From 52552e20cb492f7aed05fced78a1aeefe792a47d Mon Sep 17 00:00:00 2001 From: Marcel Weschke Date: Wed, 3 Dec 2025 13:14:52 +0100 Subject: [PATCH] new inclusion of the second step: python-exercises --- .../python-exercises/python-exercises.ipynb | 425 +++++++ .../python-exercises/python-exercises.pdf | Bin 0 -> 46361 bytes .../python-exercises_solution.ipynb | 1001 +++++++++++++++++ .../python-exercises_solution.pdf | Bin 0 -> 164531 bytes .../randomly_split_train_test_NOTE.txt | 21 + 5 files changed, 1447 insertions(+) create mode 100755 Machine Learning for Economics and Finance/python-exercises/python-exercises.ipynb create mode 100755 Machine Learning for Economics and Finance/python-exercises/python-exercises.pdf create mode 100755 Machine Learning for Economics and Finance/python-exercises/python-exercises_solution.ipynb create mode 100755 Machine Learning for Economics and Finance/python-exercises/python-exercises_solution.pdf create mode 100755 Machine Learning for Economics and Finance/python-exercises/randomly_split_train_test_NOTE.txt diff --git a/Machine Learning for Economics and Finance/python-exercises/python-exercises.ipynb b/Machine Learning for Economics and Finance/python-exercises/python-exercises.ipynb new file mode 100755 index 0000000..009f8ea --- /dev/null +++ b/Machine Learning for Economics and Finance/python-exercises/python-exercises.ipynb @@ -0,0 +1,425 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "6cbef61b-0897-42bf-b456-c0a409b87c41", + "metadata": {}, + "source": [ + "\\vspace{-4cm}\n", + "\\begin{center}\n", + " \\LARGE{Machine Learning for Economics and Finance}\\\\[0.5cm]\n", + " \\Large{\\textbf{Python Exercises}}\\\\[1.0cm]\n", + " \\large{Ole Wilms}\\\\[0.5cm]\n", + " \\large{April 24, 2024}\\\\\n", + "\\end{center}" + ] + }, + { + "cell_type": "raw", + "id": "13be77f3-44f0-4983-b4cb-bd3e4b5dba8b", + "metadata": {}, + "source": [ + "\\setcounter{secnumdepth}{0}" + ] + }, + { + "cell_type": "raw", + "id": "a4c564a3-8712-4601-84b4-72b51df8bbbf", + "metadata": {}, + "source": [ + "\\tableofcontents" + ] + }, + { + "cell_type": "markdown", + "id": "040dc2a4-910e-4cf5-9d1e-62fe7d0a8efd", + "metadata": {}, + "source": [ + "## Important Instructions\n", + " - The purpose of these exercises is to get to know Python by solving some basic programming exercises\n", + " - In case you struggle with some problems, please post your questions on the OpenOlat Forum.\n", + " - Particularly difficult questions are marked by $\\color{red}{\\text{(D)}}$. Don’t worry if you cannot solve these questions right away. Throughout the course, these programming concepts will become easier to understand.\n", + " - Sample solutions to the exercises will be provided next week. However, I strongly encourage all students to work on the exercises beforehand." + ] + }, + { + "cell_type": "raw", + "id": "d1a6cda1-d74f-4a81-8c17-cdd83a0dae17", + "metadata": {}, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "87902d82-5336-456b-bec8-403530c75f00", + "metadata": { + "tags": [] + }, + "source": [ + "## Task 1: Constructing a dataset\n", + "\n", + "1. Create different kinds of vectors with $6$ entries each:\n", + " - vector $a$: a vector with only ones (hint: you can use the `np.repeat()` function)\n", + " - vector $b$: a vector of integers that goes from $1$ to $6$ (hint: you can use the `np.arange()` function)\n", + " - vector $c$: a vector where each entry is drawn from a normal distribution with mean $2$ standard deviation $5$.\n", + " - vector $d$: a vector where each entry consists of one of the words in \"*Machine Learning for Economics and Finance*\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f1cf1749-9e5b-434a-8f45-5d63db20ee2a", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "73330b81-0e43-43ac-911f-4086a9f9788f", + "metadata": {}, + "source": [ + "2. Stack vector $b$ into a matrix $M1$ of dimension $2$ x $3$ where you fill in by column. Stack the same vector into a matrix $M2$ of dimension $3$ x $2$ where you fill in by row." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c658a6a-1c6a-4350-9c4f-6afdd4dbaa7c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "80e4160e-374a-43e1-a159-45077703658e", + "metadata": { + "tags": [] + }, + "source": [ + "3. Add the two matrices. You will obtain an error message. What’s going wrong? Solve the problem using the transpose function `np.transpose()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cb851b64-3518-406d-be06-46721a6eda01", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "03d19235-25ee-4c3b-b7bf-97cdf27d41b2", + "metadata": {}, + "source": [ + "4. Create a vector *train_sample* with $4$ entries by randomly sampling $4$ values from vector $b$ without replacement (that is, you cannot draw the same number twice). For this you can use the function `np.random.choice()`. Run the code that creates the vector multiple times. Explain what’s happening. Fix the issue by using the function `np.random.seed()`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "81aff077-3d61-468c-a872-9006f75af9e6", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "79732a93-d610-4d49-9bf0-a03b3f4edf22", + "metadata": {}, + "source": [ + "5. Put vectors $a$, $b$, $c$ and $d$ together in a dataframe called *df*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "849fa290-26b8-44de-815e-59095fc3dd61", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "919dde6d-4ff0-481a-a0d8-9413abe8f56a", + "metadata": {}, + "source": [ + "6. Name the columns of *df* *’Ones’*, *’Seq’*, *’Normal’* and *’Coursename’* respectively (hint: you can use the function `pd.DataFrame()`). Provide a summary of the dataframe using the `describe()`function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55cc73a2-17c7-4e5c-80c3-f9badf83bfce", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "ada39fc4-a156-40e6-9281-9754302d2ae7", + "metadata": { + "tags": [] + }, + "source": [ + "7. $\\color{red}{\\text{(D)}}$ Add a column called *’Int’* to the dataframe which checks whether column *’Normal’* is larger than $0$. If that is the case *’Int’* should contain a *TRUE*, if that is not the case *’Int’* should contain a FALSE. Proceed as follows:\n", + " - Create a new column named *'Int'* in the DataFrame, initializing all elements to True. Use a loop to iterate through each row of the DataFrame. For each row, check if the corresponding value in the *'Normal'* column is greater than $0$. If it is, retain the *TRUE* value in the *'Int'* column; otherwise, replace it with *FALSE*.\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59650599-11ed-4be4-8e21-4737642634db", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "b9f909ae-9a0e-4a69-a5f5-5f1eacb6bc2e", + "metadata": {}, + "source": [ + "8. $\\color{red}{\\text{(D)}}$ Can you think of an easier way to construct the column *’Int’* instead of the loop described above? If yes, add this column and call it *’Int2’*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a37153ee-cee2-4591-84a0-d57292ec4610", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "20e52fac-725f-4b85-a6dd-6d70ea890928", + "metadata": {}, + "source": [ + "9. $\\color{red}{\\text{(D)}}$ Now we use our vector *train_sample* to construct two distinct datasets from *df*. The numbers in *train_sample* refer to the rows of our dataframe *df* that we want to use for the first dataset while all other rows can be used for the second dataset. Construct a new dataframe called *df_train* that only contains the rows in *train_sample*. Note that you can simply use square brackets to extract rows from a dataframe. Make sure that you extract all columns but only the rows that are in *train_sample*. Your object *df_train* should have $4$ rows and as many columns as *df*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dcb74cc8-21d7-4321-acf3-c2ea7ef5356e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "27a77f7f-437c-4d16-b34d-07dda30e2ac7", + "metadata": {}, + "source": [ + "10. $\\color{red}{\\text{(D)}}$ Construct another dataframe called *df_test* which contains the other two rows of *df* that are not in *df_train*. Note that you can use `~df.index.isin()` to select all rows that are *NOT* in *train_sample*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d519d6f8-ebe6-47e7-b135-7c74c0b1f4f5", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "raw", + "id": "3ba17c73-a83f-43fa-8f29-3b773e25887b", + "metadata": { + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "df4f7f10-2779-43ab-a7b0-3bd1b3f15b0c", + "metadata": {}, + "source": [ + "## Task 2: Working data from the *ISLR2* library\n", + "\n", + "1. Install and load the library *ISLP*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "551285b4-ef00-4be0-8000-ceac1ca7742e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "45467793-413b-4441-8c43-3e4a613451c9", + "metadata": {}, + "source": [ + "2. Load the dataset *Auto* and save it into an object called *Auto*. Use the help function to obtain information about the variables in *Auto*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f55378d0-ff39-4533-89ec-59582fdace34", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "f3d8420f-8986-4b9e-ac8b-bfd42cd9cd8a", + "metadata": {}, + "source": [ + "3. Provide a summary of *Auto* using the `describe()` function. Do you think all the variables in *Auto* could be readily used for a linear regression model?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "abe5c34d-9f95-49bb-b9bb-0f1c0745a7f1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "7870bbb9-e5cd-4fcc-bb2d-d33e80b2c8d2", + "metadata": {}, + "source": [ + "4. The goal of the following exercises is to understand the relation between the variable *’mpg’* and *’horsepower’*:\n", + " - Provide a histogram of *’mpg’* using the function `hist()`. Hint: For creating plots and visualizations, the `matplotlib` package is a common choice.\n", + " - Compute the pearson correlation between *’mpg’* and *’horsepower’*. For this, first select the two respective columns using `Auto[\"mpg\",\"horsepower\"]` and then use the function `corr()`. Is there a positive or negative relationship between the two variables?\n", + " - Provide a plot with *’horsepower’* on the x-axis and *’mpg’* on the y-axis. Do you think a linear regression model is well suited to predict *’mpg’* using *’horsepower’* ?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4934957d-d920-4191-aa41-71fbadbe4b62", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "raw", + "id": "b7289365-b358-470b-b10a-f5ba082a8ab2", + "metadata": { + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "02902876-5944-4612-973d-512bbb27fd4e", + "metadata": {}, + "source": [ + "## Task 3: Working with external data\n", + "\n", + "1. Load the dataset `’return_data.csv’` which contains historical returns of Apple (*’ret_apple’*), the index return of the *S\\&P500* which is a broad portfolio of stocks in the US (*’ret_index’*), as well as the return of a riskless investment in government bonds (*’rf’*). Make sure that you set the right working director when you try to load in the data. In the dataset, a number of $0.1$ corresponds to a return of $10\\%$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db6354dd-52e3-462a-bac3-d4cc08d541ca", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "039801c1-3a1d-4870-94ba-662f23f762fe", + "metadata": {}, + "source": [ + "2. To get to know the data, construct three plots each having the date on the x-axis and the respective return time series on the y-axis." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f0f01a54-1571-409f-bf7b-080f749f874c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "7b3745c5-4b7b-4118-abec-6d2b87af06d0", + "metadata": {}, + "source": [ + "3. Compute the means and the standard deviations of the three time series and interpret the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36dde5ec-bc8c-4280-8385-420a06b97d1f", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c91066a0-28a6-45fe-b036-03fdd2c79362", + "metadata": {}, + "source": [ + "4. What was the maximum loss in a single month when holding Apple stocks? What are the maximum losses for the *S\\&P500* and the risk-free rate? Interpret." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c4ba196-b0d3-4841-95f9-995f4e127c33", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "30404916-65d2-40e3-be36-b0edb762db49", + "metadata": {}, + "source": [ + "5. Compute the pearson correlation between *’ret_apple’* and *’ret_index’* using the function `cor()`. Interpret the result." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b0de57e-72cb-46cf-99cf-dd348f59ba55", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/python-exercises/python-exercises.pdf b/Machine Learning for Economics and Finance/python-exercises/python-exercises.pdf new file mode 100755 index 0000000000000000000000000000000000000000..c1893b373d8bbd3eee2ce0fc7dfba5c3a85d0392 GIT binary patch literal 46361 zcmb5Vb8s*3_BEKC*tTukwr%GVng(x>aObQ z+WXmS?X{l$kSU6a(=pMrL6aTcUcEvyGZHcq+8bLz^YSu?TiUn)oEXGyj9dVs026yt z0D~;R&fLX(+6q#QA7eB>*CW{4d(E)}Dv9JvJ9;dOPcG(~zWTWk09h^ItT)6&Bp+(^-K zD!jg5Nr$)32IwKuvhQ-lURRGKyll9EJ>0LlnWS*ElOP*G@!n0g?k~bT4(meen>no` z>0%LF=L{cRoQTRpsu8Wl5x!mgT~wn-6O7kX@Zv&>MQ6#(nZy9m6I-FvS+kTRdJ)KlBjx*inc!fe0GI9gPnHAXKZyU2?WB=?YjnxWTWZvplUw*<*KA5-)%)Z9c zLGwjXb_Pi$egei0<+0cumqxIH971@9NKS0@Niwt~*o>Zab=)?=%Y7|5fcd#Ako!xl z0f`CYvB~UFPBb8jn6vZ5Lv1y{+t`zw7Z-S;4-o#HDrl*7u)5LYtGDb90{rlspf&VW z`ImpeDz=+r=Ng;QQQzGDbdwA!<7riPxc%y$5#H-V`~X6CA0OI~anx~D;eugG5B?Tc z(z;l|5d%~?w{O4f6qmDx$69+h{ZgIrly@Iwuo_36rZKq|N{jr`ru5pY2e+urZGwiD zE+t8KnG4@y$?2Fh$IfjHyRmP-!pxrDTc=6QdRU6EuA@-%!QSs$j$P9FD^Ac!YK5pQ z+o)o(s#2}P#Z~e+tHLu?OC`{VH&GB#_FQ~%4a!c;p(Ghk7peNE%A^a1O%kDJ;0a)qr)R+z-6x9HEXvtAs(O844lfInt3c< z(X{fZZ|pLKyABrj>)9cNv~}7iag0&WkLFl(f6wcd&gGA!O$@ur2)LdEK6BE;v3*zur$FxOOF1__ z2M`M6u-9U4&;zP)VuD+o$9(AQeu?drhl#mwLU7ep^lwix@})?(crVM$B{(no9`rx< zS)e3Eoc55eU#dF|lxgG5Wplltcn&SEgb&1;CUDA1#wT<}qQi1r24U+g@^iBS&F^js z)>+lM&#J-tZL?z^4x zk=Y?)aqh8n=CLa5481nNO%9mVU14}=_F`7s+G!UO?Rv!1J6dOS7G`|ezME#Z8RB?= z@=j^lf`IMMC+qwrN3pVa2rCU;v-*Y*jZsczFo_4dt{-L>P+eJ=BfBJ@ zvY@J^WV2Oy^SYPdPuRX(vwD{8pzXePA41Gx3pNOxxW()mhl?vi5Pwax>7Q&PTAWIsuZ9D!NR@ zS?i8u9|G5KLtNh!m0rsQ5Wm=K_BX7(k?NkPhBs1#Xi*N^G*=Ac-4Mb954|c6N>uWX zm2n;AO?`~)A^tdbm{o^C;MY>8tB$zIM<=>6WbYE93x&8*i!yb~xv&DZZV8`*voflo zXo1vNDtrXerdy9Woo*M}cQ*@4<=7RhOlct+x0;zqO#Q~Md<+h$U0jy+^X0BnYgr04 zWl$98hsH(OV>_iz8>n1JHyz;M8tC$CTSv}wTC9b(D{zl~S!3q^(d zs6=sOfS)BLH>4NYi4s`wZuiKS1Kt6AHqkx!wVqc@I1C$Yf%UnQWu*3tcCTjg{IF=K z9oMHs!vI9e&%KL1-Y9B?RuhjRxPDz-H_WxiW2fLEpH^1OA8Va)mW#bS&RRFok1=t3 z`Ppb)Hf`D~pQdO2v>lltCEtHvzT{OLApE>Jy?;!Ylg*p_4Aok0HoJ=`kM3NQV91}5 zUK?DvBJw9BhegEW!lQ-A@H$`hE#EfUk{9$h6OiGzE!VA{qco2QX;(Q45njmo0b3Je z--p+<^xV+clUBad#GlH8>z62$3eTEPl*?^{*;Oau>FlIBLH4XrS-WNQp$s_0A-;nkk2D4X5UTFNrE_@rIDYfB|3GLE+?m)89)*Z_g*CD>4<7+o>(5-=3L>keiTO|yd@BLu%;*{GLyBVux} zP)W?#jDC87%_RX`9>P9#f_*Z~<22F(JoIM*-OGVoLh#ZVs5K%jfl5&v$HQ`npX;yq zTy;l7S|=(ld!myzS0;U@5B(QxQIL&y)U#U$YFsykz*dT+AeIOUkWs~qyax=;GH0Vt zff7lA zrWc;wNN`D*>$ByX+xNaq!HfSmTvYgex%D=T?bm>z0PORC;f`T_XNNZhcqj5_4|u2Z z5f08}d6K45pzsI}-1F_DzFw44auN&mCbA@!@FTy+_cpxN?qb8x_Sop39dQG!wmaj@ zR54I~+xjB+5oTkWG^G0Iptoo@EOmvfgpT&hAxaL9zz~&9Vxm{e3V+5&ZCN*I!ECNO z@D}e>H^LF>3GD=4Mu!o zCh`^MfH~=mTYSJ9q{zUM6%1KRJS|vkHq8<7^I+<}D<98BU?|#dKjYnlFis?M?oFkt zeUsVVkul+iYH>*d4rbCv>zMdSANPuh3Itj+5ZWL zI2tBw=juV90p|Se%TDZ251s3j9WBs1n-%XhkJh9n^{g21+qW%kBqO?+ytjtqk>H(wu?;;lIrmeOTK zmeJu&pq>cnt3fmN=iauaSPFc`BY$dj+nj8qY-*zUZn()plq;@HU6M}s)p7qQp>2=OwEiZ~-_T6WpqtS#jb2lXDm*Ue z2Pp@D2$_?;LUlsCOFM>LoT@|l8k{b--`f^s zrD$f(JCT@yZ9(G+_?7#8dO%Ia9PDjJs$ZrS<&uZ9PIv@AKv$cklV0`;tNWTav^B)yE zuF211mtwdy5X}@qIDxeazc8#nrtg3X#BxJ#&x0Oead0lQDpTjlu%C!Mt|iemr(i~) zXYenuy4%&TY}kDz+Som=mi3J+uInEL(=n0ttNaL=7DxXGWIBrWo;bPhcM$Xk-Y3FB zKVORla}`2>;L)R`8qQ7-In!fi?K>Mar08<8LyM(Hi8(So_^Xs#>&p|D;?%!2wttvJ zuDN%)4|JEfgl%W^xLQkkq-81@%?!{rjB14Z><|W7o^?8vY8*giWBeK>k^r&v|^3qNo&4 z$X$4*t3`Q)(aUD`+y!oeB8g?L8jYDqc5UY~*KVdfM0d}X3d(ZP0h&VKM7S*8%1T?C zufSEp@(CP4U-L{9_KF60uR=<@E>jGl2g3ed$K-=m=+bp8h!eIiSG_^jpn!7@bAn~> zZTfdGm=2%7hcmh?wZc}1TM4x`eWmKSmt9GfbO19(3|Gv$+jPdenl0-YOp13NnChrr z$O5UJqKfiz?vnPN-k2-U;y4~b3O%rC&11RCix4;kEQ?Dg4=|-2xBvKj8XAog`S&k> zMQO61#T|dbN!1t(#s9} z=4L5>GKe9GIoLvzaFXKL;{D})4Ta}WC9<$`6Hy)QI`Kogai`_;d*C%8YZ%SF`3Se>-nb z?z}d&S}(kLeumfVB8f<~gO+f9+*S(6U?YilO>NF@|_Bwt< zFT3RV?KEFlYSB+r^^`=I@7G|WFYx&dS+jTa*jby~@xXs2Sm4uR>ic-G^Nj#a?kV-Z zD@qoo|3*qfbS4_Yr?koDCp;yycAJzHe>>_BwULf|Tb`#aq%S zofAqyvD93IpD6l7xho{a%gyTTmVrTBFaM@x#MXCdX}Lxz=yZhr6PsjR%))*{j|5h; zl$P8tG|>Qm!aoPZzY+UA8B*BU+0IC$f)=&Lh+FujLlj!!W+N~~mj6gz{Eq96S85@G zbO{o&FAw>cw`Q+?EL?GFakq=?{zlxV9FzmFy`4^t`HWjh0B6R`zqF(OaSj}W_xLC8cPhA0%A-H3wpMKx3Wfnq6V|21&UMV}aOLhOlJ?N1hy zE!5Tb9=S&Gek0Ahr~@C8(W+1)QzqEW)!ssiGU5vlL~JgyKElUL8^PdBTb4)R zT9fVI-!ZwbxgP~3{MO_Lz9Iy^-?qg}+LzHubDfb}zDnamZ2N)x2d+M^{3;Ma!i+So z(?r0<^L1*u)b;7|m)O%F&r4pAuegT2O@1phMk=3w*v( zEh*!x+uaHvJnIv|T>5IHi`Y8cF*DdoT8qX~KWWTPsRiohcla!cg|78TK`a%VlwuE+ zNT88GYgV#Yjp<52O;oRg$%0+jF1RqP*E5VG-;0qzDpB5H!ZP@d1+&4-zQZm8WK>*O zl$P};1Qjcjx0ER2NNpkr8(=_YNG9ztm#qs8m zSwIWS@_$)zH@oa>JfwiEC94l*z)^V`Rb#rg+7-d{aKou+?dlXr-zxqk74Cm$2*1 zX>L|w?($w{Rt{q#^Maem)am2cRSAqowZMvyJJan3tp$UkMqAk}$%!{R#8cj1txN*b zYY6K6xF-uz{L)~Ys@v`HZ}c@7sM1+WzG6|h&e~dGcW2HM+E$J@Y0hDWwv16EAt-28hs8;Nd15MwhE<~ zIazWIDp=QO(O4;5JyLTQkF?hFU>3J+Z&YOJh>$EDK=$5OtDPEn?s-}Z^NuD;FBE^Z zfS--8ACh6RaFr}>2@N2VymZHWwf3c=^sH?|Et1P@*(jJfo3q+&PFXQzmBVgGMfhMAFt>EBpJdny*^f3eIlSoObH22(76T+mME zl5Ui!_299dD)awl8FBrMjj4ZF<~dd@3R&##1m);#qnJFx&+6WvfeWw4_yVt|w>r0% zPu_m}T#5>*Cgkiccrhk%HFDwLZa`fc!%gWx1@D$c(sI+TsJp=aS-Ib+twGs%qH1%7 z`cqt4z+2^~DA{v{*MXWu%oBNuSnXp{q|0nZ^}MK|H*{-crEWCj^gqHM_RuCC3Z=39RhrmnhEkc!~NczFLpe2)C8|p$8Yj)p| zUDpgeuJHnlg)U%G%xW5%8W~(QBD4`|5ky{e4ggln{$8q#v&8n5t96#u)?k1W?!U~U zT1$`n6&PLLL*06wuT7$z3K9U4Amp2s=$7b7PUQmY_Ue_`F%iLWnYKJLW3}Sk9J$WWB%Iko*za>|CXEoflk1iU?WY zjoVk`9F?Mb%ZKFW4gi}ZumvZ)9 zs=3GEqwo7I5`l!NSJ(|h&|Whkf=E--fD0jG=Dr`JsVMy9<47m)ofi~9x~;Z1fKqt2 zsf+6u5I7wS>IhLOZ$o&*gt^|#o0to?2c_TRyY)E1G@LJ2q?auDwA1v)4*C$!F)B$` zIILsBWc!56=re`B%MkUU!-dMJmYWaT_*^m z3FP@Uav7DwsWILcI+avk58Z1CYls*+?8)>l%GEXzr7H5a`2$v2QFRl2$E}W|BiA6w zz83PLm^mrErd+M$r=COgv1+r@cV5f+9sY*|ab#1j*3RrFWwyD)`)VO%%odZm1|U6b z3=2$~DgQAJK`Vo+;+zKJK&_34qjWYOc*tFLo$Y2;-djRf2He}*n9+$GDXfd1n@LD= z%1iKY!5hxKSd?qdJz{x_&7%__Xxdu@G3Xd|eGFHuN1k(s&hNj_}>L!R(~or{uR?XZdL@-9^nnW-fDjYxpkSgL8b= zu)Cwcg#Egi8Z018Sb1f0Aj8g2flXe-Z@14AL{@dR1W!!jc+M7mMw0MI6iMHy`zCSW zhUU!!O(AQ%N@0vr(u=D|#4!i|r{-*>n+tP@rA_KvDU&OhMd%ndvPm~glSrUb_xD(; z>-7Cts@lJ(OM1S@vPz)e4e5neM=4BVq8iVCx#+gTskrShGP@4<*(Frzr4B#IXp|{y z__M~y6CbE@7^TOZCLZ%n1S1*Bd?L4#ZD3geF&?@LEw7`x+Sy|YuEn*u(?d5b%+A|{ z9${g}i&awYXZ5(l5=;PpoMuUzA}u05JIBH_aSfDHC!E=S}kB805E5tq&)m zqJ%yde+PsBGaj6pzzgUuCSIO7zDX+qk_eHJ6NM1JUV5I&-)>N{#P6-JoMHat^>;I7Z2SeZ!U!4e!5xho(gI9R)5x8cT={C+l-X z(rWmkD_buxk&j-^_w(0X_@0d;B!=5z7;gOKt7}D@ngL><$H=aQlI!j)#IIfJm@eno zEvXk`kj-n$K@er(En{SL`F2`Pr!mKvrXhmf(Di2%`%`lIWOWriAgVRPH<(R4#BZHk zD^(#!UeVc@6~yLm20Am+i;w(}etA@yUGtcdme^FJEf|b$uwQ{k;axdD-|<$TxNNBb z%qu~(5NrltR~xe%;mAKeN@MJc{konm09`x}DQeB&>=*B;>Q69YU9_lnr>&1yXN$@` z*n^7yHR>U!o9$=rE>$s2uwgT)4JbIK{`T$pyJ|71CH)a{;0ETN6(rq@b*5^*)hYny z7CHwm+R=9FZEvJ^K~_MOirXX+0CynB8wotl&3e*mJfHgq3b6m63CFufyS`)M8{1~z z;+jDb+p2)oObBs6gL}c_lNuE+%g2s^7v)_t^+P5n?G@K3m!lv z_56!?!F+n{Y~w`4$Kh&g4GtkY_3sy*g{?N zEVV7ee8T5e`>5yb0-iBp;nntO;~k{3-FNyJY$8t%AYl?d9_R>$O0+C)JEJ!b0*XY~ z14}uY`7v`+=GzgU{51~2OV?Eabt22AW=$Pb;l=i(FW0T1!l0po>?1fWI$FL$|5Ny@<#i5Qj;^WQxRzy={3`{A2e z!J~=eRYxb51rC;;`G3Lpx5`S%I_kV8R6Z+ik7_cP;1`$N-qPB-0#WLkBCEJ1sdZQ0 zmG?s37fZqG__CXkB-!BzPBlNAR-3t~XD@Lr^FC#6AXQf^^Lb*so-DQ|9Y)Y`VMVOd zYt8pzR@a5Pj3UB!#ylAv!!4iNvS8s3EgVfXG9A`n25zwTz))K~s=zK$Cs8nn#ZDU{ zsFIVu(@~kgZ4XE38_BJY^F~Qx275!4Lhe97&;*PNUoMAKLyRD0WN31C7dpFAnGqw; z?JFNDF8!qmT?fh}_uzOyRk#bXk#ni?1z~(orstkM`>f@Lua$&}HHj<}K+lO31zvsr zYZiH5+Va5SZZaOJlG0|pdoRkO`A2#%m8?fxFe7k0i!O%@#wzV((51oth4!wXYXB_n zZ2}jKpS+G9#``y$<_SpY14V-;ih~Dn%u*4YBYV;iqP+b|sZ1x6P_`_F2t;TQR?PxS zStCN%riT*L(LG_Vcl;Ppq2*(Pw z;OWFb+LKFhEY0&qeE=v{R@qbbVTA)sPg=Hd2X8{v6O2T{fIMg3xhHfWXBzp#0u7(# zv1$hM2uo}1B5o!)sVua8z`$iOAhk&*^t^9AnIs0-U

S4Ej~tL`5v|Zy`?T9GC_U z4D-p5YRhX@b#u}vBT5zy%bbO4`=4^qK_w9jX&{O#?3f)4 zpSUCWa^p70<${Tx&4G1zG<%Mi)h|W!;3PfD2H}wvYG%q6%OeTVmK#8LQl_K0G$|uq zXA#6|IDx@-#NI`K*6bg9set>^aG~8>l(k^ensOFzJznoA^x;=;P`-09UXAd> zi9&r(&|!v^B$VN4JrW>zKJP38UURG~ECZSXScfe#|8^zLCBk7XsnC;|tF3*mqiU}h zTcz-P7ya~xIW-M`IT2OBMK1@L#(!K;k7?cfi2?+ad@4A~s{-?@oG0e6o^&-=uXIsS z@ICx$Zq6CdrdLSLT6Cqeo{)4xEWeSUsQrZ)(z)IWO;x0596xrT+{vr2!G($?lSzWL zLwlDVy)t~(V$s1B@DifWHAQr$dX{lR7BqF`?CG{EN^-UYT7U-a9FA6;HaIFgW)wu~ z%?02@sG6@kY)^sKL#KV26}d|mS=uaBTx`MN^SNs4`+~_~b5u}6p zY*pN-z8_c20us@xWL>xHfwrRP-V4A`*p{B0a124^1WwTPxyDH!doHf{*o706_sX){ zscZods`&JF7z|Ey3+k;QWyR@m*r}81hhB))OF6*Xs5f7>`M&$S+bAuS(L3OkA1iZ9 zlQ%?a81hb^!PVM1xCT{CI4l(&`Q)Qbe3Tk4+1z(%g26Kqn_9A*aaU(P!+W-p;F`2K zZ?t|Nj4k^aFP<;>b>{su+|#Swu~hTLx|Xl-WJt&)-)vli-|tE?9S0>dhmq2yWP`B)UvAb(f?LQG{@1)a^v1HUrW2HPv^*vZ~%!Q+hlM9F8qD_JumNJ|GbHT1qMN z#irm2IyF|tJP1^-tfYjo_T)^rcWl|IgvpJ;2ftu!PJuseR^Ueu&NDxN>{k1mlLY(^ z=Q|pK`R@IE%r(Nprn!$Bvo8Mc{I7_Lw4S$h%rFF_Z(tRHfay672${lP5$7KRi&c!T z-t_gVX?2FJj;Fittzq5+mpEoWKxXcH_xy}HpuQ@T*VXsj>2d_0fYm3WeEf#MXWiXS zgKr30ICHrFovk_9{u{PtVdDCq3SVzt$vTJ;5op)lPYj<&d``0pCw%q{)aa^po%vKJ zGn-z~B>a8WPhcv9Usmzeshwr}>_kn8iVOK?;;}07 zVVmjd?Jf5VH^0lUmW?jmf3_7Fa8Y}Y^Ecl zY|Cy*pErP%?u6z+Fv8C<({R0IuXmDm!;;?~Au!!6s-I&KT&<9}3a%xxwH(nzo@v-v zHIRuygGH!4lR-V9>OQi+i&ElB5o}z|ky`OaU58goS9>Tx4Y}|ZZfv-9z~^N?9Z(n- za6gvb-tBhj<{%SS5;&4q;MHxq_JLq7mPhv=a`0c-EG(Ri|CWP9Ir~6C#L%11NWOK} zPzED5B2s9wf;r!CeNPcgx(Hg+p`f3h`kO%!j)23p3=j97OHu{rCD{J&c|EmR!s(bw zwyloNTFLCwdCG|=(JfVwq&E%QH66D`nvb|fG9$lU`-QKW3%9nLb>;SL?*+Y!x4ZcE zg7P!im4PCPJ*E@OyFYM?$LE_7l#RjlFGcsZvj|K&D_arzrJV|TNp_23ld)1pc9C8? z1{Gv%kRy>MBqzjel~rfUX=rE4dZUrqcZ0;^!zen%=YDQGBCBV*U#Xr>?n!f7j=~(d zqYpy(7Pc09LG1NRMAHUA%&X|3-WZO+qd_rJfx?K^(uh^GaCDjgFk`e*#AaYRA*gUR z6-8)I7F0o&Nx|7iB`^PV5Qt_*QlSD6VFTeoDHr0w3t%e(6jpX}msxWK)8i&+=A_do zQ8Qp}qBk(|X)vFJa=qF~e~-k4@-i@=Yjf8XPhHHWAv3hH8cS3@jP9Fvs&Q{W_o88$ z|ByhA|E`Gs%_h@J*!foxjqH5U+^;f4Mri8^1c1!IdWhJC**@SF|& zg7UuBxW2w96;nTTGrb;rt_)6Cs;Q-g{W3+X$6>8;3m&OdkD=MC;@RDOX3nz>xDi7Z*rZz3}56^ zKUHvUf7`g~YXjE01h=8PfJ}E}I*G?UOL8EeXvigWRnZgJCkdv04xXJpLt*5|pEn4s z_w^9vKX2Fap5g|DapTN+5+I3w&rHf7cF$MrAki#w4^nLSbQQ53PRWp;X%yOg@F*gW zN+^a)MQU(}q%<{3QAo}IMjX%_6~3&`3EwW?6y16Hm@Fl?JS`)_q!bHqt_dyMF6EFx z-xeU^OEvuuvH!1TE7@3?|E+kE`(m>g5e09&L*jJQs(`?~NW>D5H5Vnf+&ahfJxO+p zC2<6Uai4Ese2Y}6m5KRof9H;vFf{7*SZ68G>4(*>cPiy%w&HKLbi$>mNVwar6Gp0S zsTRfm)X@V7XdBZSf0XpIwQ+rYKDxcW-oK7&I+JZt`Fq+Qu8MH+cM!x(Rj=fu`Msaz zhx$9ce?0KE04urNE!tqxbfxvj-0*qlMk?+SF96>c=kl%DX7i`p+^eswubLZy&7qbe z=%A-{1&jg>*Oty_z)@%;U#B6O{ET)@L!U zymX}W%w>NBrNUj|Bi4|SSqeanTcFI$V2o1hpFvqjNYRpEjmbs9lFY-Qv5BhL)>L?t ze)TUv?p3VyCPT{u=hn9hQ&j=3sI0@uK$e;Qd0jI}#Y6X2ZYUjwIa!TpMulh0*d*N8 zwm4~6x<(R|VP+3UPt|F;szW2n*D@JVmU{WS^f9;~7rk*`3Y;d_v~8b?l&we_y(yVm z%gQX|w)rtQ1;2RNjbzL7Mw6!#edDcJT4C*T2XouhnPSN3as>r#T_srvDp>?v`<;Zr z+>8J7p~khhxpIS1RwKN3{qu-*heYn;y3Jtc$vOGw3#>SUA@4sdvHwcZvNHYKUaMZx zmQ|1-V#tk8WVa2K*h=0OYG8b(c5(0GA@F2}R7l78u%XV&96o)$QWrcGmb)4k3o&=5Yv6YU&OwtvNJMN$-9wd_QRLe|KZ)BDn5ANmF z{mnqzvimiu-LsgS-}waR_v&_sl&Day3RlENMnTI-1Jg3cwP}zmt3bPE+Cvh=a?8&? z6#)0%N%Nu8zgc7xLVW1?FZG^EHs(pNhzk@teN`5kB!sw(Rld&u`)1oY^u`Eqt zFpHK@kfxDXa$`S8I9j?Q3!PwjMf&Oh`XIFIZ7zSnu3kVRWCJp&>rgV{6qP7df>~go zxB$!VQDfqe%uFaYmPeJof1ZWGZspi2M?*nFX#|A9;;G)|XXGLd)UeUycV^nhTw76+ z9tx$d$vTp15Q2H;-|cg0gWGDw_kJ;A+?+U;&=rblnzcGV+s_Rf>B`T2z}Um>-2d-s z=K8OW%djy18;biV$=L@n!gfE4e zmOU}bL_B4`*o-_c@J^I4?)IL=rdi~pH_orR2OUE~*aSaX0Hy4jiC-VnspRIN%XZhJ z_xb(2zI#*K=Vc%@o>DJ18Xo`IG-k<8*S~hh=?H|rkZR(g2{s(|P|x)WvZcR(-(Ll} zt&x2c&ojEybcN``GO1fPLu(8e;-}Lq#!conikkmt&}FcsNF`~rb(UsWiDfMx1H~F@ z5XU+qtg*urfqbdpSfUiq3$PXps622=ZBY&?4nh7wNh<=fK!6c@A(fA z|F5PPSQ%OV4ZD*J{^3p3p`9;Ok4sFkgS=ueq;+kriH?}He*KzlH(?yIbCKRJR*FX> z;1GjEuj}@es?N0%9<`UruX(u)l^Ob$N>Lc&j^*(^{;KoFHq-5+ZVNnjXUg@s zefi0)8^8Is$EPm`3)O+{Hx9ipor04xlVPx`)4+)l37N^ZE|~|3l?9(NdblW)FeZ1{ zs!n}@RU0)nbI*)tepj&$bq#hNTc@TZ1Y55no{C%#`9w@Ecz1w`(h54+nXukiM7JXu z?euU8XK|(9iBNF;L&+!Iqf1WR$VD#3{ow3ye0?%jqK=5KKMO%KBWjJ1j3RVkDWu>m zta|?9>>o>us7oTqH&Du3AtcG&QXr{pt;RRf(Mnp_5On}lpmo4yK}^sE;xuSw3@0T> z$Z0S{q#_8jsKYUdNHA=VTEkMId4EtO8E4XIq96pB6-Ibcxn8~uQkP^^;ChLg(AE4q z>-4KzeQ8Tw!Vop8{rlw<6G+&X#l%Xm!cJ`oy>EYEq3&T=2y6r)BRleU1ZHm1 zs_@ez`@gha0=buEdg|-}E}#Kd+76vK!M{zkRbS@z1l6jD&cp$I|g3RN;ja0X=%ncB3tS=NMyCE8wNDrxS#0-DNYJfXH*esJOkIi|Rl3j3WOZ2mF|s+5SyAq^QHF zqG({}3Z@q%mSz&Evv9L$>s%276Lh|6Z&{@j`Kv){Uqoq;CJ2s3Y48z(LXMFlLQ=+y z9x@>!fdYfI5DQOO=^@zZbo#um;$NuSuAHycxI3J3@dRjZnanu4PiOP6ylnFPy!idR ze4X4A@)PXe{Vp6Ww{W%cUJtC_weV;ZLaTe4t_7GevQPm}?;?uaV$O$U98F9fH@OAe zrT;bR=JLP4B20psiYW3KCY0u;NLz3c`1Q1Vda9%garfz z9t?ALEwkGa7oqN-r0!X}mGin4v9UXT$8huMRLQEJj)fEyL>+sLlpI=7wG;6(iRDzt zC?(!mN*#hzVUdw>RI;>dk#Q;Hh?9?^-Bt1xdm>OJ^~zwoIMu|;E?2^xb#Rmv%N8sq zWLVikkMXrQrSR%gC=kP0N;%P0XpD~Cu3}=f%jc9*kfcQ1v*u*O!jnto=*m++zCQwp zh&)9aRcqwn*9L0lLdwa}&xE@^0#~}5l+bb8eW%uAn5;|QY5CeEYRHlf-+z}#Q~1QL z8BnlSwp83vhj*F@3MoQ118GBk0Ye9+id5wJdvGk|iOm z}b@A{s@q_dTeXf0Sf1C6=^fDOnAo~{+8hq#oWyP=g9R8BT{B!&aFz!V|07#JF zEX1@!Ew=09P72YhjO=&bw(>cuN!y6IEWYzeOdc)4#io{4gK(7^N0kJ>zTSGgFkN2m zUNahVG>(0?GLbI{C?|Bw(QA2ZFfy+0yc_ZLY%C|PM&aR?zeO6J(3sQxPJ%Nn+kx|eByan5 z2t;IxD_)l1<{IcFpI^$Bvn@F7t2%vJIzL((c+Ud*fGLz?^Ve4Zj#*c$Imgf$sgr7N zp84|0qu`SDd5MSU=hN%v2%4t>Tj)TLP=Jj`FE649twI{$h@SeaO&1P)^Xn(*u|i(X z2}CJJD8*DJxab=dPTXQvBDmF{qo%y zk0`q@-!6apC6z+ZopYfOI7X9o8vgtl-gXgQQh>`#^-p4yPEAp2rIxA|iyqe`fjw6B zc5KGM;X>=XufZL8Y1f6YbjUsSa87COv(9e(?jMX8Q92d~n?J@X)NaUSNp26zha07K zR)YYhwkL6?ehHN$B~Y)|h-3h2K^X&Kf(_I?$bbn5E5ss#TaLwbh+LN_|Gp8QW%zrf z)bRS-NyPY(zeGkbV@Tx;t6RN2WX*M;5Syg z^rxX3~A1mF$4!ech=}_l^ zw$K@u6OMfE@U?N!2!yLDnZCI+b~5TlR;xlTwsvYT9VGk~(hjO4UNjuPtfVB?5V z>FwMA`zbleO>!+~dl>(KnXm7eK3F&W7G#N{v{MvHYo>xm^Jd&6RpqC!^E;ogb*GMo zI&u2#{FtqZn!$wB+)D83>TK!;6mpq>Gasn&m$4e!@?oVBua?+Kt3bWU{(afV5Olgi zAXSYKxHdb-yo}c(Ccg%ot<-kT_p&eN6*$<|4&EpEUu18!rPNlSo$!Xz=Pj@!jBinT z_^|%Pz>h5CNlh}r71dEd9+H0FaBlPSgHK)$4lqEB?*lB?Sk^w$UJMdETM`*K5fom4 zQFjrIZ_lL$U!G}fKkEX-WT!rmKcj}@u5(k?311c{s~0Vm?Oj2JhM-^ZVqJZqxcXK6 zD3_#5!EDcp$Kbzmp79?9H`9;CXOB#=T*92-IXXCrLnh5p`LG#ll?+O)Hv=A`+jV<2 zL!>BRN3%t_ZPfe*E-Y8G>vN?4sxl?h#mo|-yz_lW`DU1ka=ynI__BA$Ht62sT^%yk zZp=VMam7C3<=5`AMiFD7PxKH6s>N&>s!hW6t`kSGftY~gz3u@OmblTr6xwt471(p{ zi7AjwR4mAWI!{OXcjcA69;K~C;-(L%>#K?Tf6i6-E;nS|q7bmNg#Q%HB<~F~8{~AbL zNYIrZ`{UI&vh<9~e(s@fb%5!}Fii7la>L${F(i+_g2$KUoxx^UhY2d}XX-(# zz@4@baw?Cw3%s3k695_K5S}!7Q*1xtUU|@XxEec{O3zntMT2#o@=tJzK5kn(YKy)! zcN}X96D+obYBZ#Rcac^wv?z|`YEv#$fv|)qg6z{P_KT=o$JM-clnuX`dAa$AA4U#x=RU-?f1#N-fPE za8Rxw2L)g=rrfb;Fh#z^CEc*1YSXEK=ZVG6Qg|;}!CQbedV!eslY;D~7#o8n{~g4G zDBSyk58otu!;`TD5wNaw5PT=)ouPe;Oa_@x(GFr&qh7UT)s&LvrV0&e_tK}V)4pX! zL(>GK|BV3Y&=>q4x}^WgNM-&v0cUM!xNC?gi>}J*Xs8JU1gG{(q> zHnxBBoluGNN zMym-&^C2-y2)W813zzgiv|HBIeSBW5T3TM#ty{KJ&;48$ZoGJQeR8(rZzjgZ@Ed=+ zm*0O{6iAbcNXQZ-#q0E&wlS;NCUXzECoxgX?4gk#iSC&H|kFG0}`f_Mz_){rgNV|_01U~-SSD31F^-ZsL-Ae zph*`e#8N}CT;I`*JVk_6h0k#b1bRJyhqo&3l#mjj&bfSjoz2(kU=}C57in5}iekn} zPbpiL5li*Yiu4bP^sQydYn09{#e=lV;ueR4t77)f;oj-aMU(iqi(|t%$gkPuUX<*^ zqnRs`V(#Xw?y>6P=B(x38C?sBWC`lz!xyW9*h6g;A+X_~&X<&Up1_mzudZs;vmQNN zO@;ffLwb6kB9QopUmH>Sa?Sdt@BRsUYFP5wyQKiX$^21Hz|n7gz)U5HNwtN znw6Ny^9)ShcXlZ6GX>>J%@kQGw2~RvvNA=c%Jhp;6=f;_s)SGEEs@$HHATxRM2q0k zB4_22)RF6AVk!-)xM&Jwic-qIs60Fr@!cHoDtu5=i)F64qTTB`c~h-Q{G50RivSa* zYWF4grk=cdf;;MrkrqQc;lVn;0Z9(<4xCgXcXFd z8-mc>@r-3dwd4R3c$jG_)Rw82?~RG)A@;d+&C@2k7T<>%Jn+R)ASW~wgY?ead6c^f|j5RuE7o*7<$c*1Y^5l)Ynzdr!8#eGZz<$lqdp1p89M;Bg8)ejLUv%7t0N zltLz-+gy%!#ew{g_JIhwFU)%Rx?a96Sbbg>26bDB3%NaAi^=6n3l6Hz8tUv&hm5;R z9{1|);eM>3bo5Rc&k~@yF$3uU6QO%zx3D3Ovj=NQC4zC#=jh!7p;XT{xj#GIUaCUUn@iPX#3-#`b9SvIvU z51E$3Kk1|k?dl!mqya<5NK6_t1p@5OcbGg3$?Oe$U4MBhJ11Po{N((8^(7BpBEVWR z4WyVF>+|k_O-WbbDJa1F4oa@%vcf?S(Pf;r~oqo{T(Pw!+_?i{4Bb<*5pvuTNM3&uR|gN=iAJ4Af!UHWC!R6MFXd^I&KC8K=Bo8!^=x1l)| z(0Ii)=?=KyD#GW?0bI2LTxA4@1b^^%xTC@*ZHws^>MMjZ`GPIt7gG~+XISz z@{n;qSq-5kW^eNZ%uszpQcjNTy7!>)4xgQ_=B1-2b4DClz|>PqB$DjJbaXlw2p^5N zJfmnU;{U)^5|9yEoy#3q?fZldvpF1iuxnvza`@|Vn%U08@Fgr#FI7OeiFfpflYeYg zR@oS#9(HeC<}JRR%>PQ%7ja0!R+wmU4$=9>D3sdQiV+WkFBoZMsN*dg?vVB&jAO4WUF4gRD*k8$sKcyrx zU^T=_0{t;2e@;+MjBOO++7esL(||~z?`3YC$ibm#A<{?zn{t|@(?#hocSfF?sUawb ziTS2Ah3e0%raWU&9~=9z<2hvrT?`%?Y1g8%8Z-7*oO{mrC{ABY;(q8LLF+F9Oued+ zx$%=5iBS;^ua5}<36+7b>|yqhD>tTU>`TcjS}4}KEHLH=!g1vOE3@qM!5=X9Fq38k zHG?W91tDe;KCmbU0(giEs~%tEiZt!jCC`E?d{O;A*HON2{HkH9vg$4@_JR4(^cq*F z_3wxz4K{8cVB9=lU83&P(}p9|I)Mc*fR|^mrD`K{TYc1wK}`R^th1p=pK9LRPX#a56+wrOO^F*e za)x)lgMohz){T8 z7#It;>zpq>yLF)(Fl>Y$|IpGy?*#N3Y`|sMz8r`fat&rwb~Py2Jj?#0aY%N~!y8UR zpH4!dtHX)K@f_oj%AF?{=WMuy$AN%>;eG?70Zg42=OucrX|ni&6Gupc&ev+U>-36q zg9Zb*v1|RkFI+K|p@YFLq+;B{5K6rIvmHOiyN7Dtvc6!E1Iem}ugqS}_?>h{x*2_F z8&iPH%($G4+F7NgM2sflTGzc$4!Y_UQ{9(zN6`h&Wg7*0DQL}QWWzsibvvq(DQ*Q? zMfpzowTj*w4tqeOwR>mq1XVSWd5E~`{G_iGXWo66yIE30DlOII_!Oh+BKE)p$*LwV zs9}o~6Ga_q?u=d2adLgBgZz+{TI84Fe9Dq@Y}DpnXTd%j2Q)gxZCZ)SzaWb?@Fo1? z7>-dAg`Uv!HP~Be_^1=Th%ka{ROO#U%?nxO##x5&?Z2d@Q65jG6JgoqurL84pi@KqztgkUVz@h{T9H_mPlRq5tRSbW`TNJS~ zaXvwB>Z+Cc+)id6Lgcy)DDW=^K!-h(St$&kx1uDsxdFI!eLyK~0 z$iYZIM$xOc^A)#@DIlvEPpY9A)eTrNguw|BCkKmHn#&(WnMm~C<$H~wYwAo2Qq&7X z(708||E8`^Bv)5YB(tWWuAo$M?}J^-zfZUqXb{1Wjj=(w3(2g_8jchMg~4LvQPk7A z1Gm@y4Uz$&6-722GW@BVlq+KGvi)euByIMwvR;Q93gIOkNT{#y=T%k9!_4-&qB7)r zn8d1q_<>nJPbJ|wmDGf~W;YiI8PUvCTUkqopCY;RtJ51Q9L%mMLIX?+RkCP*$uOw^ zCNAcS69hQ=T`{D*mZ_#JZh-XGhZker6!Ve@oS4)KN<4*2-!VOeJy8EG{Ve2j@@^xs z05r7$JiUxAvIVVW#p!Ql$?z(cit^&J{uQL__P-)X3#3w_<8g>QWZ`jQWlIp9#0Q{CiZ>^tr6!^2M9_{`*m3i0NY5-@ zwy370YSPGLON0|fd2bhdGJ*w_F8rUfBQw+g6IW#UACT++pGuKxWzl3al>2ITWiWtn zJ-}-J+u8p?TK>0#DKj_g|KI|}>Yl1-E7-Y)YuPrM8UwA=*Qb+%6a<0yNQCU?)aX%A zAQVtb1>%@m82!IMKMaVab%9^{Obs!SkT;LWuPaZP`Q---Lkx_(m($pwmm44BRVv`? zn%B4eWiqG##J&~seU-jUwy~bLcHg{Ay?k`vY(^T#$797D%%y8_eQY5LRr zSS+j3g$D7i%4j?e1vgSqYpDsx0gF5E?N19>a`jioxCeiK6y`Ihu2Ur+qNHGuKAI?( zB@Z!z%}h#b1^Br6Cd-AJvpQ|axM#LC1})hKTZ{8%qR*H;a6r==p4{W<+P2$LQHcfs?^JePk8kyO2{!L2Wrsz_tVZDIWqSYwltV=QC%S>tEPt}`p z#NcQ!>BwQdSZn1RUFdF>YJss05-N z8n2^CC(CIpF;W>|5jS$VB=sV&9qEb6Bk`e*Ozy(O#(hio`bTf>INsI0F`)pNM7E84 z2i%NMqT=XWdQ(KUy2Lv-P9Noe|Fl?@1`55838-P-9$8(O0|r+J+;8y!FRUQ>R!q*2 zP5ire%?svxaNLhH3qhk{j!2YY(#rT{_p!Z)AJLREH2>m#4^QAN+pHMT5Y0b0)pQ)=o?skX9+bjQF9 z!iZ*G+yr+Gx4qfGsWG~PO7hcs28FSsaDp^B6Tywy%EW;&8@-MYm3?3GF=cSDnu<{9 z!_06IX1;VOFnW)03}afup@8h1t6(pyi|1~Ogr@tZMGHo|D1)2rBYaQ3Ou6j(#EaUW zyCyct=fU9}X!2CDP^Jl?3Y2%{g^cLlE9wrd4vAYib-_ws$VkOe4kau~^rn$lbY6~G zPm%6Q@J)iilNT||nq_*uqlk@{BN5q&9eXD=G$+PAE5Gsue-nNMdFV1INr-&nyfIkE zS*%<`1Ws~^$F(4#mVC7qGvuaUe#boXLMi3L_Trl?0*aIFl=jw9Aub^{34BT_#^&yf zQ5F>Bh*W2KW%mi7v>{FtH_d)SH>tK%11KFke$`MWMl3NlEwMcLs>LDZl-!bGoO@za z_-f9JWBII$Dfqydp~l*IyFH!zN3XH1fB9mU8>))kyhadsz2;c7QsV9a{gnA{%z32+ zDbN0SgwYOivY^ch#pqQ{gE;9A2EgJovYYW_q$7Q>M7-fN3v-%?-w60E8Xe{>InF77 zrOlEn2Xs-s&%v*93(KQ+&6fF_Y;r>VZslG$E3iX3Tvag@xLdL@rPz7@Emed>@pIOH zfks9UBLtuL2@)Z#^GHg%LQp%GvaP2lL{AsDUXfpwNKuLyG7TxO_*++AG(HN)S+cmz zeVmYCs?chh2h?@+?ADItFLW|^3;iAn&CC3gVhIs=(U;vgB%`z%|L0j^HQDH|%z#Nr z`xbojT@a(o#jOo`0>vHCm0zyc^a~DM&(qb_&ja&GS5_5%Qa-DDBe4kmKGAYP4~&8-;LH}pcSrGKhjXlu62)*G3;7s3T}EK7T~K^x_4DFI3@ zyJbeRvIQ_)&+fQ5?TGW+X1iynsl_&5@WxZ zQLAS)(W_gm9A7R~mlu!x@X^MV@vgfZx_T6(_#|+zU5Ns|l zu5e(qpkC3qiyf!2pabT1iaq$+$+cv@rqkLGUEwr`X2_I_w>pZ%{7BPKuYKWF_2Kn* zYdHP@JIBB(Rd<5he{m75$~TNnmiX1$uK3Z%3Jw?y}Dgc2+)N=?%se{@ZWQa2lc#-8;+BxSui}9z*t8{aR^7SedE)RH|Tkg z>3K79ZMVzmd7O3fCUEq_J3~TJSp^+0Y0_i;ma!|il6QA7TzU7X4%Ql?bP0MfVm*Bs$g=RI%j8&)bMk_sRb1x{;rP z>uoJSVqFP^JQsK>_ejZ4mV^9*A|=-Bi_bPfx;o_;9%`-_WEbQRFwknBcnls&HQ?3d zO>&4j9G%Iv?vPE9dqMR3{QQ~_5BvIt))oFfj?p=e(KW6HDhBQPeLNHra%_v&TNkwR zuuuQqIVbZl0x(kxXmi!9B_Z<)3iQg3wQJ>N;hOx-@QLsMck2ZI@)$=Oz{@*uh|HgJ zFLtp~oyZ7>5D~}t;QRsy^O6*cO`00&=`rq2LLyuei;tUs>jH)FKyX1`2~CJQ+eYP8 zdDO-Xt5L1VX||T&4y#_Nw~K^~PW%Fckm%_q-uey^#PbQiUX4o|FaV+l3bhwX41ppN z7C%U3#Ks%~AR0zF2!|dN-A6ToVNOmH_mcJ!pCmCubqs48^fDr@3)7UPBj=|~L7oUl zAEYs2uM5$XsU%%S#SN1iRPT=mQ0PKw^hX0Id7%{gLvP7Hp?pdF{=tkeMUtp6BD6sl zk_bf4?# z(znz{Jnq?&j_9_H&@Bol73YpEZ}Ar%zLICCx~Ar;8}4@V^erbIiQ{r4h1* z)vhn|BZ`;o3ujP}(VeKUMM*9P$F#QovYC0@RgqIr=z#e|wMD5B`6 zl|6lk7qJc#O=7X-)8@gLl`>f#F4f!Du(9rA42K?<1=*qd_*fJ3{^f*;%=atirN{2sq^8lx~Ui)gf)e=(~bUh*7}9_5{4GMQgzPI_ao&Ci(Z z^6v!ELr%Nz3?V)r-x!li)vigI4wg}9Fzc5`of$=a`Ryb4J!@HNHjKH^Xu6R1OAtWG zos${2V=ez;Lsk`lwc5V$YP}OpcLPh_=@^}`UT2d7VraD9K)e#B{JSIBj*GW4D4JPNjz9${x|lA464o$;h8%pDJYdR^>`6Z}Cfev$nipGP zkYN?yJ7A;`-D2EvkOX%*=65km;d&{&*<8+t#eoX50P<6u>5zzA0Ebu=ID(MOL1!8~ z>Pz96#dz0oVh6)T=Y=L`^e?6q1p0`|aw_W0ucON089;7bT5p&A4(32Se1TP*4Mwd9 zp0!wCRY7Q#QDaO?qFQJwBzSNrBzSVDhDK_t2B_D@yWLAr>Fwo}g?9xMJ#%<`gT4!S z=h&76HVTe5mU3=xYECjd9BY6E7teax(l0%j?4*>06vq<;5`R4%oWpg|EGYj_iQfgQ zsr${*r}1!AeQ-Fj=Kd}fehz2!f#aDrjFeqXV~d?EYrb@!$^GuGxSP#0DWk$pRxHDTU1M_IunvNcHU)(iZ}$QXP1GC zcn=S_nKgV|hd^=MLRtSURf=9T2`Xk>78v;FdsxlyPyRM0BZ=P!n^V-zEu zCro=`s;Or>AZ{%YS6W)0p!>tG?g3{R6aHpn5mKq|JllXRnk;Va-92+$5mHF0eOih- z9rNM#jt5!X_je81WQ08^-F3ARA*0iUi|@2$$d_nr=H&(yi^F}p_~YbHwHKq{oK;B?%{gEf26#^hq(79~DXanW z*4fwTL@5m$o>>L{Gxt+n3sN@p8zC`i9{0j_K)mD(dhuUn5lU5I!#iGR7I{j3Cp;|! zsqBA=`;SrSNk^Zu`B$Muv(*gc`8A205Rb@kv7HH(NCj2u&)KjaaE>bKpm90Ecww+}(lBJxB3&P7T`vr~C$46q1M*wzGl+H&f za8!tj{&o!<7#guf#wJLorKK7&m6QeqT!yIZFjG!$B&A#Xr}i1MUV&9$a62D~l)F9WGVpdxRR=-~HrIfR>?dv_w(E`V_jNrrO2% zA5|sw7jkb7NPUFRxQST?Gb|%FVr-efb&BI)t_S>mI@$JxoV074)+8TAXTw ze%(C&@F#_>>807fwUxDCV4NJ55$UoCT8;DkBPA z4~NlB(9M&8c?nVLk+OfLnUGSkkT0iY0~jZ0p4i{aQrZi~$LK27M?QfBVhrNdJQ3I4 z-!diOblg4<^Sj_7qjozViR(iW*QRN9Q9_@cjuTL02W=R>S^@X0uuNXuT6Uw|;N#qX zhs_ZlO?b^k3K4M?XdF9jIhXs@KBoqxlE_ifwdmBe^^0*y;h0=_*{q0ZEy zLV)d*>Fe7=cx#k6-*AXmY~cbsoawY>_=9u>`KY4qXtkzf?e)*_r_N_`()ozI*Q{sDexEzlhp5NJlMmihBjY0_ul21g}$|R%8=cL!TbsIApMSeU) z*gy%x=LURqsklWRAc&2h@f8h~d_(fON1_m(Xh(U5InS+BSq00)T6h9%qg{VFp}NhZ zoB~ftF8=xX%3aW*Vhso|lTn_>(bAVyHm}<(=wH(N<1Z$wx37gw?(D3+MUZmd6Z4~{ zj;(}zN~^j@Y?|NklBAjrPQw?gCkHNYzlYD$A;9;2l7Mk;e%PcnTp`K3UVl=hhoN~` zq|$#llSpb{OEs!MKUPshn?&B%H$FNWZ5}Y=<9IfXD)?lBYyI^?>gH&k0MoQu+;o(g zGK_J~pGz%yQ|w2{rzM*&hLTOpy(L+?-5Qq+%|K|!k#ugurHqOO8;E^#1mO*bD~NGX zuUhA1BCBhJ(i>Qt9TZFSxBVqk-b7Sguf$VKpPRmoz0AETA!a=u#q=$UNxHnkdHqjc zE_r}}g!nz`_Mxq+T}k!5>#wvsQnjdF;fHif90RB$}8K99h!i@E2P_Qv7InS8u_m`gEd1p z;Vir=I55uRWEhYwzkB^ZwZf%FjgjGU*2Fk*SipWEG+k~?g|%xjVZ$J5)O&U1h@Sgu zNf|B7qtvHa8=JY53-a3Vk-tCV&R4(wc~#ym9cIic5fVJVK;S8twF{7Od%>5)x8Zq0 zL_Tf{{314!Z$@QZnKN}~`hb-34u$+uyH5Jv&@7DU7Fho_N4Atw&hFC~Qm8;-QO(pH zj&IF`aAk!F?Fon>w*H_)X}Jea$O6mekLdfCr780ub`+bCe0xhfn;yE|7heATB2@;PV)Y}US^kqfj*(F9`<{1M zkIgT3Fy%S*JQXWLShyYgHzo}qV&y5E^2`s0%eMC-TpAASvp zPboYelZ|uy3wTfAUjNB+VFupc$oOfyb+1VqFOn3sbApF6G2S$p=R6K1NLUmexSe>t zG`PEUg^$#3t&PBV6`PqlBY5Rc&NL>}xFjP2&TAa`95m{xjdJWdI2b1y`y2|7sv)|! zRQV&C5tw_-ZYVAT)uX_%BCvDHY%p@7@&*<;aF~0DrBV37XN3Pm96|%#oj;&BEQB}p zwXNfmu@_Xdt~)Jpt+{YdU#;jbgWlps@kllGI}-V}WhXT=;M2Jo)DIyS=+nJYdw7lM z_Vx^XX#FAhewY_$;%?=iKwPTstxklF20i`70aXD13cj-#7Js|lYA7|~(G?>fX@Tin zyqYmvgEvPLZZ=WBnN)?KZ&@HM2LkmhgAMRs^Mlcl-ziC7pqnF?ANi!Fu1Q;-w6mtu z-Ph<|7GA;2-38y)4aZCMCj-8Ngdm&mFZu^xMX7#f38NUuJ6$HB&yGR=>?LWvh@h&= zTFC+l1>t~M3|R1ecsv}NeMkWFzn0mmY?puOL(cQpJ$Q4@*?DCc82zEna7TQ;i`j;E zJKorO7@2R|2Al&XcJ^}T_eOPf6XA86!8o4lOhO3~(PQ~L3QlmM>dwKEL`5tsC!_oz zicko!X4}`(wB%f*qtPP}B za*4XX+$s%1Wa%txgZ<2cCJ3Mg7BSU~`Rwm-lq-k$T>tdcC{;(5Fy9JsxMD<2mKS@D zQfW~cyP{5|NiL!QZDV~7Th0+V8edl(Us!aYHhh)5oYaiRCwaki;K3*jWH{k0KD~wc zkNf@2RjHu99TNW9+&6|U>cf#+;H3?QKm`%sh*Y`J7K87&L1rJRy};(l8k31*m!)r0 z_)z4wkUACZ&G=_>UjzUN^@4DJbW-n5^3>Ktx98_+>sSgG>up27!P0QDh3ppIz&n`ZSh_po2WxC}7Gq$G0gsls+*6 zx}ySZ^eR=Fz6AG(I$8_L{3P|0!+t%nycp5v8QVoQAR0p#Qz=Vt*65=v_Zy{ldSOG9 ztd}C_>{BQG*YX;CwM~rsLOOi2k#Ym!1cXVA52}GQ`tT9o2t(r=ni}iBdK$dDT5ng8 zEoZ-LAA!HIb{V(r0W@V3Ll<_Ml1Jha3lGaf3&>I!Y$7|qTxvMsG-VlsujO+5eqC=l zX?JC|>ABTJ48iymSR1}N@!}aUkH@F<;Uywt)t4JWKVWHUVgA#?eLI7Cg6M*yv?;>LzJ-sMKiE4Bq1F=g$c_>eFsgAlS!k%*_znrk`uY|js~VdvzjqW z^Q6Jdu_&i9-gWB!NJ03LuF^Te-TS?MzbhGWRoE#LZ?{(g(; zgWVC;4#9o~VVs;>SPaJd^+tA-q{M)gmudn1?aF6%|Lp5o>O8N~zXmVW!?4p5CHviJ zeJpqpGI3L%xtix}C_kURioPzL`pxLJ+k5cp5VkTg1}WhBqZ$q41Gl!w-W|tB2LU1g zZpetv-4gl~!+a!o+U7#|tg`JW7Q%d4#~uHFu^MvqR1>lwQiZj`ikNcK6E$LmX$3H4 zQ${i>c{BkSB+Hn?a1hri2(O%OVcd`9g`h5!kOQ53DJYF#$LPf%A}-`~X0v5p0=(Qa z359BAkCtT8hqLvPA3HU{>Bu%E`h_=2c57?3&WBlo3N=HwQpAFIIQ@IXDG6rEX{wy` ziu@!);zG)sFRj`Uo?mDhzJ=$*$ha0Ce6HK2m(wA2u*c&kQr?#qc75dqKaQzle-#Q()MAQ$Z#UYK_nR zUS|YtZ@EFoVvn%L;d$iS?Hkfdxa)YOuuZrp4lnHxuV;aR*%Dfn$*r#ODH$wUWVios zDqBKKPvljt$@D6;RjiP)p`N@-aD6|e609>0py^U|fctpt`)on;{Jb>Nyiy0@_SYq) z(%(FetYax^b`2^^bUfd1p3OBE1<%Kb3mU5qD?n^@Jw^}N-EMqtjLYEGlm-0m$ERb* zR^nh_96Sbx*x^BLTq6>e%x<+eTf5Y9e_%~-Ch;*c!j*4nmHxWYoJ$lFGRfbs*MlDA zb76=1WiiLnB0PRzDxF6@DRyTc58OW#wQgkGs4*giGk9g~s_?^!i`M>z4b2b6+)B)Z zq{j=d`2phVVMKahtYZZ#febt(5%RMoMP`d#`ps2SZNdf6gcT`^_cEHb>?b1 zYib7-wK4Exh&vm+gVhWFjaIcx_Gbww*4lL-@l`XNK`k>!{DvQrHb{hhI}(hlF58ry z{mGj8aoSK0mT7|@QsGz)C0i-g(CcPBai@sF^Qd;Tu1hY#fNl7M#XTfSS7^}E3nybc z=R4OHX3U-bN6?|!!dIP?6s*B7F>K;QRLsV4(8h`uCQT1Yr6}TeL zGjB@a9cEF}h_AHKd{j6{UdUr7+p~u153X%onKF+pHV@NvNH^`T;iF|}EFGNhn0VI1 zOGh`p;yp)jyL|O34V-dPP1!>3j+bjbZGC3H3cGOuYs<%`eE)Vu3P7L`A#Iq%m`qc8 z-JFw?mvuc3T`u>7hLkV{ThYSXTZi9uje$?|V#A_!Ff%o0E{EER{wIvrM;)0;GHz7~DvC?UDNykl9+WD_ zd1J>~kH-ik;*iY-Pc~_<9%jG6JcyKvkZO@MerAE$9h+`MY946o5o0HG>$Q9qn4O&0X%MXc^dRiE1zCDc@dxRc$FQ9|(Nx5*)Y;%H9a#H@c{&gKm{9KLsXg zn7a!PkLar;0M>J*&nX60m5l;C{YkT`;D!|FORpA3f@CukVq;h|eGuyP#;1g(k4vqN z@ikU*Y&NheIaot+;Bk&<;}E`?>f5$Q_>FBlb)6 z7IG%mOjXOFY7{_nbh2TE%;DbgL0&F3Z|8I6R8ZS7zmc9A{}rK)&~}RJ?~dj`JyLS! zvwZ91j*mLo356w-d>{6fQ9nFLd%|r)&2VVfUT1i_L=n7Vee9uMX}Zt zYqQ~9+sxY2o~6YPLjFuag7GkCWBauZM>?(+vA0~zdOb`v@)AD!|zu^y3djFc^Yirgns0$W?FSzfH*lo>$I|;ox*5I*|rG**UJ|HHXTA61iCL) ze6k*arUP(+eQtBh%bO;$oJF|N!;O!s8#zCSqRROL|Be6shq>kd4i{Pfhl%AMT#Q4i zW$ga+*y&04{qFqe2Lg|R8w8>Ty3~U<{x6p>|Az?be+wDeS^uX~yh;n&4fUv99tst9 zk!GkYdoJB?95}h2KnOWm?irtsDCHW~av_ewa-D4|NA{j_flh9|OYSUVzAGuE7#x{8 z08%l&kib+)iFd^FdMWVdQ2wUPbv|HY$&v4*?QDT9n=&!|$9w1IYx@Qsc z%MIts>$?B4qLY!3nAA=|u0}VJbTkv0&1&9vk0;g5#>yu`k;Q2~{aHFNGXs-41hYax z5$SO6AeP=QY99fxsRW2r0*vJeJlRyZNG0fGrKcn(rBRQIpj%3>(Z(HBire~~EMs&N zcv#h2`AAtc(o#v$q1Srm7b_PBHy6?Jb+Zy^(8pPngDYIDHyFIQCFoGAXJqBkPfB3S zr%+%VRaAnpS<(;N)*4LjA6M}#-~SnB`Pv#9hPRV=c)YeNQ#oxm`K`V(j%Yb;b+Bnw z#)B-ml?|oK>6lq*IiF8}e1Cq1@hn}8Fhacz=on%hat?Wi(x=iV(ns7w8sZwl8qyv} z%&E<>&C$)-&FRhY&H2nh%~{Q1&2i0nPSmFLn3O&mnC=;S#hCgUAUvb?Ts zu3dRC0MB=1Cu2;H2i&Hcl*2<&j?-%|JEjEu$pyx`3>wS1hAJSJ_mv|5W{48cOSm!45xI9@ht`Hy z{PXG8&*NEE{ftl#@AxK!-dE{o2Ant^in}KvnZzMD0|V&k?kxnpW%geIio(g1v+ZyB zn|#4q_mx*S2~V>rHwdm7iMhHrJ`;jqUu&u0`le&Y$+Ob8Bp-G%!2Oqo%=f+&*-*^`IPk+s1O z3VoL57kitryIlK`u)pCxkvq2T7D0@9v_uPjF#_JHJWZJihKl}x)?N&J17XH=fT7mh zokrP#%LmRF)U7!|crDMnr+`?8HvT+@5BIR+kx#qg+1-qIeJvL`7^Om!0jVCTEU^W*yAK&4quK4RNdzoGHpj{TmvV>aw-6ww_u99nv>*r##DC)zcB1Rs>=?gXM| zR)SDAZ-{?|11+etw2@Z505_Gu7sr<>2ks8077hqb7#`dy=~#jhN-;dx|2>;sI-Q~- z=BB1!heB?HQ2`xGV+i{wd+UM30Ov3hqJJ2iB0_X)2{e|HCmYN9niADC=@k{eZw@?u zRnX~zX^+f7%=wDBNfSP&Zh?f_`-ey=8ne|asjwW&7hn3CZn6eAg+!1>_7$dB`5W&U z&lhVwE|8$*iwJ`9fw+|4Gk8#2^caPsL2kw;1Q9KDEwTd74PQ5$O_3t6SA6~r{8!xX zLkRX#e<4J_K4nR!(@`O^1p}7KepT(}eHlS;p_6;7%V!79JM2lJON4*hW3cuTfOIEW zrhA~K^m;~LwXb-#^tOFmN#~~Q-ays7lU{4lvs?>7Ew?U8m}BM4)u;L1CpC=mC0@^LlwelbLSa1Oa>pjda<{oXb>Oma*c6!wmt6ozi3Pb>Vbm1GGcK+{DCu@22m2=Tvnv zDjqj%>dyj*s*bXzo{sie;VpmbA~s;@7br71zKevKm8g~6j!tUrK#bc^NY^BpGmBD^ z)H%8}sEok7DQ?!8iSsIO0I_Y{2Sisoq@6nKCq!HeaH}^^YvhD|*j%<`#fX{%a>Y}< zX#pq(33t4#v~*qqQ=wVq^m>L6u%)S$p8)~(nbr|J)lnnhN(}Zs15&=939jG!keAQW znD*ciab@vs>w=PiFwYA(M1oGxfHkm5YbB}pWbpC9EZ?ed=0pj}K{MtP^nx0vqJP#F z%Sy%}+Kq{6B?~mwn5y@yAFmwD_pqt3f9hRuH)){TsJX47`K!Cm;H8w!JGf)u?ktlw zvNT4CY1={tQs4^oLnB!@UneaAy$4WIpQmP3xlZ=syr!cIy`oGD%ff)FD-!@4!F#j| zeBF|v4V47-E=_f>A>3Bb>e~S64iPwl0o{mnwry@?9%WGLrJ>pRsE)wP)wFGSMMdi6 z;O1T{Hn@3=>Evt@pevaFjsD5SS!OCHx#RhIYM2pczx<$1uH&UEMGBAAteMQ<%)Q8o@s zaA*(5zMJFDS>!6vsumS-s2#4NA>$o}Gi)`w&~RpNO6 zzbwEe@@5pH(ep8tJdcXGKfUSpq!(#&PUOml^=s%@tZ$yzo0R^*KnaV;lLMsD=U0|u zHD4~*V2y+k;UoBMJ}Wd#ybm4IGFBrFZ;eNr;k@1Tz>x-5#THc-_V*%46;!|Oq>3eNY~+;VdeRN z8v;AO&gH~Gz{y;S?WN|z_SB$7(d8dMJMgxANP(l^L8pq{^KwTxO!I%A!ufkLzJF

