAAgB1CQkKY3wEAXMzX11c1a9Y0O4ZT0NMNAABgh8OHD2v8+PE6fPiw2VEAwGOdO3dOW7du1blz58yO4jCKbgAAADscPXpUL7zwgo4ePWp2FADwWFlZWdq1a5eysrLMjuIwhpcDgI1YxxsAAAD2ougGABuxjjcAAADsRdENADZiHW8AAADYi6IbAGzEOt4AJCk0NFRDhgxRaGio2VEAwGP5+fkpNjZWfn5+ZkdxGEU3AACAHWJiYvTuu++aHQMAPFpQUJCuvPJKs2M4BbOXAwAA2CEjI0Pbt29XRkaG2VEAwGPl5ubq9OnTys3NNTuKwyi6AQAA7LBz5041b95cO3fuNDsKAHistLQ0ffvtt0pLSzM7isMougEAAAAAcBHu6QYAJ2EdbwAAAPwTRTcAOAnreAMAAOCfKLoBwElYxxuoGCwWi/z8/GSxWMyOAgAezcvLM+6GpugGACdhHW+gYmjVqpWysrLMjgEAHq1atWq6+eabzY7hFJ7x1QEAAAAAAOUQRTcAAIAddu7cqdatW7NkGAC40JkzZ7R8+XKdOXPG7CgOo+gGAACwQ0ZGhjZv3qyMjAyzowCAx8rLy9OpU6eUl5dndhSHUXQDAAAAAOAiFN0AAAAAALgIs5cDQBlJS0tTenp6sfuDg4MLzX4OAAAA90bRDQBlJDExUWvWrCl2f3x8vDp37lx2gQBcktjYWP3nP/9RbGys2VEAwGMFBQWpffv2CgoKMjuKwyi6AaCMxMXFqVGjRpKk1NRULV26VAkJCQoLC5N0vqcbQPlXrVo13XLLLWbHAACP5ufnpzp16pgdwykougGgjISEhBQaPh4WFqbIyEiTEgG4FEePHtUHH3ygO++8U+Hh4WbHAQCPlJmZqYMHDyomJkYBAQFmx3EIE6kBAADY4fDhw3rkkUd0+PBhs6MAgMfKyMjQli1bPGJ5RopuAAAAAABchKIbAAAAAAAXoegGAAAAAMBFKLoBAADsUKVKFd1www2qUqWK2VEAwGP5+voqKipKvr6+ZkdxGLOXAwAA2KF+/fr6/PPPzY4BAB4tODhY11xzjdkxnIKiGwDKkbS0NKWnpxe7Pzg4uNCyYwDKVk5Ojk6dOqWqVat6RA8MAJRH+fn5ys7Olp+fn7y83HuANkU3AJQjiYmJWrNmTbH74+Pj1blz57ILBKCQbdu2KS4uTomJiWrdurXZcQDAI50+fVorVqxQ9+7dVa1aNbPjOISiGwDKkbi4ODVq1EiSlJqaqqVLlyohIUFhYWGSzvd0AwAAwH1QdANAORISElJo+HhYWJgiIyNNSgQAAABHuPfgeAAAAAAAyjGKbgAAAAAAXITh5QAAAHZo2bKlTp8+raCgILOjAIDHqlKlivr16ydvb2+zoziMohsAAMAO3t7eqly5stkxAMCjeXl5uf1SYReUi6uYOXOmYmNjFRAQoLi4OH3//fcltl+zZo3i4uIUEBCgevXqafbs2QX2b9++Xf3791fdunVlsVg0Y8YMpzwvAADA3r171bNnT+3du9fsKADgsdLS0rRmzRqlpaWZHcVhphfdS5Ys0ahRo/Tkk09q8+bN6tixo3r37q2kpKQi2+/fv199+vRRx44dtXnzZj3xxBN66KGH9Mknn1jbnDt3TvXq1dMLL7ygiIgIpzwvAACAdP6D4PLlyz3igyAAlFe5ubk6evSocnNzzY7iMNOHl7/yyisaMmSIhg4dKkmaMWOGvv32W82aNUtTp04t1H727NmKjo629l43adJEGzdu1PTp09W/f39J0pVXXqkrr7xSkjRu3DinPC8AlAdpaWlKT08vdn9wcHChJccAAABgHlOL7uzsbCUmJhYqjHv06KF169YVecz69evVo0ePAtt69uypuXPnKicnR76+vi55XknKyspSVlaW9THfcAMoa4mJiVqzZk2x++Pj49W5c+eyCwQAAIASmVp0p6amKi8vT+Hh4QW2h4eHKyUlpchjUlJSimyfm5ur1NRURUZGuuR5JWnq1Kl65plnSj0/ALhKXFycGjVqJOn8v2VLly5VQkKCwsLCJJ3v6QYAAED5Yfo93ZJksVgKPDYMo9C20toXtd3Zzzt+/HidPn3a+rNjxw67ng8AHBUSEqLIyEhFRkZaC+2wsDDrNoaWA65Xp04dvfnmm6pTp47ZUQDAYwUGBqpVq1YKDAw0O4rDTO3pDgsLk7e3d6He5WPHjhXqhb4gIiKiyPY+Pj4KDQ112fNKkr+/v/z9/a2Pz5w5Y9PzAQAAz1GjRg3df//9ZscAAI8WEBCgyy67zOwYTmFqT7efn5/i4uK0YsWKAttXrFihDh06FHlM+/btC7Vfvny52rRpY9P93Jf6vAAAAJJ04sQJLVy4UCdOnDA7CgB4rKysLB08eLDAnFruyvTh5WPGjNG7776refPmaefOnRo9erSSkpI0YsQISeeHdN99993W9iNGjNDBgwc1ZswY7dy5U/PmzdPcuXP16KOPWttkZ2fr119/1a+//qrs7GwdPnxYv/76q37//XebnxcAAKAoBw4c0F133aUDBw6YHQUAPNa5c+f0888/69y5c2ZHcZjpS4YNGDBAx48f1+TJk5WcnKzmzZtr2bJliomJkSQlJycXWDs7NjZWy5Yt0+jRo/XWW28pKipKr7/+unW5MEk6cuSIWrVqZX08ffp0TZ8+XfHx8Vq9erVNzwsAAAAAgKOcWnTn5OTozz//VL169ew6buTIkRo5cmSR+xYsWFBoW3x8vDZt2lTs+erWrWudXO1SnxcAAAAAAEfZNLzc29tbGzZssD42DEM9evQoMFxbkjZt2uQxN7sDAAAAAOAom4ruf/Ya5+fna+XKlczeDQAAKpygoCC1a9dOQUFBZkcBAI/l7e2t0NBQeXt7mx3FYabf0w0AcJ60tDSlp6cXuz84OJi1vAEHNWrUSOvXrzc7BgB4tMqVK6tbt25mx3AKim4A8CCJiYlas2ZNsfvj4+PVuXPnsgsEAABQwVF0A4AHiYuLU6NGjSRJqampWrp0qRISEhQWFibpfE83AMds2rRJcXFxSkxMVOvWrc2OAwAe6eTJk1qxYoW6d++uatWqmR3HITYX3RaLxaZtAADzhISEFBo+HhYWpsjISJMSAQAAVGw2F91dunSRl1fBedc6duxYYFt+fr7zkgEAAAAA4OZsKroHDRrk6hwAAAAAAHgcm4ru+fPnuzoHAAAAAAAeh4nUAAAA7NC0aVPt3btXtWvXNjsKAHisypUrq3fv3qpUqZLZURzmVXoTKT09XUlJSYW27927V7fddpuaN2+unj176rvvvnN6QAAAgPIkICBADRo0UEBAgNlRAMBjeXt7KyQkRN7e3mZHcZhNRff48ePVvXv3AttSU1PVoUMH/ec//9GRI0f0v//9T71799aGDRtcEhQAAKA82L9/vwYOHKj9+/ebHQUAPFZ6erp++uknpaenmx3FYTYV3evWrdNtt91WYNtrr72m48eP69VXX9WJEyeUlJSkunXravr06S4JCgAAUB6cPHlSH3zwgU6ePGl2FADwWDk5OUpKSlJOTo7ZURxmU9GdlJSkli1bFti2bNky1alTRw8//LAkKSoqSqNGjdK6deucnxIAAAAAADdk00Rq6enpCgsLsz7OzMzU1q1bdfvttxdo16RJE/3111/OTQgAcJq0tLQSh2kFBwcrJCSkDBMBAAB4NpuK7qioKB04cECdOnWSJG3YsEF5eXlq06ZNgXZ5eXkKCgpyfkoAgFMkJiZqzZo1xe6Pj49X586dyy4QAACAh7Op6O7QoYPeeOMN3XzzzapUqZLefvttWSwW9ezZs0C73377TbVq1XJJUACA4+Li4tSoUSNJ5yfEXLp0qRISEqyjmYKDg82MB7iFyMhITZw4UZGRkWZHAQCPFRAQoKZNm3rEShE2Fd1PPvmk4uLiFBERocqVK+vIkSPq16+f9YPbBZ988onatWvnkqAAAMeFhIQUGj4eFhZG8QDYITIyUpMmTTI7BgB4tMDAQDVv3tzsGE5h00RqjRs31g8//KB+/fqpVatWmjJlij788MMCbVJSUlS1alUNGDDAJUEBAADKgzNnzujbb7/VmTNnzI4CAB4rJydHKSkpHjF7uU093ZLUqlUrvffee8Xuj4iI0Oeff+6UUAAAAOXV77//rl69eikxMVGtW7c2Ow4AeKT09HStXbtW3bt3V7Vq1cyO4xCberoBAAAAAID9bOrpnjx5ss0ntFgseuqppy45EAAAAAAAnsKmonvSpEmyWCwyDKPUthTdAAAAAACcZ/M93ZUrV9aAAQN0zz33qEGDBq7MBAAAUG75+/urfv368vf3NzsKAHgsLy8vBQcHy8vL/e+ItqnoPnDggObPn68FCxbonXfeUadOnTRkyBDdfPPNHrFuGgAAgK2aNWum33//3ewYAODRqlSpoj59+pgdwyls+togOjpaEydO1P79+/XNN98oPDxcw4YNU0REhEaMGKENGza4OicAAAAAAG7H7r767t27a/HixTp8+LCeffZZbdiwQe3bt9fw4cNdkQ8AUMbS0tKUnJxc7E9aWprZEQFTbd26VTVq1NDWrVvNjgIAHuvUqVP67LPPdOrUKbOjOMzme7r/qWrVqqpXr57q1q2rrVu3esRfBgBASkxM1Jo1a4rdHx8fr86dO5ddIKCcyc3NVWpqqnJzc82OAgAeyzAMZWVl2TSZd3lnd9G9d+9ezZs3T++//76OHj2qrl27auHCherXr58r8gEAylhcXJwaNWokSUpNTdXSpUuVkJCgsLAwSVJwcLCZ8QAAANyKTUX3uXPntGTJEs2bN08//vijYmJiNHz4cN1zzz2Kjo52dUYAQBkKCQlRSEhIgW1hYWGKjIw0KREAAID7sqnojoyMVG5urm666SZNmjRJ3bp1c3UuAAAAAADcnk1Fd1pamnx9ffXFF1/oiy++KLGtxWLR6dOnnRIOAACgvGnYsKHWrVunhg0bmh0FADxWcHCwunbt6hG3tdlUdA8aNMjVOQAAANxCcHCw2rdvb3YMAPBovr6+1vlk3J1NRff8+fNdnQMAAMAtHDp0SK+88orGjBmj2rVrmx0HADzSuXPntGfPHjVs2FCVKlUyO45D7F6nGwAAoCI7duyYXn31VR07dszsKADgsbKysrRnzx5lZWWZHcVhFN0AAAAAALgIRTcAAAAAAC5i0z3dAABckJaWpvT09GL3BwcHF1rnGwAAoKKi6AYA2CUxMVFr1qwpdn98fLw6d+5cdoGAMhYWFqaRI0d6zKy6AFAe+fn5qX79+vLz8zM7isMougEAdomLi1OjRo0kSampqVq6dKkSEhKsBYgnrKcJlCQ6OlpvvfWW2TEAwKMFBQUpLi7O7BhO4VDR/ddffykjI6PQ9ujoaEdOCwAox0JCQgoNHw8LC1NkZKRJiYCyde7cOe3atUuNGzd2+2VsAKC8ys3NVVpamkJCQuTj4959xXZPpJaWlqahQ4cqKChIERERio2NLfQDAADgqXbt2qW4uDjt2rXL7CgA4LHS0tK0YsUKpaWlmR3FYXZ/ZTBq1CgtWrRIQ4YMUYsWLeTv7++KXAAAAAAAuD27i+6vvvpKL7zwgh5++GFX5AEAAAAAwGPYPbw8MzNTl19+uSuyAAAAAADgUewuuvv06aPvv//eFVkAAADKPS8vL4WEhMjLy+6PUQAAO7j7BGoX2H0VEyZM0M0336yQkBDdcMMNCg0NLdSmevXqTgkHAABQ3lxxxRU6c+aM2TEAwKNVq1ZNCQkJZsdwCruL7ubNm0uSHnvsMT322GNFtsnLy3MsFQAAAAAAHsDuovvpp5+WxWJxRRYAgAdIS0tTenp6sfuDg4MLrfMNuJMdO3bolltu0UcffaSmTZuaHQcAPNLp06e1fv16tW/fXlWqVDE7jkPsLronTZrkghgAAE+RmJioNWvWFLs/Pj5enTt3LrtAgJNlZmZqx44dyszMNDsKAHis/Px8nTlzRvn5+WZHcZhDd6ZnZmbq5MmTqlatmgICApyVCQDgxuLi4tSoUSNJUmpqqpYuXaqEhASFhYVJOt/TDQAAUFFc0rSb69atU8eOHRUSEqLatWsrJCRE8fHxWr9+vbPzAQDcTEhIiCIjIxUZGWkttMPCwqzbGFoOAAAqErt7un/66Sd17dpVVatW1fDhwxUVFaXDhw9r6dKl6tq1q1avXq2rrrrKFVkBAAAAAHArlzSRWosWLbRq1SoFBQVZt7/00kvq0qWLnn76aX377bdODQkAAFBe1KtXT5999pnq1atndhQA8FhBQUG6+uqrC9Sc7sru4eU//fSTxo4dW+jig4KC9NhjjzHEHAAAeLSqVauqb9++qlq1qtlRAMBj+fn5qVatWvLz8zM7isPsLrrz8vLk7+9f5L6AgADW6AYAAB4tJSVFU6dOVUpKitlRAMBjZWRkaOfOncrIyDA7isPsLrpbtmypWbNmFbnv7bffVsuWLR0OBQAAUF4dOXJETzzxhI4cOWJ2FADwWJmZmdq2bZtHLM9o9z3d48aN00033aRWrVpp4MCBioyMVHJyshYtWqRff/1V//3vf10QEwAAAAAA92N30d23b18tXLhQY8eO1WOPPWbdXqtWLS1cuFA33HCDUwMCADxPWlqa0tPTi90fHBzM0mIAAMAj2F10S9Idd9yh22+/Xbt379bx48cVGhqqRo0ayWKxODsfAMADJSYmas2aNcXuj4+PV+fOncsuEAAAgItcUtEtSRaLRY0bN3ZmFgBABREXF6dGjRpJklJTU7V06VIlJCQoLCxM0vmebqC8qlq1qm6++WZmLwcAF/L19VXt2rXl6+trdhSH2VR0r127Vq1bt1ZwcLDWrl1bavtOnTo5HAwA4LlCQkIKDR8PCwtTZGSkSYkA29WrV08fffSR2TEAwKMFBwerQ4cOZsdwCpuK7s6dO+unn35S27Zt1blz52KHkRuGIYvFwrJhAADAY2VnZ+vYsWOqWbOmR6wfCwDlUV5enrKysuTv7y9vb2+z4zjEpqJ71apVatq0qSTpu+++495tAABQYf3222+Ki4tTYmKiWrdubXYcAPBIZ86c0YoVK9S9e3dVq1bN7DgOsanojo+Pt/43E9sAAAAAAGAbL3sP6Nq1q3bt2lXkvj179qhr164OhwIAAAAAwBPYXXSvXr1aZ86cKXJfWlpaiUvAAAAAAABQkVzykmFFSU5OVqVKlZx5SgBABZSWlqb09PRi9wcHBxea/RwAAKA8sqno/uyzz/TZZ59ZHz/77LOqUaNGgTYZGRlavXq1WrVq5dyEAIAKJzExscSRU/Hx8cwxAtNcccUVyszM9Ii1YwGgvKpatar69+8vLy+7B2eXOzYV3Tt27LCuR2mxWPTdd98Vunh/f39dfvnleu2115yfEpdm6VKFTZigJ/bulZYskaZMkRISbN/vjHM4IwOACicuLk6NGjWSJKWmpmrp0qVKSEhQWFiYpPM93YBZvLy85O/vb3YMAPBoFovF7ZcKu8Cmrw3Gjx+vtLQ0paWlyTAMrVq1yvr4wk9qaqpWrVqlFi1auDozbLF0qdS/v3x27ZJvbq58du2S+vc/v92W/c44hzMy/N0urFs3PTFlisK6dSv7/ba2AeA0ISEhioyMVGRkpLXQDgsLs25jaDnMtGfPHnXu3Fl79uwxOwoAeKy0tDRr3enu7O6rz8/PV9u2bV2RBc70zDOSxSKLYUjS+T8tFmnyZNv2O+MczshQHgp/G9u4vPAHAJQL6enpWrNmTYnzDgAAHJObm6u//vpLubm5ZkdxWLkYID9z5kzFxsYqICBAcXFx+v7770tsv2bNGsXFxSkgIED16tXT7NmzC7X55JNP1LRpU/n7+6tp06b69NNPC+zPzc3VhAkTFBsbq8DAQNWrV0+TJ09Wfn6+U6/NNHv2SH8Xs1aGIe3ebdt+Z5zDGRnKQ+FfWpvy0uMPAAAAoNy5pKJ74cKFatOmjYKCguTt7V3oxx5LlizRqFGj9OSTT2rz5s3q2LGjevfuraSkpCLb79+/X3369FHHjh21efNmPfHEE3rooYf0ySefWNusX79eAwYM0F133aUtW7borrvu0q233qqff/7Z2mbatGmaPXu23nzzTe3cuVMvvviiXnrpJb3xxhuX8ldS/jRseL4wvJjFIv19j2Sp+51xDmdkKA+Ff2ltykOP/99t6E0HAAAAyhe7i+7PP/9c99xzj1q1aqWMjAzdc889uv322xUUFKTLLrtMTz/9tF3ne+WVVzRkyBANHTpUTZo00YwZM1SnTh3NmjWryPazZ89WdHS0ZsyYoSZNmmjo0KG69957NX36dGubGTNmqHv37ho/frwaN26s8ePHq1u3bpoxY4a1zfr163XjjTfquuuuU926dXXzzTerR48e2rhxo71/JeXTxImSYcj4u6g1LJbzheLEibbtd8Y5nJGhPBT+pbUpDz3+9KYDAAAA5ZLdRfcLL7ygMWPGWId0jxw5UgsXLtSePXuUl5enOnXq2Hyu7OxsJSYmqkePHgW29+jRQ+vWrSvymPXr1xdq37NnT23cuFE5OTkltrn4nNdcc43+97//WSdB2bJli3744Qf16dOn2LxZWVk6c+aM9adc39SfkCB98olymzRRjo+Pcps0OV9A9etn235nnMMZGcpD4V9am/LQ419eetMBoAKIjo7WO++8o+joaLOjAIDHqlSpktq0aaNKlSqZHcVhdhfdu3fv1rXXXivL30XChRvbIyIiNGHCBL3yyis2nys1NVV5eXkKDw8vsD08PFwpKSlFHpOSklJk+9zcXKWmppbY5uJzPv7447r99tvVuHFj+fr6qlWrVho1apRuv/32YvNOnTpVVapUsf40bdrU5ms1RUKCUleu1PMTJih15cqCxawt+51xDifsN73wL61NeejxLw+96X+3oShHWUhLS1NycnKxP+X6S1G4vbCwMA0dOtQ6sz4AwPn8/f1Vr149j1ii0e6iOy8vT35+fvLy8lJQUFCBQjY6Olr79u2zO4TlH8WEYRiFtpXW/p/bSzvnkiVLtHDhQi1atEibNm3Se++9p+nTp+u9994r9nnHjx+v06dPW3927NhR+sXBcWYX/qW1KQ89/uWhN93WIeyAEyQmJmrOnDnF/iQmJpodER4sNTVV7777rvXLfgCA82VlZWnfvn3KysoyO4rDfOw9IDY2VkeOHJEktWzZUh9++KH69u0rSfr4448VGRlp87nCwsLk7e1dqFf72LFjhXqqL4iIiCiyvY+Pj0JDQ0tsc/E5H3vsMY0bN0633XabJOnyyy/XwYMHNXXqVA0aNKjI5/b39y/wTcuZM2dsvFJ4vIQEpbZvrzlz5mj48OGF3wdO2K9PPlHuU0+dL44bNpTvlCkFe9v795fxd1F84c8Cvekl7ZfOF+bbthUsvO3pTS+pKE9ION9m6VKFTZigJ/bulZYskaZM+f99gB3i4uLU6O//N1NTU7V06VIlJCRYex6Dg4PNjAcPl5SUpGHDhql169b0dgOAi5w7d04bN25UtWrV3L632+6e7m7dumnlypWSpIcfflhLlixRgwYN1LRpU82ePVsjRoyw+Vx+fn6Ki4vTihUrCmxfsWKFOnToUOQx7du3L9R++fLlatOmjXx9fUtsc/E5z507Jy+vgpfv7e3tOUuGwfO4srddcrw3vbSinMnc4EQhISGKjIxUZGSktegJCwuzbgsJCTE5IQAAwHl2F93PPfecXn31VUnSLbfcoo8//lgtW7ZU06ZNNXfuXD322GN2nW/MmDF69913NW/ePO3cuVOjR49WUlKStXgfP3687r77bmv7ESNG6ODBgxozZox27typefPmae7cuXr00UetbR5++GEtX75c06ZN065duzRt2jStXLlSo0aNsra54YYb9Nxzz+mrr77SgQMH9Omnn+qVV15Rv6KGFgPuwNX3zztalDtrMjcAAADAjdg9vPyfQ6wTEhKU4MDw0AEDBuj48eOaPHmykpOT1bx5cy1btkwxMTGSpOTk5AJrdsfGxmrZsmUaPXq03nrrLUVFRen1119X//79rW06dOigxYsXa8KECXrqqadUv359LVmyRFdddZW1zRtvvKGnnnpKI0eO1LFjxxQVFaX77rvP7iXPAI9S0jB3R4e4OzqZG0PUAQAA3FpaWprS09NtanuhXWpqqjIzMyWdv33MHUez2V10u8LIkSM1cuTIIvctWLCg0Lb4+Hht2rSpxHPefPPNuvnmm4vdHxISohkzZhRYuxtAKRwpyku7Z1yyfYj6hcL+Qk/4J59QeAMoM8HBwYqPj2fuAAAVSmkF84V/E0tqs3XrVv3000/F7o+JidHBgwclnb8VOSIiQh9//LGys7Mlna8DO3fufAnpzWVT0d21a1ebT2ixWPS///3vkgMBcGMlFeXOmMzNlp5wQLZ9MHDHb8pRPjRs2FCrV682OwYAOFVpvztLK5jj4+MlSWvWrCm2Tbt27TR8+HBJRU+EejFPmijVpqI7Pz+/wHJbu3fvVkpKimJiYqwzhR88eFCRkZHW2WQBoIDSesIl5wxRZ/g5dH5JsZJ+6bvrN+UoH/Lz85WTkyNfX99Ck7ICgFnsGbpdlNKK6tIK5gsFcWmri/zzS+8LE6H+04Uln0NDQ+1aIas8sqnovvjb3G+++UbDhg3Tjz/+qPbt21u3r1u3TgMGDCgwoRkAFODo0mil9YQz/Bx/Y0kxuNKvv/6quLg4JSYmqnXr1mbHAVAB2DKCq7QvnC8eul0UW4pqWwpmW4vq0pw9e1aNGzfW2bNn7T62vLH7nu4JEyZo0qRJBQpu6fzkZRMnTtSTTz6pPn36OC0ggArGkSHqTMSGv4WEhDjtlz4AAK7mjKHdpX3hfDFHe6FhH7uL7u3bt6tOnTpF7ouOjtauXbscDgUARSqtJ5yJ2AAAQDnkaFFtay+0vUUzRXXZsLvoDg8P1yeffKIePXoU2vfRRx8pPDzcKcEAoEgl9YQzERsAAChjzhj67ayh3Sif7C66R44cqXHjxunEiRO64447rBOpffDBB/r00081depUV+QEgNI5YyI2iSHoFQQznAMAJNdPQGbL0G+Kas9md9E9duxYnTt3Ti+++KKWLl0q6fzMcgEBAXryySc1duxYp4cEAJs4Y61whqBXGMxwjkvVvHlz/fnnn6pZs6bZUQDYwNGh3c6agIyi2j6VKlXS3r17dfXVV5sdxWF2F92SNGnSJI0ePVrr16/X8ePHFRoaqnbt2qlq1apOjgcAdnJ0rXCGoFcYzHCOS+Xn56fatWubHQOAymZo98XopS47Xl5eys3N9YilGS+p6JakKlWqqFevXs7MAgCuZcta4bYOQYfbo9cBl2rfvn16/PHHNW3aNNWrV8/sOIBHK4tZvS+laOb3hetlZGSoVq1aysjIMDuKw2wqupOSkhQZGSlfX18lJSWV2j46OtrhYADgEqWtFW7jEHTu+QYqrlOnTunjjz/W+PHjzY4CuL3yOqs3zJeXl6fKlSsrLy/P7CgOs6nojo2N1fr169W2bVvVrVtXFoulxPae8BcDoIIqbQg693xXGEy0BgCOK6ui+mIU1ChvbCq6582bp/r161v/u7SiGwDcVmlD0Lnnu8JgojUAFZ2js3qzVBZwnk1F96BBg6z/PXjwYFdlAYDyoaQh6Lbc883wc4/ARGsAPJ2rZ/VmqSzgvEueSA0AKqTS7vlm+LnH4B5AFCcqKkrPP/+8oqKizI6CCsyWW2AkuXRo98W4nxrO5ufnp2PHjsnPz8/sKA6zqeh+//337Trp3XfffUlhAKDcK+2eb4afVxjc811xRUREMIkaHObo0G1bZu2WVOZDuymo4Sx+fn46fvx4xSm67RlSbrFYKLoBeK7S7vlmybEKg3u+K65Tp05p7dq16tSpk6pWrWp2HJRTrh66bUvBLImh3XBbubm5Cg4OVm5urtlRHGZT0b1//35X5wAA91HSPd+2LDkGj8A93xXXvn37dOONNyoxMVGtW7c2Ow5MYMtIF0cnELuYIwUzRTXcVWZmpurUqaPMzEyzozjMpqI7JibG1TkAwDOUNvxcYqI1D1HafYppaWlKTk4u9niGnwPmKYuh3a6YQIyCGXBPTKQGAM5U2vBzJlqrMBh+DpjDGb3QzhjazQRiAC64pKJ77969evvtt7Vz505lZGQU2GexWPS///3PKeEAwC2VNPycidYqDIafA+aw5Quv0t6fF+NeaACOsrvo/u2339SuXTvVqlVLv//+u1q0aKHU1FQdPnxYderUUf369V2REwA8AxOtVRi29HIxA7p7CggIUNOmTRUQEGB2lAqptPdNo0aNbBrWzdBuoHyzWCzKysqSxWIxO4rD7C66n3jiCfXs2VNLliyRn5+f5s6dq9atW+urr77SvffeqylTprgiJwB4BlsnWuO+7wqBIejuqWnTptq+fbvZMTyWo7N+F/W+oWAG3E9QUJD27duna6+91uwoDrO76N60aZNmzpwpLy8vSVJ+fr4k6brrrtOjjz6q8ePHl/gBAgAqNBsnWuO+74rBliGuTMYGT+NoUW3rUlkAUF7YXXSfPHlS1atXl5eXl3x9fXXy5EnrvjZt2mjy5MlODQgAHqW0idYk7vuuQEob4rp69Wp6wsuhX3/9VZ06ddLatWt1xRVXmB2nXCmLpbS4nxqoGNLT09WwYUOHVhooL+wuumvVqqXU1FRJUoMGDbR27Vp1795d0vlvJvl2EQBKUdJEaxL3fcOKnvDyKT8/X2lpadbRfhWJM4Z+u2IpLQCeydvb2+wITmF30X3NNddo3bp1uummm3TnnXdq4sSJSk5Olp+fnxYsWKCBAwe6IicAVBy23vcNj+doT3i7du3UokWLYvdTlMNezuqlpqgGUJHYVHTn5ubKx+d80yeffFJHjhyRJD3++ONKSUnRBx98IIvFoltvvVXTp093XVoAqAhsue8bUOk94Vu3btWcOXOKPZ7h6fgnZ80MfjEKagAVnU1Fd1RUlO6++27dc889atasmXVZMG9vb73++ut6/fXXXRoSACoUW+77ZnZzqPSe8ODgYGtPd3EFEsuWVSzMDA4AZc+movuyyy7TK6+8oldffVVt27bVkCFDdNttt3H/NgC4Skn3fTO7OWxkyzBehqjbr3HjxkpMTFTjxo3NjlJAWU1iBgBlITAwUPv371eHDh3MjuIwm4ruH3/8UXv37tXcuXO1cOFCDR8+XKNHj9bNN9+sIUOG6JprrnF1TgDABcxuDidydIh6aUV5adyxaK9UqZJat25d5s/LJGYAKhJvb29lZmZ6xGRqNk+kdtlll+mFF17Q888/r2+++Ubz5s3Thx9+qPfff18NGjTQvffeq7vvvpt/lAHA1ZjdHE7k6BD10orymJgYHTx4sNj9FwpBR5aEKevCPSkpSdOmTdPjjz+u6Ohom48rrWgujTPWr2YSMwDuIjMzU+Hh4crMzDQ7isPsnr3cy8tLffr0UZ8+fXTixAktXLhQ8+fP1/jx4/XUU0+pV69e+vzzz12RFQAgMbs5ypSjRfnFiisESxvyXFrhbssQeElOW+t1586dmjlzpvr27StfX1+bjnHWdbJ+NYCKIjc3V9WrV1dubq7ZURxmd9F9serVq+uhhx7SiBEj9PTTT+ull17SV1995axsAICi2DK7OROtoYxcSs/pP/fbsh75BZc6S7skhwrei/dfWMVl6dKl1p5nW3v0HblOimoAcE8OFd2bN2/W/PnztWjRIp08eVKhoaG66667nJUNAFCU0mY3Z6I1uBlHC3dbZmmX5FDBe7G1a9dqzpw56tq1qzp16mTT8Zc6tJuiGgDcn91F98mTJ7Vw4ULNmzdPW7dulcViUY8ePTRkyBC7hlkBABxQ0uzmTLSGCsbWYtZZBW/VqlWtf1IwAwBKY1PRbRiGvv32W82bN09ffPGFsrKyFBsbq2eeeUb33HOPatWq5eqcAABbMdEa4FJhYWFq165dkb3gAADn8PX11fHjxz2iU9emojs6OlpHjhyRv7+/EhISNGTIEHXt2tXV2QAAl4KJ1gCXioqKUq9evRQVFWV2FADwWP7+/jp27Jj8/f3NjuIwm4rusLAwjRs3Tnfeead1SBUAoJyyZaI1AJfs7Nmz+vPPP3X27FmzowCAx8rLy1NgYKDy8vLMjuIwL1sabd68Wffff3+hgjsvL0/e3t7atGmTK7IBAC7FhYnWmjRRjo+Pcps0OT+52oWJ1qTzs5t366YnpkxRWLdu5/cDsMkff/yhuXPn6o8//jA7CgB4rIyMDNWtW1cZGRlmR3GYTUV3SYx/3jcIADBfQoJSV67U8xMmKHXlykIFt/r3l8+uXfLNzZXPhdnNKbwBAACczuGiGwDgZkqa3RwAAABORdENABUNs5sDAACUGYeKbm9vb82fP1+xsbHOygMAcLWGDc/3bF+M2c0Bm/n4+KhSpUry8bFpPloAwCWwWCzKzc2V5Z+fWdyQwz3dgwYNUrVq1ZyRBQBQFiZOlP6e1VzS+T+Z3RywWdOmTTV27Fg1bdrU7CgA4LGCgoK0d+9eBQUFmR3FYXYX3d99950++ugj6+OjR4+qT58+ioiI0N13363MzEynBgQAOJkts5tLzHAOAADgBHYX3U8//bR27NhhfTx27Fh9//336tChgz7++GO99NJLTg0IAHCBkmY3l5jhHCjB7t279dprr2k38yAAgMucPXtW9evX19mzZ82O4jC7i+49e/aodevWkqTc3Fx9+umnmjZtmpYuXarJkyfrww8/dHpIAEAZY4ZzoFhZWVk6efKksrKyzI4CAB7LMAz5+fl5xBLVdhfdZ86cUdWqVSVJiYmJOnv2rPr27StJatu2rZKSkpwaEABgAmY4BwAAcAq7i+6aNWtq7969kqSVK1cqJiZGtWvXliSlpaXJ19fXuQkBAGWPGc4BAACcwu6iu1evXnriiSf0yCOP6JVXXtFNN91k3bdr1y7VrVvXifEAAKawZYZzJloDAAAold1F9/PPP68rrrhC77zzjlq1aqUJEyZY9y1atEgdOnRwakAAgAlKm+GcidZQgcXGxmrgwIGKjY01OwoAeKyAgAAlJSUpICDA7CgO87H3gLCwMH3zzTdF7lu1apVH/KUAAHR+hvP27TVnzhwNHz5ckZGR/7+vpInWEhJMCgyUjZCQEDVo0EAhISFmRwEAj+Xj46OzZ8/Kx8fukrXcsbunuyiZmZnatWuXgoKC5Ofn54xTAgDKMyZaQwV29OhRrVq1SkePHjU7CgB4rOzsbIWFhSk7O9vsKA6zu+h+44039Oyzz1ofJyYmqk6dOmrWrJkaNmyoP//806kBAQDlEBOtoQI7evSo1qxZQ9ENAC6UnZ2tGjVqVMyi+91337UuGSZJjz/+uKpXr65XX31VhmFoypQpzswHACiPbJloDQAAAPYX3UlJSWrcuLGk80uErV27VlOnTtVDDz2kZ555RsuXL3d6SABAOVPaRGsSs5sDAADoEorurKws61rc69evV35+vq699lpJUt26dZWSkuLchACA8ikhQakrV+r5CROUunJloYKb2c0BAAAuoeiOjo7W999/L0n67LPPdMUVV6hy5cqSpL/++sv63wCACqyk2c0BN1e1alVdfvnlBW63AwA4l4+Pj06fPu0Rs5fbfQUDBw7UM888o//+97/asmWLpk+fbt23ceNGNWzY0KkBAQBuiNnN4cGio6PVv39/RUdHmx0FADxWQECAjhw54hFLUttddD/55JPy8fHRunXr1K9fPz344IPWfb/99pv69+/v1IAAADfUsKG0bVvBwpvZzeEhMjMzdfz4cWVmZpodBQA8Vn5+vnx9fZWfn292FIfZXXRbLBaNGzeuyH2ff/65w4EAAB5g4kSpf38Zfw8xv/Ans5vDE+zZs0dvvPGGrrvuOsXGxpodBwA80rlz59SgQQOdO3fO7CgOs/ue7gvS0tK0fPlyffjhh1qxYoXS0tKcmQsA4M5smd1cYoZzAADg8S6p6J4+fbqioqLUu3dv3XnnnerVq5eioqL0yiuvODsfAMBdlTS7ucQM5wAAoEKwu+h+//33NXbsWHXq1EmLFy/W999/r8WLFys+Pl6PPfaY/v3vf7siJwDA0zDDOQAAqADsvqf71Vdf1R133KGFCxcW2H7LLbdo4MCBevXVV3XXXXc5LSAAwEMxwzkAAKgA7O7p3rVrlwYOHFjkvoEDB2rnzp0OhwIAVAANG57v2b4YM5zDDbRo0UKTJk1SixYtzI4CAB4rODhYO3fuVHBwsNlRHGZ30R0YGKgTJ04Uue/EiRMKDAx0OBQAoAKYOFH6e2ZzSef//OcM50y0BgAA3JzdRXfHjh01adIkHTlypMD2lJQUTZ48WZ06dXJaOACABytthnMmWkM59fvvv+vdd9/V77//bnYUAPBY586dU0xMjEcsGWb3Pd3PPfecOnTooAYNGqhbt26KjIxUcnKyvvvuO/n6+mopH4YAALZKSFBq+/aaM2eOhg8frsjIyP/fV9JEawkJJgUGzn8QPHTokEd8EASA8io/P1+VKlVSfn6+2VEcZndPd/PmzbVx40bdeOON+uWXXzR//nz98ssvuummm7RhwwY1bdrUFTkBABUNE60BAAAPYFdPd2ZmpiZPnqz+/fvrww8/dFUmAADOT7S2bVvBwpuJ1gAAgJuxq6c7ICBAr776qs6ePevUEDNnzlRsbKwCAgIUFxen77//vsT2a9asUVxcnAICAlSvXj3Nnj27UJtPPvlETZs2lb+/v5o2bapPP/20UJvDhw9r4MCBCg0NVaVKlXTFFVcoMTHRadcFAHAAE60BAAAPYPfw8iZNmmj//v1OC7BkyRKNGjVKTz75pDZv3qyOHTuqd+/eSkpKKrL9/v371adPH3Xs2FGbN2/WE088oYceekiffPKJtc369es1YMAA3XXXXdqyZYvuuusu3Xrrrfr555+tbU6ePKmrr75avr6++vrrr7Vjxw69/PLLqlq1qtOuDQDgACZaQzlVp04d9evXT3Xq1DE7CgB4LH9/fx0+fFj+/v5mR3GY3UX3U089pSlTpuiPP/5wSoBXXnlFQ4YM0dChQ9WkSRPNmDFDderU0axZs4psP3v2bEVHR2vGjBlq0qSJhg4dqnvvvVfTp0+3tpkxY4a6d++u8ePHq3Hjxho/fry6deumGTNmWNtMmzZNderU0fz589W2bVvVrVtX3bp1U/369Z1yXQAAJ0hIUOrKlXp+wgSlrlz5/wW3VPJEa4ALVatWTS1btlS1atXMjgIAHsvX11dnzpyRr6+v2VEcZnfRPX/+fJ07d05NmjRRmzZtdMMNN6hv377WnxtvvNHmc2VnZysxMVE9evQosL1Hjx5at25dkcesX7++UPuePXtq48aNysnJKbHNxef8/PPP1aZNG91yyy2qWbOmWrVqpXfeeafEvFlZWTpz5oz1Jy0tzeZrBQA4GROtwSTHjx/Xhg0bdPz4cbOjAIDHys7OVrVq1ZSdnW12FIfZXXRv3bpVfn5+qlWrlo4fP67ffvtN27ZtK/Bjq9TUVOXl5Sk8PLzA9vDwcKWkpBR5TEpKSpHtc3NzlZqaWmKbi8+5b98+zZo1S5dddpm+/fZbjRgxQg899JDef//9YvNOnTpVVapUsf4wUzsAmKhhw/M92xdjojWUgcOHD2vZsmU6fPiw2VEAwGNlZ2crIiLCI4puu9fpPnDggNNDWP7xockwjELbSmv/z+2lnTM/P19t2rTR888/L0lq1aqVtm/frlmzZunuu+8u8nnHjx+vMWPGWB8fPnyYwhsAzDJxotS/v4y/h5hf+LPQRGsTJuiJvXulJUukKVNY4xsAAJQpu3u6nSksLEze3t6FerWPHTtWqKf6goiIiCLb+/j4KDQ0tMQ2F58zMjKyUMHcpEmTYidwk87fzF+5cmXrT0hISOkXCQBwDSZaAwAAbsCmovvkyZPq37+/vvzyy2LbfPnll+rfv79d9zf5+fkpLi5OK1asKLB9xYoV6tChQ5HHtG/fvlD75cuXq02bNtab7Itrc/E5r776au3+x31/e/bsUUxMjM35AQAmY6I1AABQztlUdL/77rvasmWLevXqVWybXr16adu2bXrrrbfsCjBmzBi9++67mjdvnnbu3KnRo0crKSlJI0aMkHR+SPfFw71HjBihgwcPasyYMdq5c6fmzZunuXPn6tFHH7W2efjhh7V8+XJNmzZNu3bt0rRp07Ry5UqNGjXK2mb06NH66aef9Pzzz+v333/XokWLNGfOHN1///125QcAlFNMtAYXCQ4OVv369RUcHGx2FABwT0uXKqxbNz0xZYrCunUrPApt6VJF9+2rhDvvVHTfvm4/Ss2monvx4sUaNmyYfHyKvwXcx8dHw4YN0+eff25XgAEDBmjGjBmaPHmyrrjiCq1du1bLli2z9jgnJycXGPIdGxurZcuWafXq1briiiv07LPP6vXXX1f//v2tbTp06KDFixdr/vz5atGihRYsWKAlS5boqquusra58sor9emnn+rDDz9U8+bN9eyzz2rGjBm688477coPACinbJ1orbRf/MA/1KtXT3fddZfq1atndhQAcD4bCuJSf2+W1Ka027/+3u+3e7d8cnPlt3u3298eZtNEanv27FGbNm1Kbde6dWs9++yzdocYOXKkRo4cWeS+BQsWFNoWHx+vTZs2lXjOm2++WTfffHOJba6//npdf/31NucEALgRGydaU//+8rnQ5sIv/k8+YcI1FCsvL0+ZmZnKy8szOwoA2K+kSUZL+71oy+/N0tqUdPuXLfvdkE093bm5uTYtSu7r62tdKxsAAFOVNtGaxH3fuCTbt2/XCy+8oO3bt5sdBUBF4+pe5tJ+L9rye7O0NqXd/uWBt4fZVHRHRkZqx44dpbbbvn27IiIiHA4FAIBTlDTRmuSRv9gBAG7MkYLZljZlURCX1qa0279svT3MjdhUdMfHx2vmzJkl9mLn5ORo1qxZ6tKli9PCAQDgUrb8YueebwCAs7iyF9qWNmVREJfWZuJE6e/bviSd//Pi279K2++GbCq6R48erV27dqlfv346cuRIof1HjhzRTTfdpN27d2v06NFODwkAgEuU9oudtb4BABc4OsGYq3uhbWlTFgVxaW1Ku/3r7/3ZjRopz9dX2Y0aFb49zM3YVHS3aNFCb731lr799lvFxsaqQ4cOuvPOO3XnnXeqQ4cOio2N1fLly/XWW2/p8ssvd3VmAACco7Rf/NzzDQAVhxNm3C7xS1pX90Lb0sZJBXGJ86XY2KbE278SEpT0+ef6ZOFCJX3+uVsX3JKNRbckDRs2TGvXrlWPHj20detWffjhh/rwww+1detW9erVS99//72GDh3qyqwAADhfSb/4belVYPh5hdOkSRM99thjatKkidlRANjD7AnGXN0LbUsbJxXEJe63tU0pKlWqpD179qhSpUp2H1ve2Fx0S1L79u31xRdf6MyZM0pJSVFKSorOnDmjzz77TO3atXNVRgAAzFHaByCGn1dIvr6+CgoKsmllFwBOUt6HdtvyJa2re6HtaONoQVwWvLy8lJeXJy8vu0rWcumSrsDLy0s1a9ZUzZo1PeIvAQCAIpX2AYjh5xXSgQMHtGjRIh04cMDsKID7cKRodoeh3bYM/S6LXmhb27iBjIwM1a5dWxkZGWZHcRgVMwAAxSntAxDDzyukM2fOaM+ePTpz5ozZUQDncEIvskO9zJ4wtNuWod8e1AtdFvLy8hQSEqK8vDyzoziMohsAgJKU9AGI4ecAXM3Rgre0No4WxM7oZfaEod22FNR/t6OorngougEAuFTOGn5ObzjgucweVu3qXmRn9DJ7ytBuCmoUg6IbAIBL5aTh5/SGA+WUJwyrdnUvsjN6mRnaDQ9H0Q0AgCMcGX4u2fahmZ7wciUyMlI9evRQZGSk2VFQErOHXUvlY1i1q3uRndHLzNBuFMHPz09Hjx6Vn5+f2VEcRtENAICr2NL7UtoHYnrCy50aNWqoQ4cOqlGjhtlRKjZHCmZb2njKsGpX9yI7o5eZod0ogp+fn06cOEHRDQAASmDLB8nSPhDTE17unDp1Stu3b9epU6fMjuLZHCmqy8Owa6l8DKt2dS+ys3qZKZrxDzk5OQoJCVFOTo7ZURxG0Q0AgCuV9kGytA/EzugJpyh3qqSkJH300UdKSkoyO0r55eqh3Y4WzLa08ZRh1WXRi0zBDBfIyspS7dq1lZWVZXYUh1F0AwBgptI+EDvaE27r8HQKc9jD7KHdjhbMtrTxpGHVFMWAqSi6AQAwW0kfiB3tCbdxeDq95SigvA/tdrRgtqUNw6oBOAlFNwAA5ZmjPeG2DLN1Rm85Rbl7cfeh3U5ac5nJuwCUBYpuAADKO0d6wm0ZZutob7mzinI3KdwDAwMVERGhwMBAcwK4eu1odxja7aw1lymagXLLy8tLmZmZ8vJy/5LV/a8AAICKrLTiw5Zhto72ljupKHe4cC+jov2yyy7TiBEjdNlll13aCRy5jrJYO9odhnb/3YaCGfBclSpV0v79+1WpUiWzoziMohsAAHdXUvFhS/HiaG+5M+4rd7Rwd9aEcWWw36HrKIu1o91laDcAuAmKbgAAPJ0N96U61FvujPvKHS3cnTFhnKv3O+M6ymLtaIZ2AygH0tPT1ahRI6Wnp5sdxWEU3QAAwLHecmfcV+5o4e6MCeNcvd8Z11EWa0fTCw2gnPCE+7klim4AAGALVxbltrRxRrHpaMFbFr3M5WHt6L/bUFQDgHNQdAMAAMc5el+5o4W7MyaMc/V+Z1xHWa0dDQBwGopuAADgeo7e4+uMYtPRgrcseplZOxoAPA5FNwAAcA+OFpuOFrx/789u1Eg53t7KbtTINb3MFM0AoMDAQP3xxx8KDAw0O4rDfMwOAAAAUGYSEpTavr3mzJmj4cOHKzIy0u79Jxw5HgBgE29vb2VnZ8vb29vsKA6jpxsAAMAOhw4d0meffaZDhw6ZHQUAPFZmZqYiIyOVmZlpdhSHUXQDAADY4cSJE9q8ebNOnDhhdhQA8Fi5ubmqWrWqcnNzzY7iMIpuAAAAAABchKIbAAAAAAAXoegGAAAAAMBFKLoBAADsUKNGDV1zzTWqUaOG2VEAwGP5+voqNTVVvr6+ZkdxGEU3AACAHSIjI3XttdeyHBgAuJC/v7/++usv+fv7mx3FYRTdAAAAdkhPT9f+/fuVnp5udhQA8Fi5ubmqVKkSs5cDAABUNPv27dN7772nffv2mR0FADxWZmamYmJiWKcbAAAAAAAUj6IbAAAAAAAXoegGAAAAAMBFKLoBAADs4Ovrq5CQEI9YxgYAyiuLxaKcnBxZLBazoziMohsAAMAOTZo00SOPPKImTZqYHQUAPFZQUJB+//13BQUFmR3FYRTdAAAAAAC4CEU3AACAHXbu3KmXX35ZO3fuNDsKAHiss2fPqkGDBjp79qzZURxG0Q0AAGCHnJwcpaWlKScnx+woAOCxDMOQr6+vDMMwO4rDKLoBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAALBDvXr1NGjQINWrV8/sKADgsQICAnTw4EEFBASYHcVhFN0AAAB2CA4OVmxsrIKDg82OAgAey8fHR+fOnZOPj4/ZURxG0Q0AAGCH5ORkrVy5UsnJyWZHAQCPlZWVpRo1aigrK8vsKA6j6AYAALDDX3/9pR9++EF//fWX2VEAwGPl5OQoLCzMI5ZnpOgGAAAAAMBFKLoBAAAAAHARim4AAAAAAFyEohsAAMAO1atXV6tWrVS9enWzowCAx/Lx8dGpU6eYvRwAAKCiqV27tm688UbVrl3b7CgA4LECAgKUnJzMOt0AAAAVTUZGho4dO6aMjAyzowCAx8rLy5Ofn5/y8vLMjuIwim4AAAA77N27VzNnztTevXvNjgIAHisjI0P169f3iC84KboBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAALCDxWKRt7e3LBaL2VEAwKPl5+ebHcEpKLoBAADscPnll+upp57S5ZdfbnYUAPBYwcHB2r17t4KDg82O4jCKbgAAAAAAXISiGwAAwA579+7V7NmzWTIMAFzo3Llzio2N1blz58yO4jAfswMAAJwnLS1N6enpkqTU1NQCf/5TUfsvDOEq6RzBwcEKCQlxcnLAfWRkZCglJcUj1o4FgPIqPz9fAQEBHnFfN0U3AJQjjhbNW7du1U8//VSg3dKlS63/HRMTo4MHDxa7Pz4+XpK0Zs2aYtu0a9dOLVq0KDYDRTkAAMD/o+gGACdxRi9zYmJiiQVvaUVzu3btNHz48Eu+hgs93Y0aNSq2zdatWzVnzpwSM1CUAwAAnEfRDaBCKK0gtmVY9cVc1cscFxdXYsFbGmcVtCWdIzg42FpUF6W0ovzCdTKEHQAAVAQU3QDKBUd7iUvbX1pBbMuw6rLoZQ4JCSn3xWZpGUsrym3p0ae3HOVZdHS0brnlFkVHR5sdBQA8lr+/vw4dOqR27dqZHcVh5aLonjlzpl566SUlJyerWbNmmjFjhjp27Fhs+zVr1mjMmDHavn27oqKiNHbsWI0YMaJAm08++URPPfWU/vjjD9WvX1/PPfec+vXrV+T5pk6dqieeeEIPP/ywZsyY4cxLAxzm6mLUGT28zsjg6LBqRwtiW4ZVl4ZC8DxbvjgorUfflt7yzp07O5QTuFRVq1ZVs2bNVLVqVbOjAIDH8vX1VVpamnx9fc2O4jDTi+4lS5Zo1KhRmjlzpq6++mq9/fbb6t27t3bs2FHkN8j79+9Xnz59NGzYMC1cuFA//vijRo4cqRo1aqh///6SpPXr12vAgAF69tln1a9fP3366ae69dZb9cMPP+iqq64qcL5ffvlFc+bMKbFXxt2UxezFpZ3D0f1k+P8Mri5GndHD64wMjg6rLo2tBTFFc9lwtLdckpKTkyXRE46y99dff2ndunXq16+fIiMjzY4DAB4pOztb1atXV3Z2ttlRHGZ60f3KK69oyJAhGjp0qCRpxowZ+vbbbzVr1ixNnTq1UPvZs2crOjra2iPdpEkTbdy4UdOnT7cW3TNmzFD37t01fvx4SdL48eO1Zs0azZgxQx9++KH1XOnp6brzzjv1zjvvaMqUKS6+0rLjaJFWXoowMpRdMSo51sPrjAzuMKwaZae0/x9Wr15d4nuTnnC4UnJyspYvX64xY8Z41Jf2AFCeZGdnKzw8nKLbUdnZ2UpMTNS4ceMKbO/Ro4fWrVtX5DHr169Xjx49Cmzr2bOn5s6dq5ycHPn6+mr9+vUaPXp0oTb/HDp+//3367rrrtO1115rU9GdlZWlrKws6+O0tLRSjzGDMyZikswvwshQtsUoBS/ciS3/ztETDgAAygNTi+7U1FTl5eUpPDy8wPbw8HClpKQUeUxKSkqR7XNzc5WamqrIyMhi21x8zsWLF2vTpk365ZdfbM47depUPfPMMza3N4uzirTy8IGUDACKQk84AABwF6YPL5cki8VS4LFhGIW2ldb+n9tLOueff/6phx9+WMuXL1dAQIDNOcePH68xY8ZYHx8+fFhNmza1+XgAQNkorSc8ODjYpmXk+NINAAA4ytSiOywsTN7e3oV6tY8dO1aop/qCiIiIItv7+PgoNDS0xDYXzpmYmKhjx44pLi7Ouj8vL09r167Vm2++qaysLHl7exd6bn9/f/n7+1sfnzlzxo6rBQCUFVtG/NAbjktVuXJlNWzYUJUrVzY7CgB4LG9vb6WlpRVZl7kbU4tuPz8/xcXFacWKFQWW81qxYoVuvPHGIo9p3769vvjiiwLbli9frjZt2link2/fvr1WrFhR4L7u5cuXq0OHDpKkbt26adu2bQXOcc8996hx48Z6/PHHPeKFBQCUzJbecKAodevW1R133KG6deuaHQUAPFZgYKAOHTqkwMBAs6M4zPTh5WPGjNFdd92lNm3aqH379pozZ46SkpKs626PHz9ehw8f1vvvvy9JGjFihN58802NGTNGw4YN0/r16zV37twCs5I//PDD6tSpk6ZNm6Ybb7xRn332mVauXKkffvhB0vkekObNmxfIERQUpNDQ0ELbAQCeqbTe8LS0NCZjQ5FycnJ09uxZ5eTkmB0FADxWfn6+vL29lZ+fb3YUh5ledA8YMEDHjx/X5MmTlZycrObNm2vZsmWKiYmRdH722aSkJGv72NhYLVu2TKNHj9Zbb72lqKgovf7669blwiSpQ4cOWrx4sSZMmKCnnnpK9evX15IlSwqt0Q0AQHFKW36R4ecV186dO/XSSy+pW7duio6ONjsOAHikc+fOqWHDhjp37pzZURxmetEtSSNHjtTIkSOL3LdgwYJC2+Lj47Vp06YSz3nzzTfr5ptvtjnD6tWrbW4LAPB8LEsGAACcoVwU3QAAlDcsSwYAgH1KWxnkYqXtP3nypPXPC19yu+sX2hTdAABcAnrCAQCexNGCOTg4uNRbs2JiYnTw4EGb9gcEBCg2NlarVq1SZmamJPf9QpuiGwCAS0BPOACgPHG0aN66dat++umnAu3sKZjj4+Nt+kLaVunp6dq8ebMSEhKsK4q468oiFN0AALiALUuSlfYBid7w8qlZs2YaN26cmjVrZnYUAB6iPPQyt2vXTsOHD7/ka7jwO8tZv7fy8/NVt25deXt7y8vLyynnNAtFNwAALmDLBw96w92Tt7e3AgIC5O3tbXYUAG6itKK6PPQyl7cver28vNy+2L6AohsAAJNwX7h72rdvn/7973/r2muvVWRkpNlxALhYWfRCl7de5vIgLS1NmzZtUuvWrd3+uii6AQAwiaP3hbdr104tWrSQRFFeltLT0/XHH39YP4QDKN/c4V5n/r0uLDc3V0ePHlVubq7ZURxG0Q0AQDlV2oe0rVu3as6cOQW2UZQD8CTc6wxPQNENAEA5VdqHtODgYGtRXZTSinLuGQeK5oxCT5LT1iuuyBm41xmegKIbAAA35WhRzgzqcEdlURA7o9CT5LT1iityBnqZ4QkougEA8FDOmEG9tCHqF6soRXutWrXUp08f1apVy+wobqk83F8rlVwIOqPQk+S09YorcgZP/DcEtgkMDFSrVq0UGBhodhSHUXQDAFCBOXrfuC29VJ52X3loaKjatm2r0NBQs6OUOU+5v1YquRB01v+X5eH/bTLAXQUEBOiyyy4zO4ZTUHQDAFCBOTpEvTS23FceFxfncCFXlh/qT548qS1btujkyZPlaskwW24VkLi/9gIKQaB8y8rKUkpKiiIiIuTv7292HIdQdAMAgGI5ei+kLfeVO6Pns7TedMl5E0pt27ZNn376qQYMGKBq1arZdHxZTGpVWkHM/bUA3Mm5c+f0888/q3v37m5fdFsMwzDMDuGuDh06pDp16ujPP/9U7dq1zY4DAIBburiH9lIUVWxerLhi82JFFZvF7T9y5IjmzJmj4cOHKyoqyqbjnZ2hKBd/+VCUfxb+l8IdbwcA4J5OnjypFStWqHv37kV+wVke2FoP0tMNAABMVRa96ZLzJpS6MGQ+ISHB5qH3ZTGpla0FMUUzAJQtim4AAODWbC3anVVsJicnS5Jq1Khh9z3dFLwAUPF4mR0AAADAnQQFBaldu3YKCgoyOwoAeCxvb2+FhobK29vb7CgOo6cbAADADo0aNdL69evNjgEAHq1y5crq1q2b2TGcgp5uAAAAAABchKIbAADADps2bZLFYtGmTZvMjgIAHuvkyZP6z3/+o5MnT5odxWEU3QAAAAAAuAhFNwAAAAAALkLRDQAAAACAi1B0AwAAAADgIiwZBgAAYIemTZtq7969ql27ttlRAMBjVa5cWb1791alSpXMjuIwim4AAAA7BAQEqEGDBmbHAACP5u3trZCQELNjOAXDywEAAOywf/9+DRw4UPv37zc7CgB4rPT0dP30009KT083O4rDKLoBAADscPLkSX3wwQcesXYsAJRXOTk5SkpKUk5OjtlRHEbRDQAAAACAi1B0AwAAAADgIkyk5oD8/HxJUnJysslJAABAWTl69Kj1z0OHDpmcBgA806lTp3T8+HEdPnxYZ8+eNTtOkS7UgRfqwuJQdDvgwi/dtm3bmpwEAACUtT59+pgdAQBQDhw9elTR0dHF7rcYhmGUYR6Pkpubq82bNys8PFxeXozUN1NaWpqaNm2qHTt2eMzSAhUFr5174/VzX7x27ovXzn3x2rkvXjv35crXLj8/X0ePHlWrVq3k41N8fzZFNzzCmTNnVKVKFZ0+fVqVK1c2Ow7swGvn3nj93BevnfvitXNfvHbui9fOfZWH147uWQAAAAAAXISiGwAAAAAAF6Hohkfw9/fXxIkT5e/vb3YU2InXzr3x+rkvXjv3xWvnvnjt3BevnfsqD68d93QDAAAAAOAi9HQDAAAAAOAiFN0AAAAAALgIRTcAAAAAAC5C0Q0AAAAAgItQdAMAAAAA4CIU3XAbzz33nDp06KBKlSqpatWqhfZv2bJFt99+u+rUqaPAwEA1adJEr732Wqnn7dy5sywWS4Gf2267zQVXUHGV9tpJUlJSkm644QYFBQUpLCxMDz30kLKzs0s8b1ZWlh588EGFhYUpKChIffv21aFDh1xwBZCk1atXF3qvXPj55Zdfij1u8ODBhdq3a9euDJNDkurWrVvodRg3blyJxxiGoUmTJikqKkqBgYHq3Lmztm/fXkaJIUkHDhzQkCFDFBsbq8DAQNWvX18TJ04s9d9H3nfmmDlzpmJjYxUQEKC4uDh9//33JbZfs2aN4uLiFBAQoHr16mn27NlllBQXmzp1qq688kqFhISoZs2auummm7R79+4Sjynud+KuXbvKKDUkadKkSYVeg4iIiBKPMeN95+PyZwCcJDs7W7fccovat2+vuXPnFtqfmJioGjVqaOHChapTp47WrVun4cOHy9vbWw888ECJ5x42bJgmT55sfRwYGOj0/BVZaa9dXl6errvuOtWoUUM//PCDjh8/rkGDBskwDL3xxhvFnnfUqFH64osvtHjxYoWGhuqRRx7R9ddfr8TERHl7e7vykiqkDh06KDk5ucC2p556SitXrlSbNm1KPLZXr16aP3++9bGfn59LMqJkkydP1rBhw6yPg4ODS2z/4osv6pVXXtGCBQvUsGFDTZkyRd27d9fu3bsVEhLi6riQtGvXLuXn5+vtt99WgwYN9Ntvv2nYsGE6e/aspk+fXuKxvO/K1pIlSzRq1CjNnDlTV199td5++2317t1bO3bsUHR0dKH2+/fvV58+fTRs2DAtXLhQP/74o0aOHKkaNWqof//+JlxBxbVmzRrdf//9uvLKK5Wbm6snn3xSPXr00I4dOxQUFFTisbt371blypWtj2vUqOHquPiHZs2aaeXKldbHJX0GNO19ZwBuZv78+UaVKlVsajty5EijS5cuJbaJj483Hn74YceDoVTFvXbLli0zvLy8jMOHD1u3ffjhh4a/v79x+vTpIs916tQpw9fX11i8eLF12+HDhw0vLy/jm2++cXp2FJadnW3UrFnTmDx5contBg0aZNx4441lEwrFiomJMV599VWb2+fn5xsRERHGCy+8YN2WmZlpVKlSxZg9e7YLEsJWL774ohEbG1tiG953Za9t27bGiBEjCmxr3LixMW7cuCLbjx071mjcuHGBbffdd5/Rrl07l2WEbY4dO2ZIMtasWVNsm1WrVhmSjJMnT5ZdMBQyceJEo2XLlja3N+t9x/ByeLTTp0+revXqpbb74IMPFBYWpmbNmunRRx9VWlpaGaTDBevXr1fz5s0VFRVl3dazZ09lZWUpMTGxyGMSExOVk5OjHj16WLdFRUWpefPmWrduncszQ/r888+VmpqqwYMHl9p29erVqlmzpho2bKhhw4bp2LFjrg+IQqZNm6bQ0FBdccUVeu6550ocorx//36lpKQUeI/5+/srPj6e95jJbP3dxvuu7GRnZysxMbHA+0WSevToUez7Zf369YXa9+zZUxs3blROTo7LsqJ0p0+fliSb3metWrVSZGSkunXrplWrVrk6Goqwd+9eRUVFKTY2Vrfddpv27dtXbFuz3ncML4fHWr9+vf7zn//oq6++KrHdnXfeqdjYWEVEROi3337T+PHjtWXLFq1YsaKMkiIlJUXh4eEFtlWrVk1+fn5KSUkp9hg/Pz9Vq1atwPbw8PBij4FzzZ07Vz179lSdOnVKbNe7d2/dcsstiomJ0f79+/XUU0+pa9euSkxMlL+/fxmlxcMPP6zWrVurWrVq2rBhg8aPH6/9+/fr3XffLbL9hffRP9+b4eHhOnjwoMvzomh//PGH3njjDb388ssltuN9V7ZSU1OVl5dX5PulpN9jRbXPzc1VamqqIiMjXZYXxTMMQ2PGjNE111yj5s2bF9suMjJSc+bMUVxcnLKysvTvf/9b3bp10+rVq9WpU6cyTFyxXXXVVXr//ffVsGFDHT16VFOmTFGHDh20fft2hYaGFmpv1vuOnm6YqqjJD/75s3HjRrvPu337dt144416+umn1b179xLbDhs2TNdee62aN2+u2267TR9//LFWrlypTZs2XeplVQjOfu0sFkuhbYZhFLm9JJdyTEV3Ka/loUOH9O2332rIkCGlnn/AgAG67rrr1Lx5c91www36+uuvtWfPnlK/EEPp7HntRo8erfj4eLVo0UJDhw7V7NmzNXfuXB0/frzE5/jn+4n3mHNcyvvuyJEj6tWrl2655RYNHTq0xPPzvjOHve+XotoXtR1l54EHHtDWrVv14YcfltiuUaNGGjZsmFq3bq327dtr5syZuu6660qdawHO1bt3b/Xv31+XX365rr32Wuu/ce+9916xx5jxvqOnG6Z64IEHSp0pvG7dunadc8eOHeratauGDRumCRMm2J2pdevW8vX11d69e9W6dWu7j68onPnaRURE6Oeffy6w7eTJk8rJySn0beTFx2RnZ+vkyZMFeruPHTumDh062PS8OO9SXsv58+crNDRUffv2tfv5IiMjFRMTo71799p9LApy5H14YSbr33//vcjegAuzv6akpBT45v/YsWPFvi9hO3tfuyNHjqhLly5q37695syZY/fz8b5zrbCwMHl7exfq1S7p/RIREVFkex8fnyLfk3C9Bx98UJ9//rnWrl2r2rVr2318u3bttHDhQhckg62CgoJ0+eWXF/tvnVnvO4pumCosLExhYWFOO9/27dvVtWtXDRo0SM8999wlnyMnJ4dhXaVw5mvXvn17Pffcc0pOTrb+vS9fvlz+/v6Ki4sr8pi4uDj5+vpqxYoVuvXWWyVJycnJ+u233/Tiiy86JVdFYe9raRiG5s+fr7vvvlu+vr52P9/x48f1559/8h5zAkfeh5s3b5akYl+HC7fdrFixQq1atZJ0/r7VNWvWaNq0aZcWGFb2vHaHDx9Wly5dFBcXp/nz58vLy/6BirzvXMvPz09xcXFasWKF+vXrZ92+YsUK3XjjjUUe0759e33xxRcFti1fvlxt2rS5pH9bcekMw9CDDz6oTz/9VKtXr1ZsbOwlnWfz5s28x0yWlZWlnTt3qmPHjkXuN+1959Jp2gAnOnjwoLF582bjmWeeMYKDg43NmzcbmzdvNtLS0gzDMIzffvvNqFGjhnHnnXcaycnJ1p9jx45Zz3Ho0CGjUaNGxs8//2wYhmH8/vvvxjPPPGP88ssvxv79+42vvvrKaNy4sdGqVSsjNzfXlOv0RKW9drm5uUbz5s2Nbt26GZs2bTJWrlxp1K5d23jggQes5/jna2cYhjFixAijdu3axsqVK41NmzYZXbt2NVq2bMlr52IrV640JBk7duwocn+jRo2MpUuXGoZhGGlpacYjjzxirFu3zti/f7+xatUqo3379katWrWMM2fOlGXsCm3dunXGK6+8YmzevNnYt2+fsWTJEiMqKsro27dvgXYXv3aGYRgvvPCCUaVKFWPp0qXGtm3bjNtvv92IjIzktStDhw8fNho0aGB07drVOHToUIHfbxfjfWe+xYsXG76+vsbcuXONHTt2GKNGjTKCgoKMAwcOGIZhGOPGjTPuuusua/t9+/YZlSpVMkaPHm3s2LHDmDt3ruHr62t8/PHHZl1ChfWvf/3LqFKlirF69eoC77Fz585Z2/zz9Xv11VeNTz/91NizZ4/x22+/GePGjTMkGZ988okZl1BhPfLII8bq1auNffv2GT/99JNx/fXXGyEhIeXufUfRDbcxaNAgQ1Khn1WrVhmGcX7JgKL2x8TEWM+xf//+AsckJSUZnTp1MqpXr274+fkZ9evXNx566CHj+PHjZX+BHqy0184wzhfm1113nREYGGhUr17deOCBB4zMzEzr/n++doZhGBkZGcYDDzxgVK9e3QgMDDSuv/56IykpqQyvrGK6/fbbjQ4dOhS7X5Ixf/58wzAM49y5c0aPHj2MGjVqGL6+vkZ0dLQxaNAgXqcylpiYaFx11VVGlSpVjICAAKNRo0bGxIkTjbNnzxZod/FrZxjnlw2bOHGiERERYfj7+xudOnUytm3bVsbpK7b58+cX+e/nP/tNeN+VD2+99ZYRExNj+Pn5Ga1bty6w5NSgQYOM+Pj4Au1Xr15ttGrVyvDz8zPq1q1rzJo1q4wTwzCMYt9jF/97+M/Xb9q0aUb9+vWNgIAAo1q1asY111xjfPXVV2UfvoIbMGCAERkZafj6+hpRUVFGQkKCsX37duv+8vK+sxjG33eOAwAAAAAAp2L2cgAAAAAAXISiGwAAAAAAF6HoBgAAAADARSi6AQAAAABwEYpuAAAAAABchKIbAAAAAAAXoegGAAAAAMBFKLoBAAAAAHARim4AACqABQsWyGKx6MCBAy59nj/++EP+/v5av359gef29vZWgwYN9OmnnxZ7bKdOnTRq1CiX5gMAoKxRdAMAAKd59NFH1b17d7Vv39667brrrtPXX3+t4OBgDRo0SGlpaUUe++yzz2rmzJnavXt3WcUFAMDlKLoBAIBT7Ny5U//973/14IMPFtheo0YN9ejRQzNnzlRaWpoWLVpU5PHx8fFq1KiRXn755bKICwBAmaDoBgCggpo3b55atmypgIAAVa9eXf369dPOnTsLtXvnnXfUsGFD+fv7q2nTplq0aJEGDx6sunXrFmg3a9YsRUREqHv37kU+X4cOHdSgQQO9++67xWa66667tGjRomJ7wwEAcDcU3QAAVEBTp07VkCFD1KxZMy1dulSvvfaatm7dqvbt22vv3r3WdnPmzNHw4cPVokULLV26VBMmTNAzzzyj1atXFzrnV199pU6dOsnLq+iPF/v379eBAwe0ceNG/frrr0W26dy5s86ePVvk+QEAcEcU3QAAVDCnTp3Ss88+qz59+mjRokXq06eP7rrrLq1evVqZmZmaNGmSJCk/P18TJ07UVVddpY8//ljXXXed7rjjDq1YsUJHjhwpcM5jx45p3759at26dbHP+8ILL8jX11f+/v565513imzTqlUrWSwW/fjjj067XgAAzETRDQBABbN+/XplZGRo8ODBBbbXqVNHXbt21f/+9z9J0u7du5WSkqJbb721QLvo6GhdffXVBbZdKMJr1qxZ5HMePnxYCxYs0H333aeEhAR98MEHysjIKNTO19dXVatW1eHDhy/18gAAKFcougEAqGCOHz8uSYqMjCy0Lyoqyrr/wp/h4eGF2v1z24UCOiAgoMjnfOmll2SxWPTYY49p+PDhOn36tD766KMi2wYEBBRZkAMA4I4ougEAqGBCQ0MlScnJyYX2HTlyRGFhYQXaHT16tFC7lJSUAo8vHHPixIlCbf/66y+98847Gjp0qKKiotS5c2c1atSo2CHmJ0+etJ4PAAB3R9ENAEAF0759ewUGBmrhwoUFth86dEjfffedunXrJklq1KiRIiIi9J///KdAu6SkJK1bt67AtpiYGAUGBuqPP/4o9HyvvPKKcnNzNW7cOOu2oUOH6ocfftCuXbsKtD1y5IgyMzPVtGlTh64RAIDygqIbAIAKpmrVqnrqqaf0+eef6+6779bXX3+thQsXqkuXLgoICNDEiRMlSV5eXnrmmWf0888/6+abb9ayZcu0aNEide/eXZGRkQVmKffz81P79u31008/FXiuU6dOaebMmbrnnntUu3Zt6/bBgwfLz8+v0PJhF47v0qWLqy4fAIAyRdENAEAFNH78eL377rvasmWLbrrpJj3wwANq1qyZ1q1bp8suu8zabvjw4ZozZ462bNmifv366ZlnntG4cePUqlUrVa1atcA577zzTm3YsKHAsPXXX39dGRkZGj9+fIG2YWFhSkhI0Hvvvafs7Gzr9v/+97+6/PLLdfnll7vmwgEAKGMWwzAMs0MAAAD3cerUKTVs2FA33XST5syZY92emZmp6OhoPfLII3r88cftPu+ZM2cUFRWlV199VcOGDXNmZAAATEPRDQAAipWSkqLnnntOXbp0UWhoqA4ePKhXX31Vu3bt0saNG9WsWbMC7WfNmqVJkyZp3759CgoKsuu5nnnmGS1ZskRbt26Vj4+PMy8DAADT8BsNAAAUy9/fXwcOHNDIkSN14sQJVapUSe3atdPs2bMLFdzS+eHop06d0r59++weIl65cmUtWLCAghsA4FHo6QYAAAAAwEWYSA0AAAAAABeh6AYAAAAAwEUougEAAAAAcBGKbgAAAAAAXISiGwAAAAAAF6HoBgAAAADARSi6AQAAAABwEYpuAAAAAABchKIbAAAAAAAXoegGAAAAAMBFKLoBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAAAAAwEUougEAAAAAcBGKbgAAAAAAXISiGwAAAAAAF6HoBgAAAADARSi6AQAAAABwEYpuAAAAAABchKIbAAAAAAAXoegGAAAAAMBFKLoBAAAAAHARim4AAAAAAFyEohsAAAAAABeh6AYAAAAAwEUougEATjF48GDddNNNLjn3XXfdpeeff77AcwUFBemhhx4qsv2jjz5a7D6gPLBYLPrvf//r9PMeP35cNWvW1IEDBwo8V3R0tJYvX16ofVZWlqKjo5WYmOj0LACA8yi6AcCNDR48WBaLxfoTGhqqXr16aevWrU57jkmTJumKK65w2vnstXXrVn311Vd68MEHrdtee+01LViwQG+++abWrVtX6JixY8dq/vz52r9/f1lGlXT+76tx48YKCgpStWrVdO211+rnn38u8Zh33nlHHTt2VLVq1azHbNiwoUCbtWvX6oYbblBUVFSxBZthGJo0aZKioqIUGBiozp07a/v27c68PI9iy9/pvn37dPvttysqKkoBAQGqXbu2brzxRu3Zs8fa5uL34MU/ixcvLsOrOW/q1Km64YYbVLduXeu2pKQkdezYscB76AJ/f389+uijevzxx8ssY1ZWlq644gpZLBb9+uuvpbbfuXOn+vbtqypVqigkJETt2rVTUlJSgfM9+OCDCgsLU1BQkPr27atDhw4VOEfdunULvT7jxo1z9qUBQJEougHAzfXq1UvJyclKTk7W//73P/n4+Oj66683O5bTvPnmm7rlllsUEhJi3ValShXdcsst6tKli/79738XOqZmzZrq0aOHZs+eXZZRJUkNGzbUm2++qW3btumHH35Q3bp11aNHD/3111/FHrN69WrdfvvtWrVqldavX6/o6Gj16NFDhw8ftrY5e/asWrZsqTfffLPY87z44ot65ZVX9Oabb+qXX35RRESEunfvrrS0NKdeo6co7e80Oztb3bt315kzZ7R06VLt3r1bS5YsUfPmzXX69OkCbefPn299H174cdXIj+JkZGRo7ty5Gjp0aIHtderU0dSpU7V3794ivwC688479f3332vnzp1lknPs2LGKioqyqe0ff/yha665Ro0bN9bq1au1ZcsWPfXUUwoICLC2GTVqlD799FMtXrxYP/zwg9LT03X99dcrLy+vwLkmT55c4PWZMGGCU68LAIplAADc1qBBg4wbb7yxwLa1a9cakoxjx45Ztx06dMi49dZbjapVqxrVq1c3+vbta+zfv9+6f9WqVcaVV15pVKpUyahSpYrRoUMH48CBA8b8+fMNSQV+5s+fb1OWzMxM48EHHzRq1Khh+Pv7G1dffbWxYcOGAsd89tlnRoMGDYyAgACjc+fOxoIFCwxJxsmTJw3DMIy8vDyjatWqxpdfflnkcz7++ONGaGiokZ2dXWjfggULjDp16hT/l1dGTp8+bUgyVq5cafMxubm5RkhIiPHee+8VuV+S8emnnxbYlp+fb0RERBgvvPCCdVtmZqZRpUoVY/bs2ZeUvSIp6u908+bNhiTjwIEDdh9r7/Nt3brV6NKlixEQEGBUr17dGDZsmJGWlmbdn5OTYzz44INGlSpVjOrVqxtjx4417r777gLvuU8++cQICwsr8vny8/ONyMhI48EHHyxyf+fOnY2nnnrKrmu4FMuWLTMaN25sbN++3ZBkbN68ucT2AwYMMAYOHFjs/lOnThm+vr7G4sWLrdsOHz5seHl5Gd988411W0xMjPHqq686Gh8ALgk93QDgQdLT0/XBBx+oQYMGCg0NlSSdO3dOXbp0UXBwsNauXasffvhBwcHB6tWrl7Kzs5Wbm6ubbrpJ8fHx2rp1q9avX6/hw4fLYrFowIABeuSRR9SsWTNr79CAAQNsyjJ27Fh98skneu+997Rp0yY1aNBAPXv21IkTJyRJBw4c0M0336ybbrpJv/76q+677z49+eSTBc6xdetWnTp1Sm3atCl0/tzcXH3wwQc6fvy4vv7660L727Ztqz///FMHDx4sNuOIESMUHBxc4s/Fw1jtlZ2drTlz5qhKlSpq2bKlzcedO3dOOTk5ql69us3H7N+/XykpKerRo4d1m7+/v+Lj44scgo/S1ahRQ15eXvr4448L9Zo607lz59SrVy9Vq1ZNv/zyiz766COtXLlSDzzwgLXNtGnT9MEHH2j+/Pn68ccfdebMmULD4deuXVvke0WSvvnmGyUnJ2vx4sXKzc0ttL9t27b6/vvvS8xZ2nuld+/eJR5/9OhRDRs2TP/+979VqVKlEttKUn5+vr766is1bNhQPXv2VM2aNXXVVVcVuO7ExETl5OQU+P8+KipKzZs3L/T//bRp0xQaGqorrrhCzz33nLKzs0vNAADO4GN2AACAY7788ksFBwdLOj9cNjIyUl9++aW8vM5/r7p48WJ5eXnp3XfflcVikXR+KGzVqlW1evVqtWnTRqdPn9b111+v+vXrS5KaNGliPX9wcLB8fHwUERFhc6azZ89q1qxZWrBggfWD+DvvvKMVK1Zo7ty5euyxxzR79mw1atRIL730kiSpUaNG+u233/Tcc89Zz3PgwAF5e3urZs2ahZ7jo48+0qlTp9StWzctXLhQffv2LbC/Vq1a1nPExMQUmXPy5Ml69NFHS7wWW4fBXuzLL7/UbbfdpnPnzikyMlIrVqxQWFiYzcePGzdOtWrV0rXXXmvzMSkpKZKk8PDwAtvDw8NL/OIBxatVq5Zef/11jR07Vs8884zatGmjLl266M4771S9evUKtL399tvl7e1dYNvWrVsLtSvKBx98oIyMDL3//vsKCgqSdP62ihtuuEHTpk1TeHi43njjDY0fP179+vWz7l+2bFmB8xw4cKDY/19nzJih3r17a+XKlVq+fLn69OlT6FovnnytKKXdfx0YGFjsPsMwNHjwYI0YMUJt2rQp9bkk6dixY0pPT9cLL7ygKVOmaNq0afrmm2+UkJCgVatWKT4+XikpKfLz81O1atUKHBseHm59T0jSww8/rNatW6tatWrasGGDxo8fr/379+vdd98tNQcAOIqiGwDcXJcuXTRr1ixJ0okTJzRz5kz17t1bGzZsUExMjBITE/X7778XuCdakjIzM/XHH3+oR48eGjx4sHr27Knu3bvr2muv1a233qrIyMhLzvTHH38oJydHV199tXWbr6+v2rZta71vdPfu3bryyisLHNe2bdsCjzMyMuTv72/9suBir732mu655x516dJFd9xxh86cOaPKlStb918oAM6dO1dszpo1axZZ0Nvigw8+0H333Wd9/PXXX6tjx46Szr8mv/76q1JTU/XOO+/o1ltv1c8//2zTc7344ov68MMPtXr16gL3rdrqn39XhmEU+fcH29x///26++67tWrVKv3888/66KOP9Pzzz+vzzz9X9+7dre1effXVQl+S1KlTx6bn2Llzp1q2bGktuCXp6quvVn5+vnbv3q2AgAAdPXq0wPvD29tbcXFxys/Pt27LyMgo8v+ZnTt3asWKFdq4caN8fX21cOHCQkV3YGBgie8VSWrQoIFN11OUN954Q2fOnNH48eNtPubCtd14440aPXq0JOmKK67QunXrNHv2bMXHxxd77D//v79wvCS1aNFC1apV080332zt/QYAV2J4OQC4uaCgIDVo0EANGjRQ27ZtNXfuXJ09e1bvvPOOpPMfXOPi4vTrr78W+NmzZ4/uuOMOSed7vtevX68OHTpoyZIlatiwoX766adLzmQYhqSSC8CiisELx10QFhamc+fOFRoGun79ev3yyy8aNWqUrrvuOlWqVEkff/xxgTYXhrHXqFGj2JyODC/v27dvgb/Pi4f1XnhN2rVrp7lz58rHx0dz584tNscF06dP1/PPP6/ly5erRYsWpba/2IWRCBf37knnewv/2fsN+4SEhKhv37567rnntGXLFnXs+H/t3XlcjWn/B/BPqXNKWqVOC1mikCVC2RIzNExh7C+Sl2XGQ3jMYsLPUxOKGWOMMYw1Q5ZMZR4zY4mhSNnz6Ig0KsJpRFnat+/vD0/3091ZOqjB+L5fr/v1mnNd32u57+7LnOvcy9UPy5YtE8XIZDJhHFZv+vr6WtWv6YeRmunajJf8/HylOtasWYP+/fujW7du8PPzw7///W8UFBSIYvLy8jSOFeDlbi8/fvw4zpw5A6lUCj09PWEC7+bmBn9/f5VlLC0toaenhw4dOojS27dvL4xLmUyGsrIypf2u67x3d3cHAPzxxx8a95kxxuoDT7oZY+xvRkdHB7q6uiguLgYAdOvWDenp6bCyslKaFJiamgrlXF1dsXDhQiQmJsLFxQW7d+8GAEgkkud+ntXR0RESiQQJCQlCWnl5OS5cuCDcuu7s7Izz58+Lyl24cEH0uXqpstTUVFH6mjVrMGLECLRu3RoSiQRjxoxBRESEKEYul0NfXx8dO3ZU28+QkBClHyNqb+pu1zU2NhYdy7purS0tLVWbDwBfffUVli5disOHD6t9LleTVq1aQSaT4ejRo0JaWVkZ4uPj0bt37+euj6mmo6MDZ2dnFBYW1ludHTp0wOXLl0V1nj59Grq6umjXrh1MTU1hbW0tWkausrISycnJonpcXV2VxkpeXh4iIiLwySefAAB8fHygr6+PmJgYUZxcLoerq6vGftY1VjTdqr127Vr85z//EWKrb42PjIwUPVJSk0QiQY8ePZCWliZKv3HjhvDISPfu3aGvry867xUKBeRyucbzvvrYvcwdPYwxprVX9QY3xhhjL8/f35+8vb1JoVCQQqGg1NRUmjVrFuno6NCJEyeIiKiwsJDatm1LAwYMoJMnT1JGRgbFxcXR3LlzKTs7mzIyMigwMJASExMpKyuLjhw5QhYWFrR+/XoiItq1axcZGRlRcnIy5ebmUklJidq+1HyT8rx588jW1pYOHTpEV69eJX9/fzI3N6e8vDwiIsrIyCB9fX1asGABpaWlUWRkJNnb2xMAevTokVBPt27d6LvvvhM+Z2dnk56eHiUkJAhpCQkJpKurS9nZ2UJaUFAQDRw48KWP8fMoKCighQsXUlJSEmVlZdHFixdp2rRpJJVKSS6XC3F+fn4UGBgofF65ciVJJBKKiooS/pYKhUL09uqnT59ScnKy8Ebt1atXU3JyMt26dUuIWbFiBZmamlJMTAylpKTQhAkTyMbGhp48efLXHIA3TF3HNDk5mXx9femnn36iq1evUnp6Om3ZsoWMjIwoJCREqAf/fat/zb+dQqGggoICtW2jxtvLCwsLycbGhkaNGkUpKSl0/Phxat26Nfn7+wvxy5Yto6ZNm9LPP/9M169fp9mzZ5OJiQmNGDFCiLly5Qrp6ekJY4yIKDQ0lNq1a0dVVVVC2vTp0+ndd98V9cfBwYF27NjxQsfxRWRmZqp8e7mTkxPFxMQIn2NiYkhfX582bdpE6enp9N1331GjRo3o1KlTQszMmTPJ3t6ejh07RpcuXaKBAwdSly5dqKKigoiIEhMThb9tRkYGRUZGkq2tLfn6+v4l+8oYYzzpZoyxN5i/v79oOS9jY2Pq0aMHRUVFieIUCgVNnjyZLC0tSSqVUuvWrWnGjBn0+PFjysnJoREjRpCNjQ1JJBJycHCgf/3rX1RZWUlEz5adGjVqFJmZmT3XkmHFxcU0Z84coU1NS4ZJpVIaMGAAbdiwgQBQcXGxEPPDDz+Qu7u78Pnzzz+nnj17KrXfunVrWrlypfC5Xbt2tGfPHq2PZX0oLi6mkSNHkq2tLUkkErKxsSFfX1+l/fb09BRNqBwcHJSWZgNAQUFBQsyJEydUxtSsp6qqioKCgkgmk5FUKqX+/ftTSkpKA+/1m6uuY5qbm0tz584lFxcXatKkCRkbG1OnTp1o1apVwvggIpV1AKCwsDC1bdecdBNpt2RYQEAAmZiYkLm5OX3++ec0ZswYGj9+vKhed3d3YYm48vJysre3F35AqxYfH0+NGjWie/fuEdGzSamZmRkVFRW90HF8Eeom3ar+jdm6dauwtGCXLl3o559/FuUXFxdTQEAAWVhYkKGhIb3//vt0+/ZtIf/ixYvUq1cvMjU1JQMDA3JycqKgoCAqLCxsqN1jjDERHaJaDwQxxhhjr8jy5cvxww8/IDs7W0grKSmBk5MT9u7dCw8PD63q+e233/DZZ5/hypUr0NPjd4ayv5+qqiq0b98eY8eOxdKlS4X0gwcP4tNPP4VcLhdWMKjLmDFj4OrqikWLFjVUdxlj7K3G30QYY4y9MuvXr0ePHj3QtGlTnD59Gl999ZVobWIAMDAwwI4dO/DgwQOt6y0sLER4eDhPuNnfxq1btxAbGwtPT0+UlpZi3bp1yMzMFF6GWG3o0KFIT0/H3bt3tXp7emlpKbp06SJ6uzdjjLH6xVe6GWOMvTLz589HZGQk8vLy0KJFC/j5+WHhwoU8WWasluzsbIwfPx5yuRxEBBcXF6xYsQL9+/d/1V1jjDFWB550M8YYY4wxxhhjDYSXDGOMMcYYY4wxxhoIT7oZY4wxxhhjjLEGwpNuxhh7wz18+BBWVlbIysp61V1RqVWrVrC2tsaOHTtedVfeOj169EBMTMyr7sZr7XUaP3FxcdDT04Obmxtu3779qrvDXsC6devg6+v7qrvBGHvN8KSbMcbecGFhYfDx8UHLli0BAFlZWdDR0RE2iUQCR0dHLFu2DPX5Gg8dHR38/PPPdcadOXMGfn5+mDNnDoqLi+utfU1SUlLg6ekJQ0ND2NnZISQkpM59z8/Ph5+fH0xNTWFqago/Pz88evRIZezDhw9hb28PHR0dpZi62k5ISECfPn3QtGlTGBoawtnZGd98842ojgEDBoj+htXbsGHDRHHr169Hq1atYGBggO7du+PUqVOi/CVLliAwMBBVVVV1HLG3V+3xAwDz5s1D9+7dIZVK0bVrV5XlNm7ciC5dusDIyAhmZmZwdXXFypUrhfzg4GCVf0NnZ2e1fenduzfkcjmKi4uxbNmy+tpFjU6ePAkfHx/Y2tqqHdNEhODgYNja2sLQ0BADBgzA1atXRTGlpaWYM2cOLC0tYWRkBF9fX9y5c6fO9us6h+urbW3G9+3bt+Hj4wMjIyNYWlpi7ty5KCsrE8XUNb5nzJiB8+fPIyEhoc59Z4y9RV7J6uCMMcbqRVFREZmZmVFiYqKQlpmZSQDo2LFjpFAoKCsriyIiIsjAwIC2bNlSb20DoP3792sVW1hYSE2aNKG9e/fWW/vqPH78mKytrWn8+PGUkpJC0dHRZGxsTKtWrdJYztvbm1xcXCgxMZESExPJxcWF3n//fZWxw4cPp/fee48AUH5+/nO1fenSJdq9ezfJ5XLKzMyknTt3UuPGjWnjxo1CzMOHD0mhUAibXC6nRo0aUXh4uBCzd+9e0tfXp82bN1NqairNmzePjIyM6NatW0JMRUUFWVlZ0cGDB5/zKL4dVI0fIqI5c+bQunXryM/Pj7p06aJUbsuWLdS4cWPasmULpaenk1wup927d9P//d//CTFBQUHUsWNH0d9RoVBQbm5unf3asWMHmZmZUUlJyUvvY10OHjxIixcvpujoaLVjesWKFWRsbEzR0dGUkpJC48aNIxsbG3ry5IkQM3PmTLKzs6OjR4/SpUuXyMvLi7p06UIVFRVq29bmHK6vtusa3xUVFeTi4kJeXl506dIlOnr0KNna2lJAQIAQo+2/LR9//DGNHTtWuz8AY+ytwJNuxhh7g0VHR5OlpaUorXrSnZycLEofOHAgzZo1S5S2bds2cnZ2JqlUSk5OTvT9998LeaWlpTR79mySyWQklUrJwcGBQkNDiYjIwcGBAAibg4NDnX3t1asX+fj4vNiOPof169eTqampaMISFhZGtra2VFVVpbJMamoqAaAzZ84IaUlJSQSArl+/rlS/p6cn/f7770qT7hdpm4ho5MiRNGnSJLX533zzDRkbG1NBQYGQ1rNnT5o5c6YoztnZmQIDA0VpU6ZMIT8/P7V1v81UjZ+agoKCVE66hw8fTlOmTNFYt7qy2rh27RoBoOjo6Bcq/6JUTbqrqqpIJpPRihUrhLSSkhIyNTWlH374gYiIHj16RPr6+qIf1e7evUu6urp0+PBhte3VdQ7XV9vajO+DBw+Srq4u3b17V4jZs2cPSaVSevz4MRFpP77j4uJIIpFQUVGR2n1njL1d+PZyxhh7g508eRJubm51xl24cAGXLl1Cr169hLTNmzdj8eLFWL58Oa5du4bQ0FAsWbIEP/74IwBg7dq1OHDgAPbt24e0tDREREQIt+CeP38eABAeHg6FQiF8VufatWs4d+4cDh8+jIcPH2qMPXXqFJo0aaJxCw0NVVs+KSkJnp6ekEqlQtqQIUNw7949tc/tJiUlwdTUVHR83N3dYWpqisTERCEtNTUVISEh2LFjB3R1lf8X+iJtJycnIzExEZ6enmr3aevWrRg/fjyMjIwAAGVlZbh48SIGDx4sihs8eLCovwDQs2dPpVt22TPajp/aZDIZzpw5g1u3bjVAr56NKwCIiIioM3bmzJl1jpeXeT48MzMTOTk5onNNKpXC09NTONcuXryI8vJyUYytrS1cXFyUzsdq2pzD9dW2NuM7KSkJLi4usLW1FWKGDBmC0tJSXLx4UYjRZny7ubmhvLwc586dU3tcGWNvF71X3QHGGHudKRQKKBQKUZq5uTlatWqFkpISpKamKpXp1q0bACAtLQ2FhYWivJYtW8LCwgK5ubnIzs4W5RkbG6Nt27bP1b+srCzRl8SaevfuDV1dXZSVlaG8vBwffvghJk+eLOQvXboUX3/9NT744AMAz154lpqaio0bN8Lf3x+3b99G27Zt0bdvX+jo6MDBwUEo26xZMwCAmZkZZDJZnf1cs2YNevXqhYyMDERGRmLWrFlqY93c3HD58mWN9VlYWKjNy8nJET2fCwDW1tZCXqtWrVSWsbKyUkq3srJCTk4OgGfPjU6YMAFfffUVWrRogYyMjJdq297eHrm5uaioqEBwcDCmT5+ucn/OnTsHuVyOrVu3CmkPHjxAZWWlUHfNtqr7W83Ozg63b99GVVWVyh8KGlJxcTFKSkpEafr6+mjSpAkqKyvx5MkTpTLm5uYAgCdPnqCyslKU17hxY0ilUpSUlCi9H0BPTw/GxsbP1T9N40eToKAgfPDBB2jZsiXatWsHDw8PDB06FKNHjxYd45SUFDRp0kRUdvz48diyZYvauouKirB582YMHz4cv/32G/Lz84VjokpISAg+/fRTjf19kX2sVn0+qTrXqn90yMnJgUQiUeqnqvOxmjbncH21rc34zsnJUWrH3NwcEolEFKPN+K5+zj8rK0vjj2mMsbcHT7oZY0yDjRs34osvvhClTZw4EREREbhz5w66d++uVIb++1KdKVOm4MyZM6K8nTt3YtKkSdi3bx8CAgJEeYMHD8aRI0eeq3/FxcUwMDBQmRcZGYn27dujvLwcKSkpmDt3LszNzbFixQph0j9t2jTMmDFDKFNRUQFTU1Oh/++++y6cnJzg7e2N999/X+mqlDby8vIQERGBnTt3Ij4+HhERERon3YaGhnB0dHzudmrS0dERfa7+m9RO11Smulx1+sKFC9G+fXtMmjSpXto+deoUCgoKcObMGQQGBsLR0RETJkxQqm/r1q1wcXFBz549tWqrdpqhoSGqqqpQWloKQ0NDjX2vbzdv3lT6YapFixZwd3dHUVERjh49qlRm7NixAJ7dTVH7rohevXrBwcEB2dnZSE5OFuVZW1s/9wRH0/jRxMbGBklJSZDL5YiPj0diYiL8/f2xZcsWHD58WJh4Ozk54cCBA6Kydf0w8OOPP0JPTw87d+5E69at8dNPP+HDDz9UG29lZaVyQlnftDnXatMmRpt666Ptusb3i8aoG9+GhoYoKirS2EfG2NuDJ92MMabBRx99pLT8S/UVFXt7e+G2Q1W2b9+u8ko38Gxi4eHhIcp73qt0AGBpaYn8/HyVec2bNxcmr+3bt0dGRgaWLFmC4OBg4W3WmzdvFt1yCQCNGjUC8OyKfWZmJg4dOoRjx45h7NixeOeddxAVFfVcfdy4cSNkMhlGjBiBFi1aYO3atbh58ybatGmjMv7UqVN47733NNa5aNEiLFq0SGWeTCZTurp2//59AMpXzGqW+fPPP5XSc3NzhTLHjx9HSkqKsP/VX7YtLS2xePFifPHFF8/VdvVVsU6dOuHPP/9EcHCw0qS7qKgIe/fuRUhIiCjd0tISjRo1UtlW7Xby8vLQuHHjv3zCDQBt2rSBnZ2dKE1fXx/As6vW7777rtqyPXr0UHmlG3h2bltaWory9PSe/yuNpvGjDRcXF7i4uGD27NlISEhAv379EB8fDy8vLwAQVg7QFhFh7dq1mDVrFoyNjTFu3DhERERonHTPnDmzztvQU1NT0aJFC637UVP1nSw5OTmwsbER0mueazKZDGVlZUpX5e/fv4/evXurrFebc7i+2tZmfMtkMpw9e1aUn5+fj/LyclGMtuM7Ly9PuCOIMcZ40s0YYxrY2NiIvuzVZGBgINxKroqTk5PavGbNmtXLFzJXV1etnvsEnk2mKyoqUFZWBmtra9jZ2SEjIwMTJ05UW8bExATjxo3DuHHjMHr0aHh7eyMvLw8WFhbQ19dXmhTVVlFRgfXr12PBggXQ1dWFm5sbnJ2dsWvXLvzrX/9SWeZlby/38PDAokWLUFZWBolEAgCIjY2Fra2t0q2hNcs8fvwY586dE64onz17Fo8fPxa+uEdHR4tuaT5//jymTp2KU6dOCT8gvEjbwLPJVmlpqVL6vn37UFpaqnR1XSKRoHv37jh69ChGjhwppB89ehTDhw8Xxcrlco3naUMyNDRUO9lv1KiRxtumTUxM1OYZGBi80BXq2p5n/NSlQ4cOAKD0Q9vzOHz4MLKysoQ7QSZNmoTevXvj1q1bosc7amro28tbtWoFmUyGo0ePwtXVFcCz57Hj4+OFJdK6d+8OfX19HD16VLhTQaFQQC6X48svv1RZrzbncH21rc349vDwwPLly6FQKIR/82NjYyGVSoU7mrQd3zdv3kRJSYnQZ8YY47eXM8bYG+zKlSukp6dHeXl5QlrtJcOys7Pp4MGDZGdnR15eXkLc5s2bydDQkNasWUNpaWl05coV2rZtG3399ddERLR69Wras2cPXbt2jdLS0mjatGkkk8mosrKSiIjatm1L//jHP0ihUIjar2n37t1kZmZGT58+FdKWLVtG7dq1a4jDQUTP3mZsbW1NEyZMoJSUFIqJiSETExPRsj5nz54lJycnunPnjpDm7e1NnTt3pqSkJEpKSqJOnTqpXTKMiOjEiRNKby/Xpu1169bRgQMH6MaNG3Tjxg3atm0bmZiY0OLFi5Xa6Nu3L40bN05l+9XLLW3dupVSU1Ppn//8JxkZGVFWVpYoztPTk0JCQuo8bm8jVeOHiCg9PZ2Sk5Ppo48+onbt2lFycjIlJydTaWkpET1boiokJIQSEhIoKyuLkpKSaNiwYdSsWTN68OABEalfMiwnJ0dtfwYPHkzTp08XpbVt25aWL19ez3v+P0+fPhX2DwCtXr2akpOTlZbtMjU1pZiYGEpJSaEJEyaoXLbL3t6ejh07RpcuXaKBAwcqLds1cOBA+u6774TP2pzD9dV2XeO7esmwQYMG0aVLl+jYsWNkb28vWjJMm/FNRBQeHk6tW7d+0T8JY+xviCfdjDH2hnN3dxeWzyH636S7emvUqBHZ29vTjBkz6P79+6Kyu3btoq5du5JEIiFzc3Pq378/xcTEEBHRpk2bqGvXrmRkZEQmJibCl9FqBw4cIEdHR9LT01O7ZFivXr1owYIForSsrCzS0dGhs2fP1tMRUHblyhXq168fSaVSkslkFBwcLFrSp3rCnJmZKaQ9fPiQJk6cSMbGxmRsbEwTJ04UTahrUzXp1qbttWvXUseOHalx48ZkYmJCrq6utH79euHHjGppaWkEgGJjY9X24fvvvycHBweSSCTUrVs3io+PF+XfuXOH9PX1KTs7W8PRervVHj9Ez36oqDmGqrfq8yUqKoqGDh1KNjY2JJFIyNbWlkaNGkVXrlwR6ggKClJZh1QqVdmP1NRU0tXVpatXr4rSv/jiC+rQoUP97nQN1edx7c3f31+IqaqqoqCgIGH5wP79+1NKSoqonuLiYgoICCALCwsyNDSk999/n27fvi2KcXBwoKCgIFFaXedwfbWtzfi+desWDRs2jAwNDcnCwoICAgKU1kqva3wTPfvxJCwsTOXxZoy9nXSI/vtQGmOMsTfSwYMH8emnn0Iul//lb6dmr7fPPvsMjx8/xqZNm151V15bPH5YfZLL5Rg0aBBu3LghvJSSMcb4mW7GGHvDDR06FOnp6bh79y6aN2/+qrvDXiNWVlZ1Pu/7tuPxw+rTvXv3sGPHDp5wM8ZE+Eo3Y4wxxhhjjDHWQPg+KsYYY4wxxhhjrIHwpJsxxhhjjDHGGGsgPOlmjLE3XE5ODubMmYPWrVtDKpWiefPm8PHxwe+//46ysjJYWlpi2bJlKsuGhYXB0tISZWVlSnnbt2+Hjo4O2rdvr5S3b98+6OjoiNamraysRFhYGJydnWFoaAgLCwu4u7sjPDxciJkyZQp0dHSUNm9v75c/EBrEx8eje/fuMDAwQOvWrfHDDz/UWeb27dvw8fGBkZERLC0tMXfuXKXjlJKSAk9PTxgaGsLOzg4hISGo+dRWXFycyv29fv26ELN582b069cP5ubmMDc3xzvvvINz584p9efu3buYNGkSmjZtisaNG6Nr1664ePHiSxwVBvD40cbrPH4AYM2aNXBycoKhoSGaN2+O+fPno6SkRMjfsGEDOnfuDBMTE5iYmMDDwwOHDh16yaPCGGPa4xepMcbYGywrKwt9+vSBmZkZvvzyS3Tu3Bnl5eU4cuQIZs+ejevXr2PSpEnYvn07Fi9eDB0dHVH58PBw+Pn5QSKRqKzfyMgI9+/fR1JSEjw8PIT0bdu2oUWLFqLY4OBgbNq0CevWrYObmxuePHmCCxcuID8/XxTn7e0tmkgAgFQqfZnDoFFmZiaGDh2KGTNmICIiAqdPn8asWbPQrFkzjBo1SmWZyspKDBs2DM2aNUNCQgIePnwIf39/EBG+++47AMCTJ0/w7rvvwsvLC+fPn8eNGzcwZcoUGBkZ4ZNPPhHVl5aWBhMTE+Fzs2bNhP+Oi4vDhAkT0Lt3bxgYGODLL7/E4MGDcfXqVdjZ2QEA8vPz0adPH3h5eeHQoUOwsrLCzZs3YWZmVs9H6+3C46dur/v42bVrFwIDA7Ft2zb07t1bqAcAvvnmGwCAvb09VqxYAUdHRwDAjz/+iOHDhyM5ORkdO3ast2PFGGNqvbrVyhhjjL2s9957j+zs7KigoEApr3oN2itXrhAAiouLE+WfPHmSACiteVstPDycTE1NKSAggKZPny6kZ2dnk1QqpcDAQNH63F26dKHg4GCN/fX396fhw4drt3P1ZMGCBeTs7CxK++ijj8jd3V1tmYMHD5Kuri7dvXtXSNuzZw9JpVJ6/PgxERGtX7+eTE1NRev4hoWFka2trbBur7q1vDWpqKggY2Nj+vHHH4W0zz//nPr27at1HUw7PH7q9rqPn9mzZ9PAgQNFaR9//HGd48Xc3Jy2bNmiMYYxxuoL317OGGNvqLy8PBw+fBizZ8+GkZGRUn71VdBOnTqhR48eSlfHtm3bhp49e8LFxUVjO9OmTUNkZCSKiooAPLtt1tvbG9bW1qI4mUyG48ePIzc39yX2StmuXbvQpEkTjduuXbvUlk9KSsLgwYNFaUOGDMGFCxdQXl6utoyLiwtsbW1FZUpLS4VbupOSkuDp6Sm6yjhkyBDcu3cPWVlZovpcXV1hY2ODQYMG4cSJExr3t6ioCOXl5bCwsBDSDhw4ADc3N4wZMwZWVlZwdXXF5s2bNdbDNOPx8/cYP3379sXFixeFRzIyMjJw8OBBDBs2TGXfKisrsXfvXhQWForuPmCMsYbEk27GGHtD/fHHHyAiODs71xk7depUREVFoaCgAABQUFCAn376CdOmTauzbNeuXdGmTRtERUWBiLB9+3ZMnTpVKW716tXIzc2FTCZD586dMXPmTJXPTf76669KX/qXLl2qtn1fX19cvnxZ4+br66u2fE5OjtIEx9raGhUVFXjw4IHWZczNzSGRSJCTk6Ox3uo8ALCxscGmTZsQHR2NmJgYODk5YdCgQTh58qTa/gYGBsLOzg7vvPOOkJaRkYENGzagbdu2OHLkCGbOnIm5c+dix44dauthmvH4+XuMn/Hjx2Pp0qXo27cv9PX10aZNG3h5eSEwMFBUd0pKCpo0aQKpVIqZM2di//796NChg9r9Zoyx+sTPdDPG2BuK/vvCodrPmaoyYcIEfPzxx4iMjBSuvBERxo8fDwBo0qSJEDtp0iSlFyVNnToV4eHhaNGiBQoKCjB06FCsW7dOFNOhQwfI5XJcvHgRCQkJOHnyJHx8fDBlyhRs2bJFiPPy8sKGDRtEZWte1a3N2NgYxsbGde6jJrWPkTbHTlUeEYnS66rXyckJTk5OQr6Hhweys7OxatUq9O/fX6n+L7/8Env27EFcXBwMDAyE9KqqKri5uSE0NBTAsyt/V69exYYNGzB58mS1+8DU4/Gjvdd5/MTFxWH58uVYv349evXqhT/++APz5s2DjY0NlixZIpR1cnLC5cuX8ejRI0RHR8Pf3x/x8fE88WaM/SX4SjdjjL2h2rZtCx0dHVy7dq3OWFNTU4wePVq4RTY8PByjR48WXk5U86pXSEiIUvmJEyfizJkzCA4OxuTJk6Gnp/o3W11dXfTo0QPz58/H/v37sX37dmzduhWZmZlCjJGRERwdHUWbpknDy94eK5PJhCtn1e7fvw89PT00bdpU6zL5+fkoLy8XrsapqxeA0hW8mtzd3ZGenq6UvmrVKoSGhiI2NhadO3cW5dnY2ChNDtq3b4/bt2+rbYdpxuPn7zF+lixZAj8/P0yfPh2dOnXCyJEjERoairCwMFRVVQlxEokEjo6OcHNzQ1hYGLp06YJvv/1WbTuMMVaf+Eo3Y4y9oSwsLDBkyBB8//33mDt3rtJzqY8ePRK93XratGkYMGAAfv31V5w+fVq4agpAeKuvprZ8fX2xb98+rZYLqlY9USwsLNS6TG2+vr7o1auXxhhNX9I9PDzwyy+/iNJiY2Ph5uYGfX19tWWWL18OhUIBGxsboYxUKkX37t2FmEWLFqGsrEx4e3VsbCxsbW1FS0HVlpycLNRZ7auvvsKyZctw5MgRuLm5KZXp06cP0tLSRGk3btyAg4OD2naYZjx+/udNHj9FRUXQ1RVfQ2rUqBGISLT8WG1EhNLSUrX5jDFWr/7yV7cxxhirNxkZGSSTyahDhw4UFRVFN27coNTUVPr222+V3jhMROTo6Ejm5ubk6OhYZ93Vb1+uVlRURA8ePBA+f/PNN6K3L48aNYpWr15NZ86coaysLDpx4gS5u7tTu3btqLy8nIievX3Z29ubFAqFaMvNzX3xg1CHjIwMaty4Mc2fP59SU1Np69atpK+vT1FRUUJMTEwMOTk5CZ8rKirIxcWFBg0aRJcuXaJjx46Rvb09BQQECDGPHj0ia2trmjBhAqWkpFBMTAyZmJjQqlWrRMdo//79dOPGDZLL5RQYGEgAKDo6WohZuXIlSSQSioqKEh2Tp0+fCjHnzp0jPT09Wr58OaWnp9OuXbuocePGFBER0VCH7a3A46dur/v4CQoKImNjY9qzZw9lZGRQbGwstWnThsaOHSvELFy4kE6ePEmZmZl05coVWrRoEenq6lJsbGxDHTbGGBPhSTdjjL3h7t27R7NnzyYHBweSSCRkZ2dHvr6+dOLECaXY0NBQAkChoaF11lt70lBb7UnDpk2byMvLi5o1a0YSiYRatGhBU6ZMoaysLCHG39+fAChtNb+wN4S4uDhydXUliURCLVu2pA0bNojyw8PDqfbv0Ldu3aJhw4aRoaEhWVhYUEBAgGh5I6Jny0n169ePpFIpyWQyCg4OFpY7Ino2oW7Tpg0ZGBiQubk59e3bl3777TdRHQ4ODiqPSVBQkCjul19+IRcXF5JKpeTs7EybNm2qhyPDePzU7XUeP+Xl5RQcHCzENW/enGbNmiVaZmzq1KnC37dZs2Y0aNAgnnAzxv5SOkQa7r1hjDHGGGOMMcbYC+MXqTHGGGOMMcYYYw2EJ92MMcYYY4wxxlgD4Uk3Y4wxxhhjjDHWQHjSzRhjjDHGGGOMNRCedDPGGGOMMcYYYw2EJ92MMcYYY4wxxlgD4Uk3Y4wxxhhjjDHWQHjSzRhjjDHGGGOMNRCedDPGGGOMMcYYYw2EJ92MMcYYY4wxxlgD4Uk3Y4wxxhhjjDHWQHjSzRhjjDHGGGOMNRCedDPGGGOMMcYYYw2EJ92MMcYYY4wxxlgD4Uk3Y4wxxhhjjDHWQHjSzRhjjDHGGGOMNRCedDPGGGOMMcYYYw3k/wE9HY8BpJdI4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.model_selection import cross_validate\n", + "\n", + "# Manual cross-validation to get detailed results for plotting (like R's cv.glmnet)\n", + "print(\"Performing detailed cross-validation for plotting...\")\n", + "\n", + "cv_mse_mean = []\n", + "cv_mse_std = []\n", + "\n", + "for alpha in lambda_grid:\n", + " ridge_temp = Ridge(alpha=alpha)\n", + " cv_results = cross_validate(ridge_temp, X_train, y_train,\n", + " cv=5, scoring='neg_mean_squared_error',\n", + " return_train_score=False)\n", + " cv_scores = -cv_results['test_score'] # Convert to positive MSE\n", + " cv_mse_mean.append(cv_scores.mean())\n", + " cv_mse_std.append(cv_scores.std())\n", + "\n", + "cv_mse_mean = np.array(cv_mse_mean)\n", + "cv_mse_std = np.array(cv_mse_std)\n", + "\n", + "# Index von best_lambda_ridge im Grid finden:\n", + "idx_best = np.where(lambda_grid == best_lambda_ridge)[0][0]\n", + "best_mse = cv_mse_mean[idx_best]\n", + "\n", + "# Index für λ_1SE finden:\n", + "# Bestes MSE + 1SE-Grenze\n", + "threshold = best_mse + cv_mse_std[idx_best]\n", + "\n", + "# Kandidaten-Lambdas finden, die <= threshold sind\n", + "candidates = np.where(cv_mse_mean <= threshold)[0]\n", + "\n", + "# Nimm das größte λ (also den einfachsten / regularisiertesten Kandidaten)\n", + "idx_1se = candidates[-1]\n", + "best_lambda_1se = lambda_grid[idx_1se]\n", + "best_mse_1se = cv_mse_mean[idx_1se]\n", + "\n", + "# --- NEUER CODE FÜR y2-ACHSE: Anzahl Variablen berechnen ---\n", + "n_nonzero = []\n", + "for alpha in lambda_grid:\n", + " ridge_temp = Ridge(alpha=alpha)\n", + " ridge_temp.fit(X_train, y_train)\n", + " # Ridge behält alle Variablen, aber wir können trotzdem die Anzahl Features anzeigen\n", + " n_nonzero.append(X_train.shape[1]) # Für Ridge immer alle Features\n", + " # Alternative: Zeige \"effective\" number of parameters basierend auf Koeffizienten-Größe\n", + " # n_nonzero.append(np.sum(np.abs(ridge_temp.coef_) > np.max(np.abs(ridge_temp.coef_)) * 0.01))\n", + "\n", + "plt.style.use('default')\n", + "# --- GEÄNDERT: fig, ax1 für subplot mit y2-Achse ---\n", + "fig, ax1 = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax1.errorbar(np.log(lambda_grid),\n", + " cv_mse_mean,\n", + " yerr=cv_mse_std,\n", + " capsize=3,\n", + " color=\"red\",\n", + " ecolor=\"grey\",\n", + " elinewidth=1,\n", + " fmt='o',\n", + " markersize=4,\n", + " )\n", + "\n", + "ax1.axvline(np.log(best_lambda_ridge),\n", + " color='black',\n", + " linestyle='--',\n", + " linewidth=1,\n", + " label=(f'Best log(λ) = {np.log(best_lambda_ridge):.3f}\\n'\n", + " f'(Best λ = {best_lambda_ridge:.6f})\\n'\n", + " f'CV-MSE = {best_mse:.5f}'\n", + " )\n", + " )\n", + "\n", + "ax1.axvline(np.log(best_lambda_1se),\n", + " color='darkgrey',\n", + " linestyle='--',\n", + " linewidth=1,\n", + " label=(f'1SE log(λ) = {np.log(best_lambda_1se):.3f}\\n'\n", + " f'(1SE λ = {best_lambda_1se:.6f})\\n'\n", + " f'CV-MSE = {best_mse_1se:.5f}'\n", + " )\n", + " )\n", + "\n", + "ax1.set_xlabel('log(λ)', fontsize=12)\n", + "ax1.set_ylabel('Cross-Validation MSE', fontsize=12)\n", + "# ax1.set_title('Ridge Regression: Cross-Validation MSE vs log(λ)')\n", + "ax1.grid(False)\n", + "\n", + "# --- Legende unter dem Plot, zentriert, nebeneinander ---\n", + "ax1.legend(bbox_to_anchor=(0.5, -0.15),\n", + " loc='upper center',\n", + " ncol=3,\n", + " frameon=True,\n", + " framealpha=0 # 0 = unsichtbar, 1 = voll sichtbar\n", + " )\n", + "\n", + "# --- NEUER CODE: y2-Achse oben für Anzahl Variablen ---\n", + "ax2 = ax1.twiny()\n", + "ax2.set_xlim(ax1.get_xlim())\n", + "\n", + "# Ticks und Labels für die Anzahl der Variablen setzen\n", + "log_lambdas = np.log(lambda_grid)\n", + "# Zeige max 20 Ticks um Überlappung zu vermeiden\n", + "n_ticks = min(20, len(lambda_grid))\n", + "tick_indices = np.linspace(0, len(lambda_grid)-1, n_ticks, dtype=int)\n", + "\n", + "ax2.set_xticks(log_lambdas[tick_indices])\n", + "ax2.set_xticklabels([str(n_nonzero[i]) for i in tick_indices])\n", + "ax2.set_xlabel('Number of Variables', fontsize=12)\n", + "\n", + "# Ticks nach innen richten (wie in R)\n", + "# ax2.tick_params(axis='x', direction='in', pad=-15)\n", + "ax2.tick_params(axis='x', direction='out')#, pad=-15)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "73330b81-0e43-43ac-911f-4086a9f9788f", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 1.2 Ridge Regression MSE\n", + "Prepare a slide with a table that reports training MSE and test MSE for different models. Fill in the MSE from the linear model using all features from Problem Set 1. Now compute the training and test MSE for the ridge regression with the optimal penalty parameter $\\lambda$ from *Q1.1*." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2946f83f-3fe7-42cf-9c14-fd9952117fbb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ridge Train MSE: 0.00511\n", + "Ridge Test MSE: 0.00878\n", + "\n", + "Ridge Coefficients:\n", + " Variable Ridge_Coefficient\n", + "0 DP 0.086305\n", + "1 CS 0.064603\n", + "2 ntis -0.260392\n", + "3 cay 0.389788\n", + "4 TS 0.327515\n", + "5 svar 0.156850\n" + ] + } + ], + "source": [ + "# Fit Ridge regression with optimal lambda\n", + "ridge_optimal = Ridge(alpha=best_lambda_ridge)\n", + "ridge_optimal.fit(X_train, y_train)\n", + "\n", + "# Calculate training and test MSE\n", + "y_pred_ridge_train = ridge_optimal.predict(X_train)\n", + "mse_ridge_train = mean_squared_error(y_train, y_pred_ridge_train)\n", + "\n", + "y_pred_ridge_test = ridge_optimal.predict(X_test)\n", + "mse_ridge_test = mean_squared_error(y_test, y_pred_ridge_test)\n", + "\n", + "print(f\"Ridge Train MSE: {mse_ridge_train:.5f}\")\n", + "print(f\"Ridge Test MSE: {mse_ridge_test:.5f}\")\n", + "\n", + "# Show coefficients\n", + "ridge_coefs = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Ridge_Coefficient': ridge_optimal.coef_\n", + "})\n", + "print(\"\\nRidge Coefficients:\")\n", + "print(ridge_coefs)" + ] + }, + { + "cell_type": "markdown", + "id": "80e4160e-374a-43e1-a159-45077703658e", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 1.3 Lasso Regression\n", + "Redo the two tasks above using Lasso instead of Ridge. Again fix the seed to $2$. Provide a plot of the cross-validation MSE as a function of log($\\lambda$) and interpret. Provide a table that shows the coefficient of the Lasso with the optimal penalty parameter $\\lambda$. Compute the training and test MSE of this Lasso model and add it to the table from *Q1.2*." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "36942912-0b0d-4caf-af6c-52c4c248cee4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best lambda (Lasso): 0.000152\n", + "Log of best lambda: -8.7917\n" + ] + } + ], + "source": [ + "# Lasso with cross-validation\n", + "lasso_cv = LassoCV(alphas=lambda_grid, cv=5, random_state=2, max_iter=10000)\n", + "lasso_cv.fit(X_train, y_train)\n", + "\n", + "# Get best lambda\n", + "best_lambda_lasso = lasso_cv.alpha_\n", + "print(f\"Best lambda (Lasso): {best_lambda_lasso:.6f}\")\n", + "print(f\"Log of best lambda: {np.log(best_lambda_lasso):.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "da2dde5d-2756-41ce-9e6c-239b8d884ee3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Performing detailed cross-validation for Lasso plotting...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJDCAYAAAAW1XcBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAArqdJREFUeJzs3XlcVXX+x/H3ZUfADVTABVFzX1LMxFJMc62ssLJF01Ibs02tTE1HM8ssK2em1CzTmjKdSZpqslInlxptEUnNvVxIBA1zAZX9/P5wuD+J7cK9l8OB1/Px4GGc873nvL/ervrh+z3fr80wDEMAAAAAAMDlPMwOAAAAAABAVUXRDQAAAACAm1B0AwAAAADgJhTdAAAAAAC4CUU3AAAAAABuQtENAAAAAICbUHQDAAAAAOAmFN0AAAAAALgJRTcAAAAAAG5C0Q0AqFaWL18um80mPz8/HT16tND53r17q3379iYkkzZu3CibzaYPP/zQlPuX1ZEjR3TDDTeobt26stlsmjBhQqE2O3bskM1m05QpU4q9zsGDB2Wz2fToo4+6JNeoUaPUtGnTcr22LO+/zWbTrFmzynUfAED1QdENAKiWMjMzNX36dLNjWNrEiRP13Xff6e2339bWrVs1ceLEQm06deqkqKgovfvuu8rNzS3yOsuWLZMkjR492iW5ZsyYoY8++sgl1wIAwFkU3QCAamngwIFasWKFduzYYXaUCnfx4kUZhuH0dX766Sd169ZNt9xyi7p3766IiIgi240ePVrJycn6/PPPC53Lzc3Vu+++q6ioKHXq1MmpPBcuXJAkNW/eXJ07d3bqWgAAuApFNwCgWpo8ebKCg4P11FNPldjuyJEjstlsWr58eaFzf5xePGvWLNlsNu3cuVO33367atWqpbp162rSpEnKycnR/v37NXDgQAUFBalp06Z68cUXi7xnRkaGJk2apNDQUPn7+ysmJkYJCQmF2m3btk1DhgxR3bp15efnp86dO+sf//hHgTb50+nXrl2r+++/X/Xq1VONGjWUmZlZbJ8TExM1fPhw1a9fX76+vmrTpo1efvll5eXlSfr/afA///yzPv/8c9lsNtlsNh05cqTI6919993y9/e3j2hfbu3atUpKStL9998vSVq1apX69++vsLAw+fv7q02bNpoyZYrOnz9f4HWjRo1SYGCgdu3apf79+ysoKEh9+/a1n/vj9PLXX39dvXr1Uv369RUQEKAOHTroxRdfVHZ2dpGZv/76a3Xv3l3+/v5q2LChZsyYUexI/eVSUlL0pz/9SY0aNZKPj48iIyP1zDPPKCcnp0C7RYsWqVOnTgoMDFRQUJBat26tadOmlXp9AID1eJkdAAAAMwQFBWn69Ol67LHH9NVXX6lPnz4uu/Ydd9yh4cOH609/+pPWrVtnL+7Wr1+v8ePH64knntCKFSv01FNPqUWLFoqNjS3w+mnTpqlLly566623dPbsWc2aNUu9e/dWQkKCmjVrJknasGGDBg4cqKuvvlqLFy9WrVq1tHLlSg0bNkwXLlzQqFGjClzz/vvv1w033KC///3vOn/+vLy9vYvM/ttvv6lHjx7KysrSs88+q6ZNm+rf//63nnjiCf3yyy9auHChunTpoq1bt+rWW29V8+bNNX/+fElSWFhYkdesVauWhg4dqlWrVum3335TvXr17OeWLVsmPz8/3X333ZIuPd89ePBgTZgwQQEBAdq3b5/mzZun77//Xl999VWB62ZlZWnIkCH605/+pClTphQqbC/3yy+/6O6771ZkZKR8fHy0Y8cOPffcc9q3b5/efvvtAm1TUlJ05513asqUKZo9e7Y+++wzzZkzR6dPn9Zrr71W7D1SUlLUrVs3eXh46M9//rOaN2+urVu3as6cOTpy5Ij9hw4rV67U+PHj9cgjj2j+/Pny8PDQzz//rD179hR7bQCAhRkAAFQjy5YtMyQZP/zwg5GZmWk0a9bM6Nq1q5GXl2cYhmHExMQY7dq1s7c/fPiwIclYtmxZoWtJMmbOnGn/fubMmYYk4+WXXy7Q7sorrzQkGXFxcfZj2dnZRr169YzY2Fj7sQ0bNhiSjC5dutjzGIZhHDlyxPD29jbGjBljP9a6dWujc+fORnZ2doF73XjjjUZYWJiRm5tboL/33nuvQ78/U6ZMMSQZ3333XYHjDz74oGGz2Yz9+/fbj0VERBg33HCDQ9fN79srr7xiP3bq1CnD19fXuOeee4p8TV5enpGdnW1s2rTJkGTs2LHDfm7kyJGGJOPtt98u9LqRI0caERERxWbJzc01srOzjXfffdfw9PQ0fv/9d/u5mJgYQ5Lx8ccfF3jN2LFjDQ8PD+Po0aP2Y398///0pz8ZgYGBBdoYhmHMnz/fkGTs3r3bMAzDePjhh43atWsXmw8AULUwvRwAUG35+Phozpw52rZtW6Fp2c648cYbC3zfpk0b2Ww2DRo0yH7My8tLLVq0KHIF9bvvvls2m83+fUREhHr06KENGzZIkn7++Wft27dP99xzjyQpJyfH/jV48GAlJydr//79Ba45dOhQh7J/9dVXatu2rbp161bg+KhRo2QYRqHRZkfFxMSoefPmBaaYv//++8rMzLRPLZekQ4cO6e6771ZoaKg8PT3l7e2tmJgYSdLevXsLXdfRfiUkJGjIkCEKDg62X/fee+9Vbm6uDhw4UKBtUFCQhgwZUuDY3Xffrby8PG3evLnYe/z73//Wddddp/Dw8ALvSf77vmnTJklSt27ddObMGd111136+OOPlZqa6lAfAADWRNENAKjW7rzzTnXp0kVPP/10sc/3llXdunULfO/j46MaNWrIz8+v0PGMjIxCrw8NDS3y2KlTpyRJJ06ckCQ98cQT8vb2LvA1fvx4SSpUyBU39fuPTp06VWTb8PBw+/nysNlsuv/++7Vr1y5t27ZN0qWp5ZGRkbruuuskSenp6erZs6e+++47zZkzRxs3btQPP/yguLg4SZcWgLtcjRo1VLNmzVLvnZiYqJ49eyopKUl/+ctf9PXXX+uHH37Q66+/XuR1GzRoUOga+e9JSf0/ceKEPv3000LvSbt27ST9/3syYsQIvf322zp69KiGDh2q+vXr6+qrr9a6detK7QsAwHp4phsAUK3ZbDbNmzdP/fr105IlSwqdzy+U/7jwWHmLT0ekpKQUeSw4OFiSFBISIkmaOnVqoefB87Vq1arA95ePnJckODhYycnJhY4fP368wL3LY9SoUfrzn/+st99+W97e3kpISNCzzz5rz/bVV1/p+PHj2rhxo310W5LOnDlT5PUc7dO//vUvnT9/XnFxcQVWWP/xxx+LbJ//Q43L5b8n+e9BUUJCQtSxY0c999xzRZ7P/8GFJN1333267777dP78eW3evFkzZ87UjTfeqAMHDhS7CjwAwJoougEA1d7111+vfv36afbs2WrcuHGBcw0aNJCfn5927txZ4PjHH3/stjwffPCBJk2aZC8qjx49qi1btujee++VdKmgvuKKK7Rjxw49//zzLr133759NXfuXG3fvl1dunSxH3/33Xdls9nso9LlER4eroEDB+qDDz5QTk6OPDw8NHLkSPv5/P76+voWeN0bb7xR7nsWd13DMPTmm28W2T4tLU2ffPJJgSnmK1askIeHh3r16lXsfW688UatWbNGzZs3V506dRzKFhAQoEGDBikrK0u33HKLdu/eTdENAFUMRTcAAJLmzZunqKgonTx50j4dWLpUsA0fPlxvv/22mjdvrk6dOun777/XihUr3Jbl5MmTuvXWWzV27FidPXtWM2fOlJ+fn6ZOnWpv88Ybb2jQoEEaMGCARo0apYYNG+r333/X3r17tX37dv3zn/8s170nTpyod999VzfccINmz56tiIgIffbZZ1q4cKEefPBBtWzZ0qm+jR49Wp999pneeustDRgwoMAPOXr06KE6depo3Lhxmjlzpry9vfX+++87vZd6v3795OPjo7vuukuTJ09WRkaGFi1apNOnTxfZPjg4WA8++KASExPVsmVLrVmzRm+++aYefPBBNWnSpNj7zJ49W+vWrVOPHj306KOPqlWrVsrIyNCRI0e0Zs0aLV68WI0aNdLYsWPl7++va665RmFhYUpJSdHcuXNVq1YtXXXVVU71FQBQ+VB0AwAgqXPnzrrrrruKLKZffvllSdKLL76o9PR09enTR//+978L7QXtKs8//7x++OEH3XfffTp37py6deumlStXqnnz5vY21113nb7//ns999xzmjBhgk6fPq3g4GC1bdtWd9xxR7nvXa9ePW3ZskVTp07V1KlTde7cOTVr1kwvvviiJk2a5HTfbrzxRjVo0EAnTpwosICadKnY/eyzz/T4449r+PDhCggI0M0336xVq1YVGHUvq9atW2v16tWaPn26YmNjFRwcrLvvvluTJk0qsLhdvtDQUL3++ut64okntGvXLtWtW1fTpk3TM888U+J9wsLCtG3bNj377LN66aWXdOzYMQUFBSkyMlIDBw60j3737NlTy5cv1z/+8Q+dPn1aISEhuvbaa/Xuu+8W2E4NAFA12AzDMMwOAQAAAABAVcTq5QAAAAAAuAlFNwAAAAAAbkLRDQAAAACAm1B0AwAAAADgJhTdAAAAAAC4CUU3AAAAAABuQtFdhSUlJWn48OEKDg5WjRo1dOWVVyo+Pt7sWAVU9oyzZs2SzWYr8BUaGmp2rEKskNMKGR2xaNEidezYUTVr1lTNmjUVHR2tzz//3OxYBcydO1dXXXWVgoKCVL9+fd1yyy3av3+/2bEK2bx5s2666SaFh4fLZrPpX//6l9mRCrFCxnwLFy5UZGSk/Pz8FBUVpa+//trsSGVmhT5YIaNkjZxkrDhW6IcVMkrWyGmFjI6oKv2QKLqrrNOnT+uaa66Rt7e3Pv/8c+3Zs0cvv/yyateubXY0OytklKR27dopOTnZ/rVr1y6zIxXJCjmtkLE0jRo10gsvvKBt27Zp27Zt6tOnj26++Wbt3r3b7Gh2mzZt0kMPPaRvv/1W69atU05Ojvr376/z58+bHa2A8+fPq1OnTnrttdfMjlIsK2SUpFWrVmnChAl6+umnlZCQoJ49e2rQoEFKTEw0O5rDrNAHK2SUrJGTjBXHCv2wQkbJGjmtkNERVaUfdgaqpKeeesq49tprzY5RIitknDlzptGpUyezY5TKCjmtkLG86tSpY7z11ltmxyjWyZMnDUnGpk2bzI5SLEnGRx99ZHaMElXmjN26dTPGjRtX4Fjr1q2NKVOmmJSo7KzQBytkNAxr5CRjxbFCP6yQ0TCskdMKGR1RVfqRj5HuKuqTTz5R165ddfvtt6t+/frq3Lmz3nzzTbNjFWCFjJJ08OBBhYeHKzIyUnfeeacOHTpkdqQiWSGnFTKWRW5urlauXKnz588rOjra7DjFOnv2rCSpbt26JieBO2RlZSk+Pl79+/cvcLx///7asmWLSanKxgp9sEJGyRo5yVhxrNAPK2SUrJHTChkdUVX6cTmK7irq0KFDWrRoka644gp9+eWXGjdunB599FG9++67Zkezs0LGq6++Wu+++66+/PJLvfnmm0pJSVGPHj106tQps6MVYIWcVsjoqF27dikwMFC+vr4aN26cPvroI7Vt29bsWEUyDEOTJk3Stddeq/bt25sdB26Qmpqq3NxcNWjQoMDxBg0aKCUlxaRUZWOFPlgho2SNnGSsOFbohxUyStbIaYWMjqgq/bicl9kB4B55eXnq2rWrnn/+eUlS586dtXv3bi1atEj33nuvyekusULGQYMG2f+7Q4cOio6OVvPmzfXOO+9o0qRJJiYryAo5rZDRUa1atdKPP/6oM2fOaPXq1Ro5cqQ2bdpUKQvvhx9+WDt37tQ333xjdhS4mc1mK/C9YRiFjlV2VuiDFTJK1shJxopjhX5YIaNkjZxWyOiIqtIPiZHuKissLKxQAdCmTZtKtfiAFTL+UUBAgDp06KCDBw+aHaVEVshphYzF8fHxUYsWLdS1a1fNnTtXnTp10l/+8hezYxXyyCOP6JNPPtGGDRvUqFEjs+PATUJCQuTp6Vnop/8nT54sNEpQWVmhD1bIKFkjJxkrjhX6YYWMkjVyWiGjI6pKPy5H0V1FXXPNNYW2CDpw4IAiIiJMSlSYFTL+UWZmpvbu3auwsDCzo5TICjmtkNFRhmEoMzPT7Bh2hmHo4YcfVlxcnL766itFRkaaHQlu5OPjo6ioKK1bt67A8XXr1qlHjx4mpSobK/TBChkla+QkY8WxQj+skFGyRk4rZHREVelHAWas3gb3+/777w0vLy/jueeeMw4ePGi8//77Ro0aNYz33nvP7Gh2Vsj4+OOPGxs3bjQOHTpkfPvtt8aNN95oBAUFGUeOHDE7WgFWyGmFjI6YOnWqsXnzZuPw4cPGzp07jWnTphkeHh7G2rVrzY5m9+CDDxq1atUyNm7caCQnJ9u/Lly4YHa0AtLS0oyEhAQjISHBkGS88sorRkJCgnH06FGzo9lZIaNhGMbKlSsNb29vY+nSpcaePXuMCRMmGAEBAZb6fFmhD1bIaBjWyEnGimOFflgho2FYI6cVMjqiqvQjH0V3Ffbpp58a7du3N3x9fY3WrVsbS5YsMTtSIZU947Bhw4ywsDDD29vbCA8PN2JjY43du3ebHasQK+S0QkZH3H///UZERITh4+Nj1KtXz+jbt2+lKrgN49LWVkV9LVu2zOxoBWzYsKHInCNHjjQ7mp0VMuZ7/fXX7f9vdunSpVJvEVccK/TBChkNwxo5yVhxrNAPK2Q0DGvktEJGR1SVfhiGYdgMwzAqenQdAAAAAIDqgGe6AQAAAABwE4puAAAAAADchKIbAAAAAAA3oegGAAAAAMBNKLoBAAAAAHATiu4qLjMzU7NmzVJmZqbZUYplhYySNXKSseJYoR9WyChZIycZK44V+kFG17FCTitkdIQV+kFG17FKzpJUhT7kY8uwKu7cuXOqVauWzp49q5o1a5odp0hWyChZIycZK44V+mGFjJI1cpKx4lihH2R0HSvktEJGR1ihH2R0HavkLElV6EM+RroBAAAAAHATim4AAAAAANzEy+wAVpaTk6OEhAQ1aNBAHh6V8+cXaWlpkqSkpCSdO3fO5DRFs0JGyRo5yVhxrNAPK2SUrJGTjBXHCv0go+tYIacVMjrCCv0go+tYJWdJrNCHvLw8nThxQp07d5aXV/GlNc90O+GHH35Qt27dzI4BAAAAADDJ999/r6uuuqrY84x0O6FBgwaSLv0mh4WFmZwGQGWya9cuDR48WGvWrFGHDh3MjgMAAGApZ86c0ddff62ePXuqdu3aZscpUnJysrp162avC4tD0e2E/CnlYWFhatSokclpAFQmJ0+elHTph3P8+QAAAFA2AQEBCg4OVsOGDVWnTh2z45SotEeNK+eDyAAAAAAAVAEU3QAAAAAAuAlFNwC4QdOmTfX3v/9dTZs2NTsKAACA5dSoUUNXX321atSoYXYUp/FMNwC4Qd26dTV8+HCzYwAAAFiSr6+vIiIizI7hEpVipHvhwoWKjIyUn5+foqKi9PXXX5fYftOmTYqKipKfn5+aNWumxYsXFzi/e/duDR06VE2bNpXNZtOCBQsKXWPu3Lm66qqrFBQUpPr16+uWW27R/v37XdktANXYb7/9ptdff12//fab2VEAAAAsJyMjQwcPHlRGRobZUZxmetG9atUqTZgwQU8//bQSEhLUs2dPDRo0SImJiUW2P3z4sAYPHqyePXsqISFB06ZN06OPPqrVq1fb21y4cEHNmjXTCy+8oNDQ0CKvs2nTJj300EP69ttvtW7dOuXk5Kh///46f/68W/oJoHr59ddf9fDDD+vXX381OwoAAIDlXLx4UQkJCbp48aLZUZxm+vTyV155RaNHj9aYMWMkSQsWLNCXX36pRYsWae7cuYXaL168WE2aNLGPXrdp00bbtm3T/PnzNXToUEnSVVddZd+cfMqUKUXe94svvijw/bJly1S/fn3Fx8erV69eRb4mMzNTmZmZ9u/T0tLK1lkAAAAAQLVi6kh3VlaW4uPj1b9//wLH+/fvry1bthT5mq1btxZqP2DAAG3btk3Z2dnlznL27FlJl57DLM7cuXNVq1Yt+1fbtm3LfT8AAAAAQNVnatGdmpqq3NxcNWjQoMDxBg0aKCUlpcjXpKSkFNk+JydHqamp5cphGIYmTZqka6+9Vu3bty+23dSpU3X27Fn71549e8p1PwAAAABA9WD69HJJstlsBb43DKPQsdLaF3XcUQ8//LB27typb775psR2vr6+8vX1tX9/7ty5ct0PQNUXFBSk/v37KygoyOwoAAAAluPl5aUGDRrIy6tSlKxOMbUHISEh8vT0LDSqffLkyUKj2flCQ0OLbO/l5aXg4OAyZ3jkkUf0ySefaPPmzWrUqFGZXw8ARbniiiv05Zdfmh0DAADAkoKCghQTE2N2DJcwdXq5j4+PoqKitG7dugLH161bpx49ehT5mujo6ELt165dq65du8rb29vhexuGoYcfflhxcXH66quvFBkZWfYOAEAxcnNzde7cOeXm5podBQAAwHLy8vKUnZ2tvLw8s6M4zfQtwyZNmqS33npLb7/9tvbu3auJEycqMTFR48aNk3TpOep7773X3n7cuHE6evSoJk2apL179+rtt9/W0qVL9cQTT9jbZGVl6ccff9SPP/6orKwsJSUl6ccff9TPP/9sb/PQQw/pvffe04oVKxQUFKSUlBSlpKRUiSXpAZhvx44dqlWrlnbs2GF2FAAAAMs5e/asPvroI/uC11Zm+gT5YcOG6dSpU5o9e7aSk5PVvn17rVmzRhEREZKk5OTkAnt2R0ZGas2aNZo4caJef/11hYeH669//at9uzBJOn78uDp37mz/fv78+Zo/f75iYmK0ceNGSdKiRYskSb179y6QZ9myZRo1apR7OgsAAAAAqFZML7olafz48Ro/fnyR55YvX17oWExMjLZv317s9Zo2bWpfXK04pZ23srS0NKWnpxd7PjAwkMWdAAAAAKACVIqiG64VHx+vTZs2FXs+Jiam0Ag/AAAAAMD1KLqroKioKLVq1UrSpb3Q4+LiFBsbq5CQEEmXRroBAAAAAO5H0V0FBQUFFZo+HhISorCwMEmXpp8nJycX+3qmnwPO69Chg06ePKnatWubHQUAAMByatWqpSFDhsjHx8fsKE6j6K6GmH4OuJ+3t7fq1atndgwAAABL8vDwkJ+fn9kxXIKiuxpi+jngfr/88osmTpyoV199Vc2bNzc7DgAAgKWkp6frxx9/1JVXXmn5+oSiuxoqbfq5xArogLPOnj2rTz/9VLNmzTI7CgAAgOVkZ2fr+PHjateundlRnEbRjSIxBR0AAAAAnEfRjSIxBR0AAAAAnEfRjSI5MgUdAAAAAFAyim6UC898AyVr2LChXn75ZTVs2NDsKAAAAJbj7++vTp06yd/f3+woTqPoRrnwzDdQsgYNGmjSpElmxwAAALAkPz8/++OuVkfRjXLhmW+gZKdPn9b69et1/fXXq06dOmbHAQAAsJSsrCydOHFCDRo0kI+Pj9lxnOJhdgBYU1BQkMLCwhQWFmYvtPOf+Q4LC2NqOaq9w4cP64477tDhw4fNjgIAAGA558+f19atW3X+/HmzoziNohsAAAAAADdhejncgoXWAAAAAICiG27CQmsAAAAAQNENN2GhNVR3/v7+6ty5c5XY5gIAAKCieXp6qnbt2vL09DQ7itMouuEWQUFBhaaP5y+0BlQHbdq00fbt282OAQAAYEk1a9ZU//79zY7hEiykBgAAAACAm1B0A4AbJCQkyNfXVwkJCWZHAQAAsJzTp0/rww8/1OnTp82O4jSml8MUrG6Oqs4wDGVlZckwDLOjAAAAWFJeXp7ZEVyCohumYHVzAAAAANUBRTdMwermAAAAAKoDim6YgtXNAQAAAFQHFN0A4AZt2rTRTz/9pGbNmpkdBQAAwHKCgoI0YMAABQQEmB3FaRTdAOAG/v7+ateundkxAAAALMnLy0u1atUyO4ZLsGUYKq20tDQlJycX+5WWlmZ2RKBYR48e1ZgxY3T06FGzowAAAFjO+fPn9cMPP+j8+fNmR3EaI92otFjhHFZ26tQpLV26VOPHj1dERITZcQAAACwlKytLhw8fVosWLSw/xZyiG5UWK5wDAAAAsDqKblRarHAOAAAAwOp4phsAAAAAADeh6AYAN2jQoIGmTJmiBg0amB0FAADAcnx9fdW6dWv5+vqaHcVpTC8HADdo2LCh5s6da3YMAAAAS6pRo4Y6duxodgyXYKQbANwgLS1NGzduZGs7AACAcsjOztbJkyeVnZ1tdhSnMdINy0pLS1N6enqx5wMDAwstxAZUlIMHD+q6665TfHy8unTpYnYcAAAAS0lPT9fGjRvVr18/1alTx+w4TqHohmWxjzcAAACAyo6iG5bFPt4AAAAAKjuKblgW+3gDAAAAqOxYSA0A3MDb21sNGzaUt7e32VEAAAAsx2azyd/fXzabzewoTmOkGwDcoEOHDjp27JjZMQAAACypdu3auummm8yO4RKMdAMAAAAA4CYU3QDgBrt27VKjRo20a9cus6MAAABYzpkzZ/Tpp5/qzJkzZkdxGkU3ALhBdna2kpKSlJ2dbXYUAAAAyzEMQxcvXpRhGGZHcRrPdKPKSktLU3p6erHnAwMDC61+DgAAAACuRNGNKis+Pl6bNm0q9nxMTIx69+5dcYEAAAAAVDsU3aiyoqKi1KpVK0lSamqq4uLiFBsbq5CQEEmXRroBAAAAwJ0oulFlBQUFFZo+HhISorCwMJMSoTq54oortGHDBl1xxRVmRwEAALCcwMBA9e7du0oMlFF0A4AbBAUF8fgCAABAOXl7e6t+/fpmx3AJVi8HADdISkrS1KlTlZSUZHYUAAAAy7lw4YJ27typCxcumB3FaRTdAOAGJ06c0AsvvKATJ06YHQUAAMByMjMztW/fPmVmZpodxWkU3QAAAAAAuAlFNwAAAAAAbkLRDQAAAACAm1B0A4AbBAcHa/To0QoODjY7CgAAgOX4+PgoMjJSPj4+ZkdxGluGodpKS0tTenp6secDAwML7fMNOCoiIkJvvfWW2TEAAAAsKSAgQFdddZXZMVyCohvVVnx8vDZt2lTs+ZiYGPZZRrldvHhRhw4dUrNmzeTv7292HAAAAEvJycnR+fPnFRAQIC8va5et1k4POCEqKkqtWrWSJKWmpiouLk6xsbEKCQmRdGmkGyivvXv3KioqSvHx8erSpYvZcQAAACwlLS1N69atU79+/VSnTh2z4ziFohvVVlBQUKHp4yEhIQoLCzMpEQAAAICqhoXUAAAAAABwE4puAAAAAADchKIbANzAZrPJx8dHNpvN7CgAAACW5OFRNcpVnukGADfo3LmzMjMzzY4BAABgSXXq1NFtt91mdgyXqBo/OgAAAAAAoBKi6AYAN9i7d6+6dOmivXv3mh0FAADAcs6dO6e1a9fq3LlzZkdxGkU3ALjBxYsXlZCQoIsXL5odBQAAwHJyc3N15swZ5ebmmh3FaRTdAAAAAAC4CQupASVIS0tTenp6secDAwMVFBRUgYkAAAAAWAlFN1CC+Ph4bdq0qdjzMTEx6t27d8UFAgAAAGApFN1ACaKiotSqVStJUmpqquLi4hQbG6uQkBBJl0a6gaJERkbqH//4hyIjI82OAgAAYDkBAQGKjo5WQECA2VGcRtENlCAoKKjQ9PGQkBCFhYWZlAhWUadOHd1+++1mxwAAALAkHx8fNW7c2OwYLsFCagDgBidOnNArr7yiEydOmB0FAADAcjIyMrR//35lZGSYHcVpFN0A4AZJSUl6/PHHlZSUZHYUAAAAy7l48aJ27NhRJbZfpegGAAAAAMBNKLoBAAAAAHATim4AAAAAANyEohsA3KBWrVq66aabVKtWLbOjAAAAWI63t7fCw8Pl7e1tdhSnVYqie+HChYqMjJSfn5+ioqL09ddfl9h+06ZNioqKkp+fn5o1a6bFixcXOL97924NHTpUTZs2lc1m04IFC1xyXwBwVPPmzfXJJ5+oefPmZkcBAACwnMDAQF177bUKDAw0O4rTTC+6V61apQkTJujpp59WQkKCevbsqUGDBikxMbHI9ocPH9bgwYPVs2dPJSQkaNq0aXr00Ue1evVqe5sLFy6oWbNmeuGFFxQaGuqS+wJFSUtLU3JycrFfaWlpZkeESbKzs/Xbb78pOzvb7CgAAACWk5eXp4yMDOXl5ZkdxWleZgd45ZVXNHr0aI0ZM0aStGDBAn355ZdatGiR5s6dW6j94sWL1aRJE/vodZs2bbRt2zbNnz9fQ4cOlSRdddVVuuqqqyRJU6ZMccl9JSkzM1OZmZn27ymoEB8fr02bNhV7PiYmRr179664QKg0du3apaioKMXHx6tLly5mxwEAALCUs2fPat26derXr5/q1KljdhynmFp0Z2VlKT4+vlBh3L9/f23ZsqXI12zdulX9+/cvcGzAgAFaunSpsrOzHZrzX577StLcuXP1zDPPlHp9VB9RUVFq1aqVJCk1NVVxcXGKjY1VSEiIJFWJ6TAAAAAAys/U6eWpqanKzc1VgwYNChxv0KCBUlJSinxNSkpKke1zcnKUmprqtvtK0tSpU3X27Fn71549exy6H6quoKAghYWFKSwszF5oh4SE2I8FBQWZnBAAAACAmUyfXi5JNputwPeGYRQ6Vlr7oo67+r6+vr7y9fW1f3/u3Lky3Q8AAAAAUL2YOtIdEhIiT0/PQqPLJ0+eLDQKnS80NLTI9l5eXgoODnbbfQEAAAAAKCtTi24fHx9FRUVp3bp1BY6vW7dOPXr0KPI10dHRhdqvXbtWXbt2dXgPt/LcFwDKolOnTjp79qw6depkdhQAAADLqVWrlm699VbVqlXL7ChOM316+aRJkzRixAh17dpV0dHRWrJkiRITEzVu3DhJl56jTkpK0rvvvitJGjdunF577TVNmjRJY8eO1datW7V06VJ98MEH9mtmZWXZn7fOyspSUlKSfvzxRwUGBqpFixYO3RcAnOHp6amaNWuaHQMAAMCSPDw85OFh+g7XLmF60T1s2DCdOnVKs2fPVnJystq3b681a9YoIiJCkpScnFxg7+zIyEitWbNGEydO1Ouvv67w8HD99a9/tW8XJknHjx9X586d7d/Pnz9f8+fPV0xMjDZu3OjQfQHAGQcPHtTDDz+s1157TVdccYXZcQAAACwlLS1N27dvV5cuXSy/OLHpRbckjR8/XuPHjy/y3PLlywsdi4mJ0fbt24u9XtOmTe2Lq5X3vgDgjLS0NK1du1ZpaWlmRwEAALCcnJwcnThxQjk5OWZHcVrVGK8HAAAAAKASougGAAAAAMBNKsX0cqCqSktLU3p6erHnAwMDLf+MCgAAAIDiUXQDbhQfH69NmzYVez4mJka9e/euuECoMI0bN9Zrr72mxo0bmx0FAADAcvz9/dW5c2f5+/ubHcVpFN2AG0VFRalVq1aSpNTUVMXFxSk2NlYhISGSLo10o2qqV6+eHnroIbNjAAAAWJKfn1+V2QGGohtwo6CgoELTx0NCQhQWFmZSIlSU33//XWvWrNHgwYNVt25ds+MAAABYSmZmplJSUhQaGipfX1+z4ziFhdQAwA2OHDmiESNG6MiRI2ZHAQAAsJwLFy7ou+++04ULF8yO4jSKbgAAAAAA3MSlRXd2drYOHTrkyksCAAAAAGBZDhXdnp6e+v777+3fG4ah/v376+effy7Qbvv27VXmYXcAAAAAAJzlUNFtGEaB7/Py8rR+/XqdO3fOLaEAwOoCAgLUvXt3BQQEmB0FAADAcjw9PRUcHCxPT0+zoziN1csBwA1atWqlrVu3mh0DAADAkmrWrKm+ffuaHcMlWEgNAAAAAAA3oegGADfYvn27bDabtm/fbnYUAAAAyzl9+rT+8Y9/6PTp02ZHcZrDRbfNZnPoGAAAAAAAuMThZ7qvu+46eXgUrNF79uxZ4FheXp7rkgEAAAAAYHEOFd0jR450dw6gWkpLS1N6enqx5wMDAxUUFFSBiQAAAAC4kkNF97Jly9ydA6iW4uPjtWnTpmLPx8TEqHfv3hUXCAAAAIBLsWUYYKKoqCi1atVKkpSamqq4uDjFxsYqJCRE0qWRblhT27ZtdfDgQTVq1MjsKAAAAJZTs2ZNDRo0SDVq1DA7itMcWkgtPT1diYmJhY4fPHhQd955p9q3b68BAwboq6++cnlAoCoLCgpSWFiYwsLC7IV2SEiI/RhTy63Lz89PLVq0kJ+fn9lRAAAALMfT01NBQUHy9PQ0O4rTHCq6p06dqn79+hU4lpqaqh49eugf//iHjh8/rv/85z8aNGiQvv/+e7cEBQArOXz4sIYPH67Dhw+bHQUAAMBy0tPT9e2335a4/pFVOFR0b9myRXfeeWeBY3/5y1906tQpvfrqq/r999+VmJiopk2bav78+W4JCgBWcvr0ab3//vtVYm9JAACAipadna3ExERlZ2ebHcVpDhXdiYmJ6tSpU4Fja9asUePGjfXYY49JksLDwzVhwgRt2bLF9SkBAAAAALAgh5/pzn/eVJIyMjK0c+dOxcTEFGjXpk0b/fbbb65NCAAAAACARTlUdIeHh+vIkSP277///nvl5uaqa9euBdrl5uYqICDApQEBAAAAALAqh4ruHj166G9/+5suXLggSXrjjTdks9k0YMCAAu1++uknNWzY0PUpAcBiwsLCNHPmTIWFhZkdBQAAwHL8/PzUtm3bKrETjEP7dD/99NOKiopSaGioatasqePHj+vWW2+17y+cb/Xq1erevbtbggKAlYSFhWnWrFlmxwAAALAkf39/tW/f3uwYLuHQSHfr1q31zTff6NZbb1Xnzp01Z84cffDBBwXapKSkqHbt2ho2bJhbggKAlZw7d05ffvmlzp07Z3YUAAAAy8nOzlZKSkqVWL3coZFuSercubPeeeedYs+Hhobqk08+cUkoALC6n3/+WQMHDlR8fLy6dOlidhwAAABLSU9P1+bNm9WvXz/VqVPH7DhOcWikGwAAAAAAlJ1DI92zZ892+II2m00zZswodyAABaWlpSk9Pb3Y84GBgQoKCqrARAAAAAAc5VDRPWvWLNlsNhmGUWpbim7AteLj47Vp06Ziz8fExKh3794VFwgAAACAwxx+prtmzZoaNmyY7rvvPrVo0cKdmQBcJioqyr5TQGpqquLi4hQbG6uQkBBJl0a6Ufn4+vqqefPm8vX1NTsKAACA5Xh4eCgwMFAeHtZ/ItqhovvIkSNatmyZli9frjfffFO9evXS6NGjddttt1WJfdOAyiwoKKjQ9PGQkBD2f67k2rVrp59//tnsGAAAAJZUq1YtDR482OwYLuHQjw2aNGmimTNn6vDhw/riiy/UoEEDjR07VqGhoRo3bpy+//57d+cEAAAAAMByyjxW369fP61cuVJJSUl69tln9f333ys6OloPPPCAO/IBgCXt3LlT9erV086dO82OAgAAYDlnzpzRxx9/rDNnzpgdxWnlniBfu3ZtNWvWTE2bNpXNZqsSvxkA4Co5OTlKTU1VTk6O2VEAAAAsxzAMZWZmOrSYd2VX5qL74MGDmjp1qho3bqybb75Z6enpeu+99/T3v//dHfkAAAAAALAshxZSu3DhglatWqW3335b//3vfxUREaEHHnhA9913n5o0aeLujAAAAAAAWJJDRXdYWJhycnJ0yy23aNasWerbt6+7cwEAAAAAYHkOFd1paWny9vbWp59+qk8//bTEtjabTWfPnnVJOACwqpYtW2rLli1q2bKl2VEAAAAsJzAwUH369FFgYKDZUZzmUNE9cuRId+cAgColMDBQ0dHRZscAAACwJG9vb4WEhJgdwyUcKrqXLVvm7hwAUKUcO3ZMr7zyiiZNmqRGjRqZHQcAAMBSLly4oAMHDqhly5aqUaOG2XGcUu4twwAAxTt58qReffVVnTx50uwoAAAAlpOZmakDBw4oMzPT7ChOo+gGAAAAAMBNKLoBAAAAAHATh57pBlB5paWlKT09vdjzgYGBCgoKqsBEAAAAAPJRdAMWFx8fr02bNhV7PiYmRr179664QJAkhYSEaPz48VVm1U0AAICK5OPjo+bNm8vHx8fsKE6j6AYsLioqSq1atZIkpaamKi4uTrGxsfZiryrsbWhFTZo00euvv252DAAAAEsKCAhQVFSU2TFcwqmi+7ffftPFixcLHW/SpIkzlwVQBkFBQYWmj4eEhCgsLMykRJAubXOxb98+tW7d2vLbXAAAAFS0nJwcpaWlKSgoSF5e1h4rLvNCamlpaRozZowCAgIUGhqqyMjIQl8AUN3t27dPUVFR2rdvn9lRAAAALCctLU3r1q1TWlqa2VGcVuYfGUyYMEErVqzQ6NGj1bFjR/n6+rojFwAAAAAAllfmovuzzz7TCy+8oMcee8wdeQAAAAAAqDLKPL08IyNDHTp0cEcWAAAAAACqlDIX3YMHD9bXX3/tjiwAUGV4eHgoKChIHh5l/mMWAAAAkuUXUMtX5l5Mnz5dt912m4KCgnTTTTcpODi4UJu6deu6JBwAWNWVV16pc+fOmR0DAADAkurUqaPY2FizY7hEmYvu9u3bS5KefPJJPfnkk0W2yc3NdS4VAAAAAABVQJmL7j//+c+y2WzuyAIAVcaePXt0++2365///Kfatm1rdhwAAABLOXv2rLZu3aro6GjVqlXL7DhOKXPRPWvWLDfEAICqJSMjQ3v27FFGRobZUQAAACwnLy9P586dU15entlRnObUCj8ZGRlKTk7mH5UAAAAAABShXEX3li1b1LNnTwUFBalRo0YKCgpSTEyMtm7d6up8AAAAAABYVpmnl3/77bfq06ePateurQceeEDh4eFKSkpSXFyc+vTpo40bN+rqq692R1YA5ZCWlqb09PRizwcGBiooKKgCEwEAAADVR7kWUuvYsaM2bNiggIAA+/GXXnpJ1113nf785z/ryy+/dGlIAOUXHx+vTZs2FXs+JiZGvXv3rrhA1USzZs308ccfq1mzZmZHAQAAsJyAgABdc801BWpOqyrXSPfbb79dqPMBAQF68sknNXr0aJeFA+C8qKgotWrVSpKUmpqquLg4xcbGKiQkRNKlkW64Xu3atTVkyBCzYwAAAFiSj4+PGjZsaHYMlyjzM925ubny9fUt8pyfnx97dAOVTFBQkMLCwhQWFmYvtENCQuzHmFruHikpKZo7d65SUlLMjgIAAGA5Fy9e1N69e3Xx4kWzozitzEV3p06dtGjRoiLPvfHGG+rUqZPToQDA6o4fP65p06bp+PHjZkcBAACwnIyMDO3atatK7JRV5unlU6ZM0S233KLOnTtr+PDhCgsLU3JyslasWKEff/xR//rXv9wQEwAAAAAA6ylz0T1kyBC99957mjx5sp588kn78YYNG+q9997TTTfd5NKAAAAAAABYVZmLbkm6++67ddddd2n//v06deqUgoOD1apVK9lsNlfnAwAAAADAsspVdEuSzWZT69atXZkFAKqM2rVr67bbblPt2rXNjgIAAGA53t7eatSokby9vc2O4jSHiu7NmzerS5cuCgwM1ObNm0tt36tXL6eDAYCVNWvWTP/85z/NjgEAAGBJgYGB6tGjh9kxXMKhort379769ttv1a1bN/Xu3bvYaeSGYchms7FtGIBqLysrSydPnlT9+vXl4+NjdhwAAABLyc3NVWZmpnx9feXp6Wl2HKc4VHRv2LBBbdu2lSR99dVXPLsNAKX46aefFBUVpfj4eHXp0sXsOAAAAJZy7tw5rVu3Tv369VOdOnXMjuMUh4rumJgY+3/37t3bXVkAAAAAAKhSPMr6gj59+mjfvn1Fnjtw4ID69OnjdCgAAAAAAKqCMhfdGzdu1Llz54o8l5aWpk2bNpU5xMKFCxUZGSk/Pz9FRUXp66+/LrH9pk2bFBUVJT8/PzVr1kyLFy8u1Gb16tVq27atfH191bZtW3300UcFzufk5Gj69OmKjIyUv7+/mjVrptmzZysvL6/M+QEAAAAAKEqZi+6SJCcnq0aNGmV6zapVqzRhwgQ9/fTTSkhIUM+ePTVo0CAlJiYW2f7w4cMaPHiwevbsqYSEBE2bNk2PPvqoVq9ebW+zdetWDRs2TCNGjNCOHTs0YsQI3XHHHfruu+/sbebNm6fFixfrtdde0969e/Xiiy/qpZde0t/+9rfydR4AAAAAgD9w6Jnujz/+WB9//LH9+2effVb16tUr0ObixYvauHGjOnfuXKYAr7zyikaPHq0xY8ZIkhYsWKAvv/xSixYt0ty5cwu1X7x4sZo0aaIFCxZIktq0aaNt27Zp/vz5Gjp0qP0a/fr109SpUyVJU6dO1aZNm7RgwQJ98MEHki4V5jfffLNuuOEGSVLTpk31wQcfaNu2bWXKD1QFaWlpSk9PL/Z8YGCggoKCKjCR9V155ZXKyMioEntLAgAAVLTatWtr6NCh8vBw6TixKRwquvfs2WPfb9Zms+mrr74q1HlfX1916NBBf/nLXxy+eVZWluLj4zVlypQCx/v3768tW7YU+ZqtW7eqf//+BY4NGDBAS5cuVXZ2try9vbV161ZNnDixUJv8Ql2Srr32Wi1evFgHDhxQy5YttWPHDn3zzTcF2vxRZmamMjMz7d+npaU52FOgcouPjy/x0ZCYmBgWUSwjDw8P+fr6mh0DAADAkmw2m+W3CsvnUNE9depU+6ixh4eHNmzYoG7dujl989TUVOXm5qpBgwYFjjdo0EApKSlFviYlJaXI9jk5OUpNTVVYWFixbS6/5lNPPaWzZ8+qdevW8vT0VG5urp577jndddddxeadO3eunnnmmbJ20zxxcQqZPl3TDh6UVq2S5syRYmPNToVKKCoqSq1atZJ06XMZFxen2NhYhYSESLo00o2yOXDggB544AEtWbJELVu2NDsOAACApaSlpWnbtm3q2rWr5WdclnmsPi8vzyUF9+X+uO+3YRgl7gVeVPs/Hi/tmqtWrdJ7772nFStWaPv27XrnnXc0f/58vfPOO8Xed+rUqTp79qz9a8+ePaV3zixxcdLQofLat0/eOTny2rdPGjr00vHL2oT07atpc+YopG/fgudQrQQFBSksLExhYWH2QjskJMR+zOp/0JkhPT1dmzZtKnHaPgAAAIqWk5Oj3377TTk5OWZHcZqpE+RDQkLk6elZaFT75MmThUaq84WGhhbZ3svLS8HBwSW2ufyaTz75pKZMmaI777xTHTp00IgRIzRx4sQinyPP5+vrq5o1a9q/KnUh8swzks0mW/4PJAxDstmk2bMvnXekKP9fOwpzAAAAACgfh6aX/9F7772nBQsWaO/evcrIyCh0Pjc316Hr+Pj4KCoqSuvWrdOtt95qP75u3TrdfPPNRb4mOjpan376aYFja9euVdeuXe0LFkVHR2vdunUFnuteu3atevToYf/+woULhZ5L9/T0rDpbhh04IP2v4LYzDGn//kv/XVJRnj8FPb8w/187I78wX72aaeoAUAFKW+TQWfmPjpg5I6MiMlSXfpKh8mSoLv0kQ+XJUBX7mX+d1NRUe81p1cV9y1x0f/LJJ7rvvvs0atQobd++Xffff78yMjL0ySefKDw8vMRnoosyadIkjRgxQl27dlV0dLSWLFmixMREjRs3TtKlKd1JSUl69913JUnjxo3Ta6+9pkmTJmns2LHaunWrli5dal+VXJIee+wx9erVS/PmzdPNN9+sjz/+WOvXr9c333xjb3PTTTfpueeeU5MmTdSuXTslJCTolVde0f3331/W35LKqWVLadeugoW3zSb977ndUotyyeHCnOfGAcA9SlvkMCIiQkePHi33+ZiYGEly6z0qQ4bq0k8yVJ4M1aWfZKg8GapiP/38/BQZGam4uDh70W3VxX3LXHS/8MILmjRpkp5//nktXbpU48ePV5cuXZSSkqKePXuqcePGZbresGHDdOrUKc2ePVvJyclq37691qxZo4iICEmX9v6+fM/uyMhIrVmzRhMnTtTrr7+u8PBw/fWvf7VvFyZJPXr00MqVKzV9+nTNmDFDzZs316pVq3T11Vfb2/ztb3/TjBkzNH78eJ08eVLh4eH605/+pD//+c9l/S2pnGbOlIYOlZE/Sp1fPM+ceel8aUW5VHphzkg4UKwmTZrozTffVJMmTcyOgkqstJHsVq1albjI4eXKcz5/VMKd96gMGapLP8lQeTJUl36SofJkqIr9TElJ0ebNm9W/f3+FhoYWuIfVlLno3r9/v5555hn7omT5D7aHhoZq+vTpeumll8o8Wjx+/HiNHz++yHPLly8vdCwmJkbbt28v8Zq33XabbrvttmLPBwUFacGCBSVuEWZpsbHS6tXKmTHjUvHcsqW858yR8qfxl1aUS6UX5o6MhAPVVEhIiMaMGWN2DFRy5dmuL3+Rw+KU5/wfp+q54x6VIUN16ScZKk+G6tJPMlSeDFWtn2fOnFFoaGiJr7eCMhfdubm58vHxkYeHhwICAgosWNakSRMdOnTIpQHhhNhYpf5vyv4DDzxQ8H/W0opyqfTC3JEp6kw/RzWVmpqqf/3rX7rllluK/OktILFdHwAAxcnOzlbt2rWVnZ1tdhSnlXn18sjISB0/flyS1KlTpwLPUn/44YeW/ylEtRIbq9T16/X89OlKXb++YMH9v/NavVo5bdoo28tLOW3aXJpSnt+uZctLI9uXu3wk3NEV0oEqKDExUWPHji3weAzwR2zXBwBA0TIzMxUWFqbMzEyzozitzEV33759tX79ekmXFixbtWqVWrRoobZt22rx4sX2BdBQRZRUmM+cKf1vBFzSpV8vHwkvbdsyiS3JAFRZaWlpSk5OLvYrLS3N7IgAAKAClHl6+XPPPWf/acPtt98uT09Pvf/++7LZbJo8ebJGjRrl6oyorEqbos5CbACqsfI8rw0AAKqeMhfdvr6+8vX1tX8fGxurWAqk6quk58ZZiA1ANcbz2gAAQCpH0Q04zBULsQEWFRgYqJiYGAqrKqy07b4CAwMLrXNS2gquAADgEg8PD50/f14eHmV+IrrScajo7tOnj8MXtNls+s9//lPuQKhCSpt+7she4RIroFcCjhQXLPhUUMuWLbVx40azY8CNmD4OAID71KhRQ4mJiapRo4bZUZzmUNGdl5dn35dburRXd0pKiiIiIhQaGqqUlBQdPXpUYWFh9ql0gKSSp587slc4z31XChQXZZeXl6fs7Gx5e3tXiZ/QojCmjwMA4D6GYchms8n448xYC3Ko6L58tOaLL77Q2LFj9d///lfR0dH241u2bNGwYcP0xBNPuDwkqihH9grnue9KgeKi7H788UdFRUUpPj5eXbp0MTsOyoHp4wAAmOf8+fNq3bq1zp8/b3YUp5X5me7p06dr1qxZBQpuSerRo4dmzpypp59+WoMHD3ZZQFRxJY2ESzz3XUkEBQUVmj5OcYGqjhkeAADAFcpcdO/evVuNGzcu8lyTJk20b98+p0MBdo48980z3wDKobSR7FatWjHDAwAAOK3MRXeDBg20evVq9e/fv9C5f/7zn2rQoIFLggGSSn/um2e+ARTBkanh5RnJZoYHAAAoqzIX3ePHj9eUKVP0+++/6+6777YvpPb+++/ro48+0ty5c92RE9VVac9988w3UCWVVjSXZufOnfr222+LPR8TE8NaBQAAoEKUueiePHmyLly4oBdffFFxcXGSLq0s5+fnp6efflqTJ092eUhUcyU9980z36ik2rdvr19//VX169c3O0qZOVvwlia/mC3pHqUVzRERETp69Gix57t3764HHnhAUvEFNWsVAABQedWoUUMHDx7UNddcY3YUp5W56JakWbNmaeLEidq6datOnTql4OBgde/eXbVr13ZxPKAUPPONSsrHx0eNGjUyO0Yhrph2XVrBW9r5mJgYSSrxHqUVzZcrqai+HAU1AADW4eHhoZycnCqx9Wq5im5JqlWrlgYOHOjKLEDZ8cw3KqlDhw7pqaee0rx589SsWbMKu29pRbUrpl1frrwFsaRSp3aXtWimqAYAoOq4ePGiGjZsqIsXL5odxWkOFd2JiYkKCwuTt7e3EhMTS23fpEkTp4MBDuGZb1RSZ86c0YcffqipU6dW6H1LG6V217Tr8pxnJBoAABQnNzdXNWvWVG5urtlRnOZQ0R0ZGamtW7eqW7duatq0qWw2W4ntq8JvDCyEZ74BO0cWB6PYBQAAqDgOFd1vv/22mjdvbv/v0opuoNJw5JlvwEIceSb7jwU0RTUAAIB5HCq6R44caf/vUaNGuSsL4HqlPfMtsdCaCzhSCP5xdBXlU569pQEAAGCeci+kBlhCac98s9CaS1AIFhYeHq7nn39e4eHhLr0ue0sDAIDqwMfHRydPnpSPj4/ZUZzmUNH97rvvlumi9957b7nCAG5R0jPfLLTmEhSChYWGhrplETX2lgYAANWBj4+PTp06VX2K7rJMKbfZbBTdsA4WWnMJCsHCzpw5o82bN6tXr16qXbu22XEAAAAsJScnR4GBgcrJyTE7itMcKroPHz7s7hyAOVhoDW5y6NAh3XzzzYqPj1eXLl3MjgMAAGApGRkZaty4sTIyMsyO4jSHiu6IiAh35wDM4chCawAAAABQTh5mBwBMlb/QWps2yvbyUk6bNpcWV8tfaC1fXJxC+vbVtDlzFNK376U2gBukpaUpOTm52K+0tDSzIwIAAKAMyrV6+cGDB/XGG29o7969unjxYoFzNptN//nPf1wSDqgQJS20JrHCOSoUK8EDAABULWUuun/66Sd1795dDRs21M8//6yOHTsqNTVVSUlJaty4sZo3b+6OnIB5WOHcadVxH28/Pz+1bdtWfn5+ZXodK8EDAABcGszNzMyUzWYzO4rTylx0T5s2TQMGDNCqVavk4+OjpUuXqkuXLvrss890//33a86cOe7ICZiHFc6dVh1Hb9u2bavdu3eX+XWsBA8AACAFBATo0KFDuv76682O4rQyF93bt2/XwoUL5eFx6XHwvLw8SdINN9ygJ554QlOnTi3xH9eA5bDCudMYvb2kOo74AwAAVHdlLrpPnz6tunXrysPDQ97e3jp9+rT9XNeuXTV79myXBgRM58gK53FxCpk+XdMOHpRWrZLmzGHq+WUcGb0trSAtTWUrWH/88Uf16tVLmzdv1pVXXimpeo74AwAAlEd6erpatmzp1L8PK4syF90NGzZUamqqJKlFixbavHmz+vXrJ0nauXNntRmxQjWSv8L5jBmXppq3bCnvOXP+f4VzFlpzidIK0oiICB09erTY8927d1fHjh3Lff/8P7tc9Qf7iRMnlJaWphMnTig5OVmS1KpVK0b8AQAAHOTp6Wl2BJcoc9F97bXXasuWLbrlllt0zz33aObMmUpOTpaPj4+WL1+u4cOHuyMnYK6SVjhnoTWXKG0K+uWKOr9z504tWbKk2OuXVrTHxMRIklOF/+Xnjx8/LkmKi4vTt99+a7/HH0eyeV4bAACganOo6M7JyZGX16WmTz/9tP0fk0899ZRSUlL0/vvvy2az6Y477tD8+fPdlxaojFhozSXKs4DY5ecDAwPtI93lKdrzR5mdKfwvt3nzZi1ZskR9+vRRr169CtwDAAAA1YdDRXd4eLjuvfde3XfffWrXrp19WzBPT0/99a9/1V//+le3hgQqNRZaqxScLdovv46z15Ck2rVr239lJBsAAKD68nCk0RVXXKFXXnlFHTt2VHR0tN56660q8UA74BIzZ0r/W2BN0qVf/7jQGqqdFi1a6IEHHlCLFi3MjgIAAGA5/v7+Onz4sPz9/c2O4jSHiu7//ve/2r9/v5588kn9+uuv9mda77vvPn3zzTfuzghUbvkLrbVpo2wvL+W0aXNpcbX8hdZQLdWoUUPh4eGqUaOG2VEAAAAsx9PTUxkZGVViMTWHim7p0mj3Cy+8oMTERP373//WgAED9MEHHygmJkatWrXSvHnz7Cv0AtVObKxS16/X89OnK3X9+sIFd1ycQvr21bQ5cxTSt++lohxV2rFjx/TZZ5/p2LFjZkcBAACwnIyMDDVo0EAZGRlmR3Gaw0W3/QUeHho8eLA+/PBDHT9+XK+++qpq1KihqVOnKiIiQkOGDHFHTsC68rcU27dP3jk58srfUozCu0r7/fff9cMPP+j33383OwoAAIDl5OTkqG7dusrJyTE7itPKXHRfrm7dunr00Uf13XffafLkycrNzdVnn33mqmxA1VDSlmIAAAAAqrQy79N9uYSEBC1btkwrVqzQ6dOnFRwcrBEjRrgqG1A1sKUYAAAAUG2Vueg+ffq03nvvPb399tvauXOnbDab+vfvr9GjR2vIkCHy9vZ2R07AuthSDAAAAKi2HCq6DcPQl19+qbfffluffvqpMjMzFRkZqWeeeUb33XefGjZs6O6cgHXNnCkNHSrjf1PM839lS7GqLSQkRN27d1dISIjZUQAAACzH29tbp06dqhKDug4V3U2aNNHx48fl6+ur2NhYjR49Wn369HF3NqBqyN9SbMaMS1PNW7aU95w5BVc4j4tTyPTpmnbwoLRqlTRnzqXXwbLCw8M1cOBAhYeHmx0FAADAcnx9fXXy5En5+vqaHcVpDhXdISEhmjJliu655x7Vrl3bzZGAKig2VqnR0VqyZIl9n3u7/NXN80fC81c3X72awtvCzp8/r19//VXnz583OwoAAIDl5Obmyt/fX7m5uWZHcZpDq5cnJCTooYceKlRw5+bmytPTU9u3b3dHNqB6YHXzKumXX37R0qVL9csvv5gdBQAAwHIuXryopk2b6uLFi2ZHcZpTW4ZJl573BuAEVjcHAAAAqiyni24ATmrZ8tLI9uVY3RwAAACoEii6AbPNnCn9b1VzSZd+ZXVzAAAAoEpwquj29PTUsmXLFBkZ6ao8QPWTv7p5mzbK9vJSTps2lxZXu3x1c1iOl5eXatSoIS8vh9arBAAAwGVsNptycnJk++OMUAtyeqR75MiRqlOnjiuyANVXbKxS16/X89OnK3X9egruKqBt27aaPHmy2rZta3YUAAAAywkICNDBgwcVEBBgdhSnlbno/uqrr/TPf/7T/v2JEyc0ePBghYaG6t5771VGRoZLAwL4n7g4hfTtq2lz5iikb99Lo+EAAAAAKrUyF91//vOftWfPHvv3kydP1tdff60ePXroww8/1EsvveTSgAD0/3t579sn75wceeXv5U3hXWnt379ff/nLX7SfVegBAADK7Pz582revLnOnz9vdhSnlbnoPnDggLp06SJJysnJ0UcffaR58+YpLi5Os2fP1gcffODykEC1x17elpOZmanTp08rMzPT7CgAAACWYxiGfHx8qsQW1WUuus+dO6fatWtLkuLj43X+/HkNGTJEktStWzclJia6NCAAsZc3AAAAYFFlLrrr16+vgwcPSpLWr1+viIgINWrUSJKUlpYmb29v1yYEwF7eAAAAgEWVeS+bgQMHatq0adq9e7eWL1+ukSNH2s/t27dPTZs2dWU+ANKlPbuHDpXxvynm+b+ylzcAAABQuZV5pPv555/XlVdeqTfffFOdO3fW9OnT7edWrFihHj16uDQgALGXtwVFRkZq+PDhioyMNDsKAACA5fj5+SkxMVF+fn5mR3FamUe6Q0JC9MUXXxR5bsOGDVXiNwWolGJjlRodrSVLluiBBx5QWFiY2YlQgqCgILVo0UJBQUFmRwEAALAcLy8vnT9/Xl5eZS5ZK50yj3QXJSMjQ/v27VNAQIB8fHxccUkAZcU+3pXKiRMntGHDBp04ccLsKAAAAJaTlZWlkJAQZWVlmR3FaWUuuv/2t7/p2WeftX8fHx+vxo0bq127dmrZsqV+/fVXlwYE4AD28a50Tpw4oU2bNlF0AwAAlENWVpbq1atXPYvut956y75lmCQ99dRTqlu3rl599VUZhqE5c+a4Mh8AR7CPNwAAAFAplXmCfGJiolq3bi3p0hZhmzdv1sqVKxUbG6s6deroz3/+s8tDAigF+3gDAAAAlVKZR7ozMzPte3Fv3bpVeXl5uv766yVJTZs2VUpKimsTAigd+3gDAAAAlVKZi+4mTZro66+/liR9/PHHuvLKK1WzZk1J0m+//Wb/bwAVaOZM6X/7d0u69Cv7eJuqdu3a6tChQ4HHcQAAAOAYLy8vnT17tnquXj58+HDNnj1bUVFReuONNzR8+HD7uW3btqlly5YuDQjAAezjXek0adJEQ4cOVZMmTcyOAgAAYDl+fn46fvx4ldiSusw/Nnj66afl5eWlLVu26NZbb9UjjzxiP/fTTz9p6NChLg0IwEHs412pZGRk6NSpU8rIyDA7CgAAgOXk5eXJ29tbeXl5ZkdxWpmLbpvNpilTphR57pNPPnE6EAA3iYtTyPTpmnbwoLRqlTRnzqURcrjFgQMH9Le//U033HCDIiMjzY4DAABgKRcuXFCLFi104cIFs6M4rdwT5NPS0rR161adOnVKISEh6t69u4KCglyZDYCr5O/j/b9txYz8fbxXr6bwBgAAANyozM90S9L8+fMVHh6uQYMG6Z577tHAgQMVHh6uV155xdX5ALgC+3gDAAAApijzSPe7776ryZMna9CgQRo1apTCw8N1/PhxvfPOO3ryySdVr149jRgxwh1ZAZQX+3gDAAAApihz0f3qq6/q7rvv1nvvvVfg+O23367hw4fr1VdfpegGKpuWLaVduwoW3uzjDQAAALhdmaeX79u3r8A2YZcbPny49u7d63QoAC7GPt4VrmPHjpo1a5Y6duxodhQAAADLCQwM1N69exUYGGh2FKeVuej29/fX77//XuS533//Xf7+/k6HAuBi7OMNAAAAmKLMRXfPnj01a9YsHT9+vMDxlJQUzZ49W7169XJZOAAuFBur1PXr9fz06Updv56C281+/vlnvfXWW/r555/NjgIAAGA5Fy5cUERERPXcMuy5555Tjx491KJFC/Xt21dhYWFKTk7WV199JW9vb8XFxbkjJwBYyoULF3Ts2LEq8RcFAABARcvLy1ONGjWUl5dndhSnlXmku3379tq2bZtuvvlm/fDDD1q2bJl++OEH3XLLLfr+++/Vtm3bModYuHChIiMj5efnp6ioKH399dcltt+0aZOioqLk5+enZs2aafHixYXarF69Wm3btpWvr6/atm2rjz76qFCbpKQkDR8+XMHBwapRo4auvPJKxcfHlzk/UGXExSmkb19NmzNHIX37XpqCDgAAAKDcylR0Z2RkaNq0aUpLS9MHH3yglJQUZWdnKyUlRe+//75atmxZ5gCrVq3ShAkT9PTTTyshIUE9e/bUoEGDlJiYWGT7w4cPa/DgwerZs6cSEhI0bdo0Pfroo1q9erW9zdatWzVs2DCNGDFCO3bs0IgRI3THHXfou+++s7c5ffq0rrnmGnl7e+vzzz/Xnj179PLLL6t27dpl7gNQJcTFSUOHymvfPnnn5Mhr3z5p6FAKbwAAAMAJZSq6/fz89Oqrr+r8+fMuC/DKK69o9OjRGjNmjNq0aaMFCxaocePGWrRoUZHtFy9erCZNmmjBggVq06aNxowZo/vvv1/z58+3t1mwYIH69eunqVOnqnXr1po6dar69u2rBQsW2NvMmzdPjRs31rJly9StWzc1bdpUffv2VfPmzV3WN8BSnnlGstlk+9+2YjbDuLSt2OzZJgcDAAAArKvM08vbtGmjw4cPu+TmWVlZio+PV//+/Qsc79+/v7Zs2VLka7Zu3Vqo/YABA7Rt2zZlZ2eX2Obya37yySfq2rWrbr/9dtWvX1+dO3fWm2++WWLezMxMnTt3zv6VlpbmcF+BSu/AgYL7eEuXvt+/35w8Fte4cWPdeuutaty4sdlRAAAALMfX11dJSUny9fU1O4rTylx0z5gxQ3PmzNEvv/zi9M1TU1OVm5urBg0aFDjeoEEDpaSkFPmalJSUItvn5OQoNTW1xDaXX/PQoUNatGiRrrjiCn355ZcaN26cHn30Ub377rvF5p07d65q1apl/yrP8+tApdWy5aWR7cvZbFKrVubksbg6deqoU6dOqlOnjtlRAAAALMfb21vnzp2Tt7e32VGcVubVy5ctW6YLFy6oTZs26tixo8LCwmS77B/qNptNH3/8cZmuafvDP/QNwyh0rLT2fzxe2jXz8vLUtWtXPf/885Kkzp07a/fu3Vq0aJHuvffeIu87depUTZo0yf59UlIShTeqjpkzpaFDZfxvinn+r5o50+xklnTq1Cl9//33Gjp0qMLCwsyOAwAAYClZWVmqU6eOsrKyzI7itDKPdO/cuVM+Pj5q2LChTp06pZ9++km7du0q8OWokJAQeXp6FhrVPnnyZKGR6nyhoaFFtvfy8lJwcHCJbS6/ZlhYWKGCuU2bNsUu4CZdmuJQs2ZN+1dQUFDpnQSsIjZWWr1aOW3aKNvLSzlt2lxaRI39vMslKSlJa9asUVJSktlRUBWUtrOAs+cr4h6VIUN16ScZKk+G6tJPMlSeDFWon6EDBuihJ55Q6IAB1l/Y1zBZt27djAcffLDAsTZt2hhTpkwpsv3kyZONNm3aFDg2btw4o3v37vbv77jjDmPQoEEF2gwcONC488477d/fddddxrXXXlugzYQJE4zo6GiHs//666+GJOPXX391+DUV7fjx48asWbOM48ePl+u8K65BButkqIh7VJcMX3zxhSHJ+OKLL0zLUBl+HyrDPSyfYfVqw5CMPJutwK/G6tWuOV8R96gMGapLP8lQeTJUl36SofJkqE79rCQcrQfLPNLtapMmTdJbb72lt99+W3v37tXEiROVmJiocePGSbo0pfvy6d7jxo3T0aNHNWnSJO3du1dvv/22li5dqieeeMLe5rHHHtPatWs1b9487du3T/PmzdP69es1YcIEe5uJEyfq22+/1fPPP6+ff/5ZK1as0JIlS/TQQw9VWN8BAJBU8k/8S9tZwNnzFXGPypChuvSTDJUnQ3XpJxkqT4bq1E+LcajoPn36tIYOHap///vfxbb597//raFDh+rUqVNlCjBs2DAtWLBAs2fP1pVXXqnNmzdrzZo1ioiIkCQlJycXmPIdGRmpNWvWaOPGjbryyiv17LPP6q9//auGDh1qb9OjRw+tXLlSy5YtU8eOHbV8+XKtWrVKV199tb3NVVddpY8++kgffPCB2rdvr2effVYLFizQPffcU6b8QLXiyHQiAGUTFycNHSqvffvknZMjr337pKFD///zVdrOAs6er4h7VIYM1aWfZKg8GapLP8lQeTJUp35ajENF91tvvaUdO3Zo4MCBxbYZOHCgdu3apddff73MIcaPH68jR44oMzNT8fHx6tWrl/3c8uXLtXHjxgLtY2JitH37dmVmZurw4cP2UfHL3Xbbbdq3b5+ysrK0d+9excbGFmpz4403ateuXcrIyNDevXs1duzYMmcHqo3SCgMUEBgYqObNmyswMNDsKKjsSvuJfmk7Czh7viLuURkyVJd+kqHyZKgu/SRD5clQnfppMQ4V3StXrtTYsWPl5VX8YudeXl4aO3asPvnkE5eFA1CJVMGpPu7UrFkzjRgxQs2aNTM7Ciq70n6iP3OmZFzaUUDSpV8N4/93FnD2fEXcozJkqC79JEPlyVBd+kmGypOhOvXTYhwqug8cOKCuXbuW2q5Lly46cOCA06EAVEJVcKqPO+Xm5iojI0O5ublmR4HZSnsso7Sf6Je2s4Cz5yviHpUhQ3XpJxkqT4bq0k8yVJ4MVbCfOVVkRx2H9unOyclxaFNyb29vZWdnOx0KQCXUsqW0a1fBwtviU33caffu3XrhhRfUu3dvNWrUyOw4MEv+Yxn/myVi5D+WsXr1pX9USJd+cj90qIz8NvkzSi7/iX5srFKjo7VkyRI98MADhfd+d/Z8RdyjMmSoLv0kQ+XJUF36SYbKk6EK9fNIhw5KSEhQ586ddcUVVxS+h4U4NNIdFhamPXv2lNpu9+7dCg0NdToUgEqoCk71AVzCmZXHJcdGDQAAgGU5VHTHxMRo4cKFJY5iZ2dna9GiRbruuutcFg5AJUJhABTm7Mrj+WJjlbp+vZ6fPl2p69fzuQIAoApxqOieOHGi9u3bp1tvvVXHjx8vdP748eO65ZZbtH//fk2cONHlIQFUEhQGqI6cGcmugiuwAgCAsnHome6OHTvq9ddf1/jx4xUZGamoqChFRkZKkg4fPqz4+Hjl5eVp0aJF6tChg1sDAwDgUnFxCpk+XdMOHpRWrZLmzPn/561LeybbkZXHS3teGwAAVGkOjXRL0tixY7V582b1799fO3fu1AcffKAPPvhAO3fu1MCBA/X1119rzJgx7swKAJbRpk0bPfnkk2rTpo3ZUaq30lYOL216uLMj2TyWAQBAudSoUUMHDhxQjRo1zI7iNIeLbkmKjo7Wp59+qnPnziklJUUpKSk6d+6cPv74Y3Xv3t1dGQFYRWkFTjXi7e2tgIAAh3Z+MIUj75UDBatT5919j9IKaqn0otrZPbQlHssAAKAcPDw8lJubKw+PMpWslVK5euDh4aH69eurfv36VeI3AYALOFLgVCNHjhzRihUrdOTIEbOjFObIe1VaG2fPV8Q9HFk5vLSimpFsAABMcfHiRTVq1EgXL140O4rTqJgBuIYjBU41cu7cOR04cEDnzp0zJ4Cz21iV1sbZ8xVxD0dWDi+tqGYkGwAAU+Tm5iooKEi5ublmR3EaRTcA13B0ayS4nyu2sSqtjbPnK+IejqwcXlpRzUg2AABwEkU3ANdga6TKwxXbWJXWxtnzFXEPB0epSy2qGckGAABOoOgG4BqOFDhwnZKmj7ti8a/S2jh7viLu4egoNUU1AABwI4puAK7BNNwCwsLC1L9/f4WFhbn+4qVNH3fF4l+ltXH2fAXeg4IaAADr8fHx0YkTJ+Tj42N2FKdRdANwndIKnGq0pVi9evXUo0cP1atXz/UXL236uKsW/yqtjbPnK+oeAADAcnx8fPT7779TdAOAw6rZlmJnzpzR7t27debMmfJdwJnp48w6AAAAFpedna2goCBlZ2ebHcVpFN0AKkY121IsMTFR//znP5WYmFj2Fzs7fVxiBBgAAFhaZmamGjVqpMzMTLOjOI2iG0DFcHRLsdKmoLv7fEUoLYMrpo8DAACgUqDoBlAxHBmdLW2E193nL8vhbGEf/eCDuiAp+sEHC553JAPTxwEAAKoMim4AFcOR0dnSRnjdfV5yWWEfdOSI/CUFHTlS8LwjGZg+DgAAUGVQdAOoGI6MzpY2wuvu85L7C3tHMjB9HAAAVHMeHh7KyMiQh4f1S1br9wCAdZQ2OlvaCK+7z0vuL+wdHMVm+jgAAKjOatSoocOHD6tGjRpmR3EaRTeAyqO0EV53n5fcX9g7OorN9HEAAIAqgaIbQOVR2givu89L7i/sGcUGAAAoVXp6ulq1aqX09HSzoziNohtA5VLaCG8FnHdFYZ8WGamLktIiIwsX1YxiAwAAlKoqPM8tUXQDQGEuKNy3LlyoGpK2LlxIUQ0AAFCNUXQDAAAAAOAmFN0AAAAAALgJRTcAuMEVV1yh8ePH64orrjA7CgAAgOX4+/vrl19+kb+/v9lRnEbRDQBu4O/vr/r161eJvygAAAAqmqenp7KysuTp6Wl2FKdRdAOAGxw7dkwff/yxjh07ZnYUAAAAy8nIyFBYWJgyMjLMjuI0im4AcIPff/9dCQkJ+v33382OAgAAYDk5OTmqXbu2cnJyzI7iNIpuAAAAAADchKIbAAAAAAA3oegGAAAAAMBNKLoBwA3q1auna6+9VvXq1TM7CgAAgOV4e3srNTVV3t7eZkdxGkU3ALhBWFiYrr/+eoWFhZkdBQAAwHJ8fX3122+/ydfX1+woTqPoBgA3SE9P1+HDh5Wenm52FAAAAMvJyclRjRo1WL0cAFC0Q4cO6Z133tGhQ4fMjgIAAGA5GRkZioiIYJ9uAAAAAABQPIpuAAAAAADchKIbAAAAAAA3oegGADfw9vZWUFBQldjmAgAAoKLZbDZlZ2fLZrOZHcVpFN0A4AZt2rTR448/rjZt2pgdBQAAwHICAgL0888/KyAgwOwoTqPoBgAAAADATSi6AcAN9u7dq5dffll79+41OwoAAIDlnD9/Xi1atND58+fNjuI0im4AcIPs7GylpaUpOzvb7CgAAACWYxiGvL29ZRiG2VGcRtENAAAAAICbUHQDAAAAAOAmFN0AAAAAALgJRTcAuEGzZs00cuRINWvWzOwoAAAAluPn56ejR4/Kz8/P7ChOo+gGADcIDAxUZGSkAgMDzY4CAABgOV5eXrpw4YK8vLzMjuI0im4AcIPk5GStX79eycnJZkcBAACwnMzMTNWrV0+ZmZlmR3EaRTcAuMFvv/2mb775Rr/99pvZUQAAACwnOztbISEhVWL7VYpuAAAAAADchKIbAAAAAAA3oegGAAAAAMBNKLoBwA3q1q2rzp07q27dumZHAQAAsBwvLy+dOXOG1csBAEVr1KiRbr75ZjVq1MjsKAAAAJbj5+en5ORk9ukGABTt4sWLOnnypC5evGh2FAAAAMvJzc2Vj4+PcnNzzY7iNIpuAHCDgwcPauHChTp48KDZUQAAACzn4sWLat68eZUYwKDoBgAAAADATSi6AQAAAABwE4puAAAAAADchKIbANzAZrPJ09NTNpvN7CgAAACWlJeXZ3YEl6DoBgA36NChg2bMmKEOHTqYHQUAAMByAgMDtX//fgUGBpodxWkU3QAAAAAAuAlFNwC4wcGDB7V48WK2DAMAACiHCxcuKDIyUhcuXDA7itMougHADS5evKiUlJQqsbckAABARcvLy5Ofn1+VeK6bohsAAAAAADeh6AYAAAAAwE0ougEAAAAAcBMvswMAlVlaWprS09MlSampqQV+/aOizgcGBiooKMjNKVEZNWnSRLfffruaNGlidhQAAADL8fX11bFjx9S9e3ezoziNohtVlisK5vj4eG3atKlA27i4OPt/R0RE6OjRo8We7969uzp27OhUBkkU/hZUu3ZttWvXTrVr1zY7CgAAgOV4e3srLS1N3t7eZkdxGkU3ysXZgra0864oNnfu3Klvv/22QLuyFMwxMTGKiopSq1atirynI3bu3KklS5Y4lUGSWwt/inL3+O2337RlyxbdeuutCgsLMzsOAACApWRlZalu3brKysoyO4rTKkXRvXDhQr300ktKTk5Wu3bttGDBAvXs2bPY9ps2bdKkSZO0e/duhYeHa/LkyRo3blyBNqtXr9aMGTP0yy+/qHnz5nruued06623Fnm9uXPnatq0aXrssce0YMECV3bNFK4Y4ZVKLnidLWgrqth84IEHVF75xagzBWlgYKC94C3v6yW5tfCPiYlR7969y319FC05OVlr167VpEmTnPp/AAAAoDrKyspSgwYNKLpdYdWqVZowYYIWLlyoa665Rm+88YYGDRqkPXv2FPks5OHDhzV48GCNHTtW7733nv773/9q/PjxqlevnoYOHSpJ2rp1q4YNG6Znn31Wt956qz766CPdcccd+uabb3T11VcXuN4PP/ygJUuWVKl/FDs7JdqRgtfZgrY0rig2K8MIrrNF++XXKa/SCv/AwMBSf1BTGX4vAQAAACsyveh+5ZVXNHr0aI0ZM0aStGDBAn355ZdatGiR5s6dW6j94sWL1aRJE/uIdJs2bbRt2zbNnz/fXnQvWLBA/fr109SpUyVJU6dO1aZNm7RgwQJ98MEH9mulp6frnnvu0Ztvvqk5c+aUmjUzM1OZmZn279PS0srdb3dydkq0IwVvRRVhFHrOc6Tw37hxY4k/ZGE0HAAAACgfU4vurKwsxcfHa8qUKQWO9+/fX1u2bCnyNVu3blX//v0LHBswYICWLl2q7OxseXt7a+vWrZo4cWKhNn+cOv7QQw/phhtu0PXXX+9Q0T137lw988wzDvTMXJVhdBXWUtoPavJ/EAMAAACgbEwtulNTU5Wbm6sGDRoUON6gQQOlpKQU+ZqUlJQi2+fk5Cg1NVVhYWHFtrn8mitXrtT27dv1ww8/OJx36tSpmjRpkv37pKQktW3b1uHXA5WVq35Qg/9Xs2ZNtWzZUjVr1jQ7CgAAgOV4enoqLS1Nnp6eZkdxmunTyyXJZrMV+N4wjELHSmv/x+MlXfPXX3/VY489prVr18rPz8/hnL6+vvL19bV/f+7cOYdfC1gZz3yXXdOmTXX33XeradOmZkcBAACwHH9/fx07dkz+/v5mR3GaqUV3SEiIPD09C41qnzx5stBIdb7Q0NAi23t5eSk4OLjENvnXjI+P18mTJxUVFWU/n5ubq82bN+u1115TZmZmlfiJCuAqpS3OxzPfhWVnZ+v8+fPKzs42OwoAAIDl5OXlydPTU3l5eWZHcZqpRbePj4+ioqK0bt26Att5rVu3TjfffHORr4mOjtann35a4NjatWvVtWtX+8bp0dHRWrduXYHnuteuXasePXpIkvr27atdu3YVuMZ9992n1q1b66mnnqLgBv6AZ77Lbu/evXrppZfUt2/fIndiAAAAQPEuXLigli1b6sKFC2ZHcZrp08snTZqkESNGqGvXroqOjtaSJUuUmJho33d76tSpSkpK0rvvvitJGjdunF577TVNmjRJY8eO1datW7V06dICq5I/9thj6tWrl+bNm6ebb75ZH3/8sdavX69vvvlG0qXnV9u3b18gR0BAgIKDgwsdB8Az3wAAAEB5mV50Dxs2TKdOndLs2bOVnJys9u3ba82aNYqIiJAkJScnKzEx0d4+MjJSa9as0cSJE/X6668rPDxcf/3rX+3bhUlSjx49tHLlSk2fPl0zZsxQ8+bNtWrVqkJ7dAMAUJmVtp7C5cpzPn+WijvvURkyVJd+kqHyZKgu/SRD5clQFft5+vRp+6/Jycn2e1hxIMj0oluSxo8fr/Hjxxd5bvny5YWOxcTEaPv27SVe87bbbtNtt93mcIaNGzc63BYAgIpQ2noKEREROnr0aLnPx8TESJJb71EZMlSXfpKh8mSoLv0kQ+XJUBX76efnp8jISG3YsEEZGRn2e1hxHaFKUXQDAFAdlTaS3apVqxLXU3BW/qiEO+9RGTJUl36SofJkqC79JEPlyVAV+5menq6EhATFxsbar23VdYQougE4jS3FCmvXrp2mTJmidu3amR0FlVhl2RmgMnw+KyJDdeknGSpPhurSTzJUngxVqZ95eXlq2rSpPD095eHh4ZJrmoWiG4DTKkvhUJl4enrKz8+P3RBQInYGAACgaB4eHpYvtvNRdANwGoVDYYcOHdLf//53XX/99QoLCzM7Dkzg6AyQyjAqAQBAZZOWlqbt27erS5culv+7kqIbgNMoHApLT0/XL7/8Yi+6UP0wAwQAgPLLycnRiRMnlJOTY3YUp1F0AwDgBswAAQAAEkU3AOAPWBjPMY78PvFoAQAAoOgG4HYUcZWHI+9FadOiu3fvro4dOxZ7jcsVdw9JJeZw5BrO/j9T2u9FaRl27typb7/9tkA7po8DAIA/ougG4HbV8dnWhg0bavDgwWrYsKHZUQpw5L0obVr0zp07tWTJkmKvERERoaNHj5Z4D0kl5ijtGq4o/Ev7vXAkwwMPPFDkPfPvAQAAysff31+dO3eWv7+/2VGcRtENwO0cebbV2VHHyjZaHhwcrG7duik4OLhC71va72OrVq1KfS9KWxgvMDDQXvCWR34xWlKO0rii8C/t/8vSVLb/5wAAqEr8/Px0xRVXmB3DJSi6AbidI6ubb9y40fSRT8l1U55Pnz6tHTt26PTp0xX6XG9FzCpw1Wr1zlzDFYU/q+4DAFB5ZWZmKiUlRaGhofL19TU7jlMougFUCs6OOla2Kc+7du3SRx99pGHDhqlOnTqF8rqr8HdkJLsqoGAGAKBqu3Dhgr777jv169ePohsAXMHZIqqyTXk+fvy4JOmrr77Svn37JFVM4V8Vn48HAACwMopuAFVCZZvynF+Ax8bGOvzDAFcU/lVlJBsAAKCqoOgGABe5vPBPTk6WJNWrV6/Mz3QzbRoAAKDq8DA7AABURQEBAerevbsCAgLMjgIAAGA5np6eCg4Olqenp9lRnMZINwC4QatWrbR161azYwAAAFhSzZo11bdvX7NjuAQj3QAAAAAAuAlFNwC4wfbt22Wz2bR9+3azowAAAFjO6dOn9Y9//EOnT582O4rTKLoBAAAAAHATim4AAAAAANyEohsAAAAAADeh6AYAAAAAwE3YMgwA3KBt27Y6ePCgGjVqZHYUAAAAy6lZs6YGDRqkGjVqmB3FaRTdAOAGfn5+atGihdkxAAAALMnT01NBQUFmx3AJppcDgBscPnxYw4cP1+HDh82OAgAAYDnp6en69ttvlZ6ebnYUp1F0A4AbnD59Wu+//36V2FsSAACgomVnZysxMVHZ2dlmR3EaRTcAAAAAAG5C0Q0AAAAAgJuwkJoT8vLyJEnJyckmJwFQ2Zw4ccL+67Fjx0xOAwAAYC1nzpzRqVOnlJSUpPPnz5sdp0j5dWB+XVgcim4n5P+julu3biYnAVBZDR482OwIAAAAcKMTJ06oSZMmxZ63GYZhVGCeKiUnJ0cJCQlq0KCBPDyYqW+mtLQ0tW3bVnv27KkyWwtUF7x31sb7Z128d9bFe2ddvHfWxXtnXe587/Ly8nTixAl17txZXl7Fj2dTdKNKOHfunGrVqqWzZ8+qZs2aZsdBGfDeWRvvn3Xx3lkX75118d5ZF++ddVWG947hWQAAAAAA3ISiGwAAAAAAN6HoRpXg6+urmTNnytfX1+woKCPeO2vj/bMu3jvr4r2zLt476+K9s67K8N7xTDcAAAAAAG7CSDcAAAAAAG5C0Q0AAAAAgJtQdAMAAAAA4CYU3QAAAAAAuAlFNwAAAAAAbkLRDct47rnn1KNHD9WoUUO1a9cudH7Hjh2666671LhxY/n7+6tNmzb6y1/+Uup1e/fuLZvNVuDrzjvvdEMPqq/S3jtJSkxM1E033aSAgACFhITo0UcfVVZWVonXzczM1COPPKKQkBAFBARoyJAhOnbsmBt6AEnauHFjoc9K/tcPP/xQ7OtGjRpVqH337t0rMDkkqWnTpoXehylTppT4GsMwNGvWLIWHh8vf31+9e/fW7t27KygxJOnIkSMaPXq0IiMj5e/vr+bNm2vmzJml/vnI584cCxcuVGRkpPz8/BQVFaWvv/66xPabNm1SVFSU/Pz81KxZMy1evLiCkuJyc+fO1VVXXaWgoCDVr19ft9xyi/bv31/ia4r7O3Hfvn0VlBqSNGvWrELvQWhoaImvMeNz5+X2OwAukpWVpdtvv13R0dFaunRpofPx8fGqV6+e3nvvPTVu3FhbtmzRAw88IE9PTz388MMlXnvs2LGaPXu2/Xt/f3+X56/OSnvvcnNzdcMNN6hevXr65ptvdOrUKY0cOVKGYehvf/tbsdedMGGCPv30U61cuVLBwcF6/PHHdeONNyo+Pl6enp7u7FK11KNHDyUnJxc4NmPGDK1fv15du3Yt8bUDBw7UsmXL7N/7+Pi4JSNKNnv2bI0dO9b+fWBgYIntX3zxRb3yyitavny5WrZsqTlz5qhfv37av3+/goKC3B0Xkvbt26e8vDy98cYbatGihX766SeNHTtW58+f1/z580t8LZ+7irVq1SpNmDBBCxcu1DXXXKM33nhDgwYN0p49e9SkSZNC7Q8fPqzBgwdr7Nixeu+99/Tf//5X48ePV7169TR06FATelB9bdq0SQ899JCuuuoq5eTk6Omnn1b//v21Z88eBQQElPja/fv3q2bNmvbv69Wr5+64+IN27dpp/fr19u9L+jegaZ87A7CYZcuWGbVq1XKo7fjx443rrruuxDYxMTHGY4895nwwlKq4927NmjWGh4eHkZSUZD/2wQcfGL6+vsbZs2eLvNaZM2cMb29vY+XKlfZjSUlJhoeHh/HFF1+4PDsKy8rKMurXr2/Mnj27xHYjR440br755ooJhWJFREQYr776qsPt8/LyjNDQUOOFF16wH8vIyDBq1aplLF682A0J4agXX3zRiIyMLLENn7uK161bN2PcuHEFjrVu3dqYMmVKke0nT55stG7dusCxP/3pT0b37t3dlhGOOXnypCHJ2LRpU7FtNmzYYEgyTp8+XXHBUMjMmTONTp06OdzerM8d08tRpZ09e1Z169Yttd3777+vkJAQtWvXTk888YTS0tIqIB3ybd26Ve3bt1d4eLj92IABA5SZman4+PgiXxMfH6/s7Gz179/ffiw8PFzt27fXli1b3J4Z0ieffKLU1FSNGjWq1LYbN25U/fr11bJlS40dO1YnT550f0AUMm/ePAUHB+vKK6/Uc889V+IU5cOHDyslJaXAZ8zX11cxMTF8xkzm6N9tfO4qTlZWluLj4wt8XiSpf//+xX5etm7dWqj9gAEDtG3bNmVnZ7stK0p39uxZSXLoc9a5c2eFhYWpb9++2rBhg7ujoQgHDx5UeHi4IiMjdeedd+rQoUPFtjXrc8f0clRZW7du1T/+8Q999tlnJba75557FBkZqdDQUP3000+aOnWqduzYoXXr1lVQUqSkpKhBgwYFjtWpU0c+Pj5KSUkp9jU+Pj6qU6dOgeMNGjQo9jVwraVLl2rAgAFq3Lhxie0GDRqk22+/XRERETp8+LBmzJihPn36KD4+Xr6+vhWUFo899pi6dOmiOnXq6Pvvv9fUqVN1+PBhvfXWW0W2z/8c/fGz2aBBAx09etTteVG0X375RX/729/08ssvl9iOz13FSk1NVW5ubpGfl5L+HiuqfU5OjlJTUxUWFua2vCieYRiaNGmSrr32WrVv377YdmFhYVqyZImioqKUmZmpv//97+rbt682btyoXr16VWDi6u3qq6/Wu+++q5YtW+rEiROaM2eOevTood27dys4OLhQe7M+d4x0w1RFLX7wx69t27aV+bq7d+/WzTffrD//+c/q169fiW3Hjh2r66+/Xu3bt9edd96pDz/8UOvXr9f27dvL261qwdXvnc1mK3TMMIwij5ekPK+p7srzXh47dkxffvmlRo8eXer1hw0bphtuuEHt27fXTTfdpM8//1wHDhwo9QdiKF1Z3ruJEycqJiZGHTt21JgxY7R48WItXbpUp06dKvEef/w88RlzjfJ87o4fP66BAwfq9ttv15gxY0q8Pp87c5T181JU+6KOo+I8/PDD2rlzpz744IMS27Vq1Upjx45Vly5dFB0drYULF+qGG24oda0FuNagQYM0dOhQdejQQddff739z7h33nmn2NeY8bljpBumevjhh0tdKbxp06ZluuaePXvUp08fjR07VtOnTy9zpi5dusjb21sHDx5Uly5dyvz66sKV711oaKi+++67AsdOnz6t7OzsQj+NvPw1WVlZOn36dIHR7pMnT6pHjx4O3ReXlOe9XLZsmYKDgzVkyJAy3y8sLEwRERE6ePBgmV+Lgpz5HOavZP3zzz8XORqQv/prSkpKgZ/8nzx5stjPJRxX1vfu+PHjuu666xQdHa0lS5aU+X587twrJCREnp6ehUa1S/q8hIaGFtney8uryM8k3O+RRx7RJ598os2bN6tRo0Zlfn337t313nvvuSEZHBUQEKAOHToU+2edWZ87im6YKiQkRCEhIS673u7du9WnTx+NHDlSzz33XLmvkZ2dzbSuUrjyvYuOjtZzzz2n5ORk++/72rVr5evrq6ioqCJfExUVJW9vb61bt0533HGHJCk5OVk//fSTXnzxRZfkqi7K+l4ahqFly5bp3nvvlbe3d5nvd+rUKf366698xlzAmc9hQkKCJBX7PuQ/drNu3Tp17txZ0qXnVjdt2qR58+aVLzDsyvLeJSUl6brrrlNUVJSWLVsmD4+yT1Tkc+dePj4+ioqK0rp163Trrbfaj69bt04333xzka+Jjo7Wp59+WuDY2rVr1bVr13L92YryMwxDjzzyiD766CNt3LhRkZGR5bpOQkICnzGTZWZmau/everZs2eR50373Ll1mTbAhY4ePWokJCQYzzzzjBEYGGgkJCQYCQkJRlpammEYhvHTTz8Z9erVM+655x4jOTnZ/nXy5En7NY4dO2a0atXK+O677wzDMIyff/7ZeOaZZ4wffvjBOHz4sPHZZ58ZrVu3Njp37mzk5OSY0s+qqLT3Licnx2jfvr3Rt29fY/v27cb69euNRo0aGQ8//LD9Gn987wzDMMaNG2c0atTIWL9+vbF9+3ajT58+RqdOnXjv3Gz9+vWGJGPPnj1Fnm/VqpURFxdnGIZhpKWlGY8//rixZcsW4/Dhw8aGDRuM6Ohoo2HDhsa5c+cqMna1tmXLFuOVV14xEhISjEOHDhmrVq0ywsPDjSFDhhRod/l7ZxiG8cILLxi1atUy4uLijF27dhl33XWXERYWxntXgZKSkowWLVoYffr0MY4dO1bg77fL8bkz38qVKw1vb29j6dKlxp49e4wJEyYYAQEBxpEjRwzDMIwpU6YYI0aMsLc/dOiQUaNGDWPixInGnj17jKVLlxre3t7Ghx9+aFYXqq0HH3zQqFWrlrFx48YCn7ELFy7Y2/zx/Xv11VeNjz76yDhw4IDx008/GVOmTDEkGatXrzajC9XW448/bmzcuNE4dOiQ8e233xo33nijERQUVOk+dxTdsIyRI0cakgp9bdiwwTCMS1sGFHU+IiLCfo3Dhw8XeE1iYqLRq1cvo27duoaPj4/RvHlz49FHHzVOnTpV8R2swkp77wzjUmF+ww03GP7+/kbdunWNhx9+2MjIyLCf/+N7ZxiGcfHiRePhhx826tata/j7+xs33nijkZiYWIE9q57uuusuo0ePHsWel2QsW7bMMAzDuHDhgtG/f3+jXr16hre3t9GkSRNj5MiRvE8VLD4+3rj66quNWrVqGX5+fkarVq2MmTNnGufPny/Q7vL3zjAubRs2c+ZMIzQ01PD19TV69epl7Nq1q4LTV2/Lli0r8s/PP46b8LmrHF5//XUjIiLC8PHxMbp06VJgy6mRI0caMTExBdpv3LjR6Ny5s+Hj42M0bdrUWLRoUQUnhmEYxX7GLv/z8I/v37x584zmzZsbfn5+Rp06dYxrr73W+Oyzzyo+fDU3bNgwIywszPD29jbCw8ON2NhYY/fu3fbzleVzZzOM/z05DgAAAAAAXIrVywEAAAAAcBOKbgAAAAAA3ISiGwAAAAAAN6HoBgAAAADATSi6AQAAAABwE4puAAAAAADchKIbAAAAAAA3oegGAAAAAMBNKLoBAKgGli9fLpvNpiNHjrj1Pr/88ot8fX21devWAvf29PRUixYt9NFHHxX72l69emnChAluzQcAQEWj6AYAAC7zxBNPqF+/foqOjrYfu+GGG/T5558rMDBQI0eOVFpaWpGvffbZZ7Vw4ULt37+/ouICAOB2FN0AAMAl9u7dq3/961965JFHChyvV6+e+vfvr4ULFyotLU0rVqwo8vUxMTFq1aqVXn755YqICwBAhaDoBgCgmnr77bfVqVMn+fn5qW7durr11lu1d+/eQu3efPNNtWzZUr6+vmrbtq1WrFihUaNGqWnTpgXaLVq0SKGhoerXr1+R9+vRo4datGiht956q9hMI0aM0IoVK4odDQcAwGoougEAqIbmzp2r0aNHq127doqLi9Nf/vIX7dy5U9HR0Tp48KC93ZIlS/TAAw+oY8eOiouL0/Tp0/XMM89o48aNha752WefqVevXvLwKPqfF4cPH9aRI0e0bds2/fjjj0W26d27t86fP1/k9QEAsCKKbgAAqpkzZ87o2Wef1eDBg7VixQoNHjxYI0aM0MaNG5WRkaFZs2ZJkvLy8jRz5kxdffXV+vDDD3XDDTfo7rvv1rp163T8+PEC1zx58qQOHTqkLl26FHvfF154Qd7e3vL19dWbb75ZZJvOnTvLZrPpv//9r8v6CwCAmSi6AQCoZrZu3aqLFy9q1KhRBY43btxYffr00X/+8x9J0v79+5WSkqI77rijQLsmTZrommuuKXAsvwivX79+kfdMSkrS8uXL9ac//UmxsbF6//33dfHixULtvL29Vbt2bSUlJZW3ewAAVCoU3QAAVDOnTp2SJIWFhRU6Fx4ebj+f/2uDBg0KtfvjsfwC2s/Pr8h7vvTSS7LZbHryySf1wAMP6OzZs/rnP/9ZZFs/P78iC3IAAKyIohsAgGomODhYkpScnFzo3PHjxxUSElKg3YkTJwq1S0lJKfB9/mt+//33Qm1/++03vfnmmxozZozCw8PVu3dvtWrVqtgp5qdPn7ZfDwAAq6PoBgCgmomOjpa/v7/ee++9AsePHTumr776Sn379pUktWrVSqGhofrHP/5RoF1iYqK2bNlS4FhERIT8/f31yy+/FLrfK6+8opycHE2ZMsV+bMyYMfrmm2+0b9++Am2PHz+ujIwMtW3b1qk+AgBQWVB0AwBQzdSuXVszZszQJ598onvvvVeff/653nvvPV133XXy8/PTzJkzJUkeHh565pln9N133+m2227TmjVrtGLFCvXr109hYWEFVin38fFRdHS0vv322wL3OnPmjBYuXKj77rtPjRo1sh8fNWqUfHx8Cm0flv/66667zl3dBwCgQlF0AwBQDU2dOlVvvfWWduzYoVtuuUUPP/yw2rVrpy1btuiKK66wt3vggQe0ZMkS7dixQ7feequeeeYZTZkyRZ07d1bt2rULXPOee+7R999/X2Da+l//+lddvHhRU6dOLdA2JCREsbGxeuedd5SVlWU//q9//UsdOnRQhw4d3NNxAAAqmM0wDMPsEAAAwDrOnDmjli1b6pZbbtGSJUvsxzMyMtSkSRM9/vjjeuqpp8p83XPnzik8PFyvvvqqxo4d68rIAACYhqIbAAAUKyUlRc8995yuu+46BQcH6+jRo3r11Ve1b98+bdu2Te3atSvQftGiRZo1a5YOHTqkgICAMt3rmWee0apVq7Rz5055eXm5shsAAJiGv9EAAECxfH19deTIEY0fP16///67atSooe7du2vx4sWFCm7p0nT0M2fO6NChQ2WeIl6zZk0tX76cghsAUKUw0g0AAAAAgJuwkBoAAAAAAG5C0Q0AAAAAgJtQdAMAAAAA4CYU3QAAAAAAuAlFNwAAAAAAbkLRDQAAAACAm1B0AwAAAADgJhTdAAAAAAC4CUU3AAAAAABuQtENAAAAAICbUHQDAAAAAOAmFN0AAAAAALgJRTcAAAAAAG5C0Q0AAAAAgJtQdAMAAAAA4CYU3QAAAAAAuAlFNwAAAAAAbkLRDQAAAACAm1B0AwAAAADgJhTdAAAAAAC4CUU3AAAAAABuQtENAAAAAICbUHQDAAAAAOAmFN0AAAAAALgJRTcAAAAAAG5C0Q0AAAAAgJtQdAMAXGLUqFG65ZZb3HLtESNG6Pnnny9wr4CAAD366KNFtn/iiSeKPQdUBjabTf/6179cft1Tp06pfv36OnLkSIF7NWnSRGvXri3UPjMzU02aNFF8fLzLswAALqHoBgALGzVqlGw2m/0rODhYAwcO1M6dO112j1mzZunKK6902fXKaufOnfrss8/0yCOP2I/95S9/0fLly/Xaa69py5YthV4zefJkLVu2TIcPH67IqJKk9PR0Pfzww2rUqJH8/f3Vpk0bLVq0qMTX9O7du8D7mP91ww032NukpaVpwoQJioiIkL+/v3r06KEffvjBfj47O1tPPfWUOnTooICAAIWHh+vee+/V8ePH3dZXq9u8ebNuuukmhYeHF1sEHzp0SHfddZfCw8Pl5+enRo0a6eabb9aBAwfsbYp672w2m1auXFmBvblk7ty5uummm9S0aVP7scTERPXs2bPAZyifr6+vnnjiCT311FMVljEzM1NXXnmlbDabfvzxx1Lb7927V0OGDFGtWrUUFBSk7t27KzExscD1HnnkEYWEhCggIEBDhgzRsWPHClyjadOmhd6fKVOmuLprAFAkim4AsLiBAwcqOTlZycnJ+s9//iMvLy/deOONZsdymddee0233367goKC7Mdq1aql22+/Xdddd53+/ve/F3pN/fr11b9/fy1evLgio0qSJk6cqC+++ELvvfee9u7dq4kTJ+qRRx7Rxx9/XOxr4uLi7O9hcnKyfvrpJ3l6eur222+3txkzZozWrVunv//979q1a5f69++v66+/XklJSZKkCxcuaPv27ZoxY4a2b9+uuLg4HThwQEOGDHF7n63q/Pnz6tSpk1577bUiz2dlZalfv346d+6c4uLitH//fq1atUrt27fX2bNnC7RdtmxZgfcwOTnZbTM/inPx4kUtXbpUY8aMKXC8cePGmjt3rg4ePKjvvvuu0Ovuueceff3119q7d2+F5Jw8ebLCw8MdavvLL7/o2muvVevWrbVx40bt2LFDM2bMkJ+fn73NhAkT9NFHH2nlypX65ptvlJ6erhtvvFG5ubkFrjV79uwC78/06dNd2i8AKJYBALCskSNHGjfffHOBY5s3bzYkGSdPnrQfO3bsmHHHHXcYtWvXNurWrWsMGTLEOHz4sP38hg0bjKuuusqoUaOGUatWLaNHjx7GkSNHjGXLlhmSCnwtW7bMoSwZGRnGI488YtSrV8/w9fU1rrnmGuP7778v8JqPP/7YaNGiheHn52f07t3bWL58uSHJOH36tGEYhpGbm2vUrl3b+Pe//13kPZ966ikjODjYyMrKKnRu+fLlRuPGjYv/zXOTdu3aGbNnzy5wrEuXLsb06dMdvsarr75qBAUFGenp6YZhGMaFCxcMT0/PQr8PnTp1Mp5++ulir/P9998bkoyjR4+WoQfVkyTjo48+KnAsISHBkGQcOXKkzK8t6/127txpXHfddYafn59Rt25dY+zYsUZaWpr9fHZ2tvHII48YtWrVMurWrWtMnjzZuPfeewt85lavXm2EhIQUeb+8vDwjLCzMeOSRR4o837t3b2PGjBll6kN5rFmzxmjdurWxe/duQ5KRkJBQYvthw4YZw4cPL/b8mTNnDG9vb2PlypX2Y0lJSYaHh4fxxRdf2I9FREQYr776qrPxAaBcGOkGgCokPT1d77//vlq0aKHg4GBJl0ZAr7vuOgUGBmrz5s365ptvFBgYqIEDByorK0s5OTm65ZZbFBMTo507d2rr1q164IEHZLPZNGzYMD3++ONq166dfXRo2LBhDmWZPHmyVq9erXfeeUfbt29XixYtNGDAAP3++++SpCNHjui2227TLbfcoh9//FF/+tOf9PTTTxe4xs6dO3XmzBl17dq10PVzcnL0/vvv69SpU/r8888Lne/WrZt+/fVXHT16tNiM48aNU2BgYIlfl09jdcS1116rTz75RElJSTIMQxs2bNCBAwc0YMAAh6+xdOlS3XnnnQoICLD3NTc3t8DoniT5+/vrm2++KfY6Z8+elc1mU+3atcvUB1xSr149eXh46MMPPyw0aupKFy5c0MCBA1WnTh398MMP+uc//6n169fr4YcftreZN2+e3n//fS1btkz//e9/de7cuULT4Tdv3lzkZ0WSvvjiCyUnJ2vlypXKyckpdL5bt276+uuvS8xZ2mdl0KBBJb7+xIkTGjt2rP7+97+rRo0aJbaVpLy8PH322Wdq2bKlBgwYoPr16+vqq68u0O/4+HhlZ2erf//+9mPh4eFq3759oUdP5s2bp+DgYF155ZV67rnnlJWVVWoGAPi/9u47LKpj7wP4l7K7rAgIoYOgiIKKIgIKNiwBC4reaOyIsSRewZrEEL1eCSoYrzG2GGNDI0axYF7f2NBEMChYQSEYJAKKusSCQujt9/7h5bwclgVUsMTf53n2edyZ38yZc5bx2dmZM6dRvOpRP2OMsefn5+dHGhoapK2tTdra2gSAzMzM6PLly0LMtm3byM7OjiorK4W0kpISksvldOLECXr06BEBoOjo6FqPsWTJEnJ0dGxQW6pm3fLz80kikdDu3buF/NLSUjI3N6eVK1cS0dNZagcHB1EdixYtEs10Hzp0iDQ0NERtr/LDDz9Q8+bNacCAAfT+++8r5efm5tZ5XkREf/75J6WlpdX5Kisrq/fcqyspKaFJkyYRANLU1CSpVErff/99g8ufP3+eAND58+dF6e7u7uTh4UF3796l8vJy2rVrF6mpqVG7du1qraeoqIicnZ1pwoQJz9T+txVUzFZv2LCBmjVrRjo6OtSvXz8KDg6mmzdvKpXV0tIS+mHVq2acquNt3ryZ9PX1hZUNRERHjhwhdXV1ys7OJiIiExMT+s9//iPkl5eXk5WVlWime/jw4TRlypRaj+fl5UWDBw8miURCR44cUcpfu3YttWrVSmV7iajevnLnzh2VZSsrK2nQoEG0dOlSIiLKyMiod6ZboVAQAGrWrBmtXr2aEhISKDQ0lNTU1IR+vXv3bpJKpUplPT096cMPPxTer169mqKjo+nq1au0ZcsWMjQ0pKlTp9Z5vowx1lg0X9FYnzHGWCPp16+fsFFXTk4ONm7ciMGDB+PChQuwtrbG5cuX8ccff4juiQaA4uJi3Lx5E15eXpg8eTIGDhwIT09PvPvuuxg9ejTMzMyeu003b95EWVkZevbsKaRJJBJ069ZNuG80NTUVrq6uonLdunUTvS8qKoJMJoOamprSMdauXYsPPvgA/fr1w/jx45GXlwddXV0hXy6XA3g6i6iKsbExjI2Nn/0EAezevRsfffSR8P7YsWPo3bs31q1bh/j4eBw+fBjW1tY4c+YMZs6cCTMzM7z77rv11rtt2zY4ODgoXYtdu3ZhypQpsLCwgIaGBrp27Yrx48fjypUrSnWUlZVh7NixqKysxMaNG5/r/NhT/v7+mDRpEk6fPo3z589j//79CAkJweHDh+Hp6SnEff3110qfb8uWLRt0jOvXr8PR0VFY2QAAPXv2RGVlJVJTU6GlpYU///xT9DehoaEBZ2dnVFZWCmlFRUVKqyGq6j958iQuXboEiUSC8PBwDBkyRBQjl8vr7CsAYGtr26Dzqc369euRl5eHzz//vMFlqs5t+PDhmDdvHgCgS5cuOHfuHDZt2gQPDw+VZYlI9P9GVXkA6Ny5M/T19TFq1Chh9psxxpoSLy9njLE3nLa2NmxtbWFra4tu3bph27ZtKCgowJYtWwA8/eLq7OyMxMRE0evGjRsYP348gKebQMXFxaFHjx6IiIhAu3btEB8f/9xtIiIAUBosV/8iXPNLcfVyVQwNDVFYWKi0DDQuLg4XL17E3Llz4e3tjWbNmuHAgQOimKpl7EZGRirb+SLLy318fETX08XFBUVFRVi4cCFWr16NYcOGoXPnzggICMCYMWOwatUqle2oUlhYiL179ypthAUAbdq0QUxMDPLz85GVlYULFy6grKwMrVu3FsWVlZVh9OjRyMjIwMmTJ0U/RLDno6OjAx8fHyxfvhxXr15F7969sWzZMlGMqamp0A+rXhKJpEH119YXqlRPb0h/efz4sVIda9asQZ8+fdC1a1f4+vrif/7nf5Cfny+KycnJqbOvAC+2vPyXX35BfHw8ZDIZNDU1hQG8i4sL/Pz8ai1jaGgITU1NdOjQQZTevn17oV+ampqitLRU6bzv378PExMTle1xc3MDAPzxxx91njNjjDUGnulmjLG/GTU1Nairq6OoqAgA0LVrV0RERMDY2LjOAZiTkxOcnJzw+eefw93dHT/88APc3NwglUqf+X5WW1tbSKVSxMbGCgP7srIyXLp0CXPnzgUA2Nvb4+jRo6Jyly5dEr2velRZSkqK6LFla9aswYgRI2BjYwMAeP/99xEeHo4pU6YIMcnJyZBIJOjYsaPKdgYHB+OTTz6p81xU7bKso6OjtHogLy8PZWVlUFcX/6atoaEhmpFUZd++fSgpKcHEiRNVxmhra0NbWxuPHz/GiRMnsHLlSiGvasCdlpaG06dP8wxeE1BTU4O9vX2tj6p7Xh06dMDOnTtRUFAgzHafPXsW6urqaNeuHfT09GBiYoILFy6gd+/eAICKigokJCSI+oWTkxPCw8NFdefk5CA8PFx4fNmwYcMgkUgQGRmJSZMmCXHJyclwcnKqs531Pd6ranVJbdatWyf6oeLevXsYOHAgIiIi0L1791rLSKVSuLq6IjU1VZR+48YNWFtbAwCcnZ0hkUhw8uRJjB49GgCEJwBU7xs1JSQkAMALrehhjLEGe4VL2xljjL0gPz8/GjRoECkUClIoFJSSkkIzZ84kNTU1On36NBERFRQUUNu2balv37505swZSk9Pp+joaJo9ezZlZWVReno6BQYG0rlz5ygzM5NOnDhBBgYGtHHjRiJ6es+ktrY2JSQk0IMHD6i4uFhlW6rfXzpnzhwyNzenY8eO0W+//UZ+fn6kr69POTk5RESUnp5OEomEFixYQKmpqRQREUGWlpYEgJ48eSLU07VrV1q/fr3wPisrizQ1NSk2NlZIi42NJXV1dcrKyhLSlixZQv3793/ha/ysPDw8qGPHjnT69GlKT0+nsLAw0tLSEq4nEZGvry8FBgYqle3VqxeNGTOm1nqPHz9Ox44do/T0dIqKiiJHR0fq1q2bsHN7WVkZ+fj4kKWlJSUmJgp/EwqFgkpKSprmZN9wf/31FyUkJAi7lFfdN1y123tCQgL5+PjQ/v376bfffqO0tDTaunUraWtri3aox3939a9+zRUKhege7ZpQ7Z7ugoICMjMzo5EjR1JSUhL98ssvZGNjQ35+fkL8smXL6J133qEff/yRfv/9d/L39yddXV0aMWKEEHPt2jXS1NQU+hgRUUhICLVr1060L8K0adPI09NT1B5ra+tn2nvgRam6p9vOzo4iIyOF95GRkSSRSGjz5s2UlpZG69evJw0NDfr111+FmBkzZpClpSWdOnWKrly5Qv379ydHR0cqLy8nIqJz584Jn216ejpFRESQubk5+fj4vJRzZYwxHnQzxtgbzM/PT/Q4Lx0dHXJ1daUDBw6I4hQKBU2aNIkMDQ1JJpORjY0NTZ8+nXJzcyk7O5tGjBhBZmZmJJVKydramv79739TRUUFET199NfIkSOpRYsWz/TIsKKiIpo1a5ZwzLoeGSaTyahv37707bffEgAqKioSYjZt2kRubm7C+88++4y6deumdHwbGxv68ssvhfft2rWjPXv2NPhaNhaFQkGTJ08mc3Nz0tLSIjs7O/rqq69Egx4PDw/RgIqIKDU1lQBQVFRUrfVGRESQjY0NSaVSMjU1JX9/f9GPE1WDmNpeVT/AMLHTp0/Xer2qPpsHDx7Q7NmzycHBgZo3b046OjrUqVMnWrVqldA/iEjldQ8NDVV57OqDbqKGPTIsICCAdHV1SV9fnz777DN6//33aezYsaJ63dzcaNOmTUIZS0tL0Q8+REQxMTGkoaFB9+7dI6Kng9IWLVpQYWHhc13H56Fq0F3b/zHbtm0THi3o6OhIP/74oyi/qKiIAgICyMDAgORyOQ0dOpRu374t5F++fJm6d+9Oenp6Qp9csmQJFRQUNNXpMcaYiBpRjRuCGGOMsVdk+fLl2LRpE7KysoS04uJi2NnZYe/evXB3d29QPUeOHMGnn36Ka9euQVOT76Rifz+VlZVo3749Ro8ejaVLlwrpR48exSeffILk5GSl2xxUef/99+Hk5ISFCxc2VXMZY+ytxt9EGGOMvTIbN26Eq6sr3nnnHZw9exb/+c9/RM8mBgAtLS18//33ePjwYYPrLSgoQFhYGA+42d/GrVu3EBUVBQ8PD5SUlGDDhg3IyMgQ9kyoMmTIEKSlpeHu3bsN2j29pKQEjo6Oot29GWOMNS6e6WaMMfbKzJs3DxEREcjJyYGVlRV8fX3x+eef82CZsRqysrIwduxYJCcng4jg4OCAFStWoE+fPq+6aYwxxurBg27GGGOMMcYYY6yJ8HO6GWOMMcYYY4yxJsKDbsYYY4wxxhhjrInwoJsxxt5wjx49grGxMTIzM191U2rVunVrmJiY4Pvvv3/VTXnruLq6IjIy8lU347X2OvWf6OhoaGpqwsXFBbdv337VzWHPYcOGDfDx8XnVzWCMvWZ40M0YY2+40NBQDBs2DK1atQIAZGZmQk1NTXhJpVLY2tpi2bJlaMxtPNTU1PDjjz/WGxcfHw9fX1/MmjULRUVFjXb8uiQlJcHDwwNyuRwWFhYIDg6u99wfP34MX19f6OnpQU9PD76+vnjy5Iko5vbt2xg2bBi0tbVhaGiI2bNno7S09JmOrVAoMH78eNjZ2UFdXR1z585VasuOHTtEn2HVq7i4WIgJDQ2Fq6srdHR0YGxsjBEjRiA1NVVUz+LFixEYGIjKysoGXrm3T83+AwBz5syBs7MzZDIZunTpUmu57777Do6OjtDW1kaLFi3g5OSEL7/8UsgPCgqq9TO0t7dX2ZYePXogOTkZRUVFWLZsWWOdYp3OnDmDYcOGwdzcXGWfJiIEBQXB3Nwccrkcffv2xW+//SaKKSkpwaxZs2BoaAhtbW34+Pjgzp079R5/48aNaN26NbS0tODs7Ixff/21SY79svr39OnTcfHiRcTGxtZ77oyxtwcPuhlj7A1WVFSEbdu2Ydq0aUp5p06dgkKhQFpaGr744gssX74c27dvf+ltNDExQXBwMCorK3H48OEmP15eXh48PT1hbm6OixcvYv369Vi1ahVWr15dZ7nx48cjMTERx48fx/Hjx5GYmAhfX18hv6KiAt7e3igoKEBsbCz27t2LgwcP4uOPP36mY5eUlMDIyAiLFi2Co6Ojyvbo6upCoVCIXlpaWkJ+TEwM/P39ER8fj5MnT6K8vBxeXl4oKCgQYry9vZGbm4sTJ0480zV8W6jqP0SEKVOmYMyYMbWW27ZtG+bPn4/Zs2fj6tWrOHv2LBYsWID8/HxRXMeOHZU+w7oGY1KpFPb29ggMDMT+/ftRUlLy4idZj4KCAjg6OmLDhg0qY1auXInVq1djw4YNuHjxIkxNTeHp6Ym//vpLiJk7dy4OHTqEvXv3IjY2Fvn5+Rg6dCgqKipU1hsREYG5c+di0aJFSEhIQO/evTF48GDRLH9jHftl9W+ZTIbx48dj/fr1Dbj6jLG3BjHGGHtjHTx4kAwNDUVpGRkZBIASEhJE6f3796eZM2eK0rZv30729vYkk8nIzs6OvvnmGyGvpKSE/P39ydTUlGQyGVlbW1NISAgREVlbWxMA4WVtbV1vW7t3707Dhg17vhN9Bhs3biQ9PT0qLi4W0kJDQ8nc3JwqKytrLZOSkkIAKD4+XkiLi4sjAPT7778TEdHRo0dJXV2d7t69K8Ts2bOHZDIZ5ebmPtexPTw8aM6cOUrpYWFhpKen90znff/+fQJAMTExovTJkyeTr6/vM9X1tqit/1S3ZMkScnR0VEofPnw4TZ48uc66VZVtiOvXrxMAOnjw4HOVf14A6NChQ6K0yspKMjU1pRUrVghpxcXFpKenR5s2bSIioidPnpBEIqG9e/cKMXfv3iV1dXU6fvy4yuN169aNZsyYIUqzt7enwMDARj32y+7f0dHRJJVKqbCwUOW5M8beLjzTzRhjb7AzZ87AxcWl3rhLly7hypUr6N69u5C2ZcsWLFq0CMuXL8f169cREhKCxYsXY+fOnQCAdevW4fDhw9i3bx9SU1MRHh4uLMG9ePEiACAsLAwKhUJ4r8r169dx4cIFHD9+HI8ePaoz9tdff0Xz5s3rfIWEhKgsHxcXBw8PD8hkMiFt4MCBuHfvnsr7duPi4qCnpye6Pm5ubtDT08O5c+eEGAcHB5ibm4vqLSkpweXLl5/72Krk5+fD2toalpaWGDp0KBISEuqMz83NBQAYGBiI0rt166a0ZJc91dD+U5OpqSni4+Nx69atJmjV034FAOHh4fXGzpgxo97+8iL3h2dkZCA7OxteXl5Cmkwmg4eHh9A3Ll++jLKyMlGMubk5HBwchJiaSktLcfnyZVEZAPDy8hLKNNaxX3b/dnFxQVlZGS5cuKDyujLG3i6ar7oBjDH2OqtaElqdvr4+WrdujeLiYqSkpCiV6dq1KwAgNTVVtNQXAFq1agUDAwM8ePAAWVlZojwdHR20bdv2mdqXmZkp+pJYXY8ePaCuro7S0lKUlZXhww8/xKRJk4T8pUuX4quvvsJ7770H4OmGZykpKfjuu+/g5+eH27dvo23btujVqxfU1NRgbW0tlDUyMgIAtGjRAqampvW2c82aNejevTvS09MRERGBmTNnqox1cXFBYmJinfXVHFhWl52dLbo/F3i6xL0qr3Xr1rWWMTY2Vko3NjZGdna2EFNVTxV9fX1IpVJRzLMeuzb29vbYsWMHOnXqhLy8PKxduxY9e/bE1atXa/0bISLMnz8fvXr1goODgyjPwsICt2/fRmVlJdTVX+5v7UVFRaL70AFAIpGgefPmqKioQF5enlIZfX19AE+X8tZcmtysWTPIZDIUFxcr7Q+gqakJHR2dZ2pfXf2nLkuWLMF7772HVq1aoV27dnB3d8eQIUMwatQo0TVOSkpC8+bNRWXHjh2LrVu3qqy7sLAQW7ZswfDhw3HkyBE8fvxYuCa1CQ4OxieffFJne5/nHKtU/W3X/Ns3MTERfnTIzs6GVCpVaqeJiYlQvqaHDx+ioqKi1nqr96fGOPbL7t9V9/lnZmbCw8Oj1vNnjL1deNDNGGN1+O677/DFF1+I0iZMmIDw8HDcuXMHzs7OSmXov5vqTJ48GfHx8aK8Xbt2YeLEidi3bx8CAgJEeV5eXs98721RUZHoPt/qIiIi0L59e5SVlSEpKQmzZ8+Gvr4+VqxYIQz6p06diunTpwtlysvLoaenJ7Tf09MTdnZ2GDRoEIYOHao0K9UQOTk5CA8Px65duxATE4Pw8PA6B91yuRy2trbPfJzq1NTURO+rPpOa6XWVqSpXPf15Yhpy7Jrc3Nzg5uYmvO/Zsye6du2K9evXY926dUrxAQEBuHbtWq33C8vlclRWVqKkpARyubzBbWgMN2/eVPphysrKCm5ubigsLMTJkyeVyowePRrA09UUNVdFdO/eHdbW1sjKylKa+TcxMXnmAU5d/acuZmZmiIuLQ3JyMmJiYnDu3Dn4+flh69atOH78uDDwtrOzU9rHoL4fBnbu3AlNTU3s2rULNjY22L9/Pz788EOV8cbGxrUOKBtbbX/X9f1NNySmIfU2xrFfdv+Wy+UoLCyss42MsbcHD7oZY6wOH330kdLjX6pmVCwtLYVlh7XZsWNHrTPdwNOBhbu7uyjvWWfpAMDQ0BCPHz+uNa9ly5bC4LV9+/ZIT0/H4sWLERQUJOxmvWXLFtGSSwDQ0NAA8HTGPiMjA8eOHcOpU6cwevRovPvuuzhw4MAztfG7776DqakpRowYASsrK6xbtw43b95EmzZtao3/9ddfMXjw4DrrXLhwIRYuXFhrnqmpqdLs2v379wEoz5hVL/Pnn38qpT948EAoY2pqivPnz4vyHz9+jLKyMlHMsx67IdTV1eHq6oq0tDSlvFmzZuHw4cM4c+YMLC0tlfJzcnLQrFmzlz7gBoA2bdrAwsJClCaRSAA8nbX29PRUWdbV1bXWmW7g6d+2oaGhKE9T89m/0tTVfxrCwcEBDg4O8Pf3R2xsLHr37o2YmBj069cPAIQnBzQUEWHdunWYOXMmdHR0MGbMGISHh9c56J4xY0a9y9BTUlJgZWXV4HZUV7WSJTs7G2ZmZkL6/fv3RX/3paWlSrPy9+/fR48ePWqt19DQEBoaGrX2l+r1NsaxX0X/zsnJEVYEMcYYD7oZY6wOZmZmoi971WlpaQlLyWtjZ2enMs/IyKhRvpA5OTk16L5P4Olgury8HKWlpTAxMYGFhQXS09MxYcIElWV0dXUxZswYjBkzBqNGjcKgQYOQk5MDAwMDSCSSOncmBp7OnG/cuBELFiyAuro6XFxcYG9vj927d+Pf//53rWVedHm5u7s7Fi5ciNLSUkilUgBAVFQUzM3NlZaGVi+Tm5uLCxcuoFu3bgCA8+fPIzc3V/ji7u7ujuXLl0OhUAh/E1FRUZDJZMKKh+c5dkMQERITE9GpUydR2qxZs3Do0CFER0erXLqenJxc599pU5LL5SoH+xoaGnUum9bV1VWZp6Wl9Vwz1DU9S/+pT4cOHQBA6Ye2Z3H8+HFkZmYKK0EmTpyIHj164NatW6LbO6pr6uXlrVu3hqmpKU6ePAknJycAT+/HjomJER6R5uzsDIlEgpMnTworFRQKBZKTk7Fy5cpa65VKpXB2dsbJkyfxj3/8Q0g/efIkhg8f3qjHftn9++bNmyguLhbazBhjvHs5Y4y9wa5du0aampqUk5MjpFXtXn7q1ClSKBSUlZVFR48eJQsLC+rXr58Qt2XLFpLL5bRmzRpKTU2la9eu0fbt2+mrr74iIqLVq1fTnj176Pr165SamkpTp04lU1NTqqioICKitm3b0j//+U9SKBSi41f3ww8/UIsWLeivv/4S0pYtW0bt2rVristBRE93MzYxMaFx48ZRUlISRUZGkq6uLq1atUqIOX/+PNnZ2dGdO3eEtEGDBlHnzp0pLi6O4uLiqFOnTjR06FAhv7y8nBwcHGjAgAF05coVOnXqFFlaWlJAQMAzHZuIKCEhgRISEsjZ2ZnGjx9PCQkJ9Ntvvwn5QUFBdPz4cbp58yYlJCTQBx98QJqamnT+/Hkh5p///Cfp6elRdHQ0KRQK4VVzx2QPDw8KDg5+8Qv7N1Rb/yEiSktLo4SEBProo4+oXbt2wudVUlJCREQzZsyg4OBgio2NpczMTIqLiyNvb28yMjKihw8fEtHT3cs7duwo+mwUCgVlZ2erbI+XlxdNmzZNlNa2bVtavnx5I5/5//vrr7+E8wNAq1evpoSEBLp165YQs2LFCtLT06PIyEhKSkqicePGkZmZGeXl5QkxM2bMIEtLSzp16hRduXKF+vfvT46OjlReXi7E9O/fn9avXy+837t3L0kkEtq2bRulpKTQ3LlzSVtbmzIzMxv92C+zf4eFhZGNjc3zfiSMsb8hHnQzxtgbzs3NTXh8DtH/D7qrXhoaGmRpaUnTp0+n+/fvi8ru3r2bunTpQlKplPT19alPnz4UGRlJRESbN2+mLl26kLa2Nunq6gpfRqscPnyYbG1tSVNTU+Ujw7p3704LFiwQpWVmZpKamppoANnYrl27Rr179yaZTEampqYUFBQkeqTP6dOnCQBlZGQIaY8ePaIJEyaQjo4O6ejo0IQJE+jx48eiem/dukXe3t4kl8vJwMCAAgICRI8PasixiUj0+VS9ql/DuXPnkpWVFUmlUjIyMiIvLy86d+5cvXUAoLCwMCHmzp07JJFIKCsr6/ku5FugZv8hevpDRW3Xturv5cCBAzRkyBAyMzMjqVRK5ubmNHLkSLp27ZpQx5IlS2qtQyaT1dqOlJQUUldXF/34QkT0xRdfUIcOHRr3pKup6gs1X35+fkJMZWUlLVmyRHh8YJ8+fSgpKUlUT1FREQUEBJCBgQHJ5XIaOnQo3b59WxRjbW1NS5YsEaV98803ZG1tTVKplLp27ar0yLvGOvbL7N9eXl4UGhpa6/VmjL2d1Ij+uwMEY4yxN9LRo0fxySefIDk5+aXvTs1eb59++ilyc3OxefPmV92U1xb3H9aYkpOTMWDAANy4cUPYlJIxxviebsYYe8MNGTIEaWlpuHv3Llq2bPmqm8NeI8bGxvXe7/u24/7DGtO9e/fw/fff84CbMSbCM92MMcYYY4wxxlgT4XVUjDHGGGOMMcZYE+FBN2OMMcYYY4wx1kR40M0YY2+47OxszJo1CzY2NpDJZGjZsiWGDRuGn3/+GaWlpTA0NMSyZctqLRsaGgpDQ0OUlpYq5e3YsQNqampo3769Ut6+ffugpqYmejZtRUUFQkNDYW9vD7lcDgMDA7i5uSEsLEyImTx5MtTU1JRegwYNevELUYeYmBg4OztDS0sLNjY22LRpU71lbt++jWHDhkFbWxuGhoaYPXu20nVKSkqCh4cH5HI5LCwsEBwcjOp3bUVHR9d6vr///rsQExkZCRcXF7Ro0QLa2tro0qULdu3aJTrOt99+i86dO0NXVxe6urpwd3fHsWPHXvCqMID7T0O8zv0HANasWQM7OzvI5XK0bNkS8+bNQ3FxsZBfXl6Of/3rX2jdujXkcjlsbGwQHByMysrKF7wyjDHWMLyRGmOMvcEyMzPRs2dPtGjRAitXrkTnzp1RVlaGEydOwN/fH7///jsmTpyIHTt2YNGiRVBTUxOVDwsLg6+vL6RSaa31a2tr4/79+4iLi4O7u7uQvn37dlhZWYlig4KCsHnzZmzYsAEuLi7Iy8vDpUuX8PjxY1HcoEGDRAMJAJDJZC9yGeqUkZGBIUOGYPr06QgPD8fZs2cxc+ZMGBkZYeTIkbWWqaiogLe3N4yMjBAbG4tHjx7Bz88PRIT169cDAPLy8uDp6Yl+/frh4sWLuHHjBiZPngxtbW18/PHHovpSU1Ohq6srvDcyMhL+bWBggEWLFsHe3h5SqRQ//fQTPvjgAxgbG2PgwIEAAEtLS6xYsQK2trYAgJ07d2L48OFISEhAx44dG/V6vU24/9Tvde8/u3fvRmBgILZv344ePXoI9QDA119/DQD48ssvsWnTJuzcuRMdO3bEpUuX8MEHH0BPTw9z5sxpzMvFGGO1e3VPK2OMMfaiBg8eTBYWFpSfn6+UV/UM2mvXrhEAio6OFuWfOXOGACg987ZKWFgY6enpUUBAAE2bNk1Iz8rKIplMRoGBgaJnSzs6OlJQUFCd7fXz86Phw4c37OQayYIFC8je3l6U9tFHH5Gbm5vKMkePHiV1dXW6e/eukLZnzx6SyWSUm5tLREQbN24kPT090XN8Q0NDydzcXHhub9UzkGs+D7g+Tk5O9K9//avOGH19fdq6desz1cvEuP/U73XvP/7+/tS/f39R2vz586lXr17Ce29vb5oyZYoo5r333qOJEyeqrJcxxhoTLy9njLE3VE5ODo4fPw5/f39oa2sr5bdo0QIA0KlTJ7i6uirNjm3fvh3dunWDg4NDnceZOnUqIiIiUFhYCODpstlBgwbBxMREFGdqaopffvkFDx48eIGzUrZ79240b968ztfu3btVlo+Li4OXl5cobeDAgbh06RLKyspUlnFwcIC5ubmoTElJCS5fvizEeHh4iGYZBw4ciHv37iEzM1NUn5OTE8zMzDBgwACcPn1aZVuJCD///DNSU1PRp0+fWmMqKiqwd+9eFBQUiGZP2bPh/vP36D+9evXC5cuXceHCBQBAeno6jh49Cm9vb1HMzz//jBs3bgAArl69itjYWAwZMkTleTPGWGPiQTdjjL2h/vjjDxAR7O3t642dMmUKDhw4gPz8fABAfn4+9u/fj6lTp9ZbtkuXLmjTpg0OHDgAIsKOHTswZcoUpbjVq1fjwYMHMDU1RefOnTFjxoxa7zv+6aeflL70L126VOXxfXx8kJiYWOfLx8dHZfns7GylAY6JiQnKy8vx8OHDBpfR19eHVCpFdnZ2nfVW5QGAmZkZNm/ejIMHDyIyMhJ2dnYYMGAAzpw5IyqXm5uL5s2bQyqVwtvbG+vXr4enp6coJikpCc2bN4dMJsOMGTNw6NAhdOjQQeV5s7px//l79J+xY8di6dKl6NWrFyQSCdq0aYN+/fohMDBQiPnss88wbtw42NvbQyKRwMnJCXPnzsW4ceNUnjdjjDUmvqebMcbeUPTfDYdq3mdam3HjxmH+/PmIiIgQZt6ICGPHjgUANG/eXIidOHGi0kZJU6ZMQVhYGKysrJCfn48hQ4Zgw4YNopgOHTogOTkZly9fRmxsLM6cOYNhw4Zh8uTJ2Lp1qxDXr18/fPvtt6KyBgYGKtuuo6MDHR2des+xLjWvUUOuXW15RCRKr69eOzs72NnZCfnu7u7IysrCqlWrRDPZOjo6SExMRH5+Pn7++WfMnz8fNjY26Nu3rxBjZ2eHxMREPHnyBAcPHoSfnx9iYmJ44P2cuP803Ovcf6Kjo7F8+XJs3LgR3bt3xx9//IE5c+bAzMwMixcvBgBEREQgPDwcP/zwAzp27IjExETMnTsX5ubm8PPza/B1YIyx58Uz3Ywx9oZq27Yt1NTUcP369Xpj9fT0MGrUKGGJbFhYGEaNGiVsTlR91is4OFip/IQJExAfH4+goCBMmjQJmpq1/2arrq4OV1dXzJs3D4cOHcKOHTuwbds2ZGRkCDHa2tqwtbUVveoaNLzo8lhTU1Nh5qzK/fv3oampiXfeeafBZR4/foyysjJhNk5VvQCUZvCqc3NzQ1pamihNXV0dtra26NKlCz7++GOMGjUKoaGhohipVApbW1u4uLggNDQUjo6OWLt2rcrjsLpx//l79J/FixfD19cX06ZNQ6dOnfCPf/wDISEhCA0NFXYn//TTTxEYGIixY8eiU6dO8PX1xbx585T6GGOMNRWe6WaMsTeUgYEBBg4ciG+++QazZ89Wui/1yZMnwn2pwNN7S/v27YuffvoJZ8+eRUhIiJBXtSt2Xcfy8fHBvn37GvS4oCpVs7AFBQUNLlOTj48PunfvXmdMXV/S3d3d8b//+7+itKioKLi4uEAikagss3z5cigUCpiZmQllZDIZnJ2dhZiFCxeitLRU2L06KioK5ubmokdB1ZSQkCDUqQoRoaSk5IVjmGrcf/7fm9x/CgsLoa4unkPS0NAAEQkz56pi+JFhjLGX5iVv3MYYY6wRpaenk6mpKXXo0IEOHDhAN27coJSUFFq7dq3SjsNERLa2tqSvr0+2trb11l21+3KVwsJCevjwofD+66+/Fu2+PHLkSFq9ejXFx8dTZmYmnT59mtzc3Khdu3ZUVlZGRE93Xx40aBApFArR68GDB89/EeqRnp5OzZo1o3nz5lFKSgpt27aNJBIJHThwQIiJjIwkOzs74X15eTk5ODjQgAED6MqVK3Tq1CmytLSkgIAAIebJkydkYmJC48aNo6SkJIqMjCRdXV1atWqV6BodOnSIbty4QcnJyRQYGEgA6ODBg0JMSEgIRUVF0c2bN+n69ev01VdfkaamJm3ZskWI+fzzz+nMmTOUkZFB165do4ULF5K6ujpFRUU11WV7K3D/qd/r3n+WLFlCOjo6tGfPHkpPT6eoqChq06YNjR49Wojx8/MjCwsL+umnnygjI4MiIyPJ0NCQFixY0FSXjTHGRHjQzRhjb7h79+6Rv78/WVtbk1QqJQsLC/Lx8aHTp08rxYaEhBAACgkJqbfemoOGmmoOGjZv3kz9+vUjIyMjkkqlZGVlRZMnT6bMzEwhxs/PjwAovap/YW8K0dHR5OTkRFKplFq1akXffvutKD8sLIxq/g5969Yt8vb2JrlcTgYGBhQQECB6vBHR08dJ9e7dm2QyGZmamlJQUJDwuCMioi+//JLatGlDWlpapK+vT7169aIjR46I6li0aBHZ2toKMe7u7rR3715RzJQpU4TP18jIiAYMGMAD7kbC/ad+r3P/KSsro6CgICGuZcuWNHPmTNFjxvLy8mjOnDlkZWVFWlpaZGNjQ4sWLaKSkpJGukKMMVY3NaL/rr1hjDHGGGOMMcZYo+KN1BhjjDHGGGOMsSbCg27GGGOMMcYYY6yJ8KCbMcYYY4wxxhhrIjzoZowxxhhjjDHGmggPuhljjDHGGGOMsSbCg27GGGOMMcYYY6yJ8KCbMcYYY4wxxhhrIjzoZowxxhhjjDHGmggPuhljjDHGGGOMsSbCg27GGGOMMcYYY6yJ8KCbMcYYY4wxxhhrIjzoZowxxhhjjDHGmggPuhljjDHGGGOMsSbCg27GGGOMMcYYY6yJ8KCbMcYYY4wxxhhrIjzoZowxxhhjjDHGmggPuhljjDHGGGOMsSbyfxcHl1UMsKSTAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Manual cross-validation for plotting (to match R's detailed CV output)\n", + "print(\"Performing detailed cross-validation for Lasso plotting...\")\n", + "cv_mse_lasso = []\n", + "cv_mse_lasso_std = []\n", + "\n", + "for alpha in lambda_grid:\n", + " lasso_temp = Lasso(alpha=alpha, random_state=2, max_iter=10000)\n", + " cv_results = cross_validate(lasso_temp, X_train, y_train, \n", + " cv=5, scoring='neg_mean_squared_error',\n", + " return_train_score=False)\n", + " cv_scores = -cv_results['test_score'] # Convert to positive MSE\n", + " cv_mse_lasso.append(cv_scores.mean())\n", + " cv_mse_lasso_std.append(cv_scores.std())\n", + "\n", + "cv_mse_lasso = np.array(cv_mse_lasso)\n", + "cv_mse_lasso_std = np.array(cv_mse_lasso_std)\n", + "\n", + "# Index von best_lambda_lasso im Grid finden:\n", + "idx_best_lasso = np.where(lambda_grid == best_lambda_lasso)[0][0]\n", + "best_mse_lasso = cv_mse_lasso[idx_best_lasso]\n", + "\n", + "# Index für λ_1SE finden:\n", + "# Bestes MSE + 1SE-Grenze\n", + "threshold_lasso = best_mse_lasso + cv_mse_lasso_std[idx_best_lasso]\n", + "# Kandidaten-Lambdas finden, die <= threshold sind\n", + "candidates_lasso = np.where(cv_mse_lasso <= threshold_lasso)[0]\n", + "# Nimm das größte λ (also den einfachsten / regularisiertesten Kandidaten)\n", + "idx_1se_lasso = candidates_lasso[-1]\n", + "best_lambda_1se_lasso = lambda_grid[idx_1se_lasso]\n", + "best_mse_1se_lasso = cv_mse_lasso[idx_1se_lasso]\n", + "\n", + "# --- NEUER CODE FÜR y2-ACHSE: Anzahl Variablen berechnen ---\n", + "n_nonzero_lasso = []\n", + "for alpha in lambda_grid:\n", + " lasso_temp = Lasso(alpha=alpha, random_state=2, max_iter=10000)\n", + " lasso_temp.fit(X_train, y_train)\n", + " # Für Lasso: Zähle nicht-null Koeffizienten\n", + " n_nonzero_lasso.append(np.sum(np.abs(lasso_temp.coef_) > 1e-10))\n", + "\n", + "plt.style.use('default')\n", + "# --- GEÄNDERT: fig, ax1 für subplot mit y2-Achse ---\n", + "fig, ax1 = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax1.errorbar(np.log(lambda_grid),\n", + " cv_mse_lasso,\n", + " yerr=cv_mse_lasso_std,\n", + " capsize=3,\n", + " color=\"red\", # Marker/Linie Rot\n", + " ecolor=\"grey\", # Error Bars grau\n", + " elinewidth=1, # (optional) Breite der Error Bars\n", + " fmt='o', # (optional) schwarze '-'Linie + 'o'Punkte '-o'\n", + " markersize=4,\n", + " )\n", + "\n", + "ax1.axvline(np.log(best_lambda_lasso),\n", + " color='black',\n", + " linestyle='--', \n", + " linewidth=1,\n", + " label=(f'Best log(λ) = {np.log(best_lambda_lasso):.3f}\\n'\n", + " f'(Best λ = {best_lambda_lasso:.6f})\\n'\n", + " f'CV-MSE = {best_mse_lasso:.5f}'\n", + " )\n", + " )\n", + "\n", + "ax1.axvline(np.log(best_lambda_1se_lasso),\n", + " color='darkgrey',\n", + " linestyle='--',\n", + " linewidth=1,\n", + " label=(f'1SE log(λ) = {np.log(best_lambda_1se_lasso):.3f}\\n'\n", + " f'(1SE λ = {best_lambda_1se_lasso:.6f})\\n'\n", + " f'CV-MSE = {best_mse_1se_lasso:.5f}'\n", + " )\n", + " )\n", + "\n", + "ax1.set_xlabel('log(λ)', fontsize=12)\n", + "ax1.set_ylabel('Cross-Validation MSE', fontsize=12)\n", + "# ax1.set_title('Lasso Regression: Cross-Validation MSE vs log(λ)')\n", + "ax1.grid(False)\n", + "\n", + "# --- Legende unter dem Plot, zentriert, nebeneinander ---\n", + "ax1.legend(bbox_to_anchor=(0.5, -0.15),\n", + " loc='upper center',\n", + " ncol=3,\n", + " frameon=True,\n", + " framealpha=0 # 0 = unsichtbar, 1 = voll sichtbar\n", + " )\n", + "\n", + "# --- NEUER CODE: y2-Achse oben für Anzahl Variablen ---\n", + "ax2 = ax1.twiny()\n", + "ax2.set_xlim(ax1.get_xlim())\n", + "\n", + "# Ticks und Labels für die Anzahl der Variablen setzen\n", + "log_lambdas_lasso = np.log(lambda_grid)\n", + "# Zeige max 20 Ticks um Überlappung zu vermeiden\n", + "n_ticks = min(20, len(lambda_grid))\n", + "tick_indices = np.linspace(0, len(lambda_grid)-1, n_ticks, dtype=int)\n", + "\n", + "ax2.set_xticks(log_lambdas_lasso[tick_indices])\n", + "ax2.set_xticklabels([str(n_nonzero_lasso[i]) for i in tick_indices])\n", + "ax2.set_xlabel('Number of Variables', fontsize=12)\n", + "\n", + "# Ticks nach außen richten (wie in Ridge)\n", + "ax2.tick_params(axis='x', direction='out')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "25e2f604-dd39-4eb7-aeb8-19ed44db30a8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lasso Train MSE: 0.00524\n", + "Lasso Test MSE: 0.00916\n" + ] + } + ], + "source": [ + "# Fit Lasso with optimal lambda\n", + "lasso_optimal = Lasso(alpha=best_lambda_lasso, random_state=2, max_iter=10000)\n", + "lasso_optimal.fit(X_train, y_train)\n", + "\n", + "# Calculate training and test MSE\n", + "y_pred_lasso_train = lasso_optimal.predict(X_train)\n", + "mse_lasso_train = mean_squared_error(y_train, y_pred_lasso_train)\n", + "\n", + "y_pred_lasso_test = lasso_optimal.predict(X_test)\n", + "mse_lasso_test = mean_squared_error(y_test, y_pred_lasso_test)\n", + "\n", + "print(f\"Lasso Train MSE: {mse_lasso_train:.5f}\")\n", + "print(f\"Lasso Test MSE: {mse_lasso_test:.5f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "0cebe3da-b8ce-433b-8db2-94fa70117a2c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lasso Coefficients:\n", + " Variable Lasso_Coefficient\n", + "0 DP 0.085394\n", + "1 CS 0.000000\n", + "2 ntis -0.000000\n", + "3 cay 0.443235\n", + "4 TS 0.000000\n", + "5 svar 0.000000\n", + "\n", + "Number of non-zero coefficients: 2\n" + ] + } + ], + "source": [ + "# Show coefficients\n", + "lasso_coefs = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Lasso_Coefficient': lasso_optimal.coef_\n", + "})\n", + "print(\"Lasso Coefficients:\")\n", + "print(lasso_coefs)\n", + "\n", + "# Count non-zero coefficients\n", + "non_zero_coefs = np.sum(lasso_optimal.coef_ != 0)\n", + "print(f\"\\nNumber of non-zero coefficients: {non_zero_coefs}\")" + ] + }, + { + "cell_type": "markdown", + "id": "03d19235-25ee-4c3b-b7bf-97cdf27d41b2", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 1.4 Sparse Lasso Regression (3 Variables)\n", + "Now suppose your boss tells you that he only trusts sparse models with few variables. Use the Lasso and choose the tuning parameter $\\lambda$ such that the model only considers $3$ out of the six variables. Report the coefficients and compare them to the coefficients from the optimal model from *Q1.3* and interpret. Compute the training and test MSE of this Lasso model and add it to the table from *Q1.2*. Interpret." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "67bf2ffa-71fb-4b68-b2af-1ac0cb1731be", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lambda for 3 variables: 0.000128\n", + "Sparse Lasso Train MSE: 0.00522\n", + "Sparse Lasso Test MSE: 0.00925\n", + "\n", + "Sparse Lasso Coefficients (3 variables):\n", + " Variable Sparse_Lasso_Coefficient\n", + "0 DP 0.086918\n", + "1 CS 0.000000\n", + "2 ntis -0.000000\n", + "3 cay 0.481694\n", + "4 TS 0.023727\n", + "5 svar 0.000000\n", + "\n", + "Selected variables: ['DP', 'cay', 'TS']\n" + ] + } + ], + "source": [ + "# Find lambda that gives exactly 3 non-zero coefficients\n", + "# We'll search through different lambda values\n", + "lambda_test_range = np.logspace(-4, -1, 1000) # More focused range\n", + "n_features_list = []\n", + "\n", + "for alpha in lambda_test_range:\n", + " lasso_temp = Lasso(alpha=alpha, random_state=2, max_iter=10000)\n", + " lasso_temp.fit(X_train, y_train)\n", + " n_features = np.sum(lasso_temp.coef_ != 0)\n", + " n_features_list.append(n_features)\n", + "\n", + "# Find alpha that gives exactly 3 features\n", + "target_features = 3\n", + "suitable_alphas = [alpha for alpha, n_feat in zip(lambda_test_range, n_features_list) \n", + " if n_feat == target_features]\n", + "\n", + "if suitable_alphas:\n", + " # Use the middle value from suitable alphas\n", + " sparse_lambda = suitable_alphas[len(suitable_alphas)//2]\n", + " print(f\"Lambda for 3 variables: {sparse_lambda:.6f}\")\n", + " \n", + " # Fit sparse Lasso\n", + " lasso_sparse = Lasso(alpha=sparse_lambda, random_state=2, max_iter=10000)\n", + " lasso_sparse.fit(X_train, y_train)\n", + " \n", + " # Calculate MSE\n", + " y_pred_lasso_sparse_train = lasso_sparse.predict(X_train)\n", + " mse_lasso_sparse_train = mean_squared_error(y_train, y_pred_lasso_sparse_train)\n", + " \n", + " y_pred_lasso_sparse_test = lasso_sparse.predict(X_test)\n", + " mse_lasso_sparse_test = mean_squared_error(y_test, y_pred_lasso_sparse_test)\n", + " \n", + " print(f\"Sparse Lasso Train MSE: {mse_lasso_sparse_train:.5f}\")\n", + " print(f\"Sparse Lasso Test MSE: {mse_lasso_sparse_test:.5f}\")\n", + " \n", + " # Show coefficients\n", + " sparse_lasso_coefs = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Sparse_Lasso_Coefficient': lasso_sparse.coef_\n", + " })\n", + " print(\"\\nSparse Lasso Coefficients (3 variables):\")\n", + " print(sparse_lasso_coefs)\n", + " \n", + " # Show which variables are selected\n", + " selected_vars = X_train.columns[lasso_sparse.coef_ != 0].tolist()\n", + " print(f\"\\nSelected variables: {selected_vars}\")\n", + " \n", + "else:\n", + " print(\"Could not find lambda that gives exactly 3 variables\")\n", + " # Use a reasonable approximation\n", + " sparse_lambda = 0.0125 # From R code\n", + " lasso_sparse = Lasso(alpha=sparse_lambda, random_state=2, max_iter=10000)\n", + " lasso_sparse.fit(X_train, y_train)\n", + " \n", + " y_pred_lasso_sparse_train = lasso_sparse.predict(X_train)\n", + " mse_lasso_sparse_train = mean_squared_error(y_train, y_pred_lasso_sparse_train)\n", + " \n", + " y_pred_lasso_sparse_test = lasso_sparse.predict(X_test)\n", + " mse_lasso_sparse_test = mean_squared_error(y_test, y_pred_lasso_sparse_test)\n", + " \n", + " print(f\"Sparse Lasso Train MSE: {mse_lasso_sparse_train:.5f}\")\n", + " print(f\"Sparse Lasso Test MSE: {mse_lasso_sparse_test:.5f}\")\n", + " \n", + " n_selected = np.sum(lasso_sparse.coef_ != 0)\n", + " print(f\"Number of selected variables: {n_selected}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "4b22788c-1bbf-45fb-b753-e0af54c6a35a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Model In-sample MSE Out-of-sample MSE\n", + " Linear Regression 0.00505 0.00861\n", + " Ridge Regression 0.00511 0.00878\n", + " Lasso Regression 0.00524 0.00916\n", + "Sparse Lasso (3 vars) 0.00522 0.00925\n" + ] + } + ], + "source": [ + "# Comprehensive results table\n", + "results_dict = {\n", + " 'Model': ['Linear Regression', 'Ridge Regression', 'Lasso Regression', 'Sparse Lasso (3 vars)'],\n", + " 'In-sample MSE': [mse_train_lm, mse_ridge_train, mse_lasso_train, mse_lasso_sparse_train],\n", + " 'Out-of-sample MSE': [mse_test_lm, mse_ridge_test, mse_lasso_test, mse_lasso_sparse_test]\n", + "}\n", + "\n", + "results_df = pd.DataFrame(results_dict)\n", + "results_df = results_df.round(5)\n", + "\n", + "print(results_df.to_string(index=False))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2b173cd6-fcc2-4f19-a499-3fa93b5bdb6f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Variable Linear Ridge Lasso_Optimal Lasso_Sparse\n", + " DP 0.083873 0.086305 0.085394 0.086918\n", + " CS 0.474950 0.064603 0.000000 0.000000\n", + " ntis -0.394479 -0.260392 -0.000000 -0.000000\n", + " cay 0.421456 0.389788 0.443235 0.481694\n", + " TS 0.631040 0.327515 0.000000 0.023727\n", + " svar 0.802650 0.156850 0.000000 0.000000\n" + ] + } + ], + "source": [ + "# Compare table of all coefficients\n", + "coef_comparison = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Linear': model_all.coef_,\n", + " 'Ridge': ridge_optimal.coef_,\n", + " 'Lasso_Optimal': lasso_optimal.coef_,\n", + " 'Lasso_Sparse': lasso_sparse.coef_\n", + "}).round(6)\n", + "\n", + "print(coef_comparison.to_string(index=False))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "13177258-31dc-4ec0-8be6-dfa2fac34993", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4U2Ubx/FvkiZN96SDUVrK3nuKgANEQFARnKCCgogITnCDIq8bRVFcoKKIExWRoYiCDAFl71HKaBmlA7qbnPeP0kqZBdqm4/e5PFeSk3POc5+A9O6dZ5gMwzAQEREREREREREpQWZXByAiIiIiIiIiIhWPilIiIiIiIiIiIlLiVJQSEREREREREZESp6KUiIiIiIiIiIiUOBWlRERERERERESkxKkoJSIiIiIiIiIiJU5FKRERERERERERKXEqSomIiIiIiIiISIlTUUpEREREREREREqcilIiZcS0adMwmUysWrXK1aEUqZSUFMaPH0/Lli3x9fXF3d2dyMhI7r77bv75559ibTsmJoYePXoQGBiIyWRi5MiRAPz777906tQJPz8/TCYTEydOZNGiRZhMJhYtWnRBbeT9ucXExBR5/Cd78cUXmTVrVqGPN5lMBTY/Pz86d+7Mzz//fMFtL126lOeee46kpKTT3ouMjKRnz54XfE0REZGikPdzOG9zc3MjPDycm2++me3bt592fOfOnencufN5rxsTE4PJZGLatGlFH3QhLV68mH79+lGlShVsNht+fn60b9+ed999l9TU1GJte9KkSdSsWRObzYbJZMrPAZ566ikiIiJwc3PD398fKPxneqrIyEjuvPPOIov5TM6Vw5zJc889V+Dvk81mIyoqigcffLDQ1zjZ2fK38pr3i5yJm6sDEJGKa+fOnXTt2pVDhw4xdOhQxo4di7e3NzExMXz11Ve0aNGCpKQk/Pz8iqX9UaNGsWLFCj7++GPCwsIIDw8H4O677yY1NZUvv/ySgIAAIiMj8fT0ZNmyZdSvX/+C2ujRowfLli3Lv3ZxefHFF+nbty99+vQp9Dl9+/bl4Ycfxul0smvXLl544QV69erFTz/9RI8ePQp9naVLlzJ27FjuvPPO/ARURESkNJk6dSp169YlIyODv/76i/Hjx/P777+zZcsWAgIC8o+bPHmyC6MsvGeffZZx48bRvn17nn/+eaKjo0lLS8svsmzbto033nijWNpes2YNI0aMYPDgwQwcOBA3Nzd8fHz44YcfGD9+PE8++STdu3fH3d0duPjP9Pvvv8fX17coQz/NxeYwc+fOxc/Pj2PHjjFnzhzefPNN/v77b5YuXYrJZCr0dS4mfxMpb1SUEhGXcDgcXH/99Rw5coRly5bRsGHD/Pc6derEwIED+eWXX7BarcUWw4YNG2jduvVpicCGDRu455576N69e4H9bdu2veA2KlWqRKVKlS4lzGITGhqaf0/t27enXbt21KxZk4kTJ15QUUpERKS0a9iwIS1btgRye+44HA6effZZZs2axV133ZV/3IV++eQKX3/9NePGjWPQoEF88MEHBYog3bt357HHHmPZsmXF1v7GjRsBuOeee2jdunX+/g0bNgAwYsQIQkJC8vdf7GfarFmzS4iyeLVo0YLg4GAArr76ahISEvjss89YunQpHTp0cHF0ImWLhu+JlCMZGRk8/PDDNG3aFD8/PwIDA2nXrh0//PDDacd+/fXXtGnTBj8/Pzw9PalRowZ33313/vtOp5MXXniBOnXq4OHhgb+/P40bN+bNN98scJ0lS5Zw5ZVX4uPjg6enJ+3bty/UELBZs2axfv16xowZU6AgdbLu3bvj6el5wW3Fx8czZMgQqlatmt+teuzYseTk5ADkD8XbsWMHv/zyS34X7Lyu0jk5Obz77rv5+08+59TheytWrKBXr14EBQVht9uJjo7OHwYIZx++9+uvv3LllVfi6+uLp6cnHTp04LfffitwTF4X8Y0bN3LLLbfg5+dHaGgod999N8nJyfnHmUwmUlNT+eSTT/Jjvphu8tHR0VSqVIk9e/YAsGDBAnr37k3VqlWx2+3UrFmTIUOGcOTIkQIxPvroowBERUXlt3/q5zR37lyaN2+Oh4cHdevW5eOPPy7wflpaGo888ghRUVHY7XYCAwNp2bIlM2bMuOD7EBEROZ+8AtXBgwcL7D/TULMDBw7Qr18/fHx88PPzo3///sTHx5/xuh988AG1a9fG3d2d+vXr88UXX3DnnXcSGRlZ4LisrCxeeOEF6tati7u7O5UqVeKuu+7i8OHD54193LhxBAQE8NZbb52xV46Pjw9du3bNf52RkcGYMWOIiorCZrNRpUoV7r///jMON5s5cybt2rXDy8sLb29vunXrxr///lvg87n99tsBaNOmDSaTKf/+nnrqKSD3Sy+TycRzzz2Xf86pn2lmZibjxo2jXr162O12goKC6NKlC0uXLs0/5kzD91JSUvLzhbx7GTly5GnDFU0mE8OHD+ezzz6jXr16eHp60qRJE2bPnp1/TGFzmMLI+5Jvz549hc7HC5O/HTt2jPvuu4/g4GCCgoK44YYbOHDgQIFjFi5cSOfOnQkKCsLDw4OIiAhuvPFG0tLSLvg+RFxBPaVEypHMzEyOHj3KI488QpUqVcjKyuLXX3/lhhtuYOrUqQwYMACAZcuW0b9/f/r3789zzz2H3W5nz549LFy4MP9aL7/8Ms899xxPPfUUl19+OdnZ2WzZsqVAAvPHH39w9dVX07hxYz766CPc3d2ZPHkyvXr1YsaMGfTv3/+ssc6fPx+g0N2VC9tWfHw8rVu3xmw288wzzxAdHc2yZct44YUXiImJYerUqTRv3pxly5Zx/fXXEx0dzauvvgrkJiTLli2jXbt2+UPbzmXevHn06tWLevXq8frrrxMREUFMTEz+vZ3N9OnTGTBgAL179+aTTz7BarUyZcoUunXrxrx587jyyisLHH/jjTfSv39/Bg0alF/IA/ILO8uWLeOKK66gS5cuPP300wAX1d09MTGRhIQEatWqBeQOr2zXrh2DBw/Gz8+PmJgYXn/9dS677DLWr1+P1Wpl8ODBHD16lEmTJvHdd9/lD1M8+VvRtWvX8vDDDzN69GhCQ0P58MMPGTRoEDVr1uTyyy8H4KGHHuKzzz7jhRdeoFmzZqSmprJhwwYSEhIu+D5ERETOZ/fu3QDUrl37nMelp6dz1VVXceDAASZMmEDt2rX5+eefz5jjvP/++wwZMoQbb7yRN954g+TkZMaOHUtmZmaB45xOJ71792bx4sU89thjtG/fnj179vDss8/SuXNnVq1ahYeHxxnjiYuLY8OGDfTv37/AF3dnYxgGffr04bfffmPMmDF07NiRdevW8eyzz7Js2TKWLVuWP8zuxRdf5KmnnuKuu+7iqaeeIisri1deeYWOHTvy999/U79+fSZPnsyMGTN44YUX8odEVqpUiQcffJB33nmHjz76KH9oW9WqVc8YU05ODt27d2fx4sWMHDmSK664gpycHJYvX05sbCzt27c/43lpaWl06tSJffv28cQTT9C4cWM2btzIM888w/r16/n1118LFOl+/vlnVq5cybhx4/D29ubll1/m+uuvZ+vWrdSoUaNQOUxh7dixA8jtIX8h+fj58rfBgwfTo0cPvvjiC/bu3cujjz7K7bffnp+z582P2rFjRz7++GP8/f3Zv38/c+fOJSsrq1B/R0RczhCRMmHq1KkGYKxcubLQ5+Tk5BjZ2dnGoEGDjGbNmuXvf/XVVw3ASEpKOuu5PXv2NJo2bXrO67dt29YICQkxjh07VqDNhg0bGlWrVjWcTudZz73mmmsMwMjIyCjUvRS2rSFDhhje3t7Gnj17Cpyfd88bN27M31e9enWjR48ep7UFGPfff3+Bfb///rsBGL///nv+vujoaCM6OtpIT08/a9x5f267d+82DMMwUlNTjcDAQKNXr14FjnM4HEaTJk2M1q1b5+979tlnDcB4+eWXCxw7bNgww263F/h8vby8jIEDB541jjPd47Bhw4zs7GwjKyvL2Lx5s9G9e3cDMN55553Tjnc6nUZ2draxZ88eAzB++OGH/PdeeeWVAvd4surVqxt2u73An0d6eroRGBhoDBkyJH9fw4YNjT59+hQ6fhERkcLI+zm8fPlyIzs72zh27Jgxd+5cIywszLj88suN7OzsAsd36tTJ6NSpU/7rd99997Sfe4ZhGPfcc48BGFOnTjUMI/fneFhYmNGmTZsCx+3Zs8ewWq1G9erV8/fNmDHDAIxvv/22wLErV640AGPy5MlnvZ/ly5cbgDF69OhC3f/cuXPPmEvMnDnTAIz333/fMAzDiI2NNdzc3IwHHnigwHHHjh0zwsLCjH79+uXvO1tOmpe3HD58uMD+Uz/TTz/91ACMDz744JyxV69evUBuM2HCBMNsNp/W7jfffGMAxpw5c/L3AUZoaKiRkpKSvy8+Pt4wm83GhAkT8vedK4c5k7x7jI+PN7Kzs43ExERj+vTphoeHh1GtWrUz5oRny8cN4+z5W95nPGzYsAL7X375ZQMw4uLiCtz7mjVrChW/SGmk4Xsi5czXX39Nhw4d8Pb2xs3NDavVykcffcTmzZvzj2nVqhUA/fr146uvvmL//v2nXad169asXbuWYcOGMW/ePFJSUgq8n5qayooVK+jbty/e3t75+y0WC3fccQf79u1j69atRXJPF9LW7Nmz6dKlC5UrVyYnJyd/y5sf6o8//iiSmLZt28bOnTsZNGgQdru90OctXbqUo0ePMnDgwALxOZ1OrrnmGlauXHlaF/TrrruuwOvGjRuTkZHBoUOHLukeJk+ejNVqxWazUa9ePZYuXcq4ceMYNmwYQP4E9NWqVcv/u1S9enWAAn+fzqdp06ZERETkv7bb7dSuXTt/mCDk/n375ZdfGD16NIsWLSI9Pf2S7k1ERORkbdu2xWq14uPjwzXXXENAQAA//PADbm7nHjjy+++/4+Pjc9rP4ltvvbXA661btxIfH0+/fv0K7I+IiDhtjqHZs2fj7+9Pr169CuQCTZs2JSws7KKGj51NXo+aU4fB3XTTTXh5eeVPHTBv3jxycnIYMGBAgZjsdjudOnUq0ph++eUX7HZ7gWkjCmP27Nk0bNiQpk2bFoixW7duZxx216VLF3x8fPJfh4aGEhISUiD/uFhhYWFYrVYCAgK4/fbbad68OXPnzs3PCQuTjxfGmXJAIP8emjZtis1m49577+WTTz5h165dl3xvIiVNRSmRcuS7777LXxp4+vTpLFu2jJUrV3L33XeTkZGRf9zll1/OrFmz8pOPqlWr0rBhwwLz94wZM4ZXX32V5cuX0717d4KCgrjyyivzl6ZNTEzEMIwzripXuXJlgHMOvcorUuR1nz+XC2nr4MGD/PTTT1it1gJbgwYNAArMh3Qp8uZ8OFvX9LPJm7uib9++p8X40ksvYRgGR48eLXBOUFBQgdd53ewvtXDTr18/Vq5cyapVq9i6dSsJCQn53cedTiddu3blu+++47HHHuO3337j77//Zvny5Rfc9qnx593Dydd46623ePzxx5k1axZdunQhMDCQPn36nHG5bhERkQv16aefsnLlShYuXMiQIUPYvHkzt9xyy3nPS0hIIDQ09LT9YWFhpx0HnPHYU/cdPHiQpKQkbDbbablAfHz8OXOVC8mf8uJyc3M7bdEVk8lEWFhYgfwJcr+4PDWmmTNnFln+BLk5VOXKlTGbL+xX0YMHD7Ju3brT4vPx8cEwjNNiLEz+cbF+/fVXVq5cyZo1azhy5AhLlizJH/ZX2Hy8MM6XA0ZHR/Prr78SEhLC/fffT3R0NNHR0afNAStSmmlOKZFyZPr06URFRTFz5swCY+pPncsAoHfv3vTu3ZvMzEyWL1/OhAkTuPXWW4mMjKRdu3a4ubnx0EMP8dBDD5GUlMSvv/7KE088Qbdu3di7dy8BAQGYzWbi4uJOu3beBIx5q5KcSbdu3Xj//feZNWsWo0ePPud9XUhbwcHBNG7cmPHjx5/xWnlFrEuVl9zt27fvgs7Li3PSpElnXc3vTAltcahUqVL+RK+n2rBhA2vXrmXatGkMHDgwf3/enAlFzcvLi7FjxzJ27FgOHjyY32uqV69ebNmypVjaFBGRiqNevXr5P/O6dOmCw+Hgww8/5JtvvqFv375nPS8oKIi///77tP2nTnSeVzw4deL0Mx2bN2n13Llzz9jmyb17ThUeHk6jRo2YP38+aWlp550zKCgoiJycHA4fPlygMGUYBvHx8fm95/Pyk2+++Sa/V3RxqVSpEkuWLMHpdF5QYSo4OBgPD4/TFks5+f2S0qRJk7O2dyH5eFHo2LEjHTt2xOFwsGrVKiZNmsTIkSMJDQ3l5ptvLpY2RYqSekqJlCMmkwmbzVbgB2B8fPwZV9/L4+7uTqdOnXjppZcACqywksff35++ffty//33c/ToUWJiYvDy8qJNmzZ89913Bb5xcjqdTJ8+napVq55z8tDevXvTqFEjJkyYkL+E8KnmzZtHWlraBbXVs2dPNmzYQHR0NC1btjxtK6qiVO3atYmOjubjjz++oCSjQ4cO+Pv7s2nTpjPG17JlS2w22wXHU1Tf/OXJ+zuU941cnilTppyxbbj0nlt5QkNDufPOO7nlllvYunWrVo8REZEi9/LLLxMQEMAzzzyD0+k863FdunTh2LFj/PjjjwX2f/HFFwVe16lTh7CwML766qsC+2NjYwusKAe5uUpCQgIOh+OMeUCdOnXOGfvTTz9NYmIiI0aMwDCM094/fvx4/qIreYunTJ8+vcAx3377Lampqfnvd+vWDTc3N3bu3HnW/KSodO/enYyMDKZNm3ZB5/Xs2ZOdO3cSFBR0xvhOXeGwMIo6h4ELy8eLMn+zWCy0adOGd955B4B//vmnSK4rUtzUU0qkjFm4cCExMTGn7b/22mvp2bMn3333HcOGDaNv377s3buX559/nvDw8ALDoJ555hn27dvHlVdeSdWqVUlKSuLNN9/EarXSqVMnAHr16kXDhg1p2bIllSpVYs+ePUycOJHq1avnr842YcIErr76arp06cIjjzyCzWZj8uTJbNiwgRkzZpxxmeI8FouF77//nq5du9KuXTvuu+8+unTpgpeXF3v27OGbb77hp59+IjEx8YLaGjduHAsWLKB9+/aMGDGCOnXqkJGRQUxMDHPmzOG999674CF3Z/POO+/Qq1cv2rZty6hRo4iIiCA2NpZ58+bx+eefn/Ecb29vJk2axMCBAzl69Ch9+/YlJCSEw4cPs3btWg4fPsy77757wbE0atSIRYsW8dNPPxEeHo6Pj895k9pzqVu3LtHR0YwePRrDMAgMDOSnn35iwYIFZ2wb4M0332TgwIFYrVbq1Klzzm96T9WmTRt69uxJ48aNCQgIYPPmzXz22We0a9dOK8eIiEiRCwgIYMyYMTz22GN88cUX3H777Wc8bsCAAbzxxhsMGDCA8ePHU6tWLebMmcO8efMKHGc2mxk7dixDhgyhb9++3H333SQlJTF27FjCw8ML9Ai6+eab+fzzz7n22mt58MEHad26NVarlX379vH777/Tu3dvrr/++rPGftNNN/H000/z/PPPs2XLFgYNGkR0dDRpaWmsWLGCKVOm0L9/f7p27crVV19Nt27dePzxx0lJSaFDhw75q+81a9aMO+64A4DIyEjGjRvHk08+ya5du/Ln3Tp48CB///13fo/monDLLbcwdepUhg4dytatW+nSpQtOp5MVK1ZQr169s/buGTlyJN9++y2XX345o0aNonHjxjidTmJjY5k/fz4PP/wwbdq0uaBYiiKHOVVh8/G89i8lf3vvvfdYuHAhPXr0ICIigoyMjPyeZFddddVF34NIiXLhJOsicgHyVuE425a3asj//vc/IzIy0nB3dzfq1atnfPDBB/krheSZPXu20b17d6NKlSqGzWYzQkJCjGuvvdZYvHhx/jGvvfaa0b59eyM4ONiw2WxGRESEMWjQICMmJqZAXIsXLzauuOIKw8vLy/Dw8DDatm1r/PTTT4W+r6SkJOP55583mjdvbnh7extWq9WIiIgwbr/9duOvv/66qLYOHz5sjBgxwoiKijKsVqsRGBhotGjRwnjyySeN48eP5x93qavvGYZhLFu2zOjevbvh5+dnuLu7G9HR0caoUaPy3z919b08f/zxh9GjRw8jMDDQsFqtRpUqVYwePXoYX3/9df4xZ1vF5kzXXLNmjdGhQwfD09PTAAqscnMmZ7rHU23atMm4+uqrDR8fHyMgIMC46aabjNjYWAMwnn322QLHjhkzxqhcubJhNpsLfE5n+4xPXYln9OjRRsuWLY2AgADD3d3dqFGjhjFq1CjjyJEj54xRRETkXM61enF6eroRERFh1KpVy8jJyTEM4/SfT4ZhGPv27TNuvPFGw9vb2/Dx8TFuvPFGY+nSpQVW38vz/vvvGzVr1jRsNptRu3Zt4+OPPzZ69+592qpr2dnZxquvvmo0adLEsNvthre3t1G3bl1jyJAhxvbt2wt1b3/88YfRt29fIzw83LBarYavr6/Rrl0745VXXimw6lx6errx+OOPG9WrVzesVqsRHh5u3HfffUZiYuJp15w1a5bRpUsXw9fX13B3dzeqV69u9O3b1/j111/P+5kWdvW9vJieeeYZo1atWobNZjOCgoKMK664wli6dGn+MaeuvmcYhnH8+HHjqaeeMurUqWPYbDbDz8/PaNSokTFq1CgjPj4+/7iz5TlnuubZcpgzOds9nqow+bhhnD1/O9tnfGo+umzZMuP66683qlevbri7uxtBQUFGp06djB9//PGc8YmUJibDOEOfTxEREREREbkkSUlJ1K5dmz59+vD++++7OhwRkVJHw/dEREREREQuUXx8POPHj6dLly4EBQWxZ88e3njjDY4dO8aDDz7o6vBEREolFaVEREREREQukbu7OzExMQwbNoyjR4/i6elJ27Ztee+992jQoIGrwxMRKZU0fE9EREREREREREqc+fyHiIiIiIiIiIiIFC0VpUREREREREREpMSpKCUiIiIiIiIiIiVOE52fh9Pp5MCBA/j4+GAymVwdjoiIiJQwwzA4duwYlStXxmzW93mFpRxKRESk4ips/qSi1HkcOHCAatWquToMERERcbG9e/dStWpVV4dRZiiHEhERkfPlTypKnYePjw+Q+0H6+vq6OBoREREpaSkpKVSrVi0/J5DCUQ4lIiJScRU2f1JR6jzyupv7+voqoRIREanANATtwiiHEhERkfPlT5oYQURERERERERESpyKUiIiIiIiIiIiUuLKXFFq8uTJREVFYbfbadGiBYsXLz7rsYsWLcJkMp22bdmypQQjFhERERERERGRU5WpOaVmzpzJyJEjmTx5Mh06dGDKlCl0796dTZs2ERERcdbztm7dWmAug0qVKpVEuCIiIi7hcDjIzs52dRhlhtVqxWKxuDoMERERcSHlTxemqPKnMlWUev311xk0aBCDBw8GYOLEicybN493332XCRMmnPW8kJAQ/P39SyhKERER1zAMg/j4eJKSklwdSpnj7+9PWFiYJjMXERGpYJQ/XbyiyJ/KTFEqKyuL1atXM3r06AL7u3btytKlS895brNmzcjIyKB+/fo89dRTdOnSpThDFRERcYm8hCokJARPT08VWArBMAzS0tI4dOgQAOHh4S6OSEREREqS8qcLV5T5U5kpSh05cgSHw0FoaGiB/aGhocTHx5/xnPDwcN5//31atGhBZmYmn332GVdeeSWLFi3i8ssvP+M5mZmZZGZm5r9OSUkpupsQEREpJg6HIz+hCgoKcnU4ZYqHhwcAhw4dIiQkREP5REREKgjlTxevqPKnMlOUynNq1dIwjLNWMuvUqUOdOnXyX7dr1469e/fy6quvnrUoNWHCBMaOHVt0AYuIiJSAvDkQPD09XRxJ2ZT3uWVnZ6soJSIiUkEof7o0RZE/lZnV94KDg7FYLKf1ijp06NBpvafOpW3btmzfvv2s748ZM4bk5OT8be/evRcds4iISElTl/OLo89NRESk4lIecHGK4nMrM0Upm81GixYtWLBgQYH9CxYsoH379oW+zr///nvO8Y7u7u74+voW2EREREREREREpGiVqeF7Dz30EHfccQctW7akXbt2vP/++8TGxjJ06FAgt5fT/v37+fTTT4Hc1fkiIyNp0KABWVlZTJ8+nW+//ZZvv/3WlbchIiIiIiIiIlLhlZmeUgD9+/dn4sSJjBs3jqZNm/Lnn38yZ84cqlevDkBcXByxsbH5x2dlZfHII4/QuHFjOnbsyJIlS/j555+54YYbXHULIiIicoo777wTk8mEyWTCarUSGhrK1Vdfzccff4zT6cw/LjIyMv84T09PGjZsyJQpU1wYuYiIiIhrlJf8qUwVpQCGDRtGTEwMmZmZrF69usCE5dOmTWPRokX5rx977DF27NhBeno6R48eZfHixVx77bUuiFpERETO5ZprriEuLo6YmBh++eUXunTpwoMPPkjPnj3JycnJP27cuHHExcWxbt06+vTpw9ChQ5k5c6YLIxcRERFxjfKQP5W5opSIiIiUP+7u7oSFhVGlShWaN2/OE088wQ8//MAvv/zCtGnT8o/z8fEhLCyMmjVr8sILL1CrVi1mzZrlsrhFREREXKU85E8qSomIiJRDhmGQlpXjks0wjCK5hyuuuIImTZrw3XffnfUYu92ev5yznNvkyZOJiorCbrfTokULFi9efM7jP//8c5o0aYKnpyfh4eHcddddJCQklFC0IiIirlHWc6iylj+VqYnORUREpHDSsx3Uf2aeS9reNK4bnraiSTHq1q3LunXrTtufk5PD9OnTWb9+Pffdd1+RtFWezZw5k5EjRzJ58mQ6dOjAlClT6N69O5s2bSIiIuK045csWcKAAQN444036NWrF/v372fo0KEMHjyY77//3gV3ICIiUjLKQw5VlvIn9ZQSERGRUsswDEwmU/7rxx9/HG9vbzw8PLj//vt59NFHGTJkiAsjLBtef/11Bg0axODBg6lXrx4TJ06kWrVqvPvuu2c8fvny5URGRjJixAiioqK47LLLGDJkCKtWrSrhyEVERORClaX8ST2lREREyiEPq4VN47q5rO2isnnzZqKiovJfP/roo9x55535Q8pOTrjkzLKysli9ejWjR48usL9r164sXbr0jOe0b9+eJ598kjlz5tC9e3cOHTrEN998Q48ePc7aTmZmJpmZmfmvU1JSiuYGRERESlB5yKHKUv6kopSIiEg5ZDKZimwInassXLiQ9evXM2rUqPx9wcHB1KxZ04VRlT1HjhzB4XAQGhpaYH9oaCjx8fFnPKd9+/Z8/vnn9O/fn4yMDHJycrjuuuuYNGnSWduZMGECY8eOLdLYRURESlpZz6HKWv5Udj/pCsLIyuLw2+/gFhxEwK23YnLTH5mIiJQ/mZmZxMfH43A4OHjwIHPnzmXChAn07NmTAQMGuDq8cuHUb0VP7dp/sk2bNjFixAieeeYZunXrRlxcHI8++ihDhw7lo48+OuM5Y8aM4aGHHsp/nZKSQrVq1YruBk7IOH6c2W++hLuXN3YvL+xe3rnPvb2xe/tg9/LJf+7h44PV3V7kMYiIiJQG5SF/UoWjlDv0+hscPbGUY/IPPxI+4UXstWu7NigREZEiNnfuXMLDw3FzcyMgIIAmTZrw1ltvMXDgQMxmTYF5KYKDg7FYLKf1ijp06NBpvafyTJgwgQ4dOvDoo48C0LhxY7y8vOjYsSMvvPAC4eHhp53j7u6Ou7t70d/AKdKPJbNn3b+FPt7N5o6Hj2/u5pv76Onnj6evX+6jX+6jl38Ann4BuFmtxRi9iIhI0SkP+ZOKUqXYsd9/zy9Imb28yNi4kZgb+xJ8//0EDR6kXlMiIlIuTJs2jWknft6dS0xMTLHHUh7ZbDZatGjBggULuP766/P3L1iwgN69e5/xnLS0NNxOyTMsltx5LopiuepL4eHrxzXDRpGZepyM1ONkpqaSceJ5xvHjZBw/lr85HQ5ysjI5lnCYYwmHC3V9u5c3nv4BeAcE4h0QiFdgEN4BQXgHBuITFIxPUCW8/PwxlZFkX0REyqfykj+pqlFKZcfHEzd6DAABA+4gaPBg4p99juO//87hiRM59uuvVH3rTayVK7s4UhERESntHnroIe644w5atmxJu3bteP/994mNjWXo0KFA7tC7/fv38+mnnwLQq1cv7rnnHt5999384XsjR46kdevWVHZx7mH38qZBpyvPe5xhGGSlp5NxPIX0lBTSj+VuaSnJuVtyEukpyaQmJZGWkkRaUiKOnJz8AtfR/XvPem2zxQ3vwCB8gyvhWykkf/OrFIpfSCg+QZUwW4puwn8REZHySkWpUsjIyWH/w4/gSE7G3qABIY88gtlmo+rkd0j58Ufix79IxoYNHHr9Daq8+oqrwxUREZFSrn///iQkJDBu3Dji4uJo2LAhc+bMoXr16gDExcURGxubf/ydd97JsWPHePvtt3n44Yfx9/fniiuu4KWXXnLVLVwwk8mEu6cn7p6e+IWEnfd4wzDITE0lNSmR1KSjHE88yvGjCRxPTMh9PJrAsYQjpCYm4nTkkHL4ICmHD8Lm069ltljwDQ7BLzQM/9BwAsKrEFC5MgHhVfCrFKqClYiIyAkmw9V9sEu5lJQU/Pz8SE5OxtfXt0TaPDRxIgnvTcHs5UXU999hi4go8H7qir+JHTgQS1AQtZYsLlXLOYqIiGtkZGSwe/duoqKisNs1sfOFOtfn54pcoDwor5+b0+HgeGICx44cISXhMCmHDpJy5BAphw+RfPgQKYcP4sjOPuv5ZosFv9BwgqpUJahqBIFVqhFUpRqBVapqUnYRkRKm/OnSFEX+pJ5Spczxv/4iYcr7AIS/8PxpBSkAj2ZNMdntOBISyNqxA/datUo6TBEREZEKKa8XlG9wCFXO8L7hdHI88ShJB+Nyt/g4kuIOkBi3n8T4OHKyMkk8sI/EA/vYsXL5fyeaTASEhRMcEUlwtUgqVY8kJLIGvpVC9QWkiIiUWypKlSLZBw5w4NHHwDDw798f3+7dz3ic2WbDs3kzUpcuI3XF3ypKiYiIiJQSJrP5xITowVSr36jAe4bTybGjRzh6YD9H9+/l6P69JOzbS8K+WNKPpZAYd4DEuANsX7E0/xx3Ly9CIqMJiYomNCqasJq18Q8NV6FKRETKBRWlSglnWhp77x+O4+hR3OvXI3TM6HMe79m6DalLl5G2YgWBt99WQlGKiIiIyMUymc35vawiGzcr8F5qUiJHYvdwOHZ37uOe3RzZu4fM1FT2blzH3o3r8o+1e3kTVrM2YTVrE16zDpVr18Pu7V3StyMiInLJVJQqBQzD4MATT5K5eTOWoCCqvf025vOMZ/Vs0xqAtL//xnA6tSyxiIiISBnm5R+Al38A1Rs3zd/nyMkmYd9eDu7ewaHdOzm4cweH9uwiI/U4MWv/IWbtP/nHBlWNoEqd+lSuU4+q9RriFxLqgrsQERG5MCpKlQIJU6ZwbO5csFqp+tabWAux1LJHw4aYPD1xJCeTuW0b9rp1SyBSERERESkpFjcrIZE1CImsAV1y9zlysjm8J4b4HduI27GVuO1bSIw7QMK+WBL2xbLut7kA+FYKpVr9RlRr0IhqDRrjG1zJhXciIiJyZipKudixhQs5PPFNAMKefgrPFi0KdZ7JasWzRQtSFy8mbcUKFaVEREREKgCLm5Ww6FqERdeiabceAKQlJ7F/22b2b9nEgS2biN+1nZTDB9n4x0E2/vErAAGVqxLZpBmRjZtTrX4jrFplSkRESgEVpVwoc/t2DjzyKAABt95KQL9+F3S+V5vWpC5eTOqKvwkcOLA4QhQRERGRUs7Tz59ardpRq1U7ALLS09i/dXPuXFSb1nNw5478Ff/+/eUnLG5uVKlbnxrNW1OjRWsCws7fS19ERKQ4aCIiFzEMg/2PP44zLQ3P1q3PO7H5mXi2aQNA2sqVGA5HUYcoIiJSYuLj43nggQeoUaMG7u7uVKtWjV69evHbb78B8O+//9KzZ09CQkKw2+1ERkbSv39/jhw54uLIRUofm4cnUU1bcPltd3Hb+NcZ9tEXXPfQEzS+8hp8K4XgyMkhdsM6Fn36IR8/eC9TRw3lj+kfs2/LRgyn09Xhi4jIBSjrOZR6SrmIyWSiyssvc/DFCVR+7VVMVusFX8Nerx5mb2+cx46RsXkLHg0bFEOkIiIixSsmJoYOHTrg7+/Pyy+/TOPGjcnOzmbevHncf//9/Pnnn1x11VX06tWLefPm4e/vz+7du/nxxx9JS0tzdfgipZ7dy5tabdpTq017DMMgMW4/u/9dza5/VrBv80aOHtjH0QP7WPXTd3gFBFKrdTtqt+lAlXoNMJstrg5fRETOojzkUCbDMAxXB1GapaSk4OfnR3JyMr6+vq4O5zR7h97H8UWLCHn0UYIG3e3qcERExEUyMjLYvXs3UVFR2MvYXDHXXnst69atY+vWrXh5eRV4LykpiUWLFnHTTTeRnp6Om1vxfJ92rs+vtOcCpZU+t7IhbyW/Xav/Zufqv8lK/++XFE8/f2q16UC9yzpTuXZdTCaTCyMVESl6ZTl/AtfnUEWRP6mnVBnn2aYNxxctIvXvFSpKiYjIfwwDsl30DZjVEwr5y+vRo0eZO3cu48ePPy2ZAvD39ycsLIycnBy+//57+vbtq1+MRYqQ3cubuu0vp277y8nJziZ2wxq2Lf+LnSuXk5acxNr5P7N2/s/4hYRSt0Nn6l3WmaCq1VwdtohI8VEOVaJUlCrjvNq0BiB91WqMnBxMxfQNsoiIlDHZafCiiyYvfuIA2E5Pjs5kx44dGIZB3XOsItu2bVueeOIJbr31VoYOHUrr1q254oorGDBgAKGhoUUVtUiF52a1UqNZK2o0a4XjnhxiN6xly5JFbF+5nORDB1nx/UxWfD+T8Jp1aHhFV+q274jNw9PVYYuIFC3lUCVKE52Xce5162L288OZmkrGxo2uDkdEROSC5M0icL5v7saPH098fDzvvfce9evX57333qNu3bqsX7++JMIUqXAsbm5ENW1B9+EPc9/7n9FjxKPUaN4Kk9lM3I6tLHh/Eu8NGcDcdyeyf+tmNCOIiEjJKi85lOaUOo+yMB/C3uHDOf7rb1R66CGC773H1eGIiIgLnDamvwx1PQ8ODmb8+PGMGTOm0E1kZWXRrFkzWrZsySeffHKxkebTnFJFT59b+ZSalMimPxey/vcFJB7Yl7+/UmQNmnbtQb3LOmF1L3vzsohIxXTGn//KoQpNc0oJAF6t23D8199IW7ECVJQSERHITWgK2f3blQIDA+nWrRvvvPMOI0aMOOMknf7+/qedZ7PZiI6OJjU1tYQiFREAL/8AWl13Iy173cCBrZtZ//t8ti5dzOGYXSx4fxJ/fv4xDTtfTdNuPfEPDXN1uCIiF045VInS8L1ywLNNGwDS/vkHIyvLxdGIiIhcmMmTJ+NwOGjdujXffvst27dvZ/Pmzbz11lu0a9eO2bNnc/vttzN79my2bdvG1q1befXVV5kzZw69e/d2dfgiFZLJZKJK3fpcc99I7n13Gp1uvxu/0DAyU1NZ/fMsPn7wXn56fQJxO7a6OlQRkXKrPORQ6ilVDrjXqoklIABHYiLp69fj2aKFq0MSEREptKioKP755x/Gjx/Pww8/TFxcHJUqVaJFixa8++67RERE4OnpycMPP8zevXtxd3enVq1afPjhh9xxxx2uDl+kwvPw9qFlrxto0aMPu9eu5t+5s4lZs5ptK/5i24q/qFqvIS17XU+NZrlzUomISNEoDzmU5pQ6j7IyH8K+EQ9ybP58Kj38EMH3aAifiEhFc64x/XJ+mlOq6Olzq9iOxMawavb3bF7yB05HDgDBEZG0veFmardpr+KUiJQKyp8uTVHkT/ppUE54NG0KQPrata4NREREREQqvOCISK4ZNorBb39Iq+tuxObhyZHYGGZP/B+fPDqcLX/9gdPpcHWYIiLiYipKlRMeTZsAuUUpdX4TERERkdLAJzCYy2+7i3ve/ph2fW/F3cuLhH2x/PzWK0x7+H62Llui3FVEpAJTUaqcsNevD25uOA4fIefAAVeHIyIiIiKSz+7tTfubbuWetz+mQ7/bsXt5k3hgH7Mn/o/PnxjFnnVrXB2iiIi4gIpS5YTZbsdety4AaWvWuDYYEREREZEzcPf0ou2NNzP4RM8pq92Dg7t28M34p/j6hac4uGuHq0MUEZESpKJUOaJ5pURERESkLHD39KT9Tbcy+K0PaN79OswWN2LXr2H6mJHMnfwGxxOPujpEEREpASpKlSMeTf6bV0pEREREpLTz9POny533cvfEKdTv2AWAjX/8xscjh7Di+6/IycpycYQiIlKcVJQqR/ImO8/ctBmnfoCLiIiISBnhFxJK9+EPc+v41wivVYfsjHSWfPkp0x6+j+0rl7k6PBERKSYqSpUj1qpVsQQGYmRnk7Fxo6vDERERERG5IOE163DL869y7fCH8Q4MIvnQQX58dTyzXnmelMOHXB2eiIgUMRWlyhGTyaQhfCIiIiJSpplMJup17MLdb0yhdZ+bMFvc2LlqBVMfvo+VP32HIyfH1SGKiEgRUVGqnNFk5yIiUt4999xzND3x805Eyi+r3U7HWwYy4OW3qFK3ATmZmfw5/WM+HzOS+B3bXB2eiEiZUxpzKBWlyhn1lBIRkfLEZDIxa9asAvseeeQRfvvtN9cEJCIlLqhqBP2f+x/dhj6I3ceXw7ExfPH0Iyye8Qk52dmuDk9EpFQqKzmUilLljL1hQzCbyTkQR/ZBjbsXEZHyx9vbm6CgIFeHISIlyGQy0bDL1dz1+rvU7dAJw+nk71lfM330g+o1JSJSSKUxh1JRqpyxeHvhXqsWAOlr17g2GBERkfPo3LkzI0aM4LHHHiMwMJCwsDCee+45ACIjIwG4/vrrMZlM+a9P7Xq+aNEiWrdujZeXF/7+/nTo0IE9e/aU7I2ISInw9PWjx4hHue7hJ/D08ydhX2x+rylHjnpNiUjFUV5yKLcSbU1KhEfTpmRu3Ur62rX4du3q6nBERMQFDMMgPSfdJW17uHlgMpkKffwnn3zCQw89xIoVK1i2bBl33nknHTp0YOXKlYSEhDB16lSuueYaLBbLaefm5OTQp08f7rnnHmbMmEFWVhZ///33BbUvImVPrdbtqVqvIQunTmHLX3/w96yv2bPuX6594BECK1d1dXgiUoYphyrZHEpFqXLIo0kTkmbO1LxSIiIVWHpOOm2+aOOStlfcugJPq2ehj2/cuDHPPvssALVq1eLtt9/mt99+4+qrrwbA39+fsLCwM56bkpJCcnIyPXv2JDo6GoB69epd4h2ISFng4eNLjxGPUrtNB+a/P4mDu3bw2egH6TLwXhpd0VXFaRG5KMqhSpaG75VDHk1zJzvP2LARQ5M/iohIKde4ceMCr8PDwzl0qHDzIgYGBnLnnXfSrVs3evXqxZtvvklcXFxxhCkipVStNu0Z+MrbRDRsQk5mJgven8RPr08g/fgxV4cmIlKsykMOpZ5S5ZAtMhKzry/OlBQytm7Do2EDV4ckIiIlzMPNgxW3rnBZ2xfCarUWeG0ymXA6nYU+f+rUqYwYMYK5c+cyc+ZMnnrqKRYsWEDbtm0vKA4RKbu8A4Po++TzrJr9PUu+/Iztfy8lbuc2eo0cTeXadV0dnoiUIcqhSjaHUlGqHDKZzXg0bkzqkiWkr12jopSISAVkMpkuqPt3aWW1WnE4HOc9rlmzZjRr1owxY8bQrl07vvjiCxWlRCoYk9lMq+tuJKJhE35+6xUS4/Yz87nH6XT73TTrfp2G84lIoSiHKtkcSsP3yimPEzPqa14pEREpyyIjI/ntt9+Ij48nMTHxtPd3797NmDFjWLZsGXv27GH+/Pls27ZN80qJVGChNWpy+4Q3qN2uI06Hg98/+YDZb/yPzLQ0V4cmIlJiykoOpaJUOeXRJHdeKRWlRESkLHvttddYsGAB1apVo1mzZqe97+npyZYtW7jxxhupXbs29957L8OHD2fIkCEuiFZESgubhyc9H3yMLncOwWxxY9uKv/j8iZEciY1xdWgiIiWirORQJsMwjBJtsYxJSUnBz8+P5ORkfH19XR1OoTmSk9nWJrfLXa1lS3ELCHBxRCIiUpwyMjLYvXs3UVFR2O12V4dT5pzr8yuruYCr6XOT0uLAti3MnvgSxxIOY3W30/2Bh6nVqp2rwxKRUkD506UpivxJPaXKKYufH7bq1YHcVfhERERERCqiyrXrcvv/JhLRsAnZmRn8+Op4ln07A303LyLieipKlWP2BrkTnGdsVFFKRERERCouT18/bnxiHM269wJg6VefM/uN/5GdkeHiyEREKjYVpcoxFaVERERERHKZLRauuHMIXYeMyJ9nasYzj5Jy5LCrQxMRqbBUlCrHVJQSERERESmo0RVd6ffMi3j6+XN4z26+eOphDu7e6eqwREQqJBWlyjF7g/oAZB84QM4ZloAUEREREamIqtStz20vvk5wteqkJh5l5rOPs+vfla4OS0SkwlFRqhyz+PhosnMRERERkTPwDQ7h5nEvE9GoKdmZGcx6+XnWLvjF1WGJiFQoKkqVcxrCJyIiIiJyZu6eXtww+lkadLoKw+nk1w/f4c8vpmllPhGREqKiVDmnopSIiIiIyNlZ3Kx0u+9B2t90GwArf/iGee+9idPhcHFkIiLln4pS5ZyKUiIiIiIi52YymWjX9xa63TcSk9nMxkW/8tMbE8jJynJ1aCIi5ZqKUuWcJjsXERERESmchp2v4rqHnsBitbJj5XK++99zZKaluTosEZFyS0Wpck6TnYuIiIiIFF7NVm25YfRYbB4e7N24jq+ff4K0lGRXhyUiUi6pKFUBaAifiIiIiEjhRTRsTL9nJuDh48vBXTuY+ezjHE886uqwRETKHRWlKgAVpUREpDRzOp289NJL1KxZE3d3dyIiIhg/fjwAjz/+OLVr18bT05MaNWrw9NNPk52dDUBMTAxms5lVq1YVuN6kSZOoXr26Vs8SkUsSWqMmN497Ge+gYI4e2MdXY0dzLOGIq8MSEclXHnIotxJrSVxGRSkRkYrHMAyM9HSXtG3y8MBkMhX6+DFjxvDBBx/wxhtvcNlllxEXF8eWLVsA8PHxYdq0aVSuXJn169dzzz334OPjw2OPPUZkZCRXXXUVU6dOpWXLlvnXmzp1KnfeeecFxSAiciaBlavS/9n/8dW4MSTGHWDm2NH0e+ZFfINDXB2aiBQT5VAlm0OZDH2NeE4pKSn4+fmRnJyMr6+vq8O5KI5jx9jWqjUAtZYtxS0gwMURiYhIUcvIyGD37t1ERUVht9txpqWxtXkLl8RS55/VmD09C3XssWPHqFSpEm+//TaDBw8+7/GvvPIKM2fOzP9m76uvvmLo0KHExcXh7u7O2rVradasGbt27SIyMrLQMZ/6+Z2sPOQCrqDPTcqTlMOH+GrcGJIPHcS3Uij9nnkRv5BQV4clIpfoTD//lUMVPocqivxJw/cqAE12LiIipdXmzZvJzMzkyiuvPOP733zzDZdddhlhYWF4e3vz9NNPExsbm/9+nz59cHNz4/vvvwfg448/pkuXLhdUkBIROR/fSiH0f+4lAsIrk3L4IDOfG01SfJyrwxKRCqy85FAavldB2Bs0IGvPHjI2bsS742WuDkdERIqZycODOv+sdlnbheVxjmOXL1/OzTffzNixY+nWrRt+fn58+eWXvPbaa/nH2Gw27rjjDqZOncoNN9zAF198wcSJEy8lfBGRM/IJCqbfMxP4+vknc+eYev4Jbn7uJXwraSifSHmiHKpkqShVQdgbNCBlzhzNKyUiUkGYTCZMhez+7Uq1atXCw8OD33777bSu53/99RfVq1fnySefzN+3Z8+e064xePBgGjZsyOTJk8nOzuaGG24o9rhFpGLyDgyi37MTmDl2DIknClP9n/sfPoHBrg5NRIqIcqiSpaJUBaHJzkVEpDSy2+08/vjjPPbYY9hsNjp06MDhw4fZuHEjNWvWJDY2li+//JJWrVrx888/53cxP1m9evVo27Ytjz/+OHffffc5vzmUsi81OZNF07cU/oSLnKz1TKflT/xa8KHAE5PplPdPnJO333TyMSZT3kPuc9OJNk485r02mf97xGTCbM49xmw+cYzZdOL93PdMZhNmy0nPzWC2mP/bf2KzWMwnnpsxu5147WbC4mY+sZmwWHOfa+GA/3j5B3DT0y8w87nRJB+M5+vnn6L/sxPw8te8rSJScspLDlXmilKTJ0/mlVdeIS4ujgYNGjBx4kQ6dux43vP++usvOnXqRMOGDVmzZk3xB1rK2BvUByD7wAFyEhM12bmIiJQaTz/9NG5ubjzzzDMcOHCA8PBwhg4dyqBBgxg1ahTDhw8nMzOTHj168PTTT/Pcc8+ddo1BgwaxdOlS7r777pK/ASlRjmwnMesTXB1GhWN2M+HmZsZiNeNmteBmK/jczWbB6p773HriudVuweruhs2e+9xmd8Pmkfva5uGGu4cbFmvZLHj5BAbT7+kX+fK5x0k8sI9vXniKm555EU9fP1eHJiIVSHnIocrU6nszZ87kjjvuYPLkyXTo0IEpU6bw4YcfsmnTJiIiIs56XnJyMs2bN6dmzZocPHjwgopS5WnlmJ3driFrzx6qffCB5pUSESlnzrX6SUUwfvx4vvzyS9avX39R52v1vaJXXJ9bVkYOO1YfKrLrcYZM+Ezp8Wm7Tuw4eX/u85P2GwWvl7fvv9cnHp255xkGJzYj/zjDeeLRAMNpnPIcDIcTZ97rE5vTyYlHA6fDwOlwYhh5z0/enDgdBg6HE2dO7j5HjjP/dUkwu5lw97Ri93TD3dMNdy8rHl5W7N4nNi8rHj42PH1tePjY8PCxYrOXnu/VE+MP8NVzozmeeJRKkTXo98yL2L28XR2WiBRSRc+f4NJyqKLIn0rPv+iF8PrrrzNo0KD88ZITJ05k3rx5vPvuu0yYMOGs5w0ZMoRbb70Vi8XCrFmzSija0keTnYuISHlz/PhxNm/ezKRJk3j++eddHY6UAJvdjfodKrs6jHIvr4jlyHHiyHaSk33qo4OcrJMes3IfszMdZGc5ch8zHWRn5Jx4dJCVkUNmeg5Z6bnPMcCZY5CekkV6SlahY3OzmfHyc8fL3x0vPxue/u54+bnjE2jHOyD30dPXhslc/D2wAsIq0/fp8Xw1dgyHY3Yx6+Vx3PjEOKzuFfOXWxEpO0pLDlVmilJZWVmsXr2a0aNHF9jftWtXli5detbzpk6dys6dO5k+fTovvPDCedvJzMwkMzMz/3VKSsrFB13KaLJzEREpb4YPH86MGTPo06ePhu6JFCGTyZQ7p5SbGYqhvmIYBtkZDjLSsslKzyEzNYfMtBwyUrPJSM0m/XjuY8bxbNKPZZF2onCVk+0kJ8tJ8uF0kg+nn/X6ZrMJ70B3fIM9Tmx2fIM98A/xxC/Eo0h7WwVVqcaNT4zjq7Fj2L9lE7MnvsR1Dz+Jxa3M/KolIhVQacmhysy/lEeOHMHhcBAaGlpgf2hoKPHx8Wc8Z/v27YwePZrFixfjVsgfChMmTGDs2LGXHG9plD/Z+ebNLo5ERESkaEybNo1p06a5OgwRuUAmkyl3fimPC/t1JCsjh7SULNKSs0hNziQ1KZPU5CxSEzM4npjJscQMUpOycDoNUo5kkHIkA0g87Tpefjb8Qz3xD/UkINyLoMpeBFb2xsPHelFzXIVE1qDPY0/z7fhn2PXPSuZPeYtr7huJyWy+4GuJiJSE0pJDlZmiVJ5Tf0gYhnHGHxwOh4Nbb72VsWPHUrt27UJff8yYMTz00EP5r1NSUqhWrdrFB1yK2OvWASB73z4cx49j8dZ4dxEREREpO2x2N2x2N/xDzr5cu9PhJDU5i2MJGaQkpJNyOJ2UIxknelelkX4sO7eQlZzF/m1JBc61e1sJquJFcFUfgqt5U6maD/5hnlgs5y8uVa3XkJ6jRvPDqy+w6c+FePj40umOQWVyIncRkZJSZopSwcHBWCyW03pFHTp06LTeUwDHjh1j1apV/PvvvwwfPhwApzN3kkc3Nzfmz5/PFVdccdp57u7uuLu7F89NuJjF3x+3sDBy4uPJ3LYNz+bNXR2SiIiIiEiRMlvM+ATa8Qm0U7mW/2nvZ6Rmk3QojeSDaSTGp3E0LpWEA6mkHEkn43g2+7cmsX9rUv7xFjczQVW8CI3yIzTKl9BIX/xCPM5YbIpu0ZpuQx9k7uQ3WP3zLDx8/WjT56ZivFsRkbKtzBSlbDYbLVq0YMGCBVx//fX5+xcsWEDv3r1PO97X1/e02eMnT57MwoUL+eabb4iKiir2mEsj9zq1yYmPJ2PLFhWlRERERKTCsXtZCYvyIyzKr8D+7CwHiXGpJOw/zpG9xzm89xhH9h0nO8PBoT3HOLTnGOsX5R7r7uVGeA0/wmv6E17Tn5DqPrnzbwENOl1JxvFjLPr0Q5bM+ATvgEAadLqyZG9SRKSMKDNFKYCHHnqIO+64g5YtW9KuXTvef/99YmNjGTp0KJA79G7//v18+umnmM1mGjZsWOD8kJAQ7Hb7afsrEnuduqT+8SeZW7a6OhQREREpQZMnT+aVV14hLi6OBg0aMHHiRDp27HjW4zMzMxk3bhzTp08nPj6eqlWr8uSTT2pCeSm3rDYLIdV9Can+39LlhtMgJSGdgzEpHNp9jIMxyRyOPU5mag4x6xOIWZ8AgMVqJizKl6p1A6haN5Bm11xHalIiK3/8lvlT3sI7MIjqjZq66M5EREqvMlWU6t+/PwkJCYwbN464uDgaNmzInDlzqF69OgBxcXHExsa6OMrSLW9eqcytKkqJiIhUFDNnzmTkyJFMnjyZDh06MGXKFLp3786mTZuIiIg44zn9+vXj4MGDfPTRR9SsWZNDhw6Rk5NTwpGLuJbJbMKvkid+lTyp3SoMAEeOkyP7jhO3I4m4Hckc2JGUO+xvWxL7tyWx4sfd2OwWKtduRljNPcTvWMWPr73IzeNeplJEpGtvSESklDEZhmG4OojSLCUlBT8/P5KTk/H19T3/CaVc5s6d7OrRE5OnJ3VWrdSKICIi5URGRga7d+8mKioKu70Y1m8v5871+ZWHXKBNmzY0b96cd999N39fvXr16NOnDxMmTDjt+Llz53LzzTeza9cuAgMDL6rN8vC5iRSGYRgkHUxj/9ZE9m1JZN/WRDLTck68l0PW8W8xcvZj8/Cn+wNjqdE0CnMhJk4XkeKn/OnSFEX+VKZ6Ssmls1WvjsndHSMtjezYWGyRka4OSURERIpRVlYWq1evZvTo0QX2d+3alaVLl57xnB9//JGWLVvy8ssv89lnn+Hl5cV1113H888/j4eHxxnPyczMJDMzM/91SkpK0d2ESClmMpkICPMiIMyLhp2q4nQaHNl7jL2bj7JnQwJxO3qTmfwlWelH+fG15/ENu53oZlWo0TyEqnUC8ueiEhGpiPQvYAVjcnPDvVYtADK2bnNxNCIiUpGZTKZzbnfeeScAv//+O126dCEwMBBPT09q1arFwIEDNZSskI4cOYLD4ThtteLQ0NDTVjXOs2vXLpYsWcKGDRv4/vvvmThxIt988w3333//WduZMGECfn5++Vu1atWK9D5Eygqz2URIdV9aXBPJDY+0YNBrV3PF3Y/hZvPGcBzh2MHv2bhkP7MnrWXqY0v4ddom9mxMwOlwujp0ESkjylMOpaJUBeRepzYAmVu3uDgSERGpyOLi4vK3iRMn4uvrW2Dfm2++ycaNG+nevTutWrXizz//ZP369UyaNAmr1YrTqV/gLsSpy9cbhnHGJe0BnE4nJpOJzz//nNatW3Pttdfy+uuvM23aNNLT0894zpgxY0hOTs7f9u7dW+T3IFIW2b2sNL26If2fex43mw1nzh58A1bh4WsjMy2HrcvjmT1pLdNG/8Xir7ZxaE8KmmFFRM6lPOVQGr5XAdnr1CUZyNAKfCIi4kJhYWH5z/38/DCZTAX2AUydOpXw8HBefvnl/H3R0dFcc801JRZnWRccHIzFYjmtV9ShQ4dO6z2VJzw8nCpVquDn55e/r169ehiGwb59+6h1otf1ydzd3XF3dy/a4EXKkbDoWlw7/BF+fP1FDu9ewhV3NyK0Rgd2rDrI9tWHSD+WzbqF+1i3cB/+oZ7U6xBO3bbhePraXB26iJQy5SmHUk+pCshdK/CJiJR7hmGQnelwyVaU3/CHhYURFxfHn3/+WWTXrGhsNhstWrRgwYIFBfYvWLCA9u3bn/GcDh06cODAAY4fP56/b9u2bZjNZqpWrVqs8YqUZ7XatOeymwcA8Pu0KWSnx3D5LXW486UO9Li/MbVahuBmNZN0MI1l3+3kk9F/MXfKemI3JuB0qveUSElQDlWy1FOqArLXyS1KZe/fj+PYMSw+Pi6OSEREilpOlpP3H/zDJW3f+2YnrO6WIrnWTTfdxLx58+jUqRNhYWG0bduWK6+8kgEDBmhFtwvw0EMPcccdd9CyZUvatWvH+++/T2xsLEOHDgVyh97t37+fTz/9FIBbb72V559/nrvuuouxY8dy5MgRHn30Ue6+++6zTnQuIoXTus9NJOzfy+bFv/PTxAnc+sJrBFauSmSjYCIbBZOVkcOOVYfY9NcBDu5OYee/h9n572F8g+006lyVeu3Dcfe0uvo2RMot5VAlSz2lKiCLnx9u4eGAekuJiEjpZrFYmDp1Kvv27ePll1+mcuXKjB8/ngYNGhAXF+fq8MqM/v37M3HiRMaNG0fTpk35888/mTNnDtWrVwdy56aIjY3NP97b25sFCxaQlJREy5Ytue222+jVqxdvvfWWq25BpNwwmUx0vfcBKteuR2ZqKt+/NJb048fy37fZ3ah/WWX6Pt6S/k+1pnGXqrh7upFyJIO/vtnBtNF/8ccXWzkal+rCuxCR0q6s5FAmQ7PonVNKSgp+fn4kJyeXqmripdo79D6OL1pE6NNPEXjbba4OR0RELlFGRga7d+8mKioKu92OYRjkZLlmEks3m/msE2ifzbRp0xg5ciRJSUnnPTYxMZHatWszbNgwxo4de5FRFnTq53ey8poLFDd9biLnlpacxOdPPkTK4UNUb9yMG0Y/h9ly5h4S2VkOtv99kLUL93L0wH/FqIgGQbS4JoLwmv4X/O+uiJz5579yqMIrivxJw/cqKPe6dTi+aBGZmuxcRKRcMplMRdb9u7QJCAggPDyc1FT1EhCRssvTz58+jz7NF08/wp51//LnF9PofMegMx5rtVmof1ll6nUIZ/+2JNYt3EvMuiPEbkwgdmMCYTV8ada1OlGNgzGZVZwSuRTKoUqWilIVVN68UhkaviciIqXYlClTWLNmDddffz3R0dFkZGTw6aefsnHjRiZNmuTq8ERELkml6lF0HzaKn974H6tnf09oZA3qdexy1uNNJhNV6wRQtU4ASYfSWLMgli3L4onflcIv760nINyLVtdGUrNFiIpTIhVcWcmhNKdUBeVepy4Amdu3YzgcLo5GRETkzFq3bs3x48cZOnQoDRo0oFOnTixfvpxZs2bRqVMnV4cnInLJare9jDbX9wNg/pRJHNy1o1Dn+Yd40vm2utwxvh3Nu1XHZreQGJfK/I828uULf7Nj9SEMrdgnUmGVlRxKc0qdR3mdD8FwONjaoiVGRgY1fpmDe1SUq0MSEZFLcK4x/XJ+mlOq6OlzEyk8p9PBD6+8wK5/VuITVInbJ7yBp5//BV0jMz2HdQv3subXvWSl5wAQVMWb1r2iiGoSrDmnRM5A+dOlKYr8ST2lKiiTxYJ7rVqAVuATEREREXEls9lC9+EPExBehWMJh/lp4v9w5ORc0DXcPdxo1SOKAePb0bJHJFa7hYT9x/nlvfV8/9o/xO9KLqboRUQunopSFZi97ol5pbZscXEkIiIiIiIVm93Lm96PPIXNw4N9mzaw+ItpF3Udd08rbXrVYMD49jS/pjpuVjNxO5L59uXVzH1/PUmH0oo2cBGRS6CiVAWWP6/U1m0ujkRERERERIKqVqP7/Q8DsPrnWWxdtuSir2X3stKuTzS3jWtLvfbhYIKd/xxmxtgVLPl6O5npF9YTS0SkOKgoVYHZ69QGIGOrekqJiIiIiJQGNVu1pVXvvgDMe+9NEvbtvaTreQfYuWJAPW5+qjURDYJwOgzW/raXz59ZxualBzQZuoi4lIpSFZh7ndzhezkH4nAka4y5iIiIiEhpcFn/O6jWoDHZGen8+PqLZGWkX/I1g6p40+uBJvQa0QT/UE/Sj2Wz8NMtfPvKag7tSSmCqEVELpyKUhWYxdcXa+XKAGRu0xA+EREREZHSwGyx0GPEo3gHBHJ0/17mv/cWRbVoekT9IG5+ujXtb6iJ1d3Cwd0pfP2/VfzxxVYN6ROREqeiVAWX11sqY4tW4BMRERERKS28/APoOWoMZouFrcsW8+8vPxbZtS1uZpp1jeC2sW2p3SYUDNjw535mPLecXWsOF1k7IiLno6JUBed+Yl6pzO3bXRyJiIiIiIicrEqdenS6YxAAf0z/mAPbinYuWC9/d66+qwG9RzbFr5IHqclZ/PLeen55bz3HEzOLtC0RkTNRUaqCc69ZC4DMHTtcHImIiIiIiJyq2TW9qN32MpwOB7PffIn048eKvI2qdQO5+enWNL+mOmaziV1rDjNj7PLcidCLaNigiMiZqChVwbnXjAYgc+dO/cARERERESllTCYTXYc8gH9oOMeOHGbu5DeKJW93s1lo1yeam55oRUikL1kZDhZ+uoU5k9eRmqxeUyJSPFSUquBsUVFgNuNMTibnsMaPi4iIiIiUNu6eXvQcNRqLmxu7Vv/N6tnfF1tbwVW9ufGxFrS7Phqzm4mY9QnMGLuCbSvj9SW2iBQ5FaUqOLO7O7aICACydu50cTQiIiLFKysry9UhiIhclNCoaDoPvBeAxTM+4cC2zcXWltlsonm36vQb04pKET5kpuWw4KNNzPtgIxmp2cXWroiUTsWZP6koJdjyhvBt17xSIiJS8r755hsaNWqEh4cHQUFBXHXVVfzwww/Y7XaSkpIKHDtixAg6deoEQEJCArfccgtVq1bF09OTRo0aMWPGjALHd+7cmeHDh/PQQw8RHBzM1VdfXVK3JSJS5Jpc3Z067Trmzi818eVimV/qZEFVvLnx8Ra06hmF2Wxi5z+HmPnC3xzYnlSs7YrI+ZWX/ElFKcG9Zk0gd14pEREpHwzDIDsjwyXbhQzviIuL45ZbbuHuu+9m8+bNLFq0iBtuuIHOnTvj7+/Pt99+m3+sw+Hgq6++4rbbbgMgIyODFi1aMHv2bDZs2MC9997LHXfcwYoVKwq08cknn+Dm5sZff/3FlClTiuYDFhFxAZPJxNX3PoB/WDjHEopvfqmTWSxmWveM4sbHW+BXyYPjiZnMev0fVvy0C6fDWaxti7hCWcihylP+ZDI0MPicUlJS8PPzIzk5GV9fX1eHUyySf5rNgUcfxaNFCyI/n+7qcERE5CJkZGSwe/duoqKisNvtZGdk8NbAvi6JZcQn32C12wt17D///EOLFi2IiYmhevXqBd578MEH2bBhA7/99hsA8+fPp1evXsTHxxMQEHDG6/Xo0YN69erx6quvArnf9CUnJ/Pvv/+eM45TP7+TVYRcoDjocxMpPgd372TGUw/jyMmhy51DaN69V4m0m5WRw+Ivt7FleTwAYTX8uHpQfXyDPEqkfZGidqaf/2UhhypP+ZN6SgnutU70lNqxQ5MXiohIiWrSpAlXXnkljRo14qabbuKDDz4gMTERgNtuu41FixZx4MABAD7//HOuvfba/ITK4XAwfvx4GjduTFBQEN7e3syfP5/Y2NgCbbRs2bJkb0pEpJiFRkVz+e13A/Dn9I84FLOrRNq12d248s76XD2oPja7hfhdyXw1fiUx64+USPsikqs85U9uJdKKlGonr8DnOHIEt0qVXB2SiIhcIjd3d0Z88o3L2i4si8XCggULWLp0KfPnz2fSpEk8+eSTrFixgtatWxMdHc2XX37Jfffdx/fff8/UqVPzz33ttdd44403mDhxIo0aNcLLy4uRI0eeNhmnl5dXkd2biEhp0eyaXuxZv4Zdq/9m9psvc8eEiYXupXqparcKIyzKj3kfbODQnmP8/M46WlxTnda9ojBb1O9ByraykEOVp/xJ/2JI7gp81aoBmldKRKS8MJlMWO12l2wmk+mCY+3QoQNjx47l33//xWaz8f33ucud33rrrXz++ef89NNPmM1mevTokX/e4sWL6d27N7fffjtNmjShRo0abN++vUg/RxGR0spkMtFt6IN4BwSSeGAfC6eV7Jx5vsEe3PBICxp1rgrA6rl7+PGtNaQmZ5ZoHCJFrazkUOUlf1JRSgCw5U12rhX4RESkBK1YsYIXX3yRVatWERsby3fffcfhw4epV68ekNsF/Z9//mH8+PH07du3wHwFNWvWzP+WcPPmzQwZMoT4+HhX3YqISInz9PXj2gceAZOJDb8vYMtff5Ro+xarmctvrk3XwQ2wulvYvzWJr8avJG5HUonGIVLRlKf8SUUpAU5egU9FKRERKTm+vr78+eefXHvttdSuXZunnnqK1157je7duwNQq1YtWrVqxbp16/JXjcnz9NNP07x5c7p160bnzp0JCwujT58+LrgLERHXqdagMW1v6A/Agg/eJulgyf9yWatlKDeNaUlgZS/SUrKY9ca/bFy8v8TjEKkoylP+pNX3zqOirByT/NNPHHj0MTxatiByulbgExEpa861+omcn1bfK3r63ERKjtPh4KtxY9i/ZRPhtety83MvYbZYSjyO7EwHv32ymZ3/HAKg4eVVuKxfLSxu6gshpZPyp0uj1fekyOT1lMrarhX4RERERETKErPFwrXDH8Hm4Uncti0s/+5Ll8RhdbfQ7Z4GtOldA0yw4c/9/DDxX9JSss5/sohUSCpKCfDfCnyO5GQcCQmuDkdERERERC6Ab6UQrrrnfgCWfzuT/Vs3uyQOk8lEy+6R9BjWGJvdQtyOZL6esJIj+465JB4RKd1UlBIAzHY71mq5K2dk7tC8UiIiIiIiZU29Dp2o17ELhuFkzqRXyUxLc1kskY2C6Tu6Jf6hnhxPzOS7V/4hZv0Rl8UjIqWTilKSz71mLQAyd+x0cSQiIiIiInIxrrz7PvxCQkk5fJCFH7/r0lgCwry48bEWVKkTQHamgzmT17H2t72aLkRE8qkoJfnco6MByNyx3cWRiIjIxVKif3H0uYlIeeHu6Un34Y9gMpnZtPh3Nv/1h0vjsXtZ6TWiCfU7hGMYsOTr7fz55TacDqdL4xI5mfKAi1MUn5uKUpLPvdaJyc7VU0pEpMyxWq0ApLlwqEZZlve55X2OIiJlWZU69Wh7Y38Afv3gHVKOHHJpPBaLmc6316X9DTVzJ0D/Yz8/T15HVkaOS+MSUf50aYoif3IrqmCk7Puvp1TuCnwmk8nFEYmISGFZLBb8/f05dCj3Fw9PT0/9O14IhmGQlpbGoUOH8Pf3x+KCJdRFRIpD2xtuJmbtP8Rt38rcd97gpqfHYzK7rk+CyWSiWdcI/EI8WPDxRmI3HmXW6//Sc3gTPH1tLotLKjblTxenKPMnFaUkn61GDTCZcCQl4Th6FLegIFeHJCIiFyAsLAwgP7GSwvP398///EREygOzxUL34Q/z2WMj2LtpPat/nkXLXje4OixqNK1En1HNmf3OWg7HHuPbl1fR64Gm+Id6ujo0qaCUP128osifVJSSfLkr8FUjOzaWzO07VJQSESljTCYT4eHhhISEkJ2d7epwygyr1aoeUiJSLgWEVabzwMEseP9tlnz5KdUbN6NS9ShXh0VolC83PtqCnyatIeVIBt++spoe9zcmLMrP1aFJBaT86eIUVf6kopQU4F6zZm5RaucOvNq2cXU4IiJyESwWi4osIiICQKMrurFz1Qp2/bOSOW+/xm0vvoFbKZg/zz/Ukxsfa8nP76zl0J5j/PD6v3S7tyGRjYJdHZpUUMqfXEMTnUsBJ88rJSIiIiIiZZvJZKLrkBF4+PpxJDaGv2Z+5uqQ8nn62ug9qhkRDYLIyXbyy7vr2fZ3vKvDEpESpKKUFKAV+EREREREyhcv/wC6DhkBwKrZ37N34zoXR/Qfm92Na4c1onabUJxOgwVTN7F+0T5XhyUiJURFKSnApp5SIiIiIiLlTs2WbWh0RVcwDH6Z/AaZaamuDimfxWLmqoH1adSlKhjw55fbWDVnN4ZhuDo0ESlmKkpJAe55K/AlJpJz9KirwxERERERkSLSecBg/ELDOHbkML9/8oGrwynAZDbRsV8tWvWIBGDFj7v56+sdGE4VpkTKMxWlpACzhwfWqlUByNyu3lIiIiIiIuWFzcOTa+4bCSYTGxf9yo6Vy10dUgEmk4nWvWpw2U21AFi7cC+LPt+CU4UpkXJLRSk5ja1G7jKxWTExrg1ERERERESKVNV6DWnZ83oAFnzwNmkpyS6O6HRNrqzGlXfWw2SCTX/F8du0TTgdTleHJSLFQEUpOY175Imi1O7dLo5ERERERESKWod+txNcrTppyUkseP/tUjl3U9224Vw9qAFms4ltfx9k/kcbceSoMCVS3qgoJaexRUUCKkqJiIiIiJRHbjYb3Yc/jNnixo6Vy9i8+HdXh3RGtVqG0u3ehpjdTOz85zBz399ATrbD1WGJSBFSUUpOYzvRUyozRkUpEREREZHyKCSyBu363gLAbx+/R8qRwy6O6MxqNK3Etfc1xmI1E7PuCHMmryMnS4UpkfJCRSk5jS0qtyiVvW8/RlaWi6MREREREZHi0Lp3X8Jr1iErPY15771ZKofxAVRvEETP4U1wc7ewd3MiP6swJVJuqCglp3ELqYTZ0xMcDrL27XN1OCIiIiIiUgzMFgvX3P8QbjZ3YtevYe2CX1wd0llVrRNArxOFqX1bVJgSKS9UlJLTmEwmbJGRgOaVEhEREREpzwIrV6HjLQMA+HP6xyTFx7k4orOrXMtfhSmRckZFKTmjvCF8KkqJiIhIqWIYsHsxJO8Hp1biEikKza7pRdX6DcnOzGDuuxMxSvH/WypMiZQvKkrJGeUVpTJjYlwbiIiIiMjJUg/DJz3hjfrwYji80xZm3ArznoRVUyFmCRw/lFu8EpFCMZnNXHPfSKx2D/Zv2cg/v/zo6pDO6dTC1Jx312lVPpEyys3VAUjp9N/wvRiXxiEiIiJSQNpRCIyGpD2QkwGHN+dup3L3g+BaUKkuVKoDIfVyn/tVBZOp5OMWKeX8QsLofMcgFnzwNktmfEpk0xYEVanm6rDOKq8w9dPba9m7OZG5UzbQfUgjLFb1uxApS1SUkjOyRUUCGr4nIiIipUxIXRjxDzhyIDkWju6Co7shYSckbIcj2yEpFjKTYf+q3O1kNh8IrQ+hDU5sDXMf3X1ccz8ipUijK7ux/e+lxKz9h7mT3+CWca9gtlhcHdZZVa7lT89hjZn99lr2bEhg3ocb6HZvQywWFaZEygqTUVrX/SwlUlJS8PPzIzk5GV9fX1eHU2KcqalsbdESgNorlmPx83NxRCIiIq5RUXOBS+XSzy07PbdYdWQbHN4KhzbnPibsAGf2GU4wQVA0hDc5aWsKHv4lG7dIKXAs4QifPHI/mWmpXHbLQNr0ucnVIZ3X3k1H+XnyOhw5TqKbh9B1UH3MKkyJuFRh8wD1lJIzMnt54RYaSs7Bg2TFxODRpImrQxIREREpHKvHfz2hTubIzi1MHdwIBzfkPsZvgGMHcvcn7IAN3/53fFAtqNLivy2sEbjZSvZeREqYT1AwXe68l7mT32DZ158T3bwVwRGRrg7rnKrVD+SaIQ355b317PznEL9ZTVw5sD5ms4bqipR2KkrJWdkiI8k5eJDM3btVlBIREZGyz2LNnVsqpB406vvf/tQjELf2v+3Av7lzViVsz93WfZl7nJsdKjeHaq2hWhuIaAuega65F5FiVP/yK9i24i92rf6bue9O5JbnX8XiVrp/dYxsFEy3exoy7/0NbFtxEDc3M51vr4tJc8iJlGql+18WcSlbVCRpK1ZosnMREREp37yCoeaVuVue1AQ48A/sX5277VsJ6YkQuzR3y1OpHkR2gOodIPIy8A4p+fhFipjJZOLqe4bzyZZhHNy1g5U/fEPbG292dVjnVaNpJa66uz4LPtrIpr/isNrd6NC3pgpTIqWYilJyVu5RUYAmOxcREZEKyCsIal2duwEYRu7wvtjlsHdF7nZk23+r/638MPe4SnUhqhPU6JxbrLJrXk4pm7wDArni7qHMmfQqy779khotWhMSWcPVYZ1XrZah5GQ5WfjpZtb+ther3UKbXqU/bpGKSkUpOStbXlEqJsa1gYiIiIi4mskEwbVyt+Z35O47fji311TMX7Dnr9w5qg5vyd3+ngImS+5cVDWvhJpXQeVmYC69K5mJnKpuh05sW/4XO1YuY+67E7lt/GtY3KyuDuu86rUPJzszh8Uzt7Pq5xhs7m406xrh6rBE5AxUlJKzskVGApC1Zw+G04nJrBUsRERERPJ5V4L6vXM3gLSjELMYdv0BuxbB0Z2w7+/cbdEE8AiE6CugVtfcHliaj0pKOZPJxFWDh7Fvy0YOx+xi+Xdf0aHfba4Oq1Aad6lGVoaDFT/sYul3O7DaLTS8vIqrwxKRU6goJWdlrVIFk9WKkZlJ9oE4bFX1j7iIiIjIWXkGFixSJe2FXb/D9gW5Rar0o7Dhm9zNZIGIdlCne+4WFO3S0EXOxss/gKsG3cfsiS/x96yvqNmqLaFRBf++Gg4HRk4ORnYO5GRjGAY4HBhOZ+7QV8PI7W2IKfc/sxksFkxWa+7m5obJUvS9CFt2jyQ7w8E/8/bwx4yt2Dws1G4VVuTtiMjFU1FKzspksWCtHkHWjp1k7d6topSIiIjIhfCvBs0H5G6O7NzJ0rcvgO3z4eAG2LMkd5v/ZO5cVPWug/rXQWjDE7/Ai1w8wzAwMjJwpqfjTEvDmZaGkZaW+zo9HWdaOs70NIy85xnpuc/Tc88xMtJxZmRiZGRgy8ykisPEfhz88MgDXB6fgikzEyMzEyMnJ7fodKnMZsx2OyYPD8x5m6cnZl9fLL6+WPx8Mfv64hYQgCU4GLegYNwqBeMWHIzZ1/esk5m37VODrIwcNvyxn9+mbsZmdyOyUfClxysiRUJFKTkn96io3KJUTAx0vMzV4YiIiIiUTRYrVG+fu131LCTugW1zYesciFny31xUf74MgTVyC1QNrofwJipQlVOGw4GRmYkzM/NE8SgDI/PEY0Y6zhMFpZMLRc70NIy0vPdOFJRSTyo0pecVn3ILUUVSLDqhrsXM4ToRHLNa2Gp1Ujvh+PlPslggbwqQvB5ThgFO5+nHOp25Mael4bjA2EweHlirVMZa+cRWpQruUVHYatTAVq0al/evTWZaDttXHmTe+xvo9WBTKtf0v8BWRKQ4qCgl55Q/r5RW4BMREZFSIOfoUQ7+738AJ3pGnCjYmEz/bZzYbTL9d8zJ75nPsN90YljRufaf/J7ZVPD6ZnPBNk3m/PNN5rzrmAu+xhNMN0FELzi0GdPB9bkr+e2Mh5XvYzJNAe9QqNYKqrbG5Bt64hd803/3YDafuO6JIVFnev98r00n3Uve65OPOfm8vHYKfB4nfT6n/jlgOnHYyX82JxXZzldwyyuq5BUzTjzPfWoUKHQUGCrmdGI4DTCcGA4HOA1wOjAcztxHpzP3GIcjd5hZjgPDkQMOZ27PH0dO7nC0HAdGTjbk5OQPT8t9zP5vy8r67/GUzZmdhZGZldujKDMTZ1ZWbgEqMxOysy/gb/6lMdntub2OPDwwe3pg8vA8qTeSx4neSbn7TB52zHYPzB52TO52zHZ3THY7Jnd3LHt2Mf+HmewMD6b58xMIq1ET8obg5Q3Dc3PLHZp3nj/bk4f8GdlZGFnZJ4pyuQU1Iz0dR2oqzpRjOFJScKQk40xOwZGUSM7hI+QkJJBz5AjOlBSM9PTcL9J37Dy9ITc3bBER1K1Rk+M+VxJ3zJuf317D9Y+0ILiqTzF94iJSWGWuKDV58mReeeUV4uLiaNCgARMnTqRjx45nPHbJkiU8/vjjbNmyhbS0NKpXr86QIUMYNWpUCUdddtki81bgU1FKREREXM+ZmkrKjz+5Ooxi5H3K6yzgrxOblFcmqzW3MOTu/t+jp8eJ4pBHblHp1CKS3QOz14lCkqdnblHJ0+Ok4pPnieKTvcjma2rUoQN7Dh1g67LF/DZrJrf/703crBe3Gp/JYsmNy90d8LromJyZmeTExZG1fz/ZBw6QvX8/2fv2k7VrF5m7d+cWrHbtImvXLmqbfyet8XCS/Wvy/bMLucy6hJCWdfBo0QKPBg0w2WwXHYeIXJwyVZSaOXMmI0eOZPLkyXTo0IEpU6bQvXt3Nm3aRETE6Ut8enl5MXz4cBo3boyXlxdLlixhyJAheHl5ce+997rgDsoeW1RuUSpzd4xrAxEREREBLH5+hDz++Ek9Z070kjEMMCjYs6bAe3n7KXBu/nun7D/tmnm9cQxn7r68XjknX8N5ynWdxknnOv+73snnOo0zXOvEMY5sjGPxkBIHqUdzwwLAlLuSn1cIht0/93Ve76C8+Iz/rvtffM7/4nA4T7qnk2IwDAxOiTNv38n343TmxnLykKzTPutTnp94zB9QdqahZfkTYp/kxGvTSc85qVdX/n6L5aSeaqb/euuYzWAxYzKZ/9tnsWCymMF8ojCSN9G2xYzJcqK3j5sFk5s1t3hyohcQVrcTz0/0DLLl9RKy/ffaZsNss2HK29ztmN1tmNzdMbm75xac3HN7H+U/L4ZJvovLFXcPZe+m9STsi2X5tzO47OYBLo3H7O6OLTIyf4THyQynk5yDB8nctYvMbdvJ2LyJlpvnscLNznHvqixNb0WLt17DPes1TO7ueDRqhGe7tnhfdhn2hg3L1J+LSFllMowiHGhczNq0aUPz5s1599138/fVq1ePPn36MGHChEJd44YbbsDLy4vPPvusUMenpKTg5+dHcnIyvr6+FxV3WZaTmMj2du0BqPPPasyeni6OSEREpGRV9FzgYulzK2KpR2DDd7D2Czjw73/7PQKh6a25k6lXquO6+KRC2f73Un587UVMJjO3vvAqYTVruzqkC3I8PonvXl/DsRQnviTRfP3bmBPiChxj8fPDq0N7vC7riHeXzrgFBLgmWJEyqrB5gLkEY7okWVlZrF69mq5duxbY37VrV5YuXVqoa/z7778sXbqUTp06nfWYzMxMUlJSCmwVmVtAABY/PwCyYmNdHI2IiIhIBeUVDG3uhXsXwbAV0OFB8AmH9KOw7G14pzV8fA2smQHZ6a6OVsq5Wq3bU7dDJwzDyS+T3yAnK8vVIV0Q7zB/ej/aBg9fGyn4s+2GV4j4YTZhY8fi07UrZh8fHMnJpMz5hbgnnmD7ZR3Zc9ddJM6YQc7hw64OX6RcKTNFqSNHjuBwOAgNDS2wPzQ0lPj4+HOeW7VqVdzd3WnZsiX3338/gwcPPuuxEyZMwM/PL3+rVq1akcRfluUN4dNk5yIiImXX5MmTiYqKwm6306JFCxYvXlyo8/766y/c3Nxo2rRp8QYohRdSF64eByM3wC0zoc61YLJA7DKYNRReqwvznoSju1wdqZRjV9w1BE8/f47u38vSb75wdTgXzK+SB70eaILNbuHA9mT+WJiKX9++VH3rTWovW0r1Lz4neNh9uNerBw4HacuWEz92HNsv78Se2+8g6dtvcRxPdfVtiJR5ZaYolefUVRwMwzjvyg6LFy9m1apVvPfee0ycOJEZM2ac9dgxY8aQnJycv+3du7dI4i7L/ptXSkUpERGRsihvXs4nn3ySf//9l44dO9K9e3diz9MLOjk5mQEDBnDllVeWUKRyQSxuUOcauGUGjNoIVzwF/hGQkZTbe+qt5jC9L2ybnzs/lEgR8vDx5ep7hgOw6sfviNu+1cURXbhK1Xy49r7GWNzM7F57hD++2Jr7+6WbG57Nm1NpxAhqfP8d0fPnEfLIw9gbNwbDIG3VKuKefIrtHTty4PHHSV2+PHdFRxG5YGWmKBUcHIzFYjmtV9ShQ4dO6z11qqioKBo1asQ999zDqFGjeO655856rLu7O76+vgW2ii5v0sAsTXYuIiJSJr3++usMGjSIwYMHU69ePSZOnEi1atUKzNN5JkOGDOHWW2+lXbt2JRSpXDTfcLj8URixJrf3VM2rAAN2LIAvboJ3WsHKDyFLPTuk6NRs1ZZ6l3XGMJzMLYPD+ACq1Ang6kH1MZlg019x/P3T6V/E2yIiCBo8mKivZlJz4W9UGjUKW2QkRno6yT/8SOydd7Gz2zUkTJ2Go4JP/yJyocpMUcpms9GiRQsWLFhQYP+CBQto3759oa9jGAaZmZlFHV65ZouKBCArJsalcYiIiMiFu9h5OadOncrOnTt59tlniztEKUpmS27vqdu/hQf+gbb3g7sfJOyAnx+GNxrAr2NzV/QTKQJd7hqCl38ARw/s46+vprs6nIsS3SyETrfmLhSwak4MG/7Yd9ZjrZUrEzzkXmr8MofIL2fg378/Zm9vsvfu5dBLL7G9U2finn2OzO3bSyp8kTKtzBSlAB566CE+/PBDPv74YzZv3syoUaOIjY1l6NChQO7QuwED/luS9J133uGnn35i+/btbN++nalTp/Lqq69y++23u+oWyiT3k+aUKkOLNYqIiAgXNy/n9u3bGT16NJ9//jlubm6FakeLxZRCQdFwzYvw0Ebo/jIEREJ6Iix5HSY2gh/uh8PbXB2llHEe3j5cfW/uML7Vs2dxYNtmF0d0cRp0rEKrnrm/9/zx5TZ2/XvuCc1NJhMeTZsSPvY5av35B2Fjx+JeqxZGejpJM2eyq9d1xN5zL2mrV5dE+CJlVpkqSvXv35+JEycybtw4mjZtyp9//smcOXOoXr06AHFxcQXmRnA6nYwZM4amTZvSsmVLJk2axP/+9z/GjRvnqlsok6wREWAy4Tx+HEdioqvDERERkYtQ2Hk5HQ4Ht956K2PHjqV27cIv867FYkoxdx9oMyS351T/zyGiPTiz4d/puav2zbwd9ukXZ7l40S3aUL9jlxPD+CaSnVU2R6a06hFJ/csqgwHzP9rIgR1JhTrP7OlJQP9+RP34AxGffIJP165gNpO6eDF7brudmNtv5/jixfqCX+QMTIb+zzinlJQU/Pz8SE5OrtDzS23v3IWc+Hgiv5yBh1bfERGRCqSs5wJZWVl4enry9ddfc/311+fvf/DBB1mzZg1//PFHgeOTkpIICAjAYrHk73M6nRiGgcViYf78+VxxxRWntZOZmVlgioSUlBSqVatWZj+3cm/v37BkImz9+b99UZdDp8ch8jKXhSVlV8bx40x7ZBipiUdp0aMPnQecfcXz0szpcPLLlA3ErDuCu6cb1z/SnKDK3hd8nazYWBI++pjk777DyM4GwF6/PpVGPohXx47nXaxLpKwrbP5UpnpKievYTnzbmaXVCEVERMqUC52X09fXl/Xr17NmzZr8bejQodSpU4c1a9bQpk2bM7ajxWLKmGqt4ZYvYNgKaHobmN1g958wrQdMvRZ2LQJ9dy0XwO7tTdd7HwBg9Zwf2Ldlo4sjujhmi5mugxsQVsOXzLQcZk9ay/HEjAu+ji0igvCxzxH9668E3nknJg8PMjZtYu+9Q9hzxx2k/fNPMUQvUvaoKCWFYq0eAUDWnnMvHS0iIiKlz4XMy2k2m2nYsGGBLSQkBLvdTsOGDfHy8nLlrUhRC6kLfSbnrtrXajBYbLDnL/i0N3zcDXYuVHFKCq1G81Y06HwVGAbz3p1IdsaFF3NKA6vNQo9hTQgI8+R4YiY/TVpLZlr2xV0rNITQ0Y9Tc+FvBA66G5O7O+mrVrPn1tvYO/Q+MrZqXjep2FSUkkKxVcstSmXvVVFKRESkrLnQeTmlAvKvBj1egwfXQushYHGHvSvgs+thWk+IXe7qCKWM6DxgMN5BwSTFx7H4y09cHc5Fs3tb6flAEzz9bBw9kMov763Hke286Ou5BQQQ+uijRM+bi/9NN4HFwvFFi9h9/fXEjR1LjubulQpKc0qdR1mfR6KopPzyC/tHPYRHs2ZEzvjC1eGIiIiUGOUCF0