Theorie modale Dämpfung und Formelzeichen erweitert
This commit is contained in:
@@ -9,29 +9,38 @@
|
||||
\(A\) & mm\(^2\) & Fläche \\
|
||||
\(\tensor{B}\) & & Ableitungen der Formfunktionen \\
|
||||
\(\tensorI{b}\) & mm/s\(^2\) & Beschleunigung \\
|
||||
\(\tensorIV{C}\) & MPa & Elastizitätstensor, Elastizitätsmatrix \\
|
||||
\(\tensor{C}\) & MPa & Elastizitätsmatrix \\
|
||||
\(\tensorIV{C}\) & MPa & Elastizitätstensor \\
|
||||
\(\tensor{D}\) & & Gesamtdämpfungsmatrix \\
|
||||
\(\tensor{D}^{(e)}\) & & Elementdämpfungsmatrix \\
|
||||
\(\tensor{\tilde{D}}\) & & Modale Dämpfungsmatrix \\
|
||||
\(\mathcal{D}\) & & Differentialoperatormatrix \\
|
||||
\(d\) & N\,s/m; N\,m\,s & Dämpfungskonstante \\
|
||||
\(\tensorI{e}\) & & Einheitsvektor \\
|
||||
\(f\) & Hz & Eigenfrequenz \\
|
||||
\(\tensorI{f}\) & N/mm\(^3\) & Volumenkräfte \\
|
||||
\(h\) & mm & Einzelschichtdicke \\
|
||||
\(\tensorII{J}\) & & \textsc{Jacobi}"=Matrix \\
|
||||
\(\tensor{K}\) & & Gesamtsteifigkeitsmatrix \\
|
||||
\(\tensor{K}^{(e)}\) & & Elementsteifigkeitsmatrix \\
|
||||
\(\tensor{\tilde{K}}\) & & Modale Steifigkeitsmatrix \\
|
||||
\(L\) & mm & Länge \\
|
||||
\(\tensor{M}\) & N & Linienmomente \\
|
||||
\(\tensor{M}\) & & Gesamtmassenmatrix \\
|
||||
\(\tensor{M}^{(e)}\) & & Elementmassenmatrix \\
|
||||
\(\tensor{\tilde{M}}\) & & Modale Massenmatrix \\
|
||||
\(\tensor{N}\) & N/mm & Linienkräfte \\
|
||||
\(\tensor{N}\) & & Formfunktionen \\
|
||||
\(\tensorI{n}\) & & Normalenvektor \\
|
||||
\(\tensor{Q}\) & & Transformationsmatrix \\
|
||||
\(\tensor{q}\) & & Modale Koordinaten \\
|
||||
\(\tensor{Q}\) & & \textsc{Reuter}"=Matrix \\
|
||||
\(\tensor{\hat{r}}\) & N & Knotenlastvektor \\
|
||||
\(\tensor{S}\) & & Nachgiebigkeitsmatrix \\
|
||||
\(T\) & s & Simulationsdauer \\
|
||||
\(t\) & s & Zeit \\
|
||||
\(\tensorI{t}\) & MPa & Spannungsvektor \\
|
||||
\(t\) & mm & Laminatdicke \\
|
||||
\(\tensorI{t}\) & MPa & \textsc{Cauchy}"=Spannungsvektor \\
|
||||
\(\tensorI{u}\) & mm; 1 & Verschiebungen \\
|
||||
\(\tensorI{\dt{u}}\) & mm/s; 1/s & Geschwindigkeit \\
|
||||
\(\tensorI{\ddt{u}}\) & mm/s\(^2\); 1/s\(^2\) & Beschleunigung \\
|
||||
@@ -55,11 +64,16 @@
|
||||
\(\delta W\ti{a}\) & N\,mm & Virtuelle äußere Arbeit \\
|
||||
\(\delta W\ti{i}\) & N\,mm & Virtuelle innere Arbeit \\
|
||||
\(\delta\tensorII{\varepsilon}\) & & Virtuelle Verzerrungen \\
|
||||
\(\tensor{\varepsilon}\) & & Dehnungen \\
|
||||
\(\tensor{\varepsilon}\) & & Verzerrungsvektor \\
|
||||
\(\tensorII{\varepsilon}\) & & Verzerrungstensor \\
|
||||
\(\vartheta\) & & Winkel \\
|
||||
\(\tensor{\kappa}\) & 1/mm & Krümmungen \\
|
||||
\(\lambda\) & & Eigenwert \\
|
||||
\(\nu\) & & Querkontraktionszahl \\
|
||||
\(\xi\) & & Natürliche Koordinaten \\
|
||||
\(\tensorI{\xi}\) & & Natürliche Koordinaten \\
|
||||
\(\rho\) & t/mm\(^3\) & Dichte \\
|
||||
\(\tensor{\sigma}\) & MPa & Spannungsvektor \\
|
||||
\(\tensorII{\sigma}\) & MPa & \textsc{Cauchy}"=Spannungstensor \\
|
||||
\(\tensor{\Phi}\) & & Modale Matrix \\
|
||||
\(\tensor{\phi}\) & mm; 1 & Eigenvektor \\
|
||||
|
||||
Reference in New Issue
Block a user