|ECwBJVnU2l$T7uVzbEVUH3lfvWHqnI8oPIYHA&Vyth; zPT~o{l2xO}%PdQ$j4e@P)}_UD3=HEl3rgi1Fov3mEk#`+r`|J3{|b zjBd5?XmMR0pLbQLIi}iA6DIZtbzuP8-H-f36bJ#l@XTw}=EFII}P!!rBZz z+>Uk>!_;ui#Mlbd+3ycg*{_p5?MKz&{A@L@tY!PXVb9Z0Mtu{C1KFdRaAWD=nWMhx z=dB*P*oRsWf4uK};w1<6zZ!O=jh=LW$bS|8TM%+uRYBjv_qyPe(Q6XERR@Y`ev?qu zU-Gc#xJgeCx`BKEXbJdpxw&G15h-v>vwK3A(omj0CT_s)ooirGWw$eN)^SMl8N^Zi zZ=OB`qQ5qa1rc5uNsif`?h+zbZ zhW^n5hor&%^ahpMvPy%NQW)w2=x>?yBVN2a^C-rf+#TH0PYa>*pMr$~YwM|&#~q;! z+VN(8BY4%rio@?JNeIT71?aZ&vV~)o=QV)S1JGe102qaPeK3S~_YbR3h9n%U6-doO zTC0=ikgE2~c~qNwwHsaV$bj?s5^bv9^;hR!BR1_Pbrm;jD-o7Qk1a3RA;#I5YfkR) zKGenCSt$o5-qxj8r@T0-!-{%5vJ{c@$cfeM!E)44s(;dtj1hu^Tebk{%Z*=85X(|d zna~v+UZ7%z=-g#A5z)Q54a0b-LH6#I?zLJ`-5r@g)^8A>OP`0S%|vA^rMSoOzsHB$W&uih3oV_n+Tt0E$N&C{F%Wy^W0q{ZSuq&p2^PWhGds^zSKEAU z&Hy&8VEOftl>JpOdd32X6tX~0i_a7)`Vc7hwm9S;Bm{B58yC{ic7~PF5Bes=T?ySO z9Qh=5VMN$DYifed?{ZoFRNnKD^<@ z;O>0@G6ca}$H(t>5in6cckss_x(;g+ZUNyyYZ|79M#}^{8RE^7QAGL zLbkD~5x3V>=_#$;r#=AHISr}VPLSB7zW0E! z{-kR%i)-uSVv~OB2aApwC?1vB3fK^HnUu;Qdwb-o-)EwjA9+ME8tI@POY9bAiNRDu#Zr0e<$P5Y|A`_B9D2x~!&^(!_dAXK z+LI)DJz!IhM(l_CTveY&WXtP1fK`FQq!+R6!D-xcuaY3Mw%H$svbpk7`RsCcz@3P@ z*{v`!4Kli~pj6Z>Umj!Ci9)op`vid9i-$%e>sxuF(#pFh5=>=;MKqy$_(K1iC=a^` z-A=C^n#G0Adw*i;+r7l*uiK2oG2i( zi_3kPpy#}iHH*RG8-+?{*dDm$*y}JvNj-X)rR_yT^!lU1;JMH9wTRt^|5lx4pGui` z91yef7kj)zwtd5cWj5f>UB5!7J?2Cj=*sXVbI`H}zw8`O)E{s&cjvE?rYav>vvOv) zlUD7z&4(p_-m(!PAMS*cWF?b1C?&^<^2hyrBV&MD>=6Wf(>?=Ma&2KP%sf7K*^`n; zJ)H=B>CA$rLZVYgtAomUC>`(buV@fGu`u%5g55yIALX|67DMu7LGAESlnZzIVXr21 za_%0eYZKBD4-J@)&;H{%a}=7;K|yc7OdL4;%KB2))wqs^xxOOa>&hi@Eo;fi`mn3< z#BWxs?;FV1W10BhRMmgjKmU8_mia%x#Q!DT>N84Zr?#F1?*@2a!^4pRvjhE%1%Ldv z7yQF`@;{YrnVJ6+x}BxsA*ZN{Een@|%jS=~uuiwVS$<(iL&?_+ewq6!lqc6$t}GP$ ztDnS=6bhOUSU~DNF7Os=bm2B00-U!q!C8AmH2B!^PRp=#MXq{E0PVd8-ZM2B^Y4O1BhSLl5K4|Ek) z_%D;GyG*Wb5x)oU*9KK&57lQ*9w1YR7&0-g1|v~2SI;|79=ROxYix)3ujM&&aiDSH zB5;M10QHD)@5rCWOP0(6`eZ_l!*GX-H{)4bGjUf!K<@2EuzAR4tFcEFl8Bmyc{9b@MCL^4OiH`;eIA1& zjAWuZmueh3BuUWQ$~!wXHaf-Xury?nC}wU3xY`eC<9FfdV)R)LSf9yV9`v@mg$B+} zf_*P42O|(-Ca;6M3&2Ba&+x&YqHb<_9Lk>@)ob3Ox%X&*N$NM*Xm4*moox^zb3~2V!QMYM5|Ga9{IAXpgi>?b$t<@v(b*{5fJj zFs`!a=ne{xM#cN%?7g+0$IBkm2-sk`H^MY9cKCsb%MB)*@Dj@|~fVelaB%>U1P0i+_h2eSZB|nLY4Y z9X}G*GBEFc)W%y!Iog!aGkJK5zH?Ax7lujl zS1w4lGmRecj2Xy!o$BEG{9fJf=h}hxF;b5~+q?6V#e{DIZ$2THMA{y;rCzJK0SoM^ zfm>OPGInRGt^P55nJ-(v(hDC-x6|IT+MdCST8bF%I5cVB4H5nld!$#lei_}Kt>_a3 zY!+2DyGW*vtj{7wq<~fM^q1m$Pq3O0 zI=3*QM(F}6C2QHuy*V-dcW#hJ%|rJ!KFO>D3KoOM#O=^RY(23Hyy>2_=ZT zv5a5DXw`Tbbu9{QU*@#_Is|mqdK00v5+WTJFdMOwa-N=xH7+?(2_NWnCRlVkC5zjy zAXi=i0lA82d=#3^%bbUrdRCws+ApMdhx|*U<-wvh{7#5w4l*Rl%lFb|lz3EJ;a32r zl^&JluUEQv#r*mW1!qvX25z;QBLKzK$>FokP?Hrf_N|jVnx^X|uf?|Y=%w(7mq{GggD5`u<0yVYKcYkWSQbLA_)S|Pv7F)wG%n2zY6DF2VnUF1H4*nkN zTMJ=N)p4d%|KsEK>G$h&*xh1SA5wp0#jrJBc9smN00^ny>#eDQTHu2XNWJSgv;6obFlU)X0HbmeMYpTqYDeOhxSrFM9}ZVY5Ei}M%~0P>^IZkROuef22e2r+ivjL{PaJG{Yz1U zYvKwk!=z=vunHRo5LpEbx4;iQf30Tel{w+|y#BVvaT4?ZR2mv;wplmn{k3c8A3UYE1cte|^_q)fM=IXez>+}>9h%EfDPa~e#S-pisyS0Za)Qn)vG zQZ);W8|avNt99$yOhlQ32EU2nTAM;v)(dpQb_}RmmPqiXzkV7y{#+xUw}mySuc4o2 zeu2I8n-M!OdiRh|PSDYbIoe%486!=+AG612g6Ugz=;K6;yumxEq-|I$pST3!zj@X9 zgRhykWzw)QVeJo1c>B&l30u4PZ^xs5SZDwH^A{7xKP|GB29>6mlfV4-K!J(?ASnN~ z>OUIt|IC#2_SaOS^|lf5Gfk zGq`3u{(&-cxDk1c)7?Gu?BkIrauE2nYtecWj1NujxhaQyg2TXxpa7diw8IwI|W z;Sk@Ypr=c74OeW4D%d@*U-wIk;S9pKPda!H8I+EB?aRvmVl$~7`wIgm#PpL(Ck|)K z?E{h9AS-d|>kp=gR$)E-oRjZ@qEuAldMCkfR!NeT(*n}CI7wBimkZ^4)-(}ZG_1E% zgPWU!{Ul_2tNCuYBAF~A3<~3-P(!kP&M>zIg^{Q6A=o7KeWNm3@i=Og;_!na?m>+v zr6Tl_vc&bz^BwWQJLWcxO2u;K!A(UnWwC_CdDJ>~8sTzeOCyE5_Q0yU{ibo+D7OU9 z99Bs>G*O|@A&W94+6A-cpLIrIA{pfJ<@3pf4vveGsD=rPlARaC%QkDc1a;;EVGLa29` zcOC}dcW`y_YO+?O`=O>`Zp418BA0|NC>~)(0y0L(>Vw__!e(wQZ(5OUmh?<3IM%xT zzdkZBX1J&ROpER-?mDiYu=}umXEI#DdfmYAQM4p5B#5oq~Vn#4&u1*6nH5$r5Q4L)_!b67yGr7V5-8ve^u=fBW}rz4K+C_ zB?-jXq`6NBBWaQCkR|F3(2==a!+L0rnZ+bofxy9vRr$oW#Mab%cHXFQS|Az@i=Fl% zqB(8fK4ETcV`wG46`gEnV|ZGQ1HIX4%Tqc$U>YSxB+w_n!}r*a-z5MqS6N$fS&Cap z`h%LDCu_F9)4eBnu`jdxV0IZeUZzW7Q<7wxLzg66{ZDT`Tb*Tg{1zu{a8L?;w$I7= zP?9A7tiua}<0enx{&w{S`MJCxXm5m1Y5;nIG#)OLRz@Gr=;Qo8+_5fBPq|op+tq+Y5>Ixt zJE3V>H4{oeDGm6Waa)JM>4=K<*L@`lG?KLsH2U9kFJ$vfMOG{R7USqRjA!45en0_KM&pzmohJ0#+={9jA<-gp@$>@fcK}FA8-KCbxr-B#2nrc1iio!=(~Es=Og^CCnQMe zzmFr}Yq6)$_f#BK9nPjE9&rTA+njOPZ4$4$e!uXTC7&qEu9{l$X_8~(Po(@IN?-!G z>?HD$8N`o~Zbr|~(K2IUw=TN;jqD7pnk7o%7i8{jXw4h9Hlkm|zX@>3z`$ia6d}^G zu(|hqz~Jlf>mtO~0{%ghz1@XsrAdg(Hrt2Q8WD1wFlJ0Dfr{i>l6g?T;biyT7?3t|D7N8;W;DVG_7y4Z}vK(E&GJWtc&8$KJZKfMi~~E z=D;*+)6p|2DxZ&7H;&vwsCz)AGY4KB;JvPE>P)%~Zioct$I$wuU7E16Dp2V>7L&(r zd;hKRj;)A3Z9p(YtYbMwM5J=*FOJKRhgE>r{{IwrUH2Q1rjl!l&JjIJ}|5yM|Is3 zp7=_QntY0X4Upyi@S zqJ^U@G$ud<*1-LFmKwN$^z*XLg(vp4LhJHY{N@Sg)0b~9Qt#K&rkO7xK9k*cl$&S^Z;`5 z>vdJ#?w9Q(gq^6ULkX!P5y?(zH!*b-3NB7XJm#d7UJ3xe(X3BT{LusXgiYOO2mVf4D^mT8mpw5-BUfRL z;*{58RXyfBi#|^_VF^en=;{INjXeHB!XJF;ohcPt?u7`o0%u^@sgv)a!pFr>Ac$EC zoGDE82@lCmCB8})e;)Ki6;N=r)oBkZ25o9nU*YGrTCNTYe4UNb*z{ya3JUEWAodVp zQ(GY%E!SANRd6%4omugzH!@N6=Xu!c#9x;@jTAKt!b>{`EuIhP%}#}KH18C6a9fYR zdHAw0fROk~?V;mgW8-yLS$>yQ$}Rf%<;6}Hzy&zg&jT*ka#nHl0TsjH^qCbeDBb>< zh39+#T7B8JC1TG=kt-(;+c+_gaCGR`Dma5?ep<4Jg9k?~G7*%3T>AmwD(2z>+`i6> zBenU_j0zJJ{?Pq=OhRHL-xE}P@<2DvT)cr^eix4#6Svrnqkv(~4jgd@w)n&4w-0cL z6Xo?hUz9ifnd@SldQ}^QpYll9xz8Mvw3n98heZqY3ZqUKz^qPSr8kRKpNH_w#6QJ# z$;wfKchwo~a=!-Sa?QE)Cfk2P%7mahz~dyno0;$NRmjiVEsNm_)vF7A_=DZ7L~~=e z&OP`KPY0D<6w97p%q$njOt?;Kn9gp)(j`xvK#$;|i<1l^qYKzkt*bOh`&B{w)5YKA}s!QpbQ=$yG+}NC1&ViqT zj|6?!QrG`dxiJ4@%J;vohnWAf9{Q_Cqqf%2mNE|282fF&K*R%~00FCj{ToV=`5$`s z|Fkk|8Ob&RT6uttJae$N-ep#T$N#fvD46=7U5?gqjbB2 zV$DKjBrwtxwG}^Zu%UP=dI6*FR^NgBRF8-an;qJv45;OibSI5wN>YpQh=sOGa@+1>M#TvsM2vzk8$Wg%hyHZ&cnOQ9?GDs%nW&gqnWD?rGsuXc_N6{7RTvev39mHz=E`P_aErO?(o2m{c+tipuMYi+oLAaRqfaI(gC|lyl-R z)^=_i)m?l^p7bzDg;lB1t3;nMId&2!B7=zxk}B%+c|w1AZ8~*AN|TDCbCP-Ss`DjP zg3mv_RVL;lR_8Tojz7OkQqiq;P^d}#)|x%X_SH8@ot<{dw7JPUeDrYahTykrE`iC` zIL*5Ztbo_R>FDa397@|AN>l%4U3#F##j6ak85T(dmur92r=$%R9aN%2^ne`HIp<_z zgc40Fd=m)j=TLn8aB<=^u0?Nd)zt4w+3rsoGp~>!>1kyZ`3n+~Ef)>TM&ds;K16#-YY$Y)E7LK{#}(Sry%0m+S3`uy zGwA-M;#^BJi$$DpeAD|Enj>te*y{8nPSR#_=Zi^rtzYpXU^?It_Nhj#O3C@pSR543 zqHER}08}vRFfF}7n1oe>)BRv!gH(f(fj3EJLida1)Mu3S+07&M0V4ooJMCFF7k($D z%FiBg>JKPn85e7Lw`AbS?(w^dVn&oXt+j0#g)wf`t?UQuog)FAZ7j8d#byOf`PpYu z5uNcO_C7UC#Q+f{e$g~iju$uw4e^4r;zO7%8Obw8L$oItYCV(my!*pgZuEU5^jx65w2!dPrZl{dAE}MF7JXw19J~7{! z0$eR}?BRy-g_;CHaX-U7<#Bm=BajQssQM3z2xf~>gR(O)z*{ArPW1uf z6(AxO@8?a56a&zwMY{C5{1(V%?30zTE7gfPt4iMe4$s51{p6zOvK?JIJu|W%pWZbo zkKkUwKeyI4_wHgbF;ya|kR^x_SwUvq`bRcMlfd9fN=HV@l@%cO*w z&E!Z=g_NO7)S=iS^22uM!h=z_hH_WQyiu3U=pjekLAne~OF`-I=Xq`+ogU<;|7{EZ zN5}8K-@^ZYl9rw?kSGL%2qZ8NGzIX#Nm~C{^uO}z7-S7B6rHRYWC*!f|0dTtI64t> zu(JIhGVE9wx&8xg*QH^ph{J{c+1(?s6TD5e>Hf1>VG#r$ncOJY&nUjAw2|W-fw4b&p2BJvLNR{d$2Ex+EM3$zQ zOf}Nk6scivlWHPhHdXjH(_|t063PS@MFP@9eo62()WpJ|J|VfcUf^lw@GKlmts&g&fRP#_H0$thBSs2L!cx>;1TQskXF?_;1SxL6wnHKFUksB_X(Li% z^8$%rVgb6QbLxm}a;dwRaFDc4&wA0q^dP{X>JY5rQ=K6c(0CBD;A?e+#5=tr0B~$j zBar(a@M5T#P^rEc4EHU%Hx(attk^4WM*}124yFThJ`V+VMsm_H(Mi1%AIje81Q^7| z@N-wpK3soetvWmw%5@P&3Vd9QT>>+mJuWX2;N-(8>Q$~^$eS3g4S5y(nae1L?PYs+z*=FA=ieLeh$O;NxZ zCjoZP$ic?l;eGc?O)Z1HOI%K*DBHL!BLP)S?(8dYTp@yj+&c^@z_ah@&1kcy@|^hR zP4=N}1;by1>`F&jw4y^|{KD{stnPVAigQi183w5&j{am9LuPpC>7%&E&<=Rf(Ipco zoth6Q)~Z9|Hi&WX<4sn|NW$HZ%FP|E9a$T`eEXW}iZRL?m7I{z^Zlc_{Jx$)ymNc6 z*DtA@oMK0&10DLjbkFSvUwp&NWer^m?d=y(SxIjUT^$x>GNQNA5pbrL#3L+K8tRMZ zDk^`;qV?1Z%}GmX(I1HusR~8rh)qCK)J|qtb!mH5l@n4pl`~Q})}vCeRg+S%mE%&d z71NPhfj?%inV?U5;HHeA7>?0_DuWh`o52@Mn}e8**!?0^giV%+DOf62c0--1EpN;m zX{EE8U}*piHgPOz(wrw$VpsvTKOy#DUwphO0ZWKdwLqDrxC;)5>|() z`_0AbL^ltukCXo%cn!| z1*)7KDhQgjNzBcLb zG)OOC?#rR#fOVllit51#3xId(V+9qjgWQgrG1o{L_rtZZp`#KBH=U7?T(RX;BK@i3 zFFM1$uwl=OM{Ot7d-JU%wVf^N(`wcBjixO&AA^_Kb3R*M>(dmPTtln4X0zgt=Iml~ zoQz_@h@yrNFaMCS!uDxO zH3FW;im~mKzLUMr-S=zQKZddnWo^gTF|?9hdA;=2upV1JMbu?M@;a{sZ6AIQ1oelf zD}OAUFpt)8+bIUxBSC+&;48g#m_J;922Z$n%GXq%Hlg4|4sG4Ybk`a@c6$RqH)v#eiZ5=6@isdvCYz@)girpKt~5F_c`zJ3sB~N{uFBM$RQ?V@!|FTSn@N>U4&7 zy1|x|89IeqSD-2k`VS+Of(r{_3+NF4V8U8>G{M|?;~6eduLNTc`>eHo+%1Hw0;GU0#&l-h@8huMM7Ktw4B{(g4 z?9QF$7t+L*0#h7J*&yj}7i%-eMmoFXC~ZSO#ET1?djjOeccZ6k`ce)WD{1 z#$Fb`9F+9vlCccoFIH)bz7-2420P}jI>+wiUq&fY8~CX$8E$^&$3|)bCY=z%P~j*JGum>@3#xNP#F1()Egp<7l+{=}mX&peFmH=M&e z^OSp~zK4SC#_*<_nriQk_oI;p4vd42ZL!wRi1XvUW{$k$6y1{6*PQ6;k-Nf9ESZb3 zm9BxlSHq;Eo_WJ#JEsO$K<{sk${v$jCm$cpt+~4qq|sQf!H>_eTYOOz-mC?k9j}?f zlQ$3d6x~2Gmd1$Zx4lLJ1O=PZW5k{pVa7Ky#?R8Y>C`%l$3*@7=OU-MB-*@`F~cnZrgCAL^5Sm!5>}dI?#0OX z$wmek%yn{dlH^c|gbBW>Twf}}ZBNW`Dlh{a7DKjk8^)F|I# z6!PM!80cD zfz2aaS5pb!=BLWIyrD+#BPbiXs!nd{>1qe?<`nGBl%Y42qrXU7thLr*;;mcAJAHwb z3d6o^E!D^MG;3VeYka_4tQq;3HjRo}+;vnOy>1;{G^Eh6hK-&eN~$46Anp*O8*)S# zpP@2$Bf$z^#snmJ<#FS-5NlCL7vPM1$J?>Xugyzq>^W`~QhDavu&3^*vtP$q_3MUe zdH1+~zu%8E={y`o>&rOw2}xf3Nud?@wqmDA?LM!TeW- zy#j-{jfpMcf2mUn42tIN#)M4F>v-VD(VP34ufG;KZpqS6qV_$*X1Y zBJ^;lcZD{&+bM&g@3hX;K%{pAZBG4kP6NCtLx6An5g_^ymgGR`OMNv;1KiDgMa)9r zO9N$Ye_^!dVQJ)|t>?nvBKji2^)Z6!gB26PCG7uL 0:\n", + " # If yes, set the corresponding value in the 'Int' column to True\n", + " df.at[index, 'Int'] = True\n", + " else:\n", + " # If no, set the corresponding value in the 'Int' column to False\n", + " df.at[index, 'Int'] = False\n", + "\n", + "print(df)" + ] + }, + { + "cell_type": "markdown", + "id": "b9f909ae-9a0e-4a69-a5f5-5f1eacb6bc2e", + "metadata": {}, + "source": [ + "8. $\\color{red}{\\text{(D)}}$ Can you think of an easier way to construct the column *’Int’* instead of the loop described above? If yes, add this column and call it *’Int2’*" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "63a9f3b8-b8c3-42a4-8746-940bfe3c451a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Ones Seq Normal Coursename Int Int2\n", + "0 1 1 8.862468 Machine True True\n", + "1 1 2 -0.197492 Learning False False\n", + "2 1 3 -1.343464 for False False\n", + "3 1 4 -4.886340 Economics False False\n", + "4 1 5 3.894487 and True True\n", + "5 1 6 1.273152 Finance True True\n" + ] + } + ], + "source": [ + "# Add a column 'Int2' to the DataFrame based on the condition\n", + "df['Int2'] = df['Normal'] > 0\n", + "print(df)" + ] + }, + { + "cell_type": "markdown", + "id": "20e52fac-725f-4b85-a6dd-6d70ea890928", + "metadata": {}, + "source": [ + "9. $\\color{red}{\\text{(D)}}$ Now we use our vector *train_sample* to construct two distinct datasets from *df*. The numbers in *train_sample* refer to the rows of our dataframe *df* that we want to use for the first dataset while all other rows can be used for the second dataset. Construct a new dataframe called *df_train* that only contains the rows in *train_sample*. Note that you can simply use square brackets to extract rows from a dataframe. Make sure that you extract all columns but only the rows that are in *train_sample*. Your object *df_train* should have $4$ rows and as many columns as *df*." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "dd221bd8-b79d-4bb2-938a-7ba29ddeef98", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Ones Seq Normal Coursename Int Int2\n", + "5 1 6 1.273152 Finance True True\n", + "2 1 3 -1.343464 for False False\n", + "4 1 5 3.894487 and True True\n", + "3 1 4 -4.886340 Economics False False\n" + ] + } + ], + "source": [ + "df_train = df.loc[sample_train]\n", + "print(df_train)" + ] + }, + { + "cell_type": "markdown", + "id": "27a77f7f-437c-4d16-b34d-07dda30e2ac7", + "metadata": {}, + "source": [ + "10. $\\color{red}{\\text{(D)}}$ Construct another dataframe called *df_test* which contains the other two rows of *df* that are not in *df_train*. Note that you can use `~df.index.isin()` to select all rows that are *NOT* in *train_sample*." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5ab811a2-58b5-472a-821b-c6ece5c3498e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Ones Seq Normal Coursename Int Int2\n", + "0 1 1 8.862468 Machine True True\n", + "1 1 2 -0.197492 Learning False False\n" + ] + } + ], + "source": [ + "df_test = df.loc[~df.index.isin(sample_train)]\n", + "print(df_test)" + ] + }, + { + "cell_type": "raw", + "id": "3ba17c73-a83f-43fa-8f29-3b773e25887b", + "metadata": { + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "df4f7f10-2779-43ab-a7b0-3bd1b3f15b0c", + "metadata": {}, + "source": [ + "## Task 2: Working data from the *ISLR2* library\n", + "\n", + "1. Install and load the library *ISLP*." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "886c7cee-2850-4f96-a6ec-74cea1e79ba8", + "metadata": {}, + "outputs": [], + "source": [ + "# Note: There are different options based on your OS!\n", + "# https://islp.readthedocs.io/en/latest/installation.html\n", + "\n", + "#pip install ISLP" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0fcb50e3-3e49-4ec3-b94a-b727bbede4c2", + "metadata": {}, + "outputs": [], + "source": [ + "import ISLP" + ] + }, + { + "cell_type": "markdown", + "id": "45467793-413b-4441-8c43-3e4a613451c9", + "metadata": {}, + "source": [ + "2. Load the dataset *Auto* and save it into an object called *Auto*. Use the help function to obtain information about the variables in *Auto*." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a18ccbf9-18ee-4794-872f-822145732f4d", + "metadata": {}, + "outputs": [], + "source": [ + "from ISLP import load_data\n", + "\n", + "# Load the Auto dataset\n", + "Auto = load_data('Auto')\n", + "\n", + "# Obtain information about the variables in Auto\n", + "#help(Auto)" + ] + }, + { + "cell_type": "markdown", + "id": "f3d8420f-8986-4b9e-ac8b-bfd42cd9cd8a", + "metadata": {}, + "source": [ + "3. Provide a summary of *Auto* using the `describe()` function. Do you think all the variables in *Auto* could be readily used for a linear regression model?" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ad016dfc-06a3-4128-a6ad-439fc10f5c84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " count mean std min 25% 50% \\\n", + "mpg 392.0 23.445918 7.805007 9.0 17.000 22.75 \n", + "cylinders 392.0 5.471939 1.705783 3.0 4.000 4.00 \n", + "displacement 392.0 194.411990 104.644004 68.0 105.000 151.00 \n", + "horsepower 392.0 104.469388 38.491160 46.0 75.000 93.50 \n", + "weight 392.0 2977.584184 849.402560 1613.0 2225.250 2803.50 \n", + "acceleration 392.0 15.541327 2.758864 8.0 13.775 15.50 \n", + "year 392.0 75.979592 3.683737 70.0 73.000 76.00 \n", + "origin 392.0 1.576531 0.805518 1.0 1.000 1.00 \n", + "\n", + " 75% max \n", + "mpg 29.000 46.6 \n", + "cylinders 8.000 8.0 \n", + "displacement 275.750 455.0 \n", + "horsepower 126.000 230.0 \n", + "weight 3614.750 5140.0 \n", + "acceleration 17.025 24.8 \n", + "year 79.000 82.0 \n", + "origin 2.000 3.0 \n" + ] + } + ], + "source": [ + "# Note: You can transpose '.T' the output to optain a horizontal output.\n", + "print(Auto.describe().T)" + ] + }, + { + "cell_type": "markdown", + "id": "7870bbb9-e5cd-4fcc-bb2d-d33e80b2c8d2", + "metadata": {}, + "source": [ + "4. The goal of the following exercises is to understand the relation between the variable *’mpg’* and *’horsepower’*:\n", + " - Provide a histogram of *’mpg’* using the function `hist()`. Hint: For creating plots and visualizations, the `matplotlib` package is a common choice.\n", + " - Compute the pearson correlation between *’mpg’* and *’horsepower’*. For this, first select the two respective columns using `Auto[\"mpg\",\"horsepower\"]` and then use the function `corr()`. Is there a positive or negative relationship between the two variables?\n", + " - Provide a plot with *’horsepower’* on the x-axis and *’mpg’* on the y-axis. Do you think a linear regression model is well suited to predict *’mpg’* using *’horsepower’* ?" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2f762fc4-67f2-403f-b205-35b7ba15b4be", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYUklEQVR4nO3df7RdZX3n8feHSAYQLCABUyA3SqnWEQl6ZazYEUFnUaoCY+1I1eIs29hRurTjLIustsLqtEu7RHSWHcdQGVO0VvyJonaMVGQxC8WgSKDQoaNJRGJy/UFD1JJCvvPH2Xe83NybnNxkn7OT/X6tddY5e5+z7/M9z0o+d9/n7PM8qSokSf1x0LgLkCSNlsEvST1j8EtSzxj8ktQzBr8k9YzBL0k9Y/CrU5LcleTMcdcxTkkuSPKdJNuSnDbuenTgMfg1MknWJ3nBrH2vTnLz9HZV/euqunE3P2d5kkrymJZKHbd3ABdX1eFV9Y1xF6MDj8EvzdKBXygTwF1jrkEHMINfnTLzr4IkpydZm2Rrks1J3tm87Kbm/oFmOOSXkxyU5A+TbEiyJclfJfm5GT/3t5rnfpDkj2a1c1mSjyX5YJKtwKubtm9J8kCSTUnek2TxjJ9XSV6X5N4kDyb5kyQnNcdsTXLtzNfPeo9z1prkXyXZBiwCvpnk/85z/NBtJzkzyX1JLk3y/eZ9v2LGz3p8ks80x30tyX+d+ReYDkwGv7rs3cC7q+pxwEnAtc3+f9vcH9kMh9wCvLq5PR94EnA48B6AJE8F/jvwCmAp8HPA8bPaOg/4GHAk8CHgEeD3gWOAXwbOBl4365hzgGcCzwbeDKxq2jgReBpw4Tzva85aq+qhqjq8ec2pVXXSvD2zZ20/oXkfxwMXAauSPLl57i+AHzevuai56QBn8GvUPtWcRT+Q5AEGgTyffwF+IckxVbWtqr6yi9e+AnhnVX2rqrYBbwFe3gzb/Drwmaq6uaq2A38MzJ6k6paq+lRV7aiqn1bVbVX1lap6uKrWA+8DnjfrmLdX1daqugu4E/hC0/4/AZ8H5vtgdle1DmtP2/6j5hfLl4HPAr+RZBHwUuCtVfWTqvp7YPUe1KD9lMGvUTu/qo6cvrHzWfRMrwF+EbinGYZ40S5e+/PAhhnbG4DHAMc1z31n+omq+gnwg1nHf2fmRpJfTHJ9ku81wz9/xuCseabNMx7/dI7tw5nbrmod1p60/aOq+vGs9n4eWNK0O/O9P6ofdGAy+NVZVXVvVV0IHAu8HfhYksey89k6wP0MPhSdtgx4mEEgbgJOmH4iyaHA42c3N2v7vcA9wMnNUNOlQBb+boautQ1HNf02s737gamm3RNmPHdiSzWoQwx+dVaSVyZZUlU7gAea3Y8wCKwdDMbHp30Y+P0kT0xyOIMz9I9U1cMMxu5fnOQ5zYeel7P7ED8C2ApsS/IU4D/tq/e1m1rbcnmSxUl+BXgR8NGqegT4BHBZksOa9/lbLdagjjD41WXnAHc1V7q8G3h5Vf1zM1Tzp8D/bj4reDZwNXANgyt+vg38M/B7AM04+O8Bf8Pg7P9BYAvw0C7a/i/AbzavvQr4yD58X/PW2pLvAT9icJb/IeB3q+qe5rmLGXzY/b2mpg+z637RASAuxKK+ac6yH2AwjPPtMZfTqgy+Bf3BqjphNy+dfv3bgSdUlVf3HMA841cvJHlxM5zxWAbfjF0HrB9vVeOX5ClJnp6B0xl8oP7Jcdeldhn86ovzGAx13A+czGDYyD93B59lfILBtfzXAlcA1421IrXOoR5J6hnP+CWpZ8Y9GdVQjjnmmFq+fPm4y5Ck/cptt932/apaMnv/fhH8y5cvZ+3ateMuQ5L2K0k2zLXfoR5J6hmDX5J6xuCXpJ4x+CWpZwx+SeoZg1+Seqb14E+yKMk3klzfbB+dZE2zXuiaJEe1XYMk6WdGccb/BuDuGduXADdU1cnADc22JGlEWg3+JCcAvwb85Yzd5/GzdT1XA+e3WYMk6dHaPuN/F/BmBqslTTuuqjYBNPfHznVgkpVJ1iZZOzU11XKZ7ZiYmCDJgm4TExO7b0CSFqC1KRuahbG3VNVtzWIQe6SqVgGrACYnJ/fLKUQ3btzIunXrFnTsKaecso+rkaSBNufqOQN4SZJzgUOAxyX5ILA5ydKq2pRkKYMl8CRJI9LaUE9VvaWqTqiq5cDLgb+rqlcCnwaml3W7CBd9kKSRGsd1/G8DXpjkXuCFzbYkaURGMi1zVd0I3Ng8/gFw9ijalSTtzG/uSlLPGPyS1DMGvyT1jMEvST1j8HfU4sWL/davpFbsF4ut99H27dv91q+kVnjGL0k9Y/BLUs8Y/JLUMwa/HsWppKUDnx/u6lGcSlo68HnGL0k9Y/BLUs8Y/JLUM47xH4Cmv/UrSXMx+A9AfutX0q60NtST5JAktyb5ZpK7klze7L8syXeT3N7czm2rBknSzto8438IOKuqtiU5GLg5yeeb566sqne02LYkaR6tBX9VFbCt2Ty4uVVb7UmShtPqVT1JFiW5HdgCrKmqrzZPXZzkjiRXJzmqzRokSY/WavBX1SNVtQI4ATg9ydOA9wInASuATcAVcx2bZGWStUnWTk1NtVmmJPXKSK7jr6oHgBuBc6pqc/MLYQdwFXD6PMesqqrJqppcsmTJKMqUpF5o86qeJUmObB4fCrwAuCfJ0hkvuwC4s60aJEk7a/OqnqXA6iSLGPyCubaqrk9yTZIVDD7oXQ+8tsUaJEmztHlVzx3AaXPsf1VbbUqSds+5eiSpZwx+SeoZg1+Sesbgl6SeMfglqWcMfvWeC8yrb5yPX73nAvPqG8/4JalnDH5J6hmDX5J6xuCXpJ4x+CWpZwx+SeoZg1+Sesbgl6SeMfglqWcMfknqmTbX3D0kya1JvpnkriSXN/uPTrImyb3N/VFt1SBJ2lmbZ/wPAWdV1anACuCcJM8GLgFuqKqTgRuabUnSiLQW/DWwrdk8uLkVcB6wutm/Gji/rRokSTtrdYw/yaIktwNbgDVV9VXguKraBNDcHzvPsSuTrE2ydmpqqs0yJalXWg3+qnqkqlYAJwCnJ3naHhy7qqomq2pyyZIlrdUoSX0zkqt6quoB4EbgHGBzkqUAzf2WUdQgSRpo86qeJUmObB4fCrwAuAf4NHBR87KLgOvaqkGStLM2V+BaCqxOsojBL5hrq+r6JLcA1yZ5DbAReFmLNUiSZmkt+KvqDuC0Ofb/ADi7rXYlSbvmN3e1zyxevHjBi5Yn4bDDDnPRc2kEXGxd+8z27dsXvGg5DBYud9FzqX2e8UtSzxj8ktQzBr8k9YzBL0k9Y/BLUs8Y/JLUMwa/JPWMwS9JPWPwS1LPGPyS1DMGvyT1jMEvST1j8EtSzxj8ktQzBr8k9Uyba+6emORLSe5OcleSNzT7L0vy3SS3N7dz26pBkrSzoRZiSfK0qrpzD3/2w8CbqurrSY4Abkuypnnuyqp6xx7+PEnSPjDsGf//SHJrktclOXKYA6pqU1V9vXn8IHA3cPzCypQk7StDBX9VPRd4BXAisDbJXyd54bCNJFnOYOH1rza7Lk5yR5Krkxw1zzErk6xNsnZqamrYpiRJuzH0GH9V3Qv8IfAHwPOA/5bkniT/flfHJTkc+DjwxqraCrwXOAlYAWwCrpinvVVVNVlVk0uWLBm2TEnSbgwV/EmenuRKBsM1ZwEvrqpfah5fuYvjDmYQ+h+qqk8AVNXmqnqkqnYAVwGn7+V7kCTtgWHP+N8DfB04tapeP2Ps/n4GfwXsJEmA9wN3V9U7Z+xfOuNlFwB7+qGxJGkvDHVVD3Au8NOqegQgyUHAIVX1k6q6Zp5jzgBeBaxLcnuz71LgwiQrgALWA69dWOmSpIUYNvi/CLwA2NZsHwZ8AXjOfAdU1c1A5njqc3tSoCRp3xp2qOeQqpoOfZrHh7VTkrT/WLx4MUkWfDvssMMWfOzExMS43772U8Oe8f84yTOmx/aTPBP4aXtlSfuH7du3s27dugUff8oppyz4+FNOOWXB7arfhg3+NwIfTXJ/s70U+A+tVCRJatVQwV9VX0vyFODJDMbt76mqf2m1MklSK4Y94wd4FrC8Oea0JFTVX7VSlSSpNcNO0nYNg2/b3g480uwuwOCXpP3MsGf8k8BTq6raLEaS1L5hL+e8E3hCm4VIkkZj2DP+Y4C/T3Ir8ND0zqp6SStVSZJaM2zwX9ZmEZKk0Rn2cs4vJ5kATq6qLyY5DFjUbmmSpDYMOy3z7wAfA97X7Doe+FRLNUmSWjTsh7uvZzDb5lb4/4uyHNtWUZKk9gwb/A9V1fbpjSSPYXAdvyRpPzNs8H85yaXAoc1aux8FPtNeWZKktgwb/JcAU8A6BgunfI55Vt6SJHXbsFf1TK+Pe1W75UiS2jbsXD3fZo4x/ap60i6OOZHBXD5PAHYAq6rq3UmOBj7CYMK39cBvVNWP9rhySdKC7MlcPdMOAV4GHL2bYx4G3lRVX09yBHBbkjXAq4EbquptSS5hMIz0B3tWtiRpoYYa46+qH8y4fbeq3gWctZtjNk2v2FVVDwJ3M7j+/zxgdfOy1cD5C6xdkrQAww71PGPG5kEM/gI4YthGkiwHTgO+ChxXVZtg8MshyZzfB0iyElgJsGzZsmGbUk9Nr33bJ3vznpctW8aGDRv2cUXaXww71HPFjMcP04zND3NgksOBjwNvrKqtw/5DrapVwCqAyclJvzOgXdqbtW/317Vr+/ietW8Me1XP8xfyw5MczCD0P1RVn2h2b06ytDnbXwpsWcjPliQtzLBDPf95V89X1TvnOCbA+4G7Zz3/aeAi4G3N/XVDVytJ2mt7clXPsxiENsCLgZuA7+zimDOAVwHrktze7LuUQeBfm+Q1wEYGVwhJkkZkTxZieUZzdQ5JLgM+WlW/Pd8BVXUzMN+A/tl7UqQkad8ZdsqGZcD2GdvbGXwBS5K0nxn2jP8a4NYkn2TwDd4LGHwrV5K0nxn2qp4/TfJ54FeaXf+xqr7RXlmSpLYMO9QDcBiwtareDdyX5Ikt1SRJatGwSy++lcF8Om9pdh0MfLCtoiRJ7Rn2jP8C4CXAjwGq6n72YMoGSVJ3DBv826uqaKZmTvLY9kqSJLVp2OC/Nsn7gCOT/A7wRVyURZL2S7u9qqeZeuEjwFOArcCTgT+uqjUt1yZJasFug7+qKsmnquqZgGEvSfu5YYd6vpLkWa1WImlkpufyX8htYmJi3OVrLw37zd3nA7+bZD2DK3vC4I+Bp7dVmKT2OJd/v+0y+JMsq6qNwK+OqB5JUst2d8b/KQazcm5I8vGqeukIapIktWh3Y/wzp1V+UpuFSJJGY3fBX/M8liTtp3Y31HNqkq0MzvwPbR7Dzz7cfVyr1UmS9rldnvFX1aKqelxVHVFVj2keT2/vMvSTXJ1kS5I7Z+y7LMl3k9ze3M7dV29EkjScPZmWeU99ADhnjv1XVtWK5va5FtuXJM2hteCvqpuAH7b18yVJC9PmGf98Lk5yRzMUdNR8L0qyMsnaJGunpqZGWZ8kHdBGHfzvBU4CVgCbgCvme2FVraqqyaqaXLJkyYjKk6QD30iDv6o2V9UjVbWDwbTOp4+yfUnSiIM/ydIZmxcAd873WklSO4adpG2PJfkwcCZwTJL7gLcCZyZZweDLYOuB17bVviRpbq0Ff1VdOMfu97fVniRpOOO4qkeSNEYGvyT1jMEvST1j8EtSzxj8kvaI6/Xu/1q7qkfSgcn1evd/nvFLUs8Y/JLUMwa/JPWMwS9JPWPwS1LPGPyS1DMGvyT1jMEvST1j8EtSzxj8ktQzBr8k9UxrwZ/k6iRbktw5Y9/RSdYkube5P6qt9iVJc2vzjP8DwDmz9l0C3FBVJwM3NNuSpBFqLfir6ibgh7N2nwesbh6vBs5vq31J0txGPcZ/XFVtAmjuj53vhUlWJlmbZO3U1NTICpxpYmJiwfOOJxlLzZK0O52dj7+qVgGrACYnJ2scNWzcuHHB846Dc49L6qZRn/FvTrIUoLnfMuL2Jan3Rh38nwYuah5fBFw34vYlqffavJzzw8AtwJOT3JfkNcDbgBcmuRd4YbMtSRqh1sb4q+rCeZ46u602JXXb9ELtC7Vs2TI2bNiwDyvqp85+uCvpwLM3C7WDF0zsK07ZIEk9Y/BLUs8Y/JLUMwa/JPWMwS9JPWPwS1LPGPyS1DMGvyT1jMEvST1j8EtSzxj8ktQzBr8k9YzBL0k9Y/BLUs8Y/JLUMwa/JPXMWBZiSbIeeBB4BHi4qibHUYck9dE4V+B6flV9f4ztS1IvOdQjST0zruAv4AtJbkuycq4XJFmZZG2StVNTUyMuT5J+ZmJigiQLuk1MTIy7/J2Ma6jnjKq6P8mxwJok91TVTTNfUFWrgFUAk5OTNY4iJQlg48aNC14kvosLxI/ljL+q7m/utwCfBE4fRx2S1EcjD/4kj01yxPRj4N8Bd466Dknqq3EM9RwHfDLJdPt/XVV/O4Y6JKmXRh78VfUt4NRRtytJGvByTknqGYNfknrG4JeknjH4JalnDvjg35tv3EnqlsWLFx9Q36Adl3FO0jYSB9o37qQ+2759u/+f94ED/oxfkvRoBr8k9YzBL0k9Y/BLUs8Y/JLUMwa/JPWMwS9JPWPwS1LPGPyS1DMGv6Re2JvpHsbVbltTTRzwUzZIEoxvuoe9aXdv257PWM74k5yT5B+S/GOSS8ZRgyT11TgWW18E/AXwq8BTgQuTPHXUdUhSX43jjP904B+r6ltVtR34G+C8MdQhSb2Uqhptg8mvA+dU1W83268C/k1VXTzrdSuBlc3mk4F/aKmkY4Dvt/Sz95Wu19j1+qD7NXa9Puh+jV2vD0Zf40RVLZm9cxwf7s71EflOv32qahWwqvVikrVVNdl2O3uj6zV2vT7ofo1drw+6X2PX64Pu1DiOoZ77gBNnbJ8A3D+GOiSpl8YR/F8DTk7yxCSLgZcDnx5DHZLUSyMf6qmqh5NcDPwvYBFwdVXdNeo6Zmh9OGkf6HqNXa8Pul9j1+uD7tfY9fqgIzWO/MNdSdJ4OWWDJPWMwS9JPdOr4E9ydZItSe6cse/oJGuS3NvcH9Wx+i5L8t0ktze3c8dVX1PPiUm+lOTuJHcleUOzvxP9uIv6OtOPSQ5JcmuSbzY1Xt7s70ofzldfZ/qwqWdRkm8kub7Z7kT/7abGTvRhr4If+ABwzqx9lwA3VNXJwA3N9rh8gJ3rA7iyqlY0t8+NuKbZHgbeVFW/BDwbeH0z5UZX+nG++qA7/fgQcFZVnQqsAM5J8my604fz1Qfd6UOANwB3z9juSv/NNLtG6EAf9ir4q+om4Iezdp8HrG4erwbOH2VNM81TX6dU1aaq+nrz+EEG/6iPpyP9uIv6OqMGtjWbBze3ojt9OF99nZHkBODXgL+csbsT/Tdtnho7oVfBP4/jqmoTDEIDOHbM9czl4iR3NENBY//zdVqS5cBpwFfpYD/Oqg861I/NEMDtwBZgTVV1qg/nqQ+604fvAt4M7JixrzP913gXO9cIHehDg7/73gucxOBP7k3AFWOtppHkcODjwBurauu465ltjvo61Y9V9UhVrWDwzfXTkzxtnPXMNk99nejDJC8CtlTVbeNofxi7qLETfWjww+YkSwGa+y1jrudRqmpz859wB3AVg9lNxyrJwQxC9UNV9Ylmd2f6ca76utiPAFX1AHAjg892OtOH02bW16E+PAN4SZL1DGb3PSvJB+lW/81ZY1f60OAfTBdxUfP4IuC6Mdayk+l/yI0LgDvne+0oJAnwfuDuqnrnjKc60Y/z1delfkyyJMmRzeNDgRcA99CdPpyzvq70YVW9papOqKrlDKZ8+buqeiUd6T+Yv8au9GGvll5M8mHgTOCYJPcBbwXeBlyb5DXARuBlHavvzCQrGHy4th547bjqa5wBvApY14wBA1xKd/pxvvou7FA/LgVWZ7Ao0UHAtVV1fZJb6EYfzlffNR3qw7l05d/grvx5F/rQKRskqWcc6pGknjH4JalnDH5J6hmDX5J6xuCXpJ4x+CWpZwx+SeqZXn2BSxpWM8Hb3wI3M5je+ZvA/wQuZzD51yuAcxnMu3I8cCLw51V1VZKDgPcAzwO+zeAE6+qq+tiI34Y0J4Nfmt8vMPj250rga8BvAs8FXsLg28C3A09n8IvhscA3knwWeA6wHDiFwS+Ju4GrR1u6ND+HeqT5fbuq1jUTat3FYJGPAtYxCHaA66rqp1X1feBLDCbdei7w0araUVXfa/ZLnWHwS/N7aMbjHTO2d/Czv5Znz3lSQFquS9orBr+0d85r1qh9PIMJ9r7G4HOBlyY5KMlxzX6pMxzjl/bOrcBngWXAn1TV/Uk+DpzNYMrd/8NgBbB/Gl+J0qM5O6e0QEkuA7ZV1TvmeO7wqtrW/CVwK3BGM94vjZ1n/FI7rm8WM1nM4C8BQ1+d4Rm/JPWMH+5KUs8Y/JLUMwa/JPWMwS9JPWPwS1LP/D8s/VPsy1pZDgAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Histogram of 'mpg'\n", + "plt.figure(figsize=(6, 4))\n", + "plt.hist(Auto['mpg'], bins=20, color='lightgray', edgecolor='black')\n", + "plt.xlabel('mpg')\n", + "plt.ylabel('Frequency')\n", + "plt.title('Histogram of mpg')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "56b4720d-8f63-47f9-9e35-b08c8a06abc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation between mpg and horsepower: -0.7784267838977761\n", + "Pearson correlation between mpg and horsepower: -0.778\n" + ] + } + ], + "source": [ + "# Pearson correlation between 'mpg' and 'horsepower'\n", + "pearson_corr = Auto[['mpg', 'horsepower']].corr().loc['mpg', 'horsepower']\n", + "\n", + "print(f\"Pearson correlation between mpg and horsepower: {pearson_corr}\")\n", + "print(f\"Pearson correlation between mpg and horsepower: {pearson_corr:.3f}\")\n", + "# Note: The f prefix before the string indicates that it's an f-string.\n", + "# Inside the string, you can embed Python expressions by enclosing them \n", + "# in curly braces {}.\n", + "# Inside the expression you can call a variable and formats the value as \n", + "# a floating-point number with e.g. 3 decimal places.\n", + "\n", + "# So, in the given example:\n", + "# {pearson_corr} embeds the value of the variable pearson_corr into the string.\n", + "# :.3f formats the embedded value as a floating-point number with 3 decimal places." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "60e9f6ba-3132-4662-a659-e893ad02b94f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4MUlEQVR4nO2df5glZXXnP9/u6cZGpIXMiCPY9mhGE7UzYHc0rjEhtomOwyDOxkSfKPgjYvJg1t5o8Ed2gSYb17D+6Gzi6mJ0ATUqicMMw2Q2um0AjRHTAwwXRHc0Mw7oCANog9g73Xaf/aPqNtW3q27Vvbfq/uh7Ps9zn1v1VtVbp96699Rb55z3vDIzHMdxnO6hp9UCOI7jOM3FFb/jOE6X4YrfcRyny3DF7ziO02W44nccx+kyXPE7juN0Ga74nZYh6TJJn27SuV4k6aCkn0g6L2b7YUkvbYYsjtNqXPF3AJJ+VdLXJM1KekjSP0v65QbrfIOkr1aUXSXpvzQm7arzXCVpPlS4D0n6kqRfqKOeRhXz5cBfm9lJZrargXocp+Nxxd/mSDoZuAH4K+BU4HRgEjjeSrnikLQuYdMVZnYScAZwP3BV04R6jKcBdxV9kipt0HGspWtxVuKKv/15JoCZfdbMFs1szsy+aGZ3lHeQ9BZJd0t6RNI3JT0vLH+3pO9Gyl8Vlv8i8DHghWFP/MeSLgR+D7g4LNsT7vsUSV+QdEzSIUn/IXLeyyT9vaRPS3oYeEO1CzGznwJ/Czw3brukcyXdFcpzYygnkj4FDAF7QtkuTjj+LZK+E75ZXC/pKWH5d4GnR44/IUHEMyXdEb5ZfV7S49LqDreZpIskHQQOKuDDku4P67pD0nPDfU+Q9AFJRyTdJ+ljkgbCbWdLulfSeyU9EL7l/F7kPIOSrgnvxfck/SdJPeG270kaDZdfF8r07HD99yXtCpd7Ir+LByVdK+nUcNtweNybJR0BvhzTxndLOieyvi6U9XmSHhf+Fh4M7+G/Sjot4V4dlvQnYds8KukTkk6TtC/8vf4fSadUyHWhpB9IOirpHZG6BiRdLelHoXwXS7o34R47AGbmnzb+ACcDDwJXA1uBUyq2vxr4PvDLgICfB54W2fYUggf87wKPAhvDbW8AvlpR11XAf4ms9wD7gUuAfgLl+W/Ay8LtlwELwHnhvgMx8i/XCZxEoPi/Ejn+0+HyM0P5fhPoAy4GvgP0h9sPAy+t0k4vAR4AngecQPCGdHNke9rxh4FvhO11KnA38AcZ6zbgS+FxA8DLwnZ7YnhPfjHS7lPA9eG+TwD2AP813HY28DPgQ+F5fj1sk2eF268BdofHDQP/F3hzZNs7wuUrge8CfxjZ9h/D5Qng6wRvXycA/xP4bLhtOLyWa4DHJ9zPS4DPRNa3Ad8Kl98aXs+JQC8wCpxcpb2/DpxG8BZ7P3ArcFYo15eBSyvk+mwo1whwrHw/gfcDNwGnhNd1B3Bvq/+77fxpuQD+yXCTAsVxFXBvqBiuB04Lt/0j8PaM9dwOvDJcfgPpiv8FwJGKfd4D/K9w+TIiCjDhnFcB/w/4MfDDUPZnRI4vK/7/DFwbOa6H4IF2drh+mOqK+xMEJqXy+kkED6XhjMcfBl4XWb8C+FjGug14SWT7SwiU8q8APZFyESjyZ0TKXggcCpfPDu/v4yPbrw3bppfAvPfsyLa3AjeGy28Grg+X7wZ+H/hcuP494HmRbeOROjaG17KOxxTs06u0088DjwAnhuufAS4Jl98EfA34pQy/xcPA70XWvwB8NLL+R8CucLks1y9U3J9PhMvLnZFw/fdxxV/146aeDsDM7jazN5jZGQRmkqcQ9BwBnkrQu1uFpPMl3R6+dv84PHZ9Dad+GvCU8vFhHe8l6KWVuSdDPR8wsyea2ZPN7Fwzi5P3KQQKCgAzWwrrPj2jrJXH/4TgTSnr8RA8mMr8lEDBZ637nsj2LwN/DXwEuE/SlQp8NRsIesP7I+35v8PyMj8ys0cj698Lz7+e4K3rexXbyjLcBLxY0pMJHhKfB14kaRgYJHjoQ3BPr4uc/25gkYz31My+Ex6zXdKJwLkEb3EAnyLoiHwuNMlcIakvqS7gvsjyXMz6SSt3XyFXuV0Iv+9J2M+JwRV/h2Fm3yLoRZft5PcAz6jcT9LTgI8DbwN+zsyeCNxJ0OuEoAe1qvqK9XsIeqNPjHyeYGavqHJMvfyAQCmV5RfBQ+37Gc9TefzjgZ+LHJ+nbHF1r5DPzP67mY0CzyEwY/0JgbloDnhOpD0HLXB8lzklrL/MUHj+Bwh65k+r2Pb98HzfIXhY/QeCt7BHCB5kFxK82S2Fx9wDbK24p48zs8RrieGzwGuBVwLfDM+NmS2Y2aSZPRv4d8A5wPkpddXCUyPL5XYBOEpg4onbz4nBFX+bI+kXJL1D0hnh+lMJ/nRfD3f5G+CdkkZDp+LPh0r/8QR/4GPhcW9kpVP1PuAMSf0VZU+PrH8DeFjSu0IHWq+k56rBUNIErgW2SRoPe4nvIDBtfC1Btkr+FnijpDMVOG/fB9xiZodzkK2muiX9sqQXhNfxKIGpazFUvh8HPizpSeG+p0t6WUUVk5L6Jb2YQHn+nZktErTRn0t6QniP/xiIjoO4ieBBf1O4fmPFOgRO/T8Pj0fSBkmvrLE9Pgf8FvCHPNbbR9JvSBqR1As8TPCgWqyx7mr8Z0knSnoO8EaCtxoI2uU9kk6RdDrBNTtVcMXf/jxCYGu/RdKjBAr/TgLFiJn9HfDnBH/AR4BdwKlm9k3gg8C/ECjNEeCfI/V+mSC88YeSHgjLPgE8OzQD7AqVzXbgTOAQQa/zbwhMB7liZt8GXkfgOH0gPO92M5sPd/mvwH8KZXtnzPHTBLbwLxD0AJ8BvCYn2Wqt+2QCBf8jApPEg8AHwm3vInBaf11BJNT/AZ4VOfaH4XE/ILCf/0H4lgeB3ftRApv2Vwnu+Scjx95E4Pi9OWEd4C8J/CxflPQIwe/pBWltEMXMjhL8rv4djylfgCcDf0+g9O8Oz5/nAL2bCNpumsB8+MWw/HIC/9chgvb8e9ow3LmdUOgMcRynxUg6m8DZfUbKrl1F6Kc4BPSZ2c8y7P+HwGvM7NeLlq1T8R6/4zgdjaSNClJy9Eh6FsHb8HWtlqud8ZF5juN0Ov0E4xE2EYQNfw74H60UqN1xU4/jOE6X4aYex3GcLqMjTD3r16+34eHhVovhOI7TUezfv/8BM9tQWd4Rin94eJiZmZlWi+E4jtNRSPpeXLmbehzHcboMV/yO4zhdhit+x3GcLsMVv+M4Tpfhit9xHKfL6Iionk6kVCoxPT3N7Owsg4ODjI+PMzIy0mqxHMdxXPEXQalUYs+ePSwsLAAwOzvLnj17AFz5O47TctzUUwDT09PLSr/MwsIC09PTLZLIcRznMVzxF8Ds7GxN5Y7jOM3EFX8BDA7Gz1OSVO44jtNMXPEXwPj4OH19K+eY7uvrY3x8vEUSOY7jPIY7dwug7MD1qB7HcdoRV/wFMTIy4orecZy2pHBTj6ReSbdJuiFcv0zS9yXdHn5eUbQMjuM4zmM0o8f/duBu4ORI2YfN7ANNOLfjOI5TQaE9fklnANuAvynyPI7jOE52iu7xTwEXA0+oKH+bpPOBGeAdZvajguVoKZ6+wXGcdqIwxS/pHOB+M9sv6ezIpo8CfwZY+P1B4E0xx18IXAgwNDTUkCytVLyevsFxnHajSFPPi4BzJR0GPge8RNKnzew+M1s0syXg48Dz4w42syvNbMzMxjZsWDVlZGbKirc8araseEulUt111oKnb3Acp90orMdvZu8B3gMQ9vjfaWavk7TRzI6Gu70KuLMoGaC64h0ZGSn8bcDTNziO0260Io7/CklnEph6DgNvLfJk1RRvM8wwg4ODsTJ4+gbHcVpFU1I2mNmNZnZOuPx6Mxsxs18ys3Mjvf9CqJY3pxlmGE/f4DhOu7Hmc/WMj4/T07PyMnt6ehgfH2+KGWZkZITt27cvP4AGBwfZvn27O3Ydx2kZXZGyQVLserPMMJ6+wXGcdmLN9/inp6dZXFxcUba4uMj09LSbYRzH6UrWfI+/mjnHs2g6jtONrHnFLwkziy0HN8M4jtN9rHlTT5zSr1buOI6z1lnzit+nQXQcx1nJmlf87sB1HMdZyZq38bsD13EcZyVrXvGDO3Adx3GidIXi72Q8l7/jOHnjir+N8Vz+juMUwZp37nYynsvfcZwicMXfxnguf8dxisBNPQWRh23ec/k7jlME3uMvgLyme/QxCI7jFIEr/gLIyzbvufwdxykCN/UUQJ62eR+D4DhO3hTe45fUK+k2STeE66dK+pKkg+H3KUXL0Gw8P5DjOO1MM0w9bwfujqy/G5g2s83AdLi+pnDbvOM47Uyhil/SGcA24G8ixa8Erg6XrwbOK1KGVuC2ecdx2pmibfxTwMXAEyJlp5nZUQAzOyrpSXEHSroQuBBgaGioYDHzJ80276kYHMdpFYX1+CWdA9xvZvvrOd7MrjSzMTMb27BhQ87StZa8wj0dx3Hqocge/4uAcyW9AngccLKkTwP3SdoY9vY3AvcXKENuZO2hZ9mvWrin9/odxymawnr8ZvYeMzvDzIaB1wBfNrPXAdcDF4S7XQDsLkqGvMjaQ8+6n6dicBynlbRiANf7gd+UdBD4zXC9rck6ICvrfh7u6ThOK2mK4jezG83snHD5QTMbN7PN4fdDzZChEbL20LPu5+GejuO0Ek/ZkIGsPfSs+3m4p+M4rURm1moZUhkbG7OZmZmWnb9yQpQoZQcuwL59+5ibm1uxva+vjzPOOIPDhw9jZkhidHSUbdu2NUVuDxl1nO5F0n4zG6ss91w9GaicsD3K7Owsu3btQhKLi4srtg0MDPDkJz+ZQ4cOLZeZGeWHWJHK32fvchwnCTf1ZGRkZISJiYlYc87S0tIqpQ/Q39/P4cOHY+vbv7+u4Q2Z8dm7HMdJwnv8NVJLyGW1fYs2sXnIqOM4SXiPv0ZqCbkcHBxEUuL2qampwkbresio4zhJuOKvkbhQzCTm5+er9uyLTNXgIaOO4yThpp4aqXT0SkpU7pURPnEUlaqhUs60qB6PAHKc7sEVfx1EM29WC/XMSlF296yzd3kEkON0F27qaZC4wVi10mq7u0cAOU534T3+HKjsWU9OTtZ0fKvt7h4B5DjdhSv+Okizhw8MDGSy75f3bbU5ZXBwMFbJt/pNxHGcYvCUDRmJKvtK+vr6VuTaKZVK7Nq1i6WlpUx1Rx8e0fOUHce1OlurPZjitgGr/BSV1+Q4TueRlLLBFX8GsjhwBwcHmZiYWF6/4oorMvf6IVC0W7Zs4cCBA7HnyaqI42QtHwvJCh6yRwA5jtMZeK6eBohzflZS+SZQi9KHwJm6f//+xNDQyrDPpF59mqM2advExIQresfpElzxZyCLkzMuRXOtztG0t69yfdXCL+tx1LoT13G6Cw/nzECakzNuRGzSCN+BgQEGBgZi66mW3iEqR7VefbVUDZ7GwXEcKFDxS3qcpG9IOiDpLkmTYfllkr4v6fbw84qiZMiLamkaJLFly5ZVZpK4+P4dO3awdevW2Hr6+voYHR1NPE/04VKtV18tVcP4+Di9vb0rtvX29rY8nNRxnOZSpKnnOPASM/uJpD7gq5L2hds+bGYfKPDcuVItH7+ZceDAAYaGhmKVf7QsyUk8MDDA1q1bGRkZYWhoKDWqp1r4ZbVUDaVSaZU5qROc+47j5Ethit8CjfKTcLUv/HSslikr8ampqVVKd2FhgX379qVGxSQ5ifv7+5f3zZJmYXx8PDY6p9xzT6pjenp6VYjp0tJSIbmCHMdpXwp17krqBfYDPw98xMxukbQVeJuk84EZ4B1m9qOYYy8ELgQYGhoqUsyaSDKzzM3NLUfylGflKk/FWH4QVDPRlEqlzMq31gRsabK7c9dxuotCFb+ZLQJnSnoicJ2k5wIfBf6MoPf/Z8AHgTfFHHslcCUEcfxFylkLWaN1lpaWVjwI9uzZU3VE7+7du4HqSdEazaDpI3Qdx4EmRfWY2Y+BG4GXm9l9ZrZoZkvAx4HnN0OGvKglH3+UhYWF2OkZyywuLrJv377E7WX/QFlx15PLf3x8nJ6elbe8p6fHnbuO02UUGdWzIezpI2kAeCnwLUkbI7u9CrizKBmKIC5aJyk8s5L5+fmq26sN+sorg2ZlyGhaCKnjOGuPIk09G4GrQzt/D3Ctmd0g6VOSziQw9RwG3lqgDIWQNVqnESrNOnnY56enp1e9dSwuLrpz13G6jCKjeu4Azoopf31R52wV1cI96yFuZG4SUft8mg+g2sNjamrK8/M4TpfgKRtyIvoWEBfymYX+/n4gW24gWBnCmWUWrbQ3B591y3G6A0/ZUAD1OoDLo2qz9PAHBwdXZOvM4gNIk8tn3XKc7sB7/CF79+5dzo4pidHRUbZt21ZXXfWafubm5iiVSokTuFemfo6SxQeQRa5a5PUJ2h2nM+l6xV8qlbjhhhtWRNyYGeX8/40o/3KahKyO34GBAfbs2ROr9OMSwUXJGqNfbQRy3P5JrNUJ2v1h5nQDXW3qKSuvpDDL/fv3N3yOuPDPsbGx2ERqsDpfPgQhl2mTsFRLzpbH/pWsxQna8xgr4TidQFcr/jQnalEJzIaGhlY8DAYGBli3bl1iHH8WOeIeMNUeFrXuX8laTP+wFh9mjhNHV5t60pRUHoObkkwiW7ZsWd4ny2xdWVI6ZEnw1sj+UdZi+oe1+DBznDi6WvGn5d0ZHR2tenzWSc0rWVhYoNY5hMspHbIo6rzt1HH1pWUI7UTW4sPMceLoalNPtfDGsbGxqo7davbgUqnErl27cu8pZnkzyNtOnVQf0JCpqB1p1O/hOJ1CV/f4601vXD4myR48Pz+/Ku99s6gmVz1KuVp9a22C9kZ+D47TSXS14of67dytsAdnSQaXt1zdZvduxO/hOJ1CV5t6GqHZE5dLSpyvN8v565XLJ2h3nLVH1yv+UqnE1NQUk5OTTE1NZbaFV7MHZ03TXAtpEUbl60jqic/Pz9dl53e7t+OsPbpa8TfiCK0WB/+c5zwnd1nLc+PGUXkdcczNzdXl5G003t9xnPajq238jTpCk+zBBw8ezE3GKElz82bN5lmvk9ft3o6ztuhqxZ+n47Ja3H4t9PT0VI0I2rlzJzt37lwRcVLLOdeqU9ZxnOx0taknL8dlFlNLEgMDAyvMKOedd16m46JmqVrkdaes4ziF9fglPQ64GTghPM/fm9mlkk4FPg8ME0y9+Dtm9qOi5KhGXqNPs5paKunr62Pr1q2xppssD5Gy6SbuOnp7ezGzFW8P7pR1HAeK7fEfB15iZluAM4GXS/oV4N3AtJltBqbD9ZaQl+Oynp5+OUpn586dq6KJapnIZXZ2lunpabZs2bIi6Vt/fz9LS0vL53GnrOM4ZYqcc9eAn4SrfeHHgFcCZ4flVwM3Au8qSo408nBcDgwMZEqnEMXMEnPZl+XJmsd/dnaWAwcOsH379lXHmdlyT7/yOj33vON0J4Xa+CX1SroduB/4kpndApxmZkcBwu8nFSlD0ZRKpcR8/rWwsLDAddddt9zzHxkZ4cQTT6zp+Onp6cyphT33vON0L4UqfjNbNLMzgTOA50t6btZjJV0oaUbSzLFjxwqTsVGmp6dZXFzMpS4zW6F8azUhzc7OZo5U8tzzjtO9NCWqx8x+TGDSeTlwn6SNAOH3/QnHXGlmY2Y2tmHDhmaIWRd5h0dGlW9SBE7SKN7BwcHMkUrdloPHcZzHKDKqZwOwYGY/ljQAvBT4C+B64ALg/eH37qJkqCTOpg2NZWNMy+lfD+WBWkkmpKQ5eTdv3sxdd921altPT8+qaB7PPe843UsmxS9pR0zxLFAys9geO7ARuFpSL8GbxbVmdoOkfwGulfRm4Ajw6jrkrpm4mbB27dqFpGVTTT0ThieFhG7ZsoWDBw8yOztLf39/TX6A8qTrWUNEBwcH2bx5MwcOHEicszer3O0W7ukOaMfJn6w9/jcDLwT+KVw/G/g68ExJl5vZpyoPMLM7gLNiyh8Emq5d4mzacSNka01rkDWHe+WDJ4lqk67HMTg4yMTEBFNTU4nHLC4urrqmTsg9nzRtJWR/MDuOs5qsin8J+EUzuw9A0mnAR4EXEAzSWqX4240i0xpkCQmtVLRJbN++nZ07d2Y+dzQqJ8t+nUTek8o4jhOQ1bk7XFb6IfcDzzSzh4Dah6y2gHZIazAyMsLExESic1YSIyMjdcmadkzl9k4I53QHtOMUQ1bF/xVJN0i6QNIFBA7amyU9HvhxYdLlSNxo2J6eHnp7e1eUNcPOnTSJe7l8fHw89uFQKSsESnBycpJTTz216mjf2dlZpqam2Lt3L1NTU+zcuTO2Nx03krhV+CQwjlMMWU09FwE7gF8FRDDi9gvh6NzfKEi2XEmyaceVFW1GKE/ivn//fswMSYyOji6XHzlyJDZyZ2hoiB/+8Iexo4QPHTrEpk2beOihh5idnUXSqjpmZ2eZmZlJlS9PW3ojztlOcUA7TqehOAUTu6P0ZAKb/hLwr2b2wyIFizI2NmZZFNZa4fLLL49V/JI4+eSTE00dkrjkkkuW16vNyJWFsuO4XuIc2n19fTXlDPKoHsepH0n7zWyssjxrOOfvA5cAXybo8f9VGM3zyXzFdCA+Tr9cXk2Rx/XwG6FsHqpX6ebhnPVJYBwnf7Kaev4EOCsMxUTSzwFfA1zxN0hcjzbOTAPZevzROvMg6vzdtWsX+/btY25uLtODwJ2zjtOeZFX89wKPRNYfAe7JX5zOIC/zQ1Kc+vDwMIcOHVq1/+joKENDQ4nhnj09PVxxxRU1ZwrNytLS0nLdWfwAPjrYcdqTrIr/+8AtksrpFc4FviHpjwHM7ENFCNeO5DmoKMkU8tBDDzE2Npbo/E1S/IuLi7ko/axpKNLMNnk4Z93G7zj5k1Xxfzf8lO0Pu8PlJxQhVDuT56CiaqaQbdu2LSv6SorID1RG0vJI4CznqLbPyMgIR44cWfEA27JlS02OXR+56zj5kzWO/x8IZtF6FUFund8GftvMJs1ssiDZ2pI87dZJJo+BgYGqx9UyQ1etlH0LWc9RzWxTKpU4cODAcp1mxoEDBzKPEfDU0Y5TDFkV/6cJHLk7gHPCz/aihGpn8hxUND4+Hjso6/jx41WVY9yUkWkPi6yUHcSV5xgYGKh5sFujitudw45TDFlNPcfMbE+hknQIeQ4qGhkZWY6SibK0tJRqOqoMc8yaBC6N6KjiuHPUYm9vVHG7c9hxiiHTAC5J48BrCSZHP14uN7Ps2cQaoJ4BXHv37k10jjZKrQowun+5Zz43N5cYtlmmvL0s/9DQ0HI90WMHBgbYunUrANddd13VOqvR29vL4uLict2NOlOT/ARpA8Oi7VVJrQPAHKebSRrAlVXxfxr4BeAugpG7EMyn/qZcpUygVsW/d+/e2NQEY2NjuSn/rOTVE0+jp6eH8847D1g9SXtZWaZlBo2jEUVbz8jdau3lUT2OUxsNjdwFtphZx/zb9u/fn1jebMUfZ+cugrJ5qNyTTnojqfUhtLCwwL59++oKqawn539SezWaPsJxnMfIqvi/LunZZvbNQqXJiWopD5pNrT3sRkI1y8clpTkoh1fWajabm5uraeBW5Tlr6aFX8ws0kj7CcZzHyBrV86vA7ZK+LekOSSVJdxQpWCNUy3ffbGrNrV8tX38e54qbk7dWigyprHYN7Tx3gON0Ell7/C+vtWJJTwWuAZ5M4Be40sz+UtJlwFuAY+Gu7zWzf6i1/mqMjo7G9mqT8uAXSVwUUBLz8/OUSqVE+bMeH9cTLpVKsRFE9ZJXSGWlo7za3MFRfCYux6mfTIrfzL5XR90/A95hZrdKegKwX9KXwm0fNrMP1FFnJtLy3TeTSjt3NKqnkrm5Ofbs2cOWLVvqOlf5+Oh5oRgHcx4hlXEjcw8cOLBiovpqeDy/49RH1h5/zZjZUeBouPyIpLuB04s6XyXVUh40Sq3hnEl27rhwx4WFhUTndBbiesJ5O5jzmgwlaYDXwYMHM6WN8Hh+x6mPrDb+hpA0DJwF3BIWvS30FXxS0ikJx1woaUbSzLFjx+J2aQl5zlWbpNQadUJX1pt3zzivOPq0AV7V5PaZuBynfgpX/JJOAr4ATJjZw8BHgWcQ5P45Cnww7jgzu9LMxsxsbMOGDUWLmZk888ck9VirOXezpGeorDfPnnF5Qvg8SEt/Ua19og+fUqnE1NQUk5OTbTNfsOO0M4Uqfkl9BEr/M+VRvmZ2n5ktmtkS8HHg+UXKkDd55o+JS4TW19fH6OjoKuUviR07djAxMcHWrVsTE6j19PSs6gnnmdTNzJicnOTyyy9n7969DdUVl6uot7d3Wf6k9nnVq161Qunn9QbmON1CYTZ+BZrrE8Dd0Xz9kjaG9n8Isn3eWZQMRZBn/pikAU5xk62bGUeOHFnhL4iL0ok+MCpTRdRi509LJ2Fmy5FHjfhS4q6zTJYBYHmmyXacbqEwxQ+8CHg9UJJ0e1j2XuC1ks4kyOd/GHhrgTLkTp5J2iDe8XvdddfF7hsdeTwyMsL09PQqxb+4uLhsdorKOTc3R29vL2bG0tISaWT1M8zMzDAzM1P3nLyVslQmqEsbAOYZPB2ndoqM6vkqwcTsleQas99s6klDUCtZRx5XU3pxPeHFxUUGBgbo7+/PXTHWM0lKHkrbM3g6Tu0U2eNfs9SahqBWqk22HqWa0ktSnnNzc1x88cVMTuY/f06ciaVa6OvAwEDseIZa5hbI+w3McboBV/wR2mV+16SRu8PDwyvy1SSNcq1M2xylv7+fqampVBl6enoymYQqiT5wmjF1YpY3sHa5r47TLrjiD2mn+V3jRh4PDw9z7733Zh7lmmQump+fZ35+vur5BwcHOfXUUzl06FDNskdNLGmO16T0EbWmlaj2BtZO99Vx2gVX/CHtFh1SOfJ4amqqoVGuaVT2hC+//PKa66g0saTZ8Jthn2+3++o47UBTRu52Au0eHdLIKNd6qHX08ODg4KoRvWkDtMbHx+npWfkTjBuH0Ajtfl8dpxV4jz+k3aND0uRrJI8/rDaBpMXxR8+fNEFKFsdr3EC1PGn3++o4rcB7/CFJo0TbJTokTb647b29vat61NWIpp7IksI6rX1GRkbYvn37iodT9K1genqaxcXFFcdExyHkQbvfV8dpBd7jD2lGfH4S1aJOKkffrlu3jrm5uVX7VRsFXHYSZ6HcOx4aGuK2225boZhPOukkHn300eW6FhcX2bdvHzt37qyrvdJm28qj/Vt5Xx2nXck02XqrqXWy9U6i2oTkkDxxehbFVU8e/rJi3L1796reeBqVsqVNtp7mkG5konfHcRqfbN0piLRsn41EpNSah79sAokzwWShUra0iJrx8XF27dqVOF5gYWGBG264geuuu67lE+o4zlrCbfwtppq5o9GIlFpTH5R71406idPOXy4/cuRI6iCx+fn5ZdNSOTFco1lBHafb8R5/i0mLOmkkIiWp7nLETpK9u5EIoahsaddW70xj0WR1juPUjvf4W0y1WPZGI1I2b94cW/64xz2OHTt2LJt1KicwGR8fryusslK2pHkAys7bev1LneCXcpx2xnv8bUBSLHsjESmlUik23w8EKRF27969IkVzZRx/XK7/smxlxdvX15cYZRQnf5S0N4pqbx15x/o7Trfhir/FVItlL+egqSeqZd++fVW3xzlvs+TRMTMuvfRS4LFQ02q5dY4cOcLDDz9cg+TBA2ViYoK9e/fGPryyjDFwHCcZV/wtpqiUArUmOqs8b1rK5CzJz5IUdxrlOuOS1XlUj+M0jiv+FtNuKQWynjcpVHPfvn2xpp1aiJpyKpPVtRue8tnpRIqcc/epwDXAk4El4Eoz+0tJpwKfB4YJpl78HTP7UVFytDtFTSTS39+fmn45jp/+9KeUSqXUlMnVJnqp922jTCPO22YqYk/57HQqRUb1/Ax4h5n9IvArwEWSng28G5g2s83AdLjetaTls6mX3t7euo5bWFhgz5499Pf3x24vm3qStmdlcHAw9Ry1UlbE0Yyle/bsWY5Wypu0wXeO064UOefuUeBouPyIpLuB04FXAmeHu10N3Ai8qyg5OoEipnJspNedZbRvPW8TZcbGxti2bRvve9/7Yrf/7Gc/q6veZufe95TPTqfSlDh+ScPAWcAtwGnhQ6H8cHhSwjEXSpqRNHPs2LFmiLmmKCrksZEHiqRlpQ/JD5ha0kxEabYiTvKHSCrsLcNx8qBw566kk4AvABNm9nBWhWRmVwJXQpCkrTgJ1yaNDnJKysdfVnZZ8/XDYxFCJ598MkNDQw3JVY0kR/nAwMCKuYrzsvvH+WcgaPtKW787gZ12otAev6Q+AqX/GTPbGRbfJ2ljuH0jcH+RMnQrjUQF9fX1MTo6umpEsSTm5+eZnJxk3bpsfQZJKxzCe/bsYe/evakTvkdHEmclbqRwT08P8/Pzhdj9y/6ZuM5M1NbfbN+D46RRmOJX8G/4BHC3mX0osul64IJw+QJgd1EydDNJ6RqysH37doaGhlYpNDNbVuJJ5pjyMYODgwwMDKx6K1hYWGBmZibV/FKPcoxzlJ9wwgmrBqvl6YAdGRlJfPMpX6M7gZ12o0hTz4uA1wMlSbeHZe8F3g9cK+nNwBHg1QXK0LUcPHiw7mPLufLrSc0cHdk7OTlZtwxQn2O20lGeJEOedv96Eu3lLYPj1EKRUT1fBZIM+j7vXcE0qlTyUEqNzgOchxzNGCCXNhYjiwzuA3CaiWfnXKPUq9iipppGScrOWQuNytGMOXfTxmKkyeA+AKfZeMqGNUpcLzRLJE45AVpSxEoa69evX16Oyy66efNmDhw4kKnerAq6Wm85jzl3s86JPDg4yI4dO1bVnSZDs8cfOI4r/g6iFnNAkrK5+eabeeCBB2KP2bRp03KM/cjIyIqJ2rM8NHp7e7noootWlN12220rerIPPvgg27dvT83nI4ktW7akKr4saRPSBsilKfak+oHMKRuqyeA+AKfZuOLvEOrJC1OpbPbu3Zuo9AHuvfdeSqUSIyMjlEolDhw4sGLawzQWFxe55pprOP/88wG45pprOHTo0Ip9yusTExO8733vS+z5mxkHDhxgaGioqtJutLec1q5FzolcJi0Tal64H8Ep44q/Q6hHwVX+0dN6kNH6ap2ovUxU0Vcq/crydevWVT1HFiXaSG+5VCotT+SedN566p+dnWXv3r0rsoq2Wul6Qjknijt3O4RaFVCcw7CW8zTDzJAl/UOWmbpqKS9Tbp+0GPxq9Vc7R3RS+DTnbVom1DzwsQROFFf8HUKtCq7eHns0JUPRZDlHmgKvN2onrX3K561Wf1rUUnky+TSlW+/Dqxbcj+BEcVNPh1Br3v56/tDR+urN9bNp06YVy3HmnvI+aefIosCzRO3EmVmqtU95svus9e/cuTO2nvL1pSnd8fFxdu3atTz/caUMSddQi4mm3Sb8cVqLK/4OodawxKQ/en9/PwsLC8tKqTxhS2V9aT6BpCifs846a3n5/PPPX+Xg3bRp07Lzt9pkMbUot2oRM0m27SSHavnastY/MjIS6yeI1pNF6VaeM7qeh32+qAl/nM7EFX8HUUve/qQ/+jnnnJOpjqTjywOTytkuK6l0xpaVfBzVcvpPTEykylimWm84ycyybt06+vr6Ys090cnus5wziXIiuzSlOz09vSo9RlSGPOL88xjPkIVWO7GdbLjiX6M0+kdPO75dbMZpveFqU0Tu2LEj0UxT7Toqz5lEeXujbZlXWxcx4U8UjxzqHFzxr2Ea/aNXOz4Pm3GSuagWx3Jab7ianOXedK05/LM6zqNt0Uhbdop93kcgdw6u+J26GB8fj+0tV9qM9+7du2L07+jo6HJ8++joKDMzM6vqKKeNyEIWx2k1M0vc9t7eXo4fP75qHgGo/hYRpdI5W43NmzfHtkM1GYuwzzdqpmmXt8C1QpFmMw/ndOriyJEjqeV79+5lZmZmxejfaHx70mxctczSlRYKmZZALW57f3//iggbyBZ+GSXrW0upVFoO+6zktttuy3QNeZBHorikkcZ5j0DuBopO3Oc9fqcukpTV/v37l3v0afskDR6qxTSQpTecZvKqNYd/lgR2WRzEEFxrUlhrNBqqaPu8m2nai6Lvhyt+py6SlFW0PG2fPEwDccnksiR3q0aaTb3SWZvE7OwsU1NTK6J3Kl/b28UMkse9yGMEskcFBRRtNnPF79RFFsds2j55OC3jksllSe5WjVrfIpJCWyH4o+7evRszWzYfRX0GeUxWkwd5JIpr9H56VNBjFO3QL0zxS/okcA5wv5k9Nyy7DHgLcCzc7b1m9g9FydApVHOAtitZHLNp+2QZsZpGHq/Ecb3MaOrotJ5nmuknbgrLsozj4+OJA8Cio6DzoOjedKNO6Ebu5Vp7UyjaoV9kj/8q4K+BayrKP2xmHyjwvB1F2QFapuwABdpa+Q8NDS0/rMpIWuGYjdr6kx5q1UasZqHRV+KkXub27dszDyLLavqJk3FkZIS9e/dy/PjxVduPHTsWc1R9pPWm8zDTNDp2pN57uRbfFIoecFfknLs3Sxouqv61QhYnaTsS55Q0s1W9s23btiVeR9qI1Sw0+kqclxOtbPqpZvZJIk7pA/zkJz+pqZ5qpF1nHmMqoDEndL0yrFXHdJEO/VaEc75N0h2SPinplKSdJF0oaUbSTJ49n3Yji5O0HcnD+ZRHHY3OqZu3Ey2PeYajTE5OMjU11XAYX9p1tsPvsF4ZfPxA7TRb8X8UeAZwJnAU+GDSjmZ2pZmNmdnYhg0bmiRe80nqzTQjLXIj5JFKOI86Go1xzzslcpw8SWS9x3nEcKddZzNSQ6dRrwztIHun0VTFb2b3mdmimS0BHwee38zztyNJo1RrGb3aChrtaedVBwTKdmJigksvvZSJiYmaXo/zkqGaPGNjY7H7le/xSSedlFpno5OmpF1nEe2Qt4x5H9fNNDWcU9JGMzsarr4KuLOZ529HsjhA25E8nE/NyhiZtwxxESTV6ki6x0NDQ0xNTWW25WdxcibJkDbeIWs7FBmBVu/voRW/o7QoorTtrY7kU1E2PEmfBc4G1gP3AZeG62cCBhwG3hp5ECQyNjZmcWGBjtNs4jJz9vT0IGmFozqawjprPVkYGxuLVRBx9UVlSNuehcoItDSZ1iqNtnUz21HSfjNb9cpZmKnHzF5rZhvNrM/MzjCzT5jZ681sxMx+yczOzaL0HaediIsgWVpaWhWdlGaaqXdqzKQosLTpHfOYc7daBFo30Whbt0M7epI2x6mBPKKWaq0nStrk8EnleUS+tEPkTzvQaFu3Qzu64necGsgjaqnWeqIkRQI1I2qnUyPQ8qbRtm6HdvRcPU7XEjd9YpqjLW4ofU9P0H+Kpp7o7e1dEVVS6cwbHh7mpz/9ac3mHjOLTfw2MDBAT0/PChkqo3bS0mOkORzzmD8hjU5IvZDWlmnpFprRjmm44ne6kiTnalrKjLgIks2bN3PrrbeuqqdMXFqOQ4cOsWnTJh566KFE08AJJ5zA/Pz8KhPA7Owsu3btWuFQnpubo7e3dznZWpzSrJYeI0vqkAcffDBWzqTyWumk1AvV2jItyqgdIvlc8TtdSZpztVrKjMqh9FNTU6smbllaWlpOGZDktDt8+DCXXHJJYv7/48ePc+mll8amgag8HwTpLvr7+7n44otXbUtLj5EldUh0foAoSeW10impF7KkGklLt1AtlUkzcBu/05WkOTVrcbQV7cwrMg1GOzkcOyX1QqfIWQ1X/E5XkubUrMXRVrQzr8g0GO3kcOyU1AudImc13NTjdCVpOfRrcbQ16sxbv349DzzwwKrt69evT6w/btBYb28v8/PzTE5OrrIrJ11veZaw4eHhWJNNtB02bdoUu0903oBGRqQ2koO+mU7hPHLlt9qJXdjI3TzxkbtOEdQT1ZOlrnqG6H/kIx9ZofzXr1/PRRddVLV+WBnVc/z48VVRPdGRuXHXG933jDPO4PDhw1WV9jXXXLNC+W/atInzzz9/+RobHZFaj0LMY1RyrTSiuJspb9LIXVf8jrMGSJoHYHBwcNWEMrXsWwuXX355Yj79Sy65pO560yjqeoqimfI2PWWD4zjNoxaHY1HOyVY5iDvN2doO8rrid5w1QC0Ox6Kck61yEHeas7Ud5HXnruO0AY06+2pxOBY1kXerRqTm7WwdGBgASBwI1w7yNoorfsdpMXmMWK0lJ31R+euHhoa49dZbV6UyGBoaaqjeNBq9nsr2j04wX8To4XaYh8Kdu47TYjrNOZlEp15HktxR2v0aknDnruO0Ke3g7MuDTr2OLPK1+zXUiit+x2kx7eDsy4NOvY4s8rX7NdRKYYpf0icl3S/pzkjZqZK+JOlg+H1KUed3nE5hrUwW3qnXESd3lE64hlop0rl7FfDXwDWRsncD02b2fknvDtffVaAMjtP2tIOzLw/a5TpqjZCqlDtLVE+rUy40SqHOXUnDwA1m9txw/dvA2WZ2VNJG4EYze1ZaPe7cdRwnC81Ih9CKFBH10i7O3dPKE6yH309q8vkdx1nD5DGpfDuco2ja1rkr6UJJM5Jmjh071mpxHMfpAJoRWdSp0UtRmq347wtNPITf9yftaGZXmtmYmY1t2LChaQI6jtO5NCOyqFOjl6I0W/FfD1wQLl8A7G7y+R3H6TBKpRJTU1NMTk4yNTVFqVRK3LcZkUWdGr0UpbCoHkmfBc4G1ku6F7gUeD9wraQ3A0eAVxd1fsdxOp9a01k0I7KoXaKXGsFTNjiO07Z0ahqIdqFdonocx3EysxYcqe2IK37HcdqWteBIbUdc8TuO07asBUdqO+L5+B3HaVvWgiO1HXHF7zhOWzMyMuKKPmfc1OM4jtNluOJ3HMfpMlzxO47jdBmu+B3HcboMV/yO4zhdRkekbJB0DPheAVWvBx4ooN48cRnzoxPk7AQZoTPkdBnhaWa2Kr1xRyj+opA0E5fHop1wGfOjE+TsBBmhM+R0GZNxU4/jOE6X4YrfcRyny+h2xX9lqwXIgMuYH50gZyfICJ0hp8uYQFfb+B3HcbqRbu/xO47jdB2u+B3HcbqMrlH8kg5LKkm6XdJMWHaqpC9JOhh+n9JiGZ8Vylf+PCxpQtJlkr4fKX9Fk+X6pKT7Jd0ZKUtsO0nvkfQdSd+W9LIWyvjfJH1L0h2SrpP0xLB8WNJcpD0/1gwZq8iZeH/bqC0/H5HvsKTbw/KWtKWkp0r6J0l3S7pL0tvD8rb5XVaRsfW/SzPrig9wGFhfUXYF8O5w+d3AX7RazohsvcAPgacBlwHvbKEsvwY8D7gzre2AZwMHgBOATcB3gd4WyfhbwLpw+S8iMg5H92uDtoy9v+3UlhXbPwhc0sq2BDYCzwuXnwD837C92uZ3WUXGlv8uu6bHn8ArgavD5auB81onyirGge+aWREjlmvCzG4GHqooTmq7VwKfM7PjZnYI+A7w/FbIaGZfNLOfhatfB84oWo40EtoyibZpyzKSBPwO8Nmi5aiGmR01s1vD5UeAu4HTaaPfZZKM7fC77CbFb8AXJe2XdGFYdpqZHYXgJgFPapl0q3kNK/9cbwtfDT/ZapNUSFLbnQ7cE9nv3rCs1bwJ2BdZ3yTpNkk3SXpxq4SKEHd/27EtXwzcZ2YHI2UtbUtJw8BZwC206e+yQsYoLflddpPif5GZPQ/YClwk6ddaLVASkvqBc4G/C4s+CjwDOBM4SvCq3a4opqylMcOS/hT4GfCZsOgoMGRmZwF/DPytpJNbJR/J97ft2hJ4LSs7JC1tS0knAV8AJszs4Wq7xpQ1pS2TZGzl77JrFL+Z/SD8vh+4juA17z5JGwHC7/tbJ+EKtgK3mtl9AGZ2n5ktmtkS8HGa8LqfgaS2uxd4amS/M4AfNFm2ZSRdAJwD/J6FhtTwdf/BcHk/gb33ma2Sscr9bbe2XAfsAD5fLmtlW0rqI1ConzGznWFxW/0uE2Rs+e+yKxS/pMdLekJ5mcC5cidwPXBBuNsFwO7WSLiKFb2q8g855FUEsreapLa7HniNpBMkbQI2A99ogXxIejnwLuBcM/tppHyDpN5w+emhjP/WChlDGZLub9u0ZchLgW+Z2b3lgla1Zehr+ARwt5l9KLKpbX6XSTK2xe+yGR7kVn+ApxN49A8AdwF/Gpb/HDANHAy/T20DWU8EHgQGI2WfAkrAHQQ/4I1NlumzBK+hCwQ9pzdXazvgTwl6K98GtrZQxu8Q2HVvDz8fC/f99+Hv4ABwK7C9xW2ZeH/bpS3D8quAP6jYtyVtCfwqganmjsj9fUU7/S6ryNjy36WnbHAcx+kyusLU4ziO4zyGK37HcZwuwxW/4zhOl+GK33Ecp8twxe84jtNluOJ31hRhhsN2GOfgOG2LK37HCQlHprY9nSKn07644nfWIr2SPh7mQP+ipAFJZ0r6eiQH+ikAkm6U9D5JNwFvl/RqSXdKOiDp5nCf3jCH+r+Gx781LD9b0s1hfd+U9DFJPeG21yqY/+FOSX8Rlv2OpA+Fy2+X9G/h8jMkfTVcHg0TdO2X9I+R9AMr5GxuczprDe85OGuRzcBrzewtkq4lGBF5MfBHZnaTpMuBS4GJcP8nmtmvA0gqAS8zs+8rnCCDYHTtrJn9sqQTgH+W9MVw2/MJcqx/D/jfwA5JXyPIsz4K/IggK+x5wM3An4THvRh4UNLpBCM8vxLmdfkr4JVmdkzS7wJ/TpDBcYWcjtMIrvidtcghM7s9XN5PkPnyiWZ2U1h2NY9lPoVI0jHgn4GrwgdGOanWbwG/JOm3w/VBgofLPPANMyv33D9LoMQXgBvN7FhY/hng18xsl6STwrxRTwX+lmDSkxeH53oW8FzgS0GaF3oJUifEyek4deOK31mLHI8sLwJPTNn/0fKCmf2BpBcA24DbJZ1JkNL3j8zsH6MHSTqb1al9jfgUwGX+BXgjQb6YrxD05l8IvAMYAu4ysxemyek4jeA2fqcbmAV+FJnY4vXATXE7SnqGmd1iZpcADxD0zP8R+MPQFIOkZ4ZZXgGeL2lTaNv/XeCrBJNt/Lqk9WG2xddGzncz8M7w+zbgN4DjZjZL8DDYIOmF4Xn6JD0nv2ZwnADv8TvdwgXAxySdSJDq9o0J+/03SZsJeu3TBJkS7yCYD/XWMNXuMR6b0u9fgPcDIwTK/DozW5L0HuCfwnr+wczK6YG/QvAwudnMFiXdA3wLwMzmQ3PSf5c0SPD/nCLI2Og4ueHZOR2nTkJTzzvN7JwWi+I4NeGmHsdxnC7De/yO4zhdhvf4HcdxugxX/I7jOF2GK37HcZwuwxW/4zhOl+GK33Ecp8v4/+toYOfgGPqSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot of 'horsepower' vs 'mpg'\n", + "plt.figure(figsize=(6, 4))\n", + "plt.scatter(Auto['horsepower'], Auto['mpg'], color='gray')\n", + "plt.xlabel('horsepower')\n", + "plt.ylabel('mpg')\n", + "plt.title('Scatter Plot of horsepower vs mpg')\n", + "plt.show()" + ] + }, + { + "cell_type": "raw", + "id": "b7289365-b358-470b-b10a-f5ba082a8ab2", + "metadata": { + "tags": [] + }, + "source": [ + "\\newpage" + ] + }, + { + "cell_type": "markdown", + "id": "02902876-5944-4612-973d-512bbb27fd4e", + "metadata": {}, + "source": [ + "## Task 3: Working with external data\n", + "\n", + "1. Load the dataset `’return_data.csv’` which contains historical returns of Apple (*’ret_apple’*), the index return of the *S\\&P500* which is a broad portfolio of stocks in the US (*’ret_index’*), as well as the return of a riskless investment in government bonds (*’rf’*). Make sure that you set the right working director when you try to load in the data. In the dataset, a number of $0.1$ corresponds to a return of $10\\%$." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "674ef366-5a54-4a48-81bc-62fdbcb19258", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Get the directory of the current Jupyter notebook file\n", + "notebook_dir = os.path.dirname(os.path.abspath('__file__'))\n", + "\n", + "# Set the working directory to the directory of the Jupyter notebook file\n", + "os.chdir(notebook_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "18c5820a-0271-4053-a7d5-3f7f16e610a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dateret_appleret_indexrf
019810130-0.170018-0.0400870.0104
119810227-0.0616740.0155210.0107
219810331-0.0751170.0461840.0121
3198104300.157360-0.0112680.0108
4198105290.1644740.0135500.0115
\n", + "
" + ], + "text/plain": [ + " date ret_apple ret_index rf\n", + "0 19810130 -0.170018 -0.040087 0.0104\n", + "1 19810227 -0.061674 0.015521 0.0107\n", + "2 19810331 -0.075117 0.046184 0.0121\n", + "3 19810430 0.157360 -0.011268 0.0108\n", + "4 19810529 0.164474 0.013550 0.0115" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the dataset\n", + "df = pd.read_csv('return_data.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "039801c1-3a1d-4870-94ba-662f23f762fe", + "metadata": {}, + "source": [ + "2. To get to know the data, construct three plots each having the date on the x-axis and the respective return time series on the y-axis." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c5a2dd6b-9589-446e-bcda-442e28122b8c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAEoCAYAAAC9/UMqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAAsTAAALEwEAmpwYAABiAElEQVR4nO2dd7wU1fXAv4cOgqiIgKKADQvlUTRiCxYQhdiiCdgTY0miMYkxavxZYxI1Ro1dgwUbGktigcRGngVRBBsiIGABBEXAhyAg7fz+uDu+eft2d2a2zZbz/Xz2s7szd+7cO+Wee84991xRVQzDMAzDqGyaxF0AwzAMwzAKjwl8wzAMw6gCTOAbhmEYRhVgAt8wDMMwqgAT+IZhGIZRBZjANwzDMIwqwAS+YcSMiJwiIq/GXQ4jPSIyXUQGx10Ow8gFE/iGEQERqRWRr0SkZdxlge/Ks0ZEVorIEhF5QkS6hDz2XhG5stBlDIuI7C0iE0RkhYgsF5GnRWS3Ip17pe+zUURW+/4fr6q7q2ptMcpiGIXCBL5hhEREugP7AQocHm9pGnCWqrYFdgTaAtcW46Qi0iyPeQ0CngOeBLYGegDvAhNFZPt8nSdxLhGRBm2fqrb1PsA84Ae+bQ/m8/yGERcm8A0jPCcBrwP3Aif7dyS05dtF5PmEhvqSiHTz7VcR+ZWIfJTQxP+aLHR8aXdJ5LNMRGaJyI/CFE5V64B/AzVBeYnI6cDxwO8TWuzTvnLumFSvKxO/B4vIAhE5X0Q+B+4RkctE5J8icl+i3tNFZKDv+PNF5LPEvlkiclCa4l8D3Keqf1fVFaq6TFX/L3G9L0vkNUNERvjybpa4lv0T//cSkddEpE5E3vWb4BOWkD+JyERgFRCpEyEin4jIwYnfl4nIoyLyQKJe00RkZxG5UEQWi8h8ERnqO7a9iNwlIosS1+JKEWka5fyGkQ9M4BtGeE4CHkx8DhGRTkn7jwf+CGwJvJNI5+coYCDQHzgC+GnyCURkE+B54CFgK2AUcKuI7B5UOBHpABwNzAnKS1XvTJTvmoQW+4Og/BN0BrYAugGnJ7YdDjwMbAY8BdycOH9P4CxgD1VtBxwCfJKi3G2AvYFHU5zvn8CQxO+xiTp4HAIsUdW3RGQbYBxwZaJ8vwMeF5GOvvQnJsrcDvg0ZH3T8QPgfmBz4G3gWVx7ug1wBXCHL+0YYD3OAtMPGAr8LMfzG0ZkTOAbRghEZF+ckPunqk4F5gLHJSUbp6ovq+q3wEXAIBHZ1rf/6oTmOg+4gYbCy2ME8Imq3qOq61X1LeBx4JgMxbtRRJYDS3CdjbNzyCuIjcClqvqtqq5ObHtVVcer6gacEOyb2L4BaAnsJiLNVfUTVZ2bIs8tcG3RohT7FiXqBK7jcniigwDu+j+U+H0CMD5Rjo2q+jwwBTjMl9e9qjo9cS3WRa55Q15R1WdVdT2uo9IRuCqR78NAdxHZLNEpPBT4tap+o6qLgeuBkTme3zAiYwLfMMJxMvCcqi5J/H+IJLM+MN/7oaorgWW48ehG+3Eapn+fRzfgewmzdJ2I1OEsB50zlO1Xqtoe6IPTOLvmkFcQX6rqmqRtn/t+rwJaiUgzVZ0D/Bpnkl8sIg+LSKo6f4XrSKRyNuyC68iQyG8G8IOE0D+ceoHfDTg2qa77JuXpv/658oXv92qcpWGD7z84f4puQHNgka9cd+AsLoZRVPLmdGMYlYqItAZ+BDRNjF2D01w3E5G+qvpuYtu2vmPa4jTXhb6stgWmJ35vl7TPYz7wkqoOSbEvI6o6LTHefktiXDsor1RLZa4C2vj+dwYWBByTqUwPAQ+JyKY4QXc1zrTuT/ONiEwCjgX+l5TFj4AXff89s34T4INEJwBcXe9X1dMyFSdK2fPEfOBbYMuENcAwYsM0fMMI5kiceXo3nENcDbAr8ApuXN/jMBHZV0Ra4Mby31BVv1Z5nohsnjDznwM8kuJczwA7i8iJItI88dlDRHYNWdYxOO3x8BB5fUFj57V3gONEpKmIDAO+H/K8jRCRniJyoLgpjGtwmu+GNMkvAE4W59jYLnGdrgQGAZf70j2MGwP/OfXaPcADOM3/kETZWyWcDLsSI6q6CDf74G8isqmINBGRHUQk6+tqGNliAt8wgjkZuEdV56nq594H55x2vNRPT3sIuBRnyh+AM5/7eRKYihOq44C7kk+kqitwAm0kzgLwOU4rDjXvX1XXAjcCF4fI6y7c+HqdiPw7se0cnENaXaL83vZsaAlchTPJf47riPwhTblfxTnhHY0bt/8U5+C2r6rO9qVbBEzCOfk94ts+H+cI+QfgS5xmfR6l0cadBLQAPsANXzxG6uELwygoohqHlcswKgsRuRdYkJhKlmq/Ajv5TNCGYRhFpRR6v4ZhGIZhFBgT+IZhGIZRBZhJ3zAMwzCqANPwDcMwDKMKMIFvGIZhGFVARQbe2XLLLbV79+5xF8MwDMMwisLUqVOXqGrHTGkqUuB3796dKVOmxF0MwzAMwygKIhK4IJSZ9A3DMAyjCjCBbxiGYRhVgAl8wzAMw6gCKnIM3zAMw4jOunXrWLBgAWvWJK+AbJQKrVq1omvXrjRv3jzysSbwDcMwDAAWLFhAu3bt6N69OyISd3GMJFSVpUuXsmDBAnr06BH5eDPpG4ZhGACsWbOGDh06mLAvUUSEDh06ZG2BMYFvGIZhfIcJ+9Iml/tjAt8wjKJy8snwwANxl8IoZf71r38hIsycOTOnfE455RQee+yx0Okvu+wyttlmG2pqathtt90YO3ZsxvR1dXXceuutOZWxmJjANwyjaKjC2LEwcWLcJTFKmbFjx7Lvvvvy8MMPF/3cv/nNb3jnnXd48sknOeOMM1i3bl3atNkK/A0bNuRSxKwxgW8YRtGoq4MM7adhsHLlSiZOnMhdd93VQODX1tay//77c9RRR7Hbbrtx5plnsnHjRgDatm3LueeeS//+/TnooIP48ssvG+U7depUvv/97zNgwAAOOeQQFi1alLEcO+20E23atOGrr74C4K9//St77LEHffr04dJLLwXgggsuYO7cudTU1HDeeedRW1vLiBEjvsvjrLPO4t577wVcBNgrrriCfffdl0cffZTu3btz6aWX0r9/f3r37v2dNeOll16ipqaGmpoa+vXrx4oVK7K/mEmYl75hGEXjiy/iLoERll//Gt55J7951tTADTdkTvPvf/+bYcOGsfPOO7PFFlvw1ltv0b9/fwAmT57MBx98QLdu3Rg2bBhPPPEExxxzDN988w39+/fnb3/7G1dccQWXX345N99883d5rlu3jrPPPpsnn3ySjh078sgjj3DRRRdx9913py3HW2+9xU477cRWW23Fc889x+zZs5k8eTKqyuGHH87LL7/MVVddxfvvv887iQtVW1ubsW6tWrXi1VdfBVxnYcstt+Stt97i1ltv5dprr2X06NFce+213HLLLeyzzz6sXLmSVq1aBV3W0JiGbxhG0TCBbwQxduxYRo4cCcDIkSMbjKPvueeebL/99jRt2pRRo0Z9JzybNGnCj3/8YwBOOOGE77Z7zJo1i/fff58hQ4ZQU1PDlVdeyYIFC1Ke//rrr6dnz55873vf47LLLgPgueee47nnnqNfv37079+fmTNnMnv27Mh188rocfTRRwMwYMAAPvnkEwD22Wcffvvb33LjjTdSV1dHs2b508tNwzcMo2h4Al813nIYwQRp4oVg6dKlTJgwgffffx8RYcOGDYgI11xzDdDYQz2dx3rydlVl9913Z9KkSYFl+M1vfsPvfvc7nnjiCU466STmzp2LqnLhhRdyxhlnNEjrCWmPZs2afTfMADSaPrfJJps0+N+yZUsAmjZtyvr16wGn+Q8fPpzx48ez11578cILL7DLLrsEljsMpuEbhlE0TMM3MvHYY49x0kkn8emnn/LJJ58wf/58evTo8Z3GPnnyZD7++GM2btzII488wr777gvAxo0bv/PGf+ihh77b7tGzZ0++/PLL7wT+unXrmD59esayHH300QwcOJAxY8ZwyCGHcPfdd7Ny5UoAPvvsMxYvXky7du0ajLF369aNDz74gG+//Zbly5fz4osvRr4Gc+fOpXfv3px//vkMHDgw55kKfmIV+CIyTERmicgcEbkgQ7o9RGSDiBxTzPIZhpFfTOAbmRg7dixHHXVUg20//OEPeeihhwAYNGgQF1xwAb169aJHjx7fpd1kk02YPn06AwYMYMKECVxyySUN8mjRogWPPfYY559/Pn379qWmpobXXnstsDyXXHIJ1113HQcffDDHHXccgwYNonfv3hxzzDGsWLGCDh06sM8++9CrVy/OO+88tt12W370ox/Rp08fjj/+ePr16xf5Gtxwww306tWLvn370rp1aw499NDIeaRDNCbbmog0BT4EhgALgDeBUar6QYp0zwNrgLtVNXBS5cCBA3XKlCn5L7RhGDlx2mkwejSccQbcfnvcpTGSmTFjBrvuumvcxUhJbW0t1157Lc8880yjfW3btv1O+64GUt0nEZmqqgMzHRenhr8nMEdVP1LVtcDDwBEp0p0NPA4sLmbhDMPIPzaGbxjxEafA3waY7/u/ILHtO0RkG+AowHQBw6gAzKRvZMvgwYNTavdAVWn3uRCnl34q98rkfv8NwPmquiEofrCInA6cDtCpU6fA+ZCGUa2MG9eFLl1W079/XdHP/emnewGtWLhwIbW1Hxb9/EZm2rdvn9dAL0ZhWLNmTVYyLk6BvwDY1ve/K7AwKc1A4OGEsN8SOExE1qvqv5MzU9U7gTvBjeEPHjy4AEU2jPLn+ONh8GD47W+Le15VWL7c/d56660ZPHjr4hbACGTGjBm0bdvWFtApYVSVVq1aZeUQGKdJ/01gJxHpISItgJHAU/4EqtpDVburanfgMeAXqYR9qfDJJ9Cnj5ktjdJFFZYsiWcMfcUKyHJVT6NItGrViqVLlxKXM7eRGVVl6dKlWUffi03DV9X1InIW8CzQFOeBP11EzkzsL7tx+7//HaZNgwcfLL72ZBhh+OYbWLs2HoG/2Od2a/KkNOnatSsLFixIGYveKA1atWpF165dszo21kh7qjoeGJ+0LaWgV9VTilGmXPCsYNaYGaXK0qXuO45n1CxfpU/z5s3p0aNH3MUwCoRF2ssjYYe95s6F558vbFnygSoMHw5PPx13SYx8sWSJ+/ZF/ywaJvANI15M4BeAIO3pT3+Ck08uTlly4YsvYPx4mDw57pIY+aIUNPwm1uoYRizYq5dHwpr0P/20PNYEnzvXfdsQReUQt8AXgQ4d7JkyjDgwgZ9Hwpr0588PTlMKzJnjvq1xrhw8gR+XSb9DB8jjap9ZM2FC/fCGYVQLJvALQCYBqeoEfjkIUdPwKw9PyMWl4XfqVPzzJrNhAxx0EAwZEndJDKO4mMDPI2E0/CVL3FzkchCinoYfhzZoFIa4NfxSEPjeu/fee/GWwzCKjQn8ApBJmM+bV7xy5Ipp+JVH3GP4W20Vfuir0NhzbVQbJvDzyKJF7jtTQ+KN35dDY2MCv/IoFZN+nM+Ud257ro1qwwR+HnngAfedyQO/XAR+XV282qBRGOIy6a9aBStXloZJ3zCqFRP4BaASTPqedg82hl9JxNWJ8+bgl4LAtw6sUa2YwC8AlWDS9wv8Ui9roZkwwcWfrwTiMumbwDeM+DGBH4J334Uoa0mEEfiljueh36wZPPZY9Wr5kye7KVwXXhh3SXLn22/d4jlQ/PvpLZzTqZNz2jOhaxjFxwR+CGpqoG/f/OTlmfRLvcGbOxc6d4b1610n5c474y5RPHgdvRkz4i1HPvDM+WAavmFUIybwQ+J54IchXYOyfj0sXJg5Takwdy7suGP9/yj1ryRKZQpZPigFgb/VVsU9r2EY9ZjALwDpGtNFi5wpdZNNiluebJgzB3bYIe5SGPnEH0q22Cb9L76AzTaDli2Le95UlHpn2zAKhQn8ApCuMfXM+dttV9qNzurV8Nln5SXwP/0ULrmkcNe1lO9XWDwNv337eDR8z5wft9WkEu6lYWSDCfwi4jnslbrA/+gj9+036Zc6l10Gf/xj/ocewq6AWA54Ar9jx3gFPlTG9TSMcsMEfgFI15h5Gv622xavLNngTckrFw1/2TJ4+GH3O05BctNNbq33UhVmnkl/yy2hthZ+8YvgYx57DN55J/dzl0ocfSjd+2MYhcYEfgFIZ9KfP9+ZU+MwqUYhlcBftSqesoRhzBi3IFHc/PrX7r6W6hTGpUuhbVto1cr9f+CB4Ofw2GOhX7/cz+3F0S8FSvndM4xCYgK/AKRrUObPd9p9lHnIq1Y19K4uBnPmOAerLbao33bttcUtQ1hU4fbbG/7PJ1FM+qUq6D2WLnXr0TdJvPUrVjjfh0Lz7bcuVHOpjOEbRrViAr8AZHLa2267aHkNGOBMsMVk7lyn3ZdDwzxhAnz4IXz/+4XJvxyuQViWLHEC31+nsEvEfv559uf1B93xKISWHTY4lmn4RrViAr8A5FPDnzkzf+UKS/IcfI9SNOvfdpsTYscc4/5bY54eT8PPRuDfcUf25y1G0J0333RDBvffX7hzGEa5YwK/AKQSOqtXOw0rqsAvNuvXwyefpHbY++CDohcnIwsXwr//DT/5CbRuXdhzler9isLSpc5a1MT31ocV+Bs2ZH/eYgh8rx7/+19w2kq4l4aRDSbwi4R/Sl4pM2+eE/qpBP777xe/PJkYPdoJojPOqN9WqDH8KJSqQMlFww8j8D/91I3XJ5PKpB8npXp/DKPQmMAvAKkaFE/gl7qG7y2ak8qkP21accuSifXrXXz/oUNdWQs91l6q98vPO++kF+Dr18NXXzUW+LNnhxuqCRL4a9ZA9+5wyimN9yVr+JXkF2EY5YQJ/CJRLgI/0xz8UtLwn3nGRQP8+c8bbi8FDT8u+vVLv8jTV1+572ST/saN4YZqgmYgeJr9+PGN933xhZsO2KZN/bY471MpvHtPPuniRxhGMTGBXyS8oDtdu8ZbjiDmznXztLt0abyvlAT+bbe5azlihPtfSoK5FARKMt7UTr+Gv+mm7juM5SbsGH6qupdS0J1SYNEiOPJIF+PAMIqJCfwCkM6k36mTWzyklDV8b9GcJimejIUL86OVbNwI48Zlfw3mzIHnnoPTToNmzRrus1j6qfGi7PkF/vbbO607zDh+kMDP1OEqNYEf971cvdp9eyGsDaNYmMAvAKkalHnz6kPqxi3w16yBc86B5csb7/Pm4KcjH1r+rbc6zfyhh7I7/o47oGlT+NnP6rcVKuZ9pcTS92v4XmduwQLo3Ts/Aj8TyQI/bmtM3PfSO3/c18GoPkzgF4n580vHQ3/0aLjxRrj88obbVYMFfj4c9z75xH0vXBj92DVr4J57nEl0663rt5dS4xm3QEmFJ/C33LJeeC9ZAn36wLvvBpc5nwIfqtsSYwLfiItYBb6IDBORWSIyR0QuSLH/eBF5L/F5TUTSuCSVFsmNjmp90B2IX8P3Gu/kRnzRImduTLdK3mab5UfDz6XBe+wxJ7ySnfWS8zYaksqkD07gL12aWyQ9P8nXf/16l39yHP377oOnnsrPOaMS9zNy9tnuO8zzf9ttzhJjGPkgNoEvIk2BW4BDgd2AUSKyW1Kyj4Hvq2of4I/AncUtZXYkNyh1dbByZUOBX4oErZLXu3d+NPxcBP5tt8HOO8OBBzbcXqhrWkkm/RYtYJNNGnrc9+njvsPOx09Huuv/5Zfu2vk1fC9+/xFH5HbObIn7Xv73v+HSLVrkVjQcPryw5TGqhzg1/D2BOar6kaquBR4GGjQBqvqaqiYmFPE6UOI+7qlJFXQn7kYnFZnm4AP06uU0/FzLnq3Af+89eO01F2gn3bGlMC2vFO+tF2VPpOHUud693XeQwA9bp+Tpe8WIsgel24nORFCZ16933zZ9rzyYM6f0F9BqFpykYGwDzPf9XwB8L0P6U4H/pNspIqcDpwN06tSJ2traPBTRYzBAiDxdugULFlBbO+e7rZMmbQH04csv36K29ms+/bQ7qt0599xZjBixKODFD3vu8MyevQ2wU6NyTpjQgyZNtuPjj19m/nyvhR/83f6WLT9k+fKdefTRSWy1VYqQaiFZsGAHYFvmzp1DbW2wvfKAAwZz7LHz+fbbJrRo0Zkdd5xEbe36BmlmzuwE7Mrrr7/O/Pn5Wyv3nXc2A2qoq/uK2tp3A1IPBuCll16iRYs4pL47f6pnZdas3WnVqjW1tVPw39N3362lY8e9eP75OvbYI9XCDS7twoWfUVs7O+2ZV61qCuzHqlUNzz958uZAXxYufJvaWs9LtP78+XquZ87sDOzCokWfU1ubeQGKurrmwD6hzr92bRNatMh3Kz4YgNWrV1FbOzltqsWLWwKD+PbbNdTWvp4xx88/b8kzz2zNqad+XJadn3Ln44/b8NOf7smpp37ECSfMi7s46VHVWD7AscBo3/8TgZvSpD0AmAF0CJP3gAEDNJ84/SZ8urPPbrj91lvd9s8+c/+32aY+7dSp+Tl3FK6/3uX5q1813D5ypOr226c+P6i+/LL7Hj8+t/Ofc47L57rrwqX3zt+2rerJJ6dOc999Ls3s2bmVLZkXX3T5Dh4cnNYr55o1+S1DWDI9K/vuW18H/z1VVT3sMNU+fTLneeaZmc/99depzz9mjNv24YeN88znc3333S6/dM+Hn8WLw53//vtdmjlz8lLE7/DOvdNOmdPNm+fSde0anOcee7i0776bnzIa0Rg/3l3/YcPiKwMwRQNkY5wm/QXAtr7/XYFGftsi0gcYDRyhqkVeGT4/zJ/v5ot7Zs3PPqvf9/zz8ZQJYO3ahv/nzElvzgdn0ofcx/GjmPTX+JT1lSvTO+t5puO3386tbMlUmkk/FX36wIwZjZ+HKKTz4i+WST8KYe/P1Ve77zAOjapw6aWFWWAqTHm9SIdxmZSPPjpz21EtlOK77ydOgf8msJOI9BCRFsBIoIHfrohsBzwBnKiqH8ZQxqxIvunz5sE227i548k891z+zjtlivOkD7su+O23N/wfNCVv881dPXL11I8i8P2r4PXrB3vumTrdfxKDPTfemFvZ0lHqL3IQ3sI5qejTB9atg1mz0h8fVP/LLku9ffFiF7mxXbtQxcyaQoTW9Z7zVO9tMsuXwxVXwODB4csRVOYodYrbjP+vf9U7/VYj5eLcG5vAV9X1wFnAszhz/T9VdbqInCkiZyaSXQJ0AG4VkXdEZEpMxQWyn7qUaQ7+q6/CN98E53HTTcFprr7aNTzZDIsuW+birWcS+OC0/GJq+H5+/vPgY0rBaa/UUA0W+JD5vgZpju+8k3q7Nwe/3BY38td30KBgzd07/7p14c9RiGtS6gKnUimXdiLWefiqOl5Vd1bVHVT1T4ltt6vq7YnfP1PVzVW1JvEZGGd50zVqySS/dP45+MmsXQsvvxyc55/+VFhzndc7DzLL9e7tzL/r12dOF4aoL8lxx+V+zmyJ0pCWWqO7fLkzuacT+Dvv7KbsZfLUDzL3p6tzqYXVhXD358Mke+Ljj+cvb498dl7LRcM04sUi7QXgrTIGLiJZGPwv3caNLnCGX+D7X3SRcGb9L74Ir1kHvfSp9gfNwffo1cuNF86Zkzld1PMH0aSJm0Oejqidh2XLUocWzjXfUsQfZS8VzZvDbrtlFvjZdjaLJfDzfZ8mp3eeL8r5o+Yd5fyzZ7v0Yfxdvv7a+c4Y4Sj1DpcJ/AAOP7z+d1gN388XXzgzn9+k7x8THDAg/Dh+ULpcGh1PgG+/feZ03rztXMbxszHpX3xxuDzD0qGD80kIS6m/yJnwx9FPR58+uQXfSdchKLaGH+Y+hfFxeeONhv8LMZQU9vnPt3Xp6afd9/33B6dt3x46dgx//mqlXBQDE/gBTJ9e/zushu/HC7rj1/D9K7wNHerGB8OEzwzbMcim8Zk718Wm969Znopdd3Xadj5C7MbtlFQoIV5qnQN/WN109O7tZo8sTTMPJkjDT7V/40YnXEvNpH/UUcFpJk9uaFGK454W6v3w0oa12qzJX1iLiqfU3v1kTOAH4L+Bs2bVL20Z9ph5iRgMfoHv1/APOcR9h5me98orsGpV+v1hX/pU6YI89D1at3bj/Lk47hXypQgzLSpKx61ceu6ZCDLpQ7DjXjbDREuXOt+B5Dj6cTMvIC7KmjXuGflepjBgSWTznMTViZ05M3xaIxzl0k6YwA8geTw+qmabKqyuX+D36gWdOwdr761aubHzV16Jdv6wzJkTTuBDfYjdbMnGpB82rd/nItV5r73WDaNEpZwbx7AmfUhv1s9G4BdzDn4+p+W9+64bhvNPAS2E+T2fQsILv3vNNcFp70ysSFLOz3SpUurX1AR+AMk3MMw4vv+Y+fOdmdw/XtykScPfQ4c6DT+Tie1734OWLcOZ9aM2zqtWuYU6wgbO6NXLdRDCWDsynb+YJv26Ohcc5LzzCu/9XGov/ZIl7jlr3z59mk6d3FhtuQr8TOWImsZz2Ntrr/pthXBcy6fAX7TIfT/6aPhj4grS8/e/u7qXetz5KJiGX4G0axfOHJxs0t9uu8ae+X6GDnVaWCav2TZtYL/9Mgv8bB+6jz5y32E1/N693cs6Y0Z258t2Hn62vPWW0+qfeQauuw7237845y0Vli6FLbZo2NFMRiSz416QkEzVeJdilD0Irssbbzh/lq6+pbrCTkP9+uvsy5WOQnUg4xK4553nvvMxtbeQLFkCDz0ULu2ECe671DsxJvAD8L9sffpE99RPNQc/WfgffLD7HSTMhw51pnSvN5+OoAbi1Vcb/g9aJS+ZfIXYLbSGr+rMl3vv7eaRv/QS/OY3mQVfJZIprK6fPn3c85UqTG4cGr4XvS7fTmNBjfLkyc6cn6mTng/i1grjEk5xxwyYOzecxeaYY+D44+uHZTPxl7+470xDih6nndZw9lcxqbKmLzr+h7KmxmlAQS9KsoafSeCDaxBraoLN9UOHuu90Dn5hG5Annmj4P+wcfI8dd3TDC9mO43vXZ8WK8MdEbRy/+QZOOsktpfv97zvryd57R8+rXEz6mQLjLFmSefzeo08fN0yTKkRqtgK/efNo0x/9XHWVi08/JUR8zXwJz2XL3Dz1ZIEfRCG11UJ1DPL1nC5eHC193AJ/xx3rnaUz4Qn6byMsDBqmEzV6dP3UyGJjAj8A/0PZt68TUh9/HO7YtWtdo5ccVjeV5jB0KEycmL7nKeJM6Vttld/4++Aa+M03D98wN2vmpuflquF7pr18M2OGa7AffBAuv9yt/+7XcAvRgP7vf+HTbtwI//1vfhu8P/0p/b5MYXX9ZPLUj9LJ9Vi82D2v2VzvpUvh5pvDnTufeJ2LZIEfVIagOBGpKHaY6ELkv3EjnHxytGOiTgssBK+9FpymUhbO8mMCP4BkDR+Cx/G9Yz77zP1OF1bXz9ChzjP4pZdS7xdxpughQ4Id/KI+dEGr5KWid+/GGv4vfpFZ8HgUIkiJf/8ee7j53889B5dc0njxk0II/COPDJ/2llvg0EOjOVgFkUnLCmvS92IspBrHz3YMP1tz/g03xBPhbfJk93wMHBhN4GcToyNu8iFwr7vOdV4BunQJd4w3pFbqwrESMYEfgV693MMadhw/1Rx8SK3h77OPm+OeTnv3WwIWL84tKloyYefg++nVy3Vo/GNWt90G//d/wcdm09BEEdI1Nc6E7/lG5JKXF1M9U+Ok2tBZK6gh83wmgnwx8kHQwjl+Wrd2cfWzEfjpTPrZCPy6OrfqoSdAzj03/NK9UcyvqZg8GXbZxc1oiCLwCyG8vDzD5B2HNvrmm3DhhW72y+mnh3+vo2j4quEWFysEXjmjhBGPch9efz1aefKBCfwA/C9F69bQs2f43nyqOfiQ+qFo1cqNNQcJ/CFD3He+vPXXrYNPP40u8PMRYrdQXHqpW8Y3HVGuz6mnBqdJXmglCG+8N8yyq8uWwQMPBKdL13ivWuWc3sIIfEjvqV9MgX/jja4D5Q35TJkS3lv6n/+Mfj4PVeeh782/9z8n2dQ/iEIsnhOFXAT+8uUwcqSbzTB6tDt/1PzCpL/ySmjbNn0ESI81a7KfJpwO75oeemj4Y6Jcg4kTo5UnH5jADyD5BtbUBGv43jGpwupC+pdz6FAXBStTJLAuXZywzSTwozx0n37qvLKjmvRz8dQvZNzxMGnz3Th6U3LC4nnBhxH4xx0HJ54YvVPhESbKnp8+fdw0zSgOldBYW1N1lqioAv/rr+H66+GII5zPjEeqmQP5Zt48V+ZUAr8QGn7Q/S+0yTtbk74qnHmmazvGjnW+P02ahC+vZ9IPstp8/rkbkoPg9Q+23DI4LHgxiHLP7rmncOVIhwn8AJJvYN++rmHwIltlOmbePDf/OflBTDfdJ5MXfnK6VGF2vbW4x49PX7Zkonroe3Tt6sye2Wj45SjwM5Es8IPqF0Xgf/aZ+87WVB0myp4fz3Ev+b5G1XDr6lyDHlXg33yzO/bii/MbPS8MXsCdbAR+NpSr094998DDD7spk97MF1UnlJ99Nvh4rzN56aWZ0/lN3kHXKqzZP26/Ab9fStROdT4wgR9AKg0fwo2hz5/f2JwP6R/e3XZzJrJU2nuywF+7Fl5+uWGaTz913w8+CDfdFFw+qB+fiirwRZyWn6unfpTz5SttPgX+xo3OQ3/TTcMfE0Xg50qYhXP8pAuxG3XxHG8OfpQ4+itXOiew4cNdoKS6uvDH5kMgT57sppt616DQGv7UqdGPSUc2z3Q212zGDDjrLDjoIDj//Prt3lLTo0aFz8u/MFkqmjev/52v2BlR6lwI517/+f31KxYm8CPimRkzmfX9Jv0gD/1kbX/oUHjhhcYmTH+6/fZLHWbX38v91a/cixk0P3juXOebENbD1o8XUz+5sYvTwQmCG4d8mvTfe89p0ekcBHMl12sVVcPfbjvXeUkW+FHLkU3Qndtuc+X1prhlWigqmXyY/CdPhn79oEUL979UnPYKRVSBv3o1/PjHbkz9/vtTd1ijCGbPIpmObAT+lVdm3l9KVhMT+CVI8g3s3Nk1YmEc91IF3YHMAmfoUDdc8NZb6Y9p3dqFh002/Q8c6L7vucc5PN1yC/zgB5nDfXoe+tkIwd69nRa2cGHD7XE4OEVJm0+B75nzDzooOG0uZKttRB3DTxdiN+q0vKgCf9Uq+Otf3fPvrVIXRXjkKvDXr3fOgekWzIljznipOe397nfOonfffekVhCjlCBrD9wvEsPkGxUMo9H0MO5wHTmkrNibwA0h1A/v2DdbwV6xwwjDIpJ/8IKcLs5ucbsgQp137ha3XWA0f7lbNuvNOZy3YZ596c38y2czB90jnuFeJAj8dEya4mRuZZgXkQpDZMwjPpL/FFuGP8QS+/z4VWuDfcYcbA/actCCawM810t0HH7hORzqBHzQ0kW0nL2i6ZyGJIvyeeAJuvdUJ/WHDGu/3yhrlngUJfH9e+Xpn4+5E+a/5DTdEzz9XTOBnQU2NayDSPbCq6T30g+jY0ZkVswmzm7wozWmnuaAY8+e7huyNN9x2f8/yo4+ij997eAI/2cHr7rszH1fohqxYAt8LlHTggdEaumKug750qXOubNYsfF69ezurkH+2SNRO3BdfuGsSZihh9WrXQT3wQNc59YjS4OequSU77CWf0xvXT0e2z3QmPwUvz2QLWr6IUuZTT3UBrYICa+VTwy/EWgb+5ySo/tk41UXR8LMZRs0VE/gBpNPw1651U+jSkW4OPgQ3ZEOHutCP/gcuOV3v3k578ncMUq1Cd9BBMGmSG3cbPNjNU/avFrdmTfYCv0MH99Ama/ijR2eXX74olkl/yhTnaHbQQdHmbEdNlwtho+z5SeW4l43A79gxnGPiXXc1nILlEaUTlQ+Bv9lmDa1d/ns6c2bmueDZ3st0lreoFNqkv2GD88z3/BvyUY6gYRh/Xvly2vPX+YUXMqfNpqMV9Bz66xzHIl4m8ANIdQODQuzmouGDE/jr10Ntbf225BcpVZjdVAIfXMjU1193ns8//nHjsf9sTfqQOsTum29mnjeeTeMY5ZhCOO2lwhu/Hzw4uyGHKOPOuYzhh3XY8/AsN7kK/DDm/G+/dYvk7LefCzzlJ0qDuPPO4dKlcwQMWiHv8stdx6l7dxdZ7sor3fTXzz8PX8ZUfPJJ+n1RnvlswhBH6SRdcglsv336/dmY9IOef/+qnpmef2/YKgz+axpmZbuoBF1Tv1WjGLN0kjGBnwU77+wi42Uax583zz2kW2/deF+QqSoozK7H0KFu3NPreKQT+OC0rRdecMs9JpOthg9OOHzwQeOXd8yY9Mdko40FNX5RzH/5FPg1NU6gZtNbP/PM8GmDPJrTEXalPD+bbgo9ejTs0AbFAUi+p2GD7txzj4s1kKzdQ379NsB1evv1a7z9m2+clcpzFkyV5wsvuGGHQYOcX8XFFztfmS5d3Dv+9tvhy+onk4YfVuAnPxthTdHp8v/qKze190c/qt+2667h8opyz4LagaB5+h4PP5zdOefNgwUL3PO3cKELdf35566zmrw2Rb6sdv5ZBKbhlyCpbmCzZk7QZfLUnz/fNQSppl4EvRQtWzqtMUjgJzv4Bb10rVq56TS/+lX9tmbNUg87hKV3bzcs4F9StWlT58mbrgdf6KhpxTDpr17tQmMeeGDjPIcPd1rrxIm5x3b3+O1vszsuGw0fnFnf/3zX1mZe7CdbDf8vf3FC1D/LIRsyxTv/9lu46CLXkU4VfvWtt5wg8I/fQ+OhsfPOc5HlZs1y885fftk5XnnhrrMhHwI/uZ146qlwx/mF36efupDGBx3kHBRPOAH+/e/6/UHCqRAavl8DznQtMikXyfjzOe88Z4Ht2tU53W69tevAeTOxopQ1TDkBHn+8/rcJ/DLCC7Gb6gZ7Jv0w5vxMYXb9ZvFUXshduriG2XvhvRc404Mk0nBZ2u7dozl0JZPKU/+HP3Q953QhZwuh4fsphoY/aZITJJ6g8uf59ttuUZF993UOc/vv7wTOf/7jBEU25/ebN4NYs6b+dzZj+OCeq+RhmR/9yEVXS/fM+3+HFfjz5jntPtd7cvbZqbe/+64T5H/+s1vGNVWgKM9hb489Gm7PVKZNN3XDEOecE03gJJMPk/799zf8P3ZsuOOmTnVadE2NawfOOcdpub/7nXu+/c63QcLJE4j5nFnhzyvdtfjgg/oljcOQ3PbceaebIXL77S4OxK23uunMN98Mm2yS/rh0ZLpnGzc2HEaIQ+Dn0NRXN337Oue0hQtTT8maN69+rD+ZMI2b54Xv8a9/pU93443OLPnnP7ttUcawczHng4sOKAJ/+1v9tiOOcJ2Qe+9Nrf0UWuDPn9/YPOvHX/9LLnHjs1HDnE6Y4DSQ/fZz//3X/F//gv79nYb/6qsuDPI117j706RJdvWP0jgsXeqeybVrnXk3Ww3fz9NPO4fPSy910dbuvtsNO3n4r8/KlU6TDiPwBw6EQw6JXr4g1q931/yyy9yUxKeecjEpUjF5MnTrlv1SvrmQq9NeXV1DTRxceNtly4KnYs6fD3/8o7N8/PWv7r3daaf6/V5YZwh+/jzhHUV5iOK0l+79HzPGvYfZaOC77upmMqVj/ny4+mr3O+w7myldcmwVG8MvIzxhnmocf+PG9GF1Idx48667hpvb7Q+z68X3L6bAb9PG5TFpUv221q1diM0nnqgPuemnEN7pI0aEz/+xx+p///GPcMop4Zdf9ZgwwWmO7dq5/8n3sWNHOPJIuPZaNx2yrg5efDH1WHUYstGAo0bZ85Ms8Fu1co3rX/4CjzziHOz8y/v6G7ooc/Dzod0nM2uWs65cdBEcdZQbc08n7KHeYS+ZQkyfTCZXDf+xxxoPG61f39B0nA4RN2b9yitOq/cLewhvUvfOCdEEfpAQDRL4Gza4lSSjrGYXpbPtb0fDdigy5T9+fGFmHkTBBH6WeA1iqnH8JUucWTWdST9MQ+KF2Q1i333dmL/f8z6KSTsXD30Pz6zvz/+UU9w1SLVcaSE0/OHDo+c5aJAzUd93nzs+VeckFV9/7YSEN34Pwdd8k01c+rCOSMlks9BK1Ch7fnbYoWHjrerKcMEFriM3fboTkp6zmv/8UeLo+ztq+aKmBmbPds5cjzySucOzeLETuqksQsUQ+MuWpfewDyPw77sPdtml4baddgpn1n/99cz3KIoGWmgNPxUvvOAsrCefHP6cUYJJZRNpMVOe//lPw2EjE/hlxKabumkqqTR8L2BJGIEfFGY3CC/Mrt9xJ8qDlKuGD85xz4+Ie7B33dWZ9ZMpxLS8bBcPufhiV8baWmeeX7Ag+PyvvOIaK7/AL0RUMD/ZNA5RF87x07Qp7L576n1HHlm/lve++7ohjFQCP0jD7927MNfqoIPcVNEf/zg4baqAOx7FEPiQ3qwf9Mx//LF7Fk88seH2UaPc8+y3wKQiaFpaKQn8VNdizBi3NG8m600yfsEd1BH2nz+shp/uPV2yxFn6DjssOG0hiVXgi8gwEZklInNE5IIU+0VEbkzsf09E+sdRznSkC7HrCfwwJv1MhF2QZejQhiFYo5j0C6Hhe+c45RQXQCjZ+avQY/hh8cpx8smu9/3JJ7DXXqmtNv7zT5jgrCre0qBQmKhgfrJpHHIx6UPD+5pq1cg333RC++ijGwqXsALf7xSVTx56KHwUs8mT3bXtn6JlKZbAT2fWD3rmH3jAfZ9wQsPtI0e6Y1NZ1/wEzd33C/yga5HNCpBBQvTCC+t/J1+L5ctdR3PkyGgx6f35JC9bnkw2Gn666/Tss+7c/uGHkh7DF5FtRGRvEdnf++RyYhFpCtwCHArsBowSkd2Skh0K7JT4nA7clss5801NjZsOlPzibLaZ+87FSx/Cm2KTLQFRTPo9eoQ7h99BK5lUGj64hqhJk8ZezHEsRJIKfzkOPrjeE36//RoHJ/IzYYJzdGrVqn5boYVDNsGEchX4QeFkO3d2SwMnL4nqCfyOHTMfH2WYIsr1jdI5mjzZdWxSdT4KcU9TLWSVjeOeqjPnH3BAQ8Vi0SJnWevbN3h+epDAycbjPhurQDq8dhQaC/xHH3VDhlHM+cn5RLEa5qrh/+c/7n3wFjjLlLaQhDqliFwNTAT+Dzgv8fldjufeE5ijqh+p6lrgYeCIpDRHAPep43VgMxGJIQJxampq3EPjTfUZPNh919W5Xme6Bi/fDYkXZtcjinDIJMjDkmwl8PLfemvngZ08Jz+befiFMun76dPHjWt27+5Mb6mGI5YscVYdvzk/2/NHIZcx/Hxo+Olo3doFafGWjQYn8Dt0yO/yn/mMtOgnncMeFOaeJi/f2qJFdib91193ysZJJzXc3rmz+x41yqX5+OP0eYSdahdUFshO4AfFqMgknO+7zy1ale7epSNKLP1sNPxU13TDBremybBhDfeXrMAHjgR6quphqvqDxOfwHM+9DTDf939BYlvUNLHhNXLJJuCVK10wh3Q3NN/m32QHv2KuFgeNG3Z//qec0nhOfqmZ9P107erGRQcPhp/8pPH5vXDHyQK/VMfw27TJvlPXtm24dCJw/vn1/8POwc/Xc5rcgYxy/b/6Kv0Uznzfxw8/bLxC2nbbZWfSv/9+d19/+MPU+z3/hUxaftAzlSpmQTqymYcPjaeq+Ukn8D/6yL2jJ58c/R5F0fD9z38uGv6UKa7znTyboJTn4X8ENAfyFDcMgFS3KvkWhEnjEoqcjjP706lTJ2r9gehzYvB3v5LzVIW2bfdh/Pgv2WWXD6mr6wtsDkC7dl9RW5s6FN/q1XsCbb7LM3OvOP35/WyzTSfAxb986aX06QDq6poD+wTm6T//hg0bqK19JW2qDh0GsXSpG0ybNm0abds69XKzzZrQtu0grr56Gc2bzwBg6dL66xT2/B9//DG1teltn5991grYC4Dp06fTseOXgXmuWLGS2trUUTt+/3uhadOePPusU5lWrlxBbe1U7r9/J9q06cSqVROpra1/FKdN2xRwA8HvvvsuzZpl8oga/N2vTPX/9tsmgBs5W79+HbW1E9OmXbhwZ8DFcX7ttdfo2HEt06fvQtu2m1Fb+3pW53/33fZAv8Tvd2nRIn2dZszYCjcyBx9+uJyWLTemff6983/99XJqa9PHpJ02bUvAmRlmzZpJbW3qwPWPPtoVqDczvfLKy7RokalXObjBP5E3qa39plGqpUtbAM5RI+xzminthRf2pnnz9qxbV9/sbrrpV0yb1pTa2saSb86ctsDARnmuXSs88MDe7L33MqZOndHg/P50u+/ej9GjmzJoUP0z7oScSztt2nu0bbssbY3mz98GN5oK772X+f7X1Q0A2rFiRR21te+kTecvK8BFFy3i/PNnpUw1a9bWgFsk4Y033mDhQhcm8d57uyPSjR13fJ3aWk8k1eeZ6V4tXtwSGATAsmXp22iAnj2bAfsCMHHiJDp2zCT+3PnXrFlFbe3kBnvuuac7TZp0o02bidTWrv8u7auvvkSLFgXQZDKhqoEf4HFgDnAHcKP3CXNshjwHAc/6/l8IXJiU5g5glO//LKBLUN4DBgzQfOFeEfdJxfe/r7rXXu734MH1aU86KX2eu+xSn27DhtzO7zFuXLh0qqpffhk+rZeuVavM6YYMqU/7zDMN9/385+74ujr3/8ADo5//8sszp5s7tz7tP/8ZLs/u3TOn++yz+rQ1NW5bz56qw4c3TjtxYn3a558Pd/6g+i9YUJ9uyy0zp/3Zz+rTLljgto0YodqvX/bnf+ml+nTPPps57dix9Wl33FF15Mj0ab10e+yROc8nnqhPe/fdqdN89JFqmzYN6/Ttt5nz9adt00Z13brU6RYtiv6cpkvrvZ/XXtsw7amnqnbunPqYt95Knefjj7tt//1v/bYttmic7sYb3bbp0+u3bdhQn+fTT2eu0y231Kd97rnMaXv1culEMqdTbVj/li1VlyxJne6mm+rTzZxZX/4ePVQPPjh9npn49NP6dIMHZ067YkV92kmTVKdMcW3b6NGqV16petZZqscco7rvvvXp9tuvcT4DB6ruvXfjsq5dm/n8UQGmaIBsDGtUeAr4I/AaMNX3yYU3gZ1EpIeItABGJs6TfN6TEt76ewHLVTVgsklxqalxq4pt2NDQRJTJYa8QJt98LzQSlSOPTJ9/8pz8Qpv0k1ddS0emoCfQeFrQZ5+5oC7J5nwovHkum3uWzcI56Yhy/cOa9N98M/vygCvTz3/urr3fKz/KtRowIP1Usny9J2vXwm9+48ack0MAd+vmgt/4wyEHcd99rr7+9Qdmz3ambj/HHuuujX9Ovv8+Br2HmaJVJuMFrorynJx6qhvHT7ectj8v7/errzq/hKjOeh7ZjuEPGuQc7kaMgJ/9DP7v/5zvyvvvN3x+BgxomMcXXziTfqrgQMWaBeIn0KSf8KY/UVVDThILh6quF5GzgGeBpsDdqjpdRM5M7L8dGA8chrMurAJ+ki6/uOjb1y256V88BsIvi5uvmx63wPcH/0jO3z8n/7TTgr1zPbJ9OYO8w8OSLMQ9P4RUAt9fvkLc07CLl/hZutQJlGKzYkVxwtQ+9JCb7vT3v7vG15saGOX6Z3L6ytd9vPFGN34/frxz0lOtz9u7P/PmNV7iN9U9XbIExo1zce/9gmaLLRqH0u3c2XnxP/ywCzAlEm0M2y+8gtJG6bB49OnjfGVuvdVF+kse2kxV1jFj3Nj6UUdFP19ynkEOhv77f8cd7np6n06dGk4H9NImX6dnn3Xf/vn3Yc9fCAL1ElXdAKwSkfb5PrmqjlfVnVV1B1X9U2Lb7Qlh7xlnfpnY31tVIyyTUBzShdjNtAJdJWr4mQRe8pz8sCvIRfESTj5fGILiHCTnM2GC05hTTVfzT82Mw2lv5szG27JdOMcjl2eq0AJ/yRL49a+dFvrLXzZ8PqJYW8KuuZAtn3/uhO3w4am1vO7d3Xcqa1OqZ/6RR1yHOdk7Px2jRjlv/qlTG+cZ5Z0KIptO9mmnOYvHvHlurYZMqDrF6tFH4Zhjso/h4K9zqlk4fvz3//TT4fDDXQdxu+3Sz/1Pvqbjx7sOQqp1VeLQ8MO+GmuAaSJyVyIQzo0icmMhC1Yu7Lab62kne+qHNelXioYfhH9OfjYCvxBECbyh6gT+AQekFihxeNz6SbaabNjgPNBTmfS9BUGiENZi5VFogX/uuW766z/+4TSlbC0shdbw//AHp/1ef33q/Z6Gn2pqXiqBfN99zqoYFCPB4+ij3Swaz6wfxWrmJ+hahF2S10/r1k6IbrutW50umeTOyb/+5axH2ZrzoWH9g57pXKf6rl/vIqAmT8eLk7DFGAdcDLxM/sbwK4KWLZ25Onmp3FIewy80qcrin5Ofak3yVPi15igm/bAEvYT+/XPmOE0klTk/TF7ZEKVOyeOxX33lrlkqgb/PPtHLsltySKwAwsTRDyLdPX/+efccnX9+fdCnbAT+VlsV1hL35ptwzz3OEpG8MI3HNtu4DksYgT9zposbEFa7Bxd6dtgwZxnYuLFwGv7WW2d3XLNmzg/jxRfdUrd+kss3ZozrIO2fIuRbpvuYKc9MZHP//fm/8YZ7D1OZ8+MiVDOlqmNSfQpduHKhpqahhr/ppm4d9HTELfDjChLjzcmfPTtcPv65+4UgyjzwVavcdzqBX+jQukF5Jgv8XIPuRKVYJv1Vq+DMM9149//9X/32bITXkCGZr2su93HjRvjVr9x18JfTT8+eTuB17RrsQApu7n2TJo0jGwYxapRzOH311WhOe+CUmULzs585xemWWxpu95d1wQK3WM5JJ6XuXP/jH+HOFcVhOFeBP36868ylWiI8LsJG2vtYRD5K/hS6cOVC377uhfK8ZAthKgqiHAT+4Yc3DJcZxDPP1P8uhIYfNfDLNts0dqwqJFE6EcnDH7mslJcP8qHhp6rzZZe59+zOOxuGNs6Gu+6Kfv6wPPCAi3R31VVOAUjm7bedTws4rTVIw9+40eU5dGj4dQI8Dj/cDV+NHRtdww+zRHeudOzoYuKPGdNwxUp/+R54wP1PZ90I60NQTA3/P/9x621EafMKTVhD5EBgj8RnP9w8/AcKVahyw3PI8FZaizreGYagqGeFFvj5eFFatQqvnWzY4F6YbM4flqixxA88MH3dCuGlHwW/5iKSeaW8qNcy6hBA+/a5C2NoXM6334brrnPOXslTL6PUafp0FzExaNGVbO/jihVuuGHPPdMLqJqaeq/6MAL/pZfckFIUc77HJpu4FeUee6x++lxy/nFz1lnwzTcN193wl+/xx91zmG6xr7D3KoqGn80wnVfmRYvc81pK5nwIb9Jf6vt8pqo3AGmMm9WHP444BI8nZdOQBC2EEYU4476fckq4PN580wmtdEu05oOoGn46cz4UpvGMkmchTPrZPieFMOevW+dMvx07wjXXNN4fZcW03XYLF6sh2/r/6U/OO//GG8MJje7dnYVw3bqG2/33/4ILoF07OOKI7Mo0apR7n154oX5bcruVCm+8vGvX7M6bTLpneuBAt1LlzTfXP8v+tKtX5+asF3T+VOTSTv73v+67LAW+iPT3fQYm5sq3K3DZyoYtt2xo+sqnSd9rMIIa7lLqrWeq3x57hMvjmWecBj5smPsfh9Necp4HHBD9HLkQZapZ8vXJZNIv9JBSIQT+zTe7uOs33ZTaRJrPDrFHttfp+uudJh42cE23bk7IeRbCVEye7KajBc0sScewYc7y8tBD7v9VVzkfgiAuusj53ORrLD+Thn322e5cqVaqbNUKfvSj9MeGvVdR2skoGr43/OjlP368kwnJK4nGTdgq/c33+QsuaHiGy199+HvLQVps1EhgYY4ptDNKvhBxGlAQ48Y5E55n9ixEhyaKlz6ED2KTr+sbZZggef+SJW46VtgFcMKWIwyFEPjTprmx6HSLxRQiwFC297FFCydQw+LNxU826ydf92zM+R4tW7opeuPGuf8tWoQ7rkmT9Gb0bMjUTh1zjHt2brrJ/ffX/8gjMztCh/UZiRrlc/36xpaXVAwf7squ6tI/95yLu1BKs6cgvMA/VVUPSHyGqOrpwNrAo6oIf2CFfJm/oP6hL3WB369f+PyD5hAvWOCmOQ4fXr+tEAI/n6sKFmIMP0qdvdXRPJYudVahYjU4hdbw27VzXtyl1oCm4uKLoznWeZ2VZE/95PufajpaFEaNqh/Dj+s6ZmqnWrSAM85w2vHcuQ3rH6REdenitOlUAW78hI3y6dG0afrQy8l4kQwnTYKvvy49cz6EF/iPhdxWtUTx3g6K8OQnrMAv1thUOvxhPXMt6/jx7nvEiPQhK5MptJe+f6ncYhHlniaPYXsCPx9EvbaFEPjXX5/fjnQYsn1PzjknWnpvCDCThj98eO6xHg44oF4TLkWBD07gN23qwu169X/2WRfDI4hu3TJfo9dec1aEQuEJ/PHjXSfBv9ZBqZDxERKRXUTkh0B7ETna9zkFyIMfbuUQZRqSZ8ILQ9wafqoIWPnMPxXjxrlrtOuu4QV+NgSV0994BK0pX2invajXdMmS/E3Ji8uk7z/vqafmJ88oeNc8rIYHTmBFcSAEl37rrTNr+FEWsklHs2ZuQR2IL/Jb0LO09dZu2Obuu53XPsB++4XLWyR1O7h+vZvOud9+hfV18gv8/fZLPR0zboJue09gBLAZ8APfpz9wWkFLVmZEeYGyMRUH5V8ogX/44eHThs0/00u3Zo3zJB4+3OUTtqyFdtoLaigKbdKPeh/yoeFnO9WzGAvnpCIf/gp+sulsRhX2Humm5nnka6EVb1psHAu3QLh26qyzXNhkz8Ew7HPYpEnjezV3rhO+l1/uwnsnh0DPJyIwf77zNylFcz4ErJanqk8CT4rIIFWdVKQylSWFmgfvvSD5NOnHTaaXvrbWRVMbMaLh9rjH8OO4vv5zRtXW82nSj0q+BH7UjlNdXcN55sU+PzhHyWzo1s154vspxDO3995w220Nl7PONzfd1HgZYI8wAn+ffdxYvLcgWZROv39K35gxrhzNmrlZHMl+LvlGxDnrQeqFkkqBsHrpUhF5UUTeBxCRPiKSJmCkkU88U17y0pfJxO20l6/8n3nGTT0aPLhhXnEIXL8FIIwp0qMQGn4UH4aNGzOvlBfWQzvsuZPJ1/LEUc/btGnw0EsUojx7557b8JiodO/uAuukWyEyXyZ4EReauHPn/OSXil/9yi1XnIow7ZSI0/Kj4mn4y5a5KXw/+Ymb3//ee4UX9lB/77fbLvraE8Ui7GP0D+BCYB2Aqr4HjCxUocqRdhGiEkRpFG680UVsCpp2lI3AD9OIZGO5yNYaoerG7w8+uD5SWyFN+vnU8HffPdozEIZsHTG//tqNW6bT8AcOzK1cQeRT6MZJlGcqV2e4bt3cPVu0qH5b3NEbs+XAA12QHH9obI+w7dRxx9UrOVHagIUL3SygJ590q0K+8EJhIp+mwpu+V4rT8TzCCvw2qppkcCLiBIfKZtCg8GmjPAwtWwZPNYHshEOUY8Kk9WKTp1sZLIgZM5zjkn86XpxOe1FN+mGDbOy9d7h02a5sFhRlL2pjFCa9P01c48P5JttpmdmQapncchT4nTvDv//tpukeeyy8/HLD/WEFfuvWzhKx6abhn6cmTZx237atW8fg978v7rP4+efuu1TH7yG8wF8iIjsACiAixwCLMh9iFJNCmfSjpP3JT1wjFTSGm65x9DQC/wtTKtPywjToYWdUhF0FMFuB78XRj8tLv1TW/s6VKJ3NsPc+Hd7MnXSr5pXDNf36a+ck166dWweje3cXw//tt+vTRGmnrrjCKQFhhfZxx7kQxG+9Bf37Ryp6XskUgjtuwk44+SVwJ7CLiHwGfAwcX7BSVTiF6K1HjSAVJ+ka0HHjnDUj1XzrODR8P1EsOEGE9eSOIvD9+zMtnBOFbJ/TchBOYchGw8/2mnnrb5Szhu8f0tpyS+fAts8+bg79q6+6WCVR2qmmTRv6xgRx5JGFdUYMS75ni+STsIvnfKSqBwMdgV2AwcC+BSxXRVOIl7dQJv1iNTRffQUTJzY05xfz/EEMHVr8c2Y75JIvgR+FQpj089nJyoZshpOyfV432cQJyXIW+Mlsu219XPwhQ1wETU/gX3FFfOWqZoIC72wqIheKyM0iMgRYBZwMzMFi6TdizBhnToqDbEz6cU0dSdWAPvus81BOFviZjvFTCJN+VHLV8tLll/w7KG2+BX5cJv0o2l0hKKaGD84E7jfpl7vAB7dAz3//6zr0Q4fCl1+67VFCD1caCxfWv6PFJsikfz/wFTAJF2jn90AL4EhVfaewRSs/wi5uEbdJX8SNtYV56QpR1lQa4LhxTsPZc8/U5w8rdKJol/n2ZejVyzkLbb55+HzTMXmyc1ry+Pjj8McuWeKEbqpV5aKQ7b2vNKe9vfYKTpsPgd+tG7z/fuM8obyHSfr3h6efdqZ9b/Gjcq5PrsTZ2Qm67Nur6imqegcwChgIjDBhnxtxm/QBtt8+vulTP/hBw/8bNjgnn0MPbSwsol6rMMLGi3Gdb4F/000ucFCYpUSHDasft/VTVwe//KUTMl98Ub/9wQddo5kO//1futR1OnIVvNn6TVRKYy4Cb77pns1i4EXbS3Xd43RCywff/z7885/1FoxKeUbKjaDL/t3CgKq6AfhYVVcUtkhGNhT6Bcqn01yzZk6oefNs33jDCalU5vyoXvphhFy6JVZzpVUr17CFYYstGgbAUXXRwHbdFW6/3QUvmTGjfn9NjZsFsXBh6vySTfpB5vy5c10Y0HxRidPywMUsCGMpyZdJf80aWLy4YZ4QbmpuqXP44XDPPe53Pqxg2fLee86foBoJEhN9ReTrxGcF0Mf7LSJfF6OAlUghNHxvUYx8EzaYTjb5eg3auHFOSKRaEasQJv2w6xOkKkc+8coxZ47T+EeNcjMU3nwTbrih4eIbY8e6kMMnn5x6+CZZ4AdNydt+++DV56rdSz8KXgcrlyiDyXPxK2EMP5kTT3TBhbJZoyNf9O4N22wT3/njJOOrqapNVXXTxKedqjbz/S7BtYDKg0K8vNnG8A5LIQX+M8/AvvvmNuYcZWWzfDvXZYOIi/v+xz/Wj/3ffLP7TmW+3WUX1wl44QW3VGwyUTX8MHhOcwcfHJzWfy2rUeCffrpb9jqbkLAeyXPxy2l9jCh07lw5HZhyI8LCj0Y1UqgX04t7PX++M7H99a+Zzx+28Ysi8KNQiA7P/PlwySUuzvd11wV7pZ92mvN4vvBCOOCAhh0Df52WL8+PwPfGlKNqQ9Uo8Js2ddaXXKgGDd+Ilyp8NePHXt56DX/cOPc/3XS8sALfM3MXyks/39TUONPif/7jxu7DTEETgX/8w8VtHzWqfr1waHx98jUlb7vtCjcmv8MOhcm3XGnf3n0yLZNrGLlgAj8GykngF6qs3lKW48ZBjx7OZJ2JIIHvrTIWZQy/UCGGw3Duuc6yMWxYtOM6dID774fZs+HXv06fLl9hdcOSzfU55ZS8F6Ps8c/FNw3fyDcm8APwVm2rdgph0l67Fl58EUaMSJ9/WA0/isD3rAHl2ogecICLGT56NDz+uNtWKA2/kJTr9S8k3jAKVO4YvhEfsQh8EdlCRJ4XkdmJ70aTNERkWxH5n4jMEJHpInJOHGXdeef851lODV0hNfy1a2H16vTmfP/5wwr8MGP4yXnnO20xuPxy2GMPN64/f355CnyjMf65+Kbhlx+5zNIoBnFp+BcAL6rqTsCLif/JrAfOVdVdgb2AX4rIbkUsI1CYF61QL+9zzzWM1JVPCqHhA7Rpk3nuetjzrk8s1lwuTnu50rw5PPSQ6zSdeGJ9h8ej2Cb9bCi1a1oKdO8OK1a4ULSm4ZcXdXXRImLGQVxe+kfgFuABGAPUAuf7E6jqIhJL8KrqChGZAWwDfFC0UlJejdKQIfnPs5AaPrgy52PYxAvkccQRwWlLYVpePthxR7jlFjcW/uGHDfcVW8PP5lpuv33+y1HuJHvqe5T7s1oNtG8fdwmCiUvD75QQ6J5g3ypTYhHpDvQD3ih80ZLPXewzVgfe1K1M5nwIb9Lv2NEF9LjqquBz//jHziv+F78ITptcjmLTr1/m/SedBCNHurr7KWWTvhcz4qij4i1HKeIJ/E8+MQ3fyD8F0/BF5AWgc4pdF0XMpy3wOPBrVU0b3U9ETgdOB+jUqRO1tbVRTpOWlSsHAG6h53zl6RhcgDzzz/LlzYF9UN1Abe0rect3wYIeQDc22+w1amvXpk334YddgJ589tlCams/TJvOY+bMcOd/8EEXpjZdqNp6BgMwceJE2rdflzlpAbj6amH9eqG2Nv3qSMcf34z//W8gX3xRbyp5//2XmDmzeBJj2rQOQG8gzDO9P9CEl156iRYtgso4OGSelYH3vr344hy6dFmNd01ffjnMtTKMzIjG0I0UkVnAYFVdJCJdgFpV7ZkiXXPgGeBZVb0ubP4DBw7UKVOm5KWsAwbUL3mbz0uVzVrbcbB0qRsPbtOm4bzvXJkzByZNcuPPmbjjDrdq3GmnwZ135u/8YfHuU76i1xWKadOgTx/3e9NNXfCdYvLMM/WLIgU90y1bOt+DNWvc70yUy3uSL1ShbVsXuW/wYDjySLc9zLUyqhsRmaqqAzOlicuk/xTgxaU6GXgyOYGICHAXMCOKsM831Rg1LBX5NmnvuGOwsPeft1oa/Gzp3bv+dyl3TIzMiDizfrJJ34YWjXwQlzi7ChgiIrOBIYn/iMjWIjI+kWYf4ETgQBF5J/E5rNgF/cc/3Heua4uXK3E3NAce6L5POCHecsR9HcLg+SSUusD3ViuspFX18kn37hZtzygMsXjpq+pS4KAU2xcChyV+vwrE3sx6ccSjzO828seOO5p2H5Z99oFbby39KXn33gt/+5u9U+no1s0tGW0avpFvzGAdQLWblK2hcZTTdYhDw49yfVq0gC5dCleWcqdbN1i2DL62BciNPGMCPwCvIUu1Bnk1UU4Cr1rx7lGpm/SNzHjL5PrN+vb+GfnABH4ApuHHXYLSoJyuQxwm/XK6PqWOfy6+YeQTG0ULoH17+N734OKL4y5JvFR7g14O9a9EDf+ddxqHDa50PA3fL/DL4fkzSh8T+AE0bQqvvx53KQwjPJUk8Pv2jbsExadTJ+fnUOpx2Y3yw0z6RkZMs3CUw3WIU8Mvh+tTLjRpAttt51ZB9LDra+QDE/hGKKzBKX28aW6lvkSnEUz37tU3lGEUHhP4Rkaq1VkxmXLo8AwbBqNH14fYNcoXz3HPoxyeP6P0sTF8IxTW4JQ+m2wCp54adymMfJAs8A0jH5iGbxghsA5PZuz65BfPU9/Drq+RD0zgG4ZhlBim4RuFwAS+kREbw3eYhmUUExP4RiEwgW9kxBP4JvCMTNjzkV+22cZWEzTyjwl8IxTV3qBXe/2N4tKsGXTtGncpjErDBL5hZKBdO/fdunW85TCqDzPrG/nGBL5hZODNN+GJJ0zDN4pPsqe+YeSKzcM3MlLtTns9e7qPkRnrEOUf0/CNfGMavpGRNm3c9w9/GG85jNLGBH7+2X33uEtgVBom8I2MtG4NX3wBt90Wd0mMUqZ9+7hLUHkce2zcJTAqDTPpG4FstVXcJTBKnT33jLsElUcTU8eMPGMC3zAMo0SZNAmefjruUhiVggl8wzCMEmWvvdzHMPKBGY0MwzAMowowgW8YhmEYVYAJfMMwDMOoAkzgG4ZhGEYVYALfMAzDMKoAE/iGYRiGUQWYwDcMwzCMKsAEvmEYhmFUAbEIfBHZQkSeF5HZie/NM6RtKiJvi8gzxSxjoVm6FJYsibsUhmEYRrUQl4Z/AfCiqu4EvJj4n45zgBlFKVUR2WIL6NAh7lIYhmEY1UJcAv8IYEzi9xjgyFSJRKQrMBwYXZxiGYZhGEZlEpfA76SqiwAS3+nWY7sB+D2wsUjlMgzDMIyKpGCL54jIC0DnFLsuCnn8CGCxqk4VkcEh0p8OnA7QqVMnamtrQ5fVMIx8MBjA3j3DKFFEVYt/UpFZwGBVXSQiXYBaVe2ZlOYvwInAeqAVsCnwhKqeEJT/wIEDdcqUKQUouWEY6RBx3zE0KYZR9YjIVFUdmClNXCb9p4CTE79PBp5MTqCqF6pqV1XtDowEJoQR9oZhGIZhNCYugX8VMEREZgNDEv8Rka1FZHxMZTIMwzCMiqVgY/iZUNWlwEEpti8EDkuxvRaoLXjBDMMwDKNCsUh7hmEYhlEFmMA3DMMwjCrABL5hGIZhVAEm8A3DMAyjCjCBbxiGYRhVgAl8wzAMw6gCTOAbhmEYRhVgAt8wDMMwqgAT+IZhGIZRBZjANwzDMIwqwAS+YRiGYVQBJvANwzAMowowgW8YhmEYVYAJfMMwDMOoAkzgG4ZhGEYVYALfMAzDMKoAE/iGYRiGUQWYwDcMwzCMKsAEvmEYhmFUASbwDcMwDKMKMIFvGIZhGFWACXzDMAzDqAJM4BuGYRhGFWAC3zAMwzCqABP4hmEYhlEFmMA3DMMwjCrABL5hGIZhVAEm8A3DMAyjCjCBbxiGYRhVQCwCX0S2EJHnRWR24nvzNOk2E5HHRGSmiMwQkUHFLqthGOFYtgy+/DLuUhiGkY64NPwLgBdVdSfgxcT/VPwd+K+q7gL0BWYUqXyGYURk881hyy3jLoVhGOmIS+AfAYxJ/B4DHJmcQEQ2BfYH7gJQ1bWqWlek8hmGYRhGRRGXwO+kqosAEt9bpUizPfAlcI+IvC0io0Vkk2IW0jAMwzAqhWaFylhEXgA6p9h1UcgsmgH9gbNV9Q0R+TvO9H9xmvOdDpwO0KlTJ2prayOX2TAMwzAqFVHV4p9UZBYwWFUXiUgXoFZVeyal6Qy8rqrdE//3Ay5Q1eFB+Q8cOFCnTJlSgJIbhmEYRukhIlNVdWCmNHGZ9J8CTk78Phl4MjmBqn4OzBcRryNwEPBBcYpnGIZhGJVFXAL/KmCIiMwGhiT+IyJbi8h4X7qzgQdF5D2gBvhzsQtqGIZhGJVAwcbwM6GqS3Eae/L2hcBhvv/vABlNFIZhGIZhBBPLGH6hEZEvgU8Dkm0JLClCcYpJJdYJKrNeVqfyoBLrBJVZr2qvUzdV7ZgpQUUK/DCIyJQgB4dyoxLrBJVZL6tTeVCJdYLKrJfVKRiLpW8YhmEYVYAJfMMwDMOoAqpZ4N8ZdwEKQCXWCSqzXlan8qAS6wSVWS+rUwBVO4ZvGIZhGNVENWv4hmEYhlE1mMA3DMMwjCrABL5hGIZhVAEm8A3DKAoiInGXIR+ISJu4y1BI7D6VD1HvlTntVTAisjXwtaqujLssRmYq8V6JyCBgE+AbVZ2U2NZEVTfGW7LsEZFhQD/gBlVdHXd58oHdp/Ih13sVSyz9UkNEDgFG4Fbjm6aqr4qIaBn3hkRkOPAL4KdAJQkRu1dlQKLBvQl4EegoIqtV9QRV3ViuwkREDsUt9HVOshAp12fQ7lP5kI97VfUmfRHZD3cRZwFtgDEiMlJVtVxNW4kH/i/An1X1i7jLky/sXpUHItIEOAFXpzOBE4EuIvI0QKKBKqv7JSK7ArcAt6tqrYh0EJHdRKQGoNyeQXHYfSoT8nWvTMOHrYH/qOrNACIyFXgi0RF8JN6iRUdEOgG/Bl5S1YkishkwClgFzFHViTEWL1fsXpUBicbnXRIKhaquAg4SkRdE5F5VPaUMtaxmwHhAExaZ3+IWNdlMRD5V1dPLrU6J+/QOIIn/lXCfmgDjgI2Vcp8gf+9U1Wv4wGLguxWGVLUWOBq4QkT2iqtQ2ZLQEh8AvhaRPwD/A3olPreLyIFxli9HluFWjwIq5l49TIXcKxFp6/v7AfB7EdnZt+0YoI2I9C5uybJHRNoBqOo04HagJ3Aj8Kiq/hg4BegmIoNjKmJW+ITDXOA8EdnJt7vs7pOHqk4H7gF2Bv5Omd+nJMfDWeR4r6pS4IvIABE5SER2UNX/AVuIyAPe/oQguQ/YIa4yRiVRpyEi0kNV7wdmAAcAd6nqL1X1POB+nCNL2SAi24nIDgCq+jywqYiM9faX6b3azntpVfUe4D3gYMr4XonI4cBdIvKIiBwGPAtcC7wiIj0BVLUO2AC0j62gEUjUabSI/DNRp8+A64DfqertAKq6CFiIq1fJIyKDE/UCQFX/hROQL3udszK8T8l1egsYA5xbrvcJvvPtuT3x/O2jqk8B95LDvao6k76IHAFcDswBVonI6ao6TEQmJwTJSaq6DucJ2Rd4MMbihiKpTitF5Deq+oCIvA+860u6aSwFzBIROQo4H1gmIm8Br6jqD0TklTK+V/46TQWmqOojCXPdLF/SsrlXicbnNuBHwEBgf2Ao8AdAgX+JyG3AZkANruEtaVLUaT9cnW5ICEkv3dE4i8z8OMoZBRE5GHgcWC4iW6jqvQCqeo2IbMQNj90ObE753Kd0dXpPRD7wpSub+wTfOehdC5yBUwbOFZGZqnqViGwg23ulqlXzwY0BTwR2Tfx/DBjs2/8oMBanXX0A7BZ3mbOs0/5Aq6R0o4C3gJ5xlzlkvboAr+BMc62B3wGTgB8m9v8LJ+DL6V6lqtNE4Kdlfq/6AI/4/vcHLsVpw01xgvJM4A5g97jLm0OdLk7UqWti2ynAFKBX3OUNWafzcTNBBgDvAKck7R+RuE93ltF9SlsnnG+CAD8BppbRfWoN3AUc59v2IM6y5P0fns07FXvlinwhtwNeB3okLuqHOAeP+4GTE2n2AH4A7Bh3eXOs0924aSkAg4GXyuUlTqpXt8T/LsDTiQd8r8S2vcv0XiXX6Wbg0MS2g8vwXrVINKi/8G0bAPwNODDu8uW5Ttd4dcJp/TvEXdYIdWoGbJX4fXBCQP7Ut1/83+XwCaqT776VzX1KlHl7nJm+WeL/H4DLUqSLdK+qLvCOiFwOHIl7oe/DNUrDcc5ff1DVsjD5+MlQp8OBi1V1gYh00jKb9iUifwK2Akbj6tMV16HZRFUvjrNs2ZKhTi1V9fJEmq1UdXF8pQxGRPYEmuManFfFxUcYCTyrqg8n0lwA7KKqp8RX0vBUeJ02aiJQi2/fEOCvwEXAeqAzzuF3o5awYIhYp06qel/xSxmdRL1aAGtVdXLSvh8DfVX1D4nhiZXACzj/y9D3quKd9kRkmIj8QUQuS4zxXIrTCl8GnlTVterG5LbAmcdLngh12gqnVVIOwt5Xr0sTU9TuAj7Bmb63VdWfJrb1E5FW8ZU0PBHqtIeIbAJQBsL+EOApXIflfhE5E5iJCwgyTER+lUj6WSJ9y1gKGoEqqNODInKWN+sAvnOCPRE3U+RhYLKqbihxYR+1Tm/GUtCIJNXrkUS9/LNemgJNRORYXNyOuaoavWMWt+miwGaRwcA0nKZ7Fc7cs29i3+k4p5wewGHAZFwDHHu5q61OKep1NW5sdJ/EvlbUmxtPwc2HbhF3mautTrjx0JY4T+EfJbb1w2kaZ+GsFQcCb+N8ST7FaSWxl93qRA3wPK6j2caXdiTOka2kfWAqsU4h67VJYtshwJdAbS71ir3CBb6YlwMX+v4/iRtD7YvTfP+W+P9qqb/ElVynNPV6KlGPmsT/JsAvgfeBPnGXt1rrlCj3+cCVQNvE/164GAJnJP43x02T3CruslqdGtRpd2AC8MvE/yY4R8Ry8hepuDqFrNdOOOUhp3pVukl/IdBSXEQzcJ7PX+ICaHypqufiAhccrqrvpsmj1KjEOkHjek3FBUW6U0TaqIsT/Q5wjKq+F1MZo1KJdQIXN6ADsIOINFPV93HayO9FZICqrlPVuVriQxNJVEOdpgPnAb8VkX7qTMJ/TGwvFyqxTpC5XjXAR8Deudar0gX+a7jpNH8WkceB/qr6A5xGdRCAqi5Q1WUxljEqlVgnSF2vw3EC0avXRFWdGV8RI1OJdUJV/4NzGjoH6CUibVV1KvBfyiiwiZ8qrFPJjtNnohLrBIH1EnW+FStyPU/FeemLSFNV3SDiAqyLi9LWBefANl5V14jIzcBz6iIXlTyVWCeozHpVWp1EZEdcwJz3VXVN0r5rgHbAGtyY6bk4H4VPilzMSFidrE5xEme9Kkbgi8jOqvph4ndTVU3ZKxeR03FLkf5QVecWs4xRqcQ6QWXWq0LrNAL4M7AU+Bz4k6q+LyLN1UU4REQOwAWp2Rm4RVU/SJthCWB1sjrFSez1ysUBoFQ+uAhRq4CHfNuaJqVphnO6eYKE01QpfyqxTpVarwqt0964aWn9Ev9vBe727W+SXL+4y2x1sjqV8qcU6lX2Y/iJuctn4ZYZXSuJRXDUmVX9awVsok6jOl5V3yl6QSNQiXWCyqxXJdbJx1Wq+nbi96W4RaZawnfLde6R0FigfMa5rU7lQSXWCWKuV9kLfFX9BhdL+SGcV20rX6O7HkBE+gIniUhLVV0dW2FDUol1gsqsVyXWKcEbOGsEItIUN1e4G4lFfUSkK7ALLrYAmlBJShyrk9UpTmKvV9kLfABVXaiqK1V1CW51odZeoysifYAdcQthfBtnOaNQiXWCyqxXhdZpg6p+nfgrQB2wTFW/FJETgN8A/1bVz+MqY1SsTuVBJdYJSqNeFeO050dEtsTFU94b16nZX916yGVLJdYJKrNelVgnABG5F1iEW/3uJ1pesQNSYnUqDyqxTlD8ejULTlJ+qOoSEXkPOBQYUgmNbSXWCSqzXpVWJxERXKS5/RLfB6nq7HhLlRtWp/KgEusE8dWrIgW+iGyOiyU/VFWnxV2efFCJdYLKrFel1SkxlrhWRP4IvFkJDa7VqTyoxDpBfPWqSJM+gIi00qSgBuVOJdYJKrNeFVonKSMHqVBYncqDSqwTFL9eFSvwDcMwDMOopyK89A3DMAzDyIwJfMMwDMOoAkzgG4ZhGEZMiMjdIrJYRN4PkfZ6EXkn8flQROoincvG8A3DyISIbACm4aYPrQfGADeo6sYMx3THrd/9UFEKaRhliojsj1sa9z5V7RXhuLNxcfl/GvYY0/ANwwhitarWqOruwBDclMNLA47pDhxX6IIZRrmjqi8Dy/zbRGQHEfmviEwVkVdEZJcUh44CxkY5lwl8wzBCo6qLgdOBs8TRPdEgvZX47J1IehWwX8L0+BsRaSoifxWRN0XkPRE5I75aGEbJcydwtqoOwK3Rcat/p4h0A3oAE6JkWpGBdwzDKByq+pGINAG2AhbjogmuEZGdcBrHQOAC4HeqOgJARE4HlqvqHonVwSaKyHOq+nFM1TCMkkRE2uLCcj/qAvIBbqEdPyOBx1Q10op6JvANw8gGryVqDtwsIjW45Tx3TpN+KNBHRI5J/G8P7ASYwDeMhjQB6lS1JkOakcAvo2ZsAt8wjEiIyPY44b4YN5b/BdAX11Cliy4oOBPls0UppGGUKar6tYh8LCLHquqjibj7fVT1XQAR6QlsDkyKmreN4RuGERoR6QjcDtycCAnaHliU8Ng/EWiaSLoCaOc79Fng5yLSPJHPziKySfFKbhiliYiMxQnvniKyQEROBY4HThWRd4HpwBG+Q0YBD2cTktem5RmGkZEU0/LuB65T1Y2JcfvHgVXA/3BafNuEYP8vsCVwL/B34ErgBzht/0vgSFVdXuTqGEbVYgLfMAzDMKoAM+kbhmEYRhVgAt8wDMMwqgAT+IZhGIZRBZjANwzDMIwqwAS+YRiGYVQBJvANwzAMowowgW8YhmEYVYAJfMMwDMOoAv4fZe64W1wnoJwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot