Files
pylib/docs/build/html/function.html

300 lines
16 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<title>function module &#8212; pylib 2019.5.19 documentation</title>
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="module-function">
<span id="function-module"></span><h1>function module<a class="headerlink" href="#module-function" title="Permalink to this headline"></a></h1>
<p>Mathematical equations.</p>
<dl class="field-list simple">
<dt class="field-odd">Date</dt>
<dd class="field-odd"><p>2019-11-02</p>
</dd>
</dl>
<span class="target" id="module-function"></span><dl class="function">
<dt id="function.cosine_wave">
<code class="sig-name descname">cosine_wave</code><span class="sig-paren">(</span><em class="sig-param">A=1</em>, <em class="sig-param">k=1</em>, <em class="sig-param">f=1</em>, <em class="sig-param">phi=0</em>, <em class="sig-param">D=0</em>, <em class="sig-param">degree=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/function.html#cosine_wave"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#function.cosine_wave" title="Permalink to this definition"></a></dt>
<dd><p>A cosine wave is said to be sinusoidal, because,
<span class="math notranslate nohighlight">\(\cos(x) = \sin(x + \pi/2)\)</span>, which is also a sine wave with a
phase-shift of π/2 radians. Because of this head start, it is often
said that the cosine function leads the sine function or the sine
lags the cosine.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>A</strong> (<em>float</em><em> or </em><em>int</em>) amplitude</p></li>
<li><p><strong>k</strong> (<em>float</em><em> or </em><em>int</em>) (angular) wave number</p></li>
<li><p><strong>f</strong> (<em>float</em><em> or </em><em>int</em>) ordinary frequency</p></li>
<li><p><strong>phi</strong> (<em>float</em><em> or </em><em>int</em>) phase</p></li>
<li><p><strong>D</strong> (<em>float</em><em> or </em><em>int</em>) non-zero center amplitude</p></li>
<li><p><strong>degree</strong> (<em>bool</em>) boolean to switch between radians and degree. If
False phi is interpreted in radians and if True then phi is
interpreted in degrees.</p></li>
</ul>
</dd>
<dt class="field-even">Results</dt>
<dd class="field-even"><p>sine wave function of spatial variable x and optional
time t</p>
</dd>
</dl>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p><code class="xref py py-meth docutils literal notranslate"><span class="pre">function_sine_wave_degree()</span></code></p>
</div>
</dd></dl>
<dl class="function">
<dt id="function.epitrochoid">
<code class="sig-name descname">epitrochoid</code><span class="sig-paren">(</span><em class="sig-param">R</em>, <em class="sig-param">r</em>, <em class="sig-param">d</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/function.html#epitrochoid"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#function.epitrochoid" title="Permalink to this definition"></a></dt>
<dd><p>Epitrochoid</p>
<p>A point is attached with a distance d from the center of a circle
of radius r. The circle is rolling around the outside of a fixed
circle of radius R.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>R</strong> (<em>float</em>) radius of the fixed interior circle</p></li>
<li><p><strong>r</strong> radius of the rolling circle outside of the fixed circle</p></li>
<li><p><strong>d</strong> (<em>float</em>) distance from the center of the exterior circle</p></li>
</ul>
</dd>
<dt class="field-even">Typre r</dt>
<dd class="field-even"><p>float</p>
</dd>
<dt class="field-odd">Results</dt>
<dd class="field-odd"><p>functions for x of theta and y of theta</p>
</dd>
<dt class="field-even">Return type</dt>
<dd class="field-even"><p>tuple</p>
</dd>
</dl>
<div class="math notranslate nohighlight">
\[\begin{split}x(\theta) = (R + r)\cos\theta - d\cos\left(\frac{R+r}{r}\theta\right) \\
y(\theta) = (R + r)\sin\theta - d\sin\left(\frac{R+r}{r}\theta\right) \\
\theta = \left[0, 2\pi\right]\end{split}\]</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="n">R</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="n">r</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">**</span> <span class="o">....</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">**</span> <span class="n">d</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">epitrochoid</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)[:</span><span class="mi">1</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">theta_end</span> <span class="o">=</span> <span class="n">epitrochoid</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span>
</pre></div>
</div>
</dd></dl>
<dl class="function">
<dt id="function.hypotrochoid">
<code class="sig-name descname">hypotrochoid</code><span class="sig-paren">(</span><em class="sig-param">R</em>, <em class="sig-param">r</em>, <em class="sig-param">d</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/function.html#hypotrochoid"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#function.hypotrochoid" title="Permalink to this definition"></a></dt>
<dd><p>Hypotrochoid</p>
<p>A point is attached with a distance d from the center of a circle
of radius r. The circle is rolling around the inside of a fixed
circle of radius R.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>R</strong> (<em>float</em>) radius of the fixed exterior circle</p></li>