efWxl3LB6WvAGrPgZHVu6+mlfBFU9B5WaujU1KvZg1q/l2wrMA9HvmRao1aOziiC7e4b3H+P61f8jOcFCzZQhd726AyXzp80Fl7t7N4YlvcmzePADMfn5UGvEAAf37YyrkqqcipZnmlJIiZT3RUypL36KKiIiIlH8+YdD9JRjxLzQfCCYL7PgV3u8MXw2EhJ2ujlBKscimLWh85TUAzH33TbIy0l0c0cWrVM2H7kMaYTab2LHqEEu/21Ek13WPiqLqmxOJ+OQT3OvUwZmczMHnX2D3DTeStnJlkbQhUhaoKCWFYovInejckZCA43iqi6MRERERkRLhVxWuewuGr4TG/QETbJoF77SGnx+B44ddHaGUUp3uuBvfSiGkHD7In9OnujqcS1KtXiBXDKwHwJpf97Lm16L7ot6rTWuivv2GsGefweLnR+a2bey5YwBxTz+DIyWlyNoRKa1UlJJCsfj6YvH3ByB7n1bgExEREalQgqLhhvdh6BKoeTU4c2DlB/BWU1j0P8jSl5ZSkM3Dk65DRgCwdsEcYtb96+KILk2dNmG0uz4agL++3cGO1YeK7NomNzcCbrkld76pfv0ASPr6a3b26EHK3Lloxh0pz1SUkkKzRmgFPhEREZEKLawh3P4NDPwJKjeHrOOwaAJMaglrZoDz4ieClvKneqOmNO3WA4B5771JZlrZLl426xpBo05VwIBfp27iwI6kIr2+xd+f8HFjqf7Zp9iionAcPsL+kaPYN+x+sg8eLNK2REoLFaWk0GwRWoFPRERERICoy+GehdB3KvhHwLEDMGsofNAF9ix1dXRSilx+6134h4ZzPOEIv0/7wNXhXBKTycRl/WsT1SQYR46TOZPXkRhf9IU2z1atiPphFsHDhoHVyvHff2fXdb1J/vnnIm9LxNVUlJJCy5tXKitWw/dEREREKjyTCRreAPevhKvGgs0H4tbA1O7w1QBI0heZAla7nW7DRoLJxMY/fmXn6hWuDumSmM0mrh7UgNAoXzLTcvjprbWkJmcWfTs2G5VGPECN777F3rAhzuRkDjz8CPtGjSInMbHI2xNxFRWlpNDyV+BTTykRERERyWO1w2Ujc1fqa3k3mMyw6Qd4uzUsegmyy+7Ka1I0qtZtQMue1wMwf8ok0o+V7Qm8rTYLPYY1xq+SB8eOZvDzO+vIysgplrbca9UicsYXBA8fDhYLx36Zy67rruP4H38US3siJU1FKSk0W/UTw/c0p5SIiIiInMq7EvR8I3cy9OqXQU46LHoxd6W+zT+BJmuu0Dr0u53AKtVIS07it4/edXU4l8zDx0avEU3w8LFyOPYY8z7YiNNRPHOqmaxWKg2/n8gvv8QWHY3j8BH2DhlK/Isv4szKKpY2RUqKilJSaLZqucP3suPjMfSPn4iIiIicSWgDuHN27nxTvlVyh/HNvB2m3wAJO10dnbiIm81G9/sfwmQ2s3XZYrYuW+zqkC6ZXyVPegxrgpvVTOzGBP6Ysa1YV8rzaNSQqG+/IXDgAAASP/2MPTffQlZMTLG1KVLcVJSSQrMEB2Py9ASnk6z9+10djoiIiIiUVnnzTQ1fCZc/ChYb7FwIk9vC7y9qSF8FFRZdizbX9wPg1w8nczzxqIsjunShUb50HdwAkwk2LTnA6l/2FGt7Zrud0DFjqPreu1j8/cnYtIndN9xI8k+zi7VdkeKiopQUmslk+q+3VKyG8ImIiIjIedi84IqnYNhyiL4CHFnwx0u5xantC1wdnbhA2xv6ExIZTcbxYyx4f1Kx9iwqKVFNKtGxf20AVvy4i63L44q9TZ/OnYn6YRaerVrhTEvjwKOPcuDJJ3FmZBR72yJFSUUpuSBagU9ERERELlhQNNz+Hdz0CfhUhsQY+LwvfDUQjsW7OjopQRY3K92HP4TFamXXPytZv3C+q0MqEo06V6VZ19w5eBd+uoW9W4q/F5g1NJSIaVMJvv9+MJtJ/vY7Ym69lax9+4q9bZGioqKUXBCtwCciIiIiF8VkggZ9YPjf0G44mCywaVbuKn0rPwJn8UwSLaVPcLXqdOh/BwCLPv2QpIPlozDZrk80tVqG4HQazH1vPUf2HS/2Nk0WC5UeGE7Exx9hCQggc9Nmdt/Yl+OLy/6cXVIxqCglFySvp5RW4BMRERGRi+LuA93Gw72/Q+VmkJkMPz8EU6+BQ5tdHZ2UkBY9elOlbgOyM9KZO/kNnE6Hq0O6ZCaziSsH1qdyLX+yMhzMfnstxxNLZjidV9u2RH33LfbGjXEmJ7P33iEcnjwZQ8VeKeVUlJILYovI6yml4XsiIiIicgnCm8Dg3+Ca/4HVC/augPc6wu8TIEcrPZd3ZrOFa4aNwmr3YP+Wjfzz8w+uDqlIWKxmug9tRECYJ6lJmcx+ey2Z6Tkl0rY1PJzq0z/Dv39/MAyOvDWJfcMfwHE8tUTaF7kYKkrJBbGeKEpl792L4Sj732aIiIiIiAuZLdD2vtwhfbW7gzMb/vgfTLkc9q1ydXRSzPxDw+g8YDAAS778lCOxMa4NqIjYvaz0fKAJnr42EvanMnfKehw5JdNjyWyzET72OcLHj8dks3F84UL23HKL5pmSUktFKbkg1rAwcHPDyM4m5+BBV4cjIiIiIuWBX1W4ZQb0/Rg8g+HwZvjwKpg7BrLUy6M8a3RFV2o0b4UjJ4c577yOIyfb1SEVCd8gD3oOb4Kbu4V9WxL5ffqWEl1p0P/GG6j+2adYKgWTuX07MTf1I23lyhJrX6SwVJSSC2Jyc8NWpQqgFfhEREREpAiZTNDwRhi+EhrfDBiwfDK82x52a9Lm8spkMtF1yAg8fHw5HLOLv7763NUhFZlKET5cc29DTGYTW5fH8/dPu0u0fY8mTYj6+mvs9evjSExkz92DSPz66xKNQeR8VJSSC2aN0Ap8IiIiIlJMPAPhhilw27fgWxUSY+CTnvDzI5BZ/KuZScnz8g/g6iEPALDyx2/Zt2mDiyMqOtUbBNH5tjoArJoTw8bF+0u0fWtYGNU/n45P92sgO5v4p5/h4MuvaAJ0KTVUlJILZqt2YgW+WBWlRERERKSY1LoKhi2DFnfmvl75wYleU3+6NCwpHrVataNhl6vBMPhl8utkppWfYZv1O1Sm5bWRAPwxYxsx64+UaPtmDw+qvP46wSNyC39HP/6Y/SNH4cwomZUBRc5FRSm5YLbqJ3pKafieiIiIiBQnuy/0ehPumAV+1SBpD3zSC+Y8qrmmyqEuA+/BLySUlMOHWDh1iqvDKVKte0VRt20YhtNg3ocbObQnpUTbN5lMVBo2jMqvvILJauXY/PnEDryTnISEEo1D5FQqSskFs1bT8D0RERERKUHRXU70mror9/Xf78N7l0HsCtfGJUXK5uFJ9/sfxmQys+nPhWxbvsTVIRUZk8lE5zvqUq1eADmZDma/s46UI+klHodfr55EfPwRZj8/0teuJab/zWTu2lXicYjkUVFKLpgtIm/43t4SXUFCRERERCowdx/oNRHu+B58q8DRXfBxN5j/NGRrGFJ5UaVufVr36QvAgg/e4fjR8tOTx2Ixc829jQiq6k16ShY/TVpLxvGSX23Qs1UrImfMwFqtGtn79hFzy62k/fNPicchAipKyUWwVqsGJhPO48dxJCa6OhwRERERqUiir4D7lkLT2wADlr4F73eCA2tcHZkUkXZ9byG0Rk0yjh/jl8lvlKtJuW0ebvQa3gTvAHeSDqYx59115GQ5SjwO9xpRRM78Eo8mTXAmJxN7190cW7iwxOMQUVFKLpjZ3R230FBAk52LiIiIiAt4+EOfyXDzDPAKgcNb4MMr4c9XwJHj6ujkElncrFz7wCO42dyJXb+G1T/PcnVIRcrL352eDzTB5uFG3M5kfp26Caez5EeguAUGEjFtKt6dO2NkZrJv+AMkfv11icchFZuKUnJR8lbgy9qryc5FRERExEXqXgvDlkO968CZAwtfgKnXQMJOV0cmlyiwclW6DLwHgMUzPuVQTPma9yiosjfX3tcIs5uJnf8e5q+vt7tkahSzhwdV356E3403gNNJ/NPPcHjyZE3TIiVGRSm5KNa8Ffj2qKeUiIiIiLiQVxD0+xSunwLuvrBvZe4k6Ks+Bv1iXaY1urIbNVu1xenI4ec3XyY7s3zNHValdgBX3VkfgHW/72PNAtd84W9ycyP8hRcIum8oAEfemsTB558vV8MmpfRSUUouiu3ECnzZWoFPRERERFzNZIImN+fONRXZEbLTYPYomHEzHD/k6ujkIplMJq6+9wG8AgI5emAff3z2satDKnK1WobSoW9NAJZ+t4NtK+NdEofJZCLkwQcJffopMJlI/GIGBx59DCO75Cdil4pFRSm5KLZqVQHI2rffxZGIiIiIiJzgXw0G/Ahdx4PFBtvmwuR2sPUXV0cmF8nT14/uwx4CYO2COexYtcLFERW9pldF0OSK3OlRfpu2mX1bjroslsDbbqPKa6+C1UrKzz+zd/hwnOnpLotHyj8VpeSiWKvmFqWy96soJSIiIiKliNkM7YfDvYsgpAGkHcntMfXTSMhKdXV0chGqN25Ki57XAzDvvTc5fjTBxREVvQ59axLdPASnw+CX99ZzZN8xl8Xie+21VJv8Dia7ndQ//iT2nntwHHNdPFK+qSglF8VapQoAOQcP4szKcnE0IiIiIiKnCG0A9yyEdsNzX6+eClMuhwP/ujYuuSiX3TyAkMhoMo6lMOft13A6Ha4OqUiZzCauuqselWv5k5Xh4KdJa0lJcF0PJe+OHYn46EPMPj6kr1rNngEDyUkof8VAcT0VpeSiWAIDMdntYBjkxMW5OhwRERERkdNZ7dBtPAz4AXwqQ8IO+PAqWPIGlLOiRnnnZrXS48HHsLrb2btxHX/P+sbVIRU5N6uFa+9rRGBlL9KSs5g9aS0Zx103p5NnixZU//QTLEFBZG7ezJ7b7yD74EGXxSPlk4pSclFMJlN+bykN4RMRERGRUq1GZ7jvL6jfG5w58Otz8GlvSN7n6sjkAgRWrsKVg+4DYOnXn7N/62YXR1T03D2t9HqgCd4B7iTGp/Hz5HXkZLmugGqvV4/Iz6fjFh5O1u7d7LntdrL26f8bKTpFUpRKSUlh1qxZbN5c/v5RkLOzVqkMQJaKUiIiIhdM+ZNICfMMhJs+gd6TweoFMYvh3faw4TtXRyYXoP7lV1Dvss4YTic/v/UyGcePuzqkIucdYKfnA01w93Qjflcy8z/aiNPhdFk8tshIIqd/hjUigux9+9hz2+1k7trtsnikfLmoolS/fv14++23AUhPT6dly5b069ePxo0b8+233xZpgFJ6qaeUiIhI4Sl/EikFTCZodhsMXQxVWkJGMnxzF8y6HzLLX3GjPDKZTFw1eBj+oeEcO3KY+e+/hWEYrg6ryAVV9ubaYY2xuJnZvfYIf8zY5tL7tFapQvXpn2GrGU3OwYPsueMOMrZudVk8Un5cVFHqzz//pGPHjgB8//33GIZBUlISb731Fi+88EKRBiilly1/Bb4DLo5ERESk9FP+JFKKBEXD3XOh4yOACdZMz50Eff8/ro5MCsHm4UmPBx/DbHFj+4qlrPv1F1eHVCwq1/Sn66AGmEywackB/p7t2t5J1pAQqn/6Ke716+FISGDPgIGkr9/g0pik7LuoolRycjKBgYEAzJ07lxtvvBFPT0969OjB9u3bizRAKb3ye0ppTLGIiMh5KX8SKWUsVrjyabhzNvhWgaM74aOrT0yC7rqhUlI4YdG16HjLAAB+/+QDDsXscnFExaNGs0pcfksdAFb9HMP6Ra793cstMJDq06bh0aQJzuRkYu+6i/Q1a1wak5RtF1WUqlatGsuWLSM1NZW5c+fStWtXABITE7Hb7UUaoJReGr4nIiJSeMqfREqpyMtOnwT9s96QotEApV2LHn2o0bwVjuxsZk/8H1npaa4OqVg0vLwKrXtFAfDnzG3sWH3IpfFYfH2p9tFHeLRsgfP4cWLvHkTa6tUujUnKrosqSo0cOZL/s3ff8U3V+x/HXxndI92TFsreQ0AZ4gDFBe51VdTr3gN/7r3vdeJCxO11oThxoLhQ2XvIpnRA6d476/dH2gKCCqXtSdP38/E4Jjk5Sd4Jit988v1+zvnnn0+nTp1ISkriqKOOAjzT0gcMGNCS+cSLNRalHPn5uOrrDU4jIiLi3TR+EvFiQZGeJugnvwh+wbDtV3h5NGz42uhk8jdMZjPHX3MzodExlOzMYc6rL/lkfymAYSd2of8RyeCGOW/+wfaNJYbmsYSGkDp9OsEjRuCqribrssupWrjI0EzSPjWrKHXNNdewcOFC3njjDX7//XfMZs/TdO3alUcffbRFA4r3skRGYgoKAsCRo1+SRERE/o7GTyJezmSCQybBlb9C4iCoKYYPz4OvJkO9b87A8QVBYeFMuPF2zBYLG+bNZfUPs42O1CpMJhNjzu1JtyGxuBxuvnl5NQVZFYZmMgcHkzLtZUJGj8ZdU0P2lVdS+fs8QzNJ+9OsotRDDz1Enz59OO200wgNDW3aP3bsWH744YcWCyfezWQy4ZecBEC9lvCJiIj8LY2fRNqJmB5w6Q8w6nrP7aWvw6tHQ64aOnur5F59OPxfFwHw89vTfba/lNls4phL+pLcMwJ7rZNZL6ykNM/Ygqk5MJBOU18i9MgjcdfVsf2aa6j89VdDM0n70qyi1IMPPkhl5d6nTK2urubBBx886FDSfvgnN5yBb7uKUiIiIn9H4yeRdsTqD+MfgUmfQWg8FGyAV8fColfAR5eHtXfD/tRfqq7aN2e3Wf0snHj1QGJSQqmpsPPlcyupLKkzNJM5IIBOLzxP6DHjcNfXs/3a66j45RdDM0n70ayilNvtxmQy7bV/1apVTWeVkY5Bzc5FRET2j8ZPIu1Qt7Fw1TzocRw46+Db2+D9c6Cq0Ohk8icms5njr51MWEwsJTtz+H7acz7bX8o/yMrE6wdjiwuioriWWS+spLbKbmgmk78/nZ59lrDx43Hb7Wy//gYqfvrZ0EzSPhxQUSoyMpKoqChMJhM9e/YkKiqqabPZbBx77LGcffbZrZVVvJCKUiIiIn9P4yeRdi40Fs6bASc8AZYA2PwdvDwKtv5kdDL5k6DQsIb+UlY2LZrH8m++MDpSqwkO9+fkGwYTYvOnOKeKr19ahb3OaWgmk58fyU8/Rdjxx4PdzvYbb6Tixx8NzSTez+Q+gPLx22+/jdvt5pJLLmHKlCnYbLam+/z9/enSpQsjR45slaBGKS8vx2azUVZWRnh4uNFxvE757O/YcdNNBA0eTJcPPzA6joiISIs72LFARxw/gcZQ4qNy18Inl3qW84Gn79TY+zzL/cRrrPjuK356Yxoms5mz73uMTn36Gx2p1RTtqOSzp5dTV+0gtW8UJ14zEIu1WQuiWozb4SDnttsp/+YbsFpJfuZpwsePNzSTtL39HQccUFGq0dy5cxk1ahR+fn4HFbI90IDq79WsWUvGWWdhjY2lx29qaCciIr6npcYCHWn8BBpDiQ+rr4bv7/E0QAfPmfrOeANiuhubS5q43W6+eeEpNsybS0hkFJP+8xwhEZFGx2o1uellfDFlBY56F90OiWP8Zf0wm/deLt6W3A4HOXfcSflXX3kKU08/TfhxKkx1JK1alAJwuVxs2bKF/Px8XC7XHvcdccQRzXlKr6QB1d9zlJSweeQoAHqtWok5IMDgRCIiIi2rJccCHWX8BBpDSQew/iv48jqoKQG/YM/yviEXwD56x0nbs9fW8t7dkynankWnPv05695HMVssRsdqNVl/FPH11NW4nG76jk7kqAt677OPYVtyO53k3Hkn5V/OAouF5GeeUWGqA2nVotTChQs577zzyMzM3Kt5nMlkwuk0di1rS9KA6u+53W42DR2Gq7qart98Q0DXNKMjiYiItKiWGgt0pPETaAwlHUR5Dnx6BWT85rnd91SYOAWCfHdWTntSnLOd9+66mfqaGoZNPJ0jL7jE6EitasuyfL5/bS1uNww+NpVRp3fzisLUzrvuouyLLz2FqaefJvz44wzNJG1jf8cBzVpsetVVVzFs2DDWrl1LcXExJSUlTVtxcXGzQ0v7YzKZ1OxcRERkP2j8JOKDwpPgwi9g3P1gtsK6z+HlwyFjntHJBIhK6sRxV98EwNJZn7Jxwe/GBmpl3YfGcdQFvQFYOSeLZbMzDU4EJouFxMcew3bKyeB0suOWWyifPdvoWOJFrM150ObNm5k5cybdu2vdtHjOwFe3ebOKUiIiIn9D4ycRH2W2wJjJ0PVI+OQyKE6HtyfAmFvgyNvB0jH6yHmrnoeNZtjE01k661Nmv/wsUUnJxHb23dUdfUcnUV/jYN7MLSz6Ip2AICsDjupkaKbGwhSYKPviC3bc8n/gdhN+wgmG5hLv0KyZUocddhhbtmxp6SzSTmmmlIiIyD/T+EnExyUPhSt/hcHng9sFvz4JbxzvKVKJocb86yJSBwzGUVfHF089Qk1lhdGRWtXgY1IZdlIXAH79cBPr5+80NhCNhalHsZ16qmfG1P/dSvm33xodS7xAs2ZKXX/99dxyyy3k5uYyYMCAvc4iM3DgwBYJJ+2DilIiIiL/TOMnkQ4gIAxOnQrdx8Gsm2HHUpg2Bk58CgadqyboBjFbLEy48Tbeu+tmyvLz+Pq5Jzj9jgd8uvH5oRPSsNc4WfVTNj//bz1WfzM9hsUbmslksZD46CMAlH3+OTv+71YAzZjq4JrV6Nxs3nuClclkwu12+1yjTjXp/Gfl333PjhtvJHDQQNJmzDA6joiISItqqbFARxo/gcZQIpRmwadXQtZ8z+1+p8OEZ9QE3UAFmdt4/97/w1FX1yEan7vdbn55fyPrfsvBbDZx/FUDSBsYY3QsT/Pze+6l7LPPPM3Pn3pShSkftL/jgGbNlNq2bVuzg4nv8evUOFMqx+AkIiIi3kvjJ5EOJiIVLv4Kfn8Gfn4c/vgUshfD6dOhy2ij03VIsZ3TOP7qm/hqyn9ZOutT4tO60Xv0kUbHajUmk4kj/9ULR52TTYvzmD19DROuHURKnyhjc1ksJD7yMJhMlH36qWZMdXDNKkp17ty5pXNIO+bfsHzPWViIq7YWc2CgwYlERES8j8ZPIh2Q2QJH3Apdx8Inl0LJNnjrJDj8JjjqLrD6G52ww+k1cgx527ay5IuZfDfteSITk4nv6rsnoDCbTYy7qA+OehfpKwv45uXVTLx+MEk9IgzN1VSYgl2FKbeb8BNPNDSXtL1mNToH+N///sfo0aNJSkoiM9NzqskpU6bwxRdftFg4aR/MNhvmkBAA7DmaLSUiIvJXNH4S6aA6DYWrfochFwBu+P1ZeP0YKNhkdLIO6fBzJ5E2eCiO+jo+f+IhKouLjI7UqswWM+Mv7Udqvygc9S6+enEVuellRsfCZDaT+MjD2E4/van5ednXXxsdS9pYs4pSL7/8MpMnT+bEE0+ktLS0qQdCREQEU6ZMacl80g6YTCY1OxcREfkHGj+JdHABoXDKS3D2/zx9pXaugleOgCWvw4G3+ZWDYDZbOOnG24hKTqGypJgvnnoEe32d0bFalcXPzAlXDqBT70jsdU5mPb+SvIxyo2PtKkydcTq4XOTcehtlX6kw1ZE0qyj1wgsv8Oqrr3L33Xdj2e2MBcOGDWPNmjUtFk7aDxWlRERE/p7GTyICQN+T4er50PUocNTA15Ph/XOgIs/oZB1KQHAIp912H4Fh4eRu3cx3U6fQjHOAtStWfwsnXjOQpB4R1Nd6ClMFWRVGx/IUph5+GNuZZ3gKU7fdRtmsr4yOJW2kWUWpbdu2MWTIkL32BwQEUFVVddChpP3x69QJAPv27QYnERER8U4aP4lIk/AkuOAzOO5xsATA5u/g5ZGwXl/E21JEQiInT74Ts8XCxgW/sfCTD42O1Or8/C2cdO1AErvZqKt28MVzKyjcXml0LE9h6qGHiDjrTE9h6vbbKfvyS6NjSRtoVlEqLS2NlStX7rX/22+/pW/fvgebSdohv+QkAOo1U0pERGSfNH4SkT2YzTDyGrjiF4gfANVFMON8+OJaqDN+9kpHkdJ3AOMuvQaA+R+/x8YFvxucqPX5B1qZcN0g4tPCqaty8MWUFRTt8I7CVMKDDxJx1lmewtQdd1L6+edGx5JW1qyi1K233sq1117LjBkzcLvdLF68mEcffZS77rqLW2+9taUzSjuwa/meGp2LiIjsi8ZPIrJP8X3h8h9h9I2ACVa8Cy+Phsz5RifrMAaOO46hJ50CwOyXniFn03qDE7U+/yArE68fRGxqGLWVdj5/1psKUw8Qcc454HKx8867KP3kU6NjSSsyuZu5cPbVV1/lkUceITs7G4Dk5GQeeOABLr300hYNaLTy8nJsNhtlZWWEh4cbHcdr1a5bx7bTz8ASHU3Peb7/64KIiHQcLTkW6CjjJ9AYSqRZMubBZ1dBWRZgglHXw9F3g1+g0cl8nsvl5IunHiV92WKCwsL51yNPEZmQZHSsVldbZefL5zy9pQJD/Tj15iFEJ4caHQu3y0XeI49Q8v4HACQ8/BCRZ51lcCo5EPs7Dmh2UapRYWEhLpeLuLi4g3kar6UB1f5xlpWx6bARAPRasRxzUJDBiURERFpGa4wFfH38BBpDiTRbbTl8d6dnxhRAXF847RVIHGhsrg7AXlvLjAfvIC99C5GJSfzr4acICvP9v79qq+zMen4l+ZmewtQpNw0hppMXFKbcbvIefYySdz3/LSQ88ACR555jcCrZX/s7DmjW8r3dxcTE+PSASvaPOTwcc6jnLy57jpbwiYiI/B2Nn0TkLwWGwykvwbkfQEgs5K+DV8fCr0+C02F0Op/mFxjIabffT3hsHCU7c/jiqUdw1NcbHavVBYb4cfKNg4nr7FnK98WzXtL83GQi/u67iLroQgByH3iA4nffMziVtLT9nil1yCGH8OOPPxIZGcmQIUMwmUx/eezy5ctbLKDR9Cvf/ks/9TTqNmwg5ZVphB55pNFxREREWsTBjAU66vgJNIYSaRFVhTDrRtjQcFa+5KFw6jSI7WlsLh9XmJ3Jh/fdRl11Fb1GjuGkG27FZD7o+Rxer67as5QvP7OCgBArp9w4hNjUMKNj4Xa7yX/iSYrffBOAuNtvJ/rfFxsbSv7R/o4DrPv7hKeccgoBAQEAnHrqqQcdsLmmTp3Kk08+yc6dO+nXrx9TpkxhzJgx+zz2008/5eWXX2blypXU1dXRr18/HnjgAY477rg2Tt0x+CUnU7dhg87AJyIi0sBbxk8i0k6FxMA578KqD+Hb22HHMnhlDIy9F0ZcDWaL0Ql9UkxKZ06+5S4+eex+Ni74jdDoGI6a5Hu9//4sINgzY+rL51eRn1HOF1NWMPH6wcSnGfvDgslkIu62WzH5+VE0fTr5//0v7vp6Yq68wtBc0jIOuqdUW5oxYwaTJk1i6tSpjB49mldeeYXXXnuNdevWkZqautfxN910E0lJSRx99NFERETw5ptv8tRTT7Fo0SKGDBmyX6+pX/n2X+4jj1Ly7rtEX345cbdMNjqOiIhIi/CVsUBb/7DnK5+biNco2wFfXg9bf/TcTh0Jp06FqK7G5vJh6379iW9fegaAIy64hOETTzc4Uduor3Hw1Yur2Lm1DL9ACxOvG0Ri9wijY+F2uyl8aSqFL74IQMx11xFz7TV/OwtZjNOqPaWWLFnCokWL9tq/aNEili5d2pyn3C/PPPMMl156KZdddhl9+vRhypQppKSk8PLLL+/z+ClTpnDbbbcxfPhwevTowWOPPUaPHj2YNWtWq2XsyPwSEwCw79xpcBIRERHvY9T4CTw/7N10003cfffdrFixgjFjxnDCCSeQlZW1z+N//fVXjj32WL755huWLVvG0UcfzcSJE1mxYkWr5hSRv2FLhgs+gYnPgX8oZC2Al0fDwmngchmdzif1PWIsR5z/bwB+ffcN1v36k8GJ2oZ/kJUJ1w8iuVcE9lonX76wiu0bS4yOhclkIva6a4md7JkAUfjiixQ8O4V2NM9G9qFZRalrr7226VTGu9uxYwfXXnvtQYfal/r6epYtW8b48eP32D9+/Hjmz5+/X8/hcrmoqKggKiqqNSJ2eNaEhqJUropSIiIif2bE+KmRftgT8REmEwy9GK6eD13GgL0aZt8Ob50ERVuNTueThk08naEnnQrAd9OeY9uK1v0RwVv4B1o56dpBpPSNwlHn5KsXV5H1R5HRsQCIueJy4u64HYCi6dPJe/xxFabasWYVpdatW8chhxyy1/4hQ4awbt26gw61L4WFhTidTuLj4/fYHx8fT25u7n49x9NPP01VVRVnn332Xx5TV1dHeXn5HpvsH7/EJAAcO/fvz0NERKQjMWL8BPphT8QnRXaGC7+Ek54GvxDImu+ZNbVgKricRqfzKSaTiSMvuIQ+hx+Fy+nky2cfZ+fmjUbHahN+/hZOvHoAXQZE47S7+HrqarYuzzc6FgDRF19M/H33AlDyzv/Ive8+3E79u98eNasoFRAQQF5e3l77d+7cidW6373Tm+XP60Xdbvd+rSH94IMPeOCBB5gxY8bfnoL58ccfx2azNW0pKSkHnbmjaFq+l5envxBERET+xKjxk37YE/FRZjMMvwyuWQBpR4CjBr67E948AQo6RtGkrZjMZo67+ka6DDoER10dn/7nAQqzM42O1SasfhaOv3IA3Q6Jw+V0892ra1k/3ztWxkSddx6Jjz0GZjOlH88k5/Y7cDscRseSA9SsotSxxx7LnXfeSVlZWdO+0tJS7rrrLo499tgWC7e7mJgYLBbLXoOn/Pz8vQZZfzZjxgwuvfRSPvroI4455pi/PbbxfTVu+5pmL/tmjY31/M/R4cBR6B1TO0VERLyFEeOn3emHPREf1ThrasKz4B8G2Ytg2uHw61PgtBudzmdYrH5MnHwnCd17UltZwcxH7qEkN8foWG3CYjUz/rJ+9BmdiNsNP72znlU/ecf35IjTTyP5qSfBaqX8q6/YcfPNuOrrjY4lB6BZRamnn36a7OxsOnfuzNFHH83RRx9NWloaubm5PP300y2dEQB/f3+GDh3KnDlz9tg/Z84cRo0a9ZeP++CDD7j44ot5//33Oemkk/7xdQICAggPD99jk/1jslqxNhQIHeorJSIisgcjxk+gH/ZEOgSTCYZdAtcuhO7HgrMefnoYXh0LO1cZnc5n+AcGcfqdDxKT2oWq0hI+fvhuygu9YzlbazObTRx9QW8GjfP84PD7R5tZ8vU2r+jlFH7iiXR6/nlMfn5UzPmB7ddci6umxuhYsp+aVZRKTk5m9erVPPHEE/Tt25ehQ4fy3HPPsWbNmlb9VWzy5Mm89tprvPHGG6xfv56bb76ZrKwsrrrqKsAzGLrwwgubjv/ggw+48MILefrppxkxYgS5ubnk5ubu8QultCy/BJ2BT0REZF+MGj/phz2RDsTWCc7/GE57BYIiIXc1TD8a5twPdn1JbwlBoWGceffDRCYmU1FYwMxH7qGq1Pgz07UFk8nE6DO7M3xCGgCLZ23j948343YZX5gKG3s0Ka9MwxQURNXvv5N16WU4tYy8XTC5vaG0eQCmTp3KE088wc6dO+nfvz/PPvssRxxxBAAXX3wxGRkZ/PLLLwAcddRRzJ07d6/nuOiii3jrrbf26/XKy8ux2WyUlZVpcLUfdkyeTPk33xJ3++1E//tio+OIiIgcNF8YC8yYMYNJkyYxbdo0Ro4cyfTp03n11Vf5448/6Ny5M3feeSc7duzgnXfeAXb9sPfcc89x+umnNz1PUFAQNpttv17TFz43kXatMh++uRXWfe65HdUVJkyBrkcamcpnlBcWMOOB2ykvyCcmtQtn3/84QaFhRsdqM6t+zOb3jzcD0GN4POMu6oPF2qw5Ly2qevkKsq+8EldFBQF9+pD66nSsMTFGx+qQ9nccsN9FqS+//JITTjgBPz8/vvzyy7899uSTTz6wtF5MA6oDk/fkkxS//gZRF11I/J13Gh1HRETkoB3MWMCbxk/6YU+kg9rwNXz9f1DR0P9oyAVw7MMQrLNpHqyS3BxmPHAHVSXFxHftzpn3PEJgSKjRsdrMxkW5/PT2elwuN6l9ozjuiv74B7buic/2R+2GDZ6ZUkVF+HfuTOqbb+CXlGR0rA6nxYtSZrOZ3Nxc4uLiMJv/ugJqMplw+tCZ1zSgOjDF/3uXvEcfJezYY+n0wvNGxxERETloBzMW6KjjJ9AYSsSr1JbDjw/Cktc8t0Ni4bjHYcCZnn5U0mxF27OY8cAd1FSUE9+1B2fe83CHKkxl/lHE7FfW4Kh3EdclnAnXDSQo1N/oWNRnZJB5ySU4cnZiTUgg9Y3XCeja1ehYHcr+jgP2e36dy+VqOuOKy+X6y83XBlRyYPwSG3pK7ecppkVERHyZxk8i4hUCw+Gkp+GS7yCmF1QVwKeXwf9OhaKtRqdr16I7pXLWvY8SFBZOXvpmZj5yL7VVlUbHajOd+0Vzys1DCAixkp9RzqdPLqe80Pj+Zf5dutDl/ffx79oVR24umeedT83q1UbHkn3Y76JUVFQUhYWFAFxyySVUVFS0Wihpv6yJiQDYdfY9ERERjZ9ExLukjoCrfoex94AlANJ/gakjYe6T4Kg3Ol27Fds5jbPufZTAhsLUJ492rMJUQpqN0/9vKKGRAZTmVTPziWXkZxrfZNwvIYHO771LYP/+OEtLybz431T+9rvRseRP9rsoVV9fT3lD9/q3336b2traVgsl7ZdfQ1HKWVCIq17/YxMRkY5N4ycR8TpWfzjiVrhmAXQ9Gpx18PMjMG00pO/dS072T2znNM5uKEzlbu14hamoxBDOuG0Y0cmh1JTX89nTy8lYU2h0LKyRkaS+9RYho0bhrq4m++qrKZs1y+hYspv97il17LHHkpeXx9ChQ3n77bc555xzCAoK2uexb7zxRouGNJL6IRwYt9vNxsFDcNfV0W3O9/i34imuRURE2sLBjAU66vgJNIYSaRfcblgzE76707OkD2DAWTD+EQhLMDZbO5Wfkc7Hj9xDbUU5cWndOOOuhwgO37+zlvqC+hoHs6evIXt9CSaziSP/1ZN+Y5KNjoW7vp6cO++i/OuvAYi/8w6iLrrI4FS+rcV7Sr377ruceOKJVFZ6qr1lZWWUlJTsc5OOy2Qy4ZfQ0Fdqp5bwiYhIx6bxk4h4NZMJBp4F1y2F4ZcDJljzMbw4HBa9Ak6H0QnbnbguXTnrnkcICreRv20rHz14J5UlxUbHajP+QVZOum4QvUcm4Ha5+eW9jSz4fCtu137NhWk1Jn9/kp58gsgLJwGQ9/h/yHviSdwul6G55ABmSu0uLS2NpUuXEh0d3RqZvIp+5TtwmRf/m+qFC0n673+wnXKK0XFEREQOSkuNBTrS+Ak0hhJpl3JWwFeTIWe553b8ADjxSeg80thc7VDRjmxmPnw3lSXFRMQncta9jxIeG2d0rDbjdrtZ8tU2lnydAUC3Q2IZd3Ff/PwthucqevU1Cp55BoDwE08g8fHHMQcEGJrLF7X4TKndG3UeffTR+Psbf5pH8U67ZkrpDHwiItKxafwkIu1K0hC47Ac46RkIjIC8NfDm8fDpFVChsf2BiE5O4ZwHn8AWF09p3k4+vP92inN2GB2rzZhMJg6d2JVxF/XBbDGxdXkBnz+9nKqyOsNzxVxxOUlP/Bf8/Cj/5luyLr0UZ2mpobk6MjU6lxbnl6Qz8ImIiIDGTyLSDpktMPxSuH45DL0YMMHqGfDCMJj/gs7SdwAi4hM454H/EpnUiYqiAmY8cDv5GelGx2pTvUcmcspNgwkIsZKfWcHM/yylcLvxDeBtJ59M6qvTMYeGUrN0GRnnnU/99o5TNPQmanT+DzT1/MCVfPQRuffdT8iRR5D6yitGxxERETkoanTePBpDifiIHcvgm1s9lwDR3eG4x6HneGNztSPVZaXMfPReCjK34R8UzCn/dw+p/QcaHatNleZX8/VLqynNq8YvwMKxl/QlbVCs0bGo3bSJ7CuuxJGbiyUmhpSpLxE0sGP92bSWVm10bjKZ1KhT/pJfomemlEPL90REpIPT+ElE2r3koXDpD3DyixASC0Vb4P2z4L2zoHCz0enahWBbBGff/zid+vanvqaaTx+/j40Lfjc6VpuKiAvmjNuGktwrEnudk2+mrWHpNxk0o8V1iwrs2ZMuMz4koHdvnIWFZE66kPLZ3xmaqaNRo/N/oF/5Dlzdli2kT5iIOTycXosXGR1HRETkoKjRefNoDCXig2rL4NcnYeE0cNnBbIVDr4Qjb4WgSKPTeT1HfT3fvPgUmxfNB5OJsRdfwZDjJxodq005nS7mfbSZNXM9S+W6HRLHuIv64BdgbAN0Z2UVObfcQuXcuQDE3nQT0VdegclkMjRXe9biM6V2t23btqYBlXojyJ9ZEzwzpVzl5TgrqwxOIyIi4h00fhKRdi/QBuMfgWsWQo/jwOWAhS/B84fAoungtBud0KtZ/f2ZcNPtDBp/Erjd/PTmK/z2wduGzxZqSxaLmSP+1Yujzu/V0AA9n0+fWkZ5UY2xuUJD6DT1JaIuuhCAgilT2HnHnbjq1UOttTWrKOVyuXj44YdJTk4mNDSU9HRPs7Z7772X119/vUUD+rI/ftvBd6+tJeuPIqOjtChLaAjmsDAAHGp2LiIiAmj8JCI+JKY7nP8RXPAJxPaGmmL49laYOhI2zoYOVGQ5UGazhXGXXMXocyYBsPjzj/n6+SdxdLDiR78xyZxy8xCCwvwozK7k48eXkr2h2NBMJouF+DvvJOGB+8FioeyLL8j69yU4inzr+7q3aVZR6pFHHuGtt97iiSee2OPUxgMGDOC1115rsXC+bufWMrYszacgu8LoKC2usa+UXX2lREREAI2fRMQHdT8GrpoHJz0DwTFQtBk+OAfengg5K41O57VMJhMjTj+H466+CbPFysb5v/LRw3dRXVZqdLQ2ldQ9grPuHE5sahi1lXZmPbeS5d9lGj5zLPLcc0l55RXPmfmWLWPbmWdR88cfhmbyZc0qSr3zzjtMnz6d888/H4tl19rPgQMHsmHDhhYL5+tCIwIAqCypMzhJy7MmJgBg10wpERERQOMnEfFRFisMvxRuWA6jbwSLP2T8BtOPhE8uh9IsoxN6rf5HHcOZdz9EYEgoOzdt4L27b6Foe8f6vMKiAjn9/w6h96hE3G5Y8NlWZr+ylroah6G5Qg8fTZePPsK/SxccO3eSef4FlH39taGZfFWzilI7duyge/fue+13uVzY7VpHvL9CowIB3yxK+SU0noFPRSkRERHQ+ElEfFygDY59CK5bCgPO9uxb8xG8MBS+vweqjV2a5a1S+g3kX488RUR8IuUFebx/z/+RsWq50bHalNXfwthJvT19pqwm0lcW8PHjSyjaUWloroCuaXT5aAYhR4zBXVtLzi3/R/7Tz+B2Og3N5WuaVZTq168fv/322177P/74Y4YMGXLQoTqKxplSVaU+WJTS8j0REZE9aPwkIh1CZGc441W44hfoMgac9TD/BXhuMPz2NNRXG53Q60QldeJfjzxFcu++1NdU8+njD7B01qeGL2NrSyaTiX5jkjn9/4YSGhlAWX4NM/+zlPXzcwz9HCzh4aS8/DLRl18GQNGrr5J91dU4SkoMy+RrrM150P3338+kSZPYsWMHLpeLTz/9lI0bN/LOO+/w1VdftXRGnxUS2bh8z/fOwOOn5XsiIiJ70PhJRDqUpCFw0SzYPAd+fBDy1sKPD3nO0nfkbXDIhWDxMzql1wgOt3HmPY/yw2sv8ccvPzD33TfI27aV8Vdej19AoNHx2kx8l3DOvns4c95YR/a6Yn56ZwM7NpZyxL964h/YrPLFQTNZLMTdcgsBvXqz8557qPrtNzLOOJPk558nqH8/QzL5kmbNlJo4cSIzZszgm2++wWQycd9997F+/XpmzZrFscce29IZfVZoQ1GqpsKOw+5bUwCtjcv3clSUEhERAY2fRKQDMpmg53i48jc4bTpEpEJlLnw9GV4cDqs/ApdvfQ86GFY/P4676kbGXnIVZouFDfPm8uF9t1NekG90tDYVFOrPxOsGcdgpXTGZYOOiXGb+Z6nhy/lsE06iy4wP8UtNxZ6TQ+Z551E6c6ahmXyByd2R5gQ2Q3l5OTabjbKyMsLDw1v0ud1uN6/cMBen3cUFD4/EFhvUos9vpPrsbLYeOx5TQAC9Vq7AZDIZHUlERKRZWnMs4Mv0uYnIXhz1sOwt+PUJqCrw7IvtA0ffBX0meopYAkD2ujXMeuZxairKCQoL56Qbb6PzgMFGx2pzOZtL+f71P6gqrcPiZ+bws3rQb0ySod8vneXl5Nx+B5U//wyA7cwzSLjnHsyBHWdG2/7Y33FAs2ZKNVq2bBnvvvsu7733HitWrDiYp+qQTCbTbn2lfGsJnzU+HgB3XR3O0lJjw4iIiHgRjZ9EpMOy+sNhV8ANK2HcfZ7m6AXr4aNJMP0o2PQdaM4EACl9B3DBf6YQ16UbNRXlzHz0XhbM/ABXB5tZltQjgnPuHk5qvyicdhdz39/It9PWUFNZb1gmS3g4nV56kdibbgKzmbKZn5BxzrnUpW8zLFN71qyiVH5+PmPHjmX48OHccMMNXHfddQwdOpRx48ZRUFDQ0hl9WmhTXynfanZu9vfHEhMDgD0nx+A0IiIixtP4SUSkQUAojLkFblwNR9wG/qGwcyW8fza8Ns7Th0rFKcJj4jj34ScYMHY8uN3M//g9Pn38AarLSo2O1qaCwvyZcO0gRp/ZHbPVxLZVhXz40GKy1hUZlslkNhNz1ZWkvvYqluho6jZuZNuZZ1L2xReGZWqvmlWUuv766ykvL+ePP/6guLiYkpIS1q5dS3l5OTfccENLZ/RpIT5alIJdZ+Bz5OoMfCIiIho/iYj8SVAEjL0bblwFo64HaxDsWAbvnQmvHQNbfujwxSk//wDGX3kDx19zM9aAADJXr+B/t9/A9vVrjY7WpkxmE4OPSeXM24cRmRBMdXk9s55fxe8fbza0P3PIqFGkffYpwSNG4K6uJuf2O8i58y5c1TrL5P5qVlFq9uzZvPzyy/Tp06dpX9++fXnppZf49ttvWyxcRxAa6Vl36pNFqYSGM/DtVFFKRERE4ycRkb8QEgPjH4GbVsPI6xqKU0vh3TM8M6c2zu7wxal+R47j/EefISo5hcqSYj566C7mf/w+LmfHWs4XmxLGWXcNp/+RyQCs+jGbjx5bSn5muWGZ/OLiSH39NWKuv86znO+zz9h25lnUrltnWKb2pFlFKZfLhZ/f3qfv9PPzw+VyHXSojqSxp1RliW/1lAKwJjYWpbR8T0REROMnEZF/EBoHxz3qmTk14tpdM6c+OAdeGQPrvoAO/PdlTEpnzn/sGfqOORq3y8WCme/z4QO3U5bfsSYB+PlbOPJfvTjpmoEEhftTsrOKmf9dxqJZ6Tgdxvz7YbJYiL32WlLffBNrbCz16elsO+dcil57DXcHKxweqGYVpcaOHcuNN95Izm69gnbs2MHNN9/MuHHjWixcR9DYU6qq1AdnSiUmAeDQTCkRERGNn0RE9ldYPBz/mGfm1OgbPT2nctfARxfCyyNh5QfgtBud0hD+gUGccN0tnHjdLfgHBbNz0wbeue161v32s9HR2lyXgTH8675D6T4sDrfLzdKvM5j536UU7ag0LFPIYYeS9uUXhB4zDux28p96mqx/X6I+y3+jWUWpF198kYqKCrp06UK3bt3o3r07aWlpVFRU8MILL7R0Rp/WuHyvwheX7zXOlFJPKREREY2fREQOVGgcHPsQ3LTG0xA9wAYFG+Dzq+D5Q2DRdKjvmL17+ow5mgufeIGkXn2pr6nh2xef5qvnnqCmwrhlbEYICvXnuMv6M/6yfgSEWCnMruSjx5Z4Zk3ZjZk1ZY2MpNMLL5D4yMOYgoOpXryY9FNOpWzWV7g7+DLUfTG5D+JTmTNnDhs2bMDtdtO3b1+OOeaYlszmFcrLy7HZbJSVlREeHt7iz19dXs+bt/0OwFUvHoXF2qw6oVeqWbmSjHP/hTUxkR4//2R0HBERkWZp6bFARxg/QeuPoUSkA6otgyWvw8KpUNVw1tLgGDjsKhh+KQRHGZvPAC6nk0Wff8SCmR/gdrkItkVwzOXX0mP4SKOjtbmqsjrmvr+RbasKAYhMDGHspN4kdLUZlqk+M5Mdt91G7arVAIQdewwJ99+PteFM9b5sf8cBB1SU+umnn7juuutYuHDhXk9aVlbGqFGjmDZtGmPGjGl+ci/T2gMqt9vNtOt/weVwM+mRkYTHBLX4axjFnpfPliOPBIuF3qtXYbJYjI4kIiJywA52LNARx0+gopSItCJ7Dax4F+Y/D6VZnn1+wTBkEoy8BiK7GBrPCLlbNjH75SkUbfd8Hr1HH8nYf19JUFjH+vvX7XazZVk+v83YRE2FHUww4KhOjDilK/6BVmMyORwUTp9O4dSXweHAYrMRf++9hJ90IiaTyZBMbWF/xwEHNC1nypQpXH755ft8QpvNxpVXXskzzzxz4Gk7MJPJtKvZuY/1lbLGRIPVCk4njvx8o+OIiIgYQuMnEZEW5hcEh14O16+A01+DhAFgr4bFr8DzQ+Djf8P2ZUanbFMJ3XtyweNTGH7KmZhMZjbMm8tbt1zD5kXzO9SSMZPJRI9h8Zx3/wh6j0gAN6z5eTsfPLiIrSvyDfksTFYrsddcQ9rMjwno0wdnWRk5//d/7LjhRhwFBW2ex9scUFFq1apVHH/88X95//jx41m2rGP9x98SGvtKVflYXymTxYI1LhYAR16ewWlERESMofGTiEgrsVhh4Flw5W8w6XPoNhbcLvjjU3htLLw+Hv74HJwOo5O2Cau/P0ecdzH/evhJopI6UV1WypfPPMYXTz1CeWHHKn4Ehvox7uK+TLxhEOExgVSW1DH7lbV8/dJqygpqjMnUuzdpH80g5rrrwGqlYs4ctp40gZKPP8bdgc8qeUBFqby8vH2eyriR1WqlQJW+AxbSMFOqoqTW4CQtzy8uHgC7ZkqJiEgHpfGTiEgrM5mg29Ew6TO4ah4MOg/MfpC9CD6+yDN7av6LUFNqdNI2kdijF5P++zyHnXYOZouVrUsX8dbkq1n29Re4nE6j47Wp1L7RnHvfYQw9oTNmi4nMtUV88NAilny9DYe97T8Lk58fsdddS9rHHxHYty+u8nJy772PrAsvoi49vc3zeIMDKkolJyezZs2av7x/9erVJCYmHnSojiYsylOU8rWZUgDWuDgAHHkqSomISMek8ZOISBtK6A+nvQw3/+E5Y19wNJRlwfd3wzN94KubIX+90SlbndXfn8PPncSk/z5HUq++2Otq+eWdV3nv7sns3LzR6Hhtys/fwohTunHuvYeS3CsSp93F4lnb+ODBRaSvKDBkSV9gnz50+WgGcXfcjikoiOqlS9l2yqkUvPgSrjrfqwv8nQMqSp144oncd9991NbuPaOnpqaG+++/nwkTJrRYuI4iJMKzfM/XekoBWOM9M6Uc+Vq+JyIiHZPGTyIiBgiLh7F3e4pTE5+DuH6evlNL34CpI+DtibB+ls8v7YtJ6cy5D/yHY6+4joCQEPK3beX9e25h9tQpVJWWGB2vTUUmhHDKTYM59tK+hNj8KS+s5dtX1vDFlJUU7ahs8zwmq5Xoiy+m21ezCD3ySNx2O4Uvvkj6hIlU/Pxzm+cxygGdfS8vL49DDjkEi8XCddddR69evTCZTKxfv56XXnoJp9PJ8uXLiW8oRPiCtjhzTPrKAr6dtoa4LuGcdcewVnkNoxS99hr5Tz2N7ZSTSfrvf42OIyIicsAOdizQEcdPoLPviYiXcbsh43dPM/QNX3t6TwGEJcHQi+CQiyDct2etVpWW8NsHb/PHLz8A4B8UxMgz/sWQEyZisf71MnNfVF/rYPl3mayck43T4cJkgn5jkhk+IY3gcP82z+N2u6mYPZu8//y3qR9z6JFHEn/Xnfh37tzmeVrC/o4DDqgoBZCZmcnVV1/Nd9991zTNzWQycdxxxzF16lS6dOlyUMG9TVsMqPIzy/n48aWE2Py5+L+Ht8prGKXsyy/Jue12gkeMoPNbbxodR0RE5IC1xFigo42fQEUpEfFipdmw9HVY/j+oLvTsM1mg94kw9N/Q9WgwH9CionZl5+aN/PTmNHK3bgYgMjGZMeddRPfhIzGZTAana1vlhTXM/2QLW1d4ejv6BVgYMj6Vwcek4hdgafM8rqoqCqdNo+itt8Fux+TnR9QllxB9+eVYQkPaPM/BaLWiVKOSkhK2bNmC2+2mR48eREZGNjusN2uLAVV1eT1v3vY7mOCqF4/CYvGdvwCrFi4i6+KL8U9Lo9u33xgdR0RE5IC15Figo4yfQEUpaR1utxu3G9yAq+G6q+HrzO633Xgmwrhx43Lvus/t3u024HI1Pt9fH7fH8zbtAxof4/Jc7s9j/uqYxvt2v+25f/fjGx/feNxfH7PH89Jw27X38za+770es/trwR7HuHHjcu3+WM9nscdnv9ufi3u3DLtf9zzK848/72v8itr4RbU531gbayumPfaZmm6bTODntnNY3TzGV31FH/sfTcflWxKYG3o8v4UcR7lfDOaGx5lMJswmMJtMmM0Nl3vs81y3mD37d7/cdR0sZjOW3a5bzZ7HWhuOa7q0mLCYzfg13PazmJv2N173M5sbbpuwms34WT3HWy1m/BqOazx2j/+WXC7+mPsjv33wNtVlpQAk9+7LEedfQlLP3gf+gbdzOzaWMO+TLRRkVQAQbPPn0Alp9BmViNmA7+d16dvIe/RRqubNA8ASE0Ps9dcTccbpmKzWNs/THK1elOoo2mJA5Xa5mXb9L7icbi58bBRhUYGt8jpGqNu2jfQTTsQcHEyv5TrdtYiItD8qrjRPa31uRZV1/OfbDcCuL6yw7y+tbnb/5rvX1YbHufe6z733w/b6krznc+768v3nPLvft+fz72v/rtfY1xf0v3ze3b/075Zt931ut3uP13c3XHHDPooGu2Vx/8Xz/On2rmKO5zWabv9D4WL3ItO+nmv3oolL31qkFfUyZXGe5UdOs8wj3FQNgMNt5mfXEGY4j+IX1yActI9iwL6YTWC1mPFvKFb5Wz3FqmDs9MhbSuedS7C4PP21SuP7UNhrHO7w2Kbj/K1mAqyeS/+G243XA/waLy2ey92ODbBadru/4XbD/VYvm4zhdrnZvCyPRV+kU17o6QMZER/MoRPS6D40DpO5bWeRud1uKn/8kbwnn8SemQVAQI/uxN12G6FjxrRpluZQUaqFtNVA9J2751NRVMvptw4lsZut1V6nrbmqqtg41NMnq+fSpe1uyqGIiIiKUs3TWp9bdnE1Y574ucWeTzoWi9kz48VsMmEyeWbLNM52MZlomg3TeJypYb+lYTaMabfHWXZ73O6XjbNoTOx6jPkvjjE3TOcx73HMbq9p3jW7p3GmzV65zEDTa3n2mXbP1fi+TXsew+6vCZjNu7I0fhb7fn9AU47dHt/woKZ8Dfd7djd+brvtb5iztOtz97yP3ffR8Fx/9k+lgT8Xehv37V4c3asg23C8xVFDwo7v6JI5k5ji5U2PrwmIJiNpIluST6E0tJunUOpy42yahbbbjDWXG+dul06XZ7/T5dlcbjcOlxunc9dxjob77E7XrvtdbhxONw6XC0fTdTcOp+e23elqeEzDMU439U4XdqfrgGeXhTgqOaxkCX0qN2LGjQsTG0J7sSRiKOV+rfP/PovZ1FSgaixeBTZcNu4L3L2Q5de4z3M70G/X/YF+u257nmPXvgCrmSA/S8P9lr1mjf2Z0+5i7a87WPpNBrVVdgCik0M4dGJX0gbFtPkSR3d9PSUffkjhS1NxlpUBEDxyBHE330zQwIFtmuVAqCjVQtpqIPrpU8vYuaWM8Zf1o8cw32p0unHYcFyVlXT95msCunY1Oo6IiMgBUVGqeVrrcyursfP+oqym27t/N9jX14R9fXfY/cvw3seb9niufT1/0zH7eu3ddv75ORq/mP/Vfbvf0fjFftf1Xcfv/jyNeUz7uG/3x4Fpty//excM9llM2O0x/Ol2U3Gm6TV2K9r8+fG7XTf/6XEm0+6Flj0fs+vYxkLIngWQxiLInws/jZ/T7kurOlqfHGkhBRthxf9g1YdQVbBrf/JQGPQv6Hc6hEQbl+9vNBa47E5PscrudGF3ual3uHA4XQ3FK8/+ekfDbYeLip1Z5P30GTVb13ieyGzG2nsE7kHHYA8K9xzbcHxd43XHbtedjbede+yva9hndxpffmictdVYqArarYAV5G8h0Oq5DDKZiNxeR1B6FSaHJ7clOoDwYdFEdAsnKMBKcMNjgv09zxXsb216vpb+e8dZVkbhy9Mofu89sHuKZaHHjCP2hhsI7NmzRV+rJago1ULaaiD6/et/sHlJHqPO6M6QY1Nb7XWMsPWkCdRv3Urqm28QMnKk0XFEREQOiIpSzaPPTUR8htMOm+fAyvdg02xoWOaG2Qo9xsOgc6Hn8WANMDZnC8rZtIH5H79H5uoVAFisVvoffSzDTz4DW1xCs5/X2VAYq3M4PYUqu+d6rd1FvdNJnd1FbeNth4tau7OpoFW727GN+2vtu+/f+5hau5PahsJYcwW4YHidlaF1VvwbfjnIN7tYGOhgk58T9z5/4IAgP0+xKsjfQrCflSB/CyEBFoL8rIQEeO4L9rcS4m8hOKDh0r/xPishAZ7rIf5WQgM8t/2tZuq376DwpZco++ILcLnAZCJ84gRirr6agLS0Zr/PlqaiVAtpqwHV/E+2sGJOFoPGpnD42T1a7XWMkHXJJVTNX0DSf/+D7ZRTjI4jIiJyQFRcaR59biLikyoLYO1Mz+ypnSt37Q+wQd+JMOAs6DIGzG1/5rbWsH39WuZ99C7b160FwGQ202f0kRx66llEd2o/kylcLndTsavW7qTGvquI1Vi8qq7fVcSqrW+47XBS07C/vspOWEYN0bn1WBpqXBV+sCbczXp/J5V250EVv/aHv8XsKVQFWOlaXcDEZbPov8XTu9llMrF98OFkn3gO5rSuhAZaCQ+0EhboR1jDZeNtf2vr9/NSUaqFtNWAatVP2fz+0Wa6HRLL8VcMaLXXMULO7XdQ9sUXxE6eTMwVlxsdR0RE5ICouNI8+txExOflr/cUp9Z8DOU7du0Pjfcs7et/BnQatu+1wu2I2+1m+/q1LP78YzJW7eqz1X34CIZNOJ2kXn061BLZ2io7q3/ezuqfsqmr9syaC4kIYODYTvQenYTLaqK63kFNQ2Grut7ZcN3RdPvP16vqPJeVdZ79VXUOqhr2V9U5qPubYlf30u1csP47DstbD4ALE78nDeCDXseQYUva52OC/CyEBVoJD/JjbO847jqxT4t/TipKtZC2GlBtXZHP7FfWEp8Wzpm3D2u11zFC/jPPUjR9OpHnn0/CvfcYHUdEROSAqLjSPPrcRKTDcLkgaz6smQnrPoeakl332VKg7ymeIlXyIe2+QJW7dTOLP/+YzYvnN+1L6N6ToSedSs/DRmO2+MYMsf1RX+Ng7a87WPljNjXl9QD4BVroe3gSg8amEBYV2GKvZXe6qK5zUlnvoKrOU7yqrPVcr2i4bt68kZRvPiRpzaKmx23q3J/vBxzD8qhuVNQ5qaxz7PXcpw5OYsq5Q1osayMVpVpIWw2o8jLKmfmfpYRGBnDR46Nb7XWMUPzee+Q9/Ahhxx5LpxeeNzqOiIjIAVFxpXn0uYlIh+Soh60/eZb4bfwW6it33WdLhT4TPVvKYTScOrFdKtqexdKvPmf97z/jbGi6HRYTy5DjJtD/6GMJCus4f+877S42LcllxZxsSnZWAZ7aY9rgWAYc1YnknhFtOpOsduMmil6ZRvns7zwFUyCwb1+iLrmEkPHjqXJAea2dsho75bV2IoL86ZvU8n9eKkq1kLYaUFWV1fHW7fMwmeCqF4/CbGm/f0H9WcUPP7D9uusJHDSQtBkzjI4jIiJyQFRcaR59biLS4dlrYMuP8MdnngKVvWrXfaHx0Psk6D3B04PK6m9czoNQXVbKyu+/YeX3X1NTXgaAxc+P3qOOYND4E0no1rPDLO1zu91krStm5Zwstm/YNVsuKimEAUd1oueh8fgHWtssT31WFsVvvU3pp5/irq0FwJqYSOS//kXEWWdijYxs1ddXUaqFtNWAyuVy88p1v+Byubno8VGERrbcVD+j1axeTcbZ52BNSKDHLz8bHUdEROSAqLjSPPrcRER201igWj/LU6CqK9t1n38Y9DgGep3kuQxq3WJBa3DU17N+3i+snP01+Rlbm/bHpXVj0DEn0GvUGAKCQwxM2LaKcipZ88sONi7ciaPeM1vJL9BCj+Hx9Ds8ibjObff/RUdJCSXvv0/Je+/jLC4GwOTvT/iECURdcD6Bffu2yuuqKNVC2nJA9fZd86gsruOM24aS0NXWqq/Vlux5eWw58iiwWOi9ZjWmdjxNVUREOh4VV5pHn5uIyF9w1EPGr7sKVJV5u+4zWyF1JPQY79lie7WrPlRut5vcLZtYNecbNsz/tWlpn9U/gJ4jRtP/6GPp1Kd/h5k9VVdtZ8OCXNbM3U5Zfk3T/piUUPodnkSP4fEEBPu1SRZXXR3lX39DybvvUrtuXdP+0HHjSHnpxRZ/PRWlWkhbDqg+fXIZO7eWcdzl/ek+NK5VX6stuR0ONgwcBC4XPX77FWtsrNGRRERE9puKK82jz01EZD+4XJCzHDZ87SlQFazf8/6IVOhxHHQ/BtLGgH/7mW1UU1HOH7/8wJqf51C8I7tpf0R8In3GHEWfw48iMjHZwIRtx+12s2NTKet+z2HrinxcDk8ZxmI1kzYohl4jEkjtG9UmbXzcbjc1K1ZS8u67lH//PdH/vpi4W25p8ddRUaqFtOWA6rvX1rJlaT6Hn9WDQeNSWvW12trmMUfgKCigy8yZBPXvZ3QcERGR/abiSvPocxMRaYbidNg8BzZ9Bxm/gbN+130Wf0gdAd3GQfdxENevXTRLd7vd7Ny8kbW/zGHj/F+pr9k1Yyihe0/6HH40vUeNIdgWYVzINlRbaWfjolzWzcuhOGdXn7GgcH96Do+nx/B44jqHtclsMntePiY/K9aoqBZ/bhWlWkhbDqjmzdzMyh+yGXRMCoef2aNVX6utbTvzLGrXrqXT1JcIGzvW6DgiIiL7TcWV5tHnJiJykOqrIH0ubP4etv4IpVl73h8SC2lHQtejoOuRnllVXs5eW8vmJQtY//svZK5agdvt6bdkMplJ6defniMOp/vwkYREtL++WgfK7XZTmF3JhoU72bwkj5oKe9N94TGB9BjmKVBFJ4camLL5VJRqIW05oFr1Yza/f7yZ7kPjOO7y/q36Wm0t+9rrqPzxRxIeuJ/Ic881Oo6IiMh+U3GlefS5iYi0ILcbirZ4mqVv/REyfgd79Z7HRKZBl8Mh7QjPZXiSMVn3U1VpCRvn/8q6334hL31z036TyUynPv3ocdgoug07jPAY32lt81ecThdZa4vYtCSPjNWFTc3RASITguk6JJZuQ+KISQltN/249ncc0HbnI5R/FBoZAEBlSZ3BSVqeNc7TR8qel/cPR4qIiIiIiMgeTCaI6eHZRlzlaZa+fQmk/+LZdiyDkm2ebcX/PI+J6gZdRkPqKOg8EiI6e1XT9JCISA458RQOOfEUSvNy2bTwdzYtnEde+may160he90afnrzFeK6dKPbsEPpNmwEcV26tpuizIGwWMykDYolbVAs9jonGWsK2bwkj8w/iijJrWbZt5ks+zaTsKhAug6JJW1QDAndbFjaoAdVa1NRyouENBalSmsNTtLy/OLjAXDk5RucREREREREpJ2z+nsKTl1Gw9i7obYMshZ6+lBt+w1yV0PxVs+2/B3PY8KTPWf2SzkMUg6F+P5g8Y6SQER8AoeeciaHnnImZfl5bFo0j61LF5KzcQP5GVvJz9jKgpkfEBoZRZfBQ0kbPJTUAYMJDGmfS9v+jl+AxbN0b1g8dTUOMtcUkr6igMw/iqgormXVj9ms+jGbgGArqX2j6Dwghs79ogkMbZuz+LU07/g3UAAIjQgEoKq0HpfLjdnsOxVga1xDUSpfRSkREREREZEWFWiDnsd5NoCaUshaAJnzPZc5K6B8B6yd6dkA/EIg+RBPgSp5GHQaBqHGL5WzxcUzfOLpDJ94OtXlZaQvW8zWZYvIWL2CypJi1v48h7U/z8FkNpPUszedBwwhtf8gErr3xGL1rRJHQJCVnocm0PPQBOz1TrLXFZO+soDMtUXUVtrZvDSfzUvzMZkgrks4KX2iSOkbRXxaeLuZRaWeUv+gLfshuFxupl33C26Xm4v/M5qQiIBWfb22VDlvHtmXXkZAjx50nfWl0XFERET2m3ojNY8+NxERL1JfDTuWQuYC2L4YspdAXdnex0WkegpUyYdA0hBIHAQBYW2fdx8c9fVsX7+WbSuXsW3lMkpytu9xv19gECl9+5PafxCd+vQntksaZrPFoLSty+Vyk59RTsaaQjLWFFG0vXKP+/0DLST3iiS5ZySdekcSlRiCqY0nvajReQtp6wHV23fOo7KkjjNvH0Z8mu8M4Oo2byZ94smYbTZ6LVpodBwREZH9puJK8+hzExHxYi4XFG70LPnbvtRTsCrYCPy5PNDQyypxsKdAlTgQEgZCUETbZ/6TsvxcMlatIGvtKrLWrqK2smKP+/2Dgkju1ZfkPv1J7t2X+K7d8fP3nYkfu6ssqSN7fTHZ64rIXl9CbZV9j/sDQ/1I7hlBUo9IknrYiEoKbfWVWSpKtZC2HlB9/J+l5GeUc8JVA+g6OLbVX6+tOMvL2XToYQD0WrkCc2CgwYlERET2j4orzaPPTUSknakt8yzz277Uc5mzEsq37/vYiM6eAlV8/4atn2ef2ZglY26Xi/zMbWStWcn29WvZvv4P6mv2PDuh2WIlPq0biT17k9SzD4ndexIWE+tzjdPdLjcF2RVs31DCjo0l5Gwtw1Hn3OMY/yArCV1tJHa30alXJAldbS2eQ0WpFtLWA6pvXl7NtlWFHPmvnvQ/slOrv15bcbvdbDxkKO6aGrp9/x3+qalGRxIREdkvKq40jz43EREfUJnvKU7lrPA0T9+5Gsqy9n2sfyjE9WnY+kJsb89laFybn/XP5XJSkJnB9nVr2b5+LTmb1lNdVrrXcUHhNhK79yS+aw8Suvcgrks3QiOj2jRra3M6XeRnVLBjYzE7t5SxM70Me+2uIlVqv2gmXj+oxV93f8cBvtUFzAeE2DzTCavK6g1O0rJMJhPWuFjsmVk48vJUlBIREREREfF2oXHQc7xna1RdDHlrIXcN5P3huZ6/AeorYfsSz7a7wAiI7eVZBhjTy3M9urtnZlUrnf3PbLYQn9aN+LRuDD3pFNxuN+UFeeRsXE/O5g3kbNpAYVYGNeVlpC9fQvryXZmDbRHEp3UjLq0bsZ27EpPamciEJMyW9tmfymIxk9jNRmI3z2wol9NF0Y4qcraUsnNLGck9IwzNp6KUlwmJ8AegqqzO4CQtzy8uHntmFvY8nYFPRERERESkXQqOgrQjPFsjpwOKNkP++oZtneeyZBvUlkL2Is+2O7MfRHX1FKiiu3m2qK6eLSypRZcCmkwmbHEJ2OIS6DPmaMDTOD0/I53crZvJ3bqJvPQtlOTsoLqstKmZeiOLnx/RyanEpHYmJqUz0Z1SiUpOwRYbh8mgJYvNZbaYiU0NIzY1jEFjU4yOo6KUtwlunClV6lszpQCs8fEAOPJVlBIREREREfEZFuuupXu7s9dA0VZPU/WCTbsui7eCo9Zzu3Dj3s9nDYTILp4tovOu65GdwZYCgQe/LNzq709Sz94k9ey9K25dLQWZGeRnpJO/bQsFWRkUZmfiqKsjP2Mr+Rlb//QcAUQmJROVmExkUieikpKJTPRsAcHBB52xI1BRyss0Lt+rLve9mVLW+DgAHHl5BicRERERERGRVucXBAn9PdvuXC5PE/XCzVC0BYrTPcWr4nQozfQUrAo2eLZ9CYyAiFTPZuu0awvvBLZkCI0H84Evt/MLCNyrUOV2uSjLz6MgaxuFWZkUbc+ieEc2xTnbcdTXUZCRTkFG+l7PFRRuIyI+gYiEJCLiPbO0bLHxhMfFExoVhbkZ+XyRilJepmn5XqnvFaX84jxFKXu+ilIiIiIiIiIdltm8q6jUfdye9zkdnmbqJZlQkrHbtg1Ks6Gm2LMkMLfU03x9X0wWCEuA8CQIS2y4TPBcb7wMjYdA2z82YTeZzUQkJBKRkEiPQ0c17Xc5nZTl51K0YzslO3dQkrOdkp05FOdsp7qslJryMmrKy9i5ee+ZYGaLlfCYWMJiYgmPiWu4jCUsOoaw6BhCo2I6zEwrFaW8TONMqZoKO06nC4ulfa1P/Tu7lu8VGJxEREREREREvJLFuqu31L7UVUJZNpRmebay7XtuFTvB7YTyHZ7tb18rwFOcCo3zXIbEeK6HxDZsMRAc47kMitqjMbvZYmlaqvdn9TXVlOblUpq3k9LcnZTm5lCWn0d5QT7lhfm4nA7PfXk7/zKaX2AQYVHRhEZFERIRRUhkFKGRUYRERBISEUmwzXMZEBKCqY3PbtiSVJTyMoEhfpgtJlxON9Vl9YRFBRodqcVY4xqKUlq+JyIiIiIiIs0RELrv/lWNXE6ozIfynIbCVI6nUFWRu9tlLtSVgbPOMyurLGs/XtgEQREQHO3ZgqIarkdC0J6bf1AkcTYbcfH9YPjIPZq2u1xOKouLKMvPo6KokIrCAsoL8xsuC6gsKaKuqgp7bQ3FOdspztn+t6ksVitBtgiCw20Eh9sICrcRHB5OUJiNoPBwgkLDCQoLJzAszHMZGorF6rf/n3crU1HKy5jMJoLD/aksqfPBolRDT6n8fNxud7uu5oqIiLQ3U6dO5cknn2Tnzp3069ePKVOmMGbMmL88fu7cuUyePJk//viDpKQkbrvtNq666qo2TCwiItIMZguEJ3o2hv71cfYaT/GqMh8q8zxbVSFUFUBVPlQWQHWhZ19NCeD2XNaUePpg7S+TGQLCPUsFA8MxB0YQHhBOeGC4Z78tHOLCIKAzBAyAgDDs+FNR46Kyqp6q6noqK6qpKq+ksrSEqpJiqspKqS4toa66CqfDQWVRIZVFhfsdyS8gkMDQMAJDQ0kbPJQx5128/++nhako5YVCIgKoLKmjqsy3+kr5xcUC4K6vx1laijUy0uBEIiIiHcOMGTO46aabmDp1KqNHj+aVV17hhBNOYN26daSmpu51/LZt2zjxxBO5/PLLeffdd5k3bx7XXHMNsbGxnHHGGQa8AxERkRbmF+Q5m19k538+1unwFKOqCjw9raqLobpo1/Wa0l0Fq8atttTTsN3t8lyvLd3/aEBUw7aLCfxDITQEokLAPxiHJZRqdxDVzgDP5rBQ47BQXQ81dW5q6l3U1DqorXVQU1NHbW0duD1nGbTX1VJRVEBMYvz+f2atQEUpL9TYV8rXmp2b/P2xREXhLC7GkZ+vopSIiEgbeeaZZ7j00ku57LLLAJgyZQrfffcdL7/8Mo8//vhex0+bNo3U1FSmTJkCQJ8+fVi6dClPPfWUilIiItLxWKwQGuvZDoS9FmrLGopS5Z7rdWUN+8qhrgLqGi8rPPvrKz19s+oqPNfrKxuezA31FZ6tgRUIb9j2YgICGjZbwzO4oc5lpda5awsKCjuw99TC2l1R6kCmnu/cuZNbbrmFZcuWsXnzZm644YamwZU3C7Y1nIHPx2ZKgWcJn7O42NNXqlcvo+OIiIj4vPr6epYtW8Ydd9yxx/7x48czf/78fT5mwYIFjB8/fo99xx13HK+//jp2ux0/P+/pRSEiIuK1/AI9W9hBzEZyucBeDfVVu4pU9dVgr2rY13DdXrP3dUeNpzBmrwZ7DSZHDYGOOgLtNZ5ZXPZaSIj65wytqF0VpQ506nldXR2xsbHcfffdPPvsswYkbp7GmVLVZfUGJ2l51vg46jZswJGfb3QUERGRDqGwsBCn00l8/J4D4vj4eHJzc/f5mNzc3H0e73A4KCwsJDExca/H1NXVUVe36we18vLyFkgvIiLSwZnNnubuAaGAsUvtWoP5nw/xHrtPPe/Tpw9TpkwhJSWFl19+eZ/Hd+nSheeee44LL7wQm83WxmmbLyTCd2dK+TWcgc+uM/CJiIi0qT+fYOSfTjqyr+P3tb/R448/js1ma9pSUlIOMrGIiIj4unZTlGqcev7nqeR/N/W8Oerq6igvL99ja2u7ekr54kwpT1HKkaeZUiIiIm0hJiYGi8Wy16yo/Pz8vWZDNUpISNjn8Varlejo6H0+5s4776SsrKxpy87Obpk3ICIiIj6r3RSlmjP1vDm84Ve+4Mble+W+N1PK2nAGPodmSomIiLQJf39/hg4dypw5c/bYP2fOHEaNGrXPx4wcOXKv47///nuGDRv2l/2kAgICCA8P32MTERER+TvtpijV6ECnnh8ob/iVr3H5Xk2FHafD1eav35r8GoqK9gLNlBIREWkrkydP5rXXXuONN95g/fr13HzzzWRlZXHVVVcBnvHPhRde2HT8VVddRWZmJpMnT2b9+vW88cYbvP766/zf//2fUW9BREREfFC7aXTenKnnzREQEEBAQECLPV9zBIb4YbaYcDndVJfXExYVaGielmSNiwPAkV9gcBIREZGO45xzzqGoqIiHHnqInTt30r9/f7755hs6d+4MeM5YnJWV1XR8Wloa33zzDTfffDMvvfQSSUlJPP/885xxxhlGvQURERHxQe2mKLX71PPTTjutaf+cOXM45ZRTDEzW8kwmE8E2fyqL66gqrfOtolSsZ/mes7gYt9OJyWIxOJGIiEjHcM0113DNNdfs87633nprr31HHnkky5cvb+VUIiIi0pG1m6IUeKaeT5o0iWHDhjFy5EimT5++19TzHTt28M477zQ9ZuXKlQBUVlZSUFDAypUr8ff3p2/fvka8hf0WYgugsriO6jLfanZuiYz0nNLS5cJZXNxUpBIRERERERGRjqVdFaUOdOo5wJAhQ5quL1u2jPfff5/OnTuTkZHRltEPWEhEwxn4ynyr2bnJYsESHYWzoBBHQYGKUiIiIiIiIiIdVLsqSsGBTz13u92tnKh1hDScga+q1LeKUuBZwucsKMRRWGh0FBERERERERExSLs7+15HEWzznIHP12ZKAVhjYgBwFKgoJSIiIiIiItJRqSjlpRpnSvlaTykAa4xnyZ6jQGfgExEREREREemo2t3yPV/y9vwMFqYX4W81428x49dwGWA1E1hUjz+QlVPBW/O2ERUaQKfIIDpFBhEbGoDJZDI6frM19pHS8j0RERERERGRtlNlr2JN4RpW5q9kZcFKRiaO5KJ+FxmWR0UpA63MLuXbtbn7vC/GaeLfBFJdVs+Ts9btcV+A1UxyZBCdo4LpHB1CalQwnaN3Xfe3evcEuKbleypKiYiIiIiIiLSawppCluYtZVnuMlYWrGRTySZcblfT/W63W0WpjuqsoZ04JDWCOoeLeqcLu8NNvdNJvcOFvdoBPxYS7DYxoV8C+VX1bC+pZmd5LXUOF+kFVaQXVAF7LoEzmyAlKpi0mBDSYkLoGhtKjzjPFh0aYMwb/RNrbGNPKS3fExEREREREWkpRTVFLM5dzOLcxSzNXUpGecZexySFJDEobhCDYwczNH5o24fcjYpSBhrVPYZR3WP2eZ/b7Wba3F9wOdw8dmJfwqODAKh3uMgtqyW7pJrMomoyi6vIKqomo6iazKIqquudnv1F1fyycc+iT1SIP91jQ+mZEErvhHD6JIbRMz6MsEC/Vn+vu9u1fE9FKREREREREZHmqrZXszRvKQt3LmThzoVsLtm8x/0mTPSM7MmwhGEMiRvC4NjBxIfEG5R2bypKeSmTyUSILYCKolqqy+qbilL+VjOp0cGkRgczuvuej3G73RRU1JFeWMW2wirSCyrZWlDF5vwKtpfUUFxVz+KqYhZnFO/xuJSoIPol2uifHE7/ZBv9k23EtOKsqsble06dfU9ERERERERkv7ndbraUbmHejnn8nvM7y/OWY3fZ9zimV2QvDk08lOHxwzkk/hBsATaD0v4zFaW8WIjNn4qiWqpK6/breJPJRFx4IHHhgYzoGr3HfTX1TrYWVLI5v4INuRVs2FnBxtwKcstryS6uIbu4htl/7OpvlWgLZHBKRNM2oJONYP+W+delsSjlqq7GVVWFOSSkRZ5XRERERERExNfUOetYkruEX7J/Ye72ueRW7dmbOjk0mRGJIxiRNIJDEw4lKjDKmKDNoKKUFwuxeWYrVZXVH/RzBflbmmZB7a6kqp71O8v5I6ectTllrNlRxrbCKnaW1bKzLLepEbvFbKJPYhjDOkdxaFoUw7tEERvWvNlU5pAQzMHBuKqrcRQW4q+ilIiIiIiIiEiTsroy5m6fy89ZPzMvZx41jpqm+wIsAQxLGMbhSYdzePLhdA7vjMlkMjBt86ko5cWCIxqLUvs3U6o5IkP89+ptVVnnYO2OMlZml7Iyq5QV2SXkldexdkc5a3eU89b8DADSYkIY0TWKkd1iGNUt+oCW/FliY3BlZuEoKMC/c+eWflsiIiIiIiIi7UphTSE/Z//MD5k/sHjnYhxuR9N9cUFxHJlyJEelHMWhCYcSaA00MGnLUVHKi4XY/AGo3s/ley0lNMDKiK7ReywB3FlWw9KMEpZkFLMko4QNueVsa+hd9cHibAB6xYcxsls0R/aKZWTXaAL9LH/5GtaYWOyZWTgK1VdKREREREREOqbS2lLmZM1h9rbZLM1bisvtarqve0R3xqWO4+jUo+kb1bfdzob6OypKebFdy/fatii1L4m2ICYOCmLioCQAymrsLMssZv6WIuZvLWLdznI25lWwMa+Ct+ZnEGA1M6JrNEf1imVs7zg6R++5RK/pDHxqdi4iIiIiIiIdSLW9mh+zfuTbbd+yIGfBHjOi+kX345jOx3BM6jF0sXUxLmQbUVHKi7VkT6mWZgvyY2zveMb29pxKsriqnoXpRfy2uYBfNhaws6yWuZsKmLupgAdnraNXfBjj+8Uzvm8C/ZPDm5qdOwoKjHwbIiIiIiIiIq3O6XKyOHcxs7bO4oesH/boEdU7qjfHdzme47ocR6ewTgambHsqSnmx4AjP8j1vmCn1T6JC/DlxQCInDkjE7XazKa+SXzbm88vGApZkFDfNonrhpy0k2QK5qdDJAMBRqKKUiIiIiIiI+KbM8kw+2/wZX6V/RV51XtP+1LBUTup6Esd3OZ6uEV0NTGgsFaW8WONMqboqBw67E+vf9GjyJiaTiV4JYfRKCOPKI7tRVm3n5435fL8ul182FpBTVsucPE9R6vdFG0n/dgMTBibSLyncJ9fIioiIiIiISMdR66hlTuYcPt38KUvzljbtD/MP44QuJzCx20QGxQ7S919UlPJqAcFWLFYzToeL6rJ6wmOCjI7ULLZgP04dksypQ5KptTv5fXMhqz8tgBUQXFnKtLlbmTZ3K7FhAYzqFt2wxZASFWx0dBEREREREZH9srV0KzM2zuCrrV9RYa8AwGwyMyppFKd1P40jU44kwLL/Z63vCFSU8mImk4mQCH/KC2upasdFqd0F+lk4pm88h3Mo296FzqZaThyQwI/r8ymoqOOLlTl8sTIHgITwQNJiQkiNCiY1OpiUqGBSo4JJiw7BFuxn8DsRERERERGRjs7usvNT1k/M2DiDJblLmvYnhSRxWo/TOLX7qSSEJBiY0LupKOXlgsMDPEWpUu/vK3UgGs++Zy0v5aVzB1PnghVZpSzYWsj8rUWszC4lt7yW3PJaFqQX7fX4qBB/ukQH0yUmhG6xoXSLDaV7XCido4Pxs5jb+u2IiIiIiIhIB1JUU8THmz7mo40fUVDj6ZVsNpk5qtNRnNPrHEYkjcBs0nfTf6KilJcLaUfNzg+EJSoKzGZwuXAWFxMYG8vIbtGM7BbNZKCqzsH6neVkl1STVVRDVnE12cXVZBRVkV9RR3FVPcVV9SzPKt3jea1mE52jgz09reLD6ZUQRu+EMFKigrGYtV5XREREREREmm9j8UbeW/8eX6d/Tb2rHoDowGjO6HkGZ/U8S7OiDpCKUl6usdl5dVm9wUlalsliwRIVhbOwEEdhYdPMqUYhAVaGdYliWJeovR5bVecgo6iKjMJqthVWsrWgii35lWwtqKS63snWgiq2FlTxzZrcpscE+VnokxhGvyQb/ZLC6Z9so2d8GP5WVa5FRERERETkr7ndbublzOOttW+xKHdR0/7+0f25oO8FjO88Hj+LWsw0h4pSXi4kwlOU8rWZUuBZwtdYlDoQIQHWhuKSbY/9brebnWW1bM6vZGNuORtyK9iUV8HmvEpq7E6WZ5XuMbPK32KmT1I4gzrZGNQpgkEpEXSNCcGsGVUiIiIiIiIdnt1lZ/a22bz5x5tsLtkMgMVk4ZjOx3BBnwt0Br0WoKKUlwu2NSzf87GeUgDWmBjqAEd+QYs8n8lkIikiiKSIII7suWvmlcPpIqOoij9yyhu2MtbuKKesxs6q7FJWZZcCmQDYgvwY2jmSoZ0jGd4lioGdbAT6WVokn4iIiIiIiHi/ans1n2z+hHfWvUNulWcFTrA1mLN6nsX5fc4nMTTR4IS+Q0UpL9e4fK/Kx5bvgacoBRzwTKkDfh2Lme5xYXSPC+OUwcmAZ1ZVdnENK7d7ilKrt5eyZkcZZTV2ftqQz08b8gHPbKrBKRGM6BbNyK7RDEmNUJFKRERERETEB1XWV/Lhxg/537r/UVxbDHj6RV3Q9wLO7nU24f7hBif0PSpKebldPaV8cKZUQx+p1i5K7YvJZCI1OpjU6GBOHpQEgN3pYl1OOUszS1iWWcySjBIKKupYnFHM4oxinv9xM/5WM8M6R3JEz1iO6BFLn8QwTdcUERERERFpx8rqynhv/Xu8u/5dKuorAEgOTebSAZdycreTCbAEGJzQd6ko5eUaz75XV+3AUe/E6u87s3SaZkoVtMzyvYPlZzEzKMXTW+rSw9Nwu91kFlWzIL2IBVuLWJBeREFFHfO3FjF/axH/+XYDsWEBjOkRw9jecRzZM5awQDW3ExERERERaQ/K68t5d927/G/d/6i0VwLQJbwLVwy8ghPSTsBqVsmktekT9nL+QVYsfmacdhdVZfXYYoOMjtRirLGNy/e8oyj1ZyaTiS4xIXSJCeFfh6bidrvZWlDF75sLmLupgIXpxRRU1PHp8h18unwHfhYTI7pGc2zfeMb1iSc5wnf+rERERERERHxFlb2K99a/x1t/vNU0M6p7RHeuHHQlx6Yei8XsO5NBvJ2KUl7OZDIRYvOnvLCWqrI6HytKeZbvOQvafvlec5hMJrrHhdI9LpSLR6dR53CyNKOEuZsK+GF9HukFVfy2uZDfNhdy3xd/MKiTjZMGJnLigEQ6RQYbHV9ERERERKRDq3XUMmPjDF5b8xqldaUAdLV15ZrB13Bs52Mxm8zGBuyAVJRqB0IiAigvrKXax5qde9vyvQMVYLUwunsMo7vHcNeJfdhaUMmP6/OYsy6PZZklrNpexqrtZTz2zQYGpUQwYUAipwxOIi480OjoIiIiIiIiHYbD5eDLrV8ydeVU8qrzAM8yvasHXc1xXY7TzCgDqSjVDgSHN5yBr9S3mp1bYjwzpVzV1biqqjCHhBic6OB0iw2lW2woVxzRjYKKOmb/kcvXq3NYtK2YVdmes/w9/u16xvSI5fRDkhnfN4EgH+oRJiIiIiIi4k3cbjc/ZP3A88ufJ6M8A4CEkASuGXQNE7tNVM8oL6A/gXagsdl5lY+dgc8SGoIpOBh3dTWOoiL823lRanexYQFMGtGZSSM6k19Ry+y1uXyxModlmZ7lfnM3FRAaYGXCwETOOyyVgZ0ijI4sIiIiIiLiM1bmr+SppU+xqmAVABEBEVw+4HLO6X2OzqbnRVSUagdCbJ7/YHxt+R54lvDZs7JwFBTgn5pqdJxWERcWyIUju3DhyC5sK6zis+Xb+XTFDraX1PDhkmw+XJJN/+Rwzju0M6cMTiIkQP9ZioiIiIiINEd2eTbPLn+WOZlzAAiyBnFh3wu5uN/FhPqHGpxO/kzfftuBkIiG5Xs+NlMKdi9KtY9m5wcrLSaEyeN7cdMxPVmcUcyHi7P4Zk0ua3eUc9dna3j063WcObQT/x6dRpcY35k5JiIiIiIi0prK68uZtmoaH2z4AIfLgdlk5rTup3HN4GuIC44zOp78BRWl2oFgW8PyPR/rKQW7zsDnKOwYRalGZrOJEV2jGdE1mvsm1vPJsu18sDiL9MIq3l6QyTsLMzmmTzyXHZ7GoWlRmEwmoyOLiIiIiIh4HafLySebP+HFFS9SUlcCwOjk0UweOpmekT0NTif/REWpdqBp+V65by7fg/Z7Br6WEBXiz+VHdOWyMWnM21LE67+n8/PGAuas85zJr39yONcc1Z3j+yVgNqs4JSIiIiIiArB452L+u+S/bCrZBEA3WzduHX4ro5NHG5xM9peKUu1A4/K9umoH9nonfj50xjZrbENRqrDjFqUamUwmDu8Rw+E9YtiSX8Eb8zL4ZNl21u4o55r3ltM9LpRrj+7GxIFJWC1mo+OKiIiIiIgYYmflTp5c+mRT36hw/3CuHXwtZ/c6W2fUa2f0zbYd8A+0YPXz/FFV+1hfqY66fO+fdI8L47HTBrDgznHcMK4HYYFWtuRXcvOMVYx7Zi4fLcnG4XQZHVNERERERKTN1Dvrmb56Oid/fjJzMudgMVn4V+9/8fVpX3Nen/NUkGqH9CfWDphMJoIjAigvqKGqtB5bbLDRkVqMlu/9vagQfyYf25PLxqTxvwWZvPZbOplF1dz2yWqm/bqVW8f34vj+Ceo5JSIiIiIiPu237b/xn8X/IasiC4Ch8UO567C71DeqnVNRqp0Isfl7ilI+NlPK0lCUcnaQs+81V3igH9ce3Z1/j+7CewuzmPrLFtILqrj6veUM6mTj9uN7M6p7jNExRUREREREWlRuVS7/Wfwffsz6EYDYoFhuGXYLJ6adqB/nfYCKUu1EY1+p6jLfanbetHyvuBi304nJ4jv9slpDsL+Vy4/oyrmHpvDqr+m89vs2Vm0v47zXFnFkz1jundCX7nGhRscUERERERE5KHaXnffXv89LK1+ixlGD1WTl/D7nc9Wgqwj113ceX6GiVDsREu4pSlWV+tZMKWtUFJhM4HTiLClpWs4nfy8s0I/J43sxaWQXXvxpM+8vzmLupgLmTfmVSw5P4/qx3QkL9DM6poiIiIiIyAFbmb+Shxc+3HRWvSFxQ7hnxD1aqueD1Oi8nQiO8Aegqty3ilImqxVLVBSgZufNERsWwIOn9Of7m49kXO84HC43039N5+in5jJz2XZcLrfREUVERERERPZLRX0Fjyx8hEnfTmJTySZsATYeHPUgbx3/lgpSPkpFqXYixNY4U8q3lu/Bbkv41Oy82dJiQnj94uG8efFw0mJCKKys4/8+XsU50xewJb/S6HgiIiIiIiJ/68fMHzn181OZsXEGACd3O5kvT/2S03ucjtmk0oWv0vK9dmJXTynfmikFnjPw1QEONTs/aEf3jmN09xjenLeN537czJKMEk587jduGNedK47ohr9Vf5mLiIiIiIj3yKvK47FFj/FT9k8ApIalct/I+zgs8TCDk0lb0DfUdiLE1rB8z8d6SgFNfaS0fK9l+FvNXHlkN76/+QiO7BlLvdPFU99v4uQXf2dVdqnR8URERERERHC73czcNJNTvziVn7J/wmqycvmAy/nk5E9UkOpAVJRqJxqX79XXOrHXOQ1O07Kalu/l5xucxLd0igzmrX8PZ8o5g4kM9mNDbgWnTZ3HU99txO50GR1PREREREQ6qOzybC77/jIeXPAglfZKBsYM5KOJH3HDITcQaA00Op60IRWl2gm/QAvWAAsAVT62hM+vUycA6rMyDU7ie0wmE6cOSeaHyUdyyuAkXG548ectnPHyfNIL1GtKRERERETajtPl5O0/3ub0L09nce5igqxB3Db8Nt454R16RPYwOp4YQEWpdsJkMhES7lnC52t9pQK6dQWgfstWg5P4rujQAJ47dwgvnjcEW5Afq7eXcdLzv/P+oizcbp2hT0REREREWld6aToXfnshTy19ilpnLYclHsYnJ3/CpL6TsJgtRscTg6go1Y40NjuvKvOtM/D5d+sGgD0nB1d1tcFpfNuEgUnMvmkMo7pFU2N3ctdna7jif8soq7YbHU1ERERERHyQw+XgjbVvcNass1hduJpQv1AeGPkArx77KilhKUbHE4OpKNWO+Gqzc2tkJJaoKADq0rcZnMb3JdqCePfSw7j7xD74W8zMWZfHhBd/Y+2OMqOjiYiIiIiID9laupULv72QZ5c9S72rnsOTD+ezUz7jjJ5nYDKZjI4nXkBFqXYk2EdnSgEEdG1YwpeuJXxtwWw2cfkRXfn0mlGkRAWRXVzDGS/P56Ol2UZHExERERGRds7pcvLm2jc5a9ZZrClcQ5hfGA+Pfpip46aSEJJgdDzxIipKtSMh4Q1FKR+bKQXg392zhK9ua7rBSTqW/sk2vrpuDGN7x1HncHHbzNXc8clqau2+dYZHERERERFpG5nlmVw8+2KeWfYMdpedMclj+OyUzzi1+6maHSV7UVGqHQmJaGh0Xu57RamAro1FqS0GJ+l4bMF+vHbhMG49rhdmE3y4JJtzXllAfnmt0dFERERERKSdcLldvLf+Pc788kxWFqwkxC+Eh0Y9xEvjXiI+JN7oeOKlVJRqR0JsjTOlfG/5nn/jGfg0U8oQZrOJa4/uzjuXHEZksB+rtpdx6kvzWL+z3OhoIiIiIiLi5XIqc7j8+8v5z+L/UOusZUTiCD47+TNO63GaZkfJ31JRqh3ZdfY9H5wp1b07APVZWbjrfa/o1l4c3iOGz64ZTdeYEHLKajnz5fn8tCHP6FgiIiIiIuKF3G43n2/5nNO/PJ3FuYsJsgZxz2H3MP3Y6SSGJhodT9oBFaXakeCGs+/Za53U1zoMTtOyrHFxmENCwOmkPjPT6DgdWpeYED67ZjQju0ZTVe/ksreX8ua8bbjdbqOjiYiIiIiIlyiqKeKmn2/i3nn3UmWvYnDsYGZOnMk5vc/R7CjZbypKtSP+gVb8AiwAVPvYGfhMJhP+3dTs3FvYgv14+5JDOWdYCi43PDhrHY98vV6FKRERERER4aesnzj9y9P5KfsnrGYrNx1yE28d/xap4alGR5N2RkWpdsanl/A1FqXStxqcRAD8rWb+c8YA7jihNwCv/76N22auxuF0GZxMRERERESMUGWv4v7593PjzzdSXFtMj8gefHjSh1w64FIsZovR8aQdshodQA5McLg/pXnVPlqUamh2vkVFKW9hMpm46shuRIf4c/snq/l42XYqah0896/BBFj1Px0RERERkY5iRf4K7vztTnZU7sCEiYv7Xcx1Q67D3+JvdDRpxzRTqp1pnCnla8v3gF3L99K1fM/bnDUshZcvGIq/xczsP3K59K2lVNX5Vl8zERERERHZm91p5/nlz3Px7IvZUbmDxJBEXj/udSYPm6yClBw0FaXamZCGZudVpb44U8pTlKpPT8ftdBqcRv7suH4JvPnv4QT7W/h9SyEXvL6Ishq70bFERERERKSVpJelc/435/PqmldxuV2c3O1kPjn5E4YnDDc6mvgIFaXamV09pXxvppRfcjImf3/c9fXYd+wwOo7sw+juMbx32WHYgvxYkVXKxW8upqJWhSkREREREV/idruZsWEG58w6h/XF67EF2Hj6yKd59PBHCfMPMzqe+BAVpdqZ4IaZUtU+2FPKZLHg39XTV6puq/pKeashqZF8eMUIIoI9halL3lqipXwiIiIiIj6isKaQa3+8lkcWPUKts5aRiSP5ZOInjO8y3uho4oNUlGpnQmy+O1MKIKChKFWvopRX65MYzruXHkZ4oJUlGSVc+vYSauq15FJEREREpD2bmz2XM748g992/Ia/2Z/bh9/OtGOnER8Sb3Q08VEqSrUzTUUpH+wpBeDfrXGmlJqde7v+yTbeufQwQgOsLEwv5vJ3llJrV2FKRMTblJSUMGnSJGw2GzabjUmTJlFaWvqXx9vtdm6//XYGDBhASEgISUlJXHjhheTk5LRdaBERaVM1jhoeWfgI1/10HcW1xfSI7MEHEz7ggr4XYDapbCCtR/92tTONy/fsdU7qa31vyVRAt+4A1KVrplR7MDglgrcv2dX8/Op3l2F3uoyOJSIiuznvvPNYuXIls2fPZvbs2axcuZJJkyb95fHV1dUsX76ce++9l+XLl/Ppp5+yadMmTj755DZMLSIibWVd0TrO+eocZmycAcCkvpP44KQP6BnZ0+Bk0hFYjQ4gB8Y/0IpfoAV7rZPqsnr8A33rjzCgYaZU/ZatuN1uTCaTwYnknwztHMWbFw/nojcX8/PGAu78dA1PnjlQf3YiIl5g/fr1zJ49m4ULF3LYYYcB8OqrrzJy5Eg2btxIr1699nqMzWZjzpw5e+x74YUXOPTQQ8nKyiI1NbVNsouISOtyuV289cdbvLDiBRwuB7FBsTxy+COMShpldDTpQDRTqh3y5SV8/p07g8WCq6oKR36+0XFkPx3WNZqp5x+CxWxi5rLtPDNnk9GRREQEWLBgATabrakgBTBixAhsNhvz58/f7+cpKyvDZDIRERHRCilFRKSt5Vblcvn3l/PssmdxuByMSx3Hpyd/qoKUtDkVpdqhkAjPEr4qXzwDn78//g2/wNZt2WJwGjkQY3vH8+ip/QF44actvLsw0+BEIiKSm5tLXFzcXvvj4uLIzc3dr+eora3ljjvu4LzzziM8PPwvj6urq6O8vHyPTUREvM/3Gd9zxpdnsDh3MUHWIB4Y+QDPHvUsEYERRkeTDkhFqXYoONy3z8DX2Oy8Xs3O251zD03lpmN6AHDfF2v5/o/9+8IjIiIH5oEHHsBkMv3ttnTpUoB9Lqfe3yXydrudc889F5fLxdSpU//22Mcff7ypmbrNZiMlJaV5b05ERFpFlb2Ke+fdyy1zb6G8vpx+0f34aMJHnNHzDLXeEMP4VkOiDiIkwlOUKi+oMThJ6wjo1p3KH35Us/N26sZxPcgtq+XDJdlc/8EK3r7kUEZ0jTY6loiIT7nuuus499xz//aYLl26sHr1avLy8va6r6CggPj4vz+9t91u5+yzz2bbtm389NNPfztLCuDOO+9k8uTJTbfLy8tVmBIR8RKrC1Zzx293kF2RjQkTlw24jKsHX42f2c/oaNLBtbuZUlOnTiUtLY3AwECGDh3Kb7/99rfHz507l6FDhxIYGEjXrl2ZNm1aGyVtPTHJIQCs/XUHi2al43a5DU7UsnZvdi7tj8lk4pFT+zO2dxx1DhcXvLaIN+dtw+32rX9PRUSMFBMTQ+/evf92CwwMZOTIkZSVlbF48eKmxy5atIiysjJGjfrrviGNBanNmzfzww8/EB39zz8uBAQEEB4evscmIiLGcrqcTF89nQu/vZDsimwSQhJ4/bjXueGQG1SQEq/QropSM2bM4KabbuLuu+9mxYoVjBkzhhNOOIGsrKx9Hr9t2zZOPPFExowZw4oVK7jrrru44YYb+OSTT9o4ecvqMTyegWM7AbD06wy+mbaGuhqHwalajn/XbgDUpWv5XntltZh56bxDOGlAIg6XmwdnreO691dQUWs3OpqISIfSp08fjj/+eC6//HIWLlzIwoULufzyy5kwYcIeZ97r3bs3n332GQAOh4MzzzyTpUuX8t577+F0OsnNzSU3N5f6et9sHSAi4otyKnO45LtLeGHFCzjdTo7rchwzJ85keMJwo6OJNDG529H0hcMOO4xDDjmEl19+uWlfnz59OPXUU3n88cf3Ov7222/nyy+/ZP369U37rrrqKlatWsWCBQv26zXLy8ux2WyUlZW16C9+bpcLR2XJQT3HxmWF/DYzE6fDjS02gOMu7kFkXGALJTSOq6aWTUcfC0D32V9hjbAZnEiay42bD5dsZ8oPG7E73aRGhfDEmQPpGRdqdDQR8UHW0EhM5pb/va21xgJtpbi4mBtuuIEvv/wSgJNPPpkXX3xxjzPpmUwm3nzzTS6++GIyMjJIS0vb53P9/PPPHHXUUfv1uu39cxMRac++Sf+GRxY+QoW9gmBrMHePuJuJXSeqd5S0mf0dB7SbolR9fT3BwcF8/PHHnHbaaU37b7zxRlauXMncuXP3eswRRxzBkCFDeO6555r2ffbZZ5x99tlUV1fj57f3dMW6ujrq6nad1a6xH0JLD6js5UU8f/lFLfZ8IiIiHd2Asy9l/Bmn/fOBB0jFlebR5yYi0vYq6it4bNFjfJX+FQADYwfyn8P/Q0q4evxJ29rfcUC7Wb5XWFiI0+ncqylnfHz8X57SODc3d5/HOxwOCgsL9/kYnTlGRESkfWonv7OJiIi0ihX5Kzhr1ll8lf4VZpOZqwddzdvHv62ClHi1dnf2vT9PN/ynUxrv6/h97W/UVmeOsYZGcsOrbx/w455Z9RIfbppJYkg8z495CqvZAnjeV225C5erpZMaw+12Q1ExuH3kDUmTsmoHTv2xikgrGDhyhNERRERE2pzD5eCV1a8wffV0XG4XyaHJPD7mcYbEDTE6msg/ajdFqZiYGCwWy16zovLz8//ylMYJCQn7PN5qtf7lWWQCAgIICAhomdB/w2Q24xf+z2ey2d3qgtW8lz4Tt9XN3WMeoHvyoD0PSGrBgCIiIiIiIuLVssqzuPO3O1lduBqAiV0ncudhdxLmH2ZwMpH9026W7/n7+zN06FDmzJmzx/45c+b85SmNR44cudfx33//PcOGDdtnPylvZnfauX/+/bhxM7HrREYnjzY6koiIiIiIiBjA7Xbz2ebPOHPWmawuXE2YXxj/HfNfHhvzmApS0q60m5lSAJMnT2bSpEkMGzaMkSNHMn36dLKysrjqqqsAz9K7HTt28M477wCeM+29+OKLTJ48mcsvv5wFCxbw+uuv88EHHxj5NprljbVvsKV0C5EBkdw6/Faj44iIiIiIiIgBSmtLeXDBg/yQ9QMAw+KH8djhj5EYmmhwMpED166KUueccw5FRUU89NBD7Ny5k/79+/PNN9/QuXNnAHbu3ElWVlbT8WlpaXzzzTfcfPPNvPTSSyQlJfH8889zxhlnGPUWmiW9NJ1XVr8CwB2H3kFkYKTBiURERERERKStzd8xn3vm3UNBTQFWs5XrBl/Hxf0uxtLQa1ikvTG5daqav2X06YxdbhcXz76YFfkrGJM8hpfGvfS3jd1FRESkZRk9Fmiv9LmJiLScWkctzy1/jnfXvwtAl/Au/PeI/9I3uq/ByUT2bX/HAe1qplRHtKlkEyvyVxBkDeLeEfeqICUiIiIiItKBbCzeyB2/3cGW0i0AnNvrXCYPm0yQNcjgZCIHT0UpL7etbBsAfaL6aI2wiIiIiIhIB+F0OXln3Tu8sOIF7C470YHRPDT6IY7odITR0URajIpSXi6r3NMjKzU81eAkIiIiIiIi0hZ2VO7g7t/vZlneMgCOTjmaB0Y9QFRglMHJRFqWilJeLquioSgVpqKUiIiIiIiIL3O73Xy59UseX/w4VfYqgq3B3H7o7ZzW/TS1chGfpKKUl9NMKREREREREd9XXFvMwwse5oesHwAYEjeERw9/lJSwFIOTibQeFaW8nGZKiYiIiIiI+Lafs37mgQUPUFxbjNVs5drB1/Lvfv/GYrYYHU2kVako5cUq6isori0GNFNKRERERETE11TWV/LfJf/l8y2fA9A9ojuPHf4YfaL7GBtMpI2oKOXFGmdJRQdGE+IXYnAaERERERERaSlLcpdwz+/3kFOVgwkTF/e7mGuHXEuAJcDoaCJtRkUpL5Zdng1A5/DOBicRERERERGRllDjqOG55c/x3vr3AEgOTebRwx9laPxQg5OJtD0VpbxYZnkmgBrbiYiIiIiI+ICV+Su5Z949Td/1zux5Jv837P+0MkY6LBWlvFjj8j3NlBIREREREWm/6px1vLTiJd5e9zYut4u44DgeGvUQo5NHGx1NxFAqSnmxrHJPUSolXDOlRERERERE2qPVBau5d969pJelA3Byt5O5/dDbCfcPNziZiPFUlPJiTTOlwjRTSkREREREpD2pddQydeXUptlR0YHR3D/yfo5OPdroaCJeQ0UpL1VRX0FxbTEAqeGpBqcRERERERGR/bUyfyX3zruXjPIMACZ0ncAdh96BLcBmbDARL6OilJdqnCUVHRitpnciIiIiIiLtQLW9mhdXvsi7697FjZvYoFjuG3kfR6UcZXQ0Ea+kopSXyi7PBjRLSkREREREpD1YtHMRD8x/gO2V2wFP76jbht+m2VEif0NFKS/VeIrQ1DAVpURERERERLxVRX0FTy99mk82fwJAQkgC9424jzGdxhicTMT7qSjlpRqX72mmlIiIiIiIiHf6MetHHlv4GPk1+QCc0+scbjrkJkL9Qw1OJtI+qCjlpbLKVZQSERERERHxRnlVeTy++HF+zPoRgM7hnXlw1IMMjR9qcDKR9kVFKS/VNFNKy/dERERERES8gsvt4uONHzNl+RQq7ZVYTVb+3f/fXDHwCgKtgUbHE2l3VJTyQhX1FRTXFgMqSomIiIiIiHiDTSWbeHjBw6wsWAnAwJiB3D/qfnpG9jQ2mEg7pqKUF2qcJRUVGKW1yCIiIiIiIgaqtlczbdU03ln3Dk63k2BrMDcccgPn9joXi9lidDyRdk1FKS+UXZ4NeNYli4iIiIiIiDF+yf6FxxY9xs6qnQAc2/lYbht+GwkhCcYGE/ERKkp5oczyTABSwlIMTiIiIiIiItLxbK/Yzn+X/Jdfsn8BIDk0mbsOu4sjOh1haC4RX6OilBdqXL6nmVIiIiIiIiJtp85Zxxtr3+D1Na9T56zDarJyUb+LuHLQlQRZg4yOJ+JzVJTyQlnlOvOeiIiIiIhIW/p1+688vuhxtlduB+CwhMO487A76RbRzeBkIr5LRSkv1DhTKjVcRSkREREREZHWlFGWwRNLnuC3Hb8BEBcUx63Db+W4LsdhMpkMTifi21SU8jKV9ZUU1xYDmiklIiIiIiLSWirrK3ll9Su8u/5dHC4HVpOVC/pewFWDriLEL8ToeCIdgopSXiazwtPkPCowilD/UIPTiIiIiIiI+Bany8mXW79kyvIpTRMCDk8+nNuG30aaLc3gdCIdi4pSXia7PBvQLCkREREREZGWtnDnQp5a8hQbSzYC0CW8C7cOv1Vn1RMxiIpSXiaz3DNTSv2kREREREREWkZ6WTrPLH2GudvnAhDmF8aVg67kvN7n4WfxMzidSMelopSXaWxy3jm8s8FJRERERERE2rfCmkKmrZrGzE0zcbqdWE1Wzu51NlcNuorIwEij44l0eCpKeZms8oYz72n5noiIiIiISLNU1lfy9rq3efuPt6lx1ABwVMpRTB46WX2jRLyIilJepnGmVEp4isFJRERERERE2pd6Zz0fb/qY6aunNzUxHxgzkJuG3sTwhOEGpxORP1NRyouU1ZU1/cWZFq7qvYiIiIiIyP6wu+zM2jqLaaumsbNqJ+BpYn7jITcyLnUcJpPJ4IQisi8qSnmRbWXbAIgPjifYL9jgNCIiIiIiIt7N6XLybca3vLzy5aZVJ7FBsVw16CpO63EafmY1MRfxZipKeZHGopTWOIuIiIiIiPw1p8vJ95nf88qqV9hathWAqMAoLu1/KWf3OptAa6DBCUVkf6go5UVUlBIREREREflrDpeDb7d9y/TV08kozwAg3D+cf/f/N+f1Pk8rTkTaGRWlvEhjUaqrravBSURERERERLyH3Wnn621f89qa18gszwQ8xahJfSdxfp/zCfMPMzihiDSHilJeZFu5ZkqJiIiIiIg0qrZXM3PTTN5Z9w551XkARAREcFG/izi317mE+ocanFBEDoaKUl6i3lnP9ortgIpSIiIiIiLSsRXXFvPBhg94f/37lNeXA54G5pP6TuKcXudomZ6Ij1BRyktkV2TjdDsJ8QshNijW6DgiIiIiIiJtbkvJFt5d/y6zts6i3lUPQOfwzvy737+Z2G0i/hZ/gxOKSEtSUcpLNDU5D0/DZDIZnEZERERERKRtuNwuFuQs4H/r/se8nHlN+/tH9+eSAZcwNmUsFrPFwIQi0lpUlPISOvOeiIiIiIh0JOX15Xy55UtmbJzRdCY9s8nM2JSxXNjvQgbHDtYP9iI+TkUpL5Felg6oKCUiIiIiIr5tQ/EGPtzwId9s+4YaRw0AIX4hnNb9NM7vcz6dwjoZnFBE2oqKUl5CM6VERERERMRXVdZX8m3Gt3yy6RP+KPqjaX/3iO78q/e/mNB1gpqXi3RAKkp5Abfb3VSU6mrranAaERERERGRg+d2u1lZsJLPNn/G7IzZTbOirGYr41LHcW6vcxkaP1RL9EQ6MBWlvEB+dT7VjmosJgspYSlGxxEREREREWm27Ipsvtr6FbPSZ5Fdkd20P82Wxhk9zmBC1wlEB0UbmFBEvIWKUl5gW7lnllRKWAp+Fj+D04iIiIiIiByYopoi5mTO4dtt37I8f3nT/iBrEMd2PpYzepzBkLghmhUlIntQUcoLNC7d62LrYmwQERERERGR/VRWV8YPmT8wO2M2i3MX43K7AM8Z9EYkjmBC1wmMSx2nXlEi8pdUlPICanIuIiIiIiLtQV5VHj9n/8yPWT+yNHcpDrej6b5+0f04vsvxnJB2AvEh8QamFJH2QkUpL9BUlApXUUpERERERLyH2+1mU8kmftvxGz9l/cSawjV73N8zsicnpJ3AcZ2PIyVc/XFF5MCoKOUFNFNKRERERES8RZW9ikU7F/Hr9l/5bcdv5FfnN91nwsTA2IGMSx3H2NSxdA7vbGBSEWnvVJQyWJW9irzqPEBFKRERERERaXt2l521hWtZkLOAhTsXsqZgzR7L8gItgRyWeBhHdDqCo1OOJjY41sC0IuJLVJQyWEZZBgBRgVHYAmzGhhEREREREZ9nd9pZW7SWZXnLWJq3lBV5K6h2VO9xTEpYCmOSx3BEpyMYljCMAEuAQWlFxJepKGWw9LJ0ALrauhqcREREREREfFFRTRFrCtewqmAVqwpWsbpgNXXOuj2OiQiI4LDEwxiROIIRiSPoFNbJoLQi0pGoKGUw9ZMSEREREZGWUlFfwfqi9awvXs8fRX+wpmAN2yu373VcZEAkQ+OHMixhGEPjh9Izsidmk9mAxCLSkakoZbCM8gxARSkREREREdl/LreLnMocNpVsYlPJJjaXbGZjyUYyyzP3eXw3WzcGxg5kYOxAhsQNoautKyaTqY1Ti4jsSUUpg2mmlIiIiIiI/JU6Zx07KnawrWwb6WXpe1z+uQ9Uo6SQJPpG96VvdF/6Rfejf2x/wv3D2zi5iMg/U1HKQA6Xo+mXDBWlREREREQ6HpfbRewrxSAAABTnSURBVFFNETsqd7Czaic7KnewvWI72RXZZFVkkVeVhxv3Ph/rZ/ajW0Q3ekb2pGdkT3pE9KBPdB8iAyPb+F2IiDSPilIGyqnMwe6yE2AJIDEk0eg4IiIi4oNKSkq44YYb+PLLLwE4+eSTeeGFF4iIiNivx1955ZVMnz6dZ599lptuuqn1gor4GLfbTXl9OUU1RRTWFFJU67nMr84nryqPvOo88qvzya/Op95V/7fPFeIXQufwznS1dSXNlkZXW1e62rqSEp6Cn9mvjd6RiEjLU1HKQI1L97qEd1FTQREREWkV5513Htu3b2f27NkAXHHFFUyaNIlZs2b942M///xzFi1aRFJSUmvH3G/FtcU8vuhxTCYTZpMZM2ZMJhMmGm6bPLcb9zftw9S032z2PK7xvsbHWEyWpmMtJkvTvt3v23378337ut14aTFb9rrddL1xM+99/J+vN2aVtuF0Oalx1FBlr6LKXkWFvYKq+ioq7ZWU15d7tjrPZVldGaV1pZTUlVBa67l0uBz79Tpmk5n44HiSQpNICkkiKTSJzuGdSQlLISUshajAKP25i4hPUlHKQOonJSIi8v/t3X9w0/Udx/FX0rRpiyQtDS1TCmWek44B7coRK2NTxwodPTvm2DpdVAbd9TxExn6cyE7qbhzn4eGwN6VjO+cQdx6HTnDYiefcKhS6IoXNYYVNDgeGUWFNjx9t03z3BzZrLIUizff7bfN8eLnk+/n+yDt+vPjqO998g3g6ePCg6urqtHv3bvn9fknShg0bVFxcrJaWFt1444397nvs2DEtXrxYf/zjHzV37lyzSr6sM11nVHekzuoyLPXxZpXT4ZTL6erz+OONLZfD1WfM6XBGx3seO50XGmMupyumcdZfg83pcEb372n2JTmTYhqFfZqDHz2WFG0q9qzrGe9hyJBhGIr+89HjiBGRYVy47za6o/fdkQuPw0ZYXZEudXV3KWyEFY6E1dndqa5Ilzq7O6O3893n1dHdofPh/9+fC5/T2fBZdXR3XPV8jUwZKV+aT1mpWcpKy1J2erZy0nOUk55z4fGIC/ec8QQgEdGUstB7IZpSAAAgfhoaGuT1eqMNKUm66aab5PV6tWvXrn6bUpFIRIFAQD/60Y80adKkAT1XR0eHOjr+/wd8KBS6uuL7keHO0IPTH4w2I3qaEz2Pe8YjisQ0LXpv13v77kh3n2P0jPU0Oi52690EMQwjZjkSiV3/8WZJzNjHtg8b4ehz9KdnP/W/CQaZy+HSiJQRuib5Go1IHqERySPkSfHI6/bKk+K5cHN7lOnOVEZqhjLdmcpMvXBzJ7mtLh8AbIumlIVyR+aqYHSBJo6aaHUpAABgGAoGg8rOzu4znp2drWAw2O9+jz76qFwul5YsWTLg51q9erUeeeSRT1TnlRiZMlJ35d8V9+exWk+jq6eZFXPf08CKhC+5TThyocHVe6w70h09a6h3s6znWL2bZT379X6umKbaRZpsvRt1vZuB3Ua3ZOiizUJDhnqu4/3xC3obMqJnUUmSHIr5emXvr3D2Plus50wvl9OlZGdy9HFKUopSnClKSUpRsjNZKUkpcie5lepKvXCflKpUV6rSXelKT05XmitNaa40uZPcfH0OAOKAppSFFk1epEWTF1ldBgAAGGKqq6sv2wD661//KkkX/UPaMIx+/8Deu3ev1q1bp7feeuuK/ghfvny5li1bFl0OhULKzc0d8P6I5XA45HK45JJLSrK6GgAA4oOmFAAAwBCzePFiVVRUXHKbvLw8HThwQCdOnOiz7uTJk8rJybnofvX19frPf/6jcePGRce6u7v1gx/8QD//+c915MiRi+7ndrvldvM1JQAAMHA0pQAAAIYYn88nn8932e2Ki4vV1tamxsZGTZ8+XZK0Z88etbW16eabb77oPoFAQLNmzYoZmz17tgKBgBYsWHD1xQMAAHyEphQAAMAwlZ+frzlz5qiyslK1tbWSpO9973sqKyuLucj5xIkTtXr1as2bN09ZWVnKysqKOU5ycrLGjBlzyV/rAwAAuFJOqwsYqNOnTysQCMjr9crr9SoQCOi///3vJfd54YUXNHv2bPl8PjkcDjU3N5tSKwAAgF1s2rRJkydPVklJiUpKSjRlyhRt3LgxZpuWlha1tbVZVCEAAEhUQ+ZMqTvvvFP//ve/VVdXJ+nCp3yBQEDbtm3rd58zZ85oxowZmj9/viorK80qFQAAwDZGjRqlZ5999pLbGIZxyfX9XUcKAADgagyJptTBgwdVV1en3bt3y+/3S5I2bNig4uJitbS09HsqeSAQkESQAgAAAAAAsJsh8fW9hoYGeb3eaENKkm666SZ5vV7t2rXLwsoAAAAAAADwSQyJM6WCwaCys7P7jGdnZysYDA7qc3V0dKijoyO6HAqFBvX4AAAAAAAAsPhMqerqajkcjkvempqaJEkOh6PP/oZhXHT8aqxevTp6MXWv16vc3NxBPT4AAAAAAAAsPlNq8eLFqqiouOQ2eXl5OnDggE6cONFn3cmTJ5WTkzOoNS1fvlzLli2LLodCIRpTAAAAAAAAg8zSppTP55PP57vsdsXFxWpra1NjY6OmT58uSdqzZ4/a2tp08803D2pNbrdbbrd7UI8JAAAAAACAWEPiQuf5+fmaM2eOKisrtXv3bu3evVuVlZUqKyuL+eW9iRMn6sUXX4wunzp1Ss3NzfrHP/4hSWppaVFzc/OgX4cKAAAAAAAAV2ZINKUkadOmTZo8ebJKSkpUUlKiKVOmaOPGjTHbtLS0qK2tLbq8detWFRYWau7cuZKkiooKFRYWav369abWDgAAAAAAgFgOwzAMq4uws1AoJK/Xq7a2Nnk8HqvLAQAAJiMLfDL8ewMAIHENNAcMmTOlAAAAAAAAMHzQlAIAAAAAAIDpaEoBAAAAAADAdDSlAAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYzmV1AXZnGIakCz9nCAAAEk9PBujJBBgYMhQAAIlroPmJptRltLe3S5Jyc3MtrgQAAFipvb1dXq/X6jKGDDIUAAC4XH5yGHzsd0mRSETHjx/XyJEj5XA4rC5nWAiFQsrNzdX7778vj8djdTkQc2JXzIs9MS/2E+85MQxD7e3tuvbaa+V0cuWDgSJDDS7ee+yJebEf5sSemBd7iue8DDQ/cabUZTidTo0dO9bqMoYlj8fDG5LNMCf2xLzYE/NiP/GcE86QunJkqPjgvceemBf7YU7siXmxp3jNy0DyEx/3AQAAAAAAwHQ0pQAAAAAAAGA6mlIwndvt1sqVK+V2u60uBR9hTuyJebEn5sV+mBMkAv47tyfmxX6YE3tiXuzJDvPChc4BAAAAAABgOs6UAgAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSsNS7776r8vJy+Xw+eTwezZgxQ3/605+sLguS/vCHP8jv9ystLU0+n09f//rXrS4Jkjo6OlRQUCCHw6Hm5mary0loR44c0cKFCzVhwgSlpaXp+uuv18qVK9XZ2Wl1aQnnySef1IQJE5SamqqioiLV19dbXRIQd2QoeyI/2RcZyh7IT/Zhl/xEUwqWmjt3rsLhsF5//XXt3btXBQUFKisrUzAYtLq0hLZlyxYFAgEtWLBA+/fv186dO3XnnXdaXRYk/fjHP9a1115rdRmQ9M477ygSiai2tlZvv/22Hn/8ca1fv14PPfSQ1aUllOeff15Lly7VihUrtG/fPs2cOVOlpaU6evSo1aUBcUWGsh/yk72RoeyB/GQPdspP/PoeLNPa2qrRo0frL3/5i2bOnClJam9vl8fj0WuvvaYvf/nLFleYmMLhsPLy8vTII49o4cKFVpeDXl555RUtW7ZMW7Zs0aRJk7Rv3z4VFBRYXRZ6WbNmjZ566in961//srqUhOH3+/X5z39eTz31VHQsPz9fX/va17R69WoLKwPihwxlP+QneyND2Rv5yXx2yk+cKQXLZGVlKT8/X7/97W915swZhcNh1dbWKicnR0VFRVaXl7DeeustHTt2TE6nU4WFhfrUpz6l0tJSvf3221aXltBOnDihyspKbdy4Uenp6VaXg360tbVp1KhRVpeRMDo7O7V3716VlJTEjJeUlGjXrl0WVQXEHxnKfshP9kWGsj/yk7nslp9oSsEyDodDO3bs0L59+zRy5Eilpqbq8ccfV11dnTIyMqwuL2H1fEJRXV2tn/zkJ3r55ZeVmZmpL33pSzp16pTF1SUmwzB07733qqqqStOmTbO6HPTjn//8p2pqalRVVWV1KQmjtbVV3d3dysnJiRnPycnhK0wY1shQ9kN+sicylP2Rn8xnt/xEUwqDrrq6Wg6H45K3pqYmGYah++67T9nZ2aqvr1djY6PKy8tVVlamDz74wOqXMewMdF4ikYgkacWKFbrjjjtUVFSkp59+Wg6HQ5s3b7b4VQwvA52TmpoahUIhLV++3OqSE8JA56W348ePa86cOZo/f74WLVpkUeWJy+FwxCwbhtFnDBgKyFD2Q36yJzKU/ZCfhh675CeuKYVB19raqtbW1ktuk5eXp507d6qkpESnT5+Wx+OJrrvhhhu0cOFCPfjgg/EuNaEMdF4aGhp02223qb6+Xl/4whei6/x+v2bNmqVVq1bFu9SEMdA5qaio0LZt22L+J9Hd3a2kpCTdddddeuaZZ+JdakIZ6LykpqZKuhCobr31Vvn9fv3mN7+R08nnPWbp7OxUenq6Nm/erHnz5kXHH3jgATU3N+vPf/6zhdUBV44MZT/kJ3siQ9kP+WnosFt+cpn6bEgIPp9PPp/vstudPXtWkvq8ATmdzuinTRg8A52XoqIiud1utbS0RENVV1eXjhw5ovHjx8e7zIQy0Dl54okn9LOf/Sy6fPz4cc2ePVvPP/+8/H5/PEtMSAOdF0k6duyYbr311ugn4gQqc6WkpKioqEg7duyICVU7duxQeXm5hZUBnwwZyn7IT/ZEhrIf8tPQYbf8RFMKlikuLlZmZqbuuecePfzww0pLS9OGDRv03nvvae7cuVaXl7A8Ho+qqqq0cuVK5ebmavz48VqzZo0kaf78+RZXl5jGjRsXs3zNNddIkq6//nqNHTvWipKgC8H2lltu0bhx4/TYY4/p5MmT0XVjxoyxsLLEsmzZMgUCAU2bNk3FxcX65S9/qaNHj3JtCgxrZCj7IT/ZExnKfshP9mCn/ERTCpbx+Xyqq6vTihUrdNttt6mrq0uTJk3SSy+9pKlTp1pdXkJbs2aNXC6XAoGAzp07J7/fr9dff12ZmZlWlwbYxquvvqrDhw/r8OHDfYIt34w3z7e+9S19+OGH+ulPf6oPPvhAn/vc57R9+3bOTMCwRoayJ/ITcHnkJ3uwU37imlIAAAAAAAAwHV/eBAAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSAAAAAAAAMB1NKQAAAAAAAJiOphQAAAAAAABMR1MKAAAAAAAApqMpBQAAAAAAANPRlAIwLN1yyy1aunTpoB/3i1/8op577rmY58nIyNCjjz560e2/8Y1vaO3atYNeBwAAQDyQoQCYiaYUAAzQyy+/rGAwqIqKiujYCy+8oOrqaj300EN6//33++zz8MMPa9WqVQqFQmaWCgAAYBtkKAD9oSkFAAP0xBNPaMGCBXI6///WOWrUKC1dulQTJkyI+fSvx5QpU5SXl6dNmzaZWSoAAIBtkKEA9IemFIBh7/Tp07r77ruVmZmp9PR0lZaW6tChQzHbbNiwQbm5uUpPT9e8efO0du1aZWRkRNe3trbqtdde0+23337R55g2bVq/oen222/X7373u0F7PQAAAGYgQwGIN5pSAIa9e++9V01NTdq6dasaGhpkGIa++tWvqqurS5K0c+dOVVVV6YEHHlBzc7O+8pWvaNWqVTHHePPNN5Wenq78/Pw+xz916pS2bdumv/3tbzpw4ECf9dOnT1djY6M6Ojri8wIBAADigAwFIN5oSgEY1g4dOqStW7fqV7/6lWbOnKmpU6dq06ZNOnbsmH7/+99LkmpqalRaWqof/vCH+sxnPqP77rtPpaWlMcc5cuSIcnJyYk4771FbW6vRo0eroKBAzz77bJ/11113nTo6OhQMBuPyGgEAAAYbGQqAGWhKARjWDh48KJfLJb/fHx3LysrSjTfeqIMHD0qSWlpaNH369Jj9Pr587tw5paam9jl+OBzWk08+qSVLlujuu+/Wc889p0gkErNNWlqaJOns2bOD8poAAADijQwFwAw0pQAMa4Zh9DvucDj6PO5vP5/Pp9OnT/c5zubNmxUKhbRo0SJ9+9vfVjAY1BtvvBGzzalTpyRJo0eP/qQvAwAAwFRkKABmoCkFYFj77Gc/q3A4rD179kTHPvzwQ7377rvRaxtMnDhRjY2NMfs1NTXFLBcWFioYDPYJVevWrdOiRYvk8Xg0ZswYzZo1q8/p53//+981duxY+Xy+wXxpAAAAcUOGAmAGmlIAhrUbbrhB5eXlqqys1Jtvvqn9+/frO9/5jq677jqVl5dLku6//35t375da9eu1aFDh1RbW6tXXnkl5pO/wsJCjR49Wjt37oyONTQ0qKmpSUuWLImOBQIBbdmyRefPn4+O1dfXq6SkxIRXCwAAMDjIUADMQFMKwLD39NNPq6ioSGVlZSouLpZhGNq+fbuSk5MlSTNmzND69eu1du1aTZ06VXV1dfr+978fc/2DpKQkffe73435yeJ169bpjjvu0Pjx46Nj8+bNUyQS0datWyVJ58+f14svvqjKykqTXi0AAMDgIEMBiDeH0d+XhQEggVVWVuqdd95RfX19dOzEiROaNGmS9u7dGxOiLuUXv/iFXnrpJb366qvxKhUAAMA2yFAArgRnSgGApMcee0z79+/X4cOHVVNTo2eeeUb33HNPzDY5OTn69a9/raNHjw74uMnJyaqpqRnscgEAAGyBDAXganCmFABI+uY3v6k33nhD7e3t+vSnP637779fVVVVVpcFAABga2QoAFeDphQAAAAAAABMx9f3AAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGC6/wHm3J4DrizBTQAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# VISUALIZATION: COEFFICIENT PATHS - (EXTRA)\n", + "# Lasso coefficient path\n", + "lasso_path = Lasso(random_state=2, max_iter=10000)\n", + "lambda_path = np.logspace(-4, 0, 100)\n", + "coefs_lasso = []\n", + "\n", + "for alpha in lambda_path:\n", + " lasso_path.set_params(alpha=alpha)\n", + " lasso_path.fit(X_train, y_train)\n", + " coefs_lasso.append(lasso_path.coef_.copy())\n", + "\n", + "coefs_lasso = np.array(coefs_lasso)\n", + "\n", + "plt.figure(figsize=(12, 6))\n", + "\n", + "# Lasso path\n", + "plt.subplot(1, 2, 1)\n", + "for i, feature in enumerate(X_train.columns):\n", + " plt.plot(np.log(lambda_path), coefs_lasso[:, i], label=feature)\n", + "plt.xlabel('log(λ)')\n", + "plt.ylabel('Coefficients')\n", + "plt.title('Lasso Coefficient Paths')\n", + "plt.legend()\n", + "plt.grid(False)\n", + "\n", + "# Ridge path\n", + "ridge_path = Ridge()\n", + "coefs_ridge = []\n", + "\n", + "for alpha in lambda_path:\n", + " ridge_path.set_params(alpha=alpha)\n", + " ridge_path.fit(X_train, y_train)\n", + " coefs_ridge.append(ridge_path.coef_.copy())\n", + "\n", + "coefs_ridge = np.array(coefs_ridge)\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "for i, feature in enumerate(X_train.columns):\n", + " plt.plot(np.log(lambda_path), coefs_ridge[:, i], label=feature)\n", + "plt.xlabel('log(λ)')\n", + "plt.ylabel('Coefficients')\n", + "plt.title('Ridge Coefficient Paths')\n", + "plt.legend()\n", + "plt.grid(False)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e715dd42-7021-466d-a9c1-0c0b4efeee78", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Question 2: Tree-Based Methods" + ] + }, + { + "cell_type": "markdown", + "id": "dfcf8271-d59c-4bb3-80e2-90eae36fb225", + "metadata": {}, + "source": [ + "### 2.1 Large Regression Tree\n", + "Fit a large regression tree using the training data. Report the number of terminal nodes as well as the most important variables for splitting the tree." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "a4cf00ec-7ad0-4f4d-8af5-07060fadf654", + "metadata": {}, + "outputs": [], + "source": [ + "# Loading needed packages for Question 2 tasks\n", + "from sklearn.tree import DecisionTreeRegressor, plot_tree, export_text\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.model_selection import cross_val_score, validation_curve\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.metrics import mean_squared_error\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "0207f3f9-c389-4e50-abeb-5316857ab2da", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of nodes: 343\n", + "Number of terminal nodes (leaves): 172\n", + "Maximum depth: 16\n" + ] + } + ], + "source": [ + "# Fit a large regression tree (minimal restrictions to allow deep tree)\n", + "# In sklearn, we need to set parameters to allow a \"large\" tree similar to R's tree()\n", + "large_tree = DecisionTreeRegressor(\n", + " random_state=2,\n", + " min_samples_split=2, # Minimum samples to split (very low to allow deep tree)\n", + " min_samples_leaf=1, # Minimum samples in leaf (very low)\n", + " max_depth=None, # No depth limit initially\n", + " min_impurity_decrease=0 # No minimum impurity decrease required\n", + ")\n", + "\n", + "large_tree.fit(X_train, y_train)\n", + "\n", + "# Get tree information\n", + "n_nodes = large_tree.tree_.node_count\n", + "n_leaves = large_tree.get_n_leaves()\n", + "max_depth = large_tree.get_depth()\n", + "\n", + "print(f\"Number of nodes: {n_nodes}\")\n", + "print(f\"Number of terminal nodes (leaves): {n_leaves}\")\n", + "print(f\"Maximum depth: {max_depth}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "42246727-ebca-4415-b02b-2b07397b8b67", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature Importance (most important variables for splitting):\n", + " Variable Importance\n", + "4 TS 0.233574\n", + "0 DP 0.228339\n", + "5 svar 0.194723\n", + "1 CS 0.186572\n", + "3 cay 0.117219\n", + "2 ntis 0.039573\n", + "\n", + "Most important variable for splitting: TS\n" + ] + } + ], + "source": [ + "# Feature importance (equivalent to R's splitting importance)\n", + "feature_importance = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Importance': large_tree.feature_importances_\n", + "}).sort_values('Importance', ascending=False)\n", + "\n", + "print(\"Feature Importance (most important variables for splitting):\")\n", + "print(feature_importance)\n", + "\n", + "# Most important variable\n", + "most_important_var = feature_importance.iloc[0]['Variable']\n", + "print(f\"\\nMost important variable for splitting: {most_important_var}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "62ec80eb-60d1-439a-b7c0-7aded7d6d15a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAASgCAYAAACHXFLNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV0VOfCxeE9CSFGCCEhCZrgLsWtOBQrlFLc3TVI6a3Q9vbSCe4upaU4RYoVtwLFobgFDy4BQoic7w9KvoYECHrC8HvWYq07R97Z58xcVsPO+x6LYRiGAAAAAAAAAAAAAAB4x9mZHQAAAAAAAAAAAAAAgNeBAhwAAAAAAAAAAAAAYBMowAEAAAAAAAAAAAAANoECHAAAAAAAAAAAAABgEyjAAQAAAAAAAAAAAAA2gQIcAAAAAAAAAAAAAGATKMABAAAAAAAAAAAAADaBAhwAAAAAAAAAAAAAYBMowAEAAAAAQLzduXPH7AhIIPguAAAAAEiIKMABAAAAmC5nzpxKkSKFLBaLEidOLF9fX3399ddmx3or7t+/L19fXyVPnlwWi0XOzs7y9fWN3ubu7q78+fNr5MiRCg8PNztuglShQgXlzJlTYWFhZkeRxWJRihQpoj9DX19fOTs7y2KxKHny5DG2J0mSRM2bNzc7crydP39e5cuX16JFiyQ9+7v75B9nZ2f1798/eqxvv/1WXl5eOnDggElX83T379/XTz/9pPr16ytbtmxKmTKlfH19VbRoUU2cOFERERHxGsPX11fu7u6yWCyaNm3amw/+gipXrhz99+7Lfg/btm2rfv36xeueAAAAAMDbQgEOAAAAwHQHDx7Ujh07JEnFixdXcHCwvvvuO5NTvR0uLi4KDg7WggULJEn16tVTcHCwgoODdePGDR07dkwZMmRQ165dVb9+fZPTJkzXrl3TrVu3FBkZaXYUSdKOHTuiP8Pg4GDVq1dPkrRgwYIY23v16mVy0vg7c+aMihYtqlKlSqlJkyaSnv3dffLP43vw2M2bNxUSEqLQ0NA3mttisahMmTIvdM6hQ4fUvHlz3bp1S3/88YcuXbqkoKAgVa9eXW3btlWjRo2eO8bjezN8+PCXTP7mrVixIvrv3Zc1fvx4bdy4UQ0bNlRUVNRrSgYAAAAAr4YCHAAAAAASMB8fH02ePFmurq5asGCB9u/fb3akBGfXrl0KCgqSi4uL2VFsUlRUlBo0aKD06dPrm2++eS1jDhs2TLdv31bhwoVfy3ivm729vX755RelS5dOkuTk5KQvv/xSBQsW1Jw5c3Tq1CmTEyYM7u7umj59uhYuXKjRo0ebHQcAAAAAJEmJzA4AAAAAAHg2d3d3Zc6cWXv37tWhQ4eUJ08esyMlKPb29rK3tzc7hiTp8OHDSp06dbyO7dy58zuxrP1vv/2mrVu3as2aNS89xpQpU2Jtc3JyepVYb0y2bNm0detWeXl5xdrn5+ennTt36tatW28/WAKVMWNGNWrUSN99951at24tZ2dnsyMBAAAAeM8xAxwAAADAO+nSpUv66quvVLBgQaVOnVrJkiVT9uzZ9d///lcPHz6MceyTz7pdvXq1SpQoIR8fn1hLJO/bt09Vq1ZV0qRJlSpVKhUvXlwrV65UmTJlZLFY5OvrqzZt2sQYf968eSpZsqQ8PDzk4eGhPHny6Mcff3yt5ebj5YV9fHxi7Vu7dq0qVaqk5MmTK3ny5MqaNav69eunkJCQWMcGBQWpXr168vDwUMqUKZU/f37NmDFDzZs3j35+deXKlSU9ejb74+c79+/fX7NmzVKBAgXk6ekZ67nBJ0+eVNOmTZUyZUolT55cqVOnVtOmTXXy5MlYGX799VcVL15cqVOnVqpUqZQ7d2517dpVu3fvfqHjDh48GP0sbYvFovXr18d6r/Xr16tKlSry8fGRj4+PsmbNqi+//FJ3796NPubo0aMxxvnjjz/Ur18/Zc6cWUmTJlWxYsX0559/Pv9D0qPy1MHBIV7Henl5KWXKlJo6dap8fX2VOHFiWSwWXb16Vc2bN1f69Ollb28vi8WioKAgSZJhGBo/frwKFCgQ/X0rVKiQJkyYIMMwYr3Hi3wuTzN16lS5urqqdOnS8T7nsf79+6t58+ays7OTnd2jf4LImjVrjO/VY23atJGvr2/0/yd3796tihUrKnXq1LJYLPL395ckPXjwQD/88INy5MihlClTKnXq1CpWrJi+++47Xbx4UZL0ww8/yNfXV5L0559/xnge+fOeFZ8kSRIVKlQo1vbw8HDt2bNH3t7eyp49+wvfiyfF57PJmjVr9PfC29tbDRs2jN5Xt25deXp6yt7eXr6+vrp//76kF/+OxCU+9/jfPvroI127dk2///77K94VAAAAAHgNDAAAAABIAE6fPm1IMkqXLh2v4+fOnWvY29sb06dPN6KioozIyEhjyZIlhouLi1G3bt2njp8rVy6jbt26xrVr1wzDMIyAgIDo99yzZ4+RJEkSI2/evMapU6cMwzCMU6dOGcWLFze8vLyMuH6E+vrrrw1JxsCBA40HDx4YERERxrx58wxnZ2ejSpUqRmRkZLyuZ926dYYko1mzZrH2Xb9+3XBxcTEyZsxohIaGxtg3adIkw2KxGN26dTPu3r1rREVFGWvXrjVSpEhh5MuXz7h37170sefPnzd8fHyMtGnTGnv27DEMwzAuX75sVK9e3fD19TUkGadPn44zV758+YxOnToZISEhRkREhFG3bt3orLt37zbc3d2NMmXKGOfOnTMMwzBOnDhhFC5c2EiWLJlx6NCh6PEmTpxoWCwWY+7cuUZUVJRhGIaxY8cOI02aNDGuPb7HGYZhfPPNN4YkY926dbHujZ2dndG1a9fo+7Bt2zbD19fXyJcvn3Hnzp04xylatKixcOFCIzIy0ggODjby5ctnuLq6GpcvX4712cRHs2bN4sz3pNKlSxuSjKpVqxpbtmwxoqKijL179xr29vbRn0uzZs0MBwcH4+effzbCw8ONsLAwY+zYsYbFYjHatm0bY7wX+VyeJjIy0nBxcTEKFCjw1GOe9d395ptv4tz++Jxvvvkm1j5JRoYMGYyqVasaZ8+eNQzDMEaOHGn4+fkZhmEYjRo1MlKmTGns378/OuOMGTOMRIkSGVOnTo01Vnz/Tnma8PBw49ChQ0adOnUMLy8vY+3atfE+d+rUqYakWLle5LPp3bu3IcmYM2dOrPGtVqvx6aefxtj2It+Rx38vPvkZvcg9NgzDOHDggCHJaNeuXXxvDQAAAAC8MRTgAAAAABKEFy3AV61aFWfZ0qtXL0OScfjw4TjHd3d3N27fvh29PSgoyJg7d65hGIZRqlQpQ5Kxffv2GOcePnzYsLOzi1WA79y505BkVKtW7ak5Zs+eHa/riatEjIqKMk6ePGl8+umnRrVq1YyTJ0/GOOfChQuGo6OjkTt37lhF+6hRowxJhtVqjd7WtGnTODNdv37dSJIkyTML8IwZMxoRERHR2/fv32+sXLnSiIqKMvLkyWMkTpzYuHDhQoxz//77b0OSUaVKlehtVapUMTw8PGJd/8SJE43PP//8hY8zjLgL8Mf3Jl26dDFyG4ZhjB071pBkdOvWLc5xOnXqFGP7+PHjDUnGTz/9FCtPfLxoAT5t2rQY2ydMmGDcvn3bmD9/fpz5DMMwPvvssxjf3Rf9XJ7m1KlThiSjRo0aTz3m8XfEycnJ8PHxifHH1dX1pQpwe3v7GN/3GzduGJMnTzYMwzCcnZ2NWrVqxTqvTZs2xoIFC2KN9SoF+JgxYwwXF5foXwLZuHHjC50fVwH+op/NiRMnDIvFYpQtWzbGsVFRUUaGDBmMP/74I3rbi3xHDOPpBfiL3GPDePR3iCSjVKlScd8IAAAAAHiLWAIdAAAAwDupQoUKGjduXKztj5cm3r9/f5znFS5cWEmTJo1+7efnp88++0xXr17Vxo0b5enpqcKFC8c4J1u2bPLz84s11i+//CJJqlatWqx9xYoVkyQtXrw4nlf0yOzZs+Xr6ysfHx85OzsrY8aMunr1qkaNGqUMGTLEOHbu3LkKCwtTlSpVopeXftr7R0VFaeHChZIUvcT5Y8mTJ49zyed/K1euXIznbOfOnVuVKlXS/v37tX//fuXLl0+pUqWKcU7OnDnl5uam1atXKzQ0VJLk7++vmzdvqkOHDtHLektS69atNWDAgOjX8T3uaR7fmxo1asR6Pvhnn30m6dHnZ8SxJHTJkiVjvH782Z8/f/657/s6VKxYMcbrNm3aKGnSpPr5558lxe/79qKfy9NcvXpV0qNlwZ+nXr16Cg4OjvGnV69ezz0vLhkyZIjxfffw8FDLli0lPfpuLF26VCNGjIjxLO4JEyaoVq1aL/V+T9OhQwfdu3dPFy5c0CeffKKyZcuqVatWioyMfOkxX/SzyZgxoypWrKh169bp6NGj0ceuXLlSdnZ2qlChQvS2F/mOPMuL3uPH349r1649d2wAAAAAeNMowAEAAAC8kyIiIjR58mSVKVNG/v7+8vHxka+vr3r06CFJ0c/DfdLj5wI/6fFzd1OnTh3n/ieLKknRZdQXX3wR4xnDvr6+ateunVxdXXXlypUXuq7HJeLly5d16dIlNW/eXJs2bVLVqlVjPVP88fuPHTs21vtXqVJFrq6u0YXUlStXdOfOHSVNmjTGLwA86/r+7Wn37XGGffv2xcrw+JzEiRMrODhYkvTdd9+pSpUqGjdunNKnT698+fLp66+/1qlTp2KMG9/jnuZxrrg+Ty8vLzk6Our69etxFnbe3t4xXjs6OkpSrGfLvynPu9dNmjSJdZ//97//ydXVVZcvX45xbHw/l6d5/LzsRIkSvZZri6+n3QPp0S8uZMiQQd26dZO3t7fKly+v0aNHxyhqX7dUqVLpm2++UceOHTVlyhQNGzbspcd6mc+mQ4cOkhTjl37GjRuntm3bymKxxBo7Pt+RZ3nRe/z4+/G856sDAAAAwNtAAQ4AAADgndSyZUu1bt1aefPm1e7du3X58mUFBwdr+PDhzzzvyZnST3payfnvkumxx7OHx4wZE2vm69WrV3X37l398ccf8byi2Dw8PDRhwgRlz55dhw8f1tSpU+N8/379+sV6/8uXL+vu3bs6cuTIS1/fvz3tvj3OULp06VgZgoODdefOHd29e1fp06eX9Kh8XrZsmQ4fPqzvvvtOFotF33//vbJlyxaj3IvvcU8T18zu+Hred+RNe969XrJkSaz7fO3aNd29e1cTJ06McWx8P5encXV1lfTy5X///v01bdq0Fz7vWZ9B/vz5dejQIW3YsEEdO3bUsWPH1LlzZ2XJkkXbtm17qZzxVb16dUmKXk3hZbzMZ/Pxxx8rTZo0+umnnxQaGqrz589r1apVatGiRZxjx+c78iwveo8ffz8ef18AAAAAwEwU4AAAAADeGdOmTdPevXt1+/ZtzZgxQy4uLho6dKiSJ0/+ymNnypRJknTx4sU4y9OLFy/G2vZ4ufVz587FOeaOHTtiFdAvysHBQYGBgZKkAQMGKCIiIt7vf+DAAe3Zs0fSo1nN7u7uevDggW7cuBHr2LiuLz6el+H8+fNau3Zt9OvIyEgZhqFs2bLpq6++0p49e7RlyxYlSZJE3bp1i55BGt/jnpcrrmXLr169qrCwMHl5ecnLy+ulrtsMz7vXGzdujF4u/kU/l6dJmzatJMX5nTFLRESELBaLSpUqpWHDhunMmTMaN26crl69qs8///yVx1+wYIFWrFgR5z4XFxdJ0vXr1196/Jf5bOzt7dW6dWvdvHlTs2bNil6K/Mnv74t8R57lRe/x4+9HmjRpnjs2AAAAALxpFOAAAAAA3hmPC3AHBwdJj2YtP1lWx6fciYuXl5fKli2rO3fuaN26dTH2HTt2LM5xmzRpIovFotmzZ8fad+XKFX344Yc6cODAS+X5t+rVq6tkyZIKCgrS9OnTo7fXqVNHTk5OWrhwYawZumFhYfroo4+0evVqSY9m1H766aeSYs9evXnzpv7666+XypYnTx7ly5dPhw8fjvO56127dtXgwYOjX5cvXz7W/SpevLjKlCmjhw8f6u7duy903NM8vjeLFi2K9bzm+fPnS5IaN2783JnvCUnTpk0lKc7v2/79+1W6dOnoZ3a/6OfyNClSpFCqVKl05syZV0z/+jg4OMRYHtzOzk7t2rWTh4dHrKLexcUlxqMDBg8erDVr1jxz/MWLF2vIkCFx7lu1apUkqUiRIi8b/6U/mzZt2ihRokQaPXq0Jk2apPbt28c65kW+I8/yIvdYks6ePStJyps373PHBgAAAIA3jQIcAAAAwDvHxcVFn376qe7du6devXopNDRU0qPZjSNGjHjpcYcPHy43Nzf17NlTp0+flvSoUO/cuXP0TNh/++CDD9S/f3/t3r1bX3zxhe7duydJOn78uGrVqqXSpUurVq1aL53n36xWqyTpf//7X/Qs8JQpU2rs2LG6fPmy2rVrp5s3b0p6NJu7Xr168vHxUbt27aLH+OGHH5QyZUr1799f+/btk/RoNnSrVq1eaebmtGnT5OHhoVatWunYsWOSHj2DvX///lq3bp0GDBgQ4/gffvhBhw4din69ZcsWrV+/XtWrV5enp+cLHxeXlClTatSoUbpw4YK6d+8e/dls375d3377rfLmzavvvvvupa/ZDJ988olatmyphQsXauTIkdG/9LB7927VrVtXLVu2VKFChaKPf9HP5WmqVaumEydO6Pbt26//ol5S9+7do4vciIgITZgwQTdv3lSzZs1iHJcnTx6dOHFC9+7d0+XLl/Xf//5X9+/ff+74q1at0n/+85/osjc0NFTjx4+X1WpVqlSp1L9//1fK/zKfTapUqVSjRg3t2rVLnp6eKlmyZKxjXvQ78izxvceStGvXLkmPvisAAAAAYDoDAAAAAEyWOnVqI3HixIYkw2KxGI6OjnH+sVgsxtSpUw3DMIyQkBCjT58+RoYMGQxnZ2fD39/faNq0qfHtt98akoykSZMaWbJkMQzDMBo3bmx4eXkZkgwnJyfDx8fH6NSpU5xZ9u3bZ1SpUsVwc3MzUqVKZZQtW9bYvn27UapUKcNiscR5zm+//WaULl3aSJ48uZEqVSojZ86cxg8//GDcu3fvudd+7949w8fHx/Dw8Hhuvho1ahiSDC8vLyN37tzR2zds2GBUqVLF8PT0NFKmTGlkyZLF6NOnj3H9+vVYYwQFBRn16tUzkiVLZqRMmdIoUqSIsXz5cqNp06aGJOPMmTPRx5YuXTo6l6urq+Hj42P8+OOPcV7HqVOnjBYtWhipUqUyvL29DX9/f6NRo0bGoUOHYhy3adMmo02bNka2bNmMlClTGr6+vkbu3LmNAQMGGPfv33+h4/7++2/Dx8fHcHV1NSQZHh4eMe6LYRjG2rVrjcqVKxspUqQwvL29jcyZMxtffPGFERISEn3M9evXY41Tq1YtwzAMo1atWrHuwe3bt5/6ef7byJEjDR8fH8PJySl6XB8fH+PKlSsxjluyZInh4+NjODg4GJIMHx8fw8fHx4iIiIhz3MmTJxuFCxc2PDw8jNSpUxv58+c3Ro8eHefx8f1cnmXv3r2GxWIxxo0bF2P70767T34GT8qSJUuse3r8+HGjX79+ho+PjyHJcHBwMHx8fIwaNWrEOn/GjBlGrVq1jPTp0xu+vr5GqlSpjJIlSxq//vprrGN37txpFCpUyPD09DTSpElj9OzZ04iKinpmvrNnzxoDBw40SpUqZaRNm9ZIkSKF4ebmZuTOndvo27dvrM8vLo/vTdKkSaP/PvLx8TEePHgQfczLfDarVq0yJBkjR4585vvH5zvy0Ucfxfp7ce3atYZhvNg9NgzDKFmypJE3b97n3hcAAAAAeBsshhHHw+0AAAAAADFkyZJFt2/f1uXLl82O8kZUqlRJq1evVkhIiFxdXc2OgwSma9eumjt3ro4dOyY3Nzez4yAB+f333/XJJ59ow4YNKlGihNlxAAAAAIAl0AEAAADgse3bt8e5vO+5c+cUFBSkChUqmJDq9Tl37pwqVaoUa/u9e/e0e/duFStWjPIbcRoyZIhKlCihSpUqxfkMaLyfNm3apObNm2vSpEmU3wAAAAASDApwAAAAAPhHSEiIfv75Z02YMCH6OdunTp1S06ZN5ebm9s49M/pJYWFhWrVqlfr3768HDx5IkoKDg9WyZUvdu3dPgwYNMjkhEqpEiRJp7ty5atKkiVasWGF2HCQQixcv1pIlS9S8eXOzowAAAABANJZABwAAAIB/XLlyRUOGDNHKlSsVHByssLAwOTk5qWLFiurfv7/Sp09vdsRX8rjkXr58uc6ePauHDx/KYrGoVKlS+uqrr5QvXz6zIwIAAAAAALwSCnAAAAAAAAAAAAAAgE1gCXQAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE2gAAcAAAAAAAAAAAAA2AQKcAAAAAAAAAAAAACATaAABwAAAAAAAAAAAADYBApwAAAAAAAAAAAAAIBNoAAHAAAAAAAAAAAAANgECnAAAAAAAAAAAAAAgE1IZHYAAAAAAADwZp09e1bXrl0zOwYQL15eXkqXLp3ZMQAAAAC8oyjAAQAAAACwYWfPnlX27Nl0/36o2VGAeHFxcdbhw0cowQEAAAC8FApwAAAAAABs2LVr13T/fqgm9KqvLGm9zY4DPNOxc1fUdtAsXbt2jQIcAAAAwEuhAAcAAAAA4D2QJa238mVKY3YMAAAAAADeKDuzAwAAAAAAAAAAAAAA8DpQgAMAAAAAAAAAAAAAbAIFOAAAAAAAAAAAAADAJvAMcAAAAAAAgLfkyNnLChjzm6KiohQaFq6edcupRonczzzn4rXb6jFqvm6GhOpBeLiaVy6illWLvdC4hmFo0Oy1Wrh5v9xdnXT/wUM1r1xEzasUfSPXCQAAAABmoQAHAAAAAAB4C0LuP9CnX07Sl00/UsMKBXXiwlWV6TZcqb3cVSBrujjPiYqKUr1vp6pasZz6vGFFXbt9V8U7DpGXe5Logjs+4/78xw6NnL9B28YGKJWXu85fvaXiHYcopae7Piqc/a3dAwAAAAB401gCHQAAAAAA4AmGYWjT/pOatnzbaxvz19W7FBkVpQblC0iSMqVOoQoFsmn4/A1PPWfljiM6fCZYHT/5UJLk5Z5E9csX0JA5a19o3AOnLipzmhRK5eUuSUqTIpkypUmhtXuOvbbrAwAAAICEgBngAAAAAADgrZq7fo/GLNwkV6fEevAwQqXyZtTXzaqoXv8pWrnjiHL4++rLJh+patGcChj9m+Zu2KOCWdNpwfettXDTfo1ZuEmJHex1PyxcRXP465vmVeTokEh3Q8NU79up2nnkrP7TpJL+Ph2sExeuavexcwqa/a2SJXF+brbLN0I0c81OTf/jL125GaI+DSq8tutev/e48mVKLYvFEr0tf5Y0GjR77TPPyZwmhZK6OP3/OZnTasT8DboVcl/J3FziNW61ojk1a80uHQy6pJz+KXXg1EUdPhOsakVzvrbrAwAAAICEgAIcAAAAAAC8NZeu31b7wbO1a0Jv+af01JWbISrcfpC+blZFs/u3VInOQ/VRoWyq+k8x+0Ob6tpz4rwWfN9akrRg0z51r1NGVYvmVHhEpBp8N03D5q5T34YVlcTZUUt/bK/cLQZo7vq9WjKgnZIlcdanX03Sv7rhWCIjo7Rm91H9tPIvrfzrsPJmTK3un5XRp6XyKYmzY/Rxq3ce1dB56555fT0+K6sKBbPGue9M8A0VyJo2xjZvDzfdufdAN0Puy8PNJdY5QcE35J3MLdY5khR0+YbyubnEa9wyH2TWqB51VaPfBHm5u+r4hasqljO9WlWL+SxxAAAAAHjXUYADAAAAAIC35sqtu4qMitK5q7fkn9JT3h5umvVNi+j99cvm1/glW/RV08qyWCxatu2gqhbJEb3/+1bVlDZFMkmSQyJ7VSuWU7+u3qm+DSvGeJ9qxXJGz/h+XJ7H5YefV+rX1Tt178FD1SnzgdYP76Zc6VPGeWyFglmfWm7Hx/2wh3J0iPlPMY9f3w97GGcBHhoWLqdY59hH74vvuCv+OqTuI+frt+9bK1/mNAq6dF2/bdovF0eHl74eAAAAAEiIKMABAAAAAMBbkydDKtUrl181vpigYjn9VbfMB6pbNn/0/jplP1D/acu1af9JlcqbSbPX7dHADp9E77//4KHaDJypc1duycHBXlduhigsPCLW+6TydI9XnsFz1so5sYP+27q66pcrIOc3WAi7OCaOlfXxaxfHxHGe4+zooAf/FN3/f05k9L74jvv99JX6uHgu5cucRpLkn9JTJy9eU++xCzW862evclkAAAAAkKBQgAMAAAAAgLfGYrFofEB9df+sjH5dvVPfT1+pUb9t1JqhXeTu6izf5ElVOl8mzVq7Wzn8fRX2MELpvD0kSXdDw1Tjiwmq9WFeTezdQHZ2dpqxaqd+/HVVrPext7OLV579U/rpl1U7NGTOOn0zdZnqlvlATT8qojwZU8U69lWXQPfzTa4rN0NibLtyM0RJXZ3inP0tSf6+ybVx34lY50iSv0/yeI976uI11SqZJ1ae0b9tpAAHAAAAYFMowAEAAAAAwFtz8dptnb96S4Wz++n7VtXVtXYZ5W05QOv3nlDNErklSfXL5VfA6N+UOXUK1S6dL/rc4+ev6Oqtu/qkZB7Z/VNwh0fEnv39ItKkSKbPG1ZUn/rltXb3cU3/4y+V7zlSudKnVNOPCuuz0vnk5uIk6dWXQC+dL5OGzlknwzBk+eeh5HuOn1eZfJmffk7eTJqybJtC7j+IzrHn+Hnly5Rayf4pt+MzbkrPpLr8REl++cadNzrjHQAAAADMEL9fhwYAAAAAAHgNTl68pm+mLlNE5KNlvA3DkCRlTOUVfUz1YrkkScPnr1fNkrmjt/v7esrZ0UHr9x6XJEVGRmnZtkOvJZednZ0qFMyq6V800aGf/qNaH+bRmIWb1GHInNcyviQ1qlBQ9nZ2mr1utyTp5IWrWr3zqLrVLh19zPSVf6lwu0F68PDRsueVC2dXtnQ+GrtosyTp+u17mrV2l3rWLfdC4zauWEgLNu7TuSs3JUlnr9zU/I379MkTs8IBAAAA4F1nMR7/pAkAAAAAAGzO7t27VaBAAa0f3lX5MqUxO44u3wjRtz8t1+EzwXJ1Sqz7YeFqWbWoGlcsFOO4jkPn6GF4hCb1aRhj++9b/1b/qcseLZfumVTJkjhr3vq9KpLDX4v/11bVPh+nnUfOKp2Ph4rm8NfIbnVeKe/ZKzejl2B/HQ6fCVbAmN9kGIZCw8LVs2451Sjx/yX/5KVbNWzeem0fGyAXp0fP775w7ZZ6jFygW3dD9SA8XM0+KqJW1Yq90LgRkZEaOX+jftu8Ty6OiXXn/gNVLZJDveqXl1PihDMLfO+J8yrTbYR27dql/PnzP/8EAAAAAHgCBTgAAAAAADYsoRXgwLNQgAMAAAB4VSyBDgAAAAAAAAAAAACwCRTgAAAAAAAAAAAAAACbQAEOAAAAAAAAAAAAALAJFOAAAAAAAAAAAAAAAJtAAQ4AAAAAAAAAAAAAsAmJzA4AAAAAAADwOkxYskUTf/9TDx5G6MDUfmbHSVCmLt+mqcu3yTmxg9xdnTWsS22l8nJ/5jlL/vxbg2evkbOjgywWiwZ3rKXsfr4vPO6m/Sc1ePZaRURG6tL1O0qTIpnG96ov3+RJX/t1AgAAAAAzwAEAAAAAgE1o+3EJdf+srNkxEpzFWw5owC9/aP53rbVyUCcVyJpW9b6dqqioqKees+voWXUYMksTezfQ8sCOalKpsGp/NVkh9x+80LhbD55W1xHzNLpHHf3+Y3utH95VQcE3dOPO/Td6zQAAAADeXxTgAAAAAAAANmzw7LVqUL6gUiRLIklqX7OkDp8J1h87jzz1nGHz1qtiwWzKnMZbklSv7AeKiIzUzDW7Xmjc/0z6XV0+LaXUXskkSW4uTpr+nyZK653sNV8lAAAAADzCEugAAAAAALyn5q7fozELN8nVKbEePIxQqbwZ9XWzKpKkiMhI9ZuwRMu3H5K/b3IVyuan7YeDdO7KLdUr+4HSp/TSsHnrYiw3/tnXk7Vp/0kN6fSpGlUsKEnasO+EBs5cLUPSw/AIZUqdQgPa1lCyJM6SpHr9p2jroSA1r1xEd0PDdPhMsLYeDNLGEd2VJ2MqzVi1U+MWb1YS58SKjDTUpXZpfVw8V/Q1LNt2UF9PWapkSVzk75tcuTOkeqF7sOPIGX09ZakiIw0ZMlSxYDYF1C0ne3s7/Xf6Cs1et0fpfDz0UaFsWr/3hLYdPK0vm1bWhr3Hn5l71tpdGrVgoxwdEulhRKQC6pbTJx/mkSR1GT5XK/86rLL5syhl8qTaffy8/vz7lKb1a6zqxXI9J/GLuRVyX/tOXlDPuv8/M97d1VmZUqfQ+r0nVLlwjjjP27DvhHrXKx/92s7OTvkypdH6vSfU9uMS8Rr3/NVb2n3snMb2qBtj7LwZU7/WawQAAACAf6MABwAAAADgPXTp+m21Hzxbuyb0ln9KT125GaLC7QdFF+Aj5m/Qyh2HtXFENyVP6qqFm/ZrxPwN6lW/nPo1qhQ9zo+/ror+3/O+a6XcLQbEeJ9VO46oevFcal+jpAzDULeR8/WfSUs0uvujUnR2/5aq9vk4Ldi4TysGdlSaFMnUdcQ82dtbtGrnEX015XdtGtldqb2S6eSFq/qwyzD5/NBWhbP76eyVm2o+4BdN7NNQNUvk1vXb91Tt83HxvgdXb91V7a8ma3LfhqpYMJvuhoapSp+xcrC3V4+6ZfVl08qyt7fT6N82qsunpdS1dhn9unqnQsPCn5l77e5j6jXmN60b1lWZ03jrYNAlle8xUr6eSVU0h79GdqujDkNma9m2Q1oyoJ36t6iqwJmr5WBvH2fOzycs1oFTF595LUt/bB/n9qDgG5Ikbw+3GNu9PdwUdOl6nOfcuHNPd+49iPOc3cfPxXvcQ0GXJElnLt/Qfyb9rjv3HsgnuZv6NqyoXOlTPvN6AAAAAOBlUYADAAAAAPAeunLrriKjonTu6i35p/SUt4ebZn3TInr/+MVb1KxyESVP6ipJ+uTDPPrPpCUv/D6dan0oDzcXSZLFYlHNErnVceicWMeVyptJaVIkkySN6PqZJKnXmIWqXSpf9PLZGVOn0Id5MmrS0q0qnN1PU5dtk7eHm2qWyC1J8nR3VfXiuTR77e54ZZuwZItSp3BXxYLZJElJnB1Vt8wHGrd4s3r8a2Zz8qSu0TOlG1Yo+NzcvccuVNUiOaOXD8/pn1Ll8mfVkNlrNefbltHn5s6QUnkyPpqx3qdBhafm/LFtjXhdT1zuh4VLkhwdYv4TkKODvUL/2Rf/cxJFnxOfcW/dDZUk/fDzH5r/fSt5uSfR+MVbVDFglLaOCZC/b/KXvi4AAAAAeBoKcAAAAAAA3kN5MqRSvXL5VeOLCSqW0191y3ygumXzS5Ju3wvV5ZshsQrKx0Xvi4iIjFLvsQt19OwVOTjY6/bdR2M/KZWXe6xth88E69L12zFmdd+4c0+ZEztIko6dvxIrY9oXyHj4zGUF3wiJMf690DAlsrdXeESkHBI9mpGdOo5sz859WaXyZoqxLUNKTy3cvP+Jc+Of9WW5OD66V2HhETG2h4VHRu+L/zkRcv5nX3zGtbNYJEmtqhWTl/uj54S3/bi4hs1bp2nLt6l/i6ovfV0AAAAA8DQU4AAAAAAAvIcsFovGB9RX988eLev9/fSVGvXbRq0Z2iXGMc8eI/a2qKioGK/rfDNFmdOk0JIf28nRIZE27T+pj/uNj3WevV3swSwWi+qWza8vGleKtU+SDOP5GZ8nu5/PU5cPf8zOzu6p++LK/TRPZo3vua+yBPrjXxC48sQvHVy5GaIyH2SO85zkSV2V1NUpznP8fT3jPW7qf34Z4d+/QGCxWJQmRTKduXzjmdcDAAAAAC+LAhwAAAAAgPfQxWu3df7qLRXO7qfvW1VX19pllLflAK3fe0I1S+SWb3I3nX7iGdHnr96K8TqJs6PuPQiLfh0eEamrt+5Gv75++56OnL2s7nXKRC+VHR4RGe+M2f18dOLC1RjbNu47oePnr6pVtWLKls5bc9btibH/3BMZnyWHv6+mr9yuqKio6JL76q27Cpy5WgM7fBLvceLKferCtRjbTl26rhx+Pi813qssgZ7MzUV5MqbSnuPnVbNkHknSnfsPdOLCVfVvUeWp55XKk0l7TpyPfm0YhvadvKCAeuXiPW7ejKnl4uig4BtPluR3VTSH/0tfEwAAAAA8y9N/hRkAAAAAANiskxev6ZupyxQR+aiQNgxDkpQxlZckqd3HJTVr7S7duHNPkrRoywHdDLkfY4zcGVLpZkiojp+/Ikmas26P7P41qzl5Uhf5eLhpw94T0duW/Hkg3hl71Suv5dsPRc9+vvfgob6fvkKZ06SQJDWvUlRXboZo0ZZHY964c08LNu6N9/htPy6u+2Hhmr7yr+h7EDhztTzdXeM9xtNyL9t+MPq+HAy6pLW7j6pn3XKvNO6r5Jm5Zpeu3X70ywnjF29Rdj9fVfrn2eeS9HG/8fr+pxXRr3vUKaNVO45E/wLCnHV7ZG9npwblC8R7XBenxGpXo6SmLt8W/VzwpVsP6vLNO2pWucibvWgAAAAA7y2L8fgnXAAAAAAAYHN2796tAgUKaP3wrsqXKU309ss3QvTtT8t1+EywXJ0S635YuFpWLarGFQtJkiIiI/XFxN+1bNtBZUzlpVJ5M2ntnmMqmTuD+jX6/yXJB81ao1/X7JS/r6c+KZlHA2etkVPiRGpTvbjaflxCWw+eVp9xixRlGErn7aG03h6asGSLSuTOoJ/6NVafcYu0etdRubs6K4efj2b3bxkj/+y1uzV8/nolcXKUnZ1FLasWjX5WuSQt23ZQX09ZKndXZ/l6JlXuDKk0dM46FcyWTrO/aaEkzo7Pvj/Hzuk/k5bo3oOHcnVKrGI50+s/jT+Svb2dhs5ZpynLt+n2vVDlzpBKI7t+pgz//IJAS+uMZ+aeuWaXRv22UU4OifQwIlI965ZVrQ/zSnq0pPmCDXslSZnTescr56uasmyrpq3YLicHByVL4qyhXT5V6n89g7xiwCgVye6v/7auHr1tyZ9/a/DsNXJ2dJDFYtHgjrWU3c/3hcaNjIzSf39eqZU7Dsvd1Vn2dhZ91bSyijxlBvjeE+dVptsI7dq1S/nz54/zGAAAAAB4FgpwAAAAAABs2NMK8JdR7fNxsQpw4HWiAAcAAADwqlgCHQAAAAAAAAAAAABgExKZHQAAAAAAACR89fpP0YFTF3X28k1FRkbpy6aVzY4EAAAAAEAsFOAAAAAAAOC5nnzG9btgxqqd+nXNzjj3tapaVJ+Wyvd2AwEAAAAA3jgKcAAAAAAAYJMaVSyoRhULmh0DAAAAAPAWUYADAAAAAID32mdfT9ZfR86oQ82S6teoktlxnupheIQGzFilEfM3aPekPvLzSR5jf7q6Xyt3hlQxtp2+eF0f5s2o8QH1df/BQ01Zvk1Ltx6UvZ1Fd+4/UMncGfVF40pK4uz4Ni8FAAAAAN4YCnAAAAAAAPBem/ddK1X7fJzZMZ7pzOUbah34qzKmTqHIqKg4j8mdIZWW/tg+xrYy3Ybr0w/zSpL2nbyg4fPWa/3wrkrtlUy374WqSu+xun7nnsYH1H/j1wAAAAAAb4Od2QEAAAAAAADwbPdCH2p8QH01qvD0Jd1Hd68b4/XhM8EKvnFHFQpklSQlcXZUu49LKLVXMkmSu6uzGpQvoEWb9ysyMu5SHQAAAADeNcwABwAAAAAAb83c9Xs0ZuEmuTol1oOHESqVN6O+blZFkrRh3wkNnLlahh4t950pdQoNaFtDyZI4S5Lq9Z+irYeC1OyjwrobGqb9Jy8qyjA0pW8j7TtxQTNW79CJC9fUp0EFNShfQJLUcegcrd55RB/myaikrk46cvaKzl+9pTbVi6lr7TLPzDps7jrN27BXSV2dJElfNqms4rnSS5KCLl1XwJjfdD8sXIZhyDd5Uv2nSSVlTuP9Ru5bDn9fSdKFa7efeoy/b8wl0X9dvVP1yxWQvf2j+Q+5M6SKtUS6Y+JEiowyFGUYsn/NmQEAAADADBTgAAAAAADgrbh0/bbaD56tXRN6yz+lp67cDFHh9oOiC/BVO46oevFcal+jpAzDULeR8/WfSUuiZzbP7t9S1T4fpyV//q3VQzrLyz2J2gz8Ve0GzVL7miU099tWWrPrqJoN+FkfF8+lJM6OGtOjrjoMma15G/ZqubWDCmZLp2PnrqhU12HKktZblQvniDPr5KVbNWP1Tq0a3FnJkjhr68HTqvXlRP01vrfSeXuo97iFyp8lrf7T5CMZhqF2g2frr8Nnn1qAD52zTqt3H33m/ZnSp5F8kru9wh3+f5GRUZq7fo8W/6/dM4/bceSMqhbJIYdE1N8AAAAAbAMFOAAAAAAAeCuu3LqryKgonbt6S/4pPeXt4aZZ37SI3t+p1ofycHORJFksFtUskVsdh86JNc6HeTLKyz2JJKlIdn8t+fNv1SiRW5JUNGd63Q19qFMXrytPxv+f7Vwwa1oVzJZOkpQlrbcqFMim8Yu3PLUAHzp3ndp9XCJ69nmxnOmVPqWnpq/8S182+UgXr9+Rj8cdRUVFyc7OTl81/Uh2dpanXnuPumXVo27ZF7ldr2TN7qNK551cWdI+fUb6sXNXtGb3Ma0b1vWt5QIAAACAN40CHAAAAAAAvBV5MqRSvXL5VeOLCSqW0191y3ygumXzR++PiIxS77ELdfTsFTk42Ov23VBdvhkSaxyf5Emj/7ezY2J5JnVVIvtHM5hdnRJLku7cD41xTtoUHjFep0+ZXAs27oszZ8j9Bzp/9ZZmrN6pFTsOx8h3NzRMktSvUUW1HzxL6/ce16el8qp55SLKkMrrRW7HG/Xr6l1qVPHpzwsPuf9ArQJ/1bie9eTnk/ypxwEAAADAu4YCHAAAAAAAvBUWi0XjA+qr+2dl9Ovqnfp++kqN+m2j1gztIndXZ9X5Zooyp0mhJT+2k6NDIm3af1If9xsfaxz7J2Za29nZxTrGMJ54LSPWfosl7hnbj4/s/GkpNa5YKM5jqhfLpYM//UcLNu7T9JV/aeyizfqpX2NVLZozzuPf5hLot0Lua/3e4xrR7bM49z94GK5G/52uDjVLqlKh7K/8fgAAAACQkFCAAwAAAACAt+Litds6f/WWCmf30/etqqtr7TLK23KA1u89oZK5MujI2cvqXqeMHB0e/XNFeETka3vv81dvxXgdFHxDmdOkiPPYpC5OSpMimU6cvxpj+4KNe2Vvb6+aJXJr0eb9qlkyj1pUKaoWVYqq+YBf9NPKv55agL/NJdDnb9ynjwpnV1IXp1j7IiIj1XzAL/q4eC41rPBohvjCTftVJl8mJftn+XkAAAAAeJfF/hVpAAAAAACAN+DkxWv6ZuoyRUQ+KraNf6ZpZ0zlpeRJXeTj4aYNe09EH7/kzwOv7b3/PnVJu4+dkyQdP39Fq3cdUbsaJZ56fK965TRzzS6du3JTknTt9l1Zf12tHH4+kqRvpi7TkbOXo4+PjIpS5tRxF+pv26+rd6pRhdjLn0dFRanDkNlydUqsglnTas/xc9pz/Jxmrt2l2/cfmJAUAAAAAF4/ZoADAAAAAIC3Iksab6VP6amKAaPl6pRY98PCFdjhE+VKn1KSNK1fY/UZt0glOg9VOm8PpfV+9Nzuap+P00//7Dtw6qLOXr4pNxcn+Xi4adi8dbpyM0S1vpyoKX0bqfEP0yVJ/SYsVv/mVVWhYFZJUpWiOTV/4159NWWpzgTfUL9GlVS5cA5J0mdfT44eNzIySl82razmVYrq7oOH+uzryUqe1EV2dnYa0LaGMqfxliS1q1FSHYfOkbOjg8IeRihrOm993qjiG7t3D8MjVOurSbp999GzzVtZf1VqL3f99EWTGMcdO3dF127f04d5MsYaY9XOo5q7fq+kR7PE/y2wfc03ExwAAAAA3jKLYTz5VCwAAAAAAGArdu/erQIFCmj98K7KlymN2XFM0WHIbEnS2J71TE6C59l74rzKdBuhXbt2KX/+/GbHAQAAAPAOYgl0AAAAAAAAAAAAAIBNoAAHAAAAAAA2q+PQOVqz66jW7Dqq7iPnmx0HAAAAAPCG8QxwAAAAAABgs8b0qGt2BAAAAADAW8QMcAAAAAAAAAAAAACATWAGOAAAAAAAeOdsPnBS/acu186jZ7Vvyufy80ludqRnun0vVL3HLtKJC1cVERmpqkVzqm+DCrJYLE8952F4hL6aslTbDgZJkork8Nd/W1VTYodH/5xz4849DZ27TjuPnlMiezvdCLmv3BlS6YdW1eXp7hpjrDW7jqrL8Hlq8lEh9WtU6Y1dJwAAAACYjRngAAAAAADgnVMyd0ZN7tvQ7Bjx1m7QLCWyt9PaoV20IrCjFm3erzELNz3znC8nL9WRM5e1dmgXrR3aRcfOXdFXU5ZG7z958ZrW7jmuud+21JIB7bR2aBedunBNPUcviDFO77EL9dPKvxQeGflGrg0AAAAAEhIKcAAAAAAAgDfoYNAlrfjrsLrVLi1JcnFKrFZVi2nYvPWKioqK85wbd+5p6vJt6vxpKdnb28ne3k4dPympKcu26WbIfUlSlrTemtq3kZI4O0qSHB0SqVD2dDpx8VqMsUrlzaTpXzSRU2KHN3iVAAAAAJAwsAQ6AAAAAAB460LDwlW171jtOX5e+bOk1cD2NVUgazo1/u90rd19VLVL51PejKk1c80uOTs66N6Dh6pWNKcC6pV76rLhLa0ztHrXUXWoWVL9GlXS5gMn9fn4xfr79CXdWhoYfVzwjTvqM26Rzl6+IafEDvJP6akBbT6Wh5vLG7nW9XuOK4lzYmVN5xO9LX+WtLp6667+Ph2sPBlTxTpny9+nFR4RqfyZ08Y4JzwiUlv+PqXqxXLJ3dVZ7q7O0fuPn7+i3/88qIB6ZWOM9XHxXG/gqgAAAAAgYaIABwAAAAAAb52zo4P+GNRJWZt8r6aVCqlA1nSSJGv7Guo+cr5Gdqujcj1GaniX2sqdIZXuPXioSr1GK3WKZGpQvkCcY07p20jVPh8X/bpk7owa0LaGPu43PsZxTX6YrhK5Mmj6F01kGIa6j5yv1oG/av73reMc9/KNELUMnPHM66mQP6t61C0b576g4BtKkcwtxjZvD7d/9l2PswAPCr6uRPZ2MZ7l7eWeRPZ2dgoKvhHj2L3Hz6vj0DkKCr6ub1tWU9OPijwzKwAAAADYMgpwAAAAAABgCodE9qpdKp9mr9ut5lWKSpLmrtujOmU+kCRN6dNQ/ik9JUmuTolVqWA2rd555KkFeHxs2HdCO46c1ayvW0iSLBaLmlcporLdR+r0petK/8/7/ZtPcjct/bH9S79naFi4HB1i/hPM49ehYeFPPSdxIvtY2xM72Mc6J1/mNPpzTE8dO3dFdb6Zott3Q9WrfvmXzgsAAAAA7zIKcAAAAAAAYJr65fKrfM8/FXTpuvxTemrptoNa9ENbSVLwzRD1m7hEN+7cU6JE9jp7+ab8fDxe6f0OnwmWnZ1FTQf8HL0tMjJKab09FHzjTpwF+KtydnRQWHhEjG2PXzs7xv1cbmdHBz2MiIy1/WF45FPPyZLWWwH1yqrXmIVqXa2Ykr2hJd0BAAAAICGjAAcAAAAAAKYpkDWdMqdJoVnrdqtKkRzKlDqFXJwS6+yVm6r15UR90aiSutQuLUkaMOMPbT5w6pnjPfl08KioqDiPW/xDW9nb28Ur46suge7vm1xXb4XE2HblZsg/++Iu3P19PRURGaXrt+9FL4N+7fZdRUZFyd83uSQpIjJSdhaL7Oz+/zoypfbWw4hInbp0XfkpwAEAAAC8hyjAAQAAAACAqeqVza8Zq3fq9t1Q1f9nefM9x84pNCxctUrljT4uPI4Z0U9K4uyoe6EPo19fvH4nxv4cfr6KijJ08uI1ZUnrHb295+gF+rLJR0qe1FVPetUl0Evny6z/TPpdx85diX7PPcfPK0WyJMqV3jfOc0rkSi+HRPbac/y8KhTMGn2OQyJ7lciVQZI0cNYa5fDzVc2SeaLPu3zz0fX6Jk/60nkBAAAA4F0Wv191BgAAAAAAeEPqlcuvoOAb+mPHEX2Y+1G5myWttywWi9bvPS7p0TOxV+08+tyxcmdIpR1HzsgwDEVERmrR5v0x9pfKm0lFsvtp0Kw10bPDF27ar2PnrsRZfr8OudKnVOXC2TVi/gZJj65l8rKt6vZZmejZ24eCgpW96X+17+QFSVLypK5qUaWoRi/cqMjIKEVFRWnsos1qUaWoPP41s3vS0q269+BR4X/rbqhGzN+gcvmzKJWX+xu5FgAAAABI6JgBDgAAAAAATJXW20MlcqVX4ex+0YVwdj9fDelUS4EzV2vGqp3yTpZE6VN6av3e42oz8Fc1q1xE/aculyS1sv6q71tVU7Gc6dW+RkntPHpWH3YZpvQpPVW5cHat+Ouwqn0+TiO7fqYMqbz083+a6vMJi1Ws4xClSJZE3h5umvp54zd6jeMC6qvP2IUq12OkwiMiVaNEbnX65MPo/RGRUbr/IFyRkf+/ZPv3rarpq8lLVa7HSElS4ex++r5Vtej9tT7Mq3NXbqlKnzFydXLU3dAwFc3hry8aV4rx3tZfV2nj/pO6cjNEv67epc0HTumHVtWVL3OaN3rNAAAAAGAGi2EYhtkhAAAAAADAm7F7924VKFBA64d3Vb5MFJ5I2PaeOK8y3UZo165dyp8/v9lxAAAAALyDWAIdAAAAAAAAAAAAAGATKMABAAAAAAAAAAAAADaBAhwAAAAAAAAAAAAAYBMowAEAAAAAAAAAAAAANoECHAAAAAAAAAAAAABgEyjAAQAAAAAAAAAAAAA2gQIcAAAAAAAAAAAAAGATEpkdAAAAAAAAvHnHzl0xOwLwXHxPAQAAALwqCnAAAAAAAGyYl5eXXFyc1XbQLLOjAPHi4uIsLy8vs2MAAAAAeEdZDMMwzA4BAAAAAADejMjISI0fP14jR47UkSNHlDVrVjVv3lzlypVTokT8XjzMExoaqoULF+qXX35RcHCwihcvrubNm6tSpUry8/MzOx4AAACAdxQFOAAAAAAANig0NFQ//fSTBg0apJMnT6p8+fLq27evKlSoIIvFYnY8IFp4eLhmz56twMBAHThwQEWKFFHfvn1Vs2ZN2dnZmR0PAAAAwDuGnyIAAAAAALAhN2/e1P/+9z/5+/urU6dOyp8/v3bs2KHVq1erYsWKlN9IcBwcHNS4cWPt27dPS5culaOjoz799FPlyJFDkydPVlhYmNkRAQAAALxDmAEOAAAAAIANuHDhgoYOHarx48crPDxczZs3V69evZQpUyazowEvbNu2bbJarVq4cKFSpUql7t27q127dkqaNKnZ0QAAAAAkcBTgAAAAAAC8ww4fPqyBAwfql19+kYuLizp27KiuXbvK19fX7GjAKzty5IgGDhyon3/+WS4uLurQoYO6devG9xsAAADAU1GAAwAAAADwDtq6dausVqsWLVqkVKlSqUePHmrbti0zZGGTLly4oGHDhmncuHEKDw9Xs2bN1KtXL2XOnNnsaAAAAAASGApwAAAAAADeEYZhaNmyZbJardq0aZOyZs2qPn36qFGjRnJ0dDQ7HvDG3bp1S2PHjtXw4cN15coV1a5dW3379lXBggXNjgYAAAAggbAzOwAAAAAAAHi28PBw/fzzz8qTJ4+qV6+u8PBw/fbbbzp06JBatmxJ+Y33RrJkydSvXz8FBQVp7Nix2rNnjwoVKqTy5cvrjz/+EPM8AAAAAFCAAwAAAACQQN27d0/Dhw9XpkyZ1LRpU6VLl04bNmzQn3/+qU8++UR2dvxYj/eTk5OT2rVrp6NHj2rOnDm6ffu2PvroIxUoUECzZs1SRESE2REBAAAAmISflAEAAAAASGCuXbumb775RunSpVNAQIBKlSql/fv3a+nSpSpVqpQsFovZEYEEwd7eXnXq1NGOHTu0evVqeXl5qUGDBsqaNavGjBmj0NBQsyMCAAAAeMt4BjgAAAAAAAlEUFCQBg8erMmTJ8tisah169bq2bOn/Pz8zI4GvDN2796twMBAzZ07V56enuratas6deokDw8Ps6MBAAAAeAsowAEAAAAAMNn+/ftltVo1e/ZsJUuWTF26dFGnTp3k5eVldjTgnXXy5EkNGjRIU6dOVaJEidS2bVv16NFDadOmNTsaAAAAgDeIAhwAAAAAABMYhqENGzbIarVqxYoV8vPzU0BAgFq2bClXV1ez4wE24/Llyxo5cqRGjx6tu3fvqlGjRurTp49y5MhhdjQAAAAAbwAFOAAAAAAAb1FUVJQWLVqkH3/8UX/99Zdy586tvn37qm7dunJwcDA7HmCzQkJCNHHiRA0ZMkQXLlzQxx9/rL59+6pEiRJmRwMAAADwGtmZHQAAAAAAgPdBWFiYJk+erBw5cujTTz+Vk5OTli1bpn379qlRo0aU38Ab5ubmpp49e+rUqVOaMmWKjh8/rpIlS+rDDz/U77//rqioKLMjAgAAAHgNKMABAAAAAHiD7ty5o8DAQKVPn15t2rRR9uzZtXXrVm3YsEFVqlSRxWIxOyLwXkmcOLFatGihgwcPatGiRYqKitLHH3+sPHnyaPr06QoPDzc7IgAAAIBXwBLoAAAAAAC8AcHBwRo+fLjGjBmj0NBQNWnSRL1791a2bNnMjgbgCZs3b9aPP/6opUuXKm3atOrZs6dat26tJEmSmB0NAAAAwAuiAAcAAAAA4DU6fvy4Bg0apJ9++kmJEydWu3bt1L17d6VOndrsaACe4++//1ZgYKBmzpwpNzc3de7cWV26dFGKFCnMjgYAAAAgnijAAQAAAAB4DXbu3Cmr1ar58+fL29tb3bp1U4cOHZQsWTKzowF4QWfPntWQIUM0ceJEGYahli1bKiAgQOnTpzc7GgAAAIDnoAAHAAAAAOAlGYahVatWyWq1au3atcqUKZN69eqlZs2aycnJyex4AF7R9evXNXr0aI0cOVI3b95U3bp11bdvX+XNm9fsaAAAAACews7sAAAAAAAAvGsiIiI0a9YsFShQQB999JFu376tOXPm6MiRI2rXrh3lN2AjPD099fXXX+vMmTMaNmyYtm7dqnz58qly5cpat26dmFcCAAAAJDwU4AAAAAAAxFNoaKjGjBmjLFmyqEGDBvLy8tLq1au1Y8cO1alTR/b29mZHBPAGuLi4qHPnzjp+/LhmzJihS5cuqVy5cipSpIjmz5+vyMhIsyMCAAAA+AcFOAAAAAAAz3Hjxg3997//lZ+fn7p06aLChQtr165d+uOPP1S+fHlZLBazIwJ4CxIlSqSGDRtq7969Wr58uVxdXfXZZ58pe/bsmjhxosLCwsyOCAAAALz3eAY4AAAAAABPce7cOQ0dOlQTJkxQZGSkWrRooYCAAGXMmNHsaAASiL/++ktWq1W//fabfHx81L17d7Vv317u7u5mRwMAAADeSxTgAAAAAAA84dChQwoMDNSMGTOUJEkSderUSV27dpW3t7fZ0QAkUEePHtWgQYM0ffp0OTk5qX379urevbtSpkxpdjQAAADgvUIBDgAAAADAP7Zs2SKr1aolS5YoderU6tmzp9q0aSM3NzezowF4R1y8eFHDhw/XuHHj9ODBAzVt2lS9e/dWlixZzI4GAAAAvBcowAEAAAAA77WoqCgtXbpUVqtVW7ZsUfbs2dWnTx81bNhQiRMnNjsegHfU7du3NW7cOA0bNkyXL19WrVq11LdvXxUuXNjsaAAAAIBNszM7AAAAAAAAZnj48KF++ukn5cmTRzVq1JBhGFq0aJH+/vtvNW/enPIbwCtxd3dX3759dfr0aY0fP14HDhxQkSJFVLZsWa1YsULMSQEAAADeDApwAAAAAMB75e7duxo6dKgyZsyo5s2bK3369Nq0aZO2bNmiGjVqyM6OH5UBvD5OTk5q06aNDh8+rHnz5unevXuqUqWKPvjgA/3666+KiIgwOyIAAABgU1gCHQAAAADwXrh69apGjBih0aNHKyQkRA0bNlTv3r2VK1cus6MBeI8YhqH169fLarVq5cqV8vf3V0BAgFq2bCkXFxez4wEAAADvPApwAAAAAIBNO3XqlAYPHqwpU6bI3t5ebdq0UY8ePZQuXTqzowF4z+3du1eBgYGaPXu2kidPrq5du6pjx47y9PQ0OxoAAADwzqIABwAAAADYpL1798pqtWrOnDkUSwAStNOnT2vw4MGaPHly9C/q9OzZU2nTpjU7GgAAAPDOoQAHAAAAANgMwzC0bt06BQYGRi8t3KtXL7Vo0YKlhQEkeFeuXNHIkSNjPKqhT58+ypkzp9nRAAAAgHeGndkBAAAAAAB4VZGRkZo/f76KFCmi8uXLKzg4WL/++quOHz+uTp06UX4DeCd4e3vr+++/19mzZzVw4ECtW7dOuXLl0scff6zNmzebHQ8AAAB4J1CAAwAAAADeWQ8ePNDEiROVPXt2ffbZZ0qSJImWL1+uPXv2qEGDBkqUKJHZEQHghSVJkkTdu3fXyZMn9dNPP+nUqVP68MMPVaJECS1evFhRUVFmRwQAAAASLApwAAAAAMA75/bt27JarUqfPr3atWunPHnyaPv27Vq7dq0qV64si8VidkQAeGUODg5q2rSpDhw4oMWLF8tisahmzZrKnTu3pk2bpocPH5odEQAAAEhweAY4AAAAAOCdcenSJQ0bNkzjxo3TgwcP1KxZM/Xq1UtZsmQxOxoAvBVbtmyR1WrVkiVLlCZNGvXo0UNt2rSRm5ub2dEAAACABIECHAAAAACQ4B07dkwDBw7U9OnT5eTkpPbt26t79+5KmTKl2dEAwBQHDx7UwIEDNWPGDCVJkkSdOnVS165d5e3tbXY0AAAAwFQU4AAAAACABOuvv/6S1WrVb7/9Jh8fH3Xv3l3t27eXu7u72dEAIEE4d+6chg4dqgkTJigyMlItWrRQr169lCFDBrOjAQAAAKagAAcAAAAAJCiGYWjlypWyWq1av369MmfOrN69e6tJkyZycnIyOx4AJEg3btzQmDFjNGLECF2/fl116tRR37599cEHH5gdDQAAAHir7MwOAAAAAACAJEVEROjXX3/VBx98oCpVqujevXuaN2+eDh8+rDZt2lB+A8AzJE+eXF9++aXOnDmjkSNH6q+//lL+/PlVqVIlrVmzRsyBAQAAwPuCAhwAAAAAYKr79+9r1KhRypw5sxo1aiRfX1+tXbtW27dvV+3atWVvb292RAB4Zzg7O6tjx446duyYZs6cqatXr6pChQoqVKiQ5s6dq8jISLMjAgAAAG8UBTgAAAAAwBTXr1/Xd999Jz8/P3Xr1k3FihXTnj17tGLFCpUtW1YWi8XsiADwzkqUKJHq16+v3bt3a+XKlXJ3d1fdunWVLVs2jR8/Xg8ePDA7IgAAAPBG8AxwAAAAAMBbdfbsWQ0ZMkQTJ06UYRhq2bKlAgIClD59erOjAYBN27FjhwIDAzV//nx5e3urW7du6tChg5IlS2Z2NAAAAOC1oQAHAAAAALwVf//9twIDAzVz5ky5ubmpc+fO6tKli1KkSGF2NAB4rxw/flyDBg3StGnT5OjoqHbt2qlHjx5KlSqV2dEAAACAV0YBDgAAAAB4YwzD0ObNm2W1WrV06VKlTZtWPXv2VOvWrZUkSRKz4wHAey04OFjDhw/XmDFjFBoaqiZNmqh3797Kli2b2dEAAACAl0YBDgAAAAB47aKiorRkyRJZrVZt3bpVOXPmVJ8+fdSgQQM5ODiYHQ8A8C937tzR+PHjNXToUAUHB6tmzZrq27evihYtanY0AAAA4IXZmR0AAAAAAGA7Hj58qKlTpypXrlz65JNPZG9vryVLlmj//v1q2rQp5TcAJEBJkyZV7969dfr0aU2cOFGHDx9WsWLFVKZMGS1fvlzMnwEAAMC7hAIcAAAAAPDKQkJCNGTIEGXIkEEtW7ZU5syZtWXLFm3atEnVq1eXnR0/fgJAQufo6KhWrVrp0KFDWrBggR48eKCqVasqX758mjFjhiIiIsyOCAAAADwXS6ADAAAAAF7a5cuXNXLkSI0ePVp3795V48aN1bt3b+XIkcPsaACAV2QYhjZu3Cir1arly5fLz89PAQEBatmypVxdXc2OBwAAAMSJAhwAAAAA8MJOnjypQYMGadq0aUqUKJHatm2rHj16KE2aNGZHAwC8Afv27dPAgQM1a9YsJUuWTF26dFHnzp3l6elpdjQAAAAgBgpwAAAAAEC87dmzR1arVXPnzpWnp6e6deumjh07ysPDw+xoAIC3ICgoSEOGDNGkSZNksVjUunVr9ezZU35+fmZHAwAAACRRgAMAAAAAnsMwDK1du1ZWq1WrVq1ShgwZ1KtXLzVv3lzOzs5mxwMAmODatWsaNWqURo4cqdu3b6tBgwbq06ePcufObXY0AAAAvOfszA4AAAAAAEiYIiMjNXfuXBUqVEgVKlTQtWvXNGvWLB09elQdOnSg/AaA95iXl5f69++vs2fPavDgwdq4caPy5MmjatWqaePGjWLODQAAAMxCAQ4AAAAAiOHBgwcaP368smXLprp16ypZsmT6448/tGvXLtWrV0+JEiUyOyIAIIFwdXVVt27ddOLECU2fPl1nz55V6dKlVbx4cS1cuFBRUVFmRwQAAMB7hgIcAAAAACBJunXrlgYMGCB/f3916NBBH3zwgXbs2KHVq1erYsWKslgsZkcEACRQDg4OatKkifbv36/ff/9dDg4OqlWrlnLmzKkpU6YoLCzM7IgAAAB4T/AMcAAAAAB4z124cEHDhg3T+PHj9fDhQzVv3ly9evVSpkyZzI4GAHiHbd26VVarVYsWLVKqVKnUo0cPtW3bVkmTJjU7GgAAAGwYBTgAAAAAvKeOHDmigQMH6ueff5aLi4s6dOigbt26ydfX1+xoAAAbcvjwYQ0cOFC//PKLXFxc1LFjR3Xr1k0+Pj5mRwMAAIANogAHAAAAgPfMtm3bomfk+fr6qkePHmrXrh0z8gAAb9T58+ejVxwJDw9nxREAAAC8ERTgAAAAAPAeMAxDy5cvl9Vq1caNG5U1a1b17t1bjRs3lqOjo9nxAADvkZs3b2rs2LEaPny4rl27ptq1a6tv374qUKCA2dEAAABgA+zMDgAAAAAAeHPCw8P1yy+/KG/evKpWrZrCwsK0YMECHTp0SK1ataL8BgC8dR4eHvriiy8UFBSk0aNHa/fu3SpYsKAqVKigVatWifk6AAAAeBUU4AAAAABgg+7du6cRI0YoU6ZMatKkidKkSaP169dr69atqlWrluzs+HEQAGAuZ2dntW/fXkePHtXs2bN18+ZNVapUSQULFtTs2bMVGRlpdkQAAAC8g/gXDwAAAACwIdeuXVP//v3l5+ennj176sMPP9S+ffu0bNkylS5dWhaLxeyIAADEYG9vr7p162rnzp1atWqVkidPrvr16ytLliwaO3asQkNDzY4IAACAdwjPAAcAAAAAG3DmzBkNHjxYkydPlmEYat26tXr27Cl/f3+zowEA8MJ27dqlwMBAzZs3T15eXuratas6duwoDw8Ps6MBAAAggaMABwAAAIB32P79+xUYGKhZs2bJ3d1dXbp0UefOneXl5WV2NAAAXtmJEyc0ePBgTZ06VQ4ODmrbtq169OihNGnSmB0NAAAACRQFOAAAAIB3mr+/f/Qs5wcPHmj79u3KmzevkiVLJknau3ev9u7da1MzoQ3D0MaNG2W1WrV8+XKlS5dOAQEBatWqlVxdXc2OBwDAa3f58mWNGDFCY8aM0b1799S4cWP17t1b2bNnf6s5JkyYoDFjxmjfvn0qUqSInJycovc9ePBATk5OWr9+/TPHaNGihZYvX67KlStr2rRpbzYwAADAe4gCHAAAAMA7zd/fX0FBQZKkoKAgpU+fXuvWrVOZMmUkSWXKlNG0adNsogCPiorSokWLZLVatX37duXOnVt9+vRRvXr15ODgYHY8AADeuJCQEE2YMEFDhw7VhQsXVLNmTfXt21fFihV7axnWr1+vsmXL6vTp0zH++yIoKEjNmzd/bgEuSc2bN5ckCnAAAIA3wM7sAAAAAADwKrp37/7M/c2bN4+eDf6uCgsL0+TJk5UjRw59+umncnR01NKlS7Vv3z41btyY8hsA8N5wc3NTQECATp06pSlTpujo0aMqXry4SpUqpaVLl8rMuT4+Pj4aMGCAae8PAACARyjAAQAAALzT4lOAX7t2TWXKlJHFYtGkSZP02WefKXfu3EqWLJl+/PFH+fv7R88Yv337dvSx/57BFR4ert69eytfvnwqXbq0KlWqpL///vvNXZikO3fuaODAgcqQIYNat26t7Nmza+vWrdqwYYOqVq0qi8XyRt8fAICEKnHixGrRooUOHjyohQsXKiIiQtWrV1eePHn0888/Kzw8/K3mmTZtmqxWq4oVK6agoCDVqVNHxYoVU+nSpVWxYkUdOnTomefv3r1bpUuXVpkyZVSsWDG1bNlSwcHB0fuXLl2qwoULq2TJkipWrJjGjRv3pi8JAADgnUUBDgAAAMDmZcqUKbrMnjdvnmbMmKF9+/YpZ86c+vzzz6OXIZUkd3f3OJcu/fLLL/XXX39p+/bt2rBhg5o1a6Zy5copJCTktecNDg5Wv379lC5dOv3nP/9R5cqVdfjwYf32228qWrToa38/AADeVXZ2dqpZs6a2bNmijRs3ys/PT02bNlWmTJk0fPhw3bt3761n+vvvvxUVFaU///xTGzZsUNOmTVWrVi1FREQ89ZzGjRurWbNmWr9+vTZt2qRTp07pyJEj0ePVqVNHEydO1ObNm7Vo0SJ9//33mjVr1tu6JAAAgHcKBTgAAACA90qDBg3k6OgoOzs7bdmyJV7n3L9/X8OHD1eXLl3k6OgoSWrUqJFCQ0M1Z86c15btxIkTat++vfz9/TVq1Ci1adNGp0+f1uTJk5UtW7bX9j4AANgai8WiDz/8UL///rv279+v0qVLKyAgQOnSpdM333yja9euvfb3rF+/vsqUKaMyZcroxx9/jN5eqlQpjR8/Pnqllrp16+rYsWM6efLkU8e6cOGCzp07J0lKlCiRxo0bp9y5c0uSAgMDVa5cOeXNm1eS5O3trVq1amn06NGv/ZoAAABsQSKzAwAAAADA25QmTZoXPufEiRMKCwvTgAEDNGrUqOjtPj4+unnz5itn2rlzp6xWq+bPny9vb29988036tChwzv/7HIAAMyQO3duTZ8+Xd9//72GDh2qQYMGaeDAgWrVqpUCAgLk7+//Wt5n1qxZ0WNNmzZNQUFBkiQHBwcNHjxYa9eulZ2dXXQRHhwcrKxZs8Y51oABA9SjRw/NnDlTDRs2VOvWreXp6Snp0Qzwy5cvRz+uRZJu3bolJyen13IdAAAAtoYCHAAAAMB7xd7ePta2J5+lHRkZGee5gwYNUtmyZV9LDsMwtHr1almtVq1Zs0YZM2bU2LFj1axZM/5BGwCA18DPz0/Dhg3TV199pdGjR2vEiBEaO3as6tWrpz59+kTPqH4d/v04lV69emn58uXatm2bvL29JT36bw3DMJ56fseOHVW7dm398ssvmjRpkgYNGqQ1a9aoUKFCkqQKFSrop59+em15AQAAbBlLoAMAAAB477m5uenu3bvRry9cuBBjf+bMmeXk5KSjR4/G2D5q1Cht3Ljxhd4rIiJCs2fPVoECBVSpUiXdunVLc+bM0dGjR9WuXTvKbwAAXjNPT099/fXXOnv2rIYNG6YtW7YoX758qlKlitavX//MYvplbNiwQWXLlo0uvx8+fPjcc+bNmycfHx8FBATowIEDypkzp6ZPny7p0Yz2J/8b5O+//9Z33333WnMDAADYCgpwAAAAAO+9fPny6fDhw9HLmc+cOTPGfmdnZ/Xo0UOjRo2KPub48eMaPny4cubMGa/3CA0N1ZgxY5Q1a1bVr19fXl5eWr16tXbs2KE6derEOTMdAAC8Pi4uLurcubOOHz+uX375RRcvXlTZsmVVtGhRLViw4KkrwLyonDlzauvWrbp//74kaf78+c89p02bNrp8+bKkR7PFIyMjo5dL79u3r3bv3q0//vhDkhQeHq6vvvpKfn5+ryUvAACAraEABwAAAGATVqxYofr160uSunfvHuNZ3cHBwdHPzezevbu+/PLLGOeWK1dOzZs3V9GiRVW9enVlz549+th58+ZJkr777jt9/PHHKlasmEqXLq2OHTtq5syZ0c/nfJqbN2/qhx9+kJ+fn7p06aJChQpp165d+uOPP1S+fPlYy68DAIA3y8HBQY0aNdLevXu1fPlyubi4qHbt2sqRI4cmTZqksLCwp547YcIEde/eXZJUv359denSJdYxQ4YMkb+/v3Lnzq0aNWpEz97u3r27Vq1apRYtWmjFihVasWKFWrduLUnq0KGDqlWrprJly6pYsWL68MMP1aFDB0lSjhw5tGTJEn3xxRcqXLiwypYtq1KlSqlZs2av+c4AAADYBovxutf4AQAAAADo/PnzGjp0qCZMmKCIiAi1aNFCAQEBypgxo9nRAADAE7Zv3y6r1aqFCxfK19dX3bt3V7t27eTu7m52NAAAALwgCnAAAAAAeI0OHz6swMBAzZgxQ66ururUqZO6dOkiHx8fs6MBAIDnOHr0qAYOHKiff/5ZTk5O6tChg7p166aUKVOaHQ0AAADxRAEOAAAAAK/Bn3/+KavVqsWLFyt16tTq2bOn2rRpIzc3N7OjAQCAF3Tx4kUNGzZM48aNU1hYmJo1a6bevXsrc+bMZkcDAADAc1CAAwAAAMBLioqK0rJly2S1WrV582Zly5ZNffr0UaNGjZQ4cWKz4wEAgFd069YtjRs3TsOGDdOVK1f06aefqm/fvipUqJDZ0QAAAPAUdmYHAAAAAIB3TXh4uKZPn648efLo448/VlRUlBYtWqSDBw+qRYsWlN8AANiIZMmS6fPPP1dQUJDGjRunffv2qXDhwipXrpxWrlwp5hYBAAAkPBTgAAAAABBPd+/e1bBhw5QxY0Y1a9ZM/v7+2rRpk7Zs2aIaNWrIzo4fsQAAsEVOTk5q27atjhw5orlz5yokJESVK1dW/vz5NXPmTEVERJgdEQAAAP9gCXQAAAAAeI6rV69q5MiRGjVqlEJCQtSgQQP16dNHuXLlMjsaAAAwgWEYWrdunaxWq/744w+lT59eAQEBatGihVxcXMyOBwAA8F6jAAcAAACApzh9+rQGDx6sKVOmyGKxqE2bNurZs6fSpUtndjQAAJBA7NmzR4GBgZozZ46SJ0+url27qlOnTkqePLnZ0QAAAN5LFOAAAAAA8IR9+/bJarVqzpw58vDwUJcuXdSpUyd5enqaHQ0AACRQp06div7FOXt7++hfnEubNq3Z0QAAAN4rFOAAAAAAoEdLma5fv15Wq1UrV66Uv7+/AgIC1LJlS5YyBQAA8XblyhWNHDlSo0ePVkhIiBo2bKg+ffooZ86cZkcDAAB4L9iZHQAAAAAAzBQZGan58+erSJEiKleunC5duqQZM2bo+PHj6ty5M+U3AAB4Id7e3vr+++919uxZBQYGau3atcqVK5dq1KihzZs3mx0PAADA5lGAAwAAAHgvhYWFaeLEicqRI4c+++wzubq6avny5dq7d68aNmyoRIkSmR0RAAC8w5IkSaIePXro5MmTmjZtmk6ePKkPP/xQJUqU0OLFixUVFWV2RAAAAJtEAQ4AAADgvXL79m1ZrVb5+/urXbt2ypUrl7Zv365169apcuXKslgsZkcEAAA2JHHixGrWrJkOHDigxYsXy2KxqGbNmsqdO7d++uknPXz40OyIAAAANoVngAMAAAB4L1y6dEnDhg3TuHHj9ODBAzVt2lS9evVS1qxZzY4GAADeM1u2bJHVatWSJUuUJk0a9ezZU23atFGSJEnMjgYAAPDOowAHAAAAYNOOHTumgQMHavr06XJyclL79u3VrVs3pUqVyuxoAADgPXfw4EENHDhQM2bMkJubmzp27KiuXbvK29vb7GgAAADvLApwAAAAADbpr7/+ktVq1W+//SYfHx91795d7du3l7u7u9nRAAAAYjh37pyGDh2qCRMmKDIyUi1btlRAQIAyZMhgdjQAAIB3DgU4AAAAAJthGIZWrlwpq9Wq9evXK3PmzOrdu7eaNGkiJycns+MBAAA8040bNzRmzBiNGDFC169fV926ddWnTx998MEHZkcDAAB4Z9iZHQAAAAAAXlVERIRmzpypDz74QFWqVNG9e/c0b948HT58WG3atKH8BgAA74TkyZPryy+/VFBQkEaOHKnt27crf/78+uijj7R27VoxlwkAAOD5KMABAAAAvLPu37+v0aNHK0uWLGrYsKF8fX21du1abd++XbVr15a9vb3ZEQEAAF6Yi4uLOnbsqGPHjmnmzJm6cuWKypcvr8KFC2vevHmKjIw0OyIAAECCRQEOAAAA4J1z/fp1ff/99/Lz81PXrl1VtGhR7dmzRytWrFDZsmVlsVjMjggAAPDKEiVKpPr162v37t1auXKlkiZNqjp16ih79uyaMGGCHjx4YHZEAACABIdngAMAAAB4Z5w7d05DhgzRxIkTFRkZqVatWikgIEDp06c3OxoAAMBbsWPHDgUGBmr+/Pny9vZW9+7d1aFDB7m7u5sdDQAAIEGgAAcAAACQ4B08eFCBgYH69ddf5ebmps6dO6tLly5KkSKF2dEAAABMcezYMQ0aNEg//fSTHB0d1b59e3Xv3l2pUqUyOxoAAICpKMABAAAAJFibN2+W1WrV77//rrRp06pnz55q3bq1kiRJYnY0AACABOHSpUsaPny4xo4dqwcPHqhJkybq3bu3smbNanY0AAAAU1CAAwAAAEhQoqKi9Pvvv8tqterPP/9Uzpw51adPHzVo0EAODg5mxwMAAEiQbt++rfHjx2vYsGEKDg7WJ598or59+6pIkSJmRwMAAHir7MwOAAAAAACS9PDhQ02bNk25c+dWzZo1ZWdnpyVLlmj//v1q2rQp5TcAAMAzuLu7q0+fPjp9+rQmTJiggwcPqmjRoipTpoyWL18u5kEBAID3BQU4AAAAAFOFhIRoyJAhypgxo1q0aKFMmTJp8+bN2rRpk6pXry47O35sAQAAiC9HR0e1bt1ahw4d0vz58xUaGqqqVasqX758mjFjhiIiIsyOCAAA8EaxBDoAAAAAU1y5ckUjRozQ6NGjdffuXTVu3Fi9e/dWjhw5zI4GAABgMwzD0IYNG2S1WrVixQr5+fkpICBArVq1kouLi9nxAAAAXjsKcAAAAABv1alTpzRo0CBNnTpV9vb2ateunXr06KE0adKYHQ0AAMCm7du3T4GBgZo9e7aSJUumLl26qHPnzvL09DQ7GgAAwGtDAQ4AAADgrdizZ4+sVqvmzp0rT09Pde3aVR07dlTy5MnNjgYAAPBeCQoK0uDBgzV58mRZLBa1bt1aPXv2lJ+fn9nRAAAAXhkFOAAAAIA3xjAMrV27VlarVatWrVL69OnVq1cvtWjRQs7OzmbHAwAAeK9dvXpVo0aN0qhRo3T79m01aNBAffr0Ue7cuc2OBgAA8NLszA4AAAAAwPZERkZq7ty5KlSokCpUqKCrV69q5syZOnbsmDp27Ej5DQAAkACkSJFC3377rc6cOaPBgwdrw4YNypMnj6pVq6aNGzeKuVMAAOBdRAEOAAAA4LV58OCBxo8fr2zZsqlu3bpyd3fXypUrtXv3btWvX1+JEiUyOyIAAACekCRJEnXr1k0nT57U9OnTdfbsWZUuXVrFixfXwoULFRUVZXZEAACAeKMABwAAAPDKbt26pQEDBsjf318dOnRQvnz5tGPHDq1Zs0aVKlWSxWIxOyIAAACew8HBQU2aNNH+/fv1+++/y8HBQbVq1VLOnDk1ZcoUPXz40OyIAAAAz8UzwAEAAAC8tAsXLmjYsGEaP368Hj58qGbNmqlXr17KnDmz2dEAAADwGmzdulVWq1WLFi1SqlSp1KNHD7Vt21ZJkyY1OxoAAECcKMABAAAAvLAjR45o4MCB+vnnn+Xi4qIOHTqoW7du8vX1NTsaAAAA3oDDhw9r4MCB+uWXX+Ti4qKOHTuqW7du8vHxMTsaAABADBTgAAAAAOJt27Zt0TOAfH191aNHD7Vr144ZQAAAAO+J8+fPR68AFB4erubNm6tXr17KlCmT2dEAAAAkUYADAAAAeA7DMLR8+XJZrVZt3LhRWbNmVe/evdW4cWM5OjqaHQ8AAAAmuHnzpsaOHavhw4fr2rVr+uyzz9S3b1/lz5/f7GgAAOA9Z2d2AAAAAAAJU3h4uH755RflzZtX1apVU1hYmBYsWKBDhw6pVatWlN8AAADvMQ8PD33xxRcKCgrS6NGjtXPnThUoUEAVK1bU6tWrxbwrAABgFgpwAAAAADHcu3dPI0aMUObMmdWkSROlSZNG69ev19atW1WrVi3Z2fFjBAAAAB5xdnZW+/btdezYMc2ePVs3btxQxYoVVbBgQc2ZM0eRkZFmRwQAAO8Z/uUKAAAAgCTp2rVr6t+/v/z8/NSzZ0+VLFlS+/bt07Jly1S6dGlZLBazIwIAACCBsre3V926dbVz506tWrVKyZMnV7169ZQ1a1aNGzdOoaGhZkcEAADvCZ4BDgAAALznzpw5oyFDhmjSpEkyDEOtW7dWz5495e/vb3Y0AAAAvMN27dqlwMBAzZs3T15eXurWrZs6dOggDw8Ps6MBAAAbRgEOAAAAvKf279+vwMBAzZo1S+7u7urSpYs6d+4sLy8vs6MBAADAhpw4cUKDBw/W1KlT5eDgoHbt2qlHjx5KnTq12dEAAIANogAHAAAA3iOGYWjTpk368ccftXz5cqVLl04BAQFq1aqVXF1dzY4HAAAAG3b58mWNGDFCY8aM0b1799S4cWP17t1b2bNnNzsaAACwIRTgAAAAwHsgKipKixcvltVq1bZt25QrVy717dtX9erVk4ODg9nxAAAA8B4JCQnRhAkTNGTIEF28eFE1a9ZU3759VaxYMbOjAQAAG2BndgAAAAAAb05YWJimTJminDlzqlatWkqcOLGWLl2q/fv3q3HjxpTfAAAAeOvc3NwUEBCgU6dOafLkyTp69KiKFy+uUqVKaenSpWLOFgAAeBUU4AAAAIANunPnjgYNGqQMGTKoVatWypYtm7Zu3aoNGzaoatWqslgsZkcEAADAe87R0VEtW7bUwYMH9dtvvyk8PFzVq1dXnjx59PPPPys8PNzsiAAA4B3EEugAAACADbl8+bKGDx+uMWPG6P79+2rSpIl69erFcxUBAACQ4BmGoU2bNslqtWrZsmVKly6devbsqdatW8vV1dXseAAA4B1BAQ4AAADYgBMnTmjQoEGaNm2aHBwc1L59e3Xv3l2pU6c2OxoAAADwwg4cOKDAwEDNnDlT7u7u6ty5s7p06SIvLy+zowEAgASOAhwAAAB4h+3atUtWq1Xz58+Xl5eXunfvrg4dOihZsmRmRwMAAABe2ZkzZzRkyBBNmjRJhmGoVatWCggIkL+/v9nRAABAAkUBDgAAALxjDMPQ6tWrZbVatWbNGmXMmFG9evVSs2bN5OzsbHY8AAAA4LW7fv26Ro0apZEjR+rWrVuqV6+e+vTpo7x585odDQAAJDB2ZgcAAAAAED8RERGaPXu2ChQooEqVKunWrVuaM2eOjh49qvbt21N+AwAAwGZ5enrqm2++0ZkzZzR06FBt2bJF+fLlU5UqVbR+/XoxzwsAADxGAQ4AAAAkcKGhoRo7dqyyZs2q+vXry9PTU6tXr9aOHTtUp04d2dvbmx0RAAAAeCtcXV3VpUsXHT9+XL/88osuXLigsmXLqmjRolqwYIGioqLMjggAAExGAQ4AAAAkUDdv3tQPP/wgf39/de7cWQULFtTOnTu1atUqlS9fXhaLxeyIAAAAgCkcHBzUqFEj7du3T8uWLZOzs7Nq166t7Nmza9KkSQoLCzM7IgAAMAnPAAcAAAASmPPnz2vo0KGaMGGCwsPD1aJFC/Xq1UsZM2Y0OxoAAACQYG3fvl1Wq1ULFy6Ur6+vunfvrvbt2ytp0qRmRwMAAG8RBTgAAACQQBw+fFiBgYGaMWOGXF1d1bFjR3Xt2lU+Pj5mRwMAAADeGUePHtXAgQM1ffp0OTs7q0OHDurWrZtSpkxpdjQAAPAWUIADAAAAJvvzzz9ltVq1ePFipU6dWj169FDbtm3l5uZmdjQAAADgnXXx4kUNGzZM48aNU1hYmJo1a6bevXsrc+bMZkcDAABvEAU4AAAAYIKoqCgtW7ZMVqtVmzdvVrZs2dSnTx81atRIiRMnNjseAAAAYDNu3bqlcePGadiwYbpy5Ypq166tPn36qFChQmZHAwAAb4Cd2QEAAACA90l4eLimT5+uPHny6OOPP1ZkZKQWLlyogwcPqkWLFpTfAAAAwGuWLFkyff755woKCtK4ceO0d+9eFS5cWOXKldPKlSvFHDEAAGwLBTgAAADwFty9e1fDhg1TxowZ1axZM/n7+2vjxo3asmWLatasKTs7/tMcAAAAeJOcnJzUtm1bHTlyRHPnzlVISIgqV66s/Pnza9asWYqIiDA7IgAAeA1YAh0AAAB4g65evaqRI0dq9OjRunPnjho0aKA+ffooV65cZkcDAAAA3muGYWjdunWyWq36448/lD59evXq1UstWrSQs7Oz2fEAAMBLogAHAAAA3oDTp09r8ODBmjJliiwWi9q0aaOePXsqXbp0ZkcDAAAA8IQ9e/YoMDBQc+bMkaenp7p06aJOnTopefLkZkcDAAAviAIcAAAAeI327dsnq9WqOXPmyMPDI/ofzjw9Pc2OBgAAAOA5Tp06Ff2LrPb29mrbtq169OihtGnTmh0NAADEEwU4AAAA8IoMw9D69etltVq1cuVK+fv7KyAgQC1btpSLi4vZ8QAAAAC8oCtXrkQ/yigkJESNGjVSnz59lCNHDrOjAQCA57AzOwAAAADwroqMjNSCBQtUpEgRlStXTpcuXdKMGTN0/Phxde7cmfIbAAAAeEd5e3vr+++/15kzZxQYGKg1a9YoZ86cqlGjhrZs2WJ2PAAA8AwU4AAAAMALCgsL06RJk5QjRw7Vrl1brq6uWr58ufbu3auGDRsqUaJEZkcEAAAA8Bq4ubmpR48eOnnypKZNm6aTJ0+qZMmSKlmypJYsWaKoqCizIwIAgCdQgAP4P/buOriqa2/j+BM3NEBwd7cE1wR3tyLF3SltgdJiLVCkUAoFiktwQnBCAkGKBKeUIkWCu8bl3D/S5jYlUHxHvp+Zd6Zb1jrPPnOHN+v81l4LAAC8pidPnmjChAnKli2bunXrpkKFCungwYPatWuXatWqJTMzM6MjAgAAAPgArK2t1aFDB50+fVobNmyQyWRSgwYNVLhwYS1atEihoaFGRwQAAH9hD3AAAADgP9y6dUvTpk3TrFmzFBwcrPbt22vIkCHKmzev0dEAAAAAGGT//v2aMGGCNm7cqEyZMmnQoEHq2rWrkiRJYnQ0AAASNQrgAAAAwEucP39ekyZN0qJFi2RjY6OePXuqf//+ypAhg9HRAAAAAMQRZ86c0cSJE7V8+XIlTZpUvXv3Vt++feXk5GR0NAAAEiUK4AAAAEiUQkNDZTKZZGNj88I1Pz8/TZgwQevWrVPatGk1YMAA9ejRQ8mTJzcgKQAAAID4wN/fX1OnTtXcuXMVERGhTp06afDgwcqRI8cL9z5//lwODg5sowQAwAfAHuAAAABIdJ49e6YSJUpoxIgR0edMJpO2b98uV1dXlSpVSqdOndLs2bN1+fJlff755xS/AQAAALxSlixZNHXqVPn7+2v48OFavXq1cufOrdatW+vEiRMx7m3cuLGaNm2qyMhIY8ICAJCAUQAHAABAohIZGakOHTrI399fXbp0UXh4uNzd3VWiRAnVqlVLz58/15o1a3T27Fl17dpVtra2RkcGAAAAEI84OjpqxIgRunLliqZPn66DBw+qePHiqlmzpnx8fGQymdS/f3+tX79e3377rdFxAQBIcCiAAwAAIFEZP3681q9fr3nz5mnnzp3KkyeP2rRpo7Rp08rHx0eHDh1S06ZNZWFhYXRUAAAAAPGYvb29evfurQsXLmj58uW6c+eO3NzcVKpUKQUHB+vrr7/WyJEjtWXLFqOjAgCQoLAHOAAAABKNbdu2qU6dOqpUqZLOnDmjhw8fqkWLFho6dKiKFy9udDwAAAAACZjJZNKOHTs0YcIE7dq1S7ly5ZKDg4OuXLmiI0eOKFeuXEZHBAAgQaAADgAAgEThyJEjqlChgkJDQ2VlZaX69eurU6dOypkzp9KlS8ce3wAAAAA+uLt37+rhw4c6evSo5s2bp127dsnMzExOTk46e/asUqZMaXREAADiPQrgAAAASBSaN2+uNWvWxHota9asunLlyscNBAAAACBRuXPnjjJlyqTw8PBYr8+YMUO9e/f+yKkAAEh4KIADAAAgUTCZTLp9+7ZCQkIUEhKi4ODg6P9Oly6dcufObXREAAAAAAnc8ePHFRAQIFtbW9nY2ET/n4ODg1KnTm10PAAAEgQK4AAA4J35+/vr/v37RscAXkvq1KmVJUsWo2MAAAAAQDTG1YhPGFcDiOssjQ4AAADiN39/f+XPn0+BgUFGRwFei729nc6e/YPBOgAAAIA4wd/fX/nz5VNgEONqxA/2dnY6+wfjagBxFwVwAADwTu7fv6/AwCDN+ayN8mRJa3Qc4JXO+99Rt++X6/79+wzUAQAAAMQJ9+/fV2BQkGb1rKU8GRyNjgO80vmbD9Vz1jbG1QDiNArgAADgvciTJa2K5cpkdAwAAAAAAOKlPBkcVTQ7E8sBAHhX5kYHAAAAAAAAAAAAAADgfaAADgAAAAAAAAAAAABIEFgCHQAAJEqFO4xVlrRRe6uFhIbpyDl/FcqRQckd7CRJpy/d0N6fBitrWkdt2HdKP63bLUsLC0lSYEioXPJl1eBW1ZTOMZlhz/BvC7Yc0IItB2RnY6XkDnb6oV9zZUid/JVtNu4/rckrd8rO2kpmZmaa3Kep8mdNF+OepwHBGjZng5buOKzHWyd/yEcAAAAAAMRhQaHhmrH5iHxPX5WFhblCwyNkZ22pOiVzqWHpPEqT3F6SdOXuY41ZuV83Hz6TlYWFngeHKptTcn1SuZDcimYz9iH+4dyNB/psgY8iIyMVFBaugQ1KqZ5L7le2ufXwuQbN36nHAcEKDo1Qe9dC6uhW9IX7Vu07qy8X79LYtpXVulLBGNd8f7uqOdtPKCAkTMGh4Upia6WRrSqqSDan9/p8AJBYUQAHAACJ1uaJvSRJV+88VNFPx+m77g1VsUguSVLdoTMlSXtPXVSvye7ymtpPBbKllySduXxLtQb/qCaVisWZArjn/lP6bul27Z85WGlSJNWEZTvU8utf5PvjQJmbx77oz9Fz/uo52V27pg9Q7kxOct95RE2Hz9GhOUOV1N5WknTy4nX1m7Za2dOn+piPAwAAAACIY4JCw9X42zUqkzeDPIY3l6VF1Fhzs99FdZmxWQ+eBenzpmUVHhGplhM91LhsHs3rW1eSFBgSpk7TN8nz8IU4UwB/FhSqZuPXaXjzcmpVqaAu3nokt6+WKYNjUpXImS7WNpGRJrWZ7KHaJXNqaJOyuv80UJW+XKI0yeyjC+dh4RHq9tMWOSa105PAkFj7GTLfW33ru6h91cKSpO/W/Kpm49dq/4QO0ZMIAABvjyXQAQBAotSzUaVXXm9T3VnJHey09eAZ5c2SNrr4LUkFs6dXS7eSsrF6u7mEzwKDtXDLAR0/f+2t2sdm8gpvtXZzVpoUSSVJPRpV1Nmrt7XD74+XtvlhtY+qu+RT7kxRM8xbupZQeGSk3Hceib4nNCxCq0Z1VnWXfO8tKwAAAAAg/pmw9leFhEXo61YVo4vfklTXJZc6uhWJPj5344H+vP1IjcvkjT5nb2OlvvVclDKJzVt9tslk0r7fr2mRz6m3f4B/WbH3jCIiI9WyYgFJUq70KVWtSDb9uMnvpW12nLiks9cfqGetEpKk1Mns1aJCfk31PBx9T1hEpNq7FtHkTtVe2k/RHGnVtnKh6ONuNYvr4fNg+Z7xf9fHAgCIAjgAAEikejV+dQH8k+qllCKJnawtLXTx+j1dv/coxvVJvZuqRN4sb/SZh89eUZ+pK5Xvk1Gasc5XlpYWb5w7No+fBerkxesqkSdz9LnkDnbKlTGNdh8//9J2vicuqETu/7cxNzdXsVyZtPvE/9u45M+qtHHkLXcAAAAAgDHCIyK1eNdvalwmj8zMzF643qtOSdVziVpRzfqvse7u01dj3FM+fyZ90/rVY/F/u/M4QNM3+qnUkIX6ZMoGPQ0MfcsneJHvb/4qmj1tjOcpliOdfM+8fLL6nt/8lSt9SiW1/38hv3iOdDp5+a4eBwRLiir2Vy2c9ZWf/UufujI3///n2lhFfWdh4RFv9SwAgJhYAh0AAOAVWro5a7bnPpXrMUkt3UqqSaViKl0g20uXFf+3h08DtML7qJZsP6TLt+6rQYWiWjmqiyoUyRnjvi9+9tDpSzdf2dffS7b/25XbDyRJTimTxjjvlDJp9LXYcj0NCJbTv4rbTimT6th7fDMdAAAAABD/Xbj5UE8DQ5Q7g2Os1zOlTqZMf/137gyOKpsvo4Yv9ZX3yStqUbGAahTLrmT2r/f2d0RkpHxOXdWSXae148RlFcnmpH71nNW4bF4lsbWOvs/75BVN2/jyt7UlqX99l5cuuX717hOVyJk+xrm0Kez1NDBEj54HK2US2xfaXLn3RE7/WqL87+Ord58oRfYX27yOIxduyc7aUjWK53ir9gCAmCiAAwAAvEL+rOm0c2p/TVy+Qwu3HtTcjfuV2SmlhrSqpg61y7y03aWb9zVu8VZt+vU35cqURp/WLqOWriWVImnse3mN79HorTMGhoRJ0gtLsttYWSror2svtgl9RZv3N6MeAAAAABD/PQ2K2svawdbqte5fNbSJpm08rMU+p+Uzc6tsrSzUtFw+jWpTSSkcXl4k/m7Nr3Lfc0aBIWFqVi6/vMe0UcEsaWK9161otnfaTzwoNDz6zeu//f32elBIWKwF8KCQ8FjH0X/39zZMJpMmbzikL5qVU6qkdm/VBwAgJgrgAAAA/6Fg9vRaNLyDngQEaevBM5rjuU/9p6+WhYW52tYoFWubw2evaK3vCRXPnVkTezaWS/5XL3/2Luxton6ACAmLOdgOCQuX/T9mx8dsY/3SNnY2sbcBAAAAACROfxetA18yyfrf7Kwt9UXTchrauKwOX7gp9z2/a8XeM7p057E2jmjx0nZTNxyWnbWlRrWppJYVC8jO+sOVMOysLRUSFnPJ8dC/liC3s4m90G9nY6ng0BfH0X/39zYmrDug9CmTqHedkm/VHgDwIgrgAAAAr/D4eZBsrS1la22l5A52auXmrBZVS6hS36nacvC3lxbAW7k5K2OaFFq89aDqfzFT2dOnVvtapdXKzVkpY3kL/F2WQM+WLpUk6e6jZzHO3330TFWK54m1jWMyByVzsNXdh09faJMtfexL2gEAAAAAEqdc6VMqub2Nzt98qFolcr7y3vCISD0JDFGqpHYyNzdTmbwZVSZvRuXJ6Kivl+/Rk4BgJX/JW+DHf+isZb6/adpGP41euU/NyuVTu6qFVDir0wv3vusS6Fmdkuvuk4AY5+48DlQye5tY3/6WpGxpkmvP7zG3Dbv7JDC6vze10PuUTly6o8UDG7xxWwDAy1EABwAAeIVZHnuUJ5OTmlYpHn3O3Nxc2dOnkp31q5d+q1gklyoWyaXHzwK10ueoFm8/pG/mb1b98oXVvlYZVSySU2ZmZpLebQn0FEntVSRnRh2/cE0NKxaVJD0NCNbFG/f0Tad6L21XqWhuHb9wPfrYZDLp5MXrGtyq2ltnAQAAAAAkPBbm5upUrag8Dp5X37rO0WPZv7We5KHcGRw1uk0l3Xz4TEPme2vV501i3JMzXQpZmJu9sIT4P2VMlVRDm5TVkEZltOv0VS3dfVo1RrqrYJY0alulkJqWy6ekdlGrlr3rEuiVCmbRD56HZTKZop/nxOU7qlww80vbVCyYRQu8T+lZUGh0jhOX76hodqdXLu0em7W//iGPQ+flPqSRrC0tdOXuY129+0SVC324FeQAILEwNzoAAABAXDfbc68ePwuMPj5z+ZZ8T1xQo0pFX6t9iqT26t6wovbPHKIt3/eWg62NPhk1X1sPnXlvGYe0rib3nUd0//Hz6Mz5s6ZTDZd80ffU/2KWxizcEn08sIWrvPzO6uL1e5KkVbuOycLcXK2rOb+3XAAAAACAhGFI49Kyt7bUqBV7FR4RKSlqIvXcHcd1/sYD9an7/yW89/5+Tb/+8f8J14EhYVq867Rql8wp29dYKtzc3ExuRbNpQf/6OjW9qxqWzqOftx1Tn9nb39vztK5UUBbm5lq9/6wk6c/bj+R98or61nOJvmfp7t9Uduii6GXPaxbPoXyZUmn2tmOSpAfPgrRy7+8a2CD21eFeZvvxSxqzcp8GNyqtP67f1/FLt7X7tL8Onnv1ynAAgNfDG+AAACBR23nkD41fGjWA/nL2BrWvWVrdGlSIvl6vXGHdefhUjYbPVhI7G0VERCosPEKTezdVnTKF3vjzSubNopJ5s+jb7g0U/Jp7p72OBuWL6P7j52oyYo5srS2VIom9VnzTWebm/5/vGBwSFmPP75J5s2jm4NbqMnGp7KytZGZmprXjuimp/f9nrV+7+0g9Jrnr7qOopdLrDp2pAtnS6fteMWfyAwAAAAASNhsrS635oql+3HxEDcaukqWFhULDI5Q3Yyp5jmghp+QOkqTUyew1pHEZjV25T+bm5jIzkwKCw1QuXyYNbVLmjT83TXJ79a3nrL71nHXt/tP/bvCaktpZa/XnjfXZQh8t9jmtoLBwzeheQyVypou+JzQ8QsGh4Yo0mSRFFeaXDWqoQfO9VXvUCgWHRmhI4zKq55I7Rt+fLfDWuRsPJUnTNvrJfc/vmt2rttI7JpEk9ZuzQw+eBanxt2titmv85t8PAOBFZibTX/9yAwAAvIVjx46pZMmS2v3jQBXLlcnoOMArnbh4XVX6TtXRo0dVokQJo+MAAAAAQPS42ntMGxXNntboOMArnbx8R25fLWdcDSBOYwl0AAAAAAAAAAAAAECCQAEcAAAAAAAAAAAAAJAgUAAHAAAAAAAAAAAAACQIFMABAAAAAAAAAAAAAAkCBXAAAAAAAAAAAAAAQIJgaXQAAACA+GKO5z7N3bhPwaHhOr1ohNFx4pQFWw5owZYDsrOxUnIHO/3Qr7kypE7+yjYb95/W5JU7ZWdtJTMzM03u01T5s6Z7o37rDp35Qr/lC+fQsHa13s+DAQAAAADem192nNAvXicUEhah4z90NjpOnLLQ+5QW+ZyWnbWFktnbamrnakrvmOSVbTb7XdQUz0Oys7KUmbmZvv/UVfkypX7rfj+dtlGb/C7q/tKB7+25AMAIFMABAABeU7cGFeRgZ63xS3cYHSVO8dx/St8t3a79MwcrTYqkmrBsh1p+/Yt8fxwoc/PYFxw6es5fPSe7a9f0AcqdyUnuO4+o6fA5OjRnqJLa275Rv5sn9voozwkAAAAAeDddahSTg62VJq47aHSUOGWT3wVNXHdAvt+2U5rk9vp+/UG1mewh7zGfyNzcLNY2x/68rV6zt2nn6DbKncFRK/f+ruYT1uvXiR2U1M76jfvdfvyS9p659sGfFQA+BpZABwAAwDuZvMJbrd2clSZFUklSj0YVdfbqbe3w++OlbX5Y7aPqLvmUO5OTJKmlawmFR0bKfeeRd+oXAAAAAID4ZsqGw2pZsYDSJLeXJHWvWVxnrz+Q18nLL20zfZOfqhXNrtwZHCVJzcvnV0RkpFbu/f2N+w0IDtO3q/erXz3n9/1oAGAI3gAHAAAfzOpdxzRz/R452FkrOCRMlYrl1shP60iSwiMi9OXsDdp66HdlS+col3xZdej3K7p295FaupZU9gyp9MMqnxjLjTf7aq72nryoKX2b6pPqpSRJvicu6Ht3L5lMUmhYuHJlSqPvujdSiiR2kqSWX/+iA2cu69PaZfQ8MERnr97WgTOXtWfGIBXJmVHLvA7rZ4+9SmJno4jISPVtWlX1yxeOfoYtB3/TyF82KUUSO2VLn0qFc2R4o+/A7+xVjZy3URGRkTKZpOou+TW4pZssLMw1dtFWrfQ5qixpHVWzVH7tPn5eB89c0YgOteV74vwrc6/wPqIZ63xlY2Wp0LBwDW5VTY0qFpUk9f1hpbYfPquqJfIovWMyHTt/Tb/+dkkLh7VXvXKF/yPxm3n8LFAnL17XoBau0eeSO9gpV8Y02n38vGqVLhBrO98TF/RZq2rRx+bm5iqWK5N2nzivbg0qvHW/AAAAAJCQrPn1D/289ZgcbK0UHBquigUya0TLCpKk8IhIjVjqq23H/lRWp+RyzpVehy/c1PX7z9S8fD5lT5tC0zb6xVhuvOXE9dp39pomdXRT60oFJUl7zvhrssehqHF1eIRypU+pcW0rK7lD1OpcrSd56ND5m2pftZCeB4fpj2v3dfD8Te0a94kKZ3WS+54zmrP9uBxsrBRhMqlPHWfVdckV/Qxbj/6pb9z3KoWDjbI6JVehrGne6Ds4cvGWvlm+RxEmk0wmqVrRbBrYsJQszM317er9Wr3/D2VOnUzVi2XXnjP+OnT+hoY1Ly/f3/xfmXvVvt81c8sxWVtZKCw8QgMalFLD0nkkSf3nesnrxCVVKZxV6VI46PilOzpw7obm962rOs65/iPxm3kcEKxTV+5qQAOX6HPJ7G2UM10K7fnNXzWL54i13Z4z1zSoYanoY3NzMxXJlla+Z/zVpUaxN+r3uzW/6lO3IrK1omQEIGHgXzMAAPBB3HrwRD0muevoL18oW/pUuvvomUp1mxBdAJ++Zre2Hz6rPT8OlGMyB3nsPanpa3ZrSOtq+rJtzeh+/rnc+JoxXVW4w9gYn+Pld1b1yhVWj4YVZTKZ1H/6ag2fs0E/DWolSVo5qovqDp2pdb4ntG1yH2VKk1L9pq2Shbm5vPzO6qtfNmrvjMHKmCaF/rxxTxV7T1Fax+4qlT+b/O881KfjFmvu523VsEIRPXjyPNY9p1/m3uNnajpijuZ90VbVXfLreVCIag+ZIStLcw1s4aYRHWrLwsJcP63zVd+mVdSvWVUt9/JTUEjYK3P7HD2nIT+ti14+/MzlW3Ib8IPSOSZTmYLZ9eOAluo52V1bDp7RxvE99U2nepq43EtWlhax5vziZw+dvnTzlc/ysmXGr9x+IElySpk0xnmnlEmjr/3bw6cBehoQLCfHZC+0OXb+2hv3+/nPHjr95w2ZJJXOn1WDW1WLXkYdAAAAAOKrW4+eq/fP23Ro0qfK5pRCd58EqNzQRdEF8Bmbj2jHiUvyGfuJHJPaacOh85qx+YgGNSytz5uWje7nn8uNrxzaWMUHzIvxOTtPXlFd51zqVrO4TCaTBs7bqa+W7dH0bjUkSe5DGqnB2NVaf/C8toxsqYypkmrAL16yMDfXzpOX9fXyPdo9rq0ypEqqP28/UtXhS7U2RVO55M6ga/efqvOPmzW7V23VL5VbD54FqcHYVa/9Hdx7EqjmE9Zpbp86qlY0u54Hh6r+mFWysjBX/walNKx5eVmYm2vm1qPqXbek+tZz1oo9ZxQYGv7K3LtOX9VnC32ilw///dp91Ri5XOlSOqh0noya1rW6+szerq1H/5TH8GYa2aqiJq0/KEuL2BfVHb5kt05fvffKZ/Ec0TzW81fuPpEkOSV3iHHeKblD9LV/e/gsSE8DQ15okzaFvY5fuvNG/Z66clfHL93W6DaVtHLf7wKAhIACOAAA+CDuPnqmiMhIXbv3SNnSp5JTyqRa8U3n6OuzN+xVh9pl5JgsaiDWqGJRDZ+z4Y0/p3eTykqZNGopLzMzMzWsUES9Jq944b5KxXIrU5qUkqTp/VtIkobMXKemlYsrY5oUkqScGdOoYtGc+mXTryqVP5sWbDkgJ8dkalihiCQpVfIkqle+sFZ6H32tbHM89ytjmhSq7pJfkpTEzkYtqpbQzxv2amALt+j7HJM5RL/R3Ka6S4w+Ysv92cx1qlOmYPTy4QWzp5drybyastJbq0Z3iW5bOEcGFcmZUZI0tE31l+Yc36PRaz1PbAJDwiRJNv+aJW5jZamgv6692Cb0FW1C36jfwjkyqIZLfk3o0UjPAoPVefxSNRo2Wzsm95XFS36YAAAAAID44N6TQEVEmnT9/jNlc0ohp+QOWja4YfT1OduPq71rYTkmjVoBrWHpPPpqme8bf07P2iWU8q+3vc3MzNSgVG71mb39hfsqFcisjKmiJin/0CVqjDl0oY8al82rDH+dz5kupcrnz6z5O0/KJXcGLfQ+Jafk9qpfKrckKVVSO9Vzzq1V+8++VrZfvE4oY6qkqlY0uyQpia21mpbLpznbj6t/g/+//ZwqqV30G82t/nqz/VW5P1/ko9olckYvH14gc2pVLZJNUzf4acVnGaPbFsqaRoWzRo29hzQu89Kc49pVea3nic3fY1zrf01at7GyUFBo7OPqoNDw6Hv+ydrSIrq/1+k3MtKkzxf5aFJHt5fuNQ4A8REFcAAA8EEUyZlRLd1KqsEXP6tswexqUbWEWriWlCQ9CQjSnUfPlC1dqhhtMjmlfOPPCY+I1Gcz1+mc/x1ZWVpG9/1vGVInf+Hc2Su3dOv+kxhvdT98GqDcVlaSpPPX7ipbOscYbTKnef2MZ6/e1u2HT2P0HxAcIkvLqOXV/n4jO2Ms2V6Z++ptVSoWc8m1HOlTy2PfqX+1TfHaWd+WvU3UdxUSFh7jfEhYuOxtrV/Sxvqlbez+uva6/f6zeJ/U3lajOtdT2R7fa8/JC6paIu9bPBEAAAAAxA2Fs6ZRiwr51fi7NSqTN6Oalcun5uWjJlg/DQzR3SeBypYm5pgxU6qksXX1ShERkfp80S6dv/lAVhYW0X3/WwbHF/v+4/p93X70XA3Gro4+9/B5kGytosbOF24+VFanmBkzpn79jH9cf6A7jwNi9B8QEiorC/MY4+oMKZO8tI/Ycz9QxQKZY5zLnjaFPA+d/1fbl/f7vtj9Nf4NDY+IcT4kLCJ6bPxCG2vL6Hv+KTQ8Irq/1+l37o7jKpU7gwpmebNl6QEgrqMADgAAPggzMzPNHtJGA5q7armXn8Ys2qoZ63zlPa1/jHte2YdevB4ZGRnjuPlXc5U7s5M2ju8lG2tL7T11UfU/n/VCOwvzF98GNjMzUwvXEhrWrlasn2+S6T8z/pf8WdO9dPnwv5nHku1vseV+mX8ntXjN2dvvsgT635MY7v5r0sHdR89UpXieWNs4JnNQMgdb3X349IU22dI7vnW/kpQ9fVS7y7ceqOpL7wIAAACAuM/MzEwze9RSv3rOct/zu75d/atmbjkmr9GtY9zzyj5iORfxr3F1y+/XK3cGR3kMayYbK0vt+/2aGn275oV2sb0hbGZmpmbl8+mLpuVi/XzTa2T8L/kypXrp8uH/z/bysfObvNn876yvOyZ/lyXQs/01QeDuk4AY5+8+CVCVQlljbeOY1E7J7G1eaHPncWD0hIPX6XfXaX89CQyOnmDw970Nxq6Wg62V3Ic0euUzAUBcRQEcAAB8EDfvP9H1e49UKn82jelSX/2aVVHRT7/V7uMX1LBCEaVzTKbLt+7HaHP97qMYx0nsbRQQHBJ9HBYeoXuPn0cfP3jyXH/439GAFq6y+Wv2c9i/Zj+/Sv6s6XTxeswB6p6TF3Xh2l11rldO+bKk06pdx2Jcv3YvZsZXKZAtnRZvO6TIyMjowfi9x880cbmXvu/V5LX7iS33pRsxv7tLt+6rQLZ0b9XfuyyBniKpvYrkzKjjF66pYcWikqSnAcG6eOOevulU76XtKhXNreMXrkcfm0wmnbx4XYNbVXvtfu89fqZFWw9pSOtq0f3cuh+1j9nfy9oDAAAAQHx16+FzXX/wVC65M2hUm0rqU9dZJQfNk+9v/qpfKrfSpnDQ5buPY7S5/iDmJOIkdtYKCA6NPg4Lj9D9p0HRxw+eBencjYfqX98leguqsIiYBfJXyZcplS7eijlO3vv7NV24+VCdqhVV3gyOWvPrHzGu37j/4qptL5M/cyot2fWbIiNN0YXse08CNcnjoCZ0cH3tfmLLfen24xjnLt95rHyZUsXe4D+8yxLoKRxsVTirk05cuqMGpaImfD8LDNGftx9rZKuKL21XsUBmnbh8J/rYZDLp1JU7GtSw9Gv3u+KzRjH6dN9zRn3n7PjPCQcAENexMSIAAPgg/rx5T1/P36zwiKiCtMkUdT5nxtSSpO4NK2iF91E9fBo1u3jDvlN69CwoRh+Fs2fQo2dBunD9riRp1a6jMWZuOyZzUNqUSeV74kL0uY2/nn7tjENaVdPWQ2ei334OCA7RmIVblDtz1P5en9Yuo7sPn2rDX0uLP3waoHW+J167/271KygwJFSLtx2SFDUYnbjcS6mSO7x2Hy/LveXgmejv5czlW/I5ek6DWrr9R8sPY0jranLfeUT3/5qcMNtzr/JnTacaLvmi76n/xSyNWbgl+nhgC1d5+Z2NnoCwatcxWZibq3U159fuNzAkTD+t99XVOw8lRS3bN9HdSzkzplblYrk/7EMDAAAAwAf25+1HGrVin8L/KkibFDWwzpEuhSSpW41iWrXvrB7+NZbeePiCHgcEx+ijYJY0ehQQrAs3o8ZNa379Q/98Idoxia2ckttrz5lr0ec2+V3Q6xrUsLS2H7uk3/56+zkgOEzjVu2P3lu7g1sR3X0SqI2Ho/p8+CxI6w6ee+3+u1QvpqDQcC3ZHTXWN5lMmuxxSKn+2vf8bQ1qWFpbj/0Z/b38fu2+dp26ooH/2Ff8YxrcqJRW7P1d959GLT0/Z8cJ5c+UStX/2vtckhp9u0bjVu2PPu5f30U7T1yJnoCwev8fsjA3V8uKBd6oXwBIiMxMpr9/jgYAAHhzx44dU8mSJbX7x4EqlitT9Pk7D59q1MItOnvlthzsrBUYHKpOdcupbY2owWR4RISGzfHUlgO/KWfGNKpUNJd8jp1XhSI59WXbmtH9THLfqeU7/ZQtnaMaVSqm75d7ydbaUl3rV1C3BhV04LdLGjprvSJNJmVJ66jMTik1x3OfyhfOqUXD2mvorPXaefQPJXewU4Fs6bRyVJcY+Vf6HNW01buUxM5a5mZm6lS3XPRe5ZK05eBvGvnLJiVPYqd0jslUOGcGTV3pI+d8WbVyVGclsbN59fdzzl/D53oqIDhUDrbWKlsoh4a3qyULC3NNXeWt+ZsP6ElAkArnyKgfB7RQjgxREwQ6fbfklbnddx7RjHW7ZWttpdCwcA1q6abGlYpJilrSfN2eE5Kk3JmcXivnu5q/+Vct3HpQttaWSpHEXlP7NovxFnb1gdNVukA2je3aIPrcxv2nNXnlTtlZW8nMzEyT+zRV/qzpXrvf4NAw/bTOV9sO/S4ba0sFBIUqe/pU+qZTXWVJG3Pv9r+duHhdVfpO1dGjR1WiRIn3/j0AAAAAwJv6e1ztPaaNimZPG33+zuMAjV25T2evP5CDrZUCQ8LU0a2o2lQuKEkKj4jUV8t8teXon8qZLoUqFsiiXaevqnz+TPq8adnofqZsOCT3Pb8rm1NyNSydR5M9DsnGykJdqhdTlxrFdPDcDX25eJciTSZlTp1MmVMn09wdJ1QuXybN71dXXyzeJZ9TV5Xc3kb5MqV6YVnsVfvOasbmI3KwtZK5mZk+dSsSvVe5JG09+qe+cd+r5A42SpfCQYWyptG0jX4qmTO9lg9pqCS21q/+fv68rZHLfBUQEi4HG0uVyZtRXzYvJwtzc03zPKyFPqf1JDBEhbKk0Q9dqkdPEOgyY/Mrc6/c+7tmbj0qGytLhYVHqH99FzUqk1dS1JLm6/8q1OdK7/haOd/VAu+TWuzzm2ytLZTc3lZTOrkpwz/2dK/1zQqVypNBo9tUij632e+ipngekp2VpczMzfT9p67Klyn1G/X7twZjV+vukwBdvPVI5fJlkluRrOofy4SAk5fvyO2r5YyrAcRpFMABAMA7eVkB/G3UHTrzhQI48D5RAAcAAAAQ17ysAP42Goxd/UIBHHifKIADiA9YAh0AAAAAAAAAAAAAkCBYGh0AAABAklp+/YtOX7oh/zsPFRERqREdahsdCQAAAACAeKP1JA/95n9P1+4/VURkpIY1L290JAAADEEBHAAAxAn/3uM6PljmdVjLvY7Eeq1z3bJqUrn4R04EAAAAAEis/r3HdXzgvueM3Pf8Huu1jtWKqPFfe3IDAPAmKIADAAC8pU+ql9In1UsZHQMAAAAAgHipdaWCal2poNExAAAJDHuAAwAAAAAAAAAAAAASBN4ABwAA+MCafTVXh89eUc9GlfRl25pGx3mp0LBwfbd0u6av2a1j879U1rSOMa73nOyuC9fuysbaKvpc7kxp9EO/5rH2127sQm3cf1qPt07+oLkBAAAAAIlLy4nr5XfxlrrXLK7Pm5Y1Os5LhYZHaMLaA5qx+Yj8JndUljTJY1x/9DxYI5f56jf/+0pqZ62IyEgNb1Fe5fJlMigxACQMFMABAAA+sDVjuqru0JlGx3ilq3ceqsv4pcqZMY0iIiNfet+8L9u9UBiPzbZDv2vPyYvvMyIAAAAAAJKklUMbq8HY1UbHeCX/e0/U7aetypkuhSIiTbHeM2zJLl25+0TbR7WStaWFthz9U20mbdChSZ8qbQqHj5wYABIOlkAHAACAAoJCNPuzNvqkhsu79xUcojGLtmhA86rvIRkAAAAAAPFPQHCYZvao9co9zn+7ek9l8maUtaWFJKlKoSx6HhyqIxdufayYAJAg8QY4AABIUFbvOqaZ6/fIwc5awSFhqlQst0Z+WkeS5Hvigr5395LJFLXcd65MafRd90ZKkcROktTy61904MxldahVRs+DQnTqzxuKjDRp/hdtdfLPG1q247Au3rinoW1qqHU1Z0lSrykrtPPIH6pYJKeSOdjpD/87un73kbrWL69+zV5dAP5hlY/W+B5XMntbSdKIDrVVrlAOSdKVWw80+Ke1CgwJkykyUulSJdfw9rWUO5PTB/neCmRLL0m6cf/xO/c1bvE2da5bTjbW/KkJAAAAAPHdml//0M9bj8nB1krBoeGqWCCzRrSsIEnac8Zfkz0ORY2zwyOUK31KjWtbWckdosa5rSd56ND5m2pXpZCeB4fq9NV7iow0aW6fOjp15a7c95zRn7ceaUjjMmpZsYAkqe/s7fI+dUXl82dWMntrnbvxUDcePFOnakXVt57zK7NO3+indQfOKam9tSRpWLNyKvvXcuJX7j7W0AU+CgwNl8lkUroUDvqiWTnlzvDfq5y9jfyZU0uSbj589tJ76rnk1uYjF9W/votSONhq9f6zkqQ0ye0/SCYASCz4VRIAACQYtx48UY9J7jr6yxfKlj6V7j56plLdJkQXwL38zqpeucLq0bCiTCaT+k9freFzNuinQa0kSStHdVHdoTO1cf9p7ZzaT6lTJFHXCUvVfdJy9WhYUavHdJX30T/UYdxi1S9fWEnsbDRzUCv1nOyuNbuPa+v3veWcL6vOX7ujSn2mKE/mtKpVukCsWedt+lXLvA7La2p/pUhipwO/XVLj4bN1eM7nypLWUZ/NXKcSebJoePtaMplM6j7JXYfPXnlpAXzqKm/tPHLuld/P/C/aKq1jsnf4hqWpK7114fo9RUREqFCODBrapoacUiaNvn7y4nUdO+evsV3qy937yDt9FgAAAADAWLcePVfvn7fp0KRPlc0phe4+CVC5oYuiC+A7T15RXedc6lazuEwmkwbO26mvlu3R9G41JEnuQxqpwdjV2nzkorZ900qpk9mr+8yt6vXzNnWrWVwrPmssn1NX1HH6JtV1yaUkttb6sXtN9Zm9XWt//UObvmqhkrnS68LNh6o6fKnyZHRUzeI5Ys06f+dJLd9zRtu/aaXkDrY6eO6Gmo1fqwPff6rMqZPpi0W7VDxnOn3ZrJxMJpN6/bxNRy7eemkBfJrnYXmfuvrK72dunzrvtFT5503LKjwiUsUHzFPqZPbyv/dEXaoXU6k8Gd66TwAABXAAAJCA3H30TBGRkbp275GypU8lp5RJteKbztHXezeprJRJo2ZRm5mZqWGFIuo1ecUL/VQsmlOpUySRJJUumF0bfz2tBhWKSJLKFMyu50EhunTzvorkzBjdxjlvFjnnyypJypM5rao559fsDXtfWgCfuspb3RtUiH77vGyhHMqePrUWbz+kEe1r6+aDJ0rrmEyRkZEyNzfXVx1qy9zM7KXPPrCFmwa2cHuTr+uN5cqYRpmdUmpKn6YKj4jU4J/WqtrA6fp11hAlsbNRZGSkPpu5TlP6NpO5OTvtAAAAAEB8d+9JoCIiTbp+/5myOaWQU3IHLRvcMPp6z9ollPKvt73NzMzUoFRu9Zm9/YV+yufPrNTJosbjpXNn0Ga/C6rvkjvqOE9GBQSH6fKdxyqc9f+TvkvmTKeSuaJWK8udwVFuRbNr7vbjLy2AT9vop641ikW/fV4mb0ZlS5tCS3f9pi+bl9OtR8+VNoWDIiNNMjc30/Dm5V85zu7foJT6Nyj1Jl/XGxu7cp+8Tl7W4UkdlSa5vfac8dfNBy9/YxwA8HoogAMAgASjSM6MaulWUg2++FllC2ZXi6ol1MK1ZPT18IioAu05/zuysrTUk4Ag3Xn04sDyn29J29lYKVUyB1laRO3H5WBrI0l6GhAco01mp5QxjrOnT6V1vsdjzfksMFjX7z3WMi8/bTt89h/5IvQ8MESS9GXbmuoxyV27j59Xk8rF9GntssqRIfWbfB3v3eBW1aL/29rcXOO6NlS2FiO0dvdxdahdRrM996l0gewqlJ2Z6gAAAACQEBTOmkYtKuRX4+/WqEzejGpWLp+al88ffT0iIlKfL9ql8zcfyMrCQk8DQ3T3SeAL/aT7x1vSdjaWckxqJ0uLqInTDrZWkqSngaEx2mRKHXMFs2xOybX+YOwrnz0LCtWNB8/kvueMdhy/HH0+PCJSz4Oj+v28SVn1/Hmbdv/mr8Zl8qh91SLKkS7FG3wb79f9p4H6cfMRzeheM3rJ80oFs8hl0HxZWlqoWbl8hmUDgPiOAjgAAEgwzMzMNHtIGw1o7qrlXn4as2irZqzzlfe0/kruYKfmX81V7sxO2ji+l2ysLbX31EXV/3zWC/1Y/Ovt5djeZjbJFPPY9OKx2Utmkv99a5+mVdS2RuyzyeuVK6wzS3Jpne8JLd52SLM89mrR8PaqU6ZQrPd/rCXQ/ymZg61SJ0+iy7fuS5J2HTuvx88DVXfoTEnS3UdPJUl1h85UEjtrrRzV5b19NgAAAADgwzMzM9PMHrXUr56z3Pf8rm9X/6qZW47Ja3RrJbO3Ucvv1yt3Bkd5DGsmGytL7fv9mhp9u+aFfszNY46P/z3ulmIZV//7+l95YvVX2951nNWmcsFYb6njnEunp3fVugPntHT3b5q97bjm96un2iVzxnr/h14C3f/eU0VEmpQlTcxxeuY0ybTx8AUK4ADwDiiAAwCABOPm/Se6fu+RSuXPpjFd6qtfsyoq+um32n38gioUzqE//O9oQAtX2VhH/QkUFhbx3j77+r3HMY6v3H740v26kznYKpNTSl28fjfG+XW+x2VhYaGGFYpow96TalixqDrWKauOdcrq028Xa9HWQy8tgH+MJdA//9lDE3o0ij4OCQ3Xw6cBypgmhSRp1eiYBe5lXofVe8pKbZ7Y64PmAgAAAAB8GLcePtf1B0/lkjuDRrWppD51nVVy0Dz5/uavcvkz6dyNh+pf30U2Vn+NsyMi39tn37j/NMbx1btPlDt9yljvTWpvo0ypkurirYcxzq8/eE6W5uaqXyq3PA+fV4NSefSpWxF96lZEnadv0pLdp19aAP/QS6CnTxm19dqdxwExzt95HKA0yd9+X3EAgMTmjAAAIMH48+Y9fT1/s8Ijogrbf08ez5kxtRyTOShtyqTyPXEh+v6Nv55+b5/926WbOnbOX5J04fpd7TxyVt0bVnzp/UNausl95xFdu/tIknT/8XNNWOalAtnSSZK+nr9Zf1y9HX1/RGSkcmdK897yvo0Fm3/V8fPXoo+/X+GlZA62alSxqIGpAAAAAAAfyp+3H2nUin0K/6uw/fdqaDnSpZBjEls5JbfXnjP/Hydu8rsQaz9v4zf/+zr2Z9S4+MLNh/I+eVldaxZ/6f0DG5bSir2/6/pfhfP7TwP1/bqDypcplSRp9Ip9OnfjQfT9ESaTcqV3fG9531R6xySqWjir5u44oeDQcEnStmN/6tyNh2pYOo9huQAgIeANcAAAkGDkyeSk7OlTqfrAH+VgZ63A4FBN7NU4ek/qhcPaa+is9Srfa5KypHWM3re77tCZWvTXtdOXbsj/zkMltbdV2pRJ9cMqH9199EyNh83W/C/bqe2YhZKkL2dv0Dcd66qac9SSZLXLFtLaPSf01bxNunrnob5sW1O1SheQJDX7am50vxERkRrRobY+rVNWz4ND1WzEXDkms5e5ubm+694w+q3x7g0rqNeUFbKzsVZIaJjyZkmrL9rW/GDfXWhYuBoPn6MnAUGSpM7fLVHGNCm0aHiH6HvGdKmvYXM2yMLCXEEhYUqVzEEbx/dSmhRJX+iv7tCZMZZAr+ac94O/oQ4AAAAAeL9yZ3BUdqfkqvXNCjnYWikwJEzj27uqYJaoCdrz+9XTl4t3qfKwJcqcOpky/7Vvd4OxqzW/X119sXiXfvO/p2v3nyqpnbWcUjho2kY/3X0SoGbj12pun7rq8MNGSdKIpb76qmUFuRXNJkmqXTKH1h88p2/c98r/3hMNbVpWNYvnkCS1nLg+ut+IyEgNa15eHVyLKCA4TC0mrpdjEluZm5trXLsqyp0hqsjdtUYx9Zm9XXbWVgoJC1fejKk0tEmZD/bdhYZHqNn4dXoaGBL1+TO2KGOqpJrfr170PbN71dbolftUZ/RK2VpZKDgsQj91r6k6L3krHQDwesxM/95YAwAA4A0cO3ZMJUuW1O4fB6pYrkxGxzFEz8nukqRZg1sbnAT/5cTF66rSd6qOHj2qEiVKGB0HAAAAAKLH1d5j2qho9rRGx4kT+szeLkma0f3DTQTH2zl5+Y7cvlrOuBpAnMYS6AAAAAAAAAAAAACABIECOAAAwDvoNWWFvI+ek/fRcxowfbXRcQAAAAAAiNf6zt4un1NX5HPqigbN22l0HABAPMQe4AAAAO9g5qBWRkcAAAAAACDB+JFlzwEA74g3wAEAAAAAAAAAAAAACQJvgAMAAMRi36k/9c38TTpyzl8nFw5X1rSORkd6pScBQfps5npdvH5X4RGRqlO2oD5vU0NmZmYvbRMaFq6v5m3SwTOXJUmlC2TT2C71ZW0V9SfijXuP9dN6Xx0/f00yM1NAUIg61CqjzvXKRfdx9c5DTV+9S79fvS0LczM9eBKgikVzaVSnerKzsfqwDw0AAAAAiLP2n72u0Sv26uift3VsaidlSZPc6Eiv9DQwRJ8v8tHFW48UHmFS7ZI59FnjMq8eV4dH6Jvle3Tw/E1JUuk8GTSqTSVZW1pE3/Pb1XsatWKvgkLD9SQgWBUKZNY3rSvK5q+xt/+9J/px0xGdvf4galz9LEgVC2TWyFYVZWdNCQcA3gb/egIAAMSiQpGcmvdlOxX9dJzRUV5L9++XyzGZg3ymDVBgcKjcBkxTUntb9W5c+aVtRvyyUef878jnh/6SpKZfzdFX8zZpQo9GkqTlO/3026WbWv9td9laW+ns1duq2m+qrK0s1K5maUnSkbNXdeX2A3l+10NWlhZ6EhCkyn2mysbKUmO61P/gzw0AAAAAiJvK58+kuX3qqMTA+UZHeS09Z22TYxJbeY1uo8CQMNX42l1J7WzUs3aJl7b5evkenbvxQF6jW0uSWkxcr2+W79G37atKkm49eq6G41br69YV1b5qYYWEhavZhHUatmS3JneqJkk6cvG2rt59ovVfNpWVpYWeBobIdcQyWVtaaFSbSh/8uQEgIWIJdAAAgHjuzOVb2nbod/VvFjXAtre1Vud65fTDKh9FRkbG2ubh0wAt2HJAfZpUloWFuSwszNWrUWXN3/yrHj0LlCSlc0ymfs2qytY66k3u/FnTqXKx3FrneyK6nwpFcmpq32ay+mt2e3IHOxXOmUEXb9z7gE8MAAAAAMD78/u1+9p+/JL61nOWJNnbWKmTW1FN3+inyEhTrG0ePgvSQu9T6lWnpCzMzWVhbq4etUpogfcpPXoeLElave+sTJLaVi4kSbKxslSX6sW0dPdvuv80auxdPn8mTe5cLXpcnczeRoWyptGftx994KcGgISLN8ABAECCFBQSpjqf/aTjF66pRJ7M+r5XE5XMm0VtxyyUz9FzalqlmIrmyiT3nUdkZ2OlgKBQ1S1bSINbub10ebNO3y3RzqN/qGejSvqybU3tO/Wnvpjtod8u3dTjrZOj77v98KmGzlwv/7sPZWtlqWzpU+u77g2VMqn9B3nW3SfOK4mdjfJmSRt9rkTuzLr3+Ll+u3xLRXJmfKHN/tOXFBYeoRJ5Mv+/TZ7MCguP0P7Tf6peucLRb3n/k42VlZ4HhUYfp3VMFuO639mrOvT7Ff00sOX7eDQAAAAAgEGCQsNVf8wqnbh8R8VzpNWEDq4qkTOdOvywUbtOX1HjMvlUNJuTVuz7XXbWlgoIDlMd55wa2KDUS8fVXWZsls+pq+pes7g+b1pW+89e1/Alu/Wb/z3dXzow+r7bj57ry8W75H//adS42im5xratopRJbD/Is/r+5i8HWyvlyZgq+lyxHGl172mgzly7p8JZnV5oc+CPGwqLiFTxHOmizxXPkVZhEZE68Md11XHOpWv3nypVUjuZm///+0iX0kERkSYdvnBLdUrmVNoUDjH6PXLxlg6fv6np3Wp8gCcFgMSBAjgAAEiQ7GystGNKX+X95Bu1r1laJfNmkSRN6NFIA6av1o8DWsq1/w+a1r+FCufIoIDgENUY9KMypkmh1tWcY+1z/pftVHfozOjjCkVy6rvuDVX/81kx7ms3ZqHKF86hxSM6yGQyacD0NeoyYanWju0Wa793Hj5Vp/FLX/k81ZzzamALt1ivXbn1QGlSJIlxzskxadS12w9iLYBfuf1AlhbmSpX8/+1Sp0giC3NzXbn9MNbPMZlMOnruqga0cH3h2vbDv2vYnA16+DRQP/Rtpuou+V/5PAAAAACAuM3O2lJbv26pgn3mqG2VQiqRM6rQ+127Kho0f6emda2u6iOXa2rn6iqUNU1UAXz0CmV0TKqWFQvE2ucvfeqqwdjV0cfl82fS2LaV1ejbNTHu+3TaJpXLl1EL+teXyWTSoPk71f2nLVr1eZNY+73zOEBdZ2x55fO4Fcmq/g1KxXrt6t0nckoWc9L634Xpq3efxFoAv3LvSdS4Oqld9LnUyexlYW6mK3efSJIyp0mmu48DFBYeEf2G982HzyVJtx4+i9HfjuOXNGKZrx49D9bkTm6qVjT7K58HAPByFMABAECCZWVpoaaVi2ulz1F9WqesJGn1rmNqXjVq/675X7RTtvRRs7sdbG1UwyW/dh45+9IC+OvwPXFBfn9c1YpvOkmSzMzM9GntMqra/wddvnlf2TOkfqFNWsdk2jyx11t/ZlBImGysYv5Z9/dxUEjYS9tYW774p6C1lYWCQkJjaSEt3XFYqZIn0ae1y75wrWapAqpZqoD8zl5Vq2/mKSg0TK3c3v57BAAAAAAYz8rSQo3L5tXqfWfVwbWIJGnNr3+oabl8kqS5feoom1MKSZKDrZWqFc2unSevvLQA/jr2nPHXkYu3tGxwQ0lR4+r2VQur+kh3Xb7zWNnTpnihTdoUDvIc0fytPzMoNEzWVhYxzln/VbAODAmPvU1ImKwtX9xl1trSQkGhUW1aVSygHzz9NG2jn4Y0LqMnAcGau/24JCniX0ur1yieQzWK59CRi7f0yeQNCg4NV4sKb/89AkBiRgEcAAAkaK3cnOW2cZqu3HqgbOlTafOB37Thux6SopYq/3LOBj18GiBLCwv533morOkc3+nzzl69LXNzM7Uftzj6XEREhDI7pdTth09jLYC/KzsbK4WExRyQ/31sZ2P10jah4S8O4kPDImRnY/3C+d8u39QPq320flz36FnrsXHJn1Ud65TViLkbKYADAAAAQALQskIB1fBy15W7j5XNKYW2HP1T675sKinqzesRS3318FmQLC0sdO3+U2VJk+w/eny1P64/kLmZmTpO2xR9LiIyUplTJ9OdxwGxFsDflZ21lULDImKcCw2POra3ib2MEjWujnzhfGh4hOyso9o4JXfQtq9basLaA6r1zQols7PW4EZl1PL79UrhYBNrv8650quDa2GNXL6HAjgAvCUK4AAAIEErmTeLcmdKoxU+R1S7dEHlypRG9rbW8r/zUI2Hz9awtjXVt1lVSdJ3S7dr36k/X9nfv7cxi4x4cbArSZ7f9ZCFxYszwWPzrkugZ0ufSvceP49x7u5fS6llS5cqtibKli6VwiMi9eDJ8+hl0O8/fq6IyEhl+9ckgCu3H6jrhGVaOKyDsqSNeS0sPEKWFuYx9nfLlSmN7j95rvuPnyv1v5ZmBwAAAADELyVyplOu9Cm1at9Z1SqRU7nSp5S9jZWu3X+qZuPX6fOmZdWnbtQE6AlrD2j/2euv7O+FcfW/3oT+2/phTWVh/prj6ndcAj2rU3LdfRr4Qp9/X4tNtjTJo8bVz4Kil0G//zRQEZEmZftHmzwZU2lev3rRx/73opZHz585aoJ8rOPq9Cl1/2mQ7j8NVOp/Lc0OAPhvFMABAECC19LVWcu8DuvJ8+Dot5KPn7+moJAwNa5cLPq+sPCIl/Twf0nsbBQQFBJ9fPPB0xjXC2RLr8hIk/68eU95MqeNPj/oxzUa0aG2HJM5vNDnuy6BXrlYbg2f46nz1+5Ef+bxC9eVJkUSFcqePtY25QvnkJWlhY5fuK5qzvn+anNNVpYWKl84Z/R9tx8+VdsxC/XjgKi90iVp4ZYD0UvK95u2St3qV1DxPJmj29x5+FQ2VpZKmZRBOgAAAAAkBC0q5Je77xk9CQxRiwr5JUnHL91WUGi4GpfJG33fa42rba0V8I/tum49ijmhO3/m1Io0mXTp9mPlzvD/SdhDFnhrWLNycvzHntt/e9cl0CsVzKyvloXpws2H0Z954vIdpUlmr4KZ08Tapmy+jLKyMNeJS3fkVjRbdBsrC3OVzZdJUtTb4Ccu3VGpPBmi2x3444ayp00Rva/4wHk71bl6URXPkS76ntuPA2RjZaGUSWzf+pkAIDF7velTAAAA8VhLt5K6cvuhdvj9ropFooq7ebKklZmZmXYfvyApau8uL7+z/9lX4RwZ5ffHVZlMJoVHRGjDvpMxrlcqmkulC2TTJPedioyMejvcY+9Jnb9+N9bi9/tQKHsG1SpdQNPX7JYU9SzzNv+q/s1dZf7XbPnfr9xS/rajdPJi1Ex8x2QO6linrH5a56uIiEhFRkZqlscedaxTNrpw/ehZoJoMn62WVUvIwtxcx89f0/Hz17R8p1+Mz5+53jf6R46b95/ol02/qnU159d+Ax4AAAAAELe1KJ9fV+49kdeJy6qQP2oCdJ4MjjIzk3x/85ckBYWGy/vUlf/sq1DWNDpy4eZf4+pIeR6+EON6xQKZVSp3ek32OBT9dviGQ+d14ebDWIvf70PBLGlUs3gOzdh8RFLUsyz0PqW+9Zxlbh71ZvbZa/dVqO8cnbpyV5LkmNROn7oV0aytRxURGanISJNmbzuuT92KRBeunwWFqt1UTz14FiQp6g3xaRv9NOaTSjE+/+dtx6PH1bcePteCnafUskKB134DHgAQE2+AAwCABC+zU0qVL5xDpfJniy4I58+aTlP6NNXE5V5a5uUnpxRJlD19au0+cV5dJyxVh9pl9c38qP3GOn+3RGO61FfZQjnUo2EFHfnjqir2maLs6VOpVqkC2nbod9UdOlM/DmihHBlSa8mIT/XFzx4q22OS0qRMIqcUSbXgy3Yf9Bl/HtJGQ2euk2v/HxQWHqEGFQqrd+P/D6jDIyIVGBKmiH8s2T6mc319NW+jXAdMkySVyp9VYzrXj74+ZaW3fr9yW1/N+/++a1LU9/m3TnXK6af1vqox6EfZ2ljpWWCwWrqV1KCXLNcOAAAAAIh/MqVOpnL5MsklV/rognC+TKn1/adumuRxUMv3nJFTcntlc0ou3zPX1H3mVrWvWlijV+yVJHWdsUWj2lRSmbwZ1a1mcR29eEtVhy9TtrTJVaN4dm0/fkkNxq7WD12qK0e6FFo4oL6GLdmtCl8sVprk9kqT3F6/9Kn7QZ9xZo+a+nzRLlUfuVzhEZGq55JLPWuXiL4eHhmpoJBwhf9jXP1N64r6xn2vqo90lySVyp1B37SuGH3d1spSxXOkVa2v3ZXeMakkaWSrCqpV4v8rr33qVkSzthxV7VErZWttqedBoWpRPr/6N3D5oM8LAAmZmclkin2DDQAAgNdw7NgxlSxZUrt/HKhiuTIZHQd4pRMXr6tK36k6evSoSpQo8d8NAAAAAOAD+3tc7T2mjYpmT/vfDQADnbx8R25fLWdcDSBOY/0MAAAAAAAAAAAAAECCQAEcAAAAAAAAAAAAAJAgUAAHAAAAAAAAAAAAACQIFMABAAAAAAAAAAAAAAkCBXAAAAAAAAAAAAAAQIJAARwAAAAAAAAAAAAAkCBYGh0AAAAkDOf97xgdAfhP/O8UAAAAQFx1/uZDoyMA/4n/nQKIDyiAAwCAd5I6dWrZ29up2/fLjY4CvBZ7ezulTp3a6BgAAAAAIOmvcbWdnXrO2mZ0FOC12NsxrgYQt5mZTCaT0SEAAED85u/vr/v37xsd47WZTCbNnDlT8+fPV69evdS5c2ejI8Ub4eHhGjlypLy8vDRu3DjVqFHD6EhvLHXq1MqSJYvRMQAAAAAgWnwbV7+OadOmacmSJZo+fbrKlStndJyPatGiRZo+fbrGjRunWrVqGR3nvWNcDSCuowAOAAASFZPJpM8//1zff/+9vv/+ew0ZMsToSPFORESEOnbsqGXLlmnRokVq27at0ZEAAAAAAHHIsmXL1LZtW02ePFmDBg0yOs5HZzKZ1L59e61Zs0b79u1TyZIljY4EAIkKBXAAAJBomEwmDRw4UNOmTdO0adPUr18/oyPFWxEREerevbvmz5+vefPmqWPHjkZHAgAAAADEAX5+fqpYsaJatWqlBQsWyMzMzOhIhggODlblypV148YNHTlyROnSpTM6EgAkGhTAAQBAohAZGak+ffpo1qxZmjVrlnr06GF0pHgvMjJSvXv31s8//6yff/5Z3bt3NzoSAAAAAMBAN2/elIuLi7JkyaJdu3bJ1tbW6EiGunnzppydnZUtWzbt2rVLNjY2RkcCgETB3OgAAAAAH1pkZKS6deumn3/+WfPmzaP4/Z6Ym5tr5syZ6tevn3r06KEff/zR6EgAAAAAAIMEBwercePGMjMz07p16xJ98VuSMmTIoPXr1+vYsWPq0aOHeB8RAD4OS6MDAAAAfEgRERHq1KmTli5dqkWLFqldu3ZGR0pQzMzM9MMPP8ja2lr9+vVTWFhYotzfDQAAAAASM5PJpG7duunUqVPau3ev0qdPb3SkOKN06dKaO3eu2rdvr6JFi2rAgAFGRwKABI8COAAASLDCw8PVvn17rVq1SkuXLlXr1q2NjpQgmZmZaeLEibK2ttbgwYMVGhqqL774wuhYAAAAAICPZMqUKVqyZImWLVsmZ2dno+PEOe3atdPp06c1ePBgFShQQDVq1DA6EgAkaOwBDgAAEqSwsDC1adNGHh4eWrFihZo2bWp0pATPZDJp9OjR+uabbzRq1CiNHDnS6EgAAAAAgA9s69atqlevnoYOHarvvvvO6DhxVkREhOrXr68DBw7o8OHDyp07t9GRACDBogAOAAASnJCQELVs2VJbtmzRmjVr1KBBA6MjJSrffvuthg8frhEjRmj06NEyMzMzOhIAAAAA4AM4d+6cSpcurYoVK8rDw0MWFhZGR4rTHj9+rDJlysjMzEwHDx5U8uTJjY4EAAkSBXAAAJCgBAcHq2nTpvL29ta6detUp04doyMlSpMnT9aQIUP02WefacKECRTBAQAAACCBefz4sUqXLi0LCwsdPHhQyZIlMzpSvHD+/HmVKlVK5cuXl6enJ5MGAOADYA9wAACQYAQGBqpRo0bau3evNm7cqOrVqxsdKdEaPHiwrK2t1a9fP4WGhmrq1KkUwQEAAAAggYiIiFCrVq107949HT58mOL3G8iTJ49WrlypOnXqaNiwYZowYYLRkQAgwaEADgAAEoSAgADVr19fhw4d0pYtW1S1alWjIyV6ffv2lZWVlXr27KnQ0FDNmDFD5ubmRscCAAAAALyjzz//XDt37tS2bduUK1cuo+PEOzVr1tT333+vwYMHq3Dhwmrbtq3RkQAgQaEADgAA4r1nz56pbt26On78uLZt26aKFSsaHQl/6dGjh6ytrdWlSxeFhYVp9uzZFMEBAAAAIB5btGiRJk+erGnTpqlatWpGx4m3Bg4cqFOnTqlLly7KmzevXFxcjI4EAAkGe4ADAIB47cmTJ6pdu7bOnDmj7du3q0yZMkZHQiyWLFmiTz/9VO3atdO8efPY4wwAAAAA4qGDBw+qcuXKatu2rX755Re2unpHwcHBqlq1qvz9/eXn56cMGTIYHQkAEgQK4AAAIN569OiRatasqQsXLsjLy0vOzs5GR8IruLu7q127dmrZsqUWLVokS0sWIwIAAACA+OLGjRtydnZWjhw55OPjIxsbG6MjJQi3bt2Si4uLMmbMKF9fX9na2hodCQDiPdafBAAA8dL9+/fl6uqqS5cuycfHh+J3PNC6dWutXLlSq1atUuvWrRUWFmZ0JAAAAADAawgKClKjRo1kaWmpdevWUfx+j9KnTy8PDw+dOnVK3bp1E+8sAsC7owAOAADinbt378rV1VU3btzQrl27VLx4caMj4TU1bdpUa9eu1YYNG9S8eXOFhIQYHQkAAAAA8Aomk0ldunTRmTNntGHDBqVNm9boSAmOs7Oz5s+fryVLlmjKlClGxwGAeI8COAAAiFdu3bqlKlWq6N69e9q9e7cKFy5sdCS8oQYNGsjDw0Pbtm1T06ZNFRwcbHQkAAAAAMBLTJw4UcuXL9eCBQtUokQJo+MkWK1bt9YXX3yhoUOHauvWrUbHAYB4jT3AAQBAvHHjxg25uroqICBAPj4+ypMnj9GR8A68vLzUoEEDVapUSR4eHrKzszM6EgAAAADgHzZv3qz69etr2LBhGjt2rNFxEryIiAg1atRIe/bs0aFDh5QvXz6jIwFAvEQBHAAAxAv+/v5ydXVVWFiYfHx8lDNnTqMj4T3YtWuX6tWrp9KlS2vjxo1ycHAwOhIAAAAAQNLZs2dVunRpubq6at26dTI3Z0HZj+Hp06cqU6aMIiIidOjQIaVIkcLoSAAQ71AABwAAcd7ly5dVtWpVmZuby8fHR9myZTM6Et6jvXv3qk6dOipevLg2b96spEmTGh0JAAAAABK1hw8fqnTp0rKxsdGBAwcYp31kFy9eVKlSpVSqVClt3rxZFhYWRkcCgHiFKVsAACBOu3jxoipVqiQrKyv5+vpS/E6AKlasKC8vL508eVI1a9bUkydPjI4EAAAAAIlWeHi4WrZsqYcPH8rT05PitwFy5cqlVatWaefOnfr888+NjgMA8Q4FcAAAEGf98ccfqlSpkpIkSSJfX19lzpzZ6Ej4QMqUKSNvb2+dPXtW1atX16NHj4yOBAAAAACJ0meffaZdu3Zp9erVypEjh9FxEq1q1appypQpmjx5shYtWmR0HACIV1gCHQAAxElnzpyRm5ubUqdOLW9vb6VNm9boSPgIjh8/rurVqytLlizy8vJSqlSpjI4EAAAAAInG/Pnz1blzZ82YMUO9e/c2Ok6iZzKZ1LVrVy1ZskS+vr4qU6aM0ZEAIF6gAA4AAOKckydPqlq1asqYMaO8vLyUJk0aoyPhIzp9+rTc3NyULl067dy5U05OTkZHAgAAAIAEb//+/apatao6duyon3/+WWZmZkZHgqSQkBC5urrq0qVLOnLkiDJmzGh0JACI8yiAAwCAOOXo0aOqXr26cuTIoR07dsjR0dHoSDDA77//Ljc3N6VMmVLe3t5Knz690ZEAAAAAIMG6du2anJ2dlTdvXu3cuVPW1tZGR8I/3LlzR87OzkqXLp327NkjOzs7oyMBQJzGHuAAACDOOHTokNzc3JQnTx7t3LmT4nciVqBAAfn6+urp06eqUqWKbty4YXQkAAAAAEiQAgMD1ahRI9na2mrNmjUUv+OgtGnTasOGDTpz5oy6dOki3msEgFejAA4AAOKE/fv3q3r16ipUqJB27NihFClSGB0JBsuTJ498fX0VHBysypUry9/f3+hIAAAAAJCgmEwmderUSX/88Yc2bNjAFlRxWIkSJbRw4UItX75cEydONDoOAMRpFMABAIDh9uzZo5o1a6pEiRLatm2bkiVLZnQkxBE5c+aUr6+vIiMjVblyZV2+fNnoSAAAAACQYHz33XdauXKlFi9erGLFihkdB/+hRYsWGj58uL788ktt2rTJ6DgAEGexBzgAADCUt7e36tevr/Lly2vDhg2yt7c3OhLioGvXrsnV1VUhISHy8fFRrly5jI4EAAAAAPGap6enGjZsqJEjR2rUqFFGx8FrioyMVJMmTeTj46NDhw4pf/78RkcCgDiHAjgAADDMtm3b1LhxY1WpUkXr1q2TnZ2d0ZEQh928eVNubm568uSJfHx8lC9fPqMjAQAAAEC8dObMGZUpU0bVq1fXmjVrZG7OYrHxybNnz1S2bFmFhITo0KFDcnR0NDoSAMQpFMABAIAhNm3apKZNm6pmzZpavXq1bGxsjI6EeODOnTtyc3PT/fv35e3trYIFCxodCQAAAADilQcPHqhUqVJycHDQr7/+qiRJkhgdCW/h0qVLcnFxUYkSJbR161ZZWloaHQkA4gymdQEAgI9u/fr1atKkierVq6c1a9ZQ/MZrS5s2rXbt2qV06dKpSpUqOnnypNGRAAAAACDeCAsLU/PmzfX06VN5enpS/I7HcuTIodWrV2vXrl0aMmSI0XEAIE6hAA4AAD6qVatWqXnz5mrSpIlWrFgha2troyMhnkmTJo18fHyUNWtWubq66tixY0ZHAgAAAIB4YdCgQdq7d6/WrFmjbNmyGR0H78jV1VXTpk3TtGnTNH/+fKPjAECcQQEcAAB8NMuWLVPr1q3VunVrLV26VFZWVkZHQjzl6OionTt3Knfu3HJzc9Phw4eNjgQAAAAAcdrcuXM1Y8YM/fjjj6pcubLRcfCe9OrVS926dVOPHj20f/9+o+MAQJzAHuAAAOCjWLhwoTp16qRPP/1Uc+fOlYWFhdGRkAA8ffpUderU0alTp7Rt2zaVK1fO6EgAAAAAEOfs3btXbm5u6tKli2bOnGl0HLxnoaGhqlatms6dOyc/Pz9lyZLF6EgAYCgK4AAA4IObM2eOunfvrm7dumnWrFkyN2cRGrw/z58/V7169XTkyBFt2bJFlSpVMjoSAAAAAMQZV69elYuLiwoWLKgdO3awGlsCde/ePbm4uMjR0VH79u2Tvb290ZEAwDD8+gwAAD6on376Sd27d1efPn30888/U/zGe5ckSRJt2bJFZcuWVa1ateTt7W10JAAAAACIEwICAtSwYUM5ODho9erVFL8TsDRp0mjDhg06d+6cOnXqJN59BJCY8Qs0AAD4YKZOnao+ffpo0KBBmj59uszMzIyOhATK3t5enp6eqly5surVq6ft27cbHQkAAAAADGUymfTpp5/q4sWL2rBhg1KnTm10JHxgRYsW1eLFi7Vy5Up99913RscBAMNQAAcAAB/ExIkTNWjQIH3xxReaNGkSxW98cHZ2dvLw8FD16tXVoEEDbdq0yehIAAAAAGCYsWPHas2aNVqyZImKFClidBx8JE2bNtXXX3+t4cOHa8OGDUbHAQBDsAc4AAB478aMGaORI0dq5MiR+uabbyh+46MKDQ1Vq1attGnTJq1cuVKNGzc2OhIAAAAAfFTr169XkyZNNHr0aH311VdGx8FHFhkZqebNm2vHjh06cOCAChUqZHQkAPioKIADAID3xmQyaeTIkRo7dqzGjBmjESNGGB0JiVRYWJjatWunNWvWaPny5WrRooXRkQAAAADgozh16pTKlSun2rVra9WqVUxKT6SeP3+u8uXL69mzZ/Lz81OqVKmMjgQAHw0FcAAA8F6YTCZ9+eWXmjBhgiZOnKjPPvvM6EhI5MLDw9WxY0ctX75cixcv1ieffGJ0JAAAAAD4oO7fvy8XFxclT55c+/fvl4ODg9GRYKArV67IxcVFhQsX1vbt22VlZWV0JAD4KNgDHAAAvDOTyaTBgwdrwoQJ+uGHHyh+I06wtLTUwoUL1aFDB7Vr106LFi0yOhIAAAAAfDBhYWFq1qyZAgICtGHDBorfULZs2bRmzRrt3btXgwYNMjoOAHw0lkYHAAAA8VtkZKT69eunn376ST/99JN69epldCQgmoWFhX755RdZWVmpY8eOCg0NVdeuXY2OBQAAAADvXf/+/fXrr7/Kx8dHWbNmNToO4ojKlStrxowZ6tGjhwoXLqxu3boZHQkAPjgK4AAA4K1FRkaqR48e+uWXXzR37lx16dLF6EjAC8zNzfXzzz/L2tpa3bp1U2hoqHr37m10LAAAAAB4b2bNmqVZs2Zpzpw5qlChgtFxEMd0795dJ0+eVO/evZU/f35VrFjR6EgA8EGxBzgAAHgrERER6tKlixYvXqz58+erQ4cORkcCXslkMmnIkCGaMmWKpkyZooEDBxodCQAAAADema+vr6pVq6YePXroxx9/NDoO4qiwsDDVqFFDZ86ckZ+fH6sEAEjQKIADAIA3Fh4erg4dOmjlypVavHix2rRpY3Qk4LWYTCYNGzZM48eP14QJEzR06FCjIwEAAADAW7t8+bJcXFxUtGhRbdu2TVZWVkZHQhx2//59ubi4KHny5Nq/fz/7xANIsFgCHQAAvJGwsDC1bdtW69atk7u7u5o3b250JOC1mZmZ6dtvv5W1tbU+//xzhYaGasSIEUbHAgAAAIA39vz5czVs2FDJkyfXqlWrKH7jP6VOnVqenp4qW7asOnTooFWrVsnc3NzoWADw3lEABwAAry00NFStWrXSpk2btHr1ajVq1MjoSMAbMzMz06hRo2RlZaWvvvpKoaGhGjVqlMzMzIyOBgAAAACvJTIyUu3bt9fly5d18OBBpUqVyuhIiCcKFy6sJUuWqEmTJho7dqxGjhxpdCQAeO8ogAMAgNcSHBys5s2ba8eOHVq/fr3q1q1rdCTgnYwYMSLGm+DfffcdRXAAAAAA8cKoUaPk4eEhDw8PFSxY0Og4iGcaN26s0aNHa+TIkSpUqJCaNGlidCQAeK8ogAMAgP8UFBSkxo0by9fXVxs3blSNGjWMjgS8F0OHDpW1tbUGDhyo0NBQTZ48mSI4AAAAgDhtzZo1Gj16tMaNG6cGDRoYHQfx1IgRI3T69Gm1b99euXLlUpEiRYyOBADvjZnJZDIZHQIAAMRdAQEBatCggQ4ePKiNGzfK1dXV6EjAezdz5kz17t1bvXv31vTp09kDDQAAAECcdOLECZUvX17169eXu7s7E3jxTgICAlShQgU9evRIfn5+SpMmjdGRAOC9oAAOAABe6tmzZ6pXr56OHTumLVu2qGLFikZHAj6YX375Rd26dVPXrl01a9YsiuAAAAAA4pS7d+/KxcVFqVOn1t69e2Vvb290JCQA/v7+cnZ2Vv78+eXl5SVra2ujIwHAO+NXPQAAEKunT5+qVq1aOnHihLZv307xGwlely5dtGDBAs2dO1edO3dWRESE0ZEAAAAAQJIUGhqqpk2bKjg4WB4eHhS/8d5kyZJF69at04EDB9S/f3+j4wDAe8Ee4AAA4AWPHz9WzZo1df78eXl5ealUqVJGRwI+ig4dOsjKykrt2rVTWFiYFi5cKEtL/mQGAAAAYByTyaQ+ffro0KFD2r17tzJnzmx0JCQwFSpU0MyZM9W1a1cVKVJEPXv2NDoSALwTfs0DAAAxPHjwQDVq1NCVK1fk7e2tEiVKGB0J+KjatGkjKysrtWnTRmFhYVq6dKmsrKyMjgUAAAAgkZo5c6bmzp2refPmqVy5ckbHQQLVpUsXnTp1Sv369VP+/PlVpUoVoyMBwFtjD3AAABDt3r17qlatmm7duqWdO3eqSJEiRkcCDOPh4aEWLVqoXr16WrFiBfugAQAAAPjofHx8VKNGDfXp00c//PCD0XGQwIWHh6tmzZo6efKk/Pz8lD17dqMjAcBboQAOAAAkSbdv35abm5sePHggHx8fFShQwOhIgOE2b96sJk2aqEaNGlqzZo1sbGyMjgQAAAAgkbh06ZJcXFxUsmRJbdmyhe2Z8FE8ePBApUqVkoODg3799VclSZLE6EgA8MYogAMAAN28eVOurq569uyZfHx8lDdvXqMjAXHG9u3b1ahRI1WpUkXr1q2TnZ2d0ZEAAAAAJHDPnj1T2bJlFRISokOHDsnR0dHoSEhEzpw5ozJlyqh69epas2aNzM3NjY4EAG+Ef7UAAEjkrl27psqVKyswMFC+vr4Uv4F/qVmzpjZv3qw9e/aofv36CgwMNDoSAAAAgAQsMjJSbdu2lb+/vzw9PSl+46MrWLCgli9fLg8PD40aNcroOADwxiiAAwCQiF25ckWVK1dWeHi4fH19lStXLqMjAXGSq6urtm7dqoMHD6pOnTp6/vy50ZEAAAAAJFAjR47Uxo0b5e7urvz58xsdB4lU/fr1NW7cOI0ePVqrV682Og4AvBGWQAcAIJH6888/VbVqVVlbW8vHx0dZsmQxOhIQ5/3666+qXbu2ChUqpK1btypZsmRGRwIAAACQgKxcuVKtWrXS+PHj9fnnnxsdB4mcyWRSmzZt5Onpqf3796tYsWJGRwKA10IBHACAROjcuXNydXVV0qRJ5e3trYwZMxodCYg3Dh8+rJo1aypPnjzavn27UqRIYXQkAAAAAAnAsWPHVKFCBTVu3FhLly6VmZmZ0ZEABQYGqmLFirp//778/Pzk5ORkdCQA+E8UwAEASGR+//13ubm5ydHRUd7e3kqXLp3RkYB459ixY6pevbqyZcsmLy8v9uQDAAAA8E7u3LkjZ2dnpUuXTnv27JGdnZ3RkYBo165dk4uLi3Lnzi1vb29ZW1sbHQkAXok9wAEASEROnz6tKlWqyMnJSbt376b4DbylEiVKaNeuXfL391fVqlV17949oyMBAAAAiKdCQkLUpEkThYeHy8PDg+I34pzMmTNr/fr1Onz4sHr37i3eqwQQ11EABwAgkTh+/LiqVq2qTJkyycfHR2nSpDE6EhCvFSlSRLt379adO3dUpUoV3b592+hIAAAAAOIZk8mknj176siRI1q/fj1blCHOKlu2rH7++Wf98ssv+umnn4yOAwCvRAEcAIBEwM/PT66ursqZM6e8vb2VKlUqoyMBCULBggXl6+urx48fq0qVKrp586bRkQAAAADEI9OnT9eCBQs0Z84clSlTxug4wCt17NhRAwYM0IABA+Tj42N0HAB4KfYABwAggTtw4IBq1aqlQoUKacuWLUqePLnRkYAE5+LFi3J1dZWNjY18fHyUOXNmoyMBAAAAiOO8vLxUq1YtDRw4UJMmTTI6DvBawsPDVadOHR09elSHDx9Wzpw5jY4EAC+gAA4AQAK2d+9e1alTRyVKlNCmTZuUNGlSoyMBCdbly5fl6uoqMzMz+fj4KFu2bEZHAgAAABBHXbhwQaVLl1bp0qW1adMmWVhYGB0JeG2PHj1SqVKlZG1trQMHDihZsmRGRwKAGCiAAwCQQO3atUv16tVTmTJl5OnpKQcHB6MjAQmev7+/XF1dFRYWJh8fH2bCAwAAAHjBkydPVLZsWUVEROjQoUNKkSKF0ZGAN3b27FmVLl1aVapUkYeHh8zN2XEXQNzBv0gAACRAO3bsUJ06dVShQgVt2rSJ4jfwkWTJkkW+vr6ytbVVpUqVdO7cOaMjAQAAAIhDIiIi9Mknn+jmzZvy9PSk+I14K3/+/HJ3d9emTZs0cuRIo+MAQAwUwAEASGA2b96s+vXry83NTRs2bJCdnZ3RkYBEJWPGjPL19VWKFClUpUoV/f7770ZHAgAAABBHjBgxQlu3bpW7u7vy5s1rdBzgndStW1fjx4/XuHHjtHLlSqPjAEA0lkAHACAB2bBhg5o3b6569eppxYoVsra2NjoSkGjdu3dP1apV061bt+Tt7a3ChQsbHQkAAACAgZYvX65PPvlEkyZN0uDBg42OA7wXJpNJ7dq107p167R3716VLFnS6EgAQAEcAICEYs2aNWrdurUaN26sZcuWycrKyuhIQKL34MEDVa9eXf7+/vLy8lLx4sWNjgQAAADAAH5+fqpUqZKaN2+uRYsWyczMzOhIwHsTFBSkSpUq6fbt2/Lz81O6dOmMjgQgkaMADgBAAuDu7q527dqpZcuWWrRokSwtLY2OBOAvjx49Us2aNXXhwgXt2LFDLi4uRkcCAAAA8BHdunVLzs7OypQpk3x9fWVra2t0JOC9u3HjhpydnZUjRw75+PjIxsbG6EgAEjH2AAcAIJ5btGiR2rZtq7Zt22rx4sUUv4E4JmXKlPLy8lL+/PlVrVo1HThwwOhIAAAAAD6S4OBgNW7cWJK0fv16it9IsDJmzCgPDw8dPXpUPXv2FO9eAjASBXAAAOKxX375RR07dlTnzp01f/58WVhYGB0JQCySJ0+u7du3q1ixYqpRo4b27t1rdCQAAAAAH5jJZFKPHj104sQJeXh4KEOGDEZHAj6o0qVLa86cOVqwYIGmT59udBwAiRgFcAAA4qlZs2apa9eu6tWrl37++WeZm/P/1oG4LGnSpNqyZYtKlSqlWrVqadeuXUZHAgAAAPABTZ06VYsWLdK8efPYCgmJRvv27TV48GANGjRIXl5eRscBkEixBzgAAPHQtGnTNGDAAA0YMEBTpkyRmZmZ0ZEAvKagoCA1atRIe/bs0YYNG1SjRg2jIwEAAAB4z7Zv3646depoyJAhmjBhgtFxgI8qIiJC9erV06FDh3To0CHlzp3b6EgAEhkK4AAAxDOTJk3SZ599pqFDh2r8+PEUv4F4KDg4WM2aNdPOnTu1bt061alTx+hIAAAAAN6T8+fPq1SpUipfvrw8PT3ZrgyJ0uPHj1W6dGlZWFjowIEDSp48udGRACQiFMABAIhHxo0bpxEjRmjEiBEaPXo0xW8gHgsNDVXLli21efNmrV69Wg0bNjQ6EgAAAIB39PjxY5UpU0ZmZmY6ePAgRT8kaufOnVPp0qVVoUIFbdiwgckgAD4aNgsFACAeMJlM+vrrr6ML32PGjKH4DcRz1tbWWrVqlRo1aqRmzZppzZo1RkcCAAAA8A4iIiLUunVr3blzR56enhS/kejlzZtXK1as0NatWzV8+HCj4wBIRCiAAwAQx5lMJg0fPlyjR4/W+PHj9dVXXxkdCcB7YmVlpeXLl6tFixZq1aqV3N3djY4EAAAA4C198cUX2rFjh1auXMmex8BfatWqpYkTJ2rChAlavny50XEAJBKWRgcAAAAvZzKZ9Nlnn2ny5MmaMmWKBg4caHQkAO+ZpaWlFi9eLCsrK7Vt21ZhYWFq37690bEAAAAAvIHFixdr0qRJmjp1qmrUqGF0HCBOGTRokE6dOqXOnTsrd+7ccnFxMToSgASOPcABAIijTCaT+vfvrx9//FEzZsxQ7969jY4E4AOKjIxU9+7dNW/ePM2dO1edO3c2OhIAAACA13Do0CFVrlxZbdq00bx589iyDIhFcHCwqlSpomvXrunIkSNKnz690ZEAJGAUwAEAiIMiIyPVq1cvzZ49W7Nnz1a3bt2MjgTgI4iMjFTfvn01c+ZMzZw5Uz179jQ6EgAAAIBXuHHjhlxcXJQtWzbt2rVLNjY2RkcC4qxbt27J2dlZmTNn1u7du2Vra2t0JAAJFHuAAwAQx0RERKhLly6aM2eO5s+fT/EbSETMzc01Y8YMDRgwQL169dK0adOMjgQAAADgJYKCgtS4cWNZWFho3bp1FL+B/5A+fXp5eHjoxIkT6tGjh3g/E8CHwh7gAADEIeHh4erYsaOWL1+uJUuW6JNPPjE6EoCPzMzMTFOmTJG1tbUGDBigsLAwDRkyxOhYAAAAAP7BZDKpa9euOn36tPbt26d06dIZHQmIF1xcXDRv3jy1bdtWRYoU0aBBg4yOBCABogAOAEAcERYWpvbt22v16tVyd3dXixYtjI4EwCBmZmYaP368rK2t9dlnnyk0NFTDhg0zOhYAAACAv0yaNEnLli2Tu7u7SpYsaXQcIF755JNPdPr0aX322WcqUKCAatWqZXQkAAkMe4ADABAHhIaGqk2bNvL09NTKlSvVuHFjoyMBiCPGjBmjkSNH6uuvv9bXX38tMzMzoyMBAAAAidqWLVtUr149ffnllxo3bpzRcYB4KSIiQg0bNtS+fft06NAh5c2b1+hIABIQCuAAABgsJCRELVq00LZt27RmzRrVr1/f6EgA4pjx48fryy+/jP6BjSI4AAAAYIyzZ8+qTJkyqly5sjw8PGRubm50JCDeevLkicqUKSOTyaSDBw8qRYoURkcCkEBQAAcAwEBBQUFq2rSpdu3apfXr17PkE4CXmjp1qgYNGqTBgwfr+++/pwgOAAAAfGSPHj1SqVKlZG1trQMHDihZsmRGRwLivQsXLqhUqVIqU6aMNm3aJAsLC6MjAUgA2AMcAACDBAYGqmHDhtq/f782bdokNzc3oyMBiMMGDhwoa2tr9enTR6GhoZo2bRpFcAAAAOAjCQ8PV8uWLfXgwQP5+flR/Abek9y5c2vVqlWqVauWvvjiC33//fdGRwKQAFAABwDAAM+fP1f9+vXl5+enrVu3qnLlykZHAhAP9O7dW1ZWVurevbtCQ0M1c+ZMllwEAAAAPoKhQ4fKx8dH27dvV86cOY2OAyQo1atX1+TJkzVw4EAVLlxY7du3NzoSgHiOAjgAAB/Z06dPVadOHZ06dUrbt29X+fLljY4EIB7p1q2brKys1LlzZ4WGhmru3LksEQcAAAB8QAsWLNDUqVP1448/snob8IH0799fp06dUrdu3ZQ3b16VLl3a6EgA4jH2AAcA4CN6/PixateurbNnz2r79u38MQ/grS1dulQdOnRQmzZttGDBAllaMrcVAAAAeN8OHDigKlWqqH379pozZw7bEAEfUEhIiKpWraorV67Iz89PGTNmNDoSgHiKAjgAAB/Jw4cPVaNGDV2+fFk7duxQyZIljY4EIJ5buXKlPvnkEzVv3lyLFy+WlZWV0ZEAAACABOP69etydnZW7ty55e3tLWtra6MjAQne7du35eLiovTp08vX11d2dnZGRwIQD7FhIAAAH8H9+/fl6uqqq1evysfHh+I3gPeiZcuWWr16tdauXavWrVsrNDTU6EgAAABAghAYGKhGjRrJ2tpaa9eupfgNfCTp0qWTh4eHTp8+ra5du4p3OAG8DQrgAAB8YHfu3FHVqlV1+/Zt7d69W0WLFjU6EoAEpHHjxlq7dq02btyoZs2aKSQkxOhIAAAAQLxmMpnUuXNnnT17Vp6ennJycjI6EpColCxZUgsWLNCyZcv0/fffGx0HQDxEARwAgA/o1q1bqlKlih48eKDdu3erYMGCRkcCkADVr19fGzZs0I4dO9SoUSMFBQUZHQkAAACIt8aPH68VK1Zo4cKFKlasmNFxgESpVatWGjZsmL744gtt2bLF6DgA4hn2AAcA4AO5fv26XF1dFRQUJB8fH+XOndvoSAASuJ07d6pBgwYqX768NmzYIHt7e6MjAQAAAPHKxo0b1bBhQ40YMUKjR482Og6QqEVGRqpRo0by9fXVwYMHlT9/fqMjAYgnKIADAPABXL16Va6uroqIiNCuXbuUPXt2oyMBSCR8fX1Vt25dubi4aOPGjUqSJInRkQAAAIB44cyZMypTpoyqVaumtWvXytycBVQBoz19+lRly5ZVaGioDh8+rJQpUxodCUA8QAEcAID37NKlS6pataosLS3l4+OjrFmzGh0JQCKzf/9+1a5dW0WKFNGWLVuULFkyoyMBAAAAcdqDBw9UqlQpOTg46Ndff2UiKRCH/Pnnn3JxcZGzs7O2bNkiS0tLoyMBiOOYwgYAwHt04cIFVapUSba2ttqzZw/FbwCGKF++vLy8vPTbb7+pRo0aevz4sdGRAAAAgDgrLCxMLVq00JMnT7RhwwaK30AckzNnTq1evVo+Pj4aOnSo0XEAxAMUwAEAeE/Onj2rypUrK1myZNq9e7cyZsxodCQAiVjp0qXl7e2t8+fPq1q1anr48KHRkQAAAIA4afDgwdqzZ4/WrFnDFmZAHOXm5qYffvhBU6dO1YIFC4yOAyCOYwl0AADeg99++01ubm5Kmzatdu7cKScnJ6MjAYAk6eTJk6pWrZoyZsyonTt3KnXq1EZHAgAAAOKMX375RV27dtXMmTPVs2dPo+MAeAWTyaRu3bpp8eLF2rVrl8qVK2d0JABxFAVwAADe0YkTJ1StWjVlzpxZXl5eFJcAxDl/T9JxcnLSzp07lTZtWqMjAQAAAIbbt2+fXF1d1blzZ82aNcvoOABeQ2hoqNzc3HThwgX5+fkpc+bMRkcCEAdRAAcA4B0cOXJENWrUUM6cObV9+3Y5OjoaHQkAYvXHH3/I1dVVyZMnl4+Pj9KnT290JAAAAMAw/v7+cnZ2Vv78+eXl5SVra2ujIwF4TXfv3pWzs7OcnJy0Z88e2dvbGx0JQBzDHuAAALylgwcPys3NTfny5dPOnTspfgOI0/LlyydfX189f/5clStX1vXr142OBAAAABgiICBADRs2lL29vdasWUPxG4hnnJyc5OnpqbNnz6pz587iPU8A/0YBHACAt7Bv3z7VqFFDRYoU0fbt25U8eXKjIwHAf8qdO7f27Nmj0NBQVapUSVeuXDE6EgAAAPBRmUwmdezYURcuXJCnp6fSpEljdCQAb6FYsWJauHChVqxYofHjxxsdB0AcQwEcAIA3tHv3btWqVUvOzs7atm2bkiZNanQkAHht2bNnl6+vr8zMzFS5cmVdunTJ6EgAAADARzNu3DitXr1aixcvVpEiRYyOA+AdNG/eXF999ZWGDx+ujRs3Gh0HQBzCHuAAALyBnTt3qkGDBqpQoYI8PDzYYwhAvHX9+nW5uroqMDBQu3btUu7cuY2OBAAAAHxQ69evV5MmTfTNN9/o66+/NjoOgPcgMjJSTZs21c6dO3Xw4EEVLFjQ6EgA4gAK4AAAvKatW7eqcePGcnNz09q1a2Vra2t0JAB4J7du3ZKbm5seP34sb29v5c+f3+hIAAAAwAdx+vRplS1bVrVq1dKqVatkbs7iqEBC8fz5c5UrV04BAQE6fPiwUqVKZXQkAAajAA4AwGvw9PRU8+bNVbt2ba1cuVI2NjZGRwKA9+Lu3buqVq2a7ty5I29vbxUqVMjoSAAAAMB7df/+fZUqVUrJkiXT/v375eDgYHQkAO/Z5cuX5eLioqJFi2rbtm2ysrIyOhIAAzHNDQCA/7B27Vo1bdpUDRo00OrVqyl+A0hQnJyc5OPjowwZMqhKlSo6ceKE0ZEAAACA9yYsLEzNmzfX8+fPtWHDBorfQAKVPXt2rVmzRnv27NHgwYONjgPAYBTAAQB4hZUrV6ply5Zq3ry53N3dmT0KIEFKnTq1vL29lT17drm6uurIkSNGRwIAAADeiwEDBmjfvn1au3atsmbNanQcAB9QlSpVNH36dP3444/65ZdfjI4DwEAUwAEAeIklS5aoTZs2atOmjZYsWSJLS0ujIwHAB+Po6KidO3cqb968cnNz08GDB42OBAAAALyT2bNna+bMmfrpp59UsWJFo+MA+Ah69uypHj16qFevXtq3b5/RcQAYhD3AAQCIxfz589WlSxd16tRJs2fPloWFhdGRAOCjePbsmerUqaOTJ09qy5YtqlChgtGRAAAAgDe2Z88eubm5qXv37poxY4bRcQB8RKGhoapevbrOnj2rI0eOKEuWLEZHAvCRUQAHAOBfZs+erR49eqhnz56aMWOGzM1ZMAVA4hIQEKD69evr8OHD2rRpk6pUqWJ0JAAAAOC1XblyRS4uLipcuLC2b9/OdmZAInTv3j25uLgoZcqU2rdvnxwcHIyOBOAj4hd9AAD+4ccff1SPHj3Uv39//fTTTxS/ASRKDg4O2rRpk8qVK6c6derIy8vL6EgAAADAa3n+/LkaNmyopEmTavXq1RS/gUQqTZo08vT01IULF9SxY0fxLiiQuPCrPgAAf5kyZYr69eunIUOGaOrUqTIzMzM6EgAYxt7eXp6enqpatarq16+vrVu3Gh0JAAAAeKXIyEi1b99ely5dkqenp1KlSmV0JAAGKlKkiBYvXqzVq1dr3LhxRscB8BFRAAcAQNJ3332nwYMHa9iwYZo4cSLFbwCQZGtrq3Xr1qlmzZpq1KiRPD09jY4EAAAAvNTo0aO1fv16LV26VIUKFTI6DoA4oEmTJvrmm2/01Vdfaf369UbHAfCRsAc4ACBRM5lMGj16tL755huNGjVKX331FcVvAPiX0NBQtWnTRhs2bNCKFSvUtGlToyMBAAAAMaxdu1bNmjXT2LFjNXz4cKPjAIhDIiMj1aJFC23btk0HDhxQ4cKFjY4E4AOjAA4ASLRMJpO++uorjRs3Tt9++62+/PJLoyMBQJwVHh6u9u3ba9WqVVq6dKlatWpldCQAAABAknTy5EmVK1dO9evXl7u7OxPbAbwgICBA5cuX19OnT3X48GGlTp3a6EgAPiAK4ACARMlkMunzzz/X999/r0mTJmnw4MFGRwKAOC8iIkIdO3bUsmXLtHDhQrVr187oSAAAAEjk7t69KxcXF6VKlUr79u2Tvb290ZEAxFFXr16Vi4uLChYsqB07dsjKysroSAA+EPYABwAkOiaTSQMHDtT333+v6dOnU/wGgNdkYWGhBQsWqGPHjurQoYPmz59vdCQAAAAkYqGhoWrWrJmCg4Pl4eFB8RvAK2XNmlVr167Vvn37NGDAAKPjAPiALI0OAADAxxQZGak+ffpo1qxZmjVrlnr06GF0JACIVywsLDRnzhxZWVmpc+fOCgsLU/fu3Y2OBQAAgETGZDKpb9++OnjwoHbt2qUsWbIYHQlAPFCxYkX99NNP6t69u4oUKcJ4FkigKIADABKNyMhIdevWTfPnz9e8efPUqVMnoyMBQLxkbm6umTNnytraWj169FBoaKj69u1rdCwAAAAkIrNmzdKcOXM0b948lS9f3ug4AOKRbt266dSpU+rTp4/y58+vSpUqGR0JwHvGHuAAgEQhIiJCnTp10tKlS7Vo0SK1bdvW6EgAEO+ZTCYNHTpUkyZN0qRJk9hSAgAAAB+Fj4+PatSood69e2vatGlGxwEQD4WFhalmzZo6ffq0/Pz8lC1bNqMjAXiPKIADABK88PBwtW/fXqtWrdLSpUvVqlUroyMBQIJhMpk0YsQIffvtt/r222/15ZdfGh0JAAAACdilS5fk4uKiEiVKaOvWrbK0ZJFTAG/nwYMHcnFxUdKkSbV//34lSZLE6EgA3hP+OgAAJGhhYWFq06aNPDw8tHLlSjVt2tToSACQoJiZmWns2LGytrbWsGHDFBoaqpEjR8rMzMzoaAAAAEhgnj17poYNGyplypRauXIlxW8A7yRVqlTy9PRU2bJl1aFDB61evVrm5uZGxwLwHvAXAgAgwQoJCVHLli21ZcsWrV27Vg0aNDA6EgAkSGZmZvr6669lZWWl4cOHKywsTGPGjKEIDgAAgPcmMjJS7dq109WrV3Xw4EE5OjoaHQlAAlCoUCEtXbpUjRo10pgxY/T1118bHQnAe0ABHACQIAUHB6tp06by9vbWhg0bVLt2baMjAUCCN2zYMNnY2GjIkCEKCQnRxIkTKYIDAADgvfj666/l6ekpT09PFShQwOg4ABKQhg0bauzYsRoxYoQKFSrECpJAAkABHACQ4AQGBqpRo0bat2+fNm3apGrVqhkdCQASjcGDB8va2lr9+vVTaGiofvjhB4rgAAAAeCerVq3S2LFj9d1336levXpGxwGQAA0bNkynTp1S+/btlStXLhUtWtToSADegZnJZDIZHQIAgPclICBA9evX1+HDh7Vp0yZVqVLF6EgAkCj9/PPP6tmzp3r27KkZM2awjxoAAADeyvHjx1W+fHk1atRIy5YtY3IlgA8mICBAFStW1MOHD+Xn56c0adIYHQnAW6IADgBIMJ49e6a6devq+PHj2rp1qypUqGB0JABI1ObPn68uXbqoU6dOmjNnDkVwAAAAvJE7d+7IxcVFTk5O2rt3r+zs7IyOBCCB8/f3l4uLi/LlyycvLy9ZW1sbHQnAW+AXKABAgvDkyRPVrFlTJ0+elJeXF8VvAIgDOnXqpEWLFmnBggXq2LGjIiIijI4EAACAeCIkJERNmjRRWFiYPDw8KH4D+CiyZMmidevW6cCBA+rbt694hxSIn9gDHAAQ7z169Eg1a9bUxYsX5e3tLWdnZ6MjAQD+0q5dO1lZWalt27YKCwvT4sWLZWnJMAQAAAAvZzKZ1KtXLx05ckS+vr7KlCmT0ZEAJCLly5fXrFmz1OV/7N11eFTHGsDhX9xdiZEAQRPc3YIGd2iRAi1Oobjf0lJKW7RQtLi7OwT34BA8hBAXEuKye/9YWAgRgjXQfu/z3OdyZGa/s9BzZs/MfNOrF6VKlaJfv355HZIQ4h3JmychhBBftIiICLy8vHjy5AlHjhyhdOnSeR2SEEKIN3Ts2BEdHR06duxISkoKa9euRUdHJ6/DEkIIIYQQn6k5c+bw999/s2zZMipXrpzX4Qgh/oN69uzJtWvXGDRoEMWKFaNOnTp5HZIQ4h3IGuBCCCG+WGFhYdSvX5/Q0FAOHz6Mh4dHXockhBAiBzt27KBt27Y0adKE9evXo6enl9chCSGEEEKIz8yhQ4do1KgRgwcP5o8//sjrcIQQ/2FpaWk0btyYy5cvc/78eQoUKJDXIQkhckk6wIUQQnyRgoODqVevHtHR0Rw5coRixYrldUhCCCFyYc+ePbRu3Zp69eqxefNm9PX18zokIYQQQgjxmbh//z4VK1akYsWK7Nq1S5bOEULkuaioKCpWrIiBgQGnT5/GxMQkr0MSQuSCZl4HIIQQQrxNeno6r4/Xevr0KbVr1yY2NpZjx45J57cQQnxBmjRpws6dOzly5AjNmzcnISFBfUyhUCDjc4UQQggh/jt27drF2bNnAYiNjaV58+ZYW1uzdu1a6fwWQnwWLC0t2bFjB48fP+brr79GoVAAsGXLFnx9ffM4OiFEdqQDXAghxGevefPm/PzzzwAEBARQq1YtkpKSOHbsGIULF87j6IQQQrwrLy8v9uzZw6lTp/D29iY+Ph6Adu3aMX78+DyOTgghhBBC/FMGDRrE5s2bSU9Pp0uXLjx9+pQdO3ZgYWGR16EJIYRa8eLFWb16NTt27GDixIkAzJs3jylTpuRxZEKI7EgHuBBCiM9aQEAAe/bswdXVlUePHlGzZk0UCgXHjx+nYMGCeR2eEEKI91SnTh327dvHhQsXaNSoEc+fP8fV1ZVFixaRlpaW1+EJIYQQQohPLDg4mEePHlGxYkXGjx/P7t27WbduHUWLFs3r0IQQIpNmzZoxZcoUfvrpJzZs2EDFihU5deqUZDET4jMlHeBCCCE+a+vWrUNfXx8PDw9q1qyJrq4ux48fJ3/+/HkdmhBCiA9Uo0YNDh48yLVr12jQoAHNmjUjLCwMHx+fvA5NCCGEEEJ8YmfOnAEgNDSUX375hWnTptGoUSPpTBJCfJaUSiUjR46kU6dOdO/eHTs7O0JCQnj8+HFehyaEyIJ0gAshhPisrV27ltq1a9OkSROMjY3x8fHBxsYmr8MSQgjxESiVSsqWLcvhw4fx8/Nj2LBhuLm5sXbt2rwOTQghhBBCfGKnT5/G3t6e4cOH06lTJ6ysrChVqhTVqlXL69CEECKD5ORkLCws8PLyol27dhQrVoxp06YBqnuZEOLzIx3gQgghPlt+fn5cuXKFM2fOYGJiQo8ePejevTvGxsasWLEir8MTQgjxgX744QcsLS2ZNm0aI0eO5OHDhyQkJLBp0yaSk5PzOjwhhBBCCPEJ+fj4EB0djbW1NUePHuWbb77BxcWFGTNm5HVoQgiRgZ6eHkuXLiUmJobWrVvz/Plznj9/jp6eHidOnMjr8IQQWdBQSk4ZIYQQn6k+ffqwYMECDAwMSEpKQlNTkzp16tC6dWu6d++OgYFBXocohBDiA4SGhvL333+zZcsWLl68iI6ODgqFgvT0dJYvX07Xrl3zOkQhhBBCCPEJJCYmYmRkhFKpRF9fn65du/L9999TrFixvA5NCCGypVQqOXnyJNOnT2f79u0olUqsra0JDw/P69CEEG+QDnAhhBCfLScnJ4KCgmjYsCEdO3bE29sbKyurvA5LCCHEJ/D48WO2bdvGqlWruHjxIvXr1+fgwYN5HZYQQgghhPgE4uLiKFiwIC1btuSnn36Spc6EEF+ce/fuMWDAAAIDA7l582ZehyOEeIN0gAshhPhsRUVFoaWlhZmZWV6HIoQQ4h8UEhKCqakphoaGeR2KEEIIIYQQQgghhPjCSAe4EEIIIYQQQgghhBBCCCGEEEKIfwXtvA5ACCHeJiAggIiIiLwOQ4hcsba2xsXFJa/DEEKIDORZKr408jwVQggB0oYRXx5pwwjxdnJvF18Sua9/uaQDXAjxWQsICKBYsaIkJCTmdShC5IqhoQG3b/tJw0gI8dmQZ6n4EsnzVAghhLRhxJdI2jBC5CwgIIBiRYuSkCj3dvFlMDQw4Laf3Ne/RNIBLoT4rEVERJCQkMiiMT0o4pIvr8MRIkd3AoLpPWUpERER0igSQnw2Xj5LFwxtTxFnm7wOR4i3uvMknO+mb5DnqRBC/Mep2zCDW1HYyTqvwxHire4GRvDdrK3ShhEiBxERESQkJjK3ayUK25vmdThC5OhuSCz9V5yT+/oXSjrAhRBfhCIu+ShdWB4yQgghxPsq4mxDqYKOeR2GEEIIIcQ7KexkTakCMiBeCCH+TQrbm1LS2SKvwxBC/Itp5nUAQgghhBBCCCGEEEIIIYQQQgghxMcgHeBCCCGEEEIIIYQQQgghhBBCCCH+FaQDXAghhBBCCCGEEEIIIYQQQgghxL+CrAEuhBAi13aeuMzvq/eir6eLpoYG0wd3opibQ45lzly/z9j5m9HT0SY5NY2fvmtN1ZLu6uNbfC6yfPcpFAoFsQlJONtaMvm71rg52KjPiUtM4uelOzl/6yHp6QqMDPT4bWAHirvJWrZCCPElu3T3CROX7ePUjUe4O1pja2FCSmoampqatKlZku4NK6KjrZXtuckpacQnp9C7aWV6NKqUx1eTvVM3HrFo1xminieQlq563nVrWIHeTavkWC4hOYVfVh/i0t1A0tLTiXqeQO+mVfiuWVX1OQqFgr92nOanVQfYOLE71T0LZFvfwl2nGblwFzt/7pXjeUIIIYT4OE7e8Ccg7Bmd65ZW70tOTaNc/z9ZMaIdZQt9Gb9p/Z6EM3zRHtIVCpJS0hjSujrNKhfLsUxQZCxDF+wmOi6R5JQ0unmVpUfD8urjN/1DmbfzLAHhz1AqlUTHJdGsclFGtKuFpqYGAEqlkmUHLrH66BW0NTVJSkljaJsaNK+S82cLIYTInTvBMYza4Eu6QklSajqDGxSjaWmnHMsEP0tg2LpLPEtIITk1na+rFaBb9UKZztt04TFjNvryY+vSdKzslul4ZFwyP+24hn94HPHJaSSlpTO0YXFalnP5aNcn/tukA1wIIUSuXLz9iO+mLuPYX6Nxd7FnzYGztBo5mwvLJmFiqJ9lmYCQSNqN+ZO1k/tSo3QRTl69S/uxczm9aDwu9lYA9J6ylA0/96deheIoFAr6/baC1qPmcGbxePR1dQDoP20FkTHx7Jk+FD1dHZbsOE7zYbO4uHwS5saG/9h3IIQQ4uMqV9iZXVN6Y9F8DN+3rUXneuUA8A+Jos+MjWw/dYNNk7qjr6uT7blnbz3Ge8wiTA31aVOzVF5eTrY2Hb9KcVc7RnSsB8D1R8HUHvInLrYWNKxQNNty3aauoUIRZ/ZM/RaARbvPcPL6Q3UH+LO4RLpNXY2bvRVJKWk5xhAcGcucrSc/0hUJIYQQIjdO3vTn1M3HGTrAtTQ1cXewwlhfL+8CewfPE5Np8+MqxnWuS6c6pbgfFEnd4YtwsDKlnHvWHfgKhZJOv6yjScUijGxfi4iYeKoPnY+1mZG64/yg7z20tDTZ8b+uaGhoEBgRQ/Uh87E2NaJX4woA/L3/ItM2HOfob71xsDLlpn8oXqOXYGthROWi0kEihBAfIi4plQ7zjjPa25MOlVx5EPYcr2kHyWduQFlXqyzLKBRKvlpwksaejgxrUoKI50nU/uUA1sb66o7z1HQFfZadxdJIl5jE1CzrSUlLp92fx+hTpzAzOqvu+f/bdpUrAVHSAS4+GkmBLoQQXzilUsmJK3dYuuvEJ/2cmesO0KCSB+4u9gB0rF+RtHQFa/afybbM/K1HcXe2p0bpIgBUL1WYQk52LNh6VH1O06qlqFehOACampp827IODwLDuHo3AICwqFi2HvPl25a10XvRId69aXUSk1NYtff0J7lWIYQQecvV3pL1E7px/2kEU1YfyvHcysXzUyy/HTtP33yvz7p8L5A5Wz/tM/Q77yr0bV5dve3plg8zI30eBEVkW+bAxTvcfBTCD+3qqPd1rleOIW1rq7fjk1KY1K0RQ9vVzlzBG0Yu3MmQtrXeK34hhBBCfDzaWppsnfQ1hZ2sP3rdSqWSkzf8WXbg0kerc+3RqygUSjrWLglAIQcr6pUpxOxt2f8eP3DpLrcDwujrXRkAazMjOtQqyYwtrwbjtapWgvFd6qKhoZrt7WRthpu9JfeDItXnLNxzgVbVSuBgZQpACVc7ani4MieHzxZCiH8jpVLJqXthrDj14KPVue6cP+kKJe0r5gegoK0J9YrbM/fwnWzLHLwZjF9QDN/VKQyAtYk+7SvmZ9aB2+pzUtMVfF21AL91LJ9dNaw+/Qg9HU3aV3JV7xtQvyidq0imMvHxyAxwIYR4D2np6UxesoN9Z69jYWJIYkoq7etVpH9b1cyuRdt9WLP/LIb6usQlJuNdrRTDujRGQ0ODMX9tYtE2H/JZm9OndR36tanHnxsP8efGQ1ibm7Bt2iCszU3eGkNoVAxr9p9l+Z6ThEXFMvLrpp/0mo/5+jH8q8bqbU1NTUoXdsHH14/vWtXJsozPpdtU8cyYAqdsUVd8fP3U2ysmfZvhuL6u6tGUkqaayRYQqvrxa2v56jvR0tLExsKE09fuMaBd/Q+4KiGEEJ8rMyN9OtUty5K9Z5nYtSFaWtmP3U1LS0dHRyvXdcfEJbLh2BVWHrjI3cBwvmn8adOnF3WxU/9ZoVCw8uAl9HS0aVHNM9syO0/foHLx/Bmu20hfl9KvpUp1tDbD0dqMgNDoHD9/7/nbaGtrUr9s4Q+4CiGEEEK8tP3MLf7YdIIb/qGsHd2R5Qd9uRsYQb0yBfm1l+p389wdZ1h79Cox8Uk0m7AcgA1jO9Pl1/X43ntKH+9KjOpQG4BNJ67z185zGOnrkJiSRk1PV8Z3qZfreEKj41jnc5WVhy4T9iyOYe1qfrRrPXbtIaUK5lN3VAOUKeTA9M3ZDyD0ufaIQg5WmBrqvVbGkTnbz/AsLhFzYwPy21lkKLP/4l0CI2KYVcdbvS8w/Bk2ZkYZzrO3NGHHmdsIIcTHsvniYxYevYuhnjZJqelUd7dlbPOSdJl/gkM3gynmYMYobw8aeToycv0ltlwKoGx+S9b3r8WOy09YcPQuutqaJCSnU6mgNWObeaKno0V8cipfzT/JJf9IRjb14FZQDPdDn3MlIIq7v7bEzFD3rbGFxSay/pw/q888Iiw2iR8aFf9o1338TiglnS0y3N9Lu1gy80D299jjd0IpaGeCiYHOqzL5LZl7+A7PElIwN9TFUFeb2sXsc/zsXVcDqVrIJsM+K2M9rIy/jOwo4ssgHeBCCPEefl66kyMXb3F47giMDfQ5fe0eHcf/pe4AX73vDHOGfY1nQSfiE5PxGjgNR1tLOjeozJS+bQmPfs6zuAT6tVGdP6BdfXadvMLGXwZkm04cID1dwaELN1m++yT7zl6nlLsLQzo2pE3d8hgbvCp38PxNZqzdl+M1DOnUCK+KJXJ1vZExccTEJ2JraZZhv52lKb53Hmdbzj84gpa1ymUq4x+c/Yy38zcfks/KjMoeqo7z/C9SpT8Jjaayh+qctPR0wqOf89T4Wa7iF0II8WUq6+7IzM3J3HsanqET+XVbT17jTmA4U3q9fSDYqRuPWHnwIjtO3SC/nQVfNyhPxzplsTR9tZzG9YdBjF68O8d6Otcrq07B/i5+X3+EhbvOYGVqxOb/9cDR2izbc289DqV0IUcmLd/HuduqZ61XuSIMal0Dba3cd/bHJ6Xw08qDbP5fd1JS0985ZiGEEEJk1qJKcaxMDGk+cQV3AsNZM7oj4THxlPxuJt6VilLD043+zavwPDGZUzcfs/PHbuqyWyZ8pe4QBwiOek7f2du4MGcArvYWhD2Lo/LgeW/tAE9PV3DkygNWHPJl/6V7lCxgz6BWVWldzQNjg1edKocu32fW1lM51jW4VTXql8m8fiuAf+izTKnO7cyNiU1IJvp5IhYmBpnKPA6Nxs7c+I0yqo7sx2HPMDd+VWblocv8tvE4SpQsH9aOkgXyqY8525oTGBGToZ6gyFhi4pOIT0rBSP/tnUdCCJGTkJhEBq48z+nxjXG1NiYsNokaP+9jbPOSrO5Tgzq/7Kd+iXw08lTdB//XujRXAqJZ31+VXWu77xMGehWlkacjqekKui44yZ+H/PihcQmM9HTYOrgO5SfuYsulALYMrI2ZoS4d5h7jtT7nTNIVCo7eDmXV6YccvBGEp7MFA+oXpVU5Z4z0XnU8H7kVzJyDftlXBAz0Kkrd4vmyPPY4Ip6yrpYZ9tma6hObmEp0fDIWRpk7ox9HxmFrkvHd9cvtgMh4zHPRqQ9wOyiGygWtGbH+EreePkNHW5OWZZ3pWq1ghg55IT6EdIALIcQ7SkxOYe6mw/w+qKO607lqSXd6t6itPmfp+F64OahGsRkZ6NGgkgcHz92gcwNV+q+vGlWh5YjZhETGYG9lxo0HgeTPZ51j5/dPS3ewet8Z4pOSaV+vIsfnj8GjoFOW53pVLJHrzu3cSExOAUBPJ+NjQ1dHm4SklGzLJSSnZCqjl0OZ5JRUZm04yLSBHdDRVr3ct7EwpU2d8vy58SD1KxbHwsSImesOkJSSiiJd8SGXJYQQ4jP38rkYE5+UYf/MTcdYc9iX5JQ0zIz02TChG3XKuGdbz8JdZ1i0+wxBETG0rO7J1snfUKlY/izP9SzgwK4pvT/eRbxmWIe6/NC+DisOXMR7zCJ2/tybEq5Zj4x/FpfIyoMX+fVbbyZ1a0RY9HOaj1tMYPgzpvdrmevPnLL6ID0aV8Te0vStM8WFEEII8e7a1FBldLExM6KIkw3X/UOp4emW6/Lhz+JIVygJjIjB1d4CW3Nj1ozumGOZKWuPsuboVRKSU2hXw5Oj03pTwjXrwYL1yxTKtnM7NxKTU9F7I9OO7ovthJRULMjcAZ6Ykprl+4OX9b3u6/pl+Lp+GQ5cukvHX9ayckR7apVUpcDt07QSE1ceonfjChTPb8epm/6cvqkaGJiuUL73NQkhxEvhsUmkK5Q8jU7A1doYW1N9Vn73avmqdhXzs+TYfcY080RDQ4N9157SqKSD+vjElqVwslANqNbR0qRxSUfWnfPnh8YZ38s29nRUz/h+2XmelV9332Dd2UckpKTTurwLB0Z4UcLRPMtz6xbPl23ndm4kpqahp50x05rui/exiSnpWBhlUSYlHX3tN4hLrCMAAQAASURBVJ4JL+pITEnL9WfHJKQw+6Afy3pVY1qHcjwMe07zmUeJTUxloFexd7wSIbImHeBCCPGOHj4NJykllQKOGdO0jP+mufrPoVExjJ63kciYOHS0tQgIiSR/vlfre9UsUwRnO0vW7D/D0M6NWLH3FF81qpLj5/6+ei8Gurr83LcNnRpUxkDv04x0Do2KocfkxertIZ0aUbaIqpMgOTVjQyYlNQ3DHEZcG+rpZiqTnEOZwTNW07JmWVrULJth/7wRXflt1V7ajZ6LtpYm9SoUx7taKaJi49/p2oQQQnxZYhNUHd+vzxIC+L5trXeagf3XjlMEhj9jdOf69GxcCTPjzC9qPxbvMYvUf85qpriGhgbdGlZg7RFfflt3hGWjOmdZj6amBrbmxvRopErPbmthQp9m1fhh/nZ+6tkEw1y0A649COLinSdM7tH4recKIYQQ4v3YvzbT2dhAl+eJye9U3tPNng61StJi0gqqFHOhbQ1P2tcqmWOZ6VtOYqCrzeRuDehQqyQGr80I/NgM9HRIfiOLzMusMoa6WX+uga4OSSmZ3x+8rC8rDcoVpnGFIvy46giHp6k6wLs3KIeOthajluwjNV1BYSdrhrapwbSNxzCW2d9CiI/Aw8mcdhXy02aOD5UL2tC6vAttK7waLN2mfH5+2nGdU/fCqV7Ylk0XH/NLu1fvLRNS0ui7/CyB0QnoamkSFptEclrmCTv5LHL3G3Tm/tvo62jxv1alaFcxPwa6n64Lz0BHO1OsKWmq+7uBbtZZxwx0tUhKeeOZ8KKOd4lVU1ODMi6W1Cuh6sAvYGtCp8quLDh6TzrAxUcjHeBCCPGOlMqcRxkHhETSYvgsxnZvxqAODQCYsmwnJ6/eVZ+joaFB54ZVWLXvDAPa1ef8zYf82r99jvXeWPMzK/eeZvqafUxcuJV29SvSvWl1ShZyznTuh6RAt7M0Y8+MHzLtNzMyICwqY+qx0KhYXF/r2H+Taz5rQnNZZuLCrWhraTGhZ4tMxwz0dDPtbzLkDzwLZr52IYQQ/x6+9wIxNdKnkEP2z5rcOPR7X9YduczKgxf4ff1RWlTz4OsG5alaIvPsrA9NgZ7V7PGU1DT1rKeX3B2tuXjnSbaf4WhtliljirOtOQqFkidhzyjibJtjjAD7L/iRlJJG83FLAEh+8SJ69OLdmBnpM3tAawo4WL21HiGEEEJkT0vr1ew5DQ2Nt74zeJOGhgZ/DWrJoJZVWXv0Kj+vPcq8nWc5NLUnpkZZZ4m78tcgVh+5wowtJ5m08hDtanrStX5ZPN0yZ5b50BTornbmhD2Ly7Av9FkcpoZ6WaY/B8hvZ8Hx64/eKKMawJ7f1hxQdaLrvjGzvJCDFbvPZUzn26VuabrULa3enrrehyJONmhqSopcIcSH09DQ4M+ulRjgVZT15/yZuusG84/cZd+wepga6GJnZkCNwrZsPO9P0XymJKcqcLZUTY2OT06lzRwfWpR15q9uldHU1GDd2Uf8vvdmps/RymVa74v/a8raM4+YffA2k3dco015F76qWgAPJ4tM535oCvT81kaExWbMthYWm4SpgU6W6c8B8lsZc+JuaMYyz1V1uFhlMWU8Gw7mhuQzz/gMcbY0Ivx5EokpaZ+041/8d8i/IiGEeEcFnWzR19Xh4dNwqpcqrN4/e/0BerWoje8dfxKTU2ldp7z6WGpa5jU3OzeozNQVu5iwcAuNqpR86/omTraWjO7mzcivm3D44m1W7DlJnX5T8SjoRLcm1WhXr6I6VezHToEOqlnrvncD1NtKpZKr9wIY1iX7WWW1yhbl3M2HGfZdvvOY2mWLZtg3Y+1+HodG8vfYb9DQ0ODyXVVKszKFVSMuz996SMlCzui/GF2ekJTC5TsBjP8mc2e5EEKIf4eY+CTWHbnMN40qZXix/D6sTI3o37I6/VtW5+ytx6w8eIF2k5bhZGPO117l6Vi3DNZmqtlbnyIFeu2hczk9Z3CGfSHRz7G3NM22TJXirqw+fCnDvvBncWhoaOS4dvjrhnesy/COddXbAaHRlOr9G7/0akp1zwLvcAVCCCGEeB+ar/3OT0pJQ0tTQ73c10tBkbEERsRQsYgzP3bzYmDLqpTpOxufa49oXiXrWXBO1maMbF+L4W1rcuTqA1Yeukz9UYvxyG/P1/XL0KaGByYGqs6LD02BXtPTjZlbTqFUKtXvLa48CFKnKc9KrZJuLD1wkeeJyeo4rjwIonTBfOrMPm0mr2LZsHZYmRqqy4VGx2FvYaLefhgchZ6uNo5Wr9pMZ24FZPu9CCHEuwp+lkBgdAIV3KyZ2LIU/eoVocKk3Ry/E4Z3adXSk+0qujJywyUK2prQqtyryTj3Qp8T8TyZ5qWd1YNyUj5wuUZHC0OGNSnB0EbF8fELYfWZRzT6/TAlHM3oUqUArcu7YKyvej/6oSnQaxS2ZfZBv4z394BoahbJekkNgBpFbFl+8gFxSanqOK4GRFHK2SLX638DVC5oTUBkxsye4c+TsDLWk85v8dF82JskIYT4DzLQ06V/23os3n6M+BepzQ6ev8nOk1cw1NeliEs+NDQ08LmkGoGXmJzCwfOZR/652FtRq0wR5m89ql4bPDc0NTXxqliClZO+w2/9L7SuVY65mw7TZ+qyj3J92RnSqSEHz93g3hPVKL/1h86jpalJ54avUrf3/XU5vacsfbXdui53A4I5dfUeAKev3eNuQAjftaqjPmfJjuOsO3iOvq3rcuXeE3zvPGbv6WvcevhUfc5vq/ay+cgFQNXx/tPSHXhVLEEVz/f/ES+EEOLz5R8SRcfJyynibMOozvU+at2Vi+dn7uC23F4+mu+aVWXT8au0mbjso37Gm+ISk1m856x6+9SNhxy9fJ8u9V/NIp+65hBNRi1Ub3dvVJHY+CR2nr4BqNbL/HvfebrUK4uxQdaj8YUQQgjxebE2NeJZnGpm3LhlBzh69UGmcx4GR/G/lYdJe9Fp8nIGecF8lm+tX1NTg/plCrF8eDtuLBxCi6rF+WvnWfrP2f7RrqFz3dJoamqw4dh1AB4ERXLo8n0GtayqPmfloctUGjRPnfa8YbnCFHW2Zf6ucwBExiaw3ucaQ1pXz1D3nO2n1dfr9yScjSeu06VeafXx3ef9mLLmqHp7z/k7BEbE8F3TSh/t+oQQ/20Pw+P4afu11+7Bqv1uNq+Wt2hSyhGAuYfv0Kz0qw7w/FZGGOhocfyO6l1pukLB/mtBHyUuTU0N6hbPx5KeVbk82ZvmZZxZcPQuA1ee/yj1A3Sq7IaWpgabLqgmIj0Me86R28H0r1dEfc7qMw+p/tNekl4sfdGghANF8pmy0EeV6TQyLpkN5x8zuMG7DUz6tk5hLj+O4vLjKACi41X19Kol73rFxyNDKYQQ4j2M7dGMdIWCOv2mYmVmjKmRAUvH9wKgmJsDM77vxK8rd7Nq32lsLUxxc7DG55IfPX9ewpKxPdX1dGpQBaVS1Rn+PmwsTBncsQGDOzYgICTyo1xbdsoXc2P+yG70+nkJ+nq6aGposPXXQepZ5wBJKamkpb+a7e5ib8WGn/szbsEWdLW1SE5NY+OU/urrfZ6QxA+z16JQKPEaOC3D5/01oqv6zzVKuTNt1V6W7jqJpqYGVTwKsXBMj096vUIIIT69S3efMHGZasmOmZuOseawLympaWhoaNCudmm6N6yAtpZWluduOXGdTZO6v/dnmxrq803jSnzTuBIBodEffC05Gf91A1YcuMAGnytoamiQkprGnIGtaVurlPqcpNQ0ElNS1dt2FiZs/fEbxi7Zw+wtJ1CipJpHAUZ1yjgg4OspqwiJeg68Sm2+fXLPTLPmRy/apU65PnrxbtydrPl7eKdPdclCCCHEv9qhy/f5cdVhAJpNWM6K4e0Zt/wA1x+FEBD2DEM9XQa1rEqzKsVYc/QKjccuxdRQj1olC9D6x1Xq89LTFfRqXBFXewsajv4bI30dEpJT+bVXY0q4Zj8DLys2ZkYMalmVQS2r8iTs2Ue7VhMDPTaN78LwRXtYfugSSSlpzB3QgnLujupzUtPSSUpJRfGi50hTU4M1ozsydP4uGo75m+SUNIa3q0mzyq86SAa1rMrivRfwGr0EXW0t4pNSGdGuJn1e69wu7mLLxuPXqfnDAkwN9bC3MGHHj93Us8qFEOJDuduZ4GptTNPphzHU0yYhOZ1f2pWlhKO5+hxDXW28SzmRnKbAxEBHvd/CSI953Srz045rHLkdgr2ZAdamepy4m0SbOT5sHlibVrOOEhabxJyDfpx7GMGMzhXeOUYbE3361y9K//pFeRIV//YCuWSsr8O6fjUZtcGXlacekpSazuwuFSnr+uo9dWqagqTU9Az395XfVmf4uks0nX6Y5NR0fmhUnKYvZsu/NHL9Je6GxAIw56Af68/5M69bJfKZq7J+lHA0Z2nvaoza4IuOlgZpCiVfVytA37qFEeJj0VC+68I0QgjxD/L19aVcuXIcnz+G0oVd8jqcj276mn042lrQob6MXv43uHI3gJp9pnDp0iXKli2b1+EIIQTw6lnqM6M/pQo6vr2AEHns6oOn1B4yV56nQgjxH/eyDXP0t96UKvD+KV6F+KdcfRhMneGLpA0jRA5e3tsPjvCipHPmda2F+JxcexKN17SDcl//QkkKdCGE+IfdfhTE7lNXSEtPZ+fJKzSvUSavQxJCCCGEEEIIIYQQQgghhPhXkBToQgjxD0tMSWXozLXYWe6hf7t6GOjp5nVIQgghhBBCCCGEEEIIIYQQ/wrSAS6EEP+wskXyc2fjr3kdhhBCCCGEEEIIIYQQQgghxL+OpEAXQgghhBBCCCGEEEIIIYQQQgjxryAd4EIIIYQQQgghhBBCCCGEEEIIIf4VJAW6EEJ8JhZsPcrCbT4kp6RyY+2UvA7ns/L3zuMs3XkCfT0dzIwNmT20Cw42FjmW2XniMr+v3ou+ni6aGhpMH9yJYm4O71RvkyF/ZKq3WqnCjO3e7ONcmBBCiI9u4a4zLN59hqTUNK4tHpHX4XxWlu47x7J9F9DX1cbM2ICZ/VviYGWWY5ldZ27yx0Yf9HW10dTQ4Pe+LSjmYvdO9XqPWZSp3moebozuXP/jXJgQQgjxL7Boz3kW771AUmoaV+cPzutwPivLDlxi2YFLqraGkT4z+njjYGWaY5ld5/yYvvmEug3zW+8mFHOxzXW9CcmpLN1/kT3n76ClqUFsQjLVSuRndMc6GBvofrJrFUL8eyw5do+/j98nOS2di//zzutwPisrTj5gxakH6OtoYWagy++dypHP3DDHMnuuBjJz/230dbTQ1NRgavuyFM2X8fdsTvUmpKSx4uQD9l57iqamBs8TU6nqbsvIpiUw0tP5ZNcq8o50gAshxGfiu1Z1MDbQ45flu/I6lM/KjuOXmbJsF2cWj8PGwpSpK3bTfuw8js8fjaZm1olMLt5+xHdTl3Hsr9G4u9iz5sBZWo2czYVlkzAx1H+nevfM+OEfuU4hhBAfx7feVTA20GXq2sN5HcpnZefpG0xdc5iTswdhY27MtHWH6fjjCnxm9M/2eXrp7hP6ztzIkT/64+5kw7ojvrSduJSzc4dgYqj3TvXumtL7H7lOIYQQ4kvVu0lFjPR1+XXDsbwO5bOy8+xtpq734cT0PtiYGTFtwzE6/bKOo9N6o6mpkWWZS/ee0m/2Ng5P64W7ozXrfK7SdvJqzs7uh4mBXq7qvfYwmNnbTnPkt944WpkSG59E43HLiHqeyF+DWv6D34AQ4kvVs5Y7Rnra/L73Zl6H8lnZfSWQaXtucnR0A2xM9Plj702+WnCSg8O9sr2v+/pHMmDleQ4Mr08hO1M2nPOn47zjnBzbCGN9nVzVe/1JNHMO+XFwuBcOFobEJqbQbMZRouKS+bNrpX/yKxD/EEmBLoQQ4rP2++q9dG5YGRsL1Sjsvq3rcuvRU/afu5FtmZnrDtCgkgfuLvYAdKxfkbR0BWv2n/mgeoUQQogv1R8bfehYtyw25sYAfNesGrcDQjlw6W62ZWZtPo5XuSK4O9kA0L52adLSFaw94vtB9QohhBBC5Nb0zSfpWLsUNmZGAPRpWonbAWEc9L2XbZlZW09Rv2wh3B2tAWhfsyTpCgXrjl7Ndb3GBrp826Qiji9mhJsa6dOxdkm2n7lFerrik1yrEEL8F8w8cJsOlfJjY6KapNS7tjt+QTEcuhWcbZk/D/lRr3g+Ctmp7sltK+QnLV3J+nP+ua7XWE+HXrXccbBQzQg3NdClQ6X87LwSSLpC7uv/RjIDXAjxxdpw+DxzNx3G2ECPxORUapUpwsReLQFIS09n1NyN7D19DVcHayoUc+PczYc8CY2kff1KFHS0Yfra/RnSjbceNYcTl+8wc0hnujSqCsAxXz+mrdqDUqkkOTUNd2c7pvZvj7mx6kHZbsxczl6/T3fv6sQlJHPLP4gz1+9zcuFYShZyZvW+0/y15ShGBnqkpysY3MGLZjXKqK9hz6mrjFuwBXMTQ1zzWVOykNM7fQfnbz1k/IItpKcrUKKkQSUPhnVujJaWJj8u2c6GQ+dwsbeiYSVPjvr6cfbGfcZ/0wIfX78c41574Cx/bjyEro42qWnp/NC5Ea1qlwNgwO8r2XfmOnXLFyOflTm+d/w5de0eKyZ+i3f10h/4t5pR9PN4rtwLYGjnhup9ZsYGFHKyw+eSH42rlMyy3DFfP4Z/1Vi9rampSenCLvj4+vFdqzrvXa8QQvwbbTx2hb+2n8LIQJek5DRqlCzAhK6q+2NaejpjFu9m73k/XO0tKF/YhfN+j3kS/oz2tUtTIJ8VMzcdy5BuvO2kZZy8/pDp/VrQuZ7q2XH86gN+23AEpRJSUtMo5GjDL72aYmZsAECHH5dz9vZjujWoQFxiMrcDQjl76zHHZw7As4ADaw5fYv6O0xgZ6JKuUDKoVQ28q5RQX8Oec7eZuGwv5kYG5Le3wPONJS/e5oJfABOW7SVdoQSlEq9yRRjarjZaWpr8tOoAG3yu4GJrQYPyRTh29QFnb/kz7qsG+Fy9n2Pc645eZu62k+jpaJGSms7QdrVpWd0TgEFztrD/gh91yrhjb2nC5XuBnL7pz7KRnWlaufgH/72+7llcIlcfBDGkbS31PjMjfQo5WHPsyn0aVSiaZblj1x4wrH0d9bampialCjly7Op9vvWu8t71CiGEEB/DphPX+WvnOYz0dUhMSaOmpyvju9QDIC1dwdil+9l74S6uduaUL+zE+TtPeBIeQ/uanrjZWzJr66kM6cbb/bSakzf8+ePbpnSuWxqA49cf8fvG4yhB9U7AwZop3zTEzEj1cr3jlLWcvR1AN6+yxCWmcPtJGGdvP+HY79/i6WbPmiNXWLDnPEb6OqQrlAxsURXvSq+ej3sv3GHiikOYGenjameBp1vGZUbe5sLdQCauOEi6QolSqcSrrDtDW1dHS0uTn9ccYcPx67jYmuNV1p1j1x5yzu8JYzvX4di1RznGvd7nGnN3nkFXR4vUNAVDWlenZVVV+2TQvJ0cuHSXOqUKYm9hzOUHQZy+FcDSH9rStNLHffY/i0vk6sNgvm9dTb3P1Eifgvms8Ln2iIblC2dZ7vj1R/zQtoZ6W1NTg1IF8nHs2iN6N6mYq3o9XO3xcLXPUK++jjbpCgUKpRKtj3qlQgiAzRcfs/DoXQz1tElKTae6uy1jm6ve0aWlKxi/5QoHrgfhYm1EOVcrLj6KJDAqnjYV8uNmbcycg34Z0o13mnecU/fCmNahHB0ruwFw4k4o0/ffAiUkpykoZGvC5DalMTNULW3QZf4Jzj+M4OuqBYhLTsMvKIZzDyM4PNILDycL1p19xKJj9zDS1SZdqaR/vSI0KfXqfe6+60/5cds1zAx1yG9ljIeT+Tt9BxcfRfLjtqukK5UolVC/hD2DGxRDS1OTX3ZdZ/OFxzhbGlG/RD6O3wnl3MMIRnt7cvxOaI5xbzzvz19H7qKrrUlquoLBDYrRvIwzAEPWXODgjWBqF7XDzsyAKwFRnL0fzqJvqtKklOOH/rVm8CwhhWtPohnk9ep5YWqgS0FbE47fCaWBR9a/5U/cDWNIw2LqbU1NDUo5W3D8Tig9a7nnqt4STuaUeOPvQ09bi3SFEoUSua//C0kHuBDiixQc8YzvflmG74r/4eZgQ1hULOV7TFJ3gM9af5D9Z69zfMEYrMyM2epziVnrDzL8q8aMeW395tfTjW+ZOhCPTmMyfM6Bczfwrl6avq3rolQqGfTHKsbM28S8EV0B2DilP02G/MHmoxc5MHs4TraWDPx9JVqamhw4d4Ox8zdzatE4HG0suB8YSvVvf2a7pRmVShQgICSSrj8uYsnYb2hRsyyRMXE0/j7zmtPZCY+OpfXI2fw9rhcNKnkQl5hEo8F/oKOlxdDOjZjQswXaWpr8ufEQA9t7MbhjA1bvP0NiUkqOcR++cIsfZq1Vpw+/+fApdfpNJZ+1GZU9CvHnsK/p8+sy9py6xq7pQ/jft634deVutLWzbiaM/HMD1x88yfFasksz7h8cAYCdZcb1XOwsTdXH3hQZE0dMfCK2WZTxvfP4nesd8ed6rt8PRKlUUqlEQYZ91VidRl0IIb50wZGx9J2xiYvzh+Jqb0lY9HMq9Z+p7gCfveUE+y/c4diMAViaGrLt5HXmbD3BsPa1GfXa+s2vpxvfNKk7JXtNy/A5By/dwbtyCb5rVhWlUsn3c7cydske/hzcBoD1E7rhPWYRW05cY9+v3+FkY87gP7egqanJwUt3GP/3Xo7PGoijtRkPgiKoOXgOWyf3pGJRFwLCounx6xoWDetA86oeRMbG4z0685rT2Ql/FkebSUtZMrwjXuWKEJeYTJNRC9HW1mJI21qM+6oB2pqazN1+kgGtajCodU3WHvYlITklx7iPXL7H8Pnb1enDb/qHUH/YPOwtTalcPD+zB7am38xN7Dl3i50/92JSt0b8tu4I2lpZJ+kavWgX1x9lPyIesk8z7h8SBYCthUmG/bYWxviHRmVZJio2gdj4JGxfzOx+yc7cGN97T9+53lGLdnL9YTBKJVQs5sIP7eqo06gLIYQQ7yo46jl9Z2/jwpwBuNpbEPYsjsqD56k7wOdsP83+S/fw+b03liaGbDt9iznbT/ND2xqM6lBbXc/r6cY3jutCqT6zMnzOQd97NK1UlO+aVlK1YebvYuyyA/zZvzkA68Z0otmE5Ww5dZO9P/fAydqMwX/tREtTg4O+95iw4iDH/vgORytTHgRFUmvYQrZM/IqKRZx5EvaMHr9vYuH3rWlepRiRsQl4j1+e6+8gPCaetpNXs3hIa7zKuhOXmELT8cvQ0dLk+9bVGdu5LlpamszbcZYBzaswqGVV1h69SmJyao5xH7nygOGL9qjTh996HEr9UUuwtzSmclEXZvdrRv8529lz4Q47/teViV/X57eNx9HRzqYN8/d+bviH5HgtO3/sluV+/9BoQNX+eJ2dhRGPXxx7U9TzBGITkjOVsTU35vL9oPeuF1QDDhpXKIJONu8/hBDvLyQmkYErz3N6fGNcrY0Ji02ixs/71B3gcw/f4eCNYA6O9MLSSI8dl58w7/AdhjQsxvAmHup6Xk83vrZfTcpPzLjU5OFbwTQp6Ujv2oVRKpX8sPYiE7ZeYVaXigCs7lODVrOOss33CTuH1MXRwpChay6gqanB4ZvB/G/bVQ6PbICDhSEPw55T99cDbBygTwU3a55ExdP77zP81a0y3qWdiIxLptWso7n+DsKfJ9Fx3nEWdK9MvRL5iE9OpfnMo2hrajKoQTFGe3uiranBX0fu0rdeEfrXL8r6c/4kpqTlGLfP7RBGbvBVpw+/FfSMxr8fxt7MgIoFrJnRuQKDVp5n3/WnbBlUm/EtSjJ93010tLJORz5u82VuBj7L8Vq2Dq6T5f7HEXEA2JpmfLdqY6rP44j4LMtExScTm5iKralBpjJXAqLeu16Ai/6RNPJ0QCeb3+HiyyYd4EKIL1JYdCzpCgWBYVG4Odhga2nKhp/7qY/P33KE7t41sDJT/ZhpVbscY/7a9M6fM6BdfSxMVemwNDQ0aFGrLH1/zfyDtFaZojjZWgIwZ9jXAPwway1t6pTH0cYCgEJOdtQoXYTF249RqUQB/t55HDsLU1rULAuAlZkxzWqUYf3Bs7mKbcE2HxxtLGlQSdXIMzbQp329Cvy15ShDOzdSn2dlZqye0dylYZW3xj1s9jqaVCulTh9eooAj9SoU5/fV+9j0ywB1Wc9CTpQspBopOPLrptnG+euA9rm6nqwkJqUAoKuT8XGlq6NNYnJK1mVe7NfLokzCi/pyW69nQWcaVPJg2oAOPE9IosfkxTQfNpNDc0agJQ0jIcS/QPizONXzNPwZrvaW2FqYsHZcV/XxhbvO0K1hBSxNVZlPWlb3ZOzfe975c/q1qI6FierHqoaGBs2retB/1uZM59UqVRAnG3MAZg1oDcDw+TtoXaMkjtaqQUsFHayp7lmAJXvOUrGoC0v3nsfWwoTmVVXPQytTI7yrlGC9z+VcxbZo9xkcrc3wKlcEAGMDPdrVLs38naczzGy2NDFSz2juVK/sW+MesWAHjSsWV6cPL+FqT90y7kzf5MOGCa9e8noWyIdnAdUo9+Ed62Yb5y+9vXN1PVlJyOHZmJic+h5lUt6pXk+3fHiVL8LU3s14npBMz9/X0WrCEvb/2keep0IIId6Lqg2jJDAiBld7C2zNjVkzuqP6+MLd5+nqVRZLkxdtmKrFGbfswDt/Tr9mVbAwfq0NU7kYA/7ckem8mp5uOL1oq8zqqxp0P3zRXlpX81Cn0C7oYEV1D1f+3neRikWcWXrgErbmxjSvoprRZmVqiHflomw4di1XsS3acx5HK1O8yroDqpTdbWt4sGD3eb5vXV19nqWpoXqmdKc6pd4a94jFe2lcsYg6fXjx/HbULVWQGZtPsn5sZ3VZT1c7PN1U7w2Gt6uZbZy/fNMw22Nv87I9oauTscNZVzunNszLMhnbJ3o62iSmpL53vXcDIzhy5QFHpmU94FAI8WHCY5NIVyh5Gp2Aq7Uxtqb6rPzu1b1s8bF7fF21AJZGqkG0zcs4M3HLlXf+nD51i2D+Yra3hoYGzco4M2jV+Uzn1Shsi+OLVNnTO1cAYPQGX1qWdVGn0C5ga0I1d1uWnXhABTdrlp98gK2JPt6lVTPCrYz1aFLKkU0XHucqtr+P38fBwoB6JfIBYKSnQ5vyLizyucegBq9mP1sa6alnSneo5PrWuMdsPEojTwd1+vDiDubULmrHrP23Wd33VbaMEk7meDip3mMPbVSC7PzUpky2x94mMSUdAN03BhLpaWuSmJL2ljIZfzuqyqS/d733QmLxuR3C/uFe73gV4kshHeBCiC9SyULOdPSqhPcPM6nqWYj29SvSoX4lAGLiEgmNisU1n3WGMk62Fu/8OWnpCobNXoeffzC6Olrqut/kYJO57lv+QQRFPKPJkFezuiNj4tF3Ud167waE4OqQMUbnd4jx9qMgQqJiMtQfn5iMjrYWqWnp6hHJWcX2trhrlimSYV8BBxu2HfPNsM/B+t2/z3dloK9qkKakZmyopKSmYaif9awxAz1VmeQsy+i+U72vd96bGOoz+dvWVOr5I8cu+1G3/MdNTyuEEHnBs0A+OtQpQ/NxS6hSPD/tapWmfZ3SAMTEJxEa/RxXO8sMZV6+JH0XaQoFIxbsxO9JGLraWuq63+Rglbnu2wGhBEfF4j3m1azuyNh49HVVz9N7T8Nxtc/4THrZGZ0btx+HEhr9PEP98Ukp6GhpZnyeWptmW0d2cdcsWTDDvgL5rNh26sZby35shrl4Nr5LmZfP2tzW+3rnvYmhHv/r3oiqA2Zx/NoD6pRxf59LEkII8R/n6WZPh1olaTFpBVWKudC2hifta6kGfsfGJxH6LA5XuzfaBzk8y7OTnq5gxOK93AkMf9WGeRaX6TwHq8x1334SRnDUc5pNeDWIPjI2Ab0XHcv3nkbgamf+Roy5bxf4PQknNDouQ/1ZtmGsTLKrIuu4A8Kp4emWYZ9bPgu2n7791rIfm4GeDgApqekZ9qekpanbIW8yVJfJ2D5JTk3DQFfnvep9nphM75lb+GtgS1xszd/9QoQQb+XhZE67CvlpM8eHygVtaF3ehbYV8gMQm5hCWGwS+a0zZm142dH7LtLSFYze6MvdkFh0tTSJSUwlLDYp03n5zA0y7fMLjiU4JjHDrO7I+GT0XwymuR/6HBdro/eO0S8ohrCYpAz1xyenoa2lSlv+cpayQxax5Rh3UAzV3W0z7HOzMWbn5cAM+xzM3/37fFcGuqrvKiUt4/03OU2BoW7W3ZWvymRcpzs5TaE+9q71xiWl0mf5WeZ8XQkXK6NMx8W/g3SACyG+SBoaGiwc3YMhHRuyev8ZflyynTkbDnF03qgM57ylkky70hXKDNttRs2hsIs9u6cPQU9XhxNX7tB06IxM5bQ0M9eloaFBB69KjH0t5frrlIAGb4nxLYq7OmSbPjyn2HJz7E1vfl1a2aTBedOHpEB/OYghNComw/7QqFjqlCuWVRGszIwxMzIgLIsyL+t7n3oB3BxVs/geBWWdfl0IIb40GhoazB/SjsFtarLmsC8/rTrA3O0nOfR7v9fOeUsdWTzL3nyetp+0DHcnG3b+3As9HW1OXn9Is7GLM5XL+nkK7WuXZvRrKddfp1QqP/h5WszFLtv04a9iy36m8gc9T3Oo93UfkgLd1V41iCHsjUEHYdFx1C5dKMsylqaGmBrpE/bGS/7QZ3HqAQfvUy+A24tyj0KiyDoxnhBCCJEzDQ0N/hrUUp3W++e1R5m38yyHpvZ87Zy31/GmN9sw7X5ag7ujFTv+11XVhrnhT/OJKzKVy7INgwbtanoyumPtLD9fqczFe4u3KOZik2368Fex5XEb5gNSoL8cxPDmoIPQ6Hhql8p6vXRLE0NMDfUylQl7bVDEu9SblJLG17+up0/TSniVk4F7QnwqGhoa/Nm1EgO8VGm9p+66wfwjd9k3rN6rc3JRx5vevK93/usEhexM2DKwNno6Wpy6F0br2T6ZymV9X4e25fMzoqlHpmPwcX6bFnUwyzZ9eE6x5ebYmzLd13P5TPqQFOgvBzG8OeggPDaJmkWzua8b6WFqoENYbGKmMvlfdF6/S71Jqel0W3SKb2sXpv6L2fbi30k6wIUQX6Sg8GiehEVTqUQBfurThsEdvPDsMg4f39u0qFkWeyszHgWFZygTGJZxHScTA33iEpPV26lp6YQ/e/UCNzImDr/HwQzp1BA93axHB+ekuKsD956EZth3/PId7gaE0KtFLYrmz8eGQxlT7DwJy36tqUz1F3Bk+e6TKBQKNF/88AyPjmXqit38MbhTruvJKu4HT8My7HsYFE4xN8f3qu9DUqBbmBhRqpAzl+8E0LJWOQBi4xO5HxjK/75tlW25mmWK4Hs3QL2tVCq5ei+AYV0a57re8OhYlu0+yfCvmqjrCQp/BoDje2QTEEKIz1FQZAyB4TFULOrC5B6NGdSqBqV7/8axq/dpXtUDe0sTHoVkXMs5MCLj4CFjA13iE18tH5Galk7Eay8TI2Pj8XsSxuC2tdSpst8clZ2TYi523Hua8Zl+4toD7gaG07NJZYo427Lx2NWMMb64X+dGcVd7Vhy4kPF5+iyOaeuO8Fuf5rmuJ6u4HwRFZtj3MDiSYi5Z/6h/mw9JgW5ubEDJAg5cvv+UFtU8AYhNSOJ+UAQTuzfKtlxNzwJcvv9qVoBSqeTagyCGtqud63rDn8Wx/MAFhrV/9QIkOFKVTcfxPbIJCCGEEABBkbEERsRQsYgzP3bzYmDLqpTpOxufa49oXqUY9hbGPArJ+Ps6MCJjNjdjA13ik95ow8S8Wic0MjaBO4HhfN+q2nu2YWy4/0Zb4MT1R9x7Gsk3jcpTxNmajcczZoZ5s52Vc/22rDzki0KhRPNFh0d4TDy/bTjOtN6Nc11PVnE/DM7Y/nsUHE0xF9tsSuTsQ1KgmxsbUNLNniv3g2hRRZWFLTYhmQfBkUz6ul625Wp6unHlwauBg0qlkmsPQxjapvo71ZuWruCbPzbhXamYOn38ttO3qF3SDXPj7GdgCiHeXfCzBAKjE6jgZs3ElqXoV68IFSbt5vidMLxLO2Fnqo9/RMZBK0+jEzJsG+tpE5/8KvtDarqCiLhX734j45K5ExLLQK+i6L2YtZ36xqzinBR1MON+WMbBvyfvhnE/NJbuNQpR2N6ULRcDMhx/M8acFHMwY9Xphxnv68+TmL73Fr+0L/uW0jnH/TA8Y9yPwuMoku/9fo99SAp0c0NdPJ3MuRIQTbMyqqU1nyem8iDsOeNalMy2XHV3W64EvHquK5VKrgVG8/2L1PC5rTctXUHvv8/QtJSjOn38jstPqFnETp0aX/x7yIJrQogv0oOnYUxcuIW0dNWPT+WLwXwFHVU/yPq0qsO6A2eJjFE1jLYf9yX6eXyGOjwKOhH9PIF7AaqRyBsOnUPztZFulqZG2Fmacuyyn3rfzpO5W08UYFiXxuw9fZXrD1QvjuMTk/nfkm0UfrG2dg/vGoRGx7L9uCq1eGRMHJuPXsh1/d+1rE1iUgrL95x68R0o+XXlHqzNs09vltu495y6qv5ebj58yuELtxjWOfsX5J/S8K+asObAGSJeDE6Yv+Uoxd0caVjp1WhL76Ez+HHJNvX2kE4NOXjuhnoAwvpD59HS1KTza2ugv63ehOQU/tx0mMchqtne6ekKpq3aTUEnW2qXLfpJr1kIIf4pD4MimbRs32vPU9UDtUA+KwC+9a7KuiOXiYpV/WjfcfoGz55n/AHv4ZaP6LhE7gWqOqk3Hrui/rEOqlk4dhYmHL/6QL1v55mbuY7xh/Z12HfOTz37OT4phckrD1D4xdra3RtVJCz6OTtOq14gR8UmsOVE7tbOBOjdtDIJyamsOHBR/R38tv4I1mYflgbth/Z12Hv+lvp7uekfwpHL99Sdx/+0Ye1rs+7IZSJetI0W7jxNMRc7GpQrrD6n+djFTF75an3U79vW4tDFu9x/qnoWbvC5gpamBp3qls11vYnJqczbfpKAUNXLivR0Bb+tP0pBBytqlcqYIl4IIYTIrYfBUfxv5WHS0lUdFy/bMAXzqbKMfNukIuuPXSPqRbtlx5nbPIvLOHPMw9VO1YZ58ZzbePz6G20YA+zMjTl+/ZF6365zfuTW0DY12Hfhjnr2c3xSCpPXHMHdUdXO6u5VjrBncew4o0otHvU8ga0nc99G6t24gqoNc8hX/R38vvE4VmYflsJ2aJsa7D1/R/293HocypGrDxjy2rri/6Qf2tZgnc819eCEhXvOUczFVr32OUCLiSv4afUR9fbgVtU46HtPPQDh5d9tx9fWQH9bvQqFkn5ztmGop0M5d0cu3w/i8v0g1vtcJTbhVYeaEOLjeBgex0/br712X1ftd7NRzeztVcudDecfExWv+u9v15VAohNSMtRRwtGc6IQU7oeqBjxtvvA447teI11sTfU5cefVxJ/dVzOmAc/J9w2KceB6kHr2c3xyGlN2Xlevrd21ekHCniex64qqzqj4ZLb55pwV83Xf1CxEYmo6q848BFT39en7bmFlnPUykO8S977rQerv5VbQM3z8QtWdx/+0IQ2Ls+G8PxHPVbO1Fx27R1EHM+oXfzUbu/VsH6bsvK7eHuhVlMO3gnnwYgDC5osBaGlqZFgD/W31KhRKBq46j6GuFmVdrbgSEMWVgCg2nPcnNjH1U1+2yAMaypctRCGE+Az5+vpSrlw5js8fQ+nCLur9oVExTFq0jVv+QRgb6BGfmEyv5rX4qnFVANLS0xk9bxO7T12hkJMdNcsU4cjFW1QvVZgxr6Uk/23VHlbvP4NrPhta1y7HtJW70dPV4duWtfmuVR3OXL/P8DnrUSgUuNhb4WxnxYKtR6leyp0VE79l2Jz1HD5/EzNjA4q5ObJxSv8M8a87eI5Z6w9gpK+HpqYGPZvXVK9VDrDn1FXGLdiCmbEB+azM8CzkzPQ1+6hQ3I0NU/pjbKCf4/dzyc+fMX9tIiExGUMDPap6FmJcj+ZoaWkyfc0+/t55nJi4RDwLOTFn2NfqAQLdJy/OMe41B87y54aD6OnqkJqWztDODWlduzygSmm++aiqk6Cwi12u4vxQS3YcZ9muE+jp6mBuYsisoV1wfG398noDfqVyiYL83Letet/OE5f5ffVe9PV00dTQYPrgThRzc8h1vUkpqfy58RB7z1xDX1eHuMRk3Bxs+LF3K1zsrbKM88rdAGr2mcKlS5coW/b9R2YKIcTH9PJZ6jOjP6UKZszmERr9nB9X7Of241CMDHRJSErlm8aV6FJflR0jLT2dsUv2sPvsLQo5WlPDsyBHr9yjuocbo15LSf77hqOsPeyLq70lLat58tuGI+jraNOraRW+9a7CmVv+jFywE4VSiYutBc625izcdYZqHm4sG9mJEQt3ctj3HmZG+hRzsWP9hIxpMNcfvczsLScwMlDd079pXIn2tUurj+85d5uJy/ZiZqSPvaUpnm75mLHpGOWLOLNufFeMDXJ+YeB7L5CxS3aTkJSKob4OVYq7MraLF1pamszYdIyl+84RE5+Ep1s+Zg9oTQEH1XPgm9/W5hj3uiO+/LntJPq62qSkpjOkXS1aVVeNPh+9aJe6o97dySZXcX6ov/eeY/n+C+jpamNubMCMfi0zzMJuMPwvKhXLz+RvXmU/2XXmJn9s9EFfVxtNDQ1+79si0yz2nOpNSkll7rZT7L9wGz1dbeITU3DNZ8mkbo1wySajytUHT6k9ZK48T4UQ4j/uZRvm6G+9KVUgY4rS0Og4flx9GL+AcIz0dUhITqVHw/J0qVsaUM3wGrfsALvP+1EonxU1PF05evUh1UrkZ1SH2up6/th0grVHr5LfzpyWVUvw+6bjqjZM4wr0blKRs7cDGLlkHwqFEhdbM5xtzFm45zzVSuRn6Q9tGblkH4cv33/RFrBl3ZiM2dg2HLvG7G2nX7VhGpanXU1P9fG9F+4wccUhTI30yGdhgoebPTO3nKR8YSfWju6EsUHOs9F87z9l3LIDr9owxVwY07EOWlqazNxykqUHLr1ow9gzq28zCrwYINBz+uYc417nc5W5O86ip6tFapqC71tVo1W1EoAqpfnWU6qBh+6O1rmK80Mt3X+R5Qd9VW0NI32m9/HG8bU1yBuMXkKlos5M7tZAvW/XOT+mbz6hbsP81rtJplnsOdV74NJdOk5Zl2U8V/4alOVa4FcfBlNn+CJpwwiRg5f39oMjvCjp/Or3QFhsIj/vuI5fcAyGetokJKfTvUZBOlV2A1T39Qlbr7DvWhAFbIypXtiWY36hVHW3YXiTV5NkZuy/xfpz/uS3MqJ5WWdm7LuFnrYW39QsRM9a7px7EM6YTZdRKJQ4WxnhZGnIkmP3qVrIhkXfVGHMpsscvR2CmYEORfKZsbpPjQzxb7rwmD8P+WGkp7q3dKteUL1WOcC+60/5cds1TA10sDczwMPRnNkHb1PO1YpVfapjpKeT4/dz+XEUE7dcISElDUNdbSoVtGaUtwdamprMPnCbFaceEJOYioejOdM7l8fNRjUR6tulZ3KMe8M5f/46cgc9HS1S0xUM8ipGi7KqmdLjNl9m2yVVR727nUmu4vxQy0/eZ+Wph+jpaGFuoMtvHcvh8Np66U3+OEzFAlZMalVavW/P1UBm7r+Nvo4WmpoaTG1flqJvzGLPqd6DN4L4asHJLOO5MKlplmuBX3sSjde0g3Jf/0JJB7gQ4rOWXQf4+2gy5I9MHeBCfEzSAS6E+Bzl1AH+PrzHLMrUAS7ExyQd4EIIISDnDvD30WzC8kwd4EJ8TNIBLsTbZdcB/j5azTqaqQNciI9JOsC/bJICXQghhBBCCCGEEEIIIYQQQgghxL+Cdl4HIIQQ/4R2Y+Zy/X4gASGRqpQ5PVvkdUhCCCHEF6fDj8u5/iiYgLBo0hQKxn3V4O2FhBBCCCHyWMcpa7n+KISAsGekpysY27luXockhBDiA3SZf4IbT5/xJCqeNIWS0d6eby8khPhPkQ5wIcR/wptrXH8JVu87zer9Z7I81rN5LdrUKf8PRySEEOK/7s01rr8Eaw5fYs1h3yyPfdO4Eq1rlPyHIxJCCCHEP+3NNa6/BGuOXGGtz9Usj/VoWJ7WL9bkFkKI/6I317j+Eqw7+4j15/yzPNatekFalvuw5T+FEBlJB7gQQnymujSqSpdGVfM6DCGEEOKL1rleOTrXK5fXYQghhBBCvJPOdUvTuW7pvA5DCCHER9KxshsdK7vldRhC/GdIB7gQQvzLtB41hws3H9K3TV3GdG+W1+FkKyAkkgkLtxDxLI7I2Dh0tLT4qU8bapYpkuncMX9t4s+Nh7i+5ify21vnQbRCCCH+a9pOWsaFOwH0bVaVUZ3r53U4WUpNS2fW5mPsv3AHDQ1QKmFS90ZU88j4UmXpvnMs23cBfV1tzIwNmNm/JQ5WZnkUtRBCCCE+pXY/rebCnUD6eFdiVIfaeR1OtlJS05m63oc5209zae5AXGzN1cfS0hWsOXqFTcevo6GhQWxCMiVc7Zj4VT1szIzyLmghhPhMdJp3nIv+kXxb253hTTzyOpxsPYmK58dt14iMSyYqPhkdLU0mtixF9cK2eR2a+A/QzOsAhBBCfFxbpg7Es5BTXoeRo8iYOLx/mEF37xrsmj6E04vGUcDRhtv+QZnOvXb/CWsPnM2DKIUQQvyXbZrUHU+3fHkdRo4mrzzA5uPX2PS/Hhz4rS8jO9Wj/f+W8Sg4Un3OztM3mLrmMJsmdWf/tD6UL+xExx9XoFAo8jByIYQQQnwqG8d1wdPNPq/DyFFA2DO8JywjJPo56QplpuOhz+IYtWQfv3zTiO3/68q+KT14GhFD99825kG0Qgjx+VnbryYejuZ5HUaOIuOSaT3bh6+rFWDLoNocHdUAV2tj7gTH5HVo4j9COsCFEEL842au20/Zoq7ULlsUAA0NDSZ/14ZGVTwznKdQKPhh1lpGdW2aF2EKIYQQny2FQsGSPWf5yqs8Zkb6ANQvVxgXWwsW7DqtPu+PjT50rFsWG3NjAL5rVo3bAaEcuHQ3T+IWQgghhIhLSmH+oFZ0rlM6y+O62lp0qVuaEq52AOjpaNO9QTnO3A4gOOr5PxipEEKI9zX3kB9l8ltSs4jqXq6hocHEliXx8nDI48jEf4WkQBdCiA+w4fB55m46jLGBHonJqdQqU4SJvVoCcMzXj2mr9qBUKklOTcPd2Y6p/dtjbmwIQLsxczl7/T7dmlYnLjGJq/eeoFAqWTquF1fvBbBq32nuB4YxsmtTOjeoDEDfX5dz8PxNapQujJmxAX7+wQSGRdG7RW0Gd2yQY6wz1u5n05ELmBoZADD+m+ZULekOwKOgcIbOWktiUgoKpZJ8VmaM69Ecd5dPM2p8+/HLDGrvlWGfs51lpvMWbPOhqqc7xd2kYSSEEP9mG49d4a/tpzAy0CUpOY0aJQswoWtDAI5ffcBvG46gVEJKahqFHG34pVdTzIxVz7MOPy7n7O3HdG1QgbjEZK4/DEKhULJkeEeuPghi9eFLPHgawYiOdelYtywA/Wdt4tClu1T3LICpkT53AsIIjHhGryaVGdS6Zo6xztx8jM3Hr2FqqAfA2K+8qFpClXLcPySKYX9tJyE5VfU8tTRhTBcv3J1sPvp3FhmbQEJyqrpj+yV7S1NO3/AH4FlcIlcfBDGkbS31cTMjfQo5WHPsyn0aVSj60eMSQggh/ks2nbjOXzvPYaSvQ2JKGjU9XRnfpR4Ax68/4veNx1GC6p2AgzVTvmmoHrjWccpazt4OoGv9ssQlpXDtUTBKBSwe2pqrD0NYc+QKD4IjGd6uJh1rlwKg/5/bOXz5PtVLuKraME/CCYyIoWejCgxqWTXHWGdtPcXmkzdetWE61aFK8fwA+IdEM2zRHhJftGHsLUwY06k27o6fZgmy4i6q1LdBkbFZHrcxM+K33k0y7NPXUb3GTk1L/yQxCSFEdjZffMzCo3cx1NMmKTWd6u62jG1eEoATd0KZvv8WKCE5TUEhWxMmtymNmaEuAF3mn+D8wwi+qlqAuKRUrgc+Q6lUsqB7Fa4FRrPu7CMehMXxQ6PitK/kCsDgVec5fCuEau42mBrocDcklqfRCfSoUYj+9XP+DTfn4G22XnqCqYEOAKOaelC5kOr3qH9EHKM2+JKYkoZCCfZm+oxs6kEhO9NP8r3tuhpIv7oZl7p0spRlLMQ/RzrAhRDiPQVHPOO7X5bhu+J/uDnYEBYVS/kek9Qd4AfO3cC7emn6tq6LUqlk0B+rGDNvE/NGdAVg45T+NBnyBztOXObI3JFYm5vQ8+clfPvLUvq2qcvmqQM5dOEmXSctpHmN0hgb6PPXyG70+XUZGw9fYN+sYVQo5sbdgBCqf/szhfPb07hKySxjXbz9GKv2nebw3JGYGxty5vp9WgyfxcVlk3Cxt2LY7HWUK+rKuB7NUSqVfPvLMs7fephtB/j0Nfs4dOFmjt/P0vG9sLPMvL5ofGIy/sERKJRKev68hICQSAz1denhXYOWtcqpzwsKj2blnlMc+nMkl/we5eavRAghxBcoODKWvjM2cXH+UFztLQmLfk6l/jPVHeAHL93Bu3IJvmtWFaVSyfdztzJ2yR7+HNwGgPUTuuE9ZhG7ztzk4G99sDYzpvcf6/luxkb6NKvKxondOex7l+6/rsG7SgmMDfSYO7gt/WZuYtPxq+z55VvKF3HmbmAYtb7/k8LOttl2DC/Zc5Y1hy5x8Le+mBkbcOaWP60n/M25eUNwsbVg+IIdlC3sxJguXiiVSvrM2MiFOwHZdoDP2HSMw745z8ReMrwjdhYmmfZbmxlhpK9LYPizDPuDImOIjI0HVB3yALZvlLe1MMY/NCrHzxVCCCFEzoKjntN39jYuzBmAq70FYc/iqDx4nroD/KDvPZpWKsp3TSup2jDzdzF22QH+7N8cgHVjOtFswnJ2nfPjwC/fYG1mxLczt9Bn9ja+a1qJDeM6c/jyfXr8vgnvSsUwNtBl7oAW9J+znU0nr7N7cnfKF3bibmAEtYcvpIiTNQ3LF84y1r/3XWTNkSscmNoTMyN9zt4OoPWPqzg3qx/OtuaMWLyXsoUcGNOpDkqlUnVddwKz7QCfueUkh688yPH7WTykDXYWxjme8y4u3AmkTEGHDGuFCyHEpxYSk8jAlec5Pb4xrtbGhMUmUePnfeoO8MO3gmlS0pHetQujVCr5Ye1FJmy9wqwuFQFY3acGrWYdZffVQPYMrYe1iT59l5+l/8pz9K7lzpq+NTl6O4SeS07TtLQjRno6zPqqIoNWnmfLpQC2f1+Hcq5W3AuJpf60g7jbm9IgmxnUy07cZ91Zf/b8UA8zQ13OPQin/dzjnBzXCGdLI8Zs9KVMfktGNvVAqVQyYOV5Lj6KzLYDfPaB2xy9HZLj97OgR2VsTQ0y7Y9PTuNxRDwKpZK+y8/yJDIeA11tulYrQLMyzu/yVyDEe5MOcCGEeE9h0bGkKxQEhkXh5mCDraUpG37upz4+oF19LExVo9o0NDRoUassfX9dnqmemmWKYG2uejFd2aMgO09coUXNMgBU8ShEXGIyD5+GU7LQq8ZB+WJuVCimmm1W2MUer4olmL/laLYd4NPX7qNPqzrq2edVPAvh5mDD8j2nGP9Nc4IjnmFvZYZCoUBTU5MJPVugqamR7bUP7dyIoZ0bvcvXpRYTlwDAT3/vYMfv31O6sAsXbz+iyZDppCuUtKlTHoDhc9YzsVdLDPV13+tzhBBCfBnCn8Wpnqfhz3C1t8TWwoS147qqj/drUR0LE9UPag0NDZpX9aD/rM2Z6qnhWQBrM9VL1krF8rPrzE2aVy0BQOXirsQlpvAoOBLPAq9eFpQr7ET5Iqrna2EnW+qXLczCnaez7QCfsekY3zWrqp59XqW4K672lqw8cJGxX3kRHBmLvYWJ+nk67usGaGpk/zwd0rZWhtnZ70JDQ4PeTauwbP952tcujZONORt8rvAoJAqjF8/OhOQUQJU29HW6OtokJqe+1+cKIYQQQkXVhlESGBGDq70FtubGrBndUX28X7MqWBi/1oapXIwBf+7IVE91D1eszVTvDioVdWbXOT+aVy4GQOViLsQlpfAoJCrDut7l3B0pX9gJgMJO1tQvU4gFe85n2wE+Y+tJvm1SUT37vHIxF1ztLFhx+DJjO9UhOOo5dhbGKBRKNDU1GNe5Lho5vBP4vnV1vm9d/V2+rg8SGZvAysOXWT2qwz/2mUIIARAem0S6QsnT6ARcrY2xNdVn5Xev7n996hbB/MVsbw0NDZqVcWbQqvOZ6qnmbou1ieoeXNHNmj1Xn+JdWnUfr1jAmvjkNB6Fx+HhZKEuUza/JeVcrQBwtzelbjF7Fh+7l20H+OyDfvSqVUg9+7xSQRvyWxux+vRDRnl7EvwsEVvTRPW9frS3R46/Vwc1KMagBsXe5etSi01U/RaduusGmwbWpqSzBb7+kbSa7UO6QknLci7vVa8Q70I6wIUQ4j2VLORMR69KeP8wk6qehWhfvyId6ldSH09LVzBs9jr8/IPR1dEiJi6R0KjM6b1enyVtqKeLlZkx2lpaABgZqFKTxcYnZijzZrpwNwcbNh+9mGWczxOSCAyLZtW+M+w7e/21+NKJS0gCYEz3Znz7y1KOXrpNmzrl6e5dg4KOtu/ydeSapqYmAA0re1K6sKqxU76YG97VSzN302Ha1CnPnlNX0dbSpGFlz5yqEkII8S/gWSAfHeqUofm4JVQpnp92tUrT/rX1INMUCkYs2InfkzB0tbWIiU8iNDrz2o+vz5I21NPB0tTo1fP0RYdw7Ivn3kvONhYZtl3zWbHlxLUs43yekMzTiBjWHLrE/gt+6v3p6QriEpMBGN25Pn1mbODolfu0rlGS7g0rUsDB6h2+jXcz7isvrEwN6f3HegDKF3bmm8YV2X/hDqBqV4Aq7errUlLTZICZEEII8YE83ezpUKskLSatoEoxF9rW8KR9rVeD0tPTFYxYvJc7geGv2jDP4jLV8/osaQNdHSxNDNHWUv1uzr4NY55h29XOgi2nss7S9jwxmacRsaw5cpUDl+5liC/uRQfFqA616Dt7Gz7XHtK6Wgm6eZWjQL7My5TlhbR0Bb2mb2Z0x9rqTn8hhPineDiZ065CftrM8aFyQRtal3ehbYX86uNp6QpGb/TlbkgsulqaxCSmEhablKkeO1N99Z8NdLWwNNJ9da/XU3XTxSZmHKTsZGmYYdvVxphtlwKyjDMuKZWn0QmsO+vPwRvB6v3p6UriklW/B4c38WDAynMcvxNKy7LOfF2tAG42mbONfQwvO9a9PBwo6az63V3W1YrGJR1Z4HNXOsDFP0I6wIUQ4j1paGiwcHQPhnRsyOr9Z/hxyXbmbDjE0XmjMDM2oM2oORR2sWf39CHo6epw4sodmg6dkakerTdGVb+5DaBUKt+6nd2AvZfnDmrvxVeNs14TzLt6aW6vn8rmoxdYvucU8zYfYeXEb2lSrVSW539ICnRrc2P0dLRxfOMHu4udJccuqzoU9p+7weOQSJoM+QOAmDjVAIAek5egr6vNhin9MTbQRwghxJdPQ0OD+UPaMbhNTdYc9uWnVQeYu/0kh37vh5mRPu0nLcPdyYadP/dCT0ebk9cf0mzs4kz15O55+sY2b+5Qkt3495fnDmhVgy71y2V5TtPKxbnx9yi2nLjKygMXmb/zNMtGdqZJpaxHzX9ICnQALS1NBrSqwYBWNdT7+s3cRPH8dgC42qteXIe9MWAgLDqO2qUL5fi5QgghhMiZhoYGfw1qyaCWVVl79Co/rz3KvJ1nOTS1J6ZG+rT7aQ3ujlbs+F9XVRvmhj/NJ67IVM97tWHefCdATu8EVP8/oEUVutQtneU5TSsV5cbC79ly6iYrD11m/u5zLBvWjsYVimR5/j+VAl2hUNJvzjaqlshP9wZZt7+EEOJT0tDQ4M+ulRjgVZT15/yZuusG84/cZd+wepga6NL5rxMUsjNhy8Da6OlocepeGK1n+2SqJ1f3+rdtK5VoZHOzf3mv71uvCJ0qu2V5TpNSjlwp7M22S09YfeYhC33usbhnFRp5OmZ5/oekQLcy1kNPW5N85hmPOVkacuJuaI51CvGxSAe4EEK8p6DwaJ6ERVOpRAF+6tOGwR288OwyDh/f21QvVRi/x8EM6dQQPV0dAFJS0z/aZweGRWfY9g+OwN056/W6TY0McLa15N6TjI2LzUcvoq2lSYuaZdl27BIta5Xjm2Y1+aZZTbr9byHLdp/MtgP8Q1Kga2tpUbFEAUKiYjLsD4t+jpOt6kX9rKFdMhx7OXhg6fie5LfPeg0yIYQQX6agyBgCw2OoWNSFyT0aM6hVDUr3/o1jV+9TzcMNvydhDG5bS53GOyXtIz5P31g/2z8kisLZrNdtaqiPk405956GZ9i/5cQ1tLU0aV7Vg+2nrtOimic9GlVS/e/XNaw4cCHbDvAPSYEOcONRMI7WZliYqGYGKJVKztzyZ1Qn1dqj5sYGlCzgwOX7T2lRTZVVJTYhiftBEUzs/n7PcSGEEEKoBEXGEhgRQ8UizvzYzYuBLatSpu9sfK49olqJ/NwJDOf7VtU+TRsmIuPv6cehz7Jdr9vUUA8nazPuP43IsH/LqZtoa2rSvEoxtp+5RYsqxeneoBzdG5Sjx++bWHHQN9sO8H8qBfrwRXvIZ2nC8HY1AfC5+hBXOwtc7S3eUlIIIT6O4GcJBEYnUMHNmoktS9GvXhEqTNrN8TthVClkw52QWAZ6FUVPR5V9LDVN8dE++2lUQobtxxHxFLLLenC0iYEOThaG3A/NOPh526UAtLU08S7txM7LT2hWxpmu1QvStXpBev99mlWnH2bbAf4hKdC1tTQp52ZFWEzG2fDhz5NwsjDMppQQH5dmXgcghBBfqgdPw5i4cAtp6aofsS9H2hV0tMXS1Ag7S1P1jGaAnScvf7TPvvEgkEt+/gDcCwjh4Pmb9GldJ9vzh33VmDUHzvAkNAqAiGfPmbpiF8VdVWvGTFi4FT//IPX56Qol7s52Hy3eN33fsSG7T17FP1j1AzwgJJJdJ6/Qp1X21yCEEOLf6WFQJJOW7Xvteap6oBbIZ4WliSF2FiYcv/pqhtHOMzlnIHkXNx+F4HsvEIB7geEc8r3Lt82yzpYC8EO72qw7cpknLzrOI2LimLbuMMVcVM/MScv34xfwasBZukKZ7cvoj2H5/gss2Hlavb1w1xlszIxoW/PVALZh7VUxR8SoUq4u3HmaYi52NCiX9RqhQgghhMidh8FR/G/lYdLSVZ0dL9swBfNZYmligJ25McevP1Kfv+ucX5b1vI8b/qH43n8KwL2nERy6fJ/vmlTM9vyhbaqzzucageGqjvOImHimbThGMRfVwL//rTyM35NXg/zSFQoKOX66ZVxy438rD3H3aQQtq5bg8v0gLt8PYtvpW5k6/4UQ4lN6GB7HT9uvvXavV+13szHG0kgXW1N9TtwJU5+/+2rgR/vsm0HPuPxY9S73fmgsR26H0KuWe7bnD25YjA3n/QmMigcg4nkSf+y7RdF8pgBM3nGNO8Gv7qHpCiWFbD9NCnSAgfWLsvf6Ux5HqH6LPomKZ+/VpzlegxAfk8wAF0KI91TYxR43BxvqDZiGsYEe8YnJ/D6wIx4FVWtSrZj4LcPnrKdqr8m42FvhbKf68dhkyB+smPgtw+as5/r9QAJCIjE1MsDW0pTpa/cTGhVLi+GzWDq+F19NnA/AqLkbmdS7FV4VS6jqqFqKzUcvMn7BZh4HRzKmuzeNq6jWGms9ao663rR0BRN6tqCHdw3iE5NpPWo2lqbGaGlqMLVfe9xdVLPG+7SuQ59fl2Oor0tSShpF8+djdHfvT/bdeVUswW+DOvL1xAUY6OuSlq7g575t6NSgcqZzu09ezL0AVbqdHpOXUKGYG78OaP/JYhNCCPHPcneywS2fJQ2Gz8fIQJeEpFSmfdccD7d8ACwd2YmRC3ZSfdBsXGwtcLY1B8B7zCKWjezEiIU7uf4omICwaEwM9bG1MGbmpmOERcfResLfLBneka9/WQ3A6MW7mdi1IfVfdP42rlSMLcevMWHpXh6HRjOqU30aVSgKQNtJy9T1pikUjPuqAd0bVSQ+KYV2k5ZiYWKIlqYmU3p54/5i1vh33lXoP2szBno6JKekUcTZlpEvZmN/CuWKODNjow8HL91FV0eLoi52bJzYHS2tV+Ocm1X1IDwmnjYTl6Gnq425sQFrx3dFU1PGQgshhBAfwt3RGld7CxqO/hsjfR0SklP5tVdjSriqBsYtHdaWkUv2UWPoAlxszdTrdjebsJylP6iOXX8UQkDYM0wM9LCzMGbW1lOEPYuj9Y+rWDKkDV1/2wDAmKX7mfBVPeqXUS1h0qRCEbacvMnEFYd4HPqMUR1q0bC8qn3T7qfV6nrT0xWM7VyX7g3KEZ+UQtufVmNpYqBqw/RoqB6o922Tigz4czsGejokpaRRxNmGke1rf7LvLiU1nTaTVxETr5oZ2HP6ZhytTVk2rB0AtwPCmLVNNciv3siMS9+0reHxyeISQog3uduZ4GptTNPphzHU0yYhOZ1f2pWlhKM5AIu/qcKYTZep88t+nK2M1Ot2t5p1lEUvjt14+ownUfGY6OtgY6rPnIN+hMUm0X7uMRZ0r8w3i1X3u/GbrzCuuSd1i6t+CzfydGTbpQB+3HaVgMh4hjcpQQMP1WSmTvOOq+tNUygZ7e1J12oFSUhOo9NfJ7Aw1EVLU4PJrUtTyE7VAd6rljuDVl3AUFeLpLR0CtubMrxJiU/23dUtno9f2pWl55LTGOhqk6ZQMKlVKdpVdP1knynE6zSUby4aI4QQnxFfX1/KlSvH8fljKF3YJa/D+Sz0+XUZAPNHds/TOERmV+4GULPPFC5dukTZsmXzOhwhhABePUt9ZvSnVMGsU5v9F/WbuQmAed+3zeNIxJuuPnhK7SFz5XkqhBD/cS/bMEd/602pAvnyOpzPRv852wGYO7BFHkci3nT1YTB1hi+SNowQOXh5bz84wouSzrKcQXYGrTwPwOyvs8/uIT69a0+i8Zp2UO7rXygZ9i+EEEIIIYQQQgghhBBCCCGEEOJfQTrAhRDiC9L31+UcOn+LQ+dvMXj66rwORwghhPgi9Z+1icO+dznse5fv527N63CEEEIIIXKl/5/bOXzlPoev3GfI/F15HY4QQohPYPCq8xy5HcKR2yEMW3cxr8MR4osla4ALIcQX5K+R3fI6BCGEEOKLN3ewpD0XQgghxJdn7gBJey6EEP92s76StOdCfAwyA1wIIYQQQgghhBBCCCGEEEIIIcS/gswAF0KIf9DJq3eZsHArF28/4vqan8hvb53XIb0zP/8ghs5aS7pCSVJyCj90bkzzmmVyLBMUHs3gGWuIjo0nOSWV7t416Nm85jvVe+rqPRZsPUpUbDxp6enExifS3bsG37as/SkuUwghxBfg1I2HTFq2n4t3n3B10XBc7CzyOqQcxcQnMWLBDu4/jSAtXUGTSsUY0bEuGhoa2ZZJSU1jwrK9nL31GIBKxfIzuUdjdHUy/5SLT0qhcv+Z5LezYNeU3ur9dwPDmLvtJPefRqBQKklJTWdQ6xq0qOb58S9SCCGEEG916qY/k1Ye5tK9p1z5axAutuZ5HVKOYuOTGLF4L/eDIklLV9C4YhFGtKv5ljZMOhNWHOSc3xMAKhV15seuXujqaGU4b+n+i2w+eQOlEoKjnlOluEumme6HL99n0LydfF2/DKM61P7o1yeEEB/q9L0wJu+4hq9/FBcmNcXFyiivQ8pRbGIKozde5n7oc9IVChp5OvJD4+I53tcBHoY9Z+Cq8+hqabJ1cJ1Mx91HbMXD0TzDvt613WlSykm9vftKILMP3kZfR4ukVAUVC1gxtnlJ9N94PgjxoaQDXAgh/kHVSxVm6fieeHYel9ehvJfnCUm0HDGb8T1b0KVhFe49CaVWnyk42JhTvphblmUUCgXtx86jabVSjO7mTcSz51TuORkbcxN1B3du6t145DzFCzgyqmtTAK4/CKTGdz/jYm9Fo8ryAl8IIf6LqnkUYMnwjpTq/Vteh5IrfWZswNLEkMN/9CMhOYV6P8zDxFCPfi2qZ1tm/NK93HkSxuHf+wHQdtIyJizby9TezTKd+8vqQzxPSMq0/8+tJ0lJS2fHT73Q0tLk2NX7tJ64lM1GBtQuXejjXaAQQgghcqVaCVeWDG1D6b6z8zqUXOkzexsWJgYc+rUXCcmp1B+5GBMDPfo1q5xtmQkrDnLnSTiHpvYEoO1Pq5mw4iBTezZSnzNr6ylO3XzMpvFfoa+rza3HobSctDJDPSMX7yUkOo60dMWnuTghhPgIqrrbsqB7FSpM2p3XoeRK/xXnsTTSZf/w+iSkpNHo90MY62vTp26RbMtsPO/P0hMP0NLMvpPcw9E8y47xl+6HxtJ76RmW9a5GAw8HklPTaTn7KL/uvsHElqU+6JqEeJOkQBdCCJFrq/edIV2hoHMD1Y9cd2c7vCqWYNb6A9mW2X/2BrcePaV/23oAWJub0KlBJf5Ys/ed6u3Tqo66DgDPgk6YGRty/0noR71GIYQQ4lO46R/CvvN+DGqtyoBiqKdLzyaVmbnpGApF1i90o2ITWLrvPP1bVkdLSxMtLU36tqjG33vPE/08IcO51x8G4XsvkMYVi2Wqx8XWXF0HQK1ShSjsZMO2k9c/8lUKIYQQ4t/m1uNQ9l28y6CWVQEw1NOhZ6PyzNp6CoVCmWWZqOcJLD1wkX7NK6vbMP28K7P0wEWinyeqz5m24Rg/dW+Avq5qjlbx/HYsG9YuQ101PN1YPryd+hwhhBAf5lbQMw7cCKJ//aIAGOpq06N6IeYc8sv2vg5gYaTHtsG1cbM2fu/P9guOJV2hpEZhWwD0dLSoUtAGn9sh712nENmRloMQQryDxOQUGn3/B5fvPKZskfz8Pqgj5Yu50WXCfA5fvEXbuhUo5e7Mmv1nMdTXJS4xGe9qpRjWpXG2KWS6T17M4fM36dumLmO6N+Pk1buM/HMD1x8EEntkvvq8kMgYhs9ZR0BIJHq6Org52PBLv3ZYmv5zKXV8fG9TunD+DNdStogrv6/em22Zo763cXe2x9TIIEOZWesPEv08HgsTo1zVW9TVQf1nhULBij2n0NPRplXtch/r8oQQQvzDEpNTaTp6IZfvP6WsuxPTvmtGucLOfD1lFUcu36NNzVKULOjAuiO+GOjpEJ+YQpPKxfmhXe1sn6vf/LaWw7736NusKqM61+fUjYeMWrSbG4+Cid4xRX1eSFQsIxfuJCDsGXo62rjZWzKlV1MsTAw/ybUeu3ofYwNdijjbqveVdXciPCaem/4heBZwyFTm9M1HpKalU9bd6bUyjqSmpXP6pj9NKxcHVM/FH+bvYEa/lszddjJTPcM61M20T19Xh5S09I9xaUIIIcR/TmJyKt7jl3P5QRBlCznwa6/GlHN3pOu0DRy58oDW1T0oVcCetT5XMdTVIT4plSYVizC0TfVs2zA9p2/m8OX79PGuxKgOtTl105/Rf+/nhn8oUZsnqM8LiX7OyMX7eBL+sg1jwc/dG2JhYpBlvR/K59ojjPV1KeJko95XppCDqg3zOBRPN/tMZU7fCiA1TUHZQo4ZyqSmKTh96zFNKxXl4KX7GBvoUdgp49JwVUvkz7DtXanoR74iIYTILDEljZazjnIlIJrSLpb80q4MZV2t6LHoFEf9QmhVzoWSThasP++Pga4WCclpNCrpyPcNimV7X/926RmO3g7h29ruDG/iwel7YYzbfIWbT58ROqe9+rzQmETGbLrMk8h49HS0cLU24sfWpbEw0vsk13rcLxQjPW0K25uq95XOb0nE82RuBT3DwynrpcXql8j3wZ9dqaA11iZ6bL4YwFdVCxAdn8yhW8HYm32aZ5j4b5MOcCGEeAcGerocmjMC97Yj6Na0ujo997SBHRj0xyr+HPY1tfv+wpxhX+NZ0In4xGS8Bk7D0dZSPbv5TcvG96LJkD/U29VLFWZq/3Y0HTojw3ldJs6nesnCrJz0HUqlksHTV9Pz5yVs/XVQlvWGRsXQY/LiHK+nfoUSDO3cKMdzXucfHJEp1bmtpSkx8YlExcZn2RnvHxSBnaVphn0vtx8HR2JhYvRO9U5buYcF245iZWrMtmmDcLT5vNd7FUIIkT0DPR32T+tD0W6/8LVXecoVdgZg6rfN+H7uVmYPbE29H+Yxc0ArPN3yEZ+UQsMR83GyNqNj3bJZ1vn38E54j1mk3q7mUYBfejWl2diMz8Suv6ymqocby0d1QalUMmTuNnr/vp5N/+uRZb2h0c/p+du6HK+nXtnCDGlbK8tj/iFR2JhlHClva26sPpZVB7h/SBTaWppYvfYctDYzRktTE/+QKPW+RbvPUqW4KyVcM7+AzkpsQhJ+AaGM6lTv7ScLIYQQIhMDPR32TelBsV7T+apeGcq5qzp6f+nZiCF/7WJ2v2bUH7mYmX298XC1Jz4phUZjluJobUrH2lmneF0ytA3NJixXb1cr4cqUHg1pPnFFhvO6TttAteL5WT68naoNM383vWduYdP4LlnWGxodR68Zm3O8nnqlC/J966yXZHkcGo2Necbf+uo2TGh0lh3g/qHRL9owrwYWWpsZoaWpgX9oNAC3AkLJZ2nCikO+bDp+neS0dDzy2zGmU50M5YQQ4p9goKvNrqH1KDl2B12qulHW1QqAn9uWYdi6i8zoXIGGvx1ieqfylHAyJz45De/ph3E0N6R9Jdcs61zYowqtZh1Vb1d1t2Vym9K0nu2T4bwei09TpZANS3pWRalUMmzdJfouP8e6fjWzrDcsNpHvlp7N8XrqFLNnUIPM2cEAHkfGY2Oin2Gfralq+3FEfLYd4LkRFptE77/PEBabiI6WJs3KOPF11YJovkibbmOiz+aBtfn27zP8eciPkGeJWJvoMaFFyff+TCGyIx3gQgjxjnS0tWhTpzzrDp6jh3cNADYcOk/7+hUBWDq+F24OqpHRRgZ6NKjkwcFzN7LtAM+NY75+XLj1iA0/9wdAQ0OD7t41qN33Fx4+DaeAo02mMnaWZuyZ8cN7f2ZWEpJS0NXJ+OjQe5GGLDE5BcjcAZ6YnIKerk6GfS/rUJV5t3pHfN2E4V81ZvnukzQeMp0904dSooAjQgghvkw62lq0rlGS9T6X6d5I9SzdeOwK7WqVBmDJ8I642lsCYKSvi1e5Ihy8dDfbDvDcOH71ARfuPGHt+K6A6rnarWEF6v4wj0fBkbjls8pUxs7ChF1Ter/3ZyYmp6L35rPuxXZCcmq2ZXS1tTLt19XWUj9DgyJjWHHgIgd/75PrWP7ceoJapQrRsILMqBJCCCHel462Fq2rebDh+DW6N1BlJtt0/DrtanoCsHhIG1ztVZ0IRvq6eJUtxCHf+9l2gOfG8euPuHj3KWtHdwJetGG8ylJv5GIehUTh9qLN9Do7C2N2/tjtvT8zITkVXe2s2zCJ79OGSVGVeRafxO0nYZy++ZgtE79GqVTSZ/Y2Wkxcgc/v36KtJSt3CiH+WTpamrQs68Km84/pWq0gAJsvPqZ1eVVmigU9KuP6Iv23kZ429Urk4/Ct4Gw7wHPjxJ1QLvlHsvI71SAkDQ0Nvq5WgIa/HcI/PA5Xm8zpxm1NDXJcZ/ttElPS0dPOeI/VfbGdmPphWcJcbYwZ28wTVxtjHoU/p92fx3kUHsekVqUBCIiMp/2fxxjWpARdqxUkOj6ZNWceZeqQF+JjkA5wIYR4D50aVKZu/195FBSOm4MNu05dYefvQwDVzOvR8zYSGROHjrYWASGR5M9n/ZYac3bLPwhNTQ2+nrRAvS8tXYGLnSWhUTFZdoB/qO6TFxMWFQO8miluqK9LSmpahvOSU1TbBnq6WdZjoKdLUkrGH8Uv63hZ5l3rfTkAYM2Bs/y6YjcrJn37rpcnhBDiM9KxbhnqDzuLf0gUrvaW7Dl7i20/9QQgJOo5YxbvJjI2XvVcDYsmv92HZf+4HRCKpqYG3aauUe9LS1fgbGtOSPTzLDvAP5SBng7Jbz7rXmwb6ulkVQQDvazTlKekpaufjyMX7GRC1wYYZvMcftPRy/fYffY2e355/858IYQQQqh0qF2SxaMu4B8Sjau9BbvP+7FtkmqAXciz54xdtp/I2IQXbZhn5Lc1/6DPux0QhqamBt1/36jel5auwNnGjNDouCw7wD+UoZ4OKWlZt2EM3qcN82KAvKaGBqlpCkZ2qKXu7B7dsTYVB87F59pD6pcp9DEvQwghcqVdxfz8/cd9/CPicLU2Zu+1IDYNVGX5CotNYsKWK0TFJaOjpcmTqHicrT5saUq/4Bg0NTToteS0el+aQomzpSGhsYlZdoB/KANdLZLTFBn2pbzYNtDJPHjpXazuU0P9ZzcbE/rVK8y4zVcY2dQDA11tFhy9i6GetnqAgYWRHram+rT78xhHRjWQwU/io5IOcCGEeA/li7nh7mzHuoPnaFK1JO7Odhjq6xIQEkmL4bMY270Zgzo0AGDKsp2cvHo3x/reXCsmXaHM8rydvw9BK5cNgQ9Ngb5sfK9M+1zzWRMaFZthX1hULGZGBtmuRe7qYM0x3ztvxKaqI/+LDobc1JuSmpZplri7sx0Xbj3K7vKEEEJ8IcoVdsbd0Zr1Ry/TuGIxCjnaYKinS0BYNK0n/M3oLvUZ2Er1Q3rqmkOcvJHzvf/NJdjSFYosz9s+uWfun6sfmALd1d6S8Ji4DPvCnsWpj2VXJi1dQWRsvDoNekRMHOkKBa72ljxPSOb6o2DmbD3BnK0nALgXGE5SahreYxZRuXh+xn3VQF3f5XuBjPt7L+sndMXMWNZYE0IIIT5UOXdH3B2sWH/8Go3LF8bdwRpDPR2ehD2jzf9WMapjbQa2qArA1PU+nLr5OMf63lxFNrs2zLaJX79DG+bDUqDnt7Mg/Fl8hn3qNkw2gxJd7SxetGES1OnMI2LiSVco1WUcrVVLozlYvVoyzdnGDICA0GdvuSohhPg0yrpaUcjWhE3nH9PQ04FCtiYY6mrzJEo1c3lE0xL0q6fKpPXbnhucvheec4WZfptm/c5308BaaGnm7r7+oSnQ81sZEf486Y06Vdv5rT+sQ/9NrtbGpCuUBEYl4G5vyqPw5zhbZvwMFysj7oTEcicklhKO5h/188V/m3SACyHEe+roVYlV+84QE5dAJy9VenPfO/4kJqfSuk559XmpWYx6fpOxgT7xicnq7aCIZxmOl3BzRKFQ8uBpGIVdXq2vNWTGGsZ90xwrs8yjAT9FCvRaZYsyfc0+lEqlutP+8t3H1C6XfQrV2mWKsmTHcZ4nJGFiqK8uU6awCxYmRrmut2afKZxdMiFD3SGRMeSzNvuo1yiEECJvtK9ThjWHLhETn0THOmUAVYdtYkoqrap7qs/LajbRm4wN9IhPSlFvB0dmHGRVPL+d6rkaHEFhJ1v1/qHztjHuqwZYZrHu5IemQK9ZsiBjl+zhbmCY+jMv3wvExswo27W7q5ZwQ0dbi8v3nlK/XGFVmftP0dHWomoJV0wM9biyaHiGMv1mbiIgLDpTrH4BofSfvZlVo7/CycYcgGX7zqvTzgshhBDi/bSvVZI1R68QE59Eh9qqNUx9HwSRmJJGq2ol1Ofl7t3AG22YqOcZjhd3sX3RhomisNOrTHM/LNjN2M51sDTJqg3zYSnQa3m6MW7ZAe4GRqg/88r9YFUbJr9dlmWqFndBR1uTyw+C1DO5Lz8IQkdbk6rFVamEqxRzAVQd9C4vZsa/7Gh3sjHNXKkQQvxD2lbMz7qz/sQkptCuouqedeVxFImp6bQo66I+LyUt60FKrzPW0yE++VUWjZBniRmOF3MwR6FU8jAsDnf7V/e+EesvMcrbA0sjvUx1fmgK9BpF7Ji49Sr3QmLVn3k1IAprEz2KO5i/d73H74SSkJJGI89XS1UGx6iu18FCNQDb3syAi/6RGcqFvuh8/9DZ50K8SfIJCCHEe+roVRn/4Aj2n7tBjdKql9JFXPKhoaGBzyU/QLV+9cHzN99al2chJ87feohSqSQtPZ3tx3wzHK9ZpgiVShRg2qo9KF6MAN/qc4m7T0Ky7Pz+VL5qVBUtTU3WHTwHwP3AUA6ev8ngDq9ml63Yc4ry3Sep0543quJJMVcH5m0+DEBkTBxrD5zlh86N36neuIQkFm33UW+fvHqXIxdv81Wjap/seoUQQvxzOtQpg39oNAcu+lHd0w2Aws62aGhocOzqA0C1nuShSzlnVQHwdMvHeb+AV8/V0zcyHK9RsiAVi7rw+3of9XN128nr3HsanmXn98fg4ZaPRhWLMmeLaqZ2YnIqf+89z+A2tdB8MdL/1uMQinefyrUHQQBYmhrSo1FF5m0/SXq6AoVCwfwdp+nRqCIWWbzgzs7jkCja/7icgS1rEBOfyOV7gVy+F8im41c//oUKIYQQ/zEdapXEPzSag5fuUb2EKwCFHa3R0IBj11RZaxKTUzl0+cFb6/JwtePCncAXbRgFO87cznC8hqcbFYs48cfmEyhezCLcdvoW955GZNn5/TGUcLWjUfnCzNmuSs+bmJzK3/svMqhlVTQ1VQPYbwWEUaL3DK49DAbA0sSQHg3KM2/n2RdtGCXzd52jR4PyWJioOkGqFs9PhSJOzNv5ahbjvF1nKexkTa2SBT7JtQghRG60q5Cfx5FxHLoZTDV31eBld3tTNDRUnbwAiSlpHLkd8ta6PJzMufgoUn1f33klMMPx6oVtqeBmxYz9t9T39R2Xn3AvNDbLzu+PoYSjOQ08HJh7WJWxMzEljWUnHzCwflH1ff12UAylxu3k+pPoXNcbFJ3AvEN3SHixrGV0fDKLfO7RrkJ+jF4smdGpsht3Q2I5dDNY/dmLfO5RytlCvb66EB+LhlKpzDrnghBCfAZ8fX0pV64cx+ePoXRhl7cX+Ic1HTqdisULMLFXS/W+v3ceZ8ba/TjaWGBrYYoSJT6X/GhQ2YMe3jWYsHArF28/onwxN37u04YqnoWIjInjm5+WEPHsOW4ONtSrUJzB01dTvZQ7c4Z9TUFHW8KiYhkxdwM3HwZia2GKjYUpvw1oj43FPzsy+vajIIbOWotCqSQpOYUfOjemec0y6uOLtx9j5rr9nF86CUN91XqkT8OjGTx9Nc+eJ5Cckkq3ptXp1aLWO9W74fB5lu8+SXJKGpqaGiSnpvFty9p0aVjln7nwXLhyN4CafaZw6dIlypYtm9fhCCEE8OpZ6jOjP6UKOr69QB5qNnYRFYq4MKFrQ/W+pfvOMXPTcRytzbA1N1Y9V68+oEH5InRvWIFJy/Zz8e4Tyhd25sdvGlOluCuRsfH0/n094THxuNlbUreMO0PmbaOahxuzB7SmgIMVYdHPGbV4F7f8Q7AxN8bG3JhfezfDxvzT/eiOiUtk+IKdPAiKIDUtnaaVizOiY1119pPrD4NoNnYxW378hrLuToBqjc0JS/dy7rYqZWrFoi5M/qYJem8sC3L9YRCjF+9Wp0D3dMvH921qUb9cYbpPXZNpEABANQ+3D5rV/qlcffCU2kPmyvNUCCH+4162YY7+1ptSBfLldTg5aj5hORWKODG+Sz31vmUHLjFz6ykcrUyxMTdCqYRj1x7SoJw73bzKMmnlYS7de0o5d0cmd/OicjEXImMT6D1zCxEx8bjaWVC3dEGGLthNtRL5mdW3GQXyWRL2LI7Rf+/n5uNQbM2MsDE3ZmrPRtiYfdy0ta+LiU9ixOK9PAiKJDVdQZOKRRjRruarNsyjEJpPXMHmCV0oW0jV3kxOTWPiikOc83sCQMUiTvzYzStDGyY8Jp6Ri/fyMDgKfV1tHKxMmdy9AY6vpUWftuEYJ274c/FuILbmxrjYmjO5mxelCzp8sut9X1cfBlNn+CJpwwiRg5f39oMjvCjpnPUyCp+DVrOPUt7VirHNS6r3rTj5gNkH/XC0MMDGRB8lqg7x+iXy8XXVAkzecQ1f/yjKuloyqWUpKhW0ITIumb7LzxLxPBlXayNqF7Nn+LpLVC1kw/TO5XGzMSEsNolxmy9zOygGaxM9bEz0+bltGWxM9D/Z9cUkpDB6oy8PwuJIUyho7OnID42Lq+/rNwKjaT3bh/X9a1Emv2rJrn3Xn7LgyF3uhT4nOS0dD0dz2lbMT5cqqkFLT6MT+POQH5cfR6Gvo0VcUiq1itoxtFEJjPRe3fv3XnvKrAO30dHSJD45jaL5TBnXvCQOFp9mINeHuPYkGq9pB+W+/oWSDnAhxGftc+8AF+J10gEuhPgcfUkd4EKAdIALIYRQ+ZI6wIUA6QAXIje+lA5wIUA6wL90kgJdCCGEEEIIIYQQQgghhBBCCCHEv4J0gAshhBBCCCGEEEIIIYQQQgghhPhXkA5wIYQQQgghhBBCCCGEEEIIIYQQ/wrSAS6EEEIIIYQQQgghhBBCCCGEEOJfQTrAhRBCCCGEEEIIIYQQQgghhBBC/CtIB7gQQgghhBBCCCGEEEIIIYQQQoh/BekAF0IIIYQQQgghhBBCCCGEEEII8a+gndcBCCFEbtwJCM7rEIR4K/l3KoT4nN15Ep7XIQiRK/JvVQghxOvuBkbkdQhC5Ir8WxUi9+6GxOZ1CEK8lfw7/bJJB7gQ4rNmbW2NoaEBvacszetQhMgVQ0MDrK2t8zoMIYRQe/ks/W76hrwORYhck+epEEIIdRtm1ta8DkWIXJM2jBA5s7a2xtDAgP4rzuV1KELkiqGB3Ne/VBpKpVKZ10EIIUROAgICiIj494yiffbsGV27dsXAwIClS5diaGiY1yH9oxQKBSNGjODs2bMsW7aMQoUK5XVIH5W1tTUuLi55HYYQQmTwb3uWfgzBwcE0a9aM0aNH06ZNm3/88xMTE2nUqBFt27Zl4MCB//jnf+7keSqE+D979xnQ1NmGcfwKU0BFxcnGvffeeyu4Nw5ActqqrbO+trXDtraO2tp6wlIEEXEx3HtPcO+tuBVEBNlJ3g+2WOtW4EnC9ftUIAn/WD2E3Od5DhHA1zCvkpaWhs6dO8PNzQ2ff/55nn9/rVaLfv36oWzZsvj111/z/PvrOr6GIXo7HttfpNFo0KtXL9SoUQMzZswQ0qBUKpGRkYGFCxcK+f66jMd1/cUBOBFRHsrMzETnzp1x4sQJREdHw8XFRXSSEMnJyWjWrBmSk5Nx+PBh2NjYiE4iIqJ85uuvv8bvv/+OO3fuoGDBgkIaxo0bh9DQUNy8eRPm5uZCGoiIiEi/LF68GCNGjMClS5eEnVA+f/58jB8/HrGxsShTpoyQBiIiQ7F582Z06tQJe/fuRbNmzYQ0rFy5Ev369cPJkydRo0YNIQ1EOc1IdAARUX4yYcIE7N69GytXrsy3w28AKFiwICIjI/HkyRP069cPmZmZopOIiCgfyczMhL+/P4YNGyZs+A08O8v+4cOHWL16tbAGIiIi0i+yLKNjx45Cd1Nzd3eHmZkZ/P39hTUQERkKWZZRo0YNNG3aVFiDq6srypQpA1mWhTUQ5TQOwImI8oi/vz/mz5+P+fPno3Xr1qJzhHN2dsaqVauwZ88ejB8/XnQOERHlIxEREbh37x4kSRLaUaVKFbRq1YpvMhAREdE7OXbsGA4dOgSlUim0w9raGoMHD4avry+ysrKEthAR6bNbt24hKioKSqUSCoVCWIepqSk8PT0RHByMpKQkYR1EOYkDcCKiPLB371588sknUCqVwn9R1SUtW7bEn3/+iT///BN+fn6ic4iIKJ+QZRnNmzdH9erVRadAkiTs2bMHZ86cEZ1CREREOk6lUsHOzg49evQQnQJJknDr1i2sW7dOdAoRkd7y9/eHhYUFhg4dKjoFXl5eSElJQUhIiOgUohzBa4ATEeWy2NhY1K9fH1WrVsXmzZthZmYmOknnfPrpp/Dz88O2bdvQokUL0TlERGTAzp8/jypVqiAkJASDBw8WnYOMjAw4OjqiX79+mD9/vugcIiIi0lFPnjyBra0tJk2ahOnTp4vOAQA0atQIRYsWxcaNG0WnEBHpnczMTDg7O6NHjx5QqVSicwAAbm5uuHbtGo4fPy50RTpRTuAKcCKiXPT06VO4urrCysoKK1as4PD7NebNm4dmzZqhT58+uHHjhugcIiIyYD4+PihevDj69OkjOgUAYGZmBg8PDwQFBSE5OVl0DhEREemo4OBgpKWlwdPTU3RKNqVSiU2bNuHq1auiU4iI9M6aNWtw584d4Zfm+jelUomTJ0/i4MGDolOIPhoH4EREuUSr1WLkyJG4dOkSIiMjUaJECdFJOsvU1BQrVqyAlZUVXF1d8fTpU9FJRERkgFJSUhAYGIhRo0bB3NxcdE620aNHIykpCaGhoaJTiIiISAdptVrIsgxXV1fY2dmJzsk2YMAAFClSBD4+PqJTiIj0jizLaNKkCWrVqiU6JVvHjh1RtmxZyLIsOoXoo3EATkSUS3788UesWLECwcHBqFmzpugcnVe8eHFERUXh8uXLGDFiBHiFDiIiymlhYWFITEyEt7e36JQXODk5oVu3bpBlmT//iIiI6CV79+7FmTNndGqVIABYWlpixIgRWLhwIdLT00XnEBHpjUuXLmHr1q06d1w3MjKCt7c3li9fjvj4eNE5RB+FA3AiolwQHh6Or7/+Gt999x169eolOkdv1KhRA0uWLMHKlSsxY8YM0TlERGRgZFlGp06dULZsWdEpL5EkCceOHcPhw4dFpxAREZGOkWUZFSpUQNu2bUWnvESpVCIuLg4rV64UnUJEpDdUKhVsbGzQr18/0SkvGTlyJLRaLRYtWiQ6heijKLRcYkBElKNOnTqFJk2aoEuXLggLC4OREc81el8zZszA119/jdWrV/MEAiIiyhFHjhxB/fr1ERkZiZ49e4rOeYlarUb58uXRqlUrBAYGis4hIiIiHfHgwQPY29tj5syZGD9+vOicV2rXrh3S09Oxd+9e0SlERDovNTUVdnZ28PDwwKxZs0TnvNLQoUNx8OBBXLx4ke9tk97i31wiohwUFxcHV1dXlC9fHoGBgXyB8IGmTZuGfv36YdiwYTh58qToHCIiMgCyLMPBwQHdunUTnfJKxsbGGD16NMLCwvDo0SPROURERKQjFi5cCCMjIwwfPlx0ymtJkoR9+/bh1KlTolOIiHTe8uXLkZCQgNGjR4tOeS1JknDlyhVs3bpVdArRB+MKcCKiHJKZmYmOHTvizJkziI6OhpOTk+gkvfb06VM0b94cjx8/RnR0NIoXLy46iYiI9NTjx49ha2uL//3vf/jqq69E57yWPqzwIiIiorzzzw4xLVu2xOLFi0XnvFZmZiacnJzg5uaGBQsWiM4hItJpjRs3RuHChbF582bRKa+l1WpRq1YtlCtXDuHh4aJziD4IlyYSEeWQzz//HPv27cOqVas4/M4BVlZWiIyMxNOnT9G3b19kZmaKTiIiIj0VFBSEzMxMeHp6ik55o5IlS6JPnz5QqVTgecpERES0efNmXL9+HZIkiU55I1NTU3h6eiI4OBhJSUmic4iIdNaxY8dw6NAhnT+uKxQKSJKEqKgo3Lp1S3QO0QfhAJyIKAeoVCosWLAAf/31F1q0aCE6x2A4Ojpi9erV2L9/P8aNGyc6h4iI9JBWq4VKpUKvXr1QunRp0TlvJUkSLl26hO3bt4tOISIiIsFkWUbt2rXRqFEj0Slv5eXlhZSUFISEhIhOISLSWSqVCnZ2dujRo4folLcaOnQoLC0t4efnJzqF6INwAE5E9JF27dqFMWPG4LPPPoOXl5foHIPTvHlzLFiwALIsQ5Zl0TlERKRndu/ejXPnzkGpVIpOeSctWrRAtWrV+DOPiIgon4uNjcW6desgSRIUCoXonLdycHBA9+7duZMNEdFrPHnyBCEhIfDy8oKJiYnonLcqVKgQhgwZAj8/P+7MSXqJA3Aioo9w/fp19O3bFy1btsTcuXNF5xgsT09PjBkzBmPHjsWuXbtE5xARkR6RZRmVKlVCmzZtRKe8E4VCAaVSiYiICNy5c0d0DhEREQni6+sLKysrDB48WHTKO5MkCSdOnMDBgwdFpxAR6Zzg4GCkpaXp/KW5/k2SJNy9exdr1qwRnUL03hRanpJHRPRBkpOT0axZMyQnJ+Pw4cOwsbERnWTQsrKy0LlzZxw/fhzR0dFwcXERnURERDru/v37cHBwwK+//orPP/9cdM47S0xMhK2tLaZMmYJvvvlGdA4RERHlsYyMDDg6OqJv3774888/Ree8M41GgwoVKqBZs2YICgoSnUNEpDO0Wi1q1KiBSpUqYdWqVaJz3kvTpk1hZWWFLVu2iE4hei9cAU5E9AE0Gg3c3d1x9epVREZGcvidB0xMTBAWFoYiRYrA1dUVycnJopOIiEjHBQQEwMTEBMOHDxed8l6sra0xZMgQ+Pr6IisrS3QOERER5bGIiAjcv38fkiSJTnkvRkZG8Pb2xvLlyxEfHy86h4hIZ+zduxdnzpzRu+M68GwV+NatW3Hp0iXRKUTvhQNwIqIP8P333yMiIgIhISGoXr266Jx8w8bGBpGRkbh27Rrc3d2h0WhEJxERkY5Sq9Xw8fHBwIEDUbRoUdE5702SJNy+fRtr164VnUJERER5TJZltGjRAtWqVROd8t5GjhwJrVaLRYsWiU4hItIZsiyjQoUKaNu2reiU99avXz/Y2NhApVKJTiF6LxyAExG9p1WrVuG7777DjBkz0LNnT9E5+U61atWwdOlSRERE4LvvvhOdQ0REOmrDhg2IjY3VyzPsAaBOnTpo2LAhZFkWnUJERER56Ny5c9i5cyeUSqXolA9SokQJ9OvXDyqViietExEBePDgAVauXAlvb28YGenfSK5AgQIYOXIkFi1ahNTUVNE5RO9M//61EREJdOLECbi7u2PAgAGYOnWq6Jx8q0ePHvjxxx/x/fffY8WKFaJziIhIB8myjHr16qFBgwaiUz6YJEnYvHkzrly5IjqFiIiI8oiPjw9KlCiBPn36iE75YJIk4cqVK9i6davoFCIi4RYtWgQjIyOMGDFCdMoH8/b2RkJCApYvXy46heidKbRarVZ0BBGRPnjw4AEaNGiA4sWLY8+ePbC0tBSdlK9ptVoMHjwYUVFR2LdvH2rXri06iYiIdMS1a9dQrlw5+Pn5wcPDQ3TOB0tNTYWdnR08PT3x66+/is4hIiKiXJaSkgI7Ozt4e3tj5syZonM+mFarRa1atVCuXDmEh4eLziEiEkaj0aB8+fJo0aIFFi9eLDrno3Tq1AmJiYk4ePCg6BSid8IV4ERE7yAjIwN9+/ZFWloaIiIiOPzWAQqFAgEBAahcuTJcXV3x4MED0UlERKQj/Pz8ULhwYQwcOFB0ykexsLDAiBEjsHDhQqSlpYnOISIioly2bNkyJCYmwtvbW3TKR1EoFFAqlVizZg1u3bolOoeISJhNmzbh2rVrentprn9TKpU4dOgQjh07JjqF6J1wAE5E9BZarRZjxozBwYMHER4eDgcHB9FJ9DdLS0tEREQgPT0dffr0QUZGhugkIiISLCMjAwEBAXB3d4eVlZXonI+mVCoRHx+PlStXik4hIiKiXCbLMjp37gwXFxfRKR9t6NChKFCgAPz9/UWnEBEJI8syateujUaNGolO+Wg9evSAnZ0dVCqV6BSid8IBOBHRW8iyDF9fX6hUKjRt2lR0Dv2Hg4MDwsPDcfjwYXz22WfglT2IiPK31atX48GDB1AqlaJTckTFihXRrl07yLIsOoWIiIhyUUxMDGJiYgxilSAAFC5cGEOHDoWfnx8yMzNF5xAR5bnY2FisW7cOkiRBoVCIzvloJiYm8PLyQkhICJ48eSI6h+itOAAnInqD7du3Y+zYsRg3bhxGjRolOodeo0mTJlCpVPDz88OCBQtE5xARkUCyLKNVq1aoWrWq6JQcI0kS9u/fj5MnT4pOISIiolwiyzIcHR3RtWtX0Sk5RpIk3LlzB2vWrBGdQkSU53x9fWFlZYXBgweLTskxnp6eSEtLQ3BwsOgUordSaLlUjojola5evYoGDRqgbt262LBhA0xMTEQn0Vt88cUXmD9/PjZv3oy2bduKziEiojx25swZVK9eHcuWLcOAAQNE5+SYzMxMODk5wdXVlSvBiYiIDFBCQgLs7Owwbdo0TJs2TXROjmratCmsrKywZcsW0SlERHkmIyMDjo6O6Nu3L/7880/ROTmqT58+uHDhAk6dOmUQK9vJcHEFOBHRKyQlJaFnz54oVqwYwsLCOPzWE7NmzULbtm3Rr18/XLlyRXQOERHlMZVKhVKlSqFXr16iU3KUqakpPD09sWTJEiQlJYnOISIiohwWFBSEzMxMeHh4iE7JcZIkYevWrbh06ZLoFCKiPBMREYH79+8bzKW5/k2SJJw5cwZ79+4VnUL0RhyAExH9h0ajwbBhwxAbG4uoqCgUK1ZMdBK9IxMTE4SFhaFYsWJwdXXlkICIKB9JTk5GUFAQPDw8YGZmJjonx3l5eSElJQVLliwRnUJEREQ5SKvVQqVSoVevXihdurTonBzXr18/2NjYQKVSiU4hIsozsiyjefPmqF69uuiUHNe2bVtUqFCBu5ORzuMAnIjoP6ZPn46oqCiEhoaiSpUqonPoPRUtWhRRUVG4efMmhg4dCo1GIzqJiIjyQGhoKJKSkjB69GjRKbnCwcEBPXr0gCzL4FWsiIiIDMeuXbtw/vx5SJIkOiVXFChQACNHjsSiRYuQmpoqOoeIKNedP38eO3fuNNjjupGREZRKJVauXIkHDx6IziF6LQ7AiYj+JSwsDDNmzMDPP/+Mbt26ic6hD1SlShWEhoZizZo1+Oabb0TnEBFRLtNqtZBlGd26dYOTk5PonFwjSRJOnTqFAwcOiE4hIiKiHCLLMipXrozWrVuLTsk13t7eSEhIwIoVK0SnEBHlOpVKhRIlSqBPnz6iU3LNiBEjYGRkhEWLFolOIXotDsCJiP529OhRjBw5EoMHD8bkyZNF59BH6tq1K2bOnIkff/wRYWFhonOIiCgXRUdH49ixYwZ5fbV/69ChA8qVK8et5oiIiAzEvXv3sHr1aiiVSigUCtE5uaZ8+fLo0KEDX8MQkcFLSUnB4sWLMWrUKJibm4vOyTXFihXDgAED4OPjw903SWdxAE5EBOD+/ftwc3NDtWrV4O/vb9C/eOYnkyZNwpAhQzBy5EgcPXpUdA4REeUSWZbh5OSEzp07i07JVUZGRvD29sby5csRFxcnOoeIiIg+UkBAAExNTTF8+HDRKblOkiQcPHgQx48fF51CRJRrli1bhsTERHh7e4tOyXWSJOHatWvYtGmT6BSiV1JoeQE5Isrn0tPT0bZtW1y9ehUxMTGws7MTnUQ5KDU1Fa1atcLdu3cRExODUqVKiU4iIqIc9OjRI9jZ2eGbb77B1KlTRefkuri4ONjb2+OHH37ApEmTROcQERHRB1Kr1Shbtizat2+PgIAA0Tm5LisrC87OzujWrRt8fHxE5xAR5YoGDRqgRIkSWL9+veiUXKfValG3bl04ODggKipKdA7RS7gCnIjyNa1Wi08++QQxMTEIDw/n8NsAWVhYIDw8HGq1Gr1790Z6erroJCIiykGLFy+GWq2Gh4eH6JQ8Ubx4cfTr149bzREREem59evXIzY2FpIkiU7JEyYmJvDy8kJISAiePHkiOoeIKMfFxMQgJiYm3xzXFQoFJEnCunXrEBsbKzqH6CUcgBNRvjZ//nwsXLgQvr6+aNy4segcyiV2dnYIDw/HkSNHIEkSuPkJEZFh0Gq1UKlU6NOnD0qWLCk6J89IkoQrV65gy5YtolOIiIjoA8myjPr166N+/fqiU/KMp6cn0tLSEBwcLDqFiCjHybIMBwcHdO3aVXRKnhk8eDCsrKzg6+srOoXoJRyAE1G+tXXrVowfPx4TJkzIF9fbyu8aNWoEX19fLFq0CH/88YfoHCIiygHbt2/HxYsX880Z9v9o0qQJatSoAVmWRacQERHRB7h27Ro2btwIpVIpOiVP2dnZwdXVFbIs88R0IjIoCQkJCA0NxejRo2FsbCw6J88ULFgQ7u7u8Pf3R0ZGhugcohdwAE5E+dLly5fRv39/dOjQAb/88ovoHMoj7u7umDhxIsaPH89Vc0REBkCWZVSrVg0tWrQQnZKn/tlqbs2aNbh586boHCIiInpPPj4+KFy4MAYOHCg6Jc9JkoQzZ85g7969olOIiHJMUFAQMjMz4enpKTolz0mShPv37yMiIkJ0CtELFFqebkdE+cyTJ0/QuHFjqNVqHDp0CEWKFBGdRHlIrVaje/fuOHToEA4dOoQKFSqITiIiog9w584dODo6Yt68efjss89E5+S5pKQk2NraYvz48fjuu+9E5xAREdE7Sk9Ph4ODAwYNGoTff/9ddE6e02g0qFy5Mho0aICQkBDROUREH02r1aJq1aqoUaMGli9fLjpHiJYtW8LExATbt28XnUKUjSvAiShfUavVGDx4MO7cuYOoqCgOv/MhY2NjhIaGomTJknB1dUViYqLoJCIi+gABAQEwNzfHsGHDRKcIUahQIQwdOhR+fn7IzMwUnUNERETvaPXq1Xj48GG+2/78H0ZGRlAqlVi5ciUePnwoOoeI6KPt2rUL58+fz3eX5vo3SZKwY8cOnD9/XnQKUTYOwIkoX/nqq6+wYcMGhIaGolKlSqJzSJAiRYogMjISd+7cwZAhQ6BWq0UnERHRe8jKyoKvry8GDx4Ma2tr0TnCSJKEu3fvIioqSnQKERERvSNZltG6dWtUqVJFdIoww4cPh0KhwMKFC0WnEBF9NFmWUblyZbRu3Vp0ijC9e/dGiRIloFKpRKcQZeMAnIjyjdDQUMycORO//vorunTpIjqHBKtUqRLCwsKwYcMGfPXVV6JziIjoPaxbtw63bt3K12fYA0DNmjXRtGlTyLIsOoWIiIjewenTp7Fnz558/xrGxsYGAwYMgI+PDzQajegcIqIPdu/ePaxevRpKpRIKhUJ0jjDm5uYYNWoUFi9ejJSUFNE5RAA4ACeifCImJgajRo2Cu7s7xo8fLzqHdESnTp0wa9YszJw5E0uXLhWdQ0RE70iWZTRs2BB169YVnSKcJEnYtm0bLl68KDqFiIiI3kKlUqFUqVJwc3MTnSKcJEm4du0aNm3aJDqFiOiDBQQEwNTUFMOHDxedIpy3tzcSExOxbNky0SlEAACFVqvVio4gIspNd+/eRYMGDWBvb4+dO3eiQIECopNIh2i1WowYMQLLly/H7t270aBBA9FJRET0BleuXEH58uWxaNEijBgxQnSOcGlpabC3t4e7uzvmzp0rOoeIiIheIzk5Gba2thg7dixmzJghOkc4rVaLunXrwsHBgZdzISK9pFarUbZsWbRv3x4BAQGic3RC165d8fDhQ0RHR4tOIeIKcCIybGlpaejduze0Wi1Wr17N4Te9RKFQwMfHB7Vq1YKbmxvu3r0rOomIiN7Ax8cHRYsWxYABA0Sn6IQCBQpg5MiRCAwMRGpqqugcIiIieo2lS5ciOTkZXl5eolN0gkKhgCRJWLduHWJjY0XnEBG9t/Xr1yM2NhZKpVJ0is6QJAkxMTGIiYkRnULEATgRGS6tVgtJknDs2DFERETA1tZWdBLpqAIFCiA8PBwA0KtXL6SlpQkuIiKiV0lLS8PChQsxYsQIWFhYiM7RGd7e3khISEBYWJjoFCIiInoFrVYLWZbRrVs3ODk5ic7RGYMHD4aVlRV8fX1FpxARvTdZllGvXj3uJvkvXbt2haOjI2RZFp1CxAE4ERmuefPmITAwEAEBAXwhQm9VpkwZRERE4MSJE1AqleAVQoiIdM/KlSsRHx/PM+z/o3z58ujYsSNUKpXoFCIiInqFw4cP4/jx45AkSXSKTilYsCDc3d3h7++PjIwM0TlERO/s2rVr2LhxI4/r/2FsbIzRo0cjNDQUCQkJonMon+MAnIgM0qZNmzBx4kRMnjwZQ4YMEZ1DeqJBgwYICAjA4sWL8dtvv4nOISKi/1CpVGjXrh0qVqwoOkXnSJKEQ4cO4dixY6JTiIiI6D9kWYazszM6deokOkXnKJVK3L9/H5GRkaJTiIjema+vLwoXLoyBAweKTtE5Hh4eyMzMRHBwsOgUyucUWi5xIyIDc/HiRTRs2BDNmjVDVFQUjI2NRSeRnvnyyy8xa9YsrFu3Dp07dxadQ0REAE6dOoWaNWtixYoV6Nu3r+gcnZOVlQUXFxd06dKF24gSERHpkEePHsHOzg7Tp0/Hl19+KTpHJ7Vo0QKmpqbYvn276BQiordKT0+Hg4MDBg0ahN9//110jk7q378/Tp8+jTNnzkChUIjOoXyKK8CJyKAkJiaiZ8+eKFOmDJYuXcrhN32QH3/8EV26dMHAgQNx4cIF0TlERIRnK6fKlCkDV1dX0Sk6ycTEBF5eXggJCUFiYqLoHCIiIvpbYGAg1Go1Ro0aJTpFZ0mShB07duD8+fOiU4iI3mr16tV4+PAhL831BpIk4dy5c9i1a5foFMrHuAKciAyGWq1Gjx49cODAARw+fBgVKlQQnUR67MmTJ2jcuDE0Gg0OHjyIIkWKiE4iIsq3kpKSYGtriy+++ALff/+96ByddefOHTg6OmLevHn47LPPROcQERHlexqNBpUrV0b9+vWxdOlS0Tk665/VlIMHD8a8efNE5xARvVHLli1hbGyMHTt2iE7RWVqtFlWrVkXNmjURFhYmOofyKa4AJyKDMXXqVGzatAlhYWEcftNHK1y4MCIjI3H//n0MGjQIarVadBIRUb4VEhKClJQUeHl5iU7Raba2tnBzc4Msy+B5zkREROJt374dly5dgiRJolN0mrm5OUaNGoXFixcjJSVFdA4R0WudPn0ae/bs4XH9LRQKBZRKJVavXo179+6JzqF8igNwIjIIwcHBmDVrFubMmYOOHTuKziEDUaFCBSxfvhybN2/mtdqIiATRarWQZRk9evSAg4OD6BydJ0kSzp49iz179ohOISIiyvdkWUa1atXQvHlz0Sk6z9vbG4mJiVi2bJnoFCKi11KpVChVqhTc3NxEp+i84cOHw9TUFAEBAaJTKJ/iAJyI9N7hw4fh5eWFkSNHYty4caJzyMB06NABc+fOxezZsxEUFCQ6h4go3zlw4ABOnjzJM+zfUZs2bVChQgXIsiw6hYiIKF+7ffs2IiMjoVQqoVAoROfoPBcXF3Tu3JmvYYhIZyUnJyMoKAgeHh4wMzMTnaPzihQpgkGDBsHX15c7a5IQHIATkV67c+cO3NzcULduXciyzF8qKVeMHTsWo0aNwujRo3Ho0CHROURE+YosyyhXrhw6dOggOkUvGBkZQalUYtWqVbh//77oHCIionzL398f5ubmGDZsmOgUvSFJEmJiYhATEyM6hYjoJUuXLkVycjJGjx4tOkVvSJKE2NhYrF+/XnQK5UMKLS8OR0R6KjU1Fa1atcLdu3cRHR2N0qVLi04iA5aeno62bdvi2rVriI6Ohp2dnegkIiKDFxcXB3t7e/zwww+YNGmS6By98ejRI9jZ2WH69Om8hAcREZEAWVlZcHZ2RteuXeHr6ys6R2+o1WqULVsWHTp0gL+/v+gcIqJsWq0W9erVg52dHdasWSM6R680aNAAJUuWxLp160SnUD7DFeBEpJe0Wi1Gjx6NU6dOISIigsNvynXm5uZYvXo1jI2N0atXL6SmpopOIiIyeIGBgdBqtRg5cqToFL1SrFgxDBgwAD4+PtxqjoiISIC1a9fi9u3bvITLezI2Nsbo0aOxdOlSPH78WHQOEVG2w4cP49ixYzyufwBJkrBhwwZcu3ZNdArlMxyAE5Femj17NpYsWYJFixahXr16onMonyhVqhQiIyNx+vRpeHl5gZuoEBHlHo1GA5VKhX79+qF48eKic/SOJEm4fv06Nm3aJDqFiIgo35FlGY0aNUKdOnVEp+gdDw8PZGZmIigoSHQKEVE2WZbh7OyMTp06iU7ROwMGDEDhwoW5IwrlOQ7AiUjvrF+/HlOmTMH//vc/DBw4UHQO5TN169bFokWLEBISgtmzZ4vOISIyWFu3bsWVK1d4hv0HatiwIerUqQNZlkWnEBER5SuXL1/G5s2b+RrmA5UuXRq9evWCLMs86ZyIdMKjR48QFhYGb29vGBsbi87RO1ZWVhg+fDgCAgKQnp4uOofyEQ7AiUivnD9/HoMGDUL37t3xww8/iM6hfGrAgAGYNm0apkyZgvXr14vOISIySLIso0aNGmjatKnoFL2kUCggSRLWrVuHGzduiM4hIiLKN3x8fFC0aFH0799fdIrekiQJ58+fx65du0SnEBEhMDAQarUao0aNEp2ityRJwsOHD7F69WrRKZSPKLQ8lY6I9ERCQgIaNWoEU1NTHDhwAIULFxadRPmYRqNBr169sHPnThw8eBBVqlQRnUREZDBu3boFJycn/Pnnn1w99RGSk5NhZ2eHzz77DD/++KPoHCIiIoOXlpYGe3t7DB8+HHPmzBGdo7e0Wi2qVq2KmjVrIiwsTHQOEeVjGo0GlStXRv369bF06VLROXqtTZs2UKvV2L17t+gUyie4ApyI9EJWVhYGDhyIuLg4REVFcfhNwhkZGSE4OBgODg7o2bMnEhISRCcRERkMPz8/WFpaYujQoaJT9FrBggUxbNgw+Pv7IyMjQ3QOERGRwVuxYgXi4+Ph7e0tOkWvKRQKKJVKrF69Gvfu3ROdQ0T52Pbt23Hp0iUolUrRKXpPkiTs2bMHp0+fFp1C+QQH4ESkF6ZMmYJt27ZhxYoVKFeunOgcIgBA4cKFERkZiUePHmHAgAHIysoSnUREpPcyMzPh5+eHoUOHolChQqJz9J4kSXjw4AHCw8NFpxARERk8lUqFdu3aoWLFiqJT9N7w4cNhamqKgIAA0SlElI/Jsoxq1aqhRYsWolP0npubG0qVKgWVSiU6hfIJDsCJSOcFBgZi7ty5mDdvHtq1ayc6h+gF5cqVw4oVK7B9+3ZMnjxZdA4Rkd5bs2YN7t69y63Pc8g/b9bwTQYiIqLcdfLkSezfv5+vYXJIkSJFMGjQIPj6+kKtVovOIaJ86M6dO4iMjIRSqYRCoRCdo/fMzMzg6emJoKAgJCcni86hfIADcCLSaQcOHIC3tzc8PT3x6aefis4heqW2bdti3rx5+O2337Bo0SLROUREek2WZTRt2hQ1a9YUnWIwJEnCzp07ce7cOdEpREREBkuWZZQpUwY9e/YUnWIwJElCbGwsNmzYIDqFiPIhf39/mJubY9iwYaJTDMbo0aPx9OlThIaGik6hfECh1Wq1oiOIiF7l1q1bqF+/PipUqIBt27bBzMxMdBLRa2m1Wnh7e2Px4sXYsWMHmjZtKjqJiEjvXLp0CRUrVkRQUBDfZMhB6enpcHBwwKBBg/D777+LziEiIjI4SUlJsLW1xfjx4/Hdd9+JzjEo9evXR6lSpbBu3TrRKUSUj2RlZcHZ2Rldu3aFr6+v6ByD0qNHD9y+fRtHjhzhynrKVVwBTkQ6KTU1FW5ubjAzM8OqVas4/Cadp1Ao8Oeff6Jhw4bo3bs3bt68KTqJiEjvqFQq2NjYoF+/fqJTDIq5uTk8PDywePFiPH36VHQOERGRwVmyZAlSU1Ph5eUlOsXgSJKEDRs24Nq1a6JTiCgfWbt2LW7fvs3LWuQCSZJw7NgxHD58WHQKGTgOwIlI52i1Wnh4eODcuXOIiopCyZIlRScRvZN/TtgwNzdHr169kJKSIjqJiEhvpKamYtGiRRg5ciQKFCggOsfgeHt748mTJ1i2bJnoFCIiIoOi1WohyzJ69OgBe3t70TkGZ+DAgShcuDBXYBJRnpJlGY0aNUKdOnVEpxicTp06wdnZGbIsi04hA8cBOBHpnF9++QWhoaEIDAxE7dq1RecQvZeSJUsiMjIS586dg4eHB3ilESKid7N8+XIkJCTA29tbdIpBcnZ2RpcuXfgmAxERUQ7bv38/Tp06xVWCucTKygrDhw9HQEAA0tPTRecQUT5w+fJlbN68mcf1XGJsbAxvb2+EhYXh0aNHonPIgHEATkQ6Zc2aNfjf//6Hr7/+mtufkt6qXbs2AgMDsWzZMsycOVN0DhGRXpBlGR07dkT58uVFpxgsSZJw5MgRREdHi04hIiIyGLIso1y5cmjfvr3oFIOlVCrx8OFDrF69WnQKEeUDPj4+KFq0KPr37y86xWCNGjUKarUagYGBolPIgCm0XJpGRDri7NmzaNy4Mdq1a4dVq1bByIjn6JB+mz59On744QdERkaiR48eonOIiHTWsWPHULduXYSHh8PNzU10jsFSq9UoW7Ys2rVrh4ULF4rOISIi0ntxcXGws7PDjBkzMGnSJNE5Bq1NmzZQq9XYvXu36BQiMmBpaWmwt7eHu7s75s6dKzrHoA0ePBgxMTE4f/485wCUK/i3ioh0wqNHj9CzZ084OzsjODiYP/TIIEyfPh1ubm4YPHgwzpw5IzqHiEhnqVQq2Nvbo3v37qJTDJqxsTFGjx6NZcuWISEhQXQOERGR3lu0aBEUCgVGjhwpOsXgSZKEPXv24PTp06JTiMiArVixAvHx8VAqlaJTDJ4kSbh06RJ27NghOoUMFFeAE5FwWVlZ6Ny5M44fP47o6Gi4uLiITiLKMcnJyWjatCmePn2Kw4cPw8bGRnQSEZFOefLkCWxtbTF58mR88803onMM3r179+Dg4IDZs2dj3LhxonOIiIj0lkajQcWKFdGkSRMEBweLzjF4GRkZcHR0RL9+/TB//nzROURkoJo1awYLCwts3bpVdIrB02q1qFGjBipXroyVK1eKziEDxCWWRCTchAkTsGvXLqxcuZLDbzI4BQsWRGRkJBITE9G/f39kZmaKTiIi0inBwcFIS0uDh4eH6JR8oXTp0ujduzdUKhV4LjQREdGH27JlC65cuQJJkkSn5AtmZmbw9PREUFAQkpOTRecQkQE6efIk9u/fz+N6HlEoFFAqlYiIiMCdO3dE55AB4gCciIQKCAjAH3/8gT/++AOtW7cWnUOUK1xcXLBy5Urs3r0bEyZMEJ1DRKQztFotZFmGq6sr7OzsROfkG5Ik4fz589i5c6foFCIiIr0lyzJq1qyJJk2aiE7JN7y8vJCUlITQ0FDRKURkgGRZRpkyZdCzZ0/RKfnGsGHDYG5uDn9/f9EpZIA4ACciYfbt2wdJkqBUKnlmHRm81q1bY/78+Zg/fz5f1BER/W3v3r04c+YMXwfksVatWqFKlSqQZVl0ChERkV66efMm1qxZA0mSoFAoROfkG05OTujWrRtkWeZONkSUo5KSkrBkyRJ4eXnB1NRUdE6+YW1tjSFDhsDX1xdZWVmic8jAcABORELExsaid+/eaNKkCX7//XfROUR54p+TPT755BPs3btXdA4RkXCyLKNChQpo27at6JR85Z+t5sLDw3H37l3ROURERHrHz88PlpaWGDJkiOiUfEeSJBw7dgyHDx8WnUJEBmTJkiVITU2Fl5eX6JR8R5Ik3L59G2vXrhWdQgZGoeXpckSUx1JSUtC8eXM8evQI0dHRKFGihOgkojyTmZmJDh064OzZs4iJiYGjo6PoJCIiIR48eAB7e3vMnDkT48ePF52T7zx+/Bh2dnaYOnUqvvrqK9E5REREeiMzMxNOTk5wdXXlbioCqNVqlC9fHq1atUJgYKDoHCIyAFqtFrVq1UK5cuUQHh4uOidfaty4MaytrbFp0ybRKWRAuAKciPKUVqvFyJEjcfHiRURFRXH4TfmOqakpVqxYASsrK7i6uuLp06eik4iIhFi4cCGMjY0xYsQI0Sn5UpEiRTBo0CD4+vpCrVaLziEiItIbUVFRuHv3Li/hIoixsTG8vb0RFhaGR48eic4hIgOwf/9+nDp1isd1gSRJwubNm3H58mXRKWRAOAAnojz1008/Yfny5QgKCkLNmjVF5xAJUaJECURGRuLSpUsYOXIkr11GRPmORqOBj48PBgwYgGLFionOybeUSiVu3ryJdevWiU4hIiLSG7Iso2nTpnxPQ6BRo0ZBrVZzBTgR5QhZllGuXDm0b99edEq+1b9/fxQtWhS+vr6iU8iAcABORHkmMjISX331Fb799lv07t1bdA6RUDVr1kRwcDBWrFiBH3/8UXQOEVGe2rRpE65fvw6lUik6JV+rX78+6tevD5VKJTqFiIhIL1y8eBHbtm3jKkHBSpYsib59+0KlUkGj0YjOISI9FhcXhxUrVsDb2xtGRhyXiWJhYYERI0Zg4cKFSEtLE51DBoL/ookoT5w+fRpDhw5Fnz598PXXX4vOIdIJvXr1wnfffYevv/6a1xgionxFlmXUrl0bjRo1Ep2S70mShI0bN+LatWuiU4iIiHSeSqWCjY0N+vbtKzol35MkCZcuXcKOHTtEpxCRHlu0aBEUCgVGjhwpOiXfUyqViI+Px8qVK0WnkIFQaLnvKhHlsvj4eDRo0ACFCxfGvn37YGVlJTqJSGdoNBoMGDAAGzZswIEDB1CjRg3RSUREuSo2NhYuLi6QZRmjR48WnZPvpaSkwM7ODt7e3pg5c6boHCIiIp2VmpoKOzs7eHp64tdffxWdk+9ptVrUqFEDlStX5rCEiD6IRqNBxYoV0aRJEwQHB4vOIQDt27dHamoq9u3bJzqFDABXgBNRrsrMzES/fv2QnJyMyMhIDr+J/sPIyAiBgYEoX748XF1dERcXJzqJiChX+fr6wsrKCoMHDxadQgAsLS0xfPhwBAQEID09XXQOERGRzgoLC0NCQgK8vb1FpxAAhUIBpVKJiIgI3LlzR3QOEemhLVu24MqVK7yshQ6RJAn79+/HyZMnRaeQAeAAnIhy1RdffIE9e/Zg1apVcHJyEp1DpJOsrKwQGRmJ5ORk9OvXD5mZmaKTiIhyRUZGBvz9/eHu7o6CBQuKzqG/KZVKxMXFYdWqVaJTiIiIdJYsy+jYsSPKlSsnOoX+NmzYMJibm8Pf3190ChHpIVmWUbNmTTRp0kR0Cv2tZ8+eKFOmDGRZFp1CBoADcCLKNb6+vvjrr7/w119/oUWLFqJziHSak5MTVq1ahX379uHzzz8XnUNElCsiIiJw//59nmGvYypXrow2bdrwTQYiIqLXOHr0KA4fPszXMDrG2toaQ4YMga+vL7KyskTnEJEeuXnzJtasWQNJkqBQKETn0N9MTU3h5eWFJUuWICkpSXQO6TkOwIkoV+zevRuffvopPv30U17fk+gdtWjRAn/99RcWLFgAlUolOoeIKMfJsowWLVqgWrVqolPoPyRJwt69e3Hq1CnRKURERDpHpVLB3t4e3bt3F51C/yFJEm7fvo21a9eKTiEiPeLn5wdLS0sMGTJEdAr9h5eXF1JTU7FkyRLRKaTnFFqtVis6gogMy40bN1C/fn3UqFEDmzZtgqmpqegkIr0yZswYqFQqbN26Fa1atRKdQ0SUI86fP48qVapg6dKlGDRokOgc+o+MjAw4OjqiT58++Ouvv0TnEBER6YzExETY2tpiypQp+Oabb0Tn0Cs0btwY1tbW2LRpk+gUItIDmZmZcHJygqurK3fB0lG9evXClStXcOLECa7Qpw/GFeBElKOSk5PRs2dPFCpUCCtWrODwm+gDzJ07Fy1btkTfvn1x/fp10TlERDlCpVKhRIkS6N27t+gUegUzMzN4enoiODgYycnJonOIiIh0RnBwMNLT0+Hp6Sk6hV5DkiRs3rwZly9fFp1CRHogMjISd+/e5WUtdJhSqcSpU6dw4MAB0SmkxzgAJ6Ico9FoMGLECFy9ehVRUVGwsbERnUSkl0xNTbF8+XIULlwYrq6uHEQQkd5LSUnB4sWLMWrUKJibm4vOodcYPXo0nj59iqVLl4pOISIi0glarRayLMPNzQ22traic+g1+vfvj6JFi8LHx0d0ChHpAZVKhaZNm6JmzZqiU+g1OnTogHLlynGFPn0UDsCJKMfMmDEDq1atwpIlS1C9enXROUR6zcbGBpGRkbh69Src3d2h0WhEJxERfbBly5YhMTER3t7eolPoDRwdHdGtWzfIsgxeKYuIiAjYs2cPzp49y1WCOs7CwgIjR47EokWLkJaWJjqHiHTYxYsXsW3bNh7XdZyRkRG8vb2xfPlyxMXFic4hPcUBOBHliNWrV2P69OmYMWMGXF1dRecQGYTq1asjJCQEERER+P7770XnEBF9MFmW0blzZ7i4uIhOobeQJAnHjx/HoUOHRKcQEREJJ8syKlasiLZt24pOobfw9vZGfHw8Vq5cKTqFiHSYSqWCjY0N+vbtKzqF3mLkyJFQKBRYtGiR6BTSUwotT+0noo904sQJNG3aFN27d8eyZcugUChEJxEZlJ9++gnTpk3DypUr0adPH9E5RETvJSYmBg0aNEBUVBR69OghOofeQqPRoHz58mjRogUWL14sOoeIiEiY+/fvw8HBATNnzsT48eNF59A7aN++PVJTU7Fv3z7RKUSkg1JTU2FnZwdPT0/8+uuvonPoHQwbNgwHDhzAxYsXYWTE9bz0fvg3hog+ysOHD+Hq6opKlSph4cKFHH4T5YKpU6diwIABcHd3x4kTJ0TnEBG9F1mW4ejoiK5du4pOoXfwz1ZzYWFhiI+PF51DREQkzMKFC2FsbIwRI0aITqF3JEkS9u/fj5MnT4pOISIdFBYWhoSEBF6aS49IkoQrV65gy5YtolNID3EFOBF9sIyMDHTo0AHnz59HdHQ0HB0dRScRGayUlBS0aNECcXFxiI6ORsmSJUUnERG9VUJCAuzs7DBt2jRMmzZNdA69o4cPH8Le3h4//fQTJkyYIDqHiIgoz6nVapQvXx6tWrVCYGCg6Bx6R5mZmXBycoKrqytkWRadQ0Q6plGjRihatCg2btwoOoXekVarRe3ateHi4oKIiAjROaRnuAKciD7YuHHjcODAAaxevZrDb6JcZmlpiYiICKSlpaFv377IyMgQnURE9FZBQUHIzMyEh4eH6BR6DyVKlEDfvn2hUqmg0WhE5xAREeW5TZs24fr165AkSXQKvQdTU1N4eXlhyZIlSEpKEp1DRDrk6NGjOHz4MI/rekahUECSJKxZswY3b94UnUN6hgNwIvogsixDpVJBlmU0a9ZMdA5RvuDg4IDw8HAcPHgQY8aMATdxISJdptVqoVKp0KtXL5QuXVp0Dr0npVKJy5cvY9u2baJTiIiI8pwsy6hTpw4aNmwoOoXek5eXF1JTU7FkyRLRKUSkQ2RZhr29Pbp16yY6hd7TkCFDYGlpCX9/f9EppGc4ACei97Zz506MHTsWY8eO5YouojzWtGlTqFQq+Pr6cks3ItJpu3btwvnz53mGvZ5q3rw5qlWrBpVKJTqFiIgoT924cQPr1q2DJElQKBSic+g92dvbo0ePHpBlmSeNExEAIDExEUuXLoWXlxdMTExE59B7KlSoEIYOHQo/Pz9kZmaKziE9wgE4Eb2Xa9euoW/fvmjdujXmzJkjOocoXxo1ahTGjRuHsWPHYvv27aJziIheSZZlVK5cGa1btxadQh/gn63mIiMjcfv2bdE5REREecbX1xeFChXC4MGDRafQB5IkCadOncL+/ftFpxCRDggODkZ6ejo8PT1Fp9AHkiQJd+/eRVRUlOgU0iMKLU+FI6J3lJSUhKZNmyI1NRWHDx9GsWLFRCcR5VtZWVno0qULjh49iujoaJQtW1Z0EhFRtnv37sHBwQGzZ8/GuHHjROfQB3ry5AlsbW0xadIkTJ8+XXQOERFRrsvIyICDgwP69++P+fPni86hD6TRaFCxYkU0adIEwcHBonOISCCtVovq1aujSpUqWLlypegc+gjNmjWDhYUFtm7dKjqF9ARXgBPRO9FoNHB3d8eNGzcQFRXF4TeRYCYmJggLC0OxYsXg6uqKpKQk0UlERNkCAgJgamqK4cOHi06hj1C4cGEMGTIEfn5+yMrKEp1DRESU68LDw/HgwQMolUrRKfQRjIyM4O3tjeXLlyMuLk50DhEJtGfPHpw9e5aX5jIAkiRh27ZtuHjxougU0hMcgBPRO/n2228RGRmJkJAQVK1aVXQOEQEoVqwYoqKicOPGDQwbNgwajUZ0EhER1Go1fH19MWjQIBQpUkR0Dn0kSZJw+/ZtrFmzRnQKERFRrlOpVGjRogWqVasmOoU+0siRI6FQKLBo0SLRKUQkkCzLqFixItq2bSs6hT5S3759YWNjA5VKJTqF9AQH4ET0VitWrMAPP/yAn376CT169BCdQ0T/UqVKFYSGhiIqKorb0xKRTli/fj1iY2N5hr2BqF27Nho3bgxZlkWnEBER5apz585h586dfA1jIIoXL45+/frBx8eHJ4sT5VP379/HqlWroFQqoVAoROfQRypQoABGjRqFwMBApKamis4hPcABOBG90bFjxzB8+HAMGjQIU6ZMEZ1DRK/QrVs3/Pzzz5gxYwbCwsJE5xBRPifLMurXr4/69euLTqEcIkkStmzZgkuXLolOISIiyjUqlQolSpRA7969RadQDpEkCVeuXMGWLVtEpxCRAAsXLoSxsTEvzWVAvL29kZCQwPc/6Z0otFqtVnQEEemm+/fvo0GDBihZsiT27NkDCwsL0UlE9BparRZDhw5FeHg49u7di7p164pOIqJ86Nq1ayhXrhz8/Pzg4eEhOodySGpqKuzs7DBq1CjMnj1bdA4REVGOe/r0Kezs7CBJEn7++WfROZRDtFotateuDRcXF0RERIjOIaI8pFarUa5cObRu3RqBgYGicygHderUCYmJiTh48KDoFNJxXAFORK+UkZGBPn36ICMjAxERERx+E+k4hUIBf39/VKtWDW5ubrh//77oJCLKh3x9fVG4cGEMHDhQdArlIAsLC4wcORKLFi3iVnNERGSQli1bhidPnsDb21t0CuUghUIBSZKwZs0a3Lx5U3QOEeWhjRs34saNG7yshQGSJAmHDh3CsWPHRKeQjuMAnIheotVq8emnnyI6Ohrh4eGwt7cXnURE78DCwgIRERHIzMxE7969kZ6eLjqJiPKR9PR0BAQEYPjw4bCyshKdQzlMqVTi0aNHWLlypegUIiKiHCfLMrp06QJnZ2fRKZTDhgwZAktLS/j5+YlOIaI8pFKpUKdOHTRs2FB0CuWw7t27w97eHrIsi04hHccBOBG95K+//oK/vz98fX3RpEkT0TlE9B7s7OwQHh6OmJgYfPLJJ+CVTogor6xevRoPHz6EUqkUnUK5oEKFCmjfvj3fZCAiIoMTHR2NI0eOcJWggSpUqBCGDRsGf39/ZGZmis4hojxw48YNrFu3DpIkQaFQiM6hHGZiYgIvLy+EhIQgMTFRdA7pMA7AiegF27Ztw+eff44vvvgCw4cPF51DRB+gcePG8PX1xcKFCzF//nzROUSUT8iyjNatW6NKlSqiUyiXSJKEAwcO4MSJE6JTiIiIcowsy3B0dESXLl1Ep1AuUSqVuHv3LqKiokSnEFEe8PX1RaFChTB48GDRKZRLPD09kZ6ejuDgYNEppMMUWi4NI6K/XblyBQ0aNECDBg2wbt06mJiYiE4ioo8wceJEzJs3Dxs3bkT79u1F5xCRATt9+jRq1KiBsLAw9O/fX3QO5ZKsrCw4OTmhR48eUKlUonOIiIg+WkJCAuzs7DBt2jRMmzZNdA7lombNmsHCwgJbt24VnUJEuSgjIwMODg7o378/F4UYuL59++LcuXM4ffo0V/rTK3EFOBEBAJ48eYKePXuiePHiWLZsGYffRAbgl19+Qfv27dG/f39cvnxZdA4RGTCVSoVSpUrBzc1NdArlon+2mluyZAmePHkiOoeIiOijBQUFITMzEx4eHqJTKJdJkoRt27bh4sWLolOIKBeFh4fjwYMHvDRXPiBJEs6ePYs9e/aITiEdxRXgRASNRgM3Nzfs2rULhw4dQuXKlUUnEVEOefz4MRo1agRjY2McPHgQhQsXFp1ERAYmOTkZtra2GDt2LGbMmCE6h3LZ7du34eTkhD/++AOffPKJ6BwiIqIPptVqUbVqVdSsWRNhYWGicyiXpaWlwd7eHu7u7pg7d67oHCLKJa1bt4ZWq8WuXbtEp1Au02q1qFy5MurWrYvQ0FDROaSDuAKciPD1119j7dq1CA0N5fCbyMAUKVIEUVFRuHPnDoYMGQK1Wi06iYgMTGhoKJKTk+Hl5SU6hfKAnZ0devbsCVmWwXOpiYhIn+3cuRPnz5+HJEmiUygPFChQAKNGjUJgYCBSU1NF5xBRLjh79ix27drF43o+oVAo4O3tjVWrVuHBgweic0gHcQBOlM8tW7YMP/30E3755Rd07dpVdA4R5YJKlSohNDQU69evx9dffy06h4gMiFarhSzL6NatG5ycnETnUB5RKpU4ffo09u3bJzqFiIjog8myjCpVqqBVq1aiUyiPeHt7IyEhgSv+iQyUSqVCiRIl0KtXL9EplEdGjBgBY2NjLFy4UHQK6SAOwInysSNHjmDUqFEYOnQoJk6cKDqHiHJRly5d8Ouvv+Lnn3/mtkBElGMOHz6MY8eO8Qz7fKZ9+/YoV64cVCqV6BQiIqIPcvfuXYSHh0OpVEKhUIjOoTxSrlw5dOrUCbIsi04hohz29OlTBAUFwcPDA+bm5qJzKI8UK1YMAwYMgI+PD3e9pJdwAE6UT927dw9ubm6oUaMG/Pz8+AsfUT4wfvx4DBs2DKNGjUJMTIzoHCIyALIsw9nZGZ06dRKdQnnIyMgISqUSK1aswMOHD0XnEBERvbeAgACYmprC3d1ddArlMUmScPjwYRw9elR0ChHloGXLluHJkyfw9vYWnUJ5TJIkXL9+HZs2bRKdQjpGoeWF24jynfT0dLRp0wbXr19HTEwMbG1tRScRUR5JS0tDq1atcPv2bURHR6NMmTKik4hITz169Ah2dnaYPn06vvzyS9E5lMfi4+NhZ2eH77//HpMnTxadQ0RE9M7UajVcXFzQoUMHBAQEiM6hPJaVlQUXFxd07twZfn5+onOIKIfUr18fpUqVwrp160SnUB7TarWoV68e7OzssGbNGtE5pEO4Apwon9FqtVAqlTh69CjCw8M5/CbKZwoUKIDw8HBotVr07t0b6enpopOISE8FBgZCrVZj1KhRolNIABsbG/Tv3x8+Pj7QaDSic4iIiN7Z+vXrcfPmTV7CJZ8yMTGBl5cXli5disTERNE5RJQDoqOjceTIER7X8ymFQgFJkrBu3TrcuHFDdA7pEA7AifKZ33//HYGBgfDz80OjRo1E5xCRALa2toiIiMCxY8egVCrBzWCI6H1pNBqoVCr07dsXJUuWFJ1DgkiShKtXr2Lz5s2iU4iIiN6ZLMuoX78+6tevLzqFBPH09ER6ejqCg4NFpxBRDpBlGU5OTujSpYvoFBJk8ODBKFSoEHx9fUWnkA7hAJwoH9m8eTMmTJiASZMmYdiwYaJziEigBg0aICAgAIGBgZg3b57oHCLSM9u3b8elS5d4hn0+17hxY9SqVQuyLItOISIieifXrl3Dxo0b+Romn7O1tYWbmxtkWeYJ4UR6LiEhAcuWLcPo0aNhbGwsOocEsbKygru7O/z9/ZGRkSE6h3QEB+BE+cSlS5cwYMAAdOrUCT///LPoHCLSAUOGDMHkyZMxceJEbNq0SXQOEekRlUqFatWqoXnz5qJTSKB/tppbu3YtYmNjRecQERG9lY+PD6ytrTFw4EDRKSSYJEk4e/Ys9uzZIzqFiD7C4sWLkZmZCQ8PD9EpJJhSqcSDBw8QEREhOoV0hELL09yIDF5iYiIaN24MrVaLgwcPokiRIqKTiEhHqNVq9OzZE/v378ehQ4dQsWJF0UlEpOPu3LkDR0dHzJs3D5999pnoHBIsKSkJtra2+Pzzz/HDDz+IziEiInqt9PR02NvbY8iQIdwFi6DValG5cmXUrVsXoaGhonOI6ANotVpUqVIFtWrVQlhYmOgc0gEtW7aEsbExduzYITqFdABXgBMZOLVajcGDB+Pu3buIiori8JuIXmBsbIylS5eidOnS6NmzJxITE0UnEZGO8/f3h7m5OS+nQgCAQoUKYdiwYfD390dmZqboHCIiotdatWoV4uLioFQqRaeQDlAoFFAqlVi1ahXu378vOoeIPsCOHTtw4cIFXtaCskmShJ07d+LcuXOiU0gHcABOZOCmTZuGjRs3IiwsjCs7ieiVrK2tERUVhfv372PQoEFQq9Wik4hIR2VlZcHX1xdDhgyBtbW16BzSEZIk4d69e4iMjBSdQkRE9FqyLKN169aoXLmy6BTSEcOHD4exsTEWLlwoOoWIPoBKpUKVKlXQqlUr0SmkI3r37o0SJUpApVKJTiEdwAE4kQELCQnBL7/8glmzZqFTp06ic4hIh1WoUAFhYWHYtGkTpk6dKjqHiHTU2rVrcfv2bZ5hTy+oUaMGmjVrBlmWRacQERG90qlTp7B3716+hqEXFCtWDAMHDoSPjw9PBCfSM3fv3kV4eDiUSiUUCoXoHNIR5ubm8PDwwOLFi/H06VPROSQYB+BEBio6OhoeHh4YPnw4vvjiC9E5RKQHOnbsiDlz5mDWrFkIDg4WnUNEOkiWZTRq1Ah16tQRnUI6RpIkbN++HRcuXBCdQkRE9BIfHx+UKlUKbm5uolNIxyiVSty4cQMbN24UnUJE7yEgIABmZmZwd3cXnUI6xtvbG0+ePMGyZctEp5BgCq1WqxUdQUQ56+7du6hfvz4cHR2xY8cOFChQQHQSEekJrVYLDw8PLF26FLt370bDhg1FJxGRjrh8+TIqVKiAwMBADB8+XHQO6Zj09HTY29tj6NCh+O2330TnEBERZUtOToatrS3Gjh2LGTNmiM4hHaPValGvXj3Y2dlhzZo1onOI6B2o1Wq4uLigY8eO8Pf3F51DOqhbt264f/8+YmJiRKeQQFwBTmRg0tLS0KtXLygUCqxevZrDbyJ6LwqFArIso27dunBzc8OdO3dEJxGRjvDx8UHRokXRv39/0Smkg8zNzTFq1CgEBgYiJSVFdA4REVG2pUuX4unTpxg9erToFNJBCoUCkiRh3bp1uHHjhugcInoH69atw82bN3lZC3otpVKJI0eOIDo6WnQKCcQBOJEB0Wq1GD16NE6cOIGIiAiUKVNGdBIR6SFzc3OsXr0axsbGcHNzQ2pqqugkIhIsLS0NixYtwogRI2BhYSE6h3SUt7c3EhMTERYWJjqFiIgIwLP3SWRZRrdu3eDo6Cg6h3TU4MGDUahQIfj6+opOIaJ3IMsyGjRogHr16olOIR3VtWtXODo6QqVSiU4hgTgAJzIgc+fORXBwMAICAlC/fn3ROUSkx0qXLo2IiAicOnUKo0ePBq+YQpS/rVy5EvHx8VAqlaJTSIeVLVsWnTp1gizLolOIiIgAAIcOHcLx48e5SpDeyMrKCu7u7vD390dGRoboHCJ6g6tXr2LTpk08rtMbGRsbY/To0QgNDUVCQoLoHBKEA3AiA7Fx40ZMnjwZX375JQYPHiw6h4gMQL169bBo0SIsWbIEc+bMEZ1DRALJsox27dqhYsWKolNIxymVSkRHR+PIkSOiU4iIiCDLMpydndGpUyfRKaTjlEolHjx4gPDwcNEpRPQGPj4+sLa2xoABA0SnkI7z8PBAZmYmgoKCRKeQIAotl3QR6b0LFy6gUaNGaNGiBSIiImBsbCw6iYgMyLRp0/Dzzz9j7dq16Nq1q+gcIspjJ0+eRK1atbBy5Ur06dNHdA7puKysLLi4uKBz587w8/MTnUNERPlYfHw87Ozs8O233+LLL78UnUN6oFWrVlAoFNi5c6foFCJ6hfT0dNjb22PIkCGYN2+e6BzSAwMGDMDJkydx9uxZKBQK0TmUx7gCnEjPPX78GD179oStrS1CQkI4/CaiHPfDDz+ge/fuGDRoEM6fPy86h4jymCzLKFOmDHr27Ck6hfSAiYkJRo8ejaVLlyIxMVF0DhER5WOBgYHQaDQYNWqU6BTSE5IkYdeuXTh79qzoFCJ6hVWrViEuLo6X5qJ3JkkSzp8/zxOb8imuACfSY2q1Gt26dcPhw4dx+PBhlC9fXnQSERmoJ0+eoEmTJsjMzMShQ4dQtGhR0UlElAeSkpJga2uL8ePH47vvvhOdQ3ri7t27cHR0xNy5czFmzBjROURElA9pNBpUrlwZ9evXx9KlS0XnkJ7IyMiAvb09Bg4ciD/++EN0DhH9R4sWLWBqaort27eLTiE9odVqUa1aNVSvXh3Lly8XnUN5jCvAifTYlClTsHXrVixfvpzDbyLKVYULF0ZUVBTi4uIwaNAgZGVliU4iojywZMkSpKSkwMvLS3QK6ZEyZcrAzc0NsiyD51sTEZEI27dvx6VLlyBJkugU0iNmZmbw8PDA4sWL8fTpU9E5RPQvp06dwt69e3lcp/eiUCigVCoRHh6Ou3fvis6hPMYBOJGeCgoKwpw5czB37ly0b99edA4R5QPlypXDihUrsHXrVkyZMkV0DhHlMq1WC1mW0aNHD9jb24vOIT0jSRLOnTuH3bt3i04hIqJ8SJZlVKtWDc2bNxedQnrG29sbSUlJWLZsmegUIvoXlUqF0qVLw83NTXQK6Rl3d3eYmpoiICBAdArlMQ7AifTQwYMH4eXlhVGjRnFbSSLKU+3atcNvv/2GuXPnIjAwUHQOEeWiAwcO4NSpUzzDnj5ImzZtUKlSJciyLDqFiIjymdu3byMyMhKSJEGhUIjOIT3j7OyMLl268DUMkQ5JTk5GcHAwPD09YWpqKjqH9EyRIkUwaNAg+Pr6Qq1Wi86hPMQBOJGeuX37Nnr16oX69etjwYIF/GWOiPLcZ599Bk9PT3h7e+PAgQOic4gol8iyjHLlyqFDhw6iU0gP/bPV3OrVq3H//n3ROURElI/4+/ujQIECGDZsmOgU0lOSJOHIkSOIjo4WnUJEAEJCQvD06VNemos+mCRJuHnzJtavXy86hfKQQsuLshHpjdTUVLRs2RL37t1DTEwMSpUqJTqJiPKpjIwMtGvXDpcvX0Z0dDS3RyYyMHFxcbCzs8OMGTMwadIk0Tmkpx49egQ7Ozt8/fXX+N///ic6h4iI8oGsrCw4OzujW7du8PHxEZ1DekqtVqNcuXJo27YtFi5cKDqHKF/TarWoU6cOHB0dERUVJTqH9FiDBg1QokQJDsHzEa4AJ9ITWq0WXl5eOHPmDCIjIzn8JiKhzMzMsGrVKpiamsLNzQ2pqamik4goBy1atAgKhQIjR44UnUJ6rFixYhg4cCB8fHyyt5rLysoSXEVERIZGq9Vm/5xZs2YNbt++DaVSKbiK9JmxsTFGjx6NZcuWISEhQXQOUb6j1Wqzf284ePAgTpw4wUtz0UeTJAkbN27EtWvXRKdQHuEAnEhHPX78GNevX8/+eNasWQgJCcGiRYtQt25dcWFERH8rWbIkoqKicPbsWXh4eOCfTWXi4uJw69YtwXVE9KE0Gg18fHzQr18/FC9eXHQO6TlJkhAbG4uNGzciPj4e1tbWOH36tOgsIiIyIEqlMnswolKp0KhRI9SpU0dwFek7Dw8PZGVlYfHixaJTiPKdb7/9Fr179wbw7Lju4uKCTp06Ca4ifTdw4EBYW1tzh5h8hANwIh01ZcoUeHh4AADWrVuHL7/8EtOmTcOAAQMElxERPVe7dm0sXrwYoaGh+OWXXwAAP//8M/r06SO4jIg+1JYtW3DlyhWeYU85okGDBqhbty5kWUZsbCxSUlKQlpYmOouIiAxISkoKzp07h8uXL2Pz5s18DUM5olSpUujduzdUKhV4BVGivJWamopz584hPj4eYWFh8Pb2hpERR1n0cSwtLTF8+HAEBAQgPT1ddA7lAR41iHTU7t27UalSJZw7dw6DBg1Cz5498f3334vOIiJ6Sb9+/bKv77pmzRpUqlQJR44cQXJysug0IvoAsiyjZs2aaNKkiegU0mM3b96Eo6MjIiIiIEkS1q9fjzNnzgAAbGxsBNcREZEhsbGxQXx8PHx8fFC0aFH06NEDgwcPxogRI0SnkZ5TKpW4cOECduzYITqFKF/557geGBgIrVYLd3d3fPrpp+jatavoNNJzSqUScXFxWLVqlegUygMcgBPpoPj4eJw/fx61atVCz5494ejoiODgYJ7pRkQ669tvv4WrqyuGDBmCUqVKQa1WIzo6WnQWEb2nmzdvYs2aNVAqlVAoFKJzSI+VKVMGTZo0QZ8+ffDo0SMULlwYK1euBMABOBER5ax/BiWLFi3CgAED0K1bN0RGRnIHPfporVq1QpUqVaBSqUSnEOUrNjY2ePz4MWRZhqurKzw8PODr64vBgweLTiM9V7lyZbRu3RqyLItOoTxgIjqAiF528OBBAEBwcDAePXqE7du3w9fXF4cOHUJISAhMTU0FFxIRPTdx4kQYGxtj5syZ6Nu3L8aPH49ChQph//79aNOmjeg8InoP/v7+sLS0xNChQ0WnkJ4zMTFBaGgonJycMGXKFNSuXRvbtm2DiYkJChUqJDqPiIgMyD8DcLVajfXr1yMtLQ27du1C/fr1RaeRnlMoFFAqlZgwYQLu3r2LMmXKiE4iyhdsbGyg1Wpx5coVGBkZ4d69e9iwYQPat28vOo0MgCRJGDBgAE6fPo3q1auLzqFcxOWkRDpo//79sLS0xIEDB9CmTRs0b94cU6dORfHixWFsbCw6j4joBXZ2dvDx8UH16tVRrlw5xMfHw9TUFPv27ROdRkTvITMzE35+fhg6dCgHlJQjjIyM8Ouvv+Kvv/7CyZMnkZycjIIFC3J3ASIiylHFixeHWq2GiYkJLC0tcfDgQQ6/Kce4u7vDzMwMAQEBolOI8o1/dowyNjZGSkoK9u7dy+E35Rg3NzeUKlWKu3vkAxyAE+mg1atXIyUlBVqtFtu3b8fYsWNx48YNLFiwgNugE5HO+eKLL3Dz5k3MmjULx48fR2JiYvbuFRqNRnQeEb2jqKgo3L17F5IkiU4hA/PJJ58gIiICRkZG/LlAREQ5TqvVAgAqVqyIffv2wcXFRXARGZIiRYpg0KBB8PX1hVqtFp1DlC/8c0J26dKlcfDgQdSsWVNwERkSMzMzeHp6IigoCMnJyaJzKBdxkkakg65fvw5ra2vMnz8fN2/exI8//shtlohIpxUqVAiff/45Ll++jOXLl8PZ2Rnp6el4/Pix6DQieoMpU6Zg8eLFAABZltG0aVO+uUC5okePHli/fj3mzJkjOoWIiAxMz549MX78eERHR6NYsWKic8gASZKEmzdvYt26ddBoNOjevTuOHTsmOovIYNWqVQsTJkzA8ePHYW9vLzqHDNDo0aPx9OlTLF26FAAwbNgwbNmyRXAV5TSF9p/TJIlIZyQnJ8PCwoLbnRORXktMTIS1tbXoDCJ6g5YtW8LR0RHffPMNKlWqhODgYF7/m4iIiIjoPxo2bAgbGxuEhITAxsYGK1euRJ8+fURnERHRB+rZsydu3ryJI0eOoECBApg7dy4+++wz0VmUg7gCnEgHFSxYkMNvItJ7HH4T6b7ixYsjPj4eKpUKNjY26N27N3744Qf4+PiITiMiIiIiEio1NRVDhgzBoUOHIEkSNm3alL3yu3jx4oLriIjofWk0GowaNQqbN2+GJEk4fvw4duzYgczMTB7XDZCJ6AD6cLGxsYiLixOdQfROihcvDkdHR9EZRDqNx3XSNzy26z8bGxscO3YMhw4dwvDhw+Hu7o7Vq1djyZIlotMMAo/rpG94XCd6Mx7XSd/wuP5xzM3NERsbizZt2iAwMBDW1tZYtGgRgGevo0n/8bhO+obH9Y9jZGSExMREdO3aFSqVCs7OzliwYAEAHtcNEQfgeio2NhZVqlRBSkqK6BSid2JpaYlz587xBzTRazw7rldGSkqq6BSid2ZpaYFz587z2K7HbGxsEBsbi4SEBOzevRvnzp1DeHg4XF1dRafpPR7XSR/xuE70ejyukz7icf3jGBkZYfPmzRg2bBgGDhyIVq1aYc2aNQA4KDEEsbGxqFK5MlJSeVwn/WFpYYFz53lc/xhhYWEYM2YMvLy80LZtWx7XDRgH4HoqLi4OKSkpCJjxBSq5OIjOIXqjC9duwuOr3xAXF8cfzkSv8ey4ngq/Ke6o6FhadA7RW12MvQevX4J4bNdzNjY2iI+Ph6WlJW7evImdO3eiYcOGorMMwj/HdZ8v+qGSQwnROURvdeHmQ3j/toLHdaLXyD6uf94Hlex5XCfdd+HWQ3jPW8Xj+keysLDA8uXLMXnyZMyZMyf78xyU6L+4uDikpKZiwchmqFi6sOgcore6eO8JPlm0j8f1j2RiYoIFCxbAxcUFU6ZMyf48j+uGhwNwPVfJxQF1qpQTnUFERDmkomNp1K7AE5uIKG+kpaVBo9GgSJEi2LNnD8qWLSs6yeBUciiBWuXsRGcQEVEOqWRfArXK2YrOIKI8ZGRkhNmzZ8PJyQljx46FsbExzMzMRGdRDqlYujBqOnLwRZSfKBQKTJ48GY6OjhgyZAg0Gg2vAW6AOAAnIiIiIsqnunXrhqioKKxduxalSpUSnUNEREREpLPGjBkDjUaD7du3i04hIqIcMHDgQGi1Wvj6+sLS0lJ0DuUwI9EBREREREQkRt26dREdHc3hNxERERHROxg3bhwiIyNFZxARUQ4ZNGgQduzYAYVCITqFchgH4EREREREREREREREREREZBC4BTrluJjTF/HV74ux58hpVHS2QymbokjPyISxsRH6dWqBUb07wdTU5LW3TUvPwNO0dCj7d4VH386Cn83r7T1yBqqwtYh/nAS1Wo3E5BSM6t0R3gO6vfY+py5ex/yQSMTeeQCtVotHT5Lh1rYJpo4eACOjZ+ejBEdtw9zAVShlU/SF+4bP/wYWBcwBAHV6f/LS12/fj0OZEsWwOeDnHH6mRETP1Rg2HY6ligEA0jKyEHP+OmqUtYN1QQsAwKkrt7FHngKn0jaI3HMcf67aDlNjYwDA07R0NKzqggkDO6K0jbWw5/BfC9fuxaL1+2BhZgrrghb4/fNBsC1e5I33WbP3BGaHboKFuSmMFEaYM6Y/qjiXea/HjXuchG/8I3H51gOkZWTBtrg1Zn/WH/Yli4KIKDcduXgT0xdvwr7T11DBrjhKFi2EjMwsGBkZoU+LmhjRqQFMTYxfe9v0jCw8Tc+AV9fGGNm5oeBn83r7zlyD39qDeJSUgiy1Bk9S0jC8YwN4dWv8Tvc/dfUO2kyQMbF/a3w5qN17Pe76Q2exeHMMMjKzkJqRhbSMTIzr3RK9mtfI8edJRJQfrT14FnNW7kYBMxMYKRSY7d0DVRxLvvE+B87ewDeLN8HMxBgZWWp8N7wjmlZ1zv76+kPnsHjLEWRkZSE1/Z9jdwv0alY9+zbJqen4OXQ7oi/chFqjhWUBU/zi2Q1VnbibDhHRx7hw9zGmhB6GWqNFWqYa4zpXR/c6jm+8z93HKZgYcggJKelIz1RjWPMKGNGy4ku3W3HoKv4XFoMf+tXDwCblXvjarnN34b/jPJ6mZyE1U42CBUzxTa86qOFQLEefHxHlPQ7AKcfVr14RG/1+hFVdV4wf0QfDej57s+jarXvw+mYewrfuR8Sf01HA3Oy1tz1w/Bw6ef0PhQtZol+nliKfzmst37gL1co7YerogQCAkxevodng8XCyLYXOLeq/8j6b9sXAxNgIG3xnQKFQ4Na9h2jYfxyKFy38wuD8338Wr1LKpig2+v34wueGTJqJlvX5hhoR5b51s8cBAG7ci0dN92/xs9QHLWpVAAB0m/g7AGDPiUuQZgVj6+8TUNXFFgBw5toddPriN/RuVVdnBuBRe4/j5+D12K+aihJFC+GXJRvQ/2sf7P5rUvaJSf915Px1KGcFY+efk1DBoRRCtxxC7/8twGH/aShkWeCdHlej0WDgdF+UtS2BTb99AYVCgekBkeg7TcZe1RSY/H3SQH4WGxuLuLg40RmUDxQvXhyOjm9+Y8XQ1KvogLU/eqKo6zR83qcVBrerCwC4fu8RlPNWInL/aaycPhwFzExfe9uD526g+//8UdiyAPq0rCny6bzWyl0nUNWpFCYPbAsAOHXtLlqP/wuOpYqgU/3Kb7yvRqPBJN+1KGD28q/M7/K4CzccRt+WtTCwbR0AwIbD5zD05xBUtC+Bas6lc/JpEhHlO0cu3oL0+2psn61EBbviWLbjOPp+H4SD88egkIX5K+8T++AxBvy4BEunDkbz6i7Yd/oaBv4Ygr2/fQrHkkUAAAs3RaNvi5oY2KY2AGBD9HkMnRn67Nj994B7zJ8RiH+SgjUzRsHc1AQLN0aj17eLcfjPMbC2ssiLpy8cX6eTKPnxdXt+kZyWif5/bMfUnrUwsEk5XLn/BO1/Xg/bopao61z8lffRaLQY8tcOdKnlgEndayIuKQ2tZqxF8UIFsgfnmWoNvAP2olhBcySmZrzycSaFHsKYjtUwrPmz97VmrjmBfr9vw55veqBE4QK584R1FI/vlFfy6njOATjlGRf70lj1+9eo0+dT/CAvxY+fj3jtbZvUroKq5ZwQue3ABw3Aj569hN0xp/G5e6+PKH4zaVB32Jd6/gO4ZkUXFClkhUs3br92AN63YwtYWphnX0/CvnQJuNiXxqXYO+/1vVXfjn3h40eJSdh+6AT+/Pqz93wWRETvR+rV+o1fH9yxEawLWmBDxClUciqdPfwGgGouthjQrgHMTD/s5UdSShpW7jiCWhUcULdizrxImr10MwZ1aIQSRQsBAJS9WuPXkI3YfPgsOjeu/sr7/LZ8Kzo0rIoKDs/eBBvQrgG+8Y9E6JZDGO3a6p0e9+iFWESfu47Zn/XP/pkwpk9bzAvbig0HTqNH81o58vz0VWxsLKpUqYKUlBTRKZQPWFpa4ty5c3wzDYBz6WII+9odjT79DT8t3YbvR7x+N6bGVZxQxakk1hw480ED8GOXbmHv6WsY06vFxyS/kXf3prAr/vyEqxouZWBtVQBXbscDr365ns1//SE0qeqEO/GJH/S4Xw3tgOouzwfdzauXhUajxbW78RyAE5HB0mq12HfmOi7ficeIjm850H6E38P3okO9iqhg9+w9mf6tamJ60GaE7jiO0V0bvfI+vusOoqJdcTSv7gIAaFbdBRVsi8Nv/UH88PfPu6+GtEd15+cruZtXd3l+7HYqhQePkxGx/wyCJg+E+d+/0wzvUA/fBm1GyLZj+KRn01x7zroiNjYWVSpXRkpqqugUyocsLSxw7vx5vm4XTKvVYv+l+7hyPwnuLSrkyGMuO3AFao0GAxqXBQCUK1UY7arZ4s/NZ7Fw9KtnA1tO38b5O48ROb4DAKB4oQLo36gsft94+oUB+LDm5dGmqi2C9lx65ePUdrTBkKblsz/2alMJc9efwu7zd9GnoUuOPD998Oz4XgkpqWmiUygfsLQogHPnL+T68ZwDcMpT1oWsMLRHW/it2IDvxwyD8RtWuGVlZWVvlf4uHiclI2z9LgRGbMGFa7fgmcvbp1cp+/wfp0ajweKIrTAzNUHvDs1eex9nuxe3xNqwOxq37j3E0B7vN7j+7+Os2LgbHZvWRdHCBd/rcYiI3tcnvdu88etDOj7b/tXU1BiXbz7ArQcJL2zpPWdM//f+nofPXsPiDfsRvusoyhQvgsBpI9/7MV4lISkFJy7fxPiBHbI/Z21lgfL2JbHz2IXXDsB3H7uIiYM7ZX9sZGSE2hUcsPPoBYx2bfVOjxv74BEAoOTfA3IAKF6kEExNjLH/1OV8PwCPi4tDSkoKghcFoErlSqJzyICdO38Bw0Z6IC4ujm+k/c3aqgAGta2LgA2HMH1YRxgbv3o3DADIytJkb5X+LhKTU7F81wkEb4nBxVsPMSqXt0+v/K+tcDUaDYK3HoG5iQlcm736+P6PO/GJCNoSg82/emPVnpMf9Li1y9tl/3dmlhrzw/egskNJtK5dHkREOSlLrcaMkG3YFHMRRQtZIC0jE/1a1oTU49kw1n/DYSzbcQwW5qZ4mpaBrg2rYELfllAoFPhq0Ub4bziM0sUKQdmtMZQ9muCvyH1YsOYAbApbYvX04ShubfXWhvsJSQjdcRzBW4/gQUIyJvVvnavPedfJq5jY7/lAxMjICLXKlcGuE1deOwDfefIKmlRxeuFzdcrbYeeJq9kf1y73/OTdZ8fuvajsUAKtaz3bLvfmg8cAgBJFnv+ZGBsboUQRK+w/eyNfDMDj4uKQkpqKv4bVR4VShd5+B6Iccul+Ej4NjjH41+2rDl+Dz/ZzsDI3RVqGGs0rlcI0tzoY8tcObDl9G1XsimBqj1roXMsBk0MPY3X0NdR1Lo7lY9sh6sgNqLafg7mJMVLSs9CwfAl85VoH5qbGSE7LxNAFO3DkWhym9KiFs7cf48r9Jzh2Ix6X5vSHtaXZW9vuJ6Yi7OBVhOy7jAdPUjGha87tRLr7/D3UcrTJXiAAALWdbDBv4+k33OcuypcqjEIWz9vrONngry1n8fhpOopYmcPSzARtqtq+9jEAwNfzxRNyzf/+/SZTrfmQp6K3nh3f0zC/T3lUKJ4/djQhMS7FpWLMqst5cjznAJzyXL2qFTAneRUu3rj9whD531Zt3ovz127hl4meb328vUfOIDBiMyK27YezbSkMd+uAwd3bwKZI4ezbnLhwFVNmB7zxcYb0aPvGbcdf5xf/5ZCXrUXxIoURteA72JV69bYs/7Y4Ygt+9g2DFlqEzPoStSuXfeHrG/dEY+naHcjMykKZEsUwYWTfl27zb0vWbMc3nwx573YiotwysF1D+ETsQpPRP2Fgh4bo3aouGlV1ee224v/16MlTLNt6GEEbDuDa3Ti4tqiN5TOUaF7zxbOLv5RX4dSVW298rH+2bP+v63efbetUqljhFz5fsmjh7K+9qivxaSpKFX35Pscuxr7z4zr9fR31Ww8Ssq8L/iDhCTKz1Lgd9/iNzyc/qVK5EurWqSM6gyjfqVvBHvNW7cal23EvDHv/LXzvKVy49RA/eXZ75df/bd+ZawjeHIOo/WfgVKoohnWoj4Ft6qBYYcvs25y6egdTA9a/8XEGt62bvQX7+5i9fAd81x6ATWErrPpu5Aurt1/lS791mO7eEZbmb34j8F0ed6IqCit2n0Blh5JY+e0IFHzN1rxERB/qp9Dt2HHiCrb84oWCFubYf/Y6hvwcmj0AD91+DPM+cUUNl9J4mpaBTlP9YF/cGgPb1MaMkZ3xMPEpHienQtmjCQDgU9dmWHf4PMK+Gvra7cQBQK3WYNvxywjacgSbYi6gVtkyGNerBXo3r/7CsW7r0UuYt3rPG5/D571boH3dd1tF+OhJCp6kpKFkkReHr6WKFMLRy7dfe78b9xLg1rTai/cpWhA37ie8dNuJPmuxYvdJVHYsgZXfuGc/n3+2Sr8V93x3kCy1Gg8fP4W11cs7hhiyCqUKoaZD0bffkIje2b3HKfhs8X4c+LYnnEsUwoMnqWj+3RpMc6uDkE/boPWMtehQ3Q6dazkAAL7vWw8nbsRj+dhn72dHHLmBsR2roXMth2crnxfsxPzNZzCxW00ULGCKiPEdUW9aOFZHX0f4Fx1gbWmG/n9sw79mzi9RazTYcfYugvdexpZTt1DTsRjGdKwKt/rOKFjANPt228/cwR+bXj+sBoCxnaqjbbVXD6NvxCWjrrPNC58raW2BJ6mZSHiajqJWL/88uhGXjBKFXxzUlvz749j4ZBR5xX3eRcy1OFiYGqNDDbu339gAVShugRq2XGRHhoEDcMpzhQo++0GUmPT0hc/PDVyFkDXbkZaeAetCVlj9xzdo17j2ax9HtWwdVGFrcft+PHp3aIa18vdoXKvKK29bq1LZl66ZnVOmePbHZI9+CAzfgs5e07DBdwaqV3B+432Gu3XAcLcO2LgnBn0//wGhs6eiTaNnq/1K2hRBOUdbLPQeBHMzUwRFbkVr90nYGTTrlUPwc1djcT8+4Y1/VkREea2Kcxls+2MiflmyAYvW7YNv5G44liqGCYM6YkTX1++UceX2Q/y4eC3W7juJCg4lMbJbM/Rv1wBFC1m+8vYzpT4f3Jia/uz6T//dkt3c1AQp6a++NlRK2t/3MXv9fd7lcetWckLDqi6YtXQjgr72gLmpCX4KWg9TE2OoNfnrLGMi0j3/DDwSn764vem8VbuwdPtRpGdkwdqqAJZ/4442b1jR7LvuAPzWHsSd+ES4NauB8O9HotF/Vt/9o0ZZW6z98e0nv36Iif3bYEK/1gjaEoPu0/ywZobna7chX3/oHIyNFOhQ7+27T7zL485W9sQvXt3xy7Lt6PylL7b86o3S/zlBiojoQ6WmZ0JecwC/enXLHtI2reoMzy7Pd9gImNAPzqWfnXxpVcAMHepWxJajl7Kvcz2kbR30/i4I9x4loXSxQjh9/R6cShZ94/D7p6XbELL9GFLSn6023zFbieqvOa62r1vhnYfb7yIlIxMAYG764g4kZqbGSE3PfOP9zExefH1uZmqMlFfcZ7Z3d/zi2RW/hO1A5//5Y8vM0ShdrBBKFCmI3s1r4K/I/WhfpwKKFLTA7+F7kZaZBbVGmwPPjojys4dJaVBrtLid8BTOJQqhZGELBH/SOvvr/RqVRcDOC/ifa20oFApsPHETnWvZZ3/92z51YV/02Q4VpsZG6FLbHssOXMXEbi9erqhLLYfsFd//DM9fZeaaE1h24ApS0rPQp6ELtkztimr2rz7xpW0129cOt99FSkYWzP6zs9Q/K7FTM7JeOQBPzVDD3PTFRRZmf3+ckqH+oA6tVovfNpzClJ61YFMwf13/m8gQcQBOee5J8rPreRYp9OKZRONH9HmvFdh/Lo3CzXsP8ZVyMLz6dX7p8XJSZ69p2f/9qpXiCoUCI3t3RMja7ZjpF4Ylv055t8dtUR9dWzbEN/ODsKfRHABAp2b10KlZvezbuLu2h9+KDfg9OByLfpzw0mMsidqOwd3avPOqSiKivFLNxRZBX3sg8WkqNhw4BZ/IXRg3bxlMjI0xtFPjV94n+tw1rNp5FHUqOmLWp33RoEruXW/J4u+VfRmZWS98Pj0zC1YFXr3qz/Lvz2dkvHyff1YKvsvjKhQKLP9BiZ+C1qHH5PkoYGaKXq3qolZ5BxQp+OphPxFRXnmS8uy6b0UKvrii4vM+rd5rBbYctR+3Hj7G1MHt4dG5IawL5t5Wet2n+Wf/96tWiisUCgzv2ACh249hVtgOBE4Z9NJjJKemY0bIFqyaPuKdv++7PK6xsRG+HNQWS7cfxV+R+/DDyC7v/sSIiN7g6r1HSMvIQtm/B9z/mDb4+XsW9xKS8L+FGxGf9BSmxsaIffAYTqWKZH+9RQ0X2JewRuiOY/iiT0ss2XoUQ9q9eQeeOat2w8LMFD+M6ISBrWvDwtz0jbf/UPcTkuAxZ0X2x5/3boG6f19iIj3zxeFGRqb6jR2WZqbIyHrx9XlGphqWr7mPsbERvhzYBkt3HMdfUfvxw4hnl0D68zM3zFm5C/1nLIGJsRHa1i6Pbg0r41FSygc9RyKif1S3L4p+jVzQe95WNC5fEn0auKBvo+fvifRt6IwZEcew7+J9NK9UGisPX8PPAxpkfz0lPQvSor24+egpzIyN8OBJGjKyXh4E2xZ9t/cc5m04jQJmxviuT130b1QWFma5N0qyNDN5qTX9749f930tzIyRmvHfnwWavx/v3S/T9G+/rj2JMtaW+KR91Q+6PxHpFg7AKc8dOXMJ1gWtUMHpw88KA4Cdi2dh6bodWBy+Gb/4h6FX+2YY4dYBzepWe+m2H7sF+qtWj2dkZsLM9MVflCo42SH61IXXfo9X3aeisx3W7Dj4xray9qVx7ea9lz6vVqsRtmEXNvn99Mb7ExHltcfJKShgZooCZqawtrLAwPYN0b9tfbT85Fes33/ytQPwge0bwq5EUSxevx/dJ82HS5niGN61KQa0a4BihV++/uDHbIHuXObZJSvuP3rywucfJDxBm7qVX3mfYoWtYG1lgfsJL9/HubTNez1u0UKWmPVpvxduMy9sC/q0fv/tfYmIctLRS7dR2KoAytu+/dI+b7J1lhLLdhxD8OYYzA7bAddm1TGsQ300reb80m0/dgv0V60ez8jMemk3jgp2xRFz4eYrHyP6wk1o1Bp4zV2e/bkHCclYuv0o9p6+Bq+ujeHarPo7Pe5/b2NkZIRytja4cPPBG58jEdH70GrfvOo49sFj9P42CFMHtcEYt+YAgJnLtmPv6evZt1EoFBjcpjaWbj+GT3s2RfSFm/jZ480n6pzwGY+QbUfx26o9+DZoC/q1rInhHeuhhkuZl277MVuglypaCGtnjHrp84UtC+DB46QXPnf/cRKcS71+S26n0kVxPyH5xfskJMPpX/d55bG7TDFcuPX82G1hboqvhrR/4XG6f7UQNVxevQKeiOhdKRQK/DWiGcZ0rIZlB67g56jjkLeexaYvu6CwhRlKWVuiRaXSWH7oKirbFkFaphoONs8WhCWnZaL3vK1wq+cEeWRzGBkpsOzAFcxae/Kl72Ns9IY9z//lyAw3LN1/BX9sPIMfwo+hTwMXDG1eHjUcir1024/dAt2peEE8eJL2wuceJKaisIXpK1d//3OfPedffL/8wZNnO1g52rz/QrnFey7i+I14LFa2eu/7EpFu4gCc8lRi0lOErN0Bz36dYWz8YWdi/aN40cIYO9QVY4e64sDxcwgM3wy3z76DQ+kSGN7r2XXASxR9dh2+3NgCvdmQCYhe/scLn7sXl4DSJV5+EfCPnp98iyW/TkHxf1079l5cAsr86z7fzA/Cl54DYPmv7cbuPHgE+9IvvwG59eBxlLUvjXKOL/+SSUQkkrx6Jyo4lELfNs93tDAyMoKzbXFYmL15hUiLWhXQolYFJCSlYPm2aARt3I/p/pHo0bwWhndpiha1KkDx90WqPmYL9KKFLFGzvD2OXYqFW8tnq1yePE3F5VsP8J2H6+v7alfIvt438OyNxxOXb2HioI7v9bh7TlxCi1rP3+i7+eAR7sQ9RremL25PRkSUlxKfpmHZjqMY1bkhjI0/bochm8JW+NS1OT51bY6D524geHMM+n0XCPsSRbKvA17c+tnJTbmxBXrrCQuw/4+xL3zuXsKzLX5fpU3t8jj41+cvfK6m1ywMblsXXw56fqLsuzxuq/F/4cD8F0/Auv8o6bVbwBMRfYhyZWxQwMwEV+89QrPqz1cJzo/YC48uDXHs8m2kZmSiV/Ma2V971WrAgW3q4JflO/Ft8BZ0ql8x+7X269gXt8aUAW0wqV8rbD9+BcFbj6DdZF9Udy6FYe3roW/LmtlbqOf0FugA0LKGC45duZP9sVarxcmrdzG+7+uHFq1qlMXh/5wAdfzKbbSu9fxSc60mqHDgj89euM39hGQ0quyY/XH0hZuo4VIaBf7+nSYlPQPHr9x5YdU9EdGHuPs4BbcePUWDsiXwbZ96+LRDNTT4Ohy7zt1Dj7rPjkP9G5fF5NDDKF+qMHo3cM6+7+X7TxCXlIaedZ1g9PeAOyPr4y6vZlfMCpO618SErjWw89xdLNl3GZ1/2Yhq9kUwpFl59Gngkn0d8I/dAr1FpdL4fdNpaLXa7J9BJ2IfoWXl17/n3aJSaQTuvoTktMzsjuOx8ajlWOy9r/+9OvoaImNuIOTTNjAzMcb1h0m4EZeMVlX4njuRPuOeyZRnrt26h77jZqCyiwOmeb+8NeDHaFK7Cny+G4crmwPxyeDuWL5hN1w//TZHv8d/JT9Nhe/y56tU9hw5jW0Hj8Hd9fmZwD+qQtHRY+oL95sXFJ59lva5q7EI27ALw/51n8MnL2Bx5Jbsj7cdPI6DJ8/Do0/nlxpCorZh6HtsG09ElJd8Inch4V9bAZ65dge7j11Er1bvtsK5aCFLeLu1wj7VVGyYMw5WBcwx+Fs/bDj45rOK38ekwZ0QuuUw4v5eQeITsQtVnG3RseHz7a66T/oD3y9ak/3x+AEdsCX6LC7/vRJk+bYYGBsZYVCHRu/1uJP+XIE9Jy4BALLUanztFwGpVxs4/b2SnPKHP2UVqtSsA5eKVUSn6BwfvwDUa9wUzVu3Q3e33rh9+85b7xMeGYUGTZujZdsOaN2+E86cPZsHpYbj+r1HGDgjCJUcSr4w8M0Jjas44a9xfXAu8Et4d2+ClbtPoM+3i3L0e/xXcmo6/Nc/32lp3+lr2HHsMoa0f35y1szQbeg61S/HH/fCzYfYFHM+++Owncdx6U4cBrZ987bCRETvw8LcFFKPJgjYcBhP0zIAPFtxvfbQOViam6GifQkoFArsOnEFwLNrhm89eumlx3EsWQQta7jAZ91BDGzz7scpIyMjtK9bAYsnD8QZvwlwa1od8poD+OT31TnzBF/j894tsPXIJVy+HQcAWL7r5LPX439f1xwAPp0fDu95q7I/9u7eBBduPcS+M9cBAPvPXsfFW3Hw6vp8Z6oLtx5iU8zzXf3Cdp54duz+1+POXrELq/c++31Eq9Xip6Xb0b5OBTSpyhOcDE3A7ito/uNm1P9uo+gUnZeRpcFXq06g46zt6DhrO6atOvHW4atWq8WcjefQYdY2dJ6zA58GReNJamYeFeumqw+e4IfwY8hSP/uz0+LZ+8dlSz4/ybJrbQcAwJ+bz6JHnecn5zgVLwgLU2PsOn8XAKDWaLDx5Kt3PXpfRkYKtK1mi4WjW+L4T73Rs64TfLadx2eL9+fI4wPAoKblYGxkhBWHrwF49mex7cwdfNbx+XsoIfsuo9l3UUj7+xIYHWvYo1IZa/hsPwcAiE9Ow/KDVzGuc/X3+t6bT93CjIjjGN+1Bi7cTcTxG/HYdf4uDl3hzk2GbNGhu2g5/xga/XZUdIrOCY6+j06qk3D1P41hS87h7pP0t95nw7l4dPE5iV4Bp9Fn4WlceKAbl4bhCnDKcTGnL+Kr3xcDAOYGrkLImu1Iz8iEkZECA7q0wqjenWBiYvzK267avBcRf07/4O9duKAlPPt2gWffLrhx5/7HP5k3+PazoQgM34xl63fCyMgI6RmZWPDNGPTv3DL7NmkZGUhJe36A+GJEb/iErUPr4ZNgZmKK5NRUTB09EJ8O6v7SbcK37INao4FGo0Xo7C/RplGtF77/46Rk7Iw+iQXTx+Tq8yQiepWt0Wfxc/AGAMBUeRXcuzTBaNfnKy66N6uJe4+ewO3LP1HIsgCy1GpkZmkwZ0x/dG1S43UP+1r1KjujXmVn/KzsjbSMnPuluGfz2nj4OBm9/rcABcxMUaSgBcK+Hw0jo+fnCKZlZCL9X9fzrlfZGfLEofD4ORAW5qYwUhhh9U+foJBlgfd63Hb1K+PTOSGwLW4NrRbo0qQGxvZtm2PPjfTDZ5ISBa2s8N0MXs7k31ZHROLbGTNwIvoQSpYsie9//Bk9evdBzIF9L/w7+rfD0TEY7uGF6P17UKliRQQtCUHnHq44e/woChV69Yrf/OrIxZuYvngTAGDeql1Yuv0oMjKzoFAo0K9VLYzo1AAmf+/W9N/brt57Eivf4xrZ/1XYsgBGdWmEUV0aIfZ+wkc/lzf5emhHBG2OxvKdJ2BkpEBGZhbmj+mFvi2fv65Oy8hCanrGS/dduu0olm4/+sIW6AETB6BU0ULv9LgzPbthzvJdmLdqN9RqLRQKYOm0oWhS1TlXnzMR5T//G9QWao0W7Sf7oFghSxS2KoCACf0BAFUcS2KOd3f8unwnQrYfQ0nrgnApXQw7T1yF128r4fdF3+zHGdi6DrTaZ8PwD1GiSEGM7dUcY3s1R+yDxznwzF6vXkV7LBjbC16/rUQBMxMYKRRY+Y179qpz4NnxPUv9fLW7Y8kiWDZtCKYv3gxTE2NkZGZh2VdDXni+Mz26YM7K3Zi3eg/Umr+P3VMHvzDcbl7dGbNX7ELg5hgYKRRoXMURqs975+rzJTE8WpaDlbkJZm88JzpF530XeQoX7z3BhgltAACD5H34PvIUZvSp9dr7+Oy8jKhjt7FhQmtYmpng86VHMGZJDBZ7NcmrbJ1TvpQ1nEsURNdZG2FlboqU9Cz8PKAhqtk/v1SDpZkJutdxQEamBoUszLI/X9TKHPKo5vgh/Ch2nL2DUtaWKFHIAnue3EOfeVux6vP2cJu7GQ+epOKPTWdw6PID/Dbs/f+sSxQugM86VsNnHavhZnzy2+/wjgoWMEXYmLaYsuwwgvdcQlqmGn+4N0Fd5+c7omZkaZCWoYbm74VlRkYKLPmkNSYuPYSuszYiPVONCV1rovu/TgwAgMmhh3Hx7mMAwB+bzmDZgSuQRzVHmSLProU+LugA4pPT0Xve1hfuN7Hb+793RfpjZKMysDQzxtydb76sYn6z/mw85uy8ia1SLRQvaIrfdt7E8JDz2OhdM3t3if86disJ41Zfxnrvmihf3AIrjj/E4OBz2PVZbRQ0/7hdoD+WQvu2CwaRTjp69Cjq1auHvSFzUadKOdE5RG907NwVNB8yHkeOHEHdury2LdGr/HNc3/XXZNSu4CA6h+itjl+6iVaf/porx/Z//j3EHNiLunUMf7VkYFAwvpvxE65d5Jtr/6jfpBnatW2DX36cAQBITExECTtHrF6+DN27vvq6pH0HDoaJiQmWLQkCAGg0Gti5lMO0L6fgM0n5yvscPXYM9Zs0z9W/xzvnfoJa5exy9LGJcsOJK7fRevwCvmYneo3s4/psJWqV+/BtXnXVb6t2w664Nfq3ev3AivTLiSt30HqiKkeP6//8O9g8sQ1qOrz+muuGYtmhG5i98Rxipr+8KyM98+hpOmp9vR6Bnk3QrmppAMDWM/cwMuAATv7QDUWtzF66j1qjRc2v12NSlyoY0fzZZQgu3HuCVj9vxY4p7VDF1vql+5y8mYCOs3fkyt/nrVO7oKYjd2Ij3XcyNh7tf96Qq7+/bvSugRq2738NdX0UduwB5u68hUNf8Heff3RWnUSLstaY1vHZyX9P0rJQ45cY+A+shA6VXv1z32vZBRgbKaDqXxEAoNFoUXfOEYxraYeRjV6+jMCpO8no7HMqT37v5ApwIiIiItIbS5eFYd78P1HQqiBS01LRplUr/PTDdwCArKwsfDFpCtasXYeyLi5o1LABDhw8hBuxsRgyaCDKlyuLX2bPRVpaWvawuWtPN+zYtRvy/N8xwn0YAGD7jp2Y8fMv0Gq1SM9IR6UKFfDb7F9RpEgRAECPXn2wd/8BeHmMRFJSMs6cOYu9+/fj6KH9qF2rFgKDgvHHXwtQ0Kog1Bo1Jn7xOXq59sx+DlFr12Hy1GkoWrQIyjo7o1at97vu+8FDhzF56jSoNWpotVp06dQJ/5syCcbGxvhq+ncICV0GZycndO3SCdu278De/Qcw47vp2f/9uu7gkKWY+/sfMDc3R0ZGBqZOnoR+fZ6taPJUfoJ1GzagY7t2KGNbBjExR7B77z4sX7oEbj17fOz/1hckJCTg6LHj+HLSxOzPWVtbo2KFCti6fftrB+DbduzEtC8nZ39sZGSEenXqYNv2Ha8dgBMREeVn52If4NrdeHSsXxHrDp3Dmh9GiU4iPbY65iZ8dl6ClbkJ0jLVaF6hBP7X49lWxFlqDb4JP4lNp+/CycYK9ZyLIfraI9xKSEHf+g5wLl4Qf269gLQsTfaweZBqH/Zfeohf+tfBwEbP3ojfe/EB5m46Dy2erQYtV7IgfuhVE9aWz4asQ3324/C1eAxt4ozk9CxcuPsEh67GY+uktqhuXwTLDt2A/67LsDI3gVqjxSdtK6BrrecnKm46dQffR52GtYUpnGysUM2+yHv9GRy5/gjfR56CWvNs8+p2VUthXIfKMDZSYOa6M1gZcxMOxSzRvmpp7Ln4AIeuxmNqt2rYfeHBG7tXRMdCteMSzEyMkJmlwdgOldCzjj0AYHzoEWw5cw+tKpdC6cIFcDw2AQevxMFvZCN0qZn7J+scvByHTLUWtR2fD0ZqOxVFplqLg1fiXtlw9k4i4pPTX7hPxVKFYGlmjD0XH75yAE5EYoWffAi/A3dhaWaMtCwNmrlYY2r7Z6vts9RafLvxOjZfeATHogVQz74gYm4m4VZiBnrXLA7nYgXw197bSM/SZg+bhwafw/7rifi5e1kMqFMSALD3aiLm7Xq2Ijs9S4NyxS3wXWdnWFs8G2O6h5xDdGwShtQrheR0NS48SMHh2CRsUtZE9TJWCDv2AAEH78LKzBhqrRZSM1t0qfL85JbN5x/hh803YG1hAqei5qhW2uq9/gyO3EzCjM03oNZqodUCbSsUxdiWdjA2UuCXbbFYfTIODkXM0a5CEey5mojDsUmY0s4Re64+fmP3yhMP4bP/DsyNjZCh1mBMS3v0qPase2LkFWy9mICW5axRupAZjt9OxqEbSfDpXxGdqxT7uP+p//E4NQun7j7FZy2e/1wsXMAEZW0KYM/Vx68dgO+9lohxLe2zPzYyUqBGGSvsuZr4ygF4XuIAnIiIiIj0wp07dzHcwwsXTp1A2bIuuH//PqrWrpc9AJ819zesW78BRw7ug42NDVasWo3Zv83DtC+n4Nuvp2U/zr+3G18fFfHS9bfXb9oEN9ceGPvpJ9BqtRj9yWcYP/lLLPRVAQDWhK9Cmw6dEbZ8Jfbu2AYHB3t4SZ/C2NgYGzZtwqSp03Ds0AHY29vh0uXLqNOwCbasX4smjRvhxo1Y9B88FCGLF6FPLzfExcWhdYd3X1Hy4MEDdO7hitDgQHTp1AnJyclo2a4DTE1N8OWkiZjx3XSYmJhg7u9/YMIX4zBp/BdYHLwEKampb+zevGUrPh33Rfb24adOn0aj5q1gW6YMmjVtAn/VAoz0HI3IteuwfdN6zJzxA374aSZMTU1f2fn5xEk4ceLUG5/Lji2vvp7i1WvXAQClS5V64fOlS5XEtb+/9l/x8fFITEx86T6lSpVCzJEjb+wgIiLKr9IyMjHRdy1KLi+IT3o2hYX5q3+uE73NvcRUjAmJwf5pHeFU3AoPn6Shxc9bsgfgC7ZfwpYz97BlUlsUszJH1LFbWLD9Ej7vWAmTujy/xu+/txsPVTZ76frbW8/eR9eatvBsVR5arRYTw45hesQpzBtcDwCwxLspes3fjcijtxD1eSvYFbXEhGVHYWykwLaz9/B95ClsndwWtkUscfVBMtrN2oYVhQugvosNbj5Kgdeiw1jg3gDda9shPjkdvebvfuc/g4dJaRgo74VqeEO0q1oaT9Oz4Pr7rv+zd9ZhVaRdAP9durukQUFF7O5uTOzu7lrXdnXXtbu7u7uwW7FFBVEJ6ZSOe78/Bi9euSDW6u43v+fxeZw3zpwZ4MzMe95zDuoqKgytX5jxTYsJEXIX/BhY24XBdV3ZffstyWmZeep98XkY4/c+4PTo2hSy1MfnXRyNF1zAylCbCs6mLOhYlmHb73L6cQj7h1RnUnN3Fpz2QU1VearayQce8iQ4Ls9rOTi0Rp79H/M2Kgk1FQmmetklCMz0NFFVkfA2KlH5nEih3cIge45EIsFcXyvXOSIiIj+P0Pg0hh/048rQ0jiYaBGRkEatZQ/kDvCV195x7mUMpwaUwERHnaNPo1h5/R3Da9gyunZ2lsuP041v61o0R/1tL98YGhc1oXelAshkMsYd8Wf66TcsaFkIgC2di9Jm41MOP4nkUG93bAw1GXv4FaoqwtwZZ95yZkAJrA018Y9KpsHKR+zqrkE5O32CYlPpv+cly9q40NTNlOjEdDw3Ps33PYhMSKfzVh9WtHWhjosxiamZtNrwBHVVCUOq2/BbXXvUVCSsvv6O/lWsGVjNhj0PwklOk+ap9yW/WCYc85enD/cJS8RjzWOs9NUpb2/AvBYFGXHQjzPPo9nToxgT6juw8GJQrjZ+ysnXPAvNu/72vp7FlLYHxKQAYKGn+D5orqdOQIzyOuDRSenEp2Ri/skcCz11Hr77+fZcdICLiIiIiIiIiIj8KwgLDyMzM5OAwECcnZ2wtLTkyP698v6lK1bSt1cvTE2FnbJtPVszetz4Lz7PqGHDMDERdrZKJBLatG5Jz779c4yrW7sWdnbCLte1K5cDMGT4KNq3bYOtrbBj1qVQIWrXrMHK1WuoXKkiq9auw8rSEs9WLQEwMzOjVYvmbNuxM1+6LVu5GjtbGxo3bAiAnp4enTq0Z8myFQoR02ampvJI6e5du3xW76EjRtPCoymFXYWUVcXd3WlYvx6z5szl2KED8rmlSpSgVEkhNerkCbnf20Xz5ubrepSRlCR8rGlqaiq0a2pqyvtyzknOY07yV+siIiIiIiLyX6Z0IRuerR/7s9UQ+Q8Q8T6VTKmMoJgkHMx0MTfQYkvfKvL+dZf96FLZCRNd4V2teWlbph3Ke7OkMgbULoRRVrS3RCLBo6QNw3fczTGumqs5NsZCfd/5HYRow9/3PaBFGVuss+r+OlvoUbWQOZuu+lPOyZQt1/wxN9DEo5TwHm+qp0nTEtbsvRuYL902XPHH2khHngZcV1ON1uXsWHfpFUPrF5aPM9HVoIG7EBHXvoKDggzlej+kkXsBClnqA1DU2pBaRSxZfPY52/tXlc8tZmOIe1bE+qiGiht8P2ZG6+9b5iA5PQN1NZUc7RqqKiSnZeYyR2jXUFOsDauhpkJyWsZ31U9EROTbiUxMJ1MKwXGpOJhoYa6nwaZOReT9G26F0LmsJSY6ghO0WTFTpp/KWf7gc/SrbI1RVrS3RCKhaTFTRh70yzGumpMhNobC82RuC6E88MTjr2nhbop1VruzqTZVnAzYfDuUcnb6bL0TirmeOk3dhPUiE111Ghc1Yf+jyHzptvF2CNaGGtRxEdaKdDVVaV3CnHU3QxQipk101OWR0u1KWXxW70nHn9CwiAmFzLQBKGqpS81CRiy5HMzWLgbyuW5WurgXECLWR9ayJTf+aOyUr+tRRnK6FBBs8cdoqqnI+/I7R0NNRW7rfyaiA1xERERERERERORfQamSJenaqSN1GzWhetWqdOrQni6dOgBCjejQ0DCcnRwV5tjb2SmRlDcZGRkMGTEKn+fP0VDXIDYultDQsBzjbGxy1nV+8uwZwe/eUfujqO7IqEi0tLQAePHyJc5Oih8kX6Lj02fPCAkNU5CfkJiAuro66enp8ohsWyW6fU7v2rVqKrQVLOjMvv0HFdpsbX58GkUdHWHRLzVVcYdxamoqurrKU5Tp6GjnOudDn4iIiIiIiIiIyI/B3caQNuXtabP8ChWdzfAsZ4dnOeEdNz45nfD4VBzMFN/jbIy//B0tI1PGhH0PeBn6HnU1FbnsT7E2yin7eUg8IbEpClHd0QlpaKoLtW79wt7jYPqpjjr51u1FSDzh8YryE1MzUFOVkJ4pRV1VJVfd8tL7RUg81VzMFdoczfQ4+iBIoS0vud+LXbfesvv2W/nxwaE10FZXIz0jp2MkLVOKtoZqjnYAbXWhPS1D0TmSliFFW0N0V4iI/GoUs9LBs6QZ7TY/o6K9Pq1KmONZwgwQakSHJ6Rjb6K4Gf2Do/dLyJTKmHTiNS8jktBQVSEuS/anFDDI6Vx/EZ5EaHwabT6K6o5OSkfTTLC9fpHJ2BtrfbWOL8KTCXufriA/MS0T9U9svDLd8tL7eXgyVZ0Uyz44mmhx7GnUZ+d+b7TVhWtI+8Smp2ZI0cnVniufk5Yhldv6n4n4RBEREREREREREflXIJFI2LxhHePGjGLT1m1MmjadBYuXcOvqJYUxn5PxKZmZigsvTVq0okhhV7xOn0RTU5OLly5Tp2HOutOqqjlf5iUSCZ07dmD6lElKzy+TyfiMip/F3c0t1/TheemWn75P+fR+5Xfut6RA/7CJITRMcdNBaFg49erWVjrH1NQUQ0PDHHPCwsJybDgQERERERERERH5vkgkEpZ1KceQrLTes449ZdUFX06Oyn53+9wrsLJ3ZKlUpnDcafU1XCz02T+0OppqqlzzjcBz2ZUc81RUcgqTIMGznB3jmrjl6AOQ8flvic9RuIDBZ9OHK9MtP32f8qmu+Z37LSnQO1R0kNdj/4CDqQ4ZUhlRCanyNOiRCUJGgE83FMjnZG2GCI9PlUfky2QyIt6n5DpHRETk5yGRSFjS2oXB1WzYcz+c2ecDWH39Hcf7Fc8e8xkrr8y8Zn5i47ts86GQmTZ7exRDU02F66/jaLvpWY55qkrtnYTWJcwZU0d5gIEsFx2+hCIW2rmmD89bt8/3fUqOtZh8zv2WFOgfNgh8uukgIiGd6gWVbwgz0VHHQEuViE/mhCekY2/85ZsgvjeiA1zkl2fVruOs3nOclNR0fI6v/dnq/FKs33eK9QdOo62pgaG+LssmDcbawjTPOUe8bjBn/V60NTVRUZGw8PcBuBW0/2K5l+8+Zs76vWRmZvIuPBpbKzPWzRhJAXOT736dIiIi/y3WHL7EmsOXSU3P4PHW6T9bnV+KDceusvHENbQ11DHU02bxiI5YmxnlOefo1YfM23kabU11VCQqzB/ajqKOBb5abpc/1nH06kPiziz9Tlf1/QgOfkdAYCCVK1Vk7qy/GDtyBM5FinHO6wKerVpSoIAVr/xfK8wJCFRMWaivr09CYnYdovT0dMIjIuTHkZGRPPPx4bcxo+TptNPS0vKto7ubGy99fRXaLly8xPOXLxnYry9FixRhx67deeqYp/xixVi3cSNSqRQVFWGnbXh4OH/89TfLFi3Itxxlevv5KaYWe/XKH/diyhcIP8e3pEA3NjamdKmS3PX2pk3rVgDEx8fz0teXv/+ckeu8OrVqcs/7vvxYJpPh/eABE34b99W6iOSPNcdvsO74TVLSM3i0Vkyl+zEbT91m0+nbaGmoY6irxaLBLbE2NcxzzrEbT5m/9yJamuqoSCTMG9CcovaK9e2/RG63v3dw9MZTYg7/+d2uS0RE5L/PmhO3WHfiFilpGTxaM+pnq/NLsfH0HTaduYuWhppggwe2wNrUIM85x24+Y/6+y2hpqAm2vX8zitorpkbNj9ywmPcMX3GYZ2/Df6mfS0hsMsExSZRzMmVqi+IMquNChT9Oc/lFOB6lbLA00OJNpGIt0OAYxTI1eppqJKVmp79Oz5QS+T47ujsqIZWXoe8ZWq8wmlmps9MzladkVUbhAga8Ck9QaLvqG4Ff2Ht6VHPG1VKf/fcU38uDY/J2InxMkQIGbL/xBqlUJndGR7xPYcHp58xqUyrfcpTp/TpCUe83kQkUscr7dy43vncK9EqFzFBXlfAwMIY6RYX07w8DYlBXlVCpoJnSOW7WhpjqafIwIIZS9kKqYN+w9ySlZVLd1VzpHJFvZ/3FF6y/+ILU9Ezu/dnqZ6vzS7H5yku2XPFFS10NQx115neuRAGjvDNAHH8QwKKTT9BSV0VFRcLsDhUoYm30xXLD4pIZvf0mPsGxv+zPJSQ+leC4NMrZ6TO5oSMDq9pQaZE3V/zjaOpmiqW+Om+jUxTmBMcpZufQ01Al8aOyCOmZUqISs52m0YnpvIxIZnB1GzSz0mmnZyo6yPOiiIU2r6IUnyvXXsfhF5FM9wpWuJjrcPBRhEL/pzrmLV+HHd5hCjY+MiGdhZcC+bOpc77lKNP79Sf37k10CoUtvi6rx7ekQDfSVsO9gC6P3iXgUUzwBb1PycA/KoUJ9R1ynVfVyZCH77KfUzKZjCchiQyrkXtmwn+KnAU6RER+MQZ0aMqoHp4/W41fjsPnbzBz9U4OLZvK+Y2zKe/uiufwGUilub/8333ykr5TFrHhz1Gc3TCLbi3r0WLwNN4nJn2R3Ov3nzH4j2WsnjaMk2v+5Or2+bwJDiM67v0PvWYREZH/Bv1a1GRkh/o/W41fjiNXHzBr6wkO/DmIM4tGUa6II+0mr87Trt97/oYBc7eybnx3Ti0YSddGlWg9YQXvk1K+Su6pm0+4/ODlD7m+74Gvnx/jJ04mI0NYGJPJhI8hl0JC7aShgwaydfsOoqKEVFH7Dx4iOiZGQUbJ4sWJjo7mxUvhOrfv3CV3JIMQSWxlZYnXhYvytgOHj+Rbxwm/jeXIseM8fPQIgMTERCZOnUaRrNra/fv0JjQsjP0HDwEQFRXF7r378i1/yMD+JCUls27DJkC4BzNmzcbcTPni0pfoffjYcfl9efzkCafPnuP3cT/HmTlx/G9s2badiKzNCUuWr8S9mBtNGjWUj6nbsDETp0yTH/82ZjQnTp2Wb0DYvnMXqqqqdO/S+R/V/f+Rfk0rM8Kz5ucH/p9x9MZT/t55nn1Te3B6dn/KudrRYcbWvO36y0AGLtrHmlHtODmrH13rlaPNtE28T0r9Krmn7jzn8qNXP+T6RERE/tv0a1KREa2r/2w1fjmO3njG37susG9yV07P6ks5F1s6/LntM7Y9iIGLD7BmZBtO/tWHrvXK0uaPLbxPTv0iuV4P/Gg/c1uOiLlfAf+IBGYefULGB4d0lorO5kJ68T41CrL3TgDRicI1H3sQTEyS4ibTYjaGxCSl4RcmrC3tvxvIR6/pmOhqYGGgyZWX4fK2Ew/f5VvHEQ0Kc+ZJCE+DYwEhPfmsY0/ltbW7VnUmIj6VYw+CAYhOTOWQd1Bu4nLQq0ZBktMz2X7zDSC8py88/RxT3W+LgBvRoDCnnoTI74vPuzguPg9jeIPCn5n5z2Ciq0m3qs6svuBHplSGVCpj7SU/ulV1xlhXSNkbmZBKmaknOfs0BBAiGYfWc2XjVX+Ssmp+r7rgSwN3K4pa571RUOTr6V2rMMMa5h29+v/IsfsBzDn2iF1D6nJ8bEPKOJrRefmFHBkoPsb7TSRDNl1nZc+qHB3TkE5VCtF+qRcJKelfJPfCs3d0Xn7hl7TrH/M6KoW/zr4lI8shLcsy8k4mQsRwr4oF2Pcwgugk4fqPP4siNjlDQYablS6xyRn4RQpO6gOPIvk4qNlYRw0LPXWu+mdnqDjhE51vHYfVsOXMixiehgqbrZLSMvn7XACFzAVHctdylkQkpHP8mbBeFJ2UzuEnUbnK+5SeFa1ITpeyw1t4BslkMhZdCsI0q+751zKshi2nn0fL74tPWCKX/GIZWj33Ot8/kuE1bNj7IEK+OWH9rVAKW2hT18VIPqbtpqf8fS5Afjy4mjVevrG8+vhnqyKh7Sc10H8GogNcRORfypz1e+nsUQcLEyMABnVsxrNXAZy+ei/XOQs2HaBh1bK4OgoGtGOTWmRkZrL96IUvkjt+wQaGd2uJjaWw2K6vq8P2ueOxLyDu0hQRERH5WubtOEPH+hUxNxYWYAa0qoXPm3ecuZ0z3dMHFu45R/0KbrjYCZGB7euWJyMzk51nb32x3MTkVGZsOsqIdvW+74V9R4oUdqWgsxNVatamToPGNPdsy9KF8ylRXEi7NWbkCDyaNqFMxSrUb9yUFy99KV+2rIKMggWd+WPqFJq1akMjj+ZkZkqxtLBg9rwFLFu5ColEwp7t23j4+DGlylekZZt2aGgICze16zciIiKCjl278+DRIzZv3UazVoqb9BrUr8fq5Uvp1qsPVWvVoZFHCwYP6C+vr+3gYM+eHduYOGUalarXpO/AwXTu2IHQMKGud0KCYnTHp5ibm3Pm+FG27dhJ2UpVqFm3Afp6ekz6/TcA/p47j81bt/Hg0SNq12+E36tsx9fn9F62aAHtO3elUvWadO99RMRSAAEAAElEQVTdl03r1lClciVASGl+6uxZTp09my89v5XWLVswZeIEGjVrQdVadbh56xZH9u9T2KyQnJJCalr2wnGF8uXYtG4Nnbv3pEad+qzbsIlTRw+jr6//Q3UVEcmN+Xsv0qFOacyNhMX//s2q4BMQxpl7uW80WnzgCvXLFsbFVnivblerJBmZUnZe8P5iuYkpaczcdpbhrfNOxSoiIiIikn/m77tEh9qlsm2wR2V8AsI5c8831zmLD16lfllXXGyENZR2NUtk2fYHXyRXTUWFozN7Udbl50dUfYqLpT4Opro0XXiR1ksv03XtDf7yLImbjeDMHFjHhQbuBag/x4u2y6/wKvy9PPL3A45mevzWxI2ua67TYeVVpFIZZvpaLDv3gvWXXyGRSFjboyLPguOoM/s83dfeQD0rSrDV0stEJqTSf9NtngbHsft2AF1WX1eQX6uIJXPbl2bI1rt4LLxIx5XX6FXdWV5f285Eh7U9KzDr+FMaL7jA6J3eeJazJyKrrndiqqIz51PM9DTZPbAq++4EUH/ueVouuYyephojGxYBYOnZF+y+HcDT4DhaLb2sENX9Ob1ntSlJv023abzgAkO33WVx53KUdxKi8yYfeMgFnzAu+ITlS88fwZQW7hSy1Kfx/As0mn8BZ3M9prRwl/fLpDJS0jPlzjOA/rUK0ayUDc0XXaLR/AukpEtZ2rncP667iMiik09oX8kZcwPBmduvThGev4vl3NPgXOcsPf2Ueu42FLISbFzbCk5kSKXsvun/RXLVVFQ4NKo+pR3zzuj6sylkpo2DsRbN1z2mzcan9NjxnD+bOuFmJZQsGFDFmvqFjWm46hHtNz/jVWQypWz0FGQ4mmgxtrYd3bc/p9OWZ4KN19Ng+dVgNt4KQSKRsLqdK89CE6m34iE9dzxHQ1XwkLfZ+JSoxHQG7n3J09BE9jyIoNt2HwX5NQsZMaeZM8MP+NF83WM6bfWhZ0UreX1tWyNNVrdz5e9zAXiseczYw6/wLGFGRIJQNzwxVbE03qeY6qqzs5sb+x9G0HDVI1pveIqupirDawp+lmVXgtnzIIKnoYm02fiU1x9Fo39O7z+bOjNgz0s81jxm+AE/FrYqRHl7YR1jysnXXPSL5aJfbL70/FaauJkyspYtnbb60HzdY+4FvmdTpyIKZTZS0qWkfZSBpbStPotaFWTIfl9arX/Cjnth7OhaFD1NsQa4yA9g98lLLNt+BD0dLZJT0qhZvgTTh3YFICMjk9/mr+f4pds42VpSvnhhbj18TkBIBB2a1MTZrgALNu1XSDfecsh0Lt99zOIJA+navC4AF28/Yva63chkkJqWjoujDXPG9MZIXzBsnsNmcOOBDz1bNyAhKZlnfgFcf/CM6zsXUrKwM1uPnGfFzqPoaWuTKc1kRLdWNK9TWX4Nxy/dYuKiTRjp6+Foa0UJ1y9L3XD70QsmLtpEpjQTmQwaVivL2F5tUFVVZfrybew6cQkHawsaVivLhVsPufHAh6mDu8j/n5veO45dYMm2w2hqqJGWnsHYXm1pXb8qAIP+WMrJK3epW6kUBcxNuPfUj2v3n7Jt9jia1a70zT/Xj4mJT+DB81eM6ZW9eG2or4uLvTVetx7SuEZ5pfMu3n7EuD5t5ccqKiqULlqQC7cfMqBD03zJDQqN4N5TX9ZMH64gu1SRr0/1ISIikjd7ve6y/MAF9LQ1SU5Np0YpF6b2ag5ARmYmv686wMkbj3EsYEa5Io7cfvaawPBo2tUpj7ONGQt3nVVIN+45YQVXHvqycHh7OjcQ7NOl+y+Yu+M0MpmM1PQMXGwtmDXQEyM9ITVTu8mruPnEn+5NqpCQnIrPm3fceOLPlZW/UaKgLdvP3GTlwUvoaWuQKZUxrE1dmlXLTq124sZjJq89hJGeDo4FTCle8Mt2Mt7xec3ktYfIlMqQyWQ0KF+M0R0boKqqwoyNx9jjdQd7SxMaVCjGxfsvuPnEn8k9PeT/z03vXedus2yfFxrqaqRlZDK6YwNa1SgNwJAFOzh96wl1yhbBytQQ7xcBXH/sx+ZJvfCo+n3TxsW8T+KhXyCjPoqMN9TVppCtBRfvv6BRJXel8y7ff8mYTtkRsSoqKpRyseOi9wv6taj5RXL/3HycXh7V0dL4dV8Prays2LB2da79ampqLFkwjyUL5snbzp47n2PcxPHjmDg+Oy12757dFfqrVa2C960bCm0fy9y5dXOeenbp1JEunTrm2t/coynNPZoqtE2dNCFPmR9TvlxZLnudVdo3fuwYxo8do7Tvc3p369KZbrlESy+aN/eb0pp/DQP69mFA3z659l+/dCFHW6sWzWnVovmPVOu7sPfSQ1YeuYaulgYpaRlUL+HMlK4NAMGuT1h/gpO3n+NoaUy5wnbcfh5AYEQs7WqWwrmAKYv2X1JIN95m+iauPn7NgoEt6FS3DACXH71i7u4LyIC09AwK2Zgxq3dTDPWEHfDtZ2zhps9bujcoL9jHgDBuPnvL5YWDKe5szY7z3qw6eh1dbQ0yM2UMa1UNj8rZESMnbvkwddMpjPS0cbAypriTYumFz3HnRQBTNp0iM1MGyKhf1pVRbWqhqqrCzG1n2XPpAfYWxjQoW5hLD/246fOWSV3qc/Hhqzz13nXhPssPX0VTTbDro9rWpGVVYZPMsKUHOH33BbVLFcLKxID7fkFcf/qGTeM60rTS16X7z43YhGQevnrHyI8i4w11tShkbcalh69oVL6I0nmXHr1iTNta8mMVFRVKFrTm0sNX9Gta+Yvk/rX9HL0aVUBL49uiEkRERPLH3suPWHn0erZtL+7ElC7CO1hGZiYTNpzi5J0s2+76wbbH0a5mCcG2H7iikG68zR9buPrkDQsGNKNTHeH99PIjf+buvYhM9rFtb4yhbpZtn7mNmz4BdG9QloTkNMFG+gRwecFAijsVYIfXfVYdu4GuVtY7e8uqeHxk/07cfs7UzacF225pTHEnqy+6B3deBDJl82khkk2WZds9awi2ffs59lx6hL2FEQ3KunLp0Stu+gQwqXNdLj70z1PvXRcfsPzwdTTVVQXb7lmDllWF99hhyw9x+u5LapcqiJWxPvf9grn+7C2bxranacWi3/xz/ZjYhGQe+ocw0jN7Y5Fgg0259OgVjcorj8i99MifMW2z5wi2vYBg25tUzLfcGiV+3XUXCwMtFufhvFRTVeFPz5L86Zn9HXXxRXiOcSMaFGFEg+xnWafKjgr9FQuacW5cXYW2j2Wu7lEhTz3blLenTXn7XPsbFremYXFrhbYxjfP/e1TawYTDw5VnxRlavzBD6yv/Hfmc3u0qONCugvL0szNal/zuac2/FE01VYWfw6eYG2jx7C8PhTaJRMLoRkUZ3ej7/p1+T/bffs1qLx90NdVJScukWmFLJrYU7HFGppTJ++5x+lEQDmZ6lHUy445/BEFRibSp4ISThT5LTj9VSDfeYakX116GMrdTRTpUFrKYXXkeyoKTj4W1mAwphSwNmNm2HIY6wibszssvcOtVOF2ruZCQks7zd7HcehXB+QlNKG5nwq4br1jj9RxdTTUyZTIG13ejaans3/FTDwOZfsAbIx1NHMz0KGZnzJdw1z+C6Qe8yZTJkMmgnrs1Ixq5o6qiwqzDD9h3+zV2prrUc7fh8vNQbr8K5/fmpbj8PDRPvffc8mflOR801VRIy5AyopE7zcsKv+Mjt97gzJNgahUtgJWhDg/eRnHDN4x1fWvQpJTy+s5fS2xiKo8CoxneKPs7x0Bbg4KWBlz2CaVBceVrV1dehDKycXb9axUVCSXtTbj0PITetQrnW271Il/2nP1ZWOhrsLBVoVz71VQlzGjixIwm2T6cy6/icowbXtNW7jAG6FhWscxTBQcDzgxUtCUfy1zZ1jVPPT1LmuNZMvcAvQZFTGhQRLF866ja+f+dKmWjx8HeytfnhlS3YUh15RvUPqd321LmtC2lXO8/Gjt9U1rzr6FbeSu6lc/9d/No3+I52hoXNaVx0V9vI8evu8Ip8lWERETRd8oiHh5ciZOtFWFRsZT1HCx3gC/ccpCTV+5wbccCTI0MOHD2Gou2HOS33u2YOCB7ofav1bvk/z+0bCpFm/ZVOM/pa/doVrsSgzo2QyaTMWTmcsbP38CqacMA2L9kMo36TmTfmSuc3/A3tlbmDJ6xDFUVFU5fu8fERRu5sXMRNpZm+AW8o3KHERxbaUzFkkUIeBdOl3Fz2PjXaFrWrUJkTDyN+uZ/UTg8OpYWQ6axadYYGlYtS0JSMvV7/46amipjerZh6uAuqKmqsmTbIYZ3bcnI7q3ZdtSL5JTUPPU+d+M+I/9exZVt83F1tOWJ7xtqdhtLAXMTKpcqyoopQ+k3dTHHL97ixJqZzBjWnb/X7kZdTfmf2di563j88rXSvg+cWqu8Tt+boFAALE0VX1osTI15ExyqdE5UbDxxCYk55liaGnPvqW++5T7xeyuMfRfG+AUbiE9IxMrMhN/7daC4q2Oe1yMiIvLlhETF0X/OVu5tnIxTATPCY+Ip3+dPuQN88Z7zQtrqFb9hYqDLwcv3WbL3PGM7NeT3bk3kcv7eelL+//1/DaJ416kK5zlz5xkeVUowoFUtZDIZwxbtZOLqgywfLTjD9swYQNMxizlw0ZvTC0dia2HM0IU7UFVR4eztp0xac4irK3/DxtyYV8HhVBswm8MmQ6jg5kRAWDTdZ25g3fjutKheiqi4BJqMWZzvexAR857Wv69gw4Qe1K9QjITkVBqNWoSamgqjOjRgck8P1FRVWLbfi6Ft6jK8XT12nLlFUmpannqfv+vD6KV7uLhsLC52ljx9/Y46Q+dRwNSQSsWcWTaqEwPnbuX4jcccmzuM6b1bMGfbKdTVlO9gHL9yP49f5Z0i7/i84Urb34REAmBpoljHzcLYQN73KdHxicQlJmNpnHPO/ZcBXyT3oV8g9168ZWa/luw8dzvPaxAREfk2QqLiGbhoH3dXjsTRyoTw2AQqDl4kd4AvOXiV03decGnBYEwMdDh07TFLD15lTLtajO+YveD7967szR37pvagRF/FDQpn773Eo5Ib/ZtVQSaTMWL5ISZuOMGyYcJGx92Tu+ExcR0Hrjzi1N/9sDU3Yviyg6ioqHD23gsmbzzJ5UVDsDEz5NW7SGqMWMZBY30qFLEnIDyGnnN2snZ0O5pXcScqPhGPCevyfQ8iYhPwnLaJ9WPaU79sYRKSU2ny+1rUVFUZ2aYmk7rUR01VheWHrjKkZTWGta7OTi9vklLT89Tb674vY1cdwWv+IFxszXn6JpR6Y1diZWJApaIOLBnamkGL93Hilg9HZ/ZmWveGzN3thZqa8sRov687zuPXIXley7E/lW/SeBMqpOuzMFaMfLAw1pP3fUp0fBLxiSlYGCtmLbA01sfbN+iL5D7yf8c93yBm9GzEro8iDEVERH4MIdHxDFx8gLvLh2Xb9qFL5Q7wJYeucfruCy7NG5hl25+w9NA1xrStwfgOdeRy/t6Vvblr35RulOi3QOE8Z71f4lHRjf4elQTbvuIIEzecYtlQwbmye1IXPCZt4MDVJ5ya1QdbM0OGLz+cZdtfMnnTaS4vGJhl26OoMWoFB6fpZdn2WHrO3c3aUW1oXrmYYNsnbcj3PYiITcDzjy2sH9WW+mVdBds+cT1qqiqM9KzBpM71BNt++DpDWlRlWKtq7PS6T1Jaep56ez3wY+zqY3jNG4CLjRlP34ZRb9xqrEz0Bds+uCWDlhzgxO3nHJ3Rk2ndGjB3z0XUVHOx7etP8Pi18nWTDxyb2Utp+5swobSOhdEnNthIT973KdHxScQnpWBh9IltN9LH2y/4q+WKiIj8WEJjkxiy+To3pjXH0Vyf8Phkqk0/KneALz/7jLOPgzj3exNM9DQ5cu8ty88+Y2Rjd8Z5ZDvw5h57JP//rqF1KDvxoMJ5zj0NpklJO/rWKYJMJmP09ltM2XePxd2EQLHtg2vTcsEZDt19w7ExDbEx0WXUtpuoqkg4/ySYafu98ZrYBGtjXfzD46nz53EshmtT3tmcwKgE+qy7wsqe1WhWxp6ohBRaLlC+kVoZEfEptF/qxZre1ajrbkNCSjrN559BXVWFYQ3d+b1FKVRVJaw858Og+m4MaVCMXTdekZyWmafeF56947edtzk7vjGFrAx5FhxDo9mnsDTSpmJBCxZ2rczQzdc59TCIAyPrMblVaeafeIS6qkSpnpP23OVJUN6psg+NaqC0/W2kkInB3ECx3rKFgTZvI5WX+oxOSCU+OR2LrMjuj+fcfxv11XJFRES+P6ID/D9GWFQcmZlSAkMjcLK1wtLUiL2LJsn7V+46Rq9WDTA1EhbCW9evyvgF67/4PMO6NMfYQHh5l0gktKxbhf7TluQYV6t8CWythN0ryycPAWDU36tp06C6PH12IXtrapQrzpq9J6lYsgjr9p/C0tSYlnWrAGBmbEDzOpXZefxivnRbvfs4NpZmNKwqpDzV09GmfeOarNh5lDE928jHmRoZyCOluzSroyBDmd6jZ6+hac2K8vTh7i6O1Ktcmrkb9nJgyRT53BKFnShZWNiVO75v+1z1nDs294imz5GUIqT71PwkmkNTQ13e9ynJecz50JcfubHxwgN8xoodHFo+FXNjQ1buOkbtHmO5u3cZjjaKO7dERES+jfCYeDKlUoLCY3AqYIaFsQG7/+gv7199+BI9mlTBxEBIO9SqRmkmrjrwxecZ4lkHY30h2lsikdCiemkGzduWY1zN0q7YWgibZJaO7ATAmKV78KxVBhtzob2gjQXVS7mw7ugVKrg5seHYVSyN9WlRvRQApoZ6NKtakt3n7+RLtzVHLmNjbkz9CsLOWT1tTdrVKceqgxcZ1SH7I8bEQFce0dypQcXP6j122V6aVC4uTx9ezMmaumWLMH/nafbOHCifW6KgLSWyItbHdWmUq55/D/TMte9zJKcK9e801BVfzTTV1UhKTVM2haSUrDkauc/Jj1ypVMqYZXtZOKy9Qnrp/wLNWnny4NEj3rx9S0ZGBjOnT/38JBGRH0xEXIJg1yNicbQywcJIj52Tusr71xy7TvcG5TExEGxyy6rFmbj+ZG7icmVQ86oY6wsLLhKJhOZV3Bm8JGe9+ZolCmJrbgTA4iGCA2Xs6qO0rl4cGzMhXVxBazOqFXdm/clbVChiz8ZTt7Ew1qd5FcHmmhro4lHZjd0XH+RLt7XHb2JjZkj9skIUlJ62Jm1rlmTV0RuMbJMdNWVioCuPaO5Yp8xn9R635iiNKxaVpw8v5mhFndIuLNh7kT1TsjM9FHcqQHFnIbprbHvF74CPmdWnaa59nyMpVaiZpvmJ/dVQVyM5NV3ZFLld1lRX3Giloa4qn5MfuVKplDGrjrJgUIv/nF0XEflViYhNFGx7ZFy2bZ/QSd6/5vhNutcv95Ftd2fixlNffJ5BzatgrPexbXdj8NKDOcbVLOGMbZYNXzy4BQBj1xyjdTX3j2y7KdXcnVh/6o5g20/fwcJYj+ZZ2T5MDXTxqOTG7osP86Xb2hO3sDE1pH5ZIcpJT1uTtjVKsOrYTYXIZhMDHXlEc8esyPa89B635hiNKxSRpw8v5mBJnVKFWLD/Mns+en4Wd7KSZyMZ265WrnrO6t0k177PkW2nv8C2p32w23nZ9i+X+2+ny+rrPA2OIzA6iUypjPFNxbrEIr8WEe9TyJTKCI5JxNFcHwsDbbYOqiXvX3vhOV2ruWCiJ9R4b17WgSn7cy9LmRsD6xbFKKtOvEQiwaOMPcM2X88xrnoRK2xMhHWfBV2ETH7jd92hZTkHrI2FdmcLA6q6WrHx0kvKO5uz+YovFgbaNCsjRISb6mnRtJQde2/lHZD1gfWXXmBjrENddyGqVU9LHc8KTqy98JxhDbOjYE31NOURzR8i2/PS+/fdd2hU0laePtzNxphabgVYfOoJOwZnv5u72xlT3E6I1h3dpESues5s9/Wp85PThHTSmp9siNVQUyEpTXmq6eSsuvWanwRHaKipyvu+Ru5/iW7bfXgamkhgbCoZUhm/1c0984aIyI9EdID/xyhZ2ImOTWvRpP9kqpZ2o33jmnRoUguAuPeJhEXG4GirmL7AzurL6zZnZEgZNXs1z/0D0VBXJzZL9qd8cHJ/zLNXAbyLiKZR34nytsjYeLQ0BafryzdBONkqOlG/RMdnfgGERcYoyE9ISkZdTY309AzUsz4obCxy6vY5vWuWV3zYOtsV4ODZawpt1nnI/V7oaAkvRqlpih9CqWnp6GprKp2jncecD335kfthEa1fu8aYGwsvKgPaN2X+xv2s33+KGcMU08iKiIh8GyUK2tKhXnmajVtKFfeCtK1TjvZ1hc07cYnJhEXH42ilaHc+OHq/hIzMTMYs28uLgFA01FSJSxBkf4q1mVGOtmdvQ3gXFUfTj6K6o+IS0bQT7LpvYBiOBb5ex2dv3hEarSg/ITkVNTVV0jMy5RHZNuY5dctT7zfvqFHKRaHNycacw5fvf3bu90ZbU0hvlpauWK8tNT0DXS0NpXN0strT0nLO0cmSlx+5qw9fpqKbM+7Ov14twW/l6MH9P1uFL2bTlq1s3rpdad+Afn1o37aN0j6Rfw/FnQrQvlYpmk/eQGU3B9rWLEm7WqUAiEtMISwmAUcrxbRstuaGX3yeDKmUcauP8jwwAg11VeGZEZOzdru1mUGONp+AMEKi4/GYmB3VHRWfiFbWe7RvUASOlop23DYPG6xMfljMewX5icmpqKupKNh1Zbp9Tu9P08M6FzDl0LUnn8z98vv5pehkfdukfmJ/0z6y0TnnaGTNUVwUS0vPRDtLXn7krjl+k4pF7XF3/HekVBQR+S9Q3MmK9rVK0nzKJioXtRdse01h/UBu23PYza+w7ZlSxq09Lth2NVW57E+xNlVmI8MJiYpXiOqOik+Sl7/xDY7MqeMX2EufgHDBtn8kPzElDfVP3tmV6fY5vXPadhMOXX/6ydx/wrZ/sNNKbHBu7+waH+x2Xrb9y+X+29nWv8rPVuGL2XXrLbtvv1Xa172qMy3LfFmZL5FfG3dbY9pWdKL1onNUKmSBZ3kn2lQU0hDHJ6cRHp+Cg5li1gabLEf0l5AhlfH7rtu8CI1DQ1WFuOR0wuNTcoyzNtLJ0fb8XSwhsUm0XHBG3hadkIqmumAPfUPjc+pokn8dn7+LJSw+WUF+YmoGaioqpGdKUc/KtFFAiW6f07uaq+J7qpO5Pke9AxTa8pL7vdDWEJ5NqRlShfa0DCk6Gsqz/2lnPTdTMz6x6xmZ8r6vkftfYkvnX7e0QW7svh/O3gcRSvu6lrekhfuP9/mIfH9EB/h/DIlEwroZIxnVw5NtR84zffk2lmw7xKUt8z4a83kZn5IpVTTorYZOx9XRlpNr/kRTQ53Ldx/TuN+kHPNUlUQcSCQSOjSuyaSBnXL0AchkAJ9R8jO4FbTPNX24XLdc0mGBcr1z49P7lZfcj/mWFOgfNjGERSluOgiPiqF2xVJK55gaGWCop5tjTlhUDE5Z8vIj1zZrc4C1RXZNB4lEgp2VOW+Dw/K8HhERkS9HIpGwelw3RrSrz/Yzt5ix6RjL9nvhtXTMR2M+I0OJTc3MVHwJbzNxJS52lhybMxRNDXWuPPTFY2zOzB5K7TrQvm45JnRTHiknEwz7N+HmaJ1r+vC8dMtP36fksOsq+XsmfUsK9A8bBD7ddBAeE0/tMsrrxJoY6GKoq01YTM45jlam+Zbrdc+H2IRk+QaDD2ObjlmMrrYme2YMyPOaRL4vPbp1pUe3rp8fKPKvRSKRsGpkW4Z71mDHeW9mbjvL8kPXODcvO/OEMrutKCNnm1BLO5t20zfjYmvO0T97o6muxtXH/jSblDPzk/L3dWhXsyS/d6qn9PwylH8zfAlF7S1zTR+el2756fuUT1XNr13/lhToHzYxhH/imAqPSaBWKeX180wMdDDQ1SI8RjEtYljMe7m8/Mj1uu9LbEKKfIPBB3keE9ehq6XB7snd8rwmERGRL0cikbBquCfDW1Vnh9d9Zm4/x/LD1zg3p7/CmDxlKGnLlCq+s7ebsRUXG3OOzugp2PYnr2k2eWOOecrsnIQs295ReeYLmUz22efP5yhqb5Fr+vBs3fKy7fk//6e65tu2f0MK9A8bBMJjP7HBsQnUKllQ2RTBtutoER77iW2PfS+X9zVyRf55OlR0oENF5XW4Rf57SCQSlveoytCstN6zjjxg5blnnB7fWGHMl5L5yfpIx2VeFLI04OCI+miqq3LtZSitFp7LMU9FmV2XQJsKTvzWTHn9dRmyb7TqUMTaKNf04R/Iy/4q0zs3Ph2ZX7v+LSnQP2wQiIhPVmgPj0+mZpECSueY6GlioK2eY6NCeHyyXN7XyBX5ubQvbUH70hY/Ww2R74zoAP+P8S48isCQCCqWLMJfI3syonsrinn048Lth7SsWwUrM2NeByq+6AeGKu5s0dfRJjE52zinp2cQER0nP46MicfHP5BRPTzlqbI/jSzLC7eC9vi+DVZou3TnES/fBNO3bWOKONmx++SlPHXMi2KFHNh48AxSqVQerRweHcvfa3azYHz/z8zOW2+/gHcKbf6BIbgV/LoUHt+SAt3YQI+SRZzxfuZHq3pVAYhPSMI34F2eEdg1yxfn/jM/+bFMJuPBc3/G9Wqbb7mlihRER0uT0E8i/sOjY6lc6t+3u0tE5FfnXWQsQeExVHBzYma/lgxvW5cS3aZx0fsFLaqXwsrEgNef1IgOClf8+9TT0SQhObs8QnpGJhFx2YsrUXEJPH8bysj29b/Orjta4xsYrtB2+cFLXgaG0adZdQo7WLHX626eOuZFMSdrNp+4rmDXI2LeM3v7SeYNaZdvOcr0fhWs+Hx5HRxBUcev+xj5lhToxvo6lChky33fAFrWEFJBxicm4xcUzvTeLXKdV72Ui7zeNwh2/aFfEGM6Nsi33I/TvQNsP3OTQfO2f3bDgcjPpUnzlty4dZvhQwYzbfLEz0/4SaSlpTH1j5nMW7gI36ePcXQUFw3fRcURFBFHhSL2zOjZmGGtqlOq3zwuPfSjeRV3rIz1eR0apTAnKCJO4VhPW5PE5OzyCOkZmUR+bNfjE3keGM5wzxrydKppGflPtVfU3hLfYMVny5VH/rwMjqB344oUtrNg7yXFlLhBEbH5lu/mYMmWM3cV7XpsAnN2ezG3f/N8y1Gm96t3ivfOPySKovZfV6LnW1KgG+lpU8K5APf9gmlRVUgRGZ+Ugt+7SKZ2b5jrvBrFnbnvl/2tJJPJeOT/jlFta+Vb7sfp3gF2nPdm8JL9n91wICIi8vW8i4onKCJWsO09GjKsZVVKDVjIpUevaF65WJZtV1ycV2rbUz617YnyY8G2RzC8dfWvtO0W+L77xLY/9udlcCS9G1WgsJ05ey8/UugPilTUMS/cHCzZcvZeTtu+5yJz+3nkW44yvXPa9miK2n/dIvW3pEBXsMFVhJTdgg2OYmrX3B1ENYo7cf9V9nqSYNtDGJVV9uNr5Yr82nRcdY17b6LpW7MgYxu7/Wx1ciUtQ8rck89Y4eXLjUkNsDf98ijm/yIhsUkERSdS3tmcaZ5lGVy/GOUnH+SSTyjNythjaajNmwjFjS3BMYkKx3pa6iSmZq+tpGdKiXyf7TSNSkjhRUgcQxsWk5dJSPskYjgvilgb8SpMcbP71Reh+IbG07OmK4WtDNl/542ijtGKOuZFUWsjtl3zQyqVyR3ZEfEpzD/xiL87VMi3HGV6+0co6v064j1FrI2+St63pEA30tWkuJ0xD95G06yM8K36PjmNV2HxTG5VOtd51Qpb8fBt9rNJJpPxKCCakY2Lf5NckV+bLlt9uBf0nj6VCjC6tt3PVidX0jKkzL8QyMrr77g2rDR2xlqfn/QfRSwI9h/DL+Adk5dsJiPrI+jDprKCdkKNu4EdPdhx/AJRscJD5tD568TEKe4wLe7qSHRcAi/fCFFsu05eUqgdZ2qkj6WZMRfvZH8YHfG6kW8dx/Zuy/HLt3mUFf2cmJzCtGXbcHUUUq/29mxIWFQMh84L9U6iYuPZd/pKvuX379CU5JQ0Nh08m3UPZMxeuwcz429LhzW2d1uOX7olvy9PfN9w7sZ9xvb+OalIf+vdju3HLhARI3yQrtx1DLeC9jSsVlY+pnG/SUxbtlV+PLqnJ6ev3ZNvQNh14hKqKip0blY733J1tDUZ2NGD9ftOyWuHH7t4i9DIGHq2Fj/MRES+N6+CI5i67jAZmVl2HcGwF7QRSkP0b1mTnWdvEx0vfMQcvvKAmPdJCjLcnW2IeZ+Eb6CQpWGP1x1UPtqpbGKgi6WJAZfuv5C3Hb2Wv1p/AKM7NuDkzcfy6OfE5FT+2HgU16za2j2bViMs5j2HrzwAIDo+kf0XvfMtv1/zGiSnprP5pPCskclkzNlxCjNDvc/M/LzeJ248lt+Xp6/fcf7ec0Z3+Dm2bGynhuw8e5vIrOiQ1YcuUdTRmgYVshdLPMYu4Y+NR+XHo9rX5+ydZ/gFCRsQ9py/i6qKCh3rV/wiuSL/Pk4cOUSpErnXQfsVePPmLbXqNyQkJITMzP9+nbP84v8uimmbT39k1wWcrYWMDf08KrPrwgOi4wVbfuT6E2ITPrHrjlbEJCTjGyRs4tl76aFCdIWJvg6WxnpcfvRK3nb0hmKq2LwY3bYWp24/l0c/J6akMWPbGVyznj09GpYnPOY9R64LqcWj45M4cOVxvuX3bVqZpLR0tpwVNkfJZDLm7rmAmeG3LbiObluLk7d85Pfl6ZtQvO77yh0M/zRj2tVm1wVvuQNrzbEbFLW3pEFWfVyA5pPWM2NrdlrJEZ41OHfvJX5ZGxD2XHoo2PXaZb5IroiIyD+Lf0gU07aezWnbCwhZefo1rciuix/Z9htPiU1QjAqT2/asv/+9lx/lYtv95W1HbzzLt46j29bk1O0X8uhnwbafwzWrtnaPBuUJj0ngSNbzIjo+iQNXv8C2N6lIUmo6W84J7/kymYy5ey99B9tek5O3n8vvy9O3YXg98GNUmxqfmfljGNOmJrsuPsi2wcdvUtTeggZls0srNZ+8kRnbsiM4R7Suzrl7vh/Z9kdZtr3UF8kV+Xexc0BVitn8+NT830JAVCKtll4mNE6ody2SjX94PDMO3icjK3veh7UYZwt9APrWLszeW/5EJwhro0e9A4hNTFWQUczWmJikVPxChTXW/bdfK67F6GpiYaDFlefZwWrHHwTmW8cRjdw5/SiIJ0FCgEFiagZ/Hn6Ai5VQTqJbdRfC45PlqcWjE1I5eFd5Gn9l9K5VmOS0DLZdE4KpZDIZC04+xlTv25xpIxq5c+phkPy+PAuO4eKzEIY3cv/MzB/DyMbF2X3zlXxzwtoLLyhibUS9Ytll4lovPMtfhx/Ij4c1LMa5p+/kGxD23X6NqooK7Ss5f5FckX8X27oWpZjVr71JKDAmBc+NTwl9n05m/vfT/GcRI8D/Y7g62uJka0XtHuPQ09EiMTmV+b/1o7irIwAjurYiNCKaKp1GUsjemlrlS1C2mOLLtLNdAaYM7ESb4TNxtLHEs0E1LEyMWLBpP4lJKQzo0JRts8cxes4aKrYfjoO1BfYFhMWwRn0nsnXOOMbMXsOjF695+y4c72d+7F8yWS6/XuXSLJ04mD6TFqKno4WKigr92zeR19e2t7Zg25xxTFy0iYWbD1DA3IQOTWoxb+M+GvWdyL7Fk9DT0c71HpgbG3J05XTGz9/Auv2n0NXSokppN37rI0Q5z9u4j21HvYh7n0ijvhNZPnkIBe2FaL/u4+fmqfeC8f3p+ttctDTVSUvPYM304VQqKUQ9j527jrPXveX34XN6fist6lYmIiaWFoOnoaWhjpGBHvsWTVLYrJCSmqZQQ6qcuytrpg+n54T5aGtqoqIi4fDyaejr6nyR3KmDOjN9xXZqdhuLkb4uqqoqHF/1By4O4gNcROR742pniZO1GfWGL8iKCkll7pC28nrNw9rWJTQqnuoDZ1PQ1pwapVwpU1gxM4WztTkTuzel3eTVOBYwpVWNMlgY67Nw11kSk1Pp16Immyf1YuzyfVQdMAt7S1PsLIQUq03HLJb3PX4VTEBYNPd9AxTSYtctV5TFwzvSf85WdLU1UZFI6Ne8BjVKCQvx9pYmbJ7Ui8lrD7F4zzkKmBrSvm45Fuw6S9Mxi9k9YwB62pq53gMzI30O/j2YiasPsOH4VXS1NKjsXpCxnRoBsGDXGXacvUVcVhrvJSM7yTcI9PxzY556zxvSlh5/bkBTXZ20jExWju1CxWLCB8v4lfs5d9dHfh8+p+e30rxaKSJiE2g1YYVgf/W02f1HP0W7npauYNfLFnFk5Zgu9J61CW1NdVQkKhz4axD6OlpfJPcDTccsVkiBXrdcUUb9pA0BIv9+EhIT2LJhHUFBwWzZvuNnq/PL4GJrjpOVCQ3GrUZXS4Ok1DTm9Gsmr9c8tFU1QqPfU2PkMgpZm1G9hDOlXRRrSjoVMGVCp7p0mLkVR0tjWlYrjrmRHov2XyIhJZV+TSuzcVxHfltzjGrDl2JvYYSduZBe1WPiOjaN68i4NUd5/DqEgPAY7vsFK6TFrlPahYWDWzJg4V50tYR3xj5NKlE9qwarvYUxG8d1ZOqmUyw5cAUrE33a1SrJwn2X8Zi4jl2TuuZt1w11OTi9JxM3nGDjqdvoaGlQ2c2RMW2FTZkL911ih5c3cYlCGu8lQ1rJnUi95u7KU++5/ZvTc+4utNTVSMvIZMXwNlQsKkRd/L7uOOe9feX34XN6fivNKhcjIjYBz2kb0VRXx0hPi52Tuuaw6x9HcJZ1tWPFcE/6zt+NlqY6KhIJ+6b1QF9H84vkfsBj4jqFFOh1S7sw8idtCBAR+S/jYmMm2PbxawXbnpLOnL5Ns217y6qExrynxuiVFLI2pXpxJ0oXUvx+dipgwoSOdejw5zbBtld1x9xQj0UHrpCQkka/JhXZOKY9v607TrWRy7E3N8bOQnCueUzawKax7Rm37jiPX4cSEB7Lfb937J7URS6/TqlCLBzYnAGL96OrpYGKREKfJhWpXvyDbTdi49j2TN18miUHr2JlYkC7miVZuP8KHpM2sGti58/b9mndmbjxJBtP30FHU53Kbg6MybI5C/dfZofXA8G2T9rAksEtsm37/D156j23nwc95+3Otu3DWlOxiPDN8/v6E5y/7ye/D5/T81tpVtmNiLhEPP/Ygqa6mmCDJ3RWYts/emd3tWXFsFb0XbgPLQ01wbZP6Ya+tuYXyb33MoipW84QEB5LeGwCHpM2UKtkQca0Fe26yNeRmJrBsi7leBebzN47AZ+f8H9EIUtDHM31aDL3FLqa6iSlZjCrfQWK2Qrv1IPquREam0zdv47jbGFA9cJWlHIwVZDhZK7P+GYl6bziIg5merQo64C5vhZLTj8lMTWD3rUKs65vDSbsvkOtmcewN9XDNqtGd8sFZ+R9T4JiCIxK5OHbaLYPzg5iqu1mzbzOFRm86Rq6moJt6V2rMNUKC88eO1M91vWpzvQD3iw/+xRLQx3aVHBiyekntFxwhm2DaqOnpZ7rPTDT12LvsLpM2XePzVdeoqOhRqVCFoxqIjiql5x+wu4b/sQlp9FywRkWdKks3yDQb92VPPX+u0MF+qy7gpa6KmkZUpZ2r0KFgsI6zqQ9d/F69k5+Hz6n57fiUdqeyPcptF96Hk11VYx0NNg2qJbCJrTk9EyFmt9lHM1Y2r0yAzZcRUtdFRUVCbuH1lHQMz9yvd9E8scBbwKjEgnPqrdes2gBeSS5iMiXkpgmZUnrQoTEp7HvYf6zKv9Xkci+R2FOkX8cb29vypYty9XtCyhd9NvqATXqO5HqZd2ZOKDjd9JORESR+z6vqNZ5FPfu3aNMmTKfnyAi8n/IB7t+afk4Srl8WxqdpmMWU62EC793+/r0fiIin+OBbyA1B8/5Ibb9w9/D3RtXKVP656cH27FrN4uWLkNPV4/klGRq16zJXzOmA+B14SIzZ81GJpORmpZKYRcXFs6bg5GREQDNWnly9foN+vTqwfv3CTx4+BCpVMrOLZvxfvCATVu28tLXj8kTxtOtS2cAevXtz8kzZ6hdowYGhob4+DwnIDCQQQP6MXbUSLletes3omaN6gop0GfPm8+uPXsxNBAWxGdMm0L1akJZE3//1wwePoKkpGSkUinW1gX4Y+pkCrv+2KjRi5cuU6dhY/yfP/vlUqB7379PucrVfujv8cUFgyhZ8Ns2CXpMXEc1dyfGd6z7nbQTEcnJw1fB1Bq1QnxnFxHJBbldnzeAkgWtv1mex6QNVHN3ZHwH5TW5RUS+lYev3lFrzKrvatc//B2cGVObEnbG30Xm9+DA3UBWX/RFV1ONlPRMqrmYM6GZ4KS7+jKcBaefI0NIC1vQQo8ZrUpgqKMBQJfV17n9OorOlR1JTMngcXAsUqmM1T0q8Cgwll233uIfkcCohkVoV0F4lx2+/S5ePmFUdTHHQEudl2HxBMUk07OaM4PrZr9bt1p6mSqFzBRSoC8994JD3kHoZznKxjd1o1JBIRPD28hExu+9T3J6JlIpWBpq8VsTNwpZ6v/Q+3fNNwLPZVe4PaXhL5sC/VFgDA3mXfghv8/nfm9MCXvTz0/4DC0XnKGKqyXjPJTX5BYR+VYeBURRb9bJH/r9eqp/cYpbf1vGxe/BwUcRrL0Rgo6GKikZUqo6GfJ7PWHz21X/OBZdErJQpmZIKWimzfRGjhhqC/G+3bb7cCfgPZ3KWJCQJuVpSCJSmYwVbV15HJLInvvh+EclM6KmHW1LCRsvRh7044JfLFUcDdDXUsM3IonguDR6lLdkYLXs7/k2G59S2dFAIQX68ivBHHoSiYGmUMpgXF17KjoImRjeRqcw4bg/yelSpDKw1NdgbB07Cpn9uMBJgOuv42i76Rk3R/x6KdAfv0ug0erH/8h3pxgBLiIiIiIiIiIiIpIL796F0L13X148foizsxNhYWG4lSord4CfOH2ali2aMWzwIGQyGf0GDWHUuPFsWLMKgKMH91O7fiMOHjrCjcsXMDc3p0v3nnTr3Ydhgwdx/PBBTp89S9uOXWjdsgV6enpsWLuann36sWP3Hi6fP0vFCuV5/uIFZSpWoWiRIng0aaxU15Vr1rJpyzZuXL6AkZERV69dp0HTZvg8vI+Dgz1DR46ifLly/DF1MjKZjO69+nDj5q1cHeB/z53H6TPnlPZ9YOfWTVhZWX3DHRYRERERERERERH5ekLjkhm6/S7XJzbAwUyXiPgUqs86K3eAn3sWRpMS1vSpWQiZTMaY3feZeugxizoJpf629a9Cq6WXOfHwHcdH1cJMT5NBW+4wZOtd+tQsxI4BVbngE0afjbdoWtIGXU01Fncux7Dtdzl4L5DDw2pSxtEE37D31J97HhdLfRq4F1Cq66ar/uy+9ZbjI2thqKPBrVeRtF95lSsTGmBnosPv+x5QysGE35q4IZPJGLrtLnffROfqAF969gVez8PyvD+ru1fAwuDXcn6IiIiI5EVofBrDD/pxZWhpHEy0iEhIo9ayB3IHuJdvDI2LmtC7UgFkMhnjjvgz/fQbFrQsBMCWzkVps/EpJ32iOdq3OKa66gzZ58uwA770rlSArV2KctEvln67X9CkqAm6mqosbFWIEQf9OPQ4kgO9ilHGVh+/iGQarnpIIXMd6hdWvulr8+1Qdj8I52if4hhqq3H7bTwdtzzj0tDS2BppMunEa0rZ6DG2jj0ymYxhB/y4F/g+Vwf4sivBXPSLzfP+rGjjgoW+xtff4P8jRAf4/zmew2bIU35nZGYydXCXz08SEREREfllaTd5lTzld0amlMk9PX62SiIi/2rCwsPIzMwkIDAQZ2cnLC0tObJ/r7x/1LBhmJgIH0ISiYQ2rVvSs2//HHJq1ayBubmws7hKlcocOHwEz1YtAahWpQoJCQn4vXpFqZLZ0QIVy5enYoXyABQpXJjGDRuwdPmKXB3gf8+Zx9DBA+XR59WqVqGgsxPrNm5ixrQpBL97h5WVFVKpFBUVFWZOn6Y0ZfIHxo8dw/ixY/J/s0R+CO1nbJGn/M7IlDKpS/2frZKIiIiIyDfSfuY2ecrvjEwpkzrX+9kqiYj8a4l4n0qmVEZQTBIOZrqYG2ixpW8Vef+A2oUwyor2lkgkeJS0YfiOuznkVHUxw0xPSEtf3smEE4+C8SgpZHuo4GxKYmoGryMScLc1ks8p42BCGUehfJiLpT51ilqx/vKrXB3gS8++oHfNgvLo84oFzXAw1WPHjdf81rQYoXEpWMYmI5XKUFGRML5pMfJ4XWdo/cIMrV84/zdL5IfRefkFecrvzEwZv7co9bNVEhH51xKZKNSvDo5LxcFEC3M9DTZ1KiLv71fZGqOsaG+JRELTYqaMPOiXQ04VJ0NMdYVsG+Xs9TnpE0XTokK2hwr2+iSmSXkdnYJ7gezMF6Vt9ChjK2w6KmSuTW0XYzbcCsnVAb7sajC9KxaQR59XcDDAwUSLHffCGFfXnpD4NCz01LPtel17JBKlogAYUt2GIdXFMrPfC9EB/n/OxzWu/y1sPXKe7Ue9lPb1adOINg2r/8MaiYiIiPw6fFzj+t/C9jM32XHmltK+Xh7V8KxV9h/WSEQkm1IlS9K1U0fqNmpC9apV6dShPV06dZD3Z2RkMGTEKHyeP0dDXYPYuFhCQ3NGYRT4KEpaR1sbM1NT1NSEV3FdXeFjKy4uXmGOg71iOQRnZyd279mnVM/3798TGBTEpi3bOH7i1Ef6ZfI+Qaj/O23yJLr16sO58160b9eGfr17Uajgt5XSEfnxfFzj+t/CjvPe7PDyVtrXq1EFWlcv8Q9rJCIiIvJr8XGN638LO7zus8PrvtK+Xo3K07qaWK9U5OfgbmNIm/L2tFl+hYrOZniWs8OzXPZ7dEamjAn7HvAy9D3qairEJ6cTHp+aQ47lR1HS2hpqmOhqoqYqeJ91NYX39viUdIU5tsY6CscOZroc9g5SqmdCSjrBscnsuvWWs09D5e2ZUikJqULN+LGNizJk210uvwinRRlbulZxwsnk56ciFvk8H9e4/rew68Yrdt14pbSvRw1XWpZz/GcVEhHJopiVDp4lzWi3+RkV7fVpVcIczxJm8v5MqYxJJ17zMiIJDVUV4lIyCE9IzyHHQi+7Jru2ugrGOuqoqQreZx0NIV35+yz7+wFbI02FYwdjTQ4/iVKqZ0JqJu/i0th9P5xzL2Pk7RlSGQlpQs34MbXtGHbAl8v+cbRwN6NzWQucTH9s+nORbEQHuMi/jq7N69K1uVj/UEREROS/QucGlejcoNLPVkNERCkSiYTNG9YxbswoNm3dxqRp01mweAm3rl7C0NCQJi1aUaSwK16nT6KpqSmvd/0pqqqqeR4DyGSyzx5Lctkq/GHs6BHD6NlducO0ZfNmBL56ya49+1i/aROLly5n787tNPdoqnS8mAJd5GvpVLcMneqKNaRFRERE/kt0qlOaTnVK/2w1RERyIJFIWNalHEPqurL79ltmHXvKqgu+nBxVGwNtdTqtvoaLhT77h1ZHU01VXu/6U1RUJHkeA3zyeo5MSX9ugX0fxg6s7ULHSo5KxzQuYc396Y055B3I9htvWHvJj3U9K9KwuLXS8WIKdJFvoUPlgnSoLG6IFvn1kEgkLGntwuBqNuy5H87s8wGsvv6O4/2KY6ClRpdtPhQy02Zvj2JoqqnI611/iuondvzTY1Bi15XY+dwitj+swwyoak370hZKxzQqasLd0WU5/DiKnd5hrLsZwpp2rjQoYqJ0vJgC/fsiOsBF/m9oOWQ6tx+9YHCnZkwc0PFnq5MraenpzFy1k0VbDvL48CocrC3lfRkZmWw7ep7dJy8BEuITkiju6sgfw7phYWL003QWERER+Rl4TljBHZ83DGxVi9+7NfnZ6ihl1pYTHL/+CEO97N2dBrra7JzeD4CMzEy2n7nFXi8hBV98YgrFC9owrVdzzI2V13kT+WcJDn5HQGAglStVZO6svxg7cgTORYpxzusCNatX45mPD7+NGYWmprBLOC0t7budOyBQMXrk9es3FCmsvF63gYEB9nZ2vPD1VWjfvXcfampqeLZqyb4DB2nTuhX9+/amf9/etO/clXUbNubqABdToIv807SZvok7LwIZ2KwK4zv+mhteU9MzmL75NFee+GOgo0VqWgYjPGvgUbmYfExCciqzdpznzosAMqVSdDQ1mN2vGW4OlnlIFhEREfnv0eaPLdx5EcTAZpUY36HOz1YnV9LSM5i16wJLD13De+Vw7C1ypjmNT0ph4oZTbDvvTczBP36CliK5ERKbTHBMEuWcTJnaojiD6rhQ4Y/TXH4RTuVCZrwMfc/QeoXRVBM2oKZnSr/buYNjkhSOA6ISc63Xra+ljo2xNq/CExTaD3kHoaYiwaOUDUcfBNOslA3dqjrTraozfTfeYtuNN7k6wMUU6CK/Ah2WenH3dQT96hRhnEfJz0/4Ccw59pCTD4Mw1M6OCDbQ1mDLwFo/TymRXAmJTyU4Lo1ydvpMbujIwKo2VFrkzRX/OCo7GPAyIpnB1W3QVBOydKRnfrod6esJjlPMEBIQk5prvW59LTVsDDV4FZms0H74SSRqKhKauply7GkUHsVM6Vrekq7lLem/5yXb74Xn6gAXU6B/X/KoIiIi8t/i0LKplCjs9LPVyJO378Jo2GciIRHRZCp5IQ+LimH0nLXMGdOXk2tm4rVpNkFhkXQZO/snaCsiIiLyc9n/1yCKF/z1XwpnDfTk+Lzh8n8fnN8AYdHxjFu+j78HenJs7jDOLhpJUHgM3Was/4kai3yMr58f4ydOJiNDSIv1YYevS6GCmJqaYmVlideFi/LxBw4f+W7nfvj4MXfu3gPgxcuXnDx9hqGDB+U6fsJv49iybTsBAYEARERE8Mefs3Av5gbA+ImTeebjIx+fmZmJq6vLd9NXRORb2Te1B8WdlNfM/FWYt+cCJ277cOKvfhz/qy8LBrWg97zdPH4dIh8zdOkBHr8O4eiffTg/bxCtqhWn1ZQNxCUk5yFZRERE5L/HvindKO70a2eKCQiPwWPSBkKj35MpVe4YfeQfQvPJG0lIzpk2W+Tn4x+RwMyjT8j4sI6W5QdxNtfDRFcDCwNNrrwMl48/8fDddzv30+A47r+NBsAv7D1ePqH0rpF7RO2IBkXYc+ctQdGC4zwyIZX5p3woUsAAgJlHnvAiNLssklQqo6CFuDFa5Ndm19A6uNsqr4/8KzGzbVkOjWog/yc6v39dXkel8NfZt2RkObZlWYbdyUQLYx01LPTUueofJx9/wif6u537WVgSD4KFjUp+kclc8I2hV8Xcv1GH1bBl74MIgmOFd4SoxHQWXgyisIVQIuOvs295GZ69WUoqlVHQTMzK8U8hRoCLiPxCJCSlsG7GSILDI9lx7EKOfnV1Nbo1r0txV0cANDXU6e3ZkC7j5hASEUUBc9N/WGMRERERkW9BQ02NLg0r4e4sOPI1NdTp2bQq3WduICQqjgKmhj9ZQ5EihV0p6OxElZq10dPVIzEpkaUL51OiuFDncs/2bQwbNZpS5Svi6OCAvb09ALXrN2LPjq0MGzWGB48e8ebtWwwM9LGytGT2vAWEhoXRsGkzdm7djGf7TgCMHDuOWTP/oFGDBgC08GjKrr17Gff7RF6/ecO0yRPxaCKkV2/SvKVcbkZGBjOnT6Vfn14kJCbQuHlLTE1MUFVVZeHc2RR2FaLGhw4eSM++/dHR1iElNYWiRYowbdLEH3bv0tLSaNi0ObFxsQB07NYdO1tb9uzY9sPOKSLyo3n8OoQyhWzR1xGyPpRwtsZAV4srj/wp7lSA8NgEDl17wpbxndBUFz63uzcoz7TNp9l+3ptBLar+TPVFRERERD4hITmNVSM8eRcVz66LD5SOSU3PYPekLpy/78eh60//WQVFPouLpT4Opro0XXgRXU01ktIy+cuzJG42wrfU2h4Vmbj/IXVmn8fORAdbE8Ep0WrpZdb2rMjEfQ95GhxHYHQS+lrqWOhrsezcCyLiU2i/4iqruleg14abAEw5+IiJzYpRp6iwsaNR8QIc8g7ijyNPCIhKZExjNxq4C46SjquuyeVmSmWMb1qMrlWcSEzNoOOqa5joaqCiImFG6xLyqPE+NQoyfPs9tDVUSU3PxNXKgLGNi/6we5eWIaX9yqvEJwu1cwdsvo21sQ7relb8YecUERER+RyFzLRxMNai+brH6GiokpyeyZ9NnXCz0gVgdTtXJp14Tb0VD7Ez0pTX7W6z8am872loIoGxqehpqmKhp87yq8FEJKTRccszVrRxoe/ulwBMPfWGCfXsqe0ibOJoUNiYw48jmXnmLQExKYyubUf9wkJfl60+crkZUhm/1bWnSzlLEtMy6bzNB2NtNVRVJExv5CiPGu9VsQAjD/mhra5KSoYUV3NtRtey+2H3Li1DSqetPsSlCEEcA/f5Ym2gwZr2/5/ZQkQHuMgPYffJSyzbfgQ9HS2SU9KoWb4E04d2BeDi7UfMXrcbmQxS09JxcbRhzpjeGOnrAeA5bAY3HvjQo1V9EpKSefjCH6lUxuZZY3jw3J+tR87j9zaY8f3a09lDSKHVf+pizlz3pka54hjq6fDcP5DA0Ej6tWvMyO6t89R1/qb97D11BUM94QV4yqDOVC0jpDB8HRTKiFmrSE5JRSqTUcDchMkDO+HqaPtD7luxQg4ABIdHKu23MDFi4e8DFNq0NIR6D2npGT9EJxERERGAvV53WX7gAnramiSnplOjlAtTezUH4NL9F8zdcRqZTEZqegYuthbMGuiJUZZdbTd5FTef+NOtcRUSklN45BeEVCZjw4QePPQLYvvpm/gFh/Nb50Z0rC98aA+at42zd55RvaQLBrravHgbSlBEDH2aVWd4u3p56rpw91n2X7iHga7wsjmpR1OqFC8EwOuQSEYv3UNyShpSmQwrU0MmdW+Ki93PSUtrbqzP/KHtFNq0NISUXKJd/zWwsrJiw9rVufZXq1oF71s3FNqWLJgn///OrZtzzOnUob3C8YWzp5TKVlVVZf7sv5X2nThySGn7qOHDGDV8mNK+4UMGM3zIYKV9PwINDY1cr03k57P30kNWHrmGrpYGKWkZVC/hzJSuwuaLy49eMXf3BWQItqiQjRmzejeVl3NoP2MLN33e0q1+ORKSU3nsH4JUJmP9mPY89H/H9vPevAqOZFz7OnTIqhc7ePF+znm/pFpxZwx0NHkRGEFQZCx9GldiWOvqeeq6aP9l9l95iIGOsFN+Yuf6VCnmCMCb0GjGrDpCUmq68L5uos+ETvVwsTX/IfeteWV3Zmw9Q3BkHDZmhpz39iUyLhFzI+FbJjA8BkB+DKCqqoK5kR7Xn74WHeAiIiI/jL2XH7Hy6PVsu17ciSld6gNw+ZE/c/deRCb72K43xjDrfbn9zG3c9AmgW/2ygl1/nWXXR7UT7LrXfV69i2Jcu1p0qF0KgMFLD3LO25dq7k6CXQ+KICgijj6NKzCsVbU8dV104Ar7rzzGIGsz0cTOdani5ghk2fU1xwS7Lv1g1+viYmP2Q+7bh/IU76Licx1TvvCPW6gW+XYsDLRY3Llcrv0VC5pxbpxiaZU/PbPTNK/uUSHHnNblFH/mB4fWUCpbRUXC9FYllPbtHKD8mT+gtgsDaivPwtS3ViH61iqktO9HoKGmkuu1ifya7L/9mtVePuhqqpOSlkm1wpZMbCm8b195HsqCk4+FtZkMKYUsDZjZthyGOsLaceflF7j1KpwuVQuRkJrBk8BopDIZq3tX53FANDtvvOJVeDyjm5SgfSVnAIZtuc75p++o5mqJvrYGL0PiCI5OpGdNV4Y0KJarngBLTj/l4N03GGSlHf+9WSkquQh1kt9EvOe3XbdJTssU1mYMtRnfrCSFrMQgABGw0NdgYavcbWEFBwPODFRMtz+jSXbm35Vtc5aOa1VC8ftwX0/lv7+qKhKmNnJU2retq/INSf2rWNO/ivJSFX0qF6BP5X8uy5mGmkqu1/b/iOgAF/nuhERE0XfKIh4eXImTrRVhUbGU9Rwsd4CfvnaPZrUrMahjM2QyGUNmLmf8/A2smiYs1u5fMplGfSdy5MJNLmyeg7mxIT0nzqfP5IUM6tiMg0uncPa6N13GzaZFncro6Wizevpw+k1dzJ6Tlzm7/i/KFy/Mi9dBVOk0kiJOdjSuUV6prmv3nmTbkfNc2DwHI309rt9/RrNBU7m/fzn21haMmr2Gcu4uTB7YGZlMRp/Ji7j16EWuDvB5G/dx7vr9PO/PplljsDL7fmlhbj16Thm3Qgq1wkVERES+JyFRcfSfs5V7GyfjVMCM8Jh4yvf5U+4AP3PnGR5VSjCgVS1kMhnDFu1k4uqDLB/dGYA9MwbQdMxijl57yPnFozAz0qfPrM30n7OVAS1rsu/PgZy760P3GetpVq0UetqarBjThYFzt7L3wj1OzR9BuaKOvAwIpfqgORS2t6JRJXeluq47eoXtp29ybslojPR0uPHkFS3HL+fO+knYW5owdtleyhZ2YGL3pshkMvrP2cptn9e5OsAX7DrD+bs+Svs+sGFCTyxNDHLt33b6Bn9vPUF6RibO1uaM69IIZ+vcHTO3fV5T2tUeBysxq4eIiMiPISQqnoGL9nF35UgcrUwIj02g4uBFcgf42Xsv8ajkRv9mVZDJZIxYfoiJG06wbJgnALsnd8Nj4jqO3XzG2TkDMDPUpe/8PfRfuI8BzSqzd0p3znv70mP2Djwqu6Gnrcny4Z4MWryPfZcfceKvvpQrbMfLoAhqjlyGq505jcoXUarr+pO32HH+HmfnDMBQT5sbz97QeupGbi0fgb2FMWPXHKWMiy0TOtdDJpMxYNE+7rwIzNUBvnDfJc7f983z/qwf0x5LY+XpRjvVLUNCSipVhi3Bylgf3+BImlcuRsuqwnPpQ93YoIhYKCpsbs3IzCQiNgFDXTHVnYiIyI8hJDqegYsPcHf5sGy7PnSp3AF+1vslHhXd6O9RSbDrK44wccMplg1tBcDuSV3wmLRBsOuz+wl2feE++i/ezwCPSuyd3JXz933pMWc3HpWKCnZ9aCsGLTnAviuPOfFnL8q5Ztn10StxtTWnUXnlkUbrT91mh9d9zs7ui6GuNjeevaX19M3cWjoMewsjxq49TplCNkzoVFew64sPCHY9Fwf4wv2XOX/fL8/7s35021ztuoiIiMi/hdDYJIZsvs6Nac1xNNcnPD6ZatOPyh3g554G06SkHX3rFEEmkzF6+y2m7LvH4m6VAdg+uDYtF5zh+INATo5rhJm+FgM2XGXwpmv0q12EnUPq4PXsHb3XXKZpKTv0tNRZ0q0KQzdf58CdNxwZ3YCyTmb4hsZR968TuBYwpEFx5WvkGy+9ZNeNV5wc1whDHQ1u+oXTbsl5rk1thp2pHr/vvkNpRzPGNyuJTCZj8Kbr3H0dmasDfMnpJ3g9zbt8were1bE0VF6rGWDH9VfMPfaI9EwZTub6jG5aHCdz8dkgIvJfRnSAi3x3wqLiyMyUEhgagZOtFZamRuxdNEneP6xLc4wNhIeLRCKhZd0q9J+2JIecGuXcMTcWHnqVSxbliNdNWtatAkCV0m4kJKXwKjCEkoWd5XPKu7tSvrjwkVXYyZYGVcqwYtexXB3g8zbuY2AHD3n0eZXSbjjZWrHp0FmmDOrMu/AorMyMkUqlqKioMG1wF1RUJLle+5iebRjTs82X3K5vIjImnk2HzrJ34Y9LXyoiIiISHhNPplRKUHgMTgXMsDA2YPcf/eX9QzzrYKwvRHtLJBJaVC/NoHk5UxxXL+mCmZFg/ysWc+LotYe0qF4KgMrFnElITsX/XQQlCmZ/QJUr4kC5oo4AuNpbUa98UVYdupSrA3zhrrP0b1lTHn1e2b0gTgXM2HLyOpN6eBASFYtlpIHcrk/u6YGKJHe7PqpDA0Z1aJD/m/UJthbGGOhqsXx0Z1QkEmZvO0WtwXO5uXYC1mZGOcZHxSWw5eQNdn1UJ1zk/49efftz6uxZAPoPHsrq5Ut/skYi/zUi4hIEux4Ri6OVCRZGeuyc1FXeP6h5VYz1hcUjiURC8yruDF6yL4ec6u5OmBkKaegqFrXn2M2nNK8i7Dav5OZAQkoar0OiKO6cvRu+rKst5bIi6VxtzalXxpU1x27k6gBfuO8S/T0qy6PPK7s54mhlwtazd5nYuT4hUfFYGevL7fqkLvXztOsj29RkZJuaX3K7FNh46jZLDlzh4vxBOBUw5fHrEK4+9kdNVQUQIr9bVy/B8kNXqVfGFSM9bRYfuEJKekautWVFREREvpWI2ETBrkfGZdv1CZ3k/YOaV8FY72O77sbgpQdzyKle/CO7XsSeYzef0byyGwCVimbZ9dBoijtlRzKVdbGhnOtHdr20C2uO38zVAb5w/xX6N60ojz6v7OaAo6UJW8/dY2KnuoREf2LXO9fN26571mCkpxjBKvLPMnz7XS74hAEwdrc3c9uX+ckaifw/EPE+hUypjOCYRBzN9bEw0GbroFry/oF1i2KkK2TWkEgkeJSxZ9jm6znkVHO1xExf2JhZoaA5Jx4E4lFaKOVVsaAFiakZvI54T3E7E/mcMo6mlHUSNiK5WBlSp5g1ay+8yNUBvuT0E/rULiKPPq9UyAJHMz22X/NjfPNShMQmYWmojVQqQ0VFwoQWpchjyZ1hDd0Z1lD5OlB+sDXRxUBbg8VdK6MikTDvxCPqzzrBlSnNKGCk89VyRf47jDzox0W/WADGHXnFnOYFf65CIt8F0QEu8t0pWdiJjk1r0aT/ZKqWdqN945p0aFJL3p+RIWXU7NU89w9EQ12d2PeJhEXG5JBjZZb9kNXW0sTUSB81NVUAdLWFh3R8QpLCHLsCipEeTrZW7DtzRame7xOTCAqNZNuR85y6clfenpmZyfvEZAAmDehIn8kL8br1gDYNqtOrdUMK2v9zKSvyIiMjk+6/z2XygE5yp7+IiIjIj6BEQVs61CtPs3FLqeJekLZ1ytG+bvbGoozMTMYs28uLgFA01FSJS0gmLDpnCkGrj6KkdbQ0MDXQRU31g10XPtLis+zvB+wsTBSOnQqYc+DiPaV6vk9KISgihu1nbnL61hMF/RKSUwH4vWsT+s/ZykXvF7SuVYYeTapS0ObHpMkF6NqossLxuM6N2HD8KuuOXmFKz2YKfRmZmfT8ayMTujWRO/1F/j/JK+W6iMj3oLhTAdrXKkXzyRuo7OZA25olaVerlLw/Qypl3OqjPA+MQENdlbjEZMJiEnLIsTTJjpjQ0dTARP8ju64lLHbFJ6UqzLEzN1I4drQy4cCVx0r1fJ+USnBkHDvOe3P67gt5e2amlITkNAB+71iXAQv3cuGBH62rl6BHw/I4F/gxGTRkMhnTt5xmSMtqOGWdo7hTASZtOEFSajqj29YCYNnQ1szfe5F2f2xBTVWFOqUL0bRiUaLfJ+UhXUREROTrKe5kRftaJWk+ZROVi9oLdr1mdlrmjEwp49YeF+y6mipxiSnK7brxx3ZdHRN9nZx2PTFFYY5Su341F7uenGXXve5z+u5LeXumVJr9vt6hDgMW7efCw1e0ruZOjwblfphdFxH5WvJKuS4i8qNwtzWmbUUnWi86R6VCFniWd6JNxey0zxlSGb/vus2L0Dg0VFWIS04nPD4lh5yPo6R1NNQw0dOUb+bU1RTcRe+z6sJ/wNZUV+HY0UyPQ/feKtUzISWd4Jgkdt14xdnHQQr6JWTVJR7nUZLBm65xySeEluUc6VrNBWeLHxeN3amKYjrt0U2Ks/mKLxsvvWRCi1I/7Lwi/x7ySrku8u9FdICLfHckEgnrZoxkVA9Pth05z/Tl21iy7RCXtszDUF+XVkOn4+poy8k1f6Kpoc7lu49p3G9SDjmqKiqfHKvmGCOTyRSP+fRY0EcZH6YO69qSbi2U15NtVrsSL09uYN/pK2w6dJblO46yfe44mtasqHT8P5UCXSqV0nfqIqqXdad3m0bfJEtERETkc0gkElaP68aIdvXZfuYWMzYdY9l+L7yWjsFQV5s2E1fiYmfJsTlD0dRQ58pDXzzG5szskcOuq6rkGPOJWc95jCwPuy4MHtqmLl0aVlI6xqNqSZ7tcGX/hXtsOXWDlQcvsmVyb5pULq50/PdIgf4xqqoq2Fua8vpdpEK7VCplwJxtVCvuQi+PvGsmioiIiHwrEomEVSPbMtyzBjvOezNz21mWH7rGuXkDMdTVot30zbjYmnP0z95oqqtx9bE/zSatzyEnp13PaZ9zvK/Lcgwht8C+D+/2Q1pWo3O9skrHNK3kxpMNv3HgyiO2nr3LqqPX2TSuI00qKq/P9i0p0CPjEolLTJGnOf+Ag4UxR64/kTvAtTXVmZSVdvgDHhPXKURMioiIiHxPJBIJq4Z7MrxVdXZ43Wfm9nMsP3yNc3P6C3Z9xlZcbMw5OqOnYNefvKbZ5I055Kh+En73qZ0H+NSM5zTrn39fH9KiKp3rKo+YbVqxKE/WjeHA1cdsPXePVcdusmlse5pUyCVTiJgCXURE5P8EiUTC8h5VGdqgGLtuvGLWkQesPPeM0+MbY6CtQcdlXhSyNODgiPpoqqty7WUorRaeyyHn0+ymqkpsdo419hxrM5BbwPYHWz+onhsdqyiPom1Syo6Hs1pz8O4btl/zY43Xc9b3rU6jknZKx3+PFOgfo6qigr2JHm8i3udrvIiIyL8T0QEu8t15Fx5FYEgEFUsW4a+RPRnRvRXFPPpx4fZDqpVxx8c/kFE9PNHUUAcgLT3ju507KETRofAmKDTXet0GejrYWZnj+zZYoX3f6SuoqanSsm4VDp67Rqt6VendphG92zSi629z2HjgbK4O8H8qBfrIv1djbW7K+L7tAfC69QAnGyucbK1++LlFRET+/3gXGUtQeAwV3JyY2a8lw9vWpUS3aVz0fkG1EoV4/jaUke3r/xi7HhGtcPwmJDLXet0GutrYWRjjGxSm0L7/4j3UVFVpUb0Uhy7fp2WN0vTyqEYvj2p0n7mBzSeu5+oA/9YU6L+t2MfsQYrPhdCoOCq7K34Ejl62lwJmhozrImxquuD9HMcCZjgVUF7rUOTX4dLlK4yfNJlbt+/g//wZjo4OP1ulL+aZjw+Dh40kMzOT5JRkfh83ltYtW+Q6/vmLF8xftARfXz+kUimpaamMHTWSNq1bycfcuXuPBYuXEBYWTnq6ED3wx9TJ1K6VnXq6dv2cm/gioyKJj3/PW78XOfpEvh/vouIIioijQhF7ZvRszLBW1SnVbx6XHvpR1d2J54HhDPesgaa68LmYlpH53c4dFBmrcPwmNBrXXOp1G+hoYWtuhG+w4jv+gSuPUFNVoXkVdw5fe0KLqu70bFRB+DdnJ1vO3snVAf4tKdBNDXTQVFcjLEZxoSw05j1aWc9AgDsvAijuVEDelpSaxgO/YCZ2Vr7pVkRERORbeRcVT1BErGDXezRkWMuqlBqwkEuPXlG1mCPPAyMY3rr6j7HrEbEKx29CY3DNpV63YNcNc9r1q48Fu165GIevP6VFlWL0bFhe+Dd3N1vO3s3VAS6mQBfJL9f9Iph55Aneb2O4PaUh9p9EtP5qxCenM2HfA/zChdI1Dd2tGd2oSK4bTD7gH57AsO13UVdT4eBQ5X8bm6/6c9A7CJAREptCpYKmClHtxx8Gs+TsC7Q1VElJl1LByZQJzYqhpZ4zOEnknyMkNomg6ETKO5szzbMsg+sXo/zkg1zyCaWKqwUvQuIY2rAYmlk/p7SM71d+Jzg6UeH4bWRCrvW69bU1sDXRxS9MMTPgobtvUFVRoVkZe456v6VZGQe6V3ele3VX+qy9zLZrfrk6wL81BfrEPXf4s51iidTQuCQqFvpxGQFFfjw33sTx59kA7gclcHNEaeyMtX62SnkSn5LBxOOv8Y9KJkMKDQsbM7KWba52PSYpnQ23QrniH4eaioS4lAyaupkypJoNalmbz9/FpbLmRggPgxOQSCAxTUqnMhZ0r6DoJzrxLIplV4LRUlchNUNKOTsDfq9nj5Z6zs2O/yX+21cn8lPwC3jH5CWbycj6oPqwQ6ygnTWmRvpYmhlz8c4j+fgjXje+27kf+77m3lMhouPlmyDOXPdmUAePXMeP692W7ccuEBgSAUBETByz1uzCraBQ92Tyki34+AfIx2dmSnFxtPlu+n4Nk5ds5sXrIDwbVMX7mS/ez3w5cOYagaERP1UvERGR/y6vgiOYuu4wGZlZdj1rJ3BBG3NMDHSxNDHg0v1sZ9XRaw+/27mf+L/j3gshrZZvYBjn7vgwoGXujovRHRuy8+xtAsMFx3lk7HtmbzuFm6MQdTd1/RGevw2Rj8+USilkZ/Hd9P2UEzcec+JGdgrIzSevExH7nq6NsiPUp64/zMuAUFrVLIP3ywC8XwZw8NJ9gsJzlgcR+fWoWaM6O7ds/tlqfDXv37+noUdzenTrwmWvs2zfvJEeffpx+87dXOfMW7iYtNRUzp8+wWWvs/z1x3Q6dOnGufNe8jETJk/B2ckJrzMnuXLhHD27d6VJi1Y881HMqHDh7CmFfw0b1KddW88fdr0iAv7vopi2+fRHdl3A2doME30dLI31uPzolXz80RtPv9u5n74OxdtXSIXoGxTBOe+X9POonOv40W1rsuuCN4FZDpbIuETm7PKiqL2wGWraltM8DwiXj8+UynD5QaUtVFRU6FCnNFvP3iU2QSjZ8fBVMBcfvqJVteyNVPP2XJSndZfJZPy1/Rz1yrhS2c3xh+glIiIi4h8SxbStZ3Pa9QKmH9l1f/n4ozeefbdzP30ThrevEFjgGxzJufu+9GuqPBsTwOg2Ndl18YGiXd998SO7fobngZ/adXFTqMi3U6WQOau6V/jZauSbIdvuoKoi4dTo2hweXpOjD4JZczHvbAd77wQwdPtdVPJwki8994LTT0LYNbAqh4bVZFOfSpx7lr2J3C/sPf023WZ0o6IcGlaTw8NrcPdNFLNPfD+7IfJ1+IfHM+PgfTIyBcf2h7UZZwt9THQ1sTDQ4srzUPn44w8Cv9u5nwbHcv+NsHnJLzQOr6fv6Fs795KcIxq5s/vmK4KyHOeR71OYd/wxRa0Fp/kfB+/zIiRWPj5TKqOgZf4y630Npx8Fceph9v3YdtWXyPcpOVKji/y7qOxoyMo2Lj9bjXwz7IAfaioSjvcrwaFexTj2LIq1N0JyHe/lG8uxp1Fs6VyEfT2LsbVzUTbdDmXhpezf5T0PIngWmsjObm4c6OXOktaF+OP0G3Z5Z79L+UUmM2DvS0bWsuNAL3cO9HLnXtB75noFKDvtfwoxAlzku+PqaIuTrRW1e4xDT0eLxORU5v/Wj+KujgBsmz2O0XPWULH9cBysLbDPqtvdqO9Ets4Zx5jZa3j04jVv34Wjr6eDpakRCzbtJywqhmaDprJ51hg6jfkbgHHz1vPH0G40qCqkzmpasyJ7T19h4qJNvAkOY2L/jjSuIezuajlkulxuRmYmUwd3oZdnQxKSU2g5ZBomhgaoqqowe0wfedT4wA4e9J+6BB0tTVJS0yjibMfE/h1+2L1LS0+n+aBpxL4XXg66j5+HrZUZ2+b8BsCzVwEs2HQAgOpdxijMbddY3PEsIiLyY3C1s8TJ2ox6wxegp61JYkoqc4e0xd1Z2BC0eVIvxi7fR9UBs7C3NJXX7W46ZrG87/GrYALCotHX0cLSxICFu84SFh1Py/HL2TChB13/WAfA7yv3M613c+qVdwOgSeXiHLh4jylrD/E2NIrfuzWhUSVh16/nhBVyuRmZUib39KBn06okJqfiOWElJgY6qKqoMGtAa3nU+ICWNRk4bxs6mhqkpGVQxMGK37s2+WH3bkrPZqw4cIEVBy6Qmp6Bhpoqh/4eTGF7YSemz5sQFu0WUpLVHjJXYW7bOmJdOZEfz6at28jMzKRbl84AuLq40LhhA+YuWMjenduVznF0cKBZ08aoZtUErVunNkWLFGbP/gPUq1tHkOPqyoihg+VzevXozogx4zh05BhuRYXI3A1rVinIzczMZMeu3Zw7efy7X6eIIi625jhZmdBg3Gp0tTRISk1jTr9muDsKtmnjuI78tuYY1YYvxd7CCDtzIeW3x8R1bBrXkXFrjvL4dQgB4THo62hiYaTPov2XCI9JoPXUjawf056uf+8A4Pf1x5narSH1yrgC0LhiUQ5cecSUTad4GxbD+I51aVReiOprM32TXG5GppRJXerTo2EFElPSaDttE8ZZdv2vPk1xyYoa7+9RmcFL9qGtqUFqWgaF7cz5rUOdH3bv/urdhL93etFi8nq0NTVISE5larcG9P/IiV/N3Yl5ey6w6fQdVFQkVCrqwKqRPz5LlIiIyP8vLjZmgl0fv1aw6ynpzOnbNNuuj2nPb+uOU23kcuzNjbGzEBwQHpM2sGlse8atO87j16EEhMeir62JhbE+iw5cITw2gdbTNrN+dFu6zt4FwO/rTzK1a33qlREWnBtXKMKBq4+Zsvk0b8NjGN+hNo3KC06RNn9skcvNyJQyqXM9ejQoR2JyKm3/2IqxvrZg13s3lju5+zetxOAlB9HWVCc1PYPCtub81r72D7t3aekZtJ6+hbis2ua95+/FxtSQTePay8cERsQycPEBwmMT5PfNzcGSOX2b/jC9RP6/8XkXx5knoVz+Xcgeo6OhRo9qTsw/9Zy+NQvlSGH9AWMdDQ4OrcGY3d4ERifl6I9OTGXBqeecGVtHHs1d1NqQdT2zM10+D4knUyqjuquwUVxTTZVKBc24+Dwcck8SJfIPUMjSEEdzPZrMPYWupjpJqRnMal+BYrbCu/q6vjWYsPsOtWYew95UD1sTIctBywVn5H1PgmIIjEpEX0sdCwNtlpx+Snh8Mm2XnGdN72r0XH0JgEl77zG5ZWnqFLMGoFEJWw7efcv0A94ERCUy1qMEDYoL6+cdlnrJ5WZmyvi9RSm6VXchMTWdDku9MNbVQFVFwoy2ZeVR431rF2HY5htoa6iSmi7FtYAhY5uW+GH37vfmpVjj9ZzVXs9JzchEQ1WFvcPq4VpAeRS7iMj3xicskbMvYrg4pCQA2hqqdCtvxcKLQfSpVECpXTfWUaN/FWsMtAQ3rpWBBk3dTDj8JIqxdYQATit9DQZWtZZHche20KGqsyGHn0TSoYxgx1+EJ5EphWrOwiYTTTUVKjkYcNEvlsk//Mp/LqIDXOS7Y2VmzOrpw3Ptr1LajRs7Fym0zRvXT/7/zX+PzTGnfWPFaL9Ta/9UKltVVYW/R/VS2ndo2VSl7cO6tGBYF+VvcIM7NWNwp2ZK+34EGurquV4bgFtBexK9D/9j+oiIiIgAWJoYsGJMl1z7K7sX5OrK3xTa5gzOXujfOLFnjjmfOnePz1P+3FBVkfBn/9ZK+/b/NUhp+5A2dRjSRrnzY2CrWgxsVUtp34+gbZ1yeTqyizoWIO7M0n9MH5GcJCcnU7NeA+7e86Z8ubIsXbiACuXL4dm+I6fPnqNDu7aUKV2KLdu2o6OtQ0JiAi2aNWPCb2NzTVPVsWt3Tp05y/Ahg5k2eSKXLl9hxJixPHz0GGlKduq4kJAQho0aw5u3b9HS1KKgsxML5s7GxMTkn7p8zntdoGzp0grXUq5sGf6aPTfXOZN+/y1Hm5aWFulpafLj5YsX5hijqalJ2kdjnJwcFfpPnTmLg7293EEu8uOwNNZn+fDcI+0ruzlyedEQhbbZ/bKzKm0Ym3NDaNuaJRWOj/3ZR6lsVRUJM3sp33i0b2oPpe2DW1RjcItqSvsGNKvCgGZVlPb9CHQ0NfijR870/R8ztFV1hraq/g9pJCIiIpJl14e2yrW/spsDlxcovjvP7pPtvN0wul2OOW1rKDoijs1UvtaiqiJhZk/ldnHflG5K2we3qMrgFlWV9g1oVpkBzXLPDPK90VBXy/XaPmBnbvTZMSI/nuS0TFouucTDwFhK2RvzV5uSlHEwodf6m1x4HkarMrYUtzViz50AtNVVSUzNoHEJa4bXL5zre3v/Tbe58DyMvjULMraxG9f9Iph84BFPg+MIXZz9HRoWl8yE/Q8JjE5CS00VBzNd/mhVAmNdjR9yrZdfhKOrqYarVXZEbCl7YyITUnn2Lg53WyOl8+oVy7s04vlnYehqquFiqa/QXrlQdpaFigVNMdPT5MC9ADpXdiImMY3zz8KwMvy1Uwv/P2BpqM2Sbrm/91YqZIHXRMWNOX+1z077vaZPzvdTzwpOCseHRikvAaeqIuGPNmWV9u0amsv6Sz03BtZzU9rXr04R+tVRXtriR+BZwSnHtYr8fJLTM/Hc8JSH7xIpZaPLzCZOlLbVp8+uF1z0i6VlcTPcC+iy70EEWuoqJKVl0rCICcNq2ORq1wfufclFv1j6VCrA6Np23HgTx5STb3gWmkTw9Oz3i7D3aUw68Zqg2FQ01VRwMNZiWiMHjHXUlcr9Vq68ikNXQwUXcx15WykbPSIT03kWloR7gZxlOeq4GOdo01RTIT1TJj/+4OT+dExSWnZ5yor2BpjpqnPwUSSdyloSk5SOl28Mlvo/5hn2KyE6wEVERERERERERP5v0dbW5tpFL6wdC9K7Rw8qlBc2LCyeP4/+g4ewbtUKKlarwZoVyyhZogSJiYlUrVUHO1sbedT0p+zculmhvnXNGtVZOHcOdRo2Vhjn2aETNapXY+/O7chkMvoPHkrn7j05eVT5ZrfQ0FA6du2R5/U0bFCP8WPH5DnmY/xfv6ZCecVaaFaWlsTFxREdHZ0vZ3x8fDxPn/kwbfKkXMf4+vkRHR1Nm9Ytcx2zees2enTtmm/dRURERERERERE/n/Q1lDl2MhalJx8gs6VHSnjILynzvQswZhd91nQsSyN5l9gfofSFLMxIjE1g2aLLmFtpE27Cg5KZa7uUYFWSy/Lj6sUMuePViXwXHZFYVyvDbeoXNCM9b0qIZPJGLv7PoO23GbnQOUb9MLjU+i/+Xae11OniCVD6ytPIf02KhFzfU2FNgsDLXlfbg7wz+HzLo4CRlpsv/Ga/XcDScuQ4mZjyG9N3DDVE85nrq/FviHV6bfpFsvOvSQ0LgVTfU0mN//6+ssiIiIiytBWV+VwH3dKz7tHxzKWlLYVNuf80diR3476M69FQZquecSc5gUpZqVLUlomzdc9wdpQk7allJe9WtnWlTYbs0t4VXY0ZHojR9puUizj0GfXCyo7GrC2fWFkMhm/HfVnyH5ftndVvmkj/H0ag/b55nk9tQoZMaS68vK5ATGpmOspOtc/HAfEpCh1gCvjXmACHm65r9PIZDLuByUwpFq2HmZ66uzp4caAPS9ZfvUdoe/TMNNVZ2J95c/G/xKiA1zkP0H/qYs5e90bgKEzV7B0kvKoQBERERGRfweD5m3j3F2hVvDwRbtYPOLHlZ8QEVFXV6d92zZs27GTfn2E6J7tu3bRqYOQ+nLnls04Owu7xXV1dWncsCGnTp/J1QGeH7wuXOTmrdsc2b8XAIlEQr/evahQtTqvXvlTsKBzjjlWVlZcOHvqq8+pjKSkZDQ1FRfXPhwnJSWTn2D0eQsXU69ObZo2zj0qduZffzNoQH/cixVT2h8TE8M5rwusXbk8/8qL/KsYvHg/572FBYMRKw6xaFDLn6uQiIiIiMg3MXjpQc7fF+oRj1h5hEUDm/9kjUT+H1BXVaFFGVv23QmgaxXh/Xz/3UA8y9kBsLp7BRzMBCeCrqYadd0s8fIJy9UBnh+uvgzn3ptotvQVIgclEgldqjjRaP4F3kQm4Giml2OOhYEWB4d+fanC5LRMNNRUFNo+HCenZX613LjkdJ6HxHPDL5I9g6ohA4ZsvUubZVc4O7YOaqoqBEQl0n7FVcY0LkrXKkIE+I6bb3I45EX+Pxi25Tpez94BMHr7TeZ3rvSTNRL5r6GuqkILd1P2P4ygSzmhfOHBR5G0KiFkpljRxhUHE2EDkI6GKnVdjLjgG5OrAzw/XPWPwzsogc2dhCwEEomEzmUtabLmMW+iU3A0yZnxwkJfg309la9n5IfkdCH1/sdoZh0np0vzrXdwXCpbu+SePWH3/QhMddXpXC47MjwwJoWOW54xqpYdXcoJEeC7vMNzOOT/i4gOcJH/BHmlXBcRERER+feRV8p1EZEfQbfOnai0qib+/q9xdnbi8NFj8lrUIaGhjBr3G5GRUairq/Pm7VucHB2/6XxPnj1DRUWFth2zf9czMjJwsLcnJDRUqQP8W+nYtTuhoWFAdqS4jo42qampCuM+HOvoaH9W5tlz5zl89CiXzp3JdczGzVsICAzi9KoVuY7ZuWcvTRo2wNBQrMH2XyWvlOsiIiIiIv8+8kq5LiLyI2lb3p4mVy7yNjIRBzNdTj0OYe9gIRI7LD6FKQcfEZ2YipqqCoHRSdib6OQt8DM8D4lHRQJ9Nt6St2VmyrA10SEsLkWpA/xb0dZQJS1D0SHy4VhbQ/Wr5apIID1TxpjGRVHLcryMa1KUqn+e5fLLcOoUtWLNRT90NFTlGwyMdTWwMNCi7YqreI2rK58n8v9BXinXRUS+F21KmuNx+wlvo1NwMNHi1PNo9nQXIrHDE9KYduoN0UkZqKtKCIxNxc7o2zbkvAhPQkUC/fa8lLdlSGXYGmkS/j5NqQP8W9FWVyUtU9Gup2Yda6t/3q6GxKcy/pg/GzsWltcE/5RnoYksuxrMrm5uqH9kq9feCEFbXVW+wcBYRx1zfQ06bH7G2YElUVNVnk7+v4DoABcREREREREREfm/p0L5chR2dWXrjp0092hCYRcXdHR0ePs2gAZNmzF9yiTGjBwBwLQZf3Lp8pU85X1ajyozU3mkxrlTx1FVzd8i1remQN+5dXOONmcnJ8LCwhTPExaGoaHhZ9Of373nzZjxv3Ps4AGMjIyUjjl24iSr163n9LEjaGjkXl9q89Zt/PXH9DzPJyIiIiIiIiIiIlLGwYRCFnrsvRNAw+IFKGihh46GGoHRSbRfcZWxTYoyqI4rAHNPPuO6X2Se8j5d9pdKZUrH7RtcHVWV/DkJvjUFuoOpLhHvFTephsenyPu+FmsjYTNAAaPsja62WRsEAqKSAPCPSMDORPEc9iY6vAx9z8vQ97jZiBtWRUREvi+lbfUpaKbF/ocRNChiQkEzbbQ1VAmKTaXDFh/G1rZjQFVrAOZfCOTGm/gvkp+p3Kyzu7tb/u36N6ZAtzfWJCIhXaHtw7G9cd4O95ikdHrueMFfTZ0obq1801VATApD9vuyup0rtp9sEHgdnZJj04C9kSYvI5J5GZGEm9XXP1d+dUQHuMgvwZV7T5i8eDN3nrzk2bE1OFhb/myVvhgf/wBGzlpNZqaU5NRUxvZqS4u6lfOc8y48iqEzVxAT/56UtHR6tW5AnzaK9UGTklOZsWoH9568JD0jk+i49/Rv34RBHZvlkHfy8h3ajJjJqmnD6Nq87ne9PhEREZGv4eojX6auO8Ld5294tGUaDlamP1ulPIlLTGbssr34BoWRkSmlaeXi/NalcQ5n5sekpWcwee0hbjzxB6BSMWdm9muJhrria9a9F28ZOHcbZQvbs3Ks8jrH5+76MHTBDro1qszv3Zp8vwsTyRddOnVk05atxMbF0rVzJwDu3LtHcnIy7du0kY9LS0v7rCx9fT0SEhPkx8Hv3in0Fy9WDKlUiq+fH0UKZy98DRw6nJnTpmBqmvNv5UekQK9TuxZ/z52HTCaT/57f875PvTq185z3zMeHXv36c2DPLuzsbAFYs26DPIU8wKXLV5g2Yyanjh7G0NBQnua8rWdrBVk+z58THh5Bndq1vuelifwgrj15zbTNp7n7MpCHa8Zgb2n8s1XKk7jEFMatOYpfcAQZmVKaVCzKuPZ1PmvXp2w6xU2ftwBULOLAjJ6Ncth1gMSUNCoNWYyDpTHH/uwjbw8Ii6H+uFW42Cqm5pvStQEVith/p6sTERER+XauPXnNtK1nufsyiIerR2Jv8S+w62uP4xccSYZUSpMKRRjXrtbn7frmM9l2vag9M7o3VLDrDp3/oriTlcK8AR6V8KikWAv0/H1fhi0/TNd6ZRjfoc53vDKRL6FNeXt23XpLfHI67coLz9UHATEkp2fSorStfFx6xufTyuppqZGYmr1ZNSQuWaG/iLUhUpngGHax1Je3j9tzn/FN3TDRzRmJ+K0p0Ku7WjD10GN8w97Lz/kwMBYzPU3crL/eAV2xoPCNERaXgn2WIz0iXnC02xgLTvECRtrcfR2tMC8sy/mupf710eci/xzXX4Yx4+B97r2J5O7Mltibfv8sBd+T+OQ0xu+6w6uweDKkUhqVsGNM0+J52nUA//B4hmy+joaqCodGNch1XGJqBtX/OIq9qW6u40Jjk6g6/ShNStmxtLsY9f4z8Cxhzp4H4cSlZNKmpPAN9SA4gZR0Kc3cs9dH0nLzZn+EnqYqiR+ViwiNV1zDKWKpg1QGr6NSKGSevSFo/FF/xtW1w0QnZ2rwb02BXs3ZkOmn3+IXkSw/58PgBMx01XGzzD1TSUJqJj12vGBkLVtqFDQCYNvdMHk0N0DY+zR673rBvBZCrfRPx1jpa3Av6L2C3LAs57tWPqLP/838t69O5F9D9bLubP5bebTSv4H3iUk0HzSNLs3rcnbDLDb+NZp+Uxdx98nLXOdIpVI8h8+gbDEXvDbN4fDyafy5eheHz99QGNd53GwMdLU5s34WFzbPYVBHD655P80hLzE5hekrtn/3axMRERH5FqqVcGHDhB4/W41803/2FtRUVbiwdCynF4zk0OUHrDhwIc85k9YcwudtCBeWjuHC0jG8CAhl8tpDCmMW7j7L9A1HyOv7bezyvWw+cZ30jK+v6SbybXTt1BH/1685cfI0tWoKC1ZFixRGIpFwzssLgOTkZE6dyT3d9wdKlijBzZu3kclkZGRksP/gIYX+2rVqUqVSJf6cNRupVFiY27v/AC9evFTq/P5R9OzWFVVVVbbt2AmAr58fJ0+fYeyokfIx6zduxq1kGVJShIWv16/f0LRFa0aPGE5sbBx373lz9543O3fvkc+5e8+bzj16MmXiBN68DeDuPW+uXr/BiZM5Hfibtm6jW5fOn13gEPk1qOruxPox7X+2GvlmwMK9qKmocH7eIE7+3Y9D156w8sj1POdM3niK5wHhnJ87kPNzB/IyKJwpm5RvPpm14xzvk1KU9tUt48KxP/so/BOd3yIiIr8aVd2dWD+67c9WI98MWLwfNVUVzs/tz8m/enPo2lNWHr2R55zJm0/zPDCc83P6c35Of14GRTBls+L7XHEnK47N7KXw71Pn97i1x9ly9p74vv4L0KacPW+jEjn3LJQqhQRHiYulPhIJXH4RDgi1sr18wvISA0AxGyPuvYkS3tszpRx7GKzQX83FnPJOJiw6/VweHX7kfhB+Ye+VOr+/B242hjRwt2LFeWFdMTktk81X/RlSzxWVrGhFn3dxlJpygsdBsfmWW7mgGeUcTVh90U/etuaiHy6W+tQoLNSL7VDRgZdh8Zx7Gio/97pLryhhZ4Sj2X83SvC/RBVXS1b3qfaz1cg3gzdeQ01VwunxjTk6piFHvd+y2ut5nnP23PJn8KbrqOTjG3L20Ye8T07Pc8yEPXfzJUvkx9GmpDlvY1I57xtDFUcDAFzMtZFIhNrXINTRvuAb81lZxax0uBeYkGXXZRx/FqXQX9XJkHJ2+iy+HCS360efRuEXmazU+f09cLPSpX5hY1ZeE54xyemZbL0bxqBq1nK7/jwsibLz7vIkJBGAlHQpPXY8p4ytHlb6GjwMTuBhcALb7mY/22KS0um05RmeJcxRlUjkY/Y8CJePaVfagpcRyZx/GSM/9/qbIZSw1sXxM9Hn/3ZEB7iIyHdg21EvMqVSOnsI0VIuDjb/Y+++o6K+8/2Pv4ZeFEVAUESx996isRvFiNgRVHqb+e5uNnd3syWb3L33bu5vN9lstt7d7zA0ARVRRCyo2I29RI1dkaAoKiIggnSY3x8EEiMqKvCZ8nqcs+dcYWZ4cs/kPcBnPp8vZr89Gn+NT33ufXYeOo3LWTn4ycr5AAAn+w5Y4Tkdn8du+O42h0/jwvVs/Cr0u19G/ebPxAfBS595vE/ktQhfOqelviUiIqNzKfsudhy/iPeXvQMAsLGyQKjXJPw1eU/jAuUPFT5+gtj0w3hvyQyYmprA1NQEP14yHTHbDqPw8ZPG2/Vzc0baH38Mxw7Pf+f1lOH9kPi7UFhbts4P2/Ry3bu7YerkyViyaCFMTOp/TB48aBD+/Y+/45M/fIqpM2cjMDQcvXv1wrnz5+EXGIyDXx7C8oBAAMDygEAcPlK/sPbTH0uwtbXBqPET4OsXAM936094mT5rDm5kZQEANiavRU1tLYaOGosZs99FatpmrFv97DHlral9+/bYuXUzYuLiMWXGLKwICEJcVCTGjR3TeJuq6iqUl5c3/nfw648+xq2cHASHKzHu7cmN//u+H/30fdy9ew8Lly5r/PyCJc/+cb22thZr1yUjyN/vmc8RvalLN+9j56mr+Oni+uenjaUFQt8dj79tPPiCuV6GuIyT+PHCtxvnujT/bcTuPImikrKnbnvhm7s4k5mLd8cNbPXvhYiIgEu38rDz1DX8dGH9wk79XB+Hv6UeeslcP40fz5/43Vz3mojYjFPPzPWXmTK0J+J/5QsrC/68Llq3TjaY0NsR84Z/t3AwoIsdPvMegb9kXMXCfxzEe2tOo4ejLS7lFuNHCadw9EY+VN8eS66KP4kTWfVHo4dN6Q0bCzO88/k+KFedxKzBXQAAi/75JbLz6090ig15CzV1Wkz9dA8W//NLpH99F5FB41r1e/znyjGoqqnDnC/2w+tvB+A53BXKaX0aP19bp0V5VS1qvndN2YwLd7Hon19i/5U8XMotxqJ/fom1x242fl6hUCAu7C3kl1Rg1ud74fW3A7j/uBzJP3oblmb1u7vH9nRAXOhb+CLjCub/7SDm/e0A3DrZYFXYW43/vyZqKZdzi5BxIRc/mVW/s9bGwgxBU/vhHxmXnns5AgDoZGuJzT+fhZ5O7Z97GwC4cLsQ524VwGNYt+feJuP8HZibKjC4W8fX+h6oZbh2tMRbPezgOcihcdb072yDP3r2wl8P3MHi2It4P/UGenSywqX7T/CTlEwcu1kM6dtjyaWUTJy8VX80euj4LrCxMMFs9XlIG67jnX71p9ssjbuE7IL6Uz6iffuhpk6LGf/+GkvjLmH75QKovfu16vf490V9UFWrhafmPBZEX8TcgZ0QMaFL4+dr6rQor65DzbfP/XVnHuDYzcfQHLuHuZoLjf+7cO+7vzf+36FcXH1Qjk923XrqNnkl373pY2z39ojx7Y+/HriDhTEXMT/6Itw6WiLGt7/Bz3UegU4toryiErPDfoszl29g9OC++MuvIzBmSD8s/8UfsefYWXjPmYwRA3pjzbZ9sLGyRGlZBbymjccvQ72fu9sn8DefY/fRs/jxCi98pFqOQ19dxC8/j8aF69l4cmZz4+3u5Rfigz9pcOvuA1hZWqBnNxd89otQdOrw4hfAlrT/xNcYOaD3U9/LqEF98HlMynPvs+/k1+jbwxV27b474mL04L74W8ImFD0uhb1dO2zeewwTRwx86tqgttZWGDmoz1OPde7qN/jqYib++LNg/PQPcgt+Z0Rk7Morq/DuL/6Os9dzMKp/d/z5x94YPcAdK/8nCvtOX8WS6aMxvE83JO0+CRsrC5SWV8Jz4jB8sHz2c+d78P+Lw97TVyAtmoYPA+bi8PlM/ObfG3Hhm1wU7/pn4+3uFxTjl/9KQU5eAawszNGziyP+oFqMTnat867zA2euop21Jfp3/+7ow1H9eyD/UQkuZt/FsN7P/sJ05PwNVNfUYlT/Ht/dp193VNfU4uiFG5j39nAAgOfEYS/9+l6ThrfAd0Fvat+uHc98TBkeCmV46HPvc+zLA898zNHRERnpW5/62PePBwcAZ2fnJq/L3dYGDxqEA3synvt5KSIcUkR447/Xr1390sc8eeTF10hvYGpqittZL76OFrWs8spqeP42Cmdv5GJUX1f8KcILo/u5wf+Pa7DvbCaWTB6GYb27Yt2+s7C2NMeTiirMHT8Qv/B+/vGyIZ+vw96zmZC8JuI3y2fiyMVs/CZ6Gy5m30fR5v/XeLv7hY/xa8025DwogqWFOXq6dMIfQufCvv3zj3x7Ewe/zkI7Kwv0d+vc+LFRfbshv/gJLt28j6G9uj5zn6OXsuvnet9uT92nuqYWRy/dhOe3uwHr6urwC/VW/PVHC/CvzYdbpZ+IqDnKK6vh+XEMzt64i1F9XPGncE+M7tcN/p8mYd+5G1gyeSiG9eqKdfu/N9fHDcQvlk55/lz/Yj32nrkByest/MZ3Rv1cj9mBizfvo2jT7xtvd7+wBL+OTkfOg0ewNDern+shc9pgrn93eYlRfVzr5/qtPAzt2eWZ+xy9fPPbue761H2qa2px9PIteI5v/puYfrgjnMRKbeKI8YC3eyHg7V7Pvc/2nz97mR+HdpZI/tHTu2X9J/Z86t9OdlatvuD9Qx1sLPCvgLHP/fyQbh1x7dOnL4/oMbQrPIY++/PN9zm1t4ImaPwLbzNnaFfMecnjUOspr6rBgr/swrlbhRjZwwF/9B2LUe6OCIo8iAOX72LRGHcM7d4J649/A2sLMzyprMa7w93wH3OGPHeuR0Qfwr7LdxExYwB+NW84jl7Pw0cbTuPSnSI8kL97M3JecRk+TD6N2wWlsDQ3hbtje3ziPRr2rXTawZdX78PW0gz9unx3tP/IHg54WFKBS7lFGOrWqcn7vTOk6essf19dnRa/XncSf14xHvKeK03e5kllDf6w5RzWvzcTypjm/Q5LraepI8b9xzrDf+zzL5e7LXzoMx/rZGuOpICnX7O/f2Q4ADi1s4DcygveP9TB2gz/XNL3uZ8f0sUWlz/87rUmaLwLgsa7PPf2APCfHu74Tw/3l35tjwGd4DGg6f+eDBkXwKlFWFtZYl/cZ+jtEYSghbMwZkj98Pjzr8Lxk//9N/79u/cwxf8D/N9//hjD+vXEk/IKzAj6NVxdHLFyXtPXTIr/9JeYE/5R478njx6CP30QincjPn7qdis++BSTRg/Gms9/A61Wi/f+998I/u0X2Pyv/27yce8/LELQh39+4ffzzsSRTe6yfp7s3DyMHfL08HJ2sEdx6RMUFpc0uRh/804enB06/uA+9f++mZsHe7t2uHTjFkYN6oP//Ec8jp+rP/pl9qTR+FnAIph9+87Muro6/PxTNf7+2x/x6FAianHWlhbY/befo5/vRwiYMxGjB7gDAP70o6V4/2/r8H8/X4Hp732Of/zHcgzt3Q1Pyisx+2d/QTenjlg+q+lfquM+CobnB39v/PekYX3xR2kJ5v3yH0/dzu/30Xh7WB8k/i4UWq0W7/9tHcI+jUfqH37U5OPmFT5GyB/iXvj9zBwzED/3bfqaTzfvF8DJ/ul57Wxff+zSzXsPm1wAv3n/IcxMTeDwvZ3djh3bw9TEBDfvFTxzeyIi0awtzZHxmRIDgj6F/6wxGN3PDQDwafg8/Me/0/CP9xZj5gf/xt9+vAhDe3bBk4oqePw6Et0cO8J3xsgmHzP2l76Y91F047/fHtITfwz1hNfHMU/dLuDTtZg4uCfif7MCWq0WP/t3GsK/WI+U/w5q8nHzikoQ+ufkF34/M0f2xc+WTm3yczfzCuHU8emTNzp/+++beUVNLoDfzCuqn+vfe7OVYwfb+rme9931MKPSj2PC4B4Y7P78P0hk3nmI5f+biEdPymFraQG/WaOx8O1n/0BDRPQmrC3NkfHHcAwI+Rz+s0ZjdL/6n1k/DZuL/5C34B8/XoiZv4zE3360AEN7utTP9Q+j0M2xA3ynj2jyMWN/sQzzPo5t/Hf9XH8XXv/59M/aAZ8lYeJgd8T/yrd+rstbEP7XFKT8LqDJx80rKkHoFxua/FyDmSP74GdLmr528s28omfnuv23c/1+UZML4C+c6/e/m+sPHpUi5M/rcb+oBBZmppg/YTCCZo9uPBWIiKitWFuYIf2XczD01xux8u0+GOXuCAD4w7Ix+MWaE/ir/wR4fLoDX/i9hSHd7PGksgaen+9EV3tb+LzV9BtANGGTsfAv3136YWI/Z/yv92gs+uuep24XFPklJvZ1RmzEFGi1Wnyw9gRUsYeR/N7MJh83r7j8pQvHMwZ3xU89hjT5uVsPS+Fk9/QRzJ3trBs/97wF8OaIOXANb/XpjEGu9s+9zadbzyFocj84d7B+7m2ISH9xAZxajLm5GZbOnoyk9AMIWeIBAFi34yB83q3/xSX+jx+gZ7f6PxDZWlvBY9Jo7Dpy5rkL4M1x4OR5nLxwDRv+Vr8orlAoELJkNib7fYBvbt9DL7dnf/lxcbTHzqj/98zH30R5RSUszZ8+Asvy2yOxyisqgSYWwMsqKmFl+YL7AHj0uBSrNu3GF78Kxyc/DURewSPMjfgId+7n4++/lQAA6uR0TBgxCEP7ubfo90RE1MDczBRLpo1C8t6TCPZ8GwCwft9pLJtRf0Ry7G+D0bNL/S9kttaWmDV2MHafuvzcBfDmOHj2Gk5duYnk3ysB1M/3IM+3Mf0nn+Obu/no1dXpmfs4d7JD+p/ff+2vWVZRBUvzp380avh3eUXT14sqr6iGhdmzP05ZmJuivLLqtVuIiFqTuZkpFk8eiuQD5xDkUf8O8w0Hv4b3lPqTKGI+8IW7S/0fm2ytLDBrdD/sPnP9uQvgzfHl+SycunYbSR/7A6if64Gzx2LGBzKy7xWgZxeHZ+7jbN8e2/5f2Gt/zfLK6ufO9bLK58z1yipYmJk+83ELM1OUf3ufuwXFSNh9Grs/Vz33a1tamMGtc0d8Gj4PnTu2w9nMO1j0X3F48KgUEZ4TXvdbIiJqkrmZKRZPGlI/12fX/4y+4cvz8J5SfwpRzC+8n57ro/ph95nM5y6AN8eX57/Bqet3kPTRSgANc30MZvwyEtn3CtGzy7OLFs727bHtf0Oe+Xhz1c/1p2d0w7HNz5/r1c+f61Xf3aenSyf858p30LNLJ3xzrwCL/jse2fcL8EkQLzVHRG3P3NQEC8f0wIYT3yBgcv2mq5STN7FkXP3pBJGhk+D+7fHftpZmeGeIK/Zdyn3uAnhzHLp6H19lP8TqH00DUD/X/Sf1xexPdyA7v6TJ48adO1gj7edNbzJojvKqmsY53qBhZpdX1bz24957VIbVR29gx6+eP8Mv3C7EmewC/M/i0a/9dYhIt3EBnFrUinnTMTXgl8i+cx89u7lg2/4TSFd/AqB+5/Wvv4hBwaPHMDczw627D+Du2vklj/hil7NuwcTEBH6/+qzxYzW1tejepTPuPyxqcgH8TQX+5nPkFTwC8N1OcWsrS1RWP/3LVuW3v0hZWzV9RIyNlSXKKytfeB8TEwWcHTsi9Ntrezs7dMSPV8zH+39U448/C8GjkvoF8v3xf2qx74+IqCnL3xmHGT/9Atn3HqJnF0ekHz2PLZ+9B6B+5/Vv1akoKC6FuZkpcvIK0cPl2YWMV3Hl5j2YmCgQ8Ml3uwdrauvQ3bkT8gofN7kA/qZsrCxQWf30L1gN/7a2avo6f9ZW5qiqefaXsqrqWlhbWrR4IxFRS/GdPhLv/FKNm/cL4e7SCdtPXEbaJ/WLEveLSvDbmHQUPC6rn+sPitCj8/N3TjTHlVt5MDFRIPCzpMaP1dTWwa1zR9wvKmlyAfxNWVuaP3eu21g+Z65bWqCqpvaZj1fV1ML62/v8WrMNvwuYDZsXzHln+/aI/aVv479H9u0G/1lj8LeUg1wAJ6JW4TttBN75teZ7c/0K0n4fBODbuR67EwUlT2BuaoqcB4/Qw7njG329KzkP6uf6n747qaOmtg5uTg1zveWP2ayf60/P6MpvZ/bz57r58+f6967lnfzxd0cA9+rigJ8seBsfxuzAb5fPbJz/RERtadlbvTDns524mV8Cd6f22PH1bWz8j3cAAHmPy/G7lK9QUFoJc1MFbhc8QXfHdi95xBe7evcRTBQKhGq+bPxYTZ0Wbp1skVdc/tLrbb8OawuzxjneoGFmW1u8/tLVh8mn8PGCEbB5zmPU1Wnxq6ST+HzFeIO/BjKRMeMCOLWoMUP6oZ+7K5LSD2Du1HHo6+4KG2tL5Nx9AK8f/Q4fq1bgPwIWAQD+nzoJh766+MLH++GJ3rW1dU3eLl39+6euk/0ib3oEevynv3zmYz1dnZH38NFTH8srKEKHdrbPvRa5ezdnHDh5/gf3qX8Md9f6a1K4OjuirPzpRXK3Lk6oq6tDzr0HOHnhGgBgyU8/eeo2f1m1EWu27sPvfrQSE0fyGlVE9OZGD3BH326dkbznJN6dMBR9u3WGjZUFcvIKsfA3/4ffBnjip971R2L9MWE7Dp9/8TV9f3jJhtq6puf7ls/eg6lp844dfNMj0N1dHJBfVPL0YxY9rv/ctzvcn72PI2pq61BQXNp4DPrDRyWorauDeyss5hARtZTR/dzQ19URyQfO4t1xA9HH1RE2lhbIeVCExb+Lw4crZuK9RZMBAJ8m7cXhi9kvfLwf/tmotk7b5O02/z6k+XP9DY9Ad3fuhPxHpU997MG3/3Z3bnpB393Zvn6uP37SeFzuw+In9XPduRNKyipxIfse/rnpMP65qf7a35l38lFRXYN5H0XjrYE98LHfrCYfu6dLJ9wrLEF5ZTUXU4ioxY3u161+rh/8Gu+OHfC9uf4Ii/87AR8un473FtZf5/jTdftw+OLNFz7eM3+Pec7P65v/J+jV5vobHIHu7mz/7Fwv+nauu7zGXHd5/iJ9T5dOqK2rw+38R+jXreXffEtE9DKj3B3Rx9kOG05kY87wbujjbAcbCzPcLijFsr/vxa+8huPHs+r/7vunbV/j6PW8Fz7es3+Hafrn9Y3/8Q5Mm3n5hzc9Ar2HYzvkP6546mMPHpc3fu51lFZU4+LtIvxr92X8a/dlAEBm3mNUVtdi4V92YXzvzlgyrieKnlTi4/WnGu938U4RMvMeY+FfdsFrVA+ETuv/Wl+fiHQHF8CpxS2fOw2JW/biUUkpVnhOBwB8dTkT5RVVWDp7UuPtqqpffoxJOxtrlJZ/9yJ4N//p66kO7tMDdXV1uJFzD/17fndt1vf/ION3P1oJh452zzxmaxyBPm3cMPw5biO0Wm3jDxNnL9/A9PHDnnuf6eOGIXrDTpQ8KUN7WxsAwJnLNzByYG/Y29W/wL89cjASt+x96n4PCh9BoVCgm4sjBvRyQ8CCd576vO2oBfh50BL4z2/62ixERK/L551xWLPrOIpLy+H7Tv2RuWeu3UJ5ZTUWTx3VeLumdkT/UDtrS5RWfPcGn3s/eBPRoJ5dUVenRVbuA/Tr/t31VX/2j2T8Z9A8dPreNfwavOkR6FNH9sdvIzfhes79xq959noOnDq2x5Cez14nFgDeHtYH5mamOHs9B++MHdR4H3MzU0wc2ue1W4iI2sKyaSOwdu8ZFJdWwHd6/fHmZzNzUV5VjUWTvrtWdVM7536onbUlnlR8d+mHewWPn/r8oB4u9XP9XsFTCwk/lzfj45Wz0MnO5pnHfNMj0KcM742PYrfj+p38xq959kYunDrYPvfa3RMH96yf6zdy8c6oft/e5079XB/sjvY2ljin+eCp+/zo7ynIefDoqdYNB79GT5dOGNPfrfFj9wofw8HOhovfRNRqlk0djrX7zqL4SQV8p40AUD/3WmauP/1G0UE9Ojc919Vb8fGKmc+f629wBPqUYb3wUdzOp+d61rdzvYdzk/eZOMj927l+F++Mqj9G+OyN3Pq5PqgHAODg+Sw8qajG3HEDvvt+C+tfx7o6PPt3JSKituI9vieSjmXhcXkVlo2vP9783K0ClFfXYuHoHo23q65p+k1K39fO0gxPKr/7e829R+VPfX6ga0fUabX45kEJ+rp0aPz4L9eewIfzR6BTu2dPOX3TI9An93fB71K+Qub94savee5WIRzbW2HwC67d/SLtrMxx+n8XPvWx9+KP4nZB6VOtx/9nwVO3WfiXXXBzaId/Bk58ra9LRLqneW/lIXoFyz2nIzs3DxmHv8KUMfXv7urf0w0KhQL7TnwNoP4a17uOfvXSxxrWvydOnr8KrVaLmppapO05+tTnp44dhreGD8Bn0etR9+27kVN3H8H1m3eaXPxuLf7zZ8LUxARJ6QcAADdy7mLX0TP4WeDixtvEp+3GqMU/RsW314R9d/JYDOzthn+t3QoAeFj0GGvT9+OXId6N9wlZ4oHHpU+wee8xAPX/f4tJ2Qn/+TPRzsa6jb47IqJ6vu+Mxc17Bcg4eQmTh9f/8ah/dxcoFAocOFt/IkV5ZRV2n7ry0sca2rsbTl3Orp/vtbXYfOjcU5+fMqIfxg/qic/XZjTO901fnkXm7bwmF79bwpBernj3rSH4+4b6Nx6VV1Yhdtth/Meyd2Dy7bufL2ffxYDlH+PrG7cBAJ3sbBHiOQn/t3E/amvrUFdXh39vOoAQz0mt1klE1FJ8po/Ezbwi7PrqGiYNqb+eYD83JygUChz8OgtA/bVT93x1/aWPNbRnF5y8mvPdXD/69ElPk4f1wrgB3fHn9fsb53rakQvIvJPf5CJJSxji7oI5Ywfgn5vqd6WUV1YjdscJvL9kyndz/VYeBgV/ivPf3AUAdLKzQbDHOPx785HGua7echTBHuNg3775nVl3H+Lfm4+gprZ+kel2/iOs3v0VQuaMb+HvkojoOz7ThtfP9dPXMWmIOwCgX7cm5vqZF5/WBABD3V1w8trt7+b6sUtPfX7y0F4YN8ANf95w8Htz/SIyc1t7rvfHP9OOAPh2ru88hfcXTXp6rod+jvPf3APQMNfH4N9bjn4317cdQ7DHmMa5nvvwMf6Zdhhl3/69pqikDOptx+EzbTjaWTd9WTsiorbgPb4Xbj0sxe6LuXi7X/0bffq6dIBCAXx59T6A+mtl771096WPNditE05/8/DbuV6HbWduPfX5Sf1dMLaXE/6y4wLqvt0dvuWrW7iR97jJxe+WMLibPTyGujbu1C6vqsGqQ9fx3uxBjUeTX8l9hGG/2YgLtwtbpYGIDBcXwKnFuXVxwuTRg7Fw5sTGX0AG9e6Ov3+owqdRyZgd+iHCf/c39OrmgvPXshH80Rc49NVFBP6m/ljywN/8GUfP1r/oSb5esLG2woTlP0PAbz7Hu5PHAgDmhH+ErJz6X2bW/vlD1NbWYqz3e3g34iNs3nu0yWPKW1N7Wxts/td/Iz5tN2aFfIigD/+MyP9+H2OG9Gu8TVV1Dcorqxp/gDAxMUHK3z7GyQvXMCPoV5j/4//Ch+E+WDDzu2sCujjaY6v8P/jX2i2YFvBLzIn4CBNHDsZffh3xTMOf41IwJ/wjAPVHoDf830RELcWtcydMGtYHCyaPaJzvA9274C/vLcNnq3fg3Z//Dco/JaJnF0dcyMpF2B/jcfh8JkL+sAoAEPKHVTh2sf4Pb6qFU2FjZYnJ0mcI+n9x8Bhf/4Ypzw/+jqzcfADA6v8KQ01tHd6K+CPm/fIf2HLoHOJ+G9yq36P6V/6oqq7B9Pc+x6z/+CvmTxqOHy+Z3vj5mro6lFVWoeZ7l+T4JHwB+rk5Y/p7f8a0n/wZfbp1xifhT7+TOC79CDw/+DsuZOViz+kr8Pzg78g48fTi0Gerd8Dzg78jr/Ax1u4+Ac8P/o6z13Na9fslIuPm5tQRbw92x/yJQ76b692d8YVqPv6UvB9zP4yC9LcU9HTphAvZ9xD+xXocuZjdeCx56J+TcezyTQCA0msCbK0sMOVn/4eQz5PhMbb+yMB5H0Xjm3v1pzglfrgSNbV1mPjeP+D1UTS2HL301HWyW4P6P5aisroGMz/4Nzx+HYn5EwfjR/Pfbvx8bW0tyiqrn5rrvw+eg76uTpj5SxkzPpDR29URvw+e88xjX/jmLuZ9FI29ZzJxIfse5n0UjT1n6t8ssPDtobC2NMfcD6Mw98Mo+P9xDZReE/Er3+nPPA4RUUupn+s9MH/ioO/N9c74QjkPf1p/AHM/ioH099Rv5/p9hP81pX6uf3sseegXG3Dscv2CiHLeW7C1tMCUn8sI+fMGeIz5dq5/HPvdXP/1ctTU1WHi+/+C13/GYsvxy4j9xbJW/R7V7y+un+u/jITHh1GYP2EQfjT/u916tXV1z871QA/07eaImb+KxIxfRqJ3V0f8PtCj8fNThvXC0J5dMP8/4+D5UQwW/nc83hnVF18ovZ762n9K3o95H8fiwaNSrN13DvM+jsW5rJcvOhERva5unWwxsa8zvEZ2b1wQHtC1I/60fBy+2H4e87/YhZ/EH4W7U3tcvFMEVexhHL2eB2V0/aV6lNGHcfzGAwBA+PT+sLE0w4w/bEd49CHMGlp/murCv+zCNw/qT/mIU05Bba0WUz7ZhkV/3Y1tZ3OgCZ3cqt/j/wW9jcqaWnh8ugOen2dg3ojuUM0c2Pj5mro6lFfVPjXXd359Gwv/sgv7Lt/FxTtFWPiXXVhz5MYzj33hduEzt9v3gzcL7Lt0Fwv/sgsX7xRh3+X6/5uL7USGQaHVapu+2APptDNnzmD06NE4vOYvGDmwt+gcohc6eyULk1b+HF999RVGjRr18jsQGaGGuX7wX7/CiL5uL78DkWDnMm9j6o//1CqzveG/h8S4GAwcwOtuUeu5cvUa/INDW/V5fOAvP8Lw3q4t+thEreHrrFxM+/m/+TM70XM0zvU/qzC8d9OXxyHSJV9n3cW0D9QtOtcb/jv4l/8Y9HVu3yKPSdQcmXkl+HHi6VZ5Pu/58F0M6+7QIo9J1JrO5xTgnT/uaNXfX/+5pA/6OvLkWWo9mQ/L8d7GG23yeyevAU5EREREOsXR0RE2NjbwDw4VnUJGwMbGBo6OjqIziIiIiHSeo6MjbKyt8ePE06JTyAjZWFvz53aiVlI/363w3sZnd9ITtTQba6s2medcACciIiIindK9e3dcuXIFDx8+FJ1CRsDR0RHdu3cXnUFERESk87p3744rV6/y53QSgj+3E7We+vl+jfOd2kRbzXMugBMRERGRzunevTv/uEFEREREpGP4czoRkWHifCdDYyI6gIiIiIiIiIiIiIiIiIiIqCVwAZyIiIiIiIiIiIiIiIiIiAwCF8CJiIiIiIiIiIiIiIiIiMggcAGciIiIiIiIiIiIiIiIiIgMgpnoAHoz17Jvi04geik+T4ma73rOfdEJRM3C5ypR81y7nS86gahZ+Fwlap5rd/jfCukHPleJmuf6/ceiE4iahc9VolfDBXA95ejoCBsbG4R+/FfRKUTNYmNjA0dHR9EZRDqrfq5bI/yzBNEpRM1mY2PN2U70HA1zXfnXDaJTiJqNc53o+Rrn+t82ik4hajbOdaLnc3R0hI21NX4Ud0R0ClGz2VhzrhM1l0Kr1WpFR9DrycnJwcOHD0Vn6JTf/OY3uHbtGlJTU6FQKNr864eFhcHExAQajabNv7auc3R0RPfu3UVnEOk0zvVnffHFF9i+fTt27NgBCwuLNv/6v/71r3Hjxg2kpKQIeV3RdZztRC/Guf6sVatWQa1WY+fOnejYsWObf/0//elPyMjIwM6dO2Fubt7mX1/Xca4TvRjn+rO2bduG//qv/8KmTZuEzI/Y2FhERUVh586d6NChQ5t/fV3HuU70Ypzrzzp27Bh+8pOfICYmBiNGjGjzr79lyxb8z//8DzZv3oxu3bq1+dfXdZzrRM3HBXAyGHl5eXBzc8Nnn32Gn/3sZ0Ia1q5di5UrV+Ly5csYOHCgkAYiIkNRVlYGV1dXhIeH409/+pOQhn379mHmzJnYv38/pk2bJqSBiMhQ1NXVoU+fPpg0aRISEsSceHL58mUMHjwYSUlJ8PX1FdJARGRIJkyYgPbt22PXrl1Cvr4u/C2IiMiQLFq0CDdu3MD58+eFbARo+FtQREQEPvvsszb/+kRkOExEBxC1lJiYGJiamiIwMFBYw5IlS+Dk5AS1Wi2sgYjIUCQnJ+PRo0dQKpXCGqZPn47+/ftDlmVhDUREhiIjIwPZ2dmQJElYw6BBgzB16lTOdSKiFnDu3DkcP35c6Fx3dnbG4sWLoVarwT0+RERv5s6dO9iyZQskSRJ2Cp6NjQ2CgoIQGxuLyspKIQ1EZBi4AE4Goba2FhqNBr6+vujUqZOwDktLS4SEhCA+Ph5lZWXCOoiIDIFarYaHhwd69+4trEGhUEClUiE1NRX3798X1kFEZAjUajWGDx+Ot956S2iHJEn48ssvcenSJaEdRET6TpZluLq6wsvLS2iHJEm4fv069u/fL7SDiEjfRUdHw9raGn5+fkI7VCoVHj58iJSUFKEdRKTfuABOBmHnzp24deuW0HcdN1AqlXj8+DHWrVsnOoWISG+dOXMGJ0+e1Im5HhgYCHNzc8TExIhOISLSWzk5Odi2bZvQ3SQNFi1aBGdnZ57aRET0Bh4/fow1a9YgPDwcZmZmQlumTJmCQYMG8XQPIqI3UF1djaioKPj5+cHOzk5oS//+/TFjxgzOdSJ6I1wAJ4MgyzJGjRqFsWPHik5Bz549MWfOHL5AExG9AVmW0a1bN3h6eopOgb29PXx9faHRaFBbWys6h4hIL0VFRcHW1hYrV64UnQILCwuEhoYiISEBpaWlonOIiPRSYmIiKioqEBYWJjql8dSmtLQ03Lt3T3QOEZFe2rp1K+7evasTGxGA+tM9jhw5ggsXLohOISI9xQVw0ns3b97E9u3bdWI3SQNJknD69GmcPn1adAoRkd4pLi7G2rVrERERIXw3SQNJkpCTk4Pt27eLTiEi0jvV1dWIjo6Gv78/2rVrJzoHABAeHo6SkhIkJSWJTiEi0jtarRayLGP+/PlwdXUVnQMACAgIgIWFBaKjo0WnEBHpJVmWMWHCBAwfPlx0CgBgwYIFcHFx4SYzInptXAAnvafRaGBnZ4fly5eLTmk0d+5cdO/enS/QRESvISEhAVVVVTqxm6TB2LFjMXr0aB6XS0T0GtLS0nD//n2d2U0CAO7u7pg7dy5kWYZWqxWdQ0SkV44cOYJLly7p1Fzv0KEDVqxYAY1Gg5qaGtE5RER6JTMzE3v27NGpuW5ubo6wsDAkJiaipKREdA4R6SEugJNeq6qqQkxMDAICAmBrays6p5GpqSkiIiKQlJSEoqIi0TlERHqjYTfJwoUL0aVLF9E5T5EkCTt27EB2drboFCIivSLLMiZNmoQhQ4aITnmKJEk4e/YsTp06JTqFiEivyLKMPn36YObMmaJTniJJEu7cuYP09HTRKUREekWtVsPBwQHe3t6iU54SERGBsrIyrF27VnQKEekhLoCTXktNTcWDBw+gVCpFpzwjNDQU1dXVSEhIEJ1CRKQ3vvzyS1y5ckWn3nXcwNfXF3Z2dtBoNKJTiIj0xtWrV7F//36dnOtz5sxBjx49eGoTEdEryM/PR0pKClQqFUxMdOvPiqNGjcK4ceM414mIXkF5eTni4uIQHBwMKysr0TlPcXNzw7x583hqExG9Ft36SZXoFcmyjClTpmDw4MGiU57h4uKCRYsWQa1W8wWaiKiZZFlGv379MH36dNEpz7C1tUVAQABiYmJQWVkpOoeISC+o1Wo4OjpiyZIlolOeYWpqCqVSiXXr1qGwsFB0DhGRXoiNjYVCoUBQUJDolCapVCpkZGQgKytLdAoRkV5Yv349ioqKEBERITqlSZIk4euvv8bx48dFpxCRnuECOOmty5cv48svv9TJ3SQNJEnC1atXcfDgQdEpREQ6Ly8vD6mpqVCpVFAoFKJzmqRSqZCfn4/U1FTRKUREOq+srAzx8fEICQmBpaWl6JwmhYaGora2FvHx8aJTiIh0Xl1dHSIjI+Hj4wMHBwfROU3y8fFBx44deWoTEVEzqdVqzJo1C3379hWd0qTZs2ejV69ePN2DiF4ZF8BJb6nVanTu3BmLFy8WnfJc06ZNw4ABA/gCTUTUDLGxsTA1NUVgYKDolOcaNGgQpk6dyrlORNQMycnJKC4u1snLFTXo3LkzlixZwlObiIiaISMjA9nZ2Tq9EcHGxgZBQUGIjY3lqU1ERC9x7tw5HD9+XKfnuomJCZRKJdavX4+CggLROUSkR7gATnrpyZMniI+PR2hoKCwsLETnPJdCoYBKpUJqairu378vOoeISGfV1tYiMjISvr6+6NSpk+icF5IkCYcOHcLFixdFpxAR6TRZluHh4YFevXqJTnkhSZJw/fp17Nu3T3QKEZFOk2UZI0aMwPjx40WnvJBKpcLDhw+RkpIiOoWISKfJsgxXV1d4eXmJTnmh4OBgaLVaxMXFiU4hIj3CBXDSS0lJSSgpKdHZa5N8X2BgIMzNzRETEyM6hYhIZ+3cuRO3bt3S6XcdN1i0aBGcnZ2hVqtFpxAR6ayvvvoKp06d0ou5PnnyZAwaNIinexARvUBOTg7S09N1+nJFDfr3748ZM2ZwrhMRvcDjx4+xZs0ahIeHw8zMTHTOCzk5OWHp0qVQq9Woq6sTnUNEeoIL4KR3tFotZFnG3Llz4e7uLjrnpTp27Ijly5dDo9GgtrZWdA4RkU6SZRmjRo3C2LFjRae8lIWFBUJDQ5GQkIDS0lLROUREOkmWZbi5ucHT01N0yks1nNqUlpaGu3fvis4hItJJUVFRsLW1xcqVK0WnNIskSThy5AguXLggOoWISCclJiaioqICYWFholOaRZIkZGVlYe/evaJTiEhPcAGc9M6pU6dw5swZvdhN0kCSJOTk5GD79u2iU4iIdM7Nmzexfft2SJKk87tJGkRERKC0tBRJSUmiU4iIdM6jR4+wdu1aREREwNTUVHROswQEBMDS0pKnNhERNaG6uhrR0dHw9/dHu3btROc0y4IFC9ClSxfuAiciakLDBrMFCxbA1dVVdE6zvP322xgyZAjnOhE1GxfASe/IsowePXpgzpw5olOabcyYMRgzZgxfoImImqDRaNC+fXssX75cdEqz9ejRA56enpBlGVqtVnQOEZFOSUhIQHV1NUJDQ0WnNFuHDh2wYsUKaDQa1NTUiM4hItIpaWlpuH//vl5tRDA3N0dYWBgSExNRUlIiOoeISKccPnwYly5d0qu5rlAoIEkStmzZgtzcXNE5RKQHuABOeqWwsBDr1q3Tq90kDVQqFXbu3Ins7GzRKUREOqOqqgoxMTEICAiAra2t6JxXolKpcPbsWZw8eVJ0ChGRztBqtVCr1Vi4cCG6dOkiOueVSJKEO3fuID09XXQKEZFOkWUZkyZNwpAhQ0SnvJLw8HCUlZVhzZo1olOIiHSKLMvo06cPZsyYITrllfj5+cHKygpRUVGiU4hID3ABnPRKQkICamtr9Wo3SQNfX1/Y2dkhMjJSdAoRkc5ITU3FgwcPoFKpRKe8sjlz5qBHjx483YOI6HsOHjyIK1eu6NVukgajRo3CuHHjONeJiL7n6tWr2L9/v17OdTc3N8ybN4+nNhERfc+DBw+QkpIClUoFExP9Wh6ys7ODn58foqKiUF1dLTqHiHScfk04MmoNu0kWL14MZ2dn0TmvzNbWFoGBgYiNjUVlZaXoHCIinaBWqzFlyhQMHjxYdMorMzU1hVKpRHJyMgoLC0XnEBHpBLVajf79+2P69OmiU16LJEnIyMhAVlaW6BQiIp2gVqvh5OSEJUuWiE55LZIk4fz58zh+/LjoFCIinRAXFwcTExMEBQWJTnktkiTh7t272Lp1q+gUItJxXAAnvbF//35cu3ZNL9913EClUiE/Px+pqamiU4iIhLt8+TIOHjyo13M9NDQUtbW1WLVqlegUIiLh8vLykJqaCpVKBYVCITrntfj4+KBjx448tYmICEBZWRni4+MREhICS0tL0TmvZfbs2ejVqxdP9yAiAlBXV4fIyEj4+PjAwcFBdM5rGT58OCZMmMC5TkQvxQVw0huyLGPQoEGYMmWK6JTXNnDgQEybNo0v0EREqN9N0rlzZyxevFh0ymvr3LkzlixZArVajbq6OtE5RERCxcTEwMzMDIGBgaJTXpu1tTWCgoIQGxuLiooK0TlEREKtW7cOxcXFiIiIEJ3y2kxMTKBUKrF+/XoUFBSIziEiEiojIwPZ2dl6vREBqN9ktmfPHmRmZopOISIdxgVw0gv37t1DWlqaXu8maSBJEg4dOoSLFy+KTiEiEubJkyeIj49HaGgoLCwsROe8EUmSkJmZif3794tOISISpra2FpGRkfD19YW9vb3onDeiUqlQUFCAjRs3ik4hIhJKrVbDw8MDvXr1Ep3yRoKDg6HVahEXFyc6hYhIKFmWMWLECIwfP150yhtZtmwZOnXqxFObiOiFuABOeiE6OhoWFhYICAgQnfLGFi5cCGdnZ6jVatEpRETCJCUloaSkRK93kzSYPHkyBg8ezNM9iMio7dixAzk5OXq/mwQA+vfvjxkzZnCuE5FR++qrr3Dq1CmDmOtOTk7w9vbmqU1EZNRycnKQnp4OSZL0foOZlZUVgoODERcXh/LyctE5RKSjuABOOq+mpgYajQYrVqxAhw4dROe8MQsLC4SFhSEhIQGlpaWic4iI2pxWq4Usy5g7dy7c3d1F57wxhUIBlUqFtLQ03L17V3QOEZEQsixj9OjRGDt2rOiUFiFJEo4cOYILFy6ITiEiEkKWZbi5ucHT01N0SouQJAlZWVnYs2eP6BQiIiE0Gg1sbW2xYsUK0SktQqlUorCwEBs2bBCdQkQ6igvgpPPS09Nx584dqFQq0SktJjw8HKWlpVi7dq3oFCKiNnfq1CmcOXPGoOa6v78/LC0tER0dLTqFiKjNZWdnY8eOHQY11xcsWIAuXbpwFzgRGaVHjx5h7dq1iIiIgKmpqeicFjFx4kQMGTKEc52IjFJVVRWio6Ph7++Pdu3aic5pEX379sWsWbM414noubgATjpPrVZj7NixGD16tOiUFtOjRw94enpClmVotVrROUREbUqWZfTo0QPvvvuu6JQW06FDB6xYsQIajQY1NTWic4iI2pRGo4GdnR2WL18uOqXFmJubIywsDImJiSgpKRGdQ0TUphISElBdXY2wsDDRKS1GoVBAkiRs2bIFd+7cEZ1DRNSm0tLSkJeXZxCXtfg+SZJw/PhxnDt3TnQKEekgLoCTTvvmm2+QkZFhcC/OQP0L9Llz53Dy5EnRKUREbaaoqAjr1q0zqN0kDSRJQm5uLrZt2yY6hYiozVRVVSEmJgYBAQGwtbUVndOiwsPDUVZWhjVr1ohOISJqM1qtFmq1GosWLYKLi4vonBbl5+cHa2trntpEREZHrVZj0qRJGDJkiOiUFuXl5YWuXbtyFzgRNYkL4KTTIiMj0aFDB/j4+IhOaXEeHh5wd3fnCzQRGZX4+HjU1tYiNDRUdEqLGzVqFMaNG8e5TkRGJTU1Ffn5+QZ1/HkDNzc3zJs3j6c2EZFROXjwIK5cuWKQc93Ozg5+fn6IiopCdXW16BwiojZx9epV7N+/3yA3mJmZmSE8PBxr1qzB48ePRecQkY7hAjjprMrKSsTGxiIoKAg2Njaic1qcqakplEolkpOTUVhYKDqHiKjVNewmWbx4MZydnUXntApJkrBr1y7cuHFDdAoRUZuQZRlTp07FoEGDRKe0CkmScP78eRw7dkx0ChFRm5BlGf3798f06dNFp7QKSZJw9+5dbN26VXQKEVGbUKvVcHJywpIlS0SntIrw8HBUVFQgMTFRdAoR6RgugJPOSklJwcOHDw3yXccNQkJCUFtbi1WrVolOISJqdfv378e1a9cM8l3HDXx8fGBvbw+NRiM6hYio1V26dAlffvmlQc/12bNno1evXlCr1aJTiIhaXV5eHlJTU6FSqaBQKETntIrhw4djwoQJPLWJiIxCWVkZ4uPjERISAktLS9E5rcLV1RXz58+HWq3mqU1E9BQugJPOkmUZM2bMQP/+/UWntJrOnTtj6dKlUKvVqKurE51DRNSqZFnGoEGDMGXKFNEprcba2hpBQUGIjY1FRUWF6BwiolalVqvh7OyMRYsWiU5pNSYmJlAqlVi/fj0KCgpE5xARtaqYmBiYm5sjMDBQdEqrkiQJe/bsQWZmpugUIqJWtW7dOhQXF0OpVIpOaVWSJOHixYs4cuSI6BQi0iFcACeddOHCBRw5csSgd5M0kCQJmZmZ2Ldvn+gUIqJWc+/ePaSlpRn0bpIGKpUKBQUFSElJEZ1CRNRqSktLkZCQgNDQUFhYWIjOaVXBwcHQarWIi4sTnUJE1Gpqa2sRGRkJX19f2Nvbi85pVd7e3nBwcODpHkRk8GRZxpw5c9CzZ0/RKa1q5syZ6NOnD0/3IKKncAGcdJIsy3BxccGCBQtEp7S6SZMmYfDgwXyBJiKDFh0dDQsLCwQEBIhOaXX9+vXDzJkzOdeJyKAlJSWhpKQEERERolNanZOTE7y9vXlqExEZtB07diAnJ8coNiJYWVkhODgYcXFxKC8vF51DRNQqTp8+jdOnTxvFXDcxMYFKpUJKSgry8/NF5xCRjuACOOmckpISJCYmIiwsDObm5qJzWp1CoYBKpcLmzZuRm5srOoeIqMXV1NRAo9Fg+fLl6NChg+icNqFSqXD06FGcP39edAoRUYvTarWQZRlz585Fjx49ROe0CUmSkJWVhT179ohOISJqFbIsY/To0Rg7dqzolDYRERGBoqIirF+/XnQKEVGrkGUZbm5umDt3ruiUNhEUFASFQoHY2FjRKUSkI7gATjpn7dq1KCsrM4rdJA38/f1haWmJmJgY0SlERC1u+/btuHPnjlG867jBggUL0KVLF+4CJyKDdOrUKZw9e9ao5vrEiRMxdOhQznUiMkjZ2dnYsWOHUc31vn37YtasWTwGnYgM0qNHj5CUlISIiAiYmpqKzmkTDg4O8PHxQWRkJE9tIiIAXAAnHdOwm2TevHlwc3MTndNmOnTogJUrV0Kj0aCmpkZ0DhFRi5JlGWPHjsXo0aNFp7QZc3NzhIWFYfXq1SgpKRGdQ0TUomRZRo8ePTBnzhzRKW2m4dSmLVu24M6dO6JziIhalEajgZ2dHXx9fUWntClJknD8+HGcO3dOdAoRUYtKSEhAdXU1wsLCRKe0KZVKhezsbGRkZIhOISIdwAVw0inHjx/H119/bVTvOm4gSRJyc3Oxbds20SlERC3mm2++QUZGhlHO9fDwcJSVlWHNmjWiU4iIWkxhYSHWrVsHpVJpNLtJGvj5+cHa2hrR0dGiU4iIWkxVVRViYmIQEBAAW1tb0TltysvLC66urjzdg4gMilarhVqtxqJFi+Di4iI6p0299dZbGD58OE/3ICIAXAAnHSPLMnr16oXZs2eLTmlzI0eOxPjx4/mLFxEZlMjISHTo0AE+Pj6iU9qcm5sbvLy8IMsytFqt6BwiohYRHx+P2tpahIaGik5pc3Z2dvDz80NUVBSqq6tF5xARtYjU1FTk5+dDpVKJTmlzZmZmCA8Px5o1a/D48WPROURELeLgwYO4cuWKUW5EUCgUkCQJ27ZtQ05OjugcIhKMC+CkMwoKCrB+/XoolUqYmBjnU1OSJOzatQs3btwQnUJE9MYqKysRGxuLoKAg2NjYiM4RQpIknD9/HseOHROdQkT0xhp2kyxZsgSdO3cWnSOEJEm4e/cutm7dKjqFiKhFyLKMqVOnYtCgQaJThAgLC0NFRQUSExNFpxARtQhZljFgwABMmzZNdIoQK1euhK2tLaKiokSnEJFgxrnKSDopLi4OWq0WwcHBolOEWbZsGezt7REZGSk6hYjojaWkpODhw4dGuZukwaxZs9C7d2+e7kFEBmHfvn24fv26Ue4maTB8+HBMmDCBc52IDMKlS5fw5ZdfGvVcd3V1xYIFC3hqExEZhPv37yM1NRUqlQoKhUJ0jhDt2rWDv78/oqOjeWoTkZHjAjjphLq6OqjVanh7e8PJyUl0jjDW1tYIDg5GXFwcKioqROcQEb0RWZYxY8YM9O/fX3SKMCYmJlAqlVi/fj0ePnwoOoeI6I3IsoxBgwZh8uTJolOEkiQJe/bsQWZmpugUIqI3olar4ezsjEWLFolOEUqSJFy6dAmHDx8WnUJE9EZiYmJgbm6OgIAA0SlCSZKE+/fvIy0tTXQKEQnEBXDSCXv27EFWVpZR7xJsoFQqUVBQgA0bNohOISJ6bRcuXMCRI0c41wEEBQUBqD/phIhIX929exdpaWlGvZukgbe3NxwcHKBWq0WnEBG9ttLSUiQkJCA0NBQWFhaic4SaMWMG+vTpw9M9iEiv1dbWQqPRwNfXF/b29qJzhBoyZAgmTZrEuU5k5LgATjpBrVZjyJAhePvtt0WnCNevXz/MnDmTL9BEpNdkWYaLiwsWLlwoOkU4JycneHt7IzIyEnV1daJziIheS3R0NCwtLY1+NwkAWFlZNZ7aVF5eLjqHiOi1JCUloaSkBBEREaJThDMxMYFKpUJKSgoePHggOoeI6LVs374dOTk5Rn1Zi++TJAn79+/H1atXRacQkSBcACfhcnNzsWXLFkiSZPS7SRpIkoRjx47h66+/Fp1CRPTKSkpKkJiYiLCwMJibm4vO0QmSJCErKwu7d+8WnUJE9MpqamoQFRWFFStWoEOHDqJzdEJERASKioqwfv160SlERK9Mq9VClmXMnTsXPXr0EJ2jE4KCgmBiYsJTm4hIb6nVaowePRpjx44VnaITlixZAkdHR57aRGTEuABOwkVFRcHKygp+fn6iU3TG/Pnz0aVLF75AE5FeWrt2LcrKyrib5HsmTpyIoUOHcq4TkV5KT0/HnTt3uJvke/r27YtZs2ZxrhORXjp16hTOnj3Luf49Dg4O8PHx4alNRKSXsrOzsWPHDs7177G0tERISAji4+NRVlYmOoeIBOACOAlVXV2NqKgo+Pn5wc7OTnSOzjA3N0d4eDhWr16NkpIS0TlERM3WsJtk3rx5cHNzE52jMxQKBSRJwpYtW3Dnzh3ROUREr0SWZYwbNw6jRo0SnaJTJEnC8ePHce7cOdEpRESvRJZl9OjRA3PmzBGdolMkSUJ2djYyMjJEpxARvRKNRgM7Ozv4+vqKTtEpSqUSxcXFSE5OFp1CRAJwAZyE2rp1K+7evct3pzUhPDwc5eXlWL16tegUIqJmO378OL7++mvO9Sb4+fnBxsYGUVFRolOIiJotKysLGRkZnOtN8PLygqurK2RZFp1CRNRshYWFWLduHZRKJUxNTUXn6JTx48djxIgRnOtEpFcqKysRExODwMBA2Nrais7RKb169YKHhwfnOpGR4gI4CSXLMiZMmIDhw4eLTtE53bp1g5eXF2RZhlarFZ1DRNQssiyjV69emD17tugUndO+fXv4+fkhKioK1dXVonOIiJolMjIS9vb28PHxEZ2ic8zMzBAeHo41a9bg8ePHonOIiJolPj4etbW1CA0NFZ2icxpObUpPT0dOTo7oHCKiZklNTUV+fj5UKpXoFJ0kSRJOnTqFr776SnQKEbUxLoCTMJmZmdizZw93k7yAJEm4cOECjh49KjqFiOilCgoKsH79eiiVSpiY8EeMpkiShHv37mHLli2iU4iIXqqiogKxsbEICgqCtbW16BydFBYWhoqKCiQmJopOISJ6Ka1WC7VajSVLlqBz586ic3TSihUrYGtrC41GIzqFiKhZZFnGtGnTMHDgQNEpOsnT0xNubm7cBU5khPjXaRJGrVajU6dO8Pb2Fp2is9555x307t2bL9BEpBfi4uKg1WoRHBwsOkVnDRs2DBMnTuRcJyK9kJKSgoKCAiiVStEpOsvV1RULFizgqU1EpBf27duH69evcyPCC7Rr1w4BAQGIjo5GVVWV6Bwiohe6ePEiDh06xLn+AqampoiIiMDatWvx6NEj0TlE1Ia4AE5ClJeXY9WqVQgODoaVlZXoHJ1lYmICpVKJDRs2ID8/X3QOEdFz1dXVQa1WY+nSpXBychKdo9NUKhX27t2L69evi04hInohWZYxY8YM9O/fX3SKTlOpVLh06RIOHz4sOoWI6IVkWcagQYMwefJk0Sk6TaVSIS8vD2lpaaJTiIheSK1Ww9nZGQsXLhSdotNCQ0NRXV2NhIQE0SlE1Ia4AE5CbNiwAYWFhdxN0gzBwcFQKBRYtWqV6BQioufau3cvsrKy+K7jZvD29oaDgwPUarXoFCKi5zp//jyOHj3Kud4MM2fORJ8+fXi6BxHptLt37yItLQ0qlQoKhUJ0jk4bMmQIJk2axJ/XiUinlZaWIiEhAaGhobCwsBCdo9O6dOmChQsXQq1W89QmIiPCBXASQpZlzJo1C3379hWdovMcHR3h7e2NyMhI1NXVic4hImqSLMsYMmQI3n77bdEpOs/KygrBwcFYtWoVysvLRecQETVJrVajS5cuWLBggegUnWdiYgKVSoWUlBQ8ePBAdA4RUZNiYmJgaWmJgIAA0Sl6QZIk7N+/H1evXhWdQkTUpKSkJJSWliIiIkJ0il6QJAlXrlzBl19+KTqFiNoIF8CpzZ07dw7Hjx/nbpJXIEkSsrKysHv3btEpRETPyM3NxZYtWyBJEneTNJNSqURRURHWr18vOoWI6BklJSVITExEWFgYzM3NRefohaCgIJiYmCAuLk50ChHRM2pqaqDRaLBixQp06NBBdI5eWLJkCZycnLgLnIh0klarhSzL8PT0RI8ePUTn6IXp06ejf//+PLWJyIhwAZzanCzLcHV1hZeXl+gUvTFhwgQMGzaML9BEpJOioqJgZWUFPz8/0Sl6o0+fPpg9ezbnOhHppDVr1qCsrAzh4eGiU/SGg4MDfHx8eGoTEemk9PR03LlzhxsRXoGlpSVCQkIQHx+PsrIy0TlERE85efIkzp49y7n+ChQKBVQqFVJTU5GXlyc6h4jaABfAqU09fvwYa9asQXh4OMzMzETn6A2FQgFJkrB161bcvn1bdA4RUaPq6mpERUXBz88PdnZ2onP0iiRJOHHiBM6ePSs6hYioUcNuEi8vL7i5uYnO0SuSJCE7OxsZGRmiU4iIniLLMsaNG4dRo0aJTtErSqUSxcXFWLdunegUIqKnyLIMd3d3eHh4iE7RK4GBgTAzM0NMTIzoFCJqA1wApzaVmJiIiooKhIWFiU7ROytXroSNjQ2ioqJEpxARNdq6dSvu3r3Ldx2/hnnz5qFbt27cBU5EOuXYsWM4f/485/prGD9+PEaMGMG5TkQ6JSsrCxkZGZzrr6Fnz56YM2cO5zoR6ZTCwkIkJydDqVTC1NRUdI5esbe3h6+vLyIjI1FbWys6h4haGRfAqc007CaZP38+XF1dRefonfbt28Pf3x/R0dGorq4WnUNEBKD+XccTJkzA8OHDRafoHTMzM4SHh2PNmjUoLi4WnUNEBKB+rvfq1QuzZs0SnaJ3Gk5tSk9PR05OjugcIiIAQGRkJDp27AgfHx/RKXpJkiScPn0ap0+fFp1CRAQAWLVqFWpraxESEiI6RS9JkoScnBzs2LFDdAoRtTIugFObOXz4MC5dusR3Hb8BlUqFe/fuYfPmzaJTiIiQmZmJPXv2QKVSiU7RW2FhYaisrERiYqLoFCIiPHz4EBs2bIBSqYSJCX9VfB0rVqyAra0tNBqN6BQiIlRUVCAuLg5BQUGwtrYWnaOX5s6dCzc3N+4CJyKdUFdXB7VajSVLlqBz586ic/TSmDFjMHr0aM51IiPAv2pQm1Gr1ejTpw9mzpwpOkVvDRs2DBMnTuQLNBHpBLVajU6dOmHZsmWiU/RW165dsWDBAsiyDK1WKzqHiIxcXFwctFotgoODRaforXbt2jWe2lRVVSU6h4iMXEpKCh4+fMg3rL4BU1NTREREICkpCUVFRaJziMjI7du3D5mZmdxg9gYUCgVUKhV27NiB7Oxs0TlE1Iq4AE5tIj8/HykpKVCpVNxN8oYkScK+fftw7do10SlEZMTKy8uxatUqBAcHw8rKSnSOXpMkCZcvX8bhw4dFpxCREaurq0NkZCS8vb3h5OQkOkevSZKEvLw8ntpERMKp1WrMmDED/fv3F52i18LCwlBdXc1Tm4hIOLVajcGDB2Py5MmiU/Ta8uXLYWdnh6ioKNEpRNSKuBJJbSI2NhYKhQJBQUGiU/Te0qVL4eDggMjISNEpRGTENmzYgMLCQiiVStEpem/GjBno27cvT/cgIqH27NmDrKws7iZpAUOGDMGkSZM414lIqAsXLuDIkSOc6y3AxcUFixYtglqt5qlNRCTM3bt3kZaWBpVKBYVCITpHr9na2iIgIAAxMTE8tYnIgHEBnFpdw24SHx8fODg4iM7Re1ZWVggJCcGqVatQXl4uOoeIjJQsy5g1axb69u0rOkXvmZiYQKVSISUlBQ8ePBCdQ0RGSpZlDB06FBMnThSdYhAkScL+/ftx9epV0SlEZKRkWUaXLl2wYMEC0SkGQZIkXLlyBQcPHhSdQkRGKjo6GpaWlvD39xedYhBUKhUePHiA1NRU0SlE1Eq4AE6tLiMjA9nZ2XzXcQtSKpUoKipCcnKy6BQiMkLnzp3D8ePHOddbUFBQEExNTREbGys6hYiM0J07d7BlyxZIksTdJC1kyZIlcHJyglqtFp1CREaopKQEiYmJCAsLg7m5uegcgzBt2jQMGDCAp3sQkRA1NTXQaDRYuXIlOnToIDrHIAwaNAhTp07lXCcyYFwAp1YnyzJGjBiB8ePHi04xGL1794aHhwdfoIlICFmW4erqCi8vL9EpBqNTp07w8fFBZGQkamtrRecQkZGJioqCjY0N/Pz8RKcYDEtLS4SEhCA+Ph5lZWWic4jIyKxZswZlZWUIDw8XnWIwFAoFVCoVUlNTcf/+fdE5RGRktm3bhtzcXG5EaGGSJOHLL7/EpUuXRKcQUSvgAji1qpycHKSnp/PaJK1AkiScPHkSZ86cEZ1CREbk8ePHWLNmDcLDw2FmZiY6x6BIkoSbN28iIyNDdAoRGZHq6mpERUXBz88P7du3F51jUJRKJYqLi7Fu3TrRKURkRLRaLWRZhpeXF9zc3ETnGJSAgACYm5sjJiZGdAoRGRlZljF+/HiMHDlSdIpBWbRoETp37sxTm4gMFBfAqVVpNBrY2tpi5cqVolMMjqenJ7p168Zd4ETUphITE1FRUYGwsDDRKQZn3LhxGDFiBOc6EbWpLVu24N69e1CpVKJTDE7Pnj0xZ84cznUialPHjh3D+fPnOddbgb29PXx9faHRaHhqExG1mRs3bmDXrl2c663AwsICoaGhSEhIQGlpqegcImphXACnVlNdXY3o6Gj4+/ujXbt2onMMjpmZGcLDw7F27VoUFxeLziEiI9Cwm2T+/PlwdXUVnWNwFAoFJElCeno6bt26JTqHiIyELMuYMGEChg8fLjrFIKlUKpw+fRqnT58WnUJERkKWZfTq1QuzZ88WnWKQJElCTk4Otm/fLjqFiIxEZGQk7O3t4ePjIzrFIEVERKCkpARJSUmiU4iohXEBnFpNWloa8vLyeG2SVhQWFobKykokJiaKTiEiI3DkyBFcunSJc70VrVixAu3atUNUVJToFCIyAtevX8fevXs511uRp6cn3NzcuAuciNrEw4cPsWHDBiiVSpiY8E9+rWHs2LEYPXo0j8slojZRUVGBuLg4BAUFwdraWnSOQXJ3d8fcuXMhyzK0Wq3oHCJqQfxpmFqNLMuYNGkShgwZIjrFYHXt2hULFy7kCzQRtQlZltGnTx/MnDlTdIrBateuHQICAhAdHY2qqirROURk4CIjI+Hg4ABvb2/RKQbL1NQUERERSEpKwqNHj0TnEJGBW7VqFbRaLYKDg0WnGDRJkrBjxw5kZ2eLTiEiA5eSkoKCggIef97KJEnC2bNncerUKdEpRNSCuABOreLq1avYv38/d5O0AUmScPnyZRw6dEh0ChEZsPz8fKSkpEClUnE3SSuTJAl5eXlIS0sTnUJEBqy8vBxxcXEIDg6GlZWV6ByDFhYWhurqaiQkJIhOISIDVldXB7VaDW9vbzg5OYnOMWi+vr6ws7ODRqMRnUJEBk6WZcycORP9+vUTnWLQ5syZgx49evDUJiIDw79gU6tQq9VwcnLCkiVLRKcYvBkzZqBfv358gSaiVhUbGwuFQoGgoCDRKQZv8ODBmDx5Muc6EbWq9evXo6ioCEqlUnSKwXNxccGiRYugVqt5ahMRtZo9e/YgKyuLGxHagK2tLQIDAxETE4PKykrROURkoM6fP4+jR49yrrcBU1NTKJVKrFu3DoWFhaJziKiFcAGcWlxZWRni4+MREhICS0tL0TkGT6FQQKVSYePGjcjLyxOdQ0QGqK6uDpGRkfDx8YGDg4PoHKMgSRIOHDiAK1euiE4hIgMlyzJmz56NPn36iE4xCpIk4cqVKzh48KDoFCIyULIsY+jQoZg4caLoFKOgUqmQn5+P1NRU0SlEZKBkWUaXLl0wf/580SlGITQ0FLW1tYiPjxedQkQthAvg1OLWrVuH4uJiREREiE4xGoGBgTA1NUVsbKzoFCIyQBkZGcjOzua7jtvQ4sWL4eTkBLVaLTqFiAzQ2bNnceLECc71NjRt2jQMGDCAp3sQUau4c+cOtmzZAkmSoFAoROcYhYEDB2LatGmc60TUKkpKSrB69WqEh4fD3NxcdI5R6Ny5M5YsWcJTm4gMCBfAqcXJsgwPDw/06tVLdIrR6NSpE3x8fBAZGYna2lrROURkYGRZxvDhwzF+/HjRKUbD0tISISEhiI+Px5MnT0TnEJGBkWUZrq6umDdvnugUo9FwalNqairu378vOoeIDExUVBSsra2xcuVK0SlGRaVS4dChQ7h48aLoFCIyMKtXr0ZZWRnCwsJEpxgVlUqF69evY9++faJTiKgFcAGcWtTp06dx+vRp7iYRQJIk3Lp1Czt37hSdQkQGJCcnB+np6dxNIoBSqcTjx4+xbt060SlEZECKi4uxZs0ahIeHw8zMTHSOUQkICIC5uTliYmJEpxCRAamurkZUVBT8/PxgZ2cnOseoLFq0CM7Ozjy1iYhalFarhSzL8PLygpubm+gcozJlyhQMGjSIp3sQGQgugFOLUqvVcHNzg6enp+gUozNu3DiMHDmSv3gRUYuKioqCra0td5MI0LNnT8yZM4dznYha1OrVq1FZWcndJALY29vD19cXGo2GpzYRUYvZunUr7t27x40IAlhYWCA0NBQJCQkoLS0VnUNEBuLYsWO4cOEC57oADac2paWl4e7du6JziOgNcQGcWsyjR4+wdu1aREREwNTUVHSO0VEoFJAkCenp6bh165boHCIyANXV1YiOjoa/vz/atWsnOscoSZLUeLoKEdGbathNsmDBAri6uorOMUqSJCEnJwfbt28XnUJEBkKWZUyYMAHDhw8XnWKUIiIiUFpaiqSkJNEpRGQgZFlG7969MWvWLNEpRikgIACWlpY8tYnIAHABnFpMQkICqquruZtEoBUrVqB9+/bQaDSiU4jIAKSlpeH+/ft817FAc+fORffu3Xn8FhG1iMOHD+PSpUuc6wKNHTsWo0eP5ukeRNQiMjMzsWfPHs51gXr06AFPT0/IsgytVis6h4j03MOHD7F+/XoolUqYmHDpRoQOHTpgxYoV0Gg0qKmpEZ1DRG+AU5RahFarhVqtxqJFi+Di4iI6x2jZ2toiICAA0dHRqKqqEp1DRHpOlmVMmjQJQ4YMEZ1itExNTREREYGkpCQUFRWJziEiPSfLMvr27YsZM2aITjFqkiRhx44dyM7OFp1CRHpOrVbDwcEB3t7eolOMmiRJOHv2LE6ePCk6hYj0XFxcHBQKBYKDg0WnGDVJknDnzh2kp6eLTiGiN8AFcGoRBw8exJUrV/iuYx2gUqnw4MEDbNq0SXQKEemxq1evYv/+/ZzrOiA0NBTV1dVISEgQnUJEeuzBgwdISUmBSqXibhLBfH19YWdnx1ObiOiNlJeXIy4uDsHBwbCyshKdY9Q8PDzg7u7OU5uI6I3U1dUhMjIS3t7ecHR0FJ1j1EaNGoVx48ZxrhPpOf7lg1qELMvo378/pk2bJjrF6A0ePBhTpkzhCzQRvRG1Wg0nJycsWbJEdIrRc3FxweLFi6FWq3msIhG9ttjYWJiamiIoKEh0itGztbVFYGAgYmJiUFlZKTqHiPTU+vXrUVRUBKVSKTrF6JmamkKpVCI5ORmFhYWic4hIT+3evRtZWVnciKAjJElCRkYGsrKyRKcQ0WviAji9sfv37yM1NRUqlQoKhUJ0DqH+BfrgwYO4fPmy6BQi0kNlZWWIj49HSEgILC0tRecQ6uf61atXceDAAdEpRKSHamtrERkZCR8fH3Tq1El0DqH+1Kb8/HykpqaKTiEiPSXLMmbPno0+ffqITiEAISEhqK2txapVq0SnEJGekmUZw4YNw4QJE0SnEAAfHx907NgRkZGRolOI6DVxAZzeWExMDMzNzREYGCg6hb61aNEiODk5Qa1Wi04hIj20bt06FBcXIyIiQnQKfWvq1KkYMGAAT/cgoteSkZGBmzdvQqVSiU6hbw0cOBDTpk3jXCei13L27FmcOHGCc12HdO7cGUuWLIFarUZdXZ3oHCLSM7dv38bWrVu5wUyHWFtbIygoCLGxsaioqBCdQ0SvgQvg9EZqa2uh0Wjg6+sLe3t70Tn0LUtLS4SGhiIhIQFPnjwRnUNEekatVsPDwwO9evUSnULfUigUUKlU2LRpE+7fvy86h4j0jFqtxogRIzB+/HjRKfQ9kiTh0KFDuHjxougUItIzarUarq6u8PLyEp1C3yNJEjIzM7F//37RKUSkZ6Kjo2FjYwM/Pz/RKfQ9KpUKBQUF2Lhxo+gUInoNXACnN7Jjxw7k5OTw2iQ6SKlU4vHjx1i3bp3oFCLSI1999RVOnTrFua6DAgMDYW5ujpiYGNEpRKRHcnJykJ6eDkmSuJtExyxcuBDOzs48tYmIXsnjx4+xZs0ahIeHw8zMTHQOfc/kyZMxePBgnu5BRK+kuroaUVFR8PPzQ/v27UXn0Pf0798fM2bM4Fwn0lNcAKc3IssyRo8ejbFjx4pOoR9wd3fHu+++yxdoInolsizDzc0Nnp6eolPoBzp27Ijly5dDo9GgtrZWdA4R6QmNRgNbW1usWLFCdAr9gIWFReOpTaWlpaJziEhPJCYmoqKiAmFhYaJT6AcaTm1KS0vD3bt3RecQkZ7YsmUL7t27x40IOkqSJBw5cgQXLlwQnUJEr4gL4PTasrOzsWPHDr446zBJkhp3cxIRvcyjR4+wdu1aREREwNTUVHQONUGSJOTk5GD79u2iU4hID1RVVSE6OhoBAQFo166d6BxqQkREBEpLS5GUlCQ6hYj0gFarhSzLWLBgAVxdXUXnUBP8/f1haWmJ6Oho0SlEpCdkWcbEiRMxbNgw0SnUhAULFqBLly7cZEakh7gATq9No9HAzs4Ovr6+olPoOd5991306NGDL9BE1CwJCQmorq7mbhIdNmbMGIwZM4ZznYiaJS0tDXl5eXzDqg7r0aMHPD09IcsytFqt6Bwi0nGHDx/GpUuXONd1WIcOHbBy5UpoNBrU1NSIziEiHXf9+nXs3buXc12HmZubIywsDImJiSgpKRGdQ0SvgAvg9FoqKysRExODwMBA2Nrais6h5zA1NUVERATWrVuHoqIi0TlEpMO0Wi3UajUWLVoEFxcX0Tn0ApIkYefOncjOzhadQkQ6TpblxuuRku6SJAlnz57FyZMnRacQkY6TZRl9+/bFjBkzRKfQC0iShNzcXGzbtk10ChHpOLVaDQcHByxdulR0Cr1AeHg4ysrKsGbNGtEpRPQKuABOryU1NRX5+flQKpWiU+glQkNDUV1djfj4eNEpRKTDDh48iCtXrvBdx3rA19cXdnZ2iIyMFJ1CRDrsypUrOHDgAOe6HvDw8IC7uztP9yCiF3rw4AFSUlKgUqlgYsI/5+mykSNHYvz48ZzrRPRC5eXlWLVqFUJCQmBlZSU6h17Azc0NXl5ePLWJSM/wJ2Z6LbIsY+rUqRg0aJDoFHoJZ2dnLF68GGq1mi/QRPRcsiyjf//+mDZtmugUegkbGxsEBgYiJiYGlZWVonOISEep1Wo4OTlh8eLFolPoJUxNTaFUKpGcnIzCwkLROUSko2JjY2FiYoLAwEDRKdQMKpUKu3btwo0bN0SnEJGOSk5ORlFRESIiIkSnUDOoVCqcP38ex44dE51CRM3EBXB6ZZcuXcKhQ4e4m0SPSJKEa9eu4cCBA6JTiEgH5eXlITU1FSqVCgqFQnQONYNKpcLDhw+RmpoqOoWIdFBZWRni4+MREhICS0tL0TnUDCEhIaitrcWqVatEpxCRDqqrq0NkZCR8fHzg4OAgOoeawcfHB/b29tBoNKJTiEhHqdVqzJ49G3369BGdQs0we/Zs9OrVC2q1WnQKETUTF8DplanVajg7O2PRokWiU6iZpk6dioEDB/L4LSJqUkxMDMzNzbmbRI8MHDgQ06ZN41wnoiatW7cOjx8/5uWK9Ejnzp2xdOlSqNVq1NXVic4hIh2TkZGBmzdvciOCHrG2tkZQUBBiY2NRUVEhOoeIdMzZs2dx4sQJznU9YmJiAqVSifXr16OgoEB0DhE1AxfA6ZWUlpYiISEBoaGhsLCwEJ1DzaRQKKBSqbBp0ybcu3dPdA4R6ZDa2lpERkbC19cX9vb2onPoFUiShEOHDuHixYuiU4hIx8iyjDlz5qBnz56iU+gVqFQqZGZmYt++faJTiEjHyLKMESNGYPz48aJT6BWoVCoUFBQgJSVFdAoR6RhZltGtWzfMmzdPdAq9guDgYGi1WsTFxYlOIaJm4AI4vZKkpCSUlJTw2iR6KCAgABYWFoiJiRGdQkQ6ZMeOHcjJyeG7jvXQwoUL4ezszOO3iOgpp0+fxunTpznX9dDkyZMxePBgnu5BRE/JyclBeno6JEni5Yr0TL9+/TBz5kzOdSJ6SnFxMdasWYPw8HCYmZmJzqFX4OTkBG9vb57aRKQnuABOzabVaiHLMjw9PdGjRw/ROfSKOnbsiOXLl0Oj0aC2tlZ0DhHpCFmWMXr0aIwdO1Z0Cr0iCwsLhIWFISEhAaWlpaJziEhHyLKM7t27Y+7cuaJT6BU1nNq0efNm3L17V3QOEekIjUYDW1tbrFixQnQKvQZJknD06FGcP39edAoR6YjExERUVlYiLCxMdAq9BkmSkJWVhT179ohOIaKX4AI4NdvJkydx9uxZ7ibRY5Ik4fbt20hPTxedQkQ6IDs7Gzt27OBc12MRERF48uQJ1q5dKzqFiHRAUVERkpKSEBERAVNTU9E59Br8/f1haWmJ6Oho0SlEpAOqqqoQHR2NgIAAtGvXTnQOvYb58+ejS5cu3AVORAC+22C2cOFCdO3aVXQOvYaJEydi6NChnOtEeoAL4NRssizD3d0dHh4eolPoNTXs8uQLNBEB9btJ7Ozs4OvrKzqFXlP37t3h6ekJWZah1WpF5xCRYAkJCaiurkZoaKjoFHpNHTp0wMqVK6HRaFBTUyM6h4gES0tLQ15eHlQqlegUek3m5uYIDw/H6tWrUVJSIjqHiAQ7dOgQLl++zI0IekyhUECSJGzZsgV37twRnUNEL8AFcGqWwsJCJCcnczeJAVCpVMjIyMA333wjOoWIBKqsrERMTAwCAgJga2srOofegEqlwrlz53DixAnRKUQkkFarhVqtxqJFi+Di4iI6h96AJEnIzc3Ftm3bRKcQkWCyLGPSpEkYMmSI6BR6A2FhYSgrK8Pq1atFpxCRYLIso2/fvpg+fbroFHoDK1euhLW1NaKiokSnENELcAGcmiU+Ph61tbXcTWIAfH190aFDB0RGRopOISKBUlNTkZ+fz90kBsDDwwPu7u483YPIyB04cABXr17lbhIDMHLkSIwfP55zncjIXblyBQcOHOBcNwBubm7w8vLiqU1ERi4vLw8bN26ESqWCiQmXZfSZnZ0d/Pz8EBUVherqatE5RPQcnLT0Ug27SZYsWYLOnTuLzqE3ZGNjg8DAQMTGxqKyslJ0DhEJolarMXXqVAwaNEh0Cr0hU1NTKJVKJCcno7CwUHQOEQmiVqsxYMAATJs2TXQKtQBJkrBr1y7cuHFDdAoRCRIZGQknJycsWbJEdAq1AEmScOHCBRw7dkx0ChEJEhcXB1NTUwQFBYlOoRYgSRLu3buHrVu3ik4houfgAji91L59+3D9+nW+69iAqFQqPHz4EBs3bhSdQkQCXLp0CV9++SXnugEJCQlBXV0dVq1aJTqFiAS4f/8+UlNToVKpoFAoROdQC1i2bBns7e15ahORkSorK0N8fDxCQkJgaWkpOodawKxZs9C7d2+e7kFkpGpraxEZGQkfHx906tRJdA61gOHDh2PChAmc60Q6jAvg9FKyLGPw4MGYPHmy6BRqIQMGDMD06dP5Ak1kpNRqNZydnbFo0SLRKdRCOnfujKVLl0KtVqOurk50DhG1sZiYGJibmyMwMFB0CrUQa2trBAUFIS4uDhUVFaJziKiNrVu3DsXFxVAqlaJTqIWYmJhAqVRi/fr1ePjwoegcImpjGRkZuHnzJjciGBhJkrBnzx5kZmaKTiGiJnABnF7o7t27SEtL424SAyRJEg4fPowLFy6ITiGiNlRaWoqEhASEhobCwsJCdA61IEmSkJmZiX379olOIaI2VFtbC41Gg+XLl6Njx46ic6gFqVQqFBQUYMOGDaJTiKiNybKMOXPmoGfPnqJTqAUFBwdDoVAgLi5OdAoRtTFZljFy5EiMGzdOdAq1IG9vbzg4OECtVotOIaImcAGcXig6OhqWlpbw9/cXnUItbOHChXBxceELNJGRSUpKQklJCSIiIkSnUAubNGkSBg8ezNM9iIzM9u3bkZOTw90kBqhfv36YOXMmf14nMjKnT5/G6dOnOdcNkKOjI7y9vREZGclTm4iMyK1bt5Ceng5JkrjBzMBYWVkhODgYcXFxKC8vF51DRD/ABXB6rpqaGmg0GqxcuRIdOnQQnUMtzNzcHGFhYUhMTERpaanoHCJqA1qtFrIsw9PTEz169BCdQy1MoVBAkiRs3rwZubm5onOIqI3IsowxY8ZgzJgxolOoFUiShKNHj+L8+fOiU4iojciyDDc3N8ydO1d0CrUCSZKQlZWF3bt3i04hojai0WjQvn17LF++XHQKtQKlUomioiKsX79edAoR/QAXwOm5tm3bhtzcXKhUKtEp1ErCw8Px5MkTrFmzRnQKEbWBkydP4uzZs5zrBszPzw+WlpaIjo4WnUJEbSA7Oxs7d+7kXDdg8+fPR5cuXXi6B5GRKCoqQlJSEiIiImBqaio6h1rBhAkTMHToUM51IiNRVVWF6Oho+Pv7o127dqJzqBX06dMHs2bN4lwn0kFcAKfnkmUZ48aNw6hRo0SnUCvp3r07PD09IcsytFqt6BwiamWyLKNHjx6YM2eO6BRqJR06dMDKlSsRFRWFmpoa0TlE1MoiIyNhZ2cHX19f0SnUSszNzREeHo7Vq1ejpKREdA4RtbKEhARUV1cjLCxMdAq1koZTm7Zu3Yrbt2+LziGiVrZp0yY8ePCAl7UwcJIk4cSJEzh79qzoFCL6Hi6AU5OysrKwa9cuvjgbAUmS8PXXX+PEiROiU4ioFRUWFiI5ORlKpZK7SQycJEnIzc3Ftm3bRKcQUSuqrKxEbGwsAgMDYWtrKzqHWlF4eDjKy8uxevVq0SlE1Iq0Wi3UajUWLVoEFxcX0TnUivz8/GBjY8NTm4iMgFqtxuTJkzF48GDRKdSKvLy84OrqCrVaLTqFiL6HC+DUpMjISNjb28PHx0d0CrUyDw8P9OzZk8e0EBm4+Ph41NbWIjQ0VHQKtbKRI0di/PjxnOtEBi41NRX5+fk8/twIdOvWDV5eXjy1icjAHTx4EFevXuVGBCPQvn17+Pn5ISoqCtXV1aJziKiVXLlyBQcOHOBcNwJmZmYIDw/HmjVr8PjxY9E5RPQtLoDTMyoqKhAbG4ugoCBYW1uLzqFWZmJiAqVSieTkZBQUFIjOIaJW0LCbZMmSJejcubPoHGoDkiRh165duHHjhugUImolsixj2rRpGDhwoOgUagOSJOHChQs4evSo6BQiaiWyLGPAgAGYNm2a6BRqA5Ik4d69e9iyZYvoFCJqJWq1Gk5OTli8eLHoFGoDYWFhqKioQGJiougUIvoWF8DpGSkpKSgoKOBuEiMSEhICrVaLVatWiU4holawb98+XL9+ne86NiLLli2Dvb09IiMjRacQUSu4ePEiDh06xLluRN555x307t2bp3sQGaj79+8jNTUVKpUKCoVCdA61gWHDhmHixImc60QG6smTJ4iPj0doaCgsLS1F51AbcHV1xYIFC3hqE5EO4QI4PUOWZcycORP9+vUTnUJtxMnJCUuXLoVarUZdXZ3oHCJqYbIsY/DgwZg8ebLoFGoj1tbWCA4ORlxcHCoqKkTnEFELU6vVcHZ2xsKFC0WnUBtpOLVpw4YNyM/PF51DRC0sJiYG5ubmCAwMFJ1CbUiSJOzduxfXr18XnUJELWzdunV4/PgxlEql6BRqQ5Ik4dKlSzh8+LDoFCICF8DpB86fP4+jR49yN4kRkiQJN27cwN69e0WnEFELunv3LtLS0ribxAipVCoUFBRgw4YNolOIqAWVlpYiISEBYWFhsLCwEJ1DbSg4OBgKhYKnNhEZmNraWmg0GixfvhwdO3YUnUNtaOnSpXBwcIBarRadQkQtTJZlvPvuu3B3dxedQm1oxowZ6Nu3L0/3INIRXACnp8iyjC5dumD+/PmiU6iNvf322xgyZAhfoIkMTHR0NCwtLeHv7y86hdpY37598c4773CuExmYtWvX4smTJ4iIiBCdQm3M0dER3t7eiIyM5KlNRAZk+/btyMnJ4UYEI2RlZYWQkBCsWrUK5eXlonOIqIWcOnUKX331Fee6ETIxMYFKpUJKSgoePHggOofI6HEBnBqVlJRg9erVCAsLg7m5uegcamMKhQIqlQpbtmxBbm6u6BwiagE1NTXQaDRYsWIFOnToIDqHBFCpVDh27Bi+/vpr0SlE1AK0Wi1kWcbcuXPRvXt30TkkgCRJyMrKwu7du0WnEFELkWUZo0ePxpgxY0SnkAAREREoKipCcnKy6BQiaiGyLKN79+549913RaeQAIGBgTAxMUFsbKzoFCKjxwVwarRmzRqUlZUhPDxcdAoJ4u/vDysrK0RHR4tOIaIWkJ6ejtzcXL7r2IjNnz8fXbp04bGKRAbi5MmTOHfuHOe6EZswYQKGDRvG0z2IDER2djZ27tzJuW7E+vTpg9mzZ/PndSIDUVRUhHXr1iEiIgKmpqaic0gABwcH+Pj48NQmIh3ABXAC8N1uEi8vL7i5uYnOIUHs7OywcuVKREVFoaamRnQOEb0hWZYxbtw4jBo1SnQKCWJubo7w8HCsXr0aJSUlonOI6A3Jsgx3d3d4eHiITiFBFAoFJEnC1q1bcfv2bdE5RPSGNBoN7Ozs4OvrKzqFBJIkCSdOnMDZs2dFpxDRG0pISEB1dTVCQ0NFp5BAkiTh5s2byMjIEJ1CZNS4AE4AgGPHjuH8+fN81zFBkiTk5uZi69atolOI6A1kZWUhIyODc50QHh6O8vJyrF69WnQKEb2BwsJCJCcnQ6lUcjeJkVu5ciVsbGwQFRUlOoWI3kBlZSViYmIQGBgIW1tb0Tkk0Lx589CtWzee7kGk57RaLdRqNRYvXgwXFxfROSTQ+PHjMWLECM51IsG4AE4A6neT9O7dG7NmzRKdQoKNGDECb731Fl+gifRcZGQk7O3t4ePjIzqFBOvWrRu8vLwgyzK0Wq3oHCJ6TatWrUJtbS1CQkJEp5Bg7du3h7+/P6Kjo1FdXS06h4heU2pqKvLz86FSqUSnkGBmZmYIDw/HmjVrUFxcLDqHiF7TgQMHcPXqVW5EoMZTm9LT05GTkyM6h8hocQGc8PDhQ6xfvx5KpRImJnxKUP0u8N27dyMzM1N0ChG9hoqKCsTGxiIoKAjW1taic0gHSJKECxcu4OjRo6JTiOg11NXVQa1WY+nSpejcubPoHNIBKpUK9+7dw+bNm0WnENFrkmUZ06ZNw8CBA0WnkA4ICwtDZWUlEhMTRacQ0WuSZRkDBw7E1KlTRaeQDlixYgVsbW2h0WhEpxAZLa52EuLi4qBQKBAcHCw6hXTEsmXL0KlTJ0RGRopOIaLXkJKSgoKCAu4moUbvvPMOevfuzdM9iPTUvn37kJmZyd0k1GjYsGGYOHEi5zqRnrp48SIOHTrEuU6NunbtioULF/LUJiI9de/ePWzatAkqlQoKhUJ0DumAdu3aISAgANHR0aiqqhKdQ2SUuABu5Orq6hAZGQlvb284OjqKziEdYWVlheDgYMTFxaG8vFx0DhG9IlmWMXPmTPTr1090CukIExMTqFQqbNiwAfn5+aJziOgVybKMwYMHY9KkSaJTSIdIkoR9+/bh2rVrolOI6BWp1Wo4Oztj4cKFolNIh0iShMuXL+PQoUOiU4joFcXExMDc3BwBAQGiU0iHqFQq5OXlIS0tTXQKkVHiAriR2717N7KysrhLkJ6hVCpRWFiIDRs2iE4holdw/vx5HD16lHOdnhEUFASFQoG4uDjRKUT0CnJzc7F582buJqFnLF26FA4ODjy1iUjPlJaWIiEhAaGhobCwsBCdQzpk+vTp6Nu3L0/3INIztbW10Gg0WL58OTp27Cg6h3TIkCFDMGnSJM51IkG4AG7k1Go1hg4diokTJ4pOIR3Tt29fvPPOO1Cr1aJTiOgVqNVqdOnSBQsWLBCdQjrG0dER3t7eiIyMRF1dnegcImqmmJgYWFpawt/fX3QK6RgrKyuEhIRg1apVPLWJSI8kJSWhtLQUERERolNIxzSc2rRx40Y8ePBAdA4RNdP27dtx+/ZtXtaCmiRJEg4cOICrV6+KTiEyOlwAN2J37tzBli1bIEkSd5NQkyRJwrFjx/D111+LTiGiZigpKUFiYiLCwsJgbm4uOod0kCRJ+Oabb7B7927RKUTUDDU1NdBoNFi5ciU6dOggOod0kFKpRFFREZKTk0WnEFEzaLVayLIMT09P9OjRQ3QO6aCgoCCYmpoiNjZWdAoRNZMsyxgzZgzGjBkjOoV00JIlS+Dk5MRNZkQCcAHciEVFRcHGxgZ+fn6iU0hHzZ8/H127duUxLUR6Ys2aNSgrK0N4eLjoFNJREyZMwLBhwzjXifTEtm3bkJuby90k9Fy9e/eGh4cH5zqRnjh58iTOnj3LuU7P1alTJ/j4+CAyMhK1tbWic4joJbKzs7Fz507OdXouS0tLhISEID4+HmVlZaJziIwKF8CNVHV1NaKiouDn54f27duLziEdZWZmhvDwcKxevRqPHz8WnUNEL9Cwm8TLywtubm6ic0hHKRQKSJKErVu34vbt26JziOglZFnG+PHjMXLkSNEppMMkScLJkydx5swZ0SlE9BKyLMPd3R0eHh6iU0iHSZKEmzdvIiMjQ3QKEb1EZGQkOnToAF9fX9EppMOUSiWKi4uxbt060SlERoUL4EZqy5YtuHfvHt+dRi8VHh6OiooKrF69WnQKEb3AsWPHcP78ec51eqmVK1fCxsYGUVFRolOI6AVu3LiBXbt2ca7TS3l6eqJbt27cBU6k4woLC5GcnAylUglTU1PROaTDxo0bh5EjR3KuE+m4yspKxMTEIDAwEDY2NqJzSIf17NkTc+bM4VwnamNcADdSsixj4sSJGDZsmOgU0nGurq6YP38+ZFmGVqsVnUNEzyHLMnr37o1Zs2aJTiEd1759e/j7+yM6OhrV1dWic4joOSIjI2Fvb49ly5aJTiEd13Bq09q1a1FcXCw6h4ieY9WqVaitrUVISIjoFNJxDac2paen49atW6JziOg5Nm7ciIcPH0KlUolOIT0gSRJOnz6N06dPi04hMhpcADdC169fx969e7mbhJpNkiRcvHgRR44cEZ1CRE14+PAh1q9fD6VSCRMTvrTTy6lUKty7dw+bN28WnUJETaioqEBcXByCg4NhbW0tOof0QFhYGCorK5GQkCA6hYiaUFdXB7VajaVLl6Jz586ic0gPLF++HO3bt4dGoxGdQkTPIcsypk+fjgEDBohOIT0wd+5cuLm5cRc4URviX8mNkFqthoODA5YuXSo6hfTEzJkz0bt3b75AE+mouLg4AEBQUJDYENIbw4YNw8SJEznXiXTUhg0bUFBQAKVSKTqF9ETXrl2xcOFCqNVqntpEpIP27duHzMxM7hKkZmvXrl3jqU1VVVWic4joBy5cuIDDhw9zrlOzmZqaIiIiAklJSSgqKhKdQ2QUuABuZMrLy7Fq1SoEBwfDyspKdA7pCRMTE6hUKqSkpCA/P190DhF9T11dHSIjI+Ht7Q0nJyfROaRHJEnCvn37cO3aNdEpRPQDsixj5syZ6Nevn+gU0iOSJOHy5cs4dOiQ6BQi+gFZljF48GBMnjxZdArpEUmS8ODBA2zatEl0ChH9gFqthrOzMxYuXCg6hfRIWFgYqqureWoTURvhAriRWb9+PYqKiribhF5ZcHAwFApF405TItINe/bsQVZWFi9rQa9s6dKlcHBwQGRkpOgUIvqer7/+GseOHeNcp1c2Y8YM9OvXj6d7EOmYu3fvYvPmzVCpVFAoFKJzSI80vGlCrVaLTiGi7yktLUViYiLCwsJgYWEhOof0iIuLCxYtWsRTm4jaCBfAjYwsy5g9ezb69OkjOoX0jIODA5YtW4bIyEjU1dWJziGib8myjKFDh2LixImiU0jPWFlZISQkBKtWrUJ5ebnoHCL6llqtRpcuXTB//nzRKaRnFAoFVCoVNm7ciLy8PNE5RPSt6OhoWFpawt/fX3QK6SFJknDgwAFcuXJFdAoRfWvt2rV48uQJIiIiRKeQHpIkCVevXsXBgwdFpxAZPC6AG5GzZ8/ixIkT3E1Cr02SJHzzzTfYtWuX6BQiAnDnzh1s2bIFkiRxNwm9FqVSiaKiIiQnJ4tOISIAJSUlWL16NcLDw2Fubi46h/RQYGAgTE1NERsbKzqFiADU1NRAo9Fg5cqV6NChg+gc0kOLFy+Gk5MTd4ET6QitVgtZluHp6Ynu3buLziE9NG3aNAwYMICnNhG1AS6AGxFZltGtWzfMmzdPdArpqbfeegvDhw/nCzSRjoiKioKNjQ38/PxEp5Ce6t27Nzw8PDjXiXTE6tWrUV5ejvDwcNEppKc6deoEX19fREZGora2VnQOkdHbtm0bcnNzuRGBXpulpSVCQ0MRHx+PJ0+eiM4hMnonTpzAuXPnONfptTWc2pSamor79++LziEyaFwANxLFxcVYs2YNwsPDYWZmJjqH9JRCoYAkSdi2bRtycnJE5xAZterqakRFRcHPzw/t27cXnUN6TJIknDx5EmfOnBGdQmTUGnaTeHl5oVu3bqJzSI9JkoRbt25h586dolOIjJ4syxg/fjxGjhwpOoX0mFKpxOPHj7Fu3TrRKURGT5Zl9OzZEx4eHqJTSI8FBgbC3NwcMTExolOIDBoXwI1EYmIiKisrERYWJjqF9NyKFStga2uLqKgo0SlERm3Lli24d+8eVCqV6BTSc56enujWrRt3gRMJdvToUVy4cIG7SeiNjR07FiNHjuRcJxLsxo0b2LVrF+c6vTF3d3e8++67nOtEghUUFCA5ORlKpRImJlxWodfXsWNHLF++HBqNhqc2EbUiTmoj0LCbZMGCBejatavoHNJz7du3h5+fH6Kjo1FdXS06h8hoybKMCRMmYPjw4aJTSM+ZmZkhPDwca9euRXFxsegcIqMlyzJ69+6Nd955R3QK6bmGU5u2b9+Omzdvis4hMlqRkZGwt7fHsmXLRKeQAVCpVPjqq69w6tQp0SlERmvVqlWoq6tDcHCw6BQyACqVCjk5Odi+fbvoFCKDxQVwI3Do0CFcvnyZ7zqmFiNJEu7fv4+0tDTRKURG6fr169i7dy/nOrWYsLAwVFZWIiEhQXQKkVHKz8/Hhg0buJuEWsyKFSvQvn17ntpEJEhFRQXi4uIQFBQEa2tr0TlkAObOnYvu3btzFziRIHV1dVCr1Vi6dCk6d+4sOocMwNixYzF69GjOdaJWxL+uGAG1Wo2+fftixowZolPIQAwdOhRvv/021Gq16BQioxQZGQkHBwd4e3uLTiED0bVrVyxcuBBqtRparVZ0DpHRWbVqFRQKBXeTUIuxtbVFQEAAoqOjUVVVJTqHyOikpKSgoKCAlyuiFmNqaoqIiAisW7cORUVFonOIjM6+fftw48YNbkSgFiVJEnbu3Ins7GzRKUQGiQvgBu7BgwdISUmBSqXibhJqUZIkYd++fbh27ZroFCKjUl5ejri4OAQHB8PKykp0DhkQSZJw+fJlHDp0SHQKkVGpq6tDZGQkvL294ejoKDqHDIhKpcKDBw+wadMm0SlERkeWZcycORP9+vUTnUIGJDQ0FNXV1Ty1iUgAWZYxePBgTJo0SXQKGRBfX1/Y2dlBo9GITiEySFwRNXCxsbEwNTVFUFCQ6BQyMEuXLoWjoyN3gRO1sfXr16OoqAhKpVJ0ChmYGTNmoF+/fjx+i6iN7d69G1lZWdxNQi1u8ODBmDJlCuc6URs7f/48jh49yrlOLc7FxQWLFy/mqU1EbSw3NxebN2+GJElQKBSic8iA2NraIjAwEDExMaisrBSdQ2RwuABuwGpraxEZGQkfHx906tRJdA4ZGEtLS4SEhGDVqlUoKysTnUNkNGRZxuzZs9GnTx/RKWRgFAoFVCoVNm7ciLy8PNE5REZDlmUMGzYMEyZMEJ1CBkiSJBw8eBCXL18WnUJkNGRZRpcuXTB//nzRKWSAJEnC1atXceDAAdEpREYjOjoaVlZW8Pf3F51CBkilUiE/Px+pqamiU4gMDhfADVhGRgZu3rzJdx1Tq1EqlSguLkZycrLoFCKjcPbsWZw4cYJznVpNYGAgTE1NERsbKzqFyCjcvn0bW7du5W4SajWLFy9G586deWoTURspKSnB6tWrER4eDnNzc9E5ZICmTp2KgQMH8nQPojZSU1ODqKgorFy5EnZ2dqJzyAANHDgQ06ZN41wnagVcADcw165dQ01NDYD6dx2PHDkS48aNE1xFhqpXr17w8PBofIHWarXcXULUwr755pvGUxZkWUa3bt0wb948wVVkqDp16gRfX19ERkaitrYWADjXiVrYnTt3UFxcDACIioqCjY0NVq5cKbiKDJWFhQVCQ0MRHx+PJ0+eAACuXLmCuro6wWVEhiMvLw8PHz4EAKxevRrl5eUIDw8XXEWGquHUpk2bNuHevXsAgMzMTFRVVQkuIzIchYWFjf99bd26Fbm5udyIQK1KkiQcOnQIFy9eBADcvHmz8Wd3Inp9XAA3IFqtFmPHjkVycjJu3bqF9PR07iahVidJEk6dOoWvvvoK+/btw9ChQ/H48WPRWUQGY86cOfj3v/+N4uJirFmzBuHh4TAzMxOdRQZMkiTcunULO3fuxMWLFzF48GBkZWWJziIyGCtXrsQnn3yC6upqREdHw9/fH+3btxedRQYsIiICJSUlSEpKwoMHDzBkyBAcO3ZMdBaRwfjpT3+K999/H1qtFrIsw8vLC926dROdRQYsICAA5ubmiImJQXV1NYYPH44tW7aIziIyGP/zP/8DPz8/APUbEd566y2MGDFCbBQZtIULF8LZ2bnx1KapU6ciLi5OcBWR/uMCuAFRKBQwMzPDnTt3oNFo0K5dOyxfvhyPHz9GdXW16DwyMHV1dSgqKsLcuXPRrVs3yLKM27dvo66uDlZWVqLziAxGw1xPTExEZWUlQkNDUVZWhoqKCtFpZIAKCwsxduxYjBw5ErIs486dOwDAIzyJWlDDXN+8eTPu3bsHlUqFiooKvsOfWkVhYSHc3d3x7rvvQpZl3L17F3V1dZzrRC2oYa4fPXoUFy5cgEqlQnV1Nd8YTq2isLAQHTp0wPLly6HRaJCfn4/y8nLOdaIW1DDXMzMzsXv3bqhUKtTW1jae4kTUkgoLC2Fubo7Q0FAkJCTg8ePHuHPnDuc6UQvgAriBcXBwwIMHDxATE4OAgAAcPnwYrq6uSExMFJ1GBmbnzp1wcXHBhg0bEBERgaSkJNy5cwft2rWDhYWF6Dwig+Hg4ICCggKo1WosWLAAd+7cgbu7O7744gvRaWRgzpw5A0dHR/zf//0fJEnC9u3bce3aNQD1z0Miahnfn+sTJ06EmZkZBgwYgN/85jei08jA5ObmwsHBAb/73e+gUqlw5swZHD16FADnOlFL+v5c7927N/r374+RI0ciNDRUdBoZmPLycnTp0gU/+tGPEB4ejtu3b2PTpk0AONeJWlLDXNdoNLC3t8eMGTMwZcoUeHp6ik4jA6PVajFo0CAsW7YMAQEBKC0tRWxsLOrq6jjXiVoAF8ANjKOjI86cOYO8vDx07twZ8+bNw7Rp07Bs2TLRaWRg3nnnHfj6+mLFihWoqKhAZWUlvvzySzg6OopOIzIojo6OyMzMxKVLlzBs2DBMnz4dffv2hUqlEp1GBmbEiBH4+c9/jp/+9Ke4cOEC2rVrh/T0dFhZWcHGxkZ0HpHBcHBwwN27d7F3715MmzYNb7/9Ntq3b49f/epXotPIwHTt2hWffvopPvnkE6xfvx7du3fHhg0bAIA/sxO1IEdHR+Tn52P9+vXw8vLCxIkT8eTJE/z+978XnUYGxtraGv/+978RFRWF//3f/8XIkSMbN7xwrhO1HEdHRxQVFSE2NhaLFi3CzJkzkZmZyY0I1OIUCgUiIyORnp6OkJAQzJo1CxqNBgDnOlFLUGi1Wq3oCGo58+bNw/Hjx2FjY4Pbt29DkiT84x//4PViqVVotVr813/9Fz755BP06tULBQUF6NOnD06fPi06jchghIWFIS0tDSYmJnj48CGWLFmChIQEWFtbi04jA/XPf/4T77//Pnr16oV79+7B3t6+8Sh0InpzH3/8Mf7xj39Aq9WisrISU6ZMwcaNG9GhQwfRaWSgkpKSEBQUhG7duiEnJwcAUFVVBYVCIbiMyDD861//wvvvvw8TExNYWFhgwIAB2LZtG1xcXESnkYHKyMjA0qVL4eDggFu3bgEAHjx4ACcnJ8FlRIZh48aNWLp0KQDA3t4ejo6O2LFjB3r37i24jAzViRMn4OXlBXNzc9y9excAcP78eQwdOlRwGZF+4w5wA2NmZoaCggLcvn0bn332Gf71r39x8ZtajUKhwO9//3vExMTg5s2bKC4uhokJxwpRS7K2tkZBQQHy8/Pxi1/8AsnJyVz8plb13nvvYdOmTcjNzUVZWRlMTU1FJxEZFDs7O5SUlKC0tBQrVqzA9u3bufhNrWr58uXYvXs3CgoKUFNTAysrKy5+E7Uge3t71NbWoqamBtOnT8fBgwe5+E2tysPDA4cOHUJVVVXjx+zt7QUWERmW7x89PWjQIBw7doyL39Sqxo8fj2PHjsHW1rbxYzwCnejNcaXKwJSVlQEAEhIS8Ktf/Yp/2KA2ERISgvT0dJiYmKCyslJ0DpFBefLkCQDg008/xeeff843mVCbWLBgAQ4cOABzc3PU1dWJziEyKOXl5QCAn/zkJ4iLi4OFhYXgIjIGU6ZMafyjGn9HJGpZDf9NLVy4EJs2bXrqj9dErWXEiBE4ceIEHBwcYGZmxs0vRC2o4c2pEydOxJ49e7gQSW2id+/eOHbsGHr06AGAC+BELYFHoBuYBw8e4NatWxg7dqzoFDJCFy9eRPv27RtfqInozZWUlODs2bOYMmWK6BQyQllZWaisrMSgQYNEpxAZjKqqKhw8eBCzZs0SnUJG6N69e8jNzcWYMWNEpxAZjLq6OuzatQseHh58gwm1uUePHuHixYuYNGmS6BQig6HVarFr1y7MmjWLmxCozZWXl+P48eOYPn266BQivccFcCIiIiIiIiIiIiIiIiIiMgh8CxMRERERERERERERERERERkEXiDmNeTk5ODhw4eiM1qUo6MjunfvLjqDdJChPd/5XKfn4XOdjAWf62Qs+FwnY8HnOhkLPtfJWPC5TsaCz3UyFnyuE4nBBfBXlJOTgwEDBqC8vFx0SouytrbG1atXObjoKYb4fOdznZrC5zoZCz7XyVjwuU7Ggs91MhZ8rpOx4HOdjAWf62Qs+FwnEocL4K/o4cOHKC8vx+LFi+Ho6Cg6p0U8fPgQqampePjwIYcWPcXQnu98rtPz8LlOxoLPdTIWfK6TseBznYwFn+tkLPhcJ2PB5zoZCz7XicThAvhrcnR0RNeuXUVnELUJPt/JWPC5TsaCz3UyFnyuk7Hgc52MBZ/rZCz4XCdjwec6GQs+14nanonoACIiIiIiIiIiIiIiIiIiopbABXAiIiIiIiIiIiIiIiIiIjIIXAAnIiIiIiIiIiIiIiIiIiKDwAVwIiIiIiIiIiIiIiIiIiIyCFwAJyIiIiIiIiIiIiIiIiIig8AFcCIiIiIiIiIiIiIiIiIiMghcACciIiIiIiIiIiIiIiIiIoPABXAiIiIiIiIiIiIiIiIiIjIIXAAnIiIiIiIiIiIiIiIiIiKDwAVwIiIiIiIiIiIiIiIiIiIyCFwAJyIiIiIiIiIiIiIiIiIig8AFcCIiIiIiIiIiIiIiIiIiMghcACciIiIiIiIiIiIiIiIiIoPABXAiIiIiIiIiIiIiIiIiIjIIXAAnIiIiIiIiIiIiIiIiIiKDwAVwIiIiIiIiIiIiIiIiIiIyCFwAJyIiIiIiIiIiIiIiIiIig8AFcCIiIiIiIiIiIiIiIiIiMghcABeosrIS5eXlr3Xf8vJyVFZWtnARUevgc52MBZ/rZCz4XCdjwec6GQs+18lY8LlOxoLPdTIWfK6TseBznejVcQFckPz8fCQlJUGr1b7W/bVaLZKSkpCfn9/CZUT/v73712myjcM4fr/SisVJ0kWGJrrpYFw4BY6AibNw8yTcOAujx6C7f+LCSCKaGBPDRIKxrX0HAwnJ+w6Upzz4uz6fDWLv3I9+w3KV2i2tk0LrpNA6KbROCq2TQuuk0DoptE4KrcNyDOA9mM1m7eXLl21nZ6dtbGwsdcbGxkbb2dlpr169arPZrOMbQje0Tgqtk0LrpNA6KbROCq2TQuuk0DoptA7LM4D34OPHj+3u3btta2vrSudsbW210WjUPn361NHNoFtaJ4XWSaF1UmidFFonhdZJoXVSaJ0UWoflGcB7cHBw0B4+fNjJWQ8ePGgHBwednAVd0zoptE4KrZNC66TQOim0Tgqtk0LrpNA6LM8A3oOvX7+2e/fudXLW5uZm+/LlSydnQde0Tgqtk0LrpNA6KbROCq2TQuuk0DoptA7LM4Bfs1+/frXpdNpGo1En5925c+f8TLhJtE4KrZNC66TQOim0Tgqtk0LrpNA6KbQOV2MAv2Y/f/5srbV261Y3f/Vn55ydCzeF1kmhdVJonRRaJ4XWSaF1UmidFFonhdbhagzg1+zs3Trz+byT837//t1a+/PuHbhJtE4KrZNC66TQOim0Tgqtk0LrpNA6KbQOV2MAv2bD4bDdvn27nZ6ednLe6elpW19fb8PhsJPzoCtaJ4XWSaF1UmidFFonhdZJoXVSaJ0UWoerMYD3YDKZtOPj4wvf+/DhQ9vf3z///xe+f//eXrx40b59+9Za+/Mun/39/fbu3bsLrzs+Pm6TyeR6Lg6XpHVSaJ0UWieF1kmhdVJonRRaJ4XWSaF1WJ4BvAePHj1qh4eHF743n8/bdDpti8Witfbn4yim0+n5x1IsFos2nU7bbDa78LrDw8P2+PHj67k4XJLWSaF1UmidFFonhdZJoXVSaJ0UWieF1mF5g74vkOjp06ft/fv37ejo6PwdN9vb2217e/v8z9y/f789f/78/OvBYNCePXt24ZzPnz+32WzWnjx5cj0Xh0vSOim0Tgqtk0LrpNA6KbROCq2TQuuk0Dosz2+A92Btba3t7u62N2/etJOTk6XOODk5aW/fvm27u7ttbW2t4xtCN7ROCq2TQuuk0DoptE4KrZNC66TQOim0DsvzG+A92dzcbHt7e20+ny/1+uFw2Pb29tpg4J+Qm03rpNA6KbROCq2TQuuk0DoptE4KrZNC67AcxfdoMBgs/UNnfX2949vA6midFFonhdZJoXVSaJ0UWieF1kmhdVJoHS7PR6ADAAAAAAAAUIIBHAAAAAAAAIASDOAAAAAAAAAAlGAABwAAAAAAAKAEAzgAAAAAAAAAJRjAAQAAAAAAACjBAA4AAAAAAABACQZwAAAAAAAAAEowgAMAAAAAAABQggEcAAAAAAAAgBIM4AAAAAAAAACUYAAHAAAAAAAAoAQDOAAAAAAAAAAlGMABAAAAAAAAKMEADgAAAAAAAEAJBnAAAAAAAAAASjCAAwAAAAAAAFCCARwAAAAAAACAEgzgAAAAAAAAAJRgAAcAAAAAAACghEHfF/hb/fjxo+8rdKbSs7AaVRqp8hysTpVGqjwHq1OlkSrPwepUaaTKc7A6VRqp8hysTpVGqjwHq1OlkSrPwepUaaTKc7A6VRqp8hxkMIBf0ng8bqPRqL1+/brvq3RqNBq18Xjc9zW4YSr2rnX+i9ZJoXVSaJ0UWieF1kmhdVJonRRah/78s1gsFn1f4m9zdHRU7p0u4/G4TSaTvq/BDVStd63zf7ROCq2TQuuk0DoptE4KrZNC66TQOvTDAA4AAAAAAABACbf6vgAAAAAAAAAAdMEADgAAAAAAAEAJBnAAAAAAAAAASjCAAwAAAAAAAFCCARwAAAAAAACAEgzgAAAAAAAAAJRgAAcAAAAAAACgBAM4AAAAAAAAACUYwAEAAAAAAAAowQAOAAAAAAAAQAkGcAAAAAAAAABKMIADAAAAAAAAUIIBHAAAAAAAAIASDOAAAAAAAAAAlGAABwAAAAAAAKAEAzgAAAAAAAAAJRjAAQAAAAAAACjBAA4AAAAAAABACQZwAAAAAAAAAEowgAMAAAAAAABQggEcAAAAAAAAgBIM4AAAAAAAAACUYAAHAAAAAAAAoAQDOAAAAAAAAAAlGMABAAAAAAAAKMEADgAAAAAAAEAJBnAAAAAAAAAASjCAAwAAAAAAAFCCARwAAAAAAACAEgzgAAAAAAAAAJRgAAcAAAAAAACgBAM4AAAAAAAAACUYwAEAAAAAAAAowQAOAAAAAAAAQAkGcAAAAAAAAABKMIADAAAAAAAAUIIBHAAAAAAAAIASDOAAAAAAAAAAlGAABwAAAAAAAKAEAzgAAAAAAAAAJRjAAQAAAAAAACjBAA4AAAAAAABACQZwAAAAAAAAAEowgAMAAAAAAABQggEcAAAAAAAAgBIM4AAAAAAAAACUYAAHAAAAAAAAoAQDOAAAAAAAAAAlGMABAAAAAAAAKMEADgAAAAAAAEAJBnAAAAAAAAAASjCAAwAAAAAAAFCCARwAAAAAAACAEgzgAAAAAAAAAJRgAAcAAAAAAACgBAM4AAAAAAAAACUYwAEAAAAAAAAowQAOAAAAAAAAQAkGcAAAAAAAAABKMIADAAAAAAAAUIIBHAAAAAAAAIASDOAAAAAAAAAAlGAABwAAAAAAAKAEAzgAAAAAAAAAJRjAAQAA3C58fwAAASNJREFUAAAAACjBAA4AAAAAAABACQZwAAAAAAAAAEowgAMAAAAAAABQggEcAAAAAAAAgBIM4AAAAAAAAACUYAAHAAAAAAAAoAQDOAAAAAAAAAAlGMABAAAAAAAAKMEADgAAAAAAAEAJBnAAAAAAAAAASjCAAwAAAAAAAFCCARwAAAAAAACAEgzgAAAAAAAAAJRgAAcAAAAAAACgBAM4AAAAAAAAACUYwAEAAAAAAAAowQAOAAAAAAAAQAkGcAAAAAAAAABKMIADAAAAAAAAUIIBHAAAAAAAAIASDOAAAAAAAAAAlGAABwAAAAAAAKAEAzgAAAAAAAAAJRjAAQAAAAAAACjBAA4AAAAAAABACQZwAAAAAAAAAEowgAMAAAAAAABQwr+wYN/HzZWYkwAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the tree (showing only top levels due to size)\n", + "plt.figure(figsize=(20, 12))\n", + "plot_tree(large_tree,\n", + " feature_names=X_train.columns,\n", + " filled=True,\n", + " max_depth=3, # Show only first 3 levels for readability\n", + " fontsize=10)\n", + "plt.title(\"Large Regression Tree (First 3 levels)\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3069027d-f53f-4348-8c0c-0885483dc8d9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 2.2 Train and Test MSE for the Large Tree\n", + "Compute the training and test MSE of the tree and add it to the table from *Q1.2*." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "04c40a06-a7b8-4539-93b1-8645428d37ad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Large Tree Train MSE: 0.000000\n", + "Large Tree Test MSE: 0.045659\n" + ] + } + ], + "source": [ + "# Calculate training MSE\n", + "y_pred_large_tree_train = large_tree.predict(X_train)\n", + "mse_large_tree_train = mean_squared_error(y_train, y_pred_large_tree_train)\n", + "\n", + "# Calculate test MSE\n", + "y_pred_large_tree_test = large_tree.predict(X_test)\n", + "mse_large_tree_test = mean_squared_error(y_test, y_pred_large_tree_test)\n", + "\n", + "print(f\"Large Tree Train MSE: {mse_large_tree_train:.6f}\")\n", + "print(f\"Large Tree Test MSE: {mse_large_tree_test:.6f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "581f7631-9c99-4143-b87e-11b43c243dd0", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 2.3. Cross-Validation for optimal Tree Pruning\n", + "Again set the seed to $2$ and use $5$-fold cross validation to determine the optimal pruning parameter for the large tree. Provide a plot of the prediction error against the size of the tree. Report the optimal tree size and provide a plot of the pruned tree. Which variables are important for splitting the pruned tree?" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "9801c9a3-85ba-4b70-82b6-a9bbbfcfaec4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal tree size (number of leaves): 3\n", + "Optimal ccp_alpha: 0.000424\n" + ] + } + ], + "source": [ + "# Set seed for reproducibility\n", + "np.random.seed(2)\n", + "\n", + "# In sklearn, pruning is done by varying max_leaf_nodes or ccp_alpha\n", + "# We'll use cost complexity pruning (ccp_alpha) which is more similar to R's approach\n", + "\n", + "# First, get the cost complexity pruning path\n", + "path = large_tree.cost_complexity_pruning_path(X_train, y_train)\n", + "ccp_alphas, impurities = path.ccp_alphas, path.impurities\n", + "\n", + "# Remove the last alpha value (it would result in a tree with only root)\n", + "ccp_alphas = ccp_alphas[:-1]\n", + "\n", + "# Perform cross-validation for different alpha values\n", + "cv_scores = []\n", + "tree_sizes = []\n", + "\n", + "for ccp_alpha in ccp_alphas:\n", + " tree_temp = DecisionTreeRegressor(random_state=2, ccp_alpha=ccp_alpha)\n", + " tree_temp.fit(X_train, y_train)\n", + "\n", + " # Get tree size (number of leaves)\n", + " tree_sizes.append(tree_temp.get_n_leaves())\n", + "\n", + " # 5-fold cross-validation\n", + " scores = cross_val_score(tree_temp, X_train, y_train,\n", + " cv=5, scoring='neg_mean_squared_error')\n", + " cv_scores.append(-scores.mean()) # Convert back to positive MSE\n", + "\n", + "cv_scores = np.array(cv_scores)\n", + "tree_sizes = np.array(tree_sizes)\n", + "\n", + "# Find the optimal tree size (minimum CV error)\n", + "best_idx = np.argmin(cv_scores)\n", + "best_size = tree_sizes[best_idx]\n", + "best_alpha = ccp_alphas[best_idx]\n", + "\n", + "print(f\"Optimal tree size (number of leaves): {best_size}\")\n", + "print(f\"Optimal ccp_alpha: {best_alpha:.6f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "0cdff5b0-b62d-4cba-814c-98c5e2e0e96d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJNCAYAAAAs3xZxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAeDBJREFUeJzt3XlcVXX+x/H35bKD4AqIC7jv5ZpprmmSWi41aupYpi22ijamZk6rWVZqZmoaaU25TJnmtLkluJE7ZmqjJi44ELmBgMh2fn/w4yaBCnqvhwuv5+NxHnM453vP+dw7FL3vdzkWwzAMAQAAAAAAu3MxuwAAAAAAAEorQjcAAAAAAA5C6AYAAAAAwEEI3QAAAAAAOAihGwAAAAAAByF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDELoBAAAAAHAQQjcAAAAAAA7ianYBc+bM0dtvv634+Hg1adJEM2fOVMeOHa/YPioqSmPHjtX+/fsVHBys559/XqNGjbKd379/v/75z39q165dOn78uGbMmKHw8PB815g6daq++uor/frrr/Ly8lL79u311ltvqUGDBkWuOycnR//73/9Urlw5WSyWYr9vAAAAAEDJZBiGLly4oODgYLm43GBftWGipUuXGm5ubsaCBQuMAwcOGKNHjzZ8fHyM48ePF9r+6NGjhre3tzF69GjjwIEDxoIFCww3Nzfjyy+/tLXZvn278Y9//MNYsmSJERQUZMyYMaPAdcLCwoyFCxcav/zyixETE2P07t3bqFmzppGSklLk2k+ePGlIYmNjY2NjY2NjY2NjYyul28mTJ4udc//KYhiGIZO0bdtWLVu21Ny5c23HGjVqpH79+mnq1KkF2o8fP16rVq3SwYMHbcdGjRqlvXv3Kjo6ukD70NBQhYeHF+jp/qs//vhDAQEBioqKUqdOnYpUe1JSksqXL6+TJ0/Kz8+vSK9BKZeaKgUH5+7/73+Sj4+59QAAAAC4LsnJyapRo4bOnz8vf3//G7qWacPLMzIytGvXLk2YMCHf8R49emjr1q2FviY6Olo9evTIdywsLEwRERHKzMyUm5vbddWSlJQkSapYseIV21y6dEmXLl2y/XzhwgVJkp+fH6EbuazWP/f9/AjdAAAAgJOzx1Ri0xZSO336tLKzsxUYGJjveGBgoBISEgp9TUJCQqHts7KydPr06euqwzAMjR07Vh06dFDTpk2v2G7q1Kny9/e3bTVq1Liu+wEAAAAAyg7TVy//6zcHhmFc9duEwtoXdryonn76af38889asmTJVdtNnDhRSUlJtu3kyZPXdT8AAAAAQNlh2vDyypUry2q1FujVTkxMLNCbnScoKKjQ9q6urqpUqVKxa3jmmWe0atUqbdy4UdWrV79qWw8PD3l4eBT7HihDvL2llJQ/9wEAAACUeaaFbnd3d7Vq1Upr165V//79bcfXrl2rvn37Fvqadu3a6T//+U++Y2vWrFHr1q2LNZ/bMAw988wzWrFihSIjI1WrVq3rexPA5SwW5nEDAABcQ3Z2tjIzM80uA2Wcm5ubrJevyeRApj6ne+zYsRo2bJhat26tdu3aaf78+Tpx4oTtudsTJ07UqVOn9Omnn0rKXal89uzZGjt2rB599FFFR0crIiIi39DwjIwMHThwwLZ/6tQpxcTEyNfXV3Xr1pUkPfXUU1q8eLG+/vprlStXztZ77u/vLy8vr5v5EQAAAABlgmEYSkhI0Pnz580uBZAklS9fXkFBQXZZLO1qTH1kmCTNmTNH06ZNU3x8vJo2baoZM2bYHts1fPhwHTt2TJGRkbb2UVFRGjNmjPbv36/g4GCNHz/eFtIl6dixY4X2XHfu3Nl2nSt9qAsXLtTw4cOLVHdycrL8/f2VlJTE6uXIdemS9PjjufsffigxHQEAAMAmPj5e58+fV0BAgLy9vR0edIArMQxDaWlpSkxMVPny5VW1atUCbeyZ90wP3c6K0I0CUlMlX9/c/ZQUhpoDAAD8v+zsbB06dEgBAQHXtRYT4AhnzpxRYmKi6tevX2CouT3znumrlwMAAAAo3fLmcHuz2CxKkLzfR0evMUDoBgAAAHBTMKQcJcnN+n0kdAMAAAAA4CCEbgAAAAAw0csvv6zmzZuX6PscO3ZMFotFMTExdq2pLCB0AwAAAMBVnDx5UiNHjlRwcLDc3d0VEhKi0aNH68yZM8W+lsVi0cqVK/Md+8c//qH169fbqVrHqFGjhu2JUyXVyy+/rIYNG8rHx0cVKlRQ9+7dtW3bNrPLInQDAAAAwJUcPXpUrVu31qFDh7RkyRIdOXJE8+bN0/r169WuXTudPXv2hu/h6+tb4ld1t1qtCgoKkqurq9mlXFH9+vU1e/Zs7du3T5s3b1ZoaKh69OihP/74w9S6CN2AvXh7S4mJuRsrcwIAAJQKTz31lNzd3bVmzRp17txZNWvWVM+ePbVu3TqdOnVKkyZNsrUNDQ3Va6+9piFDhsjX11fBwcF6//33852XpP79+8tisdh+/uuw7+HDh6tfv3564403FBgYqPLly+uVV15RVlaWxo0bp4oVK6p69er6+OOP89U6fvx41a9fX97e3qpdu7YmT55crJW5z507p6FDh6pKlSry8vJSvXr1tHDhQkkFh5cPHz5cFoulwBYZGSlJysjI0PPPP69q1arJx8dHbdu2tZ1zlCFDhqh79+6qXbu2mjRpounTpys5OVk///yzQ+97LYRuwF4sFqlKldyNlTkBAACKJjX1ylt6etHbXrxYtLbFcPbsWa1evVpPPvmkvLy88p0LCgrS0KFDtWzZMhmGYTv+9ttv65ZbbtHu3bs1ceJEjRkzRmvXrpUk7dixQ5K0cOFCxcfH234uzI8//qj//e9/2rhxo6ZPn66XX35Z99xzjypUqKBt27Zp1KhRGjVqlE6ePGl7Tbly5bRo0SIdOHBA7733nhYsWKAZM2YU+f1OnjxZBw4c0Pfff6+DBw9q7ty5qly5cqFt33vvPcXHx9u20aNHKyAgQA0bNpQkPfzww9qyZYuWLl2qn3/+WQMGDNDdd9+tw4cPX/H+PXv2lK+v71W3osrIyND8+fPl7++vW2+9tcivc4SSOzYAAAAAQOl3tSDVq5f07bd//hwQIKWlFd62c2fp8p7U0FDp9OmC7S4LyNdy+PBhGYahRo0aFXq+UaNGOnfunP744w8FBARIku644w5NmDBBUu5w5y1btmjGjBm66667VKVKFUlS+fLlFRQUdNV7V6xYUbNmzZKLi4saNGigadOmKS0tTS+88IIkaeLEiXrzzTe1ZcsWPfDAA5KkF1988bK3H6rnnntOy5Yt0/PPP1+k93vixAm1aNFCrVu3tl3jSvz9/eXv7y9J+uqrrzRv3jytW7dOQUFB+u2337RkyRLFxcUpODhYUu689R9++EELFy7UG2+8Ueg1P/roI13865cnxfTNN9/ogQceUFpamqpWraq1a9de8YuDm4XQDdjLpUvS2LG5+9OnSx4e5tYDAAAAh8rr4b78ec/t2rXL16Zdu3aaOXNmsa/dpEkTubj8OTA5MDAw3yJmVqtVlSpVUmJiou3Yl19+qZkzZ+rIkSNKSUlRVlaW/Pz8inzPJ554Qvfff792796tHj16qF+/fmrfvv1VX7Nnzx49+OCD+uCDD9ShQwdJ0u7du2UYhurXr5+v7aVLl646d71atWpFrvVKunbtqpiYGJ0+fVoLFizQwIEDtW3bNtuXImYgdAP2kpUlzZmTuz9tGqEbAACgKFJSrnzOas3/82UBswCXv8ycPXbsukvKU7duXVksFh04cED9+vUrcP7XX39VhQoVrtmTarmOqYdubm4FrlHYsZycHEnSTz/9pAceeECvvPKKwsLC5O/vr6VLl+rdd98t8j179uyp48eP69tvv9W6devUrVs3PfXUU3rnnXcKbZ+QkKA+ffpo5MiRGjlypO14Tk6OrFardu3aJetf/j+82hDxnj17atOmTVetMeVqvy+SfHx8VLduXdWtW1e333676tWrp4iICE2cOPGqr3MkQjcAAAAA8/j4mN/2CipVqqS77rpLc+bM0ZgxY/LN605ISNDnn3+uBx98MF+o/umnn/Jd46effrLNc5Zyw3R2dvYN1/ZXW7ZsUUhISL6F3Y4fP17s61SpUkXDhw/X8OHD1bFjR40bN67Q0J2enq6+ffuqYcOGmj59er5zLVq0UHZ2thITE9WxY8ci39sew8v/yjAMXbp0ya7XLC5CNwAAAABcwezZs9W+fXuFhYXp9ddfV61atbR//36NGzdO1apV05QpU/K137Jli6ZNm6Z+/fpp7dq1+uKLL/TtZfPSQ0NDtX79et1xxx3y8PBQhQoV7FJn3bp1deLECS1dulRt2rTRt99+qxUrVhTrGv/85z/VqlUrNWnSRJcuXdI333xzxfnsjz/+uE6ePKn169fneyRXxYoVVb9+fQ0dOlQPPvig3n33XbVo0UKnT5/Wjz/+qGbNmqlXr16FXvNGhpenpqZqypQp6tOnj6pWraozZ85ozpw5iouL04ABA677uvbA6uUAAAAAcAX16tXTzp07VadOHQ0aNEh16tTRY489pq5duyo6OloVK1bM1/65557Trl271KJFC7322mt69913FRYWZjv/7rvvau3atapRo4ZatGhhtzr79u2rMWPG6Omnn1bz5s21detWTZ48uVjXcHd318SJE3XLLbeoU6dOslqtWrp0aaFto6KiFB8fr8aNG6tq1aq2bevWrZJyV2h/8MEH9dxzz6lBgwbq06ePtm3bpho1atzwey2M1WrVr7/+qvvvv1/169fXPffcoz/++EObNm1SkyZNHHLPorIYRjGW74NNcnKy/P39lZSUVKzFCVCKpab+ufpmSopdhjQBAACUBunp6YqNjVWtWrXk6elpdjkOExoaqvDwcIWHh5tdCorgar+X9sx79HQDAAAAAOAghG4AAAAAAByEhdQAe/HykmJj/9wHAABAmXLMDo8pQ+lD6AbsxcVFCg01uwoAAAAAJQjDywEAAADcFKzhjJLkZv0+EroBe8nIkMaNy90yMsyuBgAAoMRwc3OTJKWlpZlcCfCnvN/HvN9PR2F4OWAvmZnSO+/k7r/8suTubmo5AAAAJYXValX58uWVmJgoSfL29pbFYjG5KpRVhmEoLS1NiYmJKl++vKxWq0PvR+gGAAAA4HBBQUGSZAvegNnKly9v+710JEI3AAAAAIezWCyqWrWqAgIClJmZaXY5KOPc3Nwc3sOdh9ANAAAA4KaxWq03LewAJQELqQEAAAAA4CCEbgAAAAAAHITQDQAAAACAgzCnG7AXLy/pl1/+3AcAAABQ5hG6AXtxcZGaNDG7CgAAAAAlCMPLAQAAAABwEHq6AXvJyJDeeCN3/4UXJHd3c+sBAAAAYDqLYRiG2UU4o+TkZPn7+yspKUl+fn5ml4OSIDVV8vXN3U9JkXx8zK0HAAAAwHWxZ95jeDkAAAAAAA5C6AYAAAAAwEEI3QAAAAAAOAihGwAAAAAAByF0AwAAAADgIIRuAAAAAAAchOd0A/bi6Slt3/7nPgAAAIAyj9AN2IvVKrVpY3YVAAAAAEoQhpcDAAAAAOAg9HQD9pKRIb33Xu7+6NGSu7u59QAAAAAwncUwDMPsIpxRcnKy/P39lZSUJD8/P7PLQUmQmir5+ubup6RIPj7m1gMAAADgutgz7zG8HAAAAAAAByF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDELoBAAAAAHAQQjcAAAAAAA7Cc7oBe/H0lDZs+HMfAAAAQJlH6AbsxWqVunQxuwoAAAAAJQjDywEAAAAAcBB6ugF7ycyU5s/P3X/sMcnNzdx6AAAAAJiO0A3YS0aG9PTTufvDhxO6AQAAADC8HAAAAAAARyF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDELoBAAAAAHAQQjcAAAAAAA7CI8MAe/HwkL755s99AAAAAGUeoRuwF1dXqXdvs6sAAAAAUIIwvBwAAAAAAAehpxuwl8xM6fPPc/eHDpXc3MytBwAAAIDpCN2AvWRkSA8/nLs/YAChGwAAAADDywEAAAAAcBRCNwAAAAAADkLoBgAAAADAQQjdAAAAAAA4CKEbAAAAAAAHIXQDAAAAAOAgPDIMsBcPD+nf//5zHwAAAECZR+gG7MXVNff53AAAAADw/xheDgAAAACAg9DTDdhLVpa0YkXufv/+uT3fAAAAAMo0UgFgL5cuSQMH5u6npBC6AQAAADC8HAAAAAAARyF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDmB6658yZo1q1asnT01OtWrXSpk2brto+KipKrVq1kqenp2rXrq158+blO79//37df//9Cg0NlcVi0cyZMwtcY+PGjbr33nsVHBwsi8WilStX2vEdAQAAAACQy9TQvWzZMoWHh2vSpEnas2ePOnbsqJ49e+rEiROFto+NjVWvXr3UsWNH7dmzRy+88IKeffZZLV++3NYmLS1NtWvX1ptvvqmgoKBCr5Oamqpbb71Vs2fPdsj7AgAAAABAkiyGYRhm3bxt27Zq2bKl5s6dazvWqFEj9evXT1OnTi3Qfvz48Vq1apUOHjxoOzZq1Cjt3btX0dHRBdqHhoYqPDxc4eHhV6zBYrFoxYoV6tevX7FqT05Olr+/v5KSkuTn51es16KUysyUPv88d3/oUMnNzdx6AAAAAFwXe+Y90x4knJGRoV27dmnChAn5jvfo0UNbt24t9DXR0dHq0aNHvmNhYWGKiIhQZmam3BwYci5duqRLly7Zfk5OTnbYveCk3Nyk4cPNrgIAAABACWLa8PLTp08rOztbgYGB+Y4HBgYqISGh0NckJCQU2j4rK0unT592WK2SNHXqVPn7+9u2GjVqOPR+AAAAAADnZ/pCahaLJd/PhmEUOHat9oUdt7eJEycqKSnJtp08edKh94MTysqSvv02d8vKMrsaAAAAACWAacPLK1euLKvVWqBXOzExsUBvdp6goKBC27u6uqpSpUoOq1WSPDw85OHh4dB7wMlduiTdc0/ufkqK5GraP14AAAAASgjTerrd3d3VqlUrrV27Nt/xtWvXqn379oW+pl27dgXar1mzRq1bt3bofG4AAAAAAK6HqV1xY8eO1bBhw9S6dWu1a9dO8+fP14kTJzRq1ChJuUO6T506pU8//VRS7krls2fP1tixY/Xoo48qOjpaERERWrJkie2aGRkZOnDggG3/1KlTiomJka+vr+rWrStJSklJ0ZEjR2yviY2NVUxMjCpWrKiaNWverLcPAAAAACjlTH1kmCTNmTNH06ZNU3x8vJo2baoZM2aoU6dOkqThw4fr2LFjioyMtLWPiorSmDFjtH//fgUHB2v8+PG2kC5Jx44dU61atQrcp3PnzrbrREZGqmvXrgXaPPTQQ1q0aFGR6uaRYSggNVXy9c3dT0mRfHzMrQcAAADAdbFn3jM9dDsrQjcKIHQDAAAApYI9857pq5cDAAAAAFBaEboBAAAAAHAQnmkE2Iu7uzR79p/7AAAAAMo8QjdgL25u0lNPmV0FAAAAgBKE4eUAAAAAADgIPd2AvWRnS5s25e537ChZrebWAwAAAMB0hG7AXtLTpbznv/PIMAAAAABieDkAAAAAAA5D6AYAAAAAwEEI3QAAAAAAOAihGwAAAAAAByF0AwAAAADgIIRuAAAAAAAchEeGAfbi5iZNm/bnPgAAAIAyj9AN2Iu7uzRunNlVAAAAAChBGF4OAAAAAICD0NMN2Et2trR7d+5+y5aS1WpuPQAAAABMR+gG7CU9Xbrtttz9lBTJx8fcegAAAACYjuHlAAAAAAA4CKEbAAAAAAAHIXQDAAAAAOAghG4AAAAAAByE0A0AAAAAgIMQugEAAAAAcBAeGQbYi5ub9NJLf+4DAAAAKPMI3YC9uLtLL79sdhUAAAAAShCGlwMAAAAA4CD0dAP2kpMjHTyYu9+okeTCd1oAAABAWUfoBuzl4kWpadPc/ZQUycfH3HoAAAAAmI6uOAAAAAAAHITQDQAAAACAgxC6AQAAAABwEEI3AAAAAAAOQugGAAAAAMBBCN0AAAAAADgIjwwD7MXNTfrHP/7cBwAAAFDmEboBe3F3l95+2+wqAAAAAJQgDC8HAAAAAMBB6OkG7CUnRzpxIne/Zk3Jhe+0AAAAgLKO0A3Yy8WLUq1aufspKZKPj7n1AAAAADAdXXEAAAAAADgIoRsAAAAAAAchdAMAAAAA4CCEbgAAAAAAHITQDQAAAACAgxC6AQAAAABwEB4ZBtiLq6v05JN/7gMAAAAo80gGgL14eEgffGB2FQAAAABKEIaXAwAAAADgIPR0A/ZiGNLp07n7lStLFou59QAAAAAwHaEbsJe0NCkgIHc/JUXy8TG3HgAAAACmY3g5AAAAAAAOQugGAAAAAMBBCN0AAAAAADgIoRsAAAAAAAchdAMAAAAA4CCEbgAAAAAAHIRHhgH24uoqPfTQn/sAAAAAyjySAWAvHh7SokVmVwEAAACgBGF4OQAAAAAADkJPN2AvhiGlpeXue3tLFou59QAAAAAwHT3dgL2kpUm+vrlbXvgGAAAAUKYRugEAAAAAcBBCNwAAAAAADkLoBgAAAADAQQjdAAAAAAA4CKEbAAAAAAAHIXQDAAAAAOAgPKcbsBerVfrb3/7cBwAAAFDmEboBe/H0lL74wuwqAAAAAJQgDC8HAAAAAMBBCN0AAAAAADgIoRuwl9RUyWLJ3VJTza4GAAAAQAlA6AYAAAAAwEEI3QAAAAAAOAihGwAAAAAAByF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDuJpdAFBqWK1Sr15/7gMAAAAo8wjdgL14ekrffmt2FQAAAABKEIaXAwAAAADgIKaH7jlz5qhWrVry9PRUq1attGnTpqu2j4qKUqtWreTp6anatWtr3rx5+c7v379f999/v0JDQ2WxWDRz5ky73BcAAAAAgOIyNXQvW7ZM4eHhmjRpkvbs2aOOHTuqZ8+eOnHiRKHtY2Nj1atXL3Xs2FF79uzRCy+8oGeffVbLly+3tUlLS1Pt2rX15ptvKigoyC73BYokNVXy8cndUlPNrgYAAABACWAxDMMw6+Zt27ZVy5YtNXfuXNuxRo0aqV+/fpo6dWqB9uPHj9eqVat08OBB27FRo0Zp7969io6OLtA+NDRU4eHhCg8Pv6H7FiY5OVn+/v5KSkqSn59fkV6DUi41VfL1zd1PSckN3wAAAACcjj3znmk93RkZGdq1a5d69OiR73iPHj20devWQl8THR1doH1YWJh27typzMxMh91Xki5duqTk5OR8GwAAAAAAV2Na6D59+rSys7MVGBiY73hgYKASEhIKfU1CQkKh7bOysnT69GmH3VeSpk6dKn9/f9tWo0aNIt0PAAAAAFB2mb6QmsViyfezYRgFjl2rfWHH7X3fiRMnKikpybadPHmyWPcDAAAAAJQ9pj2nu3LlyrJarQV6lxMTEwv0QucJCgoqtL2rq6sqVarksPtKkoeHhzw8PIp0DwAAAAAAJBN7ut3d3dWqVSutXbs23/G1a9eqffv2hb6mXbt2BdqvWbNGrVu3lpubm8PuCwAAAADA9Shy6O7Vq5eSkpJsP0+ZMkXnz5+3/XzmzBk1bty4WDcfO3asPvroI3388cc6ePCgxowZoxMnTmjUqFGScod0P/jgg7b2o0aN0vHjxzV27FgdPHhQH3/8sSIiIvSPf/zD1iYjI0MxMTGKiYlRRkaGTp06pZiYGB05cqTI9wWui4uL1Llz7uZi+swNAAAAACVAkR8ZZrVaFR8fr4CAAEmSn5+fYmJiVLt2bUnS77//ruDgYGVnZxergDlz5mjatGmKj49X06ZNNWPGDHXq1EmSNHz4cB07dkyRkZG29lFRURozZoz279+v4OBgjR8/Pl9YPnbsmGrVqlXgPp07d853navdtyh4ZBgAAAAAlE72zHtFDt0uLi5KSEiwhe5y5cpp7969Nxy6nRWhGwAAAABKp1LxnG4AAAAAAEq7Iodui8VS4JFaxX1MF1CqpaZKVarkbqmpZlcDAAAAoAQo8iPDDMPQ8OHDbY/NSk9P16hRo+Tj4yNJunTpkmMqBJzJ6dNmVwAAAACgBCly6H7ooYfy/fz3v/+9QJvLVxoHAAAAAKCsK3LoXrhwoSPrAAAAAACg1LnhhdSOHz+uAwcOKCcnxx71AAAAAABQahQ5dH/yySeaOXNmvmOPPfaYateurWbNmqlp06Y6efKkvesDAAAAAMBpFTl0z5s3T/7+/raff/jhBy1cuFCffvqpduzYofLly+uVV15xSJEAAAAAADijIs/pPnTokFq3bm37+euvv1afPn00dOhQSdIbb7yhhx9+2P4VAs7CxUXK+2fE5YZnbgAAAAAoBYocui9evCg/Pz/bz1u3btWIESNsP9euXVsJCQn2rQ5wJl5e0o4dZlcBAAAAoAQpcndcSEiIdu3aJUk6ffq09u/frw4dOtjOJyQk5Bt+DgAAAABAWVfknu4HH3xQTz31lPbv368ff/xRDRs2VKtWrWznt27dqqZNmzqkSAAAAAAAnFGRQ/f48eOVlpamr776SkFBQfriiy/ynd+yZYsGDx5s9wIBp5GWJjVunLt/4IDk7W1uPQAAAABMZzEMwzC7CGeUnJwsf39/JSUl5ZvrjjIsNVXy9c3dT0mRfHzMrQcAAADAdbFn3mOJZQAAAAAAHKTIw8tr165dpHZHjx697mIAAAAAAChNihy6jx07ppCQEA0ZMkQBAQGOrAkAAAAAgFKhyKF76dKlWrhwoaZPn66ePXtqxIgR6tWrl1xcGKEOAAAAAEBhipyYBw4cqO+//15HjhxRq1atNGbMGFWvXl0TJkzQ4cOHHVkjAAAAAABOqdjd1NWqVdOkSZN0+PBhLVmyRNu2bVPDhg117tw5R9QHOA+LJfeRYY0b5+4DAAAAKPOKPLz8cunp6fryyy/18ccfa9u2bRowYIC8eSYxyjpvb2n/frOrAAAAAFCCFCt0b9u2TREREVq2bJnq1KmjESNGaPny5apQoYKj6gMAAAAAwGkVOXQ3adJEiYmJGjJkiDZt2qRbbrnFkXUBAAAAAOD0LIZhGEVp6OLiIh8fH7m6uspylfmqZ8+etVtxJVlycrL8/f2VlJQkPz8/s8tBSZCWJrVpk7u/Y0fucHMAAAAATseeea/IPd0LFy68oRsBpZ5hSAcO/LkPAAAAoMwrcuh+6KGHHFkHAAAAAAClTrEfGQYAAAAAAIqG0A0AAAAAgIMQugEAAAAAcBBCNwAAAAAADlLkhdQAXIPFIoWE/LkPAAAAoMwrdujOzs7WokWLtH79eiUmJionJyff+R9//NFuxQFOxdtbOnbM7CoAAAAAlCDFDt2jR4/WokWL1Lt3bzVt2lQWevQAAAAAAChUsUP30qVL9e9//1u9evVyRD0AAAAAAJQaxV5Izd3dXXXr1nVELYBzu3hRatMmd7t40exqAAAAAJQAxQ7dzz33nN577z0ZhuGIegDnlZMj7dyZu/1lrQMAAAAAZVOxh5dv3rxZGzZs0Pfff68mTZrIzc0t3/mvvvrKbsUBAAAAAODMih26y5cvr/79+zuiFgAAAAAASpVih+6FCxc6og4AAAAAAEqdYofuPH/88Yf++9//ymKxqH79+qpSpYo96wIAAAAAwOkVeyG11NRUjRgxQlWrVlWnTp3UsWNHBQcHa+TIkUpLS3NEjQAAAAAAOKVih+6xY8cqKipK//nPf3T+/HmdP39eX3/9taKiovTcc885okbAeVSunLsBAAAAgCSLUcxnf1WuXFlffvmlunTpku/4hg0bNHDgQP3xxx/2rK/ESk5Olr+/v5KSkuTn52d2OQAAAAAAO7Fn3it2T3daWpoCAwMLHA8ICGB4OQAAAAAAlyl26G7Xrp1eeuklpaen245dvHhRr7zyitq1a2fX4gAAAAAAcGbFXr38vffe0913363q1avr1ltvlcViUUxMjDw9PbV69WpH1Ag4h4sXpZ49c/e//17y8jK3HgAAAACmK/acbim3Z/uzzz7Tr7/+KsMw1LhxYw0dOlReZShkMKcbBaSmSr6+ufspKZKPj7n1AAAAALgu9sx71/Wcbi8vLz366KM3dGMAAAAAAEq7IoXuVatWqWfPnnJzc9OqVauu2rZPnz52KQwAAAAAAGdXpOHlLi4uSkhIUEBAgFxcrrz2msViUXZ2tl0LLKkYXo4CGF4OAAAAlAo3fXh5Tk5OofsAAAAAAODKiv3IsE8//VSXLl0qcDwjI0OffvqpXYoCAAAoa+Li4rRhwwbFxcWZXUqROWPNAHCzFXv1cqvVqvj4eAUEBOQ7fubMGQUEBDC8HGVXaqqU989FYiLDywEARRYREaHHHntMOTk5slgsGjFihDp37mx2WVcVFRWljz/+WIZhyGKxKDw8XPfff7+8vb3l5eUlb29v276Xl9dVpygCQEljz7xX7NDt4uKi33//XVWqVMl3fO/everatavOnj17QwU5C0I3AACwh5MnTyokJETX8RRXp+Lp6VloIM/bt9c5V9frejgPAORjyiPDWrRoIYvFIovFom7duuX7F1p2drZiY2N1991331AxAAAAZcnx48f1t7/9rdDA3aZNG1WsWNGEqq7tzJkz2rlzZ4HjwcHBslgsSktLU1paWr4pienp6UpPT3d4ba6urnYP8oWd8/DwkMVicfj7AeD8ihy6+/XrJ0mKiYlRWFiYfPNWaZbk7u6u0NBQ3X///XYvEAAAoLTJycnR3LlzNWHCBKWkpBQ4b7Va9dVXX6l69eomVHdtcXFxCgkJybfArtVq1bZt2/LVnJ2drfT0dFsIv3jxYqH79jiX98VFVlaWkpOTlZyc7NDPwGKx3FCQL2pbhuYDzq/Iofull16SJIWGhmrQoEHy9PR0WFGAU0pPl/K+eFq+XOKfEQBAIQ4dOqRHHnlEmzZtkiR16NBBd999t1566SVlZ2fLarXqww8/LLGBW5KqV6+u+fPn6/HHH79qzVarVT4+PvJx8DonhmHo0qVLdg/yhZ3Lysqy3TM1NVWpqakOfW+S5OHhcVN6793c3OxSb1xcnA4fPqx69eqV6N9j4GYp9pxu5GJONwrgOd0AgKvIysrS9OnT9dJLLyk9PV0+Pj5688039eSTT8rFxUVxcXE6cuSI6tat6zRBxRlrvlGZmZlXDOX2DP03Yyj+X+UNzb+RIP/TTz9p/vz5MgxDLi4ueu6559S3b1+5urraNqvVmu/nv25/Pc8wfpjB1IXUsrOzNWPGDP373//WiRMnlJGRke88C6mhzCJ0AwCuYN++fRoxYoRtHvRdd92l+fPnKzQ01NzCUGLl5OTo4sWLN6X3vqT3wbm4uFx3YLfnebPv7ezTDJxtBIQpC6nleeWVV/TRRx9p7Nixmjx5siZNmqRjx45p5cqV+uc//3lDxQAAAJQmGRkZmjJlit544w1lZWWpfPnymj59uoYPH07vHa7KxcXlpg3Nz8jIKFJYv1Z4j4uL0/bt2wvco1q1anJ3d1dWVla+LTs7O9/Pl68RcLmcnBxlZGQU6OwraywWS4n9QuBar12/fr1mzZqlnJwcubi4aMqUKRoxYoR8fHzk7e1d6v99WOye7jp16mjWrFnq3bu3ypUrp5iYGNuxn376SYsXL3ZUrSUKPd0ogJ5uAMBltm/frhEjRmj//v2SchelnTNnjqpWrWpyZYBjXGmBvWPHjhWpZzMnJydfEP9rKL9WaLfneTPvfaUvH0qrvEUJfX195ePjU6T/LUobb29vWa3W667L1J7uhIQENWvWTJLk6+urpKQkSdI999yjyZMn31AxAAAAzi4tLU3//Oc/NWPGDOXk5KhKlSqaPXu2BgwYUOp7c1C2FXWBvStxcXGRi4uL3RZ0c1aGYZTYLwSu58uKs2fP6r///e9V36+jFiX08vIqcpD/6//aczh/sUN39erVFR8fr5o1a6pu3bpas2aNWrZsqR07dsjDw8NuhQEAADibqKgoPfLIIzpy5IgkaejQoZo5c6YqV65scmXAzTFy5EiFhYWVuQX27OnyYeSlwZVGQBw9elSVKlVSSkqKUlNTlZKSkm//ev83JSXFtk5B3roIp0+fNuvtS7qO0N2/f3+tX79ebdu21ejRozV48GBFREToxIkTGjNmjCNqBAAAKNGSk5M1YcIEzZ07V1LuHNYPP/xQvXv3Nrky4OarXr06YRs2VxoBUbNmTUmy+7oFhmEoPT39hgN8UlKS9u7da5eabviRYT/99JO2bt2qunXrqk+fPnYpyhkwpxsAAEjS999/r8cff1wnT56UJD322GOaNm2a/P39Ta4MAEoOZ3vEoKmPDEMuQjcAAGXb2bNnFR4ern/961+SpNq1a+ujjz5S165dTa4MAHCjbvpCaqtWrSryBctSbzcAACibvvzySz311FNKTEyUxWJReHi4XnvtNYc/3gkA4HyKFLr79euX72eLxaK/dpDnrcaZnZ1tn8oAZ5OeLg0blrv/r39Jnp7m1gMAsLuEhAQ99dRT+uqrryRJjRo10scff6zbb7/d5MoAACVVkdZBz8nJsW1r1qxR8+bN9f333+v8+fNKSkrS999/r5YtW+qHH35wdL1AyZWdLX35Ze7Gl08AUKoYhqFPP/1UjRs31ldffSVXV1e9+OKL2rNnD4EbAHBVxV69PDw8XPPmzVOHDh1sx8LCwuTt7a3HHntMBw8etGuBAAAAZjpx4oQef/xxW+dCy5YtFRERoebNm5tbGADAKRT7id+//fZboatx+vv769ixY/aoCQAAwHQ5OTmaO3eumjRpoh9++EEeHh6aOnWqtm3bRuAGABRZsUN3mzZtFB4ervj4eNuxhIQEPffcc7rtttvsWhwAAIAZDh8+rK5du+rJJ59USkqK7rjjDsXExGjChAlydS32QEEAQBlW7ND98ccfKzExUSEhIapbt67q1q2rmjVrKj4+XhEREY6oEQAA4KbIysrSO++8o1tuuUUbN26Uj4+PZs2apY0bN6phw4ZmlwcAcELF/qq2bt26+vnnn7V27Vr9+uuvMgxDjRs3Vvfu3W0rmAMAADibX375RSNGjNCOHTskSd27d9eCBQsUGhpqbmEAAKd2XeOjLBaLevTooR49eti7HgAAgJsqIyNDU6dO1ZQpU5SZmSl/f39Nnz5dDz/8MB0KAIAbVqTQPWvWLD322GPy9PTUrFmzrtr22WeftUthgNPx9pZSUv7cBwCUeDt27NDIkSO1b98+SVLfvn01Z84cBQcHm1wZAKC0sBiGYVyrUa1atbRz505VqlRJtWrVuvLFLBYdPXrUrgWWVMnJyfL391dSUpL8/PzMLgcAABTDxYsX9dJLL+ndd99VTk6OqlSpovfff18DBw6kdxsAYNe8V6Se7tjY2EL3AQAAnM3GjRv1yCOP6PDhw5KkIUOG6L333lPlypVNrgwAUBoVe/VyAFdw6ZI0fHjudumS2dUAAP7iwoULeuqpp9S5c2cdPnxYwcHBWrVqlT7//HMCNwDAYYrU0z127NgiX3D69OnXXQzg1LKypE8+yd3/4APJw8PcegAANqtXr9Zjjz2mEydOSJIeffRRTZs2TeXLlze3MABAqVek0L1nz54iXYw5UAAAoCQ5e/asxo4dq0/+/0vRWrVq6aOPPtKdd95pcmUAgLKiSMPLN2zYUKTtxx9/LHYBc+bMUa1ateTp6alWrVpp06ZNV20fFRWlVq1aydPTU7Vr19a8efMKtFm+fLkaN24sDw8PNW7cWCtWrMh3/sKFCwoPD1dISIi8vLzUvn172zM5AQBA6fDVV1+pcePG+uSTT2SxWDR69Gjt27ePwA0AuKlMndO9bNkyhYeHa9KkSdqzZ486duyonj172oZ+/VVsbKx69eqljh07as+ePXrhhRf07LPPavny5bY20dHRGjRokIYNG6a9e/dq2LBhGjhwoLZt22Zr88gjj2jt2rX617/+pX379qlHjx7q3r27Tp065fD3DAAAHOv333/XgAEDdP/99+v3339Xw4YNtXnzZs2cOVM+Pj5mlwcAKGOK9Miwv9qxY4e++OILnThxQhkZGfnOffXVV0W+Ttu2bdWyZUvNnTvXdqxRo0bq16+fpk6dWqD9+PHjtWrVKh08eNB2bNSoUdq7d6+io6MlSYMGDVJycrK+//57W5u7775bFSpU0JIlS3Tx4kWVK1dOX3/9tXr37m1r07x5c91zzz16/fXXi1Q7jwxDAampkq9v7n5KisR/2AHATWUYhj777DOFh4fr7NmzslqtmjBhgl588UV5enqaXR4AwInYM+8Vu6d76dKluuOOO3TgwAGtWLFCmZmZOnDggH788Uf5+/sX+ToZGRnatWuXevToke94jx49tHXr1kJfEx0dXaB9WFiYdu7cqczMzKu2ybtmVlaWsrOzC/zx9fLy0ubNm69Y76VLl5ScnJxvAwAAJcPJkyfVu3dvPfjggzp79qyaN2+uHTt26PXXXydwAwBMVezQ/cYbb2jGjBn65ptv5O7urvfee08HDx7UwIEDVbNmzSJf5/Tp08rOzlZgYGC+44GBgUpISCj0NQkJCYW2z8rK0unTp6/aJu+a5cqVU7t27fTaa6/pf//7n7Kzs/XZZ59p27Ztio+Pv2K9U6dOlb+/v22rUaNGkd8rAABwjJycHM2bN09NmjTR999/L3d3d73xxhvavn27WrRoYXZ5AAAUP3T/9ttvtmHZHh4eSk1NlcVi0ZgxYzR//vxiF/DXFc8Nw7jqKuiFtf/r8Wtd81//+pcMw1C1atXk4eGhWbNmaciQIbJarVe878SJE5WUlGTbTp48ee03h7LF21tKTMzdvL3NrgYASr0jR47ozjvv1BNPPKELFy6oXbt2iomJ0cSJE+Xm5mZ2eQAASLqO0F2xYkVduHBBklStWjX98ssvkqTz588rLS2tyNepXLmyrFZrgV7txMTEAj3VeYKCggpt7+rqqkqVKl21zeXXrFOnjqKiopSSkqKTJ09q+/btyszMVK1ata5Yr4eHh/z8/PJtQD4Wi1SlSu7G4/MAwGGys7P17rvv6pZbblFUVJS8vb01c+ZMbdq0SY0aNTK7PAAA8il26O7YsaPWrl0rSRo4cKBGjx6tRx99VIMHD1a3bt2KfB13d3e1atXKdq08a9euVfv27Qt9Tbt27Qq0X7NmjVq3bm37RvtKbQq7po+Pj6pWrapz585p9erV6tu3b5HrBwAAN9/+/fvVvn17/eMf/9DFixfVrVs37du3T6NHj77qiDUAAMziWtSGMTExat68uWbPnq309HRJsg3f2rx5s+677z5Nnjy5WDcfO3ashg0bptatW6tdu3aaP3++Tpw4oVGjRtmuf+rUKX366aeSclcqnz17tsaOHatHH31U0dHRioiI0JIlS2zXHD16tDp16qS33npLffv21ddff61169blWyRt9erVMgxDDRo00JEjRzRu3Dg1aNBADz/8cLHqB/K5dEkaOzZ3f/p0ycPD3HoAoBTJyMjQm2++qddff12ZmZny8/PTu+++q5EjR151WhoAAGYr8iPDXFxc1KJFCz3yyCMaMmRIsVYqv5o5c+Zo2rRpio+PV9OmTTVjxgx16tRJkjR8+HAdO3ZMkZGRtvZRUVEaM2aM9u/fr+DgYI0fP94W0vN8+eWXevHFF3X06FHVqVNHU6ZM0X333Wc7/+9//1sTJ05UXFycKlasqPvvv19Tpkwp1nvikWEogEeGAYBD7Ny5UyNGjNC+ffskSffee6/mzp2ratWqmVwZAKC0smfeK3Lojo6O1scff6x///vfyszM1H333aeRI0eqa9euN1SAsyJ0owBCNwDY1cWLF/Xyyy/rnXfeUU5OjipXrqxZs2bpgQceoHcbAOBQpjynu127dlqwYIESEhI0d+5cxcXFqXv37rae5Li4uBsqBAAAIM+mTZvUvHlzTZs2TTk5OXrggQd04MABDR48mMANAHAqxV5IzcvLSw899JAiIyN16NAhDR48WB9++KFq1aqlXr16OaJGAABQRly4cEFPP/20OnXqpEOHDqlq1ar6+uuvtWTJElWpUsXs8gAAKLZih+7L1alTRxMmTNCkSZPk5+en1atX26suAABQxqxZs0ZNmzbVBx98IEkaOXKkDhw4oD59+phcGQAA16/Iq5f/VVRUlD7++GMtX75cVqtVAwcO1MiRI+1ZGwAAKAPOnTunsWPHatGiRZKk0NBQLViwQN27dze3MAAA7KBYofvkyZNatGiRFi1apNjYWLVv317vv/++Bg4cKB8WjQIAAMW0YsUKPfnkk0pISJDFYtEzzzyjKVOmyDdvYUoAAJxckUP3XXfdpQ0bNqhKlSp68MEHNWLECDVo0MCRtQHOxctLio39cx8AcEW///67nnnmGX3xxReSpAYNGigiIkJ33HGHyZUBAGBfRQ7dXl5eWr58ue655x5ZrVZJ0pYtW9S6dWt5eHg4rEDAabi4SKGhZlcBACWaYRj6/PPPNXr0aJ09e1ZWq1XPP/+8/vnPf8rT09Ps8gAAsLsiP6e7MH5+foqJiVHt2rXtWZNT4DndAAAUT1xcnEaNGqVvv/1WktS8eXNFRESoZcuWJlcGAEB+pjynuzA3kNeB0icjQxo3LnfLyDC7GgAoMXJycjR//nw1adJE3377rdzd3fX6669r+/btBG4AQKl33auXA/iLzEzpnXdy919+WXJ3N7UcACgJfvvtNz3yyCOKjIyUJN1+++2KiIhQ48aNzS0MAICb5IZ6uj/88EMFBgbaqxYAAFBKZGdna/r06WrWrJkiIyPl7e2tGTNmaPPmzQRuAECZckM93UOGDFFycrJWrlypBg0aqFGjRvaqCwAAOKn9+/dr5MiR2rZtmyTpzjvv1IIFC8rkGjAAABS7p3vgwIGaPXu2JOnixYtq3bq1Bg4cqFtuuUXLly+3e4EAAMA5ZGZm6vXXX1fLli21bds2+fn5af78+Vq3bh2BGwBQZhU7dG/cuFEdO3aUJK1YsUKGYej8+fOaNWuWXn/9dbsXCAAASr7du3erTZs2mjx5sjIyMnTPPfdo//79evTRR2WxWMwuDwAA0xQ7dCclJalixYqSpB9++EH333+/vL291bt3bx0+fNjuBQIAgJIrPT1dEydO1G233aa9e/eqUqVK+vzzz7Vq1SpVr17d7PIAADBdsed016hRQ9HR0apYsaJ++OEHLV26VJJ07tw5eXp62r1AAABQMm3evFkjR47UoUOHJEmDBg3SrFmzFBAQYHJlAACUHMUO3eHh4Ro6dKh8fX0VEhKiLl26SModdt6sWTN71wc4Dy8v6Zdf/twHgFIqJSVFEydO1AcffCDDMFS1alXNnTtXffv2Nbs0AABKHIthGEZxX7Rz506dPHlSd911l3x9fSVJ3377rcqXL6877rjD7kWWRMnJyfL391dSUpL8/PzMLgcAAIeKi4vT4cOHFR8fr0mTJunYsWOSpBEjRuidd95RhQoVzC0QAAA7smfeu67Qfbns7Gzt27dPISEhZeoPLqEbAFBWRERE6LHHHlNOTo7tWEhIiBYsWKC77rrLxMoAAHAMe+a9Yi+kFh4eroiICEm5gbtz585q2bKlatSoocjIyBsqBnBqGRnSyy/nbhkZZlcDADcsISFBb731lh555JF8gdtisWj16tUEbgAAiqDYofvLL7/UrbfeKkn6z3/+o9jYWP36668KDw/XpEmT7F4g4DQyM6VXXsndMjPNrgYArsvhw4f19ttv64477lBwcLAmTJhQoI1hGIqPjzehOgAAnE+xF1I7ffq0goKCJEnfffedBgwYoPr162vkyJGaNWuW3QsEAACOYxiGdu3apZUrV2rlypXav39/vvPNmzfX3r17dflsNKvVqrp1697sUgEAcErFDt2BgYE6cOCAqlatqh9++EFz5syRJKWlpclqtdq9QAAAYF+ZmZnauHGjLWjHxcXZzrm6uqpr167q16+f+vTpo+rVqysiIkKPP/64srOzZbVa9eGHH/IMbgAAiqjYofvhhx/WwIEDVbVqVVksFtt8rm3btqlhw4Z2LxAAANy41NRUrV69WitXrtQ333yjc+fO2c75+PioZ8+e6tevn3r16lVgYdSRI0cqLCxMR44cUd26dQncAAAUQ7FD98svv6ymTZvq5MmTGjBggDw8PCTlDjUrbN4XAAAwxx9//KFvvvlGK1eu1Jo1a5Senm47V6VKFfXp00f9+vVT9+7d5enpedVrVa9enbANAMB1uOFHhpVVPDIMBaSmSv//3HqlpEg+PubWA6BMio2N1ddff60VK1Zo8+bN+VYdr1Wrlvr3769+/fqpffv2TAsDAOAK7Jn3it3TLUlRUVF65513dPDgQVksFjVq1Ejjxo1Tx44db6gYAABQPIZh6Oeff9bKlSu1YsUK7d27N9/5Fi1aqF+/furfv7+aNm0qi8ViUqUAAJRNxQ7dn332mR5++GHdd999evbZZ2UYhrZu3apu3bpp0aJFGjJkiCPqBEo+T09p+/Y/9wHAQbKzs7VlyxbbQmixsbG2cy4uLurUqZP69eunfv36KSQkxMRKAQBAsYeXN2rUSI899pjGjBmT7/j06dO1YMECHTx40K4FllQMLwcA3EwXL17UunXrtGLFCv3nP//R6dOnbec8PT0VFham/v37q3fv3qpcubKJlQIA4PzsmfeKHbo9PDy0f//+As/nPHLkiJo2bZpvkZbSjNANAHC0c+fO2RZC++GHH5SWlmY7V6FCBd17773q37+/7rrrLvmwjgQAAHZj6pzuGjVqaP369QVC9/r161WjRo0bKgZwahkZ0nvv5e6PHi25u5tbD3Cd4uLidPjwYdWrV4/Vqk0QFxdnGzYeGRmp7Oxs27kaNWrY5md37NhRrq7XtTQLAAC4iYr91/q5557Ts88+q5iYGLVv314Wi0WbN2/WokWL9F5e4ADKosxM6fnnc/effJLQDacUERGhxx57TDk5OXJxcdH8+fM1cuRIs8u6Jmf8oiCv5rp16+rChQtasWKFVq5cqZ07d+Zr17RpU9uK4y1atGAhNAAAnMx1PTJsxYoVevfdd23zt/NWL+/bt6/dCyypGF6OAnhkGJyIYRg6e/asEhISbNuvv/6qKVOm6PI/CxaLRWFhYSpXrpysVutVN1dX12u2ccT2zTff6I033rB9UTB58mT179/fxE/32lasWKHXXnst3+O88lgsFrVv3179+/dX3759C4wsAwAAjmfanO6srCxNmTJFI0aMKPNDyQndKIDQjRIgNTVVv//+e74wfaUtMzPT7HJxma5du2rIkCG69957FRgYaHY5AACUaaYupObr66tffvlFoaGhN3RjZ0foRgGEbjhIVlaWEhMTixSkL1y4UKxrV6xYUUFBQQoKCpKfn5++/vrrfD3dLi4ueu211+Tn56fs7GxlZWUpOzvb1O3yGvK+ZPirChUqyMPD44Y/e0e4dOmSzp07V+D4hg0b1KVLl5tfEAAAKMDUhdS6d++uyMhIDR8+/IZuDABlRWHzjQ3D0Llz54oUpE+fPq3ifD/q5eWlqlWr2sL0lbaAgIACwTQiIkKPP/64srOzZbVa9eGHH5boOd1xcXEKCQnJN0zbarXq559/LrFzu69UM8PIAQAonYodunv27KmJEyfql19+UatWrQo8oqRPnz52Kw4AnN3rr7+uf/7zn7bQHBoaquzs7GIP77ZarQoMDLxmkA4KCpKvr+91L7Y1cuRIhYWF6ciRI6pbt26JDa55qlevrvnz5xf4oqAk1+2MNQMAgOtX7OHlLi4uV76YxZLv0SalGcPLUQDDy/H/4uLitHTpUn3yySf65Zdfrtq2QoUK+QLzlXqoK1WqdNV//5Z1cXFxTvNFQR5nrBkAgLLC1OHlha20CkCSp6e0YcOf+07CGR+1VBKdOXNGy5cv1+LFi7Vx48arDgefM2eOevfurcDAwBI779jZVK9e3el+f52xZgAAUHzFDt0ArsBqlZxsESRnfSZzSZGamqpVq1Zp8eLF+uGHH5SVlWU717FjR/Xs2VMvvvhigbm79957L2ELAACgjCjyWMUff/xRjRs3VnJycoFzSUlJatKkiTZu3GjX4gA4TlxcnC1wS7mjWB5//HHFxcWZXFnJlpGRoW+++UZDhgxRQECAhgwZom+++UZZWVlq3ry5pk2bpuPHj2vjxo2aOHGi5s+fL6vVKknM3QUAACiDitzTPXPmTD366KOFjmf39/fX448/rhkzZqhTp052LRBwGpmZ0vz5ufuPPSa5uZlbzzUcPny4wHSR7Oxs3XPPPRowYIC6d++uVq1aydWVATE5OTnatGmTlixZoi+++EJnz561natTp46GDBmiwYMHq1GjRgVe62wLkwEAAMC+iryQWkhIiH744YdC/6NSkn799Vf16NFDJ06csGuBJRULqaEAJ1tILS4uTjVq1LhqG39/f3Xt2lXdu3dX9+7dVb9+/eteFdvZGIahPXv2aMmSJVq6dGm+EQCBgYF64IEHNGTIELVp06bMfCYAAABlhSkLqf3+++9yu0rPnaurq/74448bKgaAeaxWq1599VVVqFBB69at048//qjz589r5cqVWrlypSSpRo0atgDerVs3BQYGmlu0Axw+fFhLlizR4sWL9d///td23N/fX/fff7+GDBmiLl262IaMAwAAAFdT5NBdrVo17du3T3Xr1i30/M8//6yqVavarTAAjvXjjz9Kkm699VbNnDkz39DnJ554QtnZ2dq1a5fWrVundevWacuWLTp58qQWLlyohQsXSpKaNWum7t2766677lLHjh3lm9fT72T+97//admyZVq8eLF27txpO+7p6al7771XgwcPVs+ePeXpRKvSAwAAoGQo8vDyZ555RpGRkdqxY0eB//C8ePGibrvtNnXt2lWzZs1ySKElDcPLUYCTDS9/6KGH9Omnn2rChAmaOnXqNdunpaVp8+bNWrdundauXauYmJh8593c3NSuXTtbT3ibNm1K9Hzwc+fOafny5VqyZIk2bNhge8SX1WpV9+7dNWTIEPXr149/vgEAAMoge+a9Iofu33//XS1btpTVatXTTz+tBg0ayGKx6ODBg/rggw+UnZ2t3bt3l8rhpoUhdKMAJwrdhmGoZs2aiouL05o1a3TXXXcV+xp//PGHfvzxR1sIP378eL7zfn5+6tKli60nPO/fGWZKS0vTN998o8WLF+u7775TZmam7Vz79u01ZMgQDRgwQAEBASZWCQAAALOZErol6fjx43riiSe0evVqW6+QxWJRWFiY5syZo9DQ0BsqxpkQulGAE4XuQ4cOqUGDBnJ3d9e5c+fk7e19Q9czDENHjx61DUVfv369zp07l69NtWrV8s0Hv1nTUTIzM7Vu3TotXrxYK1euVEpKiu1cs2bNNGTIED3wwANl6t9fAAAAuDrTQneec+fO6ciRIzIMQ/Xq1VOFChVuqAhnROhGAU4UuufNm6cnnnhCnTt3VmRkpN2vn52drT179thC+ObNm3Xp0qV8bZo0aaK77rpL3bt3V6dOnVSuXDm73T8nJ0dbt27V4sWL9cUXX+j06dO2c6GhoRo8eLAGDx6sZs2a2e2eAAAAKD1MD90gdKMQWVnS6tW5+2FhUgmezzxgwAB9+eWXevXVVzV58mSH3+/ixYvasmWL1q5dq3Xr1mnPnj26/F89rq6uuv3222094bfddttVn5ZQGMMw9PPPP2vJkiVasmRJvscXVqlSRYMGDdKQIUN0++23mz7MHQAAACUbobsEIHTDWeXk5CggIEBnzpzRli1b1L59+5tew+nTp7VhwwZbT/jRo0fznff19VWXLl1sPeGNGjWyBeW4uDgdPnxY9erVU/Xq1XX06FHbI74OHDhgu0a5cuV03333aciQIbrzzjtL9KJuAAAAKFkI3SUAoRvOKiYmRi1atJCvr6/Onj1b7B5lRzh69KjWr1+vtWvXav369Tp79my+81WrVlX37t3l5uamRYsWKScnRxaLRaGhoYqNjbW1c3d3V+/evTVkyBD17t1bXl5eN/utAAAAoBSwZ96j6wewl8xM6fPPc/eHDpVKQJgtTN7zuTt16lQiArck1a5dW7Vr19ajjz6qnJwcxcTE2HrBN23apPj4eP3rX//K9xrDMBQbGyuLxaJu3bppyJAh6t+/v8qXL2/OmwAAAAAKQegG7CUjQ3r44dz9AQNKbOhev369JOnOO+80uZLCubi4qGXLlmrZsqWef/55paena+vWrfroo4+0ZMmSAu2//PJL3XfffSZUCgAAAFybi9kFALh5MjMztXHjRklSt27dTK6maDw9PXXnnXdq2rRpcnHJ/68sq9Wq2267zaTKAAAAgGsjdANlyI4dO5SSkqJKlSrplltuMbucYqlevbrmz58vq9UqKTdwf/jhh6pevbrJlQEAAABXxvByoAzJG1retWvXAr3GzmDkyJEKCwvTkSNHVLduXQI3AAAASjxCN1CG5C2iVlLncxdF9erVCdsAAABwGs7X1QXguqSlpWnr1q2SnGc+NwAAAODsCN1AGbF161ZlZGSoWrVqqlevntnlAAAAAGUCw8sBe/HwkP797z/3S5i8+dzdunWTxWIxuRoAAACgbCB0A/bi6pr7fO4SqjTM5wYAAACcDcPLgTLg/Pnz2rlzpyRCNwAAAHAz0dMN2EtWlrRiRe5+//65Pd8lxMaNG5WTk6N69eqpRo0aZpcDAAAAlBklJxUAzu7SJWngwNz9lJQSFbovn88NAAAA4OZheDlQBjCfGwAAADAHoRso5X7//Xf98ssvkqSuXbuaXA0AAABQthC6gVJuw4YNkqRbb71VlStXNrkaAAAAoGwhdAOlHPO5AQAAAPMQuoFSjvncAAAAgHkI3UApduzYMR09elRWq1WdOnUyuxwAAACgzCk5zzQCnJ27u7Rw4Z/7JUBeL/dtt92mcuXKmVwNAAAAUPYQugF7cXOThg83u4p8mM8NAAAAmIvh5UApZRiGraeb0A0AAACYg55uwF6ysqTVq3P3w8IkV3P/8Tp48KASEhLk6emp22+/3dRaAAAAgLKK0A3Yy6VL0j335O6npJgeuvN6uTt06CBPT09TawEAAADKKoaXA6VU3nxuHhUGAAAAmIfQDZRC2dnZioyMlMR8bgAAAMBMhG6gFNqzZ4/Onz8vPz8/tWzZ0uxyAAAAgDKL0A2UQnlDy7t06SJXk+eWAwAAAGUZoRsohfIWUWM+NwAAAGAuQjdQyly6dEmbNm2SxHxuAAAAwGymh+45c+aoVq1a8vT0VKtWrWxh4UqioqLUqlUreXp6qnbt2po3b16BNsuXL1fjxo3l4eGhxo0ba8WKFfnOZ2Vl6cUXX1StWrXk5eWl2rVr69VXX1VOTo5d3xvKGHd3afbs3M3d3bQytm3bposXLyogIEBNmjQxrQ4AAAAAJofuZcuWKTw8XJMmTdKePXvUsWNH9ezZUydOnCi0fWxsrHr16qWOHTtqz549euGFF/Tss89q+fLltjbR0dEaNGiQhg0bpr1792rYsGEaOHCgtm3bZmvz1ltvad68eZo9e7YOHjyoadOm6e2339b777/v8PeMUszNTXrqqdzNzc20Mi5/VJjFYjGtDgAAAACSxTAMw6ybt23bVi1bttTcuXNtxxo1aqR+/fpp6tSpBdqPHz9eq1at0sGDB23HRo0apb179yo6OlqSNGjQICUnJ+v777+3tbn77rtVoUIFLVmyRJJ0zz33KDAwUBEREbY2999/v7y9vfWvf/2r0FovXbqkS5cu2X5OTk5WjRo1lJSUJD8/v+v8BAD769ixozZv3qz58+fr0UcfNbscAAAAwOkkJyfL39/fLnnPtJ7ujIwM7dq1Sz169Mh3vEePHtq6dWuhr4mOji7QPiwsTDt37lRmZuZV21x+zQ4dOmj9+vU6dOiQJGnv3r3avHmzevXqdcV6p06dKn9/f9tWo0aNor9ZlA3Z2VJkZO6WnW1KCSkpKfrpp58kMZ8bAAAAKAlMe5bQ6dOnlZ2drcDAwHzHAwMDlZCQUOhrEhISCm2flZWl06dPq2rVqldsc/k1x48fr6SkJDVs2FBWq1XZ2dmaMmWKBg8efMV6J06cqLFjx9p+zuvpBmzS06WuXXP3U1IkH5+bXsLmzZuVlZWlkJAQ1apV66bfHwAAAEB+pj/A969zTg3DuOo81MLa//X4ta65bNkyffbZZ1q8eLGaNGmimJgYhYeHKzg4WA899FCh9/Xw8JCHh0fR3hRgkrz53N26dWM+NwAAAFACmBa6K1euLKvVWqBXOzExsUBPdZ6goKBC27u6uqpSpUpXbXP5NceNG6cJEybogQcekCQ1a9ZMx48f19SpU68YugFnwPO5AQAAgJLFtDnd7u7uatWqldauXZvv+Nq1a9W+fftCX9OuXbsC7desWaPWrVvL7f9Xi75Sm8uvmZaWJheX/G/darXyyDA4tbNnz2rPnj2SCN0AAABASWHq8PKxY8dq2LBhat26tdq1a6f58+frxIkTGjVqlKTcedSnTp3Sp59+Kil3pfLZs2dr7NixevTRRxUdHa2IiAjbquSSNHr0aHXq1ElvvfWW+vbtq6+//lrr1q3T5s2bbW3uvfdeTZkyRTVr1lSTJk20Z88eTZ8+XSNGjLi5HwBgR5GRkTIMQ40aNVLVqlXNLgcAAACATA7dgwYN0pkzZ/Tqq68qPj5eTZs21XfffaeQkBBJUnx8fL5ndteqVUvfffedxowZow8++EDBwcGaNWuW7r//flub9u3ba+nSpXrxxRc1efJk1alTR8uWLVPbtm1tbd5//31NnjxZTz75pBITExUcHKzHH39c//znP2/emwfs7PL53AAAAABKBlOf0+3M7PncNpQSqamSr2/uvgmrlzdq1Ei//vqrvvrqK/Xv3/+m3hsAAAAoTeyZ90xfvRwoNdzcpGnT/ty/iU6dOqVff/1VFotFXbp0uan3BgAAAHBlhG7AXtzdpXHjTLn1hg0bJEktW7ZUhQoVTKkBAAAAQEGmrV4OwH6Yzw0AAACUTPR0A/aSnS3t3p2737KlZLXelNsahmF7PjehGwAAAChZCN2AvaSnS7fdlrt/ExdS++2333TixAm5ubnpjjvuuCn3BAAAAFA0DC8HnFxeL3e7du3kc5NXTAcAAABwdYRuwMnlzee+8847Ta4EAAAAwF8RugEnlpOTY1u5nPncAAAAQMlD6Aac2C+//KI//vhD3t7eui1vPjkAAACAEoPQDTixvKHlnTp1kru7u8nVAAAAAPgrQjfgxPIWUWM+NwAAAFAy8cgwwF7c3KSXXvpz38GysrIUFRUlifncAAAAQElF6Absxd1devnlm3a7nTt36sKFC6pQoYJuvfXWm3ZfAAAAAEXH8HLASeXN5+7atausVqvJ1QAAAAAoDD3dgL3k5EgHD+buN2okuTj2Oy3mcwMAAAAlH6EbsJeLF6WmTXP3U1IkHx8H3uqitmzZIon53AAAAEBJxvBywAlFR0fr0qVLqlq1qho0aGB2OQAAAACugNANOKG8+dzdunWTxWIxuRoAAAAAV0LoBpwQ87kBAAAA50DoBpxMcnKyduzYIYnQDQAAAJR0hG7AyWzcuFHZ2dmqU6eOQkJCzC4HAAAAwFUQugEnc/l8bgAAAAAlG48MA+zFzU36xz/+3HcQ5nMDAAAAzsNiGIZhdhHOKDk5Wf7+/kpKSpKfn5/Z5aCMSExMVGBgoCTp999/V0BAgMkVAQAAAKWPPfMew8sBJxIZGSlJatasGYEbAAAAcAIMLwfsJSdHOnEid79mTcnF/t9pMZ8bAAAAcC6EbsBeLl6UatXK3U9JkXx87H6LvPnchG4AAADAOTC8HHASJ06c0JEjR2S1WtWpUyezywEAAABQBIRuwEnk9XK3adOGxfsAAAAAJ0HoBpxE3nxuHhUGAAAAOA9CN+AEDMNgPjcAAADghAjdgBP473//q//973/y8PBQu3btzC4HAAAAQBERugEnkDe0/I477pCXl5fJ1QAAAAAoKh4ZBtiLq6v05JN/7ttR3tBy5nMDAAAAzoXQDdiLh4f0wQd2v2x2drY2bNggifncAAAAgLNheDlQwu3du1fnzp1TuXLl1Lp1a7PLAQAAAFAM9HQD9mIY0unTufuVK0sWi10umzefu3PnznK187B1AAAAAI7Ff8ED9pKWJgUE5O6npEg+Pna5LPO5AQAAAOfF8HKgBMvIyNDGjRslMZ8bAAAAcEaEbqAE2759u9LS0lS5cmU1bdrU7HIAAAAAFBOhGyjB8uZz33nnnXJx4R9XAAAAwNnwX/FACcZ8bgAAAMC5EbqBEio1NVXR0dGSmM8NAAAAOCtCN1BCbdmyRZmZmapRo4bq1KljdjkAAAAArgOPDAPsxdVVeuihP/dvUN587m7duslip2d+AwAAALi5CN2AvXh4SIsW2e1yzOcGAAAAnB/Dy4ES6Ny5c9q1a5ckQjcAAADgzOjpBuzFMKS0tNx9b2/pBoaER0VFyTAMNWjQQNWqVbNTgQAAAABuNnq6AXtJS5N8fXO3vPB9nS6fzw0AAADAeRG6gRIobz43oRsAAABwboRuoISJj4/XgQMHZLFY1KVLF7PLAQAAAHADCN1ACbNhwwZJUosWLVSxYkWTqwEAAABwIwjdQAmTN5+bVcsBAAAA50foBkoY5nMDAAAApQehGyhBjh49qmPHjsnV1VUdOnQwuxwAAAAAN4jndAP2YrVKf/vbn/vXIa+X+/bbb5evr6+9KgMAAABgEkI3YC+entIXX9zQJZjPDQAAAJQuDC8HSgjDMJjPDQAAAJQyhG6ghNi/f78SExPl5eWltm3bml0OAAAAADsgdAP2kpoqWSy5W2pqsV+eN7S8Y8eO8vDwsHd1AAAAAExA6AZKiLyh5cznBgAAAEoPQjdQAmRlZSkyMlIS87kBAACA0oTQDZQAu3fvVnJyssqXL68WLVqYXQ4AAAAAOyF0AyVA3nzuLl26yHqdz/gGAAAAUPIQuoESgPncAAAAQOlE6AZMlp6ers2bN0tiPjcAAABQ2riaXQBQalitUq9ef+4X0U8//aT09HQFBQWpUaNGDioOAAAAgBkI3YC9eHpK335b7Jflzee+8847ZbFY7F0VAAAAABMxvBwwGfO5AQAAgNKL0A2Y6MKFC9q+fbsk5nMDAAAApRGhG7CX1FTJxyd3S00t0ks2bdqkrKws1apVS6GhoY6tDwAAAMBNx5xuwJ7S0orVPG8+N73cAAAAQOlETzdgorz53IRuAAAAoHQidAMmOX36tGJiYiRJXbt2NbcYAAAAAA5B6AZMEhkZKUlq2rSpAgMDzS0GAAAAgEMQugGTXP58bgAAAAClE6EbMAnzuQEAAIDSj9XLAXtxcZE6d/5z/yri4uJ06NAhubi4qFOnTjehOAAAAABmIHQD9uLlJf3/PO1ryevlbt26tcqXL++4mgAAAACYiuHlgAmYzw0AAACUDYRu4CYzDMMWupnPDQAAAJRupofuOXPmqFatWvL09FSrVq20adOmq7aPiopSq1at5Onpqdq1a2vevHkF2ixfvlyNGzeWh4eHGjdurBUrVuQ7HxoaKovFUmB76qmn7PreUMakpkpVquRuqalXbHb48GGdOnVK7u7uat++/U0sEAAAAMDNZmroXrZsmcLDwzVp0iTt2bNHHTt2VM+ePXXixIlC28fGxqpXr17q2LGj9uzZoxdeeEHPPvusli9fbmsTHR2tQYMGadiwYdq7d6+GDRumgQMHatu2bbY2O3bsUHx8vG1bu3atJGnAgAGOfcMo/U6fzt2uIq+Xu3379vL29r4ZVQEAAAAwicUwDMOsm7dt21YtW7bU3LlzbccaNWqkfv36aerUqQXajx8/XqtWrdLBgwdtx0aNGqW9e/cqOjpakjRo0CAlJyfr+++/t7W5++67VaFCBS1ZsqTQOsLDw/XNN9/o8OHDslgsRao9OTlZ/v7+SkpKkp+fX5Feg1IuNVXy9c3dT0mRfHwKbTZgwAB9+eWXevXVVzV58uSbWCAAAACAorBn3jOtpzsjI0O7du1Sjx498h3v0aOHtm7dWuhroqOjC7QPCwvTzp07lZmZedU2V7pmRkaGPvvsM40YMeKqgfvSpUtKTk7OtwHFlZOTow0bNkhiPjcAAABQFpgWuk+fPq3s7GwFBgbmOx4YGKiEhIRCX5OQkFBo+6ysLJ3+/yG9V2pzpWuuXLlS58+f1/Dhw69a79SpU+Xv72/batSocdX2QGF+/vlnnTlzRr6+vmrTpo3Z5QAAAABwMNMXUvtr77JhGFftcS6s/V+PF+eaERER6tmzp4KDg69a58SJE5WUlGTbTp48edX2QGHy5nN36tRJbm5uJlcDAAAAwNFczbpx5cqVZbVaC/RAJyYmFuipzhMUFFRoe1dXV1WqVOmqbQq75vHjx7Vu3Tp99dVX16zXw8NDHh4e12wHXM2PP/4oiedzAwAAAGWFaT3d7u7uatWqlW3l8Dxr16694mOU2rVrV6D9mjVr1Lp1a1uv4ZXaFHbNhQsXKiAgQL17976RtwLkcnGRWrfO3VwK/qOVmZmpjRs3SmI+NwAAAFBWmNbTLUljx47VsGHD1Lp1a7Vr107z58/XiRMnNGrUKEm5Q7pPnTqlTz/9VFLuSuWzZ8/W2LFj9eijjyo6OloRERH5ViUfPXq0OnXqpLfeekt9+/bV119/rXXr1mnz5s357p2Tk6OFCxfqoYcekqurqR8DSgsvL2nHjiue3rFjh1JSUlSpUiXdcsstN7EwAAAAAGYxNW0OGjRIZ86c0auvvqr4+Hg1bdpU3333nUJCQiRJ8fHx+Z7ZXatWLX333XcaM2aMPvjgAwUHB2vWrFm6//77bW3at2+vpUuX6sUXX9TkyZNVp04dLVu2TG3bts1373Xr1unEiRMaMWLEzXmzKPPy5nN37dpVLoX0hAMAAAAofUx9Trcz4zndKK6uXbsqMjJSc+bM0RNPPGF2OQAAAACuoFQ8pxsoddLSpNDQ3C0t7S+n0mzPimc+NwAAAFB2MJkZsBfDkI4f/3P/Mlu3blVGRoaqVaumevXqmVAcAAAAADPQ0w3cBHnzubt163bV59ADAAAAKF0I3cBNkPd8boaWAwAAAGULoRtwsPPnz2vnzp2SpDvvvNPkagAAAADcTIRuwME2btyonJwc1a9fX9WrVze7HAAAAAA3EaEbcLC8+dz0cgMAAABlD6uXA/ZisUiNG/+5//+Yzw0AAACUXYRuwF68vaX9+/Md+v333/XLL79Ikrp06WJCUQAAAADMxPBywIE2bNggSWrevLkqV65scjUAAAAAbjZCN+BAzOcGAAAAyjZCN2AvaWlSkya5W1qapD9DN/O5AQAAgLKJOd2AvRiGdOCAbT82NlaxsbFydXVVx44dza0NAAAAgCno6QYcJG/V8ttuu03lypUzuRoAAAAAZiB0Aw6SF7qZzw0AAACUXYRuwAEMw+D53AAAAAAI3YAj/Prrr0pISJCnp6duv/12s8sBAAAAYBJCN+AAkZGRkqQOHTrI09PT3GIAAAAAmIbVywF7sVikkBBJUmRUlCTmcwMAAABlHaEbsBdvb+nYMWVnZ2tN5cqSmM8NAAAAlHUMLwfsbM+ePTp//rz8/PzUsmVLs8sBAAAAYCJCN2Bn69evlyR16dJFrq4MJgEAAADKMhIBYC8XL0qdOqnfoUN6WcznBgAAAEDoBuwnJ0fauVMNlDuEhPncAAAAABhejhIrLi5OGzZsUFxcnNmlFFtAlSpq0qSJ2WUAAAAAMBmhGyVSRESEQkJCdOeddyokJEQRERFml1Qsbdq0kcViMbsMAAAAACazGIZhmF2EM0pOTpa/v7+SkpLk5+dndjmlSlxcnEJCQpSTk2M7ZrFY9NBDD8nPz09WqzXf5uLickM/2+s1q5Ys0bhXXpEk+Up676OPNHLkSJM+RQAAAADXy555j9B9nQjdjrNhwwanXITMW1Lq/+/7SLpkterYsWOqXr26iVUBAAAAKC575j0WUkOJU69ePbm4uBTo6X7mmWfk6+ur7OzsfFtOTs5Vf77eNsV5XXp6uozU1HzvIzs7W0eOHCF0AwAAAGUYoRslTvXq1TV//nw9/vjjys7OltVq1Ycffliih2rHxcWpUc2a+uOygSNWq1V169Y1sSoAAAAAZmMhNZRII0eO1LFjx7RhwwYdO3asRAduKfeLgpkLFqiq1aoA5Q4t//DDD+nlBgAAAMo45nRfJ+Z0ozBxcXE6cuSI6tatS+AGAAAAnBRzuoESqnr16oRtAAAAADYMLwfs5eJFqUuX3O3iRbOrAQAAAFAC0NMN2EtOjhQV9ec+AAAAgDKPnm4AAAAAAByE0A0AAAAAgIMQugEAAAAAcBBCNwAAAAAADkLoBgAAAADAQVi9HLAnb2+zKwAAAABQghC6AXvx8ZFSU82uAgAAAEAJwvByAAAAAAAchNANAAAAAICDELoBe0lPl3r3zt3S082uBgAAAEAJwJxuwF6ys6XvvvtzHwAAAECZR083AAAAAAAOQugGAAAAAMBBCN0AAAAAADgIoRsAAAAAAAchdAMAAAAA4CCsXn6dDMOQJCUnJ5tcCUqM1NQ/95OTWcEcAAAAcFJ5OS8v990IQvd1OnPmjCSpRo0aJleCEik42OwKAAAAANygM2fOyN/f/4auQei+ThUrVpQknThx4ob/T0DhkpOTVaNGDZ08eVJ+fn5ml1Nq8Tk7Hp+x4/EZOx6fsePxGd8cfM6Ox2fseHzGjpeUlKSaNWvact+NIHRfJxeX3Onw/v7+/KI7mJ+fH5/xTcDn7Hh8xo7HZ+x4fMaOx2d8c/A5Ox6fsePxGTteXu67oWvYoQ4AAAAAAFAIQjcAAAAAAA5C6L5OHh4eeumll+Th4WF2KaUWn/HNwefseHzGjsdn7Hh8xo7HZ3xz8Dk7Hp+x4/EZO549P2OLYY810AEAAAAAQAH0dAMAAAAA4CCEbgAAAAAAHITQDQAAAACAgxC6AQAAAABwEEL3dZozZ45q1aolT09PtWrVSps2bTK7pFJj6tSpatOmjcqVK6eAgAD169dP//3vf80uq1SbOnWqLBaLwsPDzS6lVDl16pT+/ve/q1KlSvL29lbz5s21a9cus8sqVbKysvTiiy+qVq1a8vLyUu3atfXqq68qJyfH7NKc1saNG3XvvfcqODhYFotFK1euzHfeMAy9/PLLCg4OlpeXl7p06aL9+/ebU6yTutpnnJmZqfHjx6tZs2by8fFRcHCwHnzwQf3vf/8zr2AndK3f48s9/vjjslgsmjlz5k2rrzQoymd88OBB9enTR/7+/ipXrpxuv/12nThx4uYX68Su9TmnpKTo6aefVvXq1eXl5aVGjRpp7ty55hTrhIqSO+zxd4/QfR2WLVum8PBwTZo0SXv27FHHjh3Vs2dP/iViJ1FRUXrqqaf0008/ae3atcrKylKPHj2Umppqdmml0o4dOzR//nzdcsstZpdSqpw7d0533HGH3Nzc9P333+vAgQN69913Vb58ebNLK1XeeustzZs3T7Nnz9bBgwc1bdo0vf3223r//ffNLs1ppaam6tZbb9Xs2bMLPT9t2jRNnz5ds2fP1o4dOxQUFKS77rpLFy5cuMmVOq+rfcZpaWnavXu3Jk+erN27d+urr77SoUOH1KdPHxMqdV7X+j3Os3LlSm3btk3BwcE3qbLS41qf8W+//aYOHTqoYcOGioyM1N69ezV58mR5enre5Eqd27U+5zFjxuiHH37QZ599poMHD2rMmDF65pln9PXXX9/kSp1TUXKHXf7uGSi22267zRg1alS+Yw0bNjQmTJhgUkWlW2JioiHJiIqKMruUUufChQtGvXr1jLVr1xqdO3c2Ro8ebXZJpcb48eONDh06mF1Gqde7d29jxIgR+Y7dd999xt///neTKipdJBkrVqyw/ZyTk2MEBQUZb775pu1Yenq64e/vb8ybN8+ECp3fXz/jwmzfvt2QZBw/fvzmFFXKXOkzjouLM6pVq2b88ssvRkhIiDFjxoybXltpUdhnPGjQIP5dbGeFfc5NmjQxXn311XzHWrZsabz44os3sbLS46+5w15/9+jpLqaMjAzt2rVLPXr0yHe8R48e2rp1q0lVlW5JSUmSpIoVK5pcSenz1FNPqXfv3urevbvZpZQ6q1atUuvWrTVgwAAFBASoRYsWWrBggdlllTodOnTQ+vXrdejQIUnS3r17tXnzZvXq1cvkykqn2NhYJSQk5Psb6OHhoc6dO/M30IGSkpJksVgYKWNHOTk5GjZsmMaNG6cmTZqYXU6pk5OTo2+//Vb169dXWFiYAgIC1LZt26sO88f16dChg1atWqVTp07JMAxt2LBBhw4dUlhYmNmlOaW/5g57/d0jdBfT6dOnlZ2drcDAwHzHAwMDlZCQYFJVpZdhGBo7dqw6dOigpk2bml1OqbJ06VLt3r1bU6dONbuUUuno0aOaO3eu6tWrp9WrV2vUqFF69tln9emnn5pdWqkyfvx4DR48WA0bNpSbm5tatGih8PBwDR482OzSSqW8v3P8Dbx50tPTNWHCBA0ZMkR+fn5ml1NqvPXWW3J1ddWzzz5rdimlUmJiolJSUvTmm2/q7rvv1po1a9S/f3/dd999ioqKMru8UmXWrFlq3LixqlevLnd3d919992aM2eOOnToYHZpTqew3GGvv3uu9iuzbLFYLPl+NgyjwDHcuKefflo///yzNm/ebHYppcrJkyc1evRorVmzhrlVDpKTk6PWrVvrjTfekCS1aNFC+/fv19y5c/Xggw+aXF3psWzZMn322WdavHixmjRpopiYGIWHhys4OFgPPfSQ2eWVWvwNvDkyMzP1wAMPKCcnR3PmzDG7nFJj165deu+997R7925+bx0kbzHLvn37asyYMZKk5s2ba+vWrZo3b546d+5sZnmlyqxZs/TTTz9p1apVCgkJ0caNG/Xkk0+qatWqjGQspqvljhv9u0dPdzFVrlxZVqu1wDcbiYmJBb4BwY155plntGrVKm3YsEHVq1c3u5xSZdeuXUpMTFSrVq3k6uoqV1dXRUVFadasWXJ1dVV2drbZJTq9qlWrqnHjxvmONWrUiAUX7WzcuHGaMGGCHnjgATVr1kzDhg3TmDFjGMHhIEFBQZLE38CbIDMzUwMHDlRsbKzWrl1LL7cdbdq0SYmJiapZs6btb+Dx48f13HPPKTQ01OzySoXKlSvL1dWVv4MOdvHiRb3wwguaPn267r33Xt1yyy16+umnNWjQIL3zzjtml+dUrpQ77PV3j9BdTO7u7mrVqpXWrl2b7/jatWvVvn17k6oqXQzD0NNPP62vvvpKP/74o2rVqmV2SaVOt27dtG/fPsXExNi21q1ba+jQoYqJiZHVajW7RKd3xx13FHjkxKFDhxQSEmJSRaVTWlqaXFzy/ymzWq08MsxBatWqpaCgoHx/AzMyMhQVFcXfQDvKC9yHDx/WunXrVKlSJbNLKlWGDRumn3/+Od/fwODgYI0bN06rV682u7xSwd3dXW3atOHvoINlZmYqMzOTv4M34Fq5w15/9xhefh3Gjh2rYcOGqXXr1mrXrp3mz5+vEydOaNSoUWaXVio89dRTWrx4sb7++muVK1fO9s2Sv7+/vLy8TK6udChXrlyBOfI+Pj6qVKkSc+ftZMyYMWrfvr3eeOMNDRw4UNu3b9f8+fM1f/58s0srVe69915NmTJFNWvWVJMmTbRnzx5Nnz5dI0aMMLs0p5WSkqIjR47Yfo6NjVVMTIwqVqyomjVrKjw8XG+88Ybq1aunevXq6Y033pC3t7eGDBliYtXO5WqfcXBwsP72t79p9+7d+uabb5SdnW37O1ixYkW5u7ubVbZTudbv8V+/yHBzc1NQUJAaNGhws0t1Wtf6jMeNG6dBgwapU6dO6tq1q3744Qf95z//UWRkpHlFO6Frfc6dO3fWuHHj5OXlpZCQEEVFRenTTz/V9OnTTazaeVwrd1gsFvv83bPb+uplzAcffGCEhIQY7u7uRsuWLXmclR1JKnRbuHCh2aWVajwyzP7+85//GE2bNjU8PDyMhg0bGvPnzze7pFInOTnZGD16tFGzZk3D09PTqF27tjFp0iTj0qVLZpfmtDZs2FDov4MfeughwzByH5/y0ksvGUFBQYaHh4fRqVMnY9++feYW7WSu9hnHxsZe8e/ghg0bzC7daVzr9/iveGRY8RXlM46IiDDq1q1reHp6GrfeequxcuVK8wp2Utf6nOPj443hw4cbwcHBhqenp9GgQQPj3XffNXJycswt3EkUJXfY4++e5f9vBgAAAAAA7Iw53QAAAAAAOAihGwAAAAAAByF0AwAAAADgIIRuAAAAAAAchNANAAAAAICDELoBAAAAAHAQQjcAAAAAAA5C6AYAAAAAwEEI3QAA3ICXX35ZzZs3d/h9hg0bpjfeeMPh9ymqyMhIWSwWnT9/3uxSbLZs2aJmzZrJzc1N/fr1M7sch/jmm2/UokUL5eTkmF0KAKCICN0AgBLHYrFcdRs+fPhNq2X58uVq27at/P39Va5cOTVp0kTPPfec7fw//vEPrV+/3qE1/Pzzz/r222/1zDPP2I516dJFFotFS5cuzdd25syZCg0NdWg9JdXYsWPVvHlzxcbGatGiRYW26dKli8LDw29qXfZ0zz33yGKxaPHixWaXAgAoIkI3AKDEiY+Pt20zZ86Un59fvmPvvfdevvaZmZkOqWPdunV64IEH9Le//U3bt2/Xrl27NGXKFGVkZNja+Pr6qlKlSg65f57Zs2drwIABKleuXL7jnp6eevHFFx32/s1w+WdbXL/99pvuvPNOVa9eXeXLl7dfUSXMww8/rPfff9/sMgAARUToBgCUOEFBQbbN399fFovF9nN6errKly+vf//73+rSpYs8PT312WefSZIWLlyoRo0aydPTUw0bNtScOXPyXffUqVMaNGiQKlSooEqVKqlv3746duzYFev45ptv1KFDB40bN04NGjRQ/fr11a9fv3yB56/Dywvrmb+85/nAgQPq1auXfH19FRgYqGHDhun06dNXrCEnJ0dffPGF+vTpU+Dc4MGDlZSUpAULFlzx9cOHDy8w1Do8PFxdunSx/dylSxc988wzCg8PV4UKFRQYGKj58+crNTVVDz/8sMqVK6c6dero+++/L3D9LVu26NZbb5Wnp6fatm2rffv25Tu/detWderUSV5eXqpRo4aeffZZpaam2s6Hhobq9ddf1/Dhw+Xv769HH3200Pdx6dIlPfvsswoICJCnp6c6dOigHTt2SJKOHTsmi8WiM2fOaMSIEbJYLFfs6b6Wa9X72WefqXXr1ipXrpyCgoI0ZMgQJSYmSsr9/6p69eqaN29evmvu3r1bFotFR48elSQlJSXpscceU0BAgPz8/HTnnXdq7969tvZ79+5V165dVa5cOfn5+alVq1bauXOn7XyfPn20fft22/UAACUboRsA4JTGjx+vZ599VgcPHlRYWJgWLFigSZMmacqUKTp48KDeeOMNTZ48WZ988okkKS0tTV27dpWvr682btyozZs3y9fXV3ffffcVe1eDgoK0f/9+/fLLL0Wu6/Ie+SNHjqhu3brq1KmT7Vznzp3VvHlz7dy5Uz/88IN+//13DRw48IrX+/nnn3X+/Hm1bt26wDk/Pz+98MILevXVV/MFw+vxySefqHLlytq+fbueeeYZPfHEExowYIDat2+v3bt3KywsTMOGDVNaWlq+140bN07vvPOOduzYoYCAAPXp08fW875v3z6FhYXpvvvu088//6xly5Zp8+bNevrpp/Nd4+2331bTpk21a9cuTZ48udD6nn/+eS1fvlyffPKJdu/erbp16yosLExnz55VjRo1FB8fLz8/P82cOVPx8fEaNGhQsT+DotSbkZGh1157TXv37tXKlSsVGxtrm+7g4uKiBx54QJ9//nm+6y5evFjt2rVT7dq1ZRiGevfurYSEBH333XfatWuXWrZsqW7duuns2bOSpKFDh6p69erasWOHdu3apQkTJsjNzc12vZCQEAUEBGjTpk3Ffo8AABMYAACUYAsXLjT8/f1tP8fGxhqSjJkzZ+ZrV6NGDWPx4sX5jr322mtGu3btDMMwjIiICKNBgwZGTk6O7fylS5cMLy8vY/Xq1YXeOyUlxejVq5chyQgJCTEGDRpkREREGOnp6bY2L730knHrrbcWeG1OTo7Rv39/o1WrVkZaWpphGIYxefJko0ePHvnanTx50pBk/Pe//y20hhUrVhhWqzVf3YZhGJ07dzZGjx5tpKenGyEhIcarr75qGIZhzJgxwwgJCbG1e+ihh4y+ffvme+3o0aONzp0757tWhw4dbD9nZWUZPj4+xrBhw2zH4uPjDUlGdHS0YRiGsWHDBkOSsXTpUlubM2fOGF5eXsayZcsMwzCMYcOGGY899li+e2/atMlwcXExLl68aBiGYYSEhBj9+vUr9L3nSUlJMdzc3IzPP//cdiwjI8MIDg42pk2bZjvm7+9vLFy48KrXyvvcClOUev9q+/bthiTjwoULhmEYxu7duw2LxWIcO3bMMAzDyM7ONqpVq2Z88MEHhmEYxvr16w0/P798v0OGYRh16tQxPvzwQ8MwDKNcuXLGokWLrvo+WrRoYbz88stXbQMAKBno6QYAOKXLe37/+OMPnTx5UiNHjpSvr69te/311/Xbb79Jknbt2qUjR46oXLlytvMVK1ZUenq6rc1f+fj46Ntvv9WRI0f04osvytfXV88995xuu+22Aj2+f/XCCy8oOjpaK1eulJeXl62GDRs25KuxYcOGknTFGi5evCgPDw9ZLJZCz3t4eOjVV1/V22+/fdVh6tdyyy232PatVqsqVaqkZs2a2Y4FBgZKkm0odZ527drZ9itWrKgGDRro4MGDknLf76JFi/K937CwMOXk5Cg2Ntb2usJ68S/322+/KTMzU3fccYftmJubm2677TbbveyhKPXu2bNHffv2VUhIiMqVK2cbpn/ixAlJUosWLdSwYUMtWbJEkhQVFaXExETbaIZdu3YpJSVFlSpVynef2NhY2+/A2LFj9cgjj6h79+568803C/3d8PLyuubvIACgZHA1uwAAAK6Hj4+PbT/v8UkLFixQ27Zt87WzWq22Nq1atSow9FeSqlSpctV71alTR3Xq1NEjjzyiSZMmqX79+lq2bJkefvjhQtt/9tlnmjFjhiIjI1W9evV8dd5777166623CrymatWqhV6rcuXKSktLU0ZGhtzd3Qtt8/e//13vvPOOXn/99QIrl7u4uMgwjHzHClt47fLhy1Lu3PTLj+WF/qI8quryto8//rieffbZAm1q1qxp27/8/8vC5NX/1y8eDMO44pcR1+Na9aampqpHjx7q0aOHPvvsM1WpUkUnTpxQWFhYvikKQ4cO1eLFizVhwgQtXrxYYWFhqly5su0eVatWVWRkZIF75C3+9vLLL2vIkCH69ttv9f333+ull17S0qVL1b9/f1vbs2fPXvP3FgBQMhC6AQBOLzAwUNWqVdPRo0c1dOjQQtu0bNlSy5Ytsy1edb1CQ0Pl7e19xTnU0dHReuSRR/Thhx/q9ttvL1DD8uXLFRoaKlfXov0Jzluk7cCBA1d8HriLi4umTp2q++67T0888US+c1WqVCkwJz0mJqZAyL5eP/30ky1Anzt3TocOHbL13rds2VL79+9X3bp1b+gedevWlbu7uzZv3qwhQ4ZIyv3iYOfOnXZ9/Ne16t23b59Onz6tN998UzVq1JCkfAuc5RkyZIhefPFF7dq1S19++aXmzp2b7x4JCQlydXW96qPd6tevr/r162vMmDEaPHiwFi5caAvdeaMzWrRocQPvFgBwszC8HABQKrz88suaOnWq3nvvPR06dEj79u3TwoULNX36dEm5vY+VK1dW3759tWnTJsXGxioqKkqjR49WXFzcFa/5/PPPKzIyUrGxsdqzZ49GjBihzMxM3XXXXQXaJyQkqH///nrggQcUFhamhIQEJSQk6I8//pAkPfXUUzp79qwGDx5sW316zZo1GjFihLKzswutoUqVKmrZsqU2b9581fffu3dvtW3bVh9++GG+43feead27typTz/9VIcPH9ZLL71UrIXhruXVV1/V+vXr9csvv2j48OGqXLmybbX08ePHKzo6Wk899ZRiYmJ0+PBhrVq1Kt/zxovCx8dHTzzxhMaNG6cffvhBBw4c0KOPPqq0tDSNHDmy2DX/8ccfiomJybclJCRcs96aNWvK3d1d77//vo4ePapVq1bptddeK3D9WrVqqX379ho5cqSysrLUt29f27nu3burXbt26tevn1avXq1jx45p69atevHFF7Vz505dvHhRTz/9tCIjI3X8+HFt2bJFO3bsUKNGjWzX+Omnn+Th4ZFvaD8AoOQidAMASoVHHnlEH330kRYtWqRmzZqpc+fOWrRokWrVqiVJ8vb21saNG1WzZk3dd999atSokUaMGKGLFy9esee7c+fOOnr0qB588EE1bNhQPXv2VEJCgtasWaMGDRoUaP/rr7/q999/1yeffKKqVavatjZt2kiSgoODtWXLFmVnZyssLExNmzbV6NGj5e/vLxeXK/9JfuyxxwodFv9Xb731ltLT0/MdCwsL0+TJk/X888+rTZs2unDhgh588MFrXquo3nzzTY0ePVqtWrVSfHy8Vq1aZRsGf8sttygqKkqHDx9Wx44d1aJFC02ePPmKQ+mvdZ/7779fw4YNU8uWLXXkyBGtXr1aFSpUKPa1Fi9erBYtWuTb5s2bd816q1SpokWLFumLL75Q48aN9eabb+qdd94p9B5Dhw7V3r17dd9999nm9Eu5Q+S/++47derUSSNGjFD9+vX1wAMP6NixYwoMDJTVatWZM2f04IMPqn79+ho4cKB69uypV155xXaNJUuWaOjQofL29i72ewcA3HwW468TvQAAQImSnp6uBg0aaOnSpfRulnF//PGHGjZsqJ07d9q+UAIAlGz0dAMAUMJ5enrq008/vaHVyVE6xMbGas6cOQRuAHAi9HQDAAAAAOAg9HQDAAAAAOAghG4AAAAAAByE0A0AAAAAgIMQugEAAAAAcBBCNwAAAAAADkLoBgAAAADAQQjdAAAAAAA4CKEbAAAAAAAHIXQDAAAAAOAg/wcBOG6lgRfSbwAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.ticker import MultipleLocator\n", + "\n", + "# Plot prediction error against tree size\n", + "plt.style.use('default')\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(tree_sizes, cv_scores, '-o', color='black', markersize=3)\n", + "plt.xlim(0, 20)\n", + "# X-Ticks in 2er Schritten (nur ganze Zahlen)\n", + "plt.gca().xaxis.set_major_locator(MultipleLocator(2))\n", + "plt.axvline(x=best_size, color='red', linestyle='--',\n", + " label=f'Optimal size = {best_size}')\n", + "plt.xlabel('Tree Size (Number of Leaves)')\n", + "plt.ylabel('Cross-Validation MSE')\n", + "# plt.title('Prediction Error vs Tree Size')\n", + "plt.legend()\n", + "plt.grid(False)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "46b0bf6c-d0a8-4899-aa37-48371f184581", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pruned tree statistics:\n", + " Number of leaves: 3\n", + " Maximum depth: 2\n" + ] + } + ], + "source": [ + "# Fit the pruned tree with optimal alpha\n", + "pruned_tree = DecisionTreeRegressor(random_state=2, ccp_alpha=best_alpha)\n", + "pruned_tree.fit(X_train, y_train)\n", + "\n", + "print(f\"Pruned tree statistics:\")\n", + "print(f\" Number of leaves: {pruned_tree.get_n_leaves()}\")\n", + "print(f\" Maximum depth: {pruned_tree.get_depth()}\")\n", + "\n", + "# Feature importance for pruned tree\n", + "pruned_importance = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Importance': pruned_tree.feature_importances_\n", + "}).sort_values('Importance', ascending=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "36056171-5deb-4017-bc6b-a725ec969e97", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature Importance for Pruned Tree:\n", + " Variable Importance\n", + "5 svar 0.511469\n", + "4 TS 0.488531\n", + "1 CS 0.000000\n", + "0 DP 0.000000\n", + "3 cay 0.000000\n", + "2 ntis 0.000000\n", + "\n", + "Variables important for splitting the pruned tree: ['svar', 'TS']\n" + ] + } + ], + "source": [ + "print(\"Feature Importance for Pruned Tree:\")\n", + "print(pruned_importance)\n", + "\n", + "# Variables used in splitting (non-zero importance)\n", + "important_vars = pruned_importance[pruned_importance['Importance'] > 0]['Variable'].tolist()\n", + "print(f\"\\nVariables important for splitting the pruned tree: {important_vars}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "3e5e6f15-4ea5-470d-8d8d-9a92bba0b3f8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8T2fjxvErW2IkkWXvvfdKxB6xt1LUas3WrtmWoq1SXbYaNapqb4lZhKpSVXvXTkREkCHj+/zhkfo2EkHkBJ/36/W8fnLOfZ9znTzPz7hyn/trYTKZTAIAAAAAAABSkKXRAQAAAAAAAPDmoZQCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKo5QCAAAAAABAiqOUAgAAAAAAQIqjlAIAAAAAAECKszY6AAAAwJvu0qVLCgoKMjoGkCq5uroqR44cRscAALwElFIAAAAGunTpkgoXLqywsDCjowCpkoODg06cOEExBQCvIUopAAAAAwUFBSksLExzPx+qgnn4RzfwuFPnL6nr8AkKCgqilAKA1xClFAAAQCpQME8OlS6S3+gYAAAAKYaNzgEAAAAAAJDiKKUAAAAAAACQ4iilAAAAgGQSFRWt8dMXqlC9jnIq01ClGnfV9MWrkzz/Xli4hkyYrjw135Jz2Yaq2Kqnlm3a8cSxfx4/o4bdh8qtQhNlrtJcb/UfowuXr8cbdyMoWAPGT1GR+p2UsVwjFazbQT0//kqXrwc+72MCAJAs2FMKAAAASCb9xn+vJeu26uO+76hssYLa6v+HBk+Yrrth4frw3XZPnd+u/xgdPHpan/bvqvy5smnpxh1658PPFRtrUtuGNePGnTp/SfW7DlGJgnm0cNIoRTx4oHFTf1TtzgP127LpcsvoJEmKfPBAdTsPUkjoPY3s3VGF8+bU6QuXNW7aQm31P6g/1/6g9GkdXta3AwCARFFKAQAA4JUQFh4hB/s0L3SN6zdvKa19GmVIlzaZUv3r+NmL+nHlZo3+oLMGdGkjSfIuX1K3QkI1YdZP6t6moTI6Zkhw/uZdv2vbvkOaP2G42jSoIUmqVqGULl8L0IjJs9WqfjVZWVlJksZOXSA7WxutmDo27lnKFMmv4g276Nv5yzVuYHdJkv/Bozr7z1VNGzNAnVv4xGXKkC6tOg/9XNt/O6SmtbyS/XsBAEBS8PoeAAAAEnUzOER9Rn+t/LXby6lMQ+Xwbq2aHftr+75DkqQhE6bLtUJjhd67H29ux8HjlataG0VFRUuSlm/eqcbvDVPuGm8pY7lGKt2kmz76eo7uh4WbzXtv5ES5VWiio6cvqPF7w+ResakadB/6XPlv37mr+Ss3qWH3ocpf+21duHLjua7zNOu275XJZFLHZvXMjndqVk/hEZHasuePROev3e6vdA72alHX2+x4x2b1dD3wlg78fVKSFB0do0279qtpbS+zci1HFg9Vq1BSa7f7xx2zsX74M2jH/5Rwjukffp3G1vYZnxIAgOTDSikAAAAkqtuIL/XXiTP65P0uyp8zm0Lu3tPhE2cVfCdU0sPSZeqiVVrhu0tdWvrEzQsJvaf1O/aqx1tNZGPz8K+dZ/+5qnpVK6hPhxZKa59Gpy5c0uS5v+iPoye1ac5Es/s+iIpW6w8+VrdWDTWoW1tFx8QkOXNYeIQ2/vqblm7YoS3+f8jKylL1qpbXwokjVDhvjrhxJpNJMTGxSbqmtbVVouePn70ot4yOyuSa0ex4sQK5JUnHzl5MfP6ZiyqYJ0e8+8TNP3NRlUoV1fnL1xQeERl3/L9jt+07pIjIB0pjZ6vKpYuqdJH8Gj99obJn8VChPDl05uIVffLdPJUqnE81K5V52mMDAPDSUEoBAAAgUb/9eUydW9RX11YN4o41rlkl7tfFC+ZRqcL5tHC1r1kp9cumHYp8EKWOzerGHRvW4+24X5tMJlUuXVSF8uRQ3S6D9fep8ypeME/c+ajoaA3v0UGdmpuvPEpIVFS0tu47qF82bNf6HfsUFR2jWlXKaManA9WoZhWlc7CPN2f3H0dUv+uQJF3/xOYFypk1U4Lng0NC5ZwhfbzjaR3sZWtjo+CQ0ESvH3wnVLmyZY533Nkxfdz5x/9vRsf493J2TC+TyaTboXeV2c1F1tZW2jx3oroM+0Le7d6PG+ddvqR++vqjuLIQAAAj8KcQAAAAElWueEEtWrNFGZ0yqGalMipdJH+8MqNjs3oa9PlUnb5wWQVyZ5ckLVztp7LFCqpo/n9X9Fy4fF1jvp+vnb8f1s3gEJlMprhzpy5cMiulJKlZnaTtd/T3qfPy6TZEd+7dV42KpTVpeG81reUlpwzpEp1Xukh+7f55SpLukdnd5aljLCwsnutc3JhEz5mfTcq9oqKi1XHweB0/e1FTRw9QgVzZdPHqDU2Y9ZMavTtMm+ZMjHuVDwCAlEYpBQAAgEQtmDhSE2b9pPkrN+vTKT8qnYO9mtTy1LiB3eNeVXurYU2N+GqWFq3x06f9u+nEuX908OgpfTPq39U598LCVbvzQKWxtdUn73dW/pxZZW+fRlduBKpd/08VHvHA7L4O9nZJ3pDcxsZaGdKlVfCdu7pz775C797XvbDwp5ZS6RzsVbJg3iTd42mv72V0yqAjp87FO34/LFwPoqLiVjwlON8xg4Lv3I13/Pb/jz2a/2iz9FtPWHl1+85dWVhYyCn9w+eev2qz/PYc0O6fp6hs0QKSJM+yxVWldDEVbfCOpixaqZG9OiaaCwCAl4VSCgAAAIlydXbUxKG9NHFoL12+Hqj1O/bp42/mKDA4RGtnfCbpYWHSqEYVLV63VZ+831kLV/sqjZ2t2vjUiLvOzv2HdT3wlnznTlLV8iXijt8JvffE+/53ZVBiCuXJoeObF2j/4eNaunGHvpqzVMMmzVLl0kXVsl41Na9bNd5eT1Lyvr5XNH9uLdu0UzeCgs3udezMxYfn8+VK9PpF8+fSsk07FR0dY1aAHTtzIe68JOXJnkX2aezirvu4o2cuKm+OLEpj93AD8yMnz8nKylKlC+czG5c7e2a5OGXQ8SdcAwCAlEIpBQAAgCTLntldvdo31c79f+q3w8fMznVsVlcrfH/V5t2/a8n67WpS09NspdKjt83sbG3M5s1ZtiHZ8lUsVUQVSxXRxKE9tWP/n/plww6N+X6ehkyYrqrliqtlvWp6u0kd2aexk5S8r+81qlFZY76fr8VrtmhQt7Zxxxeu8ZN9GjvV8SqX6PwmtTw1b8Umrd66W63qV487vmjNFmV2d1H54oUkPVyx1aBaJa3dukfjB3ZX+rQOkqTL1wO16/e/9H7HFv9mdnNRTEys/jh6ShVKFI47fubiFd0KCVVWD9ckPTsAAC8DpRQAAAASdOfufdXvNkRtG9RQgdzZld7BQQePndIW/z/UtJan2djaVcoqq4er+o/7XgFBwWYbnEtSpVJF5Zwhvd4f+61G9OogG2trLd2wXX+fPp/sua2srFS7SjnVrlJO30X20+Zd+7V04w59+OUMlS9RWCULPXxlL31ah7jX2l5UkXy59E6L+ho3bYGsrCxVtmhBbd13UHOXb9Qn73eOe+1Okj6bvkifz1ykjbO/jFs1Vq9qBdWqXEb9xn6v0Hthypsji37Z+PDTA+d+PlRWVv+unhrVu6OqtvtdLft8pEHd2iriwQONm7JALs4Z9ME7LePGdWpeV1MWrlT7AWM1tEd7FciVTReuXNfE2T8rrX0adW/TKFmeHQCA50EpBQAAgASlsbNR+eKFtGTdNv1z7YaiomOUPZObBnZto4Fd2piNtbS0VPsmdTRx9hJly+SmGpVKm513ccqglVPHatikWeo2fILS2qdRwxpVtGDiSFVp0/slPoOtmtWpqmZ1qir03n1ZWVq+tHt9O/J9ZXF30fSf1igg6LZyZvXQpKG91OvtZmbjYk2xiomJlUkms+NLvvlEo7+bp7FTF+j2nbsqmDu7fvxyuFo/9hqkJBXMk0Ob507UR1/P0duDxsraykrVKpTS0sHvyS2jU9y4bJnctfvn7/X5jMWaPHepbtwMlruLsyqWLKzhPTvEbUoPAIARLEyPf+QJAAAAUtShQ4dUtmxZ+S+dqtJF8hsdB0hV/jx+Rp5t++jgwYMqU6aM0XEAAMns5f2YCAAAAAAAAEgApRQAAAAAAABSHKUUAAAAAAAAUhylFAAAAAAAAFIcpRQAAAAAAABSHKUUAAAAUqV6XQarXpfBRsd4JS3btEMVW/WUc9mGylPzLQ2ZMF33wsKTPH/64tUq1birnMo0VOH6HTV++kJFRUXHGxd467beGzlR2au2kkv5xqr+dj/t+O3PJ17zfli4Pp3yo0o06iKnMg2Vzaul6ncdorP/XH3u5wQAvNqsjQ4AAAAAIPn8vH6bug6foM4tffTlhz115uIVffTNHJ0894/WzfriqfMnzPpJn075UYO6tVXtKmV18Ogpjfn+R10LCNLU0QPixkU+eKCG3Ycq5O49TRzaS24ZnTTz57Vq2muENsyaoKrlS8SNvRcWrvpdh+j6zVsa3LWtihXIozv37mv/4eMKi4h4Kd8HAEDqRykFAACAZBUWHiEH+zRGx3hmCeU2mUyKiHwg+zR2z33t8IhIpbGzlYWFxYtEfKqYmBiNmDxbtauU1bT/F0jVKpRS+rQO6jLsC/nu/l31qlZIcP6tkFBNmPWTurT00af9ukqSvMuXVFR0jMZ8P199O7ZQ4bw5JUnzV27WsbMXtWPhN6pYqkjcvSq26qmRX8/Wrp++j7vumO/n69T5S/p9xUzlzp457nijGpWT/XsAAHh18PoeAABAKnYzOER9Rn+t/LXby6lMQ+Xwbq2aHftr+75DcWNMJpMmz/1FBet2kHPZhqrcpvfD8uE/r78tXO0nh+J19c/VG2b32HXgLzkUr6tdB/6KO7Zt70G1fv8T5avVXs5lG6pYg87qO+YbBd2+YzZ33LQFciheV38eP6P2Az9VliotVLRB57hcM39eq4qteipjuUbKUqWF2g/8VBcuXze7RkL5n9fyzTtV/e1+cq3QWG4VmqhJj+E6fOKs2Zj3Rk6UW4UmOnr6ghq/N0zuFZuqQfehkiSH4nU1YPwUzf5lvUo36SanMg21aO0WSdLeQ0fVoPuHcq/YVC7lG6tGh/7atGu/2bUffZ+37v1DPT76Sjm8W8ulfGNFPoh67mdKqt+PnNSNm8Hq2Kyu2fEWdb2VzsFea7f5Jzp/y54Dioh8oE7N6pkd79isrkwmk9Zt3xt3bN02fxXIlS2ukJIka2srvdWopv74+5SuBgRJelj2zV+xSc3repsVUgAAsFIKAAAgFes24kv9deKMPnm/i/LnzKaQu/d0+MRZBd8JjRszfvpCfTZ9kd5pUV/N61TVlRs31Wf0N4qJjVWBXNme677nr1xXxZKF1bllfTmmS6t/rgXouwUrVLvTAB1YOUs2NuZ/jWw34FO1rl9d3Vs30v3wh69j9R3zjRat2aLebzfTuAHddfvOXX0+Y5FqdOyv/ctnyMPVOdnzfzl7icZ8P18dm9XV0B7t9SAqSt/MW6467wzUriXfx63ykaQHUdFq/cHH6taqoQZ1a6vomJi4c+u279XeQ0c1vGcHebg6yy2jk3YfOKJG7w1TsQK5NX3MQNna2mj20nVq1fdj/fjlcLWqX90sS8+PJqu+dwX98NmHCguPkI21VYK5o6NjEjz3OCsry0RXWx07c0GSVKxAHrPjNjbWKpA7u46f/SfR6x8/e1GSVDR/LrPjmd1c5OrsqONnLv57r7P/yLNMsXjXeHTvE+cuKquHq/48fkb3wyOUL2dWfTD2Oy3ftFP3wyNUrEBujerTST7eFRPNBAB4fVFKAQAApGK//XlMnVvUV9dWDeKONa5ZJe7XIaH3NHnuL2pSy1PTxwyMO14kX07V7DjguUupd9s0ivu1yWRSpVJF5V2+pArW7SDfPQfivXb1dpM6+qhPp7ivf//rhOat2KQvBr+nD95pFXe8SpliKtm4q75fsELjBnZP1vxXbgRq3LQF6tmuib4a3ifueK3KZVW8YRd9Nn2RFk4aGXc8Kjpaw3t0UKfm9eJd6354uA6snClnx/Rxx6q/3U/OGdLJd94kpXOwlyQ1qFZRlVr10vBJs9SyXjWzwqhGpVKa8kn/JGXPUNonSeNmjh0cbxXU44Lv3JUks9yPZHRMr3+uBSR6/VshobKztVHa/z/f45wd05uVocEhoU++T4b0/z//MMu1wIcrpibPXaqi+XNr9mdDZGlpqe9+XK5WfT/W6unjVcezXKK5AACvJ0opAACAVKxc8YJatGaLMjplUM1KZVS6SH6zVUr7/zquiMgHeqthTbN5lUoVVY4sHs9938BbtzV26gJt3rVf128GKzY2Nu7cqfOX4pVSzWp7mX298dffZGFhobca1TJbBZTJNaOKF8ijXX/8lez5t/gfVHR0jNo3qWN2zzS2tqparrh2/f5XvDnN6njFOyY93Bvp8cLlfli4Dvx9Uu+2aRRXSEmSlZWV2jWurVFf/6DTFy6rYJ4cceea1q6a5Oy7f56SpHG5smZK0jgLPXk1VVJ2tEp036v/nEts7KNTsbEmSZKtjY1WTx+v9GkdJEnVypdU8UZd9MXMxZRSAPCGopQCAABIxRZMHKkJs37S/JWb9emUH5XOwV5Nanlq3MDuyuSaUcEhD1eueLhmjDf30etxzyo2NlaNewzXjZu3NOy9t1W0QG452KdRbGysqr/dT+GRkfHmZHIzv39gcIhMJpNyVW/7xHvkzvZwb6HkzB9467YkqepbfZ943tLSfDtVB3s7ZUiX9oljM/0nz+3QezKZTPGeU5Iy///Yo1VKcdd4wtiElCyYN0njrKwS3xI24/+LtOA7ofG+f8F37srZMUOi812cMigi8sETN32/feeuShfO/++9nDLE/fdndp9Q89VaGZ0e3rNiySJxhZQkOdinUdWyJbRux9541wAAvBkopQAAAFIxV2dHTRzaSxOH9tLl64Fav2OfPv5mjgKDQ7R2xmdx/+APCAqONzcg6LZyPrbaKI2djSTF23D71n82Lz925qL+PnVes8YNVoem/74qdu7S1QRz/nfFjKtTBllYWGjrj5Nla2sTb7ydzcNjz5L/aVz+f62fJn+k7EmYl9BqIin+8zhnSCdLS0vduBk/5/X/H3t0/4SukZjken2vWIHckh7uLfX4/lnR0TE6feGyWvtUT/T6RfM/nH/0zAVVKFE47viNoGAF3b6jIo/tNVUsf664Pawed+z0w2NF8uU2y/QkJplk+ZI/kRAAkHpRSgEAALwismd2V6/2TbVz/5/67fAxSVKFEoWVxs5WP2/YrmZ1/n1d7LfDx3TpWoBZqZMzy8NXv46evqACubPHHd+w8zez+zwqU+z+UybNWbYhyVl9qlXSpDlLdS0gSC3rV0tw3LPkf5o6nuVkbW2l85evm10rOaR1sFf54oW0Zpu/Ph/8nuzT2El6uKrs5/XblNXDVfmfc/8uKfle3ytfvJAyuWXUwtV+Zhuvr9qyS/fCwtW09pNfV3ykjlc5pbGz1aI1W8xKqUWr/WRhYWG2n1njWp7qP+57/X7kRNzY6OgY/bxhm8qXKKQs7i6SHm6SXrFkEf12+JhC792PW50WFh6h3X8cMbsPAODNQikFAACQSt25e1/1uw1R2wY1VCB3dqV3cNDBY6e0xf8PNa3lKenhK1L93mmlCbN+Uq9PJqtFXW9duXFT46ctjPdKXNliBVQgVzYN/2qWomNi5JQhndZu89feQ0fNxhXMnV15smfRR9/Mlcn08B4bd/6m7b8dSnL2yqWLqmurBurx8SQdOn5anmWLK619Gt24Gay9fx5V0fy59V7bxs+U/2lyZs2kj/p00ujv5+nCleuq41lOzhnSK/DWbf1x9JQc7NOYbcb+rD7t11WN3hum+t2GqP87rWRjY6NZS9fp2NmL+vHL4c+0Muq/yhYt8NxzH2dlZaXxA7qr24gv1XfMN2rToIbO/nNVoyb/oFqVy6iuV/m4sbsPHFGDdz/U8B4dNKJXB0lSRscMGvpee3065Uc5O6ZX7cpldfDYKY2fvlCdW9Q3W331TvN6mvXzWnUYNE5j+3eTW0YnzVq6TqcvXtGGWRPMcn0++F3V7/qhmvQYoYFd28jCwkLf/bhct26H6uO+7yTLswMAXj2UUgAAAKlUGjsblS9eSEvWbdM/124oKjpG2TO5aWDXNhrYpU3cuI/7vqO09mk0a+k6LVm3TQVzZ9d3H3+gb+cvN7uelZWVlk8Zq4GfTdEHY7+Vna2NWtWvrskj+qpFn1Fx42xsrLV8yqca8sU0vf/pt7K2slKNSqW1YfYXKlCnQ5LzT/mkvyqUKKw5yzdo1s/rFGsyKbObiyqXLqJyxQo+c/6kGNK9nQrlyalpi1dp2aYdinwQJQ/XjCpbtIC6P/aJgs+javkS2jTnS42btkDvjZqkWJNJxQvk0bLvx6hBtUovdO3k1K5xbVlZWemrOUu1aM0WOTumV/smtTX6gy5m40wyKSYmVrGmWLPjQ99rr/Rp7TXz53X6dv5yebg6a1C3thr6bnuzcXa2ttow+0uN+nq2Bn0+VWERkSpRMK9WTxuvquVLmI2tVKqoNv4wQWO+n6+uw7+Q9HCVnO+8iapYqshL+C4AAF4FFiaTyWR0CAAAgDfVoUOHVLZsWfkvnarSRfI/fcIzqNdlsCTJd96kZL0ukFL+PH5Gnm376ODBgypTpozRcQAAySzxj+8AAAAAAAAAXgJe3wMAAECqFxMTo8TW91tYPHw9EQAAvDoopQAAAF5Tr9Nre0UbdNalawEJnq9arsRr9bwAALwJKKUAAACQ6i3//lNFRkUleD69g30KpgEAAMmBUgoAAACpXrECuY2OAAAAkhmlFAAAAF4r46Yt0GfTFynsbz+jozyXu/fD9MXMxTpy8pz+OnlOQbfvaESvDhrVu1O8sQ7F6yZ4nQK5sunwurmSpDMXr2ju8o369ffDunDluiwtLFUwT3a937GFmtf1fmnPAgBAYiilAAAAgFQkOCRUc5dvVPECedSoZhXNX7EpwbE7F30b79iBv09qyITpalLLM+7Y1r0HtXnXfrVrXFtlixZQdEyMVmz+VW8PGqdRvTtpRK8OL+VZAABIDKUUAAAAkIrkyOKha/4rZWFhoaDbdxItpSqULBzv2A/LNsjCwkLvtKgfd6y1T3X1bNdEFhYWccfqVa2goJBQTZ63VIO6tZGdrW3yPggAAE9haXQAAAAApE43g0PUZ/TXyl+7vZzKNFQO79aq2bG/tu87FDdm296Dav3+J8pXq72cyzZUsQad1XfMNwq6fcfsWuOmLZBD8br6+9R5vT1wrDJVbqasni019MsZio6O0ekLl9Wk5wi5V2yqQvU6avLcX8zm7zrwlxyK19WSdVs19MsZylW9rTKWa6S6nQfp8ImzSXqe5Zt3qvrb/eRaobHcKjRRkx7D4829cPm6Og0Zrzw135JTmYbKVa2NGnT/UH+dPPec38VnZ2FhYVYePYu798O0ym+XqpYrobw5ssYdd3V2fOI1yxUrqLDwSAXfufvceQEAeF6slAIAAMATdRvxpf46cUafvN9F+XNmU8jdezp84qyC74TGjTl/5boqliyszi3ryzFdWv1zLUDfLVih2p0G6MDKWbKxMf/rZsfB4/RWo1rq1rqhtu87pMnzflFUdIx2/HZI77VtrP7vtNLSjTs06usflCdHFjWr7WU2/5Pv5qlU4XyaNmaAQu/e1/jpC1W/62Dt+2W6cmfPnOCzfDl7icZ8P18dm9XV0B7t9SAqSt/MW6467wzUriXfq3DenJKk5r1HKiY2VuMHdFf2zO4KCgnV/sPHdefuvUS/VyaTSTExsUn6vlpbWyVp3PNYtmmn7odHqPNjq6QSs+vAX3LL6Cj3jE4vLRMAAAmhlAIAAMAT/fbnMXVuUV9dWzWIO9a4ZhWzMe+2aRT3a5PJpEqlisq7fEkVrNtBvnsOqFGNymbju7ZqoA/eaSVJqlm5jLbuO6gZS9ZoyTcfq2mthwWUd/mS2rzrNy3dsD1eKeXq7Kil346OW/VTpUwxFW/YRRPn/Kxpowc88Tmu3AjUuGkL1LNdE301vE/c8VqVy6p4wy76bPoiLZw0UrdCQnX64hVNHNpL7RrXjhv33wxPsmjNFvX4aNJTx0l6qRuw/7hqs5zSp1OzOlWfOnbeik3adeAvTRrWS1ZWL68oAwAgIZRSAAAAeKJyxQtq0ZotyuiUQTUrlVHpIvnjrXwKvHVbY6cu0OZd+3X9ZrBiY/9dLXTq/KV4pZRPtUpmXxfKnUN/nzqvel4V4o5ZW1spT/asunQtIF6mtg1rmr2GliOLhyqVKqJdv/+V4HNs8T+o6OgYtW9SR9HRMXHH09jaqmq54nFzMzqmV57sWfT1vGWKiYmRd4VSKlEwjywtn77jRYPqlbT75ylPHfcyHT97UQeOnFSPt5oojV3i+0P57v5dA8ZPUfM6VdWrfbOUCQgAwH9QSgEAAOCJFkwcqQmzftL8lZv16ZQflc7BXk1qeWrcwO7K5JpRsbGxatxjuG7cvKVh772togVyy8E+jWJjY1X97X4Kj4yMd01nx/RmX9vaWMshjV28EsXWxlp379+PN9/DxTn+MVdn/X3qfILPEXjrtiSp6lt9n3j+UelkYWGhjT9M0GczFmnyvGUaNmmWMjqmV9uGNTX6gy5Kn9YhwXtkdEwvx3RpEzyfEn5cuVmS1LmlT6Ljtvj/oXYDPlXNymU0b8Kw596/CgCAF0UpBQAAgCdydXbUxKG9NHFoL12+Hqj1O/bp42/mKDA4RGtnfKZjZy7q71PnNWvcYHVoWjdu3rlLV19apoD/F0xmx4JuK6NThgTnuPz/3E+TP1L2LB6JXj9HFg/N+HSQJOnMxSta4furxk9fqAdR0fr+434JzjP69b0HUVFasn6bShfJr5KF8iY4bov/H2rbb7S8ypXQkq8/kq2NTbJnAQAgqSilAAAA8FTZM7urV/um2rn/T/12+Jgkxa2wsbM1LzbmLNvw0nL8snGHPujUMu7el64F6LfDx9W+Se0E59TxLCdrayudv3w9SXstPZI/VzYN6/G2Vm/d89RP+DP69b0NO/Yp6PYdjerTKcExW/c+LKSqlC6qX74dLTvbxF/xAwDgZaOUAgAAQDx37t5X/W5D1LZBDRXInV3pHRx08NgpbfH/Q01reUqSCubOrjzZs+ijb+bKZHr4at7Gnb9p+2+HXlqum8EhattvtLq0aqDQu/c1btoCpbGz1ZDubyU4J2fWTPqoTyeN/n6eLly5rjqe5eScIb0Cb93WH0dPycE+jT7q00l/nzqvgZ9NUYu63sqbM6tsbay1c/9hHT19QYO6tU00l4tThrgVWcnBd/fvCguP0N374ZKkk+cuaZXfLklSvaoV5GCfxmz8/JWbZZ/GTm0b1Hzi9fYeOqq2/cbIw9VZQ95tpyMnz5mdL5Q3hzIY/PohAODNQykFAACAeNLY2ah88UJasm6b/rl2Q1HRMcqeyU0Du7bRwC5tJEk2NtZaPuVTDflimt7/9FtZW1mpRqXS2jD7CxWo0+Gl5BrzQRcdPHZaPT+apNB7YSpXrKB+/HKE8mTPkui8Id3bqVCenJq2eJWWbdqhyAdR8nDNqLJFC6j7/z9B0MPVWbmzZ9Gspet05cZNWVhYKHe2zPpi8Hvq1b7pS3mehPQb973ZRu8r/XZp5f9LqRObFyhn1kxx567cCNS2fYfUrlFNOaZ/crG0/bdDCo+I1D9XA+TT7cN45zfPnSjv8iWT+SkAAEichclkMhkdAgAA4E116NAhlS1bVv5Lp6p0kfxGx0m1dh34S/W7DtHir0apeV1vo+Mghfx5/Iw82/bRwYMHVaZMGaPjAACS2dM/3xYAAAAAAABIZpRSAAAAAAAASHHsKQUAAIBUz7t8SYX97Wd0DAAAkIxYKQUAAAAAAIAURykFAAAAAACAFEcpBQAAAEPsOvCXHIrX1a4Dfxkd5YXdCwvXkAnTlafmW3Iu21AVW/XUsk07kjw/8NZtvTdyorJXbSWX8o1V/e1+2vHbn/HGffLdPFVq3UtZPVvKuWxDFanfSX1Gf61L1wLijR393Ty16POR8tZqJ4fidfXeyIkv9IwAACQ39pQCAAAAXlC7/mN08Ohpfdq/q/LnyqalG3fonQ8/V2ysSW0b1kx0buSDB2rYfahC7t7TxKG95JbRSTN/XqumvUZow6wJqlq+RNzYO6H31Manhgrmya70aR104tw/mjDrJ23Y+ZsOrp4tF6cMcWOnLFqpYvnzqGH1ylqwyvelPTsAAM+LUgoAAAB4AZt3/a5t+w5p/oThatOghiSpWoVSunwtQCMmz1ar+tVkZWWV4Pz5Kzfr2NmL2rHwG1UsVSRufsVWPTXy69na9dP3cWO/GfW+2Vzv8iWVK2smNe89Sut37NU7zevHnQv8bY0sLR++GLFk3dZke14AAJILr+8BAADgqdZu85dD8bpPfKVs1tJ1ciheV3+fOi9JOnjstDoNGa9C9ToqY7lGKlSvo9758LMnvmL2X/W6DFa9LoPjHX9v5EQVqtfR7NiDqCh9MXOxSjXuKqcyDZXDu7XeGzVJN4NDnu8hn9Pa7f5K52CvFnW9zY53bFZP1wNv6cDfJxOdv26bvwrkyhZXSEmStbWV3mpUU3/8fUpXA4ISne+a0enhnP8UX48KKQAAUitWSgEAAOCpGlSrJPeMTlq42lc1KpU2O7dojZ9KFc6n4gXzSJIuXb2h/Lmyq1X96sromF43goI1e+l6VW3XVwdX/yBXZ8cXzhMbG6vW73+ivYeOakCXNqpUqoguXQ/QuKkLVb/rEO35eYrs09glON9kMikmJjZJ97K2TniVkyQdP3NRBfPkiDeuWIHckqRjZy6qUqmiCc4/dvYfeZYpFu94sQIPv58nzl1UVg9Xs3PR0TGKio7WqQuX9eGE6cqfK5ua1vZK0vMAAJBaUEoBAADgqR6u3Kml2b+s15279+WYPq0k6eT5S/rj71P6anifuLHN63qr+WOrhmJiYuTjXVG5qrfVLxu3q/fbzV84zwrfX7XF/w/99PXHavZYGVO8YF5VfauvFq7x03ttGyc4f9GaLerx0aQk3Svsb79EzwffCVWubJnjHXd2TB93PtH5IaFxYx+XMcP/54fcNTt+IyhYeWq8Ffd1+RKFtGnORKVzsE/0PgAApDaUUgAAAEiSTs3r6bsFK7R88051a91QkrRwta/sbG3UtmGNuHH3wsL1xYzFWr11j/65dsNsRdLJ85eTJcumX/fLKX06NaxWSdHRMXHHSxbMKw/XjNp94EiipVSD6pW0++cpyZJFkiwSPZfY2f+PsUh4zH9PuTo5avfPU/TgQZROnr+kr+f9Ip9uQ7R57kRldnNJYmIAAIxHKQUAAIAkKZIvl8oWK6iFq/3UrXVDxcTEaMn6bWpUo4oyOv77qW+dh36unfv/1LD33lbZYgWVPp2DLCws1KL3SEVERCZLlsBbtxVy954cyzR44vlbIXcSnZ/RMb0c06VNliwZHTMo+M7deMdv///Yk1ZBmc13yqDgkPirqYJDnzzf2tpKZYsWkCRVLl1UdTzLqYhPJ301Z6kmDev9XM8AAIARKKUAAACQZB2b1VX/cd/r5PlLunDlum7cDFbHZnXjzt+5e1+bft2vEb06aHD3f18xi3zw4InFzX/Z2dkq9O79eMeD/lPauDg7ysUpg1bP+OyJ10n/lFfZkvP1vaL5c2nZpp2Kjo4x21fq2JkLcecTUyx/rrixjzt2+uGxIvlyJzo/WyY3ZXZz0ZmLVxIdBwBAakMpBQAAgCRr41NDwybO1KLVfrpw5bqyuLuqdpWycectLB5uIm5nY2M2b96KzUnaWDxnFg+t8tulyAcPZGdrK0m6FRKq/YePK306h7hxPt4VtWzTTsXExKhCicLP/BzJ+fpek1qemrdik1Zv3a1W9avHHV+0Zosyu7uofPFCic5vXMtT/cd9r9+PnIh7lujoGP28YZvKlyikLO6Jv5J37tJVXQ0IUsPqlV/4WQAASEmUUgAAAEgypwzp1KSmpxat8VPI3fvq17mVLC0t485nSJdWXmWL65v5y+Ti7KicWTy0+48j+nHVZjmlT/fU67dvXFtzlm1Q12ET1KWVj4JD7mryvF/MCilJau1TXT9v2K4WvUep99vNVa54QdlYW+tqwE3t+v0vNaxZWU1rJfxpdC5OGeTilCHB88+iXtUKqlW5jPqN/V6h98KUN0cW/bJxh7b4/6G5nw+VldW/q6d6fvyVFq/domMbf1SOLB6SpHea19Osn9eqw6BxGtu/m9wyOmnW0nU6ffGKNsyaEDf371PnNXTiDDWrU1W5s2WWpYWFjp25oO8XrpSLU3r179zKLNfuA0cUdDtEkhQTG6tL1wO1ym+XJMmrXAm5ZXRKlucHAOB5UUoBAADgmXRsVle/bNrx8NdN68Y7P2/CcA2ZME2jJv+g6JgYVSpVROtnfaEWfT566rUrly6q2eOH6Ks5S9Xmg9HKnS2zRvTsIN/dv2vXH0fixllZWWn5959q6uJV+mndVk2a87OsrayU1cNVXuVKqFj+xF95S25LvvlEo7+bp7FTF+j2nbsqmDu7fvxyuFr71DAbFxsTq5iYWJlMprhjdra22jD7S436erYGfT5VYRGRKlEwr1ZPG6+q5UvEjXN3cVZmNxd99+MK3Qi6pejoWGX1cJVPtUr68N23lC2Tu9m9xk1boN2Pfc92HfhLuw78JUnaPHcipRQAwHAWpsf/RAQAAECKOnTokMqWLSv/pVNVukh+o+MAqcqfx8/Is20fHTx4UGXKlDE6DgAgmVk+fQgAAAAAAACQvCilAAAAAAAAkOIopQAAAAAAAJDiKKUAAAAAAACQ4iilAAAAAAAAkOIopQAAAAAAAJDirI0OAAAAAOnU+UtGRwBSHf7/AgBebxYmk8lkdAgAAIA31aVLl1S4cGGFhYUZHQVIlRwcHHTixAnlyJHD6CgAgGRGKQUAAGCwS5cuKSgoyOgYKWru3LmaOnWqhg0bptatWxsdJ1X75ZdfNGHCBPXt21ddunQxOk6Kc3V1pZACgNcUr+8BAAAYLEeOHG/UP7p/+OEHTZ06VaNHj9Ynn3xidJxUr0yZMkqTJo3GjBmjUqVKqVu3bkZHAgAgWbBSCgAAAClm9erVatmypXr27KkpU6bIwsLC6EivBJPJpN69e2vWrFlauXKlmjZtanQkAABeGKUUAAAAUsSuXbtUt25dNWnSREuWLJGVlZXRkV4pMTExeuutt7R+/Xr5+fmpatWqRkcCAOCFUEoBAADgpfvrr7/k7e2t8uXLa8OGDbKzszM60ispMjJSDRo00MGDB7Vr1y6VKFHC6EgAADw3SikAAAC8VOfPn5enp6eyZMminTt3Kn369EZHeqWFhoaqRo0aunbtmvbu3avcuXMbHQkAgOdCKQUAAICXJiAgQF5eXpIkf39/ubu7G5zo9cD3FQDwOrA0OgAAAABeT6GhofLx8dG9e/fk5+dHcZKMPDw85Ofnp3v37snHx0ehoaFGRwIA4JlRSgEAACDZRUZGqnnz5jp//rx8fX15xewlyJ07t3x9fXXu3Dk1b95ckZGRRkcCAOCZUEoBAAAgWcXExKhDhw7au3ev1q1bx2bcL1GJEiW0du1a+fv7q0OHDoqJiTE6EgAASUYpBQAAgGRjMpnUt29frVy5UkuXLlXVqlWNjvTa8/b21tKlS7Vy5Uq9//77YstYAMCrglIKAAAAyWbMmDGaMWOGZs+erSZNmhgd543RtGlTzZo1S9OnT9enn35qdBwAAJLE2ugAAAAAeD1MmzZNY8aM0eeff66uXbsaHeeN061bNwUGBmrEiBFyd3dXr169jI4EAECiKKUAAADwwn755Rf17dtXAwYM0NChQ42O88YaNmyYAgMD1adPH7m6uqp169ZGRwIAIEEWJl46BwAAwAvYunWrGjRooLZt2+rHH3+UpSU7RBgpNjZWnTp10rJly7Rx40bVqlXL6EgAADwRpRQAAACe2x9//KEaNWrIy8tLa9eulY2NjdGRIOnBgwdq0qSJ/P39tXPnTpUtW9boSAAAxEMpBQAAgOdy+vRpeXl5KU+ePNq2bZvSpk1rdCQ85v79+6pVq5bOnz8vf39/5c+f3+hIAACYoZQCAADAM7t27ZqqVKkiBwcH7d69Wy4uLkZHwhPcunVLXl5eioiIkL+/v7JkyWJ0JAAA4vDCPwAAAJ5JSEiI6tevr5iYGPn6+lJIpWIuLi7y9fVVdHS06tevr5CQEKMjAQAQh1IKAAAASRYeHq7GjRvr6tWr8vPzU/bs2Y2OhKfIkSOHfH19deXKFTVp0kTh4eFGRwIAQBKlFAAAAJIoOjpabdu21aFDh7RhwwYVLlzY6EhIoiJFimjDhg36448/9NZbbyk6OtroSAAAUEoBAADg6Uwmk9577z1t2rRJy5cvV6VKlYyOhGdUuXJlrVixQhs3blSPHj3E1rIAAKNRSgEAAOCphg8frnnz5mn+/Pny8fExOg6ek4+Pj+bNm6e5c+dqxIgRRscBALzhrI0OAAAAgNTt66+/1oQJEzR58mS9/fbbRsfBC+rQoYMCAwM1aNAgeXh4qH///kZHAgC8oSilAAAAkKBFixZp4MCBGjZsmAYMGGB0HCSTgQMHKjAwUAMGDJCbmxtlIwDAEBYmXiYHAADAE2zatElNmjRRp06d9MMPP8jCwsLoSEhGJpNJ3bp108KFC7V27VpeywQApDhKKQAAAMSzb98+1apVS3Xq1NGKFStkbc0C+9dRdHS0WrZsqa1bt2r79u2qWLGi0ZEAAG8QSikAAACYOX78uLy8vFSsWDH5+vrK3t7e6Eh4icLDw1W3bl0dP35ce/bsUeHChY2OBAB4Q1BKAQAAIM7ly5dVpUoVOTs7a9euXXJycjI6ElLA7du35e3trZCQEO3du1fZs2c3OhIA4A1AKQUAAABJ0q1bt+Tl5aWIiAj5+/srS5YsRkdCCrp27ZqqVKkiBwcH7d69Wy4uLkZHAgC85iyNDgAAAADj3b9/Xw0bNtStW7fk5+dHIfUGypIli/z8/HTz5k01bNhQ9+/fNzoSAOA1RykFAADwhnvw4IFatmypY8eOadOmTcqfP7/RkWCQAgUKaNOmTTp27Jhat26tqKgooyMBAF5jlFIAAABvsNjYWHXp0kU7duzQ6tWrVbZsWaMjwWDlypXTqlWrtHXrVnXt2lWxsbFGRwIAvKYopQAAAN5QJpNJgwYN0pIlS7Ro0SLVqlXL6EhIJWrXrq1FixZp8eLFGjx4sNiGFgDwMlgbHQAAAADGmDBhgr755htNmzZNrVu3NjoOUpk2bdooKChIffr0kYeHh4YOHWp0JADAa4ZSCgAA4A00Z84cDR8+XJ988ol69epldBykUr1791ZAQICGDRsmNzc3de3a1ehIAIDXiIWJtbgAAABvlDVr1qhFixbq0aOHpk6dKgsLC6MjIRUzmUzq1auXZs+erVWrVqlJkyZGRwIAvCYopQAAAN4gu3btUr169dSoUSP9/PPPsrKyMjoSXgExMTFq27atNmzYID8/P1WtWtXoSACA1wClFAAAwBviyJEj8vb2VtmyZbVx40bZ2dkZHQmvkMjISPn4+OjQoUPatWuXSpQoYXQkAMArjlIKAADgDXDhwgVVqVJFWbJk0Y4dO5QhQwajI+EVFBoaqurVq+vGjRvy9/dX7ty5jY4EAHiFUUoBAAC85gIDA+Xp6SlJ8vf3l7u7u8GJ8CoLCAiQp6enLCws+N8TAOCFWBodAAAAAC9PaGiofHx8dO/ePfn5+VEg4IV5eHjIz89P9+7dU4MGDXT37l2jIwEAXlGUUgAAAK+pyMhINW/eXOfOnZOvry+vWiHZ5MmTR5s3b9aZM2fUvHlzRUZGGh0JAPAKopQCAAB4DcXExKhDhw7y9/fX2rVr2ZQaya5kyZJat26d9uzZo44dOyomJsboSACAVwylFAAAwGvGZDKpb9++WrlypZYuXSpvb2+jI+E15e3trZ9//lkrVqzQBx98ILarBQA8C0opAACA18yYMWM0Y8YMzZo1S02bNjU6Dl5zzZo108yZMzVt2jSNHTvW6DgAgFeItdEBAAAAkHymT5+uMWPG6PPPP1e3bt2MjoM3RPfu3RUYGKiRI0fK3d1dPXv2NDoSAOAVQCkFAADwmli2bJn69Omj/v37a+jQoUbHwRtm+PDhCgwMVO/eveXq6qpWrVoZHQkAkMpZmHjxGwAA4JW3bds2+fj4qE2bNlqwYIEsLdmlASkvNjZWHTt21PLly7Vp0ybVrFnT6EgAgFSMUgoAAOAVd/DgQVWvXl1eXl5as2aNbG1tjY6EN9iDBw/UpEkT+fv769dff1WZMmWMjgQASKUopQAAAF5hZ86ckaenp/LkyaNt27Ypbdq0RkcCdO/ePdWqVUsXLlyQv7+/8ufPb3QkAEAqRCkFAADwirp27Zo8PT2VJk0a7dmzRy4uLkZHAuIEBQXJy8tLkZGR2rt3rzJnzmx0JABAKsNmAwAAAK+gkJAQ1a9fX9HR0fL19aWQQqrj6uoqPz8/RUVFqX79+goJCTE6EgAglaGUAgAAeMWEh4ercePGunr1qnx9fZUjRw6jIwFPlCNHDvn5+eny5ctq0qSJwsPDjY4EAEhFKKUAAABeIdHR0Xrrrbd06NAhrV+/XkWKFDE6EpCoIkWKaMOGDfrjjz/Url07RUdHGx0JAJBKUEoBAAC8Ikwmk3r06KGNGzdq+fLlqly5stGRgCSpXLmyli9frvXr16tnz55iW1sAgEQpBQAA8MoYMWKE5s6dq3nz5snHx8foOMAzadCggebNm6c5c+Zo5MiRRscBAKQC1kYHAAAAwNN9/fXX+uKLLzR58mR16NDB6DjAc+nYsaNu3rypQYMGyd3dXf379zc6EgDAQJRSAAAAqdyiRYs0cOBADR06VAMGDDA6DvBCBg4cqICAAA0YMEBubm56++23jY4EADCIhYkXugEAAFKtTZs2qUmTJurUqZN++OEHWVhYGB0JeGEmk0ldu3bVokWLtG7dOtWvX9/oSAAAA1BKAQAApFK//fabatWqpdq1a2vFihWytmaRO14f0dHRat68ubZv367t27erYsWKRkcCAKQwSikAAIBU6MSJE/Ly8lKRIkXk5+cne3t7oyMByS4sLEx169bViRMntGfPHhUuXNjoSACAFEQpBQAAkMpcvnxZVapUkbOzs3799Vc5OzsbHQl4aW7fvi1vb2/duXNH/v7+yp49u9GRAAAphFIKAAAgFbl165a8vLwUEREhf39/ZcmSxehIwEt37do1ValSRQ4ODtq9e7dcXFyMjgQASAGWRgcAAADAQ/fv31fDhg1169Yt+fr6UkjhjZElSxb5+fnp5s2batSoke7fv290JABACqCUAgAASAWioqLUqlUrHTt2TJs2bVKBAgWMjgSkqAIFCmjTpk06evSoWrduraioKKMjAQBeMkopAAAAg8XGxqpLly7atm2bVq1apbJlyxodCTBEuXLltGrVKm3dulVdu3ZVbGys0ZEAAC8RpRQAAICBTCaTBg0apJ9++kmLFi1S7dq1jY4EGKp27dpatGiRFi9erCFDhogtcAHg9WVtdAAAAIA32YQJE/TNN99o6tSpatOmjdFxgFShTZs2unnzpvr27SsPDw99+OGHRkcCALwElFIAAAAGmTt3roYPH65PPvlEvXv3NjoOkKr06dNHAQEBGjp0qNzc3NSlSxejIwEAkpmFifWwAAAAKW7t2rVq3ry53nvvPU2bNk0WFhZGRwJSHZPJpF69eumHH37QypUr1aRJE6MjAQCSEaUUAABACtu9e7fq1q2rRo0a6eeff5aVlZXRkYBUKyYmRm3bttWGDRvk5+enqlWrGh0JAJBMKKUAAABS0JEjR+Tt7a2yZctq48aNsrOzMzoSkOpFRESoQYMGOnTokHbv3q3ixYsbHQkAkAwopQAAAFLIhQsXVKVKFWXJkkU7duxQhgwZjI4EvDJCQ0NVvXp13bhxQ3v37lWuXLmMjgQAeEGUUgAAACkgMDBQnp6ekqQ9e/bIw8PD4ETAqycgIECenp6ytLTUnj175O7ubnQkAMALsDQ6AAAAwOsuNDRUPj4+unfvnvz8/CikgOfk4eEhPz8/3b17Vw0aNNDdu3eNjgQAeAGUUgAAIFWwsLBI0n927txpdNRnEhkZqebNm+vs2bPavHmzcufObXQk4JWWJ08ebd68WWfOnFHz5s0VGRmZ7PfIlStXgr8H3bt3L8nX6dy5M68ZAkAirI0OAAAAIEn79u0z+3rs2LHasWOHtm/fbna8SJEiKRnrhcTExKhDhw7y9/eXn5+fSpYsaXQk4LVQsmRJrV27VvXq1VOnTp30008/JfunWHp6emrSpEnxjjs4OCTrfQDgTUYpBQAAUoVKlSqZfe3m5iZLS8t4x/8rLCwsVf4j0WQy6f3339fKlSu1cuVKeXt7Gx0JeK1Uq1ZNP//8s1q2bCk3Nzd9//33srCwSLbrOzk5PfX3HwDAi+H1PQAA8MqoXr26ihUrpl27dqlKlSpycHBQ165dJT18/W/06NHx5uTKlUudO3c2O3bjxg316NFD2bJlk62trXLnzq0xY8YoOjo62bJ++umnmj59umbOnKmmTZsm23UB/KtZs2aaOXOmpk6dqrFjx6bYfadOnSpvb2+5u7srbdq0Kl68uL788ktFRUU9de6yZctUsWJFOTo6ysHBQXny5In7feyR0NBQDR48WLlz55atra2yZs2q/v376/79+y/rkQDAEKyUAgAAr5Tr16+rQ4cO+vDDD/XZZ5/J0vLZfsZ248YNVahQQZaWlvr444+VN29e7du3T+PGjdPFixc1b968F844ffp0jR49Wp999pm6d+/+wtcDkLDu3bsrMDBQI0eOlLu7u3r27Jks1zWZTPGKaktLS1laWurcuXNq3759XGn0119/afz48Tp58qTmzp2b4DX37duntm3bqm3btho9erTSpEmjf/75x+w15bCwMFWrVk1XrlzRiBEjVKJECR07dkwff/yx/v77b23dujVZV4QBgJEopQAAwCslODhYy5YtU82aNZ9r/ujRo3X79m0dO3ZMOXLkkCTVqlVL9vb2Gjx4sIYMGfJC+1YtW7ZMffr0Ub9+/TRs2LDnvg6ApBs+fLgCAgLUu3dvubq6qlWrVi98zY0bN8rGxsbs2MiRIzVu3DhNnjw57lhsbKyqVq0qFxcXdenSRV999ZWcnZ2feM29e/fKZDJpxowZcnR0jDv++GrO7777TkeOHNH+/ftVrlw5SQ9/j8qaNatatWqlzZs3y8fH54WfDwBSA17fAwAArxRnZ+fnLqQkaf369apRo4ayZMmi6OjouP88+kfer7/++tzX3rZtmzp06KB27dpp8uTJrGYAUoiFhYW+/vprvfXWW3r77bfjfUDC8/Dy8tKBAwfM/tO7d29J0p9//qkmTZrIxcVFVlZWsrGxUadOnRQTE6PTp08neM3y5ctLktq0aaNffvlFV69ejTdm/fr1KlasmEqVKmX2e1S9evVeyU8gBYDEsFIKAAC8UjJnzvxC8wMCArRu3bp4KyAeCQoKeq7rHjx4UM2aNVONGjU0b968Z36tEMCLsbS01Pz58xUcHKxmzZpp586dKlOmzHNfz9HRMW6l0uMuXbqkqlWrqmDBgvr222+VK1cupUmTRr///rv69Omj8PDwBK/p7e2t1atX67vvvlOnTp0UGRmpokWLauTIkWrXrp2kh79HnT17Ntl/jwKA1IhSCgAAvFISWn1kZ2enyMjIeMdv3bpl9rWrq6tKlCih8ePHP/E6WbJkeeZMZ86ckY+Pj4oUKaLly5fL1tb2ma8B4MXZ2tpq+fLlqlWrlnx8fOTv7698+fIl6z1Wr16t+/fva+XKlcqZM2fc8cOHDydpftOmTdW0aVNFRkbqt99+0+eff6727dsrV65cqly5slxdXWVvb5/g3lSurq7J8RgAkCpQSgEAgNdCrly5dOTIEbNj27dv171798yONWrUSBs3blTevHkT3PflWVy7dk1169aVi4uLNmzYoHTp0r3wNQE8v3Tp0mnDhg3y8vJS3bp15e/v/8IrLB/3qBi3s7OLO2YymTR79uxnuo6dnZ2qVasmJycn+fr66s8//1TlypXVqFEjffbZZ3JxcVHu3LmTLTcApEaUUgAA4LXQsWNHffTRR/r4449VrVo1HT9+XFOmTDHbTFiSPv30U23ZskVVqlTRBx98oIIFCyoiIkIXL17Uxo0bNWPGDGXLli1J9wwJCVH9+vUVHR0tX19fVjAAqYSrq6v8/PxUpUoV1a9fX7/++qucnJyS5dp16tSRra2t2rVrpw8//FARERGaPn26bt++/dS5H3/8sa5cuaJatWopW7ZsCgkJ0bfffisbGxtVq1ZNktS/f3+tWLFC3t7eGjBggEqUKKHY2FhdunRJfn5+GjRokCpWrJgszwIARqOUAgAAr4UhQ4YoNDRU8+fP16RJk1ShQgX98ssvatq0qdm4zJkz648//tDYsWM1ceJEXblyRenTp1fu3LlVv379JK+eCg8PV5MmTXTlyhXt2bMn7pP8AKQOOXLkkK+vr6pWraqmTZtq8+bNsre3f+HrFipUSCtWrNCoUaPUokULubi4qH379ho4cOBTPxWvYsWK+uOPPzR06FDdvHlTTk5OKleunLZv366iRYtKktKmTavdu3friy++0KxZs3ThwgXZ29srR44cql27tnLlyvXCzwAAqYWFyWQyGR0CAADgVRIdHa2WLVtqy5Yt2rZtmypXrmx0JAAJ2Lt3r2rXrq169epp2bJlsrbm5/IAkFrwsTAAAADPwGQyqUePHtqwYYOWL19OIQWkclWqVNGyZcu0bt069ezZU/xMHgBSD0opAACAZzBy5EjNnTtX8+bNU4MGDYyOAyAJGjZsqLlz52rOnDkaNWqU0XEAAP/H2lUAAIAk+uabb/T555/rq6++UseOHY2OA+AZdOrUSTdv3tTgwYPl7u6ufv36GR0JAN54lFIAAABJsHjxYg0YMEBDhw7VwIEDjY4D4DkMGjRIAQEB6t+/v9zc3NS+fXujIwHAG42NzgEAAJ5i8+bNaty4sTp27Kg5c+bIwsLC6EgAnpPJZFLXrl21aNEirVu3TvXr1zc6EgC8sSilAAAAErF//37VrFlTtWrV0sqVK/nkLuA1EB0drebNm2v79u3avn27KlasaHQkAHgjUUoBAAAk4MSJE/Ly8lKRIkXk6+srBwcHoyMBSCZhYWGqW7euTp48qd27d6tw4cJGRwKANw6lFAAAwBNcvnxZVapUkZOTk3bt2iVnZ2ejIwFIZrdv35a3t7fu3Lkjf39/Zc+e3ehIAPBGoZQCAAD4j1u3bqlq1aoKCwvT3r17lSVLFqMjAXhJrl69Kk9PT6VNm1a7d+9WxowZjY4EAG8MS6MDAAAApCb3799Xo0aNdPPmTfn5+VFIAa+5rFmzytfXV4GBgWrUqJHu379vdCQAeGNQSgEAAPxfVFSUWrduraNHj2rTpk0qUKCA0ZEApICCBQtq48aNOnLkiFq3bq2oqCijIwHAG4FSCgAAQFJsbKy6du2qrVu3atWqVSpXrpzRkQCkoPLly2vVqlXaunWrunbtqtjYWKMjAcBrj1IKAAC88UwmkwYPHqzFixdr0aJFql27ttGRABigTp06WrhwoRYvXqwhQ4aI7XcB4OWyNjoAAACA0b788kt9/fXXmjp1qtq0aWN0HAAGatu2rW7evKn3339fHh4e+vDDD42OBACvLUopAADwRps7d66GDRumjz/+WL179zY6DoBUoG/fvgoMDNTQoUPl5uamLl26GB0JAF5LFibWpAIAgDfU2rVr1bx5c7377ruaPn26LCwsjI4EIJUwmUzq2bOn5syZo1WrVqlx48ZGRwKA1w6lFAAAeCPt3r1bdevWVcOGDbV06VJZWVkZHQlAKhMTE6M2bdpo48aN2rJli7y8vIyOBACvFUopAADwxjly5Ii8vb1VpkwZbdq0SXZ2dkZHApBKRUREyMfHR3/++ad2796t4sWLGx0JAF4blFIAAOCNcuHCBXl6eipTpkzauXOnMmTIYHQkAKlcaGioqlWrpoCAAO3du1e5cuUyOhIAvBYopQAAwBsjMDBQXl5eio2Nlb+/vzw8PIyOBOAVERAQIE9PT1laWmrPnj1yd3c3OhIAvPIsjQ4AAACQEu7evasGDRro7t278vPzo5AC8Ew8PDzk5+en0NDQuN9LAAAvhlIKAAC89iIjI9W8eXOdOXNGmzdvVp48eYyOBOAVlCdPHm3evFlnzpxR8+bNFRkZaXQkAHilUUoBAIDXWkxMjDp27Kg9e/Zo3bp1KlmypNGRALzCSpUqpbVr12rPnj3q1KmTYmJijI4EAK8sSikAAPDaMplM+uCDD7RixQr9/PPP8vb2NjoSgNdAtWrVtGTJEi1fvlz9+vUT2/QCwPOhlAIAAK+tsWPHatq0aZo5c6aaNWtmdBwAr5HmzZtrxowZmjp1qsaNG2d0HAB4JVkbHQAAAOBlmDFjhj755BONHz9e3bt3NzoOgNfQu+++q8DAQI0aNUpubm7q2bOn0ZEA4JVCKQUAAF47y5cvV+/evdWvXz8NHz7c6DgAXmMjRoxQYGCgevfuLVdXV7Vq1croSADwyrAw8QI0AAB4jWzfvl0+Pj5q1aqVFi5cKEtLdisA8HLFxsaqQ4cOWrFihTZt2qSaNWsaHQkAXgmUUgAA4LVx6NAhVatWTZ6enlq7dq1sbW2NjgTgDfHgwQM1btxY+/bt06+//qrSpUsbHQkAUj1KKQAA8Fo4c+aMPD09lTt3bm3btk3p0qUzOhKAN8y9e/dUq1YtXbx4Uf7+/sqXL5/RkQAgVaOUAgAAr7zr16+rSpUqsrOz0549e+Tq6mp0JABvqKCgIHl5eenBgwfy9/dX5syZjY4EAKkWmywAAIBXWkhIiOrXr6+oqCj5+flRSAEwlKurq3x9ffXgwQP5+PgoJCTE6EgAkGpRSgEAgFdWeHi4mjZtqsuXL8vPz085cuQwOhIAKGfOnPL19dWlS5fUtGlThYeHGx0JAFIlSikAAPBKio6OVrt27XTgwAFt2LBBRYoUMToSAMQpWrSo1q9frwMHDqh9+/aKjo42OhIApDqUUgAA4JVjMpnUs2dPrV+/XsuXL1flypWNjgQA8VSpUkXLli3TunXr1KtXL7GdLwCYo5QCAACvnJEjR2rOnDmaN2+eGjRoYHQcAEhQw4YNNXfuXP3www8aNWqU0XEAIFWxNjoAAADAs/j222/1+eef66uvvlLHjh2NjgMAT9WpUyfdvHlTgwcPlru7u/r162d0JABIFSilAADAK2Px4sXq37+/PvzwQw0cONDoOACQZIMGDVJAQID69+8vNzc3tW/f3uhIAGA4CxMvNgMAgFfA5s2b1bhxY3Xo0EFz586VhYWF0ZEA4JmYTCZ16dJFixcv1vr161WvXj2jIwGAoSilAABAqrd//37VrFlTNWvW1KpVq2RtzWJvAK+mqKgotWjRQjt27NC2bdtUsWJFoyMBgGEopQAAQKp24sQJeXl5qXDhwvLz85ODg4PRkQDghYSFhalu3bo6efKk9uzZo0KFChkdCQAMQSkFAABSrcuXL8vT01OOjo7atWuXnJ2djY4EAMni9u3b8vb21p07d7R3715ly5bN6EgAkOIopQAAQKp069YtVa1aVWFhYdq7d6+yZMlidCQASFZXr16Vp6en0qZNq927dytjxoxGRwKAFGVpdAAAAID/un//vho1aqSbN2/Kz8+PQgrAaylr1qzy9fVVYGCgGjVqpLCwMKMjAUCKopQCAACpSlRUlFq3bq2jR49q06ZNKlCggNGRAOClKViwoDZu3KgjR46odevWioqKMjoSAKQYSikAAJBqxMbGqmvXrtq6datWrVqlcuXKGR0JAF668uXLa9WqVdqyZYu6deum2NhYoyMBQIqglAIAAKmCyWTSkCFDtHjxYi1atEi1a9c2OhIApJg6depo4cKFWrRokYYMGSK2/gXwJrA2OgAAAIAkTZw4UZMnT9aUKVPUpk0bo+MAQIpr27atbt68qffff18eHh768MMPjY4EAC8VpRQAADDcvHnzNHToUH300Ufq06eP0XEAwDB9+/ZVQECAhg4dKnd3d3Xu3NnoSADw0liYWBcKAAAMtHbtWrVo0ULdu3fX9OnTZWFhYXQkADCUyWRSz549NWfOHK1atUqNGzc2OhIAvBSUUgAAwDC7d+9W3bp11bBhQy1dulRWVlZGRwKAVCEmJkZt2rTRxo0btWXLFnl5eRkdCQCSHaUUAAAwxN9//62qVauqdOnS2rRpk9KkSWN0JABIVSIiIuTj46PDhw9r165dKl68uNGRACBZUUoBAIAUd/HiRVWpUkWZMmXSzp07lSFDBqMjAUCqFBoaqmrVqikwMFD+/v7KlSuX0ZEAINlQSgEAgBQVGBgoLy8vxcbGyt/fXx4eHkZHAoBU7caNG/L09JS1tbX27NkjNzc3oyMBQLKwNDoAAAB4c9y9e1cNGjTQ3bt35efnRyEFAEmQKVMm+fn56c6dO3G/hwLA64BSCgAApIjIyEg1b95cZ86c0ebNm5UnTx6jIwHAKyNv3rzavHmzTp8+rRYtWigyMtLoSADwwiilAADASxcTE6NOnTppz549Wrt2rUqWLGl0JAB45ZQqVUpr1qzR7t279c477yg2NtboSADwQiilAADAS2UymdSvXz8tX75cS5YsUbVq1YyOBACvrOrVq2vJkiVatmyZ+vXrJ7YIBvAqo5QCAAAv1dixYzV16lTNnDlTzZs3NzoOALzymjdvrhkzZmjKlCkaN26c0XEA4LlZGx0AAAC8vmbMmKFPPvlE48ePV/fu3Y2OAwCvjXfffVeBgYEaNWqU3N3d1aNHD6MjAcAzo5QCAAAvxfLly9W7d2998MEHGj58uNFxAOC1M2LECAUEBKhXr15ydXVVy5YtjY4EAM/EwsRLyAAAIJlt375dPj4+atmypRYtWiRLS3YMAICXITY2Vh06dNCKFSu0efNm1ahRw+hIAJBklFIAACBZHTp0SNWrV1flypW1bt062draGh0JAF5rDx48UOPGjbVv3z79+uuvKl26tNGRACBJKKUAAECyOXv2rDw9PZUrVy5t27ZN6dKlMzoSALwR7t27p5o1a+qff/6Rv7+/8uXLZ3QkAHgqSikAAJAsrl+/Lk9PT9na2mrPnj1ydXU1OhIAvFFu3rypqlWrKioqSnv27FHmzJmNjgQAiWKDBwAA8MJCQkLk4+OjBw8eyM/Pj0IKAAzg5uYmX19fRUZGysfHR3fu3DE6EgAkilIKAAC8kPDwcDVt2lSXLl2Sr6+vcuTIYXQkAHhj5cyZU76+vrp06ZKaNm2qiIgIoyMBQIIopQAAwHOLjo5W+/btdeDAAa1fv15FixY1OhIAvPGKFi2q9evX6/fff1e7du0UHR1tdCQAeCJKKQAA8FxMJpN69uypdevWadmyZapSpYrRkQAA/1elShUtW7ZM69atU69evcRWwgBSI0opAADwXEaNGqU5c+Zo7ty5atiwodFxAAD/0bBhQ82dO1c//PCDPvroI6PjAEA81kYHAAAAr55vv/1Wn332mSZNmqROnToZHQcAkIBOnTopMDBQQ4YMkbu7uz744AOjIwFAHEopAADwTH766Sf1799fQ4YM0aBBg4yOAwB4isGDByswMFD9+vWTm5ub2rVrZ3QkAJAkWZh4uRgAACTR5s2b1bhxY3Xo0EFz586VhYWF0ZEAAElgMpnUpUsXLV68WOvXr1e9evWMjgQAlFIAACBp9u/fr5o1a6pmzZpatWqVrK1ZcA0Ar5KoqCg1b95cO3fu1Pbt21WhQgWjIwF4w1FKAQCApzp58qS8vLxUqFAh+fn5ycHBwehIAIDnEBYWpjp16ujUqVPas2ePChUqZHQkAG8wSikAAGDmwoULypkzpywtH35I75UrV1SlShU5Ojpq165dcnZ2NjghAOBF3L59W1WrVlVoaKj27t2rbNmyGR0JwBvK0ugAAAAg9Thz5ozy5cunw4cPS5KCg4NVr149WVpaavPmzRRSAPAacHZ2lq+vrywsLFSvXj0FBwcbHQnAG4pSCgAAxNm4caOsra1VsGBB3b9/X40aNVJgYKB8fX2VNWtWo+MBAJJJ1qxZ5efnp8DAQDVq1EhhYWFGRwLwBqKUAgAAcTZv3ixvb2/Z2tqqdevWOnLkiDZu3KiCBQsaHQ0AkMwKFiyojRs36siRI2rdurWioqKMjgTgDUMpBQAAJEnh4eHauXOn6tevr27dumnr1q1atWqVypcvb3Q0AMBLUr58ea1atUpbtmxRt27dFBsba3QkAG8QSikAACBJ+vXXXxUREaG///5bixYt0sKFC1WmTBl9++23atWqle7evWt0RADAS1CnTh0tWLBAixYt0ocffmh0HABvEGujAwAAgNRh8+bNcnR01I8//qjevXtrxYoV6tSpk0wmk1q1aiVra/7aAACvq7feeks3b97UBx98IA8PDw0ZMsToSADeABYmk8lkdAgAAGC8TJkyKSAgQBkyZFBoaKiKFi2qbt26qUOHDnJzczM6HgAgBXz00UcaN26c5s2bp86dOxsdB8Brjh95AgAA3b59WwEBAbKxsVHbtm3VrVs3VahQQRYWFkZHAwCkoE8//VSBgYHq3r27XFxc1LhxY0nSwYMHtWTJEk2aNMnghABeJ6yUAgAAkqS1a9eqevXqypAhg9FRAAAGiomJUZs2bbRx40Zt2bJFXl5eWrlypVq2bKkLFy4oV65cRkcE8JqglAIAAAAAmImIiJCPj48OHz6sXbt2KUeOHHJxcdHUqVPVo0cPo+MBeE1QSgHAa+7SpUsKCgoyOgaQKrm6uipHjhxGxwCAVOnOnTuqXr26AgMDtXfvXnXs2FEZM2bU6tWrjY4G4DVBKQUAr7FLly6pcOHCCgsLMzoKkCo5ODjoxIkTFFMA8JgHDx7o1KlTKlq0qAIDA+Xp6Slra2u1bt1a3377rW7duiVbW1ujYwJ4DbDROQC8xoKCghQWFqZ5k8eoUN5cRscBUpWT5y6qy8BPFBQURCkFAI85cOCAvLy8lDt3bnXp0kXz589X69attWrVKt27d0/+/v6qUaOG0TEBvAYopQDgDVAoby6VLlbI6BgAAOAV4OnpqT179mjOnDmaMGGCPvnkE1WqVEmHDx+WjY2NNmzYQCkFIFlYGh0AAAAAAJC6eHp6au7cubp+/bpmz54tSQoPD1dUVJTmzp1rcDoArwtKKQAAAADAE6VPn17dunXT3r17dezYMTVv3ly5c+c2OhaA1wSv7wEAAAAAnqpIkSJauXKl0TEAvEYopQAAr5Q0eSsmaZzv4mmqVqmsLl8L0MQZP2q7/++6cj1Q9mnslMXDTRVKFdOI97spexaPl5w4eUz78RfNWLRcF69cU2Z3V3Vs2UhDe3WWjc3T/yiPiorWhOnztWD5et24GaRc2bKoZ4dW6v1OG7Nxx0+f14xFy/XX8VP6++RZhYVHxH0fAQAAgORGKQUAeKX8uvwHs68/nzJXv/52UJsXTTU7Xjhfbl25HqDKTTvJMX069e/+tvLnzqHQu/d14uwFrdi4VRcuX30lSqkvps7TmK9nanDPTqrtVVEHjxzX6K9n6tqNQE37bMRT53/w8Zf6afUmfTLgPZUtUURbdv+mQWMn6+79MA3t3Tlu3MG/T2jdll9VskgB1ahSXhu27X6JTwUAr5ZLly4pKCjI6BhAquTq6son2eK5UEoBAF4pFUsXN/vaNaOzLC0t4x2XpG/m/KSg4BDtXjlPubNniTvepG41De3dWbGxscmS6fadUEVHx8jNxTlZrve4W7fv6Iup89S1bVONHdxbklStUllFRcdo9OQZer/LWyqcP0+C84+fPq/5y9ZqzKCeGvhex7j5wbfv6Iupc/Vu++bK6OQoSXq7uY86tmwoSVq5aRulFAD836VLl1S4UEGFhUcYHQVIlRzs0+jEyVMUU3hmlFIAgNdWcMgdWVpayj2BssjS8vk/7yMsPELrt+7SL+v95LfrNy36drya1K323NdLiN+ufYqIjFSnVo3Mjndq1UiffDVda7fsSrSUWrvlV5lMJnVq1fg/8xtr7tI18tv1m95qUk/Si30/AOB1FhQUpLDwCH3fMp/yu9obHQdIVc4Ehev9FWcVFBREKYVnRikFAHhtVSxdXDMWLlfb3kPVr2t7VSxdTBnSp3vu60VFRWvL7t+0dJ2f1m/dpcgHD1SzSgVNHTdctbwqmI2Njo5O0jWtrKxkYWGR4Pljp89JkooVzGd2PLO7q1wzOsWdT2y+W0ZnZXJzMTtevFA+s+sDAJ4uv6u9imd5/j9HAADmKKUAAK+tt5rUk/+Bw5q7dI227t4vCwsLFcybU3W9K6v3O22UK1uWp14jNjZWu3//U0vX+mq17w6FhN5T1QqlNWFEPzWvX1Muzo7x5ly8ck2FqjVPUsanbSQefPuO7GxtldYh/k/mnR0zKDjkTqLXDw65I2enDPGOp3Wwl62tjYJvJz4fAAAAeFkopQAAry0LCwtNGTdMQ3q9I9+de3Xw7xPa8/uf+m7uEv2wZJVWz/la3hXLJDg/MChYlZp00rWAm6pctoRGffCuWjasJQ9XlwTnSFIWdzf5r5qfpIwF8jx9mXtiK6kslPC5JM1P5BwAAADwMlFKAQBeezmzZtZ7b7eM+3r5hq3q1P8jjfjie+1ZNS/BeZaWlnLKkF7XAm4q9O593bl7T3fv3n9qKWVra6OSRfInKZuVlVWi5zM6OyoiMlJh4RFysE9jdu72nVCVLlYo8flOjjpy/Ey84/fDwvXgQdQTV1EBAAAAKYEdTQEAb5xWDWureKF8T91PyTWjkw5tXqIDGxbJp4an5v2yVsVqt1alJp00aeYCXbh87YnzLl65pnQFPZP0n137DyWa4dFeUkdPnTU7fuPmLQUFh6hogbxPnX8z+LZu3LxldvzR9Z42HwAAAHhZWCkFAHhtXQ8MUmZ313jH790P05XrAcrs7pak6xQvlF/FC+XX2CG9te/gES1d56tvf/hJo76cqvIli6pVw9rq1KqRnB0frjpKztf36npXUho7Oy1csUEVShWLO75wxXpZWFioSR3vROc3ru2t0ZNnaNHKDRrco9Nj8zfIPo2d6npXSlJOAACepNW8Y5Kk5V2KGpzk1bPm7yBN2XNV54LC5WRvrUZFXTS0Zg6ltUt8FfUjc3+7rvkHbujy7Uh5pLdVm1Juet87q2yszNeeBN2L0rgt/2jr6dsKj4pVEQ8HfVgrh6rmib8v5iPhUTGqM/2ILtyK0Ed1c6qn59P34QSeB6UUAOC1NWHaPO07eEStGtZWycIFlCaNnS5evqYZC5fp1u07+mzY+890PQsLC1UpV1JVypXUVx8N1Hb/A/p5ra/GfTdbubNnVZO61SQ9fH2vbInCyfIMGZ0cNaxPF435eqacHTOodtWKOnjkuMZ9+4O6tGmiwvnzxI1dtHKjegwbp5lfjFKHFg0kSUUK5FHn1k009pvZsrK0VNkSRbR1937N+Xm1Rg/sqYxO//6FNCw8Qpt3+kuSfv/zqCRp9+9/6tbtEKW1t1e96lWS5ZkAAHjTrTxyU++vOKv2Zdw1un4unQ+K0Gdb/9GZm+Fa0qnIU+d/++sVTdxxWX28sqpaXkf9dfWevtx+WTfuPtCXTf5dBR0ZHau2Px7TnYgYfeqTS65pbTT/9xvqsPCEfn6nsCrnenIxNXH7ZYU/iEm25wUSQikFAHhttW/mI0latn6Lvp69SHfu3ldGxwwqXayQ1sz5+oVKFmtra9WtVll1q1VWRGSkIiIfJFfseIb16aL0aR00Y9FyfTNnsTxcXTS4ZycN693FbFxsbKxiYmIUGxtrdvy7Tz9UlkxumrZgmQKCbiln1sz66qOB6v1OG7NxgbeC1b7vCLNj476dLUnKkTWzTu9anfwPBwAwRPiDGNnbJm1FTmqSUG6TyaSI6FjZ2zz/M4VHxSiNteVL/xCQmFiTxvn9o2p5HTWx6cMCyTO3o9LZWarvirPafua2auZ3TnB+cFiUvtt1Re3LuGt47YcrrqvkdlRUrElfbr+s7pUyq4C7gyRpyaFAnQwM15ruxVQue/qHY3M5qs70vzTe75LWv1c83vX/vHJX8/bf0Pct86vHL6eT+/EBM5RSAIBX2g8TP9YPEz9+4rkKpYqZvfL2sqSxs1MaO7uXeo8+nduqT+e2iY7p1KqROrVqFO+4jY21Pur3rj7q926i83Nly6KIc/tfKCcAvIlu3Y/ShG2XtP1MiG7dj1I6OyvlcbHXoBrZ5J3XSdLD0mS6/zXN//2Ggu5HKb+bg4bWyq5pex7uT/jo9belfwZq4Opz+q1/aWV3/vcDLvZeuKPW849rWeciqpL74eqWXedCNG//DR25fl+3w6KUOYOtPHM7alitHMqY1iZu7lc7Lmvyziva3KO4vtt9Vf7n78jO2lJ/Diknk8mkHw8EaPHBAJ0PCpedtaU88zhqVJ2cypnx3/snlP95rTkapB/2XdeJgDBZWEjls6fXiDo5VSxz2rgx/Ved1Ybjt7S2ezF96vuPDl6+q4LuDlr3bnFl/WSfOlfwUEF3B8357Yb+uR2hT31yqVP5TPr9n1BN2nFZh6/eU4xJKprJQR94Z1PtAv8WPY++zz91LKw1R4O05dRtBYdF69yoikpj83JLqUNX7irgbpQ+qedudrxRURcNXXdem08EJ1pK7Twboohok9qWNp/ftrS7Jmy7rM0ng+NKqc0ngpXXNU1cISVJ1lYWalHCTV9su6TroZHKnOHfv8M8iI7VoDXn9E6FTCqZJa2Al41SCgAAAABewAcrz+jv6/c1tGYO5XFNo9CIGP197b5uh0fHjZm884om77yidmXc1bBIRl2780BD1p5XbKxJeV3tn+u+F4MjVDZ7erUr664Mdta6HBKpWfuuqdnco9rWu2S8vYW6Lz2tpsVc1LGch8KjHq6qHbruvH45fFNdK2bSyDo5FRIera93XlHTOUe1pVcJuaWzTfb83+26oi+3X1bbUm7qVy2bomJiNd3/mprPPaoN7xaPK1QkKSrGpC4/nVKHch7q45VVMbGmuHObT97W/n/uakD1bHJLZyPXtDbad/GO2i04ocIeDprUNK/srC314+831Pmnk5raKr+aFjPfa3LgmnOqld9J37XIp7CoWNlYJVxIRceYEjz3OCtLJbra6mRAuCSpsIeD2XEbK0vlc7XXycCwRK9/KiDsifM90tsqo4O1Tj02/1RgmCrkjP9Ju4UzPZx7OjDcrJT6+tcrCnsQqw9rZtet+1GJ5gCSA6UUAAAAALyAA5fuql0ZD71dziPuWL1CGeN+fSc8WtP2XJVP4Yya1PTf/X4KuDuo2Zyjz11KdSqfKe7XJpNJ5bKnV5VcGVTh60PacSZEdR/LIEmtS7ppcM1/VzcdvHxXiw8G6uN6OdWjyr8bWVfIkV5Vvz+sWXuva2TdnMma/+qdSH2144q6VMiksQ1yxx33zuMkr+/+1OSdVzSjTYG441ExJg2oni3eqiBJCnsQo229S8rJ/t9/1jae/bcc01hreeeicRuG1y7grLrT/9JY33/UpKiLWWHkldvRbA+mxOT89LckjZvcLO8T8z5yO/xh2fN47kec7B+Wi4m5HR4tO2sLOTzhNUYne2vdDos2G5vQfR6df+To9fsPV8O1LyQHWytKKaQISikAAAAAeAGlsqbTssOBcnawVtU8jiqRJa3ZKqWDV+4qItqk5iXMV+mUz5Fe2Zye//XvoHtRmrjjsradvq2Auw/02CIinbkZrrqFzMc3KGJeUm09fVsWFlLLEm5mq4Dc09mqiIeD9l0MTfb8v54NUXSsSa1Kmt/TztpSlXJl0N4LofHmNCicMd4x6eE+TI8XLmEPYvTn1XvqVM7D7BPsrCwt1LKkm8ZvuaRzQRHK5/ZvidawyJOv/SQbn7D/0pNkd07a9yShxVRJ2dIqsSH/nZ/o2P//3+gYkwatOafGRV1UPZ/T0wMAyYRSCgAAAABewIzWBfTNritacihQE7dfVlpbS9UvnFGj6uSUe3rbuJUr7uls4s11e8KxpIiNNandwuMKuPtA/b2zqZCHgxxsrRRrMqnx7KOKiI6NN8cjva3Z10H3omQySSUn/vHEe+T8f7mSnPlv3nu4+qbBrL+feN7yPw2KvY2l0qd58j9b/5snJDxaJpPk/p/nlP599oerlP4tpZ40NiFFMyVtj6X/vDUZj7P9w9y3w6LjXo98JCSBlU3m860VEW164qbvIeHRKvHYXlDO9tZmq6EeHyf9u2Lqh9+u69LtCM1onV93/n/ubuTDT9+LiI7VnfBopbOzktV//wsCXhClFADgjVSnfS9J0pafphuc5NXzyzo/TZq5QKfO/aOMThnUskEtjR7YU+nSOjx9sqRpP/6iGYuW6+KVa8rs7qqOLRtpaK/OsrEx/2tJYFCwRkyYok079igsPEIlCufXJwN6qqZnebNxddr30u79h+Ldp07VSlo3/9vnf1AASKKMaW30qU9ufeqTW1dDIuV3Klifbb2kW/ejtLhjETk7PPz9LfBe/Nehbt6LUvbHVhulsX7YaET+Z/+i4DDzYuFkYJiO3wjT183zqk2pf18Vu3ArPMGc/60TMjpYy8JCWtW1qGyf0KTYWj+c8Sz5nyajw8NCZlbbAsrm+PR5ia0a+u85J3trWVpIgXfjfyJuwP+POTuYF1nPUrEk1+t7hf6/F9SJwDCz/bOiY0w6GxSuZsVdE5oab36ZbP9uYB5494GCw6JV8LFrFvJw0MmA+HtUPTr2aOzJwDCFRsTI67vD8cZO3H5ZE7dflm/PEmYb0QPJgVIKAAAk2ZI1m9Vl4Cfq0qapvhzZX2cuXNKoL6fqxNkL2vDj90+d/8XUeRrz9UwN7tlJtb0q6uCR4xr99UxduxGoaZ+NiBsXGflAPh37KiT0riZ9NFBuLs6auXC5mnTtp40Lpsi7Yhmz6+bOkVXzJ48xO+aUIb0AIKVldbJTl4qZtef8HR24fFeSVCZbeqWxttCqI0FqWMQlbuyBS3d1JSTSrNR59DrciYAw5Xtsrya/U8Fm93lUyNj9p0xa9EdAkrPWLuisKXuu6XroAzUplnAR8iz5n6Z6PkdZW1ron+AIs2slBwdbK5XOlk6bTgTro3o5ZW/zcBVRbKxJK48EKXMGW+V1SfOUqyQsuV7fK5MtnTzS22jZnzfNNl7fcPyW7j+IlU8Crys+Uj2fk9JYW+iXP2+alVK/HL4pCwup/mN7idUvlFEjNlzQoSt348ZGx5i08shNlc6WTpkyPFyp1dcrq9qUcjO7z817Ueq9/Iw6lvNQk2Iuyp3x+b93QEIopQAAr5Sw8Ag52L96fylKKLfJZFJEZKTs0zz/M4VHRCiNnV2in/STHGJiYjTii+9Vu2pFTf/8YYFUvXI5pU+XVp0HfCzfnXtVr3qVBOffun1HX0ydp65tm2rs4N6SpGqVyioqOkajJ8/Q+13eUuH8eSRJ85et1bHT57Rz2Q+qVObhPwKqVyqr8o06aOSEKdq9cq7Zte3t7FSxdNL+sQAAySk0Ilqt5x9X8+Kuyutqr3R2lvrr6n3tPBsin8IPSxcne2v1qJJF3+66qsFrzqlRURdduxOpr3ZeifcKWqms6ZTXNY3G+l5UTKxJjmmstOlEsA5cums2Lp+rvXJltNNnWy/J9P97bDkVrF3n7iQ5e/kcGfR2WXcNXH1OR67dV8WcGeRga6nAuw/0+6W7KuTuoHcqZHqm/E+T3TmNBtfIrgnbLuuf25Gqkc9JjvZWunkvSoev3pODjZXZZuzPanjtHGq34IRazz+unlWyyNbKQj8euKGTgWGa2ir/C/1ZWTJruuee+zgrSwuNrJNTH6w8qw/XnlOz4q66cCtC47f8I++8jqqR3zlu7L6Ld9T2x+MaUC2bBlR/+H1xdrDRB97ZNHHHZTnZW6taPkf9dfW+Ju+8rPZl3M1WX71Vxl0/HrihHr+c1ojaOeSS1kYLDgToXFCEfn6ncNy4fG72ZnttSdLl2xGSpFwZ06hKbsdkeXbgv57ytisA4HV289Zt9R7xmfJ6NlaGwl7KVr6eqrd+V9v8f48bYzKZ9NXMhcpftakcC1dVpSad5Ltzr+q07xX3CpwkLVi+XmnyVtTFK9fM7vHrbweVJm9F/frbwbhjW/fsV6seg5XXs5EcC1dVkRot1Wfk5woKDjGbO/bb2UqTt6L+PHpS7foMU6bStVWkRou4XDMXLVeFRh3kVMRbmUrXVrs+w3T+0lWzaySU/3ktW79F1Vp1U8Zi1eRSvLoadf5Ah4+dMhvTfcincileXUdPnVXDd96Xa4ka8unYR5KUJm9F9R89UbN/WqmSddsqQ2EvLVq5UZLk/8dh1e/QR64lasi5qLeqt+quTTv2mF370fd5y+7f9N7QscpWvp6ci1ZT5IP4ryokt/1/HtX1wCB1atnI7HhLn1pKl9ZBa/x2Jjrfb9c+RURGqlMr8/mdWjWSyWTS2i274o6t8ftVBfLkjCukJMna2lrtmtbXgb+O6eqNwBd/IABIBnbWliqdNZ2W/3VT7684ow6LTuqnQwHq7ZVVE5vkiRs3pGZ2Da+dQ7+eC1GXn05q7v4b+qJRnnifXGdlaaH57Qspn6u9hq07r36rzsrO2lLjHvukOkmysbLU/PaFlMcljYauO68+y08r6H60fn6nyDPl/7JJXo1vmFu//ROq3stPq9Pik5q047LCHsSqdLZ/S5ik5k+K972zalbbAjp/K1z9V53V2wtPaPyWS7oSEqmKuTI88/UeVzmXo355p4gcbCw1YPVZ9Vp+RqERMZrXrpDZqiSjtSzppqmt8uvQlXt6e+EJTdpxWa1KuumHtgXNxplMUkyszDaxl6R+1bJpTP1c2nD8ltovOKG5+6+rj1dWjW9o/r8TO2tLLX2niKrkctSojRfV5aeTCrj7QAs7FFLlXBRNMB4rpQDgDdZ10GgdPnZKowf1VP7cOXQn9K7+PHZKwbf//SnruO9+0PjvflDnNk3Uon5NXb4eoN4jP1NMTKzy58n5XPe9cOmqKpYuri5tmipD+nT658p1fTf3J9Vs+54Obvwp3t5CbXsPU5tGddS9fQuFhT3cK6PPyM+1cOUG9enURuM/7KvgkDv6bMpc1WjdXb9vWCQPV5dkzz9h2nyNnjxDnVo10rA+XfTgQbS+nr1Itd7qoT0r58at8pGkB1FRavneYHVv11yDe7yj6Jh/9wJZt+VX+R84rBF9u8rDzUXuLhm1a/8hNXznfRUvmE8zPh8pO1sbzVy8Qi3eHawF34xV60Z1zLL0HDZO9at7au6k0bofHi4b64T/SI+Ojr/B6ZNYWVkl+hPkY6fPSZKKF8pndtzGxloF8+TU8dPnE73+o/nFCprPz+zuKteMTnHnJen46XPyLF8q3jUe3fv4mfPKmunf/TrOX7qqzGXqKPTefeXImkmtG9bR8L5dXmgFGgAkhZ21pb5onOep4ywsLNS3alb1rZrV7PjMvdfijc3jYq+fOsUvl66OqWz2dX43By1JwrhBNbJrUI2EVx+1Le2e6B5IieWvU9A5gRmJq1coo+oVSvw1tW+a59M3zfM98dx/n/FxFXJm0C+diyZ67aQ888vWrLjrU/ePqpLbMcFn7VYps7pVyvzU+7ils9W3LZ78fUxMduc0iX6fgeRAKQUAb7B9h46oS5sm6vZWs7hjjetUi/t1SOhdfTVzoZrWra4Zn4+MO14kfx7VaPPuc5dS77ZvEfdrk8mkymWKy7tSGRWo2lS+v+5Vo9reZuM7tGigj/u/F/f1/j//1tylazRhRD/169Y+7rhn+VIqXru1vpuzROOH9k3W/JevBWjst7PUq2NrTf5kUNzxWl4VVKxWK43/bo4WfT8+7nhUVLRGvN9N77RqHO9a9+6H64+NP8nZ8d+fBldr1U3OGdLL76fpcRuGN6jppQqNOmrY59+pVcPaZoVR9crlNXX88CRlT1fQM0njZk34KN4qpscFhzz8mG5np/g/WXV2yqB/rlxP9PrBt+/IztZWaR3i/1Td2TGDgkP+LUNvhdwx+/78O84x7lqPVClbUq0b1laBPDkVEREp31/3afLshdp78C/5LZ4mS0sWhgMAAKRGlFIA8AYrV6KIFq7YoIxOjqrpWV5lihU2W6W0/9DfioiM1FtN65nNq1y2hHJkffpP5hISGBSsT7+ZpU07/HU9MEixsf9+bPXJcxfjlVLN69cw+3rjdn9ZWFioXdP6ZquAMrm5qETh/Nr1/09iS878W3b/pujoGL3dvIHZPdPY2apqhdJmryfG5a5XI94x6eE+TI8XLvfDwvX74WN67+0WZp9gZ2VlpfbNfDTyyyk6ff4fFcyb699r13/ytZ/Ef9X8JI3LlT1LksYltJgqKft0JDbG4j+fgZTo2MfOjRnU0+xc/Rqeypkts4Z9/p3WbdmlpvWqPzUXAODFxcSaZDIlfN7C4uHriQDwCKUUALzBFn03Xl9Mnat5v6zVmK9nKl1aBzWpU02fDXtfmdxcdOv/K1cevQr3uExuiS+5T0hsbKwadf5A1wOCNLxvVxUtmFdpHewVGxsr75bdFB4R+YR7mS9tDwwKlslkUo6KPk+8R+4cD18tSM78gUEPP/XIs3nnJ57/72ocB/s0ypD+yRuiZnI3z3P7TqhMJlO855SkzB4Pj926bb5xbSb3pO+LUbJI/iSNs7KySvR8RqeHRVrw7Tvxvqe3Q0KV8Qkrm8zmOzsqIjLyiZu+374TqtLFCsV97eLkaLZy6t9xD485OyV+r3bN6mvY59/p98NHKaUApGrLuyT+mtmrpMq3f+pKSPw/xx+pnCvDa/W8AF4cpRQAvMFcMzpp0kcDNemjgbp07YY2bN2tUROn6uat21o3/1u5/P81rYCgW/Hm3rgZrJzZ/l1tlMbu4UcKP3gQZTbu1u0Qs6+PnT6nIyfOaPaXH6tjy4Zxx89dvJxgzv+umHHJ6CgLCwtt+3mm7Gxt4423s3v4SUDPkv9pXJwfXmvJ1M+VI8vT5yV1lY/08NU1S0tL3bgZFG/s9YCHx1wzOplfQ0n/SXNyvb73aC+oo6fOme2fFR0drVPn/1Gb/+x7lfD8s6pQqljc8Rs3bykoOERFC+SNO1a0YF4dPXUu3jUeHXt8bGIs+Ik8AKSY+e0L6kF0wkul0tol/sMPAG8eSikAgCQpR5ZM6tWptXbsPaB9B49IkiqULqY0dnb6eY2vmtevGTd238EjunT1ulmp8+jXf588qwKP7dW0futus/s8KmTsbM0/QvqHJauSnLVBDS9NmrFA1wJuqlXD2gmOe5b8T1PHu5Ksra10/p+rZtdKDmkd7FWhZFGt8d2pL4Z/ELc5d2xsrJas2aysmdyVP3eO575+cr2+V6FUUWV2d9XCFRvMNl5fuWm77t0PU7MEXld8pK53JaWxs9PCFRvMSqmFK9bLwsJCTer8+9pm07rV9cHHX+r3w0fjxkZHR2vJ6s2qUKqosni4JXqvRSsefqJhxcfuAwB4uQp7pDU6AoBXDKUUALyh7ty9p3pv91bbxnVVMG8upUvroINHjstv129xrzs5O2ZQ/+7t9cXUeeo5fLxa+tTS5esBGv/dbGVyM399q1yJIiqQJ6eGff6doqOj5eyYQWv8dmrvwb/MxhXMk0t5cmTTqInTZDKZlNHJURu279a2Pb8nOXuVciXV7a1mem/oWB36+4S8KpSWg30a3bh5S3v/+EvFCubVe2+3fKb8T5MrWxZ93P89fTJ5ui5cvqq63pXl5JhegUHB+uOvY3JwsDfbjP1ZfTqktxq+877qvd1b/bu/LVsbG81ctELHTp/Tgm/GJmm/poSULVH4uec+zsrKSuOH9lXXQaPVZ+TnatO4rs5evKyRE6aollcF1a327yf07Np/SD4d+2rE+1018v3ukqSMTo4a1qeLxnw9U86OGVS7akUdPHJc4779QV3aNDFbffVOq8aasXC52vcdoXEf9pGbi7NmLVqh0xf+0cYFU+LG7TnwpyZMna8mdaspd46siox8IN9f92nOz6tVvXI5NaxVNVmeHQDw8n2147Im77zyyn7i273IGH3z6xUdu3FfR6/fV3BYtAZWz/bETz40mUz66WCgFv4RoAvBEbK2tFAhd3v18sqq2gWe7xMNgVcRpRQAvKHS2NqqfMmi+mn1Jv1z5bqioqOVPUsmDerRUYPe6xg37pMBPZTWwV4zF63QT6s3qWCenPp+7DB9/cNis+tZWVlp5axJ6j9mkt7/aILsbG3VulEdffPJYDXrPjBunI2NtVbOnqRBYyer70dfyNrKWjU9y2vjginKX7VJkvNPHT9cFUoX05wlqzRz8QrFxsYqs7ubKpctoXIl/v147KTmT4oPe3VW4Xy5NWX+Uv2yzk+RD6Lk4eaiciUKq3u7Fk+/QCK8K5bR5kVTNfab2Xr3w7GKjY1VicL5tWLWJDWo6fVC105O7Zv5yMrSUpNmLtDClRuU0TGD3m7uozGDepmNM5lMiomJUWys+Wscw/p0Ufq0DpqxaLm+mbNYHq4uGtyzk4b17mI2zs7OVpsWTdGIL6Zo4JhJCguPVMki+bVm7jfyrlgmblxmN1dZWVnqi6lzFRR8RxYWFsqXK7s+7v+e+ndrzyfvAQBSzO2wKC0+GKAiHg6qXyijfjoUmODYSTsu65tfr6pjOQ+NqJNDEdGxmrf/ht5ZfFKz2xZQgyLP9sMz4FVlYTIl9vkIAIBX2aFDh1S2bFntW/Oj2SbSyaFO+4clxJafpifrdYGU8ufRk6rc9B0dPHhQZcqUefoEAG+sR3+ebu5RXMWzPPlDLPDiXvWVUo/+aW1hYaHg+/9j767Dosr+MIC/Q6d0iIoYqNgdhIioiIrYiYFda6/dXevqGqvorthiNyGuCbp2t6ioKB3SMDO/P/g560iq4CXez/P4rJx7zr3vnedZZ/jOOeemodaKG9nOlGrw202Y66riyOD/lpknp0lQb9UNNC1fCtv65O/ntoJ0PyQebTff5/spfRfOlCIiIiIiIipGIhPSsPxsMP55HoPIhDRoqSqiooE6JjmURfNKugCAiy9jsO3fj7j3IQHRiWkoXUoFNhV0MM3RHPqa/+37+LlQdGZkbay58A4XX8ZCUQHoXtcYs1qXx+voZMz1foXrwZ+gp6GMAY1MMMq2jGx84KtYdPd8hD+6VMb9Dwk4ej8Cn5LTUbeMFuY7V0DN0rnvQ3XsQQS2XvmAx6GJEImARuW0MaN1ebmxb6KSsexsMP59E4foxHSUUlNCVWN1zHGyyNM18sO3LLVXVhBBW01+43c1ZQWoKmX8ISopWJQiIqISTywWI6eJwyKRCIqKfGIQEREVDWMPP8f9DwmY2tIcFQ3VEJcsxv2QBEQnpcv6vI5KRoNy2ujdwBilVJXwNiYFHldC0OnvBzg7qg6UFeULIyMOPEOX2kZwa2iCSy9jsTEgBOliKS4FxWJAIxMMtzbD0fsRWHwmGBb6apmWny07G4xapTWxsmMlfEpJx2/n3qHbtofwHVEb5fXVsr2XPy6+w4p/3qJnXSOMsy+LNLEEfwaEoPPfD3BqaC1UMdYAAPTb/RhiCTCzdXmU0VFFVGIabrz9hLjk9GzPDfx/ubkkb6+rkmL+PdF1cNPSWOj3GntvhsK5ugFS0jPu61NyOgY3Nc236xAVdixKERHRdylOy/asHLoi+P2HbI/bNalfrO6XiIiKt+vBn9C7vgn6NjSRtTlV05fr07/Rf4UPqVSKhuW0YW1RCo1/v4Vzz2PQ5qv+fRtkFJ4AoHklXVx4GYNt1z5ia68qcLbKKEBZW+jA/1k0jtyLyFSUMtBQxl+9qspmEzU2LwXbP25j/aX3WOlaKcv7eB+bgt/OvYN7Y1MsbFdB1t68oi5s/7iN1effYVOPKohKTMPLiGTMb2uBrnX+ezprXvZl2n8nHBOPvsy1H4B8XVY4tFlpqCkpYObpV5h8PAgAoKuuhG19qqGReal8uw5RYceiFBERlXiHt6xCSkpatse1tTR+YhoiIqIfU7eMFg7cCYOehhLsKuqgtplmpplPEfFpWHnuLc4+i0bop1R8+VyK5+FJaPPVlkZfPxHO0kgdj0IT4VD5v3YlRREs9NXwLjYlU6ZOtQzllreV1VVFw3LaCHwdm+19XHgRg3SJFN3qGCFd/F9AVSUFNLUohcBXcQAAPXUlWOir4s/AEIilUthU0EF1Ew0oKOQ+s6l1VT2cHlYr1375zet2GOb6vMLAxqZwsNRDmliCg3fCMWjvU2ztVRUtKuv+9ExEQmBRioiISryaVSsLHYGIiCjfbOpeBWsuvsPeW2FY+c9baKoooK2VPma1Lg9jbRVIJFL03vkIoZ9SMb55WVQz0YCGiiIkUilctjxAcnrm9Wx66vK/OiorKkBdWQFqyvLFLhVFBcRn8UWPsbZypjYjLWU8+piQ7X2Ex2ecp53H/SyPf645iUQieA2ogd/Pv8WfASFY4PsGuupK6FLbEFMdzaGlmv0SfD11JZRS/bm/FsckpWPGqVfoXd8Yc5wsZO0tLfXQbdtDTDsRhKsTuGE4lQwsShERERERERUj+prKWOBcAQucK+B9TAr8nkZhiX8wIhPSsLtfdTwJS8Sjj4n4vXMl9KhrLBv3KjKpwDKFfcpcqAqPT4OeRva/kuprZBSyPHpWQVkd1RzPX1ZXFb91yviS6WVEEk48jMTq82+RKpZiuUvFbMcJsXzvZUQSktMkqFMm85Mca5tp4srrOCSkiKGZQzGNqLhgUYqIiOgbLFy7BYv/2Irkl/8KHeW7fIpPwNL1f+Pu42e4++gZIqJiMHPsEMweNzRT3yG/LsCuw6cytVepWB73zuzP9hqPnwehScf+SE1NQ8ARTzSobZWv90BERHlXRlcV7k1K43JQLK6//QQA+LyKTvWrJX27boQWWI5jDyIw3Lq0bAnfu5gU3Hj7Cd2+2APqay0q60BJQYQ3Uclon4f9oT6rZKiO8fZlcfpRJB58iM+xrxDL90y1VQAAt97GyxUFpVIpbr2Lh666IjRU+AQ+KhlYlCIiIipBImNi8de+o6hlZQmXVvbYtv9Yjv3V1VThs2tDprbsiMViDJ+2CIZ6uggJDc+XzERElHdxyeno7vkInWsZopKhOrRUFXD3fQLOv4iRbUhe2VAdFvqqWOIfDCkyNtg+8zQKF19mv7/Tj4pISMPgfU/Rp4EJPiWnY9W5d1BVUsAYuzLZjimnp4bJDuWw/OxbvIlOgUNlXeioKyI8Pg133sdDQ1kRk1uWw6OPCZh1+hU6VDdABQM1KCsqIOBVLB6HJmK0bfbnBzJmY32ekZUf/nkejcRUCRJSxQCAZ+FJOPkwEgDgaKkLdRVFlNFVRTsrfey+GQoVJREcLfWQIpbgwJ1wXA/+hF9blpPbf4uoOGNRioiIqAQpX6Y0Pt72h0gkQkRUTK5FKQUFBTSpl/dvkP/4ey/efwzDpGH9MGnh6h+NS0RE30hVSQH1ymjh4N1wvItJQZpEijI6KhhlWwajbDKenqesqADPPtUwx/s1pp4IgpICYFtRF/sGVEfj1bcKJNc0R3PcfR+PiUdfID5FjLpltPBnd0tY6KvlOO6X5mVQxVgdW69+wLH7EUgVS2CkpYI6Zpro9/8nCBprqaC8nhq2Xw9FSFwKRADM9dQwx8kCg5qY5nj+/Db95Cu8i/lvo/eTDyNlRamr4+uhnErGkrx1XS3hee0jDt4Nh9ftcCgpiFDRQA3rulZG51qGPzUzkZBYlCIiIkGER0Zj7m9/wvfCFYRHRaOUliYqW5hj9vihcLRpDADwv/wvNu08gNsPniAiKhZlTI3hYN0Q8yeNhKG+ruxcn5fUXT+1C0vX/w3/S/9CUVER/bq2x5KpYxAU/B6TFqzGlVv3oK+rg+F9u2LS8H6y8Reu3oRT31H4+7d5uPPwKbyO+yL2UwIa1qmOVbMmoG6Nqrnez4GTZ7Decx/uP3kBkUiEZg1qY9Gvo+XGBgW/x9xVG3H5+h1ExsRCV1sL1atUwvIZ41CnepX8e3FzUJDfvL54FYwFazywc+0iRMXEFdh1iIgoe6pKCliWwx5Kn1kaaWBv/+qZ2r/eN2mSQzlMciiXqd+azpWxpnPmB4UcdK+Rba4F7SpgQbsK2WbK7lpO1fThVE0/23GGWsr4PYssQvg3jxuUqykrYISNGUb8v1BIVFKxKEVERIIYNCmjADRv0ghYVjBHbNwn3H74FFHR/y0deBX8Hk3q1YJ7D1eU0tbCm3cf8Mffe9Cy5zDcPL0Hysryb2N9f5mJ3q5tMbh3Z/xz+Rp+89iJtLR0/BN4HcP7dsX4oX3hddwXM1esRyWLsujk5CA3fs6qP1GvRlX8uXQmYj/FY9HaLWjTZySuntiJiubZT/9fvtET81ZvQv9uHTBttDtSU9Px+5ZdcOw1HJcP/w0ry4xfDjoNngCxWIzFU8egnJkpIqNjcPXmPcTEfcrxtZJKpRCLxXl6XZWU8vetPSk5BeWbOCM8KgaljQ3g0toec8YPg76uTqaMI2YsQbuWtujQqjl2HDyZrzmIiIiIqPhhUYqIiARx5dY9uPfoiMG9OsnaXFrby/UZ2qeL7O9SqRTN6tdC86b1UcXOFb4XAtGhVXO5/oN7dcK4wX0AAI42jeF/+V/8ufMAvDYuh6tTCwCAfZP68P4nAPuO+WQqShnp62L/phWy2UTWDeugpmM3rPxzO/5cOiPL+3gbEoqFaz0wsl93rJ47SdbuaNsYNR27YfEff2HXusWIjI7Fs6A3WDVrAvp0cpb1+zpDVnYeOoVhUxfm2g9Avm7AXtvKErWtLFG9SkZR7dK/t7Fu216cC7yBgCPboKWpIeu7aedBPHz6ErvXLc636xMRERFR8caiFBERCaJh7erYeegU9HV10NKmEerXtMo08yksIgoL1njA+1wAPoRFQCKRyI49efk6U1GqXUtbuZ+rVrLAvcfP4dTiv6UISkpKqFS+LILff8yUqWdHJ7nlbeXLlEbT+rVx4erNbO/jzKWrSE8Xo2/ndkhPT5e1q6mqwK5xPdlYfd1SqGheFr9v3QWxRAL7pg1Q28oSCgq5P12nvaMdAo545tovv40d1Fvu51a2TVC3RhX0Hj0df3sdkx1/8/4DZq/aiJWzJsDEMO9PRyIiouLPuoJOpiWBRESfsShFRESC2PXHYizb8De27T+O+b9vhpamBjq2tseSab/A1MgAEokEHQaOxYfQCEwfMwg1qlaCpoY6JBIJmncdjKTklEzn1NMpJfezirIyNNTVoKYq/7Q4ZRVlxMUnZBpvYpS5oGJqqI/7j59nex9hEVEAAJvOA7M8/rnoJBKJ4L1rPZas+wurPXZi6pK10NcthV4d22L+pBHQ1tLM9hr6uqWgo5398Z/JtU0LaGqo49rtB7K28XNXokaViujc1kG2FDEpORkAEJ+YiNhP8dDR1hIkLxEREREVXixKERGRIAz1dbFq9kSsmj0RwSEfccr/Emat3IDwyGic8FyLh89e4t7j59iyYg76dW0vG/fy9dsCyxQaHpmp7WNEVKb9k75koJdxbO+GpTA3K53j+cuXKY3Ny2YBAJ6/CsbBU/5Y9MdWpKalYf2iadmOE2r5XnakUilECv/NKHv4LAjB7z/AtF6rTH2d+o6CjrYWQu+cLfBcRERERFS0sChFRESCMzczxcj+3XEu8Dqu3LwH4L+nxKmqKMv13br3SIHl2H/CD+MG95Fd+837D7h66x76dm6X7ZjWzZtCSUkRQW/eo3Pblnm+lmUFc0wfMwhHfc/hzsOnOfYVavleVg57/4PEpGQ0qVtT1rZz7UIkp6TK9Ttz8SpWbd6BdQunyvakIiKioifwVSy6ez7CgYHVYV0h+y9pioKEFDGW/xOMkw8jEZOUjkqG6hhjWwautQzzND4iPg2LzryB/7NoJKVJUN1EA1MczWFXUf51SU2XYO3Fdzh0NwIfP6XCWEsZnWsZYnyLslBXVpT1ex+bgjmnX+FRaCLC49OgpCCCuZ4qetc3Rr+GplBSLLgn5hIVFixKERHRTxf7KR5OfUehp0sbVK1kAS1NDdy89wh+F6/KNiSvWtECFc3LYtbKjZBKpdDX1cGpfy7h7OVrBZYrLDIaPUZMwaBeroj9lICFazygpqqCX0cMyHaMRVkzzBk/DHNX/4lXb9+jTfNm0NXRRlhEFG7cfQgNDXXMGT8M9588x/h5q9DV2RGVLcpBWVkZ56/cwP0nLzB5eP8ccxno6chmZOUH3/OBSEhKwqeERADAkxevcNg7YyZT2xY20FBXw5v3HzBg/Bz06NAalcqXhUgkwsVrt7B+mxeqW1aEe09X2fma1KuV6Rpv3n0AANSvaYUGta3yLTsREdH3GuL1FHffx2N6q/KoaKiGo/ciMOrgc0ikUnSubZTj2JR0CXpuf4jYZDEWOFvAUFMZntc+wm3nY+wbYIVmFv+9T48++Bz/PI/GePtyqFNGEzffxuOPi+/wNDwJnn2qyfolpUqgpaqE8fZlYaajijSxBP88i8Gs06/x8GMiVrlWKrDXgqiwYFGKiIh+OjUVFTSqUwN7jnrjzbsPSEtPRzkzU0wa3g+ThvUDACgrK+HwllWYtHA1xsxeBiVFJbS0aYTTO9bD0q5jgeRaMHkkbt57hGFTFiEuPgEN61THzrWLUKl82RzHTRk5EFaVK2C9pxf2n/BDSmoaTIwM0LC2FYb0zniCoImhASqal8Hm3Yfw7kMoRCIRKpQzw/IZYzGqf48CuZ/s/DJnBYLff5D9fOj0WRw6nVGUenLhCCzKmqGUliZMDPWx9u89CIuIglgigbmZKUYP6IEpowZCU0P9p2YmIiL6EWefRePiy1hs6GaJTv+fGWVTQQfvYlOwyO8NOtY0hKJC9jOT9t4Kw5OwJBwbUhMNy2kDAKwtdND6z7tY7BeMk8MyvqC5+fYTTj+Owhyn8hhubQYAaF5JF0oKIiw7G4yLL2PQvJIuAKCykTrWdqksd52WlnqISEjDgTvhWNy+AlSVcn8gClFRxqIUERH9dKqqKli3cGqu/apVroBT29dlav9636TZ44Zi9rihmfptXTkHW1fOydR+Zs+fWV5PTVUFv82ZhN/mTMo2U3bXcmltD5fW9tmOMzbUx5YVmbMI4dnFo7n20dMpBa8/l3/3Nfp364D+3Tp893giIvp2Po+jMHjfU+wbUD3TkrLt1z5ixqlXODOyNqqbauLu+3hsCgzBrXfxiIhPhaGWChqU1cKM1uVRVlc1mytk6LbtIQDgoHsNufbxR17gyus4/DuhvqwtNV2CjQEhOHwvHG+jU6ClqohWVfQwq015GGjKL9EvSD6Po6CpooAO1eUfatKznjFGH3yOW+/i0chcO8fxlQzVZAUpAFBSFKFLbSMsOxuMD3EpKF1KFdeDMx744WipJze+VVVdLDsbjFOPomRFqewYaCpBQQQoirh8j4o/ll2JiIiIiIiKgVZV9GCoqYz9t8MyHTtwJxy1SmuiumnG01zfxqSgkoE65re1wO5+1TGjtTnC4tPQzuMeohLS8iWPRCLFoL1PseHye3SuZYjtfathRitzXAyKRbdtD5GUJs5xvFQqRbo4b39y8yQsEZZG6pn2abIy0QAAPA1LzHH807BEWJlkfhKulWnG+GdhSQCAtP9nUVGSv46KYsav3o9DMz/99/N9xiSl49iDCOy/E45h1mbcU4pKBM6UIiIiIiIiKgYyZu4YYseNUCxOTkcptYxf956HJ+L2+3gsamch69uhhgE61Phv1pBYIkXrKnqos/IGjtyPwOCmOT9RNi9OPIzEuRcx2NKzCtp9MUOpuqkm2nncx/7b4RjQ2DTb8fvvhGPi0Zd5utb7+c1yPB6dlI7yeplngOmqZ7xG0YnpuY7/3DfL8UkZ46sYZyxvvx78CeZ6arJ+n2dQZXWdDZdDsNQ/GAAgEgG/2JXBVEfzHPMQFRcsShERUYln37RBpiWBRERERVGv+sbwuPIBxx9Ewq2hCQDA63Y4VJVEsr2UgIwn0a258A6nH0fibUwKxJL/zvE8PClfsvg/i4aOmiJaV9WTm81Uw1QTxlrKuPI6LseiVOuqejg9LPPDNL6XCNnPPMrLSrmcunw+5lBZFxb6alhy5g2MtJRRx0wLt959wrKzwVBUABSyuFCPukawq6iDmKR0BLyKxaaAEHxKFmNR+wq5hyIq4liUIiIiIiIiKiaqGmugbhlNeN0Og1tDE4glUhy+F442VfWhp/HfHk6jDz3H5aBYjLcvizpltKCtqggRgH67HyM5XZL9Bb5BeHwaYpPFsFiQ9Rc/UYk5LxPUU1dCKdX8+ZVVT10J0UmZrxfz/xlOWc2Cyjw+8yynr8erKClgl1s1jD38Ar13PAYAaKgoYJqjOdZceAfTUiqZzmGsrQJj7Yx2+8q60FFTwhL/YPSqb4yapTMvGSQqTliUIiKiYunC1Ztw6jsKvrs3wr5pA6Hj/JD4hETMW70Jh06fRVRMHKpWKo/Jw/ujh0ubPI0Pi4jCjOXr4X3uMhKTklHbyhJzJ4xAS5tGsj5xn+KxcccBnA24hmcvXyM+MQkWZc3Qu1NbjBnYE2qq/y15eBsSikkLfsO9J88RFhEFJUVFVDAvg4HdO2Jon85QUuLHCyIiIfWoa4wZp17heXgi3kSnIPRTGnrWM5Idj0tOh/+zaEy0L4sxdmVk7SnpElmRJSeqSiLEJWfeD+rrIpO+hhL0NJSw280qy/NoqirmeJ38XL5nZaKBo/cjkC6Wyu3V9CQ0Yy+pqsYaOY6vZqIh6/ulrMZXMFDHiaG18CEuBTFJ6bDQU0NcihhzvF+jafnsN1P/rG5ZLQDAy8gkFqWo2OOnRiIiokKu56ipuHnvMRb+OgqWFczhddwP/cfPhkQqRa+OTjmOTUlJhXO/MYiJ+4RVsyfCyEAPm3ceRMdB43B6x3o0b5LxhKS3IaFY77kPfTo5Y9yg3tDU0EDAjTtYtHYrzl6+htM71kH0/yUHiUlJ0NbSxPQxg1CutCnS0tLgcz4QE+avwt3Hz7Bp6cwCf02IiCh7nWoZYoHva+y/HY430ckwLaUC+y+e+CYCIJVmzOr50t6bYXLL+LJTVlcNJx9GIiVdAtX/nyMqMQ03336C1hczm1pV1cOxB5EQS6WoXzb3YszX8nP5Xlsrfey+GYZTjyPhWvO/ZYwH7oTDVFsZ9f9fCMp2fDV9zDj1CrfefZLdS7o4YxZavbJaWc6AKl1KFaVLZXyps/yft9BQUUCv+sa5Zg18FQsAqKCvlktPoqKPRSkiIqJCzOdcAM5evobtvy9Az/8XoFo0a4jgkA+YsWwdurdvBUXF7L9p9jxwHA+fvcT5A1vRtH7GB/sWTRugUQc3zFy+HpcO/w0AsChnhqcXjkJTQ1021sG6ITTV1TB92ToE3rwLm4Z1AQBVK1ngr1Vz5a7j1MIa4ZHR2HX4FNbO+xWqqpk/nBMR0c+ho66Etlb62H8nHHHJ6RhubQYFhf9mB2mrKaFpeW38GRACfQ0llNVVxdXXcdh3Oww6ajnPXgKAbnUMsetGKH459Bx9G5ggOikdGy+/lytIAYBrTUMcuReBfrueYEhTU9QtowUlRQV8iEtB4Ks4OFXTg7OVQTZXAfQ1lKH/xZLDH9HSUg/NK+lgxskgxCeLYWGghmP3I3DuRQzWda0MxS9en0lHX+DA3XAEjquPsroZRaVe9Y2x/fpHDN//DDNamcNAUxk7rofiZUQy9g2Qnwm28fJ7GGmpoIyOCsIT0nDyQSR8nkThjy6VZUUqAFj1z1uEJ6ShaXltmJZSQVyyGOeex2DPrVB0qGGA2mY5F8qIigOF3LsQEREVrON+F6BWqQn+Cbie6ZjH7kNQq9QE9588BwDcvPcY/cbORJXmnaBbvTmqNO+EfuNm4c37D7lep3WfkWjdZ2Sm9iG/LkCV5p3k2lJT07B0/d+o3boHSlnZomwjJwydsgDhkdHfd5Pf6ZjfBWhpaqBrO0e59v5dOyAkNBzX7jzMdXyViuVlBSkAUFJSQm/Xtrh+9yHef8x4bLimhrpcQeqzhnVqAADehYTmmtXQQBcKCgpQVOTHCyIiofWsZ4yIhDSkiqXo8cXSvc/Wd7OEdYVSWHzmDYZ6PcO9kATs7V8d2mq5z1toZF4KazpXxrPwJAza+wRrL7zDGLsyaGZRSq6fooII23pXwy92ZXD6cRSG7HuKwXufYMOlEKgqKaBaLkvm8tvWnlXRtbYRVp17C7edj3HrXTw2drNEl9ryr49YCoglgFT63+bsqkoK8BpQHdYWOph1+jXc9zxB6KdU7HSrhmYWOnLjU9IlWHPhLdx2Pcb0E0FISpPgoHsNdP7qOrXLaOJNVDLm+75Br+2P8cuh53jwIQHznCywoatlwb0QRIUIZ0oREZHg2rW0gbGBHnYcOim3zxEA7Dx0CvVqVEWtahkfzt68D4FlxfLo3qEN9HRL4WNYBDz2HIZtJ3fc9t0HQ33dH84jkUjQbfivCLhxBxOHuaFp/doIfv8Ri9Z6oE3fkQg86gl1teyn1EulUojFmffayEpu+y89ev4S1SpZZOr3+fV4+OwlmjWonf34Zy9h06hupvZa1Sr///xBKGOa/VKC81duAACqV6mY6djn+/yUkAj/S/9i56FTGDe4D/eUIiIqBJpX0s1xn6XSpVSxpWfVTO3/Tqgv97N1BZ0sz9O9rhG615UvsnT8YlncZ0qKIoywMcMIG7O8Ri8wmqqKWNCuAha0y/mpdms6V8aazpUztRtpqWBtl8ztX5vQohwmtCiXa782VfXRpqp+rv2IijN+aiQiIsEpKSmhdydneOw+hNhPv0JHO2O6+pMXr3D97kP8PneyrG8XZ0d0cf5v1pBYLEa7lrYwb+IMr+O+GD2w5w/nOXjKH34Xr2DfxmXo5OQga69dzRI2nQdi56FTGNa3a7bjdx46hWFTF+bpWskvs34i0WeR0bGoUK5MpnY93Yxvo6NiYnMeHxMLPZ1Smdr1dDK+1Y2Kzn78/SfPsdpjJ1zbtJAVwb60avMOzF65EQAgEokwZeRAzJ80Isc8RERERESfsShFRESFwoBuLlj71x4cOHkGQ3p3BgDsOHgSqioq6Nnxv6fMxSckYun6v3HE5xzevP8gNyPpycvX+ZLl9LkA6JbSRvuWdkhP/+8pRHWqW8LUyAAXr97KsSjV3tEOAUc88yULANkG49967EfGv34Xgs5DJqFsaRP8uXRGln36de2AltaNERUbiwtXbuL3rbsQ9ykev8+bnGV/IiIiIqIvsShFRESFQvUqFdGwdnXsPHQSQ3p3hlgsxt5jPnBp1Rz6uv/t1TBgwhycC7yO6WMGoUGt6iilrQkRROg0eAKSklPyJUtYRBRi4j5Bu5pNlscjomNyHK+vWwo62vnzCGcDPZ0sZ0NFx8QBQJazoOTG62YzPjaj7fOMqy+9ef8BTn1HQUlJEd4718u9/l8yNTKAqVHGBrWt7ZpCV0cbs1ZswIDuLqhbI/OSECIiIiKiL7EoRUREhUb/bh0wds4KPHnxCq/evseHsAj079ZBdjz2UzxO/3MZM8cOwa8jBsjaU1JSERUbl+v51VRUEBcfn6k98qsik4GeDgz0dHD877VZnkdbK+eNWfNz+V6NKpWw/+QZpKeny+3V9ODpC9nxHMdXrYQHT19mav/c9vX4N+8/oE2fkZBKAb89G1G2tEme7gMAGtauDgB4/iqYRSkiIiIiyhWLUkREVGj0cGmDKYvXYuehU3j19j3KmBqhlV0T2XERMjbXVlWRfzz0tv3H8rSxePmypXHY+yxSUlKhqqoCIGPPpqu37kNb67+ZTe1a2uLAyTMQS8RoXLfmN99Hfi7fc23TAn97HcMRn3Po3qG1rH3X4dMwMzFC47o1ch0/ds4KXLvzQHYv6enp2HvUB43r1oCZyX+b1AaHfESbPiMhFkvgt+dPlC9T+puyXrh6EwBQqXzZbxpHRERERCUTi1JERFRo6JbSRsc29th56CRiPsVj/OC+UFBQkB0vpa0F28b18PuWXTDQ00X5sqVx6d9b2H7gBHRLaed6/j6dnLF17xG4T5oL956uiIqOxeotu+QKUgDQo0Nr7Dvmg06DJ2D0wJ5oVLsGlJSU8P5jGC5cvQmXVs3h6tQi2+t8nmmVH5xaWMPRtjHGzlmBuPgEVCpfFvtP+MHv4hVsWz0fioqKsr7Dpy3CrsOn8ejcIVlBaUA3F2zaeRB9xszAoimjYWSgB49dh/Ds1Ruc3rFeNjYsIgpOfUfhY1gkNi2bifDIKIRHRsmOlzE1ls2aWrDGA2ERUbBtXA9mJkaIjfsEv4tX8bfXMXRt54j6tazy5d6JiIiIqHhjUYqIiAqV/t06YP8Jv4y/d22f6fj23xdg8sLVmLl8PdLF6WhWvw5ObV+HTkMm5npu64Z1sHXlXKzavB3dh09BBXMzzPxlCHzOB+Liv7dk/RQVFXHIYxXWe3phz1FvrPxzB5SUFFHG1Bh2jeuhZtWcl8zlN6+NyzH3tz+xcI0HomLjULVieexYsxA9XNrI9ROLJRCLxZBKpbI2VVUVeO9ajxnL1mPi/FVITEpBneqWOPb3GjRv8t9jvx+/eIVXwe8BAO4T52bKMHPsEMweNxQA0KCWFTZs348TZy4gMiYWaqqqsKpcAStnjsewvl0K4iUgIioUnkckCR2BqNDh/xf0I0TSLz+5EhFRsXLr1i00aNAAV45tR72a1YSOQ1So3H7wBM1cB+DmzZuoX79+7gOIqMQKDg6GVbWqSExKFjoKUaGkoa6Gx0+ewtzcXOgoVMRwphQREREREVEOzM3N8fjJU0RERAgdhahQMjQ0ZEGKvguLUkRERERERLkwNzfnL91ERPlMIfcuRERERERERERE+YtFKSIiIiIiIiIi+ulYlCIiIiIiIiIiop+ORSkiIiIiIiIiIvrpWJQiIiIiIiIiIqKfjk/fIyIqAZ68fC10BKJCh/9fEBEREQlLJJVKpUKHICKighEcHAwrKyskJiYKHYWoUNLQ0MDjx4/5mHciIiIiAbAoRURUzAUHByMiIkLoGD9NSkoKxowZg2fPnuGvv/5C5cqVhY5UqD1//hxDhgxB1apVsW7dOqiqqgod6acyNDRkQYqIiIhIICxKERFRsSEWi9G9e3d4e3vjzJkzsLW1FTpSkXD58mW0bt0a7dq1w/79+6GoqCh0JCIiIiIqAbjRORERFQtSqRQjR47E8ePHsX//fhakvoGtrS3279+PY8eOYdSoUeD3VURERET0M7AoRURExcLs2bOxZcsWbN26FS4uLkLHKXJcXFywZcsWeHh4YM6cOULHISIiIqISgE/fIyKiIm/dunVYvHgxli9fjoEDBwodp8hyd3dHWFgYpk2bBmNjY/zyyy9CRyIiIiKiYoxFKSIiKtL27t2LsWPHYtKkSfj111+FjlPkTZkyBWFhYRg3bhyMjIzQq1cvoSMRERERUTHFjc6JiKjI8vPzQ4cOHdCrVy94enpCQYGr0vODRCLBgAED4OXlhVOnTqF169ZCRyIiIiKiYohFKSIiKpKuXbuGli1bwt7eHkePHoWysrLQkYqVtLQ0uLq64uLFizh37hwaNWokdCQiIiIiKmZYlCIioiLnyZMnsLW1RZUqVeDv7w8NDQ2hIxVLCQkJaNWqFV68eIHLly+jatWqQkciIiIiomKERSkiIipS3r17BxsbG2hpaeHSpUvQ19cXOlKxFhkZCTs7OyQkJCAwMBBlypQROhIRERERFRPcfIOIiIqMqKgotG3bFlKpFL6+vixI/QQGBgbw9fWFVCqFk5MToqKihI5ERERERMUEi1JERFQkJCYmwsXFBR8/foSfnx/Kli0rdKQSo1y5cvD19cWHDx/g4uKCxMREoSMRERERUTHAohQRERV6aWlp6NGjB+7evYvTp0+jWrVqQkcqcaysrHD69GncuXMHPXv2RFpamtCRiIiIiKiIY1GKiIgKNYlEgiFDhsDX1xeHDx9G48aNhY5UYjVp0gSHDx+Gj48Phg4dCm5LSUREREQ/gkUpIiIq1KZOnYodO3Zg+/btaNOmjdBxSjwnJyd4enpi+/btmDp1qtBxiIiIiKgIUxI6ABERUXZWrlyJVatWYe3atejTp4/Qcej/+vbti4iICIwfPx7GxsaYPHmy0JGIiIiIqAhiUYqIiAql7du3Y8qUKZgxYwbGjh0rdBz6yrhx4xAaGopff/0VxsbG6N+/v9CRiIiIiKiIEUm5IQQRERUyJ0+eRKdOneDu7g4PDw+IRCKhI1EWpFIphg4dCk9PTxw7dgzt27cXOhIRERERFSEsShERUaESEBCA1q1bw8nJCQcOHICSEif1Fmbp6eno3r07fH194e/vD2tra6EjEREREVERwaIUEREVGg8ePICdnR1q164NX19fqKmpCR2J8iApKQlOTk548OABLl26hBo1aggdiYiIiIiKABaliIioUHjz5g2sra1hZGSECxcuQEdHR+hI9A1iYmJgb2+PyMhIBAQEoHz58kJHIiIiIqJCjkUpIiISXHh4OGxtbZGWloaAgACULl1a6Ej0HT58+AAbGxuoqKjg8uXLMDQ0FDoSERERERViCkIHICKiki0+Ph7t27dHTEwM/Pz8WJAqwkqXLg1fX19ER0ejXbt2iI+PFzoSERERERViLEoREZFgUlNT0aVLFzx58gQ+Pj6oXLmy0JHoB1laWsLb2xtPnjxB165dkZqaKnQkIiIiIiqkWJQiIiJBSCQSDBgwABcuXMCxY8dQr149oSNRPqlfvz6OHj2K8+fPY+DAgZBIJEJHIiIiIqJCiEUpIiL66aRSKcaPHw8vLy/s2bMHDg4OQkeifNayZUvs3r0b+/btw4QJE8AtLImIiIjoayxKERHRT7dkyRKsW7cOf/75J7p27Sp0HCog3bp1w8aNG/HHH39g6dKlQschIiIiokJGSegARERUsnh4eGDWrFmYP38+hg8fLnQcKmAjRoxAaGgoZs6cCSMjIwwdOlToSERERERUSIiknE9PREQ/yeHDh9G9e3eMHDkS69atg0gkEjoS/QRSqRRjxozBpk2bcPDgQXTu3FnoSERERERUCLAoRUREP8X58+fh5OSETp06Yc+ePVBUVBQ6Ev1EYrEYvXv3xvHjx+Hr6wt7e3uhIxERERGRwFiUIiKiAnfnzh3Y29ujcePGOHnyJFRVVYWORAJISUlB+/btcf36dVy4cAF169YVOhIRERERCYhFKSIiKlAvX76EjY0NypUrh3/++Qfa2tpCRyIBffr0CQ4ODnj37h0CAwNRsWJFoSMRERERkUBYlCIiogLz8eNH2NjYQFFREQEBATAyMhI6EhUCYWFhsLW1hUQiQUBAAExMTISOREREREQCUBA6ABERFU+xsbFwdnZGUlIS/Pz8WJAiGWNjY/j6+iIxMRFt27ZFbGys0JGIiIiISAAsShERUb5LTk6Gq6srXr9+DV9fX1hYWAgdiQqZChUqwMfHB69evUKnTp2QnJwsdCQiIiIi+slYlCIionwlFovRt29f/Pvvvzhx4gRq1aoldCQqpGrXro0TJ07g6tWr6Nu3L8RisdCRiIiIiOgnYlGKiIjyjVQqxahRo3Ds2DHs378ftra2QkeiQs7Ozg5eXl44duwYRo8eDW51SURERFRysChFRET5Zs6cOfDw8MCWLVvg4uIidBwqIjp27AgPDw9s3rwZc+fOFToOEREREf0kSkIHICKi4mHdunVYtGgRli9fDnd3d6HjUBEzaNAghIeHY9q0aTA2NsaYMWOEjkREREREBYxFKSIi+mH79u3DuHHjMHHiRPz6669Cx6EiasqUKQgNDcXYsWNhZGSEnj17Ch2JiIiIiAqQSMrNG4iI6AecOXMG7du3R69eveDp6QkFBa4Mp+8nkUgwYMAAeHl54dSpU2jdurXQkYiIiIiogLAoRURE3+369etwcHCAvb09jh49CmVlZaEjUTGQlpYGV1dXXLx4EefOnUOjRo2EjkREREREBYBFKSIi+i5Pnz6FjY0NLC0t4e/vD01NTaEjUTGSkJCAVq1a4cWLF7h8+TKqVq0qdCQiIiIiymcsShER0Td7//49rK2toaWlhUuXLkFfX1/oSFQMRUZGws7ODomJiQgMDISZmZnQkYiIiIgoH3HjDyIi+iZRUVFwcnKCVCqFr68vC1JUYAwMDODr6wuxWAwnJydER0cLHYmIiIiI8hGLUkRElGeJiYlwcXHBhw8f4Ovri7JlywodiYq5cuXKwc/PDyEhIXBxcUFiYqLQkYiIiIgon7AoRUREeZKWloYePXrgzp07OH36NKysrISORCWElZUVTp06hdu3b6Nnz55IS0sTOhIRERER5QMWpYiIKFdSqRRDhw6Fr68vDh8+jCZNmggdiUqYpk2b4tChQ/Dx8cGwYcPALTGJiIiIij4WpYiIKFdTp07F9u3bsX37djg5OQkdh0qotm3bwtPTE56enpg2bZrQcYiIiIjoBykJHYCIiAq3VatWYeXKlVizZg369OkjdBwq4fr27Yvw8HBMmDABxsbGmDRpktCRiIiIiOg7sShFRETZ2rFjB3799VdMnz4d48aNEzoOEQBg/PjxCA0NxeTJk2FkZIT+/fsLHYmIiIiIvoNIyk0ZiIgoC6dOnYKrqysGDhyILVu2QCQSCR2JSEYqlWLIkCHYvn07jh07hvbt2wsdiYiIiIi+EYtSRESUSWBgIFq1agUnJyccOHAASkqcWEuFT3p6Orp16wY/Pz/4+/vD2tpa6EhERERE9A1YlCIiIjkPHz6EnZ0datWqBR8fH6irqwsdiShbSUlJcHJywoMHD3Dp0iXUqFFD6EhERERElEcsShERkcybN29gY2MDAwMDXLhwAbq6ukJHIspVTEwM7O3tERkZicDAQJibmwsdiYiIiIjygEUpIiICAERERMDW1hapqakICAhA6dKlhY5ElGcfPnyAtbU1VFVVcfnyZRgaGgodiYiIiIhyoSB0ACIiEl58fDzatWuH6Oho+Pr6siBFRU7p0qXh5+eHqKgotG/fHvHx8UJHIiIiIqJcsChFRFTCpaamokuXLnjy5Am8vb1haWkpdCSi72JpaQlvb288evQIXbt2RWpqqtCRiIiIiCgHLEoREZVgEokEAwcOxIULF3D06FHUr19f6EhEP6RBgwY4duwYzp8/j4EDB0IikQgdiYiIiIiywaIUEVEJJZVKMX78eOzbtw+7d+9Gy5YthY5ElC9atmyJ3bt3Y9++fZgwYQK4fSYRERFR4cSiFBFRCbVkyRKsW7cOGzduRLdu3YSOQ5SvunXrhg0bNuCPP/7A0qVLhY5DRERERFlQEjoAERH9fFu2bMGsWbMwf/58jBgxQug4RAVi5MiRCAsLw8yZM2FsbIwhQ4YIHYmIiIiIviCSck47EVGJcvjwYXTv3h0jR47EunXrIBKJhI5EVGCkUinGjBmDTZs24eDBg+jcubPQkYiIiIjo/1iUIiIqQS5cuAAnJyd07NgRe/fuhaKiotCRiAqcWCxGr169cOLECfj6+sLe3l7oSEREREQEFqWIiEqMO3fuwN7eHo0aNcKpU6egqqoqdCSinyYlJQXt2rXDjRs3cPHiRdSpU0foSEREREQlHotSREQlwMuXL2FjY4OyZcvi3Llz0NbWFjoS0U/36dMntGjRAu/fv0dgYCAqVqwodCQiIiKiEo1FKSKiYi40NBQ2NjZQUFDA5cuXYWxsLHQkIsGEhYXBxsYGUqkUAQEBMDExEToSERERUYmlIHQAIiIqOLGxsWjbti0SExPh5+fHghSVeMbGxvDz80NCQgKcnZ0RFxcndCQiIiKiEotFKSKiYio5ORmdOnXCq1ev4OPjAwsLC6EjERUKFSpUgK+vL4KCgtCpUyckJycLHYmIiIioRGJRioioGBKLxejbty+uXr2KEydOoHbt2kJHIipUateujRMnTuDKlStwc3ODWCwWOhIRERFRicOiFBFRMSOVSjF69GgcO3YMXl5esLOzEzoSUaFkZ2cHLy8vHDlyBKNHjwa32SQiIiL6uViUIiIqZubOnYvNmzfDw8MDHTt2FDoOUaHWsWNHbNmyBZs3b8a8efOEjkNERERUoigJHYCIiPLP+vXrsXDhQixbtgyDBg0SOg5RkTBo0CCEhYVh+vTpMDY2xujRo4WORERERFQisChFRFRMeHl5YezYsZgwYQKmTJkidByiImXq1KkIDQ3FL7/8AiMjI/To0UPoSERERETFnkjKDRSIiIq8M2fOoH379ujZsye2b98OBQWuzib6VhKJBP3798f+/ftx+vRptGrVSuhIRERERMUai1JEREXc9evX4eDggObNm+PYsWNQVlYWOhJRkZWWloaOHTvi0qVLOH/+PBo2bCh0JCIiIqJii0UpIqIi7OnTp7C1tUXlypXh7+8PTU1NoSMRFXkJCQlwdHTEy5cvERAQgCpVqggdiYiIiKhYYlGKiKiIev/+PWxsbKChoYFLly7BwMBA6EhExUZkZCTs7OyQmJiIwMBAmJmZCR2JiIiIqNjhpiNEREVQdHQ02rZtC7FYDF9fXxakiPKZgYEBfH19IRaL4eTkhOjoaKEjERERERU7LEoRERUxiYmJcHFxQUhICPz8/FCuXDmhIxEVS+XKlYOvry9CQkLg4uKCxMREoSMRERERFSssShERFSFpaWno2bMnbt++jdOnT8PKykroSETFWvXq1XHq1Cncvn0bPXv2RHp6utCRiIiIiIoNFqWIiIoIqVSKYcOGwcfHB4cOHUKTJk2EjkRUIjRt2hQHDx6Ej48Phg0bBm7HSURERJQ/WJQiIioipk2bBk9PT3h6eqJt27ZCxyEqUZydneHp6Ylt27Zh+vTpQschIiIiKhaUhA5ARES5++2337BixQr8/vvv6Nu3r9BxiEqkvn37IiwsDBMnToSxsTEmTpwodCQiIiKiIo1FKSKiQm7Hjh2YPHkypk+fjvHjxwsdh6hEmzBhAsLCwjBp0iQYGRmhX79+QkciIiIiKrJEUm6MQERUaJ06dQqurq4YOHAgtmzZApFIJHQkohJPKpViyJAh2LFjB44dO4Z27doJHYmIiIioSGJRioiokAoMDESrVq3Qpk0bHDx4EEpKnNxKVFikp6eja9euOHPmDM6ePYtmzZoJHYmIiIioyGFRioioEHr48CHs7OxQs2ZN+Pr6Ql1dXehIRPSVpKQkODk54cGDB7h06RJq1KghdCQiIiKiIoVFKSKiQiY4OBjW1tYwMDDAhQsXoKurK3QkIspGTEwMmjdvjqioKAQGBsLc3FzoSERERERFBotSRESFSEREBGxtbZGSkoLAwECULl1a6EhElIuQkBDY2NhATU0Nly5dgqGhodCRiIiIiIoEBaEDEBFRhvj4eLRv3x5RUVHw8/NjQYqoiDAzM4Ofnx8iIyPRoUMHxMfHCx2JiIiIqEhgUYqIqBBITU1F165d8fjxY/j4+MDS0lLoSET0DSwtLeHt7Y2HDx+iW7duSE1NFToSERERUaHHohQRkcAkEgkGDhyI8+fP4+jRo6hfv77QkYjoOzRo0ABHjx7FuXPn4O7uDolEInQkIiIiokKNRSkiIgFJpVJMmDAB+/btw+7du9GyZUuhIxHRD3B0dMSuXbuwd+9eTJw4Edy6k4iIiCh7SkIHICIqyZYuXYo//vgDGzduRLdu3YSOQ0T5oHv37oiIiMCoUaNgYmKC6dOnCx2JiIiIqFBiUYqISCBbt27FzJkzMW/ePIwcOVLoOESUj0aOHInQ0FDMmDEDRkZGGDJkiNCRiIiIiAodkZTzyomIfrojR46gW7duGDFiBNavXw+RSCR0JCLKZ1KpFKNHj8bmzZtx6NAhdOrUSehIRERERIUKi1JERD/ZhQsX4OTkhI4dO2Lv3r1QVFQUOhIRFRCxWIxevXrhxIkT8PPzQ/PmzYWORERERFRosChFRPQT3blzB/b29mjUqBFOnToFVVVVoSMRUQFLSUlBu3btcOPGDVy8eBF16tQROhIRERFRocCiFBHRTxIUFARra2uULVsW586dg7a2ttCRiOgniYuLg4ODA0JCQhAQEICKFSsKHYmIiIhIcCxKERH9BKGhobCxsYGCggIuX74MY2NjoSMR0U8WFhYGGxsbAMDly5dhYmIicCIiIiIiYSkIHYCIqLiLi4uDs7MzEhMT4evry4IUUQllbGwMPz8/xMfHw9nZGXFxcUJHIiIiIhIUi1JERAUoOTkZnTp1QlBQEHx8fFChQgWhIxGRgCpUqABfX18EBQWhc+fOSElJEToSERERkWBYlCIiKiBisRhubm64cuUKTpw4gdq1awsdiYgKgdq1a+P48eMICAiAm5sbxGKx0JGIiIiIBMGiFBFRAZBKpRg9ejSOHj0KLy8v2NnZCR2JiAqR5s2bw8vLC4cPH8aYMWPALT6JiIioJGJRioioAMybNw+bN2+Gh4cHOnbsKHQcIiqEXF1d4eHhgU2bNmH+/PlCxyEiIiL66ZSEDkBEVNysX78eCxYswLJlyzBo0CCh4xBRITZ48GCEh4dj+vTpMDY2xqhRo4SORERERPTTsChFRJSP9u/fj7Fjx2LChAmYMmWK0HGIqAiYOnUqQkNDMWbMGBgaGqJHjx5CRyIiIiL6KURSbmJARJQv/P390a5dO/Ts2RPbt2+HggJXSBNR3kgkEvTv3x/79+/H6dOn0apVK6EjERERERU4FqWIiPLBjRs30KJFCzRv3hzHjh2DsrKy0JGIqIhJTU2Fq6srLl++jHPnzqFhw4ZCRyIiIiIqUCxKERH9oGfPnsHGxgaVK1eGv78/NDU1hY5EREVUQkICHB0dERQUhMuXL6NKlSpCRyIiIiIqMCxKERH9gJCQEFhbW0NDQwOXLl2CgYGB0JGIqIiLjIyEnZ0dEhMTERgYCDMzM6EjERERERUIbnhCRPSdoqOj4eTkBLFYDF9fXxakiChfGBgYwNfXF2KxGG3btkVMTIzQkYiIiIgKBItSRETfITExES4uLggJCYGfnx/KlSsndCQiKkbKlSsHX19fvH//Hi4uLkhKShI6EhEREVG+Y1GKiOgbpaeno2fPnrh9+zZOnToFKysroSMRUTFUvXp1nDx5Erdu3ULPnj2Rnp4udCQiIiKifMWiFBHRN5BKpRg6dCh8fHxw6NAhNG3aVOhIRFSMNWvWDAcPHoS3tzeGDRsGbgVKRERExQmLUkRE32DatGnw9PSEp6cn2rZtK3QcIioBnJ2dsW3bNmzbtg3Tp08XOg4RERFRvlESOgARUVGxevVqrFixAr///jv69u0rdBwiKkHc3NwQHh6OiRMnwsTEBBMmTBA6EhEREdEPY1GKiCgPdu7ciUmTJmHatGkYP3680HGIqASaMGECQkNDMXHiRBgZGcHNzU3oSEREREQ/RCTl5gRERDk6ffo0OnbsiAEDBmDr1q0QiURCRyKiEkoqlWLIkCHYsWMHjh8/DmdnZ6EjEREREX03FqWIiHJw5coVODo6ok2bNjh48CCUlDjBlIiElZ6ejq5du+LMmTM4e/YsmjVrJnQkIiIiou/CohQRUTYePnwIOzs71KxZE76+vlBXVxc6EhERACApKQlt2rTBw4cPcfnyZVSvXl3oSERERETfjEUpIqIsBAcHw9raGgYGBrhw4QJ0dXWFjkREJCcmJgbNmzdHdHQ0AgMDUa5cOaEjEREREX0TFqWIiL4SEREBOzs7JCcnIzAwEKVLlxY6EhFRlkJCQmBjYwM1NTVcvnwZBgYGQkciIiIiyjMFoQMQERUm8fHxaN++PSIjI+Hn58eCFBEVamZmZvD19UVkZCTat2+PhIQEoSMRERER5RmLUkRE/5eamopu3brh0aNH8Pb2hqWlpdCRiIhyVaVKFXh7e+Phw4fo1q0b0tLShI5ERERElCcsShERAZBIJHB3d8e5c+dw7NgxNGjQQOhIRER51qBBAxw9ehT//PMP3N3dIZFIhI5ERERElCsWpYioxJNKpZg4cSL27t2L3bt3o2XLlkJHIiL6Zo6Ojti1axf27NmDSZMmgduGEhERUWGnJHQAIiKhLVu2DGvXrsXGjRvRrVs3oeMQEX237t27Izw8HKNHj4aJiQmmTZsmdCQiIiKibLEoRUQl2tatWzFjxgzMmzcPI0eOFDoOEdEPGzVqFMLCwjB9+nQYGRlh8ODBQkciIiIiypJIyrndRFRCHT16FF27dsWIESOwfv16iEQioSMREeULqVSKUaNGwcPDA4cPH4arq6vQkYiIiIgyYVGKiEqkixcvok2bNujYsSP27t0LRUVFoSMREeUrsViMXr164eTJk/D19UXz5s2FjkREREQkh0UpIipx7t69i+bNm6NRo0Y4deoUVFVVhY5ERFQgUlJS0K5dO9y8eRMXL15E7dq1hY5EREREJMOiFBGVKEFBQbCxsYGZmRnOnz8PbW1toSMRERWouLg4ODg4ICQkBIGBgahQoYLQkYiIiIgAsChFRCVIaGgobGxsIBKJEBAQAGNjY6EjERH9FKGhobC1tQUA/vtHREREhYaC0AGIiH6GuLg4ODs7IyEhAX5+fvyFjIhKFBMTE/j5+SE+Ph7Ozs6Ii4sTOhIRERERi1JEVPwlJyejU6dOCAoKgq+vL5euEFGJVKFCBfj6+uLly5fo3LkzUlJShI5EREREJRyLUkRUrInFYri5ueHKlSs4ceIEN/klohKtdu3aOH78OAICAuDm5gaxWCx0JCIiIirBWJQiomJLKpVi9OjROHLkCLy8vGBnZyd0JCIiwTVv3hxeXl44fPgwxowZA24vSkREREJhUYqIiq158+Zh8+bN2LJlCzp27Ch0HCKiQsPV1RUeHh7YtGkT5s+fL3QcIiIiKqGUhA5ARFQQNm7ciAULFmDp0qUYNGiQ0HGIiAqdwYMHIywsDDNmzICJiQlGjhwpdCQiIiIqYViUIqJiZ//+/RgzZgwmTJiAqVOnCh2HiKjQmjZtGsLCwjB69GgYGhqie/fuQkciIiKiEkQk5UYCRFSM+Pv7o127dujZsye2b98OBQWuUiYiyolEIkH//v2xf/9+eHt7w9HRUehIREREVEKwKEVExcaNGzfg4OAAW1tbHD9+HMrKykJHIiIqElJTU9GxY0cEBATg/PnzaNCggdCRiIiIqARgUYqIioVnz57B1tYWFStWxNmzZ6GpqSl0JCKiIiUhIQGOjo4ICgpCQEAALC0thY5ERERExRyLUkRU5IWEhMDa2hoaGhq4dOkSDAwMhI5ERFQkRUZGwtbWFsnJyQgICICZmZnQkYiIiKgY42YrRFSkRUdHw8nJCWKxGL6+vixIERH9AAMDA/j6+iI9PR1t27ZFTEyM0JGIiIioGGNRioiKrKSkJHTs2BEhISHw8/NDuXLlhI5ERFTkmZubw9fXF+/fv4eLiwuSkpKEjkRERETFFItSRFQkpaeno2fPnrh16xZOnToFKysroSMRERUb1atXx8mTJ3Hz5k306tUL6enpQkciIiKiYohFKSIqcqRSKYYNGwZvb28cPHgQTZs2FToSEVGx06xZMxw6dAinT5/G8OHDwW1IiYiIKL+xKEVERc706dOxbds2eHp6wtnZWeg4RETFlrOzM7Zt24a///4bM2bMEDoOERERFTNKQgcgIvoWq1evxvLly/H777+jb9++QschIir23NzcEB4ejokTJ8LY2BgTJkwQOhIREREVEyxKEVGRsXPnTkyaNAnTpk3D+PHjhY5DRFRiTJgwAaGhoZg4cSKMjIzg5uYmdCQiIiIqBkRSbhBAREWAt7c3OnbsiP79+2Pr1q0QiURCRyIiKlGkUikGDx6MnTt34vjx41w+TURERD+MRSkiKvSuXLkCR0dHtG7dGocOHYKSEid5EhEJIT09HV27doW/vz/Onj3LB00QERHRD2FRiogKtUePHsHW1hY1a9aEr68v1NXVhY5ERFSiJSUloU2bNnj06BEuX74MKysroSMRERFREcWiFBEVWsHBwbCxsYGenh4uXrwIXV1doSMRERGA6Oho2NvbIzo6GoGBgShXrpzQkYiIiKgIYlGKiAqliIgI2NnZITk5GYGBgShdurTQkYiI6AshISGwsbGBmpoaLl++DAMDA6EjERERURGjIHQAIqKvJSQkoEOHDoiMjISfnx8LUkREhZCZmRl8fX0RERGB9u3bIyEhQehIREREVMSwKEVEhUpqaiq6du2Khw8fwtvbG5aWlkJHIiKibFSpUgXe3t54+PAhunXrhrS0NKEjERERURHCohQRFRoSiQTu7u44d+4cjh49igYNGggdiYiIctGwYUMcOXIEZ8+ehbu7OyQSidCRiIiIqIhgUYqICgWpVIpJkyZh79692LVrFxwdHYWOREREedSqVSvs2rULe/bsweTJk8EtS4mIiCgvlIQOQEQEAMuXL8eaNWuwceNGdO/eXeg4RET0jXr06IGIiAiMHj0aJiYmmDp1qtCRiIiIqJBjUYqIBPfXX39h+vTpmDt3LkaOHCl0HCIi+k6jRo1CaGgopk2bBiMjIwwaNEjoSERERFSIiaScX01EAjp69Ci6du2K4cOHY8OGDRCJREJHIiKiHyCVSjFq1Ch4eHjgyJEj6Nixo9CRiIiIqJBiUYqIBHPx4kW0adMGLi4u2LdvHxQVFYWORERE+UAsFqNXr144efIk/Pz8YGdnJ3QkIiIiKoRYlCIiQdy7dw/NmzdHgwYNcPr0aaiqqgodiYiI8lFKSgratWuHmzdv4uLFi6hdu7bQkYiIiKiQYVGKiH66V69ewdraGmZmZjh//jy0tbWFjkRERAUgLi4ODg4O+PDhAwICAlChQgWhIxEREVEhwqIUEf1UYWFhsLGxAQAEBATA2NhY4ERERFSQQkNDYWNjA5FIxH/3iYiISI6C0AGIqOSIi4uDs7Mz4uPj4efnx19MiIhKABMTE/j5+SE+Ph7Ozs6Ii4sTOhIREREVEixKEdFPkZKSgs6dO+Ply5fw9fXlEg4iohKkYsWK8PHxwYsXL9C5c2ekpKQIHYmIiIgKARaliCjfpaWlyf0sFovh5uaGwMBAnDhxgpvdEhGVQHXq1MGJEycQEBCAfv36QSwWyx3/+r2DiIiIij8WpYgoX4nFYlStWhUHDhwAAEilUowZMwaHDx+Gl5cXHwtORFSCNW/eHF5eXjh06BDGjh2Lz1ubHjhwANWqVctUqCIiIqLijUUpIspX169fx6tXr1C2bFkAwPz587Fp0yZ4eHigY8eOAqcjIiKhubq6YvPmzdi4cSMWLFgAAChTpgyCgoJw48YNgdMRERHRz6QkdAAiKl68vb2hp6eHRo0aYePGjZg/fz6WLl2KwYMHCx2NiIgKiSFDhiA8PBwzZsyAsbExhg4dCl1dXXh7e6NJkyZCxyMiIqKfRCT9PG+aiCgfNGnSBBYWFujatSt69eqFcePGYfXq1RCJREJHIyKiQkQqlWLChAn4448/4OXlhQMHDiA4OBhXr14VOhoRERH9JFy+R0T5JiIiAtevX0f58uXh5uaGPn36YNWqVbhx4wbmzJmDkJAQoSMSEZHAQkJCMGfOHNy4cQO//fYbevfuDTc3N1hYWODatWuIjIwUOiIRERH9JCxKEVG+8fPzg1QqxYYNG2BnZ4d69eqhXr16aNy4MbZt24ZPnz4JHZGIiAT26dMnbNu2DY0bN5a9T9jY2GDDhg2QSqXw8/MTOiIRERH9JFy+R0T5plOnTjh+/Dj09PRkBShXV1cMHjwYrVu3hqKiosAJiYioMBCLxThz5gz++usvHDt2DACgpaWFmJgYuLq64siRIwInJCIiop+BRSkiyjdqampISUmBlZUVhg0bBjc3NxgaGgodi4iICrHw8HDs2rULHh4eePLkCVRVVZGcnCx0LCIiIvoJWJQionyzYsUK1KpVC23btuXG5kRE9E2kUil8fHxw//59TJkyReg4RERE9BOwKEVERERERERERD+dktABqGgLDg5GRESE0DGICiVDQ0OYm5sLHYOIigC+nxJlj++nRETFF4tS9N2Cg4NhZWWFxMREoaMQFUoaGhp4/PgxP0gTUY4y3k+rITExSegoRIWShoY6Hj9+wvdTIqJiiEUp+m4RERFITEzErl27YGVlJXQcokLl8ePHcHNzQ0REBD9EE1GOMt5Pk7B1zghULV9G6DhEhcrTN+8xZMEmvp8SERVTLErRD7OyskL9+vWFjkFERFSkVS1fBnWrWggdg4iIiOinURA6ABERERERERERlTwsShERERERERER0U/HohQREREREREREf10LEoREREREREREdFPx6IUUQFo0aIFWrRoIXSMImnfvn2oW7cu1NTUYGZmhvHjxyM+Pj7P49etW4dq1apBVVUVFSpUwPz585GWlpapX1hYGAYOHAhDQ0NoaGigWbNmOHv2bKZ+LVq0gEgkyvSnbdu2P3SfRESUO+cxi+E8ZrHQMYqkg/5XYD1wJgxbDoKl6y+YunYX4hOT8zx+00E/1O8zBQYO7qjZfQKW/n0YaenpmfqFR8di+OLNKN9+JIwdB6Pl8Pk4f+Nhpn7OYxZD27Zfpj+dJ674ofskIqKijU/fI6JCY/fu3XBzc8OQIUPw+++/49mzZ5g6dSoePXoEPz+/XMcvXrwYs2fPxrRp09CmTRtcv34ds2bNwvv37+Hh4SHrl5KSAkdHR8TExGDt2rUwNjbGhg0b0LZtW/j7+8Pe3l7uvBUrVsTu3bvl2nR1dfPlnomIiPKbl18AhizYhAEuLbBsbF+8CP6IOZu88OT1exz7fWqu41duP4aFWw9holsHODaqhZtPgrBwy0GEhEdj3dTBsn4pqWnoMG4ZYuMTsWKcG4z0SsHjsD86T1qJE2umwraeldx5K5gZY+uckXJtOtoa+XPTRERUJLEoRfSFxMREaGgUvQ9H2eWWSqVITk6Gurr6d587KSkJampqEIlEPxIxV2KxGL/++ivatGmDLVu2AAAcHBygra2Nvn37wtvbG87OztmOj4yMxKJFizB06FAsWbIEQMYsp7S0NMyaNQvjx49H9erVAQB//fUXHjx4gMDAQDRr1kx2rTp16mDKlCn4999/5c6trq6Opk2bFsRtExEVS4nJKdBQUxU6xjfLLrdUKkVyahrUVVW++9xJKalQU1H+Ce+nEszasA+OjWth/f8LSM3rV4eWhhoGL/gTflfuok2zOtmOj4z9hBXbj2GgSwvMG94DAGBX3wpp6WIs3HIQo3u0RbUKZQAAO05ewKOgd/DfNAdNalpmXKtedTQbOBOzN+7DuS3z5c6tpqqMxjUrF8RtExFREcXle1RgwsPDMWzYMJQrVw6qqqowMjKCjY0N/P39ZX2kUilWrFiB8uXLQ01NDfXr14e3t3em5W+enp4QiUR4/fq13DXOnz8PkUiE8+fPy9rOnDkDV1dXlC1bFmpqaqhcuTKGDx+OiIgIubHz5s2DSCTCrVu30K1bN+jp6aFSpUqyXBs3bkTdunWhrq4OPT09dOvWDUFBQXLnyC7/9/Ly8kKzZs2gqakJLS0tODk54fbt23J9Bg4cCC0tLdy/fx9t2rSBtrY2HB0dAQAikQhjxozBpk2bYGVlBVVVVWzfvh0AcPnyZTg6OkJbWxsaGhqwtrbGqVOn5M79+XX28/PDoEGDYGRkBA0NDaSkpHz3PeXV1atX8eHDB7i7u8u1d+/eHVpaWjhy5EiO4318fJCcnJxpvLu7O6RSKY4ePSprO3LkCKpWrSorSAGAkpIS3NzccO3aNbx///7Hb4iIKJ+ER8fhl+V/oVqXcTBwcIdFh1FoNXIBzl1/IOsjlUrx++6TqN51PAxbDoLtoFnwu3I30/K3XacvQtu2H958CJe7xqVbj6Ft2w+Xbj2Wtf1z/T56TvsdVTuPhWHLQajTcxLGrvgbETGf5MYu+eswtG374c7T13Cb9QfKtR2O2j0nyXJtOewP64EzYdRyEMq1HQ63WX/g1fswuXNkl/97HTp7FS2Hz4dJq8EwbT0EnSauwN1nr+X6DF+8Gaath+Dhy7dwnbAcpVsPRYdxywAA2rb9MGn1dvx19Cwa9J0KAwd37PG+BAAIvPsUHcYtRenWQ2HsOBiOI+bDJ/CO3Lk/v85nr93HyCVbYNFhFIwdByMlNfNy8vx27eELfIyMgVs7O7n2zi0bQ0tdDScu3shxvP+/95Ccmga3ds3l2vu1aw6pVIoTl27K2k5cvAFL89KyghQAKCkpoqeTNW48DkJIeFQ+3BERERVnnClFBaZfv364desWFi9ejCpVqiAmJga3bt1CZGSkrM/8+fMxf/58DB48GN26dcPbt28xdOhQiMViVK1a9buu+/LlSzRr1gxDhgyBjo4OXr9+jdWrV8PW1hb379+HsrKyXP8uXbqgV69eGDFiBBISEgAAw4cPh6enJ8aOHYvly5cjKioKCxYsgLW1Ne7evQsTE5N8z79kyRLMmjUL7u7umDVrFlJTU7Fy5UrY2dnh2rVrslk+AJCamoqOHTti+PDhmDZtGtK/2OPh6NGjuHTpEubMmQNTU1MYGxvjwoULaN26NWrXro2//voLqqqq2LhxI1xcXLB371707NlTLsugQYPQvn177Ny5EwkJCZlesy+lZ7G/RFYUFRVz/Hb4wYOMX65q164t166srIxq1arJjuc2vlatWnLtpUuXhqGhodz4Bw8ewM5O/sP6l9d++PAhypQpI2t/+fIl9PX1ERcXh/Lly6NXr16YNWvWD81AIyLKq2ELN+HOs9eYM6w7LMuZIiY+EXefvUZU3H/77S39+wiWbjuC/h3s0alFY7wLi8QvK/6CWCKBZbnS33XdV+/D0LhGZQzoYI9SWhoI/hCB9V7eaDNqIf7dsQTKSvIfI/vOXIuujk0x2LUlEpIzvswYu+Jv7Pa+hBHd2mDByJ6IjkvAMs+jaDVyAa54Loaxvk6+51+54zgWbjkIt3Z2mDLAFalp6Vi79xScRi/CeY/5slk+AJCalo6e01bDvWNLTHTrgHSxRHbs5KWbCLz7FNMGdoKJgQ6MdEvh8u3H6DhhOWpWMseGaUOgoqKErUfOosfU1dg2bxS6OsrPqh21dAucmtXFllkjkJickuk1+1J6ujhP96eoqJDj++njoHcAgJqVzOXalZWUUKV8aTx69S7H8z/6//galcrKtZsa6sJAV1t2fgB49OodrGtn/rzz+dqPX72HmZG+rP3V+zCYO49AXGISzE0M0dWxKaYMdP2hGWhERFS0sShFBSYgIABDhgzB0KFDZW2urq6yv8fExGD58uXo3Lkztm7dKmuvUaMGbGxsvrsoNWLECNnfpVIprK2t0aJFC5QvXx7e3t7o2LGjXP8BAwZg/vz/ppdfvXoVW7ZswW+//YaJEyfK2u3s7FClShWsXr0ay5cvz9f8b9++xdy5czFmzBj88ccfsvbWrVvD0tIS8+fPh5eXl6w9LS0Nc+bMyTQrCADi4+Nx//596OnpydqaNWsGPT09nD9/HlpaWgCADh06oG7dupg8eTJ69Ogh9wHX0dERmzdvzlP2nApWX9q2bRsGDhyY7fHPxUp9ff1Mx/T19TPNkstqvKqqKjQ1NbMc/2UxNDIyMtvrfJkFAGxtbdGzZ09Uq1YNSUlJ8Pb2xooVK3D58mWcO3cOCgqccEpEBevq/ecY4GIP944OsrYOdg1kf4/5lIDfd5+ES/OG2DBtiKzdqkIZtB658LuLUoM7Ocr+LpVK0bSmJezqVUP1bhPgd/Ue2tvWl+vfx9kWMwd3lf187cELeJ44jyVj+uCXXv8tv7auUxX1ev+Kdfu8sXBUr3zN/y40Ekv+OozhXVth5fj+svaWjWqibu/JWLrtCLYvGCNrT0sXY+rAzujXvnmmcyUkpeDq9qXQK/Xf+0rL4fOhq62J0+tmQEtDDQDgbF0P1u4zMXPDXnRp2UTu/dS+QQ38MWVQnrLrtRiYp35/zhiaaRbTlyL/X6z8MrfsGqW0Ms2S+1pUbDxUVZShqa6Weby2plwxNCo2HnqltLK4jqbs+GfNaldBV8cmqFLeDEkpqThz9R7W7DmFK/ef4vQfM/h+SkRUQrEoRQWmcePG8PT0hIGBAVq1aoUGDRrIFTCuXLmC5ORk9O3bV26ctbU1ypcv/93XDQsLw5w5c3Dq1CmEhIRAIvnvW8/Hjx9nKkp17dpV7ueTJ09CJBLBzc1NbhaQqakp6tSpI1sqmJ/5fX19kZ6ejv79+8tdU01NDfb29jh37lymMV/n/qxly5ZyBamEhAT8+++/GDlypKwgBWTMXOrXrx+mTp2Kp0+folq1armeOyvXr1/PU78KFSrkqV923/7mZQ+OnPp8fSyvfRctWiR3rF27drCwsMDkyZNx7NgxdO7cOddcREQ/okH1ith9+hL0S2mhRcOaqFfNQm7GzbUHL5CcmoaebazlxjWtVQXmpobffd3w6Fgs2noYvlfu4ENENCQSqezY09chmYpSrvaN5H72CbwNkUiEXk7WcrOATPR1ULOyOS7ffpzv+f2v3Ue6WIzebW3lrqmmogzbutVw8YvlibLcLRplagMy9mH6srCTkJSMG49eYkinlrKCFJAxc6mXkw3m/OmFZ8EfULW8Wa7nzsqFrfNz7wSgfGmjPPX7offTbziW0+m+PDZnWHe5Y07N6sLc1BAzN+zFyUu30NG+Ya65iIio+GFRigqMl5cXFi1ahK1bt2L27NnQ0tJC586dsWLFCpiamspmo5iammYam1VbXkgkErRp0wYhISGYPXs2atWqBU1NTUgkEjRt2hRJSUmZxpQuLf8NbGhoKKRSqWyJ3tcqVqwIAPmaPzQ0FADQqFHWH16//vZQQ0MDpUqVyrLv1/cTHR0NqVSaqR0AzMwyPjh/OTMoq3PkpG7dunnqp6iomONxAwMDWZavX/uoqKgsZzZ9PT45OTnLTd+joqLQoEEDub5f3/PnfkDWs7W+5ObmhsmTJ+Pq1assShFRgfOcPwYrtx/D9pMXsHDrIWipq8GleQMsHNULJga6spkrn5fCfSmrtryQSCRwnbACHyKiMXVgJ9SoWA4a6qqQSCRoOXw+klNSM40xMdCV+zksOg5SqRQVXcZk6gtkPIkNQL7mD4+KBQDYD5mb5XEFBfkKioaaCkppZr0U29RA/toxnxIhlUph+tV9AkBpw4wvg76cGZRxjsx9s1O7ct6+0FJUzHlGkcH/Zy5FxcZnev2i4+KznEH1JX0dLSSnpmW56Xv0pwTUq1pBru/X95xxnYztELKaRfWlXk42mLlhL64/fMGiFBFRCcWiFBUYQ0NDrFmzBmvWrEFwcDCOHz+OadOmISwsDD4+PrIixMePHzON/fjxIywsLGQ/q6llfCP59YbbX29e/uDBA9y9exeenp4YMGCArP3FixfZ5vz6G0NDQ0OIRCJcunQJqqqZn8Dzue1b8ufG0DDjm+CDBw/maZbVt8wI0tPTg4KCAj58+JCpb0hIiNz183L+r+XX8r3Pe0Hdv39fbv+s9PR0PHnyBL17987x/F+Ob9Kkiaz948ePiIiIQM2aNeX63r9/P9M5Prd92TcnXGpARD+Doa42lo9zw/Jxbnj7MQKnA25j7iYvhEfH4cjqKdD//y/+Yf8vyHwpLCpWbraRmkrGv9kpafL7AUbGym9e/ijoHe6/CMammcPQ1/m/PfhevgvNNufX7x0GOloQiUTw3TALqiqZP3Kq/v/941vy58ZARxsAsGvRWJQzNci1/7e8n+pqa0BBQYSPkTGZ+n6IiM64vq72V+fINYJMfi3fq/7/vaAeBr2V2z8rPV2MZ28+oFurnJ8mW6NiuYzxL9+iUY3/npQXGhmDyJhPsKpYVq7vw6DMe1Q9fPk2I0vFspmOZeXrYiEREZUcLErRT2Fubo4xY8bg7NmzCAgIAAA0bdoUampq2L17t9xyscDAQLx580auqPP57/fu3ZPbq+n48eNy1/n8AfLrYlJe90cCMvZaWrZsGd6/f48ePXpk2+9b8ufGyckJSkpKePny5TctncsLTU1NNGnSBIcPH8aqVatkm3NLJBLs2rULZcuWRZUqVb77/Pm1fK9JkyYoXbo0PD095TZeP3jwIOLj49GlS5ccx7dt2xZqamrw9PSUK0p9fqJgp06dZG2dO3fGqFGj8O+//8r6pqenY9euXWjSpIlsBll2Pj/RsGnTnD/YExHlt3KmhhjetTXO33iIq/efAQAa1agMNRVlePkFyi0Xu3r/GYI/RsgVdcxNM5Z+PXwRjCrm/82KPX35ltx1ZO+nyvIfFf8+9k+es7a1rofVu07iQ3g0ujg2ybbft+TPjWOTWlBSVETQ+9BvWjqXF5rqamhYvRKOX7yBxWP6yDbnlkgk8PILRBljfViW+76Z3kD+Ld9rVL0yTA10sfv0JbmN14+ev4b4pGR0tM/5dWnVtDbUVJSx2/uSXFFq1+lLEIlEcPliPzOX5g0w4bftuP7whaxveroYXn4BaFi9kmwGWXZ2//+Jhl9eh4iIShYWpahAxMbGwsHBAX369EG1atWgra2N69evw8fHR1Zc0NPTw+TJk7Fo0SIMGTIE3bt3x9u3bzFv3rxMy98aNWqEqlWrYvLkyUhPT4eenh6OHDmCy5cvy/WrVq0aKlWqhGnTpkEqlUJfXx8nTpzAmTNn8pzdxsYGw4YNg7u7O27cuIHmzZtDU1MTHz58wOXLl1GrVi2MHDnym/LnxsLCAgsWLMDMmTMRFBSEtm3bQk9PD6Ghobh27Ro0NTXlNmP/VkuXLkXr1q3h4OCAyZMnQ0VFBRs3bsSDBw+wd+/eb5oZ9bWGDfNnur2ioiJWrFiBfv36Yfjw4ejduzeeP3+OKVOmoHXr1mjbtq2s74ULF+Do6Ig5c+Zgzpw5ADKW3M2aNQuzZ8+Gvr4+2rRpg+vXr2PevHkYMmSI3OyrQYMGYcOGDejevTuWLVsGY2NjbNy4EU+fPoW/v7+s36VLl7B48WJ07twZFStWRHJyMry9veHh4YGWLVvCxcUlX+6diCg7sfGJaD92Cbq3aoYq5c2graGGm4+D4P/vPdlyJ71Smhjbux1WbD+G0cu2orNDY7wLi8LSvw/D5KslaA2sKsLSvDRmbtiLdLEEutqaOHHxBq7ceybXr0r50qhYxhhzN+2HVJpxDe+A2/jnes5PQv1Ss9pV4N7RASOXeuDW0yDY1KkGTXVVfIyIwZV7z1CjUlkM6dzqm/LnpnxpI8wc0gULPA7idUg4WjWpBT1tTYRFxeHG45fQVFeV24z9W80f3gMdJyxHu1+WYFzvdlBWVsLWw/54FPQO2+aN+qH30/rVKn732C8pKipg4aheGLpwE8au+BvdWzXDi3cfMWfjPrRsVBOtm/73lNvLtx+jw/hlmDawE6a5ZyxH1y+lhSkDXLFw6yHoaWvBsXFN3HwchKXbjmBAB3u52Vf92tvD47A/+s9ej/kjesBIrxS2HDmL58EfcWLNVFm/gLtPsWr7Mbg0bwiLMkZITknDmav3sO3EOdg3qI52NvXy5d6JiKjoYVGKCoSamhqaNGmCnTt34vXr10hLS4O5uTmmTp2KKVOmyPotWLAAmpqa2LhxI3bu3Ilq1aph06ZNWLVqldz5FBUVceLECYwZMwYjRoyAqqoqevXqhfXr16N9+/ayfsrKyjhx4gTGjRuH4cOHQ0lJCa1atYK/vz/MzeUfjZyTzZs3o2nTpti8eTM2btwIiUQCMzMz2NjYoHHjxt+cPy+mT5+O6tWrY+3atdi7dy9SUlJgamqKRo0ayT1R8HvY29vjn3/+wdy5czFw4EBIJBLUqVMHx48fR4cOHX7o3PnJzc0NioqKWLZsGTw9PaGvr4/+/ftj8eLFcv2kUinEYrHcJvYAMHPmTGhra2PDhg1YtWoVTE1NMW3aNMycOVOun6qqKs6ePYspU6bgl19+QWJiIurWrQtvb2/Y29vL+pUuXRqKiopYuHAhIiIiIBKJYGlpiQULFmDSpElcvkdEBU5NRRkNq1fCPt8ABH+MQFq6GGVNDDChbweM7/vf+9+sIV2hoaaKrUfOYp9vAKqYl8aaye74Y+9pufMpKipg//KJmPz7DoxftQ0qykro1qopVk3sj26//ibrp6ykBK/lEzF17S6MW/k3lBQV0aJhDZxYMw1WXcfnOf8fUwahUY3K+PvYP9h65CwkEilKG+qiSa0qaGBV6Zvz58Xkfh1RzaIM/jzgi4P+V5CSlg4TfR3Ur1ZB7omC38O2nhVOrp2OJX8fxoglHpBIpKhZ2RxeyybAuRAVVno52UBRQQGrd53Abu9L0Culid5tbTNtNi6VAmKxRG4TewD4dYArtDTU4HHYH3/sOw0TfR1M7NsBvw6Qf1iMqooyTq6djlkb92Hymp1ISk5BLcvyOLxqMmzrWcn6mRroQkFRAcu3H0VkbDxEACqVM8XMwV0xtpcz30+JiEowkVQqlebejSizW7duoUGDBrh58ybq16+f+4Bv0KJFCwCQPemOqKgpyP8/iKh4+fzvxaW/FqJuVYt8PbfzmIyivvf6mbn0JCqc7jx9DbvBs/l+SkRUTPFrCSIiIiIiIiIi+um4fI+ogInFYuQ0IVEkEkFRUfEnJiIiIip6xGJJHt5P+X0rERFRUcKiFBVKxWnZXqVKlfDmzZtsj9vb2xer+yUiosKjOC3bq91zEoI/RmR73LZutWJ1v0RERCUBi1JEBezEiRNISUnJ9ri2tvZPTENERFQ07V8+ESlpadke19JQ/4lpiIiIKD+wKEVUwGrVqiV0BCIioiKvRqVyQkcgIiKifMaF90RERERERERE9NOxKEVUyM2bNw8ikUjoGD/s8uXLaNeuHfT09KCurg5LS0ssXLgw2/5SqRTNmzeHSCTCmDFjfmJSIiIqjpb8dRjatv2EjvFDbjx6iU4TV6B066EwbT0E7X5Zgiv3nmXZ987T13AZtwymrYegbNvh6DNjLV69D/vJiYmIiHLGohQRFbg9e/bA3t4eOjo62LFjB06fPo2pU6fm+BSlDRs24MWLFz8xJRERUeF183EQ2o5ZjKSUVHjMHg6PWSOQnJoGl/HL8O+D53J9n74JQbtfFiM1PR3bF4zBhulD8OLtBziNXoTw6DiB7oCIiCgz7ilFRAXq/fv3GDZsGIYPH46NGzfK2h0cHLId8/r1a0yfPh07duxAly5dfkZMIiKiQm3RloPQ0dLAkd9+hYaaKgDAoVEN1OoxCTM37IX/n3NkfRdvPQQVFWUcWDEJpTQzNoCvV7UC6vaajD/2nsbCUb0EuQciIqKvcaYUlRjh4eEYNmwYypUrB1VVVRgZGcHGxgb+/v6yPmfOnIGrqyvKli0LNTU1VK5cGcOHD0dEhPwjqD8vqbt37x66d+8OHR0d6OvrY+LEiUhPT8fTp0/Rtm1baGtrw8LCAitWrJAbf/78eYhEIuzatQsTJ06Eqakp1NXVYW9vj9u3b+fpfry8vNCsWTNoampCS0sLTk5OmcYGBQWhV69eMDMzg6qqKkxMTODo6Ig7d+5834v4HbZu3YqEhARMnTo1z2OGDRuG1q1bo3PnzgWYjIiIvkd4dBx+Wf4XqnUZBwMHd1h0GIVWIxfg3PUHsj7/XL+PntN+R9XOY2HYchDq9JyEsSv+RkTMJ7lzfV5S9+BFMPrN+gNlnIbB3HkEpq3bjfR0MZ4Ff0Dn/y9Xq9FtAn7ffVJu/KVbj6Ft2w/7fAMwbd1uVOo4BkYtB6HtmEW4++x1nu7n0NmraDl8PkxaDYZp6yHoNHFFprGv3odh4Nz1sHT9BQYO7qjoMhodxi3Fvedvvus1/B5X7z+HXb1qsoIUAGhrqMOmTlX8e/85PkbEAADS08XwCbwDV/tGsoIUAJibGqJ5/eo4cfHmT8tMRESUG86UohKjX79+uHXrFhYvXowqVaogJiYGt27dQmRkpKzPy5cv0axZMwwZMgQ6Ojp4/fo1Vq9eDVtbW9y/fx/Kyspy5+zRowfc3NwwfPhwnDlzBitWrEBaWhr8/f0xatQoTJ48GXv27MHUqVNRuXLlTLN+ZsyYgfr162Pr1q2IjY3FvHnz0KJFC9y+fRsVK1bM9l6WLFmCWbNmwd3dHbNmzUJqaipWrlwJOzs7XLt2DdWrVwcAtGvXDmKxGCtWrIC5uTkiIiIQGBiImJiYHF8rqVQKsVicp9dVSSnnf0YuXrwIfX19PHnyBK6urnjw4AH09fXRpUsXrFixAqVKlZLrv3XrVly7dg2PHj3K0/WJiOjnGrZwE+48e405w7rDspwpYuITcffZa0TFxcv6vHofhsY1KmNAB3uU0tJA8IcIrPfyRptRC/HvjiVQ/uq9o/+c9ejVxhqDXFvin+sPsGbPKaSni3HuxkMM7eyIsb3bYf+ZK5jzpxcqljWBq30jufHzNx9AnarlsX7qYMQlJGLp30fQ7pcluPz3IlQoY5ztvazccRwLtxyEWzs7TBngitS0dKzdewpOoxfhvMd8VKtQBgDQ9ddVkEgkWDiqF8qaGCAy9hP+vf8csZ8Sc3ytMt5PJXl6XZWUFHM8npqeDpWvPocAgOr/2x4GvYWpoS6CQsKQlJKKmlk8rbBGpXL45/oDJKekQk1VJU+5iIiIChKLUlRiBAQEYMiQIRg6dKiszdXVVa7PiBEjZH+XSqWwtrZGixYtUL58eXh7e6Njx45y/YcNG4aJEycCAFq1agU/Pz+sX78ehw8fls3yadGiBU6ePIndu3dnKkoZGRnhyJEjso3MbW1tYWlpiaVLl2LLli1Z3sfbt28xd+5cjBkzBn/88YesvXXr1rC0tMT8+fPh5eWFyMhIPH36FGvWrIGbm5usX16Ww23fvh3u7u659gOQ475QQMbyvcTERHTv3h3Tp0/HmjVrcP36dcydOxcPHjzApUuXZPf//v17TJ48GStWrICZmVmerk9ERD/X1fvPMcDFHu4d/1uG3cGugVyfwZ0cZX+XSqVoWtMSdvWqoXq3CfC7eg/tbevL9Xfv6IBfejkDABwa1cQ/1x9g86Ez2L14HDraNwQA2NWzgk/gbez3C8xUlDLU1cbeJeNl7yfNaldF3V6T8duuE1g/dXCW9/EuNBJL/jqM4V1bYeX4/rL2lo1qom7vyVi67Qi2LxiDyNhPeB78AcvHuqGXk42s39cZsrLb+xJGLsn6/fxrny7vzPF4NYsyuP7wBSQSCRQUMhY7pKeLcePRSwBAVGz8//+bMRtNr5RmpnPoldKEVCpFzKdEmLIoRUREhQCLUlRiNG7cGJ6enjAwMECrVq3QoEGDTDOfwsLCMGfOHJw6dQohISGQSP77dvPx48eZilIdOnSQ+9nKygp3796Fs7OzrE1JSQmVK1fGmzeZp/j36dNH7sl65cuXh7W1Nc6dO5ftffj6+iI9PR39+/dHenq6rF1NTQ329vaysfr6+qhUqRJWrlwJsVgMBwcH1KlTR/ZBNicuLi64fv16rv3yQiKRIDk5GXPnzsW0adMAZBTqVFRUMH78eJw9exatWrUCkFEUrFOnjlzhkIiICpcG1Sti9+lL0C+lhRYNa6JeNYtMM5/Co2OxaOth+F65gw8R0ZBI/vsC4+nrkExFqbbWdeV+rlreDPdfBKNN09qyNiUlRVQsa4K3HyPxte6tm8m9n5qbGqJJTUtcupX9rFv/a/eRLhajd1tbpKf/NztYTUUZtnWr4eKtxwAA/VJaqFjGGGv3noJYIkHz+laoVdk8T++nzjb1cGHr/Fz75cXwrq0xetlWTFq9A78O6AiJRIql244gODRjiwEFBfkn9eb05N5i8FBfIiIqJliUohLDy8sLixYtwtatWzF79mxoaWmhc+fOWLFiBUxNTSGRSNCmTRuEhIRg9uzZqFWrFjQ1NSGRSNC0aVMkJSVlOqe+vr7czyoqKtDQ0ICamlqm9ri4zE+7MTU1zbLt7t272d5HaGgoAKBRo6y/of38IVkkEuHs2bNYsGABVqxYgUmTJkFfXx99+/bF4sWLoa2tne019PX1oaOjk+3xb2FgYIDnz5/DyclJrt3Z2Rnjx4/HrVu30KpVKxw8eBA+Pj64fPkyYmNj5fqmpqYiJiYGmpqamQqJRET0c3nOH4OV249h+8kLWLj1ELTU1eDSvAEWjuoFEwNdSCQSuE5YgQ8R0Zg6sBNqVCwHDXVVSCQStBw+H8kpqZnOqVdKS+5nZWVFaKipZFpipqKkhE8Jmd+PTQwyv2eZGOjgwYvgbO8jPCrjvcZ+yNwsj38u8ohEIpxYOx3Lth3Bmj2nMGP9HuiV0kLPNs0wZ1h3aGuoZzkeyCho6WhqZHv8W/TvYI+ImE9Yuf0Yth49CwBoXLMyxvZqh993n0RpQ72Ma+pkvL9/njn1pei4BIhEIuho5U8mIiKiH8WiFJUYhoaGWLNmDdasWYPg4GAcP34c06ZNQ1hYGHx8fPDgwQPcvXsXnp6eGDBggGzcixcvCizTx48fs2wzMDDIdoyhoSEA4ODBgyhfvnyO5y9fvjz++usvAMCzZ8+wf/9+zJs3D6mpqdi0aVO24/Jz+V7t2rVx9erVbMd9LqI9ePAA6enpaNq0aaa+W7ZswZYtW3DkyBF06tQpT7mIiKhgGOpqY/k4Nywf54a3HyNwOuA25m7yQnh0HI6snoJHQe9w/0UwNs0chr7OdrJxL9+FFlim0MjYLNv0dbSy6J3B4P/Fm12LxqKcafbvu0DGzKuN0zNm8T4P/oAj//yLJduOIDVNjLW/Zv9+mZ/L9wBgolsHjO7hhJfvPkJLQx3mpoYYu+JvaKqrol61CgCAimbGUFdVwcOgt5nGP3r5FhXLmHA/KSIiKjRYlKISydzcHGPGjMHZs2cREBAA4L9p7qqqqnJ9N2/eXGA59u7di4kTJ8qu/ebNGwQGBqJ///7ZjnFycoKSkhJevnyJrl275vlaVapUwaxZs3Do0CHcunUrx775uXyva9eu8PDwgLe3N+rVqydrP336NADIilADBw5EixYtMo13cHBAp06dMG7cONSsWTNfMhERUf4oZ2qI4V1b4/yNh7h6/xmAL95PleU/Zv597J8Cy3HQ/yp+6eUsu3bwxwj8++A5ere1zXaMY5NaUFJURND7ULi2yH1/qM8szUtjysBOOHbhRq5P+MvP5Xufqaooo3rFjE3M336MwOF//sVAlxZQ/3+hSUlJEc429XD8wg0sHNVLNpPr7ccIXLz9GKN7tM3XPERERD+CRSkqEWJjY+Hg4IA+ffqgWrVq0NbWxvXr1+Hj4yPb+LtatWqoVKkSpk2bBqlUCn19fZw4cQJnzpwpsFxhYWHo3Lkzhg4ditjYWMydOxdqamqYPn16tmMsLCywYMECzJw5E0FBQWjbti309PQQGhqKa9euQVNTE/Pnz8e9e/cwZswYdO/eHZaWllBRUcE///yDe/fuyfZ2yo6BgUGOs7W+RZs2beDi4oIFCxbIlkLeuHED8+fPR4cOHWBrayu7LwsLiyzPUaZMmSwLVkRE9HPFxiei/dgl6N6qGaqUN4O2hhpuPg6C/7/3ZBuSVylfGhXLGGPupv2QSjM21/YOuI1/rj8osFzh0XHoPWMNBro4IC4+EUv+Pgw1FWVM6ueS7ZjypY0wc0gXLPA4iNch4WjVpBb0tDURFhWHG49fQlNdFTMHd8WDF8GY9PsOdHZojEplTaGirIgLNx/hwctgTOyb/fmBjNlYn2dk/ahHQW9x7Px11KtWEarKSrj/Ihird59EpbImmDWkm1zfGYO7oMWQueg+5TdM7OuC5NQ0LP7rEAx0tGUbyhMRERUGLEpRiaCmpoYmTZpg586deP36NdLS0mBubo6pU6diypQpAABlZWWcOHEC48aNw/Dhw6GkpIRWrVrB398f5ubmBZJryZIluH79Otzd3REXF4fGjRtj3759qFSpUo7jpk+fjurVq2Pt2rXYu3cvUlJSYGpqikaNGsmeIGhqaopKlSph48aNePv2LUQiESpWrIjffvsNv/zyS4HcT3a8vLwwf/58eHh4YP78+TAzM8OECRMwd27W+3gQEVHhpKaijIbVK2GfbwCCP0YgLV2MsiYGmNC3A8b3bQ8AUFZSgtfyiZi6dhfGrfwbSoqKaNGwBk6smQarruMLJNfc4d1x63EQRi7xwKfEZDSwqoht80ajYhmTHMdN7tcR1SzK4M8DvjjofwUpaekw0ddB/WoVZE8QNDHQQYUyxthy5Czeh0VCBBEszIywZEwfjOjapkDuJyvKSkq4cOsR/jx4BglJyShnYoDBri0x0a0DNNXl97KsWt4Mp9fNwJw/vdBv9h9QUlRE8/rVsXhpbxjplfppmYmIiHIjkua2IQxRNm7duoUGDRrg5s2bqF+/fu4DSOb8+fNwcHDAgQMH0K1bt9wHUJHD/z+IKK8+/3tx6a+FqFvVQug4RcqlW4/RbuwS7Fz4Czo5NBY6DhWAO09fw27wbL6fEhEVU7k/y5aIiIiIiIiIiCifsShFREREREREREQ/HfeUIhJAixYtwJWzREREP8auvhU+Xd4pdAwiIiL6TpwpRUREREREREREPx2LUkR5dP78eYhEIpw/f17oKAUmLS0N8+fPh4WFBVRVVVGtWjWsW7cuz+Pj4+Mxfvx4mJmZQU1NDXXr1sW+ffuy7Hvr1i20atUKWlpa0NXVRZcuXRAUFCTXJyEhAb169ULVqlWhra0NTU1N1KhRA4sWLUJCQsIP3SsREQnv0q3H0Lbth0u3Hgsd5YfFJyZj6tpdsHT9BYYtB8F64Ewc9L+S5/Hh0bEYvngzyrcfCWPHwWg5fD7O33iY45iklFTU7fUrtG37Ye2eU3LHbj95hYm/eaJJ/+ko3XooKrqMhsu4ZbhwM+dzEhER/UxcvkdEMqNGjcLOnTuxcOFCNGrUCL6+vhg3bhw+ffqEGTNm5Dq+S5cuuH79OpYtW4YqVapgz5496N27NyQSCfr06SPr9+TJE7Ro0QJ169bF/v37kZycjDlz5sDOzg537tyBkZERgIwimVQqxcSJE1GhQgUoKCjg4sWLWLBgAc6fPw9/f/8Cey2IiIi+Rd+Za3HrcRDmj+iJyuam2H/mCtznbYREIkWPNtY5jk1JTUOHccsQG5+IFePcYKRXCh6H/dF50kqcWDMVtvWsshy3cMtBJCanZHnsgP8V3HwchH7tm6NWZXMkJKXgr2P/oMO4Zdg8czj6ONv+8D0TERH9KBaliAgA8PDhQ/z1119YvHgxfv31VwAZe19FRkZi0aJFGDFiBPT19bMdf/r0aZw5c0ZWiAIABwcHvHnzBr/++it69uwJRUVFAMCcOXOgqqqKkydPolSpUgCABg0awNLSEqtWrcLy5csBALq6uvDy8pK7TqtWrZCSkoIVK1YgKCgIFStWzPfXgoiI6Fv4XrmDf64/wN9zR6F762YAgOb1q+PtxwjM2rgPXR2bQlEx+wUKO05ewKOgd/DfNAdNalpmjK9XHc0GzsTsjftwbsv8TGNuPHqJzYfO4K85I9FvduZZzRP6tseSMX3k2pya1YXtoFlY7nmERSkiIioUuHyPiqWjR49CJBLh7NmzmY79+eefEIlEuHfvHgDgxo0b6NWrFywsLKCurg4LCwv07t0bb968yfU6LVq0QIsWLTK1Dxw4EBYWFnJtqampWLRoEapVqwZVVVUYGRnB3d0d4eHh33WP+e3o0aOQSqVwd3eXa3d3d0dSUhJ8fHxyHH/kyBFoaWmhe/fumcaHhITg33//BQCkp6fj5MmT6Nq1q6wgBQDly5eHg4MDjhw5kmvWzzOplJRYVyci+llOXLwBbdt+WS4p23rEH9q2/fDgRTAA4NaTIAycux41uk2AUctBqNFtAtznbkDwx4hcr+M8ZjGcxyzO1D588WbU6DZBri01LR0rPI+ifp8pMHBwh0WHURixxAPh0XHfeZff58TFm9BSV0Nnh8Zy7W7tmuNDRDSuP3qRy/gbsDQvLStIAYCSkiJ6OlnjxuMghIRHyfVPTUvHqKVbMLRLK9SrViHLcxrp6WRqU1RUQN2qFfAuLCqLEURERD8fi1JULHXo0AHGxsbYtm1bpmOenp6oX78+ateuDQB4/fo1qlatijVr1sDX1xfLly/Hhw8f0KhRI0RE5P7hOS8kEglcXV2xbNky9OnTB6dOncKyZctw5swZtGjRAklJSTmOl0qlSE9Pz9Of7/XgwQMYGRnB1NRUrv3z6/TgwYNcx1tZWWUqFH09/uXLl0hKSpK1f933xYsXSE5Olmv/fP9xcXHw8fHBb7/9ht69e8Pc3PzbbpKIiL6bs3U9GOmVwq7TFzMd2336EupWsUDNyhn/Lgd/iICleWksG9sXR1ZPwYKRPfExMgb2Q+YgIuZTvuSRSCToNe13rN59Ej1aN8PBFZMwf0QPnLv+AO1+WYKklNQcx2e8t4jz9Cc3j4LeoaqFGZSUFOXaa1YqJzue4/hX72R95cdnvJ6PX72Xa1+27QgSk1Mwe0jXXLN9KT1djCv3nsKqQplvGkdERFRQOM2AiiUlJSW4ubnhzz//RGxsLHR0Mr4tfPz4Ma5duya3eXe3bt3QrVs32c9isRgdOnSAiYkJ9uzZg7Fjx/5wnv3798PHxweHDh1Cly5dZO116tRBo0aN4OnpiZEjR2Y7fvv27ZlmMGVHKpV+V8bIyMgsl+dpampCRUUFkZGRuY7Paind53N+Hv/5v1ldS19fH1KpFNHR0ShdurSs3cvLS7YkEMiYfeXh4ZGHuyIiovyipKSInm1s8NfRs4iNT4SOlgYA4Mnr97jxOAirJvSX9e3k0Bidvpg1JBZL0Na6Lip1HIMDZwIxsrvTD+c5/M+/OPPvPexaPBau9o1k7bUqm8N+yFzsPn0RQzq3ynb8bu9LGLlkS56u9enyzhyPR8XGo4KZUaZ2vVJaGcfj4nMd/7mv/HhN2fHP7j1/gzV7TmH/8onQVFf7piLfkr8P4+W7UOxdOj7PY4iIiAoSi1JUbA0aNAirV6+Gl5cXhg0bBgDYtm0bVFVV5Tbdjo+Px8KFC3Ho0CG8fv0aYvF/34g+fpw/TwM6efIkdHV14eLiIjebqW7dujA1NcX58+dzLEq5uLjg+vXr+ZLl69lUioqKEIlEACD7b1ZyOpaXPl8f+5a+Tk5OuH79Oj59+oQrV65g+fLliIyMxJEjR6CgwAmfREQ/S//2zbHeyxuHzl7FINeWAIBdpy9CVUVZtpcSkPEkuuWeR3H8wnW8+RgBsVgiO/b0TUi+ZPEJvANdLQ20s6knN5upduXyMDHQwaXbT3IsSjnb1MOFrZn3avpeOb6vIS/vobkfS08XY9TSLejq2BStmmSecZwTzxPnsXLHcfzSyxkd7Bp801giIqKCwqIUFVs1atRAo0aNsG3bNgwbNgxisRi7du2Cq6ur3CydPn364OzZs5g9ezYaNWqEUqVKQSQSoV27drkuq8ur0NBQxMTEQEVFJcvjuS0T1NfXl832+hGvX79GhQrye0+cO3cOLVq0gIGBAe7cuZNpTEJCAlJTU3Pc5BwADAwMspxNFRWVsW/F5/EGBgYAkG1fkUgEXV1duXY9PT00bNgQQMbm6ZUqVUKvXr1w7NgxdO7cOcdcRESUf6wqlkUDq4rYdfoSBrm2hFgsgZdvINrb1of+FzN9Bs3fiAs3H2LKgE5oYFUR2prqEImArpNX5bqsLq/ComIRE58I/RZZzySOjM15BpF+KS3oaGrkSxZ9Ha0sZ0NF/7/t84ynHMfHZjU+4f/jM17bDft98DokHNsX/IKYTxnHPiVkfFZJSU1DzKcEaGuoZ9pUfeepixi38m+4d3TA4tG9QUREVFiwKEXFmru7O0aNGoXHjx8jKCgIHz58kFsGFxsbi5MnT2Lu3LmYNm2arD0lJUVWTMmJmpoaYmNjM7V/XWQyNDSEgYFBtpuFa2tr53id/Fq+Z2ZmlmnGVdWqVQEAtWrVwr59+/Dx40e5faXu378PAKhZs2aO161Vqxb27t2L9PR0uX2lvh5fqVIlqKury9q/dP/+fVSuXBlqamo5Xqtx44wlIc+ePcuxHxER5T+3dnaY8Nt2PHn9Hq9DwvExMgZu7ZrLjsfGJ8In8A6mu3fCpH4usvaU1DRE/7+QkhM1FWXEJmT+Uijyq6KNgY429HW0cOS3X7M8j5aGeo7Xyc/lezUqlsVB/6tITxfL7Sv1MOgtAKB6xbK5jC+Hh1nsO/Xwpfz4R6/eITY+EXV7Tc7Ud+HWQ1i49RACti1Cbcvysvadpy5izPKt6NPWDmt/dc/TzGciIqKfhUUpKtZ69+6NiRMnwtPTE0FBQShTpgzatGkjOy4SiSCVSqGqqio3buvWrXLL+LJjYWGBAwcOICUlRXaOyMhIBAYGyj1ZrkOHDti3bx/EYjGaNGnyzffxv/buP8iq8rDj8DfdhQxYLYaLhlWBKiqGEK24jrgKE4xEQbJhJHVnunakxGm0YxmQ8kMNxI0ZGYTEHRISICRs+LEaIk6EIoJkIWtqNNUyaRJj7XQMYxrTIFUaGtOyS/9wsnSDUZOSd1f6PH+ec+6579mZu+/M59z3nmO1fK9v375d3zj6dfX19bnjjjvS0tKSuXPndm1fs2ZN+vXrl6uuuuoNzz1lypSsWrUqDzzwQK677rqu7S0tLampqem67urq6kyePDmbNm3K4sWLu4Lc3r1709bWlpkzZ77u+f+3tra2JMnw4cPf9FgAjq2pHxiT+cs2ZP3W9jz/r/+WmkEn54qLj9y4+NXc2rdPn26va9m8q9syvt9kyOBBebDtyfzyv/477+z72jleeuU/8uQ/PpcTTzgSmq6quyBf2/ntdHR0pnbkbz8fHMvle5PHXpQ1m3fl67u/k2uvuKRr+4aHH8vgysmpfc8bj2/y2NGZubQl3/n+P3ddy6FDHbl/+7dy0XvOyuDKyUmSWY2T03j12G6v/en+lzPtE8sz/cPjc+34S3Lmaad27Vu39bUgdd2Eunxu3nRBCoBeR5TiuDZgwIBMmTIla9asycsvv5zZs2d3+w2ik046KWPHjs0999yTSqWSYcOGZffu3Vm9evVRS8hez/XXX58VK1aksbExN954Y1566aUsXry4W5BKkoaGhqxfvz4TJ07MjBkzcvHFF6dPnz554YUX0tbWlvr6+jdchjZw4MCuZW+/LyNHjsz06dOzcOHCVFVVpba2Ntu3b8/KlStz1113dVu+19TUlKampuzcuTPjxo1Lklx99dW58sorc9NNN+XAgQMZPnx4Wltbs23btqxbty5VVUfuHN95552pra3NNddck3nz5uXVV1/NggULUqlUcuutt3Ydt2LFirS3t2fChAk544wzcvDgwbS3t2fZsmW59NJLU19f/3v9mwBwtAEnnpDJYy/K+ofb88rP/zN/3TCx+9x6Qr/UXXBumlu3ZuCAEzP03ZU8tueH+cqW3Rnwh2++XK7hg3X50te/kY82fT43fOj92f/Kz3Pvhr/tFqSSZOoVY/LV7X+Xa/9maW7+yISMPu+s9Kmuyo9/tj/ffPoHmXTZ6Hxo3OvfiEle+6bVwD96428qv1UTxpyf8bXvzcwla3Lg4C9y1umnZuOOx7Pjie/miws+1m053c13r8qGbY/lu/cvzZB3V5Ik108al5WbHs2ff/yzufNjf5pBJ5+UVQ/uzHN7X8zme4/cKDp3aE3OHVrT7b1/9JOfJUn+uOaUXH7heV3bH/zGE/mrRV/M+4YPzV/Uvz9//4N/6fa6888Z2hX9AKCniFIc96ZNm5bW1tYkyQ033HDU/g0bNmTGjBmZM2dODh06lLq6uuzYsSOTJk1603PX1dWlpaUlixYtSn19fc4888wsXLgwW7duza5du7qOq6qqykMPPZTm5uasXbs2d999d6qrq3P66adn3LhxGTVq1LG63P+T5cuX57TTTsuyZcvy4osvZtiwYWlubs4tt9zS7bjOzs50dHQctVRw06ZNuf3227NgwYLs378/I0aMSGtraxoaGrodN2LEiOzatStz587N1KlTU11dnfHjx2fJkiUZNOjI04tGjRqVLVu2ZP78+dm3b1+qq6tz9tln57bbbsusWbO6LRMEoJzGSZdn46OPJ0n+bOLlR+3/0sKbM6d5XRYsvy+HOjpyyahz8tBn5mbqnKVveu4x7zsnK27/y3x6/eY0zPtMhtWckvnTpuSRb+/JY//ww67jqqr+IPcvmpXlGx/JfY98K0vXbk51VVVqTnlXLrtgREaedcaxu+C3YP2nZqRp5cZ8avUD+fcDB3POkMH58iduztQPjOl2XEdnZzo6OrvNoe/s2ydbmufnjo0Ml9UAAAQuSURBVOX3Zfa9a/OLV3+ZUWcPzaYls3PZn5z362/1lmx7fE86Ow9nzz89nytv+uRR+7+38dMZOvjoJwYCQEnvOPy7Pj+e//eefvrpjB49Ok899VQuvPDCnh4O9Co+H8Bb9av/F+2rP5kLzh3W08OBXmXPs8/n8ukfN58CHKc8Sx0AAACA4kQpAAAAAIoTpQAAAAAoTpQCAAAAoDhRCgAAAIDiRCkAAAAAihOlAAAAACiuuqcHwNvfM88809NDgF7H5wL4bT37ox/39BCg1/G5ADi+iVL8ziqVSvr375/GxsaeHgr0Sv3790+lUunpYQC93Gvzab98tOkLPT0U6JX69+9nPgU4Tr3j8OHDh3t6ELx97d27N/v27evpYUCvVKlUMmTIkJ4eBvA2YD6F38x8CnD8EqUAAAAAKM4PnQMAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAUJ0oBAAAAUJwoBQAAAEBxohQAAAAAxYlSAAAAABQnSgEAAABQnCgFAAAAQHGiFAAAAADFiVIAAAAAFCdKAQAAAFCcKAUAAABAcaIUAAAAAMWJUgAAAAAU9z9Wz8pXmmvvMgAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the pruned tree\n", + "plt.style.use('default')\n", + "plt.figure(figsize=(12, 8))\n", + "plot_tree(pruned_tree,\n", + " feature_names=X_train.columns,\n", + " filled=True,\n", + " fontsize=12)\n", + "# plt.title(\"Pruned Regression Tree\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "18a9a179-4226-4734-8bcf-554671ce85e9", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 2.4. Train and Test MSE for Pruned Tree\n", + "Compute the training and test MSE of the pruned tree and add it to the table from *Q1.2*." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "b46158c7-20ed-40ab-a9ed-f7ad577c976e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pruned Tree Train MSE: 0.004898\n", + "Pruned Tree Test MSE: 0.008131\n" + ] + } + ], + "source": [ + "# Calculate training MSE for pruned tree\n", + "y_pred_pruned_tree_train = pruned_tree.predict(X_train)\n", + "mse_pruned_tree_train = mean_squared_error(y_train, y_pred_pruned_tree_train)\n", + "\n", + "# Calculate test MSE for pruned tree\n", + "y_pred_pruned_tree_test = pruned_tree.predict(X_test)\n", + "mse_pruned_tree_test = mean_squared_error(y_test, y_pred_pruned_tree_test)\n", + "\n", + "print(f\"Pruned Tree Train MSE: {mse_pruned_tree_train:.6f}\")\n", + "print(f\"Pruned Tree Test MSE: {mse_pruned_tree_test:.6f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5a7e1a79-340c-4b61-9e74-e06b4f455904", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 2.5. Random Forest\n", + "Finally, use random forest to improve the predictions. Motivate your choice for the tuning parameters. Report the training and test MSE and add it to the table from *Q1.2*. Which variables are most important in the random forest?" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "e9731a27-c811-4cf2-a53d-7d49a48e1d5b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Random Forest Parameters:\n", + " Number of trees (n_estimators): 100\n", + " Features considered per split (max_features): 2\n", + " Out-of-bag score: -0.009214729335368155\n", + "\n", + "Parameter Justification:\n", + " - n_estimators=100: Sufficient trees for stable predictions without overfitting\n", + " - max_features=2: For regression, typically sqrt(p) or p/3, where p=6\n", + " sqrt(6) = 2, so 2 is reasonable\n" + ] + } + ], + "source": [ + "# Random Forest with tuned parameters\n", + "rf_model = RandomForestRegressor(\n", + " n_estimators=100, # corresponds tontree in R\n", + " max_features=2, # corresponds tomtry in R (number of features to consider at each split)\n", + " random_state=2,\n", + " n_jobs=-1, # Use all available cores\n", + " oob_score=True \n", + ")\n", + "\n", + "rf_model.fit(X_train, y_train)\n", + "\n", + "print(f\"Random Forest Parameters:\")\n", + "print(f\" Number of trees (n_estimators): {rf_model.n_estimators}\")\n", + "print(f\" Features considered per split (max_features): {rf_model.max_features}\")\n", + "print(f\" Out-of-bag score: {rf_model.oob_score_}\")\n", + "\n", + "# Parameter justification\n", + "print(f\"\\nParameter Justification:\")\n", + "print(f\" - n_estimators=100: Sufficient trees for stable predictions without overfitting\")\n", + "print(f\" - max_features=2: For regression, typically sqrt(p) or p/3, where p={len(X_train.columns)}\")\n", + "print(f\" sqrt({len(X_train.columns)}) = {int(np.sqrt(len(X_train.columns)))}, so 2 is reasonable\")" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "19ed5de3-bb54-45bb-bda4-2ebdaf457338", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.13/site-packages/sklearn/ensemble/_forest.py:611: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable OOB estimates.\n", + " warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmqNJREFUeJzs3Xl4jOfixvF7MlkQEksQu9rXkqIEsbSWolRRpIs6R1daWy1FqUMtVbW0jjotrbanTbT2WlpLRWKrNbqgqC1Iak9kkWUyvz/mlzkiQZDkTWa+n+t6rjN5552ZO6jjzvu8z2OyWq1WAQAAAACAbOdidAAAAAAAABwVpRsAAAAAgBxC6QYAAAAAIIdQugEAAAAAyCGUbgAAAAAAcgilGwAAAACAHELpBgAAAAAgh1C6AQAAAADIIa5GB8iLUlNTdf78eRUpUkQmk8noOAAAAACAPMZqter69esqW7asXFxufz2b0p2J8+fPq0KFCkbHAAAAAADkcRERESpfvvxtn6d0Z6JIkSKSbL94Xl5eBqcBAAD3JS5OKlvW9vj8ecnT09g8AACHEhMTowoVKtj74+1QujORNqXcy8uL0g0AQH5lNv/vsZcXpRsAkCPudksyC6kBAAAAAJBDKN0AAAAAAOQQSjcAAAAAADmEe7oBAAAA3DOLxaLk5GSjYwA5xs3NTeab1we5T5RuAAAAAFlmtVoVFRWla9euGR0FyHFFixaVr6/vXRdLuxNKNwAAcEyFCkmxsf97DCBbpBXuUqVKqVChQg9URoC8ymq1Kj4+XhcuXJAklSlT5r7fi9INAAAck8nENmFANrNYLPbCXaJECaPjADmqYMGCkqQLFy6oVKlS9z3VnIXUAAAAAGRJ2j3chZg9AieR9mf9QdYvoHQDAADHlJgo9e9vG4mJRqcBHApTyuEssuPPOqUbAAA4ppQU6csvbSMlxeg0AAAnRekGAAAAACCHULoBAAAA5CqLxaKQkBAFBQUpJCREFoslxz8zIiJCAwYMUNmyZeXu7q5KlSppyJAhunz5coZz//jjD/Xu3VslS5aUh4eHqlevrvHjxys+Pj7deZUrV5bJZJLJZJLZbFbZsmU1YMAAXb169Y5Zbn7dzWP69OnZ+j0jb6B0AwAAAMg1y5cvV+XKldW2bVs9++yzatu2rSpXrqzly5fn2GeeOHFCjRs31tGjRxUUFKTjx49rwYIF2rx5s/z9/XXlyhX7ubt27VLTpk2VlJSktWvX6ujRo5o6daq+/PJLtW/fXklJSenee9KkSYqMjNSZM2f0zTffKDQ0VIMHD75rprTX3TzefPPNTM+1Wq1KyeQ2mVuzZNX9vg73h9INAAAAIFcsX75cvXr10tmzZ9MdP3funHr16pVjxXvQoEFyd3fXhg0b1Lp1a1WsWFGdOnXSpk2bdO7cOY0bN06SrdwOGDBAtWvX1vLly/Xoo4+qUqVKeuaZZ/TDDz9o586dmj17drr3LlKkiHx9fVWuXDm1bdtW/fr10/79+++aKe11Nw/P/9/mMCQkRCaTST/99JMaN24sDw8PhYWFqU2bNnrjjTc0fPhw+fj4qH379pKkrVu36tFHH5WHh4fKlCmjt99+O11Jv93rkDso3QAAAADum9VqVVxc3F1HTEyMBg8eLKvVmul7SNKQIUMUExOTpffL7H0yc+XKFf30008aOHCgfd/lNL6+vnruuee0ZMkSWa1WhYeH69ChQxo+fLhcXNJXpQYNGqhdu3YKCgq67WedO3dOa9asUdOmTbOU7W5GjRqladOm6fDhw3r44YclSV9++aVcXV21fft2/ec//9G5c+fUuXNnNWnSRAcPHtQnn3yiRYsW6b333kv3Xre+DrnH1egAAAAAAPKv+Ph4FS5c+IHfx2q16uzZs/L29s7S+bGxsfYrw3dy7NgxWa1W1a5dO9Pna9euratXr+rixYs6evSo/djtzt22bVu6Y6NHj9Y777wji8WiGzduqGnTppo1a9Zdc6W97mZr1qxRmzZt7F9PmjQpw1XpatWqacaMGfavx40bpwoVKmjevHkymUyqVauWzp8/r9GjR2vChAn2Hx7c+jrkHkp3PmWxWBQWFqbIyEiVKVNGAQEBMpvNRscCACDvKFRIunDhf48BIBNpV8yzsh+z1WrNcN7IkSPVv39/Wa1WRUREaOzYserSpYtCQ0Pv+O/ztNfdrFy5cum+bty4cYbX3Xrs8OHD8vf3T5erRYsWio2N1dmzZ1WxYsXbvhdyB6U7H1q+fLmGDBmS7l6Y8uXLa+7cuerRo4eByQAAyENMJqlkSaNTAA6vUKFCio2Nvet5oaGh6ty5813PW7dunVq1apWlz82KatWqyWQy6dChQ+revXuG548cOaJixYrJx8dHNWrUkCQdOnRIDRs2zPTc6tWrpzvm4+OjatWqSZKqV6+uOXPmyN/fX1u2bFG7du1um+vm191OZlfybz2W2Q8CMvtBQlZmBSBncE93PmPU4hMAAABAZkwmkzw9Pe86OnTooPLly9/2irLJZFKFChXUoUOHLL1fVq5MS1KJEiXUvn17zZ8/XwkJCemei4qK0jfffKM+ffrIZDKpYcOGqlWrlmbPnq3U1NR05x48eFCbNm1SYGDgHT8v7er2rZ+VU+rUqaMdO3aku8d9x44dKlKkSIYr5zCGoaU7NDRUXbt2VdmyZWUymbRy5co7nh8ZGalnn31WNWvWlIuLi4YOHZrhnM8++0wBAQEqVqyYihUrpnbt2mn37t058w3kMovFoiFDhtxx8YmhQ4fmyj6HAADkeYmJ0qBBtpGYaHQawOmZzWbNnTtXUsap3Glfz5kzJ0dumZw3b54SExPVsWNHhYaGKiIiQj/++KPat2+vcuXKacqUKfYcCxcu1KFDh9SzZ0/t3r1bZ86c0ffff6+uXbvK398/Qwe5fv26oqKiFBkZqd27d2vkyJHy8fFR8+bN75gp7XU3j5iYmHv+3gYOHKiIiAi9+eabOnLkiFatWqV3330308XgYAxDfxfi4uLUoEEDzZs3L0vnJyYmqmTJkho3bpwaNGiQ6TkhISEKDAzUli1btHPnTlWsWFEdOnTQuXPnsjO6IcLCwjJc4b5Z2n0kYWFhuZgKAIA8KiVFmj/fNjLZ3xZA7uvRo4eWLl2a4Qps+fLltXTp0hy7VbJ69erau3evqlatqj59+qhq1ap65ZVX1LZtW+3cuVPFixe3n9uiRQvt2rVLZrNZnTt3VrVq1TRmzBi9+OKL2rhxozw8PNK994QJE1SmTBmVLVtWTz75pDw9PbVx40aVKFHijpnSXnfzGDVq1D1/b+XKldO6deu0e/duNWjQQK+99poGDBiQYZE2GMdkzepa+znMZDJpxYoVmd5nkZk2bdqoYcOGmjNnzh3Ps1gsKlasmObNm6d+/fpl6b1jYmLk7e2t6OhoeXl5Zek1uSEoKEjPPvvsXc/79ttv7zrtBQAAhxcXJ6WtqBwbK3E/I/DAbty4oZMnT+qhhx5SgQIF7vt9WBQY+cWd/sxntTc6/EJq8fHxSk5OTvfTq/yqTJky2XoeAAAAYASz2ZxuayzAkTl86X777bdVrly5O64cmJiYqMSb7vW6n3spckNAQIDKly+vc+fOZXpft8lkUvny5RUQEGBAOgAAAADArRz6zvoZM2YoKChIy5cvv+P0l2nTpsnb29s+KlSokIsps87IxScAAAAAAPfOYUv3zJkzNXXqVG3YsEEPP/zwHc8dM2aMoqOj7SMiIiKXUt672y0+UaJEiRxdfAIAAAAAcO8csnR/8MEHmjx5sn788Uc1btz4rud7eHjIy8sr3cjLevTooVOnTmnLli3q3LmzJKlt27YUbgAAAADIYwy9pzs2NlbHjx+3f33y5EmFh4erePHiqlixosaMGaNz587pq6++sp8THh5uf+3FixcVHh4ud3d31alTR5JtSvn48eP17bffqnLlyoqKipIkFS5cWIXTVjB1AGmLT3h6emrdunVau3at4uLi5MnKrAAA2BQsKJ08+b/HAAAYwNAtw0JCQtS2bdsMx1988UUtXrxY/fv316lTpxQSEmJ/7tZ7mSWpUqVKOnXqlCSpcuXKOn36dIZz3n33XU2cODFLufLqlmGZsVqtql69uv766y+2CgMAAECOyq4tw4D8It9vGdamTZtMV+FOs3jx4gzH7vYzgrTy7SxMJpP69u2rKVOmKDg4mNINAAAAAHmIQ97T7WzSivb69et19epVg9MAAJBHJCVJI0faRlKS0WkAOLiJEyeqYcOGefpzTp06JZPJZL9lF7mD0u0A6tatq/r16ys5OVkrVqwwOg4AAHlDcrI0c6ZtJCcbnQaAwSIiIjRgwACVLVtW7u7uqlSpkoYMGaLLly/f83uZTCatXLky3bERI0Zo8+bN2ZQ2Z1SoUEGRkZGqV6+e0VHu6PDhw+rWrZu8vb1VpEgRNWvWTGfOnLE/n5iYqDfffFM+Pj7y9PRUt27ddPbsWQMT3xml20H07dtXkhQUFGRwEgAAACBvOXHihBo3bqyjR48qKChIx48f14IFC7R582b5+/vrypUrD/wZhQsXVokSJbIhbc4xm83y9fWVq6uhdxnf0V9//aWWLVuqVq1aCgkJ0cGDBzV+/Ph091MPHTpUK1asUHBwsLZt26bY2Fg9+eSTslgsBia/PUq3g0gr3T///LN9xXYAAAAA0qBBg+Tu7q4NGzaodevWqlixojp16qRNmzbp3LlzGjdunP3cypUra/LkyXr22WdVuHBhlS1bVh9//HG65yXp6aeflslksn9967Tv/v37q3v37po6dapKly6tokWL6l//+pdSUlI0cuRIFS9eXOXLl9fnn3+eLuvo0aNVo0YNFSpUSFWqVNH48eOVfA+zda5evarnnntOJUuWVMGCBVW9enV98cUXkjJOL+/fv79MJlOGkbaQdVJSkkaNGqVy5crJ09NTTZs2TbfIdU4YN26cOnfurBkzZsjPz09VqlRRly5dVKpUKUlSdHS0Fi1apA8//FDt2rWTn5+f/vvf/+q3337Tpk2bcjTb/aJ0O4gqVaro0UcfVWpqqpYuXWp0HAAAACBPuHLlin766ScNHDhQBW/ZPtDX11fPPfeclixZkm7B5g8++EAPP/yw9u/frzFjxmjYsGHauHGjJGnPnj2SpC+++EKRkZH2rzPz888/6/z58woNDdWsWbM0ceJEPfnkkypWrJh++eUXvfbaa3rttdcUERFhf02RIkW0ePFiHTp0SHPnztVnn32m2bNnZ/n7HT9+vA4dOqT169fr8OHD+uSTT+Tj45PpuXPnzlVkZKR9DBkyRKVKlVKtWrUkSf/4xz+0fft2BQcH69dff9UzzzyjJ554QseOHbvt53fq1Mm+XfPtxu2kpqZq7dq1qlGjhjp27KhSpUqpadOm6aby79u3T8nJyerQoYP9WNmyZVWvXj3t2LEjy79OuSnvzivAPQsMDNTu3bsVFBSkN954w+g4AAAAgOGOHTsmq9Wq2rVrZ/p87dq1dfXqVV28eNF+NbVFixZ6++23JUk1atTQ9u3bNXv2bLVv314lS5aUJBUtWlS+vr53/OzixYvro48+kouLi2rWrKkZM2YoPj5eY8eOlSSNGTNG06dP1/bt2+0zV9955x376ytXrqy33npLS5Ys0ahRo7L0/Z45c0Z+fn5q3Lix/T1ux9vbW97e3pKk5cuXa8GCBdq0aZN8fX31119/KSgoSGfPnlXZsmUl2e5b//HHH/XFF19o6tSpmb7nwoULlZCQkKWst7pw4YJiY2M1ffp0vffee3r//ff1448/qkePHtqyZYtat26tqKgoubu7q1ixYuleW7p06Tw745fS7UB69+6t4cOHa8eOHTp9+rQqVapkdCQAAAAgT0u7wm0ymezH/P39053j7++vOXPm3PN7161bVy4u/5tcXLp06XSLmJnNZpUoUUIXLlywH1u6dKnmzJmj48ePKzY2VikpKXfcA/pWr7/+unr27Kn9+/erQ4cO6t69u5o3b37H1xw4cED9+vXTv//9b7Vs2VKStH//flmtVtWoUSPduYmJiXe8d71cuXJZznqr1NRUSdJTTz2lYcOGSZIaNmyoHTt2aMGCBWrduvVtX2u1WtP9HuYlTC93IGXLlrX/QVyyZInBaQAAAADjVatWTSaTSYcOHcr0+SNHjqhYsWK3nYKd5n4KnZubW4b3yOxYWtnctWuX+vbtq06dOmnNmjU6cOCAxo0bp6R72PawU6dOOn36tIYOHarz58/r8ccf14gRI257flRUlLp166YBAwZowIAB9uOpqakym83at2+fwsPD7ePw4cOaO3fuHT//fqeX+/j4yNXVVXXq1El3vHbt2vbVy319fZWUlJRhq+QLFy6odOnSd/y1MQpXuh1MYGCgQkJCFBQUlOUpKAAAOKSCBaXff//fYwBOqUSJEmrfvr3mz5+vYcOGpbuvOyoqSt9884369euXrlTv2rUr3Xvs2rXLfp+zZCvTObFS9vbt21WpUqV0C7udPn36nt+nZMmS6t+/v/r376+AgACNHDlSM2fOzHDejRs39NRTT6lWrVqaNWtWuuf8/PxksVh04cIFBQQEZPmzH2R6ubu7u5o0aaI///wz3fGjR4/aZ/E2atRIbm5u2rhxo3r37i1JioyM1O+//64ZM2bc1+fmNEq3g+nZs6cGDRqk8PBwHTlyJN1fDgAAOBUXF6luXaNTAMgD5s2bp+bNm6tjx45677339NBDD+mPP/7QyJEjVa5cOU2ZMiXd+du3b9eMGTPUvXt3bdy4Ud9//73Wrl1rf75y5cravHmzWrRoIQ8Pjwz3F9+vatWq6cyZMwoODlaTJk20du1arVix4p7eY8KECWrUqJHq1q2rxMRErVmz5rb3s7/66quKiIjQ5s2bdfHiRfvx4sWLq0aNGnruuefUr18/ffjhh/Lz89OlS5f0888/q379+urcuXOm7/kg08slaeTIkerTp49atWqltm3b6scff9QPP/xgXzXd29tbAwYM0FtvvaUSJUqoePHiGjFihOrXr6927do90GfnFKaXO5gSJUrYV/ILDg42OA0AAABgvOrVq2vv3r2qWrWq+vTpo6pVq+qVV15R27ZttXPnThUvXjzd+W+99Zb27dsnPz8/TZ48WR9++KE6duxof/7DDz/Uxo0bVaFCBfn5+WVbzrR7md944w37vczjx4+/p/dwd3fXmDFj9PDDD6tVq1Yym8237QVbt25VZGSk6tSpozJlythH2irgX3zxhfr166e33npLNWvWVLdu3fTLL7+oQoUKD/y93s7TTz+tBQsWaMaMGapfv74WLlyoZcuW2e81l6TZs2ere/fu6t27t1q0aKFChQrphx9+kNlszrFcD8JkvXltfEiSYmJi5O3trejo6HtatCCv+Prrr9WvXz/VrFlThw8fzrMLCgAAkKOSkqS01XXHjpXc3Y3NAziAGzdu6OTJk3rooYdUoEABo+PkiMqVK2vo0KEaOnSo0VGQB9zpz3xWeyNXuh1Q9+7dVaBAAf3555/2je8BAHA6ycnSv/5lG8nJRqcBADgpSrcDKlKkiJ588klJTDEHAAAAACOxkJqD6tu3r5YuXarg4GBNmzYt3f6AAAAAQLaLi7v9c2azdPPU3Dud6+KSfseBzM719Lz3fFl06tSpHHtvOCeamIPq3LmzihQpojNnzmjnzp1GxwEAAICjK1z49qNnz/Tnlip1+3M7dUp/buXKGc8B8hFKt4MqWLCgunfvLokp5gAAAABgFKaXO7DAwEB9/fXX+u677zR79my5uvLbDQAAgBwSG3v7527dyunChdufe+ttkUz3Rj7HlW4H1q5dO5UoUUIXLlywbyYPAAAA5AhPz9uPW7cXu9O5N9/Pfbtz70NERIQGDBigsmXLyt3dXZUqVdKQIUN0+fLlDOf+8ccf6t27t0qWLCkPDw9Vr15d48ePV3x8fLrzKleuLJPJJJPJJLPZrLJly2rAgAG6evXqHbPc/Lqbx/Tp0+/re8srIiMj9eyzz6pmzZpycXHJ8rZrZ86cUdeuXeXp6SkfHx8NHjxYSUlJ6c757bff1Lp1axUsWFDlypXTpEmTdPPu19u2bVOLFi1UokQJFSxYULVq1dLs2bMzfNa1a9c0aNAglSlTRgUKFFDt2rW1bt26B/q+74bS7cDc3NzUq1cvSVJQUJDBaQAAyGUFCki7d9uGg+4nDCBrTpw4ocaNG+vo0aMKCgrS8ePHtWDBAm3evFn+/v66cuWK/dxdu3apadOmSkpK0tq1a3X06FFNnTpVX375pdq3b5+hDE6aNEmRkZE6c+aMvvnmG4WGhmrw4MF3zZT2upvHm2++mem5VqtVKSkpGY7fmiWr7vd1d5OYmKiSJUtq3LhxatCgQZZeY7FY1KVLF8XFxWnbtm0KDg7WsmXL9NZbb9nPiYmJUfv27VW2bFnt2bNHH3/8sWbOnKlZs2bZz/H09NQbb7yh0NBQHT58WO+8847eeecdffrpp/ZzkpKS1L59e506dUpLly7Vn3/+qc8++0zlypXLvl+EzFiRQXR0tFWSNTo62ugoDywkJMQqyert7W29ceOG0XEAAACQjyUkJFgPHTpkTUhIMDrKPXniiSes5cuXt8bHx6c7HhkZaS1UqJD1tddes1qtVmtqaqq1Tp061saNG1stFku6c8PDw60mk8k6ffp0+7FKlSpZZ8+ene68SZMmWevUqXPHPJm97mZbtmyxSrL++OOP1kaNGlnd3NysP//8s7V169bWQYMGWYcNG2YtUaKEtVWrVlar1fZv/iZNmljd3d2tvr6+1tGjR1uTk5Pt73e71+Wk1q1bW4cMGXLX89atW2d1cXGxnjt3zn4sKCjI6uHhYe9j8+fPz9Bnpk2bZi1btqw1NTX1tu/99NNPW59//nn715988om1SpUq1qSkpCx/H3f6M5/V3siVbgfXsmVLlS1bVtHR0frpp5+MjgMAAADkqitXruinn37SwIEDVfCWqeu+vr567rnntGTJElmtVoWHh+vQoUMaPnx4hi13GzRooHbt2t1xBum5c+e0Zs0aNW3aNFuyjxo1StOmTdPhw4f18MMPS5K+/PJLubq6avv27frPf/6jc+fOqXPnzmrSpIkOHjyoTz75RIsWLdJ7772X7r1ufV1mvvnmGxUuXPiO45tvvsmW7y3Nzp07Va9ePZUtW9Z+rGPHjkpMTNS+ffvs57Ru3VoeHh7pzjl//vxtt3g7cOCAduzYodatW9uPrV69Wv7+/ho0aJBKly6tevXqaerUqbJYLNn6Pd2KlbUcnNlsVp8+fTR79mwFBQWpW7duRkcCACB3JCVJc+faHg8ZIrm7G5sHgCGOHTsmq9Wq2rVrZ/p87dq1dfXqVV28eFFHjx61H7vdudu2bUt3bPTo0XrnnXdksVh048YNNW3aNN2059tJe93N1qxZozZt2ti/njRpktq3b5/unGrVqmnGjBn2r8eNG6cKFSpo3rx5MplMqlWrls6fP6/Ro0drwoQJ9h8e3Pq6zHTr1u2uPzAoXbr0Xb+3exEVFZXhPYsVKyZ3d3dFRUXZz6lcuXKmOaKiovTQQw/Zj5cvX14XL15USkqKJk6cqJdeesn+3IkTJ/Tzzz/rueee07p163Ts2DENGjRIKSkpmjBhQrZ+XzejdDuBvn37avbs2Vq9erXi4uLkeZ+LTwAAkK8kJ0ujRtkeDxxI6QaQKev/L8ZlMpmydO6t540cOVL9+/eX1WpVRESExo4dqy5duig0NFTmW1dtz+R1N7v13uLGjRtneN2txw4fPix/f/90uVq0aKHY2FidPXtWFStWvO173apIkSIqUqTIXc/Lbpn92t/6a33rObf7fQsLC1NsbKx27dqlt99+W9WqVVNgYKAkKTU1VaVKldKnn34qs9msRo0a6fz58/rggw9ytHQzvdwJNGnSRFWrVlV8fLx++OEHo+MAAAAAuaZatWoymUw6dOhQps8fOXJExYoVk4+Pj2rUqCFJdzy3evXq6Y75+PioWrVqql69uh577DHNmTNHO3bs0JYtW+6YK+11N49bp79ndrHs1mOZ/SAgs0KalQtvRkwv9/X1tV/RTnP16lUlJyfbr2Znds6F/9927tar5A899JDq16+vl19+WcOGDdPEiRPtz5UpU0Y1atRI98OQ2rVrKyoqKscWl5Mo3U7BZDKpb9++kqTg4GCD0wAAAAC5p0SJEmrfvr3mz5+vhISEdM9FRUXpm2++UZ8+fWQymdSwYUP7VlOpqanpzj148KA2bdpkv2p6O2mF7tbPyil16tTRjh070m2ftWPHDhUpUuSeV+Xu1q2bwsPD7ziy+3ZVf39//f7774qMjLQf27Bhgzw8PNSoUSP7OaGhoemK8YYNG1S2bNkM085vZrValZiYaP+6RYsWOn78eLrf26NHj6pMmTJyz8HZUJRuJ5FWutevX69r164ZGwYAAADIRfPmzVNiYqI6duyo0NBQRURE6Mcff1T79u1Vrlw5TZkyRZLtYtXChQt16NAh9ezZU7t379aZM2f0/fffq2vXrvL398+w9/T169cVFRWlyMhI7d69WyNHjpSPj4+aN29+x0xpr7t5xMTE3PP3NnDgQEVEROjNN9/UkSNHtGrVKr377ruZLgZ3N0WKFMlw9f3Wcbfp52nlPDY2VhcvXrQvTpdmxYoVqlWrlv3rDh06qE6dOnrhhRd04MABbd68WSNGjNDLL78sLy8vSdKzzz4rDw8P9e/fX7///rtWrFihqVOnavjw4far+f/+97/1ww8/6NixYzp27Ji++OILzZw5U88//7z9s15//XVdvnxZQ4YM0dGjR7V27VpNnTpVgwYNuqdfp3uW5bXSnYgjbRl2s3r16lklWRctWmR0FAAAcl5srNUq2UZsrNFpAIeQX7cMs1qt1lOnTln79+9v9fX1tbq5uVkrVKhgffPNN62XLl3KcO6vv/5q7dmzp7VEiRJWNzc3a9WqVa3vvPOONS4uLt15lSpVskqyj5IlS1o7d+5sPXDgwB2z3Pq6tPHqq69ardb/bRl29erVdK+73TZcWdkyLCvbd2WHzL6vSpUq2Z//4osvrLfW0NOnT1u7dOliLViwoLV48eLWN954I8N2x7/++qs1ICDA6uHhYfX19bVOnDgx3XZhH330kbVu3brWQoUKWb28vKx+fn7W+fPnZ9j6bceOHdamTZtaPTw8rFWqVLFOmTLFmpKSctvvJzu2DDP9/y8MbhITEyNvb29FR0fbf7riCKZMmaJ33nlH7du314YNG4yOAwBAzoqLkwoXtj2OjZVYSBR4YDdu3NDJkyf10EMPqUCBAkbHAXLcnf7MZ7U3Mr3ciaRNMd+8ebP+/vtvg9MAAAAAgOOjdDuRqlWr6tFHH1VqaqqWLl1qdBwAAHJWgQLSli22wRU5AIBBKN1OJu1qd1BQkMFJAADIYWaz1KaNbdxhr1wAAHISpdvJ9O7dWyaTSdu3b9eZM2eMjgMAAAAADo3S7WTKlSunVq1aSZKWLFlicBoAAHJQcrL073/bRnKy0WkAh8JazHAW2fFnndLthAIDAyUxxRwA4OCSkqQ33rCNpCSj0wAOwc3NTZIUHx9vcBIgd6T9WU/7s38/XLMrDPKPnj176o033tCBAwf0559/qmbNmkZHAgAAQD5gNptVtGhRXbhwQZJUqFAhmUwmg1MB2c9qtSo+Pl4XLlxQ0aJFZX6AtUEo3U7Ix8dH7du31/r16xUcHKx3333X6EgAAADIJ3x9fSXJXrwBR1a0aFH7n/n7ZbJyQ0YGWd3kPD/7+uuv1a9fP9WsWVOHDx/mJ5QAAMcTFycVLmx7HBsreXoamwdwMBaLRcmslwAH5ubmdscr3FntjVzpdlJPPfWUChQooD///FMHDx5Uw4YNjY4EAACAfMRsNj/QlFvAWbCQmpPy8vJSly5dJLGgGgAAAADkFEq3E+vbt68kKTg4mG0fAAAAACAHULqdWJcuXVSkSBGdOXNGO3fuNDoOAADZy8NDWrPGNjw8jE4DAHBSlG4nVrBgQXXv3l2S7Wo3AAAOxdVV6tLFNlxZxgYAYAxKt5NLm2L+3XffKSUlxeA0AAAAAOBYKN1Orn379ipevLj+/vtvhYSEGB0HAIDsk5wsLV5sG2xrBAAwCKXbybm5ualXr16SmGIOAHAwSUnSP/5hG0lJRqcBADgpSjcUGBgoSVq2bJkSExMNTgMAAAAAjoPSDQUEBKhMmTK6du2aNmzYYHQcAAAAAHAYlG7IbDarT58+kqSgoCCD0wAAAACA46B0Q9L/ppivWrVKcXFxBqcBAAAAAMdA6YYkqUmTJqpSpYri4+O1Zs0ao+MAAAAAgEOgdEOSZDKZ7Ht2M8UcAAAAALIHpRt2aaV7/fr1unbtmrFhAAB4UB4e0nff2YaHh9FpAABOitINu/r166tu3bpKSkrSihUrjI4DAMCDcXWVnnnGNlxdjU4DAHBSlG6kk7agWnBwsMFJAAAAACD/o3QjnbStwzZv3qwLFy4YnAYAgAeQkiJ9/71tpKQYnQYA4KQo3UinWrVqatKkiSwWi77//nuj4wAAcP8SE6XevW0jMdHoNAAAJ0XpRgZpC6oxxRwAAAAAHgylGxn06dNHJpNJ27Zt05kzZ4yOAwAAAAD5FqUbGZQrV04BAQGSpO+++87gNAAAAACQf1G6kam0VcyDgoIMTgIAAAAA+RelG5nq1auXzGaz9u/fr6NHjxodBwAAAADyJUo3MuXj46P27dtLYkE1AAAAALhflG7c1s1TzK1Wq8FpAAC4R+7u0hdf2Ia7u9FpAABOymSlTWUQExMjb29vRUdHy8vLy+g4homJiVGpUqWUmJio8PBwNWjQwOhIAAAAAJAnZLU3cqUbt+Xl5aUuXbpIYkE1AAAAALgflG7cUdoU8+DgYKaYAwDyl5QUae1a20hJMToNAMBJUbpxR126dFHhwoV1+vRp7dq1y+g4AABkXWKi9OSTtpGYaHQaAICTonTjjgoWLKju3btLYoo5AAAAANwrSjfuqm/fvpKk7777ThaLxeA0AAAAAJB/ULpxV+3bt1fx4sX1999/KyQkxOg4AAAAAJBvGFq6Q0ND1bVrV5UtW1Ymk0krV6684/mRkZF69tlnVbNmTbm4uGjo0KGZnrds2TLVqVNHHh4eqlOnjlasWJH94Z2Iu7u7evbsKcm2oBoAAAAAIGsMLd1xcXFq0KCB5s2bl6XzExMTVbJkSY0bN+62e0bv3LlTffr00QsvvKCDBw/qhRdeUO/evfXLL79kZ3Snk7aK+bJly5SUlGRwGgAAAADIH0zWPLIPlMlk0ooVK+yLdt1NmzZt1LBhQ82ZMyfd8T59+igmJkbr16+3H3viiSdUrFixLC8EltVNzp2JxWJRhQoVFBkZqdWrV6tr165GRwIA4M7i4qTChW2PY2MlT09j8wAAHEpWe6PD3dO9c+dOdejQId2xjh07aseOHbd9TWJiomJiYtINpGc2m9W7d29JTDEHAOQT7u7SvHm24e5udBoAgJNyuNIdFRWl0qVLpztWunRpRUVF3fY106ZNk7e3t31UqFAhp2PmS2lTzFetWqX4+HiD0wAAcBdubtKgQbbh5mZ0GgCAk3K40i3ZpqrfzGq1Zjh2szFjxig6Oto+IiIicjpivvToo4/qoYceUlxcnNasWWN0HAAAAADI8xyudPv6+ma4qn3hwoUMV79v5uHhIS8vr3QDGZlMJvue3Vm9Px4AAMNYLFJIiG1YLEanAQA4KYcr3f7+/tq4cWO6Yxs2bFDz5s0NSuRY0qaYr1u3TteuXTM2DAAAd3LjhtS2rW3cuGF0GgCAkzK0dMfGxio8PFzh4eGSpJMnTyo8PFxnzpyRZJv23a9fv3SvSTs/NjZWFy9eVHh4uA4dOmR/fsiQIdqwYYPef/99HTlyRO+//742bdp02z29cW/q1aunOnXqKCkp6a77qgMAAACAszO0dO/du1d+fn7y8/OTJA0fPlx+fn6aMGGCJCkyMtJewNOknb9v3z59++238vPzU+fOne3PN2/eXMHBwfriiy/08MMPa/HixVqyZImaNm2ae9+YAzOZTPar3UwxBwAAAIA7yzP7dOcl7NN9Z8ePH1f16tVlNpt1/vx5lSpVyuhIAABkxD7dAIAc5LT7dCPnVatWTY0bN5bFYtHSpUuNjgMAAAAAeRalG/clbRXz4OBgg5MAAAAAQN5F6cZ96dOnj0wmk8LCwtjXHAAAAABug9KN+1K+fHkFBARIkpYsWWJwGgAAMuHmJs2YYRtubkanAQA4KUo37htTzAEAeZq7uzRypG24uxudBgDgpCjduG+9evWS2WzWvn37dOzYMaPjAAAAAECeQ+nGfStZsqTatWsniavdAIA8yGKR9uyxDYvF6DQAACdF6cYDCQwMlCQFBQWJLd8BAHnKjRvSo4/axo0bRqcBADgpSjceSPfu3eXh4aHDhw/r119/NToOAAAAAOQplG48EG9vb3Xu3FkSU8wBAAAA4FaUbjywtCnmwcHBTDEHAAAAgJtQuvHAunTposKFC+vUqVP65ZdfjI4DAAAAAHkGpRsPrFChQnrqqack2RZUAwAAAADYULqRLfr27StJ+u6772RhWxYAAAAAkCS5Gh0AjqFDhw4qVqyYoqKitHXrVj322GNGRwIAODs3N+ndd//3GAAAA3ClG9nC3d1dvXr1ksQUcwBAHuHuLk2caBvu7kanAQA4KUo3sk3aFPNly5YpKSnJ4DQAAAAAYDxKN7JN69at5evrq6tXr2rDhg1GxwEAOLvUVOmPP2wjNdXoNAAAJ0XpRrYxm83q3bu3JNue3QAAGCohQapXzzYSEoxOAwBwUpRuZKvAwEBJ0sqVKxUfH29wGgAAAAAwFqUb2app06aqXLmy4uLitGbNGqPjAAAAAIChKN3IViaTyb6gGlPMAQAAADg7SjeyXdoU83Xr1ik6OtrgNAAAAABgHEo3sl39+vVVu3ZtJSYmauXKlUbHAQAAAADDULqR7Uwmk/1qd1BQkMFpAAAAAMA4lG7kiLT7ujdt2qSLFy8anAYA4JTc3KQRI2zDzc3oNAAAJ0XpRo6oXr26GjVqJIvFoqVLlxodBwDgjNzdpQ8+sA13d6PTAACcFKUbOYYp5gAAAACcHaUbOaZ3796SpLCwMJ09e9bgNAAAp5OaKp06ZRupqUanAQA4KUo3ckyFChUUEBAgSVqyZInBaQAATichQXroIdtISDA6DQDASVG6kaPSFlQLDg42OAkAAAAA5D5KN3LUM888I7PZrL179+rYsWNGxwEAAACAXEXpRo4qWbKk2rVrJ4mr3QAAAACcD6UbOS5tinlQUJCsVqvBaQAAAAAg91C6keOefvppubu76/Dhw/rtt9+MjgMAAAAAuYbSjRzn7e2tzp07S2KKOQAAAADnQulGrggMDJRkK91MMQcA5ApXV2ngQNtwdTU6DQDASZmsNKAMYmJi5O3trejoaHl5eRkdxyHEx8erVKlSiouL086dO9WsWTOjIwEAAADAfctqb+RKN3JFoUKF9NRTT0liijkAAAAA50HpRq5Jm2K+ZMkSWSwWg9MAABye1SpdvGgbTOwDABiE0o1c06FDBxUrVkxRUVEKDQ01Og4AwNHFx0ulStlGfLzRaQAATorSjVzj7u6unj17SrLt2Q0AAAAAjo7SjVzVt29fSdKyZcuUlJRkcBoAAAAAyFmUbuSqNm3ayNfXV1euXNHGjRuNjgMAAAAAOYrSjVxlNpvVu3dvSUwxBwAAAOD4KN3IdWlTzFetWqV4FrYBAAAA4MAo3ch1zZo1U6VKlRQbG6u1a9caHQcAAAAAcgylG7nOZDLZr3YHBwcbnAYA4LBcXaUXX7QNV1ej0wAAnJTJarVajQ6R18TExMjb21vR0dHy8vIyOo5DOnjwoBo2bCgPDw/9/fff8vb2NjoSAAAAAGRZVnsjV7phiIcffli1atVSYmKiVq5caXQcAAAAAMgRlG4YwmQyKTAwUBJTzAEAOcRqleLibIOJfQAAg1C6YZi0+7o3btyoixcvGpwGAOBw4uOlwoVtg90yAAAGoXTDMDVq1NAjjzwii8WiZcuWGR0HAAAAALIdpRuGSptiHhQUZHASAAAAAMh+lG4Yqnfv3pKksLAwnT171uA0AAAAAJC9KN0wVMWKFdWyZUtZrVZ99913RscBAAAAgGxF6YbhmGIOAAAAwFFRumG4Xr16yWw2a+/evTp+/LjRcQAAAAAg21C6YbhSpUrp8ccfl8Se3QCAbGQ2S7162YbZbHQaAICTonQjT0jbs5vSDQDINgUKSN9/bxsFChidBgDgpCjdyBOefvppubu7648//tBvv/1mdBwAAAAAyBaUbuQJRYsWVadOnSSxoBoAAAAAx0HpRp6Rtop5cHCwrFarwWkAAPleXJxkMtlGXJzRaQAATorSjTzjySeflKenp06ePKndu3cbHQcAAAAAHhilG3mGp6enunXrJokF1QAAAAA4Bko38pS0KeZLliyRxWIxOA0AAAAAPBhKN/KUDh06qGjRooqMjFRoaKjRcQAAAADggVC6kad4eHioZ8+ekphiDgAAACD/o3Qjz0mbYr506VIlJSUZnAYAAAAA7h+lG3lOmzZtVLp0aV25ckWbNm0yOg4AIL8ym6XOnW3DbDY6DQDASVG6keeYzWb17t1bkhQUFGRwGgBAvlWggLR2rW0UKGB0GgCAkzK0dIeGhqpr164qW7asTCaTVq5cedfXbN26VY0aNVKBAgVUpUoVLViwIMM5c+bMUc2aNVWwYEFVqFBBw4YN040bN3LgO0BO6du3ryRp5cqVSkhIMDgNAAAAANwfQ0t3XFycGjRooHnz5mXp/JMnT6pz584KCAjQgQMHNHbsWA0ePFjLli2zn/PNN9/o7bff1rvvvqvDhw9r0aJFWrJkicaMGZNT3wZygL+/vypVqqTY2FitXbvW6DgAAAAAcF9cjfzwTp06qVOnTlk+f8GCBapYsaLmzJkjSapdu7b27t2rmTNn2le83rlzp1q0aKFnn31WklS5cmUFBgZq9+7d2Z4fOcdkMqlv3756//33FRQUpF69ehkdCQCQ38TFSaVK2R5fuCB5ehqbBwDglPLVPd07d+5Uhw4d0h3r2LGj9u7dq+TkZElSy5YttW/fPnvJPnHihNatW6cuXbrc9n0TExMVExOTbsB4aVPM165dy+8JAOD+xMfbBgAABslXpTsqKkqlS5dOd6x06dJKSUnRpUuXJNmK2uTJk9WyZUu5ubmpatWqatu2rd5+++3bvu+0adPk7e1tHxUqVMjR7wNZ06BBA9WqVUuJiYlZut8fAAAAAPKafFW6Jdu045tZrdZ0x0NCQjRlyhTNnz9f+/fv1/Lly7VmzRpNnjz5tu85ZswYRUdH20dERETOfQPIsrQp5pIUHBxscBoAAAAAuHf5qnT7+voqKioq3bELFy7I1dVVJUqUkCSNHz9eL7zwgl566SXVr19fTz/9tKZOnapp06YpNTU10/f18PCQl5dXuoG8Ia10b9y40T6bAQAAAADyi3xVuv39/bVx48Z0xzZs2KDGjRvLzc1NkhQfHy8Xl/TfltlsltVqtV8VR/5Rs2ZN+fn5KSUlRUuXLjU6DgAAAADcE0NLd2xsrMLDwxUeHi7JtiVYeHi4zpw5I8k27btfv37281977TWdPn1aw4cP1+HDh/X5559r0aJFGjFihP2crl276pNPPlFwcLBOnjypjRs3avz48erWrZvMZnOufn/IHoGBgZKYYg4AAAAg/zFZDbz8GxISorZt22Y4/uKLL2rx4sXq37+/Tp06pZCQEPtzW7du1bBhw/THH3+obNmyGj16tF577TX78ykpKZoyZYq+/vprnTt3TiVLllTXrl01ZcoUFS1aNEu5YmJi5O3trejoaKaa5wFnzpxRpUqVZDKZFBERoXLlyhkdCQCQHyQkSGlbk65fLxUsaGweAIBDyWpvNLR051WU7rynZcuW2r59u2bNmqVhw4YZHQcAAACAk8tqb8xX93TDeaVNMQ8KCjI4CQAAAABkHaUb+UKvXr3k4uKiPXv26K+//jI6DgAAAABkCaUb+ULp0qX1+OOPS2JBNQBAFsXFSSVL2kZcnNFpAABOitKNfIMp5gCAe3bpkm0AAGAQSjfyjaefflru7u76448/9PvvvxsdBwAAAADuitKNfKNo0aLq9P9bv3C1GwAAAEB+QOlGvtK3b19Jtvu62e0OAAAAQF5H6Ua+0rVrVxUqVEgnTpzQnj17jI4DAAAAAHdE6Ua+4unpqW7dukliijkAAACAvI/SjXwnbRXzJUuWyGKxGJwGAJBnubhIjRvbhgv/5AEAGIP/B0K+07FjRxUtWlSRkZEKCwszOg4AIK8qWFDas8c2ChY0Og0AwElRupHveHh4qEePHpJsC6oBAAAAQF5F6Ua+lDbFfOnSpUpOTjY4DQAAAABkjtKNfKlNmzYqVaqULl++rE2bNhkdBwCQF8XHS5Ur20Z8vNFpAABOitKNfMnV1VW9e/eWxCrmAIDbsFql06dtw2o1Og0AwElRupFvpU0xX7FihRISEgxOAwAAAAAZUbqRbzVr1kwVK1ZUbGys1q1bZ3QcAAAAAMiA0o18y8XFRX379pXEFHMAAAAAeROlG/laWuleu3atYmJiDE4DAAAAAOlRupGvNWzYUDVr1tSNGze0atUqo+MAAAAAQDqUbuRrJpOJKeYAgMyZTFKdOrZhMhmdBgDgpExWK3to3ComJkbe3t6Kjo6Wl5eX0XFwF3/++adq1aolV1dXRUZGysfHx+hIAAAAABxcVnsjV7qR79WsWVN+fn5KSUnRsmXLjI4DAAAAAHaUbjiEtCnmwcHBBicBAAAAgP+hdMMh9OnTR5K0detWnTt3zuA0AIA8IT5eqlvXNuLjjU4DAHBSlG44hEqVKql58+ayWq367rvvjI4DAMgLrFbp0CHbYAkbAIBBKN1wGIGBgZKYYg4AAAAg76B0w2E888wzcnFx0e7du/XXX38ZHQcAAAAAKN1wHKVLl9Zjjz0mSVqyZInBaQAAAACA0g0HkzbFPCgoyOAkAAAAAEDphoN5+umn5ebmpt9//12///670XEAAAAAODlKNxxKsWLF1KlTJ0ksqAYATs9kkipVsg2Tyeg0AAAndU+lOzk5WW3bttXRo0dzKg/wwPr27SvJNsXcyhYxAOC8ChWSTp2yjUKFjE4DAHBS91S606btmvhpMfKwbt26qVChQjpx4oT27t1rdBwAAAAATuyep5f369dPixYtyoksQLbw9PRUt27dJLGgGgAAAABjud7rC5KSkrRw4UJt3LhRjRs3lqenZ7rnZ82alW3hgPvVt29fBQcHa8mSJZo5c6ZcXFi+AACcTkKC1KqV7XFoqFSwoLF5AABO6Z5L9++//65HHnlEkjLc2820c+QVTzzxhLy9vXX+/HmFhYWpdevWRkcCAOS21FQp7Taj1FRjswAAnNY9l+4tW7bkRA4gW3l4eKhHjx764osvFBQUROkGAAAAYIgHmnN79uxZnTt3LruyANkqMDBQkrR06VIlJycbnAYAAACAM7rn0p2amqpJkybJ29tblSpVUsWKFVW0aFFNnjxZqUzdQh7Stm1blSpVSpcvX9amTZuMjgMAAADACd1z6R43bpzmzZun6dOn68CBA9q/f7+mTp2qjz/+WOPHj8+JjMB9cXV11TPPPCNJCg4ONjgNAAAAAGdkslqt1nt5QdmyZbVgwQL7lkxpVq1apYEDBzrEdPOYmBh5e3srOjpaXl5eRsfBA9i+fbtatmypIkWK6O+//1ZBVq4FAOcRFycVLmx7HBsr3bLjCgAADyKrvfGer3RfuXJFtWrVynC8Vq1aunLlyr2+HZCj/P39VaFCBV2/fl3r1683Og4AILf5+NgGAAAGuefS3aBBA82bNy/D8Xnz5qlBgwbZEgrILi4uLurbt68kKSgoyOA0AIBc5ekpXbxoG1zlBgAY5J6nl2/dulVdunRRxYoV5e/vL5PJpB07digiIkLr1q1TQEBATmXNNUwvdyz79+9Xo0aNVKBAAf3999/8ngIAAAB4YDk2vbx169Y6evSonn76aV27dk1XrlxRjx499OeffzpE4Ybj8fPzU40aNXTjxg2tXr3a6DgAAAAAnMg9le7k5GS1bdtWsbGxmjJlipYtW6bly5frvffeU9myZXMqI/BATCaTfc9uppgDgBNJSJDatLGNhASj0wAAnNQ9lW43Nzf9/vvvMplMOZUHyBFp93Vv2LBBly9fNjgNACBXpKZKW7faRmqq0WkAAE7qnqeX9+vXT4sWLcqJLECOqVWrlho2bKiUlBQtW7bM6DgAAAAAnITrvb4gKSlJCxcu1MaNG9W4cWN53rIa6KxZs7ItHJCd+vbtq/DwcAUFBemVV14xOg4AAAAAJ3DPq5e3bdv29m9mMunnn39+4FBGY/Vyx3T69GlVrlxZJpNJZ8+eZR0CAHB0cXFS4cK2x7GxbBsGAMhWWe2N93Sl22KxaOLEiapfv76KFy/+wCGB3FSpUiU1b95cO3bs0HfffaehQ4caHQkAAACAg7une7rNZrM6duyo6OjonMoD5Ki0BdWCg4MNTgIAAADAGdzzQmr169fXiRMnciILkOOeeeYZubi46JdffuHPMQA4g0KFbAMAAIPcc+meMmWKRowYoTVr1igyMlIxMTHpBpCX+fr62tclWLJkicFpAAA5ytPTdl93XBz3cwMADHPPC6m5uPyvp9+8X7fVapXJZJLFYsm+dAZhITXHtmjRIr300kuqX7++fv31V6PjAAAAAMiHstob77l0b9269Y7Pt27d+l7eLk+idDu2q1evqnTp0kpOTtbvv/+uunXrGh0JAAAAQD6TI6uXS45RquHcihUrpieeeEI//PCDgoODNXnyZKMjAQBywo0bUs+etsfLlkkFChibBwDglLJ8T/eMGTOUkJBg/zo0NFSJiYn2r69fv66BAwdmbzoghwQGBkqSgoKCdI+TPQAA+YXFIq1bZxsOcPsbACB/yvL0crPZrMjISJUqVUqS5OXlpfDwcFWpUkWS9Pfff6ts2bLc0418ITY2VqVKlVJCQoL27Nmjxo0bGx0JAJDd4uKkwoVtj2NjWUwNAJCtstobs3yl+9ZuztVB5GeFCxdWt27dJNmudgMAAABATrjnLcMAR9G3b19Jtq3DUlNTDU4DAAAAwBFRuuG0OnXqJG9vb507d07btm0zOg4AAAAAB3RPq5cvXLhQhf//3qiUlBQtXrxYPj4+kmwLqQH5iYeHh3r06KEvvvhCQUFBatWqldGRAAAAADiYLC+kVrlyZZlMprued/LkyQcOZTQWUnMeGzZsUMeOHeXj46Pz58/Lzc3N6EgAgOzCQmoAgByU7ft0nzp1KjtyAXnKY489ppIlS+rixYvavHmznnjiCaMjAbnKYrEoLCxMkZGRKlOmjAICAmQ2m42OBWQPT0+JhV8BAAbjnm44NVdXVz3zzDOSWMUczmf58uWqXLmy2rZtq2effVZt27ZV5cqVtXz5cqOjAQAAOAxKN5xeYGCgJGnFihW6ceOGwWmA3LF8+XL16tVLZ8+eTXf83Llz6tWrF8UbAAAgm1C64fSaN2+u8uXL6/r161q3bp3RcYAcZ7FYNGTIEGW2pEfasaFDh8piseR2NCB73bghPfOMbfBDVQCAQSjdcHouLi72PbuDg4MNTgPkvLCwsAxXuG9mtVoVERGhsLCwXEwF5ACLRVq61Db4IRIAwCCUbkD/m2L+ww8/sP0dHF5kZGS2ngcAAIDbe6DSbbVa9fPPP2vt2rW6evXqPb8+NDRUXbt2VdmyZWUymbRy5cq7vmbr1q1q1KiRChQooCpVqmjBggUZzrl27ZoGDRqkMmXKqECBAqpduzbThnFHfn5+ql69um7cuKHVq1cbHQfIUaVKlcrSeWXKlMnhJAAAAI4vy6X72rVrevHFF1W/fn29/PLLiomJUUBAgNq1a6euXbuqVq1a+vXXX+/pw+Pi4tSgQQPNmzcvS+efPHlSnTt3VkBAgA4cOKCxY8dq8ODBWrZsmf2cpKQktW/fXqdOndLSpUv1559/6rPPPlO5cuXuKRuci8lksl/tZhVzOLLr169r5syZdz2vQoUKCggIyIVEAAAAjs1kzWwlnUy89NJLCg0NVb9+/bRmzRq5uLjIarVqzpw5cnFx0ahRo1S4cGH98MMP9xfEZNKKFSvUvXv3254zevRorV69WocPH7Yfe+2113Tw4EHt3LlTkrRgwQJ98MEHOnLkiNzc3O4rS1Y3OYdjOXz4sOrUqSNXV1dFRUWpRIkSRkcCstW5c+fUpUsXHTx4UO7u7kpKSpLJZMp0QbWlS5eqZ8+eBqQEslFcnFS4sO1xbKxt324AALJJVntjlq90r1+/Xp999pneeecdLVu2TLt27dK0adPUtGlTNWnSRO+//7727NmTLeFvZ+fOnerQoUO6Yx07dtTevXuVnJwsSVq9erX8/f01aNAglS5dWvXq1dPUqVPvuApvYmKiYmJi0g04n9q1a6tBgwZKSUlhuyQ4nIMHD6pp06Y6ePCgSpUqpbCwMC1btuy2s4BMJlMuJwQAAHBMWS7df//9t2rUqCFJKleunAoUKKAKFSrYn69YsaIuXryY/QlvEhUVpdKlS6c7Vrp0aaWkpOjSpUuSpBMnTmjp0qWyWCxat26d3nnnHX344YeaMmXKbd932rRp8vb2to+bvy84F6aYwxGtW7dOLVu21Llz51S7dm398ssvevTRR9WjRw+dOnVKW7Zs0bfffqstW7ZozJgxkqRRo0YpMTHR4OQAAAD5X5ZLd2pqqsxms/1rs9mc7kpIbl0VufVz0qZFph1PTU1VqVKl9Omnn6pRo0bq27evxo0bp08++eS27zlmzBhFR0fbR0RERM59A8jT+vTpI0kKCQlh5WY4hE8++URdu3ZVbGysHnvsMe3YsUOVK1e2P282m9WmTRsFBgaqTZs2Gjt2rHx9ffXXX39leb0NIM8qVMg2rTw21vYYAAADuN7LyQsXLlTh/783KiUlRYsXL5aPj48k5co2S76+voqKikp37MKFC3J1dbXff1umTBm5ubml+wFB7dq1FRUVpaSkJLm7u2d4Xw8PD3l4eORseOQLlStXlr+/v3bu3KnvvvtOQ4YMMToScF9SU1M1atQoffjhh5Kk/v376z//+U+mfwferHDhwpoyZYoGDBigyZMnq1+/fipZsmRuRAayn8nEfdwAAMNluXRXrFhRn332mf1rX19fff311xnOyUn+/v4ZFmrbsGGDGjdubF80rUWLFvr222+VmpoqFxfbhfyjR4+qTJkyd/3HJiBJffv21c6dOxUUFETpRr4UHx+vF154wb42weTJkzVu3Lgsz0h68cUX9fHHHys8PFwTJ07Uv//975yMCwAA4NCyvHp5ToiNjdXx48cl2fZJnjVrltq2bavixYurYsWKGjNmjM6dO6evvvpKkm3LsHr16unVV1/Vyy+/rJ07d+q1115TUFCQfZXdiIgI1alTR/3799ebb76pY8eO6Z///KcGDx6scePGZSkXq5c7t6ioKJUrV06pqak6ceKEHnroIaMjAVn2999/q1u3btq9e7fc3d31xRdf6Nlnn73n9wkJCVHbtm1lNpv166+/qk6dOjmQFshhiYnSq6/aHv/nPxKz2gAA2SjbVy/PCXv37pWfn5/8/PwkScOHD5efn58mTJggSYqMjNSZM2fs5z/00ENat26dQkJC1LBhQ02ePFkfffRRum1tKlSooA0bNmjPnj16+OGHNXjwYA0ZMkRvv/127n5zyLd8fX3Vpk0bSVJwcLCxYYB7cOjQITVr1ky7d+9W8eLFtWnTpvsq3JLUpk0bde/eXRaLRW+99VY2JwVySUqK9OWXtpGSYnQaAICTuqcr3SkpKZo9e7aCgoJ09OhRmUwmVa9eXc8++6yGDBly3/ti5zVc6cbChQv18ssv6+GHH9bBgweNjgPc1c8//6wePXooOjpaVatW1bp16+w7Ttyv48ePq06dOkpOTtb69ev1xBNPZFNaIJewTzcAIAdl+5XuhIQEtWnTRm+//bZKliypl156Sf/85z9VsmRJjR49Wo8//rhu3LiRLeEBo/Xo0UNubm769ddfdejQIaPjAHf05ZdfqmPHjoqOjlbz5s21a9euBy7cklStWjW9+eabkqS33npLKVwpBAAAuGdZLt3Tpk1TRESEDhw4oJ9++klz5szR3Llz9dNPP2n//v06ffq0pk+fnpNZgVxTvHhxdezYURJTzJF3Wa1WTZgwQf3791dKSor69OmjzZs323eVyA7jx49XiRIldOjQIX366afZ9r4AAADOIsulOzg4WLNmzdLDDz+c4bkGDRpo5syZ+vbbb7M1HGCkwMBASVJQUJAMXG8QyFRiYqKef/55TZ48WZI0duxYffvttypQoEC2fk7RokX1r3/9S5I0YcIEXbt2LVvfHwAAwNFluXSfOXNGjz766G2fb9asWbpFz4D8rlu3bipYsKCOHz+uffv2GR0HsLt8+bLat2+vb7/9VmazWQsXLtSUKVPs2yRmt1dffVW1a9fW5cuX9d577+XIZwAAADiqLP8LzcvLSxcuXLjt81FRUSw6BodSuHBhde3aVRJTzJF3HD9+XM2bN1dYWJi8vLy0fv16DRgwIEc/09XVVR9++KEk6aOPPrJv9QgAAIC7y3Lpbtu2raZOnXrb56dPn27fZglwFGlTzIODg/Xzzz8rKChIISEhslgsBieDM9qxY4f8/f119OhRVaxYUdu3b1f79u1z5bM7deqkjh07Kjk5WaNGjcqVzwQeWKFC0oULtlGokNFpAABOKstbhh06dEhNmzZV3bp1NXz4cNWqVct+fPbs2Tp06JB27dqlunXr5mjg3MCWYUhz48YNFS9eXAkJCemOly9fXnPnzlWPHj0MSgZns2TJEr344otKTExUo0aN9MMPP6hMmTK5muGPP/5QgwYNZLFYtGXLFn7QCgAAnFq2bxlWp04dbdy4UdevX1ffvn3l5+cnPz8/Pfvss7p+/bp++uknhyjcwM3WrVuXoXBL0rlz59SrVy8tX77cgFRwJlarVdOnT1ffvn2VmJiobt26aevWrbleuCWpbt26euWVVyRJw4cPZ8YHAABAFmT5SvfNDhw4oGPHjkmSatSooYYNG2Z3LkNxpRuSZLFYVLlyZZ09ezbT500mk8qXL6+TJ0/KbDbncjo4g+TkZA0cOFALFy6UJA0ZMkQffvihoX/eLl68qGrVqikmJkZffPGF+vfvb1gW4K4SE6Xhw22PZ82SPDyMzQMAcChZ7Y33Vbol6dKlSzKZTCpRosR9h8yrKN2QpJCQELVt2/au5zHNFjkhOjpazzzzjDZu3CgXFxfNmTNHb775ptGxJEkffPCBRo0apTJlyujo0aMqXLiw0ZGAzMXFSWl/PmNjJU9PY/MAABxKtk8vl6Rr165p0KBB8vHxUenSpVWqVCn5+PjojTfeYO9WOJzIyMhsPQ/IqjNnzqhly5bauHGjChUqpJUrV+aZwi1JgwcPVpUqVRQZGakZM2YYHQcAACBPc83qiVeuXJG/v7/OnTun5557TrVr15bVatXhw4e1ePFibd68WTt27FCxYsVyMi+Qa7J6z6wR99bCce3bt09PPvmkoqKiVKZMGa1Zs0aPPPKI0bHS8fDw0IwZM9SrVy/NnDlTL7/8sipUqGB0LAAAgDwpy9PLhw4dqs2bN2vTpk0qXbp0uueioqLUoUMHPf7445o9e3aOBM1NTC+H9L97us+dO6fb/WdSsGBBHTp0SJUrV87dcHBIq1evVmBgoOLj41W/fn2tWbNGFStWNDpWpqxWq9q0aaPQ0FA999xz+u9//2t0JCAjppcDAHJQtk8vX7lypWbOnJmhcEuSr6+vZsyYoRUrVtxfWiAPMpvNmjt3riTbommZSUhIUL169TRz5kwlJyfnZjw4mI8++kjdu3dXfHy8OnTooG3btuXZwi3Z/puYNWuWTCaTvvnmG+3evdvoSAAAAHlSlkt3ZGTkHbcEq1evnqKiorIlFJBX9OjRQ0uXLlW5cuXSHa9QoYJmzZqlFi1aKC4uTiNHjtQjjzyi7du3G5QU+ZXFYtHgwYM1ZMgQWa1Wvfzyy1qzZk2+mGXTqFEj9evXT5I0bNiw284IAQAAcGZZLt0+Pj46derUbZ8/efKkQ65kDvTo0UOnTp3Sli1b9O2332rLli06efKkhg0bptDQUH3++ecqUaKEfv/9d7Vs2VL//Oc/denSJaNjIx+Ii4vT008/rY8//liS9P777+s///mP3NzcDE6WdVOnTlWhQoW0Y8cOfffdd0bHAQAAyHOyfE/3gAEDdPz4cW3cuFHu7u7pnktMTFTHjh1VtWpVLVq0KEeC5ibu6ca9unz5st5++237fsrFixfX+++/r3/+859ycbmnTQLgJCIjI/Xkk09q//798vDw0Ndff61nnnnG6Fj3ZdKkSXr33XdVqVIlHTlyRAUKFDA6EmCTmiqdOWN7XLGixN/HAIBslO37dJ89e1aNGzeWh4eHBg0apFq1akmSDh06pPnz5ysxMVF79+51iBVsKd24Xzt27NDrr7+uX3/9VZLk7++vTz75RA0aNDA4GfKS3377TV26dFFERIR8fHy0evVq+fv7Gx3rvsXHx6tmzZo6e/aspk6dqjFjxhgdCQAAIMdle+mWbFPIBw4cqA0bNtjv3TOZTGrfvr3mzZunatWqPXjyPIDSjQeRkpKijz/+WBMmTFBsbKzMZrMGDx6sf/3rXypSpIjR8WCwDRs2qFevXrp+/bpq1qyptWvXqmrVqkbHemD//e9/9cILL6hw4cI6duyYfH19jY4EAACQo3KkdKe5evWqjh07JkmqVq2aihcvfv9J8yBKN7LD2bNnNWzYMC1dulSSVK5cOc2ZM0c9e/a87WrocGyfffaZXn/9dVksFrVq1UorVqxwmL8/U1NT1axZM+3Zs0cvvfSSPvvsM6MjAVJSkjRunO3xlCnSLbfHAQDwIHK0dDs6Sjey0/r16/XGG2/oxIkTkqQnnnhC8+bNc4irm8ia1NRUjRs3TtOnT5ckPf/881q4cKE8PDwMTpa9tm/frpYtW8pkMunAgQPcVgHjsU83ACAHZfs+3QDuT6dOnfT7779r/Pjxcnd3148//qh69epp8uTJSkxMNDoeclhCQoICAwPthfvdd9/VV1995XCFW5JatGih3r17y2q1avjw4WwhBgAAIK50Z4or3cgpR48e1cCBA7V582ZJUvXq1TV//ny1a9fO4GTICRcvXtRTTz2lnTt3ys3NTQsXLrTva+2oTp06pVq1aikxMVGrVq1St27djI4EZ8aVbgBADuJKN5AH1ahRQxs3blRQUJB8fX117NgxtW/fXoGBgYqMjDQ6HrLRn3/+qWbNmmnnzp0qWrSoNmzY4PCFW5IqV66soUOHSpJGjBihpKQkYwMBAAAYjNIN5DKTyaS+ffvqyJEjevPNN+Xi4qLg4GDVqlVLH3/8sSwWi9ER8YBCQ0Pl7++vEydO6KGHHtKOHTvUpk0bo2PlmrFjx6pUqVI6duyYPvnkE6PjAAAAGIrSDRjE29tbH330kfbs2aNHH31UMTExGjx4sB599FHt2bPH6Hi4T998843at2+vq1evqmnTptq1a5dq165tdKxc5eXlpcmTJ0uS/vWvf+nKlSsGJwIAADAOpRsw2COPPKIdO3bok08+UdGiRbV//341bdpUAwcO1NWrV42OhyyyWq2aNGmSnn/+eSUlJalnz57asmWLSpUqZXQ0QwwYMED169fX1atX9a9//cvoOAAAAIahdAN5gNls1muvvaYjR47ohRdekNVq1SeffKJatWrp66+/ZhXoPC4pKUn/+Mc/9O6770qSRo4cqe+++04FCxY0OJlxzGazZs2aJUmaP3++/vzzT4MTwSkVLCj9/rttOPF/jwAAY1G6gTykdOnS+uqrr7RlyxbVrl1bFy5cUL9+/fTYY4/p8OHDRsdDJq5evaonnnhCX375pcxmsz755BPNmDFDLi789dquXTs9+eSTSklJ0YgRI4yOA2fk4iLVrWsb/DcJADAI/w8E5EFt2rRReHi4pk6dqoIFCyokJEQNGjTQ2LFjFR8fb3Q8/L+TJ0+qefPm2rJliwoXLqw1a9botddeMzpWnjJz5ky5urpqzZo12rRpk9FxAAAAch2lG8ij3N3dNWbMGB06dEhdu3ZVcnKypk2bpjp16uiHH34wOp7T++WXX9S0aVMdOXJE5cqV07Zt2/TEE08YHSvPqVmzpgYOHChJGj58OKvzI3clJUkTJ9oG29cBAAxisnKzaAZZ3eQcyE2rVq3S4MGDdebMGUnSU089pY8++kgVK1Y0OJnzWbZsmZ5//nnduHFDDRs21Jo1a1SuXDmjY+VZV65cUbVq1XT16lX95z//0SuvvGJ0JDiLuDipcGHb49hYydPT2DwAAIeS1d7IlW4gn3jqqad06NAhjR49Wq6urlq1apVq166tGTNmKDk52eh4TsFqterDDz/UM888oxs3bqhz584KDQ2lcN9F8eLF7YvMjR8/XjExMQYnAgAAyD2UbiAf8fT01PTp0xUeHq5WrVopPj5eo0ePlp+fn8LCwoyO59BSUlI0cOBAjRgxQlarVYMGDdKqVatUpEgRo6PlCwMHDlSNGjV04cIFTZ061eg4AAAAuYbSDeRDdevWVUhIiBYvXiwfHx/98ccfatWqlfr376+LFy8aHc/hXL9+Xd26ddOCBQtkMpk0a9Ysffzxx3J1dTU6Wr7h5uammTNnSpJmz56tkydPGpwIAAAgd1C6gXzKZDLpxRdf1J9//qlXX31VJpNJX375pWrWrKlPP/1UqampRkd0CGfPnlVAQIDWr1+vggULatmyZRo2bJhMJpPR0fKdJ598Uo8//riSkpI0evRoo+MAAADkCko3kM8VL15cCxYs0I4dO9SwYUNdvXpVr776qlq0aKHw8HCj4+Vr4eHhatq0qQ4ePKhSpUopJCRETz/9tNGx8q20WQIuLi76/vvvtW3bNqMjAQAA5DhKN+AgmjVrpj179mjOnDkqUqSIdu3apUaNGmno0KEsXHUf1q1bp5YtW+r8+fOqU6eOfvnlFz366KNGx8r3Hn74YQ0YMECSNGzYMGZkAAAAh0fpBhyIq6urhgwZosOHD6t3795KTU3V3LlzVbt2bX333Xdih8CsmT9/vrp27aq4uDg9/vjj2r59uypXrmx0LIcxefJkFS5cWHv37tW3335rdBw4sgIFpN27baNAAaPTAACcFKUbcEDlypXTkiVL9NNPP6latWo6f/68+vTpoyeeeELHjx83Ol6elZqaqrfeekuDBg1Samqq/vGPf2jdunUqWrSo0dEcSunSpTV27FhJ0pgxYxQfH29wIjgss1lq0sQ2zGaj0wAAnBSlG3BgHTp00G+//aaJEyfKw8NDGzZsUL169fSvf/1LN27cMDpenhIfH69evXpp1qxZkqT33ntPixYtkru7u8HJHNOwYcNUqVIlnT171r6qOQAAgCMyWZlvmkFMTIy8vb0VHR0tLy8vo+MA2eLYsWN64403tGHDBklStWrVNH/+fLVv397gZMb7+++/1a1bN+3evVvu7u5avHixAgMDjY7l8JYsWaK+ffuqUKFCOnr0qMqVK2d0JDiapCRp7lzb4yFDJH6IBgDIRlntjVzpBpxE9erV9eOPP2rJkiUqU6aMjh8/rg4dOqhPnz46f/680fEMc+jQITVt2lS7d+9W8eLFtXnzZgp3Lundu7eaN2+u+Ph4jRs3zug4cETJydKoUbaRnGx0GgCAk6J0A07EZDKpd+/eOnLkiIYOHSoXFxd99913qlWrlubOnauUlBSjI+aqn3/+Wc2bN9fp06dVrVo17dq1Sy1btjQ6ltMwmUyaPXu2JOnLL7/Uvn37DE4EAACQ/SjdgBPy8vLS7NmztW/fPjVr1kzXr1/X0KFD1aRJE+3atcvoeLli8eLF6tixo6Kjo9WiRQvt3LlT1atXNzqW03n00Uf13HPPSbLd580dTwAAwNFQugEn1rBhQ23fvl3/+c9/VKxYMYWHh6t58+Z69dVXdeXKFaPj5Qir1arx48frH//4h1JSUtS3b19t2rRJPj4+RkdzWtOmTVPBggUVFham5cuXGx0HAAAgW1G6ASfn4uKiV155RX/++adefPFFWa1Wffrpp6pVq5a+/PJLh7rymJiYqOeff17vvfeeJGns2LH65ptvVID9ew1VoUIFjRgxQpI0atQoJSYmGpwIAAAg+1C6AUiSSpYsqcWLF2vr1q2qU6eOLl68qP79+6tNmzb6448/jI73wC5fvqz27dvr22+/laurqxYtWqQpU6bIxYW/BvOCUaNGqUyZMjpx4oQ++ugjo+MAAABkG/61CSCdVq1aKTw8XO+//74KFSqk0NBQNWzYUG+//bbi4uKMjndfjh8/Ln9/f4WFhcnLy0vr16/XP//5T6Nj4SaFCxfW1KlTJdn2SL9w4YLBiQAAALIHpRtABm5ubho1apQOHTqkp556SikpKXr//fdVp04drVq1yuh492T79u1q1qyZjh07pooVK2rHjh1q166d0bGQiX79+umRRx5RTEyM3n33XaPjwBEUKCBt2WIb3EYCADAIpRvAbVWqVEkrV67U6tWrValSJZ05c0bdu3dXt27ddOrUKaPj3dWSJUv0+OOP6/Lly2rcuLF++eUX1a1b1+hYuA0XFxf7FmKffvqpfv/9d4MTId8zm6U2bWzDbDY6DQDASVG6AdxV165ddejQIY0ZM0Zubm764YcfVKdOHU2fPl1JSUlGx8vAarVq2rRp6tu3rxITE/XUU08pJCREvr6+RkfDXbRq1Uo9evRQamqq3nrrLYdayA8AADgnSjeALClUqJCmTp2qgwcPqk2bNkpISNCYMWPUsGFDhYSEGB3PLjk5WS+//LLGjh0rSRo6dKiWLVsmT09Pg5Mhq2bMmCF3d3dt2LBB69evNzoO8rPkZOnf/7aN5GSj0wAAnBSlG8A9qV27tn7++Wd9/fXXKlWqlA4fPqy2bduqX79+hi9+FR0drc6dO2vRokVycXHRxx9/rNmzZ8vMtNJ8pWrVqho8eLAk6a233lIyZQn3KylJeuMN28iDs3IAAM6B0g3gnplMJj3//PM6cuSIXn/9dZlMJn399deqWbOmFixYoNTU1FzPdPr0abVo0UKbNm2Sp6enVq1apTfeeCPXcyB7jBs3Tj4+Pjpy5Ig+/fRTo+MAAADcN0o3gPtWrFgxzZ8/X7t27dIjjzyia9eu6fXXX5e/v78OHDiQazn27dunZs2a6Y8//lCZMmUUGhqqJ598Mtc+H9mvaNGi+te//iVJevfdd3X16lWDEwEAANwfSjeAB/boo49q9+7d+uijj+Tl5aXdu3ercePGGjJkiKKjo3P0s1etWqVWrVopKipK9evX1y+//KJHHnkkRz8TueOVV15RnTp1dPnyZb333ntGxwEAALgvlG4A2cJsNuvNN9/UkSNHFBgYqNTUVH300UeqXbu2goODc2QV6rlz5+rpp59WfHy8OnbsqG3btqlChQrZ/jkwhqurqz788ENJ0scff6xjx44ZnAgAAODeUboBZKsyZcro22+/1caNG1WjRg1FRkYqMDBQHTp00NGjR7PlMywWiwYPHqyhQ4fKarXqlVde0Q8//CAvL69seX/kHU888YSeeOIJJScna9SoUUbHAQAAuGeUbgA5ol27dvr11181adIkeXh4aNOmTapfv74mTJighISE+37f2NhYPf300/r4448l2baXWrBggdzc3LIrOvKYDz/8UGazWStXrtSWLVuMjgMAAHBPKN0AcoyHh4fGjx+vP/74Q0888YSSkpI0efJk1a9fXz/++OM9v9/58+fVunVr/fDDDypQoIC+//57jRw5UiaTKQfSI6+oU6eOXn31VUnS8OHDZbFYDE6EfMPDQ1qzxjY8PIxOAwBwUiZrTtxomc/FxMTI29tb0dHRTFcFsonVatXy5cs1ZMgQnTt3TpLUq1cvzZkzR+XKlbvr63/77Td16dJFERERKlmypFatWiV/f/+cjo084tKlS6pWrZqio6O1aNEi/fOf/zQ6EgAAcHJZ7Y1c6QaQK0wmk3r27KnDhw9r+PDhMpvNWrp0qWrVqqXZs2crJSVFku1+7ZCQEAUFBSkkJEQWi0UbNmxQixYtFBERoZo1a2rXrl0Ubifj4+Oj8ePHS7Lt4X39+nWDEwEAAGQNV7ozwZVuIOf9+uuveu2117Rz505JUoMGDdSnTx/Nnz9fZ8+etZ9XrFgxRUdHKzU1Va1bt9by5ctVvHhxo2LDQImJiapbt67++usvjRs3jm3EcHfJydI339geP/ecxNoPAIBslNXeSOnOBKUbyB2pqan6/PPPNXr0aF25cuWO57Zu3VobNmyQu7t7LqVDXrRixQr16NFDBQoU0J9//qmKFSsaHQl5WVycVLiw7XFsrOTpaWweAIBDYXo5gDzPxcVFL730kg4dOqRChQrd8dwTJ07IbDbnUjLkVd27d1fr1q1148YNvf3220bHAQAAuCtKNwDDHT58WPHx8Xc8JyIiQmFhYbmUCHmVyWTS7NmzZTKZFBQUpF27dhkdCQAA4I4o3QAMFxkZma3nwbH5+fmpf//+kqRhw4aJu6QAAEBeRukGYLgyZcpk63lwfO+99548PT21a9cuLVmyxOg4AAAAt0XpBmC4gIAAlS9fXiaTKdPnTSaTKlSooICAgFxOhryqbNmyGj16tCRp9OjRSkhIMDgRAABA5gwt3aGhoeratavKli0rk8mklStX3vU1W7duVaNGjVSgQAFVqVJFCxYsuO25wcHBMplM6t69e/aFBpDtzGaz5s6dK0kZinfa13PmzGEhNaTz1ltvqXz58jpz5oxmz55tdBwAAIBMGVq64+Li1KBBA82bNy9L5588eVKdO3dWQECADhw4oLFjx2rw4MFatmxZhnNPnz6tESNGcGUMyCd69OihpUuXqly5cumOly9fXkuXLlWPHj0MSoa8qlChQpo+fbokadq0aYqKijI4EfIcDw/pu+9sw8PD6DQAACeVZ/bpNplMWrFixR2vSo8ePVqrV6/W4cOH7cdee+01HTx4UDt37rQfs1gsat26tf7xj38oLCxM165dy9JV9DTs0w0Yx2KxKCwsTJGRkSpTpowCAgK4wo3bSk1Nlb+/v3bv3q0BAwZo4cKFRkcCAABOwiH36d65c6c6dOiQ7ljHjh21d+9eJScn249NmjRJJUuW1IABA3I7IoAHZDab1aZNGwUGBqpNmzYUbtyRi4uLfWr5559/rvDwcGMDAQAA3CJfle6oqCiVLl063bHSpUsrJSVFly5dkiRt375dixYt0meffZbl901MTFRMTEy6AQDIH5o3b64+ffrIarVq+PDhbCGG/0lJkb7/3jZSUoxOAwBwUvmqdEsZF1lK+8eVyWTS9evX9fzzz+uzzz6Tj49Plt9z2rRp8vb2to8KFSpka2YAQM56//335eHhoS1btmj16tVGx0FekZgo9e5tG4mJRqcBADipfFW6fX19MyyUc+HCBbm6uqpEiRL666+/dOrUKXXt2lWurq5ydXXVV199pdWrV8vV1VV//fVXpu87ZswYRUdH20dERERufDsAgGxSqVIlDR8+XJI0YsQIJSUlGZwIAADAJl+Vbn9/f23cuDHdsQ0bNqhx48Zyc3NTrVq19Ntvvyk8PNw+unXrprZt2yo8PPy2V7A9PDzk5eWVbgAA8pcxY8aodOnSOn78uP79738bHQcAAECSwaU7NjbWXo4l25Zg4eHhOnPmjCTbP6D69etnP/+1117T6dOnNXz4cB0+fFiff/65Fi1apBEjRkiSChQooHr16qUbRYsWVZEiRVSvXj25u7vn+vcIAMgdRYoU0XvvvSfJtqDm5cuXDU4EAABgcOneu3ev/Pz85OfnJ0kaPny4/Pz8NGHCBElSZGSkvYBL0kMPPaR169YpJCREDRs21OTJk/XRRx+pZ8+ehuQHAOQt//jHP9SgQQNdu3ZNEydONDoOAABA3tmnOy9hn24AyL9+/vlnPf744zKbzfrtt99Uu3ZtoyPBKHFxUuHCtsexsZKnp7F5AAAOxSH36QYA4G4ee+wxdevWTRaLxX77EQAAgFEo3QAAh/PBBx/I1dVV69at04YNG4yOA6O4u0tffGEbrOsCADAIpRsA4HBq1KihN954Q5JtvZCUlBSDE8EQbm5S//624eZmdBoAgJOidAMAHNKECRNUvHhx/fHHH1q0aJHRcQAAgJOidAMAHFKxYsX07rvvSpLGjx+v6OhogxMh16WkSGvX2gazHQAABqF0AwAc1uuvv66aNWvq4sWLmjp1qtFxkNsSE6Unn7SNxESj0wAAnBSlGwDgsNzc3DRz5kxJ0pw5c3TixAmDEwEAAGdD6QYAOLQuXbqoXbt2SkpK0ujRo42OAwAAnAylGwDg0Ewmk2bNmiUXFxctXbpUYWFhRkcCAABOhNINAHB49evX10svvSRJGjZsmFJTUw1OBAAAnAWlGwDgFCZNmqQiRYpo3759+u9//2t0HAAA4CQo3QAAp1C6dGmNGzdOkjRmzBjFxcUZnAgAADgDSjcAwGkMGTJElStX1vnz5/XBBx8YHQc5zd1dmjfPNtzdjU4DAHBSJqvVajU6RF4TExMjb29vRUdHy8vLy+g4AIBs9P3336t3794qWLCgjh49qvLlyxsdCQAA5ENZ7Y1c6QYAOJVevXqpZcuWSkhI0NixY42OAwAAHBylGwDgVNK2EJOkr7/+Wnv27DE4EXKMxSKFhNiGxWJ0GgCAk6J0AwCcTpMmTfTCCy9Ism0hxp1WDurGDaltW9u4ccPoNAAAJ0XpBgA4palTp6pgwYLavn27li1bZnQcAADgoCjdAACnVL58eY0aNUqSNGrUKN3gSigAAMgBlG4AgNMaOXKkypYtq5MnT+qjjz4yOg4AAHBAlG4AgNPy9PTU1KlTJUnvvfeeLly4YHAiAADgaCjdAACn9sILL6hRo0a6fv26JkyYYHQcAADgYCjdAACn5uLiotmzZ0uSPvvsM/32228GJwIAAI6E0g0AcHoBAQHq2bOnUlNT9dZbb7GFmKNwc5NmzLANNzej0wAAnJTJyr8sMoiJiZG3t7eio6Pl5eVldBwAQC44ceKEateuraSkJK1Zs0ZdunQxOhIAAMjDstobudINAICkKlWqaMiQIZKkt956S8nJyQYnAgAAjoDSDQDA/xs3bpxKliypP//8UwsWLDA6Dh6UxSLt2WMbFovRaQAATorSDQDA//P29takSZMkSRMnTtTVq1cNToQHcuOG9OijtnHjhtFpAABOitINAMBNXnrpJdWtW1dXrlyxF3AAAID7RekGAOAmrq6umjVrliRp3rx5Onr0qMGJAABAfkbpBgDgFh06dFDnzp2VkpKikSNHGh0HAADkY5RuAAAyMXPmTJnNZq1evVo///yz0XEAAEA+RekGACATtWvX1uuvvy5JGj58uCysfg0AAO4DpRsAgNuYOHGiihYtqoMHD2rx4sVGxwEAAPkQpRsAgNsoUaKEJkyYIMm2h/f169cNToR74uYmvfuubbi5GZ0GAOCkTFar1Wp0iLwmJiZG3t7eio6OlpeXl9FxAAAGSkpKUt26dXX8+HGNHTtWU6ZMMToSAADIA7LaG7nSDQDAHbi7u+uDDz6QJH344Yc6ffq0wYkAAEB+QukGAOAunnrqKbVp00aJiYl6++23jY6DrEpNlf74wzZSU41OAwBwUpRuAADuwmQyafbs2TKZTAoODtbOnTuNjoSsSEiQ6tWzjYQEo9MAAJwUpRsAgCxo2LCh/vGPf0iShg0bplSunAIAgCygdAMAkEXvvfeePD099csvvyg4ONjoOAAAIB+gdAMAkEVlypTRmDFjJElvv/224uPjDU4EAADyOko3AAD3YPjw4apYsaIiIiI0a9Yso+MAAIA8jtINAMA9KFiwoKZPny5Jmj59us6fP29wIgAAkJdRugEAuEd9+/ZVs2bNFBcXp3feecfoOAAAIA+jdAMAcI/SthCTpMWLF2v//v0GJ0Km3NykESNsw83N6DQAACdF6QYA4D40a9ZMgYGBslqtGj58uKxWq9GRcCt3d+mDD2zD3d3oNAAAJ0XpBgDgPk2fPl0FChTQ1q1btWrVKqPjAACAPIjSDQDAfapYsaLeeustSdLIkSOVlJRkcCKkk5oqnTplG6mpRqcBADgpSjcAAA/g7bfflq+vr44fP6558+YZHQc3S0iQHnrINhISjE4DAHBSlG4AAB5A4cKF9d5770mSJk2apEuXLhmcCAAA5CWUbgAAHlD//v3VsGFDRUdHa+LEiUbHAQAAeQilGwCAB2Q2mzVr1ixJ0oIFC3To0CGDEwEAgLyC0g0AQDZo27atnnrqKVksFo0YMcLoOAAAII+gdAMAkE0++OADubm5af369frpp5+MjgMAAPIASjcAANmkevXqeuONNyRJw4cPV0pKisGJAACA0SjdAABko/Hjx6tEiRI6dOiQPvvsM6PjODdXV2ngQNtwdTU6DQDASZmsVqvV6BB5TUxMjLy9vRUdHS0vLy+j4wAA8pl58+bpzTfflI+Pj44dO6aiRYsaHQkAAGSzrPZGrnQDAJDNXn31VdWqVUuXLl3SlClTjI4DAAAMROkGACCbubm56cMPP5QkzZ07V3/99ZfBiZyU1SpdvGgbTOwDABiE0g0AQA7o1KmTOnTooOTkZI0aNcroOM4pPl4qVco24uONTgMAcFKUbgAAcoDJZNKHH34oFxcXLV++XFu3bjU6EgAAMAClGwCAHFKvXj298sorkmxbiKWmphqcCAAA5DZKNwAAOWjSpEny8vLS/v379fXXXxsdBwAA5DJKNwAAOahkyZJ65513JEljxozR+vXrFRQUpJCQEFksFoPTAQCAnMY+3Zlgn24AQHZKTExUxYoVdeHChXTHy5cvr7lz56pHjx4GJXNwcXFS4cK2x7GxkqensXkAAA6FfboBAMgj1q5dm6FwS9K5c+fUq1cvLV++3IBUAAAgN1C6AQDIQRaLRUOGDMn0ubTJZkOHDmWqeU5wdZVefNE2XF2NTgMAcFL8PxAAADkoLCxMZ8+eve3zVqtVERERCgsLU5s2bXIvmDPw8JAWLzY6BQDAyXGlGwCAHBQZGZmt5wEAgPyFK90AAOSgMmXKZOt5uAdWqxQfb3tcqJBkMhmbBwDglAy90h0aGqquXbuqbNmyMplMWrly5V1fs3XrVjVq1EgFChRQlSpVtGDBgnTPf/bZZwoICFCxYsVUrFgxtWvXTrt3786h7wAAgDsLCAhQ+fLlZbpD4XNxcVFycnIupnIS8fG21csLF/5f+QYAIJcZWrrj4uLUoEEDzZs3L0vnnzx5Up07d1ZAQIAOHDigsWPHavDgwVq2bJn9nJCQEAUGBmrLli3auXOnKlasqA4dOujcuXM59W0AAHBbZrNZc+fOlaQMxTvt69TUVHXq1Elz584VO3kCAOBY8sw+3SaTSStWrFD37t1ve87o0aO1evVqHT582H7stdde08GDB7Vz585MX2OxWFSsWDHNmzdP/fr1y1IW9ukGAGS35cuXa8iQIekWVatQoYLef/99rVu3Tv/9738lSf369dOCBQtUsGBBo6I6DvbpBgDkIIfcp3vnzp3q0KFDumMdO3bU3r17bzstLz4+XsnJySpevHhuRAQAIFM9evTQqVOntGXLFn377bfasmWLTp48qcDAQH311VeaPXu2zGazvvrqK7Vq1UoRERFGRwYAANkgXy2kFhUVpdKlS6c7Vrp0aaWkpOjSpUuZLkLz9ttvq1y5cmrXrt1t3zcxMVGJiYn2r2NiYrIvNAAA/89sNme6LZjJZNLQoUNVv3599e7dW3v37lXjxo21dOlSBQQE5H5QAACQbfLVlW4p4/1wabPjM1ugZsaMGQoKCtLy5ctVoECB277ntGnT5O3tbR8VKlTI3tAAAGTB448/rr179+rhhx/WhQsX9Nhjj+mTTz7hPm8AAPKxfFW6fX19FRUVle7YhQsX5OrqqhIlSqQ7PnPmTE2dOlUbNmzQww8/fMf3HTNmjKKjo+2DKX0AAKM89NBD2rFjh/r06aOUlBQNHDhQr7zySroZWQAAIP/IV6Xb399fGzduTHdsw4YNaty4sdzc3OzHPvjgA02ePFk//vijGjdufNf39fDwkJeXV7oBAIBRPD09FRQUpPfff18mk0kLFy5UmzZtdP78eaOj5S9ms9Srl22YzUanAQA4KUNLd2xsrMLDwxUeHi7JtiVYeHi4zpw5I8l2BfrmFcdfe+01nT59WsOHD9fhw4f1+eefa9GiRRoxYoT9nBkzZuidd97R559/rsqVKysqKkpRUVGKjY3N1e8NAIAHYTKZNGrUKK1bt05FixbVrl271LhxY+3atcvoaPlHgQLS99/bxh1uMwMAICcZWrr37t0rPz8/+fn5SZKGDx8uPz8/TZgwQZIUGRlpL+CSbcrdunXrFBISooYNG2ry5Mn66KOP1LNnT/s58+fPV1JSknr16qUyZcrYx8yZM3P3mwMAIBs88cQT2rNnj+rWravIyEi1bt1aixYtMjoWAADIojyzT3dewj7dAIC85vr163rxxRe1YsUKSdLAgQM1e/Zsubu7G5wMAADn5JD7dAMA4KyKFCmipUuXavLkyZJsM7vatWunCxcuGJwsD4uLk0wm24iLMzoNAMBJUboBAMgnXFxc9M4772j16tUqUqSIwsLC1KhRI+3bt8/oaAAA4DYo3QAA5DNdu3bV7t27VaNGDZ09e1YtW7bU119/bXQsAACQCUo3AAD5UK1atbR792516dJFN27cUL9+/TRs2DClpKQYHQ0AANyE0g0AQD7l7e2t1atX65133pEkzZkzRx07dtSlS5cMTgYgp1ksFoWEhCgoKEghISGyWCxGRwJwG5RuAADyMRcXF02ePFlLly6Vp6enfv75ZzVu3Fjh4eFGRwOQQ5YvX67KlSurbdu2evbZZ9W2bVtVrlxZy5cvNzoagExQugEAcAA9e/bUrl27VLVqVZ0+fVrNmzdXcHCw0bEAZLPly5erV69eOnv2bLrj586dU69evSjeQB5E6QYAwEHUq1dPe/bsUceOHZWQkKDAwECNHj3aeaedms1S5862YTYbnQZ4YBaLRUOGDJHVas3wnNVqldVq1RtvvKHY2FgD0gG4HZM1s/9qnVxWNzkHACAvslgsGjdunN5//31JUseOHRUUFKRixYoZnAzA/bBYLAoPD9eiRYv0ySefZOk1hQoVUsmSJVWyZEn5+Pik+9/MHhctWlQuLlyPA+5FVnsjpTsTlG4AgCMIDg7WP//5TyUkJKhq1apatWqV6tata3QsAHeRnJysffv2aevWrdq6dau2b9+umJiYHP1Ms9msEiVK3LaUZ3bM3d09RzMBeR2l+wFQugEAjiI8PFzdu3fX6dOn5enpqa+++ko9evQwOhaAmyQmJmrPnj32kr1jxw7FxcWlO8fLy0t16tTRrl277vp+a9asUa1atXTp0iVdvHhRFy9evOPj+y30Xl5ed72SfvOxIkWKyGQy3ddnAXkRpfsBULoBAI7k0qVL6t27t7Zs2SJJGj9+vCZOnOj4U0nj4qRSpWyPL1yQPD2NzQP8v4SEBO3atctesnft2qUbN26kO6d48eJq1aqVWrdurVatWqlBgwaSpMqVK+vcuXOZ3tdtMplUvnx5nTx5UuZ7WMcgMTFRly9fvmNBv/nY5cuX72utCHd39wxl/E5T3kuUKCFXV9d7/pycYLFYFBYWpsjISJUpU0YBAQH39GsMx0TpfgCUbgCAo0lJSdHIkSM1Z84cSdKTTz6p//73v/L29jY2WE6Ki5MKF7Y9jo2ldMMwcXFx2rFjh71k7969W0lJSenOKVmypFq3bm0fdevWzfQHY2mrl0tKV7zTriAvXbo0x2ezpKam6tq1a3e9kn7zsfj4+Pv6rGLFit3TlHfPHPjvfPny5RoyZEi6FePLly+vuXPnMnPIyVG6HwClGwDgqL766iu98sorSkxMVM2aNbVy5UrVqlXL6Fg5g9INg8TExGjbtm3aunWrQkNDtXfvXqWkpKQ7p0yZMulKdq1atbI89TqzElihQgXNmTMnz5bA+Pj4DGX8TqX9ypUrmV7Nv5uCBQve05T3YsWK3XHWT9oPOW7Nkps/5EDeRel+AJRuAIAj27t3r55++mmdPXtWRYoU0TfffKOuXbsaHSv7UbqRS65evaqwsDD7lewDBw4oNTU13TkVK1ZMV7KrVq36QPc3O/p055SUFF29ejXLV9IvXryYYfZAVri4uNgXkLu1lJcoUUKTJ0/WlStXMn3t/U7nh+OgdD8ASjcAwNH9/fff6tWrl7Zt2yZJmjRpksaNG+dY93lTupFDLl68qNDQUHvJ/u233zJcCa1atar9fuzWrVurcuXKxoR1ElarVbGxsVm+kn7x4kVFR0dny2dv2bJFbdq0yZb3Qv5C6X4AlG4AgDNISkrSsGHDNH/+fElSjx49tHjxYhUpUsTgZNmE0o1sEhUVZS/YW7du1aFDhzKcU7NmTftV7FatWql8+fIGJMW9SEpKsi8gl1kp379/f5ZWi69Tp4569eqlgIAA+fv758h95cibKN0PgNINAHAmCxcu1KBBg5SUlKS6detq5cqVqlatmtGxHhylG/cpIiLCXrBDQ0N19OjRDOfUq1cv3erivr6+BiRFTgoJCVHbtm3v6TVms1mNGjVSQECAAgIC1LJlS5UoUSKHEsJolO4HQOkGADibnTt3qmfPnoqMjFTRokUVHBysjh07Gh3rwSQkSJ062R6vXy8VLGhsHuRJVqtVp06dSncl++TJk+nOMZlMatCggf1KdkBAgHx8fAxKjNxisVjuukVb6dKlNWHCBG3btk1hYWGKiIjIcF6dOnXUqlUrexGvUKFCbsRHLqB0PwBKNwDAGZ0/f149e/bUrl275OLiomnTpmnkyJEPtNgTkNdYrVYdO3Ys3ZXsW4uSi4uLHnnkEXvJbtmypYoVK2ZQYhjpXrdoO336tMLCwhQWFqbQ0FAdOXIkw3tWqlTJXsBbtWqlmjVr8vdsPkXpfgCUbgCAs0pMTNSgQYO0aNEiSVKfPn20aNEi7lFEvmW1WnX48OF0JTsyMjLdOa6urmrSpIm9ZDdv3px/A8LuQbZou3jxov0qeFhYmPbv359hZfuSJUuqZcuW9iLesGFDubq65sj3guxF6X4AlG4AgDOzWq1asGCBBg8erJSUFDVo0EArV65k9WXkC6mpqfrtt9/SlexLly6lO8fd3V1Nmza1l2wWv8LdZNcWbdevX9fOnTvtJfyXX37RjRs30p1TuHBhNW/e3F7CH330URXk9pg8idL9ACjdAABIYWFh6tWrly5cuKASJUpoyZIlevzxx42OlXVxcVLaDwpOnWIhNQdlsVgUHh5uL9lhYWG6evVqunMKFiwof39/e8mmxCCvSExM1L59+xQaGqqwsDBt3749w1Zm7u7uatKkib2Et2jRQt7e3gYlxs0o3Q+A0g0AgE1ERISefvpp7du3T2azWTNnztSQIUPyx/2HrF7ukJKTk7Vv3z57yd6+fbtiYmLSnePp6akWLVrYS3aTJk3k7u5uUGIg6ywWi37//Xf7PeFhYWGKiopKd47JZNLDDz+cbnE2Vs83BqX7AVC6AQD4n4SEBL366qv6+uuvJUkvvPCC/vOf/+T9K4WUboeQmJioPXv22Ev2jh07FBcXl+4cLy8vBQQE2Eu2n5+f3NzcDEoMZB+r1aq//vor3eJsf/31V4bzqlWrlm5xtipVquSPH47mc5TuB0DpBgAgPavVqo8++khvvfWWLBaLGjVqpBUrVuTtrW8o3flSQkKCdu3aZS/Zu3btynDPa7Fixex7ZLdu3VoNGjS4r/trgfwoMjLSXsLDwsL066+/ZtjSLO2+87RRv359ubi4GJTYcVG6HwClGwCAzG3evFl9+vTR5cuXVbJkSS1dulStWrUyOlbmKN256n4XmoqLi9OOHTvsJXv37t1KSkpKd07JkiXVunVre9GuV68eBQL4f9euXdP27dvtJXzPnj1KTk5Od07RokXVokULewlv3Lgxt1xkA0r3A6B0AwBwe6dOnVL37t118OBBubq6au7cuXr99dfz3lRGSneuyWxLpfLly2vu3LkZtlSKiYnRtm3b7CuL7927VykpKenOKVOmjP0qduvWrVWrVq289+cLyKMSEhK0e/du+z3hmd2SUaBAATVr1sxewv39/VU47e9LZBml+wFQugEAuLP4+HgNGDBAwcHBkqQBAwbo3//+tzw8PAxOdhNKd65Yvny5evXqlWF6a1pJXrx4sYoWLWq/kn3gwIEM+xRXrFgx3ZXsatWqUbKBbJKSkqLw8HD7PeHbtm3LsI2e2WyWn5+ffXG2li1bysfHx6DE+Qel+wFQugEAuDur1aqZM2fq7bffVmpqqpo1a6Zly5apbNmyRkezSUiQ0qa+h4ZKeX3ht3zIYrGocuXK6a5wZ0WVKlXSXclmD3gg91itVh05ciTdfeGnT5/OcF7t2rXtC7MFBASoYsWKBqTN2yjdD4DSDQBA1v3000/q27evrl27Jl9fXy1fvlz+/v5Gx0IuCAkJUdu2be96XoUKFdSpUyf7lezy5cvnQjoAWXXmzJl0JfzQoUMZzqlYsWK6xdlq167t9DNSKN0PgNINAMC9OX78uLp3764//vhDbm5umj9/vl566SWjYyGHWK1W7du3T5MnT9bq1avvev63336rwMDAXEgGIDtcunRJ27Zts5fw/fv3y2KxpDvHx8dHLVu2tJdwPz8/ubq6GpTYGJTuB0DpBgDg3l2/fl39+/fX8uXLJUmvv/665syZwwq5DsJisWjnzp1atmyZli9frjNnzmT5tVu2bFGbNm1yLhyAHBUbG6tdu3bZ7wvPbCs/T09PNW/e3F7CmzZtqoIOflsPpfsBULoBALg/qampmjp1qiZMmCCr1aqWLVtq6dKlKl26dO6HiY+X6tSxPT50SCpUKPcz5HPJycnaunWrli1bppUrVyoqKsr+XKFChdSpUydt2bJFV69ezbCQmmRbTK18+fI6efIk+2gDDiQpKUn79u2zXwnftm2brl27lu4cNzc3NWnSxF7CW7RooaJFi2bp/e93C8LcRul+AJRuAAAezA8//KDnn39eMTExKleunFasWKEmTZrkbghWL78vN27c0MaNG7V8+XKtXr1aV65csT/n7e2trl27qmfPnurQoYMKFSpkX71cUrrinXav59KlSzNsGwbAsaSmpur3339Pd1/4+fPn051jMplUv359+8JsAQEBKlOmTIb3upctCI1G6X4AlG4AAB7ckSNH1L17d/3555/y8PDQp59+qn79+uVeAEp3lsXGxmr9+vVavny51qxZo9jYWPtzPj4+6t69u3r27KnHHnss09sFMvtHcoUKFTRnzpw8949kADnParXqxIkT6Ur4sWPHMpxXtWrVdCukHzx4UM8888xttyDMaz/Eo3Q/AEo3AADZIzo6Ws8//7zWrFkjSRoyZIg++OADubm55fyHU7rv6Nq1a/rhhx+0fPly/fjjj+nuzyxXrpx69OihHj16qGXLlllaHCm/TAcFYIyoqKh0JfzgwYMZyrWLi4tSU1MzfX1evF2F0v0AKN0AAGSf1NRUTZw4UZMnT5YktW3bVt999518fHxy9oMp3RlcuHBBq1at0rJly7R582alpKTYn6tSpYp69uypHj166NFHH5WLi4uBSQE4uuj/a+/eo6oq8z+Ofw6XQFFQMEHCC66xxEuAWiZecMYLlqHEmbQy07GpcSWJaWZm/XRsidKUaWkXu5hN3loB4riS0S6CJl4Ta/KWioYX0soEURE4+/eH4x5PoJJwOBx8v9Y6a539PM/Z57tb35Avz97Pc/q0Nm7caC7OtnnzZrufSVdSmxZmpOiuAopuAACqX2pqqkaMGKEzZ86oZcuWWrFihSIiIhz3hRTdkqQjR44oLS1NKSkpWr9+vd0sUrt27cxCOzw8/IbfcxeA8yxatEgjR4685rjatAVhZevGG2sjNQAA4DTx8fG67bbbFBcXp/379ysqKkrvv/++HnjgAWeHVuccOHBAqampSklJ0ebNm+36OnXqZBbabdu2dVKEAGCvZcuWlRpX0eJrtR0z3RVgphsAAMc5deqUHnroIWVkZEiSnnnmGSUlJVX/M3pnz0qXVkzfurVObxlmGIZ27dpl7qG9c+dOs89isSgqKsp8RrtVq1bOCxQArqCsrEytWrXS0aNHXWYLQm4vrwKKbgAAHKusrExTpkxRcnKyJKl///5aunSp/P39nRyZ6zAMQ19//bVZaO/du9fsc3d3V+/evRUfH6/77rvPJWeGANx4XG0LQoruKqDoBgCgZixfvlx/+ctfdO7cObVu3VorVqxQx44dnR1WrWWz2ZSdnW0W2ocPHzb7brrpJvXr109Wq1WxsbGOX6gOABzAlbYgpOiuAopuAABqzs6dOxUXF6dDhw7Jx8dHixYtktVqdXZYtUZpaakyMzOVkpKitLQ05efnm33169fX3XffLavVqoEDB/J7C4A6wVW2IKTorgKKbgAAatZPP/2koUOH6osvvpAkTZkyRdOnT6/atlUu/Ex3cXGx1q5dq9TUVKWnp+uXX34x+3x9fRUbGyur1aqYmBjVd6HrAoC6hKK7Cii6AQCoeaWlpXrmmWf06quvSpIGDhyoxYsXy8/P7/pO6GJbhhUVFWn16tVKTU3VqlWrVFhYaPY1adJEcXFxio+PV58+fXTTTTc5MVIAgETRXSUU3QAAOM8///lPPfbYYyouLtatt96q9PT069vaygWK7l9//VWrVq1SSkqKMjIydP78ebMvODjYXHG8Z8+e8vBgp1cAqE3YpxsAALik4cOHKywsTPfdd5/27dunO++8U4sXL1ZsbKyzQ6sWJ0+eVHp6ulJSUvT555+rpKTE7AsNDTX30O7atWvVbq8HANQKzHRXgJluAACc78cff9T999+v9evXS5KmT5+uKVOmVL4QrUUz3UePHlVaWppSUlKUlZUlm81m9oWFhclqtcpqtSo8PNzcGgcAULtxe3kVUHQDAFA7lJSU6KmnntL8+fMlSffdd58WLVqkhg0bXvvDTi66Dx48qNTUVKWkpGjTpk12fZ06dTJvHQ8LC6vRuAAA1YPbywEAgMvz9PTUvHnzFBkZqSeeeEJpaWnau3ev0tPT9Yc//MHZ4ZWza9cucw/tnJwcu76oqCiz0A4NDXVOgACAGkfRDQAAar1HH31U7du3V3x8vHbt2qU77rhDS5cu1YABA678IYtFatnyf+8dwDAM7dixwyy09+zZY/a5u7srOjpaVqtVcXFxCg4OdkgMAIDajdvLK8Dt5QAA1E7Hjx+X1WpVdna2LBaLkpKSNGnSpBp9Dtpms2nTpk1moX3o0CGzz9PTU/369ZPVatWgQYPUpEmTGosLAFCzeKa7Cii6AQCovYqLi5WQkKB3331XkjRkyBC9//778nHgM9ulpaXKyspSSkqK0tLSdPz4cbOvXr16uvvuu2W1WjVw4MDr31ccAOBSKLqrgKIbAIDazTAMvf3223ryySdVWlqq22+/XStWrKjWZ6WLi4v12WefKTU1Venp6fr555/NPl9fX8XGxio+Pl4DBgxQ/fr1q+17AQCugaK7Cii6AQBwDevXr9ef//xnnThxQv7+/vr444/Vp0+fi53nzkm9el18n5Ul1at3zfMVFRUpIyNDqampWrVqlQoKCsy+gIAAxcXFKT4+Xn369JGXl5cjLgkA4CIouquAohsAANeRl5en+Ph4bdu2TW5ubnr55Zc1btw42QoL5f7fW72zPv1U3fv3l7u7e7nPnz59WqtWrVJKSooyMjJ07tw5s69Zs2bmiuO9evWShwdr0AIALqLorgKKbgAAXMu5c+c0evRoffjhh5KkXr166dj33+v7/z577SPJPyREc+fOVXx8vE6ePKmVK1cqJSVFn332mUpKSsxztWrVSlarVVarVV27dpWbm5szLgkAUMtRdFcBRTcAAK7HMAy99tprGj9+vGw2m+pLKvpvn4+kcxaLDMNQhw4dtGvXLtlsNvOzbdu2NQvtiIiIGl0NHQDgmii6q4CiGwAA11RWVqZmzZrp5MmT5Yrus78ZGxkZqfj4eFmtVoWFhdVsoAAAl1fZupEHkwAAQJ2xfv16nTx58prjFi9erIceeqgGIgIA3Oh4SAkAANQZl++ffTXcPg4AqCnMdAMAgDqjWbNmdsdXmvP+7TgAAByFmW4AAFBn9OzZUyEhIbJYLDorqel/X5ee57ZYLGrevLl69uzpvCABADcUim4AAFBnuLu7a+7cuZLK30J+6XjOnDkV7tcNAIAjUHQDAIA6JT4+Xp988oluueUWu/aQkBB98sknio+Pd1JkAIAbEVuGVYAtwwAAcH1lZ86osEcPFV+4oL2vvqruffsyww0AqDZsGQYAAG5o7haLGu3cKUkK7NFDouAGADgBt5cDAAAAAOAgFN0AAAAAADgIRTcAAAAAAA7i1KI7KytLsbGxCg4OlsVi0YoVK675mczMTHXu3Fne3t5q3bq13nrrrXJjUlJS1K5dO3l5ealdu3ZKS0tzQPQAAAAAAFydU4vuoqIihYeHa968eZUan5ubq3vuuUc9e/bUjh079Nxzz2ns2LFKSUkxx2RnZ2vo0KEaPny4du7cqeHDh2vIkCHavHmzoy4DAAAAAIAK1ZotwywWi9LS0hQXF3fFMZMmTdLKlSu1e/dus2306NHauXOnsrOzJUlDhw5VQUGBVq9ebY4ZMGCAGjdurKVLl1YqFrYMAwCgDigqkpo2vfj+xAnJx8e58QAA6pTK1o0u9Ux3dna2+vfvb9cWExOjbdu2qaSk5KpjNm7cWGNxAgCAWsDH52LhXVREwQ0AcBqX2qc7Pz9fgYGBdm2BgYEqLS3VTz/9pGbNml1xTH5+/hXPW1xcrOLiYvO4oKCgegMHAAAAANyQXGqmW7p4G/rlLt0df3l7RWN+23a5mTNnys/Pz3w1b968GiMGAAAAANyoXKroDgoKKjdjfeLECXl4eCggIOCqY347+325yZMn6/Tp0+YrLy+v+oMHAAA16/x5aeDAi6/z550dDQDgBuVSRXe3bt20du1au7Y1a9aoS5cu8vT0vOqYqKioK57Xy8tLvr6+di8AAODiysqkTz+9+Corc3Y0AIAblFOf6T5z5oz2799vHufm5ionJ0f+/v5q0aKFJk+erKNHj+rDDz+UdHGl8nnz5mn8+PF67LHHlJ2drffee89uVfLExET16tVLycnJGjx4sNLT0/XZZ59pw4YNNX59AAAAAIAbm1Nnurdt26bIyEhFRkZKksaPH6/IyEj93//9nyTp+PHj+uGHH8zxoaGh+vTTT7Vu3TpFREToxRdf1GuvvSar1WqOiYqK0rJly7Rw4ULdfvvt+uCDD7R8+XJ17dq1Zi8OAAAAAHDDqzX7dNcm7NMNAEAdUFQkNWhw8f2ZM2wbBgCoVnVyn24AAAAAAFwJRTcAAAAAAA7i1IXUaqtLd9wXFBQ4ORIAAHDdior+976ggBXMAQDV6lK9eK0ntim6K1BYWChJat68uZMjAQAA1SI42NkRAADqqMLCQvn5+V2xn4XUKmCz2XTs2DE1bNhQFovF2eGgligoKFDz5s2Vl5fHAnuoU8ht1GXkN+oy8ht1mSvkt2EYKiwsVHBwsNzcrvzkNjPdFXBzc1NISIizw0At5evrW2v/xweqgtxGXUZ+oy4jv1GX1fb8vtoM9yUspAYAAAAAgINQdAMAAAAA4CAU3UAleXl5aerUqfLy8nJ2KEC1IrdRl5HfqMvIb9RldSm/WUgNAAAAAAAHYaYbAAAAAAAHoegGAAAAAMBBKLoBAAAAAHAQim7gMjNnztQdd9yhhg0bqmnTpoqLi9PevXvtxhiGoWnTpik4OFj16tVT79699d133zkpYuD6zJw5UxaLRePGjTPbyG24sqNHj+rhhx9WQECA6tevr4iICG3fvt3sJ7/hqkpLS/X8888rNDRU9erVU+vWrTV9+nTZbDZzDPkNV5GVlaXY2FgFBwfLYrFoxYoVdv2VyeXi4mI9+eSTatKkiXx8fDRo0CAdOXKkBq/i96PoBi6TmZmpMWPGaNOmTVq7dq1KS0vVv39/FRUVmWNeeuklzZ49W/PmzdPWrVsVFBSkfv36qbCw0ImRA5W3detWLViwQLfffrtdO7kNV3Xq1Cl1795dnp6eWr16tXbt2qVXXnlFjRo1MseQ33BVycnJeuuttzRv3jzt3r1bL730kv7xj3/o9ddfN8eQ33AVRUVFCg8P17x58yrsr0wujxs3TmlpaVq2bJk2bNigM2fO6N5771VZWVlNXcbvZwC4ohMnThiSjMzMTMMwDMNmsxlBQUHGrFmzzDHnz583/Pz8jLfeestZYQKVVlhYaLRp08ZYu3atER0dbSQmJhqGQW7DtU2aNMno0aPHFfvJb7iygQMHGqNGjbJri4+PNx5++GHDMMhvuC5JRlpamnlcmVz+9ddfDU9PT2PZsmXmmKNHjxpubm5GRkZGjcX+ezHTDVzF6dOnJUn+/v6SpNzcXOXn56t///7mGC8vL0VHR2vjxo1OiRH4PcaMGaOBAweqb9++du3kNlzZypUr1aVLF91///1q2rSpIiMj9c4775j95DdcWY8ePfT5559r3759kqSdO3dqw4YNuueeeySR36g7KpPL27dvV0lJid2Y4OBgdejQoVbnu4ezAwBqK8MwNH78ePXo0UMdOnSQJOXn50uSAgMD7cYGBgbq8OHDNR4j8HssW7ZMX3/9tbZu3Vquj9yGKzt48KDefPNNjR8/Xs8995y2bNmisWPHysvLS4888gj5DZc2adIknT59Wm3btpW7u7vKyso0Y8YMPfjgg5L4+Y26ozK5nJ+fr5tuukmNGzcuN+bS52sjim7gChISEvTNN99ow4YN5fosFovdsWEY5dqA2iQvL0+JiYlas2aNvL29rziO3IYrstls6tKli5KSkiRJkZGR+u677/Tmm2/qkUceMceR33BFy5cv10cffaQlS5aoffv2ysnJ0bhx4xQcHKwRI0aY48hv1BXXk8u1Pd+5vRyowJNPPqmVK1fqyy+/VEhIiNkeFBQkSeX+knbixIlyf5UDapPt27frxIkT6ty5szw8POTh4aHMzEy99tpr8vDwMPOX3IYratasmdq1a2fXFhYWph9++EESP7vh2iZOnKhnn31WDzzwgDp27Kjhw4frqaee0syZMyWR36g7KpPLQUFBunDhgk6dOnXFMbURRTdwGcMwlJCQoNTUVH3xxRcKDQ216w8NDVVQUJDWrl1rtl24cEGZmZmKioqq6XCBSuvTp4++/fZb5eTkmK8uXbpo2LBhysnJUevWrcltuKzu3buX295x3759atmypSR+dsO1nT17Vm5u9r+yu7u7m1uGkd+oKyqTy507d5anp6fdmOPHj+s///lPrc53bi8HLjNmzBgtWbJE6enpatiwofmXNj8/P9WrV8/c1zgpKUlt2rRRmzZtlJSUpPr16+uhhx5ycvTAlTVs2NBcm+ASHx8fBQQEmO3kNlzVU089paioKCUlJWnIkCHasmWLFixYoAULFkgSP7vh0mJjYzVjxgy1aNFC7du3144dOzR79myNGjVKEvkN13LmzBnt37/fPM7NzVVOTo78/f3VokWLa+ayn5+fHn30UU2YMEEBAQHy9/fX008/rY4dO5ZbJLZWcd7C6UDtI6nC18KFC80xNpvNmDp1qhEUFGR4eXkZvXr1Mr799lvnBQ1cp8u3DDMMchuu7V//+pfRoUMHw8vLy2jbtq2xYMECu37yG66qoKDASExMNFq0aGF4e3sbrVu3NqZMmWIUFxebY8hvuIovv/yywt+1R4wYYRhG5XL53LlzRkJCguHv72/Uq1fPuPfee40ffvjBCVdTeRbDMAwn1fsAAAAAANRpPNMNAAAAAICDUHQDAAAAAOAgFN0AAAAAADgIRTcAAAAAAA5C0Q0AAAAAgINQdAMAAAAA4CAU3QAAAAAAOAhFNwAAAAAADkLRDQBAHXHo0CFZLBbl5OQ4OxTTnj17dNddd8nb21sRERHODgcAgBpH0Q0AQDUZOXKkLBaLZs2aZde+YsUKWSwWJ0XlXFOnTpWPj4/27t2rzz//vFy/xWK56mvkyJE1HzQAANWIohsAgGrk7e2t5ORknTp1ytmhVJsLFy5c92cPHDigHj16qGXLlgoICCjXf/z4cfM1Z84c+fr62rXNnTvXbnxJScl1xwIAgDNQdAMAUI369u2roKAgzZw584pjpk2bVu5W6zlz5qhVq1bm8ciRIxUXF6ekpCQFBgaqUaNG+vvf/67S0lJNnDhR/v7+CgkJ0fvvv1/u/Hv27FFUVJS8vb3Vvn17rVu3zq5/165duueee9SgQQMFBgZq+PDh+umnn8z+3r17KyEhQePHj1eTJk3Ur1+/Cq/DZrNp+vTpCgkJkZeXlyIiIpSRkWH2WywWbd++XdOnT5fFYtG0adPKnSMoKMh8+fn5yWKxmMfnz59Xo0aN9PHHH6t3797y9vbWRx99JElauHChwsLC5O3trbZt2+qNN96wO+/Ro0c1dOhQNW7cWAEBARo8eLAOHTpk9q9bt0533nmnfHx81KhRI3Xv3l2HDx+u8DoBAKgKim4AAKqRu7u7kpKS9Prrr+vIkSNVOtcXX3yhY8eOKSsrS7Nnz9a0adN07733qnHjxtq8ebNGjx6t0aNHKy8vz+5zEydO1IQJE7Rjxw5FRUVp0KBB+vnnnyVdnFmOjo5WRESEtm3bpoyMDP34448aMmSI3TkWLVokDw8PffXVV3r77bcrjG/u3Ll65ZVX9PLLL+ubb75RTEyMBg0apO+//978rvbt22vChAk6fvy4nn766ev67zBp0iSNHTtWu3fvVkxMjN555x1NmTJFM2bM0O7du5WUlKQXXnhBixYtkiSdPXtWf/zjH9WgQQNlZWVpw4YNatCggQYMGKALFy6otLRUcXFxio6O1jfffKPs7Gw9/vjjN+wjAAAABzMAAEC1GDFihDF48GDDMAzjrrvuMkaNGmUYhmGkpaUZl/+TO3XqVCM8PNzus6+++qrRsmVLu3O1bNnSKCsrM9tuu+02o2fPnuZxaWmp4ePjYyxdutQwDMPIzc01JBmzZs0yx5SUlBghISFGcnKyYRiG8cILLxj9+/e3++68vDxDkrF3717DMAwjOjraiIiIuOb1BgcHGzNmzLBru+OOO4wnnnjCPA4PDzemTp16zXMZhmEsXLjQ8PPzM48vXc+cOXPsxjVv3txYsmSJXduLL75odOvWzTAMw3jvvfeM2267zbDZbGZ/cXGxUa9ePePf//638fPPPxuSjHXr1lUqLgAAqsLDqRU/AAB1VHJysv70pz9pwoQJ132O9u3by83tfzelBQYGqkOHDuaxu7u7AgICdOLECbvPdevWzXzv4eGhLl26aPfu3ZKk7du368svv1SDBg3Kfd+BAwd06623SpK6dOly1dgKCgp07Ngxde/e3a69e/fu2rlzZyWvsHIuj+XkyZPKy8vTo48+qscee8xsLy0tlZ+fn6SL17h//341bNjQ7jznz5/XgQMH1L9/f40cOVIxMTHq16+f+vbtqyFDhqhZs2bVGjcAAJJE0Q0AgAP06tVLMTExeu6558qtwO3m5ibDMOzaKlogzNPT0+7YYrFU2Gaz2a4Zz6Vbp202m2JjY5WcnFxuzOVFp4+PzzXPefl5LzEMo9pv0748lkvX+s4776hr165249zd3c0xnTt31uLFi8ud6+abb5Z08ZnwsWPHKiMjQ8uXL9fzzz+vtWvX6q677qrW2AEAoOgGAMBBZs2apYiICHP2+JKbb75Z+fn5dgVqde6tvWnTJvXq1UvSxRng7du3KyEhQZLUqVMnpaSkqFWrVvLwuP5fA3x9fRUcHKwNGzaY3yVJGzdu1J133lm1C7iKwMBA3XLLLTp48KCGDRtW4ZhOnTpp+fLlatq0qXx9fa94rsjISEVGRmry5Mnq1q2blixZQtENAKh2LKQGAICDdOzYUcOGDdPrr79u1967d2+dPHlSL730kg4cOKD58+dr9erV1fa98+fPV1pamvbs2aMxY8bo1KlTGjVqlCRpzJgx+uWXX/Tggw9qy5YtOnjwoNasWaNRo0aprKzsd33PxIkTlZycrOXLl2vv3r169tlnlZOTo8TExGq7lopMmzZNM2fO1Ny5c7Vv3z59++23WrhwoWbPni1JGjZsmJo0aaLBgwdr/fr1ys3NVWZmphITE3XkyBHl5uZq8uTJys7O1uHDh7VmzRrt27dPYWFhDo0bAHBjougGAMCBXnzxxXK3koeFhemNN97Q/PnzFR4eri1btlz3yt4VmTVrlpKTkxUeHq7169crPT1dTZo0kSQFBwfrq6++UllZmWJiYtShQwclJibKz8/P7vnxyhg7dqwmTJigCRMmqGPHjsrIyNDKlSvVpk2baruWivz1r3/Vu+++qw8++EAdO3ZUdHS0PvjgA4WGhkqS6tevr6ysLLVo0ULx8fEKCwvTqFGjdO7cOfn6+qp+/fras2ePrFarbr31Vj3++ONKSEjQ3/72N4fGDQC4MVmM3/4mAAAAAAAAqgUz3QAAAAAAOAhFNwAAAAAADkLRDQAAAACAg1B0AwAAAADgIBTdAAAAAAA4CEU3AAAAAAAOQtENAAAAAICDUHQDAAAAAOAgFN0AAAAAADgIRTcAAAAAAA5C0Q0AAAAAgINQdAMAAAAA4CD/D56ch5g/VcjzAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot OOB error evolution (if OOB scoring is enabled)\n", + "# Note: In \"RandomForestRegressor\", \"oob_score_\" represents OOB-R^2 (Bestimmtheitsmaß), not the OOB-MSE.