for Apple returns\n", + "plt.figure(figsize=(8, 4))\n", + "plt.plot(df['date'], df['ret_apple'], color='blue', label='Apple Returns')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Return')\n", + "plt.title('Apple Returns Over Time')\n", + "plt.xticks(rotation=45)\n", + "plt.legend()\n", + "plt.grid(axis='y')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "428d77c6-c60b-41d2-8b9a-f5e76cd40551", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEoCAYAAADFWPI/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAAsTAAALEwEAmpwYAABzIklEQVR4nO2dZ5hURdaA3zOJMOQcJQcRkBwFRqKCmF3FiO4uYk7rqqurYvrUNYcVUVfMiriuCRVBEESQOBIlgwwMOQ5xQn0/bnfT09Ph3p7u6enp8z7PPNPdt27VqRvqnnvOqVNijEFRFEVRlMQlKdYCKIqiKIoSW1QZUBRFUZQER5UBRVEURUlwVBlQFEVRlARHlQFFURRFSXBUGVAURVGUBEeVAUVJEERkk4gMjrUcinNE5B8i8mas5VDKLqoMKGUOETlDRH4RkQMisldE5ohId6/tzUTkJxE55HpAXu2nDiMih0UkR0S2ishzIpIcoL1NInLUVTZHRKb6bL9cRDa76vufiNTw2lZORP4jIgdFZLuI3BmkXxkikhXeUYkOIjJaRPJd/T4oIr+JyDk29y1V/RGRaiLymus8HBGRZSJybQm1Pd7r+jkhIrle3781xjxhjPlLSciiJCaqDChlChGpAnwNvAzUABoC44DjXsWeADa5tvcCVgao7nRjTCVgEHA58NcgTY80xlRy/Q31kuc04HXgKqAucAT4t9d+DwOtgCbAmcDfReQsO30tRcx1HadqWH37WESqRbtREUmJYF1pwDSs89AbqArcDTwZTEErRnuFZDfGjHVfP1jX5yde19PZkW5fUXxRZUApa7QGMMZ8ZIzJN8YcNcZMNcYs9SqTB2QZY3KNMduNMQuDVWiM+R2YDbQPQ54rgK+MMbOMMTnAP4ELRaSya/vVwKPGmH3GmFXAG8BoOxWLyEwRedRl+TgkIlNFpJbX9qtcFok9InK/z75JInKviKx3bZ/ktli43o4ne5V9SkSmi4gEk8cYUwC8B6RjKThuy8czIvKHiOxwvQFXEJF04FuggdcbcAMRmSgij3m1Xch64LLC3CMiS4HDItLSZcW5xtXGbu++ikgPEVnoslrsEJHnAoh/FXAKcIkxZqPr2vgOuBV4RESquI7XZO+dRORFEXnJ9bmqiLwlItkua9JjbmuSy4IyR0SeF5G9WEqgbUTkYRF53/W5qavP14rIFhHZJyJjRaS7iCwVkf0i8orP/teJyCpX2e9FpImT9pWyjyoDSlljDZAvIu+IyNkiUt1PmfnA3+y+gYtIO6AfsCRIsQ9EZJfrgXy61++nAb+5vxhj1gMngNYu2Rp4b3d9Ps2OXC4uB64F6gBpwN+8ZH4N6yHXAKgJNPLa71bgfGCAa/s+4FXXtruAjq4HWD/gz8A1JkTucteD71ogF9js+vkpLAWtE9ASy1LzoDHmMHA2sM3rDXibzT6PAkZgWSLyXL+dAbTBsuI8KCKnun5/EXjRGFMFaAFMClDnEOBbl1zefAaUx7IWfAQMd1mf3P39E/Chq+w7LnlaAp2BoYC3ab8nsAHrXD1us6/B6ImldF0KvADcDwzGun7+JCIDXHKeD/wDuBCojaXYfhSB9pUyhCoDSpnCGHMQ68FgsN6yd4nIlyJSF0BE+gJ3Yg3Ub4rIMNfvrVxvld5vv4tFZB/wFfAm8HaAZq8AmmKZmGcA33uZySsBB3zKHwAqu7bhs929zS5vG2PWGGOOYj3oOrl+vxj42mWROI5lkSjw2u964H5jTJZr+8PAxSKSYow5AlwJPAe8D9xijAnm2+8lIvuBY8AzwJXGmJ2uY/lX4A5jzF5jzCEsE/hlDvrnj5eMMVtcfXYzzmUF+g1LoXIrZLlASxGpZYzJMcbMC1BnLSDb90djTB6wG6hljNkMLMZSogAGAkeMMfNc19fZwO3GmMPGmJ3A8xTu6zZjzMvGmDwf2cPlUWPMMWPMVOAw8JExZqcxZivWA7+zq9z1wP8ZY1a5+vME0EmtA4o3qgwoZQ7XoDfaGNMIy7TfAOvNCeBm4D1jzE/ABcB7LoWgDzDd5+23izGmujGmhTHmAZcZ3F97c1wPoiPGmP8D9mNZEgBygCo+u1QBDrm24bPdvc0u270+H+GkgtEA2OIl42Fgj1fZJsDnLpPyfmAVkI8V14AxZj7WW6wQ+G3azTxjTDWgOvAlJ/teG6gILPJq5zvX78Vhi5/fAh2HP2NZJn4XkQUSOLhxN1Df90exfPu1XNvBsgKMcn2+nJNWgSZAKpDt1dfXsawAweQuDju8Ph/18919DJoAL3rJtRfrvDaMsDxKHKPKgFKmcfn7J3LS35+Cy7RsjFmA9eb2Cdab8WNFawivWazBFmAFJ99SEZHmQDlgjTFmH9bbqLdb4XTXPsUlG2js1W5FLFeBmy3A2caYal5/5V1vlYjITS45twF/t9OgKybiRuAqEemM9QA9Cpzm1UZVV5AcWMfJl8NYCoSbev6asiOPS6a1xphRWA/lp4DJrngFX6YBZ/vZdhFW8KnbovApkCEijbCUSbcysMVVrpZXX6sYY7xdPrFaInYLcL3Pua5gjPklRvIopRBVBpQyhYi0FZG7XIM1ItIY603OezC/VUT6i0gS1kNzE9YbcWoY7Z0iIn1FJE1EyovI3VhvknNcRT4ARopIP9eD5hHgvy6TOcC7wAMiUl1E2mKZ1Sc673kRJgPniDXNMs3Vrvf9Ph543G0qFpHaInKe63NrLMXoSqyYg7+LSCc7jRpj9mC5VB50WVLeAJ4XkTquuhu6XTNYb7I1RaSqVxWZWH75GiJSD7jdcc+9EJErRaS2S5b9rp/z/RR9D8gCPnUF6KW65HwJeNgYc8DVv13ATCyX0UZX0CfGmGxgKvCsK9gwSURauP32MWY8cJ9YM1vcgY6XxFgmpZShyoBS1jiEFVj1q4gcxlIClmMFxWGMmQTcC0zAejh8hOXbvRv4WkROcdheZaxAvX3AVuAsrDfuPa72VgBjsZSCna7yN3rt/xCwHivg7ifgX64o9mLhavcmrDfXbJd83n7/F7FM+lNF5BDWcerpMou/DzxljPnNGLMWK/jsPREpZ7P5F7Ae6B2Be4B1wDwROYj1Bt7GJePvWMd/g8uE3QDrofwbloI2FctqUxzOAlaISI6rz5cZY475FnLFTQzGeov+FTiIFTNxvzHmXz7FP3SV/dDn96uxgjhXYh3vyfhxPZQ0xpjPsawiH7vOwXKs+AZF8SAhAoQVRVEURSnjqGVAURRFURIcVQYURVEUJcFRZUBRFEVREhxVBhRFURQlwVFlQFEURVESnIit+hUP1KpVyzRt2jTWYiiKoihKibBo0aLdxpiQWT8TShlo2rQpCxcGXaBOURRFUcoMIrI5dCl1EyiKoihKwqPKgKIoiqIkOKoMKIqiKEqCo8qAoiiKoiQ4qgwoiqIoSoKjyoCiKIqiJDiqDCiKoihKgqPKgBIWby5+k+u/uj7WYiiKoigRIKGSDimR48vVX7Jk+5JYi6EoiqJEALUMKGGRdTALY0ysxVAURVEigCoDSlhkHcyKtQiKoihKhFBlQHHMsbxj7DqyC4NaBhRFUcoCqgyUAMYYrv78apbtWBZrUSLCtkPbANRNoCiKUkZQZaAEWLhtIe8tfY+O4zvGWpSI4HYRqGVAURSlbKDKQAlwIv9ErEWIKB5lQC0DiqIoZQJVBhTHqGVAURKbE/knGPzuYBZsXRBrUZQIocpAHFP1yar0/U/fEm93y4EtgFoGFCVRWbFzBdM3TmfM12NiLYoSIVQZiGMOHj/IL1t+KfF2sw6pZUBR4oXdR3aTV5AXazGUUo4qA4pjNGZAUeKDY3nHqP2v2tz4zY1RqV/HgLKDKgOKY+IxZuDpOU/z6YpPYy2GopQoR3OPAjBpxaSI1isiEa1PiT0xVQZE5CwRWS0i60TkXj/b24rIXBE5LiJ/c7JvaaIs3Tgn8k+wI2cHEF9vBW8sfoPxi8bHWgxFKVHK0tijRJeYKQMikgy8CpwNtANGiUg7n2J7gVuBZ8LYV4kC2YeyMRgqpFSIK8sAwKpdq2ItgqLEhHi7V5WSJ5aWgR7AOmPMBmPMCeBj4DzvAsaYncaYBUCu032V6OB2ETSu2jiuLAPGGLJzsjlw7ECsRVEURSl1xFIZaAhs8fqe5fot2vsqxcCjDFRpHJdvG6v3rI61CIpSZojHMUDxT0oM2/bnzLJ7ZdneV0TGAGMA6taty8yZM202ETmWH1ju+RyN9kuyTz9t+QmA1COp5OXlxeR4hsPRo1Yg1eezP+dIvSMxlkZRSoacvBwA8vPyI3qvrstZZ9WfkxM3Y4ASnFgqA1lAY6/vjYBtkd7XGDMBmADQrVs3k5GR4VjQ4pK2JQ0yrc8Rbf+nKNQZgi+++4JKWZVo27QtP+/7uUTbLg7ll5aHY0Ctkj1eihJLDhw7AHMgKTkpotd9te3VYBFUqlRJ76cyQizdBAuAViLSTETSgMuAL0tg3xJH/Boy4pOsQ1k0qtIobqOUf9/ze6xFUJQSw32fRtqcX5bGNMUiZpYBY0yeiNwMfA8kA/8xxqwQkbGu7eNFpB6wEKgCFIjI7UA7Y8xBf/vGpCMJRtZBlzKAxFUAoZvfd6syoCQOTh/aO3J2UCG1AlXKVYmSREppJZZuAowxU4ApPr+N9/q8HcsFYGtfJfpkHcxicPPBiEhcBQ+5FZd1e9eRm59LanJqjCVSlJLDruJe79l61KxQk91/3x1liZTShmYgLAHi6aEZjLyCPLIPZdOocuwtA7sO72LQu4PYeXin7X1SklLIK8hjw74NUZRMUUoP4Yw9e47uiYIkSigWblvIpv2bYta+KgOKbXbk7CDf5HtiBmKp5Px7wb/5ceOPvDL/Fdv7tKzREoBVuzX5kKJEgnh0FZZWLvn0Eh796dGYta/KQAkQy2AbYwwDJg5w9NAMhDvHQGmIGfAERtmUwWBoU7MNoHEDSuIQrXs0XgOISysFpoCtB7dyPP94zGRQZaCMs3bvWmZtnsWKncWPryykDMTYMhCOglWlXBUaVG6gykCEePnXl7l5ys0Rq2/Dvg3IOCFze2bE6gQrDfXeo3sjWme8Eel7VS0CkWXv0b3kFuRSYApiJoMqA2WcqeunApEZDEqTZcCNk36JCG1rtVVlIEL8tPkn3l/6fsSugy9+/wKAiZkTI1Kfm3b/bken8Z0iWme84L4/juRqoq3SzPac7UBs48tUGSjjeJSBCAzYWQezKJ9SnhoVasTeMuDQTOnu/6m1TmXV7lWlQpGJdwyGA8cPROyt231OT+SfiEh93mw5uCV0IcU26iaILNmHsoHYWlxUGSjDnMg/wYxNM4AIWQa8Eg5FyzJwJPcIB48ftF3eqQxta7Xl4PGDHk1cCR/3sV+/b31E6nO7fl5b+FpUFIJEJNoPl7IyUyrWuMcjdRMoUWFe1jxyTli5ySNlGWhUxUr7EC3LQNMXmlL1yaohy7kfHHZkmLZhGpsPbEaw3ASQWEGEn6/6nD5v9Yn4g8F97NfvjYwy4M2xvGMRr1NRSivqJkgQnJjUvvj9C5bvXB66oA2mrp9KsiRTpVyViMUMeJSBKFkGdh3ZZauck2M65L0hns+JqAxcNOki5mbNtfXWkbk9k2d+ecZWvd6JnILx2oLXkHHC0dyjQcs5NT3Xf7Y+//zxn472STSi/XCJh7TEO3J28P2672MtRlCyc9RNoPhw/ifn0+G1DhGpa+r6qfRq1IvKaZVtXWQFpoBHf3qU/cf2+9229eBWGlWOrmXAKU5vnoaVG1IprVJCKQPu8xTqYftO5jt0fr0zd/9wt6N6Q7kJnvj5CQB2H4lsVrvtOdt5bPZjEa1TcUZpGANCMWDiAM764KxYixEUtQwoUWPPkT0s3LaQoS2GkiRJFBD6rXDK2ik8OPNBbvn2liLbdh3eRW5Brscy4OaH9T9ETGYnhPNGIiKeGQWJmHgolOL01pK3bJf1LhNKGbCrsMXDW2a8EbU8A3F0rlbvWQ2EPhZr96z1BFyXNG7LgMYMKBFn+sbpGAxDWwxFRJiYOZH3fnsv6D55BXkAHDp+qMg272mFcHIwGPr+UD5f9XkkRXdEOJq0Ti/0j7flwM6gFM2YAaXk2ZGzI9YiRJVQY0XrV1oz7P1hJSRNYTyWAXUTKJFm6vqpVCtfjW4Nunke3Ff/7+qg+7jL+XsQuKdmeQcQurnhmxvYc6Rk85k7zUAIJ/vXtmZbthzc4gmuTBScKE5uxTBofa5jn52TzeETh8OWy433NaVTPyODk3Ne1nMRlOZryq0MfLH6C3Lzc2MigyoDZRBjDFPXT2VQs0GkJKXYDsxKEuty+GrNV0W2BbIMgBX058+14JSZm2baLutu/+lfnnbczqm1TwVgzZ41jvctTby/9H1eX/h6xOrzPqe2lAGvB00kFn+KJ9NzWScSGUtLG6U1vuFo7tFCcVpfrP4iJnKoMlAGWb1nNVsObmFoi6GA/UHWrQz4I+tgFqlJqdROr23V6aVg3NX7Lj5a/lGx3QUvz3+5WPvbxT2jYNWu+I4buOrzqxj7zVjb5UO9GXmf09yC0G8nxhiSJRmIXK4BJXZ4x9F8tPwjW/uU5rdtX0qrrDsOF3bP5Bfkx0QOVQbKIO4gmCHNrSl1Ti0D/sg6mEXDKg09ZbwVjPvOuI9O9ToVy12w+8huvlpd1CIRiHAyoLllblG9BcmSrHEDPnif08dmhY7S/3bdt+Qba+CyEzcQ6pxpVrvI4+QBOOLDEZ7PHy77sNQ+PJ3iJCdJLCgtCdBUGSgGc/6YY2vQLGnz59T1U2lVoxXNqjdz1H4oZcB7JoH3wJ2anMrE8yay5+iesN0FHy770NbbaCQol1KO5tWb8/seVQYC8fL8l227UaqVrxYRy0C075OSjmuJZzbu38i8rHmxFiOilFblxp2K2E2slBZVBorBGW+fwT9nlK6kJ8fzjjNj0wyPiwAiZxkopAx4DdyCcHq90/ln/3+G7S6YmDnR0cOguA+ORJxREGoNAe/zn56aztWfX20rdqBF9RYRdxNEY0B8b2nw2TRlkXCPY/mU8nyw7IOA2+PJiuMJNo4Ty0CslBZVBsoYc7PmciT3SCFl4HievTWyAykDxhiyDmbRuEpjz2/+BoNw3QW/bf+NJduXMKj5INv7hIO3zKfWOpU1e9bEzD8XC9797d2g272Pz2sjXuPXrb/y5M9Phqy3ZY2WQbMQ2h2E4+kBE4+s3LXSdtmRrUcyacWkmEW2R4rjecc9s6NKrWUgJzvoi1hJEVMJROQsEVktIutE5F4/20VEXnJtXyoiXby2bRKRZSKSKSILS1by0svU9VNJSUoho2mG5ze7K7YFuiD3HN3D8fzjAS0DbsJ1F0zMnEhachqj2o+yvU9xHxxta7XlRP4JNu7fWKx64gknb0aXtr+UUe1HMe6ncSzatiho2RbVW7B5/+ZiPzi8r6nSOnDHG97HcdqGabb3u7zD5ew6sovpG6cXq/3c/Fx+zfrVVtn1e9dHZFaKN3//4e+ez6XZMlC7Ym3P94RzE4hIMvAqcDbQDhglIu18ip0NtHL9jQFe89l+pjGmkzGmW7TljRemrp9K70a9qVKuiuN9Az1gfacV+pb1/uzUXXAi/wTvL3ufc9ucS62KtezLatNNEOihkihrFDhJAex7TF8Z/gp10utw1edXBV1XoEWNFuSbfP448Iff7dsObbMtg5toDIiJrmA4yW53dsuzqVa+WlBXgR2e+eUZer/VO6SLqsAUMOz9YbR4qUVEYzvW7D0Z9xLL7H7B2J6znfqV63u+J6KboAewzhizwRhzAvgYOM+nzHnAu8ZiHlBNROr7VhRrSstFtuvwLhZnLy7kInBCoAesX2UgyMPY110g4wQZJ37fHKesncLuI7sZffrosGQOhfe58ZY5UZQB7wVanEwtBKhRoQZvn/c2q3av4v4f7y+0zdv11KJ6C6D40ws16ZB9ftz4I5NWTApZzlupcnJMy6WU4+JTL+bzVZ8HTUYUSmn7eMXHGEzIhEbTNkzzXD/XfnGtbTlDEWtr0+4ju5mxcUbQMtk52dSrVM/zPeEsA0BDwNt+neX6zW4ZA0wVkUUiMiZqUtqgtPidvVMQh4P3Rej94A5lGfAlkLvA3xvi25lvU69SPYa1HOYsgNCmm8A99c2X6hWqUze9bplXBpyYef0d/6EthnJjtxt5ft7zhQa16768zvO5RQ2XMlDMtMSFBu5SatItLQx6dxCXTr7U0T5Oj+nlHS7ncO5hv1N+7dyrv+/+naU7lgKhk1i9tvCk0XfP0chZBgopQzG4pm6achPDPxwetMz2nO2FlYEYKcIpMWnVwt/V5HsUgpXpa4zZJiJ1gB9E5HdjzKwijViKwhiAunXrMnPmzGKI7J8fZ/5IueRyAbevPHgycMdu+07kdJd9Z/U7VE6pzKE1h5i51v/+werN3J/p+fzgpw8yrJ6Vp3vOxjkkkcSqhatYI5bZbcOWk7692bNm++3/lY2vZOLyiZ7vc+fNZWP5kz76vSf28vXqr7mk0SX8POtnlu5eaktOgHVbTgasBSv75sY3PZ+zs7MLla2XUo956+dF5ZooSQLJb4xhyqopnu8bNmxgZp7/sgD79u7zW+c55c/hywpfMuqTUbzZ7U0qpVTiw2UferavWbSGtKQ0ZiydwamHTw1Y/9y5c6ldrnbA7auzV3s+z5kzh6qpVQOW9cbu+Vu7bi0zjwcvO379eD7J+oQZA4K/zZUWQvV9z/GTD9Z169aF7L93vQWmgFpptXhp5kvU3V230PaNh637+PDhwwFleHfzyYDVOXPnsKnCJr/ldh3fxZe/f+n5fuDAgYjdk3v3nHRPzJo9i0oplULuE6m2dxzbweQVk4PWWWAKyD6UzYk9Jzy/rfp9FTP3RUYGJ8RSGcgCGnt9bwT4vjoGLGOMcf/fKSKfY7kdiigDxpgJwASAbt26mYyMjIgI/9v23+An63Pffn2plBb4IquQVQGWWJ9Dtv+TzXI+ZY0xXLn4Ss5qfRaDzhzkt1yoemWTwG/W55atW5LRxSo7cf9EGu5vWKjehb8sBJc+0L9/fyqkVihSX9/8vmS+mUnm9kwAevXqRdNqTT3bn5v7HAUU8OC5D9KudjsOrj4IK0LLCbBk7hJP+4HKvrn4TT7446TP81iFY4XK9srpxaQVkxgwYEB8RrKHuFbW7V3Hjlkns5s1a96MjDP8lwWoubUm7PNf56dtPqXvf/oyOWcyE8+fWOiaGnjmQFquasmJ9BP+ZXGV7dO7Dw2r+Br/vORdvA5cLt4+ffp4sl0GxO694iqXVjstZNkzfzrTXp2xxmbfsw9lgytdQLPmzcjoG6S8n3HimtxrePHXF+nQowM1K9b0bK+1sxYshPT09IAy3PLaSatg9x7daV2ztd9yD898uNCqqlWrVg3aL2MMTV5owsMZD3Nd5+sCloPC1/QZZ5xBtfLVAhd2Mvba4O6pd1NAAYIErHP3kd3kz8qn52k9+XCLpWC3bduWjNMjI4MTYukmWAC0EpFmIpIGXAZ86VPmS+Bq16yCXsABY0y2iKSLSGUAEUkHhgLLS1L4Vxe86vkcKmbgcG7xF3EJxardq9h6aGvYLoJg+OYYAHtmQre7wI23+csYw9uZb9OjYQ/a1W5XZHsoQj28p66fytivx3JWy5PrmPu6KdrWasu+Y/scBdnFE9M3OIsED3ZMezXqxT/O+Afv/PaO38DQSOQacOIm6PNWH8f1v/jri0EDIb0JdS0aY1iwdYFjGUqa4prJL+9wOXkFeXy26rNCv4e6/1fuWsnyncvp27gvENiVmleQxxuL32BYi2FBrau+bDm4hT9/+Wfb5aFkze85J3J4Y/EbIcu5cwzUr5TAAYTGmDzgZuB7YBUwyRizQkTGiog74foUrPe/dcAbwI2u3+sCP4vIb8B84BtjzHcl2gEvQp28Qe/amz9vNx+AP3xTEAfCbrCj98DhVxkIMJvAl9Prne7398XZi1m+cznXdjoZLBQpn97SHUu5eNLFtK/TnkkXnwyy8q3/1FqWSTvacQPzt86n0hOV2HV4V8iyn638DBknRbKShcOPmwq7r4o7yPxzwD/pUr8LY74uGqLTonoLNuzbUKw2nAQQzs2aG1Ybt313m61yoe6TF399kR5v9nCscMWScAKdO9frTNtabQPOKgh0nj5d8SmCcOlpVlxDoJiBr9d8zbZD27ih2w2e30IpGuGOEyUZMzAxcyIHjh9gaIuhQdt13+feMQOxIqZ5BowxU4wxrY0xLYwxj7t+G2+MGe/6bIwxN7m2dzDGLHT9vsEYc7rr7zT3vvHOE7OfCHvfqeun0qZmG5pUaxK0XLDpft4XrXeijnAtA8GYmDmRcsnlPIOFuy27BGp/68GtjPhwBFXKVeHry7+mcrnKAev3LFjktUDLb9t/Y8xXY2wNnAePH7SVoe/pOU9zOPdwyFUZjTFc/OnFACzbuSxkvcEoMAX8uPFHzjjlDNv7hDqnaclpvHfBexw6fqjIthY1WnAk90ixsql5K8PRGrjfWPwG7y99P2S5UOfVHRgXakGfo7lHeXvJ27aup7yCPKo/VZ2/fvnXkGXt4n38w1EGRITL21/OrM2z2HJgS6Hfg7X5yYpP6N+kv2fcCBTI+9rC12hUpREjWo/w1Bkq14CvhdEudsu+k/mO7Tr9UWAKePHXF+nVqBe9GvYKWtZ9vyT6bIIyQyRO3urdq3lyTuhsb/44nnecmZtm2nIRPDTzIUezHw4cP8Dh3MNFlIHicDzvOB8u/5ALTr2A6hWqe34v7nE8dPwQ53x0DvuP7eeby78JKXPjqo2pkFKhkGWg0+udeGPxG3y64tOQ7VV9sipXf351yHLufoVybfx7wb9D1mWXZTuWsfvIbgY3H1xEjkDYiZtoV7sd/zfo/4r83rJGS4AimQi92wxW/7G8Y9w45caA2yNBk6pN6HdKP67/+vqQK1aGUgYOnbAUoreWvBW03LNzn+W6L6+zYoxC8PrC19l/bD9vLnkzZNlwCHcK9KgOVjIwb8Vn1uYi4VkeVuxawardq7j0tEtJTrJWtfSXoXL93vVMXT+Vv3b5q7XUuksZzc6xbxWb/cfsoNsLWZtsji+jvxhtu31/fL3ma9btXccdve4IeU+5+5roeQbKDMU9ecYYxn4zNuwMbnO2zOFo3lFbysCKXSsCzk/2NyfX37RC8BnkbVoJ3G/GX635ir1H9xbJLVCcmIG8gjwunXwpy3Ys49NLPvXrnvAdDJIkiTa12vh1E4SaF+3G7lKvEPo4zdt6cmGY4l5T7imFg5rZT/Fs9zze1quoqT1QrgE7/SgwBVz1+VWO93NKWnIaH130Eemp6Vzy6SUcPhE4lifQm6ybySsnh2zvaO5RXvr1JQC6TOhSaM16f0RjGWh/1j6ntKzRkp4NexaaQXLDNzcELD9pxSSSJIkLT73Qs8T1JZ9eUqTchEUTSJZk/tzZ8v3bDeL17pMT12pJPWSfn/c8p1Q9hQtPvTBk29tztpOeml4oAF0tAwnMe0vfY+ammdza89aw9p+6fiqpSamFUhD744K2F9C+Tnse/unhkG8+7oEjkDIQzsDiTlzzdubbNKzcsNBbKzi7CXwVl1um3MK3677l3yP+XShosFD9fm7IQAsWxeKGTEk6ObmnuImspm+cTpuabQqdN6dJhwLhL211k2pNSJKkIrkG7BzHu76/q8jDNRrHX0RoWKUhH1z4ASt3reTmb28OWDYSOfnfznybXUdOxomESgcc7YdVceq/vMPl/LbjN1bsXBGyjUkrJpHRNIO6lep6LAO+HM87zn8y/8O5bc71zDCxq4CHS0nc05nbM5m5aSa39LilkLUjEL45BgC+Wxeb8DdVBsKkkN+qGBfZniN7uGvqXfRp3Ie/dgnPVzh1/VT6NO4TdHojWIPhuIxxrNmzppCW78ZfPyKpDBgM2Yey+W7dd1x9+tVFBopwB6tnfnmG8YvGc2/fexnT1Vn+qVNrncqm/ZuKRJlHcmC2W5f7LQqKd03l5ucya/MsBjUb5GjKZDhxIG4FJi05jVOqnuLYMvDc3Od44dcXuL3n7dRJr2N7v3Bw929IiyE80P8BJmZOZGLmxEJl3ItxFTdmI68gj2fnPhvRAM7iUhwF89LTLiVJkoqMG77X6bKdy1i9ZzV/avcnoLCC681nqz5j95HdhQIH7RLucYzk8Z+/db5fy9Lz854nPTWdv3T5S+G2A9zP2TnZhVwEAJ+uDO2ijAaqDIRJuGk+fbln2j3sO7qP8SPGk1sQ3tvIku1LbE8pvKDtBXSu15lxP40L+vbj7l/WwSwEKTT1BQr32bZ5zxjeW/oeBaaA0Z1GB2zTDt5t/n3a37n0tEt5fFDwOFJ/9bet1RaDYc2eNX72CFKXzXO+5cAWPv/dCtosqVwG87fOJ+dEDoOaD3I0Xa+48vmbXhiszU+Wf8JdU+/i4nYX8+ywZ6OegdDbovHQgIc4s+mZ3PjNjSzfeXJW8oCmA4DCaZzD4bOVn7Fh3wZHs2WivR5DcZSBupXqMrj5YD5c/mHQa9/bRQCFFVxvxi8cT4vqLcJaqTTWswn2HNlDzzd7cvX/CscLZR/K5qNlH3Fd5+s8+Qzc99RnKz/zrQbwbxmIFaoMRIBwL7LZm2fz1pK3uLP3nXSo24G05DTPNqeLddhRBowxHuvAhn0biixpGyhmoF6leqQmpxYqG87AUmAKmJg5kT6N+/hNQBKuUtW3cV8mnj8x5DKggdwEUHR6YahzeuD4gZByfbz8YzqO7+j5HurN2/uYFkfBnL5xupXopGlGoQe8neWIi4O/pYwD9eOnTT9x9f+u5oxTzuC9C94jSZKirix515+clMyHF31IlXJVuOTTS8g5kQNApVTLujZ1w9Sw2zHG8NScp2hTsw3ntT2v0O+h9osmxXU9Xd7+cjbt38S8rJOxLb5jxicrPmFgs4GehFH+3ATLdy5n9h+zub7r9VFfujcaaxO4g0d9V/P894J/k1eQx209i8bU/Gnyn/zWtT1ne5EXrVihykCMOJF/grHfjKVJ1SY8NOAhAE/yHcBRZHXNCjXpXK9zyHLuB9w5rc+hR8MePDrrUU7kn/Bb1jtmwF9UfjgK0K4ju1i1e1XARYnCjRn432X/o3xK+ZD7+Ku/VY1WCOI418D90+8PuO3AsQNc+d8rGfXZKE6pespJmUM87OwmiNl/bD/X/O+agNunb5xOl/pdqFGhRqHjFCr5VXGni7ao3oK9R/cWCpTz148VO1dw/ifn06J6C7647AvPuYvGwF3IguXTv3qV6vHRRR+xZs8axn49FmOM57pfnL3YVl4If0zbMI0l25dwd5+7I+b6CRfvNgPd63a54NQLKJ9SvlDOAe/6M7dnsm7vukLThf1ZBl5f+DppyWlc2zm8BYnCdhNE6Pi74602H9jMsbxjgBUsOn7ReM5tc65nrQ4Ifk8dzT3K/mP71TJQlgjn4nz2l2dZuWslrwx/hfS09CLbg0U6+zK4+eCAgTreuOUUER7JeITNBzbz1mL/U6O83QR+lYEgg2wwKqRU4E+n+deSw73J7S597K/+CqkVaFa9Gb/v+T1kWW+O5vnPZDdr8yw6ju/Ix8s/ZlzGOH646gdbsoE9y8CS7CV0ndC1iFXHzeETh5m7Za5nFoGjmIEw3sy95fS3YJFvP7Ye3MrZH5xN+ZTyfHvFt9SoUMNv+5EauL3r8fcWemazM3l4wMN8sOwD3lz8ZqHyP2ywf+68efqXp6lfqT5XdryyVKW5XrCteBkTq5SrwsjWI/l4+cd+t09aMYlkSeaCthd4fvONGcg5kcO7S9/lknaXOFqy3Jtw3YmRUjC9p2bf9M1NALy/9H12H9nN7b1uL1Q2mDVmx2ErVbgqA2UIpwPXhn0beGTWI1x46oWc0/qcYrcfTgrioS2G0qdxHx6f/bhHu/UXBxFIGQjX5HjhqRdStXxVv9ucHMctB7eELmSz/ra12oacd+7L25lvF/p+Iv8E9027j4yJGaQmpfLzdT/z4IAHC7l+QlG9fPWA24wxvLHoDXq/1TvodKqf//iZ3IJcjy/W0UqQYVgGvAdbf9MLvY/5oeOHGP7hcPYd28eUy6cUSZAV7eVmAz2Y/9HvHwxpPoRbvr2FxdmLqVepHjUq1PBk9XTCom2LmLZhGrf3up1yKeVivoSud5s/bf4pSEl7XN7hcr+rChpjmLRyEoObDy60hoHvS8rHyz/m4PGDIQMH/a1wGg6RCvT2xnva6dKdSzHG8MKvL9CpXicGNBlQqOzK3St9d/fgzj6oboIExRjDTVNuIiUphRfPejHsetwPcIB+p/Sz17ZPAphHz3yUrYe2MmHRhCJlC0wBh44f4sDxAxFzEwCFAqqK1OlgsHxqzlNhte+PtjXbsnrP6sJv5g769/vu3+n9Vm+enPMkf+78ZzLHZtKrkZV5zPthEOph6x1H4d3+4ROHueZ/1zDm6zH0b9KfJdcvCVjH9I3TSU1K9eSEj7ZlwJvm1ZsDgS0DF066kJW7VvLZnz6jc/2ibq2oWAZsXFPJScm8f+H71KxYk0XZi0iSJIY0H8LU9VMdP8Cf/uVpqpSrwvVdrwcKWyOiEUDoHfxoB6exSL6c3fJsv4v9LM5ezIZ9G4pY/XytMeMXjqd9nfb0aRx8bYmv13wdcFusZhMYY9i0fxM/rD9pMVq4bSFT109l5a6VtpIMeeMv+2AsUWUgTMJNifnpyk/5bt13PHbmY0Ez5IUaGLynwvlzM/it00fOgc0GktE0g//7+f+KzPE1mIDTCqGwZcDJDXBmszNtl400gc5T21ptOZZ3jD8O/BFWvV1e78Lm/Zv5/NLPeePcNwpN8bS7hgNQaMEkt6y/7/6dnm/25P2l7/PwgIf59opvg67mN33jdHo37u25JqJtGfCmcrnK1E2vWyiI0Ps6XrlrJW+OfDOgJau47fvD7gO2Tnodj2tl26FtDG0xlOycbEcP2/V71zN55WTGdh3rsX55n/NQuQvCeVjd+f2dwev06X9xrQPlUspx8akXF/l90opJpCSlcH7b8wv97n1OF2xdwKLsRYztOjbkvfDVmq8CbvPuk+8CSr6Eq2AaY9i8fzOfrfyMf0z/B8PeH0btf9Wm2YvNuP372wuVfX7e89SrVI/L2l9WtP0g17RnkaLKahmIa8JdDez2726nc73O3NTjpuD1O0gQY3cQ9WfafyTjEbbnbOe1Ba8VUXCCKQPhEix62Ps4OkmZbJdA5+nU2sVbsKh/k/4su2FZkYEQgvcXrHPy5eov6fd2Px6a+VAhWT9e/jHd3+jOjsM7+O7K73go46GgsSF7j+5lSfaSQlkHS9IyAFbcQCE3gdc1NbL1SK7pFDjwMRr+XSd4B1i6FRYnroJn5z5LSlJKIb+xdz+CZTX8adNPvLLgFQfSWji1DPy48UfHbfhyRccrPJ+NMR4XwdAWQwvFgEDh63/8wvGkp6Zz1emFs036Y9qGabaSEL2+6HXbcju5pmr/qzZNX2zKxZ9ezNNznmZHzg7Oa3Merw5/lV+u+6VQ2e/Xf89N3W/y6xIMdk9l52STJEnUrhhiqe4SQpWBEmZ7znZeP+f1gMk4wqE403P6NenHkOZDeHLOk54pM2A9pIIpA9EYrL3r9JcUqbgEevP3N73wnmn3MG7mOBZnLw7Z1ylXTAmo3QdyExzPO85bi9/itH+fxnkfn8eWA1sKuY0e+PEBRn02io51O7Lkent5JGZsnIHBFFYGfBTF4pqJQ+Gba8BbAQ2lVHrL6s8vHQ5OrlPve7JRlUa0q93O9hTDnYd38nbm21zd8epC18LavWs9n/3FhMzaPIuB7wwk450M23J6k52Tzd6jewNu9+5/rYq1PGmqi0P/Jv0LfV+wbQGb9m/yJBryxvth+NHyj7i8w+VUKVclZBvH8o4FzNhYErMJ3A/+eX+ex6H7DpE5NpO3znuLG7vf6HEBuimfUp6x3cb6rcf7mvadnbI9Zzu1K9a2FfxdEqgyEAGcXJw3db+J7g27hyznfhAHotBDJoyc3t48euaj7D6ym1fmF34zccvQoHKDIvsUchNEyLzrLd/8rfMjUqcdalWsRc0KNQsFEVYrX41xP42j64SuNH6+MTd8fQNT1k4pFKvhJpgy5n1uCkwB+4/t58mfn6Tpi035y1d/oXxKeT688EPW3bquUDrqFbtWcGevO5l5zUzblpnpG6dTKa0SPRr28Ns+QLc3urEk23/MQTjn0ffab1G9BVsPbvUblBoKb1mfm/ucY1n8yufV/oVtLwxSElKTCufSGNp8KLM2zyqSndIfL/36EsfzjvO3Pn8r9Lv326J3CvCf//iZQe8OYsDEAazctZLnhz0fso1AhEoR7GZgs4H8vvv3Ygfn+V7vk1ZMIjUptVBOBTfe19TRvKO2Mw5WKVeFr1YHdhWEg5Nx2v3g79moJxVSKxTa5ntPXdXxKlszI3yndvrLPhhLVBkIk3DdBI8NfMxWuRW7gt/g3nO57VoGAt0MPRv1ZESrEYWmUrljBmpXrO13Dn+0s6Ut2R44SC4atK3VlswdmZ7vc/88l+1/287b571Nz0Y9eW/pe4z4cAQ1n67JBZ9cELgiH7wHw/M/OZ/Gzzfmvun30aFOB3646gcWj1nMqA6jiliKXj/ndZ4d9myRZE/BmL5xOv2b9C+0j+8DPq8gjz7/6eN3mdZIuQkMho37NgLOBmBvWT9e/rHjGR6h8OfG8cb3DW1Yy2EcyzsWcmW8Q8cP8eqCVzm/7fm0qdWm0DZvZSDf5PPLll8Y8t4Q+r3dj+U7l/Ps0GfZcNuGIlPSnBDMVeB9nw5sOhCwLEiRwmCtRTCs5TC/gYXe11SPhj38Bo7646yWZ/HVmq/8ujbDXsMkSnkegp27YPdUoOyD0U7EFAhVBsLErjbuzRsj3wg4rc4pt3x7i+ez3Te6YDfDuIxxhb4XmAKyDvmfVghRchN4yffbjt+KnTHNCW1rtS1kjRCEOul1GN1pNJ/96TN2/303317xLaNPH10k81gwfG/sc9ucy+Ixi5l61VQGNx8ccLDwXvHMDlkHs1izZ02RVQq966+bXpfFYxbTp3EfRn8xmhu+vqHQNMXiTi2EoksZh2sZqJhakUdnPepYHl+cTC3z7X//Jv1JS04LmZr4zcVvsv/Yfu7pe0/QOu+Zdg99/9OX37b/xjNDnmHjbRu5s/edVEytaKcrAbEbN3B6vdOpXr56ROIG3KzZs4YtB7f4dRFA4f47WXtlZOuR7Di8g4XbFhbZVhrWJnBzStVTCiWL8yVUAKEqA2WAcNYm8F6IJRShBmZ3+lSIzBtd1wZdC705uQMIAyoDPtMUI4H3ccw5keN3DfRocWqtUwt9930jL59SnrNansWrI15l8+2bbdfre2w+uPADW29HTh/M7gG+iDLg406qnV6b76/8nr/3+TvjF41nwMQBHndQcZMOQdFcA04GYO9B8JYet/Dx8o9ZuSvwPG1b8jm4T30H4YqpFel3Sr+QcQPPzXuOAU0G0LNRz6DtH8k9wtODn2bjbRu5q89dxVYC3ASzInr3OVmSObPZmUzfOD2iD8ZyyeX8ugjAfx4KO5zd8mySJKnYroJwpwvb5eWzXw5rvwJTEDAVcTRm1dhBlYEIEK3lVoPhbVYurpvAzRMDnzhZlhDKQJQtA0BA33Y0cAcRuvGNivYm2isB2mnjnfMLm/mnb5xOrYq16FC3Q8h6UpJSeGrIU0y+ZDIrdq2g64SuzNw0MyKDUK2KtaicVtmTayBck+5dfe4iPS292NaBcN0Uboa1GMbyncuD+tmzDmb5tQpA4YfRxts2cnffu21PBbbL8p3LbfdzYNOBbD6wmY37N0as/bNanhUwKND7mDoJmq5ZsSZnnHIGX675ssg2J9fUvmP7Tu4XhTHLbQlzyt6je8kryFPLgFJ8vP2bkXATwMkpdmAlutl7dG9AZSAaJnzfm7Uk4wZ8lYFI4fRt2x3EFuqcpqeefKAYY5i+YToDmw0sMpAEq+eidhcx/y/zqV6+OoPfHczklZMdyQpF+ycihaYXFifF9C09buGT5Z+E5ZJzU9w3QztTDDvU6cBZLc/yu827/6GWGA+XPUf3sPPwTltlBzaz4gYi6SoIlF4cii4OFYwOdQorsiNbj2TpjqVs3l/YEufkmvKeohzrtSG88eQY8GcZiFEK65gqAyJyloisFpF1InKvn+0iIi+5ti8VkS5294024SQdKu5bijfeC4BEyjLgjTvdry03QRRmE4CV1aykaFqtaVTqdarll0spBzgbENbsWcPWQ1uLuAh86/F3nk6tfSrz/zqf89qex/H8wGmOneA9vdDJAOx7rO7qXXzrgJOVIP0d8w51O1A3vW5QZeDvff8e8HyV1AMoUNyAb/tta7WlfqX6EVUGRrYeGXCb9zUXaDljN2e3PLvQ93PbnAsET0AUikitBBougZZ6d6ciVssAICLJwKvA2UA7YJSI+EZinA20cv2NAV5zsG+JEQs3QSHLQDGnFvojpDIQ5TwDddPrsmT7khK7gaM11zdsN4GD/dxzx/0qAzbqqVKuCpMvmcxfOv/FvoBBaFmjJRv3bSS/IN+ZAuxzHdesWJNbe9zKpBWTwrYOOLEM+BuEkySJoS2G8sOGHwJaw7xX6fOlpK5fu0GEIsLAZgP5ceOPEZOtcrnKQdtzE+oe8z3+rWu2pnXN1kWUASfjmHeip2jPgPJHoGsmWCrihFMGgB7AOmPMBmPMCeBjwDcK5TzgXWMxD6gmIvVt7lum8b5gomEZcCfoaVylsd/tUXETeN2snet3ZveR3Ww9tDXi7ZQkTk1+dpUA73qnb5xOk6pNPGsDhNO+iHB337vtCRmCFtVbkFuQy5aDW4o9AN/Z+07S09J5ZNYjYe3v5DoNdOyHthjK7iO7A8awBJv+WRKWgVoVawUMIvQ3m2Jgs4HsOLyj2MGZdvAem0JZBvxdqyNbj2TGxhkcPH7Q81vYboIQ+51xyhm263Xjm4PAl0DXX3aOa5EiP3kGElEZaAh4Lz2X5frNThk7+5YYUVlhLcRDIZwlhJ0MjFsOWIe3YRX/hzXaswm61LM8QiUZRFiacHJMZ2ycwaBmg/zuE+21Cfxd+95LGYc7m8CN2zrw6YpPHafeBWdm4kCD8JDmQwBnqYn9tR8t2tdp7+jYRCJuwO6D0/uaCvWQ83f9ndvmXHILcsM69lA40VMoxcxJTMem2zbx8UUf+1XAvQlmGUhPTffbZqyUgcjlxHWOv5HH92wFKmNnX6sCkTFYLgbq1q3LzJkzHYgYmIOHTmqqc+fNZWP50NG5y5Yvo+p2e3kGCgoKgsq6a/fJ1JazZ88mLSn0Urm79u6y3f/cglyqpFRh/hz/mQC3bDmpizk5psHKrt622vM5ZU8KgvDfuf+lcnZgM2Qk2+9fqz+zds+yVecpFU/hjyN/RLR9gPx8601m9uzZpKcEjjpfvuvk4L/v2D7qH6vvt25vM2nuidyg7WcdOZn10m6fjDFFyu48ZgWzTZk3hX01T0Zzb922NWi9hw+fXBvAu1yPgh5USK7AzZNv5uF2DxfZL1idB3IPeD4vXLSQw2sPByy7LfvkjAHfOltWaskniz6hd35vR+3n7M+xVc5Jnb5UO1GNH3b8wIwZM4oohFuOnLxPFy1axJG1Vr7/BuUbMGnBJDocLRy0Z7f9gwdOjn/Bym47evKYLl60mH3p+wKW3fJH0TEl3+RTOaUyb8x6g1o7rSx/B3MPFtovWPsHc06W/XX+r+xMDxxouWfPyRTYdo5/XUI/T3buOtneL7/8Qq1yVh9+2/Ab1VKq+d2/IC/42B8tYqkMZAHeNuhGgO/8nUBl0mzsC4AxZgIwAaBbt24mIyOjWEK7qbymMrju8169egUPQHMtFNa+fXsy2oZo31U2KSmJYLLW2l4LXNduxoAMv4tkuPl3+r+5ccqNpFZMDVqnd/sATWs2DVj+f8f+By4LvpM6g5X9feHv4Erl3rNzT1rtbMX+Cvv972OzTidlb6lzC7M+nWWrzqqrqsKRyLYPkDw3GfKhX79+QXO47121F7ysvDePuNmv/zG/IB+sLpFWLi1o+2v3rIUF9uQMdp3mF+Rz9YKrSamdQu+evWGe9XvDBg2D1pu+Mj3gMb0j+Q4en/04tdrVon2d9raP6c7DO8G1rkyXLl385gJwM+nwJM8o4lvnhbkX8vy85+nau6vlI7fZfgYZ3PbbbSHLAYXqHDBgQHDrkFfZYZ2H8b9v/kfLLi1pXLWwW2/NnjWec9q1a1dPqurhB4czedVk+vXvd9KX7+A6rb6pOhwIXXbjvo3gep/o2aNn0AQ9P5of4Y+idZ6771y+W/edR9Y9R/Z4zmmo9tOWpoErm3T37t2taydQn7Kqw77QdTqh5o6a4FqMtE+fPp7U7uM2j6NZ+WaF23Ed/9RUG+N0FIilm2AB0EpEmolIGnAZ4Dup9Evgatesgl7AAWNMts19S4youAlCmIm92wxlVurXpB+A42jxoEssRzmAUBC61O+SsG6CUHibVE+rfVrANdFLetVCsALFmldvzrp964o1m8CbO3vfSeW0yjzyk7PYAScBhMHcJMNaDiO3ILfYSwDbxYnZ3/2A87dPoPt0YLOB7D+2P+zpu3ZN2d7XVDhuArBcBXuO7mFu1ly/2z9Y+kHAOgu5CUKMWdEY04K5CQLdswkXM2CMyQNuBr4HVgGTjDErRGSsiLiXgJoCbADWAW8ANwbbt4TlP/nZ5oAXyamFTsq6tzu92BtVDqwMRDuAEKBzvc5sPrA56ivtxTv+ZhG4CbRqYqQIdE21qNHCccxAMPlqVKjBbT1v49OVn7JsxzLbdTq5ToMNwn0b96ViasWQqYkjxddrvrZd9rTapwHOFIgzm50JhB834D5Wl3e4PGg5J1MLAymjw1oMIyUpxZON0HecuOGbG9iwb4PffXMLcj2fQ43TJTnbIPtQtt8cA5CgeQaMMVOMMa2NMS2MMY+7fhtvjBnv+myMMTe5tncwxiwMtm9JEmxt8khwNO+o3xXy3HhfuCE17jAvrqCWgRK4cTrXs9L2Zm7PjHhb/ohVGlB/OJkTP6h5EGUgygNLoPvAnWsgktfJHb3voEq5Ko5mFngrA6ECxIIdq3Ip5chommF7SePi8s3ab2yXrV6hOg0qN/A7oyDQ8a9XqR6n1T6t2MrAua3PDVquOFML3VQtX5UBTQb4zTdwQdsLSJIkrvjvFYWsAG5y872UgRjkGfCnjB7NPcqB4wcCW/M0HXF84a3lRusiq/h4RZq92Iyz3j+LW7+9lVfnv8oP63/gjwN/FF5COMSA77EMOByYS9xN4GsZcOXwL6lMhLHIUOaLvxUiQzGgyYCItB3JQahF9RbknMixnRkPQiu1buuAk0yJ7vtkZOuRQf3Fdtof2nwoa/asYdP+TbbbD5e5WXMdWcSczigAy1Uw+4/ZRZbWtYPtKasOZhME235um3NZtXsV6/auKzT2NKnahPHnjGde1jy/LqSuDbp6Poe0DJTAmAaw4/AOwH+OAUhAN0G8451oxLabwMHD5tRap/LQgIfo3ag3u4/s5u3Mt7n525sZ+v5QmrzQhClrp9iuy33jOnYTxNgyUKtiLRpVaVTiyxnHkp9G/8S4jHGOVreM1EqYkcQ9vXDtnrW297HzgLm91+1BAyt9cSsDdlaBDKUM2UlNHCkKTAHfr7fvkjit9mms3LWyyJtosHt+YLOBHMk9wq9ZvzqWz/3ACvkiEoGYATiZ5fCr1V8VmdZ8WfvLGN1pNI/PfpxZm2cV2m9o86GezyFjBqIwpvmzDLizD6qboIzgZNENN04expd3uJyHMh7iw4s+ZOGYhRy89yDb7tzGjGtm8Po5rztuOxxiaRlw3xCd63UusSDC0uAmOLX2qTw44EHb5d0pW+3gZOAuLr5LGdvBzvF3Wwfs4h6MI/G21bZWWxpXaRw1ZaB/k/6ez7Ur1nbkKmhfpz1H845a0fsB8L1nBzQZQJIkheUqsB1A6HVOq5YLrrQGu/6aVW9G+zrtA6Ymfvnsl2lRvQVX/vdK9h31WpzIe9XKGFgG/CkDwbIPgroJ4o5wljAuDiJC/cr1yWiawZiuY8KqI5JugmgEEFZOK5pPoHO9zqzes5ojuUfCrjcaN1estPdoEsnj1KxaMwRh3T4HyoDNY3pHrzts1+nOQBcJZUBEGNpiKNM2TCt2Xf7475/+6/k8vNVwvl37rV8/uD8CzSgIds9Xr1CdLvW78OOm6CkD3uVCWbBCjWsjW49k1uZZhR72biqlVeLDiz4kOyebMV+P8YzJ3mNzSSSA8iWYMuAv+yComyDuCGc2QawId5APlnP8rj532a6n3ynW1MZgC5oAXH361UV+61K/CwWmgKU7ltpuLxEoDVaMYJRLKUejKo0cWQbsDoLVK1S3XafbH14uuZztfYIxtMVQDhw/ELpgGHinNR7RagT7ju1jXtY8W/u65+8Hixvwp2wNbDqQuVvmcvhE4GRM/nA6tdCOJTWU+2dk65Hkm/yALtJuDbrx+MDHmbxyMv9Z8p8i22PhJvDXZnZONkmSRO2Ktf3uo26COCOcCyfWSkMkLRita7a2Xfac1ucA0KZmm6DlkpOSiywF6wkiLKX5BmaNnhW6UILSokaLiLsJnOJWBoIl5fK0b2MQHtx8cNQUMe8H7NAWQ0lJSuGbNfZcBZXSKtG0WtMiMwpCra46sNlAcgtymbNljiNZ3cpVqLftcKZIB9qnR8Me1Emvw5drAqeU+VufvzGw2UBu/e5WVu9eXWrdBLUr1g44u8LOtRoNVBkIk3CWMHavVR8PuDNlRQInA4LvsWxcpTE1KtQo1nLG0dS0nQSzReP8RzJ3RaSPU4vqLRzNJogGbmUg2GJCTqhRoQbdG3b3fH+wv/34jlAU8q+Xr8oZp5zhKG7gtNqnOZ5RcMYpZ5CalOo4bsA9TTOURcFJ8LK7bKDrMDkpmRGtRjB782zPb75xCEmSxLvnv0uFlAqM+mwUx/NOJloLpbiUWABhTrZfF4E7oPC9C96LuBx2sK0MiEhDEekjIv3df9EUrLTjRON0E8zsHi49GwZOr+omnEE+WLxAuDi52TxvCSJWEGEJzCgol2K97fhzVyjOcQcRugn5FhkFpc3tn7UzZdOu0jqsxTDP53FnjgtPMD/4mt7PaXUOy3Yu86wgGor2ddrz++7fC82tD0V6Wjq9GvVyrAxUSLFW6zuadzRouXCsKKFmFXjntvDnrmhYpSFvnfsWS7Yv4aX5L3l+DzUDyxhDlXJV2HCr/wRG4RDIMhBs6eKGlWOz5p4tZUBEngLmAA8Ad7v+/hZFuUo9wQa2vII8/jjwB79s+YVPln/i+T09NfDCM77YfeNzMoA6eRhHUhko7iDfuV5nlu1c5miQC4fhrYbzxMAnePGsF0OWrZNeB4idSc/zxhVj11MwxalF9RaFvr++KPgsmEibafML8hn30zgaV2lM70ZFFxjy5fpu19uq1z3FMNL43icjWo8AsO0qaF+nPbkFuYVcM3auj4HNBrIoe5EDSe2/8Uf6Oh3SYkih+A/ftRjcnNf2PG7sdmMhy9RLv77EgWPB4z261O9Cs+rNIiIr+MyQcik523O2B5xWGEvszo87H2hjjHGW3L4M430TPD77cY7mHiXrYBZbDm5he852v8qCkyUy7WJH8w4nHXHX+l1DF3KInfb9DRqd63fmRP4JVu1eRce6HSMul5skSeK+fvfZKvvRRR/x+arPObX2qVGTJxhhvXGFUMqaVG3iuM5ggWTuXAOx4t3f3mXJ9iV8cOEHIdedB/txMG5r3HltziuWfL74ntM2NdvQvHpzvln7DTd0vyHk/t5piZ1clwObDWTcT84sHHYTmTm5TpMlmXv63sOfTvtTwDKV0ioxsNlAvl33Lee3PZ9rTr8mYNlnhj7DzM0zWbnLWtHrwPEDvDL/Fe7vf7/f8gYT8XgQ3+dAgSkIaBmI9Qwlu26CDUD8OLxLAO+b4PNVn7Ni1wqqlKvCsBbDeKDfA0w4ZwJTLp/CshtO5lF38rZ9dquzIyZrOBdZqMh/JwxvNRwg6E3uxt/DxZ2WuDQFEdaqWIu/dv2ro31ifbOHIhz5koIMIb6WgWi0H4icEzn848d/0LNhT0a1HxWxesGKP9h9924mXTIpovX69l9EOKfVOUzfON3W1Nq2tdqSJEmF4ga8FfBAyk6vRr08Zn+nstq2DNiMGXhy8JN0qd8laDl3bo3hLYcHvWYqpFbgy8tOBhuOaDWC5+c9T86JHL/ljTERv0d9lYG9R/eSV5AXMMdALLFrGTgCZIrIdMBjHTDG3BoVqeIA74v70H2HbF1ETjLFdWvQzZ4cDsxvjnz2Ebwp2tVuh3nIXttvjHyDJ2Y/USjffuuaramYWpEl25dwDdabwPVdrw9pdnYTi5zkiUKwAMqq5atSs0JN9hy1l1Y3kufpqZ+fYnvOdj6/9POoKGE1K9aMeJ3+3kpHtB7BS/NfYsbGGR63QSAqpFagZY2WftcomHzJ5IBTMtOS0+jXpJ+jZEpupT2Sswnscm6bc7n7h7sDztP3xts69UD/B+j9Vm9eW/Aad/e9u0jZaFsGDCZk9sFYYtcy8CXwKNYq0ou8/hIWf9nyIsFdve+iYmpF+3LY0bhL+Zx0bxpVacS/R/y70Lzk5KRkTq97ekKlJY4G0bgOHhv4WNDtvkGEJcEfB/7gmbnPMKr9KHo16lXi7fvy6vBXmXpl6Aetv6lmA5oMID013fasAt8ZBXZfAAY2HWirnBu3MhDSTRCF2JYGlRuw6+5dninLdunVqBeDmw/mmbnPFCuJmRN8x+dQ2QchdnFAIZUBEUkGrjLGvOP7VwLylVqi9bb5zNBnOPwP+wlAHFkG4vgN2Z2WOJwsYqXdPF8cnJzTaMSspKcFD4p1EjcQqfN077R7AXhy8JMRqa+43Nj9Roa0GBKynD8XWbmUcgxuPphv1n5j61y3r9OetXvXFlnxNNSxHdjMmTJgNw4pWtn0wlnQC+Cf/f/JzsM7eXPxm0W2RdtNYIyxpQzEipBnyhiTDxwRkdK3GkoMiXUUtxs7D8ey8DDsXL8zh04c8qxbHs+KTSQI55y+cNYLkRckBE7iBiJxTudlzeOj5R9xV++7OKXqKcWurzRwTutz+OPAH37N/760r9OeAlPA6t2rAfvHNJSf3he7b/ylzSrZv0l/+jfpz9Nzni6UgwBKJoAwO8flJrDh4ihp7Kptx4BlIvKWiLzk/oumYKWd0vIwKi1yRBvfIMJwlLERrYL7XKPNdZ2ui2n7g5oNCl0owjgNIiwOxhhu/+526lWqx71n3Bt2PaVNiXAH4H695uuQZb1nFHgT6iEXKBteINz1xSJ3RHF5oN8DbD20lbcz3y70ezQsA775aLbnbCc9NT0qVrriYlcZ+Ab4JzALjRkAYrPohTfNqzcHsBVf4Pa/O8mWV9poX6c9KUkpnriBcJSgyX+aHGmxHPHK8Fdi2n4kB7opl0/hi8u+CFmuVc1WtussrnwfLf+IX7f+yuMDHw97sJ3353ks+OuCYskRaRpUbkDnep1txQ20qtmK1KRUjzLgRGkel2F/eqEnZiDUbIJSZhkAK6V0z4Y9efLnJwvlLomGtffUWoWneAbKPlgasKUM+IsXSPSYgVi/PbgT44Ty2YIl63NDn+OrUf6X/4wHyqWUo13tdieVgTBu3Fing3b69mWHWLmrzm51tq3lk50E8BXHynUk9wj3TruXzvU6B517HoqejXp6EkqVJka0GsEvW35h79G9QculJafRplabIi4FO4qWE/++u754tAyICP/s/082H9jM+0vfL7wtwsrLGyPfKPQ9UI6BaLTtFLsZCDeKyAbfv2gLV5pxOsc80iSL9WCxO4De0fuOgNm64oUu9bucdBMkiHskEOEkkooFJbUc63Nzn2PLwS08P+z5qChdseac1udQYAr4ft33Ict6zyiI1vURjaRDJcnwVsPpXK8zT/z8hGeZ6Gi4Cbxf1twBhKUxeBDsuwm6Ad1df/2Al4D3g+4RBBGpISI/iMha13+/E2BF5CwRWS0i60TkXq/fHxaRrSKS6fobHq4s8Upp1LijTed6ndlxeAfZh7IdvRG/dNZLpCWnxWyd8Gjg9Pw7SYUdK8K9prcd2saTPz/JBW0vYEDTARGWqnTQvWF3alesbctV0L5Oezbu31gouY6TTKW39LglZFnbboJSOk6JCA/0f4B1e9d5UsZHI4DQl+xD2aUyxwDYdxPs8frbaox5AXA2F6Uw9wLTjTGtgOmu74VwTWl8FTgbaAeMEpF2XkWeN8Z0cv0FX4FCKRN4ggi3L3GkDNzU4yaOP3A8ZgNT1/pduaPXHTFpG2Dun+ey+ubVMWs/2jzw4wOcyD/B00OejrUoUSNJkji71dl8u+5b8gvyg5ZtX6c9AKt2rQrLjVQ5LfSCarbdBKXUMgBwftvzaV+nPY/PfpwCUxB1K9vRvKMcOH4gpGUgVtY+u26CLl5/3URkLFCcJfjOA9wxB+9grX3gSw9gnTFmgzHmBPCxaz/Fi9IyxbEkOL3e6QAszl5c6s3j3iwcs5Dnhj0Xs/Z7NepFwyqxWQmtJJiYOZFbe94akwRHJcmIViPYe3Qv87LmBS3nb0ZBpBVh226CUmoZAEvBur/f/azavYr/rvovEF153TkG4toyADzr9fd/QBcgdKL5wNQ1xmQDuP77i9hpCGzx+p7l+s3NzSKyVET+E8jNUJYpzRp3tKhSrgota7R0bBlQyjY1K9bkgf4PxFqMiPDkoMC5+Ye2GEpKUkpIV0Hz6s0pn1Ke5TuXh6U027m3bK9NUMrHqUvaXULrmq15bNZjFJiCqMrrTkVcWmMG7K5N8GdjTKGAQREJus6jiEwD/PXa/5JRfqrw85v7ynsNKz2ycf1/FvA7iVtExgBjAOrWrcvMmTNtNm+fUHUOrDOQZEmOaNur9q8C4PjB41Hp04IFC9idvttW2Wi0H4iGyQ2Zu3Eu7au2j0n7pYWle5YCsGfPnphc0+HQPL150HoPHjxou/0za5/JjF0zALiy4ZVkzsuMgISxpyc96dm6Z8D+t6/cnk+WfFLoN39lG5dvzOzVs2l9wlqcaPmy5VTJDj61eMNma4j/448/Qh7/Pzb/AcDGTRuDls03J10asb5PA7V/Qa0LeGr1UyRLMuVPlI+anLMzZwOQ9XsWM7cWbeP4cSsJ0tx5c9lYfmNUZAiGXWVgMpY1wPe3gOvcGmMGB9omIjtEpL4xJltE6gM7/RTLArzD3xsB21x17/Cq6w0gYDYOY8wEYAJAt27dTEZGRqCizvnJ+heqzoi26WKAGUBenTz+3PnPARcgCQtXn7p37+7xPYYqG43+BWJY8jB++vEnup7SFXaUfPulhQpZFWA5dG/ZPbL9j8Y5ddXZvG7zoPVWWVcFDtlr//U9r8Mu6/O/LvtXobUsyjJXpF3B3T8UXmTH37Hqta8XP278kW5du8Fi6NChAxltipbzZvZPs2ETNG3SNOTxn/XTLNgMpzQ5JWjZAlNgZacJIGeJEOKa7pvfl0mvTGLj/o3UqlUr8nK62k+vmw7rYeSZI/1aB8otKQfHoXev3jSp5nw58eIS1E0gIm1F5CKgqohc6PU3GggvObTFl4B7MvA1gL/sJQuAViLSTETSgMtc++FSINxcACz3s3+ZRkT4W5+/RVYRiAPcJtTM7ZmxFSTG9GzUk69Hfc2zQ5+NtSgxwducmyiKAGB7cZ72ddqz9dBW9h3bZ7tut3vAzqwbu1NbS7ubAKwlqe87476ot5Odk02SJFG7Ym2/22MdXxHqrLcBzgGqASO9/roAxZlo/yQwRETWAkNc3xGRBiIyBcAYkwfcDHwPrAImGWPcmTSeFpFlIrIUOBOIXah2GaW03sSd61szCrIOZsVYktgzovUIyqWUi7UYMSHWA2esaFOzjSf7aDDcVr0VO60h087xcs8MsDUN0e7aBHFynq7pdA1NqjZxtMy8U7bnbKdOep2AeTBiHRQdVKU2xnwBfCEivY0xcyPVqDFmD1AkUboxZhsw3Ov7FKDItEFjzFWRkkXxT2kN0KuTXocGlRuw7dC2WIuiOCSSg11pVVajjYgwotUIXp7/ctBy7hkFy3Yus123+/zYeYDbXZsgXkhLTmPeX+ZRLjl6ynV2TnapDR4E+7MJ9ojIdBFZDiAiHUWkbITvKnGHO9+AEh/EeoGmsoadBbdOqXoKldIqeaYX2lGe3C8AdsraTTpUGri5+81c1v6ykOXqVaoXVbdr9qHgykCsrSh2lYE3gPuAXABjzFIsH75SxmhX28rrVJrfvFQZiC/sDMROifXAGUvsZFkUEdrXaV9k9cJguB/stmIGbCYdKg28PPxlPrroo1iLwZ6je4LmGPjk4k8Y2Xokjao0KkGpTmJXGahojJnv81tepIWJN67qeBVtaraJtRgJhztuQIkP7PqXHdVZipXVaFM+xV7s9mm1T+Nw7mHAYcyAAzdBaXUnllaCWQZ6NerFl6O+jNnaGnbDcHeLSAtc8/xF5GIgO2pSxQnvXvBurEVISNQyoJSldSaKQzClKOTUYB+i6SZ49MxHHclSVinNMQN2lYGbsObqtxWRrcBG4IqoSaXEnNKs8Tet1pRq5aux/9j+WIuixIhEdhN4E+w4eCsDtmIGnAQQOnATmIdK71hS0pTWVMRgf6GiDa4kQrWBtkAGcEYU5VKUgIiIWgfiiGiY9BPZTWAX94wCu4SVZ6AUvzSURkqzZSBU0qEqInKfiLwiIkOAI1hJgtZRvLUJlFJOaR9snxn6TKxFUCKMk8j00n59lhTBjoP3gydqeQbiYDZBaaJ+5dJrGQjlJngP2AfMxUoy9HcgDTjfGJMZXdGUWFLaNf5Ai7kopZdQDw4n15y6CUIjIqQmpZJbkGurvBM3gSdmoJSPE6WNuLUMAM2NMaONMa8Do4BuwDmqCCiKEmn0LTPynFbHvqsgnADCeJhaGGtu7HYjAOmp6VRKqxRjaQITShnwqJTGmHxgozHmUHRFUkoDaoZVShonDxa9Pi1CvcW74wbcy+cGw1GeAZtrEyjQp3EfoHS7CCC0MnC6iBx0/R0COro/i8jBEPsqcUjjKtZCkXbnMitKKOzmGXBick70qYWDmlnZ3CukVAharkaFGgAcOhH6Hc791pqelh6ybDRyR5R1SrOLAEKvTRCb7AdKzPjwog/5ft33tKjRItaiKAmGk7fMRFqp0B8vnvUi7V9rH1Jpd7KGwL1n3EuF1Ar8pctfQpYta2sTRBO34lSapxWC/QyESoJQo0INRnUYFWsxlATEyYPlzt53AlAxtWK0xCnV2M1S5yQ5UIXUCtx7xr22FK14WpugtFDaLQOqDCiKUipwogx4TNqpoU3aZRG7MRPRCvSLp7UJYo37XJV2ZSCxbW2KopQadGph5InWQ/vKjlcybcM0Hs54OKL1lmVKu5tAlQFFUaKK3chzNTnbx64yFK18AJXSKjH5T5MjWmdZxX2uSrtlQN0EiqKUCtTkHHk00C/2JIsV3xHvUwsVRVFKhHDeXhN1apvTmAG1usSOs1udzWsjXuP0uqfHWpSgqJtAiVueGfIMvRr1irUYSgjsmrTdb6/vX/B+NMVJKDTQL/ZUSqvE2G5jYy1GSGJiGRCRGiLyg4isdf2vHqDcf0Rkp4gsD2d/pWxzV5+76HtK31iLoUQI99trj4Y9bO+TqJkIYx0zoJQ9YuUmuBeYboxpBUx3fffHROCsYuyvKEopwW4GQifZBfUhFxyNGVDsEitl4DzgHdfnd4Dz/RUyxswC9oa7v6Io8YP7wWXnrTdRLQJuNGZAiTSxihmoa4zJBjDGZItInWjtLyJjgDEAdevWZebMmWGKrARCj2nZI5LnNHN/JgD79+8PWu+DLR/kq21fsTlzM3/IH0HrPJZ/DIB+1fol5PW39ehWAHJzc4P2//iO4wAc3X40IY+TYp+oKQMiMg3wN7Hy/mi16Q9jzARgAkC3bt1MRkZGSTZftvnJ+qfHtAwRhXNacWtF+A1aNmgZst6rudp2vfv67qNyWmXbqXnLEhv2bYD5kJqaGvSYDjADGLJxCAObDdRETUpQoqYMGGMGB9omIjtEpL7rrb4+sNNh9cXdX1GUEqJ7g+68NuI1Lj3t0ojWW618tYjWVxYREQY1HxRrMZQ4IFYxA18C17g+XwN8UcL7K4pSQogIY7uNpXoFnfQTKRI9ZkKJPLFSBp4EhojIWmCI6zsi0kBEprgLichHwFygjYhkicifg+2vKIqiKIpzYhJAaIzZAxSxXRljtgHDvb77XUs30P6KoiiJgPr/lUij6YgVRVEUJcFRZUBRFCXO0JgBJdKoMqAoiqIoCY4qA4qiKHGGxgwokUaVAUVRFEVJcFQZUBRFiTM0ZkCJNKoMKIqiKEqCo8qAoihKnKExA0qkUWVAURRFURIcVQYURVHiDI0ZUCKNKgOKoiiKkuCoMqAoihJnaMyAEmlUGVAURVGUBEeVAUVRlDhDYwaUSKPKgKIoiqIkOKoMKIqixBnumAGDibEkSllBlQFFUZQ4Q90ESqRRZUBRFEVREhxVBhRFUeIMnVqoRJqYKAMiUkNEfhCRta7/1QOU+4+I7BSR5T6/PywiW0Uk0/U3vGQkVxRFUZSyR6wsA/cC040xrYDpru/+mAicFWDb88aYTq6/KVGQUVEURVESglgpA+cB77g+vwOc76+QMWYWsLeEZFIURVGUhCQlRu3WNcZkAxhjskWkThh13CwiVwMLgbuMMfv8FRKRMcAYgLp16zJz5swwRVYCoce07KHntHSz74Q13OXm5uq5UiJC1JQBEZkG1POz6f4IVP8a8ChgXP+fBa7zV9AYMwGYANCtWzeTkZERgeYVAH6y/ukxLUPoOY0Ldh7eCXMhNTVVz5USEaKmDBhjBgfaJiI7RKS+yypQH9jpsO4dXnW9AXwdvqSKoiiKktjEKmbgS+Aa1+drgC+c7OxSINxcACwPVFZRFEVRlODEShl4EhgiImuBIa7viEgDEfHMDBCRj4C5QBsRyRKRP7s2PS0iy0RkKXAmcEfJiq8oihI7NAOhEmliEkBojNkDDPLz+zZguNf3UQH2vyp60ilK4vLLdb+Qb/JjLYaiKCVMrGYTKIpSCunduHesRVAUJQZoOmJFURRFSXBUGVAURVGUBEeVAUVRFEVJcFQZUBRFUZQER5UBRVEURUlwVBlQFEVRlARHlQFFURRFSXBUGVAURVGUBEeVAUVRFEVJcFQZUBRFUZQER5UBRVEURUlwVBlQFEVRlARHlQFFUZQ4IyXJWmPulKqnxFgSpaygqxYqiqLEGdUrVOeTiz9hQJMBsRZFKSOoMqAoihKH/Om0P8VaBKUMoW4CRVEURUlwVBlQFEVRlARHlQFFURRFSXBiogyISA0R+UFE1rr+V/dTprGIzBCRVSKyQkRuc7K/oiiKoij2iJVl4F5gujGmFTDd9d2XPOAuY8ypQC/gJhFp52B/RVEURVFsECtl4DzgHdfnd4DzfQsYY7KNMYtdnw8Bq4CGdvdXFEVRFMUesZpaWNcYkw3WQ19E6gQrLCJNgc7Ar073F5ExwBiAunXrMnPmzOJLrxRCj6miKEp8EzVlQESmAfX8bLrfYT2VgM+A240xB53KYYyZAEwA6Natm8nIyHBahRKIn6x/ekwVxRm5ublkZWVx7NixWIuilBHKly9Po0aNSE1NDWv/qCkDxpjBgbaJyA4Rqe96q68P7AxQLhVLEfjAGPNfr0229lcURSmNZGVlUblyZZo2bYqIxFocJc4xxrBnzx6ysrJo1qxZWHXEKmbgS+Aa1+drgC98C4h1h7wFrDLGPOd0f0VRlNLKsWPHqFmzpioCSkQQEWrWrFksS1OslIEngSEishYY4vqOiDQQkSmuMn2Bq4CBIpLp+hsebH9FUZR4QRUBJZIU93qKSQChMWYPMMjP79uA4a7PPwN+exdof0VRFEVRnKMZCBVFURKQxx9/nNNOO42OHTvSqVMnfv3VmqxljGHMmDG0a9eODh06MHfu3EL7NW3alA4dOnD66aczdOhQtm/fXqTu0aNH06xZMzp16kSnTp3IzMz01H3rrbfSsmVLOnbsyOLFiz37fPfdd7Rp04aWLVvy5JP+jb0PP/wwzzzzjKN+ZmRksHDhQkf7+MPd744dOzJgwAA2b94ctPzMmTP55Zdfit1uSaHKgKIoSoIxd+5cvv76axYvXszSpUuZNm0ajRs3BuDnn39m7dq1rFixgl9//ZXmzZsX2X/GjBn89ttvdOvWjSeeeMJvG//617/IzMwkMzOTTp06AfDtt9+ydu1a1q5dy4QJE7jhhhsAyM/P56abbuLbb79l5cqVfPTRR6xcuTI6nS8GM2bMYOnSpWRkZPDYY48FLRuOMpCfn18c8YqFKgOKoigJRnZ2NrVq1aJcuXIA1KpViwYNGgCQlpbGjh07yM3NpWLFitStWzdgPf3792fdunW22/3iiy+4+uqrERF69erF/v37yc7OZv78+bRs2ZLmzZuTlpbGZZddxhdfBI8Lz8jI4J577qFHjx60bt2a2bNnA3D06FEuu+wyOnbsyKWXXsrRo0c9+0ydOpXevXvTpUsXLrnkEnJycti8eTOtWrVi9+7dFBQU0K9fP6ZOnRq07d69e7N161YAdu3axUUXXUT37t3p3r07c+bMYdOmTYwfP57nn3+eTp06MXv2bEaPHs3kyZM9dVSqVAmwlIYzzzyTyy+/nA4dOjBz5kwyMjK4+OKLadu2LVdccQXGGADuvfde2rVrR8eOHfnb3/5m+7jbIVZJhxRFURTg9u9uJ3N7ZkTr7FSvEy+c9ULA7UOHDuWRRx6hdevWDB48mEsvvZQBAwYAVnK2gwcPMnr0aD744IOggWlff/01HTp08Lvt/vvv55FHHmHQoEE8+eSTlCtXjq1bt3osEACNGjVi69atfn93uy2CkZeXx/z585kyZQrjxo1j2rRpvPbaa1SsWJGlS5eydOlSunTpAsDu3bt57LHHmDZtGunp6Tz11FM899xzPPjgg9xzzz2MHTuWnj170q5dO4YOHRq03e+++47zzz8fgNtuu4077riDM844gz/++INhw4axatUqxo4dS6VKlTwP7bfeeitgffPnz2f58uU0a9aMmTNnsmTJElasWEGDBg3o27cvc+bMoV27dnz++ef8/vvviAj79+8PeXycoJYBRVGUBKNSpUosWrSICRMmULt2bS699FImTpwIwMUXX8z06dOpWLEid9xxBwA33ngj33zzjWf/M888k06dOnHw4EHuu+++IvX/3//9H7///jsLFixg7969PPXUUwCeN1xvRCTg76G48MILAejatSubNm0CYNasWVx55ZUAdOzYkY4dOwIwb948Vq5cSd++fenUqRPvvPOOx+//l7/8hUOHDjF+/PigMQlnnnkmderUYdq0aVx++eUATJs2jZtvvplOnTpx7rnncvDgQQ4dOhRSdm969OhRKD9Ajx49aNSoEUlJSXTq1IlNmzZRpUoVypcvz1/+8hf++9//UrFiRUdthEItA4qiKDEk2Bt8NElOTiYjI4OMjAw6dOjAO++8w/Dhw9m9ezdt2rTh9ddf56KLLmLcuHEsXLiQf/3rX559Z8yYQa1atQLWXb9+fQDKlSvHtdde63nANmrUiC1btnjKZWVl0aBBA06cOOH391C43RzJycnk5eV5fvenSBhjGDJkCB999FGRbUeOHCErKwuAnJwcKleu7Le9GTNmkJ6ezujRo3nwwQd57rnnKCgoYO7cuVSoUCGorCkpKRQUFHhkOXHihGdbenq633559y0lJYX58+czffp0Pv74Y1555RV+/PHHoG06QS0DiqIoCcbq1atZu3at53tmZiZNmjShdu3aGGOYMWMGycnJTJgwgRdffJEuXboUeWAFIzs7G7Aeev/73/9o3749AOeeey7vvvsuxhjmzZtH1apVqV+/Pt27d2ft2rVs3LiREydO8PHHH3PuueeG1bf+/fvzwQcfALB8+XKWLl0KQK9evZgzZ44nxuHIkSOsWbMGgHvuuYcrrriCRx55hL/+9a9B669QoQIvvPAC7777Lnv37mXo0KG88sornu3umROVK1cuZCFo2rQpixYtAqzYidzcXEf9ysnJ4cCBAwwfPpwXXnjB006kUMuAoihKgpGTk8Mtt9zC/v37SUlJoWXLlkyYMAER4bPPPuPWW2/lyJEjVKxYkVdeeYWnn36ayZMnc/HFF9uq/4orrmDXrl0YY+jUqRPjx48HYPjw4UyZMoWWLVtSsWJF3n77bcB6a37llVcYNmwY+fn5XHfddZx22mlh9e2GG27g2muv9UyZ7NGjBwC1a9dm4sSJjBo1iuPHjwPw2GOPkZ2dzYIFC5gzZw7Jycl89tlnvP3221x77bUB26hfvz6jRo3i1Vdf5aWXXuKmm26iY8eO5OXl0b9/f8aPH8/IkSO5+OKL+eKLL3j55Zf561//ynnnnUePHj0YNGiQI+UK4NChQ5x33nkcO3YMYwzPP/98WMcnEOLPV1NW6datm4nEfFPFotqT1Thw/ADmocS5hhQlEqxatYpTTz011mIoZQx/15WILDLGdAu1r1oGlLDZfPtmjucfj7UYiqIoSjFRZUAJm6rlq8ZaBEVRFCUCaAChoihKDEgkF60SfYp7PakyoCiKUsKUL1+ePXv2qEKgRARjDHv27KF8+fJh16FuAkVRlBKmUaNGZGVlsWvXrliLopQRypcvT6NGjcLeX5UBRVGUEiY1NbVQxjlFiTXqJlAURVGUBEeVAUVRFEVJcFQZUBRFUZQEJ6EyEIrILmBziGK1gN0lIE5JUxb7pX2KD8pin6Bs9kv7FB846VMTY0ztUIUSShmwg4gstJO6Md4oi/3SPsUHZbFPUDb7pX2KD6LRJ3UTKIqiKEqCo8qAoiiKoiQ4qgwUZUKsBYgSZbFf2qf4oCz2Ccpmv7RP8UHE+6QxA4qiKIqS4KhlQFEURVESHFUGFEVRFCXBUWVAURRFURIcVQYURYkpIiKxliESiEjFWMsQbfRcxQfhnCcNIExQRKQBcNAYkxNrWZTAlMXzJCK9gXTgsDFmruu3JGNMQWwlCx8ROQvoDLxgjDkaa3kihZ6r+CAS50mXMA6BiAwDzgFWAsuMMT+LiJg41qJEZARwI3AdUCYeMnqe4gPXQPwyMB2oLSJHjTFXGmMK4vUhIyJnA08Ct/k+XOL5GtRzFR9E6jypmyAIItIP6yCvBioC74jIZcYYE6/mMtfN8H/AE8aYHbGWJxLoeYoPRCQJuBKrT2OBq4D6IvIVgGvwiqvzJSKnAq8C440xM0Wkpoi0E5FOAPF4DYqFnqs4IJLnSS0DwWkAfGuMeQVARBYB/3UpkJ/EVjTniEhd4HbgJ2PMHBGpBowCjgDrjDFzYihecdDzFAe4BqbfcL2EGGOOAINEZJqITDTGjI7DN7MUYApgXJacO7EWkKkmIpuNMWPisE/uc5UJiOt7WThXScA3QEFZOVeRvKfUMhCcnYBntSdjzEzgQuAREekVK6HCxfWG+T5wUET+AcwA2rv+xovIwFjKVwz2Yq3iBZSZ8/QxZeQ8iUglr68rgb+LSGuv3y4GKopIh5KVLHxEpDKAMWYZMB5oA7wEfGqMuRQYDTQRkYwYiRg2Xg+P9cDdItLKa3PcnSs3xpgVwNtAa+BF4vhc+QRAriYC50mVAR9EpKuIDBKRFsaYGUANEXnfvd31oHkXaBErGZ3i6tMQEWlmjHkPWAWcCbxljLnJGHM38B5WUE1cICKniEgLAGPMD0AVEfnIvT1Oz9Mp7hvaGPM2sBQYTHyfp3OBt0TkExEZDnwPPAPMFpE2AMaY/UA+UDVmgjrA1ac3RWSSq09bgeeAvxljxgMYY7KBbVj9igtEJMPVNwCMMZ9jPTxnuZW3ODxXvn1aDLwD3BWv58pl1Rjvuv76GmO+BCZSzPOkbgIvROQ8YBywDjgiImOMMWeJyHzXg+ZqY0wuVtTm6cAHMRTXFj59yhGRO4wx74vIcuA3r6JVYiJgGIjIBcA9wF4RWQzMNsaMFJHZcXyevPu0CFhojPnEZQJc7VU0ns5Ta+A14E9AN6A/MBT4B2CAz0XkNaAa0AlrQC7V+OlTP6w+veB6eLrLXYhlydkSCzmdIiKDgc+AAyJSwxgzEcAY87SIFGC53cYD1YmfcxWoT0tFZKVXubg5V2IFCz4DXI/1onCXiPxujHlSRPIpznkyxuifZRVrAMwBTnV9nwxkeG3/FPgI681sJdAu1jKH2af+QHmfcqOAxUCbWMtso0/1gdlYpr4KwN+AucBFru2fYz384+k8+evTHOC6eD1PLnk7Ap94fe8CPIT1Fp2M9RAdC7wOnBZreYvRp3+6+tTI9dtoYCHQPtbyOujXPVizVroCmcBon+3nuM7VhDg6VwH7hBULIcC1wKJ4OFeuseEt4HKv3z7Aski5v48I956KeQdLyx9wCjAPaOY66Guwgk3eA65xlekOjARaxlreYvbpP1hTawAygJ/i6AZ396mJ63t94CvXxd/L9VufOD1Pvn16BTjb9dvgeDpPLpnTXAPtjV6/dQWeBQbGWr4I9+lpd5+wrAUtYi2rw36lAHVcnwe7Hp7XeW0X7//x8BeqT17nLm7OFdAcy/Sf4vr+D+BhP+UcnydNOuSFiIwDzse64d/FGrRGYAWj/cMYU+rNSL4E6dO5wD+NMVkiUtfE0fQ1EXkcqAO8idWXRliKTrox5p+xlC1cgvSpnDFmnKtMHWPMzthJGRoR6QGkYg1GP4uV/+Ey4HtjzMeuMvcCbY0xo2MnqX3KYp+gUL8KjCtRjde2IcC/gPuBPKAeVvBxgSnFDw2HfaprjHm35KV0hqtPacAJY8x8n22XAqcbY/7hcnfkANOw4kAdnaeEDiAUkbNE5B8i8rDLp/QQ1hvlLOALY8wJY/kBa2CZ3Es9DvpUB+uNlNKuCHj16SHXNLu3gE1Y5vTGxpjrXL91FpHysZPUPg761F1E0gHiQBEYBnyJpcy8JyJjgd+xkqGcJSK3uopudZUvFxNBHVAW+wRF+vWBiNzsniEBnqDcq7BmtXwMzDfG5JdyRcBpnxbERFAH+PTpE1efvGfnJANJInIJVl6S9caY8BS2WJs9YmhuyQCWYb0hP4llQjrDtW0MVpBQM2A4MB9rgI653Anep6ewfLF9XdvKc9J8ORprvndarGVOtD5h+V7LYUU0/8n1W2esN5SbsawcA4ElWHErm7HeZmIueyL1KUi/OgE/YCmiFb3KXoYVVFeq424StE/prt+GAbuAmcXtU8w7HcODPQ64z+v7F1h+29Ox3pifdX3/OR5u8gTq05euPnRyfU8CbgKWAx1jLW+i9skl9z3AY0Al1/f2WDkSrnd9T8Wa6lkn1rImcp8C9Os04EfgJtf3JKzAyHiKUUnEPrXCerEodp8S2U2wDSgnVrY3sKK0d2ElENlljLkLK3HDucaY3wLUUdpIhD4twkoGNUFEKhor73YmcLExZmmMZHRKWewTWHkRagItRCTFGLMc6y3m7yLS1RiTa4xZb0q5u8OHstgnKNqvFcDdwJ0i0tlYpuZHXb/HC4nWp07ABqBPJPqUyMrAL1jTgp4Qkc+ALsaYkVhvY4MAjDFZxpi9MZTRKYnSp3OxHpbuPs0xxvweOxEdUxb7hDHmW6wAptuA9iJSyRizCPiOOEno4ktZ7BOE7FepjQsIRgL2SYwVx3EoEm0l1GwCEUk2xuSLWEnrxcpgVx8rmG6KMeaYiLwCTDVWVqdSj/ZJ+xQLRKQlVrKg5caYYz7bngYqA8ew/LN3YcVEbCphMR1RFvsEZbNf2qfI9ykhlAERaW2MWeP6nGyM8avRi8gYrCVjLzLGrC9JGZ2ifdI+xQoROQd4AtgDbAceN8YsF5FUY2V+RETOxErQ0xp41RizMmCFpYCy2Ccom/3SPkWpT8UNOijtf1iZs44AH3r9luxTJgUrCOi/uIK4SvOf9kn7FMM+9cGaWtfZ9f3fwH+8tif59i/WMidin8pqv7RP0etTmY4ZcM3PvhlrOdgT4lpwyFjmWu91GdKN9TZ2hTEms8QFdYD2SftUCnjSGLPE9fkhrMW8yoFnSdXurjcdiB+/elnsE5TNfmmfokCZVgaMMYexclN/iBUBXN5rUM4DEJHTgatFpJwx5mjMhLWJ9kn7FGN+xbJiICLJWHOhm+BaQElEGgFtsXInYFyvMqWcstgnKJv90j5FqU9lWhkAMMZsM8bkGGN2Y630VME9KItIR6Al1sIjx2MppxO0T/FBGe1TvjHmoOurAPuBvcaYXSJyJXAH8D9jzPZYyeiUstgnKJv90j5Fj4QIIPRGRGph5afug6UM9TfWetZxi/YpPiiLfQIQkYlANtYqhNea+MqN4Jey2Ccom/3SPkWGlNBFyhbGmN0ishQ4GxhSFgZj7VN8UNb6JCKClYGvn+v/IGPM2thKVTzKYp+gbPZL+xRZEk4ZEJHqWLn5hxpjlsVankigfYoPylqfXL7LEyLyKLAg3gdiKJt9grLZL+1TZEk4NwGAiJQ3Pkkd4h3tU3xQRvskcRKoZZuy2Ccom/3SPkWozTJ2DBVFURRFcUiZn02gKIqiKEpwVBlQFEVRlARHlQFFURRFKYWIyH9EZKeILLdR9nkRyXT9rRGR/Y7a0pgBRVHCQUTygWVYU6DygHeAF4wxBUH2aYq1/vqHJSKkosQxItIfawnjd40x7R3sdwvWWgfX2d1HLQOKooTLUWNMJ2PMacAQrGmTD4XYpylwebQFU5SygDFmFrDX+zcRaSEi34nIIhGZLSJt/ew6CvjISVuqDCiKUmyMMTuBMcDNYtHUNVAtdv31cRV9EujnMmXeISLJIvIvEVkgIktF5PrY9UJR4oIJwC3GmK5Y657823ujiDQBmgE/Oqk04ZIOKYoSHYwxG0QkCagD7MTKsnhMRFphvaV0A+4F/maMOQdARMYAB4wx3V2rtM0RkanGmI0x6oailFpEpBJWOvNPrWSFgLWwkTeXAZONMY5WN1RlQFGUSOIeoVKBV0SkE9aSq60DlB8KdBSRi13fqwKtAFUGFKUoScB+Y0ynIGUuA25yWrEqA4qiRAQRaY714N+JFTuwAzgdawALlHVRsEye35eIkIoSxxhjDorIRhG5xBjzqWstg47GmN8ARKQNUB2Y67RujRlQFKXYiEhtYDzwiiuNalUg2zWz4Cog2VX0EFDZa9fvgRtEJNVVT2sRSS85yRWl9CIiH2E92NuISJaI/Bm4AviziPwGrADO89plFPBxOKmMdWqhoihh4Wdq4XvAc8aYAlecwGfAEWAG1tt/JddD/zugFjAReBF4DBiJZSXYBZxvjDlQwt1RlIRGlQFFURRFSXDUTaAoiqIoCY4qA4qiKIqS4KgyoCiKoigJjioDiqIoipLgqDKgKIqiKAmOKgOKoiiKkuCoMqAoiqIoCY4qA4qiKIqS4Pw/9waTfLMifSkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot