add tube thickness
This commit is contained in:
@@ -1,4 +1,6 @@
|
||||
import math
|
||||
"""Structure :py:class:`beam` and :py:class:`tube` objects.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
class beam:
|
||||
"""Euler-Bernoulli beam.
|
||||
@@ -19,16 +21,16 @@ class beam:
|
||||
self.rho = rho
|
||||
|
||||
@property
|
||||
def V():
|
||||
def V(self):
|
||||
return self.A * self.L
|
||||
|
||||
@property
|
||||
def mu():
|
||||
def mu(self):
|
||||
"""Mass per unit length (or the product of density and cross-section)"""
|
||||
return self.rho * self.A
|
||||
|
||||
@property
|
||||
def m():
|
||||
def m(self):
|
||||
return self.mu * self.L
|
||||
# return self.rho * self.V
|
||||
|
||||
@@ -103,12 +105,11 @@ class beam:
|
||||
|
||||
"""
|
||||
a_nLopi = [0.596864, 1.49418, 2.50025, 3.49999]
|
||||
a_n = a_nLopi[n-1]*math.pi/self.L if n < len(a_nLopi) else 0
|
||||
return a_n**2*math.sqrt(self.E*self.I/self.mu)/(2*math.pi)
|
||||
a_n = a_nLopi[n-1]*np.pi/self.L if n < len(a_nLopi) else 0
|
||||
return a_n**2*np.sqrt(self.E*self.I/self.mu)/(2*np.pi)
|
||||
|
||||
class tube:
|
||||
r"""\
|
||||
Long thin circular tube uniformly loaded with external pressure.
|
||||
r"""Long thin circular tube uniformly loaded with external pressure.
|
||||
|
||||
Elemental ring of unit width (h)
|
||||
|
||||
@@ -123,27 +124,31 @@ class tube:
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, r, h, E, nu):
|
||||
"""\
|
||||
def __init__(self, E, nu, r, *, h=None, q=None, s=None):
|
||||
r"""
|
||||
Args:
|
||||
r: mean radius (r_a + r_i)/2
|
||||
h: thickness
|
||||
E: Young's modulus
|
||||
nu: Poisson's ratio
|
||||
r: mean radius (:math:`r_\text{a}` + :math:`r_\text{i}`)/2
|
||||
h: thickness
|
||||
s: internal stress
|
||||
q: external pressure
|
||||
"""
|
||||
self.r = r
|
||||
self.h = h
|
||||
self.E = E
|
||||
self.nu = nu
|
||||
self.r = r
|
||||
self.h = h
|
||||
self.s = s
|
||||
self.q = q
|
||||
|
||||
def critical_buckling_force(self):
|
||||
def buckling_force(self):
|
||||
r"""Critical buckling value of the compressive force.
|
||||
|
||||
A long circular tube uniformly compressed by external pressure.
|
||||
|
||||
.. math::
|
||||
|
||||
f_{cr} = \frac{E h^3}{4 \, (1 - \nu^2) \, r^2}
|
||||
f_\text{cr} = \frac{E h^3}{4 \, (1 - \nu^2) \, r^2}
|
||||
|
||||
References:
|
||||
- Timoshenko, Stephen P., and James M. Gere. 1961. Theory of Elastic
|
||||
@@ -152,18 +157,18 @@ class tube:
|
||||
"""
|
||||
return (self.E * self.h**3) / (4 * (1 - self.nu**2) * self.r**2)
|
||||
|
||||
def critical_buckling_pressure(self):
|
||||
def buckling_pressure(self):
|
||||
r"""Critical buckling value of the compressive pressure.
|
||||
|
||||
A long circular tube uniformly compressed by external pressure.
|
||||
|
||||
.. math::
|
||||
|
||||
q_{cr} = f_{cr}/r
|
||||
q_\text{cr} = f_\text{cr}/r
|
||||
|
||||
.. math::
|
||||
|
||||
q_{cr} = \frac{E}{4 \, (1 - \nu^2)} \left(\frac{h}{r}\right)^3
|
||||
q_\text{cr} = \frac{E}{4 \, (1 - \nu^2)} \left(\frac{h}{r}\right)^3
|
||||
|
||||
References:
|
||||
- Timoshenko, Stephen P., and James M. Gere. 1961. Theory of Elastic
|
||||
@@ -172,17 +177,17 @@ class tube:
|
||||
"""
|
||||
return self.E / (4 * (1 - self.nu**2)) * (self.h / self.r)**3
|
||||
|
||||
def critical_buckling_stress(self):
|
||||
def buckling_stress(self):
|
||||
r"""Critical buckling stress of a long thin circular tube uniformly
|
||||
compressed by pressure.
|
||||
|
||||
.. math::
|
||||
|
||||
\sigma_{cr} = f_{cr}/h
|
||||
\sigma_\text{cr} = f_\text{cr}/h
|
||||
|
||||
.. math::
|
||||
|
||||
\sigma_{cr} = \frac{E}{1 - \nu^2} \left(\frac{h}{2r}\right)^2
|
||||
\sigma_\text{cr} = \frac{E}{1 - \nu^2} \left(\frac{h}{2r}\right)^2
|
||||
|
||||
References:
|
||||
- Timoshenko, Stephen P., and James M. Gere. 1961. Theory of Elastic
|
||||
@@ -190,3 +195,35 @@ class tube:
|
||||
|
||||
"""
|
||||
return self.E / (1 - self.nu**2) * (self.h / (2 * self.r))**2
|
||||
|
||||
def buckling_thickness(self) -> float|None:
|
||||
r"""Critical buckling thickness of a long thin circular tube uniformly
|
||||
compressed by external pressure.
|
||||
|
||||
Returns:
|
||||
- Thickness regarding the internal stress, if stress is given
|
||||
|
||||
.. math::
|
||||
|
||||
h_{\text{cr,}\sigma} = \sqrt{\sigma_\text{cr} \frac{1 - \nu^2}{E}} {2r}
|
||||
|
||||
- Thickness regarding the external pressure, if pressure is given
|
||||
|
||||
.. math::
|
||||
|
||||
h_\text{cr,q} = \left(q_\text{cr} \, 4 \frac{1 - \nu^2}{E}\right)^\frac{1}{3} {r}
|
||||
|
||||
- Otherwise given thickness or None
|
||||
|
||||
References:
|
||||
- Timoshenko, Stephen P., and James M. Gere. 1961. Theory of Elastic
|
||||
Stability. 2nd ed. New York: McGraw-Hill Book. p. 293.
|
||||
|
||||
"""
|
||||
if self.scr is not None:
|
||||
return np.sqrt(self.s * (1 - self.nu**2) / self.E) * (2 * self.r)
|
||||
if self.qcr is not None:
|
||||
return np.power(self.q * 4 * (1 - self.nu**2) / self.E, 1/3) * self.r
|
||||
if self.h is not None:
|
||||
return self.h
|
||||
return None
|
||||
|
||||
Reference in New Issue
Block a user