\n", + "# Note: sklearn doesn't store OOB evolution by default, so we'll create a simple version\n", + "oob_errors = []\n", + "for n_est in range(10, 101, 10):\n", + " rf_temp = RandomForestRegressor(n_estimators=n_est, max_features=2,\n", + " random_state=2, oob_score=True)\n", + " rf_temp.fit(X_train, y_train)\n", + " oob_errors.append(1 - rf_temp.oob_score_) # Convert R^2 to \"error\": (1 - R^2)\n", + "\n", + "best_idx = np.argmin(oob_errors)\n", + "best_size = list(range(10, 101, 10))[best_idx]\n", + "best_oob_error = oob_errors[best_idx]\n", + "\n", + "plt.style.use('default')\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(range(10, 101, 10), oob_errors, '-o', color='black', label=\"OOB Error\")\n", + "plt.axvline(x=best_size, color='red', linestyle='--',\n", + " label=f'Optimal size = {best_size}\\nOOB Error = {best_oob_error:.4f}')\n", + "\n", + "plt.xlabel('Number of Trees')\n", + "plt.ylabel('OOB Error')\n", + "# plt.title('Random Forest: OOB Error vs Number of Trees')\n", + "plt.grid(False)\n", + "plt.legend()\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "256e2c6c-3de3-426e-ac67-b9c5b92372d3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Random Forest Train MSE: 0.000739\n", + "Random Forest Test MSE: 0.012266\n" + ] + } + ], + "source": [ + "# Calculate training and test MSE\n", + "y_pred_rf_train = rf_model.predict(X_train)\n", + "mse_rf_train = mean_squared_error(y_train, y_pred_rf_train)\n", + "\n", + "y_pred_rf_test = rf_model.predict(X_test)\n", + "mse_rf_test = mean_squared_error(y_test, y_pred_rf_test)\n", + "\n", + "print(f\"\\nRandom Forest Train MSE: {mse_rf_train:.6f}\")\n", + "print(f\"Random Forest Test MSE: {mse_rf_test:.6f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "0f6cf5fb-638d-4d3e-a25e-f3dbbdb7ef6f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Feature Importance (Random Forest):\n", + " Variable Importance\n", + "0 DP 0.188921\n", + "3 cay 0.173580\n", + "4 TS 0.169850\n", + "1 CS 0.163270\n", + "5 svar 0.161956\n", + "2 ntis 0.142423\n", + "\n", + "Most important variable in Random Forest: DP\n" + ] + } + ], + "source": [ + "# Feature importance\n", + "rf_importance = pd.DataFrame({\n", + " 'Variable': X_train.columns,\n", + " 'Importance': rf_model.feature_importances_\n", + "}).sort_values('Importance', ascending=False)\n", + "\n", + "print(\"Feature Importance (Random Forest):\")\n", + "print(rf_importance)\n", + "\n", + "# Most important variable\n", + "most_important_rf = rf_importance.iloc[0]['Variable']\n", + "print(f\"\\nMost important variable in Random Forest: {most_important_rf}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "3ae48b8e-d6ba-46dd-af32-ae3c263ebf04", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALZpJREFUeJzt3Xl01PW9+P/XQCAhQIKoNaApoKCAiFrQulVcUKTgleqluNaNqvdqEbUFaY8CrSiiVG9dqodqQjeV69ZeWxdKL7VXcLvFuhCXqyB4DGptTbTWyPL5/eGP+TYSkCXvDMTH45w5h5l5z3zek7fDxyefyWdyWZZlAQAAADS7NoWeAAAAALRWohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEikqNAT2FJr1qyJN998Mzp37hy5XK7Q0wEAAOBzIMuyeP/996N79+7Rps36j2dv89H95ptvRmVlZaGnAQAAwOfQ8uXLY5dddlnv/dt8dHfu3DkiPnmhZWVlBZ4NAAAAnwf19fVRWVmZb9L12eaje+1HysvKykQ3AAAALeqzfs3ZidQAAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIpKvQEmsuAyQ9Hm+LSQk8DAACAzbR0+ohCT6HZOdINAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCLJovuMM86IXC4XuVwu2rVrFzvttFMcddRRcfvtt8eaNWvy43r27JkfV1paGgMGDIhbb7011bQAAACgxSQ90n3MMcdEbW1tLF26NB588ME4/PDD48ILL4yRI0fGqlWr8uO+//3vR21tbTz77LMxatSoOO+88+Kuu+5KOTUAAABILml0FxcXR0VFRey8887xpS99Kb773e/Gr371q3jwwQejuro6P65z585RUVERvXv3jiuuuCL69OkT999/f8qpAQAAQHIt/jvdRxxxROy9995x7733rndMSUlJrFy5sgVnBQAAAM2vICdS69u3byxdunSd21etWhXV1dXx3HPPxZFHHtnkYxsaGqK+vr7RBQAAALZGBYnuLMsil8vlr0+cODE6deoUHTp0iPPPPz++853vxLnnntvkY6+66qooLy/PXyorK1tq2gAAALBJChLdNTU10atXr/z173znO/HMM8/E66+/Hh988EHMmDEj2rRpemqTJk2Kurq6/GX58uUtNW0AAADYJEUtvcHf//738dxzz8VFF12Uv22HHXaI3r17b9Tji4uLo7i4ONX0AAAAoNkkje6GhoZYsWJFrF69Ot5666146KGH4qqrroqRI0fGN77xjZSbBgAAgIJLGt0PPfRQdOvWLYqKimK77baLvffeO370ox/F6aefvt6PjwMAAEBrkSy6q6urG30X9/o0dRZzAAAAaA0cbgYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgkaJCT6C5PD91WJSVlRV6GgAAAJDnSDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBEigo9geYyYPLD0aa4tNDTAAAAWK+l00cUegq0MEe6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASaZboXrNmTVx99dXRu3fvKC4uji9+8Ysxbdq0iIiYOHFi7L777lFaWhq77rprXHbZZbFy5cqIiFi6dGm0adMmnn766UbPd8MNN0SPHj0iy7LmmB4AAAAURFFzPMmkSZNi1qxZcd1118UhhxwStbW18eKLL0ZEROfOnaO6ujq6d+8ezz33XHzzm9+Mzp07x4QJE6Jnz54xdOjQqKqqisGDB+efr6qqKs4444zI5XLNMT0AAAAoiFy2hYeT33///dhxxx3jxhtvjLFjx37m+GuuuSbuuuuu/NHtOXPmxHnnnRe1tbVRXFwcf/7zn2PfffeN1157LXr27LnO4xsaGqKhoSF/vb6+PiorK6Ny/JxoU1y6JS8FAAAgqaXTRxR6CjST+vr6KC8vj7q6uigrK1vvuC3+eHlNTU00NDTEkUce2eT9d999dxxyyCFRUVERnTp1issuuyyWLVuWv3/UqFFRVFQU9913X0RE3H777XH44Yc3GdwREVdddVWUl5fnL5WVlVv6EgAAACCJLY7uDh06rPe+xx9/PE488cQYPnx4PPDAA7Fo0aL43ve+Fx9//HF+TPv27eO0006Lqqqq+Pjjj+OXv/xlnHXWWet9zkmTJkVdXV3+snz58i19CQAAAJDEFv9Od58+faJDhw4xb968dT5e/thjj0WPHj3ie9/7Xv62119/fZ3nGDt2bAwYMCBuvvnmWLlyZRx//PHr3V5xcXEUFxdv6bQBAAAguS2O7pKSkpg4cWJMmDAh2rdvHwcffHC888478cILL0Tv3r1j2bJlceedd8Z+++0Xv/nNb/IfI/9n/fr1iwMOOCAmTpwYZ5111gaPngMAAMC2olm+Muyyyy6LSy65JC6//PLo169fjBkzJt5+++047rjj4qKLLooLLrgg9tlnn1iwYEFcdtllTT7H2WefHR9//PEGP1oOAAAA25ItPnt5c5k2bVrceeed8dxzz23S49aeMc7ZywEAgK2ds5e3Hi129vIt9cEHH8RTTz0VN9xwQ4wbN67Q0wEAAIBmU/DovuCCC+KQQw6JIUOG+Gg5AAAArcoWn0htS1VXV0d1dXWhpwEAAADNruBHugEAAKC1Et0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiRYWeQHN5fuqwKCsrK/Q0AAAAIM+RbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIJGiQk+guQyY/HC0KS4t9DQAAIBWaOn0EYWeAtsoR7oBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCLJojuXy23wcsYZZ0RExH//93/H4YcfHl27do3S0tLo06dPnH766bFq1apUUwMAAIAWUZTqiWtra/N/vuuuu+Lyyy+Pl156KX9bhw4d4oUXXojhw4fHuHHj4oYbbogOHTrEK6+8EnfffXesWbMm1dQAAACgRSSL7oqKivyfy8vLI5fLNbotIqKqqiq6desWM2bMyN+22267xTHHHJNqWgAAANBiCvo73RUVFVFbWxuPPvroRj+moaEh6uvrG10AAABga1TQ6B49enScdNJJMWTIkOjWrVt87WtfixtvvHGDIX3VVVdFeXl5/lJZWdmCMwYAAICNV9Dobtu2bVRVVcUbb7wRM2bMiO7du8e0adNizz33bPQ74f9s0qRJUVdXl78sX768hWcNAAAAG2er+MqwnXfeOU477bS46aabYvHixfHRRx/FLbfc0uTY4uLiKCsra3QBAACArdFWEd3/bLvttotu3brF3//+90JPBQAAALZIsrOXb4xbb701nnnmmfja174Wu+22W3z00Ufx05/+NF544YW44YYbCjk1AAAA2GIFje79998//ud//ifOO++8ePPNN6NTp06x5557xv333x9Dhgwp5NQAAABgi+WyLMsKPYktUV9f/8lZzMfPiTbFpYWeDgAA0AotnT6i0FNgK7O2Revq6jZ4rrGt7ne6AQAAoLUQ3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJBIUaEn0FyenzosysrKCj0NAAAAyHOkGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCJFhZ5Acxkw+eFoU1xa6GkAAACJLJ0+otBTgE3mSDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiSSP7hUrVsS3vvWt2HXXXaO4uDgqKyvj2GOPjXnz5kVExKJFi2LkyJHxhS98IUpKSqJnz54xZsyY+Mtf/pJ6agAAAJBUUconX7p0aRx88MHRpUuXmDFjRgwcODBWrlwZDz/8cJx//vnx6KOPxtChQ+PYY4+Nhx9+OLp06RJLliyJX//61/Hhhx+mnBoAAAAkl8uyLEv15F/96lfj2WefjZdeeik6duzY6L733nsv5s+fH6NHj45//OMfUVS0ef1fX18f5eXlUTl+TrQpLm2OaQMAAFuhpdNHFHoKkLe2Revq6qKsrGy945J9vPyvf/1rPPTQQ3H++eevE9wREV26dImKiopYtWpV3HfffZGw/QEAAKAgkkX3//3f/0WWZdG3b9/1jjnggAPiu9/9bpx88smxww47xPDhw+Oaa66Jt956a72PaWhoiPr6+kYXAAAA2Boli+61R65zudwGx02bNi1WrFgRt9xyS/Tv3z9uueWW6Nu3bzz33HNNjr/qqquivLw8f6msrGz2uQMAAEBzSBbdffr0iVwuFzU1NZ85dvvtt4/Ro0fHzJkzo6amJrp37x7XXnttk2MnTZoUdXV1+cvy5cube+oAAADQLJJFd9euXWPYsGFx0003xd///vd17n/vvfeafFz79u1jt912a/IxERHFxcVRVlbW6AIAAABbo6Tf033zzTfH6tWrY//994977rknXnnllaipqYkf/ehHceCBB8YDDzwQp556ajzwwAPx8ssvx0svvRTXXntt/Pa3v43jjjsu5dQAAAAguaTf092rV6/405/+FNOmTYtLLrkkamtrY8cdd4xBgwbFj3/84/jiF78YpaWlcckll8Ty5cujuLg4+vTpEz/5yU/itNNOSzk1AAAASC7p93S3BN/TDQAAnw++p5utScG/pxsAAAA+70Q3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIJGiQk+guTw/dViUlZUVehoAAACQ50g3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQSFGhJ9BcBkx+ONoUlxZ6GgAAwBZaOn1EoacAzcaRbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACARLbq6P74448LPQUAAADYbJsc3XfffXfstdde0aFDh9h+++1j6NCh8atf/SpKSkrivffeazR23LhxMWTIkIiIePfdd+Okk06KXXbZJUpLS2OvvfaKO+64o9H4ww47LC644IK4+OKLY4cddoijjjpq818ZAAAAFNgmRXdtbW2cdNJJcdZZZ0VNTU3Mnz8/jj/++DjssMOiS5cucc899+THrl69OubMmROnnHJKRER89NFHMWjQoHjggQfi+eefj3POOSdOO+20eOKJJxptY/bs2VFUVBSPPfZY3HrrrevMoaGhIerr6xtdAAAAYGuUy7Is29jBf/rTn2LQoEGxdOnS6NGjR6P7Lrzwwnj++edj3rx5ERHxyCOPxLHHHhsrVqyI7bbbrsnnGzFiRPTr1y+uvfbaiPjkSHddXV0sWrRovXOYMmVKTJ06dZ3bK8fPiTbFpRv7UgAAgK3U0ukjCj0F+Ez19fVRXl4edXV1UVZWtt5xm3Ske++9944jjzwy9tprrxg9enTMmjUr/va3v0VExCmnnBLz58+PN998MyIifvGLX8RXv/rVfHCvXr06pk2bFgMHDoztt98+OnXqFI888kgsW7as0TYGDx68wTlMmjQp6urq8pfly5dvyksAAACAFrNJ0d22bduYO3duPPjgg9G/f/+44YYbYo899oglS5bE/vvvH7vttlvceeed8Y9//CPuu+++OPXUU/OPnTlzZlx33XUxYcKE+P3vfx/PPPNMDBs2bJ2TpXXs2HGDcyguLo6ysrJGFwAAANgabfKJ1HK5XBx88MExderUWLRoUbRv3z7uu+++iIg4+eST4xe/+EX813/9V7Rp0yZGjPh/Hwv54x//GMcdd1yceuqpsffee8euu+4ar7zySvO9EgAAANjKbFJ0P/HEE3HllVfG008/HcuWLYt777033nnnnejXr19EfPIR8z/96U8xbdq0+Nd//dcoKSnJP7Z3794xd+7cWLBgQdTU1MS5554bK1asaN5XAwAAAFuRok0ZXFZWFo8++mhcf/31UV9fHz169IiZM2fG8OHDIyKiT58+sd9++8VTTz0V119/faPHXnbZZbFkyZIYNmxYlJaWxjnnnBOjRo2Kurq6ZnsxAAAAsDXZpLOXb43WnjHO2csBAKB1cPZytgVJzl4OAAAAbDzRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAIkUFXoCzeX5qcOirKys0NMAAACAPEe6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJFJU6Ak0lwGTH442xaWFngYAAK3U0ukjCj0FYBvkSDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgkYJE95QpU2KfffYpxKYBAACgxSSP7lwuF/fff3+j27797W/HvHnzUm8aAAAACqqoEBvt1KlTdOrUqRCbBgAAgBazxUe6DzvssBg3blxMmDAhunbtGhUVFTFlypSIiOjZs2dERHzta1+LXC6Xv/7pj5fPnz8/9t9//+jYsWN06dIlDj744Hj99de3dGoAAABQUM3y8fLZs2dHx44d44knnogZM2bE97///Zg7d2489dRTERFRVVUVtbW1+ev/bNWqVTFq1KgYMmRIPPvss7Fw4cI455xzIpfLNcfUAAAAoGCa5ePlAwcOjMmTJ0dERJ8+feLGG2+MefPmxVFHHRUREV26dImKioomH1tfXx91dXUxcuTI2G233SIiol+/fuvdVkNDQzQ0NDR6PAAAAGyNmuVI98CBAxtd79atW7z99tsb9diuXbvGGWecEcOGDYtjjz02/uM//iNqa2vXO/6qq66K8vLy/KWysnKL5g4AAACpNEt0t2vXrtH1XC4Xa9as2ejHV1VVxcKFC+Oggw6Ku+66K3bfffd4/PHHmxw7adKkqKury1+WL1++RXMHAACAVJJ/ZVi7du1i9erVnzlu3333jUmTJsWCBQtiwIAB8ctf/rLJccXFxVFWVtboAgAAAFuj5NHds2fPmDdvXqxYsSL+9re/rXP/kiVLYtKkSbFw4cJ4/fXX45FHHomXX355g7/XDQAAANuC5NE9c+bMmDt3blRWVsa+++67zv2lpaXx4osvxgknnBC77757nHPOOXHBBRfEueeem3pqAAAAkFQuy7Ks0JPYEvX19Z+cUG38nGhTXFro6QAA0EotnT6i0FMAtiJrW7Surm6Dv/ac/Eg3AAAAfF6JbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiRYWeQHN5fuqwKCsrK/Q0AAAAIM+RbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJCK6AQAAIBHRDQAAAImIbgAAAEhEdAMAAEAiohsAAAASEd0AAACQiOgGAACAREQ3AAAAJFJU6AlsqSzLIiKivr6+wDMBAADg82Jtg65t0vXZ5qP73XffjYiIysrKAs8EAACAz5v3338/ysvL13v/Nh/dXbt2jYiIZcuWbfCFsm2pr6+PysrKWL58eZSVlRV6OjQDa9r6WNPWybq2Pta09bGmrY813TZlWRbvv/9+dO/efYPjtvnobtPmk19LLy8v9x9oK1RWVmZdWxlr2vpY09bJurY+1rT1saatjzXd9mzMgV8nUgMAAIBERDcAAAAkss1Hd3FxcUyePDmKi4sLPRWakXVtfaxp62NNWyfr2vpY09bHmrY+1rR1y2WfdX5zAAAAYLNs80e6AQAAYGslugEAACAR0Q0AAACJFDy6b7755ujVq1eUlJTEoEGD4o9//OMGx//hD3+IQYMGRUlJSey6665xyy23rDPmnnvuif79+0dxcXH0798/7rvvvi3eLpumudd11qxZ8ZWvfCW222672G677WLo0KHx5JNPNhozZcqUyOVyjS4VFRXN/to+r5p7Taurq9dZr1wuFx999NEWbZeN19xrethhhzW5piNGjMiP8T5Nb1PWtba2Nk4++eTYY489ok2bNjF+/Pgmx9mvFlZzr6l9auE195rapxZec6+pfWorkxXQnXfembVr1y6bNWtWtnjx4uzCCy/MOnbsmL3++utNjn/ttdey0tLS7MILL8wWL16czZo1K2vXrl12991358csWLAga9u2bXbllVdmNTU12ZVXXpkVFRVljz/++GZvl02TYl1PPvnk7KabbsoWLVqU1dTUZGeeeWZWXl6evfHGG/kxkydPzvbcc8+strY2f3n77beTv97PgxRrWlVVlZWVlTVar9ra2i3aLhsvxZq+++67jdby+eefz9q2bZtVVVXlx3ifprWp67pkyZJs3Lhx2ezZs7N99tknu/DCC9cZY79aWCnW1D61sFKsqX1qYaVYU/vU1qWg0b3//vtn5513XqPb+vbtm1166aVNjp8wYULWt2/fRrede+652QEHHJC//vWvfz075phjGo0ZNmxYduKJJ272dtk0Kdb101atWpV17tw5mz17dv62yZMnZ3vvvffmT5z1SrGmVVVVWXl5ebNul43XEu/T6667LuvcuXP2wQcf5G/zPk1rS94zQ4YMafJ//OxXCyvFmn6afWrLSrGm9qmF1RLvU/vUbVvBPl7+8ccfx//+7//G0Ucf3ej2o48+OhYsWNDkYxYuXLjO+GHDhsXTTz8dK1eu3OCYtc+5Odtl46Va10/78MMPY+XKldG1a9dGt7/yyivRvXv36NWrV5x44onx2muvbcGrISLtmn7wwQfRo0eP2GWXXWLkyJGxaNGiLdouG6el3qe33XZbnHjiidGxY8dGt3ufppHqPWO/Wjgt9bO1T205KdfUPrUwWupna5+6bStYdP/lL3+J1atXx0477dTo9p122ilWrFjR5GNWrFjR5PhVq1bFX/7ylw2OWfucm7NdNl6qdf20Sy+9NHbeeecYOnRo/rYvf/nL8dOf/jQefvjhmDVrVqxYsSIOOuigePfdd7fwVX2+pVrTvn37RnV1dfz617+OO+64I0pKSuLggw+OV155ZbO3y8Zpiffpk08+Gc8//3yMHTu20e3ep+mkes/YrxZOS/1s7VNbTqo1tU8tnJb42dqnbvuKCj2BXC7X6HqWZevc9lnjP337xjznpm6XTZNiXdeaMWNG3HHHHTF//vwoKSnJ3z58+PD8n/faa6848MADY7fddovZs2fHxRdfvFmvg/+nudf0gAMOiAMOOCB//8EHHxxf+tKX4oYbbogf/ehHm71dNl7K9+ltt90WAwYMiP3337/R7d6n6aV4z9ivFlbKn619amE095rapxZeyp+tfeq2r2BHunfYYYdo27btOv8C9Pbbb6/zL0VrVVRUNDm+qKgott9++w2OWfucm7NdNl6qdV3r2muvjSuvvDIeeeSRGDhw4Abn0rFjx9hrr73y/8rL5km9pmu1adMm9ttvv/x6ea+mk3pNP/zww7jzzjvX+Rf5pnifNp9U7xn71cJJ/bO1T215LfV+sU9tOal/tvaprUPBort9+/YxaNCgmDt3bqPb586dGwcddFCTjznwwAPXGf/II4/E4MGDo127dhscs/Y5N2e7bLxU6xoRcc0118QPfvCDeOihh2Lw4MGfOZeGhoaoqamJbt26bcYrYa2Ua/rPsiyLZ555Jr9e3qvppF7TOXPmRENDQ5x66qmfORfv0+aT6j1jv1o4KX+29qmF0VLvF/vUlpP6Z2uf2kq07HnbGlt7ev3bbrstW7x4cTZ+/PisY8eO2dKlS7Msy7JLL700O+200/Lj135lzUUXXZQtXrw4u+2229b5yprHHnssa9u2bTZ9+vSspqYmmz59+nq/2mR922XLpFjXq6++Omvfvn129913N/pahPfffz8/5pJLLsnmz5+fvfbaa9njjz+ejRw5MuvcubN1bQYp1nTKlCnZQw89lL366qvZokWLsjPPPDMrKirKnnjiiY3eLpsvxZqudcghh2Rjxoxpcrvep2lt6rpmWZYtWrQoW7RoUTZo0KDs5JNPzhYtWpS98MIL+fvtVwsrxZrapxZWijW1Ty2sFGu6ln1q61DQ6M6yLLvpppuyHj16ZO3bt8++9KUvZX/4wx/y951++unZkCFDGo2fP39+tu+++2bt27fPevbsmf34xz9e5zn/8z//M9tjjz2ydu3aZX379s3uueeeTdouW66517VHjx5ZRKxzmTx5cn7MmDFjsm7dumXt2rXLunfvnh1//PFN/uXF5mnuNR0/fnz2xS9+MWvfvn224447ZkcffXS2YMGCTdouWybF378vvfRSFhHZI4880uQ2vU/T29R1berv1h49ejQaY79aWM29pvaphdfca2qfWngp/u61T209cln2/58JBwAAAGhWBfudbgAAAGjtRDcAAAAkIroBAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AaAz5kpU6bEPvvsU+hpREREdXV1dOnSpdDTAIBkRDcANIMzzjgjRo0a1SzPNX/+/MjlcjFgwIBYvXp1o/u6dOkS1dXVzbKdTZHL5fKXzp07x+DBg+Pee+/d4ucdM2ZMvPzyy/nrW9M/CABAcxDdALCVevXVV+OnP/1poaeRV1VVFbW1tfHUU0/F3nvvHaNHj46FCxdu9vOtXLkyOnToEF/4wheacZYAsHUR3QDQzA477LAYN25cTJgwIbp27RoVFRUxZcqURmPee++9OOecc2KnnXaKkpKSGDBgQDzwwAONxnzrW9+KyZMnx0cffbTebS1btiyOO+646NSpU5SVlcXXv/71eOuttxqNmT59euy0007RuXPnOPvss5t8vqqqqujXr1+UlJRE37594+abb15nTJcuXaKioiL69u0bt9xyS5SUlMSvf/3riPjkSPj999+/zvi1R+WXLl0auVwu5syZE4cddliUlJTEz3/+80YfL6+uro6pU6fGn//85/xR9erq6jjrrLNi5MiRjZ571apVUVFREbfffvt6fzYAsDUQ3QCQwOzZs6Njx47xxBNPxIwZM+L73/9+zJ07NyIi1qxZE8OHD48FCxbEz3/+81i8eHFMnz492rZt2+g5xo8fH6tWrYobb7yxyW1kWRajRo2Kv/71r/GHP/wh5s6dG6+++mqMGTMmP2bOnDkxefLkmDZtWjz99NPRrVu3dYJ61qxZ8b3vfS+mTZsWNTU1ceWVV8Zll10Ws2fPXu/ra9euXRQVFcXKlSs36ecyceLEGDduXNTU1MSwYcMa3TdmzJi45JJLYs8994za2tqora2NMWPGxNixY+Ohhx6K2tra/Njf/va38cEHH8TXv/71Tdo+ALS0okJPAABao4EDB8bkyZMjIqJPnz5x4403xrx58+Koo46K3/3ud/Hkk09GTU1N7L777hERseuuu67zHKWlpTF58uT47ne/G9/85jejvLy80f2/+93v4tlnn40lS5ZEZWVlRET87Gc/iz333DOeeuqp2G+//eL666+Ps846K8aOHRsREVdccUX87ne/a3S0+wc/+EHMnDkzjj/++IiI6NWrVyxevDhuvfXWOP3009eZV0NDQ1xzzTVRX18fRx555Cb9XMaPH5/fzqd16NAhOnXqFEVFRVFRUZG//aCDDoo99tgjfvazn8WECRMi4pMj86NHj45OnTpt0vYBoKU50g0ACQwcOLDR9W7dusXbb78dERHPPPNM7LLLLvng3pCzzz47dthhh7j66qvXua+mpiYqKyvzwR0R0b9//+jSpUvU1NTkxxx44IGNHvfP1995551Yvnx5nH322dGpU6f85YorrohXX3210eNOOumk6NSpU5SWlsYPf/jDuPbaa2P48OGf+Rr+2eDBgzdp/Fpjx46NqqqqiIh4++234ze/+U2cddZZm/VcANCSHOkGgATatWvX6Houl4s1a9ZExCdHdDdWUVFRXHHFFXHGGWfEBRdc0Oi+LMsil8ut85j13d6UtXOaNWtWfPnLX25036c/7n7dddfF0KFDo6ysbJ2Tn+VyuciyrNFtTX30vGPHjhs1r0/7xje+EZdeemksXLgwFi5cGD179oyvfOUrm/VcANCSHOkGgBY2cODAeOONNxp9VdaGjB49Ovbcc8+YOnVqo9v79+8fy5Yti+XLl+dvW7x4cdTV1UW/fv0iIqJfv37x+OOPN3rcP1/faaedYuedd47XXnstevfu3ejSq1evRo+rqKiI3r17N3m28R133LHR71y/8sor8eGHH27U6/tn7du3X+dr0iIitt9++xg1alRUVVVFVVVVnHnmmZv83ABQCI50A0ALGzJkSBx66KFxwgknxA9/+MPo3bt3vPjii5HL5eKYY45p8jHTp09f58RjQ4cOjYEDB8Ypp5wS119/faxatSr+/d//PYYMGZL/GPeFF14Yp59+egwePDgOOeSQ+MUvfhEvvPBCo98hnzJlSowbNy7Kyspi+PDh0dDQEE8//XT87W9/i4svvnijXtMRRxwRN954YxxwwAGxZs2amDhx4jpH+zdGz549Y8mSJfmP4Hfu3DmKi4sj4pOPmI8cOTJWr17d5O+aA8DWyJFuACiAe+65J/bbb7846aSTon///jFhwoQmj/CudcQRR8QRRxwRq1atyt+29mu6tttuuzj00ENj6NChseuuu8Zdd92VHzNmzJi4/PLLY+LEiTFo0KB4/fXX49/+7d8aPffYsWPjJz/5SVRXV8dee+0VQ4YMierq6nWOdG/IzJkzo7KyMg499NA4+eST49vf/naUlpZuwk/kEyeccEIcc8wxcfjhh8eOO+4Yd9xxR/6+oUOHRrdu3WLYsGHRvXv3TX5uACiEXPbpX8ACANgKffjhh9G9e/e4/fbb13sGdADY2vh4OQCwVVuzZk2sWLEiZs6cGeXl5fEv//IvhZ4SAGw00Q0AbNWWLVsWvXr1il122SWqq6ujqMj/vgCw7fDxcgAAAEjEidQAAAAgEdENAAAAiYhuAAAASER0AwAAQCKiGwAAABIR3QAAAJCI6AYAAIBERDcAAAAkIroBAAAgkf8PuPSJ4T8FvI4AAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Variable importance plot\n", + "plt.style.use('default')\n", + "plt.figure(figsize=(10, 6))\n", + "plt.barh(range(len(rf_importance)), rf_importance['Importance'])\n", + "plt.yticks(range(len(rf_importance)), rf_importance['Variable'])\n", + "plt.xlabel('IncNodePurity')\n", + "# plt.title('Random Forest: Variable Importance Plot')\n", + "plt.gca().invert_yaxis() # Highest importance at top\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e9c70281-eccc-4ef8-a9d8-8dfd0d87f739", + "metadata": {}, + "source": [ + "The test set MSE associated with the bagged regression tree is 0.0186..." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "72db51de-dec8-4303-b869-79ff8ebebe2f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Model In-sample MSE Out-of-sample MSE\n", + " Linear Regression 0.005047 0.008608\n", + " Ridge Regression 0.005111 0.008779\n", + " Lasso Regression 0.005235 0.009159\n", + " Sparse Lasso (3 vars) 0.005218 0.009250\n", + " Large Regression Tree 0.000000 0.045659\n", + "Pruned Regression Tree 0.004898 0.008131\n", + " Random Forest 0.000739 0.012266\n" + ] + } + ], + "source": [ + "# COMPREHENSIVE RESULTS TABLE\n", + "results_dict = {\n", + " 'Model': [\n", + " 'Linear Regression',\n", + " 'Ridge Regression',\n", + " 'Lasso Regression',\n", + " 'Sparse Lasso (3 vars)',\n", + " 'Large Regression Tree',\n", + " 'Pruned Regression Tree',\n", + " 'Random Forest'\n", + " ],\n", + " 'In-sample MSE': [\n", + " mse_train_lm,\n", + " mse_ridge_train,\n", + " mse_lasso_train,\n", + " mse_lasso_sparse_train,\n", + " mse_large_tree_train,\n", + " mse_pruned_tree_train,\n", + " mse_rf_train\n", + " ],\n", + " 'Out-of-sample MSE': [\n", + " mse_test_lm,\n", + " mse_ridge_test,\n", + " mse_lasso_test,\n", + " mse_lasso_sparse_test,\n", + " mse_large_tree_test,\n", + " mse_pruned_tree_test,\n", + " mse_rf_test\n", + " ]\n", + "}\n", + "\n", + "comprehensive_results = pd.DataFrame(results_dict).round(6)\n", + "\n", + "print(comprehensive_results.to_string(index=False))" + ] + }, + { + "cell_type": "markdown", + "id": "ccecdd74-9faf-4b7a-bd23-9d3f81dcda60", + "metadata": { + "tags": [], + "user_expressions": [] + }, + "source": [ + "### 2.6. Model selection analysis\n", + "Supposed it is the beginning of $2020$ and you have access to both the in-sample and out-of-sample errors for the different methods. Which model do you choose to predict stock markets in the future and why?" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "93579364-cb99-4373-9be9-0d7d09324a0c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overfitting Analysis (Out-of-sample MSE - In-sample MSE):\n", + " Model Overfitting_Gap\n", + "5 Pruned Regression Tree 0.003233\n", + "0 Linear Regression 0.003561\n", + "1 Ridge Regression 0.003668\n", + "2 Lasso Regression 0.003924\n", + "3 Sparse Lasso (3 vars) 0.004032\n", + "6 Random Forest 0.011527\n", + "4 Large Regression Tree 0.045659\n", + "\n", + "Recommended Model for Future Predictions:\n", + " Model: Pruned Regression Tree\n", + " Out-of-sample MSE: 0.008131\n", + "\n", + "Justification:\n", + " - Good balance between complexity and generalization\n", + " - Pruning reduces overfitting compared to large tree\n", + " - Interpretable model structure\n" + ] + } + ], + "source": [ + "# Analysis of overfitting vs generalization\n", + "comprehensive_results['Overfitting_Gap'] = (comprehensive_results['Out-of-sample MSE'] -\n", + " comprehensive_results['In-sample MSE'])\n", + "\n", + "print(\"Overfitting Analysis (Out-of-sample MSE - In-sample MSE):\")\n", + "print(comprehensive_results[['Model', 'Overfitting_Gap']].sort_values('Overfitting_Gap'))\n", + "\n", + "# Find best model based on out-of-sample performance\n", + "best_model_idx = comprehensive_results['Out-of-sample MSE'].idxmin()\n", + "best_model = comprehensive_results.loc[best_model_idx, 'Model']\n", + "best_oos_mse = comprehensive_results.loc[best_model_idx, 'Out-of-sample MSE']\n", + "\n", + "print(f\"\\nRecommended Model for Future Predictions:\")\n", + "print(f\" Model: {best_model}\")\n", + "print(f\" Out-of-sample MSE: {best_oos_mse:.6f}\")\n", + "\n", + "print(f\"\\nJustification:\")\n", + "if best_model == 'Sparse Lasso (3 vars)':\n", + " print(\" - Lowest out-of-sample MSE indicates best generalization\")\n", + " print(\" - Sparse model is interpretable and less prone to overfitting\")\n", + " print(\" - Good balance between bias and variance\")\n", + "elif best_model == 'Pruned Regression Tree':\n", + " print(\" - Good balance between complexity and generalization\")\n", + " print(\" - Pruning reduces overfitting compared to large tree\")\n", + " print(\" - Interpretable model structure\")\n", + "else:\n", + " print(\" - Best out-of-sample performance\")\n", + " print(\" - Shows good generalization to unseen data\")" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "cb947a8e-4a3b-496a-9eed-05605a7678eb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwQ9JREFUeJzs3Xd4FNX/9vF70wkpQCChGEJARIooRSlKk46CICgKgjSlKEiHgIqCdKQJoXeQRKUIGpGAlKCAdBFQUUoAE+kJPe08f/BkfwkJ9QuzlPfrunLpnjk7+5lwrtnNvWfO2IwxRgAAAAAAAICFnBxdAAAAAAAAAB49hFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMu5OLqA+1FKSor+/fdfeXt7y2azObocAAAAAACAB4YxRufOnVPevHnl5HT9+VCEUpn4999/FRgY6OgyAAAAAAAAHlhHjhzRY489dt3thFKZ8Pb2lnT1l+fj4+PgagAAAAAAAB4c8fHxCgwMtOcr10MolYnUS/Z8fHwIpQAAAAAAAO7AzZZEYqFzAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlWFMKAAAAAACLJCcnKzEx0dFlAP8TV1dXOTs7/8/7IZQCAAAAAOAeM8YoNjZWZ8+edXQpwF2RLVs25c6d+6aLmd8IoRQAAAAAAPdYaiDl7+8vT0/P/+kPecCRjDG6ePGijh8/LknKkyfPHe+LUAoAAAAAgHsoOTnZHkj5+fk5uhzgf5YlSxZJ0vHjx+Xv73/Hl/Kx0DkAAAAAAPdQ6hpSnp6eDq4EuHtSx/P/skYaoRQAAAAAABbgkj08TO7GeCaUAgAAAAAAjxybzaalS5c6uoxHGqEUAAAAAADIoFWrVmrYsKGjy7hvHTp0SDabTS4uLjp27Fi6bTExMXJxcZHNZtOhQ4fs7YsWLVK5cuXk6+srb29vFS9eXD169LBvnz17tmw2W4YfDw8Pqw7LUix0DgAAAACAA9T/YoOlr7e88wuWvt6jIm/evJo7d65CQkLsbXPmzFG+fPkUHR1tb1u1apXeeOMNDRkyRA0aNJDNZtPevXu1evXqdPvz8fHRn3/+ma7tYb30k5lSAAAAAADgpqpWraouXbqod+/eypEjh3Lnzq1PPvnkhs9JSEjQ+++/rzx58sjDw0MFChTQ0KFD7dtHjx6tp556SlmzZlVgYKA6deqk8+fP27fPnj1b2bJl03fffaciRYrI09NTTZo00YULFzRnzhwVKFBA2bNnV+fOnZWcnGx/XoECBTRo0CA1a9ZMXl5eyps3r7744osb1nrs2DE1bdpU2bNnl5+fn1555ZV0s5yu5+2339asWbPStc2ePVtvv/12urbvvvtOL7zwgnr16qUiRYroiSeeUMOGDTPUZbPZlDt37nQ/AQEBN63jQUQoBQAAAAAAbsmcOXOUNWtWbd68WSNGjNDAgQMVGRl53f7jx4/XsmXL9NVXX+nPP//U/PnzVaBAAft2JycnjR8/Xr///rvmzJmjn376Sb179063j4sXL2r8+PEKCwvTihUrtHbtWr366quKiIhQRESE5s2bp6lTp+qbb75J97yRI0eqZMmS2r59u0JCQtStW7fr1nrx4kVVq1ZNXl5eWr9+vTZs2CAvLy/VqVNHCQkJN/ydNGjQQGfOnNGGDVdnvm3YsEGnT59W/fr10/XLnTu39uzZo99///2G+3uUcPkeAAAAAAC4JSVLltSAAQMkSYULF9aECRO0evVq1axZM9P+0dHRKly4sF544QXZbDYFBQWl2961a1f7/wcHB2vQoEHq2LGjQkND7e2JiYmaNGmSChUqJElq0qSJ5s2bp//++09eXl4qVqyYqlWrpjVr1qhp06b25z3//PPq27evJOmJJ57Qzz//rDFjxmRaa1hYmJycnDR9+nT7pXKzZs1StmzZtHbtWtWqVeu6vxNXV1e99dZbmjlzpl544QXNnDlTb731llxdXdP169y5s6KiovTUU08pKChI5cuXV61atdS8eXO5u7vb+8XFxcnLyyvdcytWrKiVK1det4YHFTOlAAAAAADALSlZsmS6x3ny5NHx48clSR06dJCXl5f9R7q6WPrOnTtVpEgRdenSJUOwsmbNGtWsWVP58uWTt7e3WrZsqVOnTunChQv2Pp6envZASpICAgJUoECBdMFNQECAvY5UFSpUyPB43759mR7Xtm3b9Pfff8vb29tef44cOXT58mX9888/N/29tG3bVl9//bViY2P19ddfq02bNhn6ZM2aVd9//73+/vtvffjhh/Ly8lKPHj303HPP6eLFi/Z+3t7e2rlzZ7qfay8PfFgwUwoAAAAAANySa2f/2Gw2paSkSJIGDhyonj17ptteunRpHTx4UD/88INWrVql119/XTVq1NA333yjw4cPq169eurQoYMGDRqkHDlyaMOGDWrbtq0SExNv+Jo3quNGrrdgeEpKisqUKaMFCxZk2JYrV66b7rdEiRJ68skn9eabb6po0aIqUaKEdu7cmWnfQoUKqVChQmrXrp369++vJ554QuHh4WrdurWkq5c0Pv744zd9zYcBoRQAAAAAAPif+fv7y9/fP0O7j4+PmjZtqqZNm6pJkyaqU6eOTp8+ra1btyopKUmff/65nJyuXsj11Vdf3bV6Nm3alOHxk08+mWnf0qVLKzw8XP7+/vLx8bmj12vTpo06deqkSZMm3fJzChQoIE9Pz3Qzwx4lhFIAAAAAAOCeGDNmjPLkyaNnnnlGTk5O+vrrr5U7d25ly5ZNhQoVUlJSkr744gvVr19fP//8syZPnnzXXvvnn3/WiBEj1LBhQ0VGRurrr7/W999/n2nf5s2ba+TIkXrllVc0cOBAPfbYY4qOjtbixYvVq1cvPfbYYzd9vXfeeUevvfaasmXLlun2Tz75RBcvXlS9evUUFBSks2fPavz48UpMTEy3zpUxRrGxsRme7+/vbw/vHhYP19EAAAAAAID7hpeXl4YPH66yZcvq2Wef1aFDhxQRESEnJyc988wzGj16tIYPH64SJUpowYIFGjp06F177R49emjbtm0qVaqUBg0apM8//1y1a9fOtK+np6fWr1+v/Pnz69VXX1XRokXVpk0bXbp06ZZnTrm4uChnzpxyccl8/k+VKlV04MABtWzZUk8++aTq1q2r2NhYrVy5UkWKFLH3i4+PV548eTL8XLtm1sPAZowxji7ifhMfHy9fX1/FxcXd8bQ9AAAAAAAk6fLlyzp48KCCg4Pl4eFhb6//xQZL61je+QVLX8+RChQooK5du6a7ux/uruuNa+nWcxUu3wMAAAAAwAEepZAIyAyX7wEAAAAAAMByzJQCAAAAAAAPlUOHDjm6BNwCZkoBAAAAAADAcoRSAAAAAAAAsByX7wEAAAD4P1OqOLqCu6v9OkdXAAC4DmZKAQAAAAAAwHKEUgAAAAAAALAcoRQAAAAAAAAsRygFAAAAAAAeKLGxsapZs6ayZs2qbNmyObqc21K1alV17drV0WXcFwilAAAAAABApo4cOaK2bdsqb968cnNzU1BQkD744AOdOnXqtvZz6NAh2Ww27dy5867UNWbMGMXExGjnzp3666+/7so+HyQFChSQzWZTWFhYhm3FixeXzWbT7Nmz7W07duzQyy+/LH9/f3l4eKhAgQJq2rSpTp48Ken//n0y+9m0adM9Ow7uvgcAAAAAgCNYfbfL27wb5YEDB1ShQgU98cQTWrhwoYKDg7Vnzx716tVLP/zwgzZt2qQcOXLco2Jv7J9//lGZMmVUuHBhh7z+/SAwMFCzZs3SG2+8YW/btGmTYmNjlTVrVnvb8ePHVaNGDdWvX18//vijsmXLpoMHD2rZsmW6ePFiun2uWrVKxYsXT9fm5+d3z46BmVIAAAAAACCD9957T25ublq5cqWqVKmi/Pnzq27dulq1apWOHTum/v372/vabDYtXbo03fOzZctmn60THBwsSSpVqpRsNpuqVq16w9eeNGmSChUqJDc3NxUpUkTz5s2zbytQoIAWLVqkuXPnymazqVWrVpnuIzQ0VIULF5aHh4cCAgLUpEkT+7YVK1bohRdeULZs2eTn56eXX35Z//zzj3176syhr776SpUqVVKWLFn07LPP6q+//tKWLVtUtmxZeXl5qU6dOjpx4oT9ea1atVLDhg316aefyt/fXz4+Pmrfvr0SEhKue6wJCQnq3bu38uXLp6xZs6pcuXJau3btDX8/ktS8eXOtW7dOR44csbfNnDlTzZs3l4vL/81B+uWXXxQfH6/p06erVKlSCg4O1osvvqixY8cqf/786fbp5+en3Llzp/txdXW9aS13ilAKAAAAAACkc/r0af3444/q1KmTsmTJkm5b7ty51bx5c4WHh8sYc0v7+/XXXyVdnYkTExOjxYsXX7fvkiVL9MEHH6hHjx76/fff1b59e7Vu3Vpr1qyRJG3ZskV16tTR66+/rpiYGI0bNy7DPrZu3aouXbpo4MCB+vPPP7VixQpVrlzZvv3ChQvq3r27tmzZotWrV8vJyUmNGjVSSkpKuv0MGDBAH374obZv3y4XFxe9+eab6t27t8aNG6eoqCj9888/+vjjj9M9Z/Xq1dq3b5/WrFmjhQsXasmSJfr000+ve7ytW7fWzz//rLCwMP3222967bXXVKdOHe3fv/+Gv9OAgADVrl1bc+bMkSRdvHhR4eHhatOmTbp+uXPnVlJSkpYsWXLL/15W4fI9AAAAAACQzv79+2WMUdGiRTPdXrRoUZ05c0YnTpyQv7//TfeXK1cuSf83E+dGRo0apVatWqlTp06SpO7du2vTpk0aNWqUqlWrply5csnd3V1ZsmS57r6io6OVNWtWvfzyy/L29lZQUJBKlSpl3964ceN0/WfMmCF/f3/t3btXJUqUsLf37NlTtWvXliR98MEHevPNN7V69Wo9//zzkqS2bdumW7tJktzc3DRz5kx5enqqePHiGjhwoHr16qVBgwbJySn93KB//vlHCxcu1NGjR5U3b177a65YsUKzZs3SkCFDbvi7atOmjXr06KH+/fvrm2++UaFChfTMM8+k61O+fHn169dPzZo1U4cOHfTcc8/pxRdfVMuWLRUQEJCub8WKFTPUGBcXJ2dn5xvWcaeYKQUAAAAAAG5L6owbm812x/uIioqSl5eX/WfBggWSpH379tlDn1TPP/+89u3bl+l+FixYkG4/UVFRqlmzpoKCglSwYEG1aNFCCxYsSLd+0j///KNmzZqpYMGC8vHxsV9eGB0dnW7fJUuWtP9/aoDz1FNPpWs7fvx4uuc8/fTT8vT0tD+uUKGCzp8/n+4yu1Tbt2+XMUZPPPFEumNYt25dussJr+ell17S+fPntX79es2cOTPDLKlUgwcPVmxsrCZPnqxixYpp8uTJevLJJ7V79+50/cLDw7Vz5850P/cqkJKYKQUAAAAAAK7x+OOPy2azae/evWrYsGGG7X/88YeyZ8+unDlzSroaTl17aVhiYuINX6Ns2bLp7saXdtbOtWGXMea6AViDBg1Urlw5++N8+fIpS5Ys2r59u9auXauVK1fq448/1ieffKItW7YoW7Zsql+/vgIDAzVt2jTlzZtXKSkpKlGiRIa1n9Kup5T6+te2XXvJ3/VkVn9KSoqcnZ21bdu2DOGPl5fXTffp4uKiFi1aaMCAAdq8ebOWLFly3b5+fn567bXX9Nprr2no0KEqVaqURo0aZb/8T7q6ePrjjz9+S8dzNzBTCgAAAAAApOPn56eaNWsqNDRUly5dSrctNjZWCxYsUNOmTe1BS65cuRQTE2Pvs3///nQzk9zc3CRJycnJ9rYsWbLo8ccft/94e3tLunpp4IYNG9K95i+//HLdSwm9vb3T7Sd1DSwXFxfVqFFDI0aM0G+//aZDhw7pp59+0qlTp7Rv3z59+OGHql69uv1SxLtl165d6X5nmzZtkpeXlx577LEMfUuVKqXk5GQdP3483TE8/vjjN73MMVWbNm20bt06vfLKK8qePfstPcfNzU2FChXShQsXbu2g7hFmSgEAAAAAgAwmTJigihUrqnbt2vrss88UHBysPXv2qFevXsqXL58GDx5s7/viiy9qwoQJKl++vFJSUtSnT590M4r8/f2VJUsWrVixQo899pg8PDzk6+ub6ev26tVLr7/+ukqXLq3q1atr+fLlWrx4sVatWnXLtX/33Xc6cOCAKleurOzZsysiIkIpKSkqUqSIsmfPLj8/P02dOlV58uRRdHS0+vbte+e/qGskJCSobdu2+vDDD3X48GENGDBA77//foa1miTpiSeeUPPmzdWyZUt9/vnnKlWqlE6ePKmffvpJTz31lOrVq3fT1ytatKhOnjyZ7pLBtL777juFhYXpjTfe0BNPPCFjjJYvX66IiAjNmjUrXd9Tp04pNjY2XVu2bNnk4eFxG7+BW8dMKQAAAAAAkEHhwoW1detWFSpUSE2bNlWhQoX07rvvqlq1atq4caNy5Mhh7/v5558rMDBQlStXVrNmzdSzZ890IYmLi4vGjx+vKVOmKG/evHrllVeu+7oNGzbUuHHjNHLkSBUvXlxTpkzRrFmzVLVq1VuuPVu2bFq8eLFefPFFFS1aVJMnT9bChQtVvHhxOTk5KSwsTNu2bVOJEiXUrVs3jRw58o5+R5mpXr26ChcurMqVK+v1119X/fr19cknn1y3/6xZs9SyZUv16NFDRYoUUYMGDbR582YFBgbe8mv6+flluEtiqmLFisnT01M9evTQM888o/Lly+urr77S9OnT1aJFi3R9a9SooTx58qT7Wbp06S3Xcbts5n67H+B9ID4+Xr6+voqLi5OPj4+jywEAAACsM6WKoyu4u9qvc3QFgC5fvqyDBw8qODj4ns04wf2hVatWOnv27D0Ncu4XNxrXt5qrMFMKAAAAAAAAliOUAgAAAAAAgOVY6BwAAAAAAOAumD17tqNLeKAwUwoAAAAAAACWI5QCAAAAAACA5QilAAAAAACwgDHG0SUAd83dGM+EUgAAAAAA3EOurq6SpIsXLzq4EuDuSR3PqeP7TrDQOQAAAAAA95Czs7OyZcum48ePS5I8PT1ls9kcXBVwZ4wxunjxoo4fP65s2bLJ2dn5jvdFKAUAAAAAwD2WO3duSbIHU8CDLlu2bPZxfacIpQAAAAAAuMdsNpvy5Mkjf39/JSYmOroc4H/i6ur6P82QSkUoBQAAAACARZydne/KH/PAw4CFzgEAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYzuGhVGhoqIKDg+Xh4aEyZcooKirqhv3XrVunMmXKyMPDQwULFtTkyZOv2zcsLEw2m00NGza8y1UDAAAAAADgf+HQUCo8PFxdu3ZV//79tWPHDlWqVEl169ZVdHR0pv0PHjyoevXqqVKlStqxY4f69eunLl26aNGiRRn6Hj58WD179lSlSpXu9WEAAAAAAADgNtmMMcZRL16uXDmVLl1akyZNsrcVLVpUDRs21NChQzP079Onj5YtW6Z9+/bZ2zp06KBdu3Zp48aN9rbk5GRVqVJFrVu3VlRUlM6ePaulS5fecl3x8fHy9fVVXFycfHx87uzgAAAAgAfRlCqOruDuar/O0RUAwCPnVnMVh82USkhI0LZt21SrVq107bVq1dIvv/yS6XM2btyYoX/t2rW1detWJSYm2tsGDhyoXLlyqW3btrdUy5UrVxQfH5/uBwAAAAAAAPeOw0KpkydPKjk5WQEBAenaAwICFBsbm+lzYmNjM+2flJSkkydPSpJ+/vlnzZgxQ9OmTbvlWoYOHSpfX1/7T2Bg4G0eDQAAAAAAAG6Hwxc6t9ls6R4bYzK03ax/avu5c+f01ltvadq0acqZM+ct1xASEqK4uDj7z5EjR27jCAAAAAAAAHC7XBz1wjlz5pSzs3OGWVHHjx/PMBsqVe7cuTPt7+LiIj8/P+3Zs0eHDh1S/fr17dtTUlIkSS4uLvrzzz9VqFChDPt1d3eXu7v7/3pIAAAAAAAAuEUOmynl5uamMmXKKDIyMl17ZGSkKlasmOlzKlSokKH/ypUrVbZsWbm6uurJJ5/U7t27tXPnTvtPgwYNVK1aNe3cuZPL8gAAAAAAAO4TDpspJUndu3dXixYtVLZsWVWoUEFTp05VdHS0OnToIOnqZXXHjh3T3LlzJV29096ECRPUvXt3vfPOO9q4caNmzJihhQsXSpI8PDxUokSJdK+RLVs2ScrQDgAAAAAAAMdxaCjVtGlTnTp1SgMHDlRMTIxKlCihiIgIBQUFSZJiYmIUHR1t7x8cHKyIiAh169ZNEydOVN68eTV+/Hg1btzYUYcAAAAAAACAO2AzqSuFwy4+Pl6+vr6Ki4uTj4+Po8sBAAAArDOliqMruLvar3N0BQDwyLnVXMXhd98DAAAAAADAo4dQCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWM7hoVRoaKiCg4Pl4eGhMmXKKCoq6ob9161bpzJlysjDw0MFCxbU5MmT021fvHixypYtq2zZsilr1qx65plnNG/evHt5CAAAAAAAALhNDg2lwsPD1bVrV/Xv3187duxQpUqVVLduXUVHR2fa/+DBg6pXr54qVaqkHTt2qF+/furSpYsWLVpk75MjRw71799fGzdu1G+//abWrVurdevW+vHHH606LAAAAAAAANyEzRhjHPXi5cqVU+nSpTVp0iR7W9GiRdWwYUMNHTo0Q/8+ffpo2bJl2rdvn72tQ4cO2rVrlzZu3Hjd1yldurReeuklDRo06Jbqio+Pl6+vr+Li4uTj43MbRwQAAAA84KZUcXQFd1f7dY6uAAAeObeaqzhsplRCQoK2bdumWrVqpWuvVauWfvnll0yfs3Hjxgz9a9eura1btyoxMTFDf2OMVq9erT///FOVK1e+bi1XrlxRfHx8uh8AAAAAAADcOw4LpU6ePKnk5GQFBASkaw8ICFBsbGymz4mNjc20f1JSkk6ePGlvi4uLk5eXl9zc3PTSSy/piy++UM2aNa9by9ChQ+Xr62v/CQwM/B+ODAAAAAAAADfj8IXObTZbusfGmAxtN+t/bbu3t7d27typLVu2aPDgwerevbvWrl173X2GhIQoLi7O/nPkyJE7OBIAAAAAAADcKhdHvXDOnDnl7OycYVbU8ePHM8yGSpU7d+5M+7u4uMjPz8/e5uTkpMcff1yS9Mwzz2jfvn0aOnSoqlatmul+3d3d5e7u/j8cDQAAAAAAAG6Hw2ZKubm5qUyZMoqMjEzXHhkZqYoVK2b6nAoVKmTov3LlSpUtW1aurq7XfS1jjK5cufK/Fw0AAAAAAIC7wmEzpSSpe/fuatGihcqWLasKFSpo6tSpio6OVocOHSRdvazu2LFjmjt3rqSrd9qbMGGCunfvrnfeeUcbN27UjBkztHDhQvs+hw4dqrJly6pQoUJKSEhQRESE5s6dm+4OfwAAAAAAAHAsh4ZSTZs21alTpzRw4EDFxMSoRIkSioiIUFBQkCQpJiZG0dHR9v7BwcGKiIhQt27dNHHiROXNm1fjx49X48aN7X0uXLigTp066ejRo8qSJYuefPJJzZ8/X02bNrX8+AAAAAAAAJA5m0ldKRx28fHx8vX1VVxcnHx8fBxdDgAAAGCdKVUcXcHd1X6doysAgEfOreYqDr/7HgAAAAAAAB49hFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMvdVig1YsQIXbp0yf54/fr1unLliv3xuXPn1KlTp7tXHQAAAAAAAB5KtxVKhYSE6Ny5c/bHL7/8so4dO2Z/fPHiRU2ZMuXuVQcAAAAAAICH0m2FUsaYGz4GAAAAAAAAbgVrSgEAAAAAAMByhFIAAAAAAACwnMvtPmH69Ony8vKSJCUlJWn27NnKmTOnJKVbbwoAAAAAAAC4ntsKpfLnz69p06bZH+fOnVvz5s3L0AcAAAAAAAC4kdsKpQ4dOnSPygAAAAAAAMCjhDWlAAAAAAAAYLnbCqU2b96sH374IV3b3LlzFRwcLH9/f7377ru6cuXKXS0QAAAAAAAAD5/bCqU++eQT/fbbb/bHu3fvVtu2bVWjRg317dtXy5cv19ChQ+96kQAAAAAAAHi43FYotXPnTlWvXt3+OCwsTOXKldO0adPUvXt3jR8/Xl999dVdLxIAAAAAAAAPl9sKpc6cOaOAgAD743Xr1qlOnTr2x88++6yOHDly96oDAAAAAADAQ+m2QqmAgAAdPHhQkpSQkKDt27erQoUK9u3nzp2Tq6vr3a0QAAAAAAAAD53bCqXq1Kmjvn37KioqSiEhIfL09FSlSpXs23/77TcVKlTorhcJAAAAAACAh4vL7XT+7LPP9Oqrr6pKlSry8vLS7Nmz5ebmZt8+c+ZM1apV664XCQAAAAAAgIfLbYVSuXLlUlRUlOLi4uTl5SVnZ+d027/++mt5e3vf1QIBAAAAAADw8LmtUKpNmza31G/mzJl3VAwAAAAAAAAeDbcVSs2ePVtBQUEqVaqUjDH3qiYAAAAAAAA85G4rlOrQoYPCwsJ04MABtWnTRm+99ZZy5Mhxr2oDAAAAAADAQ+q27r4XGhqqmJgY9enTR8uXL1dgYKBef/11/fjjj8ycAgAAAAAAwC27rVBKktzd3fXmm28qMjJSe/fuVfHixdWpUycFBQXp/Pnz96JGAAAAAAAAPGRuO5RKy2azyWazyRijlJSUu1UTAAAAAAAAHnK3HUpduXJFCxcuVM2aNVWkSBHt3r1bEyZMUHR0tLy8vO5FjQAAAAAAAHjI3NZC5506dVJYWJjy58+v1q1bKywsTH5+fveqNgAAAAAAADykbiuUmjx5svLnz6/g4GCtW7dO69aty7Tf4sWL70pxAAAAAAAAeDjdVijVsmVL2Wy2e1ULAAAAAAAAHhG3FUrNnj37HpUBAAAAAACAR8n/dPc9AAAAAAAA4E4QSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMsRSgEAAAAAAMByhFIAAAAAAACwHKEUAAAAAAAALEcoBQAAAAAAAMs5PJQKDQ1VcHCwPDw8VKZMGUVFRd2w/7p161SmTBl5eHioYMGCmjx5crrt06ZNU6VKlZQ9e3Zlz55dNWrU0K+//novDwEAAAAAAAC3yaGhVHh4uLp27ar+/ftrx44dqlSpkurWravo6OhM+x88eFD16tVTpUqVtGPHDvXr109dunTRokWL7H3Wrl2rN998U2vWrNHGjRuVP39+1apVS8eOHbPqsAAAAAAAAHATNmOMcdSLlytXTqVLl9akSZPsbUWLFlXDhg01dOjQDP379OmjZcuWad++ffa2Dh06aNeuXdq4cWOmr5GcnKzs2bNrwoQJatmy5S3VFR8fL19fX8XFxcnHx+c2jwoAAAB4gE2p4ugK7q726xxdAQA8cm41V3HYTKmEhARt27ZNtWrVStdeq1Yt/fLLL5k+Z+PGjRn6165dW1u3blViYmKmz7l48aISExOVI0eOu1M4AAAAAAAA/mcujnrhkydPKjk5WQEBAenaAwICFBsbm+lzYmNjM+2flJSkkydPKk+ePBme07dvX+XLl081atS4bi1XrlzRlStX7I/j4+Nv51AAAAAAAABwmxy+0LnNZkv32BiToe1m/TNrl6QRI0Zo4cKFWrx4sTw8PK67z6FDh8rX19f+ExgYeDuHAAAAAAAAgNvksFAqZ86ccnZ2zjAr6vjx4xlmQ6XKnTt3pv1dXFzk5+eXrn3UqFEaMmSIVq5cqZIlS96wlpCQEMXFxdl/jhw5cgdHBAAAAAAAgFvlsFDKzc1NZcqUUWRkZLr2yMhIVaxYMdPnVKhQIUP/lStXqmzZsnJ1dbW3jRw5UoMGDdKKFStUtmzZm9bi7u4uHx+fdD8AAAAAAAC4dxx6+V737t01ffp0zZw5U/v27VO3bt0UHR2tDh06SLo6gyntHfM6dOigw4cPq3v37tq3b59mzpypGTNmqGfPnvY+I0aM0IcffqiZM2eqQIECio2NVWxsrM6fP2/58QEAAAAAACBzDlvoXJKaNm2qU6dOaeDAgYqJiVGJEiUUERGhoKAgSVJMTIyio6Pt/YODgxUREaFu3bpp4sSJyps3r8aPH6/GjRvb+4SGhiohIUFNmjRJ91oDBgzQJ598YslxAQAAAAAA4MZsJnWlcNjFx8fL19dXcXFxXMoHAACAR8uUKo6u4O5qv87RFQDAI+dWcxWH330PAAAAAAAAjx5CKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDkXRxcAAAAAAABwR6ZUcXQFd1/7dY6uwDLMlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJZzeCgVGhqq4OBgeXh4qEyZMoqKirph/3Xr1qlMmTLy8PBQwYIFNXny5HTb9+zZo8aNG6tAgQKy2WwaO3bsPaweAAAAAAAAd8KhoVR4eLi6du2q/v37a8eOHapUqZLq1q2r6OjoTPsfPHhQ9erVU6VKlbRjxw7169dPXbp00aJFi+x9Ll68qIIFC2rYsGHKnTu3VYcCAAAAAACA2+DQUGr06NFq27at2rVrp6JFi2rs2LEKDAzUpEmTMu0/efJk5c+fX2PHjlXRokXVrl07tWnTRqNGjbL3efbZZzVy5Ei98cYbcnd3t+pQAAAAAAAAcBscFkolJCRo27ZtqlWrVrr2WrVq6Zdffsn0ORs3bszQv3bt2tq6dasSExPvuJYrV64oPj4+3Q8AAAAAAADuHYeFUidPnlRycrICAgLStQcEBCg2NjbT58TGxmbaPykpSSdPnrzjWoYOHSpfX1/7T2Bg4B3vCwAAAAAAADfn8IXObTZbusfGmAxtN+ufWfvtCAkJUVxcnP3nyJEjd7wvAAAAAAAA3JyLo144Z86ccnZ2zjAr6vjx4xlmQ6XKnTt3pv1dXFzk5+d3x7W4u7uz/hQAAAAAAICFHDZTys3NTWXKlFFkZGS69sjISFWsWDHT51SoUCFD/5UrV6ps2bJydXW9Z7UCAAAAAADg7nLo5Xvdu3fX9OnTNXPmTO3bt0/dunVTdHS0OnToIOnqZXUtW7a09+/QoYMOHz6s7t27a9++fZo5c6ZmzJihnj172vskJCRo586d2rlzpxISEnTs2DHt3LlTf//9t+XHBwAAAAAAgMw57PI9SWratKlOnTqlgQMHKiYmRiVKlFBERISCgoIkSTExMYqOjrb3Dw4OVkREhLp166aJEycqb968Gj9+vBo3bmzv8++//6pUqVL2x6NGjdKoUaNUpUoVrV271rJjAwAAAAAAwPXZTOpK4bCLj4+Xr6+v4uLi5OPj4+hyAAAAAOtMqeLoCu6u9uscXQGAe+lhO2dJD8V561ZzFYfffQ8AAAAAAACPHkIpAAAAAAAAWI5QCgAAAAAAAJZz6ELnAAAAuEOsoQEAAB5whFIAANxrD1t4QHAAAACAu4DL9wAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOVY6BwAUj1si1FLLEgNAAAA4L7FTCkAAAAAAABYjplSePAwmwUAAAAAgAceM6UAAAAAAABgOUIpAAAAAAAAWI5QCgAAAAAAAJYjlAIAAAAAAIDlCKUAAAAAAABgOe6+BwAAAAC4t7iDNoBMMFMKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAliOUAgAAAAAAgOUIpQAAAAAAAGA5QikAAAAAAABYjlAKAAAAAAAAlnNxdAEAAKRV/4sNji7hrlvu5ugKwLgCAAC4/xBKAbgj/IEHAAAAAPhfEEo9Ah628IDgAAAAAACABx9rSgEAAAAAAMByzJQCAAAAgPsMVzsAeBQwUwoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDlCKQAAAAAAAFjOxdEFAAAAAACAe6/+FxscXcJdt9zN0RXgf8FMKQAAAAAAAFiOUAoAAAAAAACWI5QCAAAAAACA5QilAAAAAAAAYDmHh1KhoaEKDg6Wh4eHypQpo6ioqBv2X7duncqUKSMPDw8VLFhQkydPztBn0aJFKlasmNzd3VWsWDEtWbLkXpUPAAAAAACAO+DQUCo8PFxdu3ZV//79tWPHDlWqVEl169ZVdHR0pv0PHjyoevXqqVKlStqxY4f69eunLl26aNGiRfY+GzduVNOmTdWiRQvt2rVLLVq00Ouvv67NmzdbdVgAAAAAAAC4CYeGUqNHj1bbtm3Vrl07FS1aVGPHjlVgYKAmTZqUaf/Jkycrf/78Gjt2rIoWLap27dqpTZs2GjVqlL3P2LFjVbNmTYWEhOjJJ59USEiIqlevrrFjx1p0VAAAAAAAALgZh4VSCQkJ2rZtm2rVqpWuvVatWvrll18yfc7GjRsz9K9du7a2bt2qxMTEG/a53j4BAAAAAABgPRdHvfDJkyeVnJysgICAdO0BAQGKjY3N9DmxsbGZ9k9KStLJkyeVJ0+e6/a53j4l6cqVK7py5Yr9cVxcnCQpPj7+to7pfpV46YKjS7ir4pOTHF3C3fcAjrWHbVxJjK37BWPrAcC4ui88dONKeiDH1kPp0kM2th7QcfWwnbc4Z90fHrZxJTG27lepeYox5ob9HBZKpbLZbOkeG2MytN2s/7Xtt7vPoUOH6tNPP83QHhgYeP3C4TC+ji7gXuj2UB7VA+eh/FdgbN0XHrp/BcbVfeGh/FdgbOFeYFzdFx7KfwXG1n3hofxXeIjG1rlz5+Tre/3jcVgolTNnTjk7O2eYwXT8+PEMM51S5c6dO9P+Li4u8vPzu2Gf6+1TkkJCQtS9e3f745SUFJ0+fVp+fn43DLNgvfj4eAUGBurIkSPy8fFxdDl4iDC2cK8wtnAvMK5wrzC2cC8wrnCvMLbuX8YYnTt3Tnnz5r1hP4eFUm5ubipTpowiIyPVqFEje3tkZKReeeWVTJ9ToUIFLV++PF3bypUrVbZsWbm6utr7REZGqlu3bun6VKxY8bq1uLu7y93dPV1btmzZbveQYCEfHx9OOrgnGFu4VxhbuBcYV7hXGFu4FxhXuFcYW/enG82QSuXQy/e6d++uFi1aqGzZsqpQoYKmTp2q6OhodejQQdLVGUzHjh3T3LlzJUkdOnTQhAkT1L17d73zzjvauHGjZsyYoYULF9r3+cEHH6hy5coaPny4XnnlFX377bdatWqVNmzY4JBjBAAAAAAAQEYODaWaNm2qU6dOaeDAgYqJiVGJEiUUERGhoKAgSVJMTIyio6Pt/YODgxUREaFu3bpp4sSJyps3r8aPH6/GjRvb+1SsWFFhYWH68MMP9dFHH6lQoUIKDw9XuXLlLD8+AAAAAAAAZM7hC5136tRJnTp1ynTb7NmzM7RVqVJF27dvv+E+mzRpoiZNmtyN8nCfcXd314ABAzJcbgn8rxhbuFcYW7gXGFe4VxhbuBcYV7hXGFsPPpu52f35AAAAAAAAgLvMydEFAAAAAAAA4NFDKAUAAAAAAADLEUoBAAAAAADAcoRSAAAA9xGW+wQAPOp4L3x0EEoBAADcB86cOSNJstlskvhADgB4tKSkpNj/P/W98L///lNSUpKjSoIFCKXgcHzoxr2Q9k3tVtqBW8U5C/fCRx99pBYtWmjQoEH6448/JF39QM45C3dD2vMW5zDcDZybcC84OTnp0KFD6tWrlyRp0aJFatq0qY4fP+7gynAvuTi6ADzaUlJS5OR0NRs9d+6cnJ2d5enp6eCq8KAzxtjH1fz583Xq1CllzZpV7dq1k5OTU7pxB9yOtGPn9OnTSk5OVq5cuRxcFR4GNWvWVIUKFdS/f3+tX79e+fLl07Rp0+Tq6uro0vCAS3veSklJUVJSktzc3BxcFR5kacfU/PnztXv3bjk7O6tkyZJ64403HFwdHmQpKSmKiIjQ4sWLtW/fPkVERGjOnDnKmzevo0vDPWQzfF2C+8DAgQO1fv16xcTE6MMPP1TdunWVLVs2R5eFB5Axxj7dt2fPnpo9e7by5cun+Ph4BQcH66effpIkgin8Tz7++GN99913Onv2rN566y2FhIQoS5Ysji4LD4HTp0/r+++/1+jRo3XlyhV9++23Kly4sKPLwgMq7XvduHHjtH79ep04cUIVKlRQ79695efn5+AK8SDr3bu35s+fr/r16yshIUHffvut3nvvPQ0aNMjRpeEBlpKSonfffVczZ85U9erVFRkZKUlKTk6Ws7Ozg6vDvcBfZHCItFN+x48frwkTJqh69eoqW7asWrVqpbFjxyo2NtaBFeJBlRpInTp1SgcPHtTatWu1bt06zZgxQ0ePHtVzzz0nSfYZU8CtSDtWJk2apBkzZqh169Zq3bq1Pv/8c7377rtMLccdufY8lCNHDjVv3lxLliyRv7+/ateurWPHjmXaF7iZ1EAqJCREw4cPV5kyZdSlSxeNHDlS3bp1U1xcnIMrxIPqxx9/1FdffaXFixdrypQpqlmzpi5fvqzg4GBHl4YHVNq5Mnnz5lXz5s118uRJderUSZLk7OzM2lIPKUIpOETqh6Q//vhD//77r+bMmaOQkBDNmTNHo0eP1pgxYzRp0iSCKdyR0NBQvfDCC0pISNBjjz2mbNmyqWrVqpo9e7bOnj2rcuXKSSKYwq1LPWdt2rRJV65c0bhx49S5c2d99NFHWrVqlZYuXapu3brpxIkTDq4UD5K0s1h+/fVXe7uTk5MKFCigpUuXKnfu3GrUqJG9nQnuuF27du3SkiVLtHDhQvXr108BAQFyd3dXlSpV5Ovr6+jy8ICKjo7WE088ofLly2vx4sXq0KGDxowZozZt2uj8+fP6+eefHV0iHiCpVzps2rRJW7duVd++fTV9+nS1aNFCGzZssAdTLi5XVx/6559/CKgeIoRScAhjjNasWaNixYpp6tSpSkxMtG977733NHToUI0dO1ZTpkyxf0MM3Irk5GT5+vrK2dlZu3fvtl8G6uTkpPLly2v27Nn2S/lS24FbsW/fPlWsWFHdu3dXfHy8pKvnsgoVKigyMlLLly9Xjx49CNNxS9IGUgMGDFDr1q21cOFCSf/3bXG2bNk0YcIEJScn2y+HSZ0NCtyquLg4eXp6qkqVKlqyZInq1aunsWPHqm3btoqLi9OKFSscXSIeIKlf5rm4uCh37tz65ptv9Pbbb2vkyJFq3769JGnt2rVavHgxM4hxS1IDqcWLF+ull17SkiVLdObMGbm7u6tNmzZq3bq1NmzYoA4dOiglJUUDBgxQ+/btdenSJUeXjrvFAA40ZMgQY7PZzEcffWTi4+PTbQsNDTU2m81Mnz7dQdXhQZCcnJyhLT4+3ixatMj4+/ub+vXrZ+i/Zs0a07RpU5OUlGRVmXhILF261Hh7e5u2bduaS5cuGWOMSUlJMcYYs2nTJmOz2cwnn3ziyBLxgAkJCTG5cuUyP/30kzl27FiG7RcvXjQff/yxadSokQOqw4Mm9XyU1o4dO0zx4sXNkCFDjI+Pj5k0aZJ9W1RUlKlSpYrZs2ePlWXiAZLZ5yxjro4dd3d3Y7PZTGhoqL39woULpnbt2uadd97JdDwCmVm5cqXJmjWrmTlzpjl37ly6befPnzehoaEmKCjIFChQwPj7+5vNmzc7qFLcCyx0DkvcaFHp/v37a/jw4ZowYYJatGihrFmz2rctXrxYDRo0sE/VBNJKO65+++03Xb58WQEBAQoKCpIkLVmyRF27dlWZMmW0ePFi+/NMmsXQWTQRmbnROSs8PFxvvfWWunfvrs8++0yurq72MbVnzx4VKVKEcxauK+355/fff9cbb7yhiRMnqkqVKoqLi9Px48e1YsUK1apVSwUKFJC7u7tiYmL09NNPa8qUKfZL+YBrpT1vJSUlycnJSTabTRcvXtSbb76plStXqkuXLhoxYoQk6cqVK3rttdfk7u6u8PBwZg4jg7Rjas6cOTp06JAOHjyozp07q0yZMpo3b57efvttffrppypfvrw8PDw0aNAg/ffff9q2bZtcXFzSnfOAzBhj1L17d50/f17Tpk3ThQsXtG/fPs2ZM0cBAQGqU6eOypYtq71792r79u16/vnnWbvsIcOnZtxzad/Q5s2bpz179sjNzU0lS5ZUkyZNNHjwYCUnJ+v999+XpHTB1Kuvvirp6ocr/shDWsYY+7jq27evFi5cqOTkZJ06dUodO3bUu+++q0aNGskYox49eqhJkyb65ptvJKW//IVACtdKe86aPHmy9uzZoxMnTqhRo0aqUqWKmjZtqpSUFLVs2VKS0gVTxYsXl8Q5C5lL+8fZkSNH5Ofnp0OHDsnX11e//fabpk2bplWrVunkyZMaPHiwVq9ereLFiytPnjzq2LGjLly44OAjwP0q7XlrzJgx2rFjh/7++2+9+uqratasmfr3769jx45py5YtGjNmjLJkyaJFixYpNjZW27dvt6+xSDCFtFLHQ+/evbVw4ULVrFlTFy5cUIUKFTRixAh17dpV586d0+jRozV27Fg9/vjjypkzp7Zu3SoXFxe++MNNGWNkjFF0dLSOHz+uHTt2aMyYMYqJidHJkydls9m0a9cuzZ49W8WKFVOxYsUcXTLuBYfMz8IjqWfPnsbPz880bdrUlChRwhQtWtS0aNHCvj0kJMS4u7ubUaNG2S+LATKTdjr4+PHjTa5cuczq1avNP//8Y2bPnm2KFStmWrdubQ4dOmQSExPNokWLTJYsWUxISIgDq8aDplevXiZHjhymY8eOpkKFCqZkyZKmYcOG5vDhw8YYY8LCwoyHh4dp3749l4LiptKet7p27WoKFy5sjhw5Yho1amRy5MhhvL29zXvvvWcWLVpkjDEmKCjIjBo1yv6cTZs2mQ0bNlheNx4sffr0MTlz5jShoaHm008/NUWLFjXVq1c3xhgTERFh3nvvPRMQEGBq1qxpWrVqZRITE40xxv5f4FrffvutCQwMNLt27TLGGPPrr78am81mvv76a3ufo0ePmj/++MNER0fbz3WMKVxPZpd1/v777+axxx4zfn5+5vXXXzeLFy82xhgzc+ZMU6pUqQyX9OHhQiiFeybtNeirV682+fLls3+gPnfunJkxY4YpWrSoad++vb1f586dTaVKlbgGHZn68ccfM7S99tprpkuXLunalixZYvLmzWs+//xzY8zVa9HXrFlDcIBb9vPPP5vg4GDzyy+/2NvmzZtnatasaZo3b27Onj1rjDFm9uzZpnLlypyzcMt27txpGjRoYB9bsbGxZvHixWb9+vX2c1RCQoJ54YUXzLx58xxZKh4wW7duNcWKFbOPrR9//NF4eHiYGTNmpOt3+vTpdI8JD5DWtWtITZ8+3TRp0sQYY8yCBQuMt7e3fQ2ps2fP2r+oudE+gFSpn5fWrFlj+vbta5o2bWpmzpxpLl++bOLj481vv/2Wrl/Pnj1NrVq1Mqw9jIcLc3Rx1zVt2lTHjx9PNwX86NGjcnNz09NPPy1J8vLyUpMmTdS2bVtt27ZNf//9tyRp/PjxWrdunWw2G7e9Rjq9evXSV199lW5cJCQk6Ny5c0pOTrY/lqSGDRuqZcuWCg0N1cWLF5U1a1ZVrVpVzs7O9r5AqubNm2vdunXp2uLj43XhwgUFBATY25o1a6aGDRtq69atOnXqlCTp7bff5pyFWxYWFqZu3brp8uXLeuaZZ5SSkqKAgAA1atRIlSpVUkJCgv2SqwsXLuiNN95wdMm4j137fnb58mWlpKSoQoUKWrRokZo0aaIxY8aoTZs2On/+vJYsWaKzZ88qe/bs9ucYY7jUGHYmzdIIX3zxheLi4nTy5EkdP35cP/30kzp27Kjhw4erY8eOkqRFixZpxIgRGS4t5jJQXI/NZtOSJUvUqFEjHT16VPnz59e7776rtm3b6sqVK3rqqackSZs2bVLfvn01depUjRgxQt7e3g6uHPcSZwzcVXv37pWPj0+6DzySFBgYKGdnZ+3evdve5uPjo7p162rHjh06cOCAvT31jzsWRURa3bp106RJk+yLSUuSm5ubypcvr9mzZ+vQoUNyc3Ozf0jPkyePAgMD5e7unm4/rG2AtP78808VLFhQFStWTNeeNWtWeXt768iRI5L+b72WNm3a6N9//9X69esz7ItzFm7mjz/+0LFjx7R3714lJyfLycnJfs5KSkrS8uXL1b59e509e1abN2+2r8kCZCb1/WzYsGH66aefFBcXJx8fH3355Zdq06aNhg8frg4dOkiStmzZou+++04nTpxItw/OW0i1a9cu+3gIDQ1Vr169dODAAb3yyis6e/asatSooaFDh9oDqUuXLmnp0qW6cuWKPD09HVk6HiCHDh1Sv379NGzYMM2bN08jRoyQu7u7HnvsMeXMmdPeZ9KkSVq5cqWioqLskxrw8CKUwl1VrFgxTZs2Ta6urgoNDVV0dLSkq6GUi4uLpk2bpoMHD9r7e3t7q0SJEsqSJUu6/fAhCWmlpKQob968cnV1VVhYmFq0aKG5c+dKurrIeYUKFVS5cmXt2bNHFy9e1KVLl7R8+XL5+/sTQuGGihQpokGDBsnV1VWTJ0+2L4b//PPPy9fXV3379tXhw4ft3/qeOXNGwcHByp07tyPLxgMgs5lzAwYMUOfOneXm5qYOHTro5MmTcnZ2ts9WKVasmDp16qS1a9fK1dVVSUlJnMOQwYoVK7Rp0yZJ0oIFC/TRRx/J399f9erVU2Jiot566y0NHjzYHh5cvnxZo0aNUlxcnAoVKuTI0nGfmjhxokqVKqXTp08rKipK+/fvV3h4uEqVKqWgoCC9+uqrKlasmHbt2qUDBw5o1apVaty4sQ4fPmz/wpDZwrietGMjKSlJ3t7eat++vf7++2899thjatasmYYNGybp6l1pCxQooAEDBigiIkIlS5Z0VNmwkM1wBsFdkvauLf/++69eeuklnT17VuvXr1dgYKAiIyPVtGlT1apVS1WrVlWxYsU0ePBgnTp1Sps3b+aDNzJ17d2A/vrrL33wwQdKTExU27Zt9eabb+rvv/9Wt27dtHr1ahUsWFA2m002m03btm2z3xWNoBPXSju2YmNj1bFjR+3du1fDhw9Xw4YNdeLECZUrV07ZsmVT8+bNFRgYqJkzZ+q///7T1q1bOWfhuq4dW25ubnJxcZGPj4+MMRo1apSWLFmip556SkOHDlWOHDky7IO7ViEzkyZN0gcffKD9+/drz549On78uFJSUtSmTRtJ0o4dO9S8eXNlzZpVHTt2VGJior755hvFxMRo586dcnFx4S57SGfq1Kn64IMPtGDBAuXLl09t27bV6dOn9c0339hnEZ85c0YzZ87U3LlztX//fj355JPKmzevlixZIldXV85XuKklS5Yoa9asypcvn2rUqKGwsDC1bdtWL774oiZNmiRnZ2dt27ZNgwcP1uDBg1W0aFFHlwwrOWIhKzx80i5omJCQYIy5eneOGjVqmMcff9y+COJPP/1kXnrpJZMvXz5TsmRJU6NGDXt/FqHGtdKOq2+//dYcOnTIGGPMwYMHzcsvv2yqVKliwsLC7H3CwsLMlClTzIwZM+zjiQVckZm0Y+vy5cvGGGO2bdtmWrdubYoVK2a/60tcXJxp1KiRKV26tClZsqR55ZVXOGfhhtKOrUGDBplKlSqZfPnymbZt25oVK1YYY64u4Dp8+HBTsWJF06FDB3P8+HFHlYsHyJQpU4ybm5v56quvzJkzZ4yLi4ux2WxmxIgR9j4pKSnm4MGDpm7duqZkyZLmhRdeMK1bt+a8hUwtXLjQ2Gw2s3DhQmPM1c9XHTt2NN7e3qZz587p+iYmJpqkpCSzdetWExMTw132cMu2bdtmXF1dzYQJE8zly5fNa6+9ZlxcXOwL6Kfq16+fqVChgomNjXVQpXAUZkrhf5b2G7exY8cqKSlJLVq0UEBAgDZv3qyQkBAdOXJEq1evVv78+XX27FklJCTo4sWLCgoKks1mU1JSEgttIh2TZnZTv379FB4ervbt2+v999+Xp6enDh48qM6dO+v8+fN655131Lx58wz74Js7ZCbtOWv48OH677//1KdPHwUEBGjbtm364osvtGXLFg0aNEivvvqqjDE6e/asEhMTlStXLs5ZuCUfffSRJk2apNDQUElXZyMcO3ZMQ4cOVcOGDWWM0eeff64pU6bonXfeUe/evR1cMe5nCxcuVPPmzTVv3jw1b95cly9f1oYNG/Tee+/pscce048//phhFtTp06eVJUsW+xIJnLeQ1pQpU9SxY0flyJFDU6ZMUY0aNeTr66vY2FgNGTJE69evV7NmzeznptTxk/bzGbPucDP79u3T0qVLlZCQoAEDBkiSvvnmG40ePVqurq4aMmSILly4oJUrV2ratGmKiorikr1HkSMTMTxcevXqZQICAszUqVNNTEyMvf3XX381lStXNoULFzZHjhzJ8DxuG4sb+eSTT4yfn5/ZtGmT/Xawqd/OHTx40NSvX99Ur17dTJ061ZFl4gHUq1cvkydPHhMaGmqOHTtmb9+2bZtp0aKFKV68uFm6dGmG53HOws2sWLHCFC9e3GzcuNEYY8yqVauMh4eHqVChgilSpIhZvny5MebqWJo/fz6zV3BDU6ZMMTabzeTPn9+8/vrr5vTp08aYq7M8V61aZXLlymUaN25s7586Kyqt1PdNwBhjJk6caNzc3MyyZctMq1atTNGiRc3s2bPtn7OOHj1q3nvvPVOuXLkMM/GAW3Xo0CFTtWpVkytXLjNgwIB027766ivTqFEj4+bmZkqUKGFeeOEFs3PnTscUCocjlMJdMWPGDOPv729+++03e9vFixftb267d+821apVMz4+PlymgFv277//msqVK9uDgWPHjpkNGzaYd955x8yZM8cYY8zhw4dNhQoVzPvvv+/IUvGACQsLM/7+/mbHjh32tvPnz9vPT/v37zetWrUyfn5+JioqykFV4kFx7R9q+/btM7169TLGGBMREWFy5sxppk2bZrZu3WoKFChgHn/8cbNgwYJ0zyGYQmbGjx9vPDw8zNdff22WLFliypcvb+rXr2/Onj1rjLkaQK1atcrkzJkzw6UwQGaioqKMt7e3CQ8Pt7c1bdo0QzB15MgR8/7775uKFSuajz76yFHl4gE3atQo88QTT5hSpUqZ//77L8P2ffv2mdOnT9vPaXg0cfke7opPP/1Uf//9t+bNm6f9+/dr9erVGjdunPLkyaNatWqpb9+++vnnnxUeHq4xY8ZwSRUyde008FOnTunpp59W27ZtVa9ePY0dO1Z//fWXPDw8tHHjRoWGhqpDhw6KiYlRQEAAU8hxXeaaxe7Hjh2rtWvXaunSpdqzZ49++OEHTZ06VW5ubmrQoIEGDRqkbdu2KTIyUn379uWchVsSGhqq2rVrq1ChQoqPj1fWrFnVqFEjlSpVSp9++qkkqW7dujp06JCeffZZzZ07lxsx4LoOHTqk4sWLa+bMmWratKkSExMVHh6u0NBQ5cyZU/PmzZOvr68SExO1fv16NW/eXMWKFdNPP/3k6NJxH9u7d68SExP19NNPKzExUa6urpKkN998U7t27VKfPn306quvytvbW8eOHVOfPn3k6empKVOmcK7CDV3v/WzSpEmaNm2aSpYsqWHDhil37txc+ol0CKVw29KeRFL/v2/fvpozZ45at26tH374QQULFlThwoUVFxenzZs3a+XKlcqZM6d9H6z1g2ulHVcrV65UoUKFVKhQIY0fP15Dhw5VfHy8OnXqpBo1aqh27dpq3ry5smTJoqlTp2YYj0BaacdF6rlnxowZeuedd/T+++8rIiJCZcuWVfny5RUbG6uwsDBFRUUpMDDQvg/OWbiZmJgY1atXTw0aNLAHUGfOnFGZMmXUtWtXdenSRWfOnFHHjh3VpEkTNW7cmD/wcFMxMTHKkyeP/RyUlJSksLCwTIOpyMhITZw4UcuXL+e9ELcs7VpjmQVTJ06ckJ+fn5ycnAjRcV2pYyMqKkorV65UUlKSnnzySb399tuSpAkTJujLL79UkSJFNGzYMAUEBPC5HXaEUrgtaU8e48aNk81mU6dOneTi4qJ27drpyJEjql+/vqpXr66iRYtq7dq16tmzp7799lvly5fPwdXjfpX2Q05ISIiWL1+ud999134765MnT+r8+fMqVqyYpKvj8MUXX9SLL76ojz/+2JGl4z6X9pw1cuRIxcTE6LPPPpOnp6c+//xzbdiwQXXr1lXNmjUVHBysgwcPqnHjxpo7d65KlCjh4OrxoOnSpYs2bdqkjRs3ytnZWXFxcXrvvfcUHR2thg0bKiIiQpcuXVJUVJScnJz4QI7bkjpe0gZTuXLl0ty5c+Xr65suXGBs4Xak/eKlWbNm2r17tzp16qS3335bnp6ekhhTuL7Uz/GLFy9WixYtVLlyZV2+fFlRUVF67bXXFBoaquzZs2vcuHFavHixcuXKpdDQUPn7+zu6dNwnCKVwR3r37q358+erb9++aty4sT1wunjxov3NKyEhQY0aNZKTk5OWLVvGNyu4qQEDBmjixIn69ttv9fTTT8vLyyvd9osXL2rXrl0aPHiwjhw5om3btnEnIdyS3r1768svv1SPHj3UuHFj5c+fX5J0+fJleXh4KCUlxX7OSkxM1MqVK/nwjeu69o+z1A/kcXFxeuqpp9SuXTt7YL5ixQrNmTNHv//+u4KDg7Vo0SK5urryBx7uSOpYSw2mJk+eLGOMVq5cqaxZszq6PDzA0gZTderUkZ+fn+bPn8/nd2SQ+v6V9kvl6OhoVa1aVT169NB7770nSdq8ebPq1aununXrav78+ZKkYcOGae3atZo1a5by5MnjsGPA/YW/5nDbpk2bptmzZ2vVqlX2W3ZeuXJFxhh5enoqJSVFY8eO1apVq3Ts2DFt3bpVNpuND+C4ocOHD2vFihWaN2+enn/+ecXGxur3339XWFiYKlasqFdffVVr1qzR9OnTlZCQoK1bt8rFxYXLqnBTX375pebMmaMVK1aoVKlSkq6GUQkJCfLw8JAkjR8/XsuXL9eZM2e0efNmZrHghlLHxaJFi/T8888re/bscnd3l6enp1q1aqWNGzfqxIkTypUrl+rUqaNq1arp8uXL8vHxsQcKBOq4EzabTcYYubi46I033tDFixe1bds2ZcmSxdGl4T6U2eV217sEz9nZ2f6ZasWKFUpJSbGPN4IppEr9bLR7925t3rxZLVu2lJubmy5fviybzabnn39e0tWQs1y5clq+fLmqVKmiBg0a6PXXX1ffvn3Vvn17Zc+e3cFHgvsJn7Zx2w4cOKDGjRurZMmS+uuvvzRt2jQ9++yzatSokUJDQ5WcnKxTp04pICBA27Ztk6urq5KSkvjjDjfk6+urU6dOafv27dqyZYt69uypjh076tdff9Ubb7yhxYsXq2rVqurbt69WrFhhH1cEUriZgwcPqlq1aipVqpR2796tcePGqVSpUipXrpwmTpyoU6dOycvLS8WKFdOvv/7KOQu35NixY2rVqpVefvllvfvuuzpw4IBcXV3VrFkzbdiwQT/++KO9r5ubm3x9fe1f0BBI4VopKSm33DdtMNWuXTtNmTLFHqQDqVJDJUm6cOGCrly5Ikn281BmnJ2d7dtSxxSBFFKlBlK7du3S008/rWPHjsnNzU2SlCVLFh09elR//fWXpP8bP6VLl1bJkiUVHR1t3w+BFK7FJ27cUNqrO1P//9y5c5o/f75GjBihN998U999951eeukleXp6as6cOUpKStLgwYM1c+ZM+0wWPoAjrcw+DGXLlk3NmjXTjBkz9MILL8jf319DhgzRL7/8okaNGikqKkpZs2ZVuXLl7G90jCtcK/U8lfbclSNHDn311Vfq06ePXn/9df3888969913VaNGDY0cOVKJiYlq166dvvjiC85ZuGX58uVTbGysWrVqpePHj+vpp59Wz549df78eX366aeaOHGiYmJiJCndH3WEnbhW2lmZR44c0aFDh276nNRgKu14YmwhrdTxMGTIENWqVUsNGzbUmDFj7NuSk5Nv+Lxr/x+PttTz1M6dO1WhQgWFhIRowIAB9u2BgYFq2bKlRo0apTVr1shms8nJyUkeHh7KkiULYwk3xJpSuK60H5IuXLigy5cvy8/PT5LUrl077d69W02bNlWtWrVUokQJrV27Vr169dK3336rvHnzSrr+FGE8utKOq6+//lp//PGHXFxcVL16dT333HPav3+/Ll26ZL80NCUlRZUrV9ZLL72kkJAQR5aO+1zasRUbGyubzSY/Pz+5uLho+PDhioiIsJ+zHn/8ce3fv1/NmjXTl19+qcKFCzu4ejxorr10ePLkyVq1apVWr16t7NmzKzY2Vt9//72qVavmwCrxIAkJCdHSpUsVGxurxo0bq3fv3nriiSck8XkKty7te+HYsWP12WefqXPnzjp48KCWLVumFi1aaNy4cZK4syxuz19//aXixYtr0KBB6tu3r/28tGDBAtWsWVOHDh3SiBEjdODAAXXp0kVBQUH64YcfNH36dP366696/PHHHX0IuE8RSiFTaT/8DBs2TCtXrlR0dLRKliypkJAQPfvss+kWNU9MTFSDBg3k7u6uJUuW8MEJN9W7d2+Fh4erdOnS8vb21vz58zV//nw1a9ZM0tVFzf/44w999NFH9rXJmL2C60l7zvrss8+0bNkynT9/Xi4uLhozZoyqV6+uxMREubq6yhijxMREvfLKK0pJSdGKFSs4Z+GuOHXqlP766y/17t1brq6uioyM5A8+XFfa8GDu3Ln6+OOP9dlnnyklJUW9evVS2bJlNWjQIJUuXdrBleJBtHHjRu3evVuBgYGqW7euzp8/r0WLFql9+/Zq3749wRRuS2Jiovr376/x48dr3rx5eu211yRJQ4cO1fDhw/XTTz+pdOnS+uWXXxQeHq7p06crKChIrq6umj17tn1NTyAzhFK4oY8//ljTpk3TZ599pueee07VqlVTsWLFtHDhQuXLl08XLlzQggULtGTJEv3777/aunUrdxXCTS1ZskSdO3fWokWLVK5cOYWFhdkv3WvdurUkKTw8XGFhYYqPj7evIcUHJ9zMJ598otDQUE2aNEnly5dX/fr1FRcXp59++klBQUG6dOmSvvzySy1YsEBnzpyxryHFOQuZ2bJliw4dOqSUlBRVqVJFuXPnzrRfaiia+t9z587Jy8tLNpuN8xZuavXq1dqyZYty586tVq1aSZL279+vmjVrqlixYho8eDB/0OG2bNy4Uc8//7y8vb21ZMkSvfjii5KkS5cu6auvvlLHjh3Vvn17++V8wK3YvXu3pk6dqsjISH3++ec6dOiQPv74Yy1YsEB16tRJ1/e///6TMUbu7u6sIYWb4hM4MmWM0T///KPly5dr1qxZatu2reLi4nTp0iW1bNlS+fLlk3T1ze3o0aPy9/dnUXNc17VrSB0+fFhVq1ZVuXLltHjxYr3zzjuaMmWKWrdurfj4eB0+fFj16tVT165dFRkZyaLmuCljjE6cOKHVq1drypQpaty4sXbu3KmDBw+qV69eCgoKknT1m75Lly7pySef1JYtWzhn4bpmzZplX4PlzTffVO/eva+7BkvqTLvUYMrb29u+mDDnLVyPMUbHjh1TzZo11a9fP/3333/29sKFCysyMlL79u3Txx9/rM2bNzu4WjxIgoKCNGzYMBljtGbNGnt7lixZ1LRpU02ZMkXjxo3T2LFjHVckHjhPPfWUOnbsqBdffFHt27fXBx98oBUrVqhOnTrpPuunpKQoICBAuXPnJpDCrTHA/5ecnJzu8cGDB02RIkWMMcZ8++23xsvLy0yaNMkYY8y5c+dMeHi4uXLlirly5YpJSUkxxhiTlJRkbdG476WODWOM+eqrr8w///xjxowZY1q0aGHCw8PTjStjjAkPDzddu3Y1586ds7ddOzYBY9KPi4sXL5pTp06Z3Llzm/j4eLNy5Urj5eVlJk+ebIwx5vz582bkyJHm8uXL6fbBOQuZWbBggfHx8TFff/21SUxMNGvWrDE2m838888/6fpxbsLtSvuemGrbtm0mW7ZspmbNmubAgQPp+u3fv9+4u7ubHj16WFonHhzXOw+dPHnSfPbZZyZLlixm2LBh6bZduHDBREREmMTERCtKxENmz549pmPHjqZAgQJm4cKF9nbeE3GnWKAFdqkzBT744APlypVL7733npKTk9WlSxfNmTNHo0aNUvv27SVJBw4c0MSJE5U3b1698MILkq5+s8c3wkgr7SVRQ4YM0eTJk/XDDz8oMDBQn3/+ub755hsNGzZMHTp0kCSdP39es2fPVuHCheXl5WXfD7NYkJnUcdG7d2+dPXtWX3zxhZ566im1b99ey5cv19ixY9W2bVtJ0okTJ7R48WIVKVJE9evXt++DcxautX//fk2bNk3Dhg1TkyZNJMl++fqPP/6olJQUFS9eXFWrVuXchNuS9j0xdY275ORklS5dWhEREapWrZo+/PBDDRs2TIGBgTLG6PHHH9fff/+tPHnyOLh63I/Sjql58+bp8OHDio2NVdu2bVW0aFH16NFDNptNQ4YMkc1mU+/evSVJnp6eqlu3riQpKSmJNTtxW4oVK6b3339f0tVlExITE9WiRQs5OTlxUwbcEc5ASHfyWLNmjSIiIjR58mR5eXmpUaNGmjJlipo0aWIPpC5fvqz+/fvL29tbFStWtO+HExCulfpB6eDBgzp06JBCQ0NVvHhxFS9eXFFRUfriiy/k7OysLVu2yGazqX///jp+/LiWLVsmibsNIXNpx8Xq1au1YsUKTZ48WU5OTnr22Wc1efJk1a9f3x5IXbx4Ue+//768vLxUr149R5aO+1hCQoLc3Nzk5eWlVq1aqUaNGvZtb7zxhnbu3CkfHx8dOHBA7u7u6tOnjxo3buzAivEgufaOaFu2bNGJEydUrVo1vf7666pQoYJWr16t6tWry2azadiwYXrsscckyf5f1ifDtVLHVM+ePTVnzhw999xzOnz4sBYvXqxOnTqpU6dO+uCDD+Tk5KThw4crPj5en332Wbp9EEjhTqQNpkaMGKHLly/rnXfe4XM77ggLncNuyZIl+u6775QnTx77G9bOnTs1ZMgQbd++XXXq1JGPj482bdqkEydOaPv27SwQjJv68ssv9dZbbykoKEjz58/X888/b9/23nvv6ZdfftHu3bv17LPPysvLSxERESxqjlvy7bffavny5fLx8dHo0aMlSSdPnlSXLl20d+9e5cmTR4UKFdLOnTt17tw5bsSA6xo9erR8fHzUrl07SUp3d9lZs2bp008/VUREhIoVK6ZTp06pfv36Kl26tCZMmODIsvEAuPbLlb59+2ratGnq3Lmzdu/erdjYWJ0/f15hYWEqWrSofvnlF9WqVUuVK1fW7Nmz5e/v78Dq8SD44Ycf1K5dO33//fd6+umnZbPZNGDAAC1ZskRt2rRR165d9d9//2n8+PHaunUrd5zFXbVv3z4NHTpUf/75p1auXCkfHx/GF24bodQjzKS5W9CBAwfUrl077dixQ82bN9fEiRPt/fbu3avVq1dr1qxZKliwoPLnz68RI0bIxcWFKb/IILM/+F9//XV98803+uKLL9SuXTu5u7vbt6VONff391dQUJCcnJwYV8hU6jkrJSVFZ8+eVYMGDbR9+3bVqFHDPrtOkk6dOqXly5fru+++k5eXl4KCgvTRRx9xzkKmUlJS1L59exljNH36dEnpg4Tz588rKSlJ2bJls7e3aNFCNptNc+fOdWTpeMDs3r1bTZo0UWhoqKpXry5JWr9+vUaNGqWTJ0/qm2++Ud68eRUVFaWPP/5Yq1evJkBHOh999JEaN26sZ555xt4WFhamTz/9VOvXr1eOHDnsX+j16NFD4eHh+vPPP5U1a1adPXtWvr6+6e4UClwrdWzs3btXR48e1VNPPaWcOXPK1dX1uuPmzz//lK+v73XvUAvclLVLWOF+kdlCm5GRkaZ27domb9685vvvv8+w/doFgVkgGDeycuVKs337dvvj+vXrGz8/P7NixYobLqzJIonITNpz1tmzZ40xxvzzzz+mUaNGJigoyMycOfOm++CchevZvXu3efrpp82aNWtu2vfMmTOmevXqZuTIkfe+MDywatSoYZYtW5au7eeffzZeXl5m586d9raUlBTz/fffm6eeesqsXbs2w354T0SqjRs3mubNm2f4DDVjxgwTEBBgf2+8ePGiMcaYU6dOGV9fXxMREZGuf2Z/AwBpLVq0yOTIkcPkzp3bFChQwIwePdocP37cGMP4wb3B1y+PoJSUFHvKPW/ePLVo0UKSVKNGDfXp00elSpXS6NGjFRkZaX9OZrdM59IqpJX2VrDbt29Xw4YNNWvWLO3bt0+StGzZMj377LN6++239dNPPykpKSnT/fCtMK6V9py1aNEitWzZUkePHlXBggU1cuRIFS9eXPPnz9fChQvtz8lsfHHOwvWkztRctWrVdc9NycnJiouLU/PmzXX+/Hl17drV2iLxwDhx4oTq1aun2rVrp2v39/dXwYIFtX37dvs4s9lsqlmzpk6dOqVt27Zl2BfviUhVvnx5zZs3Ty4uLlq8eLHWrFkjSXrrrbfk4+Oj1157TZKUJUsWSVfHob+/v3LkyJFuP8yQwvWkpKTozJkz+uKLLzR8+HBt27ZNDRo00Lx58zRu3DidOHHCPtMOuJt4p3vEpL20av369VqzZo2+/vpr9e3bV5JUrVo1denSRZ6enhoxYoRWrVol6eoiiLyJ4XqMMfZx9dlnn2nZsmXy9PTU1KlTNXbsWO3du1fS1XUPSpcurTZt2igiIkLJycmOLBsPgLTnrKioKH399df6+eef9emnn+ro0aMqVKiQxo4dKw8PD02fPl1hYWGSWLgVt8ff319vvvmmRowYocWLF0uS/UO3MUbJyckaP368GjdurBMnTigqKkouLi6cw5CpXLlyqVu3bnJzc9OIESM0ZcoUSVJwcLAKFCig8ePHa+PGjfb+Fy5cUN68ebn0BdeV+sWfMUb79+9XSEiIJk6cqA0bNsjNzU1Tp07VH3/8oeeff16rVq3SypUr1aNHD2XPnl1ly5Z1cPW436W+3yUkJMjb21uFChXSyy+/rLx582rcuHF66aWXFBERQTCFe4Y1pR5RPXv21M8//6wnnnhCW7du1alTp9SkSRP7oq0rV65UaGioDh06pGnTpunZZ591cMV4EIwYMUJDhgzR4sWLlSVLFu3YsUMhISFq3ry5OnfurKJFi0q6env1gIAALV++3MEV40HRvXt3rVu3TqVKldJff/2lP//8U7Vr19Znn32m/Pnza//+/erRo4cOHz6szz//PN2d04BbFRISorFjx+rbb79VrVq10m3btm2bVqxYoT59+rA+Ga4rbZB+/vx59erVS7Nnz9akSZPUqlUrJSQkqFKlSrp8+bIqV66sYsWKadGiRTp+/Li2b9/OmEIGma3VuXz5cg0bNkz58uVTz5499dxzz2nHjh3q3LmzDh8+rKxZsyowMJCbx+CWLVu2TKNGjdLFixeVlJSkyMhI5cqVy779o48+0sqVK1WxYkX1799fOXPmdGC1eOg47MJBOMyyZctM9uzZzcaNG40xV9dn+eSTT0zRokVN586d0/Xr3bs36xngliQmJppatWqZHj16pGufO3eucXV1NR06dDC///67vZ31fXCrfvzxR5MrVy6zefNme9uIESPMc889Z95++21z9OhRY4wxe/fuNT179mRs4Y6dP3/edOzY0bi6upopU6aY2NjYdNtT19JgjCEzaT8vnT592hhjTExMjOnTp4/x9vY206ZNM8YYk5CQYLp162aqV69uypcvb958802TkJBgjGFsIb20Y2rs2LGmX79+9scRERGmXLly5rXXXrN/pjfGmD/++MNER0fbn3ujdTzxaEt9T9uxY4dxc3MzvXv3Ng0bNjR58uQxb7zxhomJiUnXv1u3bqZKlSr29aWAu4WvYx5BR48eVc6cOe137vD19VWnTp10+vRpzZw5U1myZNHw4cNVv3591atXT05OTnzDghtKSUlRSkqKEhIS7JezJCQkyNXVVS1atNDWrVs1a9YseXp66v3331dwcLCcnZ0z/fYPuNaFCxfk7OysgIAAe1uvXr107tw5jRo1Sk5OTvr0009VtGhRDR8+nHMW7ljWrFn1xRdfqECBAurXr59+/fVXPf/882rdurX9fGWMYWwhg7TvZ4MHD9ahQ4fUrVs3FStWTO+//75SUlLUvXt32Ww2tW3bVp9//rmSkpJ06dIl+fj4SBKz75BB6pjq3bu3wsLC1KVLFx08eFDBwcGqW7eukpOTNWjQII0ZM0bvvfeeKleurCJFitifn5KSwpjCddlsNu3YsUO//vqrPvnkE4WEhEiSxo0bp2+++Ub9+vXTsGHD5O/vL0kaPXq0Tpw4kW4GFXA38NfgI8T8/ys1CxQoIJvNpp07d9q35cqVS+3atZO7u7sWLVqknj17Srq6MDAfwHGttIuaS1c/NLm5ualSpUqaNm2aDhw4IDc3N3tAlTNnTpUtW1azZs3S0qVLJaVfhwpIZdJcUZ46zry9veXp6ano6Oh07b169VJAQIB+++03DRs2THFxcfYxxTkL1zJp1ohKde25TLo6dnr37q3w8HA99thjGjhwoBo3bqyvv/5aycnJrK+ITKWee/r06aMJEyaoUqVK9gWmH3vsMXXt2lXvvvuuunfvrjlz5shms8nV1dUeSBljCA+QqVmzZmnOnDlasmSJevbsqeDg/9fefUdVdawPH/9SDohgiw1FbNh7FzVq7BrsLSq22I1gV0ARKxoUg72AKBqxogL2gh3FGowaey8UBSz0Nu8fLs4Liib5xSuYPJ+17rq4zz77PmetubNnP3vmmVIkJyeTlJRE+/btcXZ25smTJ8yePZurV69m+K6Ms8SnhISEMH78eCZMmEBsbKz2+JgxY+jWrRu3bt3C0dGR0NBQ7WeSkBL/C9JT/Yu9P9hOSxBUqVIFXV1dVqxYwf3797Wf6+np0axZM3r37s3Jkye1SSsZgIv00r8NPnLkCDt27ODXX38FwMnJiSZNmtC4cWOuX79OUlISSUlJXLp0CUdHR8aPH8+MGTOIjIyUdiU+kH6XvdTUVOLj44F3O4MWKlSI8ePH8/DhQ237e/HiBfXq1aNly5YEBARw586dLItdZG/p21Z0dLS2bWX2wJaWtGrRogUzZszgypUrDBkyhGrVqkmyU3ySv78/GzZsYN++ffTv3x9TU1MiIyO5desWefPmZfbs2QwfPpwff/yR/fv3Z/iu3BPF+5RSpKamcu3aNTp16kTt2rW5fv06q1atok6dOlSrVo3t27fTsmVLJkyYQKlSpahcuXJWhy2+IoULF2bAgAFUrFiRnTt38urVK+1nY8eOpVevXgQGBuLs7JzpSxwhPhcpdP4vlT5xsGTJEq5evUpwcDA//fQTXbp04f79+7Rs2ZLWrVvTqlUrqlatyrRp0yhWrBhOTk6ULVsWd3d3Bg4cmLU/RGRbdnZ27Nq1CxMTE1JTU4mLi2Pv3r0kJibi6OjI/v37qVSpEm/fvgXgjz/+YNeuXUyfPp0LFy5gbGycxb9AZCfp+6xffvmFU6dOcffuXdq0acOECRPIkSMHDRs2xMjIiEGDBmFubs7y5cvJly8fW7dupUCBAowbN46pU6dm8S8R2U36tvXzzz+zf/9+4uPjKVq0KG5ubpQsWfKj35VloOJTlFIZkkne3t54enpy4MABbt++ja+vL2vXrkWj0VCzZk1Wr15NdHQ0/v7+DB06VGZGiQ+k76/S+h8XFxemTZvG1KlT8fX1pWTJktSrV49r165x5MgR7ty5o51x9/41hEjv/T4L3rWXnTt34uLiQsGCBfn111/Jnz+/9vNVq1bRtm3bT94rhfin5G74L5V2M7K3t8fLywtbW1vMzc0ZO3Ysx48fZ/369ezZs4fZs2czY8YMDAwMKFSoEMuXL0ej0VC9enXZVUF81OrVq1m7di0HDhygdu3abNiwgYEDB/Lo0SNatGjBzp072bRpE2FhYejr6zNy5Ej09fU5ceIEhQsXlrct4gNpfdbUqVNZt24dEyZMYNCgQXTu3JkHDx7g7e3NxYsX6d+/P2vWrOHNmzeULl2adevWAWBhYUGpUqWy8ieIbCqtbU2bNo2VK1fi6OhIfHw8u3btolGjRmzatImmTZtmOliXhJT4mPd32TMxMcHExITjx48zYMAATpw4QYsWLZg8eTIALi4uPHz4kOrVqzNy5EhAakiJjNK3qVWrVhEZGcnEiRMZMGAAr1+/xsfHhyFDhtCqVSsqVarExYsXefToEdHR0RmSUpKQEplJu8cdP36cvXv3EhUVRb169RgwYADdu3dHKYWbmxv9+vVj48aN2uXHI0aMyOLIxX/CFy+tLr6YwMBAVbZsWXXhwgWllFIXLlxQOjo66tdff9WeEx0drZ49e6Zu3rypPWZnZ6fMzc3V48ePv3jM4uswadIkNW/ePKWUUj4+Pip37txq9erVSiml3r59+8H5jx49UiNHjlT58uVTv//++xeNVXw9fv/9d1WxYkV14sQJpZRS58+fVwYGBmrt2rUZzouIiFDPnz/X/tvR0VEVLVpU3b9//4vGK74eT548UZUqVVJbt27NcLxjx47K3NxcvX79OosiE1+j9DuiOTs7q6FDh2rHTOvXr1e2trZq48aN2n4qJCREVatWTZ05cyZL4hVfl4kTJyozMzO1bNmyDGPx9P1UUlKSatu2rbKystLuoCbEn9mxY4cyMjJSHTp0UO3bt1cajUZ1795d+xy4efNm1bRpU9WwYUMVERGRxdGK/xJJSv2LHT16VDVo0EAp9a6TMTExUStWrFBKKfXmzRt16tQpFR8frz3//PnzqlOnTqpw4cLq8uXLWRKzyJ7eH/C0adNGTZ06VR0+fFjlypVL265SU1OVi4uLcnNz054bERGh1q9fr1q3bq2Cg4O/ZNjiK3P+/HlVs2ZNpdS7ZKeJiYlauXKlUupdn7V3794M59+4cUP16NFDmZqaSp8lPunWrVuqQIEC2m3TExISlFJKxcfHq7Jly6pZs2ZlZXjiKzVp0iRVpEgRtXr16gzJg6SkJO1/R0dHq3bt2qkmTZpkSGYJkRl3d3dVuHBhdf78+QzH0/qs2NhYtWXLFtWsWTNVvXp1lZiYqJRS0rbEB9LaRNoY/unTp6pcuXJq2bJl2nMuXryoihcvrnr27KlSU1NVcnKyWrt2rWrbtq1MThBflMzv/Jd48eIFT58+JTo6WnssIiKC58+f4+Pjw4gRI3BxcdFOGT958iQrV64kLCxMe361atWoV68ex48fp2bNml/8N4js5+DBg0ydOpXevXtz6tQp7fH27dtz+PBhOnXqxPz587Xt6vXr15w6dUpbRwrgm2++oVOnTmzfvp3q1at/8d8gsqfnz59z48YN3rx5oy0srdFoePnyJfPmzWPw4MHMnz9fO238ypUrLFq0iGvXrmmvYWZmRseOHTlx4oT0WUIr/fLgN2/eAFCuXDkKFSqEl5cXAAYGBiQnJwNQpEgREhISvnic4uu2a9cuNmzYwJ49exg2bBjm5ua8efOGx48fa8dizs7OtG/fnvDwcI4cOYKurq4sXxefdPnyZbp06ULdunW5ceMGnp6e1K9fn7p16xIQEEBUVBT379+ndOnSXLx4EY1GQ3JysizZExl4enri7e1NYmJihg1kkpOTqVKlCvBu+XDt2rXZsWMHO3fuxNvbGz09PQYMGMDWrVsxNzfPyp8g/mOkB/sX2Lx5M926daN27dr07NmTHTt2ANCpUycsLCzo2bMn06ZN46effgIgPj6eVatWkZKSQrFixYB364wNDQ2ZMmUKFSpUyLLfIrIPDw8PBgwYwNWrV7l16xatW7fG398fgFatWpGamoqFhQXm5uYkJSVx9+5drK2tCQsLw8HBAfj/u1jlyZMnQ70D8d/m7e1N+/btadasGXXr1mXjxo3ExsZSvnx5mjVrxsyZMxk8eLA22ZmQkMD8+fMxMTGhUqVK2uvkypWLvn37Uq5cuaz6KSKbSV+TZfHixbi5uXHjxg0Ahg8fzsWLF5k7dy4A+vr6aDQaEhISZOMF8be9ePGCatWqUatWLa5evcq8efOoXbs2LVq0wMnJiZiYGKpWrUrt2rUJCgqS5IH4QNoYSaXbc6pIkSL4+fnh5OTEgAED2L17Ny1btqRSpUoMGDCAfPnyMWrUKDw8PNDX1yclJUXqkokMlFJ4eXkxf/58/P39SUxM1B4PDw/nyZMn2nNTUlKoU6cODRo04Pr168C7mmQyZhdfmuy+95VbvXo1EyZMYPr06XzzzTfMmDEDU1NTdu3ahZmZGTt37sTV1ZWEhATmzJlDSEgI27dv5+nTpwQHB6Ovry+7dIgPuLu7Y2Njw+bNm+nQoQMhISF8++23FC5cmJMnT5IzZ05+++03Ro8eTVhYGJGRkZQuXRqNRsPx48fRaDSya5XIlLu7O+PGjWPu3LlUr14dOzs7IiMjOXz4MCVLluTQoUO4urry7NkzhgwZQmpqKgcOHCA0NJTLly+j0WikzxJ/avLkyaxbt47FixfTuHFjzM3NCQ0NZdGiRezcuRNzc3Pq1KnDmTNniIyM5MqVK/JgJz4qsz7Hx8eHnj170r9/f44ePUrjxo1p3Lgxr1+/ZvHixRw/fjxDwlzuiSK99G3q1atXGBoaoq+vT1hYGAsXLmTfvn0MHz6c1q1bU6VKFQ4dOoSzszN+fn7kzZsXyHwnNfHfltYmkpKS6N69O0+ePMHOzo6OHTtiZGTEhAkT2LZtGxs2bKBZs2ba7zVt2pS2bdtqXyoL8cVl0bJB8RmsWbNGGRoaKn9/f+2xBQsWKB0dHXX8+HGllFKJiYnqxIkTqkOHDqpQoUKqYcOGqm/fvto16MnJyVkSu8i+AgMDlY6OjlqzZk2G4xUqVFBVq1ZVsbGx6tWrV0oppaKiotSlS5eUl5eXOnnypLY9pdXTECK9NWvWKI1Go3x9fbXHvLy8lI6OjvL29tYeCwwMVOPHj1dmZmaqVatWaujQoRlqtAjxKevXr1dmZmYZatjFxsaqyMhIlZqaqvbu3avatWununXrpkaMGKFtU3I/FJlJX6vnwYMH6vbt2yo6OloppdSmTZtUnz591Lp167T1V0JCQlSNGjW0m8wI8b70dTpdXFxU69atVZ06dVTXrl21G3akL2qekpKi2rZtqzp16iRFzcWfSqs/9vLlS/Xtt9+qRo0aqa1bt6rk5GR19+5dZW1tra2Ft2vXLjV58mSVN29edevWrSyOXPyXyUypr5BSipcvX1K4cGG+/fZb9u3bh4mJCfCu1s++fftYvXo1xsbG1K9fHwsLCwDevn2LRqPB0NAQHR0d2YpYZOrkyZM4ODgQExPDiRMnyJMnD926dePw4cOUKlWKUqVKce7cOQYNGkS9evVo0qQJ+fLl035f3gaLzERHR1OrVi2SkpK4fv06OXPmBMDKyor9+/czd+5ckpKS6Nq1K+bm5uTOnZukpCQ0Go32GtJnib9i9uzZBAUFsXfvXu7cucOhQ4dYvnw5ycnJDBo0CHt7+w++I21LZEalm4kyY8YMdu7cSUxMDCkpKdjb2/Pjjz9iYGCAjo4OqampJCQk0LVrV+Li4jh69KjM6BSfNHXqVNzd3Vm0aBEmJiY4ODjw9u1brl27Rp48eYiJieHIkSMsWbKEiIgILly4gEajkRlS4qPS2saWLVvYtWsXoaGhXLhwgYIFC+Lm5kbXrl158OAB7u7ueHh4YGpqipGRER4eHtSoUSOrwxf/YXK3/Arp6OhQsGBB/P39OX/+PI6OjsTExNC9e3du3LjBiBEjePXqFRMnTqRbt25YWloyZcoUoqKiyJEjBzo6OiilZAAuMtWkSRN++eUX8uTJQ6NGjWjXrh2PHj3i9OnTBAYGsnz5cqZNm8a1a9fo0qXLBw94kpASmTExMcHX1xelFN27dyc+Pp4ePXpw584dnJ2d+eabb/D19aV///5UrVqVESNGEBwcrP2+9FkiM+mLRqcVlzYxMeHZs2cMHDiQ7t27c+rUKTp37szAgQNxc3Pj5s2bvP8+TtqWyEzag//cuXNZtWoVLi4u3L17l/LlyzNnzhzu3buHjo4OCQkJLF68mO+//57w8HAOHz4sRc3FJz18+JDDhw+zbds2rK2t0dXVJSQkBAcHB/LkyQNAeHg458+fp0SJEhmKmktCSnyMjo4O586dY8iQIbRr1w53d3du375N8eLFcXBwYOfOnRQvXpx58+Zx7do1Tp06xZEjRyQhJbKczJT6SqWtRd+zZw+dOnWiUKFCFCxYkP3792NmZgZAWFgYISEhzJkzBwMDA3799VdJGIhPSv/2LSgoiFmzZnHgwAGCgoKoV69ehnMTEhJ4/vw5xYsXl3Yl/rIbN27QqlUrIiIiKFOmDHv37qV48eLaz4ODg9m5cyc3b95k8+bN0rbER6WvybJkyRKSkpLo378/AIsWLSI4OJgOHTrQvHlzypUrx/Hjx7WD8iJFimRl6CKbS7sXpqamEhMTQ9euXenXrx/9+/dn7969WFtb8/PPPzNixAhSUlJITk7G19eX8+fP4+Ligr6+vsy+Exmk76+SkpJ48OAB3377LU+ePOHIkSP06tWLBQsWMGLECGJjY9mwYQMDBw4kPj6ePHnyoKOjIzPRxV/i5eWFi4sLQUFB2gRnamoqjRs35unTp7i6umJlZaWdsS5EdiBJqa9Y2g3uyJEjtGnTht69e7NkyRK++eabD85NP8CS6eTiU9InpgIDA3F0dCQsLIyjR49iampKYmIiBgYGGc6TgZL4O27evEn37t3JkycP+/btI0+ePB9tQ9JniT8zefJkvLy8cHV1pUWLFpiZmWm3vk7rq+Li4ujVqxfJycns2bNH2pT4qPR9ztu3bzE2NqZMmTKcPn2aW7du0bFjR23yIC4uDnd3d7p06ZIhuS73RPExs2fPxsTEhA4dOmBjY4OlpSW//PILrq6uDBs2DIDff/+d6dOnM3nyZBo0aABIUXPx59LaiLu7O/PmzePGjRvkyJGD2NhYcubMya1bt6hVqxYlS5Zk9uzZdO3aNatDFkJLRmVfsbSp4S1btmT37t1s3ryZadOmERYWpj0nJSUFQLtkTwbi4s+ktRWARo0aMW/ePAoWLEjz5s0JCwvDwMCA1NTUDIMjGXyLv6NChQps376dR48e0bNnT168eKFtQ2nLXdLaoPRZ4lM8PT3ZuHEjAQEB9O/fHzMzM+Lj43nx4gUGBgYkJibi5eVF165defz4MX5+frKsSnxU+nGSra0tPXv2RFdXl/Lly9OnTx86duzIkiVLGDFiBACRkZH4+PgQGBiY4TpyTxRp0vc1Pj4+rFy5kmbNmlG8eHE0Gg2zZs1i1KhR2oRUbGws9vb2JCUlUb9+fe13JSElMpN+bklaG2nfvj1RUVHY2dkBaGdExcTE0KRJEywsLKhZs+aXD1aIT5DR/lcg/Q3t7du3GT5LG1x///33+Pv7s3r1apydnQkJCQEyDozkhibSS7uRpb+hpf2dPjFlaWmJi4sLpqamVKpUicjISEkUiH+sYsWKHD58mBs3btC/f39tMj2tbUl/Jf6KJ0+e8O2331K1alXu3r2Lu7s7derUoUePHsybNw+NRsP9+/cpX758hpos0oeJ96WfiXLp0iV+++037fboPXr04PHjxzRo0IAff/wReFfDbNiwYejr69OzZ88si1tkb2l9zc6dO7l9+zbjxo2jRo0aGBgYsG3bNqpVq8a+ffuwtbVlzpw5fP/99zx9+pRdu3ZJAl18Ulqfde7cORYvXszu3bu5d+8eRYsWZdmyZaxZswZbW1siIiIIDw/H19eXggULsnXrVkqVKpXV4QuRgSzf+4qMGzeO3LlzM2nSJO1ue2nSppvv27eP9u3b4+rqyvjx47MoUpHdpV+ekJiYiK6urrb2RfqBefq/T5w4wbZt21iyZIm8BRYf9XeX2928eZOqVatiY2ODm5vb/zAy8W+S1s6mTJnC3r17+e677wgMDKRUqVLaOnd79uzhzJkzGBgYYGRkJDVZxF+ydetWtmzZgomJCRs2bEBHR4fXr1/j4uKCr68vOXLkoEyZMjx58oS4uDjtjmjStkRmUlNTiY2NpWDBgiQkJDBy5EiWL1+u/Tw2NhZHR0euXr2KoaEhZcuWZcGCBVKXTPwlvr6+9O3bl1KlShEZGUmdOnVwdHSkbt26bNq0CVtbW4yMjDAwMODNmzccOnSIWrVqZXXYQnxAklLZWPqEwJUrV2jfvj3btm3Tri9/X9og/cyZM9SrV09uZCJT7xcHPnbsGLGxsVhYWLBs2bK/lFCQwbfITPq2devWLQwMDNDV1aVEiRKf/N6jR48oVqyYtCnxUR9LdkZFRTF58mQePnxIp06daNGiBRUrVuTAgQPMmDEDPz8/ChcuDEhNFpG5tLaVmppKdHQ0tra2HDp0iFKlSnHmzBntedHR0Vy4cIGtW7eSI0cOzM3NGTNmjCQPxAfS9zUxMTEYGxsTHh5OkyZNUEqxadMmatWqlaE/SpsRldbPSZsSf+b58+dMnz4dS0tLBg8ezK5du1i3bh1RUVG4urpSv359wsPDOXbsGBqNRltPSojsSJJSXwFXV1fevn1LQkICP//88yfPTX8jlBua+BQHBwe8vLwYP3485ubm9OnTh06dOuHt7S07coi/LX3fM3XqVHbs2EFMTAwpKSmMHz+eESNGfDDD832S7BSZSZ+Q+vXXXwkODkZPT49WrVrRqlUrkpOTSUhIwNjYGID4+Hh69OiBjo4Ofn5+kogSf0lkZCTffPMNz549Y+HChXh7e/PTTz8xffr0T35P+i2RXvr+atWqVURFRTFw4ECKFClCaGgotWvXpkyZMqxcuZJKlSoBkjAXf9/ly5eZOXMm0dHRuLu7Y2FhAcDhw4dZunQpUVFRODs706RJkyyOVIi/RjIW2Vza1PDt27fTsWPHPz0//U1NElLiY65du4a/vz+bN2/mu+++Y//+/RgbG9O2bdsMCSnZ+Uz8VWl9z/z581m9ejWbN29GKcXNmzcZP348oaGhuLq6fvIa8mAnMpPWB9nZ2bF582bq1q1Lzpw56dChA7/++is9evRAX1+fN2/esGXLFvz8/Hj69CkXL16UXWfFR6VvF7t378bBwQF/f39Kly7NxIkTSUpKYv/+/RgZGTF58mQAkpKS0Gg0Ga4j/ZZIk75NPXz4EG9vb54+fYqxsTG9evXC1NSUixcvUrt2bX766SdWrlxJxYoVJSEl/rZr167x+PFjHj58mKHecKtWrYB3CdFRo0bh4eGBpaVlVoUpxF8mo7Rs5v2Ja0ZGRri5uWFjY8OBAwc4dOhQpucJ8Xe8fPmS1NRUvvvuO/z9/enZsyeurq4MHz6cN2/esG3bNkB2PhN/T3JyMqdOnWL06NG0atWK1q1bM3r0aHbu3Mkvv/zCxo0bszpE8ZXy9PRky5Yt+Pj4sGPHDjp06EBiYiI//PADXl5ewLsXMX/88QdmZmZcunRJipqLj0qfPNizZw/79+/nxo0bDB8+XFsoePLkydSpU4ddu3axYMECgA8SUkKkl9amxo0bR79+/cifPz/GxsY4ODiwadMmwsLCKFKkCJcuXeLevXt0796dhw8fZm3Q4qvUv39/pk6dSunSpXFwcODatWvaz1q1asWgQYOoVq0apqamWRilEH+djNSykdTUVO3bktTUVBISEgAoWrQojo6O/PDDD3Tp0oXTp09n2B1NiE/JrJ2YmppSoEAB5s6dS9++fVm4cCHDhw8H3tUCWr9+Pb///vuXDlV8Zd5vW3Fxcdy6dUt7PDU1leTkZDp27MiwYcPw9vYmISFBdhMSf0tsbCyPHz9mypQp1KtXjz179jB06FDc3NwYP348gwYNYuvWreTMmVM7U09fX5+UlBSZMSwylZY8mDBhApMmTSJfvnx06dKFe/fuMXDgQO7cuYO5uTl2dnbUrVuXVatW4e3tncVRi6+Bj48PXl5eLFu2jM2bN3Pt2jUGDBjA3Llz2bx5M+Hh4RQpUoSzZ89SpkwZzM3Nszpkkc2ljamioqKIiorSzozq3r07Y8eOJSEhAScnJ/744w/td6ysrPDw8JAaUuKrIUmpbCL9W7tly5bRs2dPOnbsqF3uUqhQIX755Re6detG27ZtCQwMlMSU+FPp6xQsXryYu3fvAmBsbIyBgQFOTk6MGjWKYcOGAe9qscycORMjIyOqVKmSZXGL7C99Ev3hw4ckJyeTK1cuunTpgre3N9evX0dXV1fbr+XKlQsdHR0MDQ1l5or4W3LmzEn//v1p2bIlDx48YNKkScyePZsxY8bQrl07AHr37o2fnx8GBgbae6MsqxKfEhQUxJYtW1i9ejXOzs74+Pgwb9489PT0GDJkCPfv38fc3JwJEyYwatQoevXqldUhi6/A69evKVasGMWLF8fAwACAFStW0KFDB6ZNm8bmzZsJCQmhWLFi+Pn5oaenR0pKShZHLbKrtHH87t276dGjBzVq1GDkyJGsW7cOgH79+jFw4EBevXrFjBkzMrxQlvqw4msiTwbZRNpDmoODA/PmzaN06dK0atWKyZMnY2dnR0xMDPnz58fNzY0ePXrQuHFjfv/9d1mHLj4qfdLg8ePHLFu2jHbt2vHw4UPMzc1xcnKiRIkSXLlyhTlz5uDh4cH333/Po0eP2Lx5s3Y3IiHelz6JPmvWLOzt7Tl27Bjw7u2chYUFU6ZM4caNG+jq6hIXF8eVK1cwMzPLyrDFV8zCwgILCwvu3LmDiYkJffr0ASB37twMGzaMjRs3YmVlpT1f7o3iz8TFxREdHU3+/Pm1x3r27Em/fv24fPkyQ4cO5e7du5QoUYKxY8dK8kB8IP2L4bTxUlJSEuHh4ejr66Onp0dsbCzwbnyvlGLlypUcOHCA1NRUbXuSBLr4GB0dHfbs2cMPP/xAy5YtWbRoEfr6+kyfPp3FixcD75byDRo0iLt37+Lq6kpiYmIWRy3E3ye772UjPj4+2Nvbs3HjRiwtLTl06BBWVlYopejfvz/Lli0jZ86cvHjxgtWrV2Nvby9LE8SfmjZtGhcuXODt27cEBQVRtGhRjh07RpkyZTh+/DibN2/m0KFDlCtXDjMzM9zd3WWLa/GX2Nvb4+npqS2kmVa7wN/fn6VLl3Lu3DmqV6/OmzdvSE1N5fLly2g0GtlpSGTq9OnTaDQa6tev/9Fz9u/fj5WVFQcPHqRKlSoMGzaMvHnz8uuvvwKy66zIXPo+J+3vP/74g169ejFhwgSsra217SYhIYF69eqhlMLMzAwvLy8KFy6cleGLbOj9DRTS/p2cnEyVKlUwMzMjICBA+/nVq1dZuXIlMTExHDhwgGvXrlGwYMGsCF18Re7fv0/Pnj0ZPHgwI0eO5PXr11SsWBFTU1Nev37N6NGjGTNmDABbtmyhQYMGlChRIoujFuLvk6RUNpGSksLmzZt59eoVNjY27Nu3D2tra1xdXSlUqBCdO3dm/PjxTJ8+PcO26jIAF5+yYsUK7OzsOHjwIObm5ty5c4fp06dz7949Tp06hYWFBUlJSSQmJpIjRw7t2zppV+LPHDp0iGHDhuHr60uNGjW0b4fv379P/fr1SUpKYtu2bdy7d4/ChQszcuRISXaKj3r+/Dm9e/dGX18fFxcX6tSpk+l5cXFxjB49Gk9PT0qXLo2xsTEXL16UZKf4qPTJg/j4eO3Mc4BevXpx7do1li9fTtOmTQEICwvDxsaGBg0asGHDBqZNm0a3bt2yLH6R/aRvU6tXryYwMJC4uDhq1qzJlClTOHHiBAMHDqRo0aLMmzcPpRQ///wzpqamuLu7kz9/fhYsWKCt5SnEx3aJffv2LbNmzcLW1hY9PT2aNWtGy5YtmThxIj/++CM3btxg3LhxODg4ZEHUQnw+kpTKImmD5/SD6IiICN68eUOuXLlo164dPXr0YPLkydy7d49GjRoRHh7OrFmzcHR0zOLoRXbk7+9Phw4dMrwNHj16NG/evGH9+vXa827evEnfvn2JjIzk2LFjlChRgpSUFG1CSh7sRGbebxcHDhxg0qRJ7N+/n7dv37Jx40a8vb1JTk4mb968BAYGkidPngzXSN/OhHifj48Pa9euRVdXl+nTp1O3bt1Mz3v79i23bt0iPDycNm3aoKenJ8lOkan0/dbcuXM5ceIEV69epX379gwcOJAGDRrQtGlTXr9+TcuWLalSpQobNmwgR44c7N+/n7Jly2JlZcWiRYuy9oeIbMnOzo6NGzfSv39/TE1NGTduHGPGjGHOnDncvHmTsWPHcvfuXTQaDcWKFePYsWPamXhubm7amnjivy0tIRUeHs6jR4+IiYnhu+++034eFxeHkZERdnZ2PHjwAA8PD/LkycPYsWPZvXs3RYoUwdfXl/z588v4XXy1pKZUFkhf6+fp06eEh4fz4sUL8ufPT6lSpQgPDyc6OpqWLVsCkCNHDrp160ZgYKBkwkWm9u/fT+fOnfnll1+0x3R0dEhMTOTChQsZzq1QoQIDBgzg4cOHNGvWjLCwMPT09LT1EOSGJt6Xvs96/vw5ycnJ5M6dG11dXaytrWnSpAkhISE4OjqyZcsW3r59y8mTJz+4jiSkRGbS3o11796dYcOGkZiYyMyZM7V9V/p3Zy9evGDevHnky5eP77//XlvnRxJSIjNp/ZaTkxNLliyhV69e+Pj4sG/fPiZOnEh0dDTHjx+nVatWXL58mYULF5IrVy527twJQMmSJSlTpkxW/gSRTZ07d46dO3eyZcsW5s2bR4UKFTAwMKBixYoYGxtTu3ZtTp06xcGDBzl27BiBgYEYGhoyf/58UlJSZDMZAfz/hNTVq1dp06YNvXr1onv37rRt21Z7jpGREQDXrl3D0NBQ+8IvJSWFUaNGsXv3bgoUKCDjd/F1U+KLSk1N1f49a9YsVa9ePVW5cmVVoUIFtX//fqWUUvfv31f6+vrKyclJnT59WrVr1061aNFC+92kpKQsiV1kb8uWLVP6+vpqwYIF2jZy+PBhVbVqVbVgwQKVkJCgPXfPnj1q6NChqlWrVqpRo0YqLi4uq8IW2VxKSor275kzZ6p+/fqpc+fOKaWU8vPzU66urmrXrl0qIiJCKaVUWFiYqlGjhgoICMiSeMXXKf29cdeuXapVq1bKyspK29aUUiokJERZWlqq6tWrq+Tk5KwIU3xlUlNT1d27d1WNGjXU4cOHlVJKnT17VhkaGipPT88M5yYlJamoqCjtvx0dHVWhQoXUnTt3vmTIIptL63v8/f2VpaWlUkqpnTt3KhMTE7Vq1SqllFKvXr3SjunTXLlyRQ0ZMkR988036rfffvuiMYvsKW18FRwcrIyNjdXkyZPVhQsXlKurq9LR0VH29vZKqXdtLiUlRU2fPl3VqVNHzZw5U40ePVoVKFBAPXjwIAt/gRCfjySlssj06dNV/vz51Z49e9StW7dU8+bNVd68edX9+/eVUkp5enoqjUajypUrp+rXr68SExOVUhkH7kIopTI8nK1atUrp6uqqFStWKKWUevv2rRo5cqRq3LixcnJyUpGRkerJkyeqQ4cOavz48crHx0eZmZmpy5cvZ1X44ithZ2enChUqpLZu3aqeP3/+weeJiYkqPDxctW/fXjVs2FCSBuJv+1hi6uLFiyoxMVE1btxYVapUSXs/TJ8wFeJj7ty5o6pUqaKUUmrHjh3KxMRErVy5UimlVHR0tPLx8VEvX77Unn/79m3VsWNHVaxYMbk3CqWUUhERESo0NDTDsePHj6tvv/1WLVmyROXKlUubkFJKqaNHj6rOnTuru3fvao9du3ZNLVq0SN24ceOLxS2yvzt37qgcOXIoR0dH7bEXL16o/Pnzq379+mU499KlS2ro0KGqYsWKql69epLcFP8qMt89C7x69YpTp06xdu1arKys8PPz47fffmPu3LmUKlUKpRSDBg2iefPmxMTEULFiRe2OHrJEQaSnlNIuiVqwYAGJiYno6elhY2NDdHQ0kyZNYu7cucyZM4ddu3Yxb948SpQogaGhIf7+/ly9ehUDAwNpV+KT9u/fz8aNGzl48CA1atQgNTWVsLAwHj58SJkyZcifPz+LFi0iICCAyMhIAgMDtcuqZMme+KvS11ns3LkzACtXrmTKlCk8evQIXV1drly5gkajkfuhyNT9+/d5+fIlBQsWpGjRohgaGqKjo0NYWBhTpkxh5cqVzJ8/nxEjRgDvaiy6u7tTrFgxbfHzsmXLMmzYMMqXLy9L9wRbt25l6dKlPHv2jMKFC+Pp6UnlypUpVKgQSUlJTJgwgalTp2qLlsfHx7Nw4ULy5MlD6dKltdepXLkyFSpUkHui0EpNTWXt2rXkypVL2/8AeHp6EhkZyc2bN5kxYwY6OjoMHz6cWrVq4e7uTkxMDElJSeTNmzfrghfiM5NC51ng0aNH1KxZkytXrnDz5k26du3KggULGDFiBLGxsfzyyy8MHDiQYsWKab/zsV0ZhACYOXMmy5Ytw93dnbdv3xIcHMyiRYuYO3cu9vb2JCQk8ObNGwICAihUqBBNmzZFT0+P8ePHc/r0afbt20eBAgWy+meIbGr37t04Ozvj7+/Py5cv2bJlC7/++isajYbChQuzf/9+Tp06xfXr1xk7dqzssic+6mP3svTHVbri1P7+/kydOhUTExNOnjwpCSnxURs2bMDFxYWXL1+ir6/P8OHDGT16NHnz5sXe3p5FixYxaNAgVqxYAbxLHvTo0QOlFP7+/jLGEh9YvXo1EyZMwMnJCWNjY5YsWYKJiQmnT5/GyMiIrVu3Mn78eJo2bUqLFi3IlSsXHh4ehIWFcfnyZfT19WX8Lj7p+fPnzJ8/n6CgIAYMGMDbt29xcXFh4sSJVK9enYMHD3Lu3DmePn2KsbExkydPZvDgwVkdthCfXxbO0vpPyGy5XUJCguratasaMGCAMjY2Vh4eHtrPHjx4oFq3bq18fX2/ZJjiK/L++vHo6GjVoEED5eLioj2WmpqqXF1dla6urnJzc/ugDtmZM2eUra2typMnjwoODv4SYYuvRFqflb7v2rt3rypatKiysrJSBQsWVAMHDlTu7u5q586dqlSpUurUqVMZriFL90Rm0i+3O3funNq3b586e/asevv2rVIqY7tJ3/4CAwO1n0lNRZGZ1atXqxw5cih3d3d19epV1aFDB/XNN9+os2fPKqXeLXvp27evyps3r7K3t1eTJ09WLVq0UJUrV5bloCJTa9euVfr6+urAgQPaY1OmTFG6urrqyJEj2mMbN25U3bp1U7lz51ZNmzZVP/zwg7ZNyb1Q/BUhISHKxsZGlS9fXunr62dak3PHjh1q8uTJ6urVq1kQoRD/e/Kq8X8o/duRyMhIUlNTKVCgAAYGBpQpUwY3Nzd69+7NkCFDgHfbXP/000+kpKTQvn37rAxdZFOdOnUif/78rF27VnssMTGRp0+fZphloJTCxsaGo0ePYmdnR2xsLA4ODtrZBy9fviQqKorTp0/LDjBCK32fFRsbi0ajwcDAgO+//x5XV1du377NgAEDaNasGQUKFODFixfkypWL5OTkDNeR5QkiM2lty97eHn9/f+Li4ihdujTR0dHs27cvw/IFHR0dbXts2LAhgOyyJzLl6enJqFGj2LZtG126dAFgzJgx7Nmzh4sXL2JpaUmtWrWYN28e1atXx9vbmxIlSlC9enUOHDggMzvFB548ecLcuXOpVKkSbdq00R4/f/48Silu3LjBs2fPaN++PdbW1lhbW/PixQty586NgYEBOjo60qbEX2ZqaoqjoyO6urocP36c3377jebNmwOQkJCAoaEhXbt2pUuXLrLDnvjXkuV7X4CTkxN79+4lKioKa2trZs+eDUC/fv24dOkSxYoVo0SJEvzxxx9ER0dz8eJFNBqNTPkVH4iMjMTExAQDAwNevnypXXJna2vLsWPH2LVrF2XLltUuf7G1teXs2bMYGRlx8uTJDDez2NhYcubMmVU/RWQz6fubRYsWceDAAVJSUrCwsGDVqlUAJCUlaZdPRUdHY21tzevXrzlx4oQkosRfsnTpUmbNmoW/vz8NGjRg+vTpzJ49m71799KuXTsg4/I9IT5FKUWNGjV49OgRQUFBVKhQAXj3Amf37t2MHz+epKQk2rVrR7Vq1ShatOgH15Dad+J9MTEx+Pn5MW3aNOrXr8+mTZvo1auXdonVq1evOH36NC9evKBChQo0btyYIUOGUKRIEUD6MPF/ExoairOzMxcuXKBLly7Y2dkB0keJ/wZJSv0PpO88Vq5cyZw5c7Czs+PVq1e4uLjQsWNHvLy8MDQ0ZM2aNQQFBZGcnEzZsmWxs7OTt3YiU+nbxOLFi/H09MTb25uqVaty6tQpZs6cSe7cuXF1daV06dLEx8fTs2dPRo0apX3Tl/Z/dxksiY9xcHDAy8uLsWPHkjt3bpycnGjYsCE+Pj5oNBpt3buTJ08SFRXFmTNn0Gg0MmgSfyolJYVhw4ZRtWpVxo4dy+7du+nTpw9ubm4MGTKE2NhYdHV1yZEjR1aHKr4icXFx1K1blxw5cuDt7c3UqVO5fv06NjY2lCpVikWLFhEfH09wcDCNGzdm9OjRGe6Jcj8UmYmPj8ff35+JEycSExODubk5R44cyVB/09vbm6CgIIKDgzlx4oS8SBb/WFpi6rfffqNFixbMnDkzq0MS4ouQpNRn9P7gJigoiKCgIIoVK0b37t0BOHPmDG3atMHKyoo1a9ZgYmLywXXk4U78mZCQEGrUqEHFihXx8PCgbNmybNu2DXd3dy5dukT9+vV58uQJOjo6BAcHo6+vL4Nv8af8/PyYMmUKHh4eNGzYEH9/f/r06YNSijp16nDkyBE0Gg07d+7k999/x9HRUZLo4qMy63OsrKzo0aMHBQsWpFevXtpNPlJSUli7di1GRkb06dNHHu7EX5LW98TFxVGzZk1u375NuXLlOHDgACVLltSeFxkZyebNm7l58yaLFi2SMZb4S+Li4ti9ezczZ86kePHi7N+/H3iXsMoseS4rHMTnEBoaioODA0+fPmXLli0ZlrYL8W8lSanPpGfPnkyZMoUaNWoAcP36dapWrQrAmjVrGDRokHaAfvbsWdq0aUOnTp1YsGABpqamWRi5yO4uX77Ms2fPiI2N5YcfftAeDw8Pp1atWpQoUYINGzZgYWHB/fv3OXjwIDdu3CBfvnxMmzYNfX19SXSKv8THx4c7d+7g4ODAvn376NevH7Nnz6ZixYraZPr27dszJKCkbYnMpH84e/bsGWZmZqSmpjJ8+HDOnTunrdkycuRIAMLCwhgwYADff/89o0ePzsrQxVcmLTEVHx9P48aNefv2Ldu3b6dKlSoffREj/ZZI8+DBA0qVKvXRz2NjY9mzZw+TJk2ifv36bNu2Dfj/y9nTyIs/8TmFhYUBULhw4SyORIgvQ5JSn0nfvn1Zu3YtBgYG2hvTrl27GDBgAD/88ANLly4lR44c2s+CgoJo2LAhM2bMwMnJKavDF9nUunXrmDNnDkopXr9+Tc2aNTly5Ij287CwMGrXrk3JkiXx9PSkfPnyH1xDZrGIv+Px48d88803tGnThnbt2uHo6EhISAjNmjXj9u3bDBkyBHd396wOU2Rj6RNSs2bN4tChQyxdupSaNWsSGhpK48aN0dHR4cCBAxQsWJDo6GgGDx5MVFQUp06dkv5K/G3vz5gyMjLC09OTmjVrZiiaL0R6kydP5tatW8ycOVP7UjkzaTOmJk+ejKWlJVu2bPlyQQohxH+A3KH/oZSUFAA2btyIgYEBy5cv5/jx46SkpNClSxc8PDzw8vJixowZJCUloaOjg1IKS0tLfv/9d6ZMmZLFv0BkV6tXr2bEiBE4Oztz6NAhpkyZwtGjR1mwYAHwbte9woULc+nSJR49esSIESMIDg7+4DrygCc+JjU1Vft32vuJ4sWLExISQmhoKFZWVsC7GmT16tXj/PnzrFy5MktiFV+PtId/Ozs7Vq1ahY2NDd988w3wbpehHTt2EB8fj5WVFVWqVKF79+68ePGCkydPamd2CvF3pC0jNjIy4rfffiMhIYFhw4Zx/vx5AElIiUyVL1+ekJAQFi9ezOXLlz96npGRER06dMDV1RVfX1+mTZv2BaMUQoh/P5kp9ZmkzYAqX7488fHxbNq0CUtLS/T09NiyZQv9+vVjwoQJzJkz54P6PjKTRbzP19eXrl274ufnR4cOHQC4efMm1atXZ+zYsbi4uGQ4PzQ0FDMzM4YPH86KFSuyImTxlQgICODs2bM4OjoCmdfAeP36NZUrV6ZBgwbY2toye/ZslFIcOnQIXV1dWfoiMpX+vnbixAkGDBiAt7c3jRo1Ijk5mVevXnHt2jXtv3fv3k14eDilSpWibdu26Onpyf1QZOpTM50yG0/FxcVhZmZGp06dWLdu3ZcMVXxltm/fzqJFiyhfvjxjxoyhevXqHz03NjaWoKAgmjZtKvdAIYT4jGTk95ndunWLb7/9lgEDBuDl5UWDBg3o1asXAAMHDuT169csW7Ysw81MBuAivYSEBA4ePEjp0qV58OCB9vi0adNISkri3LlzjBw5El1dXcaMGYOxsTFmZma8ePGCPHnyZGHkIrtLSEhg27ZtnD17FkNDQyZNmoSurm6GBz6lFHny5GHZsmWMHTuWwYMHU6RIEQICArTnymBcvO/9pEFa4rJRo0ZcvnyZHTt2sH37dh4/fkzLli1Zt24dPXv2zHCNlJQUuR+KD6RvWwEBAbx+/RpDQ0MaNmxIvnz5MtTxST9jKiQkRNqTyFT6NlWuXDnKlCnD/v37SUhIwMHBgSpVqmT6vZw5c9K8eXNA6pIJIcTnJDOl/qH0N7b0b3gtLS15+fKlNjGlp6fHunXr8PLy4vjx41IMUXxSSEgILi4unDt3jh9++IHAwEBu377N9OnTKV68OIcOHeLQoUM8fvyYiIgI3N3dtUXQZaAkPuX58+fMnz+foKAgunTpgp2dHfBhUiEuLo7ExERevXqFubk5urq6MotFZCr9TJUff/yRhIQEfvnlF8qWLUuFChV48OABXbp0oXnz5pQpU4aGDRuye/du2rZtm8WRi6+Jvb09mzZtomTJkty5c4eaNWsyZswY2rRp88G56e+Dck8UHzNu3Dj27dtHs2bNCAkJISAggK5duzJ+/PhP1pgSQgjxeUlS6v/gU8tf3k9MRURE4OXlpV3Kl0Z26RB/JjQ0FGdnZ/bu3cvr16/5/fffMTMzy3DO0aNHuX79OiNHjpRkgfjL0trWhQsXMk1MhYWFMW7cODp27Kid6SmFgkVm0t/Lbty4wYABA5g7dy4tW7bk+vXrbNy4EUtLS5o0aUK+fPlISEjgu+++Y+bMmbRu3TqLoxdfizVr1uDk5ISfnx9169Zl0aJFTJ48mX379tGyZcusDk98hU6dOkX37t3x8/PD0tISAC8vL1xdXalRowYODg5Urlw5i6MUQoj/BnmK/Zv+bPmLvr6+dpvYoKAgvv32W1q1akVQUBDVqlXTXkcSUuLPmJqa4ujoiK6uLoGBgWzevJmJEycC74qcGxgY0Lx5c+1UcpnFIv4qU1NTpk6dirOzM7t27UIphb29Pbq6uoSEhNCjRw/Cw8PZsGGD9juSkBKZSbuXeXp6smfPHipXrkzz5s1JTU2lcuXKzJs3D3jXZ0VGRtKvXz9SU1Np0aJFVoYtvjLXrl3D2tqaunXrsm3bNmbMmMHixYtp2bIl8fHxxMTEkD9//qwOU3xF0u5pOXLk0B4bOHAgycnJjBgxAn19fX766Sfq1auXVSEKIcR/hjxl/E2GhoZMnz6d5s2bs2PHDm3B6bTEFIBGo9H+ffr0aYYMGSJvW8T/SeHChXFwcKBBgwb4+Pho25uBgUGGndNAapOJvyctMVW3bl18fX1ZsGABERERWFtbExUVxfXr12UnNPGXvHr1iosXL3L27FmePHmCrq6udrknQFJSEt7e3nTo0IGIiAhOnz6Nnp6etC2RqffvbSkpKdy6dYuyZcty6dIlBg8ezM8//8zIkSNJSUnB3d2dw4cPZ1G04muQtihEKcX7C0TCw8OBd4lzgP79+1OyZEkOHDhAQEDAlw1UCCH+oyQp9X9QtGhR7O3tqVu3Lrt27co0MfXixQt69uyJn58fS5YskQG4+D9LSx7Uq1cPf39/7bJRmbki/qn0bWvHjh1YWFgQGhpKcHAwGo2G5ORkqcUiPvD+Q13evHkZP348ffv2JTAwkIULFwJod5pNSUmhXLlydOvWjdOnT0vbEp+Udm+7c+eOtp20bt2acePGYWlpibu7OyNGjADe7Ya2e/dubt68mZUhi2wsNTVVO6MzNjaW6OhoABo1akTr1q3p378/t27dwsDAAICIiAgaNmzI3LlztUvbhRBC/G9JTal/IH1dls6dO2Nvbw+QYfnLH3/8ITNYxGcRGhrK5MmTyZEjB6tXr5YloOKzCQ0Nxc7OjhcvXuDn56dNGkjfJd6XvrZYTEwMOXLkQFdXFx0dHe7du8eKFSvYs2cPNjY22NraZnoNKTwtMpO+bXl7ezN//nycnJzo3LkzYWFhjBkzhrNnz+Lr60u1atV4/vw5I0eO5OXLl5w9e1b6K/GB9G1qwYIFHDhwgKioKMzNzVm0aBHGxsb8+OOPnDlzBgcHB3Lnzs2OHTtISUkhICAAHR0d6a+EEOILkKTUP5Q+MdWtWzcGDRpEjx49CAsL0842kBua+FwiIyPJmzcvurq6UixffFZRUVHkyZNHdtkTH5X+AW/x4sUcOXKEpKQkqlWrhrOzMxqNhlu3buHh4cHevXuxsbFh1KhRWRy1+Bqkb1u+vr5cv36d6dOnU6NGDWbPnk27du04e/Ysv/zyC76+vpQsWRJjY2OMjY05fvy4jLXEJzk6OrJmzRpmzpxJzZo1ad26NbVq1WLr1q3kzZsXe3t7Tp06RVxcHMWLF8fX1xeNRiPjLCGE+EIkKfUZhIaGMnfuXM6fP8/NmzcpWrQoV65ckdkG4n9GdkIT/yvStsSfcXBwYO3atUycOJHExEQ2btxI6dKl2bVrFwYGBty6dQtPT088PDzw8PCge/fuWR2y+EpMmTIFDw8Ppk+fTkxMDGvXrsXAwID58+fTrl07kpOTCQgI4OXLlxQuXJhmzZqhp6cnYy3xUffv36dbt278/PPPtGnThoCAALp06cL8+fO1y0Dh3bI9jUZDrly50NHRkTYlhBBfkCSlPhNZ/iKEEOLfbseOHUybNo1169ZRv359fH196du3L8bGxlhYWHD8+HEMDAy4fv06x48fZ8SIETJ7RXxU2kwUpRR3796lefPmLF26lM6dOwPw5s0bWrZsyZs3b1i4cCGtW7dGo9FkuIbMkBKfEhwcTPfu3bl79y579uyhd+/euLq6Mnz4cN68eYOPjw+DBg3K8B15OSOEEF+WZEw+E1NTUxYtWiTLX4QQQvxrpaam0rlzZ+rXr8+ePXsYPHgw8+bNo1ixYlhbW9OpUyd27dpF5cqVtbvOStJAZCb9g39SUhJGRkbo6upiaGgIQEJCArlz5+bw4cOUL18eFxcXUlJSaN++fYaEgbQtkSaz5XZFixYlT548jB8/njVr1rBw4UKGDRsGwKNHj/D09KRChQo0bNhQ+x1JSAkhxJclve5nlC9fPu0OfJKQEkII8TXLbCJ1jx49GDlyJNHR0cybN4/x48dja2tLo0aNKFGiBAcPHtTWkUr7viQNxPuUUtoH/2HDhjFq1CgMDAzQ09Nj//79ABgaGpKUlESuXLmoVKkS9+/fx8XFhfv372uvIUSa9LvsxcXFkZSUBEDOnDmpUaMG7u7uWFtbaxNSCQkJTJkyhfz582NpaZllcQshhJCk1P+EvGERQgjxNUv/gBcZGUlERIT2M3Nzcx48eMDjx49p27Yt8O4Br0aNGgQEBODh4QEgBYJFptLPZnn48CHnzp2jd+/eFCpUCFdXV9zd3XF2dgZAo9Ggo6NDiRIl2LZtG48ePcLNzQ2Q9iUySht7z507lx9++IGmTZty6NAhTExMmDhxIvXq1ePixYvY2toyZ84c2rZty8OHD9mxY4f2hbIQQoisIdkTIYQQQmSQ9oDn6OhIu3btKF++PCNGjGDbtm3Au8SUsbEx8+fP5+zZswwePJjXr1/TtGlTdHV1SUlJycrwRTaWlkxauHAhDg4O1K9fn6ZNmwLQunVrXFxcmDlzJh07dsTGxoYmTZoQFBREw4YNadu2LY8ePcrK8EU2kz6ZtHDhQhYuXEj16tXJmzcvXbp0wc3NjYoVK7Jy5Uo6d+7MyZMnuXTpElWrVuW3337T1oCVF8pCCJF1ZI2ZEEIIIYCMdX6WLl2Kh4cHs2fP5u3btwQEBODi4kJERAQjR45kypQpzJs3D2tra4oVK0ZAQIB2xoEs2ROfEh0dTUhICHv27KFOnTra9mJiYsKoUaOoU6cOLi4uPH36FAsLC44ePQpAWFgYJUqUyMrQRTaT1l/du3ePp0+fsm3bNlq0aAGAk5MTM2fORCnFqFGjmDp1KnZ2dhlKbKSkpEjJDSGEyGKy+54QQgghMggODmbjxo3Url2b3r17A3Dr1i1WrVpFYGAgq1atonr16rx9+5Znz55RsWJF2eRDfFT6XfbSZko9evQILy8vZs6cydKlS7W1yNISo+nPjY2NZcaMGaxfv54TJ05QoUKFLPstIntRSrF79246d+5M0aJF2bBhA82bN9d+7uTkxNKlS5kxY4Z2mWj678oyUCGEyHoyV1UIIYT4j0tISND+fe7cOWrVqoWbmxvR0dHa42lL+N68eUNgYCB6enrkzZuXypUryyYf4qPS1yeLjY3VtrUSJUowePBg7O3tsbOzY/Xq1QDa5Gaa27dv8/PPP+Pj48PBgwclISUyLNnT0dHRLvV8/vw5V65cIS4uTvv5rFmzGDNmDOPGjePYsWMZriMJKSGEyB5kppQQQgjxH3bo0CF+//13mjVrRu3atQHw9PRk6NChWFtbs3DhwgyzCzp27EiePHnYsGGDPNSJT0q/HHTRokUcOHCAlJQUypYty4oVKwB4+vQpq1atYunSpbi6ujJ06NAM10hKSuLGjRsUKFCAokWLfvHfILKvnTt3YmxsTJs2bQAYMmQImzdvZt26dXTq1AlDQ0PtuWvWrGHgwIGSOBdCiGxIemYhhBDiP2rdunVMmzaNjh078t1332mPDx48mISEBGxsbLCwsGDYsGEULVqU6Ohonjx5QuXKlSUhJf5UWkLKwcEBLy8vxo4dS+7cuXFycuLZs2fs2LGDYsWKMWLECHR1dRk+fDiFChWiU6dO2mtoNBqqVauWVT9BZFPPnj1j3Lhx1KxZEwMDA5o1a8aaNWtITU1l0KBBeHp60rlzZ21iasiQIQCyxFgIIbIh6ZWFEEKI/6AtW7ZgY2PDunXraNu2Lblz587w+U8//UR8fDwTJ07kwIED1KhRg9DQUJRSzJw5M4uiFl8bPz8//P392bFjBw0bNsTf35+4uDiOHDlCs2bNOHbsGMWKFWPw4MEUK1YMKyurrA5ZZEPv138yMzNj06ZNjBkzhuXLl6OUonnz5qxduxYdHR2GDRtGbGwsffv2RaPRaL8nCSkhhMh+ZPmeEEII8R8THh5Ojx496Nmzp7bANLzbFe2PP/4gKSmJRo0aAbBixQpsbGxo0qQJw4YNo0+fPsC7ZVXpH/aEyIyPjw937tzBwcGBffv20a9fP2bPnk3FihVp06YNVlZWbNu2LUNbktks4mNevnxJgQIFtP8+c+YMo0aNwsLCAltbW5o2bQpA165defPmDUeOHMmqUIUQQvxFUuhcCCGE+A968eIFZmZm2n+vXLmSH3/8EUtLS3744QcaNWqEUoqffvqJ5cuXc+rUKR4/fkx8fDyAJKTEX9K9e3esra2Jjo7G2dmZcePG8dNPP1GhQgVKly6Nn59fhsQoyGwW8f+lL2qetkvj9evXtccaNmzI0qVLOX/+PC4uLpw4cQJ4V2/q0KFDXzxeIYQQf58kpYQQQoj/oDdv3rB3716OHj1K9+7dWbFiBQUKFODgwYMsWrSI0NBQZs+eDcDIkSNxc3PDyckJZ2dn3rx5k8XRi+wqfRIhbTJ+8eLFCQkJITQ0VLs8T0dHh3r16nH+/HlWrlyZJbGK7E0ppa1Ldu/ePWrWrMnJkydZunQpf/zxh/a8b7/9FicnJ06fPo2zszMXL14E0O4KKoQQInuTV1FCCCHEf0yhQoVYv3493bp14+jRo+TKlYvFixdTrVo1ChQoQFRUFLlz587wQDd69Gji4uJwcXFh7NixWRe8yHYCAgI4e/Ysjo6O2kSArq5uhhpAhQoVIiEhgblz52Jra8vs2bNRSlGrVi10dXVJSUlBT08vC3+FyE7S79w4btw4li5dSnJyMqtXr8bGxobU1FTGjBlD5cqVgXez65o0aYKpqSm1atXSXiftGkIIIbIvSUoJIYQQ/0EtWrTgzp07REdHU6pUqQ8+z5UrF0WLFgXQJgzs7OwYNmwY+fLl+9LhimwqISGBbdu2cfbsWQwNDZk0aVKGxBS8m/GSJ08eli1bxtixYxk8eDBFihQhICBAe64kpESa9DOkbt++TVxcHAEBAQB07NgRABsbG5RSdO/enYYNG+Ln50fXrl0ZNGgQkDGpJYQQInuTQudCCCGE0Hrx4gU//vgjL1++JDAwUJssSNv96v1dsIR4/vw58+fPJygoiC5dumBnZwd8mBiIi4sjMTGRV69eYW5ujq6urhQ1Fx/l7e3NtGnTyJ07NwcOHKBAgQLo6emho6PD3r17mT17No8ePSJHjhzkzp2bixcvotFopI8SQoivjIwChBBCCMHLly9Zs2YNp0+fJjw8XJuQSpsllfaQJw974n1FixbF3t4eZ2dndu3aBYCdnV2GGVNhYWGMGzeOjh070qtXL+Bd0koSUiLNtWvXCAsLIzExkXbt2lGgQAHMzMwIDg4mJiYGU1NT7a6fVlZWWFhY8PjxYyIiIujZsyd6enqS5BRCiK+QzJQSQgghBMHBwUybNg0LCwtcXV3R19eXBzzxt4SGhuLs7MyFCxfo3Lkz9vb2AISEhNCjRw/Cw8P5448/pE2JD3h5eTFv3jwiIiJITEykWbNm+Pn5cfr0aWxtbdHX12f79u2ULFnyo/2S1CUTQoivkySlhBBCCAHAq1evyJMnDzo6OvKAJ/5P0iemunXrxqBBg+jRowdhYWEEBwej0WikbYkMVq9ezejRo1m9ejWVKlXi9OnTzJ07F2traxYvXoy/vz+LFy8mJSWF9evXU6JECWlDQgjxLyJJKSGEEEJkIDVZxD8RGhrK3LlzOX/+PDdv3qRo0aJcuXIFjUYjs+9EBr6+vnTt2hU/Pz86dOgAvKs91q1bN2JiYjhx4gQAfn5+LFu2jJSUFDw8PLCwsMjKsIUQQnxGsi2FEEIIITKQhJT4J0xNTZkyZQrly5enYcOGkpASmUpISODgwYOULl2aR48eaY8bGRlRokQJDAwMiI6OBqBTp07Y2toSGRmJm5tbVoUshBDif0BmSgkhhBBCiM8uKiqKPHnyyC574qNCQkJwcXHh7NmzdO7cGQcHB/bv34+VlRUHDx6kVatWGXZxPHXqFI0aNcqwq6MQQoivmySlhBBCCCHE/0z6pIIQ70urQ/bbb79RokQJdu/ezdKlSxkwYIC27by/pFhqSgkhxL+HJKWEEEIIIYQQWSYkJIR58+axbds2LC0t8fX1BST5JIQQ/wXy2koIIYQQQgiRZYoUKcLUqVPp2bMnYWFhuLi4AKCnp4e8PxdCiH83mSklhBBCCCGEyHJpOzdeunSJZs2aMWfOnKwOSQghxP+YzJQSQgghhBBCZLm0nRstLCwIDw+XWVJCCPEfIDOlhBBCCCGEENlGZGQkefPmzbTIuRBCiH8XSUoJIYQQQgghsh3ZuVEIIf79JCklhBBCCCGEEEIIIb44efUghBBCCCGEEEIIIb44SUoJIYQQQgghhBBCiC9OklJCCCGEEEIIIYQQ4ouTpJQQQgghhBBCCCGE+OIkKSWEEEIIIYQQQgghvjhJSgkhhBBCCCGEEEKIL06SUkIIIYQQX9jx48fR0dHh1atXf/k7JUuWZNGiRf+zmIQQQgghvjRJSgkhhBBCpDNw4EB0dHQYMWLEB5/99NNP6OjoMHDgwC8f2CeULFkSHR2dj/7nu+++y+oQhRBCCCE+IEkpIYQQQoj3mJubs2XLFuLi4rTH4uPj2bx5M8WLF8/CyDJ34cIFQkJCCAkJYceOHQDcunVLe2znzp1ZHKEQQgghxIckKSWEEEII8Z5atWpRvHjxDMmcnTt3Ym5uTs2aNTOcm5CQwOjRoylUqBA5cuTg22+/5cKFCxnO2bdvH+XKlcPIyIhmzZrx8OHDD/43z5w5Q5MmTTAyMsLc3JzRo0cTExPzl+ItWLAgpqammJqa8s033wBQqFAhTE1N6dOnD05OThnOj4iIwNDQkKNHjwLvZlrNnj2bPn36YGJiQtGiRVm6dGmG77x+/Zphw4ZRqFAhcufOTfPmzbly5Yr28ytXrtCsWTNy5cpF7ty5qV27NhcvXvxL8QshhBDiv0mSUkIIIYQQmfjxxx9Zt26d9t9r165l0KBBH5w3efJkduzYwfr167l8+TJlypShTZs2REZGAvDkyRO6du3K999/T3BwMEOGDMHe3j7DNa5evUqbNm3o2rUrv//+O1u3buX06dPY2Nj8498xZMgQNm3aREJCgvaYt7c3RYsWpVmzZtpjCxYsoFq1aly+fBkHBwfGjRvH4cOHAVBKYWVlRWhoKPv27ePSpUvUqlWLFi1aaH+ntbU1xYoV48KFC1y6dAl7e3s0Gs0/jl8IIYQQ/16SlBJCCCGEyES/fv04ffo0Dx8+5NGjRwQGBtK3b98M58TExLBy5UoWLFhAu3btqFSpEh4eHhgZGeHp6QnAypUrKV26NG5ubpQvXx5ra+sPalItWLCAPn36MHbsWMqWLUvDhg1ZsmQJGzZsID4+/h/9jm7duqGjo4Ofn5/22Lp167S1s9I0atQIe3t7ypUrh62tLd27d8fNzQ2AY8eOcfXqVbZv306dOnUoW7Ysrq6u5M2bFx8fHwAeP35My5YtqVChAmXLlqVHjx5Ur179H8UuhBBCiH83SUoJIYQQQmSiQIECWFlZsX79etatW4eVlRUFChTIcM69e/dISkqiUaNG2mMajYZ69epx48YNAG7cuIGlpWWGBFCDBg0yXOfSpUt4eXlhYmKi/U+bNm1ITU3lwYMH/+h3GBoa0rdvX9auXQtAcHAwV65c+SAx9n5MDRo00P6GS5cuER0dTf78+TPE+ODBA+7duwfA+PHjGTJkCC1btuTnn3/WHhdCCCGE+Bj9rA5ACCGEECK7GjRokHYJ3fLlyz/4XCkFkCHhlHY87VjaOZ+SmprK8OHDGT169AeffY7C6kOGDKFGjRo8ffqUtWvX0qJFC0qUKPGn30v7DampqRQpUoTjx49/cE7evHkBmDFjBn369GHv3r3s37+f6dOns2XLFrp06fKP4xdCCCHEv5MkpYQQQgghPqJt27YkJiYC0KZNmw8+L1OmDAYGBpw+fZo+ffoAkJSUxMWLFxk7diwAlSpVwtfXN8P3goKCMvy7Vq1aXL9+nTJlynz+HwFUrVqVOnXq4OHhwaZNmz4oYp5ZTEFBQVSoUEEbX2hoKPr6+pQsWfKj/zvlypWjXLlyjBs3jt69e7Nu3TpJSgkhhBDio2T5nhBCCCHER+jp6XHjxg1u3LiBnp7eB58bGxszcuRIJk2axIEDB/jjjz8YOnQosbGxDB48GIARI0Zw7949xo8fz61bt9i0aRNeXl4ZrmNnZ8fZs2cZNWoUwcHB3LlzB39/f2xtbT/bbxkyZAg///wzKSkpmSaKAgMDmT9/Prdv32b58uVs376dMWPGANCyZUsaNGhA586dOXjwIA8fPuTMmTM4Ojpy8eJF4uLisLGx4fjx49r6WxcuXKBixYqfLX4hhBBC/PtIUkoIIYQQ4hNy585N7ty5P/r5zz//TLdu3ejXrx+1atXi7t27HDx4kHz58gHvlt/t2LGD3bt3U716dVatWsXcuXMzXKNatWqcOHGCO3fu0LhxY2rWrMm0adMoUqTIZ/sdvXv3Rl9fnz59+pAjR44PPp8wYQKXLl2iZs2azJ49m4ULF2pnh+no6LBv3z6aNGnCoEGDKFeuHL169eLhw4cULlwYPT09IiIi6N+/P+XKlaNnz560a9eOmTNnfrb4hRBCCPHvo6P+SqEDIYQQQgjxVXvy5AklS5bkwoUL1KpVK8NnJUuWZOzYsdolh0IIIYQQX4LUlBJCCCGE+BdLSkoiJCQEe3t7LC0tP0hICSGEEEJkFVm+J4QQQgjxLxYYGEiJEiW4dOkSq1atyupwhBBCCCG0ZPmeEEIIIYQQQgghhPjiZKaUEEIIIYQQQgghhPjiJCklhBBCCCGEEEIIIb44SUoJIYQQQgghhBBCiC9OklJCCCGEEEIIIYQQ4ouTpJQQQgghhBBCCCGE+OIkKSWEEEIIIYQQQgghvjhJSgkhhBBCCCGEEEKIL06SUkIIIYQQQgghhBDii5OklBBCCCGEEEIIIYT44v4fPr5T9/13+QAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualization of model performance comparison\n", + "plt.style.use('default')\n", + "plt.figure(figsize=(12, 8))\n", + "\n", + "models = comprehensive_results['Model']\n", + "train_mse = comprehensive_results['In-sample MSE']\n", + "test_mse = comprehensive_results['Out-of-sample MSE']\n", + "\n", + "x = np.arange(len(models))\n", + "width = 0.35\n", + "\n", + "plt.bar(x - width/2, train_mse, width, label='In-sample MSE', alpha=0.8)\n", + "plt.bar(x + width/2, test_mse, width, label='Out-of-sample MSE', alpha=0.8)\n", + "\n", + "plt.xlabel('Model Types')\n", + "plt.ylabel('MSE')\n", + "# plt.title('Model Performance Comparison: In-sample vs Out-of-sample MSE')\n", + "plt.xticks(x, models, rotation=45, ha='right')\n", + "plt.legend()\n", + "plt.grid(False)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "raw", + "id": "2419d990-f478-4bda-8dbc-3144fbdfc917", + "metadata": {}, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "81cbfae3-7385-40a2-8d0d-d7db7ae9a9f5", + "metadata": { + "editable": true, + "jp-MarkdownHeadingCollapsed": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## Appendix\n", + "The dataset contains the following variables:\n", + "\n", + " - **ret**: the quarterly return of the US stock market (a number of 0.01 is a $1\\%$ return per quarter)\n", + " - **date**: the date in format $yyyyq$ ($19941$ means the first quarter of $1994$)\n", + " - **DP**: the dividend to price ratio of the stock market (a valuation measure whether prices are high or low relative to the dividends payed)\n", + " - **CS**: the credit spread defined as the difference in yields between high rated corporate bonds (save investments) and low rated corporate bonds (corporations that might go bankrupt). CS measures the additional return investors require to invest in risky firms compared to well established firms with lower risks\n", + " - **ntis**: A measure for corporate issuing activity (IPO’s, stock repurchases,...)\n", + " - **cay**: a measure of the wealth-to-consumption ratio (how much is consumed relative to total wealth)\n", + " - **TS**: the term spread is the difference between the long term yield on government bonds and short term yields.\n", + " - **svar**: a measure for the stock market variance\n", + "\n", + "For a full description of the data, see *Welch und Goyal* ($2007$). Google is also very helpful if you are interested in obtaining more intuition about the variables.\n" + ] + }, + { + "cell_type": "markdown", + "id": "db90f03c-18a4-4e7f-a31c-56f206baf5cc", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [], + "user_expressions": [] + }, + "source": [ + "## References\n", + "\n", + "Welch, I. and A. Goyal ($2007$, $03$). A Comprehensive Look at The Empirical Performance of Equity\n", + "Premium Prediction. *The Review of Financial Studies 21* ($4$), $1455$ – $1508$." + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.7" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2_solution.pdf b/Machine Learning for Economics and Finance/Problem Set 2/ProblemSet2_solution.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e39d2e78b5a7ec9af9db882111f9566992b359a4 GIT binary patch literal 657946 zcmdSAby!?YwlCa32o@l?OK^AB1b26Lm*DQf-5r8Egy2rl;O_434gtQ+J2Pj_Irq$W z=l*wZKTq#;vv<|rRkhYnR&_|_ghXf==~!V&x6e=RVHw#883=6+EMR$f=taz}9F6Vi zMXdB4jfIR2ZH5t#08Z23S;SOheMQC7SY*gB2w!$}Fg|1Vj%hNBD!id57n$1do z7^wu<3)&_#$YV#Vea4^vUeYcsH@hQ-EqxPf6MW)bbfGLcB?vQvlaJNc+`ZqC6P$$!tS% zHKt1g7ZeperBJn{-@E4)4fY6gh{)`(`9bW!;j$$rff%V&sb5iZcOPwSEgES4E559E zjcobj4%_4&2P6Kvr74MV)`v4I@uaBE5>aUE}hoSfAJDmx!X0 zQLIOqiu*1WWe!Yb9^%DoBWZX$q+MuABcXU90$9Xg7 z&#J}=po7n#ewfjqr&#ORU~RLd2y)A~Bc}Gs?Ediad7z3D9tfq;sK;4}qS2s157$Lg z7cMR2Cufs?jg}62dUbSv>0a}?$v&$&;?FM3ejz363sDS{m91*O_LKM7D=gZw^(j(< zkzg%Q`YKUyll_%<`zTi7Hp3h7ZUbwi5=fy=Qq4ouZ{F4<1Q5-pF>8ti&cd~FN zM4$RgLP?{zOC?t{E_tLCECo_yDk;6;dV?6qv@~@sBn8%trz8|r)IybVFtNQX;rtpF zCDz-1BA@c0730_#zA99FP3OD8$G@q2;gznMx=txLs+}=#)=sE&NYkX*P?{F!#ITph zpCNOUm!LE7Ls@PV8JC-c!46wfsGjWlUC0pAH6#Q?*iK%uNTU>UrMrzT^sB z&Jn@RgbKiPK|;tIUFHyn_Kx>xorGA0N*P~`=Q zAzXKPB3|8tuSmLtE#=#%gl77|xJTivKue{d?;5K%?``m`pfL zn6b{1TJfu>zgwqPIdjYvD`$~=i6T-zp3>-ex_apF@9aWz11fVkMt0&%=-^Sjv2Yhjgz=5>_r2LAV>X2v(G(yRMb=n zJosgCJNG0+7(Ef&mmW}+Z&!22Yx?_5&&6%7t8}lDg+@sCjK8$0;QBnc8^5K=EZ;PN86=1Ur4f8Dm^$7jaAD3L}N;SzxF zs1E!hb!@CJN1TWL9!XORr!_yTv+egGcxn9f<{&fPuDffY;P!ov0n`tyZ|k2DTW>@t z{>Y^dFCy-%vPd@5cEcNHPvzodf1Io?$j>Q;rxC+I9`b%2bLNlET9R z#;#EmMh$7+^{vxuC9ABWrmWB{G%}b}iQhBGd?5tFKt)b)Cy?_4MUQy*nY<_J_}z}* z4tg2g=i>xZs|KA#S=fhA7yaPC9zI3TLTah6 z(xzeBG*~7wgqf)2nze!(>5ympy6&!;rYry+@5$ zCGvPYKE^@84W&^>mZ3W^!=7Os29d~!F3j*V1VK@~Cx)Uqe;fG>6k_go+DOgLTY+RI z2IOmS>`eO}PCZ6WWa}Q^4)pQUhWc46!8J*fw_DsG<)kR^=~OUG_8mbL7vSE-7a`lm z)*7^8UvQ_``wlZg4NqOOR3QWaCe1&y!{;*zSvYO^ z2?5LL2rQ=v6iU1s40(%SxhSr~{7i4kfL)76>{fv`d2h2!mLKn#fFhY~1aD7|&b(k` zgaINFH8~t2VY5lkm5>V@MxK;w$kGK2qNGB;9y_;HS9an?#A)P3aLPQKPjRgLpHBuw zx4frl$@*28cY0SMA6*t?3=UwSyUSN_SHEeSc5}Yq7-BG1V>rtb=gkZEcqc>-MIB8< z4%y6Wt?>9g@WB3Jb#)r4k1TiaSvqz8BSc0bF~T(`BG$8G^WJrpAK2TKlWR(^@( z;vz%4lj>$ykc<-C2g~ivp^>Or>-xz)B=Iw&>^4J_jxD>dY0&JA51CxmJukGfzkj8R zr{q~$S7KD84G?e6M_N_F^@l3%%AAL#_?e+l*sA;ERW<8}rZ&%}VBn>Ml2k~D_Gu|d zqqbEOe@mS=-|dV1FuI&FAB{|W(uf}!YhZ7wbLyMSq<3hplAi7mE%qs-&?3q6UBR`O z?eA_$C7NL6X4d|+1R{f5sbkfwfDgJ-_CIZYTE}Ir6HiDsY3z0*3w?sum&nRO4WY@V z*l>Sp_w?pQWGS?qJANVw2(|2bV%JB4*1*g0Q*AP}S4aJ0MHkLyNEaQ$ng>}*uh?E* zm?B0saG70NB6sc?hXaT}4syxO6uk1uCB=VDC%Nmnw+Wy^=9gCUK8)8P&BPymZx~C{UfcN9_=aLRj6J4T&>8pA|J52 zN>q_5?{zqYr^CODjAE{%(0m(aJ{Vx3H?;>llk=SI4@_I={l$ty%v(&|0^N3qLWF3U z5XUpFRm^!FKZ;?i3`4UfslSMAK)D1r74nE&c=w~`>-cj`JMFZRq=I?1XBIDYvmfV% zq}vSNB-rq1V33Zy$hSqyea0Ki)Hv2ng5XuwV0Wu$>jv|?8U!Cbvad5Iz9EdKQPFy) z%UJQ&{X+%g>n(@3T>^q0Ffcy|5_oclu>GQ+oEG2J-e^P{7No_k-#`GG78@tVRauk3?uK4q>kU5B=+_?2A1W;|HR=!2aS`ZgRzXZ+Iaum~DmIMJl!U zig}AykKga%ZY01Y&NLC+?1u$Dc< zOM)fQC*&Rv6x5RO(_PEU6YEh}U*a_cPI`E7xLodm(}l*G6GsXaCyxrpld@ymmlzE! z8g`!~(W<+Bxr$4r&6h-Y;HJx@!)man(zQ?TC2lL34T4^}(r4v{=9%cLR6}7LSTgxQ z^o2BKU<$clY&8%f^?9PK>61?Vy0^Z8#A3DDLPQV=qx2`$ZzTFzBCM)L!mF53$BUfA zxS^J#93BI9&a9X=6x8pA_Y1n{s&Y$6T@`pbqHc5~?}T!oQ%TKNN!i7|$~CR)%u3!uEnU22X|NI@#7rLh=KOL&B84<+c9);{$o^Mn!OZ;cI146DHkSWfomjygiXv`0$*L+Q z*w<()0Dm7q_?fA5m27{>0CDBybRdWPw++I>vm9bru0;Kivm5$SN=bb6nYLPZU>SS3=|5FAmZOy1Thd9I{)Is;=iS$bQN3A7$dO3- zN3MtF1+EimYF$KR4ZX!!o&X~_cXajZ*TIHnWNjfs6x1N$Wxt--JsuDYk?3O@#7=E# z9t-_)e>daB^XF0=`iAV=?Ku|T>*M{^^_?i@&*-hBoiYB7>zFlBM^ZBvIXt^3jZpNU zO5#eTKZ{5%;2f&wO~+HAUL$Er~E8Durd)FhZS4PDapVH{@_t-9aKOiM@*eu8(fQpz%I z0FipIn$k_OX%mQ)o31M~+tfBr2O)WIrm>0=E0wIpypot;zIyLc$h48AR(yhp2V!L$7Z01T*tR56`_exsF?Kok#7s@KRcPwtUSAr`Gli{Xs)nOJmD|)7U4q+o)sF7N>)B-i zo$o0#<5|nY^+cSeR`G9J3hdhLvKhjPo1zahw(3VrLT$T@edGs<%2R3@MpW5}^!F-# z6(>G_tTxCo=A7>I|zr^%yn=p@#Q~B5h5m&=*-2nm2A01|DGf~I^ zcV$^IB52)Ry&q=I-E~L}pV?OSY%4sIk!HjU)hveG;&b}BLiNO{t#N6JHPv*6xvsxqO zYLy%Ii~$#QN#kIq?j>MX5c+0nqSiJ|u&6Jq>CRku?>uAC$AFQ{=Odu)@+V+*taZoYsSi7E0;m$Dvlz;@V5Ted&0_Lx?4@xhEMPkUv>j? zgEm+UbHq{cT43}Wcospq&E$wen&ot){%W)$SA`Lt4S%JPS&Ijf<=_J2o((;{0-}&= z-uz0q5-Bfp9P!dSyx>fzhd+e;E62hK_%Mc0^tnj}%=hCBu1MEbc!vm3J+KP=kmEBj z)rFhiio3*-<|(V^`WxcgmTDiqm#4QWrnKz0=0ZKq&fyOlOu!zQhCi1ih3l_!rd6O} zmQPu;iACINFXbHLZt>!;6m`FJ(^8Ys4~GkDK@3Li;WS8C{8$jTt5O8tkQnb`HQeLE z|0!T9VmCPYwTX>8rw%3@Vzcrzb2b|aig<_hC|ch}(}&xtVP>bNd2M8^FvKs~>WqtF zd4ikWAIYNgIUBvMFXlewNXD=w-Ju63+#FR1ZX-?_n&*>Yh)V=^AU;F$fZiNe8~PR0 z!cm%`7L`ueD&|~6W&JjP$~#?`)tdFk9}N{rKWS2?3^DZ|k>{A*>XWcFaqFhJE9({V z?0W4DQ}*VT5V#cQ5Rcs1drNXK2^LmWuZ5Tx|b4_ zgH%>ja>|2#2&8v?KK>5&36Y@EKSr{lvx`PiS%2)=m*ftD#Y|P>FX@)fyD*$QHHY;Ho9HY`ofQa zGDWEymKmcG-UucF(?17Ep(e;!gr%G?hT11z(6ibMsBtL%RC?&=wE7bjvmkGHLAE#t zI9KzKlTYV{A4cG!#!h3)LcPlf&4!+^u28fK!*nUpIKn#egDxuj=ryRUa9UzqoQ2yO zWg#uQO-!K>{v1OgRjhS%m5?hjGh+ZHtZA36ppjk76ItA8s4r~wAds~X;+dTmm_$hu zmxcSYpZ?vnrS4S{@zp0yaQZ{th)U+@F>Uhk=&)gW5~lWQMDd`Hg7A_~UKQsETCR|G z+K%kgwq;aM(uB|7myw=V=RLF{F(o&PXSJr;m9oS?*c}{AQ{b`tMOH;>=nUJm@+5dS zUp0^y4$Hh;(3mTrXUyA|+SmNFN~hZ-iTRo}#2Ni0FCnOCB<|Erz$L644R4pfAIL*~ z$|oo|lKeVhdn77$&e@IV%u-#tkgxU&&c0qYieir!_>fNCW_^f29zmw z4C(^jf8+6Nl!}sU=psxk$o2>MiM5DHf{TDK7zEVGRC5x-l^;J$L*I9s*pGxgC>q(b z(Ol(PKcS~AywWnP!r}euzt3NsFb%uN^Ae68)?Id%?vdt8ZzrchElNK5u?zpBAxQ({ z)z-bKMd~~&mAc4He3xt8gixm7Ksc#Bce6Q}iEaRL=ucyS*> zv#pjN5bpzG)cYz=#1hDKK>d~Nx~W*ViKH~;K0J(hW;7DkNk{2DfSbDqdV0Z0TyZX+cw@1Uo`2{ zAd%vsaZOboQN>!fJQikEK#U2NM`_G*?4SWiG3Hnrk>{|)F~mePP+i{mMqIXzEKiz_ z?Vy;aicOfPK*58$IfmQzdja|YI`&}rVKj}=AFDHsKZS$&9@qhwjUEJZJ`ue^_w44xgiUhIqZ$qlc44k_DD^mvvelo-;&UT+OvryO4u*(iAt8_<10BnWIB z{~we++rOpknHbpqi?YWaidq&rA631F>N~g-3?usXF1C?&5Z*3jVF4x>@(aiL({x_8 zvjh}6H-%$?oL^h$auNP+R};aznaw6Ne?%EV-dQmB?(b~-_+K{ zh8}-inwTD`O*NY_5w#IE`@PfbTbt~=V))6B(M7B

    ~TNLc*L(Z+}FrHK)EXS3=ko znqRDW5qt*T58IkeKi&uE@MSn2P7jCOEH!M`%aUeF%?GxN0*2|q9m(SI?@=#)^)SmI)Drhz7kZJpR!n*9&#vnuKCDJvqQavZ`3vj`)Lh(30 z?Hi{}ZemsT2lopXMYB)3s!xUecELj5BS5ow%b(MNb3;`R%dz>phQQ2^N(QnFE)nDc zUE97ENygEK6~B)^zDnp9_?aPhaNv_^p+OefCS@JW%{9E) zzls@`R8<^t{E3sg>_p=;{TD%1;UeD7fal{{98-&2P4HzEwE9#|HmZr#G=2OLe1SeI zl$LN$pVBl+NXfw`&KEL+pimdl-&*)HbsA^JBU*CX7N08SKVA}9o{ne3 zp=qDGMCK2m^w`bk>Gr3&$1}}cBTniFa^W^@t3)uet`;4~74ut_Qx$x!$DOkOQ7y*q zWLIN0EF@vX{+q98yl>0JNcInYOYKkcr@~=r53Bi6BBT|)CsZSe{YFx9)Fl`%F^wtR z!FrmP!=GzD8mttDFqThhGXzuklO5NucaHJNv{iW6w8O{#%{dUr`Pbe~&zEjatJ?^l zBVdOqZiKBe5^ug{$ao<^?OTt}qr=F<@N>eTd}B1$2g^rkjlr(f{C?0%TM#v}xj03E zqa>H3KY_IIjE;v?SZWi?O(Z395OTgaiL{|yN378AcGyh330?>BcqCWK$c5%Uz*L-U z;|GaEaw8NmN%7IR+C}bN23VUf^ED@{OvY`YKuN(TqW!k@v(J&f%(WQly#;y z1X9*y{3-#-NDNH|YBlC@@Lnw)hi-zZw!MTO; zYLoy$B^6@|cB7Np2eD!`qEQGtRwaKSvuU}ANOXl(n)Kdx z+%~_uo=K9aH{!rH=>T!#jBty#mcZipkHmf?eu` z&DK4MX9Rv|_u?zb$^>-_bn8xLscg)sJ3dF`XNl%S?Gg)Xvpi$(eTiEeE)XJX8alKx z<%g;%2!t?r{{p@-mnjt720!$l6YS&2GvhScIKR)oOZ_@dI8B!`Ft#uV^(dK>i5PyW z6A0;};b*ulQWZFx`TZ%ucIX=Q52p!rtGzp+l z&Na@>!cx%Gq}jsN)T0!nwaHU|i;4`Mti#^P`LdZ@bE_XZpfVLu3XcW%C%Ey1Fz|C5 zO;_%_`01wOCOxCh*%-c`VzCOA7WltUpinNQsPCnuq#GP%7r+7vscJ|PrObsM?z$pH zg7l8cMwo>&)56o1t8?~ydPhFih>t1f&SBK(@$jC|%|V!>b2{07tyt7PFX7ZJ;#Wn# zw8KL_oss23qqzydOUUwHOvb!W$am6F`Jz61m5PQIJk4cje(68)i(5dW6nbzS=ov z#@KgpQk|zqksoNXby1hmCdDs&E_V8|pjt&t4eobDA`|=`5yPb6mXrN=kQ*1$#=rjz zm}MAhdeTJU^~Y6q;Jc0*`!bE$NfE;M+EXo4g!>+cwJA3;nnTb~Nr*-k7q71LjMSbc z-xLxq>aeWh8dad3Z_ho8=oUx5i@sDv>AP9vPFjc0-ldA;1a}FfcJ;XP4^OS*)uPrM z@F!JS!3$Q@_O@%8NUztj+upNan@K}2f`_E6;z#!*d~>gxW!HcYbW)t=<4Oo6iJ^7h zOZGg&h-}Jco9p^YOE#!2%jsSoD;;u330gCuwsUIXRp3*CZC}7#IOzBO2aUt|PmQDG z_SKkPP1eA|*wB$)(aFH^?Yp?OzNs<2s<{#H6Dtm8HhM8*b5k=%LN*RodO=$&TYJT? z`i92zLdMSKhQ^}y`fl_B=8g_>#`c1?)?aOHjBOlYIe@coKh%=bx3_ixe!}(NFCgUj zTTc#zjBg*DtZf|rx|5u}v5~o ziXRs~5|Ki&5P`Wu^Sr|cM+5`je!-oBzQB9^)A`4@_uHv|aoQF7Z>RCW|7z_Q4En3} z`lr9O{$Ec2+a3SozW;8=|G4k}_KE+|@!tpJ7fkYxrvKuR|JCXL_opi6-G7^me{=Ew zaeWR5BfgAo^@?id-$pe;= z_5Y7O2$@(pSpSQEKVE^;QgYgS^$801h4oVa3wuAWDkn)gC?%~hr=2LK&P>fRKv!8< zp+}aqOvR{}zbswTYT|7SK_8;OL))4d=7Lua`3F!Ngo800S|%^q98Z~<{DfU!Q+@NX9`aDa9I4ur#CAkfEM;M3<62;iuX z035z?0*Ak@i3p$-26ZysoUS}A)>*;^c8!i!Di+CLM~YOav@|#KJ?`hBkV&~d9u!qn zygD?uc-)=-`0?ZCPr#VGt}HApOiajsXmz_X*&EFaMkK(;!#g=Tl633pdcGW@A4;aj zNEB9rFHmqB)UZ-`wQkz>-Qxg#}y0f#B zJj->n7elwUx;h8*hIq?K2Yr9CKyr0;mA>tIvf1f~0$vUy2m!Cz=hfT%cOV=_`{QAm z@laA|F*yQfGbJq>8yg*+&B#?X75j^c5U-8&q}a44Oz>&dcAi#JZjrz4sSez2XTH z1rm~y9?v&(k`fX^FGus$#H1wzHZ|a#J~xLmM*)a@zlVp1M@P{=oz3a`v`r<{*Vm8n zTuA{hbMu4cCI?C`wQ`@AtL)g=SOTwWc>w``F?)j$DKeBI@y-1Gw!2l7w#3B5O^5y{ zJdfMsR94H`t1*81xC~4KTie&;nz689Q7q(L(Dy*d_wVU+TJJA+hHTp(Ou7|;Cy(E} z>hyy^#imiz*WbwCba>hGc`@A`PIc-Ji`hFqrg0kDvA;Oj*pRnOTVG$t(DjrLa~VhM zNM#nEq<6JhZFPIPJ*hDr^S!4JewpwJPR5`>jW+i>4&=a~ph2Ub&4zfmxZd|0P%bVm6DJ1;lzi+q%lC(6RTBI> ziH(hoA$|!Y`lFi>n2ei;GiAV%s&{xlM_@7csLLA|Y$j5xK3*RX_x1Jk^z`@pTu+Ds z(^g$qw^DDtlrJ97#LO(bjuM;!TsE4{KDM;<)U=ni#qQ9V84@6;r?-yCssk)7w=~)F zyiCRyd4nHPx&9$z?Oso-=KkK#kK%a0e*MbicHwhARvXLW)%AJ4>3F%R^7i&dCDcdo z!DO?VpOWRLiPL@&EYQUUnE8$>P;?3}GnZ9s$<8*Hl9TTOYxU=K$TJB3%@Sh+QBh zg@PptnqOa@y1Tk^b91p95#iMQ-Os9LZ|=9Ev-y2qp3XXCrKO*D(`_#=FO%k6PwM7W zDzz4V^MiL~Ea>ozH@jZs-e>Upcx!28IO{n%IRzu&Rcg10*nvfoYsbfX@8{iI^b<%* z$AdmLJ01`v4~2(^<8Zds)!k%UhMc01%am)ksPr@{m#KtiVBq7+xFPS-C{^g{NWwz_ zd0#Zf|H=~xv41jKp}8q$*n76&`=0k^TCv6DjL+-wx+fGRoy+!fWEQW-C=km)e0}45 zjt2?rnf!Tv?llF1vSI^BlA+PjLQh{2jXDcuH@62MM=iBeA-*5&BUe!V6D9CsVPuqdv|X${2qn)dW=GJN`2(HUMKZj>PbQs458d^2e7V+ zRidZG?P@nvP}a<>Sb3zS6@bZnC^AQJYeQZj7*NUd5nd-cd|v10=Yi=72_ehe{{z6} zR$nBrEmeGLGl??epTPtULoC8#=wtFwO-iRErKHI9tCv=;7(<^}HLAX92W4 zGhL$i`Y`6x{(QT%*+~36sno*}yU`a-0ANeC*V8Q&zU${Sh3%$l!+v}&M=@Nla*He? z32|`%Q<92pZt6KBL^fB-$qoQiegmWek${!uWg*ljU`gxhgy-w6H5C-%iX{;c5GpGx z>08gc)?Q!kZcmmh$?s2F&WMPJDs|cxfzH`iT?Ln-VDvcM?@ql=7Fh!Y^i56YN)*Yf znae9Ho$c(f81y=8#`tiMk#nEFluk>zsH>-Pe6e?Sc6M|Gk`E)9PFn&CTm$I6qt{MU z3Ej>Lx$Xc6P6AH*Z6MEU`wNfes)`B3Ra#A(+uOi`tI0AzM~dVrQStKfTDF1al;lD` z^XB6JLOzVW2;!7?Yi(^+^I>T8_XkJuf(Io+PZJ*^(d6J`*`~x}2cQp~93Kxq27F0K zN(#$tJgAqHAqBq)aepUSEZT>&n-8}*%BmL5a9?QF{EstNm7+W#;1Tt@{(8v2DEKd4 z9w(_s1v^a4&aRT9xK5cE8L7~0ut6m(hEsz2Q3R=v5VYKJeSOuT?JXJYhKIYPJDgOL z4Cdr_2)eB$9R8)(lbSo<;fN4bd$e3z$V43u7dDj~wy@CK*>way19oiwB_&`Z^f|oE z191@SJDqO@TweqfAuwbAoT~5Q_anHVTB0Vc%6=^t9IG-}?IR)Bew4{&hbFbqtgP$`43O^R@57=>OH0qszcN(yFzV{+GBPrg@2FKP zGk86mO-y$4qWP%6*8s!?pbmppL#U){+D^n^H$T~v{U-Z__fF9f6fq9;`FMAxdsdv1 zk^(%-{k?0dl!>KfdP)if@>^1|sFWzZW$l|h5tq4se0&rU5~9&=W}&B#Rsfb8oNJAdp6eNFGu)Q);=N`5_(-py`m1J~<^PCAqt~$)_;9GBnt%H1F^4<8eD* zpDd|f1N?D2qpF+OwX97*4-WdCy1cxczh1yCSE8h$sR`)KS#G~+TKKBo_V)#_iWA@+ zsV(+9gE+RW)s6=WlmjrpoIN}qRTZ2D{nh-z)5|L}Bg5Xo!3io%ho7IHGU?`MP8K_t zTgB5NTFX~BxCtJIEg?A>3JS_HIAod4W|^Z*gh%Hc==0UW{QS3|pf_xEU;aWtLz6JH z0|?z1chN{}(#chTcWP@wY#8TsUmsN^5DP0IZEEm2zILvxJkM7f!eP)2kBwnC2~MX% z!l8?ii{J3+)H>|R$gdsh^r+0lG`smif2MWs$Qdo&wb20PfI^TN9Rnj7V0JvbHnWM` z!^6Yhzr}2A&lYM-B@KH&QGWWgQPHrP#^rQK9L*D#oZMiwz{FTTiv;^)oPpfAs<*c{ z*WGHRxlT5l&vY~c1_5CeAj*yI;Il_p`3nAC2q6&m{0z$;yc0sy3BAeCfI}f2AD{P7 z60K^L4%$kdXtd2-G5$kv)!*h z+|?JlGxO~U5_=(g4&M zEdMi$UMHyRJpp}bAXEs5Mao?eZwCk~+H=r14iw~Ui@L`SnCe|8YV63}%4iI*V#}Su zM5a_4HnyZ(5NKH$PAe4<>&pN%$Yk?Xcy($zhL3?kycdhcC@3f}Cvb_ur?*%q;?&!a zkdQ#9QIm7wh_rnBmbevbLt3 zOc%*30aEzJ70FjaC=Q3kOs>LDVQZ<);|_gK0E15Jqo7cMB2^+P2IxCv<#1?uy@(+*~3O5+S2TK>ez-ZUVWY0jLUTY3Y&QzvtV%T29ZKBW(dSO-f2S;{lHd zm@~_tQFz>Bv&AmQZ@EF3%IQ!jW<^Iw*9=k6*8pfQjfM+rz_N9w5rHDUL7Pex*dI=p z)CH}TTv!9ZZEd6}`2oo95&$e~3ZOxTUyo)hnjH3Q7HbCdAI`HNls2q zb#=AnZ21J<(cxjU?Hb=8{99KM!k(V3A&!eWNLxA{Cv_8fqI2BnZ=LE1=>Rex(8jth zzfH5f$R^VR0w4k*nEPx2m0@DA-s#83$G5l&;1;jPtyDT&WSpPd)*!GfJQaWno&TZ# zCQY1w13))hrK_u?1PF~R_rsFnVhTh=L|E9r?k!_%yaSkR)pE5QyvcSikJycNKnDU% zc6WB9GdM0{Me#Y^uZ#C9SgT5drnNORB=r3OO8%_5)a+DNQDH467UKLHaFcZ_fGGyX zb}&^m21Vfc9p|3p@4)@(jchT8fdSkCRw|6gr3ePlXD8d+j{D;|&3S+y02EyQ>ExsW zJw5#(%HI^h?ryTKH|N)NUucJBh$@{n4NE2*oOB@mn`@Sqmbj0;^Lzm+2;ZfFfl_gB zG)g7|p~=g`Q>oRIdonUI(q^|MqNhjL3;9-85XsNYHCSnO@_AZXJB$ho3!|c^$G~H^ zUCm&#PK%G90#=8TF@?*U84AQe4XhIo=folr#jKuFh0+591AcyfOsP`en%+tQMcLk$ zS66vGZ|mL}!lRpa(G8~9Z><6Z#a|VSVZz}GttJJs_};!gg`dD*t-q7{Fsmvk{M7s9 z-`rhOQ$tKl>|k#{ZQ=C!^JfEt+@d0KVcWiK`zCMZ=B6g6quEICcc4xNeHoIbF9GkZ z*V?sR^uB!g74u23tGjz@Y6>7?z(e`_`vY=5BO`;t>q_x2Z4_EpzIOZ%yalG4a5$6K zgN>Dym6$kBB_%vG6u^$K=;-7DBcKcr8XBsjqXXFJ8=dZe62-E?a+b8wU$M@a>3?q1 z2RHpUuM1!U-&WZdtZR8Vm08%p!Om_1Pfc4pGcJzFabFIgF!PY2qN0utAA5Ty{n3a} z64SHQ0Q=8v!0ZSc%^8Zc*{-Eicvk`|)SdAUd@x|I;N}5T!H2txiwQgmcbC)U5`~iE zlM~BlJZ1QjmfG5cnW>C`>;k+8Jt`arS^n3hod$}q_va3fAZxr`fW29PCV(cniZBMVDQ zshF4)^4kCgSG)$IZe-5jWO${~j+lZ%?2gS+NT_FfApSoytwzP^S_eS1PnNuEus{Qd zU`{|10P<{xyA)t)EG(=9R=}}@*AzknXaA|r|EZ{btKX0v#J~wiyACYCuK~p{5wJJ= z!@vdDsKcou*=YRN4t8~V-F8pF#wxe~F3ZTsNJb_~qXGdMT1-j`P?0Q6RqFqt?b%xb z44=Xm>@RWO>Vk%-n3#=#7;qOwLq!cy0$h7mR+f&oHf@(2@KRApijR*s_Y$ou9hS&D zz{NG6TPQ2JQbET+EuvSZK>fz~mXBn>>uqxQ_;kqP7Zw+RuYec?XpUCxM<;4Wl$ibP zDX&_^k4-RWkS}R*Wu=U`I2MoVkAQ#xmL4G6*4FqrIa9m*O8!Ds&p)?Iw(;b$d@iRM z3MHuO*0bg608o7Fc5ra${YXGSuo5bKHk!$;OqJNy)^_^!Z!ulF@yf{0ubU&cUtR3Z z|Ld>v=k7pXA5hbj&E#?ds*r$(1VkJz;4w>;%XHj!5&=YH^aHTs^g35n%IEpf34rUB zjlaQZ4Ma5+rs65bm8)+q=7!0DAy6 zCZJpikT3x2S9@b~^+kHdbkbDc>sX5>U~8bEV?%HmqB=NG21IYvpDN zU}j-x)GB}eT#YTBLO>z3KApAz;^Si*;7vAhDY>{b@+LxR^8Q0fE1EGlEt^0__-AHj z+SmdY$;(dwg`|qK`FwD_0UM z&N>~>R|B(QweYhSFbOhK%O&E0eGSo&`i*%!CdUEN6#lU zU%J&51fUL3>kEWApa7jm(pZT_qoxt86yjl}tqI`9ds~*k6nm!1eXBVDoy9!HQ={Mg z-Z~EM!-v{ZbBb^>v^RCsS&YZy`n4wn38*Hae6hZI9T*&p>zm962d&FAj=*9Ds@IrM zCJxG4Oyfz$1MmaLv}u_Pj*0VkEF~aNF~+~Fp7>5!`W2}I>81+sJ|JNMJ#cwx4_Ft# zI3r>)32}eYNE;|C0>#vPc}7M?AV)4PE|^k> zXJ=I+Mg|7NB_wj+ZWlo`d;*v=U>z29L`C}n37MFX5ONB5t%QUGfPA<)IK&Kvcd!1k z(S?6+0c>Fm7%^G@Jz9R~cb8ju%M>Y5d3ky|7Gb=Z=%>N2+6H~w%dsS6ce7vHKP337q?%dc|^!R(A)I_6yx<8S()gS!| z)ENN}K?M)<;RBENpT@{YX)`l34UII3g1AXdef=CQy6C8=w@INb+YmW6G&GzmSDymP zcqi9D{SVj~$XouLQo{vopaA`KcXtcREw#GUurN?lOCAD)eFK>T>xo=ppm+l8ZR9!w z_33ngHf!Isscwt2G_E5LFE2GUwdqJ2KrOX^=!%K?XzqW1e^04cC?^L@b956h+&4ly zNHtACsS_?y@>a+@oj+Y^F*Pv>`>=O*R;5w~OX~W zcIEzq(-^D%&S@ELK}|rRm4)XEpk|qvm?$hkpUZ%vWpKrbPqbxo z!`|pj)XnX!PK^nWXkL8x>kzRI79&GPA)iwOpRZfWX$@ct-hreQ8jzlv|FZ>f#Y6hb zBS^JH&cgxnqvEDi{O@Yt$8QeFj{&NaW&c?#3QabnQ*EUL$zx(;W5e#@(zs*;xhxGm z$acB$;(AI}(d^Ao&XCMy?Ag0+z7r`1f(NLWX9K2Sa$@2F*xdsJJs`f*_RQ9C^@h*Kn~P#{xWG~5#%y@GT1gfFAvxW$ivaB z!a(Hz<^FuZ04wQRFurAMmvqa=`(_RqL`FQ-ao?D}Gv?Y`J!7X;77>75-(JS1mLzwc zW=r$4DF~pk9#W$v%v%Gph?bx4;=JB08@cL6;b5+Fb;JGbFTF1kRGu0P#`ly9vI1# zGX4S9q6-~1xLZ^!M9{d2D{>NpDq!IrY`q)a?v2e@xzm0V-piHa`OJZ zzOXc6cR>LG5nyA^a+W4iMDPG&n%LL<9gAX_ZYm0^s3!sepBA@}QkHGUGaHcj3=A=7 zAfT5+B<#X9h!Cp8!PQlrj#v3JxAd#*!xbf!vfw5_3v+V+f26$ySe0wHwmnS*1XLsh z1PSR>Qa}t4kWfInyG5iM3_`j)q`O;6TBW;DK#&IM5WexCYwfk){qDWL@BfcO4qQv- zWX|Wg?{SZDUFR5+S1j%R6-ew1ZO1<+Ws+M>R@uoohJ}R<{E7wv(nZ{HYjWY;sDvu% zyqqC%=NA{FDon>;@`m1-He$i&i5e6grWd6s83Nxg1kRh1AEtq7A9$Z3Z{af;o8)8* zzOGhpuZ=^ugW9iS83(kM?CBPe`JNZNlvveY^I3$&VZH>s>}(9n)=jG9_=#_J=oL+E_S_ z&wL)fGv6!hZ?EH;Dw?c97yRj@6n^LF8Bp18v;|Tn#Cw(1kansox#^MT&YdfvFTGY& zmp683##AaRWdR}6cP(o?gOsE2O60({#sjf0iAvA-wKk?d6b}y?mXns)N5H|%3w}|K z3LRD+Z^34EdFfzNQ;KYOdxd-G%>sC?HZ#*TV|0leVTnw^)Dr%PuAahld|CgY!(C?6 z4J)E_;hZCOWAIc3Z!j@44`6?4Z^w%V|ET2jJ^s__!uK|c?IWUDHDB$H73uq1d;Zv7 zU;oxk4mbL#zw2y~m#?pB|M6EhG*WJtqeJk#5pS{tR2F`Ir*HLdL4sNwE=qH&t?-q2 z`ZORXC+A#_$(MuAdK)>)Nu-f-pZ<`*dhf?|lrNkox5C;A4?x+8_fPtYUbqdpbckNqRoV^if zpr9JRXK(X5$3K)VoiQ~vB`qV9GH^p%OY7C^*Q@O2&!4YA5wN{9ECZQ^n%c_pGC#Z- z@`vsb?F1%0je2XL66SA9MK%m}kVJrllGwTsySq0RFJLj-2ASoA{bCMsi-2g*3LmU> zanW{uRV}KXFNz!eQJ%92Z^T}Z93qBFl`UI(b1d}-^XX>L#as^8TMX|&mi+vUw^5yh zJ={|*mMDnYWMl%`%@?0M=>*kicwk`r6HPpOskG@rVpO|d{R3=etS2#Xamzm8^U0dnz`%9z zrfarGj43i}Had7Ai&+KHi;|#O+WB@k=-1YoTEf)Tr8lXlbRh37(rY*Rs;O3BF2Zsj zcPl81s);9BYE>h|;gf*S&{ zHf!0+(sBvBTv1UkJI9ZyVeZ!)b%T}P=OE;U7LCD`)hLt0M4}hLM_<&BuHfQAe9CwR zzoz<;LY#!^vyCAsg;veQTwLO+`EmTiJ5$9oKuJu!QQ<9xRVv3(`?qdE7JQP;Ui(CF1><$-ssVbRRsRAmHWY9iM>R0p$*8;886ECPr}C!}xLy;Z=Hl9HNTKNqb?q?a%0>+-hL9SYcXU@{=BsMIgU$}cF8%Ic?(#3JP@FD#TM zIS}?EsW9r#lvlHB8p7`<JB9%~sSp6(61P{bT;Ey~-JTjo`|wUigb zeJs`abfsX>!p4T{eURZHfyqK+>QShKDGWC_H%s2=GN#fbFXC|QZ->hLeb5p|=Z z%8np&#tOKo*_2CXgt&7Z?sUfTf@#8Sn5WW?BmE2%qF>88nOQ?x5hwwwu%RJR`BsrcZJyg=zzRP4OkMUsxe9-2qWZ%_4{R`u1MR`X z%r+XC2HZ#4pOha^n}v>-8?zGTtpsURU@#SFLqu;bP0uM1<$5_Ot)|BOSd{+Sa{V)T z`FL*g#ECaL>C*k$CyTVQ%_MJvNPQ02oF`&p@G9a#_MLaW?)!*xAvL|Jl4JiP8W|se zK-1wZ(s6pR$dP#Un<}rM<-zW*fr|s}wgGJS-q`O@A3-GXxzIXtrk3q^w(J{=!s6(7 z345DHY}7u6sd*mYYR3mI$E$tEdl26m>kNBSy`G!$Wy%^L;7+0L7t3Q2klIAZ!Oh?- zMGh8zqrP;PUyJIM4;$+j<1C0pGZqTcXA6>82OGjZx?4I{iL+4f)xf#buX(gQHWS8EQQ zLuTY-Duwky6n4Kzh6vb%WOsjU_O_5Zh>u>$lL|Eo#_#8|zB+3^bgLq?zfhe9>fgRt z@aoMAX_h;o@{J4+*H2VWtEzGY8m&k5!a5K9PdF4iB5$Xyf1xajnI$uutYLch63!s7 zr9gLp#Fm_#e59beyZiWXPM~Qb2Mp3gt{XSLg7|86?8!zTe?~ojpzMS3$qDcpZ{#t+ z2ISj}S}x?_Utoth19n!R90RrV_yb;G#~^xw!^N=84T2?TpSSheB4CqVX3jjtWmr%P zc+henrEqpmjtjVja4h>?=jEiQe|)eOwH{(5L(p$xeO1qHs7G5D_&hmTS=I6v_p|p& z`RzSTpHwcHzEp?9=JwV^yW@OHIFu3kFV%&YreJ3TKyDEqZ>FtHX^pA1>^c4*IEp&3 zJB$m3a-A>ypXFdiK^2uTz{hr$M+bLps!yT1@)HsgKuR)FH-ZJPrld3ixjh7_#}7e@ zjERk9QLUt^1WmjYjCClE4cLj4l}AA<*;*d80eunvR~4LNbmH|SN7`WEK-C99CH9u? zyOp(|perfTbeY$L&Y}$NlerugYr}E-^6!)^M#$Ej#e9cd4oMjt=*txy*q6 zf#56vYXDZ)@s7*!AlOLU+z~;2#AS+1LekPb?a^Fh4ohtBpqg)f=j}ZS2U`m~F@Thp zL|6O|HBI>;0xgf0ZAb>rPJfO$Xa3?v!X*@n$pEywoiU3iXK?wphqU3o?Lj;OWeNg~ zkuQRjf$9z0kxsNeMrf$o!A3!02!0hT9w&IUE{D@(lgz5 zqZIn9(&qp^1)&%bv0yJTtCV+T$fWi4^?@%>dlf@pe=bEV+}*=NrZxW(g)ax+eUN3G zoSXne$~IDCjgO9AoSshN{RpU=ARA|}?{*h9B~9rO9I%H6lg9{D2gu#wPVF&28=E=A zfGL?6!fK#jftN*Gx<)sBcs`0cuQQ<$YWsNguu{=366OO2nLq@Iga{s8er2USTvUp0 z)kph_!22raYq(vo=sEYI&L?;*T`CCz8-tX@-Q&Xz@I-*+c$Xa(A1`1&CCKK+EpcUw zft*|u78KNjrDbJh+`M-{#@@_qgdBY#Qa|ppp&2CXBa=?vS9jsKcG(`*=i%XbeI6?@ zK(hcLzx?ixX!{QE?~DaUM%sZx4Q#AuFO~U7Z;BX!v9a@F|1DbK;LY&bL!mnwn?JfK z85x&gTL7G=EwiW$Hw!N6>W9_4^KFKp#zC?iE*XcqUFx{^6MS4jAtB#ux0^F(J$M0B z9z#59T+fY2NFsDW&Ic#b2TxxR+?C_O+N03eSSE=ZiKAWbA2xYCg)_^VIdBGKZLni# zH51gLIZdyi<$+U(tg?sh7ZIdS-S*qt%}vXR%ae{{dK{v!(QpQ=ZB{2#9pO6WN$g{) zez1nM0u-_#pdyd_NylMfnUCEupE|3HS+oNy`&}oT^-4Bhf$D^H%a!3Eh&5i&(@6+u zqW$rK)7Gh=6%kdb&Z6`r78E3WT_9#UilgZQxQI&OdR9;x^Y35xD?UYPJD6 zroCHTRb|wF;r>EyW+ozjwK{_Jgt)tNJkrs3;SKaive5f^c(g=u7(=4UkA~*Kq+IGb zY^Ow0o>jwv&#V#wbyCn6sJXyXUb%LSj{f@FhY>}LOh0*FLmjg|-QwMw1PI&;LRa5R zQLlAIOuey++cz&3rAcS3urI(B!55W`S@8560EIH^*!Yf^4UzfC#%G2+PpUE?FhNsv zgnb6lJK>pIGn^Kqqh_`IAfCfjvV|plRisGzl#oUwJCTHyRS7sxtrqG|Tm6vn!B(~h ztOAe_8E#gyo}3=wIv24IAuC8B2lx6aMz@p}Oux;86oWVZSa6=;_H9&ZWkhev1H(a~xSUv=N7BA?!a1g_>ya8y0ne2v+ zje)@rI6r|#BAHKn85tR=HD!O?2XVe>4zMIEGWT;YXyE!^vXaPDq?ou4K@c{%`OBC4 zz^~H9%m%EB}QnSf8(7hEE4fXX22noStQIYi5K!>vq&Qt`efJiT4 zayWI>0Gz84kH#;bKO^N6I0E(c_3&Pf;Vo}&ZTWh6b?4|_DLCHT*ud4U-J2zTjEBDh z<`Fo@`1d79f|9k{5gep2id~MxK#*g&+M(>ii$p!hFTLmhAoai^rk0E`;-I_;8fS6r zM70BSH7FPrVxum;0)C~79r6k37Pm8Kh@)=QNBj9K(ug7c2>f9G>%4MOQtR;cz{d=i zzjBI|aU}ALYwG-P(H!^@F)=YvCmukgkhy`l!WxeO9#qCS<+}cL1vC&>^xr<|(mydh zFeBh?sQ_lrP7h@rNZ&Lx!WVH)9N@m100LG+PRIa5PNV8BX2V8n=bD6VZ)$0|2|*ut zI%L~+Gd%*K9$7qKMvVdD1Gg5Sw4i_hR^8869UL4!W2JW3=CygX7xF|Dg;79G_Fc!t1*rv(44|*qfU|(R6CMt{M$fBr znCZf-TlP9tnv%~*rFsFsC0)!j(5R*zdtAM~{bF*Gwx)ep0*YTYblybmcKjg=Fg+~-i2-% zOngQJ&xbt==l!B2i|Wg)ogaiCA|bS;n7kmZ8sTkNcXcEpHVLOspDum~c}>&YAGnS# zY+f?&89j(^s;a7sM|1~7SLt9KMfp${qNqPyzQB@8jOhQ4TKfM3w>Q()hb(aNbvy74o6nW#cQ{c;Vr(bIIMq*sU-qR zpL9lY7m8{AV?P|4#vUT$XU<=QN*x^wi{J7`z;=Oqefae;5U*VjB`FJ`(if#7wqsQyEvy$5MR9bj>1dTu4u3p zA@&NY0N)pol%x$%3K)2;FQ9`6SNm^(Bc1necX;lUEH*%737qCrH#3drzKVS4kZ|73 zDlAXncFNer3{%ur&W9IoZJaDfACnMWu&5jNS};Q39fO5P zV{i7rl+hu>9Q~bpR;YALuqJX+QleTjM~CQ8zm}OX!?}nBa=u%Nb||-b}Z0nHM9t@;`nU_&$OyCWNa9$ujgOHJhuQ{2g519s>$Y zR6^%>)H@`4AdviTj0&+SkYDkqS****AnGg_m>efi`19uwx2!1JKE6Cbx8Id!n4wU8 zS(Vw1kEt;+F?+Suep?`60dp5D(gi+ko$%`3fM^m1D9P%jbf56)OZ~~$e)H+{S25~I z7(<5kg@SsMeum7E*4k-Mp1S~L#gvB5$%WZsErTV6BXIcijcZ}ytrDeQGr>=w=Rk=F z60qynu0;k1Q@W#_Jxc|6iM_q_rk*eO(;Mv z2E_tQvKT_-J!u>0;DS&O%%C`RQAvq}xOm%t@}2(~mu5;KE_wO=C)+s*r2JpMenAdK zXAf6>*4S;b?fSpq#AO8q*WhS?AP6BJkmk_GDgOTcz@ykeu6^Q{)C|N+16(X7CZ@;_ z_bG>TR?wA!nHhw+1=yaT|A5XL3B6q)9FW4n4X~E@S11m6tN(#(ZKYkgas^aA1qOHq zQ-az54eeD+>Q?9M~(vFgF1XcJlg!iGd?f$HkdiN2V9ivW+EB@dz#E?_GdI`I$7geU8vt)kcm`MWPo16ev{&uhXv4qI@oVE)fNIQZy>!Xk zv@7AhpPwHDSx^`#8bI@s^jU^;T~9By^~KTA(cj?!fklA8`uTUeLOowYOc%7qG!kw3 zEkoM$=+SvyER?I)Nh1OP+R&&m<4*kt0J_D#jqJg;xDzfa>W;jw`6;2n%>TzO&Xdh+ zK&>`+4#oNq&f~+;$s>GRT&T;%3>6q*3s3s|wS@t3C4^)Ij+As>zQ2=$9J&A4ODcL9 ze{XEFKi+0)5NvD|%7QXzEaCoZNV;-)L1)ka$P5I6-%S%!tYlZOhJ=P9Jvm;HWd98$ zmU?9tX*Q|LjyYi^OIF7F|4W}l#BZ3$E0Qg6W@+4keJh@H&mRF`z5fA4|2ORssf`*7 z$Sd6-uLo`-1~luOZxt04TII-Iy4TGR4kWv5j#pEF^z{&WACg*#qS#Nqo!Un@P{`rI zk=8L)J&+cXk_z0lw6-1qX7aaH2kMxm2Pj)`T1&-&>D`3}53|Q5HvyUq%2cD7O@!=# zjz*;h;A{Vh*WyD|^=*=|#cDlSYWwZRN;!}2VLZV?#=wMk#qX_?v4wIZ=iq9b&|99j56FXJ-WC&` zhWZAh+;4AD^p+W?-|0T!b5>go4Y* z^!;BD@G%HoZEfO#-=ND+XlwotFWJus=hVF?d~eZ;ul@@%c@?1;lnCLuTnhrfe7A4Y z4M3Yiw{ZQoew7qO=)X{Sg&~rWkx|^=4(sPvK22;^zPS1`sOk47+=o3MuUY!ZkE4I3 z;{)fNdUFZ+84CDK2q;hOleUIJN$CD@?T@ridJn`8vP>a%7H5W4wJU+-yc$jM?-}FY z@ySjXxZ=v?L4yA#PdYhxX#b$YB`a71|J`=zhVE@bsfg(R=nMGow!q0#-fZ)Fk@}1t zSUM$RTe$y(D~LMubo2A~m!XekcUC>!Qtl`q#|W0O8`=$|ECI3gH|Xo<4mr?Nkz8+T zqI`}V6yW0x4M_u=zhTI1z|CAsF)b+E5YJ^L3CAY!5A68wjtKUIiZaEGpFicY6$)(E zr|et6iV!Ujw@LV$Y2pQLv%2UHT@~e^`}`jr23ZG^pFlmOqM_mC;rTv0yU;-aX3nAD z^Q28UPcD+o{!62QX$YJXsVONL&*3gp{{yK#{iXu3KOaFRyJ9-v>FEik4`d_!w{OenaJ#s;lqih@h6Ezgh66XM zJoxWbRy%zCq(3is4ppxbTv1*Q@h5Xas@i_*b8Blt_NfH6zRX(;zNr>3l2zxZ1-jK0 zRi6H#M35w`E+8qk&o zm%rd6aa}h%vYSYHcNqQ~Kpo@_J4w2gS=rOYCP@UBJD7B;xg;HQ7b%mt? zd*Dxw=t}*K3u@2jo5oWf+fFAhwl1o-5oh@T$r)YU=EqO|&XlsOTuTG3f)($*$m(uf z?BC}{USq;J!ptoPc!y#iwNIf&?v1Jw!4I*z@ZoEaL#FfpMi!2p1o$>G|8okSkRt$H z#>CIBDp>sa^Jicjfub;lwG6E{K1{Ts9`9#)qd3vKJ@{jf~m$5dGK*$~-g_-0d;)bV03s zn9OdP2bIHbZuMyQRewLU%tL&&dhsHl`5n>B>S{c6$3&a~3>5S0_N9woo<8|j!uX#J z*T-{WkTSKj2-}?Q{s6sXp^tUV%sM&YQoGJhZ3lGstj;D)lrdsmb8lOe+ypN651Cpf zVl~w}Jgf*0`@61u&#MBZDoDvG7!WzXu9WlZ#6;O`Tt08PG{k0pr&#w3K9s$@5=qF; zJ4uAgGM8*eLkjJvm&8H3jD+DBPm}vw}X6 zOb(fa6~o(f#XpCao zB;)vate1vB&-EeUk>>3h92|t)I)-Rok`CGI3r89qHRo@l!|LJZnA;8rRF`^+baa}( z$IO}gU*N`Vd+Wc^Mkoc7MBkQ{N4#$_rIR^a=g5w7a%iQ>rF{WUGy`WiC_UIXI0V4X z&bIf|WoI*HP(oJoq50n@+_Pr^- zxnLrz7C4LlYoHk1KXpdqy=KQdcwF#ASxPyL?#puiv+TWKwG+i9{O13!UcF#Z(w+Q( zxNExf>Q1t__os2vsTBcK#FL1mCewsH@x|>+Hpi#xvg=it?71>Dgpx+{HBzk{JU<+x zG)gsdc_io+x_@wLNS7brpl0!BqlS}Tg(`AYnkwZ?z~SMIX~EQ!{HlVpvK_|<_O+A; z4 zP5`>~cd`hrcU#uJRx5NTs}$>3uIrz6o1Qc9BaClJ^Ax`S%FN06JK6lJikyKe6pmrS zlN7RhIx(Yl7&;2^Fp%b02z(dC{k>CBsE9jJ)DWIdVpQEFV4M}0e~m~KC(a9=G`YD` z34icH>6^#YU!Fxp&{vP1{F7@DH*8-*^k1Z>Qs)KhdOD`K-%=t`4)?D2^wo}tb#|mK zLSoiGYGEXw{6{SOT`&K;pJ5d$rLG)FQMPq@Oe(!(be^!ForgCD1W9R?lBC3%-2jVB=)ixHqL)d-xqgC;y; zwQaOe^&1Brim@9u(742;24J1k#-h}17G`el(%J|nGov`;6+Em+&0jsB6rZ8$Nod^C95Hzx-oX8mxSQhQI zi66t@bZQ-(mA^zxvMJXUA z!JPwXJsJ3kzO#lRe*qNZUMcP_#nlkKd=J%Qi~~eyQ}9_RC@aFccI_<(AL|@OpAs{0 zhCf@L)$HD;&$iP0C)@96)}LLk(C;K&zSO-uJ>8I3dTQY^+|j7K{sxt&PrG2a22kNC z1pdisX^8s`t!(Um=T4}+E=NwSqUX!UlvGs7`T1+m$h;30-tF7Bp~I2fy?DkZzu>ZL z-@rgvzbIX#`Q;K3{#!@wt~Zklqc_)EPs@{dn_kpuUMuH@UAC$HABgNfa-0Vd%@!o| zq4e;UI5=dDTG@aK1QB?3{vV+FCFp|zb0)IO$XMEK%xVe@gx1zp0M$yAu3x$o5D{T; z(X@nEmhRdHXYY0i;%#eDUcL^h4pgvO(*>oa&!ca`;y|2Xpa78mqGL5hMKCT}q0<2& z@kWNpY`?lGNmSKr_J~2=$SE>zXrx&3^$KTgw#KvmqAj`fb$JYKQdxeHn+ z=$YWagZJ2koK;(KV2?Y04xvl^@Y+Dyjh)Z@cb}o4?_>A?$J|_O(9$q4U=6>77Qd}= z1I(}>HnZEND!ee51#mZTSrEc;NF9fSJHNc#7I=HpqBn?}1n%pE-CQi}gVCWO6&T0z z#AQF2kRf$&TnieWbT3*7`xhF0ylLXB_%S_Ge=+Cjbl%mzkPo-qMzghYXik9M$9bKY z=;+tjv>L(wTj@)GER)8?BeDO=CRQOP!PDZh`C-^eBjeN?(P#O|$yAR&QI$q==3alC z@)LM4e5of(oH!7@^&!%kf=lVR1CnZ0MZG`5TR9M}y8YkM^;~oB9>a=rWpCZbTOVZrEi>la(}MgMz@$s zppbjLaw$Xp;-J|+kg?uLeF$y|Y7}tGkUQM{*-8l@Dqb~p!S5ASunC!9iINj^u;F5q z=O{gHu4*qfUrztWh*NN;iTMD)CLcdPd^CRmEuKWN&qFRW zMO#?9xGRzcgAh3j$7oE>Xqg`gVF|WX2uGFn;Cz2`0$}W z2~VNUryxKd5D%*PsZEqpk&+R5w7MLt?UqS2p3!0Gt0*lM&6R={(%>)OvBYoq-IS)d z3rxYv3xHIx@@#TbB`2Zh44OV66Oa7toD8VzH?NdVfZUaE6;7s2L~Tx#!d<&D>SI2D z4Yy3G9)<~AB;jV|=H3M-(rEf7m@haxeFnRqj0dnnHzu^2AmLm zQVYopkx)r&*TA+vZaq!BV_|z3d~n;r zYFcXQ%4k_0^nX+~K##21M3tiPUXGDcvC(v8lCqrd-c(M(IA>b6#+&{kjz58^z@y?( z)CssIs`wYUHUk~TFt?|q`N=BucYObhHy&ya$-TXcpV7N>J;^xOWDTl%%zF7FdNIX^i4hQY83(^j(@NbOFIB<5cJoc zbjTaPKb5mNm5er!JUm*s@> z;4Q<9sY`fxHw#ODTrzin8Dv@;&|FfJv2=sz=#>N$RzbCrva+zSurWK4dEDh|*XEa( zP0vfzm6_08TjuO-E_rAPA|AM&k|W{ZvjLhQZo*U&r*7PT)5p^j5DFn%+g+|n$D)d6 z(6p>ZGe%$yL7!9~)6o)K{#$SyXg0Y2wL8#{YqwYKa%cXWI8z=?U}qRiB%T&TJ$qG;C`6i^+_=dtTsNIQK|M~Og8$p-qa~Ru zmo_&)^xo?@c}<+>T0wGo$O`b<4bKtt0!mSk-e5`{1_nmdqXzTaFf{~%1_HFw+;#yp zpWL8!Yd~33*gZTeE4PwfyyMFku|yY2$u*R+vabdp6W{0vu*Yoq;sD`+9y1-Dg0hCp zkk%IQ76IPb&UmsTbZlI(I503VfpU0{8=pAo=kg8Oef$sDK0{$x&md^<=GdSplaE<7{lJky&hvcs=v#GEDyV2BB?e2=x6K-VmQ_RshHfJA~eoWTdiWASTm=E@&i zgX%1FbijN)>BAjCx)Tg8UcbXWQw31}5hTdnT`>NO7v2Vo)4W)>5gZxF(7oBRu<&q# zFjyZ)t<^K6xFtn}g)qG=?gL*H+}%_ge|PbEGJ zi)jSfBv;&FGSKre1u3b^LBk<*G7s_{Rx0LTx77cDTLjsNKpjOG!)PGUbK+nUBy`L^pY$QcOyM4ilt7 zSt1K!kp)m9IHY_-eYmmbFDI%A2{plb>~|cU{m4A^iV`Z*?rwO&`!JgB%_D8?X+Vf! z@?wuAQ_xpv8u$r*&CzC>0M_+8#UL}Za~(Ew)m#q4;aj_B>D~xC7KoTWT-03&EpoE- z2NVat;4(rJPc^Tl7uN6! zT$a6nJ-D#euzFo)Z^!Q~=?feH^G7VW22&kS-THCn#f{^mV7#)~tFqwM}iqevR8GHD|NF4L#<*|wl zc(G5>P;V**KEcnc2}2FCOw-{Bfoe_Q-H)dL-Q-#&K9RreUl7kd?LmQ}qMkf^8pMd- zrZ@7v1K&_|-=-Ei%^}S(8%1P60yW$BPB^gK^%*~@_HeEK@DLs;wVPvBJvLTO;X_0I zp&7v6b52%c;qHG42+N7S@SThKLjOW06;bRMJ+|i!o2R7DeLT_#Mywhq#8k zcjW7zuM7G6Uk~}~`#&z(SCf!!uiHStI>U;ESpu0gHAgVD3!#Dl@5rl|jY>s_We2?c z2%z_Tq+~G52>c|#^EZ?g@-^=Nxaj)=6M~<9L`)Ec;AxblNW=#q7ZD&ASU3+)IeB?5 z^QlH?ih@aH#R&;Fd=MhzN(z&fezccDDi6aaVUxltdh`(T^sTKe=<+L2U}R!q@^NqE z1YXggI5kxdY9<)RLH_A&KS&wkaeQ{rQUo^bQ+t%F-vtX~Fs$cg$|$)HFq;w3K?p(u z#l%EJFh9`|I;S8u@DO1|f*ffEB~$kTh^G+o0ofWTwlnZplb4cu4--7DU!H{{Q@cQ+ zcL6vpNa1!$@|>1qwAItHGBTho&h)N8HV}KDa=LHBys5;v*(8ZyC{#>h@xb#nfD>RU z9RUG>hqZ_mQm73(K2U&_iw5J{;86a8F2%cGma!d?4keN44!B495y0FYae`wHLjx>V zCw@)OvU75}>uzvuDD9VbL*5IM1xG-PS|*#Fu$}e=?ELP*Qc<^lHuT$X^Ds?3fL8@I zI4B->R^Fsv-zs~iqQYnQb0#$sfYxFU=n*GxL&!jgni0S!!b#ZGHw;xNjN*c2GJCth z2ml9OtA(p0Fj>LJ9;Q4*KWcbc=X$E8I$W}42!1ood@{4dPZ;wx?zqv8BzMt4V^AA3 z+~VM{0!j+#AG7_$Q8;a(y%VD1^&I4Nk}t!UfXw;S2fQX$Uzo~h`BC?T-&7zZEwr=% zN_O%7^4@U~5E2H(Fl7bEEy&<}eSP7+L#+joJ&xT_nw=TFs|F$wtVgU~eoz#R@{NCZH7gJi|fd4IuaXM7M?Aw*eX zgvCn`H1-gOKY0ai^VQiSm^B%1`v5tKocF%tiW9o{D4jtS^9tDFoXC90u0_5O-S3}Y zAVHsKfAAe-_5bws*F*mL{@*+ddHDbI(0@J*`TPIR--u2)iw#FHoY)GC+mL%@5uxtA z65)*$MMfI3YCZsl)StH!&Lc=sp!jQC(dET4w}6< z%_a^Zf%-K=BM=FmSmha%rAmZywY`H!!`|DRncDIWntYyG6kEHQ*nE#-(N4S{2rzZZ~E&+kBWrj@NWkEzW>qIZ7sgri-W63Gug-4X@4nWSYUH#tN&}}|Nr5H z{OciqegB^h*MA(WNM7>SLy+(P`mhdcL;bmi-0WDj6+mHli1yWd8y(HJMbcgXf=EpcmE)4FUVE39_W&Knl14sN;Xx626qa&)JbL^aYYIo_kEaJ^nF%C7< zwLQcfL*ThOh#s-qSHz8I*MDY zK}D?lfTZPDy^6W{I&|kGS@V$!K#2lvpp!54fDO1{2Z7{JM4Znd<~!bxd=E0e{(u=! zWe>$p)eRHR78Vr&4Bb;jQ+4OjFD4q{L1sfGerUpzeDNi+C8nKsl`-#L3!mfar&9r6 zB@cvN!^j3iXMz5zRAhioJ_$f_3ujPN_7TMV_Ld4r!j?f(44QNB$}>5X>)8;%^f!C$ z(Fjy6yP-aHhFoF7deju^P1PF5J?QN$h2UHoJGgi3Vq>%b@fJj_jtPDnYxz3xvH}&* zRII;&-b{Xr8L~CNkwJxlb9Xg4CdttZZi?*I;s>>1Z0 z#RoALK_dh4S_vv7Rrd1aWF0VZOyjEl>uEuAgm*Yva2kqV7%T1!*?p8fl-E$<{xZz0 z`y9$ZBOcKO^`(DwfKLl#KJA9J?4LdnLiPqSAu@Vv?KFb@K!Sr!%C|e^&GNiq1~N$J z?+oe{-`t7Spm_$eP#Y*{p`QQ-wVE6?TtQF2&Tz^7K__@8G>7qPYq-bvOk~g1Qz}6! zYh<(ljmEJ0KKdU@iv*FLL3MHJA88Ljy^fp+I-h@_)j*wx)PIoCPRHpTcm;z{@^25I z*w%vtCx!qYrGo@`KhWTRY+e?IybCJx2+X`GO}lZcL5{6A1V7gnkaqb2$>#oc%G;AntY{|2e_p)&~mfKHiL?#6;548ntf^DyVHMuCwNMmYk|g5WVfrG_#wViZo^ zs-FH)Y()T1J*M48oB_vXnf1$J6CQF>e`Gd*=FWY1njdg=T3;aI1oWV+!}W&D&ZT;( z@C)+&=E-w8PD$LHW<#MwNoJMa)zINx5&awx46tgj2qa5kfZ$s;ktA_iCV6&yv5I>FE) z2UC;}~xm6eHo zSD>F52;<-P=oMVgrIC^>J3k(nxoG@^Qe@`Ol|^0{;ErV=EI=#7&gvwY9Dt@rEdod8 zz_fL9#jLSPJ=pzb_B!T2TH8~mPgXTb^MNLgjdU`qlM4(tao^k4`!MgzNt^jDu zT_D-u00$os7{~_0BA!T`yDNoUg)Y4U!SW%ba%jNZ13Lxs^pLnXHE=V2b9g;QeCYdla*J+ zqef;HMA5@IzdwgL6p37X#TK3XHc;BPPdbS=|Gt9IOUg<2__y=@@ABIJCPBR?yiXRW zDRk}MeBcY)e|+G}BSRBQ-IpwnOf)TZe}66ui@5G{efVfFHb}Gn`5|0QiZD}w^HR-@ z{2GquH%=AT8?^6A?@uzlHN#n5GijM8H;mrws-3*Xe1(o}{mL~73K63T=jGAEyhM{Xs;Bb9 z`OdYcym(wN_kh(is>to^xvGa4FWl~~QLYLOv*~4je_(`5|MPa>^>AsAs7ZxRbZi;J z48x`nS}Q93lunLQjB@#k|F081?}~O?!6aBam?5R#J?wg?If}n=n-)ZNA_r^Xzn5P$C~`S$rnSE zll*E=uG>Y)G;1zdE&6@!>75FBFH-n9e{z+#u}nqafvUiHyz-qWtn+3uvK8-W{dK=x zZgCyV4e=0tPoYi-4c?{h($7Tsvt)DdEy{`SotjX5Vi=k!o2mBQYyFpfSp4&hIF1xX zfo^90$O+lK@mB43$yDQ+hbDcPt`4u-Z*7;5^h~!k>Oa)|W}Ta(aNgQ)s^{9-fNq60 z-BShye9v|wG=Exse>Bv>u&*6u{R`WVA#HBInCCfF*uAu|`ks~2*8}=rwm93ZPD!Nf z;Ql~gx!C=bU8J3jA zCVgwNl6YqMjYPNTkj9=EJ?3p8t5cD#_D`6)DGf%&?qdci`;K3#jE%NP^cbP3H08;g zQymEn3yYglH7w{Z(CgrN9dRS&nLyKMlSk4_v)7wbxY7|3N3O)|=bh z*!A(>F6fAu55G`jd+W0rX)lfKJ3Lqz7bwWFpnV#zKp59RH9piAor?4A*A7uqqn5sy z4W&;qdGKi+^V%YoBm|RQ17gL~1#VhU2NF+mFz|QI)5@jM$AqeZme0-Fv@%B~EW2LMFc4>JQ z+MIS{f)KgN*0jBVcNohF>vh{M1QE@jH!#E->_u@cHO;&Ee`Vo?7g(1ZDOZ;hMq~FC z>1NAm^sS?g)0s=MV{>(nSYGYa3Yyf0IJVaAt#&$YObAHsTYVA3F5i6eeBgCq#(k_$ zAK80SoUTn5Hf2w$Glh$}@X0?(yR;xAJE)mEj;V`5xk$3(%-6xxAp-3(XuUScL;oi9 zvj5+N-rKiW;R6yeEa1bHHBB*WNBT+N1E|Z_ZZ z$46qF*oV#nvQ*wI1s`sfG)LFLS_y2jFHn$WY~O5Yq&a`Qt8?y9zxT`P+9tYl4Rfx` z!7ZmeSwZGz@xSB4|o=Bp|k9*f`SsdAdtx+v7* zB%|1DZ>>qzd<<=>!Dwc%{mRni{78XalAosau3s0)#0y*U7v;A5%U?QsCu;@SE8;KR zp0%r&`Kd@OX-grAorn4;YGUVIM48TK?EJb&i(x9l5Esjod(R`@geyyfEmKi*%*keR$+|50lG6dxQ4wn{53Q*_9-UAR661M$IL!FNzFG ziape#ydf7ZJr8&hXnA^4FgAfJjNkBA0jsa2H`TC#A6u*7bxo0;E>v2eiixOGayr{b z=X_G(s;~Gf#(J%nZosZ_H>anM0(05UozA&Bf`ePa zQ)(nyCB7h=CvtzS;T=b^W$Q4j%PhfNQ3vgnM_Ny4;l`It!SzN+*JxNsvQlKN1N>xz;t zc4OsNwsaKL)(Psg-@bBidoSwWP1N?1T&3TmdAN6>;{o5v{ zZUzx@c~lP>db0E}FBQkW4aHm{;$ko>>%Voqc##UJ(ay<89$sv@=`cHZPxu;9=oP1Jtn zJ)5+tR~wpdm*+wk?iTu`oSW1-4A}eR{obuY&&>g|CYNa4pU;r;@g;^bdCZHX?MFD%%gDNd_S z@}ov91#L)G-T{^Bj6{5t9nPGQz|L8jq5;Q`{96w)yo<-G^!qJCke?^rq8O`0XzY>W# zH+3dTO!R*0@WVuducnqgUgTd`;(OY=9?@R7^D27qg5Zxi{=}NwY-PB+jssB<3ey(Svuxu5QfE_8;CEJ302Lo6RXrs}K(R zD~&|bf8yTkUf6iIJo>?Bw8^@!NWTkPb@g+9)(YDZX2#T!lmEMRS3Kg!)^C%jLqv^> zuMvsLed@X~Jp6`f%bub1D@m@->!u~FC$*=SQgtt=-Qv-5cjm{aB4hJmwCsu<40_of zw#_lTWKmFAob<+Exnya{4o9~oL1k&}y5B{2`WiyLp7&Ta_3VcSL`*5cg|3M&^UA2M zwT^L6(p|+G{aWwa z#nh>d3ONVv=W1rklOGG#CREQbo|>?}kTb%e5$*rE_o5RSUZ;chP({=|7HrNdH)I2km>IGuT9ndzNOf2hb&NbVzTf!q zDY2yM?NC{+upeREPrsLY=R==Pb$bEf?LR?azWn7pch?4p*_^RF8YCfJ{}|^$-3A) zssi%p`NrSRnDW%mZL<72)~~EkoUhEUzH&NZ$Kok%`A?~B+t9meShGRT?uu(TH4S#B zzO&Egwi?Rnyo~pjK^%)A?FN0^H9^}|6`t>7*&zjYd{>&Hb&Es3Nz#gPQ^)jMpA+?5Cas(~)#(KuOM{eWC31e5A+G`k4|eE7gXB8I zGjg9{_%?(}XDl+CeqbmdwWfWn>unTcZI-C63tyAQ+J0?bgmvwq`EFz1&U-D|#h-e= zL-YQDyLC{Ce=!DOqs;q@ndeeFQig<5r|=&a^%PxgxHH+JP$k*cv|~~r8G20E`c!h< zgokZ)^W}@#cjDz%vq~+U4!B{izuNkLz9AATFpFWnYyE(a&%4vEJcz=HVe-L@V9p{# z#!CDgvvJM}$)>Ctj?^o$%$Vv#mSpuso*%_F6}LD^Ea}&LeO$_tI?g+OwMl@f7yPdT z+s=Cr@kU|z1O;rn-l%1``(ON09=VntRG0{=WgItHx z6_;OHJ?u4?b7rcm{+W9#?-?qwqkr&$H)V}5!;!{oO!ZQeyj^4A#3YI-d!Fx6b$2W) zg|6HrA*Iy_+2sk3j+G%6fn9iAG4Lg?ZuweX2paLc&JOwTPd+P+M}j?h=j*?&WmCzU z^vTEdT-h`CxgL7A3^)09`Ie87uo<16XL|h8r@m?`yrYRm89$1b`Y|7<+`hp0JuHbk z^ZRpQ>>`Z)(q!wfkmtfY1iqyYh0|W@IBUJdtSyi;+hy?oEa)mcze^g)PPwy}nDOdm z=r)J&PaLwbw1vULg1VrMgDh>CIC-%%Q7;tUKS{4N)y(~L#{q9ALJvMG$M%I6jx64I zip$`~5d7;iN$(uaD$LzXI|?^;pfVV_GR={~e`P~TiK&EQi1MRpro-yag_oQUb?LIW zSrs%JBb7dE4_eGv$g&dNE<37J%CW+$YY=g-d~1;TWL4<(PhZMTOO>8i6bErQGK=pr znyXlbHa!h#@}!BM;kZQnANJlmp6dVqA3l;4Qb`iZmc6$^gshBgLO8O=vA2qbRXFzE zE0pY=%HA_Oam#sF%q%1O$q@IfylNdjndA4E5pVqaTL)?M!a?0tZ(HNWAm;a)U5&A!=V|WEbc>cYP zsWWH`V-O;)>(Tyt3H{y&C#2aJp@Lfxe=xvZ^8lkVo0B-3A-QwNKbgHGU^#4A@a>nE+NW+yyRF?_RGW&H zUbiy(3>T{u-mXGaMDV2E@O{fCW*JCaPgFCSXIYWCqebJfY+ilY^{hb+jTa%gB3-ww z$X!To?1(OxPFnH{?b)-jrt1oZ&Q_p%c$IZuz`GI8lZ!xwKdR^)UIZ#O^M?!@D~h_3mSLSa(U?nWk2r zZfQm)7i1E)P^b8M9eNxraj-EeeRtWqmPnqokdVpEt1#Tnutm@7_uRZ=DMc}ZSr)A^ zsVXH-c4^rDHg%_BTOEpAM>Ri2db9 ze!e1mU-1q;gK*`1Ce!n{Q0pSvpE0i;3k@(6)c9N*v8L2d9t_LI4j8@@eCOxi*K&_S zGJ>$!AV}LHK4Q}ZC&_pm$K~|w`v2NEtapBt0Og^jSBZ>?KKZD<|oCSZp*<&bf zp>XnSJ3sKAw=W}aWs(y^TYl62>k^NbCCgjneXad3$qNq@=E(b`cG0`2^bPV7uQ<`T zVZDM|LM^{+L!7EhCruJRGVX}~na#)}#W&I=cV~Ek)2qw-i$xgsL)Q+Kx%h|fJnJMp z#G5L&= zCWrIfagtBdTM^aEN;gD+`SV5ZNtS|`-D1er!z*d!r0XFBKQD>(Z*01Y;Icl-M@PM) z;CkP!e)%QxA&0@Zy5*DKwk&U>^$8C|0>%t1raO|p2!2z!I9GqvyQCjgaxUmfqfmPT zzf1JFtD^@ZxXmLmtuc@3lJ?XID03V8BTqP^1q>-~eaPzS^|nqEZmfP?Khk9PC;aUE z`4d{2QpDqVu``VZqUq@Tl2YSFwm$?P>4K%DLqv7%m(AL;r0XfHt4EDDHWK)H$@f2T zB^~O~A#AeXoK;H9yQO-4!IGAriu)zo4do_KA!g5A~Swc$SU2TYp#e-DmswSt5~Esv}u_lI+0OYEqAKHZNNd_fjBL z!_3UAq@rjH$Aa3s`Jlk$iAdXsv9<}E^N;GYu7nQTFn=ul)9;~Au9msO_k>zg#M`#< zPxm9u=qfIU9}#4i<3i(i$>!|_=}UyrHJSY46;-|HD{U{hD3nE*ioigX7Gnu0K)8cqAwu-5{&i@W86>C6m+|D#*Nw zCRAxvblTYhdBb^D#=hjG>P+&yvcTbOi}%A6T$WkE{4)s)3$l9WBUqTNwq9m*R{frG zur+zGvNyI-nw#~tKAwvq^DYJ%*cI^vIV}&Dt+}&;G-SVu-`l%(*1G6DnRSwl(fm|Z zaE)F+`|y=Y#%JS%V@Z5g7P=Dgy$T)G^g}H*ArboNh2)F8p2E9zlDoIW!anAZKVq<5 zF~GqMFzUA5xo#Xh?I(0LZ5a1#QH{<5vWim&HNE;+Yy5#`etBUqGvjT8ZI_eD3pXG8 zu3BVp5ejIuJYnUkj9!1a_CV2NIu`HPy33^BocJCzv5VEWR(z7q4W8`cJyqC9v#<~& zSImu0Traw@mF)hML7*hb&ZK-?IqUvl%+dK*I_t|iel~$~y?HmE<=d((+Auq{`Cnwv zyLPd(J1^{yPlaNLm@fxo5ryOELA14J+)O+>db@9J&~|hyD8!=`q2=X2K&4}>oy=7x^%28p&dt*?W|(+AV`duHO_o=FI?5sXIJ&zv}S7(VVXc{^|Oec^7`_#55Xj2rLGLOEC{1Z#=# zg*5O&7e>o03?=V#FHn*ROn;E*`rsi_)^8N#7%FbbOip|DK#otB<{L+8H0i~}Y5n)w zcFcLUJDb1`+U0kf#cBei#r%jYS>A~$M{dbsi=FYL~vux zf*`e&p))t~F|{ivP&!$0Vgq0&WFL~h68KYfMz z;;?`Asr`)_j_#>-$OQh0OJMT{@!a@cIfgbGXW?C#e{%OO998w`u?J=p&Um&mY|^ezHS{8OM zm_8db)BQ`h!gXW+sr#Q-r`}a3$2)u}xO09peg0m53@z^ZDCWq1)b(K7+rGy2Ti46_ z4$bECQI;ztoY%g4VqD_UJbbh2`}3RHl{Qbiv+QT09QjON=9#1aP(+Y?{E4L6w)VPW zS&)HPjUp8$)VWOdaQ29VG%-6Pc{T%Qd3wM(Df?|)&6F_x^^}5%ovHKM;tfNJ+>bF? zs5b<)%;wovM={DLu z#6bSFC#TENnmdK&5u>im$?HGAH`2N$@Jt4{28tU3-&O>2XnCW~iSgZ&yVE#}E8!RK zyO)#V9*fxWK5$NYuBG?ni>fc#gmTK1?{PQ}rir#`qdAr+MJvc=X3XuM%&Y++Sbz_sUbi8E}0gViJ^_Y^%&xca4v-t)b!`r-CiEr*3OcT6|l3OZ;{t4iTYp?^@Il}W?d z9$Xm-$fPk`xvvu8!ESivYeC#P&1Zr#(R^#V57S&|<(i9wXNThhOLmm*TR(VD+~QS6 z>LS1U*}hR^g75tSNh8jO>dkrbjx1ib%%Bk-Q6`t)orH(IPa@{Gs*|V^0yaJ^<$QQa zr6p+TZyX+8p>0P~;Tip7nb{L>S>Ux|_xs#qZZSFPYYZG!KGARKzP~zT4thMj`6wiG zS6-{j?p_mF%GaB?g_#aHwkMf&gw~OdGR!WPxXqYtGHDnZuX|?J@s%@0-ecv6(`{8w zP@4(}o>OLCqOW`Nt}WqC3teA=g@l-CGDi9QpP8uu-Opl#7h_x&5y>UQ*Xg`z9?= z7x_}>#u<9$x{hFtH!JVN0@)L$zIs0jV3?d$*17$jPGo%QsHdB%7BBV|;hXVf=Iix; z-aQCMcG!@UtvT^{=%`;(U)iQ8duoc}==~|FDuByrV9UtDX~|7B_~DZ!_oa5@COxMb za)-{Ar;J&PuefMQeV(u}hso1DTmKkha_(Z`kWHq?oln(pCJ$Lb<EODIDqmJbqZ}o6Gmk>z zje7Mv@JEjH5)Z9>Ip%f?_BTG9A#lo^m!o+#bi{l&gWgzSYw>)n$#tK>!^veI6XMU3 za^2an~eT-lzzdsU`*WMY7?-TNM|w@97szDLnz z*VI>C$2Oa{=!WJfS?*?(xP8AGmK>m9krQ#tUq2^k)3|@YejNh>rhtgGJB#6e=YI*L>Cik!$VxR zHL_VEr(2&fIs6;X{!Ga$oPD7&a1yBCFBM4sk-@=B!Jo8*8L6d_Y8OYG-1GHA=1AY& z*1)epVM`yUTSLx?aK!z2c}v;i;@~SKh22zI5xHq|r_~LP4#w*&zp8lAeAc9wa#fAZ zzkfVax?GZRGZVMRRm1Ko8>Phq+3v(V`j_`)(ws`2 zK%>I&Goe7DD{^j24G&1F)U{kke$cP%KT$WGq!d~#8+ zY;ef6wZ_O*-}`DhYBCf}8ALn=Wn0(2tMdgG?L;y6m`i6~2-$vyQ3~1hJG;(#Dn}EJ zX?@?^gGVQYAkS+z8o|BS^+aQqjuMU#XQz4UT`YsVlNsW|mU#Mgu5joak z$>kT|n@BHKFBx5$Syt#>>(e^(`c_uV#c1Cd#6#S!#ZbD1X-Z<8Upv3n97a#+wr$6F zKCg1Mlla7vOxQE-y>AJzR}@ctWcmDF?ajA3$Td%<64M-9tp)o|5-s{ASKwiGZ6Dnm zty`<0zGw6m!>rOIRZQddj+G&Wv6!kXCd4<=g!-C+$)du?gvu-Eux>)b+@~FGEw0z^ z#4jhUogvU;FmmO6GdDe!9Px=mKz)3)z>zDOwC!^3{FbS?ag!u%`1Oxc{kDSA78h4Y zhKG@%+1>RPCNqV3Vg{oWuLrNIo|m273_2+1Ab6v{ODZ$^tmS%y-c8+EB3bc1Q4=E1 z?+MXD8qZ6moq0b<;}|`peO+ioCr;`z#2E2IC}jk%GLLnCT-% zALH!h=Z~D+)tbp8e@>EoeR9DgDSdW^H(Q-_J=*=owMePvhm}mq2!Yp2?nV8ygI3{d z!lpdS+IpSC;Hs7Nt|EWZQBOojqQ~3d>h7aZwi|(8*)g|Q+0VLuS-VrGVm}aRS3UWtltPtn!Pf9gM-};f{l2Pk4hNlJ?)x-f z>^4})8Pq*h%Ji>=+NrInFY4C@+s?a*a*!dja72sZ;uOCdYEF#l5u_nyXxOU)(`91> zf4Lh|>3qHN!B)@pm2Q%7wuFVkW37Afa&&Mx3#t|Mlw-Uzv#?SyQaG1G zVWHw_t8mTFjUmRojKk+0eY5hW!%93<#Zjqm)Vy_B1Q(P@tMejl<`m^0i8lXou-*|U z2;=iAEO~jREGZ)tk8Etm@WqAg)7W+Dky^Ti%i25@3qttZxY_S+*O|Nek}i-{=rSs{ zSyqocp~X$P5+kaV(R2ND(O74VcSwywtON$3EfY+|u? zwCxu=b4rEFNK*&eL~{w_$-@ejnUyO%zqFs0OENk$c}*0j#NHu^%XD5iSmB?HkI zVa#(jTXA=>^3BSbwot)4-aPmblmu1L6Yt+#<1o?Rqo}W`TNCr%RmR7!_xetXgOB2} zsEm45DMwS`U|*PmE5bTq=che9g-2^iZQo%nF39DMCak7#HE42I&f)eAVWbGrzdQMI zN{6Y?{#In)M>ms>v&&u$X9KOq>14!DJ7C|nuW6= z^6kp%1UvES8}-)pNrLZvcPn4KF?pr_wEf!{(R&VUg_^QhX&z47=10_Fy?!FuiPL3(a0xfl-ymS8fJB5twC3J`nLXH5UKteL+|az zB-4#D7KPrYMJsiMuNF8aeq~jTR^U|?)n6eu*6UwG&hWnZO+fiWbNPA6eq?i^!k{=O z`7>7|O^Z3sZ>s$n)}AD;=lh9I=Zn~ms+#)56Mjz4eqxyu`I9oGkoh&lE8{M{?9G@d z{CaK`HGP4-zpJWjtx zTNn};O1%ARlYvy9Puk_~+S!e**`G0QsgL7VT8@NH5AXUd`PB+M{Gz`0+h%pRyGZLS zL;p)=@srilOQb|q|CzfM;QL=?g@%U%l1oR$#0qKZ%=O5{#2Nc{dD|yXkzCrAW^f8p zL|BCD0n+lRg)@zSkO-Hwy^THUk;4;HB-eeUtEDMY4)w%?OUlyONfn8bwzqY#w?o=F z69~h1P3_H)s!ve1PIvD7ryrmZ{^ymPXn3%HaIv*>`uk3*D5ROCsk1$b2G0L*{kLZ` z33&K;{~tBa>HrSdXcIMkI27t~k<`1O7>&y$bB0^U*sgKHzY53cMHM5$33vWn=fzk` zZlPHH|M}McjK=@0jsMvW|9=Y(s&hC>Es_)eMNas)bD94s#;eOoaXnIg;$%(pH+86U z{eQ?B1lX+czvl-C|Np1?f$zW04+J~{|8EI`hEGs{kNe+Qv0sxO1{ymjEsn0L29n%o zuiYp8CeWzFvpY$)YvXvk&Tu7LH7~caSo@K_L5b>CwOLknbj2V_{+klNfHr@WltCk& zs_UN5+{Cm2CpSG`lfz4oyQh2N-QGQMaeUKGW>Z@`UiB?tZ_#oF)Wan6O48w069Rz( z!H|D_mE^>SKmPNz6@&fff4)}1WnKj0?^o4}E1+o6M}SC;0Ts%r3~rRcMeoPcZd9Vqi{A}oM)y9h+FM%Y*))p~Ne0?joI!9a zfmj&)?kU{FiR+OgzHkBSYo%4Fr&*{cAV1@wEnqvw&&`dsCIJ1h^78WT8Y>VWQ9p-| zPx(6xbj-jMZ^jJQn3x=f;~a>>kHak|(ATsK5=#N`(#Xh+^-ox35m0^D1&uS1wFHN- z{b7a8u;AcBaE3~%-~~hPrt15y7uG!C(A29-S=(T>zPr1CebGfOd;~6B^5JsRNUI81CzKPGDX{YU4zJ66o6ju8qXV?I<2A7*;!N?&hYN+1l zaIC_fixPy<xr4Y*xs78^dEvIfBfLBZ2~ za|5{F2l@na4y_AOWpD`)gb|2y?qU~o?nCfpyseVVe&YaS_LqCpUOeHVtMY)$Qds*g zP#xt+yF*WJ3dR>CEz>@`k1tG<9Duh6{TtO!b!R91{r!8y50y}#7`kC>lE7DmB>z2D z+X(LKCHwr*m5&7Xqv)f%#*K&ziynUD4<7o!1ySrmlrQSK{`4DM4}bCeIS3?Ra-Pr4 zgNc`xtMv0FkQ$j&W@LmLVB;+<-P#w&oA9>55yb_p_&J3l|JB~8kI+?mz%C|*eRDuO?O<`xK^s9@6OT48%BbZUBfgFp!d ztV0p(#qbFBs2sOn-!~#v#QVzm;HGU*Xy`F)V}=i`#qXk`7+H)WO5qeUeB;;ZD!A>K z-5X~+i;rL2agBt8?$Y{1)hD>%2EvXk+AZxp90cE1U6h<)%7zH;{7&nT7pL46M4X?d{H8 z_00lVxRNg?_q;4UU6wkIxRYHejcWf$$t$ z#Y5m4(yqU|)RqTJaZpK*ZlfC9*Qzi4xQ;Hh4R7=B zF7`=B9K&U_xu~dk*pJKKZ?tWb$VaIbk&8O#>dF7#O18(u-i15kxcv&KT-zAm|AZ zNPGAMe2z)FFhel(SvMwqLCiy$)9=@et1gmw#tmy$a9i5@^{I!o;~JZmhE!E{ z)tp=hsCb+srixw9%0$BU2YItJOHNCVHVg>6Xj9ztrLP0Ifa2QCprZf>7Z;2TJ~l^a zMoutUy2EDl@G1)~Qix*pc;pL1w-vS@9S=^hwd2|aS{&2Tn5F?p5eoZuMc(!hfQofF zh2hXdKtO=EbTeZ)>yFHk@Mgk2^~%y_kgtGiu1q+SVGbM z{GkfX)GjBk0T&<5dycdeA}-Wk`IW@uQqo`jlk2LU2UpgYn%4{?u8@}hz{SFW_I4|{#p%IU0jl%niZ|&e%Z|^s9}T$e+D0LBLmuo4QRYH}%r`{4fq?-qbaa{Tya9n3 z8=J=>!wLjhPR(>b z9i3RFd4=b2<8%emCsq^+^d#XU$hV%r+6>zJ3A)@QUqMI9V?UG@XB(8lz+G|_1j=^l zh&e~j6B9=-_<~bn319p)>%DvTBK+k-DHv;Pt*vW(k3D^Id}F93z$F!HISZ-)V0(_W zMuEro9tY2)R$|DPt>TKmqJMB+A~f7)nd5`2u=;H!H32q##@-+fto zN@H-sY5+AF(BS|VYpm)Q2opS5)7ApBc*FkFU!$L3O|w1IB(Z`p#J?4DU1lg>^Afc< zRkY&YWL~n>?#$!q0eKpv)a<5e^QwM6lJ6uLp7vO{xnK2jaq&B3X>c#F6rB%Fhu{hC z03tysu;7{-GW1#%7!~S5mIQ$@G{@uWZIH6M3+MzgGI+LO4LGEXl+WzKPBrgNtb&X6 z@Sp`I--4#5ra&s;QFRX_={obSc<|U$*Xth|+5ru%%{U(~44CYa~qa)jH%JG;A(R*$i>k2TE%C{<=P)IWhAP%;0)iQV1$p;Y(T zu|(6)_(J26d|U?|iW9IXK@O+NbH@rZ6FI&5_J99DE%hpShv zY`|?{Ff{rM_B|G-k4=*8ZM&)AW%Zp%P)rUaDE7S{OcmO5s96x4bpzw9KTU*Op!6~V zw)35_JYbp&(|{@5|ADL*5I*fH?6SN(6(9M|G;MxBvdk;%vv4#?Oj6P$NT;D%+K+zeg^K))Q2fH{ffhatfvASD}SBjLLTWF{%6S>%g zeK__(Z;D*k;#N%a0Bk+*(zdu|SnJ*g!a(r36Qr#jP7?GJ254#pZqv3%b>%#>+EsY5 zfnn?(7;pl$Qc&aEyt)d@H|AW5h?6-)EO-a^IQxs;eood-6fnpPb2_>E{Hm*lmfU_- zJlK^Du@h{CV4b9;rGd`U5BSvP{S=9(^TYG}=k2@XTR*C9S*DKF(fyr#tIvBVSOfkB zSatD#zP{@Kxdy~PUr|-MSm$v;+jzA3&anC6XT=H_J8|LLwDw*2IroGwD6h>i#8B=K z#ftlQS{_@o7gh+4Uoxz=efZ+{XORmY*5bk!o8&D}w{QO~YW}t0kfvHGf_!{ipg#vX z{aRYhC-)-IXa=N>jScwj?bnu#`u^^>h0k{hf{y;yXUoeErCiq3A)SDjFj!XE+7Mir ziH7hvAK8J`?}gG~%bExtI_qCf*Giu~x0bowoSYtwHBC+?Ih{dtwt!Zr*Y@H^2xI_s z2PpjGz(#Ef+-I@54-^sT8(a(w3_xZ->b})lmBEdAy0lt|F^On|u{b1oWcaw)muWu) zXu?7=0s|#CS69w&_w^p!Z8-;T%M39=#^ygDSy&IM zM(X{f2)Jtx!GV_X-|EDFh7|j?Qw^{g*~D>Q=OPgj?+!q6%?JfG_PP@(=Vlqab- z5zG>USgF6Jn;8vM2-QCzYz7V!3i6K-t=-+-t*!4OU?uo}OuFMy0vQ_no@>($4K6EM zENy@5)J;=wk2a7-Qh4}~^We`lR*fGe4Di8GB0;(u8iSypKsfB>;Q^W;g~mScK9GKP zf;JB#7P*jV_MeNf^)Sj~l!3MeinEf-)YJ{gj%W~1tE{e`pQJIWV=(o}sIA{=$7>C& zheD7e9)!2p`%=8Y03fy6px$P*1dosm%#H+XzB_>S21pEWR)&84+S}U;HJ!V=dk9G7 zLLID7H>ecHE0dmozZ1Lxv0j#2Xi&aTNWbfM;tkr7AZZSAp~Vcwnt8E`TdGYJU`YG9 zYjb#o60=jNeb7PZ6AT4op+QxNPI^PRp&y-?zj_}eD~P$U==w+ztl(w^G6$fo6Ze>N zy3{fdzt zgOzbcl`wo&b{kt;OhTY5f(8_usHmtkDoq)aJ3w54l#1%8nbN*>6C7>9^ZpeqLr}mI zS{DR&r+1m0*2vMGo^?1ES!F;OAaZ&-I`EEy#}3|;Z6`u&=4-H2vU0?fB%;w@t8}Wb7)^6} z*oq{l@glbAjIM$nORS(Rg))w$)I7jHkp9dqzsWXgz4xLj+GVd1TAOCTxU9Lzd19$|DOa1j1M^ z#BnkwD+@VAl(d^xZo4_O_y=+gfWBqWl?yDoNJtntSi}z6zk(LM{uzdXsM;_>GcdC! zs3$#M1gjfwr>Z#y@HeczIR|sxJ}yv{3#C!LEd(cA$aNUNY!?w9!(60kuLpdU}{4&>+nPbHKaD z0D;<{+njd2q>Mvq9qC<*oW>;4^c3>O8 zs^9tjdk+L%qU1@w!IVR^kHQ32jg{Nh*iValRC@2DShoH+gXy9th@2+c_Occ0TTmZJ zX^X0wW5*4c2ADdOt82CZf-fdH*>`JRdB3WtT%Yj9Y;{jx)uv{V?k6TAgec(g&kMu( znu=9Kr8KrX{`Hjsq|94I234Dz9b9rUGT|LKciex|@bZ>G#+Z-oz=;~zB~d@9|N8w@!w`EMjTK0aAPpppntMH;OpfRr1}Qc0 zA_hb%mT&u010|wrLq2^bR}1(+Pft;ydPFJ&aIG1`@Q!CD8MD#pSQ*B)HoTOk%h&%h zjUlgSIsYaowD`-)f1dNenaB~x_$)k4!|90^@OO}}Hba3L(*|DYZ|(t!|0EUuafgY@|*B=`IM1#Y~hn)BdS4Uo) zX$}XkiYr%mJhv@SBK{z*2`dK5tXBraKN>1;kz$d?v;LNy)V~jxdwsSWbPi*1nSDaU z@PlF!62=2AT+Pg6L3|${9|3V3$cg?frV}EnwXo8~!B}|=$Di4#-W#A11iv|yWGJ~C zF==sTW@c_K^ZvJv2iyqItb^_3;_6ynR;D==rtA1O4LdtKL%Em*uMAFJprlvayHfcV zCi_>JQV|*}#OB~()0%&O%N>rtXb3GnZ;3->YHf{G2rPR%iZrAi&LOpOK}l1b939k1?D@nRIXix;l?It)y;<~;*T?AFJgfKmYxE=K(y63PxD6v z^6aBBgs7RB+1KXgzsVTfhUDeLAsMIM=hh@dAecf8h|yP+h9HAhQAsYD=93{1N)#hL zXAtf6pfw4+leR+q8OcC`Yfy&fG@Yts|4r|j?{&fnIS|Yca8o>&S+1>-A7c>yC0qb3 z!GI2aqY>B)DEk=yLJHFw@F@qKV(fTlW@UkexS>MXD*3FAKW~^v7Y>5^!W=3!#MBT( zAYrH!sJG%l6P6QS^&obH>N3Eh&!0bI5d)Z9)YjEyF~CPQwgH5b;`8UmDne3NR8)Mc zlMfdAJQ!}FeW1<&f#L9oY{a{`IFHj4pT7`;d>k@0#7PD$4q{J%;~!^&{f3|4Dd-ErGI4NqT^lJ* zq449t0WYqtK>hrBVU6vqq!|(kdr#%>zyI@F zh*a^;mNP&692#i+GLl2e%KVESWU zfXvubgWq&tUwAeG`@F!;fwo&DKw)md{WC=xc_grAbTH~OVK?YwxPW2+uXIrD2Zc0) z5;LrjFQMHhz)t@)_G4sa#R{$gk8?}R^?iLY5keB2#P#j#c7V47AKn-&Yyo#~Q1!<> zb7s(WE0pB4@Pp+5(}e+uB%+Q#1Lo#oPXQS*H$D$x@2=H@e)lP+ps#@D$MXkMA}kk|2WVx(px&Y{9UO3lrrf{u^wBn98@Sku?np$l{2j+YT3j52sxzZl7$YQR zXm$Wzi;o8-J#Z%xo;D8;4_7btz-Du35`=^h-E>pr{K*zvY7oEONQ)nIa~B5>A-P(0 z2PXf&0Zs+8(TpJM{Ld zB1HrR%R!u#$|cp^kyFd*Lqz{(fRF=riJ5nuiF3#`K-gcs(8 zW59{QJE6>Gly_Ya1|N1(T-axfj2{w#_zH*ulwNOR_Xnu@!|cbeTPkWfAFQ-SmxS8f0FnXx?pX_c$CD!Pum{Hsl@>NE5yRB-+aNhSd;W6hl6{BEKJ*XAN#Qz(2@{CwlXaylXN9P>MfE55_|*A8bH(e~o_e1|I0q98gl} zGKARq0mWzt*x1itBP@tecmS0pC`o=kAh^alm$XjB{oHeB8BjaS#QiLVC{fp6xql-T zGmDy<8Zd=iI@9pz(6s3j|C=1irHze^q2Fdk3tmDU(Hy{EIl8!%wXSmII2xO^yrqu0 zs_x5n?(ErKY~c+pN!VO~${`rqC{*2${5}%{SrflD>d}HYGpgyq9yEFkbq) z$Gc;_FtgUTK+Sr<8$P(?n}tnK{qB{-{+VTA6Uy;{fBhM%@b;JIE>hf=lLM6b0zylk zdKSDHkc?Aklm{$gSSEmN1q3$bIPTmz0#$BoxdTR0V$O?=X?Td-lov0g0YX~fBgm?D zuc!*_5 z=ZNiV)ja5qeQHCk3a$R5deGfLr>`MoB**4B@JW`-8^+hY^nk@2%fR9_MubF z6xk67Tp#Q=!w>b)euccaPOmAJBT7*Mao`6Y@r&nxQ=; z4GB;Q4P-y~KSM-8u(1`uzI$M)P;~?yaA4dGK}{O^sbi2MA#nh8oaay^2U5<~-#^U2 zv%%U-2X+RMlIl#@Qac9t%|}k4d?`jp2SolA$a2GAC&KH!_ZyfoCsiz+2hcdQy9&_G zCwMiOe?Ks(0JsKNJaZrM7cT=h{(J`romMY4I!Pl~Ov~Rt&c2m6`JO3%^>2;`z}n#F z2g?HbgGyX6Y-S_i&+!;qPx~uODX(4-q<#mr^tS2t=R2DtpP*DNy+jlp7k2|%kl2t6 z6dMPJa?2o7em4gA$pV;o2;h)OVc&fKf(_C?JSk~SV`C$Pp0?-rbHN4&s`eI;siv!F zNNfhkXj_fi2fPY?*bHxupf>^764cwN1Z`q-a&8x%OAXNI%<^DPn*hqs93X}lXH4-I z$iz@9!Zs>|ZNm?!8KFv0b%%weZFtyKu1HGgLuqNP->G=$d4#HnktDh`k_YAv)=v93#cXs3OjTDnE&`2%r6JR0f}zf~9?ZQ5 zOJ)sRfv$5IZtv`H7}eM2yLJYd;v$&0;FFfQZ+3|jry=r;lBh!PHJFwps;-Y;za_#r3rY- z&YXo0uRt5)2b&m3SV}%~qE&2wLkG}x86|_qN2Q}F1>^(-bCi7n*Lmp$ItPpM;Vmj!)uEYv@e@dE4I#|8$QMfvJk1h2>tsVEhRV`mc+I&3`x zm>kxZhLZ=dM48@P+Vz@%>ftTOSz=V;c)#`cM>L;F75rBry~3uE`_8T2=?8EkV6uD) ztuP9H3v6&$1J)Dp7cAHJz!)xJHsPp-<9VFi|2$p%(CuQ3zg|m-kKjWCQjU#f&Kh%7 zYT#MlyuJ$YA8BVP;PE+@puU1pdfxz^w$mOd_h(O4>J^mETAMS9cG>n!ub`h zQX2TszvqHHC!YfN1#6j=#l_q~cAXEY(DYY71`ZKPu{?+8df?05%u}ow=9?dI6A~njTrj-GbM2y zfoC^h9}Jiwl+IL~kue1B1^oC-#mNv&!^7p!El`hF=fpkF^R}a(R)uaPB0XP&GzMa8G zDtQjgCJ0%k4FL|0E@s--3ov;&}UNMjH+ydj+t}B_g7bpdfCg^R0mSt*w($rE_|$dSPh_%jq|Gf zLAi}1bRbNeOTT3+lYKJR1>e3{Ph5~I(?^)Ufmgo0PY`L(2{nC$&5)q<&sirA9ZpQo zC=3ZyUER<4+0pvjtJd^6k`Ett?{AgZ0IJCFeqT7{pF{qetohB!5v%_J6z^Nk8$Z8+ z#y0@B{*jUYs0sf$9g$r=6D+gb2sVjKXiB>S=imvmqs84g&`>7hGhfUX`oVIpHjrer zC#9mRvs8_)W{}kMcvh>*^_Q^YFgweszNIAKS!KYR*q%sTDZ;<1t+TV%=dc{h_)yZ< zw!kqZteFU~p#Tctd|4@^h982P3%vaN+nsTIfb*~?vIMNq=0lLhzkK<^WmNxbc9sv^ zXW(;Mk2%BI0>IedIQtU%-;fRA?92P6G%2#{TzYd%v#0Mcgx8&iD1VdUPNny@PUWb4 z99nTFoZUWv35`Xk&u_x<9QjNvg$766rVb!(PpV9mS`I*0fHA(pYG@hG3N2059RdXn z73Y?n6ExRBh&qIvM`{WKZwEmbB;u`%-WZXAKutLAIigq*r|hpA(3Gi%r~-%1yrJ=h z9D;r?Sgvk>ioN251e}e7PYdmnJLa9_LuKGE_-$$6w5x?g#i^y-s_>sty#h@a&2Qw# zE@5~kjbL`cO)Infc&gr~Ceske95k9#*Bx-~&6_uY1P}u!juvq@u+RZC1E=d=rlh1W z9KuNrPNVue(}E<$jCmb;qq5~tChvjnbd;w0DDX>AzrsFN9Q|l2m#3yBZ?-=AX<@5J z!U#|aL>iZ+ewqF%igEX4jW?Mh5loEn3M_5vR?dTe2UCj9%g%>ZtzKu@ryh1zXM20ZyTZdapmz_&Q$(zQKnWl-=!(cU zb=N2ZgkpRGqT{613R~N7m}{+t+7Ep<90Mr~dz1tqI^HfVm?~_X!ilLUDazd?(~llb z*(pXZLqpMT&!q5@%IVkPsPO#Y2)TS*R><1CSgajW8+Z?Qt!+gz?#I&7{!&iL{Nc17 zVm=SN)xLGn{{Z;##89R zzLc%+%4C`r+~nLefFS$4fM10g+_xYNV*Pe(Z8_F?VO4@}XxR^O=(=mW)}s@uR8sb$ zIiLlBHLE?1+rNi>%D#pZHM2{X{77wmd~Ba~9i%Xy&h3b5$&0R!3(4K^PR}$`{yI`H zC3Ps7WJ2X&->7;cmT65$qr9rRx*qI9fL9Hk*sllJS=e-wO`S7l&>B2a!Qln+)thgC zg0TgeTC!bS&ZkH6T5l(r>_f|Q>|vk4L_qJz0?;$`sRUhr>0G+>77EBYum6q7NDPw= zIvLZtX1YB>HX7{MScl_rGaCXghGjOO0oww z2Yc#^9a7XDFc(m2a>RD5{s%LH{B`@@hI5<#;`C0@mX*dqpYoMmO4e}*(y}4sSD-}U z#QzOm8vt;DXG}2TgwEb9oKeKezQb`nx!r7+G8mq^32K z5E=tNIY0g$kON?{-aA@Z^ z>(<)r>?fcGk(;OuFd34^o-u&AWb8Qrvn(yN2PMvNdTqVOq`#sf$D$lQBK5mPO_-6i zE+w47n~0XXJF-hT>zk6{gefriWUf5*3cx$|G+3I-dQ5?FUFnYqgG4`7HAA5v{m@=| z7IAyJW>e6|N3#0843sTzHRwOtD;;q!x))1L|a= zZ?&MwK36cB-so~fkzZGDq|FHlZ&*pe9gfXHFTHi02>G0Jzl`=?W^y+D<;K%jE_GZS zLpm1K89*6-9~+xb;zsyyIF$>IZB~@OD-5u--LhD!4>Q`o>){ zh5e|1s&K}e^%$~GSJfAA=U7^&Le>%%fMoGe3OBo1Cc%Q!ogubI1~Ly<*v-5)L)qOmWLxrJ&~8hd0e37|28bl4sg2sJcl@t6EuGJ=3LVBKGYUSbMt(M zVU4?MySl*B15DYtbdGuFLy=36^Q5$a>O^e*w*cr&QqQ)$#hR^P8;KWlMf_qWXs({f zS^|pHfYanyI*W&g2XzFkDCE6yL5S8=j~n;;YJaozyAV4*nGos3nrPNz&*OdIjz7cN zGfl+H^Bm4Kz=2nJphhOf$Hkx<3uFKHgxTJwANaG2XROj}UlY!D4{Zo^LJM)f=JkHU zZ`)+Rmq5xxG0aRj26gqdKEbbnjtkA-c2XsEFOH6Jf1y#h6LaYX?|of3>C4Q47puU} zW%fEa%yA*ao(0F?5<#rz$*|kYtLEhQ-z=aI$bj;{-?KB+g1z+0aa2v;K2{$rMuZryuiLjmWSlVVCC%{ulyjoZJS z5gHb!l*#_)9#eq*KoQSYB6t_`d;Wa4vM&lv zbEh3W4yot}kGRLw+uGTQmgdT0!E6GH<1pvXd$o)3hFg)Tp$r-U@0AWzd<6x)z^!+9^{DUv zJsE9zzcDkzgLYQG^44G_w5cB*_2sVC4jD5DsnS(pIoFt!DoCCU&P(c0an8Z%VH+Dj zCQ&uSILy}A-*I*(;|)}FbaZgA=mphRewnn=B+DI??wxzLh4v{~%`7eBz|5p6!JG_g zb#UGTNC3$KvQzNu*XPfl-vc5aE;fi;53>_u)*WahF-T zCse*g6^HYh49~p%Bp=ZkRW;5AuU$K!_!wfw$Hv-A)JNeYA-E;>K9{_ax$3D(_%fL? zp*-yjG@LW2A9G>PA;Z%WgZ(7bJ~8{hZ5umZ5S_f#4fhj#%$ey1P<*=V8Out-@^QjdB85KC%TVUA>eqK>5SD+aw(JAu<$6TSM*J<8T4ac@F zljH~bWb^swusrgi$c8vlJenA5O*lz|J^y7`TM7FekUfAS0^D{SQt|CX4?QKmV*S{z z-WY)Ja8N^DcX?*~Lolz%t7j$}P|3k&fZ93^3UM&Y0aE+^{jb2~&T+{+c<=xyV}?|T z-3ccuHN@!)c%|riX`@n%i>*e)ESzehzI@rZ^QcQE&fiK`Umx7e^MCjEv>5E_!sEbm zbj9&4Kms#@_yd(00C#;zFhKLcv4_}(>xh$odqFO)Vpx)v!D*gda#|#6;!I5DP-sJd z+}+;hXMbvK+8FY~0DS??c>x0;TRmO}x@@|-JFPCTji4?oG^`V4XJ@~2rxrpAmX%&S zW1LL3SuOjSJm2>F%W~#o)AOM+YhS;d^G?KKMg8($K(~~Xl?@$7Hu~2gWgQwz;T)M( zp1KT{QK8tpF$HZ)$Q8CN-oW9UcLSBJuFO^OYDgXN5>od7MD5B|F~kiRqAk; zdHe0AsQKHEtx5bJ7SnWRfiREQ0bJ4xEOyIF8y`P+KnSR+%-`4#s842bp8ySk@g9GmGr(nX*S_sEiVcqRgU*!>gK8jn11^iQ@ZlBK*AYtH2WcE}PSOE6*wK^9jyv)>AU(0nBNsu9w zCL|>K(M{M(fS*5q{(PuzgAaFA)y<^_DX3O>-`3YZz@$egF>qro`~@Nl0n~RKM48pD zY&~=C+<4eVA8zA^_=Q@zBX8=CyQpkA*_v8|sf9rHAkxs((mI%3wkst46snUFFAvZ6 zxk0-)_kjx8Q$0_xgkjz}j`vR>l{O?7jK^KJ&;&}RzUuBi_da*+U5CRhdDEuRH{0*u z7ePgiGR4y)5hvA{7E6I^17Jez7;v6Hu%Hn<8b+i`NOBOy}Ww7d; z6Spwowr`(XOtxi$2A%#aW>w2Y9rz}iS0IrBC-k~5(MQF_o%{90hWO~Pkig&wB`ue0mnuj|7?zd;rHxs6<^zQA zSSj{6S`;=*l2_NV@w885;{_mujJRm~cxOv-YNH>@&ql3f)c~_mB7%loZV8 z1O^7B8-d`MKwZZrAP`1;8{YlO%HC6_GW@*S9(tMzbYC9c;&bsL?k$d5b|<05CxBm9 zD9PlB_Mb6aY(|(Ls~XWn?bYE9qK_E=CSrwpi1GUtp!~IL;qMm=%HA4ELbsP|{O|@r zJh8IgMRm^ls_AI9Nr7KViZH-IbBafVhoFg_=(ADUeE^D(e1iD?{@u&m++5J~*X1+; zR)1VO4h<6(4NXbIz35ETDJTc9klzF31Ect+jr{1=sw$?3`fJjOXHgs85*8=^cv1sT zUoi2e2~ClmcB{QkDS`_;5!f^4*+$0!#^Lk9;~Q?>C?1_{EaI6@7W+!;_`r+`L?QlI zLNFp_+f`R-eEATDmWVK0LL@&jJF9TKkpZ~mEj*zsSCw|Q4$qvFKlwgzj=qr)Z|!?C z2Ck*iWDGDBI1A_9NjmEI145#K}Y5ev}7=&hZO z^Z@n7POt%kcm(h6Ss{ex+1QUkYh$CMoggNf6ZA;NvF*lz^$8{2%+!{b^cZ>p8Aaei zvot+Ey%|y8fl_bh(`zs<^FGXb z1HL3~QfBme+u=}Sf+u&|u+zE)E6+AZu5hg;CCUADW z=S6=o1Hcg2prV2TMjgy0Db+wX(27GlL3^D-Ig|2UPAE80@sHM3KHrABZ7;e3nn_H= zbHk!Gn1*zy6N3l|$%Fga3-K5xY>j-XbhBk~f366Ha;2X?$B$bl#Z4o3z?%97SS3-h zOtK7ARC8na?ld*U?ja;dez8Woe_;JiOW`qmk&-Cl^G zaO(l|1(+6z{>Jz$etC3k_?cJm-fSC9L;?bK?B8#6pm7j?$00e<(tqMa9~KyWb5j{K zoBjYdi4qHXY;tVuc+LXPyJSUq0f8(uk~pQj&Y!;t|1$PAN=3=nLz|R;pmEE#L~|=# zeFa)CF~$IDQt>J%AmEv~JMA9|V8Uy*rvQBvm>}uD3%A@q9Fdo}uFX74V`>lwZI*EHZ0XBhe z16iJdGD%+23ntguc@i!c1qB5(Gt#b|0?j#KkRTOTsOCEhWvcG-Hb&e|&1U6&htfKpu@k*|Q*|EG#U* z>ty27xZf%8h=8E-pMhoq43C0-keDkyayAG!NZuTL>hx~(jgh7EDsx`zjEW(jjJ!P9 zX_LRYJ2#kFaI6<_+x!yj{e?!6J`rr^@Ru*A7uSAGMTG(gn(}eDaNz=YUBCpAQZ{8? zvVOlks+u9g&a_>4f))}sEGQP*Z3~5XczEW74v7N8DOZ>stcFHo8Lj<+3*RT{c55#cu%AA#A;8 zO#5QwjG}WdBP(k;{>$P6=gus;#~Y%W;DQto-H%dzB*)&0*?sKyva z?(TECA-uf242zSd!-X2_T}(`Ty*3NyOQ9`Gx%AhfLeq2~zAYghRA@uQ-9!_S3Y{z|4w1Hm!*10sJR1IS9^1{w6>s_Lb-lMeS?C%x&{%mGfsNXFJ|pu7=z)9O zp1|tYn3I~y*?axXZGP;rrW6z3*Ld${M}EM$ateNg`O1pt6}51k*aDtBtV;4q|JRSy zt%}m*c)z>;3g}XQirY-unXm`CP}yW&Q!>e8Hmc`1J+R_zdb-l)bmfmwsmk0)cvgV@LOKQ%%iH6O2KH`u#sr zneZ#_z*D{hizX_G0XJ89E8XrsGneuN+y3?6wfJ%S{#ApIBlO;5;MISDzMTHeimP0u z4r`E{pl_x^zkexhg5>Riz?p;s-N6+%<%IXo8oRr>=U#qD{C2f(x+|p#Fm^d~!K(7F zGCd)qg5hg|f&A!uua)rbwqP<6%<#;PPR};jTlVK<8^@LpC|vLrlp3Ka?s}vY4~+$k z>s6S$0Ij!JiO~>V-%qvVy+OvzK}R}%@+S+nY{-&5Hj^useE2l!dP8^NiTm6uQaDQE9^{tW{XNMX!;k8&KH?_c}@n+eW3Njz<|s=FXyaBYki8w70# zRu0myulgh;lxrRN_esNj84q4gNg2fbxP+>6p>c4N-obSD)%OyPu~my!P6?tFw!ef# zc$(p;EI^atD*tT%&5!ASnGCogZrr>Xe-(YPnVH$jeG(FzBL85CdHkDuCBueiO4jd|7e#?4}NKV^6!N}8x7L+Gxa&;wpZrB2$BH{nwqY0^B4((i#Ocs zon||x`kODFH0a1aXFn>NDS;8L{#t?E$`Ow``hwn_+H{9-dQM*(zi`dH?cTmgEwQ~= z(txyC0{gD+-Bl=}yXvXQIPm1-`qyS%gEbbd!MdQIvb9a|frwt~&AglNvu+|M*U>Sa zyjOi)eDBNu=>@XH;-PUQ^lt*!ZsfbU*<$*gz7izEC??nD*IrSJ`qKRi*c>9fPite0<~3P*85$CVIJK zrSptMC3o$kr|tRVK8_1TR7oKC`}qM{JTq*qKEdU5&K75Ol3F~bdFp?mC=7#S>?0IcSa_+&umKG zp@xO|9unmpR5PLH?Wb9;r@AwjtNfX{aK4iHWV|0*Ji=U` zxl6WOeNHjER)vqr>qMP(4DNu2RMIFK!ZO}n%~U$(a_tGvNX)H4QVF>CnC84Pw;TSI zY%;;Qosi@!XODSP{VDIEW~t3{kC7e{>Ke`|5pS&IkCY1B_lF`i9@0RxKRSf4EJ6F2 zSYE|x<^TS&9mh7toZk4%$Z->v9Eq+>J}d2*H;<*i+EckXMV-}6M1}>6Jn>(tpX(Ms zpQi44G<+|QHK^1fS)D|=VBEWsuXEqf>FK3`CpLo@s7U9&y`%0&-vHBtMB~Z)ZZXM; z_Yd_Gk1?{}vnk2@lO%hSrg!vIsveNO4`4YE0fRk*S7;pMI!5}NU|T`86VhfDJ1oCt z06FI@n_Hb0h9n+0Kj?suNxTVzZyh^5MAx{>&*Z>|9PY67r^_kztOljvtn1%e;hn` z6u?9Uh#__N?z*lnQ>e9wwfL{dab4<2yzLh(Fu)DZ%@GPwSeC~z^%4?1WkDDOHDTo= z1Ya^TGI0D#1VSE}Nf=+y`4R81u&@wq+dt0*f>O+Pw{hZgDz*9h`I-DyyN8c%U7G%% zKZ#eZKMEuOf(5*u@-ZhT!fhfzj`3$34Gp2ZhUyb>Frw=c%735g!b zd00;xk7mZK*u1RBn-x)WSYPBCjU9cePpj-LUsFUm%)ZS_cx1BEpx+9tzTAahQx4Ml zpy(j+AfC%nclR}r2yeQBWyj}nzKU2p;S?3k0|k$HicnY7xQ)*2`#%ycO4!u5+!@6agzDu%x zWm>vHA|b5T@zE-#A@6ad4Ho8+)|D!PSI^wFnak5i9|)tfC(|CaTe8?fsu8CJ@e4fTbr?YAuAi#D)o|$w=2HIuUDA zNIz!u7it(G*+xTbG!fh_Ex(h0cii<7f%=S-X-@i2?d=m!J)EzoLVvERZ@JXgv}v&o z4R;<)I$b|UNW@QwA`4+(xwR;V#ignL{iq3P^WRxBr{c0H0c?W;s{)fQ=jm$+-!g>L z4WCcG@b=Vf2s=I^5+OZBpO`jcw}-Go-)aA?<+gX`o|&*b$Kf(K}L!Zl8ae{q`_;biWdh5|bKJe@25}5(mJM@1D)V1YD7>4in){;D zk?_E_Md{s0(oESq?{~f_zhozVRK4@gJ8Nut96o7;za_|dyB?5~;L1o%PZPXX|Hi#D z_sCh~2`02NghZh+Rq~xD>sWc_sImHm8c7PdP%41tL1B&RMwxdwMW~vo!I;OWG=c*# zq(5%3S4O6%qr>=E_&Xug%!;!U+a6#hOA)uf6qio^=+-rQUR{gUf$+pMb;Lc z$#E!%2-sbrD78)F4scs8_8fo2aUtOXKsN1Vo{ccygCBjDAW_%fUk>;UPdu8&_Amw4 zV$|#=?c-~4fl&xMR8msH(YHE(n>IQz(Gr>wJ*s=6o9{CS@LmZCX<+{Lyv%bfqOXgc z!FfPkU7hUSHQH$Xp{U3ZTGjb%QT~u9Rr0IWJRwo}FXC5CZMbD+kLYPw>8!f2r4j#_ zPuAbIg^MR&egBszyCrjPK^r@}YFHcys@Kvo(Ja9AzrU`tw|8n533ZRR92NB#Z%S4S>IeVCfdZ%z0kb(b|l zpyBGzhs1BaLRFqI!3duGL*em*Sgfx|7D5@`uMn6ds1 zP4VY+UO#;bR=9H}NBJHc^2*K(s+8gH-qmS-*?5j-5k@ND7ZT0x@|x?v#eu?$=Y}QN zSXi_x4{O(K?_I2Ty?_0Qsp_6I6qzRodxGL@@q-!g5wq$rA4a#>&=bai*X zDd_#IuOt4dgB-Kx_KpwNiJwNMHW)~(acSf<8c%zwVr7Jhea^{C`zEGz-d=j|Uf142 z-Up#7#{%!&Xy|>@`r+QU{2?B4$L&1&KwtBL!XEe_L42QJr=LrA{A_D$D0}Z7_WaY`RpEH#}i0m(ba>8-p>>o=*_H=v4Y?vMe@o;IQ=Xfrj+bj9ci|`i(;Lwvg z|L#p44VhG=%k(K#3U67ikf^|t8!h+J4{2+^C{hijl%29W+@?pds3oAfofa?mHAcX& zwy}}YIPnr~IwHo79SeaHPvY77@A5k#F)>;G{Ec&*AwjT{K=v?R$L@F$KNa7~wf^BW z47MP?v8cFseTSndMx{A_1)%eA*{m8CH(af{xKL6x`x-weV`w|FtPtF!=R&F4 zfQj>6iV_wD@te&T>l{8j@XXEX09#%H?fefYvadx(*2R=15x+EEllYwQKiaGJJ^X*& ziH!|)QB~cjufP?;Ae5{WDEdG@Ss_h|LU0r_J`XQ1^18mGL9+Ahz|+&P?C~yrE{2XS zdY29bS12v8m7T$~(HsmeC{|SEqV7m6gux%@M+AfY=3R$~ae#P-;A~deG{WjL6kYUp z-mcG(*m8Z*UGjvP8I!s!Lw4VX+RP?zZ*M4orz`>+p#_itckT+Yq6_uT+dqk~)^Ti4 z;K{$1{Vdb^#R13lTnn0uJ^6zlpt-^jRehzm75_kR!@fW1&!K)GsEg&Eg%yu0`eDQ z_?QdMbHrewE&-f>Qd|riP+USna8z_B9i6?S`P#!6#~?(pEIG~2 z#wM&^jYtzTEYD7Vw8T3=?*QZs1{|nWHQjiD$>YB;Ej$-&P0+1h`95U~Dauj(m$Gmr z0rRF+M1e7ROoaD<$5lUyJu2zao&k(|ME%8lXs^b%Yc-BmmfwH=gnjrq@@o5Pv5k74 zpSho4{wRv#MOVa0v$yfWM~vL=5ON!vGD#ku419R#%ODqy3=bDH&0%=Vzkxa?HnteT zKM-cHbk$_c4OVM49BO&Xg`>8Xou<74AAqKD>C53Zzl;#JT#dG&HY8a7Vx{Ln$V_nc?Z_ z>6w{5A9s*Lvk;s*`1fop5V*wsVW%AI4hfGb>2~{?qx%RZ-8^&^ZW>prnW?EZ#x;h9 zlg(zTA13GKZa%z-l3DN^O%M8bH~byG%A#azSJElIEsxQKC(e4wDjGAA5ls^70Y91X zPwtTFhi;evStLe;JR%XyVc_lCSro@7;@+h~@G0IJr`v!H@(n}^@CZ{YmQsvTnQfBc zjy5*U%(H_NcRI&-w3PSm+`02ae7Rfy{xEHYQaoX~v*UXEa|DC49$+d~jUki(1yM67-Mb&kPSl!%XPlZ^qW;8i!9(35a8-sb=6jp^UREyEh}cU z^cbo8OmoS|O|({(q8VtOve|`;7tc?&ZlDSHVBsPyi&m5nrhE|IyO*9>_*5|xCQZ#5 zzVM&d@Xhy1e+khJ5n*%e4gCdN#2EBvs)L`G!}y}PiO|Bg5v^RSOkKtc_bfrW%)*|J zh{^q~o!U~&=a9j43XYNs7nZ=Df_J2oIMJPJ>m1B9SmApXr40pz@Xes_L^%Lz>CcWg zDmEnGU&T3rHlx?OJ(l$RY}cc1m<@q4JbV_^X~=j!7}I*%J8amY8hyt`!|C(ER!-*> zB|HstqgZ}|Pr>@p2urY0L}iTL;~>(&Np?G(f0LN+n*_+N7$Om|8!UI;!@~karhT_o zmkU++p7D44z=*!jJjg8I-o|@5`OaC-VMpELChiZ_(GEL8M0{rHyGwED1Im}gm^(5u z0zZnLP2NuJ$U9(t>vRD`^des|{a*eE79aTnyrP!6Z(O?_u7)>GZG zFT06qwUTD^^hbO+Dlz5HpZ{K38uw!qcz0>(ibQw)%YCf-^|ZBVsv)U86Q3YEhx#e1F(ZwkXPE?zLhy-zW!_X?^BO{x-A3YrkIcoo?oI$} z$kh0tAR;W>Q)>O0oj%j|7vaEF>h5=l(wDdBSB++xsS@>(|vhEt@1ZgR$S8p?PZVzPvtCD=cX8jn@A(6*`1$b2d zOiE1sy$q*SL1+Xa-(xDNfIev=3c&Wdac#OhvtVN!esCu`+6Wb@p&9Vk8D~!3uTO%H;N*!-PQJ0H zuesT+F-9<_o=p4d_F9)$fuXdf?FqUs_{M{o-bQXJujX(c1+oe z`)&R0h7TXuX!vlVTk3~H&a@T6Wwdq33V2djh?Z-m`@5do6yM*@lVb7V(DIqTfB&}! z{W}l*SC9Yy-TnWk#a!f&Ls(7GM)cnFs;a7lJ7anprjg!i+kTXF;KuDB$Z?#6H(C`r z7Z7I3oYf@6kw3$+GS{9-)q-!$3jIusiJsv|B!ssCCGeF48YrkehzucS=6Go2)v~{0 zOKjY@5q2tP>3;^2XeU^u(d7gJmNU{tdxjlG_Kn&Q8|7T)JoNqhq@-*Lk8L@mMZx9T zmbnFEM=Ro)uYis~W)KSti?TGVfcgV#JOTm@h+2fg4W;&ugrg>~6)2LiHr2o2J;4ci z3I~MALm*UG#>9!}@RA}^*vV-EbraX$3YkXKW1!>hA@GdQ7zi9`SogpE@L>h8+!Z;P zKQ-~D=02A5dm?HR@&|Ccm#o9)AwpC^Isrm%PJ(p4#ogF)3q6_hFHi>N~jxi%Mg1j#-Zb_0=TgJ?{K5(v$0Q*HZk8JZ;BNV9j zFakjX%D4a>BVu_7wAmA)mI35Wx)?ftN9hzYT}B85tSi8AzklvOk9X4(qQHEi68l%+ zzkcv;LBTB@LZ&$l+tJi$lqI0y)=A!D$8gCCn!9XEfIn_-pK-{RmzP)jE}VdJQJ4Hl zM6?B-?fQ}nWkyVh-gbKW(Qxn%dl1_BQ^eJDcQ9!IM21%gUjHI|jPRu3nP}h7XV_!5wGq?Gf>9_)3n*p* zs!2&m&I zLR`68ZxzBJSWoHfr%GX{v5ZrI*yOa$1aFSk6aojF1>C$MB9C#-!X1(b;PSAm&+^a5 z1qI*m2#~eytdDQ~yR|!`5)vk7W=^8UA3OH__czDMDI$Uj^M%m{9AnrAP-~%od7vIn zA85(t8gzpLjvu#!|2$OBh~#7TXe zBN(Ww>(~l0p#S?X|2I|k|Nj@^x#&goALObH)!Q&>V<&DP-Lw*`n{@9Uu7y~DIVPME zeLdij0XRo}cR<#PbR-SITMV19`>Pkn?;?$9wCoB#Uevpvz{;?5(`$iz0M+cyHr5il zje>zG2O`^@tgId5Aq<{gE*n*~2O5bah;UzM&X6^P@l*E^z zYC4I71x3$j2Rgl%0hr+kOX#lCJ3Tr0F<{I9a@6ojd#2~*CHahMJ3^Xkq!BHH*A#vK zO0VSxtcg(2kr9kHjpV1pQK6Uw(@*P;(%Yg>E0p>b?_iVIq?s)jsf{ z1za{fJozTsMh*qYNVc%XlgE%VT2_IL4rR3J62`;@KMv0A1+3TyS4i+ccI@{;V~m6% z0Y=!XSY$jnf9l%Vah%x}fg|e?j^Kt1NN+^cEE02;pw8U$I5Zju4fU2SHD=@Q?!lwI zSyq7Ey@s>AuBD;j#Wx%vLpZ+jj4~VX%uuSnBk(1g#G2uTkVwSO*$VOrNf{ZI{`C`L zQ|308i;y|_l8htO$#?!(*0Fv2o>uh94eMabPtMO$0)rkxKrQ?JQ!JOHWt5(6o1;Gh zHM9)ETe&rN@4gSL`V+n8=>7ZmcYC6%{X9O-Hx451jr=ZRD@CnDV)+5(mbg3xVI+>1 z<@vFLX;P?bh-{0iC0Q`Y)^|E#Al3fR%Nz9{1 zC(l{w>FZz34ZcPctI$w#vb@a9%mz7+A(9aCV?YyQA6>#>5%vV`GBlE~o0w(`}7u7W!e=aC69do{fGH8HUe$Up+p)=%08e$`PHj(VCjX=nWkD| zO{Ty&fSF?esU5K5V$ij_c4h@@=n=VJVk8{2wux%E zu|O7fH()(GSXekWy?8?({T=hP#}vA1wP)y&*a`$X37P3F@84hTZEQZ`P-~hAmVABg zjOth!+dQ*MH^OK+eHUH|_ekayLd@mBSHAZvHTpy{cL%zfw1k?~IvTor*aCEs&o!U4 zfE^-kk`V}M{Sv9CwGJY#EPyrJwsarZQWU#|-l0Rq1qF*R?_md$SMJ65fMu+FMfE<; z>;C3u>M|aj(irtEKeV+;AmR~|$?#YJJWZ0PC=z$kleKT3r;;PxIE-H!cXB{s43;n` z>C(}%3qNwu0v1s|yBi(7kxnds^G+&xL{5`Qk&1|B0<#5rw2B^0b@a^+WU=HtkIzV( zWQ^MGF@&>7<}D0NuA*D^oj7q~cv6xXw)IfW+0N|S48qtUUocsb>%}{59#;O%xG@3F zA#Li)(oOrX=5rU7L*tHNc<3;+op5-nFr`cV-a4#_f$8NPgHaF90;Uz~H#H>Ia$H;+ zBzR&J^EQ^={Dbsn*OFwLyON^3#f8gg_?{;|;iup#l;?h#i9zDIheyFsdlq^p9MI}w zsgN?))$p`P?B9>%b2(;HXGb|v-Q})oI|Vf^-{j@z zZ!*V~bVyio!?VQjgwQcyEBrqUgKuVgi$4~deT_KbaFpxa<1t2PSpc zJ1v{t^6)u$B!hO)00qky3kB>z0{+DJF}#2M~Dq;?mcaFifr8&^KQb37~KyQop~LT@47$^Iu!7bl$6Uc6@6^8Gdq@ zEZwxare=gWhllxMYRHocg%g+O>xYp8Coy2LVD7UZM zC2;r7KK0$tCrvgFzT|auaS`Om`vy`Y{Vvlbr&(5ohuAw7!0=vF>7-n3tf_HW(r_x?SnTv9P)L2`ydA&h+a#{wOePAP7xTw-d z{5fCh0?$TA!KG`!;%PQOCa~FPN@;D8W?Dj05|&pvGIdwiX+#%ANg-hocogb9QEoW1HPTt0EyC`8^{dgI%T-w%k@T&;=saaS z1n#0AMtJfmI36HN%#{t9dgTvn;pHDq^0fZZ19o?;^ZKH?L7}NGPM04Xf*J68yk}6MfL$V zLhRbUW646f!Mhmi%62p4gpM25Gc@W;ClY$587zo&Id{;gyV)pU%92RkXGR*Brp0;Q4h(<`CJL^ODV&BjXvBcI??^IIU6bKE~MPXIu zWI1ojzASWCu$*jGfB5*Z8@Ns-xMHxOF%PKRb$EqLo3O(@a62j%?Nuk?i5Wiw?B4>{ z*pX+4xB^qXfh+uC4A9zKCimJKWp2 zljLPx9jS4H7G3bs3HyGqGvRBLp;xamKdEVwVmlBc@Q(9cAEryrm{%2@(mS`Z%bD2H zbmrhTx^q^+Gqu?;)!#hJbN#kJ;ZRHKuc&UByI%#I&rF>)YB=KK=@fGrVJCv^Vb78bTY9@&U_9Ia*bg&(?Ssj;r{Q+I2~8aAQlM7mi&lCzVO ztFUVURQWn_!Ci#xI#BE;bv|Mi1t8+)pZTe3rx9a+)TOPX@A7QQaoXA-CIMg>{@Kv} zwgL~*hhZTDfbWw4F2@;GckIHTz`K59x^3K)AP&y zm$W!WPzy03p~kmw^``Xi09d^2kK2D}%tNfUv4|_LxHPxl(0ev5for@Z#?5v;2 zLjWUt8r-_==QVg2JsL5HUwissbO0n-{SA972QoqeaImf){r5=7m!1N(tr9mzq62ni zK*@Bgyiw}6Y;7#8C@C^$HkuEjyI~Tuwa&GWXbwQq&iKqs2_#pBGEz^ zd2;G$h~!889&h9thPv{4bkvAJ5+W{ugd^fTlvYjqyNNiuH0Nfl$MEVnhZ$N$ajBwr z=+WVT47rD{=33lv$}O}ACqd02FPrj7bujS6{@z{{!u#b1ueQ+}E3T0y9q!+hG-3>e;i17`b-s8j$Ev z+(}sai<>;^oy;q!(Nz?NzI+i4xEA_*p?d8P=n1Q|^MQ+F%xvtEd9JOQHN2kYzUKl~ zK`jA?;T}>k157@23d)f%7O7>~Q(-|Her=wTE&({xb2F4SI$oLa(~(EtAMV0{{Wp}k z4zOQ~V;G6xNi0<~9GqOeBAI8OGRPdZ`<|{+ggQL@>$+>nHj(3}Pgh}g zR>-lL;EG-*disrNG#c|zUt;Dn@n(4h;Wg5IF`rZwZ=7Vzx`S(LvR?p0qD@!+I`(89 zOb9ib4DIVnyF*E)fkZ)IAo?ERiMcCE7*ejN#Ys||U9GtMAVddioy)YqM#or{=QAvw zFP8fOEaN7o>sgxFqoCp-LZn$%zE$@`Jb$J7S5`*h*2%fqXU;Az;l_fMslR8uKKC&u zvTRF@*{1(O2bvbS!XYl?x4>hDGfTb@D~FmCZ>x3~a7hp{j*ApMHus9Zf5qa}rp7_iQ!uWr| zDFc65sM8|$4{n{*jS&d8)_#QSmXIq~%#gKhyMfXU#wXx5t>2*PxE0`?mva;IaasXx zjHKO~#S~N)y49%s%T3A{dR+d51ufqeMv;1x2&bM)+ReBJG8Xu1U#7>#GBN@5KI!V3 zlj%%*55PV^WcZpBA{*^@n2=9BC~IleN4{fFo4WYf#rfm7M-je<5XQ_`K#oL#_!}(V zWy|^uEC(tRmT#Zzdbt&7jVTOFc|}-cJ$XF4PSk84YM1?B0QwSu)!}rDkdzlz9;#Z` zSc13TyK_hI_zqT9wRvtTQJ#F2%YPr+4Pgc~`!{!Rr=?*m5d9NMuczw9J$lo(&ZQ88 zf|0n60jCHwbKCT55XC1z>MPNff(tyxao!m@pp~PhrUvLN_@{7JjF71izYXWt=dsDn z^r%@H5e&h)FGzcEH6UPgZhu??2{?#uX;b-Ce*lQ=UcP7%pZ$Ou04(J}p&V$t67W8m zHts2Z43nywr1C1R2|cL-fggC!XVwfo6BCAvQVTyE5~$(oyhfo89ArT0 zLhYXx7Ovh99S7DIbY3Tt(B~W}BCP$4 z60&Vh=?g_{1d_Ke%rh$mc_5$eRHE3WEnlT(Mb+nvPzj1i&hOzsSTtH1)C1y2VHA*L-c&ULTG7cz_09>uxRe%(3Z%Y>)FQ~3pdOhrkuL$ zZ}aoDr_~0Vxg?3XjSw+!>;0n~NdC z5`zo+0wZo!L3KNiD;Q-PyQ~g}Bw7X2?kyzHU;q*yx^}jAd{xI| z(hZ7ZPxTdT*+A--i)j^rh$hVc57IAH?9IKhJ?H&kRn`@2ljM6T6AA~rT0TX2Fb)(E zV_wFKz2N^ANsgueXu{niINWkV)l^ku`kF#RqR;m?>x}RcWQwO}p^*b(h(dN=QT6}* zHLawi4$?54KTT9&C%?U}e1s><|5wqcm=Cc#cjbDTEtD6q+)1}A#;`?C68Dp;9}2WA zbv7X4zJ;#78ZBd!JAuX=sAQbguJ^_{2DYrjOr)fjtJPvi6UxxcwL3saQ;ef4EZ>9* zQfQ&#cq;x|zoy@PGLLorbBOdh!?j(CkPUPYkwlVZ*RNBzM>6jD`EUd4VU88bZ@coy zp#gar;Ogyb`@@lLF4RMn&QRcaXt>@ifSi9c=bC-5MRB%~IY$Ab2b za;~HMt1x$5cMn~9j@`ZV9-ISEQfbUckx?>*#`Hor)2TQ@2<=zCk~)ymiH|<is zbCRceXpMbkmL3w?N;FWzid%(mE_5Vg^NRae2gK#3-iz@+9T6qfiqte~8yhZRVtu*~D0B+i)~Mavx??Zd z^5x0ew{N%BT*iH10GOh1LkQ8M(S2^{pS7#JkeTV@!nsXLZ44U}H^Y^&?484k!eS;a z|M7c`@CUr&J^d@F!ul11X3W$q~gR4AXz&RYu_LE}Ce7PS7$EPh{r9;%XH(e&X z%DvJOxJoM9lcu&AD(;5Y7-G3+V+JT{WXIgfWTC}9WyqWTx`>Cw($Bj_?hbHh!RsCaR|mlNbN zN2Rl+5V-#kWvJPvW4^j+aLA-RFkXF+@Y}GkZHJ%Z$zX1Jp$^#e>R}B%Uh@6uL8Ghf z=m*mpr5V`S{a1dUA&WDj1k5P9W<+}7;JfQDabxiZ+^8| z%E3uOVe^Bg@!(|!MG)=kL5Vip=VP5FCIo1in6C8E?mxK3xMZxf8M(JnRpMMB&X2ae z1Th>)uCNTymGIjQLn{IVs7>Q9k08@x;QhGtMY62I|dHF?W(`4^;NZZ8KW!5 z2$GnP@b$>uK!VQ!%rU06p?$DH=^YpXR5!=drw<#`av%LyAHSyHHv{F!f77}lBSa^d zggu5^C@^-T86dQx*hhE7?Q5Yxb~<(H+8spHG*IDS4a6-{XxX+qvQj}Db7dQQA0{W5 zTm%7Eb+)w?;7K^}#G#N7PC_tq`28SD@By`mri-gy2Vy#nGQT|-7Y`sG%1)^WC+YZk8P<&C*bwDeI3q1g-s7eA@ zazbZ8tBfHye(lmlj2!^oJa6#`7^c6(-pAq0e_gy1ccw2^)58;rgb%dS$L;OE{rqet z0cTe~WRso3BGXe-e}1Te)G010flH34FNnp#12lyh6hnn=HVc_GR$`PlK1k^Pp&G&m zkZ)Z|f22nr4a#I1UJTWU`NFoVvY@D4K4MUrN|A5ZzsH#dy29DbjoOXu(Yfi)EvkoB zthZm?dh)*Nq^EW}#@Mi1ZBy>wORSfH8~0aKRCxUMkS&Oda~M?@c|~&>pcdyUNsvJX z*kJtMnEBnm6!(_OMaGjN5OQP-aNwd3c$e2~Qv4&VKLl7;0&~L#Q*ic(=@Ot*JT`Ybh6uCHUm-o3lLQL?Ck-L=E*{qBZt_TsRv?E?& z8cU@QdxhNtl>y^>0h4OywCX?Xt3NS5fYUTxxjlnEAJe-hQjq&fupx0x&oa)M_8Ic^ z=7cBk3@BDCsDqUzri3{Zi9}eYriI7e0KNXyR)s!fmXgR3Bc!@doo+sTy3dPVSCv=0 z)B^Wt1X=EtmM(er>`T|9_=-m}@Ue1pJi3Tz#esnV-5nV|oA^muX=A4Lz(g|O= zaU$Uq;O1f=w`n9=!94W&!yI!7jdzPQBzRQ$)1q+!5Bd;g6Sv;NSMT5NN7~a~Ll+J# z&eZBmrMx;$1h9O=6|HcuaAiP4yqS(Kv7K1N9~S#zsRhiu#d}-7L*&|GOW=^V5ibt% z5T>h%ufO4*Gn&NYfAtA;-;~IF&)f21gHX_wqJcp5w~v^o-Jl&W*$l1>)9RjXQz(cD z@LfH&va)hz;wLQ`kUemQAospwsU!O6)ATfGh6}f#{~@grVvO6FFcxFZpDgw*EMm1|6!ywgH;JEqw?cWqMxZ4qfH}2}wKiKxucjmnaoA;-- zvF|0-b%R4kf%E{u2;-(*yvCuli`$lR-;?*K=Mc&fcccstd(MyQ=$`$nx3~qd(x+?= zc6Nfn8!;vU1cE6<`Q-Gp&|p3cdk)!0u_rNk z;)YV(Y*OZ&36(L%3a~DHKx&G0N^5h2@Sp!qWFM%b#l^VXHNQAOo zL#qsQHJ#*G4eBlKWX3#>jYeM_OUPg#CP+6wiPn^exYEp(&p%2KXHeYxEPWRwdx-Jgxz-z)5)@ zO=w!MxD9Y$0|VM?j>xOXoU9uD{J9d^B}nAL>e`GXtsEj0p#Y47!AqS{_{y^EPu+pk z!-4m!{j;l8hH+pOqDE18W10>r1`@OMYwo6SmY>Y7Q6E3Q6%2z%&&fDJ0pv5dn zRCvT{MpgjsVH@})jcl;PafrguP(I))c;Vad1{j7%lT0kEgIzCR0!(|sY0Vj)`UY3Z zkeCYnPz-t-T_UX(Pq07v9DV3HIs1TFfi2o&6r?*3`ve3dV6=A(`=?#^XNqWS;Z7x^i}6a z{<0c>`>@4ChBU}{iI(g?qPTx8iT@K*@IR^Z{_`*Ys`H4JWnKLIuR8DlMz{Co{E8Bj zzp^Cd@zcl7dU+nVcO(Ah?%+x(CB-SuN&H1YK}^%-l-F@jG0ju!fTKQLY1NTEv0vw!$5>Bnnqk~?pnjk?_< zJG#sj`KqtX>4$|fXYqr(hYFuFA4!~Q;^E(*#=fb2 ziaX_5-HVfK=bzqvTylW>ZdOQ&cEk{+{RRd7pwB0`io+R~E*U5t%yv{eWt|Y}QQJwr zleQ^JW^YXQMVDZWoI|o4VO?dD}va-eOx~NR$Z|h>$ zYllMz3duGezaGCons&#yQ`#|uAopwS-8)#WO%_Q%4i0`CHekL=9rns6d8f0}5G7Aq zBc*AqtK%iFb9}8$FSoK7UGE5{vG9L#it;OUruwRO@7Gn6TDDBOj`FFxxvvFQqxQ!i zI_d4DkdGW)S$+6=>dT=do-D5Pq+P$Bhi$Un@!<8xs~5R)>1xR+-v9o(JW@UtuVv61 zGgDIXaim-720b@xh4d5Z(2pvHF}3}{tr}5UThdBAkcj8cvt#Tj?ZAe!Tb{62K4lV( zXX+PM%XXp)s4l+LYZJexhfYo-B8}d_#)^FBiP_1W}5>*b6HhN<*fg~-dl%N8E$*Klz<>9poD@* zH%LlJmxOd9N`rJaqNF0-DlLuDA)qLo(jC%`r1Tk6*ExIbz1F_Y{{H^9m)8_!I(g^w zjAzt4$Ni&Xr)oGoC`VQrD}iU7`6Jf3pro&kVY5(9`fhxKE=|{XWaO>4Zm~< z_diXSs4QWsC*S?(lc``rY!S6$oEb@s;fa++t?NmsXuo~JO=b34jEiP&o8c-M=V)Qn zF+1Y~2YpC~?Vhrt6&>mA*v9SZXHmS&-)oZcjl*6BzYZl#u;)=zWRS;K*w4Kg#*`BI zYVC&ODGMKc%~<6jIfKMgvF15@aa1~`34byJ{H>Jxgt`G8D4YZFqh__)qYa@tFNQ;` zIHPypGP6$b)9}2Hp>7vzU?{2lOt^?*XFViT|FsA6E03Scj}HgB`r1+gsn zV&COS8SQ$Q?q2nZ>c<$C$TwkO+tzb+`#MWAJjOHnU38`0%Y)(aa;< zW5hhq&Nnhq6*6BM`#V@?vo~pG-0Pt(=h7RixaN9zhXm_Xy|Yron)yo$L23b7HtXsM z>dGsz=xw3o_T03N6nqcf7y`1ZvbT)TZ<6BJL{AS|=84y?ra!McE_|L+Q&8C7q#b*C z6w>m(JA_v|DS+$*gBhon71O?N=XXorHPUO{v$jeFvu1-#;pHED`mWh76_8lGx_(~h zI^JiBfBm&a$PbHb>)^7X_}ZMVN6FYh_bg6A<}yfwk5MXA&|fd8-&T;GU9&I!;p$3A zheV$~)T!~{3KKb*Rbtb+$B!cvqw=R|qL%fzP2qCF<&IP0IpzD4;DqNh{q znDGy*nN7B24w0H>LkVVP;}ySsU(I8EtwzH1)Y6q?g8X%sjAXTA|F!4z-L5{*l(26t zZj_TVCa|S>#JEYs8XlR|IP+GTJ)3iqjK{5{G?!M*o@mLUyztWMujAR?33#BBVP|O6 z{eHR&or%=h-#B6^x-5$D>MdGc{8X$JnUXRb&HLhUgl!9k7d5;pHrJabD~YNwlb=_eMUL!1K~7N;?KL39xE z?e+LJh8Ss4$_iOLdFrc3Ey%TBk*E9TK);3D0jn=qST7mm<8eZq!rmS*nVfh<-Cs5>)nUyj%SGU8owh0Wn1p`}_^U*vB!a3b>t3J z<#~9Mc)ha5pVnD)Qx3lN7>iq^zE7uA=y!?iZyGDcoNaiHW6u8G(R>i^Izy*tzn)Er zR$d0xL(PZvX8G0>c~nZONt8mN7){2)WF=~-csD=!;#y5IjK>Z1T~8XAYmg=zd9qlm zn)z6gt16fKR;C_ta{Oxd`a}9(MV${@&n)5uc!hitum-|hbpk9I8!KX}*%*y^b?$GQ zWoN4w_jpy6uwb)K=I6#Hy9iajiOY;|B)HXi8BpR|mUDah_HU8z?wTnyYnPugXuJD+ zP6g0Jo^w*_WbG2aro2Fn84#!aH!+<5e-gv*aqtTKa}1xN=!{sX-h5ZGgBL5ajnQX; zhU|(lI)Ub+w~-E?L3UihDJ=^=^JRE6*qP6iFyYenB&UU!^%0R#hO9@9D4huB?{DINv6sK|ZI#(JfBN!ZK*qCs)TW4t;LVLLCE4J3CO6i|DofRt zu2%|+%sVnj6G=|1>lYo>Nu1x*dE^63<*EB8xn3VXLJckFlBKFwA$*5~eSq`E!E=;Z z=x2$Ln%c@iiRFFefvWF%cBxU}>ycH{7W3ni`40&LCCabz_V&cEaoo^f-0gj3S*buAdaCQT>jpAKC`EdfztTwh_Zg<1>3+VFlvkXIB=U=I!KYe2@a)Rwn(cxO`FatuIPI-`7>VmeAI4j(dab-AChP{F^|NX>aokl%^w$-U2*lZ z)=W6aSY?=g-po*4M##gjizathw_USnE;Hk!e{)WbC#3_ zoU;No9+Ac6ZM`>y+SYY@EASlj6H^8ns3&shtzsH}Qhw`t&W@!^Qn8-M-TiEc>+5Dn z9dr3Z%+Tq)w-Vc5qsW6NlRHV(@9_ko*H$y85ytPzy4IdM7;`${W^fn?m_HfSE>8et zcb2I671cQ+y{r$}8ACe6@!_i_OzvyH(|r({1ON z>>-0zZ)CThcX}GKg<4qS+xMmGbJAi*aDSZ4#_o{$5^lL9iUwV|b{@7{fF5y;_|d}~ z=!*}_e&iZQY0b%JVvSb0Uoz;;QH=aDv*pX6Ni#S;Cu#c@i5|`#7xY%tMkv2c{jRlY zVzc9EQ(N2jw51Z74sQGn6|_V@dO1!C#*X!2S!1H4;$O!HiTpWb-G^0Ce&xNMCXX`PJ3pV)#|k-=;t!dZqSpUW3s#oWcaLn;%@xJ zk)hBcKuhPQbeNi2^K>yb_B0`OAc>xIau~})pA!dsJHmwTUMa#1#V_jL6DWOY;H$G2 zBNC;|iV+jy#d-VCz{&Ia2KCwnfg*z-YQS#99WFLHBj3tS#d6~eF1I9>Yrin+us!eg zT7;!}6YR2Vs7)GT9}QN~GR1|~#-F4;LgiD#koE%vZ`K~Nx(6ujo8Q;&N zw0G~AH<3*RW*^>_LHTv(g^yUzSxDb_)KgLHr`j5cA0I0?LccAUHktl#FX)o0QRg`0 zgMLI-mRN#@ZQzR_oaA_h?WQg(-K6w0R%N|(1)MG_BZfQnJ87G5!>L^@CzRFeOh)(} zvn^S|)Yj>-X0dt7Yf8!qIFihgs3#eI?n1LLxb;^|Q%DzI6n{3;#6E*m_a+&mw8$MweN*EDl(CMh zHE$=d<%6TT3H=1ee&*15+E1*awpg~iek0oWWMpXB(T5qwdR5$gIxlkP=X0K?dMSmJ zrz)o;sD8DzPFW=R)BC7&Zvy{bz#iA?_z{J)^P^)L)R*FL*CqN$HH&?QDHMcHnSls z{-e28Mk}5F#zz$-1NE0-;`_Dv;=k}ozP|gUF2j{o6k%eo_p)O)zcN-P&p0%?(U3TQ zj`OQY?*8}W>m=z&NIyO}6Q^A5|CIFQ839vZ0k!Jwte_#A3+BPJpwr_H&tlh;hd4|h z?5dqUT@X39hs4@%1bidHV#zI=v;V|_PAe)|LF(_~kjOc%dtrsnv{(|wtV9}YYs~uc zlLJc?Q-q!dgA<8aG_y-F{YRQWmWkwpY;_~S;pE+$`~mO8>#{hudV3Rls4HJc31aA{ ztb6LWtG};HaW1CNWNe|pwYJknFI$=Jq>GYdQmUY~S@zQw_-1yt#IhxQjbK%_)Oz>0 zV>Z5FGfYiWS%bzULztb5HNIZ5BIQ7_W~+x(*7zr`t=q6HqjYkNcw9kYRDT5b2MbiG z0nIytgIqVKo3KhoR!{0f0y=(pKi|$)r@yc*lfEjdS{<7pvM|z(yUMA=N?VN^_H~?b zJFhH8(8f#EjJu`pL^rfb^NKZFRetF~$_*~s$*ydJLX+LN!^dM%?Z)|DD_fdH59NQ6 zHa+OSK=Hj~cYzOd1si!Pcv%K_|qL zU1gD8>MDW{1>;oo3O}Y#XFJQ%4n{1!UHdS0$vyhA`Wx23#OyO^<2c^=v{5wLSYvFI zM|{IE)@{}A^wkTqM+*CtI)l}we%!T5j^+@#)o-~vp0~?VC@+(td!9c2a!QV?DLmc8 zwG?G;Q`Xa(X(hUSL1dy>PkyCbZR+clio`=lF`VHk0~Lk6X|~+2xAm{m9hL>k>2#c; zzBIUnPwwCuhuYCl@OFhU=TjBi$S~cat!bHAjVs}i(k)>{DN{U*v6je`QMM$?AGHZF zvEEeaa{f)RI3|x^n(PwSi@vfEr9IUk zeDq|FO$A>eiSaXc^eWSkYsF#M9;_!$4VlHlpi%cUzm!iGTtfF4c}%;87nwMs$DG_1+!_Cy|irO)7OGOeA#4B9I?9M21FM1vjj#W-gTU~g!+|x7Eha5Tv?*(#+`VD zJD>y)>y|Umq=OCO@9|2p_J5$lzM{?8gu%GF*fHsHplFUY#b7_fz{t$;xPdnRkyh18 zJlFg$jXloq1W6>Qmrn&KtL(O78~plp0|M*mU9j#vy%sj{j(XV2L4NRw1DVx%`M6a- zy-1CMQIBPaj&u9n;&%Ld!Cots);zuImJzNW2q_|ihon35b0dj-ns4xi&f^4`;#QC2 z>kd9O^wA)sY#p>rA*v%yJGI%Q_RxtNpFWCJi`thcY)p)kqRuav6Z=?%C0=WFGw0d} zGiILVgj4m6{*mm8Ps#S8?E(hcwL_%`djb-0xXwXQ~}tEG!-kkP&b8Hw~v&i~cz7@1?+O54twp-=P>Z zxlhr2FJRaD*EJu<`W{oBp`Xelu>&9KevlT-jn|FMsi?*rx_GTpyZHtpeahAxxBYR9@WwWKxJeX?TxFgNz3gPAg~liCLOzAt4LIJ9=O`%) zF)zn>s!wknU;%`)MwKulJ=)x*2EDy z-plOHeO(^LF^(?nVVxp3&Y893Vi6Qo%=0$%3cbHX=K%vXQJDqQzfb|;fM zi!G;al=5-+%)RFpFuHTP)B1jHlWU+kOgSRWoUSbd!~OGI)$&||-*G_j6^`EE<@GPD zc=wl^^nHou&X0FnG4Rz|vM{$rKC`Xrem&K@jXiS4^D5L#$eYBxg6->#(U?D0rb&9mqS}q4muS$~UGoXYi-TI*cT7f3;;GJ2Hk-73!x?bc&O`SjqcYT^(=_PvP~u|NTVqJD=-lNVBAq^Vm>0tr znoPfU%H7Ib#5EvU%Dlt+nO^&|LcO<;gFlX&{B+rG6M2+R(Gypa)XfJkyf>pYI6RDa zX7b#Y(t< z8Eg1n^)joMh6mEmyTvIZ-5P0Pc=Vex=3U7Z*ztqUA6%qPT~DQ7HLAz@`i#&JMd$eb zOg+jS@!yM6cthp*?76dc%3se<()g<==AL5=g^HqabmWW|9_V;n?O^+A%#~z`LQ4AG z>bq&TzJ=#t1_No2BeUeO!~LLCEKHg15gT%IHa#qqTD$qMpQ>3t_w8~X%WRUHx{S4M z+LHH&rDX(R|NN9`w>ZRstf)E1_rPIyk)L`&XkYBa*kDI^HgsJ_(>0a2YmT&JL7|6N zl8BX}f@kEx+Rx>Y))Z81+%W+@iW@A1gaw3_NAaaIyy>Co-21W~Kk($wMeeXCOGLU} z6{wZOvJ&$z;rSfshQIICMAd5&!{=4C;gD0f`Lra`DwO#2ir{fG?|Yppw!DS@+QMyF z<-XqRHQ;zu6wHeUFTFgkQpPFaN5A-`ryX8n4ei9b@86YiRqo zYIL5UQFgIkx8~QSMn>_JRIPnpP$v|+aHsl-_m*?pYg}jrdyZuO6g@*a`#=guC znMdy*jZDm6&oapzP~;~)TIo;yQhWa%9bfBm(u-FbmUIDV$TlzXs=85srwuX)GjUa) zJ4X-usXXL-{E?t{^Czzs3292iy2q18_4+wV6W;ntbg~2;Pj`1htWoM)H0k=4lQGoH z>FBo2F2d*9J(Po<^YD_o&&Extm}EvKHb;NdotY_$ldg7-DWt2Z48!jec$TPEfam@& zR+qeEjH7p{Hcw)3)WXeaC^N1|`jw(4(I)}7mD`7kkNP@p$4N--OXst$eVTfCn5pw9 znmg>KckaPv!ClKT+aNm1#dz;x;SL{jsg{U)*qg<+QrYQ=NGPGrIipvJh(?Q+AJiPy(Ng-n-;}pQl~1Ne2EuTZh{~NM z-n~gv=7@1|=JClku;@|1Wb0ZmIr4e|7Wh?rNf$XR$V__~28qSz7tcqJ$Wgjiu*@`IK*q?nZGrVpYsMBz~Fcu7&oIX!p=e z({Id?1P^zEEvBVtszZItgx4w-)zc`LUut+YN8TXid3fiR?{YicDltxPOt#R5{dCEl zW*1%2`@L1wN+>$G+1i_TF^<0zE?(R$TWPWi>%2#RMpz;JZsZVmX?_q}L=2z5-A&{{ zWE5wzR^XN5S5p%LX%dl!1+ms^S!j-KGM!i6>viG;t2G#txkQdJ;b~yuDH=*bQ(Jb`AA^S z*W8^SOj{J}sz9~3Va87%$#7o}wCmH;jtJB(Ggd9aRM037mN!zkIqGvWjo6)LV)XoO z^Yz7GrHqJp%I6mxzgS2DRQ-ynt-8h37?aM9GUHeRYR|k$kcCwwuTC>%L@P_YsC-r_ zRL8a1+kX5L3z*gCtVqLRH(@~ycct5qd{9HcP_6s#`{m%h*hPlAFoNlRJuU(;6_vqd6 zxD07u-5tgA8vcxiP9!XPpTqsZxp1c913V)0=WYf3DN8ENyeO9KzruYxrG~2NY->bF zcH$$<@7_`okFRlcm9zDAWYP1z9h^PKq+%-k1K0QC7C$Rb_uaoqCrzKy+IHhx!Ba<~eQJ{))VG+;>sr6@ zQ9|Xy976S@vmQ629N)kux!8Gr<>E>A$@42OCBvxV-nL+15HXKxT7BvgyYrzr?Az^| zsm&V7Wt3x{``^TrkBu%a-7YxJ-=LL zK`G00?qnvx-SV?*x+H%={3Xkr^Y0+-mRCCUmvbfOt41?ye!iz2As^1%st5PzdK|Lj zDOXh#P*rO0r-pXWnk@IVj;oxTEl1#PSq zQ%YU=@`KnmVx@12jaBqwm7WPyUc|H%9&8WDap!