Files
wscience/src/math/matrix/Diagonal.java

181 lines
3.7 KiB
Java

package math.matrix;
import exception.IllegalDimensionException;
/**
* Diagonal matrix object d<sub>ij</sub>&isin;&#x211D;, i&ne;j=0
* with m rows and n columns
* @author Daniel Weschke
*/
public class Diagonal extends Matrix{
/**
* UID
*/
private static final long serialVersionUID = 3206696282474150081L;
public Diagonal(int n){
this(n,n);
}
public Diagonal(int m, int n){
this.m = m;
this.n = n;
data = new double[m>n?m:n];
}
public Diagonal(double... d){
this(d.length);
int i;
for(i=0; i<n; i++)
set(i, d[i]);
}
public Diagonal(Vector d){
this(d.n());
int i;
for(i=0; i<n; i++)
set(i, d.get(i));
}
/**
* Create diagonal matrix with given main diagonal entries
* @param d matrix
*/
public Diagonal(Matrix d){
this(d.getM(), d.getN());
int i;
for(i=0; i<(m>n?m:n); i++)
set(i, d.get(i, i));
}
/**
* Generate an n-by-n identity matrix.
* An n-by-n matrix with ones on the diagonal and zeros elsewhere.
* @param n rows/columns
* @return n-by-n identity matrix
*/
public static Diagonal identity(int n){
int i;
Diagonal c = new Diagonal(n);
for(i=0; i<n; i++)
c.set(i, 1);
return c;
}
/**
* Generate an m-by-n identity matrix.
* An m-by-n matrix with ones on the diagonal and zeros elsewhere.
* @param n rows/columns
* @return n-by-n identity matrix
*/
public static Diagonal identity(int m, int n){
int i;
Diagonal c = new Diagonal(m, n);
for(i=0; i<(m<n?m:n); i++)
c.set(i, 1);
return c;
}
public void set(int i, double d){
data[i] = d;
}
public Matrix set(int i, int j, double d){
if(i==j) set(i,d);
return this;
}
public double get(int i){
return data[i];
}
public double get(int i, int j){
if(i==j) return get(i);
else return 0;
}
/**
* Unary minus
* @return -D
*/
public Diagonal uminus(){
Diagonal X = new Diagonal(m,n);
int i;
for(i=0; i<n; i++)
X.set(i, -get(i));
return X;
}
/**
* Scalar multiplication. Multiply a matrix element-wise by a scalar.
* @param s scalar
* @return <b>C</b> = s <b>A</b>
*/
public Diagonal times(double s){
int i;
Diagonal c = new Diagonal(m,n);
for(i=0; i<m; i++)
c.set(i, s * get(i));
return c;
}
/**
* Scalar multiplication. Multiply a matrix element-wise by a scalar.
* @param s scalar
* @return <b>D</b> = s <b>D</b>
*/
public Diagonal timesEquals(double s){
int i;
for(i=0; i<m; i++)
set(i, s * get(i));
return this;
}
/**
* Multiply by a vector right. matrix-vector multiplication
* @param b vector
* @return <b>C</b> = <b>A</b> • <b>b</b> = <b>A</b> <b>b</b>
* @throws IllegalDimensionException Illegal vector dimensions.
*/
public Vector times(Vector b) throws IllegalDimensionException{
int i;
if(n != b.n()) throw new IllegalDimensionException("Illegal vector dimensions.");
Vector c = new Vector(m);
for(i=0; i<m; i++)
c.set(i, get(i) * b.get(i));
return c;
}
/**
* @param e exponent
* @return the matrix to the power of e
*/
public Diagonal pow(double e){
int i;
Diagonal C = new Diagonal(m,n);
for(i=0; i<(m<n?m:n); i++)
C.set(i, Math.pow(get(i), e));
return C;
}
public double det(){
int i;
double det = 1;
for(i=0; i<m; i++)
det *= get(i);
return det;
}
public String toString(){
return Matrix.diag(data).toString();
}
public static void main(String[] args){
Diagonal d1 = new Diagonal(1.);
System.out.println(d1);
Diagonal d2 = new Diagonal(1., 2.);
System.out.println(d2);
}
}