for S&P 500 index returns\n", + "plt.figure(figsize=(8, 4))\n", + "plt.plot(df['date'], df['ret_index'], color='green', label='S&P 500 Index Returns')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Return')\n", + "plt.title('S&P 500 Index Returns Over Time')\n", + "plt.xticks(rotation=45)\n", + "plt.legend()\n", + "plt.grid(axis='y')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "bb85d1d5-bc44-45d5-8b89-d5178a543081", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAEoCAYAAADBrSICAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAAsTAAALEwEAmpwYAABKs0lEQVR4nO3dd5xU1f3/8deHpYoKIkJAUEAXUAiCoGJfCwqKoiYW7OUbxJoYY7D8EjX2FkskYu9GbFFUYomKBbGAQRQVQVCpoiiC0tnP749zxx2W3Sm7Mztl38/HYx535t5z7z1nBvZ+7rmnmLsjIiIi9U+DXGdAREREckNBgIiISD2lIEBERKSeUhAgIiJSTykIEBERqacUBIiIiNRTCgJE0mBmo8zsLymk+9LM9q2LPEn+MrNjzOylXOdDpDoKAkTiRBfv5Wb2k5ktMLP7zGzD2HZ3H+7ul2X4nJeY2eronLHXnzN5jirOWWZm5dG5lprZNDM7KcV9O5mZm1nDbOYxVWbWxMyuMrOvo99uupmdZ2ZWB+e+MO43W2Fma+M+T3X3h919v2znQ6SmFASIrO8gd98Q6A30AS6og3OOdvcN417XVk5gZiUZPue8qJwbA+cAd5pZtwyfYz0WZPJvz+PAPsABwEbAccAw4OYMngOAyoGPu18Z+82A4cCEuN+wR6bPL5JpCgJEquHuC4AXCcEAAFHNwOXR+9Zm9pyZLTaz783szaoubmbW3cxmmdlR6Zw/OtdtZjbWzH4G9jKz9mb2pJl9Gx3z7Lj0DczsfDP7wswWmdljZtYqhXK6u48Fvgd6pXCsN6Ll4uiOd+eoNuOhuLysU1tgZuPM7AozGw8sA7pE24dHd+4/mNnI2N27mW1tZq+b2Y9m9p2Zja7mO9oH2A/4jbt/7O5r3P0d4FjgjOg4R5nZxEr7nWNmY6L3Tczs+qgm4ZvokU+zaFuZmc0xsxFmtgC4N9n3Wek8J5rZW3Gf3cxOj8q81MwuM7OtzGyCmS2JvufGcekHm9nk6N/Y22bWK53ziySjIECkGmbWARgEzKgmybnAHGAzoC1wIbDOONxmtj3wEnCWuz9ag2wcDVxBuMN9G3gW+BDYnHD3+wcz2z9KezZwCLAn0B74ARiZ7ATRBf9goDUVZU10rD2iZcvojndCimWJ3aFvBHwVrRsM7ABsBxwBxMpyGeF72wToAPyjmmMOAN5199nxK939XcJvsw8wBuhmZqVxSY4GHoneXwN0JQR7WxO+27/Gpf0V0ArYMsp/bQ0E+gL9gT8DdwDHAB2BnsBQ+OXfzj3AqcCmwO3AGDNrkoE8iAAKAkSq8rSZLQVmAwuBi6tJtxpoB2zp7qvd/U1fdzKO3QkXoBPc/bkk5zwiutuLvdpH659x9/HuXg78GtjM3f/m7qvcfSZwJxCrYTgVuMjd57j7SuAS4LeVq7DjtDezxcBy4N/AH939fzU8Viruc/ep0d366mjd1e6+2N2/Bl6jotZlNeGi297dV7j7W1UcD0LgMr+abfOB1u6+DHiGiotrKdCdcEE14HfAOe7+vbsvBa6k4jsFKAcudveV7r68BuWu7Bp3X+LuU4GPgZfcfaa7/wj8h/AIiihft7v7u+6+1t3vB1YSggeRjFAQILK+Q9x9I6CMcLFoXU266wh3zi+Z2UwzO7/S9uHA2+7+WmyFhdbisYZj/4lL+5i7t4x7zYvWx9/hbkl04Y69CLUPbeO2/ztu26fA2rjtlc1z95aENgG3AHtXOlc6x0rF7CrWLYh7vwyINcL8M2DAe2Y21cxOruaY3xECsaq0i7ZDuOsfGr0/Gng6Cg42AzYAJsWV9YVofcy37r6i2lKl75u498ur+Bz7DrYEzq30e3ck1MyIZISCAJFquPvrwH3A9dVsX+ru57p7F+Ag4I/RM+qY4cAWZnZj3D4PxzUcG5RKNuLezwZmVQoWNnL3A+K2D6q0vam7z01SzpXACODXZnZICseqaurRnwkX05hfJSlLQu6+wN1/5+7tCbUS/zSzratI+l9gJzPrGL/SzHYkXDBfjVa9BLQ2s96EYCD2KOA7woW3R1w5W0QN/dLOd4bNBq6o9Bts4O7/ylF+pAgpCBBJ7CZgQHTxWEfUaGvrqEp5CeFOeW1ckqWE5797mNnVGcjLe8CSqJFaMzMrMbOeZrZDtH0UcIWZbRnlbzMzG5LKgd19FXADFc/CEx3rW0IVeZe4Q0wmlHMLM2tBLXtUmNnhUZsMCO0RnHW/21i+/wu8AjxpZj2i76Q/8DBwm7tPj9KtAZ4g1N60Al6O1pcTHqncaGZtonNvHtfOIpfuBIab2U4WNDezA81so1xnTIqHggCRBNz9W+ABoKoBgkoJd6I/AROAf7r7uEr7LyY0XhtkZrUaX8Dd1xJqHHoDswh3sXcBLaIkNxPaILwUtWl4B9gpjVPcQ6i5OCjRsaJq9CuA8VE1dX93fxkYDUwBJgHJ2kAkswPwrpn9FOXj9+4+q5q0vyG0J3iB8Fs8BNwNnFUp3SPAvsDjUVAQM4LwWOcdM1tC+E2z3lUyGXefSGgXcCshEJoBnJjLPEnxsXXbMYmIiEh9oZoAERGRekpBgIiISD2lIEBERKSeUhAgIiJST2U1CDCzgRZmJ5tRxUAqsYlEbom2T4mGyYxtu8fMFprZx9Uc+0/RONzVDeQiIiIiCWRtKlALM56NJHSPmgO8b2Zj3P2TuGSDCN2sSgndj26jokvTfYSuMQ9UceyO0XG/TiUvrVu39k6dOtWoHCIiIoVm0qRJ37n7ZsnSZXM+8B2BGdH45pjZo8AQID4IGAI8EI23/o6ZtTSzdu4+393fMLNO1Rz7RsKwos+kkpFOnToxceLE5AlFRESKgJl9lTxVdh8HbM66Y4XPidalm2Yd0Wxnc939w0xkUkREpL7KZk2AVbGu8shEqaSpSGy2AXARYf7wxCc3G0Y07Wfbtm0ZN25csl1ERETqlWwGAXMIE3jEdADm1SBNvK2AzsCHYbh2OgAfmNmO7h4/Gxnufgdhnm769evnZWVlNSiCiIhI8cpmEPA+UGpmnYG5hPm5j66UZgxwZtReYCfgR3evbm5w3P0joE3ss5l9CfRz9++q20dEpD5avXo1c+bMYcWKTM6CLPmmadOmdOjQgUaNGtVo/6wFAe6+xszOBF4ESoB73H2qmQ2Pto8CxgIHECbGWAacFNvfzP5FmM+9tZnNAS5297uzlV8RkWIyZ84cNtpoIzp16kRUcypFxt1ZtGgRc+bMoXPnzjU6RjZrAnD3sYQLffy6UXHvHTijmn2HpnD8TrXMoohIUVqxYoUCgCJnZmy66aZ8++23NT6GRgwUESlSCgCKX21/YwUBNbHddnDPPbnOhYhIXispKaF379707NmTgw46iMWLFwMwb948fvvb31a735dffknPnj2THv/EE0+kc+fO9O7dm969e3PLLbdkKusA3HfffWy22Wb07t2b7t27c+ONNybd58orr8xoHrJNQUBNTJkCp5yS61yIiOS1Zs2aMXnyZD7++GNatWrFyJEjAWjfvj1PPPFERs5x3XXXMXnyZCZPnszZZ5+9zrY1a9bU+vhHHnkkkydPZvz48VxxxRXMnj07YfqaBAGZyGdNKQgQEZGs23nnnZk7dy6w7p3+1KlT2XHHHenduze9evVi+vTp6+w3c+ZM+vTpw/vvv5/SecrKyrjwwgvZc889ufnmm5k0aRJ77rknffv2Zf/992f+/NAB7YsvvmDgwIH07duX3Xffnc8++yzhcTfddFO23nrrX/Z/6KGHfsn3qaeeytq1azn//PNZvnw5vXv35phjjlmvRuP666/nkksuqTKfZWVljBgxgh133JGuXbvy5ptvpvT91FZWGwaKiEge+MMfYPLkzB6zd2+46aaUkq5du5ZXXnmFU6qoQR01ahS///3vOeaYY1i1ahVr167lm2++AWDatGkcddRR3HvvvfTu3bvKY5933nlcfvnlADz44IMALF68mNdff53Vq1ez55578swzz7DZZpsxevRoLrroIu655x6GDRvGqFGjKC0t5d133+X000/n1VdfrbYMX3/9NStWrKBXr158+umnjB49mvHjx9OoUSNOP/10Hn74Ya6++mpuvfVWJkff9Zdffpnwe4nlE+DZZ59lzZo1vPfee4wdO5ZLL72U//73v1V+P5mkIEBERLIidlf85Zdf0rdvXwYMGLBemp133pkrrriCOXPmcNhhh1FaWgrAt99+y5AhQ3jyySfp0aNHtee47rrr1mtfcOSRRwIhiPj4449/Oe/atWtp164dP/30E2+//TaHH374L/usXLmyyuOPHj2a1157jWnTpnHnnXfStGlTXnnlFSZNmsQOO+zwSznbtGlT5f6JxPIZc9hhhwHQt2/fXwKI6r6fTFEQICJS7FK8Y8+0WJuAH3/8kcGDBzNy5Mj1ntsfffTR7LTTTjz//PPsv//+3HXXXXTp0oUWLVrQsWNHxo8f/0sQcNJJJ/G///2P9u3bM3bs2KpOCUDz5s2B0I++R48eTJgwYZ3tS5YsoWXLlr/csSdy5JFHcuuttzJhwgQOPPBABg0ahLtzwgkncNVVVyXct2HDhpSXl//yufLATbF8xjRp0gQIDSpj7QSq+n723nvvpPlOldoEiIhIVrVo0YJbbrmF66+/ntWrV6+zbebMmXTp0oWzzz6bgw8+mClTpgDQuHFjnn76aR544AEeeeQRAO69914mT56cMACI161bN7799ttfgoDVq1czdepUNt54Yzp37szjjz8OhGDhww8Tz0m38847c9xxx3HzzTezzz778MQTT7Bw4UIAvv/+e776Kkza16hRo1/K2LZtWxYuXMiiRYtYuXIlzz33XEr5jlfd95MpCgLS5dXObyQiItXo06cP2223HY8++ug660ePHk3Pnj3p3bs3n332Gccff/wv25o3b85zzz3HjTfeyDPPpDRz/DoaN27ME088wYgRI9huu+3o3bs3b7/9NgAPP/wwd999N9tttx09evRI6fgjRozg3nvvpWPHjlx++eXst99+9OrViwEDBvzSYHDYsGH06tWLY445hkaNGvHXv/6VnXbaicGDB9O9e/e0y5Do+8kE83pwUevXr59PnDgxMwcrL4eSkvC+Hnx3IlKYPv30U7bZZptcZ0PqQFW/tZlNcvd+yfZVTUC6dOEXEZEioSAgXQoCRESkSCgISJeCABERKRIKAtKlIEBECkR9aPNV39X2N1YQkC79pxKRAtC0aVMWLVqkQKCIuTuLFi2iadOmNT6GBgtKl/5DiUgB6NChA3PmzKnVXPOS/5o2bUqHDh1qvL+CgHQpCBCRAtCoUSM6d+6c62xIntPjgHQpCBARkSKhICBdCgJERKRIKAhIl4IAEREpElkNAsxsoJlNM7MZZnZ+FdvNzG6Jtk8xs+3jtt1jZgvN7ONK+1xnZp9F6f9tZi2zWYb1KAgQEZEikbUgwMxKgJHAIGBbYKiZbVsp2SCgNHoNA26L23YfMLCKQ78M9HT3XsDnwAWZzXkSa9fW6elERESyJZs1ATsCM9x9pruvAh4FhlRKMwR4wIN3gJZm1g7A3d8Avq98UHd/yd3XRB/fAWreN6Imrr++Tk8nIiKSLdkMAjYHZsd9nhOtSzdNIicD/6lR7mpq+vQ6PZ2IiEi2ZHOcAKtiXeUH6qmkqfrgZhcBa4CHq9k+jPCIgbZt2zJu3LhUDpvUtt98Q5vofaaOKSIikgvZDALmAB3jPncA5tUgzXrM7ARgMLCPVzMmprvfAdwB0K9fPy8rK0s54wltttkvbzN2TBERkRzI5uOA94FSM+tsZo2Bo4AxldKMAY6Pegn0B3509/mJDmpmA4ERwMHuviwbGU9IvQNERKRIZC0IiBrvnQm8CHwKPObuU81suJkNj5KNBWYCM4A7gdNj+5vZv4AJQDczm2Nmp0SbbgU2Al42s8lmNipbZRARESlmWZ07wN3HEi708etGxb134Ixq9h1azfqtM5nHtKkmQEREioRGDEyXggARESkSCgJERETqKQUB6Sovz3UOREREMkJBQLo0bLCIiBQJBQHpSqcmYOJEuOGG7OVFRESkFrLaO6AopVMTsMMOYXnuudnJi4iISC2oJiBd8UGAegqIiEgBUxCQrvjHAQoCRESkgCkISFd8TYB6CoiISAFTEJAu1QSIiEiRUBCQrpq0CVCwICIieUhBQLpqEgTosYGIiOQhBQHp6tev4r2CABERKWAKAtLVs2fFewUBIiJSwBQEpGv16or3CgJERKSAKQhI16pVFe9TDQI034CIiOQhBQHpqkkQMHFidvIiIiJSCwoC0lWTIOChh7KTFxERkVpQEJAujRMgIiJFQkFAuv72N/j738P7VBv8KQgQEZE8lNUgwMwGmtk0M5thZudXsd3M7JZo+xQz2z5u2z1mttDMPq60Tysze9nMpkfLTbJZhiqZhaVqAkREpIBlLQgwsxJgJDAI2BYYambbVko2CCiNXsOA2+K23QcMrOLQ5wOvuHsp8Er0uW4pCBARkSKQzZqAHYEZ7j7T3VcBjwJDKqUZAjzgwTtASzNrB+DubwDfV3HcIcD90fv7gUOykfmEFASIiEgRyGYQsDkwO+7znGhdumkqa+vu8wGiZZta5jN9uQ4CJkyAe+7J7DFFRKTeaZjFY1sV6ypfDVNJU7OTmw0jPGKgbdu2jBs3LhOHBWDzGTMoBca/9RarW7asNl1ZtFywYAGfZfD8ZXvtBcC4Ll0ydkwREal/shkEzAE6xn3uAMyrQZrKvjGzdu4+P3p0sLCqRO5+B3AHQL9+/bysrCyNrCfxyScA7LrLLtAmeUXEr9q04VeZPH8ko2USEZF6J5uPA94HSs2ss5k1Bo4CxlRKMwY4Puol0B/4MVbVn8AY4ITo/QnAM5nMdEpy/ThAREQkA7IWBLj7GuBM4EXgU+Axd59qZsPNbHiUbCwwE5gB3AmcHtvfzP4FTAC6mdkcMzsl2nQ1MMDMpgMDos91K90gQEREJA9l83EA7j6WcKGPXzcq7r0DZ1Sz79Bq1i8C9slgNtOnIEBERIqARgysiXSDAKuq/aOIiEhuKQioidhFPdmwwY0aheWQysMjiIiI5J6CgJpItSagVauwbJjVpy4iIiI1oiCgJtQ7QEREioCCgJpINQjQxV9ERPKYgoCaaBB9bcku8rE2AwoGREQkDykIqIl0awIUBIiISB5SEFATahMgIiJFQEFATahNgIiIFAEFATWRahCgNgEiIpLHFATUhB4HiIhIEVAQUBN6HCAiIkVAQUBNpDpssB4HiIhIHlMQUBOxIGDNmtTSKwgQEZE8pCCgJnr0CPMBnHUWrFhRfTpd/EVEJI8pCKiJX/8a7r8fXn8djjyy+hoBPQ4QEZE8piCgpo4+Gv7xDxgzBv7v/xK3D1AQICIieUhz3NbGGWfAokVw8cVh2uAbbqhoLwAaNlhERPKagoDa+stf4Lvv4MYboXVruPDCim26+IuISB5TEFBbZnDTTfD993DRRaFGYPjwsE01ASIikscUBGRCgwZw772weDGcfjpsskloMKggQERE8lhWGwaa2UAzm2ZmM8zs/Cq2m5ndEm2fYmbbJ9vXzHqb2TtmNtnMJprZjtksQ8oaNYLHHoNdd4XjjoMXX8z+xV/BhYiI1ELWggAzKwFGAoOAbYGhZrZtpWSDgNLoNQy4LYV9rwUudffewF+jz/lhgw3g2Wdh223hsMNg9eqwPpMX6wULKt4rCBARkVrIZk3AjsAMd5/p7quAR4EhldIMAR7w4B2gpZm1S7KvAxtH71sA87JYhvS1bAkvvADt2lWsy+TF+u67s3NcERGpd7LZJmBzYHbc5znATimk2TzJvn8AXjSz6wlBzC5VndzMhhFqF2jbti3jxo2rSRlqrOlll9H/6KMB+Oyzz1iQofNv8dVXdInevz5uHF5SkpHjiohI/ZPNIMCqWFf51rW6NIn2PQ04x92fNLMjgLuBfddL7H4HcAdAv379vKysLMVsZ1CfPrDNNnTv1o3umTr/xIm/vN1zjz1CW4RisM8+sP/+8Oc/5zonIiL1RjYfB8wBOsZ97sD6VffVpUm07wnAU9H7xwmPDvJTs2Zhmclq+4ZxcVsxPQ549VUYMSLXuRARqVeyGQS8D5SaWWczawwcBYyplGYMcHzUS6A/8KO7z0+y7zxgz+j93sD0LJahdqyqCo1aKtYgQERE6lzKjwPMbHNgy/h93P2N6tK7+xozOxN4ESgB7nH3qWY2PNo+ChgLHADMAJYBJyXaNzr074CbzawhsILouX9eU02AiIjkoZSCADO7BjgS+ARYG612oNogAMDdxxIu9PHrRsW9d+CMVPeN1r8F9E0l3zkXqwlI5WI9dy48+iiceSY0aVJ1GvdQbR7/WUREpIZSrQk4BOjm7iuzmJfik04Q8P/+H9x3H/TuHRrJxVuzJgxEdO218OGHFesVBIiISC2k2iZgJlAkzdDrUDptAubMCcu1ayvW/fxzmK64tBSOOQZWrVp3HwUBIiJSC6nWBCwDJpvZK8AvtQHufnZWclVsUrlYx6f57jsYOTIEAIsWhaGIb7kFDjwQtt4aZs1K/bgiIiLVSDUIGMP6LfslmXQeB8TSnHlmaB+wbBkcfHDoN7/rrusfM9XjioiIVCNpEBCN43+cu683II8kkc7jgFhV//TpcOKJcN55YQ6CRMcsliCgWMohIlJgkrYJcPe1wDIza1EH+SlOqVzkfvopLHfbLUxLXFUAAKGRYKrHfffddecayFfx7SBERKTOpPo4YAXwkZm9DPwcW6k2AUmk8zhg4cKwbNo0cbr4xoHJjtu/f1ieckry8+eSggARkZxINQh4PnpJOtJ5HDAvGhU52YRAe+0FjzwS3hdLNbqCABGRnEgpCHD3+7OdkaKWzsU6WRBw991huuJ//lNBgIiI1EqqIwbOYv0ZAHH3LlUkl5hUHwcsX17x/p//TJy2aVPo1i214xaKdIKA8nKYOTN0lRQRkVpJdbCgfsAO0Wt34BbgoWxlqmgkCgIWLYIHHoDf/AZat65Yv+WWtTtuIYoPAp57LnHaG28MgyfFj5woIiI1klIQ4O6L4l5z3f0mwgx+kkjlNgEzZ4aLWFkZtG0LJ5wA77yz/jDBqR63GIOATz5JnHbixLDs3Ttr2RERqS9SfRywfdzHBoSagY2ykqNi9Je/wB13wEcfhc89e8L558OQIdC3b7irffbZ1I9XzEFAdZMnxVQeOllERGos1d4BN8S9XwPMAo7IfHaKTOxivXgx9OoFf/97GAVwq63WTdcg1acyldIXYxDQSFNUiIjUlVSDgFPcfWb8CjPrnIX8FJf4xwGvv159uliPgHbt0jtusQQB8QMgJQsC1JNARCRjUr0FfSLFdVITsTv7ZFXhMcmCgMWLw2iBMa+9VuOs1Yl0agIUBIiIZEzCmgAz6w70AFqY2WFxmzYGkgxtJykPFpRsbIDqjjtzJvzvf/DZZzBtWsXym2/WTb/33vDVV7DFFumdp67EX9g3StLUJL7WQEREaiXZ44BuwGCgJXBQ3PqlwO+ylKfikWoQkG6bgFjQsNtuFetatYLu3cN0w926hfdDhlRsP/bYUCOQbsBRF+KDgIZJ/kmqJkBEJGMS/sV192eAZ8xsZ3efUEd5qn/SvTAfdBBccgl06FBxwY8fa6Aqb74JV10F/+//1TibNfLWW2GAo379qk8Tf2EvL098PAUBIiIZk+ot6CIze8XMPgYws15mVsdXkwKUak1A7MKWajDQpg1cfHGYGGi33ZIHAABDh4bAYUIdx3J//GN4HPHpp9WnSScI6NUrM/kSEZGUg4A7gQuA1QDuPgU4KtlOZjbQzKaZ2QwzO7+K7WZmt0Tbp8SPR5BoXzM7K9o21cyuTbEMdS/VICB24dtuu+zl5bbboGNHOPpo+PHH7J0n3vffw/vvw9Kl4dHE4sVVp4sPApLd6W+2WcayJyJS36UaBGzg7u9VWpewhZaZlQAjgUHAtsBQM9u2UrJBQGn0GgbclmxfM9sLGAL0cvcewPUpliF/desGjz0G992XvXO0aBFmH5w9G844I3vniffll+u+Hzq06ot8/LqlSxMfUw0DRUQyJtUg4Dsz24poEiEz+y0wP8k+OwIz3H2mu68CHiVcvOMNAR7w4B2gpZm1S7LvacDV7r4SwN0XpliGupfOVMKHH568ZXxt7bxzeIzw8MPwUB1M/dC8ecX7f/wDXngBLrpo/XTxQcBpp8GFF8KyZVUfU20CREQyJtUg4AzgdqC7mc0F/gAMT7LP5sDsuM9zonWppEm0b1dgdzN718xeN7MdUixD3UsnCMimFi0q3l94Iey+O5x+OnzxRVi3bFnI61VXpXa8PfdMrUdD/DgGp54aXtdcA48+um662IX9oYfC44qrroJtt616KOX4IODzz1PLr4iIVCmlEQOj0QL3NbPmhMBhOXAk8FWC3aq6AlYe3aa6NIn2bQhsAvQnzGr4mJl1cV935BwzG0Z4xEDbtm0ZN25cgqxmR4Ply9kjep+L85dFy9Vr1zI+7vxNzjiDHU45hWUHHcT/brmFRosXswuw8oYbmLDzzsmP+8YbQPIyNZ81i1iENm7cOOw3v2G7t99moxNP5H9Ll/JTaSkALT78kD7A5G++YfGJJ9KiTx+63ngjzQ8+mO922YXpZ53Fyl/9CoDOs2YRm2fx5/3244ORI1kbX+MgIiKpc/dqX4RBgS4AbgUGEC7OZwJfAs8k2Xdn4MW4zxcAF1RKczswNO7zNKBdon2BF4CyuG1fAJslykvfvn09J376yT3cD+fm/LFzb7LJ+ttGjw7bLrrIfe7c8L5du/SOm8zkyeunXbDAvUMH9y22cP/mm7Du1VdDmnHjKtKtWuV+zTXuG2zg3qyZ+1VXua9c6X7eeRXHLClxP+gg97VrU8u3iEg9AUz0BNfF2CtZne6DhAGDPiIMDvQScDhwiLtXfr5f2ftAqZl1NrPGhN4EYyqlGQMcH/US6A/86O7zk+z7NNE0xmbWFWgMfJckL7mRL48Dqup6eMQRcPLJcOWVFfMaZHougqoa8bVtC08/DQsXhnYQq1dXpIvPZ6NG8Oc/h66F++8PF1wQpg/+4IOKNDfdFB4ZXHxxZvMtIlJPJAsCurj7ie5+OzCUMIXwYHefnOzA7r6GUGvwIvAp8Ji7TzWz4WYWa08wFpgJzCB0Qzw90b7RPvcAXaIxCx4FToiinvyTL0FAdfm4+WYoLYXjjgufM/01VteIr29fuOsueOMNOOecxOMkbLEF/Pvf4WK/fDm88krFtjPOCIHM5ZfDk09mNu8iIvVAsjYBq2Nv3H2tmc1y9yR9uCq4+1jChT5+3ai4905odJjSvtH6VcCxqeZBqD4I2HDD0G0wNppftoKA31UxwvQxx4R5D264AeZHHU0SDZY0eHAYdOiaa+DBB+HQQ0O5/vlP+OQTOOEE6NoVfv3rzJZBamf27DA+hYjkpWQ1AduZ2ZLotRToFXtvZkvqIoMFLV9qAhJdXPv2heFRxczCDPe2jFXzH3FE1duvvhoGDICnngqfk42YuMEGcOmlYeKkG24I65o0CbUAG28cBiRatCgzeZfae+WVUJPz+OO5zomIVCNhEODuJe6+cfTayN0bxr3fuK4yWbAKIQgA6N8/O+eN1QRUNylQw4ahu+BWW4XPNZ3cqH378Mhg7twQcGhAofwweXJY1vVQ1SKSsjSnr5OCMm1aWL77buJ0yWbuq6mqGvxV1qpVeN5/wglh5MSa2mknuP12ePVVOO+8mh8nV6ZPr36ApEIV+92TzQfxww8wa1b28yMi61EQkE25rgno2jU852/fPnG6bE0vnOrESNtsE4ZMbtasduc78UQ4++zQa+CBB2p3rLpUXh5+q9/8Jtc5yazYgFLVBQHucO+9oXFqCuNTiEjmZekWUIDcBwGpato0O8dN9jggG66/Hj76CIYNg+eeg86dQ2PCfBa7SL7wQm7zkWmJgoCpU8MQ0W++Gf795WkHH5Fip5qAbCqUIGDw4LDs2TOzx03lcUCmNWoUJmNq1y40SLs2fyeZ/EWxXgBjQUB8V9FlyyrGfJg6NXQVPfvs4v0ORPKcggCpuFP/+OPMHjcXNQEArVuHhoKFItkz80JVuSbg+eehR4/QK+TYY+Gzz+CUU0I6BQEiOaHHAdkUqwlo1y63+ciV224Ly7qsCYjZbru6P2dNFXsQ8PXXob3DU0+F9h/jxoVJqGLMFASI5IiCgGwqKYG774a99sp1TnLj5ZfDskmTuj93oTyKgeINAmJDPL/wQnjuf+WVcO650LjxuunMivc7EMlzCgKy7eSTc52D3GvUKNc5yG/FegG8/faw3HXX0FujS5eq06kmQCRn1CZA1jVyZOaPWfnOr659/31uz59MfBDwxBOZO+7hh69b7Z4rL71UfQAAahMgkkMKAiTo1CkszzwzjM2fCYceGpbJxinIto8+yu35k4kPAo44Au68MzPHfeKJMEnThx9m5ng1laxNSCE9uhEpMgoCJNh777Bs3hxOOimM4leVmTNTP+Ymm0CHDrXPW23l+zDC8UFAaWkY4yCTYxvsuGMILHJ1t52sd0gsCFBtgEidUxAgQewP9SWXQJ8+4Y70jTfWT3fXXakfc82auu8eWJXVq5OnyaX4IOD222HoUDj/fPjznzNzYSwpCYHFySfnZmjiBkn+zCgIEMmZPPgLLXlhxYqwbNIE/vMf2G03OOig0J2rT5+KdLHGXql44on8GA8/34OAVasq3peXw0MPhVqU664L7Rluv72iSn32bLj88rB9663DfAvdu4exEaqrVj/77PC7XnZZmL75iSfCvvEmTQrHPuSQzJcvWXW/ggCRnFEQIEFsrP1//xvOOit079t1Vxg4EN56K1RTpysfAgDI/8cB999f8b6kJNw533orbLppuHD/8AM88ki4kA8cCJ98sv4xNtkkBAOxoCB+MqZGjcIUzP37h0F6+vYNv/eQIRVp+vULy1xciBUEiOSMHgfIujaOZoju2DEEAuXlMGBAmKYX1h0CtlDke01ArBYGKi6EZvC3v8GNN4ZBdg48EJYuXTcAmDkTxo4NaY44IgQJL7wQHiXEGmVCRXX8oEHhjr+0NNzxjxiRvQApnQu6ggCRnFEQIMFVV4XllltWrOvWLVxUvv8e9tsPFi1SEJCu224Ld+GTJ1d/kYtvN1E5zR/+EGoKxo2Dffddd1vnzuHC/oc/wKhR8NprMH8+LF4MY8ZUpIsvf6dOoWbn1FPDvAoDBsCCBemV6dVX4eKLKwLDqsQ/4kgmFgQU63gJiaxdGxqBduyY/zVWUpQUBEiwwQZhWfki1LdvuKB88UW4G/3pp7rPW23l8o/rJZdUNLbs3Dk8n3/llXUvzH37VryvKlA4/vhQG5BqV78WLcIEPTH33bfu9qZNQ9Bw//3w7ruw/fapHRdg5cpw0frb30J5Tjqp6scT8bUbycRqKoqtJmDJksTfw6RJ4RHN+efDnDnw9NN1ljWRGAUBEiSqki0rg0cfhfffT++YHTqEi0Su5bImYM2a0Nr/rrugV6/QVW/ffaFNm/B8/vHH171QVHc3fPDB6U01HN83v7oL0fHHwzvvhNqDVPXvHwb/2WILGD4cRo8OkwIdfDCMH1+Rbvny1I9ZrI8DWrSoaGsRb8kS+P3vQ9fN2bMr1qcTOIlkSFaDADMbaGbTzGyGmZ1fxXYzs1ui7VPMbPs09v2TmbmZtc5mGeqd6v4QH3JImAch3WPlw0AwuQwCysths83CbHljxsB334XGl4ccEi7qRxwBv/1tRfpEF8KystTPGx8ErFxZfbpevWCnnVI/7uTJYdmyJdxyS5gc6JJL4O23Q4+SXXcN5UynUejChWFZjBfBqVNDw04Iv+3jj4eGm//4B5x2WphJMSY214ZIHcpaEGBmJcBIYBCwLTDUzLatlGwQUBq9hgG3pbKvmXUEBgBfZyv/9U4qd2Mnnhju+lKV6yDg+efDMpdBwNq16/aTb948BAD33huexb/+esV3tOmmmRvmNz4ISHZX3rx5zY/funVoH/DVVyEomDs39DpIpxw33hiWTz6Zfj4KwZVXhsdpBxwQgr5f/So8hrn11hBMxcR66IjUoWzWBOwIzHD3me6+CngUGFIpzRDgAQ/eAVqaWbsU9r0R+DNQZPWHBeDUU1NPm+sgYI89wjLRnXC2lZdXP2xuw4YhjwcfHD7feWfm5lmIP+emmyZOu+GG6R+/8gBAzZuHrqXTp8PDD0OrVukfsxAbnabiscegZ8/QIPOmm+C992CHHXKdKxEgu0HA5kDcAy/mROtSSVPtvmZ2MDDX3XM8IHqRSfW5bLJx4OPlOgho2jQscxkErF2b/DuLXYTTuQiec07i7fHnbNcucdqazPJYXQPRRo3g6KMrHhuko1h7B3z9NQweHKr+f//7/BhFUySSzX+NVf31r3yFqS5NlevNbAPgImC/pCc3G0Z4xEDbtm0ZN25csl3qtfbTp9MVmDt3LtMTfFftZ8yga/Q+2Xe6y8qVfDd/Pp/n8Lvfs0EDvvr8c77MUR72WLOG2XPmMCvB+RsdfjhbrljBFy1b4knyWRYt3xgwgPIEaUuWLWP36P3PP/7I+wnSbu1ObIaHZL9p7PxMm5Y07SbXXkuThQtZkOIxp3/2GXOL6P9pWbScctVVfN+/f6glmT692nTL27fn3SIqvxSGbAYBc4COcZ87APNSTNO4mvVbAZ2BDy3cYXYAPjCzHd19nc7O7n4HcAdAv379vCydRlX1UfPmcPPNbH7CCWye6Lv6/PNf3paVl1dMPFSVRo1ov/nmtM/ld9+sGZ0224xOucqDO1t27syWyc4/ZAgpTbV04IHw/PPsMWhQ4nRx/fSbn3QSCf/9L1sWuiBC4nSVJE0bbe+e4vFKu3ShtJj+n7ZsCccdR6/z12vXXKVmu+6a1vcvkgnZfBzwPlBqZp3NrDFwFDCmUpoxwPFRL4H+wI/uPr+6fd39I3dv4+6d3L0TIYjYvnIAIDWwww6h69JhhyVOFxtPAOB3v0vcCry8PPe9A1q1Cl3Xvvmm7s/988+hin/SpMwd8+mnU2t5H9+24K9/TZz2gANCcAFw9dVhsKFcSOdRUyFI5VFQPA0WJDmQtSDA3dcAZwIvAp8Cj7n7VDMbbmbDo2RjgZnADOBO4PRE+2YrrxLZaKPkaY46quL9zJmJLzC5bhMAcMEF8MEHoVvW7bfX7XPn994Ly3T69yfTsCE0a5bePslm8YOKKaIvuCCMXnfuuev2Yc+mZ54Jy44dE6crNEuXptYe5aOPwlJBgORAVscJcPex7t7V3bdy9yuidaPcfVT03t39jGj7r919YqJ9qzh+J3f/LptlkEriGzWdemro3lXdIELuqV2Asum002DKlDCC3vDhoR97qiPv1Vas7P371835KosffyBVDz4YeivcfDN06RIGFJoyJfN5ixcbqrqYegfEhlS+7bbkaXv2DIMKFVP5pWBoxECpuWuuCS3PTzml6rHi86EmAEItwKuvhn7YX3wRhun905+yPwRyrKfFlVdm9zzVefzx9Efh23770MVvxgw444zQd3+77cIcBa++mp18xgLLYroTTndsioYNi6v8UjAUBEjNtWgR7nQ++igEBJXlSxAAIR/HHRe6aZ1yCtxwA2y7bUVVdDbE/qgXYpewTp1Cn/bZs+Hyy8MjlX32qdh+112ZO1fsuXkx3QnHGtBecklq6UtKFARITigIkPTFt3Y+6KDQTuCyy9afSCafgoCYVq1C24Dx40Pr7UMOCSPcffVV5s9VyEFATKtWcNFF4fu5/faK9ekMNZxM7PsphiDggw/C/4f99w+flyxJbb+GDYuj/FJwFARI+q66at1q5ptvho03hv/7v3X/kOVjEBCzyy6h1f5114Wx7jt1CtXnmRQLAmoyGE9dS/bYoGlTGDasYnTDdBsnJhKrCSjUO2F3+O9/w7TMffvCf/5TESS1aJHaMV5/PbxE6piCAKm9Nm1C1fGECTByZMX6fA4CIFyc//Sniu5xl1+e2eMXQ01AZQ88EMYU2GqrzB2zUB8HrFkTZlHs1y8EAB9/HLpYfv11+L/w8MPr1pqJ5CEFAZIZxxwTGo9dcAF8+WVYlw/jBKQiNoFOVY0ba6MYg4AWLeDQQzN7zEJ7HLB8eWgL061bqPr/6acw78OXX8KIEeE7MgvDJ2dqLgiRLFEQIJlhBqNGhW5xp54aagHyvSYgJvaHOn5a10yItRAvpCAgF79XoT0OGDoUTj89TBH91FPw6afhUViTJrnOmUjaFARI5myxRagOfemlUG1caEFApsUm0SmkICAXYkHAyy/nNh+pmj07VP9PmBBqRTIxFsZvflP7Y4jUgIIAyazTTgsD8pxzTrgTLoQgIFt3cNdeG5aF0DDwn/+EXr3CAEF1LRYkPf103Z+7Jr79Noyumcl/21ttpZoEyQndokhmNWgAd98dBphZs6YwgoBsX6QLoSZgr73qbiTFygppzoD//S/UBCzI8HQlJSWF0yZCiopqAiTzunWrmFNAQUBhfAe5VEhBQGyc/3RHBEympKRu57UQiRTALYoUpPPOg2nTYN99c52T5OIv0uXlmZ/vIN2he+ubQqgpiYmfRTOTGjQI//YKpR2NFA3VBEh2NGoE998fGlDlu759K94femjmp9KNdUGUqhVSEJDJQZLixWpDVBsgdUxBgEj89MhjxoSgINayvzZ23TVMj9uyZe2PVcwaNAgz6f3617nOSXJNm2bnuLEgYNGi7BxfpBoKAkQAdtghLC+9NMwBv/POcO+9Vaf9+mv44YfkxywvD+0jJLkuXQqrbcB112X2ePvuG3oH7LVXxTTEInVAQYAIVDQO3G23MAnMLrvAySfD734HK1asm3bLLUPvh2RWrVK3r1QVylS6sRb8O++c2ePutBO88ELoebDrrjB9emaPL1INBQEiUFHNW14e5kJ46SW48MIwZe6uu8KsWWH7ww+H5ezZVR+nvBzefz/MvDdpUu663RWahg0z3+I+G2JBQDZqLcrK4LXX4OefQzCaiUdSIkkoCBCBigZfsbv+khK44orQRuCLL2D77eH55+HYY9ffd+XKcBd32mmhDcCOO4aZFgHmzKmb/Be6QqkJiD2zz9aji7594a23Qg3SnnvCm29m5zwiEQUBIlARBCxfvu76gw4Kjwc6dYLBg9fd9vDDcMQRYQz5QYPgwQehf//QK2LmzDrJdtFo1KgwgoDjjgvLbPZo6NYNxo+H9u1hv/1C8CmSJQoCRAB+9auwrGqMgC5d4O23QxuBeMceC2+8EXoXPPccfPcdPPkkHH88tG2b/TwXk0KpCYjJVlfBmI4dw7+tHj3gkEPgkUeyez6pt7IaBJjZQDObZmYzzGy9ibUtuCXaPsXMtk+2r5ldZ2afRen/bWYts1kGqSeuvjqM9X/IIVVvb9YsDIccb8IEmDcP7rgDDjxw3e5jhTBfQD4plCDgiCPCsi56fWy2Gbz6amgfcOyxMHJk9s8p9U7WggAzKwFGAoOAbYGhZrZtpWSDgNLoNQy4LYV9XwZ6unsv4HPggmyVQeqR5s3DKIfJnvW2bh2WLVqEqv/qRhcspO5u+aBQGga2bBlqeepqVL+NN4b//Cc8ljrzTLjsMo1AKRmVzZqAHYEZ7j7T3VcBjwJDKqUZAjzgwTtASzNrl2hfd3/J3WO3DO8AHbJYBpF1fftt+COcbFTB2EWiTZusZ6koNG5cGEHAqlXZm3q6Ok2bhsdMJ5wQ5uSI9VCRwrVyZQjuhg8PfyvM1u+KXEeyGQRsDsT3o5oTrUslTSr7ApwM/KfWORXJhmeeCd0FJblGjcIFNt+tXJm9UQMTadgQ7rknXCw+/7zuzy+198MPFY2JW7eGAw6Ahx6q2J7p4cpTlM1Bu6uqL6tcj1VdmqT7mtlFwBqgyrDYzIYRHjHQtm1bxo0blyS7Ihm28cahl4B6CiTVed48tli9mtfz/P9pjzlzaLZmDRNzlM89GjRg9syZzMrz70mCJgsW0Hr8eFqPH0+LKVNosHYtK1u1YlFZGd/tuiuLt9+ePfbfH4C333qLVbHHjXUom0HAHKBj3OcOwLwU0zROtK+ZnQAMBvZxr/oBmbvfAdwB0K9fPy8rK6tRIUSkDrzxBpSXU7bHHpmfxTGTNtoINt2UnP09KSlhy44d2VJ/z/LfDjvAxInh/TbbhDZHQ4bQZMcdad+gAe0rJd9l9eowYFQdy+b/tveBUjPrbGaNgaOAMZXSjAGOj3oJ9Ad+dPf5ifY1s4HACOBgd1+WxfyLSF2J9abI93YBK1bkdijoVatCbxTJf7EAYPx4+OSTMIBYosbEN95Yd3mLk7WaAHdfY2ZnAi8CJcA97j7VzIZH20cBY4EDgBnAMuCkRPtGh74VaAK8bKHx1TvuPjxb5RCROhALAvJ9voVctQmI9/33uT2/pKZDhzBiaGxysurEusfmqP1QVifydvexhAt9/LpRce8dOCPVfaP1W2c4myKSa7EW94VQE9CiRa5zEXqo1FU3RamZgQNh7NjkY4a8+WbmJ6RKQ1aDABGRlOT6ccCMGXDJJcnPP2NGmEUy15Yvhw02yHUuJJHRo2Hp0uTpcjxIloIAEcm9WBCwdGniIZdXrYKvvoLS0sye//nnQ/et0tLEAz21axfu8HJt6VIFAfkulQAAwqRRALvvnr28JKAgQERyb+ONw7K0NIyb360bdO++7rJDh5Bu5Up49tn1J3SqjdhALZMnF8bF9Zpr4O9/z3UuJBOaNQuDivXokZPT53FfHBGpNw49FJ56Ci6/PEyh++OPYTbGs86CAQNgiy1C97yVK0P6667L7Pljx83nRonxxlTuaCV5JdZzPTbrZDILF8KoUcnTZYFqAkQk9xo1CoHAoYdWrHOH+fNh2jT47LOwvPnmsO2bbzJ7/hUrQivtQpnzoRAmW6rPfvghLLffPnG6PKAgQETykxm0bx9ee+0V1sWCgNjjg0zJh65/6ejTJ9c5kEQWLgzLAphSXI8DRKRwLFkSBltp1y6zx12xojCCgKnRcCn77ZfbfEhisZqqAphATDUBIlI4Ntoo9KmeOxe+/DK0FcjEMMOffpq8P3c+iN1Z6nFAfps1KyxTDQIeeCBMU50DCgJEpLB07AiPPgqdO4e7965d1+9J0K0bbLhh6sf87LPUu3TlUsPoT7aCgPxSXg4ffBAabD7zDEyZEoLKjh2T7wupNyDMAgUBIlJY7rkHTjtt3QaDkybBE0+EP8aVVT3H2PppMtnlMFtiDRcVBOTeihXw2mvhov/sszBvXqiV2m03uP760Mg1R3f36VAQICKFpVkz2GOP8Iq3cmUY0W/aNHjpJbj99tSOt2IFLFhQEI24fqkJWLs2t/mor9xDALpgAfz3v/Dzz9C8eRhA6uCD4cADYdNNc53LtCgIEJHi0KRJGHClR48wW1uqQcAf/xiWX3yRvbxlih4H5NZTT1X8uxo+PFz499qrMBqVVkNBgIgUn/btQ5uBWbNg881hp53WbzcQq6r98MOwXFYAM5PrcUBuffJJWLZvD7fdltu8ZIiCABEpTrEW2vPmhdb/zz677sWzbdsQDLz9dvhcCL0DzMJzZz0OyI1NNgnLl17KbT4ySOMEiEhxOvPMsBw3LgQBy5aFhoTPPBPG3j/wwHWDgkIIAqBi/nmpewsWhCCse/dc5yRjVBMgIsXpH/8Ir5hGjSq6Dx58cMV6s7Dcaqu6zV9NKQjInbFjQ21AoQwvnQLVBIhI/bZgARx7LFx9da5zkpqSEgUBudKkSRiwqoioJkBE6re2beHBB3Odi9Q1bKg2Abny7bdFN2+DggARkUKixwHZtXp16C46bVrFKzYo1aJF8PXXuc5hRikIEBEpJAoCMu+11+DGG8PFfubMdWtaYr1IDjsM7rwzBAlFREGAiEghKSlJ7XHAkiXh+XWs4aNUbfVqOO+8MF7EIYfAEUdUNCDt2nXdoX/nz4ehQ3OV06zIahBgZgOBm4ES4C53v7rSdou2HwAsA0509w8S7WtmrYDRQCfgS+AId/8hm+UQEckbqdQEzJoFXbqEAW2GD6+bfBWqPn0qpmh+/PHEaZ99Nvv5qWNZCwLMrAQYCQwA5gDvm9kYd/8kLtkgoDR67QTcBuyUZN/zgVfc/WozOz/6PCJb5RARySupBAGffx6Wp50WRrmL3dl27x5GUIyvHZgxA0aMgFWrkp970SKYPTscv1mzxGkHDgznPuSQcEddWhpeW25ZN13sFi6Es85KPhJkLACop7JZE7AjMMPdZwKY2aPAECA+CBgCPODuDrxjZi3NrB3hLr+6fYcAZdH+9wPjUBAgIvVFw4ahWvqtt6pP89FHFe/jx0qAMOFN164VgcHnn4cx8fv0Sf7o4IMPwvL88+Hww6tPV14OL74Y3t97L/z0U8W2Ro1CLUUsKCgtha23Th5UpOuNN+Cxx2DbbROP7d+sGSxfDjfckNnzF4hsBgGbA7PjPs8h3O0nS7N5kn3buvt8AHefb2ZtMplpEZG81qJFaMi2++6ppR83Llxk41u7T5sG77wDo0eHmfE6dqy4wCfSt29Id8st4ZWKJUvgm29CsDF9+rqvV14JF+BsMQvfVRtdJqqTzSCgqpCy8sTe1aVJZd/EJzcbBgwDaNu2LePGjUtndxGRvNT43HNpnkI3tQarVrGydWt+cg8X3AYNYJttwiuWZuVKms2dy5oNNmBlCn8jSy69lE3feYfVsTH0E6X96SeW/PrXrHr99YqVW20VXgMHhs/l5TRZtIim8+bRIAs9Hla1aMHPn3xSMfGPrCebQcAcoGPc5w7AvBTTNE6w7zdm1i6qBWgHLKzq5O5+B3AHQL9+/bysrKyGxRARkV8MHpzrHEgGZXPY4PeBUjPrbGaNgaOAMZXSjAGOt6A/8GNU1Z9o3zHACdH7E4BnslgGERGRopW1mgB3X2NmZwIvErr53ePuU81seLR9FDCW0D1wBqGL4EmJ9o0OfTXwmJmdAnwNJGidIiIiItWx0DC/uPXr188nTpyY62yIiIjUCTOb5O79kqXTLIIiIiL1lIIAERGRekpBgIiISD2lIEBERKSeqhcNA83sW+CrJMlaA9/VQXbqWjGWS2UqDMVYJijOcqlMhSGdMm3p7pslS1QvgoBUmNnEVFpSFppiLJfKVBiKsUxQnOVSmQpDNsqkxwEiIiL1lIIAERGRekpBQIU7cp2BLCnGcqlMhaEYywTFWS6VqTBkvExqEyAiIlJPqSZARESknlIQICIiUk8pCBAREamnFASISE6YmeU6D5lgZhvkOg/Zpt+qMNTkd1LDwHrGzNoDS9z9p1znRapXjL+Tme0MNAd+dvcJ0boG7l6e25zVnJkNBPoAN7n78lznJ1P0WxWGTPxODbOVuUJnZvsDg4FPgI/c/S0zMy/gqMnMDgROB04GiuLiot+pMER/gP8BvAJsZmbL3f1Ydy8v1IuLmQ0CrgZ+X/miUsj/BvVbFYZM/U56HFAFM9ud8OVOAzYA7jezo9zdC7VaLPpPcBVwpbt/k+v8ZIJ+p8JgZg2AYwllGg4cB7Qzs2cBoj9aBfV7mdk2wEhglLuPM7NNzWxbM+sNUIj/Bi3Qb1UAMvk7qSagau2B/7j7rQBmNgl4KgoYR+c2a+kzs7bAH4DX3X28mbUEhgLLgBnuPj6H2asN/U4FIPqD9CHRTYe7LwP2MbP/mtl97n5iAd6JNQTGAh7V3PyRMLFLSzP7yt2HFWCZYr/VZMCiz8XwWzUAngfKi+W3yuT/KdUEVG0h8MvsS+4+DjgM+JuZ9c9VpmoquqN8CFhiZhcCrwE9o9coM9s7l/mrhe8Js2oBRfM7PUqR/E5mtmHcx0+AP5tZ17h1vwU2MLNf123Oas7MNgJw94+AUUA34BbgcXc/EjgR2NLMynKUxRqLu2h8AZxnZqVxmwvut4px96nAvUBX4GYK+Leq1LBxGhn4nRQERMysr5ntY2ZbuftrQCszeyi2PbrAPABslas8pisq0wAz6+zuDwKfAnsBd7v7Ge5+HvAgobFMQTCzLcxsKwB3fxnY2Mz+FdteoL/TFrH/yO5+LzAF2JfC/p0OBu42s9FmdgDwInA98KaZdQNw98XAWqBFzjKahqhMd5nZY1GZ5gJ/B/7k7qMA3H0+MI9QroJgZmVR2QBw938TLppvxIK2AvytKpfpA+B+4NxC/a2iWoxR0b+/Xd19DHAftfyd9DgAMLMhwKXADGCZmQ1z94Fm9l50gTne3VcTWmFuBzycw+ympFKZfjKzc9z9ITP7GPgwLunGOclgDZjZocAI4Hsz+wB4090PMrM3C/h3ii/TJGCiu4+OqvqmxSUtpN+pK3AbcATQD9gD2A+4EHDg32Z2G9AS6E34Q5zXqijT7oQy3RRdNGPpDiPU3MzORT7TZWb7Ak8CP5pZK3e/D8DdrzWzcsLjtVHAJhTOb1VdmaaY2Sdx6Qrmt7LQCPB64FTCDcK5ZvaZu19tZmupze/k7vX6RXiuPB7YJvr8BFAWt/1x4F+EO7FPgG1znecalmkPoGmldEOBD4Buuc5zCmVqB7xJqNJrBvwJmAD8Jtr+b8JFv5B+p6rKNB44uVB/pyi/vYDRcZ+3By4m3DWXEC6ew4HbgR65zm8tyvSXqEwdonUnAhOBnrnObxrlGkHohdIXmAycWGn74Oi3uqOAfqtqy0Ro62DAScCkQvitor8NdwNHx617mFADFft8YE3/T+W8gLl+AVsA7wCdoy/7c0IjkgeBE6I0OwAHAVvnOr+1LNM9hC4yAGXA6wX0HztWpi2jz+2AZ6N/9P2jdbsU6O9UuUy3AoOidfsW0u8U5blx9Af29Lh1fYEbgL1znb8Ml+naWJkItQNb5TqvaZarIdAmer9vdNE8OW67xS8L4ZWsTHG/XcH8VkAXQhV/w+jzhcAlVaRL+3fSYEGAmV0KHEL4j/4A4Y/VgYRGZhe6e95XF1WWoEwHA39x9zlm1tYLqBuamV0BtAHuIpSlAyHAae7uf8ll3moqQZmauPulUZo27r4wd7lMzsx2BBoR/gi9ZWH8hqOAF9390SjN+UB3dz8xdzlNXTGWCdYpV7lHA8zEbRsAXAdcBKwBfkVoVFzueXyxSLNMbd39gbrPZXqiMjUGVrn7e5W2HQls5+4XRo81fgL+S2jfmdbvVC8bBprZQDO70MwuiZ4ZXUy4g3wDeMbdV3l4zteKULWe99IoUxvCHSj5HgDEleniqLvc3cCXhGrzju5+crSuj5k1zV1OU5dGmXYws+YABRAA7A+MIQQxD5rZcOAzwiAmA83s7Cjp3Ch9k5xkNA3FWCZYr1wPm9mZsR4P8Etj2+MIvVQeBd5z97V5HgCkW6b3c5LRNFQq0+ioTPG9bUqABmZ2OGFckS/cvWaBWq6rOXJQrVIGfES4I76aUFW0W7RtGKHxT2fgAOA9wh/mnOe7npfpGsKz1l2jbU2pqKY8kdBfu3Gu81zfykR4ttqE0EL5iGhdH8IdyZmEWo29gf8R2qV8Rbh7yXne61OZEpSrN/AyIQDdIC7tUYTGcnndrqaelql5tG5/4FtgXG3LlPNC5+BLvhS4IO7zM4TnstsR7pBviD6/VQj/uetRmcZEZegdfW4AnAF8DPTKdX7ra5mifI8ALgc2jD73JIxxcGr0uRGhy2abXOe1PpepmnL1AF4Fzog+NyA0eCykNij1sUylhBuKWpepPj4OmAc0sTA6G4RW198SBv741t3PJQy4cLC7f1jNMfJNfSjTJMIgTneY2QYexsWeDPzW3afkKI/pKsYyQRjXYFNgKzNr6O4fE+5a/mxmfd19tbt/4Xn+WKOSYiwTrF+uqcB5wB/NrI+HKuXLovWFor6VqTcwE9glE2Wqj0HA24TuPVea2ZPA9u5+EOHuax8Ad5/j7t/nMI/pqi9lOphwkYyVaby7f5a7LKatGMuEu/+H0DDp90BPM9vQ3ScBL1AgA7FUVoxlgqTlytvn/onUwzKZh3YaSzNxrnrRO8DMStx9rVkYVN7CiHPtCI3kxrr7CjO7FXjJwyhMeU9lUplywcy2Jgzy87G7r6i07VpgI2AF4fnruYQ2D1/WcTbTUoxlguIsl8qU+TIVdRBgZl3d/fPofYm7VxnBm9kwwtStv3H3L+oyj+lSmVSmXDGzwcCVwCJgAXCFu39sZo08jNSIme1FGFinKzDS3T+p9oB5oBjLBMVZLpUpS2WqbaOCfH0RRrpaBjwSt66kUpqGhMY9TxE1zsrnl8qkMuWwTLsQusj1iT7/E7gnbnuDyuXLdZ7rY5mKtVwqU/bKVJRtAqL+1WcSpmVdZdFEQB6qZePnS2ju4e7rGHefXOcZTYPKpDLlgavd/X/R+4sJk2w1gV+mNt0hurOBwnluXoxlguIsl8qUBUUZBLj7z4Sxox8htOhtGvfHeA2AmW0HHG9mTdx9ec4ymyKVSWXKsXcJtRaYWQmhL/OWRBMbmVkHoDth7AM8unXJc8VYJijOcqlMWSpTUQYBAO4+z91/cvfvCDMvNYv9MTazXsDWhAlBVuYyn+lQmQpDkZZprbsviT4asBj43t2/NbNjgXOAp919Qa7ymK5iLBMUZ7lUpuwp6oaB8cysNWH86F0Iwc8eHuaTLlgqU2EoxjIBmNl9wHzCrIAneWGNbVClYiwTFGe5VKbMaJg8SXFw9+/MbAowCBhQDH+EVabCUGxlMjMjjJi3e7Tcx92n5zZXtVOMZYLiLJfKlFn1Jggws00IY+fv5+4f5To/maAyFYZiK1P0bHKVmV0GvF/of4ChOMsExVkulSmz6s3jAAAza+qVBmModCpTYSjSMlmBNMBKWTGWCYqzXCpThs5ZZN+hiIiIpKhoeweIiIhIYgoCRERE6ikFASIiInnEzO4xs4Vm9nEKaW80s8nR63MzW5zWudQmQETSYWZrgY8IXZnWAPcDN7l7eYJ9OhHmP3+kTjIpUsDMbA/CVMIPuHvPNPY7izAXwcmp7qOaABFJ13J37+3uPYABhO6PFyfZpxNwdLYzJlIM3P0N4Pv4dWa2lZm9YGaTzOxNM+texa5DgX+lcy4FASJSY+6+EBgGnGlBp+gP1AfRa5co6dXA7lGV5TlmVmJm15nZ+2Y2xcxOzV0pRArCHcBZ7t6XMC/JP+M3mtmWQGfg1XQOWm8GCxKR7HD3mWbWAGgDLCSMirjCzEoJdyX9gPOBP7n7YAAzGwb86O47RLOmjTezl9x9Vo6KIZK3zGxDwrDjj4fBBYEw4VC8o4An3D2t2QYVBIhIJsT+MjUCbjWz3oSpT7tWk34/oJeZ/Tb63AIoBRQEiKyvAbDY3XsnSHMUcEa6B1YQICK1YmZdCBf8hYS2Ad8A2xH+cFU3SqIRqjZfrJNMihQwd19iZrPM7HB3fzyaa6CXu38IYGbdgE2ACekeW20CRKTGzGwzYBRwazTcaQtgftRT4DigJEq6FNgobtcXgdPMrFF0nK5m1rzuci6Sv8zsX4QLejczm2NmpwDHAKeY2YfAVGBI3C5DgUdrMuSwugiKSFqq6CL4IPB3dy+P2gE8CSwDXiPc7W8YXexfAFoD9wE3A5cDBxFqBb4FDnH3H+u4OCL1moIAERGRekqPA0REROopBQEiIiL1lIIAERGRekpBgIiISD2lIEBERKSeUhAgIiJSTykIEBERqacUBIiIiNRT/x/w1wPvbqClmQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot for risk-free returns\n", + "plt.figure(figsize=(8, 4))\n", + "plt.plot(df['date'], df['rf'], color='red', label='Risk-Free Returns')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Return')\n", + "plt.title('Risk-Free Returns Over Time')\n", + "plt.xticks(rotation=45)\n", + "plt.legend()\n", + "plt.grid(axis='y')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7b3745c5-4b7b-4118-abec-6d2b87af06d0", + "metadata": {}, + "source": [ + "3. Compute the means and the standard deviations of the three time series and interpret the results." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a2df0652-4f1a-46b2-becf-581c70734b9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Returns:\n", + "ret_apple 0.022536\n", + "ret_index 0.009536\n", + "rf 0.003318\n", + "dtype: float64\n", + "\n", + "Standard Deviations:\n", + "ret_apple 0.131109\n", + "ret_index 0.043376\n", + "rf 0.002795\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "# Compute means and standard deviations\n", + "mean_returns = df[['ret_apple', 'ret_index', 'rf']].mean()\n", + "std_returns = df[['ret_apple', 'ret_index', 'rf']].std()\n", + "\n", + "print(\"Mean Returns:\")\n", + "print(mean_returns)\n", + "print(\"\\nStandard Deviations:\")\n", + "print(std_returns)" + ] + }, + { + "cell_type": "markdown", + "id": "c91066a0-28a6-45fe-b036-03fdd2c79362", + "metadata": {}, + "source": [ + "4. What was the maximum loss in a single month when holding Apple stocks? What are the maximum losses for the *S\\&P500* and the risk-free rate? Interpret." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "ff0669f7-d362-41f0-872d-085e17022ef0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum Loss for Apple stocks: -0.577\n", + "Maximum Loss for S&P 500 index: -0.225\n", + "Maximum Loss for Risk-Free rate: 0.000\n" + ] + } + ], + "source": [ + "# Compute maximum losses\n", + "max_loss_apple = df['ret_apple'].min()\n", + "max_loss_sp500 = df['ret_index'].min()\n", + "max_loss_rf = df['rf'].min()\n", + "\n", + "print(f\"Maximum Loss for Apple stocks: {max_loss_apple:.3f}\")\n", + "print(f\"Maximum Loss for S&P 500 index: {max_loss_sp500:.3f}\")\n", + "print(f\"Maximum Loss for Risk-Free rate: {max_loss_rf:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "30404916-65d2-40e3-be36-b0edb762db49", + "metadata": {}, + "source": [ + "5. Compute the pearson correlation between *’ret_apple’* and *’ret_index’* using the function `cor()`. Interpret the result." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f832d26d-f2b1-4a99-b0a1-b2af7f664fe2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pearson correlation between ret_apple and ret_index: 0.466\n" + ] + } + ], + "source": [ + "# Compute Pearson correlation between 'ret_apple' and 'ret_index'\n", + "pearson_corr = df['ret_apple'].corr(df['ret_index'])\n", + "\n", + "print(f\"Pearson correlation between ret_apple and ret_index: {pearson_corr:.3f}\")" + ] + } + ], + "metadata": { + "date": " ", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "title": " ", + "toc-autonumbering": false, + "toc-showcode": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Machine Learning for Economics and Finance/python-exercises/python-exercises_solution.pdf b/Machine Learning for Economics and Finance/python-exercises/python-exercises_solution.pdf new file mode 100755 index 0000000000000000000000000000000000000000..f33583ab3890eb5c7409a7df36a9239614e4e83a GIT binary patch literal 164531 zcma&NV~}UTw=Gz<*=5_dZSz;QZQJOwZQFKrxy!a~oZe!?TDr#zMZ(_VhauFsh6PV{cXA*ht@W+5X>>u*Mq2KFb$>76`=RL1@7J;; zz)QFDbBK`!*S?!pHklao2Rseb3)Kma>&LBmSpaaMR~`BUR?vG;5-0SJeFj=7I80>kiFq$sH866ipJC&if|k^Qrzy>C%mYfX0D? z<92?$;Ao18&BPKX1uuAH9$)E18-uK zpQZKp>+rz#>kvI;TK1i;n8)>V5nq%-z)ntgbfT+}wQ{IUsQlMh=g|t{M?xQ%p{3(8 z8UWY!yl~+3Vx~lx&LlJ)jPG>;cwUKV5a48@V9T3oMHVE_vGSD4)%L_!aVcI6w;yYFm-y;&viH{l) z)Om8^_PF7&d}Qb5VIi)oRB%Y(n^>(%km~>)fsUE2*U0Ice))+w`C#f0nSKvt zf>wl;^TA9S{sv9@lfx|AeSUx+>=4R3Lb7C&Ih3L$(PHqd4Pak~u<*2`2#SyE3UN5o zTU*oIh)XV&(pm>H0dH=Ry!)~UXoFz6{(6F+e*^8`5~lGn+%;ky2zv?q_~djzmDFDr zTnmKV?6D*$vbD6PytnP_2{y7O(8}y$hw#mc9SlbM0K(vyd8*?m+uw9ual*GhZ9p&#i5`GO-^pW-&gJQv=l20HM z!puYgSm>;b0&+$EIC*J2p#AjP9!=rMVuGl+eRO21= zvRl)z+@2}l!YDI*8)pR?yznpqUR>zQSPQqA!jSo)nGt%|izUEXa92dV1*$TjWZ5CSdn4@L+k^)vL*068k)ZHee zq+i=cyHT>*#3hdDpqtYlUwV1bznJIEr*VM92W{%hX_y5WD)&kA9yB~Qi31LLSpt)+ zbXn0CE}NzdDMHgF(oYO0n&qxXH z^*f66j$!1*EOIc~a~Rs_j8@tkqLOtF_%4`cw7Ps)hip|`U0J;Q>c#$O{eGD|fCf7K zHO54i^iWoZ?*DdeuR>z04`XU)^1tEq-{?O8%)vWEJdrAbBD9+P9E%MW3XQK$v%(l zZ?zaprzVq{VFq07Av* zY;u>?v!(FR%x>G)Pt9Sn^czcgO5HP?f))2pcy{@IFq&{tS_*9z2ew%!yPa{GIebI| zK|38^y91|y+fmikTImcJ4jEg5AJdVyL`}(j*kq<$5PToiF2ICdst~N7ygGmps%lN@ z?;j)yER^q5I5Dp%r3i%{+z`KeRXO?O>{S#E4m$Wa%yp~pd)3lRZVw%l)U;jJR$}$p z^*1ZA;V5(^HRt)5(bGfP>`vPxt0X-g8rZc%&| z+``)NPHtW)I&&J@%W9|PiN0WM&U%A&JVn@f$2#r)R%=-`SSEGY8+awy8oJ8Rt_qBb z(EcT1>yRBhGiMl$>82oKB3WS5l zk-KhlvPPomX)N}%;2a0OnwGlo0UNbI+0kp3&Vry8vtQIe`WooJ541chPG@$bp|Jd9 zz#l7NhI>WO880(oL}T_v@!W`u!M)cKCRFYL4sh?j#_En{g-m~|9fL^VVbJNCk1!8& zDQY7j$Fe)DqV*knubuGjE;>L-imI9VDKY4H6=JZ>2bar9LSmZ#w zGY9Nvzz{vU4cLWwQ3q3M(eK&iV0cC9r6xFb>ws+r`qFx@>SD5nK+4UMVQ7*?i%U%L zAFN?T=g$cPAEl){KxkJvct_7l^!Av(7R_y7dcL{j(k$PTJuhNeobKGm0jp>@9|^ za;QCf5Z@dmU}0(%D38z$Jc+*W9|bAA`@C|fya|N*Qd$k3hO?Ekww=9MtoQ$545*J2 z0u01`X?R6yMi(PjLD1u`f>M7UT%eyRZ!}lYypX&c*kdW2)e;9-N3M^3i9L6u<@(4l z!~3xyowjkUaQ5{wm1h^Gw_V6n!x?BUpI=4l`4qV?ud{1=)5e<4=`K};WrBBQ&3}o! z4C9&R;ZB#VPNnA5U}9Vd!A*b0`4vyus_s!&didisaCw_pS%MVl$5&%DBW@ccY#vA7 zJYheIX|j9${lE$~2alOS=UV_JJ&%&$LNVtFwe7jh*2qrtu6(*q>Ef7Ep_+4)>~m0e zTLI?#?LHv6z1^>u z(P0MR7R79_HO(ZEqD^Cx#Hk3y9+0mXeCnsRiP!Z!2fe1Wh)Xu7ZGwQ|yPx|nH~K5Z z?$-Kf8m@hfdEX};RJi37hZm&SWwY3>0+0`;U=3F7aJi36fQ5Pk@LpB^&xmW^X5BZJ z8&~0XaaFkt&jymi-6u_=2q6u9iHshLSk>(05@$&7DrV5P^!EwV5Jr=uvHHps#L>f> zJioEay}XZjTJ1rT?dOW)^W}Fz)!yo?P3@*)<;@X0hs|(&ctckBqvYmiIWZv7(yyO$ zq!@3v#+z4P$gP!X+3?ehREEmgo6Y(o|E@(&trzqYLmb3@@xT*d)Fz)K{(wufJJ8bV zeg_d7(ni&3;pIV{IU^@*>|Xu;CCQYrn?ws+0~x>lWdLaG4Hsnqlpm2f;>=#IsrE$O zvi4c!8}s|eTAE-vu62u_o}BgaQ5G}Jd&je(mZPp^K`}B~>{!v7<=D&DUR4du7%7@X zV>XM^X}ef}24%)qQYCH`>qAE*wH3~GDIJ8-v^O`?X#XgZrPm8a)IqaAyRb@3XhF5V z!D|Zxw+<~P79_BRgL;i$Th6A58B1Wp3nZ`#-Xm;8orT*mG5;+|K@@pkeuBxg1atMa+BV2Z&;vwEWoEs$~_t)enM{hanT z9Vjbd@m?7Xg32{U`cWcmbry(7`*T5eD4aNuDWkAdWV@hsM%yk$e%OG3Z9=``d0(3xh(YhT$i|G<6{#W*ZOdW8Y;aK&BEiMYoTK{Z$bFOHgenP6WOsxy`0EmQb4tVR@gUzLn$m_>X9wEBG{ za&$>9{VtoOvkMw~efZ(8$1kp~zB2&tM%^zxsVK-4%~&I4o~60K1jUNq8l4{Au0eOv zQjlDz2$7E3&dxQ;dh($s>s@{#)kI!HueGB9P=xRl}276&F^t0C#BQ(nvgr&NQa%NsJo+rz0<4y6+8JuuZep>&LuWPrZsN} zHt9fE+K|zFa%}@cPgMRXjMR$9A@hAllHa1NP}M|ILfZijpLz881=-V#@W?reBV*y_ zli9V%#=wft#K~Z+;MyXIL4Cl;5I^0(@YECW$TJ~bv_X;V*`B(5k1!U&S-bOfoVbC> z4K|qfb4rV$oyz1VMuRn-hund)5s;b69wGE8_Iqo?muc`|x?2Pv?Hx zlH(sK(|?L%n9N6mz|&g$GB)M++z{yaq90nzl|}(3KD&|Zmt7kw zXtXoNWEPpybiH3&$Gl8biwa_C4A+qvORB;`i>xKqFyB$Hm|eeBm)7x!tfD3BD)vbR zaWKVN}GHJy0vu#%RjdI< z^u9>-mRIE#j-dDiTJMl?dO8_0hkkfK_*+&vf8VT-er5@0ym^_-6K@$KSjOwU+%HW# zeQh-#qS5rwm7V2;?58lD6~>OtX$bENhb--)*p~*;@soL+abC3iiq<9SdW*^l-+k&b zM{J2Q6Ysf|I&y@Ly38Rl^%{yK)g%R$ljkfUC9m{iWsz>kLp5fmA^tvq!QTuS`U5th z=`lNdlRUTs7R@bpS%E-(IBOCaxvdN>tYZ_Y1x_9rx^7B5*Z>nrm}HZDm}c^X2_SeV z%hxky#pEvVW6y3wyd>s+#ERI82Rfh${g6aB)xc$3ltPN%VLbx2AeHA6@d<(R%F_mj zS*xP&W9Ip%lybY1lQg#&hUPe%2(_|o1rN-;b~|=LA|}e7?TcwId$88h73AJg%QiAd zmZpJQ_e{{gx*>G^n`nEG}EZjhCDpL2!lI^sQ zXC4)PBj7L#8WH`xJMo28G4n%dDlJD}YqBHsSIRd7YhJP3|2Sc*wMtdAoLW{GUi@7c zby3*OaCW9dp+odi$3G0{m9vTLs@>b4rsRGtRkcCpoqv*-3BXLFoVQH{vPW}|@u{Yw zq=1W4jL;~u*s;D-=R3IT=SdSDM@}QS7l#qh2JN6afc7@y1z&JH@d50`ITN=#WpOq< zv61h(A#xdDtB{GW@YL#Jotf0E6}FidHx)exB(shbzpPh69#&Q@c=|W4J2-IKW>u$> zYHitbR~U5grPvf_p(h<(KlQ3IU)7jyh1lhMGOX;rXBR@mY+iZ$UQa-OuKnuS!>e?n zAZF^tHO}N^>4|L}mwrh1@AyU#KpaTD+IC*=j$LY__#7*HzF3O=F6rdVc{m(r5;yt@Bp1 z-(a8syGS{8bODS%l?soKp8r%h0lyY-pN-cWUM~OO)5U(%qUplG#2QoNl7K>icsX-} zmRDKXk3zx!Ef_vQsr_DW>P~L-bKl^mzr)ppt}lD$yx#fvwGoywUKRje7)>WS;7odq zJYuNL6Y$OhldM$6W}_wdC6DkjS5qC2YR0CUQ|X44l;u(5VT1|NQab=$Np*B|3l}EP zJVBV2k+HdkRTzQ;wcHBo=6Bo7nT1EHg7g1~1uoGgZxWqo8(OQsa;8S9VX(kYDJUp; zcuj*C0Tub+>C!t!73}ks%25G~$A+6tpOxjn>C!j>GKP$m7KBaKF~(BC&a_@xl0YeF z4w?Jti##R*2RB4B;g86rgJsrDM@Bg8Uz}f`us+%OYZC3^NeVNZL;Y8e4vjOLhC8C^ zl;Y)QW%0qn4ypcpas+<6PWyAt$8V1=xd?-^Gg9?4vtb!$XO9n{#)C}cdnov|X=D1i ze%aq&s#Iny{kV(88?-trgIW~o(Cu+Cmf)CUQebHW5#jt2dk!oZH3psix--JSd0B;j(X$4fx!Y3BLaqkS&7vHZUHnb0L?6v-IK9k z3~Y%A;wRWfbWm73OdFY~(49 zIR&~u@P=?D)9~ggbwHAyxF76oj-S{W%C?N6?Q4el1NfDF4}HtC_LGcTK3 z5QKTQMV1kxXlr~0|DeBee_*1f;1@4eN+!1{a;vmxwjxg$ydyCQG0t_H{8pP^fRHzJ z$;M7JoxB)2wPST`Ib4KnG@aM|#)JkIfjAlA{;ao4-rlWannXOR9sEF)Phs`rE6mxku7 zh1H*sGsz5-sxU*EJUxu?R$KeOF?r|>W$w-Z7fShNP{9`VEhETDC@+Qqn8KvN2^Ia~ zir053ubVQeTIS(!P#te67zESKoC+`jU@ayW0oe5R{d+u80_>Hw$@Mcq7RT~j&Vk> zkxjrds`Whamy$e~$WU525$UG(QB;FbZm?aH%v6V*w4exCC?4g$5#WXh@26#{e8*0>-qzz1 z4lh(RX4R%X>#TJALR*U1ba73v7{zN?E7SBs<2n6V-5!#BXn#PBrLL0nN>gZF_bXbs zYH6SY`L6`1|A;@6?rA zZnOZfLV}N6vkhwY49bF;Rk7o3B3)ZPDRDB_kfT7JbVS(~V^4ZJbn(!4>N=rv$552% z(PsYcr@|F5=D|$HVg28K)va1}pyXoQB#%Om(A{HP9Itl<4^#x58^|ybuJk&(r ze;jSxqHU-bniz#mgD`XHoRNynT`KZJ)1-0OdD1ZWxhLzQumgS?Y~0w?zVTgJ75y-T z)qL2+1!#Ppw@j?7ju=K-OEcMPRvbfT?l&lbhN7Z=X-00d-?cFcm|44%I{*qenA&X@ zaws?DPw8;&!e=!o9C;Sp%^i8(7$v?nnr>!aCIw5`Pu+;@r_> z;LbevD26|BGb8CTupc#huLT%pcG{;TsKZ?`^#0H%rUy0PY3|D}=CV4XGhYv*!ZMg$ z4SU!V&9`fVA^Y{D*W8WhW;W<{w+=KRm`n$m$glr?ltJ6pAj(Ly>ZAU{tLTsOC;Pck zEivP{6Z}v2;%AH0aUghG(v&VEl)^RRc>JNiw}O(YvQaA4CL-bSac zdlNz=w*|Vbk&ug5(h9pT1r4aRz9bBwAWIWzTwYk7v)+8eJHX&(%a6ivo?$DF0Cnpq z39I@t{OCxXctURiXR8VyN<L;Hun|{c1&j;fQiamv(Hlu$f5N8 z6YVBBQ2BL|L-mU(55}y%#V%*ND(=W7BOUvmoC!x}6IzxoBhK~Z#^+B5$|2XloTIW@ zxR3PTQ|xA3b(|8O;qm#8lk6ipTMv1vv@Q!!KRGEPh*Rbg7>lgrgJc>xAd^cK5WxaJ z=Q*mgG)KsIEQP6%#S0M7YGE}g0aEDT>hSx*Io}BZ^`$z5fn!|TY*+H)OEMg%b5C4& zk+1;m<4e`lY^nGpyF@p!A6t6DGh#SZ$-3|_4ZwR|pc>{!yl)Aw(tA{rX1gE@{2&dD zYr~IM5~9siB1euJbG;X39Zh#!?Rp$Xv$zteY#}KTEllt z){2h<9d1$VWgb@6GqCy%=}*%=@IUv z9d5^6Zrv%tugn`rLMWkt>cAe)y$vJ8%!E-ci{MqR!xt5?##gK7DM>5SD|j2rPU~@_ z20dDgXzgBlqrF=NTKPf$-fX|{w)ooz(}xH9yfj3C4lxG|52VSHheBKxX|JDJ0Ls zO{mvV5r$WFf(Eq>{5vAFk3Y_&w?hgAWKtF*`S3`%70BkG_QX#R(!*=VdRwB!hU&@k zIx^V5q~cIH7f6W<6kM%dD=vG|+%4DfA_GL6l^9DEE=yRP9V%ZheQb;3SmiDEpo27# zQ3M_+1uICoYiugmgWk3DshTtHMkUm7L!KDD5fP)Xcq8fgiNGTO`>@he z7N6A3L#1Jfhx!>Rj|I&V$NOy&R4C!7Jg5lsB%ZPh)jP%f(AX`M?XvMsB;VYzfKbRw zF3stie|ZIhGDo`-nySD#ciW9>!dv_|6KEPI8)?3%C`4xB;7H|Z@^EGmN6CHg%4A-| zb23N%xE-8@axG=J&(t{$Nyte=LkXwk~4w#-M_gR9^gR$eSK8tbwET#$lD zY(Xkq=Kwa5!j`2y*QIb)q^g3YmfB7ioe1O%IY4`R^WUzK(T+N?m^1ww=|=)GU@VC1 z7wUOC`Fr91zFa>~kA%NmJ~-IHyJ^9oqi(&uQgDfZ2z@+D-Dg=D*GY1Lc0foOv9g;> ztV6Rg>h)j~Rd>^=U$F)dVqkCqpv(2^`I;^)(y){NY9C-FOnCsp1a(NEc^a};2+eYa z-v5+7UNim9dDuerel$}b8hs|Z;gkS>~7X?bb-{=xAQr_acKy|QyuVapH`=A}aHsQ4%3Y?X;A zUT;SSV6Su%f9q9Sud&n>ZiwQZQRZasLw+3xGLm@^dtwJW4#V^{EA;JK;1$CybrA5w z6%tu6IX(%lgc=4_|3>Artrd6d~x{;IY|i!