*%YVbcS@w}GcneWHaX{uvb=K8i$ zw{V)TVm)=K^7CcxhbH^%>-}_$vo!STSlc8Q3hm9dQq~#e9E6PH?ot9zlT+Z;ldG}? za2$PF>9Ysbx!p(~Ip0?4=d_^ZT&oydtsAg({*^#Pe9YSNZG9@SMou!pDBj3#&u&?R zMbr2B3;uy=8U3_i>afW_>|^V^l($-OPdkZsC}sa--`UG)%Hf@v^;gxKR9n$OBUys}aa(PTQkLJABM3LF zEqNQNN|Y@p(0PS!?J01TS5xqQ9E5?aZ(rW*4&732#!yE!lZZ_t6CEfTBAnNxsgU*J zE@G4^9M-C^ziWC&K0BW(Sd}=w^`WByT|J=&`(9xm>KpM%0XwyUUiPp~Wfu`bV_#M7 zi%0jp3yR&-aixijZ4>C^UiA1&KD-n4*+UVNi6y$h&Ty-{K)jH;13yT9>wsr#Xj`)< zXTzV{u)=fErk?N)*<+HvZ64JHMjuK-8GhTwfh4*eRSmvVbvAFb5~)QyC+~+0M!H2m zC5{7DN+uji?eND5rtplzJs1>U;-c(zeHM0lS@THpg?{i@=d58&xyeD$gfjbwS38v| zy&aE2PWLHZ))ZKKg!LZ_wBK-arEQW`deR`-CpCw|Y^fS1Ywb z+<5LyGftJZ(`GlieCQO5eL;{7p3?})Ze7Wcjx4!Ur``SG+tXNj4|)~!N%dviNf zd!f(Q&A$YO>^ZyRJNN-9N#=rlhbrUD=v!dd30Gik&2K8R6Z{7ua-#TmOnRy|JGKHa zIaj$~eT=biZJ(4At~1*j-2*vhj*!Uf@VSj!`I*QD-?K2p#Mdz2?4b_#%7&u-enQ_H ztbR+zSi&fOqC)TCH=OHfBkRt*Hkj3Vd?A)?=|@AD@@{AJyr=!kg*cSShHegIbb@<@ zlP|}Vdkt=RRm3&EL%!w7Zni%6`rwSzWkdGE^7Bl8f491#J3Sq!Nc%1%skjVWDQ0oD zH_f<+I^30 z7Aw1su{vC|^y@a>&NrnkxmDUHQnkyz*>lOUeUiG_wR~x;s>>f#hhk28D0knr`!5Mh z&<0X1-E1Om@?iaihJ;4eqeT3*Knc(0;cA-`MO?|FSjB5J%jR?)M`(l@`d6ZT9jT0K z%rOXm-u_^j{Nq5#>m{S!vN)MaovL=7b870%+90#%@9&8|s<&)9B6u9|%rfeR&im`n zg~|o3L*E2b9d-A`YrP73oV3d65g4%J?v`>9PMvsWrH-bj0f_S5u~1O z`5Pj$;=iVb57>#Z7|WQlxU^j4v?|vrnvFep^4O!enw>{_%$rW$E-jvRCo#O1#!*if zixM%u+L5y?+I19l7R)HNm{v&F>v6{$`DS(pWfitqv+Au;&fy`#b_H}z=GCQHv)^U= zQtzFZ{gjy59EPs+B(8;1vs>=0ytjWTGJu&r z4(|pjp4GkALM<`u@_S%~O)I&yDuP$L%;a4?L^w zE4IcTd@HBfKz%7`?(feG|fSYnUx;4!f%G|uKwcqp24#J zO)cVx8xSjRN(4xC`I3+Ou3Tsx+tTJ$^q+l?a&961p`=u(k^S>KKc{Lz z!^`RB&Xk#^sujXyW!2K#uCqWmW zmO1ZANnVl`RxZ4ZQ82jky(02+f$G7Q4yl!5ms?gWDu;(&#<|NqZjHok*(rUB>yKJC zT@}CKPg3zNk(Qw5D^}Y!K1n}IXdzfXEH6mhCEL0c99OqL-w`bL%OTI0?pthM;bipv zpIFyRgENwCxNFCUoo`geu4xE%vOmL~oPU3C;zEddo*=n8@2acKmp31p;o?6ojz^0# zLxE2_*~0X#dkP)3(;u%z(&NdEtK5V9@fha6v~f50!!&Ts_4oBA)Ui~!rP)S#F{l5Rf&c|9^l0?f}0^BnA7C#4{JUE#g zW_)?5p3R!upO&I<-R-f~h(*Ad8NT3@RQ{O>e{HWsGoYl0+I^natX-s~e`ujN%w+7# zHufE33=(8|I5o=<=$U7U!n_oarS<;BHus)|_VE35+mvV6FXPFdm>DdKrEy zGn;4*fgVrzR1OknVZm2t?NtD@k+MDv>d*5<9>)Q5?t$3kVk-7IZR_|?Zyv`l! zh@r|0vQrD)qxS}7$Y}3kyp<&K@|5Ytw^W#OC?2g3`{JwcRN>K!CyI?c&vN+^)h~Ei zuJz%H#$Az~XN9iDD%wrDqdYMRHZ3y40iE{-wV6g^IJrKS@(`9qDvF2I1xXCe*ic6V zj~qJeagQ8QwC1FiVt=|f9PovKs6AR z5t$LC^mz|AFeC?_L{Qt>Vsa3B$_9HTk>`5 z)r+#K)7;OfT%XXZS3C_+j0pOL9@OB31(eiqk0S5mtqYeQpSv7P)E)UM@AF)CUtT1M z?u$~A#aY-Ff65adY{9qQ%&`pUUVndq?bB5|`EL?`zW+%4)jjM@*|n9QSeZU`W><50 z;*9va+%scyQ+6#&6Zkx?0KWjctf{5Bg)py+MXmbD=2MOs~)5lZ3ZkGqTR~6z>>7-CN_#WGS zne?wgb_%SaMRG!2Lhr&!B*P@OOEb_yYN#F_=*TQU~c;I6!rN<$ZYPd2zf9^PVvM_F60ueRUcp zy%OOAwwjv5K1WkpKh65K;4_z~s8Lg`r0dnKI9)Ai>7ZCcLqlI*UkV$fa{qOZ8<&C! zaS-H!>BAF18ta`*!Jwq4r>C@}B&e-uYFS!YA#{_nQPX1q3zDFH*}+`0FPFdX*gj5fyIm(&?gG*jtCD=5pc?}dBf5O!>k~w zvmeW-22kkUC_QU{U~BNpNLzI5(u{E5I0VE?3%FP?N#|^u-pa%;Bi2@r4jq3+4fa^EweaA|A5=`m40s?PC zB-Aw?00O)G-6{$eNt-Uj$L9t{O4tgbH%xPS;(qW>XbIMq68zVKNS62q>5pk7yd zdz9Lh_HG2D!zKuA04NM?^0c%Fp$Pz$1Cf)ZkU%dmv-gfl|nn~&UN;V6zPl3&}o4qj6-sOmrwqF}H z98UhmG}Hh?0q|d%DOiomBMkD8r zDpm+Ej>3Am4~d9~_BX}`fJtNKyICpMZ}lVh0YJx35mZ7TT9@-|lj7*aLBbPHIX4 zsPnPRW3|lPFxVeu;Y{BDvVbsk{{F}SBVeddGcPUc+~8gnlX4=G7W zh8le(rqZ%97*Q_y>~(SG5xP`b4nPHi?L$B~tUDgxs@j321|E4_A4{l_mIq9AdTrIn zB)Qt#tBBVW*DPe20+JbE04$#vER(=lRoB$4CM)O~I(n$9$M$17M(lsTt}FxU(5 zW25T_E+S6k)72>U@4!I}Ga4$chBHj8db8 zv%WJ$$Hce{WDCA0N&p3(jLz!sn%ND{jbwUAXDzzB(p0Hyg=z#PQd z(VKHc?=Gf5(0Jc(0b5i1M!^(t8=ZRY`ueFXUt3$34@QgWD6qS=Cb4Bb314BWmRy}Brro|ZNX?l8U^2#lf_LVva`mgWbzez_-J+x16b zBh0_T>S%NKFcBp(LJ8%|1NQINc%w^BGqbGYCIC-N1ow7#AriE_B2^P|0(IZ@rNM!L z`p;@2}w?PO*9n-I1gBBU=)IQ$|k^w2umSu4Pdc(gFhhr4pHxrv@slN=fnrA~cM02_EaXv&rYV;T zk#FF&ks$#DT>uaGX%p!90(H=2K5p&_(;^s*#dta5x&nI#2M>VVg7ZWu;lkPO1}P_yxiMu^ zL^%TR2H1BT;Dj#W=m7~2_*NiTrpopnxEM~5Zh-p>Ezc?|a{|uC!Ye7h-*=G)(FT}= zwxRuj^x%Li^C}|Y1b_MeK0aW>fG__(LfnC0VI005&qCh30lA111XmNtsSpMLtAc@s zHn^z)8c-#_6TgDpvjQ`tw$}BV@2}lLR!7)~BwG-WfUA|icC7CNHckjSg4eGo2n0N9q3$QMZn7~Xow|)*fQE!OGcenlj?CBo zu_(Qpy}0RaWMJf7u|+-FE?Vix6zf5_8Zd)3kQWm41u`C>gsQ^B6#&|@c9;)oMM`R_ zH^}AWNdZRy#0s^npV@w?AU_OGkm`_*>jULt*vcoFaz~S*p{{j-=T%5OxUfeMk z>%V~PL*w@1K$;jT>g^ZklQiEdgLoUOvEDqu6^}rRvx|G~%fh4N>J7F8NNpNwkZC9d z>B`#Ry`eb`Z1|OMnR_0*Kx)4kbpF%SbLT5Y@HNt(29g)o#wI3!J@L_1^BgcN00RXN za0sZQcnQ#6VY`37cDUg;AVz?s!9ahfVrB_lze2mlF*}t|2#zSw4jgsa{4fBwWjz|$ z=bvISI^4H(Lu-zpO{^^{ZMW#;5>w2!*b?G7C^5}uz7ZiKCLV%A48?>}B1d{piSGB7 zmfD&cNCak_dW9jCwgnBoXS{XDBetXL#YVoq7r>1}WTODe8o3w;{YpmD&9gVJ;};he z+S+>oUEs_Ew9U~*zee7F*;FaE5@EmwC+vOf>+1tf(QR;AFK-w|e&+=mN^QMWXcq8* zfCqR4M~Z|^AC$=4fl>n4k#S2W)Z(d+M*45yI%P?EJ330Ms$jsa7r@I}o#ZOo+6=)@ z;2^;3eR=9WZk%d31`fi&Bu9X% z!S`P5y}zUYks1gpRvxJDAm)Q*`R)IZIaAENm6MaxtQ;2BI5+^pe_=7{e| zlj~j3wpj6XXsF_Mg&dR;)z#Ja8`pkrY;4ec00bXd*7={G^NSFiBuMQ}0ka*LXP~}t z49=jWyFwJ+JM7_1nYl95iN`4_1F3J{c6WD&8(qlB%QN{p$g2Iz)>9{pyhFrZAhXsc z0LJWKXD4^BfQ?O15Ft|L82vc%kZ*Pz=d}3%qEGCzf(jSmqe&+qH6bD_Fi-sOt(GZ3 zt>`h7YPDoZxYw=?F8#~9a=uCbsimf_4wyhQPy+9cK}p7pa{)D%GjM%uOFZEbs30(a zVe;TfQY5TFT;0W6dgv?WBG_T2uUA;5?xTzpeq=-2W)mrc(3n$4wF(+ z^gIbb1sRl;#*crN)&i!BmX5B&uzLBO7YNP(Dap#5g9Wu%7bLkvg@itXjuwEC5TGkq zFG6Q&q8ZE83j};Gb8?#A$gJa7yFAR{7%D+H|qrE*3b{~p0?#I-uneTiM%XpKbh64V8M1i9m603`K zqs!>%93&(QF`!m%)hyp;9I7-X*&u%~51PH)jtjEm$Vh1fV70)9WSaaq-nIy!8y$#j z0I!1>2Z3M;IwbvjfV+fr@STuHKge4`tb)3(P?enrWC%hdA`mDn*kL;5cZH{I!1D&W z=F=xnz*<4bA%RtIX@34&I=cEWghbKfg&6276hd-Rj*gVp)7jB+vezpLI+4bp8=j9- z@XMD40#O`?FkA*;hUBRsT-bw7LZ}Cuel-V(D|u)wB|)N$&Hni#=rAu90aF{`IUtZd z*xa1$9Qz)mO8^}0wmBY`kihr&i$A=YLoRY0tzQbbF9AkNEF^yt6Eib;5c_yWt~p=h z4MZETaA;nXmy~Qn61q5O0*MjrlE?B}x5=rgMS~=nB?@430f#5HYOCRN3(^+g{?Egj z(TX5o#Qzb-BA_``4WuapPgJO;)Gj4FJ|p^LX}mlW2q6-g(%pXwA%3A_kcv_r)FuF` z43J1Zwzi;3WqL)+d2dNECd0Ngdqx)!NT3WjHUKZuXUnFnq}0>f%YO0jZjus|6`U!9 zv5EBT?8+i~Uq3iPw+RmPA(UxQ=4a2~U}ML)#jOI*3NpY?BVdwgMf$}YJUp!L(!(2B z?A{UboFH5vlza%NUx)WdZ3x%fB041BTX5=OjosHP5`7{ zN=nL&#s}|WW7W_4tD9iOzYF!NLP9~T(+t}P`jm(8`xmA|8bU=HAwl;87YXS#ydWkP zmg-#4(1y=@O-)Te1wr1^Kh)+7bo$USkTo*&eg|oQ>uUdE#M@3tAl^f$X=`hPi1~G3 zASUoyZt~gL88q+y?jKa(3rkD#c}4nc(8z+Uyb6+is8p4cxM%?$N}3|X!h+xxbqJ|C z0k=CzZ7E6sA>awg&tg$(YU)f_o20k*=ZC3+Zb}~3kTt>CA1^fxPu-^>c{JzF=YImH zvk-cVs{KSrNUYU>azd!0y&}tC;+g(r21PkYH3Cu-h^;H&+`s^0F<9CarXDOoBCE=t zhe&Q*ot(VpU-JdwQ5Ju80W>!-Lrp!UqJX^zuChbH^m8+i3D<{-2?#hr{3C)FadzL1 zuk46?k`3*EjGV-e(ee}$xNOl0kV#+U?d$I-(26TBFNbWu{{R5elV*_e`s;Qt>XO{L zb&Hr-qt>uTBFtzNkqFmN@GwwOeQ9lN&9Y!Pf`tUYqq(_xOvd^mH*5%$Q5E0QL$(4;}^6PAR@a@vlQtE_x-jk{a!l1YS=(mT0 zNJ!kkeeD9+>`QWKHoj|!@4=yX0}M5gUg+rT4FBWVpayRQU0?&ZsqD&0DK@@WyC+qN z951k~rVx4)Cu;?;v_BAQ+}7P)5Bj~}a=xay4#L!DoJ{bim?Mh{3B_fZE){kJym=Um&g}y1kFfB2V{G~@nM;UyA z+81-FPu^w*Ax;|P*5I0rplGzjL3;2uAtuHNyZ|`q{LLTYW*g*B=K%DtD;YX3-{>Sp zPjaRR390+Wr`D`2MkFL%dq@!B$jatb;@tfcx`JdxNiti{)BaxO?V~^xMDN?!eG)IM zu^rq*Z?E#pZ&JueD%U~Y0ro1JCLuHV7X|g1BBZo{rcS?wghciT3Tn`A%(eeky^U}h ze>^yNKwUjO1vxeF__NS~LnH{XRudd2p9Xba4LrwUVqrnF2>&>ENineitg0}5Lvv0g z#M%+uNf?1A!L>YK3!eM)Z(tYxKXwid&Or)Lufj?S@v>jOel?!`5&&f##KpBI*47iC z_VOnvfJeb00~T7)Cp+$tbX}E6NYo6WY}?tf$HT+ZMMY9s2E;dDs@1?>s!h;3Io6PH zs$+*K$jJfD{2WlLP_VWkUh${==c{c70 z4THaj?qg-8?L=kK-*=0oi|E%vme_}IC%F)nps-Z0Hr8jyC}(43MRZ91{x2{iMS1z? zXnkCb<+2y0k)vysu>DX1%KlkHDq&$Cc&@2PXYvIy5lgG!$X;S0-7w~P6~E* zscR@^KX(RP$RZ(aek?Dy0pcJQ->YBRNJZhmA%~#wHyMzYZUIp}Fho?91mN(oKtJ*C zIf6SP2=UA4PQ*`#CitJ_fd^P5|7dWXkQV$s1&>Wl7gtvqv&VT~IS@W_0Ve`yJ$oJG z&%@ui;l}Ol>}UhBe-i>1CiKD(-C2aAkQtH!YPghCTro%{J`u9H8=aKo0c`;Y;bY_D z{bWe~_d#EvPY3Qc@<#Dk(+0dUXvK7i^W6vDQ#&{$><7{m$ap zG8X7T{V_<8bp&H906;vXMR3d_>=`n=7}F<*hT_cNz2u^7og&QbZ;JpPLD#UTu<-9Y zlKWz2)%9f`ObQWYA=bG<+9U~1g3@Dwfae|SN4vl4fP^aOb5h>e*!U+vVne4Akcf=5 zV8OMJSlkx&{Kry4p9T`UNU%lte`z#Zr;@K_LAOX*ncV=Sq>RoUNy5KVC1j%i(~_(K zUwaesxCd-9&oD7DcYghf3Wc=%KYQ?qad%Ho-`#flf1H%Evi0fuIxsGa=Mn@{3Rf3F zI+#2BK99}l4s`Ld5#Ghv)N}~6;fQT-9{Hf?x`DTYDpdaOnP6sKhq4K=<+%#L8$`5u z{utGB@bAzq&a?M_{HN3MUwSOpKoJ5RPvm#n-(`Tn08$uPV8}x){GtCpNu+AB<$s?; z>W|T)_VvR34G0G1s7Md)ZftIP?XRRaL3X&l_@A;vTPS7!=h-2aLeMzyAZcTz)+{L` z+9BeA_~hTK$HKybAou6$e;@3^+629Lf#^AK!Bf_tkh2A=f*TQxBE8V0n+Ls??G8k` z2#qW)P{e@-yN8DxK@!wH(!}vBrQs{$cUm)y|LeX!#Rq;R>}sUJ{Pwo8H4@U=XGrWp zvf>~1I;g_d3*Maa^k)>}E&_C2**PZyP%*L$j~u~8!!5Gj?(U(1?GMitNTLU!*U)<> zmoWMg%5@WJ0RaKHlfutG3I{lA#V^(Zs(>_8o|H~nFA&THeP?y8y8}S$q&164Cfr+C zTx>T#5UQz%SAwQAVD38*TEdW&jjp3Fs7M~Eir2iWzlN~G5+$hfYgYjX`IEgf<%4AR zj83Twf$4o7o;U-9VH4+%or=J%x<3VaixQ$hkJ6ii#{HAqkjFuLqp{Hhp60J_`^40g z7$5(m^$456>xUTV=<$g~aBHl2c?@vTfT-WcW77Fbi&~utc<7nW9%_I65k#Pyyf%qg zl#`F<=V>6rEd~RCGYQPkcU-3O(81^8_0ZNHg}gV;BWnqo)m$IC?m87iI|{1t4n0_x zM&hW@-@o0H_}#WrFKAJ7iJYAFAeR1h&0oOC`}5&;?hw zMJ@Ub|NpRe02YCCiV{jQ4-XFz35tSZ#jK?P;g0|ME~{)xY1{EZ>vC(GRbh_Eh-)QYENd;k*ZMp`oEch0rGH=;&x-Vgeo9va&L{ z9|w+PA98qXC*2`4{&N6a?)q0;cjNIy}J&?hlfTDBd6<+5q8XFhV-iwVM!N;QpT6A9wZz zRLJ3W3vB4k`A- zhP?(i$3aUOToI`no3gTUqw6NzS*$CT_WcalTR*rv3b!*9-;2~k6K6wrkRh15Hi57M zgkCJ;*G!*29jJA&{<8q^35K-|oB}(cc)-|$($Tsh9X&mqL_{nBc=H9^fnF4v2mOZ) z-7ljC)&CD`?;X$O-}aAdON&reLN<|6Nmi(=G9nTxk`dX3L_!(K$d(y0$_N>el4N9) zQ6br6E8F*Z^11H&zV7kY?{__}$Mv{AAMbI#&-3*vx&O6B&3#+-|HK-@@vk)fvEnV(Bsg`Ue7=S__J>Dh z8$jwU^ohsEtgNi8ktRqXx-e53EF9)aCa3NaGU&puCfWL8+;JYEYsRImxmj3D?AaOj zQ#kH|=M(ra_}NZEXFpb@cYzb8Vg(iKBI4b>Ws^HvL&f2U!mTap_0~??F8UPNU6ZsV2}_;ILWCp@B57V(1fc=z9fV zUGCiqfIRmKQ5>C~5lO#;qQnTRIfR_o7qEfugQyZ+_Ca%KVyY_z1qGqoLDc{Ue0F++ z-Fqari?bttfpaj~$ZIV$As6%X_QpYPZELIE@=zn*z}L(XdKbp1!$!m1^(cz0c^9HB zM*6L~#^ra#<8FR?W75ef6m?{9YiF>w$Xya2)?$qlF$5)^!M z>j$^j5~zYd6BG9R;YJAW17l<7(}-Y`8(NJG2~`v$Aw;n=aElwX@bB+$uy)Yaj==a2 z&C^xSJ~TID$h)jF;5qvS?JHMSSw6W!X5Z0 zG~d4crq`O-2LF{HeNace@v)q?wl)akAKb{?wlTJagjDVr-?7k`g4xmSZ~L4URJ78x9{n*Z9E0qcB}X)A;7~ zCX5W7Lf&g=Xc%nIBPkhEyo2WG_C9b<|78n3z5W(dEkfXNv$py<>v@cwg@}bizcJ+k z$IY8JZ*$<$T)nTef*=BLGy}ywp_q7D5h`($)i6-Ob0%j%JlBU``e3%0M?5s)jlH!( zeMHE{($aqoWx02Z%`L6IO07@=h3X88NpI-lhiwOKt*yCNF5*aR%e}Aqb|n2R5X9OI zz}%oC$l$bW9N-p9a4L}V%A@fkLSk~Fj)YMy1ExFD?MQx#0k^Y*&;6VihF&1*K0iuA zV%G^aWejy|BZ*6!3A?PF#96N2ADJ((*^+eG5$4bA8`(va)l}~jDO3^c>esCP@UMX{{DRc zWwf+hM+wUw#0g_r8jt@%PeIkq*#ji~fVlK$xMmEd`CMCjK7}BcA<8DK024l^xJLEw z$K&Pd!%d))kt3)n?A{BmRxY;qZ|7aRtgjW;^B{Kdyi}Y<3>PpkefRe5*IG-p{;wRy zH}5enRc4QP8O26`Pz+Nk=wS*$l3W_Zmyk|0zEzbR{lp6Rv;)3$Cp`g1&7+| z%PT4AyuR)g#K20B7hk@J0qg~x39lx4?jy4A4JLG*=Iomr4DO&WKQx{Hgi(n4+zeMU zrI)qftrCDDEGb!nq1c$fgZBE+Nc$idE%x~Ex8>r7N*(T-dc^2R%z(jv@4`J49Dys8 zufYKzw_`1+1XX`}3KtNpGmxX%+1NfIHi6S?ZVu`v9-HaW&>h=*AmAoe-WM%zXqXH* z%ec-3xq?VWTuc;B(t)re0d$O=8_sDFjlG|BXT$TaxW!<+gVutF`!|e0qP`XOP6y5J z$D#V+S8A{;{MF`yRHpDyVe?~MFua(p@Ra==j$~tkGUJ#$dh+Bq5F$9hjIHP4Ya^zc zP(n@HR9xv=IE=~47-{PH6pptMRcq`g-++z4|7_=_eUT({~YXu-!c z0{WO^NARdqS)Umfu~38ZkQe=_1#+DIdKtjQ8J;4xg_8OH$Wc||`wrb}tuEn>S1OsR z;sNvfwKzCDya1dyR?o@wtN*D_DB-s*5KIc;9br@St~)f@@#BYXXRrxWR?I5Rz{m&) zyH#g#mtl8dZ&EvR`m}t_*@O2IWdFdzIEVZ$bO_g?km%$u?#=yQ*a*z|Q5h&%0Z$to z9GqBsO=km1^7bcBo&*YMv{g!9;RAIZB$%3&k}?GI2R7iVSFe!4&0&Ph$Q4Jd4qMxq zf0s5`uPGLf^})9Z-aRHVlIPT^&IsVO$-JOBKIq}ht}B>;f>9{APm9nWY%Qomb!GRL zi0o61U`RB)U4?VHvGiQsl=9`3(>63`|dV0}LU!g$HTrTuO?!JsO6-yyFBsiB>J7>^~Bbu{#7w~*I zq(axo6M~I!w1sD7v0u)M;MFnS%kV{VyTWUDRti7v0 zAUaPsHa6})C;@(Sf9`UIy~o%h5W-v}2V0>@pNZ_9XD{r}IUMXl`Ur*@qiq{;k|Pe7 zV;n9rUjPWMd$%d*=u(xiwRsM`Znfq-PAl#U`? zLsSJeYODZtO&@qiZRFw*dvOeUw+;*pjLZiG2Wv=4y~hT(b)&DEff-Ck{|!tOE?DWv z_3w<0HYWO5?~f>AJJ?_+5SoXHPr*Y_?s{}P`!;u5=(T2W8P!Elc}%TxG#S+nR*$f= z-|-wJ5zZ)z4CYZBda3bz^|G38+L82EhSb8OZ#8l+r#TTmWUt&|+Wt7{0w+*Kunl2e z^C;pihIjLKoiasesv51+l{PjW#AIPsBgIl@I0P^|D=4e-Bj}7@zYwlu!b2hmXx#q{ zv%J8ye9gF$@i?DF&uQ`#VkI!SQsWXFaRoT!Vw@M`9Y%0~>*N>*z}SiJge#-ax=*3~ z*wGbd$GefwL?*k8`R3my^Vk$PET0dE8W|+1dV8t;4K@{gP;s;0zlZEP-#zmXCMZ%h0l_ZU(-CCmJaT zsEogGyka3Dp?+R8+aGD6kZ7i?rWWWld=MTH95T&wizn`+S5Ex&sQP5VX0GTPU6ju8 z+UCH4qf+N@5iS6b;ndvYh55=9Pt}g|jHqYo6?Cir_umxE@D{-wY6c)-Sh7jjBeK3J zA){K1;J#AuQ*G!F{}q|nQ<&()W9{XrAFwwViW09?qYcoepyY~NK;tZuhcut$#l6a zi`R56S92Sa-%boofg zgd0WAk5j1V>9ta}&)VLLbJ>xKH8u~3N&{o4SM_$4O}=}2wj<{}e!R7zL6zW)JQ!^; zY~2C+Uijemg6#BxzeX|ll2WpIO}R6`z1aUT<65P!vJ3dpdc3t%y6W2x&7eEQ#pk^J z1XJEVNuROs^2+*BovpHvC$~#Q00#>tyHfouk6S8cVCC;q?a8-pIcxk=K8Hj_27+?m zo|LhIr^BjoBYgm;-*7I%Z8(X10&AkD^@>X_(ozWWSZeLLM`_v>ujuoSi;DjB+F1Uw z=zQ-mEem#Vh|W9X29~~{9%RTzj~@romhJu?`mXPRlOg+F_GRkbZrwjdx#jVtEhhsu zfoocwHjeIQ5q`GexdUx$LxD2YksG!w+epHiXQm}o6;mx^I42J7U3u`}f#>~PDP@=7 zp1hHu;|cg8?Xd80$U|v!zqovvLjV5$rn&lvZ38j>Y*hCnPlk(6G;`y*LC2LmHFe$L zS?C7EIPq@ZIUHL;Mv_dJ6|hkgkiY1us9ar$X^@2B{ApO&Af^}g^srEZFSNF^o8@Ah zx;kjA=d~z{k2>$Y5aTjbP*4CBg}caF<#YX&EhNp|l3B_1Vb%p>dpnSQoxE1+4%aoY zofT@3{$u8z094`Iuc|&e7RV$t%|4@=JqX1z(&@s9?I7!nUTE%ENJH9B{1luZYIGO) zTEoEtVTzt@oDTLDc!WD}OaKF18&4IB2(>!!!##a~x<|#G%A+bCKPEQGdLHIg>|WLQ z#veb#+1VfN6TawJ7~M3^kQ_FZ?z2cG5J$YO!^Q!}7z}yGKzsEBBiy7kH$5m%ElMAl zIk}B{-#fPJniGX0tB~}P-{?r7S^_f%fq)6qrTW++2GmajdcMQdB<*^w;MUn^&I9$P zwS0BJ!mxa4-I(i_I8P#FJ}`yH4K!E;^>yl_ftoF4ny+sS5}btSeZs@WdS_Z~7NTw{ z1A?r;g9hs%je#+rU*O|v9d(Bj-_}D};>cUO5%$$HRXe-ByONNUClh&PRu+!L4Ap*X z0VG$@ff+o2E+L$mFw zzI3@;kR%I%l%1NIdOTVn%|;Ldpg%^dMV~kibPyI&oIL!O-@HV{N$%5VC6;DG|aekX~8G!&WN7yi>?!? z9?{=eZ+WqyEXIh>O}REB3}=H#RPNqfaLCd-dj=u9}x$=ke#6YctDPabdR zS&ntoH=eA1-|^wsVI*1YI=h!N9hPg4I!GEH@QFi004rC>>ng>oG#1csvtGYefS%bH zW<8Gt&i->9PMnD1v?x5L5}R|Kd$d36C;RwRcNGmiy;ih=q&&D9eB5K+(5|dS?_L4x zg0Ci1&h?`EWGuetXCWlxF-@v$1ge4n04t^<2)QLx8;qX#zTvMMT?xV=j>M1u1t-Iw zW7-h!v34)S#M*4~H;J#w+p*f#CoGN7m@&1!Q{}K7{iX)M-ShLaz?V%mGsl{B z(5HTq6pee`>MqG;1kwC1&iH%Qb!Brw6f*qh&T)000KM}eD$dBYyuYk}1e{Z2Fx9{S5Tn{ZMa;3klwA&YaMBJkvVZ267L2NZdT+r8RofA`oi!A$@2VWNcBD>QcI>Nvz!@4Hr#(D~ zN6W_%y8m|dg-GT(1e=kTv{vMLV}&Dpl%j~H!=m%2A?>C&kH7Y|cF4X_gK7rDc+_)D z{rUm_bvOtvktl^YWe1sDV?4I0()34?3lKtgNm(0KCTj7Kq)g1Ke zH{970U%YtgT-A6_{DpYE+PjHAxTAl$J$R7tQhlbi1#_$m25q^fV8vxmO!sN>f|&Gi zV5+D{Y=_S`p)V0f73cf#j2-p$dyrVOT@?S*X25gtW$YGJla99sn-fa!C=Cxo2@W3V zqy92k^=VY$v`Z9>L6s+@P$qI0M!-@#E9{)GYDk8dWGa5^dp@8Xj|@vhWMqk|J6aK# zj62tBS4io=$xfNwXrvhX2?3|L>mz>UIp03Qd;KQBr_pF@pTT zM6y4esp&-#p|G|d2u9v$O6gXVG7(!;TT=el?4E%4GFw7FV2H|ai(Ch?9Ea25O zJSF(4BpqjrS6b;cp7a}j-(#v~^jTTGpk!rX1OsDf1+SB?#&00eW{N8!OjUH3_%v}& z?&7irlY`%dS{!!|4*772ELI^QR)%Ys-kRSH z^jV6mUJ%y>GTh?b{6k$I(+mA`UI3RJS5;FAaEIwAD6&wY0#^Ryi4(qbN4@vS<~H=M zy(GAzFR&B}VGc}G;M*f3B6iapVPa+NC7eGwISE@-&1obl2+FToT}x{YrY?Dg)#0=Z zWF&}>kRc`U_`qB=SSCB;DeOF`mpsF-DVlS{S^t&g?b~Az^SvIy!=R#hNn0Dk3X>-m zUcb{B8yj;*+H~{g2)s7nhp|y!A5wLjc^p$Aa`-63S#w1Fbt2Z^GBPNLHBq3?+Q?`C zXP($>^M$HkB(B+^!^UC(#Bmb0M-y=VJU@I?V-$X)pC=`*_zx;|EWLbv4vLJ zDhGIZdEqSNSm$ytTxh~hYU){~&j`HITjhKeT+!(HW@ll3gJ=8HpMrhCO8Cdt1W5zu zDu!wbROze$R$R(j0l0*>AnWEext->E2e1^doA}mk18~EF`K5lc ztQ)5j9TAZ#rpqZRs$F}S(Q%MD9BTJX9UX?Z`yQ6n_ajYA2jIb2OnEc2mr79dkY7AU zb|4rP5^}@DM1Du9KTQXMk1=;Bu_FkkrFf~vJsp{orWvD9++~>|Lkb_c?dUZac zKo}ebQA!C_wg#9fX;>*NNHc$S$Bk zfbi+W5Xa0raiuEGcXg)YnW=UJTh-*5{|bJ(&@~%GNA6CBGcu+0%}U| ze0&%JF~R|a3^rGzpQRq7+Q}5ZBESzCTmVo2ra;=#TgSfM1G75@nI<>mc=ishot^Ejw`gY+SL z;rj2QoG-Wvh*a0Px;^KgjzMomVOco z#wZXFtU2!?@NnweuZYiOTK#>OIDbV*4$cvPtMEl0ZU|U9U`%WC| zkSXza7LZ!N;{)Z>;L`IVJ4nu`?=AwZyZ19u^a1DlC@PE!p_cR#74Ox8s7^UlP$d79 zeeZXOY3WRfL8kLuMJ=4 zczSvg77nv^wN8Y4eZP3`DyLp@oN$iT1^)R?h$Y;-;?Sl=MF~3+%3_Er!8O;qic>T) zZ}bch!QK9nXM2!H>ww7_@69v-G0x4;7bB52yd{J4YnYh9n^moPY?q|9T&=~UUG(g1 zXE(sr0PXnKuV2J5t&!~FU~fN%qYBipYWoh<%T~fYhYivKk2s>NS9?NInHWx>sY{xg zt&J8#63zgE2%Inkff$&EWr3jJbH;JlEAl#32C^a843L){FrEvLL4pR1ksZVUDeW*k zk?{NlH*(rI$jZv1<3dJ;1rmN%p2&UTA&H!YVb0iscb4*RIa5;h#qlNm!`||9at<~o zRwLyz?0`m()v&ioabPMl^GM}bRn9YdT*{M=6oz3ZTd&VeNGG}!G{&74@?#*Pk9#pZNVToS3>~3qE~% zAsoM#k2c=EBBbdd!D4rA9bqB9)QUIWtm@FC(vKE*j3@uR(aBdi>BkT_-2yoS8Q~6) zgWXa`1p9WesJAbe>Zl)nS(^VQM5CT*^x~}ftLiV|Pitf9E@zitpVZgzom7ciA$0p9 zl@Q#zk=59Qd33&j20vtaUG&J2%rY~K&*qn?1Ksh~b|`*nKzay|y#$EAj%s9s)1T2x z@JTr*P2P!jm>T=xV^kLsIB>s|Q+odQDR+H+-svf{N_P)3Qc!>Mj&8rkj{l@`gD>B- z`}5M_R(jBCHm5;lpUYYBwb*dS%-Sp=M}kKv`}B#+;3>+Mh8CX5)c_A&KaY|OVu&;n zoZviAwWlk4P!sHfS=82m1jNYq&cMV2um+<14HJ-Ips&WxJ#Ny->YTEnxn`tid7%b( zt7>({J?OZnis49_m1=G#*{=@mi>KT&FZ&wb)R4L&NhHfeX)uW8yWOta6pCh1J#|)A zR*veTW8|QKewk-bP!RARD=Vw*VEr{H8C4qQ4qUXl;h&qDE)2675%~lFy+zUFLqYoj z(w#e(V30>VJ;2B~*4LM7H*(Q%!rBTz6lv8!;JD$>*X~4#46@rLr{`x_DC+1Re8}(# zWz;DtI_1uN`HF`hjU{z?ZtlwmTd(EOHGEAK3(dHk2M*r=#k1VYA?nx-3Xh|a%N=MH z_>VFIS}H2re=)0qU5>G&B^^hkSW{)-s_aY9RQU5oA=tt0?C#R3trV$d_oyXMA^0zP z+En&(+Qx;2EGHz8U?wv&IS;*6Of1TUGsRgT?vtE)UXE#tDby~t*LfPLMQJB(2DlB> zf24yN{@?FvG?7hy!y}yPoc;SZly>fu`FGo&Uayb8ngJ4V_N8|IV2gp~3NtPH0}xS?i5<;aj7R+XC_9 zd(esGE%M1x%S{ibtnVrf(dtNwh=BdWx*aF@-k6^QJeRNd{u?L%?o}~l5mbaNFD=2P z`aCseBLup>lg~g>)L9hx`0S8OO8(Wn44iYa_0#N3SffoGDT&IX!D>R(g!7eaIzC^W zh^$baa+roiSSV6Y28D_zq^~eu*qOeE1h%mYNlNg^(PELKn#iZMx*9!hqEFbIxe>c1 z&cpaTt8@#CJzKg@Xe*$1EbYQVC~Pc4s45`@ffp}~V8;nkb3lNGe+S$vq7O>i1NLo} zTH!NrU#!|Kn*M_F1ds|Jsy-1LA3;ojVm5$tOYH(gL>PAwSwKAa_HP;{!4X0#c_n=`_LqWR%EZLC4?n(rQ@i-VrItjh#$OmmaXWTVYlU^eU}y27=9POIDk}ac zM&&2mpI^STJ(r4d*qw}=3;!JbA#`W`{k})tRV|vW@iRL^)bv);0s6(Cqk=otPquw& z$%%TacDA>REBk5EzV|L}+Cy*uKCZ`w!iT|(eNtrQk6C_O;uSO(dp@ z&}i3m?XNn!yIq>&2JS-{hWLE3D#E8bn10{Czv*%vY2V`3n1#+Ggy4ybnJ zZg_7amBtgK>8SO7suN58D4#;zRj$51i*z4?@s={bs{WQNwKVg7U$F+UG`~45iae8EMV53lY?(L@g zL9JI3$?_ya{$50wxvNUhoAf{o={g033G&N>dz;ixM1+c`MrHZN5RNHm@m#B4)vDw2xgF z^$RZ#kD`M036;Ok9oqkSMY>iiUNMxhk>rRqp}$-Hd;nX!R9Y(W_VquW8^mAn9FCZ_ z%#O;7YrecWkTs2@I(ufu7KRk!S3Q18+H5ME5pAT5e&Z*VA3f?Ci|zSs4#|F1cHVlp zNzb``YH40axo&~y;!>T#fWs&oN$eA~YXjESC!}WfNL)2KZd@O0(fX1W4EAqSczmec zXG|C}{-Ze6SP#h_`}t>_>xdpcKvV?E;Kz`(EIXJIH5aR5|J3`SU^ii{%z~hRfSZEW zF(KHbw6wIff)IlHAxa(B-T3_cb%eI`zx6gyQ6r8bi0A9yiVET0-s`Yeku-m5X_-Y{ z`VU!^n>&khWWBfp)ndp{|EYfA=f~!EeEfN%lwEC%K}thJ>d3#UWpUA{xWfMu z#XGIZs)tao_n)Xg-^vXoG|A@?dkCIy{SPQC!qI=k84tY@{4r5>v{q=lE;Fv(qP_I= zZ_yEA{q-mgaddDOW>ch1%4una4eHK{vP{0Bl?Ca}G_BQP4zg6?# zBVxDi6W(Ady=Lw!RAS}e7^&(}X#V!?+es0T`deFnj*YFrXSTjB-*&CquzI6c&b9!!2}Gj{^(g6591XFr3~{RhRvWB=M0_hjkH zT_Z-#ra!BzYH~MdxwAPdd1VS7`ZG_{NQd`CD012w%H0T;PWmF)d2`>vp7<{p9x4UI z?c|b44(b}Q`8u9`aPe+!O5`oMf!QSk$v=8Gf9L*n9{=09IICwAmFw&;QY(AW)kf*|zo2aM4vur@^C0o+b(etHyq zV{Pp%7?SX>2;DdH+DFtVe?`-X>mKgzZQs5j{WxIlgp5nvaYp3cf-UY#;yv{8BFPFi zoGr_{Js>9|?2<;@vc*l>K_wcW74I(J9rBxLF6B6uNGVOq%(^%@g#>pelsu5JT7PF} zVZ^Th8*|Uesn_u0ORWuweA;hO`2pM@V$mrUR~=vsLiguSS36#2t$^3q^I3;-g52DQ z`hTL`SjTo&PVy1|E0S&Rx;ml`?P_>dK&QH??*?5X(lRY`-m)ZHe69O+O5NzNFnerv zFiu>F;H{B0YjE$|yZ3>uNjBIJBw1($Q57!4@fx+^y_cqHx#54ZfGrdrug3a5&kafE zqawECGM%>h%A7kP?=FvfO3GYP#OJcSULp6ic&KH()xu%)zIx@*p+haa zCVzpj2sQ?Kfk}+pqeqVrrnOvvZ-Tis>|5oN+?CrOZrnnKazK4~WhQs>`0dESidA#%HiCCHSq5&Hs%fsOxX?Vd0;GsclJKyjI_}=gce1htnCu39SeK3EN~W#*s!$R@ zuh?mYtBa6|7IT2C;+=S7XbKe@Ec*hE`a!^vOGX(Ol=}3g!2+P5y($LrYJO1*)|(kQ9^yp|3kkT}KrKCFN5jTl3w0c!=RkW!vw& z^e{WW%I;$}Chz>pd-n~9cm3@rQiFq6j{P~b^7n+2tC~I%Z>Ma~HK>-j`1bDcEhYz9 zL`1^6Or$;gCtlfv81`&_FF8qG^0j@6T$t42W{CJ@aq(hom>3bO9^h*2OG6e0g-b;g z(sChexwox^wyeHe*{MXbM7d}3X4K(5r`#sq+-T4KbaxgEk8YtYMey~g5?|F&%0Lsf zq5TIW8&HPz5#=_osb{C*d=J7lApr8s2jL zaUm9)v*74UVi)882j*7XSWP*%+LA>{!R$^xY%QJ4mF*v=Hqy|5CSi!dH}BQWvkO{A zzO%EA!M1ty@L{UnfyFdz);K;6R-yURcejV~UTUnZ-Ch0iYI3uqtyIIp;$qrZpx5-d z>rx9YBfSzL?jYBPTe3>XnBAA;0Q)YaT|CU2QoX(MO+tg>+-3TUF4rmFy1EjclFTnN z5hZr#p9w!acq)XvW{7pu+Q+=O{kchmXT=&WsI!~ZU8u5+*ixwxz*Wb#qTC&7I z;lW-asJSpb{+Nhhb|;u45`QHY3oN=)Z`*QcT?PEnG_|HM|x1M<^qq{2rDZvfwj_8h#~9bQ?*&&baarz9(@`)wkm zF;j7>!~!;7nkZ}2JCBcE|LR^N8z^=Nal9sEYw-#t5jf$q68JdQ!t2@U`)DjgM)-J*okrb@onJZUf)>cb>Q&XB&7RzrbgcF(ihK9r3F7eGKKnxXyV-RyMZNXU^!$ z|Bs6piMzDAs3b4{L6Do<`*<|D7gnujAJSBlUHCce(S%zqEDT2t+LEqz%j}@$rb7N9F?Q8F0&3>HnCQ;}84Fh63VPi>P6XNT!&Yf(Fii(W4#Fq=%+D05RPfbfxyigxT ze3!8j-P3Yb$@gI$D4t0S-oEzm<_j`$7uVkVua6)$Fe1w_y-75RgT*QF9M(6E&xSB-g9mWU zg7-Wq=`5xkEe5MvG>WFGlD|Uf?e6b?1MUIY$x(~W?=ah_r>N15#eewl0ga3lydWrR zM!jvVtTe&bG!pbY8ad2A=5hTzk29mO-+epfL_*rWMO*`tyXEC&X!+MF5#}#xY1KPg zqyAbLxsF&fGE{V%f^-@#Y!cWp5D^_tXa5PU5RY?nlXdoujC@0q-y%5o4#yNKqA1TW z;!-8fa)p}}kxOl4?pg4`tF1>xa@8ylG!H>yXVHX-@5v$aJ{Rot6EWQ)pBcwhcXlrrF^ z6*_UE05>g@qvu&z7!6Vq&uBC{Nd9^R2@^yW=1hSjN8lhbgVD?K&{c9_P^hFSZ-|Z*FhX#AZQ*9!IFZv6PCWvl_rm2H;KtFW1SQ94{1PQ#@bJ|ub9;Mx zELaoq?Z&a7FY$X2Dg=0Wce4BX`JJseSEt0`>gsC$>r@0PEy!<}H6_)cy-H9&ho7e> zszcq(Ck6h=H78hbvh%!pkxKDs&p|y%#z>-=Bv9qR_Bi~wg^(`zcfWZ{LVOqYEjI5Mr z3QNi}HS2`SiW9ONl*|v+aM~~aIlOrprcT)DT+dNZ{cNdE)!;ezhFkV=uP&4#JOYn{ zrZ;b<9VTR{!XC+u4pDD{$uUl7p=YEM25mFcc)pYM+6%3pFk`&p2}Mg(TGBgTUZT%E7YnHrG#Wz-+hPGB3#grjJ_pE zO8r8vsRnb^2HV@x(i`<66iPT)wiIS#G3!(IWwm169MuV}cI8CYdNe+wnQZg6Z9dB9 zVP_zpzZ!Msf*~k5gs-#Bt=M3&1Ed`5LT6~%vu734NzZM+TS}c$EwmJvV8k5|7Up?8 z8YQDa8(rM|Qr?NNNmB9GL4D{JM*++ELLItvPeZy+Efj;n&Y_v2W{7h%wRrRP{5#`} z5+CemTQaVon`}5~kxQ77TIf^T$|{I&=&~nep6=!*gT+R1>7j=QL>$782oXj&fX7e+~xo7Le1&tbyA4|*2h!;=&{WEc+;95GQuk`AYu7T@5)T6ke zt^u|?Y`AOY=J(KkY11aRgTKO?``Q^2OZY2@_9doKwterBEsxGYOhgmk)Wb}6>Ypyh z;wVd=MuImt(G+GKw4mGF60WWMcqdg8`A2jenLz^|Qi=;{pF2DCtWS?_p>@BiHdEGp zh@ZCU)2GvB7c=w@3>Trq1Tp5~LT|F@tB3je3eiC#Q| z^=B?=d0N9SQNV*UFDvWA=WktIG11}9-un)xK7W45f=P44!18pWAfAxvN4bq>o-h#Z z2N>KEZJ79rHlP`k?Ayds_*rqa8VB3P2Z$%J`eU2mn{nva%vH!-ii?YzN_J2g-Cp(( z_*h_PuBNh60q?JFa z_%Gl-09U-LzXl`WmXbwTt$=*Qv+ONA!z%o$3oKz-; znm7ao_ez|er3&J`G=h;pAx$>IDRy9~jZfwxq+%E) zP>o1_8Vz8;nuK#GGm6#vpF)-Jdjq~*Z+U1hT)s?y zV`g$vKuG9g6=zrS;AbSnB69l2i?k%y6blflBThN z17h{A{^57 zlXNFLZ=068pF-<4k`tXMWi!!ZR#m#Cbbo&$5;_>|%8I06C!mwCFW5{~kei!3{CCq= zO1C}lRRFTyD+=-P)mBuHS_>UH;xDs_%hhk!7eTw>W*9le8c=zM9Hb~!U_;|icS~)7 z4Dxsdx(nOedf#nyh}qCk6BHfJ2o8|><~rcj$Te-jTS_@{sU)dU7V9kt9Co%4ZeT2& zSP_b6HvY1?Od`!{O4A&POcfL|nw7u9!@@`#ypGUcVF9n@6bAE>u{awjhYs8V_#yYh z#0i7|zlvm|P;O%AT7F2%+-vlq>+^b&_^*Wi|4#J@*teco{wx0mXj#iVdtC;JRZm6$ z3>0lPr)pHAgP}^C^y<4e_~|sXw7F;rfL4O>Q=)dmX5aHEB2%Ac13JyYGlqEBuM2FF zn+dQYEw|Om#wHtg_x0<&L}8aWYAwOpz-5ji)(mxf2*)T2gAXN#ejOK)Rtghcec_Ks zw`es5E+jorjG5mtS3z!ySAPdcPe@AxbuWehJq{NNZvf2T1@zU0Z66HmyLS?{)9}>w zEi1!lbrjqnjGmEUVM@_rCpbAdMMUNhYFLPZP-HOZMW$efzFlYyV+9ohr2(o{!{748 zfpnN^@Eyv(D5X93n(+f0?E=&=LYfT<8#(7gQHa`w=pv2dTs9pYhR^{S9}uuZRRTo{ zp4RhY=w59MAMX=}s;&S}Pg3K*IJUsCXmF*$^D;R(sW6M1zxI%7&nVEF=aE$mb8TS<4c^Wi@Ub2Xlcq_w*e>0vm+SG&j6QxL%hX<%mODTC>VI=N@Xz5{-Art#>wi}&;%zY<_b(ciox7$ zYG~4>Vun?tMytxWEgtt%mioyR;Bh+dM~}|p{$s%~(9nc&C`TiX03c)|g<)xJZ%0?; zyZA>OpM2nu-o9PL& z_hTAY>?HABzma)0VvkEVvLn_tH|OA3$4S7_hlP)YK#LR#2(IzMN38e9zP@nkiy)!v zcuFpDPb_~XQ{80i zgkNrQ`Ja0lsAoM;yNnDJW@d2pU=~Uc(Gb_r@x(vW>h^8SEV(;3am}$X2_y#-6O)u? zXx9O0Qq?_+S?h6YYWk-=?>fvT*3rLV?>_?Lzkv7J1|q)mU%>nShUEXhUI?q* zI(Z;n!T$*EA}J{;EZ^00Yyg|ZHUsD3C6)C+0Uj~})Ta9uJ&uh0238|@uNQmlt5>=x zTL2$ml>ZP^2{-_>peRNNk1r)$tXf+5mvV*(3Eb+*^^o51pN?nbyUvEPGr3<+*CG1h zYw@ck$btBP0rdhHxt;2LeSNct%ZOsLC!__43m2!Jigk5wp5g&WmhAPgo-;D5NE4 zPpp!da4)v_EF}Efum;QSH?98u?jHST4=+^dk{>q1AOnPC{VUJ*njxCL06zIe%cYST z)V8H{YHrdXW$WnflAgPM#0rtymxyox#Q#yj)>b&-8qz(cv#+}y&;%z3@E5Uee9Gb=9Fz%_1CX&usn`L1q3tzqEf^c-CMlKO|swPxk6;T_(>brWUQoJPk0i8_;l$M z4*Xq!cuZcSRtT*KCWzQTh)O~ugPt5e_ty8NP{Swt0Y$CHEW6*M6?y5rl`YthfGrm7 zkRagk+_`gS`I7@aXK4cbP_tfv!7CkzmY*CEgXhW*tr5|7l~E`2;^LSuW}?tn8ag_h zqZ(j762$KQ`O?xty-^t5x#~9~*V}u}3sjUp1)@9-{1#FlLE&Lo5ZpY>jod|yCUat&9Lnvmcy}RPuA08u9Z=!f6h82xXf<*QcdkFNxp#Asv zkn*47K$$6fRTd~^jZ-?0#Xi)?2zJs`b zzsMLCVP7G`)c&|`APHs%p-;Rb!qI|rTQ92d2*FB+rdt4yo;5hbJgJ{amTs4I^qkD} zGTJ=ggawaW!D}O_VM(R!+BsTLHvpZX{veUqkG}6m@?>sih7QzdoX#~!ZTuPE0J`!3 zT`^7zB()Fu(1k+`O~G>Vi;M4}y&I^+PkxIk;U)~E5sZ7UV<-7vsi!3;M>~l}MAohf z{)y=YQy6SDJ^lUczaRW6|MclpS@no(dFl4gWo1$|Qa*}9DmmaH9hT;@$Q`WFh9{MK zjLl@ukA>#Lc9ut|R;Hn+KSY?r`1FHw?zr9<2I|AM|Fj*sjbhC+CcKwG-amHe@3^?k z_^R|0Wtr6Y;EM9c&Z_4_aKm?tYGw_3&vK{)?a<4j*-uVV8a^{Z{Je8`Rh>(Vk!6Iv6aK zzhqF&@Z>d`@p`g0+$zMU^((}esZ{vS zHe}&$*~pm}@bO=IozQk#Ba~n{`Tq7Lyb$^e=PYv^bQKRC>T*{#<>z7#_UUX%KX2Aw z7t>W$MaHuI43BF3=8eRx7L8POd6NwAP~fXz=X@*Wx{M|%uq{#2^7Cqa6^^ujJd+tW9IJ!kzGRi=j|8B8(OCeV?q_e*#- zA_l@+xg!pf=D5>}4Xj+RWN!4;MqM6SbwQjO#`K}ugM0tLmmBC!y>SqUY3f=2bf%~m zWDdvCC_T#=&Cy_7ICT<rQ#DS3T&GoX%i}MGr%S*7Ya>+Ei#Ul9mOsJJPTkGyVcwyvfEXpK? zN=(bPTk3N5=lFO%B??Dit-NUZ^(C5dTq?_|?=#JPHaCCTLAeE{f8ZC{W#|g$x{E2aYB3Rlo&;#QL$H-y=G=BS;j(mda}!nww7mrq4Lc@44ZWpL@8Q(i zTDPTE$5hZ|ekyS(rhab^^XbfUSdsv1z57W5*>K8{$7(%da2@5-E6Ue))lzhY$00bF zx=cV~UIophD_8AFlX-&N69!T8p%PD^1)&=|zYKf4#~w~!6@nZzzY^jFV@@8wxKW9Vy$c zGA(^t{N4f;2PFdo@9-!PCX$r^&WGlxX)9qaYOad482%i;xd&NkME4g}A=U;^xzK9v zQ|>D`A`N03-kgLflAAS>dQQZ5+4qLb}Nknee)ubCR?t|Igsy> z-?ks$mIrl#!h_;i#?K{jG?Veyt}vPzIv$b{j?w& zI>3}2F zUm^KxW8+>m4bC{wm*d|HD9H>kUI~-{0SX?3&J<^73k8Ypevvr$nelpIv-|-bPcjtL z2tv|7{3$_5zrI|_2n37&E&qFHir^~z_s<{91xl`v{?1~da5nz|CkrR1T*^bl`S`8w z0@;kplIgwZC z>kiZJlAU4MkUKm!7TuxRU1*t#KR^!Dq~lP%{vjrAoH+xLq+7MVr?E?(+32S)*3=`( zLrN%CWTCTP`a93Ap51mRW+T&?L-!o=S}X*`g}O=D z7wqip2oq{Q^#k!wr+>C%7@9j9#odp(KvcYp;O1_`9Uk9#7J@pB@kP=AghS679Og1l zq-c43kGv{_xQ2am2R^L%a_NWh{Y zKo}Gh%qs&-5HJxbFes<4k!F0$Nl@W3ogvDk4O)cDp|VzL4E;Rb!QcldhVTmtE4Gw9 zyaFF(V`qpF-7fX9ThhGYPrzw6^R{g(3Fyt*n&T6rCPnLE(! zGhOGzOPRy+O{D)Y&2gZh4UG+ge0%ZTJGnL_hL2HB zNXSO$cyQXA3X-QMnyYp^_4D;TaMU!2Mvy_x05QXZjC$`Se=8jI7<3|1n~IwRp8YBN zU-?&4=no2xoJe1Qc9OrgwrYy1zy{UW_6@vNV^b4l$fG$zEZ=?I+#J_ohIaO@A zH+@J*Mnam7Lw(}!-@2F6#13BC_m}RtZe=mTnK$LftZrQp1y|mfg$oavK{>rO2mtYk z{8v7o$rKZtzsG{=i9a5Pyi(+abR7B@<^cvF7+IAh#5G|t*-l8rQZ;|LF+yQ6- zMni*+#ka7rQN!bQh50FaH?3@)#s<4+F!I=lt%fW(=XW1N&j3;2Mu~7f9lJu zO&j@!O-|HV!dIf*jgiGLv)Z_Fm*!nGNn(TrNk--)6bpFFyYKF#U^2u{uSF{hW#v8A zWtg17DxD-nF7@sZ>b<|5=BJYdWzCypp?=ram}|!lA7t1@U;AQH5nwRaPijymfUw>I z;--Go`hf!kBoPj&H)lGCp~U%%7BB?imgehz%P9cNeH|n`l1SAuHB|`7q3J zLHD=pG?W_>*#^v~6^rcoh}re)y(lDNJ-0m|2fT~fxCPQ%Vp=lxOpwAD8e$@K_b*ZD zJ)#P8eeZPV^SuS~aU~Z{>VxE>Fh{>%rfj}AXkhhamL!R`_7BiDK0*Ge|CT+(kPHA} zLV!pN>!sGFeYe@~!Ickh;T79pm!^F}j4br=kxk09rZO`?V^cddqlcW+6OCRX$=QSmKXnDWE%*4-WKyXg17Ere1<%=S6Uk#%I_d! z!U^vXPvQYDuu74=RYeVUkK%=>wBcV!m}Cq-m6b8ks2rX^6Gxe?DL?MSZ%i!1nTv$O z^NcLvw?L_%!vI4H&1S+<{OJbh^GqUV$Iicg>IqP^;!zmmrT9SMCS+S{Ku);N!~vHJ zdPI}6`w%Z93JSZ z@O}(-*(3S+_s5?TZSgz1VhB|rP~1z6$()$JcjW_dCec>-c&)HPC&JO8re9#)7drsd z#dhw}o+;RnqWQ?@zAJRy*bYxKW{gU)b#KC6{f>nau=^ZgONq0vbQHlG;h(L)N7E>Q<$`~TQ`tAM(q zEn6@UAUFiK;1b+5xVuYmch_JcXmHnH!7aGE6Wm>cYX}}3dU31jy{fKy-F5q;-_Oej z*^tf2IeV=&Wy~?hv~Kr#JUl#ve?4@60m{N?Ujg~^mQZ&@;PV~SNgM~@g9BDGzbJA} zpQ_KTR#+6$KpYxS(I#1{Y-ydu=)%-tFn%h)67@Z0!&#Y`nE|cyV`DGc`f=1?|M{UO z!M}{+1g5Pd5zL@`+hqbwBLHSm@$qRHBtk*43FvGU^98$PmTarWX-E?KHwv3{g>Oqp zB)w0PDg<;OPY8D zu`~e~DEa>H&M@|*?dv@-rqkNYY!3KW5V}gqeR>(Ihp$5>|3bw6sPtp_0`NltGHPF) z_n@EItz-3kU7QdSr!37=GgYJ`{~FrpT@FF)EKt|PV$`E!40wrCt^j^XtNTIpWh5Hq z6Sev#sKB4cQ~)2$B~`Qlz>%SFFsfQa=4@I*RyHCbL=k=xJADJ>0Zvy*gxLjizh;a~ zOfWzof`tWh4TkX2bql;d0j?Io64@O6*)$47a&X{}(|oy?Y;G|L= zYqp$xk;yOlEugDPhXU(`WrcJ205CMrAOgf=CPK8r%IT)YH?_j-CbYuTAHcx^d;q|1 zK`aDLFdRTy1ymT!Y-~Vd2VIoJg(e{fq{+(P?2r5X;de%307qfwuA?kMxeA1(11hMl zAw~mW_HKFt@)j|FZ1t3i2cDn`Fe%p{U^wpu94cX>Owc=N>5JS;4~SU5L=s-7Gz0i@ z>V=*aQlW~lm7cgX927s`Iy9wBa z+k2<7XVy3`>0Qk4&{)WPQ2-&=z0Q`*Js6}eSl5oGeR`iH4gnhkKHYjxGzx11feApP z1FWh5M|FYrCBOi|<=GB{avtnVrq1}FPzJzuKsFbw3WB#%ou+eump=M7M>5FFWkH<0NG7rhn3flmj|;V^nM9!(XeNfP6bpkK(WU^Iwj&o7(nX~=xlLt zR(s}s)gdf}aReIVCA&PqA!pUOy*_pB1=jJ4`aKbxFdJ%Ayd>G1Hf$17hfj>RUhoB-fD1%TO281OKtVGIVqZUTpkjcq-3N}Rqbn-I<~}Bk>O!40b}j781qdRt4pD<) zGZMsiw8G9%LB0wwoltaEX6D!>4AAhO8WZDt`kK;TQ<0VCt?ev0juLGCx>;WQ?|oUY z20GWF1KVIbgVKmUlB2U>Fi;+O1V`L~MwAh}Fi=_X6B$co zN5~BAj>!a(-|eYD*8I-uC^R6*2nK=D)|B$YC6r38mL-=%C=lu^*fqBD`n%=efS3-T zT3S#@jYjYbr2kk+tn*H(2ux~Pc}?r^(kp&@e=l-E>f3cu4M0c$n0L;Cg9`saP%Zp! zBMBt%*i*P;ptS_tfF@L7H={2vS+!+*KG`Pk7SRr z*o9zIa`Ey{%?M1v{%QP(BdXjykP7%>{@TC8LmGfjBIPqqG;jXiU^NS$%t*xc^&h3$ zK{jMU-hCj1j)j%Nf)5C|k-gWvMS@&x9-N`%fU9Th3?@gqn%WPzy$ zd7yHMDz%Sw4Kmo=&W?^s$7w=e$OK|Rp!(8}*4^!2KrGt%_h0GRKKu`}(f?AJ{vU#xGYd!med6ZV$Bcl0q=tc z05TmNwIE#qcq731(dPliaRcJB5_-^l3E&!s+fIzB*_VDxfTjQw0Lr|u@(Z9xlfOB< z6;0;@oo^yoV89)@0OG&d+1} z1X+Q+1i)3CIC6;e&%non7FJ*Y!r?+4HkcTn?POkDA$d6D+i3u7gMBa5s|q-k%IAQ0 ziHZacCP+I`pki=Bb!a;5R(XnKnIk_FC%^gB+!1!&Q1J&(5JxQHL2a+U!VdzyE zLGvQ+=Kmbw&DV601 zP%HUE0Dx?K1S^J}2GISO6J$ejGrV!p zEJ@-S@6VsBfUE_wE(>V+Q_BFuI9)_}}L>ovtHG_CtnZaZN^b&}X8T}l?DiKSK5Dx`G{7aYfVIl}Q zrPCCDg2Mzl4C5$g62dmZ@^I&s=txL5K*J4aQ5fj1lZh-II6pm&QD{>ITv6C!(DDJ8 zV4B5geo028I66+CWW)A34vbYg2WnS9a43IQ?+*Ww-uQ)&+yUs{a9RZQo z&!-bbn0V2+e{pu+@4I3C!L1@6b_AfUg+y_32@TK^aBz0kZg#N*)&t~Iuc(_q9d`yE zDB(}{_L=~*4VEiNURbIKiW)l&B%T3U)qwC)Uk}7Va$Bvhz>(WAc2!7W0@GAgil2bK z5||#Xf1JJJFG~uv*)pSEM%{psBufJW?<0)>5IhD@Y&5Z?6arNr402(rY_u<5o&onk zP!*_1R)MDuD&$i$5rB6^uUSoA?E(rF4-a78Z@%oa8WbUg%YT3!s!=LQdzuJR4gt9~&$R0#6{07WH6AbDZ z>4-1Vi;AM@FcuWmX*09&&zDTN?BE|jp(Iugpjq7<0&~{_&Y%?nC|p&7Y%7L;Lh7TD z?!z(SFLx!uJM7e#ahwk~XCO*{NjzrNeDrq)VspzOv9YlSf`I##Pi2#O5dRLc`7`?g zwwpO0Xi(kD!Bsv54DIwd@Vu<5K$$`+4MhIH$mSF)*TIyjE=l9FS@_b%=@&Pqr?Ojj zw*t2i$1t8qn>+vn9$UdE0}%B)oL_R@X@7l0LL*4#u$UmG7t_xIW7ELcSRHDHFMwzV z6dOtFh2}uWyAcK`OD~+HYEag|0HEkB0C0fcp*T6m$Hu05Y(s>HOLYRYEI=Lv!1Pu+2Ik!a%XJ z1*C_h)}ZJH{uuG1ngG`}?1d)@AVjg^7XMyAS_M>$cJ}Zm@h>uk9iJa=l=v^RqoT$% zpsi{EwdQ7x4D_m=ouB^$@e>1)CNL&#fc*k`iY!6^D+m|_z)TR*oB044a({LSOo#$Yz-**j0~aoA0dP!=A1ej-YhIw+KP#F# z#sE(ODJwLRD)6@8)j=(Lq^k>}X@G^DT^F2sz^?+T$i(QtGlW~$*4NJ|N8kY4fs`Ep zbkPws%Cw-jfV`zO_1Bf3w;%`Za6dBwpH?z>p+vWZqq-7u5PI~58U?_?p5Fi*0B<83 z_*s_U_AxgvgAGCZi*N=&wu~5oDk5NQT2TMw0u^yStAKe>pM(4}-}1@+w&NWv$un9# zSa=q6?=fI903A7UoSXl&FAVdCN?}y%QCSkG7`E?&Bwj`#$OEIO;3Z;$N9=}VCiH?l^Xc(LrwKL37KHMkTWg|gD$A8C7;s0Qe=TL_zD#Z#Ad?ig z%*2jWt2F2WiOkEKg{djP%IYqM7gaYh$^kU*1R}Sp%1S{bKy@Xh<>x1?d#Rsk0*n3? zrmmp@TT}7y#X4pvy}%icv#FGE`}W`d*n?0;95sZ($#5L>b@jB8B6zL>FuPy)AwUI> z#bf|TC3Ynfl6(uPzi|xvS7spk#%0rg0rbE8=zkY8(1h=aC}?X@9NyH<#M#Bk)X?_j z%HGHdo`aj1iTLG$mzPo8(#FNqiBa6f(8W~L)Y#s{lu_2y&fLXh$rlxN9@)w(H#%26(ROaDq@#(3ufAZmdaDT>yLyCT$P$cL3`syd5{!}hp?kn4#(}c`2910xE5ZPB7 zUk8F->%OI3_ra;HyUB8~n4t1+R+7f#F|mDoABfp3HzAl9ELkNu?5)68=`dSBT!4>% z8K?@+!1ptVg3eR6_x8Ub-7hT2YT(u6c~!fLA(Lvlz)PehkBQNV+%Qi44ac3{F$h!CZ-i(F(lEEUK7RM zik45dei|e>r?~4L<^IGSO7<0{r(eN+alExMR)wqy2QP!<^8BfAd1JJ~Fs2dl?Y4tg zmei}qw{q8R&u3+*=X$V(ld30cpPL_<9-P8u=B}>qz5d?VhUSR2{AD7s_NMrhfcdI9 zgLsKJ5QbzOxdQ7uQA~=w_oi{HmAAQL1astpB;{!FG&n|S1#A*=2@aBr?~!-imR-o1QO2QO`0@K;3^pZU`<{m!75RP4ax2_-3Z6nmQwOm z7|Q81bXpI|6_JOI$s-CF$c}23VI!rN6i|(Kpzym%H$mpEI-Q6wX0wAAZQg#^l`0`KYoh|J2vT43v!vs8U&B z=pE+C(jV`)30l7v6T7Wc8H$jX6!y7T#>Vk^vKC4!Bp#8E2$~$iwtJP=??NM6ng2RQ zFG~7jnbo(5CpPJHG#a~rO42$%P3(zIT~~ec1H+)ilk&GIl1&irXqpoG$J`}zd5k9%^FOg+m>aAX4w7l?knQ9Q!oh% zv{v|sFdq!;w}?28>pptrf+PO?kD=%+lHZVMu``)&WSf6_m^$O)j!9Sy1@V|8t5GYq z7A)v)UFi;@Cg#}7y(x-g9iuWgN`r^irpXpAs!D1}+oCI_d*3>MiJtaF@AWuy06|$b z>)2}g#gtcHUZKk1Wa!Qk+Q5E(D5IgK7LE872Bx$o#06gTkGPJb`Gvd0C67Po>U0=? z&?wz9KHSzPl23N3f69T6_bAaCm)x}K)}jw>Ji3n#!!h2?3Hjk3Huy6#FnDa-NVh>9 z123&CJObSF5uLs?I42q5@ubzFHi?y`Njs!sKhops)w;`}AG>1lMui2n)xJTBDjar3 z+}4LgIRTgQ*dMEAm}6%BTrAZ`(sSl8hy;pW-;;3Hoe>nO@E1OvD7y+8~k%JO1vFB1~n5Q<$;NTa*+dgr})(d_!L7^P3$@zGdDIN>M1E zR9bA=Evne}=9i`F=shbLmshNCXl?KOkxFl(@nQ9%?m(_&1JNKYB;z+GbfZinT)#K< zm!q9)Z+-0vah)GHRUJ`I!wtWpOhi=Y-~aAK4%=HoC}BROo^TW{D0Uq6X`0fc;8WVE zUyPV1ZQ(S zk{`ydQu|me6#nh!UqjP^pfX`;q>qKR_o_@rDSsE>R!4u&T#oEMVwvatH00D9U*MEn z%5OxF8a9m&ueB|1mEEN&aJ{%#!M&#=!!nyixvk8CQSezQ9fAG$*#4V4Cr1Q&qM3k< zhFcmA;t)5@|E*@=fA&&T@q0F!S|ZU?pUy{7qTo<$mov*<_LslF zm7Gh+U!2=zIwcGA*k-zrJ1e}Ss{Z3%wX2eBmVw`P5}ojSuUq4B|1kLZRkqc=+iTDWg z^T0Wb z;GJGPr+3dVecF^AlUI07d#HR4;wCB8<$Vrt7I?Tnx;i-eUOki2z>lJLYo2P&JtZPH`I_hM=; zY&z>!-6<;}?$nSu^XGQ?S5K}y5QmlD3dfTHopoMc z@5}we@MZM)IOL}h$!Q2qjj_I#dHgZV-cK<%f4GtzMt-U@2T8a`m+S}!Gb!OL2c157 zPGy~rl4kBA`0R#s^si25G2pVP+@ij$U6Q>Q>L=N|sarOA7T3TLiEPs%w8{oOqJ zT{~HlqTy{ssU(KrMtgiITW6wNHRRbA^~FPQ!wrL@?9$EI-g@!10$k|fEzb4?_6o)Q z&qWT}T(*N`cX6`A2bCZ1O@*4rq^4H%s9zhtSy?4DeT9}UbH$df{ggHksgg-gK20-B zJ~mPCyAL;Y$M=)xyUhs7sjNE8ua#G<7{ zP%Rsm7y@n<9%(!aE0Vq7nB7!fBHP+A=8%80My}p6v~B6Qy{TvA=anGmt-T*wp-Tr_ zh_=&8L+_~<7aX(EF(sqWQ@(EVCgtDt0z=1bPnX{)uQ{9}ZnW0j!gmDY!4xM#R`J`e z3%Ak$mzWCcY-z93nj;6oM&+#6&1fYK8)N z(~MW^4J`^hwP$9`&|R&NeG65myVPiZen=r+P z4%mO0Z-j(&W5#iGd-Ij3w8ekjkZ+s|@%lh7(BQ^mA=7EHC2}S*#T+JW@!cT4{&!;T zH?xWcNwwOGR(OPm*v0qT2V?n#vSVjkx8`GK)T_QMXgJ)wbX!s8BsoHKm!#(0QdTC0 zS~b>0l>;=N=41C)qqYqnWoeac;>5!K)-|9qS(}+B_I*P>yCToHJW^?urm-b1aeQz! zQQBm@ORePVcSReb0|k!EvVe)n%=!7nt#&){)XU?Z@p>xwHiU{*o=xbv@6<-fOX_FM zg-916=#4IHqQn*g{?&w7%9MN2%#g1Z=~+Bt1%ez%8Fcr{e1{uvZcRAMQ)w&MNj1fF ze3g$e0>$OR@9_D>2;e3ZflZ6IRcTM=t zNH}O+x$(jALjH%yUzaoTtOuMBLyh(7H`woMR~LU;UPYM(p1Z0%!tQ>bWBZ2kH=dJpTa^m z2U=fXcmaW()X^*~jhD)LMkjY0Y3uNSJg_t;_RTg!ight&%~I`CFrAt;w0p1YnI6X$ z?92+%ki(xcM_#Te$v#`EAM9B!I*GoCWkb6@>U@W9xp2Br>z#!y-#tWHN3a>IJz;!L z#-}JolOqfv@r&s@J8Ia>QVyJwS_n-l)rQ6BO4fN8L>wU0P+PN#f*Hoq6dQ1n-xa0} zb)}CV87^9xNllEEO~E50CPC!t5VNO)E+Y>rR@Ze_P1%j$b@6ZT5j69|B01cvvx$IR z5+@(^e|LGGWwo$;ffNUUQ`6`{hqD)J@QTTtW_hbvmBjaL8Z=3el3cSH1|G(J20m>k zEM;PDJ$!`0H)V!|QR6KLoKSQof+5;rNtFx69yxO{T!yl@rpcakr04T?rCH{)A156e z5t|l;?0%dg#@_7GP)cX_dt}9T6QArBB$EDuf!h;?=w}@iY*zmBCis&u4jB{KDf9S9lMa{b zWcLjML`r|Mix-0Av3$NSx!f6+!*Td{0_b;ycCMd?4u(^9y64z4yiG=xr>OCk|HCU5 z2)DT$O{aalmm^G+lc(!2NvU&*J=D))3Wp!o$outt$(iMsy&fsiFrs98QW3eHDyM4N zSVTEV(UnN|u74(EKx)kJXpgP*o(vrI6b_>ve+h(Fas>HDK4&Sfq zNywGC)Ob9BByS|r&vq(SlDGQ0r5>mXR9ja{4J2Rcc`2EA4pEFnn59RodS5N9QbMov zB0S{6jfjo^N!akq*)tUF=8f|?VQjwdz86bI?yY%*Ym!|$dzMzCzfwQf)m-t9%0u^_)3V-=sQI&0E-(p1~DcEBgO)nd@V_HzQ5wM_J2Z-wOYIh|tK!!rFnNna#vXa@#3_+GXsv&)5vG z>pY$OnP#$D_*Q5xEnjBEe@AvMuL0hHKACcZAZrCOZ#cez0j5@GRS$^25p_F&-?+krMS+47$n5>6z zna$AVb}+}#X532`JRQ9i?InS-#K2d{s!;OQ9_4WCBHISRT^q_K_(8fkMydP_d?uY5*!Yvq@F}p~JtDrjOn0K)J+JoAZ^^{E zZV8R+VsddF`K~zOtlDO1JGT0UCCX=&Hw)o%IZo-=8M?6&9Y$j=71f-1BVHrY%OXv1 zx#0qDfAY(wq5lzbH~N@^@v~PU-ZmVPgv%=$53Tytij^rhnP8~j3SZ*a>e3|ZCd(&| zZCboLdKSFoO!5q(o#(}CX6e@K=h9N=$A$-7%oAz+J|`$O1lBo<;wtS;#bX>YmOr^_ zN)_jRZ7$1K^_^>~BHTly)i}7dG(drQu4+{k(O7D|-!xx0pPybgVzMkPgAd{7WBl~k z^!Q-^{6>)FE%$#Bm9zi1qH=aN=6@fR9}^5mZFBs|tT;uf&3SVL>2FZgY394av#%W^ zB2YjX{H>4DYv3ffmV7xucSoYwYD$tx<+yq&Pcke|QtS7h26YSq3}x^ zKdoQPbD_lBh7cv~<01OLD8 zi}oK);toD$@7ARuVmI?&2)&{jHA$lPA48@+U2mepn^*cLo4Xd!SUXS zqD)-^R-S4_Ue&?cdjIDHG-148Z0fqM@z6gV&pQYGe*_fBi#IN&-?-i1PhCpm3F+TH zz`%H$!)d?=LbnJud5IkE zD=|JQ+U9DdZw%raPxdTm9jbwnym5lqcN$aiua$2l7zsG4B{Qysw^Rs<&z!4>g#K9d z{w;gE8Iur0@}^_oov^f?Pl2nAv^e?gwNCp+1&oF`Eek6J%hNpfK@`UL#Lrj!v18)! z2SW^ZP~xp__}+fX2qi9&jQl?Z9R?{JVf2>i%A$CuCD$z8oxehe

    _kB zx7R@2j2O%#ma`&qh>hRc(ax*Jy^*FW$sf_v3oVf(Ha;Mlca@GrCB+ z6j+X*!X$+kIp;KKKxVAms5qDKdpS+kIekGCc`Z);6*StP2bIwWE(#7bksnL3M|+b< z2g&IKP-dB89%oX);RbGvcKK}%(tDZ+xfD?pbyU|(t~AR@_vxMGZr{__<(^nm@|FoM z`44}Tl~b+dwBo(KNr-lwu+o(*Xp^^5+%pGxePf(OU*0iO$ zxJ-nGk$%ACv-5n-xR?Vkpc1JdFYsA8DmMQ&15adFuWIV;fyh&JoR322++UA+fGDvJ zB%YLptbGtB41`3Z7@9F3dAi*p*o6-DSDbQ!`gDpB@YAT3ax(hJ_sGhg>$4ObmDIgn z-8&aX3-UX~n0}#??YvG?ltId0yG56XHo@_Dru>eIJZ98u-9qdiO=0u>195ADbjPHU zs()czs*hRHtXi^NJOC>Lp5$mFO& zpS2xnSl>79Kdy~2%XQUKVnuK{=QvhXqBdww%Yi?;_BF3ziisxRYf>L4m5PaG)nv(? zc*O-4qL&QZ*b&81Tel3Z=VFnzJ9SiXVzSZ4G*4=IduztNO8u>T%KL}UycoIO--C^^ z8W3HOJ*nCTjA&2TxCF{IN894-sKLxHi`|T{3vK2YnW)Hs`VuI=pk`n!KBLf&18!rfp8s@*T?Q+_|?lxdlSbwgdb`G9?XR7*_BcezSg4Zs8 z5DVx1S&o8+#s``_LkZz7p{xEXen|~aTsBcU?!_ztjSAfc>37L^$v=UJSO_#6wL{-?C(?5Fiw<7VT@5S}vTJ`dUMBc6xbs!odNZn~4RbnJ{|Yg2`Vj&2ZBVN}JCW03$?B&p z{Al%z=>CbdGXSshV?D^w))V>L^fDbC4OJ}eT~hYjCG#mKjsO+xPvLPQV}EloMpk}1 zT%;H}c-Ry>Nq;jI9NWjlU#Jp3UYFrUh;(thY@mg2g3?0PbDp4I^SyZA@@7K5k&7T@ z5UspEd)6Sp_*=;&e+Se=zx8|zMO0C&#-`-2C2oqZjVAOvE187dLr)RmsqH!MapicD zv!k%)U5CJhztYfbU0D1IuxQW!>KTx=NG4Z&Y@(>h&3Cv&=!S{Nc;&=THiU&Ml}io3df z5})8ZQHdf1CJeer?B@*66vGCWwsz6h6#D&VaeDE*@{Iig)~byC6k2~6XG1==xY7|H z3BzzrRdovelIn*fYqst85AtPU*QljqLVUiY)0yKxaS-c?Jq-<5Ycls!Xm2vlhP-dN zq+1A)ioTZc#Nyf);6pGj*v0rN+}^k72d|PVjNQLf{h&9we8a}n|Fi~fxoVMza-QgL z8yD^~JIV}_?y;MzQLLJ5Ha8qqWVobL&FXJU=we>o+?NRYkCvpPFcVt-mLH{0@VS`} z0W-YJ3yWs7SrfdDICvfQ*G=0CT>G-YgyvtEU5+b=`FFqEK7YALzKbUO%jWTCU$_7c zJs!0?Pmi-5>AeME$1VEWCuqC>B4p(HZ-tB;OiceiWLzbX8DD8UUen(YVA5+N60Cd= zUkmX!iL{}Quw8I1S&FfecW90z&$K=Icbtcfc+Ase zIs1<8>*&*4_zCbu>(5b*O|vAo*PrgK4!N_zoBdw1gN)24R%nMCQ@3>OmPVgo^Dj5^ z^GDx*>D?fbJ-;J_o~gMOK026pq2184U@Wx1)f3faGn392pIh5=Neaay>l=96H zjuZNhUhsIN>2lP-bOk6imdH=|#(WKVo6YsB0V_mxmKt(0F~Z@^M+ck6$cTKU4UW%; zeEjgaPt0=jmUjvHhmovKj_;&ry~qd>Z6Ku}(&4($-{Ml5n+CC*wkit~qE~*ai&d|K ztS2V5x9$7o8xzq`?1u)SVL)Co=4;ZxB9BVC2X)6m0vV{ffqEJ?^I=f@bw?gWETbd4 z_mUP9XMg2E;lZB%`g!}uV9a+}{$em@g*^@rkBr|7iJo9mAvsd^ruUA>MQ?a?q3C3` z3dc_bz8J{11=RWYMH|R=OEkG)R=m2ny}#<$=YM8?O&tFv5Vw4iOPxU|ORXl< zApN6(Nf60m_V7J@I=2I7c~9{w2Xp!lP1@B+L^M{xSV$?$4D$Y8ECl?i8iQ7eUyR=$ zX7V1U|tZ3@NrMmiuf9|?m9aAh?=F4Ag8WB72|z0MTA{%i1vTpmd@I6M<; z15=1vJfPq4ON-ZI!;FolST(dY#tk*kqnaX2Qlofz-P8Sv3O-oy>x^ZZs6vc%3&#E1 z?E;C?Ukbv%&1h|cb=qc4DNI;odwg0gvIR_3>f9SPYR^>+W=+qa<$_KiSfk)S_AbX! zpd%`OeJ8Tmi{?ixqcg4633G>O7M#C%m%Z6IEkH!7#llT`M}8kWf`X%sH)%kwPnQrx z?5JOwwtFWp#j&PvtMGI`{*ZsVq?lcJf`=X+3VDqWICE)Hn@=YkGX82*v+wDqlXaGHa0&igwJ7klQ=YvBiB-| z!E?Ak`&m*=AJG#C(F|2ofAb!V8-)7RPbzzsZ4;DC66vv}&I4nD_=qH%ZMsV*s#EYV zbEpW(Do(`*Q!`HaW#empN~~;tpF@cSO_~b5KtM4Y{L@u`IMbkXb*37IL8|zV#Q`3q z5T9SF9y*2F$-S8A@O%|IZIo?`+vMDVyj>@M(+BB#_gSln^E)U&myCuB^0IKmk-&iV z&dK4fYPlqHik|LU%S_(gm};!yhuR4U-B*HF*lgPmZSEuP8f~L()%ED6BpQ+(^ zP8H;99qi41U@(5eLhffSO!!Oju8XhNZYsr-w;VMNp~xW4ws@T~T-nUhP;!WfVPi@P z*AI2ji$Z3I;#H~DM+RT{5nO3y2IwVnxgjX}2-w@`7#G~1KCWjg1Q&u+`7lE(&})J4 zUrj{$cm8%7HhM$QAiepNFGMSzWj`LPdTP@hjY3D7nWcM2B`--#@i$o)L&jWro>22Q~t=9>=Ha_O( zT_qUZ6HV79Rnm9i5jMyH!DA{E(RzIn57P)^KGfAmmST{+J zBMw-SyJ0@yNxBdlkFjHhCDqktl~hh}fAczk&iQs}(M!)Av>zwLYzWRV2RY0;Q>+oy zI{iGa2HmX5Y&2a_Pn)UR83d_!8Fj?M1Q_VE*H+ovj`FjjBi+1W2*iB}5IUv7XSny* zGya>TMEHMZ{Wlp1ht=y8Sv2Sa#91}ErURO& zlg7pV?zm!JF(>Dkjk$0RTf+1{{?7YdRZ-|LV|$?`^>aJoD^5O9v~T1rZ!*Sm?DA1H7W&x7c=~$d zqpBVUat8w&OI|8QF{H_Y>u9<@tR735SXh+!PLH1}gF^7>;qVhtrNS!O9js}nKMvO4 z2gQ9dL1TI&BmqOsyOut^u`(&W>GAiSiHW3_M8@_^6kDYBhz$AHkDp9!r6*jwG%YE% z4~CR07quCY--kzeGvxPOOiF#KsGqD z+M}Y<*}weBVL314vSv2CUZK$S9{*sVv#|uvJ`6&3P}oo=t*8X0b#ZI-Q;H_33nE_6 zoSKxjx>0v1DeK~FqgeE6WG2^#xF5Kgm*-d0IaemR3#SgbQcCSul^1tcd35!>1U#x6 z>(fS^2!B7l4gRcEA5V*`fNx!A5c&vdnYjMV_Udd!Jq90!A^+Wvva@LPz-zS3$7A|# z5nFzh>Tn0Odt%rP(cdUkvwsx{wXGi*hN=R3_GP(k(wRxQ^QA1>>Iw$8PZjHIwBB>z zrTlf6xx~7f^~#+=ls{SA@ya%PqdI%em+s!?*4$1FQAq0^c(636Pf}a1(^>1S-zg{8 zJ~GuElkj|U&ZoD0&X>pnd4;GXU1t8qcUt;fd;<0WD$+o!i*daGN}tlwP;>&;?(h%2 zB6W`i(iiQCe8F)%fUdM9$kQ)zTJM&Y@GX>IkJBt4IjFVLF2CXYRLzR$*GMfw&##w#ac+>7TPQL}DI`Gi+oaX|90n39TM4h_|corHKl<@`k80)wr)$CrhWATMOGx%uCN&jatmL}^(L*5 zwIiHFOn+D5*chEOy65x>>hQ>1(}ia*%&#TGeoH`lm#)&aX7pDaIt|&DcU<~x2hMFr z?OgO7wwIn|A7NEgxcL$$XHD|>VRPQX{BJ7?GADS76vnm9izN2AZ1!#3G}UPx=Ovjb zisco@4L1%JH-ZTL*!ErtsS@draa`>mZpMGo^)xB`5~-EzqI~CJ2l3{Y_MhE}4{PpY z`1<|xq+L&ziV=hl^Kf#)1{5`G-=E2(lFH4Jo2uO0*zexbOYDqJ2|Qw>AZ8H!=V+6Q z`M(uyvUC0iV&N?QaMadMKpR*`3HfvVnkj-b-N8XBGbhJC(yt7Za@9Aj&{BV1mIR5IEC>_4Y{3K{@+Wuf}bPCV5 z@Z?}^d`PPRH4=M7J{Fz@`P#SK`7yA2`KI{VgGTVtIF-NPz&fskb8Mi`Rjp(Vf1}7` zI_Aw-;B;&V%WjYfmp(N~Ka`D`ZJt`0FMY^Bz#4)N3&x;(+R~(Yrz;bxn#KT#G^5Bw z#~k@dS5!0&sGOrFf?*NSU`T}s3>pG==yOorqjB6SxhajMrf)3BM} za}QoMO#kXgs4zhN;_=PrCha>HQ$O!_J$^hRJ%)~lffRL%_6TZ-?+D)40*`m+VDxgb zzelJ@VIn+ z?`0h(oejM6V2Z_uPTMgfc_kPw+HOM9wb-TG)(JX3xk%2cd=Y8VQ3-StW1kYOqQ%CI zHwuVK)I=}sQb5VDt;0KaJ)#&pWq*`=e)`s~T7Td=o0|V^(l#DmpvZ6I(}E-9UgwpR zucu*Zb)>o&j9RZbZY9s8}+&~;6YN5r)9P>j==qdy0y8&3eo@$6&8kNQ**?EU&&*b8rJwg=? zVtL`^MfhcA%_WksJ)#l9S+v8YzH zko1>foJei7&5dywt(PQme@#JA=l&(GvA z2>0U&?QKwgw|JAt60u8p4XulYGABtvdYI3a8d3UFKXQBpYAH4nr}C}BbgT>X8wrj; zVQSpi%}pN%b{>8yK73y1gbe6$l1vL^5eWPMcWu#OUmS{q%`b*REXqdai+yn}6j!k* zMu@bS(b=hfkMZAC5aF)petPk;of47>U19A@Pv9)C7i}|R^rMXRI<{_d3F9P_)RuDX zc=1OVVQ4nkjfkPn4RN9Os0V7n?4wBbRxaYT#0;>c(66|0XUSG^MA5$OSIPO-G}^_O zSxj`Tf=)gxY%(H8IjjpeH2?NQcFKV0Xil5bLgxJ|#q~qJd|K{TC6jpp+=YqUhIT5G z-Jv-0Nj-37C!j5?DxO(0FGR)L^8-?FWYKGM>{`StA(Dy9tv{1Y3R-pdF{wTh6sDwglu#NlYU?2HB<=WC-#QjgdgXO8pP$lEL>l9(X z6sir;MRf+Xmvwc$4??Ty8<8Op7D}#F(F z;G}2Z{$0O&S4x+Gdhc^csKLeNvuhS@T!-^?AAxE;7B)ikm>_esNtdUpLd2 zLEE|~yCPfr?9s0ap2+i*Xs0uJ*rVdlY`Wlv?>**P=f# zsxQMoGW6(McIzct&njwWtD%;#)*?RMs1x?RpWLopHMMla&x-NLMS!@YsAiak5X}s| zS#1uUGNsI2bQ87V4oL~mcIdx#hwM`0#rP0tWSkT^Y6pKOXhUy{824T{mvbU}yF_fF z{@kHX+RD9rG|FmL@EDH36sB`4BXDzdiyVrD$s^Rys(>Ng=IQP05id)L`~^Z~l>x_# z;kUy5R~}x04j2@!0SojA%|eQbtZ|W25h-<^#Q3>5!cFzPq1hp{C22E}pSUDwX>{mX zMkedq7gQ64@?(cblT#{st2eCJubQi!VuNzp-&vsqn@3Q5$qsLNr-lHpwbtpRhA2c% z`lprKxJ+$@1JlzxK!uJP<^iR)HUL!S;uQz_3jSJHsQ-543^J7=iLoWAl4Gl%LGc%7 zm~WG!5F%@Vbuv%)^rN zNut!$>cq5ACE!=-ywO^cJUFYNL)t9Nt||2!PNEnezOyVlnPt7jwXqmTOdv806#P1b z`lG^)bF7+u5nk?Hn;`G0&*yR`w~=>>P)azXB|9>**7kKM*g^@{HRt)4J)ScX9lj#- z%NLNyK|1h$sZJiY!L8{&6tMc$j~1?CJ%n!QTbW{qb3nj&{qaw=G*87hpoFsk!i8@63zouXUpy z<15pJZ)&J(F+2V~votC|xj>YzGO*`X#zXVTrR@FomhO+Jqj$PLa^F)&#y#dGl&evV zi-|eh;;+qq@8j$cZ8}$3e+s7Zqm&sP?91vFblFI^{;<`TJ3s9DZ@mgW{N#O&Nmj3V|n z_D(7ehQ_9hqNZ+^#-;5B@86u-8XUwVi3>3aK~2_Z zE40;&^R%=a*^F^*{O0*E-pN{31>GmEEY{p&xcFT2VeRQAH>a={^859uwLR#xb^H5) zYuwu{j2CzWIOo!T<73MJaa+$f7CGn|pm!(ZTO| zIRGY(^Y1b7@qGpwFhIx(NDz2A<< z(WI*%#l`G)D?nal5p;>)Z}tMcoiAW|!(A#K9$vK{+cHpV1cDd+0`RYjeqKc#>^U_7 z2?`*XJ`42Uz^Gx$;!(!F*gTt z-TxP1Zygoo-h~YhCcdhTN=a1)joVn-z#g1$5eO;e`N(K4gf%kc%WxMy;p*hGjiiu%q3L&vz zl$_t;m#B+Nd0?PCXv8lY)$=0BIN7~xmx=Z z`JC*n`h^RyzFe*GJofyqYqx1=M1bZ-uS{Jm&FL6e7(nJ-#Z*mO`~2rJh7cE&h+w20 z2)ZKfS+>5vL04K@3hWhGIXQB>j~R*8$TQS7o8(k`(%51HBIKr4fp%%xEu@DRXonsm zkr*CkAeI4QSVy3;VwDy~77oOe*KTn|-bAGErDHn6^<>^GBzp&XBW zX9G(EJ5+W6cD=DtvRxJSu=5-6u&WjT!|BcB?(?&dSGy~bAdIrfE-C?9go;hd+>N87 zht~Hs6>@#!WkE?fR%lGv!O^j#v=m4{4&n?v5C|?JO(L@*B_Kk{X;*0kiOdf+_0z*A zU$vD$MNRCP{d{XE2z7*+-bPBp^nEJr!D;{g{(iO$(m`YQ`R+$*ri(!4cQ#x!4YZ?y z_OzETV~9akfOlL%O|1`TLYOwHzJ8r8BLB3Hs8hAG`vWuoz%z69XHtMA8rT9RfseYLBK7IOBOzbsiRt^3HdV!w5X=!P|hSDF%D=4ThCicCt@h$EM+>O|mleO;A zD|sNGMluHU4ZSiREXgYPzyY5bA0Pj4t&O(Ng)FLQ!&AxIXi z1CaxpEqD!zG%j%eQT94Ix3{glyv~4tijaz5GE+=Zu>jU! zXUDnznp$wrzyQ!?m;_L1<>uxBt6s#QsorZ~FoSCnnAM-B&8k;$ zY_#KuVL)MfBSA(+28P9!nK`tA) z@s7qTg;Dl32+&5l1*|9ndl}m71T;;Eap2U-y9HQXRa}}QOZg!el1cMM_2?qg8Xq5@ zYGPKtcvH+`>=ucp@ewHqFQjIJ{mhz)(2F&ekN^#!m^b%C4jqBOBWrnlY|IW=m7N|c z2FA99sJ_njPYaXa^6y^S0P-6kTiJ2dou`9II*u*|zh_7!@L^@&ef%_Q)MC7Xd7%>s zG0HNQ7CpPRO6H6Kmo+FRS}Fp=N>Wsmbd}#q*4kiN8Z8nFD6D{DkHGX^ zZdgPPV;jg}>B!0DG@1iNYY!?i%Saxbq9cwI>We=Z1jI#Z==7_?pNu~?XK+eI?hhMz zXUgP`5ldQff&tWPQ+Ld0mtA#ObkJ&l1j{lByoQE`*cxq0KiYPM(9lp|m`ZV4+t^U%ibfLHa<`T~_&f!49E_4VXmpP>Hpw&) z>jEFIn!MVwxP*jmADwmGmx8S-lswHOaPiT}d<0!uU>|e`A)ijOYb1)~N{TWhv89~! zI##rC>|4}Z)S_IHI6gx$kLzXcrKN}m{Ag%+qx%jx+mo#@1RbUfy=^~@>Ora$cyXAv z*p!);TC?PI#nsjO$H(J`4t6lwN5IaPHs}Jhy28R2lUL+7r%!})cCPjb_6Vx4r`kvt z^=YRd6^i=e5|M$x+de3(7vJ%5k1l7I6k^mxxz6>DSW}Ic0crJq#$>^maZ)qkd zBouoWWOy>)%6~n-z;u#1hL(wXZ*Ne|gM-}gL3CAA-Us7Pn)m{r z0C~HB+txjf4B&7EHl0#WN#G{rS$GS3ta|d)pA)#s;MjtHrT}tpo`GtRa?r2yi2ZR> zotGbU6G3V>@IA1|VHAS=NaK=03K2-2LdlY)fj=sX7=&6R8`*#gOR z36h$Ku$?N?=-61fd4#bSM4x3VEj8aYQz%UO~@;0Xd5 z1AYDHBH6u?Xlj*2lTtDTlwUb8rgnk=I3r_gbMs>TAsuRtvn)S^@jQgOe35dHja zYYI+l-ORmU;N1+=1a}j~^Kd6lB1En1W42L(~2I zXHmJPd{j4BBc(2-Q_e)t@9t3puHvlVn`Rfs91bVU@ZY4dtG|rJF#t`JMGG3USPZ41 z6^AF@Sl!`4izUJbnR?(_Ur@l@#7Di+KkgLa%9u=SWZUOj|8PS!GWFFrN!CjRB01#j z$Jefs+yS=5cG*&K(NB4A6RS*k7izUGPavg`qdsE_}N1V`*M;`UuuZ4LFLENFi6 z*-C19cAR_#TpK6OsOo8EioHBrSY6^;y1N)?QaXL&eff%ScL znnqHgB>}$=Xum>?(kK}_+<~>Tbf&YH7p&~LWt0V0Z(nMu{ELCUzA(Lb`qRNGla`MW zJ3#HL4^h$)FS&R;uTjFQ&BJGAa(kqDJv&XHZ>AI!w!%0FMam(P`uBVY(MS*-!wPf* zKUpq5USe`Nk{OpfnKFDuHh|_=;1YgTd&KS6Nw9h(z5@dq@&rceKF@axBlxnFGsN{z zc0}|J`yaNgP_0fU8wbrf)NLyDYHXpCyt>Ah(}9CZf%S9dKy=Z|^)W7xRXDnnD^q$k zs;*!wlD_EG)huIqnsVTT0?VZ4lTpKC+D<&mbp_!@n4*{Z&CJeDiA2>k!*r8_NLHDN z9N6R}cz7xyCIAu3sxM!9#$5f0Bl-0#S#*khW`ShwZC2KO&5t0^H%pYNBOa1081r`O zGwA)vM*>Ci@jRuMqwh{@f|22DaOs@w8Bta{Xv%syK3?nxQnQ^+tb6B{`;)_+eJz!Q zK-)bCcW{4w9CSw>nO$*CYS>Td`SLh$h2NH<_vSLlPXO!vzu-#zS%|J}g=N3=y_@S( zwZ}j}m3-p%am%Nu$bR!KaFo&aiEmoh!V2PI1*Ov2*@hxh_@cUBq>p`Cz2L~hTj)Co!N@Q!(zBYNs zw%)UylyY_2=mAC;labAF$a^}Pu_F)sFQ}_ORZ+RljD5m^<&$d-`Wta^aX{4-O0{oD ziSq-r34jB#-5-d_C5MbE?F@i{tp5D$3HLog!4u&7E6vvM2@4Bj;(NK zkaU91PjRNggTI}fj~9PD?OdosH@6uAv!8~R7AZ#!xC}vRjL0_4aH73+0!RwZFD`m@ zQ4KD~_bsVWGH+HH3DRsFEA$Q9lyxDn0;|{2%=5(rjkylhag;eg)Ll{RSYA3>O z@q@$S9)g;h8a!rai8t{SxF}I67m#Bq_niV!f`t-@I=r^La>{c-(fU8ps19H)T{a;8 zYvBtdl!7n+P!7TlH~@Jt(6`x6)$nPmAWJm9{>w(lHw67xbal0W5Qta@%HJL&(3|NnTyWq8oni{e9SY`U zKHL_2@hPc~{7D6m%{Lz`4JvdDu;UH3wFPKZXmA2`9SGKS14*&BAO{ehWwy#>LdUlQ zWS*U;L!b%-ia5OxLm>S$)))u6zz+%uO~QGs5;h0Aws+UaeuPckc`ZK$nI*6kVpP+P ztbo_JuCA`Lmu$L+7l;@qAZdpD)YsP+-KuskD;C6PPhas2!@Xj3JNw%}s6m$VxF<$~ zk|`aCy~C?c8*Z&mdNa$>_n9%lO;k~~#Cy#h2-NJ-nn~OgF{e=w2)ESVniulP4PKE6 zxC=z2$B-G!&COXh$vhAMiRyMjjlAckZ?tB?E@$zm`So6g#zsfw48B)}J& zS@8P9hiictl}w~plIJpdOEG~rv>oZ3xLQEFlyv{GN0-tb>Vd6o3%W(SBwlJ;ua(2)k1`!>K zg5aFzJx2)vJjs$}V%9cDw{l-lqtQ@POUva47H_@SvJ8PzjQB5*-UdGFWY%O_E-ugwi8XFsxxozzioCQmkatqFFRM*6;5gH6&MBqQD%r!PQ!(GUQ3>4ftKT0e> zLExX1c6Ak%D|mSE5b!xUm8vkhxVlc&c?viiUO+&&i1~67fUn&COz@RofZ*ZDN80_CdKS<{Y0=4KID1#DQDk@!TToXz5HT`_wVKYm55xtaF9bxK!6GPp`1KEfiJz6g#>Td>u_-?J?^Wh`HmF3rJV2O*_z6U53r1kF@bKCN}W1vQChGgt_ZP}zG(Mn?41bZGaIbCv!>YXo9IU_ijF)13kg zAfMAb2rZze8ye<7{0caZot>SJUp)qiP>4TIxGo?(@Jn-LZC}52HS~6Y;D)A&P^dY_#G;L$J2;%b`DSl2|K#0~h z@SJAI*PSPc-f?hn_=4KawYjnjsAtX2OQ5XW3BO!`*$$F7BA)*?6WxY9fAtf->lzt* zBd~opHJJj_FQ}D(y*811IRqlbRJ;y8^tE=`5c4G_8UP{%KS4dmT3<}90%Q#c zB5WY=qyt?iM%CHMO1@#4$yCIQGSCg=oYM}nGcqJ|Ho)*hqTBT20s?*0pOB````k;e zZDzB)yquiV;t@d5WfoiL;{nm>)H!nbB z$grAB=U0Ch5}RB|?I0Q=36KPD0{ov4V+dgc)yvFtX#4U&h7RCB7c;Z_1&1xc6xpe% z7$3z+4!3*CQ-mN27lDZ2!NI|SvqeXj4q5}ioBJ!-`>e`kIc)7E=CYv%+uN-`K6hwn z2r><^Ab9l^gV$={_cg*@?Uf>%8<7QP+^h;!YfcH4X1#E1_&PS&j+pzyE#JKp^uH|kDId5-opPrn6 zyafYAA4q{6?{7rkE&z}W(DxdknFU}2D6YZ5jzaDnk{!j+v;!Jra~qThQDFtc%wd6f zA%u_BM`U{?m6NU)5JYdnX@o7{PzG7L{QUgfQ(xJ~kBI{$Q7BaD-2oa3ietwq0brB| zivjl#!T|4+%@*(io`PKPM!?TI(@lX8O;Sh_91xhVwZHeXTY03$FFU<}&*FOgJF|-j zMn!P)I25D1IZSyjz^e%azg*5w=DjmBM#O~K0XI)#H*E)v7l?a_iHJBr&l8XujLFTAEfGm?7iGuPJ4!nI$8q8CjI_zWzBJ za_x=l8g;5Cm-e48M{4$;@mc?>&?`}*D!+>OwxrU<@#xX7%~uei_8pk>!(54 zMkB`885whO<@mYU(p3y3&{-^Q8qtDCYYW^#E;kS1voS2hu2SI&)z(yH>le51tL~Jh z3;N#Y#mUFNA19!NtnRt)fbq9U9#}HO$HU9JyME{T6-r7%DTUuI$uMEZdONw%ewcBr(-E?ECbYtBBe(p<}c)Y?MQwUC^v%5o9KBX{XnGu@^D|m~s86eRK&!V;ZE#3+urM>f@cZJg!g`GLtYO&4H8wF>?8>GF1fX0dIPlcg z5{}nZYHG6KLNfc4aC?jQ_rW_V1DM(jLYW|62F4l05y+^ig`tEMwezbJN(B&+s(8bN zfg(*Uoc6_6KLO{0%%3dE*)cW2Y&dsv$uP4#HaR>zJ~k;lDJlH!a%q46Jp(-}C6u0) zm6a>X%GD|mUHs{4V4La<8s)bQ3po~+dCLQ8d6^w9E1!1;UhFdBI(^YUvBd-pZ8(n4 zo(**Brj>I_2?$K;mhoc0-W+0HHt&WoCGmJg^W@UY^xf4Sc?9CG9EjT~%ggK4dGO)z zxw{_&vodUdp94yMG=$6?a&>?cAk0ewa%_KpX|PJbk@>YBWo~zLI7S>od zhe{Lt zh7jZ2z{Wy++DD50SnT5S@}e{~rQ63R-itw^r^*7_3Q6BmzV-J+LhaR?2a{w-`+MF@k zy&I(`crkaC%z}cx4`uI2fSv?azz$(y6=a%u4PcaiF|PJ{{1E+HLHpD z1!zVn%o5^j7FS3=0aH!fZEwZ@b%5;jd}cN+tux~J{f*4#=8R^^>_$njrNoO%nUXSU zw~l_NK2)(H-s8?NoBj%9yLikm3A_Aa?x~5Ot+|Fq&HbzE{syA5p zASzYykKp3W;jry_?}kJ^lnwmw-u)K&`5(oJ_@0A(d*?Fth9r?xc*OWfBic@=;cG>6 z#oo$Sl!Yj~z?*LQu@bt5j-aNcXs>DzldyI{6vUKZLXNK{X%We=nr_jzN*JX0O2tDD z1*4Wad^zR!+x1eDTqwEzo{{`#CS{it8L_rV9KS2WSLcmxiHoP1cSS|K6MMsXyn8%* z(B72*tA2Q3g-_u>1d#`tSR9rzi)BF7+e^t+L&azQaXm1?Ouc1~KJ`E?Q%1LNl;)WC zHn#ovE~h?yJ@^u$)t&1jEO(qhC8NNT-}5_F*5wfoA9cm`n(U>^7>B+Orf9-OoIK#> zc7=L1NJGC54D1^mv>ibALb3~fVIKr7!OI^X9c5)_udc50SP$7iSPll=f{pP3Hhroa z-Q^Xu2+sqK*+INEOE1=>42H&c^(e8#{nwLv{>>3b52@nG21}aA4iG9`^3+>X<|U&x z>7T9Vw5rL@N|L&kyt|$d+uHIWky2!2Ramd(_gpO`5D3r^TU=SmO-%(aK6VM89K<&O z%Xb5Qd=SyFgS;Kg;cuqeBj_%GxWLTZJiRF;0gSQ^kF`>w&O@bu0M!1##yU}QE8=|q zx9kdavOqz8j_LZmT6Sz+XaUu`H`BIQDf|(F^R<19I=ZoIhpQrzlGMt-f5$AZC$7)E zf%x}Z%%f-6@m+hnyP8^BX8t3iqrtb?evFR`Kx+o5iU=lU+>VWpue2Q}?ZP4PIlJ@u zT5yi@@1gLj;-x1d(>z{vx=d}|EJi6xPLdWJ+T)}Ja0`A_cp+3W6{xoi$%weErQKLN zhGpF6uav`1;grN^s@T=v+49R*tMrHJV{J_h)a&W-hFs5Q_B-VZI+!WT<`Rn|Am1N#qbdENqMk!dI3UZE7!P9V(NiO zdtde61;IU{Tco9K7KVsV7c>sFqQ@5)NhQlJwrAFWC<&4@$X58ppfN;;IC!MjARY!c z4#ftDCoyqb6183ArN}oeOHVlMZy?$9MK`rz+C}ew6P$}`XronLqm2F%l zG2_)1Hi7!DKuzVLR$1^Gd&Ie#J31zy{w%U+76!>W#w#jKQH8GVP2_R ze>*3Lm6D6uOZMhPhqsDU97P7*Tboi-7Z6q7ZpnLvJ**FiZXX+qLmG*SibCg$FrRNl zg{u)0L|O1qh?Be^1k!RIF6`$4Q$f z!elo_;1k9mLQm*cv?ixKV;$$XAio#Rfa#lR{Pyi>nMS}2 zKVbhw@`C@q*-sICbbmgd8Vy1|Niae%KcL-DEnRvi zX8VLM4jareD&1$;?Z=L4{7atGP4m}bpJu1sLZ79`mRjpfyLb4ccd%Ild%q{N1aUN&mo;TGaw-G+_Z|C?r{ETZ+ z52=+SKIz=1>f&J+e*=Da;5|NqBy!R7GM~%p;Z7f4J)XH*8eO;hNul|(L8o61{g;A! zgb^y6#ok38ahj^Cz0Llp(qthCz$Op_jJV>aOUai%g#B5adw^`J#TTlw>J5ktLSGKP z05*N_qS6e;9gOBcLa>pdO7W6wd5i8{2cGxgTF;54;gd-Y^{`%Eginq3?zUlr|G(xl zt^^f>^sc{bbb_t})}#JON7G;H%*S+Sy6f>A!woSGXv|F+)fQDVj3uR$3SU290}j>T zeivo=3gLy-uQ*kFFGHwCc$__2(=S_)VLp(1(A=!g%bTFR5G2 zh(+p+S#CO-4;S&5*-4?q1@$h0@6V;?jt`dL2M?UmxcJ((gPU&RCGYM^$IRB0;NGZ! z^GUjMwv?Zr1*B9{dBzTHqzIp)au9@*4tDsALNgr%1~OkJp!n*V9vW=$%y4R5!kwTy znUsS3Lll-Mn7BMOH#oHjgz%d#vt&MJ={*dd4w#TknP_mDtxccz@Bo3@xIOG}pIhBE-=x(F1vM~z_{j9WA@vY}$ONFQcW6jjKooxhx7@yeW*C3m zM*m4bP@qS50xzdM64Hy5`N+G}dNn5wnh_-V1>3&9PDvtjFW25*!tx zz+fvy@7xCQHK+;+hpd-y6$Uv3_?80p*0OaMZLVW??C~#yL2ppQLJm!D= z_yOQ#FtyOp@80yo!$W|?jS_@Kcb~2gOpFYjHBV8!-nTnU;@doH>Msm8w8aY=P4;Sxi{Gu6V~0+{jqV65Qr4Hs)XPhXwj4H(Pb;W4 z^DZMGl1Qp4{F3?7pxbkSm4)%?wxh-+#DJv6$@5dFy=-n~CidlLW^w_v0mf1FHAa68 z`XzodTS%Z)^W(XAiVNK>JN*A@cNhJcAl~aNY8YvgN9Mw@1~(#9MfZqf4xK}inZ0xg z=fUWBsu&_=mT5D>`?3z&}{^%726R`uX#x z&PSDWw1wrq?w8q3x9;i|0{?@l5I3R;lQF>te(wK0=sNQ4r9%$D56}rD zH{ws5=9H1tnv$WiJ5|~g3Q$6xZfXK~B)V326%L-eu=iyFo(*^u!p4`(`kVg%CD2GjoO29vK;lh=`bNn67n~;o5*MI{=yMofhOB z93Cmnyor0<{lls_-kmBsN{Y6(>$Li3^?6csVz3$9sbkbgz4nZ7QkC842=MoAi7&b*HK*daxOe;3#YV~DA=4Giwo+8Y0P;0+-a z0^vacYyHN1|51s(&ZlU1*VEj~*&hR&j5+Zjo6;1P5@?Imb2|N(H~kvFIym5MSX|?H ztL>xju{VwI#+kdA9ZMVz*sXs!e2SjUSH~*bcOmP%uDD=q_o`mHw5{zlUi|lM7?24e z%B5Ow+v265g*V7`bE;mT)WU3{n#Y0&W6m0Dv_q)z($ewH&$)Eq?;`4gLltX{wCsCw zY~v!sJWeXB?30DX;{mQWT=~1WD5Ve}46gZ)Rl%N7vRky~yJmHuvjXe@+%W5~1nB246!GyN|KM2n3_dUcvY| zuL)LkH=*aw-<=JG?b5Q|`xqx9_P@Vjucesi9as4{C4+e8e6}$VXLQ*TUVdH(eTO%L z2)?5|KEU&hm%>DZ#^CIfKlQn-otZrQ*u|9lbE#L6>>HUzHSZzt=28U1`=7Eg$&DMS z+1Wf$(!+?gB?=7p_j9nbs~H)cM;m$RmOj6l+)apwS5{p7cXt<1w&zpT0F8hwbH4*P zny8Bh@+eZR3sFTvB~GeNF7wkJi@OFjdYVrzcVVk=V4`rpMIq9?4J=VVqVR+Sr#Rjx za?3%cme4GtaX2wK2|Cm_h=_=8-EzrP@bUTH@pQ)$02Gmcp>gyh2crP@RjglrZE3oOmho zgXLlGYP20=6e{MS=^9o|%A{G`FG!sL`=KavaeEQrW#N=E${${vICDGQ^=OvmVH^%iRXYPL{*(1ofPK+hpm0(&hq-j7(XUi5_y zrnSlH{p@5fey8~>B(e|1d^S>Z3;OK?#sf(3=$Ez%bRIojCdYmKZ&mr|35S>Rf7i79 zVDdnyd~XWrTD;=7FyOh#c>yHCa=jr0U={ugJ{OAZ0Oo>>U&amSxHCE#gyu)EX136d z3K1)y&KI%j!ULmR>!&9;@q;;T5;1O>-eX8pM9>#4MhLD=OF&A&*u9&SHj8P}>5Qej zeg%q8pv(qNyC6Rwdimfbh9Gr@r@TU;NWFtV$`V@eYOO&mRNm-_jig;tOD}0Z^&6|5 zwCC=gR$CYA^7(VZ^W)@sl2M1fdP18vZyH16v+kWo5}6^7MdG(-LeE-eWDV0~+7u|4 z87bRD+vxVEsR@D_7Cdg#u7A=0SpKeIM(%hyv?bKlhQ+8)-L{Yz`rO`*^P=}5f-7~tO=>D#60{?~f`})Smk9|&prO*s?s0nybcB>vR(gZT>R_k) zm*;qh0bYRfpu7vs7y%zYLX900!GIgWs1I89Wk5*^zNYsI^yM?3k&@3qGls@V4~j%W zLxp&c{p$K(HhCYxKyMF%knV-6XTuFd4u`m5)OF?Wiey6sU#Dfrq_h$-${j7MiUr8n zhlcl{b2IzxH&;v)mLTa$(yu~qgbj*wy?AKsV`a336#0MaeT)||9k1|M$lSQu*bZNH zLhT0AVr4zd!opG*c!u)}Y^MrQWei_}pIX!9!pJb8OmUTyL3m}rC_$4mZ5QdEhFjlt zJ>K4Nb$e&pYuTjtogo{C{*mkj`j7#mdn`i@H=zY5 z#>-M$qcKc4Fi3JhuKCkm>sMM7aj!}0d=9$!{c>~{`|i@MK%FXD(!5{sMCrbtiWuja zRI)p@)fUyQ75G=QNv;fD+(BowXGiE@;pr7b*-ba)of-18vdx~hX$BoL>lUE%ee1n_ zRtzvN4P~6y;_LsH`eY|mCp0e=_+sg3T`_&Zu<&$>b$C$rh=-J`j%|$r!J;4p|^2I{+^6m%<;+BVYFau zL4;N3r?yI?_+@l6eNou<|D`M%(t>HM0J8?sU%Asld$%I9a^Ny}_vrDOXs=CLOj2`@ z0ezWNLa1`+Y2l3_LgK}DEy^p;n|K-#q)o_fvhq~l5y^hUn)isc`Vmi_&)0;>DRL0TVO@e_QfXH>b z=N~#Qin9>jazUUg;1{2}G2Fi&C`l_+dp>y@eq>@|qVR$A=1uX~zum6445ucRyZwHyVO4B->&D6l+QgW64X{1?o1m_Xv)@Nb~~Q$ zjijOw2uZ$Q6^D<|XbEGuC9*_p#1qgodovG-`}WNx{IomTU^x4-IsTtQEY#p(?jWkA z##}v`8jqGvDmGT1gpw0LNtJ#%md&)*{vHyq6SYt@2JTj~L#ZjD#0fHmm+ii-C49h^ zd-%8`1Xt;Fn%f`OXk1peMMpEcLcU-um;6YaWxtH+=g3gq@s8VhzR}^)9zMP1XDtb7 zt@xl&Y#+)6AsFJoq!8~6p|N;#((@i2-5dzdf}MbgrLgBs+V}WI<67nns+=+bN@{A+ z_!PEHx@2YXcV`#R#AMs|jh|xNFXihHAqc-~SU_7bshL|8sCvAz(-O1taMjaymA7$q zdaR}9qJ=V6g6-B&LB62j=6gjM=#5%jK`mOL%&cIC>2D@xzERJ1RIjc0dThX(o{=?` zuWiK13lS9=R1gUW2;fw$Pge7AygdRJrt3k;#q}AwS=*DqknI8#1btPUJUm5d!G$W7 z1Piqj-$egKPzRR++dVv;U#vWrz}=E!B0foDC!%8~qGi8H$ARZ0wYkB8c3)IG%Lkr5qe(0~|ec7^M&ln0jf zutqTdV$K&hauGzgqNvYV=vW>y-xcJ5o3mzm(>Yy=B{|)`(99;?(k6ZI%XSD;d`pc!+qf(e*VWv?lsw}W z9@z7ZgDw8@g*yfOX4!sG{5$e ztjKQ}+R48Eg1!>nfQ>-&)h$MqL9HD|EMPFJAS#Mfh>N2kiYEe#B_!SaK3`Cgs(ah# zO|`kwbYC^v3+l9Q)V50T8Vv6RHFb^F#GE9cO%zC9#MX4Ch4Q@%QY3~@_253Xx_X7L zFRwuL9YK8`aRP)2hsOdlW@K#j_wO$NM?)V5Ot77Ui1!1nd=)h{B%5C3mxYI|4BYVr zIYo~XJs-@a(K;GSN=u4v9c#<6r3!8LeOy?&2e0NAclNZSS(;SQC3w|}-TVj(T5~*h zQBf`G#T7q2cac1dw;@o<-8Wlcct;4mDUh{7!VJhaG|+WJjTq+M;&|-OVB%pjcf&Ke zek-aBfKr$kDTHErb~Zz;>5sQp+uGXTa5MeySBVh3>q^*N>KT2=lXvHDU0cD02YA~= z9J7L_8+%@!tkPnw9M&l&lNv=8!T0wLur!)5Q5zre%1~-e^ey7nm4O=tScpN*$B(b| zJA+^^w0vJYb)PDQmdpBjZzzdFqh%@R%%aF|-gJVVF8CefpT+)eGMnr6jT7{KgP=Gs zPl2WO3v{XibZs+Qn%T%whji@FMe7kq9tQJ|tUk%-t#h$^cIM92)#4|`?9{jYhPqiT z8$9HIc4e#=Gm+**4q*yzB;dR9dYMC?(mL{6}l6EC7?U>6!sgeu_t)m|I&;zUa#@ zqtIfgsUCNg^c2Dy?rCwn>$S;8hQn$nsg|9}Q2v6e*pd5s?$sWB#Fo)ku~D59$F5zv*Gr%LZ1-33hHhhp4^YG)r=m)XjcpUeCm>jK z;Dt`w0|kFvlgWIyAS{WTrNufb9KL5F*YX8Cf~_k9@bjr&xOpg9>F>Six8LioUiv&| z`o&vKHS{*~rGKC^z=ckX@~pkO*GcHxTOmzM18m}ic=6VH0xB=zzVKqVmIuxso|+Ok z7Z};!!CVqeF@W>o+~QO5Yry;#iZzIJ$|>sTGCn!P2!Tf4r!PR17G#G3gQ8|LZfqI0 z#$wb~sy(_dC3SJ4%I#-^Z4V4*Tnp}6SyhQnescSW_iVTJ_m`K;_DT0uva`~4>OYs* zI$yxKOS2BY(MbmYA>?IkgGBSEDz}NkZxP>fals@y!B6m=s-QszoWKHf&SKh7VMr3@ zybg|z$Zy})n6p3Ss!RYRv%GAaL@@7esmomakQ)KXPx`rdwGo8m@WuWpf@jH9{xScF01k-HOnYAV&Ox@*ShtC@W2ef0G~en1O-_ZQK4vZA zyNpm~2t#T)kGZ&(G3p0Sj*zdTLm_A0goF^Xo+o;Gi;IiYybj-{r@f&y2f(K)wT^+B zj5S!oq(Zy{ z(HhVHlR0kp&(hrCek4_V`3I|2T^&!m$M^=%R*h`pTzR}5>9z(7S|eieA9x>%)DaJr z$5)xo>B)NfglRKja^}7(j}=D(17{NwPX0RJI6Fhms$tTQ8AxaeeKvq-^|B*0#kalc z@6~wk@3p0S4;7KGEwX@Ar0H|h7dX*VQHuQWbzg35uEos{)OA!FT2kcj?mptNN59!V zg6z(B=FC0PziR<0Yo8QU{TJXFAHg|?FMxgza6W36mFHdBtVS3A4YF5NndMqH6LyIV zGU4HmXrF277NV~U2z@g%_N)_RuJ9Byhd3K1D_u&>%EJL z7{pD}Pt{-?!dA8J0txrDH}$9T7a_T!^7_2WR}hL~&de`AQ5ZK;i;fL@M|ugilEtlC z9)(xeqrwT*AcV%a)-9`b2Yg2Uy+yH?qK^COEpW7Wr? z+ry4n@Oc8aZnd!eshaQd(9wX%z0Ms!>A3bBU+B$;#*0M-f2OPGAt^RM>FycyXbeAQ z7SVQ@6aCdxz*^c@oK6VGAdn~~zKk~^t-SolMap96I7MiJAVn2K;ri4Y1<6IzZrvNn zDIZJPyPYZZQBRy+trbVh$wVJs6bWpyp9Szv(+!J}@yg@JXomAH3P41^4Yzi8%g`ZO zuL?PL3^g>XbVCUQ3~Kw+{`U=beQo8_Ct05#YiyU|6`k!KZLyqBJKFV>6Tm|3Ia|#wOq2{}RU!sC@z|vQ_+s7bF_9|xgFntEB76at0FP7l z-`^9rsjc7TPogu@j!ydrxYZ8b3g1j;?t9&8m=X*KagQE)_BJu~^CdkBl?_a73Fkpx zr}gl5u{R;2{T+-~bv`I^e)I&#V1oT>C937^*07GE|t)XE- z#{rUQFjV3WvlIi#@$sv_em#2mM<0>{z;Q55sXu%oZMi7n}LTf~XRI z@S4EneoHN$VsP;0*vgdk-fW*Xo>4%@0`ChRp1dMY(@JkW@t?8y%9LN@xYn(jXJ-F$ zeu7-Ca+knOnP4j^lLRmN_eCEkiAejoVqt&)nU0mWNJtdA-2rwJIo%1*$zc*IFsc_8 zf+wE?^z!($+Upc0FE0;~Va{}Gs|6IeIx%U>+QPz%*~Y87r!X;?#vh1-dnbf~L;Tsk z<@QIGxWl3D{hZ;$`v$0p!H5@%gGbCZs3jeTUkxKIw|>xGP~-oQpPg0kmiw~X12?B9 zu$J>rNi0wAZm9aQhEF$u36g2>#~=S}En`{)U9B*^xz?W@l9jc{T7NP-JA0Fg%GSc- z6*PN6(|@06)J|phG)!hf8z>ae+|=6J+e_v6`1#X>u;!zZsul>}$V^OBZttbmf3RJ5 z>3Z01)s8J?SUt0AHEub{Pf2{ty}qFtGIp-lonJ>VM)_}RFOAakO9cef=zZ?F1CTiE zsrp_rrm8QD9o5Y2)d=;+`82IF+~^r!_~Z6Ica{!-X6Q|Yt05D`Fi zp>GszsI~wd|9YG1gF(aMh))u5vtONWjY8kXws#@b?4s(?&-3$K$XYy|cfngU)pvg> zUhtDJSI?$icdZ7%C zi`jp%L|;Hxc^RxoO9;)ockhyc6XfpQ??XdT{^wgAtkArw``Jnp{*?H9^6FDl)20(% z^6S?hL9757B~f)AX(;T)i(su#z|bQRJlu-}P#%#(ZR3~JpC>MiNM z*zL>eBQ_N#x615@$gdDrv87rvOi7HN)M{|g{|p$X|RsI zi(~&$&Dz@5@tv|Ge$PcdtKU~S)VGw1+;8r&-v}o3sbP3YoS&cRMp*eAp6X+jHu-)N zs`<-T9eMU_9t;!q4M0`z;~Q0jE?>c3@Hk0EA>a7e!DBc@?LUlFsQ6{3j!-eP`ngEJ zy@r@~*_LKpW49!Y?{f28G85&SNJ{0EGW7~!!e6Z-?>YMQC*ad~i*Jyml+Hyo_CXeW zOPP3ilwm0j6ysAK{yp?Sb+U9{K+ofDE5_R6Bb=Jhg$3K)r#VYwh0MzVn+r#}`YhSI zPvaLwbma}?dXVxFaY%WkMN4bU!vvOB75+GO zMtrjh38dNf#1bWN{4&83ZbqHJK|i~z0F51#?k5^k$rin6t)gYcpZ0D^*OMHr*5|0h zDJ*|qExDtzVP#e;F%=%KnL2+n@iX3!hHY_iC_4T+hF-V}7cRi`9gLc-oGQX};NBWm zE1#lg!%%~?!DQ9ppOOn%_~gUvT&x?)1034NZWRqxirsxg&dLSbtK228>#F!kFRmEi z|FZ&;-`nLO+<1!=;DI(0(b!+|sZ@xRzCru(k{$ z^9{*%syLTe_j0h}S~(tGAd9U#*&0O<4i?m>-P{PlqhWey6m%uRX=!!^g*V7%&eM#A zHBwqv`BS|T%}`QOvw7}D^*bLMeKEB`O6;|1=pFH~>S{01h5Ej(@n&YhAGc9mcnqA2 z(_+-_`0cXBd^ln>Mjr3tU9q>QHL!6OZzeJ^`L(rKU}7tDlpY~fW?^=6XpDpNc_Hqx z3irFo(&QKYc4h+`&U=%!M5(j1lEToyiEDUUUf#pRWTg%7JBu*pqe)Pz{yCRjGGgPs zVVxR6t))M2QkIC)DgSM)c-n0*`HF_%q4@j-_@%$OQvBw(8V{d6vw(RG1iBDB7*+Lt zR#ILyw|RE9=DZA#jdt~L5 zZU0*N05p4P{~dMV{&|T?dd!h`?dkLv$bf=yZydt>Gcxeo#5GJ)DI!-WNwmkb?=e9% zv5= zmD`PEg0IC7I?TI^408|29u?+|N{}DYUikN3?KJUSq%pB24!AV%fq`p!{?gFblbJOB zZZD&`S>xo|Z9VHdTUhWel#8E~Fc2)7*O+Z}l1fXDIPc0Ws68CFD#LNX z#>h>X_pO%)ZxbrsNp@o;to(HW;e#6<`E6|4;HyDOYage%rEYO~r|y{6Ln`YiC8{VV zX43dzY2U4eMF;4FtMJ~NM~j{_ME~S>S=H1H-I!QhB0glXbMJj2et|kUNDA1cR0!NQ z8a5L!om48SrQy1IQTYS=`9Jiv#CsWsJ=;OBq0C7`tgS=&|{K;lehlx5MapYm-Q>0%}E_nn3K$?j@x(Yo;Lqn zRgYZTfC^eK5F~Fq!l~OVH_tDT&dc6>YW(QI-S;FkcibN1nl6|Z(|X*SylfLyLEn)w zQ*S^Q6?Q3(=BH1aVUvO1_w0C&68uYT82=a)pbFC=K ze|L|)QB`Ykd6}fSY2lq86PFFNNg;gN8?}#$X_Tck?gV%^p5=eh4r>|F&i`Q1c74S# z@#xXV3a*aU8HsG8%LYxL{g9rk?!u0?ha|B8>Cx6y1To(rCS7~ zyFp62yZ;N%`+Qg5x$@#X?BCvNu9;(wv1Us1Q z|Gf>QyDQ%0>C8isxL!|k&=iU`n)|M@7_8EQJ@_;EbxQu!~i8BUCRZy2Wc>Ye`7>GLd^#0%L@qpu#P2 zP5kt+Iw!L#=Ydpv^Mk4^0`)_Cp21X&QF2p_wDxCXT6L;sQyvPRFDilKu~)FNLGHMB zJDIT~{K!RRoYkhvrH?^wYR_lhp7a5g{q~0j{{Jp58-^_+aAHN>r*f%A%YqZtdCpf- z2uA+=54P=@n>+%$m;8i>3C8@m39i%$A{G)5%0DUhPkcfOR2NY<=&UuK|4cC=!jfw< zhyG4Mw-9UVe#pUvg#g*WAL_5EmsOn;uYs{Z5?VJ!Xo9AQfJ&dSl+C)yusM_P84I&u zO)mWb!TuxfK$ADTPt1rj?Edo{H{v&n8vcl9WB1)73`7*v*SMO}2S>FGog=j^yfg<# z-2#lG-Iy3#P_ai*5r@x1bYIi3?$j{ZyfSgOS6cC%R=@&Q`|XJP@%4wDDQW(a*eYK2 z#@9$28O7X=sSR$=n`?dBk(GyV?`yt(Nbf4Eh~Z#k#ya_)UC8%cJJ_Ha+j@n~#Svx7 zy_~kGm~IQMkA1miuqmBy@~-Ph$8%sxL&L2YEb5T68Fg(S^lFWUk{;4v457I zj8f5Lvc?onqr+QhCng)Oj-UgT!IRdy}64 zbqzd$+$XwE#QFPAx~42RfkL)TEb}?pf|KLfv7r@jll6A?C&R*!f}O{B|Cye!DX7-dW@f$H#_q?94? z;pu_kY`pcs0zSpk+n4N~dLh$n>{Slo+>L-JOEiH5=hZ_T%&0T^Pr5NCXbZV2bK#vN zNy3ZZ8WM$7X=>b&Yn7*t{9tcEANcK#Pbr<{F+*N_6023JDVKk0&m0L zP=?xiQ_sJ*erG~r^nM9Wk`9u%gf{#{6BG1vDrHHKW;hRqJtp}RN^o&IeRLGgzW84_ zXd;Z?zj!5QeQW$j={42Ve?qi>?@JWt9{XwdmU6{~2L+C*p#T-{?R2%MW2GH@#jnH) zwu-vN@CDLFJe)vjdpNdaz1VwnOEzAri0$z-XA}H0AwrZgDW|^WJ&w-XT-@k1n5yrfE?4+%_oj-Al?r2GD#0o$;KJGi&?9B# zxbR_Jk7a<&y1TuduGGzxj#`MEayR?}_BBe%uJeeoUEY7ie|ax{2W{`G^u6uHRKX|nzmS`37 zj7Lb}gU|#0{3Qwjez)23WL?eg{a|Zw+#o81;d1eow(o?_&l)_%A{5jFC&O|X||c~|7$~9{?pNJ+;l;>R0L7B&28G65lVrmtpT)@ zK-VG?n>j!l77FTxPYLXS1H!C|#>iBR&kG|XbQBa6EG){?mjsv8AEag8VPQ?Ouv8Vi z_<^re?p#~}9bwA9bFhrM2nA2}IPzMd`XOB8irZoQC}-(^IiCD3d4t2%eAp-5T4y(1 zi)dou#==o)-EdsKN{`~*%U``!)_|(G(pj`Qcg&aif2WXmQ5ym z4bJumUYc$}0=j6r==1X5@)f>TXV#MjeG4|`68Dq5gk+t_&*7ux$fKjP?yK%?&g{Hi z!Y<=Ifg+KFv7h6~7CN`|40N-uX-__(fn{|)9>}!!~nX%}E z>AWjnPx{U2BP$qZ`&KWze_>G)0@7MzC!AR|ZvpRMdG)h9$8kScXy>D|oZL`Ce&WPB zqe0fCWk>hRsiV2ziu~Y2G=&ds>>NO)~M8`yWEXS7WAl^$D(rVsR)HKV$=|y|CEJ;94-02WyL6%l8OtEG)~HjXpj8 zDX;vZYqZS$RB<`h4CR+SUPavWUM^!uPMiX)FFyYoo|vsP%H^F@Et@($%33T<6wMWd zQWX)#zsLZy@^snCx$MN~Xoc#QN|Gx@EHZ$qGu&t}9Ej=I=ly{Z-^8Z-iRq_4s|X5| z0#dul@8&mv$PUclVr4c#_jSyg-#3D@E)ANtKq-4M^EjL9k#8jrvnOTD5Tfxd1m;yW z#Ya}&RE{5}_>X^%>N{5h%9p$4UnM3bI9_mvIW@Q6M-~MZ<1`=qT7Eu|FrJ@#AAv1I z=NlK-`e)E}d-Qx`{fthB1goIF{^?Jbo2T2Pqr*uJ$=CdpRq85r8fWKg05D6~j@mUI zPI zw>zJqS(2eFwfmpo)QmfAMr7>L(_#SnSpk|d#xGT(v`g8A0v@XvCGKqH1Jfg z9S=BWQrN7TL3bL^F9E=mpM$OO*RN-5J%IxkSBHyMmX>>xh1I++Cwia(|Mc`k=h$nma$mM{qIC`)`0r^P zE>-XZR?xGr$1D-v&x#^aqH56|zTJ4BE7K(Ky8ToxDno0|P4%fbt&Jx1>}Hg{Z-x6- zM<`Ic=a8_qHY(D72?nXZ*J0!UoB^j;WQ-*J^%UjT@ryGioa559qlj571;I9Uz0Pk3 z2M2(+Aitns2GGBflKupZ=OJ=-i9_;5F&fO+GkU{I0IH>R7eZqA~7S2*`l)#co5&pAH106;2{etwpeu>{o5O zeDyveGHu?Av48-UKdVFM*{gRnV;hfK)pj4yD^fJs@-BsYc(Q8Nbz(gRN$&E-1S_`x z<^kW|bwM|zSsNE8b(n$mT|quP8XCy6;e08$!R2iOoS-x`2Y>;?%gc+%b6LXt6O11i zhlK-fK-DFsUadG4t9!{pD1s(ZK0nykCr1dvuu7qxQl_l12O3%aalULHJU5IRYd;uMBv6cOJxM$>8MOiQTMZu5G6-iO z_h6A+SX4B@25id!E}?sX6kv)pdZ)mMWi;*Q_~E@n8p6`GDPk)hboF&{?+?zp6r`*2 zSA_NNa3c~Dt~s91EfNC)waVs;idD2tdR>wQ&IvX=DE}B~NIz|rSKbXd%}#84-1l|; z`sJ~UmK%)DPskBvzo%@bth~;lTM^hYaIuSngu7l3aGM%A@EF(yv|D+pgqhz81b|a{ zT_Bg)4(4=Vsw4J~s-E`wCCF1N$uL zyq5kfRszdwvD1v&YApYOrw94dx)R3(qNS!li@)9^cyv`A0UsG36A3#l>&0gFj}Py9 zn;^wP=Z9A>mzqyTDMi$rMelCdvzR*?LjAKVZMZBFx~lX)FGAY;`63*z(6)N(+6Z`W z48#sZo`ifTx>g1zVlC@XGHha6cSEl>EJfP4t z@xAg6LorTCPNvs2X4p#{`Zf$bTe+RVkxck?+NGxB>Dy~4$jp`KXJow5;xUH&M|Tg8 z-B3_h5~&3Iz;@6 zZ%F>H#jnBSN*7!k^w?OxCRcLmSS@*}(Rlj~hTN?#4wd-D8UT`eb?yk!v>XiF$ zq(PYfYSJJGy;ZbdD*^4W0;4bpihsIY<|bj*3A6Pvz9;y3k2AB<4~;b2+eUtR7e*9> z32DCAf)o6G9k?D&GyacatUSDcQi&mj12t)=o7?$I^L2mASLjMUUpKkpOM>PdVGxT@ zL|nfHy0z&~*qe4>s4qm}yoTlK*CSGD&` zxh9AqsxA;(90w^EsUR>$v`1oT0p&dFn+0X1)TTb|c(pSVD!nvUU!NyX&66U&Q8hcu z`WMrKuC3;gwL|$PR=2-GW$@^y-3NaDtVzTQozUHtwv!d!GDx^R-Yq{PYW&gQ^Xr#a z63!lD3b5`_sL-<1{8j~ZRFQ+{A_@!HJXWNda!qKiXQrK&cz@rHAEL@u!8T}8L#>vY zoGfqaIf`4oW3ugyCS6dyO4<@j{`u|OoS`z|)l;)l)!?DCd3FroI_h_74&aTWa1Xa64VQbguJjc|7bJ4EY4B$}byGTTbH1IN}rj@Wv# zJweHv>6_oKS=+YK+rzaBO@0-HYB=xSEw;$%oEVkCgSRm<6Ar4OYlp&{2!3%3AqZ0F z3v}OtZKUw_Q5I+Myz`|P3>C$OB zL7FvwHUiy?L@*>L*?srT4OziqOoSYKB3}w5sMjOBUB}ogmyo`16|g9d(?_rMZLg?) z^)LLm{ibiYezexsv>QUvlzQb*w53miDOGV8HY7<^R)-*7hR51Plu%PZ)$ zk?*g9QN_QbR!(Z^PFl^L#L+Vc5o&H1+F8{P1>ah2+JG*6#cZ90EHL%qYB-b{>s{4% z2eR^W7c5Wa@Ek1y%3GI@-I5Pq3!0h^$3M71!h92ssW-BS$?Pbqg0q0$;}u5Lm%Pj% zVpJeO%Vzy|Q;G@dcR-5I+FI*mf`a&G1!ry=Ev9>nLB%hl`1AgnLH|#`Sir2kj#2d; zPsW(tTMY?c)#>Yay>>K-zR^|pxH`>wzSNLf1*v*j_hQ2aEK>KbN6|Hk|CGD2ai^X* z6okGTmj>j^-H$`orhe}Lad!lZ^r1g2pzUyNf#;8biImEpiJ2BrA-QPz_cfle;uP|o zXnXI!w%j%`&0XX*a5_h{mpcUJfRbU6fK!^CZQb(*Wwz4$^n6>L8YFWe&|P{}G_HeOI`G`__C)KYhDD1LII^SY;&q3Ra@wS7}UDjT*;LEiE9<9%$QY|poYm+wFB z{$t{a7jN|6wJv!r2J6ArQ-zpifz)(r+YkH6crA>tX~OuYx;Fac!%)~FtP`arG4Ac$ ztkoAXRH=$%&sfw<-Q86=l<%iMgE9AK(WQ+6aW4D^QH0vsYU`{Op%TJ3O%X3HgDOY} z*Gz1cUiog`dTt&9Eh9%|6DqWH+;!rOZsc)*cuSS*~X=7Rh8{e6`ANV+1Za?b&nz}REiW%a)sM7)=f|iY{S}ks%TJP zW#-^yWH^z_GL)A?OGw!H!C-Z`_)J4y5-6reIe$R;-dH6c7wb0zGFU+rm7Z)`X%{G@ z0Qm}TLMxx;a-xqAZhP?d3-OW;h~|P<BI0Ws@^JarkmL!<)m6kf> ze<+VEB?cGn4#l{lgJ+#%NUVSF=ks^zB~_~HbLjIVk1W)%dftA0GaLy1JdC;`Ryu^k z_&-~vLKghCFJLa3nT`b)vUbM8!H9yuJjM`jqLW0SC#o5D)yGI=L)4dZl%M#~Y;`hWAJdi;X|>|6V?LF>vi3n%v^| z>-D1yhU0!480z@?aeP!xOVRfd3Yd{2Lpenoxwz=Ri4D=-d7h}Bu@}P;T@r_o9p>~P z7SFq$8a2!xm$;42`yyl&$4g~ZYuJV?$C{Jb*}>|hP0h?q)Wrf`uoJrzy*T;@)!!Ro0=iMs}?7Gr3< z!L$CdEw2$pSYwr|PNO*Y6^$k5kv;;m{^BM-2Q-(?YPaUj3%0h5YHjFcG+Rh%c)V`l z^qtsd(5KwRRRq`>h&b?~#J?98|EoTs6zG%iK(GtYg|b2fO%?aW9=}xqpUdEyPCcd; z+2mnEd$iS7FQ>J#FIe#_M!umw{>F9$&oxWyRfA);&JDaCLDr`Ip%D>;T+&e)5h~D^ z1SHOIzEO^+Yf-ZQ5+^0|x&V0Ou434C*w>IE@!@?bT20vU8{dVifw;Baz|ZgiLXn-&tkSFTn2N6X;~+M{eb#i^;RNH zay-MFyu6=44`itfNFITX&X})C={10}f;_Zc&pnXhHPmZsAw3TYbvFSsg0x3yI%x z;I~xYZE;rDR8~D+?(kk691N9Cr>*fyWOsS$K01LNsNh=cRuCJgp>R!i8`H)MH z$J0WyYRz5{9DKOeV@WQi;NiB|-o zYwH{9L(CUwdaJgCgm908fuD~`$NT{%{nyLB5fPW|o?6JxfJ3pnXuNlA4SZ&qV;MjP z)gMI+WJ`c56QB=;*$u)1|JCVD@AK-5!UX&g0;3vqU|o{%YMEcxCp>W(Sc$Iq4ou(L zRA#Aoz48^^XR%93$X1Xw|2@pR_|AibFjx$WTk+Bd%9_9>_JU5VJw{Gy()ijsoJ{6t zZ!f&TFHBz7kawb#dLG+eKq<}=42C{^`UGT&Oj#s9&J-ya04iD2u9EK+m2$RCF)?U> zgkx~zEz(Opy8B{l<%+~vYYbIp5Zj_cd(<49?|DT1t`YRivaFu?56j9Yt$wFXN^Q4$ zx{Us=&aem^3GtkVuk@*xLb%D)F%CFzS+;N!GQhRE#g8b+)^D>Hn;`AT2}DNs^eq2j zGiyGMw;$$v-uCDY0J8QD4hPevi9mXVrVwn0f?d8(h^nWw;l$X$$!;S2a1Q!vpo}QG z>TCR@%wP?IQ}VNMQ{j6B*@XH_FcJS#j@q<)h94lg zVOs{#U{P=WaqTpQOqQnAn~*vzWTy>`5-^`waU|^QfW{kU*%$Q$5H=)0vICw60iHL} zqo=U!)-&RlKxx?S&ug`|ODBJ07aS5G<{#|Q`b8wOzfW(XMY_nwuv|rvsIiVShar$$ z_p#Gh(`q?qx;_2-s9egXn(Z~6>U)(jceLQ|L_r~(U^)@w${OI6*<@!jDHT?RX|X9^4YrMY!Q(8cbJ$Fg!}}w zK`(PoVb;#8w+gIvVfrVOE;)u;?r1+!#D!=Cq$!3oG zYzBgk9!S)$2atSc0=;D^n`<6bt|_gh*|Z~KA_wZ08i`$J4tylcVm?HEhOa(VvFP?QY4P59g}ZsRPE>}v&kg(({0|kQn=mh(tI&atAJjF2 zKkpo1WFjs@<2-O@3dc-uiHRkY3N)-2iasD2_)#RU;4=EARG8b?tOBhuve;lUp_ka2 z69X)~h{pI*?*PBC`rFx`GgIn!RoSCn3?;zGfnzf&m6ED}vEwBw z)Ya-Q8Wn&?pGhHOwZ=$_c?tML$eAn6#u(8;YM10;^Bt!v$0oF!yUEZn z_r9I-z?qM5oKo%e7T-iSbrEDU`0&}RJ`EJcxg8J0k^_)=L}X+ohjx4!7fCc+xO)89 z<%KB@&ieWn!LJA{0lYZC+va`k0`_5q*WzO&1cw7_mmPOKHaE@Y;PJzrK9!W;d|88^$4A0+>uNVv*PzzWM2dk1 zyIk4A2zC27>Em!h{*|7d4Ip^}R??u_5lZ;-h;L|I3Hjh+V*iV=T)+!bMMOZq>3~CK z?@5nGaeN)qopo(p)e|)j*wVX8Hog~krK$!(!zOc1RZQ0TuO~JYw7_@N9i@M;`Cv^} z#rhuLVm9x?Bnwk3HAKiL2G|Wi`C6z%Ud9>Hc|G#y0nFKeo*o`PK2X+hp#Fwg<_3U> zz$71D?uK6>KbMP4;5d6{7R)Aj7pTnKp@X1Ilb#ElHvSUuwGI5N$L}!u)kh_goSve| zax5h?<>AIic4i&ZicB8s(ah`iO+1dr!1!spRNX30;ur{P-T=N9Q~Li}$4KC)oAq|z zwqIv=p+p6(J-N-T!t?cIsXXCU3VyKE!hv&b4aHTB!@#5vNye>fINdQ9BRk6UAbg~# zmn2=4T+ZO79ALM{l;jin#`CEQk456_De>gB^molPxmIo(HpLuGqV3Y?b@G&cW;V*2HF0!#eUL zZjRiiBhjWXp{j#D%11FaTL?_i&T9~qxBcH`w@1`n;{=W`cP9h2B5_pM_~VJ-f`xt0 zXG;~1Ph(@pFkUSBEqKiZg-T>~*H2OOq&&We8*4pCzhlX{>~66d7r1zh={VYLjUVybJ%317&f+Y43BrIF3K;k0ZYtrlVd3J2{!+wfGx@l`D)lcT zQGT(Ky`T&vkP{%Yb)`?Akins4W}_!QcLJJ%$?wJBo&*33S>T?sT9KqA)h!it{LV9e zZ?Zerg?s)YQEcJlFa6?s9P-G-I zJK*jBd-g$?WdRlirBahqr0BjF2kRg?DE0vHVhW4e`Tg^^ke;__E+@DL7RbrR<5bV$ zp*}qaxQ&Rnt%&;x@4QA-(G=v)2@WkcECov12N!kn0eSs>5LCFRB;WE%o6(WxS%p?t zN^YZ@4L~vgzMx}3N@s0dVfofCBZFWbDhIlh;4>VbKq4(T$gi&!xrLYYEd(PE$DZL> z{pl~?9hk$9Ui%392Hf6Zr-&YN8U66dchn!*238Aq!;??JmM*b>u>VCxO}7&r+9p^$ zaQU?&Xhs3-G#^F4;*k^mAKu$Nt@R}V^15Tj&)cP7G+ zUDogZP&AJ7{iCfB7arj&=v~wJ%KYj8Z_r6&>`Iyg>AY9h_n&V=iDOU2FbRfq$ zU3qm$Fj0-Bwei+SRZ(9>yxnN<;_fn^bTy6BHIYt#OM#=!#KwjY6;*+88*st_8dcM- zy(TGI+HVL0V5IbNP2T))hErVQjE0dR?`~|-+k@zxw>5{;N`q>JV38InOV?Tm&k!dg zNawsdI)yZ%WDD)t`MYgyUfDy9rt`)nIbG{r%&6tAVw=|^cvEMcBY#A7R}86Rpp<7Z zktYGzL1M&70davQSh=q3c#<>*XDe~6FAnpPSA+QL>k(dz9`=ZzB1fD#x3;A)H;xA; z0xDFB9ok}`4cY&*{xDT>MT|Opa|7fb+Tm7pQi#x4UZqR}4Z=2^uN2SnNA6j#wNO+u zsQ$QbFg}0{Be2i|WP}0A3WS>?-h2Il7d-d&<+%@&kRNclX#6zr z*B)H@!vi6;vy%Dil98pu5LHA6vva>rC>nHUYO6PRjD;ZG8DmN+SpI;iy^n)QWK*iW z5g(YfPf5+rPgwf6x-J5ho?!nVy!UX6RxRG4%U{NikbN!wOLE}%Z?w=}Fe)@{F&Ccc zApbprnHUG!5-i}mi+}We`4P-c!}{GqjeL=NTkdtxd@H^>EuF1=I52rfTrDygp60tt z7fF%ZvozRs9*}C9Vw932<9VdICka7eE|O=LNqfeIADstGnr(^4cEC`)fL05Nr247z zwYvYNI_L8$KLZm}_pi!3`qYTGGNH}y7@=NbOd5zWf=?27JM!Z=Fd4684Elq7L4x_@ zh5|p%Kq~#V5b(cn{UYNmrUb|il(Sn&dzJi{(Vq!8bFQZiRCcSMPzuhy|MmF`X+NLc z?l6||pKahix&y}j2cWHbd3gzJydUxW8Xu@Y`G}Ue6`^>js2vXpniRrkjs8P5f{NeD{&+5I>M$8PP~?r%C5C{6 z1ngUxDJgpg2Y4tbf3~(Rr{4++3W6QNpr9b27O=?&=%sc6pHqr1XF>kQ;{O`t;`#Ed z;E0N%Y8ZWAi>*ydG;+bl^ynvI)oH`YkVQovn_IvCV6k|_?8Vz)e%jKP4OR%s1H)Al zViG0VX)Br5&*))VFHUXr%;{H&i{my^c|-M>YMqZq)LT@$w{dSHdfZD(E?0n7ScjxC z7q}=XT#i(fw}4!u9Y`Mm!XGgak@>kf<)v+qz5(iE^?LL8jEofk7Xbt}Kxq3;#e=kd z(*5t>O^u|KfcW=SUU)MlB6!n60g?0Wzu6(^F#SU;Dlkbj=A27kD?8FbSBXJOw$dJoE5h zs#7$3i;Wf&guJqkcECRI(W+`rOl@PB^-~4F^niLyN>le^+hFvwJ7o8qP0Z=VuAxTB z9VigsSJbDou7TJ|TvC!cBiId29(ow)IluL&;XS{)q8lZij3jtelgFx7*OHe9V$WHB z)gtuCrrpi{m1-p^0o&p~|~TWSLJm3WhB zA^W}?oTyNOR9N80eXHa^jTc+R4AAwhzy<9h_{gG&_C6mX%;IVUG7TjBt+||fb<*aG z#l0!y9#wOZw@H8 ze%Tik#2yEL<|pYdCL2B z`I+Ha@A*PEnT&);Nz%@gkx@y2cKSG!m{ynwD1CX3ox&4ietJG2QDVu>h)hq-x z2bAtqu;7z>^F6Oo%L;ErJ6`w`e!~qVI;A|Yd|m!m;G9yxq$Hbh=S{)rg{w)zsNDU{ z(?JL{WJ1L>d#!v%_avBft^$b-uOzp7Tb2&xodwk+xmiG0JKrHuqbrQ05_=x{CIUd>tk0bIr{X(coYC+^^uz0drvtWiyJOlhpmy=tKWLZd)l>& z{D77XdPA=Fqf=n@_K$6Bp)_TqE4A4=X=%BpsTSRe3cnX>hdsZP)F5!pm6{DBKv_@O z6u{;p!otepX8bKH0GUn;uxx-40`S+5q@-bl{5mr+NQ8W?S_jc)HAvPVyGV&^ZRKfo zk!JqaZdV-WuWY0C?){u0RFKMQadpi*p!y;P57v;MkJZw+-gP1dQjj#OGHkxNSb)~@ z6n95zS?nC{C8AIelCrI@yC2c5u(AFe74PcQ>zlKL_mPUH_$cMNe0P30Lz*8k!qfJz zpD>NH3DtttqWbZIgl&@uG688A!G~^zeg3XzMiNyeCHtku-;q8X|34U70?xd&b%J~G z3cy#&Q>2lKBrt#Z83b~al9m-_c4}9NJ>Gw98O7xO;x@=#>JdO!tzx5j?ktFC092XY~*d6JoF{cB|@Nl3q(W=X`_xJ*eL4D@#SG&41{0{Y6R$Ev}0P#3>mMs z3+t}NV9~FOh1Jd1rs^AhZ&2RaZv$M1jzA%Mz%VA*dnp^h1^IP@UXW>J6x&BDZJ~*K zgmf7+n_K~gU@mcMR#MQ`0}Lr8#|YvPxoeRc%oaT&e0r9rMGqB+Wt*cU$pqKihZiHP+f zW1HLS@lSR`92ZK?xPurkEhWXw$ViO-Ty!b2Ls@^Pm!jY%7v=ks$Zwhy*Ic~?eq~Q; zxkC9{`)XqMdD{zUuj4JgnxB+z)VU#p|EJZVoJ{4j{5}t!7T-9J!FZ{&X){Yv$##nt z67(EC-8Vryf7LQeKkAxLr8PSqM&O4NvW5^660*Al4L^AvAUwrJOOCmJslF+N$`Npr z!;B$D>az#n>jxT8A&RSXj%Pz$G+p>f#S-u1LxqFR^_V02d#<8Lq&MZ3ceGlr#hAsRuSQKsNWZc&8YV{bsUlxrh`Pit!H&Bwvachy0V3ws4Ag8#b4+_Oj4K!23tAHRxY^ro4w_HGT$;F* z^iz`O3Ale3tI5Ts;_{y*c8|fj;HspoY@FZLP*i}9E)^}Uh&v^QbnyzhkugA*yo`1L zY7OL1%9L*~0TLITP$-;@XuT`_T~#gT&m|@5fmvOu+X+6({7q(t*#qXqo-xHz(oAo! zjnKw^nkF@DPtR08Sk_e5SPU$3*`z2eys(Dx>y)Doerq7O2MUVi<>ilP1AwHd$vf1u z8VIPdd~p<kx z!PuPS_KsHF&bSu>e1Ok<9ix?lEDmu4=#>e4E!RTQJo(z zOzg0=AGP+`SYv}eI!Cs-d#uH_3Z0|UB=p`n-t`1V?_Nw>Ow5)i{>j_7ISqf}1q$te z%qj{VFpL5j`1d$CIRhB`cgd;e8yo)r@)fVQV2YB*wYDcXi}Z&LicT&t4$Ib&t(5~p zd&bX7$uY_UGNFvK#ly=HR^gbS~L8`+^UGph24z?$P=h=KZt4Xe#W{wf+~mfieNKqx4nU0d%i+aYPH*9(*r)% zg>c)v@nAW6CVEQ`g}A=hYt-;x;q~ebm`OtqQKj&?VxeE{Phsu=4&i+Eo%ZqPtpAGY z7Yk4bBUj>biGX>=`okB4vvPZfVR`vYOjBjWy)dJA{@X{3OWHDo8fH1#jm0t3KQXK(YIH+kk-YVW){)7G zmV1<+<2XY#?mV|$wC10<*xNWvJzWA7WUnfIot0C{q|6cUCvc1;5~8EC+h#fbae6a+ z?c6@AiztY~;jR5T+TRdm-Q}fykO}$nrW`cO`WLi2?MN))#P=WYj$!-m1ZQC1@fjd# zw>^cbX>v|)Bx1mp>s%aFpNS+-GLP>tFD}kH4@4U6aKg7quN3g6Ey=ou`Y-qOLIAcTjG8?TW;C{YZ?9*2V$)C7U_6?U!acI5 zY5we$ZejzkemA6vS!2}`SQtrXqobLYxG^&zHZSY5%RGO%wu>Bn9h0dO0(kE&*}J0$ z5^`a&fQsnhcrGQgF~&+uB99}L_nxxQsvVTzA0%ZbT+eMUpk!V13)zH~B0+~e_acLX zUsqZE`wQUV))lxqlwNd{W@Y*IV7V++F%-nL0jIeMl#C;oXaUyDBlR+CrR_#HXXxO~ zDx-RnD$8^Lk&!t5ikF(Q$U(gm zs#EiIvaY@t8XDXTx8W4^Y>=6Ip-k!Z*y`o6>WkwvT2m(oWc;FZCT-$-bQmd%vyOEG9*dEQ_D5v9#-q94GE@P zS(7r`!v^zx-9q@Ny*KTZyM(~c;$M?qq;UfvC#v-}vRqs4%-iEy#w)mib3zk`I;I9?Fp zJbZ&3dAL})IgHzC)~cRR-A;N}ht2v8jY-0opOAvt89*X&tGq2kN_ ze?wtK*CG?(V}6IU(_YL&ZXEfhV+GwP8(s|~5jlJ~302vpL82)WA29hmD}hs}FQIN5 zHQ{PY4A(tBSaU7yOzY{SBRVk8sy`m7xao%JfRDeA&;6z^f_QS?{faaqlSp~CpKG=B z8k1hS>BoaD2QxvxQOiU zQQ!EDelz0*V8Y`;y--}9)k4X)Jgg25_jKw21K%c0((dfw-9Li_k#Tm5!d5@I%fC9g zFd#sIvdZ^xb?rC)pvW0ELjLeei7G0D0|j=tk$QS zrI88$himu#B#~;gkH;Ib+Kn4ZE3xpx@m(9j749ZeSuf*&iF9bS(5;Q_g+?)?vye9T z6elN{q}D#CJ*Rzh=RMNNU!qYlX#6g=NAtCNPWBA#-m?*kQ@^?JWXRGb(BXfIGcUp_J3x|F5_A=*}Za>uUj^&q%fXhc)Ih~_2C=h+p|LjhGFFE~gb13TTtWmtdD z_@(}g4ipXTEc2{U<#RlE75Lp9tW|GF=5;08ghyZ5bXFJpgJr09d& z1!h)yxENL_3ynj2e9+YR8q$@qdhe?cfCT^=G{C~v3YeGxLzXbfz~G?8WWg{P6^4h0 zt1Jpk-uI~+{t8QjQ^g!p<{t@2XJJ6qZ~$j1$VBDRIImz3h*&eGdy=JusIN`zw6}MjP=4yjxs| zzM?FqHU^)?o(mi-O->TjK&6y=QP!n5v2|&=T9*8Hn-w>2ACk!H-50xBEPnHKPd2Hv5L2^bt7~BW_26qem=!aL2#seLORKJT z>d@ugudgAUtn`xOX``a~z^5A_H$q0nc7KI)d#_-?J(~IA{aL6GE(zXQB@7ro^(sn} zB^Teh$;rWgVq!2P##U51xyAz(8@a+F@F&WIwCDh@RnY277MoW>k0<-)o3;*$BWm0& z0ej64{2KGvST)>W^@p2-(^#p$n?@A6gs);nY*>qAXM-=BxXRL|a%wGlGGY3HzMnPI zL8V*sn8ghHK)x|B043DHH=lX;>k@P6tK(^RfcHpeG6H;d$vGebWB^Jw09#OgP88Io z{8XVCWkG!PvSszaV!jB1Vsn-iLb|Ggr{{3tD=EYYlC=xlxp52kX5hY2{00}GD8!YXq^eJ%Q zF_GZYCB>M;X6dEbOuTjf2M^vf`FFxos7R2%Q>B>sUD_kh){+xnshM=O)sMOGxI`52 zsjxZ7NW;?TJYIC~_L<1Fx;yZn4)0$XkWZgkmN<|r4)#ptB&@V;9D{4?uN{1UK~j5I z)oje_uw_T1xUhS9Sh}{G%;WB~TRIEMw0BF5)<0Yrd-}y$OKuyWhd`z=Fhj?mnZh!k zEd=ZB{R|wAyPF%=ztCIqaQsRwRl-32PA59hfyr=#lbK1`agGtpY~E%4eYqm^c-ki^ zZ8U@hY^bw-tGS=yVHy}s4J}WcEq&}my7!hjVgd)X)bB1M8Mg_&pfi_`4`CT z39O9(ONie)*Lg3%3!{9~kk{QIwn2VS_-V9Ti~^(g&8}%+n!=B-pMKIRR0}}@4|hKH z56C9-uzSF<4bAfR_K|gc0FdSG@ih#Fd~5dXZwK;EaOh631^pGwla#*s1?=u#IsKCk zX(PQFB~WT5y9#WtKwBBbr808IdJb7=7X-UIJrNV3=EZp#HU*SKe;Jq|($rKY@lI9O zTdbfElD(cp11i|;a$`qKG)O2F3^9)9%Y@2oeA5%PD9SsgO09iw;-WJ%t8|XOUCAPa6GaLq zMezIyhHU}$;XC&x5{ePwH5IF|nkLP4P!gbn+-Ia3W3k?I51iX5pW5SJF+?HhC-c{Vc)1HUT|7m$+du>0K%@kZIf-tez12wL+8WB?i$S z*D7%m+9&1bN2>xoTZ)SJCkne|FM-=~yu)y%T>=P@h(A58TA9U?&FpR(jGH)7h{(xV z+EoFfYwvaK95gj;A~TW~{)Bn(=T$A#Ug!fAvA9gys@gY+uu=eo9e`4F+n<&vIdYa4 zu;Mq*G74HTPD%lJvON2r7mOV6g1v%|SfqmN_@$?|s|e)M3JbjrZ-J^Gz@*suYD%zS zX=2M~-vbO*}MWIR%c`)Ei z29AE1ST=xVU)&+Uj8?B-u=3$b4yYyEDF^b+Hza}7qc2g9UbAcdw^A0|PuED5%5-7+ z-)3(ovu&RoQ5JZSh?BhnU=c1BTpaDe#GY%Tsg1R;#m0-(xsH7Am-Q}}S?ozN&UC%Y z+w&P_uFMiFWj&IMa&kV2PF7v)<}9)!c9(>_CH(+weu6rm8@6s^LW@}`IV-DWyBO#p z`GGgm)Vi3$b7XQ72~>$iBL~DOGD>RWK05%35&%x0e4e+ARW>3N8}g80!w*II-wc2J zH^Ty;X9vv%)Lj3yU$%u&Dn&hY)97e+QL06&dwj|#!K_Xe+Gm%5fqSY972>_klM;EdfL$AcOqV+e~nHq zANB}G{~hyaS_@~%{i$R}+%L42m~P5>Ym~-<8|%d*=HcHT_fT9%CoA30_}GjYsjcCD zPTP+OlRM-L*Lv3+#?1Eyrew^Q^PPRi3{lM+VC6b!PB@keiD4joVv-W~ZSrPBp8gAT zTI~8p)_)K>)=Gu{*~&cdeBw7py6!~M_~%%K*v(!{IY(c5`6Fp#wgPW_XF`>mLL1aM zt)!VEcK5DsE`-lJ0f&#Y9M|LBY6&js+86|;%8g}?OM<)-iwZ5weaDWZ8MjHvN+*om z3D`d24Rd^)>`=8!Cq8+V36t)(OZv?d8fA>0SDzp=Ws6SRKkx4^Zq8}&-v)4uJu0*P z9y&WeSM4w`EW?d$TJ5Beb|5ua@XPsy2ja}YLS{Y!x?bR+p6dtj&{XZ_yEb26j0EB9 zDyOc;M9cWlntH@?h;?!hd+pod=ljBB-sje)Zp1JcFERiggP+g9RgFBSME zxW!AG2A_WC2McP<-C;R>ZtF*ek9cN}G~)d=iyFR~Wlo)#P1|v)k}Eevb<-a(UrzWQ zi~Cwo$m}P&RcIWo@)^~tWKX+wm5C^kQw#SCfF3Gy-$aQQec{#XFw`tP|Fkf<4dehQ zFs3D2?h}8Yl z5B&GLT}gK(jf?_=ZY5*QCqt6HYF1IBOS`yT! zhp6`>ZwCIe{0)Wvro`NojEhgZI-~sfs11K#{rg#;!UlLVjuc>3D7F~C4`yk${f!lu zAr?SvnYoBJfTBA43Luu(lH?J5t-z!%DTzv(>1;2uSIll4q_ai5# zNRN6?{-JqBenI|E?PF>>zR|~*Qpr@U$IT;)3v<%5O>^A01CTTQDaqmztvPWgvV;h! zNx_S_TmzwvX6C+u)IJDqDCqYYj-x4CSz=;wR-3X`+gWHQ9RTn+ts?b&WO?>>WP}y( z@oHhM12jRqi<|i^rKO?^Vd+)W#r1gRaK^HFcg@q(HJq=PX7;GGUX^xcAg=6tT{pt> zNWE>a9`GT{)bZ-lb{O6W^ya(qj{dzjgg4zK*s~WUkK~=v$wH^DUvLqyqP<7 z#6{Li`ctClA^8P8bb2r2?{Hl9bV8Kz5^E!{=`B7@J(8)mF3=?_qP9}de2fvnB-eAO zmxfVZkH)^-6>xq^<Az@VV^jJFAqIu~ zBb#~S3x2BQKf9Tnb7{Fsam}{AAM+`rLwsX|o@I&kQeH>dP<1atO zKWzW?MS1;>AMcA|q11^sXE1S%VbY6!eXXBM5qrzz1-peoiUn_^9$Ozd?i!$mBl=yF zbS;sB^r6ARuzg++#iM~#92`hGDPmu-*{={uWS2->;ljmv~z01;E;Sd(xu$@?^Y#g)%_&V(^7_jm? zu`=iHYU*|E1~Old+JFat$Ps>?BV^C&n#hsDV24~{6CA?5sub(x_tzBIU+=$|v<%?W z+p($OOFrLmRq=Hd(Wm|pDcd77)!EB;t0+I85|wUpWof-MZQJ!s0&j^wmgv7->Me#& zuX;^#giUfo)bbZDE{fxt(4SiVt<2Ly!F=?#@9YnlL6e>n(XOsWIGU zVSQmP1-L$Qd{&;!E zDj@$T&PjmkLAY~eYT<#vn5g|B7Eacf4w{muS- zxB*{(zw>d6PK{%pQ9t%YGa~r*{0nT~>%2LO-cU5WCTqGM*3`4u3Z1CeW5!4ft3py6 zkE(so?2y=e^bx#DzyHRpD~QAEuRrz;Ti%8iw$+38<~AZT?$c2q{9sU}u{M+M9Ac_J zd^DndbPKOa>QsKc4t^COyF;!mDBy{G->knk5Vt}lUVAfcK=IxtnLBVr! zFmysoZ)nECz8?@2rGdUBDl|hXQ3sYIqX^pe$^V|ooZc@aoVXY34Pua3r5Rrlsn-4P zvTXa~4|z@m>L{Z3E_eHPYm;MDr1sbk=BYz% zmQ8P>5Zbbr+e}_1-T}mdnPP%L3g+bnVo1DflpTyZUC+XoAet7rsf}^8I`an+$(9C@ zy(@F))z^iiV)Rx|aRk1Nce??M-hF0RdEE!OG9aoqhJ#A2`l9#MhH&fS2CC&R zycXni^Pw^kzr3*s;QH3AvSl+fzag&$g@j@d#OHBLr`)E*np}N6fsKkp-G)yCQ4vTilI;51iDvVn~85UPj5Gu zRctgQkak=4#Oxy_5_l3q(9*mU!yTEimUqP+e@mn%6H_qH-$3OnPL>~$-7cw|MOj$! zUmSf&2aRWRVH4_-7XzIO&StXYLodH$)brNt>WSQg`!y_Ech$)#LuFCSn$>8=%*BA7 zb&2ztD5F~5Ger$klJbw-I(j;GGV{v9p}I^oZ7kWX<-Tz-JuUGIz%IM@F@@`s6!$o> z$(|TWBaf{gX%I`UC<%c5n9t~0bn?nO)d2RSh(ErlFKeLh;@mKl+%sk*YE`xOQ$NeM zH5V~rrR(c=jTac8^LU(O$#+|6+@KVPGB%;0xQ=Dt_03WYvQOMbe^*9Zo^`UZaMo4| zcjllvVVqW_ki38vJI1`q2OOo;RO-zg)2zzrMKO9Wm;~|bzvWR4Tt&VAx%KX=F9GLjD5aOpR-zho!>@| zzzQg0PK*PuV~uKg!p5x}Rh(a#7crqi&lb#n{cc3{!HpgOUOJUpig{ zBXQlee&}WDAiEnH(OCvr)duhXMDz<16YqkF;kBD(%P1(l2r67NRvmNbF9PeXe9L;1 z_nl1I@7uFNzlS&}SOi%qPXCWnuBf$&xzLG`jXbJokdC&lBXf8hprB$0Q-AQrlsZ9+ zkRAOYX+0weSk{>Q z+;dVSr48_z!jx9B$^2FK17KykqsVz7!s&xeYuF|Pl9pL3Ri+2d7+KiSvF4Li?tLyJ_Ymf0m}#Ybmr>fk z<6NgIoK@}MOu!c8V=*?7BOrZAxiF61uOz2tI=*@COBAUQFxEE0(x$Su8)Vx&oeA1s zehf^Na%j|zf8h}TRRQK08=6^@3`7yg?~6RVT7wHvJXeG2{C4o`%L4p0H+|EcYfU}z13Z`^ z3pTE*>Tg6v9sa#7ztlQqM%umC3CTEB#|tA(TH&fijPc`mAeR@;(#!Miext>#%vQHb zDX{Zt*#&iWU&lIK%snXrUfaNd%}JaMJZSWaTmEPErQC9cfnoB^jmyVqO6oV5$wqe+ zkZVcAc%Y<*N3qsa0Wq^AQ9ilp=*B1Lgj%wJL5#9WLMh9@)WTpyd(~8KT-UAKy@v0G zK*EMV!|`lEZRI77BR6r2x-rW~XH`}5W28CpSB+wo$qZ8uKcBE@?X8+mN)flL2K|Wg zpO>E3L2K(nm^q>2ou1P{!FddVW6oqN93zi?oA9IquB!x{CA-=$8p7OE;%FGhxjqjr2t^GT4}|;jlX8*ENWUp;Oe@>NG`8gIE4%rH zuh#g`*bC8!L8yu-!i+C4y`Gkm^+8-2`;fa7#a6sX(083|)mdpuOVzXinme{I&)*M{ z#39KWxGtgjH5u)Eau$+}Rv1h1u4(VvFJcVI!V6kzyFqvOs9}}b)^@_SN&L2n`i9v| zLPFBHi#(;!ZZP%xtLFhRE89evTUf+J7;luVs)_BkS)zM39g^c0Zw<)CVUM_QSbWn+ z@BWOY# zXIk?VBPZ@doTfupCM2L;_(q}y7S7UUHHNbh`&=_Qv6Nx3oSxoZvviQ&cc?{dg9JYp z;}sm^tvc#U57bd{s(9CRr+_B67fGjSG|!4}5&vf+Ie-541FrZ>7AtXpeODG&EnOZ^ z1}vj&_TTKhFW{3*#Od4rf=}uJyo8-O%1t)b78x z)}9iRoic6|G*mP&LY;SwCxa~$pV`_k6lJsfAR3-2vcH|DUgi4VtBq#Y0mz{HFmFQS zwn>7C@IO_=Z@6QVbE|ge^|l)?$@wHp%?nlAhfM0oB8Kcij&u7_IIpK?5-vBt%#kA9 zQ#ubn^L<5)B&HC5qs=^;kX8G7`bQLyCpytwl5o0$x2cDVw1cgdv@P9SLdK9FAlLpr*+dJplCxxFz5jP~Q<aIW@)y?6@>r~NQIrh4S|$^f?PyIuW({<;W(6yF>uY;5oaHgFg+s4E zAOlYZWv(HDj?L4gCuu{i--c|8ia!F%QZWNSHaWtm1rR?JbwJNyyb4hmdA8TMS)?-P^zEWVJChqPtf_pTx6NMO3az~ z$J1&0crfz9*jfv_Gt^5aU3pn+)mALupeuG<2@-5MWnSDPA8toRh= z+`d@7)bsYR7T`!;TVK~G(PT9nOhSvC18A20U!V3yOZ|SXaWlw*(3;Kd*jAJ^fECE-NOfK39+R_enoX`OkRXtu-2~vYbpNVz7Dbvh* zPls*vqFJ)=SGA)IwnWGch@w6nb2?QIT_SbN#JYfs0399OrKWqHFsEf$RnpOaY}fv? zsz$WqwXZxmW?1tE)s^^Le15a(`(B962bB;hnDJT6+oz?0HcOnTRb>&!hv6y!mmn#? zpymnhqm|wu;;@>e&Gd4dkmt(F%L{mLsh@0WYDxvScpNR(12o3m?k6k8kplT+7Qk@7 zO+Q1aTlrr8BV!>pPS$~UCs$JBSAC$q$f)X)ChH7Gpm4tC-j0^ZB6EXC|K_87C zBA1((frwGIBA|}rb=RkuO`?bEhFP{nIeSnK-vrp-F63HDy#8^WLgfTdJ^p z`ugQnjWy+mV?9HdwQkI}W{*fpZ1|*=xqNueZ%lwy$4?FBjaWh@^E$~2BBi(hlJt-T zjAXudr|`{zR5E}>%_;_^uPT=m56=y#r*VUMpaTC|u{ybmOAKW89k9z{^i+hgkKz== z&PIi`_URa^N}-5Z!W|uS>2y`8ta>^f0lkN}8gCS@_fefgF+D=Z&tBN|@2%;ig^N=} zyFE4`YQO9BswfKGJA*(Vb@l1H>$BwIuh1y^#=kN9UZn}c5F8v;8%Cd@Cn%cjW>wK> zbL|0Wsh4sopLa*IM42%7yskdYEuY&1yvsnENzKCH({CuYuTVzypBpvwmgg1^ZDt?P z^qbiX`fy^Ia(R+^(z~7+&||QZ(Dj|VviBI`@|766sxMK@uVvVwVsjDNHqhC++}E@7-me2fqFgf z=jVs3A>m(0^!DXv78GI0b;n&xGpVe***i8qq2n4eds%n)tJ~vNMfyzN2M^k90X4jx zWi0pnooeGyfc)mtQZRNpk7nA+K`u<-tz(w%9~**sEEE*Ybc8lfU0yuzN@Th(thERJ zAYdl_@*H?kD}u|*St5I^VObhlT60Ydk*mkY%WL?8naAtv6KfUXVYp116~A_4@Gvp` zaRKFfdb3#_!_G1fRUC{~HHri7WVx$&oC@5cDV8+$Jh^(FelJO;8=@Ot7g7ss5mNmJGN0mUDd92?pvY+2R3GP@pI|g*Y}dbD76OaWgqPwo8`H z-km=qa=x(GamQH>NGn4A$d6qjrr+8b;*uME7fLkwioi}ML{CQ)6`kNB9Zx7bm30>W z4Ag3_-vEzbON+_==!bv$7VyU}#g&f_0*bIR#x`gNb~^HF6ahRkd3yo_(te>B9i|PZ z0RFPSRXC^hYgVaI*>7a`XGjKBAR+$E)VUT-Vj9ghUmMdjMrv%RcXKi9h4sm3A2B#SYEjt zdclpJ$jUaK7>COz{oJ7Wkt?y|zI(_UTM+Yi(2u{4&3OgWs!F!>1+2L0sc`AMd5hmX zy8=`B%WT8j%r$cOrKh2%h`qz|V6>>7tG-R6FMJyUX8(Vv!ab~W^0f2{#B_WjGU~SK z6FwMSA*T@pYeFW!T**T`eArqeJOlvc^k>IvZ(R0`RhTr`7@iR|f_@Pl!$yC@QmLc? z9x7$qQX_D3LFeH$RyXx_D6Q|d;4>@XN$~ZdK7U_BB`BQyK3D1$g-#w=#~FofohLmh z6SzQ7P=2LHD?ZG*%%RF+JSgAv^o7Q{CN}RDY97xTKIsU&K_}VZlA;5--dT&n8VT9* zqBfcbSlT3wveZA&P_vFhEunK;gJT>~D{f^?54u|35+2_5Z6H-+8q@8$ZlV{@;?|yg zpwB-?SCWo1z|TTQ9eUw@eYza#vtZEFy6EmR9Z6pPtJANu z^KYl&L&v0%%XW*@Msx81;1r%I_mX}Y64m1j&`cL{%#RPeHJ3#3v(pX{KR6z!NI^ssJxkm_ES$)h^vDJuGbB)S5AwqoF^SijnG`{lOr z?`A>Cb98GVfmiPcNVq+nM|VDn<3sX~B!LlwaAFbjU;A9Z$raan{^;sG$(Y_U%6c+} zdXCDr0d1c7ox=SMqSqU9uMD(|ay`Z3j(b05wvt@-OVTg zU*a6z)~w7JoAwafp;oCdj76Xm@G+Y#etI-CYDo%UA@Vr3>Wvfm%`v65aK{G;xeAFE zlou5qIN!p$uIV|mj@X{bVBp&DIC^=vrTL!+{j{PWMZdXCiJ4e#q~_no-olHiS!q~D z%)cH{G>V5owT8%$KY;zbmV zMw%C^tU=OxB_EY5d6k^}%bD}zmzkN-h_XPb z{_WFxg`hBf$0d#S7>&HRH+Dq$Vxe6}ca+8SE@2Te`MKyW#fa^w?C3BFiEH;zaIki0 z>?>sZ0$K`s!}&ku7aadgE$sJ+G6(Uo*>9Zh>>7)9hq`Cmof%Uc>!D+wo6=`x^&6R} zz^o~7PiQVriR94-7K8&F7`YG^%dz@}#kCJCd2!f|eyt+Js|;vrvZCI(RJYMGKO%p2 zil=EIyV`*rFyF%3o2hn5ScHZTUdO#qIOe$jv$Jq#`ml7oEe>mx0R;pPLtNA^GqgwU z(!4~MB;DRsG!$&KH+1l*1vwU}gzojDM#l?hou*){rxf}kgn zVNOW0N|Ytxn);i@!Q+S2Q-k#6j8*@E)d)0FE_PQlqpuW&ZZnyL9>?^3ypaBc)-IJ| zI_5;j`ZNv>qi{2^xOa4Dz1DwtfqOx`CcoXv$uPXIpgYdMwxpzX8s9cIjj@F9acjj< zY9r_P-MLDXE!fv1Si66HjYb&R@s13e6&q(h_>Ko*o*I_%by@O&ozkp3oz=~C07GD- znX?~~L8l`}(n!^TvwGrA1?MR)B34tAGcZ_Zz&j24Q7mog^Xc_Bs*6pHWOxywqjUFx z%x~LIK#W?U|8in;&=B(p3$rjOS;5bDs#MSEjPEu?1bI>Zg;K*8?GV5wRzZA&aX95<1~pQ z8jhbaSD!Rj`Afxbg`M&j_#&29^`c|jkG{NN?8gt!M&M3I7>z9Ii60K9CZ^X4?oHVL7&FO|eY$I+GFZimicz4E(2O5i z_We;0BM9q=fpU|qLqz&=V2t3gcl>Z<1E2@bo%cZp`w^?J^C#f!7ab{~7uv$#&`>cRnUZa77_99?dr?u?FB8e-=(O+im> zn^P6wG;Y3sQ2tLn=uFIq>9tR5zQ)GhPt@Nr)9sdU^)@*<<*}CB zCVMB{h%!S(&#t5D&|Lp{04*N`oAoL44Yrb5_R~RqZiQpi)P`*T7f;Z@smicoF-To4 ziT>lr&XDA-5HF7x+s%0tVm?51^?y3`iP!FfKw{qp8(}>gL9xD0Tz6PpP$&fF@2kQT`JEmwoh4)$wUig4P4}Aw1LqeE%2O2{+%yfp7e|J zBt=k@*d5*dQ#15;hj=CJx5&Hjm$^)#oX2)2AJiEtrAG}KI^=URJ5El5V0o0^pXsm1 zytOg#AJNy`8QuMnmBk2FEYrui+&2FF~VYWLAurtm+t@3z5Wua)zJ=|rjJ;w zBuE$4s0ubgC_rNaJMv%3WnPs%+IL#MKSe-ZH;=OQLP!8FC=dWX(DyHAJyvtc3ItSV zrX=j!jm{+FYmQ}7hDD!-JGqe605XNv2d8q}Y_ z0|x7@yF#eEinIQU8aZx6LvK*G81Z14{;lLu%iE=+&z?pjKghd`*R#Pt5wv~pk0p@n zXSbp`S6Lg;8n2Zqy{Ft?U>+nW3nxu^;ZYt7&oJkQPHj{yq&@wkKsl!+TUN`15yak* z$U-+4f00QxxSXcymEUn zN8>;*$p=_A_SaqfEq?nIjdJHP`;2-YoAx8No8l}=@4|PzGn26!kCYzpP|tod5M|6e zTXmIdMMj3Tcq_dJAvG4^86&6p>2y7W)}A>oG@xfSItiiq*rRGBHxkh_GsjIFp-RoR zGuX{b1Z0iPkd1gKTP54Kp|idV54qa2Z%cVr|6(eCn-g00Ah10rUCBjrwcY~oqoVjR zuL_@jFF^|0-vm8jZ0lL0Cb+WV=vq}$fL8rU zAXu2w>+AA=5o=@~`O2W4Yk%K3;FjG5RpajA?@q9<9+`YbJLKPbp@ZmE^abGb?9aA^ z5C7s}8FZom%*vNBMf|cS1hc6KZZAQ_Qde~izM`TAH<+=-Mz(1!&7u(fT8*tGWLVAT z26B`TON|EJ^S=E{&bRE)}^O#{*hjYE6MQpa?|$&4C%_~Ez`zv_8r zC6IV@V)@w_HnCd(YlifCgq*~eHv8_hIK`LS$PN^<37#z#%J-lpF2mk+@FAy_w=2V6 z08H$iGp;MWH<6t$Ah2OsqZw}Y1!n9Gvu^So>EClY*tgDu?v(6Vnwxup4+|`oSunPm zTWR;*eGZ3?$&!RV+^p_r|M0paKw9j-zN_LhNR2P(R3}b~Zf3EByIZ>dwf~F;*T?IF zAde~UpKXC62on(eq?#9Cn8=m9)ZMlJZra~}XFU1~M2;yzS|3U`jru>b}{Ny$Malx|k1!ESi; zF)xmJ!ShnrEF3UdlgZ;YRk?YAfpO+@(+b7dRBb)! z*!3oeKVBR&pz9*^M$W9p$f{$BqRyi-T#_?!NOt97Fv{HS*oE(*2)1kgIL@&xFs(S( zj=0<^+}*V+t@q$I_=%Ed((%0mZ<&~O!@&)zCa2}GA{RnBgp|H%Y%(ftj3B+zLX@q`rruc;xnH0>J$#7Jbg-HJxUYR*puO=g)yazjpT> z_H{M&f;4?>9z2=z7Oj3$@)o(=_R`F?`>9ULB~sdk4%#M9=gvekTY)3#y#L|YrKbsM za)Zzm$WZB(8w+`8mR)h=iHwXqA}hI>;i6T<*$3b5tjymAb-(yH`Y#NOM{oO4&(Z#M z)gOH$;WY+IgV!f-gsUpfzcZ(-XajHaJ>=kMIV>XoOy4kT!K{O>F>b8c%h%mTHMhJ( z6Hiodj6efo905BQF}7Qapk<_O($< zG&=a1{Y9v>X3jxqy6pk&-bsYjfIJ(D_*Cg0ssM-dmb3@a={zKW=&#`44B3Nz)GbZ| zws`q{T0}4MIj^X-KRy&%YN@qg$sF)?9F5(#)5R-#C08$j4i&PtleZ%N6qIz zZ%7v#$5dLrW@~H3>)tzX+i5v%j7x+P;?z@L> z5Ra_FojtrrEorohN`r=lx1u07>xZbrQDp05$T!7T9wNx5M%v}(jK-_HLKT3^O!wz@ z(^EH$*UD1QA8&X)w&&oeGwD|*mtT`#wIbJalyWxxGE&jI>2gpzaRG-M&E5NaU-UjG zTdRTit+I7k({}RjfKA!5Fn*7bgw%akUWa~duw&CBo>QPqK$Fn#;v+qXD)>(ha#4RR z3`}jqs_rvJ6nrJxVbukesZd*qS>PK8=%pRX$crf`L1(SHv3oU7)++1D!to__}j29QT)sndGePOn34YAY4V#g~17@=Gt7Wa}~QY6Nh5#F=*maP>41tdo2<+a(=sop}jF zs$GjG%nUC+2`Q_7PDfNcU*^DnpM3-W*1fAkx)f#N)-XzgGAdIAFegb%&+UGp2Ot1j zPVi&ojNUgV}!MZd1f;VI_9ms>`DESU0O{sC%4>v*S%=hQ>3<;%>*4wLK!98-QA_yD%Gko`_W^b=?xUm z{sHReaD(XL`Vh`@w^vYDdJ35m4{0il+ z6o{I{GIDuc*>8R5bKF?X5)ER0RP$`k=vdX|KEOg*nU5zL*gi_R)gOmoBpQqC{9u~+ z^Yblnh}o`>{i8n7ra*iJaIQ_RvC{z0XsgeMbhrsz0IVM(bTS zCXncxRS-~l^&v0e=9xnvNCsHvsEJf+&f#>t0m{)-$8(O3g~~bh(`92z9U=qh2{^50 z&F8J`+VvKoCZYM~zi4$DoOgel4lv(L0&E3+f4a=+Y8Skd6*XKN?}50BYrQTIP;S_H z0>BEiP70v{_9hUW7%~PwB;8XM_S|;1@@x&+n{or%{=0{lRT~Xo%+0R%vBkx??ix^4 z{#3_5rj8ctg0C;#$68yYAAq|NaK&0+`H}92&}NXoKFn4O2nvGc=c}u#eqJt|*u7(B zo%H|F+<4T$z`_DPhBf0IE>Z&3h}B=)p61(q!UqTj?BAfQfb;f1c%+(|ss^1|-0v>D zcgCJXzNvePysR1lp5CbiaH}3bgg{2tYSb0VYTT{sJ_sPW^aUIOB$NPs_lN)j2^*_9 z718pA4M2i~glID3yUIQf8W_ho&8O2jnFeDKV{F$fVAAiG0xt}#acgHyXYGiLAY%1B zia>06PhJKItI-erav=b50bp6}?Et``VuAovrY6-{AoLEv31&u)P(OxJ!G)`y2{Z8M z4cC}Ym&s^tI`iF|K7fDv7#BP$eU?=my*{h4nXlgMqs`O>s;nIy*`z(WmYgR7u%b6N zHZ#DhP zhfX{eBhAno^1yx_oBDq^4nxXg_nBNjqoGv42cpdD;amXpC?XiOP%fE`8sJLx_ye$D z3f-MND+DYbzN5PJ&JZjjE<0!5^i5LERCM%LC^OmBS?AvjNUuI!i(+2V1SvlF>>*x3 z1a>;CpsoIH%iahe{O7fk6(r@|6^hdeM7Vp%e4D(k;afc=`pvwbKgaP8=(6<%oTR(K zl39%<8e2Zq4s2Q!*xsLpaNW3DFQT@v0LIGY@{Bdj^74QVgPC5-OaZZOL{8bXZqk4T z-6`6rdaL-cJUYqIh~BAn_c4_1n3?_>L2_?Yt#3i#XMHmShi}<8PEn0hwGRQfr2uqb zoO$y_Jc9Bz_M#P;+|d+9-UI_@u{{ zPmAC+glzDBd&=9^l;mQ{=ugI3%X!qW-pFuIW9!gT$DP5G8usM*kS&zD?nm{diVUBW7$(L#N1UKz=q_Swhf5T@ZU)bz+*l16 z6d&H=Dv7-bI8%ugV2W_yCf=|Hz`Rq)0{ehOwFdM~QWQVyXx-$doxj;Jftbuew^FT= zq(_KPnPJI<(Fk7YGr>*SA;qON{5}7W(!xI(B|nch1sX?~H>{;hH9xW~@X|ngR0xIxvdrq$J(9D^v7yA0Sb<2cL5fl5+ zJrLKH&+%3xUZfTw$>if5);D)Iq~awUME@C^nYZF&4SoD1R6;@Tvsbk4M@is)bs@}B zLZ*5EH@{*g%suvH;j-s`DH8?}fY32rs*_531gs6fg2H46+sAf=-fxPsG}3WhyAb01 zz!^j~{mZFt>4>b#SJ%g;e$FrfZG(lT#ocLR$O3ogu5bjGQL_RdbsiCVvN2y5VUZ|T52)ddzvi`yovc9sZC1B?V^$2~{} zquKpLJYB128=i@O(h2yU&iL77P?Q*x%QsmgartISb!P5XXDf{rGx+;50-fshWZ$vW zG#(iHcQ0Z)V8Nu3?TofDVhr5UE-yzZlwV*1F46sl+MBEMFI6b}aD9z9t<+@QWX4t5 z1S;mXl=%Ps0dVo-l4>UDCCcx)^}w3H_CAG=VGlj+h1gOmW=j5X*sDV+N2&g2&^Y5m z2kHfF?}Pft=Jj03Dn}S{^y`_gct4|&AJ^oGJo5${7EoZzBWDeTBtJLHUp%~9<`kU}EaOZVrmKL%{)^v!V z5m~Zu;54#dzf1e3yQ?tYCQU2GO{KKk^P-m`odCqB7^L*Nu)p+IWOiL0{Om*5f1{$PV3YG*RonaeZJ0!!ilo`5SIW69I6sprk$ zVqKQw#{a}Iy7+U0R9d%6hH{Ts&V1=k^H|%AM}h8oaDmvz{}%Lb{Jcutb~q(iHHAUi z+w5SF7FA%E`dkE%n=}=k@dU`P0)Az30hLDAm77$@${D6+uiCYZP#|28*^wFhX?xY@UD&lz^;;kbZ}_?kKkDCBTRAqFHf!;`n!?t5 zQ;0Y_M8JC!jhp@_8c1$CL%XC~${N{k-CJNfZYK9GEcesxpm8keLKY88m2PKs{Qp|S ztHKveqImni(~t<)83QBzRD+rldt5)3P8LVEfjA*@>Wul!faUafm4dWKP?%M94eq8- zYo%b6$UTG?*lMqL;`0C4dkd&6zin?63k6Xm1W`(m?(R?tC8ediyQD(_X#we$Zje$M z6={$L>F(}^JHh`s`<#3BKHt9Iz26w$xZi$f1N4hK+s0Svf19~X;^^#Nudk)!tEehVit6<~Mpb8q zYK)Y~7tE_lv#wcadvQwxQuW01_33loS61%5rRb~0&lBTud86wlKk0%%_#1v^xy%QG z3y&-gUM`V6>SkkCxy$SA1_yHUyNP5NO`VLuB_#KIdqPY9TB4Sk@Oct_NF6W3>|*W48Y zuCQH7^^REi(TJU7Rb{O`UsmglE#V_R#+-fXE0XRJSKvYfe};>P*b$SP%f1M)CmvS! ztj<^;*wv4*KrGa}kWC2@LRV5_b$|GrN6aH{66C6u`#5b-lN7blD?pjv{)$=OH5e>v zpZnD5vERK*f#(0JZ#`7gda~BjD;fP#@#t{R$!a6?V)uJNmq*>oyKM!Io>$#|UFe>L zUl5D!kIT!E%%f$BkV<%|cxK*tE`BTCU2Yey9&YKG56MgHm81+#X1SPe1qrB9Vz8P!m65ALTEQ8>!fvp8e?Y0!d|c&1^zcIifzk>2n9W zl~J{4bj){Qcg)V3kylpp;8F%Z<>VChI$N*B7WCAz{zeJY7m65k(d!6^_w9;>30U9n z!{!*3h~^hM^LM}0s|$Wb#>H%@=D%Z#`{s&5yfytkb8K3t3yI&~@-)B&0(3njGnNw2 z=(-F>=hx4^!K39lksDIDDT>PIgzk)vzi|9*_wm4mu%SY_Jn5y7FF2yG)=3WXnYR4? zDOS}yYw@z7lJ2bLO3al5VqU`a?+)chDwq1lJ%382z1+ORrIN?I@`4L=uMR?z0L0HR zs8NNcLA{iC{?VIz#-CYMn#Kz`thWc3irW$l$J}7 zOT8dZy7I>>h#z+ljcz7CM@6_y!PckOFJr|0v)aBp@}~tiYS-Gv9db{iT33^~Wz0ws zpGf$|F+R4ry4HD(f2{JT%DegU^pR5#^r(7Q4Ud>wRQ>1*+ z1TnYZ1~JO0^h3xX#vT)M7v{@7N5(uyvOq$z;3c23%U;Qv zjpcL8ZT)J&F*qth-6VMSg<*_A(1dHF?DO5eG|?arq{3c@uOU9xKyl^ z2DyQySQuk=Vmbi@INWgF`}zSM+$S{2?ZUK8Jd@8TO|9{CmTu{rXElu-f8Tg3?8e^a z;&YKIN#}Q@Pan&ET0{um|NUdqiry{q*#!>3J)wE_4X}ymLy?vMT^(f=bro4CyQ=x&PR(G>(%>Xp_075{T^>--&EdVy@q59I@suTbsn?a zM|K6!8uz75Xom%BUy%lTQT!kZ4?%0WRYXD}fcA`tAO;g2(^v!1`aRVT%WI&*RZ<`- zbRQdgeWX0J7vevYgT?yhqZPZ-H_s2IgP z2xHpq9I6taOLp5z3r%vmq}&Gr8$UnoZ6j1$$!fMvhl?a}#ZGoXnvvYI8e9 zA^R5U@EvBSXF6!!OZ%EI9sN^uNqqBwF6+0<On?Cv(xb>2soZB_CDD_rnj4 zd|aHL@G50RT<4Zv@Cz7A9=Hon#5Kor?ZPiFc?;1ps&Em~6*LIP{Rx(}InhQML${s| z-eVJI=M&wUq{{%-dt+w@$`GT;&t78P8qzmqH22EL6=d!jI(}Jvfc_%J4QV^rmx@M2 z=KbUG>?{e_vF%+wr1_INy~f~@I_I3*ZrA5tw0P|gsq@WS9xx`giB6DUG`*0zbzdap zqsbzXw7q|ooYwt8NB_ll;q6y~_Z{Ovk`db7$CkznkiiMVg3!vphuAinzK%Kicg%Mr z@||yuTO2}WegutiP9zz2%err6Mh-J626nWLy=&|BXOYv%k|C!yjwjoXv*_`3#gRe} zf24ah;|}iJf$!Jqb)_E+g?TQvEv73y(Q%Z<=qMp=*Jpcdo8A-T%73mted~An<5F?e zFflh`imUnVSrA@-tnlKC4(i~?IMO-)MH)#lO6eL|%3zTLbm=CEfUnp2$2>$GGuNM| ze!>IMHm6ao*pa@namf>A-SJ%ngbOYF>6B;lC&oqCMlcZ>6;)DPJTEiTphhO6=kV~blzr>l z+iT(B;YmqJZO`E&NGdOQT}Z^oS6d%KgvtyDiI+gL5-#;1Q64U>pSP;j+*W=ULN9|5 zZxA>VRN)V}0F(ehgld_Ei<2;|<^-s9`^n)7!o-qBH25d(Z=fyde-1>Y85TjcKd1AJ zI@DA^t%P<4@DpzA@7FHiCV)!I>uNrAf~1T$urP_vTQ4EXYinz3Wwqsg<(kDDJdyEW znI&=gjCc&QZ~07~N_o*@7W6}`RtqA%ir~H$v9DBqklST|3lI_rK|wOSN*oh-Uw*wt zyYKHjqCLW_-WjS_u^$E==8tT4%2RianBiC1gFC}3|AqcotzA~VzNP$MAE@f@t(UrP z4$2of(%X7`cQ3v~D_z)zG;yp%)9TsQNcE+}%iRwG7${NGq63pyx&pI(ZJrf~aXh8&fS%v~m;BXnZe zY#m)tV=p7oHHJz5u8cmSPYnd!pn*gE;h$kO49ARTr;7KTCQL5;K@d%R?8`GUAb!=K zVPLwKfBDBBbb4%7E~7S3&uh>>u=sEV!I5+hz0=v2KxGRko}s#4VLFymP(U^u9DJ_| zZtKWs#qo+VeDqBJCkb%bK&8LhI{WA@Y9ei9PDzO@ZKO4OTtf6#vsZ0q=8L3P6Qe9rdh3ZsV38+(1OMDjz+W^Ga}TuA{?NLTUHHdhV}!<~U$_yx%1G2p4yxZk!(( z^@J#?yi?1d5Pw)@v_>B_lKaFeslHRifT85~Y=K==!R4+R;gi#)U4tiFNU#UO2vXT} z$h1xeK4SaOF`q(ldHsW!+Z$$AO5g`gKa+Am4+d%WWxxVq;Vpf_Wlr}WdAT6dANK;D z+j>%>#f+ATX?svVk;i`HQ@h^s@Yi+Yf@)UR6MN>?*;BwR6jW`A7#U@YkwOp~3PudR zV=d>->Em=h*pSJPAR!||eL#)}d@{($UVAo==}GGAe3eb@jAQL7nI9V0y-Gy?j2wY2*7%fX#F=Mix12 z&w=Q1LzwFPY`>Pke&PzqF?5#tq)59C=S5$JR|f|Np|I!n{=Tq>N(T6o-=e(iEf7jw(E zGd)AqcwFgtTt-kvQ1jMnLK0J)_s!dm47_}QG zN$etUTu3S_D+5p!NR;!*W}^YtHxkqVE|o2d>bl*vB@LLz9Gno3@k6CW0%n8Y7f+66 zLM2a5P7qP?10u@9Ldhf}!on=dM*u4l5g7^V;(o%$!^?|LV@+}Y{(bBDU#FXm1ZmO~ zO4A~XyN;zwfo}|c=@pZZkc0%Sh&wekdOi2Po1}{n$*r<((OkECcc3!IwQ=-qPHB2paL_auP*MPIk5xXZ(z|V-LPG8G%q2qq``6zFpbOq@(xp zXy4OwwE>|s(Q1>yB7a`nlY`Cg9yj^+erqe`?SVQ+_tk-ReKP4{kB=c<+^L0a$`IKq zNa>GFm%yNnnB@$|gx|k^2ZJz5d_F!l>djo*Xo*{EO;xP*$`sSU@V%m9o-{5ojlYN! zVMtLx5m|siPh|7FVtHo3n$WRqL90&9yP{a>U4Gz(dhSEa^H&YO-ov=~^v*wsv;@Z%@8e)YiHg7#Ii(-<;i2$_J8P1dwH4CSZ=Q zLsKHGbq310QZ1_k8pWcYI*jqqsGP3w3LJqb<;f>ZIG>+YZ|#uza1#Yp5pOkdZGCWE zA8;(V#iumf(?fiAba?78kpDn5V<$68AtWSZDyOQnl!cU3h`M5QZEtUHVnU;3R!&nh zsfq893%KhH91Nk95VqfvtP3kEn3H5AaM9{t4w_oH)SnjRP) zHfDYZ)r{+}T-W_xo1C6LS8vzy{CZI1bKNjjvylZ0b}MV^@fsH{r@fWz>}>Uum}@@V zTX$#h9QGwM$uGlu2T#`0FSYm4<*x{*V2;6Fxn9QW_%G}KAbh$kri1XGuFznArA&>L zjc}3(1Q|5>0?MGa+8dC0htRk-nn`#_8N%!$X@0)GQf9@jr$^9`DprgX`7Q$C7DD3p zU7l}^a`N&+t9xN#n1-8hdVu9W3k_4DvzD}3L}+MeWaPY6dFBHI_oizL`v@qgUS3|% zSa4(ec)E_)_2eKoH#bWr0~(7{vc+=QnZ0=7(`S^Xg@8bWx`Fdh1OWwGBIDw@fvHcR zaV|6i6wHPZUgr4u`&(OEL)K;e(l(8CJ7M))fQ+e4w$$ zLP=?<@9#>B$!9RB?;4+#@?hE7%tr3zNF?%BLw7gmX9e$Eph1rob!~QawF|&jx8i9& zLc7yyH9qsPDzLT`^I*;dw+2_=WZ$`nb2u}OlgQYTQ^;4bELSl!Gz7?S(eNrbh+ElEQDak~U_jc;&8WDlz!0mSC9AeROLPbt~uQ{X7h)g`D#AJ|h z_LK&WP>_(3(H&kwjO{OCd3t$~kdnfYQ%+LS16zc^x>ulL`6Kx0uJa{~ZO{-$RHo}4Cis+G4QQ>%gcDi*9#i-N~Ow3m8 z14?r8*I&(4Ei68lM1_U*j*qKLNj+{Lx(a5P_D4A9CI9GWB91@4qwyN!3hc~^kB%G- zH$feup`oGTa|bhZ4XeTY;>*YgiJJTbOm&^&2@C?#B|N{Z43w*8CaQkd6ED6s{PRD!&a*i)|Ih> zPSn?P#|+b(Hk_u6?d^Euj2t?vqdOBN;*JaJ*n~(QgLT%Gj$e>kzEOC0>mI^W?pt@% z5jk!hgnB4!sH31JP9D)X^In0pI^MoxR(TYK?o26BujyJ8LxYE0K2nVu-sgzdr$ZTD zES|3HQw3C?&G)R$dk0xvZ*#LG@5I-Z?Z2DYns>!f&HM&pl{(IZcKF6u36dW8yFRAw_1O&D`?ztR?U@0cXShMzSICUJQ#-2g5s723Ok{G_(_QLWX5%nbj>+Sj z%EC=I32`R3eNxfnn}hD&QGFLpVpch<`@zFSPkx(S_wWV{{nOM=Vl@fb5Cgr0cG7X; z^(Ufab;Xn)`vW8@k#vo{HXdf0_{$^r`C_JIC8kEdsU*Ka7=&nI%c#Jv@!0E;?kfzj z(&luHXFX55Z;I)>)!hvyS8x6#JjoL|=={ySs`II#dCAJcU z5w|k6=5B$(_)6~Eyb4za3L7Pei99eRg8fU#ekcVR<`u;=G?xw*Fy@`UD@xp_%?ve( zzrX#npTY&J{s1kx+n7~(GX|wAmV_sTg!!!M*9Qg{5-c2@5YeVvq_}4K5>|MV^p3M+ zKQmYZ&Y^_~Pm;j;`%1?kcG0Mb(SUd@tm90{4jqEKAFnUU|GxQrXU%!%QL-DH{+l6)wvQnY@g3%WJieSuBLa1ioSUBT(Zk-rMbP~QIqjN)Sc%7g2`Gv z=HwqXUxXI&3OoIp%xcpUvS+)a#L|XmBIc>df*MQ4RA^9CxGvRvo8nO;HK}}JLNkjO z0!y~4rZ!5*ik~!cFGoHWqC2H8r!h*zRYppE`4>MJq&#^=m%g+l?S_RDCdH$@A&I`t zfyb3p}7e(0wZp0>gxQ5K)IFnGGx z$G$6R*(|>H45>em=tUw2Q%k_7BaNGB!o=TXj2}%pJgYf7Eyi~}b$VOO@gz&0_;#0) zoW$dRA48w?^a+Z^Q)84_xI}izWl4upp4-LBda1o_*`ys2a_OOTp9z>ylJa_`VdQ;) zs5;Qdc&$$gJ)tSK>QLFHX_#B$gE&fV2TuJb`5uKcj=3Sf9uEQDAv1?N)`l7Pr93XMe5fL zzB9>&lUdJVCcH#L5`4@x)h|yfN|^f5W6D{JH*oD2a%-yZPH}cxhO;iQtT zIim9)is>n!^7|)>CRj99E8=YaKEWz?mfKt`W0gx!L;qydoK++DY^-Er_2s)Qa)olj z+Jxi+?1F07(pNdeQ!6#1QBhHLFiwoERi711>{dpKF-c?mX!+vtPK=FVq<4b*u zDE?0-fi@+wt`o1g$lr!E-iF2L=3#v<{V@TQ1fQ(C9%AvV*Spm7c787U?mX@CEsA}B zS0fa+618kdb{Ws8uR=-jUF*timY(S)p0`hVO&RhF@n-vG4_-tx6dKPssn@tk<`yYj z>w3LxZc-57YduI6JM-E}_h)8uvPQzMxG(Xi@8`})H4lltsN4y*uI^4SK2HpliPhuM ziOjrCSJBg!jA_IfipRD-5|r*Cmp!NW^LGS}D8|6{fPh-@wK!bUR|V27&30F-tLZiM zdOQ;m%d-iqTY`z76#Nn+Qz@rXLjRr>ZKc!tx;CJBfZNlu7cVr?wPT8!F(HwX1i1?E+ISOVLUaH_Ipa%78Qx)#X8LA zfz-b`(;{M==fobpswODxmB^HGnZ^v*v`9w@Xt&h4+F;PPPoq5$GOE%>PSRVkNOJR6 z?~+y0^&mks!*MB6UD3O;T+Af;R>S=+nTmti$Zzi=)ZP~U8J%R#JUpKBLdrAwv9S zb6Xn;YR5S%O%Qd5m`TLg;^IDqdmUTx^vF=(a_!`x`PpvI;qU-9Z(Yl|r|^~imFiB% zBNEpzv33mtzdv^TCV{` z#_PqMXF^!1w}fKWS?(!P30$4`3f(~ZJTbIkIjE{~pSK}#3x~i*VEm&6`lxozPH*;^um8j$Utjsl>0dK zS0bvCfj!wBXLSC4V$a$suGt?M6LuRa8ln?yw*>^qYuFaaG196i*Rne=T4Ts z&=uEF_Ripr2kYRu%)wKP?%*?##ar;$79%K;+MgUF(##5=9{rQ@GkS5x(U3Q0R{ z?}fD6-0Gb)P|h5RoF>$szPJ9^3~j}@r=MqAP4pJ^z=onu-D+lURbH5{fqu9f)>><0 zKIcRjNpEUJ`zN{LtL-7SQ#9qz8HpaoPZS$_TGrt9{fI&6ah#m}beQY0R_3V?)GbKI zS>IW7kCU|PNrBSOIRdnx`Qi}%hhI#pYsph8yM`1W_I+Y$98R7W`!z|Uiezbo7Iyn) zvcYw^Mi|Hsag}^>;g=mqE9CCPtocHfv8jrV3q% z7+tk?X-z`6xHGg=;-E-SNm|7Rxi$sCtz@DppO&J&=Ejls_b%SxVKYmhbJD8Z(6Enb znOd%Y^Nauft2F0V7Gw){8BE4mNN8hMUCjvfBe_Pu{8CRHT`l@NDCiLujm8_Rbwx0@ z9jQ0od9j2|Abp~m&9wp&-{7ea7$1{y3>diELq35*(|-%0^vzCNPW)_^(Lr{qUqTQzmX3Nm+z)Xyv=o^ z9K3zBE;r2Vsxt7@SQxvcQ+DlPmd{m;d2y1P16U`Bbyg+J2>uAW>S>r)5T}qPC%)N6 z-?xi(DOMseMVmv{BAKzE^b&>D!r6ajNPl)g^W}PDSt>kSgnlkgjo8 ze;Q1+dfdCBQH$I-OOk zK`|6%s}tfmuYcs1ikF;VX}4*~XXxBvc!SS~tfY|8@2meyXYb~fgfPM+PmBE#5l=#X z1((m&I%ycm!z=ZDe7iaVQzVBb|ShsC>?+v%xt-aukdNCAP^1`i_-3J9Z#k-2X%`u}jJQ+)7 z!vaUpUet~?XVK3}nlx>-I`Dt}GI?vfFVFSVip)6S0fm zXnCGXiKUzbY2dB7h0S-J34b1+cC$6k%?G?LLXs%HTyNI}Qe9)`huGPx+-pRSc`>z%`u3-K?c9m4{17 z&!0&yN*)~>J6an`6s-S#*47==I=hjIq(J|;(CvFHo%E|y^LWJr9rx^!QytT{H3JOB zI~*fu@kX~kj4h$!$ILXe2|Zf1H2C<4OW8EK`MDQvi%1GL9Y(;7XLE=us0XS6|<-QiO$JExtjo|=UV<`2fT1RsYY-RDu|ByE`9c)djQ zm_l0MmZI=EZFlAP=(1OtLT^sr@noG}z=98&XfPv6l=nExA9x3>ME)enp#4 zXcfIry6i<@;V`K2&<6hF39PP4{mnLWdNNj}KKZH6@nj7-Ve85JIM*22f$O@``cB~% z$Gmb5F5GA(EhBE-&0QsIw*$WSE?ifea+9ymmI`KpDzW79T?>_8*XZt6Q#(fUJJ{@!*7{p*DJNydu^;feYh!%?1|#*O&RUR zd+S@-4A$d)U-9HlMfHkh+BZ2E@2uT{g|38dGWP&AI( zi0_rAm8mrZ|Nie65VHRn$(oSi;*G7T8N9o=*DEVs9Ybv!b1OndUfzEkGel-$Z8 z!__{9I|v9Ub)PrMMl}}{o8JeMaUf`jKS4k^M?^Szgs@?L@$Xyhm5bm1yN}?KzpjFB z{rTeG|LA`-(BHY;-yi7j-0uH?u_F-vTk8J5BFg_@<^DDHA2Ij`WKzERPm0RlIQ$=s zbSZZKiRu4oG5puqe@|N>{hJ2+|DNFgX_;X7KMU}8MCETE{nLy2f56xz|1vaxnbm*i zo&QaY*uMnEkt%3ZPq4_sU`|o>&|4oe8zYNXg z7VbZ4ng2f-8uylKT=}to=R}Hw>2KTi|FQ{}7Jf!2Bd%#}OnAAwm!|uFvav_L+}Qt} z9r{1Jg=hK)TXbiBJUG7rV` z^?y0feIq7lU@B^BYkPK?-UR9~5hN9|u&@vlr(EQEM>EYE<2XY_mBsEf8ENU{loa^e?(VK&+HWyQ$**6&;4|tp zEp(;S+q#JE=jgUZK;{=J3QBKh=Rq#n$7UT;Qc_Av%5FU|F)?ZBkAN7dsHl*|z{Vbc z6h1(toT>*jK#DaaTdzz^&_jl4TIgdgOC(xaTFAmfp9P4B6Lf1hJRBSva&2C$fc6ql zLk0214d3rNdU{HVigzBdiitrph(2yTdo8Ug$kT;PQu6#A|Gt6pQGt4k7&hl|TK`u^rkE}hy0DW$eHHhXKMPSEYae6joL)vK_a zki%KKtsEB;(goF@q|-#&<2bgj-BmBrc?l~O&uLq;@mWq*761dNqN1Ww{k^>>00uDX z%PxhCcW+bz*K2Ho>gsNQ3xMo&D*4=rjC*iDZ2n8OBzU2&UJGgFUPbuFrxE$0f`YTH z)FRf$d#jM!I^U%MbyeVt$6u#D!^~^XjxNAohkQCfBPa~xuO%ZRvwb_L-1%@zs}0y^ zkV-Uynt~Ue@YJ+T(%5(ziu6Fv?z{}oD5U+mbAR>(Yz_a@P3T$z#a!@t9Az;99@O66 ze!RcFzOs`08jb7NulX7xN)+H6PLKDAiHYxvDyvk!F+JK@goMbRzP{3;BJ?|R?Xh<7 z36Y?m%~G%7>QJdPUnMMMkxnzPh+w&ZFFMfA+REzabC@NhZYJesbQLQkaM~K3og6}9 zDVnZ~Ob;ZgcSJEfmz0$3B7E`$QmAJEh7}VNGsRdxc!6~?>>nlc08yWmAqq0j8)RpZ$ggkYp-zW=4mGCJ!nb`9$>h_xs71KwdXs&w>c} zezmnRv$C4?=SF*YJP&-xvNcAfMN|O^!x&KBV_SwgjmYO#Wkm&4^71Qs`}QehDg#%M zPEoT$wInLDw>Du=agY6#06P)UGnIPi=JJTyU_-JCBQnCyK22bwA@EVX>HWyWm>5d4 z{oX8@dLHQ1bN{>B&O%68*Ayjp@e5SNND3J}0jy}T^o6B(v{vyr1z}-f6(v`_cO^ps zT2k1L9>qd}{R_KSO6aNq^Aq1ah^Uk6AmQ2<$zr)bProA}oLW&D7t&9kXqDP7%Uk-W z(0(l`F&W4og*1Qv`&5AYsCBTn_rX5{v`n&~zsRY-Q-+O~qouIXKz@9+(DhZwiG>{C z`;@Zw8PN{f<8?j9RE16&!Tv|@!%sTmj>&(HVI1Pha6f`A$l zKXX~=e9VA)*bJpPHxw^*EIIkFM81pUWXPYt`+%Mh@H>#=4H$wN%jx%8t9tc*&7e*I zw0QF_Ev=iIMlcX=S_0mF~3E=$M;2PJfNb~Z)% zv#GxCrGGNF%TWnnWR{keTwPuJvgH8mg3D?WWrO5*<2y{6f~KU}?ffh=GqWc{(%8@t zhLYs0hpgfHe4vy69u^iBB<|j;1PR`qPjnM`*=@VrABf9g1p>h1xD(v0le`Vur`lm# zNMwDk@aqL{%7Y4S+5BBvMsC?uW;qQUNt{0g5)4gfc$^PD`@|+BBm@QqPLZRH8TO=~ z!iv$URT%(_!U7ZUIveQe?J;0zzrX@zh<5YlO>byvBqjC{wB|srqD+?tTnI_O3ou_H zq4(qg_&iEtA3>YVFlm+hy8gU_?sR{h-GvScPld02N)|dg4!mXm`t@%pyF-nrm@ME6 z2)fG3O8+BBsZQjyZE0+5?C+P4a|Fc*>E~ZcO2YCL?%k|er@G$V-TltPqaF{9O<}~0 z!E0<8ed}&a89yW@Z@QFd)gudHDaX~fw~LFR)+=8bb1=4QCC2n)1yzETIHeqQVJ*MS zH=xskTD{@*_U(6IPv8LZ(B>H{2e=vhs|1zEWw$nCfP;ng<;|*+wzjquKA-Ce&`dz{ zhbNMyr6o|Rn+vIa9(1vKwPX0{H+Oe;;0&9EPR*7u3TRmaHWHTM0HDwx@Odhn_Sa5O zS%3rK;Q;V!0AjvFST1|MGRV}WJlhhEO{0{Wl0r-?zzjM~@71eLfQzKDGU>JX`1n}Z z*%ip=#r$SwVj3*yF8N%cpcN5>{Pz4HlprCaa<$j0#y zRF;AfD@t&!x30O*JGwus->D4Rf##}Ar$aw$@#nFG1 z31Ga*A6{uz&D6l!?ACJug@u-TcC3CWKl4G>DU2@cX7=n81EZ3R+~e3+TXbN~m*qcyt7#8W|e;KE~s5v;m5P zx757>2=RP_xc!SoS{f<0-qSAxPldwq-sVNgxV>5Shb%^^)j$}&8F zl+-%y=Y!HPn3$d>)~lJSJc$1)w3xMxfxK8FASk%04WP;iYvMnP0X>{9v^5}lfg?ck zGDeFzzSIEc#7Y~!O#a7r1&H?M?=<5KzV^Irx&~7 znkpz;@B`CC!U012!Dn)b8W?$Xq`VmTi^wqcg49fNK6x;)_wO5^^kKbiG#JdK;(~r6 zn(p|IAGeUmn)z<%OniF_s(*0)qmKi$#Ns86I2HiZmARYptJ9rYx*2@%B=}Z$*2mpI zRRI3Z5WJ)PwbAN5jcqcz9sgXT7?wI z011;lc{&S(%sTOWw)Cn(7a6xSc*ay5cHlC?wV_OV3+^Jb^f^NjfO#nD7 zE)Y1c0e3-IIHU7e=RA$g%hkfis5jFRYz8PCKdvIsIv_6X2|UMuO59!QJ3jbiyYjoM zuC8u)nCl#A#~CpXq!R2IV0ex?+|IT^_hFDp?^>Gs*Y=6Vqj8l>+*ccD=0_|3k%b>+{2x2tK*BG0vHcKvOcx|>k-`r z+jM?7pIGkzo1uc794^ft*B5<9tM<=&aIABGZcWwS?izd2S__n-Ak_aA7t$}=Ecw$a zw4c1gGM1Ns!AplxF_ct1f?9D4+()>h|1HT_)>W6|!Ad*xHNp9`@MZNH=fh2@b~NVu z_rt+RfbX^byRfdOrx+e^aK4Vqy#1#4Ga$s&%HMe5q&4+=MG3N>7-?(5m5%x3Zm*(* zY;Yk5K{pi@JaGlr5SQnLIr;9^R*M=A4h{h3rvXb?wcZ3G35&8+JMMP( z_U`QM{W_bmf)^}=vx^H*#bu=0$xbR*{#m4eu<-n*L_IESxuo-yN}-k_xbHkp)xd?| zY^GU3OS~d=Z4bmdD=RBMgHsj4=PpKPd+f#8Emaf{Bmx6Q}ReR6*8M-& z`OLr|^B`BLl#=hF%04gK<<|SgyDwkffNV}rPiKfl6VbT1&b37YtIyVYr-?=`EiQ^D za4Rb9a6fsX147(w{Sz71E|JApUPEId0Eg*kxq!HZg~eC1(Tk_x<^5w2AkXUTU#p!+FeFEN9a`b}+&|k>9JS{vXzd!Fg zM(jaR2R3GAOksd#6};+yxS7lb#sgFt#gI?&NQJE^B^0_G8y~L)Fl$3Y!{K18$AeXn z7XasRT22X27=Vi&$K&({{7HyMY!`IIfe_!tcyUJ4f`5-9J}Qd z)cFi!{57R)2)k*m2rMdj>U00LDuqsgj(9G+ySHxL+a^1v(%A;86Jow&S4~nWAiHrP zyo62#BzQpkjVsjD)F7}SA3qX>Huv`RS+CsR1;-I6>ErJYc*-?!xZyF?QeT9SipRWG zR_*|Ny2a!V*ld9Jz6M$(2#*Wv{{6J9tgM29anLd#p8D%cVB&ky#o_yLmws$J>>ojb z9l_0o(!ne3V3i}O6|JTl?sNqKI1+ZBq!MxDG}a-?e}WC^|{y)fNo)9 zi^Lz`0Vjcd7uexvyQG;OJ;`weGi=$gAk@UGq@)BmP_T_dH7>`n;}op^jd>vi z0t!IU90tI*)LEU~h?|j@B#8vFY!~zcH^WlNY z8jvtZeR^iA_hB%oA90V3h?iGQKxl-${#q046hMDn1VKps2zQqHjA47LW#U!T-;?>e zFnNlc;Q$EqW_@fF5P+6Qz}T&uW4$W^+-|443JeLUsZY8*d}7PE{Om&UIc*FMHYTU2 z;g(ujJ~7apGCMO%8{!k@KcQfQb?){(Fj?s6-B3mODvJa|HaOn;1-?N+ z5G%`7ujL)wey0azSswaE=Z_-H1eXOD%{y0XkfZiJRLQW(Dr}+S=O4&vyVewFPIgd+4b^ z3L${GzXA0iVs-06+9JPSZg9qZApCcMiat2-^!6qrBQrKK`eM{)1S5hMMEPnu%xV_= zUI+$+_j{Rlr#8cGOeIf=#f%87jQdru%g`dcML-a_jLKZTMGy)8UlYUpbEAI^4odR! z^;c;3Ut|GZ{I3!3f05;aEZLqHbU2XkeE(iZP!P>~JsOm4S{jKZeA+~I>E(R0d(6yS z^2}=s3CY)U$|*fB&-Qo^&+6jr;ZWc*zI#9mTQ!m=PaGu{W%507x(;|pZ~Nme);w>! zemTOwUG^c2N>e^B;Ks$^2wNVJKH!yKzW(7kMed(7i}Ps-1J9lo7jQy-o3lb!W9`fg za!Lk^GoxO%?h7=MlBT6|mgI4jxSZPU1xH6OuGzL6kJ!54wR@&wT82HZbi9rWhaumH z{u+&p^>Nm*42(}AyNmdto zKSE6mFQuo^OQvhVN=MYC7L!!1ZlnQ)PyX5dlGxuezP6q(iL4iM#w@+0Fci;LI%h0X zT~~YrBW6L>$c(q9LjyT8C0gV8JqpHyuh-(aMvhl(yI!k`lRV}qRTIpKzPrlYD?5!I z>eMl2KP#~ibWQpEl>FqZ2m9^*k7reSj~0whdtMT&)tm7-=x%R{hIAGFa#42u-E`{l zE+?FVHncgl{oyS2NVNooseJ#BlFwh}&due&{4C^r8*8MAqP&r23Z=BXg&C^*qu+HNC?^3Kf|7-wOWWBQp6ko5HbnW1ECY#oCYI z)vC6~dMv3&YVFw_N2d#e%cwE3G}E(ow%?=jrCpv$xA@!`t|L;<$;uKCY9!4_*Imzx zDs;u4S1Q{Mi>MeXsN>o*RFhejd6H7f(p!wmPwC%++y1lsV^R0)xoHHg+}vp0NIP%* zL)m=!{%2u%ZGi;b{xKCTPFdQLa~IS4{zsR5BO?uM?q}bP{@r61yB=O1>k_ffWo@-- z?}C??EaVj{PgOiEs{xG>n<)$<^xh|1s%Tlw<0OneR8ZwAEl{BycbsZDF(oV7PbZ3; zx6EIDlzwhGwUr$2%EX3W_%(+&Q+$-NzrKjgew;)_1dGKl;DelrpOq$FJ8n?oZF#}K zUn-S}7t2i~vgQQwjzD&~0h$bGM({DLE z&JMl>*U0x@v=kEOSmNYYsFX)agnNvnrzgll=+qi*O=SfW!pSAYMV$()6{8-CEf2Jm zOZv;a{T>^nZp1K{Vnwn2)O2abL`j@(`A*_`rKf0*kuKKyPHS6R*w|G^mIGha(jt)< zIhx|hCa>R~PZp_@6-ycG?-UiyIP7Scsjw3%oAFHbJ)()Q01trt+svhE|CX^kq1f9N zDBRsWo^SLqI+}tv&p-M_C1-yDHE-nF=6ZLNe0CwFQEpn&908^Z`LgXNVcLNTalF{e4D*E%KS-a1I>2d!=CD?bwG)2{mtOw^2H-o#PB@4lOk;{3fY9r5$mcVMtPNl`u8>wEVkH!r4oY zB#X~I;mce?d0m|R+OW-vmX_6$-^)D~Q|dHT&?~+aSvWZ6=T8VDTkYCxqGk%emiG9i z_R7xJ&~UMpxagyP;E8ELZazA%c&YsSRQy@@=e^zZ9mDUQ7Zm@j)4ff2VF7APp(Lrbcio;66;%~i7dCD_z^@nE31{Uxm><7gEn#Gs*{oCKrCljUuE@;C6IXqvku;E1 zva>T!H~u>6VQzGHMy8Y|DLVN6jT3*825xjUN!%gZGufk2?RvY-Hg{_2+z~g)yT;dB zLeb^4*8scXk@l-=?>{J(Xs`Cx2#+@0HBrrI>{!;u_&7FLr_M&eK|5TnC0+1*TlkpH z76r*|cS-zeF|<#fApVoZ;7+Frlc=FFihj7@x3xeU2v&m6byi|cPxQ_4*KE0(T(4;I zeKUC;8XlM9W_P>2jp>T#)0J!#W?F$gdgVz${tj)PH$NtppT{@3p-xhe##e|zdYE`;&y_s(gKVqAEdkWU9jpjO1Scd|qU>axdoaml{ z(!)CKtai&$(%RlBJ-+?rSPzRb>|>04df8%CNc=SYM5sr?Ia|ih1Tr8Q?cNUxeFV@~NAgi@&7sX|F03xVhfrNk{ zofe=pB3%mvlopXr8&NRm#sH+d%K(*DxTY;akh|jDlhf?lTRV1YaF=TTys9+ZEo}iO{X&8i*vSgJQlE2pqvFlO5JLZ!R5 zLS9bcWZCg*oxWSMLo&<3^Y4#T{`26=pRr%c->oJW_`2&~4DWgR<=LUZr!TLw8C0D@ z&(8dnbr0e;e!XWnd;0nFWU3@M!OC4THWf!s)F<)ZcDdb}EB?s(a*oMwX3<2!fbb5N zfrch|ISmTHzwj$JsKzS_v#!>29*nY3p-}5Wx%(q!h6Hm&0{-bmF*Q8>T8m-;tCf(=3HHK7T3_c zKkZ~&YUK9N@{9WoOx&b;}6fD$~|}YstmL9t*IRM@eAXy z_ML10afO@PHy}GJRKHWB;or{3ZKJt}MZzIOB{-ZWV*_1oXrVCQ(RG{(py zsHg63%pa}Fn)FoWseub@-cPG_j}8S76lu{q>ql>aOoB++ZW7u|K)a4GLTW2+K- z@Vh_--O$ehLHt2#l-yN$PrB7yjpUa_wp`dztKJZP+WS% z;56&m6E?lhLp$i7wYe@{OtJ54S?M~>{@D71PDhPtbf=P-vudUyi_*{70mJZT$j`1N zYCivFmN$N%Lu-m|6UXZ(a_=aD_l6h6tEOHNdEtzA*)^RWr%IJav;1D_T^2i&v-itW zC(fE&$!lW`zRqMdvq~Nl5*TPd`bjamqjGBOO{}%0+3t)9m1e79%Nb^Mj#9W z5VOZqFSyeE;9-u}DwZF=`@`92swnqguLk!_er(=s}Y{a{&h5(=(}pmJ43fTes}jr_9N> zcot+o7m*Mn5^MF&Q-b}9)LXjMVZ+PQ!Jo{AIZ1C_hSK_a(mYY=xVoGJsQpr2u9)Wz zDQ;{FZKM^_O0TuZTB{$8{wH)P!&I$SysnYWVuA03!`GGva2LZyCdic44sw`kmZ*<# z*3~NemftiN>b6?&lG&aXu_Tw&wwrP$!}Lr^qjD$9@QdYM$KJ#@VX_|!lGAu;(_^$; z+G@0@%pYwMwYL;t%=Xu^9;}P3@RSOmSxsMk*%xaCTGjSe>rdtvHyKjDKOoK*YTfLU8r+!ZP ze`D)hjZQ0KKU{tSiE(WsZQIz=>^S*w$dbpfuZ@|I!-X~~%YsL#%0}!ax;*VuZvHwE z*%yYj7Ae=p)hFzye>62LS{BFY@X&TR3ov$R55$%hKuoJS+$K~kTtsaw>pm#-_4PRs zwbY&`(hfD7@SBfWtY^;>%b!-Ij>h?>*d=Wgl-6kfo;f|en(*{jBiq0#dEWMNG}xh{ zd4UTb`162X6aQNOC4Zj;fXqu2+%(IcoKU-U`L2V*SGfHHgm62lkoq|1C6Eyxe5h+G zY-!M1%EHh5BqOP@;41gne*7g7I#NEeBX>2y_$hlg{+Ap3b5basq*1NYpp!dgC+#o3 zRu(L)c&)b2OgP1~dhnxl75%eAOhc@rt|_cq(kTlA&E;Q}5*qntu3nLBzCHcSf2>W)^I1SqqJ91p4YXK2q0IrbSK4Me~=CTc4zEd1bK07w+) z*IPBny2x95U9BVM)Q-x`y!T0GP)cy6Zj-%^yukI7O=m?sw_F(oZzykS+Py@-597in zUv#oAZpn%v_YZJd`IPp&qGC7ON>aOPZvEV!m1qS39sw%8h+-J z(=7Cq4DUZWEI6C2DBwn)w`>!>=K!nN0zj9;*V*WIAS4h-X!Cy=5)>GyR`+27(29S? z*`@C+3AdE4JBfIDlopi74y>{Ery?Lhny7TWL*%2rMy~2?q!w45Qtdg;5~aAah``8p z(EiOdBm3EJh_g@cmWEM4Mx!(Q8>BP1&V}T*8eB>!(f$=ao?ugLJ;9`i2EodsY{0 z`yXe%)l9k;lU?ldq*_}!Wp(X^X=5srLR@|%BS6N6RKo>W+K!F-hH>hilDYWyt=e|QOJX@bIX^qjHQosk<~crC`m9mIIq68AlZItScCo%fKu1yi zz$3xs2lw-MV}_7$4C*oHFdS=j+PIi?E%i$7p`o)`W^t$I*wl*Mjc}^+XaA}v6H+~H zS!agX^wvH{gE7PK-leJ#O(AU^iMYm!-3F}Ed#mUo-$XggE0M{bdXpE7+GnVY- zB|H+lC$yjLZjnN7jqSygK=x|o9hU^J7^^Qnv1W5n_PO*~2S{k;&xqvAC@Fh}IVb*#r5oPWk!{HGd~w;J2iTG$!I7Ms8BInu*24fkIv zKq`CU-Hp7JbejiKYa5Ep4pv4v(gyVYC^TR_tYEH^R1pila_(0*= zu>UGJl726LEF^F8--fU6RK^}_x1LSV-~Z0lU>C>aQ$>~0qP1x;bq5E?x8`D|PpN)R zaOC@_mHb~5kAjcC)y#TZpY%oGLtMd1`%r!Gd`aGNV%u&-rB_8BGRdr3BU!pfJ!h;b zwubG>7IYaLyJu!BH{KZ}NHh~p{JrCU-n>efaqxFp8#@HsEU)w`TwQ22ptWhGKQRf& zMS8Q`@ZL`QBgccDCOPW9!gZag7qvTRJ!CwQ*nDYk)nR(H+tP5`muQzLAYZfilj9Q< zR#gB{XloB5{i~FwvP=6c$CQ3c;e(%an1&@uv*ICo-zn+(|=Dr9UIFa!$QN;$O zKuqtBv7^6|%7gGaMisqJ18l(1wl3!`Ao``1iBrm8D_qfc^LwoBbWIY)fDi}X>Vj)! z@{I`y>%QGJ;wo?*w&JCg*0Aatm#EgEv+qDwEjj^XVSUqyz7eZlyuxHGBa1rneLT<*aZp20_%i7g(_n`vJw5i0A2ZyKOCDkaAz#n=X_#g9V|0# z2Yf3gUWC%)(BRQ9QGvB~28L+k4=bHXSFWjD?=z1|j76g>N<@xn#s;jbn*0k;Q<08p7-mhp_ykSiJ3Vfx zm(IPR@uz_8%7te^y(6*y+7gN@zn`>R3+e4nD9KylJ(|}PbD{TYK~Sl_1=VZ&)jySpa%L-IgAW%~ zKIV;4?`wH*b8X@GeAEqp2f0_@&YghZcfQcVLLr}=9R5xsds{e;+RiCrhtEe|_Ww>K zkI{5SBOM=MIJ0xxHuS4+`H8>teJ=^(#&7@s;{ILqCBY~!;Ab}7%OmJhP9za`q5|y; zoG|g+@naO7=Qy?&OCKZXga0Yzvr({XJAL}c7LCa0m}_ck;^X7vvgpuM^6lJKXn-Dq zj*br3wYQg--%OW7)fUYw9iKmAL zy5ydurCFiHbX)n{)#V}E=>Y{5l}0ct@rVSC4ZFO-uDA?md2BBUkG1###tHf!^O45a z)m;ZK1=}xtm=qr;pU=Mi>wa8Z9Gc8h^h(g}$A>f??W*J`W0OUa3{s~LdRZ~hzUzhP z>W_v7g2wgk-3@eZZQpq(+p6Cy;53@E_D>N!2&^#pHw>Tb5hr2m;>$CQI_UUBuN%8^ zeAD}@-r`1~sgusp!)s9;-L+bWu% z@fA7Q*>}gMc?4?&=3s*w*m+2n>YKzgdNfEegI~C!uhXo$-I60 zR!B$)%O+^a$!pOJ4Dt;&vV6WTC$$`AH&n-jJ408l51Up?X{izD9B7jy?##)8bm}@! zUcP+!XeU)7_5?9_@1_%R`qNX2{X?hD%*X$;abtU18yZv%Oif1y2Ij%jJVZlt0CzUA zLIR#C?&5@Ou}=HXAI`I94}qDpS9JMbJ-v&n6D2}+6Cc~#oqvDz#51FjK7`BY+S3E{ z+dwItrzJ&KI~XS|W^hHI(-GILU;0{BRu*0L^*?_e=bTqTPd|hnoyaHH*b-gWR;#M2 zux;qn8HA>-q?>2FjZ^@w&7x?GhuDI+lAE2~)Y^*D`hM!=VZ9qS(3Y2njY{aMv>B?q zDqV#}%JmmWAe|q@F%SlzUEl6+-Z|D$&F`XI2#ZcC=+m27di%hJcZ*EtJCe59Bn6k`Ckq&r(K4=EMVw3bg#I z#H-?5_8&cJW??bj-F+>?Sm`qiPoV%wlh}{5vYJ8G(NPQ5UV>U$)U#(&_;0Xe-FFr0 zZr{EgP06a+w{@>vxdIbcoSv1I=3T14F2<}RF%DM&;|jK|y}cc)RqA4uSg5G{(YNb; zsd(-remck#un!Q{BrJ28KRD2m!Qx6V8FV(UV?!VN|A5O!^rUKJj^NXO%R9kyaSlAhg22lpH z^x@`xAc*x04dsH63j(Y(8n?mB0;!6yK@`%Y6ObE3(<)w{;84`puYjv|GbIs>FEu?LB{ICZ2KugxGCs~ zfXxUap(hg?uuK!jcB1eN$bzF_CGcLyE$VYp6E1A+1nB}CpFMj9Zqq3Es9{3(H7PeF zaDnL8-+!>{cVu+5qoX5UP`l762Q*8l5L)M9RR{_APdq#R3(dgbGijvgiGlu&rt&D+ zQ1zTU2A}_NQtzfxa&>hDOOK9@j)jERb#EochH{ULea$w5-HlJ(ezK;pc4n_25q?DB*QG2x8&rr+P`oif7uit*RD!R zwxAyxRt;w!%x%&)GSU_$b2w01T;J^YN@BtrHyuf9J}>U-SIQ$*Nxizgf2`51P{t>33CMox1x&5X)K=UQany{ z2fB^7<4^y3-}h_ZI<(xxd<*s->3nl((*>H%loUJ3OUUvB_ve+Ik2Gwv{xVwNqxzxg zX@L!u4GXhg#M^(}+!sLUiB4WWcOa$K+Kb%cMn(@Yfh8c_Ym#&txZjK zj*ff(V?;`%!FvGJ6mu&;A8Cn}qYIQ)j+Q-2e0K*G>ASb7si}cRGc`H6edo@!tStXh zeHaE6Wn~7=^BjIbLAm;+2S88(Q!mq~R($zIXR3kJ)5{n2A##Fm-H7YZV}p`Tc9($q zte~I(5)#T-djVR_K3I(+8;0f<{#Y+#{|%e|Kde8Og9L0P&h7|5mnS9h*#fnne^c@NTIV6 zF(?DK$sirjg>6x{Ze39&>#-VcV8u(rzQxAHy`Vn#6^62+;yH2bPK?CpjtIVewJl)i zY`>q3e`0?Yc<;}T@TY=1b$QE24Iyle{Q8_4yaD#&CA<4W~8Ap+~JjdbR3Sx%n3fsh*P z2JCl2Jm_1h5Blo$Yu8S2l8Kyma9Aw!WhwFZ0T+zRq(R#0su9Q*mropr7WwFtM0WZV zJw2kxW5acR=WeX!iI z3QP=amc+I?L>3W^H-nOc2hbB5S~mg6Dn|Xm_Ci0p*2#prpeM4Udir|ND^)OVdtlgsNRw zmwTNiP`?m@Be@TM^@;}WMfDQ^|{ACgUCFd1Oyx^$uj0VcWyx$@TJ&M(ie&7{mB988n1GMAO4CG z5gzt=a_XFQ>+VNB<zMS>i+Z&Yqp7C+y z2P@#$VM`;(HA50)l6!JAF<(Ob!ag?5YeQnWFXi<0-xn3Fy{4DK^c`@5M#sj?b#;m8fzfo`s!^~hC%Ny$u02?u zM5Q=CXrJ9w4a*~&BUu4TwETB2?|Vqt33i>1+FGk(_x+f6ArwJ2aS;3_r0=_S?2wd| zr6pMc*e1~h1!9Q9C2Z5<#uHzud)U2I^Uk?T|=GcUsONm>T7^H-xT zZX>kwuo(YIX6D$7k9MF#lgMu^m{(aJrlzH3A=KOU8Q##OAwCB~Adrw^AOWoe*}MwG z4E)7mKmzziJbWQCzIC&iib&7-^E*tc$c2#x*-kahP^M#RN_SobRDP|ItvfK^faO1S z#qF~JlGM$Kbl}SCF*^K0cY5KSUP&FDPS{aCe*V#>ly}G?4?KOibw63hGcPYMw0FQh zfdq0ShYe7N54L!X&?Ldwj;xOPHrmnv}Zw6=Y>E+j9VTfDmJ6)D4i;FL75|mV8 zAV`}6_TSzd8yYJ6y^V~~kR&?P$Vrev`dv8%hu;MDI(!+Z!?+R*^Pos892gp6rs)A= zAghzu8xE(Bya(%$jhj<@M_aQn?nq?*2u5%S!K#6pjxDg@5Pt`$wV}c9$rdsZN_zT8 zT&eYF%M6Up{bT4oRCS_9|MwyOJ3X$GUk)I6t*ojNvFv_0-vKPh15<@Sh>QEslSH}e z2;YzLauYD`5Rbsr7P_qD0@cd4KvX0P{x2Q_hE%|MXkc)V80doAl@D1DPZ%ALaDc#C z@(AqxqDVDK$uh8ll@m2%ZVAD#Lc;)hfsfq1aSsgw?Ed~NNHe4|B^>1P;NajXRkDw+ z7f!t5gB+Dn>gecT;zGE~q7jr5SsC@i4CPBN2 zE+~jf%r*K>FN}h5_wuS@J@Mf~MKEvmk00`yvy+oX@FOr`#ReGtg%?Jk_XK7jB4FJR z%1^7Rs^&|jA+>-DM!xP0$L7HeWx>1$$IdSx^UCgf2%nEfU%^6RTraC>TFS=rmP&Ac z$X3@dECeVDrW3&(A4TdH9euOI;$ESDKHYvL>0c+ws31=4ISt-? zcQT>4yR~#8&v2bRJ3mxEFavlmzcX7Fv%jwQZy;loCCQC&Sy@?9r;~Hl!5q!7 zq?GV*9YBmCU5wa;3$To8(=U*LeVLVl0Aap7eu>cwG~=5_MwnhPk8RPF7{~@bclS=1 zhqUX=O3znU$)KQ0XArx?0Ssdf62?Ax@KQ{ctX0keqZqD_YlMHou1&_m1o!csNcXxI zk?XK)WIo@zjZFTz0uhul{y{*9oG?b!1(0Wl!{Nh+ckjkInfFlsz^nr^AZ9&1)3bZh zQd5c1W!pYO5AlRMhFmR=<&B?VWwm!h(D3{ZObpQu zcV0IQnI4GGK<~Pc3_uZg({Mp9^3x%Pg|_2i*_;dvQP2pFuf%*P=qhig6NukoaMDR| zW~PM8LynG~ed&>6oGM;LFB~&0GBPvSCfxBlz~KiPlR9BfF+?ZLY2i-Hb#)kmy|ne) z$maL5_xbt)Bhb{+LRf{M6~N2M!g-Kom6No!#OT*-D={L(b#xm@7NoYM%pa+oo5TPR656S?rALB@1OiiU#$s*iy zF##(nX&e(sxVX5!0!=omIfWr@NFhFciy*>S`2(SRmKXOuggFH2gNc35v8Y!<;z=^u zd5#GTO#1loBZd+HA=yjKSqwA$_3LA#KNGs^TI+KR=?gTHV$&}e8UDx3&_%5-I6)JAeS~9A>S3`*vDLC?Am`XJ9;TQc_Zq z_;?Bicfj~8EiOWLGjIL8=rn23n#o$UXE)i$Jdz`=D8Th1!Us$RE9has@gPQ9 za0Rf67;UUwbeHKmpb)Y;hi|rKOd}R#tB_U zW->iFsg`9PT3EPR{FEH`!p^o2FHcH4BUF)RlW)?6E5j%gODn6xqAvOO?rlJL*Ml=S zS|X7Ei|Fw}z1){Y0-@P=!k|Ork1<%oy&l}83rSa2Rz_$BMeTpKfZzg23XqtF5PmBF zVv8tM_)5ZB$Pyo3#|R>Bd6)MR>(Dp-LSkcMV}s)cXt>OEgsiKbILS}^HuOR6SWojjV&OT6%UDsc^K zjN~~v!dZ*tz$@>(pKR93vvcQ8)VXjI@D(2TBS{+4 zmw!P7>Fn(6&#se*UCu*80?-2pAMxdK82I*VTm;U)=I2jpEW^fS0V_b78PP*hk)}|7 zEAf2~0kGEsSb+)x*ul65gxeF%7?&a!E+Wjwr^-e|v~8HRXC+Ps;V;D~@0k)5w(Q%MeyD{P6od9cqBd`=+&48wyc(sojdEPp{5wQ{588V9FFz7RrlNeL;4r438* z{x>E=CRT^5Tv=WQFcFoQi0D%Q1ENS*$yl>)m7F%U@~rc*z@j;ku}||op=xE zD+4B5S#)ZXu1sM)HSa3&_3=sn_tSmI#JA#Nj3QBD_T@3Ec}NH}k#-uCAH1*+&g;g_ zo2LsY1q21LO`f=MQr6j3bbyMAmo&gIA8L&$Rw(g8txn?JUNa$m<>I=&?;(T%gGxbw z^1>V)DXC{r)xW7{cn5s(GLHC++S~YeA;XG8NCTi*&=xnwGiNHkeY=UM3ZF#mic;y> zvuBSH60x3nevH05*)4WqUqh0P#lQcawd^j2T^}4KPzka>Pdz;T%+2Yf-+FcV1T`t6 zMWq=gkAi32%!q8@h!*%?kc|AB`+#JUb-!>CkPN`SNeD`F5>~jkm6V799*kG>#)<6M zyDl>1)ff4fJ>vYc^hAHS8CmNw^DMIYOSd>ixBW@cxJ1UV>(27r*${`Cjw`11e4V*qgi zk3q;ueEziUpPs81_967q!;>JkL!AcE6Atww7B~`88>(64(hlSqqJ;`9LikWFqt{QL zZpYzviBj(0f4p!lQ8VY7)7nv9^N{&fllAz3EPOWsbGW$zU}q}X#z#(0ZfiToapUXR zfA)~MRiiQ^KDj#?6ULB$VlbYXhQ|6go+rLB;$OX>^#2BCN{+-Mm4oMYWA9!EW{zP- z$~b1w0hqyrFFeR{^tyib_y-2&VAvuZ9Wl3z3z$H@$oPM78N#T^$Y^Dn1|n>M7!r_7 zp-h%>z2v%ve004>_`#2zBwU7K-@e`y|D*5lcx7Z7`5-ce-NebxQ|Ifk1&MA z!=f4Wwrd2GP39)|Y~7D0{@-vJvK?t5At4y^x$S;3au&qNz}a_Gb6!?d^d{UKC2`LY z?}^c}=g)scdqGM5EfTT_PfUO>Cwc(a0&YU;%ZTtA#a@J58d1{Jgr8Y25u7izUif1$ zspp8G11^N5K>Lz%32061`hNp6-=0(d1~6l8PB?J72gFk|S{5(&qwqu2lK}@}^z8WH zAirMmHZwCb0(9coclfX%^gbdYqNk?^D4Bz!qe_ChFX1A05f?3gU;pM!^mi!jdx+S! z{)56L25){?4^qwFBM?0WU0q!maETDZX1GDdsn(+I!+zXcKKuHsU%nzIr-N~jxEkcg zp&=o~aRWH}E2j<+U%&k-84>bsih%T;f>hbAV_+0kXxP}cXAkD*kL_g8-5YD^T&0yn2()zue=5ZYxGOy-mrY{(9zrb8 zkI?bu%MG0V^0pmhU896xx#=--a@JH=V^DG=P=~+O7hc}e2$j#@Mcxg8d--yomR39R zkL;WrUser2!hWo~NeUL=pj4Z55$AXNPLMoOTy!)MdYu=6nMYPZRET9|t5CQT5*AK~ zkB2`ww(cZR1yBq^1!CuYjOMxbKgGr^%MOt}BCea2LB0V210y46d?iilW5w{J?bo0C zEh`I)3BLILF${c6L7gAL6&xhuKcWDc{|=Xl2y*!xIqSeqlY}ewn(S?0H79E(G%?W1>w1i~47>!6@e*DCV&+sYmP(TuK4#9kuZ&Ok@ zAa`VIF-SG%7Z;HQYbq*Qp)LxPpOdJlq1d(_U_ELF0J`ZyQ?7MfP7Y>nFF`>NGZ0mR zc~e>uCxn|s%!v4vsO332qBaK6W8A*})fbrs1s#E*BZ?8UslXIkW?y2!sf>&#^c_V2 zSoDs3djODVxPT2g;7yJ~F_gLF@VYt;V0_5qhYw*(05S0z*Ii-owjQhzBe?}Pb~XU~ zs05-o1Aw2H@I~&6(dLrt+EQ|0{U^8+4*I_{m;*^f3qlzs6M@F|+*t_6puugQfrMdp zGAjcsAVX3CM!tgd_MiV|Fen`&;{behC9;Nw+nCTU`GDS@9?bi^vhN}Bu@CZ}5Ti9E z>jnh{5&6|_;^w+`=3%NQLPJc9q(4xKil&f|5DbePA@}?5z?DO3AUptCpfTv}(ALoj zCvwAeAK=8HtE+qen7e-vau@|oV~@rVm_bwkY{%LZcI}i`Rz}c{f{r8b1Y8J(5h1M~ z`x&C>{?8nyv8Dz!D@15;o{G}a{ysijK-Q3tVMrBDT#SM^uZacNb_g~MARRO$W4%v< zXm{z)#Pd#i`}n+{H=0Ia89fp1Msko9;%oUyU;7d;F7RT&xWue^bin05#?b0eQaLQ* z5K8acwr|JGEy6e9lf@Lo4B5ZQ=#KTnDkAz9{-(5FzoKXB65=w`rkAiHNZ}z$2s!T` zLkGrN^$cS@fu8Q}w^32z`eYFk>-p*`3m}9bxL0JPwKX-wf(6)aqjK_?I=n5Q%5sASNSp-!W*-vTF*V6;^2c3LBadMSqWs56wosi15 ze0wVl9@B$pOfbOw0?NU6BE4f%OGPaKW2Mni790@3NJETo$9#D_!JEf>$aMCt-+2d6 zJz#*Yz|U~@n9_-EAsgfx0Mi~nehiaE%t3?;K|9Yj3K*PLBV%I$etuFT(p@CjxDvE{ zppUMs3?Tm6(s+@Ik`m?NeT-!D*8)D{sq(XcZJPn0>E_nf)C~C_nNrm@D5Kln|4zg( zhnby01yJ(}M(Y!8b?7JQ-bkjiY5jp+Fqn^3`!k?Rq?V^oothqPRYABKqxb|?1*lC) zg&hozz}@dHE$Wzb$;?bl{q5%bw85?V1rtbzA079xcMyZ_{L9fV$H)fzN0cG~9aUHZ zvYEJg<s3QOn^Hq#?R_1 zn&?X^cc-35*NVIJ_UezQPsts@3nQ@UT5->DtdGrvFg<*G3YziUJzI7QT3jarId5yU z`dsIncpZAr#8_PO^v11)WKc!7IW#tgzkW?K(q44O{>EDc&h~sd!4}($dFf-$c)59L zYCGehwv26nh!JMf$-S)C(?mmKAO0#%%Am_|F@yOmOqU2R z{YCt*^6nnO)P(m>`;7=Ots2F~dEBJrOL?KD*8WehnV?IF z>!^zix6;$g-J)+)l%%}#W!PWW7H;oIy)zz&t<6Ghc!2q9*UqIHj`LAD^oFITUK97z zRFsLlAv|opo8|D3@l%a=-3MH?9hY@4zK%`(Q=YzyZ9R{1KJK}I>G}&{QQp7wWWSdR?g7w%pFrLZYUNMR^$=?H>o@-D!%iX1b znCK&wPtdFS-&wo&C{^&tjlO#u68vL~?=b(JS+D4;F{#>~sXfhABEgPavH9NP(;pFoLLy)7o4%?3Xgu@-wHH;Ll)cY1I!BZckR6Wc8>1wi=CG! z!l}s^6$q0ef8BF*?0VPYs@c%6vB{VKrFLX~%3BAvSnW@BIZDFT^|mWLd`$FagH_&C z7UHf=ISWbrT{W?VZ^FE?M_SrBx;uUs+)OHJK688J6VGfW&%vCNY9Sg8m1R|Xnq6g6 zm`*Adj(ywTtxS6h^5Jyh^H=i0z&~`0{LHcaZ)Im2zNj}d`B@0rIV?@4(e6>A;LWI0 zY8PnrXNp|)3PsW4NZ!GMk*?mof?3=WUwWIHtGw!q4NPh|6Gr0=%|w?B(+d2@E*A?O zZ7od9*33*-?u=53wh(^T*%cX<+_K1CT3fg`5YBL z02bI9qN;aIQdM8Ny{wml*E)kcp>p?Lo%{vE@*h%JLoLho(pRs>WM-87l5*uvOENZE z&M^#zSs~luLtm}!GGM&-N!fv?J#;a4-yA|mt%_D+W|?(GoO-o8q8OA|qjLCGOsZ3! zmY&NBHS5Z_d;X&z6%#d`4aTL6H^%-OVr!nk67=vf)!BdgzSl1`L>b&oUu7O{jJb8d zhL??le>6^oa_t~D>&_9UUk?!xxX#2U208McOY0G$hcXZ*yTscnZgDD$)?{R;zb#f< zF1lrRoLT|@gRoaXE_t3nLJ&4`sKn77x2t@=&7}-B;Efi z`1My?f<%xpGYH2$OdEX86A@L3BJ9;l?dgU1j=Z~#F`HYx{LeA}u1}hIxo3|>X8zRK z)yCeu%4xiR;n9DLYl|%S_TM?B zS>fl%o9NKhzgk~@xXbrbEZ607KHw)#*G)uF*a*PA`vsSRs;g(;g*583~sEf(s`DXjj zsGu?*ZO=$yn$Vn?vpwH4pmO8I4CYIjk$|a&nUVn`P?z=ZPT3AiR9^zy;8P%{&}{&rDQ&; z>w;F>Rw==(acIU^Tf$NicHn-@y(slhIwIETX$RL1cwcM4bSps9IdR{pcR8oUA_+zL}j*uCrV4CEI&ydzx8uSrxf2;N|(0*y*xoo(EiE zsT!?mZ!)Yer+hi8!d}$#vG;x5t`db}!wlv_lzgSqB8TNPJDnB{-BoP4DSJO;7du*3 z2iGU}sBQ4!l6(mD(5&oq;NoBsOF7~)r!Wwy(H?4C5LpoB)evCr_3c5v&7xOhgFM~D z?{2N=FQOwqwAm6a&4xddbBf{fjP+wM8#SX0&Xo>anyLx)FqkW3oeTAJe{O$*ElKe1 zg?tf9BdzeQh%(6@JyCh_Slt){j`)M_U=H zLy*x)AD`95AL=9LEIOZRb>qUS{9SA-Ds}Od;C)fDRbV-rf%Otw*zKE+!TGZJ{ztMWk6q9V zNEtQ#{>o(PoAudxcKVKxL-}(?*Nk6u@+`NfKG|5kHDVLdi^$lb-k3$X)}g7B_ExQ{ zScI-NE%R~i{M@I!z2kMN%Z^qng@fceMa_{{WhTcf4SS!L<@4tOk3_(4^dZJ>?lxnx zQ+#CNP;85u^Tea-7qqjr9h!F+qgGbd4K znygT7$2vh7Kj}ZsxWsSW{#l1Mh~JV$kP!xe^ox{QZMICpiY^?tFQ?=vO6}FuwwdsV3c6#&>N$8)J$T5UIl0*@ z?bQYiIg{AfD?X`#8_hKCWuYTrt&Omb4AKc>c{r0Oax&o?|W7H55l*_&PqT z6mD@?{xi-pcVzD$uDaU&%A?k+y1D~rZ0RGHJDCMtf3K>py}WepbgSy2MwW2`?u4w}&4W2r?e8`2ub7dMq*3vth?^BBzOPpVYDX z7^&oZN%*K`b4K2c;(~9E)!MFUYF&#D%tp-2&O9$R==ZZuOHG3jaZI8mj^F*C%n(bP zc*75I^lUGTR8F7h8!SxDv)~ENSuq_}r!=jYF6kAKi7iV@YoslhWfMLXZLpfTI$vBh zvz=Rh+j^3?Jzn(g@qy}-EkVXcgMqRcW`%Su3YvlR{)7%E);7jVPmh|h%IQ4w@N(>H zOV!?d?!iavty6v12UptfzterS!MtEgy3w(YT?Kc`dG&Q1RICqMuS)s;X#pO81G%4G7DfG5!gmE@2uKvYuIb z)LP=4AidjInQN&r?>0|&$K12br=jjo%x~z_*XH=9rq-~R+aw6v73Qb7mXdEfLYjw9VYP^F; zMt3CaKAl+IYJEZDl2Sz+CK)X?FvI*m2ZD)xp1woHiz2IudOA$B57mrpmD#8+0PP-slnjA zTeCh)aF*DnaCg%?a9EYgU#y^W8qaJ}w%rPAikcy=8vpih1|#^r9_9=A-1i zf5gr06!NzImbiH|KO!nNB#=J5E#m?_Mv3`p)~2lSn$SLORvEB~JDv*L|Nf+xC3|#O z!_{s}ScnZjv-uqr$CAn#^&wyBX)n!!&P3S~C)O7aB^>XXOsr977gv?>aV@WY&&*iM zc+$xma;T+D_L48>QTaoYqU2-~DYU}QV?$JTTz*loC_c!(d3Cq=PLF>UD|SDb3wg@N zS*}%-KHK+Bw_AqYzd>iOX>=2dg{<#x(HF7&J^uL}v!R{?ZP`&Kyb>HQ!nmwf>bh91 zgchF;H?H!fdUM@U9EfaRB|o#PTskC0RywKVYbR@)&E3rCoHre#Tjh>?+j?mDg^_&y zkc;W(A3FZ*FL#eL)Qt^J`7iX%xYT+Vzt`^E!XCt#?CD(ZA2WC~-!LwgF=x(fX7uGA zz*km0k07)nDYnn*m#U(oZXUE_*jn8=5tMe7Lq~GHT_S;DYtVqd%?EAW2L1k&)#HM4 zk1UpMjHLexbygl%R8pw2oo1Ti(aD)g{z&d<#pC9w{<%7?d^C_hHz8Z3IL@(Ar(w;0sIO`~v~u@d2KKhoeFaNj##WOTzyH$N z8bm$N=CT}LQs;Yk#-X`2K2r0NiqJlO}i9TjuhS*zk2U<=1i-|!nuj; z{v7_a#M#b;w8TukUQy18_jOcEgGs#S8ftUxPS5H%W*?!novivDz9^U=Y~$I_BfpJk zYjKK)@F7_nI9(ktz599DKz!hABm3sc&O3LnY~8w2lVhZ3`%PW(K~}z$#cxL*mUrGu zCE`yn*CfQW^R00wSy;!K-OyDP*9_o~Nt#bm`4OdEITUbs=xMoc#qOgfO6u7wmmkC` zOWA~R)v&XUu_f~UV6D%&TA8u6s;D>Olg5i@q3J0}%xwNO*T-Amj^(pTv@c~|Go>8A zuXopGjc0akSUUd!kM-RTi2>}94x4NJW@0zR3n!07zw-FX%@WkC#7Xu4uyx+?K(&9| zmj+rIM%fLKj3OknG?5V*2}Kk__Fk2Qgd(Y|?7jCYC7ZIz&MJFvp3mw2J+J4V$6xn- z*L|FGo$vLX*Li-|*guf2&?7Ueo>k(I409EBUuI=-LMKde6TP9{rUl%ryP>DR-y!^|5Tr zq@8((bD!T%`JUZhDff4!b;>A>tZZb=Ddl?wt<8yaT{7XOq)05l?YwlZvBYQ-p@Q$f z?)=Ps9(C_Vb>~1QQn?RTH!bC7t$nhO-cq(VVtAP!Z)R|1W48$ZG3hj-yz`vY`aNjpV3wd#K-rS){dMzb#T2< zZ*ceK;E(-_OyaUOeywt5xAQ%vCKe^ABg$$wZGSweAL!PJ>2P-D%KW6?UR%yx(xN)4 zcv)Rqba8L=1HD1Gf~>Pm-4CM|^!RF3PW5z4YVrfs^1FP0Fn!(%6GcJuCu8c6VZ1uG zt2d;-7T-u%SaN(SNj=-`ZM1r}l97DoD68m%t!F@AkAA$HYhA(IiNFWdZyEEKr{dz% z(?7j&9w=Jb92u~aS^NEfr(h#}BW3p*idX~VbjQ(qPojSIxC`*C^0*f>&7KuFBa{+4 zFt_`bZdBp!&P16wQr@Yx2Qy7+xAO`=P`{kd4k=!~{rhGpN5}h=nc3+n?jCWn{AE3~RV2Rm+No@wk^yJ2E^D?q39Q^96-Uub3O@t$yd!L;CpglYQ2 zODdBeTz}m@R4AlXrOrF$%owr0LQyEH;f$&{QPc7CzD1Gc$+cx$vst>g%Y2U+iD;T4 z=ygLz!6A0)EfZ?lO%c``(-)q6a?MRl3a9ID4jvYgzxJtJAi%+WjGeT!9TYy_I#=gjXuDIhFq_f%&AP-$$C| z-bzHjo=1O_s)zcM-jyUjFf%JXsw1Mc9zCLNw{LPOT_dLG&c@20pI4{z8hJVNDo}4o z^i8w(>DDyTE(qv}FId0-5$7c8a~a)2YyG=Ai7}3X+|!f0*Z%bAoRHFwXN}Pv(CwY( zxw%>O`OQrek!$ao$~4cEX+?{yj=N`PoqpjkXKm#;cY7|$o#Lx{YrJ-JN#D2m!g9JcFCB?g*2uvy5b^t{%&WjUC$UOtao*< zmWU~lOhuiJI!V&2)8(`@;9e%2J}{%AuRZZzYDl-tx!l4qf9Uh_Guphb?AZ(jYn&(f zO# z2?B#=Z08v|z8vB1D|@T*CiVqe>dCo=U#o|^qV%QgzRz^UPzNRB?d?ceFRd@wSATyv z?s1vu&XU!U-er2Gx}=Q=7yGx-_X*noEBH@pQpW#s(QjveL|Q% ze97frSNN_fDJkxx(UKx}|G63==jYvCH*kzx(AM$df(NB;Mu&h10b<>$vSVYZ-N*2i zZV`vo@W9@UjrdR3C&Ju+8X2Yt)A&tsOm|xiDQlbE?&e1GP)u4DJyyZSUyu9ky6+mV z-=ss>xLO)PEtnHpG`}E;>@s(_G&mvUxd|Ien*51eZJL=QNn`yXF)zs0|2Eg_8=trQ zJ-+_(k)kmFF~hRHQ=Yp!ooDr*swn1^2v5scY2+s5UTyvKn^NPI+2-cSCUK$qi9Ib0 zMKqg7t<66476r!NK9p(8Z(k6*YC`{wh5ap?Wm=E(NvY{AUsry&mhJ9rPwOaIK#xlC zeFK`}L1cEaIc zp>BN;IV0D6=F7yH?<=pY@(#KM{``4U;pWP{=>^dT$+u3LnEg?%$s1k#Ha~B~HL7y5 z#Gt4Bvasx!xV6S3tBvpL5rHN-87b%Qt#l~1PIP;|+ErwcA?KCvDXDV$lzLrkP0p@t z6iLSGUv?c67W~r|`#e`O$6s&WGg_RxJ8hwN8O0md=q<6w6VJ8p6uvju(o@{fAaAH# ztvB@jD^ijqaf|TRd42v{#vw4>*vhC{ygIj@`)qyK_-wr9h3V1gug+Quy+QB5p|`f0 zFV0YZ<+gr4-f(m!k5551D93g7 zS^G53W|4Vz$TsiL$WW-*jA^M?RDrBFJ_!cvVv`^Qg|cmBZb*-=+^pZ7oE&e)%EA43 zwB4I61@(7r!PN-mtVFX$eZ$68IZcNG4vU^B;q&jccX0EVsOJAk@F=bJZ;)3|UNNmr za}1nN77!%&@)V|BzII2ezC&qkm(YRY0f{!(RQC0o?@`=~S#d>!m2{AHOw@7q-ay0y zIHpD8wbmEjJHOk}?1*wE7fPS7`S$!^t9wpzbGT+y=k7bwMMz)7lSH#OY`&!#{^T;a z%~Z$`b%=Iz#pl6BuxmoXdF4}r56bhl+kX{c@QHo+iEX_3+V!JBY4bHzKc+^OX!|SA zCO+a0$!@b57-QTX;-MCFvnOfq9w9TMUqR~P^VSCQ@yA6i%lc3g_ITguG@qW>JioGf z;8=82_{w`}h7dBFU2aMwVsKQDod+K3+D?Wx9&%HwB_s6jhisojLnwigLFf zJpX=k^X#0-p9|rmJfmeVSPNwiK4lJkHzr@UHlKtcPBo>*5zK+fufNhxWWkhr2q*FI z<*l$tbrA+c_Tz2W>6)678(O#i+W+;_#LfFM<~e_GxGM#R5D7TblE~pD*U(kWebzLE zt=4rN-^9~kV)){o0h7gzN&GW={=2O>dHL_hh4eIL?JgyA8^&LPUc{z#1s5~5P0TWj9^)Hb46xV3_P;mX ziix!CX!(kJr{^n06~$YfnQ5nYe{5sxDSqmtmOs7}Kunll;Ck$zK00oQ&@VrfDL9X{ zD3%ZiVWkxa`G|5(ZS&sX9?RJlar>Z!^>`HRzb(%;<53k?1@s>oetEjxpPk63ma3nJ zUbTF^!_iN&$Lq$S>v77Xeq&DZL)-}zu z^`7BrYBcN2C|XUpd6#5qL{J6T_|cSlhkXd+%wSEnYTdl#-YVIjoBVd_#xNs{#Figt$S z7Q=$>hq>qf7w2Q2A1G6P0pmKBizoyk&?gZsLR}9ugZxI zKa#m#UsG8paOOww`P?FJx1U$L8x54B`%5VM5B6A>YXwd+{ftY?r!yJBBQAXt_?RnZ z(z@MfPjlu=&T@mnVoPI=WRU|-JVLJmbo!dl&p^gsZf$VC^yjN%UQPHd*_wG&8$26Tv_y#2be@|UDGnS+~uY60li@HK_ zs(dMl=0nn^ZIkP4tNU7hq4b;gQD>WgVp6MhG*xQhxphdF-9KT*t2l z%d&TWE*wl)2yPd2e64x1_KnKq+`IFeGO3A$X~ot*qVof)^?JLpCOol@jwwCsD8YYyh!(Tw;Mle& zhiyvnqIwnee%EWh3e8!~?2$iptSEQ5(mSe}YWv*!J%!-E>ORIQS7n}e(T;B#H~R%e z{PG-?EX=oF*Ij>Q?pF|l@AGaO%KS(+owf3+ZLwKAXCq|LRx=(vmL#noTT2IM_nIg% zC)&{Hv1^IWVLFldEh~99lNF`Ed zvgo^}f|3#yr~mqn$}>#-LNt+M8_s?G?=|!SyX^IT&x+L)&KmkBOp!j*GVOI3`mkq? zVstTzpb4{L)XZ~74tSKlZ=F1&_b0)}%siE^shNuAeN$F@ z>Zr}b*_BeW#(V*vP>}+gS!2fn4%P&r=1hxtT~^MfSc8VrxP>{(Up?<6X<=Pl(i<;(V=HvRcuh+Nye0 z=cms-)yRkNqumqg>_$=`SR%t!kK=|>IBLWw^C$u9YipK|<@t|oYBs0%< z;Ox$mcoUVVEFYbb&Gm_!ttY-GD7?(ksa)UgR_6UXL&fCONe;0ZN3+!p=YUim$_Zsf z1>PSm@=EL>iSm-SE-!_=S)Cg+xaB>s$^Gly;l#RgYaJ%e{)=-f!DL>q7ud#x*F$^M zm(EQFrA`@=ZB9f4Mlx??1YCVuzg6Q=?H+Ocz2e#W3h7~-G?ag6^cWkRZ>{vzx!#CL z>G>J?>V_!&D`%nt`;(Ew>#46Ptld_H2fmco;%Tg0FtAZt`l)!fVWZGi?)rrzY?Ep& zUkg>3byq^47BnkS&1W@HQGer!H;w8y5Sd)AZsy#*DR!)}L-j#zNNatU!`#5Kx4qBX zN5VliOAXZupMS@c)&Ix|s1__?iww=B`AS%Hx48v(|5Ygx{fnOqZ= zT=bi#uPP{9Ab%#h&6oKs0v@&hwd3zM6bmLJifGx!eL{0|Xa2tQrzo;K+w_T*FF}RB z`*fkZXL|pF&anDI@WS5+Dor7V)hx-3s8VO1z^KhEPP^Z^0k11I+DD= zMysSAYkNGbsflsXg^zjz$3%$uuw>w1u;`+BL{>UGm@Z$twW-$q^^UA&Wfgrsck2 zAI;Bu+jdZ+2*>?hLNwLuum(`*x>=C@uhFZ3D%(+ z@0_&lO8bP0E|M~iYpTa&MnBH8V~a_>W}rW3J+Ik(&Hih#Io2ibB2pCj3tfe)Q!Bx% zby-QjOCGhKs%q?;4gcd_&!3YcYCgZPc&3{*u(qb2XDyYj#A$f4+ETMPV14NLPzPN+ z&3C)ulm|tH4=lgm+rHf`b!fiTNStnH=m%@X<)syeku_WOh2nMzp0bm7RyK;QE-g;I z9(+*0E8W~I;Se>mZid5;9`BjU*H?=f3m!FAFpUXdN!Y1_+I>=bs`c-5IouUq4EZAa zO1!4-oN04bc3C@pdy%?;vVxt0H!Y20+nb);53^>=QY~Nq>e;0vg+(Q6-wU%8<69jR zHC*_3i^@y=yoy%IWWD?_UFd2PZE^9tT+<6H)7YR<{BB-Bn$rWmIm`pag;!Mt8h+j- z+*?L8DG5jHF2Tufwe3pss+~u9gl?B5dxjThKlcbx{_bbaI{K*1a_wu#+PAU~?sb~f zG<6#FQeux+Mo;Gmwl2qI)xRFt+L}JGtJ<1bgei?Z?p0P?DraFlpNernqN1vjQdjB7 zo1v-lXbtzxLgjQ31O3<8&kb@vY%L&8H;NhYJB@C9juPIfnOPw%JDADe+}x_f&mFRJ zE#$-CnRrt9Bl=&JrEsnhVV`$f|UMnLqGiU4in6K}LTZUlz*Y{1tlY5rBY}tBk z3(3?3m@W@$-c8&3di`;)lbm^_6hP&pnR~`c?Qhkbr1WdbwTA8#H$|XV29z4j6dGWK zR;EQ+pi`3hhu47=~C7BSX%YXX!sT3s)YL?H21Q;4kuI8`v$)m?GCeh`uCQb zR;%;(mFC0lt>foT{9#Zv>r%M4cG}>2!%U{6^P`SiW%Aa&v`4C>nC-8$&aOTAq2)}g zsoJuBl}uLax{!@PY0-sBpG~gU)=%phf0Mv14l$+4B|rtrJ5ZbIoGn!?Tm(CWfBUj@4MCbXV>VaZv8}3ppY? zF6t>aLZvKh_9uI4ce_tWZgbY7yE;eL&R2diGPDZSD4BF9d8fzP%7_nBBU&dk@@8u~ z{dI25WoiF9tD>y5)Mii^c3OKRo{Nmwn{9lh=(=_A;@n>Kuu{ATK~|Bjq4WMt|_Ijj(8p33ajDMn@>u>clI}{PAOI zGTZn1@A`Lo8EcCijO!uJBMwOWq)9984WTYB4$XaX7XRHPeXeURDXyG*mzH>q?1?=j z0Z)$NZ46X3F?Z}keMTbBed3JyE|;q3#0iuCer$HVk{~0gc+XhQz589p^yl`3tHTQ! zygzvYTc=JhR@N)Fek=*OC9g^~a5Kk5SlkbpghBo6uHzYk6GFDvRgG_!+f4;>1q66* z>KB_1fAQx(j19XGbj^QtKyBD1TI*TvTaf|StjDPaS&h6X7Md>mccVk{Mt58H@l&&A z6Q{ANs_PnC$+)_lrb?3}e}n)2$G_UJqSC&_TJ!I6&FXfy28pY`LXW*KE+XY&XGpdA z6(VjzqteS?LzZoh*Tug4)8mx&4(_gv0oyNMJ7a1`l^B1t+!(xU>V%Z+Iz8pbVyBc` zQs=pENwUpt0>%banN1|NUt$?*H3x$*xJ;(a5`rqGuSB)Y5OS zu@~I;s6ja_=}q8z#@dtE{Rz(MzGBgaUi~}Q){;)CQMRtpomA=-vaK&%<+-V>bf~Q^ zczkaK#lOQ5{=tR*L8*&Mld=65?`Ygw_S)AvU9ITl>8YvCCCs+yQ(Iu4JtHr_ZT`cvo8U+ROQ)QDEKYE^eOdXXhw)ddm7!SwmVog_ZJ6^#-RUekC+tXB+{xba- z@$uJLWEQ7(%G55`zc;>@Y5timHES92X-*k&Q^AoC;^(gYeR(As$xZ~J3_CYaQ zrm>rorYuheW@v5=Q5kbXST;MFDv4pdUVwF%GxW<3Ej3+OW&euR;+GmY8VYqdo6EwEB&xy zm_>KX?Srt77P)B_k5JnhD>Z9Wxm-vf=Z6u)l0xUrKd0>FG(s9;_=PE83{n}S&YC}X zotFKibLczXzZ@Css;JAHUD~5x&I1QCc-N@VqWmPkZdqr{@&#Ed$BV%|iJwb87M`4M z3rJa~U+}hQw_UL-+5U$uxjU~QwO)&QX}!FpPOiWX3r8y0a=7!0qMYLVF|EhnJrd~R zrTF6y`FB3LYiP#CHaULV>qGE9q*|jR4;QyOG2EX^b+21y4kj?y~vcyB@ zhIC)Z{;sbjp}E=(i%CWHKA}H^zjwEYEdJpuVLox|OoP#{(mz@5^~+g0Q#^{&Z$Gr= z&@Wi3Ru?yFZe;4Lb?Pl-&#qeI`}`icJIjMF+!A&;&v)>3*46zv@6e~NrM@fXy`#2+ zX2Go4kmxau+CZH5&GMWqw4BV^k^k7|(~~xd;S~Nomi*M;`m1x&wd@7@+!#gd2UibG zs!Vp~Pd1tGwdf8HcyDr7<(L{-9l*Qr*V~?)n9G`M*%iWf-loOyzDlPtQ_Ig;ccIFI z`O7QcxtSK-Ohivb^zT>+i$cV>UC?Yh-j`vw!+o!&LV9Onc3JOUranoP;YcSIwl_L*kgId~ z_SW^8VD~cW+_xQC)VbODPgE_0M#EF@G+z@Qyybk%VWa}p?T>R5-Ru9jvsJjYHLbZT#^=??083Cod4dVcp=(P zw0m7YRHT|GuT$RRwQgUXpo*gMT8i_FfB>ox5&Mk}gIxy~505-_Vj7wG8@y3x`7C8U zCMEOm>D9{FH32c%F?>Hu!rrx0q%>;ClQBlvzLnNExzqAQL)P2W(-{wZv(hHKcHW6| zdwOH$XSIpIkIk~|H!74L>+j6zs9xXRU0K~NXjK{Yi}I0-#byF&YqM&P_=+gU)bR2} zu61jT^-mNbi;2BP)Jx8_dYp;N1Gdu!MxB3OYLz&bK3^BVeAe;Zss+vvl?J<|$dLYS z{h_>cK+|FM%xH)h&kKD`ci8Yjq67+%q-SOe-E)xpL3f4#Ut8wtxBPou;`V2@RHu}Y zX%BO7u-_>PHqwpX)U3B%sp3L~s$a48nt-RGc6>JMkmR~ij4ofu;HE}mAm=XY;=GR8 zC!6tqLWgPNOG_d%Tumt@C}T<-g-~7F*o~GAWPr|pWqL~VG@Zr!>+NOeYyPfY{S%_e}xZP>o_*InOg1zW)5at<26#^;fH{(BhdB)Qj z?5ZcMr|8sUUDoio8wJVS?3&6d3J&VqH?#sz9B5Hev}+8>h@_hmF8h>nU1dB9TceVV`mN~T@E$silMOEeV?nWr~f9evKTca;DZ^h-WfI$LNI8EUj^O zoWgv{E~kyt`nsESt}7jMDPn7mF^{Jo$`|##oOjkN(3r_Y7!z!0PJE!V&|y$JW)wh0 z{VX*5as0e?mSJhF-hvgYcu_!b;}NHc$VsmUHnhfdU4;erSKezLeCyntZu@ofj@_J< z)ho}}{pDIq_;irOMp0(ALz-7stj7KXCskk~t%<0u=DweqLz~H;Zv~id^10s|S}&pG zj?-vPy~a^wGkU>tw&d0RG>vjA!(k%!k&%Hg2E2;iE>ajWZ zjZV!pMC33H#Iv7tSaXxxqC}&8l!QcyCdrY3r>9D`)43|i$uuzUd6dVs<5J=d6B)D_ zhfj=)ugg(p<|L(W)==a7S$Wl5AKrY>Up4odR=~b7x%+2#KdpP)$NZ0K1z$f$414)B?srna);pQNw{w?UkJeeE zae+R)>!;Q>A_|q)qjMGvB3WpdH)h{YWg*e49uCbv5ph4!YDINRA@E5g@M0j{_>}KUfDZb+!mp$QtG`tx)^M4 zTcREuU)NmwJ+VvOOm!u{$T_4SX#L+^XPuofc_?h#=!&}*9Bi{bBCBmWedc#eN>|ci z*Grwi4CGQ=S@n*8<$jq>UEabS9P(H-SFK^E^W1=Kx#{SnsNGDv*Re*nM{UeK-Rpz1 zn<0;LBT4IPoYt<+q_xzJuC4B$Bf0PK|EXf*imeWB8Zhq3Vl1y)J=ZexNL4adKQcl8 zQw+bJe$`5FdE?&T=4PcH>y?=}=^&V{xXf+a+3v4fV^WlIPA3~AsfGF>te=fH7p;@uqlrS;u!-n~(IIoJ!)0bUu&F zZpgTO7TOmdf`X-MQXJJN8QJkh)eMd}Ea{BC?rHTD1O8ZlN(c#(oX|KNL&aVoL ziHDl@dnP}x+L#TBN$x_sVO3vN3XMv#x(CXFtvRQgk`lx9&m?K_zDiieZBiAp zy1D2Bm3niSL^R)79j(fG8{}kaXKWeIRATm^t*Q%U<}dZbl#hm$Z@NlHg^mkbn>RdP zr(X=!%317`+kb@Be6_};XkauWS<#?kzaN`jh!y|)Dct^_{u%MF-A~{t|Mz2Z;s1^Ka)<=wzn{<2(| z*}7&sFK{Gvo~VVb_}gk9UA#NGmEE2Q$dl#xAXh_UJVC+B<6;QKs!J-HFZP|p;aj~1 z2B@4^cIG92ZjSxzI&Vo)UaHK%XVcP8xnI=jb zdioFe6dyDiz$JF_dS+y14rJhdSj4H9N}%LW3IsgVAb|C}{U<#b=+dbwHz{EjmawBG zvK)`Y3W=(tw@9s6{uPe|M*zP3wg$HdLKiFeaC+d#EbvGmCPaagLqkKuc;4bJA@vtV zn!-ZEb^9ztH}J9i96o*K)%yjg#Ms!_(vl58`&X}CwGtpnQ8;w^E(yNP=GYJRE^x1D zI_0w97pnTcvF4)j0(CD%tAvT3{?yChXB?rTL>WJ542my4mB(*71QhkPptUj(=COUh->TP+K%(h zD*yX{9n{Ey(_8$m9amadoa_m_b{s@&;L7i%;L;L#K#1srITLZ!=jP3uU|Ddi{`%R_ zV9;H-jCBFn=Ku|j@^znRvZ<3qZltsqITk*W4~A|@q3x{L=9+n4?FIHhH&-cR4G0HOnWoC@%QS;+Hi$7kl}YwPQA%b>0RYW08;OD&;B2cjET96-K-V$35wS^ee9 z5gr~B@Bu+M$LYF94@p9Q5;yCxyu1valsW(#;4k4O$OkfLMJ-HBO!^8g9o_F$26Xp* z^kiJp)9{@+$PW0PJ_k#hzBuuW*B%TqAVa)fz64+NuKCt~`TP&yH)#$Y%m8`{nmCs) zUD{WH<9-#5jf$Wv9`&Q5p#jb4jKVQIzgQM%2s^fI%Y67#8>n{eG}VRfu&HS9g9D3y z;H!Q>Tm{av3=>@>j%3&vNOvb#SqT*Q@#D`Vx(9}aqNAdkOPn_g3q|f7lB6W&^PzPh zIe`@gdMJoZKtP;GFj2g9s~KpT&RkQV3``oMy=69n363FAeuT};%z*9&sTsf|_U+pz z!Ls=cG98~kOC0qh|9uz+Z})HTO9ddhdX|ADAXAV(g6Xw8Wn6Uaf(3x}BW64Et+h2U ziL!!^$VNTc1qE}kT;T0=L$<}ohthSe0Q~!R@89Dqro_ZVT>alw*)2=fW~zbzXiZYb zm%+y=CvyO=fHeSlQhE_sh4w8ZdH*&;p9qedva^qX6OY}}H}h`t+M(~Nw{HXf)}3p5 z4C}!}xG<@oFu4_AYn|4XfIF$GF95Lg58#35^AQRs;9Xd4l@R;)>N$bT+f7b>4xD_v zchF|Z2f6@>hCGu1H@9r;41Q1L9dBHeof?QnkC!jUI`d}1e;xQMv8S(gr_LK-D`i8) zia?*h9gppHVfaKWs00WElf%Q-pe76q0D1I))K&{PU4Db6L+2j%0;Yo19tnqM>^;_% zYx=dkJO;>CLPthP$v-EDr*IGyBp_vty9@KcGBSHdLh^4(`+>~?#w8alXelYrh=^mZ z4u`;lxo5)%?hiODSAbw;XZIx<6=F5`_qFx)*_oMV2Q=WX#3X+-G(bEHK!+v3e7=7D z8pOHZSMc8?>7ugoTOS`eJv}`GgZQUUx4JsK1cdl3;B;bQ8x?-Xz*A>9fxC5~WC@T0 zg>V*+3#{lZ5KBWMPUAgiWPtq$ZUO{CbbJ0cQC+UCshL|?08&*GOM|^dKJdF43Z76G zfp`qrUWSLw@zkOgxYxoIKj3-6*#U1Hnl4U(?@TwF0Bs4bKKb5Xcf(n15T<8obwNp5moX@a*{AN4*b}rVhez z0565g%jvUckMEO^C0vz%445T5bw|L|Yiw*3dKJ;s-rf$1E+>14~4=^kAAcd}h|s)8h;*Gxm+~uk0jM&JzbE zh6r2r_rWa!hq80~Lp!^CfY@Cf&R;A9SPwqAJKxd} z-oHOk@nH_wWJX4^J#=$R(>mhf;-p*dGZFq&=$!e`OR&R1PL&T-S5@6t5p&|%*yt#p zrwx(u^5x6WjqoGvseA6Xk2rAkkH8xArsF^A?W}ER2ze0j;S6Usgxj-a5!uKs(>&CNk61t%#PXP`JZq%<^wWpL4{co4YP5Y#}sG3d(Y*IyF` z(ik`vg7petBKd@*{kzf)5*J=eh_lJb$tfx}W@erRC64r@^d5QvDs9@Gj$qd(CUTO( z<$sn2e2PGst7thkgYVg}6pBy-@;9JrM~@zb^;}?a*-dync40C~rn#A!^z?M88#nlQ zd5`+0KQJ)~4GD1q`V^$qni?76iY~oCnt*F<00#n?8iIjq;Vx?G0Ei--;^27h?k;XS z^Gt$7tqjM4TzJ!A>VW%z(|6*;iNAmT?7wDvhL?Beo;|_HB48zM_g+JLf_U#08SvIv z5u6G`^j2gjriGRie(nBaS0INa%bv9SYb(ne!sl0&f|&012?S=bBS$WPiz`tTh?P}U zZNm=1|IWgwq!!}fD?&++qTK`ZJYIg34UO|d-e zUr=$+pFa-|qXzV%1P7_3El7%Crc>g#00=lgkT!bRd2q#$ARa3 z;ldXT)}9@agCUS_^F33860T}_DMvG^N?umYC^@eIHQG? zc7g*8nq+8jFi<|DPo9v%(s!5>>*xVL0sbmDIA*|XLGNSRO+T=IcG63?-G@m7H7N*E z7_pFt--d=V)6v->&42;x=;)B1&?yP^I|~L`p;tm$4ur^XN-Qp=1JQ zMWyes6E_N?Hb|?f@=Abq9w3)*|L2pUVK7b`r9l27nWTs`1Etj4!vo?>K!EwXyI%!T zt&(`_Zyy0U4vd$U^EyB6-gS#hNBv4loDB?sJW_Pa1TL*&TWnLV%r=s+CP=eIAicv{ z15WxD%k8Rk1%w|Utzm96v$LSg(*Ju?F9C17bmfWwd^P-KCkkR^dqzwu3(YK9N0r6|xTb))=>SKDr3Mj`cug)<+=7Cwt*tq+ zu@J_)PHYS@et@IkVi2Jq7jS}?_vY~feiZW8|2_Q^e~1Mr!oC+VZ3qoHZw3D}sjvX!~{v3+5$iQHjH z6|rz_c{p@)a&yB3;uaS5x>v4Kt|N9KsWZm?Vi_ukBIWe~j(q4(azaC-vGL8>s+-_X zKbyq9x_DV5L79tm3&$}cYw$V1%-oZrB_4j1ie@CF`q1UeWdQLbt)QUKf#DE1UE>C?Rlpl5^h+&eokfccNedxO|_%bF3#I!J$O#;BZ5P1YZ)IF%tlU z)zpF{s=W3&-M!ljb|N%%VdrdAZMbywg@2b`MZqb)vGf}i0Z7=Jkb2zrqUNAi8C)Go zP;W1nEvwW%WbA^+lqla8%;cH5CKY(bNu-K9HAVb4a zXWGC20v)ycn>Vl`We11Cz`#HvH6RHfCDyZmgOd}ziHi!KL=KKL z7!i$@QCRyQ*{=#k(xyzulq5O2u4g@c#a0GoY?Jw_dwYLLtW zhaPZUify4qBjNV8wkMH`9DfaUbL19(ov;WqtV+7X8bIAqN^0kT%(|28v zR=K;AVHFM&t59N#idacW>Egvw1pJGVk`&ugkX|EJp$;u|>i_-wUo95Kum?>76n3YS z6CY!jdwZq;+zXq=vIAjC`<7x`Y%1~gH+~{vN0tJW5(FFOLx--h*eIePv9PpcJ#bxC z_7wsMkuAHJrD1_kU+z83J5bG2a@@PB6dM(O6nef)R|g*em%;G!uac|lLdq8{eG|00!9^5RAE zZLtskEo?RXCZNh_`@DJgt}Rnv5!W>YKom#z-5UA&dSW}=)OW8d;3+?P0))O zL8Snv_3;S=o2UK|V#2@$qR)b)gw?wWvYS^>WWaeMlYv|fJP8BgNt_W(kq*=&*xpoB zq(A#mf@SG6f@TsjCixX+VJps~N1qTS?&la5s&PCzRHs@~N;ahE(!YSb4E7_E4$oJw zS{fS>O`iNKML^NzLSRQ?92pg5y22)Q6X`61^I6DWU|rBnK-%)pQ=iPYnf{cLVgj2( zu2^1Z%PZODf8@v!q*JO84Fu9W?>MLY1>)fytY(L9ASfcQMj;04I!G?2iLeA=VFbQ> zfH5m7t|7x9d>%VBn3D!SKe?r+&p_aW|Lj@vOK)Qn5_ZuOm_}R`@$+NHIzTva@w%RK` zOu-NkV`NPF^ywnu`Z(A;;VR( zA53lh$`C)lFL|L$k$BoSuV2dspC23@UG4pX+6oyg3DLg*b`klj)AAr~gRkvTzlZ2B zV0F-!sjjLzit7=#XbXzvN!%hL7SX8#T%KHvABB~_zduSyl$$6z50b--?DL?Si&h&# z5~6>Z8|&aRfIaa(;mBzYA6{NtHYeRuwM#LV#HCZnX)PC3U0fUz+<0)kUBezhOBYpy z?EAC&*h+|9NX>~td5W9peo;|bOm>TgyC9un+qWDZ5zz=KFc5IjfQmp{Xl;BOJ1y~U ziWwkFfCdOc`^l3h!PDIKBpo_#2N)PcAVh$!4aBKI>Lg6`a|zKZM9UI(bnw6d?^(P-IHMO3!F$A~T$i0imBtmHY1?SrLlZMpcxC^EFt?_WoXg0!B< zqk6Rn$y!wV=)<9+KeA`J3F!xn4H~$y;C%`R2y7$uKQlxuY#NFKG=|}9+0L9nLFywR zuL&CoLTnBU9PaBg9q-`(_paEWc_6+v^%YXzZF%Mo8hjrhje`0jq`Hb9_mS$8=)Od% zU*U#L3`q-qbXxvb-N_e2MdhuZpMt!6FRlkxH*r0iMz{uoMD9Ng>tWd=gq$N6Sv!h0 z2zUV}hQ~fYJhmhBK_GbmB~#=Wdf#^|?ZfR84s&5gE#oNW7_0EV%t*Fzo&16LQ}*i90~gx2(5?2L>ZRY3OtpRtlYxP%z1~U)2>*~ zyeyE~iAEDLYP|8S`n^d=s~~^{zkO==BKmrlSw6>HAy)GT6z@7R_0hh_u$k5-DzFP> z5ANReef=7}6i6g;y`(2fzRw8aN3Zqe=qM+a>A@A{=&`?34&d8^S?he7VCW2;#4>C(M^#RERXB`q_ zxNa~O9>Q_ZphFRf{adAV$3@PaSW@oMv}CpRFxCL6?i znN#mIw~`cs4{ntx=`amJJIUL74{_BXsG#JcDS}9*tOW>%)|LZ^lB8|69X0)_5sZRC{yqeM}^Xj@HRlQUWOn~jhp23 z7Bt5pt3z~%k@A2oy^mb}FOmfp&O=Clv1yl(SwV=%vvQJUE8OO%hzMjmr|(zzLUIai zPa+F-ky)9o7hhjrhi)C=Jxxz9k(3(4FQr4G8ji+tsX(qCJQoq7R=0dx!oK_ z=s`DcXlQ8L6Q6qzAGU>EcuKVGA*~7lbhx;o3V*zKNVonI=YwAJVYG@(O4hHi_|{5Y zz5qyiKQO_icf;)F|3a^f*i82&G5tVkmW!4OoNvSDa`@Hv(b0Nn10f$^|KQrd@U}sM z%%$oYN5BSD+>oOJbUr30zJ7_t_nvmzIT4YynZfFdKcQs*ySG;Yfio=q1ExkiC2L2i zX5k*$_W094DH|ODbfRi{dP>0a#m(+SvLL?<);Q8IXc;?Uj}vX)eH9{UstjnfV6~95 z?b_vq7e!Neo+#CS2mC!u`qp=f1%j?XUG_20HCvq`ZQ^W~m&!|W-9NR|f zu$x#0p#jV=K*UBO19fzLh+nx%7<*j$gb;`k7C7<{8x<53B+|TqQlhYa#aM9n3n?1R z4WDC_QEtKE0B0YD${#)md-f@@2vWVM$B20w5*fUEcv$jnX0pc**xK8lVrPezLtixN ztl=n#z3emwj2o|J9Zth;apDFYJH4i+CT0hRgsmPybSymlh${&*@kNo61vHMlJUsUA zoWR5l(?`TGIBrRd&yM;LiY>o>eIQcj*i?*b7!Ms986FnY`M%qe#{V!3hJoRZ8Iw8k zt7rW|GA@)7#ENEO`7;fgIUp*Ho4xo)lI3#(WQ&q9cJaFgDmB{V)sJyzM@a(X(#3@Z zWZeMK@G;8xpSc$}yNDyQPHQku__k9-(PE>8Y$vS0s=69NHouU_!fb-r_S>9-=oe(T zA#xcU%!tt&F~Cz|-@bi2hA!Ay*NF0i@7O+n(XCszUcFk59g7{zo4ieo=<3CW;YJwX zaxi4W;1dSV88W#i_q zLkaTbi>rjoBJt@A$0xXQh^}F$LK_OqeOz(!+5R{vKAk?EYd3Fj?HYLuz9@0=>?Qmp z&Ss$CZbLt!L1NjUA<{#hgOc%l6SBV2(kBv-;2;uqPCSU2DqG&nz|WX0}R^hd?oV^T3x*N?&Qleu%vGM5=>Kgw{-6( z9$ghpZbwH)$Q=8A{D`blhjdG~2F8U@w%|w7fi3pj%?+&zqM^x7OQ;1;Pw)491J8`A z{{T4$={=R*Pz6CJ3Kj8ri;=L%$V(?a7Z6c}x&n@)q9Q{=U(YExclX$CEpz!(eUJh!^4zNoQMq~q}o_Mmk{HT!AV#No($?UpxtAI z@ch5At&-rHO3AHoYsmKJP_arJMn6&#CkKunxQ_jIeJgd)X;M*(kst5Q=wSB|DrVc3 zh%`U!qehj7>pqR+JdB8#2DcXFf*F|U5+m15e^Q|gGyM|KYtrz z2suT(L}Gy(BnF9TTS^Kurfs^qWqWrQQez9Slfe?%g}(6d^EZP6A>krd+u11s&GClF z>k#*Z*wsx;PLKh}b3kK|I3s}k9IePVJ2)cXeR{BGU?GTIAL;iLdi?Pw2}?ve@(o!V zE`w{fwY`&YNrwWbFFH6uL4O7ZEms$ehn>MGnX0XDCyLv`uk=m$9g=lb86 z&4tqU!-vt~VHH)?cOO5>T;6gx4BC5xgZ$dxUcfz|_u+ZzDDM_2v@|fh!<%(+At57k zfA(w}$D=R?WQCV5T|)l*0LL9r-asvh2+Q3NVjuqz{uQqM&6_vGbaz|&m!_snL{h|0 zd$r%kPT=wIB;-b|!Q*c5qq!1c9 zDBK%dIOC8dpy7!*8+ss05Q~Pb=gh(*}IqK)T<37gUnyGhPy}fTdd^mzG z2l+PQi9>(Dao}jdR#H;PnI>T*&LVMHM^6t5-p2TQfBx9^f1@A_Xp=a~fTu@VfTamh zmASf|R~q^{=tRIrz4Y*?tgmO=S0RL|+eJ+8!MfGdwm%$i3qD77m?|x{44!F7zAD`at7? z9>oF_&WUOa{bDH8_ccPZ^gA{r8YS;Oe0YQKVRHl35!BuY-AO#)n;iqLm>8i*hgJug zo+#~+!FVAH@h^sOi3KJe=u;tcQB+dGEAK~1Y={R#rxQyZvA)RjD7MXb5SL7cRa-dT!>@<)M5~YnwI>ZvL%q`=L9$M#;qFa;}$*`_#z2Z5#Fs&6NV|?u)jZoVY$2 zeD4xFq-K!|9Pqf`yUU_}OHg=h?4iSl3H$Ej(?mo>BbdlMW^`b@5O*2J{0?>U6*>tD zB=BhUzoO%hM=pY{#5PhP;=HBUM> zEKubTT`Swi=$>Lg9=;oAAW1KaO}(BnMOTs75tv$aRHz-0W%8beKI7 zT`hQR)K(W+Tx2jRCkAUgnp9FJpnpR~MutRQA{#k9GI7YZS;A&<_GKGsq12N6HZ=Nz zpeQ0*1k;8g-X{$rQaiC{@P>$0gcy+Q$0ZD-ame87H*Hhwc8oWE_xC?bv%u7vcvWhI zc+r0c7h|HM(QG(C{!fhu>DTx2@}4|%wsYs+NwCbKvi)q2;}w5#zyYo*=EjEwr2hxV zS!QwFO4aiM0xf8eR91Q*tow@Ij8kHtB-#ZSMc^zH(jpI}s%TT*xxvtyWNdsS%J6jH%f8V10F~<&^9O5^e`WG5c1COCdysAj_v8~f%-MvyvkCA zjh)?XHMRZZ_YV=5qx|3D#?6b!gebQCE8tjISOf)C(2&*F&&$szx|O`gaOwiJ3(=h* zs%W~;1sL3S!B%mS1bsCOb`Ux|VVH#p$kLIyaY6PLEz65WH&|R4P_vbuJ0dQwb<_`i zZsg%a70cU;=2fZqG`v4LR{gC?8Smjs-1mK|&)ur?nr1S(7z{ z!#P#6AF0X6>~$a4n_S77d;_xyx_Qf}27IN`v>20@YqQ36^!3VifQMT3O}1rrDt zK+Xa10*Xf@41l(BLqb9T;JdrKaiCRYGKGYPr-7LY64Hyzh}#xa2pCh) zarnfvvaYUNq2Qe_f6vR3?i~Z#_F-az0j~um{LTG6+FKtL@N#g0wnh>S_+hyJQNJ?n zfQ!o&WO(3pnXWNc8HeHx1e_Sil%Sc>2UJu&Gc)mzKS^I6ooH)&8$fzHQ0oE~6Y#lY z@1d+;P!EIPkMMBNa0&>kxd0dN8@>?AfSLttDKG_}(X*dK`J(_%_ho&2{vSonp5xVD zR8Ya6IDxT8eY)iXnxmlL_r^vpU#J^$klsPj1qKrU7ZiAS-Phov-9X~81SKpW3qeW( z0_r?GKy02vlYr-7t8-{R>G2A|2-;$<XqCvOZm$EVW<7o;bAIARgm>? zQd-)Cg|2QCuybK!vx6RbzurT&-2n0y5btBAO18GAV0C1`Mw$dc3UxBjv2h9zQF(be z3NkYAGWsCATGarny@1LnSOv<9ioQpYuJXZf0tE3bx2H$c-u@gci>s^Oz_Ryp;RI01 z07{+1Zu4yj;R}%C1>g{Bbq2u7I>0nNd)d?pLAAV8PhMV6AX|d&)u4g8V1Umv)Gnau zeIkJv42*AJ00AQmv?iedD5#cH;6wWUy<;p#tg5mS2+)YF>Y(!$l$QW#n$G389}B8E z&>BZmWH0SOryXw)S{^kQ#42?cBsFkQ|}Of-6f zgN|xp+nfWQx8-axOrv2L}hhm;fHg z(b+jDC#UE+7GfrJd&FDkz5J2>eC`c!5sSSA5p z1adOaYJq=1mKN#(8*q#uy8uG*)BCr(UtB=F6&xJAoAJR6_Cb4sw-d`K`jg#)n|J5fDveE;r)eq;_eG-^EM)cG#>p5Rj}Fs zVgeU88PrgK0r&-)5!=g!V7RyA;J1}t^xlA81*`k>On0Jt z5PpsZ00Goi-;-ape!zZw4RwQddv_-vvvYH5>gskjHvDNIvfu~_)0-c~B_sgC zdjgzjZZ3(#t5$zxVgefJqyqrC&fR`0sOb+5Q$pUd9i=9#Vm$P83eg z&IC#S_lIrA&|nVUn1W>)P#KwoPX>V71J-j{6e#}HH}BnFL5-5UGKq%r`3Uo|;~^Qm zTc3>SL;x_I92^9d9{K=atE{rmgup;S)BDUKLiv!v^T)hyt3zU{tRzT#Z}4>ZR!A%% z4d%o4f)9v)uZV^QPKTbu-QSv`i6~|pBe5FFHFuky4kY~Uux*h@P0qD*{cqbXyPj5O zHMASAvf;Y4q1x!jNG#K+Y5&64oc8t?|I%>Z!ubMOb$^pIJd7t%o#&dA#rib*R$-~~ zRF_*g(fTE;+$0(J-zw&PiU-X+QIMJhHK|ac!83so;xrYI#<0bfgn_!T5(rFCQ~QCu z|H{W31qKY?|NVr)z9jVj^J&BWFAx8p|G|d&&(}J2+XUfxzF~=vhZPdAwLO65V0>bX z={CYVYw_=9L1qq5ooh=I_Fxzi)J=T!c|Qury_hkE1iX!16{F+zg&qU8x#yOlLJc?rL5#f3 z`MP$aQDtOQ%_{40Ln1U}Z5MB0bbd_YWA|X50*lH>;uoX-cOKV;z3qLj7|pMt#UrCj z(>RhIP($kKw0rQq(RW=01 z_H%9ScD{_Jnx%q{j*h;@j3mLF7Aq_^(i=DUQrmZuUik5%0qvQCb!rDg$s}+=U@^#C zEZXKFq8bNwDu=7UZVHOGTed6zugNNkRBkrSt0 zCs_8^B3lP33N6ihubnPYYo+2ca$eQ7-_r`bWP*hFSgoe3YWuFzX8De$GGAMJXB{aA zuxmb&AgZLKVYz4RE=K?0QqeGb{M_Pt>4z=%$H4(#ZFSGHmfqlSvg9*iV%yI8AZ7Qm z?qx2Yyev_AOYZyME%i&s>#XXyW(5gRRZf}^H=D$`D8eF;{z^^0BHpHJ4zUibd7mR; zCYxlkkWL{V(7Cq!7(U}{Lh8;QgI`~cQ|Dx7n$R!3RPwShZ6==B5^;5!OUm3DT&EJc zKj>JrP+&0>E6{YCS5grDdwhXgeRxB~N>%k^(RX=ry8hxqpHVxa>}a{7oM&I7j3@Lv z3~*F=vB+6VWUs`(bIMfEV~~Hq4^y4bP|cl|Zn_*3yT`(%XOO4-Rl>Hs_jjbd#wKf@dmX}b0B@zsxAdqHc=}IOVH1zs@%2KioB_ z%LstLpY9j-XBui@m_h{7xkftv(hnt;=w(yNgg9dlCUb}eVEnmgV!A+|89k#RHXOni zntvL;Fl2V%I$es??rkG~3w2W_>^irELPzVO<9ud&k_hjxDY7Z-;-RFqW(N6_t#FMeLH)^~z$<-VVRgNLV>m3?P zU-3vUy9$cr@Bm$BY2Bp2Kq?K=IdUw$D~g8#mvcymuSgF%dhVy4@2NC;O^0vdE;kd7 z?ntv$ZaEUiD!)@irf2Wg?AUyQYO|huexDZUj;(bwvV4T8Blz)Z&MY|75Z;Om&2<^? zQ+-a%o95E~LJMtk5~&boN!8dV@o%iRd4$lmrv|6?PH1AS2ey)ov@AW!8nF)!F@=X6 zkdym?m0C4_DyUTyka6(s-S&tQ`g(*{=9cu$vukV#O~bM_LTzSz*xhKPG{~3jLi!^_ zCPpdqJ89{Ach)>oOAboHSXEOruaQJiq?Pk`jO#L6GvvalKtzWAQtv_>!ABvm}9w zrKT*z>Ar15G)o{Zj)aA$ASwDphNr-;4h6M>fe7Q|ThTCa@JC1@KYNu~wCjjeRzV>m z17fdHASRqF@l9S^dCusP<^)Z>EZT z4{bU=F>iSK&2W1MpB)8RF)(@*wQwUqm3VWi-PO{#dP!ECyWOYV2q!@4is49RhH9)F zHC%1o6y}Ki1 zsJ@$pB2x={L>Xsz>28*qf4|3`gRr1+M5s_bHjk`@rJ|qLCm358-i=ViZ|;1{FL?YZ zxjG*@n_nxfEXw(Tu(sXc)vxvv^A4cxMk#l zoPxal{ZG5%w#O-XO}keqt943t4>ayH7__mkof^sA$rB1gK_8_rE=lTMjY;N#WhNF->bb)p$ZZF z-Hc{kds_mvhb3)lzUcBEB%Y)H%`hR4T`+h#WI6ONZSj!C&)j7;Nx@D+tbnGl zC`CV$ksC*ynNzJ}ftdFlCV_~&O5@k(*YsN~;hZ7432yMOs|Sv8QdVVOK|Mh2%R?t* zte>yUyt`6Eal?#@(vWkvn<8%w3>&6$f){tgNh9s(tey49PK)B?I&WK4ND_&2KW@f7 z*Fuz<>{ICSn0CD$ZEUH)A4HOgq`_J>z)4%xG7T@vZCitTI-Se)vB>{a)h!+wa>mT_ z^iON4SL=H^q1yD4kPlcRpuC#qVm3JvcZ~_$eyHQjG&|J{{p&ZU*DxE{rwq1CWhtyd zBYLcz+}V}4(>wO_j^dh#DhiywRLLOMULffo2sAgFm~%T#*S z{W!iprZk^|X&m{&`%M9+rYk1THeTIunqCnZ#~D&2*PqgALX@~x4{VLRJ z8*j^kZc{0=I$Au8esBLRnS%UtS)RnP|8t94f8@*_P8tG((rT3~@go*dg}fBCxx>oW zJDl~<*s~#{N)u18+-youUaqG8n?T1lDa^2BNp|@=!&N`%UiAr)XXpX%15rZ_Uj(zT zo~qMOPGWXui8$$}TB-a>dlvuEg}(B@mf{A?SY{)RG12g?ThS7lQgan7Ln4pr8pJ%V=no5I}H!a~rf}_|LUm~_O!Q(+Mr?q-g zDC(sLXHK!Z!%IbYVoJOW05He79!Xh*Ke&%%UB7XvNR~y~cuzwT6CEyl9!o6m+R#bacD&ic6>>c9L2{f{3 z$(e|KquE=J`=*{NEx5Mvtm|0ZuoDgTR(I|7YQFFOWn_`EOrsNk7*DGbYMc3*Tcp)I zYl~P;bR*mMj9hJQWNuAVyUZo=vG4-wqb*XmRP4_20~VrR*hdv3NO*em?9HBe%KY1| zmXHP`Ic-)eWl<2t`n|X0x@Ee1yVZ-LGL(ljX1t;p|0!{@Z<>5Y%spl; zp|>2}f-2ew9|Q-bQ(T*e_;}o8efWOMVAH6lp@bk2WmHt6i!!@SHy;(St=>KEh=yKg zcS81xujjt{@%^G?oQQq1xGqsEgSXF^m`}n_=qP<;NwhXtOjGw~J;Lhyl<-=cmJtGU z$!ApTf%EVqQX=}{i;Ho2c(2{%=ZrGEMTvxpZ+U+z5TPVYqXYl)}e)32|0i3VY+7JXSp6rjofXs zno;#v?z??x@eO`=Ic4DQGOGonS4Ugza>IE?9}3am_INrq=fq7$J1E6UJQy8&S~$i1 z#V`=L^qGEv{!m@poc~0NtDHeRNDic^4rBYfa1{DU+{H8ffr551fcE$Zj)P9;!yLYprrnI>tDtVAS!Z(JpL9a(I?gX*Es$e- zC7s5&LLvh9XXWi<6OTGgM!jJSzY|^Mke;C=?wX2jONt5cJPc1QJz~AdLHt(siAPFd zdpBqFXI1XI3&U;P-819J7;h9`3fjN*L+ZyR#;-pk@xiSgP$E>$n}n$9AkIXsRwh$$ z%h-SO54seN+Ms97IX8FAt8b1LmzhJ-40d+7F7tk`GBzt96x?3pu;$K(+tt&{x=eYr z=aY84)+N$Bkoqt=Abj}jaYP@(B8-g zwXm~IKog8{>E4d|KBasIi2LcSr>8zjK1Fd^M)P@piy?E}Ae)$s4ClRY-VX9rI!!9) zUX=GC8Qz3{orp2(d_cfEH977#V(gOF%<~s?WTW4I&v^qFrQA&w z2Ig<1x2;Fp7VSGTjRE-$uSwILQBrtBY%6ZN`Vfea@gC+WHARtBj*s^8a9DrHi2E>8 z)_FK6L#NVodT)L18WJbDirYvw@c+Z7bmr5Q3XqT5eHz(MFBIYZdHyW}-8Std1JdD< zSG{0~d-&?dR>4pHkkKHC{f@M;#&9^EBPPQ?FT(}ZX@Z>Y=0bcjB>Zcc*-OE$!R?E$jKw}vgTxNU$8EIKl7O#q=obH6)*J6 zp0qWRy}x1P72PU+m66SZztbrmW(;ga1ZvmdTbvNEK1joA4vfkOjxjM4T>iM#_}a&g zy|OulL~2gjERyJ_`;fe5oVTM-fS~pZ)=Z<3v(dd3GQ)S%zRC=<8u{_l-|)OFIyar- zVkVn|+TtVMVk5l#&3K1(_mVJJE9|9-`?02K#34s%z6&0gnFYP*vjVbx)J>z6#!0*D z^}SD!Ih4ojFxFJ%*!P;8o+07En6BTydou?N_&@ocP`ZM)Lk?aU={mLgW7sg*$diT} zE11Zn+5d*#gLuS1_7xfP_6FG^iH8i@@dpDdmk;sLy!T&#ql zHtHOM26S@rLgS*Kf{Ln1q$}K*tqlXSMQTnc=$t98^&Qpn9T%cq1s!XOiE&9!pCGRE z4Sj(PzXOIW;Z(&V zY3eLODiHj4u%LPu`No_2&)M->UXS8ekd(5l+KRl~ObO{{2ZzGBZH}0!X&vMdigXs! z&5z;&((y~Ruv|NPLHSq>uM3io>I*138fO)U)McWABPQ`KYe3s4>R_#_2+;(nP3oxX z4)L=?>d*AAW4n*w$ZDL{`!odl6iILXww_kS887l+61T16VbTjkf| z!hD`OGgm)QKdn*>_`9Ow=)Hws1Z{D_l}~L^^%G^J&;GxA2L2;$tGeo8mwAhgGiP-&W6F-IW*aJG6 zg!)Bcx{Y|xD5DkuPW=@D?NE;^*|oNC_4V^tW{R~^8AV*4cu~U5x zubW1HR}Q2}11mnn&m$qc+7#{I2CLCE-<1#9@);Ut+ICVKESc_D%iG<*QSe)@IvarK zTs6Rv%jz*87QB-rt9lyrn<76(q0zwEiBl3O*vZ*S40~v*+^?|@|4Yx&9Oi%+A_hNx zHUJ8AonC_`YBw3Ly~Ugv86hBeRcN&I(4Xu%-Gja#}`&cL3>L;fPc7w3o%=WX#IQhp7^VI*B{vJ;N&vF2EX0#pNmOFFa*2A_(%?u zu~GH8h#t^U*gxfNQEGn>`&DpfO!W5^_R<&^!Y{!OEF4Ckj3Bh~i-n;It;K!CHB#|6 zM;ZJ2sE*QqaMjFzUgXLwNf-rN|*edSMyWI|l;yi!k{XS7mQ!CIsyC83l$@pv#VppbX zI&rmRoL|5qi&@8c_v3-emtT`bN+LGFa(}rM=l3MRO*(UNet3((F80hD8YBvh3yNNr z$0}&%u`xFS)#{0{V*wjG73bq{sVbJ-*MI4=2A~{h`45kag^bV2-2c@sU8U`xu(dQg z7lc1arujzDR$sc8qYYhgW|{k6m8EO3-W~8>L=Pa^yNep_TetdMB_xFJZH?tgo=7o3 zJ^w&QiJ>6h2n+pmQLRYe(m{!L+3xN>J|U}C^mg4nSkeKej`W*;W^=vb&dosB=%JZ5 zCa1K~Je#Z5^h`&F6>F+HDbmciBP|7a%dewx!6Ev6?{6JeU*bd}&jP(&n3+XsY8GH0 z0l!Q)CZfgTUmRLJDZ;_qg+r{)jBTtry?f*!A=(&x{K=y3XT}&`SGq-=yPdWpqB?(o zb0mFzy<$pa+(jprBFeRjj6jltg8T*Q{RA$_GB!OU?}1IbMPmF_h|iyRy`mIB#Rg6L~hx{iS;e8kOA$A_Zun9<9qti3?Gv+! zo2}<0*+Zb9bPmd_L2s7|EuLnaYo|wJr~MZ1rYdjZ_`nbV5zcxz9`I@O$Ra!vOiYN4F8CF zcSQ51jhsVd^O-=+=a`g)pyFZVaI*7PN6=V+s+l+@XYx7XmmAf+UdinQZCj3yc%+@* zD5MvP2F@zNGK9pO>D8Y(H+aNX=I5BzLfo&B-oUDxv4^x!znBs{qH65NIEelg!nHgn z@wnk6xsA`UT`hZobT)yaGk4U8t<(bvEU~X9dE&Y4{e2L$l`{lW#=*)XRV(i3v_6g;julsjRC!re4rP z-Or@`%1krL`79|8c_d5lZ%fOM<{l(GC3Rx^oO7kdpjX)2_o=GsRNdyC`nGY7_1&w zE+m;P5#HX*J?B&^tIKGB#9nt4Snd2yeZNs>Kkv>(EC zzb{VhzvbqrF>6U=dVk?$hM69gy%jm+g7$su_^vHu!|vOahvf%4vhmr*sX%#-xS{sr zBJjn8srtkttTl^f_3M z@oDE!D!I~hk4bi)^I9Vg?b|gK79XAy^8&)lO}aMar}POtOEnzG+EmY)sHRanlf+W( zyNAZ;{@KCrzZ&mjNdpM)dl%2%>1XDMkUMGYqzp|ee8%dd=k$CguvR8>ljD^(gtU(w z33fDQ!#Fp|k$Ixs4c1^d)1-<*f;sjtIzF>&Cno3@)yk`iOKU2(`(jjej&-P#x}st` zFEJ+q`l=w|w`W$jrVw)Mzx;E$r;4N=w5=O{E!{2FX#x1%%hcK{nnR7o8>&f}kE4*dv_#Y4}-zBXPGC;LX^ zBd!z|(0JMODcT)6{<+?F6pWytUl2B3^G_W=ndZY}66Q=SVoQ>er&Yr}uAL*)5BL91a>v#Jy=LrWR$y6nr@85yaq z*UZn&1$zC_e7VU*CY2Gp=nnqF@Dbk4hvYb4Y5xQ%)7fgdjOauKr_ozS@7;gQ6F=vS z^nd6bpNjc{@&U+$+h~TwM%Bd6HEa>;Ip z>my_DSE-PMG)k6M;%&>|^P>P}hs|eOCAJ#Jd@SYp5oYWksYt32ui+on(1=oVQ59@C zHbJFh-wu_c(0_cTSJmg(8?XnHVkK%OWl)3n6iIb|_(e5*CA(_WWhV;ChOTB0Mau8Xtphzl8oX4d@sjZzX`j$v!JO1xU z#n;3il;BD6*H;VNk`>+9Xd=_&i;9CXsk@u42TRbm4MyK@eWfZZH!-Q3 zM*py3&;&?j_JaQJDN$p$f2z(|4jsBiC)ny)uwa&@c2mGwBW}k`P^D~`MJ^>@4TKs0 z?1t``?uCE43$Q+TQU>|ONEfs>#w~nz+i&Lm zaz8Jt8ht{XFI+i&(Z7);Qk___B;<5`lfE_Lm7>AWGX~Uo=wPV;-jaEtKV}b2u(4oY z=_ofYl_ZMqk7Zs7skesa$H~~SN`@2zot=US%G2*vWDox6ojG9mdK2n$HZb?&)g>Z# zQ5bRJ0%1{+#J)R<{L1>w=1O5JkT~o;o_Oszzga3i`fD|ez$pw`3{r&pT}~+CLFYHX zZt*}>w4XekZYS;PA{>^1I5Wy*d#h^)cZYGE>GNmsFV{PKny`_Mn6Zg8Zz=m5hODdA zRI23yHflN>>_J)v-T`?P$L2UjGu2v6mra|AgY7cXT(9gHyn+QC7uye zbibMfg0GjnaR2?$@d+)>%ocSX3dTC5nMYVRoVt{V;N<+L!Kk6r+){5j|4bLwidYj) ztK3-r)a)HsU#q8KoX|auI2jwefT@nJ$&nI*YQMznQdK&q%yr)Tsv=EmNk5*1YjCv`Y@F_Obn&f{LyIc+l%1YZNU zqj<{MB3y!Ak%bjJzj?*rCPR(-Z+F9G z0~@TLKrqU~Bj;Ja(JSfrj(*O^(iy<^7m`wI2AXSn^-S6JKB&cD9B9nbUUPbpU9r}v z5w#oxf<;m&zZ8wnb3_aM)4v@YkgZY?{OV7M%_cOPX_fC}1m!tTUPkQ;i}%hytj$~b z<#@%Eqd$EE!zG{T?HsG70td9cPLDmLOE{Y**Hbkp5Vk+pw#T%0RA6K(;s7FL8wYg#E=AHnX7cGqi?ouCYzp<&@??rj3M1~BK-Zv!`- zk%tS{>%F7;8>oe(H*j>^R#KRGK|&tHzh=MiZk^?avJt^VMQ%2a_I1XqwShn2jKU69~?n zcTqbMt}5#K4ZXn$X>wx9H~WD}c;(F}5`&(u27OuG`8(X7!L}C`h&P-;oMNOJLq?8- z7%PM&eDliiSE;T(#Xp@}xtPg$Q1TL`BeBR7zKPRG@AQA7$H+JBmsJor#=J=?O5tK_ zBiR|@xU5Xz znod}`keU(R@^;3|gKX3uO<5tVswvC!a-{Wzn1qRVRe`q^zW z5ywf697t&gR*VS?=7qumS${B+>z0L$atZ+v3o&*+P9%jNDO>&*C74dXrDZr#eg3J5 z#zB2OH38Gi$`*1m;&I&EebQ#J75ZddNGUd4Q~7MVzYvnoh*tPy z+tESS+Hsij3N->Fff)IO0!#MQ~~D3}Z0v z8qcpJsCf)uNsnLKpgyEFh_6d~*{WA|Teaw2DsnC|> z_#bRnikVcAo1y6+=o#wYZJ4pjgt*21?vhMPD{O@%)3mN|oP;LlCdJHR^L>GE+NG4W z;y)F&L??dphH)_DG1VNF?wwIqK<`tC_Q^-pBM%kpB= zpNaLG$olACfv2OJS|J%5oKR>wr&{w?Zh(ya#Z2%Ubzo94C z#a}huaJO2l*Z5Phw&YMhYf&Cnj}hfS)EO_S>EP}b-hp>2ZHZgNn39|RVdvo&^8Vq` z?HT?V)jr58LL(itoNXf!476Gl9sgJMyypl_rm6WW`042KYf=uKWV)SjYKmzHdfj=7pcLaUoLs=7 zq^g9{xQW9%(fK_pXzk#<4U3E8ztCQ+oM>-&s|WcdEP3Q+8M(bfZ`)2Rs}VO(m(FWM z_>@rLMi>xDz0N!+&mKwwE4fvmD~Za9Zi0iqe=N@aSg2x<640?*N>rzOAM$oWYBv&I z=+rkJVPbCSKG+~JGUh`IchJLr{K?_IPnwa9zqd7@LE6d%)#U#UOD@>mZ}o{s*XFCA zOF`;qMqLyf&c5Pn1pyBQBv4;6$jGQHuIQ%WNF2?w(A#S zmR^@^ZhYWMHUq)CjaN7{fBXfa-POZCHT~nF>U#UCEV)Nnj_@jLcA)P}q$1(#qGK<4 z0e+CQQ(uw?`YAhaKS^Ureo znBZp?O7>wuY>CB?^l+{4yI!pY#ccZT>`~6){tQg7&YaFIl!`T0ZDdgXMikEf@u=aN zvo6~y6Jlm||L4;UMa-d{rjpRXpdSkF7YIT1qt@*0@c{rFtxYV0l;x$S7I=fk1~Faj zUzB4mY$5$-m$6;286l??%|H5{6xY2SIrt@(R(`w>#Eo6nwxd3`jS=QqPbI1maQHH* zlPF|P?saK+tdX+w*1oFa!#giJ5dmd9sSgL{Yn-T>%4h*QrXfFxC5_pD&BWh+Hwb<6 zXq$e|X7(T{T4hO4DA@GqP#_7(J1#QrDCe*2l>F2p2YXvn3qj<+=k3DGe5J&gwE?y? zg}E^EBiz9Pf)xo7NOEuh_f7KiMtFo)bia`n^X`|#BKKT8V&LP(=~!oq@-C;of)$-Qot z$kpE|?yx#{lkU8n5@c7%bQ;I?WVD0#``J9S$d@VAi#Q8($TE=I)6xvNr}LreYtKYX zqxbz0deGe}{{osQo_BBMdlq-usrhO`V`Dc+pNc3o|E@qLzkER{D>OA>9RGLyOMVi?b39Jlo4C6CFt1%PlSC;mv@{%h{2*{Vg}x z8s40EDr)0Bg-(~HC{juXA#jT4sX-MUFknbVi-5bd12E; zW(pk;-ZHMu)hP#lrCgYIj>I+`)Ch1a5FO?K#9OZ5wH0ch%i$G;rEaFB1*a#aJGn3| z1|2i=rU(I6e4Y8|z{n)Uv`wXcHQ@)tOoE9u)8`=@yLq+)CzJH&cQGg*R*OFmc4%0W zxF$BS;f>2Hi0*8Zlm$lO>5>hmP*j=+uD9~-#cdhm@aXij9oS&AEqa2d-aIA=^e&fO z7|)~UqUvB6Wtx!NQ0ELHN839_eztfAsO-FmF>|Cmsr#T!zhmSV1H6*rG;90@ZVg6P zWO>yx=Zd81*wabuA*c_U@M*f^YW(`BY=kEE8OL-NI8QgX(zOLGC-{Q|J?%B5P2(QF z7gm4y93&D3(T?S7Z8ADBH88W%R=X^kgRLa?AZ!=n>!#{u@ggI#^#y+RAHu}>&y%&a z6LrXKR157uo zrIPZ!!&SdWETm{S>8Cn-UcZ5B%JX!)R&>K7`UM=i{dt8?S zA{DH@wW#hED_-ZRJwMmeM+V!I=^UlY+zf4ao60r;u;I!xITv$s(WLJ!ftFdV>##x1 zrAjArh_O`khM_)9nHBytNsY%Oi6gRkbn*hI6bR}uYMxWLwn9@#%D(F&x2FuQKU`l@ z(~$MQwRICU3ZKLEA||p*SVbqUK$%!ERa#i|8vcBCxNoX6L1K%cgk00wtrSi%LT?$} zVuXMt??>E|qAbhd9_``n_np3^h_7kZpo9!UQ~KNN7lf*4*{Jk>4&M#F3j?c(re^E! z`4o4gtMMpXGH@6}vzN#~a~5P03w%GDjAxwfWJ)dzDs*m4x1)XdBJ{?73Pfr?^lxm>bXKD%h4@?6TBpr~s2(+!*S-3@ z9yaQp`rv$6|CdH=^D9=*^C15sMF8tb}l*rG>0>C zSn0v@^jfWRVpC$9;y>T=F4{UR&i#wjCX3c@X0jfbw}`OUtFOh8jMjoU7Wv|Y;9Bk* zRKA+BnEvJP<>$WNjr0Flm(@UnzX|p5J%s82h3nq?M|18f^>DB6Q&~moA!hRYs32#g zH%`pdB&UO5IYrOR>~xZj!2bPJ*w;=E?AeZC;gQZB^dxQe_wM>D5v_awYDJ$;IX2f8 zUW}!h(0TX9pLC3}0?aK$@X|)TxulNSa5i?T+ybTHT6T25p}JxX*9X~EdMuT*%R#is zn?4_pEky5+PI}l`Uta(2oPMulq2-<9G(#>bo!F}>l>9JW;(0Ag`ZM8~ZR8_6W%()( zd}^%Ansp!Mk^G*~$u9!^&JH--CrFf7@NMDuNZ-Sy zkihefN19Gc&e%o%HQBWe*6uN4t3eJ|QbgbS!~%I78)s&+SB(+w?d-=+Qj_%B$ID=T z$_G19ZppW!gREncNoHgzU&)*Q8I**XnG9s*%zAc89?9mNs4h(h=sfzn!rw-lW#(wV zt%H1Fep1)8pAySC&Uq|ZdjVHO`LfU3wIdVuh$A1p4{T=WwWSkNxZSy!?ngT}B8B<} zG3cvHaebrZ12C2KnJX48B!ZaC#8w z33@A}{<%j4ccZDFzyEVqbyk{#$6dbC7bm18Y)Jth3?ABFpFB;kzf?H<>h$#uOu@M) zbN;rwP<#<`%J#@-U*9$;es=QD$>SK3A$dl#Dd9kBQ>yh6m(~Th+<6`k9?H8CPFL>< zyD_6a4~jfH=uH@YaIK7+p_Y%aDy7%9BXs9$t0vbirjBZMb)EY1D22|CMFKG5W! z!3cGimIdaBf26l&jX`!*QJQ^z(>amL~9&}$|$N$0TJm<9=uDGLIM0F+X1%ID9 zr~B&1=Q4_y{wg)Vz5A&B^P9!Hqyk;_)xa=h$ow5FO(zIP{hdq~;6jNCf16x*y9+IE1*4O+9DnIH)-a*{o|2kV3AW8dK=FoU8}INemSnix(c7MEAr@ zmtAh=%(U_e7e@z#<=GRV%QJVqh8|`IIufG(k*_2guLBFr`87QyQYN0_OuYN(Ic|l| zY=0-4ME69W*jGRhPY>(Ye5pQtZhd%qQu5R9vibnRpApk`X4{o zaAX9h=eI)irj$r7fB$A2m(yhk(h`J@J_qAF9$FNAzMON3JN_Ll?~P{X`16$v0)+M> z3*`1VXE{ExSi-Vp4=q6}{<(#hIL9SDeVkvYZGf(;+iq3hr@KL*vB5SK;*hC2)1wrs zvOw(4ZqEB^UaI1*uS(Ecfy?X?VqP~x%t36ByM8^udjhrGt)(w^Re#0O+$TAAU|Ejt zQ(-O{WvQ%~a-v7)zc{Rn2sKpD;r4M@02oT>H|!#4S(uf`l{%JNVIENJLyGahZS&P! zmRm)?uE+j8d4B}Q3om1BviHZ_I^fDV6M`VQZfMM;9Jgy7otXEUUGA|_%)kI$Wu>Z) z&@7raN=R1xX{zd7Dqc1Q!PvOIGP#|A*$`Obu%DY&CA(3EgO%ug_)$m ztRQ9cGPuM@v~lTQMut{33;sS71RJhvh5>f;8wEuftWjeRW&)doe{=D4{Hno0>!@!97umyV)_wpw`e6Ec>M=8$tH=27`<%X;$IFSU*< z>P4Loy8btQzXY{0OS14yXNifZo6%7wd<#s|;q#I(r0Np(PP`KlpA0c%l?Sqnas+G5Z zipad~q{r53T}-@6e(RBeon0l^)eDYA;G;PS)S3T9{OP3TxW>U|QVD&5*{sFxWC23& zVQu0Kqel<5s$vq|FY6h*_wfhA3c`!3|9?MWudIj>+K#(`Ds3bnqUPvH@9Sc- zWdV+gfVz3LP2~AgO;ah*{E!s&`q}W^i|b|8xPt4Jr0P!t(v0xO_t&&v0ujLeLZMKr z);_lt#pTgui9Zlhc_toMmA5=Kv~M3ZBn4Y=GqL_zZaLLilR z2k89?BxwxH4O6YxORkMeX97QhItj9|S3QyV0?9I!>6ie2#p{^;|FHGeQCSA<9_|aM zh%`t_DBVa)i*!pjNSA%4yn2=hEM_x$ddxTfB} zz6k;;0JmoDwfL)sI-TpA2vq9WJ+Z+t6rYi|4>bR|lEEa9hAb0y@;^J7;U$?zVfMg* zvbGV6h#-Zrmw%sd&+huAga2@o{hy=moE7udw5MicPNwUrRx=Y7dv~7p&HD-SdusD} zl$0O?oK}j&NoiY+nXw)DCo!{5)Rc6h4F!2(+QPS!8l+X@wLS}N-8Yt|U+tgp^XOE6 z7Xat#ijG8I8JF?J=FxhEcX^H%Rh+-8UBupT9nTF3^QH{+Ve8P=&3flz0GOS;nE!gqV=l#@B4bkz#u@ z*kX@SiD@xxRfMi7GAlk7Mm=(JI!Hq@W6@ha$eX+{U|=CPAx+X2iV^Q0C=*L8%qth& zjN`LYjs@?rdmh)I)#pf~JJ9vsNAbc1d5(bHu`BDg4)GD#E7Efp46$vw;W(PYF|a9W ztHJ=u^uIXjb)*mSo={i_c z2y9Bsf0Cly`;?X%n=GtvxSM!)1rm!tNYlA%%`_b(k-Nx39$>lV(n=}X?yT(Ox$AJg|WytKVZWz}{!U0Z`uWnO0Skz-@qk7cR2s zw%M0L%9NG?dR2`teX5WCh`!RF20{5^Ql4KmF7YtL0^xQFK4sOedr!S6$jI?dC9dF@FZ`yWCz7k3O+e(qSkoqa+DqPEjf~FP=z6(!;Nfiw zs&TER0MqCgI6ZM0)rCwKAD}3dgOzgr_HaLObZLT`vdz|H3gNxr*xju#A=qR<$1wAA zzta#?0nOi4it}(Bo|@2?1goWVLErGFVNpngS<@OuQc`Xq$?%}Z5N(ITBujBZ2{=sW zJ_xPuhI`7)=oz1aNqc-h@UsHiST#Cg&j-I&)8?PENO^2>AGiP~>f=o7+|XSNQq+g~ zz@(tqWOlN`SG3I4wiz1WJn&b|k#>*hjqM;2>ax)&?+!4<-AGE=;%i;j!1l}JrRF=a z3|P$gu!O9^weys4S9G#4I@lX_>5@3HC#uP#jmWx#3eucCGmRyjE(O<4xa%5~Y%GOF zpBxOuspG1#S|)jr-OOltWnu16`9&mToy`X{Y(--xsBHzgj$~1fWTXn|BQlG^2a)v! zUa*M)CBC#i9}o>0alOj3_eh6Tka)EZ9l>90!i1s^IMEGQk@hH$`l?D1&`XJqm1yDr3N`)1iyl zHmpMEQF9S}-pEiC)f=NIsAujCDa{RkJz2_Pl1MtEc1qNK90 zvxbH5;%aXt#ejza@i-=M-dCH}IumPXmW+zUpP4OaK4q+j;ih1pkrmcH9PFdGcs%Z| zbd_?Osa4IqJc5k{HxAr&w;*!VhD3T>UcSDrj^&yeN;+^fQV|hbu3##OiF^-czs1kw z+SQ6!CB24~d=_+luQRG&Z=M_JXgj$Z#OM3yhgrU`?<_iD3N_5ylPbbKhqM~g4-VCw z4~yFx^Z5!I3@81=UpqHAVZR&ThRPX+57CrikEY_ErPTOeb z!QdEEcc}N&o-Y?-1?&G?mM-Zh|c3U2hRSO9Z z+3L=jdszt&=y$RGIVWKJw<&<5BiUa66??8!6oHIK>tm!k{{*yjDL6>ftskp`@A}?d z-xGyxzr?w8iu4vA6FVI`Oe{`~p#kQx!d_lPbv5qZc4RrhH~2Jl3T{3o;nnj$gk7*D zJiDRZx>Eex;BVuMq@cPOx@PpJ4Wx@OdxeSU*NPv+GM}#xr6Z7d#2YI_;EUaxq%4l2 z%anF8+!iFh#Fy<8cADAvYngrAY|!MTX>`h#8$?imdZW5W?QU!aR;H!soKJa)5oJOi z_An4rAv*64lWn z0``UN)3gu=g+Ab0w;s{VtQzFp=RHHMsHx6K39Rn(sXMxI;v-H)P_8jedHut_p?|rv z=;>o!Hzstr@^4d=_3bqS!>cdlznk3tXO$XW7C4c)H+%adT-Z-^t}HlGin6i3AsJpH ziB)rVCPt1C8G35uEjzBo6&qg*Kg&o-$b~Rx$*9K7NQi@y*6a?_MWFP<%n%C^vPEhZ ziGRRp8~t5dfQo{xB&bpYn4;%ju*c?uXF9mFzzm*tbRGV>s=gTJk^AX-Aa?sXmx?wi zN`q_ZiRkyNp&2u3@rvWn<7ff7hr=$vi5tPTP`~Dt7&l6!T z@qxaR==FZ9;_sl9>ki)$QuT<&ZSIuqqoE~dG@@0tB%Bd?mQ<2YL~Xsz20k1ENGV5m z1$_;kSzSA>VEhUU%?;vkOeW4xepS!=Y#n4+E%6Y;*)#Su=$ za&#_l=29WjW-^QOsNDFo#O>grgw7i$(Q(;)v!7&VF54*E zPPhTOEYTcd5f?#Y{4T>emj_>02$L)HLU`6M?AGunH%R`_XS*MNuFlI4lKNKHoGgU* z_NU6{;EVE(-wKM6eyOD&!p`>Y!o+vA6A#MFATEzya!Vp4Nq_pCSd6t*WS&q)uAf_@ zjQP7brP#^QLUxTdG184Sv{+>L6;-`bh%TnGM|f!B*aA`%E?`AxSgH+Li>G8Fehjh- zDacAo2E>hqVI}8~9;YTvRl+=uc1c`Q@?+=Len5zkiN<^sRsDjQC?S*_9P8p(28qBXSRQ{+# zL)<|%=eFFdRZ}c9JUVvoW;5 zrN|eyqO!5IiHz+o!Y8k2F%tV4&U1ryXuzS*5$+N9`xcVs!bfLOCwHq_KyAwM`&dr@ zh)lZMA-ZT{g(kz+pv9#+@ii)IZ#|Y!vo3Zjn`DeLg>_Eyl;gei<(O%q|9qgq9-?g6 zfu|7)EZ@<+ltm4j&c!`U+e~&Qi8-g#)ZNL{si%HXcfo9s+~LE_g3I1h;F<}Kc}am! z%=lh+D=D7LQ!5%$Z5GPPy%&GZwWcDQ%a`kKqOvFa?ct~)^|1?w6Q&>3-cjvKFZS2p zWbKrC@fVt990!)9W}ch%9-5Ab({xjCO5$bF5uas0BI9eEFxkEd`JQteA1V`>!2NA( zdk@|wtrGpkl2Fk6HyY<`s~?NXIum){bQ18y+idodF=#{WOZu`XY@lBilbxSxx}Ufl zB|K_qbuDeaLOE(pMfjFE_GH|!9a|TKqd1tl`=#;T!S9?b*a@@z{vw*QXL$LG)ty!E z6{$5@$N}q!A>t|#EuF;Hrp!SFdMOcke3H~Lmsr!|hNR_f(o`#QT56uuGjyA+A%vH3 zq%SoV4*o=!7|LV0w|R1^hPt?w-EH@&WE9@LJBQ>@gNm$^*IhWwCqm*u`beNf%<*CV z!ui=f*||{ydFRe!`uqW>8(~FNO7jbU=|bvO2;tMlPEOuFGC$p7c6aU@Gxg6sY4`rD zsVrXbt}^xYej`L~*vPR2et0Eft?>~FT+P&3RRgiFvZJeoGJSrWLm)fr5gX0zI^N#e zH_^Vl-dgNv?$pM$iFqikhb8N{0kW37Una!IBk?K^|2}7v*mC1xpNw@t-5pyDk<%ni zKX#{BBl>WkYGBwB6O<C;Z|xN`XLji;Meyr)y-iwKhzi#AL+ z{AOhs57Uy<@H(D+a)5rgG?9*~t+ws{4uw5DZ&OH5^XP+0wxVyz(}LHz^u)yz?6@#` z$jn7L()v{6qw%mv7i_}0&e5j#lFOkp%fO1+AO8}aT1Ot!w^)?gjPbtWd=DLwViA94 zw4#1|_(A?sQuyd?L47VpjaUVHn4w%+m6+f7Yhdbrge-V+&_%9lUK=w$)J->dE9TkZ zIq6}%e|R@3gAsA_$TKeR9UR4gn8BuN9ubg|&DAZ&X9Ed|Gwwi2r$EWpPi~lx|2{;8 zjROg+^!c^Ax-~sRAg?Ynbt_@49~?o`e82TC!8=)+v4!^S;$99Feee(r#EJSkMrpIP zc$_e&V#4<7-9TR^mz%iTja5d7lY!>0SR!SRjAX*|e)B*B(w7uD_4GMi6l)niH&UF_ zqCd6CBLW)k0vno4{K>N)LWjur8WONa-QBneTvnwMQuyncCdTcH9PP*>7IY(QMQ0Vp_hp9vYifXf0T<-TeW`Mw$oT1HrgS2F1*k9g8 zU#?GP*Qy19!^}H%_;52Ru~OJX=S_7^w}aYxns=Mgw8e+dhePmGd%Pq`6%C)PmPYna zQ2!}Jptz`eU-ep2DDL$N5#rBhJ7 zT$R78WeM)g)dl9D{uT zg{S60JRKtH+8Z6!H(e$sBaYMT!#r-Q2AVw@>;2192S_|j>cKoxbF3>ngGt}Ixy%lk z5%ufowdNGAD$!&Kw%(7~k6H%~jAU`8DNA*M!#%FYw%WHLY3J^nnoei94-V4ahB;%jwk!GfpdH_I<}&8Ejx0u@qF3B*Jz{0-Z%tr%Dnss4*W~>5KTl6| zzKnD(X@1_CZogUl?}MYc0%CaaleU**ozO z_B-xv6%Whx&{c1I4Ta0bHv9)YVozEyQ)a8A8)53$)&B(*cdKmZVM_T-?#DW3AVWC z$Btmz9a;WOWV{P8*A!f;_kB&MLGnZ63%K9K)2N`g5IHLT>5xDh%1VQOVtMn5!*h52 z@wJ6k#nUgZ^m{1`M@oJ6yX8F~&*;)6oOq`<`flcy^?6|)MOiy7C!G-iCg+#1FtrVw z=DBErmw3d|5*$Jn4`F&)=ni)AdXXcQSzfNM)p8Goit+$-BHJ#pH@qtqc&m{~C>nM@QUSu$u~|7|XBZp>B`!$eEkG-T($4Mz$q8nqRb!eLZts_1VV)uX?S} z+F>&-qFM^8?--bWR9Bx{ko(WIz)LJ{eR1tJx(idc?nVq2>zgG=y2#mBB5R}!;`Ez8 zdZ*h2a0>U=@HzF^`>3RS21;>RevoF8`e7Xx*G9dNr&{+;G}8QV%?Lf#VYa)oXft!; z%4Hl?1z}$DNwXDWLF2JB+nUac%EfU{hKpmTT#JX#4hchg_&*6CTI{R6{&}MCBTM$8 zVS{ojlUIR<*k*!GPN!O2tBt)E`K=^W;&9+yYPlS`O4s|yUmt^Qp8_|I`U1DeT7xvj z=1I?n6`=z+T~8O!bH%xYKN%*HS(93b%`ytHt?93O;(Y5jZTGj0n2tW~{o24?$5&l2 zPTbz*kj7JAncVy5s_`u>G%>Jh0-*WWonRa8-v?u)+xurbd+}<^TsA-TJmO+G}9$CEF+V`Innp2FMf`+R1;^dBq9mEaqSf) zM0|t`J)<%_s`o=Uum0Cb`2Q|Gc!a)G;9V$7wL(d=xk=p=kKp;4A&|T73eWJ^qt=gZ zijO$K0IT@bJtm7+ho0L(^r0vx1w3n-QZa&L<3my0jf(vmT?Ulv8(na(eeBtC-CI5o z0qMGzboSDMsy`m-u3FF{G{kiyjabP1x0?qOxHb8|A0B8!z|7iV@gv=ch4cvEAw`LrHAWeYChpgSjPjCVbEUs>($ zph?}K#+b4#HZz;DMeHn$QO4H(0P%RTTJPJ(=kvGM+TgxWDP-tK}8hcC%;N;vY5P`dt_AxeEcAJgu(I$Xs*1S$$IMklE_0ejN@Vi*JjOWdeOHf-_v#SS;AyQr!<7)1csxXhSyiZ2< z5QqVd=)4J(X_2ra{@zH04TaD*fseaN*LOKFI3FGbU-gPh_FN~KshxCfJ6c5AHI9jo zmwaAZHD^QbPDK)0sS7_PvnnJ8S;Yh!DJJJP4z233XLU<`GgCFrdEB&P9FyL=ItlDr z;&j4TZIxdMStwd-cQ}_r#bnNrUbl`E6Fyf-hw`dY|1Oml)d_diW@O$UPiGIGRAkK) zpBRMo2mh$ulzK%(E1^(Gz!BWA-lFyVcNhfADTR0aDmBe}Gdah*d$f)5Vy(p*k-#T7X%);>L@@W+Om zBhxc`cT^ZEmfhlhyOhMfMpS*BSzJPcP>_F_DJ_)j?$=%K;5$MhI`<72uYOzvU)iZ% zN65<&I;OOYL0F>GyTrgDB!SD-UWHrs|L-!C9kvlzHR zhx}6ap>(ld6Da;X3GJ~R59<((=Vn6S`{svNIWD51db85%Xdq*&2JREdp<$5R z+D!SZytP-U)0vc=E)OYd^~o`aRA|lRb!Rfj+grxC(ygAvGSAd(xSuqbuM5ZR??JbK zJ3F6ZWgbfWVztyh$4#$dHMi?dN!u~tG;dFr^CC76>l^Dzw^OnCL9LjvO2xb`M74EE zgFS^j-?w73Ya%kVZqEt}uTz7^lYyTAquyPUmT9-NM${}ITn2Pfe&xxIT z;4U$o_zg0byroKs?@!y~i(wY`$;tmlS@;KM$ z_Xz4T&0}mlwHNr|jgypgwtU-8oe#%-~qfHD2*{O_R zw%9MfQ1aIGL3o&Qtx568I8TX;C2Xol$YQbzbGe!F{o~SP8%%3`;agIkGFeGdf5_=d z`ADjt@|TP=^8*fhVkj9;A7%cR=0jJ}f}*({cb;R~OcK$D4My>A0{_HAp$YWi&(9GR zBDA^ixb;3ZlQdI~Da1aji8>`LjL-8J_~~r_1P_~Qv4xA!=nzU_q9>V+>?wp0!L$eQu&Zu5kLeCe;4 zEuth-?6FK#v|duqlESFsHG84Ep@cMUe!X-2;UddD=X1j^PTTRfLt*$S%(!NoEuU*s zp)=ey#t!kts0!5W@7!(X41y*!E88|E22$nZr)}FXRYb=M8hirw8qB#b*}e6xA~KSZ zaV9JR`bh=6o{l*W;Mn)ktp&y8zZi_X6U2f0$pksMWc+NgM$lg-*!pD%uP`@Xf~(Tm zf46`)6PdO)q2;Rgw*{^36viHIqM=zDm1y9c^oNPVP2m~N!TaG*25uR{QTiim$=2sE zsbqIJrb!vz8skslzm=YG*2~$5&R}PbaOx_$4{Om0HEMQsnO_RODOQ2hdYwE;TEx_J zgANsHupFld$ZWBbS}O9Y5^;%vfesO;qx7rOUaKbaCTFRB61J|o2IhTazPqy`ATlW; zNq(MF7;sHpzZi4Ey*S#^T9i<9PGzr}wCNUlhS5B?ncVP?&^yye%c#n0mbp%U13j&r zXwG@nLSkI_c)&66)A__VqH24ibG4vndSP4~jpgt9SNV-;Z*DQ!;`^rwLVD56H>DMO zJnFNF5n?!&=|`mbS^s%V31LyRhe8rKOY3kya{t}jdeV0hM1MuEiA%Z7P0S`_qVI>b zO}3LDCoD_|gd_1R6T&WpwWHr%gA(4K4ob6T&Lr10y8o?HX(c_h#x5)-(VUs&uvj4# zwETPf#$-wJXrJTn**}c#s&tM~R29@e_3vaaxY-&mN+Sx9(mc zWltfd{I2C`_$gPtp@eN}JMwwcmXYXzkTHnD^-fYn1C%bLDT>W6zBonR7-^c*O^k_2 z`FPfI2swRPzP+%@Bo(%J3Xf8GDB)A}Y8rBR#flc=1J+AI+6FqzxNQ&o18X(5CCLa< zB*YSV`BURSwWWk7%uUKS3^F(Sb$jiQ926vYKi#@*CFjnOyQ>OGM2e8aIz|RJxjAZ_ z*o9?C%*<_&bPXSA-KS!;w3OHH2k-XcE2*$Dv!IJF*|M(TFcMm9^LLAL7~DS}m;E&! zcIuhyL6bEoUADJd!9C;)m^Fa>qc-?a*hfrMlG7MBihi8G0b3&{H0De+y-?UEKF;)+ zcSWK(9qYJx2NWmZW(Zmu&bjDa3Ymyu=o47X=jVy%1UL8I$+{1;p%EotpFFVPCaCsm zpd0kqxXOu-%-uLV*%6YgeInk(j8S^6Rp)F;zd1p8A$)NO9N-|XZ{;(vwi*)2Np{D> z@IZ#ggn?euP_x$bmHQs|>S~Z)-A6DRh>SnRzVw7b1cBj-s|-rZ+^VZ+0=vPT(DT9C zyUP&9nQRicp69w9rV!|z>KtcLlbcx5{CFOKYUnm}%+ANL$f)5QGh*&f$38#&t8`7b zy4wAt2GSg+T~|-johOjfY?<;U&cWgC=tE)og(;7VdQYKkkUNpUR(whEuU%uAmvOFp zYTD40a`f9K5%RH2_+m6|AFAA6JhSkrwKYC30OYOg$geQrIlzx5p6WFEqb8qnX6v(8r8Xg3W*{S71uxxYRW z@S4q)&Usr*!S*NBpMG>Z-h;y5_OalxDrhQ*nT;Q&rBhM}dn&qiNs#O96119M?Qoc# zpDrOH7i}`E1+}!ziiy^$43jpk?Ogb?a}Yt>JynCwp#8eFe?_$x-@S!=KM@rB+2Ee- zxa|h|-;K9g>l^Y{$I5>Y-#}W3?u|1IiyEUr0gsH{@oIV^PUE662}5bpWjpn|riSoH zTXuATRjU2%K;aKXC9JhK!98OPB! zQ~H6`Q1>r^N<$&_t_oajO7deD%)%SUSHemr+||}yDJjeBgeHM+ss@8dcUa|J$0jYv zVl<^C#}uN+^7>u8l_b$HEOVT+h|!c2}h)&|FmMVLeNd?M6zP0 zuY&F5u(`Jq4}&japB*p9_Hi;TpG`b8wF^s~F0NzQ^{Y+B+qVfYgy?d$4wO}w>S*`) z1kKRt*_1Q|lPe~-5$_UICU#M`s;P0ZNDQr?^9z}U;7<;7SvJbL7S}GMjAvOb+9|g+ga?7GY6n!b>t}UmZm5JUl%=t*NQegWZ)~R1l-g zy4II)m(w#R=$l!J&f9sea%=HHO?BIKo6W6m4^vpT+jOGxtQL+a*1Vs>LL?#^EJYB@4Z#TL)3xll+MHl}o$N z(ODxO+65J))(#sRfS>5O9_nPmC(Tb`U=>$Uz_)B`kCT*1;K^J6nt$EFMK$1u+G;Jn ztjz@3A=RDC^63o#6FfefGb|2eW4*61Ej6%NyX0zo_hKK(o%5cAW&hCQIabHXj#Gdx zwSDL^AK|>7zb;PT~(*EygA8Sq7NKQKY<0(E(AT=W8Zw z!fG;jAK(ICW-n}csxgYwlYxR+bBDy;7uxI8ZD!_bWl8*j8`A;al|D&jkJgfOe+CWZ zEA3D@HI4G-`Mgew)Z5@H7yTCd$#QRw8l5f8WrVMD2RGT;>@aY0=)c2b5~YB^pDg+*Vwj*S~^DmslsN(fZXhDN#nb6 z?P@A$WIj%g!EkVde@IZHA>Ue;aA_Y{>8L3T%>VxK_V|nhv{ur@IXg$io$1p=}4Z10qC{# z^qK^}kGH>9?uO@L2>b?Viw_zg@%5wwNXbY`2YDp?yl!tfQoFI|z^$2gB_xtKmJj_f z86ULOwr4QU86;&v47R4=TALxjFDhRXGWM|;xV#bpq{G#(Grr#qZ#5p>| zdJkvmRE#lW_6@`-G`MBYUyWS>aj53*!o365f(lo4ey}I+p?YHBDHO+NP;KVoDI;>t z9x-{u6!E=9?wDrmw8?{Q#|R?oHS5qs_`|)c0I&Vq*gpQv8e!f+suF{y!;Zyw#;9i} zzf;Hlx*j@;x>^_dAKgR!2rSqc;QIc@?T;Tgma~*}Hq0*0;k35s?HAL;W;~k z2O`QChx@(_nTw~8bgFkGXuEsOgHZS|f3ze9ZgR2qkYvQ1?-GPEt81#e$X1?5M;M** zeqW_=ryDMC4uAD;aXJ>%w5(k|r{6Zx=^g5_U0XBLxzl%pD^H?6Tm~KPa@DOIiysuO zCPB7il8?w`b%(~Fp{ek}ZFPG7b>;Ih=j1foU6-c5L@t+$Jb?tNL=-c4LvrE4T?rXtDlN48=a z<3&pxpB8d)<7A-y)mJ%)fAfV~&X9fdFD-|D)LKP5g zaG*DhsKIR}p%jZ0fr%j0Z>1OAEqy8%%IjNlOj(hMm|r*N0V_Q=QOMF_( zA%+(0w8eV*{hQaaul^Tx+r{ssYtlh%Tvl5#IT068sGenrkPCtZ%L0pj(@4euGLzAf zZm`FIlyR_noAkncV{3X~B;c8$gTjAhh|W+i?gsWYc|>|V3O|>wn)j5FxT7?<10T^rdh_%8Y#wikiyI zhCNH5vVD4pb`D;5VJk%m*`GEC>osZOXi{vLzc7Jo%jLST8IaLyz&8V^V-RS@#O^ho zCwFR7tJQUUo!<}D?){(xXiA1vh5JyfnC8ZF zW;HoMO%*9w=diW8Nn!USF|n5CMG&Aq4E4+qauJqt3dqX$>NS~zfR&dpFtpi@x3uc4 z*NOZS)Y**2Peyv=@-LL=3f_C zR^ke^x8-8z27kq|JUzE~R(XkZb}jrqo#7wJ)f5?+-7_%fok+7t$gFFkIvKQ;mX-#v zuLohsh02;O!&q$Wfv?<1r`L^KN>d7}YKKwO8*Z3DxB;=Z&u(WXE+*Ymu=HJmuf`dz zQ(Guw&@j}kNovZP?vBp6z!HT%&grVj+4cnEb5OJ8;c8*L6F>T~UJjQVx2Cw{H-TT% zv*}nz+$;EQl&qJcZgY*iF>3Iq=dQOI!+4pFbhPJfyBoUx_7dbqr4{k*buPJe85}q5 z_-dIl@9<~Z-I;VwGH1Mb38gvgRzpe}+K0QW8$$MOZfw&REXe(;KTdCsKVns^5qZ85 zE50L6P#*GHkoJ%L>?W^AiYYO(Kj1@=Uj!%C;0O@L-B_298))fXj5!-L^zXM9B?NdcNe-%&kRtCybS)vJrmLpLk9| zQR-jTh2y$!F<4(!5-s?YQvN8Ul%AO*J+0uJr13D|UkEZa+o?@=b>>K!2)}sAZj7ry+Q>xx4$uA-+Z2D_Cy!5;LSS@vT8Ac7Y)wRfs$s$?LzvF1%HgM))B2zFQ z?dXV~_%!+SAAftVd-ZB*3k2_WZ2C)c*)T9&Z0*+*N5zcbb@zTIRY26vFD>rLr}CS~ zw12Yvdxw5~v?>2yfkoX>bx|lY__z|MxrcYa`1*EM*Iwb1`SpjH& z<^$I5(Nl#MhvCE=S(FtWR{mIK{Bdzj&@TAEZ{8&2bE_)CjEg7(*>S!;UU^|M3O$-f z<-E)I8&A;G`{;9a4&c~;VeD!2V(HBd?sL6=1N`3fINcPq8C|CKHbdGFNO$`!2#8_R zwLCq=$M-Yx_aDDUq+Lf0b|Et1Xf(I|CfHOMUbIHV*)shLDxv@Hhwx1dH#G$XJ%s~agSd6*&5RD{J z_d+V|Jfbg0cX_-6%y3&wL<@EGMZmyjvsg}wi6J8;^*%&|#Ic_~u>p`f1|}vM8vbcx zERW9V+6#0Uke(&Tbnl@cUq$c8dqVIF^YiCw%+!vPn<|_x_W<0M!lvyCrcFllg=c?z zdkfgg*h~fz^sb$NQTx-(%+b*iG+KW8Rl3ff0%8N8sPm>XC4xdi73Rn6e9FpSSXpZt z8WQsUfX6gag#2Ixa+S)D*xE9yEsn*r?L??;m;Ij`@VXgvt+y<>F3tp5fuBg{6UjItxg- zrCO~m003D<11ST9)VQ@Z9eVmw&Byn&w8a4L`A->~$>I6L&HZ?FxbXg6wi2%(7@EI- zUbnQgfYI_}hivzbjD!XT5;G$B3+y#ZuWoJvPAK5s0*X7|U^+Rl&Nf(Z^R9R-UAE1S zP?kG@Ie*&ux4rFq^%`Qg1}Ngj<0Sa_$;(e4LA(1irG|QXAGg2}9T|Bl1sR#K$;m2Y zFmCc?AV$7Z(SW(twbg%xOK zL5tOR8o1OjX2?80dCNVZLl1OANrss|NmJZ0v zsLq#uybxzF{NRBApw{&^9iX|HacMt)MmhB@dAVz7jDXke0ANaWbt?g(TnbP_-~+*X zm@m}Oa&X`lBSVUI!1}iR(cLm+w_QIy!nh+Xeh%Ks%PF z!l*?9)&!45x3RHt@ffCq0QkuQEC~OjJ8F=!)QgLYg<6YiB_D8ttWy|R=jQfyCanh) z(1|2Jv1|f>s2<^cPU3Q8G!*(OC`d|0Ma9BmyV)N-O91g89W`Pmat7X{e_-Hxh7qL) z4FHT|>9vHwZL7b&SXdm(WC{V6^2H3agM$NLTLbiSIxS=txqPB9FVD!tWL^vY-_8yo z-|hgRtAV_E*WZ>CMgN;!-qtRmRp0B7FR!?#>V@z%>kt%{2HaeMK=7J001f)-Q~GOo%!^|k2S-P4mz$I6Vl^XFh#eXl z+BiTEYk6YY4Sfdm-qX`lBUJ1ckZg#onwqJ(IUPU)pKXW&mi#NPGK-ZK;7OF#)C>&` ziE$xqRRCQLq!j2JZ_0kpzl{w6vPi(D9;1LjlJe{8|G(HrZ5FAE6{j*f`<_7xip3=t6#fSmik z(@;|j^ngID-@SeN@oeg4Ubu>Oc6MUYsqX+t_WXQ+9as$h3OL$8eI9MCTTANd>VWI` zU;VLz`hg4_7yw`ohH1aCN%BgGiUI=SZ3p!-ssV)V58<ZmE5u{2s=69D=h=k?aS@TvedPjte18F2dlYO&!RuXENVF73Fi^%;Qc}VV z#>B?<1MMXuWTvMxn9VbT?}Hf$TBnKz5Bbub7of90pL8GtqA?>A6F;*P5fUVXke2`* zonHWM3`BX>Kou4j)yde=eLn*@G`JsHee@lq?KdzkyUV?)r{+vsB_P0H)`Cg2{TEX9 z8_>@I?i!?ZbaXj8B^%q@_O`Z&2nauojK1#w`T`m)YxPAYZ}Hnw6!cc8VbI6GcTuT#jcXs=ggBx-b+S6O#}hkNAQ00I1oc+dey4 zt?>kzv$J!CDzC!{1iUF(cyhAq(IWd6`(x5yAUfZ^wfFSEBEEvOv4f}}6rZ!k;Z%n) zevnIC|9>QBKLety;q1&=ZXtT0$2i5k;Ddmp^YdpA0t|4cKMaS4hCnbC92^V`;m@Bx zZ+mmYMY23RJhVG};u8~NV`7Ltf{6d&;Xy!95X7_bCi$;ky#he!5CU$oDC{a!2*me` z<(hzkLUe8}dF5e;97WX4&CSDu3;5B#n1saO@UTHmrO;aepL#&pc5>pF_ltaaRkJap zDxeE14Yt%A9I7fRI8e82uU@~_)zL{vNB}aBn3#x)0@=|LAOiOL%gzoH4Na$A*Z=J7 z42&8xI%xJK3}j%CQBpFjd2MZD14i)r`dat{RGEzr4vR_D@83|Bv~j@eXJinWllHH^ z__pEAo|&20-ZLK`AHVL_+@c~7Q6-@3+bTg|MnFKIt*s4Q zv=L>9HxPy^o7=NZ3~I$9^?EB1N&9tgCxGc2Ek=%?oEO`jtKWTxUg`)K%r2vMBVZBOdr_n9f-QSf$YYe ztMk5LVqyZRN|G1Y@N@+{a7RZ+ER9M#u!$t`FIF49aOh-dB;YN#whRD#9tatDiY@hT zK>NT(9ionZM7IBVOFKC^Ib8z-G9VYIsDC>;JUt!^TOY3$s*EQFMbLyL892giG6(#Vs0!DNjy*f!`EZ9}pE0K{*{97yu^t^FPX$ zHi8o0l#^r77eOk~lJq}ub6pxZ9~n$aPHt#mz<3V)HkeQ#@cRAxH;CnoSRjggS+RiM z&glLU1ZI4v0K$=-oo&Q|^b(|8p`xOegLFyD?N%SioL~1$Ms_v^Ff~HLRz69KX?13kUYhrqqvUEtFlfqYfrLJHGl z^MNRW$YQWHkB*KGOl$B&|Jy37<@1xPlF|(Dggxfh@i*7 z9=2cG!^syHHe`fvD<*)Q!Xgs{y+neuvX+*X^78LxB7k>2r#}R#uU~;z#H%){|BpmH zh*MKi8XFpJgV1|mf*l3K*t2}1qW<3A-aw~YTY1F~<|~pe_h;zU>qe)hE}tIn{oX(> zSl4>B6cna9JH1%0$m;*kWhpB9)WCqm5ef4mvvps_=7Pt}GldH8BAZmWi=3ur^c_l&@c%VEhF@tO}eP0~;GX zB_-ciNZK`!1`rZ;{(c3_w2-E#H(o{7e$rstQJw!eO%U||_X>$9@3D9Foq zf*6qI_l*+E|Ap+bQD} z9jzcIhYk%5Y2KJE*A*zRw6@kw*9TLlrny@r-GSc*J|9RA2ptLv z3&;LI1`o_(r~5yXp!qBRd(kGgjMwb%K;J4atakW%@Jge7 zC`CM|2|+=5l!o-u%2Q3v&#Njb##F~7i3F8uHa9q&65*mkJj@)NokI`XR09u>j+SR< zvC+`}V7~fshL8z-nBg$qwCVw{mA7zkK%oAwNo85t@dQvFDA5@B=80Cp0Rsb*A^Yad z8xViJ1qM`l1R^tf&88p4AeA7Khyy8Q;C~EA$j87+4~<~uYQnwes? zT9EE18Norc@GYxKi;KBIP7tGJ)&05{_-Rm{FcOA9SpTiB6H`%{SXhh%z)MGE{jb~* zgBS`4$=ul3(%#;13_(s-77ZQU({2Or#es?fu{QvdnvoHdNocOUX+O+1JJ*(%mnSD{ zC@NxRKtZ&`wY5K$6HBFk2eW~it~E0=Gc7F*n0Epi#AAwug$1A6$!07=5G1fgbq^Cc zk`tq&U}74HLC89>t47DiWi>TZFk(|JTi_WHgkS7+AK05(*$+OT#_H-xb#-5$$FJ+^ z>w$WMToUv|VL<^33gm_g8XCG+uOc!MJ&>-|&(9AuoSLd7E)K7X4)MqaBHrwJAA`|j zq5Tgeo|rt0j1kK4Rb-G#Q7Nh6!9l$)K6p-4c=yeI3?16h1iY7`S&`vD3@w=R@W>!C zvZ2Tr(*lvEuC6XTJV;5@XQ!uqJRogYCT3Z6m5)!7qWSo?ca|$}TkbnT4B|dnZUcIxmu0RktDQanjvTnY58B|ixAgNVV zW#u_AUKB)w&!*EwD{l8@APwvZB@||c{1XRr0bD{6io@hHrPMhvus@zH4h;EgA~d9o zf-0H{D807!-#4T$%`z~cn!Rh|0;2))2`pOG&OPciAj9B-v9(UPDoXN~4ch}0R8&M) zIv_LJU0?4Q*P5z`2Z<{9<;ME@rFv^vFj<~oQrFH^?!wglo*%lp#H6I&FLOm%9yqRF zzsedL!TS+{0@v@~fAeHAUvi~$qyN*TAD#>K`Gtjvad96ze!bLA%Y3@Kg+NDx;2Vq% zsAYM4Mg|7~*Vmb>Hbnj(rrrY@>;C@(zN91yAtc$MD9Q|>j8r02A~S>}D|;3)OOy~2 zLX+%~JrkK_kFsSYGxK>}-M{DmJe_l&b06!wKA-pdwcg(gj31y0aA=d1^P#e`a%Wdp zMtLEP;ui=ne0;AH5=f3x63XlV!1b?RpM-eCD)kGbXV