<li><p><strong>r</strong> radius of the rolling circle inside of the fixed circle</p></li>
<li><p><strong>d</strong> (<em>float</em>) distance from the center of the interior circle</p></li>
</ul>
</dd>
<dt class="field-even">Typre r</dt>
<dd class="field-even"><p>float</p>
</dd>
<dt class="field-odd">Results</dt>
<dd class="field-odd"><p>functions for x of theta and y of theta</p>
</dd>
<dt class="field-even">Return type</dt>
<dd class="field-even"><p>tuple</p>
</dd>
</dl>
<div class="math notranslate nohighlight">
\[\begin{split}x(\theta) = (R - r)\cos\theta + d\cos\left(\frac{R-r}{r}\theta\right) \\
y(\theta) = (R - r)\sin\theta - d\sin\left(\frac{R-r}{r}\theta\right) \\
\theta = \left[0, 2\pi\frac{\mathrm{lcm}(r, R)}{R}\right]\end{split}\]</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="n">R</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="n">r</span> <span class="o">**</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">....</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="n">d</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">**</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span>
<span class="o">*</span> <span class="o">*</span> <span class="o">*</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">hyotrochoid</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">)[:</span><span class="mi">1</span><span class="p">]</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">theta_end</span> <span class="o">=</span> <span class="n">hyotrochoid</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p><a class="reference internal" href="mathematics.html#mathematics.lcm" title="mathematics.lcm"><code class="xref py py-meth docutils literal notranslate"><span class="pre">mathematics.lcm()</span></code></a></p>
</div>
</dd></dl>
<dl class="function">
<dt id="function.sine_wave">
<code class="sig-name descname">sine_wave</code><span class="sig-paren">(</span><em class="sig-param">A=1</em>, <em class="sig-param">k=1</em>, <em class="sig-param">f=1</em>, <em class="sig-param">phi=0</em>, <em class="sig-param">D=0</em>, <em class="sig-param">degree=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/function.html#sine_wave"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#function.sine_wave" title="Permalink to this definition"></a></dt>
<dd><p>A sine wave or sinusoid is a mathematical curve that describes a
smooth periodic oscillation.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>A</strong> (<em>float</em><em> or </em><em>int</em>) amplitude</p></li>
<li><p><strong>k</strong> (<em>float</em><em> or </em><em>int</em>) (angular) wave number</p></li>
<li><p><strong>f</strong> (<em>float</em><em> or </em><em>int</em>) ordinary frequency</p></li>
<li><p><strong>phi</strong> (<em>float</em><em> or </em><em>int</em>) phase</p></li>
<li><p><strong>D</strong> (<em>float</em><em> or </em><em>int</em>) non-zero center amplitude</p></li>
<li><p><strong>degree</strong> (<em>bool</em>) boolean to switch between radians and degree. If
False phi is interpreted in radians and if True then phi is
interpreted in degrees.</p></li>
</ul>
</dd>
<dt class="field-even">Results</dt>
<dd class="field-even"><p>sine wave function of spatial variable x and optional
time t</p>
</dd>
</dl>
<p>In general, the function is:</p>
<div class="math notranslate nohighlight">
\[\begin{split}y(x,t) = A\sin(kx + 2\pi f t + \varphi) + D \\
y(x,t) = A\sin(kx + \omega t + \varphi) + D\end{split}\]</div>
<p>where:</p>
<blockquote>
<div><ul class="simple">
<li><p>A, amplitude, the peak deviation of the function from zero.</p></li>
<li><p>f, ordinary frequency, the number of oscillations (cycles) that
occur each second of time.</p></li>
<li><p>ω = 2πf, angular frequency, the rate of change of the function
argument in units of radians per second. If ω &lt; 0 the wave is
moving to the right, if ω &gt; 0 the wave is moving to the left.</p></li>
<li><p>φ, phase, specifies (in radians) where in its cycle the
oscillation is at t = 0.</p></li>
<li><p>x, spatial variable that represents the position on the
dimension on which the wave propagates.</p></li>
<li><p>k, characteristic parameter called wave number (or angular wave
number), which represents the proportionality between the
angular frequency ω and the linear speed (speed of propagation)
ν.</p></li>
<li><p>D, non-zero center amplitude.</p></li>
</ul>
</div></blockquote>
<p>The wavenumber is related to the angular frequency by:</p>
<div class="math notranslate nohighlight">
\[k={\omega \over v}={2\pi f \over v}={2\pi \over \lambda }\]</div>
<p>where λ (lambda) is the wavelength, f is the frequency, and v is the
linear speed.</p>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p><code class="xref py py-meth docutils literal notranslate"><span class="pre">function_cosine_wave_degree()</span></code></p>
</div>
</dd></dl>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h1 class="logo"><a href="index.html">pylib</a></h1>
<h3>Navigation</h3>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="index.html">Documentation overview</a><ul>
</ul></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
&copy;2019, Daniel Weschke.
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 2.2.0</a>
&amp; <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.12</a>
|
<a href="_sources/function.rst.txt"
rel="nofollow">Page source</a>
</div>
</body>
</html>