$x5QnY~^DnHsyg$-rnm;deQ zqhov^8(9qQ5v;r;KC$4d$RK239Y80lJK~UuV5-T@5sPsWe1T1DxOEf#DaT4wE>{=`}z^On$-LSH(mKw8>6L&ZdYrNQGPU3Uyk*&iyF z{noI{LdUNeo$UhJJ2~;-)rC$-hch_gfH$(*cwHk7Dv#6JsgXtXRnntv-`~`u&DMuv zh)&t!4vu>DcYF7j9!*nwcw@h_!o9nxxw|gOA0scc=9WY*QdjQK{Him|krsNb7)fkJ z{S#4<*IuqmcvaZiMCj+Qq%^MnY*Q8wb(FG=_Pdd9~&yDuD3iB+s zaRmPbgNHb80(13rdqWo3hQH%J>t$m5ajq;o3Y7N8kym?5_yxZYXl)>DilQdA8YPd8 zYHqfzuCt1Os>C0=LV=n?;FIzy_vA&??OjZz7kc?a!F+c(hQXFlU4Jbdc(pQ&R1e3r zS z6=+lPmx)e&m(`&=^Y=eR(CE~{8Vt~ z{*z+O9N@FhgLhLW)9ps?tmIVA zbgQT}!w}kbnca~Pq^oE~ag?Klf*?$rI=FLfZ3E>F5*f8lhGC*=MA!MmuDy3AK)!ImJ=O8ov zfk(<*Wue3V*IG#_H9DC}=)Wm~Qoj>S5mi!4n#H-pJ5o%Gk2&8(LrM*ZOQa9V6g1k^ z%?+zi(7obT7C((De*MO>o=Qe+Sfxa*HkTmThCFiHlP<4{=Ic1azF&>BvW1ND%%SER^isd3I zDTqpH&k6WdQgLp8aIE$I*INTzsK0hGB%npPn9yF3^*gV2ruf7r3=3kpTIMf!H_vr! zE%SeIj1Ts4yjHNuG_3{1@n@uJL^QJ-!$@(=Xp} zVbqFqn4GluCuTC-{aM$o15Kh^vR%(jVV_W=K;C{#~yqV`3q@JVXCrmTUq-fmTTV9 zBuRaxu);@SDjZU))ezS_#qB$DRpb6N1Zkxp3d4!nv(%h3PY|eA*pHQcye}W=UW_?0 zoGrrcqEF`UoTkbFa^3&Z_SqWOq8#+)t7Qj3fy!Drtuyv*HJnOS1 zCyDknV!4v-&b~qy?_n8r9pgPA=NYZBrH3lsM^;7{!V&75cHM~CL_?votVOMJTrC$a zJi_9EiKk)0CrUoMQ^ofj5ef#4r6*a`BJ+>jO_zjR-Z>_}mM`mzpvR=((U&~x5-Rvj zPV0`ucjktb@3{3s>}Y(>D6#@Z+kSP~ScX*BA?$OQi3Cx*c&>~ItH?2+mfsVW*^o5D z!#Z`@t=n2kx$!I+A9k&hVH?NtM zJ@fWZ#GJqysuZBg4Z{^fA}Udra3QN)PrA<(ZQk72e}>b2-F_F&qCl{-e(=zZgk117 zqBm}}hQ!@c1&^}SyuV;((#%7akR_e13*n?6H&vyonlv6)f#)QJW$8HSRd!CcrQ4H? z6mHzDFN3BxHac#3;mfzl)hC8O<~(!!Rk@>Ul1~p~L&;~~kSM*V1UA{;aC0xQJ&-~j zX|zMd$&K+#&x%y7opCbj_`*_ZcPY_M#h^xwgh63wuA`N#`A!$M;b?(9GLORCXoLCf zV7GzjGvMP)_Oo>AEY$WLPuHBY!8e2uky95pE%-26w`KMi?9?8w)=7Qh;^!<$C2mEseIO_ka zZ&;cBC;EnojfvyGWZX4n>^IqwdS5hd5hIAWd_V$~&@A8&kN;)d!+lM*f>jo;3;g?7 zaQQ{0y4)}zfpZuKLF+l%=9S zk{E?DfsBX~W%j>ckBXG_sE!_EBVS{1Q#d$K0|q#J6({ghm?;Vc3vO>7&0bumW1*Wj zR&vY~c<<68F5d^`hTZ+Z z=~_6LBF66Ritm8pR!NJ3fPSxY!P**=;D*$1%ajb1%KMU9{ni%Av~A^=ZcM!*NKc>+ zn`%(Lc)>pzj;izz5_JFd7^ZWs=QSO4NAGo1)wfd8exX1lFT9CfLr%a~eVwH(2fY`c zX*yrNB@T<-Jn*!PO&DsC)_eg|8=^Fj@;UT1hLeo zXgKRSl`J$X>xGsgRN`_3cgUixZ}A-YO%WIFG+E%VGC!PQ(a|musjxq((T(T0L8pg^ zb1A4CQn1l6O-trVx)wu5asO*P&z>VfUE&)|-iwYrnp-H1J`yA;b_fgug@3`d z9NKU^f`p>QB(Vuze1fAJ#e6LLKz7DCrJ(t0qWz78k?xGD73igZBw zB307sx;ub0(RIp*!qj8pG5PKf&^DUyUuc6jcgB-Psjzc>b(A4O872I@*^KITOJMs9 zThp@znh+)>uUi@UYcj}wHoreT+uk18@sUKs*AoO^KV+|a`-c2c`Jfvl7M6?}=*Vb8 zAx??brl@%LnNoKCELirqTG#!lla(TkwG@8c89I7~Zl)s%8VR-qY3uv?&C*p2IA5zm&@OHZjw4am}G35C% z4CB(qLsXf>H(*M>$j5b08q9xVp#_2U)1c4cUTCTviYi89+_SO|q63vp*bYNm!ctUd z7J2&|l0u6Wuo-%-phpwi8s?<^%ET3LF#92(4rvwVJa(jT3#q z+7~3r0A18iZY)<#3vM40R#5XQ=F;@yG?JAY(6!R8=>3RiymDt6wHS}M?2>3&?}W1+ z1yqbT(GVWGn|g}OS<_(k?7n^k;KBi8y}xiiMB`ETmm1MS={?*0DCE8pVc}sm!B? zN@ckl#f$3$q~$7>rFNmc_r;Ql69qaz)L!tFi_u0U*h-KKk?s9F5L_5B0oCa_G{D$I zAgw_HNofizPZ-L)g|+E9jE!OrW1u87+Jr?hDgtnCK!mR1-u=*92wzIX2i5x=zt58; zcDTI4=Qg%Cf)(&rPyBJ=g{c1nY1bF(b|1+AgZ?L)DnQ8t&JdVA4*2vvfvG=e@@ViN za|Y+4zWm@`qz)UTT^Ziaup1kZJUBpNE9k6B9N0C2(GJfXSmQuiwSAq;+1Cr4J{E9# zXNz8Pr#V$KiJm#H>0+C1rz@coKO^qdi;&aA3!zm6P-hX~UUmFl-;|adg%PnA<&n1XzyE z-HVKZNg)Ip$R9oC%5i?`-pUxrsm;fV~`7|oL-H_*`3(_44Q5#p?Vp&Kx;ze7wW zW*hOkMI$TBu&V%UdOnT>TvZ-8|C=j={eN<0Fmtl~*G6f;A3IVmgq~TAVZ>tT50GD@ z1_9R~@9LmC*uD-P75wdxDof#SUqoa|$;8Q7SKP^l;Vi*KN~B^5@yZ@=t>t2a@!COQ z`W?KV;O=>Q@0}l?D_i$x8cmdBiOyaf-Vo=5fXz8_;- z_Jn29J^9q)1)$@A!)8wUXGpzktdgo8h^uO3CbDa^=-=yTz>OBSSU%UElUo+$_4$_n znhtzOVw5HaDEGQ6;qVxp?|jVh1l^j>VyN>w=B7pj)dr!+nL6b`TIXgZnbbg8arh0b z%sXqhpydRz4l>t`RmWj4SL1%3g#ZVWnEMW+e# zR2f~YLLp8X^Dn$G*&?N>Ss3gqktkBD5>& zcTY#9=y?F>d&^4aE@n+V^->v@D*s3zS$=S}SV`-R{cQ|o)o%N15L6icylfQ=@%I#V zG3Ofc0p+d)DJT4OF2Vwi3U$i!fbTc=0g5XlJ!+F6FHq#>Mw=o84(9x%FkHl77}mH1 zZEwRl$0uL%h@!wf^XvTJa6^exW0H;^!0!i?AHQJ7yuDZc6)SKO)@Md8DKJ12#=k`j z@qV5D=bM+vuP#tF!*7ou1{G-lL9a++<*3dWI+RPSIGdcE2pMaL0B16fcURD|2;NZK z4x$n1K6}*0kihDCV6M#CY(l}O*g#VlA7bP_B#2OjQNS>LI3~Gnxh(8hl+KaXe9~ie zsAYG{18XKztMH_^&bPR0x9V^e(8}HzqI0l4>oNch>DS4IhYh*ZPg9jV4Vl-gQ?4if z)xhhX5UYGIpXWHiM_s%!KP$$Ld~ZGa7)k*QQpEN0hQNRMK=g7ZcSC$(w35xSGwsrh z`^Rkr#nWX&N0DH5r)7jc{(0V(-!p+gf6ch~RoVacML_1wDduBbgo0=qQErM_Fq=_c z$w*x(B=c7KURlcHmS%^WeegFIwyWe+?D`P^JD(&0j)0yiez~TZQdQoYO@E*#yn8&O z16dpt)pdM2cD+PneX>XOsdNaj~+qTjq z|5Z13`n5=YsB|$}+@eT(uXGtuW=H)?h&R7N(Xv;6nJ2Jv-6@_Gu0#`DqM|h1{+U3p9m-}k;p)G2` z%XEb(dansHyMjW;QSj z7Thg_K>Qd}s3|f~1!;5xugmZROOx-a^(FGDs>-gWo6)gxttn90wWw@T$~D*=?_Rv^ zk245i4m*T2xCIl|%KZX8hiQ&&SL2`$&x?^$L_$XcW`wAq=cSjQ-!7LuePqC%=#qfe zVc`8&v2~0{SJ~I-WYsE-rCB8&(;Lp%{C78glb?8G{!ne5KjcezC~fRohrl(w{Oyhz z&N)i;*hl_&UAX61s_O3(B0Yw&gpyY~9OvW`4`aLGwbR3mzu{}1fTLBiKQA@7u8+hZ zadjyNU#=+!s~cDo8YL*OuGg%RtMF!2RQvmu@iUsGKZ9qoxeFi|cp@F(UVo@BBb__?+7(qyL~sY34+ z#hJwPnzSn|rlz(Etx|j!o(P>JJ2iuX&}o?3CD_ft=fo^E5M@neM5=l{IJ=?jHZ;wM zVkpVs@g)GhKWYchxC6_fS-LgN9=P#}Fe$+}N{t@~=38sdtXNh&g<5Z2E0^{<5axQ; zblt`$@?4F)vNW>Bbc7f$Bs8+)91|o6Rp_OEg}se+s`_G(C%CM&$Hae4E~q zSYQd(4P!ghou71X+_OaI>s`*-MPc(JKGjj@$9F_LwN@|17tUF}rQq#!$6F=d@$?3K z{F_@6Oues+H~hBB@NdCRA`J^vBlq5I1a$=&#vz$9m{Z#XiCit@WK+v?Z=e$zQ0g=G z>dmgD7}XPdhzQK_WB0Ave(AadHOn_ELuX6&=Se$Hv|)Xy?XFX2c#k~EUrfI(c29|- zGIb>Er%N$m?%$#q3=QxMaM33kc`OIZ4`IaJVde;ijC@d( z{k#;Jhn#iUu@T5ic^@Gdmu*R!X3+Zghxz~BVKhQ8nM$k0DR(93wEGb821gX0ewRe!2*D4u1^vd|@*8I96Jhfm8oc7aagSY32#!TN6a_&u`H5gw5lIwf| zb1k&jK2xbaW7RwYaay`reqB2f7uPJyhGJPB6I{FhbQ!_zkM=52q9YoKLgCX8QU8?4 zA>T`_<83-zQM951oL_lG-4sMlQeybwZ{%q6WV@kvtAYVlYt46D9f9JrD1)(8bFhuN zA{LhIU?mo_ZJFlq&O+EHwEZUShLE>J*er))`8-Ifup<{O@(hvnkmgC4B%oCUy!=$z z1l4+Yo<|E%b6(ZteA3=DJcXi=V&(_@M2G$DX$gWAAFfnRRfH9@6J8Ilbc={F*=eJ( z6lI8#g<6i1N$i!Czh`IOX;iWTJ$F|Xktf`U*Kx;UL1tU?p5D^=5u1%(bq-R9)A1^f zAJeZls7~?ugNeXln(NHX9gLf{TkE-Q)-1z8IRJeWBlg~@OSj%lvcc#de`v3$)omO0 zv(DhK297=}f7lYm+^ZA?qRGPG z-d;6%AeMWgr%NiGGAdYMT#c>=0Yn_ zfgG79x5b8*;TT!0U|+K(7WG+zhVN4SgIN=ipVdNqMqCP+!0?1s=8dwpurPy${ZP%uzcP|MU0J*tQQ*)}OfI1@@wt*k{ z8n~@<_M4G`mSgncTlI<~3u0@d?kn=~hW0AqcQX5-d}3*M6)rB{ouEv>%PGL<|Fr+7gGs5W_mXq9v;T=; z14Z(uEniQp^ERt&nH+~FU0UjfzSg(NzRH=ypYy)n{R|WBJk=NeUE$oF#fB0u3hb-f zI8QapEw}F3o-7`=H6i#oQFl6dGu_d6MxQx_o%LMcyOsNe z<0;wC@5y&oSv$1F-t($!Or8>uKz6FH_w3%-aq@n`bAze|aWdN8C&X${6rZEE_scNh z!j1HACBES(Lh1ZP?0bA)&Gw0G^R}T_$(OD+5}a@Jdl;XOc&195)51D|!(aA^1J}l{ zf%@kUNGuG`yQpyoj8N{UChlErF2;o_ZyJ&k96xC`HAkavuy1@d*>Xl}^{*c#A> zA2hopJjX0yqbt;J#*^ZF0k9evg)3dE|RVR6Dm3M`_yE(si&c*h$ zmix5I1sxm#{fz@UO@33oFX_96ytZ$wCrCHW8*k1_Le4y99y4kfjFfqn^AEr6htXCx zF9+iB2dvM%&%V-itoKjlQ&8XkMcr41#j!*SBEf+6x((&us8_nZEB)*?66X5=d-jk@=nw!N9ohz}$+uTXO21BQNe}(qcU^~kp z74)faKL3&a~SyIlP)y$Gh36 z6Qtc$_~G?_aM<`%fGnh>Y@yl(g-36bnfSyj>k!o2wUe|L+Bm7TaW58mI^76ex0u!i|;HIBku_?Xrh9I>oW(1T!7D2 z83VG-f{L~~I=mUC)>l6IJhoS)pG=B8wj3x~uL1{JZ8RQiD@4Gj>Q2H;$DU=;4yKuj zol18&{;f80;49(r7W2C|8CD&isW-HYJWl&{c!3a%Te7&B{VI_%y(DuRE&{afh$jx- zk^uM*04l7*=0e}p?g=LO){!;S)q0l>I$ zPIguo5ybnG>7jLJWH!S{)^n&p+&;GZ&wm0|+fa|%E z{Z*L!$@C0oTm04=&W8;0dhrW%r2H)hTlF`nG|vQ_;1y***%{44=h^OECB5pY9kt|O z-}BcO8zuVRgpr;o?U!GO+{hFl{dxoBQwL2q=psPRzhd|J%6#el;q7CUmx2V@f^f4})(sD~ zPqI5qBPpIA@*MeSxN^crs%j@D@<;JD7i#Z&0*4MQDrQFxOBjE3o3=&-)6Wfigb-e2 zCRy$Zn&y7qcQ(s;`Pk@NC|jZm2*zGA(bD~m#%XnM6N(FN^ znXRN@b?RmJ9x85{6>TNqyCW)Lv3(`>ZBs1>3BT_1SNPTU}Bk|^y*k6C1Q9EuD ze3z?LcxxLeGw02n3qECXX!I&)WB#aAPxhUxSwejF$160mfMtS*$k+2O-6R-3KnVX? zLR@FN{l3^9AR(?)xH+8jRx~@&H;InM)U?Ials=Ea^rZzGssysletJqq`C6AO-0_&*_wj;kHxOc_Wxk4LoMX@|73Ol-~acD zP7dz>^hS5>hh4f1E}{X6W>TAdv%G#zd&dh-L%E>X6?S6BMdR17eYgRG6fT1mvVnC*jRk5=DK`ex!dBkjfIDl_R={9aZ>xCDfZ~;O4t$OSkC)N{ zfrnc^!uIVBE;X>GS9&VC)28GsTj;$JqX;)rHPtGA3#u=cfav`YF;rRCa2h>--_^T6 zduHu0W~B-QmIe1K^fVxU@Lm>g&bw!Pyt#s7=W1$FI~?~$BVv`IjS~9U8<>TFPT*gL zq){AaETrG<`*g7ryaY~7!z*6;3M{0(mFy(ePLftiL6A%i05uVk#| zXYk3nqb)ilFeH8{GIl4|NQhI6V-EaaxyqLIE191eUmNX z*WsGu0FKD8tzQZ0?Ch-ErPpyjczW{L{pR=lc;o|LZqYKMMVt8xNQJl?mNhC;nTJT> zHP7`K3ATZmf2`s+?1;J$luB=e{10J~%}~A%D-_S(VV>(i(DKX)53ZI9Cv&#oBru_O z7lt(^!&2Jer^R9S&qR9>C_vEev&YwFb6d=0+KhrqNv%W)3H3@;S7SA zzVc|MvGC_qQ@s7gBK>OB=vv7jeOer=c-B%`_kM3Qx!dn0%DZNG1xpAlkUhCWXIw3O zV9e(!aI!_l`mdb+?>zr6r8j?L7>eefB+zj)m4j&Izb>{zEXI`(i`0aSfgEua!1UO^D|U1}fXksO2q1qKsxB64dXaHds-iKU}i^Ve62)L zvURNMGk1Zo&#Tjnm@c39de^ok$o2f@7@ev-x@u#NFroRbL4LPm{m_%y{cJ&4J`sF# zvyY%rEX_qaxy4YX^2@ztKc1{sjU6u)S~TBkt4})3g8g(249tmT0mum4s8>5 z@C&fK3t^4}Zac5I)TaPbad=m_JSwZq9**4uj`o(}WY2CDCIBcDt2Frz|EUbci02QFsB$b&P1pXoL;GMjd53YtVNbUlDweita z2pcJ+1k|PuBTY`>1-=VFrQdLX{TIQ{Nyrz6aZer61dGDbIxRTB{zvZlcgBI1qP3j9 zszRX$mXn3T??#d_z~fr9*ac2sTc6|7!InpNb#?iAdwaMV>Q8gk$&55Z4td-MCaaWF z4G@}sI;@phR}3HoNMefK1eLo_E74#=)r)rzLaDU#kh)i<ZRqEZ=cL zd19aCDI0wFg=N@%vAYDrIb!Sy%Sxem0zd{NXr(LPSgy4ab&h)`;m}+$<>x{OL+TFcO$G zA6D9f%LzLbs)?<3Psn9$o87fJwAmWhe9oLsgz#I}DARr8%8KVg=J&FPd~5;@VowKt zU1PX=(%Ap<*Y%C%)b_;b6A4ycsT^4gRQY|D{gogecL~g;DpaTt4dE&8@BT!2+vX+W z@LjJsUCNy|=lT#|^9P&D1)tk@R${aDh|Qw>JGWUl>dOqay0x>)s2|n#k45@f`xy~0 z;kcR^x6h;)KTqt|uvX(->;qm*79fX8LVUfz)*Y19_Dm&L8kRPxAVp4{iTUlFyahO8clYC8) z^S zuPH{4?+cvgJxZ0kmVGP8u1wh(JNH-&mDXKV2&U}cCd&{qgTiO{4gNH^f3V8_ucFsD zd3m75(7*4V3H@F?dY2cY>%96mIeqjxX3n$*a~+|LUHzeUOs}fi;;&q~VH3>z2WTt; zTY1~69RVULb6dI1EbS*BN`^2e`3+iOj=P@3#!hWZ5W4;0c5M@Ns)Z=vZP?nY-7XGOC04ClP@fo>66oMvxH?(-cSY`1h!2KoXy z7|1YZUguomWDd)A*#F*%#k3ft|CYVE9-D>co~K3b3vQ&$DA#mEwL&Dl>!%=hC;^O< ze-+H3nP@t<0fybB@B@TCleR_L(bidr^c0q*a<&f7 zvc8LGR7KBsi$=2jIG8291Tc(GgUgwxEU_RXg*AW67$r#gh3V6)6kImaq@jHOZR~0Q z&FEC2g8tVsB*Uc&(zGubjg(wDhM1WGbgTrH3ymy*q3!x@w9_GsORSWMNi7p8hX!er z>JL0jyU5z#irWmz^C%o6LKtzXr>T24k=BeRf6K&i1atNAg7;I<*onluh)s>Edq}bP z9jFcD>>BpKK7mp>e*;@$vt*Vzs{+-x?nRi}N2{bUdmw$YD>+ED}JvG(2 z-cT9K*KHZY1#C<@E;YF8ik-U^?)%82pHG}sx-;xA9=-1y+X%qKx#qr@IuaB1&A7=iSsiTO^p6S1 zhDLvF=jNyIMNnX(QkUe#A4%l#dGGRe);xyO=blaY^;h$A1Zq_M*+O>qQ~tdo0?MDM zTn9X_FTZ|S_J?r^C>_(LFSb-hq!zv0XSzg<6T?XE+E+)MM3Wh*oa0ueks9BfJCv2D zUXx)e@lryl7JYrOZF;D`+cSE{un4Aicrs68{j)#ANn~$og8;_#^*Zt*Wrh^XNMK3h zH&c;rXUL)-##EEa&nk#;^$ilZrZ9`+NnZRi|;MR z{Y5jDcA|^uHF|C#9)of8!J_*}m$^GiA2K3L#V;ewec(?PFYRsLa2i{xZfrW8cFMdp zcPbDri>L=B^V{}kGochwK!9+fM(OK8=t@!$3>O5Z0Jgnt^_q#GxRu(@J$e!Ca|;7D zjno;nwd2M-eQ!>@r^Dk`?J*(D+0BJdpD|Oo3hNfVK9oPAtT81UH}CMG%P{?{{EQ?T zJe!3_019)ebe6VuNL^UPDGZ|RcYCToZPF^iBlT}3n0eKF*s)%Pt{y{oq?b2s-GIfc zmP@SX2)z{GOS~}2!s{E!Tcf1{n#QrcGbXXVk`;Zrn3z=%YdJi@yY;?x@p zlqFeb)GS|;nw91CZ_wT2Pr+fuia;)@a!7goNn7d7SVV+fKo70;n~dns>*FN|Ef5%M zs4u72Ps5U3t~sC9xy06w}Zh{ zl+fDvb66Q7(J-gC!(6$-JuoxO{jI6P5|O$2oChAXx-g$^_C096?6s!mh?;9vJ&Gn3 zf!3KR^#F|n@kRTjho@2JbU1AJ!LY2>f(hyUS!RUzch%F*Wg`+6Yx=eI(f1!%Zh51C z9o+L@sc1Zu6LgE$XrnSJHjdY07Mbtp3-OEA23KcwHYLh!_h)Kmif|J-wvW#;i}GxH z>gS#KoHaw%+nhE;c8a{OfQ!McW@Y{^9VQB`qE6Ls62ii@ZORM_BjuOhm+-o#mwgsY zD%-nOHr0kaCOrRsS!Bps1^xK7a6w#v6hmhHPR>F_BmCjc0bvOT2c~^LhQ~nZ?gYH0 zufGKDwXf!0DX~jH_o8xN1v^;bqtQ1Uz+UC-&R2cqav(2n>PtqEClppmKaG-OX~(1P z&Wk~OSk#qo^4zL3E1N3SW|l;m#-v4k zH`&BgzK&l&D}K)L?1nYj^E91G=VF2D(NB9z^K6`z70K3Y;$lr>-o|K~kF5ZMt6vss z72!>h)r``!Mg^v%oftP~AX5cHfru=3*;situb0)(n*_V-t;W|zquPrr%|{Z_i=7UI z5F>NFazXRzw$zvt$ot)EswZ)h)vVap{o50=#nWX8s;RMb9hZ4qwCJSap3nH`@3M(D zHcPtlAQA;U%u$qpauV&&mAY6n>KosqxOs&tQjQ+f9S2r&(?cmpyH(9k${ z4|!AhT)ajlu>z=2^&@-uQRKVpoqsZD=Zk2aA4^ve=2FA^x;!PSS;uqq8hbS z#gl=jqtGEwU?6eBgF2hxoDC?Vk<$#RI2OV^k9oplxV8si(|9_QhK8SG7e2D*Ng$>A zMoh~@xm!Pf=J%}1j>O6ZGe3h&D~9jJmwnmtHsV`=wIrvX!1Kd<(K!xWRLqkRjrGo8 z#`?lT7P=$+^jLVyl(@uktmavS^AX%! z#p8l27x$0Tdq;d5gy+6b`(_pD=$-r_hi1C7J$5{$K=e2EWaB)pf9WWHbZ}sG{sp48&a>Fm^CN#DG z98;y=n+}gOyR>Xc#jdO>wS?&CF^B*XE<1hMIoD&qdva<$T0f|tjz2>+ztE#>S(+)? z(d%qiROyvenxniNXQ4byoYiJraH$(U*t79#;i%2fu3g@@nQ_x>`HEj}eU95eZoMi{ z3*F|-Tr!vj?~SHyQ%BhY>&o%RtoaGnRyAk+Bbhl+<@-U6XQy(iGJ6Tg@fUp`s;NcA zS~-WTmCgdED9p&WzN07Bvt|6**L`(&JxTr}y?BoC>nT+{e$$QY?)4KD?hkftm)qXD zNCRMbOgoOs>tS@UA1^l;+_%g48Fj;!mzeimHX+LYn9?A5hCcMHj*ga7i}lt&{W?d!$V7!9ze8A*4@mC=W8&s}lp5csT{ z7sw^>iPi4%4gm|Gnc3XUGA-%qn+0Ja+A3b$lWBIAEZxwtS9@-2$S4W5%O4v!mv9Fy zJsj=`6GpDmS_ZKCscQ;we^YFV4|e22;Cq=iGI88cg|L>u9?yC|WaYJ1`wTuRFS)*u za-F_{v^xQ(atwrqxyGz~%+8$2<&n_rXiDGT$>!t$0vixj%^@Tp@LfK%QdDz0NF(x!gnEh_jQg_LkV7@EmLX zbk&wbeTs(r+$Z>p+%ij&7W~C`&rq^ETiI#noAe_~+Eum-cf?-5tsAjJ&!Jn%as;qe zPrxF(Kl&ZFgZ7IqzvzZuex>RjMT&ADDdOmqt2b z(T3yfo5-F+8n)pdt;P%B1fHn9ACm6`hyWOj_W8}(=>|(b9<=Adc#h=L#g5h=^s?Q< z2OvE9r~M?(8Z(!9z4@5eOqg7d{dAWw>gm-MTXy?1jn=k434<)g#G z{^_=kE}Q2CyCxf3(k4Z+`-++k_5cxl)+mnYtTXmuV&HVT{3=j&{cz7n4eX_*d6d0@_Pe7)ag#>$VG zg687}76+-DEFF9#SJ(b;;w%0Rx`0NyyhK696ncPLs}-R?CwspN*T+v?-9xgqSig1k zTn7rE%zCz_p&(AFw{$ts8RjA?iOKG3|1wo6=(3{eaxFl;c)cf~zWUeT^4sLG?_ z@OC-B0(a|6l}F3+{~^f4hQEnQZ8q)-)rd-fQpN^uKZX7L#g^z|`VGnGf1p8;ogN6KX{Dgj^Yfv6 zf0FQR#uhx-)L1%uX*4J+fcXgZwyw~4&+rqpg)J47gYwvxM{l64v}J|*m+<|!5eyJz zu)CHZ2X$zZ&6IjZm!(pTsD1~>TQFYBCA)5H&SaUdnl>+#(L1^%w0XyT5KiJfw0RGi zH1zXWh{1TpFT~a3#_m~vuI)e{_20%y{S}QtF4>YS|93mK)zN*1^(1u2YaP!NA$08V z*qmwupU?q=DRV_~0hHQHZy*HQb}6U&z0a0jQ|~sk_)ik_A~HQW`TTR5S8=by^9j@D zEsZsC$yyVcZ=ialCh<>p89koo06)>G;OB!f5x$tlFX;INkGGK&$d~Sl3)!ZH199!> zBG8j(C^Hj@u!U}{B)zZlPBQ8OYn74gNOYa--QMxBWX6#cBzteHD7p%;0!;aptaLt^=E6PkUTS{)?Q-Za4k zapac%gvd8GQ-^8tCwXwV{4z+>)9gb^H@kSlXwbg#X9-W+)@PNCNJ)A}#y&~tX1Lsnj zPq$0}X`(GF+VX!z8~sLpg{%vuwCP6L0(LvPwRC;(2R3?%yg|M35PLlxJC$P>onuk; zdGoLJEhuD#re}b{e<5Mcnl!A$jI2z@Rb@k5-j}XRL7Bge^WF1g#mgQPWj?5N?P*W{ zB30n_v=jQxd4T8@ce}YtjDzD)EYcbD2&=@!E7j)bkt+`~2RpsiM&g5?b)oRO_$)Ki zYsN;q`OhvuR<0Rh4?kUz-aAlVY$56dh}&I8Digpbxod$tVcV>A{Wb9>^lXU^x>ufw zs>2N5kwrKBa#C+wm7oBx-;6u&m{b87Sn+7Oj@J1@?Adb{%9%NXDBt!}J$$F03hDzk zrb^wBt62|P+H5aPrJs&Q)_pD#!FjyXnS&X%vdGEvb`*{TWGp-wUUK}5^zG0i8@YWV z;SyL-K(D0xs;#y`5!jS{U5?o zc>cJc|38GKyyxNJ`cIB#rjWhPAYPDq`y3-08WTJ2dpvQx*Kn^8u|j^6e>U#NGB`nM zk=qGMl;v05qMTn~xPqt0=FJ_6v>y3N(V`545)k_;goXMG%f|?s1AlnMfh*U8iOh$_ z2f@IawvG+2^Y(*`ROgA-^X?a4IG8CG6+2iM3LzMOFwB3**clgE5M;+%oey?5zFyJI zVc_lCg_9%4kV%0s*P3gqSh>But`um`bEMEV9nhuRgB;*?umji6w+2WH%6Q+r{0FmNYZ8xcl9tt~QC`3YDn9ofFh<=w z1!c{F2S;DS7Yg1cb~g~xk7w9P6 zBnN^k@|xA|y?2E~3AGC!i3T&n_fHm=r3=rO`c^}<^Bbvus?ocPNNmJrWwGRVyrS+s zK3XheyX@5_q?AT;D0r)%OCJpl56&gL?VIuQfH|_z>nG+#P zb(2Tq;w4GGjJOqPcsbkQ4Bcv_`Nr!{sdLqiyKDTX` zQJUzqG_jS_6GH8qO179lF^#Q=Gq?r!wt+OV7Xii}`mZ4b1Jei%eRMvWDI6b{?}GO) zJXr7aO8Pcm3=TOXAtk-2gkcu4`$ZCr3Il>Uf`utSf{7u6`I99fVKdNTk_$hAXBA(b z&i(W|JT8_St?fH55N}^WN1^L3{Cv0b@_gHUsW}G_9z~i%f(b6y?ORuB%a56?3mAlh zRwAf%VN8aBnNdjzCtw4zLg5#)FIMRa_&s+#S9>SX2;#%o)*l<1;VGE~pu!v-iTT73 z``5}S7Kp>o55eRJlq2=S`oA&l8FLYX_s`W3%C|p1v$yo zUtMu_GT5TJ9L<@xqMmJ48~}XOy6S52?($;1#Cj zK{HszNM78%XrdlJ6JE}Oci{hs1IpcD!xRZ3UJ^kSFgp${v@CqW6BKr>eJ?WPCjPZr zLY+9xI@^9UYH$YJz{#l^W&+biW_(oB?u@LgG^TLft7YrzwJsm+{<13Q-VQe__Q`R? z14pnxDbU!_*CNQT^YieQ6x)Qw#YMl1aD74FM-71p003|)Hdh>S#;$-_^ARH%)a&l% z#=LP1jZ-Q*L%zCy9FC`3Xu3UHV{*bs;C`jSQa;$=!U?3uV>ZtqGuW#j`?S~6Qn8u& zx<-RpnK5`?=)(>ehUuLU5Y#q$bX2-HAYHAU;_LFK8~t0HJL8PKy;@tlyVMP~SGZvb zyB+5T&96;q%)48~hg(xTq=qUHC2dzk_+t?*%%BT%i#5(p6MV{d4*L zGL?@#dc*bjab>TWhFn@*0nN8u9N!r75C~XxN?bxrM1q5ZLH1S=6;6k1EBaHq^yE@% z2o+g-KVENWSs5+!B(}#rt+u;Qk|y#6uj|6o;flBsoc;Pm!RHTVMu|13R1>12sURLH z|GWZ18p7Ebe3b|rY+Z_sU|netCa~!Fgl1j-dHRzpZuOTP`CN)>I0NMxsz6Ipw1S5c z?P@^g>B2(N(OOG==PsTGTpF&P{_g_u_`0j!4e2gB{0Eeao z3VOVxm)B&*FJcX;2vLgviD>Qw90yds84gB9k7-XIdLFO!zL!fU6$QP%(@ES{yj=t6 z+8^#l3}b#m{S>;}EfdsH6`#WB=qhEOGq!5#Z#0wN*RPx*!&F*-mVd#)Tr1Fk7P_~c zx#8{Lz>ZSjvLOG#{EYK^!7t?GB{Tp>On61bqA|n>c&Zx6+yFPJ<-RKYEs>5Z^ZBJ| z)VycRA8Z2BPU_@}Im<8NGf^OLLzHc0Y-@KLwrn|G# zmS-~Uv1MXn*XA>u>H<^YEpY8w2fmsto1-5kCaV_vHH4SkXyxb6DH-aUiRI-qfoeJ@ zT-l+H*NJrsc{qIE&%aLLG1vFvfo?g?@LJEtpez-28PF6)twu5?0CCz*h&^o_@&VU&`Qk=XjW_x$|QXuOM= z*YNDD1EeRV#DlKiu%gL?tUNI6_Vzv8yg)UnQz#Td@H7JWCz+!vwv-CR>svLQT;Ljo zJ-bwEBzC)CCN_Lx#}J)`#l^#FDv1Z8-`^Unt^uxS?*>RIah7tep3Uuu zrqlmc>YSCbD=S$tK_9Xw zKe^AXBfo{mtp`CW`!cY?uicg}^^&zo0HjQMOMnGGsF+Jdv=;r6UlQ0~Qr<+Y0i{87 zl4^~g1?YEeF&o=MDJ~rkCP+;mLPQ_I#UhnDFSA^fuGI7n@ESs#dCm@)8qi~wx`DLKU<+)1-%$<~CxP((9^LU{$5rDm z>05lwFa-yIcf0EhartiuqobSm+8lQV*4On$Py!T;DW*v%SEmGKao3K%XGj-(BSG+l z@3(O*1SSn-V=GcLq_uVo{&1ySWp^nb1i^bX`&8TwxqO(f&8pjqD_5`9GTl-u^;~+% z6mXYA$r?A?x9IHXZEtT+X4Ch*`IUO&JgnbO(C)Ms7RIW%o|mG^h?#E-AArmk@qLRZ zVSZ--p!GVrr03F(Yj0=A_=MKR#^!N{{H3M{AOf9Q=MIi$i=B*sE^gEZ z()ubKP#08jars3~-i?ZfWeM3n+mOZOAx+rxa(7-`-<6BYGY535fO0Qpz`(q|CM7VM ziS;!_|bBkB?l$*QUz(`glGv65V~u z=R@Z6k)ofBbZqq1<(_O~dZF@l@C6T$+#T4*QPbAbTobq?sTzzRjU3H|Lj}tv8b(E~L#GLnj zy;QEQ=X9m{`aZ-uziEbPbRRmG5{&lCw1!YEj89L;wkcmxtI%#1$c8q<64s|09@b{* zxd4huhXhK64@wn5yK3qD@3y9t67#t#5>2n3o}S#-JrCC0HySHgrt?2*b;!I@5hx{w z$a9}`G`*$L@$cRHA+HldLpY-%4RWr+P0(+uuit5GQugN16!Y%vyEvDqpXiiS(+ydK z2|9GRE*H+6eDJ;A}mOY=b|09)J#kY=c86-GKS9)2rl11Q?}p! zNQ_jLfM-fkLa(@uA?{aa#asN@Jla^GKIBJiv_geJ~XoYxTF zDBQ-SNz`2pbgz{LL!b6u5*RdJm3?SV*Q!m7{I zbt*DzFrXx|W=!?M#D>n!wee4X>N#qj$7ENyfk4NRn<;J*ZegWmQrQRjp2b9nYfi3|jG}Wg0OCudJ<&BfAb`VPaso z%tMxJiY5j-SykMntb#F8@E0?Of6EY=6-R4H=Uy&dw(eeCT-55#ju6e?ime~?8`VPP zq6uiv`;A5vYE?sxNmtX+r(b&N^b~5Tp|9C1G$wQAilyNZnQpwH+T0pJs9g&f-#q8i zuG&5w%HgB=%vcmGXg z={pehz_hop{iO_D+eg9=AC(0nCXWeQAh;+Redg+38``(F1S<#MFol1vt=T%!0&7-@ ziSZ-rziuQ323SlZNGS@n5hgpDbJ^S39dpyWx7Dn`eSQ-U;6))d`j9EP%2AD?!p=)l z`-boyu3#`S+m_r6t^`wQE3R7}RuyOk zN(MtOYY9PaFVP0+RleE8QH)jgO9Ty}XZ6}-$5il9Pa<2Bo8dN3Tt|N=W$l(S7unl; zxC%1N%c9|jeOE~ke^sM5Z+hxNFoBRKn=&4?i*7E%*E(^bL{FnJE~05t#EL926^H$( zaCeizig(>jO=i~;?vsG#!*UlZUS8g_jqYliokVrLd#KkmA5{1IY^@#Y2Zt`cWt2^E z^wa9>^#@02`z(79c2Eh#lPiA4$JvCMWWfbX}qt-`5?|EFCdFM z2Gt~Xd+)MB0W>L059B@Wd7?Av(z$${x1*oRT&5a0wuQ)-ww|B61Z1Uvcf0Y5s?}LQ z)EZc3&x&H94xsqjR#pNS0WYVNI3p^f;E_pB&%$jR>Q61r6x#tAVStM50g`T3=(hpK z&n;r{TH?l#oZNW1>e8Re;qRcXvs{OY@iE4&PODSD)@6M5<1VzbBfZOOYr4$%Wr^*~ z(j;(vm{ysSyTJ}lAhUBPmli033VSk%RIFP7-2Jvjj!sTa4h}ix<|(=Q&8C4_M^upQ zs3Oe+m7_gR^zz(94Y&gH`3r?e&mAP?8w%xZUAw?|s!;Vj0dn8Ft=(WOAA7Qei;D}t z=c{a7ZA)|WK^wYCi_-o#Ff;MeSFgT;tF)~qb7cr(Un!`|d@LCku;zgJ-6k`paAMw* zXUJ`KBUxL5_?8?Au!(#*Dd2`>p9c4|Z#g^zFEWZ z9OM?v&$``CzbjFU*WcF)lI}S2g7`KyH}_{l4)dcc_BMQOb#YQHEOI}4!pq1+FJ8@X znd)*JcRg5i_k|na60mXE{CcekBB**7` z@NCjy?V{~!9zYGVtMQ$ZJ}~gx)me4B>iUK67j*=wEVIWj5SDhj2``#C(>6kCXME6bW zK^NzeyC3&DZ`b1|FMs?>tPno`^~)PP4X8S$dPsP(x3TeXEvO2`YJ>k|rN#8I^pWLB z6=sGD4qIRK$`SL)=)_jVYA7As*th1np{Z$qO>H-`+SF*swRHLNEDPtB3iVUCD~8WX zo9Oeg1I5^CNCLrFSRC-IGKUXq_3l!wsq|b2Ei5eTt}0?#im9@Z4!LUg$Nb^PTm* z4X+o}zSQKWH{rG%tEo+fIzJlfTS6|q-{p1BEfbMO!#vW^s-lB-c6O$)=YwSx{TH}Q zSDgYA5zxe`mU1%`t?#{s7sZw04`Dp>-q9+yuJAuYKevp>#(Q8nF9imb3FNm8lbkpn zDa6|7Rb)+Xc73Un;Jdnd9?oP_Kf;xe3yoPxQC^^n!yyipE5~swMn0_VQ2s*PQG9le zH^W7=$~W~3Vf#rXNX3ArS`u4cTr!^TdHeLWeb&5D?bMED5zR&XIEyq}?$-KOb30xR4io^@=d>ssQ&q813M%o&vrgSKtXk#i zr?@r1{8gJ=CBT*16!~gPf3;ne&T*ov3-a0!3Br#6!`w*t&4z=a&^gVUcN4>3ByU-X_(L zwWwOSs>`LvCGQ6`cbs#<&9D0|dQ(dL`g)V2{WGLn>Goa2UBT=1<0&varG&c*B7MJ& z*FWVw*lG&JV({-A3lpK7xyea-uo=gKsTXxL<;^NK z;Z|oyhyjapo8iV~W2v~fqbCv3+E}M|t zP=_Q|+d_ZoldztsVw~LBXH0FU zY_374nzpVR$Kk=9@ou6{U+gi+#bI6wvq51*N@oCwl`N9r_rGZS>ZrDZE>S223KX|e z+^tw~hvM$;Ufc;5v{-R3UfkWixO;K;2A5#LUiy9S?e2GW&wIOnyquHCEl%5D@NYL*b7HSXH!x&xPaH>qIz;!pmAjrQf%*Do(MV4U zkovpRptC^AlSP0deWB+U^DJE2x87eHo&~)AQlD_xXFuhLj1l&_tu!+^M0N?g_E%UnxGDQ~~`Pya8lE2Ey~ zrPG%20tu6OWzR)Y?^$`_K!NiA_Jbt2ZK%Yihomf@pAQW`i7M$yhak3saHYcyG^=F< zv|vu9#x?@4WR~(|OeiWTRen;t%hU+$hl-oVqGz=*k52eXc{iIiy~QsB+$3EjS4A(E zNnh`Wy0X`WUmvFY@B2tS!=y%!tGi$7bDmEe{U0-!ZO9#sM>Dlt#k?vuy^oo0v|o?3 zy8lW8{)(IQ+P$GXYWMw4q}5cm^}5&V^WFOM(;1-q@uu3p@}<42>jipPE#+2td0gy% z(OB?(et(=fkL<%I!ml`Q4KKY40Nw7)Rqmre9lok|piVPKtY5yk!IM@}uqZ-1kDX-aBj zEcRPFb~z@-)z}nlD;Avmv-o-`KYB~up2BrH4^-BbF1>W>o+lMKMG)mQQeOY*JB+OaNmPK_|>Tf{5JKrJyq3q@4 zY`*u|w~iWTP9cOpkwL_9h)eQm^dT_M$^>^zJmFlwRC*JFk2l)pV7BJ7Mq3pjZ zux5ccKM}F&#gNhRQ03J{G)2rNC`&BE2}>9>2FLNOlF4X5P&6;84R z#@qPEGPyMRFWHi*vJq4?{Qn@Q{wuY{$(zEg^0_;UKZ37G&m?q5NGY4_$!&FF_H_#z z+)<3%5~_ns-c*5-vTy`NFzlhxxcs26MY zKGeGI#g3gH3@IjRyAO%2`x@%Lyxt%@k9gW#+Tm5Zkk%mhm~U1Y>kG;<@Vql>>l!I~ z=W!i9gl_QE>)bLrY!n-I{}RRlHDTtvst9;w6zdDVNL zJUXQPA?`@*vv%3sZv=Q%xYd_OCpsIHO?F+5=Hql+T#x{GnNoKNAx-Qvx z^;f1o#9A%>xl{SowvPC6(Hbca$aqwE@qGt) zaU>$Zr#uXFb=ntz#aIHb`%j55x+7>wDHnIHUER-&{g-P<8S z26`D~m~HLZFJq&+NQi?Cjr!7sV);TC^Um}de||LH=)Yrh;}%n5v=L8B&b0FV6CqK} zg#=p1$>mN`^#pOQq_q6uG&t>iFHvPgz|ZE9B}iD&Y~x`BwtI*7^k-fEi))rUNdjKT zpVkD!pX{v*Kbv@$UCff_IunWc=y?_ursuxXATA{O&~lrqmrtm0oIhvM1y^H(0&!tO zW{EiBaxS0x+m*ns@mQ3brn36o>0B(Ik!}Nlkf`R}PsAAl1N8GEF4%97=qTSJx_rL{ zEe@5_!>e5Np|(HihQ#ILd=A#h&q-WtzF{F5>%3tY|pelpCRqcI-%i z5N~CP<$*CZA~=^*NQRpe#Cf^D+-alBFgbT!f7uG6s{gDb~CZiB6CmQg)XrK@D0 ztn2;X0#gZW-qxCwQ%1uc1Nsg~md<&_C#uEr)qALm`1XEXb8a~$0PR_Nhc6uX~w&GY)ykyGq zEx&0(xOu2@J8`ML7KS`T7lxIBU5vs}kmf>B;v@h!`dxQ&en#ySkmvAeBq>oN=@vEC z%H=}E<^{)GY99A%OCHwo-R8 zBl;Nrl-I~&WL?A)6Wd7TR7WpXOo8pWQg3GRi)N~*1y>|dj8F&sWxCy>)`X$_2-!0< zqN7jInw$>@F*K5-R=Qgso7>!rW6njFMzf3%UoBUhsN$_pMRG?^rGw47Lw3UlzN}M^ zMao+dNs(=gJAF{mVg&*98{Y}y;a9hWD@2TqU59*LlU1J#bI3>f?IThaiQ#dU9hL@m z0xP4#_qwpyo-Hi$xGvrqRgO^*RHh6%W3Q%Y$zcSrawH~`a5AmwFEX~}cQUsdnzmlB zVxMT0z=_1FEi7?9bkMmq@;ED_Ea`AI(&C^~b<8 z@@N%!D=I2$3L(s5n5lKfoO`YTT(|)Be2W*{c~ZJDythNi^Xw>R2k>@@_XrTtm$tly zR5ZW)NwluN~)2JNG+e>DIR~>v?a&^~z7w{T4r;bHvWJ+GU-4O;g~PSP5)8 z5*>Y^<0}5_+5RoT%WLB(5=KsXg{A1n2ufEBinfrlvqy0&tDtMEkZ=|9r-dCat^-vA z;clJM&|j4r8L~IOjv##~^IVnBc^xC|niCCcC{!&-a?XVPukG_6PL2;cmnfn-+#{xP z!V<%XP4YDW;Xo2Q1Wkz9%xaJ2Zx_JQ`yGH0bBB)05`){@H2j8m&ft7sV12r&9l*tp zga={4WeNAZ%TB5b>%-u_1Ms&Cx6`=z9BFAv#*!;nHDmegPLcbo;^41iH2pnSUU$ij z_v4U+nU{l>XDFES zK2+li3>N`HK1BmHJhQ)7(#g=KmOLTwU{FY_2&bMW_-_BTvLSf;DE0gWmKl|j?!VZz z{)59@NozYd3l|niI}&4*k+*QL`s*o|jrU)o8LdO3wNka7W>=SxI#q6<|6&b- zS%$sk>RH3{sTsQ6W5qV-3VZUCR!QnVDm(LN^$sRpIz2Ouz>!e##a*4dlTkwU1LL4R zm4U9gp|-x&EVSqTj~vh7`mBcR`a4Sq7YMi=iOQZri{=bV`yQpXAKW z&GS%&{`z5ik`Z1@WsawMJEqt9qW5x2cA0iCBJ?LY92hs324j7CZ6{S-&BoWN*@ zCiCYm;ip?rD(F0CPj=^9M|p)a^~&VJ5oq#g8POnhH?Tt~HC`c8p#jAl-x@d^0(+)5 zdDnrrmr0(WmY}Dj#f<$5u5Subu{g+l@1$BZ!@@%KMh_l0yIs0>jNU5;=2m|H zIDSXjd12=AlLcd({TkXe*my_KUS<@O{byTsoqc_~)l)8bJ6@hr-67-6hrHg5ACXXR z{N+gKm-c&%(Y`$1t?J*RY}?suKA*zTm1lLDS=@A03B)o2>YbZp?l`w9&<)qoGdt8} zzNa~zq*HaK<)bLXk-SSk4CBX#O2jhf?hMQik~y=^D^P;Z>&T9l6af|yAHg^=HoNpc zQ{G58!ouNUvv)1v?SAr=$8YRi_MLhh|I|ZXkrPFIFx01l4;#s8U4vpld_$D`Bfemf z(AI%LBZ5`xtA058{M!!l5`MV6kscNf>a7RZI<5zWPBu$4UL*C)x#x9tq8e$&?`AS{ z!gJ~2`CrRU6mZpc_<{P`C3+!tbhzsluyeR)WGegEax`68Fe^cl?Xqo7c=KY**!-Em zJ9S>aA|K-m2H*x|o>`>3POe&I4;Qf+BG9xHfUw9t%O}|W1CL)O=mO$r+uo2_TGPbOHEu2=Sz4}EEfo4Ll3J~y<@KBf17^b9b#9|DzVAmCKJm1>D#uT zM*Ggk8bz=(FoM7M>zMC)t-X>#Y!Rogd^lHoUtU4Om;|-ioH2>6lCJx`H|V0%0nNzz zLs=YleOajU?M!peNm?YE#`6=B9HU|=?&oIBim!9}`ug8w>bYuJdVhyhk-UPY&ulv@w^;1LCHa<1w8?Y`cpjow$a9KELSWu4?883c_Fx!VXGr;Gq{^9p*b+#2l`;k%_yRL^6cM9UK^|6X@-g^S-eqLDqiFELyaNXj^26 zA>Zx+HJW(CM5QMM-T{KJ73`>tmrE1)d!LB{b8lCxXQFA1BUVBS zXb3LZK_VKCR`Z0&g7>(16C{cn!c9m|Jb}8i%w56QVR(S5>97!N_xl>f)gF@(+Hw56 zgKuQvZ(dr&{lAC5El|KrJrTok(2!&ALGo6^+8sIrBYo!k5|jy8+Vilc8uH6X%5Fn3 zwxQ;>t>>4cRIXu*Lh>QJ)VHbvu(JO;-bwmM`vZoD@^hO77qk02i@mQ5VZX#_ zua;UmWGWm@c2PJ)19o|f%e>~%a^!TZlx9U){V=!C%$6}JBc$FI+A zDsX#Y&{Od)6VVO(26}~$3C`cXY#bKy zNkX$h+xxg3ixTOZj}67P(JwGqZ(d9iJGV=o=o18^hQDwu=PvUHLvoIrnLd| zg(~j(S_Z^j)4cg5Q>Q9lWWH~;KwT<0D!OoDg6-r(HhFfWrWN$T9>&U(7Dx$i8!7>wvIvaM>ccdbGP(Nq7?o12}wL&C->LS7v^okI-t?? z=aN@U(a7MNVB-#*SY1^lh4-a+A0kX6Q+}P6NZ2+oV#bIb-?b7oWxA#%{N8%YdOJO8 zvCR$R);%8{)b}iNH*Rw*YJ!1+u+&)~d5&YtFV091jVE}(g^0gjSvb|=={w|6ZSq6y zMzeAkamawi&HnUA*|)hBeLyG3R&2;bpmkz5adqR^Y_cxuQPa>NF?NgbID4tNh0n-) zBE{DjJ-Tv*RlZ};!O0dqy>HITffU3!EwsIWiBcFm@jE2T#WpNt`#qPViynSG&Dw=$ zia`b^-%}O)^~0EohEac zcjxa#5RM;GVD`R;4#QkZy;ES{T*9QUofFHGggr4+ZEP;)EW?qu6&!B6bx>(6yM0YM z$g-fMjy4FLESymEn#oyej~#U_x2ocgsi)Lv$`UtN2f&TF*H0hV_v}r>N(rd8qXC$i zK7Q@@1!fnX7V`=;msS`jdk{+%!?TT9o%J*9j=9DkuCONFSmw(K&x~neo@sA0ROY)C z^tRsY`}(}woxx5=;1uJ=_vbQ`izt|0u$PN;($>4P91G{(vP|x@Kvh|NA1Y9!DgJwF zH&|)mHXF0pWLSCG7G{~PS9zJWcbYuUf&G2W;2^q|oW69+8&L#Z>Um_lcNZk4AkoqH zI^k(Oc|VtW#1v{2pxUfI{g={roZMb;I3NvGy$<~wYI|XAPa_*#qVN3m&tAuKs(Qx&Q zL>DA6i8!fY^Aiz+25pk@_9T@&=3f5aU&{3JZal5h2n3iSv=zP7)6xiIsU9Stw$tkR ztlbR>^@z%KIvK^C&Uc94JB|I9mtM zor;22GE->{f>rVg7Tms~)3C`lh~s8ycIs^V7>2^gd)P>AGat7=@5=~(iNwBVfJ~um z)>0TG&5W*vA>%jylW5)D$r>7+nK)wXQed+ytxBBrnc-v>H*j=d@G6_9-nTgWUU%Nm z$?Hc|X57Ypg6Frqyn4G3R2dwTSTsqNcL#Q?49?|)jjOxYwUoGMk9bc)A=o8PEcExn z1k=rv^znO+?afuS<3<+vLocV)s6rJ%iH$sVfWR-RleS7_O%2F5leU_{>uG>jW2@fw8~=72f`oQzM>s95@w4NU6&BPf}}2w z$p?807l?i9R7hX1gt;mV)&BDlhU@eHz*`6>E6=~h{NUyK{~7b+Z%hB(m>(Rh-2W2# z?{v*eBwW`{w{hYmm?AV;|i~2XTOR8!Wav!Uac3N{V8y`d@yRbtLEm z-fV3~dc3$UcAhuB(yLNdd3uZ8BI7y&1Gk5O`8fEVA2z&wD8kgJJ&ky1k=kF4Ca#>V z9<{G|S_Q)lAUj+dKEQmEQ?-HS#dTxtj!#vS*=vH3MF*E<_2;`0r1{S4d*Qc5!uCJ> z1zye04gr>iWI5II=dHBYgr$pXUXHOi{?6O%~2f7(sYu1cJC8izOe4+ zf3cxMq(@@NX?HJNiR5BB``ST)n9Al9FWKZ? zo422cN>{X$QL+TFYc%B2sXQI3H##vI^r3p4sl06=joXSdYzCn|W*J00dGp451e%8A z`@HtU-+96(5Ymh~wHUf&j+tlg#vR@;%3Dj-)2A0=D{NuN3Rw@8yS zkq)OSqo4+lzY3nM7hS~qge{xB-s#33w4rBfw$nqDvVowBayRgs^Gn0>jcjSb4pW3z zHAN#_fem5jyoY@Mm%$%h^J$DvvZ$+C8>;0n-;;J~Mz$RDTCP#dX!Nr6%%(1qPu&dP_m|fi?5*8| z1m#j6$!$%T;E4&k&wt3iy?uA`kAE1)`j*_{0&wdg7^c5|gt-j!EbW0mvV z4(Ic?_r|fmNCE}l`22^?{a+sZ>wuQ}va@d8Z7US+auq=b5$r$$}7UaEH;xA<}tZhJWw z+OqB`h^H=>ZiuQKq8p`GSJh44`fx3G^FzV;-|gi8hVid|odc_8;5wgPrt;Y5L%Et% zmB*@e+;GLtR)vik>V6IX`Pm4k`sUQVrEH4n8a5O8U%09fVsu$n`o zZ^cNy#X(7bbNMjPTsOy$?q!VIiu%P<(mx6XXX~WUd=AgZ0olx$AgIP_o7exIU}p7i z144RyAkgZ4Uv|iCw@(;)-Y3DO`stUaxUt|r-(mk&-|u?9MQ;=nCWvzCP9dL-E8mUk zgSUcRI^0>eiR81eT<+r*t#qZG#ES`SBi7$zup&BP5m%raie-(kRIe?oazTQRClB2t zm`_}Y&?42Js1?UPD>m|-=y+wZcpIbtAM7LT0^z_u<%!;Fdf<7m%3g@;(;L2w*zg_30`k@yV)I2MD8wcB*Ssz#*yd_%qgYKK? z%4V%+;QULve;=RTC;mf58miELpqZ%Bo0JBF@%EkwAOtmgw|2D4K);#aL#bU{H%7iw zQ$o%^7}^9O@`=g+h&KMB-G8Eat`(F;ZOVl1i(<|b9dj0av*@pZ@qAEfHtODp(L5=G zudzx5K7X|BuF%wb>!Z2!>Ke^yD+ie4^QovEta5!hBETIzddzZKs~>_A*GHBjp2Pal zzqu0~t4-y9hunXkkpE>-nzDR^xHoZ7+>}}6{DtfB;_`QeXmy(#{F7xf7JXL$+Y17!7n<$PX<~$|i4R zu%wO@JvQRpmD!25`LtW%T9su9nKR!PdNgq*v8W|)?PH`3eYExs&_dp&l=DvPC!E)o zv`4qyK5GwKZf5g~*3)$*p>C$+ZJW=nLyEd}=n-TtmbOj!0VtbU%J7T_ z`8DUHx$&L0uqpNBeqyOyj=Az{%c3hCPLr_;uw7V(kL7e|XY~dffH}Tj7Q7f);Id^= z9c0;Xm>uw8rG-w78>^=0>e-|kT5h`s&6Lzm&ZWhs&qrR;&12Oer#S_4P`tP*>?N$o z%|6c3d@Z*eKfW062fe<_UZ#K`<*(`QZ<)#g2E}R-BQu zzediq9CR!gNbbptJu3R46edgbBl>7zhi19`%!+H&l5c<{WB*l#`E;tb#m~DaUuMHcxUx?$ntQA==`P)(kA}`ZW@LGe>yAs)s4Z zC=oRNwpw(iBfgv0`)uNonaxd@KvjF0+@KMvI_*Q7D(<_8J9(P?kHD)2z~qe)SJCvw zcjP{LUU^xQ!xnM04Ybz0nAxbutE#Zm6<~LYMud>8GQ`&hr(Olpb<5%T#nzEMOVngJ zN>#2OKL0qbb*hg^xt(6E*$hR#RydN;a)*UihaS9Vrz;rcT8l1@i}a z1%^8wIOsj350AaZWzpHi6tvo`*gshK>#^?`x`oQ{)8yY5u7<__U@>Er1&!ZMnE&zo zG1DlmF!J&zLgnsCf|I$YE zrx(cJfI7oMBI}31so^}^tn6{<=x51IBZbld*`s^u{y}AlNs#j#*4;Fg!3;~-z$cB% z*A8d9I7f-YoU$^4RK8OTVAAa7;k{BK0&|vrg8KT~TfE@p-fWL+)QQ}_%^ckP28OI2 zx`F8?Gz98;K5?b(?<#dHxDNyQOLSqJQj%##$QdRFy3E_N4RK4U9afc~mm8P8LkID=o5ET5hoGPZXxo%e&;#t7m+_TV!Zn$M}*nn>2>SGT&%d-RQl{ zk?IAfiEB$IzlN7XcByL5xHC;2ks2Pf60)Ccx8fm@BHLIwJf`r5#b~7TtaSO3`)tq* zky)2qm&bK9yy8?P86?g-6v^N@Tlz7nPhUk;QXgB4T+Rj?vtQ zXQ2!i^M4d#`2hH(Qsau-h6wbRNT8;V`5fWW(xKzkv;|m2#;sGqs-KruzdhwvaoX{( zT$s}9N-&p6&zFbvD~H+N?sF8V1r1mGa$YC=s2rT#54qB;!k+o1L@^5O(+-_iGX7P1 zm=NQ_N7tvoillzKPTErnLtfCGB9Q6FJq4*b=j7;tgy@wv24R(zk_F(tO)H%=9JZ#zRb9$naY9e z-$mHe0EPQn)%9NQ{Xdposw}!=Dep$^#pqm3V$K@54cUFpf$vK3afoBy*}4TVt1Q$2ShFJj6gT}r(dz4;2cnA;Iwl!+<&dz4eS_isYQlz zTQ<-t&IG}H_&O2n26yX!v+uxBax(Yb@io$qpwUB+2IcmsHJ!7W#iu~5t;h8Rd49k} zAHM6kD_lIyt3%1CIW<2=28ivmWzhv#1uS`44z%TM>8KF(#m(%QTHm!z%Nw zUbequ>v7=T`6~I1%E7Gva_t}$EAu{Q0y$65Y( zeG|219{yikWw8JIRmT6tIn6(AJpLQbY5x7P1Nk%bvg5yqRQf-Une;E$8vn1DNo+i9 z-2WO#zyL8*W8fw`q>$y4L;*u&2*uANTv3dLm>y#|Tpy&K5AAF=Pqx4N`>Se=aZDvd zYeVz$df_D6O!MEp8-9ZTpF%-==Wlt)>$Az^dIId-`ojHh*6 zUAZ8@K=rgx)x~h3p8;T4Xc{L3O<-mbp@|6OZ&sT0Zwi77V7g)m@D`be%_Sq%fGG&{ z?q{*q#xdRJ8BiGL0qKewm0S7oO`GJ0XOdwmN- z2PE^L3^b9GYTUm71rTw#~qMfYxka~Bg<@y73SZ_a2Ehi`)nhmeYkFSH(D zl7wIiG;Z{iwDgsG?su>gnb8W3n-(u2znh3q7X@Gn(ao{PRynD+j)5=Hc`*mY_pw63XX+dXCW3gCg zoj)1F4Sg0d;OFPfJ!_SA5F8pg^5^K^VwD)f*^-=QuUf)`zmd5toM(8DU!QU|@ct56oh>0HEc|F#a)V|NJk0;5S;iq%jR^-tayi zXP?q<_^J|yMhu>6+e?sB6ukM}6O70h(+V}Mmx>`;Zm^zPZwGApJ)Vk%p*51IX=>h% zGFIz*?I#mdz|uh{h+u!;Zu|q68G;Q(%m;Q$`OPliPz*8QzyMUq83K=j*8!~vYNonb zZxzb~iv7U$l)9b2{$+9shLynDKyYW_OY z>zyiwF4*9(-j=~-zvBP;OzOE6xM=8O4|T?4mFYZa09bb)V`~0n)YW0TSVf!dx$`R! zj@0*}2ML>InqJGmUBlU#Z5dlaLL$|`V|i~R5roYLRlsH;5%v>^Cfyy3rkpchX|RUY z$W(rDD4!$L>GuqQPU5h@%boCVQ8Il1v0lxuSCBz_ofK)~>(OcRCJC#t2vmRfBe%oT zvQ>`z`9_vdCcD*SZwSh2gSD7Z=fgopFe3WP!(k4nJdDKq&sqC9O_ASD1Z_V^ybG## z&WYsp5y236Gr#K4ehRIjaU-NkzC$TWX|2-@q}t}^<;9E2EpCTv>W5zdovo>0G`?^@0zNmoTBdlRh-cSH-Y}uotss<1fopj$J{>smWvbbb#{q_G zQm?)EcuFb1yLG^M=N-v2Z|fT<)?!N{pu!-MK+VI+2P)zF*L}c$MDsD9zql!R3_=I0 zl+*06{t-%`Y!tu~#XUkrK0z`ryCqhOQ5;h!mnx8F2l=b*UjKU<-}Xb)B{tSc7N2`M zuWQj9Qxz1kgr7l5;?wvBZZlW=W1xFI$4>YAi|wm`WJWE`1V_IYmhLACKW+s5g>o&W z7sGN*CWua__f4nI9rCHL)7CGUL>j0a{c#_(^=Dcfg+cSjMn)QWZigf)2|YmPiaJ_}v`VMm@)>e-bG*3O=3dTIp^(9ag3r9xXuAkC z^c05tq0Ex{8CW2f%FMm#%WmL*xijFb4k;3y1?kx>zY72dmatile^4F0nyR1Vi{yFE zbe#mPw{rtupoWUjI?tonCoyz0-gQdFl7xhWa9|Cq*(_AZ1ov<*>WgtG%s#dqS5a;| z`c(6uwd_L4QBNJVO$ex}tPDM_{ec=yv?%2WL47I+?I)>`KuM*3O6c+8FJz|0LQtgp z5WL-vewR``q4S@xwgoBa#>6;Ph9+DZ9$ktAA#m)?A=aVvh1RO%e^>^;zHl@2!G)9Z zdz}0@$e_VOBKSfn`j%vn+zvjV$X@@#{?8s;O1@_dqzt{{ezxg`aDWMyC`Es%^+ zSrv9JOo#TmJ^);Zxz+!2b!|D3&MQ&>CcsfXb16?El6bv6Rl@mFquiTK(+7&g|2 zHb5Layipm&UyL4SYo#*DX;i?G6V1ECr}~zbB|bDb5s^%PAsGRWK4@49f+jEa*FuZ2 z6l!WFm3fFZbk!3TgZ+3P1PzzqG-S6rcxy z%ds-|HU#f3fUKY4DPm+2moj<3<}81`rVt2=2&8Xf%4&FG#IkyU$QyUCWn*qE>+49Oc@n2o5CD~S^VhhF_z2E zuyKALWM3c8+4ULdo;l+D++?Bav5vPUer^bK&qUX5o~&Jc7bdjE-})Wg0-yi_cXqy# z!$@z!NyZ)s+l#q-=91*zduVG|zN{>X-#N zTscC}jkymbkfs4i0M~b#DW&zQt@UF-M+DturG*pkcTf(}+hs%{X+iJSN2aW*yR!#O z{U?b?)I5(XYZ;fS3v8sF-3QYag9bVec=pI;*lYv3bm(7P>3&kV?nrAVz876-_%+;tr)@0AmcZju6 zD7EyiTt`@qTvThZm`Uh1MG^b5>RPJDm7?T1onwHw?S^gUgJuy$AkHC;hbWtqfryqx zMyE?X3l$>*plaQLvlhy4AH&JHkqV8pKP1oMcV(5J5<}U)S#(rWJZ`mu*LA>CvD>*h zGGJrm<+fR5vT*54g;KiPdhV+XX~+8juo<%L6prj`0NiIa63pr}ox*NsNKV1=WXdM`WNyIlVSx*pEo%t)Bk7> z27U{-7`vA@-W?nfCiP{7!@WB95Bv40>MTp1N%Uv)LV=8nRe7b}!-<6UQe$NCv~;Wz zDRjbf>7UQL57B^H;6FVEZ&m1k2@eDXQS@p{&6{;E&%uVYO%-=@N||7b%iqfp{`Wn7 z$@`-f%Ka_g2INqNbXKW()~JIg;p#&$xKJiuQQ!vWu)inRHAUy!>>|~3an7yNK8BX% zMAq24I7{c-pf@5A%*2-%Vtu5eI6s`F_S8y!>+Au87FHmJe$Agk|S`(W@~5tvqf zD>Cr)BFu@7f45?>GDD$F(A0NOb&bFKDbM96Z^#FvXkqJwG%yOX_Iewrq?3bV60ot& z$ORMU7b8|NZnMtE4xpW_HppoF8c#6me?H=xd=lC(zx%Y8>2JyxVSTObXU zaPay*Y{}i7mnf@qPH0VwnrRrOYr-R+ir&VN}mt}B^`Ylpelp{R_yoR z;kMuEHhI|7vjaK=f$9)bb0#JWgSLBe zpxy@=;Z^Lah+{L$Hw8J5WQ94|(^)F{OJ=dP?PszeOT~h7GiJd4XhHH%-Zz4GMBImZ zP4d`QP*wz^pnKC#hKqLF|9;yyjI-GEp61!EIZ*_{8}%ezoo)4%b3c?OGj%0>lzp)+ z8c+o7zY-rkv8+)|M7-KU?Sry4bfpSh8U1}X#wy5=uE^Fo@%?W$GYE87tyi*KPGtAkvYTD*DMPX=jK;cY$p@cT z5TL9t;GoKjA&Qn_ffl&at|V-ME@BwBv>6IO(NBPX@;F9&OTr8^C$dB1G=j%4)5d4+Yy0WF2zT_~E$Ic5zbNH05+e z_(|Ee_ghM;QP-RLH%;2Ld1n@>Hyuw`=gcizk7W`NuSupa>2C%G2B@j21KYZ;z?zl1 zsYz7CiII4hImI~}ofdK)J@8L=VWbZJFAt~ffIBZ|YTB!uNtVCN z^|(i@(CE?P`6)=#v76~6R7_S@z1=CA5FjE7OURdm`tkRo4VcJXon_O<6A4#edr8_r z;`#9|)=f(1czq;+-A}rk)Qc)QenL(*T~EnzxlThyhVl4NuQ|P%Mbq>Bhw0O4F|n`Y zjG7lY&aiU{Zr7yW>|n5Z9C@Hpu4!Lfe7u}^81;Cav-<9wz&I#8 z+@Sv8XF@{otp8n<#JTifY;1X0x{IIR>=&bYnul#fQgP3r^>(#!LA}t^wX|38(E`Bz zeAr&K$-X|V7kBdel<<_oT?~@AJjVv%W(Z@2ir{t|;LXA+@D8c9lJB|NA2oeUNd=+S zl(&ruds2Y?TJO8$Ggkc%@HGR5-XQlzPQPxsrhxu>_(&qq&}&10#4~^LJ99Im$)qSG z`s1al7wVQXH84%8UXQzKOy2X(;N`k@sIF0mQMy|On{alsK8#6cC-(`kVSVFyG5`DK zIBeebjYh>+rlJ(P{)35=v-Y%d%pLXji#rmh^Ipf5=38PZ6!j)(m)5%?LM|_L>>iF(rPIr0Y zyAql93p6TM55GgVYpSwDi?j7rm9fa*QE|=_n%-OI(4Q|qbZsCz z?oX1WIFL1B9^%ZEM4gOk%7s7-K~6Hl(x($?i8O_!E#b#Esm%LBbTrXTcH8v|tVkPJz)^$wsq9@0IPCV%_RazTvY^(D_04ZuG)6YZYy4L}XruMn<8>mQ$~9kd z*?eoPpI?*6uci4$XQ77-xv;uKa6o_N1ZrFBp2bDfA4Mpf{i=R~sG~ic&K2T=Sa1%% z>6>2&rZ%Sm!h)oEK~!fSn3!(lA=%#e^v@|wjB2$R)3ubTdqN3p;)2^L1|SP_G=xL(e=fiiS# z=Y<4t;VeE1CvIQ{slQ$KO+wpxMwdJCI%bJlSo@>k#D3^(HV!$kO3WIs74YL)zp4lj zQ`O;UB)gMUa`}80BQ8^YP?F#4#Xn;mG!SWK_3jJk5Dk==K0PyBMD#uZ%nz`f$lxD+ zSZQo+&hiu{(_frXW`i=MCFpV26h(}}_hfh813F`L(wifleJ7tUz9#tn5ruS#aYbC- zos>rPp#I6ZoKT<;>wCWAC%G7B*GLEFf+?$&L-dSDBnyn19SRe55%#88pgc@+S0%k{ zLYXF0a+p*Y=dd!A^|z=+iWfqCkDN%2JlmXC5mg=83M!i3;hsI&$Zgiq{(6mj={{Ek zy&qT{b%w}}@7x|GKe2D=mpINA-;UpVJEr#K>2*Tw;4gcn06@BD?R-CAGE48D4e~U{ z_bc&av$XMF39UtT``Lz;61!e}a38Ttll@YeJK!V5G079UXnk)9@b9r{YQjjNhjR-f zxu2;^Eww;jCXJ+1{VMF{^d+i^F=t%(48aT~w2`PGpSv>VIt#hb5F57w`L_O>OUh*Y zqvyyX`H0)g^0wLH$qMXWVzNejU>%#`10>oDqs$*!q2H>z6=eyZV=hN%>AQ#r*OG;< zv!lpA6)Gu--rmnhUANp=&n?|7TG8+uJIyw`{~7c6az2w}L{3r2g4d6bR^qmUq6!i8 zS+Pz1fIRz0o8>6v%~)!AMM+Qa^1~sm;9%4Jq40x}-d*Xh8WWY%er0OuZdICAR^-x$-ks$F8*50R3bkRHQ~5FQ?My6X5^$tce!smRy)bU^fCC#4OVej%> zau)D~4vXhLZtMKC+9=0sw)o|1Mx-8t^sVh13V*YW5|xn>&A6_dTep79%t!H+FYr>z z-JA!;tk%?~w*>5VgC3A3Iee0)ZGMSZGT;shr^Vjk^)H2LS)&iFqBUPJY2#Ck4*2;M z)749p;5_b2)z%;Te9j-v8}6Wi`M~o9j*W%-jX?$EHgM_gUj{sPBBb4_K1f6roV%eE z-w>oXkl>|3TF?Y%2Jnwl1XN!~igQAZMfy6ilV`0a$wPN)IBoA)BnusruYGQvrb2H{ zHOmJT1!kO!v<^G@_7^z$BSsdr`%T6qBFE@T+2Z!c#rZDFJx5 zMrgf`P!`ifluVURH!vf~)oUSg%!x^c3U0XgYG=G+XfwO|@R!?f1d$Rp7QpK~Q z!i^2p7SedcJe&9~@x#du_>y%<5gD+2_Ixf3aZGQ&qX915qQjxpN*%)IH3bs=>XhL3 zt2o>A_0C_kJ&_SG7x(aRIHH59MEm_cYg1>8P?B1>;=1a%E6+sIJvOXOq0)J?0l&d) za~ps|rn@5QkQw)z`))MzLnh$#>NZLoLd6CZ@qdQ<=&Fo7;^O_eEoPdfv*jN~#cn3Pab zIQF3)+-z1F>)fRepiSCi_#`6fF2N@Lzj%AgfVhG!T@*-g2niM>xO;GScX!v|1lPs_ z!QDN$yL)hl(73xa?$X%poO5RGoqK2Ao%epc{e{uccCD&fwZ3n4q~no>O9+Dx zvW7TAfVhGM4k64*-jcDe?i;OBz8U1?{A5d>JOzp_Z^L9h%{OGxQl8^VLJSGv#-uO) zG8?6@eNGvN?e2%sntDCFW2wwOcM-PkuDC(oLnE=^E%>u4vq_rBk}R%0v9Qp5+sjpF zVn8>R3?Q;C=u}{G`zyG~aVK%X7S*dh3drnhGde^ZpEQQrf(6kP4T-+T^Q%q^YGCGn zY+*J^Gph=inmA_M{i&08@T51)WI@z>bu0>uJOyw47|)w44rpzX;Rz4{^nv#UTKQyv zm*bBwQ3PWJHaRk3E)C&#QtbSarU-6)0=*X;WrNLHCDM{OiVBwy`K=_U{(S;5-1RFsIn)r0t1Wi-94FGTZm_eW5K+ zx3Z3}n4hU8fEo7N(4i0}u9q_RPi^@lx%zG2<67J*Ip0L#lDZmkdYeVd7!qIenMz%J z!1HD(JR}*A4~+ip_q&dl(C3sY+r6Y4X_fJeZwcQR@`P?(6m}s*ud8iDK)*F-oF62@he!=mJ?kZs2W+zHlr*oW)V0NM(mn#^GyDWMvb%z0F zlN)}5Q^rD+A~^!mIWZ%h`K%FiNdmH2V^Q27UEzX_u1QsOfQUUyjysVYM)Si6t{ zJoCCOzTBo#mG4bU3WK5lG}4{p%u5K}+M}*Hip&(P2F{NU8OeEa*y0!}i*V-I({OOa zn?AU2SaIJ(6*y#C`P?m8GW_{2ZAkx}_l)cQ49|-aB3E$mSq4f1gE(ATixT897eA=2w__e0At-fSljZxd7@uJ>l>X-!)4|xgENl|61{m5I zW2AXU&36J(OS7;VbPN0Uo41BGIflci5C(_aOOL;Tij$b;9vCiRNBFtPQ?K+0{rEDt z6WS?dWjvl6$5mRLi{XJ(7P)RlYT$ecaos4$=3;+h=Q>Rdt14i3>x2Hd9e0&7h_z3z ziV~E7r!>y}b|9F<9GEV%0S__pX<4z19u>kl;D=Wk)@rPhsazionJdob_VlCWqO-m=b=CRN z^4;!?=F~Qx9ZhvX^~LGQ^1w_vfisHXYOx}C{%PAGrJvn$4J4Al8@t2V zR#K&2+6ixVdXz;r;zDhdgv?4*KKmN4!l~qbOQW4&FGk6X4W<>#556uoC6P#ja`Xa+ zQ}IR{=jPYo&*|Nyy4mZ1v1A>%U#bFd+~kpj6Cug=YbUJB3FPFi7wsFDN(zX8LMAP% z{?Nqv=U!xvyXqn}m!riJ$v!rnD5qNwUh6 zB~XPy@J{Eu2hME`sGAUzXrx1Uw3C;5qqSr1kr>#iXd&!ITU;U}#bCSte$jL!FpW>P zO2+SCaunrv0W8F}!=%F;7Fd()_49CjsrCmG-P;b4ssa&L>=1k0M@GgwjPmb&s5-~q z!9aJDkL4kfO&Bbo!6;MFpDolcqG+xi%YttsUiVdz8o(gCWo*2FL-B+)qjWeb5h}d+ z4}jz&wZ!K2x?sT+9H^2BF-h>?`sK#k)%aD_iL^UOUa{Xy@wK$=LhPu&Ob$;3PMR%I zkXoWec^8N>MXX5;YJe?XmA&f{PD+qGc96W*6we!^h*u7oh*o@177TNq*D%e6@xrNp z;Jr+6QsFnu2*}TBya#>8YMo-#c|ikK`ps+m{PYi1+cw_WA{v9%9Y*+RQ#d`H!X1iwc8aEvY%xsub*zD{q|(0CVsL-^`|n^ z0&@g&BJ9iTm`8yn&&7h5Y*=jjh!Lw{x9>BaJ_N>7=@6N1iOdPW&rjZtvp$m+`OUrz zun@R%HdIRRhpX$^r<=I=^>d<6Uil8}W9Q3sp~oP|LGZ*23XcFF8Sj$Cmybv_EESt!J3z(tC^g4sg~Psw zS}KPgXTTnxhj>5Fy7gLt&_Sj*4TTIN^k$_Y%(`Bp8l%`UZ)&t*~M62==qyTn3zEYK9NB)S4 zN-#<=l)+hS`$+KhY;RU|Ns_3v>Kc4JVpuYR&J_6tgkxe%4gg;D_Ssa-70G*g0pg5v z;Kr8fxt}nGU@rx4?ase}sLr5k+T1bMBz8@|i)?hQs*>d2 z>aUSyi?~M;5_)FIGH%5f$@JkXfzZB`xO$zhuZ}%$M?8DPeHcL0ZTfD{bHrE;v%K4-h^MxKxmLkyx;Q})2i9khTu8xw#wpEaqO zPwKWP%um}Rs`0iLH{WBiz$ZHyS%PZC?JTcfOr;C`+wo-{#nQ85U< zS6F`>1w;+-QiUeEc-Zj_s-hWOAiu_qPy(%Zd1R(fgkwF66fWn4 zB%lNeV?5Zb^r*%8{XpbJyJiYO?t49ZY!ES<3a2r%0<%@Mz`rK@2n^HfTEob zq`Y^FGKk_ZIkrmZ&D$@x|vwMa~JA`1lVzqltHowQY*uV0qkYyeW4DdNhR zSuhGb8im*~6|BfZ|37Ktz76 z7~q{Ts>b%@F94X?nNjV&Csbsh5}Zo)F6IkqO8g8+qQ777q(dG5f!0*IO8g4XJVTe4 zl)vaXD#d)olcLwl-_2qqm~}=FHecB)>waNmPljL3RHp$s^LY^f)b-yEEd;`(+kAd76Ix7ztT=u%4WJl>Vu!UhhPbax=8xAo*JYXz zQpu+Yy207Xu>R*110INzl*LN(loTW!>**XS&anYAlwVv<_lV8y*|KFjpl5a+AcNCFMvxD1;) z@W8Tf|82AFQl^xTy`=S19Cwe0*#5TIHvCNU&R`>@v%>T1<1G{P>?=Jw?@BW!X|b7JL>8Bu@ zYWYD4B+vZq?d|yZc;Xb6to3~Or^}(gE+~bD=NEnW+72XH1w(|od4vvj5zPQzL&ozP z23B%c6+!(*>p43#;!9G!gAk&1abLf!;92{0*W>w$ni`-@X_v3E@=82V;(#xLDw2@I-qv;;bl-2(`-Z%X%?i)wv5 zy8Q#2{kSRrUUOf_^~=uPM)z(_p9)GpqyC3xhRxn!##<)JkgnIZ+~ao&S<5CjhuD-; z*>c*8^#{tQE7w)4aW3uM@W{RSo&sE>iZ@&^ z(1N*68@jF%Ok+-o2KKe%=m5dp2EIuOXetX;J`|tQ^slm;Ad85#55g?gpv{|^gaU_- zNs5#U{zn7vsOn(Eu};%*RIA|AQG#SVbjkOfW{6KO=PxbhfeZCtOl}Fl*+-J6>uJ0T z*Qc)+@CMv0RO!d>;zMgC7{NCB?e5plq+)@ZhWgTAyXEik@k{iX#BNRTp1#S9^4iVJ zW(e(PJcKoG&E18wWvXyFIsd6rA@6Ou!z1j5v;7(Qe zIEg3^n>cL+&>Aj2u)}i%j2J<|m(XRjOY9}F1v3Dm4p+=9s-naPNrhf4q+mwgCt^Ee99gL8+cs-_mY;^=>dukPsm zarb)5WM66--*wub->m~UVLtmqRjb$(ET>Fy6xC44yi#B4WhF;pv$RVAJ4%b@GB9Hq#>B`~_l3 z@N>J2Sq?*i!-B`jiC*UwmN+c0Cc*+CM^nDv1*{0N4nMKr{s^**A4{bJ=mOc`PIw0x z5LzT8Et6-gIs-51NdYQLMZ{88ZxU>AHp>i>f-C7U3lJj(hHLy6%DAT?LCSaQu5zTV z7UY1~OezUNuCL~#wY{)$Y#_{nx1(}BGn^f_3LKuqZ5TmgcMN(Oo6XX z^S<-g&JfkLkJi&C>EDh!9ybB6c}Uu}s)^~1ukvtJBI$p$WZ(UuLDUkH=}wn`zrZaf zQvBkEvp_azh61sf@FjI&nEi$rBH)9Lw=u2f#lQtua=Ypb+ew=eq9KHCGnDn-lDmCQ z!ISem#&NGvoL5lWab&GsGtEK0DqzU+H)Se@&*W8)8lXB`6jlL&RpS3qh`@h8$(JCR z6_$un^|R>s$Mb!+4w`!L2gP!6rpqv@FKfIGodXl>SrkPSWzlRU4+0%Y~Ez4%*Ax<-o3Nbo#PY##;WdMMWa|Jfo88l zV&*`DZqhCx?LqM(o$xShJsO>j3v32EJDK7Tt0wA{d9?V$>7YpGoGkrBZOs>gPJ>YH z02j1<#8i|!cWh#dH4ZG8|G7ANPy!d3YgP*df0b7O7m*9* z_+?{ukOyTY3QQAa`2wX!B4@0X#wv7Eygkg)p<%O>>JcMuGC1~V{H3NLh63qes&m=k z;*Cm+a2{V0m%_KRc0PtAN7FAY?!B5|lh|*|Pr1B3Rv-(lg7bXOPmU$#pFfeZ*ZJQy z`YW7a#y`%Bz(uZ4D_38En`k&(3H63x#mKjlO6A?D>;VtP0(+K`(XI^ZoEsOyy)^8p zzLoZCqW~Gm$O z4(e-ir8L?cR!NScVKHun?$Cqdp6;p&ipqw7_i&j$<`!1FzJ3H=c?5vPx996hwtNgYsk=P z$4gUqad`NH2{LV&9yR&#Te9v$6<2XqkvDHVS#{SaKka(%8UIb2s$p9&hZO5!u8RzDk zMUeo%p%lQMPj`sDN86G+ef{J90{~3bWbx?KsI6 z1x==(q=ky|S@fnh5{ul<9@!Md#Ef($b8&Vzqjb;rkkd0~IE9u|4grw|DZaCU{_3vu z^ZBP9c$!JCI^d+hiZd*nVuB>#VpcU_A&o6;CJw@$u*y3f4nQAxZHv+p%wvtiDFwQ> zanW#5$z=}9>lnAff63I#cgJzo#@eeU)aw)-oEoVh2`ih--S^)8AO-G!_yM;>PJ`T% zDA%oFGcUJ~tSp2gD1jDJYrzKK1qO0o%dNxUIxiU}q{j*lx*q|4z+b1_KJ3u!3BI^I zaecVui<)%0@APi9+YJhM=V@Gm<1)TG;$tVq1MAkM+s-s4y|vLuM`VP1Z6!GBmOukB zr%&whC; zrYgc}V01T)_3;cAbaSevUwDqExZNj7`FEY16&aexaydzYRo@ywaTnXQbb9@GEBo5Z&G$HYsq|%#9uooE2!rtqD ziyS~$t}E;Wx=%z}^l?4%z2Pl!PFD)JdO6-;e#;uj1|&b-YY#9w9PzN-nxH@Uz410< z&B``+#0y}Fc9Kyh`bx#<%a^aTaL^YYzo&W;{sA*xW!JvZnjk3_%adO}3yWYwx={KQ zyth7GNKe(J(i+|7 zrm<+ok4}@5?rQ_ASw5HITm{`;>^Za2^$tVIpfPu!nm6;Id&d?)a0}aXEC%5y%-$bBe6xV)vmTZ2~`)J=PH_{hwXAv6?NumkSa68st zo&!5EROaoJpnFi?!L?YIxaJyJl_=U%FY+^^S$-tJao4K;8-aZGxF555%UB06#dF?? za!W_+lUKQ_~CXgSBHK>!yUg6dMWzvn!u zld?>Eaj%BHxOh8bqkjzmC{*Dsw#KA+)xJS4 zyLDW3^l?p+qsyCln&f3FozrXoz1+x$be84r(XbLi1gGEW5QuOn=Uh{S4LT_EE_Ofv zwN|9T;Cy96RI%%ox(yZQK9G(*jR^4#Yi$X5*NFx3ppN!pADxzjR{=|Ge5lurE}xmf z92&09bC#2o0UKioc@W1F7p8zSHwH8b`2H9Pd(09@*&TP6Dc=m|ioZBDw20GhewPX`Ej7_VUwN zSH`(o{=Op%!UuuWYSTZ44kuG8(t>56#$4K=2k0Cv=ZNJ)qtgovDyNx#Of14U;6if= z=1;Ycg-n9Y6HVCLD>1B~c8y=Jrs2c`S~L*&MS_bQ85p9tj88|XuK9OdyojbdZ6sc2 z6u-Sae`|=G3LLN$7Xj~Km87fiSDc~%Y-+!^L!1I_2P0)R6qehLrKt+7q>xi?ZZkpz z%Qx<|aFT)d%Wy|?JF9q{_tE{(@D~L<6(&CdfIxE4v4e}jT&$sa;R`a8Sn96SOecnZ zLvm?f_nQD(=hyhIbpCg3?l-bH$~Ows1w>iil72hIsSpF~)>hnc{k8D3XWf)ik2frV(bmmmEN~l_OhFt$>Nu=p9nk?bBMO4@d7W9iWgooRsb;s7}CK zk|5ZB51qw(O;aZk#V5F&$?Zd`U^IY~@+0gfETz+4G1u_XF?;xQj!q8fFjK^mrTjZ~ zBJ@uu??&43ZbAa$NtyX|?~IgWg%A6H?1?`$UllpE0sH_?G~l}rAed2XkPop}|%dS#JQM!DVSiAY{w9J&Z4 z?F$wf>ClWxb+xwE9j{Jf3md&$mE=Dv7EaM(lTx4H`<-QF@h*XHY39m9btW<4P-QGG zZ;Zu`cE*?zbkEJnuCg**vv2Rq`d*=vUSmmohJJ3sBB-FmO-nzxg=WYh!a}-lwlt)d zJvEtO=iTD&NapaNcI1)MIL_kSSzg;mXq~~ z1iW=;w3tnwZN#%t&L~j=o*GG_y(LnJA7+})ZyB&aa%)7`Jchz|KPGJ%aQ7QOnncGY zjDt*$deG7R$;h@MTJEmLu=;L3l9SV{aW^HJc4vA<9vYvKAHen8mExrYo`Lq6!2Nsm zOCK7qL}ElXA+fliiAJ?`u>Ekh`X4|h(@K8254pxwFByk)-V#j^j%k|C4)ikYhJU?su6E zPlyxP{kr+XxmXet`^v8gF&R2mKuQoB_G7DY*v(4Qp8ZF~K>b}+ms=3LB4zIHC{8DQ z^WRYSWMT7$USSOSqgCyb`?`MII3k{m#cL0Bm@H~UGDHPLlGH5CYH_ua5B-AR5+`TK zx&OHg_~`UKFvc{-9AeUwh%#~L_!JEc>9h=9m4Ti1(T;i^PWLt_`%1s?NGsN0GvsQ5 z1zApi{!s29nQ)_jzY+oQa2S9bhCVm<{Y?9Y$0`Nph9i9`RrOpG0foT$Wia>agXj?S zeX*2BL;N*S4N685=rq4t$bc}8<{QyMGz~q^4L$=E`^2g=XG?mTd-5I6dXedxpNytk z+{=o9OtdDt%~yO1O5h%4js31{zOlrvNhzUjv6Nk^otM*o4A$x!ab_Qnw*KDa83kvO zmzKC?l8_66W~Ns1G&^RV!s^G(IL5ZgP~bOubH>jy8=OeUtZv5$NnOX*>ryjqx!mEF zBDxzNoSn~Ow_5E9+V2g9B66HR#FVsNjYf9D#&NHOM=+WkWb3vLVT{FkOVZDB?L>Yd ze@UXty{X5C918iZRvPTlb=%EXXp_cWIKJ4eczqpo-@SJCf|Uu(B1FjG#IU=eVcJNM z@;Nz2DlD`s&Ec?pup%|C@40K0@J2 z1r)b7hfu(4nR@wIJ5;6a^(?aJ&qW8m7Bj@Rr9APm_;`ftX9&QLicI9`2in6~Q4k#J zA|lld+6#E4sg(_F`uEfQdG$IfrE2AvgW`dz7`ycsV5{>L#sd6%C&+?x?qQ3EvyMP` zl`P~--e^6}C}C@Duv}E&pRDh?rWqVGX9Qfz^`GWQ?I}DdPaPWJNUu&}zKr;J$rohf zyHvlc_9f>cIe;5M2upA=AbR%r}q%V&yTa6Tg*?b?q&2#BT4{b z@3?w_^Ij3RS>=ySy*vBMl&{C{a%GHGJ&rWKh4FzZr0}}&D%>1|1Bm23QbL40gMqe zLr53Ges`AjVDk2&49_e+m94HzD?$gU3RH(;tsONCtYylaWPwtiLY{ip()Nq7WZu{?P*4TZpp1@Kt5Vn8%~X|?%(&L zQQQ#WQ7K_bZ)l7is0;O+Tsb?Y&anR-Q!+9a+5V~Mf{@3s(i`{0Bou-Me}V8`A5X=q zl=qQOWAGq^1jE9G)fbD@0)J@=>a_lQ^8Ay&;QvA3f9E%V6#BQnAwvCct@CdL2>)e< z|BNjGl9^^W=CIAv({oU8Y;5ed8`l59bVs7efv61HAE+3dKGAb4beE@0*0kYU0tY3t zk^c#5{jZRp3Yie}g^xYEVX7g565AwpIm{Pb{s!qide&P^pohI*$AGkqo)n}NkrAtZ zxyrlyIXXH@OC$axoqAYkxQN)r!xd5ir>L8#aeLQ|ANP=gfRQD6?iK6!J5&hEklSGz zAR01+N+3iSlJO(Ou$H#0)T5+RuZ*7vON)UM zr>BKTcJ=4p!