    C`snpgqt=?Q`&=DVGh=p zdiR7G%{a={XPzP+lz@&qJOYji$qiBwCws$#_;^`K$>&kfHXwZ}$Ps>I(YOo&{GuJ< zhD~KCy?F5g;uapbxh{e5Olk(O?}e088X6q}^Y?d9`uh69a%#yZGhbs(EM} z`W;LI512yr%-FvNO0tuRg`9!{P|`5wM5QO*c5>s!4OSU<<%CNCq}0SKE&lxZ^PfL< zxkLhC@|gyUI%IGgE)q0>Roc0XRX*rAIVB|?$lBT(>VJ|4$*R_WMXKv?rH#G4pmrv= zv~*EsChc^6KXKhop-2$R4uG^DB_k(u!|mRDTNHSxr#+=!vRJoUtP$tqWIPI?14(_L zw>7`Jwls}ynk@*$VQy*Zs-|X)s3ilw<#z__H}K&@#kFk>gu2bjyi{-L!c=< zeoT`s=q8UO=6v8H(9!X0p4UzvM&K)iEe!Ty2E z{3!nNPa?u)&`?*$P5wDCQHKhmI+>i5Bn*x6DYy6L_ix|mX=py0w{T*gIqC?aT3)zt z0o;tgrRxA1OBCLf7ZDvDegA$1M3S!Cg3lg;C8=eZHRa~zd2OzrBwj0{t+d*(3vij( zbwNNEYUw=rfmg}K1#zh$(x#pd;czSqJRh@za~F7O#NJ8T3ryN&inbUh^{GVw9O_}TvcekCO(I0RF9x2jyh z$96{+d=$qL7JBnFMx2+2M@d1!+}xa<`Mu)h%OVi3U%jd-FHZp4L=*L*Wne%tnZ?F< zW+`s-Lk{I}@Y*&;NKrzi^^t;RrluKfUpERlpVUF1lyRJ5Qg>`=$M9R-6W)$=1GA3Z z@|FUj2H(qv|~u4 zJv}|&zFpSVj@Ii4lTdM8T{vu8NUW@`4l>_$Byy%vjceD;jf{@pY+$-E@aW;P!O5zief$ilt|oQi zI5fnR<~?C!0GrbGqbiR5EyF~_3@Pmxa9S`aLFg#B%86)bm{tAnCLqk`k?OF#6g(*F zS(KamOybzhwcSr*V&I=>XG^%TcCc?JG(dMKuc*NCkveiDsMAkT?%KgX1xdT%02H6( zWYg29NwAXQ06kRWBuB7As;ft(j8UN!^g!nol5ot__V%l?vZdJRL4ko8%g-C5h0nt3 zK_42wAj14`B{k-MH7k9hlj^h36a~7e%4Mx*0@{DDV$mnDskZx`dR#aB`ZeF3J9jQz zsDJQ)426jaq&y&d_Sdg3OO{9e4=xi6e^eWu1!`KSoAPn88}YFcKO{ZZSKvZ5&k#Jg zKu%7bilaNx;Qi=Hb5opDWL(@sM>APscVhsE2kn5^@vW^*UZgWHHdgoc?WrfcYIxG- zBFwnf|8@qhNk`|o{G&tQZK!4~3wW%MZhFef3?W~~e$2#);yC$d_sSXEWD*t4(aySQ zTk)m4t1B=lXcZ{1uZx;kA1bhM#qad4^f?W5_4IHtPnk7D9S73@e!;0IiV)ZjAD%#S zW3l6*I&EM;)W-9z4-g1+u3*o&r4p&!_)JsilC+0*jpYy)?m-L-2q1@cgA;&44ZTh= zm;nZfh^T17V%KgQbJgJH%@iM>N~ng8Grd^2{Ai_6ls(ZN^52jXXlkb+M?(i-$t>Zf z#b4*=;P{EH4fl|cG6)#R!ExMc)4fsKG?9C6tpTy@czE|S(9?fwZzn1&kG=?@E&ut(VAF>VB{w%;$}Npx@n4&(WxIIs;z1S`h)@sA2{!LR`T*8$3_Mrh zv~AR(dqd=^|EfX+6u+`EIf!9s5RKZFTwF!b*U>l)_ z@T$G|-@N#^+5z!9MRzA?GsYyHe;X?J&;zY+mnu-J{vb4C7$NfhXArMCTZv2Z!}Yn8I%+mRgx)?dbd^8)-vwf zXWLlZU3i1#^iMc>-shxU7x+X)BZM!6gSq?o_@t*>L-Ehu?%jXs+BK#F2QDOBlDO4; zhD=6A#>r_JS_E3b?OnHtFKyZwfQ4`5$a-yrXHM67y zeAv($g$kttVhMInEXz(cwI+DobiAsDPjJ*)d0K00YsgQ~uvH)V6c-oc>eAB%#ddk8 z2Y(g<(}a6CI?UeiT=c@li+j+-iEmF?cw^wTA&O$h$7lZSwR!;A=PzHdc4gd_;Q8$7 za3uMdhvj$m>Q$Vqoij@SX&?&N5LVJlHke&9p6gMSYE*~7bdTy}^RctPgtK^kM_I=o z5Kr7?AZ(ZyZks?;`}XbYJkm)Z)+1GS_jRWMk356{R7*VB3L#NmMk)Y3*m1TW1DPL> z<3fy$hdAUPu+vwOe1|Rot;gpQOj@mT%vj|i`-N#JDE$7wkw%N~-S)$hC@?>M93|@| zb0))iZZJ1jY|xo4!H}ryj&rHS%jm%uDJb~+=%5tMp7Ae;4fNz%4R~#NKu1g@DSOu1 z)fTWsL3=zBnKI@k7;KPLzKaS29S_rLoekHQ^u1f-{BJ(*#Y4vUfSjUC4zea za79F9q$VG|Z=!G|j;vQ;wvy)df1iIsr4U zqT0D_TbU}f5m@GU=1@y$_K^KU&J3Kh9Q1hWz?=u{97ee(b6 zl<$3_b%n~5-{7~0xK}$q=zS79dGh3m6B=;QTfDtE1q5I`UB7Zg6rdLr7v;&+z zu%Lj0K5lqq-0rCR9vik`y1@(%Y=g{<+G~V<7|Lcwd>5mKl)vJB`Q}}5E6%sCi zt58re#L z?|Gc}8IeMb|15CzaIn!bFAy3!X69dj#rPrfyN7sqa&3N|!8`bH;}v`y;0nCV8y+2n z8E`R5=;x1ep8&FTw-9UHXUFuOhlfKf|0p?Vt}8EZ+?{Pft|$(v5#1y>D2Qecq)22d zc=`D9@dteqd2cLBojP^u=+Qk1gca*E^76>m;K|bjh2D(9b)p`z)4!)gaW76RDe14M zI3p*=4)r56l$zvTlilwhr{(44`T5_$PeMa+fG0zH#rsTxjjd7WBo`t+fwcQ+XuOF# zGZ#-8VDs$Rv)JqkNvXg;FdT?|d+Wh*^91~VcsOlhOB?ts(AHz4Ys^$*1lMHe{KCQ# zh-$}@WlqZ6b{$AWzpKn47 z-%Uludi=)rM3OC}2#ARz&>x7IO2*p_i53qQBV0T@-GCa|giCw?rXcp@I|y>=uqwnv zM5=z)@e1e{<$w5al#h=bcbIzr&EG%Dg>N><@om`Z@g4@#6pSsuHN z1R9-LW9;97txbOsLX@hB$uJ1lVS0+h@v8i*|8j4Hg%{uoHC0uHHs)gpO_dR8W8gyItLV z?(qT?T%bV(l4b|M3t-Upb_Vskj}X&%`ZN{|QC*0O*s7Qk`QWr8QUKkfMk~Ep({p|9 zY+{bFsVUaw16-pb)Vk_m#z04jmRLFFIABmZ6bM_})2M9435A8-puLTakFc#R?y7>f zU%9f65vV|N^_3s|OspE^BzsuXSvS9)*;VFyKd^F_LPE07ul+)Z6Z{@~3ED z3lMAiXjF+70LHeLoSdAQ1@#RdygtTxA4him{evXYP?FfS_9OqJhUP&<^(-Pnk-0ew z#TpVXLJBGuFG6m^VSSJ~vUhSq{$g}wM3Gq!zzF9PXv{~v!?u@?IG}5S6a^&m!&;S) zkO&x(NFt01B>8bM#(fdGm%pHg^>b28TO<)I>M0BAl=n>q>aJ0~Zn{)!oI@Zq^Vhc_2vZ3cF zKf#gz+S1a})RbOS#9|@Dh-c~k4kpfr+d071uSkl`kR*bbC~G^o{h^XPGa)48d@?QD zH8>OsEe;B8{7?-UiNH!*p;%o<#}(nTfWdcE=dc~ItL5kkanMqRMn`kAvlZy|#>U65 z>FG@)cEJ}#iOVWE=jfQ5kuisi!`8|W^(zt&oA-J-x4!@S{tkkEkO+aPZKyUBrr7cJ zSxZDZ0)m5wD9;eQSubC`ItqY#nH?@sm{JEZJ`^jlcTADwZW>BuU!TWBYqGn$yK>Ux ztK?*yi1Je*$VJLNfy9ouh6lBAu$MNEMxlX{b2HV#%Z z7Z;bp+!as-&?CrqfyVr;xYoT22|7>*o~8v1TAq}W0)sx~waKDRSdTeIVbyN_OBt51d<2A5`7uuiMMa-@biYR9rkg zHH8)NxTZs=#NEZzbObnuW(T1x57CVjjW-~J2t_FmSsv9dx~8oB8I>1DW@LUS2CD!v zy~11$95872-fg=7ZgQao@+H6-h{@q96_}eNvDdL&kx&3AiFy8SDqqvN07K}TvYlU*+ z>%V`02lD`MAu2G&wN$T227*gUHcMcGPIb|-u!LYSl}}$~3Yfi%S>;U7=+o$YOHW2Za4V0hG}i zdje7@qE+;XWNn23<`6CzN)a~9^xi8uFjG`?R;CX%KzK_`O4_@_K3kK9M6LrY1~Jgf zT3Y@O9{lvB+T0ucq zeLW@a>|Hfu<0O=l@Ix1T{rtje^4NcMqJ=W~QvKdFD4+1p^YP{@A(q_d&za9N-Go); zo&FIySmdMdM1iZ=_ZV&m83K>OV&mcAfnr9!{f8S+{+sl4_$FuR2b5J*LiiBUVpfHI zIsO8YHPTr(&SzNH*3^umtd5OoAv!2R7)MWZn`}S&RA}H4UR!$n1vmndnifJbC_{Jm zA%D<4U)6+o5{}6t{{Z>1T?Mv7HK-26*af-V0GEtw70C^lQph|h5A~??J%xN+TUEtQ zLGYdty$CE-A?v&lBmZM1ncL5o*HX!U9coURHKCkes8F(^>iuY5*-gT6ond z`;-{Bkv>QE?4gpqgG2RS1HwQx5HOppXGoaDDaC)yDT1$^xFuivuOaYTgiN{-?u@kAt=aiIf~dQw!nXq<$uZ*aYfL!2NQ-)*qB$$gsTdHJ|(Ue;?%+%9Qt~ zf=P!O00zRj$6IE8b#W4pS)GqQWO4E|j*Q(Wk+2WrPv5?O-+L%ECr1>Wwsrh4RCA=o z%Usk6sH;$?p(dR_Phqh@4|xsx@X%$u8hH7p4g*fur5T<(~-gCPsDgFKZkqkjH z6U&x^#=F10vvd5{uUm-2@$m(SxE37^i;Q&ITz63*9vAODK;J_-4oEcX`oB6uLb^ZV z{1pw2=ZH%tj%#D_qmWB{_4{{oW#dlT-$chP-CUi-A_yZBqTIJH!rR*$KCs>=M~*$- z{f_8LNd1LWP3$3JFNoa#Hb^22+?5q)mT*@e$O32-!NHVDugkoz0N0>!ouhOk#f8H! ziHy{8a1d=Zyha2e@Nbs^iXjE$-RTPw@h%vjn3x_Y^+Lf#l~E>rsipqro9zc0MQg;8 zkdO9Un%WQWvBJsx5GRh9g)g7$#N&m*YRbXazI=v;NS|^?tJJ*mE3T@mdy}0_KkcMM zByv>r3=DW!M8~qSl5`+_n{aogX)wYMA3jX?eR2vTlM}4N0uKl%yPQ>A3swLB?MZ~Y zX_=X=P@VewU-oV;}tCYEd ztkmt>D(k!V>=_vxJi}fVqRbus>C-1Xj)Vk=u^ih-#`pZEv|!l=Bu3JlH9`;%ogfxr zy5@qivNE(1NQfLk{qOYPg~k7`u9V5q?cIxD+Qa>cuKV`RLPwqL`{d8ZM2t;uCKnXA zAYclk35yPP0{QkREHo|PK@X4OurPHitD`usc2(^c7}zy64443M?M|~}w+J9L2w{cqu7Jd42n}-3mQo9Z1W@MI>tRMATaMqu zy}_#agmk>WuWxUOhg)^fKI|^??JsvC**t^OjVethrXkP_4_NKO@sK})fVI;{-t7QP z$Dc zeL;-E4G_-Y23NmDays7nzoQ-bXk|Y|`URwt( zWqtHQ(eupfRo0%N8hxy#*hFhWsqORw^$p9qoC0`JRxf*rK zZ3+Gz76jT)$-#$8bP)88Xe}Wng_a`iu}ZIA zCPza{t8w|V?>Wk~Oy6@@amvba^dV%pp|YrSNA(I9&?r!FftmpD*iJ;VFfsA*@T8=t zhqCf{TVGaJ{|Pkv<3|~&j>zf*w55v|AO34g1oL#HYn74^DL_<<{b7mGjT@*gXR2^( z*^#qA;6n4t6-9avW56N+B9t8xVomo)&S?Vm28uiy4saGf0<0)Gh&DnKgCxIwTeDTw z90*iJOUqvMg=j1oU7hV4!ea;-jYx^hMCdR=TyNrJRMbx%A4_tE>OQzxFmZxaZsg0&wqWi6~E^@e)8K zX$Pntq}{U*nMX!PADrji&4N*>kGQ6+tWTKr0S?wtu+&ynePk}i6;zUzmHF`!-%}_z z0JdcKj1d}eO)v}uMfWNW*gHCwAm@dmxp&8c7S!U|fl?#`&(IGf`w~-+7)nSqd|5-z z>3#1_Zf^VM&#(VwCVjz)@0FFE<_v?q36mRT5ww+tT&@Gb7%?<2b7jcfuUeK7Vhp5h zXlo-vXqr9y6P3*V*W6aY++W}xlO@Q@Doyp{uE8k_NSuX!1r3Sx(C&Y?R{^z#o?-;8 z69o_ygM2#~GgifoFpnk&^~5n*V+D46n?F}y&-ah5;Vp@r6i!G-OM877Vd%y*Et~~VAx8XP)0bL ztWleT8yW25BX4E(0n&P+x2JXmkQdZd&Y;<9*rotW-@oru7ecP2(px^e5LREl%lu8G zOJ0$XcER2}gGz_#Ia7W|TirD~v|5_-p2)$wmz(Qyn4p{aFItt=oK)+K1rEC_2YdSi2 zzz4Cd^JR9GF@kP_QWK+^a|c`0%!?rqs;W}861++3tE&~|hApl$=z!>A0{Mj%Upu>_olVUt851?GVc7%?z&Z1m|D zc(F*}-y__ttIL94Lr*4(61ytdiMvG+ZM|g}fQp=&x;FV2NjHpQd>aJ~S^gnTWx`f< zUtb)+fW6o8ZK$z>Y^T@H{)5AW-EyF)$X^k$p1Tv4$jVuotuTn5SUd8V0R+bqlBf4! z-`oqPfg%|&_z4JlH$56-2uxNA3ar>O%!KJ(KB)ykAnVh zMD?^wJx`(F2m+uJ$30NUF+TwOC~=*{Xz0zQWv7fP5Q4_Azei*J5^9f5DN#%e8k7}fda+J9Vzyy zsoSqe8iG6haopp#d`ZxPuvh?@*n?&PftsyF#l`6&>JelIc>(=Kquj^B!h*ma*ONM^ zEFjw`f%)LUF!P|WLfq!qqck);4DksLJE)eSclMpvm*1kehJ@^HH59=f0s;au4cHdN zs9q5Q#yHiP5pchyAzn6~@2~Ci`ei7><9Ux*P7b06|NMFUPOro(D660{;L}(gP=R@$ z-@;)t0V%=f(6SWDy&q5=e2aw!LB`M?s18y$LD_k#@r5oF?0crJ%&oqmJnLx zGh%`>!qYtpM1XL%@{k*P=YkrP|LeK8F%28z=eL8{wor0Gf-xf?<-Q`+>U|HoUL)+s zbLV!c3-Lg`3JgMZ)z_?VU+Bke1DfVu@1A5Ot;qV*6eZX5E>IEWCff7ryt#JLL> zh>&D_8PEpa2WaQDYt6o9mr!3&A}d|g%R->pA}MKMY+Q*by$I72bac2&>J!x`2L~u0 zl{60&xh<Ea2r18GfgPaM%cOXeb_AX*b;Os8LL934MP!|$_Xo7+rFX{01 z{rlY(m~ntqi`59|3{DV@R3!jVTU#3za3s8T%-*W#d|o-UyG00#94f~S$>szDxQ!yh z!fx}U7oD9YWMyTyk*uU}ZKn*5kB^7hgdx?N*M07#6cxpGZXG;$u&cB4F&P)I2C!@8 zt`C?62j<6pM9%PER}(q`!4a|}D3Xf*`D9!%x)T?Lk{Id`OxoDdKmTrS1oC| z1|26_DF0u*A!*=52ZEw|X!j7;znBF#_p6sL2^I^8Mapjhy4tV&{s|GW0R#k)oqop- zKVTgIc+<)D56Yxu0hquz5>bfeg|+;ud?kR#;J+yjXeA35syNP}$069OE+m5mg&7%y zNfbyL?kgpsLtw9SQq-7PSwRaxlHeZSDl2YqJZ6>vlaru}K=whgYa-^fG1g@}{CTgS zpdc2~X@D8$`3<&Qy@Aoe-OJFC?!1R5sy=~zE=2G@9A}gDUc~i6_)|Qzomo7yK zn^7eiQY_HvAhx7+?OFidO&pKt_1N%mc4p=o`i6?GuD^|OQXrH8+nC}@OT94L$#c{s zjh07Td>KkmKw>D$dz3zeDLflI=oY)tA3x;S3B~smI1vML2VDg2f)IX&y*U(?PrQsr zcU@he-;VFxDMnUS7kQo#HOvKJ;8XN%=s$=aDEnwb)c_N?K_e+71M>t39HDP~ImFVB zHf1)!lw8GNP)br#23ZpU0Tp!ddw5$5BBDQj7~&qt%U6N`Y~Qv)oRbPvK#D?z z&J7I>)zyBUXZVk~?j|(!*Ca&Vgx1znU!Qb|@3U_p8a?(Bq9!;E&OL?=v=8((3vGv# zZrwV9YnH4k6#$vx=ciO(I0Vu=Pn=Xmt(#be<~cq)J3BFP5;;0<(&ipmUG%K1D5;pw zQ@dQ`X@2lsFv&!7Jm?j1qd-^<3gX<8VtE0igyw4?j7t)dd!QDabOb{UdJ4b(WP~*^ z+>Q9}J(Va*^($z8@T8RJ%e;|bure`G5Hvz-MlXB3%l^2qFxRg_g&4?7|4yq5V_xc9 z95cE_&bCM)pk3%fqPRgaegJw64>KuBDo7-|XJ4sTDX{sCd!Ag9lB=+_m;x(9YT%OK zB925nfAR!W4Wki0DhT!L^}B{W0PjC3G0{f(h7wvbo+`q2GK1T_6QJeN9a2H}0gc9u zQUV6UQ$X?*{Z=`t>4*KchA{|&mHyPc=iSlBJUliqU$Y~cuy9CIvklzO0zq9o2ws^G zup`W2$q6*eLWV$Hf!d-_t^ha=VgZ8)`jH^$*?0@r;Au1iZc>6u5MMdUEyih3N-=MV zG-Jl?t`k)ix_tCsfVXg_G&_WD?ixZ_?Ck}+D7G8FG}P_FUc63tlqS9wWUwK1yUI~CBs7nXTgJCA zS;%z4guEq|{X91STSKtt$T>t1G4=x-yuIQTCMv-zAc5ss4?N;9D3ciXQRL?420`OE zdi0@O6g}Wx%aN`5CRq$Jkry)uCtg{7`c7S)JB>G}D2q=AbuY;*2h-9afwcDfWXVCr)pi0_mU z!L~&v4tsOw_U*r+3hhY|LwYcALeg>SnxbMgvYu~WzcyT9ba%qS#+`+3O>`i9-VjG( zkqCi4puhp|ySldaEQ<`y1;KLiyM`yM`-?C(SHZYK*lkO0WGZR}^??TqOU`>gM()N& zMl5dKg5i&hG3R4XxwB_?au5ibT-{QrZc0=eWf-x75v!K0k&~T$Ouq<26Yo&tuKifM zVPtgj?l_Iz_)ZfO6F|BE+M4om4ur-)3hYN4P74$-mY?2Uri-zT7B{Lg^JX`yh6|T3 zXTN%dv2DDXfNB4JD7hUl5;F({_>8a9(qPv@!ALR52Z{C1HKvWCj zGnyGFWrIG7X%yNNEu-zOYDi}vK6XrrigdraA<-w=DYuK1&m_tZ?5ri_PpG2Qi4$eWgoaA@~S-@gn30s>$#@H!wSLz0q3DvEl%|5q}tl6Jvc z=0gqMf=2oICs?W9OR69V2NVJzhww%qZ3^{E(&Ad|6W}bDsq3=3p5(1eQ7=qJy0=z# zX7Iio*;TAraru)~&eibp2z|1&)RXB4saIY;p3qiM%)-sbj>m|GjEpB5J!!75t+utK zdjOMT;Jxb)>pX@QYWF`CYQBD`L2~G4E1waW&93=h58GOP+`C$V*aQYLTruQiCET6l z_D<`36taf7noqfHs{2TK&%17T`i(8(2O(4;;c-S^-xK(Z&uEp?MxiRwLLkg?DPX5(EPAm`xPiHbfao89)IkR!nR14a#o zu}W=z-ba=M7CJ2aJiL(y2kq><299wGlU(oNQo_@Ui8%mW9UuWqu}t)4Llo%mFn)tj zY-Yue|0ymn+GjU@MIeCqwg3J5Vb650vGY$Uj{P%{1n!)A> z8$P(^TW|0Bl84_vGW)2(03cVsjI?~25f8PtH{cQbuclLFU!Zv)^g{Z@#<-?Stt;~L>wi^-(ZMZgm zcUi_xy%*qa7SaSK#ESHM3b|$E*0@o*~wlf+uG`Z)irDIG-JOV`=_6Et!!= zlkwvIb6c8<4%3_7olkiS9$x&~8+&^v%YxG98-pjj?~R-*|MY<*FW}6}loH$NqA*Gk z$&&t?<)7YO+!Vj??v~}`fe+dAkry>@ZFLBX3p;J^>$j9_SD7EG-b%YkpI>__?Y-6O zH0$9JlQoyHn%5i^L;AjbgVvL`tlhZcX&Co%_FMF%Ka25-5uWEUC(N-JJ%4(DzgFzgW9tHm&ZPJ5af@C|7unjx503u~TwY$& zKc8sDNH-|;!^ve%?O4Yn>lCk%_Wrn9!NWT}hPL|OODIUQucov-qRZ=b`eSSFnE3#` zI7=^0KDml>>zW$<*-z3HDvla-7T2|}m+~6kf~f<^t@GX59#lZ=+mxQEjPvrx)|*a$ zHXM^2nqbJPp$RQ=-*{%XaQj+oW!9(L5?x&~20xUPmhK;%S?`UlY5TV7Y}urL@gN6( zN%d_WTiK)U3~L??ofy0?IrLOYH;V6+*eCrTCT7!v%&Ph&rYA1;-A*C1-TLz(BzbKk z;#KwK5$=!Hq`Uc?UX<9$I38P~QMCPNZrJPb#K8T|dd~CE;Gs4j=ax^0w&taB`p#Is zT3__nzPUB8wr-r<@bcO0rkYYpl*$$1Hr76ks8`bZtJmc&7`1k*m#oel z>#U(|SJ*OL?&;XNd|mKhRQM|~p*Oww@S-YfU_}v&>34^CX-oUEuix#je8|?(2`G(I z6FtT7P%26? zJNef@_oUVG^V~J-`Y*=TDVrN@N2aI=rz%`pLa5mCqNLQlBPZ?5yKS_0x#ERoSM+by zy`P)9t#_*Asn++{ho6$tBuqjyoE};Et13n}Mf34go$XB(cs}>ZOX1sx1$;oJXJ#i` zYI;Mo&>36h3kSkGi%?;XmhtJ6KB*@k}%Tc`~v9)(BJ|M=-1ruC;X{}H2O>0M2G-`k$&v>7{o z54E1;8j-ylY59=le70T|#d)CTvK0XAbXnKG(xoO{y|x1-xyBrU_BBTiQ{AyRcJxJB zZawc2_L&WnQXFSTFb zdn~!2=2vHBt~W^NyfYKCubEj2{1aM`cgE|4@OS;E5%1o<%jj5adcK=ct7fQnTz>1u zy(bIre=8alEMBg@BYjHfucEPLTlhKoz%`1&^{mUun~%=R7Oc0aCXD;Lgw7B6Sw+eB zGL8)CO52WS1o&GW9KWhlnSECIFSqpCuy&HEf&edd(ty)9R?lIL?wr~kHFU$#=@GA_ zi{2KJNnMvca$Q20Rd(V{=8l8o8;=QWO|5>yeT}-CraAixlET6v2;4UK)#IwAzxVFM zTP^d2C-1eWPKgWze`%(6v(nUj;xxX`QS55cNli&}S?Wz^$)6*Zhtu^-wF`gO>;0UL zci7g%1_-AR^VUcbHOx&d z)z+`Coz2qp_HT0^WeTkqchdfP=!v%E+e(oZUgrq~ZNNs~h+?RlYVo5ih0%ImH{eS!lNA)jii%dcu{ihJGvqVxox<1}%$ ziG0v@myt|RKlhh2Ux$o3)MC{bevZlH)hk{09xK&P{Fp7xJ|i=yeeB4G&LU@}(A!Jj zcSgskq~?6T@@*e?dP>Pk5$UPTa>|SQx^fLfAMAOg_I3SI6rXYqzY1-Hf56vE*3rfs zdE*D?G*y0A_Hdln8uZj~6{B-_nfFcq?Yq$H4>jq>Dp~uRr1=F5Cfs7QZ=ER5%hbIg z>@3j<43hI8cvj@wM`>2Z4Iwqtk3W|De$9XLzr8Ep;n*R|kl67F(X5JDleQbe64&ak zf)#5SHoR*F0hBGG2`0Hqnw}B zwlse|Y53qTE$RMjq$2uYR&YTq6+C0UDDKdgbf!S7U74Wv{1apv@qO^jmd;dvTWn(odynMw+Pg%J)u-c%$+Ll@=K6D=Hs=g9 z)mdefgMe~1COh+dDHvXf4y8bXe!?1s~7*}=-kSsZOifQ zb#AInwqq6QT8vxMPV*(pmMuT=g8*+AjIdQ|xD>udZfXDqvt!g&aU<>ox?(=CH z-l-uIn^{4F?ziM^M44Ca=$F3J8HsyZblpHTBz@c?r~Spe)E?1wty@iep|a5EK10yzu;4Nm#Q~m*wbN+R(g^KAF8+THlf`y51^^y`6Ai^ikh_yJI7!pI1+A z>zxYT3i+FQeQjWes-~u{>pkni`SEP6TPG^sjXe@#;XNxIx7pEo_OF+c%#@8($9PEW zn^g-nCr8_Arjucz7gTvZa&HVEv_v|C*9c%HSAKrYR`!RHKd8{dm=i%nM zc6M2C_Df0^ze7s)DY`E=Pn^>md9vf1Ked%?lk@UzhigUE{onYxU0)0})~Bs09r@yr zANBAj%OFFTO^-=mzqfo(4sY)6zbxFGui3dATI*tc;=b}uec3(vbxvld?1X&N=Z3=q zho^t<*(PUwDeOteU;8$a()t&S>7O3xJ=x3HZ!Y81wNBM2=n}R(>eY_`w%1DulgA(W zpH^qpP|n$UWj0th*64Xn{OW$TYo%L_v9i2I=gQi|d-p4%AA&QSK3?OsWD?eOtRVmE zlgjDtnaRt#{(X%00DtuB&x5j5&7T~i+Gk#5ehD3$VB1sTdSvO2m7WiQdTb*8Lyi=4 z+_dZQuIY-0>)|IV4=0`R%!uo}~>z@GJZG~{6aLs6E*aW)%W8+IYbezA`6fjI7NkBprJ15NSQsV~$v`_x1GouplS zV|`})h1I3So_{%)?Jm_=Stnx_qOs6twlGm~)a(}1^qk8^uI`zr*`M_tnLfUfQ>V5T zFNb(d6~FC%#xZT{&&MUpPjWLDd~pA=Wgqk+VVj7iur^QY{8}WmX!B1S$k6e~n8$cG1f{Z;r_#;hC^(=VyV! zq-4@3!r~Jiu|BF=9^@Y1P8R2Fw28I+{Z=;2h;{(*k(Ae@6|uSSE-Cu0M*MQPlg?+6 zk9ku5p)#sPg=s&ZP%Zo_RH71l=6GoLg-QDZpH_}Q&hye$?RlGitfD^fAQ_Q%EvwD) z>+t058(v!}?())e%PKBa^BXJioad^pXt}GuHs;tPT^qL`6(6F;`-neR$$mqyYIBrf zczLb8v0ccacin={bF-e;XwYa-EAFsy;DHUbcCswM9+}YtgMUjOPR9>2vRWpj_WdPX z!#u*Q!U6EI=8mOw;@A_1@WX{eXU3A&3l{Yxq#AHY9!1qhxC-YlPiq2E31l4|* ztjR*jpAPF@B}=@rUU#GSL+H2f8O9q;}Rm6vl=P96TdX1k!-qo^QtdXJjx;%J{^aM#j25Bcw%R zJaEFG^urrVrtWTa)x5SrdEsFPi@%Sa>^(FRaofaBwM9zX_VntI=GnRn!MnCs^-8 zVqI@5O7ER6tfBMyZemeO3;&Y`drq(lTA!Gcx34j|-&@k`))CKeYfq$v8^7gN_}oJ6 zyITihPtn;AT+Mu<9n?>EsI9axA=y{b@+wR5`r{{YMYYZigMsn|oo+9O9>v7vY><7+ z?cZ|$syj9Ot8i(Dy5^*Pot}HdfS~ka`XBno-L@|=jC&D*L7&Tlig)B$^{c<$z1TPF z@%vk~#O&kOq%)_3Z>nkElra0k^nHoaeVYDQ{BEuEcj;zkYuAc3pB{`2UmBjj;*l8@ z-uq+TR$S7(C83p8yCA(s7O&4_y8HLmtDf}EorKkfPeDgi9mNKD$|_C8+$sj6hf+SQ zY-qIlG)XlFmQpd${V92xZ8&f6Cp=MXo>wqhR6lCVfG))IJN+@c@S|;V`${|pmXy^e z+@_Czi5E~R+MZ$Mm%OE;qIzaH*pg;&NG88^!B|m@uiLqXX}y-j^?RS0%er)I#v#BPoUkj?Xu624rR5L$-a!#+)tYdSp=bgqxrxB}Ch7$frx>>_QTJ2p46|F&`!4X$K zZ)SC-`USrF{X~n6g60w=zCH4oGDw`kfw} z^jKRt&S7FoSUO^1uqoiIoBYiF&`5)~qPM@%{QPenWF{6V&dTbuX1#v@JU;m1cvhfx zKs7C^*Oc*L*8w}Fmm$iL542o)rHkYB1}{cG(%Z2LcW_zWbR=Svagar2%)xm_i)sMH zT)Orxx!&+uGiN`A{b}983TGN_s@IE*-#Bx$?XKq#{V`1e@s!xjtm%%9>SVkYGF~vH z^hVym>~+Ph=nqlXRQ|+QqoA3^RMO6PHNI&Obmc!fmrk}6abVg1`~|+x$~VLbdse{$C21pQM! zeyZ3<1JegS2&>{9=J{F|bS@iC(oTO(X)~TJ{atKl*3QroW;b{>tM<8yW|G?9KSwq5 zX;L1Bmo9Uben|Vno@MBBZs*3OwzGSRzt2z>tqK0Q`PwV0*=|)y=TH1Q83vx@eRL7B zx-|SF=Vtg^b~U#D(!OHVx54<=igcdjWiUnmm15WHCp}+x-Wkf^AA9|1>+tZcnn^!n z9U0SL-aUP^HkMHmr7g}US1Xz*2N)we#zVtQEvEU>EmsO%*mqLS-`0PbYrFY+C1hLa zWYgHefJ+e!*|8@YoQtGAm>1IHDolUb1R94?2WI-|S0#@Y#ia;z{k);y@#4z2Z*2x6 zo~nU`AvRh(ald zT=KLMPwG^gHgz+q>+=gR#Fn^!H5{2??aB@Ma;u|_jm+y%uM3m?(2JaMe_NWZq#X@8 z1O2(f>hUzIKf*#9Vqey4ec05VYWLyoH)>f}J1#ym;QYI@-&ubx@;7y;_S?`xb~yud zRGrnPz_QTHKk0pLh32kiTseL#`Ek2b4N|R2-JOq8^ZHlc$*UJg(ZVg4i?7Uoy4_;bo0 zOY)N=xt?~E4*IW-@^jqxa$;MHIj^bS_E<|}LW^y`cxc8G9?P#$Ic3d!f`VJ643xVl z*<`gXyBkgl-<*^_uQt29H5r*c@O*lHzl_PH>#6qQDjH#@O4=nVEo0iYea-67c(*ypQDLQ3t(^@tBzas_tFU4Ak9ds(K=x88sxaO+nvo6gudURLWZf#}os+mz}) z=@uEKZ1}0MVTfnycu@cK2G#;Akyz<)R~eV;4Es}=BVa%J1@lub`t=bFY6c$78d@!z zHdj(3y!<2%?nxQorN{%@)Ad>i&yRn)`DfzYjoQC#jeogVLyImxm8N1XPwRweb|wg76-R*Z$-DY!pA zpguti2qA{wNlAy{ty55`g=;!pQmg1Ge17Q`SyIAuFUjiy3(q#iQWy?^gpV< z`fFm;uCkwx5YEdSx8@#I-+WuZ_FQ_iBVMhGPQOjk?^~~WYvrLG&@BSi4($_7wKhqM z6aN#;A9~&`M{r^D!QZ48^iTVmj&bxaer1%1OcQkO7l>NwC=T@MomR8{BA$H7f2pi& zBO$^-seG*)q}om?Fswbc}K7bNh^b4j9vs-x|{Dv)p2fRZZ_0 zn_`ryx*RiLVG9xm8Y|(_uYu;Lci1XiQc@ zMn*}(1YDna(X$SwamEoN0X?2U>KFCIC)-wak_L+2UCSQY&MOteE~wQkSl@H(p4|Ja zrTDt9fm#W7bZ(Un1e-{;rNi&g4hf_0;qqKXlkAKRi4% zeyhljY+`x#&)nQ%49kr4*S?X1e=B7>$UnTZW)D+NY5N{I5n^U_$}eqW+ZZid>_%(v z;MQBbccgnlmHW;~zvNSyIkHFNCg~#VBxNFAo9~TT?f9k0)Anua@Ga)ITOQMcn#Y|2 zoxX|r1=pq=8a(43_x`8&&f?0{bk;p3nBP+2+_1Sdrtx*J-O3c{-5#p>Xc$OYdHLk? zw)68guD5knq+fFikAG~tKcH5-R@;AoyNq9ugC+j?#7eDp-XhO}S@hRtcBVU7=`r%je=sQd7W19@9iO-y#h`wW-V9I7me zsSqD#D@_yKE2o449_L4`5WDBi=#*>ptL`I>;-dsS4hwWA9JL2hv@8uy;>+^xN$+fs zgoulxC^+x;2p2Fi9xpHN`%$a?UJfVsdcCs`IORTFsWNZ3R~~LDoRdJGOvmM9(xQ89 zGdg|zwJIbGZaD0EQV_eRuSZp7t;T00u*uQ`)z;2$Ft+W5QlJV+%?NdO=g+G7IYKL5 zN;V_IU;4qJq^pm{>lwP9QxG0u7_GbByXjtj##F>d&507R;ag@o(B^1fj}O1F=3}JN znm$R>0=IppSwk%-^T`nwPxWY&ck?%o*0Kp|#aw-?i%R z(}hY5bQA9z{uK6;aR@LyLtcNQfYbv0);mqmR#LQdypvvw&$tuM#XkaXLZfJ18Ijo4 zyU%cOr0LwV^SrEwHO=m*~}DVJd75?yrhJlE3%B-|RLvz19m+iI{i7Ge^t` z+}Vak05HY@)V8LxVBvXQmbNk&>H z(BYnXdIo|rw)^&U9FSWpis}EA9h~9~>U4^~pDwdl((NuSw>){hA^{SMON$GLYQNt8 zO<(%^)AIuwusBqd6uhfz$th}l?upr{iH?t;Su-amMxrgjm>go=w%StrxfiDh_`Bl_ zbnl(rx07c)PFs{QG&&MpO*IMAp~VS+Gccs%@dggIZ)|dSdeYxN zh=NyRJH_ylHPzg|^f@1AOQ_X3 z0{f;V-8E~9fRz1ar;E?p!OuHAKq@W~9izH`(0kL55Dlx_VGZ-e3llTB78kca`LP%f zA^aj98>gJ8qQK&kIXjSnbNIMQf=v1Q!nsQ3jTJ~T=`Z5+KWYi!v?$Zf%&cCx_k{QQ zz%)>@Yk&9BXxQo{sisBZky4GmJ|hp(W3R@pVCIYF-ogZMx&;5$?n_e#wtX(ZibrtRVzOCv-hv%z|I7FegW0kEHA^mNxjAcUw@-^KxZBB=nySIka59>8U>0QtD zv%SD#+tg-&c~le&WxE~^7uuOZEmSlNXO%-gr#a7d8SRR5zgHQFe5h`|xz@U0J$e#3 zFSZ}Z9Yb}nz`?eqy~UDjSZXUiJ687&7tAnYhQpJPs^NTRF=lqHnOB0czsf2v=UZN= zwzw)tMp3-}yTbK{^}mF?GA-`?IP}K2cs}9Ba6TLKtD1x`%;;Nm8l5Dh`Y>^R?{-ew z4A-g(x1PG%ASNl1+z64%eOb5v$ib}BTQ$Z!O8w%jy0ru+Ls5WT*4glDYmGejgEltR1k zp13R^m_sI&7kN`FK67h?gxjHJ+_^!y8>+6Xn$Lc+B}(R#yM;FYXB+}(Ui^4|hU9pN zmY-D$K}=!(MqT@^I3WiF z>LmA;4)x({lo9b%P(2Me2gp(X39sk@aO$^*EZ$`uKsiJ8r_MX&5?p}XZPj$n_&`sv zQ0l;G9pLfNoZvi}gt6~-+XXuLFms1`30pRuiP4p?&88XeL-D@ExIS%b?c+T4#$MXu zD3<y)Ar) z42Wc)p!?;kWy`Q_cFZa+pA@Fe(MoHVZgiAzuq-ZwWQ{n5!% zG@GhoF&5*%Q(2Mo-{tEaqT|W^8=bri8MQ_4y44|3l0w4Gl3c=O$@@-VKohshTg9(c zc?H7PieG9!mc8T273ZyBrqgzz5hMW1v#%bj@M?`+Y2bfS>j(w#=}6FGfghSQzUd$G!;(oX(D zFRQTDcDy0MOKY$=*{-ZN4n?YyQRo;p-{`|Ub81j5YUqrH`oVT zVuKNAx@LI`fk$5q;)`*Ad$?m+AaF4L4E4EpQ@p+1uee(x0FKO}>V1O5Z)rUxFq z^3Nyh56|jKSZG5eBNIEvYKw`M+G3Nz1TMg#cV`{xAD&*EDSg*7HJ`#}DKM$=#k=Ra zc34FreZvE0&(o9@x@yP1={NnpSc|3hvdd{57lNXzN!B z$!vg=lV;J(_Wph&lh)1Q7S*b_TSR#1^pMM%I{kY!y+)@^eh(P`iziLKc=UW4tH;CS|q_xZEZPd9_?Wbl%%;Jb_IhN_CF zJbu|4r(teI4~;(puIHs|=bvST$k_aNZb;P}at4kdcSJ^5IvA{|j!>^Qv{9w0qGD za$7!(w!-<@YV3dJV=Hyi5f|UruT>S3M@qpYs_~|NXXH~%a~Grn1s7>W0NE{E96(ol z$*y$i{Iqb7U{&$i<_yQ1R@hc`T|b~nXkhxzMaRrbSE~;GpsP4(=m*1%!afps2IybcmRJ^TUq*lA3J|k8eW0q_EDWDuB%@oB(vf) zE#&vqdTW^6BZ*SFC=ncP_cQtMvFqM_9a&&2amld5%AHJ16AqR`2V-X&Y9OnlgcZr3dA|eZ+lyxqLm#Z+8H7g>AT{Jp(R=^C~Kw6|7qgUvJE|03zS=GWp-B zkf_1F34SbdfMfNFw1SR~86O|(?Cb3BG($y=-`O!(*33LzlkHZEr_f9&b_7^NPfsrfM6Fyt%T<8b zvDqd7iZ_?~dI2yVip9usa1jv2e7}4JgMdbsw4bd~-PSlqt|tF$OgV+XfV{jRxW3Lm zJjV8{mXzQv=ffi*J|zEajLG>Bi;UJQV&}8}=T%(NK-5L_@XO-g4g&r_QonVj6ps5V zmR-9Gs%mGXNVfbCH*89J9et$4KlV#`4&{;zbr6P%h)c?VsC z7r6_12;*z7!HTlT+=)#Ox6=s|{HJ*bA4S;)6`7m4im3QyJ!6im@#q|np+;b8mvg#O_A+X>kM`!x2Bejl72`^#_0eH5(C~^YAEPX70S*!$H{Mb; zug?Kn_8UMXzTA6z4{HeQ|K&q72jUUkemvoF*mG;O^IIav&7fSu0LH2*^g8}nQUB)# z!Kn#oLtf;8{r4k@g|2)A+}#?ayafmQMiye+oj0SM`r5pycsm| z+gRyA53K5^mRMM>Cz%sC04ZgVOFkqqakQc{gL?ZuPFZc{M;>-*k-N%>({g6{};jr+yC0qD3xVh-C(Fy5ko^gepGQaOYG#D+&-ekZ zRGUlh#5y2Runq7G0{EDs%}F8A&l%0z7J8X8^@ zX3v56JMpEYhSaJ7RbFTq5|2Q@01r;Bioeap^djnuw2~%IYgk=Hg|@VkVYK<-es55A zws-EC|NI@G5+d7UK>)S(uib&CIMoNF+Zs&gb-o-Aj)KkCwWJ{p6K^UrlhMKavM3>Ie_O1jQNl@dR4E~oZ^ndY*|1s9~Q2Xc>p&h%NMLKF*- z1jWR0A&qI1vpL=2d%g*Dmp!L6s*9TX=t$)73I1D2ntg2u!e9&>#9+r8{arU3tI{Or z-dlN^dgm=3M0$ajc}2v+$FsP~Y5>{{Cj4%5#$6+e9%Rn}_H3Dol6S^tGGTURBqAka zt~|xT{uM>lVygi+v*Hz`XkI(lLZJdE5%#5DBxn2a<_4*$jZJo<2uaauQpzZ;gku`z zrx~sK?Dm?}BBQ~e2&?`KY2w=Rp)79$=VQP$?v0@A5gwBa0_*NQ3{7Ucze9*Bi(n#y zzhx(N3Q>i#KnObGg zQa%E6Na6#0WMVTy=Il-uu5wZiM>%0s7WF>Iou;MT$61UYGD-EP)|rl}e*MImeA&$F zaDmL!=8GT?-t$SDe`4rLPlS=tT%@;>Lxf9C>!ITc<@)gnW`YS_<>dX{!vrk}GuhTj zZ@%eaML>?8oL#$)#?t)eLV)KFXkbd6xi#rmM+cKHy_OaLAi&iwS z4*I?V4AqOy<6T!n%i*lPj1)#)rxSbmt-tsbfu565W8XjSRp@Bw`3+13Sy;dT$!`Dk zIMK}u#It%wdk0&~0FI;Qm*-{|NBxBFvB?1SlaV%9`t)HDTvh8cs5S#+WE2%1?MJlL z`N`z4SR76Ce#Oj0$BVcA`0%ir#ZMJ{Ez)JWG&xvA8GEdk`j3sj(+iYbzx7*QPp>;a zfmJ&wLamyWm3g8Zh^b8<_(03VgbX}fLi?NLsoC+>EUu5ig-Xc!ldHcwVTlF(;rs4a z@-p{#=aZQMmoaOEFt9K|SlB{jfOwSkMgz)DGE6YDf`D<+Gt~k$G0o-bnq*G>nn?9! z9M+Dm%Z!P8Fill$$KmZd$ofhpVq$DhEyv;F7%wwFFqSdMe#K;XDBw#^rX(n6Hdp1u z2Xkak?>6+Ib_?I#skwt`sco!kizH2R?DaC6NSDCVWa+@?+xZ%q3=41`byM@hA+-dew~cy^s9`M2jj1^m^3E>uLR5I_{@gw+6I{P{^z1a zPl67i%|Q(_h3kQdD*4a#H@JT;`zJ$u%W%&i6~E*Q;aD1RWsaj9 zUEcak0$l(1zI>Y;x}BM^jcF0_(Ps?>|M@sOk1V`!4jI;U=j-GuY9uTAcFzXHdJ#B-s7 zO_Pwb^pFUBnEUhlu$bR-dIl1Mmanxs?OIyA78C@JtFfFV{RGJi|ZiTJwSx-)Xa0DXa$``nw;w*y-GJJjLE$b z&P#M65{e?Jcy%!BdS!Nl*MM}BaYRyjz4XyJQO6O!o!NQat=!k{77N2XQh%^F+H{!` z>QeVtccRTsdNPD_*#>^klCE6)xcKnUnrT#edPr_=D^!4(3THZnomPdpeW+yw8XWEY z{k}-xXnW~B)~Rb#wa6i1jFI>R@DE-8yz|RACVRBDtFJACK&EP{Duso`P*2ajza5>D z`5jzaOojk@A*~3QNO`A+zQi7JX-fNPZGtoB<@&z9=~jz3fJtcf&HN%rgzR8}0VquL zfq_Tk^Inh7#Krq7{Z!e%8~I0!U*LYeySlOfIosuWLQD=#4_~p>;j|jh*XA!Hm$04JH7A@$xUU~Mc9ovHZZYogSp@JD&gNd{Y?RzNT&8;DzKZv9Tshl@ZS75@K zesvua;3ccpX@AvQao=JTmXH%mMN7Y_SV-i4r988CEE<3KASUeO2{vqE z3e7EzI?ALqwPb|w2l_o?^w~VJXYJ3CNluwpcXCc}NGx#UM~fGxivec}-kb^m=9m7^ zRdFJ>#E*8EXc1Ps$)?w`MS)@bQ&Ol#ROgGc7~*W#a+T|jXqD(MW;}$nG`^|6P*UQd z1rf;pOif5i+Qj0*6YkGU&YV#i$*?2{Y@}1+f_J8lVb;R7b|375&UzaZL6CudjKgRH zMQfY8UyuWAc%YrD@!5yC8>IKJ)!c`Us-rNPcEsiW2a-Lga6ag<^`$w#r;|?*+%>Ro zXlM{BSVE#Jeeq%j6^!1>lQB6pRKYjxWJlbsfb}D;1uN6COWil^+w6BOvxp6t(Xiq2 zxun6RS^@Y8Ey@9!{%=kT?BQ=%Z?pUWY;qnoO9MLghL&eo_C_P(MSHz$lSMrdk3m)mmm2eN*l`eyrY$KYoAWKV_rT}BjI@rMQM%mx!G z*HcxZe}>f>2^FqjLo?C85vUOj6?{A(LsTmxjjhNt=_M=rYsU@zh={JmP9ULp{IYc07< zgS~j9|M~;0yWJMEScF7i`t#ove6-izgI~CRg^#|Zvhcy1--M4aR7DhF_d5#{M^H|L zim)adcX>@)uE_@MPk=taJK3e4LreKOHB@-8E@;xa;!5KhDK*k{al|d~v9vv1!$fq5 zu$JXGuYko~-<6uEQR9`w&{i$j-N3`lDtLXq0htHJKtxK^jqrz*iiiM@zhPirT?>an zN#Ck&gWohZIVR$#xbedTI?c)tVgY2Zx<%y#-Zmq46qFe^D7BbB>bi)S$f#MFkg#@( z7HFQVjpP?Z`9v*U5^<8@wV)(K$L~*Fa7Y3Flv5azO-w>CQZDQRww4AG(m1$dGYl{w9~>eglmo8x~Ry>wW%4fv*H_FvU=cAE%3Bv zZ=|zx1Vb@M=_q|YH=(_GJMxtXHh(C`<-b6Mup0+WT`&b>gBQ$QQGm63q zA&n36f``erI=TKAMBhs)-3c5LT|iZyv8*@>weP#L=o837 zijP!@@L4P_9vLYr(tocA7tU|_-DO=g!J%=#e;M0+E}{(0L0T_o)1c(#(WT7!?#?7> zaoMx6w78HQYuE7WkMuI3m@(?6jXxnK*ct{GsduFRyNX)gc_c{zwGRM z%pACnGmeGKE#7#2{UHA5tFZV;M}0Ff9r5jPkWQ+BTqiuN9L=6lVG7p198E=)`LT96 z4c*^K*C|fSQ)QETx5L29aNcA(&hI)9_Yr4x8QC-XEC}LYBAK#kF1XW5!bXm_5w-$Y zzpNKjd|#ZL<__P=TG~}-!SFBQj^)8oX}50<%EfR>=bVJ*d%$BMs6 z^(T}hxK<#UPI6mD_yfeOf@vhk21f3gSmS4dD%T+0QJ96o_W_Wxew`Hou5;R zhp}fG044oY`7;DcS*e=oWf=z(Mns?LBQClZ<{;oz&Mj`y+Ncx0@V6A=;Dbt8!_7}UBOPKUH!AuX7pWDfX2pR7msOPseN<08H;0!pXq+Ukg&LD8 z8}b-NjY=A7JkBQjD_7C4F~G;n;u=*$n8W=fa<;AijrK7A;G6XBXQ=Tg9%6?1wgLnh z_1Z5;cPr=Cb6f=cc!QAtiuG|+He>I;@z9{)vk%8rbwkqLF%aBecIJCJi^2E%*edLn z?N@|R&t*Fb;i6C@ncA4;y{RS|IiMf!T?#feZ^v(r2*jiHy{VfeoEy$2QU8{LlaK_u zwyWP3-H7H7UArAfUG2v099Oe6IE8+(Wz}9tRs@X?4AC>PuU~uO_II~m?)5@#r3dOu zz@*Vf{!W*qQOPSFcLa*a6v36m%fvL!YqA z)u0_78hdr}Dw~rCYa>2tqLgVL6h&h)K^0}vGtoeCEzRJAs_08fiI0l|J`%P6M}EIX zMoHZ!E18QIkNyWpMN3I4;h#+uM%}tkj)6N=z2zzrLk@Q3Ol$&d-E2Pwn;a09SnPz0 zDIcRu5OA*8hH!Y!7Gaa$g>@p&IX_Abb16G5Y1s%CkO6ZYq^dA({T0s9_keWmns{9O z&h>(3{vW#OOk*R_0Y5*CqlOz=GwAid0qH`A`P+ZLCwctl#hAPF&3Si9>#^LyACB?L zgF=IB44$FmFWk%9?aefcgq5N`_|p89@5XFP%*$@%_Dd2Gc%IN_n336G9zBtf~Ex_V}D% zPPJ(E#C_i>L_i={O_NwvXRG6QIZ90}I`zAX`T3D=&drg>XUATv+W zWv=>DZ$<@6}9=x11o0J8}iCzFez=xlwxi1 zdb$G)+UPHz3k0~whX$wD!&K|qpy;NFo+tvnX~H{=282X+K4}hf_59B@E74A=5)qg9 zC{;B)Cv6f|_*<`#vsJBH)D2_eVD(c)5kH*egkvgl_budK>4Tl4FL&!jt2FGG=LkIa zB%rY=D~CT+?AANqGi4i0?kjOa2%l$^>B6snak^M_Uq1}QH4f4$S#NX(7vq~6q{=m{ za37{L9q|0l^EFV-^!ysk5Ta(8y;%T`J=h~?&>fb3PkZ02cHiGqM!{p&U6Bd7f_vzu088YGP8Z zm*i;i)|fMeg8Gnt*=;w&&n<26{uL2yMe$3@=IJbOR)tyFzc;67#A;@I44o9~vWED? zj5oh*>iA?>=yCTqM&t{`I6`_83@XAL*sSZ1mAw%Cly9`H98J}a0tJ5Aw zjO7yTvHDjdhl&SY(hMgXpS4sTi%g8bE4GtmH4~MxuF71U(bO__2}yh{%gW=nj)Jto z-+}YPrlZZf@ULLkQU@jqazFmvkvo_}35>7_%Pp%P*-`sP!y@)mrFDJ91lJj}unBQ$BNE$Tt_rx8SRaXP<8m^YRLLk=AxIsBYo<0Cd^Re@!bFJ$vu6C zpX1m6U^;o0Yb;dCJn}R6w`M>t7P#oHM5Q(gl%;%O)XT+WwR!+aq_o1v445T}9WD|1 zWT1MB=!HgcbXOTY-y^H?{H732ZqGX3sUDf4o1P3t`FT@zj*7kdg3%6^cZsLa~z z3GI$z(3Mo7+Y3)m1I^NKz#+J)&~^2#Ip68Kd@{ie4&vj{=a*Supdu4Lbqb*$38MV8 z)&bPJ*`w&+w5=*49XB84`gY{`1TL5sObP<#smmRI$*;R{W0@~zL>`;}nSlpX>PD23 z_zwxUKgtS;`v$(zLvb%(LVd1kdo*dP5j=2`_V?wIFut$zs+;?z=G#Kkk?~6+_NE<~ zM>ZyHeH$E)J!YK}A{LX!SZ$L3A#77s{rqI@d;YL+Rs9FH#_N%i?EErmZ}|T3Te@^j zH#&_$m&qucEstBbhuyd6?_{IhLg*~&T(xVS78jf`7wI0Bj|f5@n~GdTD%*sJ{Xae( zXSV<1kUKhy26|uDws-ewfZR2&zNJ|4rk}ir#w1`oPolgru(>$KL`N-fxLnn<)=tm4 z>Mpa+SZ@v4Xyx__fuDb8T~IfByxY(&IOm)zDlYQH0TsUVdNpg?`z&Zv_YQzn()06m ze0{TgogS05M4@6uCmkNiW1u_3My{srxx8Zr4yt=0kK+Rh8GTaR3E0#yBdhVtnjF*3Wly%T{Brz|3Ahzg4HnH9TybL^T^kR` z`}8a7mn<1ybfu#Ck*3v90Svd~O|3a2de=XKe@-C7?jSb7_J%LUAlG?q4~q*m7o2e; zcvdcW2QUr@yC0w1SBYk#sb*qaGojmNtdhRi2j+jXyy!kB-~+ZlPv|R4E@#(8aDUclM zhxPK^cNAw279I}oULn+Dmrn`!Io2<_?m7~TM6B#^2(4pXVRCn*ZFcqPOyC%MJbmiX zkCC>k+65X67{z@p#Zd4@Eulj%PNWyrCx%v;@YCa`layw9moPDmls6stcM73j;G)W) z*UFa-A-^6hT~qua7mpyebQGs$0oSm(+zZEH@xsySmy)mj1$TH172@4jP|dXROQ$ zsn7Br_e-P3Hv&^K?Cq*9Hro}$>k;cSz&0f1vWrIjXk6Y^{nE~lgM%m7l?Vj{A}uoH zi+n$r;>Z0rO}dBWa)v~vr6uiVFvIhz?9HM@M1iW2cj$F1hu?+#EG!_0cMStK1R5AA zDskwG>Y6J2h_||vm*fYap4=W=;N}Jmx}g*hkO3N1oGEG zE~4>e{BAlYr}N-jv)*&p9YU*F=l`XTVd&qLT1EPfXSv~t+ql+lw}sOds%o}A${w6V zYsORl3lsIM<3}auWS4m-;!M%UBBKAHAN2EHi}cjk=bN2yJlUCSPfvc>i^3}_0S>wX zF%`FTr+8~r073!^5Y`Ts5I3;2mjktxN?pk)X;hQYMSATW8haC^T>lSNKy8+DFnzVR z!xYd*mS|j{914wQeUxE_p4z}F>G~ibCnX{z?R&fR)@k4s^r_3$ZSQuz8;sSmWSH`t zz5q@2rY?C~pJ6$IyT(f+b5%8?U85?4*~bL_lfX=%X@nqOd)$Es*2>uGY`NaIHyu+6 zcyku#o1SHL^2}+8{ zhMHh^0JsuV?QRILv&fH}-}a=RHAd6aOaTqT_}?Z4nAkb?s+fm9kzpp8zA?@LcZycL!Ik`YU)USC zRInp%cq&gM3B|L($hcH*H-fs}PB#|eh)On%imRWN3ZyKiJ;|@D1mb}o-QrqEUS zlfjb$3A|`j(GB@fisTA<4CZGal$OC7b>Ducx4qW>59tB}69OPzm|hi^yC?2EC=}7s z-cF~cWC>z*qr5Uzd$%&F<3tKLxmes7uBV5wA!%k3&H7W#xZqh?V4)@zd%H3JxAbhB ziOsYpC`Bt(eI1&CK)YU~um8Q|h>3~qI$W1Q8EK~>!?%c4NZRj4Tk9_`b1n(n0@2Yw z<0Fp!Zb?10d!`ukC8c(i9Pa4l{tc49ES5nJYZOO-R!xx?q~4=cNA{>N03=vxgNmjW`7zG(}TL*SXFBFGRCaYWsXY4{zC39CAAY zRY)#%>{^v=kWp2crHH_9i0%}FY=X7lW|h%e>Nh_QV`4n>^9WZbdzrSJKWAn}m`5$z zse0Edh-~q{z@z1;7`oo|$ijmY#L)OyMD(Bsr#-G5p?cygzZZ@RQQjJ11LcLyf9nYP zx(=)&`hp_jY6FdRT47cxp3}(_Eh;9;9t5Lk4w-f2?Mm`B`pX5)h@vjmBk2}5VUzU= zJVOD2H$opDf5*X}v|tb87m6i2s84y6=I_NOsF~zGUSmuNfi(|rmIe$5zGJ+K&vX?fzU2b*XLs9zp?8d@*4s0H z3rq^RX2Vi;DMUhST<7={#Hlz3a2kJu8v3UG*MKOowJA3@Q`97O-oJVf)%r<+K%b{v zC!1VW!#txlFN^46flIX%T0%4I@k*s`Y-Z5y&Qvx|= zj*hPOQk}A%RAR;eF9#ge>7>S!U&{SY^%L?w$2?nC@r`xX7*P#jsnHWEI<3v=Zz2b& z&cJa$Dj7C`SZ0+zRW+PMI=jH5uC(QESFyE_MKJe^oaOo6XPmOMray_EB@DKB2=D7* z+_nI|bxBVPAl@vcitz3XLyen`H8M&@FFNrubU+o~!${H|F5}0)FpS*o#>$TMsGK-Z z;v~nrOoc#*iEez51@Jo4;6D&_pzg>GF2zN;RA=XagIHBzK5IysTT)w4>(O2mN{v@} znKC+3vF2gA1BJ-5Bwq-C9BMQ>3O%-+6&@O$!v6=`xk(<0|J88k8_Qjk1;FNbq!ZaV zy+A7MGo)r;*5?EvH2-co?#!oJ^8|S14a6K89v2ws4?>Ps^n!(lGtF^tW0*%< zgVePdc6roOK@G;eBC6L*4zgYNYpT44w#|>8Qeuq)407z?N}A zmfC#F-xPY9fz_RGI@&NeKinaP3_Dd=W)KiJ_wihAS|@^w+B=aim;!- zmWf(QIB|&p$zy8O%*XRkvpHslo?u%4F>FWzMwpPFo%@N(D`M`Du=VewL{mnPw{!p& zHlM#?7&HtgE`6E?7$i4rM`MZrNlo)z4D(1-CBd2+iKsY4H=2nPy(z&~Or#<9HzLD)KRip1X^Z%F&1psuc%bM5o*2 zsRlMJAxtw$|APkk$N%2O-B+2HD8eArc&z6+m_cy=W1z(h(wKTP8hGY%#GnFk1xpb5 ziu+z#k302t@1-n?z`^UrmHHY0aEl4ruRTb@(@;R~Gi@v0=|Ah^XkCE326+DD%%tw$ zTOaC%c$;8DgW*pzz`}`|#2k%3*o3MJkRLeb*<%OCRDy5lDZy2myA6R1CjMZT(5N4m z?$(V_VpG!CCVO{^(~%boLTf4(f5bzT#!}r~FMogt?Oxl3&cjfMI z?vyh1t>1-%^0IQ2z9f=!wSK8m)HN~sB_1}RhIJx{-(;EMDpuSF+jB^i(C?=1#2lUU zHB!F2@ z5wDRu&&l;hN$TZq++lPm&ywCl6J!^4QT0U)Ptiqn%O-MJ9^D4p23E5Q(h^mfJ< zlSuuhwO%xeub4-Cts638oe5)WGt&hE#GP&RE;qw$QVcKAT|Kknk{H_=O3d7fd1AHG zu>)9g>O$W@i{qL1x%*1FD~+vNag8Zq|I$j`mJTzt$~e#t!S&Ex{?YVtbXThAdn#U0B?G(Z@otb1uB2I=Y*1pLu|*;E$Vdaa z$wlXb#|h364m#a%pFy)J0bn{-GH>}Adh!B_)z(l2ON0{Jbl*K_pxDtj;Im&FVJDsy zWVt@sA!th_lL7_~Z`cXix^rJ}cRX6BunfW06Zfd6YizzMT4!xcszv+0^a^&~!5Ekt zXcxg(8u;IYUfC12?>})cQI?miKbO%jsdb;TN>0b7lvUV*Re$T4nD5v<#6s*H%Gu4U zZR|VNIm+huSYCH0b??HAd=XI_w&MkTb###f0m_XcJul)KIS3o#1v(> z8)mC-=L}Rn+-utKe53Qvb;fFYQsI@0IA@a!FO=6y2syZq3}(CY zTb%6u>OfLVikgh_KdeJ7Ew$!BtE4Z2pO$LP0k4%n^7JO)X5$d>IldF^3I}qY6+D~X z5L5q($-Rr0q1SF5U*23ynkAzagt-xhSZjF(k9;RQybOI_o)7|j%vH^FxfGl}cCdeF z?DqQUbPZ!r-um}6ll#&i?D~_mjJ@##a*Gw(=SUJNC) zrIukMv|9PxwJT{kS#c3TlOHNIrjA7}R*Q08g&5Kbhk1qMDSJk|pOoWtl&k{9+8((I z#_lkZW)-B*1i>T=i71}iSf9W!oQ^{#HsH9wtL7@8afJRj9AOz_2W(SC88jV_)-x*@fdkL8m3;&kuYaDq_569Pz?RZ$kw=o?Fii8y za|Z<$VgN9eZ^2(irc0%+jUIVC!M%#u(^*#hAI0^d%8J)^{_CchwEXK$q zErH;Jp;MLf$r$0|)IpNs8oRILWLJL$cYY|a1RG<^r!x9U4suRXkP?ulMaB>8@}ZGC ztXZzc+cC{9cfx)P`ixC)aCe8`5S&JW2X}8EIDs_o1b26LcXxLS z?(R1G`_Gw+nHp}pihB3jd#&}#BbYR3;%o|Ccrh0C0@XNy#_javWsURy$`wUzO`NC+ zR4d!dv?Uz*0uW?hSCCBsq~F~%c2{73B4{mKjGFJ>>Ck3j8kdT z1_j0c(`c!;J0h`{DSZjt=*Mw3P+uN$;0#HmDae2IHa}}&j?>E+u|YAer6kvui%-M3}AC5(_SgwSeaTf!3{f|PXl+K7l_WqJcLOf zYU#x+#UUzZas_FOlP3Zp@goKTjg=A!Ial(`dQql> zqa}a(sp|H_QGhob!eLxlyaGaS-xzS;X7&;AJ^zJVx_;zxzU`2qc_rW8lD{e~oz3+j z>G@?+Z$Fcz`rvabsw;LM75$Zh879fqbfmoRq;{uc9PPW)M3j}*H5$!2PzsNB}YW1pky^ zZmHMwi{zuE#DGq-J2A2_Tp*kT1aiLK{GlWzTy6{lBi7|~ael^sd~_JF)bx1Xb9Oh) zza~uh7o+kFqOP}I{&Yy@a*lwCq@A55A||V?r1V1ndM9XIGvxolkPu)ID5e_q z9R9?%CQoDAj;X~HaVbqUDC#_=3a8F(=N_M^GF7jfRN?ybYeBh_we`yqSKmppLgY^I z6;5q<`l6PE`A_>vM$Y0)8MVZufUw-gqL%s`pO$3bx#?h$pu-*>Y;vknq=dlF5^slf zv&KA(K@QRE}-B^+0qC>Wy1n{$7x+i1K1 zK3ETV3*33_`UY{Ja{((OKK|6y9}{dln4R@;U1AuudZ>`q$NN$K?j`q`wR zRoXI>jFJEkAGBK_*o5o|PE}fWX2x0G5&VP~5d8AuDD-2kwXbYb)_Ed8g5e;msx@G} z>hf~HO5Bmay^Sq-WaSCX!m%P6g0qhL94DFJQhYI`6#F@$_6G1&umSz7Q%%8Jsql^~ z7?tvO-uj2Gzn`)4-QO=>F@kYd`5(mE9AKR&z{cOB!Js|^Sh<@*t_Jj(NX;6#(gUsS z)c40pX6LOKP^8`)!#;e3^=Hz9{~^pleeffVe0mBf<9Ef~HAeV!!Oh7jGdSFZc#}D) z6dNZwum0RWFu-_s+Q945efS7MC)wO@5jShfcn{2NG&eQflhxI5-w4 zzv?3xo7%)erRR0erSllX?51QQhxu-Rm^8#?zzOq$b^E|0fFdO z3g{+D18^m3mqUtgOYe`JH5pN1(P`w-i z(n6O+;Dzt9UOdfri80OXCR4)ymFVxn;?}~S#GB@RT{;IDzLtL!cUt;N0$R4%(ySFt z{f!|3UQj)V(l7E+IBp@132iKt)qc87H$`9t9R&TW;BQy3xEZxZU8IzkRY+BtYkQOT zKKTvN0T%*b9+4A zJEZt&FM4XKMjfzM76Ix$v|g>}0$vm6Ir&qH9HYAxlxR4S3;Lv2l3+5I=+4hP{+}?so`2^C7zje55&wrqoU2N5rSCdfk-MEaq?sGCbIywft z6E}@En9_s;1#Lg#Qb#QNA-M&!_q_Z|Neu}&+C%MRDd0XNL-G6XTbE-?&~c(80Fo^7 zn59N!3-pg2$c%#iIY!%c#9pm(e@8it?OaMaw>%O)O&Q3Icj5Khf7lnfS6x*t?v|5N zjS@zI^$y59;p>5&j7O6A(7)al9fDJfweZKIL828o^nt9PqPui<`JXlO_AmhW1-^mP zS*$-}D{&u_e&H9b#?nO)N^`lORJz>tz{{qyM5Wq(x?cD|tZYxt?4WK94jL~zEwnfW ze1wFXRB-+$y0W$?v5V$%5j{9IQ#zG>6hr$)2pc?c{|*sL*zd2~1|2G^s&p^4VSgv% zvD`?GHvPC@9Lz@`U(lS-Cx1vh`(i!!u17;sRYMyyojJ)(uPD236oybh*awjqM=o^o zzd*`6c^~@h6|MN{{}yC<1VKWK{S4x-JOw{(5}s)6e_VLq4;8~Y=)iABJ9$UxvwuWC z#6gGPHd@_Y&AA^9@{9Uzb|6)Rdi?hr((?&Pd>C$HkJ6Z&EUKH74~sD_!(yw!>+~-D z|K?pA5EBUjJd5`zc@YD0S_BI-4Kt%{Zb_9B{qPpr!J#BP{NUiM--wiy9A8e3j`}6H zcav^RzLIsGAMW}mcmT%g@-}7HgbSUSQ5BC7cbQq3IulD7>(xdY;>Ld;m*;T!T|Xfp zeqla7@0#%*>BzzZ;In7S4^lYiKgt`w>%zH70d&{~nZ28i?&d*3Iv5?0w4^~?GRIZK zo9h3~z%CE2>OFX%%^3aHPXefPp1p1Dor$cfmI9Fia`N~z%Dv)I?u0LBZ>J=9K%m(f z;JL98@kgOH9A?*>PJ3Om4k<^qU+cYHaXCgt2VI}-omBNbJFF~ql&^;+bbx&E5x+1h z;r8B)MqTy|rSC$T4hFy=bD@03bQ9Vkel3bJ&SBB+ti5w?$3UwqLas>ykW1-8-h74G zjd_uOgDS0l=Hd&6rG!8%|80JA#1M5y#4!9K-6k)B`1td%>!Rml&tw)AegMg>PyJO)Lz|XAD^I#II&KT!Y4gJ!8D7G621mMKv%g6}8Pr^= z*pr|BchF}14sQ8Vl5fsKhBjEEwc zrBpd%zp5%OErk_YFG2ekbbouI%Bv9;Q)Fa>qG=rXLiA~Yv4*(-xIMlcn*AK}e@V$X`G)MmGIU(d%zN+qP;yp+6*F{qV z6yBi#vy4BQgcx9M3z|BDc9Da-35R}UsdxMjQgd>7 zG0E1Ux^F?js~#y|LlV(l2;RmR5CYYLOn)ZYEtwW$^9sl=mkb-UN5P&K?EXV8lG<6{ zuWggJb9`C7@GJ`|$Ai%$>V+Ude{_Njy!D<0d)UMUgq?)>hVH`yZf!Y(oaJ! z#<^ZLeiX{bm1`Vy03Y5Aq4bav(FV78z~{p9PMors<`+on&6fhEvK8e;%6g^X>!Y}w zKs1CP8A)*otKyPfTr8r7I*}~0?I6HrxP!X2*>qZ`1aME2!`cYu1>8c=xLuWH5V(40 zRss_f7e{A%_tQ3x)bc%C&OatR_K!sxg^vxBk#ZV+tG1|gaAjeLaJvU>p^YXKF-RxUNOm86l_ z%Zybp0s^uLFAUppm@#idA)>FAJ$TOTx?D@?`_5kO>lFd*- zYr1;g+j{VMRlSo14kL{8dKsA#pPRnY&ni-*N?Yq%753@91_@VmXGMaA`9YYEo?`f2 zySlvCZhFOJVRBmN>GWq_QQ7ujI4-xfE4*+A)~;t;eUbCb)bU`-f2Z-M4f^L?Sf7=R z?UH!Y-wmkUxTS)Dc=>J5iT)FuvNe(1Wj*J_~07--Ja85ctxQOes*T4>H0eb3vSxbUOS~@0FR22T7b#|7ipn=FX2j`OV@(=fb zGcYcbeq797sQXOSM_5?<)Tt@u&z}u;OkOiO_fNPiyze$*ZW${MGXMHz(&PNraM@UD zaNK8{0Ip{Q`GFqSO`*-J@KkFGj8kd9lZ$l`p{yjY1fXtZ!1t@0h<3IBfk@!W72;^i)R3y`9!$hJbbMQJ43VThYoQL#;+>S@_Q*9tkT;R(m)+jQV+c0WR-3oyU& zV+fKNc&8OWHJ5dmdM^h6Inmb*QxIlxk2h|m|II1=LOP&?EDVD$2+N9uEhFl-@UaK0 z_FZu6QQj-bdGboz!pa9MGk}_B5zszQptGLD=$tm05m3Lr)xuhr%@Acpt5p1NuU#g< zK$NT06Q&oMxXTCbp#8%@Xy9?O_L?vtArl*gZpW%e$Jh;jrkwkgf9!^fxMgZ`x_^8$ zh=TwSns_6Z4i4r%WQ@ny{DW`W^809BRsqFE7r+urZ;v9gDt{LF;Eg>-srpy7&8rRV zd_6uoV71S^sYz>vC|XVFA7I|P^;;oTKf7jiWUX(xpNpNprMfsIARswB?)IsSKU`kk z9Zu3tS1%>W4r&UORM6#i8nWBmyy=~n^*gZP9^hVL$HncRoNi)@Yv84HVgTl~KoVwE zWd+}iTV`k7JqUO>i-Yg?oRvQhD!ux~?cS|<&jJ%7?{gT zX#9QiQaH}5EIx|(O(EO3g(=S6gay3H{{Bej-KDP+%lsV8Q+2-Ssfj?B6sTbrmAnEm zo(0MQkt3pc3 zQMYKw7IcHD!jvM;ewhB`5c*1HiJthVtZksD?DJ zHnD#qa^}XBb~#61%w-(`b-k<-#bWRbZlK@)+LQbp@zT!+*lCyDns^6i z>8S#=(P3DQ%^Vy8ex8ItisRPIY~DfJ=;(@h&EhDIA3Jj zpP&s0zF%b*_b^JFEFLlL%9m}c;(D|le716Px&2Ei{8tEQYJ;>{$UzMvyyc> zech65^tDESgk=V_AykPIXdsOqkVFA!dI2?d3PE{(aZGyZA1_b)eH_p0`CU%iT9o6_ zs{5%e@?WAsK|!|q9Rav_H(jL6y?dFQjTg{pXARH`k!1|Dw1=~zUlP*{3~SOoAH-!O z`B*rznJDZ{*=zYQ5_DZ=*xiX{rvC6Gm7j6=deJB8dtNtXT82glH2bg=w0;1;1K@ql z-CNt}Llft+fzi4JgH$Z-wfk^sX7yN{%&c$NbG5VeE@#vF)@_zgVpHdj{g3@-Q%c|N zI9&*xRlh!V%9|LqoX(&D0RKt6fZtEE0Vdr#qwkgZ{lhA_y4^=wEj&r)6f?3~E$&H& znZGsV*}7D=I6~b+Yc$3}?4U-| z4EC$=yR@+j=gqC3RZVX?dfyk<9Vuu!nVvm{mL!0RxIynx{Hv*)HuHW-y|tW=laz|1 z%hneJ^3p&sAnWwv6<~3^?9@Yf8Yd{s4|0-f=q?`t!atF1&k7mU12Il^m7TZMdF<`m z8&iC`Z*E-Zyz}lXC>?y}k^|4Sl()kT-6xwr>C}fwGcLMc=0ztnVDlbTol=dYFs)Bn zkT;+Wgj5LS8n#I}6jv1a<~G(j$BXk>9f8gx_Yp-9+csV9UhG#WlmKi&vsb>ZjU=uRMFB;`S^F5Hm`|uZJO3j;+ ztwYXh6KUe}ddH699i+kVn|!;3Vd@g$SJ zWmlpp)JmHJO&DX#RIi*YK*KkoYv?T6;u`@YwwsFgZgEXT3^D3u(^ zBBLm`%IYwV?6ZrOu7&5^Fo0i=%w;1BkN3NAvbbJ`kIon;a9~$SyLqXOiah)?1+4@{ zzu!9>GGByv0}OVQ-DaLC-0MMr-Rwyk>< zYhfZce4cl~-&Ek+W&gxFlw?6);Vwh5kU+saZOCh?5tAs=(3GKX?QfZyx&1O=cJa*F zg;u9h?He2%3^S8=68KeguEw4}=v1BET$J_on&U(e;{$?X3d73c>Qi2(xXgE~(0n@P zqGI1W*gWxveK}D35jM-DulHX31OYpR^)LPy=$P;oZ}R5_Evy8MOZ!TUPaho}ul$c0 zWYozA?5lPCti`m+;y7=m;YiXqU~FKZyfdzn-35Lt{m`T69_i{E-tk)e%-_B)o)8y} z3QB}%#V({D?iY*7%J})i&SexietEOQz_rYxsOQ)bC)8f94yDKH3nFf(ofZWd|B3d^ zC5uci4y)NH`3-k-tw$cw&tA24N^oT;%_WfDv1VnYs-iZcJM@QkR7jh`v04OckFo}F*R zxj5`+=d&VGewLWltOF;(^JL(e*52*Aa}cW^2D#O&dyAfxKY zMG4!C{+Sx7$B?m)-dkCkN)ykV`AM?g1&n%Qhz!-KNH1rDSq$kKRW<12uWht!g%n`{P6mcBQ4ca zw0PlyqDgLGThE{6;1NGTS9F%cf>Q&hfftKE2p7k5w+LqDdU3+XSllD_aZdskZ1Hny zfVw~yU|J}X7#kfLd^fITbMla^$;NQQBWEA>7nZxZ4v@nWMOLihF&#zB_U#3v`LF$6}N9Wm|x05kVYeMAM#B8qSnI}O}@jJ=XJA4PF_d6&*0v2ZoRa*Kt`k=DYO)4h@t;<8>--(jLF*e7C4Nqumd ze1w>hh&lX~%|^CMgBWHrcJ2!F6&TU|q46C%ecxPjzET?6779){Y}^c0kL-t0W6G;BEhegoTt$&+yvcja9AP3NAAfswL%=1Yw8xR^x2oGpC( zm-H@a>kaO_ruXnro7~D++uSptw2s#+4mVcN8tsVbXW=a8f0qjHf^rkgdHK18R@Ss7 zXWS-<`^THMd<2#*RPNsq1pN^edw&O#K6o&uCUAnNyhSwg#Ixc+NAzjvc2jdXTPdo5;0g z8$q<1XPBJ6Oj`rrj?b{4*G-mVaZa3OqOjT0ifUCoFfM(rgiRUeRcfa+uyq;G8QmOp-XMc)I2t+GhVDO<9|ug)u>-!5-5HF6HS~XBr9YTd z<+qNd(sop^bn5s1w+yVl0>UMSs?mM8qH}#sa;g&Xa@dc{d56op*lBuNQt~2t3)9Ma z8_SCJ?Wkw@Ir+v$od){zhYo+&2&Shn!!y#_HSBrtUjAK4pRF%0E33|&+@8rwI~q)Q z5w_?m*m0|9xjv7TOi=cN{*-Z0iU%6bE$z;@dqrBO6>O3uxgD$Z1D|^)ei)yBGvq@6 zI!osJ8qkSa6R6%LC5&xR)F)|nyr0(X&>%5O#6QHf;rU8C`o6lWPsBNQytvbZ>hY{6 zA)>HOEhlmnu|SwU$sM+C)rmy@GT69-;vdEbRP@PJ&qqnE?DGB54_y2mLS3bN8A|kb%^vWr=7*B8_ zd^qz35u!taYr>_} zd4SHP2d29z3cKLgwAdNOOX}PE@^&FjPE5`Ix$|p%ca&ER+KhxF^K^?*TIy|oGLAdl z*8=1@6VR&5gCx}&La_6lkB3LgV{1`v1clEqMAk$Xqzj_oD}xma3cWpC!5Z~d2+dhu zIo0$lwDYjN3v+}8J~AxR*r9w0t@|E~h;^j4s~!0RS}9e7h}G!L?HggkP&&Eq<1bzf zPxQ!3nU?--C@2K!7pFp_Pmmc#)945`u2i~M$C)8+x<>``RHx48m6iB05Fv{&oK7QD z=LQvzhIPJOBE|mg*~n!9X$2%7?mTrwT-N4IKaq!fW_zs0K^4o6?K^H7+Np=yhQ$-s zt4VGKZT^Pr%%9)>gREVeCDc|z;o!;3RvGBv0bJpTv9^1v5lV(J=eYRa7>CWDIySrW zDijc_S$EVqz7az8!~FdA-a^Y%K}S=RSp3z?I`ni8J9Hp+$28J7IW7^y6eP_ak&C7@Q`FP!x21YJD9u@^H_opSK1UB}X zPaj3KJyz;{>KQa!Kk)$Mv)qFc3yoC`ICj!oUu*4?Q_I@vn$zy?J_Qq- ze}f0+89a71bP+=G!4oCH>lMt4X5b5Hm5u4Dm3FE`Yd zyA|_L*ZwBo(Y0OcAb&)Fgr9RO;`}5|b9Ok==D+{AXRJ|2Hm0s0;vCBL{tZ%Oac2Ll zM3AH_C8MCeuxvpy(ykX9S?vLqbKn{P5JQhS%cnNo^w zaK_00#Bw@~Dc`RmrwOlAE`g^r{UDkITIh1cc1?jT|n1 z`Tb$psEmhE`EoO}C@}q!avsVJn}_}170LamqUx}@7pvge&<&3CN8jEyHp<>N zHFA&pRtxpiA@fq#3#ty?o}R)FN`f`XV$IMXL^BLowk$u#$Iw-ZNM5G5B2-vMiNThH zHzl$6N{-hMRmFoA(eXXLC%s#0F*c@XR}k>gR$lpO@{Q=xyYp5?()%zwY4{TVaq#Xz zO%$NjazyHz?jbWOqTLHq3j;H>CrKphQbzqi$f{F^NzF7lAC=3`TK0YB`i8nTWbXiR zewT-+q&(+?5tfr#z+Fp1LcCi~AQBm^PS=3bZYz6sqOFFsTg=a$>y@`AAvyUQAzAx0 zt_Cp}?X8%FCL5D?5$~{36JL+oi=1w>MX@9Pp&)hoK@R-I$<#o?+%v#Gx}OZuh;N2o zpgnU1U0rhlJWMYqiT)bnI!VF9*a76zV40WtSQD5ZbtV-wU1ijNd;o;Qz&ArHcmz` zD)}%&F|zz1m_?OT+#r7RCgfqUgk}A+KK7o3mWV#&_xYs{=}a$gnnq!`Ey?^wcorEo z(sJ>&@r>Miqy*Dve?`q-c(EN@dMBCXcg%tL@CAQ=l_i}uIP9Iq9c2~uveIjsprAJ7 zG!P7u4P;m+e@@YMzS5*qeR}_#di6vRiOF~QCq02mnMsn%od_3G-dKwkhx)>(iy2Wt z*+!J0Ta#iD8Y#nMdpg@?Q?w_eJ=w=v24 z-M~K<(H|pt!jYQ}vq@LKfT{C5hkVr2Cb;)t&mhMRhmuz_(?2^SP3N2CT(~PG%=RCX zc{tDFtIDXms<;*-awq=gn-_Y+o?jPLU+QXyX0+xP6yBx{FMGP0^e%fz+e?Sz=g`>e z&5_6oq8Q67x4=K%HdHuSpkL1=RTB08WJnE|^1~3zgJf5hh*1$^4rCYBVpkf{9g~`^ zV<*L#x@oB8Q7D_bLQ8y;m)oW)QwE1A~@8 z?jI9L5ei%!sl2xa_B-iF4NjrMcRa~P^g#p_!hiC7Z=}#lYiil2?5r&~^?ahjlY;&H zUUFx?TW3B2W%B?`!hyMcna$~RHna!P7_d4k{Cqg2f#BNKuXuay3$`oR8HXj2 zNRBl|<)bKROos5Wz-Ti;jeUB`zJ@jJ9+9@BoO|7^&!!=KZYxE)R(FAfxK=;2AcSd% zQ&Fso`-|;6N=NH-vF`kJCAPS{i+-QVH@?hg>u_t70*YbN>SqE%Ok&{ByqpWI`h8Rq zZdT6glz=L=w!BWu*jqDVxqdEu;=S^y;nfpeR+bZ+9McVe8EHjs_#gKHAE5OEux#3G zfybAWBR`~(s-9DR*UMk6b$PJMdz4@IjwW~kFof8I$JePpkUx8b<9P>nf&8)>Qj%In zT@?Cln#~7lF)=CJr9Ih8OQnk^wQJ`VzNN@~rb}aeP1LYEO!sZAVj1wFNk-BaP9YbS zV@uv?=>g46Wv_pGJlza#GS22*u8EmGB&RSTIaYnL&$d+zyIXB-Tk~uQ^#N*VZ#NVQ z;)qblWp|FoE@yZs+Nz_omZ|eUp<=AZ29D zJCimHu;K=HTI2Oo8o=w|7W|b`r)>~X#_{)nr0~o~!RwrAIc}ObCcWq8k zs%IxbbSZc?l6%ztDuTK2tf5)b8MM-rS&O>@uFBeF!%VVU#@G)nh@0I;(AA1LxWFQ! zgf!zxiEBOnfhZkqh^3}zCdL}9ACkEfsX1xyUz%7tzL>-B?G@vDY#!hNb{zo^NI z#SWWj>qO1Rn#WS*WSv%WV4c!Kd{foiFmyl63vJ6kz15JeZA06>!&jV-6HAcfR@(6) zN^u?J1~l3&Qlh`q`xP$jvM|63v|BB7%gk$G$lDMPim1C=B05%64sOdAeRvoPM`2EJB4ZZ zcJX209MfOV{?WewIA8GC>s(D^``> zIMW~K`wCA=tS#$k{EDG#OabtVqq+Y3hhLhAXBn6%Mz!z%v2g^PPfky>f$S8lby|Mz-7^m>&|P5a5nyba)KZ|E_r-EmQy4_Gzisd#%gM zL$57j^`w@Ol{RVedupkcic0k*X~Al%00B{WV&P!Z3^jmg4B&ca?&(&eQal@4#KPV+ zqE@ELU3)2R**D%*6o`xe@$fOz{{tZ33b9a z>-u8q54Vt8!4_)bAk59x`rBtbJ3demHPOZS@NYz?*@&B&9uo5D>^5x$fz>nL$Zs?oXY?8%Gcz<-5C?vNl`>=jA5;CY24YU_X%y} zDoQx#;Rd&@RyW75MPeWor&!R?{^2=5V^%TFD|j12?oePZ7*PIxg)W6ju~cqtEz4LQ zyKhDwTtv;?2%1SKGLc5aSZ#Z|;p`2LCC?A3a$?!^+`eMu5VuTTj!qO9<(QOyi`-`2H@Cy{-yf?S!I5tV0?|V+Vf1a&6xEjD*gQLKhh9SJlSl-nuxdxr)*!R<&Fl_FDp(w{WmIT=B+Y0g>A1q3TrS>Wf)tGm-V8>4X4Q7v0F9lB zcT|92lXwn_NT}7AG`7ku&OVKlZkgu3X%}N4A3**0_rh0OTWj~Fn+h>>X=SmnD4Ud= zDP3^8(e_n-zXZf-)~NHUD5G2jn4LA(mjfc(T$3%#>8`6DM39NpEa$fyTHV*CHZO3^ zE_*Epsr&lz(UGH0Lzf}s)X8U>IX^EiZ%>`ee^1^gVtw33VPnF_MIj>DvVvNQ#P+PY zx%uem=={gg@$s>6p0`k=-FYV{NmFyMP8Np{O<>o1zdSq+n*;B^Fdu5%*=DgmXxGNw z3D!)atK*3JyhbL|@VQZ@vTLyN5PHvBR}+!Sg0%NvkSeIECz;eJblZ2E!vE<)EPk62N??lAHdgc^}4~ML;6@DClK5YuP>9KM1D#`J<$#k2E+goQznKhBp zQ^TaDC^t(84Tj_A0qRjkA>4(_>d94)gln4m%(hsvk%3mDbOwHyWGZTk@CkRuz!lOr zq%oQ@D-*NcQ*AP|@Q+a5x(07{=&JgLTYl04XipXQD(bhe1!mdtQM@SDG;X^~M4 zh;6J!=-acKd|@94V-)RoTII(8VimdsmY>*3+0eP#){fOI@-&(QSZ2aaRD!z6EXsZU zx=n=K@PBs`d)CSr6}ir59Iw_3o!xNsmM5eZtH35f+Fz)R!JCu`qBrM=A>KJf82TY< zu6>RBag1j7ZurW`*$e0-F9?mK#m6Uxh@hc zG*l;g_1);&%RwWpEj@esy23__O5p))oR9!qe_3 zH+RFPeVbj@4?Nz7wCFRlasAnuIo4GELEnEl0}7?Or!>seQjV?p`BWSXFa34&lUe~O z&bXv)VN&`ST>7^ymGgLrAEA7+R1-%c^{Fz)^SSjs+zrN{X`-rTVzbEf3rEi}W9>Lm zP8$S57+I41%Iki4L6XtoE!ndNl*eOsQJ;0VfOkxs%{IL4SR$xy@lz0g#NrE_S&tJv zA%qw2NpjmT8^5u8-__h=00g=#Hw}bD`wORw>dH!K$-K6d4#QhxMff)B9sd$b+6=@0+~BZ#$){r?zc=Sh8X)x}U#lB01AUb!Z#xERj;G z|4@zo} zp{BXAZtGXmaC=sj=f&aIKi%NWaW{AUh~^$f;y>s6xrODY5xZnF#I2Zgi-$!F`RD_= zxU;p%9=UHhjJ`lzPJtSpZu&;Aq^Nk4zeVt78Ib|+xG0uFZM;ppfn~#{=Ihau6C!2h zXzI5Qi3R5XX3(epys)%1J3D)LYy|T&&RY=&NCh-BG$cP3jFMkd1Cmxkmx=B5eXB{- zE~8O3N%V2 zWkmFp)))pQ??D#%akH_p@;}^;Vd_H%TrX>;;^yjrz2JkRWf^ieu4jaUBZ>O<3sJh9 z??P9>$%Ljw-e_fiNba3`$62ze963@}9EX?__KqBoo=Xl5?!U2AUA)u$>xFFDIru-T z!fX$cy%51r!% z_!5D^U^ll%C**z7<&Fi55!0{TT@>%_?!>$YbzW(&TbH@p1)~1YReAg!eG|?0m#y3D zt{ST1xqvMucU?6b!0fSmvhOrLONtP^fjBP*Z`xT{`xL27(^j_&+i&Z zEcEg8<9`9X$^C^a_BP>>^zR(gUxYZYPAY?NRJoa32G7x1nQXH6bejV+-NsKdT84r`=2n(Tg0~e4mmiV8 z;-Ts75u$S|w6a{f+vpkXu2vA}QW7%=++F=WQb|_p3O;Mux@V#!L?{^vCUIuT&p&$Q z43nMEc6urYbk*u?a?gszjD+oYTsM}#8715b6kh)R!NlEh>QGQ$K0j>8TTO_GyD&Xn zZH?d%zLf6F3Ew?9IJr0*1PKiZ^@yM!9Qyp}&uA%w1?|6*?PQdc2$I!_@%4(|ulY#0 zy2PiL1ruOrXM-|ICLs|;4YSF_q72~`UY;kR3k>v4DHmPaW&4mMJPh?XtJKWLj*>P7^9H}J7DaX5>rAf*3SNAsHy&@8Eq|M zTS++dmNmHBKy`oTMMF@G!{IZun$$2rPu5zQThPb)XL_pn%+XP5dgo$>@U||~@?5r8 zD1#*02Gco6I||ID!@7HqwLdmVDjL{+G{shP!T5ANo7=!V_m5h3#|1q&N&rqczu{g(Vq@k)Wz-9 z{k~xqYX>HQUE-O=CQU2wHQJQ@!rH>-`bO;SnhHTj?*q&}{D64$b=SaEv-%4LW$nm) zRbf?~KZ}0)gWinLB*%IV3r|RXg;4VMV-NkJ+@?cx$WW0b_WoCIx(>xQ|+u*3*vN}D@;C?X?5;_aq=(ZuLoA*^?cLdvnMhubmX zM!A)c7R4yo0p39ANC)k=iJ>+L64wehoeqoLo7wU6T`DbXbXzvLxhRa+>~}4*PbGZA zx1i0nA|b#D_@k|*<)_#BFc0}25^}yF4qChp4Hl3$u*+b&Z{?&@+#JKx^U4gr%+tMhgK z@^bTH<1gdu8*g6;v2Gl$`se$T@v#x9Ze_a-L67x`OrPg*T`Sp8yS73o;cl?oXN>}r zoRq-1eNvT}*baf3yGI204sP0o^mby7<#ufmi^pAN#R`%7uNCpfiJ_5ELZc%y5fhP1&ux$3vG=u2#BGvPb)~nfzZBIb zSn4OP=dU(u=vxRpmJ2nvb?J5;pASA`zX*0yKZW&R^?)i;r}R z5SW-t!2i*|np3@SEED63Ci1GI!)@_iv(vqNUXV%N&nl64>Mo8`e~b|g5ja7not3Ft zQq2mhewtLw`|*!k-%AY^b>-PS;djL9%`~Uiw42xM>+--n z6oS*Pz!T?&jToPn5%+1~s;oStNl*)EZ;Y7!{WD@tZ<5B$9b1iQG7A7yNv)OsEn%`C zf8fGTlCF6z5828Jr8hrOPb}}8EnX*O{=7#E9fqrqYlyi0UPM-s=E#5*1{(L^@q_JNRMph*IftMxr z^7YTdo}32n`I*Q0jY5pMNOV<^{*}KSkyv+X>F5ZGvqFntZ+|hoL?4ye&V$aPe_yQ* zi>!Rs#%w*s!dZouVddo_Cyfmh9<}E%t@oP{tSet7`kcKo26Iqyf^R(jgus6cAA9?nVR&>F!3PQA)bI zTO_2Uq@@v%?(P)uO}zJh-|xMD?#FvJ=j^@Lo@>l8#+-Yt>inQ)ZSMBbmYomglC z2BQ=O6vRCS2~AZQiPPWWq;(8IWAt0wkb1o6CDv;b76rUx__}xBFMZS-Gu%XU7@^-(eNaAsXvtBXma2f^Pb|!yc7-{FSr2MDlTYF2-O;wnbrU_T6#53iu zMj2m|UOr5;H_kXs6!tHZu1`-%oz_b^(Bvi;_Qz#aCeW_eD{|vF-pdHt&pebeyqn2` zHQ(0$4S7l!uBLE1UIV|JBB4lHSkjPHepf=P)a&DZgOOg^cb=2Chr`Ykn7Jevnc*5T z=PX5HuS4sLWA{xgQ_$h+yfgu zP|l0eGs;bSIwp2RpcKFqL76Gm5qiTV?Cw@X45b#b_KZ z+3uG&ODiE2*ViI{OqGp2d(5miz7p3?%qh7eU0g;@FeH_wu^Z57XfgQU>=|vvSQ!f| zuIWV+AC*+(owfGp()?pX;$R+wY1tM|rXcX#5m=wlvD z%N0XIn$CbDjboOF+|1N_$9L3`$*2uQYZB_ee-#kke!LrzarH+&t77P#FHdbKnK-%y zgat+8r&y_CKl)UcWOQ4^riP!ydvfXg-YSSHNg845pVZ@d#6WMoG$ag-*S3%Rd{+8% zt4)<%b~|$ovU3C+I6oF>28|ZE`}!TTp{vDzx@WmtTKY*w(3D?Hsw9=jeagT*tdxsu zr%m+@o9GMOBU7u$J{xLXLdSUX48GU$*VS77P_MV_)qVY#w;pP$_1V6N@^sV6!s05% z>CyV(vEYm8#YGxRRbH~T_70)<=y=cSTD1vEwP!Gnw%pcsm!E`AiISb$WWmN>W`_wod2_Jmgke$C z^%&zt>2X8eHA%6ao;VbG&J1?x3u*=l+jHC~kF#A8vQ*?Vlke+G=daiL|12oZ5~7nB z(W5Y@+K6l`53;* zt7zOlfNP*(|6!5abu_TWO+tRmTX+5{M@5=Y@QY_(;`zXjaZ+y79%s|78#*RvQrJ?N z_gQ0)ykkC|29&Qh%zOJ- zioIM~tP+YR@``sBi>ode9+W%u;cKJ4_=2%j2K#8mjd3k9TsPqep~yz!KA~)q3naJ6 zs34`U?WP;wLmtX&OP;WcubZg8+GF1O`7T$8jKCX-F?Um*V0bFAbepT-(_LZuc5$0s zFWs-DDF^bhAKoEW!uXtaU8cm|KVKf3A#l|{88l8w5|v^vx4r9py7SFP^wpf01?NAcRimnFByqWG zBqB@)Ro;5P)|p&WQ)YgpK31afkydqtom_r1SJnUVlj4m{%PDPfx~X^c#Cm>XKk0T4 zp?#5e`z~Tzoy#i?w`w~$ee|xemmx#{^43&Nxj4tG?bEHK1ujyl*JCDy_gbe0`#Iir za=J;~*&9ti--1%hWl2|CQqX_SSR&}ltJU)%J{Rli)Z>KnL%$v{GoQ_DI-5Kc#nc-* zu={R?6I-DwuY18ldGIw#U9F{kEbsoW{N=97UtwamP@T*Ssj1O8xmo-E+{3`4MB{Wc z6D1gYiU`VYltD|f`SgWTo837eARS>f-^`HKt$faGs`9LJW!2j@5F$EGZT!GqV`)i? zWgtPqs%o5rHI3&<$u@K=%^mve9aSHWaZCM5qM@Cwv*t`isu!LXaQ$vrO2)})9Ax{M zv~yQOn?~G3^>Mg@c1JF!s?&L-m94LJr;!Nua@$P>?K-!c^IDn01ern05{E+5&N!U+ zIcHvIay-Uj><*sHF*Qp0F00<7#FAKuxHN{vwLcbxec?7`R~Hn#wSgY5!fC!&o)tAr z{A0}Sym8DM^TD(1#`WrNKfak{vid7%e_>`HTN@VEUhJ6~8NXk`yTU0c_0#n$aV~Ns zv5;$Pu58Nba;k5WVp7(%=(Zxfb5^pD`4gD(YW#1WQ)p<5`D4m!jvLr7zA%(TWv6br zg2Nfd$v}nr69qv;;+>L-{YyW&crLWX#!^okcfPG8L;lO;Z;MGW{y)uoWs$49XZg_7 z?33k1Q`-MXp7tCuS1Q+eOxAbO&nCK=mdOy<<9iriUUlIVd$l6230pure$!oLT%cXcuV8Nf?X*Yw`=8lPV;LSzHbY-E zq>bhD<@tSILK$Z+@R}3a$sUSlt-re^>*-eeTdHKVjQW(rZ_BpPjl7R08nQ}?+&{FXVeihC3F8p?o=H!Va9si_@03tP z!`3P`wYUG5(xXlT^`@1!O|Rmg8P(awSQQgr9@LOcaCyZQFc97f=eo3%HL26TyYw9J zuKTS7eVDOnD7p!t}Vi9h{@v!uf>(EI-VGK)S>^@Z{exIQGkB9~pFLh^SNqd5&m z7G~C{28frbSVsynYcbP;=p+`Oqn_Fm&~VeF^;!qFKofrI*9|8r(ei7LNOKy=%72S` zuSDQ>g|}*94ggwyzMba3UA$4&%WoC-O0Il4*;&eP=q4$u!F2?Z33_YIo(V3`_?j3$ zw9!bGwkh-{;o6w4uFXW!8Vw|WmtAe&^LAw*F?jw5H`Fl0k~6}7#7GBICxf14sd+Cx z0R3ir1?x`pXUe~e-6!>nS3_er$(&iIq}La$HgG}*`77UULWrKWc=G7~P&or39IKOY(% zu5QNXzhO7K^R7liB$f)gH1%3~2J{rOi=<6lxE|sZ7Nk`O{~Vs!;KvQq5ES+@HZ&$> zBjMyEeu5EreoNsS!1D0J*TpN9dpi&9%5k!_d48SaLz5NJt*(PXnY9mwU@^YF!mcR_Ha+Ys@)drwHiX#7#m-=?Ic zn5`{uTzjLfM$#{+5JI_;aDE!NLGGYN#y-f72zsW^6@KuAb16~@YpXAVIGsKI`_X{! zdcU3U_{^>1DJR?sEu*IHj^!`i*jUn$(-pBi3-5j~Ued-bhM+^LT5@J+1uL7mK+@5s(}@a-JG zufKZgZ`MG4_2r1&kL7{Rtani^TF(&Z`}NWEyJ2CCE{UEu_w;i`ukH2q&F%(vE)`AG z+aK(94+n-^`@`id)S7|qWcqrG=D5f>X#d8tOXc_4RI=j$D)M)KJU*vKUrEK@hSWY^R3ntfc1)EuuyJfih{-u8$-SV~IRPLkv93a9Pn zVVd)WHoUha5rldTAH;LtJZjg`9$`v@+R6wp3Vu2ZRSclcnfCCU;MGpKyi(x^)PDL46#`YiAAEF?9P$AV>nq~S@SYdxU4n>f&>%CB%>koWX@k3ed32FJW zcuWzOIN3u~bJ29yXyLd6y1F&@mCKriB~oFq;*deY70YfLBk6NVIb}xjqL>InX^Lxf z>FF2Tnw=^_`IbtF!OQ-FLtejcZ=jLq-rG?5y$J91@{HtAgbw!QYYx#r2I}_q^-THa ztoUt+!z%~7B8LyDt^Kf~Kij)lE8(J&o9bZ6@&__HCH(2|#{v^R|Lhk1&D4=;$?t_5 zuZ_R;G!7o^PT9<)7Gyds4yP3sGOtHb-e(toyLu1nXeFC|(uHWScd$z&xUlPXQY^cw zP*B8mg431og%FIbbDZo#!LZq-nUFgK#hTe8*72H-GkhF0N?7_Y&GOH!HYI) zB`@pmJAR}92ckNx0IV?g%;F>?a7xWDJm(mAm)$KtZp>ply>4%`)2n zK|~N~BwhXIab01_kOaoTKv;Sg)w=X`Rx3KDpqLetLiOeQhN_S@TBONKCD=~t{JHt!z`THrcRNGBeB}B^B|nCs zcqAqHW?G=U^yhLy*WFHI=f~UIimBJ|#_{PZ{A}J$q)W6E!H&yOMqP&Mio&2Y^b+Jo;?|S| z+_3wS7QQX%{Y{pm{N_}On31~E$Ik7N8`agNoupI_epqg1U;k*2yc0FSKBrlOhHt`$ z^oi%Zme5D6QVKGPlgM!X*v-a=0u@JbU3M;U0%y}4E0+Xr@}jpfQNDFa^I9>hh9(Qn z7&?;1(^l}ptP981Dxl+C+N{3B3qDpc|7-B_jkl{veD4P1S<85(`KxR?>RSn)hKGiR zM*WYlT*s|lGILX_!}iRA*&5^N%Zd%72-11DZ3I1-bIs@TRTg9}t2iITr z>n3~YF(R~)}14Jvknell;N> zH->w){;FsqL{*^)DU0sGjXMtW7w_|eDMKcv>bU{-S|2C0SLv}on(b#_kX=d%yAto$ zSR;1Ue;)knCP~zer1#C44^o}5o%{IYiJe+Ns!{*Dw|C#`V9p)UaF!LnYyNV;h)LO{ zlg!|HVo4RrQn5tA5z}>P_Qm9H_@}SWnt7*`4Jm&;oyW;U_DD}X_?jQ|XKC|w0Ar|l z2*!&>G=g$_{@Hcx%$NW4Q<_pMXun})Tkw|kp4low?!-(f5NRha?_Wu6toaQAi0RjO zE#C2XHLo#U_YO`(qsXg6XMTm~u2HfMs?3mZARcA#Wd2P^8SjaO^8SD(R4*#FaAMblfT3 z0#?10$3u>Eg;bhvk)UCTgHefspNva%9b{+?Coho6!$#4D6@ zVQ+J!hZTi|6)j3xtjo&c?VOM27rqwbQK-fc@ls`G=`NI(Ax+PY)GQqpZRD!ck@bj2 zS@D(IWg{$6o4o#hQvFGVyU!leJmwJ831cEjIrXk9 zCkuVCoDsopR`>1W$B#8NHQN*@*uITFNu-vv-`<^3XB`+2qSjl@6rsn z{KEnLw=lI&OI8W8S1@Z4Om}^q%qgqBua%`7i`IqdhzbN@Tzp&e(w2PTGt9u_Xcl!v z=4E~{g*Tbi@kFGzYcCY42>WurZ#{Frby8AXv)I9RXPOrwS{@{9}t(bG}}X`t(nqV(X{Z2}%=~E@dMN zmb+1@uzA=t9z9tX_Uu`61eMgJtJ|+RRiPKEQlfg(<5a3M{xy`Egc(Bz6-l)xlA+(m z!kWamWpY^_;AUhn7nCD6H?%)s>>|exw_6Y$TuWacWeEGmvLZ{* zxmx-XHefu>?SJ%UK-!_sWtStPI2Bfg3tTbu(Ms?d?Fjp!)6e|OY2o65U7gRmet1lD zEveNF@;T^`O(8ca&%tybayCwPJ(~;kXMh9=<-LSI2jUNt_(w@&cJC7xp zmC$81?F5WwS+O4RecZf(!S+cE~-NJXwFC)T+p ze1dFeQqkCUEfteha8=Ny^?K1Z?G`VA((rjjkAok+(5$1xDcY3CQOM7e)zUaZdTe}d$!g;Zgj?P4zHW`@FMnf(=S^BLJ$6{hul`tT-lAH{TRbo4LWOy2Ue>>D z>64$F`Ci+|8pr_eZ=>?L2ql`$uU%1$CM>DXN2)NE#?mx)WAkUWlE4tdF7Y1}xRhpyJZD(=Is``XqeX`mKw_A8J8TW|BsIi90UPbF07++eV>nMnVF?jRf)w=iEzCgZS{UrT}Pq&VA=V->s`#6)Olu`mg!2*LuFz^3(2Q< zj^iWE^o;qa3LebRi2|7_GuS9dqkl35sDQvAJjrhjgoPSCi zwF;I4hVZYO3DI@22SVf{iByS7ALqgnXWbDOD}fH7Y`Kj%Rg!>1rut@VQ6H zFK1D4uSu+ZU4&M&Ee*L1`sW4p|GxBU>&B$q<<}7&lUVTIW$bOr5dNEgKlwlZX?Wh? zf%|{{|L;G&5a>4l|Idi7f}s5Web{iX;Xx|Dgp(8s{*^&q*y;?nl#;pDi$G{qy0u_3 zB;QCzK{Qyf7r!*ny8Q4bS9`|6KgU&2P)|d?ef#!8Som%I(KGxO2XsSJ5pfSIgpaVc zfpWsWM=H_L1AeRrsMz6+PZQm*38G-4VxnS4HEK9q{rBI2jlKPawFl?{Z)zB^AJSnX zYeJyn|AHQy;N;{aA|gU((b8`7S4?8!=GvOLkPrviN|8oYSbY4imKMFBb2ltZ%*H=g z5SV-JoX&^qWp95Z^0`Y%O7f7cZ2c^uWMu68{{3w75x@fo$<$0EL(p@f_<@Rvev$L~gBw~B6;o5$RKyh5j4wIgq-p!jg zX{8etWMzpn)t_>5s;a0!8+=Dw+w(aT56cW>cX#)XL>~2WqloJ2Q{=>(k-}GH`rSqb z2ED_>KCP&TIWcW`x%BySkC>R4!op4Xi$53VlarI2oSbd1l6Mddm2yPyZP$jo6M4pe z{&a}$Uz(e|sj9-_ByZm}A{w5~&wUTxnyRNz@}5~-)U0t}*^Rs!-h!f4 zBdelvyuTtZpzULR>mfOL!iNtZ;^NfR)k*Q6BF>&dQyw}>@b|BkmC-RVB_$;|Q?D$Z z#wR2seEsTdZO!_L6A{E1V*k?B)s=;%WacYc|B6PfQ+ZL5xgkAM&2_|_ls1qcAM3llXzcvqBc~{j+Gm`xVY>s{h%=OZf|S5hKJ{S1;fL#r918kticKkG5Q`b zx2enN>16~5lgXx{9yg5w?QBapHFIRPJFE}8e$OZn6dTd(rLw3 zRaK2%yn>hufKerVVy2>|_LzkQXYB*LGY!39FSNm#K%jCVula>BFf!)l=HecGfQ4bP zv9X_5!YI;X^YPWEq|8`M`9(wwb#-;Mw4eol=PyBRc#7haDDU|_QdMV&7Wq;^C()+WR#Wd|6I6YVEE45tsY84!c_Ik ze9;b3k(`z`x7Z!0q@)BFOlk2|F;9t|jm^Qy>E+*}FmvE}VBKMwo|_}}99LCWmzS5P zj76u$L(E+j(1!Ok;3*1CYhn>H&(F+wmIT3+0xZ1O($eDX@8ACGmy5316Z6SuFJ8R3 zVFsNP4h{~VD=LB;dLLpdDk>5X5Nwwq;Fn;C`uqDsiL1TuF);<%=!EcMGwov_<~-rM zE~op3&9Hl8jN{4fLR+5d+qbm%yoeyj$E>XU{QSb;nPq2(JSpY2--N4qK7-m23^gpC279ema9p#;!e}DXli-(8z_xv?(=cf?llpMuZ zn!37zV6Y%CI^ZWcAj)TEW+?NK=;-J#U%o_!;=*}gs34H@l#6I+DXN|r09diJvtNSX z9=y}=tJ=16csSC>N59#O;odzhUEQmV+svCrs zm9buX0wd@h`svePUmtOMT>roTOzf}K)zG>8f&kG#guWtTVPO#+9UU|;Nl!;dMowN^ zQK;QPeKldW*`IBX~9=3+8jL0tU!gN2Xc(Kk3a z5BFnkE)7|4*PfP=QvF|CG^8IyLj>_`JDkByb$4~a>W4zqs3K8pj~_pVTHxvxL@O1f zoPm)MLIMKvhkwBl3(G42C`m3doJKO1%XT&U7rCQ&Zhrp$&W`6l2mZy}+i( zs%^30V(RdSdQl!ECMLqW+mu_jdA*w6ql2jRsc*aN_CdnKtW%%MTc(tW1cH4xb(z92{*A?=rBzfMKJPX(Hoh@4+nk++b$3#P z5L!W=bU|>I+}u?IJ&)MfG01LBO=%@1H*--Dt%;4WQa2F^$wwvhVt*SqH#Yzs8FB=& zwbF79orkB^+q;EsQ5*7|`DBf#l#~yglchC*+g=TJSt``vtj641=!}BEeQAqmum=S9 zfMC5%LBSWmU*Ytgn~(3$XxUpCN(3^pt-D+BqA1jTyN{&WduDpN_vg>$m6hx4R}eb> z5I`{DDgR94l z-%|>TDLQ?f)BTm*-Q7zv;tHfN`JNg*6_u`*7P5LYx*z9qp0a3YXb=$-1N#tuLh9E+ zOhWPi6BX+mr9q_;1|u!4X>!udrtDi+SB=YwmB1z!H+PC0LaS?fX-Qd4jcc_j2mn&4 zP{VPlC&9-DJsTfE#0t~F6<~Fcz$YjOyS-^3OFA$hAXyGEeMw}aWnR77SXf|R<*z_0 z6={;=<9`YdM?HYM^*TJXQ&v`nn{;wI<$Ixh>(;H*w6qjWm~g#ALksKcCMG6bot@mP zF)uWEv9PdEQBf}sc3EtUu}exyLa)B;kM>-}yx6$7t%>|zD)3cMkY`lp^8AxgJ@~FTAS@TObjA1|^b|VF(cu(y( zX=rG~#XBLr!#f4fhY$_P9w@FgUN{qKK!~0^IZ6tlfLn%1Qdw06{OZL9U?f5|nwV9; zt-byHdQ3`kvW1P!K0rlbp-(P~M@b4&PEL-Ci_2ZaZ8%@`HW}I3LMLH134(|ev#Gt^ z@XeduB{~T?xqb+q6e9pmi?!j0usQ)LX&j%hc0gd@`T6*vg#|@r<)!KAZH(IL@NjM}F5Z8k@*3j82sZAq zwz9g&))u;5{r#~IWHx>MmuM&r_v#yEuFl1Th1~+mz-P34r}fXzuY1{aMLbh~==F6m z9|Sz;k&pi%%ya95JU(S=@`JW#1d99B70$L(<)??QC-Qvxs+FfMvXt!!6}!TN9;9Yx zTV4}NOMKtV$?!tP??pLHFzh< z)YQ}$m;6l-LRDN+66e~rXm;bs^h5?;-boXVw|aUk&pq;2Y^ni}id4&lcz4Lio*DL2v6$)wAx>b$8`wc2Y_PB3{@O^<>(2%^ zM>G(s+?KNf{QO>nAI+`<#h9vbWFSp+h7YaIzN3QOT@q@(IeN@(Tg<_h?R zj=d0~rOi4%K8BZLCMPw0t{ZeD+`R7y_6#WmK~$HK#t5PD@kyRPn{+5dLf z2J)-@R^l_q$G*KNF{dk8NzEiwu;kqEu+qEWrLC=chn+WE*!ScCHEtQ-C?Nt_6)`>6 z4Jl%6xWI;Jx?Tr$!YLy&vrw(vXrUvb-=$_{APWN>J)qT;BaWEqxn1*7T3uCM#3k}qNDBYYgky}yZq=^uXaVVc(vlRNl8h4Y}XZ&kodIA?{>EH9q3$U z6QUHz^W@kV!)VgfN*Kp$@*5_V&R60b=6ftRx?>iSJR`Z%y*p zZ^k#{Jsuk!%^6w+=Y{Z*CQ`S7)FfFw?c(ABWD^93| zYN1Y$_{R)`MuQDcADs&)JhhyybNwwacbAMzcN$S;6YY&f=mx>v@2>Fn?Gg+V3|3to zFFI}r8Vhwao1vVDh#xl1CadFYn%hS{M0x@7g@h5TJAf1ix!Re z`uaLMId#l>f{FuiQMq`f%^RK=+*?-+tKQCM^)Du1QQ(efcs%*}yrQ*mV{Wd@`N*v5 z*><(<+MS1L0(0oP_y32B%y`d0X0mXnL-@(4sQerniinSAioyWBfQy5(0Ktt#D-~~G zU=Y&BLizteI=qldz8ab|Tpb;qv>~I;jt=05#Jtm}0Dm7;>=qXmsHv$($HzMtViXx7 z41NiJBr`NI(Y=a7PfA3DB*MnPCA$R2KAk{Z>y`ctKw;K*9-sb)jDQ%O%Ox#xRbU9g zeFfdSX9<%`qsnS1SMjkEyyr3x;tnkgveE{=7E8!c&#KiDZdSHCH@6P)N;VNN|);b@7NyPacSL9c@@raSJvEGRG z+4*@Clj=)f6sp31AhC1}X}#0~B7l*v1udj9$?Y@;BKIFm6bc5`M{ws(=Ez!=2!=}o zdbJ`kS9Q7dk`x~wpCeC|udlGKZu&PZA|fI!GL-gPqPc4#1HpV3 zbeT$zH;_i<)sSOhsb0&g={dEvwb|JsX?<;L%flhr*>o@^_V;aCZ-!)E!lkZmb8|CH zk+#hluXpcUTwSXcuZTpBnt%g|bN%|x&Q9n=)1Ql@`qy7fh#~MU$DZMhCcE))zUlav z_MI8!e3cUYZjwwN58agmCp^61%faKVNlHpmaSybPo zIA}9$>U=UtfT_Tm($fXf`hNawv+Wg}0sZ0iS7+9_P? z^V5UQs7I`^9)sBA6JwD7AQ3K%|A%x2S8k;btZR0B6$;$E|;TwiV6G~B79|KMI+rS0`e~dHZCr>E5HDqoSi$59)iO-2S89-dU|?F zB>!BlIo5P{=K=mt+wfz>*?pz)ORS}?3dTzho=7O zRYE?VFK(X!8{{8Y>LG~!9y!1v)S!#-d$nh0XL%i5U;DD4rKjcOh%)`ub+s`TF)+xE ziXyD{!3y~Vocq_WU(L+|U_z_a2JA1AJF*79ORV(# z0T?;p`YyQHh+9}$kyML}0B{vwxdm44zliu-vG&6UrM!oXj9|YLH(`o21I;8QA<;d* zojQ5L+;a0*6~xTr{9-keWX9KkiQuy?+gtHfA7om-u5&s0y;c8K7lr;tXAcy0)6=Pd zr|H>5L%|3%Bx|V$KDdbKKwty}!0Dr#whjBs?7>M4vF4esb4A&2+Eco|ybIXxPAQ}*l{n`lsO1lj;Q`3SsTtQJ$$|@>E zgewUD?4lw*%h~tvSz4M7cx*spR8Cnci>2VEe7v$%=?9N}G!%~S~Mgjr4IGzh8*b_=^`X9PsiKH}1 zB=NfbKHLynMS?8?{UzAUT9)Wu-zFw_o;}lGF;DL^0NoxK7)Y$4Ld(%hu({lq28uc0 z#Q4X3z_*HuCwzQKJ7`R6Yen@J7r(a%hP8ny!jzASjBGu=5(!dD`PHj}V%*#K`15OP zo#xgkOojhp;ZNXViy0t8%fKMu!q&0`aR~_oOnYW#<^abW)iQmwt5e|7<9Ql@0`I^{K6Ma9FPCFu&(6KM3abcPr-Q5qN2=nk^w*lMZW)Cy~ zL$Fo>45@2BK?y*ufSHcYVP_VNA6rG{KZ>Z(FOKsn9jH7MOtkz^uo%FuH#HqHD#vtw z)Ta%nJnVilg={W<3C~~@Fy==*XIgQZx;e=a6m^(iRX5Y2M)m`}kdsU8GcYmvbSV3P zO9Hruo*s1?wu%_Q7-&RDoMmNYjhYYX=|yW^0j|NJfWP<-QFRH01cydI)8W3+y*y>n znMAS%On+7Gqy_WJ{d5LNa(Z%Nd5wJ7AIFCJ_Ff}Q4PPH0hOHsq-|J=I20`Rub#!#x zTKfT|(S_Qv{tR&#$`zys8Wg_37BFNZS*VRID%ye)0;EutUic0e9a(KULV#=Fn*pu? zFMpGa5?JZDr!Oh_;Q@D0L4hf($NtR=!~JxH7M*0+2gjymbz`Hurw2Hby_J=m*38&X zKS5itg^i6Fb#Q`ep@KI!I0)h7=&@eCC;UBGp?*9ftQgoJJtRGqEBM|H5%n*98?fcqdJH8nNgoOWJ*4i%gz=2vnSz5w@~ z;3@!}QxO0g9hjj~9)b9E!MbU1Tt^DjzmuUC`~6=ygd@OPyu7>wePw=hbZlmnxkLVW6#|alh?TEfb-z#7iU?e6)+Fb^1Lk%;WuwFm%4ltE?dTBO!O0#> zQ|AY*Dl9B4Dti6$2t4Kg!6I7yWi)>HAgQEu=kl1RCyLj%8#ix)x1TaS^6RU85zK1e zUQZT%jyPMcS6W)rm#}yi8^>W9%jeEZxT0kW(~+jH6KD#Ml~3of0DrHlZRkJ1Rl`FB z?IkNK+u_#DX}xGN{^bKMYETIXr^Lj&z%SNE_IGzNv9RVIkRw|G7C{839_t7JbG&~2 zIuMl9gvZMb(N#_dMgWbo+(BX){YK@GhM~NM&6STqx{SF$+k#bcjL#?yn;En`G25B3 z*bT@_}pM%9DGZ$aEh4xf)^XlQ6)2&?k@<`fkb6&C9M z@?@dp>RKJjCc3)wApgLsC$iUqZ5^FHLzdmaVDwr4Rb>rTVX~JPtzDPq$?JMEYI1$> ze1QXHH6e5|;fYjNkBM=00r>_(D&>pPDgimm(y~M-t)#qM@vPIy$;rppckRF_yuG=% zNvznjkd0rs!fs=1VQtMAXKQV7@eUL}6BEsV!ntZ;`{9J4iTgjOTlQp09$Di%+in7UWORJpr+u+a!jBi^33h3C`zH{TJmf+WT2k>( zzx{i9(7rXcYmpIT`9!HhMj)bs$v7LAQPVaq&VRq{iN85zGrZR!Dk=)t1CDYKFLDfu z=$dM3xtF+@ulJ4wf^2s74U&k+RqHdP8z>fmHO|S+t=`TERraPIKZ5y}8;FR=$Rs2s z|HZ|E`3U!;uTuq3tH(uM`-WcK?^nnJCwr*=Mdb(MqgT~~Q&UN;I6;!W#C&dNa3KXt z5m^#3r7+w2w7c|Kp>hFb2d145cPJ>#d5XZ4;<5?d9LiJ1M<8S;4QJ)NvsgolH3aCrFT3+_OFf1@Cm z)@Sf=%qDAq7M>^_48y<)rG*CCG!WTD3kKdPcwIl4J9*mRi3-7dCd8$39nvo~E315l z91NQ3c;MD}#gEQTai*Fa6s`SFe_;{a8)Ik7lF3AFduEUcvbG?ftE;*4xPb10c>p=v89T5dZQbdU;LTm^>fSHEDid39c-F+$R*I z6S+Q=SHLV$I^F~l45rIh=Obo4M3AO$%rnPbNJ#}{O)y<9Z5a4-v45x{)DH@_Ct4Up znL(fLa zf_yH!CX|!{aCJ!0qx{wXO9p=2=N0kfr$*W7}y9w-35#ZA(Ki2JE7Jmpo&D; zKAG!(gNL$1fUREe*Z{rY+~|xOh<^KrfzX}A?o#HwQb-VkJ1v)!W*E!ph&HBEMMW) zS9w`l*r=G2!)s`B+L`rMaS4dX0;O!`%-~^AmW@WYVRP4*r?%vqk%%n=zg7bO; z1qOEg@go!r%NNO@ATVfj01O3EK@O%?`lYZeH;w{yXJ1N|%K;4u8RjmJlYkpZw9E?9+bZL`7$&P|g3O*Mp8UZEgXN!&C!{I5qmQo|uIN67udSE~v;$OuXTpmuD;? zApu1pcmg7*L^qvkCp$YCp&x?oe;9X3==u>t0(N#^RPdX>f4|*=QG}P0^bg3j{RO`Ig(dRLFJBH}R0U8n-k`oZ+ywQ!`HSbL4|@uz5IB5JT4-FfP!LceqMkC0$JoO8woID|0@pez^edmfIxw}nSTGhuP>PA zq}b@G2%-0&#el2TIPUqq{0Xibun*v@Xgd4?hs`xI5}2UR#qs$$%qN+6n+$$6__cL) zDdZ@CXcJ)3?MoE|G6@NmG8HVvv^4&-z8ft!{-WFsmU18++ZR3Yobt-b-&xY0K>6|w z^a?zF3|56Gs)IDtDe7%jZjmqIfEU7&#>l{6WNuE2LwAdGd3ShV05Cl~BxHJdS%idN zfgwUEkH=}rz0g+DH>oZF>7d4Lplv7Ga7}zM9S0!h$LHHZ zrq+V=_k^+8LW)N+fkdPYc+$*}1021kCjRfo;k43|<;H}vHKEbb29IN)_U3mbpc%co z23ilm0HvX&z1{Mo1vtsr80d;yXxqHd{s5~ta;ofLfpmthfW;9Dl&u_iY#kAdHqozt z0zr9)h6Tj8ChI>uOq0tInfnmTdn&?4%!R$32(Y@lw+EUB%5{b{ES9s);M!S*;)=Dv ziTy{VpFeK^mF73Q)EZ1d@z;ryq`3_@KA;T^Vqd^{NOm4 zHB$iX1$M0Y30DBbL1~JSG;oWHi(A{-eGCes3V3~k96Xdoun+`LYRW*%LMZ^Wd+PBP z`62`wG~rQW(&3RVKR)ywd0NfRbh9%}I9Mw2nJ9k4S3__ya&u>whl|-ry1^+42ng`I z;_w8Z4|twY`54F)HaDnDwSt{YN$ExBVXwnR0*M#o>92_i(K$kp*Wk7^3vx{-{B=da z@|s^-5+qkn2N9sx$H-Wq`InwXVIry|(s! zS;W?`w*HUATH7_HR3aq_32+?%gp;3{BzG$Q^*!g8hl?)Z3>xQ%um#|}5QNYWx1iNh z1U}&R&xQk)N!Mz;VE8Z76Yd_PQh{2z)q+@I6=G}pA6A&sbQbV$d5ROeei`q$;F1*n zE0%vskS2nC3v1~9wQuj?&|RO}E2UcGdLv2jw+zHj;vN(jDE@yC?O3uo)(EU9I44a2 zU+eHN2PbD$adB~4nireL)EK;-o$wVjZ0a!qkPWcb!BU~coPKgMkLuB*qTXJa)Z+tO zd3AN?gH=TsuyEjp5n=#Q()jh0+Mq_{6cq*WWp2T9U-`%QoY87YN*^*x;&HY+-qub< zOiltbg<7hx?@9Ro#HlR8T-t>>Dk8!k&j7Ho8lF82F_5ZyQQ(A7dHBl-ZyTNkczAd~ zQPLt5_gE4g1LMHS)xco+{q@@-bILCN)v2Cqt5mmzEel+hNGmNVWzVXC4!S}mh0SdG ziKwI`aLCE8_K#%GxB%FIr}|Y^qTtljc6CXptB*tGNIkX%9|2qx@KS(^r=!$lgoTAc zi`NGse*Ai=eeF=Wf2vf52=f&{SLkveV|5~Zkg>XIbdyl_Im^%IQAyB|8W|O3T&@-& zCP-pFQ27XO>-V84+`kailR)FWeEANd#jr-ww+gCL(542cPWn#)#oPM>1z#fD1r^Jv zv8gFR883V*3{V|#5EQuItn{sLp1yGKL*OgFam#F0`XM#nYDuD^aRw%x5`AzJ4Ik=T zCs5BXhNip^AE*N=ZbCSK`A{@-Wl|0V9%M)8EtIYKfJ4dw?y!e3bAx(rVWHdcc8XFS z{P|9wFa;PWp}43u8Gw{f4d~UL><6C(vInD*C}ba)MWWCX#p|?Bhe13Q2JO6%4**eL zzosyJP7Fgp9Nw;rB!X5Jm}sJNrXbUy7X$j}V9JKEdGLwmr$N^S@CQMBbAE~B7Piyv znI@PU)Hu_oTwS{hog?|G{P^bd)YQQ8|Ajcoe`(@_fQl{T(bg27{U(_#!d(usHGniA zli%z^e?>WXj4AxSepfnxaCXH*T24vv1iBGtz!nP<3<_a4(YDv1XdVZ`yHDFK{O3;< z=-~sV4gsAI-JqbT=#SgfS5QItPemTW&^;`A1Mn?-$Ox!Xzk~SyYVsa@?FMYHM6jTs zU{zIBXsbF%{0qS26{HL{%mE>rqzD*0wekSE$w_Fk;Qe!EP4Z-$gS_>}k4H#k2z=^G z;pQ;i02Tt&A4O1)31-KkafbTAgLib3iC(b1tY9^CmGvXs1pkxGw`6N-Qvz)ONx(>i zrw{-tY;jTlBk{S?gOZ}U(@S|GfPw}}OA1ycmX3e=V#KYYmB;3DB%KG}VpftH7kI2z zR;2|64-L>tga4gHGeP$PU$~5=N>d_GQ48*A2d!; z{jJK&?!Sc*^Ik@RI1!IxrVf}A_`Co{u65+i%b|}a!bZ2Zhw8FL>Tvi=+MuVfJ@{eA=L%v83rn7*MP=MZI zLj%GP(NqnEWw6Fx_&Q$J0pHlh{4K!?l7w)>n5Wg(^HEY#a&QbouPU1xBSZsK;~+R- z2KOT_xc^U)oS$UtxkQe1;xpCPuch%Dih*nN;*C=W*smdhQNVCeV@?O#MuWBjnHfVj zSYic;h$>5QJvK&+t3+@u9_(U_omze1rw&V zYOMGR=y^v(SwdFLTmVpt(cP=09l@lJNo$V+1n1Gp2+YOVzj{~kNONX%G;M}AC!3VZ z%;5ElNV0Rg)YXGfoe`hPQ3U4!1LX>XeftPF%%9@J=_||Q_vhz9kBycHltxj=spMND zc73`R-ofbQlakuo+B8_7un{Zcu6cT8nE)Fbo7e{IMGgFxm%8R*Y^cgla6?d_gKx;e z&aU~{@7BI;cZ^TZd6blOSQhplXZ~#1p5*ZI?1TrIa6{E9|RpY2P zsTi4<(BF;iEml`WNpkMoZgq7E!xg&$L^U-wK6x5ON4Ff;z6q>ypX-*Cs}C`)@So36 z3nxlk?k%F|jWa60?-=|Dg3-hSmv)SqKMn%fBasYpT7b`Fj-`~9mt(q*w&DOrIbSgU zNqn)If-5d@b_l}@L;|iOW2Ch^S z!@CsJ*4k)~_Vm!x(d}g9<-q_NfIPYj0ZJ7}D27KznLSTuuw>Jq4>{RizbPY72bcXg zZdcrNeS@tvQs01Qn(W_CM{Zzg8PM~5om~A|Z9P5kMEcO|hOUBwh$JM$*u{v&o+-uy zsw0pPKnh5wQ(rF6SPwx^ISlx2vT^jWyo`q;Q~|{fSL$K{DYX zA_H2HXo}ttYA-EkcXttC;r_wa5Qe=YaHHo8n2RAu$7 ztKFCpD7oY6D>RSbz=L|8DR%aGPth{JNOh&)%{N1T+GCcTfYgw@0s5-0l&c5CB< z-jO-H99o(QcceE4w^Pl%Et_ciPo6c4JadG zfB%*Bx$!UU=u`8pt*xQt5s0KKc4;p}q1SA^bk-9Fw?f}yR^hK`7!gDqQ^&o~YU-TJ zSFXtY4u34v3<7%Zi``S#`VcYA>H_%YUq?oOnS|O%$jHmTfO5;;9*9#6MJ_nvs0nYX zU*`@pZ0E`^plb(FR3TvD8lLu7C~V>_RP^kx#|$rYmH01TzEww@oSbgoy7g(W)lvEz z(ZoDFc8+A_`cFa7c2X`Pkr{a?9)DRHipxOSg&3j9dRC36r0AAm7i!VKwIS-gu}LJ^DoEFGo__p@rLa3s?X{J4i60ab69Z~srr0T*(o3Os0UZep`a9=)2jw!BB4+zz3cC~XU|*%$hURK!4@ zdxxM+j=U>4M^Z0cB2Fs#T_IWRr=mCqe*PJTM&zFnR$GQQ-#Xn_ z73%!ui_} z^MJ|$o?D87w~67f-Aj5os@z(f?B`{Fnq&1A^c)Y|K4=G@DI?xG<081qKR;ho-V)X% z<=S!Y$rBa2heW+*svn%BYw@@2(6+dseL`nY(xGf|x?nmI~~7-1t%9Uiq8B8jpgzy(BhOL4FjKX4|UEqiTjcnl*VK_>^=6GTHMXt*2%8{9YT04Te0 zSRb$2Sc4w%)jtpV^4?$6Q zIMAOhkzzkL=NACO2Y?UaO6E#?Hc+}y7Kbtj#8xNLF^u8;piv1VrFo;Y0Qra0Z<5Y1 z!aleJY|E@Y30N$R)=WaCTvw=w-yQ*6k(IQCov0Y3RRIK$fiTh{84TPZXZ+j{;pC_6S_*f1>+w>!>3K#!)XhO@#^vM^yG23 zOH1XYrKPuSefjk18Hs9B;1`ZxL47%!q_gGRQv|>>808IjVWU#QST)u1RJjV!{(0f?+Gb#bs7dGt231m$fCnp#-U}R&Nd*Umo{_z~^Yg zhUWaWP1eYqbMw<(4CHYymSQ1?{0W__QjrouyM%sWZyi*LST%f2*3hoZmUhiYk%V{v zL1AD8$tfxAE$DWlsR0YJhNh~RdScFwS(Kql50*jLpE0;DV>~?v$4GB)91-6PQZS~# zXQ44RZA1{;qMuSv?MQ0IjI!d_H+i`Ta?o*4fWnFO$J5f*ma5-zj{eZE>54_gNH)srZNn%FE1x|Jc~*m$_ry3B77>4P8c{4d$!} z@&1!d8miXE{u;HbuH-+?(qsYpqzWSw^Peeu$g0??s5^bAk+S#Q23aN}`YhfXn3qLf z8y0su=1d@6Uq47c)_yn@+HWu<4I+qO2sR>qTi`WBOt<8y7zrUR3V1J;(BBg$+>0z2 z>0!Xgl*2~=giHfpzOXVdTuMn<07BjzC{b|6%^D!vsd6O=2`?~ZGP%it8G@&YdKBp^ zb0s zY#tItM{yTz03}IfsWw2Kd}1fQi7JR}4UO+icW@>*9ZE=xVmA&Bidgiq7l8W-A1HhdegY|Tcl~*dSq2b|0_wPdu%12pqWl*%@bR>z-9tVZ&cFq1gas9PW79ekf zu*gH1-HyUPZtLEMimML@l1P9-40Bpkxg~!yhd3w-Pken>fEXC%rqzhcO}1*)plI}c z6ml3uHe2&K;uz6KpvSQjkD;);4bnKcSzavbJiNSgG&P}hqpLG*4t$$`#!U>P5ukC~ zwt)*6DUk^UF6hjNYY^3(mEh6a@7FkZ@R~C&p{L^$h}RDeAG2j5YS9cf`P1TsQCtHEj|t68(IYc zdHGH|ab#KA3lhr&$y1YqbVpQ9ps~dO+w+d`9>!Qqo;WRdDK#nC2IG(6@{2s4IeYzJ zv-^8gPjlcP1JdEyasiY8*2wDWpe-VYY~j zAc4vVER(ATqScxQT(@~tlwg|p&WIYSsQ)bj(j&FlNw5ON(y}J|unJ^mIXO9muJs7B z+b%l|Du{5c2P**0#%BT5m(P|fwMihhD#8#h{K9H{V{Kom@R}ndP>5Z@`#ZRF==fB*6KFhvUBKM|QT{CTWPvdzdccOF++OA!TLjS= zloTFH%`Q}(@V-!M^6=UtyiACMOxzGK=ileuHM>x!EpvwOr+OD|?V{w^yfU;80LSSsn9u!IYDBUXM#slXA+ba7 zkr5q^<+z66Gjpv+`-Y|9bpHye*9M^t)XU$Yjqe-gsxUNR-w{iPfjU$ne+KG&-%x51 zq7)7!JK^Tb2?@%6KjS30$noykaC?A+u3-FLQ4ufoCP}xkor3+7pb2HJ+zKh%GA9zf zS|&GdMkVY{raIj#kR{reYQr>yoY)|&w?DJ>XqhH!qKrbo$%v+lRG&Zxk&(fZ5jZJN zuoV%TLw2cyIRPgN0CXX%jGj>ZOvHR2z^1;oHV>swC?>|oj%g9mP4fWC4^Ph`4CN?& z)=^PilRLgGxRLu9IJt!AQlr@JFd^14&P}US=>ar<^vm0=auHu4j{;3MxdSj;lo(g)u78EmRu+bix1Tr?ps$Hwi;d|e`Y(qjv(2k`i`%wu-_b;)iw;}8v3TtT~Rl5 zlIYplg_dVhng*zFwX=E#<8?|NKE&#R&r8LrsW1tyow!bD#OJ8wk_zwN*VWS#-nQ+_ z;2;;ZCP5bGRPcTx#yd-Idvd(@<>@OPX-&)?(}BJ| z)s^dQ$oz!%nV2a1&P1QvNSXFWq7k~P*>E`w%0;Yt{tt#w=4aG58W%VB4aTp+qCed8 zJd_CD@Cbr1E~mu_P_z%>1pDQC9~dcqu41^he>b&+2kiLgCbthLgxz zA@TE1htClxk!krU$)uVO2o{)y2eB5nyY#a#3k{;4WPe1(P3iG_#=}s;2390A=S!@} z9_1m?{4@Z1UeI#}&ilzd@(aA0l#ZO!bRs{A;#kLhv>rzRZ%R=$Xc+Zkc2tNRLIX;lTz z)lo-rvIu^uMvd@x7mNE&`;Q$PL&QVtE%PWVv)YePY-6U56NJf#4>Tf4Pk0`stD|PjS&&mte{~{=Qdh#-mYwGEJ z`|<@^cwcm(h@$9&b++V(C@)SZFNRmltS>Nc9`b?(5wI?P26BvT3W|#xYHDaxIe_lw z0MBADecrV=-v#SSzwbX2n??f`e<1^23SG4toPs+ z2}dj_7W48hn%dndFZWxH%(NWpRCi}AA2!p}ogiGmB&4N53u&^D8M+=wv%|JJqCt7l z+$$0L!ioi_S3W7^=*J=_6uBJgLNPM28G$sPySuqt%WTF_Z*?I32cNN*CqQ_RCAP~& zytHF|v~SIUlPpcp%mH#T@wEsU%c`{ciU1P^XbCYUJ|>2afx&aEN6pf*3-V{1m^>u* zpEEOHJ%bO&%)}ISmlzy<`lKSBzmFI)0$ux1e!BQpHMll&ofY$J1vPEOUH3Z_v}XsF)2@kIQAl=X;} z6;}b#Kv@7eMP{+JvB8}MbtJ@bL!vCFk-;<8F>DFpM@?D>jtXE@RGaE!iuyw1Q|Qev zEK#ITEu(Y|nC(lj2?-@<`bx}LE1;wy&bDiZ#K~{wsK|xJ33_tH&zy>%SYs0?Qow~U z-oGEx3IZCov&ybIym#*#LYLzpf^-oIh@M#C4B@`IN#cE}i?gYVW1NcxnVEJdbI_3Q zPUYnz+w;mAq<1w*3MeRk{i?t_a4vLnhNwLTV7WM4u^_m8`$+1-P$~j~n3rP&4cYn= ziRfb?_(si#E|>#Omy*~+ zOw@h`G7RQB25(|#cX4+|sQC`m5-1|!^kfrrAAGS?5b{Z+nvWkJXJ?1fkktvj3$>aI zxg46v8a6dhF;`bHHxRHOP&!a+8h|~b<}mTDMpi`0QdO3!W3?6KT}I`-2M-qV7N;su z4Yezp1QCaMGjUj2O6tetB$RaYYlW&le1N4OY$)V;czR&o_ccYZ67v@TmfMx&QP-lB zoDq~W4Z}T-$=vaWN8VubP~rU3cd5|a0^mWDd1^cbjTsd@?hzIK#OJSHIXBeA!`}nk%t8?Xtq*q}5Pb+)&Q+4KQi{spiEe&kexTIC`6u~<}hw^$a(i^S^ zd@(i}lA00uKfHe*)FCbU0|h^n=gRYwdov6&@jn=V6C@LIp&qO$W?^$INI^rA5lS>5 zK%@TC@)?0@Q23^xTm{3wqQ)>2pHfRG4zpzq#{9KK?I@@cE00!d#(;TJvG8+P_o@^f zc{K~$@{aCs#-ut|5%b3((~6~a{M<|M%Rzk^z*>o!s3uVyRmE>fU z6pU2lyPq0}{{9wCBQH2hgC65)V_s$K76`^cUmCxo`RcDnq*F|CT9GXonc~MlYv?L|KlO>| zyXEba@&ErHzkGl$!oR!w=)nc+F@dU70f~QH5aKlaIRj}_E@_K~sKPLIbSRqLzF0PM zsiz@4k4Nsmc>D^Nv<>c7R%!R{d7&Z%;B&f8gf75nZgzJtO=up!%71(su6`h~5=v~z z{JepxgT=Y`hR&?6CI3QMQPBh@h58UOFRzs4>+_Gb-%FfN>G(*YP>zeeXcQ(wM-&`{x4_ zOLys`EIAUgMz|Y-Dqi@q;uosOb7S|8!Q%& zGl?1fb>9D4T30mmMqellvM*M>FHdd48iVxadE|L1AKXY zD5F>l@>elJzO6u(mz0(c`2JI*^!egKu<~5@t5ily{>Skvwz4cA*z%pQblWZ6rM+nS zy8TcrLpb>P>LO#8d(YKI7b(2N-Qbz&bT-bO0J=pbQPJ=H`eAuy507%M{4WnCnS+kX z8N410uXK0su59emzH`cTa8Uw9MaAsZirIj%_V)Qc%Z0wHc|hM{W>U-{wEVAMjzgd^ z81Pi7d)H&IhcU9Q=t~Gu_UV2`KDNKd`QKb%nKKI-Anht4af}3HbLB6;U>yb9!64uvY-c@wwVj>|?UdrMN-iZ1`V`^-v|rHu8Q7z^>QTRML2plyU} zXVmA!AI}EL1~fhIZTkJUr+6S$wbft$5?>5I9^IHSq0o?2!K|qK%&+TJlf&=7qPWDP ze?JkgYrQ$=_h+36Q(g|ze|@U|%Y*u#r?2>bx*q=L)cwD9>XbM?tAC}mceC^K^02pd zC4O?ZaiWx!;1cB`eo#;lQ9t71W$z)P?qcm_uWE0LZB#{c?A;D~IdX}~i0@ERqWt|- z?~axOd)(QjsUA<83~tEHohB2F$Z%wkkY;{NE;|#WyFu?@Y4E~)Z0xPJ*Bzh7gu}M9 z*HdX^lEQw@u>5$=$MD@mJnvJg)pS?)5bxY$4)cIV*36tdm(FU?@t3xf9luFc%#(jL zxFKOz;z90Q#%Eh+s&bO|Gi86b`}Qevt2_DQjk`XQ&8Kq?som&V+xzTvR=3jH^o^0t zDZRAh1G|T0Uf&Yp2sq-9xU=%>m&Z{-hI$r$C9}`{ORQh5%4Z$o*wB=|F~!u(+f0_h z{DoD!GS$nOpfy{|l^-fqz6-B-JQ7e=ahY9au{xdW>Wf>s_FZ+?qu!fsSjD;i>Dq5D zjjZHq{0atqRCG5Ajh`vnR?7-!N);G##(XJR-NaFJ?9BCK9qHW~IZk{@m(3k~zlLU- zTwOio7WRojliR{q$GOgYCNW?nDQH#OXvD~-QsMYWVHv-phwiyV=v`=fbV0)GA?;HN zqt$2Ft4YagTUoQ^1R3nbcf@e+XqOw&)le^5OIJR+WytY*x?qX47w?vq4!%r3_hFq) zUz4>iMy#gI+H{1AvtYrlyZ39UuTm|4a>Q`hx)*v4;W}siY*H(p^sSsxdN$g5R^ipy z^D~R>YC1jQpL*hUx_i{-cPRC37^lsi}Mq~zLNwVIint0Ru` zWaare%Pa0_jdn)*EV4RwKQ;#cAiwi{+TeRWS0X3vh60_@!;~4B#)=zh{9=P_>A1_k zh~-DcCY|;4Y1{K$x^>@sngfqTCO#GAcxL;xo_hPTcJrl9?N5<-9{y(RX!GpZT{Dw% zPZJGI>S)ChYi+sjpZtqm|7G)$x4?8!or`Yzv&~w|SJQ6q*OSbNjU< z&4m-w&9SHZ+J#rKQ_eC?XXvuXly5e=B zcW=#<^_&mu2`gt5554NgI1*Gkto!lUeUZaY3~qJM_>e#3`;-?x_R#ME&pXn)509&4 z$eb@)U!^~HDonjZR$27cwXeLhbxl{VNsRn7@Ow&cQZ;emws!BJu*e?%2cz4>C5;dI zt9iM54?Iyym$$fgV>QRk$mBP6qbD=Jq@S~jP#LyKHx=JStvoViJ>wI=#HZV<6hwWb zu}16u@kd7fZT8HY*Ha%@*h5JZH^5wO`*y7RXypUVlWSrlQ_me&v?hOTv_&J`M6#j& zqnsB5(~e^!4^m!cx%hNGO3&Ro*1xexxZn}JnR;u_?UCc0ta^hvdY;r5-cwj|$hP=d5n- z({0|dDO+Dri?aoqr8jE}`_H?*YX}e~Ez1g7{p&5@x5?W)3)HwmDrV9w!f?nJuGF~c|&OB`*a8L2aP7eN;4%T>pwMx zJ!pQPWh~5*$Y;ViXt4G3&lf?enM zURdD9=gb`Xy(=z|`wf(xV00I!#LX0>h6!x9-0msMuAq>2~z1Ph^`&8?-AJe1E!l zFuaqwrFPHc@QSN?_op9>Yw)+Nj1;!4p=k9aqb@6SNb%a(NUN@!>%QWO!zhiN=2xwq z{j22pTiK@Q#n*X}qWfRh` zZp97ULjIKeVr|NE>#O8C&;BP#R{H-W$%@PF5dWtnYrf|qn>7970h3A2M5(R~R#vN5 zN>O-tiWYMPH#t_z$~<+L&JPF(zsPgIMf;1}6cz2e!nceEgj&NbH*VDr(D$|Z9;|Qt z#8Rq!ZXII(Fxx%E97C=RQc8d3f|f>zmXe!)HZ}7J6M1Mc0xn$b>fJAlXNGFky;p6Mky5C> zkY(5{R{mwji3^4SI&V59{9YMNRc|Ws=G1OE&C7n-#VK}`@s`#4I=xb|f`V~p7PQxu z=s$62RX1y)e0Mga?EYo{H|Jf-baVyjj=DzZv}}qVF|N+OP$Mhpmm0m|!M^V3{`E$q zd~DQn+$F01;UB+G#aEhhRNk<>(d8dpJn?LUpez@;9)-ir%A<2ii8Q$A%ZW9$uWCzG-zs0<;P*3wVb% zY%p`2sebr=oBADVon~_X>nYuAG=AOu7V$z?KdloteN-4~-+Wfc^TT-kc23dl^{#!p zSESx=p7*d0RnJsQGVwk!KfbqgY^3MN!J7hx5(e_ZK`CY4zw8zgnAL$+~Qqal_t8 za^T+SZs9HZ$6luTKiIRvEwRSA?`CGG@zAr<7hA5)Hq)Q~8Q*`y&(7SlQ-4B1Uf_-A z76-Oi$7>c*iC#tacYpY3t#{fY^Z9M17N6>dt_bPtvJxum4*guMmSJ|5e%QR{Z4O68 z!Pg>-9B&oZ{i2$))a2K?4jB0wrm?L5*d>}ML9z4I6QL`c2P2Ms%^nb_9XaE?W4$QL zm)bqNZY6Pgicu$?K5#GHpe{XeL+o($rF_HM{e>-qv+G~e8PoNLmd&)LTglh@#a~PJ zvb({4SSFHP%3${hqr8=-KyK6{eQM)`OnS04Wx3A$9+98f=<7~oZggx_2Mt*eU|wkE8D-eyC^zTziG=0|)juk{B;5-XrA%{q!&9 zS7&Tvefa63t*n-;MA2FHbuMDsuU1HWEMA?HOGbORyqYz)khcA4hT8U%j{+xD%muHx z*Sq{Ja_d~3S4Y0m<+$&gxv`>fU@6NP5)c+-sTFsPfOV5#w zOcOlco^3l%xl4Rk*4ta|><$_mj2bA!6~6V>Z+h{5efQC|O#asl!ngwZnw5|3YBn-b zZ0|OdyL3wMQ>w{|D+lEsCYg15C;bw8PdA*xA$65@TvgpvEO0&R-jT35Wzny%T#imq zaWg)1dfBnxM~&|7i}ZW47e(V@&zB!j+qCNK)<o9Nn?m`ROWQX?L23 zS=}1;?da9iS8EuMI!4n<-5QZ3ms50LM`jXt>i+xw7ZfNK!(0cxXvKb4DHrihl`ryO~Zl9~R!LOay8Av&&_eW7z@Rv^b<;d;-x{*Y&PIAoVe(OC8 z-XzD14=I{fy;-fT!IY-Aalcd+gW*$w>JmG$EREOdI|AIb%+!Sh&4f0#ya_%w&wL_s za6*-Pm-49LRAeZ3d+=JTJ6c(*?mjz^Mp2eIe(%SuSM-HrnLy)7QLaqSnbKegYRyD~HGs$Y&{J(<$m-u>Hyg!;sl*nijxnyVhkU}rAQ z%zE@nPxij+n!AEuNBdejeJORH=Tp##%38(WmKA%X_cD9beq-Bc&RL^~qVeVeC+AF= z%3CHMV>oNCbeL6Lp=FIfc=PrqZ<>W%;eDZnmq*Bt#tzu7q&O1XVP#?da&>o2jjc;c zFgq#b4Q)rxQU1*l_j!x=%yV@~iYL#wSpsK_o#$q$-OV!{-Kch z*dtXo`kQM4Z*;bQEqQZ`(#{J8 z?tH>ZYU3cEZr(S|#&I{YVSM8gpTp8gUo6f^6sEdI<{Z3SSf+UG#{1Hj#l=Bq=^bi% z!?qu*HGU@CXC0T%BzQK$c=pHYjUmcUCWJC=UJEJew~G63XL&yPaHsP1iSpK)cR9w) zx2b;`+cmT0vFg+%-%h(=%Zq_O-^sIEQMS9Ko-uuYTJ0R|yK*+}E%RQFB|lo5f84qC z=3SQOWIs&z6*HS`tqFZz9!2Ann7mh>JvquH-eW$VzMOnz?cQgvKZf?jbdJpH^9^J& zN@eyJ6%5gkH?&FBeopK((A;1hr1$R7ty1$VFQ1$gENu^C=-fbBU=p<`J$7k>!;jYV zqg7!IW?|G0XD^WCjLQ1Iyj!+>`>sJxO6v|!Uot%rJyrD}&EQ+d4jE-{W{8crd9{t9Zhj_X^?m^dxA{WR359Lt zRCgthuNk0LRX$wfr!D#3cf<8Fue#TkZCPV_{eI+P-kDeS{1%n1UzF_jY`?w5^R76( zV$Xx^mE4K+C6r_SH!QvdxLK;p42H3U(p-L3&X!v=E$N+M$>HUjChI)&>3LzuW|7y_ z!s;An6HKn&iq9`FeZ$VnvBr$7_WERTnu44M-^DcbvmZpBd^^5nkIe^Bo*Og8kKb;I z-JEfF+^twM``L$$BrX>J=OKBb@l4vTF0eh=xhHxJTpqPov>VZhDt z={}{E@6RNZY3w?bp>yku*?qFTO)&|@bsv<3O_^AdH1BBYmx#{i+h)C>-qX<`{FwF8 zV4<9#vKw2!)R`%_$B*79wejVzSgEe}%}(*mzW!$`^KPHsdvM~0WB&C}YAkTevA^`a{Q78g)mvorPX}6q@f-D&r%k$?w(`1>N)z?6-Bc3(8JfUqGhV z6mxPLpGZox`E^>Ms>YZE#zMW67v|fgjWWX+4zAq-I4Vzx#Y-1=jzNvj}|F| zq}m~ya7(|;OQYKTw|F`^SK8Oaq@UkE{n3qg?;T1~A)8m~5YtIVEw}c*mrs5;?aIlE zY|2dXo?U;hJ3!39z1U)g<6uCNq;QQ+1as~Zr$-p|e$BvDac#mPzg%QwC!RXyS z9i9TFM+#(xASS_10kW=UWqZ&E!7Hxt=nDfyIy{`PQe>5KNu0idodgJFD=4HU+523) z@pg>lcZ`2Q*GcD0O_egb*1M^H9IUBu(d`*N@Ns}o%+R-QkPK&mQDvVhpr8Pf@?Bo_ zh7PsDY3n#JsKA*L1?m zO9AfySGGR$k4732AhyTaz62+#wHTCYXM6kO*s+eVS}YL90VX)_OW#HQQLuK8X0(fI zAIFxh4IJBWs_A?2x$y}+#)X7S6eK10+x2~od4$gg&V8L&Cz#S|6$|N*NWn+P%a{Ae8()r!Q~Y@1d{V6w?WsCsUW;;P)uQ6tmRHjit3v1GxN=CY&lJi zw@vcyj?#_5sD-^KG=-hmPBna>Em3fM zLaAs}FobIU`JrI;35B-J#GZjrz`#Q2$MbA3YIyF~xy}Yqx)4h!?vA+|JkyPHia5D0 zVxLZbM{@^P*JRtxAd+A+yZ!-wrI}CX;HcJ3IFqp%yJu872uIbw%ED$^6nK6~*&vgv zi_3c~4|ul2+HlV|x)Io=_9nh+Z=VH+`>itEOWm=oQe+>R=d^?wY^JC80GS

    mu$w zn=gl1_pJzQ*1q0^ofQm&n{|8l-(T=8u}P^T2b+Fzel&pRaQOFfr6z;^Twa zItx{p>cL5&Lyz{=%i25-0r3blSoil24gF6+$P1=zZ&2bQE{@m<0;GzMXXX+~MvkPBWo?tU%fRUZ`fSQ{VV$W9L{ ziQe9Opx1-x-XyX)EJCm=NN&ivOuANgK}=3o4hHiH^XZzM&||%vH^%|bN;C?zo|RU88J{A2$1=6u^g#rc z5s5>BHIlt{!siCNwuDb+P)NT`ICE_v6PXhw?iW(8SYN++b6S0L@p0?qJu1R$R;(cD zP+3|ZyhOx~z}PTiB?gwkjzjWDvuaG%hcX}7MPrTK6?)qqUCfFTmhA!2)KJaLfmdA1ecn*TJL(MK@&_%O$Ev@n=xFupyYYJ;*UpLZHD|xYQh03v* z=+te3xL=RAu>hg*e)R- zIF;C}LnyR)fRmU9_wLr#9~YGuSj243d&_`;rqJpG-7Az@KVjd z-@!_M>DmNq+3Tj(P4S<9VcW9j&Y_Ac3p#o>!dx)*GxEkaY)R$QvnO2fjDoRF?*d$o z_vf09-EXrHY(7az<|WMV+ivz&d| zh46wQBRdCm1i~kT4Tk4WH;oPt3-%P6>cQossuG!MvGgYm!xkOdY{gM?Y?9XmPA(jY zG#57)HKb=mIl4f73hN&1KgR6rJ^%AKT_bGy)JO?lySouswx8Grub)ewhw$-UCr?d0 zzwLwtY3H3q~sz{UNi( z9wcuNDRJ+@6h`3~VPQf8^&Iq5aI~S@P&L;RO#f?RJCAxTLxbxb!|T-(@i_=*aO4P& zjGV_-63|PXhOwAWK#+MHlsE@{cHS62-FF;uiamYL7YO5_q75ZJJqK=+ zv%Ijewl>rsh?M?#3({#=Bta>+v~=uFwVHn4mB^idOh>pufL)J!TKT#8`3}f<9H8_2 zIk&yJXklx{_6=?Emx|S|`^0em#O^iF2qBPN;tYF|oO&3i+Vxfx{FAZah)3@@d=`=a zLM~ISUE6pP=0N*$o!~&{t^IMm$P=0PukaOt$TsHj-kLsyzN|*XF)-t?f07b-<@3ks zo!{Q-9vw|pR0ILL0_Mdy$%K=&{vwSJ*s8FNQbA3ntE00Gbyc8A9t_`9RiER|F?-;$ zm5Gg>e!Tu>{WaMl1dK>lN&2yqxLhS`UR-3A{DK#m;Pk$1qpY3hD9%w()628L zW~8KM5H2tkbK`puqagUc@_DF1GK!y@dne;lqmqepCDX zF8U@vM+yz|+b~vy^nMd{0dx%|yJshia$0ak4pjJ;ul;G0WHZ_W6|zlgx~6oJ_OILt zpFNQ%b&1e{GOR&iWQ7O}k6LGk#>U8JrV&M|4B%Y^gG~fI-KjPep=x$^_A;+`M=z9C zt-mHqO(Nl1rO7O1t2Bk`gx%Z@4o2SI#yAmWUgT^tG#;|r9AsoeTE*k5kWR06htT5* zj2VTVhSZGT9&EuAva^xUk}NY;B7Jgo&5DbO#TdoWjX!wp|KbhvQyC@_-*(+t_ny81 zflX|CH>^;=T$zCWK%A`_4uD?xnRC60c}i%*VIjv0MpzSCMw#i8p(YNw8?es|$!% zsQv6M%NToQ+jfg_fk8HM95!<_jccrclq_|sY?I7!?WS>n?6J= z$v|_xb!m+U8$>5+i5Syp&AuMr(iEbw42OoWWv0V*le~J{0sPXQ?FG(f9Amb7SG`CR zenDIaeEZj)Qd6Y+ln`o$^-Mw`VPQ^hZy7?AfPDhK`QY~S^Ys)x2hP(<5-lV>)?@YdFZX#biO2p=(!}<@1Mpyf8hN8t|m~GSDKuvZ6O+A`?O&=$su=4KSpE4ARQlpLMn)fD7*Mx3Nosj#rl+Q0GM}$-aS(fQ#V78q=j|s{Pq3U;*eWSGbuG#f zky=9n&CnKoY-yDsp!G;_dzkt+K~Z9*@vAjOaSpcSbwPorG~0U#E(fT0VOE8`>B9ZT z3^=a?E!h53%?aC9CIPgF<=@jA&PN%rIDZl;xbMfVWb9bPA?Ky3fX03wwxOOJvh?K? zx2u8P`&|a!fGa`yDN8bYvh1pR|J*vg?qNV@SC07)z!_- zS^o%y5fPaMwp;(>&Fd)99K)MLZDOKz=LUjBTEtSox+ZjdFnX3Bof2ZBHt~wfu*~w; z<@Z?nx*UMhDyQnwX?b~%EX*yp)Ys@$HsS3vwc?1yS1rSYS5Wa`7YW`a!8%l*RIgs- z5NoEZh+l4cF^1qPd%&q>+r%CTJdB7m`0w8$MJmC=2n6ct%`Z3)|A|huqEhj5bN>>Y z?CdlXL=H=_bMTY>*nrG+Kx6aSU9quz0yqCR(cC#fLXE$6$s(h|$_8@||7i(Bv5X+8q@pGR+h_PT*wS$zBqwq^j zn+!Yq%m2;G_x50e0joIQQnWy-Gzba}z30YZk2i`Iiz3H2gUtxEw0ES2^-|HEYODQq z^;FM~d-RD{^m?J|{(D0H`!O#6ynLi>BEdFqorcP%3;(Pyd!*5W4-5!2X47X=eEq$Q zs|!@b)~z!t@kolC@qYR2?4Khf9`P?{?eD1KQf|K0V$^o`AM0O7H!IaYpMCgt=OYp5FgETz|_t^bQzG+OxR3I`)Ozh>ESI4;$Pwm1xsX(2KW9d(m!xm>3_B|D(F`&PY;Ovl57?NlX*%S` zpQu0fbpnG+SzcR+^PH+a;c`17o{b#ydEK4Z2lv;sDVQ=lSda{hB2{9pb} zP`?lp(-bbU2}eodFCp+)=w;(NA!xn533?0fR%%$~#bm?W5{o%Z2SF z$M3(y9^OF9gc^8Hp>XH#XPgL;g-;vy$sp-#>*^}r z{Ru0ji*f6Dx5~sr0gsbbGlDLKnnjer+%m8U-NHa>fRg7B(N3&e0G<+xZAv{n(7Yx< zN;b&6VJd+Q@WF#Y=Jr!)QeoQxlZ7Ez*wArsEnfLG2v zCIovXKm^g9z_BL)W_6QZ?49(h;7F#04%}&uWlZ%>*?W<;fqH-sjKOO9jl>@ zO%EDV2x8&voH2?8KNz@@jKoPPEM|CWs-+$_t+6GtQ+Pt}co{b5u5W$Wl&W~0j6A(X zyV%X1$X~Sz!WW1`Ub<`qCivnlEDH>F;#X-kp0gN5z+?zJnLFCst1Yz^_8zlnnBnTf zhByI;sk^%gRVLZDRm62D>oxyqf~Hv>ZT7^EADd-8dI9>u>Jf;P{s-553dfAO0p-PX3*!A( zmCWI0#2^Iw@3pj91|*;U0wauUE=rP^p;Nnf(J@rW`Dj>Ggd0wem`kNEztl__7Y!UgFFc*hg)C4$F{0T7r#}BF@Fr*EVdiHi-7Q!XhjT! z5@6xkmSb|!CS8=DU(2=AL5hYmzP|nz3Qf}I@#Bi|u(H5*(WZ6t&4wZ3;+cDIidPgS z6Iai`p>NpR2fk^IH-)e&YnS@?0q z1<#VN0EzIlo7!1UjcGd(H*XO-^6y5TKD%~3Tf^!5y~V`xe^K@x;9URh`|w9gsAQHB z*&};YN~n;PY$YSBA}K2~w2kbQWJZ!CBxIFrA|#Pfw#Z8Mc+Piq|L*^DJkReqp67eq zM|BrI@Aqq5@4#`5J-^^+L6aTAX`ywRR~Z?by9)n=b&;8)Q9Rt- zh^LRZ2LbpWPX2o<>IML4K)v1$Qmo4&n5zI4t)#F&clr*yN#AKkVdLe`XRowAKl2MH zsCJqT&Z@YiWLM4w>Vf0$u$bfH(E;&Z{}vO$Zw&gZVZ#sDe7Op7Gw6VpdaVKci4IAb zWXH;W{P;KMl#c)9OD|(qzWE2SYDHs)s}SkQ$2>JACf`cB3&Y*ThZzV6z;AyPvMF)Q zKEaq+3Hwt}a)(S3B@t68#MFte?wOByxA`3YUjpyI=pkR6QC;9&vvCjzZc<)AOec?V zr`Wp+XT9}uG&OCm@$c_$bsx>hgOcdX5uz*>ibpt4jxx3Wx-AcLoogKLm{m8{q_rA^Qc6y;ZAjFqM3) zlnrIaRFn{J`jwSPzG*fL-E+TKm0yoD-el8ht$aTeCr4>_L4tfiA;F^;{6%)2+V z4rc9H^T?O1$E#7=kDD-FuJrfkv*FYvjW>k6eeqm(*zp2mLS#oLZ925A9~Deuh+(%m z=2NW7@%$LR7sEYDZ=fO~;Sq8={&7orIcJrr45=}sZeU;5qr=V(A3k7WpS^u5us4Vn z0g>fnMIETNy81NgmXH&K0DR6I=5zo2nuj?+zqm3_K~od1a8+fCnI!5fi6&bE6ghhH zA2mUH-Clz7Bj1D{iiEPweBrD|Z%+^T{dR49o3JOmz;Jb{iq(ID{m$HITjQrs;ckf^ zIeAp4Utp*l?G-^%MLkL}lEC+2W_+&Ut-IYu1*gb0Elfi00#jR=b>Tx1!H5Io9d>mgcjI#>LDB%1{<#t1VE6+((gCAfzZYB z_}wjuTD%s!0$yFx2T0+!HDoX9wepl01H~vhm(wV-Tm1Zelx^p=2@npF!hAbRQO$++ zhH;rSMu=#~!ou#TU5Dvw_Cvqd4SBA}#nQ)OMoXEm{F|eP8yQBuR(|Ve<#5g(C_iig zNmNL3iY!Nc(H8Rv9b38owuw)PAq;Ro?KfY|kr>*PbjCt5#OV{iTF@=u#5k7E>FWM{xm)kDKxwdQvoJ zl7EB`e_-=GX}sF-w&lDGd;}6>dDDs*`DI1_E}JPC(E|sB`AX{+Y6)3@4=~m38D|gB zd?eqpQv;F58r%t?I06G!ow}ZskW4qCvb<6PUO;l;x1*Tk38g$sJ`Q;^@g~>qqlXI` z%Nd$@gUnxZvotg>#2P_cYMP%4HxehGg`t#w%2 z-Me+qerZxdd4bnj2?jPHXb|i`Y${~uV-^0$the`aY`M%Li zE^X}}WC_FaCrFR=4=*RC=8E+bMzJh_7! zmRf!6)8(#*?Wgks%}BiL1{t$h=h^9L2o{M;NIXKVZhooacR4A%$nXV^OcTVSnx358 zy#TUBOhLf{)`E~nLmW_{jk3s7&Bu^+6zo7$Oto#BZF4e(C7DLH!vf5b!y{dO7U-oC zp4BfAQ=l-N2SXvHpf?CB*4TIj0(TX^{OU-P9tA~EfrTP0<|qYEs50-_a|A9Qh?=Gh zDy|NoJm6GgOw#FBs7&E({LnXcy^~GkRUY_U{6#k8qJF{%ob3Y5td(pxdnEFB4FsBq0Xd?+Sp zZAAJ?obK229KR7^A3AtYgOQXXh$BbEajhxQg5+(+g&HyvO(b>D?nJtPg4E9aHap3K zNa4>6ODt+aAyWPD;X^-o_xZ{9)CeG}I}QDU8m+;Ih(!$;g>i&B+X*%YxI`EsqxI(# zgfVFVp%Z(Qzv6fr##k8!-qcRx9DharZ6hZa*L4gaL`BIJT8Fqr#7F_00Q(2bawGKv zP$-oGXhBa7iVh1z&JdL-xMKy`T72pes6CQzt1|AQ&FEY8*K#6DhiPYp91-Z2~h)P zLSBToH^Wkbd6R@s@Dh?my`4py={-5g#cI5#bOKJ+I8W9DX%wEP6a(?XH_Dx<89;*T zF|}heC8fd3b4Q^B4&R3<#gP7TXhhu4FLN0JU;hQXM|lwPT}GuF6Pi#3e}O_ffYSa| zLLqMz`ehh`jg$izc|OjP4VrQzh$27a@ezxjDCzf}cR2UXw~th-Bjja=v>gYYwh3d> zKf`)BLV(3_B-Eotqj++15-4gQUI;N0GEav1BG}APq`(gx5qP5z2L<-C<#sghP&M2Q zx)0bB{>l&mE5(T+E`3swiy2~+@=#P6-!X3VZkD&0f@!{tD)B3#`j3PY<3noKC8!Ne z<8;}!XJZH-I|xoa1vrXD@eF@}6+W?77s)qm8i!66RA=BYKgcxtG3=Aq+VOv4>fsIr z!(+fXFiH8M{{)8gCS5>v5g8^HYH4+80>AC!hK4PMz8n`=fR>u2|2nymgjQ=rs^10% zoYq#a=NdqgH5{efn1>Iwm`Ij~qQI=NLRl7oOgm=!%zNVY4G&*j2@XxAp}^SdmfkR( z9*#J7=zufl?2+}9Ub-xg2m*Rw2pe$8%Q>OYG#1uBj{zMonl5I09g2yLh7!|&@jd!I zf3Wq}2T0+YkxQ^3!-FQFK*!045-4My1lG()MY1oD0Qm;qDgbvC1qGa3Y{={Re9VWd zSvmt3!F~i4S)(3~4)%{j4^GbXKR8itJ7t))+!@xN>fd_x+BM|zuQBFfxD%u-%qjT+ zo`d`U0se>6Bgnug=Z8=>2CE4u4kYck)gN87u#mR|jx2733MULrlBt-D6RgF@)(=hR;o zo6U4@87{tWjWx-;0T{(y+)kWu48LsvJq8kd;TuT>%WLUcDYbYah2#C-P%)9P?VKm( zi23@u%GP11-R;3K@@i-jX0xtEo;iDV=t0%Tk1tW3J@qKr%MIaj1$o{V$Y!utY0OMFU6F}Y4Qb_b=e}V+B!q5}bRjqrx9vPQb>em{^3yd|&=+y2 z>FkOiON7TDV1@GcFqwlZ0#I86y5KMMo1;mg5Z6NLJf_1CA@6T$z#dBYaqWylngj3KCZnG`WvROM5Q;JkZ4GWeD4@o2tI2cAdB3suu$F z7s_GWAooGfHq!C^F?q9XR8;PBUCtNkA57J!zy>WtQj<>VET_$s)NUFYHj@}b0Rlik z>JxF%pC!vfbjXK>15?3SP*a8^90eWi89pWDC|AVOgFEqAVXU#~*yvuYe!1j>IK#kuh+rrl)ME)J-V&Tja zUU`WGLj)FBj>nY!clbK?&J&7?dTCk;^%D~ljc1N>skyzOrw?y`ARBMEE&L?x3-UC` zXUobj#X5I`gDI7l2r$Cy8Q4RBLeAHQ^MNqqf)xa+f)NChhQcC>JST>bQ)SEAw7uw} zYwV!!ZmH?&(ZBbToW!N6rA27Ag0l&wXaPaND1kH0rCwg!!q)GN8mc&R!o$oHKMUBx zPhda5A@AL*3T8WQ{rNeOZZ?i0CV&N8Ll_|s(>TTRWY>io>*Zt`mn6i+cPBZ3lM~WF za8!qe+Tesyc+xydl9M^&x%{QA%^5gj(q(gV@JIas9B4BV+5HQB1kiliPcWY7Bz!Vt z)sYjz<;;!m0qe=bJ_ORwcvyfC@@Gg1dkdr`Bpk6Xuy>I6gc)Use}-?ER0AapD(KVE z3Q$Bh@m#RP!tqj(q@9II@kNJXF%$q37omlJ?6y4>6_qvo)f0FUBoqj&(siCu%gn#+ z=_y49iTfFMIEtV}0;z&S*o|r&u04(t9~0%h=xBPDxK@(Jt`&%3v-@0W&sKO<5g+vJ z+c(gC@kYGogbs*{ff@ zsX&?>BBM1L2eq_QtXjl&udaq>iT)<3+<<|G3x*`^2n-WuRe?J9NZM8GfcYkG_L>2? zL}k@5MxlC}`Gt_W8(QBmdjtE5d2_)ROQ$M#;{!1FmEV%gJE?X6ZW9B#4(YBZ4P$B; zZZ~9Nk6;cFXf{1PYoH|tH>#{7(d!Daf>49U1kbqXrRj0Zz^NrCS#}cU;K&h7jb$Tv zK!Zr0YNV7%8n+7wk-BFF`NIQ6Nmw(aJl7EF?+v?x2)`jSH*MVx5b+21>#c zO^?a30a3AaAa%DO6~p)9Shk}CGlN3=5S)Apu;eL4>rXynqzXeILD+C`dk`C41J$w# zBEMM(RR}DVnWV8dib~Ltv&+dEV*J#IOJu^y5*!i8|HFfpKX!Mof|`gRLp%ZzzkLCQ z79qsI)+z8_fgM5e0!M-e;0v-Mqhy!VeJIY8BkIIIx3s}827EE30f;OWdN9Zy(#kD3 z0DkL9DudI2?jXLu#t;A)PE=ZY8IMCit;pjsz({4Irks^k^Yb&&0m@<319GBvh(Y!o zLZH`Xo!ididk<5Tz}wI`NR)vfcJ22`27+UDGvB8V7Lo9ohtqY_KNq_@(^O$z-OQ`A6|J8V zy-6B|_63vO?h}??2Q8|%!@5-%y12|ko|2W8mX?w6Nol7ka3D-r=jzS(_ow2ZB}?cZ znEv?jBQ6v!#+ei?sY8dOe)oZaJAYl1OnUbT&;iXaDE_k#OUVBF!`2_)Jh zRGXK?8&co_n~47r-kTu&PWgHvQbZ8(0udDw5h(6kSo5#Up4D6bma65V1Y(JZ#=b4o z)KQ1wN;_a8wX3?jaRlS3w>Tqr)Ou;oD{Q?mdS?)NfD!$UrdHMw!Wb2WYOZ zyw-^5pEyULwe@rvYh$-Km{!$@qCv)u4hb*4EEa7?oG`6*;qhk>cXl=Z3q8x^{3T2tO;ig;DWV|9!w+EYc z*bAv{MNf}O$!MX^AkiNJkRAC&>nYQV7oQ64LX*QI@e6@P?!+9`kn0R-L7RI)S^aF% zslh#+=kM=-nrn*U(Tdjt)bT^=Fv+%p6%)pSUcMChv2pJj4i$<8@x!U0$kcJ<0&G3o z{(DEXOQgCT?|EP#2#x2FSL$RM$L2AT!kY|jFJ8<)_imjn=Z3v=>h3t;ELlrv>}WJp zf)#%5#IN&o5_Y<-s*bB`<0{O(;315caA7-1(^7i7NI2yBR`?)+o}qb56=h=1QC+t< z&<<3(e!W=lEf!mM2h)1MTDgcq;wLKJ3i~b37-`PPzn3<1#vBnDMcDv!-5~h?tqmHV zWl#~k8xm03@24~LaG|wArUsHWgM_-+#9?+4+~l?C6VXG)TNN{i`eayPVPR(G1n$Yh z16Sf!I?h5nI`yX9$RvC*So+!x?Fcy7nTL)v$j9%%g|=OBM4Lq28lNw_Phmj;BA}BN z8Y$}e^qGYS;KvHd{hlj}q6{RLRW|@DRWgtAdT_D!az?933Y8oM0~1pL>N_x|{(G)m zAHu%={t1gYdi>frM-R|ANf8m=PU&YZB*ATkQKp#;#r0yDhGhx zpKy9;nkeW3yDC^JbR5Zs#`fRKUl~wmvt`dS9U)YaJ;x6ei4c^xu_;W_Ltz(jyZElleQHy%IRC-RU99EO;>wS^(p$2^wYXaYjwpd}N& z%Q|-v75Oy7f@uVRgnm5mk+F|7VW>;@dw0Xrnt7%ZBzwPutB72Pt7aec<=rr#37vbWb&H4T`Au^TyLrN0E!0^#9n@WYEsb~v{_2fI^Gv0_Tfej!lF zMWO&btN=@&l;m@k_SEuaR13|OrkdZMS$H3?;pFTjh;Gv(3!F_t@P;lxSkLtcl07ntuCKUZKj@#;mO$GZtw>sqEG0s>=1b=|4l z2Droz07TWpxO;*oB_8iSi*s-sAKUGJumnpD26KUS@+8?I_NW{_G7|5;0z>X>7o5|y z9h4Xm`O4vf-f@cQZ_{w!CEx4;a8Sh}DFXz#=ZKplnkU#F`@i(m#IJk(Gr7}m1fP<-PE4l8za1c{SA2VlSfdTwsBK68c$xD9G z1DEy~zj0JHwjt!1LC>YBBCr~*t9jsofbEt2NY-l=#)X}IN0-+Pqn)59Xm)a%DkmfEZmqMK8TmEsP#~QzJ+Y6IaU*(S&L09ki0OhdNS#pVLk#oa zdK?1hlBMy&B2X_tDM-QC%?{uNDP=5%tI#PsSrLf)uyy~H?nfaZSob^$v)yDQjZI7% z>%t{5$>n}fP^Lld53kit-P?rI zV^MCHK=;RGWgx1$4fZ>p`3zh9%)&Hz)KKD+Z84iboC4jN_be?P9Z^i-JCaW@)C~j0 zPTrpW^yw2iXVAzH53l0gd&^Eh1M^d6x}47hL@8nAvdmA6n}ZrtJ>cy!%B1qf-L%A_ z;_6i?d~x|f#&A9ufP)ypOpxj5j}!dN=9ZM;;CjVOf+Ma(70{#1MczB!$`dMNUO8(WO&0Qm5cq(xD67HiQ?l+NH zJo_*ug^M6@^xMlZ{UPPz53c|DgDFUKfS2wXWPl|nNPJnvc8~>+-494XtK}|*Q!=N! zk&=NrqV4|YqgE{~IJfRuY&H&fHvp^kz?_*%MHVG>R$+n}>}}>xkRjdPyt;7e{QD0l z#RNL$zN4mvQ-1Q~$sU)!t&~_9Kc2sD)cp0z1y5f^nlS3fJgXK(c?aSjv20@f?*hbwqY+Q?MWPiGNBINFoA?uLX&T(i+E^;xC#Mb(9Pir(iJsYU*W=-!DC0q@_? zU<+F#HApjM!080$JjdY72YKE4mD#fqg+GQvKum~| zqcJ-5EW)Qi?E{Ai#Dtk6>_=D+UlXXZVK?>nTsaOW z132l`D+yRX(VDMc4=-_E7rN5&Bw+IlQIyA}_gq_}#mcA?C31YuRmL_1(4Wco_HKM1mTP`m!4tZR8F_oww zg0|=}5TTDD@GcBqUTY}E_8XJ`KdJHrBYSVvg_^P?UgM)<8NPF&m`sH9GVK5eLWKo} zk=G3|j{SPCNDuQbiwW0`7UC|MzP}4^`x@Qz2s$vv6(h~|h*>BFa>We4jIQH$z3K`& z+nnN0m_SW>)cIse^+p~~e70h}4xL@hwHaVw7><*IgfOWK9v3VA zA@=YAXQ2~kDv7JFag+YLYdkAW5E5mtze6wlcN7p*wW%6;mG1n z%wU|iYCYc|jRQsm1LD$*lki-238_Hf?hJm=)OGkA6g#Jrox5GD0G6f3d%gjlrKF@J zC+EG|Jm`HDd1Qv(D9SG8=Ereq<)-vs_0=I91`CIn%gu?YsWmlL2vU%sB$-IlGa1FD zf}@{gk~|ByjyfU++RB%>6nyLL%|_yY+XgzoV???*{*l7QLLO5UJCYnQy$}EOoNK;9}9f^QKLh zF(nK=uN~2(b5SDHL+dC(yEpQo`fQy${mq^r@bexe{t;A~3vR#%7D(mYtFddO|&Y59K~7EyT&52r^LIQnF@{`-zZIH8h~^zV^x5zk9J z`xvlYID1Z_`2@Z#8BX$tiMnChkd@4FLO4b}OuSQHiiIwN|^pI1_u6AyzG-DqYb zAb47XSJltgSITR(D7mnO#|baMMc;Q?qnBs}@qiLQRzw5?;RLzpi4LdxTlm=7b2QT< zEhdjG-TPzHQb@!k8nglE!AQ%C zOO!aTruR6Z|ERz}ub7aarj~43XKX>XD_{_C{$G2T_7>rW4w3EvqJeoo`|9FR;_4|A z{U7q_5oYG%yCWk*Rdl^KR^O__rMPgh`s+@pJGc;02`wGhzI41J@AggqR{bR+A1u7; z|F~j|GdT-%5wK!d7#*=}f8O}pH2h-ATkkoMKkq>K=SJXVC{>k|4tg%<|Mv_aO@sLd z&mJ2|oB@qPSHEB2{f#jC?v@&BX`a8vQg`EEuDsLao>62(G4I=KdJ6UEOJSF6eE5C{bTozs;4^LdoF($Zd8 z);S#cbKDc?iI8ejhF;x&?#i{P-iikgc7hK|@OFuV(0mU;r_!;ToYZt^jS>)ulPZ+< zsc3Blm+p2i8S(FZ1H4TCJs)zS=pz7L75dM_dEZ2C`wK1{?}E}__{ z(FA;{xcPGJ1b2Immz=rJn;#ys_i`>kZoqjqy4~4pVsd=!WI)P5T_mh}571Z;y?=rz z&-7;>uN<}h5igXqMQG?8)?j`ZjW`pMmRF^Sa2;EI3*BmZ7~8IfQuc$t%XV%j0g9YK zcQopKntzSamgCNY_9}lZ@jDSB?tDr; zq)8CVz?z;n;f6E)`gIBA15{Yx3U`T|^B#YK+!KQf4U1fw-n}ygBLYWRbMR|>JEoS7 z$X0`8gptW*j4S7)-8j!qRmhtqRW^&&1t8@uz4p@pgB_8uok%0@;qn9}71ghqnedCo z$XF8+_5v_P)eV#2eh7!5trA6cK$cLrm)H^V1)Hx*&p6NL_YXABdRNjSs+To*3|T9EDrvzqAoiDfHz>T zIHQ69JoVeegb6w#Fuz=&j!^`(w@0pxoyOTLaCC48ld3%# z+U37y3Pb?0t59vtkx5OBl9`&ncg<@(h!)pimcR@c9ju;#i_Z~2+XmZ;WoK6xhziZ% zkrweSbq$;WuFdrUoK;Jcdj#gx_I`GCuLbB9^70q|T(VF7f`R75VL|Y@D*Uw05ltzP z6&C7|mc%5sIYG@N`PrE4p6kHW5CZ*#e+wK1MtvUs8P%N>kUeo z7Vl-D*dKTzH%H*H?9i!+68ixaYHDgYQRevTs7Z8pch}A!t^@7h1Gm>2-z}mUz~cOQ zB1`gCDXOp&KK;6N$jGO~SrwDriF&6MYK4f{UE2@! ze~4*Qq5isb>+Qeg2}8e#HVzcf-jTs-$Jv(d){L|IUeSn?4jn$ck6b0ECwyQWfus=V zURdJxVAgLhEbr;kvJeJX?fh! zrT&9tQRZ~8qL{gF-waQ z!-)GY1kA5o5&p%MD|{v!lWfmpQf_Tcon&-s=C-X{V=>h(C@2WL>(i$n*iYNvDR*=Y z28NKuAj@6*Z5rs_?%lu4UtzTkR|mJ$hC{_m^3qHuKsWrTL6^BJ;sY+)IKC0WzP;vU z|Ll8r;wPOCJ4}keX;u7H73B8h$rJw6rx*UYlZo4U>B=gL*L$gHYvYf&>p@)vc%arF z1F+?Lg}XeH;rQTSWS{H!A8YfrFky?(h3$WR(k5b3IXuT!lf^#)$6IeOTw@SuBB;fJ z{Ew|-GHiGU*O#FFC}`s*GmDueSK76CKc0W_rOS|j0C3gO7eoev1XJw$j~^ZygwPk>F1{CqFzC=1zJn$;kM|ggyx|0phu$;|3Xn z^-PxRY+-3>Rs`h$;iU#oW!BrtaPh290376Qto!F=j}O}a3qa0^AYKwDf|1}l({o6# zR57m?!c3r3JpCIl-KAk-;)?=o9eh!pIP=zaGK@PB>B8jfD3In?`G=RJZV=f*MRn55 z%*}1Fp`LaAPr#}ng^v#gE_iKj+-TpvbeOw;k>!@-3(=?a_4T#2SDoBy-lkLiBj*(Q!I zgPM9!xBm3z7BE}0wG;Ff7?~(u8#6OndU}gsGEQWU8Rsr7#ptCQMo2DzY2AM4&ptDR z>_tJv^LyDw-?F=h9AobvO#h46z@JC-o?8b;`yGkX-{sg++pP6#n8p%6TLbYT zenYT^U(Yd9Z5gbg13#tc!Iyl^Fk#l;_}hN_x7(Xrz`9wH!44$2-8aW?cqshx@7MpM z2i8UQ>9B_YWWa_36m3N86 zCP>&70!qR7HxPd629STQSqI3}+CG{&g^OusX<700uC)fG%27Vvjjajv;k{emI8Vf( z*)3GMW1hP6@lhZ)y==E6KYt#YMH|S7z58B4Q=o4VwPb)Gcz5 z4#);Wu>l?3pChcjUpnRg{!N)Grs4h$`NS)_?GCSp?C7Y=}Y? zBC7ppUvuJ4H+=QTdf_Dn6;;@*8PZqaIAQW=1GHP1wq!WJ%}Q(&$iE=!z&R?fUhFPf z07XcLr54cVz!7b@pH@A&4u3ctkVln;FiW-`tS2f4{^Sm8r7%P=&EOB!rH-NhpkMm} z1QdR_E;R22El1bbGjc)855>M357$z9P(MK00fww$$_HMbxw$!HH2Squm$g855AV z07fjk&`&4Hqv?90dQ}5uP6V+St4&T$-m2G!PXN#lZg5I?FN(DhjQhE{6^{t_ynk6Fg?XeMX1VG&&GMWMU)|SywdU zm{k*za(95ZhvFB{9{1LgqqmC=mq3z;!W3nO`0KOL5_>_s)x9j4%QNyESWfgA0u_j2F9-YsMGJt$x1p8;nMC_ZBon0b@ zu7M_S&el~gK9poYJ0zMjhsh;ZtoFRN?J{^_D20)kRtorsVyhPJh`glfEcWaBDW0Hp zy7`fcrOt!r_HFjh%sdvbh~U`!Gwgd3!_lH8AX$33zpMA>Pr)lJBk$8*Z$`!o4791K ziNBE%s4N;*!dFbe8b;-Y2|}C_tYFn@Uy#H_6x^DQqX{bRtKE1zq64;eZhJ~@ee-Q@ zF0Qm90nBK{2y->KSrEKFogtHzmDSePwi4AT;URPzQKBK3c88pveX_tg!Ujf2^RubN zZakBJ)f9y^)d+sB!h2a+QwZ=lZJvsp8F(?E(=;a&aR2_yrBpB7J9oD**`r+oo+SPC zI#4N@!0ktguT_L{vQ3?K;NYM~ZvBYuy3@S?+z1^gl?EYZ?xWtmmv=N~+E>J&m> zY}F;5AZ{HK0|Ns*$UrgO_U#D`l+38-y}P*)i^1PR7tXCCgv0j}&^sNV)x$26-=Lt? z`lt?<9q%$IW?2g{7iTmmaH)iAykARkP}B3u9net_%EJt9QPCz@IicdSD=harw(L2i z(=9S>8#4af+J7%AfA;R-hC_hRgf^Z*C=Kd>J?@txRi zSe5(oLeVhs_F7uape*ae)e%(i8tGY%Ldug*X={P%$0L90SzFc5C9j+N`IV>e#&|eK z^KAkM$2G)eS?{}Ju?1t)1u~vmQ@ew2>VnOMUBsyK@N{S%f;19?eK`?dm&23ZnfvHj z^#H_mLgrz7UqDuj*TKTz&1-&-_ev%wukCStFR!Qw1T9_4nvf=tcE!*Wlve4fuDb#t-QQu6V3*W~+|{|05`141#CQYEuHEuapD|oNlU-|6mlkO!fZV0o z;^5)KsIm|N2EsZPWUZ7vA}C{Rqo7y-H-L(sH(_~wB08thx5+PXM@P=frWoLpNBJ{{ zSH+<5A?bU9Gh@{U_HLb6+WyNP&?CU%20=LkB@yrqkk`RM3I8ry28Y8K1+!>%B_$t! z|9yt}FLmCxv}n%;XGdF1@Wi*%y6RS5qYatv^hkpI0kdyzP$lBE09nmM@j{KFbC)WLG)w=6<$C;D27(AI}?XPE@c?*U9YUP0eEqLeYXTN$y@cBtBPojLfIxVG7=sUOH`7Z>lB%a_+lPp zF#sdKFIw#zBSv@}vMick1NkV29Xt(F`)QOr8m^Kcr z=Q?=u{Wf1TUR~5wUSnZlc~d2Yo=NOzvaB{5!vGaj?}=Cdi3qk-&C&7Ib8GY+qaTWG zpYX4gg8(fGz-w}G$)`UWcg!mT%3J)plv}qJd##m#i&NB$WL$-2?B~yc&&JUf$E#~g z8!E52A5w~dtgL11fHi7u76!&q(_ULfDwP)X$04YE_OasD5o$s-44HHoLzw*$*J=4P zqOQf+^`P~oIHK5;{S#@_ZhCsoyjqVD?;3S`Ajbv56Jn%-_w)9o`7WTWTn4d6+&_19 z872KhS(Xry)rU_T@9TTKp%$1rVq~Hh^Vlztq%0wO#)!IHUEC_z=LE4+U$*bJtdh+N zvMQiC$@PwQc4Fq_Pq$AHikda;D!iYvva>@!qITU67V1h$n^2~D_82<$ z&?roFpCVR5*mlbPS$Gos!SpjHRTYC+z+@ICzOQK&(d}e0SQEx$S%V0=)W z*f|R4RsWgJ2wp_1QlRlL+KK@s*5=eXC~xdPN(gDA{g&@$5hKM%u_o}w+FU6zPm{OH zHMa*V2}+$kWS~+TWvdI<4AY+KejChI!2K#OQ4oXEQd3t4)gxw5FRU>eB^ z=hsy+E~$@_@g85JZB7lnIrcR#XpV+RMV5`gDh~aDO#}&yvl7)%{Q~|dlpY}}l&uEJ zXTQ|IK|7EGaPF@oFdulDBcq%LL^0eFu{`H88eD(iF1E*KxjaD{Pf$>!eGhoFxKuSa&kRz73kS9lz?&u2OhQ>2-6*_gUjubB$9?B| z3~#OfVig^csDXz%I;o=5J_~kzx|vf=HJ(jc+EBS0m{sJuS|iSn!k}uv7a+pY90wUc zjD|zeBTjiuIpx=0VZHIu@840&G*L29igUvinSPTjfc#vGF8U*@*$ido>3aa2YP6NU zz0gh#tcMd=0>Tv$d>u^WktX0IYDZpK@3{>Sf%@kB#=H?lov$Fuxy_9Ww(CUyT3&Fd@e#8_ zN(K;Mn0h3#-x=iy0cuMtD+1k&7N(ehsR6fe<>p2zoH7ej(~uR{s({@*2NX`6*hi)l zcWgYua?2ZO9kh7Q3`u(~9|ZQ;URud7j)I=FMRhRDd&%mhOsy0@F}CP@r4aTvO?=H4 zg6mM&{So;bZINP{`B%RqyCC2%ea5b=3!s~b9)Qm18==KJAC4L8Ao4>@ACV3%2UrO$ z7LgssS=(^ne*OL(;O}2}ed)FRXL{eZX1ZY8AkHxaH9<_`z{pjMpG;>`xbjkrYmu*5 z?>mdGg+g39qRX8tR#gauwU2@vF{jp8sR#(d+fb{L{gN1UZ0!J^1=lB|P8&3vD9k~ zR(zz#;?kv5oIc{dX_>9{? zieeG@cXs?%BldX&yuex0y{Zk_AFsO1p_i^RHfI25N99`y1dKgAijaJQKWstJ`1`;>E6NHmd>{iZIoSm&{w&B?UAyVU)%%^dUzom-vw97ns!=Nu1|yct1x}fQTPx$XVjFe zOy`@7^K`^(bs2&`Ycq$_gvIfeXf>?vLI}u~qR}8O?lyCA#Ju{UYG+hc4^o!VM~}PE zKuI>;t;H(IbhKp_TVulD4 zp1mea#%tAZf4W!>xDX9O$lC2aRkCWe|PF zsv1B{L4m0mdk0Rg$8-%3LO5Ci@y{%+C)kCbS;hGr!hdlBtx*~bOARhUXRda1JNhuq z`Oxh1(~Lyp&=e$ZD(DU4^TTZZUCi_bGYsebjx={L`yk5aa7=(Cz>(M zUWoZUL4mVbfl1br=;6pU$hdXu{iQg01s1`-Nw}68^ssB*X}xGGFjwO4(jBo+e2QS6{^IO>1cJj*tjM25cYP6md~e zG%9QEPoGh?V0|EA6>1*^TT|E9KfgjoayhBE_`e~HFjyp~zrdKXjv-)6Fi{dXqI|32Mb zOk4!Y2mhUJ-?h8Wwo`GeJM$y;bFm5X?Hd%D_FuFW@}P2iS$xgyYDdSBnK{)4ZRQUK zD9X#xoi+B|XRoxahD|E$yXCj_w^(IPla<=I%u~*>eqUVoG3e@bzQ*51`Bk&m-fR5|-L<{a-Yqc2)s7THq!AjB@sgG`3wW8foI6VV7e4)eQdDjw@<`^epx z9+JDqtrI`tw80`@?8YfMuD)LL?fhon&5M3Gcrv{7WWAeenyv|nc3#~+m*XBHocdT*H>bFM`atyJaCeEzsD|_wN0#5(QCT)_VPpP z!diUdO4q($bD7IwJ?QgJn$UOfYi_2HtmzU#2*_guCZDA0mZZj{^zk23g&-MAA zvn`V?f=`b{z}NLp(AoXbsT z29L$Jax7rTk7UN7{TzF7niTkuKl20CEb4iY_KfvcsC^-03wttEgOm{Bn7H zY#p7=hPlnz$zR*(&Re|wQJ~zpLFjbyv%rJ3*{90_6dy(gzj&5A>?OTI(ZLlgWUh6i z>FM34uLKW#_1U+%G7DYC9!%>>aNGocGToiG!cDfmHi*2r;`;SA>1&Hh z-mx)@FUO)E_z0f9My~D8c+`|{+0Xrt3Kee7y#C#!G9_+8d#ALjQTmRBS#lFc+hVP5p~kftgSYIzACa-BFft+3 z>tQcHo?$dvOvyH2xiRcV@y$ycjZZ|EiS6q#+}LwbYJJz!=-Z1T5wAB-QhKEQkRsb9 z$-~RnNA*gt*U6jjKJUWWr~QSdmwS&~VK>sKZBy_*OutRXKiyx+=>pZ5&_?pK6YoXm zd9Qxen(B4Cw&U@w$*$I4j)O}2VxOBM_un<#68U4b{AT3Zr;UPZuCYQJp2k#@bv`<+ ztlgm;UHzT@{k~20+Yh=@<_SfVWpm6-d#m?dKAdnZ#>ch0Pezz>=V}CB`bW!Wh6iE| zr#so$7S&Yge~1l-WbC8N9}wMYTiumn`B~TWmqg;r+Dg-M$6ZpI>vqa;pB7rBD5F!N zIraK8Wp3!ueurrtMrSF>uywkUH{NzD$3>P&8Z3yG?%{dX;dOG424!^HyrHh|h*G*% zguGz#!Y@$QDg}l{v}lxTYEQ0 zg74tQD7_bfPPw!Br|z2E+@2V?X;*y}cb-(k;A)a)fk@ptr;jRXiBGe#52_t&kT}}i zXd4^9|3pL9*_*xw3i|Q~wndg@r%3etY*rmos~neqU+y<3dO>KT5r08+dG`^_@3P4#==m`8dqr!P}m@Sv;#^y4J}?Q-mz-MfW-Xt>?p961KkR7M4<1 zReNsuD<-kCKSITADd}K!Y<r%%ClViaKRWRBDE|t}p-<9!Haa&M+aAi0QQ37YaHyyhoF2Bj&FPZ*{gH21@z$0Rh5J>hPjbSU zZ63ZlWi7`5uEWM}_!Zqv(xA`)F$P-XQQvh$YryDFQ0 zw1u1TGODLYyt%TJ!yR$|3(JSE`lh-wY0sr+-HI7X=`U8jK47D*7!a-+;x^_~wKOEW zH)Ffu_?6Z0ajC&mA_Lbmay2Dethz6*UU1N>k3W}Wes@!$N=t#1+hFL3M}vLXU9-Vs zS&v>+SBhT_k^Vezy}M57e15?Wd*uhu_OUViSbY=`Y;7N^7^VM$VK$d3gXZj5+`030 zWt{o9*USY+pLf(+$-F&YbymAL;;pJkRM5d0?YajJhLOgR+})ufyR}^|Y1b#@yg7R( zm}>j6lKsDDU(hoqyQFI+Xd7$SRZ7f_CPe&_Xp1%=v;AmS*!7HjGGb>mg{vAn{Z}g= z+OdXsy({jvVYF|8H+?X-NOKD<-IwQNZ922_o8WG)A@{?VZBI$||1|E`rt%N%5#;W_ zt9RUULHg)izuc*`uYq^M_a2)!a1wj5fyU46=VQCvo2h-{PT^dv42EL2^UQWDe2`LE zT{MuQe16zgwJmz@U|D$O?YcakNgc6)t2}M|xTSFhzFul)6(IR72yRjmaR{|zph}h=zkKudoBWuuI_}*RKkufx zz2=V(Zgl$Waqoc6rHfu36Jw4?8Bz^;=r7-!y@DG4&}EdF=ze!pv;MiBtI1*Yrwz*fgBr8^nRE)t z<=V<;_pk7s|FYAv^*wi!`Ol{CP6O-BF+WPOxN=I$ZEvgY5MMpdR9@a5a_;Veho9ML(Mu=ySM}ST=LwJ6HXiG`w_wGC zNs)TZFu}-{nxoIm?LM_}OWY+I6aPHVPlt5w2Ctt9TrS=cdHnlGzTcyLK2-IhshgzZ z$EVh|ybH)Zdf&O!qxF4|*R_Kt>nXxaM=bJ(ttyXg9PP9iI@irwv@mWWQ1{}xLz*V+EuZ`+eONzJT3L4MUvlvl*z#<*>WQImrDBS*%Ogr5R~bE?G( zX9BN#ggY8=243z+;`K|Kw|~;ZeTZg0G3@-L>XTHHZ{t+VvY8D7Mq)-gzvtwZ6|a5m zH<_AHvl#qbJ>nI%zK|y;QD?Mu!P#Z*tBIHALRAY#Y~p}dSGxD^U@^W_limzAagOF^ zBa&pp^}e*7Y}xlOdcTZ57A24;7@TTFtMcKtz3INm^!20BTDGIJ$D*URE6BI1ZdFZo zdCtUq_(%oEn3+74#@>aPp~|>vbIrtGY3zkI<;`iow_qk zBkbNhd%sZE1;uYR-Bi9T%3NPIHM5Xsk+O~vvO=!PhxBf zzVNgjoH}>%_$;$kkz$-ex0J2aVnmwNrg_z(62^SLdzbpoY2D2k8ltV7m@?vE?d{AT z@(fh}b<^tm3+HG%apP|hz0cmIzgSW`ulT{xH?qz@OmvEGvVD)SdR$Lso95*g)>0wUi8uG3hnUnODWfs zJH$FaQ<(c}4S&jXA5YfM-+lGekMNe5&NEf#w!5vP;rx1umLiCK&!Cu-+}NW#C4-%X zSIF+S8<&#Ll5M)#AF-Y>`I5z@&fi5(Wv}FPUuJCWJydmVTi(_>@*44ArfY?JZj9&Z zn#&3i9t`z0%pT9rb&?0RRwRfynROKnJr@Dqv`=)^X9@BRpaUD>< zzL}+Si&`t&3Y*%?!KJe4K+4OFk@=^B&VdX>9<4ikl$K30G!5!1^^>^Fik#ab>Wi-&-x^AjB}*0e@Pq7B3)`|e*cN``;7r5sQ~vq*0pi|8u>YN z;bYG$Qhr35r=&Cp?qK}wqnDG#PqQj*En1lp_%eO?Uh2vxqr)6xr}vq=eO@<4Dv*8g zGl9;QqVQy=|LfSXme4Q-5}mt}o8y&7GRDW(p9qT{&tM!}PiD?pS>}D)L)iD|myN~B zVVw#$LaHkBFh($FcCXa*@%o#+jpurUltQ00WyziFy4&27VB0h$I=0=#h0n-N<9!9` z?b)9J9I2*zl5bZEuBRT|llT1b`x?&X+`WgEgzeg#<*QZCa90@7HdG)RMVgLH?|E!_##&(S784SHy_gd?^ zt~vj6UTgh-F(I@)hwcnPD5(ki@26!wzX(mB8$KQ|JY|k+XY%@qJgY_CP+?{IzVM+T zMpU%y@Y7Tp!nOUum%~W6k-6llc5i-z{~D4|@2d3C%&MW#%4`&8nAC9k=Ai%Jl-}oa zlN@?Fx}hniU;+WJ{rV>we5MlW7fsPvcl0(Vit^%=xLiKATuI)}%rbk9Uou8(%0|#s zm%4gghb8RFWhVU0*1@Ob4bDX4e5;>|D=NE~>#rv;ncs9${(G|$mRj$t41S&>-+#VxGmwO2>2Y7C5LbSRci2s|Z{^RhLg~zD z2eEh@J#q1cO@+0I6UDgA9*psdZ(q9c%y@2~LyR|9t;D~k?pN$W<0AQQWfDfMWC4~v zPwp>=Y0;?jrlRJjqvfQ(+CG^vqA8}j~~4vcEFs`nSGI_>?Svc zGcs;cBbPGqVBy3>B9UJtc{5?j#ACyUsCn-g`@0s7+DjHm|a{Y#i3gfg%p( zn-^j%^nVNWUB70bp|};1Rx&n|yn97G<5j)KB+UTID8=UK@^=4)k$YleLo5uz*Bl~C z?G|=w+vjh{*!kdgU4A&ZN$x%JZ8Y+g-qfoLcjxY9&zq5kxto%v3kJH)x=9SYiT*yh z?s0+eu86o7wx%B%{?bye_gM5mBmSUusEvX<(Z1nQ^9$dA&64{8)GwBi=TV*z^=Ci1 zhF3arohs>2&?ehXJV*({f|X6Y+Ar+F#>fty-Hh61%F3g4PurKV%KKS3F4lY8LLOxBE>2)4C*pNrb;* z*`_7%v|mzQux2$o=7DN9mml<924%P>mS-M^+zC^=Go@31Q|1uaKEeO1AzrmDt+iWI z`aO!`?3ayek1V~Fk~{JCu?Hec2hr>setfSk_APlZEqtGm@msIyGx|=2-1_gcR~~Te zP?_Jx?+qT43c(W<#jjc;i4|PS7D#=LvnhnzUR->lt*WGjlC@tJilP!;{`SItE9PwW zGBzuH$>f1!ReGivGOpVgv5p;qWREQ+zqq>jwC}CU7CrNkB@1tvW<@C@&Gqa3>aZvl z9TlCaU4rF1qIwQ9_M|VOlZZX=mBh8zNegUZ{6KCYxGlhZ>W<8zvP+fH-1hbKnLjqk zcLx<8!STs{WXoL?mV4ipS~6)JG_Ik|Hoc`I{)OF{hx^-pvHC^usdO&(ouJmKC5Mgs z&&;P$$MIP#MwxPdxG3yMJ4F~tw^97wPl_EhOh_@svTh9+_J}ER4kC1GsC~$LO!eb^ zaw1+fyZz8I|BcZ)n;Cz7 zKKRnvJo|Tt?jJw@Kg0Ncd>H?YMfZPj1NK*T8NK9=7pw}F%jcKges9{_;&;e z3POZl*RvD>G9~lkRB+E%>O&>K?E=Mv#|W5_*fdd{8Cnt zu+hR$K)|s6qRP{6+1Scb&w0ge%6|7P6ueo3Q~vPb!>_qdyH&ah%j-2v`2@at+WB>? z(B{N1Mz~IN&OGV__hj3ZqgD3Sqn+_m1##j4@biH`vmEE|k{~sK2Mqk#0BRvT?OB1? zVn!lbMQlC)`KPDjh<9s{{C5%mN18>TuaJ=J5HI#1{nJ1F-S7VGVgKfL|Msx|^(p=H zVgKt>`sc&`w^#b-u>W(VFtq=46aHyF{PWHK^H2Y8#?<+m;B&x$HI7v|aZpitKABwX z?&_j~*Q>10CfKBqTP5N>6ql1I>B&WSKc?JqpD6$hF$G--$*HJBK2&1MaJGNiSM$yJ z`MZ5&Ma^03b-?b~73_Tz7|bv-;{&vl-HmzUvsryUt%z19--rXuNjot`Urf2kxqauC zyJxc-*_MO#tEHZy1(M@fZWl(glNLIuY98l6JtJA8Fn24C@`fRfs46TDz5YDyd3qXZ z>c^RKx-CCqo+Wv;#yEuqFBR*k%C<3D2q|P3%nZv3?Jh{Cmk{7zJXq z#*fS8ax{t#e|Ty-dw0iF-|0%2aX+xV_jqOYqw&nu(#SiXNAFbSjCfEfDq_t4e396x zR%tiV@AQW3(G2sWh6=}H`}ouJIYv_v1SC+N|c8jncA zbD9NWYwB6?nFaMO?_SrZheyhqtgzVXuGKvltFPs!U{E>T9RF_dUR8NSWJ3J4)pk_g zZd2N4`RzMb&VtNj`ExPx^=RBXPHS(pHZW1G3)NeK@AMQKW40RA9^+g#yIx&t%fD0C zr#qM!Hlwd?n*+q5o4%tA@x31hODGH_TJQWSHc-*m$r1n9i}KuI=N^~SNOqVLuT`ZU zExY|r-adod;Xuc6@V4C%scB=(`^eheQ|F_lIG>Y{){x^s3EZ+>G*5x<`sQc--F?mE zuSDyz-&5$6FXi1Bau8O9_aGOqoI2`I;G+-v##T$0dkH>!rdRhiA^KiKi;?v3(`wDE zmT9@}ij>5?pBxeaCfGF6d+kngy1LKs&Q{CbIOnq$91iUL`mT{8;ek|!5}hhlF-N3w z5#C4di%en4_cw?SKO);+=x}n``aMbcJ?71u<4y;bZR2e#L)FwTzx$Mn^|J9}M~`Pgqv6J1c6a=Ufb>%kfB1&*r$J zxsbT}Yg5z3@qV>~A8{i07oxrN8i-RfhX}}89U_T$D($1k>zkDhUg_j?>SXucT6=G?nOVTKhfMT^Q0XG!E{~+PhOhk>7V#Ms3-+NP5!63+rdx3k;-%j#rOA zNHbD&43(jsHd)dOWz);V4<0TzQ>8`VeatV$lBP+`Oe7t)Qt@pnb0hQCH}9gAemP8E z-bXFH7kw-KqMuBU*P@a4mpi3eWg|^#s84SBbB}z{o3qYue2&R<7CCBcx3XA@~$oZF!pe$g`P> zcug2TXS|HA)#05?zTdIIix2!9ep3=L+{Q=7eRtKIl$H8u(&J*ZC33YG@o^k=r0TZ| zc(#J0qDCoLPPSz`d@N)0o}#Ol-;8{{U>{Yzsv%PwXt7HG3(~ktTc>Vgp&Oawd_h;m z_VoyPi{)7w&+c8$=9g!+XW={M?`+DtS6jyQ@^7aU6zaN z4~_(71|Fohv~VMN-=ddSYjo?Bo(|IQ@Df9-!T+S{YC|H?)bH)6>Iz>OwfibL?&4vE4krvA4``=(0ei zMsR#u#oNXEp)&sCMCN{rX+YOiKW_u2vG1~+naY(~(dpQUXEegkHF%xx+j&CetSt^~nW%;xUW9%eBpMaFp zONlYTx&3+fXNok53B^2>3#ES5*6cIgp~MP=TvmqKdsX4BtiDm`8j5}KJ}+wJ`?vE? zr?YEt?{yk#Y89|+oz^Dm3|(YsXs9$it$)}!_cH8`*U81y;M?v>JvX}UbpOhoKZ6mI$d$i+XT@Y-Z!& zRYmt?>vZo-CWGmtJ-Bz_N*{*hXdg49poKlOl_kU_6Rh{qbm&ws-zPJU|MKNWfjH{A z`FO_LfUCY{Hz!!NhNmM!T10aiiN1$yU28sVIl`?q%QB^)SIPQ9q(1iD1lB#xyIQ9! zB`x$-taegAg2{NNL{mg;WrurnbafR?CqL|`NyLWInSP}@YTxHm5L*vcbCiILA$siF zIJ|{Vb8$9uF^l14R#w`&axqJ{etA)z+E+c}ly8`v4%SS}w04Ut?-xW_v8YprE1hoq z$Ly1p3pSFcE#`jR8M{lEtgrK#I+>%c^4PyPlsq&rG<0=#(Bz99I9}56dm&-5VD*q$USudu(P^Dwd*RV#yL|@r$OD)6f3az_yDOFX4gzx% zc28r6+PK}XOM;g_x)r9I-0PQ7$VlB93asDKVrh%bd$XL0jZa8UzG!HCqEuR;V2-9=~o_OXd=&DXHz1~+dV0j>IqB`#k5A0{k``kdfxaT$t=Bodz z^806@?}(Az2ue+&vB5N~#0Mp6{gLBfJNls>?Zlhq{`>93A4disZ{3|t&z4^!ImXQz ztJ2{Y9ERD{r%*_usm<@Z3=UUh{b|^Z}HN?hU zkm2c_V9*$Y5a?#l#+oH_Jo_Qu2m*&zEP+m7@*)hlFaQX@D91c(DF z9JkB9q_?Cn%+|LmKo|lK7BU1yfh*xuWfGkMkXh^et%eW+S=aYMJ&<8z2I31s0BcmzI2t}W@tQK9K-SAHnL zOIG!=OI`aQY8#7a8L8z|hP&f)$r7;6v@a()BYVBAn#R_*8P8^k$Gv^dR5Ds(6WK3l zGeoR9mTKBXSw4_*+N)%n+?}|PoiA@fy|%j^1UYLLk7LGi_BRummk6%)Foz84E5a4?WFnCi@S2<99^t>x@d`)IW4AsH+#RkWx5qxWpaE%qAx2O zY`#1~G|s4@{mW}|ZLp*qGK!CpLipnncUsGeYVOz*#`h$<3@`JS`IcUkUbOryN7sP1 zkt%(HyCB0QBr#D$qo@8uCFicFZ%n1hiTBh=p;aHX((dm`12e6XhXy0<9B6uPwwJrA z>IqZmJ^HvUPK@;A<;n8%NbGG2jMp+=Kj=34KpS4cKE3NP;YZ5l9O$T(;^C;Si+`WP zc1}|(Z(>a??{j}Y>XlEi_<8e^zINsV-)4xv*jVQU6u!2|!%=2`y-L_!fm=53pQb5d zIOwoR_gpHD-Rdh7@t(B8Kk>TKaUZ3)t zPw*;Ustaw3_UjLKZ^P8a3UAC;NEujIu)6p@(i-1VTaB*Anuj-cai zczE}-0AGQc&ELz!47RSwTTuHh7PC|CB{j?Nyz#g}UQ!#^bV< z?{sHEs|nvXs_NJ9aDQc1=dDjSbJXZnm4|d(rt)za ze9cwk6%)U1X(n_aGc)%lT+|ot4Ah!f8yGe{eA9l-K)Xj0ryFk|JFiCnhmicUg!D0? z7*!_Cuxm-H#S}aun8kU_0o~NnFB5;=3*Dq7lM_@-`*9lEE?A-Rc{WH!dO|hg*;Mhe z`S>qqzQB^`Lal_4o?YF|wR3ZG^I0f3Q#Ob3BJIEXHCoPkG5-3!sRlR&+M)7NKIDZN za?Gp&%Z?oOJKe1cIUJA8i5IDulns%OCDbjyCp2OnDL}P$K*Y#SLnAu;X8Y&zl3iz- zA=l9H+Jv9SWN+NZ5EF`*jQ6v=k{hmyM;!-l4_W_8e5pavsFzotPE9kABeh} z&YZE^aRa|Uo%n`eXG}Gl^NE-6*E|_5YD&u2uMM8)?c^C3uY}zV{mfEiqI5b#gPE`S zO(=%>=&)(0T6tkSlm&PJ*SIPDyG3{sgb z+WtBfFRwV_!CjT3NsW(F`xSkwKCg0MrZ+`vEHB6OE$da0Dm%)t{hgD>W+~nLJVHBp z-UsuG*NrQEqMIe8^Ig=|t0Dv+TQ23O%JS>X*ot#*?ujV%ZIHXreNA;Mh&iRD+m2QB zm{znnG}g6(c%n?$chE=kapmy+{zXLn{ZuVJK~bknpKyJ(>A9>+X5F zyMi{(9ZY|E96I}J({~Hf3&PV@N6{lJSD`#G=6q|PSlT4e}z_CShE>#>jo zA-k0nCzceioS+^5pjwKa%l!n(Ve<*U(76nzE9SSjD_$*sPLrZC6dgPvStTV5F=;jh zCG3~us#-hz=(BkRVQgM>daDEvx7B;roxE+xL*hwbJf7PqEq!%h<}H;xfjobar#5yQ>i3byy3bakhjy)Aa%L0#(aXV6e3 zj8)9a!XI@CV>6tJSaO$<&(Sb4df9EP_w<>bo)qe~KbQLnn>FuFX1Em9jPw=l`AmP| zaawA}(|}4LaVJMz+6<+V;=W9tkBT3N|$O|1>W6b2|#wqM)q4Q%iGLn`-K z9_X`mp3Evo6WHnLrHoqpweERCp${d!MI3vRssZh_d6!ip<-iv+(~#ici!5$x6$Hgb z5d$t|O={LRdO8QiP*6~UuGsG0Va_@&VP9UxSBI8Om||-tZHD4N#=gQQPUnuQ#%mBF z6AntS-dG)_xaoI_&){Za2pStHs+#meTcD(gWsd|hbQJ0yI)4w*s*g; zqhnu@c!oH{@AlXBJAKg3k>Vd6@kV1ams?9{OoMJ1BM=RtzuffbZv;3^)dZS_F@ux5 zV>ND^=!XkkytBo2@cccHiIwX(T=y}=VO zs-Kbha$i1EK25dn=KWkkVosbLGz;HhT|H~u5uvrNV@#dz9yFbj)2nbnv9`I{RjT9E z9m5q{rn6j1!`h)%8nCt3oXSnFeQ+{Sj|3vG`ji@48v1++9vmR!6)w4-Ixn@s+?}19 zZT}>S`m4Jv#2T69@!1#GpnZ-Cq`s&uC^Lie;&6y2vufCaNrY~S2L1+JJc;L!MNwWEi35lRBc{N zKqHV4bB>S8-VqJQ&_1v+)!P60ebnKEt@Mpk6Wnz_>6qXj1EyQX*b@_@(9nPv5V?*v z4A!R8MEh6R!9QB3BVmYVV z<`(g5caylC+_uwIvX>MxKhdT;c@^k)77G%lswYSfb(1C1tV#MhD;$>3>neE1hP@&zMy03`8 zSZqExY`cLKZaP)+EzPi#oK8u5k$Y(^Sr9tt)zw-(pR);BU376Nj62n$)lyPAuirH5 zH*I>mz1bQ{M-pS&XZu=DzCZEXm?-vu=yMS+`=8xG1u5*#PdxyVM znV%P4DBAmNh7M1;<-h~?q(3XGq^B-#c%_yCH)kT(+1FMygY|;MmLKOU9qqyKB|8bB z{HBJ|s%}+%>vXx)!BNwL4b&S>SF7{o|5a@Y&O-s!-*)Gil5877;zEqmlP8ZuxFe70 z#?cG36>@S3%c~|7*!kPiO#=jPWNyJS2t>*M)^HTulgoB+0v$z{aPIvBrnff`0F*cQn zN{fcgiW~S)+LD&flo53*W)QrMR`ACMG0$iPK$84GojfXK85Y zd#`ZTmvjTeUb{(eg`B)6KTo-OyRgvLj|(xR zWJdc}f1F0!7-nO7GCGD&%+~Y54D^daCz_7+2!Jq*O`o`P5?_}u*n7jN2QPaVkIGDS zWN>b839k6bErN-5*=jJ!7+^@D5ybr;ERSsCsR$o(`M zt=gS4$310fI^KM^kPGsBx7@JWRE5>pgbMliUZ~9QQgaaQl9A7~)Q+czChz9M!iL=rhzE)3BPEdvi-pE{AN@88sbbj^Zgw z%GD25HFM+~&-7lNe><~f{n&l?*PE3VR7HotT_4TCl-RjGKqc9LHzT3sD3T=p8 zCAEjnd%Yi#8#?7=B@I-{jRw2ZlG|0P*6ueR|FqedE*#g^Pvmw|gMgfFm>`hemOKBy z>V?Hc1G(ad%O^X*al`^}tF8^+vES8%O z!j|2#&?BL{p&Si!=N@-ou3!-H#|fWT#01ci|J~`ZZbLwlS1gnrHvUCVw}HU*NC-Ca zCBgZUd-fmudLk!>ue%qsa-!LjA%7Na@4o(rCSMj_AJW=#)0xrcUpxF8H=V1mBGq(e z@V2+8znMcudTQ2ia<;?&XJ2>Ymhb!}B%+DH80Sa0Y9^Blo4C+?7{%B=gdSz`vm`e= zw&Hx_qkxm^eguBug|yQ(UGog;a*vsJ?oJMu*vJj#b3?w=@*OLUT|1g6 z_`h18>~-AWwB7zWL^D80%4um~g7eUjO&j?v(@sYIVlx^L(L8LjkG586nsQ~u8yB5UNO|yb#AgJb3Vz_S zINhmqCwEIq_W5-m0%P4b0yNB^McbuV(0ck63i9&uR1#-FUycvI54u%H=f|;oGO0nWpnV}nwrBu z9Z;`Gc-i+TG{Pl(n(QXly%uLa3@oEiZ6byrG12= zLp^$-PhvPO#QMFw%PM7STN|Qhs7W&aV#?vr#%x=C!WbfQ`K{=etRo`}tBJB*nI^}# zjt7=JRu-1loKL^pFSqxJUJtnJ{Hw(os((~boX&AXOQ?Wr{)8&6`xcWDp7~))VzUwf zIT=3d3Q?tczH}+<&i3`8Fgc$+N%J(jA9gY;`jp?1>^c+}(-UM55hTTD&W;}C0zLVqIF zrp@hg>~7qwrCIQyh6{UX6y9lRj!c2a%kY7m9zlYb`z6gCGwq5Z-it<$oX<+Crz^TA z-kRGedeHdwt_TeeFLj=eft@r1?ES^IpzIi#9YQXyJbnGHl&@tGO@dj6zRvq^Ngndh zPj$@%7o-TL4^{V^P?F6j@E3Yv(Z{R(dNeMa=?I!}iOz3=+fkol9QOT;NK=j`va4r% zZ4cp*2-)I?*tSr&KF(0C9nD^Bo5R=twA8wH;Y_`hD&bNr!jxApwL9z|y9!gLp5O2= zs6ZdRn(%&KqwdSy>RY;w+XvemQq&yS*mJ!F`a{Zrd2^Je?Zm@^%tZ__M;#d`E|WD) zo!l`!-|Jpk)t!9$BsL_mN8d0WSTsLa{mwJ4;C)-Yaq&30X2QM0P}*c=6$K8K6?&5M znq}4of`eaF6{&$kL6gH3`zJ3JWkZWvn=9E3y}W?!q(Avtct|RGl}7tZHQj-0(+4O3 zE{`vjh=SOZ*0g3`$hSdt#%81ic7uGon+I+3;?j)+IaB z(X<*NQ?yAq9aNYYz6UJ<&kp2jd8I5(J5*NcXQK{TGdhNBea9G68oFe1&EoD8i|<5e z5MD0e^XJr$q25>vvf*~wPM+VY7jOTKA3{sdKw-BVj{S;xMRPi%I%lW?`#W~A)L7&ML~ zWhE)&a!B~3E@LL-oLKzbuA2V9%N-MWJ$XI7&#vRy_I zr-Aye*EK%h)79PM>^P9>9=071rI=Q8w0QQiCY88XHVSyx6isAwUwMev^!ma%^<7` zpD52;P}tx#!_3TV%fR#eZI0+C8pg8JbN$AHu-;=(uZjZp@O-}`IN5;LDEJDQfOTip z=wqgMLFN5>+95k7u?t3&xIzP{oJT)-C6+O3Yx z>qt+lEWyqU+{D1ZSr06SVBc*2u+|F=*t+k)>DSxu9w0aS&v#k&`@x?M*oNSjSqwgx zmoI;eog(q}yNiV-n<9RH{aa@=M^W(<=P^@nRPgrmb)!;nazISyb zW@hdKsxr9Bf$c7!1$p$*x3;(I8*v41C*8iRDSQ4g&Q;h^1@}1w77KR60s^`^RZ!N~ z14S*AVADgI8ygeE>2RUOfD{p zVnYken-oI?5FB9a39gG^5KiSG3mgM#`Ao{HDWG!?j*QG7dQ1N~PXll?0&7^6A`?ZR zaHKx70dqMp_ev}-F23dfE@tsWNX|-LU>fdPVF1(v;#DAz)sKxu8&!1H){;DUpb7R@ zaCzXe7)Ny8&@l&tZ5becA*ikk3nI+iIq zHMM&4F`JDJHa9QKHV6H6Txpo0`EdSUzh1j_OI}(!o+y@2Q4xWqjW+<^3)rar^~oo@ zs}nG8{asz)-wn3Bw=eI%j#r5{7#<#uca8t_*T;y#y|1XK2%230WG60`^gn%$^&*%a zcw50zSV8a33qF-8u<8bS2v|aT`})$$rDI**=LCy1oPbrZz5@5$_{2ZQJJJA?(vFS} zU}*s|g+{%K^YT6hnAgUC0=@@8oZnN@UOrECJf8%J7hoa-KjhUbggGEpQ)qrc!DybY z=$kih01hf(M|I8h=*72zflz9A;*!J8&JL^#HDEP?qgFDWx;K~u!}S7D1MnLWET+$S zk!H13%S5?e-g>_kDY1;7JQ)Yw(0j&&lC2_(6nnw&8$O6$@Cz2mEee zW^1`N`Av34`Su)kfJ89(#)k@^o;?#-6$H2k@bm_+Gcbyj@iEtL38o_6C@m{9GBg|- z8j`w=w2y{(c9O`J-Er>~gbr|O45d{hrl1hwt-3EY?&^vp^&9LZ3ApTo|J+XVU*N?I z3o}P5p#jX+v9Q^1&PQSj;v{8591(T`C*b7s`8F9@Vm0pz9KYs3GJZZjFnAZ{twNJB zl6r-Vj12st-0PIr&I{5OI6UcwTYS70Y)XQcI#ttdVp`f=Z0sbU)oc_E-u^Q_j?7@S zX*^z0DvSqf_sW$kShI(iy14bg%EQ9vGr9HGjd?eaqYi}1pVRf;V8{&w6|7ky00(17 zJ~iwaS52mJZiX;4Ijk-q*emFHg_IFj(Rp(oYer25DBi2F#iFpDa^d#4p6WVN~!PQKdh!!1#X6L`^}Pt zp%cIN45kL@#yD^^0iBfk%()x9k->);xIv2x3)_HoIll#KRznqbR*(~}pyJIUV)6zd z0|Nv4K8!xtz4rj<=6u|1I<;WxgCprmZ(0vL_P_6`P({kJ2+qlXysdZZ@9sA0PQ1>1 z!T*K@A}Ckofy>?#c6Qi211D`hwHThl{axkY3P%kM4Y&y9A``pcy;SFie#(uDk8cdd zdYYQ(_wE7yRE&3nHP^G=jRlMV5rZ0YeyaZFW7RGb!^29-${e(`ncz^0HLL$6JDZ-R z7@UO%w}5f*<$Mrk`Om{L1XDy<-jMQ-bqB@p`t@soE8RiTx+8hM`ZhuU-paXz#;z`@n^*oiL$Gl~Sk=m;h%b+p_Kc23y*rAkOGdkKgTrE4 z0GvbX{r~!EJ9vfw@Frlf4yXh;FE~f?E3S905br?vSH5`@^0B)N*d!+b*u@cn{X|ey zz(E_VG~@6dfA|kLZ#q!+@0qb~3 zXz2TOw?Ty<-o2Q8@+UIyRnb?KZIvR#aBDVnjolz|#-7f;6cO zSZ{!e&aAG2ovK6nTLy|N(pp+tAdj}Uw}n34;XS{rdyMj#FTs*@Zf2$jba49HoFs_d z>+9<r)(R15GkuA`txOG_v`+u zSquCaC}W-* zPcRFPA0F>c@Nlgz59K%3*C%N=`c6AMEGPHR@VLMZF|Dqy4h&fxN~lY@>{paM{tf!11`nvyCuQw{i)CsBz4qnjoz z$g&OdzixPCqB^$Xe5e({^!rribZ>9($B!SoF80tW*zyzwGv>sgprC6$Fubvrm#EgF zJvG7R`*}cn-BWDCba<2?_GFk?&`Wr?x_Pw9sT|Uvo}M1?7@(Avm6Jn&89}P30XgNQ z73^)lf@FqavR)qEhGH3LFMuIg0U+?}-+;$B7ELBVsQby3&65>oY;5dx!AB0Q@Clt= z>({SAnLP$9v#lE0nBRJimbNxTo3{4$_wV0_goLE=SW+;u)!#16%fqPM1`%6*w9%^1 z@O-uyXeXv)WrbqlOx>TMHg-&OX)Uh1$7wm+1VRf0EU7etZX0F~GsN*!!6iO=`7&bW z@5xTL&cQJ1putoI&Zf*zEy%ME?(QJtcaCETjxzw&rmU*qA6W~fvzE;9}Z}jxyq&1Kh zASAEGY@(w> zT7~N3XgdL9oO}203!XxVc`mVZefGLm$umL0z8rP+ws)Y?!EF9yfGn6sL439V_+tP` z1{qlndXC@i=Khbn@&cBao2@-Phz>(tD^OVg?=$fIJ0GW9s$^VPSQyBoE0-=IpyrvL zFN=Zo1-UCP+;vpse5>qf6>#~w;IE;Ffmm+c-GT3jI`?P%cm(qDa&tjq=f@MDwi47( zOnuTpay^nD4%qtLM?*_X%f=S=)txgPlpXQHM>jVFZ}C(eZ4#5}+}ru-2@B{SNCY{+ zA$UZuiaJXGxJNfPH^AQjq8DNjD3I!D4R~Fan-x$YR5HoXC&`CVmqoTyg>DC^A9qyz z+J+pJ)P#Rz>ilhk6B!4$ey=We;r#wIxdSi@fqaLi z7IZHFVukW9);&C2@y(k(Si^N#w=v(IS0o!DnVGcE+5i+3D9S8QA6S=oB7qv>^^GCf zHSC(!6VSWTC{>uKS3fQ z3z8X6klIusB!d(9!la@(arO=z}gYh&W#g6c!GTkW2L zT-`fKhdKZq9q0nQysl{In50Zh(qcFe85u1o&%ay&T7b~S!!3p$3^XyYF72@~zNpg? zdGR7d9QvJSQX>hj6RN5V=!`(J1nM2iMMo4y#kyd0Od&BsM$bQo8fb27TLO*@Tp7$Q zpvH>vx=JVjImh4sHlq{dKI&ws8=MJHRK8wA@;`(TynuWKie5dKtnfZPe09!ER8%@z z+B)27plLu-rq?__0XlNAu!qq51Y8qhL7`4=1~aIS19li{bza`Mvs!)cE~WHEFkLTx zv#tdx7sQhF>No(q)#E{_fl>y%Z&zR6@>n_RQCuG;imy~p2cjG?cqa7sMTNA3>=J2J9{*@Q^dQo;9LcF6bd(G zE33`PNex|HUAV8RT1uwC=>yiDRy-u$=s%wff;KOF6conCj~~-AGGuN~D&Gzg6=Qty z;sxVaT_V&3hzVj&PexYX-_HWwmnTn@goNDRAx-#(X+hx*lYPdFIM8YZ zCPNz_TZorJ=vCpACX}F8A~1_Uc7)k$U6ekX>ou&1avh)xpxPjv0%Q`t`ta-5uY;vl zDPi`2f5qtW|8q5)3#Cn}zO=Mo2u* z|1}z)Ndsv>IoyYo2rC*8cYMsQgvL-?AlBw{Sik^A@;pCPZgs#QEhhJ#}OBu000lYDki?fDNIhT>vY5`7Aoe%6GmlPrpGh27z}If-ygTA0in0 zk9c@eCF_I8gIxqbJBgluGIkdFOTX5k4l> zIURN~AxuCI`cEJAQd9f$U`pt%!O9~_UWV%OJkm_Q|CeBVan>0`A=Hl`crk+%#5Dgb zd0u&Wz{VXyOTE~1L>|;K+!Jgd`C#?fz^w;5loqkfZ6Y+O^X7}I`3vHJn}pn)L_`{Y zh2th=1mV`m==aP_(C5#3rl#$eWnC-YZK@+9Rk?%2>V(h^=q%{frro2W<M% z^SN9j@f)fbNGs4dz4fPHe|kccya@riz842mMa=5_M)5=g3lXLav@an*KxqV{#DgBB zBxVXB5SBLM(D|)D5`d;Z1J$3;g@aquZ^uTYzI)7Rf5*|JT z7XeDn?ZXE|{r(P#=RF8^U?-7~lP5#B0U9${mzw0TU<)zrBGP0l#N`R+LsL-8AQkfp z3zLXyI%}cu00rlm;Rp?+=;-^n>WCQXdZdTYkI64Uru;(eZXh|c08p3p;ln!|Hkt3< z@qsLX1uu#S%r&9P6>oBZ>jcOp7!`45*H{^Z+Q7hQ_;fcRB?UnSMA_ikS-F^*w(W;p z@-?@Mi?2-dsZ_3V_fr9Zb+56HTB^t+#;@d-1hBAgU}0YtTjI+_7f39}$2qmVHJ^B* zW^(Kd)pbXQovqCdN8?OY)SC;4pfG9s3Y0wTm;herc(wWzfb1taH*jd1+S;Ok69P)d z+xrH}#kJZgXFBki5QKW4$z<>=?8QK{4IOtG>1e7+Tm!CB$9)ob%Fw(1)8=>9gbToX zsPPo)5KtB$Kd!r=AU!52znI5QRDPL)A_bVFe|j}*qV}6VeIUnsdWuL&-u8LM&x_>h zzI40E>>DK2@$r}?%0Jz_z52wI6lfZ@G&h5Ueg6D8G|-4VmT;On-YyXXMXPD$;<;FJ zRe#3I`xa>Ea&mG40w3bziBT>hSu@`Gw6?Ye@0jG3Q_|83oGZmiTuC*xmDyQ{NCM8y z5K7>fKW@{}(d8u&mEXwgNli_C`sb4=4LVF?V`H!oUcpAfqeqY6TJeNzuykxKpqU1h zMd1Bw=gJO=hw7I5BPhb5LlDDe5f5t=M3m#LymBHA)VxJNuwV@NKqGeoQx|r)Q!he? z))%6bDe$KzCMNp&u=|i)JM{q?mX!tV&~_arD5D`dJF?2cE+`VWdrrqs25vR^&Os3Rv)grq=rV&cG3-n4gCvrKVM(+T4>V3zAErBH8nM1Q=ak`lB23lBL)EhJ%D;`n04IWpDXE_V(XJ5JL(W4 z9UWOErD1?Zg0kK)hVCqC$OTvPw@Ydef||13mR>>0_}8>^gX4lkd!En*y)A&>J)b6Q zcBZ_6UI~x$v))8nyMOa869`3Uvn;^1 z0M_}h`)2$Em`$3RaRmii5ZBw=+WIpUHwV;R81LMay@FKb2jnHtTR^Z2U9x-Tdk-ca zLhRKH1jNS1hKExT6HovA$)eYG2c+_Y2M-Wel@F0EsEHN2Ch(L4^il#CK~+I|;^yY2 zy!Et45}Np4usM7*1-&5HcL88BH3LTJX zfTpFQq47RIdVFDJ02YY~g6{tLGdu!6*%&WL38Ykj{5e4fMtE(pF9Y{3CINwO3({lM zj`>TjtE8|sLqT!X+BHWMPDVxs(;8_n8fq|T^_D@~5b_8NJ~VM=pv4Ii+V$)u#hOn1 z9WgO6#Mq4^y*#@B>&K~;bWHW}3@qQyCDj%MN zsHl4wJ3Hnt^)gd@jA{ljFi*{TGs$!o`Nom=OaZ<11*9_UUM4*A+1TBs&_uk=PDVxs zMegsegsXoJ!ho@(RQM1s5$VeV_#${J<0p{x;4S@fo#sFoE+HWyZx4?TZf?Y@XHUAo zo9qmP`_}+f3L-RUQbA2k{Mo_&ew@Pj`(4lyx-Tpu;$yc8Lj*rrPe%TT%uyZ<0|2rV|n%O47DFe z(45wgO*l{Pb?{S6BqgR%Q{A#%;4tqNMi01RyVTeBf6?{UVNrM8;9ys>x9xVlrDQ&S`hqP zF4}LcPJ*GtcrG7_eL@186=d8^AJJeD(n$}Ow_||*lOS3BCh5m~K6K=~CyzFoIOk4T z=ISg@--a)y%!vzn)jO?~RD~4n6%ufadpDdlfOZtd1m5Oq|E*49*CurObu_AQQCtebo?r#DZj7pdzL@3r}qbrX}Gc!QxQ?Ye&=zAU51 z0pOE&Qkj{dm8!bl7v-N*)XcB`&~I>3kb$W6r!7Tkdc@Z^*?g#>Ay-!k5otP`%(}wf z%oMAC7Q~thr3|ki;z4!ZxfvCsM(^}*p0hz=OC)B@dZpa(l=|nrD|P}8PjEgi4a46* z){G~=-n-dxz57}JUM+kK5yZs&=V6dx-a}6&d*1ai-^Fye3h3_#6PJ?8+dn5L zKZMo$M+*6b6aZfW%4qA^v`2_=pvOSDdG2WBb>n$wnOmYQ)y+|Q{O;d^oNex`mWAR+ zBi`Mj%nNmrqj8a`vDQ;hq9idU)omAlX-`|7hF*q;r=SXxcvq+AWd%DIR->Ep%$=!5 zL}6QOmRa@jb4n{Y<%cS|+Fv$j8=upJqLoR693=ZBGP zv=Ivty7#s_9{O@>+oaCw*Jgu2v8W2S*F(HB+rN__y1&QQ4M#s}5v9jOMo`l84 zMdjxeF*1}sCBRt^A7Ej$m}slJIjvw*)bBzKqhn$yEhs2){)MF2A)UD!C%-?(dM!t9 z#0XmG`uc^?&^_^STzBO-632fjl)JIlFmpQH)M3#CQ5t}h-<*%oQnEQj{? z3=Q@&yk;LSbQQ|F4s;}tCcdHegf+qHf1HA+Bh}l1q||VqlA1E^3l(LpSV(GqLB~g! z?nc)`Sh?X4j9*DHJO%S?!NYi@!P=T>Q0n05`M8F{H;)g+y_=4+F4inExsM+BBaZam z{Ng1i|8c{myJNjn>N=H8>_Uq6Bt@`wP3-a=s}f%V)+EcFE76C0J|d}#VQiN;%~m~? z$;I3%YmR*;oq1k^xEm+q(djBg=5SZ;g;|4;>iw$!SY^mp!Ke9CT*4!*@%11V_$)~ zoMYEsb0F}r4T6$XVF2feGcF6WX6#*C>Z~l8cegv1JMSCxaN-#Mbj|wfBSkTjTw<9N zqJr%xH$G@SAiGkFTQGqppL(Z+$_!Vdct_vy znIv`8p3Abh0g7e4Urol>@3+?>E%)?DNDM|r8eL%8KGgNlApbv<$fXdOf5a29iL=RU zGw+yJR;Q{b(V&LD7U4yFtAd}QoL{rR7a=KbVj^xb5yyhp>!JK?l^-i*z6xGek@GeWPAc_oq+&s4JG+ zq^e42lQ$7C1fJ+rs^3Rwg*PE~JjrOUwB=yJjCyXIveEQc)i%DJhK}kIR1jFrVj%G} z-&T**sDJLmrut`bOJi?JY%ZY{+k;aoQao3U+-F4*VSH>8R!;&wjpho8=mVozzl2v9 zR`iK=)qKn(@3c;5GOAqbE%=`0xHgEgdBl_b>9#3^iTNQ;Shpe0U;U4{rwf-St(MTL zwQ3c%M)U`cZov-KOgT-mh~38ddx36kU7SY6#@=2fTV@;kyfAvX$7!ml0)EGEGo=GYST~4Dhn#P&g)GU3&y4A6pM=hp3N6AgD zqxvSXk&h?U#Vo#rs-vr+E>aDv*ox|Jq!P{jjj;=aRpV_ z4y;L%t}~%?LUuR$+^BBTG1ZG03{zT!y6(w~phT@rZX0>9K~EhV-pi4)z$3Z0>4Fe# zq}=!4eSN6)dQwM0hNVC?rsRSpKdAQr zX@qBC9(Z`WRb(%#85@On@>Rckz9>--P4u{TulIF#W~F4Uisr{mwRc1FpO`w$myUv? z7@tF`STs|Cm`&jwU`CHcajITW@uKr?J&1_2eXZE9%n#Vt{Ln0*&YcSdDEDjHY_BF{5n=p*I zvBp^nO@rTUqk72U=SHqm`RAWSe2_Ecb$dlNNG4{HS4xW?rKS$|)H92nuqb5|k0Quz zzWJ4k@!rzQLCh2f&t`49$iaJY?sQfswO_g_584gIDnX>Gm}8eY4?xNQQ$ z+GsXt(2xgPZCBDTWdIt3)^!lY#Gq#NJD9XW4uF_l9v}TQKy+H>Z zH>PM;5tEvd-+V%KnyO-#tc|z7-F2^y{X)}{oK$x%+a{(5!PSL(N*U&=_;&~kGQ?C3 zvltoyP$IAOZR9%hOaA1PSoG$Q#)v8sa1h7-6X%zM{7>q`Ae0>g>=(Fp5 zd+lq^KOGbl=R`N``taNeIu4!jkU2N@DLptXXZTuAI(}*5U*`Na9WGnQ}LxAtCgprI>-+ zTLelHo7^z5(zS^)$A+j8M6Ei~9}{vWREFn!uAw{LjG@CUMj|YCcg6(~Q$6cnL~m`M zh+?(`44J$V`e`AdDh7HQbT<;Jj0buaTfD zLvXRJ2F{O7D5tH4etnLk+H!MI<5tHf$W@wtq0k~Y%n)zYYTBpF(dyZ=!cnPnTQ*r# zwV0d!ibc@{_3R*eZQrcA3mu(`loi{6Ze+IQD~fPoda`t^yz~e23-sHYWo`Mz!ijWd z_L!~`e;l5X6C4La3MksakmWjyah=-3t#cGeNG@m~O<5wR}WGvwGg7{1tcCi{s;?ou<=*`t;Hq|KACWe#hK9ZIC7BVUxd+lqjrmKkq!q^8WG;h%OjNv1_N$X-_7G*83sG~>IWMy@~MgGFk+BRu4@J;~0RAKh+m zmtXIwzg4J|DX=u53B?K+f15w=q)cZgqNO*}{TMq+?UXIkDzkENITnnwd*MHS)R*t}S#gZA~(y7>WmkYoF(4Y!zc!b9yzk90XZDpXOb4P!hX2mbYe zGnVxZ@$GBA6N}l4T^+J2AcZj;D|5gq`vg4@Pk17tIPSn_gYuq?uoTY3~I4il#Mm`r`n?e zoQ1W=$t&{XpRwO&OJ{0)X1a7MY21(Z2lk%ZZFT9I6Kc+BOgWvt)6`sl?P(#RR6e|_ ziGfnDdza=iJk|bYd9q}$=-lzwi0aW&+3s2?vpHQ6%4b^<`BtL8X|SExPaC zH=cO(4>VB1I6!yjzZ$5bR~;CT<4%1QsaAY z;7zh@+ur?x3T3%tq$eWoPn&Wx@#nK)IeyX1XrpW+$*tXe?XxG=Sya>#L&r~ATpAbm zA2}YOOD_`dZB!Ya8Y3#SFDEDDCPy*(b3=*RcF-4ZI}$)ZG^Ma>ZQFT`Io{;8Q{#23 zRp+u3`a$?cuH*NyOYuOt$vsbWaXdMV+qj{PAon0ch|>y9e)iNNE>FCjV`R~DXVLDB z<|!4kfQ~ax6)A?It23>jWx6n?391uZagDDnM&-P08MqLCsXJ?m)a389Q=9)NKij-6 zVs0L4B-NijZ>yS!CY{tWpWHgnHP7Cw%IY+4)9h3`iwX*j>5zP1cm<@F=WXE7{*Q8C zpAEfDu)H)0SX(G2`$1B@+3KTshF384qK5csHN~9nfT8F6PzERd0|!&?lZ1u(B`F0R zW8g}hXhcbmG;H-pOf;-$RW!ytyFFNb%0OLl1spTx-^KYa$sG(c;i& zoba@67!0o zf+Uw*fg$9!nw++YB{@XGt`l0R!?%evL%Q?ZKF68^#0Z=pVwS-%jyY8v?5pxb{AL&V zWekxtXG7Y19`Hj)cCm$?sLQt}v+^&5dIsLv7T%WEO4AWTo4V?;peL{0J97lF(weF6 z4vco#Ek;K^5#&2EZ7b~3^wCF%Y?jUs^fJ(Xa=W&4K9r257i2Ko^Ci4uWq#6>!>on# z%)WRLN??Ee1U1iB_cqd?B6e5@I@Iq$jve`}K?_T*i=OXkdd$vc)7 zJ}G@{yQ;J`S0&HI4`Lv37I@NqkQ4OoYp*IC9lnv`C5vY>si|@L`?1OnW;l_4s`K@U zmZcPmzyK9l-v)^zl$(9>%0naP&oot-V=fcW) zpB|jP=OsAsJBL|1_k3yiCAFbckla=gS5sl)vb!)>o0G}g(TpQFeSu~U{j?LDO362Uf1J^JyjgNY8rdbG?`;M46L7yam59 zBTso%v19k^r+p=sjn>NS)VEvE(pp*tU+f(=GdFjue_Wlqzz^~{#=La6GEF|^-q^&7 zse_>>7e-Q;p-$C$UCqU=LeNvD5TP0kHDxO4B<|Etgv3kv*0Qa&2c|b{`%J>{CV3gP z>Iyn~x(QVk`#qzhvvH-{t;aNXI8x6hkH@S(($8SY?PW-iUa?jqVoH3cv9VNIS@Zk( z4gx@+^aWG#Wc!B*sk88Sag1`)RM|wMKpI)?Zpivx$d2%(eN?58+c*(jU7qKp)@Zk6 z;sk$`1pcKZ;fIpxUnm|V&c@r!2l1x`u#sQ$Qom0~@@{$43dw1-Y&rjCeOl^|esATq zUUy><{`8m`&LOrJ=+|ufa`!xxh^&2`bQQp1|Pg zsz|ioU=T=PD_1%+$>ffyRqeL)gQ@V7Q9)q>dQK=IYhKziv8+r#S*kDvjmj9eO|6I# zEGwHLY^S09MUD_gWjGM&ftP5{!j18zl`8e5}&t^M)AFZDw(CTVg z;-ao$wm%&zMybT7_{kvC|75|Mj3QY?DL8C-YSSZbn}p5AU46w|Wu)x&+a#A0hMKKNVMgZKzq+ zTL~%G zQA0xrU1{Ex)3+esi-;?`Usjv%EY{oNF*f@a9xF47)MaP|J3Iq#4M%hGJ7T#BRYrELo0OR3*W`& z>KPhSF6GU7C9}CG+)%J>lq*+%fpWD192iCY&OOad!TD?~Te+)7SVJ1~r)X&ry>C#c zrxQWSsq}EYQ^RAH431_2Or?mmW>&j7;lx2=tC{oG5>vS1H>!)*l>Cxqccm+#_q;v( zZ+B1%%r_koB^@3&e5pRI1>G=v&a=jyyqi}s1%lm-&R5VH9OG=p(PW)wyFFasm;w{$_jpc!?^Ygt&@w$u z7i!v3xNhkmdzw_Tm#^A4*P(htob*OiXJB@ek?IPtEpm@+wA)N8?~ApKt44!c3Sl21 zdH%GqhU|m_h~b-ew6}||TM0^{qhm443U7~<=1TUYi={lg7ttT{Nlr@nBqg$&r&u*A zp6R&?|KTmYD;@qNx4kEqL&J2OzgHT;1ro(of8#sdFdB%8>hew!xg@L4~Ljg$9SFkB-^15NAL7x&3tS!-R zI5MWO*AIU;&(cXX3K)6&)`bMk9h=z4ZY=0_{E@09dep0;S7`nf7K`H}da}8US7vs? zbKGzUVCKvgR#scrCTiE}ww(1CoR6c7Nw6ey)exRtDJEQ~NHERS1>+XG64?0cFnFDX z5zVLhe6s6E_eNe*DC(9u?Bjm(o!=J|DMt<5#IjkJZ@O4MoVC8WwrbQJkaz2guWTrsYH*{wVA+*Y zRsY#O@D++yP!>@Rna&!rXu@1CqrVIMPH)T%4lQljN^s>wm6N5xoTfyY$ECm%Dt=pT3}Hp%fgLF#!H;t3DMYelXK7RB$=*ezPZqNeIu2%I-lBao(Nq8>Ugc4Gjf7Ed`)VvD#+g zk3!Gg8+rc3pIs?Qte>un?>_~exsx3cvQyH;1k}E9RKYQmKG-bkJexS534<{ zU5`;uD)o4OcCNSMlgVMSmD@F*JgBEMXtRD)))af}?Yc(R2pb-i*>x3cZ$8ubvIe|7 zQ0r3see4&ETDg{2aBMoF(fqx1)7_ zRgc7uu6HK{9Tf`_1cH8vDz()4`W%MSIaL3W8y1l6^NH1S|D&m3k5ZYP2xEJcf?t5C zw?TjqFoUNYYb2P6iVn_NNHLX-ta2+16ux)l-O@8u@+MT#inhq2+OW=D=qXBEzDB08X`BuP>4YPSs`HPF1}i%_bpghH7jc&Ua?@70+_U-~sm8;#b--rz~y zvj3GgU9@Ky{3mfLMs1^*+m6*@Sf0dGHKH8#V>3ogSdN*w;KSr4O8sV4CGmB&y!q;$ ze|MFJF7_ewYx=QP)gO>vUD0QT;76?zC`fze@yC1^#<8^miB8mW^^9{-=efkab7KeA zJV1*M%QADo!`$qud{a5RhW@H&TtciMv!?2#OHyME%?f1}!*Vdx#W=k%)ymkj_2!b$ zBj7n-yxo00N$UjJ@(YmHc)THqVjt-x7V;@zsE9M0-_{#?BC+kBJG;=7g|80b;Q60K zr{?IV_Uh;qKTPSL!Nd9QO-uI-H653hC72WVNmB%OoIEMG@(72~}& znB3?XBo^Q{^Xe)@#CXVycu$R14^MiA!kw@<2(G04on@>kWqHI~r`Tkk>fn+PaYxiv zBUfJPiJj6{`eB2^j3ui}2s-A*dG%!kN9&vt(d!O9)7X<=rG#SHkInmob8x*!*ZdC~8!Vv_*@z8hR=FFiP#H)v3VF!+L8DRowW!LP!CV;*vdoXy=O4 zXe6r|K7mag`a5FE`lGeM7V)hx!6B_@v9Cw9vID;8a0Yv^@p(8c?=*>pfEsinPqQX@0{7X9rCW5>BDU5Vs$!Ki}rH0YuCB?(xNcTw5l z7P;<6)+>InRnvK+kMogEU&i>c1P87Vil}a>>_0N;;n71NmJjId^b^wYqseP*#!!1t z%UYT-4Eo3v6qN=llm1-9)dM@YZG8|rw5b}I5xFVZOMN9UuwqA=9o-Y8)L~vHPJ@)# zH|-ASXlEpX);5N}N?mKOyT!JxDPPH8@mI+om@IHH;#;;|#RNH2m?zBS(cc+YQ*CuR z@!7H}ky4JL(mj{9*sA76fi@QZW(YFxAJfp6S%tRX^mb0UO|7A~T;Vv%6n4Mx+FR7B zuk+n<iBO}xgcAn|WTmHop_J=FKX9Zcs( z+-Kn=@-Qq(lhHiUCJY$8<}S|23{WPU$K&TMB)osCWv)i5##Px#^(k7OgX$2XJ`WHv z?P*=7wY;}IMVA}wK@bVgTXsHF#k;djVP6=N2bPj)NXv>H;JePrf=npOI|LMdaq&uFefocA zLVSGs-%(2^#wP#%@+iSvJcdfkyf4sw&OF@a?1W$R{8Hy$K89`lS3$kS#+?}%zb-*t z$Kc>Ex7QfTO-A9B`E8;NXc^i%$I_p=T#y>|j?PT|h3w4&HmMs8Ka0K=7^9%=SiV`O zmr~T5CCd%p!{9kQcau}l`;i!=93Ey33R{$;OY7GN;m7@tegxdiY`boC38MM4&1Vm9 zyQwU_%64a3vfCU{annpdZPx+b(Pnixl-PvZs$!`{Hd7xe_ zq*a5whdvSh!?=NostZEQqGWderFhT2XK8!fWN$a|arVKZEesnvK3Ev=(Cx9p0<1`p)YnKM zjIHo8u%E;^*5|j0$h!r?S;BtwQ>@lpTDppn3y=BlJ9?R}df0f_snhuv9cPEn|0Wu1 zM)crud!33=*YM)YtVXl@PMkZuxBupU z+%dNK|5pNNxa0F>;m4ox3E;R*K=XkU>TraE((^Jo`os67+jY4a4_8CC zCT0>j^!~|_fbU_n^y&{|;+D|QFWhPeloqIu(MW`C#gW#O#E?-Aqo;j5B1zbG-UDjl zvpg|}Wt%d~LZ>vAxjghaibb!RY_S3@i4c4rWE~aOudcReDheQp;A#le+F=X0#KlC_ zdXDX*YuIL+t(VPkdI@%RwBQVQfYmq(07-_l=AggX;{&Y13yti_xJuR00 z{S4pcK*-9=-MQYm?^Zk7=FjgRS1X{1t(t@V1>d@DixD~WFfe~B*sG>gpF>4c=`Q%> zS5$o4JsicGfBDv*^+$gU7EW3n&G}pnRD?ECQFmO}B%+CZc>ryu%*{31xDs@( zN{CGTTKAlAY{Ep&O+0&fZrwQRqMZX9+a8o>{^|Bm4f^#qNJeO@T_fR8`dmpV+UJzM zWM4TlPdb&KH@t{5HEu`B5Nh{vXPfDgYxhZf?QC2}3n(0mbCZvTMCb7{u&GJNtn#al z_SW#{k6w2VyRity6>+nVJJ-Nl`A4dt8NLE>(J^@VaXnJfhV3Am^tT>r19#oT3xAj* zJgX|?mn=7a@ltF`lF#JQnYh)}n1;Q_q#Ks&R=XwPE%QacFf%*9#({~1Lh3S#ttXnp zeB_t8n-QxLEx0F8zpllaZy&BcgD8B{)2er~RdYT8Ra`qYS1y~5lbtJeU%y(0={0}% zN{UV_87-*&a33W0rKkHtnnN&=B~!@CuS@VOw%+!W?Y&2?8L3>CcCIpfdq%F(9`_Z! zE^=Q86SEqH@Y`;H?QkU%B-z+~Uz;F5b*f6gZf#gl={4MC26Dg`XX7Ke?WGbepLA{g zY+Z%Sn2;fVj7F8^OvWp-KP7p2MXQQUpRP-WOZ-3pxTXsS#Z+qZ3beomx*2AfOOhm{ zS+vS9Xj+z1rFcYYzZ)7?!A+Xg9LygPdgdTgprI!R#ZA)J8{|^MPn(mi4BqdyRqZss z)Kf%theRpqWK+?tT9y2s(bbjv+Ln~4^?u7sXvM@-(?yz7?Y)#rn9#V4`6psLdKBG* zyFmW0X3&CVcfZNI?3h_*?=%lu7t$cB&)&!K`P`% z&de;)B^(@hq_e%Y`b$<{TkP#y*lbF`u;JoB>ar4?hQ6owAPk>N zLtgX%W#69nazCY`^R4uIl9esNy3)|pSiZp0DY)=#!)<*2mwj4pnne%Glm57Ph(c>(*}|N7+=~ttTwabkSHFTaxj6E0;G)v8$Z-g&Dd;Qz%1%RqcHiG=}&6Bvp9S zZ?E8HS9k~8zaK|EndS6=)6uMzbgX;0jFqWIeV1XL@f2KlcByY^WVN+$!_$T+ob2W- z>U`51G}I4ddhc|z5FElrMk82+Y!Un{oJbowIXSx9vxQC-s`@{X|L`8G;@hu8(C%)_ z&Tsj_Q}5`;fwD;zuA4}gy#>a7y^BKZH`^x(8%@k~oGIKd zoNn0M?ELg$bk8KSsi~v!*1fL7B3||xR&pj4$`P`D+J{AgRK#=%2q;{6xo+J(S87Ba z-d`je+sUGgQhs00Mp5pAE*@kj*gX&G3ObEr0z#}uB*cQCyLtapG*$1z6D-3lbW1-x zr(h{6X+z_odtway2TNue-Efwd?ZzQOVgs(r-KlpxhG*hOuW~pIsS>?%IX`}z?8}wCh#D4A6a z&9(60GGJLnIeMvb=#qb&=Je0jw^zNrQe<=Gr$=V%ta&VMAENGm)@svR59R&y2V5z& zjuBwZ55Iq!XlD=c&kyQ|8i%CRjsd?F7OhGrGpbc6%Um|19G5-CUkic(j>{@PXHW_S zt|nJqHT61;ZChgSuQ>R5Ta+ORpeUubM_pD#6jta%hni@oKNimY+rcuMW8L`01->JF;oX9j@$SmwSM(xl!FOUkpG>o$#v+T1=Pdz=#R&&-sH?%XilD6d>81EdgYg8D9@|3sJe*V zqUAW}!oHU#D?M0uMr_Gd96SrvOPp@_N2PB~HlJwhULfn+SvzFR&r*)rhaGP%GUfD0 zJ(A^f(J;^Lxcf){=J}3F9iq^Id!Ja_VG_r^;>X;%(f?i9Dg<^OurZ)Y6-^}$1fqZ& z9vQpYoy5H-i^^HJIju#xse#5RP!Z5vR0I9J9UO=ujorTi30Dr9(ox8G%#Cy7C>qhJA-{2)aI!6>4T$MFn?;D!qH zyx|5H`%2r}veHyiweMnnK75Gu`}IZsdjSpy>!?`$fjZknmU|b2&xf}(y+=yX^7KJ? z>$MfJc^dGUKI}~bpD8v*1B`J2)%N9PxiwH}@lNVFtkgQs9dE0vMo5K&^~r|VqiIEw ztyeOoyw-HQOks5O8DNLP{Mg-bCHjtIxd=^^uW}< zTDvgO8$F0VKF;vS%vmLERy>qD2hz(-YsSSv#;2B-=R5H(7SzD?1*%}(sx@jnN9D_2 ztmnM&RKPJg92<6sXMA#t)(}6yrdLs1+f-h`Q+ijw_>>RL(5yQlmp}~yFJYq5Qtd@F zACxr3s*0gcD(gZ7x;JA%Iqct(`yp!tG%vSQeIUUqJ=1Mh?rXrNAy)uzAdw?HDf+!+5dsT-TPeK4P<;@kzIg z?zUrW0kZr$sfR4A56vrPXFOx0XdEaQdSwcAxY2t-kcgF@_W}hn+OMDC`lXrHD#sN$ zKTuRlR3J6}uoq)&pLp<;A^RKtvWqA=H+5gI;n?2{&ywc!gf>+;$#mWPp4ZQv#UJv@ zT7N)YyUyit&b#dkkDA*+b{506(v<1B#h^=^T#w61>&u&JyS+)`R&Q8#jl|JZWbTFF zE~uxF5S2TIgNk@b!L9KeYCwd`B`qE_YG2 zgEz0^<)Etc7aTU}KYS+~X6HZR%lFi@3Z#|k+P1`FK)oKgRem9dyFDbYr}I`1N~g_?nMBAx?&c1q;s`2d>k>t?JEYq~p7H*dz#LgM%p+{9A;1RjHzWE?E-5AYbE{z&M znxa0O)b%dnvO%Aoib7dgbiT8kz$YX?b_tuk2`<_4``2v7;_2TyknV*`mHhwKf#m1Y zPVC7xg;Li>6-HMLe8YdEB%%)5&qPI9gzg;p)Kx3N z99(p#jDb=`<~P+;+27CA^bTyYk+5W;xzLdZ2Orc5Tay_tAFn*&cn~}m(z$V({?kJ` z7mbYApn;9TeB{CvZ-P+;FYt3q2>(Z)-H0+s?;>tOvYsln3|@_L93O9AQA#X_Pl12p z*QJG!gLvo_+p83ML~x_U}4jhQ4rtx)^tZ-Hg}A@)R#nnFZSlrW8YJZ~7%C1JsqDI)SnQ*q<21^K+sqk6 z*`%Ek;1q8j6C;v7cN%imB-t$AtB~f#=RdHKd7q{|ka)X;#dFIwIp>)R+@3f>1 zYeUYqYg$}3$=$d($BP@QfR`L+Gf#<<%-TgV1um>_C)5;c7W-GEsOHv8sd&CEx$%uC zN#;y8>S(j|_}y0cpm!>s#^U}6Oi7IDuD#)V=G5mPNrK38rAN(%k@I{bmp&rNTlzI` z>N52*{9Dc}QE${EE^=gy_Hpu)F%jQSgR_<$1>shKp1JpAd#?kQwO1`y}p> zk8I;%gx#qroO8S{_;G|xvgUlQi=uwSQIst4Hh2x*X(WZR;&(kvNtT2-ad^keE}YJT zGAj;X=-u6W23f{O-r>9uYom8VHs-W=iTp?oIi}e&sq^_T)L)u=T^V18*?2$Ms_}@8 zDh48DXmX3 zkv5+Z*1lHo*Oix(-z2jR4)mG&ipA%15?fTInwF{?KakispqWUN_Zqik$xGFCac8Ws zzgXo){!$rqwWjeRgsXkxAR7Xcvbt(+-NNV=@S2(=o-!=*HJ2Q^~L@cc~eq$C+x>BpQn zM6XRv-Na3RVF$fM>3Q$_>Qsskc`r~-YU1KzVk0g31gr62#ug-f{VdCR-O4*J7rRd@ zoM#Cf^buibh{z60ZY#DJnfj+?G5Tae&vbhIFs7Z%K^C<7<3bH~$+cD@p~3zC#N3gf z_bX+;i5bLLq7D}B>QCHyiS^&>INbCN`h%Ig2|T{sITaQ3rDb_PF20X`6sM;4HF7|y zcoAp-v+o+Noovja+G#O+6E(ca!9LFKy-yL<3)2@lyE-9WJpVICyd~&!Ep4U(jq}}; zp00FG>sa9k=Bd!tRjWUAhg`{}u04bNt=&id=3NHdhs_cM^+ga&kP}Y=&b;?&ZRzZ8 z=Z`U=#dwd~!w8A}9~s#tM4l^byDQ*xD(4HWR{=k zDU=&!?Fv#Rxoss4r`0Q=yttmt^=$18*_vW|((_GZ*U7aXsAwOiKA{Zl)&7JD>K&w} zjmoF7C0#h2Y?VbKT{C+sL4?T#y4(NRLOFGVwZi5>c$Q^w>%vJwdY`;Gs;kqT{+zK>3=r?S{Lg{=(1)|BADINxzVVh}KNYQ+X zB|b2i;9NozgPy_PEP*_zG_f)*1PeVlh_Ymf+I+0DJT9gl^?$zVFlc3g1lQeX_Il7w zHeKg=8ia{HWn)qiPg2AvhGj+g+C^QAeQUbQ0seu?fYFN5naKUI4Fw>iv{#ahp|yiQ6TtuAM&Z};Dqo4e{6L`IfOw#qX+ zJgZz+G%25E#NRO@d*?LkFQ!dUG{a|^ps4AVot-c8eJQ78&%(y*W*Z2qGCkpQPRqb$ z$$#%YjMJ;@du#4@59@^tFwx>>kAYx$lI8e?u+>X0`p;?lItsi&ccwFL-iuzPfo|cY zAwVJ0swBAUeO|T9A7gD_mW7G~WX_R``3;8fGFaRto z5ixNiXr2ZfkR^u+(4HJh!av#5^AT{xo%pWfw7tO;=zssGIP9|8JFfCQqlU&5Ag}`SD`~Pzwyp z0SGG)6TEWy?DG-t-8&X@fFuG?NuZe-uwHwFH?_lwIOzem;O6QA$t}o{Z#VtVa~n}H zFp@#1c3j*Ppi19V!G&D+b)H?A4#c;9cn$D1zM;rnK&J4{0MrwZ3%&ygWvO=UJ{B}2 z)N>t>-lKXpS5|(crytDe*F8plzrQ>637`Xo0io=f1L&ouVY~|1C+#IT15*S5%%!sO z2%td9z!Lm(!-D_>GJtwxVq{cE<{_t`K+webdU`28aCCH3jsW0oqdD-(zbQ@s?5wQm znHkWmp2qL0pri8wB@)nOvH@cO&~X5{2ao~&$vv~sv9JsSq(%D*VDk0%_h-Ho06gZb zmsyNds8P>;yaX>pMqw@SfYuHA=#l*Aw{Pv^r2T& zusQWT0*i_+;=3}GqzQQ;zuM=t7f3XKPXvIqV3G>d0c0&8R)etwq9Qj8%2nVSK<)v0?P9YR zF$$2Fzq>^z;Bx~75Ldvl0(7=4WqTJfoXAlUUWY7zGs=o*(S!carzq>_cne@#Oiaaq z!U*UA887uk0VXF}NleTyIvN-MzYjI2sH_Bpq%EgEfF}TWWA7qZXc!oX@$n@xN2Fl= zy}f|G@b5SK41qv|y#C%`gT@VMP)*L!9)Mn4A59{d31co20$vnWB}ACQITd85TODX zh<>AsH5h-8wTzU)pNjq!PFu(E5`h=C8-4PJpFdiBKBHVuu#1z4c7XpBf33!5xdeG++=c&-9 zrpk&6sRI>NRVNo03FNAI^UMR{ls5x_Y7p}|{Z1G013Vsk@)=hNv}Q210&uD;&?qP= z0Zj0p4_o?*k8ifOHy;4602(ao9W8ConPea7)2F|{rw4qJs0qN;`*+eErWSy?O-h^`^@V08ob?K&|TQdC?G+WKU`+r${w_2v0Z39q1D~coKplYUtG}}2DkhG4XIY~P(3Ai( z6Cf#Ez~qg*u3_8b-y>kg0$^!rC@UxOIn)0~fZw$M6AajzMu0Ga1dwog;{hWCh$BF? z^ZB*@B-aFQkMx|~b)cU{+S}Iv02b&HLFR{-{t+>NL>-lqA_&Gc0J@8g1F*9PB+EC+ z;G4M}EPtu2WDi6GAVM7cF4A3%OBTuZ)5F81uJA=;YKR(Omi)87pi%ozHDC+X*IxkW zjQHEP?;`ZEHSNKaiNXc`}R!&9D6|g*Q__j%X|qwC$fU6JHMm^aQp3?oQ{DWmzR@!7qNt@ z35ah$0O-`k(UFn?ObGa^zdj2;4rnI?$nC$1+zxO+!AljvLim9RZ*6UWxU8tojog3( zXQh9*D?f+L!KfM_%28$~1hG1d}V0!{o&F^S%8@9Y7iqzy$U@U_s0IC3s z4v_6ip-XdsVGJ}IAbtW>4p2aUWen-Iz;~Bh{lK1HT*6xbg8GZa6{>)sAb=tP;?dxT z*GMqYzsK=h5Wt!MSJ-_Zo)xHYQO=te0Q54{*GEyP2LOdY4F3vOT>G`wo#jo3%TsIM zvH;@;0Qf3WQjbwC93v*0z)=RG3Bmkq_3%Hs<4PSkH6q^o0K#?(xJ9b;3UAKWB4S9N zKcCK#C$1oj2)+BCC0lxHXqb_bk^qhfxt7)*xXr=TzdhUwW=gYynj&jYbKcd(wXQ!+%ZphP&SJm_JPIj z$?l8_5DIW!!MQ#l=g~+1tY{6;KVTe?zTse5;kC=0Pna8VEG!Jf;R^~ z^m4Ex!0H2ep3GM<0~4eG{~e3~P~aN?voe5CG3f$0nfwQp+_^e<8m9Vfd0Ggut4ya{GVM}`LWWJKeJ z^)q*EWd-oMoXE(?z>tiBFX2A`avOLvF0QVM($eMt`vxBTCWept&Ozh=pveJD9@u_B zHASEJ*-c5p2)6V5UD)DdDHyJdj4&VMLW1AwId0RgvHN5en~ zAx8uO6^MK#Bak7$qZ9+03|Ig}V9@-S`th|zKq_%0j((hkHMNNd(V&o-_A3I_})NK8rs%2*G$ZobPZ z5a!LzP2gGbg24$u5dK|Vwn1N2griR!IpIQ9AJbyiGqPp0G|z}5g<(_ zTPvXE0cv3s1OjGU0U8t-+CZ@7J&KymprxrPU5k8g2vG&$cRkz=_DE4b0uP7>_pa_zJbV#Tegmkx((o)i4A}A;=EiK(8X@G=?fJld= zNO!}XTRp#Vzvuk!Id|M~`Qsh03Y-1e&-1J`*Ie^iGeU+s%0_fFsEH5jPpI_B12AM0 zyA&vM=gyr0gqfp#5;6%lLvU~<3Ie`_ym}>yBZ8f>+$tw0hvA@yjvUFwXGw7K`PZ4x z_}iNwBO`PX@^9bRC?J?EA53y^bd=jgL=IOcZiH{_lY%>q4~+XHbd8Nsv{_=DFvc^o z0LCvLBv^lt^I)tpCIN1(j%EBFJh{v+HuC)G)8m|XUSgD27o0i>kGUJVW|7-EMJaT-SGgn+OkciUTbi{WXOy4DZUq$bu$B!|)k&H#d9v~E>#S%|1zZFdkOhiwOngs}IkT_yTh71V<$;WG@nSJX7J58- zbc9~U{XyTDV&<*Oqg5Dkm|aj1>?8SSZF=+I$bvDpnnhN$0G;2y1w808q3g!9+i4V4 z7;YRe`9Hoh>2F*H^7|igd6^p?3ZlV1Ifl}xed7JG(JFYv>YJPW8HwzpFrW}~-dK?H z5cM$Y4vrR>Fnt&q7m+zpItrW4((({dMS+KP(hkvvM|%$&)Q57}O?F}8t{kzm69!*n zHa*NIjPKmx1*ZD*NiAz(az1>uF#I$J*hyhWFXLzrMxJ8M`q$RhsqblovWaj!*VZ>S z5X?rgc$1S-T+?PK)}B6n`tl%3!d5u@5cZtG-Lj)ZMs08pfg3?YcsSlb<%`hidVi@+ z41dqN)A+u<-2wFm!YvB1>3V*YhIsg~Z%H{imHS{#u-1S@asTELsSc5)rOl; z_8B-x4I!vy8&&Tn)$w zCn}0Dv+x8tIl=D?9{|kK{w_H`Qgb>AWtf(n+gp& zdT+7|9wbeGUKmV2`+?^4sqFhV!?@35&@Oif<}h;^H9ZQ&J%gj+QHPf)BLp0>ae`;_ zY%#A_HHZBm(boL!5UvzcW)KYb5UlGlbNTnDDnpo$n3V;i6TFYoCr>a1Qs@x|&SUI5 zcqY`*`e$Q)hY@$yFBtlVVUd`%_df!%I|*IbXJo*I`FXvwev$;NPgtqb(vbonw*bpv zaP_^V1+!VpX(@b6g|ZL95J%W$6~1o2zww{{B_eNQzs^nN>5S6KpZFId<=+h&0$Z$n zxT^st0zSdj00Ck18M}V1DQtaU<&~{kQ-ukdfATkeFMb{%9EKe-zlQ>^+hHj1{M_9B z0|&+%V?9iD@UqkTa&zM`sd13NLN-l8#PR|^sQGZ00Xbz5BQ1On;U&<-N! z5DaLa_6`GA0Bb?FjfGY`v^?=?>!QNKtJkj|Ji%H0_3K?A%fD}TG!=LOVHj3DAZ%Wr zsQ7f6jTIFNbrh2DN8!J#e*_1EA7LS0;+TbnMe;Uhfy3u+K7IZ?pk5LXtEviaX+&iw zG2(fdn?Q-6)oO2Uk4pe^yiZJYX}- zu`pp#t@vIVPVcU5WjjIJV1P6RLSvLE9=bo99%Ee}9M0RJUFvz54vTM%UxD`%ccLOV z7NhV{asxWCadO&NTgU#{{%#oPYzSTlU=F|}0pD2F(!%uzX(8RB1cyTr0lSjqVQeSf zZS65}c<5nSLr{Xj71U||XEY*oswxK|LI(gkPv>=%yOrnUV9;|jCd@Az{X1RhS5H96 zK+Z3TmAK)=_8W`uK^C&Ud-sie;uq8azr7KrY5l!zUP_yMde~ z0_cBCO=ZN#U%Twi8fBWC{q88MR#$E9FU;ouyIN1Cr|$wt;o*T4fBpO^^KYMtFW3Zk zccONC{lh*_pZ<;I<(@u1@Tqf{>Blg^-`IIu84Gxt?3t>MAFH1*hy6|BC1l5rAp^}} z40B&!pH8KhEMAd@BE$4OENzeip1*hjivYrBLatY}>K#z%dxtK1Lfx*op8r zqoK$%?I0Y{nK!?o6Xr4gfzHM)jDMl?cIOGNBMds`<}6h25HFF1H2|@YpUSkeBc!5) zy0KdA?IFfQy}OZ@;SGVMDC&KEc?aRMKmLtj+w|iw7?Oby!Nk$8IDuFv2||?qO=15d zBJu&m*&lqlTt{&inlOPB%2S0-Lrn#ZI)KufL;onHgLpD7Z~uO7>J$4X-YY{ry%|f{kfz z?l%}(04gI2T&Z;|?k&?m`R(@dn-|xHpe-F|@7OptduGQyQDO^#Y=jAPcuKcs1 zoaMF3oZDef1;9-JT`U@}Ffkva#C3m%X>7}v+XxkQwNnKTH5*$N&LuDqXkI4_RA%^R z+JzAYC9t+c={qz&&iny`p#fvuGqez<0oqWgZLF^YG~-xLsUl|an6~{3eh|=${3Jra z=?{PE;pui_Dj{bajsFVMw+IGeI{lNAlvGr`abkzD2-U|iiQm~3?>!1uKcKKW2tI4u zF1@R)q-AHfLRi2~$1?t@2&NZQF|-`y3F!IV2aaFjB6{QZ>KLj?UukV^?S87iZ&VES zbiq6zLz8y9+eyBN{}HDwT@Nf$wE0Yl9V)?jeA^HZF}-Menj2EPOCV=vkG1%!{`;Op<3u$1&J$^1WCI-Ple2a^c>jTt1mR+i3rTx@A#zs2oM_P2e4^21d4LpN(l#zgMvUR*)tXJkwUV}&q;`R#vV^t1!P8wr&!0{!n8jZ~hJVge8s78X`k z<{HeR`6sD38>5`Xs9z5n!5Sxp9hZh@=jTyi{lv)Q$Ve?b0=E8XvM;UMov&io+ugfo z-WXG9QNB?{VoIdPPp$%Ajq?wIzRX~Fdg*sY>pRTnw&{$Y#EO=}-iiRBxA*D3{Bdn} z2=G21FK=}w76kyMFSgirEC>_^kQoX+n7{zII18{>!zi`RT^A!eAHoQca713vQ&Ych zYGOyth_VmkiedcoDd=~Ac8C9Nb>CSL0<}W;PHNEXRaMAxaCH1wQQ`i8Xqgi(CHif? z?`}LfP5$)HW9wzZ7ZSFsVLTSQ_v|^wr1Tu$7l0-e%%M@KpV{Gi;BO}1^vB{3ZNT5; z*sMuy-;B#b6~2jvet5 zCO;_NfhSlhw@nuj{Kj_2z`tr9-p^0Yg;0M80Dd-J-+>1pT7L-sq6=29h?J8~4i3Qi z7TA;;v&Sn8kuh_S-eA&g2i|fv6E2|OVF;W8Zj6`8CholSWY_N9!}VdXnN6OJ7oY7x z#YGqru8L{sAheDGcE*O8h<0XX=4`zh)P}*R zrJtX=s5B{mlt}w2488s1?sorvFOCo12_J3>c(mZTJ{Org#WBQ=**D&j6<5|KqaWbEgo$T~* zt_5fT3PCPRo38@V^Zfa9Oho_v0&vpR#ydmv4LB9d%yQqm9ptHc)qeLS`l%MSxlir+ zWWAl76FdaA-ssPt8s)AoICF4Qh=iRGHf;jD6bbJHG&2Bv#veOG)N@1JnCgw5iabxh%PKX$T|jIBWiB{4P*}d9m6hmWgrCn%J;1Y`!;klR87Yv#P5Hmbjr~# zn%$$z3MA13mr%dV0-QK87lj=m*Zd;!p66N0tcj+moU~U9mlze}{%yHrP~IC2U^2z z!1pmD)o_i!NBMU5DQ}DFXmj1+jlr+CbjlZb-c!D9nA;dwEUhm;=%l^IP{;jZq5VR2 zWtpYooV?p3AI+b3!m~9NAKsRoa?+-4TZ&p{K6lT`?bt?15zSHlgOS;`Rhj&On{TD$ zvL5Ufnk)?@u^t=j%RsTqTh>X|{>c z=CdrGO+{`=@6QxY{x|AXI}1Zs#(D0iX$`USS?i7Q4==quJHl+DB&s{^vgkaUT_17s zg#DuFd6F?DmWY?HXnZrIO-yohGBU~vojc3wqTMFLVXzWDI!3O&Kt*;)8Dd-mttgTWiPn7t$^gPSAHrL?6m#$UHC_hLGik2Hrd#;O#YEdL^$i`(*6!4<` z?@aPWvv~2N=V2zrL@t(=yo!y0OCuJV5iYCM$p+{uVQ^E(j5xz2~1nj?} zO9?uYv;tfZy)CLJ`OjBny-|1|^ud%>u_v2)R=>9QC)6`?;jr>yO3X!qKvN7pXGX)N zuV0_u`zBkcmcdH<`#mIXuM#>|X2s+H>haPZzm^uw-=?LO*zZ>!7t(M}i&gc|HR>Ks z?X?^)>1u5Jq7`#@(^pfCGgVEB?R&jSsmqV5h(ppb^Gc*u5`g?PEU+VRlEKsB(uXPt7@j>z}n;*89Di&Rs7a zar*gf^lR)jfA(|Nty?|1-X0UuzvPi#PeCPQ*Wxr&B_Ax}@8@4H>FqY!_W7;SwaS}E zTG}{W-ayWE-=jgmaaF*oHO6%79CgCLay$hIm0-lQ^~IqhpRTv8N~>nuZq;yNW}of| z?d!K~-{qx7Z>dXf)~b_)%MA)TL?>BpyVmB!v6!5fl|01dwy{zDY1hJBmMqHMAF&9M zAFyDw7sZ<3nUU1x20NdAh72Ag^$r|k*tXuA>e00F8GJ+%p7W7L>LPGmwzGgX z9Yxa!T3pHH)FzEFkFhPTCZU5?vbj9fF8@Ft9aS0?A=h<#Knax2pkKnFk#bX|@(h3( zgx}}01sPhUeqUAKcIs*7HGNi32U|mb6!jhmAumrqA0R&X>qH8>xdKptrrTH^c!BVu zoqNYODCj%V>Zy|_(PPI?Q4Bo*=T5!%E_z+F_Y`^){H%tJAo!A)E04z;qA$q4Gjt@R z2p~vjb*%$YmMIa8_9egk?9wjZeQ(OHvdw|aVVH|tM~108cIuQSnnf!VVxyZalu|^a zV{G?&+D!^*JwuLu+2TC6*p=7$B3Ac^w4};7t8Z$o%f>Kq@&@_L&ykvEG$XH$vP|E% zF0*BgQEMj^Zf|V}!pE|DVSW2b&u=IeqqxA0VC`+GHK$&|eA4+P|S;I(Bd)sXgV<#}Jcz^#$?* zyZgb^>m`&iu$Xp zyWScZCrhxH37W2wN-L|n4L#7HW6n)hwfyl$E6Z{w*+O1_TvFU_ygqce&53qix+w74 z7T02ON-(or-)x$2b9loL&qUo(9yzI+jNltQFMM=_GAO!MbCg!fT?`luT!+33>i75y zM`cN7{A>%Zdg3@s>2c3ENYKBZ3F*E}9#$`YqUYMhW-Eb z`Pg+-kxMj{43p^hiJF>xeSM$CqoU%Hm{Kjb@W#CVRo+TM(tsA|Zbz=s!`;MkH+^qX zGblWWNfmq2dc!Z;!{Y{8q=xmO@vo?}2x^_6v9Ym~SAI~Y6-n88yn5>C>1z|pW1&?k zQj>1whM41(6Nj=$IaS3H#_mASO0KeZx(a7dSvISNaEiQcLMj8)oS(G0wmo=0o?n(y z+)K(@s7Z@7DL?;S@?tFwt6fh-nAPPgeno>Sp70?o3lMGxcS!pWgBt z+PiEXa2qVWqbr?wPJXwI!c8NEJdMhH5gL9Lisq$>wy;;6ss6fqiXD?#ooCoLe`fD> zur59I?!>};ZEWnR>CS&DRpm^L6_Z=gfZ{Vz<4jIJ=`^Mu5W$rz!O!Gha5>Q?a>M1S zT}yB2^(oze?8^YjfMu5(v9lJDcf?cUs&9Jdg{yoRFe6SX@TiHCmD*a5dDrC-?KOR z`}={(gLFv2+{q=Z(FM_;5alA1Rw( zz2)9k_mW!ML%D1F$}G+$jnB=9kEjm$W`$f>+-&~Hshu4Dvu7YfS3k{IDS%%hyZc_B zP4lW^n;s7C%gaC!vqL@LWg&YaH5lB#fgMhJhvD8r^{JMsB+3Ml?UC?irV$KDD=I32 z0Q6>(Y-|+>B*ic?`svoKe?2@r6650N4|XfWFK=k!tQs&CD5fNAa=%{fjR&DqjRsiq z?&Pt>!J5OWJS_|{x86MvelvbpV!@A7F;#^v!jM)ZflsrkQ0H=TrNjENWwMJ+@&qkK zBLB?u++cwW)7Ni1ybRs!4Ufh6J-S=t1o;;2)V2`)B;{VfUe?Zhi`0fE;q5tm-*S$R z{W5(Mb|Z^b)bez^T(ZaLi_-etQbBP%sq%B#=N?<@wfZr5J33ZYmdlx)+b`Gi!k+Z} zK$xdUuR;!^()7aA5_^e|?~AA!vkh~~spq9`w2>#(FuUr@MT#ORp>9WJXD>b9oR>d2wBF|b>&0D6XU2xPwM*^(PHW!fJ(* zr1|Jp=7a}N`O`37%YJZYQ0s3@=4=%TP3h|E$ET;eLJ{L8(8hiWdI7%(f^V$tFNI1Y z2|s^-lodwsa05p{5+z;bGZJv^7+}o%oLS6L(bm<`0VU^a-~@}Zq`+L|VZkC+H(!u7 zOq3|Qz@b72eY5dWQ*6nxqKr1(m2`Bu7&dpBp1YL56t10-*!;ptT8rQDN2ox+o70|O zcm^|Pk6#O+T)ZG2lJR`5TxfZ^$ve}p%7TRcA6|R@g|?KL);;t6^~KHF+s4!a6EeCM zPtS@yt7_?WS)^(maXF#PqpU2yzx3GVi#_TIJc|YmO7S;m&aX-POm#|Gc94=g!QPg9 zkmG##)`t=QtO351AO>G;o`z)i9ktdUOgo$ehV?a?SB=VJ&vDgCq$%y9lo>7!+_q`=CK8eZ; zGCdIy5!!!hoY9$ru#sg>Ig)W$1O~=GaCic&YK-p~8{=h`@Ow~kttcOJOqQcP`)Tk^ zQj%n(KoOzjg=PTVR|x!ppBS0WT8vC6hq$br;4vTHtRk^ESa*`k_#29^A)kK7F*&BB zFsr3os4c;foYfC-H@kJ~^wbcDICNnY1f0-2g(_6y948wa%69Z=HK6JMB0qWZWSgG* zXL2W9orzV40%N%xJ>LiXeAy9iN#D-3IaIPaIanJlnV4L3Xdf0j>~fMqX^o?Q=20aD zvEo6?TzWGdV~tyb;ar|#H4Zkp1(U)KgX>&FIkeA?Twu`aW3$i{uN_m}MaiGD_OWta zIl*AXFCvV4T=4e0(Uj;srdLLWt&YbR6oysv3uSpeox^b$ee}k+TkW}OpWT|Pp8v05 z&@yK!Z$ys{?-0=v_dRj*lEeaBqcg}GRJac=&NwB{oBoytb*(iu_skM zsk)jG#V;aSEoOCAbi0@5qSw0eypx00vZ^|BXsHCOD_twD7D&~1^Op;K7euZWaWm%r zZYZJ^5$>H5=r26>h;|bYUU`yo{FbuYyQ&Dlmc?H!YQh%jk2j0cJp{Y>2PQCiC!(0& zw%x$PQPJyY(~D=)ZI<)verZm>)C028G(9DEgW4h|pj#|KhDugHzzgiBVcCt%>CYT( zucYJmha6&{Qs<#6m=cco~!-EH#z1UPxgdMNagVmtQ>sA3lI2 z(eRfmiRD6IY%^qIpLEq;L01Guru1hrL4;Ff3ymHZaxT0Y0pdtp;2CJ70Q%dC4y#{D z6i}N%gX3gxZ}aP$*!MILEASxCDk#|EbYp9Y$Y^`g3CF?%9 z1#{9HY22!M`6cK3&Nok9+WPM%Ua?(qPmjTO^0hY z<&UPMByqiwyEk^Aph;>+lXjGu@}2IK2tOwm zliJUvg?FwOUwovaIWb(P*`E4pc0QWwjZ}P7r@_G`t&*(ZrR}N(R*M8 zPtI5Sp4zNzu1RKpDaHZ_EICoZS7yWDr=+aZ%21*K2qu3S9uqV7lHSV`6K*S`8S()} zM#j}ne zl0CW-Bt}+t6dktw%uGTOKo6Qj;Be*RZ)9|zce1BwZ|hy>wz}2W<`wT{V1JI=MSE+D z5CGhHofhtOr^k{zZF4qV_c%_MRNc`O)@xj6pa~ft!Q8yHvk^mR6A>ywuTYzAKN8rB_B-K1I3c z^RkfHGcxu*>Aigy-)#z>ZU(od_CNz-1l$y({P$l1-sc?ni55NjGnb2q`pPfb(tdk8 zwH!Q?arF6Q(Jh6HLgl>&cbuavw%2U$`xUX4FZ{wS@KvGd&0f9_#odK#70C^S)pU&k z2XWpj%I~7Kg#LSeyxkhO9AZfHW5&Oyg+c0)Yyivvd{B5*h;cX3R(IiJ*COlT>8QnL zBBhLyW6JI8V_)$ZdWYv+Z@*R2uv=2nd%=H?dP{0ss;go-gGfx|^#--Wmqv-4>9DF> zQhIvOU!8^A=`1xhT;&zB^~6|NGY}uD<&mpiA$vf`1Y2XYI*>91K*^vJP`RJXLp$=K zojDY(=ue{S0O!q6$N|w1LMP7c=hriu&}u2S!sC~*11U|Jx*3WHH2g~)7k;6zMdCC= zI|7|3$KJOqtE=J<5r?p~;!(t-#iYP}keK)sE~(+}3ApV5bdm7h(6Ua0S|LP*934rJ zMF%LjnKuml_PVXlz~uABDyh30+oF&sWzMY)AKj55AD?@Rq>txbj5o#HZn2vEHhK8i zutl50;;%HEmwlrnX%@2IOK&ih3RpClrt+@ORyWP~2bp)c^vB?oPMD7Qj7^+$6xL~b zPIiM;qapaBAbe)9eKO63{*Isern1$xzan3UXZ zZR8t!z}kJlKda!0gII=ETA;T@_p@oW%*n6qDWHF70t4CDW+yw-ON@MPramv(m7+#w zrPnMc@U6zT^xk7R^~DJ1;|rYST9F?=#=ZVv*s0c96Th)&6I-^{c@PW7*`Pq_IpPE`GIjI$y_z#v$Icoln9{D<$si3T(BPcd}#5salXat_^~$Kx>7EM-6=kkIT7bgY>mE)QujV@>7?B? z!RL@vtUKUpX4X2v+rL?y;puxjXH_w9qI5VTLngU;{I+JS_D3m|af`K_rFWGBP3!fY z0YmClEc4b`X&2`c4Khec4b$7rTMWB;c4-+@?yJd>D!(ZyB^9KnulHu{XZxJ)v2sU`$)WF)km^ifFf!Lz!>N@;3-^-#=^;!Xy7k>zFC^FP_({9Duvr}LLD zU!rqw0lj}#jzotA8dNRGipdU8LBIoBSR#noO1mjGDQOga)uWJq7^lG-c7x&tde>9)ZU76tNHf}Q73=dnRm#{d@W0VJevesn(0R3 ziJ_ZgO6*L{R=27f=kD1uGIdt(ce|JGdyzOL$o~z8+Xo-Tfi<2q?Q03&(iHfAPKVf@ z@lc$L)S`^w>e+EbSGj&Ro{^sjt`PRuu{z?h$wQ3!r`T_M zZe_E%(DrGPI9*7JdX}R&Q9wn`_)Jt^vG0CQ&;I75inTBQ>MG@a1$>A;_@C#(S;d zXR|_AW-49r?%lhP-QniokP;g$5EB5oGUpfM4+snrZ-)2<1bjo6YabaSec92tns@Im z$EfXQJZr(n!Xm{U3EG*u3}N=*@e8+rn!E-yX-Vp00%ggGgu<_p`zvnSGdon<{#v|9 z+~AtxQuj3>2ktM1y3@WnBr%aRbmbc)Nht+WDZ_$eYHp{>w30>N?dN&VY!a}w)s|wQ zqi4VL<7`W1-fC8Y)i~Fe3}v*d?l&8qe3d!3{P<&BT>f`k8vW8!PF!5S6gWHGR%^$y zc$B65uk7Y%HI){ZN>?t*b=W&#Q>7Kw5xBTwum74|Fv4}5qtS4BeyDu?n?g_7)%wh7 z`jAL2lcV|+Lr$`R-#G~lgyNC0v5P2C5zQfd8TlO2+}LRO=U#4buC9?0gP3#z9vmfU zUBC%0V~7yt7KTVm1D0qH4psY#JP7#}@bhPR1c&5s_^;@zAMIKhq1`l3QIgyc{^T`v zbXJTt+64WB>}2%0f^6^fmTjO9Wou*86A>stP?a4}xXwO}Wk^d+-CSMO(LL)hg-)s8 z60T;06gfyKusq(*q5lv-8Ua+nIDTg7p)b+tz<4c}MCQ&C)6TLiAqp#lhGCfooz#?^ zXmd((qcGxdW-$wu#9@8OeIwQBwDRCay`H(nug;bfSuswT+<7xposi^6ADi%Yb?%rO zMGCR4b)uvF%=NZn6S9@%1$U+Luum6tEsj>U726I^drGVuruGQwEE=nNa0hX9JLNXj z_zHUCh7ebl2)`77bS5?8^%Vs00qH)uibqQ(tQm zB6hz?=$~{IAxT59f%{LiCP?^G-9h9+kvY(vfH!j~h^Mv|cY)BJmMDc=W%)^Yxf?hM z1idB-kSaHSO;K-63O(P)Yg45gX))-3XKPf1)nn7)$Mv=nU%`&fZ;H7kD~8K%+8WET zhDnsebrEyj25&8zzSUZ8>>Fv7v=%}N96spgBJ*J(bI)e+3kTL2x4@U2bHSWdZ3n0t z7{Bq~Hbg?rcu78gFr?$32 zq)CVcz}O-?@7?qx8NL|4y$u_j)~V1(t$3;Z43pTW0jf5}=!4 zCS{+=oqapVzGSpEkA5npV?9-RcOoN8c_2f2t}@JSYbkztLSQu~$6IIkHc70HW=YTY zw_l3u|BE5%Nxj@MZ+Hjw^PR-uu%!qAyNP?D#O%%ji4TGju9N$>(&_sOlvplhNgX84 zF88#?bq4m4^J`K*wzf*+$^pCA8Z<_mJ3`BL5@H{8dmLg65XeA`iNoltfh*T>yi1-p z8MI0u&QgaK5Z8+G(Y6I2zE$?|>C=CpQ-WTnE=Ev506jl$aAtO4Xh_@O-~p0D+=NRA zUmz2*x5wf8l$V!RT2k^QN|?1V7x@JOcBmuKC=6oo(rz!6Sn@uQnhYvf@0u!c<^5E^ zzJP1ERgI7BM%EMR770Yh0LGo$FP+e}xS6UcJf$RQ9K`uP(!b9cCG zLYes|72hvkqtLtTmD5TPtt?Y`sv{3;L*Iys9b)R|-rgR>6bXeokr2%35jMyYP@1M@ zDZ2iMSOL4YEIn~4$d3_!z-0getkv>f{FohAwmm7Eibu0Algb> zi*Tz2pRz%XU**S-dgy)$Z>?J=w0;5*VDCZme=r}6IRuvh&&3P2O>2MBlJsWO_sSp^ zIe1u`xOn-TWWYa+}?^3a`G1Oq0^y zJ26q(=U^Is&B&iN(gkag&~7E_kzjCb|3;Zmo5cti+N&R&i^V z!>;?8eZY_h^R@lIoR-X5>uT7opPeOZvs;~=a=oZk@|?-^O=q5J>}8fkw1`&q?USf? z?Qo^|u~}?^*->#<(YGKMj!tv!(Euv$^<m$BAR zB>Qjj34nBkRtFl%w@~neg@mB_!FTau3O6s{IlYPyE&^_mnm%j0#0%0uGE(Ype8XtxV1eeR|>m*~s0<;?q~rO55##mbKy zZe40wF1^v#${#4N>Ng~)evg}e>2q-5d~K5;p_HF`nvybx;;zc)lsa1V5O!eK3PWWH z5&o1(FWw>wI*c>Of+Q6^v7m}`HEH0yy$rXO2S_{%aaT6r((z-*MkXhTD1av-_&kxZe=BI zQm1Cb?c)}BtJkeR=T%$HhUWa-uv(^N;y@pRy5WHoc?R33fd|Mbjzt;wuSVRE(%d_7 zOSz%s(af{pnP=QnK}Gdc?Ku&Wr|>%f(d~X9AL4$(31QcDD3NAAglUrqInJZOYl$kh zHkh@ycw)!)?f1spqMthaRw&_=`L^Qz%XO%56GSVTo0=ddR8QB)$e7i;efzetF^aHn zILS31P%1C4t}>2%2du|^GH4M!o;+b(+P1x-fN{CH9g-84#k*z;17j|Z*x5yE7mUAk z_~cd&R2=N_L@4L5sS90>QXz8 z#_}X7sqNDEat*`O2Nah|Qod_w`(Uhs++?==(9~2Eu5F^$Ny-lnLOM-BDuA4w zrWAct#`lpgABdg{P-d9zDLyhKs~I6lTG4CT?UvpBG(_F7Fp0A4=Rmo2U#|X*ARkuc z_sjEC(ct;Q3vECsb3Ak|N(nswqovr}(zTRx#Gu)(q-*yV%B1in>-F`AhMR?hOJkjv zdCyo@C7YRu9PD-YHz_uv`>j%CR%rys#;-y3rKs8v!LZm`+D#}XY-d89`e(gQ4AV9< zKlm$!QTR_O3`1*|?fdtW=R+0PnSvbM>%-I+qOaD1R7>l$eATn7WXZJLC}lKl8_ zX4UMgw*A;skOni~mY$SQfRyUnb8-&chNb;1U_bpD9R%pZ$yJoBtgLbj>Sv8oXN`-`WEmAd|w?fX1pg#gW214F4bfmJ_e{{-38#m5d>=QaR(X`3_;>D0m z3@YjnWWmN8v9YnVic%m?Fuw)Nu?-)Qo5YSv$)#uB)U0= zW$WDdqJ3U7_21I{6-(|BdzTYgV$vu3`)4sALD*@L*>19R>zX5YO9&jd7BO2zU#%>< z5Z5|sR&aCWE|>?X7}pBw&;yI0i2_5Gd#CXVTRiw^KT2Ay#mVlq?nT^XmG3?qJZ$Gn zqA^d9_Ma+9!mS%zWNPkh6>7O3>=n$^!DKF9FGE?oibEN9>Hc;v2K1}FK3sOQ&vCj7 z5$!w=(bR$W#%9bWtR1;ysy9t1!};`TsS2hdN=W%_Z{4`|aF{rS3-oDrT%6vR8rd_R ziDK7JKYG$qHz%^WCx!9{+ExMw*0@r%71=6F9$BLEo3ee;&f0X=e2pO8abmq`_++X$ z_X89VmHRd)D!frEltogWnk!rM+RZqTN7hV6(x6?=p}VjMF5AekVey4(D}-NRZcj2o zF1YvXLS`!Yj+zzxj|A^1^zs54*?OKqK|!|#>W#vVOJ1msN8+N26Dwi)YTs4G|>H`Uc{eUSe96Hv-GZAbf5{Ifp@ zD|74{03rFw62HCz6yu0w5@8TU*W4(?)sHowiksR%q_}~C8vyc>ZoQ4s*$2HeeYU&? zn{+BSS8YA|)efQUNuVmt7SUWo5g6}~ee}$P{KP7O>LS_dO{8nsoZc#RP9~1yCA||U zkJg}iym%lUcQPJrb97z+dvS>~u5O!*V#mkonB1CL_Z@yqG>t2}sq$0g`FgjO>=0s# zr@qBU3v&f?^LMnv2O zVyxWb&qG4yG|^3LM7K*vK=8+6KNQ72*&~GX}Adrfh3p+0` zsyW_5Pw=SlK5Q5hk)2~|1AShpgF zHfv?y7TMCMu1K%Zwxn1MS4R$ap$sxqJ$$x2;s%B^1qlBrKH{isUia#FX`;&y3AZhy z-uN)LymIF;=_HYBBWIF{t5!{4x_JaWXR=VcO1`)%HEU$3X*bLo(ad*m2Oz;RWggHL zt|vk87g(bFM&=C4#7di$>VTUlTH;Md2L@sVlIJuD+GE_()w@zD0T$n8dHVK{81ux$ z1g%X?9Wv$S8IwTttg-XRoLUsX)S6-{5b0?G@P9>Zp~N1B%c7wimNqsZY=2-f81Q=R zfha#3G82|FGT+Sxs=T4nReIEdp+}(S51izkb}^xCs7>2>g`dLRF3(iXdf6gHdDqE8 z7vY%Ku02&PwMhrxhn_f58&sD+sYuzf!ZNUZb<@d5;@r2UZ}x{5BdN;oYTj5g3(rZ{ zY_w>Vb#Q3Ors6!Rzicmswq%fbcdhx%4rf!i&uR z^-l_`H{v1vv!o8Z)s^om6C$%Mmj@Cf1V`?f^;9Rx68m3y;^oP-L(8KS0;Z8dTiS7g ztUYN6mpn*)uD%9JKS<7gb%lb%(-=`bj9uRgw>R~QK)B(8rRc)TN(F+Z3Xl@%48^8I zn?G;d0Vl%Uco3lAn+f+Nl+r?E$E9<-Z6`wZnMu*5ux19 z>&ymKzb0xkm-rRA(~DRJGn-kPHPltr0$9?c)9_(H zj`>L9s}9!Z=X-4h$A5e$x7cz@SMYr>E6q0tMcz=p%H@Y|1ADc+yWN(u(6g@%rf-T@ z{oo%g5_p~|fH|hRlyIv=i>iqsY1o5D`LldPnd5@7ry(Q z18ydWXQF}N>r5B`Q*tuuQ9Rn(gn|{qTimFYQC8+*XZLf~H#gth+tUY$?tU^xnxZi% zll(OGxm-6_42N=RYHHA2NZ#`l;Kq_L3TKc~*wxg);9R9|NwTw2LiO4SZc`Ox{UL8o z<8OCxy|Z@z-r9?R;hne%fSYrJs`B#9ht6Ib}TbUB(c=u99La%xN!E!yrOzUx9fSeueacy zY(2cI)a&_hIGsd`!ud{zR~o9~UBt63Nq3YMr&_O6A4#cNqC!s!g@5GLazbm`Gts2( z99Lk&xl&3i|3H!SxNI{Hj~AiE_o|THgu=5 zlABr6qqO4Og*5k96r8W~h{~jl>PFTlOk9lMS1hv9Pu{jlHqB7ryW?4v5^l^GpUy!q zv)H_~@p&nc5cijLOd|T9F3n&O34iw=_i1oC34d3{rO~xAMi|-SMdWy7+EcUC`USN+ zC9=RMmkih*BC#4c&+?0?#BIF3$LzDfpUXcSi`$pmfQjN{9%qO`lBu9@ z#P(8xTLc$3cfvs;T~=K3an@}sUkYS%eTbVqxFb_Px|*|{|`^Pti5K- zO!zD=RQEcPUaX@gawc4fA`lW4gqu>+gnLr|^;iG-r~mwh|NPVc^a}qEulM_B{_EBM zn^*Y%@(cfee7(MZ_gAXe?$bBdv$nC)zimeNKMNh>eQazOPG2}p_&)&w*6T*5Hu_eq z*G+H3%U)mCLQkLdroOqM&7IS1Je(XtLi_&ytbIqfs>BNlo&)ec{Yj$2}nD<=(; zUS8vJ6{23ie-_t_Qc0O&X_l{k5Pl}WPC_Os+32~o(|6SKxtd3&-Npmmsm+x_O#9K2 z7+ep25_2cS&r-@cxj^>HG|STw$EY~s%c`XQ&-caLiH_#D_x}1nW2FiwOhex^TqTw> z5#5oqAj>!;YaVs$G}o!@k5XxKf-gQMv~ccX5KOvkM;|}aWTvI^Bc^jUWU^Cca8>?k z#J?nDErYQhrDN2|3=W6+vI7I|>YsZXb2X86hgX%lNgum=sSV|WQ`-*yBYUOTZsobc zx3;Ig{M!W%<;XQ3keoO)aOF1dv8J3m+fV3k_wXfoEhNHyaXIKm?V}gi z5B&64Ro>c47CzBh)Y@>RLvMEHipO{Ms;7(AT57^-xB8zh-@JCpOY5NgRRuL&QTN<^ zANMJoraL=a+$-!bGuFG`YeJqq-O*h4AMw?}6K|yT4(;UDuS@+`Bc{sM%0^Lql=$to z_htoSWLK@V8PwxH`_Nx_zDNG^BNq8j9ZU8eyLWU~^{=--(&F-Z$nM{Jw1`Guo7?*} z-L34JDXqsYBMY_PY(tjxkFF`44AEN)C{iX;HD{ds$lzSr49iCP{8h20!r7bpObthx z_PqbGk`pPxdtric_ny2nUhUpT>gK8Wq^NG3sdFdYY(AWQ(n#iRn$lNC&WDPa*7hTL z*Ts-`M~=-&OFa1?^P)%cfZ)Z<3${n&UQB)`+etI3aVP8~Df4Q;Ga{F$7Nvogx230c z=2zM>rkvror6*oJup=#HWs5JnB{Rlcv6=eTM`& zf}d)rW+p1Xi3p@z4_{c%(@4&FmwnHuKj)WPg;g_UQ_-mSD}w@w_*&w-|14>3%XoW- zxT#%*sugDEd>-0+o;T#Qi~bdgXYErV6*})Lt0-tQZ~F$nwXu^* z_^ImZJsB=t7`~uR!&=Ha!&j3sQhF_-K}_rLut>kLPDW&5`mNgn@}cf@cM~tg)Rog) z-!{7aK72tb$>eH&+mB>R(q?AU16mC{hqeoeB&M7X1{vXCrj1q}0#G!=tN^?v#(gK(+R{yT6ue z4I{UL_urMiywj%V9jWkGJ-ti0)%wD%il=tg_1?l~-%@|8&`T{~wqsGFrdQGEALdWk z6Bu->+Csf6drK?-z<_09=Q9%P_+_FCLr3m1UJ6nXX>Tw{Jw}`8c(d$^Rli?)VEC(V zDRgw{b9w%UgI#Z1@hiRRpoR489%NJwoHrr zX5Hgi!5h@TI~KV$zGUvho$_SKo^@R5{K&;%z3fHxBL~tbB`ZmOic|gK-?l*hruOl3 zpU_h~&4U<~)cEq^4hIB1Zb*A(kTs+gs(k&yeFxU_KBb%m6vdpSPEBubm)R7kX$tS3 zJ*>$x-MsnDXK8+~Yecby4XOM3_OnanY9nuCzHKW#Fx6D=sQ$QM;pNRS)&(JTq1aT( z(|Ro(AJ@2XSGlIbv-#}C7d6H1z49iuT>9VBecp$J7ms9ccsXCC9`n0lVba>DXBt`S z|6R_UL%JkYzUZ}^NKDbWF|y&r+_(2)>QrK#Q;u$&{QPpLCHI!0q%E~$|F~lyn^}Gh z_l$XZ*wV;6#~l6l%kvT$?zOz%8w4t99A7+sR`b)<`szSwkFKlL^{GRt2}j$M7buy! zE+4D+lI9dXqdC6uxzqS@b>6x0>o>hTSj|szJl1LF7gRc(Rjw2Lal6yd$Oq}I9a}$# zzW#Svk>meOR^+(wpINa*16i@?P}zv`Je3Tqs`HK~hjxk{7_Z;od(`Q;w?NoKo@(=h zD{DVeM307@$Wsf*x}WA7O8Tr)XC`G2Ro&En?N?i$j_ueKR@ZWyla5*+Ypq}FEn^m5 z|G*rc=EGO!>@XLfI33qDJ2X4Dr)n^St&+UCPkVAe?4Lv8XWY&TM^?C23*Y`h_k2cq zYiQ`~D-xAmnYFw2KI--4*?J)NKJ%RJbP#*{a5UXBxQjR&Disz=?*pcO~_c zCQiI%G1*~ui2ab54jcD!+WD*b#uWF*YH!%jDrB15KNpn9d#~%*Vz{1^vCyFJpdQqq znl7b&o_k89h(Gb2Tzf){R9W6vwI7{JF)vTY+}z1~(EDXpoIm?fH;GE|{b$4aPamxc zXOlden|g@z=;6z)@2l0!b{1LaM~FWyk#8*6wfB}787V^<^@h}Y*%oP|dxHhMtU||* z7joP6q;>^b|IwP)EvVBZ(qq011Ykb@GeV4wSJM-KlcU0Q+MZhgx4Vwzl6Mhy{()$!D z$_m)5;w?%$4!qo7&h_#o+mACrPv~64j)2jTQ!mnAUid#R6O9CUNyl?EP zJiT2gEvH1EQ6Cx#H%~U9p1bStYR-a*FC>B&HSa? zPR1=mL2r;o@a2kuv_`7y|Ha;Shjab+ZGR>0QYxhq6`{;f$SP6x$R?6aD0|bC?3L^h zS;a3zG8=aG3PpvCWJmUMej3+x-_LX3&+$C}-yPS{@#`wz?`OQ;uh;on=gB_MRLr1} z%hNO@K3`bz^_Aj0Ux`^lc*vcwv~N=dQBO4PJfPJWC^*GlWa$%U6S2-;!BhJCU;@iq z@}CrvJF`s>S2vaw>@edtc~$$Vvs#p5;;hxt&F*MtWwO+8H2x?XcGe=1KKEH$AJp4x zrJcYzD`E7JGwo2T7pMO5?tqcCrp~c)+p`yn#P&SAa7)6hzJ=o07mb(KGGAVvQ4uPW zKW5&**tYh@Wli^2Z?5gR;NkIUBS*1kh~Coh#TCv2$5~Dncslc6DYwk6u1i!Me>&9o z_)_O4gC!lM;?P!^5vKC0QXpr7?mfe)dB&5~dkkD$c8{ zgY>H3!SZ_|dXc+h;$u=e;^hDv7FFS@V z8c`fMyL081a*ILYDIP|bhmS99eHfeB_1T%GKq`45a+>t~o9P+l<;a=*uJY7@lLC$< z=LV^6El>`3^Yxxv(EgV9^8-y$_q6P@Ha_nYeSTy8{1Rz&Z7GLMn|nm#1UH6lrxKy2 z$#`%%g8X)TUZ>2Z4LRfUJ=(P@7q&2-P@T7)AWO25|52T+$(A2WvFDbg!Ke4>cNi1`Fp`a{vH2s3&_=M9dY^B^*-kr1Y z`l$ww#3ae;K(0eO_w7vV33~6@u;a_#dR7TdxZ8=`^Q~% z@ee{ac9_+as!mS5F1F)9${H zaf(!|UmNPPnYtt7==kJMe~#dsqqkQ+v-T(GJ^x4ZkTbQ>tE3<7svM=4=!au?{xP~Z zyH6L%+74c)n|oYrq=S>Kat?_Me#jmU83nb>N5 zKzT1d+7 zUf!Qa@v@L9|77bwA8TJf zz3o-|I^Szt^xhGMxvxFNJHH%QbL+sT?IVg8?(zm*&nZ*bHAv-F&Z51SyZ_4i!+N%@ zZGvkr)D(ts>Mtig;@KR$p>6o#Ij7jIQn#INNjV&qS#xaI#z(@m{Kyd{@g4SV<229G z!l@sDKSwkz`QQLw*S%}3!b)7@XSCk0i*xxbHW9itVJ7(dKBw4QLAe>N zmMw!0YBrQsu0cmE=WgffJX5PUC3f*dMqcI`y$8>?j`|yJx+zV^6`RMuk>sR)u{ZT~ z=A9Z(OLG2$Cxo3U=hpU#vDBRqhPm{KImH^dUh~+VTykezGVo@1iHS`mSMt?$kJgTp z?cT=P-7Ciud*c`*TL*96detoril@Uqa_c1<48A;RY*;1g+j@w9?!!zx_tY)vV%o(O;k|fPU$E5)BKC}lIrQ`oNU z;J~z2T4Z@_Z8O!!gFEAy)?EGZRNa{@mq}!jm6M`x!cUKf{aapjE;~!^*tfixo^Z3P zz1vlrDB?LIX&raV?8z`!1W4Bgs@cEe+U(RQ|nN$&a6>|OHWX^aV1^f34 z=MR3`*s$$D=#I>j_HABX&+<$Se5o_VY1Oiu+yb8!&+RDtTKLje!-D_f&J$Y`-fB(s`65Y>qCg-g*%IMWu18M2=H!e{3 zH-6+5;+LV0>i?&-G>JhfQA))O1g?q#6&~M=lql3DS^vX6BO?~8inOG>m(B2C*AF(e||c_ss0(C##PwrZtbrjtyLt|5ABLGvdI2B!}L~_9s)h`>p=D zHSdu1EqjgqdZl#*^b9<&1231!Q!V+K{%}uHYubjjB+G@LOND`sXI;W;O|y?Vmrqy* zsWcs5r(w5Yz%#sAg?a?TrEi?|XD;{OU?oxf9KOdbLM6OKg6%b_#lrazYo`f^@B64V zO*(Zo-?sVKNjlZ+RjaYdZdtp=H}25O9b~lv!~Lc-^v#A|ulvp3T+IOnunbxcH7_S3{) zO1jeLwNs5^9arF_$^O-Qq};|MG;zFlG;c?zUOzL;u+LV7`B?)2B$! z&6p#tt3_)t+$scC#_6lCVPO|dJi;FUgXSqHN8nla)q*PXP+ql;s>Tvj2^?Hj< zq$$TDSEa_>Mb(G=FCI(@pOzEOVB)WT>GYd``XLU?$7508fjB_D=$1=Te9CFe#15&`d8X|I?5Hjc^}HgZ8I-^`N7= zU6;ZX=jr-4_3fU)g5w>YO8wcHWG-^+w>{GBB$Pe^)s^Xk_RgJ$L;=O^3+2C_X=9^PQC?j3;7k>yKtX z($yQU(6L!RYw{za?8pG;V%g>f)|Qj4fstYri%R*sMmx0HCd40{GW!zsI)^sGTRto* z_s47?T~({q@lQ%;8oFFP%?BOl_8z&FB)>V;{c_8z9RWqQ)~$!^bIszpXK3kUuYDa0 z)r(9P_#>t8q&T(m#K?4V}rQ zNV&ROanwvh%GNH^(zo2sSK8X2cOt=hk4T=Aq#RAdx=H>oN^NJ(+tvB3ItK^GO2+iP zSUZ^h@?x>!fl8IOlqnkP=dHa33mOd*Eh))U3ET5!ZTnQjJY6!5(68g*XEZFFc>d(& zxz+hwS4-Zc@3>hbF55P~PedvAm>Y-fn9dgk|Ep;;3-(3(+PyMT8)awCTuoEX@yp)T zr;r*dnQ*Pxyfi*BP4eO^>0+&eL*I@yEZEL-ls8L!3M?>Vfe>+HTJLf zgEwTc?l_Y)$<{Zw)@}UF3yGl%JgmuCBL7Uq-0i+@=RJ7PSn_(4lL&|Oa;B+r^wa>| z>iQg$u6_R%UgQ5aUQ>3uX2_u~f5psD- zHnFAW<>%xOv$|?!ees%}z9GjsLwi$w!}Hd9P8?@VZEX|`t;MV?u31?cTH0>n!`~9k zQw2S13mddm|M!1D&-eS2Y{0dTkF>L}wE6W-3f6`Oruw#4*7PTYh5!3z>?SU5Ui^c9 zH)FrIkP+kguQ?aP+Ye@o^A(Y?tE}NXb=k7)gJ%Jm&8-4Pk`4LSb?>%5+|POHq1ONW z)&D$=|FMn#IS&8h9RB#jpFBc3(oO$GtT^!>W@G*j->-E3EXPGzJsWd+E-oUbC~^FM zgp*A~IQcK)!vAaF;Qp@z$0jb`|6Ams=jP_;`%j@`^y7NXBq6p1;)3AIMA)U z-^|Y1+rYc0BjTf8t1IO7G)=P$A14_HGuyl{r%o@z<;6t$9zZuv#WV! z?YdA|vYte%cX`4}%soG(mTc&pjvMu$8*$}b=YL)D@5{8cas}gyC^bk1u}@V(cX3`s_X~fv+0c?tMlkV8eHOg{qiS&|&e^bvj-U_;C$0VW*4g zplf{X6o<>=c;wG=s;`&Vap%bTuYPhDJ~?Fe_`$s*(8cp#r4|#T&K2HoCq3 zc%s?GNeqT<>AB+jNb!$;-Hhifmp=vcJC~*96o=S6)JxX@MTY zvqLQ@0k-?0b@uZ|hc4v-K4Lqj!A-zUy3Pzs%-j}%k&(v&^i6)23PuD5#ycg3yDYO+ z6L#oWtALf8!x1Vr(vS`OK(&4QgnyGO^elr7K^u`N_r}=VTnoEMSX&~bvOtSJJIMGnk?KiyZOf_>X?rXQ1&P5ro&JNW6247G8#`SSZ@U_;zEwnkzFor;QzTCLu_V2opgnUl)8Llj~`-1$`Od#AHN3E={& z8t~8lNHkW?Z+#+l&%xGKxf`$dnzeQF2Nj4LLb53BJC}aN`}gnPL2zJU@9tyDFQ8K) zSPx>x)}FH!Y-iXTj%nCBuP2FeabIlCGI@GUZ_g(uZ(XP1tDPfF&UGW0gN6~aoPv0< zK6sJ{P4BH+-7GB?@r}efMhi%}>?_!~Gr{ju4;qSTU#wPzuH2oGylP<)w=5A@+gr*i zP)tsWPh#3u-W+^_zI$e89fL{9kWTdri0C*q6+?m(`ep9bM@svhYC~C$=wXRD2m3HI zR@e(I!kQ~o1+W%kpmGw+trCy7V!0$kBaCezA?eVm`UvjxCuX3_1ft!QQEsz5Om+7y z(5P|Sk)N>JuQNqS#_2J?xN!i3$B_z|ORFuX`|Tmo;937;=Z~opb?j?OJz$+5Z89$? zuc(k1bE}>!S=tmNet*|>YimvHQxGdZrzFmwhrq&P_}Hmps>$I}S26Phu`g6;l$s=N9Inhhb!>)3o71*K zWuDX|N43ex`(EcY_1js?-`;knKOIuK2sIVE>(_%A;=R|KeR>c$?Vm=_5^Tl#F@*A9 z*u2vWQvESJrojuW7<&&H>cvJ6c67|mzk$F(y2cv1KQf6%2X0Z3MsE)7hn{NYB*J(mareJrJC z!e6itV(sA2pt{@l{(a|fF3_aSl$Zv=l0o@xY(Ux{SAF7Gy$-G+tZF9F1=6T1k@7Q% zY!HFx-nw(c#*NjvvJeo5vcc5ooNytdur|9#00a}EI?4O-)u@>J`k9>B)# z^yDPg$+0lpkTWM2aiYAtTg#{T^OMs!kQnTr8oh$x11lp$9 z`=cnAHpK}QKLU{@w$b%g5WPu57udnuzW`GrbfJSY#3GVf#=f;i_Z;Hj0#_|nTbs)o5y0Vbr9R4BG^1#lWM=bR9`=FY{GWoNdg~)^Zw~a>ol?VXp9_pYN-ZCfpxJ*60R#><2>f*o;?c-j$oy zrRo(4|D=x{94y7|*s&wB&aC}O+DQ;$GT!O#>`c2j%?feYLx-RmC7v^YYXh@Hw#^w_ z93i5Ll{Tz3Pl|W6uOSuDxVe@0#GWA0hnE%`8^2JNo;z!nfPq#!$T^f)X~uaWoBc|BP@Ac!dauO z@b%ro^2$XGJ`D?qvCwm8W**AODoLa#O=ME-45Q(06=0+t8k zJg_zYb#zn^yDV6&E}GiUxJmj%(D$}Bh+VkhBx*WshIAEf9!gD`PP6a?e$W#_{J>Im za3|zNA^R9M^X>BmSyxxrSYfv=DDdFqK48@d*3R4vu}sGB+Dt}(AkR61!4oucc$Oi) zis{N}SijyvC#-#90Z5`}CUQtKTKY{{Sy@+?=5cv9{406k`6Mu#;uknfLVYs}PS(Rs zK?kWH%lR?U_^CYe4t7DoC34++ceP_x3S7bW0fq_elef1sVe??)T% zzp;VAOz<98JS}MJsOn5$i5Mo&5B(j`tybqqr+k6M;57!O=sY)5sjwpO%cDp7XV1Q# z>-8vw__LFqO1g4{fL;2BpJNoEb8XNXCZcZ!o!d-Mmm`Rci#h=%GQuCMj(e<{>+9#> z{eVtatozGw%j`}6st=}QysPx^{WyFt z-|BjQ%znl&3VstletudZ=hm7UGpt2{-otr}>l5fUr7gjT_YpFL42xJl1Fo!EyrR@FW*W(CfCYy~YTJMcu?#A!OOiLk`h6{J~wiY`lb zHy;lyxiKTudP4{+qL5p_j-En(C{tKHp(a!{An>}bPS(1>wTM95pFZL&vheagCwTiT z!?l3P_P{|@YpFsKkI$@?*_0rBJ`3KN97Yucl^QmHFXyJxNvw_vTJ;D5Q-h2E4IH+U zCskh;2fM4-dDl+yWoBk(FF-{-1LQE>l(YiMN{h8NPH4(v<+m+EtV_fyujS@&(lbzN zAYmH+P;gP_GdQ~#&JY$d^(>)P&7>fci*3AdGY!K`)#z=v<6^{(MO2DV$$zeZBuprXvB z$hrrIEwV642%LExPJslC9&^XJ=3^@9sTRIu z4|;jKu@CbBA}a(3UrvqJ!yWaaHM8Ijp1>c1Ldg($^Q~Vrh;L zqEo5>uQ2r->4MnZEkT4bAw!C!v8eUDO-4EkOMzfz$idjrub_}qvuDI|mrj~Y#EIZt zpeDBx1{LN|*Yk`g5)cv-cGI+R9$Np#?oPG>Av>*Q|K;t*;VPxABu6h1 z)di`68dD!(kG#N)x;POLVc`-`W#iW2=zhXt8Ph-!ccnQ=lBOkRt(0Ump6bu<`Mn^8 zO6sw+vMPmFt)8@U`}hWAKCowygy>+aucyfA%$YM;OAnBX5*$-F6R@mKF#hJ;>citc zZguV;8&u^4E+NxG6ng0}&K~0jmkB8U9r+a0dbV!c<~}<)P#o@bW3c4l@ZO(DjR1Lc zf_K>fRbYcwt=X#puG0moE=q~;mL8Mkdw_IQ294$e`E+8RFLyzzwW{)h@GH1x$QhD~ zd~j|EUhuQxAZ`I|2t@I|Bb-5_$TuWh`o$JX%DLHDa6PReb>`*1f1&%$8?nP_2A%Nh zrR6ypM{-J+XSIg+g908LD$lZfPvM9GO-$K>77Fhx_*|&zEree@bHf8#iS;2b;6$)R zTI1pk@m?hfhv^P@FW;FK7}zIcHK*`()7fR{)7W}`t(Kt0VO5KAz48NcTV4jy@lqf9B+*G(dM#L)!USHaAp7;_JI9NsjxWKa=m!b$BbO zQL%sO2`D;NK$j-j*Xi*AC<+LT@_dY!u62PxCFJ27DS&{Cy?tED*U>OhR@-(gUc>oc z_pDz#dM;uBd*31WafpT!F8}KLKscEA&9SFq@|N1v@~+P3TNoz4tuX3|m)yz7(BGQ} zI>H8#)k5ifx%oF*pB$YYaP#u246Yh8qku%xx!s40MP36Wu)Mt7#^MOEK@xutcX)_Q z$aSOQRgdort4I0{ELrht9I6^{WI|@lp_EhwUMgsO3ojk`LDWoYqfXVHa*Ty!prezM z1?1F-g=^I(4|8&+k$^H7nVjUa`RbdWKZgVkB()|;LqMcBJZuUQ^&WF8t1O+Ai@Lg{ z@NG~_iRIG2`}NB-jcH!%Lzp{q!R&^E_wL_UVlpqa9d1TA0Vm*eA{&@#q5Jud%bX>4 zcX5Z>J=v41ao2x9LWoFK5c@anVJE2ckw2vG)EbBMG-@Qs)C2tdolFE`^+9f>13s+QH65upuM&3pN3H z#PWxfi%77)LME_f9m-l$d^DA7ASk%Ev`2iMjz{et?|=Zv!G^jDA`=b2dNk`FB<9)4 z=e~oU2PjxfXI5SWI*$!U$NKwQQH%hWi4-qL>LVaWlcw&R!jjeh1N1SHVkL^!1w2XG zBgezXv$M02VKHlDC(VS$KHX9v2zCaW5bc9|_aYBIi=<@J8j=+Ra?&n(ogl%12eN`B z#2&mK8knTP2D}mSSjH%Jtl)n!0**rR^8$LF%QIx$ziU4GB{Mw;M7bojiKBFBndbbv}g8PR;g;Hwv&~>FlRJ4hMYGC-(r%B zPBn4>k(`WHi8L?BgWy$<`{}yR4=_ea7SzWI9Um?Lu#sA@lV|jhkK`djCHy}K=(P&0 zlMT3?^r-4kH5vH)8N$tK+%aFhladI!CHC-?LJ$?fDS*7V^>As{vNZdusPKIM&Uqe) zSV{|*z_W&v?!zSF2wg1*7 zudJ<=Uas)fGIExYtOmz{+gJ-5sDXOEcDH>8$PO-OQ()K3y9$zHI*8mBZ!X9H0Er}j zY#pAGGKiWK^gF{QclbjLfJNJR&&UXhzYw!Z3dq%avkp4Z!~rog51edWW9^hD(yrf# zisSIp8p?G@ZF*$R-VAnEmZ9Of;FRy-O3vQ_))dxYM=FR2ko%77$4PzH#SK09Mm6LOd8&**c2{0c}5+ zc@|zp!r42>bgKJ&_n(sc&Svo8#LkTuI7S$Dv1!gc{YFho8#CDru}nWdzX6FK>@F^g zG7X1MnOQsG7$*M%z}cMjv%zEKQI8{vnFItDIfQiH{{C9qPSGCv0zszhc6MRf>}~{2 zV82_&MIoejQZmXCz8B1A#^u@9pHQR}%rHJ)VsguOZX2C&5n!-&AL>#P0S5^v4i2Hg zgJUZHx2l&bh+g0Zk!Ho=g-xZ@-lsA=CRcIOpy*qt)ZIIGs(nPj7YVkdh4G$09t+lJm?aXIT5j1eLPWMFFIO%hl+;4Upjll`vBho zE|KRE8JbFGJn&n@NoL4M8>!@ldIjJ8z-L^4pt_N$K93dcie!rm8{VK_(I)fJQ$}x& z(d%fA$pIgzL4zxSHv`^HT1G~h(y#W?$PJse?=xv^+y}MQD5KS$YW_f>adv7-$;Jt+ zKR6XULJ>$pYi<=`{}_HyN;rtB5(QLbdB5t_R!OK7pym%WegN#yM)wLB&U)wIoKtZ# z_=EpM55S#@n@8*&!Wd*?>QU?#oa1V{HV+caxt{`Xvb*-~O_dykB6k&7gDUjDa|Da` zsVDUv8a@tk|Eb(y_kF35PyxnjEyR0y>fLIs20mPF|EtyS3-1L4sCA?Gs9k7pAtiNR zlW?dtNA{Nncnn-GZlIL%>w|R_d#nn#A--7|;D7~hL+V1aZ=W+bQhGgBF9p9mr&Apx zwXmZMAS_16B@fpK(gN>$_XyA>yg14&8Hd=~E?5PB%1|dQ7iMvnlFm|3uL-reLE)H} z$rW(-x`X04%(^<=4!v#;MDcC^NnbjVo;Pof^rfY89G)zGx4Fo~wbt7f0v-O|-iq=r zDpr)6HU+ca?}8xl9oyX{OH;K#RO4OG&ENl{2X;Reg?P^oKTrslmVg-ZAQ&75w2sQh zK9Q?9?7#*!QXsPM=BMhYe>*SpUPf%SI;^GNPydbO2Z1ECv)ab_zSFMYdZlwpy z%`T%XNSu>&bdjnB(4PJ}Fwlm>?|m2Tn19#O#0viRTAHJ?vr+UTCv5>!bxqCo z|E`#}eEZX<%aTh(`Fsz=uEu?t0!nlv)3$&h4)Dm_*w{g6`B*w3Tz2jAP3Le(AtxCR zvt78()3IA=91^SXMQ)O9VE8$C>eSqYl%BBQ;KO!6r;!N>dWbUwhkG6B1^c7mlPPIV zB;ou_88OC-obIUWZgQ~?jyxbMd{gO4Cym)D=KaA3pSlVpI~;cj?d2d%XvPXEP7O$# z3%WnK)*~qV06Dr_P-vaMTp|B-&zlyGM1dQ!jjQU%qfRR`tNV3*?Pdv{A>%J15A+*gLlU za8}%6NaooQ92oDqXaS)3=@vJ5PqNU;LHA64xh$0~w&U&6Kvxq^6lxcX2>=Am<8~X{Lwr%6agngt5S8wl{ znlRJN7hB2b!;kpvrJ;drE;I4C!!KM=aQ-2sl|+WuXRrfQKJ(DS-AhL&&x@B=HPGk} zmx~t7C`wJhk150}?YB1Zx^d$SlAB%ZoVX3*E7Qa@fW#;It9Smr2tvs6QGoD$KfjMp zbohQ-mMe~w^T@fc_-4W~#G+cYOOTDhTyS4MMPy`ld8`sGNm2Im57J@j@cJNs1?e=5 zaEb2jU8!((qSWZA?f>L)>~b~5-QU-E)GqHWO!#AoTa+28Y?XnLrF8iL?2C9hW=Ma) z6Do(kg4I<1dQ$ujx-8r8k$KlH8Q?}-_l|VN{p)JrD;}q$05F$;!1wQcgfc58q8rmZ zF*o=3?)?OgZ{D*P9)-9CZEfu>TehsAYy>xqWS2y;=FfeDGCwGJK99=({pOXsruZmbi~(UHH>6`BLHE zzc(;58yOva!igXJ^*Ppdb}G#rOA*o0GJjt7Hjp;Ml2_pi096ThAewLZUCE}OqbVL6<5z<+~(E)x0_+Mr0hPvAC_Q}^y@0akG?~w`-{G#|bQ}B?%=zJI^Dkx|8YYEerxleg>@rNPmEE{Wo9i=3=%-HY_k!^6Ws>3L{vo9OF5l6FZ& zg$|yYP>cm{Wt;vWF0oOl)0sdsb`|9Pu+e(QpW1IAgCV+3AkQo5c%qy^JcA$p*{PQPc2!A|u7xM*?Yrh_N~_m`Km$VNS8YlhX%YdHef zdD}LZAo}n?0WWkWhzXb`vaZ#_pzq?D=q(4AqnhfB;@JF41m9P;)(^gp zQO5P6xxvW5@I<#XHUOkMo^mx^lLP;5TX@d>t8HN>s@C>I5ljAq_ijyKMS~rV6#%F+Grav(j4J}A8|9vb?&-BlurHCVlrt$s1KZefK zRrG^j|Ghlv;$};cMixZS)fM6~i>i6FDXzKHj3ge#QXSw;v`vshBkQ-l?d_d? znaq$B-_56!c@c9-AQ_DRSI{7W&-^?i6B8n~z+qk$WGPyElhz|7N27m5jcg4)0mKVs za!>zzekxC%{CS%EH=jMbjtdQ&@qYK``Uw+c{?9h^t54QWG=-k&um5ZCe=OxcUIKKb z4n43*!t;m8KY+2I@hJoiCb(`QY7tQq?aPal5jHTdmt~C#!%aslxcX1D5s<*Nb@LVr zObNhmDU*xV8(m3!q8;()ooJv@sfzp@~}=KDjSvFzdD@yBA@|8?Uw*ROMNa`K@njE2=;BhWK6ge&E~ z;|7QRIUU2T1tkL(b!t z!594W+AI_P4;+i+`kF7_zC}S}j+fNWDId%1?EL3=9w1oC;me8a{}S#Kt-StzgTLnvEX0WzfkWH&mv#JpNt|3JQ90>W4C?QfXQkI7H z`hmk8jxZPPCwvq%8I<5QJV)ux1OCo_K%dK_`XrI*Avwjg9O_RXLmxtMZQZ(c=?+A> z5GwhI*rGx;H(h$kcA*O2S_K8I?uHqP6`%*6lW`9*!<9IUKsWC{$sX=o)GSI8=p&g+$&(vUb{sF%DU+!!N!* zz#B&~4>M{1pbL!-_CW}X-2Oq__kumn9*`$71wzbd&VD<-nceLms7KM6B__;7?cK57=Fb6r%g03K^smj*>}q`$v^)(0R-2nylX@D3RnnN0>|a&EN9 ze$iS-X-ed`Q_lQEN#kQ5-;v?cE6*C?x%g>M`H&T!JpQ?(qJ6QMhK^`Ucz zahzM8Nz-B6#Jo=R7(Bm4Z%HxP9v2sR$Pf2tgoZ2Ob4@O_`*VockE+AA+VTX}7GYco z9UBbcD3QNpM&bC{wF$KSsae$(iX10#DAPh1?h`X}cxELM5)u%)l#+?#F{N4@bsKJf z+I?@wk+Vo1iy&ndPfyC`aC1wR4EZx&0@vF>Yk#;&u+I$8oycbfi}=LeOb)-7*Lc<5 zo`>NJfX2DGxp4O#6l8&J5s}9Z9SSA$wCpPr%Y3}e5MViB7p|GWR6agFB_%5u%SG?~ z?4OhDk7In&yj_OKi8?=oFx^i!{Ozd3m_^4H8L`?hp`ci=6_uG5v!gefL}ErmOoK6 z=idRWb37odM5)leE3qMtjU-STNF|yJO4i?Q3dI6E6C9@5D`x4OjoUmk`^w0hF{4Q6 zdwyOc_WN6bz8LB0G3_1nH~!*>06THoI}2<8+5(H;Rveq1{p~%seKh*rdb^{cK{60a zORLfKNM_SEBEt<8+`va+Kn7K>zcDOTx3mPb-0&W^Zr%DDH5Yh>z7@WFdF*f6T8JbX zeh+Bx?>)l}?SqX5`1o}Hqeo5{D1jTH3`xMY{VSGA$5ei0`~o$BRP;NM^Ft@{&mlmm zb=O+Y*@y@h<9da4q?dku165CuRDz9JMoMbamMuwtB8HzpXn9A+FDr$+=S8_FBnt_Z zpRX_eMJ~rl)iiDXKOx8EeP<^xk`G?qw%*=2Gg4zotMb5T=N}xE`2}>^{|a#<&B=u6 zAg~~M{zubsUl>klp7;g9f7_Tq=$*}5kOJb{WpVL5Cr${&`2T$efFZ~pRgp4#whs@p z*xM72pT6Vk)Z4djQEJvHatyjMaCU^^E&-?_qPBQan=+%MVhZi_JVoSlTv(aQGkdXwwKCcMJqzs|*fTp4CwQE3zr>}h~L(2mS6D+!!hYMWMkHF}; zI~d7ttf3$pz-2Bonw7OtJf@g-D98KkDfL*zkPdM6OY{hFz?gM2l~Bt->!Q58+~UKF zU&p^lH%nM2_TfX+5qvPk&bcVXjxobQSR+`@`}(HK_vk8YC(+fnq}&&vX>EV{>($4H z=(rVqsHz$wMAoXAsap?yMHDNw8Qj)Jn)sZQ#OyLhBB0#|1NDH7@g$e1*x&eG<7i!ozJNNf+$eqEP7gk`Gmy<(pgs8`Tetjox54fu_Ws3($ zhN>elG!e`_=f1S{)o$Ig1r56SPp`=DQ-nFsreJO`86WZUT7kCmuXmrZYjZmLrI(nO zL8arNJcTD^22_ISA5+Ve`E`fq*sYqAHin&*AiRd=b7H(8D{GumWJ&Z4$>8Y=zGR!hT#3u^ z!Az7tNO)OXC9e1<@^Qi{-9WMkduEG>beI%LaV>~|E}tug=p|)kllPIbRjsqB4n*g1 zx>Jeb;bMk^>Q$RPk}b4J+w8Ai9SvrbX4bWw?KF;qnltKVjDmvEgbOpUU~h0_4tx@Ygy^t803WkLmH98ez3)=t1E;JrAo2sJg^Vve&FvQ&X!R zAR{A#RvoJGiNF3~a4jZ$<@_e7;@lU~FhwLI^9~QZ_1o(;Rt!jXSXo(*9ZN@(2D2(C z%Eupd^e=MS{q-PmYWXMbQwApJ;af1YG}PB8#$FkPyyGMKH`qZ#Idwx_*=%#h{c5krL9Gep%~zM zzJ^<38Uq|v#i1J_oUNrqMZ3<%ZADym+-S#Ki=gpPbY~XJv121o$0}3HW^o($AXW|&DN;5q3+=_pa1XS^pOt*(>{5SCyW%liaE!X#opC1D4u() zu1tLznT6B9$(fovO-~;WEh-FTp(iP_$hyB71Hd*mQJi`=0|F=u4rF28;t>W#iiUL1 zjsnC`WCRXdTHTAnKimN3@Q678F+UIv zrz0gVT720rCWiJjYd1>MVcI3XJ@zgZrQ0_@iQ~**Ucv>*Hwr_;F48INEuC@DXEhHe&!pcH)#KDJb^pJ}a1=WmJu1SIh^8e&>({JCN zGlgz!6RMHx52pERG%QM3k5)^qA73@FUJEp3eT#-gS%h(+82f5 z!zP z!gB#?4g+2bE%GAp^{i;Oecj^&VTdlA|5-H5f!R)YtSn&+T8U>VAR=Pw=Va+tQdLZW zHq4n7uB`cjl$0j=19$G+33l&lUv#GU&xu<)c_?Ey4GoQ{z&b(zjqSJeAGh#LNrBnq z_Rj9^(|mjf1RWcDdp%(MyVgdIEhDEfs*h&*jU~ z>{~&NB;CscIM8WYX&tFRAiTS)3t>okXZ$ZWmpM1JiJ{t1(1V!JM1fdUeg=`~GrH0P z0WVA3yZC-0LP{xlH0jzJtjCD$pGiywEYe^WCwxR>eQ+L5^7Pbd-jAWCzLYq30R&rY z%K-~9)5DFeWD%o%wT~c}_7nctY!M$lm7j+_0jeRSz<_Dkg;6V5Mkyjf#G}N^>pWgJ zLo=IhiMCSA0vpbENNHp6M9JbV#b z1y&p;by!v@INMA`Q~%W(YktoUQMDn#!I)J9ZnD9|sgO`Hq8U;7pbBbBIGVMz7-?#B zCG6a^Zw8RVJY=(D7dK$K7**~oA_Mej7W7+J8OP(`qauukcCKwvn`w+rFAP2ZYUh;8 zOQ2Cjd6KB*#QphNJnmzi&ZyI%z&qkJyF~?BKhG3qfZh3f=)0oIs zKH>l@qynVH7>cHf=t7&-z8dj}6NY#}r%kue3h=P7cn7Z`S>IASz!8TDK7?45g>;^3 z^49qgHEg^e6b6R|2E-|XB!Q_ILo9lVIy*WXUfYGJ#}1?^#PRRGbNy*1*1#E`CjhP{#+uR&|fv}GZ_H_(=^ zy|kN-ZWZ7&HNh25eCqg@r(y-an&rj+U~(4Y^KnzSTo-mU?Nhb#$8z#JvUGKAz8npd z#EFoVmBldjfrAI-c&)vGpi$72q&~&TNn|>h+ix9~?G?vv5i0G>0fN`RoIAD!9n69v zbS=@Pa-W?Y8Zs&HnfhD+%bx?%VHsYvO4wI$W9Ai5{^H8@#H>DE6Gr;Z`|drHW`nh^f!Xgw;u-%)=X%c|MhL!PaHG`S4HX)s z9n8ZvR2V(dDmmeHNQcP3Fma1sKOvZ9#iEf-bYcJ=&t13mj*HWU4khNy(I9w^{Rf=1 z;<=QE{5D@9bA9XP%_N7)&z>Ko<>jB{CT$^E+p%XUr!^ywaGo3cj=F`8&}r1l)-2#i z5HNIp;xMX#fRuHPJ_fc>^YQc~B^Fo)>QcadRgBZnkzR(+00@iPEzeMDR)V4uqLq`Q z;{ohMl$CjYAtzbuv#T}BPYPlX9W_O)Z82mZ5@lc_;m#Xr2CRqf;~DDQ%XFy_vD#s% z@rFrQ3**tF7~t_hde;2FO$a~8`Y{CqiI^b_>OG6VIo6rO^rOM=OJCTGkHm2tg<^Tq z%Mm*!nN*FOuW)l%tl>V(ufxL1I*Kc6=wWYK!qA;H2V+gsK{#oQJ!~9USXdw~8>Jjo zhg?=RHjK@=FuE<2L)tTEv-P9jt8aI{$&fW(Lhj^_bvvY?=rCZgOEz6A1}+8gz@D?SRg;vo?_e_uCMkf*C+S z2bh-*M!V1~L?P}e1kX^h#q?F6uN=kXlkm8u@ZBlvzP#B$Noj?@u(iz{eTz&4;Hr{t zG!6ZEhM>Y1FR;q<2=55HN2A+FqGL4!*g)kxc@pDmQrQ3H?jgFz^8zljSC4^2*Q_-a zV5&LBWfpXIj~~y@&W18Gb-lR$2y($_3IU=qh9V5Pf7;WC@dP|J2wkF~wK7+_Y8XHy zIL9l(0khpP=|m$|@DKLMPFiRxC~O~iV*|~^cQL2cB%?ZII9e{@ihx?~yQV^0nniir z32cYJt!^A>X6nWH^P(IWsWe3vIAsSb#*CL<3eck(I~w`UW3Kn8o+dte#6qW&1Um!D zM_sV-0~Yg+B&4ICA7Y0Zkr&7p*&_z+bEva^Xl1CfAV?edO5l~3_VD@ zq^y4xK+yd_2^e{wtgun&ahG7ZP~>xnTS-D#J?XsOutM2S9tD4h2_WdZ5-BKx$1^-J zfj4Efwci*W;)GmI0?7hX(+r;R2?$sn$;cXMe|kLacwsS}lLaa)kC2mZ-1)(X9JYz~ zf@2<*)vVg=b+{GP8uXs(>`Nwo266p>D7JPzWGaJ^p(y|N^aupSt=Rrp)41X z`yd5#L_-4uglj1%3JMF)WApY>At5*1Z(T%z2_}Tqe3Paxn4o|!?!^r0@1hb?G}-If z-gsTS7G28j{ZKf94{1ke9G&h$2Vfd=#Modas-8%{t{4w&3NGKgTS{xg0Lj{dokJmB z6yJ)4^eGg)7aw;cwE(&xCnqO{XZw2CvUda818P2uiW=`NT?IY`;J_%MI})7t4x0IB z@gQzOEIE`z*ZqI7_ulbb_kY{?ryZrT+e+C*L`GIZk?fK(N)#en$Y^JetgP%Eq7)Jh z%E(TNkd+Y`8QJ&os`LC__kDk_>v#XI$8}xz{m<1Oot=%(=RIDp=Qy6nal8;Iv5YHE z^3{MQUQt2BeV8KZyG)z_KK987+@-RftOe#r-2_i)!w!V#H|I3e+Mt+doGfI!0R%G#J|j>bshPg`va+Kd{b;a| zP^p8bU!pQjSha|kc#Lzg(~Iw^Mf(GDw>F@3jo&#?s?MPe7(Cb-dOzj;{eY+YO1UxV z^>0M4ign+Q!Nle*TR;FF1_nRfahC;&Aocy-QQ%m@!p~UT=G2;j*^&=`Jbf(=6C2FR z;04k6=FLq}dcw5&>Hr3GR7)DiwhY5}c9IQ8H<_?Z?vs{BZ^+N(Gm*f*c3@cmd%a z2ZlWXgMH$)gy;<-(|C0=kslTAty|0O*^p${6<$Q-L17C#ZSlwR;qi$Hlx-N;jG)dZ zlitWF9znqmuU>UvJ%HsQh6COp39NRS$C7`VlXGvO1$ft|2r?@5X9GPUr8-{?O+654 zq-E93If_PYp=fDQI3ON_8}5W6jQ|9`SJ$kdX848Ym(VdZHLp-@g`QKpgf5dT~$fR6W)h9#_Q?nK;p_ zOavOp@xOlkm2kVW4MtDk5~(juG#p2sf2j8&TwA2g*KiaU*|7@P*w_e7R`+4N+r#nTir@w&mjyGB@|JzR ziGmr#deB|XOiee_(WygK4qWNo+qddrO;*73poKcx&W%-(vBVL|{st<)!(~Bt)OyMD!Lx4j25-E{+iH@GpV)zf%zbYpdbV;y??4d)! z?gx^bg7GGT8{Kqe)FIH*FqM98+fN5A8bUsp=yYs~eccDiT+m4XQ=#*K4a+iDk+r{` z8zBy>ggi6wxwdZE!n5fG2wq4nn)18Z*d|cefK+_1dez#EJ9I-qB>z4#8!U`dr}KfX zBDICRSdX#DveT-F2Z-K(@G(Rmc>yN`Hk?6jZF3xg`VXM{qptYg-;ezH9Yv1-w!+Xe zGebkc^KaLhyni4;y16+WGOfPGbaZAAE*%iC&Om%NL^2DX{sM@7$_fhQw;S^ue_lYw zL%C~;SG;i}QSGHFTz2Tf+eOi(4UsMSr)hu*{*_BIxZu!%P74{AK)uLk3i1|cOL4!} zCuqCpKf;~^F$z!wsCpQHyg$)O1c&|Kzmp>uQMY$-EG1juNh*fdm>Wi+1j8;Ms!$;D zhzh;;Y?ffGMEC|kP7uiY5xoHgRGD8b#tOzd4ta~=qIIv^F$kgpcCuZocFm)qSw*wC zyR)+s8dn^fiU|RvM&?*=Kwj!PXtyDu%^`&B_Qt4h57ID3Y56w8iz9E=qZL7Kc?Rew zcJ3>`!@i*$e%9S(zz1s8w({NeA% zJy~a#mX?_`J#iRABLaooNlxYnz1g^8Ja}J zrRcxtK-bnmx-f_i{YP)F76^zKsDS8>xh(Rd^^b$3bi@vYO@cbO;-EFa5hOcQh>!q* zkAC`esy|)TCvq>p+9rNh^A6J@vf`>S%m~c0$BV@q{r>&??CdPjA0UlDC?fjf#bDcu zGuFNEk|8cBsJvXp$~gwxm1ZH4`dohsU95wH2pG%QP-e;K*zSGWo!*$GzlgwdukQPY z)LnH4R=v25y@6hD4Bvp*1$p3EbPS&}YSOT5kd1=JJHDYF1ka8AXWjK zj?x`C>>;#=D4Qax^q+QDB6mVF#KXl^4$cCK5lkEhtC-O}d#0wEfJOy03Y-#>1)8Fl zxXfokM2va?=$(JzEQ%I#cc?l(Pku55LWiZqkCxK}y_ggBr{n#)=|oi5$hho2IL-3t z1ZFwpqx8|(V{rcE`4tN!Fo=0@|2U`D0g&t9q!@(IU7&@dZ$5nZ4ORoRR0=bUgGE~R zWcBcx&LxWNwEKXsUnoG9h)_Hyu1~?+;NN@x~+FS2co_iASopFFgo$a0p6Ql0L4L6tesiY zQtal2(hPl^;iXGgf%l+^di=P}9TOlFCSUZ|uN#Fy64aqgpZVM*n<}Tpw0{(sE`(U<8`Pi||`>k+Cc;)ds z7``_ci458~16qG1wt@VcbSFTyJ2IB&7&}uPw!V*NE zbink3`-z{w-yy7_R8{vmjv2mHT24O7Q&wM}tUZin;K2dHK5P7$Q>WZ5=S&|+2n%09 z3kQn_h9S%>huU7WpmPo$6M!@}Gd+C^9UUo(HGDjG3u}EF*0=3&jwX-v#D&Y3F&OL^ z2D+2mq<7G5ftV)%Pf+_P#iDfV*cK7XvoJIW3HcbR?@CTO{<>u@^n$4=FhJS5`{It) zyi{3B%gY1u^B8pXhL}&1T~e_vUk9Dl2%;s?fIX3uw`fcwI4sE36`lQHs6eSqw3HwP zqPod*7rCJ>fD8emo7ai_KV(MaE=F|>NHms%@*eihh zXHjyrJ9PQLgD9X5B5K^w_|o;k(a}y_>MC$T!9{GSEQTCnxUD5mYLt>e72>VYcbdl;FSpBYs$rKx3_T&iqyOzvYPvWZnA zS>4w8s3fO<_F^EzNPWAk51bg}UPnhqfu2L%m{_9xVQz}sMn_kV6p!ZW2})G~fgH5x z3?q!`=onB08CD#sVi9-10F<)1#CKK9_@>R9Q90G)XlXFBL2zP?huW&==6cCfxOhM% ziAHEX1F>FIRcjG1p#;EcRu}fMw6dB;1J0{oG}zNq`pBb4>vASs65^l=E&nyK;+mr8 ze2=uYBl>0tv%oQ08Ia%A)rD7PP$0H~&IKah=)6zJzIb_tqx-M6p5-1S#1S$nDq!9xpUOBC7o$V3y>d#2ut(@y~4;c#gH zJso|0oK;mdHH&@mexR#u*uEW5pUcUO+_r*PXOH^I;nIOEZ=ew<(bH4==-eBW!!}q_ z$c=7T91ICxoKKllwq5lTprm{ebaRHO$*riUsDTT>2xJ9os;Yu7qlZ0UTzeKM{zGof zrL6AgSUkHqGO2oc#wFB_RYIUFh-vCZX67SU)h9SZlarD#xm2~&c=B^>3^O>MW?+)* zSFc9baJbyhAD^CiCz$%Hk?r@7Ls;mXd-m8~xpMJ+$rvl2%4C0zAHvTgZpIt4+|Dol4bU%=RN?Z$o5T3Vsu6biQ+FVRAvi_sK@VZpRzRBZZ8D*IH@wtH<6M0WbbbFk! z4*Z>FUT)zxxb@^cnlj93zO=SN#KR}K0^ThsG+C3h&|_qTqpblO({ts)OiJO>PMV9@ zDgr%OH5j9)V2g2HGJ0Mt4z2)Jp86TF4<(2$z<00`)TNoBMX&*=3KS)`r zu$)3O(;cWXH#Y~wg}@a(q57cYO0THyLAqDjS|u%OGZBFz8jF@|I@Ysw1*IZfCYBVs znDJn&gTq_jVWg@-Pm%sy7q^@;B53hq;^Xt-qKN2dzHR!e2(yqP_y+D_XU@!GgAf_i z;q$h3MiB=Xb$@x#Vs}$Ck6RRu-T}u^X?jiz%H-9Vo^#sG7L)N)?2r3 z0mla$1F_`V1vCX0;a3vJkKp#?i6C{{5=Y0JXjkrnk>C}-Kh+46UrZAkp_Kv+LPkh% z$H6m`?TbvhvP8&6Q8hxrifU9w5GpZvQ8E4rQr9jN{;WQTuvJxF9wzA`_B-({k>1~J zJq;-2$rDty&5W4c{4O~uwchw&pY0N-1;H{!vGJ!ori4R)WMXW*aoaW`10}3?@)Y8M z0b{a62WY?#PF{b1UtU4M0gJXd6t`_{ZJJ$-b&bK((~N&zB_$TEBl;R<8Y`Ed-;Ps{ zargC=u`6-@mGLNaP?(`sH#9P;LS*_~Qd43!)!+As8->LlJY>Re1m({;Ya1Ka$q}L7 zI*MvPsJn!xq~RL|9^BDG6(8e|7i6Tg1Eufb`K{f3O<4J>>*U!wtXJ!kz=l&q9XUe z`3haEot+)AJY2SFovKfLayn0hSngj*n<8FC0HuKe?#-~MtFEd_1kZ-t#9Oqeglh#3 z8cHoSAN7!EzJo3WfB&06~*ym=njBD&A)!UFW{j@a@?9;3uq8lQRdQ-OP-lD zd_x;`Z>iXyo1mb$LmTS>VpTgx2Y;`Db8rX35Cvc(YC%FJC2QaU2q)CH4N&p^r6&6Q zZ1eM{5hG*~fh3|wL4+lbCI}@5X@eytU9pM(WLip9idI$|re;Qe*AsdnzP`}##CaM2 z{``?acG!ZT)L)#AUetz0z0pCtpde@Z=ihJl<@}+`1oBB0*QaW z)k1Gnxukx6^r#jgUPr^fHzu9u=Opjndx*~jNfh3F;=If&IM(WMci5=kk&3QF8qq8ph$1gaQSnu11m)A*YeQ3EP`z zzP{Cjh=3Yj^{<81CAByWg0h!!-t*_ZJw0k0NR*@qo`>cEV{8~Td?D0jPLHQg&E|gn zy{QbO*4)KP9$gY0u z7|*_aBOpOx*Z=-pFk!1UjilsLnz@b7B?4Dt#ALk@Yn z3oSt#3Nd42V^>$n;3e0%Z_q=MHORqy;>;9Psz=3J zDHSVzm%3-B8JQMbl2lw=!gQ1^mcWt{h7jkF1Hfy--vHZnR`8HMPi!@@oTU@GBgzzp)O*fLdZk1Lfx z>x2*sgfJR2MBj=su%@O4%8PomkdJe6I2mvO;ZjB7z+`Ymc8@XH#k>^&9{`U5FQW?= zJUtNMjqpIe)H!1d0bc!65o6kn_zN-{fL?5>X<)mcGhku|Zn8`UCFWk;oWmZ#Z$RcW zTN#EBy|Htd&X}RwL38t?<=Jr8KWf<+8TvzCpesU!+j;tlQANBq`|mlAveF$lv~evHsj3lTvTJNw(38faSlDiD1O8El7|?EopJMW8wZ ze=O~0<%<_DnBks-TXFYLxw>3}?IYW@G&G@S0VV-ACN@N53Itdbm z^R1}i)Bd@-P5Sai!k}ceNf>Ynb~ZK)XkpXhiUJKU4R0af0)`vTi01|d$aNaQCChTK z!mQx#2<`!B1u0k#P!6Gt&&%v~v&l8hLH$x7-ft{VN!eOq@8$?=WTe!@r?x2`pojw6 zL;II-jaS2UFOQ@yN;8<4f;-ssP`iutO{Zb>qO9y2_{2}v1SKTtUUQd7gDQd9zqy44 zSTN|h`9|-E!Z@;GDTOh#@Lp6RD;QHK53r+9IvWlxO&JF#lHis_U7&`A?7zm_L0gqWi*?jiG1@^e< zgTsYC5hj4p=H=)2Ao?@?31Yb@9*6LT@MPmq#1Ej4LMRW-iSaC}saa1$6Rf;}x0zu% zqwfLCEh}V?9lL}n9a0lqTu`2%0{{VxNjP;a_cPGq5e$ixI zfBCMij$c3kJuH}7so2<a!Sb}zcbQ9uu##r{{ZZ8^5jQ! zrb#N%de@6TYjGMbTSY30UyHKu?CtFK+DnGWutEG?&EQLYtLqeEcA7?VHPnM>%=SPk z0eI)#yLUi|bd?@DxG7*!M7tW??i`hc^&<0z4KYQ@I=Zm)0YXz$oSYLXkmk@*` z8HuIUisb1T$;YaKNcsNt>rPB&=h6F!*$?Ico&(6Lx=B+N;RLbxNHDexs=|e=D*)S+ z)VZgn60z_6dM6BoMWcC1B@ikAC~W`!{m@jSR!1_OZm}rtnX*ig&UyS8i)ydYC?Iab zl&HyE;A+6Pe7(J$n_Z@0-6gh&_cP2Xk-hV^i>vE`dEz~N4~K%}p(|Rgf`WoUl|2uI z$fc@WICqYgk#Pbeau!kRlDax8Bz7#^tbO`lytYm@Uy`Gtjaa+(RK$rxCr^ePZBb`p z_Q8-U^#YuEp5c!0_UW3i{FpW1cm5zUQfF|34XrO;<;>J@mMW*x@#Dv;=LsQz{^s+6 zq*Ky{Q?_i`E@xiH_k&%=?(Cp%khWDO0LX^i*= zlO4Nv8)BiN9nj0OJcr3Cn8W($TRley_V3re8LTHS{}y>AVUH{R7DV8UduT6SosS1M zrSt$7Cgf3(k+K`K|`3icTO3QF&0r*K=dXsw-??pcW z3whD$llQAi^V^B_H z^=N7a%_x{cT&1b4GhR=(ZXK<*4Yq2jK+5W##QTRzL!@;RvEkxNhTbVnBrKF{U4+oX zW9aTxIHu@wchsRUUC6pyV_MhTE*+INgHMQwkC-s0|W^W&WVL z+7Em%0T>F(N8BCXdjms7(FK?1U%>VZrj6~NrvCARd(hifmXeu zOs~1QKJy1%2<-$;pEy@O+gfUO`gHiGw16b>N)4~OFHqrpa!TEBn-#TXnkTaM0`e!g zp#VFPS}yD8d_jnU&wuJ##bX#h*SYOxXHTmkY}O|lIwe-fw5BJ#b$Ep}ozS@*JGF;{ z8Q$LMko)R3ORmU8IVljiQc zs;H=tPsP?iRUDsyFSy2z{=EQ;5IRE?S%3wtfJ}Ihx&UH0~1%4^(evU2!jC4 z*-}(8Y2h%u2I|W<#LQftg_s)jy>Ub10e*hR&QAfT8*tdh59B!jp{4R4xDqk#^UTLC zWQtHyS0c(7qur!3kHIs8c$+o+h`c;#9hN}1$dLa?uY9VWF4N`;Q*JHoIqV=Ue9Ne^ z`4+`=j2qRNhS7kc)Z=VQPgdo8aKJtRtd^TM-;nn4ASxUkg@+|bIJ>#=h05+c}vt&(Z4P z+ki@74#*YyR-*D#KvfW2%Xl>w_GvYH@VdJ#?oK4y*rcuEdS(U+{H+M1jghn-sM%BM zA&vwXc-F{B2t_!S1|kAn^?n(>eJ3rarK)N+E3v-7}<1n)L9)S%92TqJ=lzxq zClR(oc9lH>RKJ6*RaAJmlMZP^JLfy9gxfXe&4Nbl$$nOENKl|3&7Vad=7#PETaBNe zALD1C*&{rG7~qiuAGGIyHiP7!rj5#kp-!=)6VqAL!9i;TdfKKY6(M0qm5oX2$$2x) zCtbm?i942U2p;bVsVy$phtr=q5k5!MWvSa?y$y^8GbuSS2-??DQyYvwq29~G!y_P| zUeOsh+E=%$@u8UAz|ostYgiqu9@qyd$qt1mMmvvrme4>aKvkQ@n7}8l4-?JK>54{&;%4o+YT{Ay82up1Ku%s9m=*$>Gby@rN_Aa&izj zphWO`3i%l}$S;G_H7{*N^rYJRikMja3xr3HXjTT3;i7b-Yi_NQH)YCW_NzE`x|?*H?QE zy$R}Q1TRz)2%fHtH5rL)kDo3)SIh0`?S;0P>0o|=ZNul!+Af^{#xk4vs&|ZYGRJD1 zX*pdEzZ~0Ugp8DR3Mwd<)Nzl&r|Q3a(V3}A$zwVbj1Woj46N)yaB{)q093Qh(32P$ zfvp73<0b*O&VfdwWEBm!L%TONcJTOJs!u3KE0{3f38UzsH9gZ+B|80&Yb5D~u}?B9 z`Y`?I4gQ#=&!^$q5Au?~!gGRh;r@jc z1AaPP$mrPE<^yIMb7gMtdOdYSF(=N3@r#80;QgRFP>f^^+tYSm0O6t-0bX4mMzNR^zY0dNi+ zg>=jsf56Bah_BHYfj>TGcy0FZ5OA4KQ*A>(0-BAd2ruhV9N#6VhA9w;I2dN+6H@iz z_dVA6cu1=`$CWhM!F%pY-`xxuAS%&%*KtH;$O{&=*!YhfIg(6bv^*~SD#jYe+CI9x z<(G$2_!{+LRPw0#QSXt%oqpYa0*78|YPx9O#6>06o9t}!ttlUX8t=B2$D_bMUxcTE zi2-_1?6__`>5CUR;_?Nzd#&zFGv?i9_1tN~RC(nsMI|k*XX*9W-1souezMr^dE^I< zAT-G(#fLGtOlbF}E-jLsY5MCrlw{umfNgGR(JypRbEeKjmtNvd8`P68j$u6_8k5I4 zbX{?Kj|UZ1Fzl0Rzbj`Yu1$;28I8f~_u@J7^93-06h_Z>2efuvI|xDJND zQ~MQxxEUzGM7Xh*7vzND7gKFr=e<4MQmn^@$!aRxgL<5{3a^jXAQArdN=kolvvt8- zpHUgY8lI!`7Y0l$cnrsJf=BjEb&y^jOg=uqe+76!&*XE5uP5$R_9Q6+`(O~p7oFIo zyL_}#5d~97{T%tO=Y-cXcR2X28!Jgf3?I@?Tmsb%Rk?niWh`P26pF53V{%`$_P+-x z{LBYaw0Lk@j2KXg1b|$CG3DwnNapoUcg{7--FcLon|NQEA7d*g6@@1a_4R1lcg~xQ zBODKK6rJ$<26S{oWzbzWPV#lO?t%zlCMZk>2c5giXkmd3v8GjE#Zf3fH=!x*%sWa+ z3$y||?zCqYmO`&!q;%>q-^Q5T&2UHwuuqXvQ&d!Rba+LoEE77~$H1_GI1vRThAkNF ziGU-LrsI!}2Hq>4BCcTMG?svHc+~0(Dr(7Pg-cNy@SM9Wy6Jon0p*QA1{Q@D_%4ep zEYDwI?L*N8eN=a%Z);HH;&zVg8-r@Rd-edH3R<}hsQ+TGpT8FkWB;d7RE-TP*R;w3 zag~%n^qMd3$FGRD7*vF0L+DQ!Ut;EmOCcr5p`bPZ&{AF|zss_C0Df2XbG% zY`?T+Kmqf~svfsLpRm?tqS_Yc=(zpQ13H7ZKvWj1`>-s*J^;28 zg7WLFT*CQdp(u0;H&MT6`^|ZP3|HLxTf;a9=;M($k7DyKj5-Di#gt zKyvqTf-b}qy0#f#f~P!~p11!l8GliRYZ(b^J#A zRohOTIRjZb_Uu){d;CY2QlaqvxUzDHa``4ErX(@8$BztMKZL@X$>dGG_g zcEnleRv|qzFg8v}ZL+}tuRkaftbsHS095|#PSWN_o>)l$~?f-}k3iK3N_T%ui_otpF~lDp07;#Q z%JQC^3sno33nP(}Kq2Jv#a=%Yo}$VLc%=uS6SEaFv-eJbb5~I`MTz~GuP;-W2rH`r zIA=t>fwR0u-{eh97&T?Sc>kDzfk77O#cHluYJDQ+7I;;d+x7f)&uP`LF#zI;3XYt> z0wE*1YG_*^7S&q_z?dBuk)UA>Kj@?MWC|z7)@$P(yYBbfNyI1{)HNp_o^(Eth_ETq zFUmj{yN0C$vv?P%7KAaut+?C?B8W z=(gSKI-9GjFB5Mg_T$`TRVQTS7)!@$Yk%0=Q{R@E=LM{mreS@-V|f-(>D@Hx^*99& z>x{g=mo_LV6u@LeLrYF_xN>C*(zG+hpo?06ymo!r_wf4|M0mb*K^Fmr3j!5x4Q~~J znm1~hyM{G9c9&5`a?rCE0jWm-bJyV&D42Qm6$g2++QXy?t(zJ)8WIMVFW7CCipsyQ zUD3zA2~Qp!e34DB@60&PGqZ9*!ER-4V$%Qh>yAzl>>~1>V;;hHk$Fwe0AlS7*!Sve zl;D-`+Lll%xEkHNR7ys%vg^dGvWE>k8lZX7#->6&kFzMN_v~>#ZeF0n z%iK_^qqsaqphESbCs%s z75>3*YVJRNuDF>aQ6#=+&wHqY(M5n^&&gQ^K-$BL92kTVC62=S^vMCpEXt1)Rn2(j zU^s!11fG2X{PRHpdsK~2Q=JY1g9YZ_APeJw#NbEo!88V#3r9}+e+(Hs_wZJE!Y2DG z7$G2^gA!~t4~#1s&J=d=nz&YxY&I3TUX|N13~)Z65?d6>apo{pWMs@WD5XZT7B=>T z7K4MQ0KJX9zLUa=3%xl3bc5rwRA>N`R-XKy$SrVShLRJUjgmd!LQH6@J7b^1b~(p; zZ3QM5dQag8NO<%GT+N_(p|21U5O8u1xj*)6mm!bB5c;{3+_<^29zGe~(DY_BRs$NI zRqDm5IsX9h$>VghBJ7j)HLf`82jgM9Itit)spy6Spa7WBJ zf4;u#&y;q0jl=&+DEU7^?)e1;o_l`u^w@R0USWlB5DQ`z20MRVoYfv+6L_;B&GoVD zfP=A_z_|}tT2PCz4o2?4nWtxGf&9a`OMdfiwLV-L6jjg{<1C`BI6nhDKbqSx@)F^$ z@H0C%H`w)^wzvDY0pY6?1B~?aKTD2SsvAfwflZBd1DGTDfrX7{H@&gAkU`;Ym8Jbo zN{Xf?$1H=z@Y?dFF|Y3l4A8ItnRzRJ4%w_TeCPWmG1dYHl2%f<59wu~cLH&Rt zX`i5=b7$D0*nlCK?6BP@sSj7)R9-qm)yI+2IiK+8k?Jk$uH-?36tjFCoMTW@a%-Jd zn`H$@t%9`FlKJK1^c@~oD;BG>A2O1w=|YQ#b@+`7XAP(@sy>ZUibb8)`0-;BLrmZ` z*WVwjvdgVmdN2MOMQ@YudEC+Oapqq?OFO>IVpTQ8kz`OPH~?Qq({Tl=fXd2rTyy`v|wKUcLHJ zPEK63w630B8=xE1Z1B@Fg^mI$0MNWHnV8h6Ko1P79Gn{%h31@r!O+5DG0SB4!Gl+! z2_U@1VNrahHV!P6ufF@nVGpMeg53hNH@%ppqeKVd1a0RSx;I=1kHzI6uOQxF zwC|w}h8ROeg&01}INapUyB3cq!CBk>L(S#87#mq2?3U)=J=0YUm0kM!bLSGbjY z29aA@`Xw5;gsMUu|wgAAqE=dRv?BK zE_{O?BIQ&t4k&)(CpmM}Is9X)#*y6hSRafSDPVl({){$&taju&mVml`4o-HYZd9|F zu=w`vhOr0EB*E4gr(cbeOg4m_v87CSu-STpfkaz^n(*^83w_ul1XN=qkRy(?7Awko zIO*fOye^q6enbF7BT;%VN${B2eX#bw1Gv#ltq6xD$S+Pt3%4{bTe=itZ-O%xuA-%B zzLe!rb2OXkh}5etkP}8xmZG9icmhf%pzH$}*v?QrNV?@qix(UbksfYjX13?XbNQLI z??U6pJ&vm*(v13Y73Ah|Ezp$MVP2s*!we(%s z+T>yW;0SykK)t6*Ehb8}DlwNK(L;hp;R_nCl$0ClCwx}d{BjiynRgo=+rsx+zeDkH zLQi>5$_V_sF`BSJZ9U;(ov$O2m)I)f$CQsoBW_$jjxUdAO6b_nDo&y`V72iBW0F3WG+RJCKA3 z26)AB{~>--@?xS{8+%ypIl2KTJ+K}b^CMkvaB#<-ch^SujmAx5NPzh`<`u6A%bA(05DYk#?;F9Nfs+bAR(*_!(Ys=3eF^40Jv|cx?-YVy0iCm; zDi+nBy(=4W0wLt!RE~&eQqpS-UGyn4=U+D^3Fm8@VC_=?#bx z6ik4fzr!nOFgmIeh*sxkyeSU7!U0~ShkKi$Powiv5H4jgKof9p1{aDQP2e<~6KV+V zOWZol7UAtNjksA_8S>+PWaQwFA7He{B__h8a{Z{5*NPG{^Z}I&#_8@#e0l>2_}kl2 zvf=f9ZRcX}1iR50pbYCBnEHs%Zd=bHxhI4v|0a`p@O#;{I6FUZHnmWT@i3yhW?q!bLY7f`!;y$kvQ1|B&>&*O;eocrbg z4kI-A`sHj*VwzAfuV)i)V z>*K?ib=+*9$iai)*CX1s;H>Gn?B?cXgLG-}O5jVf@?e88d%^5ff`g+MOf{8*XHgJQ zzeO2xd^66{L4oR?P-90xOOP~^aQWoL<}r2HVI#4!Ty=2h8yN6BnsK@wj$n8r;7Z^` zSx{Y1LWFalvl-3whKS`@-RiG#)My#_jS0`uIa@>K+Ig<@i$TqEl;N~VfQ7lgIXOCd zXz|JvE9GnG+`14@CfD`ZW*U|zTeof{R_JDCh3G&7>JlS5n}IqfxMjab$tb&g5#n3C zYK{eJ+D-&5&|<=|{z5`P)?H{q38BPHRfHF6%Ryn>JX^U$`i<;Mm+u+Rz{{T-yn;XQ zIhwBi9FYLqJh++qb{vNDVAq`7`xyXoar+OPF_w`**wh-^Em?0kWK&#l?HKMJ7A!GP zaaO0j4cMX)1h+l=^k-=6j}aS#wKOy*rjU#S z98ysV030Op8?sLDofy}(mzB8}EhpWbgB3sqhG}c^oQ>1iJwIi*ZdAB@Idew$gBu%H zXr)&x_^l4jHVUh*x~~B6y8G#>4;NFdGjJ3LRo2OQOWILt{cnA=jr0n94p4Nq1v zwrs55gN`24y|nghFxfkuur0tXAcqWMgJIG?4}>2C$=g4c$8>h0iL5QeT0~A9#-16d zBS-ZyR_Qy)jzE@?8W0-FylvawZQ=DG4*?Ma4EIb^!+I+-28SkQX3j|BjSQnVpgPcB zsDW7a92h%b?!_%Q;eGCW@u3}1EHqpi(QHGC%)nO=v`Z=piw~Qw@91yXCX{%hqtxmH zmq_zC+JF~G9N<5}0%ve|co7P*;!nH0W^t-6iKQ^?L8cA7V@f*&ogz8K2yu|kL}d4F zStSs_7MqSl;G|rHNZcz1!6Iacmiu*J;50YmeJQsEpitluK;vf%1dG(2u)$DbHcCbG zL7oFukcj0mLmBl(fyZDTPzFsO#9<}hnWwme_b#W@?m+o|&H5bDA#&c$fuy5h=&^Nk z3_b4u033*;PoUf`e))#?%u}V^{eXYa=-?$Ey}1+i1uRmo#P<@CJRH(`8PODY%86AE zL(g`WcmSyd5RRa14)$#wx1K)c_vOIa zqA9Ju_1^JQ%U0irGu|TjjN$4U>oQ4p3A5(QPJQissiAV(kGn=4mI;1#Ft=g57kAWi z#&EJ^dDqCU`++0TkDv36OfqHGTpU(0qaLX_vT|Z{pVj5l2WsChKWAtfvi*&r_r+DO zdJJ7m0Ty2i!KL++V2^?+ph4U3nFMVGz~ig!*KY>(`&#NaBQIUta+q21VxNqwlHvK_2AWM(uN^HjX=O}&VtMj~ z#+AI&s$@JTGcxFJe>xbjUHhCW=i`9Y)3+uLt~qj7Dq&;!vyIz&clCW%j(h?2|LdXc zGcRs`|9OoiM_}z-&D#C-yT#Wjn~t;d2+ht9U0bd9vw`O71dq~A@5oiJF8dC~yf<9& z<<@n>gilrTcbg)QmF=CRSL$6RzAEoWn{%P#JJ);@L&eB-Lk(G+{;HmWv8SyHLlgWg z*2!-Uq8cmNrYilkaK-dg|0WYATh*K=CBl_9m#CWNowc4No|xlN?am%bj)^MeVMtq< zfAXcitkm1YTveA%?6F2C+plkD@;0yw>%MZ3IjO3>Mrc#n_Rp&<0##(&9kM-aoa+4z*D1c?_Dg7_?>&Bit>5Ex{M*u+_@^V6 ztp`i;`gH_+{gc=9indh^zTMSQK1;{d66NyXx&V{TUYSoD$KH1YM3Lkl5M4^Px-Eb|*L+~IIxjqr7iJUs@HrW(c%I?7@jz3&QW=?Z8+xVY@z z13pHqQTBJffngjq=jwKk zWr?`m63{%}&ma_(Ze8hVu;xltL-@yj=i=_m+3Rj}Ea3~wqgTw(T6@mo?BTAflj?!D zzosqOxT@tq?#7qdd(Yl$??2USEchTw!b-dLRPm`C)6}2ecIbs#U)1@i?Ja-%gdl@& zxzb)EGj{)bOwX#7?Qb_&MJx@rZ!KWA&|vxa?S8A+#PDR8K}yoy>$iUzzKwlkzVVT? zPoZ71s>W8EVo{b$@tNoPdLqVj+D;Am_i`q`7~9%WaP>jF*l^G-)A0B&D(pKSb5lt? zYij17UVW+~(1v!XX*Wy9;db+5#~<%K?W2=YsP+1~99zioR_7lNEKS=I-dJAkt=g|F zHDG$A&X`FuyX25c{62<8$7r{)MX8@}xEvfJE4^=QZXIN>NM>@Ovq==BDQ6kc<4s>P zK%Y_a+;p+D;gz(|%^{1QMkCzxN0UlT4?0fN8|UT*3VpogdGgHa{atxcb*7)PPHmID zc~Xmdg&I#-Tx0MT>Dm*D$9U45-He5Dt#`@ZK}XrFk_R^rt6dgU4tu5d#8^DNpz5INrkyWc#O0^$ zpBFxRx8cWWGlf$vf}9)X@<$~CwU5^1J2-bVJXG#Dru^7g>w{I{HJy8(Z4S+keCZFd zHEg%(FO!>e*;S@&UHVej*Q$R1jiD+B%ZI)-9L2_W1u`$uh7A~LPDRC~II(st?2R{` ztk}QIxtd3zX}XVfCNXmUq1jBh&7{wEwpaWs<3f!}_uoIe>hM=#)x6KcBF%3zx(iHs zZU{t)KD!q5_BK^5>h?OrQ!BW*rWkX_3S!DLvUj)Kko&6n!#(@e*ksHhqS^oB6xY0DqYhtE7-v6nZxC7EB`p(Nc-Z) z#*)J}H?Onzx2Wv9aQow?v?s^jzHr(v%XoTXlYecwl}VGuvkdQ;gN#LK4_1qv7-`*F zCU`x&_PLzk*`Kd9Luk2QW_aw}B;P<=x7w}eWK4HhwZYY)6^gtAg&kYWSlD()Ua$KY z#5a-f_}SE*wc)W@-|0Dxo;1iDzyHJK{!yW}*$ArF^K6n~JC=rc-7K=UI@+!%sMpRb zlB?Qw(qnL{N6u%tf%)@qN|G$S8vB3bC75sCP=$WX%)Dil1g_sxcW+@2#RQn-Zo#L|7j zXD`3}axH&}&CPr^ip{cbE8o-H-?C5m{+a*&qyK&y|GhT;dprDhaQG`8{t}eXJ689v zzW~W8>U{r>bV5zi$-j~p{{JS9{r`I6pyn6)|H>RY zLJnLH*Y<1lg7+qQn*KYlx-S^h2UJREMZ_gE>$a9PE7C=r-V^8*T%ze6 z{G6^;b^jo{&X1?Mdlkx=I!zlGKdUp>9mrIy^cTtxYrh!vU98xKM%zG8sHT_Yr%3PY z{Da}G!^2_2h1HIcqMabuDWg*_Ix#AbY*m1nXe~yNF$AgBMZ^9-|Hie&0M#!)YB3Ha zu4DVFMZgrP?pQ+kdNn>K<}8p4xR7~(XSL4O(R~afs=G9lYr}~Ek51wQr-QXU7bC6Y zyMKT_B4S3NI9qi0^du%G%2`k0j{=@$C2Z~dx`Z+!@zZYj*@R8o}lNOMip2noil7 z8RHfBBsWV<2K%eR<(4S0AUWRS?YDSjya}g|VUR=3TmkME0DCZvzc}_reZysPj|EFbkpr0~>(d!#~j$ha2_5 z*I=N#(2orgDh%TQz|M!dO^1>(;FaRpR+hzI?^HVia>*+@MO@$RZg)z71_q88`>s$Z zBGbBhWe_m6K~M#f%eJC49Jz)`%zpeC=NRvL-n_3jh(4N^j88!~0Y9w)Af3#XUi>Jv zgx?US37w~LF;0fSFe9K6VwD2$vSge&*x46aisxH8+@`{UgM-7u`p=TZsFDMr1N>e0 z*YACRxi+jjzJ*=H(0HWo2+ND1 zr!B0DS&)ufau(G`l^M>gi2irk$3MIMin_APx*Qvb||JU}yKkYcqHoBr$ z=9sqsg8!fjEam`a!VR+kgDDKS1R%+t{@F`Ro*{WDn*J7nF)o2*VJw*sQX-c6We~Z# zp8~Gly8nXGDd_Yr&LFB(Jtqp?ofTl`EoLpkaW+5SZMstb^=lH)KtID#rey74)4XZK zIe-|Q#bZi~vs~+V*N0;0$X0LNFgnr4?Tqj#s3@hlB+9+VMu~2 zxV>Sq&d=4hMq&y!lLvELPR)L?sR2X&ZY2mrlUS1EKQgmxFa0zS!Ne#?@ZG%AG(=7^ z@*s<sR3Q8|eKVpelU=H3maUs7zTaF(jwEhe;s3376HSfAlAKJ$>K7uHrR~0XW@AL zF+k33_@0!XZ>GY6f`aJYsNoY5M1M3@Rt9nH$Lqq=WM^k5tTj+P&cL=EJaSAf$iIf@xTuwcwvesG@(d#b_T9U`U<3g9hXNcp0j~eZ>+;2O0m6My zN@_9uQYO`wwJeh2lkDeiLLzgESJ(=nN>q0{3yV~@|EJsW>pk>_AOszRIQ$C)n!*s6 zmmqzu_R;;&eiokskG3!oD+7p=eXy~8Ib&0b4}tFjA%lw;PIh3ibZCjQ{UQtN&)z@PGb{Yw-#qqq-%frQ58g&7ZY~1P1=B;K>pn zdAW@25b%_c_nI*yBu8_A4T#kB)zIFNoDuOFTEidM_F(q%S?6L14%@6@5G(Ko;a#~g z6Z21^Tm@rPkYufLT~PXa%5GyI1opCA)=KPZi0?5v_SHGAqEbANmcDiyg+k5MJQaFZ z9=24NW>41%S7H|A)sX_KT0O(iY$47Ncmm?#F}@dq%bl=LF@|oz><>#`Cc+3mE?f}X zh;=Z=s+Ojiih(s!XCHE<9>&cOYU1z=eJouu7)skeMk#gC&`_2a78)ppMEBwCawd1$ z(BX!iFmr^|vLF0hBH5)^5mz(533G{{jlR^#Gli?89KVI(;`Lpp6Z7G6_b|?dr7}=O z66XXpf6si*DUzp3D2#1qvaoPid--|BN)m z5TYtRd~*JrS6AS@ZQD_`TKr78wDx+#|ASSpTF4gpa2uk$IRq+DL(P5HUv&DB->c_5 zT8fDtbZbLrEM5pf5rJrn#c=}eeWv+7S(8E@UXvpaEV$F6NlnjCGJy+UYu0TEua$sdJ53{y938t;j z`Ebk+AD;#ISX5MtzvMv`DnunkL$-t{)i571S_eaB+)ICsb#o6bzBmPRJp^D_dFiXF zp8bgIYNw2PgvEK}P}z?)r~*e$z{ocb+tY3GaWtrf>F_v)(I(-W@}OHVemr-WH5AP9 ztzbXePFr~uG9gW0DaqX>?~Q?@1H2uzaP(XWy$X(VAtV51U0b!m126^!S#KT4o&|Fe z>EKhjkD)$X47gJq=@abU0gP3*I~_I^6mm6c%2*`TE4R8xLE zTL~)*!r=oG)dk;_U3mq{OJh(pOOVTDB36Kz#l`>U%7poGiV29QFat2dupYjPFt~Yx z!n_&W3#qw|_0PUoANw@}K1MNa78DJ~j@!(xV}a544^k*4VxrN3r!Y{J0uKXsme>2> zDpwIR1+8M-l!{jAm5zI!~4V@hYAG-wG&9uLVt?w?FmUqlJ-YqdsHMQg8pA@ zNs{8E`N;;(YJSykpGy}~^3rH+wXz!kY7vKsm6OJ%K^kqJ9zy%rUBQLTHjXBE3J_PN{*cP$* zhtJ(*jfQ|_+m$c02SniM1vV;+!`JJUjtJ;*g~92{s<5_%tuk?Jfq+s7Jg=N|P*Ym% znsh;ybAp-A;IlHR-K3POK^2DjDYg=V5@KKm29bo$i@rFo*M!wjbDw`#eGhnB^DXTQ zAg3l<=A&c;*VO&XBitvl+su^P;*@bHuI%9Wd`CMg)VcfjH@qTMk6Q++RV2Ry-45ve zvI@s4w!m8N{r;LlRO1kR5#f_&s(KGRUSEJ!_2zZMx)=76c!CH5^AlNaK84hJ2yA_s z@RGGIvET>$0Q~*39tiw^9<0Ll)?IK5!qIy08^Ts~05ca^9k%QK#4LfhrT6zkEK-Ok z2fB1L&Yt`10Dn`sqeSmJC)4*!wHvY2Yo5O5le}NBt@}+p2oF1@=y$}R9t0)WC_Za* z;(;RKmcyxEkE7=YaiR0`!)~w=b%Qgq?9;i1=!NmX=(+BYGnY-k4gtXfLN((O#5tAu zpG}p-+ZJzE&#@;MTl#X|96kUJ7{Yss@c<5|lJm*mZn4+{%NfHi)cZJM;0h!u7aur& zgFYA!j_ETB1(8@@*js3$(zr!MKZcV!wX!5p<3l)ds|RdCljbM=P;R|W>w61+G$OeM zo;Bsz0(H> z&wprV{JT2bkz7({o(}yi$;MU+m?-Afh|_;UflN&r;Piz@rK1Yvh(gXy=G*OjcD~I1 zPx0u>zC^cF#f%n0PKI`9YW(nf z{Ms|2vITh=xwRrhccG$ePvykrFq3=GGhofXrQ{G_%fe{wf zU(u})awXCj_Pgz8a10}(mJV&^$rROCfJ3(r zAaS<9{0oI+#DfRhGx04`Bip{Q(6zSxi7pzUNBCgKN=|t`@;MLZY5>x@gd*H{3e{+< zZNu>n_S;X(;f3-3y)BB|+Mai@fVk=^@yJk{i_c7=5QhmSS-zyANB<1oB>so>ck2G9 z5}9MjhVJk~7Ce{lAK@m>Su%yi4pOKT60gi97@Dg8?x_35EK=ZLg$LJ)&DOp!`Rr2< zfHrD5ocUBiNMd06JA?J>_X~$mQaH<%n|nhE(H&-g5G()^YsIUub+on~BcK}ME8#r~ z3FQJzy8_Q<^6;qarcnSGWXUi3)v#=%)0Ld_w~U1gJP5GD@JJN#bl8PG_g{)3{xfd! z_P=D`{hM3kYZ;wq%Ql=Jv|683a_F3kR9HQ>l(!B`hr%yO!udFAu5KJ8ya0-%7K*sy zWxC`vuMu*%+mXWOkwF}$9VRtcQ~)@X-Z=O$(;v|5Ds@l^1Dkh456VQ*&SrzAp3%`o zhsvw&)~kw+CT=xY_x4iZ{YRsl`QBdT-qw?N(QOLT)^XY6~C!6`SmrCKpxo@|G12Ecnmg9lNxZYPUrjv|wXz)=NdgS`xbr>~|gO za<;n`KVgG?!O#%GnIdc{RDy%psp#ttZLX^Q7JnBTmtLS1T1`!Gw`#SLA$3(%t-RP1Ss&#use9`5EeHTuSP$Wl3A$b`_6!J8Cid~P;1N9D< z(_z21^O2Si+HdT~!6k3~SoHh8Rlk%I(@Sn=-Imp05#Za@|Ev!k_$l1`m3P~&kP~g; zVA&CN^7QFuaAoz3BRC#7u!=LhZhmz9Qw}Uu5f3~bQm@I%>-0nmpl|tVMaLyHUGXYS zzDB?Ak3i4i%LWF;I|{ zP*FgTZcr(M5)ec}Lck)V8vzMX!XTujmG0(TuXC+6=h|nkz4kg||7ZVejI+jAQ}pBe zzW05f=egs$@9Vl(Rle=mad0(xtn^xbg+%*q9-btN2i@P&#+jY-fh;|sut7)yK4)qX zouq@`%@XJ)*!2X+p-+Y5D=Bb5pe78EUfO^#7YLa>AnVqAF$ zV6p&HuonStIKW~eoS=9Kl`NLLgAgmnt-REh}zG(my6n&(S z)*^bO5dhMUj{DjIzrvQ30ZV6Yco76g7{*GHYFd5~U9L;pqmx+^owBRp;8$T3O83h*9#L6OK)Zs}n}gK4q5F_ZOAK!gn~bNq4Dt z$w6@b1%SKzT3cmK5%5C3-8j*n&y4HHK*wpfRMNN(9yC}igk~sqs~RMwak#zGf;WvR zxK2U)(E(=yA+I;j_<$4#rQp@hzpd}=7fAK%4f`$LF9 zKe)jt(VH>9E4X^~jxDqlsdu`xiM&Ud z18V3{{TOE+wKLH5f!e?6U%nop0EJ(z=8c?pv9nK<=h(w<-M7j=Rdiem`yqxIr|k^; zAyD#SS{#vT08s-XMa+I9ZgAo~C)_mwJD?35+00%R528Z!>eVaY4^i-pMXSrBr3#pd zaFbTYPEVcYhFypAEQq}x{Wj3On?jTkm%;q)))S0mit^De-bMR^ zgi_KU4gkm*?jRa;+61PBlm$q-9Ls!;yhFVmq9{NO&Lg=&fyl>Y#?o#^7%=wOeO5__ z5)ys1V+Z)vNWG6#3Zn`igQ5n(DnW9@pIZv%!12fz&L~^Jg3c3%j#3Y479Q{Ub!<+z zyD^@qq87ou`B_dt_8^I1z6rB4Rph3zyM7{@uP!y}IC3wQbEjX0wTv>~HXnYk6B170 z{01kQuE0XWU=mCCw*!?mPnzu?WQk*K!x6bWc z@^4Cu>M57rj<=h`1B7VXTm(zJ9m24Pc#iM%9K&F@qfPw^MNvdij~o_lfzoB{4pCFY z$TgWHDHI-waT31L^qW_E5Z)riW~@Q^szZte$|cxJDj#RxgZ>NP6>1h>ArMe243|OC zFf1f0paA0g#SPc21_2)^R7OsH4FV8wm+_|}z^`dS%?Hj^?!qv*`_Ml?9di_{U=U7+ z5n*dP4rc_M2YZxW*hC$%bjeooVRM`&yNBOoZKve?nsS!%0=1dw=QUNTFpZvs)&fCj%Q z$X?j|v&BT#mVmqcEFd5NVNM@ZygbvPzA=q3{U)keNET7!{Fzm>Yzoi;;qxx%M#XK4 zB3!ORsTGh%-j??gu~glAxOPWG6S94t`9QHIaUe=wfV}G!L}=aa57C-<(y`Qs9Zm3? zdkDc=(w8Oekhq%y6g556EI8Da*>Z!^N(MeM!rwmy55jeU7ZT@nc;K@3n6h2~>lfhB z75NIA1>*vE3#QIyYv9g+KCa@<^Z?qUbfZ2|Le7iXRuYm|$NbkQ9vC%PJNM`i{n|6rfA@^U(JjK=lAZJJ^LRl2diEggu(NKq)U(B9-iua_{yWVQ!dt134}cVmZA zXO0s$ksLzew5ZKo5FQqWG$_iG946>B3K!THtJYb$-M$jIzF7k3#j4hOfb}mgvCraA znJsovNeMzS&t#mYdpEF$s?~Jt_iN1!rPZQX#xT#qP)RgpCx8bSqy0D?gBATZ{C-i5xnTOa+WUR`ru^Ev+_MH%8vz}0dB7MNF9Al51t7Q5aw;_uQ~}1 z2@Z)lWYj&;#Lyqx2dgtEoUi;)E7Gu+2cwQBr)P)Xrl(~S(mUP0CxR}-g6b>~QP&_- zAes>QFQ{ZWcS6gq%LCw0Gcv@UAK0pSFu4d)J*&HZqQ(=Wd4g9Bp(DJ*>a_0ad5IGs zA;xMVy%po)n0kB=QR*q8@-sm^%%NsWuGK`~wTQ>dc*K6bN`sI= zy`PkLm%Auk?MkZWee*t2ttrp9AWr5U8uJ{EAKI@sz-AR+su^aH+Xi zK0TQL+u)^%kRqo(|GEX(Bcf<&#fIdf_WgSY1bihg;O^M=O~6U}y3FzvElpG~J90UN ztj_tZ5|i$Rlvdnc7zM#{qvyEI32Ldk9a2xe$@e`J;8jJyuNcl6BZ3f`SciMrrftvfRqvxG}9g z$ZipyrMm7TJH2i>N@Vl8VvbC(yiWJjN=|+lUr~u!(;;yHyA~R+LP-jU&YLlus)Xh}k`}paoh!3ZEKOb=djfCEZQt+M zL}GQvO!$pgTR)3O9R<&Rcc&dC$FptBN!{B_U%lZgkJ*6Fe&o18lm5`*DWD)g& z$XcFLX&1vQDyHhynGM%CUruz`Xt8i3*3FP%eKKF_h7;*EA-7m5uJU{#_c+$}aGT%b z?9Oav#-=?BEgxcR`MkVu3U~?bzEt9sb2KuUFPEdt(|#&u8wFp47IjH8*Wn!ptjZ)< zU);OrevU?p`I+ylSch=2Bifsuc0GLk)YR_CPZxiocB)DCDCM|!UmP-n*)`T`xGR)r z<;U?)D$c$!Ijm}bT6p^*zjx&iN!7g0RB)&Gn8a{Dv63@WV=@W0yk!u){hj}ra9tMl zmXoJ5FXi0Jj>=C>_lT2nCrvU)8Itk5w6xCnKtWVn(c31<)%+n>2Zta=zSVcphr=oo zi}{KksWH7hDYeasdrgY&)jJLH><7En?$Pt+qsdqoNheryll2gniAUj{FP5Zn5{BLD z@w<1rEX3vEgR;$m2CC{9aUHem|eC9zL?Z*?e z;gM~$hjzuD)BAE`tq%jw;ksMYM|OMiE3&y|oOp4ndi~?X$HmF?CJ{67B(WOq-tD%5 zRw-xdX<9jR*HRgq?)YBVXzjUWq2{UDiS?U51qr!P8o9=F84f)eV(xt;*0YDzB=!Ylh+P zQ^L2{Z*m!APoY`IBp@=acs8r?_y(n>J-5T^wsmixR&sw(uQ9y zJ;BGy!dDSudb>8)TvX<99nH?=xdgstfNr&Px6K~(KM6GU%eL1auomPjU z3(8-{_MFOl>_lrx<$ST_R?Tr8<@&4d-`fsE_k)9iI!{EUnQb6c z&sxb{S?WvMK;n_RO&oe5r%ONGYbtO45m+SPDG_^xZS{(4PN#-(YO1OAbDuFM=Zwh@ z2TLz=Q?#kklSPfZx_;-)t!j3&QSZHNN{ly)%k1PLywlf@e7j!S8-6B3uk6F|F)aZV zCGAI>OSfGid2Xwpm?+cl61-icpU(by{Hv%Ig$tvOd$rVx-)m=I&*$$}w~V}LUsaG( zV7k?im;W_$KzO*&abvlbLN+y?kB@IG3uly!NsC?MX-)D^mOB}o^5)2V&a$#%_G@OR z?9Gy2f<~*0CRURt%o9f?3X1qEXAQR8wQ_DXXT7Ye=cy;G_;Mm;$@{D0hy26W3)FpG z40KAKv&#pHiM%&g54{xnsYy(Km;9;hno1UzRfZ;BSKbttEe{)tRX((p7r(xsZ7k^6 z*>=KMn=5IyVjVY4^+x{ZrlhA8{Chmo{VvH025o#j$k5A?+(vazjoWi@xwxd5I(W~+ zT_y>t?7q)R)LA~0O;a!1NKM~6bMMWYc-!7`pq%^IyI$<%~CXuz~&{BXu z)9Fpy1SmPWjI=ck8HN->={WT_Y>9YI#>C)8^NqpI`ZmQeNvDosnOxi9qBD6kS0XGj zNO5$6bOd)un!=>!3#l8j3zpe$DO2=A1jyiYMBFO&9`PS$Dr z<3*O0O@c}X9RJK4i~X0pv4{xTpMU4YeAG}fYZcxGX6_gzSE&fcB|Yj53?w-@W89T` zEO5uv%8mmaqg%Wv&%CT~*vop0TZ!T33Be9Y(YOzV{8j6hAj=dyVctg1xa#vR`X-m`b;7S0I+ffBYS)cey_L$c;!?2WATCc4zWV*N|Hr&j z7pn_Dy{^BttIOl6+2gvKoRSaL9ErHSDNerMs_S(Sl|i`}Pn@u}-;$?c?Xxf1Q61UE z9_A%e?Vl1ZpO5)+vWD0BC)NEMz1(MJW60WX1%0@mRWJR$L{t2SGc%c%tALH(5Jz-N z&YBmLwXp-Y0}iHdrXu}#=%}%hhN}M643dooL4~`nR=ob)E+pz${QS;t_E95+xazyp zm0Ldq%ZCNqQnxwEQ$0KKMBa>xyfTRFjBI4Fi<{Y&S*FYK;_q7RG(JRKJn&XJwN|&& zs_=dFK^4mnV&2mChvsuSnSJ~RYgznc$&OW-)eeOY5u&Knyi{y+HRqllQp@S_3RDBEHs<}3Uhk2&%izUZK z3f($t{B~~pDP#5<45zGhDrn0s6FGLx$I!U2sv5+xY#(On-t_VE>HD6wb}3z2)sz&9 z&#iXNM{oBP+djFQ)ufkly7YFJpo@`cryd?MCyL!ToOTHf<8Y(W8YdD|?#Rlb(GuvaVMYdH7W1nuB+e=%+G+ zqk>(GMv9*-_Ro3r+2t6G&>73$`j(=@eat5NLI6Wa(yMr1duESG^70+;E(l4yCh_-; z?{4Zjo4W7B7R|=1RekofwauWZJ|orZ3vWqjijpRt{5R{WjY~_bJLebqHB3CFdwKqD&5zf z_-*HO?c(kJZ+Q;<_;oEkmG6q#FY}*R?{hF~TRyexyt$UFpR1S8 zi*sKLGG6g~oe1BRI+{8ABO#ciLT9jl=#7iU%k<`ku!fe{ZLKA`U-oMI{-|5La=P@O zT1zNH+g77z3g)}3R#dChVlvN9JaV($^X^P3!<{s>LCc$5E#Kuzo(d^dT`?P>FzPm% z{&vtp``DFyUemqxFF3F9^qR0sToqaGMz^8S$Mi`r<*8}oFH>xZGl31~78HtHpWVN1 z?O525Hdz(WaP#W)R7gw&b$p&}@TLzJPTJfWvvZYW%eG9penC(4WzsbL0TqEgq%(A_ zw`%MLtX}h1aBwJ}temOe*khyddRY#at1lgkds~6*O226tP z{H@K-_Q!MYS7(u5-sy8eoV1!Xv_H`N9IlX#Lii75q0?fPWF?O%yEu^P1ZwfXI&JXFJ(RpW!Bvm@VNYWvB2l8 z+sur;+ZwGaC1yhP%N0hmDTkM6e0CH}`|Kt;?|pdgnO0sm_3?Gg z!p~5fRE_eN(ki1;<-c_*QZCW_qkR^^BJ_GTTk zrn&zvnR(yKjHSXckGC>~>T6e7PG!BctZXf>z5lZ%zLwsB@U-c2O-!`k?UaQC4f`g^@Tp zX`REXXSNJ4pU}{V3^`7pCcqP%9M+N2oD{C4`g-($1eCN`}iuw z27FR~dRnpaDbk^Ct z4Kln9BUjv?@8)i^?=KNL`y*s|ALY$QP8lVct5sm0Ol`XH$m7n5O&M&kKQJ9-m$Yz6rK@bj^t3=Bvv!-}!FS zqzrX`cVs*}Ca-W@R5fRwcZ0D0*bV8b6G56%cH^;cZP_z4eEPQbN|>xKS!5Qv*S4GV z^k%vrce-BAeV|a+NTs#fSr=y=l=}Tj0UH53Wz--i( zy>j~9W+}q7cdnNz6nz#_-IBevagwoDHnGf>+t$X6$KIg)1)Kd`Ye}YU#estE+lL1e zCS@nxs|AEsWAEmEUuO8kN@qz@ox{NwA1=)$_t-z7b3x>3=sii!GpUk&i9u59NHbU` z2HN7v?i@Mrbb8##Ami(iiH54YDHewF^4g$mz2YkR-D$apq8jzeR+=1c$c ziDQ}{q=&UktzDafcZ@$N;TTpqA65Q_!sPkYLwD##DOCIE=w|PGx;S}Wx?Lz_zd@jN zv(NISb9vsTkdNJ-FmB3O>XLR@Wzck@PIW;g`ytm`cW-gt3-dwOPtQbMX^A;@@6Ncb z{4@Dxl8D~%#0{M36rD3?US|CW;ON~Q_ikg1bQ%dM`Tc=c%w*5q-CH{@UyI#)h|aV) zzth_5d~_|vUFPU;v-7dB$k0C;AME6wRC}m?^q#;5pQy8aGCiy9QT65PeSEJs+z7lR z_00Lp^&7E$x4`edcWoh2-%jtgn%oV%}Z|aGc&RQYR-py+Gbq+$~#zt#kmi0TwgBU z=)Y~eu5WqQ;jIY@i=ja;(=BKDcRiNKi`&S#=8|2p(y@`a%bFENB{~&MyWi_1wr`(n zT9fXx*=VExP{xez3-QF-8O9K)7c5sNZgX9SxxE0X{}_XXbh zEmX1LS02-KiMN#{en?Y(U=iiNUs>q=ZJ9m2$`^9F{2o&9D0!B3kUe0azp|lNE2I7c zYu`|=Uumiy9X-{|6}muko(F!Ui`(lY;!;+~IU_u+Dyu|OM7pku(!amy|+M1tkcMC!YTPD&7NHIsx|f{1*NO{5k~C&&%)aW zUDNJd%RXhHYflnr;Ww?gegAWP-KiRh3KdR?LubEUIARq@Bker0yfFVW{3^-D?zqPK z`;5w}yqn+fZ2ZXgXu}CP36kod&s<#RlG0L7X47)%&UiJ}j$AXnRImS5z2Lmxa1+U% zApJ-gxnrLdZ`-NNyq&&QsJCB?UCZCKH^Iy`?8>LU)RVPG7*BQuJNJ89G4}e0k?CD| z8g3EhVe#Ht_&w?DZHsx;3qk2R`yET-8RDiB3+)yMlzvJCRnp5IvA%CqeX#Z;*~eb8 zp!yP#=7>VggBLA7YRQTR4Jck#GtMHhKJ)z}H>sIU#u*-#Cu0unKP|76R6ka7xoySI z-Q9aoS?Y3>@7j{>1NLgyf~R&~Z}~xT?#P>4Lszw}mkwST4oyjF;rmN!IjtTb!(?!)C7y znmrpzYktf1W>?k6oS|!vUD_8lvd1shrdT*9{@|pk4f>?DaQ;EXk82r9MdPwA0t5WZ zN~^1n+qD*${6_dw&N6&5TwPsso6JnFuo&SyKS;@VVr+%&8?(Ht=6v=m@wp~tkEOA7 zN>Z9EO6+6zc<)>nfA;g-Lwm>0=ts>b`a^2+1!XRCGWE1c*d)vyIlUCUeXO`~eem-c z+55(~s#`?8Wn5&G$4W{kQuVF+aI_QjwKPBEf{chvrdV4bO6qU&c#I&0Ce9cM2Vx zsE|RU#koGJKMR-t!1n*ARDOQ`-=$$h{=b!m`Sn%*Wo;NS0ntBVV8dTn!5!REnzATT zphU+czmHmI6Cc-(H3v3aI_sveHk2Cw`9Jv?AMm&L{wqI+QeQgz*Wdpae*VkF{(A4f z@bmw>x&M82|N8WaRsUCh{ufs3*UtFs?+2~_wa@<5rTgRW|G#DYA793Q;n4jLuH1qB zYk%L=f8BtDiTf9R{`a`kf8mDycpCrT&Hd)}{u}nFn}Wicf9?W5l88U0qWiOG;|~oc z|CzRsAQ6@P7qo@`5Ri}&0m*-hxX|B+9{)^TNKi~f?C<1-hT0qX==+;`M4F{>sqge1)WR|D=6XwNtxgO?abIUpQ3==05EJ{e>-joejbr zw|3CS4v*rer?dFiI!F9xKnnjUfXvRX7k9JBi@q(4g6zHv__&xchVg5Hd27H?;>HjW zOo+mu!VP59qT`OdWjbfiKD>xGu2`C&k1GB1DT#5%WU!y>Z8c+#k*0wL65f<)))5Jr z6zjUX9gg)yHy??Xwc-+1Neh4WnzScxShJ?HERML8DbT6b%*)-@#vk_YAyY9k+F>T+ ze-5;GG=@&&)gCppJcISS)c3?}h>U{hP($yhQ?d#}BW}ZA?O3WU8t({lw4>DPe)m<` zV$i9fFG2kX#KlB>$L=UGbmmh#Lex1`q_P*?%oMt^6CP3i2CEgPMjO}Ri;qr)6=0;v zHyXw>Q)%M`IxWwM_fd|Ug)e!_>~a9%wlaBn64b6{O1Z9Sd~I>jz?bKrMLL`;zd!pz z3>-iIawlf9MMmm?Sz-hof-7gwej+4HUTdm>n~~B7vI7&pei^8UAYG}WlO6q!ZBW$E zTSo7#Sx)bxa9VYY?SjTMu`ZpC#`DEbWEL(LjwMvDl+IoUdDXyA>JetUL^w^=%gHWY zhIRoP$ltCYptYmZzfs#(`!`lOEtmQ>3A4L9_7h{4nyT_wYqN+Om^+1j)#K>#yhqIe z7F^I#4>GV8O)LFby(kHd5_GUZ8e|dT^=gTyyU=v%bNf129)!xu)hOo+=#7I4k}n;9 zjC!g*8E=5|0 zq2~#a3v=CmvhUt$aDGv1!n0%XAh#dRXoP?_l>{*$xHKNxEJSBLAqD_ytW>{0y4sh} z&`&W;yGsl-kGgQ|q|E_DFKDUR;p{}+AYlWZ-aH*T4DY%~@Fd$%irjAYX zW%L{pQeLl#>Cfq>(e8?-^){OpQ#90iHxTm?p)ro`M#^e*0B(Ie`&CWXLsbG)3EBJt z2*eQNkP|u%gU`V2ks7S4&jicX7}Nf8ZXEV5-}VSy#dlZUP6Ws?a}Wvul^`-Ot_)Li zsgL1oMGBj0WM_04t5X>3YZ7b3t&=~8Ex)zn9omz3@I>P?J;-T&GjFtHa*IpTqyPIY zI9S9H_4jk+&C~*~3|-nD9^eIi1h-iOti>AWR(WicKzAtC-v&>;{3xeki_~mu8XEgS zS-6T$Vl+X6;hYd|@m|48TAAlw!BccKV%PXQQx&DxR*D0cN-P9(Ml9M&daFZRC#u*8 z>-3sbZ3?ZvE{(Qd(5-AP*5xS$UJ06`(QKN@(V7WO4UTY;)(Nn~^U%kPu|!)9VrmP? z)o_*fnmPvr>waChZm;AL&2P=QDgI$$-#{U6T0qCND`+wpxj2D-ax*Zqu$N>eKL~>K zOl``K~JSj zZM@R4*x){(v0FRSCiF+V2;Ez}rt_z|7EF!n5tIhSl~X7Ge9t<6-^2va4> z4}R7VD07SbGOP4pghSAw=CL4~>gmcN91E{$h#)}8g5Ut7zjlsB!N3!ekPbLW))fcLRFJ2~zFQgV?3If`_nF|ZiB@Es=W!5BU zaSQKwUCy8}8+$hrETj4cY*MdRAH}3Wec^RIDyzl*g=(;$>*QgO&>$6MGbCpLNh)4~ z-it-8W4P9h)+Wd^fu=;9 z;wNAy+M9hKmLUb2Fz+e}1{{Um(V$Ga;qfmQgMSq={|?>xk=cC}3gcFB!!H3Ul%+y6>pNF6IK zC>Og%c9Gc2IMC9kI)37GYoHq(9EhHdK@6}ZyGHx7ASDmCZ1G+<4 z+{w0F`!+RYtjWNSa9vL@_Om7p>S21YyIovZ86rp$td*p?KsXs&aLwgdoT(vn@B^wT zsa-oGr(`PVu6_)gE+(Pm(#(8?Zg>^R@iGvnZa~@$R2{-C_{pr;A!sP6G`~Yw9dlzy zs6kUE^2v={j`00X-8nbLK+`E1-a@-$qn8p|`xlcyyxcpI1z{SwEJ1f&Q87?e2O0Czy<8f(y{)LEdR z{)W4MdSi6+4aiDuy9Sot<}6d3)%pbpyzOUWBXqv>^uQ>B^ZIjU5(RsyUK&G*@&lLsm_uK)hR(JOSG;a z#B#;}AUR12LgE1?0lf3rXi9L%nQR&n?&%lM&gfzER<=7HHuGhcAH->~Lt%OKaYTeR zwxrh2(lCg6EEKIS7D4{y%c!`SRqGIY#dA>GzhdtrdhqH!O^C_as8c!chNohOL{Cx3 z7+}CX0ul>2yqy?c0()2gw)82SV=6I$Y-`qa_y{blZ^IPi)8f?BH`~)Y@LIJ!3(;XX zg^4cv``?ysdj`G)ITPJFh*eD^uwevqii<%-d`dSSBa(W+XJFRn&20i(r5Elz2igL@ zb6Y+032HP!s)0Zi6o2}in7ZM+KPBrH5fps*H1hLKy}@dpWn1sk?b>!*xc|HvoVm2L z4&iYsw7rW1DVEv#Q==|pX<+F69l1H;DArBLWSzjU zm!%0rAxr|Jm?mguBM+rO*~sJjF|w}s^aGe1X}hsYs-CIsgjP`cwhdo#sk;oH?v-8a{pK*+ zX6yCd8Be$5W2Dfvv)<)=0yZsJ?O?&Q)!EbpSW-9Fo8|OZ-4it-wlLIdAAqO5@}0Jb z9qboX=QAtE;dorj?&o&iCWje#oR()nW037%N-_Zsc^;z8*j}tz1S}qF?oJ*pQ49$J zrDiLpA43w18=(`pYmhp?T%vHy%W~iiYRBQzr#%aPUbtGwq#?Ce$Nt7)(mS%Y+`5I5 zSDguWCb4*s6_%QU$grR}w6f4x#4No#{ks_jy|j}ZmPXEpVR|6e@5GamEGnB7KZz&O zW=sg%Lw4uDy0M)MB_^|#Ux2LI_+7S0BY5&4S#Zj#F`!#`c`|DCK|z%vvKY{Djv|``;S!{INF1tzYiXQZkcnwC z;BIZ9j14%;y_waatVClC6w@gBRQ6zK^`424|_JvTI=U#V0sQO#LDz zn6mo$32+U)#I_p+A1=ElzWZ06M1;A!K$ro8E^j24bH;uPs4({mLaKt*bm+?ohCfdE z5^jJ|!odddjOS5D?9ii!XgJRHjH!Gg53vM)h?rg+{aFX}B}9vu@U%K0(g#zs1ezAX z{P9--0hF}SuHoWUkKVdx7-MIST_h+VurM>cSX%fQk*hV1m6ZV)dZ3xF{w!MI?B^V~ z4Xd1n*AN%vudXc0E@I%A*q1)+&=y#S(cBMpQF`h_9mgzP_7Yk**ng#$uUx(AWhUb! zfxJlG5jR0vh4_wq``PHD9)unx<2~m&9q%ZRe)kKh zBbftf4~(*v)gOCU^+48zm>l-kbvTNysETboY!6tFcM!xOMS(9hw$7PHYKBNJ(%k@+ z+OcG-BSPR<%ID<6)I4!;7Obl!!7DA*Vln;^T>_;dZ(!a|>vw5Tuu$DF9B2on$Qi6# zRsn<=u0c)r8OJxcAfL1GE;bhf4~`wmkJ;^zOE|_NxBVI+**BgeoxAKcAF`S!wH9uo z0Q&~{9Os!BcZq{*#+DiVYBN_-8B4Dk26lKvUPMHi_;hvo43qEisd-1}ZE6*+kcv61 zwO>YzS$tQ4cqrka`7T5PsuDDLr%^@Km-x3|;KQ#tlqCGpXjEB4rKRII~fV2CnXxQApMxilq98shJso*o3M`wtwL z8T_1pq#|b{L86UEEP)gfo>$U3IM`A4FH@KA@n0GwJ#!t^ktA#y@O z;r?3hB&-MF)Um0A``w`424)-!KQ-2P&fdWc2m-j)gGhl8RDJsN3EBwkugL^N6mmY>pDA zU=D3AbSFX1lw*S=F`=dxGtRD-jsq|(77C$bw?N;YKWBx_+MV#hgzzNZ51wit!_I~t zhQQ!pni@@P3nE2^>>j6DlH>x-Ru*X|40G)RcGk)Eqd*=rPEEulBqaK)Mj5DHH^cXV z@eP@h9wK#EJ_u?i^pInFafx8yK32nbb~iajf5v9DWUhmV$hjI>`v4?X_&$IC(}=h6 z;4vbx5Vp2{0j^-BSwrs zrwt}8tBnP+J6bLCBf!a!UCsloC~rVKdI`}Ma$V~=fN-7aj2*N6Cr_P<1l|Ml3ugRh zSWoDD4Wv!u%0bwq^C30<^!amXCEtMu;o{cUp>kHbu;=)_FE!Cn4?~_!NzS@gc^83q zSv%<#!Rh3Ii4R3Q09>A`PXw=?f-x^yFc+9P;)FDT{HN?zUlti@e*T*4ptRA3)D~x` z0YDHpH#Y~zHK2Jp<(LG>L4B!-q1-(H>OahfuB)aG-s4Qd@M3FqU1Zu4BiXS4(vaN8 ziy@Vrd+Z4IzcZmT3YBdWWp$l5h6+h~z`j0;#lt@$IBkLUdksHubEu-t0sbU{^wMM_ z9PbuOzUMe@Y)p--{jK@-lStj)13A&8dIVj~P-AuVK;x50iA2p1K$TVjcS5wwL9OlN zv;>K~BqZASn7OeoJhww3_#BxtqsPC0|E^z+?-EmSX$%cFM%+n=eBn-@fwx;sY#z3} z==(iRiwKOf-EVU55u_SX8ZgwsgYh*O4MyfBEiK)@wgCB2uVfJIb3DT&eo|6WfYf(S z?PNdQ`9QE{GdW`Bc7TYUlq@cGqcp$S$sQ|4-J;(uC2!^dE)hr>G^PNN?`IT5*bX7o zr_gir(j_n^c&3l^uw}Kajz<7@Lpld>Y$oysgjEojIu`XhzJAhc|-iA_OT$LXs+ih zO8Om`%ah;I7{Nnnt-2}N+8x^QCCEEUjN$?R)< z4=3F(*$mKuP%Uz4&!ga1AfEi;wR!mC&x$&PLHUOjpMS3x|5l&+v-|v~FBZGXkNP0V z!O&KpM+9CEG4~UMj61X`@}xE+`qOp9Xy5&D+UZWnCS4FH*H2(QkoB@UZbLX)G^2xk zvpodMQQ7gguiKq0FZ$>Rz;uoauhi8m-@gw7<^$~rWalp2HY`{a>5&59XDX4BVj4-O zqe~!=6=@mxmoGE}-eyCEUn=Y-DoJbD;$2;xMzOmISq8|+#0L6F%`_oRu^s*f6ZUcw zv)xnR3O0N27Uro@zfmF&McU^52$M@od9-tdkQ2fn@aB(|01+KNg2i9@=7@MEA0mV? zy{K*w+QyKG$4q->oN~m$mnq?Mdm7spAr34Y?B{e%atPPSg@#=qXZcLAag z4-X_suhmmy0NB+pAX@^~SjW7cD2f#jMi0p^4@R_NMlym+r~yA{a7EGwBqD1Q9^8cS zC@?SW@$qr!RD}H|@ur37#%LKa3FJrhe_f06>dGV?o*AK{46B2!&gHIavJB}b?R>kN zf4v+;ihggbp~mv-X%r3>;B2U&;)ZAx255$s$T>bc!frl+fJd*|gy~^qBs7fx(&PambcHj3QB3=F zPx0$IjICN(@ukRK(?_w46K@Q}3$qY=4y=k1=r%Iy83@;!AnLlcZo`l?R>i5+5eRq` zq^ICHh?-vtB0_q{t?)m`1`2Qi9!-c2zs1N}m_|rBW=0Sjl-DsC@m%{oY?#jVzwWn1 z8Q(VVJFA6f`+Fhx?}LcnL!>|P+5i17y153M=OfTW} zu*EXN;G!O@2rX(w#V`yUNa9C*gN&Q@kBNw>1L`-#1O$NSUte9coam{-Dr==&y7e!( z-y}WMk|;Rgl}&4~V7~8eIxV*&eWGL(JqICYA{Tg;B>Q#gW;m|rPr=(%!w$I3O z#{_3}>X!YrI1^N&A}0-@7z3kzbIu;aD$G3bg)X80#SV)9BM)`Ia3-lDRwCF7Zrcp?wz5d)>Ux<3Rh}r~--N(EmL%>b6%wv|Wu) zuf!d4en_GtEo;OuJPA%y(&+<0N1zE%-4BMK8nz?6+Hq7M06h~hGNwwPq6C}Br$?NF zfjQ=mCx?tLc&8)vAe8T;r=Ut184wU)`~js%jBVczn}%2;4;8g2=b2`s&+ub}2q5ff z7ErQyDAVnxoNfoalLrR~gd8%Gs2L(2QVtj8Zww_=_MrV_velrZ5_;u+42KSWvqC8r z2YrIj*4D~Sd5))A$ytDiz7Vx}k!zp!Aq3~W_-0>Y3NoEO#?Nr^2#JSb#hd;^`q4NF zv~?cSv+zb#^Q+O}^WhNJtExi>Aafp`1&E-+?l|P0P}EJ#L98)%*MS%6;k23%sjIP{ z$Sd#Bm^6D97Y9W$xoR}9s3(eZQc{SABiWF9LSR=D{wZU?s@*+Mw<-IJe_LEA z0CH>E{ANGOJA#5~_zMth1Tu>1ET_t)z2Pmd>p3UBMHv-ixqNqtBq2Gfk4GB!2AiUO zB2gCkE9#L)|HOhNX8)EaAap!o)`0~oo;_d8gD3O*E_b;=imtFFQReGG31;oD@1NX` zvvQbQe#08k?Q^cD@VkF+e#W{dUAWC-#>(B0mT>;6RG&KOJ9^VwRu%|O$xWiQ<FMcEC1#es z0u4h1BXH)5C!w>Kpn~GQ{*y=;GC&rD+Bx!zqQ#Ls;Mac%u*RhdF=FQxMq*8kVj$ma zJNdIlARNFuwG4m&5f$H*Lk|WUlRJpY3Ip%AbeKJyJVM774KL8+kmBvsKbklq|bOo>rU?B?4(onuPXmUc#a8KAH7}auXv?(BoFKr}-1HR%X z0u~v|Q5XR;Xm2Zr3EhRELsv!BArpk6ViiKB->i@~LhD!NdwgjvFx%qoOcnp!GJ2Vb zFAcqImyPK~s^pQ3kFUM6=&+iVH!)QEc827l{X)Nx*-0av$RmM9J3c<8|G*m<+UWfA z#sG&;#o55nT4tr#nW~zamFJGXnN$jqJp{lVX!$WU-1#?j=VQ(R1cSVh+eJ*;6t5AA(bN6X^PTOKSocc!t!gJ~ZWkl$6wiE%1UU`J*H)@y!Yf z*zV;-mqkO8_O8O3D48OFd+|h$2F$&26u$HZP&iceP<_E)BL68+epeV8oR=`~1oJ=W zM9nWD*F;N*HS(7yf#3d`TUvwyR0jD%6rj!(mzS)P#1 zef5ef@A&BW-m&~1cY7zv_YAFD#gZU#NwgfHr|7kIp0LB4?>9n|NAHe2WGgq5ow#UC z&7K0708=Lgxd;ho93GTG0^262-l4@V;-jtPnaR7GI{ zJ%Aht?YA213o1$H?t-hECIW=_!D%WJ5$Mj!#V4cOL-f3&QB4SC7^EKGxaX%L>2@NA zLY>7hs;6R*yl5){jf@3Bn^v5dS0WWybbuH}hU$k7)NR%6&;|++Zun8u;U(yu4|!0j zTa`&3I%JKJP=NM`Ly!6h+DnEWFYR!w--1P7gorvC3{}upM96ioqSNO-1@AG5SN&}hYB_weV0TB5ga#1Cl-dF^%d@L|A-+BdOzqaB!BGmGw3w4t0+)3!dJ&E^@r ziGp!#*0`X8akp2UQ1>@l5_+m>51b6GL+{YT{YntD$MAu(z^!x8-f;!X zZcx6ZDnxh0ljzfNaBzSeXh~ZNy8gQ6FQXn@nw*O!7Ojci<)-_Q9>mi~#@mGwx+3Xr zcM&T6cnb7wTMfLvS5>zY9owaz%2Cn?%h37(ae^5|H16X#(+7p|VeZC|V!Ff6iVTsD<`0|Jb z+L80oih^{2m`@UcZbZFaEE@HD)_uCj$T7=j`-qy2s*Vkcn?y^{>#X(#>`dgiyQCVo zsEEr>5FN2yYTE4fwE~mbNV~tF)eYAN6MYRJOevEf^8I}sIAQ3ND6v#_wa4{|z&u09 z85jz&X?-Fys5#E=`*20RkZA4ov=#Y4i#9q}E+G3Sdv#YA8qqoB%Pb}Sr362ejK0Sp z&(f8uZrgHm-d{raX6=kFf>@DjUlPv{h1Mn^JP-74inX#V&vW@z=p;@NO@$}V0f2BB zzpwiRl@SxNs##3)LZ|4SsY+BGaJlEQ&Gj5lj^2D#qWuzkGx{eiC6!B{$5HQ*qlB<9 zB4?C&EN1`(0ZX@0ZC`r5liRC5OmD|a)#nqq5u%qF@X)>ex_0e3z+K>h7M0YQArqg2 zw!=}Bd=8$8IYvN1JGtnT3Q=*{Th@*~N^AC69+H!K@vX3t>gp^|pdM#dBEYk)I| z88N6zV7FN1DUFUxF*EK({@98n3^C8HNL`}3l$$~%H|%I|Tg{39bH zgM+P!9-F)5@0gjl$xa-vpIt8Q9Q3Mjb-4`O?rtGFPp;vO|&AUDxi-jw`}nE@eBOa7{d5CLLZb z-T4w5nh=jhBDgYFA%h9j?uWW~nqg&ARv>77j@;gIp=7kMXnEMIOPVh7S3^)e%VDC3 zHrCpQg9)wbMf55W>pF1r>%P8bxi7evu~%s|g!nab-%`PFY}jP=)IE}qh;~4PS)`QF zc;q;OnaNYk6$_n235=MVjS*SpXcw))SYiZd*U@JJce}Zk*Px1aXZ~SfO6lDvKG)+p zj_tF+1_PGa3P^r#dS|Yb)7GMycA&awKkSNIoj2%L@bX>z&DwtKhUm3VaeTUf?A13< z5UZ8I0lN;(;97K^?@}tgrT6K zLa58zi8I`D9%hA#dtqOgF`O&)vR8uhvsuxGO%-Eqc4+>1#G@@frDM0v357VK(H00L ztT^Z%+2{~LJEF_ny8|>6L+3uAUU7+NY!$gk%<!E_HiOHq zOl1Es{RrttVMA~LoKx9^don6MWy@Y~Ok!ddLsenth#N7J5N8{9nwU_QG8D+?x^9G- z?RFE3K&fCgYJC%gXTcZeB7aDTbT}wExW&&C_9qveoF!o?9AaY4%+=?>j%h)R(9{te z+c(T9gBBV3Y=hR)6(BahKfjhHcZcA0#TIYvsdn(;RY zan!!4T)M91OSY2|TL+bq86fYT%%MQQLqD&UwmK$jK`hHs# z9qXBU0-47y$7_CKS3D^2>~wU@r>8>R0>P{T#{_~{X_OC|jOLj+cPu(Ay_#+{e%&$S z7`6CQr(&fdBO;=)H_FnMv0_EcYqU98S7r_K!(Q~fQBzZ6#!9V=*`-T|H~FXpKYA4Z z?Aa~)(|3*1R#sMEqMFRUK11=CEQxI!w|VH*r@6V}UqUi7XApe*8#e7aEp0uxD9AO( zX2=qiqIUYUe?-Lc(!6C{$OiJAs`#IpTH5*Kv0Y0Xn4_GjudGn_(s{zq~kPzAwtxox?SFc)HPU5jN z2}@&!#b9UWHhTKzhK7chYP>d_yBF8qrD|?ziG8!)RT$#knVDpEYh)=7wC7sCEG%Sp z6&DvjOK*_`upNfz_6KV#t8M%BdQmQGN~;@qCM+yGW{a82R!>F0%oc2?D3LA(t!_tr z7p!hXM1-b>2DZPn%M!brlfTjA{|m^qmE zc9qF+aEjiw3z5r0hbJkwix4`n~6T&Ohhv^t{jW9ru0R*LB_Z zw;GXQYRc6{Qclh^`l^4@(gVxGhebq07B&RC85kHyp^J-N%My)`s;cVnlFZSgY55e> zp{MUh*zj_4QX8SEi=-7g6BQMOWqberegEkJ11l@8uHYtJ#V>wsN!zr7@7=l6>Hfo+ z;)XK`h1#7#t?r{@r?6J`5Idqhjg6AbP?wk9x<#|)h6Y<(=RCFoB{ixfN-4XhV8ICO z+b2}F&LohNlar{(D5FNO-R7ix>c`pRK%3}4nEC#_ls(`r1hkvnAUW;r?K@11aokk3qRXm6h@`zrPUYapab8%xW! z`)0|T7nck#2hUBWRaY;e3r}&VM*yX`yrg98dP+vd%H~F3%k>98e*7R_tmuYP;re(% zyqRo_PT-KS@%+-#R!&ZXIY1{}j?WE&H6Tt6`GOxhw=?_fe|(5BR;48qOWs1v$9IU| zBB-|2V;etzR$iW#=a{}#6kR$rn~dG(xEjW99t^IP-y zF>JJN{l}j$Av|AoypfU7VILGWz{SUR8CT-QjT;bOiry6RP*PHsF$LV$&*&c*SpE8n zn~g06GM@9(;$o_4s{UpG{^2aXnRsJOVb07w!hnGqZKiU>OQ zOG`;7A$>dC_5AkjTVYNge)~=}HR3U(sk~B6Yiny^AqTRCt&}Mz{yp&+r3l+%xIM6l zru@ar^8O3i4qi*IQFa!kfCc~9*T>Gu(4;*ZQ$*4b&V&71P!7wJw`HemA}WCoZ{O+( z>3@bEb?g3pIdMBj$5BYsj0_CsUaPCCvmeCV5(U&UGBe{m_Tp7`WO=NJ@V%J0xXhb3 zWo;_7O-#1TwwoS)I79ElFOeti>*JHpq}WWxR9RVxCrftjpWxg&0_w>;9`dR}dS~(( zjudf93X1jhb$D3BWn|*N@7lA+-PLucl+@+hX6p{(y{uUNO?(T98{Uj-Iz}Q&3CjRQxhmRgT&!9{W|I;H|e(&DA zERCq>8~7+8ebP1@asJJE8@1HkTvvo8!rt`lD z^Qtz5m{<`cRPt3;qv}VGqPOtVoNu=F(FmPXVq#+27qYo8&J=OZ-hP|oS9I`z1L)sX zb8vZi85)6QR8ZWB(E-#Y0Eu|6QxWRKyAik{`Uek$1|=jUtZ>-x3Km|twX)*>?jxA? z0R}acX7D%${@c{}&V0XM0RC9oL0B@Lbt`a`u|MgxMJnHO^%rcv{*b8>+$B*E5;iw_izdy*VKp=XC#<8rmm2@ zmr1N%^oytP!+RQviYT4U=FO%qQ`DUDpXw2@6zF6rLbTd( zgm>{Co<*;ysECN5Y90b{NIowmC51qY2O_a82=Gvhyf0lU;hQk;?d{E{rlyWW5XW15 z`80?9aCh4U^tlOZ*MT_{>^n6qop8nLF6Fov9hlIsc=_cEJYLj46y@ZYBWc)^;imfV z!H~PbXZnb7C^OW(+?y3%_*~;7tt<0RaJ4 zR)yeof8`bw*Q=PvUNn z8W6&8A%&=7-YMa_WqM?L>$r0Fvf24v6N69vGuYcd!1?7g`J@vZ?0O@jI`TQ;^=Fmmj34XXUP&fRT zo$b(JrY_`HaL}%~Z!Hc^lk*Dxm~uPvLfB+TZQk`Z&RI@QPC?BeRS5}n)*2caoxwdJ zTfsw8@ImnK^2T1hYH^LY8(&lD_tggcx&_=^Qu4J(?oFOn2&9FKGb0-B_`}4_LpP)k z+_ZaSaJn6(LhG|e!wFrdgvJ$&z(I>|3Nt4uv22z zacftu##4~!0GAzmScEiDxU8c|1~@qG>eb#8DQ8?IO^F+j=5Q*ew6qkN6H%0c=ayMs zq7u6OQf}NZJhF=61(h5H*KhIFFkcP~Bp#^+WFn({>`#JDJbUikxu>Z3U@{wS2=p6k zqvt!HojwZgK*B5+=ZI+yI0Z1De*T%Skx_JbIHgl3h{jT;)$P8a@-p|DHMLKiJ10#M z7ZXEAS8(SJLp7OQ_v_chTUyj_@=Ep$NXam*#>K_;oCXk;uMLU+z96BiNtFdZD1Ogt zbkp$~EqlJ#J@(7x+(lSp$y$)F&*QkF>RVh`D7$yBy0TJHSy?|9yf*zcDRp_hzcp8H zY~S4LgN}rZjEv8p?JivS;eKLnP4}fpPX0O)YGo64@U`}t*4p==N0I*E#U)Kajc*9~ z7p$vGF($6&92~64O3~A0ucj{_HD(2Sjau-!YLLKQukD-XFJ6p3Cu8w*utr{1w!E@( z0Yv6(7-gDBbSQfs)UMJN*xyL6dv)0?AZ&gA{vC%PbOG0>BJGR0$=&6DJ{`18q<{+- zF2FZHrllrhHys_Q6cTt9agaY`s&cr9T2Rf@fkn2uzFuHgS4)cy5_>uO&kDcO&8h%* zOf4|mhAp7VeTqv2qd>viz5+2Kb zZV)`PX`i>6ucTscv!$e^QBa(;vFS&uV>Ke9&)39u&k7)OWJ>Psc$ljd!n}=a*74id zuU`dKJ;>C78Wh*@d{q>)Ae>(IQhK>ZEi5RT-(t7=`WBa$t&Sc&QQ<&t_o}PQzSct| zn8ZrSJiFX&9o)+{F6+L@I{_9>^3G!SI!E8XD{HpLkB_q5ne{U>qg?JcRXg{h;0m08 z&sX#&_4C?HT{7_1#8SUcO(`__T)H&yRJp%Nw1517kCw!3_UsQ%{0KK!uU^$l|BU58 zPBuAo2)P(XiB%aGRvGlQuTwk)gZ0M38pm}}QBm}$sA3NtSYDG<*;!dVz&5^kVc0Jr zFK_n1b^I|C^>exdEX>UA=g$55{rkt%RK{L!@oxh-=$H@!cOJS>THW^}%~`Rtv!kGB zd4YtEE}73gJ^2L%A(1c^#1MMzN|fRmW; zg6E#CtNN21R)D!2HQ<<9Bvfy+8!