`OQ@BdvjiAF4j1wqx4N^n}(-c37#m1r8IdxNj0akjB-M@HqEbu&21H zhH^ay8`?`cT{yZc+|O}P-&#Hel}-;&nOb({!HAX$VY4bGb~8i*H8>u1l)XW=zTE6_ zHeOeY$y80RNNPqOk!dt28cv^Uy}FS?q*v1oQEZr`uE#WhDf1e(6lJv@b+(t&2ok#N zO<2S9D_{F%-lgBchR4V>GGtS0$%PkR$oAKJT$b|BJl!e>XiI~OvMH_T?4vob7v5La z1r-Ib+GAM~aP8RM4i$W`L;gsVWbM;BUpLU|Q9JiwK=<`YYU9qlzeXNEf}Fw{1wX2B z4N{!rijKCOo0-oq7OW}E6s$h(46V8BO0NjfQ{1s%ixFSH0l-N7I7Aq{llqflNRH*d zQ=O9&?rA6msDo>X%2V(a;S=Y+nOt4>m#xe7`P(4Yvv^VM*B^y%5AV*=WK8d#Xuoo;26PAma0N3VuRWE@N)@eTIBNwGq&RXVg@kuTdPm4=Gaj(srWd zVSF{ugWHgA|D)wWV~{p>C&mFR?Ju!=0N2RJ%;SOpjR)+3TZ>QqXF(E z4cmwiBor-<6|71H4TA8HZF5<~9a;GBkDXj%WDtoI@oy9;7Z-0@ibPf8J%MA&U%lsh$5Qn96qFu z3z-4)#bzr&K;~q_@=j{!_UM-0te`s<;iehCG?5@7*BqMkp@V({Pbb>shmHg+L-sf0 zq?Bo{jJ+S0<}MOe&=To~{cwL|f`*6Dx;q0N9u+Uy$ea;bN)$xMcn~Q^0N7U2I%Js4 z$QsXd=vr`17sT2^c@QBiSfBPei2?NW5 zQwq~<`VtmA^}MwE9>hq)UR69LPEH{Z#$*U`BJPmHt48%w`$D}({c2l}CrzNmEfh@& zPc0zG;g88KXgAPTot`OQR$el2N6j%PQw++>yJ>Lqez+2*LBKp}=OYF#`aQS3kozu0 zr@}nF6MdEWLMJsf8M9PML&fL2s#W9i4Rs>4daj=nyX2BU3@bE0O#l)H1=aX*IA7?a zgmEvq<(U9xNeVz5Y)UJqobB^sgbYdD3H7bpK6 z`MpK>3shHDUfqC}Up+pXSyW{f-w&VjcY=nD-7N7A#VVVqNS0WZeF&_3r%qOEG7)Z+ zQLW;5zdqhsgd>OS0dW}k?aoxKwi$ppOw*HWwb7Cgo+H@?lENJV6CfAvaJsBXoy35n z{ehNTE2woI#mTE`wCzbIPb0Rep@I1u*#f=cK84LE&zLMC+AI3b^>21475%hcR$mMj zc1`f+O$IT4t36-zg;Np*UJGz6Sn7Pz!a7f}NHYxc>t8V`OM;eRe^+$Z&qyVjgK6zp z2jh-cYODS{uG0jC?0(IvwNdB1oXumHvAfgw0Nc#fcbGaqUb9|&BFl(q#8cX5l7siI z^1*PT_~%u#deOpFdG538;KbE^^1Qs^7-$vC&-cWB8U5D>REGe7LEaYoq|P7h)tRLb z9Qe{WtY#mj!SQ*)a}Byk7q2>ut5JwMg7xRRJyBg3)~4oys3;bgNu_q|B0hP$75+Bs z5GNzBJnA^kj455`v4X4ixk(XARZ<{8ldb3j)BT~2OUiM|ZOiPrTB^QfVu-tqJ>ZwK zwH_uuR+;-fO0>@CTz)>~Mg^HoQdO5|XC83ihe?#~2a&zYHIv|bUkvO4nc&gnfyrK+ z(Vl1CouKrRRj7HDDr`DdAoBg?Ro=nNT3H2gC{yR_#Ws}-!JGZSHf%}TXE@DB_uA_! z$M%vFB4@Sb+aKsjNgVV@qj*W~&FHBEm!&SP6Gq9{_=qxlpC~_k%WdJPQQr%U5PBJml zd!=dTCnp#oO(-CK=$nldp4;**uh{FH4BFC>toW5)q*YE0zrvE@PIvFJP|*EnR$l3? zxT@;;td9JOR*lhrKNUGE1OmC(&w2?3zgBbIR*NXE3HrT$eB56?ACvYl93ymUbY36( zszxuRdnvY9O!WHhR?PR{KT)=v|5Mqjd44x%(o!_BHaB%)QgtTbj}ORuxn9W=$SvrDMU zJp6|9<-XRYndWJJ|1y@X@#31pM8Iq#AFiEez4xPY zs)Ls30`nJH_1dxAi5EZoQGAugg~{Ml!{F~KFCHcXJnQt6SlO8cTKLv+g+!gRJTG5+ zgA%aWvJpo|o(i-I{fWD}@0!}q>~q6j zza?$oEaWg-GM<(+c}k>xpB2jCGM{Gmw0haHndoyHtWCi5SSG0adF>Wq4bY*V1X=G!-pgW`(Hwf zc|BB9t)uIiSH};(YhyID(o8wT^D_>jZZFK} zvu5cm=xc~gy70RXE>+e34&)$nxACIcUq8C_7t?iHS;H1IF5WyEUEcOC4nOg>TMDQ$ zP4(g6wa|-H%vKL>xSWPkeiDu~x6UX9xJ)G+^U9OGJXyo~@leE8=jy+M?Py<$ z+vY9rhi9!ufVn=v9t5k?30dQc+B>5fTyS=e!o2?kXa|$m3}|CkImjj&|`d#arP>+C$xEJ7gs)t)n&){ zyl5^`)8sw*netMCvvECPOvSksgXb3Od!!#LpF(3$O01&q-kpi1ixJeccG_KMs7bx= zrrZ4EEi00omZ^93#4uT^eB6V{wa}cqBO#IHUEK#o4m$6bbL~o)L1uj!d(SI-OoHb* z^lu0PpQ+cCo?3;HV0IfMq`ynnSSo~Mik8PmKhE%R*2l~t9h%($T1Km0BK~{~|3bCK z&t&Z~e^z*lwaBS*S-ODObKG=|Uwvi9dfp;5lb>=eX1OESben(*FPIM{Z@3Nu^vaD> z{!^iCcFVy2+!U0n;=wfHUYPg=h3OBY1cf97O$`P6|K;WtcFYK*|JorK<#vCERIwHW zQ=u#b-U>Y_zq1m<%Njg@pSKr*o~Qo$`x_=eGVsl(Cj?*19RsOGEMO$L-pb4G-WvAE zRs=ek`l~sn!{ie~iN>$VqH?<19fgy3BIOLgxZ{1G zLZuDu-s&0A`-~PEvm}@(Xh`)3KOsR;L;ZsChk^RPT#zdU98roW)TqZ@qmI&2)3N`6 zu~qq16!ynDK>cm=HPJjdA|I+9vjjwd*p4HLMsEO-fktUY4ClZvZPMFdY`hu)Ipm*z zxo99#4A@)XeJ+iw+2nk6|D!q##DG@kNZz9UO$ck9j!?N)2@bhYji*(Tx!{L~U35{^ zT2mcfve0JRNq=>W=l0JQaijTz1L*~$FS-AXy8o3==nB*Fk7}qZl6JAsk8F_&)nNfx zyoUHgV^7+7nm@mamC%kc>l6au_=CY(#UH6)G7%Pw{*|#eqZiB{9OR0$R4il)>34s} zp#RWZVal5k3M^vX!q9iLH9Z`ak+inIpuDj>jKH6$VBF}wyCHo>s?iO|H_SR9fa?l| zIZ^*DeZh`|RHFe6df0+=#-sA)?#;cD{~FSlS3?n!D%kG~{x;AYbicn)6B{F$Az7#q zA=PL?vy%qXoNCN@SFMqBR+K(IOD0VO2{1ZX?%`4sk5C1U{W!9-AHO!7o=>p$Lbh3; z2!uf|5pp1%d21Qy zLrt8EbSSt50A*^o#+3}b9bu_g3aLBfTG$WZou&nL2V{$kKq3h{yj}zF_&;3`f(Fty zsfpu|aBv-Nh*d7XR^8kF)_ub|O;(k6$i0)*S>5=6Bvk;jGq{pTPRo_5_9k&zb5>8| zN#Lff&W>?*svXCEK!F+i2cyT|tcVE)mRt_HPe~p_HKS3C=+k_}S-KFUVZS$? zPZ+qAQ(+oa!+cwdxyk0UVf%Xx-r9dmo5>b|WDzPLSGR44G?hAZ(xYKN<)opT_ZLi~ za+uo3k-p_ohK}GVSgrEkS%l6jF`IzdaI#cB58WQN=NxertoHU83q_y6Qz=ZjAv6DcvI3w%}+V5U6HHIT5mhN zYRUSx@J_ogNUw8PFO$$q>Dfc%x% zxJ4w}s3;?I-qorUblHgJ_HLw~? ziKL@(9^tV(5miAobe23+I)-6MGsmb=^^VyPm)PMn?wlaADD=3==3tD~rdi+1pBSti zrvoGllxgE0I1z+()ZHNyS>JQbOw+jGGcc`?yGUtr{7`T_O;ZOZ`H3|-M>Ch3u}0f4z+Izj~SL03RA3?foPfo@G!%+*hu+MG24D*N3`7%F0 z7o}U#Rk&!OmmL|s1PM!(&n466g>A@>pf}B4AKsoCMa(IzWIM)2!$=V?c$TbJS30%cc&ya-go{38cfcz_hVI^9B$WXHyvrB z??M0Ud1dcN^;t>mQ?@vGQ#Wbf2k`JmR z z=j>E|ngtD3_&r&#=`VF#g_dsJHSD8=)h1d#QH>)L32YJLn58K|cQuofnGss~IfwMh z^_&CEWinVHugp8m`AAK`Z^5`T>^H%2u8Sor5ju`~9}A9YA}X!6$o!L&6NdTEH{$U4 zC@pGlOWn+EUc|(s$7_IzD*@KK_*o=~)#;r7EGxDo_%m-hp5AC&L2RVR$=4wR0oVzm zfBv6(89r4O)t5$_Wck`@H&U=4{a@u`dq=mBX_G|Tww=^SZX^7&=9qS9OfRB9kzJqL z>{JmGdWz*+GIyTM{@*4U>ix;}+m4~hYQwQn*8H|0>l(bhgmK}l{n$>V!-cQe`i zCI}uGltvVr%E^(6Z>Q4U_-jFK{FZ8yHeoP;ZaoPfdu&i@l6NM8HJ5Q^E<*3&&4Y4; z7uxy73RddP`boh%X_%j;P}f2&v^)6u?kl45=JTrL%gax6SD9&=K0VGns6BkF#1x$V z)XNx{Dmou@lma(tmK!S zWt>?VnP3#2C|<9mw^~Wl6(~;dZ(8$i*>@9tf4So){4es~uxJ0RLh~8?XoODM@tBSMl_3Wjg=Hs)^};YxIA-{6Xh0tnadu|6c$rf&UAz`d>{0_z&0m z|1u5W|Ae&uf1C#Je+RGrchdm4IQRwrpJNX7&@}Ni<|uQ6LeWDhDu_x9J5gOt!lmVZ zarQaO%ANFDzP^C<&`HZr7q<71>O?4Wx`u`6mAwB@>0juty0`0R=s;eu1k1=+$XFJ& zKR+$0=5`xja$HfdtMocuL;Nm5jfYMqO;CaaLJE*z`0pza7b5VMItC29MGBDf|L=RI z|MSPx5NbSi+-3|zQA4vg^9~(M5-}k{I~c79-<>jAnLZr8sw7LXM=6K+hCU?>CiTj+ zWi*;{%W!O9YCJ*lb|KU(KTtQNzI+sMM-TFqg%UEt?&J*C193^;5${-P6uS00b3)(sHh#pxu3$Ab;St->>ilI1-g*S} zXS}X{0=wiLez=vSbNs%+I0fbq3XaKBLhl4gUTB%i4fZtoQ}rtm(!FZ#2bI%uW0o$q zU|Rc`A_beN1Tw{%1tomn-x`J)(q0hVy_c~fx!pF!ygd$||8VXF6Z;a~hzR`V_kfbv z#68QqA`}-rw940(M{kqv=nmAMgVO(iFgf#A=!%p%=!d~*u*^Pmf~XuhXom=5mmzPl zz|YSdug#cHP@1HCsXuUdvhC#cyrw&RH$Cb*JZP~iKW^+PF=s+iq)-ce2w$Tsf{=gay_D7AP5dLu#23+A>Qok=?k_NDn3YY(E<9}m1 zfH}bsvTaxdD>tuL%S}XqKbQ%yNYcW3Zaf_y)PYt~0#~>P)rD`Sn~JET1NRA;7lIhl z|4;i{{9t5dr0x3`8N=s4Ta?S9rxbDL@SVElt{>l3s!MC+fBTf79QB{wmSFeWQR;m2 z{E+tD)|ruvg7h66;lGPnhX1QFULH~(1Oc}ApG~Ks+=I}0rtjHKym+=4)ls+tR@McF zs~2BfrhaXbE${=&G|x4*ELab<8n@9g=q{FEm=JahbHrH@DEz4y6E23>RTY~F*Y|A4 zKR|>b7=a*$nFvOMj4Z5|Pn~Y(b%WALK~e}X1X#zTSmzB|n}MI5C?8sv5`F@H$EwTD z>|3?~Z!GpM8O!DqyymlcQ#NQd-l#Xx0bWIG5Y8Ic*9zQ%%y4>IisG4$zl>%UE8XWwUD zjp_?hOIYh$yBhKFVf?qFInW@gzsn)<`|tWtzT$&C31&gzf^h$zM0a<0z@!4JGl)g? z_#dhW76X^FU-s|24f?(N|NQw9xuVB_fiZO9n`X?vH8<4X859%U@<-%WM_oI=0U5eY zpOhS*Y_US)FK1|{vu0#S2fRc?bi?5eP3!M_ll_$ReQUl&hZ|nBr~PKou%(>v_S^RT z@1nX2%}U?#x1?YiSi!y7BEQ`Ii;WFFd>b$F{Vn8@UaVcqbS)ZgiWKD7zAcZxs4OI} z0^MPl`>n1hu66ms_1qmBq?Cmg@$+cc)mJPnzq-0TYFQNgAgHOKz6%N6bF2I*HBV_QH&Ji2>e!Y$BJPI%%&;QQ z@|O8qjayH?BykR&K;e}MtG&j_CGJ$^uaY5XMT=eWuoXD(Mpng1<-o)87?Qgzdr;jn zp5f(2_ceqGhx$+A2=lxVUNLT2L?BiPvm|-5$D#GCnkmvEO2dd5?$EACK)&wP;^gWz z!%>Exsn}gzA1`V5YOu4e!Hh@)*IHKzGNHfXzBBbC!-UikaVTYH_r-bx`UsZ2Rk;41)nv;#odefVo6a*obhmZlf zF6*(GefQ}~d4?1>_Z6~Odq%J8&)WpeB(7)m{|H_@-)VO(2R0{-qDea&>WtC8YffHb zM--D_sBk}QX;E2_;eaVpJCz{O@ZMP2rODy>uzGIoB@SsDUHGM~+rRe?{%2r+r!(w| zxv0g1wwb&Z_@2HY(JlOsKvvI z&sDjOt2@0+pLTqxE!L^q{9_F3$B-{hDz(>PFl^Is#-oAP$-R-{x zB@KXR=OQCyqiBiMfyK3;N@um22TTh8(Y13D#g+STx4SU`h2Q!`^C7&|K(jzGD~^zR zBNI}8VRs_4WRwI~813GT$>i`pI-SMTW;O|AyJ~V5@WA`~nr9lY2@3-AZ*2LSxziU) z{ZOUh@bUxY`eGHea1*4a>mHtSsx!YDgX!lWJt~<8(3{C@`x`%5we&^1h`k&6LwVm7iY1Kr(+QvQQQT{^mXkS_Oz;|qTw+{ZuAzOSF9{a z@-C1x-+@w~6<-fO{Y5s#kwd`Xc_U`rTSO38pSZ&Qy}j{6<6-y+{ugt)OM?YJl`e+r zMcrBc*n~3z^bPq$5yW>a*T$0ypQi5Q(Mrg(N)>^J5RR&eF{4);G7ZjFySr`ghsaSz zk^Zv4<{~k<|CehU-!VQRL-6^UPkU^8WmJ++2;0tV9VImm{DYO)@+R!$tvTtUE)Bib zQBu`(2g~S3?#^w@G})ogF<_RNx2O!ekoo@XFl0ds&EB#W);is#ch}&;upV}3C>@%z zM$Ts8?Fp_gdqE9h8|&IhZ$x-g@lj%d2Afdbz`z>vPcUUMHwxM5`t?0mwjo7Z8Kb-l z;O#l~q^OaB9oh3e0@G0V#(vu13lZ=P5IF)&2tFFP8PqA?>F;{kjFoZnNb{Twh!CuX zXNo1n^Y5^UOD8y+-V%>CPWSCzyMzxqrpz*Qu8k_P)#GI_E= z+&Bj!UXY|5LMe`%640~W8A~lL?Yuu*6ko4!Z8iU~_e?_VPztTC+BHBnvf^>t@!X4* zxMj^@XkF{U;%DMSgS1JfS)VC|(Z(bV>dw?yygl(>=iMf!gPJtDocZFMohw);bU>DX z2Qu@$Zil$qOS~CXFemW&^P%~0@7S;~MX^9ITJY2hoju*4{b5941mM2g6eWV9UVUf5 zfi?N;@5lZg#0iLRol42#Y%V`kS5^y9RMJ()Y7_AZgUt{ZjDtk0@4B{0Cb=^$AKyD< z7)rtoyYH}nWNwb|z$3@r_}tD;fOYQc=#~WQuI8_H=1xBS<*uki#PrM-RLITT)h(}{ z#|C`e56YE^-`QMu;!9WAvu7lMifaekvOAHiTtYpQEL;SmK^U4JPtX|9ONq2c8&d=K ze^J8U4YdW_QA4FcL!Mi(#O_q=i*Fa43_?Bj_``pFWE>&r*9YTNJni{jqdWYf>L?+r}Dwxo`5pzoe4Hgy@KdkPtQ8ir9#$-xywZE@aC}^}h2v%|TYjvE-?b z{l_xg+e~CORE`3fzAm&qo1_Uew`k+4-1wSWC)b>eDvbdljkD(t;|hq$H}4NUG@tK$ zA+HxY|3b&u3ATk6s#!%4C-s6xR*d4RWe|CFZCJbOTW)lTdxYNIkKv5vXh$GzNIR6mh@+o9jume|fAt_0c;oEV+Hm*byK8A58wJ)M zpHB}xzocr5XaD@Aoz%d(8X0J1Z$UWapjE~%U@4=J*=Y5U;{8-%c*=_y= zNG!O?GL?JjNf$j2TjRXaJ;sA^urf|BkERlCi#t&I2`8uwa~W$aNf@T`@ABU(kkoj_ zr2MyOc(`fFoo8TcqEJnNmiiqk16mx8YIZRlxom@_#xYF4QMs{8&7q)C%lBzaiQPBu? zEx9#CllQ>Dwi1Q6M;7}BhWCHq<+_cp)tIOqwwL9`Hl%caJZ{{Nr_`Dx1+x_GE4f_3 zhD=9#H;6Kd1&)MU%X?c1A02_?P`opI?&jEY^|Qpu1spo2CRM(nH7B^gEta|c@jaQS zOkTg4{VTkTsr?HIky`OuPtSYKJJ{In|{LexZleJyt=wN(PgfgB=K88$~^HdR#;*XwH?vQii2Iy+J+KAQDadr zNn!yR{bMp-V$q<()GNqDF`Ndu(;ktAhGuSp1+DdbD^r!QpU? zvp5jb^ZIaae|N~YPDiW$mj3M0YEQ4p8C*yyVes$*McQ_R<#SL=z(PG4925 z=~I*UGq$V(ie8S@$yF>G{CbB2Vc5?HK3oqjZ8RA|$ zU+eFe8M8as@vClo{vk%9qW?ggZ-{l;*z(g)vZ^Q!ZTTk>qjad_$tihMoRrSFjXtV= z6PKerRg$W??voU6z7(&4d|C^=a)<|u4ZO86FLZ$U^Sgyc*46%XEK8RWMWo&Ab!8`o ztcv(NTo$_I1X`n(lGR2TC}6_RPeZkf0%_lVEcVsmJ<8nev?d$3uSqlN*LQr&Pw9T8 zEHW`scJ*PNh{D><-S)tSoS`Akqc`gp-Gi&HWBSOimHQjku6pBEOvc=)I0Z);WtD;S z^2s)JuL|y4?$F!X`sXE2>Yo9pJKgV`N&jt2(LB?=5M-dRCFZ;b7Jc-ZIOBI{A;i&Qtixj{ zVC)~A9L)}MD1UhFxLHg3pchHHY+Yk$Kw9gI?=9f8gT-B>kiWl>R#Wd4biA2csd*)| zAY4jZ`K$XEPBf=vr1TyA9jg3^2@7~b4V)4q`s5X5!>w?tGx6hE?GWWtM)CZryh9|- zEs0;|)5UjJ_Rv}i{DX&}lS0BALR_7%5lk_IAc=I7pgthKcBOrg_8Gr7M#aN#zFyKU z#QtmkZ`?-H;VYsyZv!wG?pvk2=|b_(ucdKh_tCfFfZ%dJy<=j{)3s>v!)X@TUuZ>d zqg1}L>ej})`|nz4=7TLHeIkY2?<{wR3)$&+*aKh)*0DzrVo;3H)xr#|b_5V`zFf}& zIk(g-)*#c!Uq08g6k?9|dK9`O@T}!uu35Pq(h%k;r=*=*`HjJ&H+(pL!uM%a#R5(b za-P1Pt3P}OuOx_HSbcP!%g0~lHFkTQ4-@<3Dg(FhlL!@}(n~&{T-{urOlI{T=okmb3eIMU_+~@)rA0MU7Sj34Bs`0oMX<4lM-0(W?tl~D#^z6o4dgAdVZ?Gz zWQm*u`Zi@ICY8|RN`O<`HEpT&lJpXJvIdU7o$%bzh}=SIjqU3fO5%?bV7T=eeyfha zH27h0HTnf-&cN=4i$2lcv?m@5>G$t&Ke0gC<+E(;`>RH!~yEsL*~UUU;MGoS#svdGeU zbNcA#q955KnP0DXLG}4f_Ecdt7bm?G5h@ad=fbXUIyXJh3~6KYEaj)4i(f;R{uc@N zgB#bD{@E_+S=<4wdhKO3#Zn=->vQCh{i(fDg$eFuQqAMgWyE|Eowb!j&=3ibtrRU5 z^o*4S{PG7IX5Fb>ZJ_l?6ucNbzF^z%MPv@;&B831Tu*Lw&ayP~T~mh|SOO<$T;tYO zd;DU-st19nwPw=3eO|(=2ion-w<+f^gkz%g!q3s0BRc(AQUjC6mDRKncdN|tEFF`A&(c$#n-NOUC z#U)O}4}U4}y7upQXeNzi+oU5Bq$9<`Ji4+sX~Z%Bg1lk-t{IHFz$I5nb^MGcy*47o zy*2-S4bnj%*smG)`$_sbQvSvE*L0>dRyTXOK)GVKSX{gS_7l)r^rh2yE>jQFyr(cJ z$CvyR7%mV&a91ek?5+X94aPZy-+r!3Y1 zpz!L5-~?CB87F7z-rMaqmp*9+kqqz@Zw7%FvY=3Z9fa=aRw*uVMFdg**2TOL8c=;e z2D$>+;%B7y^MQK1PR}WNr6AqoF5cDc`!ALIqijQj553~!&kN>8WL36fEp3wT+n`p8 zcYzuH4$_m5x->rY^wy%gFCPpdf5fh~O5PCAs!Ny^_d3W4uAP=rHa4X?)dCw9d9gFG zIBLsocZ^vW`^&^C#cdhPts0sp{;5pA)*D4C$O~}Ufm4I&dfk)^Hshs76!U5N`Taj} z5QY2nqkTkgU23nL_#9Vhg!KF#x4&%<*?;sywm&Q#i{64~uAK6~!SmbHTmd9N-6ryF z@x7m-A4gkZ7?|$TW$+XAO4*9xdAx_E%oI(=zU#fvw#_X;XLgsC95uY-&-v8rKag9U zvB7c3F3IQhJ?f}Vyq-K0)CxDT4et*h3KpP6Q#~5Mv4S|}x4}W!7ZIj~o&%PHK z!X2M0DE6OM?{N02d4P-t zjpR}KywOPo%nDZ7NA*RsuKLs7zkE3}{TNjVC=sqz#usrx?IXq3WWD_cjksivhs`Tg)o-BP!&y z^%{oddqz`|%4~v_!HpJkiF#b&PtR*NhK@kIA2WUUPTp!YFJ$51`Gb!FBO{oK6zNF( z*B$yj{7?kZ9Y6xvsg@mUHWdz0=RftadYYL>DlYJ$JeP^Ia*2vR9kJQR>(SrKA(fbSK|1QuLLFsGG-WpyqMY03D-NDE_tOnNc$>bC!(WZlK?A7E>dOy1v zb7RHESDz7Sb~Zf!JPU0W2S=m3mHcaX$$OgW%IECl=X7s$2k&q7_7jD$VH2c3*1z08 z1Mrb^u4ZYsFiB(wOlC+`)=v32YbJ;blbg0*x+K?~vp zX@_W_O~S2!?}flEC@VUhBE5FS1@@NjUb`lHJjzxysXD~+t|a^7pkve6mEL$!UxExk z)r}jCVf`|pgXIweu%gz2lk^|Iw#hT6%G8@VUO2XYTR-x(evAHR#+fjBAFij$ASy)!VJVSs1?hDT!(c$(%Kje8OU`BALHjxE=?qw*P*- zdtWrw5ufi7J~pV-TmpO}R7Ft%7tR(hMgSTjn{nrfP1qxlO2Z*o@{m4Q zCVl2ru53 z-{}%433q;K|4e1pzeQnibDs*qAvpBC)Vgl7Ya0MP=`^n>IfK3VEBg1GlsPOwJMl@Ld#@D$J z09XMIr+UL&YVbMpxgG2A`%2KoMJpUGD~#6m@>kggY}&|fMdg56JqSw6Y}ymyk;%U2TSQ~<3O=GBxJ@F;Q-sV0|l6{S5Y``!?-!xz38?= zo36kni;FX9pGW~DQjFG9`t+pp%CAh^>L7POHdYSxdq;v?UZ;&Yf%)iPaptvTe~r2p zq;B&omEVw6IaAjM1XB0<;bvv__pv?Lhf4Th@gTyjL(<@2Vntp0z1aVzeSV8 z8l4^c2Qv;_%&DNg$G+qB9+@0PKShU=sym2%kW@Z~wCz1%7v&Uy-JH#>1s9-eH*~u^ zL1|bku2y8UlpKijNa>%RtXa=RJPvaAT`=t=AAw;z{2TgFL8J&s^N!z!!={)CDGksw z8#cX}%;|6qgvoi_^}kUzd}fv|S+mElv>bRNxM+v~@uwMN88u<{RB~M_W+!inq3Ba4 zqzIJ$G$d!ezWDArfAzmYIXu%~f`%8x5Uqc~P$vqR6gS1mUE%Obv(tKrHG@b;G}SG4bJ8nDyF^?3o;5k-&L~XT3zGi6S_QgQ(PA7B|$CbK&)QoY!S1J z0Ut4Rycn{7)Qd!dVD)8s=irLm+(@kwk&QdP8c zg#ffr253Q=0T6)V zA^zUVv7-WuJp)_1%)$Uo%G9-eAznz~b$CHM%>UGOQQNjvw*?@T)%rk}Z4BIA`a zgHN6RB`Ug(Kmh79$d#))!HY!A#7^NYj$?bvAqfPmDGtPA;U1J~m6TkU4#d`f1~3;A zU1&<>)ow&30z?THKY85OCMLc*viU3vm;E=EN`>nHLOrTng#p@&=h2bPIqzX{f%>Zv zAwecGeC(@Rh3UijjPmA_sBgkzhxatM%to(_oLR;u63wPJWHIOnK-@nHTvIXZIswbx zzt*pdLbzJak;JXEh58Czs-*Z4yZ;K@0^FqE>dixLecZ~yeI^nqo>MAGCEz5zP_B`p z~6=Wh$d*pQXpZ|L)> zI09=yc2qGI?_}>mrdD2Pmu*QttZ$h=Y26v>oI<)r4rCQBPhBsLSF#?&iC#Empr(Z8 z#avic;$Lu%371$~4Xmqn@yb|Ku;sGUC7nY(1&HE{H91f+{Kr8*?3O<$(H9qB%*$o5 zwO2_(KlB#QEl*~6Oo?h-U*a5&Qt|~VMt&7MA7K92qT2%KTVw?WKFBHDj>ysRT5{t$ zV9sXhF>~t{jWC#P$DOxZ>s9lv&x0$Mr?+Txs5i!1h3Od34@YlpF*;U1efRV>5$h~i zD_ubRHC3-@FxNkRI{9W$bK5&!+72%?UitDe(J$U@jh)`#R0jKS~B z0w>AeyduxQ#1qY8F~6kxMk#(VC0Q2h)FaLyNAP|!B^Cx)7W!WLxS)08zTSi-{4p9c zSf^mQ;P%0^I2(EBov;Tkog6Yi-TWsS${l{lnT|J!uF6n$3 z=@Z;PhjtCVMtIm%6@K!W>%pyfzWG*8q71_U(;uAhR2Whnf&};16PIsI>v}oV!ivj@ z({d=7#TWY&ZQ$@5j2VS9X@fLqP?>CC?PD6}YDhW=+@^lh2e^2ix$~|OuAM=%kEgGY z=4ex~sNj;~HbOqg5D6$SJq@Vuehi>3iz#hG5&$8`IiIRz3)y{HbNqt_rvb?j=$siX z1%Wgb4lypctUU#LFL~d7G8tQf8U`-j*pa33C3D~Rcq1vGA@my?{Ao-7MIMwR^~TNB zenKxQ{qO_o=Ji&(nf;kumQt;dd*PDm}MlRaGQC z2;nvizR;j4tUbXixZv%t(O)oYtTx^642TP&Vk|%n;b!H$5CP4l z+nbAv@UXBiO79fx=wJFN!ekv^Wz;)tACipg(HkXt{lrkH9K&5g{Dy8foWBR*-%ZFpbtxcO)*SdJT( z;?tecbv|vmnLQwPGSo=_mR|)V+u(LWS@5WEBi#76xvg?Na*wq@w$0b|)7DS>{wS(u zw@+)q5otyIchUT1f8CGHYO~F<d96$;imKyEg>B7Gd*LB4}-uO=jyN84HV?3JMJDN()ag_$HOeqy|DcZQPPl zbN+E!;n2B!?dSAj>$qw9k^iIe9o6v?po(*}z`XkvNGqhr7LSSC}B=jARe6)c4i5;7bniMAL?JRthnKQw;}>AMo8`XDf@5v-&=9|$ z^FSHWX8F8_6C^z&_g?oT__Y(LIRhz=TWDu<_KBx}hc^Lh25Za+F{X4qDi0+BTYg}-5qeC-<3w1T z6IuJsHO^s%S_-}2J8nUaE*|*EE*=H-5aU3oY}AIXfr}@>TcO-h!EpfC_2sV{5J4=k z-i=?PpDART`TPt%&r%Z!S3O6)Z%Wtry`!wCV8D5JrDgwLwP&+1hb79<^Q8mE+hc`q zG7etjHMomIBJn`#TrFMK-Y6ZjFBNZp9y#LvVT~au^h@W-&MwMM__bT1W@{j{wE|I& zC4^&Fg=ez>W0#10(UYYS0AeDF!g}3s)W~;x`wk~Ltrl~cVHyJb$k}nVA^T2YK#g=) zkf^oqiNyKDCh)ZefQuT=nvn1l2myxUeB7Hz*h*cJnbi4RRA3zfLl)B*s6f$Gb&ifd zS+-xbd`-59H~6--FjgZ6U^BvWb}}a1wkcuEf2E zA9DMl!DKDEtw1fZE=Tom4wty4gQNpQ<@%r`2Enosig>(tG>`pr>U@TEfx8G~-EL2m z8MFMq?n2K+W1l_Qu6s4F9nH28s3NEFL-sH~V^oD#q3G%?*><^e^aY;T?(t2ro+ft$ zFr&3KK8+egKQt zDb(cx(JjSEhEx-F0h<^WO>Wq>LaH1x@{H|%-OoTms}DpRb><%W{!gCqj`_Hgh`;6! zDi3{9wtD;qMxpAsfpa0eWJxiZG4A}aB)UL(i5bEolHeT*slqISu&hH0`9eH6gt&Mx}A2oaxn&RegbzD-f;gI=Y-RN@B1P8Wi4A>gxB~-00faSVb=vXgth%j zaAL_>BzYz|T;h<$OEwZ`4})u*I(~ZEL?`;GWoKt(wEo;qZ=gY`4efk(ZsxU`3f%u# z?#QNAgWu|F;I0zpDj@*M#h$FEf1o#@Wu`P4S(y$y2yw+6@cJ{E`Yzzp{8E9(ll4`k zMPTN$sMYB1!FKb}AHGU=(G3V-cXVb9lRR%{BRjo<`2VKWB>QCsco&4Iv}TTFo-guG zFyp;ncKn8E5q{{QI3n!u)X~u1myzl|G&~a?_pRw?6NyP>^&zKFuKDe|UKuLq^1qa| z-N;>A=^1ZUUGYqjXu10+6{1Ti5f~7Vki$nzn^r*8T_atl0W-+!3q2$6P4r(f*k12+ zOxWlWa3DUiHJ|_rB)%%&XU`@_gM5I7wQaA-fXUMKfu=V;nEz@!Pp!o) zdk{hI>qpUJQOek2!Nx*i;g@38kgYXu zqc_i$-RCwV0H{B$hq-Zg+8_O%ufBOxCP$j)ttL4VOnh*l9cj(O#UMn7#sfhw(@dCt zkXm;c==1Ula_}qhLV@KPo zvqg3V01zkGPcY%$e(*rOlJ?T(LGu*2mm?Kuu>cW5;0jn5L#!N~hX$pgqz4_U@q{g~ z>$ht^k(Tjd{ms-S@Osb1Yi;_(tdCgwk6qF*Vrc7*6(f1xm!#ZK3sMBN1*{Hb*>(>9Y$epWb1mUP zj#)il9|kz%{;%XJs@m_PaEbs;LWY^5MYKkQX0|e#6Nlxg&arfM!Xe}cg_iq#veC|h zmbb_-PU6E{!5@LDYGz;Yz ze~`4A6YoJ1yx{UbTG|hu0KY}%&WG15UT8i6=;i>;=D^|B@#adNK9Qgt0x7ImbJQea zn4T}lQtOeclUQ}x+9erBN67og!Te+ez;LK5vcO2{3Xcb8)_0)52j#h|LK{@L#LinW z+JjW-y{9j`6KMA2x?ZlfW^>NY{C)cgB|M+xOH;sDw(N$10OiLaYaY>)#SqkX^mN3I z?DwiUK#W>j_@?d;)3iVXRL147+KGt5AlLIU>(F;0VwYsC@B1t!LG#WP-k)jS&YUBH zo3c)Mv~B}OfAo~BOreet94baF1( z*&VQ_Qz$<=kRM}kb$ZB;YeUy;AZ+JnIL~wpCFde z=AI8|@%^?Pq_Z}N7bDuC@6*HIqwwJ{$REhx+gjz${EFZ2^gWx*H&f-oX(>`dGXO)Z zo{esB?{!aRO)732NE*p=)HJNfigsc4QwZ0(tk4(+)d(&#DTG5L6$|$KP?~*GJ zJ)`2$Cuxe`Sg|bp>i~5)aiMTnF6QuV}y7^#HYTBT0Ea5(SGQ}U$*+*2+rLcC##)~MC9bV3rhHl z*yhbZWvm55Myyqw_~a&7-qy8pP~5S^@$+Vah9s->iJ(zcZe?`Z`0vj0;^T$FgD(Tb z9BKgHxPOwUk$$tcq9~ad4JOUGJt9A%m=c#U;P=d6xuRCbUeiOhxEFR zVV|=e9|S$q%-$C+aj@}S{sgk=8z*bYJxEYYf02g$ej`Vmn1;50nj+WYJJlDv>NceVGkxR z?U-AiRv*STx0WBYLkVjJfLV&SuctF3ZFsg1#cGT$QJ=lFpk4)(&!Tj5ZIiAM{~D!C zC!k~(J0};*Z2$#8*~H@v$j{TIj;GJTS>%-{eY=ptLkJ_K^2zr$v|^QS4t=_i6%zmE zi^a9o6u~(_(z1A8TiYNCm4m#0-ObVR6lzMaORnjj!44T%_qeIj7N^e$)5TDY|g1A)|Jor_U;iFMh|E;qwBqUd6N9{ zj`l+0SmD^1Z(}{7ySUkt>g1XDd2C;J7^KGExMBL~!$`+MCkg%=4n!KJ*Q(r>7vDz@ zBfWZ$b8)K^q}I=IPk8XTZumjolNaF?p%wJdq?Uy{`I#K4OH@8%IYU&qzte0B?;R*L zu!2}GBypk5^mo5i109kBH8|fW@1Ab)P@4dwHrI`uOq`a02^)novw)(pi02`-62GT(YL2dI^9~ zx!*QOBh9$B))<0#3HI__*{!tO)&%(&43SVM_Ky5kQM*q!j;V(Ih7!^x$Cc&*QfXd# zVdOF!kaxvh)y`)ldFz!=I$}$mc|?ytlpnUU_%8Is{4Bl&9nL5K(IRaWS|MgxQmDp|E)N-`BfM{T!rNNh3u5BSF4ExV) z?#Ll3IOB(+Ds9pNm*?3z<&?ZyJ4GAHXe{7&#R&U7m0`3QOffaw=E1UZbfqH@5sr36 z3AL|lfY;vv1k$2HoqY{4Qb1n!72eT<6A-LuXy){xhA$bQ{DvoZrF#Dj)F6moy;!LZ zE8iDEEYNm=I*vD{JnIO)3wFul{@7mnCbLuAJzAZu4!2 zT%o-FNL2?|pKn-RTQ^#T>Eup_DUsFUH=ueId5NM9yZt7N^u(XR=wBc$G~W0PiS* zQn8SVQQvsC9bK$xl95mtv&aaUun;NJbmqgx zpAD{qEOHWR=~gU*AQd6`fS1~Mx&~JVfGGW&NOj|=3*@C&t8d^ZPc1-C+Jo=vfr0A8 zm?Dpd@j-9trKC`x9D*O@&udd5{`8B4TTiK+M6)4|mOBUcPFN*(0Q$@yJ(RpIAcZQW z!4AhMLO)2$)4tPB_#R6lTE6jqA6z|kS~(X5m^+xzq6o=has}H*BPY+g*u){e69_&; z!VN#TeFjp_*j`a^g)kt#c`WI-FyV{3V_s*kH7yh=Eh#SI?j!ZQPghwr71HHliA5f1 z3)Unl7Suq_qwR-Eq@V&&+=%2tQ&))?(!;eXr7kU3P+_))6cHMcArj2fe*#Q@O~Ey_ zOSbIjta6gS+T)Ep7RJOip(CH-u0=u*gBs2??|%#+%eSC<4uiuDR8pg*hHgw>dy0pJ6pkQ22wir^iwp*Xdty|Y7*;eH*% zRvK#AVA-@*vB^dhsS7SFn*Y*HvPeOQF&!w5T6l^uOJW#DZL!hTYkKjY!N@aoNp%t zdz8yVO{Hn=Y;Tzd`}_L~4ayl;m&Y@jXB4IVp1J-9R>8yye}o$&lexg{87h^B_#AKD`VMlxv#`}013%d$k>t~ZNUmUMn=m?jK{j^iSurv)X1w8>3dMVB9ZI^C?X>Y zwb>;|U(KHbRr@5Pz{XzA+n@{JeTs$D^4zH2R8ZI=yt1P%XW>R%*}d(nmK+cB!Q9vJ z2#gs8HFn8mCGX<>J!FuOT}|4q!j1(;ph?OP)ReH^EQ5!$*INM@G3UqG7+$QmiiQ^E zaKn`>4;$&S$$Jf;{Rcz@DWRx!wVcY1vpBHs1*uCT02E{!P%}+yA;~F`!8$aFJ-#Mw zNrx~NndocZ)ir52M#sfNW5RG2x{8S;;aNZm_7ZXTvDv4P-1P6;*;l06V#b0@ESKO* z@Uq>msR(>~bllk8PV7fXrXMH9aI9U&GZ z<{T79Vp6m_0kG^ndK^#c5PU(Q%Pb^;_qOk`vvsn*3x2KYzrymok0D2v@e~axl@1x% zfMh`o8!+@mpkAu+G= z+)QVRQWBA)OPdKBWq0Qt%sHmZkxKMHx&+IOfYK-M{vaS_7bzMpTdGwj0{@H4q+~qN ztk}?Tz_j=u2R#IC#y$*Hs;K69hxtNkv=^glr2d-XHRt}GDq`yvm*foNirWCjM6IvJ zkX$xR7>8SEwHe-DUIq!kQ3FCMsN$&ft}Zz2J3C!BX_8oYjiMo3^ph9RCXCXa7u_<> zI!54?&KC^Z@Ww9H{~e(9P72>+l_vOSrRU~8#ZO_<8OvZbBcB*@6~cOyw`hPIfZkFv zCWV5w(PpB5S=`md*(a}?*%aOpmLtV812e;Tn|Gz3iynmF8b3d{hAtbDi{Zt8sdsy@ zy=$J$E~Ed<)X0Wqi7?~M&!+FbjD$f*R} zhvCrRp}QCjSIekPZfyLGSoATwxjfyQT~-_+pm+xyPB2}w_kIqd>7^MoV%k@ZiU7Cj zo+2x0L*f()meAxb5h$U7GuXDg9;m2iR;)>}A$$uQWnhFcz!SpimXw<=f~fGBZtW+7 zA`5X#R;htb^`nq<2wpTt^XehcTxlpuys;eb6PQS={?~CU3ut{;D=3CYF{B>MQOI#K z3DhC@6_MWg23wu#&)rnKt~m!YH8~eFWkgh#uqLD1TFg;nejtEc`W_vBq;@Vi`)Tt( zczf%xxPoP0bY^e}Zow^Bu;3b;kl^kv!6mpeSO^dT3GNasxVsDx2*KThySvL>WS@QZ zx!*nSy#3wpeUCq87PES-?yjz?uI~O-)n{5l9NnVQpF#ohoM3Ao_`niWT1AWMGs4&- z6vw4qeBuq1#6P=c3bAyHLwaX_Pc16fd8&@5rtHqUExI}vi;J1taq_s+Yu7j8ZH}i( z=ky7En#+r^9xe(NI>qOBb14xX;$vfxdktNhkRJ%i9kdxbg z9{_w#ez_SME>7&mue?diCZ4il*68rKiu%-VpG2-eKAWaf$_U`kvc4z*+s1)q6c?1m zhAM3f0WHUP%thu9v8bU^$O#$b20Q4fUm;&y1y}*!wFrE_@lS*F#hag4%y`N$Z z_zP404QBA4FQ|IULWGgGO^|9Dp5y?ewYtRy8er@RIMKQUF(bSH0WW{`x*wNJJTeMs z2hTF@@Xi8d9h8E5#eaQslMo-@ywC3aYFX4ok)j!aMaSZ|Z#c!GB<7GYv+(EtG4QYuyDQ<@(od# zK1R+Fs5F=n%(b+%u+!0Eht^-5`j=6w(D^Br`c%otoV*ulXe2P_L; zOPJKoWN|tIp0&i=lKf92}Ej!O?F)AqVU02;XjRZ%+@y!o!`M zoOXairYE^9XZhLHW%sA?{AU>M;Nal)_I6iSmm@ac(rB*i=3p8V14GZifcavZ!=f++ zMFx=J{cO&mEltp!^|pw@@5*?*K)GL}&SBB-2P71eBAv?$=MDjq$YI`Fs^7FTQ8ZOy z`pdZUV~y?1sF{O|?8AD3q2K8MZv-J5ff*!|`W+p#4iqT)#Eg?cQKE21M8d;_ z?OZ@^d$)J*!gLX?6wmi&VkF>vYys!5yQ^cPkM7%}v`kEBep^5VktDqK)8$k?w|iAX z9q7Q?MMLC@HnV>DN3Lwb#nuQM@^%-Yp^*QBPXqzW5~uInV49#<2_V1R*5j5lmF7f5 zM8H`qf=Q9`_cvNv(}adTBW?cve#=XX!{73AbLCU{j&II)k30uc`GMT(`t^=f1y^xQ znu964n11d((NtU&;MZ&G>tMzHME38%FdZKsx7}Zmc)U{52dIyZf$>p#iMze)dNaeH zl$3PIz1>Fask1w)z#hPtHvF=yW4D^w0V2Lof3opOO+(*_YAaQx??XbT&$g5bP5xLa zC=3Rp;A)iU&?cV3^JW8WNR7zwy&%Gy$XCqJu6hry$;rtXFEh+|Kuv|lqL!CI6DaBI ztgN=b(nwR&(1=|hEVOvH2O@~R&1VvoPJ;P@$H-fq+}(lfz=wV}+xb>wdA?^O(wXxC zQcxp!D`+9IB07aIsc`f8r0!w!slw&KpMYnG&z?s|M}vkqmKlv84^@;n1rIQos8L7^ zy<*^yTE0S>{hvlMK1Yz>2O#;@(q(;p zJrtxQyCnB_){v*P94Uef?=9nlI3J@#9-ebqVrk6}By;OlTaNU6rD=aD;y4=LLj8xJ2OfTYqJ9gdnN%hd>XDI`SkF@7#AZP%+f!wW zK+3ae!qd~!EUl~PgoMrI<#tBg7f47D4-73-pHDz0v0q(X4ULVcHfBgj^#Ko50`3s# zFMb>j@s9f?c98D_z)(QKAHcu0tg;q%3e2~`M2^cHA;3ZXNJe|?#pUJY`8mQll2=SR z-&r49o6FX4KnXm;*W_fG-GR2p2SEk~WMNDa9^31abw`9fcSS|T%y1wGP=^C8Ep323 zLL>@r4_+m}!9^M+ftbMeYu_6#9}vkMEC4PnEQ|}R*X)5U>;rJl(Cf>2fN#%tipo&q z;k+pHNTYWS{xsd+ULwT}H1pjdoEQlOL7^bWxPow7X+WTJf?=;`W@bdQm0B~U1BC$% zG|VO%BA+I}4TyB{Yxd{dU55>t*(aR^pm%d5ivCBMC zNE2ws&nyBID!XYn9zK4%NZa)WNoMwU=_tr+P(Z-lQN+=w%tMIc{mpKfGobu9%u!=e z2wuNJ?-6p@Qu2^ixbd|BX7Q@#uwBf(So%jR{&s^Rv3GgzM zUyS2K88hGaFc);WsOM@0S=jKvn5rU%zp#BC%lxDe?I@yzT>3l)o2xrpq3 z#;A}$@=_&DP5-Gkr6^&v|3fPvb`YX%vLh<8!p;(bZ`pfbaZhBb5V@s6?)yfl{NnR* zt_y8e=9^)=+Z{LPRxKoQ&rhQZ{&Q8Hu6H~OIZaCG&#@|A*pxYdw^DGF(CjYG^r$xS zvN81af(u;P&WFtG7ZqO=hobP&L@Qeeu+zeKjT!HMC{S~#`IWEoTKbubN@yTttCz&6 zj?GZ$UM*ADxhpX2wS>)(OrmIch|5-eg_OyjHkmbQt9h2hv5Sf~2N_;f6`{1yVDYP# zkOq_w&-IgB-j|8if&yn1^E@Ww=_#K_-F#Sa5yaz97I&!0cb1|fXdZos9D&6&9QF;L zOZW^oU|Cw9&zSmNjX0EK?UTi8=g>0|MsYcz*TI54V0hoj^qDDA6a_OA@0S}u0PP41 zrSdN3>|X4l&#rH=6x;g+`rbnZ=XOe(bfZ0doJJL;>zI#SsIvyUaI1`g5C?cbGs44q z1HVfYuDw$dBJ%kD^LppB;6NOv&u2j^K;F3l%kZWYFhg-aJ4xRpL z(mL(c6O`ql!A$;(dUcaU3E+-C{2>z`$b}5`psn_O@tMSNv6fIcVa`hND{+ANSTu$D zj3B?O2wg_i7}C$fq#e7H$acVd$-aFV;^^6WHwWrJNOFxPBo2N$uV@m7baQ@y+ z@2YC%?hfWYV;~38I&EtJmA#Iz_}V1DWwDEiH#GTkEWgA~4Cog?1KB_BJu4VhQpd%j zLNAnyMQ!khDt#epW(?^KFC?FY;GIx}o@sHB>ZOuU3Xb9?vpM$DgGxfX{C~rmVezc} zYqdg&RoD(L`nxtj`-aQ(EX^_)u&|#C-Sxo9Jyy8`(fc~U+Q337SO88=B;}gYwwB_A zckkOF_-Pii{vwgInNGqfiH&T2W)%H9kjNCigW*tDuB%Ehiep?|nsO~@Tg{|J_RIZ~ zRA+5isvWUFvKp;S7@mawT)nOFJ6-_gCF@Nln7qnq-RV(7JkQan=4mlZjiVoi>~ z&7}1vj^hFIeK2Y%=&^BSo(z%|o?sPCAAb8ETIBy+82p`L|EZ7u%j)l+@#btXA297^f>w0Lm;U(ePiQ` zLlP1&G6T;)wbHT&eMGT)Mbk^#qrLh;hS@DrrsrS;t5Je6B*Ff>Ls*3U82ds(R?j)T zDbmN&uhHm}W0FII@@5j{y;EE7RU#efs1a2>fRsrx(t+%h6Y%TeN$q+)za+brTwYP( zGK<4+(#gxOYMOl3Lkt+WO_UN5qWlpoSPQ3w5v?dVERemyfQ zTUwP|ps!hm@TygmPn1V9&zhA&ANuMLmorvEdaA1Eh#7vl2sw%5=VZ*Gy#wB`n8;Gq zcn{(7NFGwvfj4Mi1sHPk^$mex6up)YE`9LgtT5t>XBdvkS?Xwo%Lsa75mm&c~|QUgN30bA;;JrV5uS>L={SfaKsIu_~ z8jfH1Su~uf46l0%Ti6P^AD(2rm&FR2NL5I4Rv$=#a|9Y`woc~W;UZ(ZQO@!WcsS$C^j%ZE1Pg zPU1jv%^FtAfVoA+MFCfesV&`L3V%?{QpkZ*o=N24_=$JV3VevMElh1<(yypw9sj4? zvQ85MTe4DdTtJIe`}$rl**xv;kc%VdB*l1p90i;gb(u*nd;uoo2){Z@24i!C;rYU& zRo26g6~@Q0O(t2w1izin-A%J@8I@_SU%W;33VN2LB7JVQ{ozt|>t8XCS!+YQd|WSau*lT5Y78DPQHc|VW> zg(*dC6lZ7#68s4%M&RX7rZaJKj{29w!{%oY zlV0`VQ`*-{)Gk!4VZ~Jc{;?S8#u{$BM29PCdStMBTB$#w30<0kBx3a93n?DkI=b~| z?I$GcPMf{MrTTOGw(XBj?RwUPs{mQ6Y2=To2)l$$5ZIak&~bR80N;^H;?j2=fl#{YMwYyDN5Sb5)og_J~Nl)m=p6zO@)ve&nTk zn+r#)zO-Ho;#Jj`$usU3bLJ;sKy3r`g*$Ol?>5D8UJ~MuH_vz9e9v7}I5151u=_gG zK!?8`?>X)}H`URJ{?a`3R0Ep+Yuk1d6?N*4b!S8t-C<@;)r;6hyHPmc z{zAjrZIfT$j;7s#kV_cL`-Iixrf219l^VmvZ1Xqx_wt~3d^V<}ELH-`gv-v;K7w4K|oFnNx5cik$I~mH0h7@ zaNP_J7>BnNTl7S4hzo7ICU+6MO`N&=yLPJP;Bpb$QR(~q-a*R5&rpO)fS-LhNp0*DfmHMuIvxeUv z=1OF6Qy1`Iv`w(Pei3^a8pe+c{w_049xs*EcE1e##53O0yo!@5Bn1Nz3WU`)uXKqJ zWz``{u_JGPzeTtriI-%HKd^FfS!{Mk$b7%->+0O5ICf>PQq_^>yojuHS?eBdJC*%= z_JV%OTSy1{v=o#@ZYZpWt*S5Qkk!=wCo=0B4?%!MFg650lW?yyCLu|NPU4-EF81UWkw1m6qdQh_kxjchUEu*^8Ky_QBudxsc}ip$cF-N8Os z&<6f-KlKdidBl@dp6CkxvyTU+0^4ZdD@v#jB?umb1rh~;!2iyLXbB;-g1>rXP~-Z$ z4CPam_890a7)gJy2C|;&0epyHd{rz@ZR{V&QalTjAr=RbBg5uNZ!|z$p(dy>d}tr! z6>sRr*T6%T1n^6pc9f>hma91gb^75{APV?sO!$9~LjOs{OgFS619!)P_xb2vD~$P1 zt@0=n)T;ILI2Q}m7Jnk%f(^QjdQ}o})0o{S!KcO@x+2vT&e&$W94>F6^(7z3A|+gE zIWQVa9_TT2k2={7Wdb?mLsjlyidn(^eZek9yq!T>suiI%I+*VzOp~SNlV6No^Awq0 z%e&V!)i3i?LqPL*Mjx4I_RG_kaXmR?}eJyOOX}JSr;2unw`gq_-4;iKjmV0EnJ~@|vx*XJgcd07@ z@xS8^5xM;HZv`_E76X0y* z)US=UW9JDSv2>%@a;gXK(ZW$nG@3ugcxX^FNq4olUYs5zh8&53HU=qgtUgqt!!HFrvAKfV!!;I^5b}yA z6p@@v=_M`*5QbC;MovV}n!ywju!C+0+SpL~4Mdgpa3blMCIv>4=KoIexNLh)g%0Vl zph!e^hnrPWM;v?h+)z0&U-@VG1QnT=OG*KCi)D zW`$xtJw02tqZ&LX>Nk(b!4tYL>?=p_`+qHfuxYY+ON*jAWq@~prnw`95`^~Ke>yM{ z24tT&o~hX(b%x+?;|`YSZzO5a|EjA43_m7NV-P#S5-Q9boY)l9Ne(>4g$5iL0BTCG z{)0-y9BUUA(A*xRe+}G`5;R-45(zOXHjF8*a6M~iOTLEd&V?hbLRq&kKD7Qi&#{ye zG>8v>g)Gc&Ejw|7#k+_Hdis0BDt~}gl@?4U;EcyBen`33Hb`M|ExY7O;WDT|n{hW# zRZfv*RDUN7hqS5JYr+)28v6m$<^%0*&Gtw9bY{iLOsq$_3lY;Drd&1J>$6$BAA+=& zNKK|h)g~v$I(qMDsC=FO+-Fl24?5n)mKSu(yRep{qQF}-<&LMQfHZaeaSoE2W90MR zb<|kh*k_acvazB~)@}}CD1k-D=XK`vxj&q~eT>I!V)T6Tfq7SDqcs6dD?w#Po>6o$ z>_D<(tAc(exVzeW$4T7mFr%Gre6cUcm-cY7m}!EI{+GH$=~uu06+{q3Hh=4^W+ zkbKUex2%M=FEnd-&|Rv6_GfoZzzVZTMu8m9f7<)qq26q(us8$X%wTL z%(M~3NHJ7+YC5(M1IRbpUl{wn$l&Mk%){PGAQ3_b33W!Vs^_Cug`5pRgp#M|yZi|C z>flz*tIZeXSMwF)rU=C^--%lcy{PLmSN}0EqRi6`xbi;Y<{my7OIdlYlWVwo&v#9#mSwJW8#KlZ z7gB$>2DoHtwnu*$y%JQFE}g%x+KO9=E0pNu?W!!4j2A04<6i4aa?4AjDJw_i=h0JN zTHkclUOpw%a``Yu{M!hFry{(*gX0AyTU$kVd|?%tUvORjv<3IGb4A9$=RQ-5?{zry?+97=^cBXEHzD^LZ@OhP0+|Um$|TJ0C686|qB6oaci{a`FarrN#@->jld@l8 z+(wTz2huSg3?&fTxo|aTIFJ{07NKmjzW6SVfU94FpbaOTe~>w|k7vltg#Rtaz+6_d z)>v#MFRZLkD>V59gWkK%YsPJPwO&KNuUc2fv;UGfz(b6<|B`c*g9U~$I)(* zG<6E=3m;R`nBtHdgw?NN@~*V%@R7XF1qu1P?MFG)Kj!=xDO%}!;T}c*vsP1`WL8K( zs5Et+Wr+1d&#jrrT}O>r?S-GVaGJy%QdINz6(vl;$5pSP!sa*V-lZMUqVzWjIfKUD zm$fKEyDKirAz8_4`Q_sjl3W6|Mqh}uCK{0n#_gHn0)uyyGp1^PDR81TK)oP^6thkImQ`-InT$~s4> zeM_=L=qQv_8Qwqo#f5(AAeLTWFnnA^ma``hEUL-GHhY4JK@$8O^e%~U(9eIh# zz_IPU7GV94cQHz?CZa0JR+)zAp;~Rz&Uw0Fu&VmLjm(V|6h?T3Ts5)fo1se;-XsFM zb*~8?*OF;ijZqXedX$|Q_E|=Es+J?X={*&==d4<+kLA4Q@aOLf z-c=fj;KtqW{M4e2hv)WvkMG7$a(>HxK1V{x{N`p}_Hv+h?rj-J_>HVfRMY%gFz7tO zDa>UK7a>`$Q^{WvN^i$BfhV3s;t&*@CX$`mX8FtB>6s%TUoB7neLAR_x+ zMfN4^AW`k07_3mdKwIAY)=sspn?8tw0On|O5jcUcyiftzRrl@r)xIv3(xfPI%Ui2& zdE_YeCbr_@ixgflFA2^4*EtwVkwMZv0a==c;cc{--p_ATf!W5ne4Kx0sJ|aeRh$0D z9Ta*0&1Mnjzc!2hhvZ9t_muvv(OQxe*LC5{fKj z!I(U>Ci41>8;A(PBCY3U|1SB%Jm<;*!K7_om1OBhvwX>mj}!NevG_k!kTb!sL5|Es zlKbqsM{~QVQ;$0)jLWvf!-}?yuruM|TZp=1Zn93A9M+Ng_**=f8dH>OT?>5&=O~65;Nt8#3};*`mE-zo=g- zm+Ty~P8E?`_6P0~mdX~}2k4_UzcEn952Oasd3uA0L8L5j3$F9z@qZjesNueZxLd2wDFoRco^iI*Fx?S0 z4^Q=cM+b^Q53{rVuJ!%>JIz(x;R+Ky(m0EFHgAN66JKp*jOj-=m%XidH={2rJ~M|j z&~X8>>wr~?XIuB>FZW(%s%d+;Tbw8uC^beSE+CdJ)`BrXSGNo+ZV(XY?!OtQT3S9| zi5f)R9VDk?B1Qxd2)aj{Ia?tBiz&dNpfIen*PjPu>nNi{w{B;8Ei)2(ER3(f7U#r> zul5xolts68=?erTS}rsF_2dP%x+n;QWl|i4zii>dt^feoyu1Vsh(MreX}D&)7U_t< z%5(t3mYf{!jR*pbT0tLjmdPjQ$qxM_3-BN?1w1@FGjsFxjSXrhaZx!rIUrQP_v~!( zd@#9P^MkZ*a2FB`#SvVflqC*e@Y&a)Gmg&5X=wwTLj3$Qi!0vGla^v*@y^g7lzY=H z-tGX%f(k?x6Y%--XFB=hdcr2xJ)v$CIFK9?gwjq!@I6Kn0n0Q^R5>=y(I=3RNN+6T zSh02$0N$dbr)SfvFIUNxk&Ytwy;=@UVAbEL*bIO}0^kVeZIAbg=R%zy(RJJWeD(B5 z4Jp`7;6;Ke&iXS%`~jd;jrBzDzyKM))0%12>%7J}S+*7~w>>SJszG+*qt&RrbZ>xP zroTC@_u4JCrj64dAdcgnh4W0AQWp!F`M(aaX@9*DM06Yai zM;ZDYOLYk*0l<>SxDTt{4UadyaZK0ByOSk?&Kv!y{LTXI2YVm%(TTaB!1%9ij7V!M zTm7MA(XE^^oSO059?dOlz1bl@IBq(=m~#+0>7jA|<4VYz;1h~VuW-b6xi`btxmzYbIA2sT?|(-H%KhO*}8=QjpY4i{QdD0v8-<;z%t*@_priSYJ z7}#ziIT2FP(S3{#L^$yc9u-Z7}6SYlBL1eIUv_U-;mq?#wk$iSe~+TY*5 z=9W<;4se>JYCFEBUWM&UB?20O&rv(l-Qv?Is+PV4p+52SLeMbC?*zbIY7}d+^YeTD z{zfZK<+eASf=R?-2EdVc7d%!0)Fyzb``so4U_sl1kgjC__olbj;^L6SSU?Zl zhXGR5pAm81%6bK!HDcfZ4Q8qXfK#37tD{a#LHC2=@!!lk)t_|dh`FtW9`8<@?^t`M z=Enh?-GC1*3(LT!RfDY~+8{csJGTe>-H0^Bx_vvq5z;^tKdeaF|3bnb?eW(n$%aR09ZkQP0E0t`7nv#E0VBHIqNIi>0WfNHa^=-(Ku1b~Yz%+1pTfK2Jw#9iw|80dgdQKBg;D?cdOAc#NP2?X9q z{P&%fATHoKRl;!=Zr-BY#o_)kaYn^frB&@h?GHMjML@<&NFG{_oiWlW)2_@=6oRKG zml6=BI97V;s4y3rwn<4y^W@so0I9|07PY?E?|iy+ctK2&sUDW&lK}uI)6?yj`lnL) zs5b04-S_||g%f`PD&&?j0r-!Wn|q>Xrbr#vADtZI$x<-Q_3*tt*u)43^b-StGT&g$ z!U;X&edNtX&iJ;}lJfABZq)1yuGw5PU$0Dc&XnK?pakrN2<5XU#Q}BZ2JQo&ODE>@ zR)7*LM5NS!2MS;goAnX!xV}tB1VP6fyM;`I@1eDJR@XmqfsJ0!5!_x8c#9G!_+<=~ z%ZmKe@xgPrVKHF$dlqrfB3+iY4Rr*AM3z;;Qnmo+|Ah26YA6 z5PdL@i4GN)mHXR}{xK+w_NSibD_uAqhxg8#E1nQgFro3QgdCNI*nbSj-isQ)hX$}| z3XeT=f!c3x8|#r10I*8*W+-E}gv2m!swh+%73k$FldT5a%-Q%%J|sp)MqrLW^f#Jf zZQYvAf-5r6w@Dxdpw6#+{IcK!$bjKnE(8n6w=a+dFk=&ag|zq%lLPd5E@p{&RKAzZ zcNq1;WAA;vg!1rH!CI{%x1@j~ZjuHWi5id!iL(h=_wzBoj`s!6{P>m~!^2AD; zH{hqy;DUt_FO>pg3k+U11@JWtqPGUk0&D{mu?95*ui%0;5QBCxff1TEgsV1@%4GdJ z!fl9p%>{LsPpw5Sr2k&1O$DPU*9r&!d)(6iu`Ro&eyND3qo!i&%Bqw8VwvZI8Rz&7z*m0 z?5e6DY}6k8^sTBoLViK8=-@r8vhv<))C@~qIhBM~u8dgK!<|rKA~^`_jnv8#D)h4L z;ZX1SiiyYdiS4?K+W`087eOsCF;PF*@oLu-`+phzCtsNyySia8&ckW7Bu^9*6(D4A zA^`=ErC(TM4m(lC9^&HQjE;>3Jv6c7(p6IkC6<|)nUV6kJQQJ&7i(5m3cqeCmm?BV ze;Pq-MR9dRyeO)F$bIah{X{so)o8u)_wMe&HuH$9xf)qQYpdvJ5{I1bsJ2HkMIjI@ z?X4MDxinRYbom}sK~AN+nFJc6X?xNEVDzK> zsXS@2FDGRgg16tPsXDs-fF8waz}@lol5ZGXYsw<}_?bphWX61^k)95vs6?VL18~Z{ z6>d-BV!fldM4Y<;3uwBZykIdkIctVbu&F=KG0|n{ge#HtZ*_HO%HxSTyB%li1_ImQ>Rvv zO$At94ZgZ51VqUDQvYI1vD$CHW^X%RTZh|+ObMgp!GZUH6MPyUJbaIp#Q`iUl+ z`K7=+W1$mehRxigQ46Xj6u-Ge2l)qqMTa$1@A!UT5;S;o{!&-Uozi^g8c4?zOJ%D= z4E-Vj;=})pc|;!*?)0vRTFMZv-r;z^uJqh>_r*CJV79|B8LWn>_Y5yI&*9WYhzXW_ zKlaPj+L8427LICRyYGP1TH-GIa$_>j9zpPC+3#G6e@{5rFqRKu7X^!Us}<{86Gr6kO$-+(|~D8w1C5AdrYC<^k50B~-&!IZC2=Rhdap zmo!by5H5K8S?}}Nx&>1U_3kbNmiv6gs>8PYxN5G8Kkj(VZ`I+ddv7NSmjTlI zK^wO(JN@2l-R%wy_9lGOc+G7s>HKRbgCbb)2wCs&ZksMMpn9PN3t_> zMR+D_PP$3({%p-yOmG{GGw`@E4}@%k0afq#(r*GGB##y*<3PzJPbRaD$@|mLr=8pb zdY0+u%h5aksqGBMdxL1e6iEDZVOE0bOZ)51mz=>LY;AJw{)iaN#w!hLM-*vXVWils z_$}T=mav7EVq=MBd_Y}?+kMzd34DD+!-xXJ4}7br$lFEI`+HlZ+GO-vH6k7%fz|Hj z^ls$4bY074I$DdjLkc_1PJa@{=XLqC#w6LmNg^KG;dcgm5BGMDa{iKwtt_qAc^&1( za}QUmdO?UUUJJTao7mol;aYq|kFWuVT5VO~dviCN)!7rNJaBts9NlHn@@%c+ic7fp39ddsI%-0lT>4L>oOf&6SXE0Wd>r3U&QC@gc;R2G4UFn{~mYQRERmHuorB%(+b zF8ny3ORKG&w&)qkqPsB_jSPae+=Ezj^>k(&%hrx9;p4@;e`1ENXbO2HTpSKPoKh4* ztY_8Mz8rIUbM4T*h$cH64@+imy&J7jzdkQuxVUUnl^>yrQraI2M8KoaJ-XT5%L*-M zFzJAACIRsUyd{e`v_Er&hndE_I@6h)_qI^~QJ#BWR*DVucE`+5E)jGy!wOMjj?voG_Ot5+vp|6H_$ zTf4#5jcy*iR(-%5=XrGD>F*m(hNqE9f-ubVM+jPW|qh%Bv zaMNONq=a-m;^<3&wkF0x?!Y|4K>5{neI()b$8|5kPzJkzmHlgBSfk5_8m(94K zMD-3Cy~8}7So~$&UaNJB(+~F^D58AV;4huFBALb#Ejte|iFdowH8!I^-)2S_cNXw3 zpHFEQY3!Bx*PI+U&h>JZOJiOf`uFL?hO141{Kh;7oypcY{O|Y{I05sk5OE6^7nc+r z*(-M-mT@mXW7_w!Vo2EZ_wR8R+c-o=jk5UZG>tK6njj40#%;g4f zUgz2CHB-bQK??dxl#)`)f))eGw!d*MdYR(aqwWyZETN+kmmLVi9wU{szhQebd&{AK zJxvU9Nv+5}xqW<~Posc^Mde=@+l&-iB#dEd)r2G7%csjZcbl6H$Kv=fae?02_(dah z`GMGuJ~BGAn1@qPBKQ78Q5c3wgla9ej^oz7!;Mc@_{txfk46k=CY8>T%~bwk-8x74 zM?%A44uM(8fMCQeU_n`}*OFZLVCWV0`WU`xB^-x{;gJ@Yg2ss0srT5ZUiPNfz43#) z85FGEoBkTeHc^yMoqYrctyW;J6s3MY_-xDZvNE42RoJcqky+pR=-K@Z{#1YBuVn6* z5ZH4-n{k1zvhDSCgs&*O_Ss?kbz>?hk5)J$_huD{XNN-z-a|b^^&YmJf+?b=F1DKplFf8=?Iqw(5^^;Nikz(Vn{`CDhfl$gqMX`V`;v;~0hAA)3#<(5> zz%jjj+j`<}KEGnx3!eNb2$(nMAmN^YTyqz$5QzfSP`cYcwIv=!mQLfw+bV8LP&;l) zkv6So1T5K}!v?-_5OXHeN(_p;u-FD3$BMff8@HX<#&+K;<7D3b`%CRmjJ?eaS=-sh zxc7fhuu23dEJ4u?cVW!Yfe2`p*Jb`ATn2_dVz1@A&WuQSE3;7od~uUKtTiSOJ`|PU zt$AwS4)8K&p9iDhMeGM*zUA{Y*q>Eji3Vt}+KmTz(jzD<<54&HdK0%yLlB! zE~)ZejU!rupcEhjR6qKnix;{I_+(h}8Ta8(A zX#mDult?%NC1=dWn~jv4OL{xNa!!RCF&ca*E^0W}czN#pp=F;3uwlipcrv`u~BL}V<-X->N@R`@@Rxt~myn(t1jI*XU+q^HCd zzVt;$9y2z%n@Qma@hQ8%Wsia90wun=K1t^(l_#k+L6~ql%06gtR(UZx-kAAe^)1}h zH#92V8NFwKW{LD#)y~pcdDu17&XsvtmEV9%C|xlJf4VtFX&@%|Y+!CI3r>Dzvau$r zdVO8lB8S`NZQ)^Kgo&7;b7Xi*_O`8b?*UTkYuO;#=G7^u(6G&+c$Vr`TcV~@h2|f_ zAR~;z34|X%xX=JuYsD!fA=sbo{2)hyQ%ZXBEBjQ17w+Im5kObHu0~ zOK@jS(5T(woR%~GGU_rXrONFEm+G{-rn1TVAv%`rKPfw31>AB<`1#-1m#R7D+Rj!> zj*FL~4!xG{0$eTc;sln=&>b^;rhUnKKYdeZnO<|=6#q4u>ScIkSEo$*eYw+@;(1`e z+dOMf-660g=#1$*n2}F_&5FpRS=kkFej?3~D;$n^w9?EwkTRBIrK8%6@>A`rUd;Rc z%ycPEi*J&yJCgSBnve{!wl2Am`H%5T^oLb-&h#}Enx%3{%`S}IYuL$W8v#huKf}&w znZn<>Uj8Xhyr4n0>mdIqEI#$zYM*rZs3KNCstZuIpWl}t7VDTdBI-4&=`BP>(jKSq zM)eQhoC8M>Iul0CNK$assC##tcOr^DLf*>=Zby{c?O$ouh_2)S|Jv%iHQX7Bjs$~j z&-}*|!a@VUa&Y;23)Z`a&)y}5Qe@hNpw`GWRQ~>+LlMA!=Evdm;@qxI39iv)gjpJC z1oP-ijZ!W1y-S90DJr!o_-pK#6Tb3#FVj5}n^b&sWGH!d;|Z;7!4FENKDMthsZkSh_U2y_p3&Yju#C4Gm{375MSrrrbnsij}PB3&N5Hkws*Y4A99)R^?EIh8)& z)uiXWOpu8~<@S4BW7)90k-}EAue8w-GAPBg2{>JP*N~O6G8dPmw5;6O4w09Ty=*&? zIr|;+%N27m;p+#<$$ZV6qhIf06zUv?F804iO--i${OMqKb0G$|#)wK-hhBdRkXu-O{cDI~0SFWa?SGk=GzKUgH1tW~6u{Ub@WRPT@V#7^=hZb*ph zx0qeaG!YhgwigCN>9!MvtOuQt`Rl4jzrCa7ouQ!+G_Lv2ItjjdX&V?)i@cMsYsFf; z&~tpfnAA-qK63frShd_PR(!Wx6t;xUba_6lj!PH0d&1(x?dDV*no;q`>%vFiQrqq$ zA$&}ajZ>V7f9h3oQRk||()il{R4irO-FX)7%rs6cE%(K5*Jv`8APc=JGRVr8=r2ZB1K26ojiR42>q6TZ$WHhmf#C}U>~dmkv|!U|FnT5Wiry*p@%~&&+?C+rnGHr|2pXgP?%DSEp))X1t;KM8Q94Q@V_DrIge9su zv~;~6P+44_wPDOlzq?O{h7g0qfA+Ce4GDi&R@1GG-C`h0W;dBf(Q1m%<~{x9l){7O zU@_0Z-}JA zauR0#R{-$M$l6KY9Wyht7Sr`q73wr#b-MlHU(J6Mw^zRHsPc^7R3&6L5n z#-FYZOICDfitO$s7qX;4S1LW8vDj{mMe&)fLF>VcR)VYVIJVf1*R{Og)22v(Hd3Yp zHfFvu9({3xoTr$-#B#YH>-;{9y?=npni3oGdTb!s6!~ z!GQ^3&vD`{q2;rR!oNqye#22`USV zEp9q@#K)kCB8%SNA+;>J@7KRO?ckwH^4>*{mtnSni9s)#y}xqxO^2YV4H;!2!uPr9 zZXvnsb_2FtU%xgvqvagW37kghvn`xqUOZxuS&lM|COj31B~*VCuTl?A5|$yF7qFT@ z`FMu}(;7k3#=7`S)OoRI%=^bo8-h1CFd#{39I;2t(tF~DaVT1aD5T)$Tw>=20qoEB z?05HZ_H+qP}nsMxk`yJArt`Jp#>lQc9DAa}#R)tE0+2XL;%5YNxfI}o z;c^1Xu;ycp>+8F?r}HzJcKCc-hdPMW(OuN-_x3id(jBhM15-N#`}N6LHkbgk>bdck zKgLm|TB(7R(Xe8Xi7nmZRp}K5T}koNzP9%l0HwIj(rQs$lJ>IV$KP-aC;$fLBrGqt z-T*N45~;fUPkHe#8pEl91o)dcBLetZSOC%ni2?9ff{hK-n!+fJt%<2(i^eaGmVE4< z^9u{a06`8vjWEymUaG>?CWG&6idTU(Iu^8rli4@h0D#th&Mzx#*Us~)#52F!N26AE zP|q>cFY|Mu(gI{{Sv^8KH)W{Z*1d^7BFUv|D9u(m(E*w^c#s`;?rbBhrhkyt#O3GaCAV+Mmkfe`d`I@ zC7mM*H1rT?$1uQFLXPPjto}%)*^)UQ1jCW`wC7_;G%<@2h*l`T;{0deH zUsQN>@y?hg%jC^XQ&eQ3D9Dxn?-aKTxM&FVWm4^OPH70C$(TP+^ z%061ZKmsSEicK!w9@Jn}J2?i>FHR}L1NE}M3)rp9PGVr9p-ppJ`D>v#O+db|IUUWy zp?f{;QXn7zemU<~)+W@YX*QP{4*$UfmRe_4q^f{U4bL z-uK5U;NWL8o}QVeCdnP{4v`i;n%rsjr9mi?BLjlm-1cpn6>jF@=C&5AH|3F~4Y4P8e>-=@PvsR0x_#IT>mGVIV zdE0NdQt5O~2?>{LTkH}WtzRav)yx)x7nT+lGfO(Dm{{q@zoY;s*_+BDK+1qRX9R3q zbf_;`Vu=m_)sYokq4-AAK!?X?T3ucp9yPjcnIw|#@O~GD>MfB$H4}*h>_`;NQJ@6N ze-GHh3e}Q8Z*qBs34nnlfp%E>smOpFHbatU@kVD_XRS8tZ2EZ$bd?o-ems$WxZA%2 z(Tvw<)-07@0QcsE*>b45!0-O#*UmcW3BWRin=6ED2DO4udU-wb+x-X@1)#*;A3%4^ z06B=2R)>tEBdxP}h7at&Y-Etm^m0rTky8*nS_li+lLtwHK6~ZFGRWU^CPI z{8XtVM@QicJoW3yU@0%MV0}N$0}g4Fg=CP+wfOc5@H%O7gAq;pteh0#hOErC+MQK8 znZFJX>XWIYelJm>5gML7UZ`sBr0SX0c7#XWuk;(IvRX^);SKNxL0MriDd{4) z7Tf#UX&?nX<7Gtpj;B&N&F21S77)5Urjkv0RAl;8VjxwgN9yPwH5yF#e7%D3%Wa7% z8y$PH*aFYKi-XcZKY;uel*{;Wdt-47AQ7gS;UIP;&NpoinBfZGBHQte!Z=zUSoHfq zV1N(+^ZyqyNj)N85!6H{`&OMnc#P1y(?K#X!qmw1OwaUsg0Y4<|4FNNx~Zm4eZX$u z=QGg>n=g>_v>ihTfKv51kv%RNO=(NA3D{Vl9i;T*X7Aj4C+_fy_!F%b&ezS+p zO49B_q5r|<5|b+1E_&iS*naHLBa#^OBNJbs3Uzf*C^LjX#)yK{0nZr7i0qxWuSraokU5gZJJ3<;Z2&bOv47Yr{}lg%lS(4e?n zr*Heg#}&ic@qJt`95=+AAUp&>f$F#l&PHYm=fBJj#tf}8cpWZQ_VU4!RGkSZ}7zPj_Z0Mm69{l=}@$vo|xEOH0nlGF9WVBNH;^p1R5xgpTKOY`IBtrTeoaneRO(fGwhp^qw z1J)E4o1^E~@c#kCpOzTci%#3L8kZ#E{Z~0H1n`ITMU)0VZeg3}!eY%E zM<-1~5deP!kb7h{*y3igMpOSZHLd3(_O#h>fb_cJ881lym=8!0(7MsnMZj!IF}PL7 zEbHjeX95$u*kR44%GXyd(q|xKaOX!1u2CSwiZ&?W`lW5YmU3cPf}4)@?WTqc8;~FF zyWhu~Mwcfu_vz=`g~vs;W?O+7okl_Tz*w^4Ry&|p_^dV@c6L6YMtH8N2-I7TUFSwe zBNkn-(@+q#-pUZ|p{o0s>uV~2Y}$*B~g`j3&r9&JLphHn}rHmI1H0r9I__SPF&?};YM@O|uSDul4t6=)>2 zb)hHpM!%KjDq3ic;{()_XmWpMJe-v_JlvW*=6+3&b$Xnyb1bDQDC~Pf@oeW-)-KK? z`U1SH&pSiMA@&11-}?jyhxMs)sTIFGF<1>?21#h+G)KB#R<+1^a;_K_Pr-e?KlPj! z#*$Z=Dkh9iSI(Be+hj8Y@^S*83MWSgk(HL(=eq?p`x22nJ)WpKiHw}~s z*Oh{j$BYS(yecXw+4TYKbx>y)irIk9fHFTxAp%XCJC~30Ug=e z(R@OIfbheFmx;tne-5xIhVAd%2tg2fRQ#vNodpX>MgXuN;E*K-MtT9DMLhp?=Rc49 z&qLq{M-f95geD=VP@HTNw3e$~+}*DUo+qrtH1B~(?u1adCJhMekuGtqRVZ+15v^N6 zFh@G|QKcry9OlYZy7C58EX>#S#!Luz?Yc?kL2_aIrwQ2{Wz`8INi~tf0|`9F>4f1a zTNi;#H1LLWxGRrjlScEAE__q`#H!V?sS_O<=^RJ1c>jFw_w#kq^LUKe60ylw_uDcN}&pnD$85p ze&dcFM^B)N(L^%PjjP)F^~OL5_fD?}g2bZdybNw=rzs&}lW`uqZ^>;x`4hO6W&D)! z{N6quWOKN&$jz+kEJ1ZGoaoM3_#ZaKk4xIfBq#@OG64vkLDC)IaxD$?M z_N0EDT4!rwl*2fsnB{qaC|Bp^jyB49`N{e#;HAo}rcMutj-+@cWYPn)=p`ttoGl@U z8EPvA5j;+{I?vR(DTDV%nGsd4$vj+-F^GLbA*=UC<=gW0bnwkCHF!P6n-dc{+zf3X zBy&0yRjSn!lzkJ-4De2gr}%5z>=%Gy&yp?#5DWJ`#uK<>-Q7v#5>O>`xT_s2Q-1jE zzoc^yAfu(Y2nbj}3)~V@KS{H*tRnzVhmjXUp6};W5--e=2&+L z9!Td{R&*u??PH1O??0)1?qhZL7*qjshN%1!)qhDm`V=Sd_#~U{=)m}ELJ)g|Y{gt( zVi4a=6A(|;jLw}1k%aqFJKe_llafqbuYHrn&U1!I;xNWcFzeZGgM?D@L5$}%)_*3Y z<9-EiTY~Z;Qx8d@C7v1@y(16yXpzJB80o#1(ZzfQzBCHp_UsvB(nK6>bhu4ZOHLYA zCm=?|!t5SR)B*LLjKCk25xhN5<;Gpo3dg4#;3D(@d}{)koGZNiMb5z`jD}WV)cy*) z2PbWtH43J94!3dM#3*d3Lq8|cc04yR;%FkP#|VFVB8F)_;Xd?=|2_wehhs|Z06E}M zjzo-~Hv#>&iWJf|>$tc^EV z1n~99q*DlYfANp(0SN)%^4Ds`he{Fwu(0@Bw;RudEx5h`LIn9>Wa*dX=oS;?GG2Ch zC144Hy;_c<1VOSta@->{9r%|26{+nv`T5N75cdzjdei8WD(V6N-s|pmLOHM%pa1a3&_knLeLGr$w!^6SW$x!}zbe{kdO|s$E93|G?8{{$D)(|BDI^3mf}?>n3z*NZIZEM+N5^QJo;v4j(F_ zU_<07g|KB1kJTXyFX5L2;>TO|P8>4D+%M$uO!XA@L+)n>JX8wZU}WU4*d zAndP`oB7JFe>$IcG!Sy&(m2b8?p@}jcgbuNNLhr9p#v^l&`Xga|0e+Ulv0W|R z8=u2JE->bJ@+({z55%)|tE0zYxY9Srm5rCCvy|HYt5R5YZ?B1UA#57>;S=pI2F|D+h%ISLdRpcQ zGDb`6e1<%fKJ`i=aHsqUecF99QmxXi@{u5zh{tY4#W~9~F-!P6Vd)eZ&WIb9S!s)D z)7eIH5EzqyGJ+qyKSQpld{}XCUQ+sZe@X6qOmmD84`SRreBb;v@&qt_3^$K_YyQ)U zZCn4UU?8Ya_kM2}AFo@O9fuc{PU%(jFHqH@XjYgxwxoNRHh)EoL&&@{16?R_#-HiE zdJ;xLSPLu*f|D#*(yr*|;R$^_p5Ot#YiDRq{7@@K+*@k*Qj)qz9e(ll3Sc4py+}0 zO9nrlx=xI48Je{k+1??J#BxAy$=l0LE!3s>4)V)nV{3=cR1m)}=R|r;cj9-T9unmA zXQtAqIHxB&2gY~3=mxQ2E)5)5clN#Z1@>TWZkN?$&>sGz!A%q8Y}3c80UnQZ^=d5{ zyV>c4_|_hemZBbHN0>d5VPXY~)Zj_|>}}ZO1T~g|ji!w59Lsdicm|)-t}$gC1h!u1D);HJ5%FT(0Hn zr$OK}P+XT2(T}%Sd0>sf1+9;jW7KYU&CO&4xfEGy0{xxyM%iqOQjJXE81Y%g^)}RR8`(T?ayWHwA*{i*9J7|)KH^y2VYzBUHX9Z8W^=h6htZt=3;~rCqS9;LM|94; zk2JAEo>~^}1~ikcMohaue9m}|?k&|DT^)bE?q8&?2l7D+K=lyA0bx#4INlW< z>M9cyk{hs`Y>C&hkDps6WLDy#D#xbGm?J{Wv}Wea>l6#YjJk3&s^Q!}+gApd=hG~g z2bwtj7C5~$URBV?q)!$~mupOMb8D3?gk~la4&g=w;yAw7GWrGUL`VG@t=;6ZGF5U+ zkwA%tCtBG)Joh-)m?jQ#8Ct{CJp10fFYRGquiqwnMtt;v)ZYq0`t8Z-aV_@~^1B^I z+CRh_wtp3G*qK@WJKk()O4)s9`%8808Zm6=4H#2YA&((06Lc#8=Uvg$K7y3z{>m*x z`_hqIQnU7$6{_kXg2++#ogIgFnT<5vk8iXyAXYzCFW(t-DmCy)QLQdJDdcOKas7ec4u#%618uzkO>qUCClgdwLASvnm{ec3N4 zfdveiIxuZXEo#y`M=I(=Gm6xT=~Kj^$EXe2?r2(epXn9r z>_TTkOe>eNb#3zKOxPEa#Ok?CW#fC8y2oy0fbV6SnqU0`%V6`%SB9=7hQg3pCd4jeTx~FO(l*-BorFZA)=tUdnMG= z-osG`;`vjDWJ&)fJ;9e02((Gcp_N6!H{-`8u1e~NPKxM$U3*~iQdYFUAc>mE*XbQy39X$fOnai|w{bTMkhXncwgOFI)RVSlWY@1?;f#>DjA-he=pFlu?d& zpfb-KV(jjDhCqJYv|%0%IUpt;Lu4hU>^aCT#}0ECZ0&a5t2am*V4cbCWWD+T zO_tMEI>=_g4{Qfu*b~p$o z9NXqL>MQpb)A0iKPPTeb2iKwD+GYpY`YmZMZj>lHw{$gpn*#J@@fz#n(9Mu}GTXT*7*)T8dR0YR45Etg(N28DAup}`iqE0n z1HBq!>$Uy(YWrA~a7ua$s#r(`$ND^JO{DVnTT?^+=1QIFMw-Y;%(KHyIk5$*#=tVHnxp2*U!KV&5))O~%IEIL{9iCVG1-R(=Eq_nf2_IQ>fA=Vo!{-k93f+{@Yl zjmqNiLJ(^a61O@iZROX@<@{pk)0Qdr$tQmM^B@~sX|2d8CoO@)=t&9x&1}UX(h4bg zkRYTN-mDG@&qIVJ=5gp=SD?F0>(4Qr=~hlyF7~LP05|8}`42Ul zq~^M@(NuNTL)W1^Q_^uMANA{8^>j~^Pfy7F?s_3B9lQC;(H#2VI;=BdUaG5B)mNHY z=^}WaZ$@p5J7}@=G}LUQorePE9oo8S(EIqlB?)K9OfGGg^sr^(BB8mL4PXzK!b)+0 zQpIC`fXN~KD{EK!g86Z^%k~R?OY6{bPP|hgJ6y|o$rNDI7G6q_kJ7weMB7S|dwZ>E zC)>Net3Xqpu(**_@$yp0a_cfs$kN<1hP#U#_7OgK{JHVr?4$_aWz5Xpo*C~{#RbYo zgr^otDo=Uv=`og=r^=iP=Po(^h1Pw^Y|lwlDl?4hk_y@}M7M_kCZvm?^!c?>j6im4 zJIe9aZlg2BmYRi;QurjAd7aS+IGU~-3Npjt-rY=p&o|m!;)#x7>wp37h~>cc)E>QeCa) z*z)QN*W;l!*Tm1b(nn99W!n<}k>o;#<{SKkBjx+OKldhwq*&7DcqzZwhn+0!=R?v| z&%%>?d@)(Tv1x;CmSZ=ZRnXC~tAiZ8Y7#29wI0tNwGAYQ5v_aNr% z{|>!6vkF#$^hiM4ZoVRTY@##jmEXgr2RVXVaGO7XEgU)XNeNDczCM^SUg-sP#t$al z%|=ceR6m6Ke^iQqqF8v5&_sFu0vSPT*9B)LZNNxO^@{M%#5abt?S26wHh#ECRH4%g zO~h+0SUCjS@ZNKE;!tBILDpRN>Hdyi@2120#~2+kKHmmF|@7^#1c8(zGIa1saJ-5k_y= z4z|-<_T3d>^WR@fe{qv-BwjOZKOHwHUq&t{BT1{Ty#M z&(>(5TfHhMA$X0uRXQITR6wOIH|L$ng8CSV$V=rER+JQ{N|iXhXZfIO_cN2KOZT60^# zi!p+_g~Jk$g@cxa=6Q+DZKRL&dvivp_0fz;XE4Gi1f2zMVWqQRUkMdDv{!-eh=&zo zVP99LZVe{t=v^Z(C}XsgEIesE*P4uyK0bk{bB5^u$%6l-g86?2OqduL{$|1Wt-lu0 z@YV;_?J`3|xTcOkkn9>k)mqsjqWIoP5Vp{K=;zZM*U10~wD+aj<>gt4N6MM2@n!6V z3NTTnmW~GI>nNo@o4Mu%RIExhwpzcM%PhOCXUd_JYw!A=m7z4L-_|bcMa>UUm$CzAvQG@ z{waoxhX}aG@eX7Xby<0j%6fhJMIclzpt2K3iFMD+xxayRKJFs@W^J2alU<=PuAJD9 z{Ke648HwpcZh4CA#hS!!L5uVsF2Xm%$m#Mj3__ar?gzrj`6JjB#k)s{3Nqs5gjKw6 zML;YtzEyYG<2YuUV!6$nP$XtlWv7N17T}B@YQoEP$=Ib(clzQsr~HEgDFe%YsY?8x z2cL!c?}MK-6H!Qy%D?r7=8Z1 zE9T@RXKTwS=eAN)4$1Ph(Q?oSf2z!;a#eFtO_$Bt?zAz{FRtRk0rm2AtLWV5@v72|bcHpA!Jd6ch^%*F8fvB`l3ebq4V!Pz=q!_jQn zmPNtxW8m~`dTU{>-7@xa?f$a5R$GtF?BPBh?>%#%`iysDkR=etv@$uDR=C!h%IzXz z_CdtSwb6v0m#TSU*o?(V=3&dN5&zts@(cZgnR`8IAP^rxEk{ufB7zxJz)I9IjGah0 zOIIkp^rpC!#(^OT1rpGY5*qbJChYtboH2?y&ZKA>mWad_SOVgvDXw)SYZqh?coB=( z6jpp9$S`bSC@md6NMmBvXd)_3S)MU09SJR}1qqE=P~ED5%zcO>sPtREQll?48V)G8 zflV;7>i83!0TVh~J!HnFvl zUFYgrRKq+i(^2GTR&Jz^p@n#8j0Y3pRJliO2bIJvMU$ybp;a2@Ct!9gPN1oH#H%kf z+aG4?T^;|h%~>SpG^{LPZWbw#i3sd3p&YI%r3o@52|#E*6VaJ@alX%0KeRTDX>G-- zh4rkyA24qax$NP!=q^3u~q{L}jWSAZxpBjexJccPqC5kJ!4)z1iCQ)q!T zz6})2pehuBh81`w=<@{&D^fx0;$e=77QJe<{knkusfwDV+OmjB)1~L1syAAg8~&y) zr#=|RjJknDE=5jPMA;QJZjDI38`H81+Fifqu3YiadOAORR+gT6bf5O7J+rx)o!%BY zLSvsazc0){k6yKeD^sqYBeaZ53+>4juG$h6?|vx0F@|Qgdz}sueW-tZK;s5)<}PfA zxoq==o-zB(@c&emP)^a7-E*})KW1!>5j>khwMjgnSoo!z!$`RGfiZQke6!EHR#$SC zE9IH6-)>xy7BwA1!6JQv!pMX)iItC?#AJe<4o)s2J%S&SkuD-_K9D3)LarW1Zk^_+ z;0_iZfMj`y2E`H`=f3POEC986XNJ`IT|ORPH89UMh_Qqun8K_<5O4yg88D*An6dmE zOuniAPi*!E!E5=vj!2mpXaRymO2F+v2)wFkCd1ZdG;rsovFaHe*x)Fh<92m&nR^Ih z{#b5ZMzOQJYS`PZAD7tuj5VDiols{Jk2&2KHrS;Ps6Agm=`&kj|72^He-(}C|E2)% zqtF))NqGa8RhjcTap`R&E7axGrBmjWUW>9* zdypm7ORsAKM@}JmHcn!hug%J*Ik^sI14NYyXXc^K9^!{mJd-!NKO&tUD)C*|6 zkj8Ar3hjA%F4ABg3Qr2U<-F-_4h7?bk!4~g8s`K?W##$fpqy~1{^;-#0R`UmH=;A; zdL|Y0E@tzoyTB3E%z90&%OFDEtTmJ%bxe(wrfbrBcR9QqDDJJ^*(Z@WQoBv19Y46P z%%)bRMY%z>n^6B(;+QX3#4kMSj+qAnolxKUc>5O_u27%q!pjY3N!1 z&Cs*3F#m0tB}rMW@uLPmeWEo=Q}oSpqtHVPBidVJG|7_djLj~i{Z5Fx2>$XZexcP+ z)*mSKSa*ssy>xEVvB`WbD5>?)y4)4PJuNxiYwLP6QGRo;%9N;4QAx$fzt_u&uw~TY z#n_15MO|>dxm(Lk-O}sf<7<)0G<)jVy?Ir*f4Z{ET(6|WOM7=cE12zHTex)X{yq1L zqsfvrlbi)NW#LH5SII51Vq=(YuOqcP!e;|#VdKp)b@RMN=joeVeOs9|V{Yk%<9xCW z+LVsMP`7!E1LJszS&eDtPP&|-(gzzJ^Y~-vt=&xQ++C@GXUd9qj(PeBY&Eh4q78De z3!zO~IYH(K4Z+j|896`Iv41+_Bh=_J2n~c_I)-4n27iI{X|;wKfwSkxeiVl|6KN3S z9nel+-r#oM?#6Z>>`vbZtvkJv8vi!Yv4d5zqE=53WrF6<44 zL-5&rt>KNN-pMi-kfcY8hu-1X^7G8+V9A-==@+T{&m)kP0dA7v7`R*`}}H8uKvxN2Q?V= zmcDJ$lg{qXtM{1pB(`O|mnYnB?g0-?-l6bU?WP2g_`$Rf7OmJs&$@-0cnnXCOI~H6 z3KX?poMgq_6juZGg*m@}<50ykXGiW@u1vElvy@9}k49v@{H7i|MA0J7@O7XII-gza zN!Fa*FqU=0xg3J^_#Ov&%K{D^W(D( zo51+BY|vL|Vj3?<^BwiRhQg0*ivO6-9&lv_lSAaZ#1Bc`wogAm&k-Aj6Trw@YtzPM z3ept3$IHN2Kb=X#q88G0J!{i^&?)zr_XK`Grn$QW<8gD28z`9F`r%;FM)gkyWB*qU zg5hs)Qe!J9uf+e!(gFLT;Z_GxW?>V`W-rFBU(*8D5i8{E3pbRM;Crfa_% zWQkhnK^*>*Tf6o6_RFI2-h&PGhs%q%_m-)w%Fe{{lNd%4`erp^>>5%{$KiU#3%7#h zqgB=`>pkK_Q`M@{Gb7L2j9PweW~3))4Z_Xn&Zf(c9qbH&;!(qIrQ>l_Yn1El1#mty z+JcO7!&8EPTK3H1gGyene2>Vvvd4Qw_~55DhjuJ18$^m!h{>8_igbvpvC8wa;st3F zd;__gLQ>`rkUp}IK5j{fKUAkfI6-a710A)qg5esc=~^cGu^lJitVS4|1nB@0EwypZ zNLGm9&2ed6{Du(eNtdlr^+WNsaq6(~c?K6DEbIhTxE|P5@NJk?*>UcYd^f0sI*tC~ zOV9?@9*F2?HwMI2*+`2V9-39d0pjXj1QI#K)K=3~i-y%FwxgPjyiz$C&NQYe*$4D@ zf@vC6xTd<|uLc*#W*(U_KXt<<9LtFswK?Mw%;eZ7sGU3=44&K_`c@+&QMq|TM0Fv!RAueV`pR7@_iUa={Qbp)d8Wi`w||OUKaWNrc_>`|`<1 z(z)V8PmOxr;>kAz)sH#`+Cy-*+Ck{s*EWu&%7^vj9|3 zJZ9lw@Ag$gXMx`Y$40K===ZE{-NlFMkk|I|YrtC7w*<&UC!SbzNJ1@e4RoNOrQ$F1 zKX92uYVh4vZFU1QP%C|hy7RP3a+*)WYiNmid6pz=RW9Fwp_hJ+{==BE{uh#=wkw`Tj zd@!g{Vk9W?IN^N;q;Fur;LU`BbA{28U)a4A0}%|OzD{@fG4++gsw4X zL(>n&Ck`83{jYMt-|IQ7m*9F#V#Pj81(9lx(XN&`4!ZSOpBO15=!f4fzI7tJyzz6B z17*O;1eyx+@$=p3=WJVKwIs|#-#$p(GIuHFcFAL7x4TDk@@Q2`s~(RA=jTTrdJPxv zTT-+U@G^*GmrE%m+*nBLLr`Fmkg!!SwP}!W$YqO?j-cIC@DzC>QY7|BVLLlk$4D<$ zz@N0U6&Fe8&&Q`*+Q5wRG&?49>ypV4!dpl<(v+)>j9xEeVztR;myi)9hu<=1XTc$m zN@Q!xQr^Gbn-CCq3Nx5pgB&hsS6q7cT=ZXt%)o$~)($QICBOodFlJUlG3Eo0dRk+=|aWh&X2J z;iHLR4;rG07}58+=r-v2HeH+v0a~Tu-Hz*DJPs<7)*{aHuRLNC2Mh2qDJ4~)93_U4 z#X--{*B(y{=jYp(^oDE=qwl{MNEi4N6f=&4S2fO788~uaq-GtBJ_`P z(dc4UY1UHaJx;|Rdd0+UnEnKsh}nD!9=eILm3{43XwADqOMfx%B0o@Qj)Db9>@rGO z7~~HoSoNn`6fo`8g(VN@{s$UPrSaPGNW-% zgf}kTg7<+UZ2{Q_A~41gEsb||3GkB5D`CmrHqfHdaws2!tHc(E-$cE$razA`U;|>Y^UXr*~?XjFu}B}@i#6uzjB zlwh;quD+BmW9me3hsxd#P2azBp!MBW;|xEwX+v7r=Nx)CCAaliWi@>E{|+BkIOGeRJ;W-| ztj}ReY75PSAE9(ofdrZK8k0?;xXgMJsGw8D}SY(LJJoL5|PFmed^Vk9wlm z!?*44Kyy`m?pSROyX&K;no0&}w#;UzmLwURMlv$lfkPabbq=&h9u8_(HW>09jcD`Q~ch!>SoeKV=7B$N%zmIWLvZIs|z-|(7=+iBV; zbNLb3iYd#248uz#H*@^${>X^0lWI8G!TR}6eSA*!!MWl!Ba0QL9;1+3G2}OxHQ^*G zD?Wst-uQ&BI=0u>iqdZ8MQ@Z>|Bg?|seq`e%A%}CA(iq!@qr$D8m*=-8&VkdYL2O} z4A7bA-<6IC2AnDmq^vd!-(u^KoBmwL;9GCKk9%g{v}ce56-U$_@0S0u~90hyebmNL)`Zh-gS2N_k-7+JuDFY>j2XwmX(jB z7o8Z_hFJRda568G5jP>VPtS$=pInpJzE=52NsfJ>tt0wlE;E0u;y=t$md~0i+ByUE z^}#;kL^}IIaC9qqQO=1Mf><8q4Td9dkg z6!c20*8T6I+O&JrgC)q|MzVxCtyO#n&McO*>arz!l^K#~qNnjuUU@zvf2JD?v%kjb z{bcQmsn@>7z1XL(S(}26J5qSDAqCStX2Q0W|{6eck~o zD0ZcODzIbk%eUj)5s@PrFQ1bEbDE6s>&z{EK1f}Oz)2fW)m0Jod!H%)xmcfhjq-yf zx0E~0Y`W5V$NYiaX>c+;!@+GE?mlqFXA1Swx=)4`-+Op+*?JvBZ)$BnrcagFT6$ef z9k2J8#dUTL?>T_7;74a(%$HZ+@WLZ1>#2vX7HF4NzFSD)GN$6S zrMT||vD;S``tbFq>9f+#CjD4TD*npL)>l`-fTFyYLMUIffGbJQtFF5M90O$W7>tJ{ z>8_ipMRa~XeiN9HYg)W!K?eP)l?Le^uCnan5`UP8x zLCSJP4B%%d&J~+_^mO)%!yS^6fOq6XzSYf~hVhKR`tI;dHahpT9STC;$!a#-$;aBs zN;YDtU6*=-NR?DOlf5!I8E6w0L-H;2dSm2s9O5-giWaSE1g;qDOu5(MCEPhUgD1#I zUkRu#ve8jEQujbEB*C61JcLH!E3WhfNdHxZy`UQj?{v*;WD=-6vNll5YSqdO%f{qX zS7jJ5+owK7t+owQDyl|U-A_a)`@W!mN|XK-V$JwBz}iY*e_J0(8eN&$L0=sp`Je(K z^iQAsU*OgM-vo?_h2?MfWw1K5y3$fR4*@Y5VZj0BZyX*na&{*6POD}W1M>D7DZNlqLlR(p){G*R3t`+YEl05>t7ma*ZT9mdp&HKc%{bDe_X~Cd&8^ zq|FhULe+(fN(A!|l0qkC;*=4qA|gul$~b6pB=Qo9AQT=R@_4THxaB^mDMeD398qp{ z?A$4q#lDW*_=P6p#wxePx5l2_I{aIz^bzKRTcXrIZmQ?BOQYfwMK6E6bU96uKPmj7 zO@xStog8btv_&J+)LG+);f$j%9jqZWF+z|$QpG52H%0qBjhNyS#v@p#^yz(ZGr#!w zYp5n<{k6%mW_C3Id)bQT75rTmd#caLO~3pHc|xu4XHE4J{ggGdScb3T$L$cz{O`R# z^nxcmd@QfAoM-7hpbIzdd`AIC`x+u5U$j)#=We)|ewOy8^Sc=Oiv7Y@Jv-qzPF(I* zl1(w8yx4RbWOLI$QVQvRUgxsD$`9m+v=2ncd|))l*7x#s!Rm6m(yH2uoyqKIn@=pB zo3oO4)>34LI%eFQb9vNk4)tROrK5F9d6fXojOt4U7z^AIxQ7k0p4?fBE8vY$ZDwXi zH$<>=Q$bR(O_{1qR)3KP#hyoW17)2$Ttqiwv}vX0DnHb>=qI7~%uF7sQ!2o(MN!jm zV;-9-Cycy6j=TzPT5F8$`Yc0w?bufZp15~WIlY{Lm`6QdD9 zbF*lWd&wy%nDVA3biB#vp?l${xx6YeL#$8}o}FT`q$W zqw;3|>Jw;>F3YCQ^)Az5=qsIQu3fc*geYLp2#H>8s(_EhmT+s&m|x z*iXifvoHDgIRdOT{XmL|kuLWZ*dNJi9631{y`a?kWkl=L{Vmm#lxtS=rLm93W~Mg% zGEhE_Ind3;WOa@4wS9<@6!_0F56?TrsvrSf2(1kye5kgX#qeQqrRO zDn1G?Z(a{5@~GPDO0lrrMDoMiSab)+)Z4Vgw*_My_QA%%y6+?2_bzZ+H5ZR)4_*A3 zl#o)q;Lh=EDsTLiYTtChKH*`1#$JTWmSca>+W1L9?WO4&svut=bFciX2ye;KS)yD5 zXHT;ExSz76E^V#O-9tKg5`D0=xJXpAjQP(_v={rKLkfkROuwhfbuya)3w7t)X7$_I z>aJC5%Cw3(?e`u~w4=L>+ld+o6%hxU2VmNoE5ZsAEVrFIxmWn?bQNzc9jOz7$O8JF zI((sIXZizx&;ook&f=83t&sm6dr3e>XiY9hV2$qs8qE4o;NG^miSa(?`6Pp#vB6VV zq)sZIU^Dl~0UPh=vb3TRLIdp1s?7_uQw5EHdVmz ztsaHL^^}nLPtj>^SJ3oK4@RO0h|}65x}G_6&HkOmt@{o*MRBAb(8y_Umx>NqnSQu~ zV%y}?hhgR7_8&LrSaR1j%I_Ukh0 zM3Y77PdA2M>Zu{f`-%A`wS}sW%O+f-QEzLzv12)92wk+EYH63k(rQxkjPWE*OWZ+EAd42|GbRyec@FO zQ~u-nz#X`%XLh;>UZNjH?4L9krqBv3c(Q+b1Y4*vG_%!3$@q=oADDGA82Ph? zJNI4An`w#P@oin~ikXD=m1l1t;(6;W6nyzL@)@9*`JVg=vMBs2<{&iVefK5iwD&dp z;|4fc#gI;tWt$pJtFH`f@rjH3`&2F)R>zJ5Vy6M?#Mdd8{Xv~m@~w)nWEXM=0j5JJ z>THPYrSjZ~r@v2+Q_BsKFFS}0f=U~bp=8kbD6%+Yy0SEBK@Rz5$=U>YhE_AGlmcO9 zfkj*{x1Q@ZD&KNYxUqhs$YFvktL_^3kp!zd2&h?~(5rW1S~ZyEB2TB^_bd^~QzFFZ z_1Q-_mxk=AxVC5v?mTq#x$9N7r=Q#Pp=&VAKi(YELhpLVp;ur7&ck+PK-|C8Vnk)v zfP&33?%o@PWar$yU^n(@B^0_j9+@A`&Tg5J$IT5Q$E!Zt@uI(aD(5Zg@)tQ0 zF01)U?bMFlNM@v)(uB6r2S`ng$w;Z3R9T3{s3Wd)-3sKODPPdne@J!|onfB?8bg+X z)}BW;k}f&5qbQhsuSBh^*s8cx(s{vV323tR=nNhwufaD95mla@@ReZ8yY2EYO=?V~ zBA*!hL#I5CH84)Ntj-N;&>}%kT2GWaW!HR|+)(N$J7}d6`5`}>vfvUMwZ79?u*=K} zjYfK%R-z&Xp!d1F#I(2cyd*4A!uczY zcoQq8i4k77EWN0QZb!QAH>)rYSfBNYKIm)IIM*_-=S`lgO0>;xD%ELg#B^8vrqF#IJ&O zwCit&^?LyT&Xd~}$Es_?j;*QZQIDv9eLeWvhy?>J95I+g$G|63D#s@pK`)JSDzX(uMTl9tng`!X5VD8T zW!!Pos*Gld<+b&h755?ZIZUOoYz~+1rg)#}vmbTlN`A5fd+J%#VUZU5W_?d>9NzLII4K9Cp{XHZi?XJysH-+Kz^DKV z9H_aHlRp&lQ4D{;T@KSi85dwGX)E-69Q%tobf(4Zh z+wdas3{;XY^~kF+gBs=9n1h~vh^*6K=PPOvQ$SohmQ+hQq8+eg0D~PON&*(IFq1!m zJf7&k&GQ^V-Q1ZJB(D>Qpmr^n|4C7kNTRBmNNi0>QAwuY(FePdf17a2*C>Q89bOW81cE8yy>0 zY}>YNyJK4&+fK*ko9ElUtL|O(?mw{BhgD~-dCoD$F_QB{Y+Sb=EE%QE-dENeaKa$G zrGp6c6|7!VwLH!2uBxg-zeb3yn~3h2^z&5`pVCN7sOom}fRGW*OtqD@boj|r%09b% zpd!HRTOu{Uq);V`_m>Ql3t{48KRG~vW8M@)E9)8S%Hsz~ZhUz$)=e=l3Bid-tf9nH zIrW_~LfL}!Uo*}^Kc;Rsk_ti7n!q#4X`|ZE+E$z^s!K;!f2k-hF6;k;bld(p1nEJP zKQLHLb!~?XmxgZwMsbszviLC1bC-9}FYDS2HX{JpC8w?$$w@XY$FCd-!jptRR7vsH z6tuKtG@VGAi7I<8o(<{Q#mhF;)HF?MnH-4-f@q)Z!VdR>r>>$!fOetz${-i$I%Nca_d zFrT5t^?`ubMo2|3VPB8!Qp)&8JDX|-gj&0pDWPACUD#WRd?r@3f_e>0?eLJ<*|~I+ zHQ=y`5zb8({u*>vq{XWBp+r`t8x7)3mBDxd3U0Kp-cl2e9TsQsD}V;DhP zAk1e@)u2i?OhHaBeKc7qOBQMbo0Xj24)AsNOOcB(XK~(;@yP0E4qkEyu@UFZLZ3Ce zXNRUUJh{Ww$!A!`iqh-}pI)*zsWIywpTd^yYMJ_w=FQU4H8Qj9sz^@RChu0NW4VCU zqR}YlXh=2U%SvtIPt%)r!eDPQ>C9!hSZn7@WxIH^X&6>+r6uY&VjH?A7ZFY{F_vfK zXJe)a{@houo1BT6lvVJd^ZK;DO_he#8OmA}?iSN9VjcYsYo7JD*=`mwA1W3zbkIb3 zqD~F0>0dUgGwxVruLhzSo@k)XAkA$qHBuR57B_OeB=N?#8|{tGC-$X^O6kVL!gw@_n9M=OieIdBxwcW0(rJD^Hc_s;Ox0_%*%oj+z z7Z#X77{otiL9&k=T|TLN0*$^dCfrij@m+|rW2@nD;o862`WW@0-0PX${C^teL4j^m zd77;!S8TV0dGsFb%9i(B+;t@Q!@z!8@Vq>CQ-PrR;9F1UpsKs2^^s5dDPv~mo7ZS>Ym&r`wI^5NS&{ejWR<3Rj9lxFJwgfR@HE5eMr>Kp$k^_ zOiCh-awuU@syBnYqVs&ra*A|Yif0lGp0bEp-YV1Q6HR2i9EHe6RsC5Y z_?zG}*i)BYNkZfU`<31%-eTnnB4~yh=Ou-k<3^mT)$Nljb9Pq5FKs&dR0M95_uV7 z=nSO1;%{Af(S&Gh7s-+ij|l?$=_2bH9#FTjvm1Nj3g{H@Ho83&>gT_Yilv0$#h>;Q zkPOml{2ymYwWMR*S%FiM4sCemyC6oFi(4CX_=-ECD?hb9bPJB%PcyZ(PlJDx|5;c0 zOZl$ujm9AiR0?5v!%0ow=zy}-H1A1fF!=O3hA|xVnf^<-YVz}MXV^Y1u*S(0B3Xjy z@;yf0gWTq8NmF80P(28 z=|C_Ma(e%49~bz(Au-O)gjzeNiC)`g?eu)9y1aPgkB2s)jCMYSLytfCE*r!wvhgn;T`8()IUEt zYQ><)TQnSBPq5bLu_4`;470^snn5T&?fCU1h3)sk;E zW6A}CB&gf!D*Bx&MM}=Oy!#IB**$sXddQd1Zgb8Kc2+)M=?o?m{>yKk<9`?c{&z1n z^M4rlento+0|O<1V)|Tvy$kpeZux)ki71$sVA;a4%y=Clu6RZOx^eQhkDw^iNH?MEF2k1 zWN08IKZL{IzV>a(AM!fL^12?qvft(KI?g_M6*&6loh2r&u7OUFH0iZ@&HO=h=HDKS zRNp?RgSCfhUC|#x-Vq4v^nnJNi*;>A5|AE4>Kquh?)$VZ|8u(i3PAa1P5T;8C_3I9 zT(#uS&)bYg`@#0&wo#CZ<6|R0Y*P(|JRfu__dvlT~rcX@_`c}|YQB1sGL@|^G?CKfJ@!^0`K zafL#-$G;$}h9!9?mKI&kC)u`3vFk4IXfK{*7+eJb~CwhiKNb+(QZ-0Xb=J|kM zuf?GW90bt=h1v@vfi5RRZ6L_iOT?xPyPFr}o6drNzZPZ67;I)!%( zc^eTmglo#ulJQfdB2Px34^bPjHH2!)RFf>D;)Kf$sShLo$aSGK24Vmdyif`QVK-zS zP=3VzKVn9>B5`y$A=;2Daik&&Pq+nfXglGX-b2`_LW2SIo;gv&oDr)vv9f4nbD?XM zoVs|G%>MX((ego!6RBV#$!ppJF4tUXXH3UN*cQ37ic9AY_v4v|uk;D3p{2Fvn(L2w z#+EaW#dGz_kiJ^C#H0MVPn(+#K^#BBWfhgzx$w?hPnrorOEPPg{p#SIT91I8|?6!pD1#F&ukc7i5R; z65>qE2bL471{bM&lY=aQxDu!9=R1K}J#FY$CuDU_+ezz9B*fH|q{QSM|FQGwXn3%8 zhH`l>8-rYk+5M%RqlInG_=nRvpHZs1kQbt7$JKldV9G!KQ>Ok0-%Og}*k^QKA#RfL z^VFk9UT5<>Hpi|fuCxS{=c{x5V zNRQ%HF@@B>D>tJ##P)k!cKLUr=pl#wSEdl3uV1XmrE2$-OegagG?>lvgU+m?zWnwP z{GN?06)VR4SPX6G+a(B~^w!yo%c-7!u_?O-z*6f_^l!ZjO?Ts$yz?AEtRu^?m+fr zVk}64gY(o+2fmuPEq}dWp(1pfJb$sso|jLTo4$6N)DRsox>I#K%Q1a(cKR*VjG##Ohuj@bzB?QS4n-Hye)CA7cO6i3`d1@5R%p)dUIj@QV3p<~ zO8ljPd|pgnBO_(Q8Lv)JtXc;yAE^nDhrt{f?=-UK#91%q+7RXVMXyQ#rhB%%t|F^< zFHaFWy$#$V-EV3JYh4rb0Jt4P==XUK~d1J%qkbx)bPKd;N?xpv0n9 zO4WscthwtpQ&hw;P(7y{T*PN&(A})*{VEiS{RYaWqD(1f(ImKpVOe0%r+#|1U?Ano zn3OnSONf--EG-|H8J9tfP+mr`x`D~Nq@x}vdJi0aE9AzH9}^WD<|J++pr(u`0VpH z*!{eHBOAVs#v9P)d#%aFRWe`5!*JC!hn@Z!Ct`Bzq=}Q6eKxztcFFsRRjoIJ;JkHd zG4(lM7Y2Aw2xK6P%Q?IW^Tx%``9vul3!X^@{v+>0T?M!eS?tV z+Js+=7r^Io>`O;Xx)aikWM+?!r3|mGo?)PZ#G@psIw`s;nkIkf{{){6s%p)OPIwyC zxAA)zhb8qAef&3FC$V8tKH8j?zIu-G?*M*IJh72VEp3r}iLrd;k)q=)vzavYTwD-d zcG*98j4mMxYa$Y`ld5z+MvkpQSX|LPcwlJ68Woo)ot~a%$XHqy7OZBeWAF4p28|JGIG1F?(%LvDV}wUPPZ&LC2bwcFp)c{6cDLT=DlSsV)XB zedxIDH4uI79QhG>GCYX;i|o|36@5 z;|1u|Db~E;%u@O}U&0e7=IR7u_?>BC<<%Ov8ZNi`>U_BV#&%{e)>|CPuD3`vw2J+d z4}g}TZj3~6)A}^JqNdu#xs@s-0xYKQvCSQ;y}7X)^{4l#zpes3%1@~CdS8Cls{vuH z;HsCPR}a(4TLry*y&k*PU_dvYKjKkgYi4P#qQ1Hw42*-_GBP9Yr^Iv#X$whxFtn3n*x5h>?;h7l?47xLwdY#_rV^&{J>S?Zs{ ziE-Mh_0bO?fmnkCH7~@qx7REQI34$o!-8&j$mrd!2cpK%q_r99U6imV=i@}wxFK8m z&vw8a3oN5ImzMol5BLOE#fUk=g9)#>ND(5AqP*)1f9x=Y;-vunE6qRY7?gWxB>cp}ciU9Ix0!D|T=}oi4Q6GW@~1f_#+Gw=`PQ zvJU!Zc+=-|b;{>!oi=)_=(H##jjfCHQEE4YQK<>NJDg5Oj!$oFK%-qv;zmDc|CAHa zwQ|Ym%6aKEF5TwLW|41C5mr!wi1|TZT}m#Idk7-qCp<+%CBM-8p3!K8N18F75sq_f zRTjZ=u{NGSyBIfaXH@sUD5t>Fl8aW~pLq*9lq`XPW-`iuv9?p?+=*FvxX_CqM`zOZcV$1_)eVxuGPz4`t zacn-HN!*>x6Jc6bOInVyQb#b(`SYkGuS@(X__SmT#87gGxV9wAw%g-Vpy>(h*^|$0 zIh9e-V1ux(k05;Da0D?f8dV#dO=NYAQ2K)EbAsatEB-uZ$(x9(>y>(m>2uL_u$6n% zB*v~MpqRd9GfG!hxvX3D=lvw2B*gDfw-4=9?MrL#+_=+kNz|hIgzqyfm92Cs=C8@0 z`?~Uk=qO4;t-D5rI7W<*ah^-;zE=JeNUj@l^uy93P}vn=$BSJcWW0RKD6ecYbZP=B zR!Fwphw6r}Bba$ruwh&#NHHMWe)k1@Xhlek86(5xu8DDAGlOv>v|MgX zhyT%H#DYQ8X!P#R6+QRUk}_KOi_(~GV{GPHDadQfNA~uF^SAcJ>P30CY=j}dR7mjr z0)eMe);>_i{TWXZ&z9#A5&5_y=#$7yz7>^aW!}_-@f}jiCk*ma?JD_eL$fHhM_~QS z9NAJzIj3J^SfL7qSv5;{B%wVE!i@zctT!;0$mX3ErR@$pF&iw0Ke9g$Tvg^?#`%wT zt8CGV*!;iYZ-{nbW;(4p8MXVOjl9RWjgl2pMi0iK^rN`Ml$#rxxs0&w{)o!2XQ^`7 zRO@dM&C2hb35>*AzqkC$Ml61@gK4knr|CEuf}-uXiZqIl#?xH5493@^U>BWadHTL- zssR`FnD-A(5Ut-fR{RJahR&8eKjN(>4x=@=?;Si4sxU8`kuv4q6 zHp{W;U}KzU?6WI8sD|p^P!^18Mq=(Uxudua){X(kiNMY)v%<)U${SeZ!eQ)R)$;w~s@+;-aH+w+MNlU40;Dj0&4&PReWc$ z%mMbhwNPrpV=G3!(gHJixOL-p2Cq&gT&$x0vuO&!U$Q`2j`-@?1{>hqe}`fqzfzMw zK{rP)-wQ}g-IBMwXy#03dalsDExbdPdkVj7nvRzmPX_&l2tYR9p7jqti_`qg62~x* zce+i&o}7Y(amdp95J6R!wNeBU3nKt?7_i{`@VMBv`;Y*ppOM+Re3yUeUCxX94!kw@ z?7TW0jP6ipq%)zw)ojD(5AOJSIH_O92Am@%R?c$Q*G6q^3&B-~!33_`Y+@-A;X~yc z3U)}6>dwKEL{%IM2ZQ_&icl!9X2<8_jO2WjlhFeZ#d!2weG$?w|JXJ`jkvJ|s~baR zlxG1yAqOOOw6l1m5}trBa;bWN+$uFfRM{L$lf&$SCJ3Mo7BS6?>8xTT+KpX&eqd&L zjIy&vm~VwBLNT%~+nX&{sjRr1O;M-XBo9%5rnxbfHTQ@Njjy|bFFYnl8@@(fPHNWk zgRF2S=wOT*GJ;?Z?}rQU?QwVguS`(i9tm%4{tH7F_5R2`=+YKLpo)-hRI1Wwi{5X- zAgiCmL16P_jnTxZ+tRNkVmNABNS%`Adg3FcKN5h1dO@&1Hl=qfd1~jW+xz{vbu5Jg z_6cHeVZSlIN1>DFZP_Sr-`wmXbCFrb|6IWYCXnzg>^k#_fgccY6qO2MwQIA}n9e*I ze2`BQ4NTGD^g0cP(l3TjdsL{6UZYCgpXd?UKx08skgR@kIG`t%A1nGaYqzKdL~ZD5 zDrM=z5_9y=<67wtov$55Ql)b{V!E0MzA^!x#3Nl1Jha3-`;z3&>I!tRg$y zu5}!6nz9TbS8}=j+*e!9+TB?ldhT_R!!W*uHij?GytoET6A7vPxJk&r8Y>NzdtWYOqp4@}iVzNfMXxjahrQjrF_nv_aC z@yh0w_$}b_qY5krmvNVXw%}JbW$31>PZiqY1*Mbb(9=V|R41rH{$Z0d2nI^$v^XE{ zXcJkzOg?Z}aZ@G#CtrEjNCiKAcVBd3pUXjJp}sy3Z}3Ppjjq=%mr9Rpm9CjyY|=o| z0ZMLaehR;a1%$0)tpM`-D)N~G!lm;aR}1bvx!f-K>?>&H0S0r!oJ4q*W4w$Oz;k+&Y)-BKct*);F&G3lo-=>K2*`JBwO@ zqdlqLH8*PI4Gm0#dNp&7`cZ?4eNj$jqWje2ft=tuL#1ohmjK+6?a$&1N8;0UJgZzC z13d%;C@UKJMms)dIgKfj$7xjEYAy1t076)_aF%k-r|0L!yh5fDqEIORMtp`LDxA45 zKO`xc_P{pt_xRU2ePcs?m>tjeje1PH*s%cm{Y2{*b2jm?>-y$C8oTUy*cPc-MT5c0 z(I#%zL-Yn?n$VT9O$>$Pi17$w6T$rL+}RwFJ0mPEg#wO(c`itWsRtsWt}vYTf?rzv zob(w2{V`cJ&imK+e@1 zRlavwg~4;}2<(hR>3&aoKQnHmO#Jjmp5{3#%J+w#qMvJ*ek;1&_8z=Cgq=*RK`OZZ zm`2mY;Ef%!Pv`N`L7)hL3o^26x0Ei`umB03rnLw@yL>yEnV>+{X(zze=|!%Qa#9vV zs;FLA5mRnvvQDfhy%45++DJwvpE?kOco}m94&o{m;f2FJoa>>o2-KAVaJZFs_ zibxO_dti?!HPK8tU6q4Qk)L>2Tu6EIxm`Qb>l01GujqUvWoB&<-XthA^=CxZXO4;= zRQVaS6G5_@OrBG>@Reb%)N(t0!+JPwr^*eR)MxHk#MGR~O3#gB0Ti4QEr-i2a%JcT z2hCL?Ict42J(-L-G4xEjSwp1fiO#pp)SwuFpntvKqr`UuV1u&t%rJAG4KEV87WDt{ z7n4$M3XFJcD#*k`t?_x>>5QW7EjQ^{>=E=jK8=34e?fW+cOS15bqM#y<(0g=Rphg0A4^fOX;50C6UU0Y-kp>SHCCi(7PtJ5 zD*Q;&qD_EdQ|rAkml6{J$??KVL7@10IH4XG%Xpzm5IqlZr2JfIae1EvC#p^nb_6$O zsqmjdWDH;-uLNRTn|}s8A!)2q_NI6XuSJ&c@)@V^C)=4XwQ|j8CA> zl@8$#fs=uD&zYW67tWTmmOr4Pwg&$6@n=J~uzC@{(Q1}St$skzHg1DSFPahbYFWAB z*Zhz)!6IziQDBq}Ii_rEk2X{fGlp`oj2rxr3dd?FIZA1U-q-6%JH_N)NA+V3-ExTr ztRpAP9-+~?LPM6`*qPh8UwL*g;~sS1f{v{ge(EG7U`_r>;gct#Vzy30w$?le%3x<` z(Ltuyo;gxjqE!X#To}=VouROTC5NYQmd>Umw8)3Q3KPH}T=o|g^JAus78ch6u#}P< z9KYwwMH6X@YZu$B!4-L)cvFjRF^gM9{iKclMn{0;hdy+%K53|aeK7{{c5?U{{i8$`)~T{#1r(>ofUR*-r@ASU$8A z1pHAX2LuTb(1c5j%d})P%sV@K+caX+=5gI?NC{)G7B9TMc1l0^PoRU5vL^nE^%M!O z|M;WdcE|V*GKs4pTyu~KT-8?l*A8>SNd&yC&cL^Iv1!pJgo%nHk6mp={{zPRy@6CE z1*fJI6~#656sY737fO}=yt#9&*K-sSaoBc)Cx@g@4|BlaFNl`Z;kJHmIVtJ5X9GtvHJxO%zie=J4A7eGDG;tCsnM_uuv<7S6 z{x=GiL}Y;iew27?)PTCwGF2d^?~GzwB8h<#+GL4YCd_GMd0@Dtm`%P)({sb5ocU}j zC~ICGS%M z-@M^{*Vt?NQna`@7W-o!f2Z@_t9ZJezm#ejynSUQNMxw&q<(q(*L0-1z9aClNwDM4 zEBhdbU+bct4!Kt|e;1mlVeT&6KcKG?16aT&;^g*cBn;#RG-Y>N}C)QZVuvo!rOWVv6ud2=;cZdp)18q=edz{f+e4 z{BsCxg|<`Oes{J8>5-5zofTkZQ_fqqFpAg1CQAP1-E^~b^YIpi1}szt6(+GW+B_AV{H6YysV{&XC=7(1+WI?;O9$0T@Ipbn5& zipe`GF(bW^2nbcB39#le)X5;!US_5eo-1{iSV#~+Kjq82d5b-%)7az@Ml4&p#QRFH zRet6rJN5B_h4lHA&3T2iTGM<1vqi*XutmIXQEI!IpDkgrq|)aw9i0E=ajVtuCV|51 z3sP_9SAIx=o@UpoTxe;G#7o&uV7j$pLn>YrDxa1qv1ac1;|+c2+}bf-F?U?qKRD-e{CYsbHd40uF7}vA z4Qg+%Wq$c;EAKoy{QeXXmYY#H|5$ff`+gpGP4%-mn`UVpuM?J`%wP6!|iY2#*!1?Nypg&YYs(H z#<$PT_2>3AVj7DtZ`kCKyne5twY+Pg`&G7Kdb&HeN^Yk2lZk8nvsTo|G^ z$}1R!5pLLI##l$(J<gKis2mpa{ySW$9#$4U z5%O#f^O=vb!P!}uv|*SPa`Gt0J4dmM0a1rYfNeEEq#9r>kMG5*!bu`QD=R%MIVFvH zTnyb-c7-g#(WwD#z{pb1dBQ2uw$*s^zLC5*YfQrI?LD5)HJf4%){fo zU7f~ZyUB0;nR!IRVW)#dqcRa}$)#*4T}jKtLc{TN0_6AoJ%VfLYJ?HyV?awE=a_rQ zJDf3{F_|&y5!w{r6yB76Pi#(Qj%AK+&Sp+$j%Uti4r9j&_QB4_#s0X8hWT$N$pi z_lcu3auB@;-cdNsdN~v|`@52m@?6{7cBaoA*>xTA&fo0^xVxW6En-vAPj`F)&M=7F z4c}dW#3ArJD(DHb6X-G^B|m3|8rTx@RKS0pp6l+KJEs<^050E`R0u*>fVxfapBArR zOc^d`L!N3$h(pzvtvAs$Zf4iv7nJJU4qM?+f$vvu1b0dew8{hibs0RKdj(ZUChsRj z_C+5po}YMaoGWtY$Of$quW0q*KfvQvUi*a52=DYNgx+86Z}wAB9EP(eA(_lBI12;l z?ddB5y1DuPF$Tq=Wt3*X#4ejrr?qVOo$ix(CFqEgO1(twu%NLPXhJ z9w6?^YYg;#KTL?LF}@wHQL_3wzUILil>LXuJL&a%I(9Xuo7;ixPn*==ZCyRL{MtU1 za!SP$oLedp3Q0tO$J|1W%kQoLg7v+vtZ@463CfJSlRS&C=Ul6|>RL>Siu@NScIS4# zd>ItU*_pYqXXG74`vI}vMs#8KX=@QR1{{>sO6<60p;e&^@;$WK6Zx{v$cm|lNC+(T zjiMRxM>1$l3v;7(Gl8=MyQbw|G&7qo((&|Ca+5PvmWz8O+qEPN-t9; z{NZ9N(E5wPFCfg=PB7HE+tX-!aQUEFgN8L{2=C>;9;qNUVa?wU5hJ~9xMVYKxc1kh z-k;0Gjz($Fq(G`iDobqmP|kQVr@Et?vry@lQx917wXbOWH{-u2Z2#USOSfw z=F7&hyrf3AOnFB~?3)8m{44Bo#dJVsC*pX)+@y|}SGPby?Xx0OiotC6PA;na<%cJI zMLSgooJuT6E&BpfqWp#XgzNWfJw6D(?UN9K;-09C-z#KDTl5%(y-9A?Hxv;qZ7r$_ z*Bwtcf>n_`zfb({D>!%j??VW-vH&4O|9)jj#?vt&(gg$N>H$^l)_oa4aG{es>&quc zj$5oLp-Y6w?yp~ai9otj%rm`E(|WyQFWUcjw)D1r-ALxA?O#FFe3D=4(X-u(KrOc} zN}1y1%++W3-ljB+aVZ4j45;sESHoyt07^R?$(R=vNhT;t)EHwVLYzpU4*U#g64#g? z7RYs9p<*vUVh^~5o)EF|pPCT_s_&12Vy7>Y{$TW3S2>i;CkY zHtKf|`Se48|$mecbI&xLC@cXs)EOm}<11cl%W{Q)2X5z9697tpr{|?ce0co!e`vDQ(2Hfrg z)E+hI5I&zHSv9KWh+Os9Xj%x0LClpPD=nR$$XH}nJ+q!E1Z-()?QejObtd+N^$@z0 zE{u5BVpqkZYu?@MV}f{WrUEXrwj)9G$A<@-A8hyS>D!QG{SZldS6 zhX4M%?Fv~+-Moc62JXo==^#yKkeIP6QXm1YLO(Q;h4XXP641K`CGmZ1Rh8>v8_91u zy3i}mval=)todgGV8wrnafNSKGPI?XpxULb?K6bi3SNC3B-tSZM=+ormCmuti^``6 zZof1%J0H^#c>XtIS6Nk+b~&`U*Nz2l9&0)^mkj6*;eVxjbaj!L&Q0ljx|$wgz}~Ms zXprlC?oO4$Wie|dH8}HVv_UVBrC*1dV=7n!mH$vydu$+F1{%^vuQ1u@mzjbdvTDqb zQoW$6zSa0swdIbe3n+V$jsp(sW#4yq+Bu6_1zOdjWQwfuG@?^^o6UZ(M)!J+wG$E2 zKb@T84H(^DJkWZVOrT7f7?`R?Y9VVyF&aA`SIPIRnz!o9a3HxzmvbglHf&r&|Hbm^ zb+t(m01TA4h&(k&5_A5~QmpRN^$M(+AX40pC`7)q1@0cbDJH>R*t30qld5tJU*z>) zifA$*n!q!e;4NwAJZ!e-kCayMw}2xv)Md&vGUUYDPVXHe{H?Wzh=md#=FCgBeD??} z+d>vNU>?=aurNcEJY$|IWJ;wi_y)NhvQ&tRb#E3IWlF)^NIxTprK{zhy*GGz?TIOy zRS_a2%>d2eVrcr=&VZn+GeRhWXF-t@>7C)$0uv6VXWiSOf6Mv(MF)pJ;8_GX8^SNF z?h=D^i~!Sipe@R6|BH zk==?aGr3f@8%VeK0$&YxPHyiPy5#=;yZhx*-O-B@tPnTfeTK-p4&MpBW6RxY=_c%1 z`b(fD;#uZffnH9~bc*QLmt+^wq+sc)(Zgl7rE}(%s4>gZ;yMO~@tFmM@--NJ-Q<>{ zu8?!znPfmGza^CMXsQ$dB3p{_nW+j~S#Dq=XBA_M4RKhzEQ}MRjnFo?iJ&L;(W@;I zg=~uS_Rl=p?Wa%E0hn`xkP%grF5ns4E^OgyV6Vt|M-P;pQ_|K`JQl`&`O@C+k)lc1 z-dw~OHKA|GQH0letU zd(8ITTiTTJ6BanDC^FK<3_il1W(>pBaLvTn8q~$#im;sfWKa7+b)+CijWc`MVQ<9i zG>k#tg#1AEs4l`-dSv#ff97ecmp1Oc9wY$wtAJ?9k*z|*o}}4}){2a~#OfDt8dL%n-KklIw4F)nVv z=96b&QDeU|dDeMI{SnMw@^ha)1fsh#ivtxvoJ5}3Mg(7BGDlThLBi5jHW43GaaF6Y z#)(5|B)Q8br}usY*_=e#L3j)_Grs;(*Tr5`RN$b>(IPXG5H<4Dt3S@ikDBdUU`#68?#9F!T!tJ}ry48tpK`cA6ai{?M-nTGQFupF zuFgad7xiDt8&uNv2gNXgM8mA~z#*w|K72r>wye{kr4)v{0s31e1Be%IEx<_KJfmq91i}cTUQYk+*&6#W_Eo^02BAmo!x*BWiMWd#DmMjPl3& zkvWQgaKjoXeYwH?2(c{XoCRIQ?hPtth|X0`9U0S?*EE8Q8tmXv?NP54-P4%`Wb+E~ zvGj46)@p>J_?xL!%>@fzqBe%C?`Ez&eFxh7!{S=HQl&n+gz-MXe8i3``<;KE!Q69I z(oCshUJo)U?8^txyfntp0Xj$EzeTGt+uAn<UzoCM;y)~t%bwlbhalWJ}A6cd; z=Kfbjx{F^N6Y@|u{W1Uw+_&Y4jz(gaZr+duA z43(^YwWeK0MYmXJ*iwbV%6X>r{(5klvGO_G1o?g_FocEu;5Kn+bErK$1-6A|M0)BP zP>(8>R90C8Zf!e3Q%-S*6L^OYx6J~S_8MM3X|u&Ul!*WR6=x**#Lq0#e7#~c#v3aB zE5PDBTT65EsWl7OyoyEeBPI8%XzYxIJ6hBVB_lCgwB$p$(%0%xXowKR5pP0NU(W?r z-Z12w5O*bfr+D;})Rhr&=d86UY*OL&bm1HDeyg_{#i{E`5%LCizWQ{5JjC zSIH1Lt`ynyY;^lJ2pNXxtM3DL&9=8}Qj3J@VSYwSBtfWd9TW67ZQU89*LYicY%c z;HdQ1dX--7x&Y-Jc*k%b$s6ARyo+zR$QliY>=L_;S$ZhlSfyOacDYbPJ#eyw0*4+_ zU}S4)=5D8XKyQk~pcicV!G!&ApR4B6glu_TpL!af1_?!|pGvh9tMNqP0{Bgro{#6@(` zMug(P>liOU)bB2z9lH_)0g|162}Zpe{k)_&-AV>^0F)J+us>e)$5vX7wPtPnG4azv z%av$R9EK+Jlr)6eykw6@7C{4Qq$$)-CAf+3xO}Ti$`ST8T&1>sJy^jO@W^C{!T4s# zc>si5fyp8=KtlfWBt7S~f<+t_{}@y%!}j0}$6lu~YWmUr9Bm&GlFz$3gZDn~*CKX5 z{%dWHLpo)_aZub&n8d~o+4eOrmc^haPvZ)m-ncVqup7gd{6X6u!m>*u(Lm7k{B59m zhK5pn-O3qYC!^MFn;%Q*ylo>&Dbg7y#YR4RNLG;(_1*J)BWsXH@&N>V(;*91W^G|D z!ZI;`*_)C`E0YLg>CB3zO1ev5x0A|cI1}&ZS2To?TpWF6#cm`YhzgHJNHGc=xy$R`rhYrlo@9^=IJqAtasBExbAq5=y&-PNm&9s4rxv?tI=bvlx zTF#QQ?O}KGNx+c+p7ML_~-w=x@GlYB$x-)GRMEgzfaBn@5+#+hZhJUx{bSV@D7Ik> z%mbyFf)T0K+(QWgMaqjJ2|~n6Di|)spNIqn4BmgEh)r1lAK9WTS|!`rxPa+WQlhfwsY~zXkf>UvNM6-wVrAN> zN`tsVJV`Z^Rtfq?lsnq@S1_rZqXl$Y>G53L&FQev6h6@`1Kit5LcPvFeTYCPUAqwP z)Eb$Gbr~~)7ws~7D~$` zQ@Tjq{PvHzMZ7>+IRRNoL5!>%=Fv(lR#&FRm)Oz8os%Z7xKYjOT>o%!wm=0~M^*Y9 zf?7mjSVD1DhUH$BTQ1j#tc5FZy;3c0{ElVv!Q;m}i2iG>I-dIatOC6{4=zJDGf%Ff zu|jnXp;B}3PnqLl<-YK=F|ulA_~TnT%5 zvNp9;0+ouDiK;tiNy0c~hq}(MZmX15P72|Y8LgCQ`T6RJZ;x0rwcWNGcq)d{Pzo|~ z-sk=06XNEQbuW(}=ZUgd5BYvC<2`|;)9T0xt;sF?Q8?$b!w~HZB9c=$k`XepbU4^2 zFNSw(2tXKw70jW>prd9tHwTsF1m>D*+c`dVbx`8NH9(Lt^lwImfo{W65Ei0){g%@- zs^^nlR|%v9WU<8*V-jZ(TBo%xL?gEB2=~EEOcu<+9+%{m6dsK&16MjErR(Ryl&)F7 z#C)Fj$4nZhBnafL$@pr>rBV_i{lJEP8R(LZdD~VDsnt^eG7#J}+w>e9yF?Ps{8I+^ zz**y3e?;w!K5`U4i$VXf^@X2ta(2oB&5#W*+{saJnoC3tC-$hW1)ulZzjg^JZd2Ee z7Y%T%`r9bx^bV-Dj=Y`Yy~Txnez`W~ih0VEt<0XDt1EtHcdZ6~e`cy#Xv%~=lqAIVL1$Xw0WPs)d#eZY1Q+ta*kMs&5R{@wFDD=e!n?i_z#<2 zh@fNtjNV(FQI!~Nf%&ON?5Mxi5kOp?-NMNR{-KV(V@DT+AMHVVUzCOL&e*Z&gDJ%_G6*EdgB^~Cn~=2f z8q3)}-dZ-&HnnBVvm0k;I9s6T#m|c-RfwT`vP`1FDMuxR4}n`SP3zj$OPbM&)@<4Z z*jU&FIk!_LT`7&UA>9csckm`L&at@1;RuKHq! zPLJsjhc~tRBw7bP>N6Qb*p!~21Wes#+dCve3IN!gAFeyQ+aF}+6==^bjd%slc|t|5 zLc5Q+9D{#jI4{HhdI#PMA&_n3o`x5PuCJ9d)0?K>A|DHG9^nhK{`bBn7EoExsymR4 za$4{NvFG#wG}2tQ{SDfQ!t}OBjv)mCyb$NAm-E!bsyB+YlJ_m`99Cjc_bW<$$He_m zd~Ca5BjykIYJ`ZlebN@7dZtLQa4k~SovgQWVBx9qA|~RYE!XhM7~g0}7I`6J{tX9Z z>ix~$y+PEOqER2N)6iT?UPwAq3RX&yQOQlw4~2e^sD1H!OJfegK9By2+<(=>p%6+m#DhMnI$0iKhn&S_%X z(5jVf#@OduwKkFsoaU7sMY5IyGq76 zBo8;}aL-6+-e&@zY*w`!4~A>-|55f%O@f8nwr$$BZQHhO+qP|2+O|71rvkb z0bws{1%vm#gzgUF<_=V1^Kku;H#F5Y#IXbpE2($7fewaJwX8tN_k+N=`#o-S?zqq3 z@DD!xeDnZ^mg7(rG&Xh(D1nI;bDEr;aW7o+H=A4VY7f9ONvDew&DMN_>piSrqcL%O zq+MyY+`K%Ttzf$SLYZg-Qd>`~*<8xh->%wBcc7GJzUfB<0=(Wazn<-m-L|lDZTtbe z{DI%Fn9vQ1^?TXReO}!C@N_?@*M*t+h9%ofjdSszflR40DLyG4R^8N?uFc5AQq#Dk zH4vTN>~w>b;H}h~uHte@o0Z>UD+@?$8b~ut|dbdVGTB&}g*oPj6$6_^bbYuRQ^bGB!MN{ToHuZ0sR#FR*wexk;wRA= z*@5A74AdqHnQ_??_ot?NnS;F6fV?U4AuG}on1Pm3g*;`0It_H_@y{Jy-gEfN!VxO; z>(l!fP}G0!z>yORw-1B>_6yBO5Axr{Ssecn>HYuV!vEQXX;f{FF(nYV5Bv;^3IL!O z1VsE_h?C<#js^a=K*+|-@jpm3RufW3S$)MH@Bs-`(NoMaw>#cyc?Gma?NUiwKvb|E z)j=J>WEV)1z!1`VO>gbhcQ?go7`L?$qk2)SszuJ4-SKa8^L5OO=e23i?kf<53s=r9 zG~@k_dz$m?1OKT%F~QUn#6QZIULO`kBlEUBH&WOC9YdgRZ*XR2kM{nQxY&?3gEpN*F@z*#vv)AS-A$^u~ zh%6)^T|$P?45=wX90V;Lii~G>d`A4_`ts}$yA(!6jJ`>;Fq;9Jna2#q9z5fXC6g^+3u8Dj;g4Vx>4;}E?#}u} z&)T}<_ehN$wr#RiNpqfz-SuJB6BLZ%+E=GlUUTcjQGp&I$Zw%%bC(3e5YBT?ltW&YIvAi5p^PWcQHYK=2(29Kt_~_rCBO5}*hHq6i3bfd~eo z+!!P&qG)-fMZa+pZ)sQaTN?4c#osJUMCq^iz1(rDB&sCq(%Mq?DViyq={RW7f!0vP z0qbI5PfZqW70M5xD;ho~!vWc|_) z`EH(Rn~fJsaavm%Vw!lxTP3E8x2LpHaJkvE>Qt7gHIBoLsWdaS>94Y7wkmr4wfmr- zQ1J!#lHJAerjwb4nU6Ek`REq|^Ztw9f>S*uNUgmb@w+(6GTXG|5>)b|0vuZsZ1KZ! zotis|Mlp1u@ZrXuahO~l74jvDbs5^E@@2ANY2mDOswZg8?Xed3at;5|eS9GeNwz7( zkE*qVIkA?^_t0u9vrWt{I5)|9)OYkZ35$Z|&ddFpso*m-@bS3I}GjUjQ^B}XL+R; zwA!#9y_P(=Vr74<{bc#teJ9Hkq0e^HoGa8fSU_Tun+pqLty7Wt2+u{`;oiIMsH>t6 z^Ya^iVi$ju%d-&-1#nr3X-|RbnNVE`Lnw@F-zcOQ?KqGJP#KvJlOlOYvv zlhSlb5VRfS?rMseYMIy+vr1(}8|NZ4U~`g{RIp}~hpR4t&K)#uViFaHLq)};jj4^O zr5_$2pcSmWolQA)b<(pHMuyUs#c)ftwWzDG(l?@7KCCG1dD}|B3-s=S0UuyXb#Ou? z3?>@!^*1gNagieWB$oJRQXNg!F#6Ce?G$mQW?C4G)Wy9g!Vd zV7^`GXN5?5hB7|8*ovyM8aGJ6o5$J%mcuUgo_x7WZT$0%g_s}L-?~Z|hL%$njdtVW zT32!uTO$Rhlt=PrDo4br>`vYkK3YFwds>Uz4+Xs)Gs>iP{#Wvc!iyO_a4S8^_fa`3Z;dhaM>j0tdoZ| z7plD+&9E(Xt#Yyl#O*I5D<Xr-5`P*m*s;&50>e-w-9*94NlnfSV_ICF@@Q{kweY{D!;-GYOf@3!0)4Yj2RyI`yJZ$T z{gk0^vjiB@uizVxpOc}x?4Ec*YS`H)$tZSN+^qi z4}6>XpE1uc&t#ZG#b=Rt<-PL4QwazAZXSg{K)bAiQp}j@+X!`VP!e;=lEzj=R9t)= z6Q$oRK4pv1w^;{R>1ob8C<4{h1%SSRhIHo*OM@!&7f0e)2eLyl-v+W)?+t>=uZ5Kv zDF01ZacwPx}w}av9@Vov9 z@3y-cc@!wd<9SZy!I)ynX1QWk=ylZOO%zmw)yBu@6RSu7t__t)r+hFo_5>-f6NDGf z8}=gRLFSRH1ZQ$juwr|tpC|Vqz({qm0K!D?|IAbby%x@#V+?hGk<5sB%T=4zdw+tG zS=CnB&z>#k7AZ3+SDvpOyB=rSSb4c(Z-B`rzO-7iBWV4KFyE7eK0Ty_S&pUk%LPZO z=ko1^v<+BC(h=UFx&7Va^7Rw=ahi9C8(SIl>pq4I?gYeogSSE~1MwcWE%WQ-dh(nc z-;rMEq`uvgT>FY;Uv10X_+Et&*{+Y>c&M#$=^s4qGS}p5dj-}46(_Bw%YBL9GP!kX zy!F}5=-p}m>rSp5x0}Yn(NQCmd`UIR7yR?E+{@c`)Roc@kh6NLhwi|bT~a(5--_oa zWA(Kb5Fl(r3EcaqBz%nyjGpNd$_N?ZCsqdHAkXy?Ep*hxll^zfB8A{k`z{*L>|Sku zo+5WqD%a9&Bb^Q&)-q_MJ#!jEyyRHcLQFIXdU-tPc2K*#80~Ko=s)yq&!r(C7lK}wjFks?<#q*T71-AtK z-DR0grG==7lk2Hoh`!A{fQHXYs899bQJeoD5-_*o&klqRp(+bouOG;nLo7w6s+-#B z2`YNwOlt1Mq^H0DXjLm2nvxq8pe?hR784AJrv-Y9X%xe|12($0wS zRuMyPL*n1zdbAblw9XAtZC+MrH5 z5Bn;IFM1MtnA<&;3Ta3=5J6f4}ui;tk6 zA2iuMDKU%b+6rN5BG^))w4oHYuA!{{_P`Q`mnzutPWkT77BI@ zM{Idh-0a*E6mh7KU9o!y8BxZ13@_4G(%@f1dXqnrWog2eW<70;k~3Bot%f-aD%ujb zn~`BGg?kiiAq5XHPDS&w74c##adVMUFa8nR&WF$`rahh&2gzRxOG+KpUG-fFqcaMCdr_g&8}I2sO2 zxR5i#m;(Wg6V+xN-7KdNgU9TVesvj!UHNi9kOm52axDjYx6mztzd`6Ko46kK=F9`o_&|U>q(DahX?URBBB4e{?;AQC8~{&0&^W?yqDbhj!iKKLXc>vDFuQg1 z+}Q#pIY#|H16=~X+m28!=r1X{rFU(rQv+Nu_ie&EC<3#~f@YNYYmt zUzft$*d8ScN%2>k2{M6M7wX3>{X@{>`AevOb<43=kI)T*DL*bgitEOJrcoPCI%30o z#X}BbV4Gk4ljE-(zsWS|>z`+?^}A%>HO_x}n0$;u49@+-61Pc;TG2jV(q-?{jIRg4 zd@e5@0C>KuU@9qS7y6f>hK&dYzfY|VLZ0hcYt_!gf4@bWcspBNd(6E0)x+sMWLAU0 z^7lKS>Ffk~c#=+8W4LA32Cv5~sa*948L_ z;EN7Q^hX}^*)UEM%1zWha=RW@@L9CjMBZfXxJr{vK(xdYiZ|aZqDi>K5R&OvtmlZ>F@e79hW8E+pI>C z;XN;oZ$I$+O^WAKD>BbMHYQT%qfsXxSF>TtVEZt9>J$li&NYeO=YBPWFdz7^^y+K9 zWSdjeE9_S-&)avH*$s?_4-$M(GL#EzaJ%&zuzK_ri-$u>^XYD{OYm6Onth#*Pn6^I zsW1>ip(~=)uG1=4OSs{?K1*%n?Is0}mJ|JGsyZB!b_Pyn|=9heKN!^Sox@vhz4n^QV zhYeFyF1e-={q8_#)UeQ8em%e#E8-06u0YFS(7_7dSRjq+C#Gyzu!X{z5HH81S%lQC z{3R+UYQS}a8`@tJsWc4ksH~LQP{4B;G^$^Hjkd08YMPAAfR+L4vk9Q@rJ>(iyHo$? zb(I5l&6LmFBo&~;A0p#+AMx-e@TmCe?0h{NOo_Dgl+n`4WYelFS7T*gR%?F!(ANnl z`Pwzfbt4JP_%;^V2Jes859EYzrpD1-<$iy}=5CayY&!)7M$EdA&+KBOV0) zvHzf=v&C^Q8_!QpCK%Cs%J$U{Ko4W#9t~~Y=0KWF`&2v3=vYbT0})%*9l5mP){v@P z?+D1RF2^`ZJkBgG-Zh$KXH0;p8gV>Vbss-%<*d@jH-3C|0BgT9{>^Ib;o#$#nr-3_ z;q{tC4!(s+g&hzX6a+?P^D%TX*6%guzVNPlUJyN}{fw`N$g|%017cbd!xY9xNUSE>I>>{d(IvvDMzrPQ&x5I&uM# z-+_LxE{VO+YG-1i^H_)9d`mPrS%t@gvt|g6&k;<(9)M8+Lth}a#Ov-?m_(2xtEl)s z#oOldQ<35A+Hk)ZoGmfnyJc(XL*CWtUZ`Vjn4r+G)Y5bUsAAw0%_{v9#&U0@=y?}VJTyyJycK)LaD!!shRW^+`x?XeU0VrFQn9nTLITn| zj&~t4cPE}35j_?PHawl1d$3|Bat*z*+_3y~Hk}QsXH62ccF~K_UrAwCs5b}Ec{^aI zOn10mhwU+dLC~D25nyi&xP{gdcQ}GPGS`#?g6Ky9LvwtNpu5?O+b>2;LsW$NMFwjFyC{7#avGv(;^q8R5rTKWd=`@kz!m8} zBSJ>}Odxhn<%rgfJOk-1?x(2KXm#?>vgj92?V(UUH66(T=BaY=oQ9 z+Jr4XCW|j2z~^Pg}NP4=OF6t8hu1WyrqcgN|dsPWsIZT{9YZ@3(Qbgpj*f zvP`mCva%*nsk-RTrVc*7iqH$?oU{g`HZidqkw#3#I`yz{VK|NQ~z0YBYY5MKV#!RuUk9)2cj1M42>(9)Gld2%4B z5_{W+;JU^aE;AcL+qZ60$0(VYi1-7x(!?5(CA4zd)Qmd2)~^ZNHCu;oW&*B#Iv`^c zG<^cE|6~8JE9^+xqbW}SN^Yz`BuL+J0C}~>IVkcDYKobs$Mx}}%7d?Q56T~@kFcB4 zXVm!E+;4kFa2_%0PRrC=FfdNE-KJ43r{QP%TSiJtNvoQrLrQt)ZK-b&2-?O~$KinE z>zgBw6HOvtUS(QMOss*C5hAbOKb-k+!?$p*>#y5TM#8nHXO~k<@3s7~#iJ)Z5=cYX zZ+)&ohQ>e*eV{98J1I$~#R(mAUSFpCf;@{1mr_O@bI*g7^W*e%=S8D4vyFS{k0f8ueAp^<)0I|i8 zxBu-U|8Xbuzunp}u`~XUYI;-k|4$$bkbyY8FoCeiuc&t{>k*PB@R!J9bwk;<^`b#3wwboVu5+V9t<~K2wk?g< z+#CpElgyc{-TmkD_xJn9zQ6RgDe`FE^>P*aDaWU(C9J1iD%C6i#q%q_QPS2gpc5pN*QWsnRr6 zQifs{OoiCv7K2%nn6=pgY$=J@8*7CNRj6i(iPE!FN@RnDij2!t>GTv;@XkQ>;z-q# z87eZ?1cO;h)Vv1G$ngGts)}oRe=(dqg3Z)^ha$0aTN|Cr@+CG~c&&Dm&vBS6^&pKJ zbdmuBqg0A$!E(l+ANb`E0x}kC#3-e!dD z0GqLPgN97tupyRAG^w#=4^Zk(Gqb45cfHJ2OUR$DTjE#ETjvq?Qu@wBOtv_B&CAlXXizg_;hzp)kAWqyEZpjXayPJ@E(dy$3$%*0SpBjBsn*(UtTtnL89f7MgsSEuV0I@{;(+g-qy3d$ zadH>V#~hSr&aZh45qd1fKi1eQwR66k@L>^)_^^IX_eE!E0)3a3@RbXsU22s4$?845 zDEU?Jg~h0zx6368X4+m>Zjx$>bg*?l>{1=A#ZwzXoK~0E=K;fZYgBkh=?9Pudc$k{gE@N=uKfhT)Pmf_uv-B2p7@D8y%L+1e8*`P%P34OEVV%d76{ojIDZtMbnF5FofWYZVrrecvQ^s6bVpVva|6#&}9>CrJ#rmlgk_<-@N zjzvi4VY(#K6bcFxX15SX%EpOUzE`$(XUeDi|zc*VV9SeR@DIBFeSci_cvFO-Yx%pYKyOMs~;v%)WKh{vOVLR_n z#Ju@QR<=ar3D>vQ&lI1==x6&d9ZvS-X3}5JNqUK=KByb9CYb0H|@Hjq~~O)U)T^L#!=9*dxVS zNcB?k5Wy3A9mYTCawke~I44-y0U2{AzpE7PR0n(h*_T7Uwt|E<3rRQi0UGEL)O-WA zu2H&nMQS0oQl~1ByBe(SHrxo+n9Pfa^PxZXS&b};5U}2#_w(|o9D}9~q=d=EEr5b;N~WcFZ9_E3XGT*KMdby+gQwPAzw5z|@_Lk*3FKKE*aO?`h`_eBV$3;wk~ zV4D*`W#toPvlR*`lgHM1RB^Oyr`+_#hu`RSu%oaf@rUwzV*Z{VDC0*T0Cry=un#%x#-~_T|R)&x*%Fv>lJngJNV(&*&cg!xTTd_z99+b zewB9i*4@nA$O2$Su&iXJp;X%$TmQ2OH|Z9c?c&_r*6?#!CG**-&|)>q&pe9H!o_bq z28X-cn;LVk2=M;g(tby?4Qp4M3Dnw|Ia4PmJK$r1C^a`Nv%HJKJ6VeDKgPWdI%M0_ zAZiw%w-pCQ-({i0!^5OzwEz^$l65geatAu!TiJW;lYNcRa$X0D5-k-*B@w#+L6H#Y7K?EbNl*uCjiN`JKV+BY|Via;9@V{ zx@$wv+jkFZ9(1^2cz-LlLr$}l0y$cgwQ+0L5)r!v~2jCz2SM)B+>dZ#ai$VL6wvFuv?VaH{FE^#UX^6d7EARLDgoAPlz4{=hR54bU;P zYi$0@vg{TRK;s^bZRa#dX*V9eN~d4dvEnnGwmO)0e7ZdPq7u|bJhDLAENz9ao?^|# z2Z6`oclGt1Dd7t#L0LQHsvyoOjtqM&f_tfw<;oDlU{tku@Za(HO8qZ3a8nE8HkPJNXP->89dEuagj>kc#o z!lj6XwXMZw z0vP-GK;@!>W6ic$u#-Gtb)}mk!0yqQpAw{)xGG$8Cg}N=U65SW?Hi8O z3D`cUqcyt{$-D8n79@kdBG6~=0*==${_;Tcdz5~5&^D$?kGAZAQke-{Rh)vH4zY?K z<<1O;`DE>!2Dpc{C@Fw9(-p6>({^1vJ)#mlT-70bZ$MO3A8?FCu@lwKxikU<<()`^X1Tp|d zEr{@cA!^S5xUl-)5;Z#m#s%~!1UD0Zu zL7ssEVuCk>$N(omHZ+GLGyxcZVS+daa8|9XXok|V_Lc+RTMZ8`m`yV=zBx`jJ8 zz+3k1_ZpA=2D+xH>0R^cn|tcJgUYcs_6H+;5VP0tP)x98Z$0#J1?rG_5lMKpg+ZQ4 zettgy5JT88{S0v`nZfKrLYV{Hr-P1WUw@x?uJNwE=k5>uQu*zV_b1RUI?zuX-J{FLa*%oAc~PgKNP}~LLM$MJ)Zt* z2jG9VOD3eD=0!HZBY7ivLuEzD4w@M-{{wIw8#*@lta#c!G{fkI(|Xdi$2FxZ&?`|J z%op=3(<@XP&=;x}ByU*l*qVO5(G|nX2G}(*8|D_!%_!T!7GuUWI2-a7?9Jd|BgZvC z8a(N~#0C`_Sm{xwdKwz+$$qB>9+?PK10tCq$-%X+`uLQ!358Oz#x(!qr}#C71CzCn zdU~-NY)`|Z-aB+hba$}UsL%Iu&?35fw+FlUl{mtYr5Ih7myfl)L4CMhuA6a3Rm4pq zEqv@}jny~a!&{jI5xO`Rksfqb`U%$ijL3Fmd0C&l-k7{kj_0<^NLBeKc`R;8&hzkb zAR`b(;itsOvH094p62_CM}oKm#jO1(2(Gty0%p-ELmJz!QXMYzWJXty@Z_0s^!anA zfNXdy2TeHL!m{EGB|=$42gp?pSoNa?G2W7e%OxqHIf2hL z!5^`XSfRr`IKIrGQ29aZQY9WC^bq$ToUu;K5tqTT_mzbX7Qsj^XJG&b!BE6-4w>QwZ!0AkE@HOR<%N(;8alk8ouqSqzJv}mPGD`dLFQ>%DY zj*3dQSyJ-A)PV{gmJ83JO`NiB%z!s?hpS~dc^jGt3YdXo-$sIDFyh&#{*NB{&q6zf z*L}?&Mp<`1?l!lQA8U9;dbdgyr&tYeCIs>d18ppN*+y<>=7vL;i*_~f;3}p4lna*< zFx>p(IH|%Jb-!9f6|=0x+SCm<=2w=n8kkS%oXnSk=eh0K!!t_P*hVdLkh8(*hD z!E7;K6W`Al(1m?kS~un4VXx*Wgr)K-pX*v?^%mCa%odD$vm=fnGUByf?#Ghtp=|lQ z(CGXRF%jzq|}d#{f=!g?CVo*-18*)ss?=ODbqWRk=>^B?vx)Ot0r?ssEoXA&uB-2*~3tv zYFY0Qoe;4a-P-qN=tKPB#GmnOB({Kv(!qB+XIa3i-^jO&pRadWP8O#3F3M@sI~LEt z(UbEQbgilzmDQ>|-pxhBvM!KSsCIKF*EVi>oN&K9<7(G@ux06@A_` z3^uY;>2sNJg9N*#$;9B#=E z>YCj>?$xL#PWE-ZyH^}~+b5jH=PdVBUB|2_|5D|cM_<9RI-tZ}+(>K+M#dF!V|Jz2J^yBgz&u9p%DxQW(rA(HZ+?;~T?$pyi~toJ zx&dMd2PIE+36I~id1@c9QtTzm=#~$W*;cCgqze8=vA(0~M0`;qB!w+tNZQPT2My3J z(CdynN1T%HHs7(fA|SBjea#L+BvS#3orWqZ_)Q_0qxREP<5F_6(lfQ=)|XcHmq7GI z)L&ed(nt|dCOAkqGM0&Kc(&XNf};71L=ydwIO%X@A%Y%ZyICqZt_0+S%16^@Eg6k1)lsEX#EYL+2m+xGBr>zziAFtBRd=P#~V)Joe=FFu&r0yNLEZTktE;Hg4E^L-7h2}apG2LDh4m?B`7zGe%DDqke)Tg=;yAr2`yi> zazzcc;i8@IKz;jMkkUQA9mdx;PvJOo5n4Ey7}U@mN}Khw<08K+6@0qd6aOJQkC!>RxltS1UVZQ2a$8u+5%>-$Iy z5p>s1aJr*jp8_gFt8&M`<7e*Wl`V$^FV`>2QQW>W60Tf`RVyKBZdtLaNNcCCAO@^x zlE&sio63Yo^CwnmMFal|NbWLVwS(lZL871_wlqY8{PC;zg!OekHr=76v*OALDTMZMtZZ&4!E7_@dmv52V%w=FQ(Hwz zKv}r*^LC?_)`U=@ntB24v9g2`mXSm&;G`*lS5~!ICF+Oango1LN_)rl zvbx;53g(Av_sgC6$DT=aGK|CeoSYOIzPkKlz&7cZRW?#H(KUPm-cQW$a9p z)5euuL17P76+i5ITBQ4{yUo_0gtFuYv9l6>g)2O|C?5fS69EVY*_RD3?trF_nE}}Z zX}2}#hu6`<(WP^hWLff6YSN*dmZimAyzqGSU{>M z%k~Wlm9PfUG>pX2Dik=&aI=W!0aoAE+p1fuwk@BL(BSb`={>Nqa;qA{w9jm5t6)1- z+~;*<)Z3zsM#7Gkkj*HhdtR!MYBE~ zjie+TGLi|8&uNCQ_q%S*b{6XHZHxF*qpcKdW;Z0z@EMgM$=fGRD@cH*s&aBY9EO)! zlE2S`;j5otd*~;oU61=GLK7Rf8{6pm0-_e~Nw0Um&_DKD7e%(FBDaCHH54|eSZTcV zpw=0)fVHeSmUhHd-=gneY{5_$nosmR6&!Z=RE-+K+LY1jS8uSt*!(OjeTeLS?YiSP zP&1}}?>V;TK`~*V8{WQ`pEG{Qs2E_ZB`WYJVB?i0jct7sg;&14HGltjc)Kss!8>&B z^cXhlb*-7aWO+0ywKM{%I{s0TI#M6Ep3$sZdX3nCAG(>=?nJ~{qfJIBza5ZH`Wegk z#U`Mp-eL`gS~2^QY08U$8hb8z9~yDCH1D+!@B7Z8r+RppUP0qn5o0l3 zt1H}4_$^uo;wgP*$VQ5JR>Zim$uN2H8$5gtA2Ww50me!az0BMu_C!H}u zw|>f=J@~94vt*WJ&-$VT2pbIfF#g;Ab7g{z9_yJ9Dedo{s?b*nCNU;fkl4R=cXQ_Y z(zxx6y{mkcni05DTvQdoWgc4xuA*Dn?iP0@Z4tGbmz|Xg`{gwriNVAuU7f7>Oo|j8 zM>7`5MQa2@?VrDjs9981vmcU0Lu9&hd_yRs_})%}NtGbXD^hl#{!s__SzJPxGSJO@o?~Yk+j^u_sD5@G zDmr!_9t&pPyEr}1uf)^#lBpd`X5gs9as_;q0CTHGI*-0A%A0D6Yn)UoYIb27i9ET0wXCmoOHfUlvO6EY<9F>e!|YRxXK8QYJ@bd6(g9m)wtO4epQ5Aw za=vooEPQ60qu<7sS5%hN951NClh@i0kT4!hK=S}rGrj{F5n}xvS{`S>xGyB9olceJ z>pg(C5xsA5)bRCXwuqh*9W;X4@InLH3SmBt6eQNT2XHT6lqt>3Hq zoBk3BkOGtIc;Bd&~1_~yR$6{qE}X_w|m}EIHYC?*cvZr*^+&h zuX|!`s7?W`Q>KrIaJ~fWa5+MZX9H-n8*#J*1wRKTW{v%54hrz6hGI>RHby7+bridj z-9T~2*KL`yQPIg#DbstZimfedJ#RdLr8J^hb8aj^6j9O7PD1BOYIz}L1~6R!LOJ~8 zOV8o`_I9vOFN4_L2=_@4c9-FsYpC%?Mg!?py_kiPTWk^sYVfu#NGVdi68V$VY(c^n zgmEV@k5VA)uz%psX`d%5FLPM&sLz5P9XUP=VuP-D<(k;rfb$G&8J#oiYZx?fL~54k zW#-7LVhJ#>N2J#~2H3<_ z3do^h+vZ9+x1RzXbJPTkXzhpBNAZ z<1C3PNs&4@W{0{ITvESn@kh&7V>bMXty-A@r3S~E-rRzRA01Xk)I%I}`;PgVWH_Pw z%JzS3Zc#7UJgedEGgS35rr{)qpJsreG7*i{x26OCyKYCQ6E-0eo1AI|m=l0z9YIv~ zcf{O1bvaj%2#Yd7*A`S&G_{f|jkMA>yBvYIjw3uXx?HT}E_Sc})y@nn_!fK(U72qtqyO4fhg? z$OKB}g<^rkM1@4zN~1FYIMW7|x33U+-Lw)3+8tJKKFy7lr__pTB#!wtpAQhk21S=% zr76x~9~?LSuOFEneND3ymCqm`E-p(H`tiW7f z(-}U~jK-e+i-*nr=Z)E_nFL>5N=I%ze@Mp)l3J$l8H0k8f{ymr%9diDSTa1V_J67c z(M7fBjLL_3R+fGBRWsZroGH)y6}}d%{?nbH`Bu2*$*#SoLvlMkQX(jO2D4OovzHO} zeI>u#1NAES9H6EXq~?R zqPJ>XDX_w1ey}}$m)O6G6)Beh8}u49g{Y)`Zu()i0$hQ+dtLXE z5ChfnS%ZQtKz`G+ruD+gs>}~aw*QK+)1?*N_%Oy!28)dF&MhA!*D_uZX5?y3t z6+cA$w?A$gQ+H6Et2eXiTRy-L;yhk81Y)o3o56u0o+VXJ!R;p(m!Qp2|Z ztem!0a^G-Vl4VK7Dj5r%w~T|apw5<<;$E8q#>4h;lw!dz!G9Q#DdD`^(r-h5?izir ze(1lWUYoC}AoG0;6ezg-HOpBCm?-`$A%7(=%F~TgjSPvLIL^CK8-^v`#4C`JS2%q< z`pr(JNj6I;=HKXL* zC9)#F0fa+Zw`4tJO+h0WHtLZTlnaucD*sRUA{^4 ze*eQ@oxy6FaNiVbd9qi%Y9l>y=v2Z|i+VC{!>Xcy;7x7 ztPY=o%0wsaYAxPbjHC<_^rL{bTnBYdb|aW0lF+-|-ws~23#~mJW$bmejI;u3TBeKg zU<=Y7Wmg4CQdFw4Q2|x&Db|(16<&RUP49f)*Xc0i+7`8ht(5|60>V>Vj>gOR{)z81 z@rd*n2*l$h8ITan0T|5<6JuE0xX_BO)Q<4=+?R4@E}3m1b-4Uzf0faaYEK>b&^xG| zr}}xp|5Mpn1;qhnX&6bMae_Mpmqr@*;F5;M-QAraK?1>oI|O&9aY=BO;56QN2<|R{ zY-XQkc4v2M-|oY$dtOfcb?eCYCvDpK2M`XNoPZ2QwNZhvIum%+a?#_-cJAV^ur;$9qTJOiduwcP1OV~nkL`~n!o$1_$ zy>8f9h|8_pSCns|XA6(+DDh#&gr`K73F;-VWEHE29qZ=rm2HLFMS)a1{dF48^D_I5 zjAoI>#VEe+luk5StUBLQF41MzJ>6#}mr2dLOB;Ii)yztS*CLL{6>H_ouvHOLGrW#G zUZEyyaL+bq@H95~_}$VwroRdE((`DZ*!BAS@smeJ`gPjT5-qS6s@9U|I-o3A|1`s7 znczp>HRwgDlfmFG=zKIBJp*jQCCm@em>Peif`mky5h=ZP!1QkdT&VUn#R{DT0v3B_ zTyH+zQ7yLtWH5hMp-P8O`JngL5igfjm?eh&8rLT`JZ<^<&2)T(MDpHN*x%7rX=911 zmgTxG^G8n0`S}=Q)x`LV9q55_>*v?Z$nMKOIAKfLCjYL1_fH^$|D`$jFYf05Kxctk z7XSSAJL~R`@9GpmKoIOh`*#2ap?{j{`~S8FLEM7;;^OEYp6*s=PUt=>VVVxA_&NmZ zVV1H=^$gr;Mys9MMPB+yg-{E55%DO^9~LqMD{k+R^%Rscn@7WO0k~9*W@n6uDLP1m zvJ|g)ouJTs!mp6w8U3+%@zRqe`;+@3P7$XQBkLSH0Sjta#^m*H!MjQCsqcFt8}T^9 zf5*XxFH(MgHb1rM{NSWL#6M}iG6xqvw%fud^o>sn}<$FQc z?XbNwpLq`^oA0diXNlEKE3MSw?C0vRa0BAJ3*}O7bJwVaRmUK{nP7F4qzJcA{7O{B z6|~m-(`}+#&Y91Z@EC&Z@JqRa%^*FsIZ(vA$BIXb+&3X7wfXcycOB4jAd%ZOJ1%r$ zjX!OGMWcd>{+GPy!CH=1y;Yt6neUKYE2s*I!I9K;NiU016D~N6_*5jUYRt|ifX(6v>rYQF^c_I|n?&0arj#DW}&Q;g3Zdrfy0^aKeDMdncIke*r zKpq{mDR{5s2Iw`+#Qo7;0#-dcP?hNwi3Aw}#Pq~dt6$IFJXELTl4tp|Lx@|XjMnl z^3A}kGkv`;b=0mQZbi1KNwPjxE$}PGP4u<`jn*-h_G8h2>8m)o)nM&XpY-l;ymEgX z&s8erBXi$K?py5;-et6fY8F%&+ZIyDteG4s5N+$?VpE!TNoaqlW1A+WP2N50`Rnd2 zYoYPY6DtwyJihS)l3ni8I0~5zxyHDu)rD$)cp6Ovh|YQE90(&z=j>!;HpI;7S z34_z?GjociLdHy9c=kVy@ZS3PeZ3+MAzsh8HOa@`NQVZy;Z8guqgDv@Eqc>h`NuY?TMksU_@Ib7b4B=vDo1nW;)9-{b|n z7GR@=ebBgybYY;o6==G1J~4u-wM9s=NS_ zQhv&hqn81C&e+9JW`ZNRb}&f7FXYBFVb~2yoE8m_%fsQHVqf(YaIvG9G0{Jfn;~yt zJ9J)OU5Ynv60XoJPvc0h75eORiFvJ>eizL#rTP^ACtFIWRh2)=BB|JbS|;&bl)oB< zm{>Gkku6K#&l2kCQi8DDEaF$K={2_HrdP}!l4bj5!au5zCpF(e_JBI7}q% z@hbSos}mM$Qu3BG1N+=>hk$*I@`ozzoyOf$Dt^y_wdvQd0}$V>Ew64}BxpZBZnrRA z3=9j*xHoOyDC*Q~v{!Z{tf!lp`X{O+{PR&=ct}nYLov?!2fBc`F|F0kib7nse@?{f;9HhKt6<+#X$2lvC5!)rwQa++M@ei4#Ht;^pI%vvc?GqycgN_2vAZ zBl2>A{zbkg3>-Az3PjIc-BKGUX9Ql|)CMf}ih$4wWFqdYaog)&&}ScF#~<1aqum=G z?FHjpn=2$*AKj?;a-G-GUZtafzd^o9Y~dBC-pknM0dkq6E0vmBBY7j|ITFP$ zvKijfXOjjaqV2^okuBoIk}YOt3`j)vaw7L)e+DWxlhM);*#mjeA|6zkFTjPo{K51E z8DNUcCX2|%NUlstD_S7tHSL?Yg8}K7M(&HcSvE8S8QP3#O9IwheN*mMl-+t6bh3U1 z|1Ao_m_!IlddcjLNW}1L!QTZ?OIJjlSgmt(qqNl|;Y5g;a6*EyTDmep2p35uN!^9# ziPE-Fq2Mq=I5t&2Qp&22COs?FWd>6C=i|9@+b?18_XsZ7_^I^dg6D}65tb}yO+wqn z#WrZ+EQ6!Ql?fIiObM86mx3^ zQ>sG>?cR+2Gxo19L5z1o3gx2=HDB~|SvS+9mV|cf$oF@9!P^ zwl)De!XTvjzE8+WG;+*Xjsvd6QmVlgYmQfhT4jB%hp%x^Siec zoeQx}b4%J$d%F-sm9}FZBOz0VKtJa(FwMGMSTJAwh5?9a`krvyRkf#{x6Zt;tyeh6 z9$PerkqQB@N2*28)0BWw>5HZyDJ=Ut>}EZP10glEU=g1fGcgfh8|h1+B{xpDLMrbN zRw()EEj-eu$zG79M~a3K??!?dk`0n+tZSfvBIyI0UTkmB`ZDkbU)jCAMbnr4y#Ld- zyogcdD1(``F6~vKHqv{DDi~_(1l#_coRpST2Cnu`cnkE{MvyA{f*G|kDt%0)%OBbi zfu@p+xgOX#g&L7O+C*X)_^3KPUv;tbE~E^$tR)U6^%6_NGRB0UPN`FIVuMcHUAY59 zC@D@RuGB!eke3zW&XADa*EQ;Uk9Z39y^py>m8}8DfM(tR1}87q^K|M8otguymf9d9 zu2UXmuPTN=_LL!1wCG1XE9D)h27BPnsnS;1 z@~>ytl%G_6NzuI*p6dC}Bo|*6@hou&tHX5PUJhk4trVi9?lm6lb92u2KFnNfI=z&T zWUphnT-wz8kVV7PkFGceN3B3W_cn{fVh9h>O8R@XD0f_E**;!nNei05YW?kpA~Ic` z0%bRHeLiBUshU{(ENf0DBcJo+lggL}G|@tlrWM?bKVU;)#pjpf{_gsPx0~140;|Kj zAF&cM?ZDbvkZRrVPMJTyoeDp=ltY8^8kFbEB(~|m>`v|SSgYDH)HB@l_Ref$fpJ0# zTiU_)u?}$bXHtO@ROR~uznABUo9E+QWE7le+B{_x`G>s==59gXHj4ARnS?vi!y>c3 z0vi5Qtm91@Y=6Eka^fq`Gh5-6h_c4QR&V_s?|}6&6qj&s-=eYb_5i+~*G!G2*-OK$ zEPNm>9QU&lT!q9Obr}ZPn)h$S${f@!r!pWcl}YB>CFQvud@OByhc6kqE*`E}%y>`k z{(LG%UpOi2q~CZ^3mbcrTC<@!&vU`A8muFaeCJsP)72NaF2!8Zq-3VxzfzBV7a8jN zz_kEPF=0O++_rSikqVVLlu{>SavoBfd&T*I0^_|X?vfW8mp%@~9g zq0$dn_`=E(5TA>iKx!qBT2i99OUN@DT5fi1Kt^>E5+ zFiO!_HKJ`QG$YQ0N0DUsJOQTWq*#3Q7SQl@z|DX8j74PMbvf)}#y6kOKG73JM&1RS zB#)NC;f~EJdTYZ;c4rnHoWhTxpn$dYU%twPnl~J=8ou(xU#IUd=t`h>iU&_iVFpj% zte*#Y`_qj?>&aHe3#UBqma(pm!+jf^(Zu|m92SGn%aU3+tPH8Q9KvSM)sSUIPsLB# zo-A80K74S9tH26qX;-Po3Ltk>t7%tp`C7K-)k1>~xrI7MG=7)J3|L`V4Te9Z-~|+| zJh{F*{wXs}R#@6)oySWh5XWym8{!O0rwmv^c~oysBoep1*6Ok#7y7X`C@PwXL+aoo z!^h!##kBZv!)Nh>$GV235tE@t($SjmP=Q>D>c}?g=f3_>3m2pa+QBbA8E=8jFD5KX zJ$b44CRZnU%_V^^Vs8a{doW8h>mV*;KwtB#t_i$w<6MXJJTxRk&zX{X+=i{Zh?+$u zS+n#>eC%BW>NTIu0QTgU5}p-~5Q%4p@LCdz6(yk;VU(m5sqW}W&0g4ag&ec&9O-V{ zd&x@n9>yoP$={(BQKvt&W(gaOjMw)qZspWDE+4L8jww^gKH&JN*r`MwAW*f9 zK$yiy{`QnFJ-;hu|2(kk(FvTi}xd&?_vs zSJwt*Ff(1Gz@tp-@bo?hhCd7mHu-j}CFcyj=Tf!dweJm|Y|X;egaU>J1R{l;@pwW8 zoayP(e~n6~J|(hF;al;(Z*S;5`fV@jFZ_(Ru0guPxDb8#8U~~$f-SFCZNYyBTyD5s zfF1y1je3D=MSG??d2$bqXJhkw7tixIYw0^vV!ff}QOocAIt9twk7w#e?&4mE+C#VX z$!Y?vwuy%V4`gL+?jCly97nC>{6sk#HYbk`w8Zb7a`OUMorm##h#`(!d_u8Rndw;q zl6452`InBmm@Z`kTbn!TB>|=M4f4q>(Z2?Gerbew;5OT)l6{PIP`fcJPc(}GRZIgL zMd$Y$SwCbN>qn2vk;X;LteeJbW_UCEr@ao-Uskd&pU%Lm_<6mZ$B+b`rPdFy?>G3A zVHZ1RnCR?8e^44&r13FPi3iw^^cSjZ_ieT!Jx(d#j0-Ut@3DSUkgu1*iX@|mhLFX< z{=o0GI+1+gM8s(JSPHDlcPRn`f6nz(N-Y3EQxq?qskFiuUE6zG z?%{;usBxD2S|pA*RKx7xSwRr<;F^%MJ2}~V+06BDE+l0K>3qFMTIm@!PvSseCt4{7 z$(hf7AsT_0Blq;$6lV^t4vF} zllURk@)1D$!y`A4drv*{*f*ghD0HzWrYrf4TYfyYW@(sf4+u{cjr|6Z^v!^4xCse? zwA2SO8VXzsy90j8fDzp$*`9BAmMqhVVf{P^QC|VOsQ?%%Jq0SO1#-vgbSu}*jj55X z9*w=7zb?KlbRo3VR-FloLFY*8X-J;iW&XLoI9x%(@C#lxWZMJv2LCgvS9LzJ)bS)6bS%rI##=fdC zs%%Ll2zSD|nqlJ<(K25v9eZq>X{rYv22ThNu&0#*jevvdX_s!8EnBK-ezwE|8BzUO zU(lVDlyM`AF?8=6$n^VnjZU*QfgL4-)jwaBuN6z!UfBI@&BE=Qbv&i?Nja&|@tth4 z+Ng`At)D}LS7)s^CYg-GZO6_zpYGACo6lhl^Gyz6?1LgJR1|BvZt*bSDN3%*GVQN| z#gEao&bc{MGkhQFdSP3lIGt0FDM&8mpU1)%Ep-oqDTD>^CkM{V7Ppe104AqaslL-pOrzSf;v*O*x zxAwBUf3g*uWiHbkvM@M532rk!ZPD>5Qul1hC161kuVdsRlC$8VW+6Y}TUhRnBhOLE z5BSB3$p@mJ`YJzV^1V=|bg4DW$5O`%Qf=&Bvzv&{;1vqFtI!#&8i(4A-5=}JopqCl z=Eaoi00#3Hh!ES!`o7pH99xJ#c|F1{V`hZJMAj|kL<}aU;_|vh^>pcO^B^v@R3WVP zsjSxE%CEv&nzDqunB`b6 zQdgpNU!&=Eq`B3u@#|p}z84|Sr$Oar;l}1zf9$tp?n$hdU@<@Xxf;{b%(J7=r7r9_ zksQnv_@VM1MGLqQ%xZM$ZG~ZT&!m`(ejuq&D)$1hsD3qq`T zS8!hO@&5fIDy#&fo6M-%aaQ(BDjoYl1SVSzlRbr`r|+Ga7*i~cM=FS;7>u(Ttlrhh zW;wU;p31DGIwo#CJDXcy|EgCs603?OR;y^^wzsS7f;I~xQ{oU+yQgssRk3D z*Sz%Vnw>`}-^##aqlV_Nm8$D+Tva2o24+nbxtv!bEd-AFyOITs_UB1qN1^IHpkbQnO4dTEl2fBrpLqjS`np*0KbJ8lHE!ro| zO&aNPhDP+XiM&!$3Q?iO*w_QTirci=tKa7CUar3VzMQ)1cu3+rOIML8Ze7G5P3ZRl zv~H@3hB2LE@^AZ!MibYe$#!bC0-!!<2GjlGtVwn@kLHBdTUs44P#-LpEiA`jIBT%q zZ8m~-)egZ@F}1S>i@#&?%Qqv2S+iuC(;ktp+L2u?P5^w?k~e=k>2JsNNLx=3R!frZ zPj+tzC$Ev=*aK^G_uRW>|NH4>34lyGvH_#Rs}*G1BE-d3dZ#`f5Y|w#U;CP?`{#qn2JLN z@v_6|+z24UVY)#)Tv2A(k&Sh@#9QXTL0XDfuq#Vkua$22m>Y1i_q!nW-j=^%&`&oc z$N+lvz|A*Afo(?7F9vQrrvqZTMUSF8&R4QoS0ztT*IMz7?E?>t8xJk82aZkuKXc1J zmyPl?pH;1lsvf^DKQ?WcR3}$%G(x8y)=Z7c9;;T`md}_LZVq4nxs$z-@?DUh!zin+ zy?>s0EdMwNU08g6vCdJi1=2dmejunz?)WxLaAHgZOy_g!s`J7-UuC(EkG;t66sd literal 0 HcmV?d00001 diff --git a/Machine Learning for Economics and Finance/python-exercises/randomly_split_train_test_NOTE.txt b/Machine Learning for Economics and Finance/python-exercises/randomly_split_train_test_NOTE.txt new file mode 100755 index 0000000..ce42af9 --- /dev/null +++ b/Machine Learning for Economics and Finance/python-exercises/randomly_split_train_test_NOTE.txt @@ -0,0 +1,21 @@ +import numpy as np + +# set seed +np.random.seed(1) + +# Number of observations in the dataset +n = len(default_data) + +# Randomly shuffle the indices of the dataset +indices = np.random.permutation(n) + +# Compute training and validation sample sizes +nT = int(0.7 * n) # Training sample size + +# Split the dataset based on shuffled indices +n_train = indices[:nT] # First 70% for training +n_test = indices[nT:] # Remaining 30% for validation + +# Create training and validation datasets +train_data = default_data.iloc[n_train] +test_data = default_data.iloc[n_test]