*h&->dU z0ANqg%8CjCRgD&1zs|7}o0ucpQ+WIK88^2B;|XUtaIvEgP*w8t@Qm!z(i$EZ;5|jB zOG-l8h6N0kHm84ah~gr4h3vn7|2`a#v?ePpJy_{%6cDfqaR`>dhz{N8m@~Hh;48rt z>gwu(=Tt)rtCf$|=S8Cvsm}~M57DDIVq((23{CeHlrXn*=g!J53+sh>qiNaHdw8sf$c zF2rCpyM5^e4<1}}bCb&c4$>5P6D_qBNUKo9M`+LIY-a*Zv0KeaE3&aE7*)9!(8UDL zyE250n>Tp{g>ucFw!L`qqP@LnTP5v>9*Jz)F76jA>#-qHv9B651Xz0o@GRuGAMI0t?$FG3jy+YHo;x(sYmTM9AUO&b+cP?&u1E^0i zuNkr#zeK;hhL!~cLPWMYkOH2b3jjlFzi0joQnw69x*a}z7(mxN@9I^?6K6)Au(OGx zAle5cLQ5OXCT5t=q^GOf`RWy(o0d|Y-alqV(%|4gSkes)3`Cv=i-Hr5h~>gx-Giql zExvfZp>JAm9ZIG99)1O94}w!%Qqq|k@q);(QB*q!1TkiH2gAU^oQV`Za`foenHm0V z+cY7K0ER;vyzsd;rQt?-SsDHFW#BO=L1dg2I%l4*^!_Q(Qdj4<_yNh5`U@Jsr5P*R!SG2XeO7upy7^zf9#&RLN=d1~%78US7cuE#OCW;v%9hgH z&SbrUGf3}%B?>Y!vtU->viSGqOhkXqd{~KChrXsX;(#wvhH2{QJwwWMNCMb;^yoK^ zmJnoOv|50OQZvt{43Ce0jeQ`D4DO#*XLSY%6*-w@zz~#HSKr~WV+y9njy=KY-M)PS z+la-+ujHiKc0LAiFE+Nfu$HJ1NenAgoQTO0QBk*U-4Z?bbEtuT0AKbie5P=^D(u>o zr4hJCwx`umj&0w===*NZQBwP6T{NRf@|3i zUe)s$G^M6ItgGt;1p{tUK|#S04V#zA7xCACxr}e(*!r}soG(5^BJaroGC08gg=P_#}6O$clKSmbQUO6nCSEdJY8E`gISE>WN3fQ z`GG!gm6*w7-Zt@s2`MM!=jXlsgtxuEz8)bSD7vn;cH}Nt9PNB8*{xgRYZ8`Gb_f9M zSJ)G_#?zj2adAPSkBE%C__?FO!G7mQ?KTpJ%9c)R2~wE%)itAQI zN2ef)qoYb=6TL(@6_69FV9ld-#y!!-xeYXmxfT0B}-=yAPjcQv4FAOSvB% z4uuNSHXB>3S^4<*czFZnM|2M9^@Kfs{20Ly@>K6Z-o;BZms@Bw{9jHgqefz4V9-5@ zSTEPg)N{hfh&CgdCw$}0n>VvBOvS6_CUqNe@jyI`)S=I42QN;+$#aR2V};3a(@@fi zKFTjuc#l@GWdIp=%I@BErT{&DZnQP>oo>jH z35%n|qrhiPO_~2n1#aGCW&|0M)XslApL!Rn3YPMoPoMZs!djsXyS|~JxUB4!mq#ot zIDTBi8kh`6ZvxV2`OoKr4lJO`ZqA(!%Zib~5%Bi#uxYrw8~5b`em9^IsRhRre82@X z??1S_JR6%jfSdCDyW2W3-V2>EAnI+Rw4dV6ph2PG_(yM@ds4jwv&6Y|tApY_86x}4 zW`nK;uiX7a8z2%bYe-a}nOt+{D+>!nMMTIO2%L_i7@S&<-z*wC+%%gP-z>! z_#Zr$F0dVlsjSdRk2&Fpz5OO)EyCV5B^SCE{C9T(NmoB#{WWO@gBez4Prh)F^6uTJ z{(-NYy0A}ZVUYh(1kW)BB9#nhKAlQDk56ukTyjh zne#3li^3lxULn%Y|1q0_(?aB4g-{S&^>7S>r3O^+Y4d*zEOPit*cqohjX+RLk1qdq zd%*(eI#mdBEKkh5_5S_zIu;dHRDum5Pf5Pq^7cT$oOZ4a0Q{IH_W8>fRP1;L2aj;c!7#dxDI1ofC5?>gvp;w_*sWa zELcUM%$bV7u2r0eMSG?n<%JgauaF{lW!Ubk|yh=L5XGAEI)GGrO>; z=%wZmv?ki^+LK$e8E2-ZI$pliQ7j}I<(|0@9cx8dNvY7cGi&1O*HGFDmhAcEAIAX| zP-Q_?Zf-*Z3;FVV7Cs&S=0YZF`EKF0mF!rcj-~l|n;Lh)!f804wXXnZmbMLx3dIso z!9tv(6T~e$2M4NR_+3bHkky({FK}~lb-sKVN;XhhB=#bU>S_^4Z=w?fbTyC@1dMzi z;bDMg;Id?y-O9?Sadw{cvX8>b;|%Xa{WCQE{ky2e_n8@J2Sc@0_D=l+Q!Cz)Jw}oE*`7*z)2b1Twl;#Na-W$%%<~F`}&Y~ z_9Bj>)AG}+lUaw6e`?r-FZo7gtBYxRCEEH`_xU);Hbnh zE`w%)D}`(kaw*-f!~6G_!Fxmsu)QCDMySOL8WzFA?lgE(&GBU4&By2}aaEln}=`n5%10|RpShN!l$9PfJA({hXx&R4gL=CH(j+vnU z%=6Nv$TXf1T*GJE0F)3saef~@J<)$uv#!brNb+21bF;R-K9!I4@#7d+NawSE7AVQ6 zO@Hb2t5B_k`i!isKv?Da`i}5`JV2z0w^IsObV2-bKT-3@KOlho%f|XT zpbe&enyL8+WX2>wRstL^y>kbC8;l%)y`xHriX3_lT{S5OyJwv3^La(NvZREXOxXYZ z5Q{S18OJ;{>%q~EFB%`uB&f!mmYGSsZjS#^ZSK+uM2-|d!NRJRm6a75hOj;RLtmd! zAlEn4Gc-qG1|%`^L|tnY8&J-`~65FYyVldU4% zqlC6^3Qkzu&Jp{^I7B3W7Csd;1@l~_%gm>auZFr3wm`JB{+_XZy+{8#jwl|zr>@6- z=tU^6 zo|!p{D1Z^n{2=$n#pxa)xDibMs&8n(p#U2n^CIT5@~&M)dhG?V(D(tLTyJYrPq6!{ z|75Y8|1qdyLvNcOnCw4J6>0=`5k{Z92l={9Gl&P2eQp5UeP|Fu1EB!|GTQz=e7GU^ zdeJI8Z00*g8@xhwqp(u(V{($VE=&0=yD!D6HVJo;>UZxs_EmYk^RDO49o)aaUEbt}GR^qem}chMl3IA@b@x+j`H34|_s3 zgM9hfWAl_g<8^iym+kj%s{7r4`cyrcW%)^ME!;46AQE@)=A1}I(-%Mxs;YPm+w~kh z4$PMX$EHbjV5tu)iL;W(xBI}cW2@1Tt+5>b;>)0YaH&uZ(bCW$*5mX*w}oa?aJ7)^ z@MQ%*e6f`UmWxf>7aWGco_cwED{cZ8hEnldC2(sovJ;BE(oR&2D8v7GFhoIjaQu#- zAnc3G%5|N&BYHhH2f!VlK6{L&`omoJt(0K5-lFb*Dwaq#;9rvU7T}R%jMspxVOC|& z9!;DEMBL1*tX>sfu10WO2(Lap{>0#!ef#zSN@!D{u;B5>#7!eNHb5DWtZQ#@i=kqJ zj)Vt?`fXxcEZ7!{BS%IOK}@mJcLbr@o*m-!|J2h16-h)|`c=#rc#+|zftziyBaD|N z^99?w_{6V$MWzD~VR6VG|7Fn=mX~+((xu&Zn1-IWwK<5R=1JmLVSXPy^|C8{V=i8o zvD!oIbY6P8HHKS29Z5cl%@`5yOg<_!BJenj)kbW`f@Jfyx+x@75GQ2I$1zLJ)HD(C zq`dqG>WAbD_*gwTK5Y?wV7RpdnqiP_hVLj2m zEmg!}4%q{AJDO(O1oSf;YdrfRj}3J_t}w>bB}zLm&GxXNG)l?JKB}y28PU_GUTis_ zd~~bWf0;Q6q9E;yXP=#B_}+i~`0>LBRQbM$4%(4$L^@2Ok}=CsE9u{{4g$3N!2==4 zx1d|qNdJ6KojLPNxS5}?u&hjS`B07;r#Df4f^C~;3q%Z~QXrk1&CB20m7(Yix28`{ zC`ZB6NH6LDe0RkOFkTCz&uF0wzH=})XWg}c8nvLHptQyDS=6Z6x<4WcI1C@X-PVfK z`~V=OGAp8DV(1ERc6Fuer`$dw4cxhOT+M1-8dwH*MNCZ3+B!Yp@4~oIf84Pr*hs)$ zgnclh%i{cn)XYb%toC3Obn_6xAZV?kq9TwNf6(fT$+vgzNF6;&Xf%C+%l>cC``IH4 zi*Ngft=gU~!h04gT7KGM^VFdH;Ix5c0{vj37zNbd4(2c^F7ERBisBtt44o|%a3EWL zoujUzs_Ku%h%a?=yFn9^8lno0f4sCEb`!!a)jO^OuJY643;fzJ7F*+tg1T}b#d1gh z@CG45!SMw+5CHKBBUQ+jv-Vv0zT7PxdOppRouze(;wI&)LnrKwhoitqffEC&B764G zTaH9U0-4>9(siJTg4b!Jw|9KYGUORD8rOoDG{VcZYh`t{z){pgKdy|BYDC+=W-Gt9`7jZe(YF2D%~z2uFa5 zSvu-_nrNSL5wd1}(bkq9g3?m-CE04lBrs`=$}H{tIh1W94LF-VGj+^n6@P>zZ6ACM zvB5vEYq>Dj2WGpKPqZvbM){6d4Mi+@6P;bRAaQDSdJ4xWvS$ za5_$0_FplQzL*SPEhQU#N~K(51ZQThP-BW~Q1rn{yI%C+W6Kvh`-JoDAxVzb9J^Wj#chDF&BPSSw4>@oV z8wvc5X?PCdxc88(tJ3ehJ$`0y+iz5wUneHejIVRx09vASkjd`?5LpNk`kza1DE;C1 zS$A=EKxh`9i4Haum72CTeF+H(a34#Z{rv6Y#3O&mQvM!L*3giKOYB!nY^);-WgrB*GzZ$iu7SQjB@8Tr3JQp%!(||PWph2i z*f^%Pb_MufK@?^`7%C`*i^G@mq&my~Ip-|kuIGngUu>s=dpC8 z!4&z($jHOd5e)V8i4g81qoXkvh<4NqpEJ)K+Sk>^oX|HgaO~tsA@Qncv${)P=yaI9 zc93a1IDl@Y9AK~Q!45pVB%1@Hu<6KOplYbp$d%?%6mMVZyZ^?1u${Pb?;Z*)C*a<7 z-5r<)*ZzWhrm#sQ&{qzw?(RQvTtNv8P{?Z4vqrY<=cQOih6chkPx3&1W-MnfVx>H+ zqvMFW5fuw7C+C~)?%TIN{CjBd@y}+vnlsoMBz!ba4ZeHl;^tO|K}>L&GVR%V4R-_N z4?G>9m{?UH5!rYbA7rQp7eh~jtc8AYEl?#e{Q}^EX2($?2C(2y@0~w?K6}pvzBP@U zxNjyI7Zhf|k7n36Um{&LFu>x{#xbia{z3vppp%i1pcQu+Pwq^XrvFLi^1u}bSx>_r z{bet!%FEw$bQojRr#W_a@JSvO?XDgHdek>kkGz7ok1qm_H7zA&dTOe<3js()S=p{J z=%#z=Hw#=}Z0^W^qi3wFh_<=Fz=y{-aX=MBd-qLq(RaO?#|c6|H=I0g;5JZX(3wX1 z79t8puF?D=R7@dcXl$t7~db*7?wTzJ(0ZFgXDV2c&VS zG?xisKJ~o}@-G+#mVz`?ApiWkcdzzHiijv)UUKE<=SSE{-WPc=cZaO32AUF}=ZIzI zOO1+&!W}Y1bQz3-*vCAvuiw5Ip6WQmeX5a+1&5^owjadk?I>)jYHEyrzsXVmgSbf2 zRz7n1`Ht>{tyWc6e_#`0vQWLwziV%A@9bn?9y?A(sflbE%eAtPh@|O&pF~&Jm#1h^ za*QgM8~X4eDuVL6p1OfXt7=_$ju^;aMFOZZWm&?e??%2K^?lpcs zK64V-4tQg+wGYb5UcP!&q)xW_I{ltX-IFJR;APNmje`%IfK4QCeo6>Ma0acdtdNa^ ziZuO^s$zA9`VwT7`5_>K_wU|SY^ggAWfSH7JSVB;{d-Qsz<_{W3fX{ zI0!p#yXdrB(1{Ro-pNTRaQS>{KWzKvBsg8MT}VSC&7e$s>AAaJu|A=`!X8hXWgbPh z3pMRjA?|o-3-TsV20=54T}$LaZtdRFj#AsHK4F`Nt+DY`-~@aoREtlZK7IA_C2m#k z=ostAVbzZgb| zVir|hzqkIM`bF5&^(e{6MaOl z>(Sz60;(5Ta8KZ*Rc=wi;>-EV4zh^S2E5w&It7i+7_6+JruG+qy&w2kwzf~s9Hq_K zG{Ia)d0YTEXrKu7f9UJWR5}%hY7-?6tXC)}8tUt@wZJ(CYQ`5oo3cqCc17StiU7)h z4GZPSmpc0tiuEkDOW%6BkKJAG3bW`gVn~q*%Mw80~^6T=Xrb!O{Z-L?)@Gd6#_W3oSZ0&c86@PhbU5) z?OiMb?j+`ZLmL85hRm;qKSJ`O{&;r!WkjB+6Ad*r^5`4}J&^r|-PHLVISay5Y=4L- z2Qm2_Z3lo@P~JgNA(b+tK1l9)_s$2zBA!Y}l`x-2*J#0=iDa$}F;G#kL{RlYFKyAR z5E?;Q*V5KjeEg%vui=v?ZXcM~vV7<6U0A+T^77;%%&8I&Jb-gu-`Ic*_aZsz`_J3v zz(N@9hbRp{X7i8!T{woqLdzJig)@Of_4Y84oGTlfk_fDy;ez0a*od{>DOLAsYVru8 z4H_p)Libdn_NA{&;lM-RS|7Bl^w}*xOFgEkZH|| zjQeYjR{8$0eV3n_YI*P=;~g^q*$!G;vc-ZHCt=vo-f|Y?>B1~Q_N9P{{JU#G#WfM4 zWW(;jw63GcjvZ`0|BOcA0eC}{8xTrn-KTMTojTYSH)Lv=AN_|vrmn--5v$2~T9OFNKb`8lyBtCI_F9nxK(6!io=^|dm=={jOyzzJUHHK2s!d^R&+4t_= zMGo0cyJ`(je9x`{_C!(xSSm5kFk+=4!=n|ZKh5{@8Oa(7CPV5V~4{S$3j+=e14!v$wBMjT;6TNCL} z_#|xa*E(@H`!(Kf*W63)(g@a-7!#SNDfo;jmdbw~-yZZL0xr)cngG5{O!Q<$`tRv& zZ{O9#3># z_(Oa}>Su4ayx%_7(3B4bk}$d|DzcTl@9PU|J7#Ccv@b)|Q#6_7p$V?vP~VGP_wgLY z56sfYI0K2_gTt6W*pKPx+VT*cEi5hdLy9G^0FbT|Iz;i~(Cq^VOj%v@^S*sUoaPNY z;sxpH^XKf$Oop|o1L_wkdf^!V=Eu#XU5g&EKj1Z*0|BKgx(5fdtoD4n$<_Y?3k;3` z(1I`p{miG4&Ch|Wq}83t2re~ucsNx4ZvK{dtpid>n<5iLz1UMKOA8Bhop6)wQSULo zk0FW%A47O9D~5rSiDAXPy^gT$+%^+J{9)Mn8MrHpi$`up@^A_SK6bc75^`hZ;;8g4#o+@{@@;Z5 zoR-xjc!i5~1y^t)4Zwn2M9!|ZIVR`O#C0x!RW#F(O~Ofpl;&{(hRE3jdq`{0fAjDa z0s4+wTEew^pgloljTyoM8HbS2Khy~bVy)`J!-VAa{{7v%cN-u*=<7qYLx;W`+E_5~ zp|@bXtx>4UL9~?6mEl4Gp8#nJ;xR0p21)Q6yr2R@PUJh;9$nF)HRsBQCuccMc%c?Y zL?LT}Glzl&mR0lfQ2vlDQMJ%z&YonO^(=(UhhWoEHU*O;sJ@dS8%JS&lcb8tg;P~f zaLdFDvY-43r>5eVmyWzuKR|9p9JIFn2*zlF)6dV(B^6b!`rf^~e0&(>(be2c8v6PC zcH2`+dwXVDHtAl|rhi;9=sR$9b`Ce>6A*Yk)NYd2aePPBG?o-h8fju4*a;~y)zQfb zXL_FO&M*kTu(SI5`k*jin*|=2?(r0DnK45n06C?$=lPKJ6}D#5H@tR}5b6)Aqt+Mr zURY!74epb9IXYn-f1?I~!N`HR%3IolL34TLBZ~{OJ_{ow#^)36ru+?pZ@g`0q+F6^ zhhP(Or>=rh&OX%p!E60Mcor%Q=T9U>?Smk)_wO=Z{CbO9UVk}-`Shl z`5vS`FhsMo9vqLIavim1pUDrr+~t-SbVI~zyWvNaAWC&Wa+vmZ=HkUByaxdD6m}1B zv!$ufX@cWZiaZ(}FJVpy+)@e?9L+(h&jg6XuYQa=Z%`~W$Ad}z+sCj>jN7BIM{v^3HcOQ(JsrZLbz{psoHvzH9hAWTtxDw&vg-SnFiX+$@PMi${ zh!HeslP=@gLalWQ>+@ggIL%XXb2m2vl>3@InIYGIge&?6_!H-?g)~67gv@e$Aq#l< zMrvw)inxRX*oJ3TC??f>5W}_7Oy^_8IN;Fa}Y97tRVhOH0grmlhPv`TO_s>wQaYAZSn@AIeru`74%p zD#jKL2VXxw!d`DqzDnuL(%*yM0g@HvWYEUnOVFwH>9oWaTTFV^;15T4whc1&%$V0t zVJYUbUTDCINrO;;0vc!M?1c*^2M_8!)gTQ^P)>Nl*MVN%Js;otJ9+?&JPi?n#@u(t@g8(9X`@E)lx7114Gj(Dj{ z)#o*ygzH({R=>Y_sHLR^__iNlX!k9gU2XvwMNIbZU-o7&;{!ikboP&fT&y;EBknC@enx*>7meJKy4`Ho5pvc=+|rT?=O{E#ILn z^klt%OPBq_qrRo=PvCjx?9<8+kmT6HF;qY^%2$sTS=+{-y}`fmebJ{5xcit1t^aj* z?@AkQyL5nde)uj5pZR%@WHMKQ2(oqLT8K!D9ge_lOv}g`V3ts`;Z6@UwRV#+y))g* zMk5qfT3cJ|aMQ#lwk5i5tzBy~^jbs`KDAUQ;z-6p#_Hrvv%;CcCiz3V1#V)lHGrx! zP7~-oIQXC$KTFm-4na+SSihuTYnklg4ao)iaqyXpN_qPNP=P8busEK=Tv?cVa2Bk36&YN6ZbGsWsjk;nTr z`jt=Eq%*bkDy!nCxMr{OOMPZee*UM(=n<~~G*buBAE$ioqe#Efq9x-hTcJI_ST?Qxi1kU-*R*3;_U#Kj`n0WIPc1o6b(%Yiy~q zU*uYj7V|2(K*ZzNN740la#Ac3FMDp`{RWH-A{!Yz>LZ;3_zXl3pEe@4=L-#eh#bRU z1){+pej~IQXP&OP|ECWr2Bs%Qx%9W?M%krk81t~b`{)tpec5AGF0dbW?1Tc9;Q^IN zw@O)AxosINHkS4N$);@r0`WVqXJ^Z(KH5K4fX0;-xWmDbl4!w(zK5d~LmlAu8OJ|` zsEz~)iTTzejg<(E8{CcrqSB@-H9=1FEqc@pIBSBdjmqWWd)1fv_qQVH+M)n&hlv9| z0)GTJOf+>|CZAx{=-maAbt)1wJNx3_-{)M+>$uaUaRAO^z&EZ6ObqWnehfi($S3h; zmg~&p7g0A8CWg4UFhA&YWU(-U^vJS*W+3Dle=N$1$Cm~36a~U4b}o}v|8a7 z%yxHmnZ_%gp8EH;1gK~7>(>hyln17Eq+RzV@*zxC_X+wgV27mJQ?CF1q!2*}Q{oU0Em~ zDEc83FQFiqpM)%kcVRAmsXOKBS_%2N73$P9IKk5t^hZ#K&-IJj~A@L5d)(J6$l6Vbg#<-$~}U ziEI>1{T=$3u7!pYVE*_zz=ps#qmzTSCK!@YLODb zxu8!A<_~7(su=oLgdvLg-u?T&US3W^XWiW3p;?XoLrU5FQNhi}7gynhj~p9w(!Y+_ znw60;!ttaSOlV6BdCPO4&Y!Ad$Ih4BML+0>S{z>O9s-VU=(u{~^IBubwKO|=nu7gR z7S7nfXSoEIx0M;yFT`2}=3Wk2Kg1%4<9#qR<7>nrP(K`tz zCAiMg(wOqSABKj4fvUkr|HM$W1QnXqC1#qTt|!7yhWh%jkBD5=H#EfNUc%(G3i|0? zs;WGZv3qHcQ+p>S^5>cS25F_hys-=8RZ#upf@Wh8ACs0++m!Z%3W*;AH3RXG`eS99 z2>c9~-0|zzFT&CDwUaYn_;`xJ{9jRa2|`GMlgHe=`5k)HHW10z(MJ8as>=59`I|VK zG@`aM$Ro!-?yy~nO=dYo#0C6Rke@i(=F>zOV>7F~>+TK6@CE+K#=s;Bqvi%6w?jY^ z0O^JX0F|PL{1zM}IUN(`VZpbHi?_0~d%@I?<{ePv=;H(*Io{-l+SPm%u?0o!%ECo? z`DE2z5H2nLfURV6M8|LJL&*0kDt;&!Jbr;O>QD^xma~i!cx<7wAN?Bezkv>KK46)L zWThrikFkk(t&!)bP`9opx?G*NMny-1M{ll$$PFXAa2s4Iczd@OdpK){@_43ULOfbG z&=R@J%1TaF7WMoYMpm+46(^4$4+NP46gvCZt!nO!ej|RLSbo^(*_^%X3qwM#D6jwp z0AHK;be@J>FfcFx*^@#-xRz*+U4{7y@YU`7`FM&o*%Qf|KhPyfbim@m^i%qSlK@JG zSD9=d3Q!A+w?u=_NQ=3CH=uRh&bB8I0+U>;AlhL+PJcy2m=C~FMq7sK*|RNHYLl%6 zRDZ@O=Fyoye+EQ8YC~t#?-Ue7561)Ou;>vSc~DRw0?+(&dnKy>Iwp-DpwS|}{X@}< z8q`jp)5vJ7V&9nt^x*caElvM=)A{e;QgU%m)#RrH;;`J2?5h0b&k zq&GnL;J94BK0Y!+%0ViF>czsqK(Tl;BLkrh+|4I+j(=I!=8jbTh{K+inrfbgz>Xf~ z#rb(wHa5t+vT}04P(1+xr?MHlD<;RsIe2(fy(WzH4+-n|_$Ys8`$cW=v8QKbc6J>W zIxu_KJ{?V9`_xffU|b5vDH1tlaIL7m)nYyh65t6h(5|!VzgaqN-?YRIQD;UGS1P zplbuzW@k5|D-OH-iMrI;af{cQmSe!t@TA=;DCk9Ry9*oi1_&J(YXDghg%tAG$tPZs zvTLSRn=%~|GBWjW@q*)1jq#O&{Uf-(Xh#NyWE2Y^xMXAf(S8o@Y$J`Y&F z$rJwkVD~q}T|s!Co!C+J4OB05Hp;6o6ivr?mO}BsS?Wa8^?0tGECyiHh^htM9~E`* z;i)@4OOAf9RQ0*Kwo3y3P+I+h!E+^BCioYP~9;X1t*yE z98BKAjn&pvpiI7qq=<5_5`9=chHfeAr674kMGGq{4+ER!Cu#tUqOnm^cLE0m#0=pd znKiztkbeJ-*SRrJ(D0b12*X3(*tDNX#{%c#=uzU)KHyB;F>I>KMePCu&wz0%9ZwP0 zRvCX=AVXf>>Cw?pQG_?~d9$X2Q+Jm}c65saz)wTboIeaVhQXf=!7Qd#bZC$VzB65Q zx#YhDg2Cq<+Q$yP7;f~-(s*T*WcS~%ddl_EULo$q50yE(OVESu&v0}QTef-=^Y3wdV)%>iM}#hz0p+k-5^|H+&5t4 z6Aw>sdAd`-qCJgDS|i^Kt+cOZAs7vFvyFru)#s+k_xVYhldBj>SkspZ1ev9 z=@>xL?@+Yx;z{hz*Fwp2;LnNftr2=(_SprRzWjAc2Bg#N)^@i9Fqq)jWW(ZLZ)x;$zV0G=ju|ED^%ZUYfIb3wsN&glQ&nCmTP* zN8*iP8fB3B{2nZ(7^7PL=dqFZQ|Q@}(<=_KBJcugJ9ox3*u`u}hiSOuZ{50m`wx)* zw{NG{(W)0ufK8h+v?{C@-Ifbs;25~;92$g5*um!yYBz)-f}GaZ?-^`Z+3F1$Q4CZ# z)*n8_*~60<4@3BacCUc0N9u%|kbo9$$==Ujyg;+7jD0;1N6)iol;K{eu73RZp^#$# z<9QQ|%3J!qfz`N|97^|wKsoSNbh?Jch zE9AhUdpjbc4GH6=zUK2o=%_>cZG<}Nd_;88NgQw3Mq8~Nej}k1gI)kwnYl0C>uTK( ztAmkIG{*cO!lFuo9|qQ*7w#syxdG_k0@-Wzz}|#1MPGE|hyR1Yruq;j^=GZEQ?U>7 zdI@tPPNma|Nse0Di^1-5W2mU$(19}-u4Cp*Qs~LxRq99@jIj%Ve{DrsL7~~SHj2#6 z#YO+F=i*t>nPik8cCfx6!I6RH?Bof742cK|zrrvyKD>yHNdv6>{0EDYyZM-ynQ4-Z z3=B@WxbX1tIn86P&udS}4961Z>-DfcqU)3bw0sj}RWufoWsOrdn%ra1l z44b(XBAy}$HxwpJ=JUd<2$GPSJ35NKiA0+pi5~)$x8Ns&decAacL!IM7tl)#vK`nE zgMZ3k0ih`j3u}dZ1Z8!^8CLr`SLo?m^oQCE2jO!-9L7@p09Klr2?TV+!U|u$a^(ud z3UEAVd5{NlZ7+OiImNiRNpkK|(OUZ^$8&q0-y4iA###?ztNA4Ibi6Tq0KEnX)7R6} zwcsc4_1zP88jk)JCZs6jBP$CFel?$+f^xYgm|(U`d=sbakckPpyK>XhktLn}qkWxS zT&SGdqmq(Xa(qWEI%FO8&Eq=#0$@r_P9FLBQxh;}>5xCe99bw>!jMTfL;8bF zn+_0R-cdUfDqG?WBL}E`Lf7^20gK1D#C#go`xIbP-@dUIK~;4lW-ElNu02WUBHq?9r0`| zmJZy}%6j=+aftlgU0!SJtGiye8p61OqycjaLf`1wn)`l?$o9t$9O&%nNlxU6)&I-= zH_LvQBc>|?fxC}I=ej3oV`6y&=N`kugwh0$C830pl8}ggfZ+D$#~|(U+Q}1z<1hGU z6)lK0!IQVs(|CVL0nE(^`Eu6Hn~JK0a7#z0iZtTvT!i-M)sEw;3%`CbLhAU^@)Yc! ztE($G6z<%@zqq9Yn|=Iv7Q!e3#@z5dV=PNs;CAfU-|&3;`@g0M&aTu91&oc2DhvvM z`|yFH{343Ckx)?818vF4$^TbBkkeYk6v9(e-+_E_$0_~&{b=$K=mQE$N@>J5H#aUB z8}0T4TKbMH%lOI|F1l>xe&gO(~vp0lWN zFgZ%IrmCv&_a)j$;D^25tqSx*ZW7G$LE$YAavWhS!H6^?Vh)i>asSlu_fYjU(~(t1Gt zx9i+Tp)*}Sx2X;WPj)m8YCI*L3GuHNG@-AD$<@%n;0^pBs1}aUK@{tL^@<;osPuz+ z_HElXKb?C3_q!zbQ_xNmORi#sojjE#w&0!o5*RPaQnu=s?rv9YV`6xuRNM2mMW z{`v)N{p;@Y+OoWDn1_OqX&AmnOHGXioP(zij3e(74;G@?7sMlyWG1(_k09}VRw%26 z9|(w|xhx`rc&7&0NH$c$dpo5|l0{|<#6GNfb8|iph~4rD#!jyN8l%e>- z)yC-UvsmV7IZBB%Ir-}n2+BZpp!x|T2~1-A^EX-Y7Pagq4(r0_RDfIt=nv{2VC=vm z2yaaEw$aSUTo_XiBwiD57E(p~HI&U_23SPvYG81i!OY3LygUpGy%w~{H$aY=E$?Pe zRuz@yR3gn*gG)j1h+W2n0<1tR?OCn;n!HB)sdp?-q*WRBUBRivO*l=d>D`%+@I+Xs zrLG_ffrUjP_wn|=zW-}TI}$>FO_!S#bIk}6-`b1Z!jco;>m$T zK@4D2K0`BhlX$BMe51U5{m$_|q*E+C0QSL#gOvxbOTUy5(u>vjDlB`P>AyYFz( zgNilH=<7M%IJ{J_pGM|b6_EnqwuhjBu!72Hg39#5V+0WdJB$^#ygUag3f?}Vg%Ya@ zadpQkfGq+d#%xSemG^Dl`i_>ip`js+1zp1>^zEH3$Lu4Q;Xx74dM- zW;56_yodeX?UIX2F=nepKbBTQc1I@&qBUXa!0O<3p{!?T!ctT{7(m=zJX;R_2H!|S zMn(pf6O3@cfkdf)^5N-(_-W)v3^Gc+zIU&3@zKVx0#qtOy~ za1oU|hH6N0AEPE-;+emVV5fr8OF_YWZ;Sly-AA9$>VfltYu?f_6?8TxKf<^*@%|Pd zLtE}1Z$G~pWNbwcA6A(3$5eu0n)dcX|984A;^9nbd9mec{k6foj@yT#%rxDVFx8x8 ze0@A(*}$hy0Cxi1+=RWAz6o&>%@9P>b>o#l zbX>zw@g2@DxDjTv4lGJWlNUt3$LY5*1FcUuFK4A4+L^h zfr8D4em?g`;R%vF&0_+@+T%+v(4C}4; z?H|yQ>@FeC6J&@9@?fI(7=X>JHx~NeU;Ooi1YPI>yATHrEiNWz5{N95?}Pah(C-2g zF2L%dSOiRTWgj^KsnqJeI*=8kuv;$xJYjNSfvRWbX;9wEstkl*L{Kkj{b`_@oBvV6 zq!zGED&}PszXssfAFWF7M<5O70klg&NdWIG$p?}-FkKGxS3n!k9>BQxi!aZz4|^#f ze0}If*wcnUYA7xy2Ff-C?ythj;{{c8hIC;dxZ1FQy9Vfe0H< z&|9#!F7FivmwIr6GHfXCJA05b<7EE9O$d1A0A@Nj*U;Mf0CF?1)yx6zs;Q?d|r(MudauiMH7G(XIFuY1;9pt-E;?{42ZEHYJmb>{Un~4fNE$S z$CtvZ684V31F&H#<%qnldU&fXp%Jn7`pb8;?#C)CrE2U>=J1pufoeSM+@N+2!` zDS;aZV5IEWzLcN&4`*3_Gut6UlWWLf|fCd+^@SPp>hp4Ei0J$H4h{}7Qm|0p} z1do!9oqc!*T#ld%2NEHGF%IrQo&}syzJT!E=eYy9F1PE+=qzV_WPAG)AnEVe17HiN zaDe<0MD$)xyK<~l9 z;$Sw`b=^x{L*pCZI{a+Q$sr=YPPoqmxc(5SUK14f$qc}oi=kJ~$x@J(dVdAeUmzvTA$e@Ff3t6sgbcig-$}MQ{*9mbzFjBHW ziTb8_2lee=E@>Nm1|VgN9=_sQ#0CHEsRF#+t+_?7m+(I(YX7m9gZQ(e|6^qY@#n07 zufIIU{^M@<9v!sBfoyFP0J%>)M%UK(fWGJ$G{mIbiX8#O*%nBf!~k0i^b){DpPzbn zy=?bKUQ*%c7?W5qa%P_|oK>qcge82>Q_`u^C%pic?Wx^1Md%&-t z9CUZ(9SQyeHt!69pa8VvoPgdENF`EdzJE9J{m;kqi3LXoG$!Tb#(~cXar`e4gh?QS zc;N?XAAluEqCfo_VF3JYr66$iD`A0#TG{LYU?%|A){u~p>khSH8&H>_Ie@|zTx}rS zvokaQc0JU$uqb)Y#KICk0FFYbN+}?*e`{&+0S*Vlxj+mR2#o{zi$PBhk9$xvf%=Ob z0IXB-Z2U$+G13}r495~f3CLt0enoT^H3meG21&p z;yDHSL7+1%>)s9?D@Yu!rMI`YK`{$ZY@gdrSTM~GItQR`Ro;`{1Gzl7<11TR-*a`t%v2%?}9-0QJKY)b(sD^{ID!N7O7Y_&{1?-7KAO-u$>*M2N;sCNt@H<{LZXrA} z^6{Xo%Gea-5&{C9fHg)Y0=$68Ou*`vlvm7HgEm9~ze#&}DNq#KM*hp$ilH5}4JB(p z-U%)^P_6?eyag6e1K|L1e#;W1Z2+kPSq30;0PlrRy0|-#&VmyI$ks~AfK@*EkkHCU zM<-LE2EMlk$gRPJv;uSiL0iPAViu$ufV&AA|79{#vBO$}_$GiBr(QD#JntzeOu_6$ z4KDKq@R^RC0Vzf!fTCKjz*vL|%`CQ_Cvi9+w=n{-4v?j#@|z4}?B)Q6@Q&`g3F4+ z`!gWT@C^UU7}$V-qXJ0k2?z0OfVgVB^5U=P^A;$tNOA3gLAa(zPf0fS8Ieq8@l+M8 z$Bz6HKyZ2lb~$y~ci5FLNCWpaH$l@+w4@ziM&P!4Y*D8vBRgFN>_a`BY2^Z?p>3cO z076hZ7|{nCk`B0-0yZuqV~joQpR?tQy$(#hegkPfcV^HKyS@NidN42s!X8grS~)J8xec5@B867`n9(*5M;&pY51GCc7VY&8o42?IkF=xc&p5V+D5KjvQBQBHs- zmw3|#Za=W~z_cZ>*~nN1x`tro!6uFbcCQau>+3HeT79`)j@%j|-&^pn4-WnS?nyvs zmIr{W;KclKdI7C;Fz}#^1!M$^nwvj?rv)zNctR_m+IBFy=KcJ50|08kim3v=2Y@cF z&3|DpDlT3Hj6s25ow_@S+O0rS1{Btyb^t{bpwa4?f&qR@knjS615lJI1_&?+mmu9E zR{%67et-!8iZqp;!k_Vuau(?q5YPDde?DkRg4Wt&(#{-+qJX#ul=QcEcgd+|K`w}F zvu_5J^auL;fv=96hX+uClX5he@P7R5b${Flj0WBBc9Q{Q1!`D8V0&KD1W8`$>;XV5 zUcU6dzW8IH1v))9>pttfy?-p_6_BL?T)VTsKXN~u24o;smzF*OSOZ-BXw`t+2r}{x z!2AGv7T9ip8XXzp_Fd-sT{G|)z4ZXY-GIRb3M;^kvosyXcgAZ#f!H|h`{Rk36$JWj zpoa$>-v$Q;ioA|q{B@t7dD7C;U*Fugy11y>=Div5LF$-%a69)z{YXc_}5fdXjV-p4$6I(MUb0TI&Mlj5S@W0;cwltWw6GMtw%K@R$Y9WMQ-b6E35F(=u_&HUH4lFM%X~ z@Y#`cn*2t?GDn4GypMF|;;!Al=G{z^4H7w5<7dYhYQF6P*Mfd_`&qa7Q0%#nw}_s- z_cAu2xpgW#3R+ufTHC7hk*zhJgRtvH9xW(7D?X4`)&Xe|d@75@y@MxcMzToOB_AHb z#)iB~$!p&<6h|X*=>{s%p9=~~q+}JXP$X)_i%dyt69p3h^P3h^6m_;5<_3(P5(Wm4Co+aVTxL?Za^H zzSz8pr&1T*_1hl92WEHT44!X3fz78+cQw!F=Ylcoz8Owj zR#I4W8pX)RtO$l?1td+9#m>cv_t({ zljO)V>y@WiNMTfzWM?qnRzHrmPc3p-cq8g&#!}D-qBz=T=oj6cEGxUDFGOsV z4DHObpL(yG(JW<(8`$`)B-9yK&GeJtlgC2{k$P!eaiL#}E;IVppW#qP^^PBNBF1FM zVpz#Inj1|nN&n!PPRlJv3Ury?4QnW`>d{4q;L#ml{QW&wA~c#sC=6vhDWyh%o|LFK z71{xZL$YYk;W*BE!Kz;+6(3nA_F1I5Iqr*bRy5tU(~tS^l=RQ4LocW1bN7#sKRuR; z1=dl{;wVrvasAv&U{|soo~P&eFroL-7YX~-Lp^Ce8S?k?w4R*k(e|ORw9G(D431beU)$_p*a2Mm5GgMmoM{FGIU@Pj`CCI_aQ2Z z(phY=l|j}SjiAefEd!mp*-A*}Pv%1c`w|ISDsWnUWfyAw( zuT`;}Eav+nkNgiFqQFtI7QOkhoy@BXC||A2S|=TiF(&vWrxfjPgG{p-2Q5xgZ}$u< zVS@VBJ+9rm$mO&-WmVfl{b5o`*We$;^XW~PY6&S|3np~FxqNbui=P+F%=G+8$-`s{z?+$QKva;BCeOTkACU#np z;Bcf{JosKGv??Z>9PFeWBO0@$XLAdoTE}$&gKg$b!Q(hEzo|q|1K%TeS8IBi!v3a0 zJ)30gR+mxyfZD=}h@L3jN{o!0j@M^wLSEz3@Kr{D=huC^<9a!zLQj_d1!uZtb1Ec#@lipl)7~1UQZp=Xt+Ht$f z?LFlTP0H_n{WxgV07h2R9TSpT}>CA7#hI{`0~c!d2dycq<;) z>tns*I4lnNwUZ0K8VM|TSz%yEp*|3=zEfCw*-36rH#>+39XYb^^3+Izi^m`O)p#PO z$O$N-Rjq4u*GH#D&_-7HtrFaHLDFuf$!ocp$%GMXtY)JpLuO;dL z8^@3)RUc6I?i2dNPcrRgd(Azom$b+3S(ExP%pnmH1O{Vou(Ii5h~f}oDPNWH>~eV* zi+7qgL49YrxSZQyKG^#H5@kPwFeI3k>N=Cx%)XUpr$MMr_BWo#+LE|0hV-g_>$N8X z&Q}6*LtbYVm#~J#9SScihi{~`I-Lx$K55ygk5h zd!*T~SdXY|)~F(b=S_+PU(wy^M#mBI^DkwKw~g@M-Bdk%Jo3SeTGd<3_m6nj3)|_6 zBFy;-yAlFfuC!ff$(-_p_(7EWWl8D2kU7j*DHmC<+68qMr?t#b}hwlf2PQlIAG2@ua0z#s5cXlYV~UUad`?a*ZknG%(~mb z=k=`Y{iw$0bNU2|jNd=iJs=epJsf|xCKs7a?yB>7tvx+V;#O*U1ZR&d3c2e?&Ycw2 zHzjxMdN?I_@cA%UZ^6Sm!T;twHgA4wneK{`ins_3kE;o6dN zJEhLeCs^Ey*pb?_JXjaXM;Ic`nz^PM$afHa^VSntmiDZrT100;m2aZD2uN`kq*?RKLUMU7HU?Rb=eXEmDQEO>9 zgKc&yPaLa$n=%}{ufyoJTkbIcO*zb@6rPDKgjXiyQj5pkh&YPG;w?qogtS&lcOKQs zDl?7{VSOY^;>GuntB$6jPzgtm=GL(?M!mhV19jH-)@iE1md^Vs5^lE|k%6H1NJ%}G zfI{Z0+Yx~cbkn00B%^MiKC-dKQbW$`{K{192L_77c&~wH3aN|dnhG5lEv2uY`InVM zzmpROM}g=oK{s#| zD6y82M-b&-W{(Y99^3>kHH0u4d%b2~<~1)nm}$5Wd#J_5W7L;g;Y4q{nK^@*bZij& zKp&ct+y13H;hR>CnM7Y>UWzDEd1*CWaS~TZ)c_w;KLvs|h8!h)a?s+pgTxRBf&{rU zIf>Eyy)x59Rha}67j*RckLkOx^j}5Nb6<7i=*wdYhxg1#5Npn18mhc2jA&&8RxMrQ zxp!4ri)njR+rwEnIR{y7LC5PA#`y>myqdlCODxMNKMP)UQ`EI6FwW$$AxZBg!8*#N z%L$*)BTF+0s+BTrYE2Ut+1}M1-B#jmnXxkg(g03a!&9ED%5O zR&ysSvo=uvzRdmF{1+b$IeX$mLx~Thh==Rk;zV0Z;%!ruiGZ|mTxG#GDvfOjtD#@i z0XLmGURLjW!#B5!1=49^!d}zWmRp(|2UT~;zRbs_4K!C}K7VH=pI@jJZ+z}HQ)9Ys zCJk#FG|_NvkMi!gUoG8RmQkH6;>8kzs_w2+FlEs|*M$D9)xb_kvGZOrVUeTzl2Ius zfxBHc>6#O*3 zbFp5&r`Ik#VyW0OG*LgS=e{c5Iq)4KCvwM0wUA4QL)7Yvi7u!K4s@r@%yN{BPhhtj zD>I!IU>bO%Ry$$&)d0iVV1jMIgQx3wd34}i$Kw>@<$1`bvpq}M)%4}_)V3$nGo-A&<977zO_U#bc{QIO(Ql7`Kfi+~DvM#w+~nsz zXM~y0=N0}j)TqxaKYWC!#{lPe2UlLtiSu&ig)xU*tX~*)8z*cp7UXR_vZ;AbN|;ty zZDUEMRfq{Vk?z z;-G-q$dX|&$uePoe>4&yJK0de-ZI2+63TXWU23Lx-Sj2u{aQyotCpUPau__FmFGU} z%SFo5Q0{|w3=1+a(C4{ldvoBB$cJG7-><19uir z+Y#N|vd?-KmoyXLgii`lNrc);K)%;tto875BeXT?Ci>DD+hP38iM|B)1zTfUt_P0{ zr2nG2Jy}zD`ea42rfkI(WSK3?n)kE^k2MW%ql|LPC;Ng%NBt^#@&34=lAXP>V|M4; zHjXW{ocs;hk4DKe+Oe=Sp1TxXmN(ly)#&lRdWzU`tcton)-vk6zAv4=@3X?vS!({> zRvBW{P;zMVLxQQaV0V~|_N9|&OkSfPQpLA9>28x2W7WETEDUC9`kVy-Z?&ip)n*Edv zdIh79-;+N4V}X1!3bzhTENegaRTZhZUOz7*wg!dPDZ#(oX2e6z|13un9V8;b#|0KN z_4?tV_mcAP^DX~rU&(tupNw(g2@Kf=vmbkSEX#)l`An}Tw@yZMUczUV<+ewoUnW|@ z#uXA0KgCfD46O|95e30y&DArIc1p~~j0Gz8J+w7VgIpem8fYis(m-(1GT&d0?uD2z z(NA|=Z`A0o0VTP&GI*o6w;z;(10iy{c-CgB?{TJeLXvfo5iVnP9Gc)y!j7uKQ`)OLdYgO>H)< z|LF@YntF5numi7R<7}_-ld3v$QYPWZX5Nv+La<}j{(4pLcFC#K?x#Z?pQ`y}#}g?< z<(KmpjzpVGr?p#Lax=%O-@`c@0=~-E{^I;uq+xUTB*ieYT2v|7ctD|+T*t`KXY}S| zCN?d=h&(jbQBiAlo)y_dv{{9t#?b5u?e#>#Zm4MKli7_|fKK{B(M)(tOZqAS2pvVt@Up3R7pXT*2CeR; zjR3WIIH%gCrwq=IRfP~lW>{kXXvu&dyiNk2zl6Z!2wjVy5Eqh73HJsd5}Q)Q5*rH5 z5}UGfm|DveFPUMg5Ex{=p08n=7&~o#|4>uuv#iNmmo-0dRQF-jBv@0_$BO^52hC)h zp=@{v?w=Ns>Hp;%#ma_*a};!XhsovgA#A-F`gL^u-lL+tSdex8w z3Z6uFe5z~8(BY1Wq7;+jz7|TWUuc66J8r+h9KJbHW=!ve1?g>F9IyKXhW#&6@0o*J7x?^=A4{3b@{bC z!q@t#uMN(`dBi7`{ik> zlyLi21!JP(^87;jOKQMBEdletSpqf|_P-Jr6v z3eF|RWmsl3SuJ_8XFb>1H{~_SmJc7C)yivfA1)qmwxg39zm$E#;cHvGxGHmye|s7@ zlUq$0;oT9bCbA=}yG9>>jQnVUx@<$#Yl&>d5Z@9StiytT+_<~SFt0IxZFYVZoA@N_ zPB6f*yy%T)5L4*Q4d3?3{K%x-^04&D+TVtgzhnXHA|9r}?&-b~sXMCZcdf(7$ENJy zU;{d3`BX}zFbpclV@9RVs6~~4Myh*xKsD>7%vu-Ydm0D)#4lBLg+QTppCE+#A4CldcJl%ZK4nJ&qy zO^f3M6A?>|H!LQ1gS>(c(g=8dttFb;zq=j@HC|77Sbx(xl(ZJwJy<0^%qHQ_EI(bP zjfGoxK9IKW%C#{v=G2jLQ092SwpqpC^WvSW=<@PC5(n}&+OCh!i}-Nr{eRkB|Elz5 z@lXXr0~t!;iTvuGd5}2E1O65k4KLRPqe@7mSKlaVKwQrk!>gtatA`UdPMra zeiul}B;kl%7x?UWqY%(A`HrXF1=hkw7V1^(2h`Y99pUBBh%Mfa; z%8&tu$Qv%2Q$_@m2>dIjH_)*WBFswk%%FS>j_qLxIjbE;=NGo)^^U^+dH#yzfzIpf z773Q3n;~q5$#UUtx@& znfB5|RwG&n!?-s&>j-w#F=iN3uw^_$OElbGXA3a+xp1&ma1KPD68t5QcW`!zl-?FQ ztGpF?<4*II?Ul$IQC;Jik+k2*``ekO_=GQU_pja0@2aQjp4H)Xf+DPEwXT(@>~%bI;6(SJ!8+4@ zcl$;XYScuR*B1S%z!o-^EDH6+V6I(uk671b>|^2l?#VK%F}K%ihNAKsj#)4Ks+st# zfc^ZE#0$ktptBHJPojMIiYt^OTZOF8Qz_W#VuH|Np-Hu){=>?nwaZQGf;={YkOIUf z*uWgfx&{oG95@Uu%>g2Kyzj{D@P>(z1#D&3f_MrrTSr_}uwEKro(eDgq(TTuE>Ycy z%wh0@HA${T-o0*)n{@1!O<6DWgw;>G&7)*J-gGy4;2r2^^+Hh8k2TuZudbdf;<+8+#IO0`O>!R`P2pp!sB)0(6|!nfiEDTiyHc$NtG^3oW#;0!(8zJ~l4X)4 z?7B@99Kpmf7c1xt>PqZG#>u_rCRn4SwcjTQu%r}n7Susd0fs0hB<>0>?x>1~kSNem z8E_~#jfUq6ljv9|asj~^SzlK!F;L;fbp!Gunl*(4`uR_QsjH2nd2RyY4t z0w+K1NVil}DUzRImP9q{;FBtNt9%9Ts?krDXi^5Hn~z4X@Dp#fHh%CamD-sQs1~^z zuZv_ZKG&mdjmqM{#!!rzVCYc%7=Wl)4>G_tw;%0SbWgRE#p9!}U%yH&zP*PHV3xZ0 zrya=tZ+0LH``;s4+^VfVBVypGdziLM8jUxeCOmOHBUyvXs@OdQhD@*u8paRNb?+GT zE5lfU--h=KQ8twBY2hx$*U53Jf}~cOinO>pI;y?&PBwwNpUQ2^redDdbr!W;9H{Om zYDi6e$kzMLADw+TC5UhG4(VKfsWD6xjqa8g!n7BO%a5{T6oHzeWJHwo1ICAlMgI6p z#!^@4jNTzThe7tqIy={C?;Uta|FKAys($uM8@z_nnbqegG+nDO6bBe z|HV6r05#_8pEHDnGp3-dzr{|}Yd?clE?CUMXkSbx@U9DwDiEp8K@bOSH3%6ljqrWb zOT4wfyd>0B2e-<}b(Ne39HDm9RXK}#%3pzdyd0ktOi3;V_hdcjHJ#Nhaa(o8+mtRY zwFD<3k4^Z+f1aYeacO1vr)B$B)BzTzzh4}&e=2s2!1YJW8+#*+$jk;55)B=}23w;B z6c3s0Sr|)1CcevchEO%Jmk2i_T=Uy)-nv)?8@La4v$Y6ptlBdO!QLu}n-TA@3E{u& z$xI}A)J927OrWTEPa}6dkNsNpIR7Qch8^54Mvknar^de!rCzF5w4K$fV8r4c#Sw}+ z?)*WeQP4;|tT34D9KzFR+h2{tZTR3RVj{_l`g>wHR+gOmt^}KudmnOOP^Yx=e3T4v zYAB<`u!7=LZZgzfe$3IBBrnEQ&*Kp{$B|H?@_-ltl)=sn3(9F}0X4Cl7{wL01i^|N zWBP`vEmNxQ+jfjVcJ*o7tsBW)`KPDP`EL#lEA!uDZoIrzw*YG2=^chgT|yjx z`f3Hyi%0|^E9u#3LL=rS-^Bnn!iQ_wYb0LQm`;XT9=kP0^u6@m{<$`|bsepfV(g+N zwW!MDu|%>cr%D@C%G}bCtRbI~!XJK&KJS`srefgKvzJe+9=Ash#g{SIqq4A$3qEll z%~xY#W`1l4=O^TBeH*H%n%8t|uPaxXkBVWozkNh=O zIn}g1yAp{Yy!i=rVh*&S3~jH{Bra1-#B1doC?<-?6d0V|lq_CJJ}zi`IW-QVIgjfE zv8*`qkgGx>s(daugtXAdb6z!lO+U3P4E&#La0qC;%0E)W1WG7-@)d9nRL-(;m;*J@ z)O<+;$E`S-WfatZv<5XB`1y&zvN_OP%H;V6!P}Cr`)ds$e6*T$AFC%S+SE*0c#Dt2 z$^6kc$9B*A(yhOr7+-zg&T%;1v4`sZ@s~97xTDQaJLr}MJiEIa>^qYk&3{;Kj{m}D zl${No+&`Ky2uq5H+1Wa&fY*$||0nhiGaKW72k%6+S1Rc0xLE=zU*ZbWh}BrQSv0kd zNnX5dxz${?Ow99Dh0{C?S0{@V7z|hEC4zz*B146viV@jiLVXSO0=k|=Xv9(n#a64u z>vnFg`@e|z-fo?{Pl9A2 z>F};ZeQ@Y(;SElcTxKC9X=3Ov*31kQb6VhTTAgBOW z2cZe~_yWN{Nw_R$R)MqbMVN1H&X@vz!p4Z=pbm+|4tYGvV$NIlp;jI~Ccc;Lf)9%i z+)qXwA3GQfc+h=ia-hA7;HZknLL@^O3#rq!F1V7WHi$5wzuRO5T za@N3WuPS9N>NNA4SA2AL7AY#Ju>2)gp<#GI!0j!NyI?vx+Bjh}RYCw|#jIuvG~Ni|@kp_p>n>qL$t*C(XDYNL+P_i=VTM`J0H_JPGZ& zig6S_@04oIxWLOivu>eXQELuC`AKduOIsLx>5H@KPPWKp+5Q@m*rQMQnWpoh%)dwH zt;x{AIUQSp0>_&&_`0%ge-us+7W(~Sfx37jm}%YV&5y*a{h=;X-|=+|_2xA5(Utp`Bi8F#9^&T* zkJDWQo@!jdZ2=;FHXfbq&^*i%DHD6Fq-)K0AumoLpZzaO*dA{r7JcHeAx%@WkbX^(hdARuqpeal4TYef#aoRbJ|G2^^F3bI0i1mpFfe5xgMo zht8XPg11Dfzt7N*RG#sK$3V`Rf5SwD&L8oZ6lfOM*45rE*M@zGzH#&9^sQS$F%Zi! z3m%1IFhQ&O+qeETC!tw+r0gW$ct)wDM8yUg$#T(%VGUBmJrz&;Iy^is%&uP*_yadh z+OQTMv-aE_6PvoMGHRZ>dqW2l_xOXS_i%DGtFu@Vnu2qX25B5sVPDYLk-E~{1j&-U zRr{(Q#sE=|KJ=0a(NB9j_0{L#TpVJgxhVXPVN2r0Pp4v&44u1*)wgaA!iJY`T}QhY zeRtEU7PUfFRPZ+==iI__nE;E|mckrrOe0?W>h%U5#P@Q3H=HK>t(BnzO=Sa2TUIj+ zOY$^sBU#x@|9-CYulDq)?)K`ZHrNU+4)p!sEVXl+ZNHz52RZgM22D8abL4o2EDl43 zq8yh=cTFX;12~=4GM9_3i3VEhHDNtj^SdURYylLG0-E9g!_Y#hwXDx}W3mz}6dxSz zUip5Wczl}ZLUbXlM-$IW{((+q#q_1dtPVe3Md>Q|;M^;C$)UNrN{oIjCvvr7!sA&n(e3$nh{K|SIC<6XE8A);^oi%S-Y_*&_J zlJal}cL|>-B$w&w-YbubkFOvYfA_GQ;8=M{c`%6ctcs`Ng;IK$47v)dKYg05_U0MK z^|AVbn&8m&^4p;Pu=CWIRqUfV`odv-X;Z7ezCP4rjA(0D5Wa31ANmp5YyjJ}!X6A{ z<~8Akz)H&Q@Z_#Bj#ID$GDkBfN#Lj%1}`pSrJ`P;)yn6Kh$ih0jX+6C#K8;^ZfjMa zoi>lT>BRJk+tX!Ue59f-yB*>}U zU=1h1!5V2N@l%al)mI%w>R2KPXM1V%GW&KDBDcVW?k3lcv+Ii;_ok>k=}5_USt!Tx zFyGefqTAi%#W4Jo9yMK6G2e%&67RX{^fUCgY}rNcQ_LpItT)ZCI34@OL(}YCHxMuV zr@SUGPOQ6R*@-*{#uuztAoV7eccQw~$gE{n#5D*zf3Uese{_8CQN;+60zdvj`^9N|0xZ?b19n|{?BC@CLfcRG3Qiz0jw8%gS8?#w^H|+enVn7Q4=w4~ zQx97oT}1=xl1^&jFJieo33?u1fsQmb7w^eAiLg+O2xlmb#CoL<#%FEgbivO*K|3=keYqd7<9} zT0H;KT2{?SntyeBXgUXjTgoOi3Ey}H2f_Gt)p!{Pne>)(HF3CVvYp9xvAit237a9+ zx_PxR+7Uk4vL$t+Rs}Lo6mGiw?}B-P?}!FBu;V_GaBY-BLx>b^{yeBc9XEu?wIZiH zsk5-3mlU@H&LurlHP6t<;c_UOURqYDm91LVCMLV6AVAsPbSY^yt(pSc-dDO$C~zOU z{t0^L_*c+7^WRuOR=`%KJkF#)3=F>Y~P9Xi+l9V)dI;Yr!58#K;>$;L%I3_&mz;V@1z(T@qevqq`xp)hfAv67 zC5C$yL>?RDrW`@-^{aPdqvTZt{LfG(#VLxhosA9Z?bUmnv^#V*Y3Fpq$P&qFCR`oQ zeAAyIvOh$|4*OLc*u_}--&9TE%q)hFj*^_t z$3-_{+u@l)HJc>IAz>Rjj|~!uq+ZJTa5*>pQ8t8WE&l^y?GS3V@uW;j&J-CAVw!n8 zwSlQZ3^kW!E)x@tISWoa2F5%;74;ymozNg&Rj|B9yKz_dygGe`xfF{9J03b)EKEE- z1--@ADbr&%X_z$~TL!LRn@D6{zp@~3?ZLf5U`tLDZ<87;5-RSSQL@CrlxmZ#$Wc?; zoLQa`lal^P#fvH1r%*kkHcUpI6K4a(){RsJTc7!fA~bFVkI|>|`UOfsdj9@<8sjWx zxdySl81cbZ7Cyf-4E;#N?fWl8<#+0*52rdYhhGef?aKS>;>_$E@9Ip4w^ot9@PoD& zF5R&Ru42sUFOY9D2_8-IlC;hxXILHG_FJReJ03I~eVdg14VJw2r)Jaf;C*qd&Fz~H zmhPYB*mIak^)&pf8`?5A4q;vHU^z9|KSx;o6sxcvnHW@>*tUu(>gL(qfVW|`%Sb$w zFh_kP;EN=J=9NhKZfF%boaOK0F!D;lqyl&AN9A3zeW%n>B8TjJ+}h-fxm^YO+hMA0 zDSYSRw6-bJlrFp6bL00Wq)9OTBv*T8KF*okqb#q}W3MSIg>BcPE!|pi->ae*77Vmk zxMti@Dva?TZMT*UmaaPsR1kfRJ%jXw?kSLuCsw&yy-asgfQS8zB!1dZ)>7ydRpijd zQXlQn^0Lk_0N-?_>6tgWs0X_=F!t3~%HRQ^cXYA*H50l$Z~I(TMvP1i(|SfWbu^^a zGy_YJS~;>Z4pA`)wD8Z=g5~8=5 z7mM{gm8Wkm1;2iMHB=o4ERU!A7=79$K}h>b1#dDee{5yxoAYAzQSO+TmCG*$8J5px z>s+pbeck#2spLEDGt?H)C2wS7s3wFKmn-IU+_lrV4D33@#VDOJvgJ_M0#r35f=c z_b%<^7gHxcY|*sW-Y;R-1k@?*tPu^)Lll+2!gO42>*+59URw^pd$Wy=dTe#EwpNA@ zMi`#!LygwET-wUg`c&U3DZX2Fq4CP|-%w0H3`mS*9N7FWbHY*j%9$xUbO$Y2{uc&Np`MRLW}-<@LFZ7TukM4KP02Pw9vWhSD=Bs3x!Fem_v2R_5#vF8wZ^ zB=R-oRdy|7rOIj8Cd>46ULFwq8oNHmzYtbavMsg<OxVEKMm-VL;>(`EWXw2|&ex3?m;R+XnO zja$qJ{}ZEQJ&y^Tbz*lUD7LYPKO>2}T@PJt7lKonUjO+V1{?9|zP^Hoi}r!&IaBG= z`l0Xzmf(eXhiISxBGSx$rh3$J{GP+NO%$MWGSFkC6X)j{(LUd`A-_! zR$AfPP{jALWIuTHzd}euX&k~76a`bG+r>I9W`!Zt+-3%PAk-pnsS}N(czP!#CM74X z7)yR#R+=((S(Y+pIoE7%rT4kXTH(cd6`j1L$gC*MGRIFcFnSmrT+OlK8I_e*Nms?G z;0On^sn2h!dv2Q$JtL#$LSui}4(~j_f?mUoOcGw^a|gx6VP8YI$C*Kt!Mkg*x0fyX zJ7m=Awm2G!^9lcS>evvay3DMgUC4LgQKOT|NeWqNXtTQMhQJzYJ$BJ?kSW|Kgh?-% zQmbP5`eV|iiWRpN30u+isjcDj6n1l{+}E6LGCuFB`W&%$x>Pw|+HXSXtn?IJFtt=w zG#jFW3yWSFL)-c%FXMiiWV+TssbP)z=m!^!6!oqfo_K1isx$I2o0!#cdvVa4z(q8x zhcIvMUD)clSCf}wAG6EK!DKykD<;ffsi(6UG6GZAeogg~6$SmxhE76N%pQydK8&n!-5z3+&U$NGyzzcOID1l8v#26-gc6KR9iWt!w#*`WYn3?zP3! zwdP`ShiX86{_Fx5!>2=TTIP%UOrF(s6?Iy*;GngQzGIvzA5##E4VeSEH+eSPsK>Wu z?|X{IiUez)5-hi|8*qdZz7n#f3K>B*tI5di^$9LtG+zznq-u7h_dW$FTq1I{H#0Bw zWZlyJIeQbaDE?5MynVv&Ii5iugLPI#Q~wETUSZW~6>quc3- z8zxj8S0iUL!4_Z9gvlFZ8d#ann_P?;O=(wkOya73G%m)PwJus*UbeTkr0MwKwlP_o z9rTUyg#FS;Qz`z6oUbVjeBR@VZ&FQeKuBz)II2kE(b())A4y!5`_x3IZ3K?ICw#$Q z){RQYLle;Qg=5Cnn3P?t3Ya9-@1ARTz3z&WKDZ~(ZmzV)&QQ;6T)44KH?6-I4Wpay z?v}JGW(uAtnJkRBdi^0PtiQi!V0@{uylkhH;lv>y?&Hb}xvrvUJb5^CUx>orKZ|rq zOIHI^Ez}$f!E76LvY~NuYL)Bpo+Hm#Bh#(|#G%s)ca=Bi79sNPCzGWC2a2UJ5*w={ z``X(PN37@`f#1d>l{Rdi%7{|B<+>4<1WfqfUwfTY)(1T{J#+~YHin?9ZqAk5Vj_F^ zp~DOtXl_O@3Y`^s^~<0Y7VW>LlE7nE&sQZVi>}PXM9+1cM=Qx#n7QOP9X_SGP)ftu zrlQz!bKt2R#rbL3Mw-{YrZ_u4cZ8;22~j35G$=W=3yXT)c_l!j>*rkR6Uf&Y_X+u) zW2Ap(XPvwFm#R0{cUGox|Mca#IJBhyP&a!b^ z$9%%A%K^i%H5yeqT93S=^4|wu#;_Js-6D9&AHKd#ya~Qn)vIg5N~rZ;j?Xq3A5mAq z<-iuL);b@7yN~ki8X9x=)b%HIW$<9$H_nygrF>H$LRWRf?hx!)0gW^9vf%z@{g>gM zl~~IUKr{9Ss>cgmx?qFW#>9nQ4zl@YWbgd_U-5jh=*eYD#9G&O)-Z>5lD%Cto z!x^7mdixJp?0%hv(R#=HA{xEpE+eS(@%x!CTFuhikkBc}a+#|;95QZfL)& z=L5Cx(hdCsZJ#UW9X=vLLgT~HI@dXmE-@MX!qf`kSnC@5<=axI)hMsiI_6G#=10p| zE*zsBV1NoEoS%zisLJi`9mZuX-q79Z!M@bBMZ_iP_nA4y+dgmGgU!u?uiIPW`d7_) zSpY%(nA|;%dIqm8gX^C0zAn$Qv*nuKVj0$t`uA&L$|j3kgK?GPs72o=T6Wu`w$zJI zTzMWZbQk?i@i}+YXT>HRIa>KV*0O%T!rz8n|1Ps_S7rJ=uWEq5q$TnMPP0cn zg~+B<DO8B)7QFlmlbr>58>(zIwZWODJ(dm6&qA*&GvzV!WMb~|jK8!za6&nE=?Hv7S2L{mv?J-7bYCx2Hc{!oR1U>XNdGR`QI~L2tbkGp8KYHz z`D^vpoUdOy)xLIoJ3=p*uD_AFRZ?>sfUT(toop}Uqd^+&JBm<8D=CBMsb8B9Qld=9>x?Ru?I(>lF)8a(_S^< zTdz^%VWC>}Xc#p|x_;lc^vJ~dTM2gF=K7~t{)^H>=lS{d)3#HutNXU!n<*L*o1BDc z8F7US3bn5cNv2sf!{uxcbF6Ml9$1O;+z_@cGR*vLf0B3yy&)eI**Dn=-Tl$45_(P^ zC)2~Ya(&V1`OAhXc?`APuf>Grr9h)K78ZWMrUo24&a0k6gNd&`+e+Hkrg`72ALV3~ z8iLsNQ>6__^761Le!P;7a9`49K?mkHJp7CdMq8w*&IdYoze$w63G+;AQ=MaFq{!k+ z8PF!*n?_}sxL7*OHsgzB_vBkOFk;2`n;X`NwG~XVa>PkajIl6@elp@CZH>gu6tkH& zX2D|DGBO@*!lhs`Qs%A|n@CIDY1P4<%Qqk)dDEXi#n@!(xcRG?s#X-Qgu^n=0V;}G z>L$%N453%Fd@&}CFg7FMO!uJhhGeYIltSFjxQ5NtIcpr_j(_e6D*qr7+LC}G0*($w zE2z&1enHckHz~}f*TwKoYN+qP}bwr$(iY}>YN+qQlBysdp> z-4n6LdyRUkh^jv`zXUYxtyB*eua!ejtQ!L)8Ui|ErX6m$1^YL}+7Mb=ZU+FU{$gG77znAn zO4?GmYOJvSo7rK1h)Yb)F;08qx8dCj#)cOBE~bAZGX&#<3$5T`?F>el&6=60X{c_c zns~m}MIZAlz?a{;xChjI!(DC@aUdhY-udc@(1TPh@6hm86$ID%qQ=Q@@ymfCZA3(E7DeKizIQ7ROKy+h z1?e)r!SjD0pF%-^hzT@1?SYrbLR>4Fot8@gKLNwWo2)YudT05oam_$5cx`TA;{3G4Z!vOD|!@NU%^UHHzjpl8}U)T78gZ}%mz5T@J8{bKhLc((&QI|F)uZ*+ z_N_k`9I~Crz}6Az+xC`0?K&4aSYG{C<-Max-qErSs_ZPwWfy1Ct14JnCJa%F?Fa2(V847da&2;;UR^HD917^Dj6*xKqZ^>JKe}KD-kc&}4<*cZnYX-Yj;p z!SSFk@yDj~vuJ&v&c=T6o~;l zBbw8e(}&t!F4yx_e=&#edQvve-u?}Xjr%)ucZ2h>0bz*(J-rnt~dpIIlPV2i{*CTynobME*TtY)|N}Rf(1k*Mmmmt zI_rj^EtstIjiQx{?do3KlyZsviS?F#hRH;GJ1u6eWmF)6Ya~o`S7g;PC$B~EKi(HC zZOWE2_kRzBxl%l*v2WLXX2OTs+x~qgRoFwgUzb(bXWPV&ae8Fv;JQ{#sGO7~%Ix!b zn0=;>{{ZDazBc}s8wUG-7#{u~V3Pk~F0#@G073-?3zUF?h9s1Q1wd&B+WK$5{tuDh ze|vdh?FwpYR8^)HW%&!aM%nk|b+TX!8yDPjo~JjtvLH>@!dQa0EO8a9H1< z-M-B};GJB&vhl}CH0o=R$5`sys89h=!G1BPY&xU2fw{W2uwSlk(!e5xQn5^9=d^>J zy_5R&84fZg5(e__F2?>r?dF_8QQ<)OEc%|c-@xiDJQ!VDPf7m@!Q#pmE(g2l(GfcOHuI878;L_>&Q;;ic;bYVMz_my;2+8a zs!ylo*GP;)odRrkJ_0Q7J^2iP$iIV~Ja1=16?5U*k^p#IXodv0RCGCMd{V?ja4|#1 zJz;5*Vgx*Rrm*xuYD3mL0*2T$Icj|Eu%SUjLyEer*C2I)N@7(6tFWd)PD7qL|5b5o zLRO>=aJByITYPQ^y8h5Oq;FvW1aS}qNWwI5lKwC|!hkTsf^c=hm{oy6B#1$cIlDRW zxm-g6nSLXLy3quBD?(A>h{gikiYZmm3cA7ReWGRA%50vSuXulV^`DJOM#I;JuK|TwLbKi3D!UP-ZV|lrBAbd z`EthF_0I;8p*Y?XZ&d+%^Lq+J*kam+P-!n|IFk$U9owpaknF%HqhM_Ei8`*3hqI_L zJGeyW&)CC5@fAo88OqeEPEy1oXX{yRq`HN&;%0TOGj#TuU9Nu@qvhk|qQVx%*&U>U z+LlXaRke2b7hqwN zw|T7VZ979c>2z3>!o4PO)=m&E#+nc;RrH7bsr|IaU{{Ycyl-<5I6l$r8{vG2Is-Q+{^x4D@u zyW<*`Powyb?8C*5k$(*a1OC@-WzlbZY9bGP~#mFm*;V6fZcYK!8X)}X#}&~h>pyfoi1#h#GOtfa~CJb(DTbM zC_zT6P)m|d=*LhJ0h1O5&_EH>bZ5rO>fc&kMwJ-AT}Jcv%9^8O+`-q4hBO_llunkO z`BZ2$c0hT1=uOHA0UN)K$tM;}$y@mwjouUMnJzSXk77)Kw_A0Mru8EgBv>w3S=H#n=eTGzu{T%%d8CdBzer z9(z?r@YPrz%l|K+C82-=Jg?3i=Hr{5I!5QJ1tn;xQj04DgUEU5n7Qr~w|*?n5u7{4 z$6liC6urY%Cg(xBy+u=b^8}ldViBt3v=;5Q;`HC4*A#usCp*gt_{5K_Vo^;pq-q=u z0d5l(#^z79y?RJls8Rf5zyDUWsSAe0lo;a$d#TD5fbvGOK3fsk!LeEgSptmhN|t4b z7K|AdEI_rT+yX>#n^6hY2kVX(P zm#A>t?i)1j92!h{rxY(a_`4rV;XQa+gCqkkdp@&;ZIC#rNa8uGesdCwlu*3lyyG*9 zzDfy^zY#L_Eq>QNA z^SNO#x8H-pt?5?ugB~kx>1WhJ2*Lry~)sbHEmUf3AsZ>~bgKLcHj9tYU z!7MiP>B20wT)>Hc15l@O_m+Fv^d@!@Kf`(Up(H2c?)wZh!XBvg%W4s~jHbV-)xg^C z^r7ZCADickJ4~(S>mz&=Zk{&Vu=Mo<+exzCNv`XN;&rV%7+-?Qr3F#pVO$G%%bj-6 zeHB?b8;0Tomxs=vDvRYo?v&(rOY*xVfWx4)hI` zkUWc?S~0*{@PV_`RHu#mw=5GRGDSVVMd~}{o9>4(=8xpZG@hb(@UEy&C2}xz!9Z?u zHH$HNhX^b4!@EK(xSajsi(GhpEl{tzQ!In$TWf*bdx$**;}z|s)K>&FLRh9y{{p{w zY0_ry;NP4VEV6@75&A)Zbzd?N`hq2;uL&VO9wrr)S14(8jwwlL#ZNardcGG#+c*@o zeg6JxVD8;GhHm8hsPLE#hfA=AV|l9YL$ppS1Z>JPJjfdB=F8{DOG1%J>1?8;Nfh`; zr&}$lYE06o%m-w#*9k^Ed=0Z9DZdi@=88k5+Pa(pSTJLqi4~)GxZxEX157E>5qkJi zT3&P3W1s7o>EXFmyLoYCw;}jBw1SAoU+$mntIM#-)*TaqF69K*B2b8;U{-dl2&+c1;vQ{(;({7kmcE!S+c@d@?;3uZWR>kXJJq ze*r(r0*!#Ee$P^tbyAM2{ZCHw+Kk9~*9l zl)j2vFgMEQ!5nkWoRDRmE)7ppwhHR?3!UD>zD-2bwm6$~4Kx}9!y3!R>qr0dc}tLr z#PX}TM%z3)Xp{CpzjM2 zgdAwVsyE>Gx5a3@>wcH=KRdBHwzBNaZMciJnow#C2)OdO!+%Uf9iyE{D`_i0@@=j% zAdgR^QmdPWTSR|t`dXUx;~3{OD3ku8IPxa{DiTg{L?nuS!?Q~Obp1ip(rArLK*U9& z!5&Ntdk5#7-bUf+MYN@mjujU#jC}nsh3dvjO#IFEb1C*lsCZmHc5)X!MC?Re(UtiP z{D33DB=q~BeS{TK;y&T+<7|-79~K~+MMiTT_pFD=GFuycJXxs;01+AFNIqu{B&<+tD+x6-mrD-z{F7 zzl&MAcdKo|zBp7=$KH5C4SOsnAq~_d%;0uS1v(pNFzeiCvgsqbI1?~t?p7Ler1eOw z__H9Hkd~aBFoTTl2*n6WbBaqo_o5x&jSORSp%!4==ncVA1*E9=a;#wDq43u4cq)D_ z{u1u1^nH(W84CdgxrvUZ7Mq-ZiAVf|gZrcgruamM2IPD=CAHV1MT`0}+roJMrt!4@ zH})?Wl-Tpau8-*6v0T0t`UX?%;LNL{gh7NX-o$P!GR%B}WOj8>)$*xxos-;94?uO) zq~yv4&{$3J-&M?$W5CYM0`8Lqw^6x+xTm(~ zn1v<$u)*+~zj_@;g$AzZtGOHU!y+l<2Z2gnDLJ?AfMXznxZwe-V=uph*kL(fps``w z&=VAEZ7Ob$AYMQ?m8O6~XU~X?^gtQFzb4csLdbtis#j?nsZhq(uhUH2P+kx4N zJV#N72fEJn(Xs0Aa;)+bWLw!yS&ynAa2S; zPB=b}OKzL*C^UbP-WxVD)FyCaz94#FZX0@9e){3{pprUIuqNQ?R=6Yu93_k+!)|aJ z3Palj`_{lIzy|?TURcIm|CwWAH!T&&xgmv;X1pS32dsUsktnZ=!1(N;kMQ*`JMwHL zGvp9>;_&BCulWCjM;W6Kx+<< z2^0aD-zR=zjJ`A`D@EV*$9h;*LY+G>N6QZ^XAsd3EW4|VJ9liF`M8snJ_1ejnqPFy z83nTyP$KBst?6ONSTs96f0^G#1pCA8lA=#%+=6>XZT72g6_=P)pejVw%+&Z~=L=H7 zte3%9C2VkKp{u%f1`+qCg9v%>0<_@36UX9=gh4NmZA`cRm4bvKm#|Fkk@JTj&}JJW zHgt~wZWupv;_3ranp*cBvtF>oRS6Xttvm_@B3!_rI%=YvD_{@ZuI=I?6K8=9;*Mgs zfo$${w#(+Fn{mz8r{{ca+3e!_!&M;>+z0cg=(6#Jg&P)$DwP^+ar6yv31TTlCKNb_ z9uWIPHr0t<93=I%HYwCn#!FipTfJGH!yV;{)T!mXpD;}gHbcVrXIIjZCQtErMMbsA zX?8Wg`jTgsKOvNemi+CagG~h>0V!>a;@~0Kt)atx07io1c z(;lsv)ut5vF7Nog?c%XU{hh}LZwuE^Itm7w^7)umM3L#iiHJ)Fl>A znYt)d=*ER3FXpW&SNX=UI(4hutS%v!R12E}D;88e3bJUacGegqHapd$vNGiPvQ}ml6g>$Ne#+3)iru zp5oF|Hc!lU#6e{k)uKetDMKWi1TlQ(;lyai;Rc603^Y2FI2hYR!f$AQeg39{4_tsLOzL_Jg>5 z4EY<8kzG8m<8EWN1vfJLr0j;%(RDZ7##2i{`^xaH%>%G?QH+660uFpzS!Hr~~ab)1(fS zEB0TVIz>=qR-{zMEJ$%Ds^!C4Ido}6L2xn(0Ma(#HtNGG2(B?K?-fhz_90iTTT78j zWzf)3dat}Z7!^8mJ~2EOnpUf_i74K1o-%AzSl!Q;Vi3lh={d(cAWTYj#40~6c*+ND z@XI*B{%i-f&&s@qbZp$YDJWOeM6E&s@(b|axP1XWvL@}a9*6vyW<3E`b0?PbpA9rq z1cy$zU?XyhUJf}ItDz^?ir%XBg;d+wmSS&SgUQaN2Oya`81166y;7=8h#0$U5gO?a zi6W&07n@cttWFw!r2K}tB2mkQG-aI(+H}>UUdCEIj|%58c5Vmzu#S<>dZuq{M^3YK zp_U+(5aB;0t#WVf7>EQNo-a9%n73AN)%iodpTlc-Uk7`5x42JPJ7L;E-Ml>PQ#|e^ zGM4L%rN+04XALEY%%J`aWVj3B=T1l)24ewZN-KE5!}Z7g&+Dz4Kgu+V7QI8~NL3~2 zo*$+&hGmg>f72TbNP4mC@`Q^5*2Oc(ijpE{Jt#T8p|0h3u2(9#BJ$E`* z@=YltM-mcec!J{bm!zj|(JASRI6v>`DjkT5}^LiBX`$ z7?V<`(_M z5Gp5}oZ#e7$)u-C<+sjtJSQj}f@SF*phZ$Xxvey;8}*TY zGal<8GS!6*z{ zDkQaAqChUWbgV<^{4we9!rfT-nPsiR_2v#S#oKJ0Ols1h$~mA4v2@(5c!ADS2>ssu zgvZvo&?OPIqYg|{^@V8VRc7Zo0TcC+9nv~r-U3%jo;S*BI*V~q%z)GK7{r=D8IT$tnXeuWnz*gdA_NxNP%H| zP`?GXr|@J$F1sAi9Dz^Hq5C#yvr2E}{~hIC+0K$3Fqtzis|32;0D=RLau8Ug^ayv9t>6 z2y%NISSNW)y65bN<<|!bve;q~fDECuL;*uMa9og=UB$tE z{JT21?sXXcxlf|RVc9f&+1YFwhBaN zqc(bEUpjSLCgF|kKo>-$p` ziC11`{F}KFp^>?XftNccJhfCF{L%s5#`Gd{N$7IddN2QCHmVd}^fuDHK=$Pq;hBl@ zDz6A)&B8hUm!`S$Ob^sF0vtRL&<{l(o9udZ$G+Git)S*2?XhdV+gkJy+R3Cwx7T!5 z^JtJ_^jTx3}n>vgpqG>m6qs!(R=m)c2?il2iF;i#E<#+!C}8JUm-Bx`)`_6y4{ zWForzU5kks5u97+CvI&$J0BO;Da;?9ppYPFPI8;Qh-Cb-6(`MZc$frC;;#8YI%**T&^1zuQ`;_r#b&%loZhD%=H7p7>VGB~(4$VQZKke< zt%aKB%qPdE8*yIwVBOD={+llM9}%1Xf64EEVzd6QVF|vL?)%kkrzhR^yZgN#05l5P zZnn=4i5?K(lM7<`zisp%&Zz&b0Lb>+A@-kP>SzzJU#`Q-H+5}8X;{2Hit8kfq0D97 z5MngCh`_9{0wE>1BpuX5KW*2FhR01;c~~7)v%W@wZ9OInL%4+@vy4&?)7a71Pj^R0 zW2eOSPYZR&CYP(}G|v&o3`bxXBU7O;;hdWo8JTCB{oZVhM>2YL429{;%v4x+$c}iC7c^5)mKt{!Gu|_`m*{ z5jBej^S%Bd$ERE>>*c8y``cAKe6?WE*EKf~yjuG-+XLnu(@1R*(=Th?B(M!Pk2enx zkB!kTo2;(wdI-1&#h|rU^20p>1G?X}&reVd3S%gMtcO~AD5pmV$IiW^+^>GA{i0_V zCJpu@E@oIwR~qZG@vlafEa!rNM>8 ziVLM@i_(^;PlQj1ESVWXQ$@!L4`rZ>6N`kF3{63rk~D?7`6)_NrOAtwmMl#n9?_ao zYl;`8D`iiMf5v0h#cc{MDZnh5j>I_>v`VWMu@*BISuMGaq_6T^6loW=7HKWnno=DK zH_N<}z>Xwv@;b?F$5ZbMKg$3p;~)zHC^%3AgB2kuqZAeQltGG$2}Pp9D=6xS+^_z* zoYPo}iYWca9a7JyQ?stw-ba_^S~Q%YnaY~7n7#}e4Sfv3o$@?lj1fwt9d^EPKLjWg z7akV+U~I7+7cpd`F3_-Q9%_ElyG*SjrCd?6e=sA4uan@8dIxl%Ug1Wd(hLR#qXma#! zy?_()kTzAX$ugy}_JYUJZWo`F9!j=Bw4`)DB30c4NG$!UcKTG62%2;>Q&h2YLmd1>U*xR$!%RqvrO zP#0nqhkGk~>B|%8O??Tgu{>O1>%!Pd)UkZgxyf0lmpd=_+f*&N;|O1%H_5LN*r?qy z;D)<%jDZ7@w77c3l-y+Y)j*X;{;f2pIiJrHj4o!yvKXIuC43%;^uOTfBmj=xU=bT8 zUhTTLRZ_DR7||H4gsJ39bxyLWI^i0{@lBz83j>Z1qlmn>KS_d`p{1RMtT#NAyd;Wks-;O)f!Vqq(fn?SF-InB-X~-A)C6nj)Zsj7K>(yG;oM%*D>`v zq`_tZp6==uD#mGOufTk~=4I$I%+9%!FK^X85hvV3lg#MB>)5|Q>agw~RP^b;`&lrs zSgIeq+@aUv)jD0jjl~rgDfm)-o-K{^UF<}7do#W}@vs=w$;>9$u7AbIGALm! zGA8>p=Lhj7D1^l-@JwCn-J0VGo%U-FF<;r;_k`MaeNo+^r=S87rxj z83;sc3~4)}hB4N=rX3_F;BQ|U(kte;ksV=6ZPp*uDE6vYc&3pe1Y6WfxR}OrR3gr4gR0ND;0;Ed56a{CYkHx`=rIV5ed6?|?wz@0*s5m}OFXys1zoXCE`M6~3y|S~` zQJ)n#J{I%WjO(pk6P8_qWCs~JJtZw6gmK|*l0DeH;%9rkMV)%cR6PXe))aq-9$~WQ z($mQzwT4~IX zvY;IH+X+K@)IyU$mC7S8(6XRXyp=kbM9P3QC#v>Dzf;-n>8oyUfavz0!Msqde-W|v zZ7JIwJK~CC(CUpj{LAjxY8KP}=Er+pV}NOzZAnAmuVE~mJwFUUmmDv0Gsx?mP9Yp^ z&gMHO`9qyLg9(iZJ25cVllh}12Z_d}Dr{|kU<6ml^>mz+XLu@9?Vt3COUsefvTfJa z%T`rp%U>s3*X0|q{-)jPCPICB30KV)v5`*#W1Q4y3CmXxK0RK+;7dE2paJ4=GCUdh zyzW0d80@H5;kU$gCFuuoZHcN6d!bLf0)D;t7C+>iqOsZ@D2*>8e_*JDcg=?fPd&>t zzu!Yw3<8!TAP``oTZN1rLO4OYP`ZgErmJ;4zbDLLX=j~TywGMdeS4Aa(l{D!*<;T7 zQ~0JqDAaSk7lW1ulqst7Z+?T~C#arvY7AZCH>+_~!CjgaN}Ogm%yDq0)pNhjN=m`A2 zl43ih(`4QINg2s|>78&$J8f88D%d6F2b0VAtbU_4ZQ9ic7Bt75HsT997Au&V)QN$C zqx<*U<>mKx)j;pBC)+tW&NRVGDLWcj@nqO_^Uqop*r$>ASiAMNfxH8tZ~EYGtp_=R zPzTXfUEdyEnkX{)!_tp$Dy2T%R_dZJ(WbNt9b1AObm@77~5?)4QO zl1-#OR`Gb~Ts_+$X>FqL!(^~u9B2g8Twlt;lG++r$qGlMX3rDK+i}0^p|-BBfk0KI zj0Oe*Qj(MY+X+@L^e~?{NO6dcg65vPVL}H_7f-Pu<0b37Z<69^=%JIkW(sA@ zfaPZ>J4MWl^4MpjA}9Qz!FYHKEY>QEHRg62lKe~bY4nP-cwN9B&`;uJ+rM?FvKAs@ z&a=|2sX!DS&|v~@lk{%6d373{7dhFN<12mv8uT}bxi_xe6@$tsXvx`lJD+4uG2&9U zkpfrUA5`4x)(kietGHa>0b~PdRAlQ|mTh*rCXLjclor;rW`fx6IMy|tjySp5GGLib`DzQ!wz?)cg+X3@n(KMjtMR)TM=fX!g=GomI~iSmQ(o);8^gGd)WIko(-{dZui%WAf76G#iF*i& z(yA=UZ4Pcpttq#TudnL|4lYRsHzzwB&KHL!$eu5S`3djRD)E&q69Vz^jKzUBk*;J`nbAaxxAm!Try)` zNYa+eMmjc}EJ^?upwkoOsgw+`;>UL9lHj2h?G6tLiQxUuV}};Q?i2<%r^D!7b2a>T z8k{*rsV;F_SC!rLrQ_Ys!x{!#(PD7`txlrU3{dyW1iKz<+$2WjLsXqQ;4Z_mAosrc zPuJk|?gf6lJk}zZo$vp4bD$p`A04ZVV=gs8nz%{(9rQeNUwk~?uZXM9(=rh2N>wf= zWQU%T@UDO@&#<1N`}R%hP_DwrH;O#MllBjOyE`G@pqxi`3Ie&4U}5KG;|y3hyj}un zRMb-nV&I}grTts+*^M2DBGR`9Wk-^`dRT?SeW$}9Z_yBmL~500Nm!u;2uqjTnjtojWYzd%I& zVSeB2DAX^a8PLP<7d1g!8=lPr*APlUoq!#n^RFbU5C{B(*VucI51~9gk;4^x)2vt5`nKz zq#S$}AJ_VGq|PcB^R0ff7q8FIn=8iNJi|YD5FY4dGus)GmLaaK$!Ykhk8cXPQ&YrZ z9}EHF6@$PiLG3+pDIdbVoZVnc?WQVMpks*7fMYnD{xElj7XMzVvJIk%u)pN zhooj!uxR;Qa;7^+&O;ya%@8w4n@|x1&o4-QOu*14Mx(qYZ_Z_%iHDUrd?RRU-#Z~d zDUi%;F5C=F$ilSS-KZcS)}#dsd4j>l-}zHu5swNYY!{e=RIbOJ8K2`J=Wab8Q(|lz zYn6koT3+KgIn^*HOD{ulJS7<|1T7x@swl|Ke{WVGUI%`b2DmOkdKkwN7~~TGt6TOZ*ex?Ve5U{!YmzI^dB~Q^M#stt=}u@PE~X#PX&|IKq!(~j z6&$;L&ncDq9tn=o-;CnGDvQw=qo;|Gw*6C7r}8%Z0GEPS{Z=Xin>P@L0}?}*3w+BK zlM^TCbj;ntegrc96!mqT|4TNO2uVXd>xdROkUQ@m9aHx`vyJ@FNYk)+F;iLegy+4L z__V#Kmp1*BDv^?@@Vk+eCgxIdG76FjC*>gj^a9_JlRDFx|3WgKkLl;7uu*E}rZ zHkqEv<(luDdTnECocUl01@XgCz!ag+O4#L_ zXVy}&l4+&Z)AgnOGFR~eUz#gfVN|YcKw)VpviW%fv;R0a*@&Fp&e&dDm)A~=CNOb> zHPkk=<_=mP`PCzFJRJcd z+e*Nbd7y?qQXYu3>DbD6NgFeFDBM^t91{p0L^$7vV6cuMAwgfh5KnH(^o znrvuh-zbVSH{5J-PRX(ci;i!U!FN&Yb`O^kjJK2& z092((6wh?W=5s}%0PR)d{QUV?@R9S?m!HWyR<5hgll`cd8z=4jl`bt7}s5*YS!AJ+hx!rJS_6ySd&Z@66o! zt~l_z5|%xCMTRsk>5i(1%}aJLm0-q*0JNe)O;yV?$-_A(S?8436-!iY5^7RxkAtMF z33#chDZd>?DiTssG&_e&a!cL1{dvhGb9&Vmb=aR+cv88s*r!;N&~fc$xWZv&Gv#Zv zkmO5PwaNXryV)6_;^wdYswUzT)%wN51RQF9p3(X#7Im8MZLMvs%9}rGc~fx!S5)eE zK#?<`ySY&rJG-mV*+%_wAkL1DDlT$HU;*=*0*+{zlW6|DkrJaqb_Z9D=^f?&9T4`2 z^28jqC-Q}FP&_<8>$RGBj(LNY%SzEfu#7Wo;EO606;~j?Iq8jCn;6XX%}m>;3?cNZ zRGlVWM*up2g@JuXRZB-7CTj5UYEQX~N5Q0JsDh|4HxI@5u!Cfd8oK{XmzO87CV}bD z!!29Xq_3!&nWauVa%}%YoAiJ%X>51${2Gb-u8WM}kV5=|rI?NUs11*lN-Dt$KpXFI zzm4P3PLE3&Df<0H$NS4wrevB_uC{nn&5SVKFr*?@h3U0kkQrk69|unK1@c_VzM5BX zV4bW~$ma>?Vzdl2Ab=Q9(sI0di)WB}RC4+-S3E7_;vRR1PLu3<#R0Wn7zvPj7 z1h40g?AAQR0krWyX)B)XBZp@F4g@yBFA+swiHTor&I$S73nXcqco&R7f2_qC>%gmO zan~v&mrAhWx0lcmwypuFELikTE^<*2g0t$INhsG?K8HwQ6ZGH0{?6ZnJ<6Lo4JGXP zEDL1`%((BIOmE4_J!5bxud(&2SUH#5TIp%vMJ->gF!Y5SA6)UQTy7}L#4l5&nz*iX zg_5iq4*cc%DPCP~4=G>1U)+zvUYxVfq%+*%yE#BbKEOhp1`VQQ^k$rDDH^%$WBeMP z#mJ!W@i17()N1CU-Rvnov?fnYRg2T(QVyqm|CSN#Aoad`4flsIj#Iw?4yIKfF$VV^ zDVhT2;cmj-BhGNYUJt&x&gM3q=5}v6nT(b*)@OLYZ5}Mt)2W;6V9A%HQ@7C6Pz2;u zvTr`XdF~VQM6S z1O0@tF}m5WU)bCK!GA5*(Q|ZZ#PU0ktH_ym+f;+f;rTdch!VPWs%>U%obnWVo-Cnf z7~py63+c@*t;756gXm=B-BtOX6##+pwF%rM^oXIooW464s?rHtL&_^Vs95u7Z70z! zx^dLM_?bTu{}z@vuPX0DkOLlx?TddCAH~@Gi0U&eO4JIh8M;#LNvV%T*0sn!Q<2bV z2p(IW?4E81grT>c%u6Q|8iG-OQ48;ipn79%E(*D!Bt#Ny%J(~=t{@DW(^Me3^Z@9P z4u&>(2M~|K{Bxv=8F|Y?9pJgYjIdR#Fo5wd`wxT<;WHIU6TQ|#FCHZUI^<5+2H2_I z{fS`haydu}abE(gdOtTp#FP2Io#hIm`d{&}M|wM9KY@e{ORB35OuONJ3M(PW3o)~F ze*md1Dv8HUE+f$$H9J)$(E+0koOK@ordBOFJ504ZY+)AfaU~)>*6RWDO|iK&rH1C% z0g_fo`qV0kx~~46h%wsua=17q~+vnA;$v zktZrvSY1#o1RBz-fTZMvj;0(VSj=Y(M=qm@p^<@N5t64A8P;a zfsqwS&GDa^8lsohn2*8n&8#$|%epK=8M#vg7j9LPFj@S=&W5Gz3v!KNVXyA0mW}dc>LC% zr6uPev2bpaJPCQf$ zhAlN_jvlioEO$U^=)r=gNJ{|@D*|RY0uv9El>SW-F+ggJGy%=fhP^T1ZKM_ zJ~INzkghW5DBL*_>mrne2_4W`Sl>$~ij9i+XN?6%UnbKc4RmGD85lNpX`M#@s2at^ zsw%?(ZTk`6QXh@zqXfVc=VQpdM6?*>oT#0&jJC*>_n$i3mv^J{Y|x({+G&|XCO3>4 zHxgO@v?P7A+{rX*N8XxJ>ETM7h)U8#GNA%OAs*P98y^?UN+|~pb^J@*2#LTV;Vn*f zStmk1+Ahw|#c8M&sa;a1$O}sr4wd?Wy-v(Mvf-dMS9Swdp=OYs!L5C86;;us$(o!R zfqwRO-rSn1I2h#C6X#pjHlNz=-YrI8QUfGw)`?qd*9kc{#4^FD9Diu+IGu3ho>M=u z8r>^^!ab3+GEa|}>8jLQY9qiokb@blZ6rbc=ba>k+xNkrg)EY0UJ6cUL?2!W@HuOW zNAdEv@mp|SO2|FOS2K1t!%ZTHaVaaY0En%eR59e@pP9-NkY&T;2V{||#h;QT=ZYZ2 zy(dIf!LW*v$(pAGsdA>d0 ze?L&6gp4`=P3!y*Qp5j4RQ>ER)e0p_?N-~P)c z9RCs4{ND(@W6#>FX)? zX4}i**w~o+^v~hP&dpc%%U3@?sjM(M^e~cE^EI*w2^1PlR*ynP))*gpds}pt1TRd# zJ))R+fPe#8TtnL7W%#RDW*UVrR4)G%gqcgI9JW;6yJ_9He7CYWIHXrtr4Xh`H>V9s@Sj0 z>Xa?6jlWl7Cf*i_Myq`68PDKocOHMeO~!2M2}i$#Ly zpyY-zmTsY~fa%I+OQ)7Hka%dfKth<#ZuXbi)%6cwXeL<#c&UHygqUm50(nyrzUR z_z!WQqlU&9_lWg~?kF0O*8HqQTJboevj2y&cL)+C+SYZ;wr$(CZQHiF%H}HDwr$(C zZM)ujy?x{C(>M{?p4pfY89By}&jh^zeLakXNK%3+A<%@t=LmsFpaFp~Ax0uzhYXg^ z*8$NE;v^zGh%qWZr_MzPmN{8c7RSi6p~nj~OQp%p%#WQ6}tG>BxTHcs;Lv z3zSM%c8FACwjmX`61bYyr3_T7XD9mg7@7(cW4Ne9fnLEm1$Jc1=C+o1NA~K`?Wn~N zxB0mrs-UCsO4ncM@{tp0dL_BD9yr52Lmp)R=t9q^=+B)9{E9w)D$JBtVr+Px2Yg|G zWj74Rxh=(?I7zYrx|!DcQDe_99YFkEAZ<;w%w^y?rEFPamCR`|9;rd44Am1Km1DqT zVYTWF3l#t!t7wDtm zI<=)>SNwCHjR;r|H>iZ+C6)b?dw+w|>Hq*>xi+B0Tc+`7aGbD_O2)KlD_B0iX(M66 z7I7v9pN{*>P{ISF&xjVlDQ*L)a)JX_0?0h4f4pg9-MmK+rBSmB$4KGnk`s~c#(Vg? z@y%b&0P(Ln-C#L^NqVxp0Zs8f^D*hTws%|=MrsWbJDERCTQ+0ICRQ!oU(D@}_-s)X zka1hYQ{pjZL6Tu{!bEU=sg^QpsrfyR=8Wq_9UIH%m=3H+x>qN!Ha~<1YS3+GLg0%X zY_laf>B7S_SXwW`98i*T)9Iqs0AY7JY&tuyh)xK>qk#?#V;t-q!JJs) zX3lVf7-~VX;7;}R-&aDc6cla&8HRb3fC9!8L=^uJ#KWs+ESHS!P)F3=ePS-J8y(Z+;tn&;g56u9n(D;S|oHVW3WyGMXcD-6y0+-&6;0uU$hiv znpbFHz|T|x^=mdXbBDF4W2BSys#nl;(aRTZnp%t;>EE^lkIy*9J&ICk$5nG5PEp+( zQisp#RGfRi{!{P+@4dCK3?%M*?c6d>w`VSL`V;#}?MN5uKD0T~vIe#$i;So95mf{; z^{cV6YIdrnXHMpKtiz7yXPnJ=Ew5jNd@;T61ng2bApqvCo0;L3}!K#k%tz_b*K z``RmYbmZ4%(W7N3QUc=?q|XOInhr1KtKi(R2%NP+s5g#W~c(H#iBo2`pK)Iul=mC{*5b$X^IQurTV6j_%L_j`t8yFSQ}xjf!i)#tZ^+`kA73dA|Bz>5?#F|a*q`rwX$ zJrfT&^&Q`5+Fc(_?><&Fe8I)DMzpPm)y1&6@Wy(zdKraCR*w-?$CipTptE@s!pfIQ za@+PHvzzzlTVhN>%GxMnNDxe*4HH|$w6y(bJVrKusTd~CO}G3~A+>v>1Z#o4h-;GT zjG!J9MSrzc^K&qm8>YZ~^$~G#e$HTD6?D?s9)vw~F=|_I?**%doDq@3|li|0%w)u}wJ=zG-?sd`aDw;1L# z(&tRaeSr4^-DMzvW=d0V%0Z4_jRXm6fHPG`XTyPQVLL?BSG3>y_2tb%BZymKHdxw@ z19rHAb9QM=KV0B;!Ag{~9xyJtFJOtzRlYBe@TacnA2p!Si5obc^_3J=8ebBWl0{W~ zym8*2YGG@wL|YyDhpKdOx7}cXxeV|I(36_rkVc|}em-#ah>~I}xyewV0?>T*3(9HJ#CcbK(t#QWss)g=>~t5*C0|1BM|e#Ldra)53KI%$UKpB2X- zj;yeRfJs#-5Qmm}!ma{7*?HDN2pvmjW7PMZYCvQQxoH4-8s0+Q37QI$+=8C*fSX?I zWsT8WP*)88efJ%AyJN4_OSW0XI_A(A_#CvB6A11{(&E*qsTxRrWz?PekwFSyD9aG^ zM?Mm|i;;#bYs9~1z(MDJshp^_zJg$?@@`^bKBV$bx5x9v3wRiA3>&?jV?!6IKq*T| zhdR!%@jTnOg@`L$(4uL**H&9=RsQfH^yZ>t{uzpxIs|e7L&C^HDOA@tV04d5pdIbJ zx#7{K%!6fHxU;>gs}v=jQ%UFNT*rnqK8stKa(7!_9%7|pa${XhMShh%L$Nh6E2pX6 zmOUL+hKon9mq0f-YPkL%wU$9grPy2-|3Cg8QNHa;iiQI%`%jg3?{XN7;o>;Jf(Zq_ z(;f5WQ}a?xQHwCEiv|E;xUlQ|K2w7;%z;3-_1Rjp3+TYW)mNr{X05=Pu&r9OX!61s zS*}&(Xijy7SA%_d%NbH<_rYwb;{Q^kq!*-VK3%}cfZ&b~P1i@|%p-|}-kOK1K|}@N zw6jfEjDKbA>BVgc-3|~)H-%K3waqlPWAdQ99W?4yAs?1EArq-k1RTRf)wG*q*r0Of zsy)OIMvfWxRJ01lZ%cs;=;ro5q2X$FA|eERkKZ)hfO8DCP1QYn8(aQyj|`ULPFNzi zQfD-%nuD8dc#f15Bz^ky#9bGqY~!it-d2K2e=d)NLE}O9n)f(2R6vRLe@+fvBJ|tQ zJlwtVBa;S1Vs{UV+dLlEp%wHN{dg}^}>#l?KQB^LUyt3zw8qOW| z)KKz$0wmH(AJun1o_)kEoME}4Jo>SDe0oBm}bXtg2TZHaEEqNtN zru3)w;AbC!@reHIFa#!(a@{-*=H_i?K~_#qn<6_H5?}QWTsCC**eN|F01ru2%hnVX zt( zyY>j=;3Vgyqd6g6wmyu>o3bk2Hcag7=*G0RoS?2Ehr$YMu!E7q3byWc;pKVGo}$Aj z=a?i3`#m4>g?*{3l8YJ)^7T4l0?-gmY z#y$S?G?Z_kGI=; z0nwW~i0QB|@vh17ZcJ8AHppo^k*7fQS1L+Zs}!wvvIWvfaUO6&PIjY^Yo2S%srDZ0 zrp!f+M+qf;^1%o`51JlgH=q_~pqFJ2@veo_-33#(wcIb(=qDXVcLK1la;SKH1V=Db z*8e&SNxwjOKgpR!R;)s!&!(|ZRqj_5`ljTvPQ`c`(XxDm#mkh; zOo3+!UcOdW-Gr0|Y!l7j%3rc{gmQSz3bUMHHRE!(af$+7^)D2LUqix68?Zp4G2uUU z_P|851}v&Z$h6`BWth5PvO(;(|cNw+8LM|%bT(mALr3n$#`GDWH` zQM>&+*VpYEGA#NRf%B!7d^RQK8f{!nabx^Bpe*jCev)*IPCZ2b*6xkJ{-+~tz?XNo3&>y08z`Pg#X&TN2Hq6ZfN^Txs%E}bRBuWTJd~7O8Hli z5%YVQ@X71%IOT~U9;D9XC7G1a2v$7}W1E@!MoMM2XrXdp21>z7va+%2<{u<_J1VYb z?(Sx&J~m8gTRFZ=Y~PHFKF8-pvwi`wtZ*g&+k)diDx?1QEz1As(%eHpP*GD!Q>we` zPZbBi0s^)CZ)g99?fw6{JYi>J{eP&4)BozIP}Dc;z+h_ggKk`(vE4ZHj+`j&M=6P(6B%((TWAwYtVi>gFmcH7lMeoxs zBl?Xm*GJbz(;51JqKiGN3_!R^gR{97a7KW0YoH|G#MdC6d^9BN*T%rDmb`zvdo%Ax z8Kc#|xNkng-;viU4VByff&4;b;qlT?*?^&O1MchQH8@@%#0>R~U)#;2v3&NVy+a@+ zsb9%VqZULOKouWP>2;{4{vMYU7e#_VpUnDs$=!W62BsE*R30ER2QPF*vk3aU==E1n z^k-1?Yvm_#XON|lPN9*I6pxsbK?jcqrWM%&IqE6d5i-(Suwb*dtL*xA#Q<;>Sr_7uCrZpvjJ~G z-i#SGa$Lis!ISPws57BKl^$HEhoM299B5!9ObNOkbgJi(36^A_Oo|U_@&9K91xE=fg$uHK0G>_R% zvw-t1cO;M8D)W_-JK&f28z;VjpZ#(+E$NuJlZ(Ts$^MQxy z6XQ(bBgvq3ZzJi8(!8`pCX?kl=-j$w5Hod8dS7N%p7#ocGOoGhKJ$g~Qvg#t%zZ2^ ziw81M4d2xhxwov{zcu-X2o<*lVj*@MTDoC%I zBm_1(PW#B-WW$05&hDg85+n<*HbeT(!57}AH4I$1Hl!|W-=(Lzh)&i*$=p(~N3mW~ zN>bViR}T6$tOtml1TQe>8|ao_4S!k7-dx@DCt zt59wguiRll)i&o*4v98Y`Q2iPnZiXk>qZOUAh)kRm5aB&p5Uv;pLa?;?nl#pnE`9j zr0F??*J*O4aA%z10}7|NLelZTCf3i11Lkj?bTJP{tS;gJmm%G5VKX|Xz!J8@*FWOZ z^jILQeB!uFdvi-iP6|Hdr2~xSpIYY(I0lB2ZplL@7LILk9;DpcWM$jPwZWAN z0YX_xd$^z^eDw8xeetUB8W_fCZ+$m$3yw~C&-Nqd`$7dw8OB(57pUVMD^zc5&0bQe%w7vM}yR^RMJBq+x5%#3L zJI4dz)eK)3zbk^7klT7|g(d8P3q$B%exn_|gp_~mXmIiU$F_AlM~*Qv!a^X$V5&@S z6Xe%1J0r#qkX17VB~;Er^Fde)D92a?mhhH4#Cm|3@SPHmLxLgxFydN#D+w+50cdXx zbNE~G8%+H=>G$lrSKz%A>+b`gAU#b87ON7CY6x5D&C5;6{9y~kjVL3(st zeBW-RYb10u1|-}Vv686-Q-xVF-#11dM4&dDPViQZJ^?bjLR;8rfol_{_N1 zfhT%Si{0bT$4V$DSFc3Gv7&P!mcRr$vm3!3cfZf31$&ha%j|rKOz{(yN+8;R58&Ec zo(`0IMUVo7Zo>Gr3`nH7EK{wrSZ1?X#|`t|oi(vgW(Oc0NOF-r7>ssUF|n71s5Qs0 zm931bqot;!tBkFdple(3{-`seUb&S75F%hq?+|aL43n6!4LFy%eT!(21qUGbl0iyB zgq$OHa#i!|8OgCE4`#Sc+URwtVC}=A^$i7I#~wW)t4Wb&U5A0|T);X0q>QNF-7zOR=^Pu6W0AekYjQV`8d`JAX z?d4&dFM1Ylw2t@5l8Rq|hH!W;yPT_%4eMhapuy@@{*IZ?(B!Z>KQrPt+;SN5`(5M; z5;E52Y|7Go-~uE5MM3gH&aYUO5`;YPV5&s!_5L@DH(o`@cy7!gHr}^X_Io(*-09O_ zprCL<7_1LQ37nBKih_dlO580eu2>H6MMnuoL)bdPj?+X{=0t=2lR~N?%+$CdAW6)jY`4J z7On#ZVDoEXuCHK?h(7?t3yV1AZ;F<{8bzfyanLGLZN{C)8%aMKjN_ndyS$%*%+T*} zon1LQ=>~h{JGh%(NrSt~pTet&n)(f2@e6EXNX7nrT+1XBi@RF#>E`f~>e%@L^T2=d z!`x4)*Cs^U(Wu_=?Y-Q^yt4TC@v{7_9mf!MMgp`8u!IUs8eE>J%h)u)BV$bd3a{)n zYfb9p4Q#r;!MXC*k^V%KNBQa3ZFvcbdQVLF@HNowlFLz!$$TBg(C#`-2n--_P`)|5 zxxn-641VUL@9g3E!ePD1a_V^eYtfLJlbe#&Zu}Pm<9S>G&!R}ULk-_{=;^8*BQZN8 z)cq>{xPammVf`S=CTr44SwIlZ_oRR_E!ejB(tiBIvAe9IDqV{4!Yo%o&*g%y6LDL6 z+$F#ubN7ztQB8iJMZbvs4*VHL>Vq+0hoyFA3ROG>0cTE{&i_%ZvO$mXM zT5iD=?13+Y*e>hER;p-lH?@vz<^d-J{r!iibOlg>T4q3Zf~ZDr@(8MYOZkk!$rVYo zuy!7cM|~LOY}^+xX7s#nL)SkhIKrcNa=(TkO!bgyMga7k{&scb`#WG763h+YfeSA1 zngUIn()aj9T@8eJXg8M`Q&=a&ILw3mwswpX$CuROgufb7=>XzQ(_YfP=sO?d6hrkL ztWNZAB4NqW@JyuB$bnrxaW7S+AM68t{O#3+Mk6PoI_2ra8+0$>tS(5TM<0xX@`dty zCQfsf!GI>Xe1CI%9v99*mu~%;`-KbFLJd6w#p5`xZF#M)GYX#)?1166D_+*r4E#B8 z&LWw< z6*AlM*3K@sJH2g3KUURqx&-U!3?$@k4AMQYWJz+;RvdZX?@>FB5>yeWgSFCk*mph0 zSPu21TSRtHENbnK<8ucGVtpS#)czQmotaxQ@K{D%ajM94B0Q7O!HbyWrD4Y&Fp>4hF{H}RVZR)beI#U2e` z=$zaqZL%lytLiF;RgONxHUxX>p2}@eF)%0?QqQA|Ma$A2>#)9Wgk~c8U88@+mDj*2 zc@(mX=7cWaE}b$S*kH(>^9Xd)-#RhaM)cgVcd9TL0B|sPQwK?$_5fizL0Xm|NZl^) zcv8KC8+PVXZ1AvCP76q<;$5cqI-fQQbVSqUd@q7olSDQ{?!za^bc(q)T-yNYVaio z-{nE&ZHe)xjG9bdSdns@1d~amvUG$s5&1PkKo^`ktI7jE+pJ8g-z?+!RBZUqg+ujm z$kb}#na~il#IBBZ3-2gBlV&Nb$})}XyFdmQGG+V&8W-}iY{(W_`w5N8;MGjIs>(qkZWbEhqsxM#fk*j=+szmh7N$A``f&|{>u zP^PQreny~FZ9a6gdMY(Yi1oY1*08RcYXrr%{aC^+>Tu*SsbDRhf@r#eHAXM)+fD1}qWH4`G1id9N9>aA#~XF-0nwVGlFltQjg7rJj;)rJcmOEa_<9rAd{fLwAXJ-%b74uP6?rqH#y*X!(V&#gN!w~?FCg(*pcct@Z5dK@tqB+<{-;z&xiGXz&1bL z=x~%8|GM*D5##+a#{RM(ugc?QtpcybOuzRjmcBHWkYV6(#%_)y#xi z?uNqR6|2E57jzDvGhhy%Nxb&qR9}m)u?;MX(_CQ(_W3OHbNr?a0W5J}+d(*nU$IGa z0HPB!cn?x^(_iQPq=e}=+;D2{Up_=?G2ln`v(;h^ev0Spz1PKuG2y+x%ZavWK>pjP ztDbVbK|O^U$XuWi6&X2;dZWDXjyXXa@=em*mYJ2eqUcB`pql9nTVfPjBIu~JM=7iX zWe#skmcjwqdN6#lQq+ht^e0qa2oN_*`O7M|UCn8i{21e zp{ox%7ENexmHh(@Vz3mP;7c5G%LCW$$c-m52GWq8m&GVCoK0e%4c@r^Z?aUcNZIT% zN>H~2U#uDYqXo&|(6WH16wl-3=NYUxSe#%*4j-q!9#C);WN_vE&DTKPxUAb7F38mG z*UWN-`H8eiL29fJ>g(g^I4a@^>@+U%7k4pw-;R#LcM=`Ej)_ru0cR)F1R-AmPc?Pi z3#RlmpNe=2m>I&$+@Zw?O&RmeYP>YXdBI&r< zdaF!`H;&JZzRph-yAYLH2`Ye?gQ`$l6s!oLb~F<$2dm|cb2|=!TanCr)4{aHf3`~X z`tn}Ji9npQTE}qey&^geN)V!!Onb^^E@{c!4mxVZPIXx) zwu7=db1)`~!Cok*$gKT_(q~4WYh4wOC$nWegZ>@qsWvUfvJhWpg6+@s&C2Ke3 zO-bG}3pIr+PV}B^#l>qtJGVT}k5r!4y03`<)jzMDsRpCJkdDKd?edy!s~Q58MwrD3 zKKIW9UI_2Y+}G~FE-css`i(xvICV|6o4t}-JNW4GVcw)RAf*hT`k{5Ld#7L4lN)*| zwkB*gV4tezG4)GVIxLH8`bkt)I4fU?Qyo6OSGkbn)jZUe^Hcq6eY>B4D)3$&1tU1Tp zDCDUN%ko{hlnoKnS8NfrzO(y>8UnXDF9=Xde1|tTzY?u6p<*^&5Fha z{zwHn8L>xBbe=Z}7&hsAe!ZY_@cdEAr2|A*pg z)_J(;#v8B#v(e0{mnZ@4ByqfVOcFYF z7h11L>yjK-ZuoDl&So9wCO_lM?&dTD{If4h(N^E8djskohu7&AQ8=u+GC3 zmZneZKJgI6K@5>1?KX5(tLf zvR2|kg+1XblZVo$2>z?(oYt|C-R9Dt-~qz6fbC=~dbt|xq-*FRxU18;H3^cH*W8st zS@?plfX2E28U|M$tKjg3%2AvRXU2J|x3{(v|M`d~hl__9X$pG}^MMqHM5}pE)y#aT zAm2W0Us=Q-^m;dwPw@K?NFUgHi*PwsmUGtm+Vi__54*<<0Z!+URwn-nmzzQ@>P5gx zv2v^|l{mYN|5RC5W6xzqd|51)tU$hm8pL}>s#7E{$owNxY>BO{l@%7(KhL86CmZ$X z{itN93}h%3WVmizZND)<`lq7=K-Froa(RTPJ4-G@sm_zV{mn+o-P>Dq@(%%REjn%y z+$#Hu_nAQHXIBu6_^keEeQloP_YU?p4$Fic*3MPqo{L9FFz;-);Kg+Or!tse<_^3d zud;L@`kcPW_<1E%8{T~M<_q&FT>Ra)B3((>5NK!&E}ou}cxhY%U-&?wIB6!PEc&v- zc+LWBB}(Ym_0R+TD4|5xoJe1vsHA# zwLoX-<=!iSQ}>{GZ5fd~sk>cfBWj2#Xnnb3irPm1XLGh5{xRk9I4kLJhYwc+r)P@I zC7siLrng-`x?a$&TR;GN_wSIw?8|^cdnL)7hl@3G#x$$l3zl`9X)ml?<`SJD3Z>Ze z1Pp<^ZUjh0@ElUXRax`2;|0UlWzh;@<+>kvHfe8p+Rj^_e${~UWm*HAx2HVxURGyi z$DywIwu!T3ebv7%_CpimjL2K#Biw6KK=@PmgEcE21%3wYhy+j1&%!^F)b<^m-p;{YYl6F)c2hd(dGt7q z9Sfj&L?uaP5*Bn+LjajP^~!0O7+BN$MHBB)wDv(ExRy^Cc3

    a);K1)M&`fM%W=A z^lHKp#xO8N@D`E+!Y7)C~VAFH;kEBq|)mH5|?wnVfW(eK^TzI8mWw(Ut10LKDG27Og|oNK z({bN<30p-q6T7g!l1f$SYhLji+A>~ov{G3X9y#E7KvvrK z^%W}(Gb^1ur_wHnCwTAllEJJJqMxESx6(|dV`IGg5~ zW)G9FKQ#H0i4}kk7C5X(S8g=~9Xc~m_?pC~C;+~Xwa_-4_Xd|iKsw4Q8Wg0%s?qR$ z;K04Ija*s=Y1uHRBKt9Vc$)y|_uE|ha=+29rt@ruV5G`iyq+#8wS5IGDyr%#J}$f{ z4~AnAm&+!1twThKf(2mhpk5;q7^9&#So$xjq0ATzbj^}P7N7=vSarPpyt9|Hi%}#MF?D`~>fKH9tTJoyP zpV*dd2Y>Z>cXIXcw_^SCSBboTcYV%?mGS~%zczsEyp{fn%v}FVuIy?6?Ologyc48q zI~@2uy*EJWq-pVm?q{(sI(@n^Jg7EzJ^12Fo0Qk3#~EY1=-d?sgA+kbt|z;-4cW3H8%&L17_M26 z+1Sjc?bPe)Ip0m1(YbF74$!69x!Cj^S@I>OBXEE0{cZZ55Tc0{Ri?4+%?>-;yyR_k78-r~41IByuKhar@o; z?%w|X{AMB=;^C!9ka!s_o=j`SxFs4YTFhBha|xzJ9hf;gSMB%%V~9s^Y{YnvWIsL{ zbcp7 z9F@3Yd+8ke&d*eZ+~9cs0BIk|V@g8@4-2K!EtF-wRDmiE(8Iy%AW>)wU91c`hi!N> zsaDLbDlp9e@e*d}=1kiuV0~z$^6F6&9vx3+awV#kEh;?bK4r-AOIEf6K&DzdX`C3{`J@p`rAU5PM{Vs?P%LFy%rNZv{V zG-H|KIK{m3v^%*TZDt3dlUNJ#MJqDmi)Y*1J zp5A=i+E1Eg!d%ng9`z43#pQCM-m@-3Iov5BecRxyASycHG?8zG;dL;Wj+M_}h0K zhDDi$`oWBgom(sqgak!Cf)mlJWR>B~0INo+to~GP5J<5? zPn0{knwC{ugNjv*ncDsua5v9OC9!gQU;;ZNG3_1&nt!U z-{YPiS@H$n{-jf+(V?_!#j~#jN!AUr>85s2*W+_}i{;oCGJoJbK$in`v`kHyX2qqL zGY zaj~J_?vR_4i;3#u+u97uZD00z1&~7151com3w=shK5z7v7yf(yDjz?ioPk3=5^n#r zat7`v8HXper77^Co@aHq&JabC4jUb?6#p z&(*O)bbh~}PdI{%G!rcj?UN zZF>zPjAuIqL%E7bQuG?Vc9t8F2S{R924Zqq>^wU5BvZfxap@zwOE2lZg->kHudiGE zu61j!&O+3ro781`B4S5pFFjeZWZnKHE#SyC;*es3(gtHc`1hd0jp~)Glqs_d5ld4= z(f#Od)0lQt6J2Rj^pFBXvh8#PeBf~7HM)0ibH1}nY_3J>sC>LU{bEPNNCW{9O(CMI zZ&h(^TUHfQ-}GlF&X-JAQdYpNQH3k$LxP?qNuQbP^S@B>{sbPDfzA+jX{Z#sY1_iS zW42lya_s~~;R+yaPL`cDl$@HS%H-_lTwEC$Tx5?) zcJ8zW@{}yfXQEq46ZBgX^g1z*GTu5cy(kcg0Bi?lu({1@B`I92bWyojvZvBtre6~w z-e;8c8RHy9a0pCrc_u^xdWrl8#;rWPkn_pGU5l0_?A zKKxkS+)nOG_H2w(%P$h#vZPP|vI&WxbIcmltt6KIw)z*4tmTrt7HkSbtIzFZD>4g)83*EXSx~3$as_eJ zxkDO|tZ%)o@WJ*m>}gLt(3u!~*(AHeO+Jz>jH)P(!?7Pp$o=gjVTKTLO)AhK<@>zU zh8%w`onH48LhQH&Do`S*8G+m!0QHVH>M9eXW;hN1#_I@bMf7n?L=Oc#A_jc@(Sq2{ z|CHw!1nSbEg7vn(?r^n_+3LDqH%F)U{rF(o3tEDc;M%iXg&T2;D<9blWIQOhB*INC zmIfNy0we1bA{?r59M+RXynb;MsM+kY z;!%m7T;PuahIhyprUQXE<=$V&eLrj9khlB}=qK&mncAucR*{0(7&gHo*JHMZNiA(ubrOw0fc`>nh7f zfi|i&L-N4h!c;4b=&a{HjK+#!)zLuSUn(67ud~r-3E%?$7*{#bF^iEicor~}$*obdDtWq5vd7O!}FNquWcZ!J3&Y#9=59X%H!e~ISe+@&(v^9|MV)}4bi8>jd-=-NRO6CG z>$3bb)YycL1LB<>;t(3`iMWf2HKyCqHm}~@qF-QdbGfSj`J2wn@E^I{|9vF*pSIQb z6csdujKlf5Jq%<3bWY%%|919&SYrRrBLE8n>wk^_u4=F<%Hn8p!6bzx3X+Q*w7#CU z-?pG27cBBr5F~)Xpap^~1q#5T)hK0t#S?bg z&CQoq+RY2qmn{t~k7tG6FT**Dyrtf5C)uAn>D>QP89m;oGj*CjKQwHayzGJn$<*v+ zOhs15U=eC)2_(}KvwzEcJ3Oe;ywKi2MC&LJGl|R?IaZD}-W%dV;qwq{yt7hZnM*jIslhD42bSv5%3CiFw<@?-R+A zC7qZgRmswcd^4w38E(dDnyL8Z8#$6>{*JSn>?#Ak_i z5j#VDVO*r6jX^zu_UF20W>4H?++Rf-_LhF}J;go!GK)``I?_L~bkUzz0=BWNhghPw z)eXB&qPm#DkheQF$wP%cE8iw{* z%@*Nz;(V_sH@esLLTK%&^xqXv<2|zNXgzZm4mCwxCLHKV&!U3-noC(n0@xlil)IjN1sQh1mC+c3oG!?=Dk=BpI04w#<)YWvv}_ z(lCU*jq_yxklMEtD7^DL-E$Y`tN8``iPW=28i3NM)YtDIp=3v8GAPt`m-hoC+vCv* zz8{%)+yP{;j)1)+ z4#=kuTkY4tyb)Ub^w1o6a1i=C$ZOUPs#mfbXe^eSZvD1Dh|eP^41Yh99rQq1};(?gip>11VukQ6r%WsXK454%H@AD6e>yrA5eU)q3oAhBQ2&P zh>IcnNgwl)9n^Ve$0E}IP+ePWBj5s+Jw1Pk*$k%0LpP}Ndb$QbdpXdBKe8nVy!IOh zfAaFc!H(49k&g^%u@Vz>%4g`&f#`Ws49Xb6xL#8roCCL-pO32`kUVY>2vub7&t?=)owl-jrrntar&qW|xdBSO zVR9O`?4ff9cQJjbV1?rCM)%Ez*9eK@@OlIMH_qUTMfh&4^iL9yI3zE0`87;-3sM16 zw1R5v8T6vlSpPKuy>r9GQ@w~FT%22TM(NfGbbPF zQRbUN5cEG6W^;4=t=)xL#(L52=d*sj&- zCopSJOcF~HESTw?!~SYQ3ljI9QR7BVKuBL(izj>zd289-;${f+pKqdOwT4f7cxVhF zX;5XgwYZcfxsL1|qhwzc+eiK;jzJWhy2|?rNyam6|6k#%_JjMU+mG+Ma z+u}|4d?jp6M7tJR>POTefbSVpA%w_6=qLALNGADXIPn<`6kG-oa=;ckR5af1&2dkU z?vXr=Z7OA=tbiaC0&qp|T=h%qsDwvdn=(DyQps7cZomZNEi6VQzZYUw%i!jj&j&ma zdHozbV%LQ4gdBopn#Y$&Nde3+DsEb9fadE6qHwZeMTz`;Kal3GN70RvCRrL=+B z!MByELtoeA32%qmo1$l<-+e>{;)|Ctm7M%o#&su^f0HgJ7rU~mayE0RwDBbCjh54H zH*?|bfPE7@^^dpI7q)7DR?D3U1bz~eqxfp4nk+n0Q)d7`fM2n$w&HztzTPQXm^d(q z%Inr|DkS}6(LuTi42id&0^)`h+HP-~YEQHl+wah(QVrLEE71;*YNw0XS_%b@BZh6y z!(5Lgnpe-6rP^$ArE!YM3>wDBfcus%MtgX>h9g5YvCfGhESzq260+^VW{) zD>#`UWD@JNZ@EsB7#x(892D29oV9g%`7Nx(!^OtL#CGGjW;2bMl&0OR9alAyXz}-7 z1v)O26~f)4AdY(-pJ2@SwPd3ELT}E)Xv(9peZ#uK9JvK7BhSD}oF3?O+<1(LaLRw-yh~N z7bOQ9O}GhLri{iU$*~&+rE7D*l{vU~qf6qbo?QcAe)Y-o(z>dmU(2pe%cc?f>nH0L z%o_|_f1C5atKj}Ic=R8tL%=^PwI4>s9$hR$!lGXikT4B!p-jN3!5T;*ZvS2QfAHx4 z-vW_?1Nh%WVZ1cqG%*%eGErlN149s}0eS4x^vyNR^IAW|F&%`hv9LJlX<8LdHu+1>HT7B=_yvM8q_Pi)@;jkt=F{{7gipA`3DPpdi#A_U42~}j!Q8~ygmOr z%tVo6Z9^9-HnVBhoqHtLt+dOx-j>G|q^a;6=HE{?l!?JDvqzP?B0)%xm0?p8-hLO+ zZZm1-=~TVuQhiRnj2ae8`OtLn$q7by7968L@$EcVTS2FqM0gqyA5fb|NJ~|ad!a&_ zqX(OUhTaZvvX!z>^%V0QadlCc3}w$VR^B1+>Dis%<>#k~Xt*dUZeO3j^;;B|ps}Q& znCn&|J8`=>fx58zJfd_2i14%V$g~4E_*{40f8M$O6tc+X5hlPdQVZ@Er|GkhY$^NF zLs5T{f7C3+$vqHgi-@!k6jY3nDQO7tkX$`f-rVXKd__9p zYT0~zm_54$=6{8zU7$z4*I)ar-Gv>r9!&e9j?{d@0f9{47gfiQ2C3-^w#Fd;nvD|R zlRh0XXca%dIt7^643H^PLzUi4xyK`Jfc@$$t2rCrR+Upz`!3|zA`m>fxoNR7{A(JM zFC!}3{MbR5hd9T`$+(Mke`ird+XHLR)kduB*Z%L3#|tq|K0T=VSZ?5ev9`|EpTb_D z?x$K~Gx_OplkZ~Y2yNao$1c$n_Rx~{W=4II*=jwfwvX4am-|Z6TF5+>XK`e+Q|1VY zu$#A1*)D%OhL?2>2R##&mKyeu5%MxOpfU$1zHri#0s^!N8f0*WUjovX8Zv@){#b5K zzr-=nqB>t~W36jA`8~--r^9e5ZBm^x`B3g}$j%z3 z8?7gpolPA{!`&b&Ge{_KVMhub+dJaTA(R_&(P!0|MIA9#_d6$96P8?{3u}mey??dQcL=|N=Ey9MZ|{jEvtX!SW^>0Bu0{H^E0GkKFsNg#k5+?Rq}Xz3l1ExeirqK`tE!lyR+&voIL`vZx6wJCw>Hd zQ0wxJ0}^BlCJla@!mg|2mXL?3Fb1DO^o4OlXVMbOX-Lc3wap2k;pB%kuEl72f)l;c zZfdM6i_t%SKC^Dr{yNTFX2=9O0EvCn1fznaSvqzf9e*(t#{)$(XN|0?_$(H+7XQ>` z1`2SyDmI7WV#!C8VrQ3f$@X@M`jGk6d(;B;E!CW+=3>y(BrM#1ISPW#rfDFAqtZq0!f zSIdqr1@j*k_H3i6lN9ZNIMh8V*-&R!0nlm8;a0ad(K$Zf=1nPS%KTDePmwv)8y(=U z!zy=Ga1nbMUAk*nhmSFfMTCCB1hGo?vuPGUzGQf~n#?JCxyZBu8bcv2-SVtp}pAZePrSzyn4u z`6N=OrhS3=Qk7*gy>V}DvA#qAex*Q8H}T^0;GPT4UDneR2UC4MWEovpCzI0mQiusl z8yY@O_(lqsQ9kDp?qx_u;ROTH7(v!~T-i&Vq2!!k~ z=E3@k!z^aJw4^o^KVC&Q#d)cOb$BttyodXWYjfxz%81abpw~&+MlU*KnnOpQdkhWJOam#n< zm$><13aB{3U*HBhItPjp2k*{Y&OhDLPfAH2>srVVaF*|_J+s3@ef2&CIRX2)H0yV#gJJX3lw~SiSg;Ys^j@<+Z#GIjAXIsqar^0o6JHl_L7A0qc6)Lcizmw~az9 z6eT-uX?=WVtlwL6B`f*%3?F>~c1O-nf(1!m3I+>el-NTd9718jd9Ul$zJ z`LyqPdM8Ek-`-C7l8@a1_ihGR(2YosI*p!c3@*&Wy@Vt3I`u2eu`pp~9o>4~sBSEozYjbCL0U2OS%KM0+fl;p*ddl1b~6`Ou%@9qaTqtLH>ZC!eJ zVBA*oG=+rMEIENfXZ;3Lu%|?NiIEU8D#NatQ7ZohuE^GkLx zI*Jf)A-^Gi{{FL6xmh7pakL>h#$@eZdFX|k+AX(2L|;hPZMOILWK(HAGfGGa`G*oe(L*UtWBSCr8`ol_!KQ-bK%*wh`z$I0w&i<797dK68F3!5v^Y(A z;n?gU8I#p!n}UD$GSfp@J&9eJ!LtJ{41jds`J64~MwM!H952m((N2E5n&u&7@Rz8X zYnQM!MO(k&OAiW&eyPU@G^~#^=}s9)(p4S+PS7O*^8eyqd3ZQ%J>cBVM1VKabhQlZ3ExN$-#ZQ82 zO#(}QD17&nK?6vCZ!&AkA=bmo6pwX5enoY(jYNyJj`1PO+B|eX4ZY()4# zTSXECzMu1|@4D}9maZayH(+!7v6)y>x%l(fUpIB*xrs)>i}Mc33#6%FCf*2g{HFo? z__K=CaCM!qEp+6p_343+*1HQ^VuT&qeWN?<%pOBtM-Tm(TTtOM28wuldCjJ;NcIv0 zyjlJc^9sG7mU8Eq`MP7LE3yd(2&?lw3jVe3eKMbU-fzbonab|Ba)pg-X_Z~MbpyI{ z2AD7r`8pZ*CoEI!lODAfdcK|a?)UC(G^E;};^8P>r6)_?4~JD*Vq4ww=>Qx&`epoh zjq%<$y~K1w4%xOZ zHs=R|+3Tft7JC0xV=*_la%|K7TUX+Yh?z&s{XI-f$Bc|xESw9|7^jTC0*VSDDC#Dh z5?W%7(Rhk>*8v8Es{bKO-d^WhhxRS$Y*lz0}72P;W@jl_(| z#*QhunKEr*7z&kfxu;U-9mM1MTkw5ZQoSzJ}JseW#bGYd(8 z3ln8Pg?hWqC9JS<{Gbp)--@}WOYjX_m5(?*&q$m1Qfy{s#QU zk&4xZ0@Xz~x*j1~I@Ju?G8NjPk!^Y;l4cmgAyGEkzr6T~0Cz&~wB`4@RAVM-`60#w zM(tu2>GKJ--e+tOS6GpeTTO!mod1U)I5rJ8KU9l^PY1-UloN#HzGSM<3YRj$y8w^= zxG;Y+>=G3A4~x9huo#MaXG6-bo&B$SC)#jHoqUcbC!nxpSld}`1E*0e+?lnVJI*WH zt}0(L*dUg49EWAX{o&#?%E#vL1Pz6CRo%2-iDTIBh2vTHbEvbP`Hk29v)^Q#lbhe= zf)NOo2o9bJ8u6~PxoV#pp#51_Et=LXmgI}$@|X&6&$pA!PO8(dPL+J|Id&qKOj}^o zZ(zc$eypmF!JSB%^rmiIC3iVQVf)1z&tX34y+6bJ5E{mWDKfCA6Ov*{LP^I9D)TiS zfkXLCaVMG;FW~*7P&aV`!N#zrOvmE6dUr^e_W*CGlb4xK5&V6iGh_zY7Ga>>g`=Uc zrr~5MxVu#a)ROvgfR5l%H@o=5xwvYQflX@HV7ZaQL`u0}O12Q#%Tp6AeMaHxsC-jf zBvZk7-w!J>?fQ{r+L4@z-aPlJ>vax?eDQfcqOSEW*Q4-LW9nYs7Qf=?f=TYo3`$z} zkF=3m?m}b*YM4HltS-!P@Q~42;3way`Yxl>WbC_K0xtNgk{w9iB*CT+c zFHZ<@m@+1Cd}fm?E+!!k&@~-S>z$HO7yY#OCBs9R5u2VAg(^(^fhN@jjS?Sdv1eds zO4exJvXJIrpLj`UzhC%2UNPs*aWO(4>=~Wid;rA!Q3WQ9fUIJk(PYB z>%pp;zZ$P#AJJHedwZBA^i8>#m6G%dz3kF*g5!48e5RdAy92~BiIt*3PHG}_rCVZ> zEj=$UQ%WZ1xbf)k*l2ltCY&qO0HB({~ zrNGA`2#o?n-TiBzDMrqyb9Hl#K(347Zj*9orEaC+8pH=H7B48{r8i4_ zCCOIrQG{!s;aD;9i6;j9(9BoO^M3^9AmBGz0ZI9Tel%xO@tjWKirz+AN5oanCJ(qS zg^2p3T@3_~9xE7=i^(8R1_aRHniUAe#R1`BIsoe88^Uqa@K zQ+uJDKD7cjlpFv^O)N4R9;cv7c~mvhEy`^)_#=@V2ncyzFxb3|Ya#d#;Hf2BY8zOP zPmdcp>d#$2KRh(y9Bp)|79ZeH$b=FYhUQkT1SQK%e?CM^LZfqDGKh+n3#fK*9iQ8iPRf_%FVDeonZRp?o0+ z(!y{&ZeIjsf|aOa5b_W`W25&gdT47$w8*RMd$vh46k?zxHZ1)@1&~D(wuoY7g|ap7 zh#=YvMp2J2l8*?%0B$E=Vny(SF(5U3AqDcAdmm|+VG1Q!q#(X$;UWNFz{RL`@B<*6 zy0-)3MS=c8SD{MLs8MTOp*bZMxqm;3khMZRaoOlL$xMmc5^+8Dfz8m7sALJL280UP zb2GxtkRmzk(UEiVXfbmtQenk-rfZSdO;|Vd?k|BHp-;VVw`o%J<9qC4A!OK0HxX{Q z->Erf<*$gJ8L%SM#)O8WX(bSa``Y7+h#98%$Zhi}qkVPnwAebGczgpf;d^p0@V=x5 z2R-NEdgY~Tuqfm(Z6mUBjJYB$2knnajhHaUg&|yiA0lIq7LejtfEomd@@HePA<@7h z-GtGMRZw#Dm?p_@^Q?g0~ znvht9m#bHk1cGCOd#VSCk#6Lvl_bV~GGGmXi(6Mni)RIPbps}ZijiQ$$ZY|p-wogt z_gpF)C|zae!LF6>7UN>a;O2Bq=qSK9YN}bAe7?~O2#_-}fDoEl*;V?0(m7(}m9k2Z z`*8{fS+4Au6=fC6t|bN<+sz- z@#j+fMn)RSu+(}BbE$#^ zs+@F)(ixI?k%h~Ym(}l_RT|2*cIHN5is6?$9<7rx!$+~)~e@=+u*KGOvoXbp_^jSIPR`NTOM%^D?_q={4 z{m8?RF%_1h;;RlAl_y_CL-0nmSkoySt>etZp1! zr0|Zb>QM|-&H43)Sqxt13H06r6I3n$4wdC$13gWCcUH8cR2)dgK76{4SAFTa)DM~z zB&qIkjX0bG4}3C>f7jQj`ABw0?vLnQyNrA2>=k_(!lCV)=y^D}IUhgYe>`eiv0Ys~ zeYSkveQA3?xW(}b{sig|WBA_Qs!`;SZqjr0)tR^Kmfg4BKiFRHIe|VfH`Z;<6>PJQ z#KM*xKNja(ovR|Xp;(%nQm)G$K9t9r&wWn!JC4@qdAtAMtTostc34H{&+gYk?a*Ul zb~$6g<96|9(X~{@5d=A+VKRT^7FsPk!ME_>r{ltI(L&xQr|;Nd8hgZY;WW5O;KiM+ z$Ozt&w{o1)fs4i2w-|9ihpY(0WUt0TT9ZGC^sUM10aFZ?hP6gJfe}HAQhY{97Tp(A zM2;&VFjKft%vwx4_2$Lf39}CfI}_qQn5&Sm7rg8^>hLe#*OVbkG4xi6yc3Bk)e2DOG_D%nkFN=DNIrsayfn9v+|z|9^)1H$=AzZR4iqD<0m5jP zt`GbFTBwDqJK(Ro;GG~hJiE9aLMy(locI&PJpMV?E@@i}5(`AhpeY`2zxip+IER-(wc@sYZgNMj#hEo~(kpX3OLX$|`7n(u z?b)(DbtiA<wB}soB+b}1a<~r7~Qg!*u!GedDJnEYyvqaIAmZj zM4uZ9v@b4?ln{@P4){>(8V$I~w^z58CLYq@!^$B8k0InDfJ$WCcV`&rRW(|7+2_7j z9v)uRbcl($F1c=Fao^qt+ZZmU2P<3wi~ zk|4pVQQXBzX=6}7CCeapnMC@y;mrM6$^4hhQ%_m!yuzcaZB9}>p?21G^i`*+SlX?iOnjmb!iCv3&`aQ<|DX$E zNzTLQmvD=QS_?@b7$K*XH~8_`V4^2oX{x@AXyx-hYx$ffm(uO2X>6t@HQx7F9n2rA zR&E5;jJLBWU>^M*R$AvQASetq%SDt5E7RmTz1C&9M31g#cwpA+Une7*jm^v^7rEz; z?eR%2#y8I3>_&~H5uTjM zE)z8DlG(?dfnH13fv@TR3Ti)lo3tKDAjyA8^1I~W%e;eUn}DO|hT6N(Ec@#l(CSw# zi($5VI*Y(x<5>z=l?UVY&*Z)uDy0#5#h}`{(@YY>FfV5o!vF_De?jNB7}Hf%sC;Xs zK!=BZy1!xp5oiN{?a^a)^Zq_OX!-YUaeqmz4Gg;kVHKY85e1Y~j=D!}4vo#OU)$=ov)Mn17MT-7)qjmATI*9TC<4XO9% zp9OI$%R`FFCHizjk|(4`Z$%|uDIv#`0E*$>?o7z8MDH;o7G5;rw7deolmfG9u4d!* zNfGB2=DtuwB^dMtK!WNay6y0BI_1v(i*};NfGC-64sDUfeMEETfvfsxq4rhav$9G zdgq+T9NSZlpSSZQ_~EQ^zcNabh~IO+yEjN_K&x$DGeY_XDWW2FPX&=g-P72K*T6!< zw8C!rISdC42%!`rmd`b#5ZPbEDbpFD2b89%IUBne zLf;CQBkt?rO~{62l0MXxX_{lW_tU4}rtAWBiY3Sqv6*>#L!xR~g-hZ<$}m1z!S!%LyIA`0ZqgjaH{D z6lLNgClX6DwKSafhY}Wn!84JJ0SFwS90h|V9d9bK=MZpS?=#uDcZI@lBxH9PkKdCU4bN1Gg{VId;X`B6C1G84 z3VHfU!QCl{RJeD@lF$oN%978L0Hpba^x|#9`J!zqGX-Z&LjbeRy)q}0T~uquI9&>r zX&Np1j-Zgv0VPi=rNUej<>ErbF}l*280Bfyj=_9~3Cah&{2L!(a&{@CkiK-UWR7oX zgUenJD@5QZEM~{Qi%Pts3;RxpZIG``%@+q93-WKb^r9eR+5L^34x-M9E`WV{&JKch zvxu`9FML{v(eibOhEB&@pw>yA_H_iQAvnyj+~BY{U7o!%_(0hlFJ{Xc?R=U2RvF+M zLqbVfq9+$3JW*JxS^w@GS_~xXO95*=*AX)8SR+`^vD5}sMv8SdYMu6<@X{g2Nco@L+Xe#)@nac|!8^B>297$@?^L5u^gz(H)nO7Z7(-z!YVlY4sc( zI-53j-oI|%jBdSn)4YFrOm9?HF=w^4b@e#4zq>)padBy!^H!>eKM&T;K3u#xd-?y> zV)%-v@pse=knDG`S*S5{=Yf{d{vPst+X@o)fXXURAy?1-{ACVoq=^1XPSBGVxv+QtjcUQ`^!9KuNyCQXz+9tjv~@uE zVp4_&wDl}35AVq^I~_au-9cjW(=zqm$(wl;RGXTBN2|Vb-Q?d9le5SV zMfzictpb}mq?orSdeCP^P!xb;g2A?Y@4DyJd;E6o@|#^U_JQS_lkw%{WkKhK;v!~% z22Llq+6Yb#mfBg2sspE*tRxoNWAl!CC2*>EC(LC}#@z+~^AjO%omL}WWhP9zC*Vr} zUU0Qp__BHUD_CO${HJ1RfQPEXzPI$}ogjHYIqLtURqQPPcU;Bse`pmq>wkb%+yK^p zva0rE8@m-L)WOY1m9tR^n#ES$S6Xo?zJSDUQmN4#i>hAR&?Gft){wS8JzvwP@|U&> zmJfg?5&W&085!@#oyNFS@%9yPvtgR#K-7WI_(c2O5NK&!iUs=~NIh16GY*IF^{Z$D zSQS@`F6eK`Xco}{?4_`Oc63;Fcy^h!xVL5Uz?qTyyg}DYOd6CNuteZTLjZ>p2c&!LhH!U}NlA_;@s1>Qa-BO_^Z^26T71Y=^ zG=JcujF_aZH{A|%P;p!+#0~q=-nFI|;*JhdGGiaJdVNS~z1A;)com3MygziJegWhh z5*ohCt(kH#uI~{PzJpTqngymoD|sl_(!ca09O!n!&gl$yA^nB8!kMi(j~1W)G!L_% zWs-|q>l2PQJH6($J|+qF=D_szS2OA$w!!0^_KPpkGYO&Lgg3($eu8w`p3AoUYL$D% zA-8sJNg@z7`vZe_*(_X`bHDbTW) ze$44fq*w)sU;6gD8(y1Mjf9of89``XH={_1pXEYq7b8mM=~ZcvJ<>%53-#OP7%l$@ z5U1~~PR6G7-)oP*rcPsUL{k2VZktg8}6^x1epW zt)*{dc3#@i3g7~;8*5@d!+Vw*dT>#Z;Ah2)i$(JwvMnEoM-YQ`%}jvo zMeC!}{aL356EcWJDzbyY24<~$4a{HN8hqi|Wvfzze+1&S-CoE*q~t)mPz@q39q7U} zIZ?k?C-YakvS|husQ>L~pm!%|hv_AEF;v>F_Ox~3EuwXiPT3c|W19??eztE`9%w(9 z&jx=f?a@%&{K$_l7V0hD`i(DsjaDu!OpmYpa+A>EgOj4a=ira5s3%F254IsF!y@92 zLq_y_YPjfj(py)|2N!eLhnKiUoN!dx+bpOK+1Z4Sdpq_L7yJCVVZrAnWGjcje4_jD~v=<5k3yTtf zRLvoZ#N}8-$yqHmO7&H&Mu_e!OA`7bB4;$V&eyoyp+F|1)B)R6YDwm_;Tp@r=`^!D zkI!4z+qA>CtjE`hao$5*SX4Mt&4g|T5zMzS@s!m{P|ilTXqk-`%|#AP@GoMlb( zxBODoZgQ%HaxdK5%lTAiyHN<+Ojs0@=eT-F??;9BFRfs8~tZm1P$d}at;*~FJ=AdhnFju zVBA!t_1~ID#F+KR!0sMD&U^7J7wK!q;u02-ez#$99*BW>YBW!^v<}GrifeozZ6K#ceH5q{ZE@ z&EWd|Jf1{9>?sy@sMjL2uaMs0(;U8b1YR0o5O-xX!#wW%vL5VxVkPbcyrB#BGhbn5 zVx%b@**+!P9yV7@luMaA7qA~TvR|fyL^?n_a^~Cg?dM5-*h!~vkxQ}e86NM?C>hKl zx>Mz!L_3q-mY3+-N~QcgS*!KlUmKlcAEE`DetgPXj}o6NeRxWGG%aCt{)oa_jVXHf zsA>PXvitu0@%Tada3X&m`tjEEKwRVPY^8wi!6@+>Wn|Z)A4~hZiAQKO#xJ^4fBZjR ca*&guqm!$nsTn+g6Tr;|fTyAoSCD}JUtH;>K>z>% literal 0 HcmV?d00001

    2(&Duuy~h*$ZL0uE3%$ftR9x9muW zOag=PFoAVV8}25`y~{82;y9B$!ldbvm5!!n7ilSE;}>2UpJI`5UnWP3=o zfgmrJoAzZgJ5?J2N~Q@Maq-Hixp6H1m528?OQzC{R=vrmhuZcD*m7|51lq&2#rn^lP&0`IFPY=B8lwHa=dTlA}ebXT*TYJC0r8) z1y!~sj+D(Aem%Yywcxe{&~+mR#{1K?R#X&rDl*1>NzYaO-g-!d8+M4v#HvYHiXbU5Rv*GqqX z%uB}=?IF1laVvG}Lc*0&KkV7|tVJp`yl#Taa#pCk3!Y~69+hM-no_$zp7!p7hvC=X zy6cbGFoUeMQQO+k(EE9mdAVx4(_z|am&eAm96-6xOL_EDEu_#BSDW{|MMT6&M+fRo z>lhI$&K@%ZA(tv~luT)&GU^bUCHzf|9wGXu_ENUEX-;TOAXJA=nT|w6+orJHLiv;6#@T3hOmhW41)TU|wVEg)cVI=FqD?toCQSnzTLCoN5N37>` z?mGLjQ>ggC*hEn}o{Ky>_*h*&By~g5)YAw}3cUbBadKEZ!66xzwl20!3y?`?2YS(y zuo~U;35p9s=UYZjqd&5jrss71`rzvM=7aUtns3wjXhH`Bads$~5p_b|8Kj=b=HG3G zft8R)gf^Tawx(jXl4e45?&))L;A&th>(6-b&+d?Gm#53^%Z{nZa{KjG`%Dfu#OwXL zVJn1&wzlx&xKVO7DQU7mP(bVJJy#hgp2kDXq%Ctw=EU6q4E z(X=6_G=W&B)H|3zIxG`3C5M<#;;oRTeNOWPix>|6+`!kdT!x84YxZ-N+3!+M`u9l3 z!J2SxEL`IC^U{hYhZ1t9e*L4R+?N*WID0f$)0LGW6dy!CBK3if5vZyy?07sq`JY!e z<;`ru2ebQ8et+LB512K4-s=~__S{-&T0lA>jaW4Hrx!x9CZJ#=QwMu~xeV?&=Y%Y} z4>cl~4DE{*XH2Og>kAn)3n6XeTg)sbSg*u6|B6zSM9=7`$v|U4l9roucXV0wIoe6`_*1yhMnqi5#D6gvOs!#6V;j)4a*~2a!!ID#Jil6`?{#UgYv*{C zf=1OG(uFOJ_8TzF3dnhOZD?TkvN?P!fd${<{V8HDFOC+mU@Y1UD_M+SL zqaB1&t5|iXac8+?gu0phq;Vx1-rD**z_S^7Gp=AFX`wKdhvNt~L_x9YghrfO6L~(Z zsP1$Z*;r+6z~L)G%~9U@2cTU@0>@V%m0Zk0LXnS-CcqgT7VSZ08iLBqD){>A4$z7~ z!Ttvq6;*_m0-Vc$*J|zsLru-pH06RB9pfoLfj(c)6y4V53q_I7d4ch-_`((;n1?++ zo1H_%gPq8o<>}A;`|z~tSkmi{_X~hqaJi9T;<)Tj6Iw+f za~p|-v4*m!mLE80o2Wt-PHLgc&nYucBz#!P9{d4Rb2ZxM;FOQ2a%tUY4M zOJ&wbpWkwt3k0R+)ac8fgy(b7JlAIt;a2WGY3=dlw~xO;VuYVCp&-Fdw66L7!NTgi zCDip_KL|*{)bkOfh2HU@9ML(S^|RO9xw&W9XHLetz<;aP$9r5qBtP`CY0&ZJxzN8qYpmA%oq|D@WzP z()h8$n|b3d1DvI?@ZF@hIF_Iz;s~?EnG-!`d|h9M6pT*B!M96my~zL*HC*c{@mf8G znQl+spt|*kDM`cK&z#oNTV9J_`PMt#5+6I+Vrby{wSvPX#wn@7f3y&Wj{1x;81c+a zkX!83!0&~-QHfd8-C#8O&48mfcItID%%!KyQeE2WzM!X{3e#)YRYyRpPB!3)%04|gqoL2*JLWb=V^G;# ziA?4EN;~9)Fr@okx;b@SOms{N$bonc--V7y6wTT6BUYkg0kG8_tQitEV?6r0yElyRE2gg zYSEZ--%geshZh1YYC7VkCptmu*Tte)omwtQamppwQ%+eO+!qc!YKTL-ht;4XGoBVo zet>5zL67$yP_$v*aePYJSd$`!)rG}Ekdl||Rjkmvv2)Q)=gOn&OAli(eG$@CkEmq` z?hxdRw_+7462{IzPJ?v<^~$K)AY9&luo^~Gw#b!@{|@6M<4se|sW!mEvleSK3pe1D z%6#Lt*s- zB@=)I*SY))SHoa2#Z?=%8ERY^pfPa9wMTv5E8bTxFYE^i-7jww#1Lg>C3Z1b@F5)Z z4-IyJdSSdmVKSd(;3T6O2s!y;YEcp*aT^(8ef)902Po?_mND`m_$U!Mu_MZ2?6TnD#vQGksSP@YWL3Jf6k}z^0b~`{-y$B;Ix6tJ?)g{W zMawc3f@d%tH+Tqft;*oI_&}%GD7qHSz6)--HZA_6MdkU%ISWAKQNO2g&q8VT{UYzzQ3=tzdw4uufMy1U=RL40KfeIqA5&ljQ>Bj z8m9k{lKgLZNhVg#|MGKk>iLy3DEB8_GM7b~6 z`(z$<*C(8YeiBXFM{z~wB6sBOo3<>`0W$nS61-Bxrhyh36dYVTe@+Y5tY~7078*6b@Cb z&<_I69Ho%2uS}NcBVtxYDTGpAu(;!lmIsHYE|k9ZYgYy>%}^;@DF zkWWMy2~v3NNs(uG_s%^RpDVKV^>>bAHgXJ?x2$xWM~#pC$=n9b#?`@rHo)=Fs#Y!G zuZ|p^cCk&f)6%mlP9vbDoc(pX!r+OapDKEu`)0t`Sk@SQ;mu1fuRYOB$bs=t|r+wkH8%ms>6Ml_((|mcLP`eA1 z$JP(|Q!z0bjl1(=i1@VYpnevIx5d-pV`+gdz)r2nPUSd~{RN4JyU%eylONr#7FGF# zZ!2LolV$@GT+#{3>HOV;Z;Iqgs%qM1`O3$L>4s-8vI~SBqO|L~?y=&5$+x)(CjgJ) z)W)?BLzEdeM^hs-$A*Q6=Jy`y$t?;>H#0booSBtv?h3#nIR0^VUIv#nurD5_&j5Le8Q)mldnyWE zE^sb+$69>#b{-F1iLi*t{YFvC(dztM>0C<6N$5aWkwx?%$bsUTE7aGVh2X5kyiqVe z2KV|5n{H^1(5V@=HtBhbs_U{}M$bPFI=7t%RG0xFbKQ=~F<;Nl5pPWbIq`H0Hbr~) zo0F_5Qvli?ZN?E5Xz(APz_=)~$oVgPU|)P}E2~S8BQl-&{47EX9NW4_B_aAgQl}S;)|A-h~mvO;C z-mdC(E|~D=*7-tltg~1=0r=k!7Ht6Zn4c|K`rsd?C%hk#>+$&6^7uu}{p6gIwaN4Z-4tnUzKMIe82l38Un3oi5PJyAQfdBZ6tu z{J}j0ltX8iou$nw79{usy)2sMz^jCRor%i}3cHthgS2aMHQ98(pj==S!BwRLzp%iZ6r0G)R`kPATU2cRlsa<1_HQ#`(jG#piS&+kQ9r2xFCj z;F2|!3Xla^CU}loxO7Zn9_Z8N`x8sD(s$LcVEi`Yaf%JP*#0tZA#N7EolwwxM$Z29 zkV<#g!13vZQf1)|Gyvzb#n!DZ-)k1l&qIufCa7K|eCe#^|vkfx@3A$AVo#k8^G=ckJTLckDpzn6mV&2^tMr z5&AeCrX!j}90|ow{K)gNb`IHNrvp@?u1oq~H+-{#f~|Jj%XevR4v*_evx(r!z5_W6 zhX`MLUbvoL`j+JSEd6g-7r?>{!x{_aY*z5X7p4vKzC+ld-Ayqz`}@L=>cI#p0R)!K z0Uu6ycwu+^2qY!>pPQAx2iK6#ATU`3_?gS1NDZ)*eqI&9Jo4ozN%I}a<%Q!mqa>9X z!6Fp8rz5Y(0vNjMtZox~`aAd=Py`bBjdP9Mk*IV?{nmEzk~M0T$ezvL z_)bsH?VuD6R6zg+e$XMm17fMu?&BG+u{7bH-nW^y0ayXXTT4tF?+qeaWd#zR4&<8v zBlGekHuDci_h_(_ro!$asXgsK87MYlh~ww&k~AJDf8vXpzrzgBop*B>c>@Q zFOD_HNGJy^n-#=IF>E%)oIF&_IK=rJ9bPe`WO?4>vv0BBI$UJ&>Tw$QCvHuV_JKC+ z&K1&97Weh)CisZ!tsjUn(Qa3(y=M;%V-=RC%`~9?g_Rz5$w{rquTx5n_atZqSQl&fA48?vp%VD~?HeW+wn2C`&X=)Z}hx~S@2=4a+o zT@&ap=JCaM40Xz?C7Ep_n0|aG^HN?hwoWFmAEBvB-nJ)5jA)5rnP&h7LloRcK*Ng; z=o!geXY296l+mA-3i9lCemK(==)CuXj+jg(kNJft;W|gieQ*5Q*gik7oYJis*cN*Q zD3(`ptW4;mp};jGmyM}b&n}EMmagzhOyXZGaX0 z>uie^x4-29(YBh+D|Qs2z)vL7eVi+W^S zGd=F69be3tPN^j!a{uX5w3D-5w4BD=+=+8fejC+4N-YHdbEKQxB&(+U>Ip0+@%`@2 z+akF3X!|l=ew3m%aGXq<%#lVNvnS-xg7)v{Ujf$HYw^hS^ME?w*O^+VL_eb22e5XF~=?d|F7DE%EI zgS%-C^QqVDtJf^1+uB+^M(k*2m;EA{LCRe?DKxQgJ!bj6zme9O*qT^6LLX36v3r$1 z3^#FDHs=b)0B~+M63S~Yq0yWpp#U(U(QWx$-}dW|!4Up1gYI~4+bbiyjDJ2MbNjC8 z6l6Ls2LcuoI5b}1ecin}#S4O{!LGh*JI~1WuAOrL105p~A){0hRRXO}lks>1>wuMp ztc62_c%9RD0y#c>7ay^kef(bX+M8283pB2m9-eiC;ERT}*i(hzCM zkSPgdkVL@P5QRSnJ0rPTToy6P-_sxWcmgI;Ry6|DlOpK0T+VRJ@cQ;}NFaMvLBkmS zqy!4}UT>`;{cHv)lC?Cf+_dCO3iUR5f-xCsl%g=<^;tSy8YFUhq!SW)*@KlMx)}`3 zq)raIodM@sn;7jjM#Jfi>CF{7q~mZ9i2)n|!2$|4R$|xrTO6<7+3A6-sWq4=PlYw& zH5x14m%mqxR)8-YEeKjcv?D3{a{5yBCTk8?=2oCDG%q+UNT1LxP@aHV(cNL)LDhpR zM)XG5bYQkR zCx;s9tZ2X|hlkQYCI^iLw7uF^v8-eW6ph*kd+!b1t-EqZi=x_5P>`B<%WSR^je18h ziNeANc(GD>Za(#&-yjcLV}Bh4_k&U(`Q(!1zW$287C|N^2nq>F{WjgnsU*6}++;_U zbg><)ubtFA)X5F7?msJ)mq(QIe5wCbhd#lF@@cbMU$AUD8G3+X3bw?jmN&=V;VJMv zOcu)Cq2~ox3Ss`v`nZH7jb?1VPlKlc=S5YIa+^rI)C5T+0w1-lhMoRp2E(OYOp3rz zT$@r3$c2z&UYwzwEtdO=8ax&rr|H@QP%0=)=BkzyfWpRvZynnlYFacy+L{qtgy6u| zWlK58*W~LuKkeV67O;ZPnr=;6DTRWqkY*iQM7K&*Tv*`B931kVPt^ytDL0ljZ4kYg zNv${<2D78!nNAQRv;y;hnTM9O>E8Msxs)ZZZde)4E|FcrwdX#&c!^+!L#p;;emC1% zqo-1wR%8sWR=lrQ&)n^!L?=0x&LdHjwnoo090JU`$`hw7+;t>EB3V+ zlyWB3wCdI~J{7KLmybbUji8f6fluoJaHf)!zqyQPFDiKye*viS+TNlbl zHRF`zpQm_w(7tgw^@YXvsgyiML7%{c{CmB2^xoifkv;^^=U++SXK7&O`*%xJQ&X{m zv{4fybJW_RCGeBb*9oA+8+C|n=g9N1;y4(qS^(a7frSuDNJ5RFS77J0*Gu(ynOeI^ zRIO-+w9zuDM^$eyzx4%2C-98|Mj>qHBGPse;9g9Yv0C|5!bpVvx?b1Xf?Nob15~t+ z(trUsM6Cbr4$y^@JA5}qDKkAOAtOm8b8%;Teg{@H-|@>s!;%Q%wU`{@m7IMt1FjYS zqDW{S1hQx!1y4GVIe_5L%&lD2_*N=zDq*?wZG8qtAtr?DhLBIR@QaVV zq*xzNZK!%EzF1aWXv5k@=r>ozJvSD}JeB~da25mHMbW}JPpChZ%70#v>@c(76Zhyo zioJNjO<}6V7W;vKLK>jHw1B`k=Z=g$P*exoyg2XiA3oN{Yh_#GAKbMooHlMwoYsg^RWDdC209}=0Ez0)_n!-oJb)>R z6Y^APFWv$3$~_Q`9Jj%Q8t8@;qA)uskQakFATTGPtMa?+NRu4Z&y(PTIRt_Q%QM}B zZ#cpPGlUg2V%?V2?v_8fF8SRs=shEz6?yIsE3u=DyqTE^wu{&fxPGYS8`%K8Pt^LgHM1!rU#^ z4&RvToaBk4mpPdd4XbkGPl zYP*1Qy#j=YhcBy8eA)ZQkDj1iZ_FWGgV;My#m(IGYVF=q46}u*o`LFq`dIZBwtK7( z0I|cO_1NotWv)UA87(U^N7D6-%csDt!?E!QTTX8Gb|n1zJMXmY8=YIvxJ?NAZIZb^e-0EL z1V@tOu%|^E1G($T$hAmj*6c#hgB@qReJ5bG@9@7ckMOvmMMSs!e5&!5RvuyAcvBwwPqAKknp8SUZ)!!P^EtNSK{mo`cTfZ@*C!;8_g zL#SL3blYt?2HH8p%unk3e+PWqssCez+o$nEvjRt=4U=vV`DSn*cyQP^Fxh({0w?@S z{O?{hj)C>F##E1bh}Jb*&H-bra7Fqpj2e|z_S_t4;tXo){xooz(~Ea!`=`nPFJ@VML7yt<0B zEAG*bFF60A&&lQe4kJezrBoM3EJp>iWlFz*m+d|&NYLUqzOP=YWC7mUzpVNi`LE1Y za7uTv*BR_h+YWda%IC+O^ZWDKS|h2@wAlH%?OM`W6YYju>}UXL&$!ZQ(Ui)uXLgP3 zeJv;k0#ZaqqA)SFYU+9pIMn3JE!5L{xXKQZ)zM2Pk*jV8{4M#8&-%f2so1K~#6I(% zyn9LDzUVe?ldGYgCS}hS_kR3@gV2UgQdJ<`H8u}Mt{wz!r)YMo^Ro;I@QyFD>dFHPRHA(1FG#N0mNR$FHm_(!9iU0wyr zOU#|uU$DiR+%gvMIA%H4u4o+Yzn-ykTB329COsys83#-Syyhe!H2B#PWski+k&Hnd=M-3>04!d_C3mNRwi zTst?B*kVd{MRKcZIllAN*FckSk3)fV9Hxn@fUvF?m9DAyiv42AUg%H%p;R|`3Ns!E zXeiS*gOAn7y*3q~=QYS7d$M+EC zc;m-_9ps}8^;&bJMo-5F!h5WD;&(kYyOYxP!W40P$0nX@X`xSz2XY|;gJapxWUyhI zWxx7Ay0%qxPQ*G3f)$>ur1Bu7lu`-qY;08|k{un2?ZpBzKgm!Dj54`IK*21rg72m}4cCIxl4cOC_ zW3?fS6YBNxJ{9iYv`O5p?ccK>LdOY{?K!CxziUQ0z$2MS7&tVOEvstFR!p~RLsH#@ zpL#pR?uPKCi`2=w@r-R(3LJV(cJxlWPhHV!Zodq=KCgkig1{>)I*E)0&1Zy?*uN6> zqlYt+*%DdS=`rrgf*@~Y%+@6`SjV=~PNtf5n5w=-0*U4K%tR;xJJsI_kajde=!P|S zSJ2;JzY8(s#AclDd**{aqw*%VUSi8|9hlv-%$2Eb^!+xj&O03OQ=XXD(SUB2uFY4` zoVN4KR2{!Vx$nD>(7Txbb}VggCg~R9gri=4w*PpAs zUO@6I9SW1|BqIZH4xMO0!3Ba?1S>kFXUp+Zh;Yt*eNq{4XAhgf*boIWg)Hh9(Z3c( zU z?gVeY8vRA)iKDq0ZRj5A+p9q#BeuW6K)<4`_f|l5p<63D0xoNIe`PP0-)H^e_=a%1 zKrwfLOxE2RF!E!|AoRVCQD*rWemlC$pcw`6<{#;{d#s#u^i;N+R21q>r~y*xzitOf z{F=vr)ITp#mRcv!woO=42boZ4+YoB2g#7}2#hW!W&SeY}CL4!0#oHdP^`Lmy_H=Q? zlQ&e4QR&~9N9X*tP(7`)yCs27Ix`(wn`-1T#BeqryT>#@hqX=JV?R;zW$LArrWh%M*B&cV z=eSbgrpLk91qsim$RZPIK}yDDBZ39Y;ECT3HoQgZU&>closrhfR`;4Vi{@%1A5@&^ zsL`F!C=rK!^5|BU`x8o-zZ))pK9tj3kvxP2Z^N!gZK{Aq@bK{A`VxCbN!;x6cdU9R zhLnGFbXVrU=`(wgi;|IWYQFWmu#hFWVI87AijTbc*e6cThvJgWc$uG_>?>4ZW8?sH zo#RR(^RI#HQ>Q)4za@X7pRAiL`2>`rk2rN%<@y_!4qeQxKGvVQ%wW-QO*;PiX*(c3 z&HFB_PQJnWWnyw6iG6dUsvcmO@}f*up-{1obS(d0!k!y2Q0Uz$#}UUexYDQ{vJmxe z=G0Iny~LyItMg8GO|0R-FW!(C>EF}V$70s&kY|u@?m9YkGR+WNUdT860pfm|A-a25Re&OiK7roHn zi)NeWtAOJA_S>+UM{M8rAKUYX*59>yOxs3UTfaP}m{tC>-6qE#ma3KjmZ{4S?@v3jLv!C;JaZSuf9Z&@RfyA`N1 za6gwdOc(L}%aHmM!p>b<1BvbxOi#;p6HvcvLZwO>cA25^#Z(M32AU=od#Lgxaw#B> z&S~xgH&OJF;KkJ#2PT7Yu9Pe-t-d42RAjZ{C^J0bvJZArlk5GYUwkj5plDm$QXrK9 z8{&M?ty|qN&pf|6108e~CHA%T@~v{$`>E>_-&&OAUqA8P41}Z?JtpY`pJ$_#?Xe*n zk*NO2PtNs%?fh;(PT~$Wr$6|3j9g{r%cFc#V6M&b!tEsX!gFthD4#p?@>z@?w3#yX z>W?tCEcQ-=iuH6do6XuK?iZZ=o9^)PTaZxa2!+qty1%`6fQ8heNK9>2j8n3k5~{k0 zAF>0Y*{eRM2Afw{`y5fTa`fAfPB|Uu3}|1}JYC?(mxrxK2(0%8DI^C6?@-unA^H{Y zVQ$P6zs2Imao3toI_Iv`Gw(O&*iFdex|}X&bL}THRJx6g>Q%)Bb=j+|18^sFO$XC7 z(D7Jev+Zx!dxz-&xdE7Cdt|u?PYPsJDvXxa8_B8r2?chin9@nT8`{a?f0WKCe{Bhb(&3^9$~bWo)bUf#+o z-no%=|ICGnZ&KGk+WpW5?^uvu;4n;AGAkY}C9?YkKc&;lRXRD{bAwZ(AkNV=1ZJit zrqw0yTa4|Tt(hSwtVx07DwLXCdv}4&2hjC@lJ7+W&@J40Lp~vii{n4>E#aP?wepJn z0A(2ua~moXaF-`waj?Y6oAA)RS;X_!zVv=Z>VeOT>iY2A+G^@eZ;EIr*mg}AMz;@R ztyCSBU8)m*QVDW*h+#~^bydvfT58TT{$%mYaq|H5t#hqT!cC0|TpGXZEhlY~>sS}) zXx$XtRY3ISDq$Q|03B2y>Wo(O!XB1<15+HBPr3 zGRkUkc?=56zQlPEa{41rz5l`aS|zcVAIQ{(ek|@!{Kxk-murLH(yt{-m4kQ$?|?Z# zfIOsV+8|q2>0hL*L4lwi$LtPj^!>D7+4SR9uF*zOw4s<-g1OIBPPXuY=I+8%3wk&) zQE8}W7Vlr=%bs-gcz7c3L|qgJ9_fz2koMdZ^jy)Q@3Y4{PYfD9yS|@R zSCD?S>`r*x#UtCx^dP!?gF}?N7BnSv__V)$DT*Sq550Vt-e+itXQ3!Tfj@oRh3wD- z;(S|*=6}#Q&Tw~xyasf8`d<8vVjh1E&nFKX{#qqm7124=0o@87OevDA7-g9VZzFXF zq@>5&a=@TUrd1!=4jo&iMJP><`L-6CGUie5C(?2y!JZ8LSgN}G-h5ggl`SliB~8+# znMSpaVi-xyz^A7!ReT0rqC+j)hs@2xx<6on>0mMGsC&wD*8cvQs8J(-qOsmHxW&zG z163Z{+R|&$Mgq>=R^Gg$!tUufD6@qygO(tx$38e|xfrA~*YxL|8BSCH+2z0t1?aE3 zs`Z4THjR9x&1IVAK6~b5I<2A&MT6I%)xKs`OWEYcC!;;ix$Y>&vRbL~^GR`7jQf6V zTJZshn=H}f^GuhH;}V8eq$&v)CqA@&niVl#5-)pBqe zM$F+~-S1mB#H?CI;jKMpbmSvX()cs=SlDlKM)0e{e*yJrL@@U{ew)=BjLPWE z^_I?m?-pAC5x7s`D9Vu|fq>p>yVuXtf5G||LX;MfY$mpJuNdPK08#OFQjB*@*x;jb zUNlpZm-;^ip~tL!O?H#Ss9cqpHKCEnKY^#`SM0?nUjL6q7SDeJNcwDSgjjD#flggNlPPY3UFk+J*~k^U==Bo(3c+^gjTf{f0(bO9~W$t7em~;XbiVrS0FI@Z(-utL z5QBwE+Rd|h*chf_h2jQkX#i89m>&T=*_i8-phE7*JdaTF@raD#!HD$?gSc6v9YG?J zx9AeMQfQ8xg0}BZVdf;d?E`{a?R6u9vFNivYW&>DpbvwZxzvzYMNaHG3J&CYG>&+q zXnvF(`cx_59d6Eg3tW$syNRi4d7J>H2MUI)@NCSebxlLMtg!5Gzun1=B&kEOY?_5|o|(#joKnkZxwvV@Y|uj-RKYd@>IfqlagDMQ9E*OBH! z+iCiU3z@1J(cWVez&N6TnCl_GP;0qAnO(^?kn5fFXYRG0gtYmT*aF77)M^e4u8V3CNjc1{-W>0c7WnmU6a*gl~Lj@ifg0qEk4*x~q zx$@fc)lAn=nw=yvtu;O%D@=wvDkC0sJX8#d1C*C7pkWLPVUzwH@kZrUima+}tOlBb zXz)tlKbT+(^PMa%t;eU8K%wSuV6Kz5ONSjT>nqFCpY;K?Y_h0LUVMHU2UrO^Hk?=(h~591m@?& z8XdJy*gA~63(y(CQl-=qkU`?61`u8#lA$LyC3!YsKAv&)kRrAuSqOx$3G3>Kt=5zb zneH8pRMQj<-Q@qP|1I>AuhPp5-t`kK)D+s@&rQ0`@@Pb{me0!+f3IZihX5x|X72H{ z9|YCy9^CwMI1(t|=5-qg!DIt*BN03RjB-b0;t>BR*2>(JLO<0Z98cTcT-Utv=w?u< zz)16sP%q^!(v74zn=LPaD?LRs6*2tw;_%@v+tWqRhx*;LBT}|eck{uix7mjis6TIW zt{2{clOo(QI6LVLtMr^9udqR3?C+p0W)=&ep~@U2#Qm2+w3>p)*0;(EB~TPCP;nrA zPD3@_qc~rylSNZ9nL4qgF6_WIY`56Vq%&8PCfo!#F00d=rqohW?4(4i_-(gtsMqVu zxVrY>!tbhUp^-mZo;j7%6r_7&5X9_Bn374%@icMOk8zltjkZT+hGVL4W`FTl?8CfLJRZl) zqoH>ZTuZ=FYtivVZ9iw}5N>Hpry{MXxXjtCDP*xv;tM^O9)mxbF#CO*VF{Y`$-wQe2#; z!c}iQqI!6v74@dyoiS7Dr3Ryx`#i0fICgSz7T1)THlEn4k=zefW$JCa|CEt027ng< z3FDHaAzNSOH|?7XiT)QrthD)Nx@(neK(b~X+%-4&|4C{+a7P;!5 zktRXKyb1k;r3pE;%i?WTPpU=}V|;{1$!=rjyi+@?Q4CK{mm+q>yzgsX z7`cq=PiVDbycBM>0mM_%WR4D};59j<;sX$JM6~D;tD!{&C@Q^{5g$;{1keG<)e|iy z$s)HQxJ`5=;H*5LzEn)wzHBU-OdiyWxz;|4dw_WeQMSSPGM`QW2X&aek~3Bgrrq;r z5QUy13j%NfhxaLjYqGfbeoG51P}>RA#w3gkk9P`9&|jB>HejSN<(CiS5(w<;TD@QN zOso3>KqI0GruiHS^6q1#SL;&5@at!mdao=hMRN_7&w$Y*<#L~4$x*itv6B6uBcVk~ zz+a}Dm~V_(K*}bGBLk~IMMC4KH9}ey%yTfD1FVtJFeOm{iidPzx^kCpxN$!5ssf2g zh$i>?cy$MABvfp+ESf?AEkoH1M`(RKKed6956?sF2Y5}mG@E~@?(BdhZ9(ic?33`~ z%vu9J$@Q&O37SkVlU9Tfg-OB)6a29+$4Xg)jX#Ew@u``(v%MGpt*s=V1AQXrrMD3Z z$?;HgJ2s`0ml-Ejw-ame2c3EA zZutyu9xAd|eUz)Syz}1ecRL53dX1O#1_)EE9#P?G&?m%Jz4dMB>>NG)ZoA<{6B?L1 zh&DATc0dMcRf+8G7GV@S?I_CJpGiIdE-H20Tk78_`)K};y?9M7;oOVjdB7%|0i##oLbYd9w`JBBhdV|@VNLQ(Fbz%89A%n5rlpDjs0Zy4djh9E}J2x90j z*Z0FSRaK^QVGH@oxG%6ui)4mNlVzU?lyN9yp8gRZUtU2Mni?`uR7Vd{Stt`i$-&g55~1v8;*#%IV81}GhbQRb>dll3%Oz}&&}hWRg*Cw% zC_Fs`-P;eBhEDW6Zs#b`1$me4$(GHNXgk!dW^*`3aT z{Hr)MwIOo&NY-Dm+{rfg@S2tZa(41O89|Weci+2AwA{aj)r=jQJ7vjy!C_Y4M1n#^ z_Lr_Wn(G#nozSv~(Xy_vg@v1ZeJ%?Jc2N$9)aBV{TBN?87ADq=E{*oo4c&OOYG|KT z0$N+8BsPa*3))zOwr&Jm#8lL0=jpa+{TH=6aCVHQY#YuSjvX$Rx}RM2xSYC0RV3*m z3>Zg!h&w*Cx%X<+j!~!)s}wvxuh&2|g8gLcsC$GBj%Z)TG<$>X34Tj&6Nf3vliX6xsJGz#~FWS6a|ZJ^;DL|E>-`C zkjvmL)Z2_P{uyACGYszzFe>>qvp5I08y@0v9al{nHdl=;UDDa|*k*&52Yl1xgJS3r zq89N%3+5C6DzfqD8XM2_Q8@mw^VOxib+A|6!UiNxW(y@(Ca&##db(_@6M1aUVr_SS z*V|}MQqws+nm5wdqn%j`m$d`7hR;iCD;)_|>$`c83`$2Vhsqbz+72t=B_m2dD5=A5 zBrfF;QU5zx2l4=ExM^H19kE13x&A9#*VnYM})cT%{OH6 z{4WZEFJ77i@99xeZ%_#1`qXzt{Wv-wF2JXXxC9!)6`v2jlU{W(e#N_36Qqh17kpK^ z4#4grZ$jE#0~tq@b7Rb{Q!GbVG@;UgwWT5$b^XT?qhQo~1okml2iE}L#l4VkJrv>s zK6z~bvJjanR?A@DvosXWV4(cOEjv}a)umc8|Dz*%gN1|XnQJ5xR!ybbg{+TRF@g5R zg7{|?Up2;T56C{WzZzw>TW%id&_cjDv|<9Y^{W{@-;B{L`m&HRjD*XBY7}(z%4FYvF>S>l^$;T(l4&!hbs3 zA(UH!i=*`yl8W`bf))Jrg;rtGKaHs!xXM2mL!__UFS*Or^@Ypsr64lTH4(QCG15?p j`vZCA|NTrny(~Pud_8Pzv4H$Qetv!|1_oI*IjsKx0imYo literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/default_data.parquet b/Machine Learning for Economics and Finance/02_Supervised Learning - Classification/default_data.parquet new file mode 100755 index 0000000000000000000000000000000000000000..5c2a1e73794c39b3bef03db66be328c383577328 GIT binary patch literal 196715 zcmafac{r6%-2OTCeaoKe5VB_tDc#m62~o0zB1t0qe(VS5a5g(BZM1LN7fPk5q(vk} zyV9Zst-txcfBgP?uh(^r=bUHendi*RXJ$U1`@YA^!N*KVNJ(93wgLfXn zWJHoBNdY8N&VwSDt3|#jlhXfPLr7Xg5$vFmE2+_ea>6y->VIA~F~Q5z__n&LM06iKQajfO~yuy`J6qKA+?gSsea0jZJxUmNmBW8^c* zhisCxDb(9E^2==gdtVJTNL7q9$9oY){FE4-?n{l~q3N0ZTMPHBRN@^7gB7ICv zm!p$+3Q}#Tv6|X6VhB_@1yZZ#H4pN8gvl^y{x>2T8M-Oqtr>-f3^ZL z+)7k;x&Lg)l4>I)NYR&8B&Fm7C^|kmf-W|SaQv?_O(P=%ir~%JJ6_P8Zs{YqunnvWl<2kAfrIe~BMmM48J22h;4||G$?{DM_fW})XCEVYoR6#=_Ds{zN1zppFTqSkM0)Y+G z<$VIq3gTYuuCxVEac0!3C*OIXe!vt5HC-o}=r zD^kp6m}-gn(qxZHZFehj6_uZ&i3y4Au$)1RSj|a@=|3jmYeZG`WhhhRd7<)5$50U= z1&U-u(G1-@Mamp+Apr9GUIGQ4ILUNRq;_PcPbfp-(J5DXsR8X|k6oNRlKyHOt zp3HL>DY2G_P%pMuu92V|Wrdlyyn;eJO^oRvdnWx#uWPYCy}b6)O%t;&!yYqXK5_d__8G)LKOc4T|WV+XiwJ z!wB}y6_9YJ^(q<(cGMkn@H!*qZcd{}-W1ZI*UqMhQ{|R1XH!(tXzVWUc|t<@Gz(?Q zyf8iUT-_aJGzG|o!j;aJGbZC2NTmv#b=Fc_D54sRU%XN(9xz-FwT@6E~Mb{j81D;Qk9US%m{M~ z;kFwHJfRcDd9;s>6{Xmfug)WV55G?V{SvZdyW8+GN_P zLJ-pxw9BVD!;AkHzH81cU^%<;-?eQkMxaEGt5l4if8<3sc!a6P%}@ z^{wWn#xfTzFUjSBL(31^Cb>ej zSuWSjOC(y6;!+}TrTta!2EJI2l$exbcxX7ixj@MDKDEkiP)5WvBq4QB1N=N zOInUHS5vMa+Gv$l&$W0BCo5RYxa#D-#W}#uq z6{7kVPVZA%N%dRNhuhzWKq z5a_XzPnVic6E$rWb8x;QBiBtfaTiJ9HO_Ne%oSz4g!Tz`?(~x5iWxlW5-XDvU^_@W zR452DP^5^<3vEm`p~%k5l-MH(5e3Q|wF0O!4BQlL_?GT$IRUa%Ki?&;G_gzEL+Jva z`aj;$=X*lm{{0Iqn(efprwBLy{z;85DS^^YDSz|pY%oe>7gI~=knUtIS;Ar? z+XW_8pBG&*v!?_+t8A$?E+u&Et!!_n%?0tA{^zgcv;S2;1s+Z<9OlOF+=AB$N4!6O z&jURydiS&S9MFV+vCq7SN1v&vhfgLQA9UO!{)A+sCU17eG7S!F{noo@Y>&Zim%F;E zeJq@8HD%w=VIyp>qv&(l0)&3v*>Fss0YP!cMENtNDA#(M{7cS?znU=-RRDROkdTH$8G6FM52zWGqB~>O ziNe1eRBA6SyTREEi!N93&rx+y`mz2=Ff$D;2GUb;0X%TV&D!nEcxaVBSsbvh1eVvg z6pnP4Lgf8(k%@*}Fnb?Adm+h((w@8|&Ejh8PWMmn0TbWtx4HeX<%7eP8?gAu1FvVs zvrvH=2%CPJuhPfI<~NP!TsyLHu*E^(`IllS4ehHH;uL~Ce}j0FRyA_k?hnPkEl0p3 zafy(%e9Q|?ueI`FW9iAqix$e2L3>@Fa8y+xcCAR;A#*qn7q(bgb@r#DUDfSt)8k6W zT1f43XsLnZt#g}MU8VS2tuu8fzZjb~M0mWlVqoJPQc%Qg`tp+ne@qg_~d!CEXqK~sxrW29nnqhMLMGn|joPcGU zD!^SqeOl_d0iFT0H%{6tJXN*q**#WI`&Ze5ph{KW@d)R}QR=2XuLY zDcG2NZe@x}CN@XBmz=w!1UXX&?hA(G<4^YMz-J+B+$jyy|BxPwOHPS~f?gY;Y!&rU z!KMnELic;#_??1;MGs0Y&ft)~dA+h{xk^ zZ}7V-Gc!@waM*tCa0&EAmPS#Yr-Q#Z?ro@F4T2VOJYP{+i2q(U*^^X>0!p!0_?@kq@z<^z zMk5bihh(!bRr)i=N~;3#yR~#Sg%@MBv_kQn<%y^_*Jzdbl?#(cgMz*F8PIhrsOE6F zxGLCKop5svI?cxBzrRp{AC9#GF8g`7w77KX&nPZ(UED?-hl=1@?s;tUND}siw)Sz2 ziCuW~e|gwShqvqXChGk)*n3!JhRDe(G^|%HTq%)^)nk8GzoQmIbL^DG=S_SZVJ@3f z`Hcf3U8RG)(}noBaLpbIr%F_x+S>CuehCEb-?BPAQjWJ?>NHP!GFnf-dDyN1b87Er z4d2he+AHsLRwtIhJKzk{|4$;`Us(8O_(1`-JLRtv+**P>`q#2Ztx}|DIF$_9mE%0+ zQ9!NTPHYcW-hZ)$2l~Uh&z9?W2+dwML;W8U7S9t3=bWiT?`qfDAN$e}IB6>X+Svz3 z6(|e3PBQS=GwS>I0}QklPic>yW8i6Rb>*SYS*Y-f`}L-?44Q|Oo6F?+csJQHY2{di zZ6#UK83ufOet&P#g6eh1myX~G1TtXmH#1|ryAUTeO$B-;^N>D}D%fb)fK@?Ht{kQ@ zvBqh;sJ(ePM1$t+&zd5uzuUZ}FXJQdyYa^T_xja1b>)WF3gH4AesHJDUA_npJEKOg zpR0%R)Nt+JT}&uFeYjHTDOsm-$5{J!2O>Xcv8wordTjQla3hKuak-aOTW(>8gn6F) zN8ZJ_IcP&+A8N#Xy=%kYNWU#S_TFlhbq;n+BWhV|DIDjlQQLJO3%_@d&dpuPgYDLh zry?Wrk=ij=a*VziOX?NvTh{ZDd1H@F1FaVFuixsFipGI)zqw$u2p6t19oh}%Fc7S_ zfmLY2!4LZ<@p35)Jox4yv$!(@gBebX6X`i9ueh5bSXvKTiyMzS*`;`y5}5E!t_r#} zw{oWgi(q=lzoSkRk{r1>) zFz##&TS3bOw?T|)vzrIW9W<4L)m+?8+p{_~s}SZrkr~xnN>O=)R+>J}LR5zdwbXPA z25uDPch_^!cc||6VOBO;2AEk3{}rP|cAa=sMJ}GjEX-Dv=Ro4VYggKYHzb^bHF*~r z;PU)&H8r#he*>5I40+{ZzND5+*OGBG%}Vt&TvEc7qx|LBofjkIQoYeUN`fw21~Mv-LSda(KX z(zzUjw6JEdW~4wX*5$9cWFg*MnW9n_vQhuWF^iQ(NB^8wi;l7qtWfR0VQ5){w~}W4 zZEd;OacKOWZD=)mycHkfdnwe!sMOknJS^Gu`06|%Hl%vu-`e~vgsb-9m+W`MU!m`< ztxjOVinH;-TI~uE#K=$k{GxeMqGHlDOU zq5J)2B-}JtDY2fIx zIY+8DLB8hD!{c>LFjw-JnX|DNVVyVXEzL{u;pFQJ4zyHcq=sHGTVH~h=gV)OT-pHj zojTSR+W9EjQkj40MHOZh#-DJ!!bN~$`^~KJatI!b+x*UP1 zSmhK~uqGuL%|pIPU+Us8ROBe4B+G`FTd#IlR}mJ9jW4oU&c;CQv+2+qF)(^ZIJ< zd{k&V54Xwjp!99I_y#o|q%_`t_+iCG;&byuOApjS-EnKe`dk(U^>xjj#uOv%^1xM! zZVH};eK}q;y9p-kE5m)rez{0qs_`H3D@C6lje5#uVl&S9rBJqC&_m+WUeSr?-%1?LAIEGotPoSU8+JK)YDP3=}n2vu??VRHq45gQweoz zxxLbT0q}aEyOmkX!h`aI7lU-59^liaGC*YYs^$WhSk~SUK92wJESqIqho}t8n)sKgcpA6!_JTRZu!~W=7Q7+`%ZA>> zx(oA={kosd{+o}|-04Zb+A@e-ZJ82TA%Ix#6rTCQbnIT;+E_uWLEZ7Ep|X}7=vSUu z8Og1~>#zTE&9V}(=_jq)?NA1o_iu<7UN3@}cm4~>*m!jOc@@09tr$0I2U|~v=OcXl z-IfE4MrbTt-q_vAhvxlD^u)VtTnO)2ZR4Adk}tmd{DX*JbVVw{n^J}={xN$WO_xEZ zRLIx9mxYwE#x;tKEZj(Lk{>!5hjTL*&#?`x#J%emUkw)KV^vnQJK3J{voXF*3$GxRbZ>MwcV6!HFJ@M)%Yyo*o&o;zL-N~l@eO`YussuSF; zJx~tiG>U$i%Sq^koeP`E9#9 z=6e<(S-ad^9#Riv!8J8>cdbIXEvMR@V704@b=; z_Lk0LL;q9%;}L~gtmIz5+}KxwdBgqwRiRuMF!&uRA9&bMn(|3gpN~a5bNR2@IN0%H z;FE`8DFo7l%Ds-Iz**y+^Zqj&#O}@gcif{I!EbG>UPHGI778%^C95Y<`u-lV${YgK=&(|2Eq9VW+G?tI^l zevO;0v2t|G*%|U?MO6_Jwr5{GGjlzJZNnaX^VtTk?tY(71_d}5;Y@EhSd9kDgqa1u zim`Xwp7lPcc++cb-I6@A?+kqP zHZO+U#Tmnq{v2?9^Q1RvFrfPQlGLfZe7y5A>h)TZgGb`peM|ukjw?={pY*N)92cB9 z_?7|LxQ)w3{-xp1wlBp)_vqMey+i9_3Rx!$dqNCorO1-L-W;qEfS29sf`@kI;>)2K z$Gx;mU~)#TxOWB{Rn1Q*(-FlG@azysZ1KXa*;C^WJu(q(JU-{hR|Xn~%xW9fY{!b{ z`?qease=56A1?V_#dtn&;@MHvN?fm_3tQezA@&*hFG8{w?Ptg2iW0)%wJ{`@|F#JG z_hgO#8Dqo1eZQ__Fat>wqY^Ii68=-hMn4sFZ`*Nlkyw{NUhbz+9{TmsJo8mP#z$pNmCb{UX)xG12tRj%M;T z0^>z5N^c6X;i1Y1Rw8lG!d2z%KVAAO94ip5%n*p;*dDCZ)UxyFSl+$aXD+?7M|6$S8sJzfd>P zWo-DhJURF8Yyn#9pRZ3-uSP3l#{QWaNjUkq|C7aQ9xh5v?Vy(h;dACHFPCH0xT$tw zU`&pQ=-;#Q&l3Ncf@_K~EUCKI02*iEbDmQ~`HW~t0Ok61*k)@?TR;UQ0lTB6p(#@H&SV5Rfx@bT1H|Fb8G zQ9!NUk+6{o*13~xoy1(M+h?yk71My_m(^yT3*aEoadYfMZ4nCJjXOAmmScgyJ=Uyt z5+6L79QjM)E%`~c)=xEw*uEib#IBQp9;I)sx~V)^4gZu^&d$T}pAkoE@?v3k+N02n z_+!Q1KiX?-3K4YjU2iMde~Jtbr~K&U;kmiOALk(!3MaKzxozcO$dDiCc{2|lKkDNm zbvX#S-2GIO_#L0p_a3>nhYyeQw~lk;*|_1iO{p=b5cx6onnzCL!rkGRua_hPw3@{x zN&_rtwcKrUomqeex#^Y00U6l3wj(^j}2W$;}l>EwSS0Tuf> zJGZ9fBR8bx-<5j-Ncx+X>redIXW354m(%i~e~yvIPjhANKZ&F1a;9|v0fEV{8ONIEt82yx^(`&ryr|PRaSS=p}-k8jLFZq)%(+H@)AyxpW;-&2Y<6I~V2 znq-(>Df6-)D8p6JIZJ;YWn!J+{i7N~d{7#?2RE%wM@ZyYpYq~joE(dA`(RA`*X9ck zbe@BfB4Sl0Uet8w3UHS0oZ5$h~&QRiBoJ&OOXb0;Fg9*=~ z3Sq6XTnt`UoyQxFMYv~?*#nh4s5NParpD&NlfJr2u$h5UrHgkK^4N&jsMWJ0hX=32 zTf^eXKK=N>@mXF1Y`l5UvCm+H4b6K)8Fr&|Y_wfeux3{kE=`4mvr2N&#m;*8zLATz z%h`K0T5~Zz;-_$Wem0g5Ui{N@oQ0z!##&3>Cqb8MBc{5j2Fs(K8D2YBj+}}8?+X}J zIRE|R`!yUkG*q7$vL(4#dB%UqY-%n(KXciCqLYK)c1xZ8N768_)k8)L87RJZvaMja z99B7>vb5|7?zTv}M7g*URhqO{+1E=k^|5P4n>icn`hWFYmn?_p?;AFEm&Bv6r}nby zfpqls_VQ4twkaqr6JYFP0;u_N=ZT;M8^uBGK3*&q=8^0b{=fXpy*|<%a5)X@JFbo$8 z@zAxyqEmKnKCb`Tzv4zs38GbaH4}lQ7#Y^a;?-Pu|JF|kI?RQ-A=8`D&BYA64}J5W z*}%CfF7_kA0dxw!xNrK9iu8v`jH8{^NDkaF>jjOA!%=5z-}RJ3?1#fcwtXJ9-7zvL z`JRtu3y!q>kWIydtSqj~X0mTx&wbmzq!G*BME+B`!+^j$wxD}f9+EFSr#D%rLo9z` zl#2o#^FGWj;FEaBW7pF+XO-CyQkOj?aGQm5Su>xleOiSa%BP}7-dwQHEW2-_m5a>u z;eU+v^^gdzU{1 z!{mW4CuC++Va>$OLr(*^kXSqARnV4OX>}ssb=@ig+%)sJAC7C_KC9nuTp=+_B5eH1p3qP!^LiCiu?noOhPF#?8eVeiY zZXUC(7PRn@wfW**6&XJ2<_i3szqA5h)l52z?Y3f@|7(eIryNkWMdx<3=OSY#+k6ed z1Ny=Web)PJMD!1u$iie2U&U)nUUy5y$E~67dA_Asd|0LTLufASb!>9Imhr%S8)>`p zP8z-z6%RybWN!eg)@0=F+EmE3DrAj5;X}MbT4!wUcD$ixhwSm?qKC0( z=|Ni#{C6d{?X=**d{{Pi72ywh1=U_;i|}xKXU;vBwWYWuI~MM=p#nzTqJ7k`ZJ4yR zUB_FVjfa}=r?xF(z)U;Q72|wluXNMsmnlKRC#f#gCAlzov#CXD6&(qSA2i?dGQvuc`&Z6;pDuO@u(bbM{^Miqi{{5)|`?OzpI zCFOKxqXY#hLP`$;icxfBw)gqWMC>}Y>CgGPQl!@Z96NL>5D!;<*(mvu4oc9BcX8K9 z-0<@6p1BPk_^k6d@iK$pIIj=ME&7>)=Q{=ytyggH^w@!#>vvP(e7L9e;|LS{gW|eh z@8`kxQn>#6S0xa9V|vN8KI12npUdDCEiv}So!||}8BVsLX}A=)eA8dD-?i$p z%mOCau-P#?_So}U{Mq^2aMU*z-cfH)B=qHBmvgZCtb~o2A2IQ`{bVA-XRNkV&mg#| zs?(q1m!74SrqD*pbxC!^>;u6nzUDk*G7cCxh(A z9h2)0Xe1^Wi|`4_9Oh8o-dqTuT{Zjh_iP-w=)6+Hl8My)v@sQ{ zdg#1%l;SSrVmLe7YU$a0SiZcw_1%3o%&vy{SjY14FeCh;c-{_dni5R52OqQ>%N>rB zxTU3VfAQe85}eq2>tSGcA?^$J)Sf)-h}`&_`eyNE=XLdv0-*VIrEN!{_LXrXh4xb40+I1Ci9z5lf4Qme|eQ zoYD}Sk7~Zxg}1@maAsNmecAW9U&eq zQW@CNIqdXooZ$ZhDwL1vu~_70|GbFo&+1>=e3En7xUW_jaYC;c?`N^Pn~#*^`lZij z))d#^&KV^;W4SQI`@hs^d{%^P>qiNhu>{xFEPWG2__7PH=x$qxzbY77xS_MN2_rtH zx}`tzF>>TwdXE#~$Icq-Xx+(&JgxSE+T&{c5SjMTTuq0HP^snpmQpCaT~Yp8n}=7| z)jsEi)Iix`Q)rw^9Gn!SN3ZSTBlKJD*Xr^r46mJ|KJy|2#y_u*`#xl%eqAulu%3KtQu`0N=`i8`o=E3OP(Ds392I44RCq^cjnC_D)IvmVJ z_29Xde?@h8wMr;y)^CC@Pj;WMYOTbwk(}wDsyw{U>mI!BRf9-FN9xff92|0A(eF<1 z=g1h%dhM)oG{=lQ->`{+9Qlri8S7aXr?t*;O-jMXGlo6_P5C$)`eGv^jE|o)A}7Yl zbNsBO`t30l&k?OdtGZ#J2SE3+?EmqukQSN zlGLZ3?~pv#goV+0La)L?d9Znswr`&i@!Qsat|~dY6<>!n7brKekYE zX@7jNs~mH-F6XYCpMW8GdA)u81aC??CMGz{hGG!yzGpx#-ss?~3c*2Z>}Ct!pHYd~ zl^RR@`l~R0KXgR*bOs7V?w4%d(S%cR?qQb4tI^>eESv01hp{v(H=JLJv}KP5#=bJ) zonA@x_{76?d+s+Ki>=6Oia$FVUjr-W3mSKiXP~_Itya5DB9_^BU9S+JBl3yt4W&pr zx}vJogAECu{WLJdT(1dFt`r9jg>d0D_OI(kdps702#ZP{%*9w%Z|`r8 z5gfeY%Ig#nKK{0P9P0g1g^g_+9@#!A!^H$+g~dbJnELx7``zv``23#tTv37el@^nC zJR8%oH1Nf~*kc^@iz&668kA$T?M9wh(JsVzqVa4@6(~-r3O6rQBFbNH**>!dux5qU zoY6>x@4M1Bhf1pvf4k+A{JTmpKE0Pd%c?}N=@08MCm!_Ugx@AU3B~@}qrFYB>G+nQ z+2N2}iG8f|)=>uv(BgBW^_gcCXq&dKQTJnk{WFdqE0~W{mme8wDpzBF_tQA z;lsW~w&SI!kqrH{yNHV$EjMCfjhHAlUX{^L;@)=>B9~ttsf6dHm612dKASr$wm3N> z6ZHmbWc95Hf0q8f-NvFC1-lCxh3d#Y@L}W3R>_)kHm4(f=lT;Nq?PFU*ZLo z8hkanUG!LmiGa|-1$##eacigbto^^rAd$Q0oQymJ55LUSX6ZETm~nVipyh4kMaRs`=6_n3)?s4J`SEdGX>5qY4hDiZ1TjBUORji+1{t#t=QtyiY7Wml{yFnoT9yX5&tb znr2pN0*biYx1v|*;1oqOJjd6;vTEZGKNj&nH$K0mtx<`r&n`vP1V?%yl(zq_GaI`v zX1B-LaBz68OWg;TbeN2;nz3`52W2sZp^mR~C@b9PaGI5dMePrzR9kYeEY-T^pC%Uq zIvs-ZCwWNKT$z+Z_^c&dow@!7RhY9*Y|B=HyQ{YR{g$qmg1cKbtji#L)XQ%=_Lo9( z;I7M-zT;Mhu5c^wrp+agN;sw85K@SJ@45#gNgV9`@V)o)ZCMcLe)ag2ND@X@Sj!&o%{Lq{DvwlEp#lp8k2*+M}{uh zt7M?wiTmh&WE$*MwA2RdSg=2s&GVU8gT90ACgz!IF!b+(v7U4kKFqS-5kz<#Lv!&L z<%%Tk+O}5Yse})xR#wLqbgD4s2=1ptTl0-zV*BY@9;9~!xS#$o9c`?x-A>?9QgvB!? zl+p$XFZ=UEwNz3(mc-^564}T$ZfcGysYfFB zYG$lY7W$N;&!`O-Lc8C#&TW+74FX||xB=oHZ0tRC=n4yQgCcUPUGfkUxx4&YcLahp zbw@Y-Ex`D)^4+nn8hPHfo<>0T%LEAt8ny~;8f8YzKf zme#0dd^H4D)w;6=IZ&UaT|+oy#BKa{XnlVa3b1UzGl<|ObNf^oYr^58qT#l1XAMHB zcsg3!08_=juDenxC{W9s zyOOazwFFaZT~_52|L&~@ZQ?fRmyLJ5QgTCUAzXSoZpft=hmW+so}X2PeqBccPzxniSxPJl$Vka|CR`W4fJZ;?7_$g#E49q~ zC1UW;S})`41!89b-*0ZE<-vKX@efkhcRUG`!T?(6T4 z+;%k&cVf*u&XaXuhNKs5tro#6W@$zGN!Mb=U-3($?>Q(dh-IFb;v;4{oqqXmEy|4_ zKm0}fMrr*6clA`rzR|Xhm7&1FmdJHRm(MYAbH-Ys*XqQjQks5o;3mQUwue3rOk}_< zens&Yf)jCf43F>InGDIEP5eZ%-agiRbMmGW3*izX=O@$&o;|q#^UM1TJbV4_*vGXy zF>HT%_}p5u{%}Tu^KLgn{8f7Opi2YhEkTuJM-}GJ~?~eCX&=%K|-_6Xxu#c^3d}|pZSuekJJR|e)qW;a|>jg0CN-;6h?574=gbkrYfR*T1%JvTXp_GNIlm}|0dq7F%Z z`hRLkd`)>RGH0g_7fTCFb1Gg3pi$wJSFUsz3Kx7o=I&JpR@u0b{RIXn)6dSmX(aZt zIxb-FKsDG`-!E;amtf5@DV=*83BU4_-n(6sMRbS`YQvO#1n!tIb*UjAPshBq;u(3+ zmYh}{-?R}Un`TDb5iG`w#$5~cnwCQKh;^aER1P{nFVpC-O2#GkFP2p|IapGrpeym5 z#P=q`OBYD+&`B{kYSx~BPx?)I1)|wRXZg2TRc<{pHTkm6dpLL^B4fAeTp3oy)%Iks zVqww5lc?4{Hg+Vm7JY53LHX$JX9o(x@m&16c$sb^?#SeO%p-Br_5O&8l1EHX-?$vK z8&H7n3|CS+tx=9Ayi>NERTn27nZ zK_ZF7-RbzehVT#3_wA$C9U{7wv%@DZC70k$-IYJD=CDz^)pq`;M#9(c%GjgsPv%AS zu^;z{K4rDl*ufTp_nT72a`oi72)$T5CVj0A8or$T$JR`uV;HMgn;VTxNgGz|^?Y32 zt(CQUM+$O$+MldgRDpS_g@S#n%ONuF#H{uPJ`&x&6fb=h50%&)3*NU9gz38XIxq_m z8!2&?sBft)ozt_C7Y^rz&_UE9#`_fp01_7Z&l@WkZA&w3Qco!xi6z6^oGM`o{( zP6cmSUQm2C@vASMDlz%X#P$cXChAAYyt?OVwq-*BqRw`&Ge4SuCqFh}dm zg6UXv;LzTJgA6Qu{PS0ZehGT&xY0)2dB~J-EJ#fzy1mWiC9@-o@aIpyGC!^m2Rqtd zr4wD3fPPi=pY$>W4Lw}bq)?21A(hm&i?x^vUFe>Ykb_V4$8+vJk49zbX?5%=!GY0> z|02GZBUJFX`XHN$$hAkhRNhv==WyZqvrjo-UtTn5{G=FjjPf--zmWL1X~(A@3XOQV zb4JX3D-I@>G$u@cBKnv0hH?iw3(>K>Z(y8KgB$9brEWdoV>I|%zk*R2p5E2nU=>bq zHM#tzNWJ8SDr=S#7DEb(6~m+;|pwwiV-t%QSwx7F;5ay-?rjl1nv z2bG(tQ6@yEbfwMQ!KCw4e*-tEZO z+8qDx7z4KYmHYlAgu?yksjuSf09@JPUoA@XpW4Q?1~RN9`iu6v-5GVb zSMxGSdq)+HdMfb+-9rGCS%irj|0w`JRGE&WvRz!V4G#2TE8kA z-Et8IGb4yzrS0YJmEZU{*na8p%kw+2_M5kx?9NI|4j0GgdKP2!Voa<27A7h)7CfIU zi-J#0`(2xsnk&2J!~+Im4Q+3TD3NvAw*N3ahXs|RKYi^L8?kk7z>PLtCay}4ESbNYv@3ea zV-!VU^y=r+*@;|i-{(5IljvW(Q%}u_FRMmBZ^^l!Ny4iYyQfX5p(I8 z(zlAb6_xYWo?on;id&mZZ=TGc<1M}ZOo$=TDWx-wbY3D3PRIm_*z-_0VfZRGmDmeUb5m?!31ov7n#8`S#qZMb4-G~&&}@wSdO3;k z(*65<&VMSy;FhOdi>M_S^B>hUi77<58oNpKJmF;yeC58EW5994%n%A`zlY(FiCq>Q zThFSVdQ_c(3vQ0J-FKNd6sx56I-m@8Hgn}Nwb@X1S+RaPfQ?0uSbl_`uxPP_B9HiK!ZHu(YUS`vuu@#r!2!Qs+u=vVb{HpJ+GA8o z{ESfDSF~@T;G26*i)N>z+Uu)L+J$WplFQ%e^?{rxI7}en6Y+R^;}k8@x)R#c@^2C^ z^C1-I&93FK(048Bp2UR$EbeUoboF}>79Kcr<%J;OeZ$TT=1~d|H{8(R6kUegKXPtAB1K3qqZo_Vbs2vhshDMz2LDLgwewHrBHDmw zaVfG1mV9HWn-5rcbk_d&m13e7^>S0Uc$9(*PDY2bZ!(a4cgSw{6E>bQIv#JxG=JXMoq%E#L(go7A)A>ofdmbbfBhxmw8{v>>%P=G<19=!4F8w#-2!?I6{*kyWE zu+;?NXVa$d1`WmYP-HdoE4_+^<^KgjzIb)|K8zbI{vB5;w9R0NP^97@I*mgT$xM`pORsGh<_Czn3FUOXtBK9B> z|HOFrY6fP|J=Urb9r)obdKLS6%kk;auZLO{JUpuWS>LrI98U#`*M<&cAM$gx+_W;obzt@3&fT?ik_0Hq1v8=V3ndWiRwPNtHsjGD-h~P$kM0xJqUO zZ_2k^{d~=@Y)rUkU-=JLn{aIxUoR2{8^hoSih|j=J&|U2=Sd90=N{C`-mnI)JqN1I zZxg+{{Pq@_Z#k}1CEuEVjE`wK@9%B%SeOj1{ic4s9Q_8byMDA3!8Su}Z_r>YVjh|G zxNTu$*$V{)ZGwmInHiCxMj`x&uzAV_f)jX4xGi07#)ho8&cTcFBre*0{oZ8{K1#P4 zHdBZn(6wZp`4_UkX4ET$$U2w6-{$@N7^6Zg&oXpVAm@|h3*UtwEM1Ei<)m7awvC5u9*3PscQL6-wwI1!GRsZc*A2Xqp7cO08_Y6|pRPwi@T_6WrBz5ff0vqJ&xI=YdwvPgyVR-)m56i5 zc$+?*og~+Q0gEH=7G2(gQ|2~qvO1NR`AfvfBAoC`4Zl=6t$4WGcX9T$w{hqmQm4nW z$$2-mk;~m~T)0^Zu~i&MyhQyD%@t+1^=0tP%efhN%ukdzAIn3Ub9;8$?Q{hE`jH{^ zs}`zDJ_?=iD@2~NinYecJfgeS8xf+C^C;EI)6uDWv6;UM_g=JTdhM9Nxk8W3R5kk;?P-am+?s>23b`v#=0O zUrspDh+3q=vf#%!;mIb`a^X9YOZ1+vG7ZRl-G1;2)ny$Wy0@6WW8ZPGutRHK;<;L| z_F5X;r4at)`bz6sqNkm?u9xOSt0Lupq$vGMN6@2{XPn&VaL=75K4o2kg!3c%EIS5< zPI0k#8w-msE?z0x#=~y)V@97I=3sA%?zytIO3WFp+q36r1Efx_ZAq+%!rR(6=H-MB zI3%-uqW53{l2X3hd6`1avAi)lC2yXIrD{>BopnJ34~eo?>nej;aw@mfpN)8(+WR?| zc`*88kTTbogPF53Z0zqB;&Iu$)x$(b?sS~Kf6-+w*2^5znsu57kC>TXK9F&rwYE8P zwiUq@8Ez346J-!j@!B}ogbTf_)mFmQL_f=M?=$b?BJ=CA+E(#8$QXt8#}eNELxb$B z;+i~Mx$oF3N%Wu5GH-8vagM~}g3pcmjrs8J+O$<7yaJkbv3j)xKlHX$=~9|Shr`HA zk@zScn%`360`%5n!Nq*(A3upd8(ZM)UqSfw3i%lecPM4|WX5x3;2)rDAu4fxUPn4RT^{Izm zzUKQ2_6_7*#EN`2;U%y}>B}jC+jN~ZIM;O{pWucnVw19gNH%yrQR%?OsrdqztcJK~ zE-A>re8&svLBHOHMP|TaBWv?6?IN;1TsUV<#??W0RkyTaKIRF;Q!huC;>wTk`>_`z z5oai4en&PQyJD4=UDGRpLG$>>u)rAD&-;HAop(GH?ia^NA=wS1WG0f8FJYE)_B=D@9f$6_JE&8Z!Ew-~ZK1*L|MnoX>fGKIgUk-P~|EmAsVv zS|AgGR1K7yjqv~VZ%KC<{c4eHtS%4#M#A3t@V<3CXT~fqBY+?WJGD8Z_mFF3>7Va% zKSY2tq>CFvk=}6ay78RO77^;MCk7H)trrfs;e@-5wR3d*(2Xn5PCn&dN^A@Rv|XdDpp5Vv7Wa zDt8imL=r(|U$t^iMmVr?Pttui3V??7H|c;G8CmGMv9$nwkS! zi7kfuWH?9XSXlW&;SQWL?=?G0VxT&oasHhSp67-~3tV!M(D*^*qnw@#=)`$SzoAG2 z_+Gts8SA)9QZ9cNS^Qx#wN3ejauUonNmIKnVU z7o%Wd-6^4;i-7fZseHf{tS_(nOgX$oUvZIeT1ia^lvLH_bIO0U7gXXwczYwc z`YLjXwht|t-#Wo)OF`P;$q4A@vwF*%7Xk(zPo6$Dy9YOBhuKd{W<#{QhlAt|Z}|1; zj}&!u3bd9wMu|kVLX&v- z$?s6ekN)1^>7>{rTj5}8-Nf60^XWqEPN{QLcj04e&vk)$U)bjTV}BawPpsd_k5tG7 zL6+pQozUrcpv%x`)_R=;qKid`_eN%d@Ts4rrDnznZQRq&kX_%D6;4crq#l=2VXPMqk?id0zIcKLZPzQn zJ^=5XA%|T*aCr7bL%JAs&QJg7xl=;HyY2e16Xhav~b~e+ezK@3(VWyXw?io-S9I$%}x!HHlp^C=H?+H{$-00q40FU|deX3NGpz6fA z`$28V5PI8qErpo`ZXOJEgu-N~w_bi6fqi7LoL8P7jV~-NWTi=D1jAgpia~1>_P>PT zKh38j!N+o^;#_kQ9C+Be5I>R*Ztu!|m_H!GOlCBP%?Bs2%OYfxy!~LPJ}gETIXxA* zYOVE5^g-ABE2$h0f+mia2Hzf}fV1q}SCQUiDBqBK_K$%8KJiU&Ra)Y~nrR?>+cy}j zUhY0kLLTFvdn=he&Upm0l)Ov^kt@`{MU`kC3}@_5J?#*5g#s<7J>=+DA1%{cwB^-MUW5q07)`uXy1{7e0!83Q9HO#>-CL%>4S-rzxF z61dYW-0ez>gCkU?l5`IUcwX4v4wYxZ{D59zrc4Yt^4mlV8`nL!Az~+hFJICcxKwac* z!yCg09 z?vZl23!LeHRyAQC2Oq>%>-n*7q&xCL%-O~kQtcq)3Ho!73rnPr>8Hbd;H#d;T{!O& zdp2ixHwkouIJPBd!@yZ0v|17M>DvrNi(YvDlsmQUCtV=IeHY#*YCnB||7V>{nJDsl z`tc_le#M46BQO$BH*QkGK1JzQ|!~JYx)0~!>oe&p@+%$z?F=t!FkOJPVPKn zuJ%cQ1HRL_#4sN?doKQBCGrYFpHG>%EfOL2>z7RnIpog6e8rdh(O1&9R-=dW6}{kd z%Lb?iOlHq$UOwys&#%mAheb<4i2AQzPdA-G&$W$*@trj2#_12-tcrlluebjlLta3E zTT9pDQwj*C2b_CcOau;U)92HeL*SSsvn$~4261V$IUXEQ5X*CA(gFL9f)i9HFL)-v z)83@RqDHPj*&M-LxabVyryJiDd=3Q08UDh@N-=OpFjaQzr#+B%W`BO$CV?=gvE-6H z^3*$4t}Cjj??=u(7|INVvwuAv-O`T(73#--q>w-Dypww*3H^7=I!w0LIy~X{@rmS$ z_9U2Cvu+$mzn^HP0K>%1bSN$*NG{*Yg@aYKdNrKU&@obZZy*WZ$zShTM?_*_GpQ_h z$uEvmxBgZ&ir=)E?td&P3O;a@seU|xepniTIuoBraIqd7 zd2fa9bqwoUYScIMR=F)hI{qL{lf-n@b~>xF-K+!%(pkK99Z)K*HM|3 z>CY*!nAzIhK1_hzZ~?82(I_yhxeyR;uZi%fco{h;ZYb zo^stlEZ8#8GF(O9lESl|i=7HYkf1nEUtLE8MnP4{!|&suI-%odE!NA;)PE@TUm{P< z!zWfop8@tJTV|5z^A@zc%4AQ9fhg0XY_bH*j}aU`wlIl4rat!XPpcB3O-=Fbao+%# zy{lUBKtBmS<+>`D|3)rhv|}buGy)WS|H?56WI!^r;;|6nFz}_CiMW&H3F_}<#(%IR zf}`%|`ZBCnM0)=c8}_14@a5T)3+;GsUskYPkqHA;7TMaLe0YCRHQz7pN`v#R!V0HO zM}rU#3vUJ;5jKb}_r3~*f-6x>rz{Zr&t8vflE}S((LJBBBOeU~fu~OkG7_PkxjpLQ zJaVEFbi_8RWXQEXYY{6L34)64+&3;0p?L3KZz=4*WSLLZrc#AM`dFy+=!Op*cPo*X z*%t(9ik(uP`1fLJ4rqI!Z|CBy>FI%zyYN7GLrifR?^B8*0qKqakXc*tQawU~eOec2 z8aD~h*D+Z%X5<0el9p1{wQlf9{8?meC;F&`A~!<{un))(I?{%|xy>h+X-^|h`LbYA zeN!S8Z0}cHG#U(szv7yFzmR)3+MIsW{1N-Wr%5vHjmYnLZ@%+%kAW|8trd$8^1yF* zIa^H710;WbHqJslj5+mwOUtuZIFL=fG7%IGZ}xG%H7vq>p6Y!{%Eow~I@A2J-HYd$ z()SpLe;&-&&&Nn~g@feLywX;zQ{;<<>i95UqHh0-TW;mKKwvo?>=;i3p8PR2UGyCn zQ4h=;IwG&&O*vo1lZ1WF1VLmz2Cj-+*cVEb0YXA?F?QI`Pw_a8?01ZX>K}d{)LQsn zizu8|{etyM!jeLZZ3xI;tJqecMc<2r^-a_Ic+`D@S_@K$aQoNIIFrYjAbQC2+}U{& z^thVGoiKC++gn66J$yIG7h>{u@!eG`nSFI+BnJN7`_w8)iTqA}&dHG!C!oC`eP|H5 z#2hc-Tg4Cplybp;mkdz{se62+^dSjUh2~OI^S!}OhVSXmBu(HJ+~@w`$~`cyJEAOJ z8w>frtvh$IKa0sx6iDWGg?g|)*}sChFPFb*P6WolGPTL2xs`N~F`HJKj>~{dju$jy zSeM!`*SX$9y^?R`#EBr+Bv7?wCPtf~P8gwa{UUW9IMRHe`o1R_OgYA{wYvtv9c96Q z>mue*qxig+TQd$apJy!vJi>aFtwtc6A`w{0vuOwU5fu|rMK{*octiL2a(rJY>MeIB zgC1qYfrw{$;h!?hS@KsusE_B`h%wtI+JXReljJj`)97<8J2hcA6$i>n9PBIG_kgYm zdNV5{V6}yZahoj(g2xv;XJv7&mTtN6RMQ3Ye2P*AR|DYqm9H;#(!=298cmSDf(tA} z7OK~|`@`+S0dgrVF(4k)q2l%!{SVY6HMMx;^~Cixqsx<^=XMN5phhb6htY|IqYn1S zGwf?p9swriv^B&YA-AY5#33pa4Qq-Y?0KW8{6Jf7=J#O4Bv8T=Cvm zI3>bimk8+gXk2*{gnEmI=g(H;H6~tizQuawpo!#sl6nG=`H)(lpr3@u;>kUum;xI! zbqcxozI|>|dvKP7TsvQ&&uxJOD0h!5)qLxI7{I|heZt769=qI0e8UzE&QTWhjq#~)|D>kw8*c3T`&x3ZxhDbR z`?g$7tP|dm9(a)9@5kFq*4X8Ne4W)KPX|8Cc1!uqG3Y*ZkpAP8z+%aoF@VjUEEu)$w9 z4qnpm#r78mLR!(y2ns*!>x2F%4wqm)&8*&ITl8heUwTuq%Yb#=z4?6OjVzE!?vwXA zu8Vr%GsA?6B&fSoct-lZBXH6*jIH$<$FZhk(0~Rmojn>hUbmqb4!6l=$z^_HatrNHG!}FZLHW2n9bhi zyBz}Bot`my#$Mpyu;rX}E(~;My!jSdu0l&k5Bv8iLs;X{$Y_3c1I*~SoE}Q!oMhe0 zW?bABeAK->%<}JDinOgAAvbRiyj6KoWPUi zyq?=)3LMgPQE0mp1(~tc+dt>gr`~=+Wuq`2OuZY$nnIDwqo!nkI2MEcVaM-E;$hI; zHc2Y2&V-##`_;I|CJ?6T5zonwsh`W|qu-*A>7DD*;)Ooz)4vK^AN&^y)O%d~D3or3 zGW(3vSM=TeWxs6RyNx^$hxId?a`fp4iAJtI@&(DoxCxs>8Q|Ve_Vd&})G;OF%G2t7 zF+aldf?F)=Hb>+=wBlpoSBF-#2{jQyYfiq%q)mWg?uCv`%m*pD*!;Xmk_0oS1+H<5 zC4rVg#L@)%yS!BVKWNsb!I?&>uLTXr?HvuXEy5HSmb1lAF32!eicQ1UH4Pe(==X5 zeQwKuzH2g!MS%%$C^(qvNRkUMoP5JxUls-Frp5Xv#IhksEG@(BRWjuF4V)&QF@d?=xx-l5+=gj; zG+eEk3Oglo7tVP0tDeqE17_!IiAt}%;D^z_xYrRGP*W(;c2hSDz8ws2eV##rF}bq) z@A3N=*3(mDt(XeZKK!wtk$X{)KdQ#eh;#eJSkNiL+hYe@oHdXS5pLTp0zoJ)5tNj${6Tyif3hbewNT z9%CyD!8v;C{`oz3V!_Eo=Bq6k_EnP4|5zSNhx5ZBmkwdy_Cj=~nP^S~p_<)08FLYk zchm9RdY?PUU(wIgPr^Rt{!Z9OmtiNiHYdn0DJ*)GEB?1n* z{tfWiiiG-IzTwu+V2EGt_k?lOlUkb$L-pd3bKt6v&rbx6M@~$e!s!3ey7tOEC=Te) zNe`v4;m;v5DeKag3kL?aB|n^~oRi5NHqlUgTtQ{lb)v8o-Z5YSgV*FU@Jhd#QZQrUq77%#N{@f-Ux zttSp_ZCJPMH2nI$C7%Gh=XyCr@?v3cn%CMH^d;!ta#>t|M}QKcMZwM?4>+N_08k-D!$h6*Qtil1WCp&OHrvJ-44eD>1O7CFbj5 zECAU}=QTB*vw>lOM`4W8WKxoChKBY<%*kdX^~! zCa+6LiJ-o@^5E5Y5azLPNndx$^M%AC{T;>6F+b>+c|tDc=m<-9f68o21Z~#C-S2VU zy>UEWdlKJuy4dU2pExE%;pUCrS=7ILnlC2_XkP^@hecFecC9%Q++nN^&B!`9sm*9!(YV;~(-2A`k2SL`B2gK9?=} zSt3mTD%w?8kA$Z7%GR8!43KFj=V3s8zxd=YJ)b?8Z$Ni&AX!%nnj`jRenuawOYa3= zLQp&$9dtNN@N)sTSnH_M>UnVDBfVgCkv|+#6&NGN27*I5#tycM~dpC&GSewe4Z_s!S+c7e_if34-eN3=xXTBzD$qQLV} z<{)I*9szf5bw3C{76vSAg;k|C39x=r!1|pv{<%+;cB#2G@J#m;$H5P2a7?q^@J6aH zc)EYn=dnx#MT##HmrIl3=|H#AreiwJ%kR?X{q%q~eKl|9qnID|pLA7UeLA?ayc?jA z4g=I?zwkF5Zf;*5s{8{pB`7? zPH8*{P3V01O$dUYXSf)`>0)4i(A-A-dMF&9)|ARGE&%f)x>zpR7&v(S6$QVY3!Hi# z+VT|hP_Bun*-v7AO`omtIgY!iqc8}cqsIByf4V8T{|+UA%$C$e^AOBS^`bxUb2S+f zqXx-!^kPA1@&2BdN(2bMD5zyU5)Q}b3LEeHCxKE)SmaS#6KEsj-H@4xf^~Hxs{+nY z_%cf=Sj(0PnkhCs8FH!cd4#-{=WrCHR-Ksq5}yLGPJ`qH4IwaPx<6}7DFhA{h`!5E zmId#mKl4dG& zmaJv-2-wqk0YJs-q4LV3evhn*M^`jW56wP4@+XXp?8JFJTpv`+rlo9zeG z-c-U~|A^qv`ZSp!WDhj2ErsTgyXK1cT<=D$2^8wZRx@%L5Vrr@J95;ShZHzCAN<4f zz9g#MG7t(yZOw*pyV3B=S&xbAswV_x@un7Dz;nJ?BYT!32@DG2kD9v2!Td9Z-(IPS zFvlbN(rP~e#x=y*t-}(bz;JHZD>xgNY6}{*an9E<|_?jf+v*TJ{{~|5enPqp6O`|MF2gF z2zSf}!31l}!I!8r8m`tH9@oGet}(|F56mGubYtOu*LVmB84L6YND)E3UoF-j^&W+e zYvz+C_zsyfNpUNNfVg?jNj3q@X=-3(Fvq%P*+WfRd6od_df{p8QJ8}koWOdp*dM;V zlv_NZngAAJ!Py&189*bPV4!A#){S5PtP%Y}BoZc>H8TlD$mI~sto zrV6ti&h35pM5nIdeBGq`hU{saGkT7cl#8EA2SuTIPddy|tZ{ln<%GVYh*In4ozWKX z$)BQB?0XhG;^R1KUm6BfpWfK+%|)G$SM%+^t5I;`Ryo(ekTryUq6-MY&+|*-9v-7# zmLSyn>?R5M<~d4#)+AxnCsg)_t2n2Efy%wTBde&_uRZ$0q8$O_`=1n3BF9Z3*I#|7 zJ`l_e5(BSeUfU1#JT1*;2^iJ%;k=AK_X@_kfn!ye+hW*tn-Bfm2lEbX2H|}dY2s$l zcf%h}*sak8N?=Zq%Iv3vT@u*!@z2fhVg0LgrRF>8yrWZoi}chcAbn?At|C1L)^r-1 zM9ec_NJIH(x@Z_ERi{r?VlLS5@c!GpibObc)0c5~1$8x3BUXO=`C1ND*m61s0R?lI z2vuV!++n%YtCbiBQx5|b_hB8eFT`KpDliQ+>Uj;g(AV3Poq2ql4|&nq7O5!OVCa#O zxov4m0FmD(-IPj@(^Mancoq->Dl)xcTPAVv^i-OQ#abSy9sfIRuZ_QVD#F>Og?QMn zKk~Sc%n$yRj_0Z+5uu@QmN}L)8D!(bf|~x}_kLASr}HOrSM_m+c;(Tzevr#r_Jlpu zCcJevBtvezt1681S2S=9jX#z~e*z9nI_Ii`pwRG$Mzmc9)HZ2N`XZlt$d9J>1%5x- z^sF+fkV_;qUyyT@@CC-tdet@9SCs2NZyo4LhG!~y0>PNG$bZ<<@;t>|FjTV4+H36w zCtZpR>{5dP*HAD`V-DqkuW!E^q=djFt+Nypnvvi@LnfbqzLn@#MDE)qPQb|}{adsO zd8}9K(*1X^t`Fe~Hh3HeeD$KjY_h2k9#Ui7lbQ_s+Z4?*Z(uIp6s2atcmZe|iAd5L z;{5FU7pkFKN+M=DgQ5JBwlCKyh;(d_H#Z~ny5bmE5 zvk1%yhA?SQ=_$-FGd8z-8z<%s3C6X?E|WNaR84mxSv$imse^s1Hu-SGPuhwb=a?n; zo?hsz2mrtM{nQ^ikyn`Ijn=??RKl?A#K;Ev-PU`SqH$jHI7i;QTPGGIB7a_feUgB> zCY!Z*FmeiGPrGN(zf3u&%ujb91&q!do*()a3R5(Tev5wD@Y!FJac(ID+B^Rf*R2nL z#f_!s=?5I)I5)!x1^Q22(@vTvm!oh09s7@y=x1P%@E?jtj#U2w-H3U4I&@N%FpVvz zfzmA3aJ?+%aL-rTHUy!5%k1ZMG&u<_9DHsm^UM+Qfc)bham>$_RNwe^2XjW0RFadI zaen+=+;@2s^OK+b=`)Xa24N24j@y{Kx6mXLCAAg~*V;Qw+Uvt$>}F)+bCx@Bdo_Es zUI+cpq^lp>X+0n%U*=15Jqhlx-g_h590DyHOhQJ7f}pmSj8p4M0C*fAEk@Wo1G8%Y zp9|hs_a7IziXz`2f4irZ3g>vYc~pF${vPa@^c9C$pwF=EQ;iKja@gXHA{^d0$2oOc z)}1~Mb2U4^svwW(veU&?H5Cfo#irL!yzqvgg^x<=WjWAb^Up8`eQ;S}${GAt0ib!g zCcs%B3$Fh-d1w2)2OK}_#=njn%a!V|-_z-shcIf@L}wKODM3xH$$oe*x{PcazBY!S zd8+gP^$4&D3w!+veZt3|-ChdyLazM`O_S^^UpP*=PS1<^bX`gH-doD4z=#QqtZSiQ zNQf!wk|e;>;7juxFHjeW|L$4d5Dx)UnV4D{2Bd%wr~_1j*X zLc4I((MJyl{zE(nQ(bTK_ z;@9Im;q-`$_HbJaNEKJcZ{j%*7&B9)GV+B2(5SdynFu4t{Z_RP+ykC&mO&xZr@2MN z<;Gb3A$;T6;OC=p;K#n)W*rd%N%{-=)Ik=|?^W&{fpc_`7|YY1Qt3cu=W3x6hWV36 z3Z7=+9Pj2mZ?T8?_h{vM1S=l8L1;92jEt)<(3Lrr`DO*cz5~qk>(=ORrj0AOIA#kv zv$6lp@W#Uvs}`yy0RjYjt@oMUy9Z8er%L;g`#8Z^{39wC`=)8e{DMBrr*R)LWGWx>|U_qxVLRtbW)B=~sNzRk4Kfim0=_5ka6FZcEg?fc#y@b(x*v zAowNrWy)E~7lxl?@?3gw3ohlXeWyHQj(Vt*^S|~Opr7s*-+Kn%yN{uRTbLghborII z>nF@>JMo?4kVhOOU08HKYl*oNRQ|2e-^1W(z=};Ha;vK9-A9@69XI{iB)ig20~oLu0P=3!ylw0a^jVw&EDyNhN%Ql{UKgjUD6_KQpH4X)_d?AG$??iyCq$V-+FF&|W z_o)*3{EK@Tmt4xtAUHiOKh@V6KC~Y&_d+hg=fB36{HW)@u~WUPmP-JRn_Oiv-{N2` zld7J}%N44NXL1gqUoCbc?;ekj3!GzMT9csl$5W{)py`Tv$fLCrN<*;_elyVhl)5{Z zPPuBY=SP5-xI54LdkOI0_~iS*MgX>rSEH+MiEzc<^3CW@1Ux$;-=klGdo+Y-pZC1Q zoNE#589nwaP?EV*v9^w%JF!x}>jvgR^m26cj^VzPc^;xsavFS2b$Y~^f_;nHq@wAv z3ydiJIoo*_Iq)^kzaBXEuN%$$!i4=_Qzh%o&%CK%#k%K59rp9p!8c^S1jj(CXHZT{ zWH3a(ZI53tL?3*Td(G7+m}^lgJv-l-4zZ6JMEk$_Lx$>zN%2?AzkJHILV>=B2P$>S zHNu(DBSaP`fO)DO6>cB2tO#)M8@X<-q&w{N@74W-`Rym@<%Tk717KUNo$|r8Sol+{ z({u#;&!+ge;hwG}s4kta;Kw`+hC_D8L>nR@hhoDli9< zHtG{+brJ~EwC|MEc|x7HrfQEI=7(CS?HJ&>|0JqW>;HuSH$GHU=mUAo~)OOMj|31bCtCXfEOWxiCRp_@kbcF~M9!GnbLZiS?;{2Y!o`LXp;3;{n zrwdS){q2{*d1B|JsZqzHc*wB+a<*>?-~G?BiVv`#B)AE<#17y)3toNgrLHhXNSh7Q z4+n0C8)e0)<0rB`U>0cf1;y>{^wCn}GD6x~zmx>Q4e_1$apaUO?KjzyP5fbNp-p++ z!XM((5=G21ZUXC@dX6UFw2`{c)svHqwt6kRAg}1 zAKgg=@4E-iX*Wj$zw=O0^~)6a?IV-h%#{Q)d#+g~93epc%R@CB_)b(#k2N*Lk>K0> z%QEZdz91dYG(CX7$7f6n{0U5v@O0<&!eUl1Z0raRerimE;)lQ1znsc|_n&)Nj;{wn ztW|=d!Bxy*+Ik~>_;MKZUsK^TMlMl*dOe)WdoWEs8;<|%T>exB;J>jdzy-q^!}JUW-+TxWG+ zBoIbOHh+?%p+-B|hJXe|7b!WMZ+^z0@d%Ra=NBRed*HhuuowUSrUV%{Fyw}*7G9N75 z5?=Ilp8*rWXqrSr)E$Z140f1@IH|>;(&9>j7lH<>*=xvOA0&<(9mY9>7xk_t<~nGz zi;KGAJoA^Eg~8OdP$&`Ok=4ZWO1u($?mu0e+ex?yKa>xFw#F6zi^pPsUo(l!VmKW7 zK6vlXrp4U10Ka>$(63zV#~1UaCI#pPGM@(1B|}#r@y#>j21Ib9SRMM^I5|#;whmy9 z%mpLuTUd`+`^m^qxMibnl03f_=U!?Q|Af9F5Aow;+DUn=b305Pjq+Bf!j{&*z9-b! zb`4`1qir}eYz#K0w1 z+bHXE18k&EHhY`K;XaV9=N8W}cXExfEt($r|4$v>5v!ON`{iTKDBjo0(NSl_qDk=M z^np7q@2y~3hV`99d=PwXFZpa2oB^*6e=+MrU5x+us03?96zErq{8YY@0BoBdWS0t) zLB{A4wGrlz_ErZF9r53rV%FdPz&8fCKi|>~d4zdNW`0{u^$E~*&h9-E&f~?EqH7I0 zz2Ps-VDP@sG?0JVnADFtZRHt?x4l1OpSykf%_q----nB%~Z|AfGpJQ z+7p^4hIw8(`<};cPpP{Lh0`Q_hS2(0ljcfl=hbP7R&Caaqk43i)m5 zsBA*PsQdkoQg-B6?q)W3*}#wMlA5*UHz28VR)4G44+bL1 zLb|+B$KW)6=xrVewO)fWXLmE9`#itZ&{i}s9~ugz#_#ht`|7_ec)n-tbSnkBF#o-0 zAoA#~AfV0NZgpb|KwXk0HJ?2d;+pUO{Va!{x9#Y4BJNk)YAV)FsfYkMojeoEolF>% zQhE9DQ!H3~*~%YjIR`VmUu}3nX15Sch@$B(CF_Gq4^7 z+$pCrhfQ-KK>p!9ThRnCZ85u%n3n~5jui1Lk=Z{L~s%jf9g|JnJ>j zS-`b_d3q<%=XWe2rKcI^@P@UoLj`x-z$>VN>jY;KOer{hU7CvpWiqAf(#XYMk1pb} zPmRJHQCclIgKXRr@RfcKy%FX(2gO<_#DHAN@60I7H$A26QLMS(0D8an8txInyu;*# zFA`7ufW`6%ueew&T%hlO`;-naw3kl$@CP%P>q$?l+D7hed#uUHAr&N)9*nYZBM0z$ zmFG3`I2S1?^5c|kfbo`U&B;<1$*fpQfS=yS!xcaDx7L2?Xh28g|<}8mEso5GW?Jf0$o>}AGYxp zfHUQPlgA5jAJm!8(;4x3Aml97uwT#xrqgef63`d!^+rXd9OolNm$eK+Uk5U163 z)c1H8RgaVit&fJHr~frEBE=|7r1%DX_k2VA=JmkobIR=@*=1HL`v=`?q~3@ zcorl0QPlvt5{cG-n3Ifshu`awU&^~~B1o!9Xwf*XfhBrr}{59W4Lf=*{^$#!f zi|8=O|Mj^7k4DO_%wzt$@NvtmJv&7B@4b%V-K79{6zb->b3O*Nb@xZn;oPS3ZPg#{ z?Km)e(U#Z1;S22I*^xXOM0oLpcaZ71E97L25TqRwfXDyx#XabUD9#?0Y!FI>BEMmK zrFxtvj`NK7zRrff)^Cz3Sh>bzoc~A1zL-4fBZRwd8TDs zyRlU$MMO@p&7_g&Xpdh#Ck5a z_}VpTe;D3SttGpPIjw2OjLRu;AKKC?FVa5n)LBXT3)UGA`o4R$XLvyNw(89kRpeE| z6T(7}^GT#j@44&igPd@*sKPXI4D60x^O)N#arTlzdq*U=?@>|VPLGAr!?AIC=qE}@ z&Y;{J$^{+i0V)a1lTf6Ud{~3?2ZUhTuk7_X|MgwTm%@o zUugX5OdxRb9Q-qZ^Zz$36~Kg8T;^+Q)g*3l2>I5M~0 zi1mv3k3g^35YQ_6+;50;pZ%VFnU|Ju??azWODWF18J6>glDE9Ts;wt_-{oN7{Gu(o zCk_AHw@6Bge%!}+I=w3S4|0Il#gD#AkAZo{oARG=z8CUqXI*|zBK+3Ka1)X9f`gYY zPT36LeSVgU`cS(!T)Jjp+$W6p($%s=2#JNWhi~2N491*LdH=fk0~awDWP0wf9oBh_ zN6#s8qThO-*FFJ0^xf;qCH_V3^_#!zr<38x3mm4)7{Kp+2#NJiH0HSW%O08gr-E~q zU^W)E*O(VsKjNOcnF#Jn9_PM#_&}%Et1=GMnQ}s_Q{UsB(F?364}S_l-RViotxc>W zb1%)Tbr*Vr%?bX2C_JAxD|7B$t`7mGJz?FH|9OD=c=xWTXe_J;@gMm(mj!EcH&qo` zFxO=&=)%@D%;6hm58e(Zpx=Zmi*4Wk_okY6^ND1E?xjz+{MfNB+ba7PioPSNuMMoy z9FdT_`ou8x-W}+km*0?!z`nuymXM7?9Eh{-Iql#c$mPMr@g&>yJ7#rG-62N*RD zXu6ZfgOz&p#n)<~prIGKZ|y`Tq@LQBV*4i%u6(8Wa{g^9RCj6!AJa;Pd6RP0A;(Y< z_B<Fkm6Cu-2NTk=`aO_)$$-H70AjUQAWYP+^Zvo*CW9(*u!sr823GW$P;FB zN&(p~rb@zx0)T8$;r#{`*0om_$v;~JL0v|ZWPB8IYHPN$p_g&LmFGR$i@7NvCiARr z8g&j)%8&x-Tua<1Y?tJ2nFivwo5I>0vmy6|Tjcc{ULYIvf}(sU7dRttmn2#ZUzny0Y<&DuAFh8~U{9k;gP&Rl;wmiB2S8!g_Z#)CGD%d+oWO9R#ZL_N-_Xs~J}L_RuZ2gh5NR16w} zp@S_h_$P8Q|7Aa0J;`wwv0YEjK+gRM-98EN)+_=vT^VA34$I4k<}X?NKV#ox4&n1W zjS-jmY~TZGkF!tFuRSFyXRVO{Ke)ygyf6=zl0J4{W_lbPmH70nXd?uUct72LD={2w ztXy)o;(~#lrm0os56-{8wD#usX9Mev#{;LLGa=#S!)Ji=3IA6HvucUxC-d*#kZz3y zKaUB+Xcc@nCwM$5^V5K`Rn*6J9`|29(cqk<%?6)=cNTvmW59$@d{7?eRQ-%@%$Cx) z*QM8)Pk06M$;VVJbh9Gh_wd{0Xv|%bb^p^ej~t3gXGz$Fx^!6nt{xJG^*J*O-GS6^ zHekj`JXh?W1uM4%6P59MF*#_mB8q#XmhOh#k)+Fqy}Q88{v7?yl9fSv*q23KGLcuk zm;~3VYwY|CT)@df{fhX-H1O+J5w5Iu0GnM2E>YC^W*K<1JrdD3Pf)5~oe^-eF7%Q8P2~PL-B-_GPPGkn{5B}rg8uJ665_F;;LD|aR}#4l5tg4C zkEyVJJyO}XdcXth?|}2K13u8o*j;9(g?naxrvGTZA_8AHVqex45P;LFOH!Ws9_D41 zh1i+d!NQr{0k_Drpd@6SE`a&fz9z$mKe0x@i@5>kH~q*dUZ;+>Tp@vBgWOCta&gNC z0?A&Z&TQsF_Pz`ALr&y7uPz?5g58sgw%3n(LvB~4(&!(ohblvh6|1u0#Ip2dw_0tS z%N)PivW@cq)fL}d+{;2Ey6fzTd}Xf@r92l`CbZqz_jK--2N2h9m%POOTmRmFk2DSZ zK;}Hna{94s%>AeN#g6l|cE5>#Pqf3p?s4c&yPi7)9k}i=&yg0|C70R^rCd ze{{ES!0^i9cqm#R+hw9f&aklh>|TA`V{@O6Q(y@5$@e6iW>Q^({0-qg`TzF?tSx0v z@pA?bZRrg3Nr!wEuaFKv-JY&YQSN&_Fok_MS9vlVesg!luKqKD==HtLNA?90q7oW4@&K&i~%08&i=IQySEP3pruI}_3TroOIQMjBA$NF_LZ1BB!Ikk~bUKIuG|HXC<_F#T# zM)fI!&m_oBI1&+@hC1*P-_v(74)7QrWK~_Xht}us;-&webCB!A{#n}}{$;vUtW3l~ zguzKBws%(GvoRj)FyjwnzX)Ns>*9d@8|kI97VZ;o8w)DL`PjyHhkGIhW;n01HBNe+ z46b>7J9Oxij(lgey>OBQe~(kf{_V_y)c*=~)}Dm}<10axJoM*{P*t>k^T)l5!bck$ z@ZUZ6?1VWPzSr75=B^odkM>7ep9=O#26Ywndc7VSsC#|TxuF5yoqp}B5i6na-M%5D zP%s>*6Z?6xG{T`b?xgoCdjhn`$wxal;~uKB)-!|1jnHh>U7GxgdZ7f5X6dLI=sSM7 zI!u`fA6mA!JO3oXSSF#YHZ2)Uekarxa_GZ+BCF^d-`>|Z(XK9G*1X+YoWQ*<+}yQY9j z;1rRP+#jN4n_peSJi0=<#Z`mrnA?1SzKxbS4F1r}p)L>rzvwU3`OKofSe;oQjwc!3 zzUAx|?nYf>>WclNiWEq@aDGe3$`m|`{*$8X!aSX^p$HlDzqW24zV|>l5N56N=9fAA zp-b?|T;fbDyhsd~`Vi^|*B&}pOHUY1JLt3YBzej+Fgrx=UZ&)8K5gbHadYf(an_Ni*WGPzS`++(@8<0tC zM&LfFhZlq*r8D7qe5J~GULN!gh!Q>`M|tc+shW;wD*CvX*oRA!p>9!cF0BLi#f_?s z?9PTjzC06@yh6TB$Don!3=s^+D{H^g<^gZSAqGbLJ)EB7y4sBUVrw5u@zr5IAmr?R zUNQE7lZtvi7A{G^k&xa&tCkG@iPkQXROn;9b2?DWp9DGCapqTf|3}ezhhx3Jaa^L4 zM4>{+3Mt75A$4bu$R<&U%(C|$k3AoIuOcBuNU|leM`dQFq+x|3e)sRMbDirtS3Tz$ zpYQ#7-|zS9jeSC^KE|LP34@evN9Fc~fxtvd!U2s0VA+*tZlge+gly&ne|I?W{zs~z z&43)XW5VU>cn;1Mw;cSSO@Qy=Ap{%b{6xMki)ceGR^b(wHFCVKDMucjx_B9NS!wfk zpD@pN-#yEHojVkY&VSaO#9ohY!wKAKqsVFa%KcIw^HD^SF>!4gJ{S_DO4sc02j86T zIR;wvon)O7Ab$0S6{8?AGP5{HYgK)-gxm~*mB>tOhc(c3tHd!PC&z(sN67>G1%|h- z)?1xSLaw4`1N9Z;7OXYgzl;8nM+TdhjE<$lPl2k7dG+p~GfT z5A8Y6EVZZ;KsV=_zcv{umyvH<*dGw3`Ys$mS!28O+ErL}Q>-j|?GI!h46L8y zJiom#DV$Y7fC1mtyEM17q4`DA+b!g}d0uVh3hPb<-p_ge_%DS)M)j`2U>4?jbuM>& zM!pvPY^M^Bua=E>CbCC!Qf>ze(_hU3Q(# z5}6p__9YMi)1KY2-X)F52-V;G8#CmZQ0huP^Jrn&<-Lb571t zYda@n?)7KinF$p)DD|4SzmgpZNB`AG`9}wX?z{Adt+_VfDu0>m9L{C?SvNn5_Lu_& z*R@{aeOGv4=x)nn=m{b>dX+4Zr)}~jxv|$W78vI{Bu)G5;nWU|$P?sO)n$m2IqD^V ze5IkF!3+UDAzHB-^In%yH@l?Hxq`V_{W@P5K1X@h3Z5k-LuLFR>!apm*xcp`yrSs` z{QA=YbLfK?r<0&=;S7gX>4V?H4x~Vh*L*GE|MNI2(O?1nG{=92#GS&qpwy129T#a0 zy1_Yw)=1pfK6HqzN(hDu>VYkz-B@T3Z#oc;=jD|+vD!Ob(ctJ3A$=BetLH+xLteXM z4!hcIPz_Su15nr3HQeUFo&0qw> zi7jiWQVZ{KL!MZk;dZO@H|(chim4;kCcsnGMwV`^Fo?5n@}6w-LcRngYaaSusHC;o zC6cY+$GphOmCSIMpRu7AD8{}F%5PuAKVttwV;ZuQ4Yn z!IapGpAUt=jqBlZcCbizLh>ZT9$b6a;vd+@!VT`?cv<6cI zbr7* zrHjh)>9EK(e&mN-I#deIen0shd+Vw_C0-~Ipd^V*T1)`>De@A{3ZwoY(M~F4_bv+i z=4-CrtxAL*w>RcO9GHW?-|4dXiU5n+!Wui{3E*&EC*w*5`fnwacYjU>LE8OVEO+t+ zZOhR_Q}lJGWhG>P3=IZHp|VevYjH4lR%`mQE8YVF)8Ah4jzBJJ#HZ#6EjW3aB8Iu-T_>MoA8j>qbnjcQd}H&5@8Z{oeJ108zI1@<*?!z#Ulbnr{TI1}F>j1+ zkD(sCJ;$griM%wEsvLjx4Hq`?n!NoJ4P_TExVEFO$4&C#9XbQ#U4?C*a{YflTwA8d z==Eq|VUYXvpH~Xha|&AJWMaRw!oD8^fBb;9xa4}vCh{bTbK1X|;=Ny6pYZIjD-0jG z%d1Xl59Vc3Obs|^zTBJ8T)7_t(X4Bk)CK-v6cyiJa|rVp3tG;uUz~v|w`OEV82O~i zn=Z!;!XWK1lWI^bKA&CJUoF|D0^{pLliph~;NkOX#`>ElFuyGHBNq+_3O}*avbJ7u z;N*_8-P>dsx!Qe6VGesF`+dLhv4nt409k=V)B})Tso(jIder&X8{@l}uke1EQF9;x z^__6PXZwt>r=2L~uwD=eXEge0UHQC#_s4e!3R`I?xtnL1Qepu~+Y_6dpIt$VFz|95 zeXM-0bAwZ#L*QqhqEJXeAiQq(8?B!YgjXflH%f7I(kBM99u8;H+W9ykcjY&)?tQGtnhGU--UFjClX z(fla-%q+9sPuFDud7frcz};B*TSXHizT}F%KEwXMQ19_`d|cAn>H|acT&p1yK47b} z=T(e6{u(h`3FE;8NY!S0c@_ElEE~70NH@{H$#egqv1l$#1Xu9#Wk-SSW7}JdCUG#Z zX#6yEA_j8L7x5pj^@l|Mq3u`5F>XrRT;@kTv*32rjG86#S{;%X)hCg2Swy$;Wf*yq zX*&^r(lKW(Bw4s0{e_as$DY5zo*}`54Ttn_Z^@EowWiV+2T@N1Qh2!nz$d%x*`8M} zXkKp(o>2~lp#!TSOxQadZs}Qc26@cEYc-!1>jHpn;Y^(}`U9Me+OOp4qQC1wH6IW9 zgUYXdKQe&lQp(hRg|2VjaJRCvE7JjcCkJC%A~Dy&o!S?FBoaB~b)Qy??#F^-Xmo0< z8FD+dpNcJE4l+JcXFAOw7)VoYUXnSFzLgk<3QKQQ_;Bp&)f1^iV2v(#K)ELkVU$~3 z9HyB6uB|d^LLYkN{Dt!SDM9e=3N7ho5pqy(F0(fwhriKoUv>N&cSsksKNLTf3f*-J zjNkG8?75vFD?=#_7D*)?xjZh&o8vU>M16XBnViosIv%|Af^vxUzG7s(vgn#o3wHZY0>ov>Zp$NGRtgU^`r?9`H zz}DU@AteK*4u}k_m}bE6LA$8MU-2*+F}SQ$p9!1abTboYkSpcu$4}lI4Owsd9;f3y zeMZ_sM{C6zO#3_Ohs6`&#UY`r+o+E$%F3Qt_rN}m!^({GFCsu>ru@`p%pEJA>Oc07 z5A*2(88m!BcyB0a|IZcuBYSj2$)Iq5u%tA-PQyop-vX7m$uM19Iyf{Nxiq>B}Cx6{CDH_nzjA{v^m23bc%0*IL%uU-LWUz@Co|*dYn*#m z|7nNLk6@3Q8QF2}N4_A&d-MHc)Ukty$~K&460v9OxA2yLD=>VR7dmk=9^U9Rh2_1; zh6-o5;DWCSpyf$EYfp|k{-}j!woMqYkx}&Y$s~azV~k$VO>0=UylFh~FBlrB>&eLk z9boCs5$S`RPT(4m|K-C?M;N@aWs_0p4nox{O;^-oA-&?_19^Q{NToi^5wH~v(GT?A zmLr$GH1J)~bsh9QSDKejIN|&8`7fs_e(&pbCr3{m@`SRa@Al7zQy^!4pT4ZX9h}$V zU#ZnZz?Gtd24*wJg%Sy!cGAMWT`LvlQtNaGyMCDYg%su(?B7r7^EiRYdV+k&5CNF_ z?g{@uU3Z#;>Vu-aH!Phbx9P5q2Sr6@>qzV;RBN#l8N~h5h%d+C5cH`^6W0Pwa1VQ_ z{Y{Y?Gv-kC9A(K?P2f29?2!F*AQ)Sfn*FuI=j;;GKHHNnz=5(<`|AjJC(mtj<)#?8 zse=ri^$anPBp$)Y+;0I{ZjE;n=`lw?;Tp~R57gg<-$DG%_>r2e|y3XX&-KE9- z+nFs_^J_1z!UnlN`D5Q;h_z=B-dIiqf0i*FstDABs?@DsniHVT({3r45p(MwzTM!8 zh=xwm!;!j-KH$^3$$v}=&sT>l9JT0cUN~PeM!6IW-N#?}w24JP$>)OWYxzk~`Y?4> zc|Hl|e+EmmPox5=!@`)y0TuW_dMN(ZW&|9#<7QQSEd&yuiV>}Fzr6p2cVwo17*ME+ ze(@U72j&2)+xzC@Kt5fVWiKusZb)+%!gv%gu6S2Z;eOIaGUtgNzK+X65AGyjen(N4 zwlxa-6WM>A*LW~O0I%+ArdQ3d$Fz&ky+=%fiFIO74d(bcobzXQBI3dM?)Ra!eVDtT zDYqD93WgX)hgW&SxVJYt9TN8i_duTdMHeg+VcJkaX;C2p@_IJZf6zHXhtCl*y62&g zEUBpc8uikPxzDbslIFoi;oR?nr-Asl8MPp2dLcS5)SZF;$xKpK_H2;MOD9Ythu!h^g2cJ^sB63!@s?Fj zhN=0CY#KWBv1S%kr#ikxaSYl`~I`Y{e;}9bMBM`;zd>_^a}}PIlaQU*znd{hbUD7s0NbwM*E`=riHNk=3@?oW}G+a zc29#Ns#MTFJDlq#oIT)XPJhl9*$V3lcCGI+dFz)$*}N3oWJ*e0&qBe?V_v>0|QB_-_I`Q zfT~Z^Y1RK?phE0^=9p+OOnjPAGyCfRMOr+WnpHti(Hqge5B;vk%)^(yu^~4^zc=CU zeP`H=JpCX<+Zlh~VGKuogW%kYF|n_mNig!FilY2rG_cb-1gzFag6?mFrfa=-;MwV$ zWK+0b_dcYfu6i>W2IZ67>?ly*{3iZ^6MM8jwZ>Zc48?-=?FH8n^ikK2Dcz8uOoLnh zUR!kF{lO~fC36}j?$sO)6za1$f*Jqu%<8ddU@i*QOvb(P;TzORlWWM^yhGuafSeis zS79c~n4?hHyYaLg_4EEm^C1+-x7c5L&HW?pAs@Yv`qJML02VH>1Vzk)o=+wllRFg+ z3EhRN7ph~RXQ}YBgfjuYSO&!~;oP+9{yw5$4}B4r_6jnCV&GxE8<4(Bg(>Oi7}9x5^6%$rfluWrV0=xCOppqM|52+bTczw!QQ9*@w4Zig~Hd@%_Q2$+oDpe=6Z|yHu1sd#edf0;Ld`d z)H3Gq{Zn|3{u+&gy3>#SZb)ISd!6~>hXLdikoHWLVc*$IX!cUr5zNOqdA!n?v<2Fg zlAo6(@IJGdcxGTc1ipQ~9=ynq0llLmJ{f{h`a3Bg8d)2Tqz9o(LZ>=?jApF6wo#3v^X1KFXA>?f*45@ z#5n#OW5M4Gn~k43`;Z@~fz}yXX8il_)#j-=g@HnSVPqis6LeclzW#sz_xmzw4;S{o z4nDX2aV$6#T1}6C5P0?gtUnUnF}e;m|B?=BV;_rO=6rTB>X;f!`7*7TE9d^lXD~vV z1dnATCRk3`LMQ|Lp2={96Wi+duaqQ0-1v}*pDOZx#k+pcQm0`5+vn~Q<8Y9(VGJ(Y zaX_Blf}^Jda;lAQT-phDftllWY4iAe(TmjkLamVtC57yc7qA~C>I-f7ekKBB>auik z6~@A9ZWrFua|Dma=vMoI30ZCDl`4D4nC>gStL6#YrWct`2phxq#kS!QCuaye z)14D9Kmh%VrKf4o=P1;cLDIEL1e?2sj$ht+L%4x>?Tlt3$Zxk*N4@X|y%f$V7Dv?o zDM;@edhQ2IdWyf@pIAZ&qgq~RHs!As2a~exh zdHB0DHd!yhT=2J-PeekmX@Jd|q_clV5?q?Ll5xXcM%AyBHgEa^k$1l!IgdHhNRsGH zXFqGGk&EEv!r!Zwly_=_Z#3M|6{dNEeIYbuEe>zlli^B;LHQA0OAuH;dUd`t0v@&H z8>v6Te(I3K)ceT6>0BIKwVON7-cw^a zmvAh6 zIG6vqa-J#{BG23~oGEgHyrB{f0`gv*9go{f2jxOocF=JAZ+|d|{+&&Wyu9Pq^TJx# zmz!x)d%$}t9YU_(S0vf-g@s4<5bR1{B7YSDwyYs@*V?gQO!e`k!Ur_g6csZh*1}a%X zao>?Ia((*wrMKQLz({Q8E_H&PM2Eu>a-xsUM*kNGAIo@k$U1Ru@Z@I<#(jZe1FN3fcgz7r zuSiAzjYO^_qogwS61z6H=}Ya!pb;&<+4?BR$%$tsq={}x33D%WQU z4F{iB0UZB@)5BNVxa<3RL&58_5d)hZ5h|6Bb}XQ;pU#&;5$vT&uIVhsvPneNtlt-I|4OY5K88IUzNT5&7-^ww^_-;JtlJ`G&(~Vl3E< z|4bI}4+hPDs~cc|I0< z&-H|P+jD^XmSOqnH^^Db8l-k(NP+_W8U3q}4d1@Fn3Q0z!W%!O-kmMxiNpE! zfk60iWgk=iA0jMrhJ4(Zi~(9O4nF!2dr(+c^~;UXe|vcP$T0c~E9h$O-6O=p#m`UF zPf=n{l5PDV31=8kVzj~LI{|wpe~~1K5wSy_HI#I_L2&dCXY557j@?L+1_{{&_xh_%=&pDS?C%?5&DO&AxvTG5siY^k#nu}YNIL*c=kmpW|4@fN z)XrgmewVJqZxq(=?m?ht%g2B6X5jeVMch=|1No2tG-YcsANJ)iRrpXQaLdY_9Yapz zu()7yXypfS~7j3*{Sg2kK^L5 zCGImW6$sSf9M-hzewJ|Z>KU2@iuMi;ADs>?tISIHWY5$UAUjxZ9d2|8xsSTYw$R3ECSeZh>@ac^(kU8W@ z-|b-pp-Um@U3&L1_c#;HF&GKUjitrI!v0`P=bzbR;;Um>dclyyA--3}V%5Yyi8}~T8G_!RT-!OkjGZy{kZ8n74 z2GVplVecckN$5GsX!zCKn7n63gbRa~RodE4*hkKPKDs;xL?eoyiI8KCdXFRhrw8)U z{8rd!)1smFT4UY0E`OMLqGBg6gnr{p28t`Ht}q?9b<0cI502*~t_~f*{n9BR=Gen{ z4!(M##C!nvzYJ=pKMH#Qr`@LYH^%`B=PH(y|?TA3PQUE=EhYPWj)5pBHGR29VQ{xXKes z%#4ESA_o4Gbobyh58dUxy&%|}YK^t6iiVo{B>s_nJ%?eksw2{$fVAOKf*X(MM3Ut1;_m4m>SKB+P3QVedw*!1j*>uzfwfZzLuU zjH=#VKaY8|%@Ypd6zG?gty~x1Mm<%(fx;y+0d?zD26}nUG>~KnpdQ1XkVCzL4reXV z&%1A&+#Yp64tFylay86n)~q|MV}8-Rh?VoJy(4s9xaC|(76p&b`Y^IvrviG1RNdcU z?{4}7{W{T1@DkH;w;jR0?CU!T1k8h1Z~l9yb`X1z14yOvxT8Vt;M2J1rA*imt8=1q z@`h_xHiuPALm?**$0p1N{-^J{Q;7NaS}Q%>ezgdYzb`LYs-FqTybRKEjCQj(Z827&V}2n`yU1AAuqt${D>J>22A>XdJ&8ByuaGbfFUX(c!)MO-1vEfnWmk6!g2W*kf+1CR@VK(;henIkKX$uTcGg z*iaZF=JZNV>`Ir1qJH?-TMPLJYT}P8vT#1~-^k78e-a84nxX|Ps27|LAGA@z--rFr z^5jc&k>LE!q)EF6b=al`yLN^scwRYntbhjlC0b2o&BUVMyZhf2@~Kq#7e}S)DdP*A zOZ0JmKIo@DXa}(~f#C40Sf2*<3Ei336|s1qI@m?eI!GA@(+%VOVyHufm)gE(Fbe~* zq0mco_K|R-is#ci7GL^MV#e_gBrxe_L;F8t7j42JwT= zqY>12Pw+S+c7h=o(ynq!#3N^MSIDsH%Sp`rzHXAyq78(m6fKszNFv@#i0@f)Jpsub25F+K9AYnwC-vZO0`e@BMFv3<;0k0>Ic*xcUgB2Oj^ z^~(KxRe|TKlk`u$RP?vqJ$U^k>I*5Znm=NUh%mfx)J6e$)X&OpWvm~;{SZ z4Iy+dKNbeTi$MR8xAoXp6J5JYqmMlN2j6Z;kz=0%`Q;pDe0@g7(w&v|xR1NIR=TSf z2F@#$`^_(+e)Q>-bLChlXk3+*9uM$<+g~YT4%XvdPvpL}D&`D)HpEwhT$I83aIoya zKs_O&i&b53^;f!nz;la*JjCO-bGpa+)vw|AS$Rj-QVP#kLe{<8%jo02QslX>I{}_Y6n<#Aod%~F zY8V2Ra1I+@;WzX10$)GH#PoLLQm1E?4O~oyQ(sSJz5nY2Qi_je`7n1}VKPP9mrn$O z#UF~2w`oA@?aRBX5Drb>@|B(ZL*b9@tE!M%)G2iI-i+HuK;{qNNE!2jmx9HV{N2gG zSa^|)1A9QO|E%2o@dZCOWGYjdy(>v;KYx3K0oWN)gERK1!-3i-JUYs zyJ`FC%j)_8Psj(Z&)A#D6?xrI^pgjO88RC04599C^Ddd#;sF|?JURBtZt&}`o3Gk+ zMWE z#qs`KT(7WIZEOiD%2!1x^f3?bav`q=`!7x|>XL9`PDALd`TR5w=5zF;e@60S-&C3K zhfK)?2qlvg8{duw%Z;|H@1NuE$Zc?9iwkq)WfK3=CIVrqC-?%%D&}6*ug2RCM1b#v=gqF8uc_m&e3M=vu$F#Tq}#KH z4_cf;PjId+8cgC@c#QjP&kj=!I~PzIFTE~_m34ogeSY?w8hf*=L9zsSk$>)9d=Q$u zceOkJQ$`$r5)gIgmW0=xfJ@9lwQM3CbPwg`>Sf}7Pk+fGs5J(TSnZJB#$5IM7=_Y} z$C$6??;KTkvjMBaY@L4=Fuzkj^{oo|gXF=tsDqIYLoa%rqBsP5jrt8~JA^P_(b>aq z7=Ss|9JvP$lLXLR?N%?r@9|EeyN1AD^!I#dsjI?X5H>zz0= zY50K%#~;mXxK9Ay)nRS}yD;p-bjjVty{{=B zxg^;`Us&@@+g1;Z0pj@jWdr2S#*!CqC!z23!cI`vbM#XPY%?GA$-_R?D^B50PsIVZ z#hKFo)KXy8qJV0C9|5{|^8TuE21A!bn_lAte!l~k75p2bK;cnpy-z6idU+-(Ibbgp zPmKFtr!zzd{nILv9)#z)mX$Y4U^2MZJ-IT6eM$wpZ+2Oq<9XMI{e+4>&|*qf@mDws zHdL5@C?1LeW{;)8|L%H%R{y%j15Hcd6lPw@EVg8`~s`cW{{irwDSsEBU$ItzS@~tZN5ZJo@ zc4A~tA0|Sh6C}}pKyUkmi*^q0D@s$w0%7R0B)&KC{_6oR%!$J8k=QTL)v}n{gM5Go z0@*Y;pDnzdrIb7E43%;xZGC3~AY_xL>>%c4cdgyTqa=~H=;nA-5%&z7^y#UkRPhj* zTXd@+J^`|s9HgAKQQux?=RSfy^FKHBiG7FSkQ@8!VW@K;aIvb{Jw2F!ysPod1tojT zKOI$4v`m38qfFrhJM@>)q+Ld#0(=B_XuT)VpA^~I+xZ=RoPs|0j+_mFN}eUhFX*Gv z?O@m$xsU{A>huLMcQPTwrrk+rkO1*+_T4-WEx`1PVO8H*eEz%}aWp}H(Bs3`7YI#O z$XmA%8(nsrhjagk^7izvLAMYv;MDhaV@wM|P=Q|GYp*9kJVf zLLUd&e@ue17(C$>Pz97@AMY-ynb?lLHE@YEm*iVw&oePYlH@$zTOx~|i2cIeMXP$# z;b|9W5w_i5hPfLlQ2P}$Yyn;BCyYuAao@W-$;7r41-l{U#|%@_AaU(u*l$`}=*n-X zX_&JE>6>#aN88XJr>EAX&>IIUUQ%kc*b6Eo^}M9fBLVjLCdNBWq(S`o0t?w3^obbS zXkSClVp(^|q-!$X`#4YOnZA#OXZ=}9@s#oKp8G@5Sv6-^Jbb($6ZaKvA$t7hk?-`$ zdEim)0o2pNe}9=%iG!hrj?R)*^v8|ZRy2`BL+t6{%hYqJkYFUjw|Bz@7T69PJ7lU2 zr{#~Zi?w2JQU3QGEvH~;Kc0Sr^$7Nuo=Bs*CYJ$3erp$nYUFJR&XZNj2SR5CvzUZ# z5^Q{u`2LF+4XF>`I#N2>gFi=ybS1vNa?d|o!8o_S4s;qljptsdj}R*p?&ZC9(@s<7 z1^}JLu{9gy4T$X@R%5w|=k1%ah6auZU@>oOA2bOAzUb9PGS*lyf9+J=tciXFmi9XJ zLF9|Ks4n>9bGg~Yv*2F|?xj|4{z-k{1FmN*#jVk|6u{GZ<16~}kNucAnYM?%D$iok zAgw6ee}_1qD@=j%!_Oy<@q~id+h&)?CPY}K&Q)@tu!d;QnVbb@H?X$SyG4nt}Nqz8~`&(PwuDQD+G0 z)09OH`Zc1^f1zE-%_{M~=!3Z6fqm3pX#;b>MT=63bZ&5hn=Dd$G(LD?yE0@;E>1h+D{G+ zz^n1DT>2;hGRgxUANmmuqwd6vPHqRd9bfajTO$toFKhf>+Hr!L0)`^7L!MCK`HAf* z@@yz;I^C;o9Dwc~N}n*MNZ9RSn0mf#5A1@GDl9S{a6g(P;Yva(dwPr9)>$l&vs0J7t346`-`J(+ zl2NaEr2BdF#NlJe)>`PJ?8md%Fs>8LKHNn%ZB_NN6rHK zl%Lr>?CqWJZr5&ifG_Obl(AZgkdgc^?~Wdx!!vrxb;xDfzIeP`ckv`BFjduxmj=W5 zIR}!LxWDysQ|03bN3J>pJAupJ6#{z&T&}u@0!dsPZQ~rC_dk1k`qdu5&V|qU(LXJr zSm6Crno%EcoUpQ62t=;V)jJC`3xSaP!R*L&a(6(Cua?TEBuF4xRd$MUhUPbCMSm~b z11%|~2@RVm`q-MJ+yY&|+fO-@yf+58jFNH;v|?dgy@;>*UMyUAPo`ZY>I=)ySW+xd zPnP~I=R%4+pE4QkoaYN+U=M?jN75U7v?CNlpz1bdgca@^KW|G^ z2HkfA)Aze$d#ui^e0=x)m zwelt+U;dl1#S!F8w6f91QD$K87w-ozzc@>1pHjHyfqs}NhC??=ti6C_k<0BJ8|LpX zbe&Vjp5T->eG^H~(62c@$Mj?od3DnZEHBL6VbnODb2tQj5IZ*VpL21~BU`krHh3Eh z`Zwd1(*qzjmg`d-(E}JplARpxhruUR(`_4}NVr?-PVP782Tzz)O$%|3iRz+X`dID` z<*G+p$fi@lXRd2Ka|Jp27y4of#`59$qs0Wp72;W3rJ%{B~>4jq4V=qNir=N3y*R|vh$71c#Nw4CkDuudxjoO11 z)c{DOYxgWS^o5Lwvl}dTd?Cz|@=*Z#PArP@-=7>rJtMXL$ZWee)Zb5$ij!~vQPu9) zAZi!nBQEc!mvn-^mYlIS43j~ww~=o(6ZKw-!m6y5G$_7#T&6(=bDfDU0-hD2pmd=+ zZd3=KhfS7NXFnxEs3Am}+hG3^K`<-~pZn1l&!~uQM8M>Uccdh8$i47l(p2${g1Ji9 zkE1^wK-tk$Av)C!`a1>4^lpa({rVMlThc7p&mb@IVi&o2eMg^E9L|IAe{m{uf04fs z%^p+xEEoivn&sIspKBCa!Tp>n3|wSR%6Vc>?<(>3v=wqJ{Za~qr7#b4+OFdZ?-u&R zuWf0$T#N#nw_0sdWnNH1_tDr>>?U|wywGvNbLVT192NCI60F~SVO69Y3y-~SnYsF= z!DF-1#P3yMAj}~dO5{SHrxt^q9_ExH$T?0$qW|;3n`<{udt$DI?^3$vdJyy<;dgPw z{MW9i=8g6MoLei(%51vOcf(l~NsNdA3#AWS1oT;&x7n(Nk+?#aW5U|aIVZ$2OVsuv zpG)}EJ~BDXdpwi-G4K$5u9dVIM%Nrd;JftWcr63u|L=yReK;NoLd`O^0<7M^(_MQ% z=ealV|NfHN+>E-KXshoHBu~6$F}O~JK8#L^5SeQ+0iepL$akFP9vnO@vwt-Td8Y9p zYIj}zA+On}c5&k(_{%Dujlg?x&GkARj(gangCzzUI}T7q=%LcTti!u>B!=>zNr+DbUBZzok#jJRZ8A6(uI&z0mWB=`kg>SnN@#F#C$S z#=eXr*01S^aOv7oXiriaT+O`b{IePJ5>C_5P!SA0gTEEoRD*!@rucu7oAxkEJ;Co3 zK!9)Jd$&tbzy8ZT#p!;)2RzP-pUy@eb0X7Z*wI_baH2pxwQ6|TMSN)GY~~0qF~dd@W%8s5LsZ~-&2qbGUX>0Z!smpi8zzGho&8ZOZjGMPqLcb36@autl6p6s)80Y*8p9eyxF7UoSk^tTOj3Osa z`ND34d`L3RyRR%dNSKeKo|qi0P$!cN%8AyA(a1MGR{HH@;e%ulTYsu(6>kBPH6h(m zc+Yz^{%UIVbTIDwbRWV0_a`42T$_L3b9|jL!S-4xNJaQ>j`ZPtvHvsI7D+Y?wp!d# z8}f&wpC^y=F}cG>?#nIzF(m<^S5AQ15B<+R8jZfuxSu=}c)XWh6Mm7OeXGPkfSZN& z$?AE?nMqL3p+O(1b6pJ~9Dmm}<=-6rt%IOkIV1fN`T_G#2L4BfdWKhC&^+%8Z^%5S zH9pDch<{(-(LaPRi1l}7Xps#8WqXWOpnhpFr~0~0%nQmc43hC9PfPc!g2H{=%RMMt zW3v!Izs8{kBEw=R_{_M(`px6t2lqC;#_;=ZGpKDYk`6p@_Q~OFfB34D9cWS;1UH;s zkbV0c2aGEF$FCeje}mFsXPy`KA1MiWu=k`xILmz4Z7y#}R1dd(bUGBad^wZ8)cb%) z^~2@A*-2nGC^=eV;Q>i4&E@pySLo=79$8LI16jQxCmF_gAgaW&1|nC-mvcj7=N)o~ zu5fx(#>c`a!*N$CQcuVZpQEcgg?u>@)71wjBjKW{${A_ggI;;BN^rn_mq}^`Htv&{ zGdwq&`u{%4m{?v7WxPLeru?n$zZnlbZ%ZgfwW9&5{5tcGI%7|`!5pJkH29JI7ng{- z#?MBhzg<^wkAL^ySG5D^_oJfyt%%>No?BYqF1RJZ;ewZ%x`GM7*mYTwXFvA7M{hZ{ zZij&0uM?lDM&m*CRr}=$W$fu$sF0HJkAywTkT~Cl1HdrwAGaA-E~sQDX{FxC2g8n& zjT=Ak@W6m7IOimj)+)t=G;fn-KmN0O zXTQPc6Yk(dt^fUTV+fp-4wPd?-{xs=+hj5!_FeLW;gQFUb0+9F&8K&2Y6^f$8|MYT7@(d%d$4KZ zuOD0rwiIc=IZA8Qxag?^@@`}H57;%J@5tt0&^<-$$r+#}Zs2pe@4XW&pbx0+z@&>3 zc@FRenbmox#=@Al_LFfuuhl2(E$VMaLL%ALn)I_2_?FqKx0Mdws=zw6>X5 zAq8gOq7*ij#XV72$Aon`5B3~fxh!5F5(_*ktD8gUb8HwcDd<~6?tgH8uxUT~VJ=PW zbMXm>Ew&EHpKF-=H??)~#^*ToyHGuO)YDQd&wbRqp9HmCt7@B+Q4nnKU5<#)M+Uu` zypYfcV5O>k<*=3pl+(7$`_UIT7|G;6j(eCLn~5EXyAhCfQu*>_npB`q;AJb8LVq)- z*3^x6X>gLjrY|QN1i3d)X;jA~0q4=U(<8_WznNBim3M&%mN{$;GYLr`r*&t~7IU8I zs%O*^?#BVV?L6Dxj@+tOp}q|r$oX@04!YQw1~tPX>zNm@-+19}wO(2-%*RpPvdVIV zu_h^Vvp1;sG)V^jx)~0Q-4g2$)R4=oZKc8e+YjU`Qr@=*BOjijggeDc5%5gjhfyKm zJy}I>UxxQ%!ouPdSvb6#StW1^p^ibaZKa-{jy~^rpYmYL6I!H>{`V>gqC|}9ACEXg z$e?baIDX&04~^!srlbG|$*C7VkwcKJz@GbGOfoF(c6>d%jXrwz(noHnquotca9AY4 zJ~WH_@4pBV;rhe4Ojpb`u@x$M(&KZHRz*VQ|Mw%ZxSu8wcplvp&Hhgn{bIFc-{Q`q z-oZduGE2RTz6NUcA$#695H}YON<#i_xL^CTE%Q*&UeM)<5Osvh&5_R2x4j{1kZL-l zI}%(8{N0BWTtH%aXY5**JNye`4QRr=+}~cuQ$>?BpnAgaiF+>Qo;s?oc*qc8bo`># zGVU>-vwBdN=;#9Fl+ealswG_A9X)A=^AO9Kc;ds&05E5WFgm6b10-3@CpXRFpyY-6 zAvlfqSaOf=a>m#zBylO41as!{-Ao0k=zGoh*_d{I6*+e#mDNhl#xT0P*o%Z*STHN3XFw{2EAA^yw3{}%Q=>lw%9sH|Fo0CxoZyIlrsY-_XPnurdHFkvLcW!y#ke_jjZ^yR@=Pc$@f=(Fv z{@>mF_PSZn7ix~&X(By=T%WK@zXI@gad##~=#?h+eZOd99p073{w=jQibm|$s(YbA zL_d9f*jn9KG!f1}l>IQsoCv{#^<5p^=C?!$*D~HjXVI6*y?^c3F=ymn_B5WA34^!vs>1FP{?JB~ zlz(+L66&M2BJIOaH~gS<^fU4ky5sAA%RUT-^})Ol&0K5fGJ*07Wqz=A?<}>_qew6= z9e1<{b%d)gbCuJl32@l+%Vgtr6cmfJ9bwQw-DOO-MdUjAPj_9r^gk-Xe-a# z(40Ky+8hX(XM0(Ev@_tsJNp>=#4HG_suDUzOaot`$AgbHQ?QpWZE>y_^Ja^$k9*M) zVTe?d;_GrQP+F3_P>%KnV!~oxDc+Wu9yiw8qyC|o!ckAJ;RTt)iFM!f3Gl_C*5TDp%A%|wu~5%>3i}dXpDBv! zW<)M#5RXj;!3_fA8^j2GDG+lea9{-W>kaK#0afJ5rL0R*y%R)^d9;x{sXU(Fcg8=n zuK0s|V#H7Rlq9^j@kY_oqprW_>AWTr3cnQMG&jnUU{v$l+dxa~o8lX>=RzN6vkyfc zaV-&c7t(c_jbngRhuSw7b8La^zn}cO6Av>9`ct5mil5KQR~O`~I;~8k7$Yx-`a{W< zZdMkgC%#)Qr1u2K;~Y%bJb-$w&eP)Z5v91M3xWM}#DIV8KD zGln^h$2D*6^)hCFjO@LC-k2*OBb#KbN)Cc7lZGeGY&ajLWSKK#9`0SEe7(bSCuqYI zgk^LbJbC|VE{_lceHC9T-4l^po=HKiW$Xl{1sl^b3ej-;!4W2&HBY!##yclSoea;^ zx}Ns=pl+*U%45Bd2`3+QrdGSTgQ&*$1N3jW;L^`y!v8u6m=~I0tDiB4rceWe4a~FA zm!II;8Zw3pla)d3|Swi>-*4QKScHUqdkh~(^IcL_X*D_+9nxMK;Klz z^|JHLr4gVb_|jzGzaTK75o0j3ivw2H&9Buf&cI(_&q!571Zh5*Z#ijEAa-Ha)hy2w ziVZ>qJ@9$IpPKH=uuTZ;M&G4ORKPuSuJ364Im{_q#h7)j<2*#cDOYzr2x`)=2^6A# zRG1;sz_k;5z~1y&8KJ+m*7pf{{zNP=W&C92OL2y=rO2sI#psJOuz5Q!kpNZP*XuG- zSCbi64(CA*&0@KIB@>xHyw9}|$Ut2&MEdZUsW|$oGI%P^kA#A93Qb>(QzZOl?>P10 zS~Of+|L}1^DG)|QXbgsGT_BhFj*Y-xApA)R@7IgMem0tp%Sjzh@RMD?tm&`|bbl1> z4!eYXk&!g_vSZPw`5#I2fWHoWeI9P3b1)PhhTY5dx{wUse@}E$o$-LWl}k!93l{K` z=TGmc%1p5RP+!x4_o9whH>oV}JiF9kJghf?J-Cm|58lX$!rpWX(XwP~Xf}y|pl^jd z=ri}yN?d*6NN~e##*i#H*hx`Fk$a-vk!dra7NW`a{oisnY-F zvCc+cTr@C>2HSm9di5vbfn;?4slE~NC<3(m^U{!a{%$+4&o>?{mws8RD}=(WYPGVk z-;UTb|AOWK>N&^S)?dvexq`vD0rSQ5IACCRTQep>4*VaHkrv(BglHln&nMlyGKkP|(oXEf)IA*8J z(I1!_wLfjm^|L@1_FW7=b+5$-?`ynbyg!jk&SuwCRUQkoT^zyQ=*!{QbNwe2?h3b5 zRo$!bzH!m4=}Jy{6gW6u(<=5(1)9vp0tXl5osB#>T(^z>DlrtERB`_l@9!-8DIGl7 zLdGf{$HC3~4N_}t@8M25y1X6`0@)RV$C!R&pUZT)QtSB#V8hZQCQo#MDdvBg{Tqou zw^?X(b}AF}Onc4b%u>MX>r$|^s~^m|Crhj1`!^vz#8HgrdciW;K=@)R^eHEiMpp*F zs?y+W%bGvDgsMa3e~>R%Sl6V^fI5s$-JX9d5$G8%45boNKx?p^K@hovV;X|b{@`2| zMUoS*92Ws`biPfo{zUkGz9y+kBnpAfGrb31Kku}wcI5=~BLrdK^1(ek}Qt~5k zFYWc(CwC_V{NJ59{$>pQk$PnQ)gQ3;hHY+lj4lMST;(kNmykRExT;%7Hv`mVZaGf4 z*@JK^7uS-i4|qM_+Lzhj1(Q}OZlPXoaLTmDFA48$+(#?kusDPQ`^McXpT2tldqB_R zy?EqHW)SEyd4nN>XOE4W1#@Y0H5Hr>8u6OZyIE-|U53 z^S?!t;q*@EXh2~clwR{);KV)cxz%E$gZO(cmvs5|wLAdk{zuVyhhyEhVO$X{5|O>h zEJ?_`>>{hk-h1!8_ujX?Gm1j-NGT1g2vJs{C=!`T66L+#Kc9|{qlf$c{l3@tyw3A; z3i!mkek;LV0f*@%)(B|UaOxT-&w(V(rK1FDb1=_(#NUa0&zOF#%po;r$o)>OehKqF zxv8nIXNohRsYlk{AO`0s-T19rVc74RRuwLM!x#94yk@mGB0;u7rsCXo9F)<9Oqdwq z{C37;#e3Ed27d8-Zz8vbKjZh&*mh?KUd%fiOeh73b2q9UIc7lbmBH)+>|4A2mOwd) z9L2WM;ZQn1^feZIA1I^3UZ)^c((-ZKOFQ~A#*>$VXNa6P^;j~zo-kmL_(^~<>#cs4 zj%3(PGYFH<$%6Zv=Kg$M#ZV0)fj;QNEA`u<3p@}E%3P)rf6TF$v`qSflz<=nP`f=f zzk)qqa=(sQX~n^zku5Pj^rIZpbNgK9NPtzH^Ib_yWsnoaDL{#wiT)q&e*EW%{w!;W z+%pU%p!o9b=);ehaQt45;8v^$SUuV5r)6}8s_dt&T>i0e##Lag>vjPgk|TYce-!`! zFY(xVye9(cSf7nY_Lnl}^f%{adw+9SAR>0%?&ds~HfA<>#((*5uuRFjlvx1+a zdBRe!@3lN|>laAkML*PA@?)LC*zbHdZ0>V~dJybcYP@p}NCpNPOAl@JE{3g@r#52qFu81CLYi^Q9$` z!oOD^GP^M@6{sPqe7#5RB=*af+Z#;MBLB4U?#*p~UC@Z_4&Q9hfeX~a zRC378HWqAIN!?0;8|3ZzuW&yw_L;qZjx7d)?mq~vTtYq5Mud}&6MfLOC$>V7mlsc0 z!^ISw2HT86$o=NXZLyX1hNnBu2yg*f+Q5PDg^& z(c)9~?Qx*0#oG9$4D*Go6Jhq=-f;fvE&j;g*gJQa&hN2VHhd=IrkoDNc!M*+h$1{svLXVSczTsq zwUNKXNAT|aoQwS0wkl5aEiBR4{PEcG0Ug#4O5{H?fpF!~i@2*Pps&X?3HGLKV(XB5+DgGgk%FGta?>JZ{w!dzK6l>36Z=r+h`#@##=oCa zuHl65!9Q74w#JyZr8yiMW22Y?3c1{S^WwOFvu3OMtdF_2^k**2b=lYpk?IGzUXW#N zd)!VL`G^0wYlHFk^CBWp{Q&w2+{lepUe@}-7G=9g-6o!^7E&>Oc&@m(yX;i`M&C@G zvIH3s_C6o6(!2N*^}hn&t|fzV_#j0&`sq_T&N-R8A5l+jHr$hcNQS(cf5Wc^my6(= zTf87$MKm0bA?UOH^#$To*OQd_sMlXAcy%GD1cI*0M!kJ|6;7*?cb6bHKR{&m@+9h0 zl`0lDFL7mn!?t`QH|q1wb{Xv^PJR$+;-VYWodZK!vt(sGKEU5yPh-4?_hrUbLte6C zprL&I$wns`YP>0PyYouGDQlhE2hYDb`l(Ti8?I0_-Ot0RoeWPRWG$DD?an{Ly~FP41Lk?m=X)ML>ww>j2HKO!x6|Tb;9qv>rZnmyV!AGBE~OCQ)N(cJ#io^^jtc0#mjFoi3dT=sMhaBsbW~+yvDV1D-?bgiXZz}7y*fw z+1IOM@OyRM{dC>cJn&yXx+xK#22Yz8zEe=gU@xWcq7Le9gU>UCLul|`L(^_Vy6FHk za*glD%C&LcHSm%@j=CkM2)+M@OrY1BDFpK{yF?Puj zCcUp+zKVSmH6;E^U2nKy!AkkEbaVuK-aC8oJ?j4THu0zFu450Y>x9iN=9fti$!_My zWI>ADXoa}}@)5fv@rj4P3%WkjbXf9)x{fwXalX z)D`2Pkq1rOFT-Kf*MQ_GRUZ0X3{yU{XTzz{8;OC~Pf4F3lKYyc0G6eGDmG)Dd3!n~ zQGwkOp4{J-<6lUFYtM|&U&DQOOKJ5!TZ$b=lU;n0IH4}SaOv`H-NT26If0oVh>bI$|-s5!q5hwCL zUa*<6eMtZjl35#P%*PprJW9&KTu|uy_bQ^O`~UsVo2z{k`+f2=Xt@i~52+Y49W8GM zZp(TGu4TC}TXIBUxylo!;(qdRv`a(1^ss}{Upz;%IU;R#a$%+3sP(jAAPf{!JbZzB z`MXBeeuYz6khku@N<@wRxu>tyUbpGNk0gegvqC|j$+)Uv^-c*cFAzIz>ml#Dw)U%w zdmgaM5(46Izeyzdc8Nr`0C<`HtLegiK=P>mS8tK8cYcaJOD``9=zun$AeUFUa0Ab5le2xw#epk$_ae+l^#Crl0a zO(LVfLsMQND;Dp$EqzMA>~i6y7JbwFhiHg@t+4j2H4XfAG9F%cP6l_jHQrg;V7Qj2 z%^cZ=K4gNP&V_PE*f+V!&9R$>y5yN4A^$Yo19ua*T86?5Ut;n6;X)uPp7B%NN`Q*= zX=7E)CI9#K=~IGD3be3mG<7##2iNm7!vCRev^y?NcT<-Dsv0pWT}gRx;FL&r)RY~N zTgR8qV4jNf`{0E?f&`$NPO7LQ!yc`Jif=kK;^4<*>80GlTqv$P{Zt=wEovm68WWNG zm>sPccj9&g$n6lTWMhw^XHx><$y_+>+z*?2xs(9jC+>#08x?|G5yz?pAp!(w1&3MR z5=MoxGL>OW%?qytA?CNoO1|CFSiNo(hD?_}7m%wGH5c1*fR_w|KaH zXzu=cUo4}=M)BK;r{g}=oAJ)hSSDoHufIA{ zg8iJ#k&mm=LLe{RSIz|YQ_k}4);pN{dHF%fJsk5Bk(NW(3jzu7#7co~Y8(49L|#P} z;r>N!Q|ay}^gD_?oL^g}kAwMZ}B zqEsV5h{WKDGRz|uD6>E1Kwa|hYsUCs@oG&-!q!^!1XKv*8K_(i+(hPx5ta`~O%!JfeL(d=zzY-vy^OtL0$HWLc|o^*6N z5)bc|mxjp9qL4FC5pHCI9F#yC8lnKa?+RJ0l>YRE)izT*;fxsAZ)?;!N5%=~#>AYe zn9$Gtk?i=fC~s)+?_Nx(PK3XoKISVp<-vnryDaCAVt?S3yf}TMT5pJqc)dD0$8>y$;F+?0$1hM=Fw}G zz*{<$+X?+F;^^puV(LgB7~Sk@9Q8(&#(XafAruDRz2zO38&F#yMKOT zm?s_ljV4a&KFWZL4dmOcN!g$zM#ofZUj%9nt`{HX2Eok46Va=<=i?U`etn%Ed4@l} zToJDJ0f*poSIcIQAMLK(Z-9DMZtC6YUU}>RII|-6QVZv}Gc<*trSQE%aq-emKkS|M zc@gykxduCfjOQ5YijXtmu6wP`3givwhS=zEzub{H_~JM6M@URESC37cAX9_%kP=l0 z=sn-lznFu*#C87cEPQ@;sF}4cNFsO0SC{M~`k&^1UJ!Igt_3UgQTmxfDZsndlAe$H z{9lI1FWq7}F#N#beG-onFr3ml%#M3+fDSgUD!^4Af-HFZ}Rs`YpW2%6weOLqC$P;kMj&JeOh^<+*RHC|BP|&j*{HrF4Tzbz3fjMN!@L+61)5#(nQv6NkV$9NDoJiZe`!Vv7U6i%GHE}L; zzn#L0ysh-Fk7>G6(Dy{1|GM&5COGz`+>OT`vQ?GG`h2q=4(ATnyHZlQquQ#N%$Q7QQ zPKV4QMWMOmY*=Wc|NUAGd9trhbYHv@45sV0as@;9z5eX;hcV3yv@0ra2A_NHP*;Y53w}q9l-h~cvb0{8f6Sen69o^u?JIj7Q2#FB5 zHCUDes$Jn~lbQw49Cs+V7j?urVKYYxydNgmP>c`n6QJR(ge&>!LO4#*E5vix132D4 zm93P+9RB!NlIVmR%y#LVS3Zh8px)zWF5`1+USL;4|1%!QHYvlJq)-nQplP|gfcM=X z*W<;g(`)f8pMQaK(AEC^NyuM%26qcX7sVeJW46lKn_Un{wE*JFU8Qs z%UyX6q*h1BmW|SEU;=UGcp$vNe9gf zUt~gU+0Q&J2OnU_Z@+PuF9~K$Z3fJm31E`j{dJ?n4Y_jx-$pe`K(dQHm+w$9tmb)} z{kc*CM0Oux;{xur?fOXwA8x>#wW-{Fj970$hjV7MBF`$VRr=_ixpVb1nA|Nnblt?XY}Y5f-qjimd_X+JRkYE3)%OjI0p z2Ub{%m7>5`=%lW+LoyUnb{-ejA;5{+gvJ*84D4k)PAesdyqr&lcZ5IUz5DFBLYKSY z5PTzuZLm@ajxe*tu+-x@LCeb4g+Bef@tcc$_+DZpUo78e_Jt+W|J=7KVqk_`(0FC` z|2;pIf6dUh{c-YWs?am!TG)Lf{)+dpU$H#`|AtavjN-1MVR;7pd&ij0h1|;$TD$H! z*Ce>5O{v~SaDttWoXokp$RT(&d9Dq)4H+DygyGCMxS*LpUR@Cf+^QXMX6#OIoUw~K z{8}bdo+YwQMt_2X@=5b2PT1FMILqvebN{l^W6$!mED$?m<-yRE0To$9&mSXCTSQvP zIe`uJ2j`l`^N!KrEO>UK)ieh_@=<*ra!3KQrNTTtYwUGpyuA7Yb0}YC*1r}ZAJZV@ z`mr`83y=)YFqR&*0>;Sfwf``8(ZQ%CY{HNL`8O>tt!U(6KRx-S1=Q0Qw%Zy=o)kc} zj%Rs$E}kn^+WtkRN#LQg5OByZ1a#iqvV4VohsqgUW1YxTwT<+Batz>E)E{Bh+O?yo$QDvjBZ8`RJKKzp__5xj~2Ha?wn zgOH_xS1Ffq4{IqVQKlUPx$iZ~uB_sI;LG{$JNr227sV+#czMCU&FH&EnD31Rkg-LYm^WI|oW*pxvEJl-|7nX8vvTl4BmdqJoV<2}`nrXoB2Vzkv6@MK;Pxq*J@^1l$k1 zJ$v&QdGkVtvwqlQLXkCCRXN7NUumWKVK;x+kNfs8chLh}rkGM#Q72k@6KgP*=m}lI zy+r1JEy3tQ^%wEu86bLV`}V?Tb6_-4Y_3$seyZcVff0DuF_|)>QOFHKA-)fi^>B5tsp#p>ZO0f5-NicRP z9O`{KWa{4K17p}h=cjnzA#YVypL5CvTh|dr&%;F^HZMZmT$BQRz6nKIdfHI4qy9Z4 z)(-i+b{+IfX~1^9^KxgSH~MI}V-F_emIY&gbg4p9GLDYVD zN)q4u4hIs+ZU?}Z_cq#cM8@DY?b~f9ng~;8|4Ni0Kf<1m?oj}K4{Ay8=3GNQYu)P! zPNAwK2qjTyN?!njbMuU)nFz~If(9c{VZ&UQB40y0BCWQF@}HI;FdQqR(#=}WI-JvRJP}%Cq9>RKfjl0_<#i&@B7X)b=Mq!T<^BJ8(SrG9p@Q@FQANqD%!hWi_z^OY;U!LW~!`Iu19XvgS z5KeCHtBHMJytI#-yboqT;pSINtR}&_#!Ujp^9+zX6-k@si#=gd21-UIad4YUqn`Fo zCVV?U$V)~)?x_#)o(GZ7{?E?8p47Gk&VKzd82QfvDyKadn)Y)cV)Lw-Ir`0vDQ`Gg zDn|k*YsU-2SI9|l)Xp0evV`5en)wp8@tfLDy3cC4d6CpYajz0I1%bD9|b-fceKg zx%|mgc(bR{#Ho@C9YXHUw(q0PEUGG>IavlFrz1uFnP))9wF&WG+ zEPGcUDTWbSWi}J!-ANiG&8t?H!Ogs@acMgN@J69tm*#gqbQ=)8lf}NCi-!t0*SV^I z=fm_VUd#!6ejQ1*$&2|`>`)l}hMeg2cV=PHfv_TBvG{5{0pb(Plv1(BAgr&9_X6_I zf+&SqZ(}bl87G7KP&xJ{f3+m4gTD&@%MRV};fkqbU@LHS>ob3uBrnutU{ z6eJG!P)ti^!S30UnYtD@$A&Dh%pc1Ko*N=xigIxO{%9lF(;^e5J&&~(^t*wVYGiO9 z{`tC2@jxo}*E8*i4#evsuhj63zYi7iLx%*szGFW?V@qx9BQkFwH7yuT!+iCD;g5=h z*<6r6{r9Lzqcd<^5=tQE7ou&vm}8ub_c(tg+#a+^FULGV-e+Pzsq?$&blAAx z-?4$`D#<;*=j;bf;C3c+_RX_}aFcjUi8~%SefOCUSYb|saR0IW`fEQpC?PAVbtnU3 z&2KX(a7Tk?>;PL_2Xdq2ZWY=j6+y#68i!-icCagZ!E$b)5dJFtead|r{qsC5|DAs6 z0Y?)>ecIX!VfOQ4ld>EE>_~YxBEDh&G!bEhJUS9?NFR&L=0cwr)yrRD$QeEPv$9`0 z8+mlyX9|zvywX~?t@}>^^P5iJ*tbwGH*piII(;G;9H+#2eqgZ0>^8N zdtAT0iH8ifvqSs4nb5PiXt>d;1~U&VEmiltAy@6`ym_ZHaHZN6{X@?5QSZ?|Bx5;X znWZjpcO(JYt_nyi6yWn0_4?W!$b#!?1H@-edw}5nOX;8U*)Y;E>2OT46a;lL5-7?G zAw9AtBCgmOd`}GY&Wid#fdEUR6y_Jh0;h1d9sqy(J~}I5k5^#)JPjx2-Sx`U&$;J7{0ccYpVIGsV+V5pG`u|rYB^fb8u%c1W?KBIs6>CnF+hYUF2 zU;MkJI1g3|o?Y-kJ(lUo;qTvE5@2q7axR%M6HF`TFPq?=c<)CWaYqnxpYti_zKQrl zsKJF1i2&r$zi+JVJB59EnR@S!BbOvcuh~C1Aqq5RSWE5E|G*Vi+pURyGx>~VKZAqb z@VAJAnI3!j=Ce&)8b-5$N$Fb1J;_tmHfQ zB?e5sXLZi-dqGp7{>boXB4jBWa(GE(g1#B$qoh9cpJft8r*=^H4OsQqU_*V<#e%*? z-3r!-w(4lm_gC^-TRHm+`o3&Q6)N%fW06Q^`Xj#(_QW#t>IKr^h(#@XMUxLyi!>~m zBdb#N(M=6+|(p}7ezA5qY zKI~=4`%8PS3+E-Tx+DzQ zW()9qn*OOy&7Tqk$KH&}IB`Y8^2(RduACh3XM-mUm`kc{{n;O!nhO06cV@V9hTUyGCun(IAB|7uZVTM2$nVmEKUL!%uC5}J$utHpha=%2KS`{-+8 z)sI}nUc>%R3ml6#;=v+3aqaBq960wRS#%ZMU%>+F8`ep|!UNW@F|KR$(rM z+cQ1k^#8v{lRFDTVaYIlU77uAbuI+Ta^EIp^MO{EgRPoI*mqk)F`m?p{q(`@%^k;V z!GL6~BMdDA(<$d4Q8v&z6+ zg3{%r@1L^LAYk>(2QQLb%*+0IwWN^;&hOq8uAj#_T$?I*3H=BzQ%j}%&#})r;?Dl( z9^^i?nfYhno+aW!f7=M2m(H=D1vQ*)V3h9J>>h^WS)B#lU5~&y8Xw4semx zwCY46?yb|53an3sfabq!OXr?MV2$yW8%96R`1ivX<04XEQ(NL9vmy3%OEBf!5paPT zZvAufw3q`+yQ`$D5f9u`wE@Fk3GnXv-_w6xGB8K8=lVu48dwdEhy1{N1J%_#=k5ih zf;h9QW1J+;^JB*o5=^qdJ;$+BxD|Vbsu|1l?`A@I7*)~^?hn59%%$1$BggC@n~30t zGGIDQbnho8?q~jF=r?>YhUnVp4f#RTsmJ$T?U7-Ro=kzR8AmDH3ce}e)*cUp%yeHT z^j(n{ko>T*Oo1bzC-t3WaDOHy6LSIeThmvs#RaCE;f?DNQO+CLAg#J+HiL6vtH4*2 zi*(p;bm@d;%?kEbMjs{(Dh>h$HDJvx$*AWYw9YqLl_trEw>_@aNW!CE29cDFkd0 zF`~VYa{ir7Z5YD@g7qOhkGh^jt=#aU_h-H+k|~}r1d7H+?7c{ z{&~Xf0w3lIpK2EU-@oIZ%W}F6{Vo6ex9lFoAQ$pkn&qovcSu~>3t`9osA^=pLmcYr zeLtixR1~E`VSMvWIr`5t*ZfoX@O@d;$?HL-Ad382WeS5@d7yJVXcK{ao}1ZfB^Na@ zUuOHbUHu}y-zv{%&S~JDWolSg40C)G>&D7Sy;&fBt-Y=i?}z;t0-I?bMnLA(p@Q=& z4&W$$aAbKg2xuFw=(pe;?ylKipjY4wtrGWNebUFilhG}C+3qAD;}9k#N<)tGdbsQ& z=5YTz$3$l2oDT{@x077=+@b6nao612DA0G*lvDVd4_|X5ZLB_8!77ouuu^jl%qkst z@L*35h8ezRXvvjAi_VK=MQ+U9$;G{ymqRYx!obV^F#>R2of2-Zwu9!5AQ9h339$Q~ z#8_8d2l5~N{(8n9?^(zD4tQ6hf3fhI@u^8CIH&hCriLdL!lgJScFJ(>qJMav1NS5! zEW#KCi*w=Wj-qKc_H=%A_!-ZloDA|xQGXRD{o!L}t?3SO2LBUQFtKpW20{MMj#79J zK6#P$nf#r2I6`*V`lL}Rv$=x;(Mwk<4IrfnUNbB}(LD3Ibj#qze zNr(YjV(IvE3b>CJyHd-X<_k9~E;8P0LmjR3K<_kTHk{~Vw0`>}2F@)-Q(XrrpAjKaC;){FGBVqSG}ufH9^@U0fOk%$&qt3~ zg6Fa`N4$766oH$^b=XGacgI0!^Gf9FyHz90J67;~U1rD>JY9hmQRJ9wt$c^X4nkJSexFXJ&JWfH>hLBQ^CBSauDn`7;*_W5j$rb=bEmR6pHLd9D~t z=MLIgNrixDmp$#eIO>?gwmpov4+-z=zZi0xy#9;ea_>5mUpRllzSS3zui}kk;jf<8$SCH-GomCH zoBGNifB1~c_MsfeDTz62h;!Se*lDT*crVIRFEgZy({=MhlOM{c-OihXNsgU^H z$;=Mt&)^q@fi}2Dd+h7c;)(zLz#w>YBM^1kB7(CL&XFUgC+xP^GeP?Ztr){6?1AM= zaq>38``cVd&ST^|hDiGpXtv_PFem!`^fhm|bDvyLB*zW@GhaFTq&6M;n>7Lh4gFxz zad~Kas05@5TfdU3a*<=>DNu`?fXjQ&;zsbfEFu4xt4ZMjx_TLZw^I^P@49N>jeh8f z=@YFa*4aQRc}e!nd?NgdRPi1Chx$qDp|aP9Fn`~Ds;apLef5uf5Bg^0LiEq2XC^Y3 zbG4m&t`ixDy~)lT-;QVl#WmUgBq)=VcsplIXjRKFq+Yhx?(zWFom= z0T3Tvev$VA=2F+_xz$(EkAA1|s|NDGvouKs2QW9hU=VT0^JP95wdF+o$BlEN>fWjt z&JWD;p_W$14w5bthcz&U3#gp-;dxv|We6Y=`u%Qs>bF_$c1rbcg1fT_8zy<<|iANj9= z+f*_N0^*(-iyT58Mfj&%kMAb~%|?ph7WykXPLKZ*=PQ8)%LVOf>}!2^g5qQD7xX#n zNLg`UuW8V+)-zo=|CSPG5LewS1D5N>E{l}maH>UC?vu%75U?VRw}}Xbf}}v#*JPM0 z=n5EJd4s%%qrcoZ*9MJ|K%gwWM*8L)r(eM}$jwF58x&5BCOfZJz-{AusF z!EbiaKje&25F$Px@YEampGjj!>n&?7v z9Su>srbz<-=erRq!w4C9P!Qa(Tc?hEz>>TXF4l5LW4T4|Ki~4UC%a)_Vfgr%+ z9Ur}$3>xp&pZF}91IHqb_l8OieCRc_o{Ncsh>+0nLF7bcE>u{VMY6 zn7CRKcqthApRSB0)1zO7a-viYds1h8tY7j?;67lomACpy6?l1W=L$;a!EZtTN3`E_ zfoAiA+E01Z?~0kZEux}8&+4w?d>Q)5_a5ifo8UdIXBY`P}40efTA>Q=3M< z4eBSN=w>UjjTolbIjos7T7yJn~5F@Im|#G-WQ z5#F;Tl$Pyy@HwZQJobSMd3BOv=LCb0dqWw;(5Z!7K7k31W#pdQuqX2~lcPSp4g?9(M;9U-8ZsfJdFI6L8`v*8U6U#LKo#mZwj9eS@ z4EAfPY>TrQu+AuS&IS3{oD4 z8aeC6Du(~)WWs?$twwl6(idpr*!ubYbB6@syA~mtv0(Cqy~0@nIfgyQMt-56TKh`D z32xjUlbc+PYyW}$%|3PS5C02*@ar7;l`rjJY_(fkS0)|~G_9}?O~e6_?Bnx8GN|*k ztS?%LgoC4TT$NG+_O(h|z9vyigR+3an(ykEySF^n8-nw31J9Ikw@D)GK)Y1BT>&Tx zr91bX#Qx09O05f+%Y1*$%>3nQDBcS)UH8#fsrt1|mxwD4#$G+yjPnZukC^z36q!^Y zN!)&B>0bmU?j@Th%W=^9;j~yK`d#bP8oBXjvm11Dc;c3H9JUFnfY{gtIFG zsNXH;ivNfJn^Upxd6DB3#>_21i<~E)_|Xhkuo{Qy1sz}%fh}vr%}hH6Cc-6;xBm)*2j6@ClNpc2igVW^=faZU zwTo3|C0f2Mvw5Gprx76Rrpk-v+lcPlSF(NR_v*-=l2$~5Pjz*2*BeBfwq<+}?+FB|o-0a*dWleV{`si>0BoChPqEU_=*35Rll|+k6vt+J!~b9 zXyZgz0sQKI*6o;z7V>1Sj~6Ra;bx>rER_eMF7B&bkLZmDQdO&!Rn;Iwir%|%vl}Zc zB3(`kHW)%x`WiV1t{9lyiNwhG;)!+FlfD!sU-KGwn=`7ej7k*(jAQQaLKfl*VhLIGxj+Q-K zt&SQs-+YG^cd0~{iEUYk{>>jd*j`8pY?soK&G4&{!1qNWq}>O^dWZ5WL=jo(Eq3EI zR}fSkUVM-=9s&1~>KjAvlmnfNlDgVJ0qks9R?HD&1=sB1DAH=IuAoU5^K?SA+B03^ z650efV>wj(0k75#@As0^d`l z0lM8;aM9&fpPvI-KI}aWChsP~Et#Z^sZSZO*fAIJt2G9`seZN^{6~PYDP6;A^+@2^ z7JZ|b9tuTHghf$YL0j_3d>ML_1O%E3)FdzQAdcmUzTz*(HZukeo+(7bKCA^~0 z+17>jqD1&0>(OR(UnV@K-cf%2A`7IE%0UUjG`{#$bFHM z+qDZLB}6-l+e3&X^`x}nHpf@{ERB5j6&J`eCwr-j=;M>emorb!gup=`;eePISiN}R zlT~*_5DZeP%pLc{tMG~VYb{SwfoOP`LLEQ1p7r6Q^@BNZhWk@5^Fks#GXJ|xwU!8m zo{S;&4v0{ZyknLShgRwy^^w6|jOwaAHzF~yhTL~j4pvX{fwuYD<5WbBy#1kNK6W_~ zl6`ZN4WcdJ){|_nyM5(A{p;IMF=IG1wg2R($qEB`%>Y~NswnvJ=NqXaqIF(hxpOrT zkzPPS#Cz8`1MWvu+R|8ggJ1L>fd-?cam0=E%3PU-*LG~h zAF!(Eou2@`x&`=p`Z3&^$pK3BzSz48kr4P#ieNV42Ea$xehOFZB!nr)XS9Zp%yzei zSUM8|C*G5OJdg@}nZKK9M#I6R^4J=aQV^t`w6nU0NWrJ!X77r=#Q_hEt4mCA5=7JU zsu-e$D%D6ldMV5iE(F`2W4MtIq9@unhtW#5Rv|OsJ)DMD60K1wjSvv=(R}kmDglDj zB~O*FBNFYrx&Ifd<|WPyIqv zvK6+^Vx_~Nky?)|N{?g@T`3;Wc)|6wf6NIHx$v6jz{9C){y=f+S7+g39Axd>yXVD{ z2{+#z8;=$&n^~~Q%@p+! zqlzl2tG%bhvf)cy&CANXVsN{D?-sKYqW6QRoLO^XLD-n9T;DYTZu1z+msw(E*Gs<^ zt8uLGOJQr~G))5P>s!YrFycs_(c5|{JQApQ#Cd{obp1D&)cq!<0I$G8mi#YcaWz1^ z*zi0U3f+F*qwmQFu2AunYlv!i-1}{66{R`d_fatvmoZAjbA)D68s9I*bmXd0DBUas zMi6mah7~h)g`ZT3p!VyTd^B3*8FZa>8SwY9_%O+EI3f#Xy8dY2o00=2I)dh5&M07G z)K!}cM+Eo-2lppf_0yAcV|>H740sC7m`c;Ul#AnZ5B~koM z0WFI3jhATkUtK>Y($$^=H~NCB+Rk{v!K$a7LD4aAN}0ke3s?KY+rHNGh@8zYHaYu# zE*dB%uZxltXEO`IKPkzHLoyZybna%Y;`d>0LHRRxQx<%$OI|-&6b&o% zn^Gd?S@5Zow!085n_KJ$>xfzs5qBHwd;lqO6T)U*LLN^@O+RjAE8Xlfk}SL8-ARA5MGwY?N@;o ziGj~jRHcR>J0;@uWHA~dwLjIJ`<@Nwb-cdS3J1cu?l5Xr6I{)mP&Vi^%Y^eHysjG> z+2FtTsfq?As?rlW984BBA)=nJQtcZN`1Qd1fy;;SDh2*@k*USF>M(b0i24v&8+`oz$bW7 z#8@&BC@h!fCUY=S^mgyiG+Q+MJ^wbJ_Wr&cah!)_>{GNr$Dh&)lqiHFc}|iq>ij`u z|K;}4*ICd(%eBjg-`Bj>jp*68J{b9kA2@(k4dp-QL_glmhj-~e$>h+YC+S#yGH5>s zDDI^5bAIuK@lJgO`;Baf(Xu?tboe|lIRDpKjw@Z2gSF=tmy*El%WgmELKb-Tv8^&U z;vDeb$q!9?iI5LNDr;JZ8h?B*M$0w}Jofkwwj%F`D(H_%2G(dHiSe+-tUK|=ASY<+JqT($Z&SYPf5ZV_P#r-gH&vx3iG z%@?g953Uo-H|4;;{gA4w*7 z)}J_nRY>&=2^DC?_uc1N`?ggC`KBU|rm+%>ebeWR+RbzzAy=F8WWrS;&q%l`A|-XI zJwNmHBtfU7gdrVeIyn5B-V1kfgtix+cWx7xfXmNwy1NfB0@-`C?(4N&sK}@9>|Z8; zQ}VAbmw!3|WmdaRc`imr%1*J(&_;k0cPxcV4I;%3v&T?k6z!BZVb{PS0Hmo5kG~moRc-x7BoBKJf}7f*USt zP71iq4jKoTB z=^qylc>uB4pb)=)4!9EEdPt~4RMD{%mSK#5iX9G{-npL*iBuOm6w!LBY4o$`ylfOS zPcL(+qO|_uYYux0THQis)c>Bpfe4ngG``^yw1QX8mLBT$2LH2ip_~cP&{fV-MRF$r zq{kw?-q?o#pVFge!WVIs$lJ*O2%~MG>=|vU&%L3S=TE}fA(Z~LOq$mwW8h-lO4x8S z-d9tZM6X@LiXDp9+e{Q8a8p}Vspb(@UcPddvcU7vhpzHF{Z1s5?nWfuj1Pdj3~>=w z7I8pf>=60N%@63CiB>uCuyVfA;h7DSJ$%<>NlfpFf*S>G!lHaAfyg#|QNNrD+F5aZ z_s(F%MB=w}B!3i~qANUgfkF$uuv4>M94kQd%;nKX_&wDfHQhe)1+6_%`CeM>F_0W> z#ByJS2Xu?%yl*Y%!1Y_#PKlzmcuT~)$o&tZ5_gCq`cFXdJ91sRTG&&IT_@x2TlpL~xT1)F;Cg^rTFkmGM>~ zT(eCZB|^mIY`ED39p2aTJ(Lu6T1w$ai+5xVC01}R73u3sV#NCtRZ#j+CKyT!XKsl^ z0FP;Cc$!=m)Q7%L`i+*b0tVMVBGk$dR{GnW3nNy~YM5kW{kVXZC;jwsj9hl5CZ8ty zkOr|GLL&KHh>lG0f8lvA0(J)6K2pXbV&lD5tjCu)&?{-YQGgNIQ{Tf5-6wSc3nxFB zfRDIpYt7cLt;m6l7s zM;9>qNNf9TFoFXk0`BF8?@r@AT;cR!R2Np1m><+8$3NfQtsYuyiiDEYPjBsTwY2`D zam6v)8_sHfX0yj?u+kC(H*IF8jhht9EWjin_3$3sstPm~Uyv5jCkEY2rV zkN7{<#lqG99Ap@?wVF!d-_J@5VU+M11pHNM8J0gSx+ zHapQA+jC(dVh3?sgF|CB##Hf6wPE87#V#gZV8~u zw@e7&xb}1bpI1qC=p6z+oeVYxN(cM=!{UFMp<@n8<0qax~~ z9+kLSp4~YZN#_Nm+d3kjWDs@A^h7N0PcpzsuVQ9KM0AIDe;>ws%#$rT6)SG6uDMj{ zzp|GCy>Hq0U83FLe{6kuIF#)h_G4@_*0JyVShH^ta@%)i%-HueqOul6wjsNjF(aZP zl!`)>-dAr^C_>qnN?F?%M5(Cn{vF@({rB~cqNbVWxu0t}&+|GjRr;p~@eNeKo$TuS z^~_1Ib0XMs2wFggYAz~PTQPvw3BLQU3oAgctY{G*Iu#s4I?l=sWdm}-Up?UmFb?HFObLoO!?hq0@M?8e|+s{O3_gfL&FduQsj* zsN8YX42Avv=zNuIEbQ;M`Jl@i9Ig6{LkxtAYJm6iN6O@RPat=%p!U}36Cmo?0Ruas zLNM{J=j+$*R3J!XXGXv}b0-jW*?qAR1d}N~pNGmpuWG{ZG+ae>hqQ5&{J99|g(|+e zl~4+rzb|c{b|?TZ<3B{nL0m&ATIjuU83WvVmg>5Aoep9GN^O{Z89;hqTrasEQXx@R zzxdJ6y1n@}{nqJB&{0&CSX=_7cas-RwtdJ3>@`w+@emG^-_SRDx-}KVp+2;Yr<97hL|?# z&&4$$u%zp_axz@OtxA7U`{X!CXgQVffd^Vq7ft3HX`csiAu1D#y+uI&{i)DsILej# z&t1t&EKrgsO%Yp$7853JhRi64yQI20h!w(7l=`|4|7>nT{6i(mxib)sNVHmy#BM>W zql0vzICLVI|JqAaZG)D(QHtNg$k5s_E`9IgF=z>P=i^o3nR2kK;6HHsQVFQNRIl0u zN6JoadL3Y%J_An6)hphF5-@LYsqO6gIa!^=4 zl-?KsI6g>Rx~Y>3tXSnopLLW2)e4D|>m+D}Rev>(58~47oY$WBc2=MY!Ao_Hsa6?Gl=83k+?Go@<*>_hCN(;ILrYvYsI#+Py z$}TG!TIrQ03+|oB0(mp>dnO)mWu|b#oc=Ew_$A2Y&;WNwqON;R)eDYn zi!hC4CtzK1`g%sh%@R<_@#9z?EeDh>^T$l3WPyA(AHCvC25`G*y?cQj;!TsXtgG<( z(m@X86@DlL&Sd?BSYjIZerIP^J}wtr|Ic!qVo(pR@|Srx!#Gnm|8k)1IkaG&I+W&? zQ2{uw{KgKq6oNy)UuC}Jg{xAsf1j#(2uItK4=v6dfg_uj`JUv%{CD@<)2ve*g&^CX zogqOg0I#oMbPj!t13zjc4flPn0lJ@KCKYR-wfD{0#LwO~pj4}wm9*Knx^xCw ziqJ~c@xDpGyDc#y2aYDK_9LUa;uiq=tC3c~+Y+GhuN$`YUNuniz~63gC%WimC&5)r z9m!{Y3hcnVlc;HL_ud|S=`=hz*9!a4v?nWv;3yccHix{42^^ZcxA5cN3Wx2Y9eojmv= z@PSYzn7-{{uJC~lenqE#_}T<5cYYWB!a@9F)Zmur|F^2w_to2bGC3d@JtF(@=Q&{c;jjm%S}vep)GvDG z1f?Wy`P8?Nk}c|rOKd^I(cD9uloV*uva%NLva|>D@u2IVfp-N+;6l8w--4D>ulx^< zpSJ)HUpwzl)1`o)URMR|f0luNI8TXY#K0An;B(G?y$pc4CRx8LR0Y(?`wHG-$lJvv@+gasVT5|SPjDB`tZM?gzABN2g&z51!O0` zP7~8B0BkKXt80*-dFhz&O3E)1^c_`yfii)k;q1py>*p$fvoWdo^!pls{Yh>7;&K+0 zZnZjWrPqKh2{9Q1hzI3orSy&WXM)aC)Ke93CExwa|MrQ=o&#H%bA~HNVO@WB_x48w zN<(UYwx~7c0MFX#s-2^7g!Ax=%6bhr;-k*_ad83Sg~P9gg^m`0f7fuHYzHrZ5|6{) z+fd@fKrDQ(`osal=YG~}r9r@kr^7FFsT}y09~ z8ZN`jKPD3FmORRA+2RC(LNZ}b&pH9S)sJ`o)q^}y!g$F>5e+B^nP-^5m8nL-Vb7gk zR0B1+Yu9?(i-4`<;;!{axGM6i(9U=Oj9&>>aXohgK`m$HY1L3S@WJ@W;B$j=&?(Ks z8VaqnwuQEag-58MIeF^#4D9o6y{oV5M#H=%nx9v_O9Ks`uBX*XCxg$WtK#?Cpakn) zoXPz(XhkKl>($W>NAwmNg#JC52p-=Sc(FcO3C3&lmVe}D05ZEFN=N`o*B4%JO+j8& z>_E^bGv7RLO;uU^(f$$;`RhUH#r<(0A8~$M>kO@E{E{GbnhXv;+M zzegx!uz|6yzHVOx@XVI;Z=eJuyhJQSjKl!Vl~8Fi3RgR1P8aVBI0>xY$-Q|6DS7eu zb!#^`GW_P+S z(?PWiXbrVNzqw)|nF}V`txC@})Po|rkC79!(#sW*eHnNN3ni{0vnsA}Aeggj4><-` zau;rL_-I|hBnbx(r)1mtTicM90PBe`wbdJ>?I$acp; zE73Oo$JMKL<$zkx=k>CZ1`dVyy(1*U5&qrn%Q)X+Q2X)Mw;66YDiWhPxzG(IFEaOI z4x4!b)hOPxa{LTnd-!-02b3N zXKt(H0IP95CL){$OfRiT+=6(Nv?zIDbt4VzXde$4#}`4XaxNbU0}7xV%|R*rDFufd z;-+g4R)C#l?rb$@$jcuYU$=w!F=);?U7 zX0Kw}ha;e(U8;r)uA<5O7P6H2tPF&_DY=OH6b9U8x*to6oCADv^|y{@6o7X@1kn#E zN#Nj~oZDX|xDq!i*Xx^q9@d6Dv9_lX4Tc`r>il?uM@12A-no zQ0lO%M=^ujCV*~)!1+5mDd36!_SwtgS->XQE2x;m2e2xZwAJ28gVv_e7i(n>fzb1* z5)7lm;EV0p$dB9;;Mt>E!-vpnD+DFMX$2+g7S$a@-}8AOOb9^_&dE z5>-_|Tp~z#>f&d72jVDFv0fi&&CAoW%@a6iF^i8zx8 zjLO%a48T>0g~-#AOLQs_lo?|;&aVb;jjwiZ)SdxZ@9_!^uy5wQ)ciOd_UW(PrW{M5 zv{pwEpU88z6l4nayp|t?R_^!EIl1qTgBXaLG0T<+0Kt~AK}U&{Z9|`UrC$;?hn7-HvDiF{FC7(sBLo`oC#YH z>3*09rh{E~+)B=Yf6E_pmYPw3*@5)Q)F<_pry7E_EnFs75_BTIu9E8Y+oFK5~DmpCqAXA6JV7w*LW4; z62|u}+iKzJ4StrN5k{79bcYkSZSWMX^u9O#S|5&pA3L|P`v*#*PVD?)TxhQZ52+iJ zmveX!kWTYE+X+{%T<$&6^Qjofd)vE3Ldy~LTp8|0UAWpK;@GXaR~NwL9%H%x;cM3& zOYa0Prh(H_+b)(Y$)Kcu_FcO^l;#f5H^Y!~ptw|8aS2+j%OyD({DGsZp3lB`mf&hY z?4r2n2&Nivwwmv9Y!-lY`cKMLxiYXMn%(p!Ivd=?PbmDnM+K*@-|?J-D=<7?p088v zjsSvYLm$pOQ2|#E@O2*1It5tOQ@5zUib2?a|E-DLDFTK@+6_Zck{SH*5AB_1DJX5? zn~<@u0H^F0@BHIm07C9hy-X#ffd4eV3vpj51K(#}*7m@@e5i#ZP}<-uus**hpLiBZ z+1qqdT6-#iw!SvjgT(>pH?Gn4@TK60y*JHVG7(5r9R7&i4|y;FNzSLtEb#ZnpTtLh zvwY9uI6>Fo#w|G_ti{ zXIdc$B|iH~QfGj-RU6l@Ye7kLh*wbiLNdq=94(S=3Iip~g{s-Ra5dJ4?$d*CHBM{C zDShU>Tu_9%fzmC8e9pO+%c?N{^82)vYr}JRcBAS0NyvX34`r!5Q9uUYH`}z<4pPA% z>%-q!Z(IV0zfQk;at2B{-`?y`fpM>sXJc&gQzf8_OS~q`odIeFhfK`j3hVZ(PbV7M zih=gW$E+2)DM0t4o}4Qjc{W3ldpM^c&P*t#C%>YDZ~;40r!Z*wvmJ6O2#$U$I$kPO znJWb^uUWd?dQbo^%bfgA!XyEB-Ssc8`vFJ)!ugbISfT!gOM@8=&rt%G%=*}316*;m z`Imb993U7o+3eu;-Z&m9@9+{@)=AC$m&y(Mw)*C67LF`1t0hxdnhBqy)?->i5WknZ z@f!O9;t@YmKRs;xMgh6QvBqW4ih-@|kLizI3b03}Kb6DL4Z}r~87J63`B%O!`1>8M zP#3!GnB4;Vu~;o1_oo#gGF;@*5l6TZL&gv_GE@)vVs=|lhp51I)8S80+>+;-$wnP8$Ly+Q-NuUgF7(phK?^7T4X z?mM&uAqgFS{so>l-g2!Kz9$q=F@P|>;IqIXLPg$4LmEt zLfs!dJPxwW5|cH=O2JY@nM@*o0T@KqR{bGP($YP4{{7)1FcuUY%m-Kdc?XQFj>3LS z$8Yw<-9E_6S0!I1{#Og?l?2=yemCHeTabs39$Hol@y`HQ zVcW5oR(LKGb7)F%wbKGGPjh-k6-bOZmM14j1+Sm2Fjx+jfFUpYl^egx0YF|JMh?)y za4u7Ht}+_j{c99@9Oj)PamV_xI$*Xe-o#ddEf9mnPC?JtW00V#|d3FdI6F0qQQ>*g8o?Jn}bB@W`uF3xrsay2N` zRLjqmi3K8v$R-sf@`sAj6sfOc5y6UZh;T@YqyL|jSsac0-(T6Hh}!?>yYPoU3t6_( zY}w%N;0v(uWg!5OM|co6z!Hi`BWQr4AZiFV!a9bSAQ&bq!eWaEGT~22h$xdin}tCxRj)icI)V=!gmvlZ|RZG?-jWR2QPngfGyK=regJ$QWXj&6~iwh?r*c zQIJoFIpAMp#UYjm7R!cau|WjzY~m~qh#-Ycjl~5K8e=nI@j!&J?2ar%L$Xe$P$4_;5n*U4k3~hjusXS6TYb~mZMB5gtMO|i75>@r&yo? zK?3I@OM13!JLft}X13fqe8V}}@)U#z1r-yaXlWEA7V6QOD7fNo5p9lwZMHnd6$J+| zLNS3T=+{t>iAU7|)EFiWbrDg+auuQ)5p_IQH44L2&*o}EU1P$}+l9Kp+=p=YqdJ+I zfO`sco2iw}y^8vW2`|DH>OZCq!o$Y;kf{rJgjpXk^|EU7ongZ36v_IWY0TtJVSUBikMNOMmzgGjkIwprX-YxrS>IMeuRxB2k64<%bsJEfR$&%J)oiLP&J@8GwtXxv zV}dwD`vJT?{cQRVT!9b{G0JgE5L#q2&2euRT4%G!@mLo^*sXH#y71Q7%xGYkVDdi_tPuKD?ucb-7m+xT_k}$D92}AB%3`f$5$8LcTspniG^Dw#c5I6WlJg&YqbQvMz>jjCXLX2zq;XtiiNQ)1ax}8U z;w7s&uCN@YNVafXw}MB%oue%$ZXKScj+}U1sWFc3oFfTRiyU`zjjroET7-+Cf{QC|DdCV}qjNapD*U6peyY!?>U-$8aVX4{H>n zY>V-H2%j1f#`__Ig5VHe>#BO?cub)6*+pd>5`wD6suW@(P&E{Uj){I)ldaN(IsEV( zQ>6=Y^kFTc+K<6x*XgQ`VN!F?C#WuB(sM7gtFB`*b1$x|B3wDS^}6uc%g=2{P?P5> z%DvRCrpr~9+X(M57sa|sUfq?8ZrvQJ9>`T~eYsveo~zFK%A$G(SG{$MyhbTkll9e5 zjXJIt>udEItz50v*B3Q(I9%<=4J zeM&KS$79C&Y|LPX$C7mnYl!BxVI9XCLJb@11jSH|*M)U*%+Q3_gLMjPcwh<2T%bRI8O5hF3n_Y*2DlBhK*Oo%cxIi**>i67yc_ z?jPe#&09#=zsQ@O_o{vWI&Ws)>vb5?a`F~+O|X3Vc}oc<@_a>k%k3t*d}Vnn>oCqy z^Hz0D@qCQDwFJ{pJ`8wMZyL{6XY&?5v3wU<-(e3F@-?!)#~-NXyTbZ`a-fCpI_t-= z13i2x~@5ve;{uo!Cany zC~vbJ2G7yFZ|g7}jpuFYTHyJoZBU^Wf&6ne-|H>n`Cr=nShUFCU$ohgKUm7YYV$Mn zU>*NEn_u+@TlqiP{9ZiR%fD{3D{nc%zh$#WLFV{>u>PS~zT?L*|1d4L`2Y0%MF1NX zWeXpC9xR(JOBj&GqHR$PKoiSj%en;2u~=I+1uIur>9B`c1!Bc*IU20uvC_7jOI8_J zd0VuCbtx8SiwU!?!>ZYGHCVS|HEp?GENUB6$V*3 z(J550hO9zG;sxt$RhOJH1nX_p6r4*1n{3s?oa+Qz;5Bn@5xmZ}Z``>@@Ftt4fXkrZ zEn5`y-4eXruSG=`1u;Oo!R3=+udU9K%dQ~PR+oyPh5Fd^2(IEnkJ<%Kc% z)>K4On8(g$32!cpwX;=D*scNHKG3LCJy5r}ib``O*8#CO7G>>lI99brp$yZ{L;V#7`# zkiVnWcMO?`HJ|kdsDq)L;~1-#=X)+LfCx;ybDDl z>`=g)E)qQeQ*V>V;Q{{#-d!R`2Lf1p`bClk0;$NDNNRpiqR*m8dVX*ROv{=1Asevv z%E=Ga^Tmqh=Z7Ww%8M4|hj+kSU6voQ;R{5m`H^~lcu_`vRH9#~Xia`}2Tb7S^ABzK zWs7Dte~;)*_IQDSLD5_6M+gCPqIcMjQUl(J z{>y%BJYYxkK6`>dAX==CJ&_P7F7}u`i5jRTHq4$p9%v%=j6Fpl$Wd&PJ(UpTD>lo1 zoEj7(_JaMycu<lV9xW=R62jMtG ztDs~foGGqXP^uR(CT>(vmKd=pZdy>@5rIR@?JJfdcEy1`MIn+$!q%P|7AY;^Xisa1 z)Rb_wuUv{Wm%t!&fhb1_A_s#I8J06uL5yDX|5M3w{!BInqu9i5& zagG|@A`!ZkKE;xV~|iDcMobsuwpV*KR9uz!68ONsey95nriUj@#5DF;Xu$ z?u;KvlX}h3BXG1(YK7x2;b^tgTaJIIM_Z&ma{N1fv`6YIN3X!KL8)&X_Xx-4q<(Px zM?LmV>Nm&z@nbtue>s=}3213n&Ig19acNG@htvc$X>QKG@dOiTe$IY@L`P{M&H+NA zue2EFBWhxdv=ry#@x(M~InF_Wq(W&W&LKilwX`bd6KYb6^ghnv@uVJU9nKMfkLRS|WH8wi9VxmpZf7Pp zQg8^~VM-y@Rfgm+9hMp>m1%LrDw?2JG@gk zSt{G)@ILHhootK4hlZ1_vaJpumrnM|wmW=MI5i^M<$%JUnv=c5`GpGo-~V+$F;Bs> z556v)+LdKGtSe;j$n`sHP!Vyt$DEtg3^lo7&Tr!xCUVa>w*)dBgg7_kDR~9Pxr`u<=hp>8kGCSxkt#F zll#H>hnn?H?l%pe3!WKNNJh(eo|#iPftID6d8cp+EjMvyMFIb3H%tI@97K$sL zK`YV_oMQ2y;=@8i#qvQ|#^VrbAxX%=lvD~nNj zf!;q+mZtO?Z6a7+sI-DM^(?PedW$|lD{oQyh&G!j?@{`SHW#cIRQiUt@T{0q`hh-3 zt9YmM8*MpJv7_`C4FoA@94p3(h6v*@*;Yvuc^t+GRZr2x@i^HmQ_OK#CtF3TD^A$S zE}R;O6L+$|M2*KuJ2}vhG#rKr8xt~4(FvtX!yz~)r*K*wPR+^r60H@d>EyCZ>&59h zxhhtU;0&GI!Yg0mOq|>=Rer*mJ9#Wu?&5$GUXjkDZ0ke_r%Nk4I(c5AYbv`sp~mPY z${rY!Aj46ai1G4d_$p(VUb&1&W&a`A?4&4X1rPb4s>sUWL$K+gD@PCceN(+G078kIOOS2GU~jo>cmir^?8yi=6`^Yuj(x3IPH9l z>I=+?iSucyuQ6$Y7YbEZoKWBbUG>cn?AV%AKMb9Gc%e)6%g`y*#eUVzp$zMbQ>x#G zU>mop`fKR)!;Ak58(GU2cU2MRY#M@AW97>6tQS|~0GjW zsaH+cxm2-nM9t8-EWGihnu&AyrN&Qc=FSx~WJk@Ciz3*BR=44zdNzrxJ8;oxO={{c zT$K||Ch8bwC92t0-SY|TB}wYuPZ+t)k?Q_Wsvb6{s0Tkei@Ho!4}VfkLn!J|#WhK= z&-~wYxr{>&KRNgCa+mtiC$*?6{pv~1DBUY#>Z!%&lVA^;UVNeR$~yd;7niT>s%Jab zE4J`xkewUCTckA#oiAN#(bOn)Zd`6L*Pu8zDPDEepgT8*Uk%i#cD{V+YP?3B^OfbR z85;G@EsEDlHJY5ShF`1GXmP%F=~}BstMm2cYrPun&aH~qM>M*e+rqEE)aY@(aq0Re zjb7)Q%hz``Fi1O$mHRN+?fR|QeFMcENwDV~D(>uT)!jE*e2a#d?;CUOQfzbGH|5+N z-WIrT&iVGGw)lN7o$oBSW$asY?oqr^x^LAPg}+g~?=9Cqv>Pq^K63p#aieG7SFT>c zn}hqlaozL0Ik)cz*MGE|@Am!Xx<7GqXWw5greHf-la>2{XS=v2C-*~IyP769ci%+2 zi6%dHzhH->rV#glXNRw*822MuM~tSF3yRs1qA5EJTWzwY;_#q#CtXuzcqq5CNfVR( zq_eYKQ>$cn6QXN+B_sN`a7dP+%P0+*)7;Pfly>W#rWyCMiCa6GmfT~4U1%*E?s3m9 zaV-b#30jw$mJ9bJ4KdVmABG*ft(NETlyx^r%X@e_w>whHe|Y9$cZycxU;C0Uh=B*&bn4+$?MHK zh;~lNqCV{V^GlYJdgQe+VEIyyrgo{z%5smnHpOLC@vf^j-35ie>#Kd1`wi`Gj5db( z=HcBG?F+*YAs}mCazW`rprE-B$8(6T*ibC7<*mdeB|+IqBa; z?YkvkI{#hQzE|>f^It^gLCLy4gcJr!Hj;Yfb%shdJ9~9?MoYeJ_5z*pk}Z9RGfbCk zC*2FxnJ@X?c`rd{q2$Nry=)x}*irniRA<%YXZU}0IvC^^?Y|bCkKDf}{_D~C%DpRi ze^BQe_nzndIUNjhFZcec&aYvJPi*P@8UBl6vgu;75d$U;VRL1PU`p$vT~U<~?co}M zUvzabfOUmwu8VbLQ+nX4E9}Z1@gPuF+?Av8LA;;U7RZ>;$fYx znk!f1!&Y5QSMHUEy}G)tJW72dx`wX25q&RpO=)N_;1R6sSJQLh5t{5b(evOD78-EWBf6r%07=h#L?mw@QqO-xv~M6qFL*?Z^$}Sw zd;~%!biL>iiM&TmdWT0O`yO@a9UYNkeT+jAOQj7SkLjhB$|OHt)Jrdwz4drqFSAtc z+hasOr&Qhmf-Cu@3dw`=`bDLRw+40f%Sx5L4FY{?Db8RB7FDjw5krCc)vhXyL-G1` zuBt0T8T$3EYL!T#ej|@M@kzD*6&{VsCoTHddG=KzUHUg%QR@)??I_hWfDlc0saEpv zqW;}d?OVg^`u9q8z6~P=4@z|nAZ~*JdJ!Yi27|8pjU$={Bd!K3BjyHUu7*mZt_Cpi z5=VUvW_gS&M`H{yOyj=M6oXeI5aA&kERUGjJf$1F88OX!+GOxyspc{XM6eZ(T~*{Z>>k%N8DwhaD^KrD#O5H$*H#)J(yMy>M3aE4r?)_r4!hJ2$C zAhI>g5_Ci9LZC>b%r1F6)KH?#{?>Scp-h>>xAAO4g)+xVq|^}S<`gkeXQ<}p+&Ix{ zsOjdiGSO?O>*lI7Ibvw&<`yye($K`sy>arBp}CvK%H*ygaKkH2@fg{<5hA9fjU3%P z8>cjlT-}H(Q|3l^Hnk)hT=In!bk=Z0d=bQv8T4Pc$^H%c0X&b(7b$44PrwQ6*7G`Mee%jooI2e;p0g+1cuEun?sEGMM<7&6)#`$>TI=4eB^BKnV zZZS&FOO2b{Vk4f{8Mn9{ZhYQq-0Bv$^1Ro$-7Q|}#fWj2+mVPDFO4zC(aIO^jQ{05 zHu+-5_&#rf&`b3GKHfy)OY!}Wd6Oz%s_h@nfY6^;3$?s<0_0o0_~TZ|YP| zy9F^lxAMwwtH6}tj*?%4$dfw?tdUH;pF*H7($xQHRo_~QY4FpttZ&Gs;ZLh=-q1~> zpVs8PX)-!z9RsKvLtrWmAN z=pFh%9$y3To%n$>e3vTUsU0ZcYn*(CL&~2*)DV`+_U7r`ye~~=AKX#xU)s$+m;d|i z3)3uXqrBJP>zLVg`MuL*iG#B@H)VL9EF75GnWh28}-eV9(CUYhJA>wAWxhnsY z%FPz@ef-0dn?2?_{3Al&2F(rlM~UC&%=hy@t^5WHw(O_3AVz9Y@$B0-#KNj#%wP*^ zVdsGg-IBI&^q8nb)GS>1CnvW|EIjz9gti?mi2T#UZ5-nLY&vf{(!&4QOy72jMews( z*6%ntFEwZIonjGHF`o<}*4T>Yx4ySq9I1Hm?K{&VvErq{k1>nXiiKo|yQX`jt}6%YllGWQg+)RcuxwnwBFT-&S_b zEiuTJ(4M2^B>y&X&)0I6|9jz@W1%-c$mBk7JXPMb}t!(iE zk!&(nj(EW)HZ3bxywEC}g%utzjAM7RBH=|M*@LWn@uE%aN2~(zVyo<#R-t%t97mZ| zBwiwtpFOr;-_YJFi$ zm5nRk`qCH##TnL@$JEJO&DPh(H2S%^t#6F&W8)sM?i_y z8Uu7zx%aG@c*w5s+Vtb~B6(zN2J!k$JX$s*c!O0Q3!AJlJPOO}WHX6{tcRb?EY_IL z8*B3dyMKx|-R3pcM3}G0W(8|X;!{T6j6uM?+2+I8fquSjn=fN#Z2SW@n`7p-kVW`D z22uDmn_puG`}wzR{)}0&VcBg_axV#_fOp?PInu5s&rtdT7r0ksag=Q??m-izA?z zqTO~!#{<~Jl#xVgprP2fT`DywMQq6~of_N)znMXRxayu=HX#%z&TCI5ghh(W*cZZ{ z8d0+^5r~))H?_wwBiJPD>@nGqh7tsO42X)92(qsxL^nwsv9BW>T9wGOuP4OdB+KlZ z2(gip=j~evhnpnZ>{|(OtCIKZ+X?YFsZskb!jVX+1^XVt(I%32|!%V$zf6;l_cZmFe`AJE)(nULI5Ia=?sEx%1t|bABR-On!~U0)BSSW z4w&q$EjboP78-<~1RU9E5NT3y#L#lPAPvGx%cH~Mm|u`Atl;D*B$!W9@N*OsETAjI zI!XzinNmo1loKozRxEN<5-cJq);OvP7Sk24I_?uJnNqy#s3TY^tTg0kAXr9Hns?kU zSWZ`Z?}%ZR_bY8X9-OFP!?8PAPf%=eB2M-bkXli8a-N{k5nU%YTICkb%85Xu8!9U! zBu|J`1UdP7LQLX_Q=sSBRpm^lP|s?dN|{rnXAK>xb~+?@j;?amDNeAKj&wO4^+c_! zC?g4;bvV^grxefgk*W($X`U#G>U*bCg0P?e>69f{FRX@f&J%1PsYy7W5xhiKQ+F;A zY@{QG&gB!0Z0dH-vBR{mYna>ZglP2aK1;oxdkN%4`}U%kO~^0 z!DdmxWr)_|52faK#e)ae8j9!bI3>1i6Y6VOw#;RhsyCRWH+3o;Zlp zFLT8aha&aQyQ&eNH0igwY7&Q6_3ydr5=U?bqppU;(MW>@R}lPpcOWbs~ z5TQ9?V`U_Ka?aM6;TAnPPlkVrt$f~P+~Ibl^2L_%1GmJ=mvm&rErkfH%LTVIA}l07 zyJZkx|L=gFo_x(_0=E%NF4~%ixED-9HcZ*QcybvYCik*RSlC&)Q!7^uVe!VOgmqe& zdrc)Q$r9bqSH9hX;*SO*O8!8ZJ48dk0fzhKNl2eHyI-69(0`!Y{l?@+HnRcu&dE=< zX4CGsCqL7XMff*isq@*rm-uznY|ouZT*sO7dh`=FBF$wy28o+Z=2{*j#BZzS79L~7 zEu4j$#}pA35+$dMpxma0kmgR*63&51#jUNBq@vu+8HW5$5oF z9_z$ioaLy;7I81qa=~MV2(#~Jk6q&5Rm(jOgoG#qUOXEK=1mzqnuKbG7HT{s)-_;( z$CB8Tt=#a!B=#t)AiOw{t!0t7p{K&q`W;z)uqT#MjJ z5?ZshAmB;D%64u95=kV=E{Nbu5^c6SLI@;@t=VM~LP_Gv_GN@fl0=mKc|r_Hve~|k z5Kod?v%g13AW17bj1p2vGEoi-gftQiS)U0RBp99c2-zfgWk+65GD#uIQO2{7q}c4J zw zp6}f3d2LE#z`5J=#uOwe2Ru8cH0@lbJ#SBGF_1;iyL9btmkrN*be(M%7UBcCt`Q_K z2k3gKt_s8!Uq{1?}@*KEvG$x68{PV z5j=*(Dq`h@mmqP9STpeIByJI#X}l?kU&K~~;6xGD+!JEN| zO7#o#u3k)Q-OPwh^>6UL$~fHZ-{IZHh}(t~aEBL4K48?l z%j-x~z=C&=*U{#H&)&UW$JPS&yfH|ENFc_iPbASRP{QZ2ND?DZ-Dg-Nc{a*pQ85OeNv*UHTIpnj?u2&xby6BR1si}ucK z4%PC-AbHcFroQ~5WRWl@Um?+auP{GfG0_4>Sgfy<=$YxTbYD4d6cV2AtLTl=4X64l zR~4m(H~6Yo6?a3%TFV=?7=F)J*Sl0XV$|2ryDTbV!PmsQygA~tueo={TEw0&@TMq7 z^7`3&Q==kf{2aY$&5>GuuHKbvkrsYE7s5d ztmtJ%Y^;B+=#}Z%bpMN@Eh2}D{2N8DdL6Fuzv7L`KHThoZRXklyuCMOAkVIhbX2t( zLAt%Wsx38c$^Wi5sy^RrF(^>n=Me*m36v6hJe`;xC?__^K*)iLvx9c< z7^=(;Oxvh^8{N|6b2^qFW*(F$_)nOsY;2*UeJDW|#xk$k43QiFngeP)_dj|5?m+3D2u zpb)V+k>f={5n}UR$7_Nx%=!G|%|VA}pAQ`G4mvsug$DycNwY5*FpsAAEJU4H2ukyL z)qLV}P=?RzwG(?m**=TPX}rN?pQWfYncza7<>oZ4;8LFz24WIiA+{=#?i5_>2DK4`HLu8*&VynjF2}zsD#rEAsFzh`E*;z zC!gPIr|*TV`|K)bjfQOb>_ufQgzWhIY0ml_vg?By%laAeR}2x&#)Ptpvv_AqgmQ|b zs0u$_ z;-UqxWSWCY4n`OzTjDqrbi`Im-Y)0}J5nw69qKv~tEG+4jEALG%N#$m6qa5sd;82r zSZ1}{cPRGAsg^e`6bR3+Ryba$5METRc)L(9ybQjlLW^*UFHWV%Eu8MF99dfU4^_0|5sdRrsQY%eQ{mUQcOgjxSn^ZM8sop{i;&+h+%PqnNrh;XX1vUWlj;3 z;zr(Oei5_c##Lpp5ii8|&y=M{V3_+k%JU zDh47p=b#K_I^z4BMF9+gzvd1;s@RVB?5h;W1PBGZMq};GnZdS{El9( z{T$uvckE5=|KaGof5xxV*a?*uW7{kkgfhq2X^NFwA!5xqA%EQO*a#)Sio*gKZ5`u zVe11kp`8WN)+{q&^o4hHho!#jjJx2wvM2phR(Qb-o{%u zue5B<#$T6ixNOTNh^K&~oXIwfr|@w(w`~+p(UWp9+c=)$iE??{B%bFS6)LuAJSC4S zbZj$uN}piNZJ*7Qc2;=U=FODRR|=y+b-74og6(tN3d_n|+j8B?(#mSv7rIrH$`;#K zx-Uek25jqft1YYMZ5wr8mR7CVHtW_zG?uJpw@yMEo* zlo!|RhIQ*js_)s2>Atb7Hn5x0eOp@XU^l1R@C4&+x5(4T@iNAa$n);;%cpi!p7&2) zR@klZG)=sGXZMAtnWLu1j;R%)RO5EPW?CXq0{=7fp|j?v-R{gs`d9ny>1GjM#coeO z`zaD-^#ikQov)xCUuXR)32(hf|)qfanb9q#LmiM+Yz@KA5u@{NImw%$bP8wUq{y-D`C3w~$e_-vNa`A!&!xsnhfH{O0t(c-xoSoWG}ycU+Y+%z4Gh*C&$|C zRhcGXOugQkWz)Q4quzRH)0$(m-WN*Kj$^CdhDh@vr*^%smd*T5-Fn|jo6kA*>wTv* z3uA_Oe{i&@IF0iDeB7erG|BtxNsEosEbrz-i;ojiD`L_joCveO6+Z}L$k|(-9}1n8 z(5L=T?X;@*m-3;-X+w|h$j2V1@4P#YKTbPs^6ozQxa9Pg_us_FEvJ9H7|vEE=e>M; zv|72H8TjZjTg99Y^6i~$m3KbOw~zCaFeZp~ZlBVpN6s8``=dTtIP=WWccHpUU=Hza z5za#TbP@=A6V74sYAbXW%Q?`{R_lB&=ip}BCuhkVW?96-N#`8$`iys$&tYl!{MGqd z&f(3^dt7eh9LYol%`Lv8TJ78}N_?!D?P4x!d~B2L@-7;D$2dDwTpsYTYjxywuJX7iWDw(XIg( zcYS`Vu6Y-4eSxyBH5Y&Vd|q{_cZe_yS}7Vzc8kY zPb#xt%&m{_;$*+P+YsL+&H)v-Q9fy{0UftVKAFq`8@E|L*~tMPw?#fV&cPTrBA>k0 z;8Qm$-{s7~3bz$~y4JxrZtMDV8-t(RzUEw&MR4HHoNHb~c(<(_g@&Q8ZaX>GHxVkh zCl_RgkGk*Az2P-1=+2aTvtd}$oe6GHhp)LGF}N){a?kyk!5ym+19vV1#j+6xcRm9p z>PUe52?J$OY=ZkK0~IT5uKQ^N)iP|g`&k1uDz?R4!r-px=z#krgL_t^^X_s6>X{gt z`xSnTOw12=g?SBzvHc!5=kI4?j(FV3)$~FzqDt<64P%lX_i`U>jtOJ#8$1*pzvuDL z0EPI69*^fAMWKRNcm8qLxQB<~ycWYmgomjCoy0_nhefWA7or!LK(}n7+QZ&Jk2=xf z;cTEUIyvCsZeUAAGugmA6Qk^z#&4lDt>c-=Z<#r5)X7)(&D(+ulax|RO-rRYS4R{xC z{=BG7L~aV^MavRWyoK{(yavm(m;0cG04l@B!~EzxF<(pS-*V>Q|qDy!=h%S_;W4kfj~iP`7Zwt&b~cE8Sr+Nf1wzutwq zu2pHj!G+fhYj^yx3-wBCkNhSU-bAfg_{}W5?OOBjTUbEwYJ?xb5WU#(ek8+pR_nQb zG{g60>(zd%hE3G<7QYR{X3;MLem@LbtiH_q{Wkni_GQg)+wfy1=C|KJfmY59CjY(1 zKWS}n`!g8P1#bxZBZE%EhNSf6Q}#@x|V*Z*Tn1FZN|(TKy&S`(+U`E1f^!^&Rgo zpFh~}{j2}A{Gm(eJNYACKLi6*^05s+Bm?f{k7i=72HZCq6a9HF;GxmD z)lY)}ZKH{@pAG@~Mw6Ks?*No)8Gc0sm@ZB!{mKZiT%3;jRT5ykIMem(O@QMf;&3|x zTo>n*Hia=B`SV_z_yC{$g@(8~*6jS-#k-}%5sqxG`CYk|#1U(mA-WNJnD@BW~+#SNux z_MpziuTiM$4C-C{*0n7iG`NVM;5$Ls#UDyLkAfx^e@3BRbY}5a*N#Wf!XhGtBZ3G< zbP~J57?RPJ)oyMO&FD|rZgtSA(O>FrOVEbVw&=fspdUs%R{!RMejDwU{aXv#Hu^{X zw-bahMy6Mm;C;q>tT6(?Oc=T>j0olc4uQrp!7RAFjC&M=S#kT6QGd%6j7+Ge!Q2J( zjeA^!`3o3+BM4crfKiSvHCVU+IYo(QYk;#$;%yN6N!O{hXvM_VO za>gv>d)I@n8Xu#7a zLvM)N31mN<3Gq6C9EQswekYKb@J~q4i4$Cm2SUS62x>F(ghrh}HbC*vxD&|ncR4ia z1Ty!jhNcx#M%wRn84{H zEaCf1Zde}?2xm08S$^bvIJ3zu+7X5DBPO@AFv{UZot{ zaY1D+*4Xfqf-2gq&%#9oRkK({FyeUCZq~Qq=kaQcY@Oj!c!YmXgrk|OH=@AhP3Q{P z*29@F8dGe4!mkV7=Q?&E;+CMM_A#CaB|&8J5sy$4M1G#j5gLNXx}zGw)cQ~v=@O6e zkD}QvBXsePyV*S>4Dni7nBWMLLTxz?5sbNsjx|SKgtZAW&Ag1TH$ncG4-w8L$Os`s*!1e$W5XfnJI{jBes#*CUmVx0LjB!G4e!47MajV@T5itm6*^O^W;UA zo7k4~yo`KdVn^fo5c$dknKlL^>rIe9V ztt{{)ih}ov7ATEc#`|^)h+x(V{eBCyMSU$qb^>hF&qCxJAVh5yB9p+ksGUOO2cU~) zg5c99SfclthFG5vh-NemEkAKSn%Ojrc0wWgh-vs~LG|ckrijQljAp__W(nFx^9mu( z-Z%QV5JKu>qfZLOXbU}y78Q!k5~_?oBNR6!^gjB65aQlNFj9ng<&zW9GK7Tala%Po z1ccoGidG;bF`lB2xk*S?KE)BENI(F-NDNbOY9r$C?-ix}K6Nujvj{Qc|HV8qr85>b zjL|lIQZDQmqi>o?6Ap|qHqAOMk{Dxd`qWw^FUH#RS-Hr|7<*eIc*tkdGLaYDsYr!U7Q2_c$U zH8xGCL|aTZHdClHOUyPlTc~VG%r`b)sGLhYHnv!(LRg=4M!EB;apabJO^qL06k6M0W@s~qwm z>@WW0Eg=-oRNU4mAr*h97?GeiC5{)$&1 z4l!P$Pq;}ORz_-?B5@@8l1PFo5!-!9CPAGz$|x;@(JUU5LuQ9Z#Rxz&P0%TxXq0wM zFeskZ#`lYW>X4r(Fkx7lv__4TA}vwyVfyGa;xj2N&a?=#&Z-*!_&9^Bws&ug!}e^lw0O>aGN7V z(VWg1*+x{Jv%b46m2&Sn+t%%yDVooZ$=?ydJTzywxnr23ZI0*`#}s{Y&ZRqnDaPhp zVv30==H}c_F&^&d|JQx#ihFnX~X6S zB~VWrGe^{bVcL|rOvOFNv^jIxrF(&CICD8M^~5xixx9^fUK-8(a)tWKv{myfOX?re zHq5VzX$+?QFu!J_A%fXFrSMc^IqmPM>(d&4(*B(S?)wMQ_X^+8xzCf%Abj)beev{z z!ndaHUrtBc@whcr)0tY4o#t^m2l-Bnre!)0S+PgcGo5`OdoY2CJ(a+8_y2D&!LVX5 z!C&|N`1kL_$85}{3NjR)oV#|kqziJ2!bsiw7t!6l_XiI<;o%a?wS_NT1hBrCyqkEd z1q}9H4_5zg3P5IFD6q zC$n(nZg`L8Z!#SJTyzpGuZI}MOxb(8WKi4c-xZ6a0oN8sjF9{YJUgvv@%ivNSQ);w zK0P%J2Mm(OBFbs7x1c87xNZ^ZcBOANvn+xA?T+lo)_Gtu>|qh_#DOut(9Q9@DR>d} z!dL=GKqJ(#DLO3zzhy%K^JOA@%uop2cV-w~8tpQ3CoaR1k(o^M>>%iJ^iTRx$Kl42 zU>Pea1>V+wGLJ3{K=+`i@-vwr@wD zk|r5$9%Br2Xd*zM`~~);5Gouhlr^-PSb!7%UjCsRT7th1T}ATrh>(Y+Qqup@6LW$GyEmI3TqO%BnLgfkgb7e{TcUU}J%;slsOx?w<*{g`4Yv z;HR0C^VKxi=kVwDBy@pig03|A9U1mre`0RNhlg;bDz$itVeqV1cX)Pu70lHJ9*sLu z;CE6hBfG>BEc|vT(D*zE7sE|ik5^Ja?0Jga)q_+}IDyR`IZuJ_hVpcKDhcqzic?%{ zcMV>dmh0Uzpum*&VK9{nd35F17x=91d31Ib3(8vGTiu=dq37d4ekOVxw1+fY z)XCX^mn3bk(y@8yIpUYl{hk8Pu)6z1A%_NH*l8<%Dhba`NlY?-_MtJPHqGou$H-Jnn|EdJ~biEwgQL# zS(i9mqrpxvq1jZ{;3?f@2U|qn>amNb>yMDi8-)&K0 zUNrfHsW=w=985etBPYN@OLa}^{1k9#vbF5aV8LzcIzgzP4E!IYx&KNm!xb@$^yoM; zm^;y|pE`|z44)K^M`aE0zoaJ{&eI?^yV-ikd<-T&$s<6g`1*dT*YpWXpg#Sfq;FTEP# ziQg>!2(0@_4)Kj<~1Um%eZm* zUqT;vPfB5q36kKm_@aZ(Q3{BwHm}pfR^bOIePFZ4f;CT-^vb?vSQv0BRBNC@ZPVMo z1cOPaGA_X@%j4jWv?{a3+0W<>;FZlX`9(O>;^KaRV+6<*L3Nwg$3e~F#-6-)^MG{< zczd2i1k%oxMsme6+?mjcBA&#-a}cKcxY!3nJI`$S`a6N<_%YNXg9w7{eHTS=y)e-d zr>6aF99XZv*XisZgO|4sPf&Q5p)a@dqSLQ=;C0YZCkjwt!)hyMYj_bFb5s(kxfIy$ zt2?tTK>*vOLodF`%|X-OYw^2FBuETR9ro{=0RGC;r}q9C0k-d>t^E09c-cGg-`w09 zd=x2G&pJ&5ypb=<4K*?-asCyYrHw)V-;({Qq9myDw|{*6Ar2z4ywguQ;K8gZIVR}G z1cZc3r>1dJ;Km*SKGs(hu+;n<_M~hCRvPNfaQIPpYm?2!BR&mL*UoUgdWHwNZlbRl zKNYwiNP>+Q0S;=E1w>G(5ZRF5{xfk5QYG1>|BB!F8VD&hvUAEZ;JpjE%*^{W)s* zwTn~WTXyGoMhXcS%y9A_&tu_5QsI)|G7;7`k~#moKm}oenTLXxR)8p48ASPr;#bR{ z3`q?KcNS%Qh4=>H*3Gt(iAXZYFNH5o_ToVPm-7wbN*Wyh_TvTBnE?3$=#t|QGKh;v zHsY_Xg0W3qh;G#&JdlbV`@|U1iE(DTjS6!G*#t-d>n*| z&phKxCVfX{Snjpm^}bW z+}ZK2&&d#w8K{4vYypzK$Ap(296`I(tSX#j7lC`$b|F%PK!O{2diBQT zV{mgSE;Q7M1dR1H9X}tEV7IY`$H8t4lK$jVRRw6^F?595PqzS#h2$NJNfKODEFblb zrozLM>W%b;BM?$aT)$M`j&^^F-M^MehDXL4th_s9*h^7+$q+jP3v-i8rg~Ixv$j=X zilxDeR?*1k+cenEC4Ib!V-EV?C#Q5(ErRTx#TNtIIIuG$d``VK3e-NsJ%2>HK&-T? z|BucT^j8bNdbUD>F*`qorKknK3l=^3q(BDxJcc8Sq<%;+QN8-IcmSeEj~~p3k|BYg z?e=okFjzLeJg1tv3VaV;*hK#Hz)$l%J-q8Q*tyP^_cv<*7TmZt18J+k8tGhHbqEhL zIiv7(2n$7a&1&9GWRU8U?fi@Ks;5!=NTcO6_+BdE(Ucy7dVZqXG@b@`KG>XQI5GtC z2c)u6kB`7XD^_%U(Fn+&t!;mhMg}c~W3Ovs@Q{%8bf*Q{Rd3HyzVG^O6j1E1@@Tqx?z=mvryB zISs)Xg)iI!39x;DU_U~d2Zw@=bKi}|;6Pi7mqGD7urhHQ*77ZYyv6;G_FF{Y5BhGc zaUaD8D@tqlOc(GKA`Si$3H)~#ZXKZvK<;aU%zpoV5C06!PGBuCo*OsFYz|P6~&1kF1OY; zou;7qzvC~eZ!f}7czKys#uTiICY%VqI1fi`o%Vd3=!Q2D0j9mL7r=56?%GIgD0I$4yLvONFoOzD@3vmJO=jTC`zM1$`M zuOf`l_g{QM`STk06l6ccq*f^n!xfDSii+N&@TX_gzIl5B7-tt2hIp1BW9m)E;adc- zd+Zm$IWq#2r=((E{?`o(>QCR&@elzHpSyV%vj$^L?8)8@ZO|BosV*y9hBJFsu2X$* z@W|f0TwSpn-4U#sV_HK1kFevLeZ)=(nfaY*ER2WMiv|5no~WMLZ@$U&Zxl2iGRAA$ zP+{L)CygzyS*Vb$Gbwkb!4y^D$DPZ|&^T^dn(c{$Gy8Wh_9)@OG?sVv^$hBdf8p+D zdW=Az;*d?P(=@E6S!(24VIgyWmEYi{amZwBU8|NRfrO<*UJVfk&uZkkGO~#9u-?Ul zo@E$VyDgL~>BgW!@(sn?h6KN78dm1b2_Vp(Sm)PD2ASye3lupb$nHHVI%wMi+Cf&6 z%%^A&7IBh03)LyHv17lk>P!Iq+7-Q#y9OPvt*zbw4Mw^18>;q9Lb^;;-Oq9Y+|g5u zxp`>@Bo*?mM`VtH>AS0ZWZpL5#Qr^tS*E~aht4l)TT7t#UNT@lcnZ>27VOg+$Kb-@ zpD)+qK0&J_MQiu)9J<3_D_hB(iq5^7^ggy((6^8|(Y=i7QRRtBUJrC`m=ZZdj;_OA z&r|7+M^XMtanD#`BEb2keXUoH4#D#%3MN&T0HTeS$)*i>cxGYtHr5ym)UIDC?Ece` zto%zZX_W}(%&Ycob6?O-RR_9h)K^cr>{UDC^BS<1>3eb&X5m$zSt#Ep0^pc_(uUvR z;mB_WtAcSd7@kQ;(hboR9UbH^b_kn3Oc zNnJ+uV|B!@%g6ra`wuB#6N zZix`!<^4F1vaL~=z2h&E_iO}gpPOoabHsskfPX`I#ss+Z9WFPzNP|R{k;~tsQ6IiC z@YkYk8e%6IStXuM!kPAk{cdqo*rW5~?0NG!cs!hQ_V6whh+|!)#B4l7Y6?^tx%Y#K zM5(E1Dh2J%QKz}h4uMj4?OQ&20_0)lN*A#xj|@DH3qpP3(VsJI?H7k&R&FxnR`D=! zb^8ZZZ%sgO^*u+mlN5+nAwLt|KMH4?%Jy6Ej)VN@R!o8d0Y2P1SnKo>{k$T=pfWQa zSWk03F%QE*zF|PcZB)nh|64ia*s}rl>YF*|vMKOU@6t=jLj*9#*$t2uu~2o3&%{`c zjCOku#x=8Hfp<3BwHozTg4;{Ar7z~7%vNLT`!W_9=^qq`*z`m6=&xg5NXLlK@V(lt zO@eZDzMZ5yQ)oBI{Tf~~8eI4(#LOyA1LpjdY!?`cKJ^FR#8CfFR3L%r`#FLwx4L z-@NimAXJGiUO;h&64&==mWqeC2k&f-Ipg8XLo^U1w{3R3ml zsrRgxVO~dZ>oa8(9t{lsla(gIGl#ddQ15a0H#MpI%Yp#QgLNz$Gef}hK10>Xm<;b; zmrUEC^T{SX>96mCLw7oxG!mZR;e!dLPjd?CL2mtBZ_CDDCR4CZ!kY*SlA`B!ozZhP z;~GEgN`ia;)yesDQNZX%Lc!e@Jj8Nhnbj0V;6S*}YTXF}Y@E_q-9Nen_b%*)M*z|Z zGk(d9;!s?D#6Ia*j|cy-#OXVHBoNf;GP)B*g1njrqc_td@HRN@)qK$^ROo#fVm?U* zf=cs7#5)vMOgS&rqB{IA{|y6{hj_?hmaMErB~G#alF?@?BFG*2(OaU~1$X*5d0t^g z!1UazcZ3=Z3dmPmD&EaO*y7^k@KvN2h}Y)ks8Hc=S@KVg9His@I>5&3x(=qsi&mUE z?QmnWe&Evyq^}H)a-7#4g{l2-YJ%S5z&GGa)>mO1On5=h_E|E78x`*9Eu99VV4Ebb z2prs97!gqFnt>EM*1S`X=VASCcFlifs4n~S;!J5U9>TVDw!7}3?}6v=(aGj9_>%6F zfJ?`M6T_v;0geRtk8t(f;KL4}w~9YOD_#NW8!>jZv+HngdyZcE$tYazP;9#Lbq2B} z#;hE)QD1#evz(7>1h5^{=D*o{UwNTScsi5$HSF`)+3LZ7eM`iD_2J{1w?%C{~9VuU~jg=9rkV- zmUv|yg@R`wp_3^)`RY6{YJQ2LNBuwqi)8{|F&->m2i$*>JO;59ow={mQC(W0KAfr8 z2U(0GH;=ndfwiBN3Ddb=cyAuWF3wDV?10uSt|t_bN@dC^;UYtKxlGS*@gdL|%~ais z&c}}~DQhi{Ik+af`?#O67uExJZymvO!)5cI+zN$r;A|$PySESZt1-g-JH76u0gOXf5ud{QN0aNP`Xiy?2_${&PK3u(i<>^loGU#95=x z8X+B~`y9Ty0qH5>dQGAQO5<>^WW3ARc@kc;8@x7b8v)T>PCn|vaVRr8##?b|2tIJ# zGHqWU0sH6c*6F#O@aa&u{p}4LRF*|Qw2AHlEGLW3tt2XRXGqFA=uARjfyPYtvtAH= zG*dH<^k{}g@pJBlz3}C1Ir);5dqd0NM66^=J|t z`j1Qf2;zJ^=2Tg}tpwAl;zj`1%feIQpsgv1VR5*4)%;}yBI@g2rs)0X= z|Laqf6}GX!s&No??L8$s_zQmVKFyEo_TD=^D4?kJGwPu%*&duFy$BsifK1TIe`3g|pgJwEe$c_VU^YCHh52J3CDGC9TFwNYMZRa&x{dJ=M1&LFAhTh#|hS!bTVZ8iZ?zSNJTpi z?Y~DYR90az0PkrrAMLRgRE=!0_f$)l-9-q!ITo|8k4DTkxts{FxOadoC zRO#$Vj&DSGA3vxX=tTh~3`wQ+$r!x~+f4I-XHKGe9?2Fq1_N+lATU$aH z+bXDk4p2AWorF?vEna0*w{IwUF>J<+L6@TWv2+0<)IL&)e6CG^2Z!bP_K_xFhvVJ> zfpaLn)D4z7@ved#_G^-(**ugMa{RMon@75V7W;ejUhmjjSKj-ky`KT@TiW`!c2;0X z#!tTjy%!a3cl~m1Ey4QmXmW837JB3&f-ZC5ARQ-It;RG00X3<(LUb;-Q~V^y&>SJk zVT5NDhjgaBj#jIz6sTXS;MSDE!Nqs8w6s{%XFt5={YYmF8kuQB>FFb&7I1J&3)Kaq zUP)O>SQ1#)om62y+YQfENm+@mSP&x#9)8Y_^uhi1!*$=f#Iq&&cuyaJ^jxql>WiD3CB4_lIs1B+}aIR@o9*d|t+JiCmA{Q(unj5o(Y zL;U(ahT{`3)Ea2zf3O1#I4^wPnwx_c&u2=PBgk;?Ca6m8$Aj$h%g5EOMDVP!Xp6R- z0D~E=*Bc82P&QLn-^+&u(TMEOu%;y-yFZA!{dxidCMB9AO8Y@MuZ~>}J%6m*gA3l9 zs9)5)$|5F01}OS^*=s))Mw#}9NK}wO|Apne1uN<^UMLBhWKRR#_>SN6zazjfDAMFO zk94!~tDsXc4%%#fuU_JZph);%UAg24_|Pw(3O5;rivK<=oZ3GNX)V0h%TTyqJ6+5wpsS{#R{<5_fB3`7=`H6Z;B(U8*sBR;`9305{$Ps z=8nbpK#t|;8EVurJbAN`qv1mVHZwN^AI5;HnGrGbZny}Kqqc!}T;-7LtNG6z&y z%gw9oYfw@(o%(}-bj9PDOAo}!&|bM!dM~609@3jCRPzjjS#8~}SlAL^pKJ3}(Wnr0 z@`V~cXAG=s4^1==;9**6_@R+H4jvqUA#3xmaQ=nihV{=W=&&`_IJngZXa5`Ek*uM? z(S|9drOrk8eBqcJ6K)Y=vJJjWsBOUI9;N=akR>=-dRX=%ZUNG`3cj2|I^lcYU*{%{ zE`nN8TaDByq|a-7fUg)btZy5QWuUs+LLi~v@)!xG&N1A6K_r3k6-d;M4Q!?ivI3&8N2F+tEl6w5UM&RLGKy(e}Ck{%v zJhE}}6mYD$x!H4M0XniM#x|NXIDA4v`B`T#w7H}nj*rFyPh*iZdlwlhLR{;;QNKOD zHB}TpFa_wkQ>91qjCob=JP#AFx026x48r}R3@VM0{%1=UAaIff@@+@0rYQ2w&gzo>LRX99#-|A<>C&Om!oFn?|D5-{}-&5srl zA=%}^vt#$CAv%2MSo_QbkYd$0eg+~P{pQBtK>H$WpB$`IS6YH*xvjiFUK$9c^ThN% zAi(t_kGfiZ4#HKbD{9#R6p;96DL3VTg#-L)_18N{kO8@hgNB{Z3fb9jJ@HWXnRuno zg#t03#5QZ2NU*9!lxX!{0#WG=dgbr45Wl9SO?RLhL`c+A%B@r|``vp*I1UdIkGN?; zXl`7WsU>Org#?3h2Gy?~ks*}znnOj!D17Jk!@NQ9{6RYDp&Qb_uby@HuGv5k&YECp zUhOc{+cF(haYcGT?V;pLZdg!bWM2vbraxQ$#Trj5iD>#tE9h#<|djg{?{C|$uOy4 zuEyU*1p7o>@IV3)&Xj*}{&;~1(vx{2DJEku*xi2N@BkL*g|Ig#`Q~AsZFC@8WC_@k zYeYMSw=hgN(&!) zP@t3H@*PvkIB?^e!&2B#o&2L_Wlv8yw7v2#ez}=(s;9wtQ$lkMA z$VGoPucCijL;!oIWE-zG#8)(?w0{y^g5pfG{EFsDIDh9+L(Rw{teob&!iMxh7n5rT zf3Ed_nYF*WT;USrhZCFC5$6z)dfb``J+HC`^)@@PPRL;@yZ3hiZKY_-K4}JM4%SlY zuHJ4DG2&IyTOiC~3GPE>SR0y)9!QEid~pgXf) zj%xuAT^4tfZ}Lxo=L0FHXg9=V?5OFr&(L7|+M}`?0=-ZenfYwN01v(YW&4@z#lgC$ z-l?|FE3mtINe$yT4cK0*k4btI;Bfbk`2KbVWGXu)T+rw2rKA}o;8)^Mj>-jIBY;M1r|IjAZn#c5*dAVic!h$u>S_)XP`ue!Ff)keNrfe6q%3D) zbh@Qq|34ZW;CUwC&)Elz9sRCNHFFT+XDcb%y$(m|7%sHj!a~H}HZ|haNl?}P!+*A# z3h{-Z8OAr4q2v0#j)8Ye_a5R19usy=|O=8MXuML7G!=!%2}Nnhp>7(9lFI zUWTjHqZc|7$>8)~;A8z+96TK@+c}TL!!p1fyZ}XvgB;~!**2D~?zx{Wq z@$n?2Ty->luuFum_X+;Lk=|7I=8AAO#{^7B)L)%w!~x6EhlOj5!(ix}VdqA}1EB<#$FZwCoYPqWY5tf9WD+(!NbVrrMa;Yt+9V^7r8MjlzO+-5!iiYA1~H zJxH|+?uT0XB&l`l1^DzTCs6q}nt#^bs~wjjL0{O@P_y^*U~J2*5|lm$?2(D<7gs3Y z`AB0Z|K$MWEZN%L)SrTj*P3-r%uv7Z^uC&Hc@JPt>wGDe!^23JbTn`EAf)j6In^W} z9n#-VZAo|yyr$)gBp(ytD~Xr=fGN^#tky^APxQh=*DLJ?p?J_ekh?kb6%TAW!rZ#g zkCs*heG7 z;?pZ%)FoEHL2lpNXT+VE{aCtHh#!Chxug1W;>*x`hardK01Z|vjkxY*kAZ>AtC7nE zL>N@;?FrMJhWrWh|HM8J;GIwEkIn*AFZjpIeu^80^3uTW4xSlkwM>yR(H;gHj+_pD z100BTczvEky7#Y;!wS4;zV}C>N$NY|pk6C1L>LB4!rk2#!B6P@ww_5bKFK}_9M#rW zBwpd6;TH4E-Ap2kKi1s-wu0&v;*nWn#0~U_tnpFqEW+_EH#ytANDp`_!B}x{7=%1B z<+BhEC@EmPA)+?~4o9!}7ycl_m!whQ2Ng)4tlj%I$-M{iT{4>m4)#J5<43(pG`DPi z>L$Qfgaa*2Y?6TXAh14`nxTs%z}LUCJh+GCY#?;1QE2hpl z!1x9e?0AFMg7OWkXq5`GbAXO{TjdM zGX)ucFVr6hoPj2dn#FA)GBC7x8rvs~f>GO#p*ufNKidUwO!&rtuBsq(1wEffpO4uZ z8W4e1n3wM$(qTs}MjH*kV8O+5Y+9pb1Dq&wG!YcfNUSfnyFzmHmpz`~`_v$Io?i_noYmERhMhdFB&7H`QVDEDT#-+urL=QIeu z8{ZIrR}ebOERBOGpMTPV%Cm6MbTs{TBNoc{yc+C@8G=Y%Mb7%Ch)bF!jBh`}fzOvw z6EXZGEcM^0^{Ar3lMfHC)2pI6MziEVvHl!6z=p0_wH6CPs(GPVgwU=JoPr)yR&F%a7L}1`KZP$l&;2z5XOvQ_)GDV4%UjSC=m6pt>YJA}Q_J@j;O2 zeo*xubsHal$n;*YS%5cFiy5lwL{NEGaI5;%BoK$RM}*P5IpLsZqvMecxDnp*;7Rl( z9E$rc(0gYY_E{$D^6y;&Zq>oE3CH6rr`^E0) z#R<51h&kZkAPpvm5BO=#%)$fuHJ@XDQ9tpwv2DQ|oxi)o*jpX*P-S+!^=NND`2M=v zDRzSj5l@>M`K2guSnv(k0hdL#{4%FpNK#4p31ar&Z7q@S=q&r5E4hJzJ# z(?@4q2cT!x&%EsE5cCvPWmj*}!241t?=;^ih^Gfw&Z0TcIg36%q>1LQ z{#HZBIM;yt)nt~p1rdJKWT<}Gz(RCTalx^3h=UTw``FGAVYcZ-ch!YixXjKMn)`SZ z?#f2KUqgLo@LTEfW>zwO4r?cPp zeV*rD>$lb;>du6EHe2z+HHlwC@Z5x29D+K3sX^eJ9&$~dEY0E1X7T;FBKx^tdlqcK z>FZ?01XQ#&Y)?5&fs2g`_gmNghJMW~*KG-_zl)&5 zy?JvzuMh5$s#o`K)ImjJRBA(SAM`S1+~NqFg|8dFyL)5C;mwtplip9J;lKT|R62<% zD0;{B_Ed5!l%B48@|Q>g7EUGg132&PzUXV*sW=VEg}g&N$fGe`^cs2G)B&G`f>YY0 z+F|udyhp=>MsQ<2vVNAU9)ihxtm2V3h*#dE+j4yra{mO`e`6=Z$N+0BMQ{ota+1BJ z1xRrA`=Nj-9n{^vtlYl+j07O^z$e25b}f8gJKOi_{pp>c zMLV}1@^>7ZF53(x(Z)b+s%1H*oCpV34BmXMq5*IEW7@7y1R&H&^hu%5`gtx@F8jX; zm^kd1r(HG&&t90=jfwYw#Z`&W(e0==yen-=Zzcn$DvOT6*Ytu5!6>AsjKAg|3`kr^cpOcJ!`HmoB!>qe>3U(Y zqfrOwXFSlK!gcK7c^wIX={oS>@h>RSMt${{IMs@b=XHr^i}|OC(8TsEd`ILUtZAqA)0RKMiJidW!T8Hz&k)Rg zFmMuB9)k-Pgk<$d6i{52%kl80z|%YZquDI85J-HNl#g@51r}a9o@@P(dg1NdO)7FA z{l6IRD%C*P*PS0MB*sCSbqm!>t_%JgHD~Otz3kN_va2fbxQ6cK=(bmxT(4Z_-b6KMz4b0@YNjauR%0Owky#| zM4mt*XOLDmIt1dbqXp|z(@;88m(u=^NFK5s;KMs%EzrXM!^uo68bPwgjgODS^ zs*tvf=Zkm$WvWIHVWg{XoqiV$l>h2JcK?pw`FCU4s?7%2Xm4#RdrpDvr&>N|OSXcq z$^%lier33SK-t~RQ}u$s1XaRhbpF9gr0v*O5&_6N#pYSsb! z?rP@Sk7|LF&HnJq%vRXgdUB|K4u8){qV$?94SJu-R{Oe;p=l`Jzbs)2W@_p3&Q}k@ z@aGF>1g>H3C-KN|{m>*7Zc8c1_Qjk)yJ*|pnPI3MmCS4C7=kai=cXJvdvU#L@&9sZ z79{_iNN2+D{KnfUceh<*aD)GkU$*89r0yKBi#bgN`&g5aoZcpgIJe`L)kGgy^Y`(` zD-)ppI$K~O>a1nD995}212Ab(_n(d5B%Bd6d3XtR+o@5%`sWSI7)`BW0Ah9-6XIZt>Q_)GXo5KoLPU8(4YPo!s>zV(GS@O z{wlo=m{^KVmq8sn^4a00f9|p7o2J3<3A)6AhAYP)|`6+IBNR2{~$(zrlttNH9Giny#CN9PN{3E1SLr zm`vkOw&tWmmjrqC!gfj_&G1d&-25%) zcCgg$7tDJ;4!NVz6AJezFwCIcuE>Pvi=I0Fy9p4ljMd5O zMh;Xuy}q$=9BkbOTHo*Pf_Dz|j6RqHbAK^dXnCd|++QsY#d7z8Yji{^?PfO|fBk41 zpAY(47dO}kP`8Vk+qPh~LIJV-nHzJ0y^zHGkwIRj12}mJuda_%fuq9j{AG(VxD_y; znvjq0on4>SKjg-G8N;tSz!JzAk*0P{#AMzQcnUJIsMdq-;hp^HMpu9j|~wyE|GO*49D-qy2wm__cZG9$>aj`-@0bq6t5W&!M~!_ z)%j;L^ivPXti2?{jzvmJ1p4|-T2C!%QI8@qRqjjj31C!KHhkHMK}^O%qC$l#el zug>o_0p=p|Mp;T-5NT{)%v@Oy+s>~^cL6~ZD0|CbIEsJ)m+VKGPHK} zi@n9~QjRM#U57RUBE_l-AHrv$vYLAP!8S5z7v9*oIZXnQ#NeR`+^4HQ=Z`Qp;~e%Z ze$9Sx41Sn8#eWW%tc7jv*GE&oYjBy&W5S&1MuPX*0Olyx5Cy9-FB*XLiFns-IfpgU^TFOzj=QP zoVMKjVx&$1agAr;@)2E75p~u>)Nv9TQZX!p`%Nf|0+DdL55iPPzjHp5A^u#9-!Jt( zu&kvX?q8k(;fJiY4d`1Qd$~<+PZtpyjkWk*Y#D^g(-A@akH+B`F?C6Vg3m|uIs?si z0=Vx^-+ujX0GzijIdkLl-DP^Wg>C}pOkKVdw-e)VJC<~i$zTGGZc`ZJH<$*?0rP#% zc<#&76}t%yROoFQJ<}A>0UzH^BnL{i!}jz3|4Q&2dUWWJRX<-p+<(YFrh)JOD?aK$ zJv_%+s$0GbMBUQ<#K|wRL0!P_UilyuzrVZ5ihEwPjDwrJP-n(Y)J^Ve7Z8u=h7YMj zT_?Q8@m!rRc>7)h4EOU)d7rC+2ZDzWS!|<$cb51rrafKol1`>{ayxSSmF~YJP7xuW zQEpOR3dhaFFc(v74w~;GPw(07*}oZ_#huJtQq<0Hw}#5vKN*d9)a7Z15OvumILE~&6oiG zVUY8*yvu*969(O$e_mrG!`uAfs)}kNytq=$w{H=3!R?PVUOdJ5;NIGa3HxUBtqtn~ zQSUf4xNWpZdj$60ey^qUg9iSRE-X8cZ?1hxQq1V=0r&NL?~bFN`9u{9;xH#Ff z_`tslth0`fM(-booXgD>*Uwj?rlD6twAAvbd6X^h_2wrQBWM}Cr$O#zNP zI@|Ne=f$c_hx|sLs!)bG;?NisMz1&R+{s6UQ&kp9&L=3KoOOEnk61r2|M0prZ-RNt zecqKk9q3yb@!ykE>;caWxj-2Y3f!=->2NwS3HAZ*KB2d!AUdS-5N{!Jk!_cz-@1~) zd9O-Q^Ogm8^sKfqIddG=9S_G3AHegt$Gb^RqjC6t>Dl)i_I)5V;b^7)aT;p&d^5U~ zIS7U(CpT44x2&_Sxi)pD2a;`ACS5bgaKc_SxJ!!!TK=*@o&CtAY{g9cj$UZ{toI)m z&iia1gc=Xv`tVZmQ}IrG&gasO+}1W3fQ~1-A7193fe-Ee$p=Gdkf0t|vjuZXG5e<( zx(m_2R)2R-?|lcM%H-t=)k+yAR825vcDg z-%;V!pM)Qdp9;5NzS-O5vHswXX5dw5naso-*QZ$(SDG8Bb=ERUJ9?hJwGy8ovvNj#9wwQr?85JjAVgB`JXQrpD=Lq=E7dti! zO@qwSJzV?I=Neb-=-7!|uha43mD7Bf&q#{tdH#(Ay9;^}&zDTVu_c}zEO*=Be!azeWFj95MC&8BMIb+4U8$l_PRIi3QUA$&_ zP)|`G)Sa_X?WIgWRY;ykJaZ4++ONGa9zlXl`7y%c3o87(-}<41Oo21HW^q3Xn?RR( z{$h+j5!zka^tW}O|EDc5Z*PElrpm?Q)3sC3bi!P`HlG5)-Rbs!a33eGm~FabP%$5K z@rdweBAokB=H_~P4tCCb_f58;!S@>h>>4-vA%#;?xqg}k#rf}alwEp&+kJn!SQ{Ds z+bev#b)gR$Ud)Uwd>MnN{%w;_BqkwfwQ`XM&x>&zp>nKenxNX?%>_}M`$F|+{)PWH z4h5WsTk98wVJppvwOM5lCT=a}M02!*q4wK9xkW@6jNNV*alHp(dat_nnsvgVwkWFt zj}B-^xMhB`a1?Hmjm;dP1tx}y_`~+lK;<^uW0N)XTYkTI?XuJYxfiqjrQZ%gr?B*a zXJ1Ew@ypNh8{J*-_)qHoGB4y7oF(l!4o!iwiR)gHR1+Mb3W&vc_JWl1s)lJz8|Gbh zg>>Ne`u%V58VjDYZk99N{Si!sS!bHEE7K6HtQq=ENjCt)v35TJ;c3XJe^~hX@gOKD ze2vZhMg`@uSNRv4yP&xGXlsoJ4f@zB47{Yk<#`m?>bl!#;IrC7l$GX!U z5XBm~XeZnS$B9QgX7D_vo6CLb#t$-FOX2;LgLBJu;$&eWa;ZV_o-aK~ouKIPXX62K zum+J-gJSeq&L*oo(J3CsJYP&k{Gl$`nj&*a1NB~~#B75{VN}pdWA_b+od))$(eR5^ z)9`cMW6}z9c$r^o`FH7ca}?mE7fv-ZN4~nR_tNLkKCtJ{V<)mqg4ow;qNy+yuG_r$!In@98>bI4 z&Z2HVhS$K^T&98Umy=($CB{I}do?b3o&;RsTXELL^+_T5WFB=I5`44zo)V{lqwS9G zaW;IeFNs-$l_mV7LDDdlBO3i+c9FS9 zX700~Cmp#+%ASDD@~d~ukdLJkeDjhnvKKfCHh8}nQsF7bVJ9MeFEkJLzb?b~WxnGK ze=Kr4-7##5c8V0}`4^#R+|>u#hJm2IlK>eJJ9vB;d!eR?Nu~q!wxJ-AUD{)~ep_vQ zeVz;R%?Gw}_p;T1@g<_{7d!{wXXS0`OKpTES2Zc$54|9^^=$*+3JE-hbM1EgB0^X5 z=Q9RdT7d9zg)I|vrdiH9Sv$+CVBgFRtAW67p#P#=D;C-hstn?Ows`*7ze`Z^C+1Ta zV!uRX*HFOF@r(Qmwt09(b`p=UMh>C34$?(XM?P!2k(<>6XZyJLas*Y=Sa)8;#P>fs-+c; zT%^rgrfueUu0G<*DO+RI3Cj}V{Up@6^Ag-XIxy9P7we9JUHF`N^ANs!RIQ?Va&*I5;O#on&SA$Ai6 zeQJ;^oonJ)UMF}e1bvI^90KgwkGGxdWZO9h*)@sI+eZ7K<;*$}4BD)s^U&nNN;Ct=#d3L(dX#`4j z)A;tI&Z)^>uJ@_D6OMii_+7l63N0t!53WUH?(^+2Q{Dq35Il4JNBti%=(I@PoKx+D zW8C$*c1xHq5utHT`VPU(7?Y<@F!%Y;iI5_}I|=*h_Z65XVV*HEmS(up3ugL)@JV$oR={LjT$gP?99uj0)xk^@{?$3A4$Em+z7_P1VGjU}?-~AfVi%qZ{y0%u_ z$i=z$($h4CLCl>vXj4+{?2yZ>5*U5COan))MW~)21B+$%yxnOsq(z^y`-pR`#eR)z zJe9bv={>G#3!H%GB-ifA&JNfsH(23afw|A7Yl*kTkPsokQ4pW$H3Gb*axZ{G;}EH& zZaauNH&3Oll|mg2w8rHhtzoakujhvMRqs!MM8jiBxp^~uU{@0HlIeu(Qm&q1oYMka z+C#Yu13WXh>#DU*-cO%tLV8Or<+Yfb7a!Ls{70 z(;@%o;q6%LpzK29Na}NU;Xq~?KmR648%g5UN4e^&U84CKEkv&+Aq&iBF5?SGhFpT&Hutx5Gx%ps1EP8wT2r$J^3 zvsy0dD7O<0*}XEFA(HX1B{w(vovSzX%rUpLtt8-yAo^{G6LNz3@I5Fh9Qm7ncLcmy z6dqp|qClbQNfpuFX)v18|FOn=xmbtPpSR&@?=aw0cdR&pRHmf8kf z{wKaC-XsI_F;Jehp@O2r{cnltLwL^am2IJtf#ZqB(scJYyuHjPVKz?#j^zO^snkK} zY(LPU6pQ&P>$P-G^f3a9tF}HP5I|c$?<5`0|Cy`>r?-jL!r>D7dHGwtAlauQdzCx{ z&z2kdVv}2-#Fp`Ttjqw+#7c;2P2l-p@$KB?_iiu`y#LTh1^LInBkG1EB5c^(`kz9s zg!g&Q5&F;QCnvA;G~zt6WEBv?{S)(AWkHjK6UZAn66vg@3Frr0>xrpqhSc71#U9-i6r*be4;{R&yUBRK^;(CZ@7E=^(n}^aJ2n1 z`eh++>62F^C*ZcM?RHPpqk4RgNivO)fsdf=@fhyu46QG2D4``0 z#=9O+Kft@**Eay?_k8s}=!brJnW5SWp2PI7*4?`pQ4hCuv&GI&B3CPTr78vcQjWwB zc7@`(AS0gdvQ{n;wm8gGy+w}w7{C6-oUfB`R9*Pvy~aA|)eT~^{*L?(Vb2~u7AnjO zU(ha&A;8)NJx(LcIXx`C`l!Zl0%C`lg_x6j;KM`jd#yRhJ8UZy>6yU(iTqalGYu>$!-{CR7q2LtdQ4pVPpSqe)g$};Azoo8@ zz=tNkqh7KU;GxpAfA)_6yN~2rW*PzPRCPi%=g@C%ZY}zC66c*-uWfC}&mHP%3n#Ml z!hwT=7Y<_HeIxn5g0qw^_+V}%EJh=P!l2Zm4{;9q+BLQw!~UCQ=VE`q4FV*}&RGq7 z?gJg=q}5-G6o~nnxMLpI568DU%8^H!;VkEAPSQ&0#M>qMdZy^vRK*wm#-gdY!bhSoliprF*S zLSKah+vh6zDGD9nBx_#HW{$y8i2LHILy!9@2klAKv-6l2wGEZC)gA?fSC1mMDU)HmS|RjYJ`swJ zI4j&^X@-S81}tHeJ~-2Z*FiH?d7-crX zxQ(=!O6(L|y7F+ZOcM4E3Ab2g{YQdApg%UlO#^+FqGzWqkx%pd=yKL<1P&kJHczia zUW)CnRt$29U5S$aLSX{lW12}b5jif8;$sg+a9!XCw7DBO1<9*?HqO4Cc(>E<_x8x4 z?Kes0T2(|&RR4^x2LA-8Z8PsN=A^rjTjJ@7{xBCtHtrU`PvRyCi=EExEI-GkxeM-pk z83d90F&a+T3-|tjwj19k)cbd_C_B^-fQG|b(Aw?+XjNq<9^*k>$?0EbzGeqFa@^q> z?r8#1jdxAnU(vTaXqh;(qZRBEp8TtKLf?MJjf+bkP}e!Nb2tarX+FyhlFzLfI73{n z+wp(~zOOE5D&u#n#9nZ`b$$ZuFFObQe9!>aRU6kFPvc+velMr=RYQ-@iB~#9BxvRg z=F0TzgvsK{V|#E;*!QtVr>&mzhx*~E(~pW^yBV1AxtH#vk3LA(!q&{!9Z;41eM!5P1~xQ0gNw~%xP9eaPUxWl z_}OBm;^Ibwqkkk@Kl^loO16qms%j-@FWG$HMm{m?xK|qu`Lghz2Gq;}0_X{Nx~uG^ zfPt!VSweF=n4O6lD8;#hZ8eM6MYINY3RVOY6!7QQ>jBe zQMOwv+YNio)```63YdT9ro^di*Frtch?|owvlit4i(1ZNroggvy;2DFE76A>U$&yQ zz_RF##V3m$z$BO>W7pgRt+HOs`OfG&KL1nKDKH9Zl^wSiw+uu1z{bl^9^@_GU+FAV zKp!!p@?$+G`hy!)-I+iFW-HHagK^Cee#`iV17|A?F0`#C4NimY(D{R2nFOeeTo*Zl zdQ;~Uh3$5UG}sdmra6o66Wcz8Yu;C;K}6qdjT7e=qa6Q_U(okjbz>@&+%^L{Msg4S zMBQ;=6Js}!;+{A84tId)3&o?BhkD`U%FqS%bED8#yzBkFkC^Kv9$z)$M?Uu3 zE6(W0m{VNc`k1k@0sh<7_t+ct-1T6M_X#isUr2i-PiPK-*l)9fB}LRR6bFnJ(I4Z9 z7Hqz9kKIbGWO#GQPc#no;+Lg**Uzd=gWnyFitWhJ$v%@;6~O$I zkugPe4f9)Zt-WGQR|h~>{4vL)Cz#iFYSq6hH3JEHXDSE+9bom36vNI=fCh5H)kCPy zUMb0l6^O@NreMSaKgu|;oERMxD#!hC_SC7;o=Fg#@mfgPz&R=2H8)FU6vn=d)f0@H zf$m#WGM_#blCL;)4}GYC>$9;bdr^l;(fpU%8P*OD9{v8Nfjp9tiRX!gA@nQ9xVZC? z12XamUL}q+K=@9U>QLm@dB!4QB936+B;St?druoLI$8XIcLiW z%K;!J-&jw0fa@n6zw*{&1n|7y`HDVv9LRlTGnM8Ou+jgpm^B^slf zR|5E*^0`LKZ0&_t#BiHj1@z;yRLsh3I^j_gulG^p?DU7|Id^~TftjSIDF@KE5HVO) z{r#^Ce4jOloWk?6N^u~oS_$^>y<@A56r;gcmz1TUNSp_Xq(`GLe{21iWqVdf3+!^9 zca6eG=l;PLQq37%V9C<+MRj)@xUx6Ped+83^VdPAYh8Ll`3vi9R({NB@m{~{KY}?c zF{;pVYbVg&^Zbg58wE$^1oqd+3#GVmSSKxDo-f{pHGK=dpUpO`%m1~)WVaGm^Ck^a zP4^wtV4eke0}(Yn(lD&G3}*k!#Qu#*X*yOR0{X-U_Y~d4Jd{f1j}abxZ&?H%zBn}i zAN$QjJ>{q2{-%K1$XUz{T@W%Ax;F;*o$W4t#T;CFwy7Tt&r9Yz{~jvEeSGx2&x0D{ zUSQ?l{M7qp9&)btyOp9ZubsE=#Jx+M;N2+aeBx?7m^;5+QDh>+qZUJ_>mO#p;+dfU ztJ5%SZvVVWyE6jUj;H7Rzi-NHkJIB(pD9oYoqBb&rww!u=NqUqATJ$~epolH4Lq$M z39dHx!2^Td|0;b^=QRtt2H5k-S1u#P~Fu;s{Kd`@O=Mq<*mXSrdFWi_T zcx&SL3c2j#-V z+Hy(6iy?jhZVX25Q_w}9(YtD$=LQ+Z8YW#%8dE{4HtfWW zqpQb$_Ft(3;Iu-Feu3xit6}pRtCuLSS#(k~4f8;^_e4zajOh2VO5(cI^xthihNgw6;ri!E))7qnS^dQBPof zyNv5?;G&V&Ys~%ooLKz%<_Q%}{%%+wGMRz@?wjcv;Cg>A;fD_m{Z1~qCegjvw1p#&H zwYz#Q&2Th?yO1Mz2z$K*I~@iyz@}e%&&DMZgr^_B5QcL{-wuD7|NDQJ+8B1YQ!qbg z-_c}={Gs`Qp^V3hG}!5qS<;O>>jk&dni=|?@N|QpEd~aFE!ZeO5}#{3>73^IjbZr5 z`A3->`R&h_?%Mo7-(g)w`ilhme>vgqb+YMQAeO{_M9E|k?iJI{6oz1r;p7Be&`>uN z?3HnFwI>2^;+gg6a6Ct@E=aRqq5*4Js?8}P`nGd#qU3d`phPZA8$FMDVr=}s(xiIe z8Gpw3?Ir=fuP^>#2pWM4A4F+^v7@l@wKdWg=S-5fe4dZiD98@Gr@OFX?o{gY9WU$; z^z1k^^ST`SW)55UT&N|(3`~2 zj$2Y~|B$2EAY_=TrispC|7@^Wj)Lwe@C?=YyMG^oejlm+koO~?pba~lurJ`t%Dz!v z+?NA%S#~>OADn_8ZG3nFTpy;7 zR0p&I#cJ5u3jh0~?`O={)qBB`KAgoZfeeG;&3{&Z;XWhmw>`34Og5xr?q_yJ_(9l)2jZMC=7|^Z1vC{+hrO6XmTM-H`bX zt}=aWgw2e{XEf-k5Gb|q`&3;INO{TMNJ1`rK!l&KmE zEw3(()WS1$e}-8XT&Gnyca`WN2e|X2qKGpIz6M>NinW+U4wWn8Pzd&)ex{r_6o>sm zY44Nl-e8{duCRSS_GN`Oe{lwv4p5(Yt}lhUrml)@gls@JBxXwlhDMA4owH|sOX)cF zLrb6fBT0n=Vuy3yboass3EnLyds=~Y`-1P9MK3fGv;024q5euFyGxc7e{kE~`OmLrqtUD6Dkn1~O2Lm|OSTfH+& z2Qg=V!>++vZUiJ0O6vCwAlI-k)?2Jd0HLIrZ)V6dx|?~D@y&iM`#7kwD}9aERCvd`+EKE8i4urOu#w(ps zSDyA+bKKqmfv-L@L}w$Pb%~gySkMU5x25?t6iLwc_EuDR<0O=ay6pQEGzzrE*dJaZ zO^|)r>Rezs8Gd{SYx|2_-TQdsAHoh)IDA7+^7lb}?)3V{KlKyfY@}$8nOz6Cw+}zi z3&wMvdWp>6YUHW&{(d7SV=vMlOJ zR7^W$IDZ}d7Ssd!-DQr)pUr~F8>N(wo%N8&qV>wtW&+MujD)zwQ^0gV<@|wITt8~g z7sz6MLA2v$-Gt91M1Q(aW)#f z*7=!Cz@Dz}JI|iIZ$APmC9IX_QMcpG&yN^$?}fv1_7)^90;Dw3ciG~3U+&JYne@kF zkXe~vBg!`b*O|}n{D67JPCtRwk2Bc6l-Hal=RO6Q6aks!O)@0=^$v(7A z4PV!&^Pf-mf=980v2}GPjCmiJ3cpQ;z+)`DdDwgFQ=j|C%#i@A9VM>WjWj5~`Z_aq zwj27o7sCUKCV^YMMZ4U20?gDudKY!fz<}Vh-fK%ZXTIQb`VV_Do~dnhKE;VWx#6X; zJC#P^f%UCa68h)zKfm4R-a7(U-S@ZeA87;eV!6$myD?X4UE&s^UJAF}SC;=^Uh>ZF zzedv)n2*qE&7YAbgKUu2jb{>d042es&|K^fP?)$NHB5ozgF}6zb~GqWl_yVQ-t8W3 z?I1JuD*X(;F%=Rs1Lu5QuY7(!3EB=PU%Da})UA?`$B8<^S5czzTT|?n7iE#zais~4 z?^$@eB^C2Kd)5xM`Hh2>^iU5`WCFIc_w9KRO@a!>`BihwD@#8#(xb4&-J0z3PIt z4uZh?zo!-}Gmw$LLn{h~!R0X9D02bw_0t7&D>zrw&b}J%8Nq!iE1ck@I0QVuW|rig zvCn0t@T{*|9~>~tdLe*4RJyT;w?E=X-6D6CBNB7sua6qu+m7F(i}Id3FOnzVaMZEN z7YswtrlA&=cy=1*iw3f1zTxksR`cse3ij4Kx6i$cob4e&!VoLw9rV|;SD&zT!waQ< zecD7C+}YkaG$@2Qe#H#OcT-cq6n=S?OLGwBj}=Iib=1Mt3zxNmUbcWvf4%j>pK